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Résumé
Nous étudions les conséquences cosmologiques des anomalies de Weyl qui émergent
de la renormalisation des opérateurs composés des champs fondamentaux, y compris
la métrique. Ces anomalies sont codifiées dans les habillements gravitationnels des
opérateurs dans une action effective quantique qui est non-locale. Nous obtenons les
équations d’évolution qui découlent de cette action et nous en cherchons des solutions
cosmologiques. Par simplicité on se limite à la gravité d’Einstein-Hilbert avec une
constante cosmologique.

Nous initions par considérer la gravité en deux dimensions, où des résultats bien
établis de la théorie de Liouville nous permettent de calculer explicitement la dimension
anormale exacte de la constant cosmologique. En utilisant une formulation invariante
de Weyl de la gravité, nous déterminons l’action effective qui est invariante de jauge
et non-locale, et nous calculons le tenseur de moment correspondant, qui est aussi
non-locale. Les anomalies de Weyl modifient le tenseur entier, pas seulement sa trace,
menant à des conséquences intéressantes pour la dynamique cosmologique. En partic-
ulier, nous trouvons une énergie du vide qui décline avec le temps et un ralentissement
de l’expansion de de Sitter à une de quasi-de Sitter.

En quatre dimensions, motivés par nos résultats en deux dimensions, nous para-
métrisons l’action effective avec des habillements gravitationnels qui dépendent de
l’échelle, et on obtient les équations d’évolution générales. Dans l’approximation des
dimensions anormales constantes, le tenseur de moment conduit encore à une énergie
du vide qui décline et une expansion de quasi-de Sitter de roulement lent, comme en
deux dimensions. Les dimensions anormales sont calculables à priori dans une certaine
théorie microscopique avec des méthodes semi-classiques, mais les calculs sont plus
compliqués que dans la théorie de Liouville.

Même si les dimensions anormales sont petites en théorie des perturbations, leur
contribution intégrée le long des plusieurs e-folds pourrait mener à des effets signi-
ficatifs. Nous examinons les situations possibles où ces effets pourraient avoir étés
pertinents pour la cosmologie primordiale. Nous finissons par décrire les travaux en
cours et tracer les directions futures.

Mots clés : Gravité, cosmologie quantique, constante cosmologique, anomalie de
Weyl, non-locale, Liouville, inflation.
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Abstract
In this thesis we study the cosmological consequences of Weyl anomalies arising

from the renormalization of composite operators of the fundamental fields, including
the metric. These anomalies are encoded in the gravitational dressings of the opera-
tors in a non-local quantum effective action. We derive the evolution equations that
follow from this action and look for cosmological solutions. For simplicity, we focus on
Einstein-Hilbert gravity with a cosmological constant.

We first consider two-dimensional gravity, where results from Liouville theory allow
us to explicitly compute the exact anomalous dimension of the cosmological constant
operator. Using a Weyl-invariant formulation of gravity, we determine the manifestly
gauge-invariant but non-local effective action, and compute the corresponding non-
local momentum tensor. The Weyl anomalies modify the full quantum momentum
tensor, not only its trace, and hence lead to interesting effects in the cosmological
dynamics. In particular, we find a decaying vacuum energy and a slow-down of the de
Sitter expansion to a power-law quasi-de Sitter one.

In four dimensions, motivated by our results in two dimensions, we parametrize the
effective action with scale-dependent gravitational dressings, and compute the general
evolution equations. In the approximation of constant anomalous dimensions, the
momentum tensor leads to a decaying vacuum energy and a slow-roll quasi-de Sitter
expansion, just as in two dimensions. The anomalous dimensions are in principle
computable in a given microscopic theory using semiclassical methods, but require
more elaborate computations than in Liouville theory.

Even though the anomalous dimensions are small in perturbation theory, their
integrated effect over several e-folds could add up to something significant. We discuss
possible situations where these effects could be relevant in primordial cosmology. We
conclude by outlining ongoing research and future directions.

Keywords : Gravity, quantum cosmology, cosmological constant, Weyl anomaly,
non-locality, Liouville, inflation.
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Résumé de la Thèse

La théorie de la gravité quantique est une théorie non-renormalizable. Malgré tout on
peut la définir perturbativement avec succès comme une théorie effective de champs
qui décrit correctement la physique au dessous d’une échelle de coupure M0 de l’ordre
de la masse de Planck Mp [1–3]. Le succès de la théorie effective de la gravité met
en évidence qu’il n’y a pas d’incohérence entre la relativité générale et la mécanique
quantique: même si une nouvelle théorie est requise au delà de l’échelle de coupure,
aux basses énergies on peut calculer les corrections quantiques d’une manière cohérente
et qui ne dépend pas de la théorie dans le régime ultraviolet. Le développement de
cette théorie est donc très important, car elle devrait nous permettre de calculer des
corrections à la relativité générale aux distances longues.

Selon la procédure des théories effectives de champs, l’action effective doit inclure
tous les termes compatibles avec les symétries. Le principe de jauge de la relativité
générale est la covariance générale. En conséquence, à l’action d’Einstein-Hilbert qui
a deux dérivées, on ajoute une constante cosmologique, avec zéro dérivées, et succes-
sivement des termes avec de plus en plus de dérivées. Les premières corrections, avec
quatre dérivées, sont accompagnées d’un facteur 1/M2

p , et sont donc supprimées par
rapport à Einstein-Hilbert. Le fait que la masse de Planck soit largement supérieure
aux énergies atteintes expérimentalement explique que la théorie effective de la gravité
puisse faire des prédictions précises.

Jusqu’à présent, la plupart de résultats ont étés obtenus avec la théorie de la per-
turbation autour d’un fond de Minkowski en utilisant des techniques diagrammatiques.
Le résultat principal de cette approche est le calcul des corrections quantiques dom-
inantes aux potentiel de Newton [4]. Même s’il est remarquable que ces corrections
soient bien définies, finies et calculables, elles sont sensées être très faibles à cause de
la suppression de Planck. Vu que ces corrections consistent en des termes avec des
dérivées, elles sont plus larges aux hautes énergies. Plus concrètement, pour obtenir
quelque effet qui puisse être observé, on devrait tester des énergies suffisamment proche
à l’échelle de Planck. Un contexte où ces énergies devraient avoir été atteintes est la
cosmologie primordiale. La théorie la plus acceptée sur les premiers instants de notre
univers c’est la théorie de l’inflation [5–7], d’après laquelle l’univers a expérimenté une
période de très forte expansion quasi-exponentielle autour des 10−34 secondes après la
singularité initiale. L’inflation est probablement un des rares scénarios théoriques où
ces corrections pourraient être suffisamment larges. Aussi, les fluctuations quantiques
présentes à ce moment devraient avoir été magnifiées du fait de l’expansion de l’espace,
en laissant des traces observables sur le ciel d’aujourd’hui.

Pour appliquer la théorie effective de la gravité à la cosmologie, on doit développer
perturbativement autour d’un fond de Robertson-Walker. Pour cette théorie effective
donc, il faut un formalisme qui soit indépendant du fond et complètement covariant.
Un des ingrédients le plus important de ce formalisme est l’action quantique effective.
Pour l’écrire, il est très pratique d’utiliser la méthode du champ de fond, qui permet de
travailler sur un fond qui n’est pas forcement une solution des équations du mouvement.
Une caractéristique fondamentale de l’action effective est qu’elle est non-locale. En
effet, elle n’est pas l’action Wilsonienne, mais l’action d’une particule irréductible. Les
gravitons sont intégrés depuis l’échelle de coupure jusqu’à zéro énergie, ce qui donne
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lieu à des termes non-locaux dans l’action.
Une approche très pratique pour dériver (une partie de) l’action effective gravita-

tionnelle est l’intégration des anomalies de Weyl. Cette approche permet de profiter
des simplifications qui ont lieu quand une théorie est très proche d’un point fixe. Les
anomalies de Weyl apparaissent dans la trace du tenseur de moment dû aux effets quan-
tiques [8,9]. Ces termes anormales doivent dépendre de la courbure de l’espace-temps,
vu qu’ils devraient s’annuler dans l’espace plat. En plus, ils doivent être déterminés
par la trace de la variation de l’action effective quantique par rapport à la métrique, et
donc ils sont une bonne source d’information sur cette action. En particulier, vu que les
anomalies paramétrisent chaque théorie, elles doivent être codées dans l’action dans des
termes non-locaux. Autrement, elles pourraient être éliminées avec des contre-termes
locaux, et les anomalies dépendraient du schéma de renormalisation. Ces anomalies
de Weyl sont très intéressantes quand la théorie classique est invariante de Weyl, car
dans ce cas elles sont la seule contribution à la trace du tenseur de moment, et elles
violent l’identité de Ward pour l’invariance de Weyl qui dicte que la trace classique
doit être nulle. En plus, si l’invariance de Weyl est une invariance de jauge, la somme
totale de ces anomalies doit être nulle, ce qui fourni des critères pour les valeurs que
les coefficients des anomalies peuvent prendre.

Pour determiner l’action effective à partir des anomalies, on peut traiter l’expression
de la trace du tenseur de moment en termes des anomalies comme une équation pour
l’action. Ce là est possible parce que, en fait, la trace est aussi donnée par la variation
de l’action par rapport au facteur conforme de la metric Σg(x), où gµν = e2Σg η̄µν , et
η̄µν est une métrique de référence fixée par quelque condition scalaire. En effet, en
écrivant les opérateurs qui apparaissent dans la trace dans cette jauge, on obtient une
équation pour l’action effective qui peut être intégrée, c’est-à-dire

T = 1√
−g

δΓ[g]
δΣg(x) = ciOi(e2Σg η̄µν) . (0.0.1)

L’action qui suit de cette integration est écrite automatiquement dans cette jauge con-
forme, mais on peut la rendre covariante en utilisant l’expression du facteur conforme
Σg(x) en termes de la métrique physique gµν . Cette expression contient une intégrale
du scalaire de Ricci avec la fonction de Green du Laplacien sur tout l’espace-temps,
et donc le facteur conforme est une fonctionnelle non-locale de la métrique. L’action
donc, devient aussi non-locale, comme on s’y attendait.

Deux types différents d’anomalies peuvent apparaître dans la trace du tenseur
de moment. D’abord, il y a les anomalies qui résultent du fait que les mesures des
champs dans l’intégrale du chemin ne sont pas invariantes de Weyl. Ces anomalies sont
caractérisées par les points fixes où les fonctions-beta des opérateurs dans l’action sont
nulles, et elles consistent en des termes de courbure avec des coefficients constants qui
paramétrisent chaque théorie. Les exemples les plus connus sont la charge centrale c en
deux dimensions, qui accompagne le scalaire de Ricci, ou les charges a et b en quatre
dimensions, qui accompagnent la densité d’Euler et le tenseur de Weyl respectivement.

Le deuxième type d’anomalies de Weyl vient de la renormalisation des opéra-
teurs présents dans l’action classique. Typiquement, ces opérateurs sont composés des
champs fondamentaux, et donc ils enferment des divergences de contact qui doivent
être renormalisées. Dans le cas des théories définies dans un espace-temps plat, la
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renormalisation des opérateurs requiert l’introduction d’une échelle additionnelle M
qu’on utilise pour implementer le groupe de renormalisation. Les objets renormal-
isées acquièrent une dépendance en M , qui peut briser l’invariance d’échelle au niveau
quantique. En effet, vu que l’échelle de renormalisation change sous la transformation
d’échelle, la dépendance enM acquise par les opérateurs une fois renormalisés, Oi(M),
leur donne une dimension d’échelle anormale −γi(M). Cette dimension est encodée
dans la fonction-beta de la constante de couplage λi(M) correspondante à l’opérateur,
dont l’expression est donnée par βi(λi) = (∆i − d+ γi)λi(M), où ∆i est la dimension
classique de l’opérateur.

La généralisation de cette ligne de raisonnement à une théorie gravitationnelle re-
quiert la substitution des transformations d’échelle δ lnM par les transformations de
Weyl δΣg. Les dimensions anormales sous les transformations d’échelle deviennent
donc des dimensions de Weyl anormales. Cette généralisation suggère que le facteur
conforme de la métrique doit prendre le rôle de l’échelle covariante de renormalisation
M , et donc que les opérateurs renormalisés acquièrent une dépendance anormale due
facteur conforme Oi(Σg). Une dépendance additionnelle à la métrique est une con-
séquence prévisible d’une renormalisation covariante. En plus, une échelle de renor-
malisation doit devenir locale, M(x), dans une théorie gravitationnelle, où il n’y a pas
des énergies bien définies globalement. L’idée intuitive derrière cette affirmation est
que pour une théorie définie sur un espace-temps générale, il n’y a aucune raison pour
laquelle deux observateurs placés dans des points très séparés dans l’univers devraient
choisir la même échelle de renormalisation arbitraire, et donc celle-ci devrait dépendre
de la position. L’échelle d’énergie caractéristique est donc remplacée par l’échelle car-
actéristique de courbure, et en particulier, cette généralisation dicte qu’elle est donnée
par le facteur conforme de la métrique.

Comme dans le cas des théories en l’espace plat, les dimensions anormales peuvent
en générale dépendre de l’échelle covariante de renormalisation, c’est à dire γi(Σg). Les
opérateurs renormalisés deviennent donc

Oi(Σg) = O0
i Z−1

i (Σg) = O0
i e
−
∫ Σg

0 γi(Σ) dΣ , (0.0.2)

où Zi désigne le facteur multiplicatif qui contient la variation de l’opérateur renor-
malisés par rapport à l’échelle de renormalisation, et O0

i est l’opérateur nu. L’action
quantique effective s’écrit avec les opérateurs renormalisés, et donc elle hérite de leur
dépendance quantique dans la métrique. On dit alors que les opérateurs dans l’action
deviennent habillés gravitationnellement. En conséquence, la variation de l’action par
rapport à la métrique, ainsi que sa trace, héritent aussi de cette dépendance quan-
tique. De la même manière que l’action acquière un comportement anormale sous une
transformation de Weyl, la trace du tenseur de moment acquière une anomalie, qui est
donnée par

T = 1√
−g

δΓ
δΣg

= (d−∆i − γi) λiOi(Σg) , (0.0.3)

où les deux premiers termes viennent de la variation de l’action classique. D’après
l’expression de la fonction-beta, il est clair que la trace quantique obéit

T = −βi(λi)Oi(Σg) . (0.0.4)
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Celle-ci est l’équation de l’anomalie qui inclue les dimensions de Weyl anormales ac-
quis par les opérateurs, et en conséquence par l’action effective, à cause de la renor-
malisation. Il s’agit d’une équation très utile parce qu’en connaissant les dimensions
anormales des opérateurs elle permet de calculer leurs habillements gravitationnels
dans l’action effective. Cette équation dicte donc que l’action devrait prendre la forme
Γ ∼

∫
λiOi e

−Γi(Σg). Nous allons utiliser cet argument pour proposer une action
effective gravitationnelle en quatre dimensions.

La conclusion des raisonnements expliqués ci-dessus est que les constantes de cou-
plages physiques sont les constantes des opérateurs habillés gravitationnellement, et
que les dimensions anormales des opérateurs habillés sont en principe différentes des
dimensions anormales des opérateurs sans habillement gravitationnel. Ces considéra-
tions devraient être valides pour touts les opérateurs, en particulier pour les opérateurs
purement gravitationnels qui déterminent les équations du mouvement de la métrique.
Une des idées principales qui suit du travail présenté ici est que les habillements grav-
itationnels modifient le tenseur de moment entier, pas seulement sa trace, et donc
modifient la dynamique quantique de la théorie. Les anomalies de Weyl, donc, peu-
vent avoir des conséquences intéressantes pour la dynamique cosmologique.

Dans cette thèse nous nous intéressons principalement au deuxième type d’anomalies.
En particulier nous sommes intéressés par le calcul des anomalies des opérateurs com-
posés qui sont pertinents pour l’évolution cosmologique. Le premier type d’anomalies
est aussi supposé être présent, mais nous allons plutôt l’ignorer, et nous allons supposer
que les effets des différent types d’anomalies peuvent être traités séparément.

D’après les considérations présentées il serait pratique de développer un formal-
isme qui soit invariant de jauge et qui permettrait de prédire des caractéristiques
générales des effets des anomalies sur l’évolution de l’univers. Dans cette thèse, nous
abordons cet objectif en étudiant les effets cosmologiques des anomalies de Weyl de
l’action d’Einstein-Hilbert avec une constante cosmologique. Nous nous intéressons
donc à l’action effective correspondante qui inclut les habillements gravitationnels ap-
propriées pour les deux opérateurs dans cette action classique. Notre approche se
compose principalement de deux étapes : d’abord, nous déterminons ces habillements
gravitationnels pour les deux opérateurs et nous écrivons l’action effective ; ensuite,
nous calculons les équations d’évolution cosmologique et nous cherchons des solutions
pour un univers homogène et isotrope.

À cette fin il est très pratique d’utiliser un formalisme qui permet de donner un
traitement spécial au facteur conforme de la métrique, en restant toujours covariante.
Un tel formalisme est donné par la formulation invariante de Weyl de la gravité, laquelle
a été fortement mise à profit dans cette thèse. La formulation invariante de Weyl
[10] consiste à introduire un champ compensateur de Weyl Ω(x) et une métrique de
référence hµν , qui se transforment d’une manière telle que la métrique physique gµν =
e2Ωhµν reste invariante. Le compensateur donc, transforme linéairement sous une
transformation de Weyl. La théorie qui résulte de cette reformulation de la métrique
physique possède un degré de liberté supplémentaire, mais aussi un principe de jauge
élargi, qui inclut cette transformation de Weyl ainsi que les difféomorphismes de la
théorie originelle. Le nombre de degrés de liberté reste donc le même après avoir
imposé l’invariance de Weyl. Une condition essentielle du principe de jauge élargi est
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que toutes les anomalies qui apparaissent doivent s’annuler puisque l’invariance de
Weyl est une invariance de jauge. Ceci fournit un fil directeur très utile.

Une conclusion du travail présenté dans cette thèse est que la formulation invariante
de Weyl devient très utile pour calculer les dimensions anormales et les habillements
gravitationnels des opérateurs dans le cas de deux dimensions, où l’invariance de jauge
élargie permet de fixer le métrique de référence hµν complètement. Dans ce cas le seul
degré de liberté est le compensateur Ω(x). Les opérateurs covariants deviennent des
opérateurs composés seulement de Ω(x), qui est un scalaire et dont les divergences
ultraviolettes sont plus faciles à régulariser.

Un autre avantage de la formulation invariante de Weyl est d’être très appropriée
aux calculs cosmologiques. Dans un univers homogène et isotrope, la seule composante
dynamique de la métrique est son facteur d’échelle, tandis que la métrique du fond est
complètement fixée par les symétries et la choix de la courbure spatiale. Le compen-
sateur Ω(x) prend le rôle du facteur d’échelle et la métrique de référence hµν celui de
la métrique du fond. Dans notre traitement en quatre dimensions nous utilisons cette
formulation essentiellement pour dériver les équations d’évolution cosmologique d’une
manière simple.

Face à un problème difficile, il est toujours sage de commencer par un modèle sim-
plifié qui permet de faire des calculs explicites mais qui saisit malgré tout les caractéris-
tiques essentielles du modèle plus général. En accord avec l’esprit de cette approche
notre point de départ est l’action d’Einstein-Hilbert avec une constante cosmologique
en deux dimensions

IG[g] = 1
2κ2

∫
d2x
√
−g (Rg − 2Λ) . (0.0.5)

Cette analyse bidimensionnelle constitue la première partie de cette thèse. Une des
raisons pour considérer deux dimensions est que toute la dynamique quantique réside
dans le facteur conforme de la métrique, comme argumenté précédemment, et donc
les dimensions anormales deviennent plus faciles à calculer. En plus, comme nous
le montrons, quand l’action d’Einstein-Hilbert est écrite dans sa forme invariante de
Weyl en terme du compensateur Ω(x) et la métrique de référence hµν , l’action classique
devient une continuation analytique de l’action bien connue de Liouville, l’action de
Liouville de type temps (‘timelike’). Le compensateur de Weyl dans cette théorie prend
le rôle du champ de Liouville. La théorie de Liouville est une théorie des champs
conforme qui a été très étudiée, et pour laquelle l’approche du bootstrap a permis de
dériver toutes les données conformes de la théorie, c’est-à-dire son spectre, ses fonctions
à deux points et ses constantes de structure. C’est l’apparition de cette riche théorie
de Liouville qui nous permet de déterminer l’action effective exacte, et donc qui justifie
complètement l’étude de la cosmologie quantique en deux dimensions.

L’action de Liouville est présente dans beaucoup d’approches de la gravité quan-
tique bidimensionnelle. Puisque la théorie timelike de Liouville résulte d’une continu-
ation analytique du champ de Liouville, elle acquière un terme cinétique négatif, d’où
le qualificatif de ‘timelike’. Ce signe moins du terme cinétique est attendu pour la dy-
namique du facteur conforme de la métrique [11], et en fait il s’agit d’une des difficultés
standards rencontrées quand on essaye de quantifier la gravité dans n’importe quelle
dimension d’espace-temps. Heureusement, la quantification complète de la théorie
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timelike du Liouville n’est pas nécessaire pour les questions qui nous intéressent, pour
lesquelles la continuation analytique des résultats générales de la théorie de Liouville
suffit.

Notre première étape consiste à calculer l’habillement gravitationnel de l’opérateur
de constante cosmologique. Dans la formulation invariante de Weyl, cet opérateur
identité Λ√−g, devient Λ e2Ω√−h. Après avoir fixé l’invariance de jauge, seul le
champ de Liouville Ω(x) fluctue. Donc, on transforme les divergences de contact de
l’opérateur composé original √−g en des divergences de contact de l’opérateur vertex
e2Ω. Voilà un exemple de la simplification fournie par la formulation invariante de
Weyl.

La renormalisation de cet opérateur vertex dedans la théorie qui l’inclut dans
l’action devrait être très complexe. Malgré tout une des caractéristiques la plus re-
marquable de la théorie de Liouville est que les divergences ultraviolettes peuvent être
renormalisées avec un simple ordre normal [12–17]. Ceci simplifie énormément le calcul
de l’habillement gravitationnel de la constante cosmologique, étant donné qu’il permet
de renormaliser l’opérateur vertex comme dans le cadre d’une théorie libre.

L’habillement gravitationnel calculé dépend du facteur conforme de la métrique de
référence Σh(x), et elle est donnée par l’expression

[e2Ω]h = e2β qΩ e−2β2Σh , (0.0.6)

où [e2Ω]h indique l’opérateur renormalisé par rapport à la métrique hµν , q est une
redéfinition de la constante gravitationnelle κ2 pour deux dimensions, et β paramétrise
l’anomalie. La dimension anormale peut être lue dans l’expression de l’opérateur
renormalisé et vaut γ = 2β2. En imposant l’annulation des anomalies de Weyl on
détermine la dépendance du paramètre anormal β dans la constante fondamentale
gravitationnelle q, et on reproduit bien la relation de Liouville β(q + β) = 1. L’action
effective invariante de jauge et non-locale est finalement donnée par

IΛ[g] = − Λ
κ2

∫
d2x
√
−g e−2β2Σg . (0.0.7)

La correction quantique dû à l’anomalie devient évidente avec l’habillement gravi-
tationnel de l’opérateur √−g. Cette action effective devient non-locale quand on
introduit l’expression covariante du facteur conforme, qui suit de l’inversion de la
transformation de Weyl du scalaire de Ricci, et qui est donnée par

Σg(x) = 1
2

∫
d2y
√
−g Gg(x, y)Rg(y) , (0.0.8)

où Gg(x, y) est la fonction de Green du Laplacien sur la métrique gµν .
La deuxième partie de notre analyse bidimensionnelle concerne l’étude des con-

séquences cosmologiques de cette constante cosmologique renormalisée. À cette fin, on
calcule le tenseur quantique de moment qui suit de l’action ci-dessus, qui devient encore
non-locale dû aux anomalies. En imposant les symétries d’un univers de Robertson-
Walker, le tenseur non-local se simplifie beaucoup et prend la forme d’un fluide parfait
donné par

pΛ = wΛ ρΛ , avec wΛ = −1 + 2β2 , (0.0.9)
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où l’indice barotrope diffère de sa valeur classique −1, dû visiblement à l’anomalie. En
introduisant le tenseur de moment dans les équations d’Einstein en deux dimensions et
imposant la forme du fluide parfait, on trouve l’équation de Friedmann avec la densité
du vide renormalisée. La solution que l’on trouve est donnée par

ρΛ(t) = ρ∗(
a

a∗
)−2β2

, a(t) = a∗(1 + β2H∗t)
1
β2 . (0.0.10)

Ces solutions montrent que les corrections quantiques mènent à une énergie du vide
qui décline dans un univers homogène et isotrope et à un ralentissement de l’expansion
exponentielle de de Sitter. Ceci est un résultat très intéressant parce qu’il offre un
mécanisme dynamique pour la décroissance de la densité d’énergie de la constante cos-
mologique, qui est basé seulement sur la physique gravitationnelle aux basses énergies.
En plus, une telle décroissance de l’énergie du vide pourrait provoquer une période in-
flationnaire basée seulement sur des effets quantiques gravitationnels, sans la nécessité
d’introduire des scalaires supplémentaires. Elle offre donc un modèle d’inflation sans
inflaton.

Le but final de l’étude de ce modèle bidimensionnelle est de tirer quelques conclu-
sions générales qui peuvent être applicables en quatre dimensions. L’avantage de ce
modèle est que les effets quantiques importants peuvent être calculés explicitement avec
assez d’aisance et sans ambiguïtés, à tous les ordres dans la théorie des perturbations.
On s’attend que l’approximation semi-classique sera fiable aux échelles cosmologiques
en quatre dimensions.

L’analyse de la gravité en quatre dimensions comprend la deuxième partie de cette
thèse. Comme en deux dimensions, on s’intéresse à l’action quantique effective qui est
valide aux distances longues comparées à l’échelle de Planck. Notre ingrédient central
est de nouveau l’action effective non-locale qui intègre les anomalies de Weyl de la
gravité d’Einstein-Hilbert et de la constante cosmologique. C’est-à-dire, l’action qui
inclut les habillements gravitationnels des opérateurs Rg et √−g.

En quatre dimensions on ne jouit pas de la simplification amenée par la formulation
invariante de Weyl et par la théorie de Liouville dans les calculs des habillements grav-
itationnels en deux dimensions. En effet l’invariance jauge ne fixe pas complètement
la métrique de référence et les opérateurs covariants sont composés non seulement du
compensateur Ω(x), mais aussi des composantes de la métrique hµν , qui ne sont pas
fixées par la choix de jauge. Ainsi les divergences de contact sont difficiles à renor-
maliser d’une manière covariante et on doit recourir aux calculs perturbatifs. Tout
de même les résultats de nôtre modèle bidimensionnelle et les considérations sur la
dépendance anormale dans l’action effective au facteur conforme présentées dessus
permettent de déduire la forme la plus logique pour l’action effective gravitationnelle.
Celle-ci est donnée par [10]

ΓG[g] =
M2
p

16π

∫
d4x
√
−g

(
Rg e

−ΓK(Σg) − 2 Λ e−ΓΛ(Σg)
)
, (0.0.11)

où les Γi(Σg), i = K,Λ représentent les habillements gravitationnels intégrées. Vu que
cette action dépend de Σg = Ω + Σh, elle est invariante de jauge automatiquement.
Ces dimensions anormales et les habillements gravitationnels sont calculables dans une
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certaine théorie microscopique. La renormalisation de la constante de Newton et de
la constante cosmologique ont été déjà calculées précédemment [18–20]. On peut ex-
traire les évolutions logarithmiques sous le groupe de renormalisation de ces résultats.
Toutefois la stratégie que nous suivons dans cette thèse consiste à considérer les ha-
billements intégrés comme des fonctions générales qui paramétrisent l’action effective,
et nous différons la détermination de leur expression exacte à un projet ultérieur.

Le but principal de notre analyse en quatre dimensions est de déterminer la dy-
namique cosmologique qui suit de l’action effective (5.1.1). À cette fin, on détermine
les équations intégro-différentielles qui découlent de cette action et qui décrivent la dy-
namique effective de l’espace-temps aux distances longues, et on cherche des solutions
de Robertson-Walker. Le tenseur de moment a encore la forme d’un fluide parfait,
et sous l’approximation des anomalies linéaires – c’est-à-dire ΓK(Ω) = γK Ω(x) et
ΓΛ(Ω) = γΛ Ω(x) (les γi sont des constantes) –, il acquière un indice barotrope con-
stant

we = −1 + γ

3 , avec γ = γΛ − γK , (0.0.12)

qui est de nouveau au dessus de sa valeur classique. Même si l’approximation des
anomalies constantes est seulement un cas particulier elle pourrait être valide pour des
périodes suffisamment longues pendant l’évolution de l’univers.

La solution obtenue de l’équation de Friedmann est

ρe(t) = ρe∗

(
a

a∗

)−γ
, a(t) = a∗(1 + γ

2H∗t)
2
γ . (0.0.13)

Cette solution décrit une décroissance lente de la densité d’énergie du vide et une ex-
pansion accélérée qui suit une loi de puissance, exactement comme en deux dimensions.

Vu que le facteur conforme n’est pas un vrai scalaire mais seulement une com-
posante de la métrique dans une jauge particulière notre résultat fournit un modèle
d’inflation quasi-de Sitter sans scalaire fondamental, poussée entièrement par la den-
sité d’énergie du vide dû à la dynamique quantique non triviale du champs Ω. Ainsi il
fournit un modèle d’inflation sans inflaton.

Aussi bien en deux comme en quatre dimensions les paramètres de roulement lent
peuvent être calculés. Le premier paramètre εH devient proportionnel au paramètre
de l’anomalie (β ou γΛ − γK respectivement). Dans les deux cas il est plus petit que
l’unité dans la limite semi-classique. Le deuxième paramètre ηH devient exactement
zéro, ce qui indique que les deux modèles permettent une inflation de roulement lent
pour une période suffisamment longue.

Les corrections quantiques dûes aux anomalies dans les deux cas transforment
l’expansion classique exponentielle exact de de Sitter dans une de quasi-de Sitter.
Quand on écrit la solution quantique corrigée comme une expansion autour de la solu-
tion classique, on voit que les corrections sont logarithmiques, ce qui est cohérent avec
le fait que les habillements gravitationnels intégrés dans l’action effective additionnent
les logarithmes principaux de la renormalisation des opérateurs.

À ce point, le modèle mène à un univers vide parce qu’il continue d’enfler. Avec
des champs de matière il serait possible de construire des scénarios plus réalistes, avec
un mécanisme de réchauffage et un Big Bang chaud, ainsi qu’avec des perturbations
primordiales.
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Introduction

Quantum gravity is a non-renormalizable quantum field theory. However, it can be
successfully treated as a perturbative effective field theory [1–3]. As such, this theory
should correctly describe the relevant physics below a given ultraviolet cutoffM0 of the
order of the Planck mass Mp, despite requiring an ultraviolet completion beyond this
scale. The effective field theory point of view makes it clear that there is no fundamen-
tal inconsistency between general relativity and quantum mechanics: gravity becomes
non-perturbative for energies around M0, where all of the quantum corrections and
higher-order terms in the Lagrangian become important, but at low energies the quan-
tum corrections can be computed consistently as for any other perturbative quantum
field theory, and they will not depend on the ultraviolet completion. Understanding
this theory is hence of utmost interest: it should allow us to compute quantum grav-
itational corrections perturbatively, which modify classical general relativity at long
distances, and should shed light onto the putative ultraviolet completion, for the latter
should reproduce these corrections at sufficiently low energies.

As the effective field theory approach dictates, the quantum action has to include all
the terms compatible with the symmetries. The gauge principle of general relativity is
general coordinate invariance, which allows for all products of the metric, the Riemann
tensor and covariant derivatives thereof. Therefore, to the classical Einstein-Hilbert
action, one should add a cosmological constant Λ as the trivial operator, and all higher-
derivative terms1

IG[g] =
M2
p

16π

∫
d4x
√
−g

(
Rg − 2Λ + 1

M2
p

(
Λ1R

2
g + Λ2RµνR

µν
)

+ . . .

)
. (0.0.14)

Since the Riemann tensor Rµνρσ contains two derivatives, all the terms with Λi above
contain four derivatives, and therefore need a factor of M−2

p . The dots would include
higher derivatives, hence operators ever more irrelevant. Higher-derivative corrections
therefore, are Planck mass suppressed compared to the perturbative corrections coming
from the first two terms.

The large value of the Planck mass renders any experimentally accessible energy
in the very low energy regime, and somehow paradoxically makes effective quantum
gravity a very good perturbative quantum field theory. This great separation of scales,
between experimental energies and the gravitational cutoff, is the origin of both the
successful predictivity of effective quantum gravity, and the difficulty to test any ul-
traviolet completion from which the coefficients Λi should be predicted.

1The R2
µνρσ term is not included because a linear combination with R2

g and R2
µν can be formed

which is a total derivative, the Gauss-Bonnet term, and which hence has no effect on the dynamics.

xv
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The perturbative expansion of effective gravity is implemented with a gravitational
perturbation hµν around a fixed background gµν

gµν +
√

8πGN hµν , (0.0.15)

where GN is Newton’s constant. Up to date, most of the work has been devoted to
perturbation theory around the Minkowski background gµν = ηµν , using diagrammatic
techniques. The chief result of this approach is the computation of the leading quantum
gravitational corrections to the Newtonian potential [4]. With this analytic result, the
first corrections on the bending of light around the Sun [21] and black hole metrics
have been computed [22, 23].

It is to be appreciated that these corrections are well defined, finite and computable
with relative ease, and that they yield precise testable predictions. This makes them all
the more interesting, and not only fully justifies but also calls for thorough exploration
of this theory. However, these corrections are expected to be very small due to their
Planck suppression. Higher-derivative terms are suppressed with negative powers of
M2
p , but even the lowest order h3 corrections coming from the Einstein-Hilbert term

are Planck suppressed, with Mp as (0.0.15) dictates. Since interaction terms are of the
form ∼ ∂m hn, one either needs very high energies or very large field values to enhance
the corrections. As for the latter, large field values are found in nature, for example
in the vicinities of stars. But even then, the resulting corrections are very small. For
instance, the radiative correction coming from the expansion of the Einstein-Hilbert
term predicts a shift in the perihelion of Mercury of one part in 1090. This clearly
makes any of these observations unmeasurable in any near future.

The alternative to attain any observational check then, is to explore high energies.
These have to be of an order close enough to the Planck mass. Clearly, no human-
made experiment can nowadays probe such scales. Cosmology on the other hand, may
be able to provide such probes. Indeed, in its very early stages, the universe should
have reached energies of a few orders of magnitude below the Planck scale. It is widely
believed that around 10−34 seconds after the initial singularity, the universe underwent
a period of great quasi-exponential expansion, the so-called inflationary period [5–7]
(for a pedagogical review see [24]). Not only is inflation one of the few theoretical
settings where these corrections could have been large enough, but also any of the
quantum fluctuations present at the time should have been considerably magnified
due to the expansion of space, making their relics observable nowadays. It is therefore
of paramount interest to apply the effective field theory of gravity to the primordial
evolution of the universe, and to further understand the signature of these quantum
corrections in current sky observations like the cosmic microwave background.

To be able to consistently apply effective quantum gravity in a cosmological set-
ting however, the perturbative expansion should be done on a Robertson-Walker back-
ground. Therefore, a background-independent and fully covariant formalism of effec-
tive quantum gravity is required. One of the important steps in the construction of
such a formalism is to write down the quantum effective action. For this purpose, it
is very convenient to use the background field method, which allows to quantize the-
ories without losing explicit gauge invariance and choose a completely arbitrary and
unspecified background, that need not be a solution of the equations of motion. A key
feature of the effective action is that it is non-local. Indeed, it is not to be understood
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as Wilsonian, but rather as the one-particle-irreducible action. The integration of the
massless gravitons is done all the way from the cutoff to zero energy, and therefore it
is expected to lead to non-local terms.

One interesting approach to both constructing the effective action and computing
loop diagrams covariantly is based on the heat kernel and its expansions [25,26]. This
method represents the state of the art techniques to compute higher-order perturbative
corrections systematically [27,28]. Even when only the heat kernel trace is necessary for
the computations, exact expressions are hard to compute on an arbitrary background,
and asymptotic expansions are typically required. Currently, two main expansion
schemes have been developed. The first one is the derivative or early time expansion
[26,29], which is local, and the second one is an expansion in the curvatures [25,30–34],
which is non-local. The local heat kernel expansion is usually employed to compute
ultraviolet divergences and anomalies, since these are directly related to local heat
kernel coefficients. The non-local expansion is used instead to directly compute the
finite part of the effective action. The two expansions are entangled in a non-trivial
way, as becomes apparent from (0.0.14), where at fourth order in derivatives, there are
both first and second order in curvature terms. In fact, the non-local expansion re-
sums an infinite number of local heat kernel coefficients (from the derivative expansion
at each curvature order) in the form of non-local structure functions.

An alternative approach to predicting terms in the effective gravitational action is
that of the integration of Weyl anomalies. Even if it does not allow to systematically
compute higher-order terms and does not give full knowledge of the effective action, it
is a very convenient approach because it does not require re-summation of asymptotic
expansions, and because it conveniently exploits the simplifications that come when
working onto or very close to a fixed point.

It is well known that due to quantum effects, the so-called Weyl anomaly terms
appear in the trace of the quantum momentum tensor [8,9].2 They ought to depend on
the background curvature, for they should vanish on flat spacetime. These quantum
terms should follow from the traced metric variation of the quantum effective action,
hence they are a precious source of information about the latter. In particular, since the
anomalies (or rather their coefficients) parametrize each given theory, they have to be
encoded in the action in non-local terms. Otherwise, they could be removed by adding
local counterterms, and anomalies would be renormalization scheme-dependent. These
anomalies are very interesting when the theory is classically Weyl invariant, since then
they represent the entire contribution to the momentum tensor’s trace, and they are
responsible for spoiling the Weyl Ward identity which dictates its tracelessness. Even
more so, if Weyl invariance is a gauge invariance, the total sum of anomalies has to
cancel. This provides constraints on the values the anomaly coefficients can take.

The Weyl anomalies of a theory at a fixed point are given by purely geometric terms
with constant parametric coefficients. The origin of these anomalies is the metric-
dependence of the fields measures in the path integral. These measures are defined
by an inner product of field perturbations that requires specification of a background
metric. This product needs not be Weyl invariant, hence can lead to Weyl invariance

2See [35] for a nice historical review.
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violation of the quantum effective action that follows from doing the path integral.
To be able to extract the information about the quantum effective action from the

anomalies, one can treat the expression of the anomalous trace of the momentum tensor
as an equation for the quantum effective action. This can be done by realizing that
the trace can be written as the variation of the action with respect to the conformal
factor of the metric Σg(x), where gµν = e2Σg η̄µν and η̄µν is a fiducial metric fixed
by some scalar condition. Fixing the metric to this so-called conformal gauge spoils
covariance, but allows for the integration of the trace. Indeed, substituting this form
of the metric into the geometric operators appearing in the trace and using their Weyl
transformation properties, leads to a differential equation for the effective action that
can be integrated, namely

1√
−g

δΓ[g]
δΣg(x) = ciOi(e2Σg η̄µν) . (0.0.16)

The resulting action lands up in the conformal gauge, but it can be made covariant by
rewriting Σg in terms of the physical metric gµν . It turns out that this covariantization
renders the effective action non local, as it is expected to be, since the expression for
the conformal factor in terms of the full metric requires information of the metric field
from all over the spacetime manifold.

The paramount example of this approach is the two-dimensional Polyakov action
[36]. In two dimensions, the trace anomaly is proportional to the Ricci scalar with the
anomaly coefficient being the so-called central charge c

T = c

24π Rg . (0.0.17)

The Ricci scalar becomes the Laplacian of the conformal factor in the conformal gauge
Rg = −2∇2Σg, hence it can be easily integrated to give an effective action ΓPol ∼
Σg∇2 Σg ∼ Rg 1

�Rg, that is non-local through the Laplacian Green function.
In four dimensions, the trace anomaly is parametrized by the a and b coefficients,

and reads
T = aE4 + bC2 , (0.0.18)

where C(g) is the Weyl tensor and E4(g) the Euler density.3 Integration of this trace
gives the so-called Riegert action [37]. The integration requires identifying the right
combination of the operators which have nice Weyl transformation properties. The
resulting Riegert action is a four-derivative non-local action,4 which is a combination
of the operators E4 and C2, and a Green function of a quartic differential operator
that appears through the covariant expression of the conformal factor. The fact that
this action is a higher-derivative one is eventually a consequence of the anomaly coef-
ficients a, b being dimensionless, which requires four-derivative operators in the trace
by dimensional analysis. This assumption follows from the fact that on a fixed point,

3Another two terms, namely ∇2Rg and R2
g are allowed by dimensional analysis, but they can be

disregarded as we will argue in §1.1.4.
4Besides the non-local pieces, the Riegert action includes a purely local term ∼

∫
R2
g, coming from

the integral of the first term in (0.0.18) the a-anomaly. This is required to exactly reproduce the trace,
because E4 does not have a simple Weyl transformation.
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there is no characteristic scale upon which the coefficients could depend. The result is
that this Riegert action is Planck-suppressed.

Our starting point is the classical Einstein-Hilbert action with a cosmological con-
stant, which is not Weyl invariant. We consider it at low energies, where the theory
is close to the infrared Gaussian fixed point. Since the Einstein-Hilbert and the cos-
mological constant operators are relevant, one expects relevant operators in the trace
of the quantum momentum tensor as well, in addition to the above a and b ano-
malies that would already be present at the fixed point of the theory. It would be
very interesting to find the gravitational two-derivative quantum effective action from
anomaly-integration. This is one of the long-term goals of the work presented in this
thesis.

The relevant terms in the trace already appear classically, as the theory is not
Weyl invariant, but get modified at the quantum level. Indeed, the operators in the
action are composite operators of the fundamental fields, in our case the metric. This
compositeness entitles contact divergences, that require renormalization. In a theory
of gravity, the renormalization procedure has to be covariant, and this results into the
renormalized operators acquiring an additional anomalous metric-dependence. The
effective action, then, incorporates this anomalous dependence through the so-called
gravitational dressings, which dress each operator with its renormalization factor. This
propagates finally to the quantum momentum tensor derived by metric variation, mod-
ifying its classical metric dependence. Its trace then, acquires additional anomalies.

The anomaly coefficients of these operators in the trace have to be dimension-
ful, since they are relevant. Hence they have to depend on GN and Λ, the coupling
constants of the aforementioned classical terms. In fact, these coefficients are the β-
functions of these coupling constants. The reason behind this connection is the local
renormalization group [38–41], the covariant version of the flat spacetime renormal-
ization group, where the conformal factor of the metric Σg(x) takes the role of the
arbitrary renormalization scale M . Just as the flat one, the local renormalization
group dictates the flow of coupling constants with the energy scale, although it ac-
counts for the fact that the latter is a local covariant variable set by the curvature of
the spacetime. While the renormalization group in the flat case is that of scale trans-
formations δ lnM , in the covariant case it is that of Weyl transformations δΣg(x). The
β-function encodes the classical and anomalous Weyl dimensions of the renormalized
operators, and just as the scale anomalous dimensions depend on M as γ(M), the
Weyl anomalous dimensions can generally depend on the conformal factor, i.e. γ(Σg).

From the local renormalization group then follows that the anomalous metric-
dependence of the renormalized operators is in particular a dependence on the con-
formal factor. The renormalized operators follow from the bare ones through the
exponentiated integral of the anomalous dimension, then5

Oi → Oi(Σg) = Oi e−
∫
γi(Σ) δΣ ≡ Oi e−Γi(Σg) , (0.0.19)

where Oi(x) denotes the non-integrated bare operator. The gravitational dressings
in the effective action hence also depend on the conformal factor. Writing the latter

5The Γi with sub-index refer to the integrated anomalous dimensions, and is not to be confused
with Γ without, which refers to the quantum effective action.
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covariantly in terms of the full metric results into a non-local action, as mentioned
before. Finally, the local renormalization group equation determines the dependence
on the local energy scale Σg of renormalized operators. In particular, when applied to
the effective action Γ[g] ∼

∫
λiOi(Σg), where λi is the coupling constant, it reads(

1√
−g

δ

δΣg
+
∑
i

βλi(Σg)
δ

δλi

)
Γ[g] = 0 , (0.0.20)

where the sum would in principle run over the operators present in the effective action,
and βλi(Σg) is the β-function of each coupling, which can depend on the conformal
factor through the anomalous dimension. Because the variation with respect to the
conformal factor is the traced metric variation, the local renormalization group equa-
tion becomes6

T = −
∑
i

βλi(Σg)Oi(Σg) . (0.0.21)

From this follows that the anomaly coefficients of the renormalized operators in the
trace are β-functions, which are dimensionless for marginal operators but dimension-
ful otherwise. In the simple case where the anomalous dimension is a constant, the
exponent of the integrated anomaly is linear in the conformal factor, and the trace is
simply proportional to the renormalized operator. Knowledge of the anomalous dimen-
sions therefore, allows to regard the above anomaly equation (0.0.21) as an equation
for the effective action. From this equation follows that the latter should take the
form Γ ∼

∫
λiOi e−Γi(Σg). Hence, integrating the β-function anomalies to get the

gravitationally-dressed operators is the analog of integrating the a, b anomalies to get
the Riegert action.

Since the gravitational dressings follow from integrating the anomalous dimen-
sions, they are renormalization group-re-summed, namely they re-sum the leading
logarithms. When expanded for small anomalous dimensions, they should reproduce
the logarithmic corrections one would get from a perturbative computation. Therefore,
the anomalous dimensions can in principle be computed independently, even if only
perturbatively, and used as an input in the above anomaly equation. Alternatively,
the gravitational dressings should also follow from the non-local heat kernel expansion
mentioned above of the corresponding operators. Perturbatively, to first order in the
curvature scalar (or rather to the next order of the one of the undressed operator), one
should find the first term of the expansion of the dressing e−Γi(Σg), namely −Oi Γi(Σg).

Recapping, the trace has two sources of Weyl anomalies. First, the a and b ano-
malies, due to the metric-dependence of the measures in the path integral, and which
are characterized at the fixed point where the operators in the action have vanishing
β-functions. Second, the β-function type of anomalies, which come from the covariant
renormalization of the corresponding composite operators in the action.

The upshot of the above lines is that physical coupling constants are the couplings
of the gravitationally dressed operators, and that the anomalous dimensions of the
gravitationally dressed operators are in principle different from the anomalous dimen-
sions of the undressed operators. These considerations should hold for any operator,

6The quantum trace in fact contains other terms besides the β-functions and besides the a and b
anomalies, but they are irrelevant for this discussion.
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in particular for the purely gravitational ones that determine the equations of motion
for the metric field. One of the main ideas that we want to put forward is that gravita-
tional dressings modify the full quantum momentum tensor, not only its trace, hence
they modify the full quantum dynamics of the theory. Therefore, Weyl anomalies can
have interesting consequences for the cosmological dynamics.

In view of the above considerations, it would be very interesting to develop a
gauge-invariant formalism that allows to predict general features of the signatures of
anomalies on the evolution of the universe from local renormalization group consid-
erations. As a step in that direction, in this thesis we study the cosmological effects
from the β-function type of Weyl anomalies of the Einstein-Hilbert action with a cos-
mological constant. We are interested then in the lower-derivative effective action
that dominates over the Riegert one at low energies, and which follows simply from
appropriately gravitationally-dressing the two classical operators.

Even if this is the simplest scenario and eventually one has to add other (matter)
operators to this action to construct a realistic model, computing the renormalization
of the cosmological constant of purely gravitational origin in the context of integration
of Weyl anomalies could help gain understanding about its current smallness. The
cosmological constant problem is a problem of fine-tuning in the context of effective
field theory: the cosmological constant being the coupling of the identity operator, it
should scale as M4

0 , with M0 being the ultraviolet cutoff (of at least the TeV scale).
However, the measured vacuum energy density of the universe, namely the currently
observed Hubble constant, is of the order of meV , implying a disagreement of at least
60 orders of magnitude [42].

A more modern version of this problem is formulated with the ‘Why now?’ question
[43], referring to the coincidence at present time between the vacuum energy density
or dark energy, and the critical density that ensures a flat universe. The fine-tuning
of these two densities again seems to require a fundamental explanation.

To successfully address this problem we need to properly account for quantum
gravitational effects. While the renormalization of the cosmological constant as a field
theory coupling is sensitive to the ultraviolet or short-scale physics where curvature
may not be relevant, its measurement captures an infrared effect, namely the cosmo-
logical expansion of the universe. The cosmological constant problem spans therefore
more than a hundred logarithmic scales on a gravitational homogeneous and isotropic
background. Hence, it requires a formulation and renormalization that respects grav-
ity’s general covariance and that is somehow invariant under changes of scales on this
background.

The renormalization of the cosmological constant may not only be relevant for
explaining the current origin and magnitude of dark energy, but may also be of crucial
importance in understanding the first instants of the universe. During inflation, the
spacetime was approximately de Sitter, with an energy density that was slowly ’rolling’
with time. This subtle time dependence is normally introduced by means of additional
scalar fields, most commonly the well-known inflaton, for which a potential drives the
rolling. However, it seems natural to consider the most simple scenario where the
cosmological constant itself acquires an explicit time dependence through quantum
effects. After all, quantum gravity effects should have been relevant in such an epoch,
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where the energy scale of the universe was slightly lower than the Planck mass.

From the above considerations it seems that it would be very convenient to use a
formalism that, while being covariant, allows for a special treatment of the conformal
factor of the metric. One such formalism is the Weyl-invariant formulation of grav-
ity, which we put to use in this thesis. The Weyl-invariant formulation [10] consists
of introducing a Weyl compensator field Ω(x) and a fiducial metric hµν , which scale
appropriately under Weyl transformations so that the physical metric gµν = e2Ωhµν
is left invariant. The resulting theory has an extra scalar degree of freedom but also
an enlarged gauge principle, which includes Weyl symmetry in addition to diffeomor-
phisms. The number of degrees of freedom remains the same upon imposing Weyl
invariance.

This formalism is very convenient for studying the renormalization of the quantum
gravity path integral because it separates general coordinate invariance from Weyl in-
variance. On general grounds, general coordinate invariance is not expected to have
anomalies, while Weyl invariance does due to the appearance of an additional scale
through renormalization. An essential requirement of the enlarged gauge principle is
that all such potential anomalies cancel because Weyl symmetry is upgraded to be a
gauge symmetry. General coordinate invariance of the original theory then becomes
equivalent to general coordinate invariance plus quantum Weyl invariance of the mod-
ified theory. This provides a useful guiding principle. See [35,44–55] for related earlier
work, for instance on the use of this formulation for computations of gravitational and
more generic Weyl-invariant effective actions, and for the connection between Weyl
invariance and the renormalization group.

The Weyl-invariant formulation becomes extremely useful to compute the anoma-
lous dimensions and the gravitational dressings of operators in two spacetime dimen-
sions, where the metric has only three independent components. The enlarged gauge
symmetry allows to completely gauge-fix the fiducial metric hµν . The only fluctu-
ating field is then the compensator Ω(x). Therefore, by introducing the split of the
physical metric into Ω(x) and hµν , the covariant operators become composites of Ω(x)
only, which is a scalar field and whose ultraviolet divergences are hence easier to reg-
ularize. Covariant renormalization of the operators then introduces an anomalous
dependence on the conformal factor of the background fiducial metric Σh(x), which
determines their gravitational dressings. Imposing gauge-invariance of the resulting
effective action, namely that it depends on the Σh(x) only through the combination
gµν = e2Ω hµν = e2(Ω+Σh) η̄µν , determines the anomalous dimensions of the operators
in terms of the fundamental constants. This procedure then, has the potential of spar-
ing perturbative diagrammatic computations, while giving exact expressions for the
anomalous dimensions.

Another of the advantages of the Weyl-invariant formulation is that it is very suited
for computations in the cosmological setting. In a homogeneous and isotropic universe,
all the dynamics is encoded in the scale factor of the metric, while the background
metric is fixed by the symmetries and the choice of spatial curvature. The compensator
Ω(x) takes the role of the scale factor and the fiducial metric that of the background.
This formulation then allows to compute general metric variations of the action while
profiting from the simplifications of imposing the afore-mentioned symmetries in the
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solutions, so it becomes very useful to compute the cosmological evolution equations.
Due to the local renormalization group considerations exposed above, gravitational
dressings relevant for cosmological dynamics depend only on the scale factor. Hence
this formulation is very suited to compute the cosmological effects of Weyl anomalies.

When faced with a complex problem, it is always a good starting point to consider
a toy model which allows for explicit simple computations and which yet captures
the essential features of the more general setting. In the spirit of this approach, we
start our exploration in two-dimensional gravity, to which we devote the main part
of this thesis. One of the reasons for this is that, as mentioned above, the enlarged
symmetry allows to choose a gauge in which the fiducial metric is completely fixed,
with no dynamics. The entire quantum dynamics then resides in the dynamics of
the scalar Weyl compensator, and the anomalous dimensions are easier to compute.
Another reason is that in two dimensions, conformal field theories are not only richer
thanks to the symmetry enhancement to an infinite algebra, but also better studied
and understood.

Our starting point is the two-dimensional Einstein-Hilbert action with a cosmo-
logical constant term. When written in its Weyl-invariant form in terms of the Weyl
compensator Ω(x) and the fiducial hµν , the classical action for Ω(x) becomes an an-
alytic continuation of the well-known Liouville action, the so-called timelike Liouville
action. The Weyl compensator then takes the role of the timelike Liouville field. Li-
ouville theory is a well-studied conformal field theory, for which bootstrap approaches
have successfully provided all of its conformal data, the spectrum, the two-point func-
tions and the structure constants. It is the appearance of this resourceful Liouville
action that allows us to compute the anomaly exactly and fully motivates the study
of quantum cosmology in two dimensions.

First of all, the Liouville action is ubiquitous in approaches to two-dimensional
quantum gravity. It arises naturally as the effective action for conformal field theories
such as the free scalar, but more importantly, it also becomes the gravitational effec-
tive action, appearing from the Jacobian between the translationally-invariant and the
Weyl-invariant measures of the conformal factor of the metric. Second, since timelike
Liouville follows from an analytic continuation of the Liouville field, it has a nega-
tive kinetic term, hence its name timelike. This minus sign is to be expected for the
dynamics of the conformal factor of the metric [11], and is at the heart of the difficul-
ties encountered when quantizing gravity in any dimensions, since it implies that the
path integral is unbounded from below and therefore that the theory is non-unitary.
Quantization then requires a BRST-type of prescription to decouple negative-norm
states. In two dimensions, this implies that the analytic continuation between Li-
ouville, which is a unitary theory and can be quantized with canonical methods, and
timelike Liouville is very subtle, and in fact is still not fully understood. As a result, the
quantum gravitational dynamics is highly non-trivial even in two dimensions. There
is extensive literature on both spacelike and timelike Liouville theory. See [56–61] for
reviews that emphasize different aspects of the quantum theory. Timelike Liouville
as a two-dimensional model for cosmology has been considered earlier from different
perspectives in [62–65].

Fortunately, the full quantization of timelike Liouville theory is not necessary to
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address the physical questions that we are interested in. For these, the analytic con-
tinuation of the analogous results in standard Liouville theory will suffice. Our first
aim is to compute the gravitational dressing of the cosmological constant operator.
In the Weyl-invariant formulation, this identity operator Λ√−g becomes Λ e2Ω√−h.
After the gauge invariance has been fixed, only the Liouville field Ω is fluctuating.
Therefore, the contact divergences of the original √−g are now contact divergences of
the composite vertex operator e2Ω. This exemplifies the simplification brought about
by the Weyl-invariant formulation.

The renormalization of this exponential operator within the theory that includes
it in the action should be highly non-trivial. However, one of the remarkable features
of Liouville theory is that the ultraviolet divergences can be renormalized by simple
normal ordering [12–17]. This greatly simplifies the computation of the gravitational
dressing for this cosmological constant operator, which is found to be non-local through
the dependence on the conformal factor of the fiducial metric Σh. By further following
the criteria of Weyl anomaly cancellation, we can determine the anomalous dimension
in terms of Newton’s constant. We can then write down the gauge-invariant non-local
quantum effective action.

Our second aim is to study the cosmological consequences of this renormalized
cosmological constant. For this, we compute the quantum momentum tensor of the
latter, which is non-local through the anomalies, and leads to non-trivial Friedmann
equations. One of the main results we find is that the quantum corrections lead to
a slow decay of the vacuum energy in an isotropic and homogeneous universe, and a
slowing down of the exponential de Sitter expansion. This is a very interesting result
because it offers a dynamical mechanism for vacuum decay which relies purely on the
infrared gravitational physics. Such a decaying vacuum energy could drive a period
of slow-roll inflation from purely quantum gravitational effects, without the need of
additional scalar fields. The exploration of this mechanism and its generalizations to
higher dimensions is hence clearly motivated.

The eventual goal of the study of this two-dimensional model is to draw some
general lessons that may be applicable in four dimensions. The advantage of this
model is that the important quantum effects can be computed explicitly with relative
ease and without ambiguities to all orders in perturbation theory. We expect the
semiclassical approximation to be reliable on cosmological scales in four dimensions.
Any effect in the two-dimensional model that could be relevant for four-dimensional
physics must manifest itself in the semiclassical limit and should not depend on special
properties of two dimensions. For this reason, it is good enough that our analysis is
done in the semiclassical limit of timelike Liouville theory.

The analysis of four-dimensional gravity makes up the second part of this thesis. As
in two dimensions, we are interested in the quantum effective action valid at distances
large compared to the Planck scale, hence we consider any higher-derivative contribu-
tions, such as those in the Riegert action, as Planck suppressed. Our key object is then
the four-dimensional non-local effective action that incorporates the Weyl anomalies
of the Einstein-Hilbert cosmological gravity. Namely, the action that incorporates the
gravitational dressings of both the square-root of the determinant of the metric as well
as the Ricci scalar.
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The simplification brought about by the Weyl-invariant formulation and Liouville
theory in computing the two-dimensional gravitational dressings is not to be encoun-
tered in four dimensions. There, the enlarged gauge symmetry does not fix the fiducial
metric completely, and covariant operators are composites of both the compensator
Ω(x) and the unfixed hµν components. Hence contact divergences are difficult to
renormalize covariantly, and one has to resort to the usual perturbative computations.
However, the results of our two-dimensional model and the afore-mentioned consider-
ations of the local renormalization group allow to infer the most logical form of the
four-dimensional gravitational effective action, namely [10]

ΓG[g] =
M2
p

16π

∫
d4x
√
−g

(
Rg e

−ΓK(Σg) − 2 Λ e−ΓΛ(Σg)
)
, (0.0.22)

where the Γi(Σg), i = K,Λ represent the integrated anomalous gravitational dressings.
Since this effective action depends on Σg = Ω+Σh, it automatically is gauge invariant.
Therefore, as opposed to two dimensions, Weyl invariance can not be used to infer
the anomalous dimensions. However, these anomalous dimensions and the anomalous
dressings are computable in a given microscopic theory. Renormalization of Newton’s
constant and the cosmological constant has been considered earlier in the literature
[18–20]. One can extract the precise logarithmic running from these results. The
approach in this thesis, though will be to regard the integrated dressings as general
functions that parametrize the effective action, and postpone their computation.

Modifications of Einstein’s general relativity have been generically considered to
explain the late-time acceleration, and the dynamics of galaxies and clusters without
dark energy and dark matter. Among these are non-local generalizations of Einstein-
Hilbert gravity [66–72], which were originally motivated by non-localities appearing
in graviton quantum loop corrections [73, 74]. Long-scale modifications of Einstein’s
gravity have to satisfy three criteria. First, they can not affect solar system dynamics,
which are already well accounted for by general relativity. Further, they have to
overcome two fine-tuning problems: they have to contain a mass scale much smaller
than any mass found in nature, and the modifications must have been irrelevant up
to today. Non-local models seem to satisfy all three criteria [66, 75]. Also, they can
lead to interesting cosmology and can predict measurable deviations from Einstein’s
gravity in structure growth rates and patterns [75, 76].

However, the approach of most non-local models is to assume a general form of the
non-locality in the action, parametrized with an arbitrary free non-local function that
can be chosen at will to fit the expansion. The non-locality that we consider, instead,
is of a very specific kind: it is constrained by the requirement that the action should
be a solution of the local renormalization group equation, and the non-local function
is easily computable at least perturbatively. Also, our non-local model contains the
cosmological constant, so it is not regarded as an alternative to the later to explain
the expansion of the universe, but as a model which incorporates quantum corrections
from anomalies on top of a cosmological constant-driven classical background.

The main goal of our analysis in four dimensions is to determine the cosmological
dynamics of the parametrized effective action (5.1.1). For that, we compute the integro-
differential equations resulting from it, which describe the effective classical dynamics
of the spacetime metric at long distances, and look for Robertson-Walker solutions.



xxvi CONTENTS

Somewhat surprisingly, the effective dynamics can be solved analytically even in four
dimensions using the Weyl-invariant formulation. Our main conclusion is that non-
zero anomalous gravitational dressings lead to a slow quantum decay of vacuum energy
just as in two dimensions.

The idea of vacuum energy decay due to infrared quantum effects [77–83], and
more generally about infrared effects in nearly de Sitter spacetime [84–95], has been
thoroughly analyzed in four-dimensional gravity. An interesting related idea explored
in the literature concerns possible nontrivial fixed points of gravity in the ultraviolet
[96–105] and in the infrared [106–108]. This is a different regime than what we consider.
Our interest is in the long distance physics on cosmological scales in weakly coupled
gravity near the trivial Gaussian fixed point. Some of the methods developed in these
investigations could nevertheless be useful for the computation of Weyl anomalies,
especially in the very early universe.

To summarize, Weyl anomalies affect the cosmological dynamics through the mod-
ification of the full quantum momentum tensor. Developing a gauge-invariant formal-
ism that allows to encode them in an effective action and analyze systematically their
cosmological consequences is hence of great interest. Two important questions are
first whether generic model-independent signatures can be predicted from the Weyl
anomalies based solely on the form of the effective action, and second whether their
quantum effects can be relevant in the different scales of the evolution of the universe.
Eventually, it would be important to understand if Weyl anomalies can have a relevant
role in some of the open questions in cosmology, such as the source of the primordial
dynamics of the universe, or the origin and magnitude of its current expansion.

Outline

This thesis is organized as follows. In chapter §1 we present some of the background
material regarding mainly Weyl invariance and Weyl anomalies. We also fix the nota-
tion and present the Weyl-invariant formulation, highlighting its intuitive origin and
convenience. Finally, d-dimensional gravity and cosmology are presented in this formu-
lation. After this introduction, chapters §2 to §4 are devoted to the two-dimensional
model, to understanding how to use the Weyl-invariant formulation to compute ano-
malies and predict cosmological effects. In chapters §5 and §6 we then explore four
dimensions, by first generalizing the lessons and conclusions from the two-dimensional
model, and second by doing the cosmological analysis.

In chapter §2, we take the two-dimensional limit of Weyl-invariant gravity and
show how Liouville theory appears as a theory of gravity, both classically and quantum-
mechanically. Some of the key features of this conformal field theory, which are relevant
for the gravitational and cosmological contexts, are also presented. The theoretical set
up is completed by describing the coupling to the scalar matter and ghost sectors.

Chapter §3 mainly deals with the renormalization of the cosmological constant
operator near two dimensions. We write the quantum effective action for this renor-
malized cosmological operator and compute the resulting non-local momentum tensor.
Further, we compute the effective action and momentum tensor for each of the sec-
tors: for the conformal factor, for the gravitational sector, and finally for the full (with
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matter and ghosts) theory. Some of the subtleties, such as the choice of the vacuum or
the renormalization of the gravitational constant are also touched upon. Finally, the
quantum Einstein equations are written down.

Chapter §4 is devoted to the analysis of the cosmological implications of the renor-
malized cosmological constant. With the quantum equations found in the previous
chapter, which mainly include the non-local momentum tensor for Λ, we look for ho-
mogeneous and isotropic universes. The solution gives a quasi de-Sitter expansion and
a decaying vacuum energy density. We comment on the potential applications and
implications of this result.

In chapter §5 we start by proposing the non-local quantum effective action for
gravity with Λ that most simply generalizes what we find in two dimensions. With the
action at hand, we proceed then to derive the equations of motion for Robertson-Walker
universes. We do this in two different conformal gauges, the F-flat and the R-flat
gauges. Finally, we derive the Einstein equations for a general background to enlighten
the potential of the formalism and the complexity of the quantum generalization.

In chapter §6 we put the cosmological evolution equations to use and, as in two
dimensions, we find a quasi-de Sitter expanding universe and a decaying vacuum energy
density. We further build on the theoretical understanding of such a solution and
comment on its implications.

In chapter §7 we end up with the conclusions and the discussion of open questions
and future lines of research.

This thesis is based on the papers

• T. Bautista and A. Dabholkar, Quantum Cosmology Near Two Dimensions.
(November 2015). [109]

• T. Bautista, A. Benevides, A. Dabholkar, and A. Goel, Quantum Cosmology in
Four Dimensions. (December 2015). [110]
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Chapter 1
Background

1.1 Weyl Anomalies

1.1.1 Weyl Invariance
A Weyl transformation consists of a local rescaling of the fields. By definition, the
metric transforms as

gµν → e2ξ(x) gµν , (1.1.1)

and any other field transforms (classically) according to its mass dimension. For ex-
ample, a scalar field in d dimensions transforms as

φ(x)→ e−
d−2

2 ξ(x) φ(x) . (1.1.2)

So defined, Weyl transformations are not necessarily an invariance of covariant ac-
tions. For example, the Einstein-Hilbert action is only Weyl invariant in two dimen-
sions. Adding a cosmological constant to it breaks the Weyl invariance even in two
dimensions. The free scalar action is also invariant only in two dimensions, and is
never invariant when a mass term is added. However, a Weyl-invariant action can
be written for a massless scalar through an appropriate coupling to the background
curvature, a so-called improvement term. Free fermions, instead, are Weyl invariant
in any dimension due to the non-trivial variation of the vierbein connection

Constant or global Weyl transformations are those transformations for which ξ is
constant. They are related to scale transformations, which are defined in flat space-
time as a global rescaling of the coordinates xν → eσ xν . The fields transform again
according to their mass dimension. Since the theory is defined on a fixed flat space-
time but the rescaling of the coordinates should transform the metric according to the
usual tensor transformation rule, the latter has to be compensated by a constant Weyl
transformation so that the Minkowski metric is left invariant. With the combination of
both transformations, the line element gets multiplied by e2σ, so scale transformations
change distances or scales. In a flat background then, scale invariance really means
that the physics is the same at all scales.

In a covariant theory of gravity, the metric is one of the fluctuating fields so there is
no need to keep it fixed to a certain background, it can transform like the other fields.
To obtain the same kind of global rescaling of scales, we can then simply perform

1



2 Chapter 1. Background

a global Weyl transformation of the metric, without having to embark in coordinate
transformations and Weyl compensations. In other words, scale invariance in flat
spacetime field theory becomes global Weyl invariance in a covariant theory of gravity.

Finally, conformal transformations involve a Weyl transformation. The former
consist of a conformal isometry of the metric followed by a compensating (infinitesimal)
Weyl transformation. More concretely, the conformal isometry is performed by a
conformal Killing vector ζν , under which the metric is invariant up to a local pre-
factor

δgµν(x) = − (∇µζν +∇νζµ) = −2
d

(∇ · ζ) gµν . (1.1.3)

The infinitesimal Weyl transformation δgµν = 2δξ(x) gµν then has to satisfy

δξ(x) = 1
d
∇ · ζ (1.1.4)

so that the metric gµν stays invariant.1 Therefore, conformal transformations, and
hence conformal invariance, are only defined in quantum field theories on a fixed back-
ground, but not in a theory of gravity, where the metric field is dynamical. Moreover,
very few backgrounds admit conformal transformations, i.e. only those for which
some ζν can be found to solve (1.1.3), and in fact conformal field theories are nor-
mally assumed to be in Minkowski (or Euclidean) spacetime. In this case, conformal
isometries include translations, Lorentz, scale, and special conformal transformations.
Notice though, that scale transformations xν → eσ xν are not part of conformal trans-
formations for a general background, since the diffeomorphism that implements them
ζν = σ xν , leads to a variation of the metric as

δgµν = −σ (2 + xρ ∂ρ) gµν , (1.1.6)

which is only a conformal isometry if xρ ∂ρgµν is proportional to the metric itself (up
to a local pre-factor). Finally, if a theory is diffeomorphism and Weyl invariant, then
it is conformal invariant when fixed to a background that admits conformal Killing
vectors.

1.1.2 Identities from Gauge Invariance
Coordinate invariance is related to the conservation of the total momentum tensor,
which follows classically from the Einstein equations due to the Bianchi identity of
the Einstein tensor. Rigorously, covariance translates into a Ward identity that takes
into account the variation under diffeomorphisms of all the fields present in the action.
Let’s see this for the case of an action with the Einstein-Hilbert term2

IK [g] = 1
2κ2

∫
ddx
√
−g R(g) , (1.1.7)

1Notice that covariance of the metric implies that under the conformal isometry

g′µν(x′) = g′µν(x) + ζσ∂σgµν(x) =
(

1− 2
d

(∇ · ζ)
)
gµν + ζσ∂σ gµν , (1.1.5)

which generically is not proportional to the metric gµν , i.e. g′µν(x′) 6= Ω(x) gµν(x), as is often wrongly
stated in the literature as the definition of conformal transformations. Only in the case when ζσ∂σgµν
is proportional to the metric up to a local pre-factor, like in flat spacetime, does this hold.

2All along this thesis, we will use both R(g) and Rg to denote the Ricci scalar of the gµν metric.
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and several (matter) scalar fields, so that I = IK [g] + Im[g, φi]. Consider a general
coordinate transformation xµ → x′µ. Scalar fields stay invariant, i.e. φ′(x′) = φ(x),
and the metric tensor transforms as

g′µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) . (1.1.8)

The infinitesimal variation x′ν = xν + ξν as induced by a diffeomorphism vector field
ξν(x), is then given by the Lie derivative of the corresponding field. For the scalar,
the latter corresponds to the directional derivative

δφ(x) = φ′(x)− φ(x) = φ(x− ξ)− φ(x) = −Lξφ(x) = −ξν∇νφ(x) , (1.1.9)

for the metric it becomes

δgµν(x) = g′µν(x)− gµν(x) = −Lξgµν(x) = − (∇µξν +∇νξµ) , (1.1.10)

and for the inverse metric
δgµν = ∇µξν +∇νξµ . (1.1.11)

The variation of the action then is expressed in terms of the functional variations of
all the fields it depends on, namely

(1.1.12)
δI =

∫
ddx

(
δ(IK + Im)

δgµν
δgµν + δIm

δφi
δφi

)
= −

∫
ddx
√
−g ξν(x)

(
∇µ

( 1
κ2 Eµν − Tµν

)
+ 1√
−g

δIm
δφi
∇νφi

)
,

where Eµν denotes the Einstein tensor Eµν = Rµν − 1
2 gµν R (see (B.0.10) for the

variation of the Einstein-Hilbert action), and the momentum tensor is defined by3

Tµν = −2√
−g

δI

δgµν
. (1.1.13)

Invariance of the action δI = 0 under a general diffeomorphism ξν(x) implies the
vanishing of the integrand. In the case the action is just the Einstein-Hilbert term
I = IK , the Ward identity becomes the Bianchi identity for the Einstein tensor

∇µEµν = 0 . (1.1.14)

This identity holds for any metric configuration, it does not rely on equations of motion,
so it is a fundamental property of the geometry of spacetime. Implementing it in
(1.1.12), the Ward identity becomes

∇µTµν −
1√
−g

δI

δφi
∇νφi(x) = 0 . (1.1.15)

This is the Ward identity for general coordinate invariance. If the action being varied
includes the full Lagrangians of all the fields φi, then the total momentum tensor

3In Euclidean signature, the momentum tensor is defined with a + sign instead.
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is indeed conserved when all the fields are on-shell. This identity however can be
independently written for any term in a covariant action.

If the Einstein equations are satisfied, then the Bianchi identity implies the van-
ishing of the sum

δI

δφi
∇νφi(x) = 0 . (1.1.16)

Therefore, in the presence of only one scalar field φ(x), the Bianchi identity implies
that its equation of motion is satisfied (or that the field is a constant, which may or
may not be a solution to the equations of motion), and one can assert that the full
dynamics follows from a geometrical property of spacetime. However, this is not true
in general, when several fields are present. In other words, conservation of the total
momentum tensor doesn’t imply that the fields are on-shell.

Just as diffeomorphism invariance is related to the conservation of the momentum
tensor, Weyl invariance is related to the tracelessness of the momentum tensor. That
is, the Ward identity for Weyl invariance involves the trace of the momentum tensor.
Going back to the case of the gravitational action with several scalar fields I = IK +
Im, the first thing to notice is that the Einstein-Hilbert action IK is generically not
Weyl-invariant (see (B.0.17)). The Ward identity can then be written for the matter
action if this is Weyl invariant. The infinitesimal variation of the metric under a Weyl
transformation follows from (1.1.1) as

δgµν = −2 ξ(x) gµν , (1.1.17)

and that of a scalar field follows from (1.1.2)

δφi(x) = −∆i ξ(x)φi(x) (1.1.18)

with ∆i = d−2
2 . The Weyl variation of the action is then

(1.1.19)
δIm =

∫
ddx

(
δIm
δgµν

δgµν + δIm
δφi

δφi

)
=
∫
ddx
√
−g ξ(x)

(
gµν Tµν −∆i

1√
−g

δI

δφi
φi

)
.

Invariance under a general Weyl transformation then implies the identity

gµν Tµν −∆i
1√
−g

δI

δφi
φi = 0 . (1.1.20)

The total momentum tensor is traceless when the equations of motion are satisfied. If
further the Einstein equations are satisfied, the above identity can be replaced by

1
κ2 R(g) + 1√

−g
δI

δφi
φi = 0 , (1.1.21)

which means that a Weyl-invariant scalar theory sources a Ricci-flat background. In
the case of two dimensions, scalar fields don’t transform under a Weyl transformation,
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therefore classically the momentum tensor is traceless regardless of the equations of
motion.

If an action is only invariant under global Weyl transformations, the resulting
identity is the integral of (1.1.20), i.e. all that can be inferred from (1.1.19) is that the
integrated trace of the momentum tensor has to vanish, or equivalently that the trace
vanishes up to a total derivative Tµµ = ∇µJµ.4

In flat spacetime field theories, one can perform conformal transformations instead
of general coordinate and Weyl transformations, as explained in the previous section.
In this case, conformal invariance imposes conditions on the momentum tensor of the
theory analogous to the above Ward identities. To start with, Noether’s theorem
assigns a conserved current to translational invariance (a global symmetry), which is
by definition the momentum tensor. The remaining conformal transformations lead to
additional currents, all defined in terms of the momentum tensor. Invariance under
these transformations then, or equivalently conservation of the corresponding currents,
imposes further conditions on the momentum tensor. First, Lorentz invariance requires
a momentum tensor which is symmetric. This can be achieved because the momentum
tensor that follows from the Noether’s prescription is not unique, is defined up to the
so-called Belinfante ambiguity, which allows addition of a term that neither spoils
conservation nor changes the equations of motion. Next, scale invariance requires the
trace of the momentum tensor to vanish up to a total derivative of some virial current,
in analogy with global Weyl transformations in a theory of gravity. Finally, special
conformal transformations require the momentum tensor to be exactly traceless.5

If a covariant action is Weyl invariant, then it will have conformal invariance when
fixed to a flat background, by virtue of the conservation and tracelessness of the mo-
mentum tensor. However, the opposite may not hold true. I.e. starting from a
conformally-invariant action in flat spacetime, and coupling it to a metric in a co-
variant way, may or may not lead to a Weyl invariant action. The reason lies on the
Belinfante ambiguity. This ambiguity can be seen to arise from general linear curvature
terms that can be added to the covariant action, which vanish when writing the action
on flat spacetime, but which leave behind non-trivial terms in the momentum tensor.
Since these terms in the action are covariant, they lead to conserved terms in the mo-
mentum tensor, and they can be tuned to further satisfy tracelessness in flat spacetime.
Covariantizing the flat space action may miss these non-trivial terms, leading to an
action that is Weyl invariant only after these terms are introduced. Therefore, dif-
ferent choices of the Belinfante ambiguity in flat spacetime lead to different covariant
background theories.

The addition of these terms, linear in the curvature tensors, that make the covari-
ant theory Weyl invariant is called Ricci gauging [50]. Starting from a globally-Weyl
invariant theory in a general background, this inner symmetry can be gauged by in-
troducing an appropriate connection that covariantizes the derivatives appropriately
such that the action is locally-Weyl invariant. The condition for a Weyl-gauged action

4The current Jν is called the Virial current.
5Actually, since the momentum tensor is defined up to the Belinfante ambiguity, the minimal

condition for conformal invariance is not tracelessness, but rather T νν = ∂ν∂µ Lνµ for d ≥ 3 or
T νν = ∂ν∂ν L for d = 2 (i.e. that the Virial current is the divergence of a tensor). This condition is
enough to ensure a traceless momentum tensor after a (Belinfante) improvement term is added.
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to admit Ricci gauging, i.e. to be able to rewrite the gauge connection in terms of
couplings to the curvature, is precisely that the flat space theory is not only scale
invariant but also conformal [50]. For a good review of the above points, see [111].

1.1.3 Weyl Anomalies
The Ward identities written in the previous section were purely classical since they
were capturing an invariance of the classical action. A classical invariance may not
carry on to be an invariance of the quantum effective action. When this is the case,
we say the theory is anomalous. This is made explicit through the appearance of
anomalies in the corresponding Ward identities, i.e. terms that spoil their validity.

The possible quantum failure originates in the regularization and renormalization
of the theory. These require the introduction of additional energy scales, namely an
ultraviolet (UV) regulator or cutoff M0, and a renormalization scale M , which have
the potential to break the invariances.

These scales can in principle be chosen to be a constant or a Lorentz scalar, so
it should always be possible to choose a subtraction procedure that is fully covariant.
Therefore, anomalies in the diffeomorphism Ward identity are not to be expected. The
Weyl Ward identity, on the other hand, is clearly bound to be anomalous.

Just as the classical one, the quantum Weyl Ward identity involves the trace of the
quantum momentum tensor. The latter follows from the metric variation of the quan-
tum one-particle-irreducible (1PI) effective action, which can be obtained by means of
the background field method. Given a theory with a generic fluctuating field φ(x), this
method requires a shift of the latter with a non-dynamical background φ → φb + φ.
The resulting shifted classical action Ib = I[φb +φ] leads to a quantum effective action
Γb[φb, φ], that reproduces the original unshifted one Γ[φb] when restricted to graphs
where no φb fields run in the loops and no φ fields appear as external lines. Equiv-
alently, the effective action follows from restricting the path integral of the shifted
classical action to these field configurations. We can schematically write

Z[φb, g] = eiΓ[φb,g] =
∫

1PI
Dgφ ei I[φb+φ,g]. (1.1.22)

The main property of the 1PI effective action is that it reproduces all the physics of
the full quantum theory even when used merely at tree-level, because it includes the
path-integration of all the fields.

The infinitesimal variation of the partition function with respect to the metric
defines the quantum momentum tensor as

Z[φb, g+δg] =
∫
Dg+δgφ ei I[φb+φ,g+δg] =

∫
Dgφ ei I[φb+φ,g]

(
1− i

2

∫
ddx
√
−g Tµν δgµν

)
.

(1.1.23)
The variation of Γ[φb, g] then follows from the above

δΓ = −i δ ( lnZ ) = −1
2

∫
ddx
√
−g δgµν 〈Tµν〉 , (1.1.24)

from which
〈Tµν〉 = −2√

−g
δΓ[φb, g]
δgµν

. (1.1.25)
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This momentum tensor includes the variation of both the classical action and the fields
measure Dgφ, and encodes all the quantum information.

For the full effective action, we can write

eiΓ[φb,gb] =
∫

1PI
Dggµν Dgφ ei I[φb+φ,gb+g] . (1.1.26)

The subscript referring to the background in the fields will be omitted henceforth. The
resulting complete effective action Γ = Γg[g] + Γφ[φ, g] includes the quantum effective
action for the gravitational sector as well as the contribution of gravitons running in
the loops for the φ sector. The variation of the total effective action with respect to
the (background) metric gives the full quantum equation of motion for the metric.

If the quantum effective action were to be Weyl invariant, it would obey the quan-
tum Ward identity that follows from its variation, the quantum analog of (1.1.20)

(1.1.27)gµν 〈Tµν〉 −∆i
1√
−g

δΓ
δφi

φi = 0 .

This identity would imply the vanishing of the trace (when the quantum equations of
motion are satisfied). The failure of the action to be Weyl invariant translates then
into additional terms that spoil this identity, i.e. terms that preclude the traceless-
ness of the quantum tensor. That’s why the Weyl anomaly is also called the trace
anomaly. Henceforth, the brackets of the quantum momentum tensor will be omitted,
the expectation value will be assumed.

The anomalous Ward identity can also be regarded as an equation for the quantum
effective action. Indeed, the general metric variation of the effective action (1.1.24),
can in particular be taken in the direction of a Weyl variation. In the conformal gauge,
the metric is split into a conformal factor Σg(x) and a fiducial metric η̄µν fixed by a
scalar condition6

gµν = e2Σg(x) η̄µν . (1.1.28)

TheWeyl variation of the metric then can be expressed as the variation of the conformal
factor as

δgµν = 2 δΣg(x) gµν , δgµν = −2 δΣg(x) gµν . (1.1.29)

Introducing this in the general variation of the action (1.1.24), the trace follows as

T ≡ gµνTµν = gµν
−2√
−g

δΓ
δgµν

= 1√
−g

δΓ
δΣg(x) . (1.1.30)

In other words, tracing the general variation of the action with respect to the metric
amounts to taking the directional derivative, in the direction of the Weyl variation.
Substituting this in (1.1.27), the anomalous Ward identity becomes a functional dif-
ferential equation for the effective action, the anomaly equation. In the case of two
dimensions, diffeomorphisms allow to fix the two components of the fiducial metric
η̄µν , leaving the conformal factor as the only fluctuating field. The Weyl variation of
the action then is effectively a total derivative, hence the anomaly equation can be

6Note that η̄µν need not be the Minkowski metric. We will make this definition of the conformal
gauge clearer later on.
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integrated. This is how the Polyakov action is found to appear as a quantum effective
action, as we will review in §2.3.

Anomalies must follow from non-local terms in the quantum action. The reason is
that if they were encoded in local terms, they could be removed with counterterms,
and therefore they could not be encoding something robust about the theory such as
its symmetry violations. The anomaly coefficients are therefore universal, in the sense
that they cannot depend on the regularization scheme or renormalization conditions.

Anomalies of gauge invariances have to cancel in a complete theory. The reason is
that gauge invariances are not an actual symmetry of the theory, but just a redundancy
of notation, and therefore their anomalies cannot have any physical implications. This
criteria is called anomaly-cancellation, and plays an important role in determining the
content of the theory. Therefore, if Weyl invariance is part of the gauge principle of a
theory, its Ward identity has to hold also at the quantum level. The familiar example is
world-sheet string theory, where Weyl anomaly cancellation leads to a 26-dimensional
target spacetime.

1.1.4 Types of Weyl Anomalies
The definition of the quantum effective action (1.1.22) suggests that its metric depen-
dence comes both from the classical action and the integral measure. Consequently,
the quantum momentum tensor acquires a contribution from the variations of both
dependences, hence there are two sources of Weyl anomalies.

Weyl anomalies coming from the lack of invariance of the path integral measures
typically lead to curvature terms in the trace of the momentum tensor. In two dimen-
sions, the only curvature term allowed by dimensional analysis is the Ricci scalar R(g),
and the Weyl anomaly equation reads

T = c

24π R(g). (1.1.31)

The parameter c is called the central charge, and comes from the fact that the algebra
satisfied by the Fourier modes of the momentum tensor acquires a central extension at
the quantum level proportional to this parameter c. The central charge is character-
istic of every theory, and at conformal fixed points it counts the number of massless
degrees of freedom. For a theory with one free massless scalar c = 1, and for a free
massless Majorana fermion c = 1/2. In flat spacetime, the momentum tensor becomes
traceless, but the theory is still anomalous, since the measures still vary under a Weyl
transformation of the flat metric.

In four dimensions, the most general Weyl anomaly allowed by dimensional analysis
is7

T = aE4 + bC2 + cR2 + e∇2
gRg , (1.1.32)

where C(g) = R2
µνρσ−2R2

µν + 1
3R

2
g is the Weyl tensor, which is invariant under a Weyl

transformation of the metric, and E4 = R2
µνρσ−4R2

µν+R2
g is the Euler density. The last

7In fact, there is yet another term allowed by dimensional analysis, the so-called Hirzebruch-
Pontryagin term T ∝ εµνρσ Rµν

αβRαβρσ, where εµνρσ is the antisymmetric Levi-Civita tensor. Al-
though allowed, this term breaks CP invariance, and therefore seems to appear only for CP-violating
theories .
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term in the trace is not regarded as an anomaly because it can be removed by adding
a local counterterm in the effective action, namely R2

g. The third term, is actually
forbidden by the Wess-Zumino consistency condition [112], an algebraic equation that
restricts the possible forms of the anomaly and which is based on the group structure
of the invariance. In the case at hand, since the Weyl group is abelian, the consistency
condition requires that consecutive Weyl variations of the effective action commute(

δ

δξ(x1)
δ

δξ(x2) −
δ

δξ(x2)
δ

δξ(x1)

)
Γ[g] = 0 . (1.1.33)

The term R2
g does not satisfy the above condition and so it cannot follow from any

effective action. The two terms remaining are accompanied by the coefficients a and
b, also characteristic of every theory.

The second source of Weyl anomalies is the renormalization of the operators present
in the classical action. Since operators typically are composites of the fundamental
fields, they encode contact divergences that need to be renormalized. Renormalization
requires the introduction of an additional scale M , used to run the renormalization
group. Renormalized quantities acquire a dependence on M , which hence has the po-
tential of breaking Weyl invariance at the quantum level. Let’s denote the action as the
sum of terms I =

∫
λiOi, where λi are the coupling constants and Oi the operators.

In the simpler case of flat spacetime theories, Poincaré invariance is expected to be
preserved at the quantum level, but scale (or conformal) invariance typically becomes
anomalous. Indeed, since the renormalization scale M transforms under a scale trans-
formation, theM -dependence acquired by the renormalized operators Oi(M) furnishes
them with an anomalous scaling dimension −γi, which can be computed as

γi(M) := δ lnZi(M)
δ lnM , (1.1.34)

where Zi is the multiplicative factor that encodes the running of the renormalized
operator Oi(M) = O0

i Z
−1
i (M), O0

i being the bare one, the operator at the UV cutoff
M0. Integrating the above then

Oi(M) = O0
i e
−
∫
γi(M) d lnM . (1.1.35)

Alternatively, if one considers the renormalization of the coupling constants λi(M),
these develop a non-trivial β-function that encodes the classical dimension ∆i of the
operator and the anomalous one as

βi(λi) = (∆i − d+ γi)λi(M) . (1.1.36)

How does the above logic generalize to a theory with gravity? As argued, when the
metric is dynamical, conformal transformations are better to be replaced by Weyl
transformations. The anomalous dimensions under scale transformations δ lnM then,
should become anomalous dimensions under Weyl transformations δΣg. This suggests
that the conformal factor of the metric should take the role of the covariant renor-
malization scale. Namely, that renormalized operators should acquire an anomalous
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dependence on the conformal factor, so Oi(Σg). An additional metric dependence is al-
ready expected to appear from a covariant renormalization procedure. In other words,
the small-distance regulator requires specification of the background metric in which it
is computed. Furthermore, a renormalization energy scale should become local M(x)
in a theory of gravity, where in general there are no uniquely and globally-defined
energies. The intuitive idea behind is that in a theory on a general background, there
is no reason for two far a part observers to choose the same arbitrary renormalization
scale, and therefore in general this should depend on position. Specification of the
renormalization energy scale should rather be regarded as specification of the charac-
teristic curvature scale, which is local. What this generalization is telling us is that
this metric dependence should in particular be on the conformal factor, and that the
curvature scale appears only through the latter.

Just as in the flat case, the anomalous dimensions can generically depend on the
renormalization scale, i.e. γi(Σg). The renormalized operators then become

Oi(Σg) = O0
i Z−1

i (Σg) = O0
i e
−
∫ Σg

0 γi(Σ) dΣ . (1.1.37)

The quantum effective action is written with the renormalized operators, hence it in-
herits their quantum metric dependence, and we say that the operators in the action
become gravitationally dressed. Consequently, the action also acquires an anomalous
behavior under a Weyl transformation. This propagates then to the quantum momen-
tum tensor computed from it. In particular, the contribution to its trace has to be
proportional to the anomalous dimension, so that it vanishes in the classical limit.

If the theory is classically Weyl invariant, the above anomalies should then be the
only contributions spoiling the tracelessness (up to the anomalies of the path integral
measures). If instead the theory has (ir)relevant operators, as it is the case of gravity,
then the trace does not vanish already classically. The metric dependence of a generic
operator in the classical action is I ∼

∫ √
−g λiOi(g), whose traced metric variation

gives
1√
−g

δI

δΣg
= (d−∆i)λiOi(g) , (1.1.38)

the first term coming from the variation of √−g and the second one from the classical
Weyl transformation of the operator. The trace of the quantum momentum tensor
then will acquire the anomalous dimension on top of the two terms above8

1√
−g

δΓ
δΣg

= (d−∆i − γi) λiOi(Σg) . (1.1.39)

From the expression of the β-function (1.1.36) it is clear then that the quantum trace
obeys9

T = −βi(λi)Oi(Σg) . (1.1.40)
8We now drop the classical metric-dependence of the operator and just indicate the anomalous one

on the conformal factor.
9In fact, the trace of the quantum momentum tensor would include other terms: the anomalies

of the path integral measures but also other total derivative terms. This is why vanishing of the β-
functions only implies scale invariance but not full conformal invariance in flat spacetime. We ignore
these terms in this exposition both to make the main point clear and because they will not play a role
in our analysis.
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This is the anomaly equation that incorporates the quantum anomalous Weyl dimen-
sion acquired by the operators, and consequently by the effective action, through renor-
malization. It is a very useful equation because knowing the anomalous dimensions of
the operators, it allows to compute their gravitational dressings in the effective action.

This anomaly equation is in fact the local renormalization group equation [38–41], a
covariant extension of the Callan-Symanzik equations. The local renormalization group
is the rigorous framework for the generalization of the flat spacetime renormalization
group and anomalous scalings to the gravitational context. We will not require it to
the extent of the work in this thesis, hence we will not present it here, but it needs to
be mentioned because it eventually is the formal reason why covariant renormalization
of contact divergences introduces a dependence on the metric through its conformal
factor. Further, it tells us that the gravitational dressings in the effective action, since
the latter is a solution of (1.1.40), are re-summing the leading logarithms, and need
not be one-loop exact, as is the case for other anomalies. Consequently, it suggests
that the effects of these Weyl anomalies in, for example, equations of motion derived
from the effective action, should also be re-summing leading logarithms, so it serves as
a guidance of what corrections to expect to classical solutions.

Finally, the anomaly equation can include operator mixing, which refers to the
appearance of several other operators to the trace anomaly of a single one of them

Ti = −Zij Oj(Σg) . (1.1.41)

This does not happen in the regime where perturbation theory is valid, i.e. at weak
coupling, since then the operators are ’far apart’ from each other and cannot interfere
each others renormalization.

The Weyl anomalies of interest in this thesis belong to the second group, i.e. we
are interested in computing the anomalies of composite operators, those relevant for
the cosmological evolution. The first type of anomalies are generically also present,
but we will mostly ignore them, and we will assume that the effects of the different
types of anomalies can be analyzed independently.

1.2 Weyl-Invariant Formulation of Gravity
The Einstein-Hilbert action in d spacetime dimensions with a cosmological constant Λ
is given by

IG[g] = IK [g] + IΛ[g] =
Md−2
p

16π

∫
ddx
√
−g (R(g)− 2Λ) , (1.2.1)

where R(g) is the Ricci scalar and Mp is the Planck mass. The latter is related to the
fundamental constants through

Md−2
p = ~d−3

cd−5GN
, (1.2.2)

and in four dimensions takes value Mp = 1.22 × 1019GeV/c2. One usually thinks of
this two-derivative action as a low-energy effective action for scales below the Planck
cutoff. At higher energies, one would need to take into account corrections due to
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higher derivative terms and eventually an ultraviolet completion given by a quantum
theory of gravity. In this approach, one introduces a UV cutoff M0, which typically
lays below the Planck scale. One can then write the couplings in terms of dimensionless
constants, the ones to acquire Weyl anomalous dimensions through renormalization.
For the gravitational and cosmological constants we denote this dimensionless coupling
constants κ2 and λ, defined by

Md−2
p

16π = Md−2
0

2κ2 , Λ = λκ2M2
0 . (1.2.3)

We will often work in the units M0 = 1, with which Mp and Λ become dimensionless.

1.2.1 The Weyl compensator
The Einstein-Hilbert action IK is not Weyl invariant in dimensions d > 2. The cosmo-
logical constant spoils the invariance in any dimensions. However, we can generalize
this action to a Weyl invariant one at the expense of introducing an additional scalar
field ϕ, a so-called Weyl or conformal compensator. We already mentioned that a free
scalar field action can be made Weyl invariant through the addition of an improvement
term with a coupling to the background curvature, i.e. through Ricci gauging. This
action is

Ic[ϕ, g] = −1
2

∫
ddx
√
−g

(
gµν ∇µϕ∇νϕ+ 1

4
(d− 2)
(d− 1)R(g)ϕ2

)
. (1.2.4)

For now we will assume that d > 2; we will discuss the limit to two dimensions at length
in the next section. Again, this action is invariant under the finite Weyl transformation

ϕ(x)→ e−
d−2

2 ξ(x) ϕ(x) , gµν → e2ξ(x) gµν , (1.2.5)

since the variation of the improvement term cancels the derivatives on the local pa-
rameter generated from the kinetic term. The Weyl invariance can then be used to
impose the dilatation gauge

ϕ2(x) = −ϕ2
d := −4 (d− 1)

(d− 2)
Md−2

0
κ2 , (1.2.6)

under which we recover the Einstein-Hilbert action. The two actions Ic and IK are
hence gauge-equivalent, we go from the first to the second by gauge-fixing. Notice that
to exactly recover Einstein-Hilbert (assuming Newton’s constant to be positive), the
compensator field has to be imaginary.

An alternative point of view on this generalization, which gives the compensator
field ϕ a more natural gravitational origin, is to disguise the latter inside the metric
by doing

gµν → g′µν =
(
ϕ

ϕd

) 4
d−2

gµν , (1.2.7)

where the ϕd factor is inserted to keep the metric dimensionless. It is clear that the
new metric g′ is invariant under a Weyl transformation (1.2.5), and so must be the
case for the gravitational action written with it

IG[g′] = Md−2
0

2κ2

∫
ddx

√
−g′

(
R(g′)− 2Λ

)
. (1.2.8)
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Expressing the above action in terms of the original metric and compensator field, by
using the Weyl transformation of the Ricci scalar (B.0.4), we find

IG[g′] = 1
2

∫
ddx
√
−g

(
(∇ϕ)2 + 1

4
(d− 2)
(d− 1) R(g)ϕ2 − 2Λ̃ϕ

2d
d−2

)
≡ IG[ϕ, g] , (1.2.9)

where Λ̃ absorbs the corresponding numerical factors and constants. The first two
terms of this action coincide with the Weyl-coupled scalar action Ic[ϕ, g], but with
a relative − sign. This is an important distinction, since now the compensator need
not be imaginary in order to recover Einstein-Hilbert, the dilatation gauge becoming
ϕ2(x) = ϕ2

d. However, the price to pay is that the kinetic term has the wrong sign, it
is not positive definite. We will come back to this point in due time.

In four dimensions, IG[ϕ, g] is a polynomial action for the field ϕ with a quar-
tic interaction term. In other dimensions, the cosmological constant term may be
non-polynomial. Due to the dependence on (d − 2), it is clear that the limit to two
dimensions of this invariant action and the transformations involved is subtle, we will
properly define it in the next section. However, formulating the problem in d dimen-
sions exhibits the fact that most considerations depend analytically on the number of
spacetime dimensions, and therefore the limit can be taken continuously from higher
d.

From the above it becomes clear in which sense the gravitational action is Weyl
invariant: only after conveniently dressing the metric with a scalar compensator that
makes it effectively invariant under a Weyl transformation. This suggests the definition
and distinction of two types of Weyl transformations: physical Weyl and fiducial Weyl
transformations. For this, we will denote gµν as the physical metric, and define a new
fiducial metric hµν . The two metrics are related through a Weyl compensator as

gµν =
(
ϕ

ϕd

) 4
d−2

hµν . (1.2.10)

This split is equivalent to the shift (1.2.7), this rewriting though makes clear that now
we have to regard the field ϕ(x) as a scalar component of the original gravitational
field. The physical Weyl transformation is the familiar one, under which the physical
metric gets locally rescaled

gµν → e2ξ(x) gµν . (1.2.11)

The fiducial Weyl transformation involves the transformation of the fiducial metric
and the Weyl compensator as in (1.2.5)

ϕ(x)→ e−
d−2

2 ξ(x) ϕ(x) , hµν → e2ξ(x) hµν , (1.2.12)

in such a way that the physical metric g is left invariant. Any action written in terms
of the physical metric g is automatically (classically) invariant under the fiducial Weyl
transformation upon rewriting it in terms of the compensator and the fiducial metric h.
The Einstein-Hilbert action with the cosmological constant is therefore fiducial Weyl
invariant.

Notice that the fiducial metric hµν is not required to satisfy any scalar conditions,
and so has all its d(d+ 1)/2 independent components. Hence, the split (1.2.10) seems
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to introduce an additional degree of freedom to the gravitational field, namely that of
ϕ. However, the fiducial Weyl invariance that is gained with it should be regarded as a
gauge invariance, which can be used to fix the new field introduced and kill its degree
of freedom. Therefore, even if the number of fields is increased by one, so is the gauge
freedom, and the number of degrees of freedom stays invariant.

To clarify possible confusion, let’s notice that the split (1.2.10) does not break the
original diffeomorphism invariance. The easiest way to see this is to rather think of
this split as the equivalent shift (1.2.7): it simply dresses the original metric with a
good Lorentz scalar; clearly this is a fully covariant field-redefinition, therefore in the
enlarged field set (ϕ, g), the gauge principle is accordingly enlarged to diffeomorphisms
of both fields times fiducial Weyl invariance.

Finally, we would like the reader to appreciate that there is nothing fundamental
about the split (1.2.10) or the fiducial Weyl gauge invariance: it is a redundancy
added by hand. However, as we will learn along the way, the separation of this scalar
component from a fiducial tensor simplifies greatly the computations of gravitational
dressings in two dimensions, since correlation functions and anomalous dimensions of
scalar operators are much easier to tackle. Further, it becomes very convenient to
model cosmological solutions, for which all the dynamics resides in the scale factor
after Robertson-Walker symmetry is imposed.

• The Ω field

The fiducial Weyl invariance allows to gauge-fix the Weyl compensator ϕ, as argued
above. Alternatively, it can also be used to fix a degree of freedom of the fiducial metric
hµν and leave the compensator as a fluctuating field. This is actually what needs to
be done to go to the conformal gauge, which is defined by a split of the metric into a
conformal factor Σg(x), and a fiducial metric η̄ constrained by a scalar condition, as

gµν = e2Σg(x) η̄µν . (1.2.13)

The scalar condition reduces the number of independent components of the fiducial
metric by one, so that gµν maintains its d(d + 1)/2 components. In two dimensions,
the scalar condition can be fixed using the Ricci scalar. The conformal gauge that
we will mostly use is the Ricci-flat gauge, defined by R(η̄) = 0. In two dimensions,
given that any metric is locally conformal to the Minkowski metric, and given the Weyl
transformation of the Ricci scalar and the Laplacian, the Ricci-flat gauge automatically
fixes the fiducial metric to be proportional to the Minkowski metric. Henceforth we
will name conformally flat gauge the gauge where the fiducial metric is Minkowski.

In higher dimensions, there are other scalars to be defined given any metric, hence
there are different conformal gauges. In particular, in our treatment of four dimensions
in chapter §5 we will use the Ricci-flat and the F-flat gauges.

Imposing the scalar condition on the fiducial metric is precisely equivalent to fixing
the fiducial Weyl invariance. Namely, ξ(x) in (1.2.12) has to be chosen so that η̄µν =
e2ξ(x)hµν . Notice that the resulting transformed compensator, which we can rename
e2Σg(x), is not fixed by this condition.

In the conformal gauge, physical Weyl transformations are implemented by a trans-
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lation of the conformal factor

Σg(x)→ Σg(x) + ξ(x) , η̄µν → η̄µν . (1.2.14)

This gauge suggests a convenient redefinition of the Weyl compensator

ϕ(x)
ϕd

:= e
d−2

2 Ω(x) , (1.2.15)

so that the split (1.2.10) becomes

gµν = e2Ω(x) hµν . (1.2.16)

We will call this the Weyl split. In terms of the new compensator, the fiducial Weyl
transformation becomes very simple

Ω(x)→ Ω(x)− ξ(x) , hµν → e2ξ(x) hµν . (1.2.17)

If further the fiducial metric hµν is fixed to the same conformal gauge as gµν

hµν = e2Σh(x) η̄µν , (1.2.18)

then
Σg(x) = Ω(x) + Σh(x) , (1.2.19)

and the fiducial Weyl transformation becomes

Ω(x)→ Ω(x)− ξ(x) , Σh(x)→ Σh(x) + ξ(x) . (1.2.20)

In this formulation with Ω(x), what we previously called the dilatation gauge ϕ2 = ϕ2
d

now becomes Ω(x) = 0. We will call this the physical gauge, since then the fiducial
metric becomes the physical metric gµν = hµν . Alternatively, if we choose the confor-
mal gauge hµν = η̄µν , the new Weyl compensator becomes the conformal factor of the
metric Ω = Σg.

The rewriting of ϕ(x) in terms of the Weyl compensator Ω(x) therefore casts the
fiducial Weyl transformation in the most intuitive form: the compensator Ω transforms
linearly under a fiducial Weyl just as the conformal factor Σg transforms linearly
under a physical Weyl. This formulation simplifies computations since it helps make
contact with Liouville theory, in which Ω, the Liouville field, transforms linearly under
conformal transformations. Also, notice that in terms of Ω, neither the Weyl split nor
its transformation depend anymore on the factor (d−2). In fact, it is in this formulation
that we are able to properly take the limit to two dimensions of the Weyl invariant
gravitational action, as we will see in the next section. Finally, Ω has the interpretation
of the Goldstone boson associated to the spontaneous breaking of the (global) fiducial
Weyl invariance, which takes place as soon as ϕ(x) takes a non-vanishing expectation
value.

Henceforth, we will write Weyl invariance to refer to the fiducial Weyl invariance,
and explicitly say physical Weyl invariance when we refer to this one. Also, in what
follows all quantities of Riemannian geometry, derivatives and contractions will depend
on and refer to the fiducial metric.
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1.2.2 Weyl-Invariant Action
The Weyl-invariant formulation of gravity consists of rewriting all metric-dependent
quantities in terms of Ω(x) and hµν by means of the Weyl split (1.2.16). In the
resulting gravitational theory, the gauge principle is general coordinate transformations
times Weyl invariance. Even if the gauge Weyl invariance may seem to be given
a fundamental status, including it in the gauge principle should rather be regarded
as a convenient trick, which helps uncover the anomalous coupling to the conformal
factor of composite operators. The defined Weyl transformation (1.2.17), trivially
leaves the physical metric invariant and hence, it entitles no statement about the
symmetry content of the theory. However, it conveniently makes the fiducial conformal
factor transform linearly, effectively performing the renormalization group running and
digging out the anomalous dimensions. Consistent with this picture, the Weyl invariant
formulation is but a very convenient formulation that makes this invariance manifest
and thus helps to compute the gravitational dressings explicitly.

The Weyl-invariant formulation of the gravitational action follows then from in-
troducing the Weyl split in the action IG[g] = IK + IΛ (1.2.1). By using the Weyl
transformation of the Ricci scalar (B.0.4), it reads

IK [Ω, h] = Md−2
0

2κ2

∫
ddx
√
−h e(d−2)Ω (R(h) + (d− 2)(d− 1)hµν ∇µΩ∇νΩ) (1.2.21)

for the purely gravitational action, and

IΛ[Ω, h] = −M
d−2
0

2κ2

∫
ddx
√
−h edΩ 2Λ (1.2.22)

for the cosmological term. Alternatively, they also follow from introducing the redefini-
tion of the ϕ compensator in terms of Ω in the Weyl-invariant action IG[ϕ, h]. IG[Ω, h]
therefore becomes a gravitational action with both fluctuating metric hµν and scalar
field Ω, and non-polynomial couplings and interactions.

•Ward Identities

The actions (1.2.21) and (1.2.22) are each independently invariant under diffeomor-
phisms and Weyl transformations by construction. They satisfy therefore the corre-
sponding Ward identities

∇ν( −2 δIa√
−h δhµν

)− 1√
−h

δIa
δΩ ∇µΩ ≡ 0 . (1.2.23)

and
hµν( −2 δIa√

−h δhµν
)− 1√

−h
δIa
δΩ ≡ 0 , (1.2.24)

where a = K,Λ. For the cosmological constant action IΛ, the first term in the two
identities corresponds to the fiducial momentum tensor in the background hµν . Notice
though that the purely gravitational action IK contains the kinetic term for Ω but also
that for hµν , hence the first term of the two identities for IK contains not only the
momentum tensor of the free Ω field but also the Einstein tensor of hµν .
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• Equations of Motion

The equations of motion of the gravitational action IG[Ω, h] comprend the fiducial
Einstein equations and the equation of motion for the scalar field Ω. To obtain the
former, we perform the variation of this action with respect to the fiducial metric hµν ,
while treating Ω as a (non-gravitational) scalar field. Formally, this variation leads
explicitly to

e(d−2)ΩEµν(h) = κ2

Md−2
0

(
T̂Ω
µν + T̂Λ

µν

)
(1.2.25)

where Eµν(h) is the Einstein tensor of the fiducial metric

Eµν = Rµν(h)− 1
2 hµν Rh , (1.2.26)

and
T̂µν = −2√

−h
δI

δhµν
(1.2.27)

is the fiducial momentum tensor. However, to look for solutions it is more convenient
to express the equations in terms of the physical momentum tensor, the momentum
tensor that follows from variation with respect to the physical metric gµν . Since this
variation is computed at Ω fixed, the relation between the fiducial and the physical
momentum tensors is

T̂µν = −2√
−h

δI

δgµν
δgµν

δhµν
= e(d−2)Ω Tµν . (1.2.28)

The fiducial Einstein equations then become

Eµν(h) = κ2

Md−2
0

(
TΩ
µν + TΛ

µν

)
(Ω, h) , (1.2.29)

with
κ2

Md−2
0

TΩ
µν(Ω, h) = (d− 2)

[
∇µ∇ν Ω− (∇µ Ω) (∇ν Ω)− hµν

(
∇2Ω + d− 3

2 (∇Ω)2
)]

,

κ2

Md−2
0

TΛ
µν(Ω, h) = −Λhµν e2Ω . (1.2.30)

It is easy to check that
κ2

Md−2
0

TΩ
µν = −Dµν(Ω, h) (1.2.31)

where Dµν(Ω, h) is defined in (B.0.3) as the Weyl transformation of the Einstein tensor

Eµν(h) +Dµν(h,Ω) = Eµν(g). (1.2.32)

This is simply indicating that the fiducial Einstein equations follow from introducing
the Weyl split in the original ones

Eµν(g) = κ2

Md−2
0

TΛ
µν(g) = −Λ gµν . (1.2.33)
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The equation of motion for the Ω field is

− 2 (d− 1)∇2 Ω− (d− 1)(d− 2)(∇Ω)2 +R(h) = 2 dΛ
d− 2e

2 Ω . (1.2.34)

As a consequence of (either of the two) Ward identities for IG[Ω, h], the equation of
motion for Ω is automatically satisfied if the fiducial Einstein equations are satisfied. In
fact, (1.2.34) can be recognized as the trace of the physical Einstein equations (1.2.33)

R(g) = 2 dΛ
d− 2 (1.2.35)

again after introducing the Weyl split.

1.3 Weyl-Invariant Formulation of Cosmology
The Weyl-invariant formulation is particularly well-suited to study the cosmological
evolution. This is because the physical metric for a homogeneous and isotropic universe
is conformally-equivalent to a time-independent metric. This follows purely from sym-
metry considerations, which further fully fix this time-independent conformal metric
after the spatial curvature is chosen. The fiducial metric hµν can hence be chosen to
be this time-independent metric. It then follows that all the dynamics is contained in
the scalar field Ω, which leads to a useful simplification of the cosmological evolution
equations.

More concretely, a homogeneous and isotropic universe is described by the Robertson-
Walker metric

ds2 = −dt2 + a2(t)hijdxidxj , (1.3.1)
where a(t) is the scale factor, which only depends on the comoving cosmological time t.
The form and time-dependence of this metric follows from the symmetries considered.
The conformal time τ is related to t by

dτ = dt

a(t) , (1.3.2)

with which the Robertson-Walker metric becomes

ds2 = a2(τ)
(
−dτ2 + hijdx

idxj
)
. (1.3.3)

For a spatially-flat spacetime, hij = δij , and so one can choose a gauge in which the
fiducial metric is just the Minkowski metric, whose line-element is of the form

ds2 = −dτ2 + δijdx
idxj (1.3.4)

on the product space R× Rd−1. We can then identify the scale factor of the physical
metric in conformal time with the Weyl compensator as

a(τ) = eΩ(τ) = eΣg(τ) . (1.3.5)

Henceforth, we will denote derivatives with respect to t by a dot and derivatives with
respect to τ by a prime.
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Consider a universe filled with a perfect fluid of energy density ρ and pressure p.
The momentum tensor is given by

Tµν = (p+ ρ)uµuν + p gµν . (1.3.6)

The comoving time t can be identified with the proper time of the geodesics of the
cosmological fluid elements everywhere, therefore the velocity u of the cosmological
fluid is

uµ = (1,~0) , uµ = (−1,~0) , (1.3.7)
which makes the momentum tensor diagonal as required by isotropy and homogeneity.
In conformal coordinates instead,

uµc = (a−1(τ),~0) , ucµ = (a(τ),~0) , (1.3.8)

from which follows that the density and pressure can be read from the momentum
tensor in conformal time as

ρ = Tττ
a2(τ) , p = Tii

a2(τ) . (1.3.9)

The momentum tensor for a classical cosmological constant (1.2.30) is of the perfect
fluid form, with density and pressure

ρΛ = Md−2
0
κ2 Λ pΛ = −M

d−2
0
κ2 Λ . (1.3.10)

The classical evolution of the universe, and hence of the conformal factor, is governed
by the first Friedmann-Lemaître equation, which follows from Einstein equations for a
metric of the Robertson-Walker form. We derive it now in the Weyl-invariant formu-
lation.

We start with the fiducial Einstein equations (1.2.29) with a momentum tensor for
a generic perfect fluid, which we write again

Eµν(h) = κ2

Md−2
0

(
TΩ
µν + Tµν

)
(Ω, h) . (1.3.11)

Since we choose the fiducial metric to be Minkowski, the Einstein tensor Eµν(h) van-
ishes. The (ττ) component of the above equations, as follows from the expression
(1.2.30) for TΩ

µν , reads

(d− 1)(d− 2)
2 Ω′2 = κ2

Md−2
0

ρ e2Ω . (1.3.12)

We define the Hubble scale as usual by

H = ȧ

a
= a′

a2 = Ω′
eΩ . (1.3.13)

Then (1.3.12) takes the usual form of the first Friedmann-Lemaître equation

H2 = 2κ2ρ

(d− 2)(d− 1)Md−2
0

. (1.3.14)
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The (ii) components of (1.3.11) lead of course to the same equation, since there is only
one unknown variable. The conservation of the momentum tensor (1.3.6) implies

ρ′ = −(d− 1)(p+ ρ) Ω′ , (1.3.15)

which when written in comoving coordinates leads to the familiar continuity equation

ρ̇ = −(d− 1)(p+ ρ)H . (1.3.16)

If the fluid satisfies the barotropic equation of state p = wρ for some constant barotropic
index w, then the solutions to (1.3.14) and (1.3.16) are given by

ρ(t) = ρ∗(
a

a∗
)−γ , a(t) = a∗(1 + γ

2H∗t)
2
γ , (1.3.17)

where ρ∗, H∗, a∗ are the initial values of various quantities at t = 0, and

γ := (d− 1)(1 + w) . (1.3.18)

For the classical momentum tensor of the cosmological constant we have w = −1 and
γ = 0 in any dimensions, which leads to de Sitter spacetime

adS(t) = adS∗ eH∗ t . (1.3.19)

Conformal time as a function of comoving time is given by

τ = τ∗ (1 + γ

2 H∗ t)
γ−2
γ , where τ∗ := 2

(γ − 2)H∗ a∗
. (1.3.20)

The range of t is 0 ≤ t <∞ with the universe starting with scale factor a∗. The range
of τ is

|τ∗| ≤ τ <∞ for γ > 2 , (1.3.21)
−|τ∗| ≤ τ < 0 for γ < 2 . (1.3.22)

As a function of τ , the scale factor and the density are given by

a(τ) = a∗ ( τ
τ∗

)
2

γ−2 , ρ(τ) = ρ∗ ( τ
τ∗

)−
2 γ
γ−2 . (1.3.23)
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Two-Dimensional Quantum Gravity

2.1 Classical Gravity and Cosmology near Two Dimensions

Consider the gravitational action IG[Ω, h] in the Weyl-invariant formulation, which is
the sum of the Einstein-Hilbert action (1.2.21) and the cosmological term (1.2.22).
We would like to analyze the renormalization of this action near two dimensions. For
this purpose, we first consider the classical action in d = 2 + ε. Henceforth we use
Rh instead of R(h) for the Ricci scalar associated with the metric hµν . Keeping only
terms at most linear in ε and using the rescaling (1.2.3) for the constants, we find

IG = M ε
0

2κ2

∫
d2+εx

√
−h

(
Rh + ε ( (∇Ω)2 +Rh Ω )

)
−λM2+ε

0

∫
d2+εx

√
−h e2Ω (1+εΩ) .

(2.1.1)
To make contact with Liouville theory in the next subsection, we define another two
constants q2 and µ by

κ2 = 2πε
q2 , λM2

0 = µ. (2.1.2)

The action then takes the form

IG[Ω, h] = q2

4π

∫
d2x
√
−h

(
Rh
ε

+ (∇Ω)2 +Rh Ω− 4πµ
q2 e2Ω

)
. (2.1.3)

This action is manifestly coordinate invariant, and also Weyl invariant to this order
in ε. As a result it satisfies both Ward identities (1.2.23) and (1.2.24). The integral
of the Ricci scalar in two dimensions is a topological invariant, given by the Euler
characteristic of the spacetime. Therefore, it is normally regarded as trivial, since
it contributes only with a finite constant to the action and gives no local dynamics.
However, in the above action IG[Ω, h], the Einstein-Hilbert term comes with the 1/ε
pole, which precludes us from dropping this term altogether, and seems to be calling for
some kind of renormalization, after which a finite piece should remain. We will address
this point in the next section. Note further that to first order in ε, the expansion of
the factor M ε

0 in front of the action would only contribute with an additional Einstein-
Hilbert term of order ε0, and can therefore be disregarded according to the argument
just given.

21
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In the limit to two dimensions ε→ 0, the constants q and µ stay finite. For conve-
nience of the reader, we repeat the original definition of the dimensionless parameter
κ2

Md−2
p

16π = Md−2
0

2κ2 . (2.1.4)

Since κ2 = 8πGN Md−2
0 , this two-dimensional limit (2.1.2) implies GN = ε/4q2, which

means that we are taking Newton’s constant to zero. This seems to indicate that, once
the limit is taken, we cannot get any quantum perturbative corrections. However,
using Newton’s constant as the loop-counting parameter is not the best approach, as
it generically is not dimensionless. A better one, is to regard the dimensionless κ2

as the parameter to run the expansion. To define a dimensionless parameter, we had
to introduce an arbitrary cutoff by hand, below the Planck scale, which determines
the extent of validity of the effective field theory. The dimensionless parameter is as
arbitrary as our choice of the cutoff, but we define it such that very small κ corresponds
to a cutoff way below the Planck scale. κ→ 0 then implements the perturbative regime
at low energies where gravity is weakly coupled.

Since this definition is arbitrary though, we might as well define the dimensionless
ratio as

Md−2
p

16π = Md−2
0
2

q2

2π (d− 2) , (2.1.5)

in terms of a new dimensionless parameter q2. With this definition, the limit to two
dimensions automatically forces the cutoff to be much below the Planck scale if q2

stays finite. Therefore, introducing this redefinition in terms of q in the action, we can
only reliably explore the low energy perturbative regime. In exact two dimensions,
the dependence on the Planck mass and the cutoff drop out, and we are left with a
finite arbitrary dimensionless parameter, that can be used as the new fundamental
dimensionless constant to perform the perturbative expansion. The semiclassical limit
is therefore implemented by q →∞.

Just to summarize, in higher dimensions we introduce a dimensionless parameter
κ2 by hand, that we can tune to very small values when we want to go to the per-
turbative regime, thanks to introducing an arbitrary cutoff. In two dimensions, the
freedom of tuning this parameter with a cutoff disappears due to the dimensionless
Einstein-Hilbert action, so what we do is use the limit to two dimensions to effec-
tively implement the limit to the weak coupling regime, while keeping a dimensionless
arbitrary parameter to perform the perturbation theory.

Taking the two-dimensional limit in this way, with the scaling (2.1.2) and keeping q
and µ finite, is actually the fruitful way to get non-trivial two-dimensional gravity and
cosmology [113,114].1 First of all, consider again the Weyl-invariant action for a scalar
field ϕ(x) in d dimensions (1.2.9). From that point of view, namely that of a scalar field
theory on a fixed background, the limit to two dimensions has to be taken such that the
resulting theory is still Weyl invariant and still has a canonically-normalized kinetic
term. It turns out that this requires a redefinition of the scalar field ϕ(x) precisely as

1See [48] for an entropy-based argument.



2.1. Classical Gravity and Cosmology near Two Dimensions 23

the one we did in terms of the compensator Ω(x) (1.2.15), and a further rescaling of
the constant ϕd defined in (1.2.6) such that κ2 is proportional to (d− 2)(d− 1) [51].

Second, it is the way to take the limit so as to get non-trivial constraints for gravity
in two dimensions. Indeed, in two dimensions the Einstein tensor vanishes identically,
another way to see why there are no gravitational propagating degrees of freedom.
Diffeomorphisms allow to fix two components of the metric. Even if we start with
Λ 6= 0, the vanishing Einstein tensor implies the constraints TΛ

µν = 0, which enforce
Λ = 0, in which case physical Weyl invariance is reestablished, and the metric can be
fully fixed at will. So there seems to be no room for something interesting to happen.

However, we can start with Einstein’s equations in d = 2 + ε, do the redefinition
(2.1.2), and check for the resulting lowest order equations. The momentum tensor for
Λ at order ε0 becomes2

TΛ
µν(g) = −µ gµν , (2.1.6)

which stays finite in the limit ε→ 0. Further, the Einstein constraints read

Eµν = 2πε
q2 TΛ

µν . (2.1.7)

If we take the trace of the above equation, the left-hand side becomes also propor-
tional to ε, which then drops from the equation, giving at lower order the non-trivial
constraint

Rg = 8πµ
q2 . (2.1.8)

This constraint forces a constant curvature solution. The limit ε→ 0 can now be taken
trivially, since the above constraint is already finite. Using the Weyl transformation
of the Ricci scalar in two dimensions

Rg = e−2Σg
(
Rη̄ − 2∇2

η̄Σg(x)
)
, (2.1.9)

and that of the Laplacian ∇2
g = e−2Σg∇2

η̄, in the conformally flat gauge η̄µν = ηµν the
constraint becomes the Poisson equation

− 2∇2
g Σg(x) = 8πµ

q2 . (2.1.10)

So taking the limit in this way not only allows for a classical non-vanishing cosmological
constant in exact two dimensions, but also relates the conformal factor of the metric
to the cosmological constant, which can now no longer be chosen at will.

To solve this Poisson equation, we have to use the Laplacian’s Green function
Gg(x, y) and add two independent solutions of the homogeneous equation

Σg(x) =
∫
d2y
√
−g Gg(x, y) 4πµ

q2 + Σ1
g(x) + Σ2

g(x) . (2.1.11)

These two homogeneous solutions encode the on-shell degree of freedom of the field,
since in principle they allow for a two-functions-worth choice of initial conditions. How-
ever, given the Weyl transformation of the Laplacian, the two homogeneous solutions

2Higher-order terms would come from the expansion of TΛ
µν = M ε

0 µ gµν , but we can ignore them
since in the Einstein equations, the momentum tensor comes multiplied by κ2 ∼ ε.
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have to satisfy the flat Laplacian equation

−∇2
ηΣi

g(x) = −4 ∂+∂−Σi
g(x) = 0 , (2.1.12)

where in the second step we have chosen light-cone coordinates. This equation forces
the two functions to be a constant, killing thereby the degree of freedom of Σg, since
the only freedom left is a constant initial condition. We conclude therefore that the
field is not dynamical.

Another way to see this is by remembering that when gauge invariance is used
to fix some components of the metric, the equations for these components become
constraints, which must be applied to the initial data for those components that are
not gauge-fixed. In our case, the unfixed component is the conformal factor, and the
only non-trivial constraint is the above Poisson equation (2.1.10). The initial data for
the Σg field are the functions Σi

g(x). Putting the solution (2.1.11) into the constraint,
leads again to the Laplace equation for the two initial functions, which forces them
to be a constant. The conclusion that follows from this reasoning is that Σg has no
dynamics because it’s a scalar component of the gravitational field in a theory gravity,
where it is required to impose the constraints of its gauge invariance.

The Poisson equation can be easily solved by noticing that the solution has to be
a maximally symmetric space, as it is always the case for constant Ricci scalar metrics
in two dimensions. We can then assume that the solution depends only on one of
the two coordinates. The Poisson equation becomes thus a total differential equation,
with solutions the two-dimensional de Sitter or Anti-de Sitter spacetimes, for µ > 0 or
µ < 0 respectively.

Adding the Weyl-invariant formalism doesn’t change this conclusion. Variation of
the Weyl-invariant action (2.1.3) with respect to hµν gives the 2+ε-dimensional fiducial
Einstein equations (1.2.29), which with the redefined constants read

Eµν(h) = 2πε
q2

(
TΩ
µν + TΛ

µν

)
(Ω, h) , (2.1.13)

with

TΩ
µν(Ω, h) = q2

2π

[
∇µ∇ν Ω− (∇µ Ω) (∇ν Ω)− hµν

(
∇2Ω− 1

2(∇Ω)2
)]

(2.1.14)

TΛ
µν(Ω, h) = −µhµν e2Ω . (2.1.15)

These momentum tensors become finite. Taking the trace of the equations again,
allows to drop the ε on both sides of the equations, and to lowest order we find

Rh = 2∇2
hΩ + 8πµ

q2 e2Ω . (2.1.16)

Thus we get a finite non-trivial constraint for Ω and hµν , which by using the Weyl
transformation of the fiducial Ricci scalar is the same as (2.1.8). Using Weyl and
diffeomorphism invariance, we can completely fix the fiducial metric to Minkowski
hµν = ηµν , in which case we are left with

− 2∇2
ηΩ = 8πµ

q2 e2Ω , (2.1.17)
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which is the same as (2.1.10) since in this gauge Ω = Σg. Notice that with this
gauge-fixing, the fiducial Einstein equations in d = 2 + ε read

TΩ
µν + TΛ

µν = 0 , (2.1.18)

which are the Virasoro plus the trace constraints, and which still hold after doing ε→ 0
because they are of order O(ε0). Even if they are three constraints, they all lead to
the same equation (2.1.17) for Ω. Notice further, that this constraint coincides with
the equation of motion for Ω, as the latter follows from the Bianchi identity because
Ω is the only scalar field present.

Without the Weyl invariant formulation there are no Virasoro constraints because
the ε→ 0 limit of the Einstein equation (2.1.7) guarantees the vanishing of the Einstein
tensor without requiring the vanishing of the momentum tensor. However, in the
conformally flat gauge TΛ

µν ∝ ηµν , and hence the Virasoro constraints TΛ
++ = TΛ

−− = 0
are satisfied trivially.

The cosmological evolution equations depend analytically on d, so we can also
dimensionally-continue them. Near two dimensions, they can be derived either by
rewriting the Friedmann-Lemaître and continuity equations (1.3.14) and (1.3.16) in
terms of the new gravitational constant q2 and then taking the limit, or by imposing
the Robertson-Walker symmetry on the constraint (2.1.16). They become

H2 = 4π
q2 ρΛ , (2.1.19)

and
ρ̇Λ = −(1 + wΛ)H ρΛ . (2.1.20)

Again, we see how the re-absorption of ε in κ2 and Λ allows for finite equations.
As explained above though, this Friedmann-Lemaître equation contains no dynamics,
since it actually is a constraint.

For the classical cosmological fluid wΛ = −1, the energy density is constant ρΛ(t) =
µ, and the Hubble scale is given by H2 = 4πµ/q2. The physical metric corresponds to
two-dimensional de Sitter in cosmological coordinates with scale factor a(t) = a∗e

H∗t.

2.1.1 Classical Polyakov action
The first term in the action (2.1.3) may look a bit worry-some because of the 1/ε
pole, which comes from the redefinition of the gravitational constant κ2 (2.1.2). In
the previous section, we argued that the proper definition of the two-dimensional limit
required this constant to be proportional to (d−2)(d−1). According to our redefinition
(2.1.2), we chose the proportionality constant to be 2π as

κ2 = 2π
q2 (d− 2)(d− 1) , (2.1.21)

which correctly reproduces (2.1.2) at lowest order in the two-dimensional limit. Intro-
ducing this redefinition in the Einstein-Hilbert term, we get

1
2κ2

∫
ddx
√
−hRh = q2

4π

∫
ddx
√
−h Rh

(d− 2)(d− 1) . (2.1.22)
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This term entitles some indeterminacy since in two dimensions,
√
−hRh is the Euler

density, which effectively has a vanishing bulk integral, so it gives 0/0. It would be
good to have a L’Hôpital’s rule to get a finite limit as far as the bulk properties are
concerned. Such a rule was given in [51], where the Weyl gauging of the d-dimensional
free scalar action was considered. Since it provided some guidance, we reproduce it in
the following.

We have seen that one way to make the free scalar Weyl invariant is through the
addition of the Ricci scalar-dependent improvement term, leading to the action (1.2.4).
However, as mentioned already at the end of section §1.1.2, another way of turning
a scale-invariant theory into a Weyl-invariant one is by gauging the Weyl invariance,
i.e. introducing the gauge connection of the wanted symmetry, such that the covariant
derivative is Weyl invariant. In other words, the covariant action

IW [ϕ,W, h] = −1
2

∫
ddx
√
−hhµν

(
∂µϕ−

d− 2
2 Wµ ϕ

) (
∂νϕ−

d− 2
2 Wν ϕ

)
(2.1.23)

is Weyl invariant provided the gauge potential Wµ transforms as

Wµ →Wµ − ∂µ ξ(x) . (2.1.24)

By demanding that the improved action (1.2.4) coincides with the Weyl-covariant ac-
tion above, we find the relation between the Weyl gauge connection and the background
geometry

Rh
(d− 1) = 2∇µhWµ + (d− 2)hµνWµWν . (2.1.25)

Just as a curiosity, the reason why we can write the gauge connection in terms of the
curvature, i.e. that the Weyl-gauged action admits Ricci gauging, is because the free
scalar in flat spacetime is not only scale invariant, but fully conformal invariant. Giving
the gauge connection a geometric meaning is therefore not possible for all theories.

The above relation (2.1.25) makes manifest that in two dimensions the Ricci scalar
is a total derivative. If the Ricci scalar satisfies such a relation with an arbitrary vector
field, then it should generically have such an expression. And indeed, from its Weyl
transformation (B.0.4) follows its expression in the Ricci-flat conformal gauge of the
metric

Rh = e−2Σh
(
−2 (d− 1)∇2

ηΣh − (d− 2)(d− 1) ηµν ∇µΣh∇νΣh

)
. (2.1.26)

Writing the above derivatives in terms of the hµν metric by means of the Weyl trans-
formation of the Laplacian (E.1.4), and diving the expression by (d− 1), we obtain

Rh
(d− 1) = −2∇2

hΣh + (d− 2)hµν∇µΣh∇νΣh . (2.1.27)

This expression reproduces (2.1.25) with the identification Wµ = −∇µΣh.
Substituting the above relation in the undetermined term in the action (2.1.22),

the first term is a total derivative and hence can be dropped, effectively removing the
1/ε pole. The limit to two dimensions then gives

lim
d→2

q2

4π

∫
ddx
√
−h Rh

(d− 2)(d− 1) = q2

4π

∫
d2x
√
−hhµν ∇µΣh∇νΣh . (2.1.28)
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This is not yet completely covariant because Σh(x) is the conformal factor of the metric
only in the conformal frame. One might be tempted to write Σh(x) in terms of the
determinant of the metric, but this cannot be correct because it must be a scalar,
whereas the determinant of the metric is a scalar density. We can obtain a manifestly
coordinate-invariant scalar expression by inverting the Weyl transformation of the Ricci
scalar (2.1.26), which in two dimensions becomes

Rh = −2∇2
hΣh(x) . (2.1.29)

By solving this Poisson equation, the conformal factor can be written as3

Σh(x) = 1
2

∫
d2y
√
hGh(x, y)Rh(y) , (2.1.30)

where Gh(x, y) is the Laplacian’s Green function on the hµν background. This is the
fully covariant expression of the conformal factor, but it makes the latter a non-local
functional of the metric. This is going to be the origin of the non-localities of the
quantum effective actions we will write down.

The finite limit of the gravitational action then becomes

q2

4π

∫
d2x
√
−h (∇Σh)2 = q2

16π

∫
dx dy Rh(x)Gh(x, y)Rh(y) = q2

4 IPol[h] , (2.1.31)

where we have introduced the short-hand notation dx ≡ d2x
√
−h. This is proportional

to the well-known Polyakov action [36], which for simplicity we will henceforth denote

IPol[g] = 1
4π

∫
Rg

1
�
Rg , (2.1.32)

with � = −∇2
g, and which inherits the non-locality of the conformal factor through

the Green function. The Polyakov action thus arises as the two-dimensional finite limit
of the classical Einstein-Hilbert action. The above-presented limit appropriately gives
the 1/ε pole to the total-derivative piece of the Ricci scalar in the action, so it serves
as some kind of regularization mechanism.

The Weyl transformation of this action is

q2

16π

∫
Rg

1
�
Rg = q2

16π

∫
Rh

1
�
Rh + q2

4π

∫ √
−h

(
(∇Ω)2 +Rh Ω

)
. (2.1.33)

It becomes clear that the (first two terms of the) Ω action (2.1.3) arises independently
of the ε-expansion: it is the difference between the Polyakov actions in the physical
and fiducial metrics.4 The finite gravitational action in exact two dimensions is then

IG[g] = q2

4π

∫
dx

(1
4 Rg

1
�
Rg −

4πµ
q2

)
, (2.1.34)

3Notice that we had already inverted this equation in looking for the cosmological constant solution
(2.1.11). The two solutions of the homogeneous equation, which have to be constant as argued there,
are further chosen to vanish.

4A similar method of taking the two-dimensional limit was presented in [114], where the Liouville
action arises from taking the limit of the difference between two Einstein-Hilbert actions corresponding
to two different metrics. However, their subtraction criteria is rather ad-hoc, and in fact does not
resolve whether the resulting theory is spacelike or timelike Liouville.
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which in the Weyl-invariant formulation becomes

IG[Ω, h] = q2

4π

∫
dx

(1
4 Rh

1
�
Rh + (∇Ω)2 +Rh Ω− 4πµ

q2 e2Ω
)
, (2.1.35)

the finite version of (2.1.3). With the above Hôpital-type rule, the divergent Rh/ε
term is replaced by the Polyakov action. However, the Polyakov action is non-local.
Non-localities are expected in quantum effective actions, as coming from integrals over
massless modes, but not in classical actions. Both terms though, the divergent Rh/ε
and the finite Polyakov Rh 1

�Rh, have the same transformation, given by (2.1.33), which
is finite. We will hence consider both just as valid, and will not further worry about
either the divergence of the former or the non-locality of the latter. In the remaining,
we will mostly write down the Polyakov finite term but we will still refer to it as the
Einstein-Hilbert term. Finally, notice that their transformation is such that it cancels
the transformation of the (first two terms of the) Ω-action, in such a way that the total
gravitational action IG[Ω, h] is Weyl invariant.

2.2 Relation to Timelike Liouville Theory
After using the Weyl invariance to fully fix the fiducial metric hµν , all the dynamics
is encoded in the Ω action of (2.1.35). We hence drop its Polyakov term for now. In
order to have a canonically-normalized kinetic term we define χ := qΩ. The action
then becomes

ITL[χ, h] = 1
4π

∫
d2x
√
−h

(
|∇χ|2+q Rh χ− 4πµ e2βχ

)
. (2.2.1)

This is the timelike Liouville action. Note that the kinetic term has a ‘wrong sign’
because in our conventions the metric has mostly positive signature. For this reason,
χ is called ‘timelike’, by analogy with the field corresponding to the time coordinate
of target spacetime on the two-dimensional world-sheet of a string [61, 115–119]. In
the classical theory, β = 1/q, but we keep it as a free parameter in anticipation of
quantum corrections.

The timelike nature of the Liouville field in the above action naturally makes the
quantization of this theory rather complex. Indeed, many aspects of this theory are
still not understood, from its spectrum and correlators to its symmetries and dualities.
Luckily though, we want to study semiclassical corrections to the Einstein-Hilbert ac-
tion, hence we do not expect to require the full power of the quantum theory. Moreover,
the timelike Liouville action follows from the analytic continuation of the well-known
Liouville action, often called spacelike Liouville to easily distinguish the two phases.
Spacelike Liouville theory is the simplest non-trivial conformal field theory (CFT). It
has been thoroughly explored and most of its results are well known and understood.
It is characterized by a diagonal spectrum, made up of a continuum of unitary Verma
modules. It’s central charge is cL ≥ 1, so it is unitary, although the case c = 1 is subtle.
Its correlation functions are smooth functions of the central charge and the conformal
dimensions of the fields. Its two and three point functions are exactly known, the
latter is given by the highly non-trivial DOZZ formula [120,121], after Dorn-Otto and
Zamolodchikov-Zamolodchikov.
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The semiclassical results of interest to us, in the timelike regime, can be obtained
from the analytic continuation of the analogous results of spacelike Liouville. The
analytic continuation relating timelike and spacelike Liouville is

Q = iq , ϕ = iχ , b = −iβ . (2.2.2)

The resulting action for spacelike Liouville is

IL[ϕ, h] = − 1
4π

∫
d2x
√
−h

(
|∇ϕ|2+QRh ϕ+ 4πµ e2bϕ

)
. (2.2.3)

This action is real and has the right-sign kinetic term, this is why this theory is much
better understood than its timelike sister. The Weyl transformations are given by

hµν → e2ξ(x) hµν , and χ→ χ− q ξ(x) or ϕ→ ϕ−Qξ(x) . (2.2.4)

Although the linear transformation of the Liouville field has a very natural inter-
pretation when thought of as the Weyl transformation of the conformal factor, it is
nevertheless very peculiar from the point of view of a conformal field theory. The
charges of these transformations are determined by requiring Weyl invariance of the
first two terms of the actions (2.2.1) and (2.2.3). Note though, that the these two
terms are not strictly Weyl-invariant under (2.2.4) (as they are missing the variation
of the Polyakov term), but their Weyl variation is field independent with this charge
assignment. Hence the equations of motion are Weyl-invariant. This is the origin of
the conformal invariance of Liouville theory. Since we are interested in the analogy to
the higher-dimensional Weyl compensator, it is preferable to include the Polyakov term
in (2.1.35), so that not just the equations of motion but the action itself is manifestly
invariant under (2.2.4).

In the bootstrap approach to Liouville theory, where there is no action or gravi-
tational intuition, the parameter b (or β) of the cosmological operator is not a priori
related to the background charge Q (or q). They become related by imposing Weyl
invariance, which classically it consistently requires that

Q = 1/b or q = 1/β . (2.2.5)

The semiclassical limit q →∞ becomes also implemented by β → 0. As we discuss in
detail in chapter §3, the above relation is modified in the quantum theory because of
the anomalous Weyl dimension of the cosmological constant operator.

The central charge of Liouville theory is given by

cL = 1 + 6Q2 or cL = 1− 6q2 . (2.2.6)

The unit factor is the usual from a scalar field and is purely quantum, while the 6Q2

(or 6q2) is purely classical, coming form the lack of invariance of the first two terms of
the action under the Weyl transformation (2.2.4). Since gravity requires the timelike
regime, the semiclassical limit leads to a negative central charge. This indicates that
the theory for the conformal factor is non-unitary, consistent with the negative kinetic
term in (2.2.1). The appearance of a wrong-sign scalar field theory is to be expected
taking into account that this is a theory for the gravitational field. Indeed, it is well
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known that the conformal factor of the metric has a ‘wrong-sign’ kinetic term [11]. For
this reason, timelike Liouville theory is a better toy model [62–65] of four-dimensional
gravity than the much-studied spacelike Liouville theory.

To discuss renormalization in the quantum theory, it is convenient to work in
Euclidean space, obtained by doing aWick rotation.5 We denote the Lorentzian actions
by I and the Euclidean actions by S. The Euclidean action for timelike Liouville is

STL[χ, h] = 1
4π

∫
d2x
√
h
(
−|∇χ|2−q Rh χ+ 4πµ e2βχ

)
. (2.2.7)

For spacelike Liouville it is

SL[ϕ, h] = 1
4π

∫
d2x
√
h
(
|∇ϕ|2+QRh ϕ+ 4πµ e2bϕ

)
. (2.2.8)

2.3 Liouville Gravity
In §2.1 and §2.2 we show how Liouville appears as a classical action for gravity in two
dimensions. However, what is known as Liouville gravity [36,122] is a quantum theory
of gravity. In the following, we summarize how it shows up as a quantum effective
action, good reviews include [57, 59], and adapt it later to our scenario.

Consider the Euclidean partition function for some matter CFT, with action Sm[Xi],
minimally-coupled to gravity, with a (bare) cosmological constant µ0

Z =
∫ DggDgXi

Vdiff
e−Sm[Xi]−µ0

∫
d2x
√
g . (2.3.1)

Since the matter sector is a CFT, the corresponding quantum effective action should
yield the Weyl anomaly

Tm = cm
24π Rg , (2.3.2)

where cm is the matter central charge. As explained in §1.1.3, in two dimensions
the Weyl anomaly can be integrated to give the effective action. To perform this
integration, we first go to conformally flat gauge, where the anomaly equation reads

− δSef
δΣg

= cm
24π

(
−2∇2

δ Σg

)
. (2.3.3)

This integration can be readily performed, the details can be found in appendix §C,
and yields the Euclidean Polyakov action

Sef [g] = − cm
96π

∫ √
g Rg

1
�
Rg . (2.3.4)

5To perform a Wick rotation in curved spacetime, it is convenient to regard Euclidean space and
Lorentzian spacetime as different real slices of a complexified spacetime. Wick rotation is then a
complex coordinate transformation t = −itE under which all tensors transform as usual. In Lorentzian
spacetime, the path integral measure is eiI and the spacetime measure is

√
−h. In Euclidean space the

path integral measure is e−S and the spacetime measure is
√
hE . Using the fact that

√
−hE = −i

√
hE ,

we obtain I → −S with all tensors the same except
√
−h replaced by

√
hE .



2.3. Liouville Gravity 31

The total matter effective action using the background field method is then

Sef,m[Xi, g] = Sm[Xi] + cm
24 SPol[g] , (2.3.5)

where we have named
SPol[g] = − 1

4π

∫ √
g Rg

1
�
Rg . (2.3.6)

Just as in (2.1.33), under a Weyl transformation gµν = e2Ωhµν , the Euclidean Polyakov
action transforms as

1
4 SPol[g] = 1

4 SPol[h]− 1
4π

∫
d2x
√
h
(
(∇Ω)2 +Rh Ω

)
. (2.3.7)

As mentioned in §1.1.3, the anomaly (2.3.2) comes from the lack of Weyl invariance
of the path integral measure due to its metric dependence. Indeed, the measure of a
scalar field is defined through the unit normalization of the Gaussian integral∫

DgδXi e−‖δX
i‖2g = 1 , (2.3.8)

where the norm in the exponent is defined through the inner product

‖δXi‖2g= (δXi, δXi)g :=
∫
d2y
√
g δXiδXi , (2.3.9)

which clearly depends on the metric of the background. With the norm so defined,
the measure DgXi is invariant under diffeomorphisms and field translations Xi →
Xi + f i(x). This last property is the infinite-dimensional analog of the invariance of
the integration measure under translation by a constant dx = d(x + a), and it’s very
useful in perturbative field theory, in order to shift the integration variable. However,
the measure is not Weyl invariant. From the above transformation of the effective
action follows that the Weyl transformation of the measure is [36]

DgXi = e−
cm
6 S̃TL[Ω,h]DhXi , (2.3.10)

where we have defined

S̃TL[Ω, h] = 1
4π

∫
d2x
√
h
(
−(∇Ω)2 −Rh Ω

)
. (2.3.11)

We can now tackle the integral Dggµν over the gravitational field. This is an integral
for each of the components of the metric, and the measure is normalized so as to satisfy∫

Dgδg e−
1
2‖δg‖

2
g = 1 , (2.3.12)

where the norm is defined by

‖δg‖2g= (δg, δg)g :=
∫
d2y
√
g (gµρgνσ + c gµνgρσ)δgµνδgρσ . (2.3.13)

c is an arbitrary constant whose exact value does not affect the final measures, and
whose only requirement is c > −1

2 so that the inner product is positive-defined. This
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inner product has the convenient property that the trace and traceless parts of the
metric fluctuation are orthogonal. Indeed, let’s decompose the metric fluctuation as

δgµν = δg⊥µν + 2δΩ gµν , (2.3.14)

where the traceless part satisfies gµνδg⊥µν = 0. It follows then that

‖δg‖2g= ‖δg⊥‖2g + 8 (1 + 2 c)‖δΩ‖2g , (2.3.15)

where the inner product for the traceless part is the same as the above for δgµν , and
that of the Ω field is the same as (2.3.9) for a scalar field. This implies that we can
factorize the corresponding measures as6

Dgδgµν = DgδΩ Dgδg⊥µν . (2.3.16)

Further, since the variation of the traceless sector due to diffeomorphisms is

δg⊥µν = −∇µξν −∇νξµ + gµν ∇σξσ , (2.3.17)

the measure can be written in terms of the integral over the diffeomorphism vector

Dgδg⊥µν = det
(
∂ δg⊥µν
∂ ξσ

)
Dgξµ = ∆FP (g)Dgξµ , (2.3.18)

where ∆FP is the familiar Faddeev-Popov determinant, which can be written in terms
of the ghost fields (b, c) as

∆FP (g) =
∫
Dg(b, c) e−Sbc[b,c] , (2.3.19)

with D(b, c) ≡ DbDcDb̄Dc̄ and

Sbc[b, c] =
∫
d2z
√
g
(
b∇̄c+ b̄∇c̄

)
. (2.3.20)

The ghost action is Weyl invariant, but the measure is not, transforming analogously
to the scalar fields measure as [36]

Dg(b, c) = e−
cbc
6 S̃TL[Ω,h]Dh(b, c) , (2.3.21)

with the ghost sector central charge being cbc = −26.
Back to the partition function, the integral Dgξµ cancels the volume of the gauge

group in the denominator and gauges out the diffeomorphisms by fixing completely
the transversal metric g⊥µν .7 For later convenience, we will name the latter hµν , so that
the gauge-fixed metric reads gµν = e2Ωhµν . Using the Weyl transformation properties
of the matter and ghost measures we are left with

Z =
∫
DgΩDh(b, c)DhXi e−

cm−26
6 S̃TL[Ω,h] e−Sm[Xi]−Sbc[b,c]−µ0

∫
d2x
√
h e2Ω

. (2.3.22)

6We ignore the integral over the moduli because of its irrelevance in our discussion.
7Notice that when assuming the split of the metric into a trace and a traceless components, we

have implicitly assumed a conformal gauge, so we have fixed Weyl invariance. This gauge fixing needs
not be accounted for in the path integral volume since its Jacobian is trivial.
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In the critical strings scenario, cm = 26, corresponding to a 26-dimensional target
space where the string is moving. Further, µ0 = 0, allowing physical Weyl invariance
as part of the gauge group. In the above partition function then, the dependence of
the integrand on Ω drops out, and the integral over the conformal factor cancels the
volume of the Weyl group with which the measure should be divided. This decoupling
of the conformal factor is the consequence of the c-anomaly cancellation

cm + cbc = 0 , (2.3.23)

required because physical Weyl invariance is gauge. Away from criticality, the integral
over the conformal factor becomes more involved. Not only because of the presence of
the interacting cosmological constant term, but more importantly because the measure
of the conformal factor is not Gaussian. Indeed, as it follows from (2.3.15), the latter
is

‖δΩ‖2g=
∫
d2x
√
g (δΩ)2 =

∫
d2x
√
h e2Ω (δΩ)2 . (2.3.24)

This measure is diffeomorphism invariant, but the factor e2Ω clearly spoils shift invari-
ance in field space, which in this case means physical Weyl invariance. Instead, the
Gaussian measure DhΩ defined with the norm

‖δΩ‖2h=
∫
d2x
√
h (δΩ)2 , (2.3.25)

is translationally invariant, and therefore invariant under a physical Weyl transforma-
tion, which leaves the fiducial metric hµν unchanged.

It follows from this observation that the Jacobian of the measure DgΩ needs not be
the same as that for the free-field measures above (2.3.10) and (2.3.21). However, it was
shown [12, 13] that the Jacobian between the two measures has the same form as the
above ones, but with ‘renormalized’ coefficients. I.e. that the non-Gaussian measure
can be replaced by the Gaussian one at the expense of introducing additional local
terms in the Lagrangian density, of the same functional form as the ones already present
in the ‘bare’ action, which effectively behave as counterterms and hence renormalize
the accompanying coefficients. This was the original DDK guess, from Distler and
Kawai [13], and David independently [12]. It was developed further in [62, 123], and
was partially proven later perturbatively by explicit heat kernel computation in [124].

To see how this works concretely, we follow DDK in their assumption that the
total effective action has to be local, covariant and Weyl invariant, from which they
guessed that the action has to be of the same functional form as the above S̃TL with
the cosmological constant term, i.e.

Z =
∫
DhΩDh(b, c)DhXi e−

1
4π

∫
d2x
√
h (a(∇Ω)2+dRh Ω+µ e2bΩ) e−Sm[Xi]−Sbc[b,c] ,

(2.3.26)
with coefficients to be determined by imposing the invariances just mentioned. Local-
ity and covariance are manifest and do not constraint the coefficients. Weyl invariance,
on the other hand, requires that the path integral is invariant under a Weyl transfor-
mation8

hµν → e2σ(x) hµν Ω→ Ω− σ(x) . (2.3.27)
8Notice that Weyl invariance had already been fixed in assuming the conformal gauge. However,
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The coefficients then have to be such that this invariance is preserved. Under this
transformation, the measure DhΩ defined with the norm (2.3.25) transforms as the
other Gaussian measures, since its invariant under the Ω field translation, and the
transformation of the fiducial is like a physical Weyl transformation

De2σhΩ = e−
1
6 S̃TL[σ,h]DhΩ , (2.3.28)

where the effective central charge is 1, counting the conformal factor as a free scalar.
Using this Weyl transformation and those of the scalar and ghost measures (2.3.10)
and (2.3.21), invariance of the partition function under the above reparametrization
requires the first two coefficients to be

a = d = 25− cm
6 ≡ Q2. (2.3.29)

Comparing with the Jacobian of the matter and ghosts part (2.3.22), we conclude that
the coefficient in front of the effective action becomes renormalized with an added +1,
from cm−26 to cm−25. The factor of 1 shows that the contribution from the conformal
factor to the central charge is that of a quantum scalar. To get a canonically-normalized
action, we can rescale the field by doing

ϕ(x) := QΩ(x) . (2.3.30)

The effective classical action for the rescaled conformal factor then becomes

S = 1
4π

∫
d2x
√
h
(
(∇ϕ)2 +QRh ϕ+ 4πµ e2bϕ

)
, (2.3.31)

where we have renamed the parameter in the exponential b/Q → b. This is exactly
the Liouville action, the spacelike (2.2.8) or the timelike one (2.2.7) depending on the
reality of Q. Since the central charge of this theory is cL = 1 + 6Q2, and from (2.3.29)
follows that cm = 25− 6Q2, then

cm + cbc + cL = 0 , (2.3.32)

which ensures Weyl invariance at the quantum level.
Finally, the parameter b is determined in terms of Q by demanding the exponen-

tial operator to have conformal dimension (1, 1) on flat space, which guarantees its
invariance in the action. Classically, we argued this leads to the relation b = 1/Q. The
anomalous dimension of a vertex operator is easily calculated on a flat background,
and gives

γ = γ̄ = −b2 . (2.3.33)

Taking into account the classical transformation of ϕ under the Weyl transformation
ϕ→ ϕ−Qξ, then Weyl invariance leads to the well-known Liouville relation b(Q−b) =

as the metric gµν is invariant under a Weyl transformation, so has to be the path integral. Hence it
cannot depend on the gauge parameter, i.e. on the fiducial metric chosen. So even once gauge fixed,
we can write it in any other conformal gauge. This is why we chose to notation g = e2Ωh for the
gauge-fixed metric.
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1, from which the classical b = 1/Q gets corrected with negative odd powers of Q. We
will come back to this computation and discuss it in detail in the next chapters.

The derivation just reviewed, where no classical gravitational action is included in
the path integral, does not determine which of the two regimes, spacelike or timelike,
is the one for the Liouville sector. However, the known classical timelike nature of
the conformal factor forces the choice of the timelike regime. Therefore in the above
results, the analytic continuation (2.2.2) to the timelike Liouville variables q and χ(x)
has to be performed. In that case, Q becomes purely imaginary and cm = 25 + 6q2.
It is worth mentioning though, that a lot of the literature on this topic considers
the opposite regime, the one with little matter cm < 25 and spacelike gravity. One
of the reasons behind this choice is that, from a historical perspective, the spacelike
theory is and has been much better understood for a long time. However, notice that
if the spacelike regime were chosen for gravity, then cm would become very negative
in the semiclassical limit, hence requiring non-unitary matter. Also in that case, the
Einstein constraint (2.1.17) would acquire a relative minus sign, which would not
reproduce our conventional correlation of having positive curvature when having a
positive cosmological constant. We will henceforth assume the timelike regime for
gravity.

Through the above derivation, the matter central charge becomes dependent on the
gravitational constant q2. In the semiclassical limit, cL → −∞ and cm → +∞. It is
hard to explain why this limit, which makes gravity weakly coupled, would require such
a great amount of matter. In the next section we show how cm becomes q-independent
by introducing the Einstein-Hilbert term in the partition function, and even more,
how the amount of conformal matter can be arbitrarily chosen while still preserving
anomaly cancellation.

2.4 Gravitational Path Integral

The above derivation regards the gravitational action as classically trivial, and hence
does not include it in the path integral. However, our point of view is that the limit
to two dimensions that allows for a non-trivial constraint, does so by retaining a finite
Einstein-Hilbert term in the action. We therefore consider the Euclidean gravitational
path integral

Z =
∫ DggDgXi

Vdiff
e−SG[g] e−Sm[Xi] , (2.4.1)

where we introduce the Euclidean gravitational action with a bare cosmological con-
stant

SG[g] = − q
2

4π

∫
d2x
√
g

( 1
4Rg

1
�
Rg −

4πµ0
q2

)
. (2.4.2)

Taking into account the variation of the above action and the transformation of all the
integral measures, the analogous of the DDK proposal for the effective action is

Z =
∫
DhΩDh(b, c)DhXi e

q2
16π

∫ √
hRh

1
�Rh e−

1
4π

∫
d2x
√
h (a(∇Ω)2+dRh Ω+µ e2bΩ) e−Sm−Sbc .

(2.4.3)
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In our treatment, q is defined a priori from the rescaling of Newton’s constant (2.1.2).
Invariance of the above path integral under fiducial Weyl transformations (2.3.27)
requires now

a = d = 25− cm − 6q2

6 . (2.4.4)

As in the usual treatment, the Jacobian of the conformal factor measure renormalizes
the central charges by adding a factor of 1. Further in this case, the presence of the
classical Einstein-Hilbert action shifts them with the factor −6q2. Analogously to
the derivation above, we demand the coefficient in front of the effective action to be
−q2/4π, so that the effective Liouville action has central charge cL = 1−6q2. Anomaly
cancellation is then satisfied with

cm = 25 , cG = 1 . (2.4.5)

The central charge of the gravitational sector being cG = 1 (and not 1 − 6q2) be-
comes thus a consequence of retaining the Einstein-Hilbert term in the classical action
(2.1.35), since only then is the action invariant under Weyl transformations.

This makes cm independent of the parameter q. This parametrization of the cen-
tral charges is more sensible when the parameter q is interpreted as the gravitational
coupling constant, since the amount of matter should not depend on the latter. The
semiclassical limit corresponds to large q, independent of cm. This is more natural
from the point of view of the continuation to d dimensions.

Assuming anomaly cancellation, the resulting partition function is

Z = Zm[h]Zbc[h] e
q2
16π

∫ √
hRh

1
�Rh

∫
DhΩ e

q2
4π

∫
dx

(
(∇Ω)2+Rh Ω− 4πµ

q2
e2βΩ

)
, (2.4.6)

where again dx = d2x
√
h. We can factorize the matter and ghost partitions functions

because they no longer depend on the conformal factor. We can factorize also the
purely background piece, since diffeomorphisms have been integrated out. We can
now integrate the conformal factor. The classical effective action in the exponent is
(proportional to) timelike Liouville. The exponential interaction from the cosmological
term makes this path integral highly non-trivial. However, it turns out [12–17] that
simple normal ordering already removes all the ultraviolet divergences of the theory.
In other words, the cosmological constant operator can be renormalized in the much
simpler theory of a free boson. This remarkable feature of Liouville theory is going to
be key in our computation of the gravitational dressing of the cosmological constant.
At this point, we just use it to be able to drop the exponential interaction from the
path integral and perform the Gaussian integral, since it tells us that the cosmological
operator will renormalize independently, and can therefore be added to the effective
action resulting from the Gaussian integration.

To obtain the 1PI effective action, we use the background field method. For this,
we decompose the field into a background component and a quantum fluctuation Ω̂;
in the classical action we then do the replacement Ω → Ω + Ω̂. The integral of the
conformal factor becomes

ZΩ[Ω, h] =
∫
DhΩ̂ e

q2
4π

∫
dx ((∇Ω)2+Rh Ω) e

q2
4π

∫
dx ((∇Ω̂)2+Rh Ω̂+2∇Ω∇Ω̂) . (2.4.7)
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Further, we choose the background such that Rh Ω̂ + 2∇Ω∇Ω̂ = 0, i.e. so that the
terms linear in the quantum perturbation, namely the tadpoles, cancel. The integral
then becomes a homogeneous Gaussian, which results into

ZΩ[Ω, h] = e
q2
4π

∫
dx ((∇Ω)2+Rh Ω)√
det

(
−∇2

h

) = e
1

96π

∫ √
hRh

1
�Rh e

q2
4π

∫
dx ((∇Ω)2+Rh Ω) , (2.4.8)

where the determinant of the Laplacian exponentiates to the Polyakov action as shown
in the previous section. From the above we conclude that the quantum effective action
for the conformal factor of the metric is

Sef,Ω[Ω, h] = − 1
96π

∫ √
hRh

1
�
Rh −

q2

4π

∫
dx
(
(∇Ω)2 + Rh Ω

)
. (2.4.9)

Adding the Einstein-Hilbert piece, the gravitational quantum effective action is

Sef,K [Ω, h] = −1 + 6q2

96π

∫ √
hRh

1
�
Rh −

q2

4π

∫
dx
(
(∇Ω)2 + Rh Ω

)
. (2.4.10)

The total partition function finally is the product of the three sectors involved

Z = Zm[Xi, h]Zbc[b, c, h]ZK [Ω, h] , (2.4.11)

where the gravitational partition function is

ZK [Ω, h] = e−Sef,K [Ω,h] . (2.4.12)

This derivation makes clear that the Liouville action, which already appears classically,
is also the quantum effective action for the conformal factor of the metric, up to the
renormalization of the cosmological constant operator that we will compute in the next
chapter.

We now check explicitly the central charges of the effective actions by computing
the trace of the resulting quantum momentum tensors. The momentum tensor for the
conformal factor follows from doing the variation of the action Sef,Ω with respect to
the metric hµν . The variation of the Ω-dependent terms gives

TΩ,clas
µν (Ω, h) = − q

2

2π

(
∇µΩ∇νΩ− 1

2hµν (∇Ω)2 −
(
∇µ∇ν − hµν ∇2

h

)
Ω
)
, (2.4.13)

which is exactly the classical momentum tensor TΩ
µν (2.1.14). The quantum correction

to this momentum tensor comes from the Polyakov term that the quantum action
acquires through the renormalization of Ω. We postpone the full variation of the
Polyakov action to section §3.4. For now we are just interested in its trace, which from
the integrated trace anomaly (2.3.4) we know is

T = 1
24π Rh . (2.4.14)
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The trace of the momentum tensor for the conformal factor, after use of the equation
of motion 2∇2

hΩ = Rh, is

TΩ = 1− 6q2

24π Rh . (2.4.15)

which confirms that the central charge is that of timelike Liouville theory cΩ = cL =
1 − 6q2. The variation of the Einstein-Hilbert piece, will further contribute with a
factor

T = 6q2

24π Rh , (2.4.16)

so that the trace of the total gravitational quantum momentum tensor is

TK = 1
24π Rh , (2.4.17)

which shows that the central charge of the gravitational sector is cG = 1 as advocated
previously. The trace of the total momentum tensor is

T = Tm + T bc + TK = cm − 26 + 1
24π Rh , (2.4.18)

confirming that cm = 25 indeed cancels the anomaly.
Since the action and the partition function are gauge invariant, we can go to the

physical gauge Ω = 0 and hµν = gµν , and we find

Sef,K [g] = −1 + 6q2

96π

∫ √
g Rg

1
�
Rg . (2.4.19)

Comparing this quantum effective action to its classical predecessor (2.4.2), it seems
that the classical gravitational coupling constant 6q2 gets shifted by a unit factor.
However, one has to take into account that the matter and ghost sectors also contribute
to the renormalization of the gravitational coupling through the anomaly, i.e. their
effective actions also contain a purely gravitational Polyakov term9

Z = Zm[g]Zbc[g] e
1+6q2

96π

∫ √
g Rg

1
�Rg = Zm[δ]Zbc[δ] e

q2
16π

∫ √
g Rg

1
�Rg . (2.4.21)

where Zm[δ] and Zbc[δ] depend only on the matter and ghost background fields. The
total gravitational effective action is then the same as the classical one

Sef,K [g] = − q2

16π

∫ √
g Rg

1
�
Rg . (2.4.22)

To complete the discussion, we can compute the trace of the total momentum tensor
in the gµν metric. Since Zm[δ] and Zbc[δ] only depend on the background fields, they
lead to traceless momentum tensors, and we get

T = TK = 6q2

24π Rg . (2.4.23)

9Alternatively, if we fix the conformally flat gauge Ω = Σg and hµν = δµν , we can confirm that we
get the same result

Z = Zm[δ]Zbc[δ] e
q2
4π

∫ √
δ (∇Ω)2

= Zm[δ]Zbc[δ] e
q2

16π

∫ √
g Rg

1
�
Rg . (2.4.20)
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This is not tracless because the theory does not satisfy physical Weyl invariance, and
it needs not to. This is actually not an anomaly, it simply reflects the variation of the
classical gravitational action.

2.4.1 Arbitrary Central Charges
The above derivation allowed to disentangle the amount of matter cm from the gravita-
tional coupling constant q2, so that the semiclassical limit does not require an infinite
amount of it. However, it seems to force cm = 25. Can we conclude that the amount
of matter can generally be predicted from Weyl anomaly cancellation? The answer is
no, and this is due to the arbitrariness of the gravitational constant.

Going back to the DDK-inspired classical effective action for the conformal factor
(2.4.3), Weyl invariance of the partition function imposes the coefficients of the effective
action to satisfy the relation (2.4.4). Instead of choosing to fix the coefficients a = d
to −q2/4π, as we did to make contact with the classical action and with what is done
in the original derivation, we can choose to rename these coefficients with an arbitrary
new coupling constant q̃2, such that

a = d = 25− cm − 6q2

6 ≡ −q̃2 , (2.4.24)

assuming as well though, that q̃2 > 0 so that the action lands up in the timelike
regime. In this case, the effective action for the conformal factor has a central charge
cL = 1 − 6q̃2, and the total gravitational sector after addition of the Einstein-Hilbert
term cG = 1 + 6q2 − 6q̃2, coming from the gravitational effective action

Sef,K [Ω, h] = −1 + 6q2

96π

∫ √
hRh

1
�
Rh −

q̃2

4π

∫ √
h
(
(∇Ω)2 + Rh Ω

)
. (2.4.25)

From the above relation (2.4.24) follows that cm = 25 − 6q2 + 6q̃2, and again Weyl
anomaly is canceled as cm+cbc+cG = 0. Adding the matter and ghost effective actions
to the above Sef,K , with coefficient cm + cbc = −1− 6q2 + 6q̃2 leads then to the same
total effective action as before (2.4.22) but with the new gravitational coupling

Sef,K [g] = − q̃2

16π

∫ √
g Rg

1
�
Rg . (2.4.26)

Since the gravitational constant is the dimensionless parameter, its name is arbitrary,
and the above shift has no effect. This ambiguity is the one that allows to have an
arbitrary amount of matter, since now cm depends on two tunable constants q and q̃.
We can then take the semiclassical limit q̃2 →∞, while keeping the difference q2− q̃2,
and therefore cm, fixed to an arbitrary finite value.
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Chapter 3
Quantum Momentum Tensor from
the Anomalous Cosmological Constant

We turn now to the renormalization of the cosmological constant operator, which we
temporarily dropped in the last sections to show how the Liouville action was the
quantum effective one for the conformal factor of the metric. We now incorporate it
back. The aim of this chapter is to compute its gravitational dressing in the effective
action and the resulting momentum tensor.

3.1 Renormalization of the Cosmological Constant Operator

The cosmological constant operator e2βχ is a composite operator and must be renor-
malized in the quantum theory. It is most convenient to carry out this renormalization
in spacelike Liouville theory in Euclidean space. The analytic continuation of these
results to timelike Liouville and its Lorentzian interpretation will be discussed later.

The Liouville action contains the non-polynomial exponential interaction. The cos-
mological constant operator should in principle be regularized in the interacting theory
defined by this action. However, as already mentioned in §2.4, it is well known [12–17]
that normal ordering removes all short-distance divergences of the theory. In other
words, the anomalous dimension of the cosmological constant operator in the fully
interacting theory is the same as for a much simpler theory of a free boson. Ul-
timately, this claim is justified by exact results obtained using the conformal boot-
strap [58, 121, 125–127] and agrees with the KPZ critical exponents (from Knizhnik,
Polyakov and Zamolodchikov) [128] computed using matrix models [129–131], light-
cone quantization [122], and canonical quantization [132–135]. Therefore, we can per-
form the renormalization of the cosmological constant operator in the free theory.

Anomalous dimensions of exponentials of free fields have been studied extensively
in string theory and two-dimensional quantum gravity [36]. By the state-operator
correspondence, such exponentials correspond to momentum eigenstates. To obtain the
anomalous dimension, it is usually adequate to perform renormalization in flat space
by normal ordering [136,137]. However, we are interested here in all three components
of the quantum momentum tensor given by metric variation of the quantum effective
action. We thus require the metric dependence of the renormalized operator for an

41
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arbitrary curved metric.
Renormalization of the cosmological constant operator in curved spacetime has

been well studied in the literature [36,136,138–140]. Since it is of crucial importance for
our conclusions, we present below a somewhat lengthy derivation taking into account
some of the subtleties both in the UV and in the IR. New conceptual questions of
interpretation arise in continuing the Euclidean computations to Lorentzian spacetime
which we discuss in section §3.2. We then write down the quantum effective action for
this renormalized term, compute the quantum momentum tensor and check explicitly
that the Ward identities are satisfied.1

Consider the correlation function of exponentials in a free theory in a curved back-
ground

A0(x1, . . . , xn) := 〈
n∏
i=1

e2aiϕ(xi)〉 =
∫
Dϕe−S[ϕ,h]

n∏
i=1

e2aiϕ(xi) =
∫
Dϕe−S[ϕ,h]+

∫
d2x
√
hJ(x)ϕ(x) .

(3.1.1)
The superscript ‘0’ is a reminder that this is a bare correlation function with the action

S[ϕ, h] = 1
4π

∫
d2x
√
h |∇ϕ|2 , and J(x) = 2

n∑
i=1

ai δ
(2)(x, xi). (3.1.2)

We have set Q = 0 in (2.2.8) so that the Liouville field is neutral under (2.2.4). While
the classical dimension depends on Q, the anomalous dimension of our interest is
independent of Q. Using Wick’s theorem one obtains

A0(x1, . . . , xn) = exp

4π
∑
i,j

aiaj Gh(xi, xj)

 (3.1.3)

where Gh is the scalar Green function2

−∇2
hGh(x, y) = δ

(2)
h (x, y) = δ(2)(x− y)√

h
. (3.1.4)

In general, the Green function for an arbitrary metric hµν is hard to compute. However,
in two dimensions, ∇2

h = e−2Σh∇2
δ , and hence the (non-compact) Green equation is

Weyl invariant. In the conformally flat gauge then, the Green function is given by the
flat space Green function. The latter is known to be infrared divergent.3 To regulate
this divergence, consider the class of asymptotically flat metrics so that Σh(x)→ 0 as
|x|→ ∞. Introduce an IR cutoff by restricting R2 to a disk in the flat metric

|x|2:= δµνx
µxν ≤ R2 := 1/m2 (3.1.5)

and impose Dirichlet boundary conditions at |x|= R. The resulting Green function is

Gh(x, y) = Gδ(x, y) = − 1
4π ln (m2|x− y|2) for x 6= y , (3.1.6)

1In section §3.6 we reverse the logic and compute the stress tensor from the anomalous trace using
the Ward identities.

2We define the Laplacian as −∇2
h so that it is a positive operator.

3On a compact manifold there is no need for an IR regulator but the Laplacian has a zero mode
which has to be treated carefully [138,140].
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where we have ignored the contribution from image charges which are negligible in the
limit R → ∞. The boundary condition and the Green equation are both invariant
under Weyl transformations that asymptote to unity for |x|→ ∞. For all metrics
related by such Weyl transformations, the Green function is the same as above. The
Green function is invariant also under constant Weyl transformations if we scale the
IR cut-off at the same time.

Naively, the Weyl invariance of the Green function implies that the IR-regulated
n-point function is Weyl invariant. But on general grounds, one expects that regular-
ization of UV divergences will introduce a dependence on the metric that can violate
the Weyl symmetry. To compute this anomalous Weyl variation, we rewrite the n-point
function as

A0(x1, . . . , xn) =
∏
i

e4πa2
i G

0
h(xi,xi) · exp

4π
∑
i6=j

aiaj Gh(xi, xj)

 . (3.1.7)

As it stands, this is only a formal expression that is not well defined. The pre-factor
is a product over exponentials of Green functions evaluated at the same points, which
are divergent. We have therefore added a superscript to underscore the fact that the
coincident Green functions are bare quantities. The origin of the UV divergence is clear
from (3.1.7): each exponential is a composite operator involving products of the fun-
damental scalar field with divergent self-contractions. This is shown diagrammatically
in Fig.3.1 for a two-point function.

∑
n

(4πa2)n

n!
xb

n

〈e2aϕ(x1)e−2aϕ(x2)〉 = ∑
l,m,n x1 x2

bn b

m

l

= e4πa
2 G(x,x)

Figure 3.1: The red daisies at each point come from self-contractions. Each petal of a
daisy is a coincident Green function and the sum over these daisies gives a divergent
exponential.

To regulate this divergence we rewrite the coincident Green function as

Gεh(x, x) =
∫
d2y
√
h δ

(2)
h (x, y)Gh(y, x) =

∫
d2y
√
hKh(x, y; ε)Gh(y, x) , (3.1.8)

where we have replaced the delta function by the heat kernel with a short time cutoff4

ε since
Kh(x, y; ε)→ δ

(2)
h (x, y) as ε→ 0 . (3.1.9)

4We use ε for the short-time cutoff and ε for the dimensional regulator.
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The short-time expansion of the heat kernel can be obtained using standard methods in
terms of Seeley-de Witt coefficients. The computations are simpler in the conformally
flat gauge. The leading behavior is given by

Kh(x, y; ε) = 1
4πεexp

[
e2Σh(x)|x− y|2

4ε

]
(1 + . . .) . (3.1.10)

The regularization separates the two points by a distance of order
√
ε. Using this

expansion one obtains

Gεh(x, x) = 1
2πΣh(x)− 1

4π ln(4 e−γm2ε) , (3.1.11)

where γ is the Euler-Mascheroni constant. More details and an alternative derivation
in dimensional regularization are given in appendix §D.

Using the expression for the conformal factor in terms of the full metric (2.1.30),
the manifestly coordinate-invariant and regularized coincident Green function is then

Gεh(x, x) = 1
4π

∫
d2y
√
hGh(x, y)Rh(y)− 1

4π ln(4 e−γm2 ε) . (3.1.12)

Renormalization now consists in simply adding ln(4 e−γM2 ε)/4π so the divergent term
with ε is removed. Since ε is a pure number5 independent of coordinates and the
metric, this procedure is manifestly coordinate invariant and local. Renormalization
has introduced an arbitrary scale M . The renormalized coincident Green function is
then given by

Gh(x, x) = 1
4π

∫
d2y
√
hGh(x, y)Rh(y) + 1

4π ln(M
2

m2 ) (3.1.13)

which however is not a local functional of the metric,6 the non-locality being introduced
by the conformal factor of the metric. The renormalized n-point function can now be
obtained simply by replacing the bare coincident Green function G0

h(x, x) in (3.1.7) by
the renormalized coincident Green function (3.1.13). The resulting answer is finite and
independent of ε, but one which depends on the renormalization scale. It corresponds
to a multiplicative renormalization of each of the bare exponentials

[e2aϕ(x)]εh := e−a
2 ln (4 e−γM2ε)[e2aϕ(x)]h := Za(M) [e2aϕ(x)]h (3.1.14)

where the notation [O]εh indicates an operator O regularized using the metric h and
cutoff ε, whereas [O]h without superscript indicates the renormalized version of the
same operator. We have defined the multiplicative operator renormalization Za(M) to
make contact with the usual flat-space renormalization. Even though this procedure is
manifestly local and coordinate invariant, it is not Weyl invariant because it depends on

5It is convenient to regard all quantities including spacetime coordinates and mass scales like m as
dimensionless, measured in units of the fundamental UV scale M0 introduced earlier, which we can
set to one.

6The non-locality of the conformal factor, and so of models that depend on it, was emphasized
earlier in [141].



3.1. Renormalization of the Cosmological Constant Operator 45

the background metric. With this renormalization prescription, the n-point function
renormalized using the h metric is given by

Ah(x1, . . . , xn) = m−2 (
∑

i
ai)2 ∏

i

(MeΣh(xi))2a2
i exp

−∑
i6=j

aiaj ln|xi − xj |2
 .(3.1.15)

The first factor simply imposes momentum conservation: the correlation function van-
ishes unless the total momentum is zero.7 This is to be expected because momentum
is the charge corresponding to a continuous global symmetry ϕ→ ϕ+ c which cannot
be spontaneously broken in two dimensions by the Coleman-Mermin-Wagner theorem.
Imposing momentum conservation, the final expression for the renormalized n-point
function is given by

Ah(x1, . . . , xn) =
∏
i

e2a2
iΣh(xi)

∏
i6=j

1
(M |xi − xj |)2aiaj . (3.1.16)

For Σh(x) = − lnM , we obtain the familiar answer from flat space conformal field
theory.

The n-point correlators renormalized in two different metrics are related by

Ah′(x1, . . . , xn) =
∏
i

e2a2
i (Σh′ (xi)−Σh(xi))Ah(x1, . . . , xn) . (3.1.17)

This follows from (3.1.16) and the fact that the non-coincident Green function given by
(3.1.6) is independent of the metric. Interpreting the correlation function in operator
language, we conclude that the exponential operator renormalized using the metric h′
is related to the one renormalized using the metric h by

[e2aϕ̂(x)]h′ = e2a2(Σh′ (x)−Σh(x)) [e2aϕ̂(x)]h (3.1.18)

where the hatted variable denotes a quantum operator rather than a classical field.
The cosmological constant operator in Liouville theory corresponds to a = b. The

Weyl transformation of the renormalized cosmological constant operator has an anoma-
lous contribution from (3.1.18) as computed above because of the implicit dependence
on the metric through renormalization. In addition, for nonzero Q, there is also a
classical contribution because of the explicit dependence on ϕ which transforms as in
(2.2.4). The net Weyl transformation is

[e2bϕ̂(x)]h → e−(2bQ−2b2) ξ(x) [e2bϕ̂(x)]h . (3.1.19)

We interpret 2bQ as the classical Weyl weight and −2b2 as the anomalous Weyl weight.
7Operators with positive Weyl weight are defined only for ai = iki for real ki. They correspond

to normalizable charge eigenstates in the Hilbert space. The prefactor is then a positive power of m
which vanishes as m → 0. For operators with negative weight the correlation functions diverge at
large separation. The corresponding states are not normalizable and have to be interpreted using an
analog of the Gelfand triple [58].
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3.2 Lorentzian Interpretation
At a formal level, analytic continuation to timelike Liouville in Lorentzian spacetime
is straightforward using (2.2.2) and a Wick rotation. We will use the same covariant
expression for Σh

Σh(x) = 1
2

∫
d2y
√
−hGh(x, y)Rh(y) (3.2.1)

where the Green function8 is the solution of the Lorentzian Green equation without
any i

−∇2Gh(x, y) = δ
(2)
h (x, y) = δ(2)(x− y)√

−h
. (3.2.2)

Physical interpretation in the Lorentzian signature is subtle. We discuss below
some of the puzzles that one encounters in interpreting the Lorentzian action and
their resolutions.

• Choice of the Green function: The Lorentzian Green function appearing in the
expression (3.2.1) for the Σh depends on the choice of the boundary condition.
The Euclidean Green function in chapter §3 is unique and usually it would con-
tinue to the Feynman propagator under a Wick rotation. However, one could
equally well choose retarded or advanced boundary conditions, which would lead
to very different physics. Which of these Green functions is physically relevant?
We are eventually interested in using the quantum effective action to study clas-
sical evolution equations. Appearance of Feynman propagators in the effective
action would lead to non-causal dynamics because it would involve negative en-
ergy modes traveling backward in time. Such an effective action would be un-
physical. However, in time-dependent situations as in cosmology, the in-vacuum
and the out-vacuum are in general different. A natural object to consider is not
the usual in-out effective action, but the in-in effective action in the Schwinger-
Keldysh formalism [142,143]. It is known that one can obtain the in-in effective
action from the in-out one by replacing Feynman propagators by retarded Green
functions [30, 144–146].

• Choice of the vacuum: In canonical formalism in the Lorentzian theory, the choice
of the metric used for renormalization corresponds to the choice of the vacuum,
as we discuss below. We choose the Minkowski metric ηµν as a reference metric,
which corresponds to δµν under Euclidean continuation. Continuation of (3.1.18)
gives the following equation for the renormalized cosmological constant operator
in Lorentzian spacetime

[e2βχ̂(x)]h = e−2β2 Σh(x) [e2βχ̂(x)]η . (3.2.3)

As it stands, (3.2.3) is an operator equation with a quantum operator χ̂(x) in the
exponent. In the cosmological term in the quantum effective action, we would
like to regard χ(x) as a classical field. This is achieved using the background field
method by replacing χ̂(x) by χ(x) + χ̂q(x). The un-hatted variable is a classical

8A Wick rotation would give a factor of i for the measure and a factor of −i for the Green function.
In (3.2.1) and (3.2.2) we drop both factors.
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background field and the hatted variable is the fluctuating quantum field. For
the free action, χ̂q(x) is also a free field9. We then have the relation

[e2β (χ(x)+χ̂q(x))]h = e2βχ(x)−2β2 Σh(x) [e2βχ̂q(x)]η . (3.2.4)

The passage to the in-in effective action still requires a choice of the in-vacuum
to compute the in-in matrix element of this operator. Which state should one
choose as the in-vacuum? The choice of the vacuum is a deep and unresolved
question in cosmology since it concerns the initial state in which the universe
‘got prepared’. Even in a free theory, there are many possible Fock vacua that
are a priori equally valid as initial states. In general, the Fock vacuum depends
on the metric used to define the Klein-Gordon inner product. This inner product
is essential to obtain the division of the modes of the Klein-Gordon operator (on
a globally hyperbolic spacetime) into positive-frequency and negative-frequency
modes, and hence to determine the class of annihilation operators that should
annihilate the vacuum. A conventional choice is the ‘Bunch-Davies’ vacuum |η〉,
obtained using the Klein-Gordon inner product defined with respect to the flat
Minkowski metric η. This would coincide with the conformal or the adiabatic
vacuum [149].

In summary, a physically reasonable interpretation of the Lorentzian continuation re-
quires that we consider the in-in quantum effective action and hence use retarded
Green functions. The cosmological term can be regarded as the expectation value
in the η-vacuum of the operator renormalized using the hµν metric. We denote this
classical quantity by Oβh :

Oβh := 〈η|[e2β(χ(x)+χ̂q(x))]h|η〉 = e2βχ(x)−2β2 Σh(x)〈η|[e2βχ̂q(x)]η|η〉 = e2βχ(x)−2β2 Σh(x) ,
(3.2.5)

where in the second equality we have used the fact that, in the Hamiltonian formalism,
renormalization in the metric η corresponds to normal ordering with respect to the η-
vacuum, and hence the expectation value of the exponential equals one.

With these ingredients, the integrated renormalized cosmological term in the quan-
tum effective action takes the final form

ΓΛ[χ, h] = −µ
∫
d2x
√
−hOβh . (3.2.6)

The Weyl transformation of Oβh is given by

Oβh → e−(2βq+2β2) ξ(x)Oβh . (3.2.7)

Since the integration measure
√
−h has Weyl weight −2, quantum Weyl invariance of

the integrated cosmological term implies

2βq + 2β2 − 2 = 0 , (3.2.8)
9In the background field method one chooses an external source as a functional of the background

field in such a way as to cancel all tadpoles. See [147,148] for a concise summary.
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which is equivalent to

q = 1
β
− β , (3.2.9)

reproducing the well-known (timelike) Liouville relation between the background charge
and the coupling [12, 13]. In Liouville literature, 2β2 is sometimes referred to as the
‘anomalous gravitational dressing’ of the identity operator. Recall that classically,
Weyl invariance required that β = 1/q. We regard 1/q as the coupling constant and
interpret our results as quantum corrections to β so that Weyl invariance is maintained
at the quantum level

β = q

2

(
−1 +

√
1 + 4

q2

)
= 1
q
− 1
q3 + 2

q5 + . . . . (3.2.10)

3.3 Non-local Quantum Effective Action

With this interpretation, the cosmological term in Lorentzian spacetime in terms of Ω
becomes

ΓΛ[Ω, h] = −µ
∫
d2x
√
−h e2β qΩ e−2β2 Σh = −µ

∫
d2x
√
−h e2 Ω e−2β2 (Ω+Σh) .

(3.3.1)
The complete effective action for the conformal factor is then given by adding this
renormalized cosmological operator to the quantum effective action of the free Ω field
(2.4.9) (after continuation to Lorentzian signature)

ΓΩΛ[Ω, h] = 1
96π

∫
dxRh

1
�
Rh + q2

4π

∫
dx

(
|∇Ω|2+Rh Ω− 4πµ

q2 e2 Ω e−2β2 (Ω+Σh)
)
.

(3.3.2)
The effective action is non-local and one might worry about possible ghosts. In fact, in
the local formulation described in section §4.4, one of the auxiliary fields has a negative
kinetic term. Quantization of this degree of freedom would typically lead to a violation
of both causality and unitarity. The correct point of view is to regard the quantum
effective action as the result of having evaluated a path integral in the presence of a
classical background field. Thus, this effective action is not to be quantized further
but rather to be used to study the effective dynamics classically. After imposing
appropriate initial conditions, one expects a ghost-free causal evolution because the
original path integral is well defined.
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3.4 Quantum Momentum Tensor

The quantum momentum tensor associated with the effective action (3.3.1) is given
by10

TΛ
µν(x) = −2√

−h
δΓΛ

δhµν(x) (3.4.1)

= −µOβh(x)hµν − 4µβ2
∫
dyΣµν(x, y)Oβh(y) . (3.4.2)

The second term is the variation of the non-local term

Σµν(x, y) := 1√
−h

δΣh(y)
δhµν(x) = 1√

−h
δ

δhµν(x)
1
2

∫
dz Gyz Rh(z) (3.4.3)

where Gxy is a shorthand for Gh(x, y). Using the variation of the integrated Ricci
scalar (B.0.10), and the variation of the Green function computed in appendix §E.2,
we obtain

2Σµν(x, y) = −
(
∇µ∇ν − hµν∇2

)
Gxy −

∫
dz Rh(z)

(
∇(µGyx∇ν)Gxz −

1
2hµν ∇αGyx∇

αGxz

)
where all derivatives and unspecified arguments of fields such as hµν correspond to
the variable x, and we have used the fact that the Einstein tensor in two dimensions
vanishes. The final expression for the quantum momentum tensor can be written as

TΛ
µν(x) = −µ (1− β2)hµν Oβh(x) + 2µβ2 Sµν(x) (3.4.4)

where Sµν is non-local and traceless and given by

Sµν(x) =
∫
dy
[
∇µ∇ν −

1
2hµν ∇

2
]
GxyOβh(y) (3.4.5)

+
∫
dy dz

[
∇(µGyx∇ν)Gxz −

1
2hµν h

αβ∇αGyx∇β Gxz
]
Oβh(y)Rh(z) .

The trace of this tensor is
TΛ = −2µ (1− β2)Oβh . (3.4.6)

Comparing with the general form of the anomaly equation T = −βi(λi)Oi(Σg), with
βi(λi) = (∆i − d+ γi)λi, the β-function of the cosmological operator is11

βµ(β) = (−2 + 2β2)µ , (3.4.7)

confirming that the classical dimension (as any vertex operator) is zero and the anoma-
lous dimension is γ = 2β2. This highlights one of the peculiar features of Liouville
theory: its β-function does not vanish, hence it is a conformal field theory which is not
sitting on a fixed point. This is due to the linear transformation of the Liouville field,
very unusual for a conformal field, but very natural from the point of view gravity.

10In two dimensions, the momentum tensor obtained by varying the fiducial metric hµν for fixed Ω
is the same as the momentum tensor obtained by varying the physical metric gµν .

11Notice that our operator has the additional minus sign sitting in front of the action.
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Using the same variations as above, the momentum tensor for the Polyakov action
is given by

TPolµν = −2√
−h

δIPol
δ hµν

= − 1
π

(
R̂µν −

1
2hµν Rh(x)

)
≡ − 1

π
Êµν , (3.4.8)

where again R̂µν is a non-local and traceless tensor given by

R̂µν(x) = −
∫
dy

[
∇µ∇ν −

1
2hµν∇

2
]
Gxy Rh(y) (3.4.9)

−1
2

∫
dy dz

[
∇(µGyx∇ν)Gxz −

1
2hµν h

αβ∇αGyx∇β Gxz
]
Rh(y)Rh(z) .

The total quantum momentum tensor for the conformal factor, as given by the hµν
variation of its effective action ΓΩΛ (3.3.2), reads

TΩΛ
µν (x) = 1

24T
Pol
µν + TΩ,clas

µν + TΛ
µν

= − 1
24π Êµν −

q2

2π

(
∇µΩ∇νΩ− 1

2hµν (∇Ω)2 −
(
∇µ∇ν − hµν ∇2

h

)
Ω
)

−µ (1− β2)hµν Oβh(x) + 2µβ2 Sµν(x) , (3.4.10)

where TΩ,clas
µν accounts for the contribution of the kinetic and background charge term,

which coincides with the classical Ω momentum tensor (2.1.14). The equation of motion
for Ω that follows from ΓΩΛ[Ω, h] is

− 2∇2Ω +Rh −
8πµ
q2 β qOβh = 0 . (3.4.11)

Using this equation, the trace of the TΩΛ
µν momentum tensor is

TΩΛ = 1− 6q2

24π Rh , (3.4.12)

where again we recognize the central charge of the Liouville theory cΩ = cL = 1− 6q2.
The factor of 1 comes from the Polyakov term, hence is purely quantum, while the −6q2

comes from the Ω-dependent terms and reflects the classical lack of Weyl invariance
of the action. Notice that the presence of the cosmological constant does not change
this trace, which is the same for the momentum tensor without cosmological constant
(2.4.15). This is because the equations of motion also acquire the cosmological term,
and exactly absorb the contribution in the trace.

3.5 Quantum Ward Identities

We first check the Ward identity (1.2.24) for Weyl invariance for the renormalized
cosmological term (3.3.1). The left hand side of (1.2.24) evaluates to

hµν TΛ
µν −

1√
−h

δΓΛ
δΩ = −2µ (1− β2)Oβh + 2µβ qOβh . (3.5.1)
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It vanishes precisely when β is related to q by (3.2.8). This is to be expected because
the Weyl Ward identity is simply the infinitesimal version of invariance under finite
Weyl transformations which is what was used to obtain (3.2.8). The important point
is that unless we modify β as in (3.2.10) away from its classical value, the full quantum
theory would be anomalous. Anomalies in Weyl invariance are unavoidable because
of the necessity to regularize the path integral. In the present context, we manage to
maintain Weyl invariance at the quantum level by starting with a value of β such that
the theory is not Weyl invariant at the classical level but it becomes Weyl invariant at
the quantum level once the anomalous variations are taken into account.

For diffeomorphisms, we do not expect any anomalies because the renormalization
procedure is manifestly coordinate invariant. To explicitly check the Ward identity we
compute the covariant derivative of (3.4.4). Using the commutator in two dimensions

[∇µ,∇ν ]V µ = RµνV
µ = 1

2Rh Vν (3.5.2)

and the Green equation to cancel terms, we obtain

∇µ TΛ
µν = −µ∇νOβh − µβ

2Oβh(x)
∫
dz Rh(z)∇νGxz = −2µβ qOβh ∇νΩ , (3.5.3)

where in the last step we have integrated by parts and used the expression for the
renormalized operator (3.2.5). This coincides with the Ω variation of the action

1√
−h

δΓΛ
δΩ ∇νΩ = −2µβ qOβh ∇νΩ , (3.5.4)

and then the Ward identity, which subtracts the two, is satisfied.

3.6 Quantum Momentum Tensor from the Weyl Anomaly
One can derive the momentum tensor directly using the Weyl anomaly by reversing the
logic of the previous subsection. We assume the diffeomorphism Ward identities rather
than verify them. Our assumption is justified by the fact that our renormalization
scheme used for computing the anomalous Weyl dimension is manifestly coordinate
invariant and hence there is no possibility of diffeomorphism anomalies. The advantage
of this method is that one can avoid the intermediate step of deducing the quantum
effective action and directly obtain the quantum momentum tensor required in the
equations of motion.

For this purpose it is convenient to use the conformally flat gauge with light-cone
coordinates.12 The only non-vanishing Christoffel symbols are

Γ+
++ = 2 ∂+Σh , Γ−−− = 2 ∂−Σh . (3.6.1)

In two dimensions, the momentum tensor has only three independent components.
Diffeomorphism Ward identities (1.2.23) give two equations. From the Weyl anomaly
one obtains

T+− = 1
2 µ (1− β2) e2Σh Oβh(x) . (3.6.2)

12We use the (+++) conventions of Misner, Thorne, and Wheeler. Our light-cone coordinates are
x± := t± x. The flat metric in these coordinates is η+− = − 1

2 with
√
−η = 1

2 and ∇2
η = −4 ∂+∂−.
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Together we obtain three equations for all three unknowns. The diffeomorphism Ward
identity for the ν = + component gives

∂−T++ + ∂+T−+ − 2 ∂+Σh T−+ = µ (1− β2) ∂+Ω e2Σh Oβh (3.6.3)

which after use of (3.6.2) becomes

∂−T++ = 1
2µβ

2 ∂+
(
e2Σh Oβh

)
.

Taking a derivative with respect to + on both sides we obtain

−∇2
hT++ = 2µβ2e−2Σh ∂2

+

(
e2Σh Oβh

)
(3.6.4)

where −∇2
h is the scalar Laplacian. Solving this Poisson equation we obtain

T++(x) = 2µβ2
∫
dy ∂2

+GxyO
β
h(y) . (3.6.5)

We rewrite the partial derivatives as covariant ones and use the expression (2.1.30) for
the Σh factors in the Christoffel symbols (3.6.1) to obtain a covariant expression

T++(x) = 2µβ2
∫
dy∇+∇+GxyOβh(y) + 2µβ2

∫
dy dz∇+Gyx∇+Gxz Oβh(y)Rh(z)

(3.6.6)
in agreement with (3.4.4). The component T−− can be computed similarly.

3.7 Total Effective Action and Quantum Einstein Equations
The full gravitational effective action is given by adding the Einstein-Hilbert piece to
the action for the conformal factor (3.3.2)

ΓG[Ω, h] = q2

16π

∫
dxRh

1
�
Rh + ΓΩΛ[Ω, h] . (3.7.1)

As argued in §2.4, the matter and ghost sectors contribute in the effective action with
a Polyakov term with coefficient cm + cbc = 25 − 26 = −1, as required by anomaly
cancellation. This cancels the same term with coefficient +1 from the ΓΩΛ[Ω, h] action
above. The total effective action results in

Γ = ΓG[Ω, h] + Γm[Xi, h] + Γbc[b, c, h]

= q2

4π

∫
dx

(1
4 Rh

1
�
Rh + |∇Ω|2 +Rh Ω− 4πµ

q2 e2 Ω e−2β2 (Ω+Σh)
)

+ Im[Xi] + Ibc[b, c] .

(3.7.2)

Upon going to the physical gauge Ω = 0, hµν = gµν , it takes the form

Γ[g,Xi, b, c] = q2

4π

∫
dx

(1
4Rg

1
�
Rg −

4πµ
q2 e−2β2 Σg

)
+ Im[Xi] + Ibc[b, c] . (3.7.3)



3.7. Total Effective Action and Quantum Einstein Equations 53

We can compare the first two terms to the gravitational classical action (2.1.34). The
cosmological term becomes gravitationally dressed through renormalization, while the
Einstein-Hilbert term is exactly the same as the classical one. This suggests that
this purely gravitational term, or equivalently the gravitational constant q2 do not get
renormalized. However, this is only after the contributions of the renormalization of
the matter and ghosts sectors are taken into account, which exactly compensate for
the renormalization of the metric field thanks to Weyl anomaly cancellation.

We now derive the field equations that follow from the total effective action. Adding
the Einstein-Hilbert term to the action ΓΩΛ adds a term q2

4 T
Pol
µν to its momentum tensor

TΩΛ
µν , leading to a total gravitational momentum tensor of unit central charge cG = 1,

as already argued in §2.4.
Finally, the hµν variation of the total action Γ[Ω, h,Xi, b, c] (3.7.2) leads to the

quantum Einstein equations

Êµν(h) = 4π
q2

(
TΩ,clas
µν + TΛ

µν

)
, (3.7.4)

where Im[Xi] and Ibc[b, c] do not contribute because they do not depend on the back-
ground metric. The contribution of the matter and ghosts sectors is though encoded
on the right-hand side of the above equations, which is purely geometrical, determining
the coefficient in front. The trace of these equations is

Rh − 2∇2
hΩ = 8πµ

q2 (1− β2)Oβh . (3.7.5)

This trace coincides with the equation of motion for Ω (3.4.11), as it is supposed to
be because Ω is effectively the only scalar in the game, hence its equation of motion
follows from the Einstein equations due to the Ward identities.

In the physical gauge, the quantum Einstein equations become

Êµν(g) = 4π
q2 T

Λ
µν(g) . (3.7.6)

We can compare these to the classical ones (2.1.7) (in 2 + ε dimensions)

Eµν(g)
ε

= 2π
q2 T

Λ,clas
µν . (3.7.7)

The 1/ε indeterminacy of the left-hand side can be removed using the same l’Hôpital’s
rule that we used to replace the Rg/ε term in the classical Einstein-Hilbert action by
the Polyakov one, and the two-dimensional limit gives

lim
ε→0

Eµν
ε

= 1
2 Êµν = 1

2

(
R̂µν −

1
2 gµν Rg

)
. (3.7.8)

Substituting this on the left-hand side of (3.7.7), gives the classical limit of (3.7.6).
This limit allows to have finite tensorial equations in exact two dimensions. However,
notice that it does not buy much, since the two tensors (in 2 + ε and 2 dimensions
respectively) have the same trace. Since the only non-trivial constraint is encoded in
the trace, both lead to the very same finite constraint.
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The classical equations (3.7.7) are derived from a theory without any matter, while
the quantum ones are the Einstein equations for a theory with matter and ghosts.
Nevertheless notice that classical conformal matter does not couple to the metric,
hence does not contribute to the Einstein equations. At the quantum level, the matter
and ghost sectors only contribute to the left-hand side of the equations as we have
argued, although with a coefficient that exactly cancels that of the renormalization of
the metric. We can say that anomaly cancellation allows for a semiclassical treatment
where the left-hand side of Einstein equations does not get renormalized, while the
momentum tensor of the cosmological constant on the right-hand side does, as we
have computed. The only constraint the two-dimensional equations (3.7.6) encode is
to be derived from its trace

Rg = −4π
q2 T

Λ(g) = 8πµ
q2 (1− β2) e−2β2

. (3.7.9)

Indeed, the right-hand side is the same as in the classical constraint (2.1.8), and the
left-hand side is reproduced upon taking the β → 0 limit.



Chapter 4
Quantum Cosmology in Two Dimen-
sions

In this section we examine the cosmological consequences of the quantum anomalies
summarized by the total effective action Γ[Ω, h] (3.7.2), assuming positive cosmological
constant µ > 0.

4.1 Quantum Evolution Equations for Cosmology

We look for spatially homogeneous and isotropic solutions, so we impose hµν = ηµν and
Ω = Ω(τ) on the fiducial Einstein equations (3.7.4). Since we can treat the cosmological
evolution equations semiclassically, the Friedmann-Lemaître equation looks the same
as the classical one

H2 = 4π
q2 ρΛ(τ) , (4.1.1)

where the energy density is now derived from the TΛ
µν given by (3.4.4). To identify an

energy density function at all, we have to assume that this momentum tensor becomes
of the perfect fluid form upon imposing hµν = ηµν and Ω = Ω(τ). But this is in fact a
general requirement for homogeneity and isotropy. So if it were not the case, then it
could not source solutions with such symmetries, and would trivialize upon imposing
these conditions.

Since this momentum tensor is non-local and quite complex, one could still expect
the energy density and pressure, even if depending only on time, to be a complicated
integral of the Ω(τ) field. In that case, the Friedmann-Lemaître equation would be-
come a complicated integro-differential equation. However, not only does the quantum
momentum tensor become of the perfect fluid form, but it also simplifies considerably.
This is actually to be expected, since the trace of the fiducial Einstein equations be-
comes Ω′′ ∝ TΛ. This forces the Hubble parameter, and therefore the energy density,
to be simply related to the trace of the momentum tensor, which doesn’t keep the
integrated non-local terms of Sµν .

Let’s check this simplification explicitly from the expression of the momentum
tensor (3.4.4). The retarded Green’s function of the Laplacian in the two-dimensional
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flat spacetime is given by

Gret(x, y) = 1
2Θ(τx − τy − |rx − ry|) . (4.1.2)

For flat fiducial metrics, the second term in the expression of Sµν (3.4.5) vanishes and
the first term gives Sµν =

(
δτµδ

τ
ν + 1

2ηµν
)
Oβh(τ). The total momentum tensor is then

given by
TΛ
µν(τ) = −µ

(
(1− 2β2) ηµν − 2β2 δτµδ

τ
ν

)
Oβh(τ) . (4.1.3)

From the components of TΛ
µν we can identify its density and pressure as

ρΛ(τ) = µ e−2β2Ω(τ) , pΛ(τ) = −µ (1− 2β2) e−2β2Ω(τ) (4.1.4)

which imply the equation of state

pΛ = wΛρΛ with wΛ = −1 + 2β2 . (4.1.5)

Thus, in the semiclassical limit of small β, the barotropic index is slightly bigger than
−1.

Remarkably, the non-local quantum cosmological momentum tensor has reduced to
a local one with a particularly simple form corresponding to a barotropic perfect fluid.
The net effect of the non-local quantum contribution to the momentum tensor is simply
to modify the barotropic index from −1 to −1 + 2β2. With this simplification, the
seemingly integro-differential equation reduces to a simple differential one. Applying
the formulae from our discussion of classical cosmology, in particular (1.3.17), we see
that γ = 2β2 for the vacuum fluid. We arrive at the conclusion that the quantum
cosmological term leads to an expanding universe with decaying vacuum energy density
and power law expansion

ρΛ(t) = ρ∗(
a

a∗
)−2β2

, a(t) = a∗(1 + β2H∗t)
1
β2 . (4.1.6)

Just like the classical cosmological constant, this solution satisfies the null and the
weak energy conditions, but not the strong one, since the expansion is accelerated.

4.2 Cosmological Implications of the Quantum Decay of Vac-
uum Energy

These theoretical conclusions have potentially far-reaching implications for addressing
some of the fundamental puzzles in modern cosmology [10]. We briefly comment
on some of these consequences that can generalize to higher dimensions in a model-
independent way.

The above solution (4.1.6) describes an accelerated power-law expansion. In the
semiclassical limit β → 0, the power-law becomes the de Sitter exponential expansion
a(t) = a∗e

H∗t. To quantify the expansion, it is convenient to define slow-roll parameters
as usual in terms of the fractional change in the Hubble parameter and its derivative

εH := − Ḣ

H2 = −d lnH
Hdt

, ηH := ε̇H
HεH

= d ln εH
Hdt

. (4.2.1)
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For our model we find
εH = β2 ηH = 0 . (4.2.2)

The condition for accelerated expansion (ä > 0) requires εH to be less than one. Slow-
roll inflation further requires that εH � 1. It is also necessary that ηH � 1 so that
inflation lasts long enough. Since β is small in the semiclassical approximation, these
conditions are satisfied. This quantum dynamics of the Ω field can therefore be a
two-dimensional model of slow-roll inflation in the very early universe.

Note that Ω is not really a physical scalar but simply a mode of the metric in a
particular gauge. Thus, this is a model of slow-roll inflation without a fundamental
scalar, driven entirely by vacuum energy through the non-trivial quantum dynamics of
the Ω field. As it stands, the model leads to an empty universe because it simply keeps
inflating. With matter fields, it would be possible to construct more realistic scenarios,
with graceful exit that can start a hot big bang, and primordial perturbations. It would
be interesting to construct a complete two-dimensional model of cosmology with these
ingredients.

The quantum decay of vacuum energy can provide a dynamical solution to the
cosmological constant problem [42, 43, 150–152]. One can imagine that the universe
starts off with a very large cosmological constant. The initial magnitude ρ∗ of the
vacuum energy density is of the order of M2

0 for the cutoff scale M0 which can be
of the order of the string scale or the scale of supersymmetry breaking. Classically,
one would obtain exactly de Sitter spacetime with exponential expansion and constant
energy density. With even a very small value of the anomalous gravitational dressing,
the dynamics of the universe is very different and one would obtain instead a slowly
rolling, inflating universe. The exponential expansion is slowed down to a power-law
expansion. The density is no longer constant but keeps decreasing and can become
arbitrarily small compared to its initial value. For an observer at a very late time, the
effective vacuum energy density is much smaller than ρ∗.

We have treated the timelike Liouville theory semiclassically. It would be very
interesting if one can make sense of the quantum theory as a solvable model and
explore the consequences of the full quantization in the context of the above.

In any case, the main lesson that we wish to abstract away is the observation that
when gravity is dynamical, various operators coupled to gravity such as the identity
operator can have anomalous gravitational dressings. Even small values for these
gravitational dressing can have observable effects in the cosmological setting when the
universe undergoes exponential expansion with several e-foldings.

4.3 Local Form of the On-Shell Quantum Momentum Tensor

If the fiducial metric is flat then it is possible to obtain a local expression for the
quantum momentum tensor upon using the equations of motion for the Ω field

∇2Ω− 1
2Rh + 4π

q
µβOβh = 0 (4.3.1)
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where we have used qβ = 1 − β2. Using this equation with Rh = 0, Sµν in (3.4.5)
becomes

Sµν = − q

4πµβ

(
∇µ∇ν −

1
2ηµν ∇ · ∇

)∫
dy Gxy∇2

yΩ(y)

= q

4πµβ

(
∇µ∇ν −

1
2ηµν∇

2
)

Ω(x) . (4.3.2)

Substituting it in the total quantum momentum tensor for the conformal factor TΩΛ
µν (x)

(3.4.10) we find1

T q
µν = q2

2π

[ 1
βq

(
∇µ∇ν −

1
2ηµν∇

2
)

Ω(x)−∇µΩ∇νΩ + 1
2ηµν(∇Ω)2

]
. (4.3.3)

Interestingly, the original non-local expression has reduced to a local expression. It
is instructive to compare this local expression with the on-shell classical momentum
tensor TΩ,clas

µν + TΛ,clas
µν , which is already local off-shell,

T cl
µν = q2

2π

[(
∇µ∇ν −

1
2ηµν∇

2
)

Ω(x)−∇µΩ∇νΩ + 1
2ηµν(∇Ω)2

]
. (4.3.4)

Both tensors are properly traceless, hence T+− = 0. The (++) components are

T cl
++ = − q

2

2π
[
(∂+Ω)2 − ∂2

+Ω
]
, βq = 1 ; (4.3.5)

T q
++ = − q

2

2π

[
(∂+Ω)2 − 1

βq
∂2

+Ω
]
, βq = 1− β2 . (4.3.6)

Imposing the Virasoro constraint corresponds to solving the Einstein equations for
spatially flat metrics in two dimensions. The solution is given by

eΩ(τ) = eΩ∗( τ
τ∗

)
−1
βq = eΩ∗( τ

τ∗
)

2
γ−2 . (4.3.7)

In the classical case we have βq = 1 and γ = 0 whereas in the quantum case we have
βq = 1− β2 and γ = 2β2. With a(τ) = eΩ(τ), and after writing the conformal time in
terms of the comoving time, the solution is in agreement with (1.3.17).

4.4 Local Formulation with Auxiliary Fields

The non-local action (3.3.1) can be rewritten in a local form [69, 153] by introducing
two auxiliary fields Σ(x) and Ψ(x) with the action

ΓΛ = −µ
∫
d2x
√
−h

[
e2(1−β2)Ω e−2β2Σ + Ψ(2∇2Σ +Rh)

]
. (4.4.1)

The equations of motion for the auxiliary fields are

−∇2Σ = 1
2Rh , (4.4.2)

−∇2Ψ = −β2 e2Ω e−2β2(Ω+Σ) . (4.4.3)
1We drop the superscripts of the momentum tensor in the rest of this section, and we just keep q

and c to distinguish between the quantum and the classical.
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The first equation enforces the field Σ(x) to be the conformal factor of the fiducial
metric hµν = e2Σηµν . After eliminating the auxiliary fields by using their equations
of motion, we recover our non-local action (3.3.1). The action is invariant under the
Weyl transformation

Σ→ Σ + ξ, Ω→ Ω− ξ, hµν → e2ξhµν Ψ→ Ψ . (4.4.4)

The local momentum tensor resulting from this action is

TΛ
µν = −µ

[
hµν(e2Ω e−2β2(Ω+Σ) − 2∇Ψ · ∇Σ) + 4∇(µΨ∇ν)Σ + 2(∇µ∇ν − hµν∇2)Ψ

]
(4.4.5)

which again reduces to (3.4.4) after using (4.4.2) and (4.4.3).
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Chapter 5
Four-Dimensional Effective Action and
Equations

We now move to four dimensions. We are interested in the quantum effective action for
the metric obtained by integrating out the quantum fluctuations of various fields, and
valid at distances large compared to the Planck distance. Our central object is hence
the non-local effective action for Einstein-Hilbert gravity with a cosmological constant.
The essential lesson that emerges from the study of the two-dimensional model is that
the anomalous dimensions of the dressed operators are in principle different from the
anomalous dimensions of the undressed operators. The physical coupling constants
are the couplings of the gravitationally-dressed operators. This applies in particular,
to the square-root of the determinant of the metric corresponding to the cosmological
term, as well as to the Einstein-Hilbert operator.

The quantum effective action then, should take into account the anomalous grav-
itational dressings of these two operators. The corresponding anomalous dimensions
should be calculable in a microscopic theory with perturbative methods. Although
fundamental, we postpone these computations for future work. In the next two chap-
ters instead, we simply parametrize the action with the gravitational dressings, which
we assume to be non-local functions of the conformal factor. This is the natural gen-
eralization of our two-dimensional results, and is consistent with what the local renor-
malization group dictates. We further compute the evolution equations and analyze
the cosmological dynamics.

5.1 A Non-local Action for Gravity

We consider the four-dimensional gravitational effective action1

IG[g] =
M2
p

16π

∫
d4x
√
−g

(
Rg e

−ΓK(Σg) − 2 Λ e−ΓΛ(Σg)
)

(5.1.1)

1In the following two sections, we will denote the quantum effective action by I instead of Γ, to
avoid confusion with the integrated anomalous dimensions.
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where Γi(Σg), i = K,Λ are the integrated anomalous gravitational dressings. The field
Σg(x) is again a non-local functional of the metric gµν , defined by [37,154,155]

Σg(x) = 1
4

∫
d4y
√
−g G4(x, y)F4(g)(y) , (5.1.2)

where2

F4(g) = E4(g)− 2
3∇

2
gRg , E4(g) = RµνρσRµνρσ − 4RµνRµν +R2

g ; (5.1.3)

and G4(x, y) is the Green function of the Weyl covariant quartic differential operator

∆4(g) =
(
∇2
g

)2
+ 2Rµν∇µ∇ν + 1

3 (∇νRg)∇ν −
2
3Rg∇

2
g (5.1.4)

on the gµν background satisfying

∆x
4(g)G4(x, y) = δ(4)(x, y) := δ(4)(x− y)√

−g
. (5.1.5)

For metrics related by a Weyl rescaling

gµν = e2Σg(x) η̄µν , (5.1.6)

the scalars F4 are related by

F4(g) = e−4Σg (F4(η̄) + 4 ∆4(η̄) Σg) , (5.1.7)

and the operators ∆4 are related by

∆4(g) = e−4Σg ∆4(η̄) . (5.1.8)

One can then choose a conformal gauge in which Σg(x) becomes the conformal factor
of the metric with respect to a reference metric η̄µν which satisfies the F-flatness
condition F4(η̄) = 0. The expression (5.1.2) is obtained in this F-flat gauge by inverting
(5.1.7). Given the transformations (5.1.7) and (5.1.8), it is clear that the F-flat gauge
is the four-dimensional analogue of the two-dimensional Ricci-flat gauge. Note that
the action (5.1.1) should be regarded as the in-in effective action and hence one must
impose retarded boundary conditions. This ensures that the propagation is causal.

We emphasize that the action (5.1.1) is the result of having performed a path
integral and is not to be quantized further, but is to be used for studying the ef-
fective classical dynamics. For now, we view these functions as a phenomenological
parametrization of possible Weyl anomalies.

The variation of (5.1.1) with respect to gµν is very cumbersome because both ∆4
and F4 have a complicated dependence on the metric. The Weyl-invariant formulation

2In these two chapters dealing with the four-dimensional Weyl-invariant formulation we will denote
the metric-dependence of the different geometric objects in a heterogeneous way. We keep the metric
sub-index for Rg and ∇2

g. Other scalars already exhibiting a sub-index will have the metric dependence
as an argument, like F4(g), ∆4(g) and E4(g). We will omit it all together for most tensors and operators
with Lorentz indices, and for Green functions, to avoid clumping the notation. The metric dependence
for these should be understood from the metric dependence of neighboring terms.
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again leads to considerable simplification by exploiting the fact that the spatially-flat
Robertson-Walker metric is Weyl-equivalent to the flat Minkowski metric.

To write the action in the Weyl-invariant form, we introduce the Weyl split

gµν = e2Ω(x)hµν (5.1.9)

in (5.1.1). The fiducial metric can be further parametrized in terms of the F-flat
reference metric η̄µν as

hµν = e2Σh(x)η̄µν . (5.1.10)

Then again it holds that
Σg = Ω + Σh , (5.1.11)

where the Weyl factor Σh(x) is given by (5.1.2) evaluated on hµν , and Σg is invariant
under a Weyl transformation. The Weyl-invariant quantum effective action becomes3

IG[h,Ω] = 1
2κ2

∫
d4x
√
−h e4Ω

(
Rhe2Ω e−ΓK(Ω+Σh) − 2 Λ e−ΓΛ(Ω+Σh)

)
. (5.1.12)

Using the Weyl transformation of the Ricci scalar and integrating by parts, we obtain

IG[h,Ω] = 1
2κ2

∫
dx
[(
Rh+6 (1−Γ(1)

K ) |∇Ω|2− 6 Γ(1)
K ∇Ω ·∇Σh

)
e2Ω−ΓK −2 Λ e4Ω−ΓΛ

]
(5.1.13)

where dx ≡ d4x
√
−h and4 Γ(n)

i (Ω + Σh) are the n-th derivatives of the dressing func-
tions.

The action (5.1.13) now has an enlarged gauge symmetry that includes Weyl in-
variance in addition to diffeomorphisms. As opposed to the two-dimensional case then,
we do not gain anything by demanding this gauge invariance, since the effective ac-
tion is precisely written down so as to satisfy it, namely, it is originally written with
the dependence on the conformal factor of the fiducial only through the combination
Σg = Ω + Σh. The operators in the action are composites of the Weyl compensator
and the unfixed components of the fiducial metric. If we were able to explicitly com-
pute the dressings of these operators and hence find the anomalous dependence on
the conformal factor Σh, then demanding gauge invariance would be useful. In other
words, by imposing the Weyl Ward identity to be satisfied we could extract informa-
tion on the dependence of the anomalous dimensions on the couplings. However, the
computations of the gravitational dressings are bound to be highly complex.

As in the two-dimensional case, the physical gauge Ω = 0 brings the above action
back to (5.1.1). Alternatively, one can keep Ω arbitrary and impose a scalar gauge
condition on the fiducial metric such as F4(h) = 0. In this F-flat gauge Σh = 0 and
Σg = Ω.

3Henceforth we choose units so that M0 = 1.
4In this and the next two sections, all covariant derivatives and contractions are with respect to

the fiducial metric hµν .
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5.2 Evolution Equations for Cosmology
We look for the evolution equations that will describe a homogeneous and isotropic
universe. We choose the spatial section to be flat, so that the fiducial metric hµν = ηµν
and the entire dynamics resides in the Weyl compensator. Since the Minkowski metric
is not only F-flat but Riemann-flat, the variation of the non-local terms in the action
(5.1.13) simplifies considerably.

Since F4(η) = 0, the variation of the Green function does not contribute, and we
obtain

δΣh(x) = 1
4

∫
dy G4(x, y) δF4(h)(y) . (5.2.1)

Furthermore, the quadratic terms involving the Riemann curvature tensors do not
contribute to the variation of F4(h) when evaluated around ηµν . The only nonzero
contribution comes from the variation of the term linear in the curvature

δF4(h)(y) = −2
3 ∇

2
η δRh . (5.2.2)

The total variation of Σh after an integration by parts is then given by

δΣh(x) = 1
6

∫
dy δhµν(y) (∇µ∇ν − hµν∇2

η)∇2
η G4(x, y) . (5.2.3)

After performing the variation in the fiducial frame, it is convenient to rewrite the
equations of motion in terms of the gauge-invariant physical metric using (5.1.9). The
Weyl transformation of the Einstein tensor is

Eµν(g) = Eµν(h) +Dµν(h,Ω) ,

Dµν(h,Ω) := −2
(
∇µ∇ν − hµν∇2

h

)
Ω + 2

(
∇µΩ∇νΩ + 1

2hµν |∇Ω|2
)
. (5.2.4)

Substituting it in the above variation of (5.1.13) yields the equations of motion for the
physical metric

Eµν(g) = κ2 (TKµν + TΛ
µν) , (5.2.5)

where TKµν is the momentum tensor of the ‘gravifluid’, of purely geometric origin

κ2 TKµν(x) = 2 Γ(1)
K

(
∇µΩ∇νΩ + 1

2ηµν |∇Ω|2
)

(5.2.6)

+
(
(Γ(1)
K )2 − Γ(2)

K

) (
∇µΩ∇νΩ− ηµν |∇Ω|2

)
− Γ(1)

K

(
∇µ∇ν − ηµν∇2

η

)
Ω

− e−2Ω+ΓK
∫
dy Γ(1)

K e2Ω−ΓK (∇2
ηΩ + |∇Ω|2)

(
∇µ∇ν − ηµν∇2

η

)
∇2
ηG4(x, y) ;

and TΛ
µν is the momentum tensor of the ‘vacuum fluid’

κ2 TΛ
µν(x) = −Λ ηµν e2Ω+ΓK−ΓΛ (5.2.7)

− Λ
3 e
−2Ω+ΓK

∫
dy Γ(1)

Λ e4Ω−ΓΛ
(
∇µ∇ν − ηµν∇2

η

)
∇2
ηG4(x, y) .

We emphasize that the contribution from the ‘gravifluid’ is purely geometric in origin
and in principle belongs to the left hand side of the equation (5.2.5) on the same footing
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as the Einstein tensor. Since the fiducial metric is flat in this context, the equation
(5.2.5) reduces to

Dµν(η,Ω) = κ2
(
TKµν + TΛ

µν

)
. (5.2.8)

5.3 Cosmological Equations in an Alternative Gauge

It is possible to choose an alternative gauge in which the conformal factor Σ̃g(x) is
defined with respect to an R-flat reference metric η̃µν [156, 157]. In the R-flat gauge,
the expression for the conformal factor follows from the Weyl transformation of the
Ricci scalar

Rg = e−2Σ̃g
(
Rη̃ − 6∇2

η̃Σ̃g − 6|∇Σ̃g|2
)
. (5.3.1)

Imposing Rη̃ = 0, the above equation can be inverted by means of defining the field

Φg := 1− e−Σ̃g , (5.3.2)

in terms of which the above equation becomes(
−6∇2

g +Rg
)
x

Φg = Rg . (5.3.3)

This Poisson equation can be inverted by means of the Green function G̃(x, y) of the
differential operator (

−6∇2
g +Rg

)
x
G̃(x, y) = δ(4)(x, y) . (5.3.4)

The conformal factor then becomes

Σ̃g(x) = − ln
(

1−
∫
d4y
√
−g G̃(x, y)Rg(y)

)
. (5.3.5)

This gauge can in fact be defined for any dimensions, by starting with the Weyl trans-
formation of the Ricci scalar in any dimensions, defining Φ := 1 − e−

d−2
2 Σ̃g , and

repeating the above inversion by means of defining the corresponding Green function.
The two-dimensional limit can then be taken and shown to reproduce the conformally
flat gauge used in section §3.

To use this gauge in the quantum action, we express the fiducial metric as

hµν = e2Σ̃h η̃µν , Σ̃g = Ω + Σ̃h . (5.3.6)

We introduce the Weyl split into the analog of the action (5.1.1) in the R-flat gauge
with gravitational dressing functions5 Γ̃i(Σ̃g). The Weyl-invariant action then becomes

IG[h,Ω] = 1
2κ2

∫
dx
[(
Rh+6 (1− Γ̃(1)

K ) |∇Ω|2− 6 Γ̃(1)
K ∇Ω ·∇Σ̃h

)
e2Ω−Γ̃K −2 Λ e4Ω−Γ̃Λ

]
(5.3.7)

where now Γ̃i = Γ̃i(Ω + Σ̃h).
5Note that η̃µν = e2Ση̃ η̄µν and Σg = Σ̃g + Ση̃. As a result, the integrated anomalous gravitational

dressing functions in the two gauges are related by a shift: Γ̃i(Σ̃g) = Γi(Σ̃g + Ση̃).
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The equations of motion for a spatially-flat Robertson-Walker spacetime then follow
from the variation of this action around hµν = ηµν . On a flat background, the variation
of Σ̃h (5.3.5) receives no contribution from the variation of the Green function and is
given by

δΣ̃h =
∫
d4y G̃(x, y) δ (

√
−hRh(y)) =

∫
d4y
√
−η δhµν

(
−∇µ∇ν + hµν∇2

η

)
G̃(x, y) .

(5.3.8)
Furthermore, since Rη = 0, the equation (5.3.4) becomes the Green equation for the
flat Laplacian. Comparing with the Green equation (5.1.5) of ∆4 on a flat background,
we find that the two Green functions are related through

G̃(x, y) = −1
6 ∇

2
ηG4(x, y) . (5.3.9)

Introducing this in (5.3.8) we recover the same variation of Σh(x) in a flat background
(5.2.3)

δΣ̃h = 1
6

∫
dy δhµν (∇µ∇ν − hµν∇2

η)∇2
η G4(x, y) . (5.3.10)

Since hµν is taken to be Minkowski, Σh = Σ̃h = 0, and therefore Γi(Ω) = Γ̃i(Ω). As a
result, the equations of motion obtained in the two gauges are identical.

5.4 General Equations of Motion
The R-flat gauge allows to compute the modified Einstein equations on a general
background without the help of the Weyl-invariant formulation. The reason is that
in this gauge, the only geometric objects involved are the Ricci scalar and the scalar
Laplacian, whose general variations are easily calculable. We therefore compute the
gµν variation of the action

IG[g] =
M2
p

16π

∫
d4x
√
−g

(
Rg e

−Γ̃K(Σ̃g) − 2 Λ e−Γ̃Λ(Σ̃g)
)
. (5.4.1)

This requires the general variation of Σ̃g(x) in terms of δgµν , which can be done using
again the auxiliary field Φg(x) defined in (5.3.2), from which

e−Σ̃g δΣ̃g(x) = δΦg(x) =
∫
d4y δ

(√
−g G̃(x, y)Rg(y)

)
. (5.4.2)

As opposed to the computations of the equations around the fiducial Minkowski metric,
for which the variation of the Green functions did not contribute, the computation
of the equations in a general background where Rg does not vanish, does require
this variation. The way to compute it is by varying its Green equation (5.3.4), and
solving then for the resulting Poisson equation using the general variations of the scalar
Laplacian and the Ricci scalar. This computation is presented in appendix §E.3. With
the variation δG̃ at hand, the variation of the conformal factor is straightforward using
the variation of the integrated Ricci scalar (B.0.10). The equations finally read

Eµν(g) = κ2 (TKµν + TΛ
µν) (5.4.3)
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with

κ2 TKµν =
(
(Γ̃(1)
K )2 − Γ̃(2)

K

) (
∇µΣ̃g∇νΣ̃g − gµν(∇Σ̃g)2

)
(x)− Γ̃(1)

K

(
∇µ∇ν − gµν∇2

g

)
Σ̃g(x)

+ eΓ̃K(x)
∫
dy eΣ̃g Rg e

−Γ̃K Γ̃(1)
K (y)

{(
Eµν −∇µ∇ν + gµν∇2

g

)
x
G̃y,x

+
∫
dz Rg(z)

[
−Eµν(x) G̃yxG̃xz − 4

(
∇(µG̃yx∇ν)G̃xz −

1
4 gµν ∇αG̃yx∇

αG̃xz

)
x

+G̃yx
(←−−−−−−−−−→
∇µ∇ν − gµν∇2

g

)
x
G̃xz

]}
, (5.4.4)

κ2 TΛ
µν = −Λ eΓ̃K−Γ̃Λ gµν(x)− eΓ̃K(x)

∫
dy eΣ̃g 2Λ e−Γ̃Λ Γ̃(1)

Λ (y) · (5.4.5){(
Eµν −∇µ∇ν + gµν∇2

g

)
x
G̃y,x +

∫
dz Rg(z)

[
−Eµν(x) G̃yxG̃xz

−4
(
∇(µG̃yx∇ν)G̃xz −

1
4 gµν ∇αG̃yx∇

αG̃xz

)
x

+ G̃yx

(←−−−−−−−−−→
∇µ∇ν − gµν∇2

g

)
x
G̃xz

]}
.

The over-arrow on the last term indicates the sum of the differential operator acting
on the Green function on each side, and the subscripts outside parenthesis indicate
which is the independent variable inside.

Even if we do not need these general equations for our cosmological purposes, it is
instructive to write them down. First of all, we conclude that even if the gravitational
dressings entitle complex and lengthy computations, one can still write down tractable
and analytic equations in the general metric, with which solutions other than cosmo-
logical can be computed, for example for black holes. This would allow to analytically
compute the corrections due to the Weyl anomalous dimensions in solar system or
galactic dynamics.

Second, even if the Weyl-invariant formulation is clearly not fundamental but rather
a mere computational trick, the above equations enlighten how helpful it becomes,
specially for the cosmological solutions. The covariant derivatives, the Laplacian and
the Green function all depend on the metric gµν in a complicated way, and they
do not have a simple Weyl transformation (the Laplacian only has a simple Weyl
transformation in two dimensions). Therefore, imposing the R-flat gauge in the above
equations in order to get the equations in the Weyl-invariant formulation is highly
non-trivial. It is much easier to compute them directly from the Weyl-invariant action.
Furthermore, the latter computation becomes much shorter, since it does not require
the variation of the Green function.

If we were to compute the general equations from the gµν variation of the action in
the F-flat gauge (5.1.1), they would depend instead on F4(g), ∆4(g), which have simple
Weyl transformations, and G4 which does not transform. Therefore the equations
would easily be transformed to the Weyl-invariant formulation. The complication
however is only traded, since computing the general equations in this gauge requires
the general variations of F4(g), G4(g), which are clearly very lengthy.

Notice that the great advantage of having the equations in the Weyl-invariant form
is that the fiducial metric can be fixed to Minkowski and we can get a total differential
equation for the conformal factor, which fully dictates the dynamics of the scale factor
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of a Robertson-Walker metric. Looking for isotropic and homogeneous solutions with
the general equations above is therefore much less practical.



Chapter 6
Quantum Decay of Vacuum Energy

The Einstein equations (5.2.5) are valid generally as long as the Weyl tensor of the
physical metric vanishes. In a spatially-flat Robertson-Walker spacetime there is fur-
ther simplification because the scale factor of the physical metric is a function of only
the conformal time τ . With our gauge choice hµν = ηµν , we can write a(τ) = eΩ(τ). The
momentum tensors (5.2.6) and (5.2.7) now simplify further and the integro-differential
equations (5.2.8) reduce to an ordinary differential equation of the usual Friedmann-
Lemaître type but for an effective quantum fluid with an unusual equation of state.

6.1 Effective Quantum Fluid

For the Robertson-Walker metric, the explicit form of G4(x, y) is actually not needed
because its contribution to the momentum tensors is of the form∫

dy F [Ω]
(
∇µ∇ν − hµν∇2

)
∇2G4(x, y) . (6.1.1)

The differential operator in the parenthesis vanishes when µ = ν = τ , so it does
not contribute to the energy density. For all other components, the first term in the
parenthesis vanishes after integration by parts, and for the components µ, ν = i, the
second term in the parenthesis can be identified with the Green equation of ∆4(η). It
follows that the quantum momentum tensors (5.2.6) and (5.2.7) correspond to perfect
fluids, consistent with isotropy and homogeneity, although they are not separately
conserved.

The density and pressure of the vacuum fluid are given by

ρΛ(t) = Λ
κ2 e

ΓK−ΓΛ , pΛ(t) = wΛ(t) ρΛ(t) , (6.1.2)

wΛ(t) =

−1 + Γ(1)
Λ
3

 . (6.1.3)

The density and pressure of the gravifluid after using the equations of motion are given
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by

ρK(t) = Λ
κ2

Γ(1)
K

1− Γ(1)
K

eΓK−ΓΛ , pK(t) = wK(t) ρK(t) , (6.1.4)

wK(t) =

−1 + Γ(1)
Λ − 1

3 − Γ(2)
K

3 Γ(1)
K (1− Γ(1)

K )

 . (6.1.5)

We have written the expressions above in the ‘barotropic’ form with the effective
pressure proportional to the effective density, but the anomalous gravitational dressings
Γi(ln a(t)) are in general non-trivial functions of the comoving time. As a result, the
barotropic indices wΛ and wK are in general time-dependent1 and should be regarded
as a convenient parametrization.

Combining the two contributions one obtains the total momentum tensor on the
right-hand side of the equation (5.2.8). It is a perfect fluid with the effective density
and pressure given by

ρe(t) = Λ
κ2

1
1− Γ(1)

K

eΓK−ΓΛ , pe(t) = we(t) ρe(t) (6.1.6)

we(t) =
(
−1 + γ

3

)
, γ =

(
Γ(1)

Λ − Γ(1)
K −

Γ(2)
K

(1− Γ(1)
K )

)
. (6.1.7)

With this effective density, the equation of motion reduces to the first Friedmann
equation

H2 = κ2ρe
3 . (6.1.8)

Note that our conclusions thus far follow purely from the symmetry considerations of
isotropy, homogeneity, and spatial flatness.

The momentum tensor for the gravifluid (6.1.4) is proportional to the cosmologi-
cal constant after using the equations of motion in a spatially-flat Robertson-Walker
spacetime. As a result the total momentum tensor for the effective fluid is proportional
to the cosmological constant. This implies that in the absence of the cosmological con-
stant, the Minkowski metric continues to be an exact solution of the new equations
(5.2.5) in vacuum. On the other hand, for positive cosmological constant, the classi-
cal de Sitter solution is no longer a solution of the quantum equations (5.2.5) as we
describe below.

The conservation equation for the effective fluid is

ρ̇e = −3 (pe + ρe)H . (6.1.9)

A useful consistency check is that the expressions (6.1.6) and (6.1.7) satisfy the conser-
vation equation. It is of course guaranteed by the fact that the non-local action (5.1.1)
is coordinate invariant and hence follows from the Bianchi identity. Note, however,
that the gravifluid and the vacuum fluid are not conserved separately for nonzero ΓK .

1Recall that in classical cosmology the commonly encountered fluids have the barotropic index −1
for the cosmological constant, 0 for matter, and 1/3 for radiation.
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6.2 Cosmology of the Decaying Vacuum Energy

The expressions (6.1.6) and (6.1.7) for the effective density and pressure already give
their functional dependence on the scale factor. As discussed above, they automati-
cally solve the conservation equation (6.1.9). Our task is then reduced to solving the
equation (6.1.8) to obtain the scale factor as a function of the cosmological time. Even
though (6.1.8) is much simpler than an integro-differential equation, it is nevertheless
a complicated ordinary differential equation. In general, the integrated anomalous
dressings ΓK and ΓΛ are non-trivial functions of the scale factor and this equation can
be solved only numerically.

Analytic solutions are possible when ΓK and ΓΛ are both linear functions of Ω

ΓK(Ω) = γK Ω(x), ΓΛ(Ω) = γΛ Ω(x) , (6.2.1)

where γi are constants.2 Even if this is just a particular case, it may be possible
to approximate the integrated anomalous gravitational dressings by linear functions
for long enough time intervals during the evolution of the universe. In this case, the
barotropic index for both the vacuum fluid (6.1.3) and the gravifluid (6.1.5) becomes
constant. It is useful to consider this case to gain some understanding of the resulting
solutions. From (6.1.3) and (6.1.5) we obtain

wΛ = −1 + γΛ
3 wK = −1 + γΛ − 1

3 . (6.2.2)

More interestingly, the effective fluid appearing on the right-hand side of the Einstein
equations becomes also barotropic with index

we = −1 + γ

3 , with γ = γΛ − γK . (6.2.3)

The cosmological solution to (5.2.5) is then given by3

ρe(t) = ρe∗

(
a

a∗

)−γ
, a(t) = a∗(1 + γ

2H∗t)
2
γ , (6.2.4)

where ρe∗, H∗, a∗ are the initial values at the beginning of universe at time t = 0. The
densities of the vacuum fluid and the gravifluid are given by

ρΛ(t) = (1− γK) ρe(t) , ρK(t) = γK ρe(t) . (6.2.5)

In the semiclassical approximation both anomalous dressings are expected to be small.
For positive γ, our model describes an expanding universe driven by an effective fluid
with a barotropic index that is slightly larger than its classical value −1. In this case,
we arrive at the same conclusion as we did in two dimensions: that the vacuum energy
density decays from its initial value ρe∗ which could be of the order of the string scale
or the scale of supersymmetry breaking. The classical exponential expansion of de

2 In two dimensions, ΓK(Ω) and ΓΛ(Ω) are indeed linear functions with γK = 0 and γΛ = 2β2.
This is a consequence of the conformal invariance of the timelike Liouville theory.

3A spatially-flat Robertson-Walker solution is only compatible with Λ ≥ 0, just as it happens
classically.
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Sitter spacetime is slowed down to a power law expansion as a result of the quantum
anomalous gravitational dressings. In the limit of vanishing γ, one recovers de Sitter
spacetime with constant density.

The slow-roll parameters (4.2.1) for our solution (6.2.4) are

εH = γ

2 and ηH = 0 . (6.2.6)

Slow-roll inflation that lasts long enough requires that εH � 1 and ηH � 1. Since γ
is small in the semiclassical approximation, all these conditions would be satisfied. A
generic prediction is that ηH = 0. Thus, the quantum decay of vacuum energy and
the dynamics of the Ω(x) field provides a new mechanism to drive slow-roll inflation
in the early universe. For small γ, the scale factor expands almost exponentially as a
power law with a very high exponent. Nonzero εH measures the deviation from exact
exponential expansion but the parameter ηH vanishes as in exact de Sitter spacetime.

For a general functional form of the anomalous dressings ΓK and ΓΛ, the equation
(6.1.8) represents a novel generalization of the usual Friedmann equation because the
equation of state of the effective fluid is rather unusual. It is conceivable that this has
interesting consequences for early cosmology. Numerical integration may be necessary
to find the time-dependence of the scale factor. However, we see from (6.1.6) that as
long as ΓΛ−ΓK is positive during the cosmological history, vacuum energy will decay.
For negative γ, the null energy condition would be violated.

Since the proposed four-dimensional action (5.1.1) is simply parametrized by the
integrated anomalous gravitational dressings, further analysis of the above results re-
quires specification of the latter. However, from dimensional analysis, the order of
magnitude of the anomalous dimensions is expected to be GNΛ. Given the UV cutoff
M0, then the vacuum energy is of orderM4

0 , Λ is of the orderM4
0 /M

2
p , and the Hubble

scale is H = M2
0 /Mp. The anomalous dimensions would thus be of order H2/M2

p . In
the very early universe, if for example H is of order 0.1Mp, these estimates suggest
that γ and the slow-roll parameter would be of order 0.01. One can thus obtain slow-
roll inflation driven entirely by slowly decaying vacuum energy through the nontrivial
effective dynamics of the Ω field. This provides an example of inflation without an
inflaton.

Given that the effective action (5.1.1) effectively sums up the leading logarithms, as
it is a solution to the local renormalization group equation, we expect our semiclassical
solution to encode the same kind of logarithmic corrections to the classical de Sitter
solution. To see this explicitly, we expand our solution (6.2.4) for the scale factor for
small γ. If the classical exact de Sitter solution is adS(t) = adS∗ eH∗t, we find

a(t) = adS(t)
[
1− γ

4 ln2
(
adS

a∗

)
+ . . .

]
= adS(t)

[
1− γ

4N
2(t) + . . .

]
, (6.2.7)

where N(t) is the number of e-folds. In terms of the conformal time, we can expand
(1.3.23)

a(τ) = a∗(
τ

τ∗
)

2
γ−2 = a∗(

τ∗
τ

) ( τ
τ∗

)
−γ
2−γ = a∗τ∗

τ

[
1− γ

2 ln
(
τ

τ∗

)
+ . . .

]
. (6.2.8)
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This makes very apparent that these are infrared quantum effects, as they increase
with time. One obtains the usual de Sitter solution when γ = 0. For nonzero γ, there
are logarithmic corrections which add up to a small exponent that slows down the de
Sitter expansion.

6.3 Broken Time Translation Symmetry and Stability

This novel mechanism for the decay of the vacuum energy raises the following puzzle.
Unlike the classical de Sitter solution, our quantum-corrected slow-roll solution (6.2.4)
breaks the global time translation symmetry

t→ t+ π (6.3.1)

of the action (5.1.1) for a constant π. If a solution breaks a global symmetry of an
action, the symmetry-transform of a given solution generates a new solution. This
implies that if one now considers a position dependent symmetry parameter π(x), the
effective action for π(x) must be derivatively coupled so that there is a flat direction,
and arbitrary constant π is a solution of the equations of motion that follow from
this effective action. Correspondingly, one expects a Nambu-Goldstone like scalar
fluctuation mode. In usual inflationary models, this scalar mode can be identified with
a gauge-invariant combination of the inflaton and the metric. This idea is the basis
of effective field theories of inflation [158, 159] (for a good review see [160]). Where is
this additional scalar degree of freedom? One could pose the puzzle slightly differently.
Time translation symmetry is part of the diffeomorphism group. How can quantum
effects break this symmetry?

The resolution of this puzzle is as follows. The scale factor of our solution has
an initial value a∗ at the initial value surface t = 0. Since we are using semiclassical
gravity, a∗ can be taken to be of the order of the short-distance cutoff scale a little larger
than the Planck length. This means that, unlike the eternal de Sitter solution, one
cannot continue this solution to times earlier than t = 0. The global time translation
symmetry is thus explicitly broken by the fact that one must cutoff the evolution with
an initial value surface in the early universe and impose initial conditions. Even though
the action is invariant under the time translation symmetry, the initial conditions are
not. Thus, one cannot apply the argument above to generate new solutions from a
given solution, to deduce the existence of a propagating scalar degree of freedom.

One can state the result slightly differently. The non-local expression (5.1.2) for
the Weyl factor follows from inverting (5.1.7) only if one discards all solutions of the
homogeneous equation

∆4Σg = 0 . (6.3.2)

These solutions correspond precisely to the would-be Nambu-Goldstone scalar fluc-
tuations. The initial conditions on Σg on the initial value surface ensure that Σg is
determined entirely in terms of the metric and is not an additional propagating field.

It is possible to reformulate the argument above using a local action. One can
recast the non-local action (5.1.1) in a local form [69,153] by introducing two auxiliary
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scalar fields Σ(x) and Ψ(x) with the action

S[g,Σ, ψ] =
M2
p

16π

∫
d4x
√
−g

[
Rge

−ΓK(Σ) − 2Λe−ΓΛ(Σ) + Ψ
(

∆4Σ− 1
4 F4(g)

)]
.

(6.3.3)
The equations of motion for the two auxiliary fields are

∆4Ψ(x) = Rg Γ(1)
K e−ΓK(Σ) − 2Λ Γ(1)

Λ e−ΓΛ(Σ) ; ∆4Σ(x) = 1
4 F4(g) . (6.3.4)

The field Ψ(x) acts therefore as a Lagrange multiplier for the condition Σ = Σg, and
we recover (5.1.1) upon using its equation of motion in (6.3.3). This local action will
reduce to the original non-local action only if the homogeneous solutions of (6.3.4) are
eliminated by imposing an initial condition for Ψ and Σ that is similar to the initial
condition for Σg. This ensures that the only propagating degrees of freedom are the
usual tensor fluctuations of the metric and there are no additional scalar fluctuations.

If a Lagrangian depends on higher-time derivatives of the fields, then one should
also worry about the possibility of the Ostrogradsky instability [161]. We do not carry
out the stability analysis of our action in this paper but refer the reader to the stability
analysis for a class of non-local actions [68, 69] similar to the one we consider in this
paper in the R-flat gauge of section §5.3.

These conclusions are physically reasonable from the point of view of the original
quantum path integral. The action (5.1.1) is the quantum 1PI-effective action for
the background metric obtained by a semiclassical evaluation of the path integral at
weak coupling. It would be strange if one were to discover an extra scalar degree of
freedom or unphysical instability in this infrared effective action if the starting point
is a well-defined path integral.
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Conclusions

In this thesis we have analyzed the cosmological consequences of the Weyl anomalies
arising from the renormalization of the Einstein-Hilbert and cosmological constant
operators in two and in four dimensions. Our approach is based on two main steps.
The first one consists of writing down the non-local quantum effective action that
explicitly incorporates the Weyl anomalies of the two afore-mentioned operators. The
second step is to look for the cosmological quantum dynamics this action leads to.

Composite operators of the fundamental fields acquire anomalous Weyl dimensions
due to their covariant renormalization. In the effective action, the anomalous dimen-
sions are encoded in the gravitational dressings of the corresponding operators. When
gravity is dynamical, the operators acquire an additional anomalous dimension and
gravitational dressing, which is a priori different from those of the same operators on
a fixed background spacetime. The physical coupling constants are then the couplings
of the fully gravitationally-dressed operators.

The gravitational dressings depend on the conformal factor of the metric, which is
non-local when written covariantly in terms of the full-metric. The non-locality is to be
expected, as this is the action for the low-energy effective theory which should follow
from integrating out the fluctuations of various fields all the way down to the charac-
teristic scales of classical gravity. The non-locality of the dressings is further dictated
by the local renormalization group, this suggests a specific non-local generalization of
Einstein gravity.

The Weyl-invariant formalism turns out to be a very useful tool. This is because
it effectively implements a manifestly covariant split of the conformal factor from
the fiducial metric. In two dimensions, it greatly facilitates the computation of the
gravitational dressing of the cosmological constant. Since it makes the gauge Weyl
invariance manifest, it allows to further explicitly compute its anomalous dimension
by requiring that the Weyl Ward identity is satisfied, reproducing the well-known
Liouville result. In four dimensions, it simplifies the computation of the cosmological
quantum evolution equations, by allowing a general metric variation while still profiting
from imposing the Robertson-Walker symmetries.

The main lesson that we abstract from our analysis is that the gravitational dress-
ings of the composite operators in the effective action modify, not only the trace, but
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the full quantum momentum tensor, which in turn can modify the gravitational dy-
namics. Even small values for these gravitational dressings can have observable effects
in the cosmological evolution when the universe undergoes an exponential expansion
with several e-foldings.

Our chief result in two dimensions, where the anomalous dimension and gravita-
tional dressing of the cosmological constant can be computed exactly, the renormalized
vacuum fluid can source a homogeneous and isotropic universe, and has barotropic in-
dex γ = −1 + 2β2, the anomaly slightly increasing the classical value. This leads
to a vacuum energy density that slowly decays with time, which sources a power-law
expansion, recovering the de Sitter exponential solution in the classical limit.

In four dimensions, we parametrize the action with the integrated anomalous di-
mensions γK and γΛ and assume them constant, both because of simplicity and because
this can be a good approximation for long enough time intervals during the evolution
of the universe. The main result is that the same vacuum energy decay and quasi de
Sitter expansion are found, under the further assumption that γΛ − γK > 0. We con-
clude therefore that the considered effective action has the potential of being a model
for slow-roll inflation, strongly suggesting that Weyl anomalies could have played an
important role in the primordial evolution of the universe.

Discussion and Outlook

The appearance of timelike Liouville as the effective action for the conformal factor
of the metric is of great advantage to understanding two-dimensional quantum gravity,
because of all the well-known results about spacelike Liouville theory. For example,
the computation of the gravitational dressing of the cosmological constant was greatly
simplified because of the renormalizability of the full interacting theory by simple
normal ordering. However, still some question marks remain about the timelike theory,
the one relevant for gravity, since not all the spacelike results analytically-continue
properly to the timelike regime. The lack of a full understanding of this theory did
not affect us because we were interested in the semiclassical regime: we did not require
full quantization, identification of the spectrum or its correlation functions. It would
be very interesting though, to make sense of the full quantum theory as a solvable
model and explore its gravitational consequences, specially in the context of the work
presented in this thesis.

Path integral quantization of timelike Liouville theory is complicated because the
action is unbounded from below. As opposed to the spacelike regime, the theory
is not unitary in the timelike regime, since under the analytic continuation of the
background charge Q = iq, the timelike central charge becomes c = 1− 6q2 < 1. This
implies that the spectrum need not be the same in the two regimes, which is bound to
further modify the correlation functions. In fact, the three point function of spacelike
Liouville, given by the highly non-trivial DOZZ formula [120,121], blows up under the
analytic continuation.

Fortunately, in two dimensions, the framework of conformal bootstrap [125] offers
an approach to defining the theory based on the exclusive use of the spectrum of
operators, together with the two and the three point functions satisfying the bootstrap
constraints, namely the crossing symmetry equations. All higher point functions then,
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can in principle be constructed by gluing. There has been steady progress over the past
decade in solving timelike Liouville theory within the conformal bootstrap framework.
In particular, an alternative three point function was obtained in [117, 162], which
is finite in the timelike regime. This modified DOZZ formula was found to solve
the Teschner recursion relations [58], a subset of the bootstrap equations which were
originally used to find the DOZZ formula in the spacelike regime. This exact result can
be reproduced from semiclassical computations [61] and using Coulomb gas methods
[163]. A three point function, though, not only has to solve the Teschner relations, but
all the crossing symmetry equations, to lead to a consistent theory. This has in fact
recently been shown numerically for this modified DOZZ three point function [119].

Despite these advances, still some subtleties remain to be understood about timelike
Liouville, specially in its applicability as a theory of gravity. As shown in §2.3, the
natural metric measure of the quantum gravity path integral is the Weyl-invariant one,
induced by the norm

(δχ, δχ) =
∫
d2x
√
−h e2βχ δχ(x) δχ(x) . (7.0.1)

This measure on field space suppresses quantum fluctuations from the regions where
χ is very negative. In Liouville theory, on the other hand, one uses the shift-invariant
measure, as done in (2.3.26), which has no such suppression. This raises the question of
whether Liouville theory is the correct model for two-dimensional quantum gravity [16].

If one wishes to suppress the quantum fluctuations by hand, then one should restrict
the range of the field χ in the path integral to not reach regions of very negative
values. Such regions correspond to very short physical distances, since the latter are
computed with the physical metric which depends on the exponential of the field χ.
So this is effectively like putting an ultraviolet cutoff on the metric field. Indeed, when
the metric is dynamical, putting a physical cutoff such as the Planck length at short
distances really requires putting a boundary in field space. This is somewhat natural
in a non-renormalizable effective field theory such as gravity in four dimensions, which
is well defined only up to some distance scale. However, putting such a cutoff is a
generic problem in defining a path integral over metrics, since it automatically spoils
covariance as it introduces some background dependence.

Spacelike Liouville theory possesses a nontrivial duality symmetry under b→ 1/b,
as can be for example checked explicitly from the expression of the DOZZ formula.
This suggests that the action should include the dual cosmological constant term e2ϕ/b,
in addition to the usual one e2b ϕ [121]. This term in the action grows exponentially
for very negative ϕ, hence can effectively suppress the unwanted quantum fluctuations
that the Gaussian measure does not manage to. Timelike Liouville possesses an anal-
ogous β → 1/β duality symmetry. One can then hope that the dual operator e2/β χ

implements the same suppression of quantum fluctuations in the ultraviolet regions.
However, this is not totally clear, as the dual cosmological term seems to become
imaginary along the integration cycle that renders the path integral well defined.

These are nevertheless high energy considerations, related to the ultraviolet regions
of the theory, while we are concerned with the low-energy semiclassical physics. This
is eventually the reason we do not include the dual cosmological operator in our ac-
tion. Since its role should be that of precluding the theory to probe small distances,
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it can be interpreted as the two-dimensional analog of the higher-dimensional non-
renormalizability of gravity, which requires an ultraviolet completion to describe the
physics at high energies. As long as one is interested in the effective theory then, the
effects of such an operator should not come into play. It would be interesting though,
to check explicitly the extent of this assertion.

Besides these Liouville theory related subtleties concerning the full quantization
of the gravitational theory, there are other directions of further explorations within
our two-dimensional model. The immediate one would be the implementation of the
techniques developed, based on the use of the Weyl-invariant formulation and the Weyl
Ward identity, to compute gravitational dressings of general matter operators. The
interaction between gravity and general matter might be complicated, and such that
the renormalization of composite operators of both the Liouville field χ(x) and the
matter fields might not be as straightforward as it was for the cosmological operator.
Still, Liouville theory should provide simplifications. An example of this is the free
massive Majorana fermion. In the Weyl-invariant formulation, the mass term in the
classical action would read

If = m

∫
d2x
√
−g ψ̄ ψ = m

∫
d2x
√
−h ψ̄ ψ eΩ , (7.0.2)

due to the classical Weyl weight of the bi-linear. The operator is hence a composite of
the fermionic and the metric fields, and we write the renormalized one as [ψ̄ ψ e2αχ]h,
where the parameter α is introduced to account for the anomaly, just as we did with
β for the cosmological operator. Even if the explicit renormalization could be com-
plicated, Liouville theory provides us again with the anomalous dimension of this
operator [15,164], which is 2α2. Imposing Weyl invariance then, leads to the equation
for this anomalous dimension in terms of the fundamental coupling

α (q + α) = 1
2 , (7.0.3)

which is slightly different from the one for the cosmological operator β (q + β) = 1
due to the different classical scalings. Weyl invariance then dictates that the effective
action should read

Γf = m

∫
d2x
√
−h ψ̄ ψ eΩ e−2α2(Ω+Σh) = m

∫
d2x
√
−g ψ̄ ψ e−2α2Σg , (7.0.4)

where in the second step we went to the physical gauge. It seems then that it is
feasible to build more general models than the purely gravitational one considered,
with composite operators of other matter fields, where the gravitational dressings of the
latter are incorporated in the effective action. Such theories would make up for much
more realistic cosmological models. Even if two-dimensional, exploring such models
is interesting because they allow for explicit computations thanks to the simplicity
brought about by the Weyl-invariant formulation and Liouville theory, while they may
still lead to non-trivial results that can give guidance on how to do the analogous
analysis in four dimensions.

Regarding our four-dimensional model, the obvious next step is the computation
of the anomalous dimensions and consequently of the integrated gravitational dressing
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functions ΓK(Σg) and ΓΛ(Σg). Renormalization of Newton’s constant and the cosmo-
logical constant has been considered earlier in the literature [18–20], one can extract
the precise logarithmic running from these results. We sketch the logic in the following.

Within the background field method, we consider fluctuations of the metric around
a classical background. At one-loop order, the (Euclidean) effective action needs only
include up to the quadratic terms in the fluctuations, i.e.

e−Sef [g] = e−SG[g]
∫
Dhµν e−S

(2)
G [h] . (7.0.5)

Since the integral of the quadratic action is divergent, the classical action should include
the counterterms. In renormalized perturbation theory then

SG[g] = − 1
16πGN Z−1

G

∫
d4x
√
g
(
Rg − 2ΛZ−1

Λ

)
, (7.0.6)

where the two couplings are the running ones, and Zi = 1 + δi absorb the divergences
as usual, their scale variation giving the β-function of each coupling constant. To
compute the latter then, we need to regularize the integral of the quadratic action. In
particular, if we use dimensional regularization, the β-functions are determined by the
coefficient of the 1/ε pole.

The dimensional regularization of the quadratic action can be performed using
the heat kernel technique, for which one first has to identify the quadratic differential
operators ∆Λ

i of the different sectors in the quadratic action. In our purely gravitational
case, these are the traceless symmetric-two-tensor h̄µν , the trace scalar h and the ghost
vector field V ν , which appears from the diffeomorphism gauge fixing. The integral of
this quadratic action gives

e−∆Sef = e−
1
2Tr( ln ∆Λ

2 +ln ∆Λ
0 −2 ln ∆Λ

1 ) , (7.0.7)

where the operators ∆Λ
i are quadratic in derivatives and include a non-homogeneous

piece proportional to the cosmological constant. The traced logarithms of the operators
can be expressed with the Schwinger-time integral of the heat kernel of each operator
K∆(x, y; τ) = 〈x|e−∆τ |y〉. Further, the trace of the heat kernel admits a short-time
expansion K∆(τ) = ∑

m≥0 τ
m−d/2 bm, where the bm(x) are the so-called Seeley-de Witt

coefficients. To use dimensional regularization, we do d+ ε in this expansion. The 1/ε
pole then, can only appear in the case of even spacetime dimension, and comes from
the term m = d/2, since the time integral gives

Tr ln ∆ = −
∫
dx

∑
m≥0

bm(x)
∫ ∞

0
dτ τm−d/2−1 = · · · −

∫
dx bd/2(x) 2

ε
+ . . . (7.0.8)

The β-functions therefore, will be determined by the bd/2 Seeley-de Witt coefficients of
the quadratic operators in the action. In the case of four dimensions, we are interested
in the b2(x) coefficient. General expressions for these coefficients exist for an operator
of the kind ∆ = −∇2−E, which is the case of the differential operators in the quadratic
gravitational action. Identifying the precise operators Ei from the ∆Λ

i in (7.0.7), the
b2(x) coefficients for the three operators can be computed. This can be done on-
shell, as is allowed within the background field method, then the coefficients become
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proportional to Λ2, hence constant [19]. With them, the 1/ε pole in the effective action
becomes

∆Sef = −
∫
d4x
√
g

1
ε

(
b
(2)
2 + b

(0)
2 − 2 b(1)

2

)
=
∫
dx

1
ε

29
40

Λ2

π2 . (7.0.9)

This divergence can then be entirely absorbed by the cosmological constant countert-
erm, since

Sef [g] = SG + ∆Sef = − 1
16πGN

∫
dx

(
Rg − 2Λ (1− δΛ + M ε

ε

29
5πΛGN )

)
. (7.0.10)

The anomalous dimensions then follow as

γG = 0 γΛ = d lnZΛ
d lnM = 29

5π ΛGN . (7.0.11)

Hence at one loop, it seems that the dressing ΓK should vanish, and the cosmological
one ΓΛ would be of order GNΛ as expected from dimensional analysis. In the present
era, these effects would indeed be very small. However, they could be relevant during
the primordial stages of the universe. In terms of the Hubble scale at the very early
universe, we would have γ = (87/5π)H2

∗/M
2
p . If again we take the example of the

Hubble scale starting of order 0.1Mp, the anomaly γ = γΛ would be around 0.06, and
the slow-roll parameter εH around 0.03, so the numerical coefficients seem to slightly
enhance the effect of the anomalies. The conclusion in any case is that at least at
this loop order, our solution does describes a slow-roll inflation, driven entirely by a
slowly decaying vacuum energy. A high value of H is ruled out by current bounds on
primordial gravitational waves [165], but it is interesting that a mechanism of inflation
without any inflaton is possible. It is worth exploring if there are other ways to enhance
the anomalous dressings.

As it stands, both our two and four-dimensional models are too simplistic to provide
a realistic scenario of primordial inflation, as the cosmological constant would simply
keep driving inflation to end up in an empty universe with a vanishing value of the
former. It is thus necessary to try to embed them into a realistic cosmology. More
concretely, we should add matter fields which could provide a graceful exit to put
an end to the inflationary period and start a hot big bang. Also, one should then
account for their effects on the running of the cosmological constant, and the effects
of the gravitational dressings of their possible interaction terms on their couplings. As
explained above, the two-dimensional model makes this program more feasible.

Finally, a realistic model should also reproduce the primordial perturbations ob-
served in the cosmic microwave background. Our gravitational effective action (5.1.1)
should lead to a different quadratic action for the tensor perturbations than that of
Einstein-Hilbert gravity. Hence it is expected to induce a non-trivial tensor sound
speed that depends on the Weyl anomalous dimensions, and which will appear in the
tensor power-spectrum. Since this sound speed could depend on time, modifications on
both the tensor-to-scalar ratio r and the tensor tilt nt are generically to be expected.
One of the possible consequences of these modifications is a violation of the consistency
condition between the previous two r = −8nt, typical from standard single-field slow-
roll inflation. Such violations have already been found in models with higher-derivative
quantum gravitational corrections [166, 167], and they should be observable in future
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CMB polarization experiments. This could provide some test on the modifications of
gravity due to Weyl anomalies. Regarding scalar perturbations, since our quasi de
Sitter solution is entirely driven by the metric, we need to add additional fields to pro-
duce them. As a starting point, we can use curvaton-like mechanisms [168–171], where
the fields responsible for the perturbations do not drive the inflationary background.
High values of r due to the tensor power spectrum put lower bounds on the scalar
sound speed or dispersion relation [172], which would act as a consistency condition
to impose on our scalar model.

The idea of vacuum energy decay caused by infrared quantum effects has been much
explored earlier in four-dimensional gravity. There is considerable divergence in the lit-
erature about the final result [77–83,106,173] and more generally about infrared effects
in nearly de Sitter spacetime [84–95, 174]. One of the new ingredients in the present
work is the separation of the computation of the anomalous dimensions from the cos-
mological evolution they lead to. The anomalous dressings encode the quantum effects
in the non-local action in a gauge-invariant way. The semiclassical dynamics then can
be computed with a classical approach, by simply deriving equations of motion. This
way of organizing the analysis may be useful for future explorations, and gives insight
into what kind of quantum effects to expect. For instance, the effects of the anoma-
lies that we find in our quasi de Sitter quantum solution are logarithmic corrections
around the classical exact de Sitter solution, as is to be expected from quantum effects
coming from an effective action that follows from integration of the renormalization
group. Despite the relevance of de Sitter quantum gravity for cosmological purposes,
it is much less understood than quantum gravity in flat or anti de Sitter spacetime. It
would be interesting to use our new perspective to understand some of its conceptual
difficulties, such as the instability of a de Sitter invariant vacuum, or the identification
of gauge-invariant observables.

Just as quasi de Sitter is a solution to the equations (5.2.8), so is quasi Anti-de
Sitter if we assume a negative cosmological constant. In this case, we impose the
solution to be Weyl-equivalent to the Minkowski metric, with a conformal factor that
depends only on the radial coordinate Ω = Ω(z)1

gµν = a2(z) ηµν = e2Ω(z) (−dt2 + dz2 + d~x2) . (7.0.12)

With this assumption, the gravifluid and cosmological momentum tensors simplify
considerably just as for the Λ > 0 case, and the Einstein equations reduce to one total
differential equation for the conformal factor. The solution reads

a(z) = a∗ ( z
z∗

)
2

γ−2 , (7.0.13)

equivalent to the cosmological solution but replacing τ by z. Exact AdS a(z) ∼ 1/z
is recovered in the semiclassical limit γ → 0, and a small value of the anomalous
dimension entitles a conformal factor that diverges faster as the boundary is approached
at z → 0.

1Since z > 0, the fiducial is just half of Minkowski spacetime.
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This AdS solution is very interesting because it allows us to put the results obtained
in the context of the AdS/CFT correspondence. The anomalous dimensions appearing
as corrections to the fall-off of the pure AdS solution is consistent with the radial
coordinate z effectively running the renormalization group in the dual theory. It would
be interesting to figure out how the gravitational effects of Weyl anomalies show up
in a possible dual field theory, and to explore whether knowledge of the latter can
give input on the gravitational dressings to expect. Finally, since our formalism for
incorporating Weyl anomalies in the effective action should not depend on the sign
of the cosmological constant, it could be possible to directly translate any knowledge
gained about the duals of Weyl anomaly effects within the more familiar AdS/CFT
arena, to the more resisting dS/CFT correspondence.



Appendix A
Notation and Conventions

In this appendix we gather the signs and conventions used along this thesis, as well as
the main definitions of fields and constants, and the relations between them.

• Our gravitational constant κ2 is defined to be dimensionless as

Md−2
p

16π = Md−2
0

2κ2 , (A.0.1)

where Mp is the Planck mass and M0 is a UV cutoff below the Planck scale

• We follow the (+,+,+) conventions of Misner, Thorne and Wheeler [175]. Thus,
the spacetime signature is (−,+, ...,+).

• The Lorentzian action is denoted by I and the Euclidean one by S.
Euclidean signature is achieved by performing a Wick rotation of the time coor-
dinate. If Lorentzian time is t and Euclidean time is te, then the Wick rotation
can be thought of the coordinate transformation t = −i te. Under this Wick
rotation, all quantities transform according to the tensor transformation rule.
However, the Euclidean action is typically defined in the path integral as

Z =
∫
eiI[g,φ] → Z =

∫
e−S[ge,φe] . (A.0.2)

with S[ge, φe] =
∫
ddxe

√
ge Le(ge, φe). Therefore the Euclidean Lagrangian is

defined with an extra minus sign Le(ge, φe) := −L(g, φ), even if by coordinate
transformation of a scalar they should equal each other.

• The momentum tensor in Lorentzian and Euclidean signatures is defined respec-
tively as

Tµν = − 2√
−g

δI

δgµν
, T eµν = 2

√
g

δS

δgµν
, (A.0.3)

where in the second formula it is understood that the metric is the Euclidean
one. The different minus sign in the two formulas precisely cancels the additional
sign in the Euclidean action, therefore the two tensors are the same up to the
Wick rotation of the fields.
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• Given an operator renormalized at renormalization scale M , such that O0 =
Z(M)OM , with O0 being the operator at the cutoff scale, its anomalous dimen-
sion is defined as

γ := M
∂ lnZ(M)

∂M
. (A.0.4)

In the action, the operator appears as I =
∫ √
−η λ(M)OM , where λ is the

(dimensionful) coupling constant. If ∆ is the classical scaling dimension of the
operator, then the β-function is βλ = (∆ − d + γ)λ. The contribution of the
anomalous dimension in the trace is

ηµνTµν = −βλOM . (A.0.5)

In Euclidean signature, both formulas hold with the very same signs, the only
sign difference comes into the action, as this one reads S = −

∫ √
δ λ(M)OM .

• Given an operator renormalized with respect to the metric gµν , such that O0 =
ZgOg, its anomalous dimension is defined as

γ := δ lnZg
δΣg

. (A.0.6)

The trace of the resulting momentum tensor then satisfies the same equation
(A.0.5).

• The two-dimensional c-anomaly reads T = c
24πRg, with the + sign in both

Lorentzian and Euclidean signature, even if the definition of the momentum
tensor in the two signatures has a relative − sign.

• In spacelike Liouville, the background charge Q, the Liouville coupling b and the
central charge are related as

b(Q− b) = 1 , b− = 1
Q

+ 1
Q3 + 2

Q5 + ... , c = 1 + 6Q2 . (A.0.7)

In timelike Liouville,

β(q + β) = 1 , β+ = 1
q
− 1
q3 + 2

q5 + ... , c = 1− 6q2 . (A.0.8)

The analytic continuation between the two is given by

Q = iq , ϕ = iχ , b = −iβ . (A.0.9)



Appendix B
Conformal Geometry and Useful For-
mulas

Conformal geometry concerns the transformation properties of various objects of Rie-
mannian geometry under Weyl rescaling. In the following, we enumerate the transfor-
mations that are relevant in this work.

Let’s consider the Weyl transformation of metric hµν with parameter Ω(x)

gµν = e2Ω hµν . (B.0.1)

In the following, all covariant derivatives are with respect to the hµν metric. The
transformations of the Ricci and Einstein tensors, and the Ricci scalar are

Rµν(g) = Rµν(h) + Vµν(Ω, h) , (B.0.2)
Eµν(g) = Eµν(h) +Dµν(Ω, h) , (B.0.3)
R(g) = e−2Ω [R(h) + V (Ω, h)] , (B.0.4)

where

Vµν = (d− 2) [−∇µ∇νΩ + (∇µΩ)(∇νΩ)]− hµν
[
∇2
hΩ + (d− 2)(∇Ω)2

]
, (B.0.5)

V = hµνVµν = −2(d− 1)∇2
hΩ− (d− 1)(d− 2) (∇Ω)2 , (B.0.6)

Dµν = Vµν −
1
2hµνV (B.0.7)

= (d− 2)
[
−∇µ∇νΩ + (∇µΩ)(∇νΩ) + hµν

(
∇2
hΩ + d− 3

2 (∇Ω)2
)]

. (B.0.8)

The Einstein tensor for any metric vanishes identically in two dimensions. This can
be seen by noting that the Einstein tensor is a functional derivative of the Einstein-
Hilbert action. Since in two dimensions the Einstein-Hilbert action is proportional to
the Euler character, which is topological invariant, its variation must vanish for any
smooth variation of the metric. This implies that the tensor Dµν must also vanish
identically for d = 2 because it is the difference between two Einstein tensors. This
explains why Dµν is proportional to (d− 2).
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Variation of the Integrated Ricci scalar
Consider a functional of the form1

I[Σ, h] =
∫
ddx
√
−h R(h) Σ(x) (B.0.9)

for some scalar function Σ(x). Under a general variation of the metric hµν → hµν +
δhµν , the variation of this action is given by

δI =
∫
ddx
√
−h δhµν

[
Eµν Σ(x)− (∇µ∇ν − hµν∇2) Σ(x)

]
, (B.0.10)

where Eµν is the Einstein tensor

Eµν = Rµν −
1
2hµν R . (B.0.11)

The second term in the square brackets comes from integrating by parts. The Ward
identity that follows from the diffeomorphism invariance of this functional

− 2∇ν
(
δI

δhµν

)
− δI

δΣ ∇µΣ = 0 , (B.0.12)

can be verified using
[∇λ,∇µ]∇νΣ = −Rσνλµ∇σΣ , (B.0.13)

which leads to
∇ν(∇µ∇νΣ− hµν∇2Σ) = Rµν∇νΣ , (B.0.14)

and together with the Bianchi identity for the Einstein tensor, implies that the covari-
ant divergence of the term in the square bracket of (B.0.10) equals

− 1
2R∇µΣ . (B.0.15)

The variation of the Einstein-Hilbert action2

IK [h] = 1
2κ2

∫
ddx
√
−hR(h) , (B.0.16)

follows from (B.0.10) by doing Σ(x) = 1, and gives the Einstein tensor appearing in
the left-hand side of Einstein equations. In the case the variation of the metric is a
Weyl transformation, δhµν = −2 δξ(x)hµν , it becomes

δIK = (d− 2)
2κ2

∫
ddx
√
−h δξ(x)R(h) , (B.0.17)

which shows that the Einstein-Hilbert action is only Weyl invariant in two dimensions.

1All along this thesis, we will use both R(h) and Rh to denote the Ricci scalar of the hµν metric.
2In the following we choose the units M0 = 1 according to our notation (A.0.1).



Appendix C
c-Anomaly and the Polyakov Action

In this appendix we compute the Polyakov action as arising from the integration of
the two-dimensional c-anomaly. We do this in Euclidean signature.

The variation of the action W [h] with respect to the metric hµν is given by

(C.0.1)W [h+ δh]−W [h] = δW [h] = 1
2

∫
d2x
√
h δhµν Tµν

In the conformal gauge, the Weyl variation of the metric can be written in terms of
the variation of the conformal factor as δhµν = 2 δΣh hµν . The Weyl variation of the
action then follows as

δW [h] = −
∫
d2x
√
h δΣh h

µν Tµν . (C.0.2)

The two-dimensional c-anomaly for a CFT with central charge c reads

Th(x) = c

24π Rh(x) . (C.0.3)

Inserting it in the variation of the action we find

δW [h] = − c

24π

∫
d2x
√
h δΣhRh = − c

24π

∫
ddx
√
δ δΣh

(
Rδ − 2∇δ2Σh

)
, (C.0.4)

where in the second step we have used the Weyl transformation of the Ricci scalar.
We can now integrate on both sides

W [g]−W [h] = − c

24π

∫
d2x
√
δ
(
Rδ Σ− Σ∇2

δ Σ
)Σg

Σh
(C.0.5)

from which follows

W [g] = − c

24π

∫
d2x
√
δ
(
(∇Σg)2 +Rδ Σg

)
. (C.0.6)

To write it fully-covariantly, we can use the expression for the conformal factor

Σg(x) = 1
2

∫
d2y
√
g Gg(x, y)Rg(y) , (C.0.7)
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with which the effective action becomes the Polyakov action

W [g] = − c

96π

∫
d2x
√
g d2y

√
g Rg(x)Gg(x, y)Rg(y) = − c

96π

∫
Rg

1
�
Rg , (C.0.8)

where � = −∇2. Further, from (C.0.5) follows that the transformation of the effective
or Polyakov action when doing gµν = e2Ω hµν is the timelike Liouville action

W [g]−W [h] = − c

24π

∫
d2x
√
h
(
(∇Ω)2 +RhΩ

)
. (C.0.9)

Adding a constant to the trace anomaly equation (C.0.3) would result into an addi-
tional cosmological constant term in the effective action, or the cosmological constant
operator in the Liouville action.



Appendix D
The Regularized Coincident Green Func-
tion

We now compute the coincident Green function, first using short-time cutoff and then
using dimensional regularization. Both methods are manifestly local and coordinate
invariant.1 A common basic ingredient is the d-dimensional heat kernel Kh(x, y; s)
satisfying the heat equation(

∂s −∇2
h

)
Kh(x, y; s) = δ(s) δ(d)(x, y) (D.0.1)

with the initial condition
Kh(x, y; 0) = δ(d)(x, y) . (D.0.2)

In flat space, the solution is given by

Kδ(x, y; s) = e−
|y−x|2

4s

(4πs)d/2
. (D.0.3)

Since the divergence of the coincident Green function comes from short distances, it
suffices to consider the adiabatic expansion of the heat kernel assuming small curvature

Kh(x, y; s) =
√

∆h(x, y) e
−σ(x,y)/2s

(4πs)d/2
[
1 + a1(x, y)s+ a2(x, y)s2 + ...

]
, (D.0.4)

where the function σ(x, y) is half the square of the geodesic distance between the two
points and ∆(x, y) is the Van Vleck determinant

∆h(x, y) = det [∂µ∂ν σ(x, y)]√
h(y)h(x)

. (D.0.5)

The adiabatic expansion parameter is effectively s/L2, where L2 is the typical radius
of curvature. In two dimensions, in the conformally flat frame, one obtains in this
approximation

σ(x, y) = 1
2e

2Σh(x)|x− y|2, ∆h(x, y) = 1 , (D.0.6)

1Other commonly used methods use point-splitting [137] which is not manifestly covariant because
of the choice of the direction used for point-splitting. One obtains the correct final answer by averaging
over directions.
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where the exponential factor in (D.0.4) ensures that corrections are of order O(ε). This
reproduces the leading behavior of (3.1.10).

For the diagonal heat kernel, the geodesic distance vanishes and the coefficients
of the expansion aj(x) are the so-called Seeley-de Witt coefficients given in terms of
local curvature tensors. The Van Vleck determinant can be put to unity in Riemann
normal coordinates. Therefore the short-time expansion of the diagonal heat kernel in
d dimensions reads

Kh(x, x; s) = 1
(4πs)d/2

(
1 + a1(x)s+ a2(x)s2 + ...

)
. (D.0.7)

D.1 Short Proper Time Cutoff

As discussed below (3.1.8) the coincident Green function can be regularized as [140]

Gεh(x, x) =
∫
d2y
√
h δ

(2)
h (x, y)Gh(y, x) =

∫
d2y
√
hKh(x, y; ε)Gh(y, x) (D.1.1)

where the short-time ε effectively puts a cutoff on the distance between the two points.
For small ε we need to keep only the leading term of the adiabatic expansion (D.0.4).
So in the conformal frame, using (D.0.6) and the explicit expression for the Green
function (3.1.6)

Gεh(x, x) = − 1
4π

∫
d2y
√
h

1
4πε exp

[
−e

2Σh(x) |x− y|2

4ε

]
ln(m2|y−x|2) +O(ε) . (D.1.2)

The
√
h(y) factor in the integrand is approximated by its value at point x up to terms

of higher order in ε. Going to polar coordinates r = |y − x|

Gεh(x, x) = − 1
16π2ε

∫
πdr2e2Σh(x) ln(m2 r2) exp

[
−e−2Σh(x) r2

4ε

]
. (D.1.3)

A straightforward integration finally gives

Gεh(x, x) = 1
2πΣh(x)− 1

4π ln(4 e−γm2 ε) , (D.1.4)

where γ is the Euler-Mascheroni constant.

D.2 Dimensional Regularization
The Green function is related to the heat kernel by

Gh(x, y) =
∞∫
0

dsKh(x, y; s) . (D.2.1)

The coincident Green function is formally obtained by taking x = y as the integral
of the diagonal of the heat kernel (D.0.7). Near two dimensions, only the first term
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of this integral has an ultraviolet logarithmic divergence from the lower end of the
integral. This can be regularized by continuing the integral to d = 2 + ε dimensions
with ε negative and small:

Gdh(x, x)→ Gεh(x, x) =
∞∫
0

ds
1

(4πs)1+ ε
2
. (D.2.2)

There is an infrared divergence from the upper end of the integral which can be regu-
larized by introducing a mass term. Near two dimensions in the conformal frame the
metric can be written as hµν = e2Σhδµν . Moreover, since only the first term in the
adiabatic expansion (D.0.7) matters, we can take Σh to be a constant equal to its value
at the point x. The infrared divergence can be regulated by considering the massive
Green equation in a flat metric hµν Weyl equivalent to δµν by a constant rescaling
e2Σh(x): (

−e−2Σh(x) δµν ∂µ∂ν +m2
h

)
Gh(x, y) = e−2Σh(x) δ(2)(x− y) . (D.2.3)

Let m2
h = m2 e−2Σh(x). For fixed m the massive Green equation is Weyl invariant and

the infrared regulator does no break Weyl invariance. The regulated Green function
is given by

Gεh(x, x) = 1
(4π)1+ ε

2

∞∫
0

ds

s1+ ε
2
e−m

2e−2Σh(x) s (D.2.4)

for fixed m. Following the discussion above (3.1.5) this m can be identified with the
IR cutoff 1/R introduced in that section.The integral evaluates to

Gεh(x, x) = 1
4π

[
1− ε

2 ln(4πe2Σh(x)

m2 ) +O(ε)
]

Γ(− ε2)

= − 1
2πε + Σh(x)

2π − 1
4π ln(m

2eγ

4π ) +O(ε) . (D.2.5)
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Appendix E
Variation of Green Functions

E.1 Variation of the Scalar Laplacian
The variation of the scalar Laplacian under a general variation of the metric is

δ∇2
h = δ

( 1√
−h

∂µ(
√
−hhµν ∂ν)

)
= −1

2∇α(hµνδhµν)∇α + (∇µ δhµν) ∇ν + δhµν ∇µ∇ν . (E.1.1)

In particular, for an infinitesimal Weyl variation δhµν = 2 δξ(x)hµν , the Laplacian
transforms as

δ∇2
h = (d− 2)hµν (∇µ δξ )∇ν − 2 δξ∇2

h . (E.1.2)

In the case of two dimensions, the infinitesimal variation can be easily integrated, and
under the finite Weyl transformation gµν = e2Ω(x)hµν the Laplacian transforms as

∇2
g = e−2Ω(x)∇2

h . (E.1.3)

In general dimensions, the finite Weyl transformation of the Laplacian acting on a
generic scalar function Σ is

∇2
gΣ = e−2Ω(x)

(
(d− 2)hµν∇µΩ∇νΣ +∇2

hΣ
)
. (E.1.4)

E.2 Variation of the Scalar Laplacian Green Function
To compute the metric variation of the scalar Green function we vary the Green equa-
tion

−∇2
hG(y, z) = δ

(2)
h (y, z) = δ(2)(y − z)√

h
(E.2.1)

to obtain
δ
(
−∇2

h

)
Gyz −∇2

h δGyz = 1
2 δ

(2)(y, z)hµν δhµν , (E.2.2)

where the right-hand side follows from the variation of the 1/
√
−h factor of the delta

function. Using the variation of the Laplacian (E.1.1), we obtain a Poisson equation
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for δGyz whose solution, after an integration by parts, is given by

δGyz =
∫
dw δhµν(w)

(1
2hµν∇α (Gyw∇αGwz)−∇µGyw∇νGwz

)
+ 1

2hµν δh
µν(z)Gyz

(E.2.3)

where all derivatives are taken inside the integral are with respect to the variable w.
The final expression for the functional derivative is given by

1√
−h

δGyz
δhµν(x) = −∇x(µGyx∇xν)Gxz + 1

2hµν h
αβ∇xαGyx∇xβGxz . (E.2.4)

Note that this variation is traceless, as expected from the Weyl invariance of the
Laplacian Green equation.

E.3 Variation of the G̃ Green function

The Green function G̃(x, y) involved in the R-flat gauge treatment obeys the Green
equation1 (

−6∇2
g +Rg

)
x
G̃(x, y) = δ(4)(x, y) . (E.3.1)

Again the variation of the Green function can be computed by first performing the
variation of this Green equation. From the resulting Poisson equation we obtain

δ G̃(x, y) =
∫
dz G̃(x, z)

[
− δ

(
−6∇2

g +Rg
)
z
G̃(z, y) + 1

2 gµν δg
µν δ(4)(z, y)

]
(E.3.2)

Using again the Laplacian variation (E.1.1) and the variation of the Ricci scalar

δRg =
(
Rµν −∇µ∇ν + gµν∇2

g

)
δgµν , (E.3.3)

the variation becomes

(E.3.4)
δ G̃(x, y) =

∫
dz δgµν

[
−Eµν(z) G̃xzG̃zy

−4
(
∇µG̃xz∇νG̃zy −

1
4gµν ∇αG̃xz∇

αG̃zy

)
+ G̃xz

(←−−−−−−−−−→
∇µ∇ν − gµν∇2

g

)
G̃zy

]
,

where the derivatives inside the parenthesis are performed with respect to the variable
z, and the over-arrow on the last parenthesis indicates the sum of the operator acting
on the Green function on each side.

1This computation we perform it in the metric gµν background to make contact with section §5.4
where it is used.



Appendix F
Nearly Static Coordinates

Static coordinates of de Sitter spacetime are useful for studying the thermodynamic
properties of the spacetime [149,176]. Even thought there is no global timelike Killing
vector in de Sitter spacetime, the static coordinates provide a timelike future-oriented
Killing vector in the static patch. These are also the natural coordinates for a Schwarzschild-
de Sitter solution. Is there an analog of the static coordinates for our new solution?

Since our solution violates the de Sitter symmetry, we do not expect exactly static
coordinates. Indeed, it can be shown that no such exact static coordinates exist for our
cosmological solution (6.2.4). However, since any two Robertson-Walker metrics are
Weyl equivalent, our solution admits nearly static coordinates in which it is conformal
to static de Sitter:

ds2 =
(

e2hT

1− h2R2

) γ
γ−2 [

−(1− h2R2) dT 2 + 1
1− h2R2 dR

2 +R2 dΩ2
2

]
, (F.0.1)

where constant h is defined as

h := 2− γ
2 H∗ a

γ/2
∗ . (F.0.2)

In the limit of vanishing γ, one recovers the static de Sitter metric.

95



96 Appendix F. Nearly Static Coordinates



Bibliography

[1] J. F. Donoghue, “General relativity as an effective field theory: The leading
quantum corrections,” Phys. Rev. D50, 3874–3888 (1994). (document)

[2] C. P. Burgess, “Quantum gravity in everyday life: General relativity as an effec-
tive field theory,” Living Rev. Rel. 7, 5–56 (2004). (document)

[3] J. F. Donoghue, “The effective field theory treatment of quantum gravity,” AIP
Conf. Proc. 1483, 73–94 (2012). (document)

[4] J. F. Donoghue, “Leading quantum correction to the Newtonian potential,” Phys.
Rev. Lett. 72, 2996–2999 (1994). (document)

[5] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems,” Phys. Rev. D23, 347–356 (1981). (document)

[6] A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the
Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,”
Phys. Lett. B108, 389–393 (1982). (document)

[7] A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories
with Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett. 48, 1220–1223
(1982). (document)

[8] D. M. Capper and M. J. Duff, “Trace anomalies in dimensional regularization,”
Nuovo Cim. A23, 173–183 (1974). (document)

[9] D. M. Capper and M. J. Duff, “Conformal Anomalies and the Renormalizability
Problem in Quantum Gravity,” Phys. Lett. A53, 361 (1975). (document)

[10] A. Dabholkar, “Quantum Weyl Invariance and Cosmology,” (2015). (document),
4.2

[11] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions
in Quantum Gravity,” Phys. Rev. D15, 2752–2756 (1977). (document), 2.2

[12] F. David, “Conformal Field Theories Coupled to 2D Gravity in the Conformal
Gauge,” Mod. Phys. Lett. A3, 1651 (1988). (document), 2.3, 2.4, 3.1, 3.2

[13] J. Distler and H. Kawai, “Conformal Field Theory and 2D Quantum Gravity Or
Who’s Afraid of Joseph Liouville?” Nucl. Phys. B321, 509 (1989). (document),
2.3, 2.4, 3.1, 3.2

97



98 BIBLIOGRAPHY

[14] J. Polchinski, “Remarks on the Liouville Field Theory,” Conf. Proc. C9003122,
62–70 (1990). (document), 2.4, 3.1

[15] N. Seiberg, “Notes on quantum Liouville theory and quantum gravity,”
Prog.Theor.Phys.Suppl. 102, 319–349 (1990). (document), 2.4, 3.1, 7

[16] E. D’Hoker, “Equivalence of liouville theory and 2-d quantum gravity,” Mod.
Phys. Lett. A6, 745–768 (1991). (document), 2.4, 3.1, 7

[17] E. D’Hoker and P. Kurzepa, “2D Quantum Gravity and Liouville Theory,” Mod-
ern Physics Letters A 05, 1411–1421 (1990). (document), 2.4, 3.1

[18] G. W. Gibbons and M. J. Perry, “Quantizing Gravitational Instantons,” Nucl.
Phys. B146, 90 (1978). (document), 7

[19] S. M. Christensen and M. J. Duff, “Quantizing Gravity with a Cosmological
Constant,” Nucl. Phys. B170, 480 (1980). (document), 7, 7

[20] K. A. Kazakov, P. I. Pronin, and K. V. Stepanyantz, “On the gravity renormal-
ization off-shell,” Grav. Cosmol. 4, 17–27 (1998). (document), 7

[21] N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Planté, and P. Van-
hove, “Bending of light in quantum gravity,” (2014). (document)

[22] N. E. J. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein, “Quantum correc-
tions to the Schwarzschild and Kerr metrics,” Phys. Rev. D68, 084005 (2003).
[Erratum: Phys. Rev.D71,069904(2005)]. (document)

[23] G. G. Kirilin, “Quantum corrections to the Schwarzschild metric and
reparametrization transformations,” Phys. Rev. D75, 108501 (2007). (docu-
ment)

[24] D. Baumann, “Inflation,” in “Physics of the large and the small, TASI 09, pro-
ceedings of the Theoretical Advanced Study Institute in Elementary Particle
Physics, Boulder, Colorado, USA, 1-26 June 2009,” (2011), pp. 523–686. (docu-
ment)

[25] I. G. Avramidi, “Heat kernel and quantum gravity,” Lect. Notes Phys. M64,
1–149 (2000). (document)

[26] D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rept. 388,
279–360 (2003). (document)

[27] A. Codello and R. K. Jain, “Covariant Effective Field Theory of Gravity I: For-
malism and Curvature expansion,” (2015). (document)

[28] A. Codello and R. K. Jain, “Covariant Effective Field Theory of Gravity II:
Cosmological Implications,” (2015). (document)

[29] A. O. Barvinsky and G. A. Vilkovisky, “The Generalized Schwinger-Dewitt Tech-
nique in Gauge Theories and Quantum Gravity,” Phys. Rept. 119, 1–74 (1985).
(document)



BIBLIOGRAPHY 99

[30] A. O. Barvinsky and G. A. Vilkovisky, “Beyond the Schwinger-Dewitt Technique:
Converting Loops Into Trees and In-In Currents,” Nucl. Phys. B282, 163–188
(1987). (document), 3.2

[31] A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2: Second
order in the curvature. General algorithms,” Nucl. Phys. B333, 471–511 (1990).
(document)

[32] A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 3: Spec-
tral representations of the third order form-factors,” Nucl. Phys. B333, 512–524
(1990). (document)

[33] A. O. Barvinsky, Yu. V. Gusev, V. V. Zhytnikov, and G. A. Vilkovisky, “Covari-
ant perturbation theory. 4. Third order in the curvature,” (1993). (document)

[34] A. Codello and O. Zanusso, “On the non-local heat kernel expansion,” J. Math.
Phys. 54, 013513 (2013). (document)

[35] M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quant. Grav. 11, 1387–
1404 (1994). 2, (document)

[36] A. M. Polyakov, “Quantum Geometry of Bosonic Strings,” Phys.Lett. B103,
207–210 (1981). (document), 2.1.1, 2.3, 2.3, 2.3, 3.1

[37] R. Riegert, “A Nonlocal Action for the Trace Anomaly,” Phys.Lett. B134, 56–60
(1984). (document), 5.1

[38] H. Osborn, “Derivation of a Four-dimensional c Theorem,” Phys. Lett. B222,
97 (1989). (document), 1.1.4

[39] I. Jack and H. Osborn, “Constraints on RG Flow for Four Dimensional Quantum
Field Theories,” Nucl. Phys. B883, 425–500 (2014). (document), 1.1.4

[40] H. Osborn, “Weyl consistency conditions and a local renormalization group equa-
tion for general renormalizable field theories,” Nucl. Phys.B363, 486–526 (1991).
(document), 1.1.4

[41] F. Baume, B. Keren-Zur, R. Rattazzi, and L. Vitale, “The local Callan-Symanzik
equation: structure and applications,” JHEP 08, 152 (2014). (document), 1.1.4

[42] S. Weinberg, “The Cosmological Constant Problem,” Rev.Mod.Phys. 61, 1–23
(1989). (document), 4.2

[43] S. Weinberg, “The Cosmological constant problems,” pp. 18–26 (2000). (docu-
ment), 4.2

[44] B. Zumino, “Effective Lagrangians and Broken Symmetries,” in “Lectures on El-
ementary Particles and Quantum Field Theory v.2, Cambridge, Mass.: Brandeis
Univ., pp. 437-500,” (1970). (document)

[45] S. Deser, “Scale invariance and gravitational coupling,” Annals Phys. 59, 248–
253 (1970). (document)



100 BIBLIOGRAPHY

[46] M. Kaku, P. K. Townsend, and P. van Nieuwenhuizen, “Gauge Theory of the
Conformal and Superconformal Group,” Phys. Lett. B69, 304–308 (1977). (doc-
ument)

[47] A. Das, M. Kaku, and P. K. Townsend, “A Unified Approach to Matter Cou-
pling in Weyl and Einstein Supergravity,” Phys. Rev. Lett. 40, 1215 (1978).
(document)

[48] D. Grumiller and R. Jackiw, “Liouville gravity from Einstein gravity,” in “Recent
developments in theoretical physics, S. Gosh, G. Kar, 2010. World Scientific,
Singapore,2010, p.331,” (2007). (document), 1

[49] A. R. Gover, A. Shaukat, and A. Waldron, “Tractors, Mass andWeyl Invariance,”
Nucl. Phys. B812, 424–455 (2009). (document)

[50] A. Iorio, L. O’Raifeartaigh, I. Sachs, and C. Wiesendanger, “Weyl gauging and
conformal invariance,” Nucl. Phys. B495, 433–450 (1997). (document), 1.1.2

[51] R. Jackiw, “Weyl symmetry and the Liouville theory,” Theor. Math. Phys. 148,
941–947 (2006). [Teor. Mat. Fiz.148,80(2006)]. (document), 2.1, 2.1.1

[52] G. ’t Hooft, “A class of elementary particle models without any adjustable real
parameters,” Found. Phys. 41, 1829–1856 (2011). (document)

[53] R. Floreanini and R. Percacci, “Average effective potential for the conformal
factor,” Nucl. Phys. B436, 141–162 (1995). (document)

[54] R. Percacci, “Renormalization group flow of Weyl invariant dilaton gravity,” New
J. Phys. 13, 125013 (2011). (document)

[55] A. Codello, G. D’Odorico, C. Pagani, and R. Percacci, “The Renormalization
Group andWeyl-invariance,” Class. Quant. Grav. 30, 115015 (2013). (document)

[56] S. Ribault, “Conformal field theory on the plane,” (2014). (document)

[57] Y. Nakayama, “Liouville field theory: A Decade after the revolution,” Int. J.
Mod. Phys. A19, 2771–2930 (2004). (document), 2.3

[58] J. Teschner, “Liouville theory revisited,” Class. Quant. Grav. 18, R153–R222
(2001). (document), 3.1, 7, 7

[59] P. H. Ginsparg and G. W. Moore, “Lectures on 2-D gravity and 2-D string
theory,” (1993). (document), 2.3

[60] L. Alvarez-Gaume and C. Gomez, “Topics in Liouville theory,” in “Spring School
on String Theory and Quantum Gravity,” (1991). (document)

[61] D. Harlow, J. Maltz, and E. Witten, “Analytic Continuation of Liouville Theory,”
JHEP 1112, 071 (2011). (document), 2.2, 7

[62] J. Polchinski, “A Two-Dimensional Model for Quantum Gravity,” Nucl.Phys.
B324, 123 (1989). (document), 2.2, 2.3



BIBLIOGRAPHY 101

[63] A. R. Cooper, L. Susskind, and L. Thorlacius, “Two-dimensional quantum cos-
mology,” Nucl. Phys. B363, 132–162 (1991). (document), 2.2

[64] B. C. Da Cunha and E. J. Martinec, “Closed string tachyon condensation and
world sheet inflation,” Phys. Rev. D68, 063502 (2003). (document), 2.2

[65] E. J. Martinec and W. E. Moore, “Modeling Quantum Gravity Effects in Infla-
tion,” JHEP 1407, 053 (2014). (document), 2.2

[66] S. Deser and R. P. Woodard, “Nonlocal Cosmology,” Phys. Rev. Lett. 99, 111301
(2007). (document)

[67] C. Deffayet and R. P. Woodard, “Reconstructing the Distortion Function for
Nonlocal Cosmology,” JCAP 0908, 023 (2009). (document)

[68] S. Deser and R. P. Woodard, “Observational Viability and Stability of Nonlocal
Cosmology,” JCAP 1311, 036 (2013). (document), 6.3

[69] N. Tsamis and R. Woodard, “A Caveat on Building Nonlocal Models of Cosmol-
ogy,” JCAP 1409, 008 (2014). (document), 4.4, 6.3, 6.3

[70] R. P. Woodard, “Nonlocal Models of Cosmic Acceleration,” Found. Phys. 44,
213–233 (2014). (document)

[71] J. F. Donoghue and B. K. El-Menoufi, “Nonlocal quantum effects in cosmology:
Quantum memory, nonlocal FLRW equations, and singularity avoidance,” Phys.
Rev. D89, 104062 (2014). (document)

[72] R. P. Woodard, “Nonlocal metric realizations of MOND,” Can. J. Phys. 93,
242–249 (2015). (document)

[73] L. Parker and D. J. Toms, “Renormalization Group and Nonlocal Terms in the
Curved Space-Time Effective Action: Weak Field Results,” Phys. Rev. D32,
1409–1420 (1985). (document)

[74] H. W. Hamber and R. M. Williams, “Nonlocal effective gravitational field equa-
tions and the running of Newton’s G,” Phys. Rev. D72, 044026 (2005). (docu-
ment)

[75] S. Park and S. Dodelson, “Structure formation in a nonlocally modified gravity
model,” Phys.Rev. D87, 024003 (2013). (document)

[76] A. Barreira, B. Li, W. A. Hellwing, C. M. Baugh, and S. Pascoli, “Nonlinear
structure formation in Nonlocal Gravity,” JCAP 1409, 031 (2014). (document)

[77] A. M. Polyakov, “Phase Transitions and the Universe,” Sov. Phys. Usp. 25, 187
(1982). [Usp. Fiz. Nauk136,538(1982)]. (document), 7

[78] E. Mottola, “Particle Creation in de Sitter Space,” Phys. Rev. D31, 754 (1985).
(document), 7



102 BIBLIOGRAPHY

[79] I. Antoniadis, J. Iliopoulos, and T. N. Tomaras, “Quantum Instability of De
Sitter Space,” Phys. Rev. Lett. 56, 1319 (1986). (document), 7

[80] N. C. Tsamis and R. P. Woodard, “Quantum gravity slows inflation,” Nucl. Phys.
B474, 235–248 (1996). (document), 7

[81] A. M. Polyakov, “De Sitter space and eternity,” Nucl. Phys. B797, 199–217
(2008). (document), 7

[82] A. M. Polyakov, “Infrared instability of the de Sitter space,” (2012). (document),
7

[83] M. G. Romania, N. C. Tsamis, and R. P. Woodard, “Quantum Gravity and
Inflation,” Lect. Notes Phys. 863, 375–395 (2013). (document), 7

[84] A. A. Starobinsky and J. Yokoyama, “Equilibrium state of a selfinteracting scalar
field in the De Sitter background,” Phys. Rev. D50, 6357–6368 (1994). (docu-
ment), 7

[85] S. Weinberg, “Quantum contributions to cosmological correlations,” Phys. Rev.
D72, 043514 (2005). (document), 7

[86] S. Weinberg, “Quantum contributions to cosmological correlations. II. Can these
corrections become large?” Phys. Rev. D74, 023508 (2006). (document), 7

[87] L. Senatore and M. Zaldarriaga, “On Loops in Inflation,” JHEP 12, 008 (2010).
(document), 7

[88] H. Kitamoto and Y. Kitazawa, “Boltzmann equation in de Sitter space,” Nucl.
Phys. B839, 552–579 (2010). (document), 7

[89] E. O. Kahya, V. K. Onemli, and R. P. Woodard, “The Zeta-Zeta Correlator Is
Time Dependent,” Phys. Lett. B694, 101–107 (2011). (document), 7

[90] D. Marolf and I. A. Morrison, “The IR stability of de Sitter: Loop corrections
to scalar propagators,” Phys. Rev. D82, 105032 (2010). (document), 7

[91] S. B. Giddings and M. S. Sloth, “Semiclassical relations and IR effects in de
Sitter and slow-roll space-times,” JCAP 1101, 023 (2011). (document), 7

[92] A. Higuchi, D. Marolf, and I. A. Morrison, “de Sitter invariance of the dS graviton
vacuum,” Class. Quant. Grav. 28, 245012 (2011). (document), 7

[93] D. Marolf and I. A. Morrison, “The IR stability of de Sitter QFT: Physical initial
conditions,” Gen. Rel. Grav. 43, 3497–3530 (2011). (document), 7

[94] G. L. Pimentel, L. Senatore, and M. Zaldarriaga, “On Loops in Inflation III:
Time Independence of zeta in Single Clock Inflation,” JHEP 07, 166 (2012).
(document), 7

[95] E. T. Akhmedov, “Lecture notes on interacting quantum fields in de Sitter
space,” Int. J. Mod. Phys. D23, 1430001 (2014). (document), 7



BIBLIOGRAPHY 103

[96] S. Weinberg, “Ultraviolet Divergences in Quantum Theories of Gravitation,”
in “General Relativity: An Einstein Centenary Survey,” , S. W. Hawking and
W. Israel, eds. (1980), pp. 790–831. (document)

[97] H. Kawai and M. Ninomiya, “Renormalization Group and Quantum Gravity,”
Nucl. Phys. B336, 115 (1990). (document)

[98] H. Kawai, Y. Kitazawa, and M. Ninomiya, “Scaling exponents in quantum grav-
ity near two-dimensions,” Nucl. Phys. B393, 280–300 (1993). (document)

[99] H. Kawai, Y. Kitazawa, and M. Ninomiya, “Ultraviolet stable fixed point
and scaling relations in (2+epsilon)-dimensional quantum gravity,” Nucl. Phys.
B404, 684–716 (1993). (document)

[100] T. Aida, Y. Kitazawa, H. Kawai, and M. Ninomiya, “Conformal invariance and
renormalization group in quantum gravity near two-dimensions,” Nucl. Phys.
B427, 158–180 (1994). (document)

[101] A. Bonanno and M. Reuter, “Cosmology of the Planck era from a renormalization
group for quantum gravity,” Phys. Rev. D65, 043508 (2002). (document)

[102] M. Reuter and F. Saueressig, “From big bang to asymptotic de Sitter: Com-
plete cosmologies in a quantum gravity framework,” JCAP 0509, 012 (2005).
(document)

[103] S. Weinberg, “Asymptotically Safe Inflation,” Phys. Rev. D81, 083535 (2010).
(document)

[104] A. Bonanno, A. Contillo, and R. Percacci, “Inflationary solutions in asymptoti-
cally safe f(R) theories,” Class. Quant. Grav. 28, 145026 (2011). (document)

[105] M. Reuter and F. Saueressig, “Asymptotic Safety, Fractals, and Cosmology,”
Lect. Notes Phys. 863, 185–223 (2013). (document)

[106] I. Antoniadis and E. Mottola, “4-D quantum gravity in the conformal sector,”
Phys. Rev. D45, 2013–2025 (1992). (document), 7

[107] I. Antoniadis, P. O. Mazur, and E. Mottola, “Fractal geometry of quantum
space-time at large scales,” Phys. Lett. B444, 284–292 (1998). (document)

[108] S. Odintsov and R. Percacci, “Renormalization group effects in the conformal
sector of 4-D quantum gravity with matter,” Mod. Phys. Lett. A9, 2041–2048
(1994). (document)

[109] T. Bautista and A. Dabholkar, “Quantum Cosmology Near Two Dimensions,”
(2015). (document)

[110] T. Bautista, A. Benevides, A. Dabholkar, and A. Goel, “Quantum Cosmology
in Four Dimensions,” (2015). (document)

[111] Y. Nakayama, “Scale invariance vs conformal invariance,” Phys.Rept. 569, 1–93
(2015). 1.1.2



104 BIBLIOGRAPHY

[112] J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys.
Lett. B37, 95 (1971). 1.1.4

[113] R. B. Mann, “Lower dimensional black holes,” Gen. Rel. Grav. 24, 433–449
(1992). 2.1

[114] R. B. Mann and S. F. Ross, “The D —> 2 limit of general relativity,” Class.
Quant. Grav. 10, 1405–1408 (1993). 2.1, 4

[115] A. Strominger and T. Takayanagi, “Correlators in time-like bulk Liouville the-
ory,” Adv.Theor.Math.Phys. 7, 369–379 (2003). 2.2

[116] V. Schomerus, “Rolling tachyons from Liouville theory,” JHEP 0311, 043 (2003).
2.2

[117] A. B. Zamolodchikov, “Three-point function in the minimal Liouville gravity,”
(2005). [Theor. Math. Phys.142,183(2005)]. 2.2, 7

[118] W. McElgin, “Notes on Liouville Theory at c <= 1,” Phys.Rev. D77, 066009
(2008). 2.2

[119] S. Ribault and R. Santachiara, “Liouville theory with a central charge less than
one,” (2015). 2.2, 7

[120] H. Dorn and H. J. Otto, “Two and three point functions in Liouville theory,”
Nucl. Phys. B429, 375–388 (1994). 2.2, 7

[121] A. B. Zamolodchikov and A. B. Zamolodchikov, “Structure constants and con-
formal bootstrap in Liouville field theory,” Nucl. Phys. B477, 577–605 (1996).
2.2, 3.1, 7, 7

[122] A. M. Polyakov, “Quantum Gravity in Two-Dimensions,” Mod. Phys. Lett. A2,
893 (1987). 2.3, 3.1

[123] S. R. Das, S. Naik, and S. R. Wadia, “Quantization of the Liouville Mode and
String Theory,” Mod. Phys. Lett. A4, 1033 (1989). 2.3

[124] N. E. Mavromatos and J. L. Miramontes, “Regularizing the Functional Integral
in 2D Quantum Gravity,” Mod. Phys. Lett. A4, 1847 (1989). 2.3

[125] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite Conformal
Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys.B241, 333–
380 (1984). 3.1, 7

[126] H. Dorn and H. J. Otto, “Analysis of all dimensionful parameters relevant to
gravitational dressing of conformal theories,” Phys. Lett. B280, 204–212 (1992).
3.1

[127] A. Pakman, “Liouville theory without an action,” Phys. Lett. B642, 263–269
(2006). 3.1



BIBLIOGRAPHY 105

[128] V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, “Fractal Structure
of 2D Quantum Gravity,” Mod. Phys. Lett. A3, 819 (1988). 3.1

[129] E. Brezin and V. A. Kazakov, “Exactly Solvable Field Theories of Closed
Strings,” Phys. Lett. B236, 144–150 (1990). 3.1

[130] M. R. Douglas and S. H. Shenker, “Strings in Less Than One-Dimension,” Nucl.
Phys. B335, 635 (1990). 3.1

[131] D. J. Gross and A. A. Migdal, “Nonperturbative Two-Dimensional Quantum
Gravity,” Phys. Rev. Lett. 64, 127 (1990). 3.1

[132] T. L. Curtright and C. B. Thorn, “Conformally Invariant Quantization of the
Liouville Theory,” Phys. Rev. Lett. 48, 1309 (1982). [Erratum: Phys. Rev.
Lett.48,1768(1982)]. 3.1

[133] E. Braaten, T. Curtright, G. Ghandour, and C. B. Thorn, “Nonperturbative
Weak Coupling Analysis of the Quantum Liouville Field Theory,” Annals Phys.
153, 147 (1984). 3.1

[134] J.-L. Gervais and A. Neveu, “The Dual String Spectrum in Polyakov’s Quanti-
zation. 1.” Nucl. Phys. B199, 59 (1982). 3.1

[135] J.-L. Gervais and A. Neveu, “Dual String Spectrum in Polyakov’s Quantization.
2. Mode Separation,” Nucl. Phys. B209, 125 (1982). 3.1

[136] J. Polchinski, “Vertex Operators in the Polyakov Path Integral,” Nucl.Phys.
B289, 465 (1987). 3.1

[137] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string (Cam-
bridge University Press, 2007). 3.1, 1

[138] E. Onofri and M. Virasoro, “On a Formulation of Polyakov’s String Theory With
Regular Classical Solutions,” Nucl.Phys. B201, 159 (1982). 3.1, 3

[139] E. D’Hoker and D. H. Phong, “Vertex operators for closed strings,” Phys. Rev.
D 35, 3890–3901 (1987). 3.1

[140] E. D’Hoker and D. H. Phong, “The geometry of string perturbation theory,”
Reviews of Modern Physics 60, 917–1065 (1988). 3.1, 3, D.1

[141] T. Banks and J. D. Lykken, “String Theory and Two-dimensional Quantum
Gravity,” Nucl. Phys. B331, 173 (1990). 6

[142] J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2,
407–432 (1961). 3.2

[143] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp.
Teor. Fiz. 47, 1515–1527 (1964). [Sov. Phys. JETP20,1018(1965)]. 3.2



106 BIBLIOGRAPHY

[144] E. Calzetta and B. L. Hu, “Closed Time Path Functional Formalism in Curved
Space-Time: Application to Cosmological Back Reaction Problems,” Phys. Rev.
D35, 495 (1987). 3.2

[145] R. D. Jordan, “Effective Field Equations for Expectation Values,” Phys. Rev.
D33, 444–454 (1986). 3.2

[146] A. Higuchi, D. Marolf, and I. A. Morrison, “On the Equivalence between Eu-
clidean and In-In Formalisms in de Sitter QFT,” Phys. Rev.D83, 084029 (2011).
3.2

[147] L. Abbott, “Introduction to the Background Field Method,” Acta Phys.Polon.
B13, 33 (1982). 9

[148] R. Jackiw, “Functional evaluation of the effective potential,” Phys. Rev. D9,
1686 (1974). 9

[149] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge
Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK,
1984). 3.2, F

[150] N. Straumann, “The Mystery of the cosmic vacuum energy density and the
accelerated expansion of the universe,” Eur. J. Phys. 20, 419–427 (1999). 4.2

[151] E. Witten, “The Cosmological constant from the viewpoint of string theory,”
(2000). 4.2

[152] J. Polchinski, “Recent Progress in Formal Theory,” (2008). 4.2

[153] S. Nojiri and S. D. Odintsov, “Modified non-local-F(R) gravity as the key for the
inflation and dark energy,” Phys.Lett. B659, 821–826 (2008). 4.4, 6.3

[154] E. S. Fradkin and G. A. Vilkovisky, “Conformal Invariance and Asymptotic Free-
dom in Quantum Gravity,” Phys. Lett. B77, 262 (1978). 5.1

[155] S. Paneitz, “A Quartic Conformally Covariant Differential Operator for Arbitrary
Pseudo-Riemannian Manifolds (Summary),” SIGMA 4, 36 (2008). 5.1

[156] E. S. Fradkin and G. A. Vilkovisky, “Conformal Off Mass Shell Extension and
Elimination of Conformal Anomalies in Quantum Gravity,” Phys. Lett. B73,
209–213 (1978). 5.3

[157] A. O. Barvinsky, A. G. Mirzabekian, and V. V. Zhytnikov, “Conformal decom-
position of the effective action and covariant curvature expansion,” in “Quantum
gravity. Proceedings, 6th Seminar, Moscow, Russia, June 12-19, 1995,” (1995).
5.3

[158] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The
Effective Field Theory of Inflation,” JHEP 03, 014 (2008). 6.3

[159] S. Weinberg, “Effective Field Theory for Inflation,” Phys. Rev. D77, 123541
(2008). 6.3



BIBLIOGRAPHY 107

[160] D. Baumann and L. McAllister, Inflation and String Theory (Cambridge Uni-
versity Press, 2015). 6.3

[161] R. P. Woodard, “The Theorem of Ostrogradsky,” (2015). 6.3

[162] I. K. Kostov and V. B. Petkova, “Bulk correlation functions in 2-D quantum grav-
ity,” Theor. Math. Phys. 146, 108–118 (2006). [Teor. Mat. Fiz.146,132(2006)].
7

[163] G. Giribet, “On the timelike Liouville three-point function,” Phys. Rev. D85,
086009 (2012). 7

[164] Y. Ishimoto and A. B. Zamolodchikov, “Massive Majorana fermion coupled to
2D gravity and random lattice Ising model,” Theor. Math. Phys. 147, 755–776
(2006). [Teor. Mat. Fiz.147,372(2006)]. 7

[165] P. Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ash-
down, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro,
N. Bartolo, E. Battaner, K. Benabed, A. Benoit, A. Benoit-Levy, J.-P. Bernard,
M. Bersanelli, P. Bielewicz, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill,
F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Cal-
abrese, J.-F. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R.-R. Chary,
H. C. Chiang, P. R. Christensen, S. Church, D. L. Clements, S. Colombi, L. P. L.
Colombo, C. Combet, D. Contreras, F. Couchot, A. Coulais, B. P. Crill, A. Curto,
F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa,
G. de Zotti, J. Delabrouille, F.-X. Desert, J. M. Diego, H. Dole, S. Donzelli,
O. Dore, M. Douspis, and et al. (186 additional authors not shown), “Planck
2015 results. xx. constraints on inflation,” (2015). 7

[166] L. Hui and W. H. Kinney, “Short distance physics and the consistency relation
for scalar and tensor fluctuations in the inflationary universe,” Phys. Rev. D65,
103507 (2002). 7

[167] D. Baumann, H. Lee, and G. L. Pimentel, “High-Scale Inflation and the Tensor
Tilt,” JHEP 01, 101 (2016). 7

[168] K. Enqvist and M. S. Sloth, “Adiabatic CMB perturbations in pre - big bang
string cosmology,” Nucl. Phys. B626, 395–409 (2002). 7

[169] D. H. Lyth and D. Wands, “Generating the curvature perturbation without an
inflaton,” Phys.Lett. B524, 5–14 (2002). 7

[170] T. Moroi and T. Takahashi, “Effects of cosmological moduli fields on cosmic
microwave background,” Phys. Lett. B522, 215–221 (2001). [Erratum: Phys.
Lett.B539,303(2002)]. 7

[171] V. Vennin, K. Koyama, and D. Wands, “Encyclopaedia Curvatonis,” (2015). 7

[172] D. Baumann, D. Green, and R. A. Porto, “B-modes and the Nature of Inflation,”
JCAP 1501, 016 (2015). 7



108 BIBLIOGRAPHY

[173] N. C. Tsamis and R. P. Woodard, “The Quantum gravitational back reaction on
inflation,” Annals Phys. 253, 1–54 (1997). 7

[174] A. Rajaraman, “On the proper treatment of massless fields in Euclidean de Sitter
space,” Phys. Rev. D82, 123522 (2010). 7

[175] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman,
San Francisco, 1973). A

[176] M. Spradlin, A. Strominger, and A. Volovich, “Les Houches lectures on de Sitter
space,” in “Unity from duality: Gravity, gauge theory and strings. Proceed-
ings, NATO Advanced Study Institute, Euro Summer School, 76th session, Les
Houches, France, July 30-August 31, 2001,” (2001), pp. 423–453. F


	Résumé
	Abstract
	Acknowledgments
	Résumé de la Thèse
	Introduction
	Outline

	1 Background
	1.1 Weyl Anomalies
	1.1.1 Weyl Invariance
	1.1.2 Identities from Gauge Invariance
	1.1.3 Weyl Anomalies
	1.1.4 Types of Weyl Anomalies

	1.2 Weyl-Invariant Formulation of Gravity
	1.2.1 The Weyl compensator
	1.2.2 Weyl-Invariant Action

	1.3 Weyl-Invariant Formulation of Cosmology

	2 Two-Dimensional Quantum Gravity
	2.1 Classical Gravity and Cosmology near Two Dimensions
	2.1.1 Classical Polyakov action

	2.2 Relation to Timelike Liouville Theory
	2.3 Liouville Gravity
	2.4 Gravitational Path Integral
	2.4.1 Arbitrary Central Charges


	3 Quantum Momentum Tensor from the Anomalous Cosmological Constant
	3.1 Renormalization of the Cosmological Constant Operator
	3.2 Lorentzian Interpretation 
	3.3 Non-local Quantum Effective Action
	3.4 Quantum Momentum Tensor
	3.5 Quantum Ward Identities
	3.6 Quantum Momentum Tensor from the Weyl Anomaly 
	3.7 Total Effective Action and Quantum Einstein Equations

	4 Quantum Cosmology in Two Dimensions 
	4.1 Quantum Evolution Equations for Cosmology
	4.2 Cosmological Implications of the Quantum Decay of Vacuum Energy
	4.3 Local Form of the On-Shell Quantum Momentum Tensor 
	4.4 Local Formulation with Auxiliary Fields 

	5 Four-Dimensional Effective Action and Equations
	5.1 A Non-local Action for Gravity 
	5.2 Evolution Equations for Cosmology 
	5.3 Cosmological Equations in an Alternative Gauge 
	5.4 General Equations of Motion

	6 Quantum Decay of Vacuum Energy
	6.1 Effective Quantum Fluid
	6.2 Cosmology of the Decaying Vacuum Energy
	6.3 Broken Time Translation Symmetry and Stability

	7 Discussion
	A Notation and Conventions
	B Conformal Geometry and Useful Formulas
	C c-Anomaly and the Polyakov Action
	D The Regularized Coincident Green Function
	D.1 Short Proper Time Cutoff
	D.2 Dimensional Regularization

	E Variation of Green Functions
	E.1 Variation of the Scalar Laplacian
	E.2 Variation of the Scalar Laplacian Green Function
	E.3 Variation of the  Green function

	F Nearly Static Coordinates
	Bibliography

