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Élisabeth, Erika, Floriane pour m’avoir encouragée à différents moments de ma thèse, et
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Abstract

This manuscript presents two independent studies on the fluid dynamics of planetary
interiors.

The first part of this manuscript is a numerical study of thermal convection and
magnetic field generation driven by internal heating in rotating spheres; a configuration
appropriate for planetary cores prior to inner-core nucleation. For sufficiently vigorous
convection, we find that the flow becomes strongly asymmetric with respect to the equator;
this result contrasts with previously published studies of convection in spherical shells
(i.e. with an inner core) where the flow is essentially symmetric. An antisymmetric and
axisymmetric (EAA) mode then strongly influences the total flow and conflicts with the
Taylor-Proudman theorem. We show that this spontaneous emergence of antisymmetric
flow components induces localized magnetic fields with up to 90% of the total magnetic
energy contained in a single hemisphere. Our results suggest a parsimonious scenario to
explain the hemispherical crustal magnetic field of Mars.

In the second part of this manuscript, we present experiments on the instability and
fragmentation of blobs of a heavy liquid released into a lighter immiscible liquid. These
processes likely occurred on a massive scale during the formation of the Earth and its
core, when dense liquid metal blobs were released within deep molten silicate magma
oceans. During the fragmentation process, we observe deformation of the released fluid,
formation of filamentary structures, capillary instability, and eventually drop formation.
We find that, at low and intermediate Weber number (which measures the importance
of inertia versus surface tension), the fragmentation regime results from the competition
between a Rayleigh-Taylor instability and the roll-up of a vortex ring. At sufficiently high
Weber number (the relevant regime for core formation), the large-scale flow behaves as
a turbulent vortex ring or a turbulent thermal: it forms a coherent structure with self-
similar shape during the fall and grows by turbulent entrainment of ambient fluid. An
integral model based on the entrainment assumption, and adapted to buoyant vortex rings
with initial momentum, is consistent with our experimental data. Such results provide
the relevant framework for the development of geochemical core formation models that
incorporate fluid dynamic constraints.

Keywords: geophysical fluid dynamics, planetary core dynamics, planetary core
formation, magma ocean, rotating convection, dynamo, liquid-liquid fragmentation,

numerical simulations, laboratory experiments, regime characterization, scaling.
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Résumé de la thèse

Cette thèse contient deux études portant sur la dynamique des fluides des noyaux
planétaires.

La première partie de ce manuscrit est une étude numérique de la convection thermique
et de la génération de champ magnétique dans une sphère pleine en rotation; une config-
uration qui est appropriée pour étudier la dynamique d’un noyau planétaire sans graine.
Quand la vigueur de la convection est suffisamment élevée, nous obtenons des écoulements
fortement asymétriques par rapport à l’équateur, contrastant avec les écoulements essen-
tiellement symétriques obtenus en présence d’une graine dans les études précédentes. Un
mode antisymétrique et axisymétrique (EAA), brisant la contrainte de Taylor-Prouman,
influence alors fortement l’écoulement total. Nous montrons que l’émergence spontanée
de ces écoulements fortement asymétriques induit un champ magnétique localisé dans un
hémisphère. Ces résultats suggèrent un scénario parcimonieux pour expliquer l’asymétrie
du champ magnétique crustal de Mars.

Dans la seconde partie, nous présentons des expériences sur la déstabilisation et la
fragmentation d’un volume de fluide dense dans un autre liquide non-miscible. De tels
processus ont eu lieu à grande échelle lors des impacts qui ont formé la Terre et son
noyau : le métal liquide de l’impactant était alors relâché dans un océan de magma
moins dense. Pendant le processus de fragmentation, nous observons la déformation
du fluide dense, la formation de structures filamentaires, et finalement la formation de
gouttes. Pour des nombres de Weber (rapport des forces d’inertie et de tension de sur-
face) suffisamment faibles, le régime de fragmentation résulte de la compétition entre
une instabilité de Rayleigh-Taylor et la formation d’un anneau de vorticité. Pour des
nombres de Weber suffisamment élevés (le régime pertinent pour la formation du noyau),
l’écoulement grande échelle se comporte comme un thermique turbulent : il forme une
structure cohérente et autosimilaire qui croit par entrâınement de fluide ambiant. Un
modèle basé sur l’hypothèse d’entrâınement turbulent, et adapté au cas d’un anneau de
vorticité ayant une inertie initial, est en accord avec nos résultats expérimentaux. Cela
démontre que le concept d’entrâınement turbulent peut être appliqué à une interface
séparant des fluides non-miscibles. Ces résultats fournissent le cadre général nécessaire à
l’insertion de contraintes physiques dans les modèles chimiques de formation du noyau.

Mots-clés : dynamique des fluides géophysiques, dynamique des noyaux planétaires,
formation des planètes, océan de magma, convection en rotation, dynamo,

fragmentation liquide-liquide, simulations numériques, expériences analogiques,
caractérisation des régimes, loi d’échelle.



Chapter 1

Introduction

1.1 Research background

In this section, we introduce background material related to the state (structure, compo-
sition, temperature) and dynamics of planetary cores and their evolution through time,
which is especially useful to understand the geophysical context (planetary core formation
and convection in fully-liquid cores) that has inspired the two fluid mechanics problems
addressed in this manuscript. This section also aims at giving some physical insights into
the regime of flow motions in liquid portions of planetary cores.

1.1.1 Present state of planetary cores

1.1.1.1 Structure of Earth’s core

Most of what we know about the layers of the Earth’s interior (illustrated in figure 1.1(a))
comes from seismology, the study of elastic waves that travel through the Earth and of
free oscillations. From the study of wave travel times as a function of the distance from
the wave source, Oldham (1906) postulated the existence of a major discontinuity in
physical properties within the Earth, separating two layers called the mantle and the
core. Later, Gutenberg (1914) determined the location of the core-mantle boundary
(CMB) by identifying waves reflected at the CMB (at radius ≈ 3500 km). Comparisons
between the Earth’s rigidity from solid Earth tides and the mantle’s rigidity deduced
from seismology supported the existence of a liquid core (Jeffreys, 1926). Later, Lehmann
(1936) identified compressional waves in a region where they were not expected with a
homogeneous core model, indicating the presence of a discontinuity inside the core: the
inner core and the inner-core boundary (ICB) were discovered. Physical arguments were
given by Jacobs (1953) in support of a solid inner core, a result later confirmed by the study
of the free oscillations of the Earth (Dziewonski & Gilbert, 1971). Then, several models
describing the structure of the Earth, including its core, were successively published;
the reference model for a radially homogenous Earth is the Preliminary Reference Earth
Models (PREM) by Dziewonski & Anderson (1981), which is illustrated in figure 1.1(b).

13
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rejected permanent magnetization, ohmic decay of
free electric currents, and gyromagnetism as primary
causes. They also dismiss the self-sustaining dynamo
mechanism, concluding, as didSchuster (1911)that
the ‘‘di�culties which stand in the way of basing
terrestrial magnetism on electric currents inside the
Earth are insurmountable.’’

Evidently, Chapman and Bartels were responding
to the suggestion in a short paper byLarmor (1919;
Figure 8 ) that an internal circulation of a conducting
�uid in the presence of a small magnetic �eld would
induce an electric �eld, and if a suitable path for
electric currents was created in the �uid, a magnetic
�eld might be sustained inde�nitely. In short, Larmor
had proposed a self-sustaining �uid dynamo. Although
Larmor’s suggestion was primarily intended for appli-
cation to the Sun (his paper refers to Hale’s discovery
of magnetic �elds in sunspots), the idea seemed

equally applicable to the Earth. However, it did not
lead to much immediate progress on the geodynamo.
Subsequently,Cowling (1933) showed that electro-
magnetic induction by a conducting �uid cannot
maintain a steady axisymmetric �eld. This was the
�rst of several antidynamo theorems that cast some
doubt on the validity of the self-sustaing dynamo
concept. In retrospect, it seems that Cowling’s theo-
rem was perhaps overinterpreted. A steady
axisymmetric dynamo is probably an unphysical situa-
tion, and is certainly not applicable to the Earth.
Nevertheless, many theorists of that era believed that
Cowling’s results implied that a general nonexistence
proof o� uid dynamos would eventually be found.

The logjam started to break in the 1940s, begin-
ning with a series of papers byElsasser (1946, 1950;
Figure 9 ), and E. C. Bullard (Figure 10 ) and collea-
gues (Bullard et al., 1950; Bullard and Gellman, 1954),
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Figure 5 (a) Cutaway view showing the main layers of the Earth’s interior, including the solid mantle (yellow), liquid outer
core (orange), the solid inner core (red), and the core–mantle boundary (CMB) and the inner–outer core boundary (ICB).
(b) Seismic Earth model PREM ( Dziewonski and Anderson, 1981 ).
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Mantle
 (solid silicates)

 Inner core 
(solid metal) 

Outer core
 (liquid metal)

ICB CMB
Radius (km)

Vcomp

Vshear

Figure 1.1: (a) Cutaway view showing the main layers of the Earth’s interior (modified from
Olson (2007)). (b) PREM model for the evolution of the shear wave velocity (Vshear), the
compressional wave velocity (Vcomp) and the density (ρ) as a function of the Earth’s radius
(modified from Olson (2007), after Dziewonski & Anderson (1981)).

1.1.1.2 Composition of Earth’s core

Using experiments at high pressure and high temperature, Birch (1952) showed that prop-
erties of the Earth’s core (deduced from compressional and shear wave velocity measure-
ments) suggest that it is made of iron, plausibly alloyed with lighter elements, although
the precise composition in light elements is highly controversial (Poirier, 1994). Other
metals, as nickel, might also be present.

The value of the density contrast at the ICB (figure 1.1(b)) (Dziewonski & Anderson,
1981; Masters & Gubbins, 2003; Cao & Romanowicz, 2004) can not be accounted for by a
phase change alone, indicating that the outer core is enriched in light elements compared
to the inner core.

1.1.1.3 Thermal state of Earth’s outer core

The presence of an inner core in the Earth provides a major constraint on its thermal
structure since the ICB has to be at the melting temperature. The melting temperature
of iron at the ICB pressure is estimated to be in the range 5500 − 6700 K from high-
pressure experiments (Ma et al., 2004; Anzellini et al., 2013) and ab-initio calculations
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(Alfe et al., 2002, 2003; Alfe, 2009), and Alfe et al. (2003) estimates that the presence of
light elements in the core lowers this temperature by ∼ −700K.

Given its value at the ICB, a temperature profile can be calculated throughout the
outer core assuming that the latter is vigorously convecting, hence “well-mixed” and
isentropic. The temperature gradient of an isentropic and hydrostatic system, also called
adiabatic temperature gradient, is given by

∂Ta
∂r

= −αgTa
CP

, (1.1)

where α is the thermal expansion coefficient, g the gravitational acceleration, and CP the
specific heat capacity under constant pressure. Equation (1.1) means that the temperature
of a liquid parcel advected upwards in the outer core, without exchanging heat with its
surrounding, decreases as a result of pressure variations. The adiabatic temperature
gradient (1.1) is significant in systems with large pressure variations, as in planetary
cores or in the atmosphere. In such systems, a considerable portion of the total heat flux
is conducted along the adiabat and does not contribute to drive convection.

The first term in the expansion of g is a linear function of r and it corresponds to
the gravitational acceleration of a self-graviting sphere of constant density. Assuming
constant values for α and CP , equation (1.1) can be integrated and the temperature in a
“well-mixed” core is given by (Labrosse et al., 2001):

Ta = Ti exp
(r2
i − r2)

D2
where D =

√
3CP

2παρcG
, (1.2)

where Ti is the temperature at the ICB, ρc the density at Earth’s center, ri the radius of
the inner core and G is the gravitational constant.

1.1.1.4 Structure and composition of other planetary cores

From the knowledge of the Earth’s structure, we expect other terrestrial∗ planets to have
a silicate mantle and a metallic core separated by a CMB. Planetary cores can be entirely
liquid, entirely solid or formed of an innermost solid core and an outermost liquid core. In
the absence of seismological data, the main constraints on the state and size of planetary
cores come from estimations of their mean density and their axial moment of inertia,
which is closely related to the mass distribution inside the planet. The mean density is
estimated from the mass and volume of the planet, its mass being deduced from satellite
trajectories. The axial moment of inertia can be inferred from the planet gravitational
field if the body is in hydrostatic equilibrium, from the precession of the rotation axis or
from forced oscillations, called librations, of its rotation rate. Forced librations and tides
are particularly sensitive to the presence of a liquid outer core. Finally, the presence of
a magnetic field of internal origin at the surface of a terrestrial body (Earth, Jupiter’s
satellite Ganymede and Mercury) is most commonly interpreted as a result of convection
and dynamo action within a liquid outer core. Usually, the above data are not all available
for a single planetary object and other sources of information may be used on a case-by-

∗A terrestrial planet is essentially composed of silicates and metal.



16 Chapter 1. Introduction

case basis (see Sohl & Schubert, 2007, for detailed information concerning the structure
of every terrestrial object of the solar system).

Constraints on the composition of terrestrial cores are obtained from the analysis of
meteorites that sample a planet mantle, whose compositions are then subtracted to that
of undifferentiated meteorites, called chondrites, which are used as models for the global
composition of that planet (this method is also used for the Earth’s core).

1.1.1.5 Other physical properties

High-pressure and high-temperature laboratory experiments, using piston-cylinder presses,
diamond anvil cells or shock waves have provided important data concerning the phys-
ical properties (thermal conductivity, electric conductivity, viscosity, ... ) of liquid and
solid metal at planetary pressure and temperature. More recently they have been com-
plemented by ab-initio calculations, based on first-principles (see Price, 2007, and the
subsequent chapters for a review on geophysical applications of mineral physics).

1.1.2 State of planetary cores in the past

We have introduced the main constraints concerning the present state of planetary cores.
How and when was this state (structure, composition, temperature) acquired?

1.1.2.1 Core formation and planetary accretion

(a) (b) (c)

Figure 1.2: (a) Color image of the Eagle Nebula, constructed from data obtained by the Hubble
Space Telescope (NASA). (b) Artistic view of a protoplanetary disk (NASA). (c) Artistic view
of the present solar system (NASA).

The most widely accepted model of solar system formation involves the collapse of
a fairly homogeneous cloud of dust and gas, called nebula (figure 1.4(a)), resulting in a
disk-shaped structure, called protoplanetary disk (figure 1.4(b)), from which the planets
and the sun were formed (figure 1.4(c)). Such a hypothesis is especially supported by
astronomical observations of newborn stars (Beckwith et al., 1990). In the planetesimal
theory (reviewed in Chambers, 2004), dust grains would gather within the protoplanetary
disk to form kilometer-sized bodies, called planetesimals. The mechanisms involved at this
stage remain controversial, but gravitational instabilities, turbulence-induced gradients in
dust concentration or grain sticking after low-speed collisions have been mentioned in
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the literature. Once objects larger than a few kilometers are formed, they can interact
gravitationally during close approaches (since their escape velocity is not small compared
to their mean velocity), causing collisions and net accretion, and forming larger and larger
planetesimals, eventually resulting in planet-sized bodies.

Numerical simulations of planetary collisions predict that Moon or Mars-sized em-
bryos can be formed in 0.1− 1 Myrs (Weidenschilling et al., 1997) whereas the complete
formation of Earth-sized planets would take 10− 100 Myrs (Chambers & Wetherill, 1998;
Agnor et al., 1999). Comparison between these values and the characteristic timescale
of core formation inferred from radiochronology for the parent bodies of iron meteorites
(≤ 1.5 Myr, Schersten et al., 2006), for Mars’ core (∼ 10 Myrs, Yin et al., 2002) and
for Earth’s core (∼ 30 − 100 Myrs, Yin et al., 2002; Rudge et al., 2010) indicates that
core formation and planetary accretion were simultaneous processes. They correspond to
a rather brief period compared to the 4.5 billion years of the planets’ history. The above
age for iron meteorites also suggests that the main structure of present terrestrial planets
(metallic core and silicate mantle) was already acquired in early planetesimals.

The global composition of the core and the mantle were set during planetary accretion
and the thermal state resulting from accretion can be regarded as the initial condition
for planetary thermal evolution on geological timescales. Heat was accumulated during
planetary formation as a result of (1) impacts, (2) release of gravitational potential energy
and (3) radioactive decay of short-lived isotopes (see Breuer & Moore, 2007). It was
then evacuated on geological timescales through a process called secular cooling, which
essentially involves conduction and convection in terrestrial bodies with a solid or partially
solid mantle.

1.1.2.2 Thermal evolution models

As a result of secular cooling, the temperature of the Earth’s core progressively decreases,
inducing solidification of the outer core and growth of the solid inner core. As the present
state of the Earth’s core is relatively well constrained, thermal evolution models can be
integrated backwards in time to provide estimations of the age of the inner core. From
the energy balance within the core it can be shown that (Gubbins et al., 2003)

Qo = BdTo
dt

+QR, (1.3)

where Qo is the total heat flux at the CMB, To the core temperature below the CMB, QR

the contribution from radioactive decay and B is a function that includes contributions
from secular cooling, gravitational energy release, and latent heat release at the ICB due
to inner core solidification. When the core temperature at the ICB, Ti, decreases, the
inner core grows in size at a rate which depends on the difference between the adiabatic
temperature gradient and the melting temperature gradient ∂Tm/∂r such that

dTi
dt

=

[
∂Tm
∂r
− ∂Ta

∂r

]
dri
dt
, (1.4)

as it can be intuited from figure 1.3. At leading order dTi/dt = Ti/To · dTo/dt (Gubbins
et al., 2003). Thus, by combining the latter equation with equations (1.4) and (1.3) one
can obtain an evolution equation for dri/dt once models for Qo(t) and QR are prescribed.
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The history of the total heat flux Qo(t) is not well constrained but end-member scenarios
can be given from parametrized models of heat transfer within the mantle, or from the
requirement that a dynamo has been active during the last 3 Gyrs as indicated by mea-
surements of remanent magnetizations in rocks at the Earth’s surface (Tarduno et al.,
2010).

inner core
(solid)

outer core
(liquid)

ICB at time t

melting temperature,

adiabatic temperature,
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m

pe
ra
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Core radius, r

T
m

ri(t)

Ta(t)
Ta(t + δt)
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ri(t + δt)

Ti(t)
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Figure 1.3: Schematic representation of inner core growth. The outer core temperature Ta
(adiabatic temperature) decreases between times t and t+δt as a result of secular cooling, inducing
an increase of the inner core radius ri equal to δri, the distance between the intersections of the
melting temperature Tm and the outer core temperature Ta at times t and t+ δt.

The present thermal state of planets other than Earth is poorly constrained. In this
case, global thermal evolution models, this time integrated forward using plausible values
for the initial (i.e. post-accretion) temperature, give insights into the present thermal
state of these planets and its evolution through time, allowing for additional constraints
on their internal structure (e.g. Stevenson et al., 1983). The cooling rate of a planet is
mainly controlled by its mantle, and global evolution models involve parameterizations
of convective heat transfer in the planet mantle as a function of known quantities (e.g.
temperature difference across the mantle).

1.1.3 Fluid dynamics implications

1.1.3.1 Convective regimes

The cooling of planetary cores after their formation on geological timescales can drive con-
vection through two different processes. First, purely thermal convection can be driven in
fully-liquid cores prior to inner-core solidification, if the total heat flux extracted from the
core by the mantle at the CMB exceeds the heat flux conducted along the adiabatic tem-
perature (equation (1.2)). Second, inner-core solidification drives convective instabilities
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through the release of light elements (we have already mentioned that the concentration
in light elements is lower in the inner core than is the outer core) and through the release
of latent heat. Therefore, the convective regime in a given planetary core depends mainly
on (1) the presence or absence of a solid inner core and (2) the values of the total and
adiabatic heat fluxes at the CMB.

In the present Earth’s core, the total heat flux at the CMB can be estimated by ex-
trapolating the mantle temperature down from the near-surface and the core temperature
up from the ICB, assuming that the temperature follows an adiabatic profile (equation
(1.1)) in both layers. This gives an estimation of the temperature contrast across the
mantle thermal boundary layer, whose thickness can be deduced from seismological ob-
servations. The resulting total heat flux is in the range 5− 13 TW (e.g. Buffett, 2003)∗.
Common cited estimates for the adiabatic heat flux at the CMB are between 5 and 8
TW (Lay et al., 2008), although recent ab-initio calculations (Pozzo et al. 2012; de Koker
et al. 2012) suggest larger values in the range 13 − 22 TW (as a result of a thermal
conductivity three times larger than previous estimates). Such values indicate two pos-
sible convective regimes for the Earth’s core: either the upper layer of the outer core is
presently thermally stable and convection is mainly driven by inner-core solidification, or
the adiabatic heat flux at the CMB exceeds the total heat flux and convection is driven
by both thermal and compositional effects. On the contrary, before Earth’s inner core
nucleation (∼ 2.5 − 1 Gyrs ago, Labrosse et al. 2001), convection was necessarily driven
by purely thermal instabilities.

For other planets, the convective regime can be inferred from global thermal evolution
models that provide constraints on (1) the structure of the core (fully-liquid or not) and
(2) the total heat flux at the CMB.

1.1.3.2 Regime of flow motions

Compared to silicate mantles whose kinematic viscosity is extremely high (in the range
1015 − 1018m2·s−1), liquid metal has a very low viscosity of about 10−6±1 m2·s−1 at core
pressures (Funakoshi, 2010; de Wijs et al., 1998, and references within), similar to the
viscosity of water. Hence, the Reynolds number, which measures the relative importance
of inertial and viscous forces, is much lower than 1 in convecting solid mantles and the
flow is very viscous†. On the contrary, high Reynolds numbers are easy to reach in
liquid portions of planetary cores and flow motions are almost systematically turbulent.
For instance, a characteristic velocity of convective motions near the Earth’s outer core
surface is 5 · 10−4m·s−1 (obtained by inverting time-variations of the geomagnetic field,
Bloxham & Jackson, 1991), which gives a Reynolds number larger than 5 · 107.

∗Such values are in agreement with recent estimations that are based on double-crossing of a phase
transition (perovskite to post-perovskite) in the Earth’s mantle, which yields a global CMB heat flux in
the range 7− 15 TW (Hernlund et al., 2005).
†assuming a typical length of 1000km and a typical velocity of 1cm per year for the velocity of plates

at the Earth’s surface, we obtain a Reynolds number smaller than 10−19.
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1.2 Two independent projects,

a common methodology
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Figure 1.4: Typical history of the core of a terrestrial planet. Qi and Qa are the total and
adiabatic heat fluxes at the CMB, respectively. The time scale is only indicative and the absolute
values vary from one planet to the other. The studies presented in Part I and Part II of this
manuscript are related to the stages indicated by blue arrows.

Figure 1.4 summarizes the typical history of a planet as deduced from the background
material given in section 1.1 and locates the geophysical contexts that motivate the studies
presented in Part I and Part II of this manuscript.

In the first part of this manuscript, a study on thermal convection and magnetic
field generation driven by internal heating in rotating full spheres is presented. This
configuration is appropriate to study the dynamics of planetary cores prior to inner core
solidification and subsequent to core formation (figure 1.4). This study was conducted in
IPGP∗ with Julien Aubert using numerical simulations.

The second part of this manuscript goes back in time and aims at better understanding
the fluid dynamics of the last stages of core formation (figure 1.4), during which much of

∗Institut de Physique du Globe de Paris
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the Earth mass was formed as a result of high-speed collisions between planetary embryos
that consisted of a silicate mantle and a metallic core (Melosh, 1990; Yoshino et al., 2003;
Schersten et al., 2006; Ricard et al., 2009). Energy release during each of these impacts
induced widespread melting, creating an environment in which dense liquid metal blobs fell
within deep molten silicate magma oceans (Tonks & Melosh, 1993; Pierazzo et al., 1997).
As liquid metal and liquid silicates are immiscible, liquid metal fragmented into smaller
blobs during its fall. Inspired from this context, we study buoyancy-driven fragmentation
of a liquid into another immiscible liquid using laboratory experiments. This project has
been conducted with Renaud Deguen and Peter Olson and it involved a three-month stay
in Johns Hopkins University that resulted from a personal initiative and during which
laboratory experiments were designed and performed.

Although the two studies presented in this manuscript deal with the fluid mechanics
of planetary cores, their specific geophysical motivations are not related. From a fluid
mechanics perspective, there is another significant distinction: rotation plays a major
role in the convective dynamics of planetary cores and in the study presented in Part I,
whereas rotation is expected to have only a second-order effect on the fragmentation of
liquid metal in magma oceans and it is not considered in the experiments presented in
Part II of this manuscript. Nonetheless, the reader will notice that the scientific approach,
which is summarized in figure 1.5, is very similar in these two projects.

First, both projects start from a fluid mechanics system (box 2 in figure 1.5) inspired
from geophysical considerations (box 1 in figure 1.5). We emphasize that, in both cases,
we do not aim at providing realistic visualizations of geophysical flows by accurately
reproducing the geophysical context in our simulations or experiments. Such an objective
is often not reachable given the complexity of geophysical systems, which involve numerous
competing mechanisms and a wide range of time scales and length scales. Thus, we
rather simplify the geophysical systems as much as possible, focusing on specific and
well-defined processes and deliberately excluding others. This approach enables us to
isolate understandable fluid mechanics problems. In summary, the geophysical contexts
of interest and the studied fluid mechanics problems are associated with two different and
separate stages in the general methodology (figure 1.5).

Second, in both projects the main questions can be stated as follows:

• What are the different flow or dynamo regimes, characterized by velocity or magnetic
field patterns, when varying the different control parameters?

• Can we account for the dynamics observed in these regimes from theoretical ar-
guments (time scales, length scales, velocity, oscillating behaviors, evolution with
time,...)?

• What are the implications for the geophysical system of interest? In particular, can
we infer the flow or dynamo regime in the geophysical system?

These questions illustrate that both studies are exploratory : initially, there is no precise
competing or contradicting hypotheses, and the objective is rather to conduct a systematic
exploration of the parameter space, reaching regions that have not been studied before.
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Figure 1.5: Schematic representation of the general methodology used in the two projects con-
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Chapter 2

Context and background

2.1 Introduction

It is widely accepted that the Earth’s magnetic field originates from convective motions
in its outer core, involving both thermal and compositional effects (as mentioned in the
main introduction of this manuscript). Most published studies on core convection and
dynamo action have focused on configurations that model thermo-chemical convection in
the Earth’s core, i.e. considering a rotating spherical shell with a rather large inner core
and using boundary conditions that ensure that the buoyancy flux is non-zero at the inner
sphere (figure 2.1(c)). On the contrary, convection and dynamo action in entirely liquid
cores prior to inner core solidification (figure 2.1(b)) has received little attention until
now, and yet this configuration is simpler first because of its geometry (sphere rather
than spherical shell) and second because the driving of convection is of thermal origin
alone (i.e. no double-diffusive processes need to be considered).

Several convective dynamos in our solar system have probably operated in such a full-
sphere configuration (figure 2.1(a)). First, paleomagnetic data indicate that the Earth’s
dynamo was active at least ∼ 3.4 Gyr ago (Tarduno et al., 2010; Biggin et al., 2011), con-
sistently with the results obtained by combining thermal evolution models with velocity
scaling laws from dynamo simulations (Aubert et al., 2009). Commonly cited values for
the age of the inner core are in the range 0.5− 2.5 Gyr (Labrosse et al., 2001)∗, implying
that the dynamo is likely to have operated prior to the nucleation of the inner core.

Second, an early dynamo in a convective core subject to secular cooling (Nimmo &
Stevenson, 2000) is the most plausible hypothesis to explain the strong magnetizations
measured on Mars’ crust by the Mars Global Surveyor mission, although elliptical in-
stabilities excited by tidal forces of large asteroids have been proposed (Arkani-Hamed,
2009). The former scenario is considered in the present study. The timing of the mar-
tian dynamo is debated but can be constrained using ages of the different crust regions,
estimated from the method of crater counts (Hartmann & Neukum, 2001). Acuna et al.
(1999) argue that large impact basins, believed to be ∼ 4 Gyr old, are not magnetized,

∗Although recent high values found for the thermal conductivity (Pozzo et al., 2012; de Koker et al.,
2012) widen the range of plausible values for the inner core age. Indeed, either higher radiogenic heating
or larger cooling rate may be required to power the geodynamo when increasing the thermal conductivity
(Gubbins et al., 2003). Larger radiogenic heating would imply a lower cooling rate and therefore an
increased inner-core age while increasing the cooling rate results in a reduced inner core age.

25
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Figure 2.1: (a) Periods where dynamo action forced by purely thermal convection (blue) or by
themo-chemical convection (red) is plausible in the Earth’s core or in Mars. Besides, purely
thermal convection and dynamo action might have been widespread during planet accretion,
when heating due to both collisions and decay of short-life isotopes allowed global melting. (b)
Configuration for purely thermal convection in an entirely liquid core, as considered in this
study. Q represents the heat flux at the CMB. (c) Relevant configuration for the present Earth’s
core: convection and dynamo action forced by both thermal and compositional effects (release of
light-elements at the ICB).

suggesting that the dynamo would have been active in the early history of Mars, between
4.5 Gyr and 4 Gyr, whereas other published studies (e.g. Milbury & Schubert, 2010; Mil-
bury et al., 2012) argue in favor of a later dynamo cessation. Several studies (Longhi
et al., 1992; Lodders & Fegley, 1997; Sanloup et al., 1999) have compared sulphur con-
tents of martian meteorites with those of other primitive meteorites and estimated a high
sulphur content in Mars’ core: from 10.6% to 16.2%. Stewart et al. (2007) performed
experiments on iron-sulfur and iron-nickel-sulfur systems at high pressure and obtained
the corresponding phase diagrams at fixed pressure. They showed that, considering such
high sulphur contents and using plausible values for the present core temperature (as de-
duced from thermal evolution models), Mars’ core is likely to be presently entirely liquid.
Other geophysical constraints argue in favor of a presently entirely liquid core: solar tidal
deformation of Mars indicates that its core is presently partially liquid (Yoder et al., 2003)
and, if metal solidification was presently occurring in Mars’ core, a magnetic field of in-
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ternal origin would be likely since compositional convection is a very efficient mechanism
for dynamo generation (Labrosse, 2003; Lister, 2003; Gubbins et al., 2004).

E02008 LANGLAIS ET AL.: CRUSTAL MAGNETIC FIELD OF MARS E02008

Figure 2.2: Predicted radial magnetic field at 200-km altitude (modified from Langlais et al.,
2004)

Hence, the crustal magnetic field of Mars may provide clues concerning the field gen-
erated by a full-sphere convective dynamo. The Mars Global Surveyor mission revealed a
very unexpected feature for Mars’ crust: intense crustal magnetizations were measured in
the southern hemisphere, whereas the northern hemisphere contains only weak fields (fig-
ure 2.2) (Acuna et al., 1999; Langlais et al., 2004). Dynamo models do not easily explain
this hemispherical crustal magnetic field. Since Mars is a terrestrial planet with a size
comparable to that of the Earth, we could have expected a similar dynamo regime as in the
Earth, characterized by a dipole dominated magnetic field with similar strength in both
hemispheres. For this reason it has first been proposed that the asymmetry of the crustal
magnetic field was due to partial demagnetization of the crust in the northern hemisphere
by exogenic processes, such as volcanic resurfacing (Connerney et al., 2005), several large
impacts (Frey & Schultz, 1988) or a single giant impact (Andrews-Hanna et al., 2008;
Marinova et al., 2008; Nimmo et al., 2008; Citron & Zhong, 2012). More recently, Stanley
et al. (2008) have explored the possibility that hemispherical magnetizations of Mars’
surface have been caused by a dynamo process, influenced by a hemispherical pattern in
the heat flux extracted by the mantle at the core-mantle boundary (CMB).

Inspired from the geophysical context mentioned above, we study thermal convection in
rotating spheres, with and without dynamo action. The main questions investigated in
this study are: What flow and magnetic field structures dominate in convecting rotating
spheres? Are they identical to those found in previously published studies on convection
in rotating spherical shells?
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2.2 Prerequisites on rotating flows and magnetohy-

drodynamics

Before getting to the heart of the matter, we introduce a few fundamental notions that
will be useful to understand the results presented in this manuscript.

In a reference frame that rotates at a constant rate Ω about the axis ẑ, the momentum
equation for an electrically conducting newtonian fluid is given by

ρ
∂u

∂t
+ ρu · ∇u = −2ρ (Ω× u)−∇P + ρg +

1

µ
(∇×B)×B + ρν∆u, (2.1)

where Ω = Ωẑ, u is the velocity field, P the pressure field, ν the kinematic viscosity
of the fluid, ρ the density, B the magnetic induction (usually called magnetic field), g
the gravity field and µ the magnetic permeability of free space. The first right-hand side
(RHS) term is a fictitious force called the Coriolis force. It is fictitious in the sense that
it has no physical origin: a straight motion in the non-rotating frame appears deflected
in the rotating frame, as if the motion was driven by such a force. The fourth RHS term
in (2.1) corresponds to the Lorentz force.

2.2.1 The Taylor-Proudman theorem

In a stationary rapidly rotating flow where the Lorentz, viscous and inertial forces are
small compared to the Coriolis force and where other body forces (e.g. buoyancy forces)
are weak, equation (2.1) becomes, at leading order,

2ρΩ× u = −∇P. (2.2)

Taking the curl of equation (2.2) leads to a result known as the Taylor-Proudman theorem
(or Taylor-Proudman constraint):

∂u

∂z
= 0, (2.3)

where the z axis is directed along the rotation axis. Hence, the velocity field is invariant
under translation along the rotation axis. The Taylor-Proudman theorem was first derived
by J. Proudman in 1916 and demonstrated experimentally by G.I. Taylor later on (see
figure 2.3 for examples of laboratory demonstrations).

2.2.2 Baroclinic flows and thermal winds

In a rapidly rotating flow, departures from the Taylor-Proudman constraint (2.3) can be
caused by baroclinicity. Taking the curl of the momentum equation (2.1) while assuming
a stationary flow and neglecting the viscous, Lorentz and inertial forces, we obtain:

− 2ρΩ
∂u

∂z
= ∇ρ× g. (2.4)
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(a) (b)

Figure 2.3: Visualizations obtained when a small obstacle is fixed at the bottom of a rotating
cylinder. The system is first put into a state of solid body rotation and, then, the rotation rate is
slightly changed, inducing flow motions inside the tank. (a) Side-view of a fluid column aligned
with the rotation axis and attached to the obstacle. (b) Top-view, the dye lines lie in a plane
well above the obstacle. In the absence of rotation, a dye line remains horizontal as it passes
over the body. Figures modified from Greenspan (1968).

Equation (2.4) indicates that a shear flow, called baroclinic flow, is generated when density
gradients are not aligned with gravity. This flow is perpendicular to the plane that includes
density gradients and gravity, as illustrated in figure 2.4.

When density gradients are caused by temperature gradients, baroclinic flows are
referred to as thermal winds.

ẑ

Ω

g

u

u
∇ρ

Figure 2.4: Generation of baroclinic flows. Red and blue lines represent equipotentials of the
gravity field g and iso-density lines, respectively, in a xz-plane. Black arrows represent the
resulting velocity field in a yz-plane.
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2.2.3 Induction equation and the dynamo effect

In the context of magnetohydrodynamics (MHD), which studies the dynamics of electri-
cally conducting fluids, the term dynamo effect refers to the ability of a flow to amplify
small magnetic field perturbations and then maintain a magnetic field of finite amplitude.

At this stage, it is useful to introduce the induction equation, which governs the
dynamics of the magnetic field within the framework of the MHD approximation (demon-
strated in appendix A) and which is given by

∂B

∂t
= ∇× (u×B) + η∆B, (2.5)

where B is the magnetic induction (usually called magnetic field), and η the magnetic
diffusivity. Making use of the continuity equation in an incompressible flow, equation
(2.5) can be written as

∂B

∂t
+ u · ∇B = B · ∇u + η∆B. (2.6)

The second term on the left-hand side (LHS) of equation (2.6) corresponds to the advection
of B by the flow. The first RHS term corresponds to the stretching of B by the flow,
meaning that velocity gradients may be responsible for an increase of B, i.e. a dynamo
effect. The second RHS term is a diffusion term.

We emphasize that B = 0 is always a solution of equation (2.6) and a dynamo effect is
possible only when this solution becomes unstable. Therefore, dynamo action is essentially
an instability mechanism, which occurs when the ratio of the production term B · ∇u to
the diffusion term η∆B is large enough, as measured by the magnetic Reynolds number
Rm. The value of the magnetic Reynolds number from which a magnetic field starts
to be self-maintained is called dynamo onset. The main mechanisms of magnetic field
generation, called the α and ω-effects, are introduced in appendix B. Once a magnetic
field of finite amplitude has been generated, it acts back on the velocity field through the
Lorentz force (fourth RHS term in equation (2.1)), which eventually leads to magnetic
field saturation.

In the present study, the term convective dynamo will refer to simulations where a
magnetic field of finite amplitude can be maintained by convective motions, in the absence
of any imposed external magnetic field.

2.3 State of the art

This section provides a review of previously published studies on convection and dynamo
action in rotating spheres and shells. This review is not exhaustive, we rather concentrate
on aspects that will help interpreting our results and discuss their significance. In particu-
lar, we progressively introduce the different regime transitions indicated in figure 2.5 when
increasing the forcing of convection. The reader is referred for instance to Busse (2002);
Jones (2007); Christensen & Wicht (2007); Cardin & Olson (2007) for more complete
reviews.

In planetary cores, the ratio of viscous (Funakoshi, 2010; de Wijs et al., 1998) and
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Figure 2.5: Different flow and dynamo regimes (progressively introduced in the text) found when
increasing the forcing of convection, i.e. the Rayleigh number.

thermal (Olson, 2007; Pozzo et al., 2012; de Koker et al., 2012) diffusivities, called the
Prandtl number Pr , is very poorly constrained and can take values in the range 10−3− 1.
In the present study, and hence in the following review, we focus on the regime of Prandtl
number of order unity. Such a choice facilitates comparisons with convection in spherical
shells since most published studies have focused on this domain of parameter space. Yet,
several authors have investigated the effect of lower Prandtl numbers (e.g. Zhang, 1992;
Ardes et al., 1997; Simitev & Busse, 2003, 2005).

2.3.1 Definitions and notations

The spherical shell or sphere is rotating at rate Ω around a vertical axis ẑ. We use
spherical coordinates (r, θ, φ) and cylindrical coordinates (s, φ, z) as illustrated in figure
2.6(a). The terms radial, axial and azimuthal refer to projections along r̂, ẑ and φ̂,
respectively. Horizontal and meridional components refer to projections in a sφ-plane
and a sz-plane, respectively.

Symmetric and antisymmetric fields

In the present study, it is understood that a symmetric vector or pseudovector field u is
left unchanged by the operator Γ which describes mirror-reflection through the equatorial
plane (in grey in figures 2.6(b,c)), i.e. Γu = u, while an antisymmetric vector or pseu-
dovector field is such that Γu = −u. Examples of symmetric and antisymmetric flows
(i.e. vector fields) are given in figures 2.6(b,c).

Any field u can be decomposed into a symmetric field uS and an antisymmetric field
uA. The equations of flow motions have equatorial reflection symmetry. Therefore, when
the boundary conditions are also symmetric with respect to the equator, the solutions
u = uS + uA and u = uS − uA are two equivalent solutions. Besides, it also follows that
symmetric and antisymmetric modes are decoupled in the linearized equations and the flow
at convection onset, just as any eigenvector, will be either symmetric or antisymmetric.

The product of a symmetric field by an antisymmetric field gives an antisymmetric
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Figure 2.6: (a) Configuration and coordinate systems. The convecting fluid is located between
the inner and outer sphere. (b,c) Examples of a symmetric (b) and antisymmetric (c) flow inside
a spherical shell. Red lines represent the streamlines in a meridional plane (for a given value
of φ) whereas the arrows indicate the direction of the flow. The equatorial plane is depicted in
grey.

field, a symmetric field by a symmetric field gives a symmetric field and an antisymmetric
field by an antisymmetric filed gives a symmetric field.

To avoid any confusion, the terms symmetric and antisymmetric will be used in this
study to refer to equatorial symmetry properties of the flow, whereas the term dipolar
and quadrupolar will be used to refer to equatorial symmetry properties of the magnetic
field∗.

Axisymmetric fields

In the following, an axisymmetric field is invariant under rotation about the vertical axis
ẑ.

2.3.2 Different approaches

The results presented in the following subsections have been obtained using laboratory
experiments, numerical simulations and theory. While theoretical studies have successful
addressed the problem of the onset of convection and the weakly nonlinear regime (e.g.
Roberts, 1968; Busse, 1970; Soward, 1977; Jones et al., 2000), experimental and numerical
studies have first confirmed theoretical predictions and then examined the fully-nonlinear
regime of convection. In most of the experiments in rotating spherical shells, the cen-
trifugal acceleration plays the role of gravity, while the shells is heated up at the outer
boundary and cooled down at the inner boundary (e.g. Carrigan & Busse, 1983; Cardin

∗The magnetic field is a pseudovector, therefore dipolar and quadrupolar components are symmetric
and antisymmetric, respectively.
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& Olson, 1994; Aubert et al., 2001; Gillet et al., 2007). Experimental configurations in
which the effective buoyancy force has also a non-negligible component in the direction
of the rotation axis, which better simulates the case of self-graviting spheres, have been
conducted using a dielectric liquid in an imposed electrical field in a microgravity envi-
ronment (Hart et al., 1986) or using hemispherical shells rotating at intermediate rotation
rate such that the Earth gravitational acceleration (parallel to the rotation axis) is of the
same order of magnitude as the centrifugal acceleration (perpendicular to the rotation
axis) (Cordero & Busse, 1992; Cordero, 1993; Sumita & Olson, 2000, 2003). The mag-
netic Reynolds number that can be reached in laboratory experiments is several orders
of magnitude smaller than its critical value for dynamo onset and, therefore, the study
of convective dynamos requires the use of numerical simulations, which have been fairly
successful in reproducing self-sustained magnetic fields that exhibit dynamical and mor-
phological similarities with fields observed on planets (e.g. Glatzmaier & Roberts, 1995;
Christensen et al., 1999; Olson et al., 1999; Christensen & Aubert, 2006).

2.3.3 Onset of convection

Problems of convection in rotating systems can be divided into two categories. The first
category corresponds to systems where the buoyancy force is aligned with the rotation axis,
as in the case of a horizontal fluid layer heated from below (figure 2.7(a)) (Chandrasekhar,
1961, part III, chapter 2). The second category gathers systems where the buoyancy force
is perpendicular to the rotation axis, as in the case of the rotating annulus (figure 2.7(b))
(e.g. Busse, 1970; Busse & Carrigan, 1974; Busse, 1986). In a self-graviting rotating sphere
or spherical shell, the buoyancy force is along r and these two categories are represented:
near the equatorial plane the buoyancy force is perpendicular to Ω whereas it is parallel
to Ω near the rotation axis. Thus, it can be anticipated that the rotating plane layer
(figure 2.7(a)) exhibits a dynamics somewhat similar to the dynamics near the axis in a
rotating sphere or inside a cylinder tangent to the inner sphere, called tangent cylinder,
in a spherical shell (figure 2.7(c)). Similarly, the rotating annulus is expected to give
insights into the dynamics further away from the axis (outside the tangent cylinder in
a shell, provided that the inner sphere is sufficiently large). The above analogies help
to provide a physical understanding of convection patterns in rotating spheres or shells
and, more specifically, they have inspired successive studies of the onset of convection in
rotating spheres.

The first attempts to solve the onset of thermal convection in rotating spheres fo-
cused on axisymmetric modes (Chandrasekhar, 1957a,b; Bisshopp, 1958; Roberts, 1965;
Bisshopp & Niiler, 1965). Scaling laws for the threshold of instability of these modes
could be extracted from Bisshopp (1958) but the asymptotic theory in the limit of small
Ekman number (measuring the relative importance of viscous and Coriolis forces) was
simultaneously developed by Roberts (1965) and Bisshopp & Niiler (1965), inspired from
the study of the onset of convection in a rotating plane layer by Niiler & Bisshopp (1965).
They showed that the onset of axisymmetric convection takes the form of a meridional
cell centered on the rotation axis (figure 2.7(d)) and of thickness O(E1/3D), where D
is the sphere radius or the shell thickness. Exactly as in a rotating plane layer (figure
2.7(a)), heat is carried away along the rotation axis by the axial velocity component uz.
However, the non-penetration condition on the upper and lower boundaries prevents uz
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Figure 2.7: Convective motions in different rotating systems, the direction of the buoyancy force
is represented by red arrows (also indicating the direction of the imposed temperature gradient
and the dominant acceleration). (a) Rotating plane layer, with a sketch of the pathline in a
hexagonal cell at onset, modified from Chandrasekhar (1961, part III, chapter 2). (b) Rotating
annulus where the centrifugal acceleration dominates over gravity (the fluid is located between
the two cylinders) and artistic view of convective motions at onset. (c,d,e,f) Rotating shells
and spheres. (c) Artistic view of convection inside the tangent cylinder in spherical shells. (d)
Schematic representation of the flow at axisymmetric convection onset in spheres. (e) Schematic
representation of the onset of convection in rotating spheres, modified from Busse (1970). (f)
Numerical results for the onset of convection in rotating shells with stress-free boundary con-
ditions, modified from Zhang (1992). The left panel in (f) shows contours of the cylindrically
radial component of the velocity field, us, in a meridian plane whereas the right panel shows
streamlines of the toroidal flow on the outer surface.
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to be z-invariant and the Taylor-Proudman constraint has to be broken by viscosity for
convection to start, creating a small horizontal length scale of order E1/3D.

Roberts (1968) was the first to recognize that non-axisymmetric modes become unsta-
ble at a lower forcing (measured by the Rayleigh number Ra) than axisymmetric modes.
He predicted that, when the Prandtl number is of order unity, the critical Rayleigh num-
ber Rac at which convection starts evolves as E−4/3 while motions take the form of waves
with an azimuthal wavelength O(E1/3D), localized within an annulus of thickness E2/9D.
However, Roberts concentrated his efforts on antisymmetric modes, in the wake of his
1965 study (Roberts, 1965) where he found that the linearly most unstable axisymmetric
mode of convection had this parity. Busse (1970) subsequently showed that the dominant
structures at onset are not only non-axisymmetric but also symmetric with respect to the
equator, corresponding to the famous illustration of vortices parallel to the axis of rota-
tion and localized in the vicinity of a fixed radius in cylindrical coordinates (figure 2.7(e)).
As noticed by Roberts (1968), non-axisymmetric modes carry heat away in a direction
perpendicular to the rotation axis, as do convective motions in a rotating annulus. The
latter analogy was developed by Busse (1970) to show that the slope at the outer sphere
boundary is responsible for much of the dynamics of non-axisymmetric modes∗, which
take the form of Rossby waves (the Rossby-wave mechanism is qualitatively illustrated in
figure 2.8).

The scaling Rac ∝ E−4/3 and the decrease of the azimuthal wavelength O(E1/3D)
with the Ekman number, have been confirmed by laboratory experiments (Carrigan &
Busse, 1983). However, Soward (1977) pointed out that, although the Roberts-Busse
local theory provides a satisfactory understanding of the onset of convection, it results
in an underestimated critical Rayleigh number†. The numerical results of Zhang (1992)
for the onset of convection in rapidly rotating shells (figure 2.7(f)) confirmed a leading
order discrepancy (O(25%)) with the results predicted by the Roberts-Busse local theory.
The first correct asymptotic solution for rapidly rotating full spheres was given by Jones
et al. (2000) using global theory, with very good agreement with Zhang (1992)’s numerical
results. The same theory was used by Dormy et al. (2004) for rapidly rotating shells.

To summarize, columnar symmetric Rossby waves with small azimuthal wavelength
O(E1/3) (figure 2.7(e,f)) are the first unstable convective modes at sufficiently low Ekman
numbers in both spherical shells and spheres and at Prandtl numbers of order unity.
We mention that another type of convective modes, corresponding to modified inertial
modes, becomes the preferred form of convection at sufficiently low Prandtl numbers and

∗Indeed, when the top and bottom boundary are purely horizontal in a rotating annulus (α = 0
in figure 2.7(b)), two-dimensional horizontal convective rolls meet the non-penetration condition at the
top and bottom boundaries. In the limit E → 0, the leading order flow satisfies the Taylor-Proudman
theorem in the annulus interior, resulting in a large azimuthal wavelength of the same order as the annulus
thickness, just as in non-rotating Rayleigh-Bénard convection. On the contrary, when a finite slope is
added on the boundaries (α 6= 0), horizontal convective rolls do not meet the non-penetration conditions,
which forces a z-dependent axial flow within the whole annulus interior. In the latter case, the onset
of convection only occurs when the Taylor-Proudman constraint is broken by viscosity through Rossby
waves of small (O(E1/3)) dimensionless azimuthal wavelength.
†When solving the problem in the real s−plane (local theory), one ends up with a non-zero phase

mixing ∂σi/∂s, where σi is the angular frequency. Phase mixing acts as a radial shear on the pertur-
bations, stretching them in the azimuthal direction and reducing their s-length scale. Eventually, the
enhanced viscous dissipation leads to the decay of the initially growing perturbations. For those reasons,
the problem has to be solved using global theory (Huerre & Monkewitz, 1990) in the complex s-plane.
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Figure 2.8: Schematic illustration of the mechanism for Rossby-waves, which are typical features
of any rotating system with changing depth (Greenspan, 1968). The red lines and red symbols
represent material lines and vorticity perturbations, respectively, while black arrows depict the
velocity perturbations resulting from the vorticity perturbations. When a fluid tube aligned with
the rotation axis (perpendicular to the plane depicted in the present figure) is displaced in the
direction of decreasing depth (larger s values), mass conservation requires an increase of its
horizontal section area. Therefore, its local vorticity decreases owing to Kelvin’s circulation
theorem (conservation of the circulation around a material tube in an inviscid fluid), inducing
negative vorticity perturbations (clockwise motions). Similarly, displacements in the direction of
increasing depth are associated with positive vorticity perturbations (anticlockwise motions). The
induced velocity perturbations cause a leftward propagation between times t0 and t1. Translated
into a rotating sphere or spherical shell, this mechanism leads to an eastward propagation.

sufficiently large Ekman numbers (Zhang, 1994, 1995; Busse & Simitev, 2004), although
this regime is not in the scope of the present study.

2.3.4 Supercritical convection

Nonlinear convection and dynamo action in a rotating spherical system has been essen-
tially studied in shells. The results obtained in such a geometry are instructive since they
provide a physical intuition of the flow and magnetic field structures that are expected in
rotating spheres.

2.3.4.1 Geostrophic (or rotationally dominated) regime

In its rigorous sense, a geostrophic flow is characterized by a balance between the Coriolis
force and the pressure gradient in the leading-order momentum equation (Greenspan,
1968). If the geostrophic balance (2.2) is exactly satisfied, the Taylor-Proudman constraint
(2.3) holds and, therefore, the term geostrophic often refers to flows that are invariant
along the rotation axis (Cardin & Olson 2007, Christensen & Wicht 2007). In a less
restrictive view, flows resulting from thermal wind mechanisms are usually referred to as
geostrophic winds in the literature of atmosphere or ocean dynamics (Kundu & Cohen,
1990), although they cause departures from the Taylor-Proudman constraint. Even more
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generally, the terms geostrophic or rotationally dominated refer to flows in which the
dynamics is clearly influenced by rotation, i.e. the Coriolis force is involved in the leading
order force balance, and the latter definition will be retained in the present study.

For a flow to be rotationally dominated, both the Ekman number E, which measures
the relative importance of the viscous and Coriolis forces, and the Rossby number Ro,
which measures the relative importance of inertial to Coriolis forces, have to be small
compared to unity. A transition from a geostrophic regime to a weakly rotating regime,
in which the flow becomes three dimensional and heat transfer satisfies the same laws as
in non-rotating systems, is found when increasing the forcing of convection in simulations
and experiments for various geometries (rotating plane layers, cylinders or rotating shells)
(King et al., 2009; Schmitz & Tilgner, 2009; Zhong et al., 2009; Schmitz & Tilgner, 2010;
King et al., 2010, 2012). The parameter controlling this transition has been a controversial
topic and remains a subject of debate∗.

In the presence of dynamo action, the Lorentz force may also cause departures from
geostrophy. This is quantified by the Elsasser number, which measures the relative im-
portance of the Lorentz and Coriolis forces. Several definitions of the Elsasser number
have been proposed in the literature (Christensen et al., 1999; Soderlund et al., 2012) and
whether the Lorentz force affects the flow dynamics in simulations or in planetary cores
remains an unsolved question†.

2.3.4.2 Dynamics outside the tangent cylinder

Columnar flow structures

Above the onset of convection, with increasing forcing, the flow experiences a series of
transitions which finally leads to chaotic convection. In the fully nonlinear regime at inter-
mediate Prandtl numbers, the flow remains dominated by symmetric columnar structures
aligned with the rotation axis, forming either a set of drifting vortex pairs inherited from
the onset of convection at intermediate forcing of convection (figure 2.9(c,d)) (e.g. Simitev
& Busse, 2003; Soderlund et al., 2012) or plumes at higher forcing (figure 2.9(a)) (e.g.
Cardin & Olson, 1994; Sumita & Olson, 1999). In both cases, the axial vorticity, as well
as the equatorial velocity, varies very slowly with z, appearing almost two-dimensional
(figures 2.9(b,c,d)), indicating that those symmetric flows tend to satisfy the Taylor-
Proudman theorem. Similar convective structures are also found in self-sustained dy-
namos (figure 2.9(e,f)) (e.g Olson et al., 1999; Christensen et al., 1999; Simitev & Busse,
2005; Kageyama et al., 2008) with no major influence of the magnetic field (Soderlund
et al., 2012). Thus, antisymmetric modes always play a secondary role outside the tan-
gent cylinder in previously published studies of nonlinear convection in rotating spherical
shells, with or without dynamo action.

∗King et al. (2009) and King et al. (2012) argue that this transition occurs when the thickness of the
thermal boundary layer, which decreases with the forcing of convection, matches the thickness of the
viscous boundary layer. This boundary layer control is especially difficult to reconcile with the absence
of any O(E1/2) layer in the the free-slip simulations of Schmitz & Tilgner (2010), while a transition in
heat transfer is obtained at similar parameter values as in no-slip simulations.
†e.g. Soderlund et al. (2012) report a weak influence of the magnetic field on the flow whereas the flow

morphology is strongly affected by the magnetic field in the numerical study by Hori & Wicht (2013).
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Formation of current coils in geodynamo simulations
Akira Kageyama 1, Takehiro Miyagoshi 1 & Tetsuya Sato 1

Computer simulations have been playing an important role in the
development of our understanding of the geodynamo1–3, but
direct numerical simulation of the geodynamo with a realistic
parameter regime is still beyond the power of today’s supercom-
puters. Di�culties in simulating the geodynamo arise from the
extreme conditions of the core, which are characterized by very
large or very small values of the non-dimensional parameters of
the system. Among them, the Ekman number, E, has been
adopted as a barometer of the distance of simulations from real
core conditions, in which E is of the order of 102 15. Following the
initial computer simulations of the geodynamo4,5, the Ekman
number achieved has been steadily decreasing, with recent geo-
dynamo simulations6–8 performed with E of the order of 102 6.
Here we present a geodynamo simulation with an Ekman number
of the order of 102 7—the highest-resolution simulation yet
achieved, making use of 4,096 processors of the Earth
Simulator. We have found that both the convection �ow and
magnetic �eld structures are qualitatively di�erent from those
found in larger-Ekman-number dynamos. The convection takes
the form of sheet plumes or radial sheet jets9, rather than the
columnar cell structures10 that are usually found. We have found
that this sheet plume convection is an e�ective dynamo and the
generated current is organized as a set of coils in the shape of
helical springs or at times as a torus.

The Earth’s outer core is liquid iron in convective motion. To
model the dynamo process in the outer core, we have performed a
three-dimensional numerical simulation of amagnetohydrodynamic
(MHD) dynamo in a rotating spherical shell: an electrically conduct-
ing �uid is con�ned between two concentric and co-rotating spheres
with inner and outer radii ofri 5 0.3 and ro5 1.0, respectively. The
two spheres rotate with the same angular velocityV . The tempera-
tures of the inner and outer spheres are kept hot and cold, respect-
ively. Gravity works towards the centre of the spheres. We apply weak
perturbations to the temperature and magnetic �elds of the initial
(unstable) condition. Thermal convection sets in, and the �ow
generates the magnetic �eld through the so-called MHD dynamo
process. The Rayleigh number, Ra (ref. 11), measured at the bottom
of the shell is 1.53 1010, which is 300–1,000 times larger than the
critical value for the onset of convection. Both the Prandtl and mag-
netic Prandtl numbers are unity. The Ekman number3 de�ned by
E~ n 2V r2o is 2.33 102 7 in this simulation, wheren is viscosity.
We believe that this is the lowest Ekman number achieved to date
in geodynamo simulations.

The smaller the Ekman number, the more di�cult it is to perform
the simulation, as it requires higher resolution and a higher paralle-
lization rate of the code12. Bymaking use of a newly developed spher-
ical grid system, the ‘Yin-Yang’ grid13,14, we have achieved a high
resolution geodynamo simulation for a full spherical shell region.
The Yin-Yang grid is a kind of overset grid15, applied to the spherical
geometry. Two identical grids, the Yin grid and the Yang grid, are
combined with partial overlap to cover the full spherical shell region.
The grid size is 511 (in r) 3 514 (in h) 3 1,538 (in w) 3 2 (Yin and

Yang), with r radius (0.3 # r # 1.0), h co-latitude (p/4# h# 3p/4),
and w longitude (2 3p/4# w# 3p/4). For this simulation, we have
used 512 nodes or 4,096 processors of the Earth Simulator, which is
the maximum size allowed for a calculation.

It is broadly accepted that the convection �ow in a rapidly rotating
spherical shell may be described as a set of (time dependent) colum-
nar convection cells16. The convection columns are straight and par-
allel to the spherical rotation axis, due to the strong constraint of the
Coriolis force (Taylor-Proudman’s theorem). However, in our low-E
regime (of the order of 102 7), we have found that the convection is
made of a rather di�erent basic structure—�ne-scale thin jet sheets
or sheet plumes.

In the growing phase of convection in our simulation, the �ow is
formed in multicellular columns piled in the radial direction17, but
after saturation, the convection takes a rather di�erent form.
Figure 1a shows thez or axial component of the vorticity,v z, in
the equatorial and meridional planes at timet5 430 in our simu-
lation unit, which is normalized by the sound wave crossing time of
ro. The major �ow is composed of many plumes elongated in the
radial direction, rather than columns. Analysing the velocity vectors
in detail, we have found that the plume structure is composed o� et
�ow in the positives-direction and in the negatives-direction, side
by side; here we use cylindrical coordinates (s, w, z) for description
only. Supplementary Fig. 1 shows the velocity �eld in the equatorial
plane by vector arrows. The widthw of the jet plumes is very thin
(w< 0.025), staying almost constant as radiuss increases18. The
azimuthal Fourier mode number,m, of the �ow is about 50 at
s5 0.4. The di�usion time td scaled byw is td5 w2/g5 34 (where
g is resistivity), which is much shorter than our calculation time of
430.

1Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan.

ba

Figure 1 | Equatorial and meridional cross-sections of the axial component
of the vorticity, v z. The Ekman number, E, is 2.3 3 102 7 in a and 2.63 102 6

in b. Convection plumes are evident in the equatorial cross-sections. The
meridional cross-sections show that the �ow is nearly two-dimensional. The
convection in these low-Ekman-number regimes is organized as a set of thin
plume sheets, rather than columnar cells. It can be seen that the larger
Ekman number in b leads to thicker plume sheets.
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L i \ Oð1Þ is imposed in the limit E- 0 ( Chandrasekhar, 1961 ).
This prediction is tested by comparing the characteristic wave-
numbers of the �ow �eld in the dynamo and non-magnetic
models

ku ¼
��������������������
lu

2
þ mu

2
q

, ð7aÞ

where

lu ¼
Xl ¼ lmax

l ¼ 0

lðu l u lÞ
2EK

ð7bÞ

and

mu ¼
Xm ¼ mmax

m ¼ 0

mðum umÞ
2EK

, ð7cÞ

here u l is the velocity at spherical harmonic degree l, um is the
velocity at spherical harmonic order m, and EK is the kinetic
energy. The time-averaged values, given in Supplementary
Table 6, show that the presence of dynamo-generated magnetic
�elds alters the value of ku by at most 14% in comparison to the
associated non-magnetic cases. Thus, these dynamo models do
not produce the fundamental change in length scale that linear
theory predicts.

3.2.3. Columnarity
We can also quantify the style of convection using axial

vorticity measurements. Quasigeostrophic convection is domi-
nated by axial, vortical columns that extend in ẑ across the entire
shell. We de�ne ‘columnarity’ using a measure of the axial
variations of axial vorticity, o z , in the bulk �uid outside of the

tangent cylinder

Co z ¼

P
s,f 9/ x 0 ẑS z9
P

s,f /9 x 09S z
, ð8Þ

here /S z indicates averages in the axial ẑ direction, x 0 indicates
vorticity calculated using only the non-axisymmetric velocity
�eld, and the summation occurs over the equatorial plane ðs,f Þ.
Columnar convection has relatively large columnarity, Co z \ 0:5,
because vorticity, x 0, is dominated by its axial component, x 0 ẑ .
We consider cases with Co z \ 0:5 to be columnar, similar to our
convention for f. Thus, we de�ne the transition between Regimes
II and III to occur where C 0:5. Comparison of axial vorticity
isosurfaces shows this convention to be an adequate proxy for the
breakdown of columnar convection.

Fig. 3 a shows columnarity as a function of the Rayleigh number
for the E ¼ 10 4 models. The Co z values agree to within an average
of 4% between the dynamo and non-magnetic models, with a
maximum di�erence of 14%. The presence of magnetic �elds,
therefore, does not change the basic planform of convection.

Columnar convection breaks down near Ra ¼ 19Rac , where
Co z o 0:5 (Fig. 3a). King et al. (2009 , 2010) argue that the break-
down of columnar convection occurs when the thermal boundary
layer becomes thinner than the Ekman boundary layer. We
calculate these boundary layer thicknesses and �nd that they
indeed cross at the transition between Regimes II and III.

This columnarity transition does not, however, coincide with
the magnetic �eld morphology transition at Ra ¼ 5 :1Rac . There-
fore, columnar convection can generate both dipolar (Regime I)
and multipolar (Regime II) magnetic �elds. It is also worth noting

Fig. 2. Instantaneous radial magnetic �elds near the outer shell boundary (top row) and isosurfaces o� nstantaneous axial vorticity for select E ¼ 10 4 dynamo (middle
row) and non-magnetic (bottom row) models. Purple (green) indicates radially outward (inward) directed magnetic �elds. Red (blue) indicates cyclo nic (anticyclonic)
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L i \ Oð1Þ is imposed in the limit E- 0 ( Chandrasekhar, 1961 ).
This prediction is tested by comparing the characteristic wave-
numbers of the �ow �eld in the dynamo and non-magnetic
models

ku ¼
��������������������
lu

2
þ mu

2
q

, ð7aÞ

where

lu ¼
Xl ¼ lmax

l ¼ 0

lðu l u lÞ
2EK

ð7bÞ

and

mu ¼
Xm ¼ mmax

m ¼ 0

mðum umÞ
2EK

, ð7cÞ

here u l is the velocity at spherical harmonic degree l, um is the
velocity at spherical harmonic order m, and EK is the kinetic
energy. The time-averaged values, given in Supplementary
Table 6, show that the presence of dynamo-generated magnetic
�elds alters the value of ku by at most 14% in comparison to the
associated non-magnetic cases. Thus, these dynamo models do
not produce the fundamental change in length scale that linear
theory predicts.

3.2.3. Columnarity
We can also quantify the style of convection using axial

vorticity measurements. Quasigeostrophic convection is domi-
nated by axial, vortical columns that extend in ẑ across the entire
shell. We de�ne ‘columnarity’ using a measure of the axial
variations of axial vorticity, o z , in the bulk �uid outside of the

tangent cylinder

Co z ¼

P
s,f 9/ x 0 ẑS z9
P

s,f /9 x 09S z
, ð8Þ

here /S z indicates averages in the axial ẑ direction, x 0 indicates
vorticity calculated using only the non-axisymmetric velocity
�eld, and the summation occurs over the equatorial plane ðs,f Þ.
Columnar convection has relatively large columnarity, Co z \ 0:5,
because vorticity, x 0, is dominated by its axial component, x 0 ẑ .
We consider cases with Co z \ 0:5 to be columnar, similar to our
convention for f. Thus, we de�ne the transition between Regimes
II and III to occur where C 0:5. Comparison of axial vorticity
isosurfaces shows this convention to be an adequate proxy for the
breakdown of columnar convection.

Fig. 3 a shows columnarity as a function of the Rayleigh number
for the E ¼ 10 4 models. The Co z values agree to within an average
of 4% between the dynamo and non-magnetic models, with a
maximum di�erence of 14%. The presence of magnetic �elds,
therefore, does not change the basic planform of convection.

Columnar convection breaks down near Ra ¼ 19Rac , where
Co z o 0:5 (Fig. 3a). King et al. (2009 , 2010) argue that the break-
down of columnar convection occurs when the thermal boundary
layer becomes thinner than the Ekman boundary layer. We
calculate these boundary layer thicknesses and �nd that they
indeed cross at the transition between Regimes II and III.

This columnarity transition does not, however, coincide with
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(c) (d)

Figure 2.9: Flow snapshots for supercritical convection in rotating shells in (a,b) laboratory
experiments, (c,d) hydrodynamic simulations and (e,f) self-sustained dynamo simulations. (a,b)
Experiments at E = 2.5 × 10−6, Ra ≈ 50Rac where Ra is the Rayleigh number and Rac the
critical Rayleigh number. (a) Side view (using flakes inside the fluid) and (b) top view (using
fluorescein dye) of convection patterns (Cardin & Olson, 1994). (c,d) Isosurfaces of axial vor-
ticity, E = 10−4, Ra = 4.9Rac and Ra = 5.6Rac, respectively (Soderlund et al., 2012). (e)
Isosurfaces of axial vorticity, E = 10−4, Ra ≈ 10Rac (Olson et al., 1999). (f) Equatorial and
meridional cross-sections of the axial component of the vorticity, E = 5.2 × 10−6 (Kageyama
et al., 2008).
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The weak influence of antisymmetric modes is widely admitted and has plaid an im-
portant role in the modeling of convection in rotating spherical shells. From the obser-
vation that the flow is dominated by symmetric and almost two-dimensional motions in
the fully nonlinear regime, simplified models, called quasigeostrophic models, have been
developed (e.g. Cardin & Olson, 1994; Aubert et al., 2003; Gillet & Jones, 2006; Gillet
et al., 2007), and were inspired from models of convection in a rotating annulus (Busse,
1970, 1986; Busse & Or, 1986; Or & Busse, 1987). Quasigeostrophic models compute
a two-dimensional flow within the equatorial plane, assuming that the axial vorticity is
invariant along the rotation axis while the leading order axial velocity is parametrized
to satisfy the non-penetration condition. Such models are rigorously exact in the limit
of small slope at the upper and lower boundaries in a rotating annulus, but can not be
mathematically justified in rotating shells or spheres where the large slope at the outer
spherical boundary forces a leading order z-varying flow (see Gillet & Jones, 2006, for
further discussions of the validity of quasigeostrophic models). Despite this limitation,
the quasigeostrophic approximation is very convenient to reach low Ekman numbers that
are not accessible with three-dimensional simulations.

Zonal flows

Nonlinear interactions between columnar structures drive axisymmetric (i.e. invariant
in φ-direction) azimuthal flows, also called zonal flows, through either Reynolds stresses
(Aubert et al., 2001; Christensen, 2001, 2002; Gillet et al., 2007) or thermal wind mecha-
nisms (Aurnou & Olson, 2001). The former arise from nonlinear coupling in the Navier-
Stokes equations when the azimuthal and cylindrically radial components of the colum-
nar structures are correlated. The latter results from non-homogeneous heat transfer by
columnar convection, which carries heat away preferentially in a plane perpendicular to
the rotation axis. This induces mean temperature gradients along lines of constant effec-
tive acceleration (gravitational or centrifugal), and therefore shear flows in the azimuthal
direction through a thermal-wind mechanism.

The amplitude of the zonal flow relative to columnar structures varies with the bound-
ary conditions and the control parameters, mainly the Ekman and Rayleigh numbers. At
Pr & 1, zonal flows generally contain between 10 − 20% of the total kinetic energy
for no-slip boundary conditions whereas they can dominate over columnar structures for
stress-free boundary conditions (Christensen, 2001), inducing periodic vacillations of the
non-axisymmetric columns (Simitev & Busse, 2003). Lower Prandtl numbers usually favor
dominant zonal flows (Aubert et al., 2001; Zhang, 1992).

In the absence of any magnetic field, zonal flows are mainly induced by Reynolds
stresses at low Ekman numbers and are almost invariant in the direction of the rota-
tion axis, satisfying the Taylor-Proudman constraint (figure 2.10(a)) (Christensen, 2002).
When a large-scale magnetic field is maintained, the Taylor-Proudman constraint is re-
laxed and thermal winds dominate, causing a shear along ẑ (figure 2.10(b)) (Aubert,
2005). In both cases, zonal flows are strongly symmetric with respect to the equator in
previously published studies.
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Figure 2.10: Zonal flows for convection (a) in the absence of magnetic field and (b) when a
large-scale magnetic field is sustained. (a) Time-averaged zonal flow, E = 10−5, Ra ≈ 40Rac,
Pr = 1, free-slip, dashed and solid lines indicate negative and positive values, respectively, while
greyscale indicates absolute magnitude, (Christensen, 2002). (b) Structure of the time-averaged
zonal flow (colors), E = 10−4, Ra ≈ 11Rac, Pr = 1, no-slip, black lines correspond to meridional
magnetic field lines (Aubert, 2005).
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Figure 2.11: Numerical (a,b) and laboratory (c) models of convection inside the tangent cylinder,
(a,b) when a magnetic field is sustained and (c) in the absence of any magnetic field. (b)
Azimuthal flow (contours) and meridional flow (arrows) at a constant φ value, in a sector
shown highlighted in (a), E = 10−4, Ra ≈ 8Rac, Pr = 5, (Sreenivasan & Jones, 2006a). (c)
Two small-scale helical plumes marked with fluorescein dye, E = 4.3 × 10−5, Pr = 7, picture
from Aubert et al. (2008), further details in Aurnou et al. (2003).
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2.3.4.3 Dynamics inside the tangent cylinder

In the case of a radial gravity (such as in planetary cores), the rotation axis is almost
parallel to gravity inside the tangent cylinder (excluding very thick of very thin spherical
shells) and convective motions are dynamically similar to convection in a rotating plane
layer (figure 2.7(a)) (Simitev & Busse, 2005). In the absence of any magnetic field,
convection takes the form of thin axial plumes (figure 2.11(c)) (Aurnou et al., 2003)
whereas it is dominated by larger plumes if a sufficiently strong magnetic field is imposed
or self-sustained (figure 2.11(b)) (Sreenivasan & Jones, 2006a). In both cases heat is
carried away in the direction of the rotation, and the mean temperature inside the tangent
cylinder is slightly different from the mean temperature outside∗, inducing strong zonal
flows through a thermal wind mechanism (Aurnou et al., 2003; Sreenivasan & Jones, 2005,
2006a). The two polar regions inside the tangent cylinder are disconnected and, therefore,
they are not tied together by the Taylor-Proudman constraint, possibly resulting in non-
negligible antisymmetric components inside the tangent cylinder (Grote & Busse, 2001).

2.3.5 Dynamo regimes

Several types of magnetic field patterns have been reported in convective dynamos after
the onset of dynamo action. The main and widely admitted categorization separates cases
where a large-scale dipole magnetic field is observed, called the dipole-dominated regime
(figure 2.12(a)), from cases where the magnetic field is dominated by higher multipoles,
called the multipolar regime (figure 2.12(b)). A dipole component whose axis is aligned
with the rotation axis is usually favored in the dipole-dominated regime (Olson et al., 1999;
Christensen et al., 1999; Gubbins et al., 2000), though magnetic field with a dipole axis
located within the equatorial plane have been found in self-sustained dynamos (Ishihara
& Kida, 2002; Aubert & Wicht, 2004). The transition from the dipole-dominated to
the multipolar regime, which occurs when increasing the forcing of convection, has been
studied systematically when varying the control parameters in rotating spherical shells
(Kutzner & Christensen, 2002; Olson & Christensen, 2006; Christensen & Aubert, 2006;
Yadav et al., 2013). It remains unclear what competition controls this transition: It was
first explained by a competition between inertial and Coriolis forces (Sreenivasan & Jones,
2006b; Christensen & Aubert, 2006; Olson & Christensen, 2006), whereas a recent study
(Soderlund et al., 2012) finds that the transition does not correlate with the breakdown of
columnar flow structures and suggests that it is rather controlled by the ratio of inertial
to viscous forces. Dipole-dominated dynamos in which the magnetic field undertakes
reversals are usually found in a narrow region of parameter space, between non-reversing
dynamos and multipolar dynamos.

Most commonly, in both dipole-dominated or multipolar dynamo regimes, the mag-
netic field pattern is such that the hemispheres located below and above the equatorial
plane (northern and southern hemispheres) contain about the same magnetic energy.
Hemispherical dynamos where the magnetic field is mainly localized in one hemisphere,
and almost vanishes in the other, have been reported (Grote & Busse, 2000), but they
correspond to a narrow domain in parameter space (Simitev & Busse, 2005).

∗Since (1) heat transfer inside and outside the tangent cylinder involves motions that are somewhat
disconnected and (2) the ratio of the outer to inner boundary area is different inside and outside the
tangent cylinder, a temperature difference is maintained between the two regions.
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Figure 2.12: Most common radial magnetic field patterns in convective dynamos in rotating
spherical shells. (a) Dipole-dominated magnetic field with dipole axis aligned with the rotating
axis, E = 10−4, Ra ≈ 11Rac, Pr = 1, Pm = 1 where Ra is the Rayleigh number, Rac the
critical Rayleigh number and Pm the magnetic Prandtl number (ratio of viscous to magnetic
diffusivities) (from Olson et al., 1999). (b) Multipolar magnetic field, E = 10−3, Ra ≈ 14Rac,
Pr = 1, Pm = 4 (from Christensen et al., 1999).

The fundamental mechanisms involved in magnetic field generation have been analyzed
in dipole-dominated dynamos (Kageyama & Sato, 1997; Olson et al., 1999) (appendix
B). Those studies have shown that the axisymmetric axial magnetic field is essentially
generated by columnar convection through an α-effect, while the axisymmetric azimuthal
magnetic field can be induced either by an ω-effect involving thermal winds or by an
α-effect involving columnar convection. Depending on what mechanism dominates the
generation of azimuthal magnetic field, dynamos are classified as αω-dynamos or α2-
dynamos.

2.3.6 Summary: What regimes and structures do we expect in
rotating spheres?

Intuitively, the flow and dynamo regimes in rotating full-spheres are expected to be sim-
ilar to those obtained in spherical shells, as summarized in figure 2.5. The flow in the
geostrophic regime is expected to be formed by the superposition of columnar vortices,
aligned with the rotation axis, and zonal flows, both being mainly symmetric with re-
spect to the equator. The magnetic field is expected to be either dipole-dominated or
multipolar, but most often of same strength in both hemispheres.

2.4 Recent approaches and current challenges

The main limitations when studying convection and dynamo action in planetary cores
comes from the inability of any experiment or simulation to replicate core conditions,
which correspond to extremely low Ekman numbers (typically E . 10−12), high Rayleigh
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numbers (typically Ra & 5000Rac) and turbulent flows (Reynolds numbers typically
larger than 107). Therefore, it is disputable whether the dynamics isolated in laboratory
experiments or numerical simulations is somewhat similar to convective flows in planetary
cores.

To overcome this difficulty, two main approaches have been developed. The first one
consists in using numerical approximations in order to reach lower Ekman numbers than
in three-dimensional simulations, such as the previously mentioned quasigeostrophic ap-
proximation (e.g. Cardin & Olson, 1994; Aubert et al., 2003; Gillet & Jones, 2006; Gillet
et al., 2007) or the 2 − 1/2 dimensional approach in which only the axisymmetric com-
ponent and one non-axisymmetric azimuthal wavenumber are retained in the calculation
(Morrison & Fearn, 2000; Cupal et al., 2002). The second approach consists in conducting
systematic studies in which the parameter space is explored, allowing the characterization
of regime transitions and the retrieval of various scaling laws that depict the behavior of
output quantities as a function of control parameters (e.g. Christensen & Aubert, 2006;
Olson & Christensen, 2006; Simitev & Busse, 2005; Christensen et al., 2009; King et al.,
2010). The scaling laws and the regime transitions are then extrapolated to planetary
values, leading to a better understanding of the dynamical regime in planetary cores.

Other studies have focused on the dynamics obtained in specific simulations, especially
those studying statistical properties of magnetic field reversals (Driscoll & Olson, 2011;
Olson et al., 2013), those interested in isolated dynamical behaviors (Grote & Busse, 2000)
or those computed at extreme parameters and requiring very high computational power
(Sakuraba & Roberts, 2009; Kageyama et al., 2008; Miyagoshi et al., 2010). In this case,
the simulations need to be located in a regime which is relevant for planetary dynamos
for the numerical results to be of any geophysical significance. For example, recent efforts
have been developed to isolate domains of the parameter space where simulations behave
in a way that is compatible with observations of the Earth’s magnetic field (Christensen
et al., 2010).

Despite recent efforts in characterizing regime transitions and scaling laws, further
investigations are required in order to (1) identify new regime transitions (as achieved
in the present study), (2) provide an improved understanding of the basic mechanisms
responsible for presently known transitions (including dipole-dominated to multipolar
dynamos and rotationally dominated to weakly rotating convection) and (3) investigate
the influence of other effects (i.e. stratification, boundary conditions, ... ) on those
transitions.

2.5 This study

In this study, we use three dimensional direct numerical simulations to study convection in
rotating full-spheres, with and without dynamo action, at Prandtl number of order unity
and with uniform boundary conditions. We follow the second approach introduced in the
previous section: we adopt a systematic approach which consists in exploring regions of
parameter space in order to characterize the different dynamical regimes of convection
and dynamo action in rotating full-spheres. Scaling laws for the regime boundaries are
extracted. In addition to this systematic approach, a few simulations will be specifically
analyzed in order to isolate particular dynamical behaviors and compare the numerical
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results with existing theories.

The first part of this manuscript is organized as follows:

In chapter 3, we introduce the model. It includes: the different approximations leading
to the final equations that are solved numerically, the different control parameters, the
boundary conditions, the main output quantities that are analyzed in this study and the
numerical methods.

In chapter 4, we vary the control parameters within the rotationally dominated regime
and characterize the different flow and dynamo regimes. We especially focus on the sec-
ondary bifurcation that marks the emergence of antisymmetric modes. For sufficiently
supercritical Rayleigh numbers, we find an unexpected hydrodynamic regime where the
flow is strongly asymmetric with respect to the equator, and in which an equatorially anti-
symmetric and axisymmetric (EAA) mode strongly influences the total flow, in apparent
conflict with the Taylor-Proudman theorem. This flow regime induces hemispherical dy-
namos, with a magnetic energy up to 9 times stronger in one hemisphere than in the other.
This chapter contains most of the numerical results presented in the article “Equatorially
asymmetric convection inducing hemispherical magnetic field in rotating spheres and im-
plications for the past martian dynamos” published in 2011 in Physics of the Earth and
Planetary Interiors (reproduced in appendix D), although the analysis has been improved
in the present manuscript.

Chapter 5 provides a general discussion of numerical results and geophysical implica-
tions. In particular, we discuss the significance of our results with respect to the Taylor-
Proudman constraint. We also discuss whether the hemispherical dynamos identified in
chapter 4 can be comprehended within a theoretical framework based on interactions
between two magnetic modes.

Finally, possible developments and further investigations are suggested in Chapter 6.



Chapter 3

Model and methods

We consider the configuration and coordinate system defined in the previous chapter
and recalled in figure 3.1. A spherical shell of thickness D = ro − ri, where ri is the
inner radius and ro the outer radius, rotates at a constant rate Ω. In this work, we
are interested in entirely liquid planetary cores, corresponding to ri/ro = 0. Because of
numerical considerations, a very small inner sphere of radius ri = 0.01ro was retained in
our first calculations. Later numerical implementations (detailed in section 3.8) enabled
us to completely remove the inner sphere (ri/ro = 0).

In the following, the symbol D/Dt denotes the material derivative (or Lagrangian
derivative), which is equal to ∂/∂t+ u · ∇ in Eulerian variables.
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ŝ φ̂
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Figure 3.1: Configuration and coordinate systems. The electrically conducting fluid is located
between r = ri and r = ro.

3.1 Adiabatic reference state and Boussinesq approx-

imation

We first consider a “well-mixed” (isentropic) and hydrostatic system, called the adiabatic
reference state, which is given by

45
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∂Ta
∂r

= − Ta
HT

;
∂Pa
∂r

= −ρag ;
∂ρa
∂r

= − ρa
Hρ

; Sa = const;

HT =
CP
αg

; Hρ =
CP
αgγ

; (3.1)

where the subscript a denotes the adiabatic reference state. T is a temperature field, P a
pressure field, ρ a density field, S a specific entropy, α the thermal expansion coefficient,
g the gravitational acceleration, γ the Grüneisen parameter and CP the specific heat
capacity under constant pressure. D/HT , called the dissipation number (Schubert et al.,
2001), is the ratio of the core thickness to the characteristic length scale of adiabatic
temperature variations whereasD/Hρ is the ratio of the core thickness to the characteristic
length scale of adiabatic density variations. The adiabatic temperature gradient ∂Ta/∂r
is caused by hydrostatic pressure variations (see appendix C for the derivation of the first
equation in (3.1)) and this gradient plays an essential role in planetary cores where a
considerable portion of the total heat flux is conducted along the adiabat and does not
contribute to convection driving (as already mentioned in the main introduction).

The total temperature T , specific entropy S and pressure P of the real planetary
system can be decomposed into an adiabatic reference state and fluctuations (T , S, P ):

T = Ta + T ; S = Sa + S ; P = Pa + P. (3.2)

Fluctuations are assumed to be small compared to the adiabatic reference state, as ex-
pected in planetary cores.

The Boussinesq approximation is used in the present study. It consists in (1) ne-
glecting the effect of adiabatic quantities gradients on convective motions, (2) neglecting
density variations in the momentum equation except in the buoyancy force, (3) assuming
that density fluctuations that drive motions result principally from thermal effects (as
opposed to pressure) and (4) neglecting ohmic and viscous dissipations. The Boussinesq
approximation especially requires D/Hρ and the dissipation number D/HT to be small
compared to 1 (explicitly shown in section 3.2.1).

In the Earth’s core D/Hρ is of order 0.2 according to the Preliminary Reference Earth
Model (Dziewonski & Anderson, 1981) and D/HT ≈ 0.2 − 0.3 (Anufriev et al., 2005).
Similar values hold for Mars’core and the Earth’s core prior to inner core crystallization.
Most published numerical studies of core convection and dynamo action have assumed
that such values are small enough for fluctuations around the adiabatic system to be
well approximated by a Boussinesq system (i.e. Olson et al. 1999, Christensen et al.
1999, Simitev & Busse 2005, Christensen & Aubert 2006). Though, models based on the
anelastic approximation (formulated in Braginsky & Roberts 1995, Anufriev et al. 2005,
benchmarked in Jones et al. 2011), have been used in a few numerical studies (Glatzmaier
& Roberts, 1996).
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3.2 Dimensional equations

3.2.1 Temperature equation

In this subsection, the temperature equation is derived from the energy equation and the
different simplifications related to the Boussinesq approximation are explicitly given. Such
a derivation is essential to understand the way secular cooling is modeled in the present
study. For a more detailed derivation the reader is referred, for instance, to Anufriev et al.
(2005).

In the general case, the energy equation can be written in a form involving the specific
entropy S (Gubbins & Roberts 1987, Braginsky & Roberts 1995):

ρT DS
Dt

= −∇ · q + sI , (3.3)

q = −k∇T , (3.4)

where q is the heat-flux vector, k the thermal conductivity, ρ the total density field, and
sI the rate of internal generation of heat per unit volume. sI includes radioactive sources,
viscous dissipation and ohmic dissipation.

At this stage it is useful to isolate two time scales in the dynamics of convecting
planetary cores. First, the time scale relevant for large scale convective motions tconv is
of the order of a few hundred years. Second, planetary cores cool down on a few hundred
million year time scale tcool, causing the adiabatic reference state to vary with time. The
ratio tconv/tcool is much smaller than 1 in planetary cores.

Equations (3.2) and (3.4) are injected into (3.3). Only the leading-order terms are
retained in the limit of small tconv/tcool values and of small fluctuations to the adiabatic
reference state. Then, (3.3) becomes

ρaTa
DSa
Dt

+ ρaTa
DS

Dt
= ∇ · (k∇T ) +∇ · (k∇Ta) + sI . (3.5)

Making use of Maxwell’s relations, the change in entropy is related to temperature
variations through

dS =
CP
T dT − α

ρ
dP , (3.6)

from which an expression for the entropy fluctuations can be deduced:

S =
CP
Ta
T − α

ρa
P. (3.7)

Pressure forces and buoyancy forces are expected to be of the same order of magnitude
in planetary cores, implying that P/ro ∼ ρagαT (when neglecting the effect of pressure
on density fluctuations). Therefore,

α

ρa
P ∼ αTa

ro
HT

CPT

Ta
. (3.8)
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Thus, in the limit of small αTaro/HT values, the second RHS term in equation (3.7) can
be neglected compared to the first RHS term and we can write

S =
CP
Ta
T. (3.9)

Given that α = O(10−5) K−1 and Ta = O(103) K, αTa is always small compared to
1 in planetary cores and equation (3.9) is a good approximation even in cases where
D/HT = O(1).

Injecting equation (3.9) in (3.5), assuming a constant value for CP and retaining the
leading-order terms as before (for tconv/tcool � 1 and small fluctuations) leads to the
following temperature equation:

ρaCP
DT

Dt
+
ρaCPT

Ta
u · ∇Ta = ∇ · (k∇T ) +∇ · (k∇Ta) + sI − ρaTadSa

dt
, (3.10)

where u is the velocity field. Making use of the first equation in (3.1), the second LHS term
in (3.10) can be written as ρaCPurT/HT . Thus, the ratio of the second LHS to the first
LHS term is of order D/HT . Similarly, the ratio of the second RHS term to the first LHS
term is of order max (Re−1Pr−1(D/HT )2, Re−1Pr−1(D2/HTHρ)), where Re =

√
u2D/ν

is the Reynolds number and Pr = νρCP/k the Prandtl number. Since Re−1Pr−1 � 1
in planetary cores, assuming that D/HT and D/Hρ are small compared to 1 and that
the thermal diffusivity κ = k/ρCP varies little with r gives the following leading-order
temperature equation:

DT

Dt
= κ∆T +

sI
ρaCP

− Ta
CP

dSa
dt

, (3.11)

which is the final temperature equation within the Boussinesq approximation. The term
sI contains only radioactive heating in the Boussinesq equation (3.11) since viscous and
ohmic dissipations are of order D/HT (Anufriev et al., 2005, see equation (7.5)). The
third RHS term corresponds to the decrease of the adiabatic entropy due to core cooling
on geological time scales (secular cooling) and it acts as a heat source in the evolution
equation (3.11) for T .

Following Aubert et al. (2009), radioactive heating and secular cooling are modeled
by a uniform distribution of internal heat sources sT such that

DT

Dt
= κ∆T + sT . (3.12)

3.2.2 Momentum and continuity equations

Within the Boussinesq approximation, the momentum equation (2.1) becomes:

∂u

∂t
+ u · ∇u = −2Ω (ẑ × u)− 1

ρ0

∇P + αg(r)T r̂ +
1

ρ0µ
(∇×B)×B + ν∆u, (3.13)
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where P is now a modified pressure field that incorporates centrifugal effects∗ and ρ0

is the radial average of the adiabatic fluid density. In equation (3.13), the hydrostatic
reference state (3.1) has been subtracted. The third RHS term in (3.13) corresponds to
the buoyancy force that drives convective motions.

In the limit of small D/Hρ ratio, the mass conservation equation can be written in its
Boussinesq form as

∇ · u = 0. (3.14)

3.2.3 Final set of equations

Finally, if we incorporate the induction equation (2.5) into the set that includes the
temperature, momentum and mass conservation equations (3.12), (3.13) and (3.14), we
obtain the following set of equations, taking into account that B is a solenoidal vector
field:

∂u

∂t
+ u · ∇u + 2Ω (ẑ × u) = − 1

ρ0

∇P + αg(r)T r̂ +
1

ρ0µ
(∇×B)×B + ν∆u,

DT

Dt
= κ∆T + sT ,

∂B

∂t
= ∇× (u×B) + η∆B,

∇ · u = 0,

∇ ·B = 0.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Equations (3.15)-(3.19) admit the static solution

u(s) = 0 ; B(s) = 0 ;
∂P (s)

∂r
= ρ0αgT

(s) ; κ∆T (s) = −sT ; (3.20)

where T (s) is a function of r only in the present study. Subtracting the above static
solution to (3.15-3.19) gives the following final set of equations for the perturbations
T ′ = T − T (s), P ′ = P − P (s), u′ = u and B′ = B:

∗The centrifugal force is formed of two terms: ρ0Ω × (Ω × r) and αTρ0Ω × (Ω × r). The first term
can be written as a gradient and incorporated in the pressure term. The second term is called centrifugal
buoyancy (Lopez et al., 2013) and it is small compared to the canonical buoyancy in planetary cores.



50 Chapter 3. Model and methods

∂u

∂t
+ u · ∇u + 2Ω (ẑ × u) = − 1

ρ0

∇P ′ + αg(r)T ′r̂ +
1

ρ0µ
(∇×B)×B + ν∆u,

∂T ′

∂t
+ u · ∇T ′ + u · ∇T (s) = κ∆T ′,

∂B

∂t
= ∇× (u×B) + η∆B,

∇ · u = 0,

∇ ·B = 0.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Solutions of equations (3.21)-(3.25) must also satisfy some boundary conditions, explicitly
given in section 3.4.

3.3 Final set of dimensionless equations and control

parameters

Equations (3.21) - (3.25) are non-dimensionalized using the following scales: D = ro − ri
for length, Ω−1 for time, ρ0D

2Ω2 for pressure,
√
ρ0µΩD for magnetic field andQ/4πρ0CPΩD3

for temperature where Q is the static heat flux integrated over the surface at the external
boundary, given by

Q =

∫
Σo

q(s)ds ; q(s) = −k∂T
(s)

∂r
, (3.26)

where Σo is the outer boundary surface and q(s) the static heat flux. In the specific case
of a full sphere (ri/ro = 0) with non-zero internal heating, Q is equal to 4/3πr3

oρ0CP sT
and the temperature scale is then given by sT/3Ω.

We use the same notations for dimensional and dimensionless variables. To
avoid confusions, only dimensionless variables are used hereafter and through-
out Part I of this manuscript.

The acceleration due to gravity is assumed to be a linear function of the radius, as
for a self-gravitating sphere of constant density. Then, the resulting set of dimensionless
equations is

∂u

∂t
+ u · ∇u + 2ẑ × u = −∇P ′ +RaQ

r

ro
T ′ + (∇×B)×B + E∆u,

∂T ′

∂t
+ (u · ∇)T ′ + (u · ∇)T (s) =

E

Pr
∆T ′,

∂B

∂t
= ∇× (u×B) +

E

Pm
∆B,

∇·B = 0,

∇·u = 0.

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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where dimensionless control parameters are:

• the modified Rayleigh number

RaQ =
αgoQ

4πρ0CPΩ3D4
, (3.32)

• the Ekman number

E =
ν

ΩD2
, (3.33)

• the Prandtl number

Pr =
ν

κ
, (3.34)

• the magnetic Prandtl number

Pm =
ν

η
, (3.35)

where go is the acceleration due to gravity at the outer radius. Using this choice of
dimensionless numbers, the canonical Rayleigh number

Ra =
αgoQD

2

4πρ0CPκ2ν
, (3.36)

is given by Ra = RaQE
−3Pr2. Contrary to Ra, RaQ has the advantage of being inde-

pendent of the thermal and viscous diffusivities, and is therefore the relevant parameter
to study convection in the limit where diffusivities play a negligible role, at low Ekman
and high Rayleigh numbers . Christensen & Aubert (2006) and Aubert et al. (2009) have
shown that output quantities that characterize convective motions and dynamo properties
can be expressed as a function of RaQ alone for sufficiently supercritical convection and
for a given set of boundary conditions and geometry, suggesting that diffusive processes
do not play a major role in dynamo simulations.

3.4 Boundary conditions

Temperature fluctuations in planetary cores are negligible with respect to (1) the adiabatic
core temperature and (2) the possible temperature fluctuations within the above convect-
ing mantle. Thus, the core adiabatic temperature at the CMB provides an isothermal
boundary condition for the mantle. The resulting heat flux at the CMB, either related
to thermal boundary layers in a convective mantle or to a conductive heat flux in a stag-
nant mantle, provides the thermal boundary condition for core convection. In most of
our simulations, we thus impose ∂T ′/∂r = 0, together with a uniform static heat flux
q(s) = k∂T (s)/∂r, at the surface of the sphere which represents the CMB. Convective
motions in the solid mantle are much slower than in the core and the no-slip boundary
condition at the CMB can approximated by imposing zero velocity at ro. Finally, our
modeled core is assumed to be surrounded by an electrically non-conducting mantle. In
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summary, the boundary conditions at r = ro are

u = 0 ; ∇×B = 0 ;
∂T ′

∂r
= 0. (3.37)

For simulations with a small inner sphere (ri/ro = 0.01), boundary conditions (3.37)
are also implemented at r = ri, and q(s) = 0 is imposed at r = ri.

In the present model, we impose a time-invariant heat flux q(s) at the surface of the
sphere, or equivalently a time-invariant distribution of heat sources sT , such that the
forcing of convection RaQ is time-invariant and a statically stationary regime is reached
in our simulations. Such a model is suitable for core dynamics since the total heat flux,
imposed by the planetary mantle, evolves on a time scale of order tcool, much longer than
the time scale of core convection tconv as illustrated in figure 3.2. We note that T can be
statically stationary in the present model because the heat budget of the sphere vanishes
(internal heating balances the net heat flux at the sphere surface), which is again relevant
for the dynamics of entirely liquid cores where the internal heating term and the decrease
in adiabatic entropy balance the total heat flux at the CMB (as obtained by taking the
time and volume average of equation (3.10)).

3.5 Initial conditions

In all our simulations, we initially impose infinitesimal perturbations on the static tem-
perature field T (s) (all the spherical harmonics have initially the same infinitesimal am-
plitude).

We conduct hydrodynamic simulations (convection without dynamo action) in which
the magnetic field is initially set to zero. B = 0 is always a solution to equation (3.29) and,
if the magnetic field is not initially perturbed, it remains equal to zero during the entire
simulation. Then, the set of dimensionless equations reduces to equations (3.27), (3.28)
and (3.31) with only three dimensionless parameters RaQ, Pr and E. In this framework,
the onset of convection occurs when the static solution (u(s), T (s), P (s)) becomes unstable.

We also conduct dynamo simulations in which the initial magnetic field corresponds
to a dipole of infinitesimal amplitude. The dynamo onset occurs when the solution B =
0 becomes unstable, i.e. when the ratio of the shearing of B to the diffusion of B,
measured by the magnetic Reynolds number Rm = UD/η, becomes sufficiently high for
amplification of magnetic field perturbations.

3.6 Reference models

Several simulations with ri/ro = 0.35 are used for comparison with a configuration relevant
for the present Earth’s core. They are our reference models. The boundary conditions
(3.37) are used at the inner and outer sphere. A non-zero static heat flux q

(s)
i is imposed

at the inner boundary to model the release of light elements at the bottom of the Earth’s
outer core. The ratio of the buoyancy flux at the inner boundary to the same flux at the
outer boundary is not well constrained in the Earth’s core (Cardin & Olson 1992, Lister
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RaQ Kinetic energy

Figure 3.2: Schematic representations of the forcing of convection RaQ (red curve in (a,b)),
mean kinetic energy (dashed blue curve in (a,b)) and kinetic energy (blue curve in (b)) as a
function of time. (a) The forcing of convection varies on a time scale of order tcool, which is
imposed by mantle dynamics (a few hundred million years to a few billion years). (b) On a time
scale of a few ten thousand years, which is much smaller than tcool and much larger than the
core convective time scale tconv (a few hundred years), variations of heat flux and other volume-
averaged variables (density, temperature, ... ) are negligible. As a result, core dynamics can be
approached as a succession of statistically stationary regimes in which kinetic energy and other
volume-averaged variables vary around a constant mean.

& Buffett 1995). Following Aubert et al. (2009) we use q
(s)
i /q

(s)
o = 1 and sT = 0, where

q
(s)
o is the static heat flux at the outer boundary.

3.7 Output dimensionless quantities

The dimensionless power generated by buoyancy forces, called convective power (Aubert
et al., 2009) or available energy flux (Christensen et al., 2009), is equal to

p = RaQ

∫
V

Tur
r

ro
dV. (3.38)
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For sufficiently supercritical convection, it can be shown that p = γRaQ, where γ is a

function of the shell aspect ratio ri/ro and the buoyancy ratio q
(s)
i /q

(s)
o (Buffett et al.

1996, Aubert et al. 2009). The convective power p is a generalized measure of the power
available for convective motions and dynamo action, it holds for any shell geometry or
buoyancy distribution. It will be used in chapter 4 to compare full-sphere and bottom-
driven reference models.

The time-averaged kinetic energy density K is defined as follows:

K =
1

2VS

〈∫
VS

u2dV

〉
, (3.39)

where VS is the shell volume and the angled brackets denote a time-averaging operator.
Using this template, we additionally define:

• the time-averaged kinetic energy density contained in equatorially antisymmetric
modes Ka,

• the time-averaged kinetic energy density contained in equatorially symmetric modes
Ks,

• the time-averaged kinetic energy density contained in axisymmetric∗ flow compo-
nents K0,

• the time-averaged kinetic energy density contained in the equatorially antisymmet-
ric, axisymmetric (EAA) flow component K0a.

We define the Rossby number

Ro = 2K1/2, (3.40)

which measures the ratio of the rotation time scale to the advective time scale at scale D
(we recall that K is a dimensionless quantity). Following Christensen & Aubert (2006)
we also define the local Rossby number

Rol =
Ro

lu
, (3.41)

where lu is the characteristic half-wavelength of the flow given by

lu = 2π
K∑
l

lKl

, (3.42)

where Kl is the time-averaged kinetic energy density contained in modes of spherical
harmonic degree l. Rol measures the ratio of the rotation time scale to the advective time
scale at scale lu.

∗Axisymmetric flow components corresponds to modes with m = 0, where m is the spherical harmonic
order
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The time-averaged magnetic energy density M at the external boundary of the model
is given by:

M =
1

2Σo

∫
Σo

B2dS, (3.43)

where Σo is the outer surface (at the CMB). Using this template, we also define:

• the time-averaged CMB magnetic energy related to modes of dipole parity (odd
l +m in spherical harmonics) Mdip,

• the time-averaged CMB magnetic energy related to modes of quadrupole parity
(even l +m) Mqua.

Another output quantity fhem is used to characterize the hemisphericity of the mag-
netic field at the CMB:

fhem =
max[MS,MN ]

M
, (3.44)

where MS and MN are the time-averaged magnetic energy densities contained in the
Southern and Northern hemispheres. The hemisphericity factor fhem is equal to 0.5 for
a purely dipolar field and has the value 1 for a purely hemispherical field, i.e. entirely
localized in one hemisphere.

3.8 Numerical method

3.8.1 PARODY numerical code

The PARODY code, developed by Emanuel Dormy and Julien Aubert, solves the MHD
equations (3.27)-(3.31) in a rotating spherical shell. It has been validated in the bench-
mark study of Christensen et al. (2001) for a spherical shell configuration. The numerical
implementation is detailed in Emmanuel Dormy’s PhD manuscript (Dormy, 1997) and in
Dormy et al. (1998). The main numerical approach is given below.

As any solenoidal field, u and B can be decomposed in the form

u = ∇×∇× (Upr) +∇× (Utr), (3.45)

B = ∇×∇× (Bpr) +∇× (Btr), (3.46)

where the subscripts p and t denote the poloidal and toroidal fields respectively. Up, Ut,
Bp, Bt and T ′ are then expanded in terms of spherical harmonics, i.e.

T ′ =
L∑
l=0

l∑
m=0

Tlm(r)Ylm(θ,Φ), (3.47)

where Ylm is the spherical harmonic function of degree l and order m. m is also called
the azimuthal wavenumber.
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In the radial direction a Finite Difference scheme is used on a grid that is refined
in the vicinity of the boundaries. The number of grid points that is required to obtain
accurate resolution is mainly enforced by the thickness of the viscous boundary layer
which evolves as E1/2. The minimum value of E below which simulations are not feasible
(i.e. the computational time is too high) is of order 10−6 (Sakuraba & Roberts, 2009).
Time integration involves a Crank-Nicolson scheme for diffusion terms and a second-
order Adams-Bashforth scheme for other terms. Whereas the Crank-Nicolson scheme is
unconditionally stable, the Adams-Bashforth scheme is explicit and therefore conditionally
stable. To ensure numerical stability the time step is chosen as the minimum between the
characteristic times of advection and Alfvén wave propagation in one grid (Christensen
et al., 1999).

Linear stability results are obtained using a linear version of PARODY. The equations
(3.27)-(3.31) are linearized about the static solution (u(s) = 0, B(s) = 0, T (s), P (s)) in
order to get the corresponding perturbation equations. The algorithm used here is the
same as in Dormy et al. (2004): it does not solve an eigenvalue problem but, for a given
RaQ value, it integrates the equations in time until the system converges towards an
eigenfunction of the form F (r, θ) exp(σt) exp i(mφ− ωt) for each azimuthal wavenumber
m. Then, we increase RaQ until the growth rate of a particular mode with azimuthal
wavenumber mc becomes positive.

3.8.2 Full-sphere configuration

Implementation
A few modifications had to be implemented in PARODY to conduct simulations with
ri/ro = 0. The main modifications are detailed below.

First, the spherical coordinate system has a singularity in r = 0 since neither φ nor
θ are uniquely defined. This singularity is not real, it does not exist in Cartesian coordi-
nates∗. One way to overcome this difficulty is to impose additional boundary conditions,
in the numerical scheme, that force the solution (u,B, T ′) and its derivatives to be regular
at the center, i.e. they can be written as a Taylor series expansion near r = 0. As shown
in Dormy (1997, chap.2, p.67), the highest order of the radial derivatives in the evolution
equations for Up, Ut, Bp, Bt, T ′ is 4, 2, 2, 2, 2, respectively. It corresponds to the total
number of boundary conditions required in the numerical scheme. It can be shown that
the boundary conditions (3.37) at r = ro become, in spectral space:

Up,lm = 0 ; Ut,lm = 0 ;
∂Up,lm
∂r

= 0;

∂

∂r
Bp,lm +

l + 1

r
Bt,lm = 0 ; Bt,lm = 0;

∂Tlm
∂r

= 0.

(3.48)

(3.49)

(3.50)

Therefore, two additional boundary conditions are required for Up and one boundary
condition for each other field. The regularity of u and ∇ × u (resp. B and ∇ × B)

∗The singularity also exists at the poles (θ = 0 and θ = π, r 6= 0) where φ is not uniquely defined.
However, the use of spherical harmonics to handle the derivatives in θ and φ directions has removed the
singularity, which does not persist in spectral space.
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requires that Up = 0 and Ut = 0 (resp. Bp = 0 and Bt = 0) at the center of the sphere. To
obtain the fourth required boundary condition on Up, we need to consider the regularity
of ∆u, which forces

Up,lm ∝ rl, (3.51)

where l is the spherical harmonics degree (derived in Gissinger 2009, chap.4, p.105). The
regularity of ∆T ′ forces

Tp,lm ∝ rl. (3.52)

Finally, the following boundary conditions have to be implemented at r = 0:

Up,lm = 0 ; Ut,lm = 0 ;
∂Up,lm
∂r

= 0 for l 6= 1,

Up,lm = 0 ; Ut,lm = 0 ;
∂2Up,lm
∂r2

= 0 for l = 1,

Bp,lm = 0 ; Bt,lm = 0,

∂Tlm
∂r

= 0 for l 6= 1,

Tlm = 0 for l = 1.

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

Second, the grid must not be stretched near r = 0. Contrary to the outer boundary,
the velocity does not go to zero near r = 0 and the advective time scale, as well as the
numerical time step, would become very small if the grid was stretched.

Difficulties
The integrated evolution equations (given in Dormy 1997, chap.2, p. 67) contain terms
that incorporate the operator 1/r2∂2/∂r2. In PARODY the operator ∂2/∂r2 is com-
puted with an error O(δ3

r), where δr is the grid spacing. Thus, the error on the operator
1/r2∂2/∂r2 is O(δ3

r/r
2) which degenerates to O(δr) near the center of the sphere where

r = O(δr). As a result, the numerical scheme is of order 2 everywhere except near the
center where it decreases to 0. Because the numerical error becomes rather large at the
center, it was important to benchmark our numerical code in a full sphere configuration.

3.8.3 Code validation

The modes emerging at axisymmetric convection onset, introduced in section 2.3.3, are
well suited for the validation of PARODY in a full sphere configuration. Indeed, as shown
in figure 3.3, these modes take the form of a convective cell centered on the rotation axis,
which involves a strong axial flow through the sphere center, where the numerical error is
the strongest. During my PhD, I dedicated some time to the comparison of theoretical and
numerical results for the onset of axisymmetric convection, validating both the numerical
code in a full-sphere configuration and the linear stability analysis conducted by Bisshopp
(1958); Roberts (1965); Bisshopp & Niiler (1965). These results will be included and
further detailed in a future publication. Figure 3.4 provides a summary of such results,
illustrating the good agreement between theoretical and numerical results for the critical
Rayleigh number RaQ0 that marks the onset of axisymmetric convection.
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Figure 3.3: Velocity field at axisymmetric convection onset. (a,b,c,d) Numerical results for the
vertical velocity (a,c) and azimuthal velocity (b,d). (c,d) are close-ups of (a,b) showing the
velocity fields for −1 ≤ z ≤ 1 and 0 ≤ s ≤ 0.043. (e) Sketch of the flow in an axial cell of
thickness O(E1/3) at axisymmetric onset where red (resp. blue) arrows represent the meridional
(resp. azimuthal) circulation.

The simulations presented in chapter 4 have been conducted with ri/ro = 0.01. After
the implementations detailed in §3.8.2, calculations with ri/ro = 0 were conducted and
confirmed that the small inner sphere has a negligible impact on the results presented in
4. For this reason, the system is refered to as a rotating full sphere for both ri/ro = 0.01
and ri/ro = 0.

Finally, as the results presented in chapter 4 are rather unexpected, we also tested our
numerical implementation PARODY against another implementation (the Christensen,
Wicht, Glatzmaier MAG/MAGIC code, Christensen et al., 2001) in a case where antisym-
metric convection arises in the presence of an inner core, with the following parameters:
E = 10−4, RaQ = 2 · 10−4, Pr = 1, Pm = 7, q

(s)
i = 0 and an aspect ratio ri/ro = 0.35.

We have checked that after equilibration, both codes yield the same results, with an
equatorially asymmetric temperature profile outside the tangent cylinder.
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Figure 3.4: RaQ0/E
5/3 versus 1/E at Pr = 1, where RaQ0 is the critical Rayleigh number for

the onset of axisymmetric convection. Black circles: numerical results obtained using PARODY.
Red triangles: theoretical results at intermediate Ekman numbers as obtained by Bisshopp (1958).
Red curve: asymptotic behavior valid for sufficiently small Ekman numbers (or sufficiently large
1/E values) as obtained by Roberts (1965).
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Chapter 4

Results

This chapter contains most of the numerical results presented in the article “Equatorially
asymmetric convection inducing hemispherical magnetic field in rotating spheres and im-
plications for the past martian dynamos” published in 2011 in Physics of the Earth and
Planetary Interiors (reproduced in appendix D), although the analysis has been improved
in the present manuscript.

In this chapter, we present numerical results when exploring the (E, RaQ) parameter
space. The Prandtl and magnetic Prandtl numbers Pr and Pm are set to 1 and 5,
respectively, in most simulations. The parameters of all the nonlinear simulations used are
contained in Table 4.1 (hydrodynamic simulations) and Table 4.2 (dynamo simulations).
The velocity and magnetic field structures are illustrated using a series of simulations
named A, B, C, D, F , G, H, I whose parameters are reported in Table 4.1 and Table 4.2.
The values of the diagnostic quantities that are given in this chapter correspond to the
final statistically stationary regime of each simulation. We recall that the terms symmetric
and antisymmetric are used in this study to refer to equatorial symmetry properties of
the flow.

4.1 Convection without dynamo action

In this section, we investigate convection driven by internal heating in a rotating full-
sphere without dynamo action. Starting from a non-convective stable state at low Rayleigh
numbers, we introduce the main hydrodynamic transitions found when we progressively
increase the forcing. This includes the onset of convection (section 4.1.1) and the sec-
ondary emergence of antisymmetric modes (section 4.1.2). Results from nonlinear full-
sphere simulations are compared with those from reference models, i.e. with a rather large
inner sphere and bottom driving, as detailed in section 3.6. Previous numerical studies
(Aubert et al. 2009, Christensen et al. 2009) have found scaling laws in which output
quantities that characterize convective motions and dynamo properties are expressed as
functions of the convective power p alone. Such scalings hold for any set of shell geometry
or buoyancy distribution. Accordingly, we compare velocity structures in full-sphere and
bottom-driven reference models at similar convective powers.

61
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E RaQ Ks Ka K0a

0.0001 1.5× 10−5 2.56× 10−5 3.10× 10−15 6.86× 10−16 Sym
0.0001 1.7× 10−5 3.01× 10−5 1.13× 10−12 1.65× 10−13 Sym
0.0001 1.8× 10−5 3.24× 10−5 1.46× 10−9 1.67× 10−10 Sym
0.0001 2× 10−5 3.61× 10−5 1.45× 10−6 2.16× 10−7 Asym
0.0001 2.2× 10−5 3.90× 10−5 3.98× 10−6 7.38× 10−7 Asym
0.0001 2.5× 10−5 4.40× 10−5 6.44× 10−6 1.23× 10−6 Asym
0.0001 4× 10−5 6.49× 10−5 2.63× 10−5 6.81× 10−6 Asym
0.0001 4.5× 10−5 7.11× 10−5 3.25× 10−5 8.48× 10−6 Asym
0.0001 5× 10−5 7.76× 10−5 3.88× 10−5 1.02× 10−5 Asym
0.0001 6× 10−5 9.27× 10−5 5.15× 10−5 1.33× 10−5 Asym
0.0001 7× 10−5 1.08× 10−4 6.13× 10−5 1.52× 10−5 Asym
0.0001 9.75× 10−5 1.52× 10−4 9.20× 10−5 1.52× 10−5 Asym
0.0003 1.8× 10−5 6.40× 10−7 9.28× 10−18 9.20× 10−18 Sym
0.0003 4.5× 10−5 3.22× 10−5 3.13× 10−16 2.55× 10−16 Sym
0.0003 7.2× 10−5 6.99× 10−5 9.22× 10−12 9.80× 10−13 Sym

A 0.0003 9× 10−5 9.11× 10−5 3.69× 10−11 7.79× 10−12 Sym
0.0003 1.08× 10−4 1.15× 10−4 1.41× 10−10 1.00× 10−11 Asym
0.0003 1.26× 10−4 1.28× 10−4 2.07× 10−5 6.29× 10−6 Asym
0.0003 1.35× 10−4 1.38× 10−4 2.30× 10−5 6.33× 10−6 Asym
0.0003 1.575× 10−4 1.49× 10−4 4.93× 10−5 1.78× 10−5 Asym
0.0003 1.8× 10−4 1.66× 10−4 7.20× 10−5 2.81× 10−5 Asym
0.0003 1.98× 10−4 1.73× 10−4 9.04× 10−5 3.59× 10−5 Asym
0.0003 2.25× 10−4 1.92× 10−4 1.14× 10−4 4.56× 10−5 Asym
0.0003 2.475× 10−4 2.02× 10−4 1.35× 10−4 5.37× 10−5 Asym
0.0003 2.7× 10−4 2.15× 10−4 1.58× 10−4 6.36× 10−5 Asym
0.0003 3.15× 10−4 2.45× 10−4 1.94× 10−4 7.56× 10−5 Asym

B 0.0003 3.6× 10−4 2.76× 10−4 2.34× 10−4 9.00× 10−5 Asym
0.001 6.5× 10−4 3.70× 10−4 1.88× 10−7 7.60× 10−8 Asym
0.001 7× 10−4 3.58× 10−4 5.98× 10−5 3.68× 10−5 Asym
0.001 1× 10−3 4.17× 10−4 2.50× 10−4 1.59× 10−4 Asym
0.001 3.14× 10−3 9.08× 10−4 1.77× 10−3 1.27× 10−3 Asym
0.01 1.25× 10−2 3.40× 10−5 0 0 Sym
0.01 1.3× 10−2 8.48× 10−5 0 0 Sym
0.01 1.4× 10−2 2.25× 10−4 0 0 Sym
0.01 1.55× 10−2 6.00× 10−5 2.08× 10−4 2.02× 10−4 Asym
0.01 1.57× 10−2 1.29× 10−6 2.83× 10−4 2.83× 10−4 Asym
0.01 1.6× 10−2 1.47× 10−6 3.35× 10−4 3.35× 10−4 Asym
0.01 1.61× 10−2 1.60× 10−6 3.52× 10−4 3.52× 10−4 Asym
0.01 1.62× 10−2 1.75× 10−6 3.69× 10−4 3.69× 10−4 Asym
0.01 1.63× 10−2 1.92× 10−6 3.87× 10−4 3.87× 10−4 Asym
0.01 1.65× 10−2 2.32× 10−6 4.21× 10−4 4.21× 10−4 Asym
0.01 1.7× 10−2 3.30× 10−6 5.08× 10−4 5.08× 10−4 Asym
0.01 1.8× 10−2 5.93× 10−6 6.80× 10−4 6.80× 10−4 Asym
0.01 1.9× 10−2 9.30× 10−6 8.52× 10−4 8.52× 10−4 Asym

C 0.0003 1.8× 10−4 1.93× 10−4 2.64× 10−5 4.28× 10−6 Asym
D 0.0003 7.2× 10−4 6.30× 10−4 2.44× 10−4 3.41× 10−5 Asym

Table 4.1: Numerical models and results for hydrodynamic simulations. See chapter 3 for
the definitions of input parameters and output quantities. In all simulations we impose Pr =
1. The first column labels A, B, C, D tag runs which are specifically referred to in the text.
All the calculations correspond to full-sphere simulations, except simulations C and D which
are reference models (see section 3.6). Simulation A and B have about the same convective
power as simulation C and D, equal to about 3 · 10−5 and 1.5 · 10−4, respectively. The last
column characterizes the resulting flow regime: ’Sym’ and ’Asym’ for simulations which are in
a symmetric and asymmetric regime, respectively (see section 4.1.2 for definitions).
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E RaQ Ks Ka K0a Mdip Mqua

L 3×10−5 4.5× 10−5 1.46× 10−4 6.07× 10−5 8.86× 10−6 1.94× 10−7 2.16× 10−7 Asym
0.0001 2× 10−5 1.79× 10−5 3.61× 10−6 2.18× 10−7 1.65× 10−5 9.39× 10−6 Os
0.0001 4× 10−5 3.67× 10−5 1.03× 10−5 6.05× 10−7 2.35× 10−5 1.66× 10−5 Os
0.0001 6× 10−5 5.81× 10−5 1.84× 10−5 1.43× 10−6 2.43× 10−5 1.92× 10−5 Os
0.0001 6.5× 10−5 6.16× 10−5 1.97× 10−5 1.47× 10−6 2.88× 10−5 2.25× 10−5 Os
0.0001 7× 10−5 6.61× 10−5 2.26× 10−5 2.22× 10−6 2.85× 10−5 2.29× 10−5 Os
0.0001 7.5× 10−5 7.26× 10−5 2.59× 10−5 3.17× 10−6 2.69× 10−5 2.23× 10−5 Os
0.0001 8× 10−5 7.30× 10−5 3.44× 10−5 7.68× 10−6 2.72× 10−5 2.43× 10−5 Os

I 0.0001 9× 10−5 7.79× 10−5 5.19× 10−5 2.08× 10−5 2.54× 10−5 2.41× 10−5 Os
0.0001 9.5× 10−5 8.11× 10−5 6.13× 10−5 2.75× 10−5 2.23× 10−5 2.16× 10−5 Asym
0.0001 1.5× 10−4 1.32× 10−4 1.27× 10−4 5.50× 10−5 1.37× 10−5 1.40× 10−5 Asym
0.0003 1.8× 10−5 6.40× 10−7 5.62× 10−22 5.57× 10−22 7.07× 10−16 1.13× 10−22 Sym
0.0003 4.5× 10−5 3.26× 10−5 1.53× 10−13 1.26× 10−13 3.30× 10−10 7.48× 10−17 Sym
0.0003 7.2× 10−5 6.85× 10−5 3.56× 10−11 1.48× 10−11 1.44× 10−10 5.17× 10−14 Sym

F 0.0003 9× 10−5 7.67× 10−5 2.33× 10−6 1.79× 10−7 1.59× 10−5 3.13× 10−6 Sym
0.0003 1.08× 10−4 8.33× 10−5 7.16× 10−6 8.03× 10−7 2.65× 10−5 1.00× 10−5 Os
0.0003 1.35× 10−4 1.14× 10−4 1.15× 10−5 1.27× 10−6 3.86× 10−5 2.00× 10−5 Os
0.0003 1.8× 10−4 1.38× 10−4 2.40× 10−5 3.11× 10−6 2.97× 10−5 1.88× 10−5 Os
0.0003 1.98× 10−4 1.38× 10−4 2.90× 10−5 3.73× 10−6 4.33× 10−5 2.72× 10−5 Os

H 0.0003 2.25× 10−4 1.58× 10−4 4.52× 10−5 1.23× 10−5 3.84× 10−5 2.80× 10−5 Os
0.0003 2.48× 10−4 1.58× 10−4 4.74× 10−5 1.06× 10−5 5.59× 10−5 4.07× 10−5 Os
0.0003 2.7× 10−4 1.48× 10−4 8.69× 10−5 4.42× 10−5 5.88× 10−5 5.12× 10−5 Os
0.0003 2.925×10−4 1.49× 10−4 1.31× 10−4 8.36× 10−5 5.05× 10−5 4.94× 10−5 Asym
0.0003 3.15× 10−4 1.53× 10−4 1.65× 10−4 1.13× 10−4 4.76× 10−5 4.89× 10−5 Asym

G 0.0003 3.6× 10−4 1.75× 10−4 2.14× 10−4 1.51× 10−4 4.28× 10−5 4.37× 10−5 Asym
0.0003 4.05× 10−4 1.92× 10−4 2.83× 10−4 2.05× 10−4 4.25× 10−5 4.43× 10−5 Asym
0.0003 4.5× 10−4 2.15× 10−4 3.37× 10−4 2.40× 10−4 3.97× 10−5 4.12× 10−5 Asym
0.001 6× 10−4 3.25× 10−4 2.50× 10−8 1.16× 10−8 3.34× 10−11 4.48× 10−14 Sym
0.001 7× 10−4 3.88× 10−4 1.95× 10−5 9.15× 10−6 3.59× 10−11 8.83× 10−12 Asym
0.001 7.5× 10−4 3.02× 10−4 9.33× 10−5 6.51× 10−5 1.23× 10−5 1.00× 10−5 Asym
0.001 7.6× 10−4 3.11× 10−4 9.44× 10−5 6.56× 10−5 1.40× 10−5 1.12× 10−5 Asym
0.001 7.7× 10−4 3.14× 10−4 1.10× 10−4 7.87× 10−5 1.09× 10−5 9.27× 10−6 Asym
0.001 8× 10−4 3.17× 10−4 1.30× 10−4 9.29× 10−5 1.01× 10−5 9.02× 10−6 Asym
0.001 8.2× 10−4 3.17× 10−4 1.39× 10−4 1.00× 10−4 1.35× 10−5 1.16× 10−5 Asym
0.001 8.5× 10−4 3.27× 10−4 1.48× 10−4 1.05× 10−4 1.48× 10−5 1.31× 10−5 Asym
0.001 8.7× 10−4 3.23× 10−4 1.63× 10−4 1.18× 10−4 1.65× 10−5 1.49× 10−5 Asym
0.001 9× 10−4 3.25× 10−4 1.93× 10−4 1.41× 10−4 1.48× 10−5 1.37× 10−5 Asym
0.001 9.5× 10−4 3.29× 10−4 2.16× 10−4 1.60× 10−4 2.15× 10−5 1.98× 10−5 Asym
0.001 1× 10−3 3.29× 10−4 2.24× 10−4 1.66× 10−4 3.69× 10−5 3.41× 10−5 Asym
0.001 3× 10−3 7.60× 10−4 1.73× 10−3 1.34× 10−3 7.18× 10−6 7.53× 10−6 Asym
0.001 5× 10−3 1.31× 10−3 2.94× 10−3 2.21× 10−3 1.46× 10−5 1.51× 10−5 Asym

Table 4.2: Numerical models and results for dynamo simulations. See text for the definitions
of input parameters and output quantities. In all simulations we impose Pr = 1 and Pm = 5,
except in simulation L in which Pm = 1. The first column labels F to L tag runs which are
specifically referred to in the text. The last column characterizes the flow regime: ’Sym’, ’Os’ and
’Asym’ for simulations which are in a symmetric, oscillating and asymmetric regime, respectively
(see section 4.1.2 and 4.2 for definitions).
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E RaQc mc

10−6 1.750× 10−9 37
3× 10−6 5.172× 10−8 26

10−5 5.173× 10−8 17
3× 10−5 3.328× 10−7 12
5× 10−5 7.944× 10−7 10

10−4 2.608× 10−6 7
3× 10−4 1.717× 10−5 5

Table 4.3: Critical Rayleigh number RaQc (with 4 significant digits) and azimuthal wavenumber
mc for the linearly most unstable symmetric convection mode.

4.1.1 Linear stability results: the onset of convection

The first hydrodynamic transition corresponds to the onset of convection and occurs when
the modified Rayleigh number reaches a first critical value RaQc. For each value of the
azimuthal wavenumber m and each value of the modified Rayleigh number, two growth-
rates can be calculated using the linear version of the code PARODY: one for symmetric
modes and one for antisymmetric modes. Indeed, these two families of modes are not
coupled in the linearized equations.

The first unstable modes are symmetric, non-axisymmetric modes, as expected from
previous theoretical studies (Busse 1970; Jones et al. 2000). Table 4.3 lists the critical
Rayleigh number and azimuthal wavenumber for each studied value of the Ekman number.
Figure 4.1 shows that RaQc/E

5/3 converges towards an asymptote which is consistent
with the value 10.3749 (≈ 10.4) obtained by Jones et al. (2000). It must be pointed out
that Jones et al. (2000) used slightly different boundary conditions (fixed temperature
and stress-free) at the external boundary, while we presently use a fixed flux condition for
geophysical relevance and we consider rigid boundaries. However, the boundary conditions
do not affect the leading order asymptotic results and the asymptote computed by Jones
et al. (2000) should remain valid in our configuration, as confirmed by our numerical
results. The asymptotic behavior of the critical modified Rayleigh number in the limit
E → 0 is thus approximated by:

RaQc ≈ 10.4× E5/3. (4.1)

In terms of critical canonical Rayleigh number Rac, this corresponds to the following
asymptotic behavior: Rac ≈ 10.4 × E−4/3. As introduced in section 2.3.3, the expo-
nent value −4/3 is a robust feature of the onset of convection in rotating spheres or
shells. Comparison of our results for RaQc with values obtained using quasi-geostrophic
simulations in a full-sphere with fixed temperature boundary condition (Guervilly, 2010)
suggests that RaQc converges more slowly towards (4.1) when imposing a fixed heat flux
at the outer sphere rather than a fixed temperature.

As predicted by Busse (1970), the velocity structures at onset correspond to quasi-
geostrophic Rossby waves that vary slowly in z-direction, forming a set of vortices aligned
with the rotation axis (figure 4.2). The values we find for mc are reported in Table 4.3
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Figure 4.1: Convection onset. Stars: RaQc/E5/3 versus 1/E (logarithmic scale). The grey line
is the asymptote predicted by the theory of Jones et al. (2000) with slightly different boundary
conditions (see text).

Figure 4.2: Velocity structures at onset for E = 10−5 and Pr = 1. (a) Meridional section of the
z-component of velocity. (b) Meridional section of the azimuthal velocity field. (c) Equatorial
section (θ = π/2) of the z-component of vorticity.
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E ma RaQa RaQt

10−4 1 8.34× 10−6 1.95× 10−5

3× 10−4 0 5.00× 10−5 1.07× 10−4

10−3 0 3.34× 10−4 6.28× 10−4

10−2 0 1.41× 10−2 1.41× 10−2

Table 4.4: Critical Rayleigh numbers RaQa for the linear onset of antisymmetric convection,
azimuthal wavenumber ma of the most unstable antisymmetric modes and RaQt for the nonlinear
emergence of antisymmetric modes (see section 4.1.2).

and are in agreement with the expected trend mc ∝ E−1/3 (Busse 1970; Jones et al. 2000).

A second family of convective modes is the antisymmetric family. As announced in
chapter 2 and developed in the following section, antisymmetric modes acquire a crucial
importance in our nonlinear simulations. We thus compute (Table 4.4) the linear threshold
of instability for antisymmetric modes RaQa. These results will be required in section 4.1.2
for comparison between RaQa and the threshold for the emergence of antisymmetric modes
in nonlinear simulations.

4.1.2 Nonlinear simulation results: emergence of antisymmetric
modes

4.1.2.1 Bifurcation and regime diagrams

Figure 4.3(a) illustrates the different hydrodynamic transitions found at a fixed Ekman
number equal to 3 × 10−4. At the onset of convection (RaQc ≈ 1.7 × 10−5), symmetric
modes become linearly unstable and the symmetric kinetic energy density Ks starts to
grow. The flow is said to be in a symmetric regime. At RaQt ≈ 1.07×10−4, the symmetric
solution looses stability and antisymmetric modes emerge through a secondary supercrit-
ical bifurcation (see the increase of the antisymmetric kinetic energy density Ka in figure
4.3(a)). For RaQ ≥ RaQt, the flow is said to be in an asymmetric regime since it results
from the superposition of symmetric and antisymmetric modes.

At low Ekman numbers (E ≤ 10−3), RaQt is located above the threshold RaQa for
linear instability of antisymmetric modes with respect to a static basic flow (Table 4.4),
implying that the emergence of antisymmetric modes in nonlinear simulations cannot
be explained by linear stability analysis for E ≤ 10−3. Thus, the asymmetric solution
emerges from the symmetric solution, which has to be seen as the new basic state, and
RaQt corresponds to the threshold at which the purely symmetric solution becomes lin-
early unstable. Indeed, in a given simulation at RaQ ≥ RaQt, the flow first reaches the
symmetric solution (such that Ka � Ks); then, this symmetric flow undergoes a sec-
ondary instability which leads to the emergence of antisymmetric modes and, eventually,
to a statistically stationary asymmetric regime as depicted in figure 4.4.

The bifurcation at E = 10−2 is a very isolated case since RaQt = RaQa (Table 4.4).
In this case the bifurcation can be described in terms of interactions between two linearly



4.1. Convection without dynamo action 67

0 1 2 3 x 10−4
−0.5

0

0.5

1

1.5

2

2.5

3
x 10−4

RaQt RaQ
RaQc

ki
ne

tic
 e

ne
rg

y 
de

ns
ity

asy
mmetr

ic
bra

nc
h

2 4 6

x 10−4

0

8

2

4

6

8

0 x 10−4

RaQt RaQ

Ks

Ka

(a) (b)

BA DC

symmetric
regime

asymmetric
regime asymmetric

regime

sy
m

m
et

ric

Figure 4.3: Bifurcation diagram for convection without dynamo action showing the antisymmet-
ric kinetic energy density Ka (crosses) and the symmetric kinetic energy density Ks (triangles)
versus the Rayleigh number RaQ at E = 3× 10−4 in (a) full-sphere simulations and (b) bottom-
driven reference models. We recall that kinetic energy densities are non-dimensionalized such
that their square root is a Rossby number. RaQt locates the emergence of antisymmetric modes.
To estimate the value of RaQt we look for RaQt and the constant a such that Ka is best scaled
(in the sense of the least squares) by a(RaQ −RaQt) on the asymmetric branch. Symbols A, B,
C, D denote simulations A, B, C, D that are shown in figures 4.6 and 4.7 (parameters reported
in Table 4.1).
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Figure 4.4: Instantaneous value of the symmetric (black) and antisymmetric (red) kinetic energy
density as a function of time in simulation B (parameters reported in Table 4.1).

unstable modes: a symmetric mode of order m = 1 and an antisymmetric mode of
order m = 0. Since we are looking for asymptotic behaviors in the limit E → 0, we
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do not consider the slowly rotating cases E ≥ 10−2 for the determination of the regime
boundaries.

The different hydrodynamic transitions are summarized in a (1/E,RaQ) parameter
space (figure 4.5). RaQt is best scaled (in the sense of the least squares) by:

RaQt ≈ 21.2× E1.51. (4.2)

Because the slope of the curveKa(RaQ) is larger than the slope of the curveKs(RaQ) in
figure 4.3(a) for RaQ ≥ RaQt, we finally obtain Ka ≈ Ks±15% (simulation B). We expect
the curves to cross at RaQ ≈ 4.5×10−4 in figure 4.3(a). Simulations with Ka & Ks are also
reached at E = 10−2 and E = 10−3 (Table 4.1). Such strongly asymmetric simulations are
noteworthy since antisymmetric modes always play a secondary role in previous numerical
studies of nonlinear rotation-dominated convection in spherical shells, with or without
dynamo action (e.g. Olson et al. 1999; Grote & Busse 2001; Sakuraba & Roberts 2009).
Indeed, although antisymmetric modes emerge in our spherical-shell reference models, the
slope of Ka(RaQ) is smaller than the slope of Ks(RaQ) in the asymmetric regime (figure
4.3(b)) and a regime with Ka ≈ Ks will never be reached. Symmetric modes always
contain more than 70% of the total kinetic energy in our reference models.

Figure 4.5: Hydrodynamic transitions in (1/E,RaQ) space in the absence of dynamo action and
for full-sphere models: from a non-convective state to the symmetric regime (light grey curve
corresponds to the asymptotic behavior of RaQc at low Ekman numbers according to equation
(4.1)) and from the symmetric regime to the asymmetric regime (black curve), marking the
emergence of antisymmetric modes. Light grey symbols: symmetric simulations. Black symbols:
asymmetric simulations.

Then, the following question arises: Does the size of the inner sphere controls the
growth of antisymmetric modes, accounting for the difference observed in reference mod-



4.1. Convection without dynamo action 69

els and full-sphere simulations? To investigate this question, we consider spherical-shell
simulations with ri/ro = 0.35 as in our reference models, but we impose a zero heat flux
at the inner sphere (i.e. no bottom driving) as in our full-sphere simulations. In such
a configuration, strongly asymmetric simulations such that Ka ≈ Ks are found (results
not reported here), indicating that the emergence of antisymmetric modes is controlled
by the ratio between the inner and outer buoyancy flux rather than the inner-sphere size.

We emphasize that the dynamics of the strongly asymmetric simulations (including
simulation B) is highly influenced by rotation since both the Rossby number and the
local Rossby number remain much smaller than 1 (Ro ≤ 0.04 and Rol ≤ 0.09 in figure
4.3(a)). Thus, the emergence of strong antisymmetric modes in our simulations is not
related to the breaking of the Taylor-Proudman constraint by inertia. We also checked
that the emergence of antisymmetric modes does not correlate with a change in the scal-
ing law for heat transfer. This suggests that convection remains rotationally dominated
(or geostrophic) in the simulations presented in this section and that the emergence of
antisymmetric modes in our simulations has no connection with the transition from a
rotationally dominated to a weakly rotating regime (King et al., 2009; Zhong et al., 2009;
King et al., 2012)).

4.1.2.2 Flow structures

In this subsection, we study the flow morphology and dynamics in the unexpectedly
asymmetric simulations (such that Ka & Ks) that have been identified previously. The
results are compared with those obtained in strongly symmetric simulations (such that
Ka � Ks) and in bottom-driven reference models at similar convective powers.

The emergence of strong antisymmetric modes is correlated with major changes in the
morphology of the flow in full-sphere simulations, as shown in figure 4.6, which compares
flow structures in symmetric simulation A (Ka � Ks, see Table 4.1) to flow structures
in asymmetric simulation B (Ka ≈ Ks, see Table 4.1). Both simulations are located
in the bifurcation diagram of figure 4.3(a). Although the flow is chaotic in simulation
A, it shares strong similarities with the onset of convection: symmetric and columnar
vortices, aligned with the rotation axis, are the main convective features (figures 4.6(a,c)
and 4.8(a)). The temperature field is also highly symmetric (figure 4.6(e)). The change
in flow morphology related to the emergence of antisymmetric modes is particularly pro-
nounced when looking at the azimuthal flow field in simulation B. Indeed, this field is
dominated by negative values in the northern (upper) hemisphere and positive values in
the southern (lower) hemisphere (figures 4.6(b), 4.8(b)), indicating that (1) the azimuthal
flow has a very strong antisymmetric component, and (2) this antisymmetric component
is highly axisymmetric, i.e. dominated by modes of harmonic order m = 0. Thus, the
azimuthal flow is strongly influenced by an equatorially antisymmetric and axisymmetric
(EAA) component, which consists of two large-scale vortices, one in each hemisphere,
with an axial vorticity of opposite sign in the two hemispheres (arrows in figure 4.6(b)),
causing shear in the axial direction. Such an azimuthal flow contrasts with the symmetric
flow of simulation A (figure 4.6(a)). The axial vorticity of the total flow (figure 4.6(d))
is still very columnar (i.e. stretched in the axial direction) in simulation B, confirming
that the flow is still highly influenced by rotation, as previously anticipated. The vorticity
columns are slightly tilted in figure 4.6(d) and the direction of the tilt is compatible with
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Figure 4.6: Isosurfaces of instantaneous (a,b) azimuthal velocity, (c,d) axial vorticity and (e,f)
temperature for full-sphere simulations A and B (hydrodynamic simulations located in figure 4.3,
parameters reported in Table 4.1) at convective power pconv close to 3 × 10−5 and 1.5 × 10−4,
respectively. The ẑ-axis is vertical in these figures. The viscous boundary layer at the outer
sphere has been excluded for clarity. (a,b,c,d) Red and blue indicate positive and negative values,
respectively. The following isosurfaces are shown: (a) |uφ| = 8.1× 10−3, (b) |uφ| = 2.4× 10−2,
(c) |ωz| = 0.12, (d) |ωz| = 0.24, (e) T = −867, (f) T = −667 (red) and T = −933 (blue).
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Figure 4.7: Isosurfaces of instantaneous (a,b) azimuthal velocity, (c,d) axial vorticity and (e,f)
temperature for bottom-driven reference simulations C and D (hydrodynamic located in figure
4.3, parameters reported in Table 4.1), with the same convective power pconv as in simulations
A and B, respectively. The ẑ-axis is vertical in these figures. The viscous boundary layer at the
outer sphere has been excluded for clarity. (a,b,c,d) Red and blue indicate positive and negative
values, respectively. The following isosurfaces are shown: (a) |uφ| = 9×10−3, (b) |uφ| = 3×10−2,
(c) |ωz| = 0.15, (d) |ωz| = 0.36, (e) T = 1467, (f) T = 1500.
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the shear induced by the pair of EAA vortices (arrows in figure 4.6(b)). Because they
are tilted, the vorticity columns are not entirely symmetric, which also contributes to the
total antisymmetric kinetic energy. As seen in figure 4.6(f), the temperature field is also
strongly asymmetric with respect to the equatorial plane in simulation B.

Figures 4.7 and 4.8(c,d) show the flow structures in bottom-driven reference models C
and D, which are chosen such that the convective power pconv is the same as in simulation
A and B, respectively. Contrary to full-sphere models, no major morphological change is
seen when increasing the forcing and the flow remains dominated by symmetric, columnar
structures aligned with the rotation axis.
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RaQ

(a) (b)

A B

C D

Figure 4.8: Instantaneous azimuthal velocity field at mid-shell (Hammer projection, the ẑ-axis is
vertical) in hydrodynamic simulations: full-sphere simulations (top) and bottom-driven reference
models (bottom) at pconv ≈ 5 × 10−5 (left) and pconv ≈ 2 × 10−4 (right). (a,b,c,d) Simulations
A, B, C, D, respectively (parameters reported in Table 4.1).

When looking at kinetic energy spectra (figure 4.9), the most striking feature is the
strong signature of antisymmetric modes of order m = 0 (referred to as EAA modes in
this study) in simulation B (figure 4.9(b)). The kinetic energy contained in EAA modes
is almost one order of magnitude higher than the antisymmetric kinetic energy contained
in any single spherical harmonic order m > 0 and it is more than 3 times larger than
the symmetric kinetic energy contained in m = 2, the most energetic symmetric modes.
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In any single harmonic order m > 0, the antisymmetric energy is distinctly smaller than
the symmetric energy, indicating that EAA modes are required to reach Ka ≈ Ks in
simulation B. Although EAA modes are still the most energetic antisymmetric modes in
reference simulation D (figure 4.9(c), same convective power as B), they contain 2 times
less energy than symmetric modes of order m = 4.

EAA modes also have a major influence on the flow at E = 10−2 and E = 10−3 in
strongly asymmetric simulations (Ka ≥ Ks), where more than 70% of the total antisym-
metric energy is contained in EAA modes (Table 4.1).
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Figure 4.9: Time-averaged spectra of symmetric (crosses) and antisymmetric (triangles) kinetic
energy as a function of harmonic order m (hydrodynamic simulations). We compare a strongly
asymmetric simulation obtained in the full-sphere configuration ((b), simulation B, Table 4.1)
with a symmetric full-sphere simulation ((a), simulation A, Table 4.1) and a bottom-driven
reference model at similar convective power ((c), simulation D, Table 4.1). The spectra are nor-
malized by the total kinetic energy. Note that no crosses appear in (a) because the antisymmetric
kinetic energy is close to zero.

Time-averaged fields provide first insights into the EAA mode dynamics since they do
not contain modes of order m > 0, which are drifting in the prograde azimuthal direction.
Contrary to simulation A, the time-averaged temperature field is highly asymmetric in
simulation B (figure 4.10(a,c)). This induces a strongly asymmetric zonal flow through a
thermal wind mechanism, which is characterized by a balance between the Coriolis, pres-
sure gradient and buoyancy forces. Taking the φ-component of the curl of the momentum
equation, retaining only the above forces and assuming that the time-averaged flow is also
axisymmetric, we have: 〈

∂uφ
∂z

〉
=

〈
RaQ
2r0

∂T

∂θ

〉
, (4.3)

where the angled brackets denote the time-averaging operator. Figure 4.11 shows a high
degree of similarity between the RHS and LHS terms of equation (4.3), confirming that
equation (4.3) captures the flow dynamics inside the sphere (except near the boundaries
where the viscous term cannot be neglected). The term 〈∂T/∂θ〉 is negative almost
everywhere in the sphere (figures 4.11(b) and 4.10(c)), inducing a negative 〈∂uφ/∂z〉 term
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Figure 4.10: Meridional section (arbitrary azimuth) of (a,c) the time-averaged temperature field
and (b,d) the time-averaged azimuthal velocity field in (left) symmetric simulation A and (right)
asymmetric simulation B (hydrodynamic full-sphere simulations, parameters reported in Table
4.1). Contours in (b,d) show streamlines of the meridional circulation which rotates clockwise
(solid lines) or anticlockwise (dashed lines).

according to equation (4.3). This is consistent with an antisymmetric zonal flow organized
in a pair of large-scale vortices, as we find in simulation B (figures 4.10(b) and 4.6(b)).

The time-averaged azimuthal flow is also in equilibrium with the time-averaged merid-
ional flow through Ekman pumping, which results from a differential rotation between the
rigid boundary and the interior flow outside the viscous (or Ekman) boundary layer∗. In
the southern hemisphere in figure 4.10(d), the fluid is rotating faster than the external
boundary, inducing a flow that converges towards the rotation axis in the viscous bound-
ary layer. Conversely, the time-averaged meridional flow diverges from the rotation axis in
the northern boundary layer. To ensure mass conservation, the flow from North to South
in the viscous boundary layer has to be compensated by a net flow from the southern hemi-
sphere to the northern hemisphere in the sphere interior, called Ekman pumping, which

∗Ekman layers are viscous boundary layers that allow a rotating flow to meet the no-slip boundary
condition and in which viscous forces are of the same order of magnitude as Coriolis and pressures forces.
Two main features of an Ekman layer need to be mentioned here. First, the dimensionless thickness of
an Ekman layer evolves as E1/2. Second, a cyclonic columnar vortex near a rotating horizontal wall is
associated with a converging flow inside the Ekman layer, while an anticyclonic vortex is associated with
a diverging flow. Such converging or diverging flow has to be compensated by vertical motions in the fluid
interior, called Ekman pumping, for mass conservation to be satisfied. The exact amplitude of the Ekman
pumping for a horizontal rigid boundary is given by (Gubbins & Roberts, 1987) uz = −1/2E1/2ω · n,
where uz is the dimensionless velocity along the rotation axis, n the normal unit vector and ω the
dimensionless vorticity field.
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Figure 4.11: Comparison between (a) the LHS term of equation (4.3), and (b) the RHS term
of the same equation. Results obtained using asymmetric simulation B (parameters indicated in
Table 4.1).

tends to reinforce the antisymmetric temperature profile. If the above dynamics holds in
our simulations then, Uz, the axial velocity averaged over the sphere interior (excluding
the viscous boundary layer) and over time, is related to Uφ, the time-averaged azimuthal
velocity close to the viscous boundary layer, such that Uz = O(E1/2Uφ). The term Uφ is
estimated by computing the square root of the kinetic energy contained in azimuthal com-
ponents and averaged over a sphere surface located close to the viscous boundary layer. In
simulations where the time-averaged flow is largely dominated by EAA modes, the ratio
Uz/E

1/2Uφ remains of order 1 with a mean value equal to 2.76 and a standard deviation
equal to 0.6, although the ratio Uz/Uφ varies between 0.02 and 0.2. This confirms that
the time-averaged meridional flow partly results from an Ekman pumping mechanism.
The time-averaged meridional circulation and the time-averaged temperature field (fig-
ures 4.10(c,d)) have some morphological similarities with the first linearly unstable mode
of convection in non-rotating spheres (Chandrasekhar 1961, chap.6, see Fig.57). The lat-
ter consists of a unique large-scale meridional cell inducing an asymmetric temperature
profile. However, the dynamics is very different here since the flow is highly influenced
by rotation (Ekman boundary layers and thermal-wind balance).

Equations (3.27)-(3.28) and (3.31) and their boundary conditions have equatorial re-
flection symmetry. Consequently, if A(t) is the amplitude of the antisymmetric flow uA
and S(t) the amplitude of the symmetric flow uS, then SuS + AuA and SuS − AuA
are two dynamically equivalent solutions. This means that the solution shown in figure
4.10(c,d) is dynamically equivalent to the solution obtained by taking the mirror-image of
figure 4.10(c,d) with respect to the horizontal plane (with warm temperatures and nega-
tive azimuthal flows in the southern hemisphere). In our simulations we indeed find both
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solutions. The system chooses one of the two and does not reverse towards the other.

4.2 Convection when allowing dynamo action

We now turn to the study of asymmetric convection in the presence of dynamo action. We
first introduce the different flow regime transitions, which are compared to those found in
section 4.1 without dynamo action. The associated changes in magnetic field morphology
are then presented.

4.2.1 Hydrodynamic transitions

4.2.1.1 Bifurcation and regime diagrams

The results for the linear onset of convection at RaQc are identical to what we found in
section 4.1.1 (without dynamo action). This is due to the fact that the initial magnetic
field is of infinitesimal amplitude and the Lorentz force, through which the magnetic field
acts back on the flow, is a nonlinear term.
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Figure 4.12: Bifurcation diagram for convection with dynamo action at E = 3×10−4 showing (a)
the antisymmetric kinetic energy density Ka (crosses), the symmetric kinetic energy density Ks

(triangles) and (b) the EAA kinetic energy density K0a (stars), versus RaQ in full-sphere simu-
lations. Vertical bars in (b) show the range of values taken by the instantaneous values of K0a.
RaQt corresponds to the emergence of antisymmetric modes computed in the hydrodynamic study
(section 4.1.2). Light grey, medium grey and black symbols correspond to symmetric, oscillating
and asymmetric simulations respectively (see text). Vertical dashed lines denote flow regime
transitions and the red arrow indicates the dynamo onset. Symbols F , G denote simulations
shown in figure 4.18 (parameters reported in Table 4.2)
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The flow undertakes successive regime transitions which are identified in the bifur-
cation diagrams of figure 4.12. The symmetric solution (such that Ka � Ks) becomes
unstable and antisymmetric modes start to grow at a Rayleigh number close to RaQt
(computed in section 4.1.2), the threshold that marks the emergence of antisymmetric
modes in hydrodynamic simulations (figure 4.3(a)). The main distinctive feature of con-
vection with dynamo action is the emergence of an additional flow regime just above RaQt,
in which the instantaneous value of Ka oscillates in a chaotic manner between low values
(weakly asymmetric state) and larger values (highly asymmetric state) as illustrated in
figure 4.13. Oscillations in Ka are correlated with variations of the instantaneous value of
the EAA kinetic energy K0a, which oscillates between values close to 0 and larger values
of order Ka (figures 4.13 and 4.12(b)). The flow is said to be in an oscillating regime (for
Rayleigh numbers located just above RaQt, we observe bursts towards the highly asym-
metric state rather than oscillations, as shown in figure 4.13(a)). EAA mode reversals,
during which the EAA mode amplitude changes sign, are observed between successive
highly asymmetric states. Finally, when the forcing is strong enough (RaQ & 3 × 10−4),
the flow reaches the asymmetric regime, in which the instantaneous value of K0a ceases
to reach values close to zero and remains of order Ka (figure 4.12(b)). In the asymmetric
regime, the flow remains in the highly asymmetric state and no longer oscillates between
a weakly and highly asymmetric state.
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Figure 4.13: Instantaneous value of Ks (light grey curve), Ka (medium grey curve) and K0a

(black curve) as a function of time in (a) oscillating dynamo simulation H, in which RaQ is
close to RaQt, and (b) oscillating dynamo simulation I, in which RaQ is further away from
RaQt (Table 4.2). Red lines indicate the highly asymmetric state where Ka and K0a take large
values whereas blue lines indicate the weakly asymmetric state where K0a is close to zero and
Ka takes lower values.

We find a similar bifurcation diagram (with a symmetric, oscillating and asymmetric
regime) at E = 10−4. However, no oscillating simulations are obtained at E ≥ 10−3 be-
cause the dynamo onset is not overcome when RaQ reaches RaQt at such Ekman numbers.
Therefore, the bifurcation diagram is similar to the one obtained for convection without
dynamo action if E ≥ 10−3. Similarly to figure 4.5, figure 4.14 summarizes the regime
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boundaries in (1/E,RaQ) space when dynamo action is allowed. We emphasize here again
that the boundary between symmetric and oscillating regimes is set by RaQ = RaQt, where
RaQt is the forcing at which the transition from the symmetric to the asymmetric regime
occurs in the hydrodynamic case. Its location is thus given by equation (4.2).
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Figure 4.14: Flow regime diagram when allowing dynamo action. Light grey, medium grey
and black symbols correspond to symmetric, oscillating and asymmetric simulations respectively.
The light grey curve corresponds to the asymptotic behavior of RaQc given by equation (4.1).
The medium grey curve corresponds to the best fit (in the sense of the least squares) for RaQt.
The black dashed line corresponds to a tentative boundary regime between the oscillating and
asymmetric regime.

From a phenomenological point of view, the appearance of the oscillating regime when
allowing dynamo action can be seen as a consequence of Ferraro’s law of corotation (Fer-
raro, 1937). This law states that the axisymmetric magnetic field lines tend to follow the
isocontours of 〈uφ/s〉φ, where s is the cylindrical radius, in order to minimize the pro-
duction of azimuthal magnetic field by the term sB · ∇(uφ/s) in the induction equation.
The flow and magnetic fields organize themselves such that this principle is satisfied at
first order in dipole-dominated dynamo simulations (Aubert, 2005). At the beginning
of an oscillation towards the highly asymmetric state, the EAA flow component emerges
because it is linearly unstable with respect to the symmetric solution (since RaQ ≥ RaQt).
The EAA azimuthal flow distorts the isocontours of 〈uφ/s〉φ which no longer follow the
magnetic field lines and, therefore, induces an axisymmetric azimuthal magnetic field by
stretching of the poloidal magnetic field (i.e. through an ω-effect, see appendix B). The
induced azimuthal magnetic field causes a magnetic tension force∗ in the azimuthal di-
rection that tends to oppose the EAA flow component and acts as a restoring force. If

∗The dimensionless Lorentz force (∇×B)×B can be written as the sum of B · ∇B and −∇B2. The
former term is called magnetic tension and tends to straighten curved magnetic field lines. The latter
term is called magnetic pressure force and arises when the magnetic energy varies in space.
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the magnetic tension force becomes strong enough, the flow returns to its initial weakly
asymmetric state that satisfies Ferraro’s law of corotation.

As for the case of convection without dynamo action, Ka increases faster than Ks

above RaQt (figure 4.12(a)) and strongly asymmetric simulations in which Ka ≥ Ks are
obtained for RaQ & 3 × 10−4 at E = 3 × 10−4 (figure 4.12(a)), for RaQ & 1.5 × 10−4 at
E = 10−4 (Table 4.2) and for RaQ & 3× 10−3 at E = 10−3 (Table 4.2).

4.2.1.2 Flow structures
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Figure 4.15: Time-averaged spectra of symmetric (crosses) and antisymmetric (triangles) kinetic
energy as a function of harmonic order m in full-sphere dynamos, comparing (a) simulation F
in which Ka � Ks with (b) simulation G in which Ka ≈ 1.22Ks. The spectra are normalized by
the total kinetic energy. Simulations F and G (Table 4.2), located in figure 4.12 and shown in
figure 4.18, are computed at the same parameter values as hydrodynamic simulations A and B,
respectively.

In terms of structure and dynamics of the flow, results obtained in hydrodynamic
simulations (section 4.1.2) remain unchanged when allowing dynamo action. The flow
in strongly asymmetric simulations (Ka ≥ Ks) is highly influenced by EAA components,
which are the most energetic modes (figure 4.15(b)) and the associated EAA azimuthal
flow results from a thermal-wind balance (satisfying equation (4.3)) as shown in figure
4.16. The term 〈∂T/∂θ〉 is positive almost everywhere in simulation G (figure 4.16(b)),
which induces a positive 〈∂uφ/∂z〉 term, consistent with a clockwise zonal flow in the
northern hemisphere and anti-clockwise in the southern hemisphere as seen in figure
4.18(b).

4.2.1.3 Scaling laws for the saturation of antisymmetric modes

The saturation amplitude of antisymmetric modes follows a similar trend in hydrodynamic
and dynamo simulations that are located in the asymmetric regime (figure 4.17) and



80 Chapter 4. Results

-0.08

0

0.08

Residue
〈

∂uφ

∂z

〉
=

〈
RaQ

2ro

∂T

∂θ

〉

(a) (b)

Figure 4.16: Comparison between (a) the LHS term of equation (4.3), and (b) the RHS term of
the same equation. Results obtained using dynamo simulation G (Table 4.2).

scaling laws can be extracted. We obtain the following least square best fits:

Ka = b1(RaQ −RaQt)a1 , a1 = 0.86± 0.02 , b1 = 0.24± 0.04 (4.4)

K0a = b2(RaQ −RaQt)a2 , a2 = 1.10± 0.02 , b2 = 1.0± 0.3 (4.5)

We note that our asymmetric simulations are located rather close to the threshold
for antisymmetric mode emergence RaQt and one has to be careful when extrapolating
the above scalings to high RaQ − RaQt values. For instance, Ka and K0a in dynamo
simulations at E = 3 × 10−4 exhibit a slightly higher slope than in other simulations
(figure 4.17(a,b)), which may be a local effect resulting from the proximity to RaQt.

The value of the exponent a1 = 0.86 ± 0.02 for the evolution of the antisymmetric
kinetic energy Ka (scaling (4.4)) is very close to values found for the evolution of the
total kinetic energy as a function of RaQ in previous studies (Christensen & Aubert
2006, Aubert et al. 2009), suggesting that saturation mechanisms for symmetric and
antisymmetric modes are similar. The value of the exponent a2 for the evolution of the
EAA kinetic energy K0a is significantly higher than a1 (scaling (4.5)) and close to 1, as
predicted by dimensional analysis for a flow which is dominated by zonal components
induced by a thermal wind mechanism (Aurnou et al., 2003).

4.2.2 Magnetic field structures: hemispherical dynamos

Figure 4.18 compares magnetic field structures in simulation F in which Ka � Ks and
in simulation G in which the flow is strongly asymmetric. Contrary to simulation F in
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Figure 4.17: Saturation of hydrodynamic antisymmetric modes in hydrodynamic simulations
(grey) and dynamo simulations (black) in the asymmetric regime. Ka (a) and K0a (b) as a
function of RaQ−RaQt. The least square best fits Ka = b1(RaQ−RaQt)a1 with a1 = 0.86±0.02
and b1 = 0.24± 0.04 (a) and K0a = b2(RaQ −RaQt)a2 with a2 = 1.10± 0.02 and b1 = 1.0± 0.3
(b) are shown by black lines.

which the magnetic field is dipole-dominated and of similar strength in both hemispheres
(figures 4.18(c)), the magnetic field of simulation G is hemispherical, with high intensities
in one hemisphere and weaker in the other (figure 4.18(d)).

A phenomenological explanation for the hemispherical character of the radial magnetic
field in strongly asymmetric simulations (such that Ka = O(Ks)) can be qualitatively
captured using DMFI visualizations (Aubert et al., 2008) as shown in figure 4.19. In
symmetric simulation F , the surface magnetic flux is collected near the poles, where the
meridional flow converges (figure 4.19(a)). Cold vertical plumes are generated close to the
axis at the outer boundary where they detach from the thermal boundary layer; they are
similar to vertical plumes generated in rotating cylinders (Aurnou et al., 2003) or inside
the tangent cylinder in spherical shells (Aubert et al., 2008) where the buoyancy force
is nearly aligned with the rotation axis. Those flow downwellings amplify the magnetic
field that has been collected near the pole by stretching (through the term Br∂ur/∂r in
the induction equation), producing magnetic downwellings, which are similar to the mag-
netic upwellings described in Aubert et al. (2008) and which correspond to the radish-like
structures located close to the rotation axis in figure 4.19(a). In strongly asymmetric
simulations, the above mechanisms are active in only one hemisphere. Indeed, one hemi-
sphere is stably stratified along the axis (southern hemisphere in figure 4.19(c)), which
stops any cold plume, and thus any magnetic downwelling. In addition, in the same hemi-
sphere, the magnetic flux is dispersed near the pole by a divergent meridional flow (figure
4.19(b)), limiting further the generation of strong radial magnetic field at the pole. As
a consequence, the radial magnetic field at the sphere surface is much stronger near one
pole than near the other pole (figure 4.18(d)).

In order to quantify the above morphological results, we compute the hemisphericity
factor fhem (defined in section 3.7). A dynamo is said to be hemispherical if fhem ≥ 0.75
which means that one hemisphere contains at least 75% of the CMB magnetic energy.
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Figure 4.18: Instantaneous azimuthal velocity field at mid-shell (a,b) and instantaneous radial
magnetic field at ro (c,d) in dynamo simulations F (left) and G (right) (parameters reported in
Table 4.2), which are computed at the same parameter values as hydrodynamic simulations A
and B, respectively.

The ratio Ka/Ks, which measures the equatorial symmetry breaking of the flow, is a
control parameter of the hemisphericity factor fhem, as shown by the univariate behavior
in figure 4.20(a). In symmetric simulations the flow is dominated by symmetric modes
and Ka/Ks has low values. In these symmetric simulations the hemisphericity factor is
very close to 0.5, indicating that the magnetic field is not hemispherical, as illustrated
with figure 4.18(c). The progressive increase of the ratio Ka/Ks in asymmetric and
oscillating simulations, from low (∼ 0.2) to large values (∼ 2.3), is associated with an
almost linear increase of the hemisphericity factor fhem, revealing that the transition
from non-hemispherical to hemispherical dynamos is gradual. The hemisphericity factor
reaches 0.75 whenKa/Ks ≈ 1. Several hemispherical dynamos (fhem ≥ 0.75) are obtained,
including the simulation shown in figures 4.18(b,d).

Figure 4.20(b) shows that the equatorial symmetry breaking of the flow Ka/Ks is
also a control parameter of the magnetic field parity Mqua/Mdip at fixed Pm. Indeed,
Mqua/Mdip increases with Ka/Ks and all the simulations are aligned on the same curve
(with the exception of one simulation which has been obtained at a different value of
Pm). When Ka/Ks reaches ∼ 0.75, Mqua/Mdip saturates and remains close to 1: there is
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Figure 4.19: (a,b) DMFI visualizations of dynamo simulations F and G (Table 4.2). Magnetic
field lines are displayed in grey, their thickness is proportional to B2 (for details see Aubert
et al., 2008). The meridional cut shows the time-averaged azimuthal velocity field (red color for
positive values and blue for negative values) and the streamlines of the meridional circulation
which rotates clockwise (solid black lines) and anticlockwise (dashed black lines). (c) Meridional
cut of the time-averaged temperature field, which varies between −1436 (dark blue) and −436
(dark red).
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Figure 4.20: (a), Hemisphericity factor fhem versus Ka/Ks. (b), Magnetic energy parity ratio
Mqua/Mdip versus Ka/Ks. Light grey, medium grey and black symbols correspond to symmetric,
oscillating and asymmetric simulations respectively. The dashed black line denotes the transition
from non-hemispherical to hemispherical dynamos at fhem = 0.75. The symbols F and G denote
results obtained with simulations F and G respectively, which are illustrated in figure 4.18.

equipartition between magnetic energy contained in modes of dipole parity and magnetic
energy contained in modes of quadrupole parity. We note that several simulations have
reached the equipartition of magnetic energy even though they are not hemispherical (the
magnetic field in those simulations is multipole-dominated).
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The emergence of antisymmetric modes in our simulations is also correlated with
changes in magnetic field generation. To measure the contribution of the ω-effect to the
production of large-scale azimuthal magnetic field one can compute the ratio between the
root mean square of B·∇uφ in the sphere and the root mean square of the φ-component of
the production term B · ∇u, where the overline denotes the azimuthal-averaging operator.
In symmetric simulation A, this ratio is equal to about 0.2, indicating that the ω-effect
contributes weakly to magnetic field generation and the dynamo is of α2-type (or α2ω-
type). In the strongly asymmetric simulation B, the same ratio is equal to about 0.6,
meaning that the dynamo is of αω-type. The enhanced ω-effect in simulation B is mainly
due to the shear associated with the strong EAA zonal flows.

4.3 Summary

We have studied the systematic emergence of antisymmetric modes in the (RaQ, E) param-
eter space for full-sphere hydrodynamic simulations in regimes where the flow is strongly
influenced by rotation (geostrophic). Contrary to bottom-driven simulations in which the
flow remains dominated by symmetric modes (they always contain more than 70% of the
total kinetic energy), antisymmetric modes become stronger than symmetric modes in
our full-sphere simulations for sufficiently high Rayleigh numbers. The flow undertakes
major morphological changes in these strongly asymmetric simulations. The most striking
feature is a very energetic EAA mode, which is characterized by strong antisymmetric
zonal flows resulting from a thermal wind mechanism.

A similar study was conducted while allowing dynamo action. In terms of flow features,
results from dynamo simulations are very similar to those in hydrodynamic simulations:
although the flow is geostrophic, unexpected simulations with Ka & Ks are systemati-
cally reached for sufficiently high Rayleigh numbers and the flow is strongly influenced by
EAA modes. The unique difference with hydrodynamic simulations is the emergence of
an additional flow regime, characterized by chaotic oscillations of the EAA kinetic energy
between values close to zero and higher values of O(Ks). In terms of magnetic field struc-
tures, we have shown that equatorial symmetry breaking, associated with antisymmetric
mode emergence, controls the hemisphericity of the magnetic field. In strongly asymmet-
ric simulations, we have found hemispherical dynamos, where more than 75% (and up to
90%) of the total magnetic energy is contained in a single hemisphere.

Figure 4.21 locates the different flow and dynamo regime transitions identified in this
chapter in the regime diagram that were shown in chapter 2.
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Figure 4.21: Schematic representation of the flow and dynamo regimes when increasing the
forcing of convection; the transitions studied in this chapter have been added. The emergence
of antisymmetric modes at RaQ = RaQt systematically occurs in the geostrophic regime of
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Chapter 5

Discussion and interpretation

5.1 Flow transitions

5.1.1 Symmetric and asymmetric regimes

We found that the emergence of antisymmetric modes, marking the transition from the
symmetric to the asymmetric regime in hydrodynamic simulations and from the symmetric
to the oscillating regime in dynamo simulations, occurs as a secondary bifurcation in the
geostrophic regime, with no connection with the transition from a geostrophic to a weakly
rotating regime (King et al. 2009, Zhong et al. 2009 and King et al. 2012). The Rayleigh
number RaQt for the nonlinear emergence of antisymmetric modes scales with the power
1.51 of the Ekman number (equation (4.2)), which is rather close to the value 5/3 that
holds for the convection onset RaQc ∝ E5/3.

The flow structures in the asymmetric regime highly depend on the saturation of
antisymmetric modes when increasing the convection forcing. Indeed, these modes can
grow either faster (figure 4.3(a)) or slower (figure 4.3(b)) than symmetric modes, resulting
in strongly asymmetric or weakly asymmetric flows, respectively. The former situation is
always encountered in rotating spheres at E ≥ 10−4, while the latter is found in bottom-
driven spherical shells where the flow remains dominated by symmetric components when
increasing the Rayleigh number.

Our results suggest that, at a given Ekman number, the main control parameters
for the amplitude of antisymmetric modes are the forcing of convection RaQ, and the
ratio between the buoyancy flux at the inner and outer boundary. Strongly asymmetric
simulations have not been observed in previously published studies either because the
forcing of convection was not sufficiently high, or because the ratio between the inner and
outer buoyancy flux was not small enough.

5.1.2 From the perspective of the Taylor-Proudman constraint

We have shown that strongly asymmetric simulations such that Ka & Ks are reached in
the rotationally dominated regime of convecting spheres at E ≥ 10−4, provided that the
Rayleigh number is sufficiently large. Such a result is unexpected and in apparent conflict
with the Taylor-Proudman constraint. Why is this constraint broken in this asymmetric,

87



88 Chapter 5. Discussion and interpretation

but rotationally dominated regime?

In order to address this question, zonal and non-zonal flows need to be discussed
separately. It is important to first stress that non-zonal flows always break the Taylor-
Proudman constraint, regardless of their equatorial symmetry. Indeed they are affected
by the condition of non-penetration u · n = 0, where n is the unit vector normal to the
external boundary, which imposes

uzz = −uss (5.1)

at the spherical boundaries. The non-penetration condition is non-dissipative (it holds
for inviscid flows) and forces interior motions. Therefore, non-zonal horizontal flows with
typical velocity scale U induce axial flows with the same order of magnitude. Since us and
uz have reversed symmetries, the z-varying flow component is necessarily of similar am-
plitude O(U) as the z-independent component. However, breaking the Taylor-Proudman
constraint does not prevent the flow from remaining geostrophic at leading order, as
illustrated in the following example taken at convection onset.

Viscosity breaks the Taylor-Proudman constraint at convection onset (Roberts, 1968;
Busse, 1970), leading to viscous and Coriolis terms with the same order of magnitude in
the curl of the momentum equation (or vorticity equation), such that:

− 2
∂u

∂z
∼ E∆ω (5.2)

where ω is the vorticity field. If U is a typical velocity scale, δz a typical length scale
in the axial direction and δφ a typical azimuthal length scale, the above balance leads to
δφ = O(E1/3δz). Comparing now the viscous force E∆u and the Coriolis force 2ẑ × u
in the momentum equation (not its curl), one sees that, owing to the small azimuthal
wavelength, viscous forces O(E1/3U) are smaller than their contribution in the vorticity
equation by an order E1/3, while the Coriolis contribution is of same order of magnitude
O(U) in both equations since the curl of the Coriolis force does not involve any derivative
in the azimuthal direction. Hence, viscous forces are smaller than the Coriolis force by
an order E1/3 and the classical geostrophic balance

2ẑ × u = −∇P (5.3)

is satisfied at leading order. Similar considerations hold in the supercritical convection
regime, where inertia or viscous forces can break the Taylor-Proudman constraint while
maintaining a leading order geostrophic balance (provided that the contribution of the
Lorentz force is negligible in both the momentum equation and its curl).

In our simulations, non-axisymmetric antisymmetric motions can represent up to 60%
of the total kinetic energy. From the above discussion, these structures are finally not
unexpected and certainly not prohibited in the rotationally dominated regime. Indeed,
their dynamics is similar to that of symmetric columns: the variation of the horizontal
velocity with z is of order U/D, meaning that they break the Taylor-Proudman constraint,
while meeting the geostrophic balance (owing to a small azimuthal wavelength, see figures
4.6(c,d)), just like symmetric columns. The viscous dissipation of antisymmetric columnar
structures is probably slightly higher than that of symmetric columns, explaining why
symmetric modes are the first to become unstable and are favored just above onset, but
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this difference is small and may be overcome at sufficiently supercritical conditions.

Contrary to non-zonal flows, zonal flows are everywhere parallel to the boundaries
and, therefore, are unaffected by the non-penetration condition. A viscous Ekman layer
of small O(E1/2) thickness then allows the zonal flow to meet the no-slip boundary con-
dition, while the interior zonal flow can be rigorously z-invariant. The compliance of an
equator-symmetric flow to the Taylor Proudman constraint can thus be total, while an
antisymmetric flow necessarily involves departures from this constraint. Thus, the dynam-
ics of symmetric and strongly asymmetric zonal flows is not equivalent. The emergence
of a strong antisymmetric zonal flow in our simulations involves a particularly strong
relaxation of the Taylor-Proudman theorem by buoyancy contributions, as a result of
an asymmetric temperature profile (thermal wind balance (4.3)). The truly unexpected
feature in our simulations is thus this strongly asymmetric temperature profile.

More generally, our results recall that strongly asymmetric flows are not prohibited
in the rotationally dominated regime in convecting spheres or spherical shells and, at
this stage, there is probably no immutable reasons for them to be of small amplitude
compared to symmetric modes at small Ekman numbers, in particular at highly super-
critical Rayleigh numbers as those reached in planetary cores. Therefore, the terms
geostrophic/ageostrophic and symmetric/asymmetric refer to different properties of the
flow that are not necessarily correlated in spheres and shells.

5.2 Hemispherical dynamos

Hemispherical dynamos have been found in other numerical simulations of convection and
dynamo action in rotating shells, previously (Grote & Busse, 2000; Simitev & Busse, 2005;
Stanley et al., 2008) or subsequently (Amit et al., 2011; Dietrich & Wicht, 2013) to the
publication of the present results.

Fixed temperature and stress-free boundary conditions have been imposed in Grote &
Busse (2000) and in Simitev & Busse (2005). Their hemispherical dynamos are located
in a narrow domain of parameter space and do not result from the same mechanism as
ours. Indeed, we found that the value of the antisymmetric kinetic energy remains low
in their dynamo simulations (Ka/Ks ≈ 0.01 at Pr = 1, Pm = 2, E = 2 × 10−4 and
Ra = 6.5 × 105) while it is exactly equal to zero in the corresponding hydrodynamic
simulations.

As in our simulations, hemispherical dynamos result from the emergence of antisym-
metric modes with strong EAA zonal flows in Stanley et al. (2008), Amit et al. (2011)
and Dietrich & Wicht (2013), but we emphasize that EAA zonal flows are prescribed by a
heterogeneous heat flux at the outer sphere in the latter studies while they spontaneously
emerge in our study. In particular, the heat flux in the simulations by Stanley et al.
(2008) is stabilizing in one hemisphere and destabilizing in the other, causing convective
motions, and hence magnetic field generation, to be mainly located in one hemisphere,
which necessarily results in a hemispherical magnetic field pattern. In agreement with our
results, Dietrich & Wicht (2013) report an enhanced ω-effect in their forced asymmetric
simulations, where the amplitude of the imposed symmetry breaking of the flow controls
the transition from α2 to αω-type dynamos.

In the present study, the magnetic Prandtl number Pm is equal to 5 in most simula-
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tions and equal to 1 in simulation L (Table 4.2). However, Pm is expected to be much
smaller than unity in planetary cores and we anticipate that this might affect the dynamo
regime. Unfortunately, it is difficult to investigate the effect of small magnetic Prandtl
numbers on the generation of hemispherical dynamos. Indeed, the magnetic Reynolds
number is equal to Re · Pm and, therefore, exceeding the dynamo onset requires higher
Reynolds numbers Re when decreasing Pm. For Pm < 1, simulations conducted at sim-
ilar forcing as the strongly hemispherical dynamos obtained in this study are below the
onset of dynamo action.

5.3 Symmetry breaking of the flow and low-dimensional

model

We have shown that the equatorial symmetry breaking of the flow, measured by Ka/Ks,
controls the hemisphericity of the dynamo. If the energy contained in antisymmetric
modes is strong enough (i.e. Ka/Ks is larger than ∼ 1), then we obtain hemispherical
dynamos in which at least 75% of the total magnetic energy at the CMB is localized in
one hemisphere.

The idea that symmetry breaking of the flow can play an important role in the dynam-
ics of magnetic field reversals had already emerged from previously published studies on
dynamo action in convective spherical shells (Li et al., 2002; Nishikawa & Kusano, 2008),
in full-sphere with mechanical forcing on the boundaries (Gissinger et al., 2010), or in the
von Kármán Sodium dynamo experiment (Monchaux et al., 2009). The results presented
in chapter 4, combined with other recent results obtained in the von Kármán dynamo
experiment (Gallet et al., 2012) or in parametrized kinematic α2-dynamo models (Gallet
& Petrelis, 2009), show that symmetry breaking of the flow can also generates hemispher-
ical dynamos in which the magnetic field is spatially localized. The above observations
converge towards the more general idea that flow-symmetry breaking is a universal con-
trol parameter of dynamo regimes. Low-dimensional models, i.e. based on interactions
between a few hydrodynamic or magnetic modes, are generally useful to account for the
effect of symmetry breaking, as illustrated in what follows.

Gallet & Petrelis (2009) have introduced a model based on the interaction between
two magnetic modes, predicting that equatorial symmetry breaking of the flow can in-
duce hemispherical dynamos. This theoretical framework is satisfactory as it connects
the results discussed in the previous sections: emergence of antisymmetric flow compo-
nents and generation of hemispherical dynamos. First, it is assumed that the large-scale
axisymmetric magnetic field B can be written at first order as

B = d(t)D(r) + q(t)Q(r), (5.4)

where D and Q are axisymmetric dipolar and quadrupolar components of amplitude d(t)
and q(t), respectively. Sufficiently close to the dynamo threshold, the dynamics of the
magnetic field is likely to be governed by interactions between the two first unstable
magnetic modes and equation (5.4) is expected to hold.

Then, considering only linear interactions between magnetic modes (i.e. neglecting
the back reaction of the magnetic field on the flow through the Lorentz force), we obtain
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the following equations for the amplitudes d and q:

ḋ = σdd+ αdq, (5.5)

q̇ = σqq + αqd, (5.6)

where σd and σq are the growth rate of the modes D and Q when the flow is purely sym-
metric, while coefficients αd and αq originate from the antisymmetric flow component,
which couples dipolar and quadrupolar magnetic modes in the induction equation. In-
deed, when comparing equations (5.5)-(5.6) with the induction equation (2.5), it becomes
intuitive that (σd,σq) represents the effect of magnetic diffusion and induction of magnetic
field by symmetric flow components, while (αd,αq) represents the effect of induction of
magnetic field by antisymmetric flow components. Therefore, we expect that

σd = σ′dS + γ′d, (5.7)

σq = σ′qS + γ′q, (5.8)

αd = α′dA, (5.9)

αq = α′qA, (5.10)

where S is the amplitude of symmetric flow components, A the amplitude of antisymmetric
flow components, σ′d, σ

′
q, α

′
d, α

′
q, γ

′
d and γ′q are constant coefficients. Writing d + iq =

a exp (iΘ), the following equation for Θ is deduced from equations (5.5) and (5.6):

Θ̇ = µi + νi cos (2Θ)− νr sin (2Θ) (5.11)

where νr = 1/2(σd − σq) measures the difference of growth rates, and the coefficients
µi = 1/2(αq−αd) and νi = 1/2(αq +αd) are proportional to A and, hence, originate from
the symmetry breaking of the flow. If the antisymmetric flow components are such that
µi � νi, a regime of magnetic field reversals is obtained for sufficiently large value of µi as
can be deduced from equation (5.11) (Petrelis & Fauve, 2008). On the contrary, if νi � µi,
two stable solutions for Θ always exist and the magnetic field remains stationary. In the
latter case, when increasing the symmetry breaking, the solutions progressively converge
towards Θc = (π/4, 3π/4) if νi ≥ 0 and Θc = (−π/4,−3π/4) if νi ≤ 0, or equivalently
towards B ∝ D±Q. Assuming that D and Q form a large-scale dipole and a large-scale
quadrupole, respectively, both aligned with the rotation axis, the solution B ∝ D ± Q
corresponds to a hemispherical magnetic field that merely cancels near one pole and
reaches strong values near the other. Therefore, the above low-dimensional framework
predicts that equatorial symmetry breaking of the flow can either induce reversing or
hemispherical magnetic fields, depending on the structure of the antisymmetric flow.

Are our numerical results compatible with the general framework of the above low-
dimensional model? First, the magnetic field has to be large-scale and multipolar dynamos
that emerge at sufficiently high forcing (Rm or RaQ) do not meet this condition. Second,
the axisymmetric magnetic field needs to be satisfactorily described by a decomposition
of the form (5.4), which is indeed the case at first order in our hemispherical dynamos
at intermediate forcing. Third, nonlinear interactions involving the Lorentz force need
to play a secondary role. We checked that that our hemispherical dynamos meet this
condition: the axisymmetric magnetic field induced in a kinematic dynamo (i.e. where
the Lorentz force is shut down) is almost identical to the field generated in a complete
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dynamo simulation.

Figure 5.1: Axisymmetric radial magnetic field at the outer boundary and at a given time
in (a,b,c) kinematic simulations where the Lorentz force is shut down and (d,e,f) a complete
dynamo simulation at E = 10−3, RaQ = 10−3, Pr = 1, Pm = 5 (Hammer projections, fields
are normalized by their root mean square at the outer boundary). (a) Most unstable dipolar
magnetic field when the coupling between dipolar and quadrupolar modes is suppressed (for a
purely symmetric flow). (b) Most unstable quadrupolar magnetic field. (c) Field resulting from
the superposition of the normalized fields shown in (a) and (b). (d,e,f) Dipolar component,
quadrupolar component and total field, respectively.
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Figure 5.2: Hemisphericity factor fhem as a function of the ratio of antisymmetric versus
symmetric kinetic energy as predicted by the low-dimensional model (a) and in complete dy-
namo simulations (b). (a) Theoretical curves in the limit νi � µi taking the modes D and
Q shown in figure 5.1, for a constant value of the symmetric flow amplitude S, and with[
α′d + α′q

]
/
[
(σ′d − σ′q) + (γ′d − γ′q)/S

]
= 0.89.
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Considering a given hemispherical simulation that satisfies the above conditions, one
can compute the most unstable magnetic modes induced by the purely symmetric flow
component using kinematic dynamo simulations. In the example shown in figure 5.1, the
axisymmetric components D and Q correspond to a large-scale dipole (figure 5.1(a)) and a
large-scale quadrupole (figure 5.1(b)) whose superposition results in a hemispherical pat-
tern (figure 5.1(c)), hence in qualitative agreement with the results from the corresponding
complete dynamo simulation (figure 5.1(f)). In the limit νi � µi (that eliminates revers-
ing dynamos), the hemisphericity factor fhem can be expressed as a function of A and S
once D and Q are prescribed and for a given set of constant coefficients:

fhem =
1

2
+

2

d/q + q/d

∫
Σho

Q ·DdS (5.12)

where
q

d
= tan

[
1

2
arctan

[
A

S

α′q + α′d
(σ′d − σ′q) + (γ′d − γ′q)/S

]]
(5.13)

where Σho is the outer surface of the hemisphere with a stronger magnetic field. Figure
5.2(a) presents the evolution of the hemisphericity factor as a function of the equatorial
symmetry breaking of the flow as predicted by (5.12)-(5.13) when using the most unstable
modes D and Q shown in figures 5.1(a,b), assuming a constant value for S and when
the value of the ratio

[
α′d + α′q

]
/
[
(σ′d − σ′q) + (γ′d − γ′q)/S

]
is chosen such that fhem =

0.75 for (A/S)2 = 1. This figure illustrates both the advantages and limitations of the
low-dimensional model: the main features of the numerical results (figure 5.2(b)) are
reproduced since fhem increases monotonically with (A/S)2, although the detailed shape
of the theoretical curve is not identical to that described by numerical results.

5.4 Geophysical implications

Our results indicate that hemispherical magnetic fields, at the CMB and at the surface of
a Mars-like planet (figure 5.3), may be spontaneously induced by asymmetric convective
flows in a rotating full-sphere, which represents the most plausible configuration for Mars’
core when its dynamo was active. From such results, the most naive scenarios that can
be proposed for the hemispherical magnetic field of Mars crust are depicted in figure 5.4:
when the martian crust has formed and hence acquired its initial remanent magnetization,
the Rayleigh number related to Mars’ core was located in a region of parameter space
where the flow was sufficiently asymmetric to generate hemispherical magnetic fields,
which have been recorded on the martian crust. Two cases are possible: either the
early crust formed before the cessation of the dynamo (figure 5.4(a)) or crust formation
was active during the entire dynamo duration (figure 5.4(b)). In the latter situation
the flow had to be sufficiently asymmetric at dynamo onset Rmc for the dynamo to be
hemispherical during its entire duration.

The above scenarios would be an attractive explanation for the hemispherical crustal
magnetic field of Mars, satisfying the principle of parsimony since neither heterogeneous
boundary conditions, as assumed by Stanley et al. (2008), Amit et al. (2011) and Dietrich
& Wicht (2013), nor exogenic process responsible for partial demagnetization of the crust
in the northern hemisphere, such as volcanic resurfacing (Connerney et al., 2005), large
impacts (Frey & Schultz, 1988) or a single giant impact (Andrews-Hanna et al., 2008;
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Figure 5.3: Snapshots of the radial magnetic field at the CMB (a) and at the surface of a
Mars-like planet (b) obtained with the strongly asymmetric simulation G (parameters reported
in Table 4.2, chapter 4) (Hammer projections).
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Figure 5.4: Qualitative scenarios that can be proposed to explain the hemispherical magnetic
field of Mars crust: the flow was strongly asymmetric, inducing hemispherical dynamos (blue
lines), during crust formation (black arrows). Rm is the magnetic Reynolds number and Rmc its
value at dynamo onset. (a) Much of the Mars crust formed before the cessation of the dynamo.
(b) Crust formation lasted during the entire duration of the dynamo.
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Marinova et al., 2008; Nimmo et al., 2008; Citron & Zhong, 2012), would be required.
Below we discuss the applicability and limitations of the scenarios qualitatively depicted
in figure 5.4.

For the specific mechanisms identified in the present study to be relevant to Mars’
core, two conditions must be met: first, the past martian dynamo was in the asymmetric
hydrodynamic regime (i.e. RaQ ≥ RaQt) and, second, flow-symmetry breaking Ka/Ks

was sufficiently large to induce hemispherical dynamos.

The past martian dynamo may have reached the asymmetric regime if RaQ was at
least larger than RaQt when the dynamo was active. The scaling law (4.2) can be used
to estimate RaQt in Mars’ core: considering plausible parameter values given in Table
5.1, we find that E is roughly within the range 5 × 10−15 − 8 × 10−14 in Mars’ core and
RaQt within the range 5× 10−21 − 4× 10−19. Estimations of the past martian CMB heat
flux highly depend on the mechanism of heat transfer which is considered. Considering a
stagnant lid mantle convection the maximum heat flux is expected to be about 60 mW m−2

(Nimmo & Stevenson, 2000; Breuer & Spohn, 2003; Stevenson et al., 1983) whereas if we
consider an overturn after magma ocean crystallization it is about 600 mW m−2 (Elkins-
Tanton et al., 2005). Plate tectonics has been suggested for Mars but is not coherent
with little remixing of crust and mantle as indicated by geochemistry. In addition Breuer
& Spohn (2003) have shown that it is difficult to reconcile crust production required by
geological constraints and the presence of a core-dynamo using a model that includes
plate tectonics. We note that, in the case of plate tectonics, the maximum heat flux at
the CMB would be of the same order as in the case of a stagnant lid regime (∼ 100mW
m−2, Nimmo & Stevenson (2000)). It is important to underline that RaQ has to be
estimated using the superadiabatic heat flux (the total heat flux minus the adiabatic heat
flux). The adiabatic heat flux for Mars’ core is estimated to be in the range 5-19 mW
m−2 (Nimmo & Stevenson, 2000). Using the parameter values given in Table 5.1, one can
estimate a plausible range of values for the maximum modified Rayleigh number RaQm, in
Mars’ core. Considering convection underneath a single plate, RaQm is within the range
2 × 10−13 − 10−12 whereas with a model that supposes an overturn after magma ocean
crystallization (Elkins-Tanton et al., 2005), RaQm is within the range 3× 10−12 − 10−11.
These values are larger than RaQt by more than seven orders of magnitude, suggesting
that Mars’ core could have been in the hydrodynamic asymmetric regime. Besides, in
the case depicted in figure 5.4(b), another necessary condition is that RaQ ≥ RaQt when
Rm = Rmc. Assuming that Rmc = O(100) (Christensen & Aubert, 2006), scalings laws
for the dimensionless kinetic energy K as a function of RaQ (Christensen & Aubert, 2006;
Aubert et al., 2009) (discussed below) can be used to estimate the value of RaQ at dynamo
onset (since Rm = Pm ·K/E). The resulting value is in the range 10−16 − 10−14, which
is several orders of magnitude larger than RaQt, indicating that the scenario depicted in
figure 5.4(b) appears plausible.

In our numerical dynamo simulations, the CMB magnetic field is hemispherical if the
equatorial symmetry breaking of the flow Ka/Ks is sufficiently large, typically larger than
unity, and scaling laws for kinetic energies are useful at this stage in order to determine
whether or not Ka/Ks was sufficiently high in Mars’ core.
First, the scaling for the EAA kinetic energy K0a ∝ RaQ, in agreement with our nu-
merical results, can be derived from dimensional analysis (Aurnou et al., 2003). Thus,
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Parameters Plausible values for Mars

Acceleration due to gravity at the CMB, g0 (m s−2) ∼ 3
Core radius, ro (km) 1300− 1700
Density, ρ (kg m−3) 7100− 8300

Thermal expansion coefficient, α (K−1) 1.5− 3× 10−5

Heat capacity, Cp (J kg−1K−1) 820− 860
Rotation rate (present), Ω (s−1) 7.1× 10−5

Kinematic viscosity, ν (m2 s−1) ∼ 10−7 − 10−5

Table 5.1: Plausible parameter values for Mars’ core, after Nimmo & Stevenson (2000) and
references therein for the first five parameters. The last parameter value is an estimation of ν
in terrestrial cores (Funakoshi, 2010; de Wijs et al., 1998).

it is expected to apply for Mars’ core. Second, the validity of the viscosity-independent
kinetic energy scaling (∝ Ra0.83±0.03

Q ) obtained from numerical simulations for the total
kinetic energy K (Christensen & Aubert, 2006; Aubert et al., 2009) or for the antisym-
metric kinetic energy Ka (scaling (4.4)) is disputable since the Reynolds number does
not exceed a few hundreds in numerical simulations∗. However, a very similar scaling for
non-axisymmetric flow components, such that kinetic energy is proportional to Ra0.8

Q , is
expected from theoretical arguments at large Reynolds numbers (the relevant regime for
planetary cores), assuming that the Taylor-Proudman constraint is broken by inertia (e.g.
Aubert et al. 2001; see also Jones (2011) for the derivation of this scaling).†

A few remarks can be drawn from the above reasonings:

• The ratio K0a/K is proportional to RaQ/Ra
0.8
Q ∝ Ra0.2

Q , which is expected to be
much smaller than unity in Mars’ core with the plausible values listed above for
RaQm. Therefore, EAA modes were probably much weaker than other flow compo-
nents in Mars’ core and they could not be responsible for strong symmetry breaking
as they are in our simulations. We emphasize that similar conclusions hold for EAA
modes forced by heterogenous boundary conditions (Stanley et al., 2008; Amit et al.,
2011; Dietrich & Wicht, 2013)‡.

• The ratio of the antisymmetric kinetic energy to the total kinetic energy Ka/K
is expected to be independent of RaQ at sufficiently large forcing, meaning that

∗King & Buffett (2013) have indeed shown that viscosity plays a significant role in simulations.
†An alternative scaling for the dimensional mean kinetic energy K in planetary cores is obtained by

considering a balance between the Lorentz force, the buoyancy force and the Coriolis force (Starchenko
& Jones, 2002), which predicts that K ∝ RaQ. However, the latter scaling is not considered in the
present discussion since the Lorentz force has a weak effect on kinetic energy in most published numerical
dynamos (e.g. Christensen & Aubert, 2006; King & Buffett, 2013).
‡The scaling K0a ∝ RaQ also holds in the presence of an asymmetric heat flux. One can show that

the main difference will appear in the scaling prefactor which is expected to be a linear function of the
ratio Qa/Qs, where Qa and Qs are the antisymmetric and symmetric heat flux, respectively. As the ratio
Qa/Qs was not much larger than unity in Mars’ core (Stanley et al., 2008), EAA modes were likely to
be weaks, even in the presence of an asymmetric heat flux at the CMB.
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non-axisymmetric antisymmetric modes are not prevented from reaching large am-
plitude values, and hence allowing Ka/Ks = O(1) at planetary parameter values.
Unfortunately, giving the large uncertainties on the prefactor values in numerical
scalings (Aubert et al., 2009), or the proximity to the threshold RaQt in the present
study, no firm conclusion can be drawn concerning the value of Ka/Ks in Mars’
core.

Finally, the above discussion has demonstrated that the specific dynamics that has been
isolated in our dynamo simulations is not expected to dominate at planetary parameter
values, although the general idea that spontaneous symmetry breaking of the flow can
lead to hemispherical dynamos in planetary cores still holds and the scenarios depicted
in figure 5.4 can not be ruled out. Similar limitations hold for asymmetric simulations
forced by heterogeneous heat flux as in Stanley et al. (2008), Amit et al. (2011) or Dietrich
& Wicht (2013). Although dynamo simulations are useful to explore dynamical regimes,
retrieve scaling laws and isolate specific dynamical behaviors, quantitative comparisons
of numerical results with geophysical data are not always legitimate giving the distance
between planetary and simulation parameter values.
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Chapter 6

Outlook

6.1 EAA circulation

EAA circulation deeply influences the flow in our strongly asymmetric simulations where
it is the most energetic mode in the kinetic energy spectrum. It is also essential in the
characterization of the oscillating and asymmetric flow regimes in dynamo simulations.
Meanwhile, EAA flow components share the same symmetry properties as the most un-
stable modes at axisymmetric convection onset, as studied by Bisshopp (1958), Roberts
(1965) and Bisshopp & Niiler (1965). Therefore, the following question arises: Are the
EAA modes that emerge in our simulations somewhat inherited from the first unstable
axisymmetric modes? In previously published studies of convection in spherical systems,
heat is mainly carried away in a direction perpendicular to the rotation axis by modes
inherited from the Rossby waves emerging at convection onset (Busse, 1970). On the
contrary, the first unstable axisymmetric modes carry heat away along the rotation axis,
which makes their dynamics somewhat analog to convection in a rotating plane layer or
inside the tangent cylinder in spherical shells, as already mentioned in chapter 2 (see
figure 2.7 and section 2.3.4.3). Hence, a closely related question to that mentioned above
is whether modes carrying heat away along the rotation axis may play a significant role
in the overall dynamics.

Besides, as discussed in section 5.1.2, the truly unexpected feature of our simulations
is the strongly asymmetric temperature profile, with high temperature in one hemisphere
and lower temperature in the other, responsible for strong EAA zonal flows that break
the Taylor-Proudman constraint. Hence, another question related to EAA modes is: How
does this strongly asymmetric EAA temperature profile arise?

A study dedicated to EAA circulation is currently underway in order to address the
above questions. Our preliminary results show that, at sufficiently high Ekman numbers,
the nonlinear EAA modes are identical to the first unstable axisymmetric modes (figure
6.1), whereas, at lower Ekman numbers, the EAA circulation is dominated by large-scale
zonal flows that are dynamically different from the first unstable axisymmetric modes
(figure 6.2). Then, we write the heat budget of the lower hemisphere to isolate the different
terms that contribute to the net production of large-scale EAA temperature in nonlinear
simulations. We find that the meridional EAA flow, which involves components inherited
from the first unstable axisymmetric modes, is responsible for much of the production of
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Figure 6.1: (a,b,c,d) Snapshots of (a) axisymmetric temperature (colors), (b) axisymmetric az-
imuthal velocity, (c) EAA temperature, and (d) EAA azimuthal velocity in a full-sphere nonlinear
simulation at E = 10−2, RaQ ≈ 1.5RaQc. (e,f) Patterns of (e) temperature and (f) azimuthal
velocity at axisymmetric convection onset at E = 10−2 (same boundary conditions as in the non-
linear simulation). Solid lines in (b), (d) and (f) show the meridional circulation that rotates
clockwise. The amplitude of the meridional circulation in (b) varies between 0 and 0.08.

EAA antisymmetric temperature in all our asymmetric simulations.

Figure 6.2: (a,b,c,d) Snapshots of (a) axisymmetric temperature (colors), (b) axisymmetric az-
imuthal velocity, (c) EAA temperature, and (d) EAA azimuthal velocity in a full-sphere nonlinear
simulation at E = 3×10−4, RaQ ≈ 21RaQc. (e,f) Patterns of (e) temperature and (f) azimuthal
velocity at axisymmetric convection onset at E = 3× 10−4 (same boundary conditions as in the
nonlinear simulation). Solid and dashed lines in (b) and (f) show the meridional circulation that
rotates clockwise and anticlockwise, respectively. The amplitude of the meridional circulation in
(b) varies from values close to 0.01 near the axis in the northern hemisphere or in the Ekman
boundary layer to values of order 0.003 in the rest of the sphere.
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6.2 Towards an understanding of dynamical regimes

and transitions

6.2.1 Emergence of antisymmetric modes

Up to know, we focused on the statistically stationary regime of our simulations. A
possible development would be to investigate in more detail the secondary instability
mechanism associated with the emergence of antisymmetric flows at RaQ = RaQt in
order to recover, from theoretical reasoning, the scaling law (4.2) obtained numerically
for RaQt as a function of E. In particular, we have noticed that, in a given simulation,
antisymmetric modes start to grow on the symmetric basic state after a few advective
time scales, only when the pattern of EAA temperature and, hence, of EAA zonal flow
start to be large-scale. The so-called 2− 1/2 dimensional approach would be adapted to
study the secondary destabilization mechanism and especially the role played by large-
scale EAA modes. Indeed, in this approach, only the axisymmetric component m = 0 and
one non-axisymmetric azimuthal wavenumber are retained in the calculation (Morrison
& Fearn, 2000; Cupal et al., 2002), allowing for reduction of the system complexity while
retaining essential ingredients.

At parameter values corresponding to the strongly asymmetric simulation B used in
chapter 4 (parameters reported in Table 4.1), the ratio Ka/Ks is equal to about 0.16 when
a free-slip boundary condition is imposed rather than no-slip. This value is significantly
lower than in simulation B where Ka/Ks ≈ 0.85, suggesting that free-slip boundary
conditions favor strongly symmetric flows. However, we find that the absolute values of
K0a and Ka are very similar in both simulations. The main difference arises from the
amplitude of symmetric zonal flows, which are about three times stronger in the free-
slip simulation, where they contain about 70% of the total kinetic energy, whereas they
represent only 30% of the total energy in the no-slip simulation B. The symmetric zonal
flows are strongly z-independent in this free-slip simulation and we therefore hypothesize
that the low Ka/Ks value is due to particularly strong Reynolds stresses-induced zonal
flows rather than diminished antisymmetric flow components. Further investigations with
free-slip boundary conditions are required, in particular to obtain scaling laws for the
different energy contributions.

At similar convective power as in simulation B but with a lower Prandtl number
equal to 0.1, the ratio Ka/Ks is equal to about 0.15, again a value significantly lower
than in simulation B. This suggests that low Prandtl numbers favor strongly symmetric
convection, although no firm conclusion can be drawn at this stage. Besides, in planetary
cores that have nucleated an inner core, as the Earth, the Prandtl number associated
with compositional convection is expected in the range 100−1000 (Poirier, 1988; Vocadlo
et al., 2000). Therefore, a systematic investigation of the role of the Prandtl number on
the emergence of antisymmetric modes in rotating shells and spheres would probably be
legitimate.

6.2.2 Other regimes and transitions

We have shown in chapter 4 that the equatorial symmetry breaking of the flow controls the
emergence of hemispherical dynamos and the equipartition in dipolar and quadrupolar
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magnetic energy in our simulations (figure 4.20). We have also discussed in chapter 5
the significance of this result with respect to other recent experimental, numerical and
theoretical results, which converge towards the general idea that symmetry breaking of
the flow is a main control parameter of dynamo regimes. However, the role of symmetry
breaking of the flow has received less attention in the geophysics community and it can
be hypothesized that other properties of the magnetic field in dynamo simulations are
controlled by equatorial symmetry breaking of the flow.

• First, it remains to be tested whether the emergence of antisymmetric modes may
control the transition from dipole-dominated dynamos to multipolar dynamos. A
systematic numerical study using adapted output quantities would test this scenario
in a straightforward way.

• Second, the low-dimensional framework introduced by Gallet & Petrelis (2009) pre-
dicts that symmetry breaking of the flow can alternatively induce hemispherical
dynamos or magnetic field reversals, depending on the structure of the antisymmet-
ric flow. Thus, investigating the role played by antisymmetric flow components in
reversing numerical dynamos would be a natural development to the present nu-
merical study. It has been shown that the breaking of the equatorial symmetry of
the flow is indeed connected with reversals (Li et al., 2002) and controls the reversal
frequency (Gissinger et al., 2012) in some isolated direct numerical simulations of
convection and dynamo action in shells, a result which can be predicted by low-
dimensional models (Petrelis & Fauve, 2008; Petrelis et al., 2009; Gissinger et al.,
2012). Meanwhile, Petrelis et al. (2011) have suggested that geomagnetic reversal
frequency has been correlated with equatorial symmetry of continent distribution
during the past 300 Myrs. Continent location is intimately related to the heat flux
pattern at the CMB, known to affect the reversal frequency in dynamo simulations
(e.g. Glatzmaier et al., 1999; Olson et al., 2010, 2013). Investigating the following
questions could help to bridge the gap between paleomagnetic, numerical and low-
dimensional results:
Is the equatorial symmetry of the CMB heat flux a universal control parameter of
reversal frequency in convective dynamos or does it affect reversal frequency only
in a narrow region of parameters space? Does the geometry of the antisymmetric
CMB heat flux affects the reversal frequency? Was reversal frequency influenced by
equatorial symmetry of CMB heat flux in the past 300 Myrs?
A systematic numerical study can be combined with more specific simulations of
the geodynamo driven by mantle convection to investigate the above questions.

We have already mentioned that it remains controversial whether the Lorentz force
may cause departures from geostrophy in self-sustained dynamos and what parameter
would control this transition. Such a regime would strongly affect the flow pattern and
amplitude and, therefore, would have major implications for the dynamics of planetary
cores. King & Buffett (2013) showed that the kinetic energy is rather injected at a viscous
scale in most numerical simulations, suggesting that the Taylor-Proudman constraint is
broken by viscosity rather than Lorentz force, in agreement with the weak influence of
magnetic field on the flow reported by Soderlund et al. (2012). More recently, Hori &
Wicht (2013) studied convection and dynamo action in a configuration that favors strongly
asymmetric flows (small inner sphere and zero buoyancy flux at the inner boundary), and
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they demonstrated the existence of a strong field solution branch on which the magnetic
field has a first order impact on the flow structure: the strongly asymmetric flow is
suppressed by the presence of a strong self-sustained magnetic field, while the dominant
flow length scales are influenced by the Lorentz force. We checked that this strong field
branch is also reached in the full-sphere configuration considered in the present study
when starting the simulation from a strong initial magnetic field. Therefore, a systematic
study that includes full-sphere simulations located on the strong field branch could be used
to investigate the role of the Lorentz force in dynamo simulations and, more precisely,
to identify the relevant paramater controlling the transition towards a regime where the
Taylor-Proudman constraint is broken by the Lorentz force.

6.3 Low-dimensional models

Taking the example of hemispherical dynamos, we have demonstrated in section 5.3 that
low-dimensional models can satisfactorily account for the main dynamical behaviors ob-
tained in direct numerical simulations at intermediate forcing, although detailed features
will not be recovered. Therefore, direct numerical simulations and low-dimensional mod-
els are two complementary approaches: the former is used to obtain complete solutions
of the fundamental equations while the latter may help to comprehend specific dynam-
ical behaviors identified in numerical simulations and suggest relevant directions for the
analysis of numerical results. Below, we introduce two possible investigations that aim at
further exploring the advantages and limitations of low-dimensional models in the context
of core dynamics.

The oscillating regime, characterized by chaotic oscillations and reversals of the EAA
flow component (chapter 4), can possibly be accounted for by a low-dimensional analysis.
Indeed, we have already identified the series of events involved in a given oscillation:
emergence of an EAA zonal flow, generation of an azimuthal magnetic field that breaks
Ferraro’s law of corotation, growth of a magnetic tension force that tends to oppose the
EAA flow component and eventually restores the initial symmetric state. Inspired from
such a scenario, one could formulate a parametrized model formed of several amplitude
equations, one for each field involved in an oscillation, and making use of their symmetry
properties to simplify the equations. Then, the detailed study of the resulting dynamical
system could help understanding the dynamics observed in our numerical simulations. In
particular: Does the resulting model predict that an oscillating regime should first appear
at RaQ = RaQt, while eventually disappearing at higher convection forcing?

We have shown that, as soon as the magnetic field is dominated by large scales,
hemispherical dynamos can be satisfactorily accounted for by the low-dimensional model
introduced by Gallet & Petrelis (2009). However, this low-dimensional model becomes
irrelevant at sufficiently high forcing of convection, especially in the multipolar regime
where the magnetic field is dominated by small scales. Similarly, reversals are spatially
and temporally complex in some convective dynamos (Aubert et al., 2008), suggesting
that numerous magnetic and hydrodynamic modes are involved in the dynamics, whereas
other simulations at high magnetic Prandtl numbers and intermediate Ekman numbers
(as in Olson et al. (2010) or Driscoll & Olson (2009)) appear to involve fewer modes.
Petrelis et al. (2009) and Gissinger et al. (2010) argue that low magnetic Prandtl num-
bers favor low-dimensional behaviors in self-sustained dynamos. The magnetic Reynolds
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number is also expected to be a main control parameter since the number of unstable
magnetic modes increases with Rm.
Therefore, quantifying the transition from low to high-dimensional behaviors and identi-
fying the main control parameters for this transition, could provide important information
concerning the dimensionality of planetary dynamos and the ability of low-dimensional
models to reproduce the dynamics of geomagnetic reversals.

6.4 Other geophysical applications?

6.4.1 Earth

Thermal evolution models integrated backward in time provide constraints on the age of
the inner core, but the resulting range of plausible values is broad, owing to the large
uncertainties on the total heat flux at the CMB and on the amount of radiogenic heating
in the Earth’s core. In the absence of radioactive elements, the inner core age is in the
range 0.5−1.5 Gyr (Labrosse et al., 2001), or even smaller as suggested by the high values
recently found for the thermal conductivity in the core (Pozzo et al., 2012; de Koker et al.,
2012) which may require a higher cooling rate to power the geodynamo. This age can be
extended to 3 Gyr if radioactive elements are present (Labrosse et al., 2001). Meanwhile,
inner core nucleation is likely to have occurred at a time covered by paleomagnetic data
(Tarduno et al., 2010; Biggin et al., 2011). Then, the following question arises: May
paleomagnetic data carry a signature of inner-core nucleation?
To investigate this question, one may use spherical-shell simulations in a region of Earth-
like dynamo behavior (Christensen et al., 2010) and then progressively decrease the inner
sphere size to a full-sphere configuration as used in the present manuscript. Then, di-
agnostic quantities that can be extracted from paleomagnetic data would be computed.
The study by Aubert et al. (2009) suggests that magnetic field intensity is not a rele-
vant indicator of inner core nucleation but the frequency of reversals, as deduced from
the Geomagnetic Polarity Time Scale for the first few hundred years (Ogg, 2012) or in-
dicated by the percentages of paleomagnetic studies showing reversals for more distant
times (Roberts & Piper, 1989), might be affected by the absence or presence of an inner
core.

6.4.2 Mercury

Recent data from the MESSENGER spacecraft suggest that the internal magnetic field
of Mercury is substantially hemispherical: it can be describe by the superposition of an
axial dipole and an axial quadrupole, such that g0

2/g
0
1 ≈ 0.4 (Anderson et al., 2011) where

g0
1 and g0

2 are the Gauss coefficients measuring the amplitude of the axisymmetric dipole
and quadrupole components, respectively. Other observations that need to be accounted
for by dynamo models are the weak amplitude of Mercury’s magnetic field (100 times
weaker than on the Earth, Connerney & Ness, 1988) and a tilt smaller than 3% (Anderson
et al., 2011). Besides, thermal evolution models predict that Mercury’s core is thermally
stratified, implying that the dynamo is necessarily powered by compositional convection
associated with metal solidification (Christensen, 2006; Hauck et al., 2004).
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A multipolar compositional dynamo generated below a stratified layer (Christensen, 2006;
Christensen & Wicht, 2008) explains the weakness of Mercury’s field while, in a given
simulation, the dipole tilt and the ratio g0

2/g
0
1 vary continuously between zero and high

values, as a result of the multipolar nature of the magnetic field. This scenario implies
that the small dipole tilt and the strong quadrupole component measured at Mercury’s
surface are one possible transient state explored by the core dynamo. Inspired from the
numerical results presented in this manuscript, on can look for an alternative scenario in
which a large-scale (i.e. non-multipolar) hemispherical magnetic field would be generated
by strongly asymmetric flows in Mercury’s core. In this case, the small dipole tilt and
the strong value for g0

2/g
0
1 may be permanent features in a given simulation, in contrast

with the model of Christensen (2006) and Christensen & Wicht (2008). Solidification of
metal at the ICB, as in the Earth’s core, favors strongly symmetric flows as shown in
the present manuscript. However, a snowing core regime, where dense iron-rich solids
nucleate at specific depth in the outer core and sink towards the center due to gravity,
has been suggested for Mercury (Chen et al., 2008). The effect of such a regime has been
investigated using a rather larger inner core in Vilim et al. (2010), where it is shown
that a state with two snow layers (the most likely scenario according to Chen et al.
2008) generates weak magnetic fields compatible with those observed on Mercury. A
similar model, combined with a small or absent inner core as in the present manuscript,
could produce weak hemispherical magnetic fields, with permanently small dipole tilt and
strong g0

2/g
0
1 ratio. However, the latter scenario requires a very specific structure and

solidification regime for Mercury’s core and, hence, is not parsimonious. In summary,
further developments of our results to Mercury’s dynamo are possible, but the main
difficulty is to formulate a model that better explains the observations, while being as
parsimonious as existing models.
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Part II

Experiments on the fragmentation of
a buoyant liquid volume in another

immiscible liquid
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Most of the material presented in this part of the manuscript is included in a research
article that has been submitted to Journal of Fluid Mechanics (currently at the revision
stage). Movies and their captions can be found at the following link:
http://www.ipgp.fr/ landeau/public/MoviesPhD/MoviesPartII.zip.

http://www.ipgp.fr/~landeau/public/MoviesPhD/MoviesPartII.zip
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Chapter 7

Introduction

Buoyancy-driven fragmentation of one liquid in another immiscible liquid likely occurred
on a massive scale during the formation of the terrestrial planets, as already developed in
the main introduction (§1.2). Less violent but still dramatic present-day analogs of this
phenomenon include sudden releases of petroleum into the ocean through well discharges,
such as occurred in 2010 during the Deepwater Horizon disaster (McNutt et al., 2012;
Reddy et al., 2012; Camilli et al., 2012).
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of the initial object
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filamentary structures Drops
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Figure 7.1: Typical sequence of steps involved in a fluid fragmentation process. Water drop
falling in an ascending stream of air (modified from Villermaux & Bossa, 2009). The sequence
includes deformation of the initial drop which flattens into a pancake shape, formation of liquid
ligaments (a toroidal rim collects much of the initial drop mass), destabilization of the rim
(highlighted in the inset), leading to disjointed drops distributed in size. Time interval of 4.7
ms, We ≈ 600.

Most fluid fragmentation processes involve a regular sequence of steps (figure 7.1), in-
cluding deformation or destabilization of the initial mass, formation of filamentary struc-
tures called liquid ligaments, breakup of ligaments usually involving capillary instabilities
(e.g. Hinze, 1955; Marmottant & Villermaux, 2004; Villermaux & Bossa, 2009). The
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destabilizing mechanisms generally set the mean size of the resulting drops, whereas liga-
ment dynamics plays a dominant role in determining the resulting drop size distribution
(Marmottant & Villermaux, 2004; Bremond & Villermaux, 2006; Villermaux & Bossa,
2009, 2011). A principal control parameter in any fluid fragmentation process is the We-
ber number We, which measures the relative importance of the dynamic pressure and the
capillary restoring pressure. Breakup, the final fragmentation stage, is usually divided
in primary and secondary breakup. Primary breakup refers to the stage where the initial
liquid volume divides into several disconnected blobs or drops. If the Weber number of the
resulting blobs (based on the blob size and blob velocity) is larger than the critical value
for breakup Wec, secondary breakups occur. The critical Weber number Wec is generally
of order 10 but it varies with the flow regime in the surrounding fluid, especially with
the Reynolds number (Hinze, 1955). Another main control parameter is the Ohnesorge
number Oh, which measures the importance of viscous forces versus interfacial forces and
inertia. Very large Weber and Reynolds numbers and Oh much smaller than 1 are the
relevant regimes for planetary formation.

Fragmentation of a finite volume of liquid at low Oh has been extensively studied in air
(reviewed in Pilch & Erdman, 1987; Faeth et al., 1995; Gelfand, 1996; Guildenbecher et al.,
2009; Theofanous, 2011). A rich variety of fragmentation regimes has been identified,
including vibrational breakup, bag breakup, multimode breakup, shear breakup, catastrophic
breakup (the terminology varies from one study to the other). Recently, Theofanous
et al. (2004) and Theofanous & Li (2008) have proposed another categorization based
on only two main fragmentation regimes : the Rayleigh-Taylor (RT) piercing regime, in
which early deformations result from Rayleigh-Taylor instabilities (RTI), which appear
when an interface between two fluids of different density is subjected to an acceleration
directed towards the lighter fluid, and the shear-induced entrainment regime, interpreted
as the suppression of RTI due to straining motions associated with the global shear. In
general, the Weber number is the main control parameter governing transitions between
the different fragmentation regimes.

Fragmentation of a buoyant liquid volume at density ratio of order one (i.e. in a liquid-
liquid system) has received less attention. The maximum Weber numbers reached in three
dimensional numerical simulations (Ichikawa et al., 2010) of the breakup of drops falling
in another immiscible liquid is about 10 − 15 (figure 7.2(a)). Axisymmetric simulations
reach higher Weber numbers and are useful to compute the early deformations of a blob
falling under gravity (Han & Tryggvason, 1999; Samuel, 2012; Ohta & Sussman, 2012)
or impulsively accelerated (Han & Tryggvason, 2001) in another liquid. However, such
simulations do not capture the entire fragmentation process since ligament formation and
breakup are inherently non-axisymmetric. Baumann et al. (1992) have conducted finite
volume experiments in immiscible liquid-liquid systems at Weber numbers ranging from
0.3 to 11000. Oh is of order one or larger in most of their experiments and only two satisfy
We ≥ 100 and Oh� 1. Baumann et al. (1992) focus on viscous immiscible vortex rings
(figure 7.2(b), upper panel) that form at Re ≤ 61. Instabilities developing on these vortex
rings are interpreted as RTI (figure 7.2(b), lower panel). Several experimental studies of
drop breakup in liquid-liquid systems due to shock-induced flows have reported drag and
breakup time measurements, summarized in Pilch & Erdman (1987) and Gelfand (1996).
Among those studies, Patel & Theofanous (1981) show that their breakup time data are
consistent with drop piercing by RTI. Yang & Yang (1990) identify a regime where the
drop volume grows by turbulent entrainment.
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Figure 7.2: Fragmentation in liquid-liquid systems. (a) Falling drops of liquid in another im-
miscible liquid, numerical simulation, We & 15 (Ichikawa et al., 2010). (b) Immiscible vortex
ring (upper panel) and its destabilization (lower panel), We ≈ 570, (Baumann et al., 1992).
(c,d) Forced plumes (Deguen et al., 2011) with (c) immiscible fluids and (d) miscible fluids.
The Weber number is progressively increased in (c).

At large scales, immiscible liquid-liquid plumes (Deguen et al., 2011) and immisci-
ble liquid-liquid coaxial jets (Charalampous et al., 2008), at large Weber and Reynolds
numbers, are morphologically similar to their miscible equivalents (figures 7.2(c,d)). This
suggests that integral models developed for miscible turbulent flows, including models of
turbulent thermals and vortex rings, can describe the dynamics of immiscible flows.

In miscible fluids, a finite buoyant mass is called a thermal when its impulse originates
entirely from the buoyancy force, and a buoyant vortex ring when an initial momentum
is allowed. As pointed out by Turner (1957, 1964), a thermal can be regarded as a special
case of a buoyant vortex ring. The more general term vortex ring refers to a ring-shaped
structure formed by closed-loop vorticity lines. At high Reynolds numbers, the dynamics
of turbulent thermals with small or large density differences (Morton et al., 1956; Wang,
1971; Escudier & Maxworthy, 1973; Baines & Hopfinger, 1984; Thompson et al., 2000) and
non-buoyant vortex rings (Maxworthy, 1974) is successfully described using the concept
of turbulent entrainment, originally proposed by Taylor (1945) and Morton et al. (1956),
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who hypothesized that the rate of growth of a turbulent buoyant mass is proportional to
its velocity and surface area.

The concept of turbulent entrainment has been used to describe the dynamics of two-
phase flows in which one phase is dispersed in the other in the form of solid particles
(Rahimipour & Wilikinson, 1992; Bush et al., 2003) or air bubbles (Milgram, 1983; Leitch
& Baines, 1989; Bettelini & Fannelop, 1993). However, the turbulent entrainment concept
applied to immiscible systems that are initially non-dispersed has received less attention.
It has been used to describe the dynamics of air jets in liquid (Weimer et al., 1973; Loth &
Faeth, 1989, 1990). Epstein & Fauske (2001) apply this concept to various liquid-gas and
liquid-liquid flows and they develop an erosion model of a liquid drop immersed in a gas
or another liquid with an initial velocity lag. They argue that their model is consistent
with published data of total breakup time.

In this part of the manuscript we describe results of a systematic experimental study
on the fragmentation of a finite liquid volume into lighter immiscible liquid at low Oh,
at large Reynolds numbers (Re ≥ 103 in most experiments) and for Weber numbers up
to ∼ 103. Our main objective is to characterize the different fragmentation regimes in
parameter space. Two experimental configurations are used. In the first, the velocity of
the released fluid originates entirely from the density difference between the two immiscible
fluids (immiscible equivalent of thermals). In the second, an initial excess in velocity is
introduced (immiscible equivalent of buoyant vortex rings). The experimental apparatus
and techniques are described in chapter 8 and the results are presented in chapter 9. In
section 9.1 we study the early stages of evolution in terms of velocity and deformation. The
different fragmentation regimes are characterized in §9.2 from the study of the subsequent
evolution, prior to capillary instabilities and breakup. Results on ligament formation and
primary breakup are reported in §9.3. At sufficiently high Weber numbers, the flow
reaches a turbulent regime whose dynamics are compared, in §9.4, with predictions from
a model based on the concept of turbulent entrainment and on an analogy with miscible
thermals and vortex rings. Chapter 10 presents a discussion of experimental results and
geophysical implications. Finally, further investigations are suggested in chapter 11.



Chapter 8

Experimental procedure

8.1 Experimental set-up

The experimental set-up is shown in figures 8.1(a,b). A tank of width 25cm and height
50cm is filled with a low viscosity silicone oil, referred to as the ambient fluid in the
following. A denser fluid (detailed below), immiscible in oil, is held in a vertically oriented
plastic tube that is closed at the lower extremity by a latex membrane. The denser fluid
is released by rupturing the membrane with a needle. The rupture lasts less than 0.04s.
The volume of released fluid V is such that the height of fluid in the tube is equal to the
tube internal diameter D. Six tubes are used, with D ranging from 1.28cm to 7.62cm. In
the Immersed configuration (figure 8.1(a)) the tube is initially immersed in the ambient
fluid and it is initially held at the surface of the ambient fluid in the Surface configuration
(figure 8.1(b)).

The systematic study has been conducted using backlighting as depicted in figure
8.1(d). A blue dye (food coloring) is added in the released fluid. The flow is made visible by
backward illumination through a diffusive screen and recorded by a color video camera at
24 frames per second. Other flow visualization images are obtained using a shadowgraph
technique (figure 8.1(e)). The released fluid is heated up to about 35◦C. A backward
collimated light goes through the tank and projects information on a viewing screen,
making visible gradients of refractive index which are caused by temperature gradients.
Finally, images are also obtained using light-induced fluorescence (figure 8.1(f)). The
experimental apparatus is illuminated from the side by a light sheet and a fluorescent dye
(rhodamine) is added to the released fluid, imaging a cross section of the falling fluid.
The light sheet, whose thickness varies from 5 mm to 7 mm inside the tank, is produced
using a flash lamp and a black, opaque screen with a narrow vertical opening of 0.32cm.
In the following, the backlighting imaging technique is used unless otherwise.

In order to vary the density ratio between the ambient and released fluids, different
oil-immiscible fluids are used: a mixture of ethanol and water, water, a solution of sodium
chloride (NaCl) and a solution of sodium iodide (NaI). Their physical properties are given
in Table 8.1. NaI solution is of particular interest. First, it provides for large density
contrasts between the ambient and released fluids, up to the density of silicone oil, without
much increase in viscosity. Second, it can be used to match silicone oil refractive index
(n = 1.384 ± 0.006 at 20◦C), which is required to obtain satisfactory images with light-
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Figure 8.1: Experimental set-up. (a) Side view of the apparatus in the Immersed configuration;
(b) side view of the apparatus in the Surface configuration. (c) Sketch of an experiment with
variables measured as a function of time. (d,e,f) Visualization techniques.

induced fluorescence. Interfacial tension between silicone oil and the released fluid σ, is
measured using a Du Noüy tensiometer.
A non-ionic, oil-insoluble surfactant (trade name “Triton X-100”) is added to water and
to the NaI solution in several experiments. Equilibrium interfacial tension decreases with
surfactant concentration until it reaches the critical micelle concentration, after which it
saturates to a constant value. The value given in table 8.1 is used hereafter. The highest
possible concentration of surfactant c ≈ 4mL.L−1, above which a stable emulsion would
be formed in the tank, is used in this study, however, we note that the dynamic interfacial
tension may locally be larger than the equilibrium interfacial tension.

In some experiments, water is used in place of silicone oil and a NaCl solution (Table
8.1) is released. Such experiments are used in §9.4 as a reference system.
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Fluids Density (kg·m−3) Viscosity (m2·s) Interfacial tension
(mN·m−1)

Silicone oil 820± 0.2% 1.2× 10−6 ± 10%
Ethanol + Water 843.5± 0.1% 2.6× 10−6 ± 10% 2.6± 40%

Water 1000± 0.05% 10−6 ± 10% 31.2± 3%
NaCl solution 1175− 1192± 0.06% 1.6× 10−6 ± 10% 23.3± 4%

NaI solution 1536− 1607± 0.07% 1.3× 10−6 ± 10% 17− 21± 10%
Water + Triton X-100 1000± 0.1% 10−6 ± 10% 3.3± 15%

NaI sol. + Triton X-100 1260− 1578± 0.06% (1.1− 1.3)× 10−6 ± 10% 4.4− 4.8± 10%

Table 8.1: Fluid properties.

8.2 Diagnostic techniques

Preprocessing (method detailed in appendix E) is first applied to video images (obtained
using backlighting) to get binary images. Then, the centroid and velocity of the released
fluid are automatically computed.

We found that the 2D centroid obtained from binary images gives too much weight
to structures that are located in the rear of the released fluid (membrane of released fluid
that remains attached to the tube or wake). Such structures contain a negligible amount
of the total released fluid volume whereas they may represent a non-negligible area on
a two-dimensional projection. Instead, we measure a vertical position z that takes into
account mass distribution in three dimensions:

z =

∑
i,j

zi,j log (Ii,j/I0i,j)∑
i,j

log (Ii,j/I0i,j)
, (8.1)

where the pixels (i, j) form the region occupied by the released fluid in the binary
image, zi,j is the pixel vertical position, Ii,j is the pixel intensity in the original image
and I0i,j the pixel intensity in the back field image. The origin z = 0 corresponds to the
lower end of the tube. If the light is monochromatic and the two fluids have the same
refractive index, according to the Beer-Lambert law, z is then equal to the depth of the
real 3D centroid of the released fluid. We checked that the dependence of log (I/I0) on
the thickness ly occupied by released fluid in the direction perpendicular to the image is
close to linear if the green band of the image is considered in the range relevant for our
experiments. When a nonlinear relationship of the form ly = a log (I/I0) + b log (I/I0)2 +
c log (I/I0)3 with b = O(a) = O(c) is considered, z differs by less than 1% from the value
obtained with (8.1). Other sources of discrepancy are due to reflection of light on the
immiscible interface. According to Fresnel’s equations, the reflectivity of the immiscible
interface is less than 4×10−4 in our experiments. Given a rough estimation of the number
of droplets and their size, we estimate that the fraction of incident energy reflected on
the interface is less than 1% in most experiments and less than 5% in the most turbulent
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experiments. Finally, curvatures of the immiscible interface act as lenses and concentrate
light in some portions of the image when the refractive index of the released fluid does
not match the refractive index of the ambient fluid. These effects are probably the main
source of discrepancies between z and the real 3D centroid.

From z measurements, we estimate the velocity u = dz/dt of the released fluid as a
function of time. Uncertainties on z measurements are mainly due to their sensitivity to
the threshold c used in image preprocessing to generate binary images (see appendix E).
The frame rate of the video camera also affects uncertainties in u. Uncertainties on z and
u measurements are typically less than about 5% and 5− 10% respectively.

The MATLAB Image Processing toolbox is used to identify the different connected
objects and their equivalent radii in binary images. First, the holes in a given connected
object are filled. Then, from the 2D object, we construct a 3D object made of two
semi-axisymmetric volumes such that their axis of symmetry is vertically aligned and
comprises the centroid of the resulting 3D object. The volume of the 3D object is given
by V =

∑
ij π(xij − x̄)Sij where xij and Sij are the pixel horizontal position and pixel

surface, and x̄ is the horizontal position of the centroid of the resulting 3D volume. The
equivalent radius of the connected object r, is defined by V = 4

3
πr3.

In the following sections, errors on systematic experimental results take into account
measurement uncertainties and standard deviations obtained in series of experiments con-
ducted at the same input parameter values.

8.3 Input dimensionless numbers

In Immersed experiments, four input dimensionless numbers govern the dynamics:

Bo =
∆ρgR2

σ
, Oh =

√
ρrνr√
σR

, P =
∆ρ

ρa
,

νr
νa
. (8.2)

Here Bo is the Bond number, Oh the Ohnesorge number, ∆ρ is the density difference
between the ambient and released fluids, g the acceleration due to gravity, R the equivalent
spherical radius of the released fluid, ν kinematic viscosity, ρ density. The subscript a and
r denote the ambient and released fluid, respectively. Bo measures the importance of the
buoyancy force versus interfacial forces. In Surface experiments additional dimensionless
numbers are introduced since the released fluid is initially surrounded by air. We are
interested in the fragmentation of released fluid in oil and we do not consider interfacial
effects involving air. The density and viscosity ratios between air and silicone oil should
be added to the above set of dimensionless numbers, however their values remain constant
in all the experiments.

Experiments have been conducted for 24 different sets of input dimensionless numbers
in the Immersed configuration and 30 sets in the Surface configuration. Bo and P lie in
the range ∼ 4− 1430 and ∼ 0.029− 0.96 respectively, Oh varies from ∼ 10−3 to ∼ 10−2

and νr/νa from 0.8 to 2.2. Since Oh � 1 we expect viscosity to have little influence
on the fragmentation regime in agreement with previous studies on drop fragmentation
(Hinze (1955), Pilch & Erdman (1987) and reviews in Gelfand (1996) and Guildenbecher
et al. (2009)). In this study, we thus concentrate on the effects of Bo and P , which are
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independent of viscosity.
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Chapter 9

Results

9.1 Early stages of evolution: post-release conditions

In this section we study the velocity and deformation of the released fluid at a short
distance from the tube (z . 2R) for the two experimental configurations used.

9.1.1 Weber number scaling: post-release velocity

The definitions of the Weber and Reynolds numbers involve a characteristic velocity U
such that

We =
ρrU

2R

σ
; Re =

UR

νr
. (9.1)

In this subsection, we define U and extract a scaling law for We as a function of the input
dimensionless numbers Bo and P .

The characteristic velocity classically used at high Reynolds numbers is the terminal
velocity, a balance between buoyancy and form drag forces, which gives U ∝ √gPR.
However this scaling is not appropriate for our experiments since fragmentation processes
start before the released fluid has reached its terminal velocity (expected between 10 −
20R). In addition, at fixed Bo and P , the vertical velocity at short distances z is larger
in the Surface configuration than in the Immersed configuration. This results from the
buoyancy force being initially larger in the Surface configuration since it involves the
density difference between the released fluid and the air, rather than ∆ρ. This velocity
excess is not accounted for by the terminal velocity scaling which predicts the same
characteristic velocity in both configurations.

Another natural scaling, which is adopted here, emerges from a balance between the
rate of change in released fluid momentum and buoyancy forces, by assuming that a
given portion of the mechanical work generated by buoyancy forces (potential energy) is
converted into kinetic energy of the released fluid during its fall.

121
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9.1.1.1 Immersed configuration

In the Immersed configuration, this scaling takes the form

1

2
ρru

2 ∝ ∆ρg(z +D/2), (9.2)

where the distance to the tube end z is initially equal to −D/2. Scaling (9.2) implies that
the characteristic velocity U should be defined at a given distance from the tube Z. The
choice of Z is partly arbitrary but two conditions have to be met: the released fluid is
entirely off the tube at z = Z and drop formation has not yet started. Z = 2R satisfies
both conditions in our experiments.

The potential/kinetic energy balance (9.2) implies We ∝ Bo, which is in agreement
with the experimental data shown in figure 9.1(a). We obtain the following least squares
best fit:

We = a1Bo , a1 = 0.76± 0.04, (9.3)

where the standard error of the fit is of the order of the experimental errors.

10

10
2

10
3

10 102 103

a4Bo (1 + a5/P )
10 102 103

10

10
2

10
3

Bo

W
e

z = 2R

U = u(z)

(a) (b)

Figure 9.1: (a) Weber number versus Bond number in the Immersed configuration using
U = u(z = 2R) as illustrated in the insert. The least squares best fit We = a1Bo with a1 =
0.76± 0.04 is shown by the black line. (b) Weber number measured in Surface experiments with
U = u(z = 2R) versus Weber number predicted by the least squares best fit We = a4Bo (1 + a5/P)
(black curve) with a4 = 0.51± 0.07 and a5 = 0.07± 0.03. , 0.82 ≤ P ≤ 0.96; , P ≈ 0.54;
, P ≈ 0.43; , P ≈ 0.22; , P ≈ 0.03.

9.1.1.2 Surface configuration

In the Surface configuration it is not straightforward to estimate the mechanical work
generated by buoyancy forces. For example, the buoyancy force involves the density
difference with the surrounding air ρr − ρair ≈ ρr at initial times, but once the fluid
is entirely immersed in the ambient fluid, it depends only on ∆ρ. Assuming that the
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mechanical work generated by buoyancy forces can be written as a sum of two independent
terms, originating from the former contributions, and assuming that a portion of this work
is converted into kinetic energy, we obtain

1

2
ρrU

2 = a2∆ρgR + a3ρrgR, (9.4)

where a2 and a3 are two constants to be fitted. In terms of dimensionless numbers (9.4)
amounts to

We = a4Bo
(

1 +
a5

P

)
, (9.5)

where a4 = a2 + a3 and a5 = a3

a2+a3
. The experimental results are shown in figure 9.1(b).

We find the following least squares best-fit values: a4 = 0.51± 0.07 and a5 = 0.07± 0.03.
The standard error of the fit is of the order of the experimental errors.

We have found scaling laws for We as a function of the input dimensionless numbers
which fit reasonably well with the experimental data. As a consequence, Bo and We
can substitute for each other and the physical processes can be studied alternatively in a
(Bo,P) or (We,P) diagram. We will mainly concentrate on the (We,P) diagram since,
as shown in §9.2, it is well-suited for comparisons between fragmentation regimes in the
Immersed and Surface configurations. Re varies from ∼ 300 to ∼ 104 in our experiments,
with Re ≥ 103 in a large majority of experiments (85%). We do not concentrate on the
effect of Re since, as we have already argued in §8, viscosity is expected to have little
influence on the fragmentation regime. This is confirmed by estimations of the capillary
number Ca = νrρrU/σ, which measures the ratio of viscous forces to interfacial forces:
Ca remains much smaller than 1 in our experiments (in the range ∼ 0.005− 0.1).

9.1.2 Early deformations and destabilizations: post-release shape

Once the released fluid exits the tube, it starts to deform and change shape. A wide
variety of shapes is observed directly after the release (z . 2R) as illustrated in fig-
ures 9.2(a,b,c) and figure 9.4. The present section aims at understanding the physical
mechanisms involved.

9.1.2.1 Immersed configuration

Figures 9.2(a,b,c) illustrate the initial deformations of the released fluid in the Immersed
configuration at different Weber numbers. At We ≈ 10 (a) the released fluid flattens into
a pancake shape due to dynamic pressure forces while non-axisymmetric perturbations are
damped. At We ≈ 50 (b) non-axisymmetric perturbations grow and at We ≈ 1.5×103 (c)
these non-axisymmetric structures develop a mushroom shape, which is morphologically
similar to Rayleigh-Taylor instabilities (RTI).

We first compare these with the classical inviscid analysis of the Rayleigh-Taylor in-
stability of a horizontally unbounded interface between two immiscible fluids (Bellman &
Pennington, 1954; Chandrasekhar, 1961). Choosing a coordinate system that moves with
the released fluid, the governing equations are left unchanged if g is replaced by g−du/dt.
The uncertainties on du/dt measurements are too large for any scaling law to be extracted
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Figure 9.2: (a,b,c) Early deformations of the released fluid in Immersed experiments at We ≈ 10
(a), We ≈ 50 (b), We ≈ 1.5× 103 (c) for z . 2R. The black mark in (a) indicates the critical
wavelength of RTI deduced from equation (9.10) whereas black marks in (b) and (c) indicate
the most amplified wavelength of RTI deduced from equation (9.9). (d) Estimated dimensionless
wavelength λ̃ = 1/

√
n as a function of Bo in Immersed experiments where n is the number of

mushroom-shaped structures. , 0.87 ≤ P ≤ 0.96; , P ≈ 0.43; , P ≈ 0.22; , P ≈ 0.03.
The black curve gives the most amplified wavelength predicted by equation (9.9). Filled symbols:
experiments in which no RTI grows (n = λ̃ = 1). Symbols (a),(b),(c) denote results obtained
from the experiments shown in (a),(b),(c).

but we estimate that its maximum value is of order 1− 2 m·s−2 and therefore, as a first
order approximation, we neglect du/dt with respect to g. Then, in the case of vertically
unbounded layers, the growth rate γ of small perturbations is given by

γ =

√
∆ρ

ρa + ρr
gk − σ

ρa + ρr
k3, (9.6)



9.1. Early stages of evolution: post-release conditions 125

where k is the wavenumber of the disturbances at the interface. The most amplified and
critical wavenumbers are respectively given by

km =

√
∆ρg

3σ
, (9.7)

kc =

√
∆ρg

σ
. (9.8)

It can be shown that including viscous effects (see equation (113) from Chandrasekhar,
1961, Chap. X) has little effect on the value of km and kc at parameter values relevant
for our experiments. In terms of dimensionless wavelength λ̃ = 2π/kD, equations (9.7)
and (9.8) take the form

λ̃m =
2π
√

3√
Bo

R

D
, (9.9)

λ̃c =
2π√
Bo

R

D
. (9.10)

The most amplified wavelength predicted by (9.9) matches the size of non-axisymmetric
structures in figures 9.2(b,c). In figure 9.2(a) the predicted critical wavelength λ̃cD is close
to the tube diameter which explains why RTI does not develop at the front of the released
fluid. The number of mushroom-shaped structures n is evaluated in our experiments and
a characteristic wavelength is estimated by λ̃ = 1/

√
n. Open symbols in figure 9.2(d)

show that experimental data are consistent with prediction (9.9), both in trend and in
absolute value, demonstrating that non-axisymmetric perturbations in figures 9.2(b,c) re-
sult from RTI. We note that the slopes in figure 9.2(d) at fixed P values are consistent
with equation (9.9) but the prefactors slightly vary with P . A regime diagram of the
initial deformations is shown in figure 9.3. RTI start to emerge at Wec, which is located
between ∼ 20 and ∼ 30 given the uncertainties on We. From equation (9.10) we estimate
that the number of mushroom-shaped structures n is equal to nc = 2 when the Bond
number is equal to Boc = 8π2(R/D)2, assuming λ̃c = 1/

√
nc. Applying the experimental

scaling (9.3), we find Wec ≈ 20 ± 1, which agrees with the experimental results, despite
the simplicity of the above model in which several effects have been neglected.

First, the fluid layers are not vertically unbounded. It can been shown that this effect
has a secondary impact in the linear regime given the value of λ̃/D in our experiments
and, equations (9.6), (9.7) and (9.9) remain valid at first order. Second, the released fluid
is confined in the horizontal direction. Jacobs & Catton (1988) have shown that geometry
does not enter in the linear stability analysis of a fluid layer confined in a circular container
of diameter D and overlying a gas layer. A similar result holds in the case of two fluid
layers so that equation (9.6) remains valid. The circular geometry quantizes the possible
values of the wavenumber k: kD/2 has to be a zero of the Bessel functions of the first
kind. However this effect has little impact on our conclusions since the characteristic
dimensionless size of the most amplified waves follows the same general trend ∝ 1/

√
Bo

as in (9.9).

Finally, in the analysis leading to equation (9.6), the undisturbed state is at rest in the
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moving coordinate system. In our experiments an axisymmetric basic flow develops during
the fall of the released fluid, advecting the growing RTI from unstable regions at the front
to stable regions at the rim. These effects have been examined in previous studies on
the 3D instability of bubbles rising through liquid. Grace et al. (1978) proposed a semi-
empirical model based on the idea that breakup occurs if the characteristic timescale
for RTI growth tRT = 1/γm, where γm is the maximum growth rate, is small enough
compared to the time available for growth, i.e. the advective timescale, ta. Batchelor
(1987) improved this model by including a basic flow, assumed to be axisymmetric and
irrotational, in the stability analysis. He showed that the contractional motion in the
direction normal to the interface tends to decrease the amplitude of a disturbance while its
wavelength increases exponentially due to the extensional motion parallel to the interface.
Because of the latter effect, disturbances do not grow exponentially with a constant growth
rate. Similar effects are expected in our experiments, but the axisymmetric basic flow is
inherently time-dependent, causing an increase in complexity. For this reason, we treat
advection and RTI as if they were two independent mechanisms as in Grace et al. (1978).

As a first approximation we use tRT = 1/γ(km) where γ and km are given by equations
(9.6) and (9.7). Taking R/U as a characteristic advective timescale ta we obtain

ta
tRT

= d1
Bo3/4

We1/2

√
1 + P

2 + P
. (9.11)

where d1 =
√

2/33/2. Making use of the experimental scaling (9.3), equation (9.11)
takes the form (used in figure 9.3)

ta
tRT

=
d1We1/4

a
3/4
1

√
1 + P

2 + P
, a1 = 0.76± 0.04. (9.12)

According to (9.12), ta/tRT varies weakly with P (figure 9.3), which is consistent with
no observed change in the deformation regime when varying P at a fixed We value.
Equation (9.12) predicts that RTI remain the dominant mechanisms when We increases,
which is also consistent with experimental observations (figure 9.3). Close to We = Wec,
ta/tRT ∼ 1, indicating that the effect of advection of RTI by the basic flow is probably
significant. This may be responsible for a short delay in the emergence of RTI (Wec in
figure 9.3) compared to the critical value We ≈ 20 predicted from equation (9.10).

9.1.2.2 Surface configuration

In the Surface experiments, when We & 8, a vortex ring forms at the tube end, as a
result of the roll-up of a shear layer generated at the tube wall during the release (figures
9.4(a,b,c)). Contraction of the initial ring’s diameter is observed in most experiments
at z ∼ 2R − 3R (figure 9.4(b), see also supplementary video 2). A decrease in the ring
diameter after its formation has already been reported in experiments (Didden, 1979) and
numerical simulations (Nitsche & Krasny, 1994), and is due to the influence of the tube
orifice (Didden, 1979; Sheffield, 1977) or a secondary vortex of opposite circulation formed
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Figure 9.3: (We,P) diagram of the early stage deformation in the Immersed configuration.
, axisymmetric deformations (no RTI); , RTI. The ratio of the advective timescale to the
RTI timescale ta/tRT is color coded in regions where RTI are found, at We ≥ Wec. Symbols
(a),(b),(c) denote the experiments shown in figure 9.2.

on the tube end (Didden, 1979). In our experiments, the release process generates a strong
wave at the surface of the tank, causing penetration of ambient fluid into the tube after
the release is completed, and possibly responsible for the generation of a secondary vortex.
Mushroom-shaped structures are observed at the front of the vortex ring in experiments
located at the highest P values (figures 9.4(d,e) and figure 9.5).

Using the same argument as in §9.1.2.1, we hypothesize that RTI emerge in Surface
experiments when the characteristic time for disturbance growth tRT is small compared
to the advective timescale ta. In previous experimental studies of non-buoyant vortex
rings generated by a piston (Gharib et al., 1998) and in the numerical study of the roll-up
of a vortex sheet (Moore, 1974), it has been shown that the characteristic timescale for
the formation of the vortex ring is few advective times, suggesting that the competition
between the growth of perturbations at the front and their advection by the flow is a
competition between disturbances growth and the roll-up of the shear layer.

In the Surface configuration, du/dt reaches 0.4g, larger than in the Immersed con-
figuration because the former case initially involves a density contrast ρr − ρair ≥ ∆ρ,
implying that the initial effective acceleration a = g − du/dt is smaller in Surface experi-
ments. Therefore, the growth of RTI is reduced by a factor of about 2. In addition, the
total circulation of the vortex sheet Γ is larger in the Surface configuration since larger
velocities are reached during the early stages of the fall, which tends to further decrease
the vortex sheet roll-up time. Thus, we qualitatively expect vortex sheet roll-up to be
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(a) (b)

(d) (e)
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Figure 9.4: (a,b,d,e) Early deformations in the Surface configuration. (a,b) We ≈ 100, P ≈ 0.22;
z . R/4 and z ≈ 2.5R in, respectively, the first and second snapshot of (b); (d) We ≈ 300,
P ≈ 0.96, z ≈ R; (e) obtained with light-induced fluorescence, We ≈ 200, P ≈ 0.54, z ≈ 2R.
(c) Schematic representation of the generation of a shear layer and its roll-up to form a vortex
ring.

favored compared to RTI in the Surface configuration.

Once the released fluid is entirely immersed, the buoyancy force becomes the same
as in an equivalent Immersed experiment. At this stage, du/dt is smaller than ∼ 0.2g
and, with the same assumptions and limitations as in §9.1.2.1, ta/tRT is given by equation
(9.11). Making use of scaling (9.5), we obtain

ta
tRT

=
d1We1/4

a
3/4
4 (1 + a5/P)3/4

√
1 + P

2 + P
, (9.13)

where a4 = 0.51 ± 0.07 and a5 = 0.07 ± 0.03. Equation (9.13) predicts that, contrary to
the Immersed configuration, ta/tRT strongly depends on P , which explains why the defor-
mation regime changes in Surface experiments when varying P at a fixed We (figure 9.5).
Mushroom-shaped structures are found at the largest P and We values, in regions where
ta/tRT reaches its highest values, consistent with the hypothesis that these structures
result from RTI.
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Figure 9.5: (We,P) diagram of the first deformations in the Surface configuration. , oblate
drops; , vortex rings; , mushroom-shaped structures, typical of RTI, are observed at the
front of a vortex ring. The question mark denotes an experiment in which no clear visualization
of mushroom-shaped structures was captured but waves of characteristic size consistent with the
predicted wavelength for RTI are observed. The ratio of the advective timescale to the RTI
timescale ta/tRT is color coded in regions where RTI grow in the case of an unbounded interface
with no additional basic flow, i.e. for Bo ≥ Boc, making use of scaling (9.5).

9.2 Subsequent evolution : characterization of frag-

mentation regimes

In §9.1.2 it was shown that the initial deformations and their sensitivity to P and We
can be qualitatively accounted for by a competition between growth of RTI and advection
by the flow. When the latter effect dominates, a vortex ring is formed. In the present
section the different fragmentation regimes are characterized from the evolution following
the initial deformations, prior to drop formation. The resulting (P ,We) regime diagram,
shown in figure 9.6, locates the regimes detailed below.

9.2.1 Low and intermediate Weber numbers : wide variety of
regimes

9.2.1.1 We . 6

At the lowest Weber numbers (We ≈ 2 − 4) the released fluid takes the form of an
oscillating drop. Breakup starts at We ≈ 5 and the flow reaches a regime where the
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Figure 9.6: Fragmentation regimes in (We,P) space in the Immersed (a) and Surface (b) config-
urations. Symbols denote: ,no fragmentation, oscillating drop; , vibrational breakup regime;

, jellyfish regime; , RT piercing regime; , turbulent regime; , vortex ring destabilization
regime; , intermediate regime between vortex ring destabilization and RT piercing (mushroom-
shaped structures, typical of RTI, are observed at the front of a vortex ring); , vortex ring
evolving into a jellyfish regime. Plain lines: tentative boundary regime transitions; dashed lines:
progressive transitions.
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released fluid disintegrates into a few large drops as a consequence of large amplitude
oscillations at the natural frequency of the drop. This vibrational breakup regime has
been documented previously (e.g. Pilch & Erdman, 1987; Gelfand, 1996).

(a) (b) (c) (d)1 cm

Figure 9.7: Experiment in the jellyfish fragmentation regime, We ≈ 24, P ≈ 0.22, Immersed
configuration, time intervals of about 0.25 s.

(a) (b) (c) (d)

(e)

(f)

3 cm

Figure 9.8: Experiment in the RT piercing fragmentation regime, We ≈ 50, P ≈ 0.22, Immersed
configuration, time intervals of order 0.2 s. (e,f) Close-ups corresponding to the the square boxes
in (c) and (d), respectively.
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Figure 9.9: Experiments in the vortex ring destabilization regime, Surface configuration. (a-e)
We ≈ 30, P ≈ 0.22; (f-j) We ≈ 70, P ≈ 0.22. Arrows locate elongated structures or filaments.
Time intervals are of about 0.2 s.

9.2.1.2 We & 6; no immiscible ring

For We & 6, if the released fluid does not roll-up into a ring, the evolution that follows the
initial deformation and precedes ligament formation is the continuation of the mechanisms
identified in §9.1.2.

The fragmentation regime in experiments located below the onset of RTI, shown in
figure 9.7, is named the jellyfish regime. In this regime, the absence of growing RTI
allows the flow to remain quasi-axisymmetric until the distance from the tube is equal
to a few initial diameters. The initial pancake shape (figure 9.7(a)) evolves into a U-
shaped membrane (figure 9.7(b)). Then, a portion of released fluid accumulates towards
the front, leaving the membrane thinner at the rear (figure 9.7(c,d)), which leads to
the formation of sheared filamentary structures near the rear (figure 9.7(d)). Similar
structures, categorized as a shear breakup mode, have been found by Han & Tryggvason
(1999) in axisymmetric simulations of drop deformation (see their Fig.5). We note that
a vortex ring rolls up in experiments with miscible fluids at similar Reynolds number (in
the range 300 − 3000), suggesting that surface tension prevents the roll-up of the shear
layer in these experiments.
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When the initial deformation is dominated by RTI (figure 9.8 and Movie 1∗), the
subsequent evolution corresponds to the typical nonlinear evolution of RTI and commonly
involves shear instabilities. As a result, the released fluid mass divides into several sub-
volumes connected by filamentary structures (figure 9.8(c,d)). The flow shares similarities
with the multimode breakup regime as described in experiments of aerobreakup and
interpreted as a result of RTI (Harper et al., 1972; Simpkins & Bales, 1972; Joseph et al.,
1999; Theofanous et al., 2004; Theofanous & Li, 2008; Zhao et al., 2010). Following
Theofanous et al. (2004) and Theofanous et al. (2007), this fragmentation regime is named
RT piercing. The transition from jellyfish to RT piercing in figure 9.6(a) corresponds to
the onset of RTI.

9.2.1.3 We & 6; with an immiscible ring

When the initial deformation is dominated by the roll-up of a vortex ring, the evolution
prior to ligament formation is characterized by the development of additional instabilities
on the ring (figure 9.9, Movie 2). This vortex ring destabilization regime is morphologi-
cally different from the RT piercing regime or the jellyfish regime at similar We values.
A plausible mechanism for the vortex ring destabilization is an elliptical instability, of-
ten referred to as the Widnall instability, which has been identified as the mechanism
responsible for the destabilization of miscible non-buoyant vortex rings (Widnall & Sulli-
van, 1973; Widnall et al., 1974; Widnall & Tsai, 1977; Saffman, 1978; Dazin et al., 2006).
It results from the parametric resonance of neutrally stable modes of vibration, called
Kelvin waves, with an underlying quadrupole strain field induced by the vortex ring on
itself. Hattori & Fukumoto (2003) and Fukumoto & Hattori (2005) have shown that a
dipole field resulting from the curvature of the vortex ring can also induce a parametric
resonance between two Kelvin waves, called the curvature instability. Hattori & Hijiya
(2010) have studied the stability of fat vortex rings, which is the relevant regime for our
experiments, where the ratio of the core to vortex ring radius is of order 0.4. They found
that the Widnall instability dominates over the curvature instability, but the combination
of the elliptical deformation and the dipole field initiate a third mode of instability whose
growth rate exceeds the Widnall instability near the boundary of the ring.
The centrifugal instability is yet another plausible candidate for the destabilization of our
immiscible vortex rings. Finally, the presence of a heavy vortex core can also trigger a
RT instability where the centrifugal force plays the role of gravity.

The maximum growth rate of the above instabilities are of the same order of magni-
tude for miscible rings according to previous theoretical and numerical studies (Widnall
& Tsai, 1977; Hattori & Hijiya, 2010; Shariff et al., 1994; Sipp et al., 2005). Thus, one
mechanism can not be favored over the others and further investigation, especially ac-
counting for surface tension, would be required to identify the dominant mechanisms in
our experiments. Azimuthal waves are seen in our experiments (e.g. figure 9.9(c)) whereas
the most unstable waves of RTI are axisymmetric at small density contrast (Sipp et al.,
2005).

In Surface experiments, transitions from one of the above regimes to another are often
progressive. When RTI grows at the front of a developing vortex ring, the flow is a

∗Movies and their captions can be found at the following link: http://www.ipgp.fr/ lan-
deau/public/MoviesPhD/MoviesPartII.zip

http://www.ipgp.fr/~landeau/public/MoviesPhD/MoviesPartII.zip
http://www.ipgp.fr/~landeau/public/MoviesPhD/MoviesPartII.zip
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combination of RT piercing and vortex ring destabilization regimes (figure 9.6) and, in a
few and isolated experiments at We ≤ 20, a vortex ring forms but finally evolves into a
jellyfish fragmentation regime (figure 9.6).

9.2.2 High Weber numbers: turbulent regime

When We is increased above ∼ 100, a progressive transition leads to the turbulent regimes
illustrated in figure 9.10 (see also Movie 3). The deformations of the immiscible interface
are chaotic and exhibit a wide range of length scales (e.g. figures 9.10(c,g)). In the
experiment shown in figures 9.10(a-h) initial deformations are dominated by RTI (seen in
(a) and (f)) whereas no RTI develops in the experiment shown in figures 9.10(q-w) (Surface
configuration, low P). The initial deformations in figure 9.10(i-p) are more ambiguous:
the waves in (i) do not have a clear mushroom-shaped structure as in figures 9.10(a,f),
but their characteristic size is consistent with the predicted wavelength for RTI and this
experiment is located in a region of parameter space where we expect RTI to emerge
according to results from §9.1.2. Despite the different initial deformations, the large-
scale flow has common features in the three experiments: the released fluid is contained
inside a coherent structure whose shape is self-similar during the fall and which grows by
entrainment of ambient fluid. This behavior is similar to the case of a fluid mass evolving
in another miscible fluid at high Reynolds number, as described by Batchelor (1954) and
Scorer (1957) for thermals, Maxworthy (1974) and Glezer & Coles (1990) for non-buoyant
vortex rings, and Turner (1957) for buoyant vortex rings. For illustration purposes, figure
9.10 shows a turbulent thermal and a turbulent buoyant vortex ring with miscible fluids
obtained using the same experimental set-ups as in figure 9.10.

The geometry of the coherent structure in figure 9.10(q-w) can be approximated by
an oblate spheroid of large width to height ratio (≈ 1.8), much like miscible non-buoyant
vortex rings. In contrast, the coherent structure in figure 9.10(a-h) can be approximated
by a prolate spheroid much like the shape of miscible turbulent thermals.

Figure 9.12 shows experiments conducted using the shadowgraph technique depicted
in figure 8.1(e) while the released fluid is initially warmer than the ambient fluid. Regions
with high refractive index gradients that are not colored in red or blue correspond to
locations of warm ambient fluid that came into contact with released fluid. At low We
(figure 9.12(a)) the warm ambient fluid forms a wake as large as the released fluid. On
the contrary, in the case of an immiscible thermal (figure 9.12(b)), the warm ambient
fluid is mainly located inside the spheroid containing released fluid. This reinforces the
analogy with miscible fluids by demonstrating that ambient fluid is indeed entrained inside
a growing coherent structure called thermal.

A cross-section of an immiscible thermal is shown in figure 9.13(a). It reveals small-
scale intermingling between released and ambient fluids in the entire thermal, even though
the two immiscible phases remain continuous. This demonstrates that ambient fluid is
entrained in the thermal before the released fluid breaks into fragments. The immiscible
interface has a fractal structure as demonstrated in Deguen et al. (2013) (reproduced in
appendix G of this manuscript). Comparison between figure 9.13(a) and images obtained
in equivalent miscible experiments (figure 9.13(b)) demonstrates that the large-scale inter-
nal structure of turbulent thermals is morphologically similar in miscible and immiscible
experiments.
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Figure 9.10: Turbulent regime. (a-h) Immiscible turbulent thermal, We ≈ 103, P ≈ 0.92,
Immersed configuration, time intervals of about 0.2 s. (i-w) Immiscible turbulent buoyant vortex
rings, Surface configuration. (i-p) We ≈ 103, P ≈ 0.82, time intervals of about 0.2 s; (q-w)
We ≈ 200, P ≈ 0.03, time intervals of about 0.4 s. (f,g,h) (n,o,p) (v,w) Close-ups corresponding
to the square boxes in (a,c,e), (j,k,l) and (s,u), respectively.



136 Chapter 9. Results

2 cm 2 cm(a) (b) (c) (d) (e) (f)

Figure 9.11: Turbulent experiments with miscible fluids. (a-c) Miscible turbulent thermal, Re ≈
2×103, P ≈ 0.19, Immersed configuration, time intervals of about 0.6 s. (d-e) Turbulent buoyant
vortex ring, Surface configuration, Re ≈ 4× 103, P ≈ 0.19, time intervals of about 0.3 s.
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Figure 9.12: Shadowgraphs. (a) Jellyfish regime, We ≈ 30, P ≈ 0.22, Immersed; (b) turbulent
thermal, We ≈ 600, P ≈ 0.54, Immersed.

9.3 Final fragmentation stage: breakup

9.3.1 Description of the physical processes

As in other fluid fragmentation processes (Hinze, 1955), the deformations identified §9.1.2
and §9.2 result in the formation of elongated and filamentary structures, or liquid liga-
ments, (e.g. figure 9.7(d), 9.8(c,d,e,f), 9.9(d), 9.10(w)) and their destabilization, probably
through capillary instabilities, leads to breakup. However the spatial distribution and for-
mation time of these ligaments differ from one fragmentation regime to the other.

In the jellyfish (figure 9.7(d)) or the RT piercing (figure 9.8(c,d,e,f) and Movie 1)
regimes thin filamentary structures connect larger blobs of released fluid. In the vortex
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Figure 9.13: (a) Cross-section of an immiscible turbulent thermal, obtained using light-induced
fluorescence, We ≈ 103, P ≈ 0.54, Immersed, z ≈ R. (b) Turbulent thermal with miscible fluids,
picture from Bond & Johari (2010) turned upside down, Re ≈ 5000, P ≈ 0.05, z ≈ 3R.

ring destabilization regime the azimuthal waves result in the formation of thinner portions
on the ring (figure 9.9(c)), which eventually break the ring in separated blobs (between
figures 9.9(c) and 9.9(d)). In the meantime, the azimuthal disturbances are stretched by
the mean shear flow leading to the formation of spiraling filaments located preferentially
on the ring boundaries (arrows in figure 9.9, Movie 2).

In the turbulent vortex ring regime at P ≈ 0.03, ligaments form at the external bound-
ary of the ring (figure 9.10(u,w)). The ligament formation, followed by their breakup, is
a multi-step process: the ring is progressively peeled, whereas the primary breakup of the
entire released fluid volume occurs in a single and brief event in the turbulent regime for
P & 0.2 (between figures 9.10(d) and 9.10(e), and between figures 9.10(j) and 9.10(l), see
also Movie 3). In this case, as can be inferred from figures 9.10(b,c) and from the cross-
section in figure 9.13, breakup probably results from capillary instabilities on filamentary
structures stretched by the turbulent flow in the entire thermal volume. However, higher
temporal and spatial resolution is required to test this interpretation.

9.3.2 Breakup length

The dimensionless breakup length LB, is defined as the dimensionless distance from the
tube at which the number of connected objects in binary images starts to increase (see
insert in figure 9.14(a)). It marks the beginning of primary breakup. Drops formed in
the rear of the released fluid from the rupture of a membrane that remains attached to
the tube (e.g. figures 9.7(b,c), figure 9.8(b)) or from breakup in the wake of turbulent
thermals or vortex rings (e.g. figure 9.10) are not taken into account.

In Immersed experiments, the jellyfish, RT piercing and turbulent regimes correspond
to specific regions in figure 9.14(a). For a given P value in the jellyfish and RT piercing
regimes, the overall trend of the dimensionless breakup length is a decrease with increasing
We. In the turbulent regime, the variation of LB with We is within the experimental
error and in the range 4.5− 7.5.
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Figure 9.14: Dimensionless breakup length as a function of Weber number in (a) Immersed and
(b) Surface experiments. Symbol shapes: as in figure 9.6. Black: P ≈ 0.03; blue: P ≈ 0.22;
grey: 0.43 ≤ P ≤ 0.54; red: 0.83 ≤ P ≤ 0.96. Insert in (a): number of connected objects N in
binary images as a function of dimensionless distance from the tube in a given experiment.

In Surface experiments (figure 9.14(b)), the different regimes overlap, with no distinc-
tive behavior from one regime to the other, suggesting common destabilizing mechanisms.
For We . 40 significant variations of LB are seen and our data suggest an overall de-
crease of LB with We, at fixed P for We . 40. Given experimental errors, no significant
variation of LB is seen for We & 40: the different fragmentation regimes collapse between
LB ≈ 4.5 and LB ≈ 7.

9.4 Integral model for the turbulent regime

It has been shown in §9.2 that the flow takes the form of turbulent vortex rings (Surface
experiments) and turbulent thermals (Immersed experiments) for We & 200. Following
Deguen et al. (2011), we assume that immiscibility does not affect the macroscopic be-
havior of such structures, so that we can apply models that have been developed in the
context of miscible fluids (Morton et al., 1956; Maxworthy, 1974; Escudier & Maxworthy,
1973; Thompson et al., 2000) and particle clouds (Bush et al., 2003) at high Reynolds
numbers. In the present section we consider the general case of buoyant vortex rings,
allowing for initial momentum and large density differences between the ring and the
ambient fluid. Re is in the range 4000 − 11000 in the experiments considered in this
section.

9.4.1 Theoretical considerations

Following the turbulent entrainment hypothesis (Taylor, 1945; Morton et al., 1956), we
assume that the rate of growth of the vortex ring mass is proportional to its velocity and
its surface area:
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d

dt

[
4

3
πρr3c1

]
= 4πr2c2αρau, (9.14)

where ρ is the mean density of the ring, u is the ring velocity, c1 and c2 are shape factors
which relate the actual volume V and surface area of the ring to those of an equivalent
sphere of radius r, r being a measure of the size of the moving fluid mass, and α the
entrainment coefficient as introduced in Taylor (1945) and Morton et al. (1956).
Making use of the relations ρr3 = ∆ρR3/c1 + ρar

3 and u = dz/dt, the mass conservation
equation (9.14), in the absence of density stratification, becomes

dr

dz
= α′, (9.15)

where α′ = αc2/c1. Equation (9.15) implies that r ∝ z at all times whenever the entrain-
ment coefficient α′ is constant. This linear relationship between r and z can be derived
from dimensional analysis in the special case of a Boussinesq thermal (Batchelor, 1954)
or a non-buoyant vortex ring (Maxworthy, 1974).

In the absence of density stratification the total buoyancy b = (ρ − ρa)/ρagV of
the moving fluid mass is conserved and equal to its initial value B. Then, the impulse
conservation equation takes the form

d

dt

[
4

3
π(ρ+ kρa)r

3c1u

]
= ρaB − 1

2
C ′Dρau

2πr2, (9.16)

where C ′D = CDc3, c3 is another shape factor, CD is the drag coefficient and the added mass
coefficient k accounts for the change in kinetic energy of the surrounding fluid (Saffman,
1992; Escudier & Maxworthy, 1973).

Using the equivalent radius of the released fluid R as a length scale and R2
√

(4/3π)/B
as a time scale, the final set of non-dimensional equations takes the form

[
P + (1 + k)c1r̃

3
] dũ
dt̃

= 1− 3α′
[
c1(1 + k) +

C ′D
8α′

]
r̃2ũ2, (9.17)

dr̃

dt̃
= α′

dz̃

dt̃
,

dz̃

dt̃
= ũ. (9.18)

Equation (9.17)-(9.18) can be integrated in time if α′, C ′D, k, c1 and the initial condi-
tions on ũ, r̃ and z̃ are given.

Since dr̃/dt = α′ũ, (9.17) becomes

α′

2

[
P + (1 + k)c1r̃

3
] dũ2

dr̃
= 1− 3α

[
c1(1 + k) +

C ′D
8α

]
r̃2ũ2. (9.19)
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For constant values of C ′D, k, c1 and α′, the general solution of the first-order linear
differential equation (9.19) is

ũ2 =
2

α′

∫ r̃

r̃0

(P + (1 + k)c1x
3)
γ−1

(P + (1 + k)c1r̃3)γ
dx+ ũ2

0

[
P + (1 + k)c1r̃0

3

P + (1 + k)c1r̃3

]γ
, (9.20)

where γ = 2 + C ′D/ (4α′(1 + k)c1) and the subscript 0 denotes initial conditions. Closed-
form solutions for ũ exist if C ′D = 0 or, if the Boussinesq approximation is valid (P � 1),
for arbitrary values of C ′D (given in appendix F).
In the following limit:

z̃ − z̃0 � r̃0

α′
and z̃ − z̃0 � r̃c

α′
where r̃c satisfies (1 + k)c1r̃

3
c � P ,

the solution (9.20) has an asymptote given by

ũ2 ≈ 2

α′3(1 + k)c1(3γ − 2)

1

(z̃ − z̃0)2

[
1 +

(
LM
z̃ − z̃0

)3γ−2
]
, (9.21)

where LM is given by

LM =

(
1

2
α′

3
(1 + k)c1(3γ − 2)ũ2

0

)1/3γ−2(
P + (1 + k)c1r̃0

3

(1 + k)c1α′
3

)γ/3γ−2

. (9.22)

Since 3γ − 2 > 0, LM is the distance over which the initial momentum affects the solu-
tion, often called the Morton length. If z̃ − z̃0 � LM the initial momentum becomes
inconsequential and the flow reaches the same asymptotic regime as in thermals, i.e. in
terms of dimensional variables

u(z) ≈ f

√
B

z − z0

, (9.23)

d (z − z0)2

dt
≈ 2f

√
B, (9.24)

where f =
{

8/3πc1(1 + k)α3 + C ′D/2πα
2
}−1/2

. (9.25)

In miscible turbulent thermals (Scorer, 1957; Richards, 1961; Thompson et al., 2000)
or in non-buoyant vortex rings (Maxworthy, 1974; Glezer & Coles, 1990) the size of the
structure grows linearly with depth as predicted by (9.15) for a constant α′ value. In mis-
cible thermals the entrainment coefficient is usually determined by measuring the growth
of the thermal half-width and typically αT = 0.25 ± 0.1, where αT is the entrainment
coefficient for thermals. The entrainment coefficient of non-buoyant vortex rings, αV , is
commonly determined by measuring the growth of the radius of the vortex ring core and
it can be described as αV = 0.01± 0.005. The entrainment coefficients of buoyant vortex
rings were not directly reported by Turner (1957) but values ranging from 0.02 to 0.18 can
be extracted from his figure 3 and other parameter estimations. These values lie between
αV and αT , the lowest values being reached when the ratio of initial impulse to buoyancy
force is the highest, i.e. when the initial momentum dominates the total momentum.
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Given such observations, the entrainment coefficient has to vary with time in a buoyant
vortex ring since the flow eventually behaves as a thermal as predicted by (9.23)-(9.25)
and α′ is equal to αT in this asymptotic regime. From a theoretical point of view, it
is then important to take into account such effects in order to develop a self-consistent
model for buoyant vortex rings.

In turbulent buoyant jets the entrainment coefficient varies during the transition from
a jet-like to a plume-like behavior (Fisher et al., 1979; Wang & Law, 2002). The pa-
rameterization proposed by Fisher et al. (1979) is empirical and assumes an exponential
dependence of the entrainment coefficient on a local Richardson number that represents
the ratio of buoyancy to inertial forces. Other parameterizations, one inspired by the work
of Priestley & Ball (1955) and the other developed by Kaminski et al. (2005), predict that
the entrainment coefficient is a linear function of a local Richardson number. By analogy,
we expect a buoyant vortex ring to evolve from a vortex ring-like behavior when the ex-
cess in initial momentum dominates the total momentum and to a thermal-like behavior
when the initial momentum has become inconsequential and negligible with respect to the
buoyancy-induced momentum. During this transition the entrainment coefficient would
vary from αV to αT depending on a local Richardson number Ri; a possible definition of
this parameter being

Ri =
∆ρgR3

ρu2r2
. (9.26)

According to this definition, Ri varies from 0 in non-buoyant vortex rings to a constant
value RiT = 2c1(1 + k)αT + 3

8
C ′D in boussinesq thermals when r � R (asymptotic regime

given by equations (9.23)-(9.25)). Turner (1957) showed that the entrainment coefficient
of a buoyant vortex ring in which the circulation K remains constant is proportional to
B/K2, which is the ratio of buoyancy to inertial forces, i.e. a Richardson number. The
circulation of a buoyant vortex ring is probably not conserved and partly lost to the wake
by shedding of vortical structures as observed in non-buoyant vortex rings (Weigand &
Gharib, 1994). However Turner’s result gives a physical argument in favour of a linear
relationship between α′ and Ri. In summary, a natural parameterization to account for
variations of α′ in buoyant vortex rings is

α′ = αV + (αT − αV )
Ri

RiT
. (9.27)

Equations (9.17)-(9.18) remain unchanged if α′ varies with time. Thus, (9.17)-(9.18)
and (9.27) can be coupled and integrated forward in time, giving a self-consistent model
for the evolution of a buoyant vortex ring. It is important to emphasize that, once the
parameterization between α′ and Ri is specified, the above model has one free parameter
less than in the case of a constant entrainment coefficient. For instance, in the case
of parameterization (9.27), local values of Ri and α′ can be experimentally determined,
which leads to an estimation of RiT . From the estimation of RiT we obtain a linear
relationship between C ′D and k, whereas these parameters are independent in the case of
a constant entrainment coefficient.
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P α′

Immiscible 0.220± 0.001 0.20± 0.03
0.536± 0.002 0.25± 0.03
0.954± 0.002 0.24± 0.05

Miscible 0.192± 0.001 0.24± 0.05

Table 9.1: Values of the entrainment coefficient α′ in Immersed experiments at different density
ratios, with miscible and immiscible fluids.

9.4.2 Experimental results - comparison with theory

In this section, the analogy with miscible turbulent thermals and vortex rings is tested
by comparing results from immiscible fluid experiments with both theoretical predictions
and experimental results obtained with miscible fluids.

9.4.2.1 Entrainment coefficient

Vortex ring equivalent radius and centroid are estimated from video images as described in
chapter 8, considering the largest connected object in the image for the equivalent radius.
In our immiscible thermals (Immersed experiments), the equivalent radius evolves linearly
with the distance traveled, in agreement with equation (9.15) and with the turbulent
entrainment hypothesis, as illustrated in figure 9.15. As shown in this figure, experiments
with miscible and immiscible fluids have very similar behaviors, supporting the analogy
with miscible thermals.

For each experiment an entrainment coefficient α′ is estimated. As pointed out in
previous studies (Scorer, 1957; Richards, 1961; Thompson et al., 2000; Bush et al., 2003)
a large variability in α′ between successive realizations is unavoidable and inherent to
this turbulent flow, which is not quasi-stationary in the reference frame of the laboratory.
The mean values of α′ in Immersed experiments are reported in table B.7. Uncertainties
take into account both the uncertainty on α′ in each experiment and the variability
between experiments. Note that the measured entrainment coefficient is α′ = αc2/c1,
which depends in principle on the method used to measure the radius and the position
of the thermal through the coefficients c1 and c2. In our miscible fluid experiments we
find α′ = 0.25 ± 0.05 (table B.7), in agreement with previously published studies in
which the maximal half-width of the thermal (rather than the equivalent radius) is used
to estimate r. The use of the equivalent radius is favored in this study because the
resulting signal is much smoother than when using the maximal width, which is very
sensitive to local deviations from the self-similar behavior. In our immiscible thermals
α′ is slightly lower at P ≈ 0.22 but, given the uncertainties, no significant variations of
the entrainment coefficients with the density ratio is observed (table B.7). We conclude
that the entrainment coefficient in our immiscible thermals, α′ = αT , is such that αT =
0.23± 0.06, with no significant deviation from miscible thermals.
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Figure 9.15: Dimensionless equivalent radius as a function of the dimensionless distance between
the centroid and the tube in Immersed experiments; , P ≈ 0.92; , P ≈ 0.22; , miscible
fluids, P ≈ 0.19.

In Surface experiments, the equivalent radius varies linearly with depth, at least locally,
and local values of α′ can be estimated. Figure 9.16 shows that a wide range of α′ values
are found (from ∼ 0.05 to ∼ 0.25). It also illustrates that the local Richardson number is
a control parameter of the entrainment coefficient. By definition, α′ = αV in miscible fluid
experiments with no initial buoyancy (Ri = 0, bottom-left corner in figure 9.26) and we
obtain αV = 0.012±0.003, in agreement with previous results for non-buoyant vortex rings
(Maxworthy, 1974; Glezer & Coles, 1990). The largest α′ values are reached for the largest
Ri values and correspond to experiments that have reached a turbulent thermal regime,
with α′ close to αT and Ri close to RiT (RiT = 0.7± 0.2 in our Immersed experiments).
At intermediate Ri values (∼ 0.4±0.2), α′ is in the range 0.05−0.17. Figure 9.26 supports
a dependence of entrainment on Ri. A best fit of the form α′ = αV +(αT −αV )(Ri/RiT )β

for immiscible experiments yields β = 1.2 ± 0.2, which is compatible with β = 1 and in
agreement with (9.27).

9.4.2.2 Descent trajectory

Measured distance z̃− z̃0 between vortex ring centroid and initial depth for the turbulent
thermals (Immersed configuration) is compared with theoretical predictions obtained by
numerical integration of equations (9.17)-(9.18) for a constant α′ value, as measured in
our experiments. In each experiment, we choose t̃0 such that z̃0 ≈ 1 in order to ensure that
the released fluid is entirely out of the tube at t̃0. The corresponding initial conditions r̃0

and ũ0 are then extracted from each experiment. Squares in figure 9.17(a) illustrates the
descent trajectory for a given turbulent thermal in the Immersed configuration. During the
last phase, (z̃− z̃0)2 grows linearly with time, in agreement with the expected asymptotic
behavior given by equation (9.24). The theoretical evolution fits the data shown in figure
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Figure 9.16: Measured turbulent entrainment coefficient as a function of the local Richardson
number in Surface experiments. , P ≈ 0.82; , P ≈ 0.22; , P ≈ 0.03; , miscible fluids,
P ≈ 0.19; , miscible fluids, P = 0.

9.17(a) for C ′D = 0.3 ± 0.1 if k = 0, and k = 0.18 ± 0.1 if C ′D = 0 (solid curves). The
large uncertainties on C ′D and k for a single experiment comes from the uncertainty on α′.
The drag and added mass coefficients, C ′D and k, play a symmetric role in the theoretical
solution: an increase in C ′D or k causes a decrease in the slope of (z̃−z̃0)2 in the asymptotic
regime (figure 9.17(a)) as expected from equations (9.24)-(9.25). The theoretical solution
is also sensitive to c1 as shown in figure 9.17(a).

The values of C ′D, k and c1 required to fit the descent trajectory vary between experi-
ments. In 20% of the 20 Immersed experiments, the measured curve is located above the
theoretical curve computed with (c1 = 1, k = 0, C ′D = 0). As negative values for k or C ′D
are not physical, these results require c1 < 1. In those experiments, c1 ranging from 0.8 to
0.9 fits the data, corresponding to an overestimation of the volume of about 20%. In the
other Immersed experiments the values of C ′D and k required to fit the observed descent
trajectory vary from 0 to about 0.5. Figure 9.17(b) illustrates the large variability in C ′D
and k: since the experiments shown have similar α′ values, the differences in terminal
slope come from differences in C ′D and k. The latter coefficients are similar in our misci-
ble fluid experiments and the descent trajectory is qualitatively very similar with miscible
and immiscible fluids (figure 9.17(b)).

In Surface experiments (buoyant vortex rings), our results on the entrainment coeffi-
cient (figure 9.16), combined with theoretical predictions, require α′ to vary with time,
as already argued in 6.1. Thus, a parameterization such as (9.27) is required for a self-
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Figure 9.17: Square of dimensionless distance of the vortex ring’s centroid from the initial depth
as a function of dimensionless time for turbulent thermals in the Immersed configuration. ,
P ≈ 0.92; , P ≈ 0.54; , P ≈ 0.22; , miscible fluids with P ≈ 0.19. Curves are theoretical
solutions obtained by numerical integration of equations (9.17)-(9.18) for constant α′ values. (a)
Solid curves: two theoretical solutions (indistinguishable from each other) with (c1 = 1, C ′D = 0,
k = 0.18) and (c1 = 1, C ′D = 0.3, k = 0). Dotted curve: c1 = 1, C ′D = 1, k = 0. Dot-dashed
curve: c1 = 1, C ′D = 0, k = 1. Dashed curve: C ′D = 0, k = 0.18, c1 = 0.7. Theoretical curves
are computed for α′ = 0.25, which is the value measured in the experiment shown in (a). (b)
Immersed experiments in which α′ takes similar values in the range 0.23 − 0.25. Theoretical
solutions with (c1 = 1, C ′D = 0, k = 0, α′ = 0.24) and (c1 = 1, C ′D = 0.35, k = 0.35, α′ = 0.24)
are shown by solid and dashed curves respectively.

consistent model that predicts the descent trajectory. Theoretical solutions obtained by
numerical integration of equations (9.17)-(9.18), coupled with parameterization (9.27), fit
the 16 Surface experiments used in this section with C ′D = 0.6± 0.3 and k = 0.4± 0.4, in-
dicating that this model of buoyant vortex ring is consistent with our measurements. RiT ,
required in parameterization (9.27), is estimated in each experiment from local measure-
ments of α′ and Ri. We use the values of αT and αV that have been obtained in §9.4.2.1.
Figure 9.18 illustrates the agreement between theoretical and experimental results for a
single Surface experiment. When using parameterization (9.27), the best-fit theoretical
curve is obtained for C ′D = 0.7±0.1 and k = 0.4±0.2 (with c1 = 1, αV = 0.012±0.003 and
αT = 0.23± 0.06). α′ varies from 0.04 to 0.14 in this theoretical solution (figure 9.18(b)).
The uncertainties on C ′D and k in a single experiment are mainly due to uncertainties on
αT , α′ and Ri. Note that the fit between the data and the theoretical solution is also
good with a constant α′ value (figure 9.18(a)).

The values we have found for (C ′D, k, c1), as well as their large variability, are also
consistent with results from previous studies. Ruggaber (2000) reports negative values for
C ′D and k in turbulent particle clouds, which would be explained by c1 < 1 in our formal-
ism. The results by Bush et al. (2003) from particle cloud experiments and by Maxworthy
(1974) from non-buoyant vortex rings suggest values of C ′D and k small compared to 0.5.
Translated into our formalism, results of Gan et al. (2012) for non-buoyant vortex rings
yield k ≈ 1 and C ′D of order 0.05. Although Thompson et al. (2000) do not include the
drag coefficient in their model, they report a mean k value of 0.25 and their data suggest
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that k ranges from negative values to values close to 0.8.

(z̃
−

z̃ 0
)2

t̃− t̃0

0 1 2 3 4 5 6 7
0

20

40

60

0 1 2 3 4 5 6 7
0.04

0.06

0.08

0.1

0.12

0.14

α′

t̃− t̃0

Figure 9.18: (a) Square of dimensionless distance of the vortex ring’s centroid from the initial
depth as a function of dimensionless time. , buoyant vortex ring in the Surface configuration
with P ≈ 0.03. Uncertainties are of the order of the symbol size. Black curves are theoretical
solutions obtained by numerical integration of equations (9.17)-(9.18) with either a constant α′

value (dashed curve) or α′ that varies with time according to (9.27) (solid curve). t̃0 is chosen
such that z̃0 ≈ 2. Dashed curve: α′ = 0.1, C ′D = k = 0.34, c1 = 1. Solid curve: k = 0.45,
CD = 0.68, c1 = 1. (b) Entrainment coefficient as a function of dimensionless time in the two
theoretical solutions shown in (a).

Finally, once the asymptotic regime is reached we expect the slope of the curve (z−z0)2

as function of time to be equal to 2f
√
B according to equations (9.24)-(9.25). The final

value of this slope in each experiment is computed and shown in figure 9.19 as a function of√
B. The final slope is indeed positively correlated with

√
B and the data from immiscible

fluid experiments are aligned with results from miscible fluid experiments. Two main
ingredients explain the large scatter in figure 9.19: first, the asymptotic regime is not
perfectly reached in our experiments and, second, the value of α′, C ′D and k varies from
one experiment to the other, inducing a large variability in the value of the coefficient f
according to equation (9.25).
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Figure 9.19: Terminal slope of the curve (z − z0)2(t) (as depicted in the insert) as a function
of the square root of the buoyancy. Open symbols correspond to Immersed experiments, filled
symbols to Surface experiments. , , 0.82 ≤ ∆ρ/ρa ≤ 0.96; , ∆ρ/ρa ≈ 0.54; , ,
∆ρ/ρa ≈ 0.22; , , miscible fluids with ∆ρ/ρa ≈ 0.19.
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Chapter 10

Discussion and conclusion

10.1 Discussion of experimental results

We find that, in agreement with the literature on fluid fragmentation, and especially on
drop breakup at low Oh (Hinze, 1955; Pilch & Erdman, 1987; Gelfand, 1996; Guilden-
becher et al., 2009), the Weber number is the control parameter governing regime tran-
sitions in our experiments, whereas P has an influence mostly within the fragmentation
regime (figure 9.6).

The vortex ring destabilization regime found in this study is morphologically different
from the regime observed by Baumann et al. (1992). In their study, immiscible vortex
rings are rather viscous (Re ≤ 61) whereas, in the present study, Re ≥ 103 in most
immiscible vortex rings, closer to inviscid dynamics. The destabilization of vortex rings
in Baumann et al. (1992) is interpreted as a manifestation of RTI and is morphologically
similar to the instability observed in miscible fluids when a drop of a heavier liquid falls
inside a lighter one (Kojima et al., 1984; Arecchi et al., 1989, 1991; Buah-Bassuah et al.,
2005). The centrifugal to gravitational acceleration ratio is much smaller than 1 in the
vortex rings of Baumann et al. (1992), indicating that RTI are mainly driven by gravity.
The same ratio (roughly estimated from video images) reaches values of about 0.5 in some
of our immiscible vortex rings, demonstrating that the destabilizing mechanisms can not
be identical to those in Baumann et al. (1992).

A progressive transition leads to a turbulent regime that is observed for We & 100− 200
in both Immersed and Surface experiments. We emphasize that in (Bo,P) space the tran-
sition to turbulence would occur at different parameter values in Immersed and Surface
experiments. For instance, turbulent surface experiments at P ≈ 0.03 and We ≥ 100
have a rather low Bo value compared to other turbulent experiments.

In our turbulent experiments, the turbulent entrainment concept describes the large-
scale evolution of the released fluid even before breakup occurs, for distances smaller than
4.5−7.5 initial radii. At this stage, both the ambient and released fluids form continuous,
non-dispersed phases.

It is not clear whether our turbulent regime corresponds to the regime described by
Yang & Yang (1990). In our experiments, the entrainment coefficient decreases when re-
ducing the local Richardson number Ri. Yang & Yang (1990) report that the entrainment
coefficient grows as the square root of the Weber number, at similar Bo values. Noting
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that Ri = O(Bo/We), their results seem to be at variance with ours, and may indicate
that the fully turbulent regime has not been reached in their experiments.

For sufficiently large We, the dimensionless breakup length remains in the range 4.5−
7.5, with no significant variations when increasing further We. These results suggest
either that LB tends towards a constant in the limit of large We, or that it exhibits a
weak dependence on We. Further investigations of the turbulent regime at We ≥ 103 are
required to test these hypotheses. However, a result shared by all these studies is that,
for large enough We and Oh � 1, the dimensionless breakup time shows no significant
dependence on We, which is in agreement with our data.

10.2 Geophysical implications

The migration and fragmentation of liquid metal in fully liquid silicate magma oceans is
likely to have played an important role in determining the final composition of Earth’s
core and Earth’s mantle since the small-scale intermingling between metal and silicates
allowed for chemical equilibration (Dahl & Stevenson, 2010). Therefore, geophysical and
geochemical implications are closely related. Indeed, the only data available in this field
of study are geochemical data: Abundances of refractory siderophile (i.e. metal-loving)
elements in the Earth’s mantle provide information concerning thermodynamic conditions
during metal-silicate equilibration (e.g. Wade & Wood, 2005; Siebert et al., 2011), and
extinct radioactivity (Hf/W and U/Pb systematics) allows estimations of some charac-
teristic time scales related to core formation (e.g. Lee & Halliday, 1995; Yin et al., 2002;
Kleine et al., 2002; Rudge et al., 2010). However, geochemical models are highly un-
derdetermined when partial equilibration between metal and silicates is considered (e.g.
Kleine et al., 2004; Halliday, 2004; Rudge et al., 2010) and understanding the involved
physical processes may provide additional constraints required for full interpretation of
geochemical data. Although the work presented in this manuscript is essentially a fluid
mechanic study, it is important to bear in mind such longer-term objectives when dis-
cussing geophysical implications.

After an impact between differentiated (i.e. formed of a silicate mantle and metallic
core) planetary embryos, the initial radius and post-impact velocity of released metal blobs
are expected to be in the range 50−500 km and 0.1−10 km·s−1, respectively (Rubie et al.,
2003; Canup, 2004; Deguen et al., 2011). The depth of the magma ocean was, at most, of
the same order of magnitude as the depth of the present Earth’s mantle, i.e. about 3000
km. Thus, the characteristic time scale for the first stages of metal migration in a magma
ocean did not exceed a few hours, suggesting that the effects of rotation can be neglected
at first order. The density of liquid metal and liquid silicates at magma ocean depths are
typically in the range 7000− 9000 kg·m−3 (Morard et al., 2013) and 3000− 4000 kg·m−3

(Miller et al., 1991), respectively. The interfacial tension between liquid metal and liquid
silicates is expected to be of order 1 J·m−2 (Chung & Cramb, 2000), although it varies
significantly with temperature, light element content and pressure (Terasaki et al., 2012).
The viscosity of a fully liquid magma ocean is at most of order 0.1 Pa·s (Liebske et al.,
2005; Karki & Stixrude, 2010) while it is likely to be in the range 10−3 − 5× 10−2 Pa·s
for liquid metal (Funakoshi, 2010; de Wijs et al., 1998). With the above estimates, we
expect We & 1012, Oh . 10−5, Bo & 1013 and Re & 1011 following an impact (using the
equivalent radius of the metal blob as a length scale), with a density ratio P of order 1
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for the metal-silicate system.

Although our laboratory experiments are far from reproducing post-impact conditions
that prevailed during planetary formation, they give insights into the flow regime associ-
ated with the fragmentation of metal blobs in a fully liquid magma ocean. If we locate
proto-planets, including proto-Earth, in the regime diagram of figure 9.6, they would be
close to the line P = 1 at We ≥ 1012, indicating that the geophysical flows of interest
are located well above the onset of the turbulent regime at We ∼ 200. Thus, even if
the largest We values reached in our experiments are more than 9 orders of magnitude
smaller than in the geophysical system (figure 10.1), we have explored the regime that is
relevant (at least in terms of large-scale flow) for core formation.
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Figure 10.1: Transitions that may be relevant for the geophysical problem in a Weber number
versus dimensionless depth diagram. The domains explored by our experiments and during
Earth formation are depicted by grey squares. Grey arrows locate the domain explored by 3D-
simulations of the fragmentation of liquid metal in a magma ocean (Ichikawa et al., 2010). The
dark grey square locates the region that can be explored after a giant impact (R = O(1000) km).
In this case, the depth zMO of the magma ocean is such that zMO/R is smaller than 4.5, the
lower bound for primary breakup in our turbulent experiments.

Morphologically, the turbulent fragmentation regime is very different from the classic
picture found in the literature on planet formation, where a cascade of fragmentation
events progressively leads to smaller and smaller fragments (Rubie et al., 2003; Samuel,
2012), eventually resulting in an iron-rain falling in a magma ocean (Ichikawa et al.,
2010). It is also different from erosion models (Dahl & Stevenson, 2010) where metal-
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silicate intermingling occurs only at the metal blob boundary. Our experiments rather
suggest that metal fragmentation occurs in a turbulent immiscible vortex ring which grows
by entrainment of silicates and where metal and silicates are intimately intermingled in
the whole ring volume. Quantitative implications of those findings for mantle and core
geochemistry are further discussed in a companion paper (Deguen et al., 2013) (reproduced
in appendix G) where a model of chemical equilibration between metal and silicates in a
magma ocean is developed. The results of the latter study suggest that efficient chemical
equilibration is expected between liquid metal and entrained silicates once the flow is
turbulent, and the final signature on geochemical data depends essentially on the amount
of silicates that are entrained with metal.

The integral model proposed in §9.4 is expected to apply for the migration of a metal
blob in a fully liquid magma ocean. It provides the descent trajectory of the metal-
silicate mixture and the amount of silicates that are mixed with metal. The latter can
be deduced from equation (9.15) and depends on the value of the entrainment coefficient
α′. For distances much larger than the Morton length LM , the entrainment coefficient is
equal to its value in turbulent thermals, i.e. αT = 0.23± 0.06. For distances of the same
order of magnitude as LM or smaller, the value of α′ depends on the local Richardson
number and it takes values between αV = O(0.01) and αT . With g = 5 m·s−2, the initial
Richardson number for a 100 km sized metal blob can reach values in the range 10−3−10
and in the range 10−2 − 100 for a 1000 km sized blob. For initial Richardson numbers
equal to 1 or larger, no significant departure from α′ = αT can be caused by Ri variations.
For cases where the initial Richardson number is of order 10−3−10−2, α′ is expected to be
initially close to its value in non-buoyant vortex rings, αV = O(0.01). In such cases, LM is
of about 100 initial radii, which is always larger than the magma ocean depth, suggesting
that the entrainment coefficient is influenced by Ri during the entire fall. Thus, a large
post-impact velocity can decrease the rate of entrainment by a factor 10, reducing the
total volume of silicates mixed with metal during its fall by a factor 103. This effect
should be taken into account in models of metal-silicate equilibration.

As discussed in the previous section, it is possible that the dimensionless breakup
length remains constant when We increases, taking values in the range 4.5 − 7.5 initial
radii. Then, breakup would occur during the fall for blobs with an equivalent radius at
least 10 times smaller than the magma ocean depth (figure 10.1). In the case of giant
impacts, the size of the impactor core is of the same order of magnitude as the depth
of the magma ocean (O(1000)km) and it is possible that breakup does not begin before
the liquid metal reaches the bottom of the magma ocean (figure 10.1). A secondary
impact at the bottom of the magma ocean, with either liquid metal (if the magma ocean
depth is equal to the mantle depth) or solid silicates, would then play a major role in the
fragmentation process.

10.3 Conclusion

We have described a series of experiments on liquid-liquid fragmentation at low Oh,
varying the density ratio (0.03 ≤ P ≤ 0.95) and the Weber number (1 . We . 103).
We have shown that the typical stages of any fluid fragmentation process are found in
our experiments: from the deformation and destabilization of the released fluid to the
formation of liquid filamentary structures that break by capillary instabilities and form
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fragments. We have studied the destabilization and macroscopic evolution of the released
fluid, from which fragmentation regimes were characterized.

We have found that, at low and intermediate Weber numbers, the fragmentation
regime is very sensitive to the release conditions (Immersed vs Surface) and a wide variety
of regimes is identified. Most of those fragmentation regimes are influenced by early
deformations, which result from a competition between growth of RTI and roll-up of a
vortex ring.

At high Weber numbers (We & 200) a turbulent flow regime is reached and the large-
scale flow shares common features in all the experiments: the released fluid is contained
inside a coherent structure whose shape is, at first order, self-similar during the fall and
which grows by turbulent entrainment of ambient fluid. To our knowledge, we have re-
ported the first visualizations of immiscible turbulent thermals and immiscible turbulent
vortex rings in a non-dispersed medium. Previously published models based on the turbu-
lent entrainment concept have been extended to the general case of buoyant vortex rings.
Our results indicate a positive correlation between the entrainment coefficient and the
local Richardson number. The consistency between experimental and theoretical results,
and between results from miscible and immiscible fluid experiments, supports that the
turbulent entrainment concept can be applied in the context of non-dispersed immiscible
fluids at large Weber and Reynolds numbers.
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Chapter 11

Outlook

The results presented in Part II of this manuscript suggest a number of possible investi-
gations. Some of them are listed below.

11.1 Fluid mechanic investigations

In the present study, we have focused on macroscopic behaviors (regime characterization,
initial deformations, integral model for the descent trajectory), which is the natural first
step when exploring regions of parameter space that have not been reached in previously
published studies. A direct development of our study is to focus on small-scale mech-
anisms leading to breakup and extract drop size distributions. From the study of the
fragmentation of various liquid systems in air (drops, sheets, jets), it has been suggested
that the breakup of liquid ligaments plays a crucial role in determining the final drop
size distribution in the spray (Marmottant & Villermaux, 2004; Bremond & Villermaux,
2006; Villermaux & Bossa, 2009, 2011), with a strong influence of the Gamma distri-
bution resulting from the breakup of each individual ligament (Villermaux et al., 2004).
A question that could be investigated is whether similar results hold in the turbulent
fragmentation regime that has been identified in the present study (immiscible thermals
and vortex rings) or whether drop size distribution is essentially influenced by turbulent
energy cascades in this regime.

Buoyant vortex rings, especially with immiscible fluids, have received little attention
until now. However, vortex rings are often described as elementary structures of turbu-
lence (Maxworthy, 1974) and understanding the dynamics of buoyant vortex ring is a
first step towards more complicated buoyancy-induced turbulent flows as encountered in
geophysical contexts. Besides, in the context of core formation, dense metal blobs are
expected to have a significant initial velocity and buoyant vortex rings at variable initial
Richardson number are well-adapted to study the competing role of initial inertia and
buoyancy. Below, possible investigations of buoyant vortex rings are suggested, in addi-
tion to the study of the small-scale mechanisms involved in the breakup of immiscible
vortex rings, as mentioned above.

First, in the present study, we have identified a vortex ring destabilization regime, but
the nature of the involved instability mechanisms remains unclear (Widnall, curvature,
centrifugal or RT instability) and requires further investigations. Experiments, using a
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piston-cylinder arrangement, and numerical simulations accounting for surface tension
effects can be combined.

Second, our results in the turbulent vortex ring regime suggest a positive correlation
between the entrainment coefficient and the local Richardson number. A linear relation-
ship, which can be intuited from analogies with turbulent plumes or from Turner (1957)’s
theory at constant circulation, is consistent with our preliminary results. A systematic
experimental study of miscible buoyant vortex rings (easier to generate in the laboratory
than immiscible rings) is required to confirm such a linear relationship.

Third, in the context of core formation, the length to width ratio of initial metal blobs
is expected to range between values of order 1 to values much larger than 1 (Dahl &
Stevenson, 2010; Canup, 2004) and it is not clear whether the dynamics will be closer to
that of a vortex ring or of a jet. When a finite volume of fluid is released through a cylinder
by a piston using miscible fluids, its final shape depends on the length to width ratio of
the cylinder (Gharib et al., 1998): a single vortex ring forms at small values of this ratio
whereas, at larger values, a vortex ring detaches from a trailing jet, whose destabilization
is mainly driven by shear instabilities. In addition to distinct destabilization mechanisms,
a turbulent vortex ring and a trailing jet have different entrainment rate once they are
turbulent, affecting the efficiency of mixing. The transition from vortex ring to trailing jet,
and the associated critical aspect ratio, can be characterized experimentally for immiscible
systems using a piston-cylinder apparatus.

Turbulent vortex rings are one example of shear flows in which irrotational fluid is
entrained into a turbulent flow. Other examples are turbulent wakes, shear layers, jets
and plumes. Such flows are encountered in a large number of geophysical and environ-
mental contexts (volcanic eruptions, hydrothermal plumes, core formation, deep-water
oil plume, convection in the atmosphere, ...) and characterizing the fundamental mech-
anisms involved in the turbulent entrainment process has been a long-standing problem
in fluid mechanics. The two possible candidates are nibbling by viscous processes at the
turbulence boundary and engulfment of large volumes of irrotational fluid by large-scale
eddies in the turbulent region (e.g. Townsend, 1970). The engulfment scenario has first
been favored (e.g. Brown & Roshko, 1974) whereas recent studies (Mathew & Basu, 2002;
Westerweel et al., 2005; Holzner et al., 2007, 2008) argue that nibbling is the dominant
process, contributing to about 90% of the total entrainment (Westerweel et al., 2009).
In the case of non-dispersed immiscible flows as those considered in this manuscript, the
boundary between rotational and irrotational fluids is initially an immiscible interface
and nibbling by viscous eddies is expected to be damped by surface tension. However,
we found that the value of the entrainment coefficient in our immiscible vortex rings is
similar to that obtained with miscible fluids. How can we reconcile such an observation
with the fact that nibbling is found to be the dominant entrainment process in miscible
fluids? Investigations of the detailed features of turbulence in immiscible turbulent plumes
(better suited than vortex rings since they are quasi-stationary structures) could therefore
provide important information concerning the fundamental mechanisms involved in the
turbulent entrainment process.
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11.2 Core formation

A first possible development suggested by the results reported in Deguen et al. (2013) (re-
produced in appendix G) is to account for partial equilibration of silicates in geochemical
models of core formation, rather than partial equilibration of metal as presently consid-
ered (e.g. Kleine et al., 2004; Halliday, 2004; Rudge et al., 2010). A longer-term objective
is to develop geochemical models that integrate parameterizations based on robust phys-
ical considerations for the volume of entrained silicates. Our experimental results have
shown that such an objective is realistic since the concept of turbulent entrainment is valid
for immiscible fluids, indicating that the volume of entrained silicates after each impact
can be parameterized as a function of only three parameters (as deduced from equation
(9.15)): the volume of liquid metal, the entrainment coefficient α and the characteristic
length scale of the magma ocean. The main difficulty is to consistently describe α, which
may depend on additional parameters such as the Richardson number (discussed in chap-
ter 10) or the Mach number that compares the flow velocity with the sound wave velocity
(discussed in Deguen et al. 2013, reproduced in appendix G).
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Le mot de la fin

Nous finirons avec une citation que j’ai gardée à l’esprit pendant toute cette thèse. Henri
Poincaré conclut sur la définition de la masse, après avoir énoncé le principe fondamental
de la dynamique :

“Nous sommes acculés à la définition suivante [...] : les masses sont des coefficients
qu’il est commode d’introduire dans les calculs.”
(Henri Poincaré, La Science et l’Hypothèse).

Cette citation souligne l’importance de l’aspect conventionnel dans les théories et les
modèles en Physique : même les principes fondamentaux de la mécanique sont basés sur
certaines conventions. Conventions choisies, parmi d’autres possibles, pour leur parci-
monie.





Résumé de la thèse en français
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Introduction générale

Notions utiles concernant l’objet géophysique

L’objectif de cette section est d’introduire les notions essentielles à la compréhension du
contexte géophysique (formation du noyau des planètes telluriques et convection dans des
noyaux sans graine) qui a inspiré les deux problèmes présentés dans ce manuscrit. Cette
section s’adresse tout particulièrement au lecteur non-familier avec la dynamique interne
des planètes.

Les planètes telluriques sont formées de plusieurs enveloppes qui peuvent être divisées
en deux grandes unités :

• le manteau formé de roches silicatées ;

• le noyau, situé sous le manteau et formé principalement de fer.

Le noyau peut être (1) entièrement liquide, (2) entièrement solide ou (3) formé d’une
graine solide et d’un noyau externe liquide. Le noyau terrestre est actuellement dans
cette dernière configuration.

Dans la Terre, la limite graine-noyau externe correspond à un changement de phase
associé à la solidification progressive du métal liquide. La température à cette profondeur
est donc donnée par la température de fusion du fer, qui est estimée par des expériences de
laboratoire sous haute pression et par des calculs ab-initio. Etant donné cette température,
il est ensuite possible de calculer le profil de température à travers le noyau externe en
supposant que ce dernier est vigoureusement “mélangé” par des mouvements de convection
et que son entropie est invariante avec la profondeur. Dans un tel système, le gradient de
température est appelé gradient adiabatique ; il résulte des variations de pression avec la
profondeur et peut être exprimé comme une fonction de différents paramètres connus et
de la température (équation (1.1)).

La structure principale (noyau et manteau) des planètes telluriques a été acquise pen-
dant la formation du système solaire (Chambers & Wetherill 1998 ; Agnor et al. 1999 ; Yin
et al. 2002 ; Schersten et al. 2006). Les planètes se seraient formées à partir d’une matière
initialement contenue dans une nébuleuse, un nuage relativement homogène de gaz et de
poussières. Ce nuage se serait effondrait pour formé un disque protoplanétaire. Les grains
de poussières se seraient agglomérerés (via des mécanismes physiques encore controversés)
pour former des corps kilométriques, appelés planétésimaux, qui à la suite de collisions
successives auraient formé les planètes. Cette période d’accrétion a duré environ 10− 100
millions d’années (Chambers & Wetherill 1998 ; Agnor et al. 1999), ce qui est très bref
comparé au 4.5 milliards d’années du système solaire. Pourtant il s’agit d’une période
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cruciale puisque la composition globale du noyau et du manteau a été déterminée pen-
dant l’accrétion. De plus, les planètes et leurs noyaux ont accumulé de la chaleur pendant
l’accrétion, provenant (1) de l’énergie libérée pendant les impacts entre planétésimaux,
(2) de l’énergie gravitationnelle libérée pendant la différentiation noyau-manteau et (3) de
la décroissance radioactive d’éléments à courte durée de vie. Les planètes se sont ensuite
progressivement refroidies au cours des temps géologiques par convection ou conduction,
un processus appelé refroidissement séculaire. Ainsi, la température à la fin de l’accrétion
fixe la condition initiale pour l’évolution thermique des planètes.

Le refroidissement séculaire peut induire des processus de convection dans les noyaux
planétaires par deux mécanismes. Premièrement, des instabilités thermiques peuvent être
entretenues si le flux de chaleur extrait du noyau par le manteau est plus grand que le
flux de chaleur conduit le long du profil de température adiabatique. Deuxièmement,
la solidification du noyau externe, plus riche en éléments légers (comme l’oxygène ou le
souffre) que la graine, est associée à une décharge continue, à la base du noyau externe,
d’un fluide moins dense du fait de sa composition, ce qui génère des instabilités convectives.

La viscosité du fer liquide est très faible (du même ordre que la viscosité de l’eau) et
l’échelle de longueur d’un noyau planétaire est très élevée (∼ 103 km). Par conséquent, les
mouvements fluides dans les noyaux externes des planètes telluriques sont associés à des
nombres de Reynolds généralement très élevés, correspondant à des régimes d’écoulement
turbulents.

Deux sujets indépendants,

une approche commune

La figure 11.1 schématise l’histoire typique d’un noyau planétaire et localise les contextes
géophysiques qui ont motivé les études présentées en partie I et II de ce manuscrit.

Dans la première partie de ce manuscrit, nous présentons une étude numérique de la
convection thermique et de l’effet dynamo, forcés par chauffage interne, dans des sphères
en rotation ; une configuration qui a reçu peu d’attention jusqu’à présent et qui est
appropriée pour étudier la dynamique d’un noyau planétaire sans graine (figure 11.1).
Cette étude a été réalisée à l’Institut de Physique du Globe de Paris avec Julien Aubert.

Dans la seconde partie de ce manuscrit nous remontons dans le temps et nous nous
intéressons à la physique des dernières phases de formation de la Terre et de son noyau
(figure 11.1), période durant laquelle l’essentiel de la masse de la Terre s’est accrétée lors
de gros impacts entre des embryons planétaires déjà différenciés en noyau et en manteau
(Melosh 1990 ; Yoshino et al. 2003 ; Schersten et al. 2006 ; Ricard et al. 2009). L’énergie
relâchée durant chacun de ces impacts était suffisante pour fondre l’impactant et une
partie de la proto-Terre, créant un environnement où le métal liquide de l’impactant
migre dans un océan de magma liquide (Tonks & Melosh 1993 ; Pierazzo et al. 1997).
Comme le métal liquide et les silicates liquides sont des fluides non-miscibles, le métal
de l’impactant fragmente en gouttelettes pendant sa chute. Pour mieux comprendre ces
processus, nous étudions la fragmentation d’un volume de liquide dans un autre liquide
non-miscible et moins dense à l’aide d’expériences analogiques. Les expériences ont été
montées et réalisées avec Renaud Deguen et Peter Olson lors d’un séjour de trois mois à
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Figure 11.1: Histoire typique d’un noyau planétaire. Qi et Qa correspondent respectivement aux
flux total et adiabatique à la limite noyau-manteau (ou CMB). L’échelle de temps est seulement
indicative et les valeurs absolues peuvent changer d’une planètes à l’autre. Les études présentées
en partie I et partie II de ce manuscrit sont inspirées des contextes géophysiques indiqués par
des flèches bleues.

l’université Johns Hopkins. Ce séjour a été le résultat d’une initiative personnelle.

Bien que les deux projets présentés dans ce manuscrit traitent tous deux de la dy-
namique des fluides des noyaux planétaires, leurs motivations spécifiques sont distinctes.
Et d’un point de vue de la dynamique des fluides, une autre distinction majeure peut
être soulignée : la rotation joue un rôle clé dans la dynamique convective des noyaux
planétaires (partie I), tandis qu’elle joue un rôle secondaire sur la fragmentation de métal
liquide dans un océan de magma (partie II). Néanmoins, l’approche scientifique, résumée
sur la figure 1.5, est très similaire dans ces deux projets.

Tout d’abord, chacun de ces projets démarre d’un problème de dynamique des fluides
(bôıte 2 dans la figure 1.5) inspiré d’un contexte géophysique (bôıte 1 dans la figure
1.5). L’objectif de nos simulations numériques ou de nos expériences analogiques n’est
pas de reproduire le contexte géophysique ou d’obtenir des visualisations réalistes du
problème géophysique. De tels objectifs ne seraient pas accessibles étant donné la vaste
gamme d’échelles de longueur et de temps impliquées dans le système géophysique. Nous
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cherchons plutôt à simplifier le système géophysique autant que possible, de sorte à isoler
quelques ingrédients clés, afin d’obtenir un problème de dynamique des fluides intelligible.
En résumé, le contexte géophysique et le problème de dynamique des fluides sont deux
objets distincts dans notre démarche (figure 1.5).

Ensuite, dans chacun de ces projets la problématique de départ peut être résumée
ainsi :

• Quels sont les différents régimes d’écoulement et dynamo, caractérisés par des motifs
de vitesse ou de champ magnétique, lorsqu’on varie les différents paramètres de
contrôle ?

• Peut-on rendre compte de la dynamique observée dans ces régimes par des modèles
théoriques (temps caractéristique, longueurs caractéristiques, vitesse, régimes oscil-
lants, évolution temporelle, ...) ?

• Quelles sont les implications pour le système géophysique de départ ? En particulier,
peut-on déduire le régime d’écoulement ou le régime dynamo pertinent pour le
système géophysique ?



Partie I : Etude numérique de la
convection thermique et de l’effet
dynamo dans des sphères en rotation

Introduction

Motivations géophysiques

Le champ magnétique mesuré à la surface de la Terre est probablement généré par des
mouvements de convection dans le noyau externe, mouvements impliquant des effets à
la fois thermiques et compositionnels. L’essentiel des études de convection et d’effet
dynamo dans des noyaux planétaires s’est intéressé à des configurations pertinentes pour
la Terre actuelle, i.e. dans une coquille sphérique (avec graine) et en imposant un flux de
flottabilité non-nul à la graine de sorte à modéliser le relâchement d’éléments légers lors
de la cristallisation de la graine (figure 11.2(c)). Les processus de convection et d’effet
dynamo dans des noyaux entièrement liquides, avant cristallisation de la graine (figure
11.2(b)), ont eux reçus peu d’attention. Pourtant cette configuration est plus simple,
tout d’abord part sa géométrie et ensuite par le forçage de la convection (seulement
d’origine thermique, sans effets compositionnels). De plus, plusieurs dynamos de notre
système solaire ont opéré dans une configuration de sphère pleine. En effet, les données
paléomagnétiques indiquent que la Terre avait une dynamo active il y a ∼ 3.4 milliards
d’années (Tarduno et al. 2010 ; Biggin et al. 2011), i.e. avant la nucléation de la graine
(comprise entre 0.5 et 3 milliards d’années d’après Labrosse et al. (2001)). Le champ
magnétique fossile à la surface de Mars indique également que la planète a eu une dynamo
active pendant son premier milliard d’années (Acuna et al. 1999 ; Milbury & Schubert
2010 ; Milbury et al. 2012), alors que le noyau était entièrement liquide (Stewart et al.
2007 ; Yoder et al. 2003).

Inspirés du contexte géophysique ci-dessus, nous étudions les processus de convection
thermique et d’effet dynamo dans des sphères en rotation. Les questions principales
sont les suivantes : Quels sont les structure d’écoulement et de champ magnétique qui
dominent dans des sphères en rotation ? Sont-elles identiques à celles obtenues dans les
études précédentes, i.e. dans une coquille sphérique (en présence d’une graine) ?
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Figure 11.2: (a) Périodes pour lesquelles un effet dynamo forcé par de la convection purement
thermique (bleu) ou thermochimique (rouge) est plausible pour le noyau de la Terre ou celui
de Mars. De plus, la convection purement thermique et l’effet dynamo sont des processus qui
étaient probablement très fréquents durant l’accrétion des planètes, alors que le chauffage dû aux
collisions ou à la décroissance radioactive d’éléments à courte durée de vie était suffisant pour
induire la fusion du manteau et du noyau. (b) Configuration pertinente pour étudier la convection
purement thermique dans un noyau entièrement liquide. Q représente le flux de chaleur total à
la CMB. (c) Configuration pertinente pour étudier la dynamique du noyau de la Terre actuelle :
convection et effet dynamo forcés par des effets à la fois thermiques et compositionnels (décharge
d’éléments légers pendant la cristallisation de la graine).

Structures obtenues dans les études précédentes

Les premières études du seuil de convection dans des sphères en rotation rapide se sont
focalisées sur les modes antisymétriques par rapport à l’équateur (Roberts 1965 ; Bisshopp
& Niiler 1965 ; Roberts 1968). Busse (1970) est le premier à avoir montré que la con-
vection au seuil s’organise en un écoulement symétrique, qui prend la forme de colonnes
alignées avec l’axe de rotation et qui tendent à respecter la contrainte de Taylor-Proudman
(invariance de l’écoulement dans la direction axiale). Les modes antisymétriques ont reçu
peu d’attention depuis ; ils jouent en effet un rôle secondaire sur l’écoulement total dans
toutes les études précédentes de convection non-linéaire dans des coquilles sphériques (i.e.
en présence d’une graine), où l’écoulement reste essentiellement symétrique et colonnaire
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(e.g. Olson et al. 1999 ; Grote & Busse 2001 ; Sakuraba & Roberts 2009). Ces résultats
ont joué un rôle important dans la modélisation puisqu’ils ont motivé le développement
de modèles quasi-géostrophiques qui imposent à l’écoulement horizontal d’être invariant
dans la direction axiale, sélectionnant ainsi des écoulements exclusivement symétriques
par rapport à l’équateur (e.g. Cardin & Olson 1994 ; Aubert et al. 2003 ; Gillet & Jones
2006 ; Gillet et al. 2007).

Modèle et méthodes

Un noyau planétaire sans graine est modélisé par une sphère de rayon D, en rotation
autour de l’axe ẑ à taux constant Ω.

Dans la section 3.2, les équations du problème sont introduites. Nous montrons que
le refroidissement séculaire du noyau agit comme un terme de chauffage interne dans
l’équation d’évolution des fluctuations de température (fluctuations par rapport à un
profil moyen adiabatique de température). Le temps caractéristique de la convection
dans le noyau (∼ O(100) ans, Bloxham & Jackson 1991) est petit devant le temps car-
actéristique du refroidissement séculaire (∼ O(100) millions d’années, Sharpe & Peltier
1978) et cela permet de modéliser les mouvements convectifs dans un noyau planétaire qui
se refroidit par un système quasi-stationnaire. Dans le cadre de l’approximation de Boussi-
nesq (détaillée en section 3.1) et de la limite non-relativiste (annexe A), les équations
adimensionnés gouvernant l’évolution du champ de vitesse u, du champ magnétique B et
du champ de température T sont :

∂u

∂t
+ u · ∇u = −∇P − 2ẑ × u +RaQ

r

ro
T + (∇×B)×B + E∆u,

∂T

∂t
+ (u · ∇)T = sT +

E

Pr
∆T,

∂B

∂t
+ (u · ∇)B = (B · ∇)u +

E

Pm
∆B,

∇·B = 0,

∇·u = 0.

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

Les équations ont été adimensionnées en utilisant les échelles suivantes : D pour
l’échelle de longueur, Ω−1 pour l’échelle de temps, ρD2Ω2 pour l’échelle de pression avec
ρ la masse volumique du fluide,

√
ρµΩD pour l’échelle de champ magnétique avec µ

la perméabilité magnétique et Q/4πρCPΩD3 l’échelle de température avec Q le flux de
chaleur total sortant de la sphère et CP la capacité thermique massique. Le terme sT
dans l’équation (11.2) est un terme source dont la valeur est telle que le bilan de chaleur
de la sphère s’annule.

Nous imposons des conditions aux limites de non-glissement et de flux de chaleur fixé.
Le milieu extérieur est un isolant électrique.

Les paramètres de contrôle adimensionnés sont :

• le nombre de Rayleigh modifié
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RaQ =
αgoQ

4πρ0CPΩ3D4
, (11.6)

• le nombre d’Ekman

E =
ν

ΩD2
, (11.7)

• le nombre de Prandtl

Pr =
ν

κ
, (11.8)

• le nombre de Prandtl magnétique

Pm =
ν

η
, (11.9)

avec α le coefficient de dilatation thermique, go l’accélération de la gravité à la surface de la
sphère, ν la viscosité cinématique, κ la diffusivité thermique et η la diffusivité magnétique.
Avec ce choix pour les paramètres adimensionnés, le nombre de Rayleigh canonique

Ra =
αgoQD

2

4πρ0CPκ2ν
, (11.10)

est donné par Ra = RaQE
−3Pr2.

Nous étudions deux types de simulations : des simulations hydrodynamiques obtenues
en résolvant les équations (11.1), (11.2) et (11.5) avec B = 0, et des simulations dynamos
obtenues en résolvant les équations (11.1)-(11.5).

Les résultats de nos simulations en sphère pleine sont comparés à des modèles de
référence réalisés en configuration de coquille sphérique (i.e. avec une graine) et avec un
flux de flottabilité non-nul au niveau de la sphère interne.

L’ensemble des paramètres de sortie est défini en section 3.7.

Nous utilisons le code numérique PARODY, initialement développé par Emmanuel
Dormy puis par Julien Aubert. Ce code a été validé en géométrie de coquille sphérique
dans l’article de Christensen et al. (2001). Il est validé en géométrie de sphère pleine
dans le présent manuscrit par comparaison aux solutions théoriques obtenues par Bis-
shopp (1958), Roberts (1965), et Bisshopp & Niiler (1965) pour le seuil de convection
axisymétrique (section 3.8.7).

Résultats

Le chapitre 4 contient l’essentiel des résultats de l’article “Equatorially asymmetric con-
vection inducing hemispherical magnetic field in rotating spheres and implications for the
past martian dynamo”, publié en 2011 dans le journal Physics of the Earth and Planetary
Interiors. L’analyse a cependant été améliorée dans la version présentée en chapitre 4.
Dans ce chapitre, nous caractérisons, dans l’espace des paramètres (E,RaQ), l’émergence
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systématique de modes antisymétrique par rapport à l’équateur, ainsi que leur effet sur
le champ magnétique.

La première partie est dédiée à l’étude de simulations hydrodynamiques (i.e. sans effet
dynamo). Le seuil d’émergence RaQt des modes antisymétriques dans les simulations non-
linéaires est caractérisé dans l’espace (E,RaQ) (figure 11.3(a) and figure 4.5) et une loi
d’échelle ajustée numériquement est extraite (équation 4.2). Au dessus de RaQt, l’énergie
antisymétrique augmente rapidement (figure 11.3(a)) et les modes antisymétriques par
rapport à l’équateur deviennent plus énergétiques que les modes symétriques pour un
forçage suffisamment grand (figure 11.3(a), Table 4.1). Au contraire, dans les simula-
tions de référence (coquille sphérique et flux de chaleur non-nul au niveau de la sphère
interne) l’écoulement reste dominé par des modes symétriques par rapport à l’équateur,
et cela même si le forçage est nettement supérieur à RaQt : les modes symétriques con-
tiennent toujours plus de 70% de l’énergie cinétique totale (figure 11.3(b)). Nous avons
vérifié que les simulations fortement asymétriques obtenues en sphère pleine sont localisées
dans un régime dominé par la rotation (i.e. géostrophique). L’émergence des modes an-
tisymétriques est associée à des changements morphologiques majeurs de l’écoulement
dans une configuration de sphère pleine (figure 11.4). Le changement le plus marquant
est l’émergence d’un mode EAA (equatorially antisymmetric and axisymmetric), mode
le plus énergétique dans les simulations fortement asymétriques (figure 4.8(b)). Cet
écoulement EAA est caractérisé par la présence de forts vents zonaux antisymétriques
formant deux vortex contrarotatifs (figure 4.10(d)) et résultant d’un mécanisme de vent
thermique (équilibre 4.3 vérifié en figure 4.11).
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Figure 11.3: Diagramme de bifurcation pour la convection sans effet dynamo : énergie con-
tenue dans l’écoulement antisymétrique par rapport à l’équateur Ka (croix) et énergie contenue
dans l’écoulement symétrique par rapport à l’équateur Ks (triangles) en fonction du nombre de
Rayleigh RaQ, pour E = 3 × 10−4, dans (a) des simulations en sphère pleine (sans graine)
et (b) dans des modèles de référence en présence d’une graine. RaQt localise l’émergence des
modes antisymétriques. Les symboles A, B, C, D renvoient aux simulations A, B, C, D qui
sont montrées dans le figures 11.4 et 4.7 (paramètres reportés dans la Table 4.1).

Dans un deuxième temps, une étude similaire est menée avec des simulations dy-
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Figure 11.4: Isosurfaces de (a,b) la vitesse longitudinale instantanée, (c,d) de la vorticité axiale
et (e,f) de la température pour des simulations de sphère pleine, dénommée A et B (paramètres
reportés dans la Table 4.1) et localisées sur le diagramme de bifurcation de la figure 11.3(a).
L’axe de rotation est vertical dans cette figure. La couche limite visqueuse a été exclue pour
obtenir des visualisations claires. (a,b,c,d) Les couleurs rouge et bleu indiquent respectivement
des valeurs positives et négatives. Les isosurfaces suivantes sont montrées : (a) |uφ| = 8.1×10−3,
(b) |uφ| = 2.4× 10−2, (c) |ωz| = 0.12, (d) |ωz| = 0.24, (e) T = −867, (f) T = −667 (rouge) et
T = −933 (bleu).
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namos. En ce qui concerne l’écoulement, les résultats sont très similaires à ceux obtenus
à partir des simulations hydrodynamiques : bien que l’écoulement soit géostrophique,
des simulations fortement asymétriques sont obtenues quand le nombre de Rayleigh est
suffisamment élevé (figure 4.12) ; l’écoulement est alors fortement influencé par un mode
EAA (figure 4.15(b)). La seule différence avec le cas hydrodynamique est l’apparition
d’un régime d’écoulement supplémentaire, caractérisé par des oscillations chaotiques de
l’énergie cinétique EAA entre des valeurs proche de 0 et des valeurs du même ordre de
grandeur que l’énergie totale (figure 4.13). En ce qui concerne les structures magnétiques,
nous montrons que la brisure de symétrie équatoriale, associée à l’émergence des modes
antisymétriques, contrôle l’hémisphéricité de la dynamo (le caractère hémisphérique est
quantifiée par le rapport fhem entre l’énergie contenue dans l’hémisphère le plus énergétique
et l’énergie totale, voir la figure 4.20). Dans les simulations où l’écoulement est suffisam-
ment asymétrique, nous obtenons des dynamos hémisphériques telles que 75% (et jusqu’à
90%) de l’énergie magnétique totale est contenu dans un seul hémisphère (Table 4.2, figure
11.5).
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Figure 11.5: (a,b) Vitesse longitudinale instantanée pour un rayon donné égal à la moitié du
rayon de la sphère et (c,d) champ magnétique radial instantané à la surface de la sphère dans
les simulations dynamos F (gauche, simulation symétrique) et G (droite, simulation fortement
asymétrique) (paramètres reportés dans la Table 4.2), réalisés avec les mêmes paramètres de
contrôle que les simulations hydrodynamiques A et B.
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Discussion et interprétation

Ecoulement asymétrique et contrainte de Taylor-Proudman

Nous avons montré que des simulations fortement asymétriques (dans lesquelles les modes
antisymétriques par rapport à l’équateur deviennent aussi énergétiques que les modes
symétriques) sont obtenues dans le régime géostrophique d’une sphère en convection. Ce
résultat est inattendu et peut sembler en conflit avec la contrainte de Taylor-Proudman.
Pourquoi cette contrainte est-elle brisée dans un régime pourtant géostrophique ?

Pour traiter cette question il faut séparer le cas des composantes zonale et non-zonale.
Un écoulement non-zonal dans un sphère ou une coquille sphérique brise nécessairement
la contrainte de Taylor-Proudman du fait de la condition de non-pénétration. Cependant,
cela n’empêche pas cet écoulement de satisfaire, au premier ordre, l’équilibre géostrophique
(équilibre entre les forces de pression et la force de Coriolis). Ces remarques valent par
exemple au seuil de convection où l’équilibre géostrophique est respecté au premier ordre
tandis que les termes visqueux brisent la contrainte de Taylor-Proudman dans l’équation
de la vorticité. Dans le cas des modes non-zonaux, la dynamique ci-dessus vaut à la fois
pour les modes symétriques et antisymétriques. Les modes symétriques sont favorisés
près du seuil car la dissipation visqueuse associée est légèrement plus faible que celle des
modes antisymétriques ; cependant cette différence est faible et peut être dépassée pour
un forçage suffisamment supercritique.
Dans nos simulations fortement asymétriques l’écoulement non-zonal antisymétrique peut
contenir jusqu’à 60% de l’énergie antisymétrique totale. Les remarques ci-dessus indiquent
que ces structures ne sont finalement pas si inattendues et certainement pas interdites dans
le régime géostrophique.

Contrairement à l’écoulement non-zonal, un écoulement zonal est partout parallèle aux
frontières et, par conséquent, n’est pas affecté par la condition de non-pénétration. Dans
ce cas, l’écoulement interne (i.e. hors des couches limites) peut être rigoureusement in-
variant dans la direction de l’axe de rotation. Un tel écoulement respecte parfaitement la
contrainte de Taylor-Proudman et est nécessairement symétrique par rapport à l’équateur.
Au contraire, un écoulement zonal antisymétrique brise forcément la contrainte de Taylor-
Proudman. La dynamique des modes symétriques et antisymétriques est donc distincte
quand on considère uniquement les composantes zonales. Dans nos simulations, la con-
trainte de Taylor-Proudman est brisée par les forces de flottabilité dans l’équation de
la vorticité et un fort vent zonal asymétrique est généré en conséquence d’un profil de
température nettement asymétrique (figure 4.10(c)). La caractéristique réellement inat-
tendue de nos simulations est donc ce profil de température fortement asymétrique.

Plus généralement, nos résultats rappellent qu’un écoulement fortement asymétrique
n’est pas interdit dans le régime géostrophique d’une sphère ou d’une coquille sphérique
en convection. Au stade actuel de nos connaissances, il n’y a donc pas de raison immuable
d’affirmer que les modes antisymétriques sont de faible amplitude par rapport aux modes
symétriques dans la limite E → 0, en particulier pour des nombres de Rayleigh situés
très loin du seuil de convection comme c’est le cas dans les noyaux planétaires. Les
termes géostrophique/agéostrophique et symétrique/asymétrique font donc référence à des
propriétés qui ne sont pas nécessairement corrélées dans des sphères ou des coquilles
sphériques.
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Brisure de symétrie de l’écoulement

Dans nos simulations dynamos la brisure de symétrie équatoriale de l’écoulement contrôle
l’hémisphéricité du champ magnétique. Plusieurs études publiées précédemment ont
montré que la brisure de symétrie de l’écoulement joue un rôle important dans la dy-
namique des inversions magnétiques (Li et al. 2002 ; Nishikawa & Kusano 2008 ; Gissinger
et al. 2010 ; Monchaux et al. 2009). Les résultats présentés dans le chapitre 4 de cette thèse
(Landeau & Aubert, 2011), combinés à d’autres résultats récents obtenus dans l’expérience
VKS (Gallet et al., 2012), dans des dynamos cinématiques paramétrées (Gallet & Pe-
trelis, 2009) ou dans des dynamos convectives en coquille sphérique avec flux de chaleur
asymétrique à la frontière externe (Stanley et al. 2008 ; Amit et al. 2011 ; Dietrich &
Wicht 2013), montrent que la brisure de symétrie de l’écoulement peut également induire
des dynamos hémisphériques. De façon plus générale, les résultats cités précédemment
convergent vers l’idée que la brisure de symétrie de l’écoulement est un paramètre de
contrôle clé du régime dynamo.

Les modèles dits de basse dimensionnalité, i.e. basé sur l’interaction entre quelques
modes, sont généralement utiles pour rendre compte des effets d’une brisure de symétrie.
Gallet & Petrelis (2009) ont introduit un modèle basé sur l’interaction entre deux modes
magnétiques et prédisant que la brisure de symétrie équatoriale de l’écoulement peut
induire des champs magnétiques hémisphériques. Une comparaison détaillée entre les
prédictions de ce modèle et nos simulations (détaillée en section 5.3) illustre à la fois les
avantages et les limitations de ce modèle : il permet d’expliquer la dynamique globale
observée dans les simulations, bien que les détails quantitatifs ne puissent être reproduits
par ce modèle.

Implications géophysiques

Nos résultats suggère le scénario suivant (illustré sur la figure 5.4) pour expliquer le champ
magnétique hémisphérique mesuré à la surface de Mars (figure 11.6) : quand la croûte
de Mars s’est formée et a acquis son aimantation rémanente, la dynamo était située dans
un régime d’écoulement suffisamment asymétrique pour induire un champ magnétique
hémisphérique ; ce champ a ensuite été enregistré à la surface de Mars.

Ce scénario est attractif car il satisfait le principe de parcimonie (rasoir d’Ockham)
puisque il ne nécessite ni d’asymétrie du flux de chaleur comme supposé par Stanley
et al. (2008), Amit et al. (2011) et Dietrich & Wicht (2013), ni de processus exogène à
l’origine d’une démagnétisation de la croûte dans l’hémisphère nord, comme un resurfaçage
volcanique (Connerney et al., 2005), de larges impacts (Frey & Schultz, 1988) ou un impact
géant unique (Andrews-Hanna et al. 2008 ; Marinova et al. 2008 ; Nimmo et al. 2008 ;
Citron & Zhong 2012).

En section 5.4, nous discutons les limitations et l’applicabilité d’un tel scénario.

Perspectives

Il reste à finaliser l’étude détaillée de la circulation EAA dans le régime fortement asymétrique.
Tout d’abord il serait utile de quantifier les différentes contributions à la production de
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Figure 11.6: Champ magnétique radial à 200 km d’altitude prédit par le modèle de Langlais et al.
(2004).

température EAA, responsable via un mécanisme de vent thermique des deux vortex con-
trarotatifs dominant l’écoulement. Ensuite, les modes EAA ont les mêmes propriétés de
symétrie que les modes émergeant au seuil de convection axisymétrique et étudiés il y
a près de 50 ans par Roberts (1965) et Bisshopp & Niiler (1965). Il serait intéressant
d’examiner si les modes EAA émergeant dans nos simulations sont en partie hérités des
premiers modes axisymétriques instables.

Un autre perspective consiste à étudier de façon systématique l’émergence des modes
antisymétriques en variant d’autres paramètres qui nous intéressent pour les planètes,
comme par exemple la taille de la graine, le flux de flottabilité à la graine ou le nombre
de Prandtl.

L’idée, soutenue par nos résultats et d’autres études, que la brisure de symétrie
équatoriale de l’écoulement est un paramètre de contrôle clé du régime dynamo a reçu peu
d’attention dans la communauté géophysique et mériterait probablement d’être creusée.

Finalement, des développements possibles pour la Terre primitive peuvent être men-
tionnés. Les simulations numériques dynamos pourraient être utilisées afin de rechercher
des observables paléomagnétiques pouvant être affectées par la nucléation de la graine.



Partie II : Etude expérimentale de la
fragmentation d’un volume de
liquide dans un autre liquide
non-miscible et moins dense

L’essentiel des résultats présentés dans cette partie est inclus dans un article actuellement
en révision pour la revue Journal of Fluid Mechanics.

Introduction

La fragmentation d’un liquide dans un autre liquide non-miscible a eu lieu à très grande
échelle durant la formation des planètes (comme développé dans l’introduction principale).
La décharge soudaine de pétrole dans l’océan qui a eu lieu pendant le désastre de 2010
au niveau de la plate-forme Deepwater Horizon est un autre exemple de ce phénomène
(McNutt et al. 2012 ; Reddy et al. 2012 ; Camilli et al. 2012).

La fragmentation d’un fluide est souvent associée à une séquence bien définie de proces-
sus (figure 11.7), incluant la déformation ou déstabilisation du volume initial, la formation
de structures filamentaires appelées ligaments, et finalement la rupture de ces ligaments
par des instabilités capillaires (e.g. Hinze 1955 ; Marmottant & Villermaux 2004 ; Viller-
maux & Bossa 2009). Le paramètre de contrôle clé des processus de fragmentation est
le nombre de Weber We, une mesure de l’importance relative des forces inertielles et des
forces superficielles. Un autre paramètre de contrôle clé est le nombre d’Ohnesorge Oh,
une mesure de l’importance relative des forces visqueuses par rapport aux forces super-
ficielles et inertielles. Le régime pertinent pour la formation des planètes correspond à
des nombres de Weber et des nombres de Reynolds extrêmement élevés et un nombre
d’Ohnersorge très faible devant 1.

La fragmentation d’un volume fini de liquide dans le régime Oh� 1 a été amplement
étudiée dans l’air (Pilch & Erdman 1987 ; Faeth et al. 1995 ; Gelfand 1996 ; Guildenbecher
et al. 2009 ; Theofanous 2011), mais beaucoup moins étudiée dans un système liquide-
liquide. Les simulations 3D de la fragmentation de gouttes dans un autre liquide non-
miscible atteignent des Weber de l’ordre de 10− 15 (figure 7.2(a)) (Ichikawa et al., 2010)
tandis que les simulations axisymétriques (Han & Tryggvason 1999 ; Samuel 2012 ; Ohta
& Sussman 2012 ; Han & Tryggvason 2001) atteignent des Weber beaucoup plus élevés
mais ne permettent pas d’étudier le processus de rupture qui est essentiellement non-
axisymétrique. Baumann et al. (1992) ont réalisé des expériences de fragmentation en
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Figure 11.7: Typical sequence of steps involved in a fluid fragmentation process. Water drop
falling in an ascending stream of air (modified from Villermaux & Bossa, 2009). The sequence
includes deformation of the initial drop which flattens into a pancake shape, formation of liquid
ligaments (a toroidal rim collects much of the initial drop mass), destabilization of the rim
(highlighted in the inset), leading to disjointed drops distributed in size. Time interval of 4.7
ms, We ≈ 600.

volume fini et pour des systèmes liquide-liquide à des nombres de Weber compris entre
0.3 et 11000. Cependant, les fluides utilisés ont une viscosité élevée et seulement deux de
leurs expériences satisfont We ≥ 100 and Oh� 1. Dans plusieurs études expérimentales
de la fragmentation par ondes de choc d’un liquide dans un autre liquide, des coefficients
de trainée et des temps de rupture ont été mesurés. Les valeurs sont résumées dans Pilch
& Erdman (1987) et Gelfand (1996).

Aux grands nombres de Reynolds et grands nombres de Weber, le comportement
macroscopique d’un panache (Deguen et al., 2011) ou d’un jet (Charalampous et al., 2008)
d’un liquide donné dans un autre liquide non-miscible est morphologiquement identique
à celui d’un système miscible (figures 7.2(c,d)). Cela suggère que les modèles développés
pour des systèmes miscibles turbulents pourraient décrire la dynamique grande échelle
des systèmes non-miscibles. Notamment, le concept d’entrâınement turbulent permet
de décrire la dynamique de nombreux écoulements cisaillants turbulents et il a été con-
sidérablement utilisé en miscible pour décrire la dynamique des thermiques et des anneaux
de vorticité (Taylor 1945 ; Morton et al. 1956 ; Wang 1971 ; Escudier & Maxworthy 1973
; Maxworthy 1974 ; Baines & Hopfinger 1984 ; Thompson et al. 2000). Ce concept
a également été appliqué à des écoulement multiphasiques dans lesquels une phase est
initialement dispersée dans une autre sous forme de particules solides (Rahimipour &
Wilikinson 1992 ; Bush et al. 2003) ou de bulles d’air (Milgram 1983 ; Leitch & Baines
1989 ; Bettelini & Fannelop 1993). L’applicabilité du concept d’entrâınement turbulent
pour des systèmes non-miscibles non-dispersés a cependant reçu moins d’attention.

Dans cette étude, nous présentons des résultats expérimentaux sur la fragmentation
d’un volume de liquide dans un autre liquide non-miscible et moins dense pour de faibles
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nombres d’Ohnesorge (Oh � 1), de grands nombres de Reynolds (Re ≥ 103) et un
nombre de Weber variable, atteignant des valeurs de l’ordre de 103. Le but principal est
de caractériser les régimes d’écoulement dans l’espace des paramètres.

Procédure expérimentale
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Figure 11.8: Dispositif expérimental. (a) Vue de profil du dispositif en configuration Immergée
; (b) vue de profil du dispositif en configuration Surface. (c) Schéma d’une expérience et des
variables mesurées en fonction du temps. (d,e,f) Techniques de visualisations.

Le dispositif expérimental est représenté sur la figure 11.8. Un récipient de 25 cm de
large et 50 cm de haut est rempli avec une huile de silicone de faible viscosité, dénommée
fluide ambiant dans ce qui suit. Un fluide plus dense, non-miscible avec l’huile de silicone,
est placé dans un tube de plastique vertical et dont l’extrémité inférieure est fermée par
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une membrane en latex. Une aiguille est ensuite utilisée pour briser la membrane en latex
et relâcher le fluide dense. La hauteur du fluide dans le tube est égale au diamètre du
tube. Dans la configuration Immergée (figure 11.8(a)) le fluide est initialement immergé
dans le fluide ambiant alors que le tube est placé à la surface du fluide ambiant dans la
configuration Surface (figure 11.8(b)).

L’étude systématique est conduite en utilisant un éclairage par l’arrière diffus, comme
schématisé sur la figure 11.8(d). Un colorant alimentaire bleu est alors ajouté au fluide
dense. Une caméra vidéo filme l’écoulement à une vitesse de 24 images par seconde.
D’autres images sont obtenues en utilisant une technique d’ombroscopie (figure 11.8(e)).
Le fludie dense est chauffé à une température d’environ 35◦C. Une lumière collimatée
traverse le récipient et projette l’information sur un écran situé à l’avant du récipient.
Cette technique rend visible les gradients d’indice de réfraction qui sont induits par des
gradients de température. Finalement, des images sont également obtenues en utilisant
une technique de fluorescence induite (figure 11.8(f)). Le dispositif est éclairé par le côté
par un plan lumineux, alors qu’un colorant fluorescent (la rhodamine) est ajouté au fluide
dense, permettant de visualiser une section verticale de l’écoulement. Le plan lumineux,
d’épaisseur 5 − 7 mm, est produit par un flash et une fente de 0.32 cm dans un écran
opaque. Dans ce qui suit, la première technique d’éclairage diffus par l’arrière est utilisé,
sauf indication contraire.

Pour varier le rapport de densité entre le fluide ambiant et le fluide dense, différents
fluides sont relâchés : un mélange eau-éthanol, de l’eau, une solution de chlorure de sodium
(NaCl) et une solution d’iodure de sodium (NaI). Les propriétés physiques de ces fluides
sont données dans la Table 8.1. La solution de NaI est particulièrement intéressante. Tout
d’abord, elle permet d’atteindre de grands rapports de densité entre le fluide ambiant et
le fluide dense. De plus, elle permet d’atteindre l’indice de réfraction de l’huile de silicone
(n = 1.384± 0.006 à 20◦C) pour une certaine concentration en NaI, ce qui est nécessaire
pour obtenir des images satisfaisantes avec la technique de fluorescence induite. La tension
superficielle entre le fluide dense et l’huile de silicone est mesurée avec un tensiomètre Du
Noüy.

Un surfactant insoluble avec l’huile de silicone (appelé “Triton X-100” dans le com-
merce) est ajouté à l’eau et à la solution de NaI dans certaines expériences. La tension
superficielle au repos diminue avec la concentration en surfactant jusqu’à ce qu’elle at-
teigne un concentration critique, à partir de laquelle elle sature à une valeur constante.
Cette valeur saturée est celle donnée en Table 8.1. La concentration maximale en sur-
factant c ≈ 4mL.L−1, après laquelle un émulsion stable se formerait dans le récipient,
est utilisée dans cette étude. Il est important de souligner que la tension superficielle
dynamique peut être localement plus élevée que la tension superficielle au repos.

Dans certaines expériences, de l’eau est utilisé comme fluide ambiant à la place de
l’huile de silicone et une solution de NaCl (Table 8.1) est relâchée. Ces expériences sont
utilisés comme un système de référence dans la section 9.4.

Variables mesurées

Des étapes de pré-traitement sont appliquées aux images vidéo afin d’obtenir des images
binaires (la méthode est détaillée dans l’annexe E). Ensuite, le barycentre z, le rayon
équivalent r et la vitesse u du fluide dense sont calculés de façon automatisée (détaillée
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en section 8.2). Les incertitudes sur z et u sont respectivement de l’ordre de 5% et 10%.
Les barres d’erreur présentées dans les figures qui suivent tiennent compte à la fois des
erreurs de mesure et de l’écart type obtenus en reproduisant chaque expérience plusieurs
fois.

Nombres sans dimension

Dans la configuration Immergée, quatre nombres sans dimension d’entrée gouvernent la
dynamique :

Bo =
∆ρgR2

σ
, Oh =

√
ρrνr√
σR

, P =
∆ρ

ρa
,

νr
νa
. (11.11)

Dans ce qui précède, Bo est le nombre de Bond, Oh le nombre d’Ohnesorge, ∆ρ est la
différence de densité entre le fluide ambiant et le fluide dense, g est l’accélération de la
pesanteur, R le rayon sphérique équivalent du fluide dense, ν la viscosité cinématique,
ρ la densité. Les indices a et r renvoient respectivement au fluide ambiant et au fluide
dense relâché. Le nombre de Bond est une mesure de l’importance relative des forces
de flottabilité et des forces de tension superficielle. Dans la configuration Surface, des
nombres sans dimension additionnels sont présents puisque le fluide dense est initialement
immergé dans l’air. Dans cette étude nous étudions le fragmentation du fluide dense
dans l’huile de silicone est nous ne considérons donc pas les effets de tension superficielle
impliquant l’air. Le rapport entre la densité de l’air et celle de l’huile doit être ajouté aux
nombres sans dimension ci-dessus. Il en est de même du rapport de viscosité. Cependant
ces rapports sont identiques dans toutes les expériences.

Des expériences ont été réalisées dans 24 combinaisons différentes des nombres sans
dimension ci-dessus dans la configuration Immergée, et 30 dans la configuration Surface.
Bo et P varient respectivement dans la gamme ∼ 4 − 1430 et ∼ 0.029 − 0.96, Oh varie
de ∼ 10−3 à ∼ 10−2 et νr/νa de 0.8 à 2.2. Puisque Oh � 1 la viscosité ne doit pas avoir
d’influence sur le régime de fragmentation (Hinze 1955 ; Pilch & Erdman 1987) et les
revues de Gelfand (1996) et Guildenbecher et al. (2009)). Dans cette étude, nous nous
concentrons donc sur les effets des deux nombres sans dimension qui sont indépendants
de la viscosité : Bo et P .

Résultats

Pendant le processus de fragmentation, nous observons la déformation du fluide dense, la
formation de structures filamentaires, et finalement la formation de gouttes. Le chapitre
9 présente les résultats de cette étude dans un ordre essentiellement chronologique.

Dans la section 9.1 nous étudions les premiers stades d’évolution à la sortie du tube en
terme de vitesse et de déformation du fluide dense. Cela nous permet notamment d’obtenir
des lois d’échelle ajustées expérimentalement pour le nombre de Weber (rapport entre les
forces d’inertie et de tension de surface) en fonction des paramètres de contrôle Bo et P .
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Le nombre de Weber We est défini par :

We =
ρrU

2R

σ
, (11.12)

avec U la vitesse du fluide dense à la sortie du tube (à une distance z = 2R). Nous
montrons également que les premières déformations à la sortie du tube sont le résultat
d’une compétition entre des instabilités de Rayleigh-Taylor et la formation d’un anneau
de vorticité.

Les différent régimes de fragmentation sont ensuite caractérisés en section 9.2 dans
l’espace des paramètres (We,P), à partir de l’étude de l’évolution qui suit les premières
phases de déformation. Le diagramme de régime final est présenté sur la figure 11.9. Pour
des nombres de Weber suffisamment faibles, le régime de fragmentation est très sensible
à la configuration expérimentale (Immergée vs Surface) et une diversité de régime est
observée. Le régime de fragmentation dépend alors des premières déformations : dans les
expériences où des instabilités de Rayleigh-Taylor se développent à la sortie du tube, le
processus de fragmentation correspond à l’évolution non-linéaire de ces instabilités ; dans
les expériences où un anneau de vorticité se forme à la sortie du tube, la fragmentation est
le résultat d’instabilités additionnelles se développant sur l’anneau. Pour des nombres de
Weber suffisamment élevés, le comportement de l’écoulement grande échelle est similaire
dans toutes les expériences : le fluide relâché est contenu dans une structure cohérente et
autosimilaire qui croit par entrâınement de fluide ambiant (figure 11.10).

Les résultats concernant la formation de structures filamentaires et la rupture sont
présentés en section 9.3.

Finalement, un modèle basé sur l’hypothèse d’entrâınement turbulent, et adapté au cas
d’un anneau de vorticité ayant une inertie initial, est présenté en section 9.4. Ce modèle
est en accord avec nos résultats expérimentaux pour le régime turbulent (We & 200), ce
qui démontre que le concept d’entrâınement turbulent peut être appliqué à une interface
séparant des fluides non-miscibles. Le coefficient d’entrâınement turbulent prend des
valeurs similaires pour des expériences en systèmes miscibles ou non-miscibles. Nous
montrons que ce coefficient est corrélé de façon positive avec le nombre de Richardson
(rapport entre forces de flottabilité et d’inertie).

Discussion

Discussion des résultats expérimentaux

Le régime de fragmentation caractérisé par le développement d’instabilités de Rayleigh-
Taylor est très semblable à des régimes précédemment identifié dans des expériences de
fragmentation dans l’air (Harper et al. 1972 ; Simpkins & Bales 1972 ; Joseph et al.
1999 ; Theofanous et al. 2004 ; Theofanous & Li 2008 ; Zhao et al. 2010). Au contraire,
le régime de fragmentation caractérisé par la déstabilisation d’un anneau de vorticité
est morphologiquement différent du régime de déstabilisation d’un anneau identifié par
Baumann et al. (1992). Nous présentons également les premières visualisations de ther-
miques et d’anneaux de vorticité turbulents non-miscibles dans un milieu initialement
non-dispersé.
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Implications géophysiques

Les seules donnés disponibles concernant la formation du noyau sont géochimiques: abon-
dances dans la croûte et le manteau de la Terre en éléments sidérophiles réfractaires et en
éléments radiogéniques de systèmes radioactifs éteints. Les premières fournissent des in-
dications concernant les conditions thermodynamiques régnant pendant la différentiation
du métal et des silicates tandis que les secondes fournissent un temps caractéristique de
formation du noyau. Cependant l’interprétation finale en terme de conditions thermody-
namiques ou de temps caractéristique dépend beaucoup du modèle physique utilisé pour
inverser les données initiales. Or la physique des processus impliqués dans la formation
du noyau reste mal comprise. La présente étude s’inscrit donc dans un effort pour mieux
comprendre la physique de la formation du noyau. En particulier, les premières phases de
migration et de fragmentation de métal liquide dans un océan de magma après un impact
ont joué un rôle crucial sur la composition globale du manteau et du noyau de la Terre.
En effet, la formation de gouttelettes de métal augmente la surface de contact entre les
silicates et le métal, ce qui favorise les transferts chimiques en éléments sidérophiles.

Le nombre de Weber pertinent pour la fragmentation de métal après un impact
est supérieur à 1012. Le système géophysique est donc situé bien au dessus du seuil
d’émergence du régime turbulent We ∼ 200. Le régime de fragmentation turbulent est
très différent de l’image classiquement trouvée dans la littérature, où une fragmentation
en cascade résulte en une pluie de fer dans un océan de magma (Rubie et al. 2003 ;
Samuel 2012 ; Ichikawa et al. 2010). Nos résultats suggèrent plutôt que la fragmentation
du métal a lieu dans une structure cohérente et autosimilaire, qui croit par entrâınement
turbulent de silicates. Dans une étude associée (Deguen et al., 2013) nous proposons un
modèle d’équilibrage chimique entre le métal et les silicates dans une telle structure. Les
résultats de cette dernière étude suggèrent que l’ensemble du métal s’équilibre efficace-
ment avec les silicates entrainés à partir du moment où l’écoulement devient turbulent
; la signature géochimique finale dépend alors essentiellement de la quantité de silicates
entrainés avec le métal.

Le modèle basé sur le concept d’entrâınement turbulent proposé en section 9.4 permet
de décrire l’évolution macroscopique d’un volume de métal migrant dans un océan de
magma infiniment plus grand. Ce modèle fournit l’évolution de la profondeur du métal en
fonction du temps et prédit la quantité de silicates entrainés avec le métal. Cette dernière
dépend du coefficient d’entrâınement, qui est donc un paramètre clé à paramétrer.

Perspectives

Perspectives en dynamique des fluides

Un premier développement consisterait à préciser la corrélation observée entre le co-
efficient d’entrâınement et le nombre de Richardson, à la fois de façon théorique et
expérimentale. Un autre développement direct est l’étude des mécanismes petite échelle
impliqués dans la fragmentation du régime turbulent. D’un point de vue plus général, les
processus d’entrâınement turbulent sont impliqués dans un grand nombre d’écoulements
géophysiques. Nous pensons que l’étude détaillée de l’entrâınement turbulent au niveau
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d’une interface non-miscible pourrait aider à décrypter les mécanismes fondamentaux
responsables de l’entrâınement turbulent.

Perspectives en Sciences de la Terre

D’un point de vue de la formation du noyau, la perspective consiste à insérer des con-
traintes physiques (déduites de la dynamique des fluides) dans les modèles utilisés pour in-
verser et interpréter les données géochimiques. Une des difficultés consiste à paramétrer le
coefficient d’entrâınement turbulent, qui varie en fonction d’autres paramètres du système,
comme par exemple le nombre de Richardson ou le nombre de Mach (rapport entre vitesse
du métal et vitesse du son ; Deguen et al. 2013).
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Figure 11.9: Régimes de fragmentation dans un espace (We,P) pour les configurations Immergée
(a) et Surface (b). Les symboles signifient : , pas de fragmentation, gouttes oscillantes ;
, régime de rupture vibrationnelle ; , régime méduse (“Jellyfish”) ; , régime de perçage
Rayleigh-Taylor (“RT piercing”) ; , régime turbulent (“turbulent thermal” et “turbulent vor-
tex ring”) ; , régime de déstabilisation d’un anneau de vorticité ; , régime intermédiaire
entre la déstabilisation d’un anneau et le perçage Rayleigh-Taylor (des structures en forme de
champignon, typiques des instabilités de Rayleigh-Taylor, sont observées à l’avant d’un anneau)
; , anneau de vorticité évoluant en régime méduse. Lignes pleines : transitions de régime
abrupte (essai) ; lignes pointillées : transitions progressives.
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Figure 11.10: Régime de fragmentation turbulent. (a-h) Thermique turbulent non-miscible,
We ≈ 103, P ≈ 0.92, configuration Immergée, intervalle de temps d’environ 0.2 s. (i-w) Anneaux
de vorticité turbulents, configuration Surface. (i-p) We ≈ 103, P ≈ 0.82, intervalle de temps
d’environ 0.2 s ; (q-w) We ≈ 200, P ≈ 0.03, intervalle de temps d’environ 0.4 s. (f,g,h) (n,o,p)
(v,w) Agrandissements des zones localisées respectivement par les carrés des images (a,c,e),
(j,k,l) et (s,u).
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Appendix A

Maxwell’s equations within the
MHD approximation

Maxwell’s equations describe the behavior of an electromagnetic field and are given by:

∇·E =
ρe
ε
, (A.1)

∇·B = 0, (A.2)

∇×E = −∂B

∂t
, (A.3)

∇×B = µj +
1

c2

∂E

∂t
. (A.4)

where ρe is the total charge density, j is the current density, E is the electric field, B
is the magnetic induction (usually called magnetic field), ε is the permittivity of free
space, µ is the magnetic permeability of free space and c is the speed of light in vacuum
(c = 1/

√
µε). We suppose that the characteristic value of the flow velocity is much smaller

than the speed of light (called the MHD approximation or non-relativistic limit). The
characteristic time for the evolution of the system is determined by advection. Let U be
the characteristic value of the flow velocity, then we have:

∣∣∣∣∣ 1
c2
∂E
∂t

∇×B

∣∣∣∣∣ ∼ U2

c2
� 1. (A.5)

Thus, in the non-relativistic limit, the term
1

c2

∂E

∂t
can be neglected in equation (A.4) and

we obtain:

∇×B = µj. (A.6)

In the fluid frame that is moving at velocity u Ohm’s law is given by:

j = σ(E + u×B) + ρeu, (A.7)

209



210 Appendix A. Maxwell’s equations within the MHD approximation

where σ is the electrical conductivity. Taking the divergence of equation (A.6) and using
equation (A.1) and Ohm’s law (A.7) the following equation can be obtained:

ε

σ

(
∂ρe
∂t

+ (u · ∇)ρe

)
+ ρe = −ε∇ · (u×B). (A.8)

The characteristic time of the transient regime ε/σ appears in equation (A.8). The value
of ε/σ is in the order of 10−17 s for a liquid metal. Thus, this characteristic time is much
smaller than the characteristic time of the flow (∼ L/U where L is a typical length scale).
For instance, if we consider the flow in the Earth’s outer core L ≈ 2.106 m, U ≈ 3.10−4

m s−1 and L/U ≈ 1010 s. Then, equation (A.8) becomes:

ρe = −ε∇ · (u×B). (A.9)

Injecting equation (A.9) in Ohm’s law (A.7) we see that ρeu can be neglected in equation
(A.7): ∣∣∣∣ ρeu

σ(u×B)

∣∣∣∣ =

∣∣∣∣−ε∇ · (u×B)u

σ(u×B)

∣∣∣∣ ∼ Uε

Lσ
� 1. (A.10)

Neglecting ρeu in Ohm’s law amounts to assuming that electrical conduction is only due
to the motion of electrons. The motion of ions related to the flow is then negligible.

Finally, Maxwell’s equations are given by:

∇·B = 0, (A.11)

∇·E =
ρe
ε
, (A.12)

∇×E = −∂B

∂t
, (A.13)

∇×B = µj = µσ(E + u×B). (A.14)

Taking the curl of (A.14) and injecting it in (A.13), we obtain the induction equation:

∂B

∂t
= ∇× (u×B) + η∆B, (A.15)

where η = 1/µσ is the magnetic diffusivity.



Appendix B

Mechanisms of magnetic field
generation

First, it is important to notice that, for η = 0, the induction equation (2.6) becomes
identical to the equation satisfied by fluid-material lines∗. This means that a magnetic
field line that initially coincides with a given material line, will remain identical to this
material line at later times and, therefore, we can think of the magnetic field as being
“frozen” in the fluid. It also follows that stretching of magnetic field lines results in
magnetic field amplification, proportionally to the increase in length of the corresponding
material line.

The α and ω-effects are two main mechanisms by which a magnetic field can be
maintained. The ω-effect is caused by a shear flow and corresponds to the production of
magnetic field in the direction of the flow from a magnetic field initially perpendicular to it,
as described in figure B.1(a). The α-effect is less intuitive, it corresponds to the generation
of mean currents in the mean magnetic field direction by fluctuations of magnetic and
velocity fields (Moffatt, 1978).

Both effects can be identified in the induction equation using the so-called mean-field
formalism (Moffatt, 1978). The velocity and magnetic fields are separated into fluctuating
(u′ and b′) and mean parts:

u = u + u′, (B.1)

B = B + b′, (B.2)

where the overline denotes an averaging operator. The induction equation is then sepa-
rated into mean and fluctuating parts:

∂B

∂t
= (B.∇)u− (u.∇)B +∇× ε+ η∆B, (B.3)

ε = u′ × b′, (B.4)

∂b′

∂t
= ∇× (u× b′) +∇× (u′ ×B) +∇×G + η∆b′, (B.5)

G = u′ × b′ − u′ × b′, (B.6)

∗The same equation is also satisfied by the vorticity field ω = ∇× u.
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B

uu

B

(a) (b)

Figure B.1: (a) Schematic representation of the ω-effect. A shear flow stretches a magnetic
field line that is “frozen” into the fluid (for sufficiently small magnetic diffusivity), amplifying
the magnetic field intensity along the line and generating a net magnetic field component in
the direction of the mean flow. (b) Field distortion by a helical localized disturbance inducing
currents that are anti-parallel to B (modified from Moffatt, 1978), basic mechanism responsible
for an α-effect when averaged in space.

where ε is the mean electromotive force. First, the ω-effect can be related to the first
term on the RHS in equation (B.3). Then, the linearity in B of equation (B.5) guarantees
that b′, and thus ε, are linearly related to B. In the particular case where all statistical
properties of the velocity field are invariant under rotations of the frame of reference,
the mean electromotive force ε can be written at leading order as (neglecting spatial
derivatives of B) (Moffatt, 1978):

ε = αB. (B.7)

This indicates that mean currents are generated in the direction of the mean magnetic
field, which corresponds, by definition, to an α-effect. The curl of these currents, repre-
sented by the third RHS term in equation B.3, can generate toroidal magnetic field from
poloidal magnetic field, and vice versa.

The α-effect is commonly related to helicity which is the scalar product of vorticity
and velocity fields. Indeed, the coefficient α is non-zero only if u′ is not invariant under
reflexions (when considering localized portions of the spatial domain) and, in such a
case, helicity will be in general non-zero. It becomes intuitive that helical flows can
induce electric currents in the direction of the mean magnetic field when looking at figure
B.1(b): since magnetic field lines are “frozen” into the fluid (for sufficiently small magnetic
diffusivity), they are stretched and then twisted by the helical flow, producing currents
in the mean field direction.

In rotating spherical shells or spheres, the mean field formalism can be useful to
describe the fundamental mechanisms implicated in magnetic field generation when taking
the azimuthal average as the averaging operator. Then, the ω-effect becomes the process
by which an axisymmetric azimuthal magnetic field is generated as a result of a shear zonal
flow, caused by a thermal wind mechanism. Besides, in non-axisymmetric convection
columns, a strong axial vorticity is combined with a secondary axial flow, inducing a net
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helicity (Olson et al., 1999). Such helical flows are responsible for a macroscopic∗ α-effect
as described by Kageyama & Sato (1997) or by Olson et al. (1999) and summarized in
figure B.2.

(c)

Numerical Dynamo Simulations 267

(a) (b)

Figure B.2: Cartoons showing, in a time sequence, the generation of (a) axial magnetic field
from azimuthal magnetic field and (b) azimuthal magnetic field from axial magnetic field by
columnar convection (from Olson et al., 1999). Thick solid lines represent magnetic field lines,
small arrows indicate the primary columnar flow whereas long arrows indicate the secondary
axial flow.

∗The term macroscopic α-effect is used here since the convection columns responsible for an α-effect
are rather large-scaled in numerical simulations, in contrast to the usual assumption of scale separation
in mean-field theory.
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Appendix C

Adiabatic reference state

In an isentropic core we can write that

∂T

∂r
=

(
∂T

∂P

)
S

dP

dr
. (C.1)

Assuming hydrostatic equilibrium and making use of Maxwell’s relations, equation (C.1)
becomes

∂T

∂r
= −

(
∂T

∂P

)
S

ρg = − 1

ρ2

(
∂ρ

∂S

)
P

ρg = −g
ρ

(
∂ρ

∂T

)
P

(
∂T

∂S

)
P

= − αT
ρCp

. (C.2)
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Appendix D

Article published in Physics of the
Earth and Planetary Interiors

The following article is an earlier version of chapter 4. We believe that the analysis has
been improved since its publication.
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a b s t r a c t

The convective instability in a rapidly rotating, self-graviting sphere sets up in the form of equatorially
symmetric, non-axisymmetric columnar vortices aligned with the rotation axis, carrying heat away in
the cylindrical radial direction. In this study, we present numerical simulations of thermal convection
and dynamo action driven by internal heating (intended to model a planetary core subject to uniform
secular cooling) in a rotating sphere where, from the classical columnar convection regime, we find
a spontaneous transition towards an unexpected and previously unobserved flow regime in which an
equatorially antisymmetric, axisymmetric (EAA) mode strongly influences the flow. This EAA mode car-
ries heat away along the rotation axis and is the nonlinear manifestation of the first linearly unstable
axisymmetric mode. When the amplitude of the EAA mode reaches high enough values, we obtain hemi-
spherical dynamos with one single hemisphere bearing more than 75% of the total magnetic energy at the
surface of the rotating sphere. We perform the linear analysis of the involved convective modes and the
nonlinear study of this hydrodynamic transition, with and without dynamo action, to obtain scaling laws
for the regime boundaries. As secular cooling in a full sphere (i.e. without inner core) is a configuration
which has probably been widespread in the early solar system in planetary cores, including the core of
Mars, we discuss the possible implications of our results for the past martian dynamo.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Convection in rotating systems has been widely studied because
of its numerous geophysical and astrophysical applications. For
instance, dynamo processes sustained by convection are an attrac-
tive explanation not only for the Sun’s magnetic field but also for
the magnetic field of the Earth and other planets. Rotationally dom-
inated convection is typically organized into vortices aligned with
the rotation axis. These columnar structures tend not to violate the
Taylor–Proudman constraint which requires the velocity field to be
invariant along any line parallel to the rotation axis and which is
approximately valid when the main balance is between the Coriolis
force and the pressure gradient force. In the particular case of rotat-
ing spheres, the idea of a columnar convection appeared gradually.
The first attempts to solve the onset of thermal convection focused
on axisymmetric modes. Scaling laws for the threshold of instabil-
ity of these modes could be extracted from Chandrasekhar (1961),
but the asymptotic behavior in the limit of small Ekman numbers
was obtained by Roberts (1965) and Bisshopp and Niiler (1965)
with two different analytical approaches. Roberts (1968) was the

∗ Corresponding author. Tel.: +331 83 95 74 14; fax: +331 83 95 77 02.
E-mail address: landeau@ipgp.fr (M. Landeau).

first to recognize that the important modes at the onset of ther-
mal convection in rapidly rotating spheres are non-axisymmetric.
However, Roberts concentrated his efforts on equatorially antisym-
metric modes, in the wake of his 1965 study (Roberts, 1965) where
he found that the linearly most unstable axisymmetric mode of
convection has this parity. Busse (1970) subsequently showed that
the dominant structures at onset are not only non-axisymmetric
but also equatorially symmetric, corresponding to the famous illus-
tration of vortices parallel to the axis of rotation and localized in
the vicinity of a fixed radius in cylindrical coordinates. The first
correct linear asymptotic solution for rapidly rotating full spheres
was given by Jones et al. (2000). Nonlinear numerical simulations
of convection and dynamo action in spherical shells have subse-
quently confirmed this columnar flow structure and the secondary
influence of equatorially antisymmetric modes (e.g. Olson et al.,
1999).

Among the different driving mechanisms which can be imposed
in such numerical simulations, secular cooling in full spheres (i.e.
without inner core) has been studied little until now. This config-
uration is appropriate for modeling convection and dynamo action
in the Earth’s core prior to inner core nucleation (Gubbins et al.,
2003; Aubert et al., 2009). Besides, an early dynamo in a convective
core subject to secular cooling is the most plausible hypothesis to
explain the strong magnetizations measured on Mars’ crust by the

0031-9201/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2011.01.004
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Mars Global Surveyor mission. The timing of the martian dynamo
is debated but can be estimated using ages of the different crust
regions. Indeed, some large impact basins, believed to be∼4 Gyr old,
are not magnetized (Acuna et al., 1999). Thus, the dynamo would
have been active in the early history of Mars, between 4.5 Gyr and
4 Gyr. Several published studies (Lodders and Fegley, 1997; Sanloup
et al., 1999) compared sulphur contents of martian meteorites with
those of other primitive meteorites and estimated a high sulphur
content in Mars’ core: from 10.6% to 16.2%. Stewart et al. (2007) per-
formed experiments on iron–sulfur and iron–nickel–sulfur systems
at high pressure and obtained the corresponding phase diagrams
at fixed pressure. They showed that, considering such high sulphur
contents, Mars’ core is likely to be presently entirely liquid.

The Mars Global Surveyor mission also revealed a very surpris-
ing feature for Mars’ crust: intense crustal magnetizations were
measured in the Southern hemisphere whereas the Northern hemi-
sphere contains only weak fields. Dynamo models do not easily
explain this hemispherical crustal magnetic field. Since Mars is a
terrestrial planet with a size comparable to that of the Earth, we
could have expected a dipole dominated dynamo regime with sim-
ilar magnetic field strength in both hemispheres. For this reason it
has long been thought that post-dynamo events, such as resurfacing
processes or giant impacts, were responsible for the magnetic field
asymmetry of the martian crust. It is however possible (Stanley
et al., 2008) that hemispherical magnetizations of Mars’ surface
have been caused by a dynamo process, influenced by a hemi-
spherical pattern in the heat flux extracted by the mantle at the
core-mantle boundary (CMB).

Here, we use numerical simulations to model thermal con-
vection and dynamo action driven by secular cooling in rotating
full spheres. We find that, in this geometry and with this driv-
ing mechanism, an unexpected and previously unobserved flow
regime spontaneously emerges through a hydrodynamic bifurca-
tion: from the classical columnar flow regime to a flow regime
which is strongly influenced by an equatorially antisymmetric,
axisymmetric (EAA) mode and which apparently violates the
Taylor–Proudman constraint. This unexpected flow regime, which
we will refer to as the asymmetric regime, has never been observed
before. The aim of the present study is to investigate the following
questions: What is the dynamics of this EAA mode and why does it
appear in the particular case of convection driven by secular cooling
in rotating spheres? What impact does the EAA mode have on the
pattern of magnetic field which can be seen on the planetary sur-
face? In Section 2 we present the model and the equations solved by
the numerical code. In Section 3 we introduce the results related to
the hydrodynamics of the system. In Section 4 we analyze the effect
of the emergence of the EAA mode on magnetic field generation
and we show that hemispherical dynamos can be spontaneously
induced. Finally, in Section 5, we discuss our numerical results and
the possible implications for the past martian dynamo.

2. Model

Fig. 1 illustrates the configuration of the system. We use spheri-
cal coordinates (r, �, �) and cylindrical coordinates (s, �, z). A sphere
of radius ro, which contains a conductive fluid, is rotating at rate �
around an axis parallel to ẑ. Because of numerical considerations,
for the calculations performed in this study we retained a very small
inner sphere of radius ri = 0.01ro at the center of the system. It has
already been argued (Aubert et al., 2009) that the presence of the
small inner sphere has a negligible impact on the solution. After
implementation of a more recent version of our code where the
inner sphere is completely removed (ri/ro = 0), we were able to con-
firm that this is indeed the case for the results presented here. For
this reason, the system will be referred to as a rotating full sphere.

Ω

θ̂

r̂

φ̂

x̂

ŷ

ẑ

ri

ro

Fig. 1. Schematic representation of the system. ri/ro = 0.01.

Within the magnetohydrodynamic approximation, the non-
dimensionalized governing Boussinesq equations for the velocity
field u, the magnetic field B, and the temperature field T, are given
by:

∂u
∂t

+ u.∇u + 2ẑ × u = −∇P + RaQ
r
r0

T + (∇ × B) × B + E�u (1)

∂T

∂t
+ (u.∇)T = E

Pr
�T + ST (2)

∂B
∂t

= ∇ × (u × B) + E

Pm
�B (3)

∇ · B = 0 (4)

∇ · u = 0 (5)

where ST is a positive source term. The equations have been non-
dimensionalized using the following scales: D = ro − ri for length
scale (D ≈ ro), �−1 for time, �D for velocity, �D2�2 for pressure
where � is the fluid density,

√
���D for magnetic field where � is

the magnetic permeability of the fluid and Q/4	�Cp�D3 for tem-
perature where Q is the total heat flux at the external boundary, or
CMB and Cp the specific heat capacity.

Our numerical code solves the Boussinesq equations (1)–(5) for
a system which corresponds to fluctuations with respect to an adia-
batic reference state. In this framework, we model secular cooling in
planetary systems using internal heating in the Boussinesq system.
The decrease in the adiabatic (reference) temperature on geolog-
ical time scales is modeled by a uniform distribution of internal
heat sources (ST) in Eq. (2). As T has to be statistically stationary,
ST is determined such that the heat budget of the sphere vanishes
(Aubert et al., 2009).

The mantle dynamics evolves on much longer time scales than
the core dynamics and thus, the core provides an isothermal bound-
ary condition for the mantle. The resulting heat flux at the CMB,
either related to thermal boundary layers in a convective mantle or
to a conductive heat flux in a stagnant mantle, provides the ther-
mal boundary condition for core convection. Thus, we impose a
uniform heat flux Q at the surface of the sphere which represents
the CMB. The heat flux is equal to zero at ri. The velocity vanishes
on the rigid boundaries. We study hydrodynamic simulations (in
which the initial magnetic field is set to zero) and dynamo simula-
tions (in which the initial magnetic field corresponds to a dipole of
infinitesimal amplitude).

Non-dimensional control parameters are:
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Table 1
Numerical models and results for hydrodynamic simulations. See text for the definitions of input parameters and output quantities. In all simulations we impose Pr = 1 and
Pm = 5. The first column labels A and B tag runs which are specifically referred to in the text. The last column characterizes the resulting flow regime: ‘Sym’ and ‘Asym’ for
simulations which are in a symmetric and asymmetric regime respectively (see Section 3.2 for definitions).

E RaQ Ks Ka K0a

0.0001 1.5 × 10−5 2.56 × 10−5 3.10 × 10−15 6.86 × 10−16 Sym
0.0001 1.7 × 10−5 3.01 × 10−5 1.13 × 10−12 1.65 × 10−13 Sym
0.0001 1.8 × 10−5 3.24 × 10−5 1.46 × 10−9 1.67 × 10−10 Sym
0.0001 2 × 10−5 3.61 × 10−5 1.45 × 10−6 2.16 × 10−7 Asym
0.0001 2.2 × 10−5 3.90 × 10−5 3.98 × 10−6 7.38 × 10−7 Asym
0.0001 2.5 × 10−5 4.40 × 10−5 6.44 × 10−6 1.23 × 10−6 Asym
0.0001 4 × 10−5 6.49 × 10−5 2.63 × 10−5 6.81 × 10−6 Asym
0.0001 4.5 × 10−5 7.11 × 10−5 3.25 × 10−5 8.48 × 10−6 Asym
0.0001 5 × 10−5 7.76 × 10−5 3.88 × 10−5 1.02 × 10−5 Asym
0.0001 6 × 10−5 9.27 × 10−5 5.15 × 10−5 1.33 × 10−5 Asym
0.0001 7 × 10−5 1.08 × 10−4 6.13 × 10−5 1.52 × 10−5 Asym
0.0003 1.8 × 10−5 6.40 × 10−7 9.28 × 10−18 9.20 × 10−18 Sym
0.0003 4.5 × 10−5 3.22 × 10−5 3.13 × 10−16 2.55 × 10−16 Sym
0.0003 7.2 × 10−5 6.99 × 10−5 9.22 × 10−12 9.80 × 10−13 Sym

A 0.0003 9 × 10−5 9.11 × 10−5 3.69 × 10−11 7.79 × 10−12 Sym
0.0003 1.08 × 10−4 1.15 × 10−4 1.41 × 10−10 1.00 × 10−11 Asym
0.0003 1.26 × 10−4 1.28 × 10−4 2.07 × 10−5 6.29 × 10−6 Asym
0.0003 1.35 × 10−4 1.38 × 10−4 2.30 × 10−5 6.33 × 10−6 Asym
0.0003 1.575 × 10−4 1.49 × 10−4 4.93 × 10−5 1.78 × 10−5 Asym
0.0003 1.8 × 10−4 1.66 × 10−4 7.20 × 10−5 2.81 × 10−5 Asym
0.0003 1.98 × 10−4 1.73 × 10−4 9.04 × 10−5 3.59 × 10−5 Asym
0.0003 2.25 × 10−4 1.92 × 10−4 1.14 × 10−4 4.56 × 10−5 Asym
0.0003 2.475 × 10−4 2.02 × 10−4 1.35 × 10−4 5.37 × 10−5 Asym
0.0003 2.7 × 10−4 2.15 × 10−4 1.58 × 10−4 6.36 × 10−5 Asym
0.0003 3.15 × 10−4 2.45 × 10−4 1.94 × 10−4 7.56 × 10−5 Asym

B 0.0003 3.6 × 10−4 2.76 × 10−4 2.34 × 10−4 9.00 × 10−5 Asym
0.001 6.5 × 10−4 3.70 × 10−4 1.88 × 10−7 7.60 × 10−8 Asym
0.001 7 × 10−4 3.58 × 10−4 5.98 × 10−5 3.68 × 10−5 Asym
0.01 1.25 × 10−2 3.40 × 10−5 0 0 Sym
0.01 1.3 × 10−2 8.48 × 10−5 0 0 Sym
0.01 1.4 × 10−2 2.25 × 10−4 0 0 Sym
0.01 1.55 × 10−2 6.00 × 10−5 2.08 × 10−4 2.02 × 10−4 Asym
0.01 1.57 × 10−2 1.29 × 10−6 2.83 × 10−4 2.83 × 10−4 Asym
0.01 1.6 × 10−2 1.47 × 10−6 3.35 × 10−4 3.35 × 10−4 Asym
0.01 1.61 × 10−2 1.60 × 10−6 3.52 × 10−4 3.52 × 10−4 Asym
0.01 1.62 × 10−2 1.75 × 10−6 3.69 × 10−4 3.69 × 10−4 Asym
0.01 1.63 × 10−2 1.92 × 10−6 3.87 × 10−4 3.87 × 10−4 Asym
0.01 1.65 × 10−2 2.32 × 10−6 4.21 × 10−4 4.21 × 10−4 Asym
0.01 1.7 × 10−2 3.30 × 10−6 5.08 × 10−4 5.08 × 10−4 Asym
0.01 1.8 × 10−2 5.93 × 10−6 6.80 × 10−4 6.80 × 10−4 Asym
0.01 1.9 × 10−2 9.30 × 10−6 8.52 × 10−4 8.52 × 10−4 Asym

• the modified Rayleigh number

RaQ = ˛g0Q

4	�Cp�3D4
, (6)

which has the advantage of being independent of the thermal and
viscous diffusivities (Christensen and Aubert, 2006; Aubert et al.,
2009),

• the Ekman number

E = 


�D2
, (7)

• the Prandtl number

Pr = 


�
, (8)

• the magnetic Prandtl number

Pm = 


�
, (9)

where ˛ is the thermal expansion coefficient, go is the acceler-
ation due to gravity at the outer radius, 
 the kinematic viscosity,
� the thermal diffusivity and � the magnetic diffusivity. Using this
choice of non-dimensional numbers, the canonical Rayleigh num-
ber Ra is given by Ra = RaQE−3 Pr2.

The numerical code PARODY is used to solve the entire set of
nonlinear equations (1)–(5). More details about this code can be
found in Aubert et al. (2008). The parameters of all the nonlinear

simulations used in this study are contained in Table 1 (hydrody-
namic simulations) and Table 2 (dynamo simulations): we vary the
values of E and RaQ and set Pr to 1 and Pm to 5 in most simula-
tions. Linear stability results are obtained using a linear version
of PARODY. Eqs. (1)–(5) are linearized in order to get the corre-
sponding perturbation equations. The basic state corresponds to a
stagnant fluid in which heat is transferred by diffusive processes.
The algorithm used here is the same as in Dormy et al. (2004):
it does not solve an eigenvalue problem but, for each value of
the modified Rayleigh number, it integrates the equations in time
until the system converges towards a given eigenfunction of the
form F(r)exp (t)exp i(m� − ωt) for each azimuthal wavenumber
m. Then, we increase the Rayleigh number until the growth rate of
a particular mode with azimuthal wavenumber mc becomes pos-
itive. As for the nonlinear analysis, we set Pr = 1 and we vary the
Ekman and modified Rayleigh numbers.

As the results presented in this study are rather unexpected, spe-
cial care has been devoted to testing our numerical implementation
PARODY against at least another implementation (the Christensen,
Wicht, Glatzmaier MAG/MAGIC code, Christensen et al., 2001) in a
case where antisymmetric convection arises in the presence of an
inner core, with the following parameters: E = 10−4, RaQ = 2 × 10−4,
Pr = 1, Pm = 7, and an aspect ratio ri/ro = 0.35. We have checked
that after equilibration, both codes yield the same results, with an
equatorially asymmetric temperature profile outside the cylinder
tangent to the inner core.
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Table 2
Numerical models and results for dynamo simulations. See text for the definitions of input parameters and output quantities. In all simulations we impose Pr = 1 and Pm = 5,
except in simulation H in which Pm = 1. The first column labels C to H tag runs which are specifically referred to in the text. The last column characterizes the flow regime:
‘Sym’, ‘Os’ and ‘Asym’ for simulations which are in a symmetric, oscillating and asymmetric regime respectively (see Sections 3.2 and 4.1 for definitions).

E RaQ Ks Ka K0a Mdip Mqua

H 3 × 10−5 4.5 × 10−5 1.46 × 10−4 6.07 × 10−5 8.86 × 10−6 1.94 × 10−7 2.16 × 10−7 Asym
0.0001 2 × 10−5 1.79 × 10−5 3.61 × 10−6 2.18 × 10−7 1.65 × 10−5 9.39 × 10−6 Os
0.0001 4 × 10−5 3.67 × 10−5 1.03 × 10−5 6.05 × 10−7 2.35 × 10−5 1.66 × 10−5 Os
0.0001 6 × 10−5 5.81 × 10−5 1.84 × 10−5 1.43 × 10−6 2.43 × 10−5 1.92 × 10−5 Os
0.0001 6.5 × 10−5 6.16 × 10−5 1.97 × 10−5 1.47 × 10−6 2.88 × 10−5 2.25 × 10−5 Os
0.0001 7 × 10−5 6.61 × 10−5 2.26 × 10−5 2.22 × 10−6 2.85 × 10−5 2.29 × 10−5 Os
0.0001 7.5 × 10−5 7.26 × 10−5 2.59 × 10−5 3.17 × 10−6 2.69 × 10−5 2.23 × 10−5 Os
0.0001 8 × 10−5 7.30 × 10−5 3.44 × 10−5 7.68 × 10−6 2.72 × 10−5 2.43 × 10−5 Os

G 0.0001 9 × 10−5 7.79 × 10−5 5.19 × 10−5 2.08 × 10−5 2.54 × 10−5 2.41 × 10−5 Os
0.0001 9.5 × 10−5 8.11 × 10−5 6.13 × 10−5 2.75 × 10−5 2.23 × 10−5 2.16 × 10−5 Asym
0.0001 1.5 × 10−4 1.32 × 10−4 1.27 × 10−4 5.50 × 10−5 1.37 × 10−5 1.40 × 10−5 Asym
0.0003 1.8 × 10−5 6.40 × 10−7 5.62 × 10−22 5.57 × 10−22 7.07 × 10−16 1.13 × 10−22 Sym
0.0003 4.5 × 10−5 3.26 × 10−5 1.53 × 10−13 1.26 × 10−13 3.30 × 10−10 7.48 × 10−17 Sym
0.0003 7.2 × 10−5 6.85 × 10−5 3.56 × 10−11 1.48 × 10−11 1.44 × 10−10 5.17 × 10−14 Sym

C 0.0003 9 × 10−5 7.67 × 10−5 2.33 × 10−6 1.79 × 10−7 1.59 × 10−5 3.13 × 10−6 Sym
0.0003 1.08 × 10−4 8.33 × 10−5 7.16 × 10−6 8.03 × 10−7 2.65 × 10−5 1.00 × 10−5 Os
0.0003 1.35 × 10−4 1.14 × 10−4 1.15 × 10−5 1.27 × 10−6 3.86 × 10−5 2.00 × 10−5 Os
0.0003 1.8 × 10−4 1.38 × 10−4 2.40 × 10−5 3.11 × 10−6 2.97 × 10−5 1.88 × 10−5 Os
0.0003 1.98 × 10−4 1.38 × 10−4 2.90 × 10−5 3.73 × 10−6 4.33 × 10−5 2.72 × 10−5 Os

F 0.0003 2.25 × 10−4 1.58 × 10−4 4.52 × 10−5 1.23 × 10−5 3.84 × 10−5 2.80 × 10−5 Os
0.0003 2.48 × 10−4 1.58 × 10−4 4.74 × 10−5 1.06 × 10−5 5.59 × 10−5 4.07 × 10−5 Os
0.0003 2.7 × 10−4 1.48 × 10−4 8.69 × 10−5 4.42 × 10−5 5.88 × 10−5 5.12 × 10−5 Os
0.0003 2.925 × 10−4 1.49 × 10−4 1.31 × 10−4 8.36 × 10−5 5.05 × 10−5 4.94 × 10−5 Asym
0.0003 3.15 × 10−4 1.53 × 10−4 1.65 × 10−4 1.13 × 10−4 4.76 × 10−5 4.89 × 10−5 Asym

D 0.0003 3.6 × 10−4 1.75 × 10−4 2.14 × 10−4 1.51 × 10−4 4.28 × 10−5 4.37 × 10−5 Asym
0.0003 4.05 × 10−4 1.92 × 10−4 2.83 × 10−4 2.05 × 10−4 4.25 × 10−5 4.43 × 10−5 Asym
0.0003 4.5 × 10−4 2.15 × 10−4 3.37 × 10−4 2.40 × 10−4 3.97 × 10−5 4.12 × 10−5 Asym
0.001 6 × 10−4 3.25 × 10−4 2.50 × 10−8 1.16 × 10−8 3.34 × 10−11 4.48 × 10−14 Sym
0.001 7 × 10−4 3.88 × 10−4 1.95 × 10−5 9.15 × 10−6 3.59 × 10−11 8.83 × 10−12 Asym
0.001 7.5 × 10−4 3.02 × 10−4 9.33 × 10−5 6.51 × 10−5 1.23 × 10−5 1.00 × 10−5 Asym
0.001 7.6 × 10−4 3.11 × 10−4 9.44 × 10−5 6.56 × 10−5 1.40 × 10−5 1.12 × 10−5 Asym
0.001 7.7 × 10−4 3.14 × 10−4 1.10 × 10−4 7.87 × 10−5 1.09 × 10−5 9.27 × 10−6 Asym
0.001 8 × 10−4 3.17 × 10−4 1.30 × 10−4 9.29 × 10−5 1.01 × 10−5 9.02 × 10−6 Asym
0.001 8.2 × 10−4 3.17 × 10−4 1.39 × 10−4 1.00 × 10−4 1.35 × 10−5 1.16 × 10−5 Asym
0.001 8.5 × 10−4 3.27 × 10−4 1.48 × 10−4 1.05 × 10−4 1.48 × 10−5 1.31 × 10−5 Asym
0.001 8.7 × 10−4 3.23 × 10−4 1.63 × 10−4 1.18 × 10−4 1.65 × 10−5 1.49 × 10−5 Asym
0.001 9 × 10−4 3.25 × 10−4 1.93 × 10−4 1.41 × 10−4 1.48 × 10−5 1.37 × 10−5 Asym
0.001 9.5 × 10−4 3.29 × 10−4 2.16 × 10−4 1.60 × 10−4 2.15 × 10−5 1.98 × 10−5 Asym
0.001 1 × 10−3 3.29 × 10−4 2.24 × 10−4 1.66 × 10−4 3.69 × 10−5 3.41 × 10−5 Asym
0.001 3 × 10−3 7.60 × 10−4 1.73 × 10−3 1.34 × 10−3 7.18 × 10−6 7.53 × 10−6 Asym
0.001 5 × 10−3 1.31 × 10−3 2.94 × 10−3 2.21 × 10−3 1.46 × 10−5 1.51 × 10−5 Asym

The time averaged kinetic energy density K is defined as follows:

K = 1
2VS

〈∫
VS

u2dV

〉
(10)

where VS is the shell volume and the angled brackets indicate a time
averaging operator. Using this template, we additionally define:

• the time averaged kinetic energy density contained in the equa-
torially antisymmetric, axisymmetric (EAA) flow component K0a,

• the time averaged kinetic energy density contained in equatori-
ally antisymmetric modes Ka,

• the time averaged kinetic energy density contained in equatori-
ally symmetric modes Ks.

In the present study, it is understood that an ‘equatorially sym-
metric’ vector field u is left unchanged by the operator � which
describes mirror-reflection through the equatorial plane, i.e. �u = u,
while an ‘equatorially antisymmetric’ vector field is such that
�u = − u.

We similarly define a time averaged magnetic energy density M
at the external boundary of the model:

M = 1
2Scmb

〈∫
Scmb

B2dS

〉
(11)

where Scmb is the surface of the sphere (at the CMB). Using this
template, we also define:

• the time averaged CMB magnetic energy related to modes of
dipole parity (odd l + m in spherical harmonics) Mdip,

• the time averaged CMB magnetic energy related to modes of
quadrupole parity (even l + m) Mqua.

Another output quantity fhem is used to characterize the hemi-
sphericity of the magnetic field at the CMB:

fhem = max[MS, MN]
M

, (12)

where MS and MN are the time averaged magnetic energy densities
contained in the Southern and Northern hemispheres. The hemi-
sphericity factor fhem is equal to 0.5 for a purely dipolar field and
has the value 1 for a purely hemispherical field.

3. Results for convection without dynamo action

In this section we introduce the results for secular cooling-
driven convection in a rotating sphere without dynamo action.
Starting from a non-convective stable state at low Rayleigh num-
ber, we introduce the main hydrodynamic transitions found when
we progressively increase the forcing.
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Table 3
Critical Rayleigh number RaQc and azimuthal wavenumber mc for the most linearly
unstable equatorially symmetric convection mode.

E RaQc mc

10−6 1.08 × 10−9 38
3 × 10−6 6.80 × 10−9 26
10−5 5.18 × 10−8 17
3 × 10−5 3.34 × 10−7 12
5 × 10−5 7.98 × 10−7 10
10−4 2.61 × 10−6 7
3 × 10−4 1.72 × 10−5 5

3.1. Linear stability results: the onset of convection

The first hydrodynamic transition corresponds to the onset of
convection and occurs when the modified Rayleigh number reaches
a first critical value RaQc. We start introducing the onset of convec-
tion in our system because it gives the framework for the nonlinear
simulations presented in the following parts.

For each value of the azimuthal wavenumber m and each value
of the modified Rayleigh number, two growth-rates can be cal-
culated using the linear version of the code PARODY: one for
equatorially symmetric modes and one for equatorially antisym-
metric modes. Indeed, these two families of modes are not coupled
in the linearized equations.

We found that the first unstable modes are equatorially sym-
metric, non-axisymmetric modes, as expected from previous
theoretical studies (Busse, 1970; Jones et al., 2000). Table 3 lists
the critical Rayleigh number and azimuthal wavenumber for each
studied value of the Ekman number. Fig. 2 shows that RaQc/E5/3 con-
verges towards an asymptote which is in good agreement with the
value 10.3749 (≈10.4) obtained by Jones et al. (2000). It must be
pointed out that Jones et al. (2000) used slightly different bound-
ary conditions (fixed temperature and stress-free) at the external
boundary, while we presently use a fixed flux condition for geo-
physical relevance and we consider rigid boundaries. However, as
the temperature gradient in the bulk of the fluid is the same in
our and their study, we do not expect the asymptote to be shifted
by a dramatic amount, as confirmed by our numerical results. The
asymptotic behavior of the critical modified Rayleigh number in
the limit E → 0 is thus approximated by:

RaQc ≈ 10.4 · E5/3 (13)

In terms of critical canonical Rayleigh number Rac, this corresponds
to the following asymptotic behavior: Rac ≈ 10.4 · E−4/3. The expo-
nent value −4/3 for the Ekman number dependence of the critical
Rayleigh number is a robust feature of the onset of convection in

103 104 105 106 107
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1/E

Fig. 2. Convection onset. Stars: RaQc/E5/3 versus 1/E (logarithmic scale). The grey line
is the asymptote predicted by the theory of Jones et al. (2000) with slightly different
boundary conditions (see text).

rotating spheres or shells: it is expected from analytical consider-
ation (Busse, 1970; Jones et al., 2000) and has subsequently been
found in numerical studies (Dormy et al., 2004) for other geometries
and boundary conditions.

As illustrated in Fig. 3, the velocity structures at onset cor-
respond to quasi-geostrophic Rossby waves that vary slowly in
z-direction. These waves form a set of non-axisymmetric vortices
aligned with the rotation axis as predicted by Busse (1970). The
azimuthal wavenumber of the first unstable modes mc, is expected
to vary such that mc ∝ E−1/3 (Busse, 1970; Jones et al., 2000). The val-
ues we found for mc are reported in Table 3 and are in agreement
with the expected trend.

A second important family of convective modes is the axisym-
metric family. At first sight it can seem of secondary importance
to study the linear stability of this family into detail since we pre-
viously saw that the first unstable modes are non-axisymmetric
at high rotation rates (Geiger and Busse, 1981 have shown that
axisymmetric modes can be preferred at low rotation rates). How-
ever, as announced in Section 1 and developed in Section 3.2, the
axisymmetric modes acquire a crucial importance in our nonlin-
ear simulations. We thus compute (Table 4) the linear threshold of
instability for the axisymmetric modes RaQa0. Indeed, these results
will be required in Section 3.2 in order to determine if the emer-
gence of EAA modes in nonlinear simulations is related to their
linear instability. Within a margin of error of 20% (which corre-
sponds to the misfit between the results of Roberts (1965) and
Bisshopp and Niiler (1965)), our numerical results are compatible

Fig. 3. Velocity structures at onset for E = 10−5 and Pr = 1. (a) Meridional section of the z-component of velocity. (b) Meridional section of the azimuthal velocity field. (c)
Equatorial section (� = 	/2) of the z-component of vorticity.



Author's personal copy

66 M. Landeau, J. Aubert / Physics of the Earth and Planetary Interiors 185 (2011) 61–73

Table 4
Critical Rayleigh numbers RaQa0 for the linear onset of axisymmetric convection
(EAA mode), and RaQt for the nonlinear emergence of the EAA mode (see Section
3.2).

E RaQa0 RaQt

10−4 8.37 × 10−6 1.95 × 10−5

3 × 10−4 5.00 × 10−5 1.07 × 10−4

10−3 3.34 × 10−4 6.28 × 10−4

10−2 1.41 × 10−2 1.41 × 10−2

Fig. 4. First unstable axisymmetric convection mode at E = 3 × 10−4 and Pr = 1. (a)
Meridional section of the z-component of velocity. (b) Meridional section of the
azimuthal velocity field.

with both the asymptotes found by Roberts (1965), which yields:

RaQa0 ≈ 52.2 · E5/3, (14)

and Bisshopp and Niiler (1965), which yields:

RaQa0 ≈ 61.3 · E5/3, (15)

although the thermal boundary conditions are different and a
small inner sphere is present in our study. Unlike the non-
axisymmetric modes, the most linearly unstable axisymmetric
mode belongs to the equatorially antisymmetric family. Its pat-
tern (Fig. 4) corresponds to a single convection cell carrying heat
away in the direction of the rotation axis, whereas the first unsta-
ble non-axisymmetric modes convect heat in the cylindrical radial
direction. As the axial circulation gets close to the upper and lower
boundaries, the flow is diverted and couples with the Coriolis force
to give rise to an equatorially antisymmetric, zonal circulation. As
in the case of non-axisymmetric convection (Busse, 1970), viscous
forces on short length scales of order E1/3 are required to overcome
the two-dimensional constraint of the Taylor–Proudman theorem.

Then, the thickness of the axial cell is of order E1/3 (Roberts, 1965)
and motion in the cell is quasi-geostrophic, slowly varying in z-
direction.

In summary, the linear stability analysis performed in the case
of rotating convection driven by secular cooling confirms the theo-
retical results obtained with slightly different boundary conditions:
equatorially symmetric, non axisymmetric vortices are the most
linearly unstable modes, and the first linearly unstable axisym-
metric modes are equatorially antisymmetric. The critical canonical
Rayleigh numbers for both families vary as E−4/3 when E → 0. Plane-
tary core dynamos are located largely above the onset of convection
and nonlinear simulations are required to go further.

3.2. Nonlinear simulation results: transition towards the
asymmetric regime

When we increase the Rayleigh number slightly above onset,
we found that non-axisymmetric vortices aligned with the rotation
axis (equatorially symmetric structures) remain the main convec-
tive features, even though the flow becomes chaotic and small-scale
structures appear. This result can be seen in Fig. 5(b) which shows
results obtained with simulation A (with RaQ ≈ 5RaQc, see Table 1).
The columnar structures tend to satisfy the Taylor–Proudman theo-
rem and the flow is said to be in a symmetric regime as indicated in
Fig. 5(a) which gives a schematic representation of the main hydro-
dynamic transitions found when increasing the modified Rayleigh
number. Most of the previously studied nonlinear numerical simu-
lations are located in this symmetric regime (see for instance Olson
et al., 1999).

By further increasing the forcing, we found that the flow
undertakes an unexpected transition when the modified Rayleigh
number reaches a second critical value RaQt (values reported in
Table 4). Fig. 5(a) shows a schematic representation of this tran-
sition and Fig. 6 serves as a bifurcation diagram. At the onset
of convection (RaQc ≈ 0.17 × 10−4), the symmetric solution branch
(K0a 	 Ks) emerges. At RaQt ≈ 1.07 × 10−4, the symmetric branch
looses stability and a new branch of solutions, which is charac-
terized by a rapid increase of K0a, emerges through a supercritical
pitchfork bifurcation. This branch of solutions is called asymmetric
branch because it characterizes equatorially asymmetric solutions
in which the EAA kinetic energy density K0a, and the equatorially
symmetric kinetic energy density Ks, become of the same order of
magnitude (Fig. 6). The asymmetric regime is unexpected since the
amplitude of equatorially antisymmetric modes has always been
found to be much smaller than the amplitude of equatorially sym-
metric modes in previous numerical simulations (Olson et al., 1999;
Christensen and Aubert, 2006; Sakuraba and Roberts, 2009). The
EAA mode is the dominant equatorially antisymmetric mode since
almost half of Ka is contained in this mode (K0a ≈ 0.44Ka). Equa-

Fig. 5. (a) Schematic representation of the two main hydrodynamic transitions found when increasing the modified Rayleigh number: from a non-convective state to the
classical symmetric regime at RaQc (onset of convection) and then, at RaQt , from the symmetric regime to the asymmetric regime (characterized by the emergence of an EAA
mode). (b) and (c) Snapshots of azimuthal velocity field at radius r = 0.88 (Hammer projection), hydrodynamic simulations. (b) Simulation A. (c) Simulation B (parameters
reported in Table 1).
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Fig. 6. Bifurcation diagram showing K0a (stars), Ka (crosses) and Ks (triangles) versus
RaQ at E = 3 × 10−4. Solution branches are identified in (a) since K0a is the energy
contained in the mode which emerges at the transition of interest. Solid and dashed
curves refer to linearly stable and unstable solutions respectively. RaQt locates the
emergence of the asymmetric solution branch. To estimate the value of RaQt we
look for RaQt and the constant a such that K0a is best scaled (in the sense of the least
squares) by a(RaQ − RaQt) on the asymmetric branch.

torially antisymmetric, non-axisymmetric modes also emerge at
RaQt, with an energy density equal to Ka − K0a. However, we find
that these modes do not emerge spontaneously, contrary to the
EAA mode, but result from nonlinear interactions between the EAA
mode and equatorially symmetric modes. The spatial structure of
these modes is indeed strongly correlated with that of equatori-
ally symmetric, non-axisymmetric modes. Thus, in the asymmetric
regime, the dominant (and dynamically important) structures cor-
respond to a superposition of columnar, equatorially symmetric
modes and an EAA mode (Fig. 5(c)).

We found that, at low Ekman numbers (E ≤ 10−3), RaQt is located
above the linear threshold of instability of EAA modes RaQa0
(Table 4). This result means that the emergence of an EAA mode
in our nonlinear simulations can not be explained by linear sta-
bility analysis if E ≤ 10−3. Thus, the asymmetric branch emerges
from the equatorially symmetric, columnar convection which has
to be seen as the new basic state. We checked numerically that
RaQt corresponds indeed to the threshold of linear instability of EAA
modes with respect to a purely equatorially symmetric basic state.
The bifurcation at E = 10−2 is a very isolated case since RaQt = RaQa0
(Table 4). In this case the bifurcation can be described in terms
of interactions between two linearly unstable modes: an equato-
rially symmetric mode of order m = 1 and an EAA mode. Since we
are looking for asymptotic behaviors in the limit E → 0, we will not
consider the slowly rotating cases E ≥ 10−2 for the determination
of the regime boundaries.

Fig. 7 gives a schematic view of the EAA mode which emerges in
the asymmetric regime: the azimuthal velocity field is organized
into two large equatorially antisymmetric vortices, one in each

Fig. 7. Arrows: schematic representation of the time-averaged EAA mode
(azimuthal and meridional flows) which emerges in the asymmetric regime. (a)
Meridional section (arbitrary azimuth) of the time-averaged temperature field in
asymmetric simulation B (parameters reported in Table 1). (b) Same as (a) for the
time-averaged azimuthal velocity field.

hemisphere. Contrary to the two-cell meridional circulation of the
symmetric regime (Olson et al., 1999), the time-averaged merid-
ional circulation induced by the EAA mode is organized in only one
cell. The fluid goes from one pole to the other passing through the
center of the sphere. As a consequence of this equatorially anti-
symmetric meridional circulation, the temperature profile has a
considerable equatorially antisymmetric component (Fig. 7(a)).

The dynamics of the asymmetric regime is strongly influenced
by rotation since the local Rossby number (Christensen and Aubert,
2006) remains inferior to 0.08 in all our asymmetric simulations.
We find that the equatorially asymmetric azimuthal velocity field
results from meridional variation of the asymmetric temperature
field through a thermal wind mechanism, which is characterized
by a balance between the Coriolis, pressure gradient and buoy-
ancy forces. Taking the �-component of the curl of the momentum
equation, and retaining only the above forces, we have:

∂u�

∂z
= RaQ

2r0

∂T

∂�
(16)

Fig. 8 shows a high degree of similarity between the right-hand
side and left-hand side terms of Eq. (16), thus confirming that Eq.
(16) captures the flow dynamics inside the shell (except near the

Fig. 8. Comparison between (a) a snapshot of the �-average of the left-hand side
term of Eq. (16), and (b) a snapshot of the �-average of the right-hand side term
of the same equation. Results obtained using asymmetric simulation B (parameters
indicated in Table 1).
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boundaries where the viscous term in Eq. (1) is not negligible). The
term ∂ T/∂� is globally negative in the whole shell as a consequence
of the equatorially antisymmetric component of the temperature
profile shown in Fig. 7(a). Then, according to Eq. (16), ∂ u�/∂z is
also negative, and this is coherent with an antisymmetric azimuthal
flow organized in two vortices as we find in our asymmetric simu-
lations (Fig. 7(b)).

The time-averaged zonal velocity field is also in equilibrium
with the time-averaged convective axial velocity field. In our non-
linear simulations, we have found that this equilibrium arises
through Ekman pumping. In the Southern hemisphere in Fig. 7,
the fluid is rotating faster than the external boundary, inducing
a meridional flow that converges towards the center of the vortex.
Conversely, the time-averaged meridional flow diverges from the
center of the vortex in the Northern hemisphere. The axial velocity
vz is then related to the vertical vorticity ωz by vz = O(E1/2ωz). To
check this hypothesis we computed the ratio

rE = max |〈〈vz〉〉�|
E1/2 max |〈〈ωz〉〉�| , (17)

where〈〉� and 〈〉 denote the azimuthal and time averaging opera-
tors. Considering only the equatorially antisymmetric part of the
velocity and vorticity fields, we find a mean value r̄E = 3.52 and
a standard deviation 1.6, meaning that this ratio remains of order
1, as expected in the case of an Ekman pumping mechanism, even
though our configuration is far from being the ideal case of a unique
rotating plate for which the classical Ekman pumping formula is
derived.

Eqs. (1), (2) and (5), and the boundary conditions have equatorial
reflection symmetry. Consequently, if A(t) is the amplitude of the
EAA mode ua, then Aua and −Aua are two dynamically equivalent
solutions. This means that the solution for the EAA mode which
is represented in Fig. 7 is dynamically equivalent to the solution
which can be obtained by reversing the arrows in Fig. 7. In our sim-
ulations we indeed found both solutions. The system chooses one of
the two and does not reverse towards the other. Thus, the EAA mode
should emerge through a pitchfork bifurcation. As it would be in a
canonical supercritical pitchfork bifurcation, K0a is proportional to
(RaQ − RaQt) in our numerical simulations (Fig. 6(a)).

Considering the possible relationship between the emergence of
a strong EAA mode and the smallness (or absence) of the inner core,
we found the same hydrodynamic transition towards the asym-
metric regime in a shell with aspect ratio ri/ro = 0.35, provided the
driving mode is the same (secular cooling with zero heat flux at
the inner core). The critical value RaQt is larger when ri/ro = 0.35
than when ri/ro = 0.01 (results not reported here) but the tran-
sition occurs at about the same static temperature difference in
both cases. However, no transition to the EAA state has been found
when a non-zero homogeneous heat flux or fixed temperature was

Fig. 9. Phase diagram of the two main hydrodynamic transitions in the absence
of dynamo action: from a non-convective state to the symmetric regime (light grey
curve corresponds to the asymptotic behavior of RaQc at low Ekman numbers accord-
ing to Eq. (13)) and from the symmetric regime to the asymmetric regime (black
curve). Light grey symbols: symmetric simulations. Black symbols: asymmetric sim-
ulations.

imposed at the inner core boundary, suggesting that the presence
of a thermal boundary layer with a positive incoming heat flux at
the inner core boundary prevents the EAA mode from emerging.
We presume that the EAA hydrodynamic transition is favored in
our numerical simulations because the buoyancy driving allows for
EAA convection carrying heat away in the direction perpendicular
to the equatorial plane.

The different transitions found are represented in a (1/E, RaQ)
parameter space (Fig. 9). The transition between the symmetric
and asymmetric regimes occurs at RaQt, which is best scaled (in the
sense of the least squares) by:

RaQt ≈ 21.2 · E1.51 (18)

4. Results for convective dynamos

We now turn to the study of the EAA mode in the presence
of dynamo action. We first introduce the different hydrodynamic
transitions found when allowing dynamo action and compare them
with the transitions found in hydrodynamic simulations (Section
3). Then we present the changes in magnetic field generation which
are related to these hydrodynamic transitions.

4.1. Hydrodynamic transitions

Fig. 10(a) gives a schematic representation of the different
hydrodynamic transitions found when increasing the modified
Rayleigh number and allowing dynamo action. The results for the
linear onset of convection at RaQc are identical to what we found in

Fig. 10. (a) Schematic representation of the main hydrodynamic transitions found when increasing the modified Rayleigh number and allowing dynamo action: from a
non-convective state to the classical symmetric regime at RaQc (onset of convection) and then, from the symmetric regime to the oscillating regime at RaQt and finally from
the oscillating regime to the asymmetric regime. (b) and (c) Snapshots of azimuthal velocity field at radius r = 0.88 (Hammer projections). (b) Simulation C. (c) Simulation D
(parameters reported in Table 2).



Author's personal copy

M. Landeau, J. Aubert / Physics of the Earth and Planetary Interiors 185 (2011) 61–73 69

Section 3.1 (without dynamo action) since the Lorentz force (third
term in the right-hand side of Eq. (1)) is a nonlinear term. Increasing
the modified Rayleigh number above onset we found a symmetric
regime dominated by columnar, equatorially symmetric vortices as
illustrated in Fig. 10(b), similarly to the non-magnetic case.

By further increasing the forcing, the flow undertakes succes-
sive changes of regime which can be identified in the bifurcation
diagram of Fig. 11(a). When RaQ reaches the value RaQt (previously
computed in Section 3.2), the symmetric solution branch (K0a 	 Ks)
becomes unstable and the instantaneous value of K0a starts oscil-
lating in a chaotic manner between low values much smaller than
Ks (symmetric regime), and larger values of order Ks (asymmetric
regime). The flow is said to be in an oscillating regime, illustrated in
Fig. 12. Finally, when the forcing is strong enough (RaQ ≈ 3 × 10−4),
the flow reaches the asymmetric regime: the instantaneous value
of K0a remains large and does not reach the symmetric solution
branch anymore. Similarly to the hydrodynamic case, the dominant
(and dynamically important) modes in the asymmetric regime are
the columnar, equatorially symmetric modes and the EAA mode
(Fig. 10(c)).

We found a similar bifurcation diagram (with a symmetric, oscil-
lating and asymmetric regime) at E = 10−4. However we did not find
any oscillating simulations at E ≥ 10−3 because the dynamo onset
has not been overcome when RaQ reaches RaQt at such Ekman num-
bers. Therefore, the bifurcation diagrams are similar to the ones
obtained in hydrodynamic simulations if E ≥ 10−3. Since we are
looking for asymptotic behaviors in the limit E → 0, we will not con-
sider cases in which E ≥ 10−3 for the determination of the regime
boundaries.

The appearance of the oscillating regime when allowing dynamo
action can be seen as a consequence of Ferraro’s law of corota-
tion (Ferraro, 1937): the axisymmetric magnetic field lines tend to
follow the isocontours of 〈u�/s〉� where s is the cylindrical radius.
At the beginning of an oscillation towards the asymmetric regime,
the EAA flow component emerges because it is linearly unstable
with respect to the symmetric regime (because RaQ ≥ RaQt). Then,
the EAA mode distorts the isocontours of 〈u�/s〉� which no longer
follow the magnetic field lines. Consequently, an axisymmetric
azimuthal magnetic field is created from stretching of the axisym-
metric poloidal magnetic field by the EAA azimuthal flow through
an ω-effect, which increases the magnetic tension along the merid-
ional field lines. In agreement with Lenz law, the resulting Lorentz
force tends to oppose the motion that increases the magnetic ten-
sion, i.e. reduces the EAA flow component. If the Lorentz force
becomes strong enough, the flow returns its symmetric regime.

Fig. 11. Bifurcation diagram at E = 3 × 10−4 (when allowing dynamo action) show-
ing K0a (stars), Ka (crosses) and Ks (triangles) versus RaQ . Vertical bars in (a) show
the range of values taken by the instantaneous values of K0a . RaQt corresponds to
the emergence of the asymmetric branch introduced in the hydrodynamic study
(computed in Section 3.2). Light grey, medium grey and black symbols correspond
to symmetric, oscillating and asymmetric simulations respectively (see text). Note
that K0a is not exactly equal to zero in the symmetric regime but very small compared
to the scale of the figure.

Thus, the closer we get to RaQt in the oscillating regime, the smaller
the growth-rate value of the EAA flow component becomes and
the faster the Lorentz force will be able to restore the symmetric
state. As a consequence, for Rayleigh numbers located just above
RaQt, we observe rather bursts towards the asymmetric regime than
oscillations (Fig. 12(a)).

The EAA mode forms one axisymmetric vortex in each hemi-
sphere, one cyclone and one anticyclone. The geometry of the
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Fig. 12. Instantaneous values for K0a (black curve) and Ks (light grey curve) versus time for oscillating simulations F ((a), RaQ close to RaQt) and G ((b), RaQ further away from
RaQt) (Table 2).
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Fig. 13. Phase diagram of the main hydrodynamic regimes when allowing dynamo
action. Each symbol corresponds to one numerical simulation. Light grey, medium
grey and black symbols correspond to symmetric, oscillating and asymmetric sim-
ulations respectively. The light grey curve corresponds to the asymptotic behavior
of RaQc given by Eq. (13). The medium grey curve corresponds to the best fit (in the
sense of the least squares) for RaQt . The black dashed line corresponds to a tentative
boundary regime between the oscillating and asymmetric regime.

time-averaged EAA mode in Fig. 7 remains unchanged when
dynamo action is present.

Similarly to Fig. 9, Fig. 13 summarizes the regime boundaries in
a (1/E, RaQ) parameter space when dynamo action is allowed. We
emphasize here again that the boundary between symmetric and
oscillating regimes is set by RaQ = RaQt, where RaQt is the forcing at
which the transition from the symmetric to the asymmetric regime
occurs in the hydrodynamic case. Its location is thus given by Eq.
(18).

4.2. Magnetic field structures: effects of the emergence of the EAA
mode

Fig. 14 shows the qualitative effects of the transition from
the symmetric to the asymmetric hydrodynamic regime on the
dynamo-generated magnetic field. Fig. 14(a) shows the results
obtained with symmetric simulation C (Table 2): the magnetic
field is dipole dominated similarly to previously described numer-
ical dynamos. In contrast, in asymmetric simulation D (Table 2),
the magnetic field is hemispherical with high intensities in one
hemisphere and weaker in the other (Fig. 14(b)), not only at the
CMB (top) but also at the surface of the planet (bottom). Thus,

Fig. 15. DMFI visualization of asymmetric simulation D (Table 2). The outer bound-
ary of the model is color-coded with the radial magnetic field. In addition, the outer
boundary is made selectively transparent, with a transparency level that is inversely
proportional to the local radial magnetic field. Field lines are displayed in grey, their
thickness is proportional to B2 (for details see Aubert et al., 2008).

the hydrodynamic asymmetric regime can induce hemispherical
dynamos.

The reason why the radial magnetic field becomes hemispher-
ical in the asymmetric hydrodynamic regime can be qualitatively
captured looking at the corresponding DMFI visualization (Aubert
et al., 2008) (Fig. 15). The surface magnetic flux is collected in the
hemisphere where the EAA meridional flow converges. Near the
pole, the converging EAA meridional flow is converted into flow
downwellings. The ambient radial magnetic field is amplified by
stretching within these downwellings, forming magnetic down-
wellings which are similar to the magnetic upwellings described
in Aubert et al. (2008). In the other hemisphere, magnetic flux is
dispersed by the divergent EAA flow and is thus much weaker.

In order to quantify this result, we computed the hemispheric-
ity factor fhem (Fig. 16(a)). A dynamo is said to be hemispherical
if fhem ≥ 0.75 which means that one hemisphere contains at least
75% of the CMB magnetic energy. The ratio Ka/Ks, which measures
the equatorial symmetry breaking of the flow, is a control param-
eter of the hemisphericity factor fhem, as shown by the univariate
behavior in Fig. 16(a). In symmetric simulations the flow is domi-

Fig. 14. Snapshots of the radial magnetic field at the CMB (top) and at the surface of a Mars-like planet (bottom) (Hammer projections). (a) Symmetric simulation C. (b)
Asymmetric simulation D.
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nated by equatorially symmetric modes and Ka/Ks has low values.
In these symmetric simulations the hemisphericity factor is very
close to 0.5 which means that these dynamos are not hemispher-
ical, as illustrated with Fig. 14(a). In asymmetric and oscillating
simulations the ratio Ka/Ks increases progressively from low val-
ues (∼0.2) to large values (∼2.3) due to the progressive emergence
of the EAA mode. Fig. 16(a) shows that the hemisphericity fac-
tor fhem increases almost linearly with Ka/Ks and the transition
from non-hemispherical to hemispherical dynamos is gradual. The
hemisphericity factor reaches 0.75 when Ka/Ks ≈ 1 (at Pm = 5). Sev-
eral hemispherical dynamos (fhem ≥ 0.75) are obtained, including
the simulation of Fig. 14(b). The reader may have expected the use
of K0a/Ks rather than Ka/Ks in Fig. 16(a) since the equatorial sym-
metry breaking of the flow is caused by the emergence of the EAA
mode in our simulations. However, we find a less univariate behav-
ior if we plot fhem as a function of K0a/Ks rather than Ka/Ks. This
result suggests that equatorially antisymmetric, non-axisymmetric
modes play a non-negligible role in the transition towards hemi-
spherical dynamos. However, these non-axisymmetric modes
remain a consequence of the spontaneous emergence of the EAA
mode.

Fig. 16(b) shows that the equatorial symmetry breaking of the
flow Ka/Ks, is also a control parameter of the magnetic field parity
Mqua/Mdip at fixed Pm. Indeed, all the simulations are aligned on the
same curve (with the exception of one simulation which has been
obtained at a different value of Pm). At fixed Pm, Mqua/Mdip increases
when Ka/Ks increases (due the emergence of the EAA mode in the
oscillating and asymmetric regimes). When Ka/Ks reaches ∼0.75,
Mqua/Mdip saturates and remains close to 1: there is equipar-
tition between magnetic energy contained in modes of dipole
parity and magnetic energy contained in modes of quadrupole
parity. We underline that several simulations have reached the
equipartition of magnetic energy even though they are not hemi-
spherical (for instance, multipole-dominated simulations). Note
that we use Ka/Ks rather than K0a/Ks for the same reasons as in
Fig. 16(a).

5. Discussion

5.1. Discussion of the numerical results

At onset, convection driven by secular cooling (modeled by
internal heating) in rapidly rotating spheres is very similar to
what has been obtained for other geometries and boundary
conditions: the first unstable modes are equatorially symmet-
ric, non-axisymmetric vortices aligned with the rotation axis. By
increasing the modified Rayleigh number above onset we found a

flow regime which remains dominated by equatorially symmetric
modes. These modes are in agreement with the Taylor–Proudman
constraint. The flow is said to be in a symmetric regime and it is very
similar to flows already described in previous numerical studies
(Olson et al., 1999).

By further increasing the forcing, we found a transition towards
a new flow regime, called the asymmetric regime. We have shown
that the asymmetric regime is characterized by the emergence of an
EAA mode (at RaQ = RaQt), with an amplitude which becomes of the
same order of magnitude as those of equatorially symmetric modes.
This transition is unexpected. First, because the amplitude of equa-
torially antisymmetric modes has always been found to be much
smaller than the amplitude of equatorially symmetric modes in
previous studies (Olson et al., 1999; Christensen and Aubert, 2006;
Sakuraba and Roberts, 2009). Second, because bifurcations are often
related to symmetry breaking. Even though the emergence of the
EAA mode breaks the equatorial symmetry, this mode has gained
axisymmetry with respect to the columnar basic state on which it
emerges. The occurrence of this transition highlights the need to
study secondary instability mechanisms, especially for planetary
systems which are far above the onset of primary instability.

The dynamics of the asymmetric regime is strongly influenced
by rotation. The EAA mode comprises strong azimuthal thermal
winds which induce two large-scale axial vortices: a cyclone in
one hemisphere and an anticyclone in the other hemisphere. The
related time-averaged meridional circulation is organized in only
one cell. The EAA mode is the nonlinear manifestation of the first
linearly unstable axisymmetric mode (considering a static basic
state) studied by Roberts (1965) and Bisshopp and Niiler (1965). We
underline that the EAA mode is an alternative way of carrying heat
away while complying with the Taylor–Proudman constraint. As
shown by Eqs. (14) and (15), the critical modified Rayleigh number
for axisymmetric convection is proportional to E5/3, as is the crit-
ical Rayleigh number for non-axisymmetric convection (Eq. (13)).
The Rayleigh number RaQt for the nonlinear emergence of the EAA
mode scales with the power 1.51 of the Ekman number (Eq. (18)),
which is rather close to 5/3.

For the EAA mode to emerge and become a dynamically mean-
ingful mode, two conditions must be met: the buoyancy flux must
vanish at the inner boundary and RaQ has to exceed RaQt. The rea-
son why the asymmetric regime has not been previously observed
stems from the fact that one of these two conditions was not met
in earlier studies. The size of the inner core appears not to have
effect on the transition towards the asymmetric regime. However,
in a geophysical context, the presence of an inner core implies a
non-zero buoyancy flux at the inner boundary. For that reason,
the asymmetric regime is only expected in planetary systems that
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Table 5
Plausible parameter values for Mars’ core, after Nimmo and Stevenson (2000) and
references for the first five parameters. The last parameter value is an estimation of

 in the terrestrial core.

Parameters Plausible values for Mars

Acceleration due to gravity at the CMB, g0 (m s−2) ∼3
Core radius, ro (km) 1300–1700
Density, � (kg m−3) 6600–8300
Thermal expansion coefficient, ˛ (K−1) ∼10−5

Heat capacity, Cp (J kg−1 K−1) 820–860
Rotation rate (present), � (s−1) 7.1 × 10−5

Kinematic viscosity, 
 (m2 s−1) ∼10−6

have not nucleated an inner core yet, and where convection is thus
powered only by secular cooling (or radiogenic heating).

We have shown that the emergence of the EAA mode in the
asymmetric hydrodynamic regime breaks the equatorial symme-
try which controls the hemisphericity of the dynamo. Indeed, if the
energy contained in the EAA mode is strong enough (i.e. the equa-
torial symmetry breaking of the flow Ka/Ks is larger than ∼1), then
we obtain hemispherical dynamos in which at least 75% of the total
magnetic energy at the CMB is contained in one hemisphere. The
fact that an equatorial symmetry breaking of the flow can lead to
hemispherical dynamos is a universal result related to fundamental
symmetries in the governing equations, and can be captured using
simple kinematic ˛2-dynamo models (Gallet and Petrelis, 2009).
The equatorial symmetry breaking of the flow, due to the emer-
gence of the EAA mode, leads to an equipartition between magnetic
energy contained in modes of dipole parity and magnetic energy
contained in modes of quadrupole parity in agreement with the
low dimensional model proposed by Gallet and Petrelis (2009).

Hemispherical dynamos have been previously found in numer-
ical simulations of convection and dynamo action in rotating shells
(Grote and Busse, 2000; Simitev and Busse, 2005; Stanley et al.,
2008). Fixed temperature and stress-free boundary conditions have
been imposed in Grote and Busse (2000) and in Simitev and Busse
(2005). Their hemispherical dynamos do not result from the same
mechanism as ours. Indeed, we found that the antisymmetric
kinetic energy remains at low values in their dynamo simulations
(Ka/Ks ≈ 0.01 at Pr = 1, Pm = 2, E = 2 × 10−4 and Ra = 6.5 × 105) and it
is exactly equal to zero in the corresponding hydrodynamic simu-
lations. In Stanley et al. (2008), hemispherical dynamos result from
the emergence of an EAA mode, as in our simulations, but this mode
is forced by thermal boundary conditions in Stanley et al. (2008)
while it spontaneously emerges in our study.

5.2. Implications for the past martian dynamo

The EAA mode of convection could be an attractive explanation
for the asymmetry of Mars’ crustal magnetic field without requir-
ing any post-dynamo mechanism or any heat flux heterogeneity
at the CMB. In the following we discuss first, whether the past
martian dynamo could have been in an asymmetric hydrodynamic
regime and, second, whether the asymmetric regime may gener-
ate hemispherical dynamos at Ekman numbers close to planetary
values.

The past martian dynamo may have reached the asymmetric
regime if RaQ was at least larger than RaQt when the dynamo was
active. One may use the scaling law (18) to estimate RaQt in Mars’
core: considering plausible parameter values given in Table 5, we
find that E is roughly within the range 5 × 10−15 to 8 × 10−15 in
Mars’ core and RaQt within the range 5 × 10−21 to 10−20. The past
martian CMB heat flux depends on the mechanism of heat transfer
which is considered. Considering a stagnant lid mantle convec-
tion the maximum heat flux is expected to be about 60 mW m−2

(Nimmo and Stevenson, 2000; Breuer and Spohn, 2003; Stevenson

et al., 1983) whereas if we consider an overturn after magma ocean
crystallization it is about 600 mW m−2 (Elkins-Tanton et al., 2005).
Plate tectonics has been suggested for Mars but is not coherent with
little remixing of crust and mantle as indicated by geochemistry. In
addition Breuer and Spohn (2003) have shown that it is difficult to
reconcile crust production required by geological constraints and
the presence of a core-dynamo using a model that includes plate
tectonics. We note that, in the case of plate tectonics, the maximum
heat flux at the CMB would be of the same order as in the case
of a stagnant lid regime (∼100 mW m−2, Nimmo and Stevenson,
2000). It is important to underline that RaQ has to be estimated
using the superadiabatic heat flux (the total heat flux minus the
adiabatic heat flux). The adiabatic heat flux for Mars’ core is esti-
mated to be in the range 5–19 mW m−2 (Nimmo and Stevenson,
2000).

Using the parameter values given in Table 5, one can estimate a
plausible range of values for the maximum modified Rayleigh num-
ber RaQm, in Mars’ core. Considering convection underneath a single
plate, RaQm is within the range 2 × 10−13 to 4 × 10−13 whereas with
a model that supposes an overturn after magma ocean crystalliza-
tion (Elkins-Tanton et al., 2005), RaQm is within the range 3 × 10−12

to 4.5 × 10−12. These values are larger than RaQt. This suggests
that Mars’ core could have been in the hydrodynamic asymmetric
regime.

In the previous section we saw that the CMB magnetic field is
hemispherical in our simulations if the equatorial symmetry break-
ing of the flow Ka/Ks is larger than 1. The equatorial symmetry
breaking which may have been due to the EAA flow component
of the asymmetric regime can be roughly estimated for the past
martian dynamo. Considering fixed heat flux boundary conditions,
Aubert et al. (2009) have obtained a scaling law which gives the
non-dimensional mean kinetic energy K, as a function of the dimen-
sionless convective power p. In the particular case of secular cooling
p = 3/5RaQ and their scaling law becomes: K ≈ 0.56Ra0.84

Q . Since the
EAA mode results from a thermal wind mechanism, we expect the
kinetic energy density related to the zonal EAA flow to be propor-
tional to RaQ at forcings far above RaQt (Aurnou et al., 2003; Aubert,
2005). Supposing that the amplitude of the meridional circulation
is, at most, of the same order of magnitude as the amplitude of
the zonal circulation (as it is in the first linearly unstable axisym-
metric mode analytically computed by Roberts (1965) and in our
nonlinear numerical simulations) then, K0a ∝ RaQ. Considering this
scaling law (roughly satisfied in our numerical simulations) and
the plausible values listed above for RaQm, we estimate that the
ratio K0a/K induced by the asymmetric regime would not have been
larger than 0.05 in Mars’ core. This result means that the EAA mode
was of much weaker amplitude than the equatorially symmetric,
non-axisymmetric modes and it suggests that the equatorial sym-
metry breaking of the flow due to the EAA mode was not large
enough to induce a hemispherical dynamo in Mars’ core. However
such a conclusion may be hasty. First of all, we have noticed that the
spontaneous emergence of the EAA mode gives birth to equatori-
ally antisymmetric, non-axisymmetric modes as a consequence of
nonlinear interactions between the EAA mode and the symmetric
columnar structures. These modes might saturate with a different
scaling law from the EAA mode and become of much higher ampli-
tude than the EAA mode at planetary parameters. In such a case, the
equatorial symmetry breaking might have reached higher values in
Mars’ core. Second, the transition between non-hemispherical and
hemispherical dynamos occurs at Ka/Ks ≈ 1 in our simulations when
Pm = 5. However, there is no reason to suppose that the transition
would occur at the same Ka/Ks value if Pm /= 5. Indeed, the simula-
tion at Pm = 1 in Fig. 16(b) is the only one located above the general
trend, which suggests that Pm may have a considerable impact on
the quantitative effects of the equatorial symmetry breaking of the
flow on magnetic field. Recalling that Pm is expected to be of the
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order of 10−6 in Mars’ core, the transition towards hemispheri-
cal dynamos may occur at much lower Ka/Ks-values in planetary
cores. The results obtained in Gallet and Petrelis (2009) suggest that
this last point is not completely speculative: they show that even
very weak equatorial symmetry breaking of the flow may lead to
hemispherical dynamos. Thus, the Pm-dependence of fhem could be
studied in order to determine if the asymmetric regime is able to
explain the asymmetry of Mars’ crustal magnetic field.

A heterogeneous CMB heat flux is plausible for the past mar-
tian dynamo (Stanley et al., 2008) and would make the emergence
of hemispherical dynamos easier. Indeed, a strong EAA heat flux
heterogeneity would directly set the amplitude of the EAA temper-
ature contribution to ∂ T/∂� and thus the amplitude of the EAA mode
according to Eq. (16) (which is probably what fixes the amplitude
of the EAA mode in the simulations of Stanley et al. (2008)). Thus,
larger Ka/Ks-values could have been reached in Mars’ core due to
heterogeneous boundary conditions.
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Appendix E

Preprocessing of experimental
images
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Figure E.1: Number of pixels as a function of intensity after subtraction of the back field image.

Binary images are obtained by subtracting the back field image, taken before the
release of dyed fluid, to each video frame. Figure E.1 shows the number of pixels as
a function of intensity for a given image after such an operation. The peak near zero
intensity corresponds to the noise of the back field and the signal on the right is due to
pixels that contain released fluid. Then, we select an appropriate pixel intensity threshold
Ic, above which the pixel intensity is set to 1, and 0 otherwise. The threshold is chosen
as Ic = c · Inoise where c is a constant specified by the operator and Inoise the standard
deviation to 0 of the back field noise. If X is the set of pixels with negative intensity
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(b)(a)

(a) (b)

Figure E.2: (a) Initial image. (b) Binary image (c = 10).

values after subtraction of the back field, Inoise is given by

Inoise =

√
1

NX

∑
(i,j)∈X

I2
i,j (E.1)

where NX is the number of pixels in X. We use images in which the absorption of light
by the released fluid is the largest (i.e. red images for blue-dyed fluid). The value of c is
chosen such that the output variables that are eventually obtained from binary images (z,
u, r, LB, α′ defined in §8, §8, §8, §9.3, §9.4, respectively) do not vary significantly with c.
Sensitivity of output variables to c are included in measurement uncertainties. Coefficient
c is held constant for a particular group of experiments (same lighting conditions and
same fluids). Figure E.2 gives an example of binary image obtained with such a method.



Appendix F

Turbulent entrainment model:
closed-form solutions

In the Boussinesq limit P → 0, the solution (9.20) to equation (9.19) takes the following
closed-form expression:

ũ2 =
r̃3γ

0

r̃3γ

{
ũ2

0 −
1

2α′

[
3C ′D
16α′

+ (1 + k)c1

]−1 [
1

r̃2
0

− r̃3γ−2

r̃3γ
0

]}
(F.1)

where r̃ = r̃0 + α′(z̃ − z̃0).

A closed-form solution also exists for C ′D = 0 and is given by

ũ2 =

[
P + (1 + k)c1r̃

3
0

P + (1 + k)c1r̃3

]2 [
ũ2

0 +
2P (r̃ − r̃0)

α′(P + (1 + k)c1r̃3
0)2

+
c1(1 + k)(r̃4 − r̃4

0)

2α′(P + (1 + k)c1r̃3
0)2

]
(F.2)

where r̃ = r̃0 + α′(z̃ − z̃0). The first term within the second brackets in equation (F.2) is
due to the initial momentum of the vortex ring, the second term to departures from the
Boussinesq approximation and the third term is related to buoyancy forces.
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Appendix G

Article submitted to Earth and
Planetary Science Letters

The following article Deguen et al. (2013) has been submitted to Earth and planetary
Science Letters.
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Turbulent metal-silicate mixing, fragmentation,
and equilibration in magma oceans

Renaud Deguena,∗, Maylis Landeaub, Peter Olsona

aDepartment of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
bDynamique des Fluides Géologiques, Institut de Physique du Globe de Paris, Université Paris-Diderot, INSU/CNRS, 1 rue Jussieu, 75238, Paris cedex 05, France.

Abstract

Much of the Earth was built by high-energy impacts of planetesimals and embryos, many of these impactors already differenti-
ated, with metallic cores of their own. Geochemical data provide critical information on the timing of accretion and theprevailing
physical conditions, but their interpretation depends critically on the degree of metal-silicate chemical equilibration during core-
mantle differentiation, which is poorly constrained. Efficient equilibration requires that the large volumes of ironderived from
impactor cores mix with molten silicates down to scales small enough to allow fast metal-silicate mass transfer. Here weuse fluid
dynamics experiments to show that large metal blobs fallingin a magma ocean mix with the molten silicate through turbulent en-
trainment, with fragmentation into droplets eventually resulting from the entrainment process. In our experiments, fragmentation of
the dense fluid occurs after falling a distance equal to 3-4 times its initial diameter, at which point a sizable volume of ambient fluid
has already been entrained and mixed with the dense falling fluid. Contrary to what has usually been assumed, we demonstrate that
fragmentation of the metallic phase into droplets may not berequired for efficient equilibration: turbulent mixing, by drastically
increasing the metal-silicate interfacial area, may result in fast equilibration even before fragmentation.

Keywords:
core formation, magma ocean, fragmentation, turbulent mixing, chemical equilibration

1. Introduction

The formation of Earth’s core produced chemical and iso-
topic fractionations which have been used to constrain the tim-
ing of differentiation (Yin et al., 2002; Kleine et al., 2002) and
the physical conditions (Wood et al., 2006; Corgne et al., 2008)
that prevailed early in Earth’s history. Hafnium-Tungsten(Hf-
W) systematics in particular provide constraints on the tim-
ing of accretion, but their interpretation depends critically on
the degree to which the metal portion of the impactors equili-
brates isotopically with Earth’s mantle silicates (Halliday, 2004;
Kleine et al., 2004; Nimmo et al., 2010; Rudge et al., 2010). As-
suming full equilibration after each impact, Hf-W chronometry
implies an exponential accretion timescale of about 10 My (Yin
et al., 2002; Rudge et al., 2010), whereas relaxing this assump-
tion can increase this timescale by several tens of My, or even
render it indeterminate (Rudge et al., 2010).

Partial equilibration is usually modeled by assuming that a
fraction k of the metal phase re-equilibrates with the whole
mantle, the remaining metal fraction 1− k reaching the Earth’s
core without chemical interaction with the mantle (Halliday,
2004; Kleine et al., 2004; Nimmo et al., 2010; Rudge et al.,
2010). However, the compositional transfer between metal and
silicate also depends on the quantity of silicates the metalphase

∗Corresponding author
Email address:renaud.deguen@imft.fr (Renaud Deguen )

equilibrates with. For example, the amount of radiogenic Tung-
sten extracted from the silicates by the metal will be insignifi-
cant if the volume of interacting silicate is small. We thus de-
fine a more general measure of equilibration, the equilibration
efficiencyEi , as the total mass of elementi exchanged between
metal and silicates normalized by its maximum possible value,
had all the metal re-equilibrated with an infinitely larger sili-
cate reservoir. If a fractionk of the metal phase equilibrates
with a mass of silicates equal to∆ times the mass of equili-
brated metal, the equilibration efficiency of an elementi with a
metal/silicate partition coefficientDi is, from mass balances,

Ei =
k

1+ Di/∆
(1)

(see Appendix A), with the metal dilution∆ defined as

∆ =
mass of equilibrated silicates
mass of equilibrated metal

. (2)

Ei approachesk when∆ ≫ Di , which is the usual assump-
tion of disequilibrium core formation models. Importantly, Ei

is element-dependent, with efficient equilibration of an element
i requiring a metal dilution∆ similar or larger than its distribu-
tion coefficient. Tungsten, for example, hasDW ≃ 30, so that
equilibration is efficient only if the metal mixes and equilibrates
with more than about 30 times its mass of silicates.

Previous disequilibrium geochemical models assuming infi-
nite dilution can be corrected for the effect of finite metal di-
lution by substitutingEi in place ofk (Appendix A), which
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means that previously determined constraints onk would actu-
ally apply toEi . In particular, Hf-W systematics imply that the
Tungsten equilibration efficiencyEW must have been larger than
about 0.36 on average during Earth’s accretion (Rudge et al.,
2010), which requires that on averagek ≥ 0.36 and∆ ≥ 17.
The Hf-W accretion timescale becomes unbounded whenEi

approaches 0.36 (Rudge et al., 2010), so that additional con-
straints on metal-silicate equilibration are needed to properly
interpret the data.

During accretion, dissipation of the gravitational and ki-
netic energies associated with large impacts inevitably results in
widespread melting (Melosh, 1990; Tonks and Melosh, 1993;
Pierazzo et al., 1997), implying that part of the separationof
the core-forming metal phase from the silicates occurred in
low-viscosity magma oceans. Under these conditions, effi-
cient chemical equilibration would be expected if the Earthhad
formed through the accretion of undifferentiated bodies with
the metal phase already finely dispersed within a silicate ma-
trix. However, it is now recognized that much of the Earth was
accreted from already differentiated bodies with sizes ranging
from a few tens of kilometers in diameter to objects the size
of Mars (Yoshino et al., 2003; Baker et al., 2005; Bottke et al.,
2006; Ricard et al., 2009). It is usually assumed that efficient
chemical equilibration between the cores of these impactors and
the proto-Earth’s mantle requires fragmentation of the metal
down to scales of 1 cm to 1 m where efficient metal-silicate
chemical equilibration can occur (Stevenson, 1990; Karatoand
Murthy, 1997; Rubie et al., 2003; Ulvrová et al., 2011), imply-
ing a scale reduction by a factor of 104 − 108. Smooth Particle
Hydrodynamics (SPH) simulations of the Moon-forming im-
pact suggest some degree of disruption of the impactor core into
100-1000 km sized iron blobs (Canup, 2004), but the current
resolution of these models is too coarse to give any information
about smaller scale mixing and fragmentation. Hence the fate
of these large iron blobs, while critical for the interpretation of
geochemical data, remains uncertain.

2. Non-dimensional parameters

We consider the evolution of an iron blob, which can be ei-
ther the core of an impactor or a fragment of an impactor core,
falling in a magma ocean. Its dynamics are characterized by the
following set of non-dimensional numbers :

Re=
ρm w d
ηm
, We=

ρm w2d
σ
, Bo=

∆ρg d2

σ
,

M =
w
c
, P =

ρm

ρs
, H =

ηm

ηs
,

wherew andd are the velocity and diameter of the falling metal
volume,ρ is density,η is the dynamic viscosity,g the accelera-
tion of gravity,σ the iron-silicate interfacial tension, andc the
sound wave velocity in the dominant phase. Subscripts ”m” and
”s” refer to metal and silicate, respectively, and∆ρ = ρm − ρs.
The Reynolds numberRecompares the magnitude of inertia to
viscous forces, the Weber and Bond numbers,WeandBo, are
measures of the relative importances of inertia and buoyancy to

interfacial tension at the lengthscaled, and the Mach numberM
compares the velocity of the flow to the sound wave velocity.

Typical values for these parameters for a metal blob 100 km
in diameter falling in a magma ocean with an initial velocityof
1 km.s−1 areRe∼ 1014, Bo∼ 1014, We∼ 1014, with P ≃ 2 and
H ∼ 0.1−1. Note thatRe, We, BoandM are all time-dependent.

The huge value ofRe implies that the flow must have been
extremely turbulent. The Weber and Bond numbers are large as
well, which implies that interfacial tension effects were unim-
portant except at the smallest scales of the flow (Dahl and
Stevenson, 2010; Deguen et al., 2011).M is typically larger
than 1 (supersonic flow) just after the impact and decreases with
time as the metal decelerates.

3. Turbulent entrainment

Given the extreme values ofWeandBo, it is appropriate to
first consider the limiting case of miscible fluids, for which
WeandBo are formally infinite. Numerous experimental and
theoretical studies have shown that the evolution of a turbulent
buoyant fluid falling or rising under the action of gravity - what
is called aturbulent thermalin fluid mechanics - is governed by
turbulent entrainment of ambient fluid (Batchelor, 1954; Mor-
ton et al., 1956; Turner, 1986). As an illustration, Fig. 1a shows
snapshots from an experiment in which a volume of a dense so-
lution is released into a larger volume of pure water. A small
amount of fluorescent dye has been added to the solution. The
volume of dyed fluid is seen to increase as it falls, which indi-
cates that the negatively buoyant fluid entrains and incorporates
ambient fluid, resulting in its gradual dilution (Batchelor, 1954;
Morton et al., 1956).

This effect is quantified using theentrainment hypothesisof
Morton et al. (1956), which states that the rate of entrainment of
ambient fluid is proportional to the mean velocity of the buoy-
ant turbulent fluid, and predicts that the radiusr = d/2 of the
buoyant fluid evolves as

r = r0 + α z, (3)

whereα is the entrainment coefficient andr0 = d0/2 the initial
radius of the dense blob. The velocity of the mixture can be cal-
culated from the equations of conservation of momentum and
mass (Appendix B), a general expression being given in Eq.
(B.12). The velocity law (B.12) has a useful large-zasymptote
given by

w =

 r3
0g

2α3

∆ρ

ρs

1/2 (
1+ K +

3
16

Cd

α

)−1/2 1
z
, (4)

whereCd is the drag coefficient, andK the coefficient of added
mass, which accounts for the momentum imparted to the sur-
rounding fluid. These laws have been verified in a wide va-
riety of physical settings, from laboratory experiments using
thermally or compositionally buoyant fluids to large scale geo-
physical flows including explosive volcanic plumes (Teradaand
Ida, 2007; Yamamoto et al., 2008), underwater gas plumes (Bet-
telini and Fanneløp, 1993), and atmospheric convective bursts
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Figure 1: Analog fluid dynamics experiments on metal-silicate mixing and fragmentation.a) Growth of a negatively buoyant thermal by turbulent entrainment at
Re= 2 × 103. Here the buoyancy of the falling fluid is due to very fine denseparticles in suspension (modified from Deguen et al. (2011)). A small amount of
fluorescent dye (fluoresceine) is added to the particle-laden fluid, which appears white in the pictures.b) Fragmentation of a volume of aqueous solution of NaI salt
(dyed in blue) released in silicone oil, atWe= 3× 103, Re= 2× 104, P = 1.9, H = 2.1. Fragmentation of the aqueous volume into droplets occursbetween the third
and fourth snapshots.c) Close-ups corresponding to the squares inb). Small scale Rayleigh-Taylor instabilities are apparent in the first close-up.

(known asthermals - hence the name - by sailplane pilots
(Woodward, 1959)).

Turbulent entrainment results from a combination ofengulf-
ment of ambient fluid by large scale, inviscid eddies, which
draws large volumes of surrounding fluid into the turbulent re-
gion, andnibbling, which denotes small scale viscous processes
(vorticity diffusion) (Turner, 1986; Mathew and Basu, 2002;
Westerweel et al., 2009). The rate at which the ambient fluid
is entrained is thought to be controlled by large scale process
(Brown and Roshko, 1974; Turner, 1986), while nibbling is
responsible for eventually imparting vorticity to the entrained
fluid. The entrainment coefficient appears to be independent of
Re (Turner, 1969), which is consistent with the rate of turbu-
lent entrainment being controlled by the largest inviscid eddies
rather by the small scale viscous effects. In two-fluids systems

we would expect that these large-scale eddies remain unaffected
by interfacial tension if the Weber number is large enough, in
which case turbulent entrainment should still occur, at a rate
similar to the case of miscible fluids. We therefore argue here
that the concept of turbulent entrainment is also applicable to
immiscible fluids like molten metal and silicate, providedRe
and We are large. This is demonstrated below in a series of
experiments with two immiscible fluids.

4. Experimental set-up

Molten silicate is modeled by a low viscosity silicone oil
(densityρs = 820 kg.m−3, viscosityηs = 1 mPa s) enclosed
in a 25.5 cm× 25.5 cm× 47 cm container. A volume of NaI
aqueous solution (densityρm = 1580 kg.m−3, viscosityηm = 2
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mPa s), representing a metal blob falling into a magma ocean,
is held in a vertically oriented tube whose lower extremity is
sealed using a thin latex diaphragm, which is ruptured at the
beginning of the experiment. A surfactant (Triton X-100) is
added to the NaI solution, lowering the interfacial tensionof
the silicone oil/NaI solution system to about 5 mJ m−2. A small
amount of Na2S2O3 is added to the NaI solution to avoid a yel-
lowish coloration of the solution. In experiments where induced
fluorescence is used to image cross-sections (Fig. 3), we usea
concentration of the NaI solution for which the refractive index
of the NaI solution matches that of the silicone oil, which is
necessary to avoid optical distortions. At this concentration, its
density isρm = 1260 kg.m−3. The exact values of the densities,
viscosities and interfacial tension are measured before each se-
ries of experiments. The experiments are recorded with a color
video camera at 24 frames per second. Using a pixel intensity
threshold method, we estimate on each video frame the location
of the center of massz of the oil/NaI solution mixture and the
apparent areaA of the mixture, from which its equivalent radius
is estimated asr =

√
A/π.

The dense fluid is released from rest and its vertical velocity
is set by the conversion of its gravitational potential energy into
kinetic energy, which implies that the vertical velocity initially
scales asw ∼ √

(∆ρ/ρm)g r. Using this scaling forw implies
thatWe∼ Bo, using the equivalent diameter of the NaI solution
volume as the length scale. The Weber and Reynolds numbers
that characterize the experiments are defined using as a velocity
scale the vertical velocity of the dense fluid after it has travelled
a distance equal to its initial diameter. With this definition, we
found thatWe ≃ 0.43Bo in our experiments. Our choice of
experimental fluids plus the use of a surfactant to reduce the
interfacial tension allows us to reach values ofRe larger than
104 andWeup to 3× 103, making our experiments far more dy-
namically similar to planetary accretion than current numerical
simulations (Ichikawa et al., 2010; Samuel, 2012).

5. Experimental validation of the turbulent entrainment
model

Snapshots from an experiment withBo = 6.9 × 103, We =
3× 103, Re= 2× 104, P = 1.9, andH = 2.1 are shown in Fig.
1b and c. After release, the dense fluid (dyed in blue) under-
goes small scale Rayleigh-Taylor instabilities (apparenton the
first snapshot) which, together with shear induced by the global
motion of the fluid, generate turbulence. The volume of the
falling fluid increases with time much like the miscible fluids
case shown in Fig. 1a, indicating that entrainment is occurring
in spite of immiscibility.

Fig. 2 shows that the equivalent radius of the NaI solution-
silicone oil mixture increases linearly with the distance trav-
elled, in agreement with the turbulent entrainment model pre-
dictions (Eq. (3)). The entrainment coefficientα is in the range
0.2-0.3 in our experiments, similar to turbulent thermals in mis-
cible fluids (Morton et al., 1956; Turner, 1969), which suggests
that we have indeed reached a regime for which the large scales
of the flow are unaffected by interfacial tension effects.

The predicted descent trajectory also compares favorably
with the experimental results. Once integrated in time, the
asymptotic velocity law Eq. (4) yields(

z
r0

)2

=

(
2∆ρg

α3ρs r0

)1/2 (
1+ K +

3
16

Cd

α

)−1/2

t. (5)

Fig. 2b shows that after a short acceleration phase the exper-
iments agree well with the prediction of Eq. (5) thatz2 ∝ t,
although there is some variability in the magnitude of the slope.
The full evolution of our experiments can be explained by the
model described in Appendix B. Although the drag and virtual
mass coefficients are uncertain, the model (black curves in Fig.
2) fits very well the experimental measurements for reasonable
values of these coefficients, with the observed variability in our
experiments attributable to imperfect control of initial condi-
tions plus natural variability inherent in turbulent flows.

The agreement between our experiments and the entrainment
prediction strongly supports our contention that the turbulent
entrainment concept can be applied to immiscible fluids when
WeandReare large, and offers a simple way [Eq. (3), (4), and
Appendix B] to model the evolution of large metal masses in
a magma ocean. In particular, the linear increase of the buoy-
ant mixture radius provides a measure of metal-silicate mixing,
with the metal dilution [Eq. (2)] given by

∆ =
ρs

ρm

(1+ α z
r0

)3

− 1

 . (6)

We have so far ignored the effects of compressibility on the
entrainment process, which are negligible in our experiments
but may be significant if the post-impact flow is supersonic or
nearly supersonic. The fact that the flow velocity is similarto
the sound velocity has an important qualitative consequence for
the structure of the flow: the finite speed of sound introduces
a time delay in the transmission of pressure signals from one
point to another, which makes it impossible for large turbulent
eddies to remain coherent when the local Mach number (based
on the eddy velocity scale) is of order one (Breidenthal, 1992;
Freund et al., 2000; Pantano and Sarkar, 2002). Because the
rate of entrainment is thought to be controlled by the process of
engulfment of ambient fluid by large scale eddies (Brown and
Roshko, 1974; Turner, 1986; Mathew and Basu, 2002), mix-
ing is expected to decrease whenM → 1. Experiments on
compressible turbulent jets and mixing layers show that theen-
trainment rate indeed decreases significantly with increasing M,
before saturating at a value about five times smaller than forin-
compressible flows (Brown and Roshko, 1974; Freund et al.,
2000) whenM & 1.

6. Fragmentation

Fig. 1b-c reveals that the dense NaI solution entrains and in-
corporates silicone oilbeforeit fragments into droplets. Frag-
mentation occurs relatively late in the descent process (between
the third and fourth pictures in the experiment shown in Fig.1b-
c), at a time when a sizable volume of ambient fluid has already
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Figure 2: Time evolution of the mean radius and position of the falling fluid,
in experiments where a volume of NaI solution is released into silicone oil
(P = 1.9). a) Mean radiusr (normalized byr0) of the aqueous solution/oil
mixture as a function of the positionz (normalized byr0) of its center of mass.
b) Square of the normalized positionz of the center of mass of the aqueous
solution/oil mixture as a function of time (normalized by(∆ρ g/ρs r0)−1/2). The
results of one experiment are compared with the predictionsof our model based
on the entrainment assumption shown with black lines ina) andb). For this
experiment, the model [Eqs. (B.8), (B.9) and (B.10)] best fits the data with
α = 0.26, a drag coefficientCd = 0.53, and a virtual mass coefficient K = 0.5
(see Appendix B for details on the model). The experimental results shown
in the inserts illustrate the natural variability seen in our experiments, withα
varying between 0.2 and 0.3.

been entrained. Droplets appear in a single global fragmenta-
tion event, which is at variance with previously suggested ”cas-
cade” processes, in which a succession of fragmentation events
lead to the final stable drop size (Rubie et al., 2003; Samuel,
2012), and ”erosion” processes, in which metal-silicate mixing
occurs predominantly on the boundary with the ambient fluid
(Dahl and Stevenson, 2010).

Adding a small amount of fluorescent dye to the NaI solution
and illuminating the experiment with a thin light sheet reveals
cross-sections of the NaI solution/silicone oil mixture, one ex-
ample being shown in Fig. 3. Small scale mixing of the phases
is evident in this picture, demonstrating that oil has been en-
trained into the NaI solution and that the two phases are al-
ready intimately mixedbeforefragmentation occurs. This strik-
ing observation suggests that fragmentation is a consequence

2 cm

Figure 3: Cross-section of the NaI solution/silicone oil mixture at a distance
∼ 2d0 from the origin. The experiment is illuminated with a thin light sheet
exciting a fluorescent dye (Rhodamine B) added to the NaI solution, which
appears white in the picture. In this experimentBo= 4.6× 103, We= 2× 103,
P = 1.54,H = 2.1, andRe= 2× 104.

of mixing associated with turbulent entrainment of the ambient
fluid, with fragmentation into drops ultimately resulting from
small scale instabilities, plausibly capillary instabilities devel-
oped on filaments stretched by the turbulent flow (Villermaux
et al., 2004; Shinjo and Umemura, 2010).

In all our experiments in this turbulent regime, fragmenta-
tion into drops is observed to occur after the dense liquid falls a
distance equal to 3 to 4 times its initial diameter, with no clear
trend observed in the explored range of parameters. At this
point the volume fraction of the dense fluid in the mixture is
of order 5-10 %. It is possible that the fragmentation distance
becomes independent ofReandWewhen these two numbers
are large, but the maximum value ofWeobtained in our exper-
iments (3000) is only 6 times larger than its observed critical
value for this turbulent regime (∼ 500), making the explored
range ofWetoo small to test this possibility.

7. Chemical equilibration before fragmentation - a fractal
model

Fragmentation of the metal phase into drops is an important
facet of the problem of metal-silicate interactions, because drop
formation is an efficient way of increasing the interfacial area
between metal and silicate, thus enhancing chemical transfer
and equilibration. However, it may not be necessary for chemi-
cal equilibration. The small scale mixing observed in our exper-
iments (Fig. 3) results in a highly convoluted interface, which
should drastically decrease the timescale of equilibration with
the entrained silicate.

To illustrate this point, we consider a model of metal-silicate
equilibration prior to drop formation based on the observation
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Figure 4: The fractal dimension of the oil/aqueous solution interface shown in
Fig. 3, determined using a box counting algorithm. Shown here is the num-
ber N(ℓ) of square boxes of sizeℓ required to cover the oil/aqueous solution
interface as a function of the box sizeℓ, here normalized by the size of the
smallest box fully enclosing the interface. The slope of theresulting curve is
1 − D, whereD is the fractal dimension of the 3D interface. A slope of−1 is
expected for a non-fractal surface, as found here for smallℓ. The interface is
fractal at scales aboveℓ∗ ≃ 2.3×10−2, which is of the same order of magnitude
asWe−3/5 ≃ 1.05× 10−2. Fitting the data forℓ > ℓ∗ (thick black line) gives a
slope of−1.63± 0.03 (±1σ), which implies a fractal dimension of 2.63± 0.03,
slightly smaller thanD = 8/3 = 2.67.

that the interface separating the two fluids has a fractal nature
once turbulence is well-developed. Theory (Mandelbrot, 1975;
Constantin et al., 1991; Constantin and Procaccia, 1994) and
experiments (Sreenivasan et al., 1989; Constantin et al., 1991)
show that isosurfaces of transported quantities (composition,
temperature) in well-developed turbulent flows are fractal– a
consequence of the self-similarity of the turbulent flow – with
a fractal dimension predicted to beD = 8/3 for homogeneous
turbulence with Kolmogorov scaling.

It is to be expected that the interface between immiscible
fluids in a turbulent flow shares this property over the range
of scales in which interfacial tension is unimportant. Experi-
mental support for this assumption is given in Fig. 4, where
the interface between the oil and aqueous solution is shown to
have a fractal nature with a fractal dimension at scales larger
than a cut-off lengthℓ∗. For miscible fluids, Sreenivasan et al.
(1989) assumed that the inner cut-off length is the Kolmogorov
scale for isovorticity surfaces, and the Batchelor scale for iso-
compositional surfaces for high Schmidt number fluids. For a
surface separating two immiscible fluids, we expect that thein-
ner cut-off length will be the largest of the Kolmogorov scale
ℓK = d Re−3/4 and the scaleℓσ = d We−3/5 at which interfacial
tension balances local dynamic pressure fluctuations estimated
assuming a Kolmogorov cascade [(Kolmogorov, 1949; Hinze,
1955), and see section 8 for more details]. Typicallyℓσ ≫ ℓK ,
and we expect thatℓ∗ ∼ ℓσ. In our experiments,ℓ∗ andℓσ are
numerically close (within a factor of 2, Fig. 4) and the mea-

cint
s

c̄s

c̄m

cint
m

∆cm

∆cs

δs

δm

c

silicatemetal

Figure 5: A sketch of the composition profiles in the vicinityof the metal-
silicate interface. The situation depicted here is that of asiderophile element in
excess in the silicate phase.

sured fractal dimension is only slightly smaller than the theo-
retical value of 8/3. Note that the observed fractal nature of
the interface is indicative of self-similarity in the flow, and that
the measured fractal dimension is consistent with Kolmogorov
type turbulence and ak−5/3 kinetic energy spectrum.

Assuming that the metal-silicate interface has a fractal nature
offers a convenient way of estimating its areaAT , which accord-
ing to fractal geometry isAT = A0(ℓ∗/d)2−D, whereA0 = πd2 is
the area measured at the scaled. Usingℓ∗ ∼ ℓσ, the predicted
surface area isAT ∼ A0We

3
5 (D−2). With D = 8/3 andWe= 1014,

this implies an increase in interfacial area by five orders ofmag-
nitude. A timescale for chemical equilibration,τeq, can then be
found by coupling the estimate forAT with a local scaling for
turbulent mass flux at the metal-silicate interface.

We denote byκc the diffusivity of the chemical element of
interest. The Schmidt numberSc= ν/κc, whereν is the kine-
matic viscosity, is assumed to be large in both phases. Fig. 5
shows a sketch of the composition profiles in the vicinity of the
metal-silicate interface, with definitions of the main variables.
Thermodynamic equilibrium is assumed at the metal/silicate in-
terface, so that the concentrations by masscint

m andcint
s at the in-

terface are linked by the partition coefficientDi = cint
m /c

int
s , but

the bulk compositions ¯cm andc̄s are out of thermodynamic equi-
librium, i.e. c̄m/c̄s , Di . The resulting compositional boundary
layers have thicknessesδm,s, and we denote by∆cm,s the compo-
sition difference across the boundary layers. The local diffusive
compositional flux across the interface scales asκc∆c/δ and the
total mass fluxFc is

Fc ∼ ρmATκ
m
c
∆cm

δm
∼ ρsATκ

s
c
∆cs

δs
. (7)

Continuity of the mass flux across the interface implies that

γm/s =
∆cm

∆cs
=
ρs

ρm

κsc
κmc

δm
δs
. (8)

We now relate the compositional jumps∆cs and∆cm to the

6



mean composition ¯cm and c̄s of the metal and silicate phases.
Using Eq. (8) together with the assumption of local thermo-
dynamic equilibrium (Di = cint

m /c
int
s ), we obtain the following

expressions for∆cs and∆cm :

∆cs = − c̄m − Di c̄s

γm/s+ Di
, ∆cm = −γm/s

c̄m − Di c̄s

γm/s + Di
. (9)

Using (π/6)ρ̄d3 for the mass of the metal-silicate mixture,
the evolution of composition in the metal and silicate phases
are given by

φ
π

6
ρ̄d3 dc̄m

dt
= −Fc, (10)

(1− φ)π
6
ρ̄d3 dc̄s

dt
= Fc, (11)

whereφ is the mass fraction of the metal phase in the mixture.
Combining Eqs. (10) and (11) and using the metal dilution∆ =
(1− φ)/φ, we obtain

d
dt

ln (c̄m − Di c̄s) = − (1+ ∆)(Di + ∆)
∆(Di + γm/s)

ρs

ρ̄

6κsc
d δs

We
3
5 (D−2), (12)

from which we obtain an equilibration timescaleτeq given by

τeq = f (∆,Di , γm/s)
ρ̄

ρs

d δs

κsc
We−

3
5 (D−2), (13)

where the factor 6 in Eq. (12) has been omitted, and

f (∆,Di , γm/s) =
∆(Di + γm/s)

(1+ ∆)(Di + ∆)
. (14)

The functionf isO(1) for intermediate values of∆ (with a max-
imum always smaller than 1), butf → 0 if ∆ is small compared
to min(1,Di) or large compared to max(1,Di).

We now estimate the boundary layers thicknessesδ in the
metal and silicate phases (the subscriptmandswill be omitted
in what follows, with the understanding that the analysis ap-
plies to both phases). Denoting byℓ the smallest scale of the
flow in the vicinity of the interface, then the smallest scaleδ of
the compositional field is found by balancing the strain rateat
scaleℓ with the diffusion rate at the scaleδ, i.e. uℓ/ℓ ∼ κc/δ2.
Assuming a Kolmogorov type velocity spectrum, the velocity
at scaleℓ is uℓ ∼ w(ℓ/d)

1
3 , wherew is the large scale velocity.

With these assumptions, we obtain

δ = d Sc−
1
2 Re−

1
2

(
ℓ

d

) 1
3

. (15)

At this stage, further progress requires some assumptions on
the small scale structure of the turbulence in the vicinity of the
metal-silicate interface :

1. If we assume that the turbulence structure is not affected by
the presence of the interface and interfacial tension effects,
then ℓ should be the Kolmogorov scale. Eq. (15) with
ℓ = ℓK = dRe−3/4 gives

δ = d Sc−
1
2 Re−3/4, (16)

w=100 m/s

w=1 km/s
w=600 m/s

w=300 m/s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

101 102 103

d (km)

ℓ e
q
/
d

Figure 6: Equilibration distanceℓeq/d as functions of the metal-silicate mixture
diameterd, for w = 100, 300, 600 and 1000 m.s−1, calculated using Eq. (23)
with f (∆,Di ) = 0.5, κsc ∼ 10−8 m.s−1, σ = 1 J.m−2 andρs = 3500 kg.m−3.

which is the Batchelor scaleℓB. With this estimate forδ,
we obtain

γm/s =

(
ρs

ρm

)5/4 (
κsc
κmc

)1/2 (
ηs

ηm

)1/4

(17)

and

τeq = f (∆,Di , γm/s)
ρ̄

ρs

d2

κsc
Sc−1/2Re−3/4We−

3
5 (D−2). (18)

2. Alternatively, one might argue that the turbulent motionin
the vicinity of the interface is damped by interfacial ten-
sion at scales smaller thanℓσ. In this case the smallest
scale of the flow isℓσ ∼ d We−3/5 and the boundary layer
thickness is

δ = d Sc−
1
2 Re−

1
2 We−

1
5 , (19)

giving

γm/s =

(
ρs

ρm

)6/5 (
κsc
κmc

)1/2

(20)

and an equilibration timescale

τeq = f (∆,Di , γm/s)
ρ̄

ρs

d2

κsc
Sc−

1
2 Re−

1
2 We−

3
5 D+1. (21)

Choosing between the two models Eqs. (18) or (21) would
require detailed measurement of the small scale structure of the
flow, or alternatively, measurements of a tracer concentration in
both phases, which are beyond the scope of our current experi-
mental set-up. We therefore choose the more conservative esti-
mate of the equilibration timescale Eq. (21) which assumes that
turbulent motions in the vicinity of the interface are damped at
scales smaller thanℓσ. For comparison, the model assuming no
effect of the interface on the turbulence structure would yieldan
equilibration timescale a factorWe1/5Re−1/4 smaller (typically a
factor of 5 or more smaller).
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With ρs/ρm ≃ 0.5, assuming thatκsc andκmc are of the same
order of magnitude implies thatγm/s = O(1). Since it only
appears inf (∆,Di , γm/s) as a sum withDi which is≫ 1 for
siderophile elements, the exact value ofγm/s should be of little
importance. The factor ¯ρ/ρs is alsoO(1), and ignoring it as well
in Eq. (21) yields the simplified equilibration timescale

τeq = f (∆,Di)
d2

κsc
Sc−

1
2 Re−

1
2 We−

3
5 D+1. (22)

From Eq. (22), the equilibration distanceℓeq = wτeq is

ℓeq = f (∆,Di) d Sc
1
2 Re

1
2 We−

3
5 D+1. (23)

Fig. 6 showsℓeq as a function ofd for various values ofw
between 100 m.s−1 and 1 km.s−1, calculated withf (∆,Di) =
0.5, κsc ∼ 10−8 m.s−1, σ = 1 J.m−2 andρs = 3500 kg.m−3. The
equilibration distance is always a fraction of the metal-silicate
mixture diameter, and is usually smaller than plausible magma
ocean depths.

8. Prediction for the stable drop size after fragmentation

After fragmentation, the metal-silicate equilibration
timescale depends mostly on the resulting fragments size
(Karato and Murthy, 1997; Rubie et al., 2003; Ulvrová et al.,
2011). In a fully turbulent flow, the stable drop sizedd after
fragmentation, as well as the cut-off length scaleℓ∗ before
fragmentation, are expected to depend only on the dissipation
rateǫ, the interfacial tensionσ, the densities and viscosities of
both phases, and the metal volume fraction :

ℓ∗ = F1(ǫ, σ, ρm, ρs, νs, νm, φ). (24)

The Buckingham-π theorem then indicates thatℓ∗ must be the
solution of an equation of the form

F2

[
P,H, φ,

ℓ∗

ℓK
,
ℓ∗

ℓσ

]
= 0. (25)

where we have introduced two length scales,

ℓK =

(
ν3s
ǫ

)1/4

, ℓσ =

(
σ

ρs

)3/5

ǫ−2/5. (26)

ℓK is the Kolmogorov scale, at which turbulent kinetic en-
ergy is dissipated into heat by the action of viscous forces;ℓσ
can be shown to be the length scale at which interfacial ten-
sion (Laplace pressure) balances turbulent pressure fluctuations
and stresses if a Kolmogorov type turbulence is assumed (Kol-
mogorov, 1949; Hinze, 1955). Withǫ ∼ w3/r (Tennekes and
Lumley, 1972),

ℓK ∼ Re−3/4d, ℓσ ∼We−3/5d. (27)

Two end-member cases are possible, depending on the rel-
ative values ofℓK andℓσ. Let us first compare the magnitude
of the viscous stress and Laplace pressure at a given scaleℓ.
Assuming a Kolmogorov type turbulence cascade, the velocity

fluctuationsuℓ at scaleℓ is uℓ ∼ w (ℓ/d)1/3. Using this estimate
for uℓ, we find that the ratio of the viscous stress to the Laplace
pressure at the scaleℓ is

Viscous stress at scaleℓ
Laplace pressure at scaleℓ

∼ ηsuℓ/ℓ
σ/ℓ

∼
(
ℓK
ℓσ

)4/3 (
ℓ

ℓσ

)1/3

. (28)

Two options are possible :

1. First, if ℓK ≫ ℓσ, all the energy input is dissipated at
the Kolmogorov scale, at which scale the ratio of viscous
stress and Laplace pressure is∼ (ℓK/ℓσ)5/3 ≫ 1 according
to Eq. (28). In this case interfacial tension is unimportant,
andℓ∗ scales as

ℓ∗ = F3(P,H, φ)

(
ν3s
ǫ

)1/4

∼ F3(P,H, φ) d Re−3/4. (29)

2. Alternatively, if ℓK ≪ ℓσ, then interfacial tension bal-
ances turbulent pressure and stress fluctuations at the scale
ℓσ, with further smaller scale deformation of the inter-
face inhibited by the interfacial tension. According to Eq.
(28), the ratio of viscous stress and Laplace pressure is
∼ (ℓK/ℓσ)4/3 ≪ 1 at this scale, which implies that viscous
effects are unimportant. As a consequence, the stable drop
size does not depend on the viscosity of either phase, nor
on the viscosity ratioH, and thus the cut-off length scale
follows a scaling law of the form:

ℓ∗ = F4(P, φ)

(
σ

ρs

)3/5

ǫ−2/5 ∼ F4(P, φ) d We−3/5. (30)

The ratioℓK/ℓσ ∼ We3/5Re−3/4 following an impact is found to
be typically smaller than 10−2, which suggests that the drop size
or cut-off length will be set by interfacial tension rather than
viscosity, and will obey the scaling given by Eq. (30). When
φ is small, its effect should be negligible, as indeed observed
in experiments with dilute dispersions (Hinze, 1955; Chen and
Middleman, 1967).

From analysis of Clay (1940)’s data, Hinze (1955) found that
the maximum drop sizedmax in a turbulent flow withℓσ ≫ ℓK
is given by

dmax ≃ 0.725

(
σ

ρs

)3/5

ǫ−2/5. (31)

Effects of changing the density ratio was not investigated in this
study, which focused on fluids with density ratiosP ≃ 1. The-
ory (Levich, 1962) and experiments (Hesketh et al., 1987) argue
for a dependence on the density ratio of the formdmax ∝ P−1/5.
For the metal-silicate system, which hasP ≃ 2, this would pre-
dict a maximum drop size about 13 % smaller than what Eq.
(31) predicts, a minor discrepancy in light of the other uncer-
tainties.

Clearly, the size of the drops produced by fragmentation of
the metal blob must depend on the details of the fragmentation
mechanism, which are not elucidated yet, and the drop size just
after fragmentation does not have to match the prediction of
Eq. (31) (although a similar scaling is expected). Nevertheless,
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Figure 7: Maximum stable drop size after fragmentation according to Eq. (34),
as a function of the distance travelled (normalized by the initial metal blob di-
ameterd0), for metal blobs with initial diameter 100 km (blue curves)and 1000
km (black curves) withf = 0.5 (solid curves) andf = 0.1 (dashed curves).
Assumed parameters values are :α = 0.25, K + 3Cd/16α = 1, ∆ρ = 4000
kg m−3, ρs = 3500 kg m−3, g = 5 m s−2, σ = 1 J m−2.

Eq. (31) should give a reasonable upper bound for the fragment
size, since it predicts that larger drops would be disruptedby
turbulent dynamic pressure fluctuations.

In a system in statistical steady state, the dissipation rate ǫ
must equal the total energy input in the systemein, which here
is the rate of work of the buoyancy forces. However, since the
metal-silicate mixture is not in statistical steady state (it can be
shown using the self-similar regime velocity (Eq. (4)) thatthe
total kinetic energy of the system evolves with time), dissipa-
tion does not equal the rate of energy input, but is some fraction
f of the work done by the buoyancy forces. The rate of work of
the buoyancy forces,

ein = φ̄
∆ρ

ρ̄
g w, (32)

tends towards

ein = 2

[
1+ K +

3
16

Cd

α

]−1/2
ρs

ρ̄

∆ρg r1/3
0

2α3ρs

3/2 ( r0

z

)4
, (33)

in the self-similar regime, for whichw is given by Eq. (4).
Using Eq. (33) forein and writing the dissipation asǫ = f ein,
we find that

dmax

d0
≃ 3

f 2/5

[
1+ K +

3
16

Cd

α

]1/5 (
ρ̄

ρs

)2/5
α9/5

Bo3/5
0

(
z
d0

)8/5

(34)

when the mixture has reached the self-similar regime. Here
Bo0 = ∆ρg d2

0/σ. The value off is difficult to estimate pre-
cisely, but shouldn’t be much smaller than 1. Fig. 7 shows
dmax from Eq. (34) for metal blobs with initial diameter 100 km
(blue curves) and 1000 km (black curves) withf = 0.5 (solid
curves) andf = 0.1 (dashed curves), andα = 0.25. Smaller
values ofα would result in smaller drop sizes. Eq. (34) pre-
dicts submillimeter-to-centimeter maximum stable drop sizes,
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Figure 8: Equilibration efficiency Ei as a function ofαzm/r0 (wherezm is
the depth of the magma ocean) and various values of the partition coefficient
D, estimated for metal-silicate mixing in a magma ocean as predicted by the
turbulent entrainment model (Eq. (6)). PointA corresponds to the case of a
metal blob falling through a magma ocean of depth ten times its diameter, with
α = 0.25. PointB corresponds to the case of a giant impact withr0 = 0.5zm

andα = 0.05.

which is small enough to ensure fast re-equilibration with the
surrounding silicates (Karato and Murthy, 1997; Rubie et al.,
2003; Ulvrová et al., 2011).

9. Implications for planetary core formation

Efficient chemical re-equilibration requires that two neces-
sary conditions are met [see Eq. (1)] : (i) that the metal phase is
capable of equilibrating with the silicates it has mixed with (i.e.
that the parameterk in Eq. (1) is of order 1), and (ii) that the
metal phase equilibrates with a silicate mass at least a factor Di

larger (i.e. that the metal dilution∆ & Di).
With w in the range 0.1-1 km.s−1 andd > 10 km, our model

predicts thatℓeq is always smaller than about 0.6d (Fig. 6).
For example, Eq. (23) yieldsℓeq ≃ 50 km for d = 100 km
and w = 100 m.s−1, and ℓeq ≃ 75 km for d = 1000 km
and w = 1 km.s−1, assumingκc = 10−8 m2.s−1, ρs = 3500
kg.m−3, σ = 1 J.m−2, and f (∆,Di) = 0.5. The corresponding
equilibration timescales areτeq ≃ 8 min and≃ 75 s, respec-
tively. Sinceℓeq is smaller than the metal-silicate mixture di-
ameter, and small compared with the typical depth of a magma
ocean, the metal phase and the entrained silicate should read-
ily equilibrate once turbulence is fully developed, which typi-
cally requires one advection time∼ d/w, or a distance of fall
∼ d. Re-equilibration should be efficient as well once the metal
phase is fragmented : the maximum stable size of the result-
ing fragments is expected to scale asd We−3/5 (Kolmogorov,
1949; Hinze, 1955; Risso, 2000), which predicts submillimeter-
to-centimeter size drops, small enough for fast re-equilibration
(Karato and Murthy, 1997; Rubie et al., 2003; Ulvrová et al.,
2011). This suggests that once turbulence is well-developed,
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Figure 9: Possible scenarios for metal-silicate mixing andsegregation following a large impact involving a previously differentiated impactor. The metal is shown
in grey, molten silicate in light orange, and solid silicatein dark orange. The metal phase gradually mixes with the silicates through turbulent entrainment, with
efficient chemical equilibration resulting from small-scale mixing. Additional mixing may be caused by the impact of the metal-silicate mixture at the base of the
magma ocean.

most of the metal indeed equilibrates with the surrounding sili-
cates andk should be close to 1. Whether or not metal-silicate
equilibration has a significant geochemical fingerprint then de-
pends on the ratio∆/Di . Assuming that metal-silicate mixing
occurs through turbulent entrainment, Fig. 8 shows that the
equilibration efficiencyEi , calculated using Eqs. (1) and (6)
with k = 1, depends strongly on the quantityα zm/r0, wherezm

is the depth of the magma ocean.

The above considerations suggest that efficient metal-silicate
equilibration should have been the norm for impacts in which
the magma ocean is much deeper than the impactor core diam-
eter. As an example, Eq. (6) predicts that a molten iron blob
falling through a magma ocean of depth ten times its diame-
ter mixes with about 100 times its mass of silicate, assuming
α = 0.25 (a relevant value here because the large value ofzm/r0

ensures deceleration of the metal phase to subsonic velocity, ir-
respectively of the initial conditions). The large value ofzm/r0

also ensures well-developed turbulence and fast equilibration.
The resulting Tungsten equilibration efficiency isEW ≃ 0.78
(pointA in Fig. 8), assumingDW = 30.

The cases of impacts for whichzm/r0 is not much larger than
one, which includes the Moon-forming event, are not as clear.
First, it is not obvious that the time needed for the impactor
core material to reach the base of the magma ocean would al-
low enough turbulence to develop and the metal-silicate inter-
facial area to increase sufficiently for fast equilibration. Sec-
ond, the effect of compressibility onαmay significantly reduce
the entrainment rate, allowing only a small mass of silicateto
mix with the metal. Assuming, as for turbulent jets, a five-

fold decrease of the entrainment rate due to compressibility,
α = 0.25/5 = 0.05, the core of an impactor with≃ 10% the
mass of the proto-Earth (r0 ≃ 0.5zm) would mix with only
about 17 % its mass of silicate before it reaches the proto-
Earth’s core, givingEW ≃ 5.5 10−3 (point B in Fig. 8). How-
ever, the actual equilibration efficiency may depend on the de-
tails of the impact dynamics. SPH simulations of the Moon-
forming impact suggest that in the likely case of an oblique
impact, a fraction of the impactor including most of its core
would be sheared past the planet before re-impacting Earth’s
mantle (Canup, 2004). Some degree of disruption of the im-
pactor core during this process might be sufficient to allow sub-
sequent metal-silicate equilibration by increasing the value of
α zm/r0 for individual blobs.

Lastly, we point out that core-mantle segregation is a com-
plex, multi-step process and additional equilibration is possible
at other stages. In particular, the velocity of the metal-silicate
mixture may easily exceed hundreds of m.s−1, implying an en-
ergetic ”secondary impact” when it reaches the bottom of the
magma ocean, which, as sketched in Fig. 9, could cause ad-
ditional metal-silicate mixing (Deguen et al., 2011). (i) In the
case of an impact forming its own semi-spherical magma pool,
the inertia of the mixture drives an upward flow, re-suspending
iron fragments (Deguen et al., 2011) which, in spite of likely
vigorous convection, sediment out on a timescale similar tothe
Stokes’ sedimentation time (Martin and Nokes, 1988; Lavorel
and Le Bars, 2009). (ii) In a pre-existing global magma ocean
with a horizontal lower boundary, the metal-silicate mixture
will rather spread laterally as a turbulent gravity current- analo-
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gous to a pyroclastic flow - with possibly significant additional
entrainment of molten silicate (Hallworth et al., 1993). (iii) If
the mantle is fully molten, the metal-silicate mixture directly
impacts the proto-Earth’s core, with splashing and entrainment
of mantle material into the core (Storr and Behnia, 1999) pro-
viding additional metal-silicate mixing.
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Appendix A. Equilibration efficiency

Definition. Let cm andcs denote the concentrations (in weight
%) of elementi in either the metal or silicate phases, re-
spectively. The metal and silicate are fully equilibrated when
the two phases have reached thermodynamic equilibrium, for
which the equilibrium concentrationceq

m and ceq
s are linked

through the metal/silicate partition coefficient Di by ceq
m =

Di ceq
s .

Consider a massMm of metal, in which we assume that a
fraction k Mm has been mixed and equilibrated with a mass
Ms of silicates. We define the metal dilution∆ as the ratio of
the mass of equilibrated silicate over the mass of equilibrated
metal,

∆ =
Ms

kMm
. (A.1)

Given initial valuesc0
m andc0

s of the concentration in the metal
and silicate phases, the concentration in the equilibratedmetal
ceq

m and equilibrated silicateceq
s are found from mass conserva-

tion,

ceq
m + ∆ ceq

s = c0
m+ ∆ c0

s, (A.2)

which, together with the assumption of thermodynamic equi-
librium, ceq

m = Di ceq
s , gives

ceq
m =

c0
m + ∆ c0

s

1+ ∆/Di
, ceq

s =
c0

m+ ∆ c0
s

Di + ∆
. (A.3)

The net mass exchangeMi of elementi between the metal
and silicate phases can be written as

Mi = k Mm|ceq
m − c0

m| = Ms|ceq
s − c0

s| (A.4)

= k Mm
|c0

m− Dic0
s|

1+ Di/∆
. (A.5)

Mi reaches a maximum valueMmax
i = Mm|c0

m− Dic0
s| when all

the metal phase is equilibrated (k = 1) and is infinitally diluted
in the silicate phase (∆→ ∞). We thus define the equilibration
efficiencyEi of elementi as the actual mass exchangeMi nor-
malized by the maximum possible mass exchangeMmax

i . From
Eq. (A.5) and the value ofMmax

i , the equilibration efficiency is
found to be

Ei =
k

1+ Di/∆
, (A.6)

which reduces tok when∆/Di ≫ 1, the limit that is usually as-
sumed in continuous accretion models (e.g.Rudge et al., 2010).

As shown by Eq. (A.6), the equilibration efficiencyEi de-
pends critically on the ratio∆/Di , and is small, even when
k = 1, if ∆ is small compared toDi . Efficient re-equilibration
requires the metal dilution to be similar to or larger than the
partition coefficient of the element considered. For Tungsten,
which hasDW ≃ 30, efficient re-equilibration thus requires that
the metal re-equilibrates with at least 30 times its mass of sili-
cate.

Use ofEi in geochemical models.We demonstrate here that
geochemical models assuming partial equilibration of the metal
phase but infinite dilution can be generalized by using the equi-
libration efficiencyEi in place ofk. We consider the case of
continuous accretion, according to the formulation of Rudge
et al. (2010) (see their Supplementary Information). Discontin-
uous accretion can be treated in the same way.

We notecm(t) andcs(t) the concentration in Earth’s mantle
and core at timet, andcimp

m (t) andcimp
s (t) the composition of the

metal and silicate phase of the impacting bodies. The mass of
the Earth is denoted byM(t), and, usingF for the mass fraction
of metal in the Earth (assumed constant), then the masses of the
core and mantle areFM(t) and (1− F)M(t), respectively. We
assume for simplicity that all impactors have the same metal
mass fractionF.

Conservation of mass of elementi in Earth’s core implies that

d
dt

[FMcm] = (1− k)Fcimp
m

dM
dt︸               ︷︷               ︸

Flux of non-equilibrated metal

+ kFceq
m

dM
dt︸      ︷︷      ︸

Flux of equilibrated metal

(A.7)

whereceq
m is the concentration in the re-equilibrated fraction

of the impactor core. One complication is that the metal of
the impactor may equilibrate with silicates from both the im-
pactor mantle and Earth’s mantle, in unknown proportion. Ifc̃s

denotes the mean composition of the equilibrated silicate,Eq.
(A.3) yields

ceq
m =

cimp
m + ∆ c̃s

1+ ∆/Di
. (A.8)

For siderophile elements such as Tungsten, ˜cs can be approxi-
mated bycs(t). As discussed above in Appendix A, the effect
of re-equilibration is significant only if the metal re-equilibrates
with a mass of silicates aboutDi times larger (e.g. about 30
times larger for Tunsten). Since the mass of the impactor mantle
is only about twice the mass of its core, efficient re-equilibration
of siderophile elements requires that the impactor metal equi-
librates with a mass of Earth’s mantle significantly larger than
the impactor’s mantle. This implies that, in cases where equi-
libration is efficient, the mean concentration of the equilibrated
silicate is close tocs(t). The approximation ˜cs ≃ cs(t) is not
valid if the equilibration efficiency is small, but in that situation
it has little effect on the results.

Substituting Eq. (A.8) into Eq. (A.7) yields the following
equation for the compositional evolution of the core :

d
dt

(Mcm) =
[
EiDi c̃s + (1− Ei)c

imp
m

] dM
dt
, (A.9)
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while conservation of elementi in the mantle yields the follow-
ing equation for the mantle :

d
dt

(Mcs) =
[
cimp

s + Ei
F

1− F
(cimp

m − Di c̃s)
] dM

dt
. (A.10)

If c̃s is taken to be equal tocs(t), equations (A.9) and (A.10)
are the same as used by Rudge et al. (2010) for stable species
if Ei is substituted fork (see their equations A.3 and A.4 in
the Supplementary Information). The equivalence also holds if
radioactive or radiogenic species are considered (see the Sup-
plementary Information of Rudge et al. (2010) for a detailed
derivation of the relevant equations). Results of previousaccre-
tion models, including the bounds on Earth’s accretion derived
by Rudge et al. (2010) from Hf-W and U-Pb systematics, can
therefore be generalized to include the effect of finite dilution
by usingEi in place ofk.

Implications. Previous studies (Kleine et al., 2004; Nimmo
et al., 2010; Rudge et al., 2010) have shown that Hf-W system-
atics can be used to infer a lower bound for the mean degree
of re-equilibration during Earth’s accretion. Assuming infinite
dilution of the metal phase, (Rudge et al., 2010) found that Hf-
W systematics constrains the fraction of equilibrated metal k
to be larger than about 0.36 on average during Earth’s accre-
tion. If finite metal dilution is considered, the implication is
thatEW ≥ E min

W = 0.36, which requires thatk > 0.36 and, as-
sumingDW ≃ 30,∆ ≥ ∆min = DW/(1/E min

W − 1) ≃ 17.
A possibly important implication for modeling the abun-

dance of siderophile elements in the mantle is that the equili-
bration efficiencyEi is element-dependent. One consequence is
that constraints on the equilibration efficiency from Hf-W sys-
tematics do not apply directly to other elements. The equili-
bration efficiency of an elementi with partition coefficient Di

differs from the Tungsten equilibration efficiencyEW according
to

Ei = g(DW,Di ,∆) EW, (A.11)

where

g(DW,Di ,∆) =
1+ DW/∆

1+ Di/∆
.

In Eq. (A.11), the functiong is an increasing function of∆ if
Di > DW, and a decreasing function of∆ if Di < DW. Thus
the lower bounds onk and∆ deduced from Hf-W systematics
imply the following lower bound on the equilibration efficiency
of an elementi :

Ei ≥ E min
i =

 1+DW/∆
min

1+Di/∆min E min
W if Di ≥ DW,

E min
W if Di ≤ DW.

(A.12)

The constraint on the equilibration efficiency becomes weaker
for elements that are more siderophile. For example, the lower
bound on the equilibration efficiency isE min

i ≃ 0.14 for an
element withDi = 100, and onlyE min

i ≃ 0.017 for an ele-
ment withDi = 103. Thus low equilibration efficiency should
be considered when modeling the core/mantle partitioning of
highly siderophile elements (e.g. Wood et al., 2006; Corgne
et al., 2008).

Appendix B. Turbulent entrainment model

Integral relationships.We consider a buoyant spherical mass
of initial radiusr0 and densityρm = ρs + ∆ρ released with an
initial (downward) velocityw0 in a fluid of densityρs. Owing
to entrainment, the mean density of the metal-silicate mixture
evolves with time according to

ρ̄(t) = ρs + (ρm− ρs)φ = ρs

[
1+
∆ρ

ρs
φ

]
, (B.1)

whereφ = r3
0/r

3 is the metal phase volume fraction. The buoy-
ancy of the metal-silicate mixture,

B = g
ρ̄ − ρs

ρs
V = g

∆ρ

ρs
φV, (B.2)

is conserved in absence of density stratification in the ambient
fluid. HereV is the volume of the turbulent fluid andr is its
mean radius.

We adopt the standard entrainment assumption of (Morton
et al., 1956) for which the local inward entrainment velocity ue

is proportional to the magnitude of the mean vertical velocity w
of the mixture,

ue = α |w|, (B.3)

whereα is the entrainment coefficient. With this assumption,
the equation of conservation of mass becomes

4π
3

d(ρ̄r3)
dt

= 4πr2ρsα|w|, (B.4)

while conservation of momentum becomes (e.g. Bush et al.,
2003)

4π
3

d
dt

[
(ρ̄ + Kρs)r

3w
]
= ρsB− 1

2
Cdρsπr

2w2. (B.5)

Here K is the coefficient of added mass, which accounts for
the momentum imparted to the surrounding fluid (Escudier and
Maxworthy, 1973). The second term on the right hand side of
equation (B.5) is the hydrodynamic dragFd, with Cd the drag
coefficient.

Using Eq. (B.1) to write ¯ρ as a function ofφ, Eqs. B.4 and
B.5 become

dr
dt
= α|w|, (B.6)[

(1+ K)r3 +
∆ρ

ρs
r3
0

]
dw
dt
= g
∆ρ

ρs
r3
0 − 3α

[
1+ K +

Cd

8α

]
r2w2.

(B.7)

Noting thatw = dz/dt, Eq. (B.6) implies thatdr/dz= α.
We now non-dimensionalize lengths byr0, time by[
ρs r0/(∆ρg)

]1/2, and velocity by (r0 g∆ρ/ρs)1/2. In non-
dimensional form, equations (B.6)-(B.7) then become

dr̃
dt̃
= α|w|, (B.8)[

(1+ K)r̃3 +
∆ρ

ρs

]
dw̃
dt̃
= 1− 3α

[
1+ K +

Cd

8α

]
r̃2w̃2. (B.9)
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where the tilde (’∼’) denotes non-dimensional variables. The
initial conditions are

r̃ = 1, z̃= 0, andw̃ =
w0(

r0 g ∆ρρs

)1/2
at t̃ = 0. (B.10)

In Fig. 2, we use a least-square inversion procedure to find
the values ofα, K andCd for which the model described by
Eqs. (B.8-B.10) best fits our experimental data on the position
of the center of mass ˜zand radius of the mixture ˜r as a function
of time.

Analytical solutions.Usingdr̃/dt̃ = αdz̃/dt̃ = α w̃, Eq. (B.9)
can be re-written as[

(1+ K)r̃3 +
∆ρ

ρs

]
α

2
dw̃2

dr
= 1−3α

[
1+ K +

Cd

8α

]
r̃2w̃2, (B.11)

the solution of which is

w̃2 =
2
α

∫ r̃

1

(
∆ρ
ρs
+ (1+ K)x3

)γ−1(
∆ρ
ρs
+ (1+ K)r̃3

)γ dx+

 ∆ρ
ρs
+ 1+ K

∆ρ
ρs
+ (1+ K)r̃3


γ

w̃2
0,

(B.12)

where

γ = 2+
Cd

4(1+ K)α
=

2
1+ K

(
1+ K +

Cd

8α

)
. (B.13)

The integral on the RHS of Eq. (B.12) can be calculated ana-
lytically if Cd = 0, or if ∆ρ/ρs→ 0 (for arbitraryK andCd).

The solution (B.12) has a large-zasymptote given by

w̃ =

[
2

(
1+ K +

3
16

Cd

α

)
α3

]−1/2 1
z̃
, (B.14)

which corresponds to the self-similar regime of a turbulentther-
mal, consistent with the form given in Eq. (2) of the paper.
Once integrated, Eq. (B.14) yields

z̃2 =

[(
1+ K +

3
16

Cd

α

)
α3

2

]−1/2

t̃. (B.15)

K andCd act in exactly the same way in the self-similar regime.
Furthermore, 3/(16α) ∼ 1 if α ≃ 0.25, which implies thatK and
Cd have a quantitatively similar effect.
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