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Abstract

This thesis describes analysis and control approaches for the vibration and energy

flow through periodic structures. The wave description is mainly used to address the

structural dynamic problems considered in the thesis: forced response is calculated as

the superposition of the wave motions; natural modes are understood as standing waves

induced by the propagating waves that recover to the same phase after traveling a whole

circle of the finite structure.

One advantage of the wave description is that they can remarkably reduce the di-

mensions of structural dynamic problems. This feature is especially useful in mid- and

high frequencies where directly computing the full Finite Element Method (FEM) model

is rather time-consuming because of the enormous number of degree-of-freedoms. This

thesis extends one widely used wave-based numerical tool termed Wave Finite Element

Method (WFEM). The major improvements are the use of several Component Mode

Synthesis (CMS) methods to accelerate the analysis for general waveguides with propor-

tional damping or piezoelectric waveguides. The numerical error is reduced by using the

proposed eigenvalue schemes, the left eigenvectors and the reduced wave basis. Another

contribution is the multi-scale modeling approach for the built-up structures with both

periodic and non-periodic parts. The main idea is to model the non-periodic parts by

FEM, and model the periodic parts by WFEM. By interfacing different substructures as

reflection coefficients or mechanical impedance, the response of the waveguide is calcu-

lated in terms of different scales. These two contributions extend WFEM to more complex

structures and to more realistic models of the engineering applications.

Another benefit of the wave perception is that it leads to new ideas for vibration

control. In this thesis periodically distributed piezoelectric materials and shunt circuit

are used to artificially modify the wave properties by electric impedance. A novel metrics

termed the Wave Electromechanical Coupling Factor (WEMCF) is proposed, to quanti-

tatively evaluate the coupling strength between the electric and mechanical fields during

the passage of a wave. This factor can be post-processed from the wave characteristics

obtained from WFEM through an energy formula. We show that WEMCF is strongly

correlated to the best performance of the piezoelectric waveguide. Hence the design for

the geometric and electric parameters can be done separately. An application is given,

concerning the vibration reduction of a cantilever beam. WEMCF is used as an opti-

mization objective during the geometric design, when the overall mass of the piezoelectric

materials is constrained. Then the negative capacitance is used with a stability consider-

ation to enlarge the Bragg band gap. The vibration is localized and efficiently dissipated

by few boundary dampers. The wave-based design process yields several broadband, sta-

ble, lightweight and boundary condition insensitive solutions. Therefore, it is promising

at mid- and high frequencies where exact modal information is difficult to access.

Keywords: Multi-scale modeling, wave and finite element method, reduced model,

piezoelectric shunt, wave electromechanical coupling factor, broadband vibration control,

energy flow, periodic structure



Résumé

Cette thèse s’interesse au contrôle des flux d’énergie mécanique dans les structures

périodiques. Les problèmes de dynamique des structures considérés dans cette thèse

sont abordés sous l’angle d’une description ondulatoire : la réponse forcée d’un système

est calculée comme une superposition d’ondes dans la structure, tandis que les modes

propres sont interprétés comme des ondes stationnaires.

Un des avantages de l’approche ondulatoire est qu’elle permet de réduire de manière

importante la taille des problèmes de dynamique. Ceci se révèle particulièrement utile

dans le domaine des hautes et moyennes fréquences, où les calculs par éléments finis de-

viennent très coûteux en temps à cause du grand nombre de degrés de liberté nécessaire

à la convergence du modèle. Afin de contourner ce problème, cette thèse s’appuie sur la

méthode des éléments finis ondulatoires (WFEM). Une des principales améliorations pro-

posées est l’utilisation de plusieurs méthodes de synthèses modales (Component Mode

Synthesis (CMS)) pour accélérer l’analyse des guides d’ondes généraux en présence

d’amortissement ou de matériaux piézo-électriques. Les erreurs numériques restent faibles

du fait de l’utilisation d’une base de projection réduite constituée d’ondes propagatives.

Une autre contribution est le procédé de modélisation multi-échelle pour les assemblages

de structures périodiques et non-périodiques. L’idée principale est de modéliser les parties

non-périodiques par éléments finis, et les parties périodiques par WFEM. Les interactions

entre les différentes sous-structures sont modélisées par des coefficients de réflexion ou des

impédances mécaniques. Ces travaux forment une extension de la WFEM à des structures

plus complexes et plus proches des applications industrielles.

Un autre intérêt de la vision ondulatoire est qu’elle mène à de nouvelles idées pour le

contrôle des vibrations. Dans cette thèse, des matériaux piézo-électriques shuntés disposés

périodiquement sont utilisés afin de modifier artificiellement la propagation des ondes

grâce au couplage électromécanique. Un nouveau critère, nommé Wave Electromechanical

Coupling Factor (WEMCF), est proposé pour évaluer, en termes énergétiques, l’intensité

du couplage entre le champ électrique et le champ mécanique lors du passage d’une onde.

On montre que le WEMCF est fortement lié à l’atténuation dans le guide d’ondes piézo-

électrique. La conception des paramètres géométriques et électriques peut être ainsi être

effectuée séparément. Ce principe est appliqué à la réduction des vibrations d’une poutre

encastrée. Le WEMCF est utilisé comme fonction objectif pour l’optimisation durant la

conception géométrique, la masse totale de matériau piézo-électriques étant contrainte.

Un circuit à capacité négative est utilisé pour élargir le band-gap de Bragg. La stabilité

du système est prise en compte comme une contrainte sur la valeur de cette capacité.

Les vibrations sont localisées et facilement dissipées par l’introduction d’absorbeurs sur

la frontière. Ce procédé de conception basée sur une approche ondulatoire aboutit à des

solutions stables, légères, et insensibles aux conditions aux limites dans une large gamme

de fréquence. Par conséquent, il est prometteur pour analyser les structures en moyenne

et haute fréquence où il est difficile d’accéder aux informations modales exactes.

Mots clés : modélisation multi-échelle, éléments finis ondulatoires, modèle réduit,

piézo-électrique, facteur de couplage électromécanique ondulatoire, contrôle de vibration

en large bande, flux d’énergie, structure périodique
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Introduction

Scientific context

The research conducted in this thesis was aimed to explore the use of structural periodicity

so as to achieve the goals of wave filtering, energy reflection/attenuation and vibration

reduction. Piezoelectric materials and shunting circuits are considered as a mean to

modify the wave characteristics in a desired manner. The work can be related to three

main axes:

1) The efficient analysis methods for periodic structures/substructures. The under-

lying idea for applications of periodic structures is to artificially design certain charac-

teristics for the guided waves. For structures with piezoelectric patches, electric circuits

and complex geometries, the analytical solutions are difficult to access. Therefore an effi-

cient numerical tool that can simulate the wave characteristics (free-wave analysis) of the

periodic piezoelectric structures is needed. Moreover, in a more practical point of view,

probably the designed periodic component will finally become a substructure in a bigger

structural system. Thus a numerical tool that can analyze the energy flow and vibration

(forced response) in such built-up structural systems are also required.

2) The understanding of mechanisms that link the wave characteristics with the energy

flow and vibration. Analyzing a periodic structure in isolation, some conclusions have

already been drawn. For instance: a single evanescent wave exists in semi-infinite/infinite

structural systems can not carry energy; inside a frequency band gap, a finite periodic

structure has lower modal density. But are these conclusions still hold when we integrate a

periodic component into a larger structural system? For example, does a band gap in the

periodic substructure directly link to a low vibration and low energy flow frequency range

of the built-up structure? To answer these questions, we need to clarify the links between

the wave characteristics of a infinite periodic substructure and the dynamic behavior of

a finite periodic structure or a built-up structure with finite/infinite extent.

3) Design/optimization processes for the piezoelectric structures, for both geometric

and electric parameters. To reduce the vibration and energy flow at mid- and high fre-

quencies, a broadband performance is desired. In addition, this should be achieved for

given frequencies and excitations. To do that, design processes are required. In terms

of structural modes, generally the geometrics of are designed to obtain good electrome-

chanical coupling; the electric parameter are designed to maximize damping, to tune a

resonance, to minimize the energy density etc. Analogy to that, indicators that can also

evaluate the electromechanical coupling strength for waves are required. It will be better

if the indicators can be easily calculated from the existing or proposed numerical tools.

So that we can used these indicators to design the geometrics of a waveguide. For the

electric part, appropriate criteria should be used for different objectives. For example the

criterion for the energy reflection might be different from the one for vibration reduction.
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Outline of the thesis

The work related to the aforementioned point 1) is reflected in Chapters 2 and 3, the

proposed methods are further applied for more realistic structures, shown in Chapter 6.

Discussions related to the point 2) can be found in Chapters 3, 5 and 6. Solutions for the

point 3) are summarized in Chapters 4 and 5. A brief outline of chapters and appendices

are listed below.

• In Chapter 1, the results of conducted literature review are presented. The survey

concerns existing work based on piezoelectric materials for dynamic modeling, wave

analyzing, electromechanical coupling and vibration reduction. Remarks are given

at the end of each part.

• In Chapter 2, an efficient numerical tool for the free-wave analysis are proposed.

Based on the free-wave characteristics, the forced response can be computed once

the boundary conditions and excitations are given. The main claim is the use of

free-interface Component Modal Synthesis (CMS) methods into Wave and Finite

Element Method (WFEM) to accelerate the calculation. A periodic open thin-wall

structure is considered as an application, and aspects such as accuracy, efficiency

and convergence are discussed and compared with several different modal reduction

schemes. The influence of reduced wave basis for the accuracy of forced response

results are discussed.

• In Chapter 3, a numerical tool is developed for the prediction of vibration and

energy flow in built-up structure with both non-periodic and periodic parts. The

non-periodic part is modeled by FEM while the periodic substructures are described

by WFEM. Different parts are connected in a multi-scale manner such that the final

dimension of the problem are largely reduced. A new reduced model is proposed

for free-wave analysis of waveguides with piezoelectric shunts or local dampers.

Through detailed validations, we show that whit FEM/WFEM hybrid method is

an accurate and rapid tool for both finite and infinite structures.

• In Chapter 4, a criterion termed Wave Electromechanical Coupling Factor

(WEMCF) is proposed. It quantitatively evaluates the coupling strength between

the electric and mechanical fields during the passage of a wave. We show that

the WEMCF can be calculated either by an energy formula or by frequency for-

mula. The equivalence of these two formulas makes WEMCF consistent with the

Modal Electromechanical Coupling Factor. WEMCF can be post-processed from

the free-wave characteristics obtained from WFEM. The reduced unit cell model

is recommended to accelerate the calculation. An application is given based on

a built-up structure with periodic piezoelectric substructures, showing the strong

correlation between WEMCF and the best energy transmission loss of the resistive

PZT waveguide.

• In Chapter 5, a design process is proposed for periodic piezoelectric structures to

achieve broadband vibration control. The idea is to reduce the modal density and

concentrate the vibration to the dissipative boundaries. Band-gap resonances are

effectively suppressed and the mechanisms for these unusual modes are discussed.
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The WEMCF is used as the criterion to optimize the geometric configuration under

a constrained amount of PZT material. Negative capacitance is used to create a wide

band gap and its stability are considered as well. The design process yields several

solutions for the control of multiple high-order modes of a cantilever beam. The

proposed design process does not rely on any modal information and the vibration

reduction performance is also proved to be insensitive to the boundary conditions.

• In Chapter 6, the developed numerical tools are applied to a thin-wall structure cou-

pled with periodic piezoelectric patches. The aim is to (1) illustrate the industrial

application of the numerical methods; and (2) re-examine the conclusions obtained

by simpler structures. Resulting from the complexity of the thin-wall structure, we

show that some proposed enhancements are not optional but imperative. Addition-

ally, the two equivalent ways for WEMCF are confirmed by the both lower-order

and high-order waves of the thin-wall structure.

• Concluding remarks and discussions concerning the perspective work can be found

after Chapter 6.

• The first appendix gives the material coefficients of the PZT material used in the

thesis. The second appendix gives the detailed derivation and validation of the

triple-layered piezoelectric beam element used in Chapter 3 and 5. The third ap-

pendix gives the derivation and validation of the Artificial Boundary Conditions

that are used in Chapter 3. The fourth appendix gives supplementary material for

Chapter 2. The fifth appendix gives supplementary material for Chapter 3. The

last appendix gives supplementary material for Chapter 5.





Chapter 1

Literature review

Abstract: In this chapter the existing work concerning the structures coupled with

piezoelectric materials are reviewed. First we briefly introduce the piezoelectric effects

and the commonly used materials. Dynamic models and the methods to obtain wave

characteristics from the dynamic models are outlined. Once the piezoelectric materials

and electric circuits are involved into the governing equations, these methods can be

directly used to predict the wave characteristics in piezoelectric structures. Then the

electromechanical couping factor which is of utmost importance for many applications

is individually reviewed. Finally the applications for vibration control are summarized.

Remarks are given at the end of each part. Several analogies and dualities can be

found such as the wave-mode duality, the duality between the vibration control and

energy harvesting and the analogy between SSD and dry friction. The analogy be-

tween electric networks and mechanical models inspires pure mechanical and electric

replacement models for piezoelectric structures. It also underlies many vibration con-

trol strategies such as electromechanical TMD, piezoelectric network and PEM structures.
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1.1 Piezoelectric materials

The concept of smart structure provides another promising possibility of solving a variety

of engineering issues, such as vibration control, noise reduction, fault diagnose, wireless

sensing, self powering and so on. Smart structures could be defined as ‘the structures

that can sense external disturbance and respond to that in a desired fashion’ [1]. Gen-

erally a smart structure can be implemented by integrating some ‘smart material’ that

couples at least another field to the mechanical field. This introduces new design vari-

ables (Degree-of-Freedoms, DOFs) to modify or measure the mechanical characteristics.

An additional subsystem can then be designed regarding the new variables so as to have

the coupled structural system work in a desired manner. These smart materials involve

electrorheological (ER) or magnetorheological (MR) fluids, magnetostrictive materials,

electrostrictive materials, shape memory alloys (SMA), piezoelectric materials and so on.

Figure 1.1 lists various effects that are observed in materials in response to various inputs:

mechanical, electrical, magnetic, thermal, light. The smart materials correspond to the

non-diagonal cells.

Figure 1.1: Stimulus-response relations indicating various effects in materials [2]. The

smart materials correspond to the non-diagonal cells.

Figure 1.2 shows the energy density by unit mass with respect to the maximum fre-

quency; the diagonal lines indicate a constant power density per unit mass. Note that

all the material characteristics vary by several orders of magnitude. Among them all, the

piezoelectric materials have the advantages of light-weight, large working frequency range

and high power density, therefore they are undoubtedly the most mature and those with

the most applications.

The piezoelectric effect was first discovered by the bothers Pierre Curie and Jacques

Curie [4], who demonstrated that when certain crystalline materials were stressed, an

electric charge was produced on the material surface and the converse effect was also

available [5]. So the piezoelectric effect exists in two aspects: one is the direct piezoelectric

effect that describes the material’s ability to transform mechanical strain into electrical

charge; another is the converse effect, which indicates the ability to convert an applied

electrical potential into mechanical strain energy.
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Figure 1.2: Specific energy density vs. maximum frequency for various smart material

actuators [2].

(a) (b)

Figure 1.3: Illustration of piezoelectric effects [3]: (a) Tetragonal unit cell of lead ti-

tanate before and after poling; (b) a piezoelectric patch behaves like a capacitance, the

mechanical stress can also cause a charge separation.

Piezoelectric effect is closely related to the non-centrosymmetric crystalline structure

in Piezoelectric materials. One of the defining traits is that the molecular structure is

oriented such that the material exhibits a local charge separation, known as an electric

dipole. Throughout the material composition the electric dipoles are orientated randomly,

but when the material is heated above a certain point, i.e. the Curie temperature, and a

very strong electric field is applied simultaneously, the electric dipoles reorient themselves

relative to the electric field; this process is termed poling, shown in Figure 1.3a. Once the

material is cooled, the dipoles maintain their orientation and the material is then said to

be poled. After the poling process, the material will exhibit the piezoelectric effect.

When applying a mechanical stress, the dipole density field is subject to change. This

might either be caused by a re-configuration of the dipole-inducing surrounding or by re-
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orientation of molecular dipole moments under the influence of the external stress. The

change appears as a variation of surface charge density upon the crystal faces, i.e. as a

variation of the electric field extending between the faces caused by a change in dipole

density in the bulk. In this regard, a piezoelectric patch behaves like a capacitance as

shown in Figure 1.3b, mechanical stress, as well as an externally applied voltage, both

cause the charge separation.

Mathematically, such electromechanical behavior of a piezoelectric material can be

captured by two groups of linear equations [6]; the full 3D constitutive equations write

{T} = [cE ]{S} − [e]{E}
{D} = [e]T{S}+ [εS]{E}

where {T} is the stress vector with 6 components, {S} the strain vector with 6 compo-

nents, {E} the electric field vector with 3 components, {D} the charge intensity vector

with 3 components. The matrices,[cE ], [e], [εS ] are stiffness matrix evaluated at constant

electric field, piezoelectric matrix, permittivity matrix evaluated at constant strain, re-

spectively. Note that [e] matrix sets the bridge between the structural stress and the

applied electric field, representing the piezoelectric effect. The constitutive relation could

also be written in other forms, giving the relationship between the chosen two terms

among {T}, {S}, {D} and {E} and the rest two [6]. For example, one can also write the

full 3D constitutive equations into

{S} = [sE ]{T}+ [d]{E}
{D} = [d]T{T}+ [εT]{E}

(1.1)

(1.2)

The most popular piezoelectric materials are Lead-Zirconate-Titanate (PZT) which is

a ceramic, and Polyvinylidene Fluoride (PVDF, see [7] for the detail) which is a polymer.

PZT has an isotropic behavior in the plate, due to the fact that d13 = d32; namely the

electric field along the 3rd axis equally influences the stress in the 1st and 2nd axes.

On the contrary, when PVDF is polarized under stress, its piezoelectric properties are

highly anisotropic, with d31 ≈ 5d32. A PVDF is much lighter (∼ 1800 kg/m3) than a

PZT (∼ 7800 kg/m3) but a PVDF is softer (Young’s modulus ∼ 2.5 GPa) than a PZT

(∼ 50 GPa). Some new piezoelectric materials in the nanoscale can be found in [8]. There

is no definitive answer as to which material is better. It depends on the restrictions and

requirements of the application.

1.2 Dynamic models for piezoelectric structures

In conventional structural dynamics, the governing equations of a mechanical system

could be established by means of the Hamilton’s Principle, once the kinetic coenergy and

potential energy of the system are written by a set of generalized coordinates compatible

with the kinematic constraints [9]. To model a structural system with common materi-

als, piezoelectric materials and electric networks, similar strategy exists. Preumont [2]

provides a generalized variational indicator writes

V.I. =

∫ t2

t1

δW ∗m + δT ∗ − δWe − δV +
∑
k

Ekδqk +
∑
j

Fjδxj

dt
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where W ∗m is the magnetic coenergy; We is the electric energy; T ∗ is the kinetic coen-

ergy; V is the elastic potential energy; qk is the generalized charge coordinates; xj is

the generalized displacement coordinates; Ek is the applied electric potentials; Fj is the

applied forces. It is proved that the actual path is that which cancels the vari-

ational indicator V.I. with respect to all admissible variations δxk and δqk of

the path between two instants t1 and t2 at which δxj (t1) = δxj (t2) = 0 and

δqk (t1) = δqk (t2) = 0.

On this basis, the corresponding generalized Lagrange’s equations follows

d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= Ek

d

dt

(
∂L
∂ẋj

)
− ∂L
∂xj

= Fj

where L is the Lagrange indicator, given by

L = W ∗m + T ∗ −W ∗e − V

Once the system configuration is determined, the energy and coenergy functions could

be written in terms of the selected generalized coordinates. Accordingly the governing

equations could be obtained using Lagrange’s equations.

In practice, sometimes the piezoelectric materials are intensionally designed such that

they work in a uniaxial strain/stress status. That is to say the applied electric field and

external forces would only induce significant response in one direction, such as when de-

signing torsional [10] or bending [11] transducers. Sometimes the mass of the piezoelectric

materials can be neglected in comparison with the host structure. This often happens

when designing a sensor [2]. When the piezoelectric materials are manufactured into

bars, beams, rings or plates, for example in the applications of energy harvesting [12], the

simplicity of geometries also leads to assumptions of the electric and mechanical fields.

In all these situations, the full 3D constitutive and geometric equations can be simpli-

fied, leading to lumped parameter models or distributed models which can be analytically

solved. For more complex situations, FEM can be used. These modeling strategies will

be respectively discussed.

1.2.1 Lumped parameter models

The Lumped parameter approach simplifies the description of the behavior of spatially

distributed physical systems into a topology consisting of discrete entities. For piezoelec-

tric systems, this approach often leads to an approximative model with 2 DOFs, one for

the mechanical displacement while another for the electric charge (or voltage). The corre-

sponding model parameters, such as mass, damping and stiffness coefficients are obtained

by equivalence.

In some applications this kind of equivalence is straightforward. Consider the piezo-

electric stack transducer shown in Figure 1.4, if the inertia of the piezoelectric stack and

the stiffness of the proof mass are neglected, it leads to a Lumped Parameter Model

writing (
V

−Mẍ

)
=

Ka

Cp (1− k2)

[
1/Ka −nd33

−nd33 Cp

](
Q

x

)
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where x is the mechanical displacement, V the voltage and Q the charge. For the detailed

derivation please refer to [13]. With this rather simplified model one can understand many

basic concepts of piezoelectric transducers, such as intrinsic capacitance, OC/SC statuses,

electromechanical coupling factor and so on. In the work of Mokrani [13], this model is

used to explore the damping performance of a nonlinear circuits. Similar strategies and

2DOF equations were considered to analysis piezoelectric bimorphs [14, 15], a thickness-

stretch oscillator [16] and a torsional energy generator [10].

Figure 1.4: (a) Unidimensional spring-mass system. (b) Piezoelectric linear transducer

made of n identical elements.

For a more complex situation as illustrated in Figure 1.5a, when a piezoelectric trans-

ducer is integrated into a host structure, the governing equations [17] write[
m 0

c33d33L CpsL

] [
ẍ

üp

]
+

[
d0 0

c33d33R CpsR

] [
ẋ

u̇p

]
+

[
c0 + c33 −c33d33
c33d33
C 1 +

Cps

C

] [
x

up

]
=

[
F (t)

0

]
where the SDOF model is used for both the host structure and piezoelectric transducer.

Owing to the external capacitance, non-diagonal terms appear in the mass and stiffness

matrices. The governing equations can be rewritten into a simpler form[
m 0

0 mp

] [
ẍ1

ẍ2

]
+

[
d0 0

0 dsd

] [
ẋ1

ẋ2

]
+

[
c0 + c33 + csd −csd

−csd csd + cδ

] [
x1

x2

]
=

[
F (t)

0

]
where x1 = x and x2 = x + upCps(c33d33)−1. This means that the electromechanical

system shown in Figure 1.5a can be represented by a pure mechanical model shown in

Figure 1.5b. The shunted R-L-C circuit is equivalent to a spring-mass-damper system and

the coupling mechanism is represented by a string linking the mass of the host structure

and the ‘electric’ mass. This reveals the underlying mechanism of piezoelectric effect and

the similarity between mechanical systems and electric systems. The equivalence allows

us to firstly design a mechanical system and then implement it by piezoelectric materials

and the shunted electric circuits. This idea is widely used for vibration control [18, 19],

and more detailed information will be given in sections 1.5.

Alternatively, it is also possible to represent a piezoelectric structure by a pure electric

replacement model, as shown in Figure 1.6. The mechanical mass, stiffness and damping

are respectively transformed into electric inductor, capacitor and resistor. Mechanical
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(a) (b)

Figure 1.5: Lumped parameter models with 2 DOFs [17]: (a) Mechanical model with

piezoelectric element connected to external LRC-network; (b) Mechanical replacement

model.

Figure 1.6: Two electric replacement models for SDOF mechanical system coupled with

a SDOF piezoelectric system and an external circuit [16]: (a) represent piezoelectric

coupling as a transducer, so that the variables’ unit and value remain untransformed; (b)

merge the coupling mechanism into the mechanical impedance, the mechanical variables

are transformed into the equivalent electric variables.
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force and displacement are equivalent to electric voltage and charge. This model allows

one to implement an effective structural system with ease and can focus on the electric

design. This idea has been used by Petit et al. [20] to preliminarily design a damping

circuits, and Lossouarn et al. [21, 22] to design multi-mode dampers.

Figure 1.7: A general case for piezoelectric structure [23].

The mechanical parameters of the lumped parameter models can be intuitively ob-

tained by assumptions and simplifications of the displacement and geometries, as previ-

ously discussed. Also the parameters can come from a complex structure/substructure for

which we only interested in few modes. Consider a general case for piezoelectric structures

as shown in 1.7, a reduced order model can be obtained by expanding the displacement

field U (x, t) onto N vibration modes

U (x, t) =

N∑
i=1

φi(x)qi(t)

The electromechanical model of the problem is thus described by

mechanical

q̈i + 2ξiωiq̇i + ω2
i qi−

coupling

χiV = Fi,∀i ∈ {1...N}

CV −Q
electric

+
N∑
i=1

χiqi
coupling

= 0

(1.3)

(1.4)

in which N modal equations corresponding to the balance law of mechanical forces, and

one electrical equation, associated with the balance of electric charges on the electrodes.

With this strategy, one can reduce a distributed model or a refined Finite element model

to a lumped parameter model. Generally, φi(x) is the ith open-circuit natural modal

shape [2, 23, 24]. Note that the N modal coordinates are still coupled with each other

through the electric voltage, which is different from the conventional modal reduction

schemes. This will be further discussed in the following sections.

For complex structural systems, the lumped parameter models can also be employed

[25–27]. For one sector in the bladed disc show in Figure 1.8, a 2DOF mechanical model

can be used to describe the blade and a 2DOF electromechanical model is used for the

disc coupled with piezoelectric patches. The overall governing equations are assembled

by the equations of substructures.
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(a) (b)

Figure 1.8: Lumped parameter models for a bladed disc [25]: (a) real structure; (b)

lumped parameter model.

1.2.2 Distributed parameter models

In principle, every piezoelectric system is governed by a group of partial differential

equations (PDE) associated with specified boundary and initial conditions, forming a

distributed parameter model. The analytical results could contribute to a deep under-

standing of the dynamics to structures coupled with piezoelectric materials. It becomes

an active area of research since the early 1990s. At the beginning researchers focused

on the modeling of piezoelectric stack actuators and bending actuators. By stacking the

piezoelectric layers on top of one another, the cumulative volume of piezoceramics in-

creases the energy delivered to a load. On the other hand, bending actuators [28] consist

of multiple piezoceramics layers with greater length than the stacked type. Those layers

can either be double mounted or single ended as a cantilever, as shown in Figure 1.9.

When electric voltage is applied, one layer extends and the other contracts, shown in

Figure 1.10, resulting a bending motion.

Figure 1.9: Illustrations of cantilever-mounted piezoelectric unimorph, bimorph, and

triple layer morph benders [28].

In 1990, Smits et al. [30] derived a 4 × 4 static constitutive matrix for piezoelectric
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Figure 1.10: Basic intensive parameters of bimorph actuators after applying electric field

[29].

bimorphs, relating the canonical conjugates: bending moment & tip rotation, transverse

force & tip displacement, uniform pressure & volume displacement and voltage & charge.

Later, Smits and Ballato [15] determined the dynamic constitutive equations of bimorphs.

The starting point is the general solution of the Euler-Bernoulli beam theory. It has been

shown that all elements in the constitutive matrix have a built-in resonance factor that

causes the bimorphs to resonate at the mechanical resonance frequencies. A rather com-

prehensive literature review of piezoelectric bending mode devices and their applications

has been given by Smits et al. [31]. For the triple layer bender, Wang et al. [28] sys-

tematically derived the constitutive equations. As a special case, if the thickness of the

central elastic layer is set to 0, the constitutive equations become those for bimorph ben-

der, and the results are consistent with those derived by Smits et al. [15]. Crawley et

al. [32] compares the uniform strain model, Euler-Bernoulli model and FEM model for

piezoelectric benders. Based on comparison with more detailed finite element models and

experiments, the Bernoulli-Euler bending model was judged to accurately predict exten-

sional and bending deformations, shown in Figure 1.11. The deviation in net displacement

from the simple Bernoulli-Euler model was judged to be significant for shorter, thicker

actuators and for thick beams, where the influence of material shear was greatest.

Figure 1.11: Comparison of induced bending strains from analytical and finite element

models [32].
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As discussed, there exists an equivalent electric representation of a lumped parameter

model for the piezoelectric structures. Cho et al. [33] proposed an exact equivalent

electric circuit representation for the piezoelectric bimorph beam. The electric network

has one electrical and four mechanical ports. For an electromechanical system where other

mechanical or electrical components are attached to the bimorph, an equivalent electric

circuit of the system can be thus generated by connecting the electrically equivalent

impedances to the circuit according to the mechanical boundary conditions or external

mechanical components, as shown in Figure 1.12.

Figure 1.12: Equivalent electric circuit of the segmented piezoelectric bimorph and its

substrate arm with clamped-free boundary conditions [33].

However, the shear deformation and the rotational inertia have not been taken into

account in the work of Cho et al. Ha et al. [34] proposed another equivalent electric

network through an eight-by-eight impedance matrix with thickness effects. This leads to

an eight-port overall equivalent circuit. The effects of shear and rotational inertia and the

circuit conditions on the resonance/ antiresonance frequencies for a wide range of thickness

ratios have been studied using the circuit. These equivalent circuits can facilitate further

analyses of the electromechanical system for probing the effects of connecting external

systems, or of making modifications to the bimorph.

Erturk and Inman [35] presented an exact electromechanical solution of cantilevered

piezoelectric beams with Euler–Bernoulli beam assumptions. In their work a piezoelectric

beam is governed by

∂2M(x, t)

∂x2
+m

∂2wrel(x, t)

∂t2
= p(x, t)

where

M(x, t) = Y I
∂2wrel(x, t)

∂x2
+ υV (t)

the electrode is covered from x1 to x2[
dδ

dx
(x− x1)− dδ

dx
(x− x2)

]
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is the internal bending moment caused by both transverse deformation wrel and piezoelec-

tric voltage V . The targeted applications are energy harvesters for transverse vibrations.

Thus the dynamic behavior of the beam around certain natural modes is of interest. A

modal superposition strategy is employed where the electrode-free eigenfunctions are used

to form the coordinate transforming relation. The governing equation in the modal do-

main is similar to Equations (1.3) and (1.4). The same authors extended the analytical

solution is to bimorph configurations with series and parallel connections of piezoceramic

layers and experimentally validated [36]. This model allows us to conveniently analysis the

dynamic response, equivalent parameters around few interested modes. It is promising for

applications in energy harvesting and vibration control. Fau-Penella and Puig-Vidal [37]

presented an equivalent circuit for the modal-superposition models, shown in Fig 1.13.

This representation is more intuitive and general than the ones shown in Figure 1.12.

The modal electromechanical coupling coefficients are represented by a set of transform-

ers with different transforming ratios. It also shows that the structural ‘modal’ DOFs are

coupled with each other through the voltage.

Figure 1.13: Complete equivalent electrical circuit for piezoelectric cantilever [37].

Moreover, studies can be found in the literature for stepped beams [38] and multilayer

bending actuators [39]. The analysis of cantilevered piezoelectric beam with a mass on

its top was studied in [1], and was extended to 2-mass case and validated experimentally

[40]. It has been shown that the piezoelectric layer with an applied voltage equivalent to

a distributed load proportional to second derivative of the width of the electrode. This

leads us to design the shape of the electrode so as to design a modal actuator/ sensor [2].

There are also extensive studies concerning 2D structures such as a plate couples with

piezoelectric materials. Benjeddou et al. [41] proposed an exact two-dimensional ana-

lytical solution for the free-vibration analysis of simply-supported piezoelectric adaptive

plates. Layerwise first-order shear deformation theory (FSDT) kinematics, and quadratic

non-uniform electric potential, are assumed in the study. They compared the results to

available (exact) three-dimensional elasticity and finite-element solutions, showing that

the results were the closest to the exact coupled three-dimensional ones. This model
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was extended by Deü and Benjeddou [42] to show the influence of the electric boundary

conditions, plate side-to-thickness ratio and piezoceramic lamina thickness and position

on the electromechanical coupling of both in-plane and thickness modes. Preumont et

al. [2] studied the equivalent loads created by a voltage applied to the piezoelectric patch

bonded to the plate. They found that the piezoelectric loads consist of an in-plane force

normal to the contour of the electrode, and a constant moment acting on the contour of

the electrode.

Concerning the beams and plates with piezoelectric materials and electric circuits,

another important analytical modeling strategy is proposed by Dell’Isola and co-authors

[43, 44]. Their approaches are not for general cases but for beam/ plates with dis-

tributed piezoelectric materials and with periodic electric interconnections, termed Piezo-

electromechanical (PEM) structures, as shown in Figures 1.14 and 1.15.

Figure 1.14: Illustration of a PEM beam [45].

Figure 1.15: Illustration of a PEM plate [44].

One of the underlying ideas of their methods is the mechanical-electric analogies. The

periodic interconnection of the piezoelectric patches (see Figure 1.16 for some examples),

can be regarded as a finite difference approximation to the electric voltage field. The

electric network can then be directly replaced by the spatial differential operator. The

mechanical field is also treated by a homogenization process, leading to a distributed

model. This way the PEM structures can be modeled by two groups of PDE, one for the

mechanical field and another for the electric field. For instance, the PEM beam with the

(S,S)-Network [46] shown in Figure 1.16 is modeled by the following distributed equations

if the electric network and disconnected

U (4)(X, t) +
1

c2
b

Ü(X, t) = 0

ψ̈(X, t)− δ2ψ̇
(2)(X, t)− β2ψ

(2)(X, t) = 0

where U is the transverse displacement and ψ is the electric flux-linkage (defined as

the time primitive of the electric potential). Once the network is connected to the
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piezoelectric patches, the governing equations of the mechanical and electric fields are

coupling together, leading to complex PDEs. Let us see another example concerning

plates. The free motion of the PEM plate with a membrane-like network [47] shown in

Figure 1.17 is model by

mechanical

ϋ + α∆∆υ −
coupling

γ∆φ̇ = 0

φ̈+ δφ̇− β∆φ

electric

+ γ∆υ̇ + δγ∆υ

coupling

= 0

where υ is the out-of-plane displacement and φ the electric flux-linkage. With these

distributed models, the wave and modal characteristics can be calculated with ease. Their

specific applications will be presented in sections 1.5.

Figure 1.16: Circuit schemes of the modular lumped electric networks [46].

Note that one main aim of PEM is to use a passive electric network to modify the

vibration and wave characteristics of the host structure. One can first design a electric

network and use the aforementioned methodologies to see what is the equivalent elastic

media of such a network and how it influences the structural system. Alternatively, one

can also first design the attached elastic media such that the desired characteristics can

be achieved. In this case we have to find an implementation of such elastic media by

means of electric networks [48].
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Figure 1.17: Electrical connection scheme for the PEM plate considered in [47].

1.2.3 Finite element models

Finite Element Method (FEM) is a well-developed numerical technique in common use

for finding approximate solution to boundary value problems. It uses variational methods

to minimize an error function and produce a stable solution. FEM encompasses all the

methods for connecting many simple element equations over many small subdomains,

named finite elements, to approximate a more complex equation over a larger domain. The

idea of using FEM to analysis piezoelectric systems started in early 1970s, and nowadays

many kinds of element with different shape (like shell, beam, rod and solid elements)

and order are proposed. A comprehensive review can be found in [49]. Elements with no

electric DOF and those are capable to capture the ‘induced voltage’ are of special interest.

One concern of the FEM is that the model dimension (number of DOFs) are enor-

mous if the geometric or material configurations are complex, especially in mid- and high

frequencies. Model reduction strategies are accordingly proposed. Lazarus et al. [50, 51]

proposed a reduced model in which the system’s electrical state is fully described by only

a couple of variables per piezoelectric patches, namely the electric charge contained in the

electrodes and the voltage between the electrodes. The reduction is achieved by a modal

truncation based on short-circuit natural modes. Collet and Cunefare [52] proposed a

modified Craig-Bampton condensation able to take into account the entire piezoelectric

coupling as far as it is accurately introduced in the basic model employed. Two additional

displacement fields are introduced to the basis: 1) A set of the dual displacement fields

adjoint to the piezoelectric applied forces computed with homogeneous connecting Dirich-

let condition; and 2) A set of fields that are the inner normal modes with homogeneous

Dirichlet connecting conditions, orthogonal to the piezoelectric applied forces. The model

was experimentally validated in their study.

With its advantages, FEM has already been used to many applications of piezoelectric

structures. Pagani Jr et al. [53] used a full FEM model to determine the optimal weighted

array of a piezoelectric modal filter and so does in [54]. Complex interconnection of patches

or material blocks are required in such application, which is very difficult to model by

analytical methods. Kim et al. [55] used a FEM model to find the best location for

piezoelectric patches in a plate with only one edge clamped, to achieve the best vibration
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control performance. Bareille et al. [56] used a FEM model to design a torsional actuator;

designs with different number of patches and different ways of locating the patches are

compared. Applications can also be seen for rotor-machinery blades or bladed discs

coupled with piezoelectric patches [57, 58].

1.2.4 Remarks

Knowing the governing equations is the starting point towards piezoelectric actuating,

sensing, energy harvesting, vibration control, wave filtering and so on. Choosing an ap-

propriate modeling strategy is a trade-off between efficiency and accuracy. In applications

for energy harvesting, if the task is to design/optimize the electric circuits, the lumped pa-

rameter models can be used. It is similar in applications for vibration reduction when only

one patch is used to control one mode. In applications for spatial sensing and actuating,

the distributed models are required. It is also the case for multi-mode vibration control

in beam-like or plate-like structures. The analogy between the mechanical properties and

electric elements are well studied in the literature, leading to pure mechanical and pure

electric representation of piezoelectric systems. These replacement models provide in-

sights into the mechanism to understand and utilize the piezoelectric effects. It underlies

the PEM beams and plates proposed for broadband vibration control and noise isolation.

With the increase of complexity, FEM becomes a reliable numerical tool. Reduced models

can be used to mitigate the issue regarding matrix size.

It is worth to note that each models has its own assumptions. Lumped parameter

models are valid only in low frequencies or around certain natural modes. Distributed

parameter models has assumptions on the geometrics and on the stress & strain. The

distributed models used for PEM structures rely on the homogenization on both mechan-

ical and electric fields. This makes the models only valid when the wavelength is much

smaller than the patch dimension. In FEM the element type and mesh density need to

be carefully chosen to control the discretization error.

1.3 Electromechanical coupling factors

1.3.1 Definitions

Piezoelectric effect is the corner stone of all the piezoelectric based smart structures. It

naturally comes into a question that how do we quantitatively describe the ‘strength’ of

the electromechanical coupling for a piezoelectric material. The criteria that can mea-

sure the ‘converting capability’ are termed Electromechanical Coupling Factors (EMCF).

Moreover, there are two scales regarding EMCF. The first on is the material scale.

EMCF in this scale is used to describe the couping strength or converting capability of a

piezoelectric material. EMCF in this scale is directly related to the material parameters.

It allows one to choose an appropriate piezoelectric material before it is manufactured

into certain components. The second one is the structure scale. EMCF in this scale

is expected to include the coupling strength of the whole structure, taking into account

the geometrics and the locations of piezoelectric material, as well as the frequency and

structural deformations (see [59] for an example). It allows one to design or optimize a

smart structure.
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Summarizing earlier studies [60–63], the last IEEE standard on piezoelectric materials

and transducers [6] uses two EMCF, one for the material scale [61] and another for the

structure scale [60].

For the material scale, the internal energy in a piezoelectric material writes

U =
1

2

∫
v

(
{T}T{S}+ {E}T{D}

)
dv

Introducing the constitutive equations (1.1) and (1.2), leading to

U = Ue + 2Um + Ud (1.5)

where Ue , Um, Ud are the elastic energy, electric energy and mutual energy respectively.

Specifically, they are

Ue =
1

2

∫
v

(
{T}T [sE ]{T}

)
dv

Um =
1

2

∫
v

(
{T}T [d]{E}

)
dv

Ud =
1

2

∫
v

(
{E}T [εT]{E}

)
dv

The EMCF ks defined in [61] writes

k2
s =

U2
m

UeUd
(1.6)

and it is used in IEEE standard [6] for uniform electro-elastic states. For instance for a

‘13’ thickness stretch mode, where the only T1 and E3 are non-zero, it leads to

k2
31 =

d2
13

εT
33c

D
11

(1.7)

only depended on the material parameters. Similarly, terms k2
33, k2

51 etc. can also be

obtained in the similar manner. These terms are also called static coupling factors.

They are especially useful in actuating and sensing where the deformation of piezoelectric

materials can be assumed.

For a host structure coupled with a piezoelectric transducer, i.e. the structure scale,

the EMCF can be obtained at each natural modes [60], by

k2
d =

ω2
r − ω2

a

ω2
r

(1.8)

where ωr is the resonance frequency in the FRF of V/Q, and ωa is the anti-resonance

frequency. In fact, ωr corresponds to the open-circuit frequency of the mode and ωr to

the short-circuit modal frequency [2]. Term kd is also called Modal Electromechanical

Coupling Factor (MEMCF) [23]. Equation (1.8) also gives a convenient way to experi-

mentally measure the WEMCF and it is widely used in practice. The MEMCF can also

be calculated from a energy-based formula [64]

k2
d =

UOC − USC

UOC
(1.9)
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where UOC is the internal energy of the structure when the electrodes are open and USC

is the internal energy for short-circuit electrodes.

To understand the equivalence between Equations (1.9) and (1.8), Preumont [2]

provided an intuitive interpretation. Consider a longitudinal piezoelectric transducer

subjected to the following mechanical cycle: first, it is loaded with a force F with

short-circuited electrodes; the resulting extension is ∆ = F/Ksc. The stored energy

is W1 = F 2/(2Ksc). At this point, if we disconnect the electrodes and the transfer is un-

loaded according to a path of slope Koc = Ksc/(1− k2), the stored energy now becomes

W2 = F 2(1 − k2)/(2Ksc), leaving W1 −W2 stored in the transducer. The ratio between

the remaining stored energy and the initial stored energy is (W1 −W2)/W1 = k2, which

is the MEMCF.

Equations (1.8) and (1.9) are proposed for modes where the structure has finite extend.

For open structural structures, the coupling mechanism is associated to waves. Various

definitions can be found for different cases. Chen et al. [65] calculated EMCF by

k =
Voc − Vsc

Vsc

for Rayleigh-type surface acoustic waves in a semi-infinite with alternating piezoelectric

and non-piezoelectric super-lattices, where Voc and Vsc are the group velocity in open-

circuit and short-circuit situation respectively. Fan et al. [66] used the Green’s function

method to calculate the electromechanical coupling coefficient of a Lamb wave in a multi-

layered plate. To the writer’s knowledge, no research efforts has been devoted to evaluate

the EMCF for the guided waves in 1D and 2D uniform or periodic structures.

(a) (b)

Figure 1.18: Charge distribution of a cantilever beam with uniform piezoelectric materials

in the electrode-free situation (a) the first mode; (b) the third mode.

1.3.2 Optimization and enhancements

In practice a larger electromechanical coupling factor is always desired, corresponding to

an optimization problem. MEMCF can be used as a criterion for the design of geometric

parameters. To illustrate this, let us consider an electrode-free piezoelectric cantilever

beam. The first mode produces the same kind of charge on the surface of piezoelectric

materials. When a uniform electrode is attached, no generated charge is canceled as
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shown in Figure 1.18a, leading to a good coupling. However, the third mode generates

different kind of charges on the surface shown in Figure 1.18b. If a uniform electrode

is still used, charge with different signs would cancel each other out, leading to a very

low coupling factor. There are several ways to improve the MEMCF by modifying the

geometric parameters.

First, one can use shaped electrodes over a uniform piezoelectric material. Vasques

[67] suggested the using of a shaped electrode to optimize the MEMCF for certain mode

while filtering out the other modes, leading to a spatial modal filter. This filter can be

used to sense, actuate or dampen the modal vibration without influencing other modes.

Vasques demonstrated that the optimized shape function for the width S(x) should be

proportional to the second order spatial derivation of the modal shape φ, namely

S(x) ∝ d2φ(x)

dx2

and the optimized results are illustrated in Figure 1.19. Note that the width is required

to be vary in a continuous way, this may causes manufacturing difficulties in practice.

Figure 1.19: Schematics for uniform and modal electrode configurations [67].

Alternatively, one can still use a number of simple rectangular piezoelectric patches

which are easy to be purchased. The aim is to find proper locations for them so as to

achieve acceptable MEMCF for the targeted mode. Ducarne et al. [68] optimized the

placement, length and thickness of piezoelectric patches for two different configurations of

beam, shown in Figure 1.20. Note that the length of the patches and width are in many

cases chosen in priori to minimize the added mass of the patches, or simply because the
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area covered by the patches has to be limited. In such cases additional constrains have

to be considered.

Figure 1.20: Deformed shapes of the optimal configurations for an aluminum/PIC151

beam [68].

We can see that the optimal geometric parameters for MEMCF vary dramatically

for different modes. To have a piezoelectric structure with good MEMCF for multiple

modes, Li et al. [59] designed a cantilever beam with distributed electrodes and a electric

network whose connection is frequency-dependent, shown in Figure 1.21. It is based

on the fact that the MEMCF for a single mode is determined by two factors: material-

structure coupling factor and modal position coupling function. The former is only related

to material properties and structure dimensions and the latter is related to position of

the electrode. Accordingly, they first distributed the electrodes into several small pieces

and design the connection patten of the electrodes for each mode. Then a ‘current flow’

network is used to decide the ‘weight’ of the connection pattens at a given frequency. The

strategy ensures electrodes with same kind of charge always being connected therefore

achieves best MEMCF for multiple modes.

Once the geometric parameters are decided, a semi-active circuit termed Negative Ca-

pacitance (NC) can be used to further enhanced the coupling strength. Its applications

can be seen in extensive studies [69–72]. Commonly a NC is implemented by the syn-

thesis electrical circuit shown in Figure 1.22 leading to QC/VC = −Cn. The equivalent
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Figure 1.21: The layout of electrodes and electric networks to optimize MEMCF for the

first three modes of a cantilever beam [59].

Figure 1.22: Synthesis electrical circuit as a NC commonly used in the literature.

capacitance can be determined by

Cneg =
R1

R2
Ĉ

where R1, R2 and Ĉ are the resistances and capacitance shown in the figure; Cn is the

absolute value of the negative capacitance. Commonly there are two configurations in the

literature to introduce one NC into the shunt circuit, namely the parallel and the series

configurations, shown in Figure 1.23. According to the work of Marneffe and Preumont

[73], for the parallel configuration, the OC natural frequency ω̂oc for the transducer be-

comes

ω̂2
oc = ω2

oc +
χ2
i

Cp − Cn

while the SC natural frequency remains unchanged, namely ω̂2
sc = ωsc. This leads to the

change of MEMCF for each mode

k̂2
i =

Cp

Cp − Cn
k2
i



26 Chapter 1. Literature review

according to Equation (1.8), where k is MEMCF without NC and k̂ is MEMCF with

parallel NC. If Cn < Cp, an increase of the MEMCF can be achieved.

(a) (b)

Figure 1.23: Illustration of a piezoelectric transducer connected to a negative in series (a)

and in parallel (b).

For the series configuration, the SC natural frequency ω̃sc for the transducer becomes

ω̃2
sc = ω2

sc −
χ2
i

Cn − Cp

while the OC natural frequency remains unchanged, namely ω̃2
oc = ωoc. This also induce

a change of MEMCF for each mode

k̃2
i =

Cn

Cn − (1− k2
i )Cp

k2
i

according to Equation (1.8), where k̃ is MEMCF with series NC. If (1−k2
i )Cp < Cn < Cp,

an increase of the MEMCF can also be achieved.

A comparison between series and parallel NC can be found in [73] and the stability

study reveals that the series configuration is better than the parallel one. Moreover, the

series configuration increases the equivalent capacitance (in contrast to the parallel case),

which further reduces the optimal value the inductance in a RL shunt and thus makes it

easier to implement electronically.

Figure 1.24: The new configuration of using two NCs proposed by Berardengo et al. [74].

Note that a parallel NC only changes the OC natural frequencies, while a series NC

only changes the SC natural frequencies. A new configuration of using two NCs has been
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proposed by Berardengo et al. [74], shown in Figure 1.24. This changes at the same

time the short and open circuit resonance frequencies of the electromechanical system.

Consequently a better MEMCF and a wider stability zone can be achieved.

1.4 Analysis methods for wave characteristics

Wave propagation characteristics underlie the vibration and acoustic performance of struc-

tures. First, we can use wave characteristics to predict the vibration and acoustic per-

formances of structures [75]. Theoretically the wave-based methods can give the same

answer to a same structural dynamic problem as the mode-based methods, and this equiv-

alence is termed ‘wave-mode duality’ in the literature [76–78]. The wave-based methods

can analyze open structural systems and can also remarkably reduce the dimension of

problems. These features are especially useful in mid- and high frequencies. Secondly,

another important application is the structural health monitoring [79, 80], the wave-based

methods involve high frequency excitation and thereby can detect minute damages unlike

low-frequency vibration technique. Moreover, one can achieve some unusual dynamic fea-

tures by designing the wave characteristics, such as low modal density, negative refraction

and negative group velocity. These are related to the rising research field concerning the

periodic structures or the so-called ‘phononic structures’ [81].

With regard to these applications, the obtaining of the wave characteristics is essential.

This section gives a brief review of the existing tools that yield wave characteristics of a

given structure. Generally each of these methods is based on the governing equations of

the whole or part of the structure. By the approaches that have been mentioned in section

1.2, the piezoelectric materials can be included in the governing equations. In this regard,

here we only presents the methods in a general sense. Whether a method is applicable

for certain piezoelectric structures depend on whether the piezoelectric structures can fit

into the governing equations that underlies the method.

1.4.1 Analytical methods

Simple structures, for example a uniform rod and a uniform beam, are amenable to exact

analysis. For such waveguides the analytical solutions are available for the wavenumber,

the group velocity, and wave shapes [82]. As an example, for a thin beam where the

Euler-Bernoulli theory holds, the governing equation for free vibration is given in form

ρA
∂2u(x, t)

∂t2
+ EI

∂4u(x, t)

∂x4
= 0

where ρ, E, A, I are density, young’s modulus, area and second moment of area respec-

tively. Assuming time- and space-harmonic motion, the displacement is written as

u(x, t) = e−jkx+jωt
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where j =
√
−1, k is the wavenumber and ω the angular frequency. Substituting to the

governing equation, it yields four wave numbers

k1 = +
√
ωC

k2 = −
√
ωC

k3 = +j
√
ωC

k4 = −j
√
ωC

where C = (ρA/(EI))1/4. The positive real and negative imaginary wavenumbers are

associated with the positive-going waves so that the waves propagate in the positive

direction of the beam and the other wavenumbers are associated with the negative-going

waves. So k1 represents the positive-going propagating wave; k2 represents the negative-

going propagating wave; k3 represents the negative-going evanescent wave; k4 represents

the positive-going evanescent wave. Note each wavenumber is a function of the frequency,

this is termed dispersion equation/curves. Once the dispersion equations are obtained

the group velocity ∂ω/∂k and phase velocity ω/k can be calculated.

A dispersion curve describes the relationship between the ‘frequency’ in space (k) and

in time (ω). But the deformation and stress caused by the passage of the wave is not

given by dispersion relations. To express that we need to calculate the ‘wave modes’

or ‘wave shapes’. According to Euler-Bernoulli theory, the rotational deformation θ(x),

internal bending moment m(x) and internal transverse force f(x) can be known once the

displacement u(x) is given. Assembling them in a vector, we have

φ =


u

θ

f

m

 =


1

∂u/∂x

EI∂3u/∂x3

−EI∂2u∂x2


By considering each wavenumber we obtain the corresponding wave shapes, φ1, φ2, φ3,

φ4. The wave numbers k1,2,3,4 and waveshapes φ1,2,3,4 in combine is termed the ‘wave

basis’ [83]. The wave basis is the starting point of all the wave-based applications.

There are many useful properties of the wave basis [84, 85]. For instance, using the

wave shapes we can transform the physical state-vector S into the wave domain, as

S =


u

θ

f

m

 =

4∑
i=0

aiφi = Φa (1.10)

In physical domain, the state-vector at two different locations, say x = x0 and x = x1,

are related by a transfer matrix, namely

S(x0) = TS(x1)

It is not difficult to check that T is a full matrix. However, by transforming the S into a,

it can be proved [83] that

a(x0) = Λa(x1) (1.11)
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where Λ is a diagonal matrix only links to the wavenumbers and the distance between

two points x0 − x1. More importantly, we have

Λ = Φ−1TΦ (1.12)

These conclusions, shown in Equations (1.11) and (1.12), are very important as we will

see later.

Note that during the analysis towards wave basis, we do not consider any boundary

conditions, which means the waves we are searching for can be understood as the free

deformations that can happen in the unbounded media. This does not mean that wave

basis can only be used for infinite structures. For a finite structure, a boundary condition

only constrains the relationship between the injected wave and the reflected waves and

such a relation can be calculated by the wave basis. Let us still use the Euler-Bernoulli

beam as an example, if a free boundary condition is imposed at x = x0, namely f(x0) = 0

and m(x0) = 0. Introducing these constrains to Equation 1.10, leading to(
a1(x0)

a4(x0)

)
= R

(
a2(x0)

a3(x0)

)
where R is a 2× 2 reflection matrix. This way the finite boundary conditions have been

considered and with that natural modes [78] and forced response [84] can be calculated.

The approach described above can be applied to other cases where the equation of

motion can be analytically expressed, such as plate and stiffened plate [86].

Figure 1.25: Illustration of a uniform waveguide and the state vector of a unit cell [87].

1.4.2 Transfer matrix method

Equations (1.11) and (1.12) actually indicate that the wave characteristics are related

to the eigendecomposition of transfer matrix. So if the homogeneous problem of the

governing equations is difficult to search, one can try to first express the transfer relation

between two state vectors at the ends of one segment of the structure, as(
qn
fn

)
= T

(
qn+1

fn+1

)
(1.13)

where T is the transfer matrix. For uniform structures, the segment length ∆ can be

arbitrary (Figure 1.25) while for the periodic structures (Figure 1.26), a smallest repetitive
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Figure 1.26: Illustration of a periodic waveguide. The choosing of the unit cell is not

unique: (a1) 1st choice of unit cell (a2) Periodic structure considering a1 as unit cell.

(b1) 2nd choice of unit cell (b2) Same periodic structure as a2 considering b1 as unit cell

[88].

segment should be used. Then a 1D periodic condition derived from the Bloch theory is

applied (
qn+1

fn+1

)
= λ

(
qn
fn

)
(1.14)

leading to the following eigenvalue problem

(T− λI)

(
qn
fn

)
= 0 (1.15)

The eigenvalue is linking to the wavenumber λ = e−jk∆ and the associated eigenvector is

the corresponding waveshape.

This method has been applied to analyze the wave characteristics of periodic Timo-

shenko beam [89], nonsymmetrical axially loaded thin-walled Bernoulli–Euler beam [90]

and periodic structures with local resonators [91, 92]. It should be noted that the transfer

matrix method can suffer from numerical ill-conditioning when solutions are to be found

numerically [75, 93].

Similarly, one can also started from the equation of motion using the receptance matrix

[94] i.e. reciprocal of the dynamic stiffness matrix, formed by(
fL

fR

)
=

[
αLL αLR

αRL αRR

](
qL

qR

)
Applying the 1D periodic periodic condition, it leads to the polynomial eigenvalue problem

{λ2αLR(ω)− λ[αLL(ω) + αRR(ω)] + αRL(ω)}fL = 0

The receptance method hs been used to analyze waves in periodic structures for mono-

coupled systems [95] and for multi-coupled systems [96] where the complex conjugate
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wavenumbers are described. Many general conclusions have been drawn in their studies.

The receptance method has also been used to analyze a periodic structure with local

resonance [97] as well.

1.4.3 Wave and finite element method

The Wave and Finite Element Method (WFEM) is an alternative to investigate wave

motion in general complicated waveguides. Free wave propagation in one-, two- and

three-dimensions can be analyzed for periodic structures using an FE model of a single

periodic section. The method starts from modeling a short section of a waveguide using

conventional FEs such that the equation of motion is given in terms of a discrete finite

number of DOFs, for time-harmonic motion it gives the form of dynamic stiffness ma-

trix. The transfer matrix and receptance matrix can be formed using elements of the

dynamic stiffness matrix by eliminating the internal DOFs. Then still applying a period-

icity condition (1.14) gives the eigenvalue problem for 1D structures. The eigenvalues and

eigenvectors represent the free wave propagation characteristics such as the wavenumbers

and wave modes.

However, it is not necessary for WFEM to use same eigenvalue schemes as the transfer

matrix method or the receptance method. A series of eigenvalue schemes have been

proposed, the main idea is the use generalized eigenvalue problem to replace the standard

eigenvalue problem (1.15). For example the zhong’s method [98] and the scheme used by

[24]. The main aim is to improve the numerical accuracy and reduce the ill-conditioning.

Using FEM to model a unit cell allows WFEM to be used for periodic structures with

complex geometric and material configurations. But a drawback is that the DOFs may

be enormous, inducing numerical errors and slowing the calculation. To address this,

reduced models for the unit cells can be used. The reduced model can be built from

modes of the unit cells [99–101] or waves of other frequencies [102–104], or both [105].

This thesis concerns the WFE method for 1D waveguides and it is specifically reviewed

in chapter 2.

For 2D periodic structures as illustrated in Figure 1.27, waves can propagate in two

directions x and y, represented by two wavenumbers kx and ky. The periodic conditions

write
q2 = λxq1

q3 = λyq1

q4 = λxλyq1

qR = λxqL

qT = λyqB

and
f1 + λ−1

x f2 + λ−1
y f3 + λ−1

x λ−1
y q4 = 0

fL + λ−1
x qR = 0

fB + λ−1
y qT = 0

Considering them when solving the homogeneous problem of the unit cell, the wavenum-

bers and waveshapes can be obtained. The unknown variables are kx, ky and ω, one can

fix a frequency and one of the wavenumber (say kx) and search for the other wavenumber
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Figure 1.27: Illustration of a 2D periodic waveguide and a unit cell [101].

ky, termed the ‘inverse form’. Alternatively one can fix both wavenumbers and search-

ing for the propagating frequencies, termed the ‘direct form’. Different forms leads to

different way to present the results. A typical results obtained from the inverse form is

shown in Figure 1.28 which is similar to the 1D case. Results of the direct form are often

presented by the phase constant surfaces as shown in Figure 1.29.

For simple waveguides, Mace et al. [106] showed free wave propagation in a rod, a

beam and a plate strip with simply-supported edges using the WFE method. They also

presented the free wave propagation in a layered sandwich beam. Applications of the WFE

method to more complicated waveguides are reviewed. Houillon et al. [107] analysed free

wave propagation in thin-walled structures in which an approach of evaluating the same

wave modes at two different discretised frequencies is proposed. Mencik and Ichchou [108]

investigated free wave propagation in a fluid-filled pipe considering acoustical-structural

coupling. They also predicted the coupling power between two different waveguides using

the WFE method [109]. This work was latter extended by Huang et al. [110–112] by

considering piezoelectric elements between two waveguides. Free wave propagation in a

fluid-filled pipe was also presented by Bocquillet et al [113]. They formulated an eigenvalue

problem using elements of the transfer matrix and numerical solutions were found with

initial estimates.
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Figure 1.28: Illustration of results presentation for the inverse form [85].

Figure 1.29: Illustration of results presentation for the direct form [105].

1.4.4 Artificial boundary conditions

All the previously mentioned methods require the analyzed structures or substructures

to be periodic or uniform. Sometimes the analysis of complex non-periodic structures

in a unbounded situation is required, such as to analyze a building’s reaction when an

earthquake wave is coming [114]. In such a situation, the earth can be regarded as in-

finitely large, and the waves can transmit through the interface between the building and

the earth. This is also useful in structural vibration analysis at mid and high frequencies

because the boundaries are no longer ‘ideal’ at such frequencies so the energy-exchange be-
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tween near-field and far-field should be taken into account [82]. To simulate this ‘infinite’

boundary condition. there are many techniques such as Boundary Element Method [115],

Infinite Element Method [116] and Artificial Boundary Conditions (ABC) [114, 117–119].

Among them the ABC is most convenient to be introduced into FE model of the nearfield.

It is also considered in the thesis as a reference.

The general ideal of ABC is to firstly model the near-field using conventional FEM

and leave all boundaries free, then introduce certain constrain equations on the boundary

nodes so as to simulate the interaction of the far field which is not modeled in FEM.

The ABC has two major branches: the transmission boundary [114, 118] and the elastic-

viscous boundary [117–119].

Transmission boundary simulate the behavior of wave propagating out of the near-

field by artificially constrains the displacement and velocity of the boundary nodes using

the historic response data of near nodes, the 2nd-order transmission boundary shown in

Figure 1.30 writes

U(xb, t+ ∆t) = 2U(xb − Cg∆t, t)− U(xb − 2Cg∆t, t−∆t)

where Cg is the group velocity. Elastic-viscous ABC simulates the behavior of far filed

by representing the stress-displacement and stress-velocity relation with a set of dampers

and spring in parallel, as shown in Figure 1.31. For instance, if the farfield is a uniform

rod, the equivalent transfer function for the ABC writes

Hu =
f(xb, t)

u(xb, t)
= jωA

√
Eρ

where A is the cross-section area, ρ the mass density and E the Young’s modulus. The

derivation of elastic-viscous ABC for rods and beams are given in Appendix C.

Figure 1.30: Schematic of the 2nd-order transmission boundary used in 1-D problem.

A comparison between these two kinds of ABC has been reported by Zhao [118], it is

shown that the elastic-viscous type is more stable and accurate. For transmission ABC, it

suffering stability issues, and to conquer it an extra damping should be introduced to the

near filed. Here two questions rise: 1) the introduced damping would affect the simulation

accuracy and 2) the value of introduced damping lacks a decided rule. Moreover, when

dispersive wave happens, the parameter of wave speed should be approximated. New

methods like Dirichlet-to-Neumann (DtN) ABC [117] seem to be a good direction solving

this problem, but by now there is no ABC that is suitable and precise for all kind of

situations.
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Figure 1.31: Schematic of elastic-viscous ABC used in 2-D problem.

1.4.5 Remarks

Considering the complexity of engineering practice, WFEM seems to be a good choice for

the prediction of wave basis, but the numerical issues should be resolved and strategies

to reduce the size of matrices are necessary. Another interesting direction might be using

WFEM as a substructure technique to model a built-up structure having (1) both periodic

and non-periodic parts [110–112] or (2) multiple periodic parts [120–122].

To analyze free-wave characteristics along a given direction (angle) for a 2D periodic

structure, the WFEM leads to a transcendental eigenvalue problem, which cannot be

solved by conventional eigenvalue searching approaches [123]. Alternatively, treatment

of harmonic wave propagation through the setting up of a quadratic eigenvalue problem

has been considered for both 1D models [124] and multi-dimensional models [85]. The

advantages of the quadratic eigenvalue problem route are twofold: (1) it easily enables

the incorporation of frequency dependency in the material properties and (2) it readily

provides the wave solution for both spatially propagating and spatially decaying modes.

However, some of the required matrices in these methods can not be directly obtained from

the conventional FEM. That may increase the complexity and difficulty of the analyzing

process.

1.5 Piezoelectric strategies for vibration control

The application of piezoelectric-based structure for vibration control can be dated back

to 1980s when Forward [125] carried out a preliminary experimental demonstration of

using external electronic circuits to dampen mechanical vibrations in optical systems.

In that work both passive and active strategies were considered. In active vibration

control, piezoelectric transducers mounted in the host structure are performed as sensors

or actuators. A feedback loop is established with certain control laws so as to apply

active forces according to the sensor signal, as shown in Figure 1.32. Active control

has advantages such as high performance, modal selective and adaptive. Piezoelectric-

based active vibration strategies has been applied in many engineering cases, such as a

civil structure [126], a aircraft vertical tail [127] and a aeronautic blade suffering flutter

[128]. Comprehensive literature reviews regarding active vibration control can be found
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in [129, 130]. It can also be applied in combine with viscoelastic damping treatments to

enhance the performance, leading to hybrid active-passive damping treatments [131].

Figure 1.32: Illustration of the active vibration and noise control [132].

One concern of the active control strategies is the requirements of external equipments

such as power sources, amplifiers and AC/DC converters and computers. On the other

hand, passive vibration control strategies directly connect dissipative electric circuits to

the transducers. Part of the electric energy converted from the mechanical field is then

dissipated, leading to structural damping. This strategy does not need external power

and generally the circuits are much simpler than the active strategies.

However, as it will be shown hereafter, passive strategies may not adaptive to the

environment changes, and they have difficulties to achieve a broadband performance.

External energy sources can be introduced to drive some electric circuits with special

features that are impossible to be achieved by passive circuits. Generally the external

energy is used to maintain a negative capacitance or status shifting circuits, rather than

driving actuators in active control methods. So these approaches are termed semi-active

strategies. Generally the energy consumption in a semi-active approach is relatively low,

so it is feasible to be powered by an energy-harvesting circuit generating energy from the

same host structure. This leads to self-powered vibration control systems. Though there

is no ‘external’ energy source in such a system, we still classify self-powered ones into the

semi-active category.

In this section we focus the review on passive and semi-active strategies for they are

more relevant to the thesis subject.

1.5.1 Passive strategies for single mode

A systematic research concerning the vibration control using passive circuits can be found

in 1990s by Hagood and Flotow [18]. Two shunting circuits, namely the resistive shunt

(a resistor alone) and the resonance shunt (RL series, see Figure 1.33) were discussed nu-

merically and experimentally with a cantilever beam. They found that both two circuits
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can be used to reduce the vibration of a single mode. The resistive shunt is equivalent to

a viscoelastic damping and there exists an optimal value for the resistor. The resonance

shunt can be tuned to the structural mode, performing as a lightweight mechanical vibra-

tion absorber. The best performances of the resonance shunt is better than the resistive

shunt while they are both determined by the MEMCF.

Figure 1.33: Illustration of some single-mode shunts.

Other configuration of circuits, such as the RL parallel circuit proposed by Wu [133]

and the RL-C parallel circuit [134, 135] can also reduce the vibration of a single mode,

shown in Figure 1.33. The additional capacitor in RL-C parallel circuit allows the reduc-

tion of the optimal value of the inductance by a factor 1+α, where α is the ratio between

the external capacity and the capacity of the piezoelectric transducer. Caruso [136] stud-

ied the optimal values of the electric components belonging to three shunts shown in

Figure 1.33 by pole placement technique, taking into account the inherent structural

damping. The analysis showed that the RL series shunt circuit is the most effective one,

shown in Figure 1.34. The RL parallel shunt circuit performs very close to the RL series

circuit. But the optimal value of the tuning parameter for the RL parallel circuit does

not depend on the mechanical inherent damping and the piezoelectric coupling coefficient,

implying an easier tuning procedure. For the RL–C parallel circuit the value of the exter-

nal capacitance cannot be chosen too large in order to have an effective damping system,

and this implies a limitation on the reduction of the tuning inductance achievable with

this circuit.

New results regarding these simple circuits can still be seen recently, Thomas et al. [23]

found closed-form expressions for the optimization of the resistive and RL series circuits.

The vibration reduction brought by the shunt is measured with two indicators: an added

damping factor for the free vibration case and a gain reduction in the forced vibration

case. It is shown (Figure 1.35) that those indicators depend only on two parameters: the

MEMCF and the structural damping. A new turning strategy for RL series circuit based

on the exact solutions is proposed by Soltani et al. [137]. Their solution imposes exactly

two equal peaks in the receptance function that are associated with the smallest possible

vibration amplitude of the host structure. Results show that the performance is superior

to all previous tuning rules for resonant circuit, but the improvement may be marginal

for small electromechanical coupling parameters.

The basic idea of the RL series, RL parallel and RL-C parallel shunts is to implement
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Figure 1.34: Dimensionless amplitude relevant to the three shunts optimized according

to the transfer function optimization technique [136].

Figure 1.35: Optimal electrical parameter values for the tuned resistive and resonant

shunt and associated performances [23] where kj is the MEMCF.

an Tuned Mass Damper (TMD), as shown in Figure 1.6. However, enhanced performance

of vibration control can be achieved by putting another reaction mass in series with the

existing TMD [138]. The total mass of a series TMD can be much smaller than a classic

TMD to achieve the same effectiveness of vibration suppression but at the cost of several

times of larger motion stroke. Zou and Cui [19] used a resonance piezoelectric shunt to

implement the secondary oscillator in such double-mass series TMD, as shown in Figure

1.36. By tuning both the resonances of the mechanical TMD and secondary piezoelectric

TMD close to that of the host structure, an enhanced performance is achieved as shown

in Figure 1.37. Moreover, the electromechanical series TMD does not suffer from large

motion stroke as in the mechanical double-mass series TMD.

Interestingly, a series TMD implemented by piezoelectric shunts for vibration reduc-

tion is similar to a generator for energy harvesting [1], as it is shown in Figure 1.38.
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Figure 1.36: Series TMD with electromagnetic resonant shunt [19].

Figure 1.37: The frequency responses of electromagnetic shunt series TMD for Taipei

101 Tower (solid) in comparison with double-mass TMD (dashed-dotted), classic TMD

(dash), and system without TMD (dot), where all parameters are optimized to minimize

the H2 norm from external force to the displacement of the primary system [19].

Suppose we have a host structure, if the target is to reduce the vibration, according the

idea of series TMD, we can design a mechanical structure (which is a beam in the figure)

to implement the first TMD and integrate piezoelectric subsystem to realize the secondary

TMD. On the other hand for the energy harvesting, the beam is designed to create a large

strain on the piezoelectric patches when the host structure vibrates. The electric circuit

is then designed to store the converted energy rather than dissipate them. These also

require the beam and the electric circuit to be tuned to the interested frequency. That is

to say, the series TMD shown in Figure 1.36 can also be used as a energy harvester just

by changing the dissipative circuit into energy storage one [19].
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Figure 1.38: The similarity between a series TMD and an energy harvester, both realized

by piezoelectric strategies.

To store the electric energy, it is better to convert the alternating current (AC) to

the direct current (DC). A typical electric circuit for that is the bridge rectifier shown

in Figure 1.38, which is an arrangement of four diodes in a bridge circuit configuration.

Warkentin and Hagood [139] firstly examined the use of such nonlinear shunting circuit

to attain effective damping. Lesieutre et al. [140] addresses the damping associated with

a harvester that consists of a full-bridge rectifier, a filter capacitor, a switching DC–DC

step-down converter, and a battery. They show that the best induced loss factor depends

only on the MEMCF. Specifically they use a system with MEMCF of 26% to yield a

modal loss factor of 2.2%. According to Figure 1.35, this performance is better than

the resistive shunt where ξR
add(26%) = 1.69% but worse than the resonance circuit where

ξR
add(26%) = 13%.

Energy harvesting itself is another important research branch concerning the applica-

tion of piezoelectric materials. The efficiency of piezoelectric-based energy harvesting has

been proved in comparison with other electrostatic generators [141]. It has been brought

on by the modern advances to wireless technology and low-power electronics such as mi-

croelectromechanical systems [12]. Relating to vibration control, energy harvesting can

be used as a nonlinear passive strategy as introduced. It can also be used to drive the

low-power semi-active circuits as it will be presented in section 1.5.3.

1.5.2 Passive strategies for multiple modes

At mid- and high frequencies, the modal density and overlap of a structure are high [142].

At a given frequency band there might be several modes, their contributions to the vi-

bration can not be effectively reduced by a single resistive or resonance circuit. Electric

shunting circuit with multiple tuning frequencies were proposed, where each electric res-

onant is turned to a structural modal frequency. Hollkamp [143] directly shunted several

resonance circuits in parallel to the piezoelectric patch, as shown in Figure 1.39. The

reduction of vibration was experimentally observed in multiple modes.

However, tuning of the inductor in one branch in such circuit would interfere with
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Figure 1.39: Multi-mode vibration resonator circuits proposed by Hollkamp [143].

or caused de-tuning of the other branches, or even the entire shunt circuit. That is

why the design of circuit in [143] is not achieved by individually tuning each branch but

by directly optimizing the vibration behavior of on many unknown electric parameters.

Wu [144] reported a circuit consists of a ‘current blocker’ at each branch. The current

blocker is comprising of one parallel capacitor-inductor circuit that is placed in series with

each parallel RL circuit. Depending on the number of structural modes to be damped

simultaneously, a different number of blocker circuits are needed for each branch, as shown

in Figure 1.40 for a 3 modes case. This allows one to separately design each branch by

single-mode rules and integrate them together to get a multi-mode performance. Behrens

and Moheimani [145] further simplified the circuits such that less electric elements are

required, as shown in Figure 1.41. In stead of preventing the current from flowing at

a specific frequency, they allow the current to flow, by using a series capacitor-inductor

circuit. One current flow component is needed for each branch regardless of the number

of modes to be damped. Note that Figure 1.41 is similar with Figure 1.39, so maybe

we can remark that Behrens and Moheimani [145] actually proposed a way to design the

original circuit used by Hollkamp [143].

Figure 1.40: Multi-mode vibration resonator circuits proposed by Wu [144] for 3 modes:

using current blockers plus parallel RL resonators.

As discussed in the previous section, for a mode with low MEMCF even if a electric



42 Chapter 1. Literature review

Figure 1.41: Multi-mode vibration resonator circuits proposed by Behrens and Moheimani

[145]: using current-flow branches plus series RL resonator.

circuit with multi-mode damping ability is shunted, the vibration around the modal fre-

quencies could not be significantly reduced. So it is also important to attain reasonable

MEMCF for multiple modes so as to achieve significant broadband damping performance.

This can be done by the geometric designs shown in Section 1.3.2. Alternatively, other

criteria can be found in the literature to obtain the best design for multi-mode vibration

control. Kim er al. [55] used two piezoelectric patches for multi-mode control of a plate

and the criterion is to maximize the modal voltages associated with the considered modes.

Ip and Tse [146] also optimized the spatial orientation of PZT patches to control a plate

structure. The criterion in their study is to optimize the modal displacement induced by

the voltage applied on the patch. Giorgio et al. [147] propose a strategy for controlling

n structural modes by n piezoelectric transducers shunted with a multi-terminal electric

network, as shown in Figure 1.42a. By introducing a proper transformation of electric

coordinates, a one to one correspondence between the modal mechanical and new electric

DOF is approximately attained. Further, the distribution of the piezoelectric transducers

is improved to maximize the damping performance. In their work a double clamped beam

and a fully clamped plate were developed to validate the technique and the multi-mode

vibration control performance is achieved, as shown in Figure 1.42b.

In the work of [55, 59, 146, 147], the distribution patten for the piezoelectric materials,

the electrodes and the geometric parameters are determined by optimization processes.

Then a multi-mode electric circuit is connected to the terminals so as to dissipate the

structural vibration. These two steps (geometric and electric design) are directly related

to the modes chosen to be reduced. For different modes the final configuration might be

rather different. The concept of Piezoelectric electromechanical (PEM) structure enables

one to tune all the modes at once [45, 148, 149] with a preselected configuration. A PEM

structure comprises of periodically distributed piezoelectric patches interconnected by a

periodic electric network. Examples of PEM structures can be seen in Figures 1.15 and

1.17 for a PEM plate and Figure 1.14 and 1.16 for PEM beams. The electric network

is designed to be resonant at all the structural characteristic frequencies and so that its

modal shapes may piezoelectrically interact with those of the host structure. These design

specifications allow one to control simultaneously all the modes, dispensing with the use

of either active elements or heavy inductors. The synergic behavior of the piezoelectric

patches leads to a very high perfomance in terms of energy transduction efficiency over a

frequency bandwidth in principle infinite.
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(a) (b)

Figure 1.42: The distributed piezoelectric strategy proposed by Giorgio et al. [147]: (a)

optimizing five patches for five modes; (b) comparison between mobility of the controlled

and uncontrolled beam: the first five modes considered.

Dell’Isola and co-authors are among the major contributors are of PEM structures. In

2001, they [47] introduced the PEM plate shown in Figures 1.14 and 1.16. Such a PEM

plate is modeled as a coupled system of the Kirchhoff–Love plate and a membrane. It

is proven that a criterion exists assuring electromechanical coupling of by creating self-

resonance between the membrane modes and plate modes. This criterion allows for the

determination of the net-impedances maximizing the electromechanical energy exchange.

The modal shapes are shown in Figure 1.43, in a fully clamped case. The coincidence of

the electric (membrane) and mechanical (plate) modes happens not only in frequencies but

also in spatial distributions. In 2002, they [48] showed a another methodology to design

a PEM structure, new circuital analogs for the uniformly damped elastica and Kirch-

hoff–Love plate are found. In 2004 they [150] experimentally validated the effectiveness

of a PEM beam prototype obtained by interconnecting distributed piezoelectric elements

either by RL impedances (RL network), or R impedances (R network). They showed

that the PEM beams have smaller optimal inductance compared to classical piezoelectric

shunting, and the optimal inductance can be further reduced by increasing the number of

piezoelectric elements. Improved modeling and electric designing strategies are proposed

in [44, 151]. The performance of different circuit topologies for the interconnection of the

piezoelectric transducers were compared in [46].

Two homogenization processes are performed during the modeling of PEM, converting

1) the periodic piezoelectric structure into a uniform media and 2) the discrete electric

network to a continuous media. These all depend on the long wave-length assumption

hence only valid for lower order modes. In the work of Lossouarn et al. for rods [21] and

beams [22] , the network is kept discrete to get closer to real applications with a finite

number of piezoelectric patches. Two novel models based on a transfer matrix formulation

are presented. Both take into account a discrete electrical network but the first model

considers a discrete mechanical medium while the second keeps the continuity of the

beam. The first experimental validation of a multi-modal damping strategy involving a
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Figure 1.43: Modal basis for the clamped PEM plate [47], ‘m’ refers to the mechanical

modes and ‘e’ to the electric (membrane) modes.

Figure 1.44: Mechanical frequency response functions [22]. The dotted line denotes the

experiment with open-circuited patches, the dashed line denotes the transfer matrix model

with a tuned network, and the solid line denotes the experiment with a tuned network.

beam/rod coupled to its discrete electrical analogue is presented, as shown in Figure 1.44.

In some engineering applications the host structure itself is periodic or near-periodic,

and the most apparent examples are components used in rotor machineries such as bladed

discs and circular shells, shown in Figure 1.45. Fan and Li [27] proposed two kinds of

piezoelectric network which construct a structure-electric-structure energy transfer path,

shown in Figure 1.46. The interaction forces are expected to perform like active force

among the network-connected structures when they are excited. Modal and response

analysis were conducted theoretically showing the network-connection introduces: 1) an

additional resonance frequency point and 2) an additional part in response proportion

to the average excitation over all components. Once the external forces applied on each

substructure are fixed, the key point of this idea is to construct a piezoelectric network

with appropriate Parameter study (the form of connection, the dimensions and content of

network as well as the value of electric components, etc.) that makes the additional term

of excitation caused by network connection and the external forces cancel each other out.

It is illustrated in Figure 1.47 that this technique is excitation sensitive. The optimized

performance is better than that of pure passive piezoelectric shunts. This idea was then

extended by Li et al [26] considering the mechanical coupling between periodic sectors.

The obtained result shows a parallel network is effective for nodal-diameter vibration
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while a series network is effective for the zero-nodal-diameter vibration.

Figure 1.45: An example of periodic structures originally existing in engineering applica-

tions: bladed disc [152].

(a) (b)

Figure 1.46: Piezoelectric networks proposed by Ref [26, 27]: (a) parallel network; (b)

series network.

However, in a more realistic situation there will be slight differences between sub-

structures, hereafter referred to as mistuning, such as the blade-to-blade differences in

geometry and material properties due to manufacturing tolerances or in-service degra-

dations. The structure then becomes nearly periodic or called mistuned and vibration

localization could occur under certain circumstances [154, 155]. This phenomenon could

lead to large vibration in certain regions of the structure and could be very harmful to

the system. The occurrence of localization may also significantly reduce the effectiveness

of structural modeling, and henceforth deteriorate design/control performance.

Tang and Wang [156] have demonstrated the use of piezoelectric networks for the vi-
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(a) (b)

Figure 1.47: Major results obtained in Ref [27]: (a) amplitude of the 1st component

at resonance frequency based on Parallel Network under varying amplitude and phase of

average excitation; and (b) The response curve of short-circuit, open-circuit and optimized

piezoelectric shunts of single, non-connected component, compared with the optimized

curves of piezoelectric networks.

(a) (b)

Figure 1.48: Research highlights of Ref [153]: (a) the proposed piezoelectric network and

individual circuits; (b) maximum response of the blade-model beams versus frequency for

without circuit case, with traditional absorber case, and with the new optimal network

case.

bration reduction of mistuned periodic structures where piezoelectric materials distribute

onto both the blade and disk. Identical inductive piezoelectric circuits are applied to all

substructures to absorb the vibration energy, and the shunt circuits are connected to each

other with capacitive elements. With this design, the otherwise localized vibration energy

can be transferred into electrical form and stored in the inductors and piezoelectric ca-

pacitors, and this part of energy can propagate throughout the integral system by way of

the strong electrical coupling. A parameter study and experimental validation are further
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presented by Yu et al. [69]. Using a more convening dynamic model of the bladed disc,

the same authors [153] extended the electric design. They showed that (in Figure 1.48)

as compared to the traditional absorber, the optimal network is much more effective in

suppressing multiple harmonics simultaneously, and as a result, the maximum responses

are much lower throughout the frequency range.

Multiple network on a same bladed disc has recently been proposed [152]. By organiz-

ing 4n piezoelectric transducers (PZT patches) in two parallel loops of 2n patches each,

the demand on the inductors may be reduced by 4n2 as compared to independent loops,

allowing the use of passive components.

1.5.3 Semi-active strategies

One of the most commonly considered semi-active strategies is the negative capacitance

circuit. As presented in Section 1.3.2, it can enhance the MEMCF and consequently

improve the performance of a existing passive circuit. By using NC one should also pay

attention to its stabilities [157, 158].

Figure 1.49: Circuit diagram of a synthetic inductor.

Another popular semi-active strategy is the synthesis circuit used to analogy a in-

ductor. As presented, many passive strategies involve large inductances so as to tune

the circuits or filter the current flow. Yet the required inductance are often very large,

making them very difficult be realized in practice. As reported by Hagood et al. [18], the

optimal inductance is around 142H to tune a PZT patch at 33 Hz. The RL-C series circuit

can reduce the requirement of inductance but worsen the performance as well. By using

the Gyrator circuits shown in Figure 1.49, a circuit behaves like a inductor can be real-

ized. The circuit requires two operational amplifiers per inductor, creating an inductance

L = R1R3R5/R2 × C. By changing the variable resistor R2, various inductance values

could be obtained. However, the gyrator circuit is not a pure inductor, it creates a resis-

tive component which is not desirable for designing the optimal resistance in the shunt

branch circuit [134]. This circuit has been applied in many studies [71, 134, 136, 152] as

an implementation of large inductances.

The control strategies proposed by Tang et al. [159], Morgan et al. [160], Davis et

al. [161] and Hollkamp et al. [162] can also be regarded as semi-active ones. But the

most important branch of semi-active strategies might be the ones based on switching
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circuit. Clark [163] proposed the State Switch Damping to open the electrode when the

structure starts moving away from its equilibrium position and to close when the structure

starts moving in the opposite direction. The shifting of piezoelectric transducer from

the OC status (high-stiffness) to the SC status (low-stiffness) creates a variable-stiffness.

Consequently, energy stored in the actuator from the structure while the actuator is in

its high-stiffness state, and the energy is dissipated (not returned to the structure) by

switching the actuator to its low-stiffness state. The Further work of the same author

[164] show that a better performance can be achieved if switching from OC to a resistive

shunts. In comparison with the tuned R-L shunt, the state-switched approach only works

better for off-resonance (particularly low-frequency) frequencies, and is less sensitive to

changes in system parameters.

Figure 1.50: Illustrations of the circuits for SSDS, SSDI, SSDNC techniques.

Alternatively, the Synchronized Switch Damping on Short circuit (SSDS) technique

was firstly proposed Richard et al. [165] in 1999, as illustrated in Figure 1.50. Different

from the State Switch Damping, they proposed to close the electrodes during a very short

period of time because shortest time for the SC status led to the best damping efficiency.

They show that the best results are obtained for a threshold corresponding to a maximum

and a minimum of the considered signal (displacement or voltage). The damping efficiency

appears to be twice what is obtained with pure resistive damping and is equivalent to

what is achievable with a tuned inductor damper. It can work at any frequency without

the need for large inductor especially for low frequency applications. The principle of SSD

consists of keeping the sign of the electric charge in the piezoelectric transducer opposed

to the sign of velocity (see Figure 1.51), producing an effect equivalent to dry friction

[166].

Richard et al. [166] proposed to close the circuit on an inductor, termed Synchronized

Switch Damping on Inductor (SSDI), as illustrated in Figure 1.50. The inductor forms a

resonator with the intrinsic capacitance of the piezoelectric material. Hence opening the

circuit after half-circle of the electric resonance leads to a voltage which is 90 degrees out of

phase with the motion, enhancing the damping mechanism shown in Figure 1.52. Usually

the electric oscillating frequency is at least ten times higher than those of the mechanical

modes of interest to ensure the generated charge remains approximately constant during

switching process [168]. This makes the inductors for SSDI can be orders of magnitude

smaller than those of RL shunt. In [166] an inductor of 80 mH was used, making a

remarkable increase of the damping performance than the SSDS. The comparison studied
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(a) (b)

Figure 1.51: The piezovoltage (in Volts, thick line) and the deflection of beam (in mm,

thin line) are plotted as a function of time. (a) Open circuit case and (b) the proposed

switching configuration [165].

Figure 1.52: Illustration of the voltage waveforms of the SSDI technique [167].

conducted by Corr and Clark [169] confirms the superior damping performance of SSDI,

shown in Figure 1.53. The work also indicated that SSDI has a lower sensitivity to

environmental changes than the resonant shunt technique, and it is easier to be tuned.

In the study of Petit [20], it is shown that the performance of SSDI and SSDS is
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Figure 1.53: Experimental comparison of resonant shunting, state switching, and pulse

switching for a clamped–clamped aluminum beam [169].

Figure 1.54: Illustration of the SSDV technique.

strongly dependent to the MEMCF. Ji et al. [170] proposed to replace the short-circuit

to a negative capacitor, illustrated in Figure 1.50, termed Synchronized Switch Damping

on Negative Capacitance (SSDNC). However, in the absence of an inductor, the high

current resulting from closing the switch produces saturations of the synthetic negative

capacitor. Petit [20] show that switching the electrodes on to a voltage source (SSDV,

illustrated in Figure 1.54) can compensate the low MEMCF by artificially increasing the

piezoelements voltage and thus reinforcing the damping. However when the mechanical

energy is dissipated, the transducer continues to recharge and inject energy into the

system. An improvement to SSDV was proposed by Badel et al. [171], which consisted

of adapting the voltage source to the amplitude of vibration; this technique is rather

complex.

SSD-based techniques can also be used to enhance the series piezoelectric TMD [19]

(Figure 1.37) as proposed by Lallart et al. [172]. According to the dual function of the

series TMD, it can both be used to dampen the structure or to generate energy for other

systems. Due to the low power requirement feature, it is promising to design self-powered

vibration control systems [173–176].
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The aforementioned work have fully demonstrated the use of SSD as effective damping

techniques for single mode vibration control. However, it has also been proven that

switching at each extremum of the reference signal (piezovoltage/displacement) is not

an optimal algorithm of SSD techniques in multimodal vibration control case, since its

principle only focuses on the highest detectable mode [177].

Many strategies aiming at improving the multi-modal damping effectiveness of the SSD

techniques are proposed [177–179]. Most of the enhanced strategies are based on threshold

detections, below which the control process is disabled. Moreover, these threshold criteria

are obtained by time domain signal process according to the history of dynamical response

in a given time window. For instance Corr and Clark [177] suggested that the switch

timing is determined according to the rate of energy change. When the product of the

applied voltage and the sum of the voltage rates for the controlled modes is less than

zero, the shunt switch will be shut for removing the energy from mechanical system.

Cherif et al. [180] used another control algorithm for triggering the switch named SSDI

max. In this method, both the modal displacement extrema and the sign of voltage

and its derivative are considered. If the voltage is positive and its derivative is negative

when maximum modal displacement occurs, the switch is triggered immediately, or it

should wait until this condition is fulfilled. Symmetric algorithm is used for the minimum

modal displacement detection. By implementing this algorithm, control voltage for a

targeted mode is artificially increased using the electric energy obtained from higher

modes. Improvement in the damping for targeted mode was numerically demonstrated

under bimodal and pulse excitations.

1.5.4 Remarks

The context of multi-mode vibration control is often related to mid- and high frequencies,

therefore the desired strategies should also be insensitive with the change of modal fre-

quencies induced by the changing of boundary conditions etc. In this regard, the passive

strategies are facing challenges because the designed locations for piezoelectric patches

may no longer be the best place for certain high-order mode under a small perturbation of

the boundary conditions. PEM plates may be a promising solution but the implementa-

tion requires an electric analogy of the mechanical fields; this may be difficult for complex

structures.

Concerning the semi-active strategies, multi-mode vibration control still remains an

open field for SSD techniques. Various studies suggest the use of observers to estimate

the modes and thus optimize the synchronization with a multi-mode structure. However,

these model-based solutions may bring more complexity to the system, which makes their

physical implementation even more complex than active techniques. Also the transfer and

subsequent dissipation of the mechanical energy into electrical form is distributed on the

frequency of the vibration and on its odd harmonics. This phenomenon can be harmful

if the resonance frequency of one of these harmonics is in coincidence with a structural

resonant mode [20].





Chapter 2

Model reduction schemes for the

wave and finite element method

using free modes of the unit cell

Abstract: In this chapter we introduce free-interface Component Modal Synthesis (CMS)

methods into WFEM to reduce the unit cell model. The aim is to accelerate the calcu-

lation while maintain the accuracy. Several free-interface CMS methods with different

approximations of the residual effects are implemented and compared. Adapting to the

reduced methods, a new eigenvalue scheme based on the compliance matrix is proposed.

We show that it is equivalent to the existing eigenvalue formulas. A periodic open thin-

wall structure is considered as an application where both free-wave characteristics and

forced response are computed. Aspects such as accuracy, efficiency and convergence are

discussed and compared with the Craig-Bampton’s fix-interface CMS method. Among

the implemented models, the minimum model size is achieved by the exact CMS method,

which only requires the modes below the maximum analyzing frequency, reducing the

model size from 4416 to 16. The most numerically efficient model for WFEM is built by

MacNeal’s CMS method, where the CPU time of free-wave analysis can be reduced by

97%.
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2.1 Introduction

The center of WFEM is the wave basis formed by the eigenvalues and eigenvectors of the

transfer matrix of one unit cell. However, there are several numerical issues to obtain the

wave basis as reported by Waki et al.[93]. One of these is the ill-conditioning of the stan-

dard eigenvalue scheme of the transfer matrix, especially when the Degree-of-Freedoms

(DOFs) of the unit cell are enormous. Generalized eigenvalue schemes with better nu-

merical stability are proposed, such as the one replacing force terms by displacement ones

[93] or Zhong’s method [98]. As a second issue, a big proportion of the waves are strong

evanescent waves whose eigenvalues are either very large or small. Negative- and positive-

going evanescent waves might not exactly coherent due to the numerical dispersion, even

though the generalized eigenvalue schemes are used. This would induce significant errors

in to the forced response calculation [181]. One idea is to use a reduced wave basis includ-

ing all the propagating waves and some less-decaying waves to express the cross-section

deformation, due to the fact that strong evanescent waves do not contribute much to the

overall response. Left eigenvectors of the transfer matrix should be calculated to avoid

the inverting of the reduced basis. This idea is used and validated in several applications

[24, 102, 104, 182].

Since a FEM unit cell model is used, a refined mesh is necessary to have good pre-

diction of the wave characteristics, as reported by Droz et al. [87]. However, the use of

large-size FEM model would worsen the aforementioned numerical issues. All these eigen-

value schemes are based on the condensed Dynamic Stiffness Matrix (DSM), obtained by

eliminating all the inner DOFs of the unit cell. A large sparse matrix corresponding to

the inner DOFs is inverted, and it may induce numerical errors into the condensed DSM

which can not be reduced by using an appropriate eigenvalue scheme. Moreover, the

condense DSM is frequency-dependent, which means the inverse of a big sparse matrix

is required at each frequency. This could dramatically increase the computational cost

when a large FE model is used. On the other hand, the size of the eigenvalue problem

is directly related to the number of DOFs at the boundaries. The use of a large FE

model with more boundary DOFs will also increase the computational cost for solving

the eigenvalue problem.

To accelerate the calculation of wave basis and mitigate the numerical error, reduced

models have been proposed. In the literature, there are two main strategies to reduce the

unit cell model for WFEM. Here we label them as wave-based [87, 102] and mode-based

models [24, 88, 101]. The wave-based strategy uses a set of wave shapes selected at some

preselected frequencies to express the cross-section deformation at the present frequency.

Not all the waves are kept and the selection of waves depends on the application. Duhamel

et al. [102] employed this strategy to compute the forced response, so the evanescent

waves should be selected and kept. [87] used similar idea to accelerate the calculation of

dispersion curves for propagating waves, hence only near-orthogonal propagating waves at

those frequencies are kept. By this strategy, the DOFs at the boundaries can be reduced

and so as the size of eigenvalue problem. To start this method, one needs to compute

the wave solutions at the preselected frequencies using the full FE unit cell model, which

increases the implementation difficulty.

Alternatively for the mode-based strategy, the unit cell model is reconstructed by

CMS methods before the WFEM procedure. Zhou et al. [88] apply the Craig-Bampton’s
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CMS method [183] to the unit cell model, where the DOFs at left and right boundaries

are kept in physical domain and all the inner DOFs are reduced to modal domain. This

way the inner DOFs are reduced and the calculation of the condensed DSM is highly

accepted. Later, the same authors applied the method into two dimensional structures

and experimentally validated the results [100, 101]. Fan et al. [24] extended this method

to structures with local dampers or piezoelectric shunts and applied to the periodic sub-

structures in an open built-up structural system. The accuracy of this strategy is ensured

by the principle of modal superposition and can be improved by retain more modes. It

is intuitive to combine Craig-Bampton’s method with WFEM because the boundaries

DOFs at which the periodic boundary conditions apply are kept in the physical domain.

Nonetheless, this convenience also constrains the size of the reduced model. Additionally,

for uniform structures whose unit cell does not necessarily have inner DOFs, this method

is not applicable. It remains a question whether free-interface CMS methods can be ap-

plied, where all the DOFs are transformed into modal domain. If applicable, it has the

potential to be applied for uniform structures and to obtain a smaller reduced model for

periodic structures. Besides, it is easier to include experimental data into the reduced

model.

In general, we can summarize that in WFEM, there are two time-consuming tasks

repetitively calculated at each frequency:

1. The inverse of a sparse matrix, whose size equals to the size of inner DOFs.

2. The solutions of a generalized eigenvalue problem, whose size equals to the size of

boundary DOFs.

As discussed, the wave-based strategy reduces the size of eigenvalue problem, while the

mode-based strategy reduces the size of matrix to be inverted. They both accelerate

the calculation, but in different stages of the WFEM calculation. The former is more

applicable for uniform structures with complex cross-section profile while the latter is

more suitable for periodic structures with a lot of inner DOFs. It is feasible to combine

these two strategies to analyze structures with numerous boundary and inner DOFs, as

it is shown by [105]. For most of the applications, using either strategy can achieve a

satisfying acceleration.

In this chapter, we explore the use of the free-interface CMS methods with the WFEM

as alternatives. The basic idea of free-interface CMS methods is to use low-oder free modes

plus residual effects to approximate the compliance matrix. Adapting to that, a new

eigenvalue scheme based on the force vector is proposed (section 2.3.3), and the results can

be easily recovered to the eigen-solutions of the transfer matrix. Free-interface methods

proposed by Hou [184], MacNeal [185], Rubin [186] and Qiu et al. [187] are considered

and implemented (section 2.3.1 and 2.3.2). They have different order of accuracy for the

residual effects from zero order to infinite order. As references, the full WFEM (section

2.2.1) and WFEM with Craig-Bampton’s method (section 2.2.2) are also implemented.

A periodic thin-wall structure with complex wave characteristics is considered as the

application (section 2.4). Comparison are made among the free-wave results obtained

by the implemented methods to illustrate the efficiency, convergence and accuracy issues

(section 2.5.1). For the forced response analysis, the accuracy on the strong evanescent

waves and their influences are discussed (section 2.5.2).
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2.2 The framework of the wave and finite element method

For the sake of clarity, we briefly review the WFEM for the free wave and forced response

analysis. Two models of the unit cell are presented: 1) full finite element model [107,

182] and 2) the reduced model based on Craig-Bampton’s CMS method [88]. A unit

cell is the smallest repetitive substructure of the periodic structure, as shown in Figure

2.1. Obtaining the finite element description of a single unit cell is the starting point of

WFEM. Imposing the periodic boundary conditions derived from the Bloch theorem, the

homogeneous problem in the periodic structure leads to an eigenvalue problem, whose

scheme can be formulated in many different ways. The solutions give wavenumbers and

associated wave shapes at each frequency, revealing how free waves can travel in the

structure. Additionally, the obtained left and right eigenvectors define the wave basis [85].

The wave basis has many useful properties which enable itself to diagonalize the transfer

matrix by a reduced set of left and right eigenvectors [122, 188]. The forced response of

the structure subject to external forces can then be obtained by wave decomposition and

superposition [93, 182].

Figure 2.1: Illustration of the unit cells in a periodic structure.

2.2.1 WFEM with full FE model of the unit cell

In the context of free-wave analysis, external loads are not considered. Isolating a unit

cell from the periodic structure and the discrete governing equations can be obtained by

existing FE tools:

M

 q̈L

q̈R

q̈I

+ C

 q̇L

q̇R

q̇I

+ K

 qL

qR

qI

 =

 fL

fR

0

 (2.1)

where q is the displacement vector; f is the internal force vector; a superimposed dot

denotes derivative with respect to time; M, C and K refer to the mass, damping and

stiffness matrices respectively. Subscripts L, R and I respectively denote the left-side,

right-side and internal DOFs as illustrated in Figure 2.1. In the context of harmonic
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motions, the dynamic equations of a unit cell at frequency ω are given by

D̃q =
(
−ω2M + jωC + K

)
q = f (2.2)

where D̃ is the dynamic stiffness matrix.

According to the Bloch theorem, when a free wave travels in the periodic structure,

the following conditions should be satisfied:

qR = λqL (2.3)

fR = −λfL (2.4)

where λ = e−jk∆ describes the amplitude and phase changes when the wave travels from

the left side to the right side of a unit cell. k is the wavenumber and ∆ is the length of

the unit cell. The minus sign appears in Equation (2.4) is induced by the equilibrium of

the internal forces.

The objective of the free wave analysis is to find deformation vector q associated

with a wavenumber k at frequency ω to satisfy Equations (2.1), (2.3) and (2.4). Two

strategies are available in the literature. The first one is to fix a frequency ω, and search

for all the k and q, termed the ‘direct form’ [75]. Alternatively, it is also possible to fix

a wavenumber k, and search for all ω and q, termed the ‘inverse form’ [99]. The inverse

form is convenient to calculate the propagating waves and it is often applied on two-

dimensional structures [101]. The direct form can yield both propagating and evanescent

waves, and it is obligatory when the next step is a forced response analysis [106]. It is

more frequently used when analyzing one dimensional structures [88, 107, 122, 182, 188].

To have a coherent context, only the direct form is described here. Eliminating all the

internal DOFs qI from Equation (2.1) at frequency ω, the condensed dynamic stiffness

matrix of the unit cell writes[
DLL DLR

DRL DRR

](
qL

qR

)
=

(
fL

fR

)
(2.5)

where [
DLL DLR

DRL DRR

]
=

[
D̃LL D̃LR

D̃RL D̃RR

]
−
[
D̃LI

D̃RI

]
D̃−1

II

[
D̃IL D̃IR

]
(2.6)

Substituting condition (2.3) into Equation (2.5) to eliminate fL and fR, and considering

Equation (2.4), it comes to the eigenvalue problem([
0 I

−DRL −DRR

]
− λ

[
I 0

DLL DLR

])(
qL

qR

)
= 0 (2.7)

Equation (2.7) provides a better conditioned way to calculate the eigenvalues of the

transfer matrix

(T− λI)

(
qL

fL

)
= 0 (2.8)

where

T =

[
−D−1LRDLL D−1LR

−DRL + DRRD−1LRDLL −DRRD−1LR

]
(2.9)
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is the transfer matrix. It links the displacement and force at the left and right boundaries(
qR

−fR

)
= T

(
qL

fL

)
(2.10)

However, the eigenvector given by Equation (2.7) is in the form of
(
φT

q λφT
q

)T
. By the

statement

φf = DLLφq + λDLRφq (2.11)

included in Equation (2.5), the eigenvector of Equation (2.7) can be post-processed into

the form φ =
(
φT

q φT
f

)T
which is also the eigenvector of the transfer matrix T asso-

ciated with the same eigenvalue. The eigenvector φ corresponds to a wave shape that

exists in the structure at the given frequency, where φq is the nodal displacement and φf

the internal forces at the cell interface under the passage of the wave.

Overall 2N eigenvalues can be found, by solving Equation (2.8) or (2.7). The eigen-

values appear in pairs of (λ, 1/λ), each pair representing a positive- and a negative- going

wave along the propagating direction. This is caused by the fact that D and D̃ are

symmetric (Hermitian) matrices [84]. If there is no damping mechanism, which means

T ∈ R2N×2N , an eigenvalue λ is either a complex number with |λ| = 1 or a real number

greater or lower than 1. Therefore the corresponding wavenumber k is purely real or

imaginary, associated with a propagating or an evanescent wave respectively. If damping

mechanism is presented, namely T ∈ C2N×2N , the eigenvalues can be complex numbers

and wavenumbers k are also complex numbers and all these waves are decaying. The

positive waves are those for which |λ| < 1, namely the amplitude decrease along the prop-

agative direction. For the waves satisfying |λ| = 1, the positive going ones are those with

a positive-going power flow, namely <(jωφq · φ̄f) > 0. These discussions concerning the

distinguishing of waves can be summarized as

– propagating waves: |λ| = 1, namely =(k) = 0

• positive-going: <(jωφq · φ̄f) > 0, namely <(k) > 0

• negative-going: <(jωφq · φ̄f) < 0, namely <(k) < 0

– oscillating-decaying or evanescent waves: |λ| 6= 1, namely =(k) 6= 0

• positive-going: |λ| < 1, namely =(k) < 0

• negative-going: |λ| > 1, namely =(k) > 0

Assembling eigenvectors by columns, we have matrix Φ :

Φ =

[
Φ+

q Φ−q
Φ+

f Φ−f

]
(2.12)

where
Φ+

q =
[
φ+

q,1 φ+
q,2 · · · φ+

q,N

]
Φ−q =

[
φ−q,1 φ−q,2 · · · φ−q,N

]
Φ+

f =
[
φ+

f,1 φ+
f,2 · · · φ+

f,N

]
Φ−f =

[
φ−f,1 φ−f,2 · · · φ−f,N

]
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and superscript + and − refer to the data belonging to positive and negative going waves

respectively.

To establish the eigen-decomposition of matrix T, left eigenvectors of T are required.

If a row vector
(
θ̂T

q θ̂T
f

)
is the left eigenvector obtained from Equation (2.7), then it

is also the left eigenvector of T corresponding to the same eigenvalue. We also assemble

the left eigenvectors by rows to form a matrix

Θ =

[
Θ+

q Θ+
f

Θ−q Θ−f

]
(2.13)

where the left eigenvector in the ith row has the same eigenvalue as the right eigenvector

in the ith column in matrix Φ. At a given frequency, matrices Φ, Θ and Λ define the

wave basis and they have the following orthogonal relationships

ΘTΦ = Λ =

[
+Λ

−Λ

]
=


. . .

λi
. . .

 (2.14)

when eigenvectors are normalized by

ΘΦ = I (2.15)

It is worth to note that Equations (2.14) and (2.15) still hold when a reduced set of

associated left and right eigenvectors are kept in matrices Θ and Φ. This property allows

us to use a reduced set of waves in the forced response analysis, and to avoid the searching

of the pseudo inverse of matrix Φ.

2.2.2 WFEM with Craig-Bampton modal synthesis method

Searching for the inverse of D̃II in Equation (2.6) is time-consuming if the internal DOFs

of the unit cell are numerous. The computational time becomes an issue especially when

repetitive calculations are required with several groups of parameters to design a periodic

structure. To accelerate the calculation, a reduced model of the unit cell is proposed by

Zhou et al. [88, 101] based on the Craig-Bampton’s method.

First perform a modal analysis on the unit cell with all the boundary DOFs fixed.

Imposing qL = qR = 0, the ith natural frequency ωi and modal shape ψi can be obtained

by solving the eigenvalue problem(
−ω2

iMII + KII

)
ψi = 0 (2.16)

Assembling modal shapes by columns, we obtain matrix Ψ =
[
ψ1 ψ2 · · · ψlrm

]
. Only

the first lrm modes are used to form Ψ, and lrm < (w−2N) where w is the overall number

of DOFs of the unit cell and 2N is the number of DOFs at the boundaries. The criterion

used to select the retained modes is

ωi < αfωm, i ∈ [1, 2, ..., lrm] (2.17)

where ωm is the upper bound of the preselected frequencies to be analyzed. Factor αf

controls the number of the retained modes therefore affects the accuracy of the reduced
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model as well. To have good prediction of the dispersion curves associated with the

propagating waves, αf = 3 is suggested and numerically validated by Zhou et al. [88, 101].

A coordinate transformation is then defined qL

qR

qI

 =

 I 0 0

0 I 0

−K−1II KIL −K−1II KIR Ψ

 qL

qR

y

 = B

 qL

qR

y

 (2.18)

Introducing this transformation into (2.1) and (2.2), and left-multiply matrix BT at both

sides of the equations, the dynamic stiffness matrix D̃∗ writes

D̃∗ = −ω2BTMB + jωBTCB + BTKB (2.19)

Matrix D̃∗ has a much smaller size than D̃ in Equation (2.2). Then eliminating the modal

coordinates y by introducing Equation (2.19) into (2.6) will also lead to Equation (2.5).

But the calculation in Equation (2.6) is significantly accelerated because

D̃∗II = diag(−ω2 + 2jξiωiω + ω2
i ) (2.20)

is a diagonal matrix due to the orthogonal relations

ΨTCIIΨ = diag (2ξiωi)

ΨTMIIΨ = I

ΨTKIIΨ = diag
(
ω2
i

)
where j is the imaginary unit and ξi is the modal damping coefficient. One only needs to

construct the reduced stiffness, mass and damping matrices in Equation (2.19) once, then

the the free wave analysis at each frequency can be performed on the reduced model.

2.2.3 Forced response analysis using wave amplitudes

The forced response analysis based on WFEM can be understood as an accelerated trans-

fer matrix method. Owing to the orthogonal properties of the wave basis, calculating

the transferring of state vectors in wave domain is much quicker than in physical domain.

Once the wave basis (Φ, Θ and Λ) is obtained (by full unit cell model or any other reduced

models), the process of forced response remains the same.

The displacements and forces at a cross-section (say cross-section 0) between two unit

cells can be represented by a linear combination of the wave shapes(
q0

f0

)
= Φ

(
p+

p−

)
(2.21)

where p+ and p- are the amplitudes of the positive-going and negative-going waves at this

cross-section. Similarly, at the cross-section across i unit cells in the positive direction,

there is (
qi
fi

)
= Φ

(
r+

r−

)
(2.22)

If no external forces applied in-between, we have(
qi
fi

)
= Ti

(
q0

f0

)
(2.23)



2.2. The framework of the wave and finite element method 61

Introducing Equations (2.22) and (2.21) to (2.23), and using the orthogonal relations

(2.14) and (2.15), it can be proved that(
r+

r−

)
= Λi

(
p+

p−

)
(2.24)

This is actually the transfer relation in wave domain.

Practically, it is not necessary to consider the full wave basis of 2N waves, because

the strong evanescent waves might have very minor contribution to the overall response

[189]. On the contrary, including all the waves even caused significant numerical errors

[182]. The 2lrw kept waves (lrw positive-going and lrw negative-going) are the propagating

and less decaying ones, namely the ones satisfying

λCR ≤ |λ| ≤ 1/λCR (2.25)

where λCR is the factor which controls the maximum and minimum propagating constant

of the retained waves.

Figure 2.2: Illustration of the wave amplitudes in a periodic structure.

Suppose we have a finite periodic structure subject to excitation at one cross-section

as shown in Figure 2.2. We can set the origin point to the excitation cross-section, and

it has n1 unit cells at the negative-x side and n2 at the positive-x side. At the excitation

cross-section, the boundary condition writes

fleft − fright + fex = 0

qleft − qright = 0

(2.26)

(2.27)

where subscript ‘left’ (respectively ‘right’) denotes the cross-section with infinitely

small distance to the left (respectively right) side of the excitation cross-section. The

wave amplitudes are g+ and g− associated with the ‘left’ cross-section and a+ and a−

for the ‘right’ one, as illustrated in Figure 2.2. Introducing Equation (2.21) to Equation

(2.27) and applying the orthogonal relation shown in (2.15), the force boundary condition

can be written in terms of wave amplitudes(
a+

a−

)
−
(

g+

g−

)
= Θ

(
0

fex

)
(2.28)

This also indicates that the wave amplitudes are not continuous at the cross-section where

external forces apply.
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Tracing the traveling of waves at the left part, we have

d+ = (+Λ)−n1g+ (2.29)

d- = (-Λ)−n1g- (2.30)

and

d+ = RLd- (2.31)

where RL is the reflection matrix at the left boundary of the structure, and d is the wave

amplitude at the left boundary. Introducing Equations (2.29) and (2.30) into (2.31) to

eliminate d, the wave amplitudes g+ and g- are related by

g+ = (+Λ)n1RL(-Λ)−n1g- (2.32)

Note that [(+Λ)−n1 ]
−1

= (+Λ)n1 .

Similarly, for the right part, there is

c+ = (+Λ)n2a+ (2.33)

c- = (-Λ)n2a- (2.34)

and

c- = RRc+ (2.35)

where RR is the reflection matrix at the right boundary of the structure, and c is the wave

amplitude at the right boundary. Introducing Equations (2.33) and (2.34) into (2.35) to

eliminate c, the wave amplitudes a+ and a- are related by

a- = (-Λ)−n2RR(+Λ)n2a+ (2.36)

The reflection matrix links the injected and reflected wave amplitudes at a boundary

[24, 182]. It can be determined once the boundary condition is known. Let us express the

boundary condition in a general way, as

Af + Bq = 0 (2.37)

Again we express the forces and displacement by wave amplitudes, so that the reflection

matrix becomes

R =
(
AΦref

f + BΦref
q

)−1 (
AΦinc

f + BΦinc
q

)
(2.38)

where superscript ref and inc refer to the reflected and injected waves respectively. For

the left boundary, superscript ref can be replaced by + and inc by -. When the reduced

wave basis is used, the calculation of R will pseudo-inversion. Equation (2.37) can be

premultiplied by left eigenvectors (e.g. Θ+
q ), yielding

R =
(

Θ+
q AΦref

f + Θ+
q BΦref

q

)−1 (
Θ+

q AΦinc
f + Θ+

q BΦinc
q

)
(2.39)

This way the numerical errors can be reduced.

If the structure has infinite extent, then

Rinf = 0 (2.40)
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. If the left side of the structure is free, the reflection matrix writes

RL,free = −
(
Θ+

f Φ−f
)−1 (

Θ+
f Φ+

f

)
(2.41)

If right side of the structure is fully constrained, the reflection matrix is

RR,fix = −
(
Θ+

q Φ+
q

)−1 (
Θ+

q Φ−q
)

(2.42)

For more complex situations, such as several periodic substructures connected together,

or a periodic structure connected to a non-periodic components, the WFEM framework

need to be extended, which will be discussed in the next Chapter.

Solving the linear Equations (2.28), (2.32) and (2.36), waves amplitudes g+, g-, a+

and a- are obtained. The wave amplitudes r of any other cross-section at x ≤ 0 can be

obtained by introducing p = g in Equation (2.24). If the cross-section locates at x ≥ 0,

then we introduce p = a in Equation (2.24). The displacement and force vectors at the

cross-section can then be recovered by Equation (2.21).

Having more unit cells in the structure only leads us to calculate a higher power of

matrix Λ in Equations (2.32) and (2.36). Since matrix Λ is diagonal, this only induces

minor computation increase. This is one of the major advantages of WFEM.

2.3 WFEM with free-interface modal synthesis method

Different with Craig-Bampton’s method, when free-interface CMS methods are used, all

the DOFs will be transformed into the modal domain. Only few low-order modes are kept.

The the contribution of the truncated high-order modes, termed the residual flexibility,

can be approximated and integrated to the overall compliance matrix of the unit cell. The

condensed compliance matrix can be easily obtained because there are no external forces

applied on the inner DOFs of the unit cell. This motivates us to use the internal forces at

the boundaries as the unknown variables, leading to a new eigenvalue problem. We further

demonstrate that this eigenvalue scheme is equivalent to the existing ones. Considering

the fact that in most applications of WFEM the unit cell is statically indeterminate, the

techniques to calculate the residual flexibility in such a case is given.

2.3.1 Reduced models of the unit cell

First we calculate the natural frequencies and modal shapes when the left and right

boundaries of the unit cell are free. The ith natural frequency ωi and eigenvector ψ̂i are

obtained by solving (
−ω2

iM + K
)
ψ̂i = 0 (2.43)

where matrices K and M come from Equation (2.1) with size w × w. Assembling all

the modal shapes by columns we get matrix Ψ̂ =
[
ψ̂1 ψ̂2 · · · ψ̂w

]
where the vectors

are ranked by the associated natural frequencies in ascending order. The modes are

normalized such that

Ψ̂TMΨ̂ = I (2.44)

Ψ̂TKΨ̂ = Ω = diag(ω2
i ) (2.45)
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The physical displacement can then be expressed as a linear superposition of the modal

shapes

q = Ψ̂ŷ =
[
Ψ̂low Ψ̂high

]( ŷlow

ŷhigh

)
(2.46)

where ŷ is the modal coordinate vector. Subscript ‘low’ refers to the retained low-order

modes while ‘high’ refers to high-order modes that will be truncated.

Using coordinate transformation (2.46) and Equations (2.44) and (2.45), Equation

(2.1) can be solved [190]. The relationship between the displacement vector and the force

vector writes

q = Hf = (Hlow + Hhigh) f (2.47)

where H is compliance matrix. The contribution of the low-order modes and high-order

modes in the compliance matrix are

Hlow = Ψ̂low

(
Ωlow − ω2I

)−1
Ψ̂T

low (2.48)

and

Hhigh = Ψ̂high

(
Ωhigh − ω2I

)−1
Ψ̂T

high (2.49)

respectively.

The criterion used to determine the retained modes is the same as that was used in

the reduced model based on Craig-Beampton’s method (see section 2.2.2). The first lrm
modes that will be calculated should satisfy

ωi < αfωm, i ∈ [1, 2, ..., lrm] (2.50)

where ωm is the upper bound of the frequencies to be analyzed. Factor αf controls the

number of the retained modes.

Knowing only Ω̂low and Ψ̂low, the Hhigh is termed ‘residual flexibility’, representing

the contribution of the high-order modes to the compliance matrix at low frequencies. It

is shown by [187] that the exact residual flexibility can be divided into three parts

Hhigh = Hh1 + ω2Hh2 + ω4Hh3 (2.51)

where

Hh1 = Ψ̂highΩ−1
highΨ̂T

high (2.52)

Hh2 = Hh1MHT
h1 (2.53)

Hh3 = HhighMHh2 (2.54)

In practice, if the stiffness matrix K is nonsingular, namely it is invertible, we can use

statement

K−1 = Ψ̂Ω−1Ψ̂T = Ψ̂lowΩ−1
lowΨ̂T

low + Ψ̂highΩ−1
highΨ̂T

high (2.55)

to calculate the Hh1 matrix by the known low-order modal information

Hh1 = K−1 − Ψ̂lowΩ−1
lowΨ̂T

low (2.56)

Introducing Equation (2.56) to (2.53), matrix Hh2 can be obtained. To obtain Hh3,

iteration is needed because Hhigh which depends on Hh3 also appears at the right-hand-

side of Equation (2.54). It is suggested by [191] that we can initially guess H
(0)
high =
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Hh1 +ω2Hh2 and substitute it to Equation (2.54) to obtain H
(0)
h3 . We substitute H

(0)
h3 into

Equation (2.51) to get the updated H
(1)
high which starts the next iteration. The iteration

stops when H
(i)
high is close enough to H

(i−1)
high and the convergence can be achieved within

few iterations [191].

Different approximation of the residual flexibility Hhigh induces different accuracy

and computational cost. In this chapter we consider five different approximations of

Hhigh and compare their performance when they are used with WFEM. The considered

reduced models are

1. Reduced model without residual flexibility. Namely only Hlow is retained in Equa-

tion (2.47). The high-order modes and their residual are completely neglected, hence

the accuracy in terms of the prediction of the residual terms is zero-order. In the

remaining part of the chapter, this reduced model will be referred to as ‘Free (0th)’.

It is also known as Hou’s method [184].

2. Reduced model with first-order approximation of residual flexibility. The residual

flexibility Hhigh is approximated by Hhigh ≈ Hh1. It means that the static contri-

bution of the high-order modes is retained. It is also known as MacNeal’s method

[185]. In the remaining part of the chapter, this reduced model will be referred to

as ‘Free (1st)’.

3. Reduced model with second-order approximation of residual flexibility. The residual

flexibility Hhigh is approximated by Ĥhigh ≈ Hh1 + ω2Hh2. It is also known as

Rubin’s method [186]. In the remaining part of the chapter, this reduced model will

be referred to as ‘Free (2nd)’.

4. Reduced model with exact residual flexibility. The residual flexibility Hhigh is cal-

culated by the exact formula shown in Equation (2.51). Iteration is needed as

presented before. It is also known as the exact substructure method proposed by

[187]. It is supposed to provide an accurate prediction of the residual matrix, at

least in principle. However due to the numerical error it might not be able to have

infinite order of accuracy as expected. In the remaining part of the chapter, this

reduced model will be referred to as ‘Free (4th+)’ (means at least better than fourth

order accuracy).

5. Reduced model with fourth-order approximation of residual flexibility. The residual

matrix Hhigh is approximated by Hhigh ≈ Hh1 + ω2Hh2 + ω4H
(0)
h3 where H

(0)
h3 is

calculated by introducing H
(0)
high = Hh1 + ω2Hh2 into Equation (2.54). It can be

regarded as the aforementioned exact substructure method without iteration. In

the remaining part of the chapter, this reduced model will be referred to as ‘Free

(4th)’.

Among these reduced models, ‘Free (0th)’ is straightforward and it is also the simplest

one in terms of implementation, while its accuracy is the lowest. With the increase of

order, the implementation complexity increases. ’Free (1st)’ and ‘Free (2nd)’ have similar

complexity because matrices Hh1 and Hh2 are frequency-independent therefore can be

calculated once the modal truncation are made. For ‘Free (4th+)’, we need to converge

the iteration at each frequency. Observing Equation (2.54), the sizes of matrices are nearly
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the same as the full stiffness matrix. The iteration is likely to slow down the calculation.

Using ‘Free (4th)’, we can illustrate the improvement of the accuracy and the extra time

consuming by the iteration in ‘Free (4th+)’.

2.3.2 Treatments for the singular stiffness matrix

Obtaining the first order term H1h is important to recover the residual flexibility, but

in Equation (2.56) matrix K should be nonsingular. Yet in most of the applications of

WFEM, the unit cell has rigid-body modes when the left and right boundaries are free.

Consequently Equations (2.55) and (2.56) are no longer applicable because matrix K is

singular. To solve this problem, we follow the method proposed in Ref [186, 191, 192],

and the main steps are summarized in this section.

Suppose the unit cell has r rigid body modes (r ≤ 6) when the left and right boundaries

are free. Splitting Ψ̂low =
[
Ψ̂lr Ψ̂le

]
, where the columns of Ψ̂lr are the r rigid body modal

shapes and columns of Ψ̂le are the (lrm − r) low-order elastic modal shapes. Equation

(2.46) can then be rewritten as

q =
[
Ψ̂lr Ψ̂e

]( ŷlr

ŷe

)
(2.57)

where Ψ̂e =
[
Ψ̂le Ψ̂high

]
. Same as the case where K is nonsingular, only the first lrm

modes will be retained. To find the first order term Hh1, we first find the overall static

flexibility of all the elastic modes

K−1
e = Ψ̂eΩ

−1
e Ψ̂T

e (2.58)

and remove the contribution of the low-order modes; it gives

Hh1 = K−1
e − Ψ̂leΩ

−1
le Ψ̂T

le (2.59)

where

K−1
e = PK̄−1PT (2.60)

K̄ = PTKP (2.61)

P = BTQ (2.62)

B = I−MΨ̂lrΨ̂
T
lr (2.63)

Matrix Q is the constrain matrix used to make the unit cell statically determinate.

Imposing q = Qqc on Equation (2.1), the unit cell should have zero rigid body modes.

The rank of matrix Q has to be (w−r) and the size is w×(w−r). We have to appropriately

choose r DOFs in q to constrain so as to cancel r rigid body modes. In this chapter we

constrain the first r DOFs in q as suggested by [191]. Specifically, the constrain matrix is

Q =

[
0r×(w−r)

I(w−r)×(w−r)

]
(2.64)

Note that Equation (2.1) is modeled by FEM and generally the DOFs linked to a same

node will be arranged by continuous indexes. For instance, suppose the unit cell has 6
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rigid body modes and constraining the first 6 DOFs (say ‘1UX’, ‘1UY’, ‘1UZ’, ‘2UX’,

‘2UY’, ‘2UZ’ for solid elements and ‘1UX’, ‘1UY’, ‘1UZ’, ‘1THXY’, ‘1THYZ’, ‘1THZX’

for shell elements) will be constrained.

Matrix P defines the transformation from the elastic deformation of the free-boundary

unit cell qe to the elastic deformation of the constrained unit cell qc; the transformation

writes

qc = Pqe (2.65)

where the size of qe is w× 1 and qc is (w− r)× 1. Elastic deformation qe is governed by

Mq̈e + Kqe = Bf (2.66)

where vector Bf represents the combination of the external and inertial forces induces by

the rigid body motions. Introducing Equation (2.65) to (2.66), and left multiplying PT,

it gives

M̄q̈c + K̄qc = PTBf (2.67)

where M̄ = PTMP. It can be proved that

Ψ̂e = PΨ̄c (2.68)

where Ψ̄c is the eigenvector matrix of Equation (2.67). Moreover

Ψ̄T
c K̄Ψ̄c = Ωe = diag (Ωle,Ωhigh) (2.69)

if Ψ̄T
c MΨ̄c = I. This indicates that models (2.66) and (2.67) have the same non-zero

natural frequencies. Remind that our goal here it to find K−1
e = Ψ̂eΩ

−1
e Ψ̂T

e , by using

Equation (2.68) and (2.69), it writes

Ψ̂eΩ
−1
e Ψ̂T

e = PΨ̄cΩ
−1
e Ψ̄T

c PT = PK̄−1PT (2.70)

where K̄ is a nonsingular matrix with size (w− r)× (w− r). Removing the contribution

of the low-order elastic modes from K−1
e , as shown Equation (2.59), we obtain the first

order residual flexibility Hh1. Subsequently, higher order residual terms Hh2, Hh3 and

Hhigh can be obtained in the same way when K is nonsingular.

2.3.3 Eigenvalue scheme for the wave characteristics

Once the compliance matrix H in Equation (2.47) is determined by one of the five consid-

ered models based on free modes plus residual effects, we can write the boundary DOFs

in terms of internal forces at the boundaries(
qL

qR

)
=

[
HLL HLR

HRL HRR

](
fL

fR

)
(2.71)

Introducing Equation (2.3) into (2.71) to eliminate qL and qR and considering Equation

(2.4); it gives the following eigenvalue problem([
HRL HRR

0 σ̄I

]
− λ

[
HLL HLR

−σ̄I 0

])(
fL

fR

)
= 0 (2.72)



68
Chapter 2. Model reduction schemes for the wave and finite element

method using free modes of the unit cell

where

σ̄ =

√
‖HLL‖2
N

(2.73)

is introduced to balance the magnitudes of the compliance matrix and the identical matrix

I.

Eigenvalues obtained by scheme (2.72) are the same as the eigenvalues of the transfer

matrix T Equations (2.7). It is due to the fact that they all search for the solutions

of Equation (2.1) under boundary conditions (2.3) and (2.4). The scheme suggested in

Equation (2.71) differs from the previous ones in the choice of unknown variables. An

eigenvector given by Equation (2.72) is in the form of
(
φT

f −λφT
f

)T
and it can be

recovered to the form (
φq

φf

)
=

[
HLL HLR

I 0

](
φf

−λφf

)
(2.74)

which is the eigenvector of the transfer matrix T associated with the same eigenvalue λ.

It can be proved (see E) that if a row vector
(

xT
q xT

f

)
is a left eigenvector obtained

from Equation (2.72), then (
θT

q θT
f

)
=
(

xT
q σ̄xT

f

)
(2.75)

is the left eigenvector of T associated with the same eigenvalue.

Once the eigenvalues and eigenvectors of T are obtained and organized in a same way

as mentioned in section 2.2.1 to form the wave basis (Λ, Φ and Θ). The process for forced

response analysis remains the same as it was outlined in section 2.2.3.

2.3.4 Remarks

The proposed eigenvalue scheme is based on the compliance matrix which can be obtained

directly by the employed free-interface CMS methods. Theoretically, we can still obtain

the condensed dynamic stiffness matrix by[
DLL DLR

DRL DRR

]
=

[
HLL HLR

HRL HRR

]−1

(2.76)

In that way we can still use eigenvalue scheme (2.7). However, an additional matrix inverse

is required. It may cause unexpected numerical errors and additional computational cost.

For these reasons we recommend Equation (2.72) to analysis the free wave characteristics

when free-interface CMS methods are employed.

When full FE model of the unit cell is used, a time-consuming matrix inverse is needed

at each frequency to generate matrices for the eigenvalue problem (2.7). While using the

proposed reduced models, the matrix inverse is avoided by using Equations (2.48) and

(2.51) to calculate the compliance matrix. The retained low-order modes are frequency

independent, and so as the terms Hh1 and Hh2 used in the residual calculation. We only

need to calculate them once for the free-wave analysis at several frequency points. For

these reasons we expect an accelerated calculation of the dispersion relations and the wave

basis.

Compared with the reduced model with Craig-Bampton’s method, the proposed mod-

els with free modes yield same number of waves because the eigenvalue schemes have the
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same size. However, the retained number of DOFs with Craig-Bampton’s method could

not be smaller than the number of DOFs at boundaries. If we built the reduced model

by free modes plus the residual effects, the number of retained DOFs have no such re-

striction. By using more accurate approximation of the residual effects, it is promising to

further reduce the size of the retained DOFs.

Higher order of accuracy leads to a smaller size of retained modes (DOFs) but more

CPU time is required to recover the higher order residual effects. Compromise has to be

made among these factors. This will be discussed in the next section with the application.

2.4 Application: an asymmetrical thin-walled structure

The flow chart of WFEM with the proposed reduced models is outlined in Figure 2.3.

It starts from a modal analysis on the full FE model of the unit cell. Few low-order

modes of the free unit cell are calculated. The retained modes are determined by the

preselected frequency range to be analyzed. The next phase is the recovering of residual

flexibility from the retained low-order modes. To do that several techniques can be used

and their complexity increases with order of the accuracy. The next step is to solve the

eigenvalue problem based on the compliance matrix. Right eigenvalues and eigenvectors

are sufficient if the task is to obtain the dispersion curves of the waves. If the task is a

forced response analysis then we also need to calculate the left eigenvectors to mitigate

numerical error.

Figure 2.3: Flow chart of the free wave and forced response analysis by WFEM with the

proposed reduced model.

The accuracy of the wave basis is mainly determined by two factors concerning the
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reduced model. The first one is the number of retained modes and the second one is

the accuracy of the approximated residual flexibility. When the analyst is predicting

the modal density or designing a spatial signal filter and so on. Dispersion curves of

the propagating waves are required, while strong evanescent waves are not of interest.

In other cases, for example when the analyst is predicting the power flow injected by

the excitation or checking the vibration reduction performance of the periodic structure,

forced response analysis in required. Then some strong evanescent waves have to be kept

in the wave basis and their accuracy becomes a concern. It remains a question that

how the reduced model affects the accuracy of the propagating and evanescent waves

respectively. It is also important to discuss how the accuracy of the evanescent waves

affects the forced response results.

To verify the proposed reduced models and compare their performances, the binary

periodic thin-wall structure studied by [90] is considered here, as shown in Figure 2.4.

In their work the dispersion curves of the structure were studied by a Transfer Matrix

Method performed on the Euler-Bernoulli beam model including warping effect. The

shear center are not coincident to geometric center of the cross-section, so the flexural

vibration is coupled with torsional deformation. The structure features complex dispersion

curves and it was considered by [88] to test the performance of the reduced model using

Craig-Bampton’s CMS method.

(a) (b)

Figure 2.4: The considered thin-wall structure: (a) FE mesh of the unit cell, (b) geometric

parameters of the cross-section. Point ‘C’ refers to the location where the forced response

results are compared.

The periodicity is caused by the alternating appearance of two materials (Epoxy and

Steel). The Epoxy material used here has Young’s Modulus 4.35× 109 N/m2, Poisson

ratio 0.368 and density 1180 kg/m3. The steel has Young’s Modulus 2.106× 1010 N/m2,

Poisson ratio 0.3 and density 7780 kg/m3. Commercial FE software ANSYS is used to

model the unit cell where SOLID185 element is employed. The unit cell has 4416 DOFs
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where 2N = 192 of them locate on the left and right boundaries.

2.5 Results and discussions

2.5.1 Free wave characteristics

The dispersion curves are calculated from 0 Hz to 2000 Hz by the WFEM using full unit cell

model (referred to as ‘full WFEM’ hereafter). Positive-going waves with 0.1 ≤ |λ| ≤ 1 are

selected, including all the propagating waves as well as the evanescent waves in the band

gaps. The dispersion curves of the positive and negative- going waves are symmetric to

the x-axis, and here we only present the results of positive-going waves. Waves at different

frequencies are recognized as several ‘types’ of wave by Modal Assurance Criterion (MAC)

[24]. As shown in Figure 2.5, 4 types of wave are identified and a number was assigned to

each of them as shown in Figure 2.5. Several band gaps for certain waves and one band

gap (between 1500 Hz and 2000 Hz) for all the waves are observed. Some wave shapes (real

part) are shown in Figure 2.6. The results indicate that waves 0, 1, 2, 3 are respectively

z-axis flexural, y-axis flexural, torsional and longitudinal waves. From 500 Hz to 1000 Hz,

a bifurcation phenomenon occurs between the dispersion curves of the flexural (0) and

torsional (2) waves. It is due to the coupling effects between the two deformations. The

waves have similar wave shapes around the bifurcation area, as shown in Figure 2.6b and

2.6e.

Figure 2.5: Dispersion curves of the waves with 0.1 ≤ |λ| ≤ 1.

The results in Figure 2.5 are regarded as the benchmark. If the error of the results

obtained by a reduced model is lower than 1%, we will regard it as converged (acceptable)

results. Let us firstly use reduced model ‘Free (0th)’ to analyze the structure at same

frequency range. Note that ‘Free (0th)’ is simplest model among the five considered ones.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Some propagating wave shapes (real parts) extended to the unit cell: (a) wave

0 at 383 Hz, flexural deformation along z-axis; (b) wave 0 at 703 Hz, coupled flexural-

tortional deformation; (c) wave 1 at 1264 Hz, flexural deformation along y-axis; (d) wave

2 at 151 Hz, torsional deformation; (e) wave 2 at 703 Hz, coupled flexural-tortional defor-

mation; (f) wave 3 at 1289 Hz, longitudinal deformation.
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However it has the lowest order of accuracy because the residual effects are completely

neglected. Figure 2.7 shows the trend of convergence, where the proportions of retained

modes in the overall DOFs are 10%, 40%, 80% respectively. It can be seen that when

10% of the modes are retained, the results have significant error all over the frequency

range. Even when 40% of the modes are used, it still gives incorrect prediction at many

frequencies. The calculation converges when 80% DOFs are kept, namely we need to

calculate 3532 modes out of the 4416× 4416 eigenvalue problem (Equation (2.43)). The

CPU time to obtained the acceptable dispersion curves is given in Figure 2.8. Comparing

the ‘Free (0th)’ and full WFEM, the calculation is approximately accelerated by 60%,

and a large proportion of time was spent to calculate the required modes.

Figure 2.7: Dispersion curves of the waves with 0.1 ≤ |λ| ≤ 1 when reduced model ‘Free

(0th)’ is employed. The retained DOFs are given by percentage of the overall DOFs of

the unit cell.

When the reduced models with residual effects are used, the number of retained modes

to converge the calculation are dramatically reduced, as shown in Figure 2.8. Note that the

natural frequencies and modal shapes can be partly solved for symmetric real eigenvalue

problem shown in Equation (2.43). The reduction of kept modes leads to a saving of

computing. Only 51 modes are needed when using ‘Free (1st)’. This means the static

contribution of the high-order modes is important for the wave characteristics. The trend

of convergence of ‘Free (1st)’ is shown in Figure 2.9a where αf controls the maximum

natural frequency of the modes to be kept. Comparing ‘Free (0th)’ and ‘Free (1st)’, a

large proportion of time is saved when the needed modes are reduced from 3532 to 51.

The analysis time of ‘Free (1st)’ model is less than 10% of ‘Free (0th)’ model. That is to
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Figure 2.8: CPU time and retained DOFs for different models to obtain the converged

results. The data was represented in log scale. The benchmark is the waves with 0.1 ≤
|λ| ≤ 1 calculated by full WFEM (Figure 2.5), and the error torlerance is 1%.

say, the extra CPU time for the first order residual Hh1 is much shorter than the time

saved from the size reduction.

The accuracy increases when using higher order models. Figure 2.9b compares ‘Free

(1st)’, ‘Free (2nd)’, ‘Free (4th)’ and ‘Free (4th+)’ where the retained number of modes

are the same. The results tend to converge towards the benchmark. It is interesting to see

that a converged result can be achieved by using ‘Free (4th+)’, with only 16 modes whose

natural frequencies are inside the analysis frequency range (αf = 1). This might be useful

if one wants to built the unit cell model by experimental data. The ‘Free (2nd)’ and ‘Free

(4th)’ are not yet converged when αf = 1, but by increasing αf they also approach towards

the benchmark. The CPU time and model dimensions are summarized in Figure 2.8 as

well. As expected, the model size decreases with the increase of the order of accuracy.

When higher order terms of residual effects are considered, additional computation is

required. The CPU time increases when using ‘Free (2nd)’, ‘Free (4th)’ and ‘Free (4th+)’

models, because the extra CPU time is greater than the time saved by using less modes.

The differences between the ‘Free (4th)’ and ‘Free (4th+)’ depict the gain of accuracy

and the extra time consuming caused by the iteration at each frequency point. As a refer-

ence, we also employ the reduced model using Craig-Bampton’s CMS method (referred to

as ‘CB’ in the figure). Because of the 192 boundary DOFs that are obligatory to be kept,

the size is larger than the models built by free modes. In terms of the efficiency, WFEM

with Craig-Bampton’s CMS method is equivalent to ‘Free (2nd)’ and slightly slower than

‘Free (1st)’.

‘Free (1st)’ with αf = 5 and ‘Free (4th)’ with αf = 1 both return converged results

for the waves with 0.1 ≤ |λ| ≤ 1 as shown in Figure 2.9a and 2.9b respectively. However

for the strong evanescent waves, none of them matches at all the points with the full
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(a)

(b)

Figure 2.9: The convergence of the reduced models for the waves with 0.1 ≤ |λ| ≤ 1: (a)

use ‘Free (1st)’ model while changes the number of retained modes; (b) fix the number of

the retained modes and use different models.
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(a)

(b)

Figure 2.10: Wavenumbers (Imaginary part) of the waves with 10−9 ≤ |λ| ≤ 1 where

strong evanescent waves are included: (a) results obtained by ‘Free (1st)’ and ‘Free (4th+)’

which provide converged results for the waves with 0.1 ≤ |λ| ≤ 1. (b) the converged results

achieved by free-interface CMS models and fix-interface CMS models.
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WFEM as shown in Figure 2.10a. Waves with 10−9 ≤ |λ| ≤ 1 are selected so that some

strong evanescent waves are included. By increasing the retained modes we establish

the converged results for the waves with 10−9 ≤ |λ| ≤ 1, as shown in Figure 2.10b. All

the reduced models with free modes converge at the same results so we only present

‘Free (4th+)’ model. The converged results obtained by Craig-Bampton’s method are

also calculated for comparison. It can be seen that for the waves with k > −40, i.e.

10−5 ≤ |λ| ≤ 1, the converged results have good agreements to the full WFEM. While

for the waves with stronger spatial attenuation k < −40, i.e. |λ| < 10−5, the converged

results are different from each other and neither of them matches with the full WFEM.

Theoretically, the free-interface, fix-interface and the full model should match with

each other at any waves by retaining more modes. However, the observed differences at

the strong evanescent waves indicate the existence of systematic numerical errors. It is due

to the fact that different framework of methods are implemented by different programing

codes. As mentioned by [93, 193], the eigenvalue problem itself is prone to ill-conditioning

when analyzing strong evanescent waves because their λ is either very large or small. For

the strong evanescent waves, it is doubtful that whether we can still regard the results of

full WFEM as the most accurate one. Because in full WFEM, the inverse of a large sparse

matrix is directly solved as shown in Equation (2.6). Technically, none of the methods

can be regarded as the reference for strong evanescent waves since they are sensitive to

the numerical error. Nevertheless, we show that for the waves with smaller magnitude of

λ, which are generally of interest, the results are not sensitive with this numerical error.

According to Figure 2.10, the differences concerning the wavenumber are apparent.

Despite of that, the wave shapes of strong evanescent waves seem to be similar to the

wave shapes of full WFEM as shown in Figure 2.11. Figures 2.11a and 2.11c show two

strong evanescent wave shapes in Figure 2.10b at 500 Hz obtained by the ‘Free (4th+)’

model, and Figures 2.11b and 2.11d are obtained from the full WFEM. Visually wave

2.11a (=(k) = −64.6 m−1) is similar to wave 2.11b (=(k) = −63.6 m−1) ; and wave 2.11c

(=(k) = −45.7 m−1) is similar to wave 2.11d (=(k) = −55.0 m−1). The MAC between

wave 2.11a and wave 2.11b is 0.92; and the MAC between wave 2.11c and wave 2.11d is

0.81. The MAC results verify the visual similarity of the shapes. The accuracy issues of

the strong evanescent waves will be further discussed in the next section where the forced

response of a periodic structure is analyzed.

2.5.2 Forced response analysis

The considered finite periodic structure has five unit cells as shown in Figure 2.12. The left

end is free and the right end is fully clamped. The reflection matrices at the boundaries

are shown in Equation (2.41) and Equation (2.41). The harmonic excitation is applied at

cross-section 2 on the ‘UY’ DOF of all the nodes. Full FE model of the whole periodic

structure is analyzed in ANSYS and results are used as the benchmark here. The com-

parisons are made on the Frequency Response Function (FRF) at the C point on the free

end, shown also in Figure 2.4. The reduced wave basis is formed by λCR = 109 which

means that all the waves presented in Figure 2.10b and their negative-going counterparts

are included.

Figure 2.13 compares the FRF at ‘UY’ DOF obtained by ‘Free (4th)’ and CB model

which yield converged results for the retained waves. Structural response is expected also
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(a) (b)

(c) (d)

Figure 2.11: Waveshapes (norm) of some strong evanescent waves in Figure 2.10b at

500 Hz, (a) and (c) are obtained by the converged ‘Free (4th+)’ model and (b) and (d)

are obtained from full unit cell model. The deformation is extended to a unit cell.

at ‘UZ’ DOF due to the coupling between torsional and flexural deformations, and the

results are compared in Figure 2.14. Good agreements can be observed among the meth-

ods at both DOFs, despite that the ‘Free (4th)’ and CB models give different predictions

to some strong evanescent waves (10−9 ≤ |λ| ≤ 10−5) as shown in Figure 2.10.

To explore the contribution of those strong evanescent waves, we run another forced

response analysis by ‘Free (4th)’ model, threshold λCR = 105 is used to filter out all
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Figure 2.12: Finite element mesh of the periodic strucuture. Point ‘C’ refers to the

location where results are observed.

the ‘incorrect’ evanescent waves in Figure 2.13. The results are shown in Figure 2.15.

Significant errors can be seen, especially around 600 Hz and after 1200 Hz. This indicates

that we have to keep some strong evanescent waves even though there are subject to

numerical errors.

Evanescent waves appear around the discontinuous points of the structure, such as

the excitation points and boundaries. An evanescent wave decays exponentially in space

as shown in Figure 2.11, so it has localized influence. The imaginary part of wavenumber

defines the speed it vanishes in space. For a positive evanescent wave, let us assume that

the deformation inside a unit cell is u(x) = ekx, where k = ln(λ)/∆. It means that a unit

deformation becomes λ� 1 at the other end of the cell where x = ∆. The location where

the deformation remains 10% is x0.1(λ) = ln(0.1)/ln(λ)∆. For the strong evanescent wave

with λ = 10−8, x0.1(10−8) = 0.125∆, if we multiply factor 5, then x0.1(5×10−8) = 0.137∆,

with error less than 10 percent. For a less-decaying evanescent wave, say with λ = 10−1,

x0.1(10−1) = 1.0∆, but x0.1(5 × 10−1) = 3.32∆ indicating an unacceptable error. These

rough calculation illustrate that for a strong evanescent wave, whose λ is either very big or

small, a relatively big error in λ would not significantly affect the localization of vibration

and the wave shape. This remark can be verified by Figure 2.11. On the contrary this

conclusion does not stand for less-decaying evanescent waves.

On the other hand, to satisfy the continuous and equilibrium conditions at the sin-

gularity points (excitation and boundaries), the wave shapes of those evanescent waves

are important because they are created at the singularity points. An insufficient wave

basis would then induce an unexpected energy dissipation effects as shown in Figure 2.15

where several vibration peaks are suppressed. This can be understood by the fact that

evanescent waves do carry energy [194]. This happens when there is a pair of incident

and a reflected evanescent waves.

As discussed, there are some tolerance for strong evanescent waves. With inaccurate
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(a)

(b)

Figure 2.13: FRF of the ‘UY’ DOF at point C: (a) from 0 Hz to 1600 Hz; (b) zoom-in.

Threshold λCR = 109 is used to form the reduced wave basis.

evanescent waves we can still accurately predict forced response. There should exist a

critical level, above which the waves should be correct so as to have reasonable results.

Figure 2.16 compares the results obtained by ‘Free (1st)’ model with αf = 1 and αf = 5.

As shown in Figure 2.9a, ‘Free (1st)’ with αf = 1 does not give accurate predictions

for waves with 0.1 ≤ |λ| ≤ 1. While αf = 5 is used, the waves with 0.1 ≤ |λ| ≤ 1

are converged but a lot of strong evanescent waves still have significant errors, shown in

Figure 2.10a. The FRF shown in Figure 2.16 presents a significant error from 1000 Hz

when αf = 1 is used. But the results with αf = 5 matches very well. That is to say, once
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(a)

(b)

Figure 2.14: FRF of the ‘UZ’ DOF at point C: (a) from 0 Hz to 1600 Hz; (b) zoom-in.

Threshold λCR = 109 is used to form the reduced wave basis.

the reduced models can provide converged results concerning the propagating waves and

the evanescent waves in the band gap, they can be used to calculate the forced response.

2.6 Conclusions

In this chapter, we demonstrate the use of reduced unit cell models built by free modes

plus residual effects with the Wave and Finite Element Method. It can be applied for both
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Figure 2.15: Comprasiron of FRF obtained by different number of retained waves to

construct the wave basis.

Figure 2.16: Comprasiron of FRF obtained by different number of retained modes in the

reduced model.

free-wave and forced response analysis. A new eigenvalue scheme based on the compliance

matrix is proposed to obtain the wavenumbers and the left and right wave shapes.

An asymmetric thin-wall structure is considered as the application. Several existing

free-interface substructure strategies are implemented and compared. Good agreements

with the full WFEM can be achieved when the parameters of the reduced models are

appropriately chosen. We show that residual effects plays an important role concerning
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the retained DOFs and CPU time. Without considering the residual flexibility (Hou’s

method [184]), a large proportion of the modes (80%) has to be kept though the calculation

is accelerated to some extent (reduced by 60%). When residual effects are taking into

account, the retained DOFs are dramatically reduced. For example when Rubin’s method

[186] is applied, 37 modes are retained to have the results with same accuracy. Especially

when the exact substructure method [187] is used, only 16 modes are required. The

natural frequencies of these 16 modes are lower than the maximum analyzing frequency.

This can be an advantage when the model is built from the experimental data. In terms

of the CPU time, the most efficient model is the one using MacNeal’s method [185], in

comparison with the full WFEM model, only 3% of the CPU time is required. As a

reference, the reduced model using Craig-Bampton’s fix-interface substructure method

[183] is also implemented, and the efficiency is equivalent to Rubin’s method. Due to the

fact that all the boundary DOFs have to be kept, the Craig-Bampton’s method retains

more DOFs than most of the free-interface methods.

For the propagating and less-decaying waves (10−5 < |λ| < 105 for the considered

case), the WFEM with a reduced model converges to the full WFEM method when more

modes are retained. For reduced model with higher order of accuracy, the convergence can

be achieved by using less modes. For the strong evanescent waves, the reduced models will

also converge. Owing to some systematic numerical errors, the final results concerning

strong evanescent waves of free-interface methods, the Craig-Bampton’s method and the

full WFEM are different. We show that the errors do not have significant influence of the

localization of vibration and the wave shapes.

Forced response of the periodic thin-wall structure is analyzed by WFEM with reduced

models. The reduced wave basis is used to mitigate numerical errors. We show that some

strong evanescent waves have to be kept even though there are some inaccuracies in the

wavenumbers, and the results still have good agreements to the full finite element model.

Directly truncating those strong evanescent waves induces significant errors. This is due to

the fact that sufficient wave shapes has to be kept in the wave basis so as to approximately

satisfy the constrains on the boundaries.

Overall, for the free-wave analysis we recommend MacNeal’s reduction method ‘Free

(1st)’ in terms of efficiency, and the exact substructure method ‘Free (4th+)’ in terms of

the extent of reduction. The use of reduced models should provide converged propagating

and band gap waves in the reduced wave basis, so as to have a acceptable prediction for

the forced response.





Chapter 3

A hybrid FEM-WFEM approach

for energy flow prediction in

built-up structures

Abstract: A periodic structure can be designed to have the desired dynamic features

for vibration control or wave filtering. In practice the designed periodic structure is more

likely to be used as a substructure. It will be assembled into an existing complex structural

system which is not necessarily periodic. The built-up structure therefore has both non-

periodic parts and periodic parts. It remains a question whether the designed substructure

can still perform as it was analyzed in isolation. For example, does a band gap in the

periodic substructure directly link to a low-vibration and low-energy-flow frequency range

of the built-up structure? To answer these questions, in this chapter we present a rapid

and accurate numerical tool to explore the vibration and energy flow for such built-up

structures. The non-periodic part is modeled by FEM while the periodic substructures

are described by WFEM. Different parts are connected in a multi-scale manner such

that the final dimension of the problem are largely reduced. Since piezoelectric shunts

are often used in the periodic substructures to obtain the desired wave characteristics,

a new reduced model is proposed to accelerate the WFEM analysis. Some preliminary

discussions concerning the energy flow in built-up structures are presented.
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3.1 Introduction

It is well known that periodic structures feature the frequency band gaps in which certain

propagating waves become evanescent. A periodic structure tends to have less natural

modes in the band gaps, therefore it probably would have lower response [195]. This

inspires the idea of building a periodic substructure such that the frequency locations of

band gaps cover the excitation frequencies. This idea has been examined in numerous

literature, as reported by Ref. [123, 196] on plate-like structures and Ref. [197, 198]

on 1D waveguides. In most of the literature [110, 123, 196, 199] where band gaps are

used, finite periodic structures were considered in isolation. They have shown that the

structural response inside the band gaps are lower than in the propagating.

However, from a more practical point of view, the study needs to be further extended

for the following reasons:

1. It might be very hard to have pure periodic structures in practice due to the un-

avoidable non-periodic geometric or material complexity. Let us consider integrating

a periodic substructure in a car chassis to control the energy injected from the en-

gine, shown in figure 3.1. The geometric and material properties near the excitation

(the engine) are non-periodic and can not be largely modified. Though periodic

substructure can be designed on the subsequent frame, but the overall system (the

chassis) is not pure periodic.

2. ‘how many unit cells are sufficient for the vibration reduction of the host system?’

remains a question which could not be directly answered by the free wave character-

istics summarized in the dispersion curves. Instead, the question can be addressed

more intuitively by evaluating the forced response and energy flow in the built-up

structure.

3. It is more appropriate to examine the performance of periodic waveguide in an open

system context in terms of energy flow. It is due to the fact that the Bragg band

gaps are generally mid- and high frequency phenomena where the waves and energy

can be transmitted through the boundaries.

The mechanical model considered in this chapter can be used to target these prob-

lems. As shown in figure 3.2, the considered structural system consists of: 1) near-field

part which is subject to external excitation; 2) far-field part which is located after the

intentionally designed periodic substructure, and at mid- and high frequencies can be re-

garded as an infinite and uniform media; and 3) periodic substructure located between

near-field and far-field (with several unit cells).

The proposed assembled model is not only for a more realistic representation of the

engineering applications, but also for the full investigation of the performance of the de-

signed periodic substructure in terms of wave and power diffusion. In the proposed model,

the designed periodic substructure can be evaluated in a situation that it works as a part

of an overall system, rather than to be individually evaluated. The designed periodic sub-

structure changes the nature of the whole system, hence modifies the input impedance as

well. Then the interaction between near-field part and the periodic substructure should be

fully considered rather than to be simplified as injected waves or applied forces. Similarly,
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Figure 3.1: Illustration of energy flow in a car chassis.

Figure 3.2: The proposed mechanical model for evaluating a periodic substructure.

the far-field also affects the overall dynamics indirectly. For instance, damping in either

the periodic substructure or the far-field part will lead some dissipation to the near-field.

In this chapter, a FEM-WFEM hybrid method is developed to determine the forced

response and energy flow in the proposed assembled structures. The periodic substructure

and far-field part in figure 3.2 are regarded as waveguides that are sequentially connected

to the near-field part, as shown in figure 3.3. The near-field part is modeled by FEM

to handle the non-periodic complexity, while the waveguides are modeled by WFEM to

speed up the computation. Contrarily to the aforementioned studies, the DOFs of the FE

modeled near-field part will be kept while the DOFs of waveguides will be eliminated even-

tually. The response and energy flow of waveguides can be obtained by post-processing.

Though considering several few waveguides are enough for the model discussed here, the

method itself has the ability to handle the structures with an arbitrary number of waveg-

uides.

Note that the idea of using WFEM and FEM in combine under a substructure frame-

work has been explored by others as well. Duhamel [102] applied WFEM to simulate the

forced response of structures with multiple periodic substructures rigidly jointed. Each

substructure was modeled individually by WFEM so as to write the DSM in terms of

the interconnected Degree-of-freedom (DOF). Then their DSM can be assembled to gen-

erate the overall DSM. Huang et al. [110, 111] considered the structures made by two

uniform waveguides connected with a single piezoelectric scatterer, where the scatterer
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was modeled by FEM so as to evaluate the corresponding diffusion and reflection ma-

trices. Zhou et al. [200] studied the wave propagation in cylindrical pipes with local

inhomogeneities, where FEM was used to model the inhomogeneous parts and WFEM

was used to model the homogeneous parts. A more general situation was considered by

Renno et al. [121, 122] by which the forced response of an arbitrary number of periodic

substructures connected by elastic joints can be simulated. In their work the joints were

firstly modeled by FEM, then deduced into the constrained relations relating the wave

amplitudes of adjacent waveguides. However non of these strategies can be directly used

in our case.

Figure 3.3: Illustration of the proposed modeling strategy.

The FEM-WFEM approach itself has no limitations on the configuration of periodic

substructures, nor on the implementation of WFEM. Giving the complexity of the overall

structure, it would be helpful to employ reduced models to the WFEM so as to accelerate

the calculation and mitigate the ill-conditioning. However, the reduced models mentions

in Chapter 2 are not applicable when there are local dampers or piezoelectric patches

with electric circuits in the unit cell. In such cases the damping matrix or the dynamic

stiffness matrix can not be diagonalized by the undamped modal shapes.

In this chapter, a new reduced model of WFEM is proposed for unit cell with local

damper or piezoelectric shunts. This, hence, accelerates the computation of the wave

basis. Then the FEM-WFEM hybrid method is presented. It is firstly validated by an-

alytical solutions of an infinite beam. The results show that the wave propagation and

the energy flow characteristics of the infinite structure are precisely captured. Then it is

validated by a finite assembled piezoelectric structure in a wide frequency band. Finally

an application of the proposed method is given, where a built-up structure incorporating

piezoelectric composite between the excited substructure and the external parts is con-

sidered. The results reveal the complexity of such systems therefore attest the idea of

considering a more complete model.

3.2 WFEM for piezoelectric structures

When piezoelectric materials and shunted circuits are involved in the unit cell, the electric

DOFs can be treated as part of the internal DOFs, so that the procedure described in

section 2.2.1 can still be applied. However the problem arises only when one applies the

reduced models mentioned in chapter 2. Here we propose a new reduced model for WFEM

to analyze structures with periodically distributed piezoelectric materials shunted with

identical electric circuits. First we briefly outline the WFEM procedure specifically for

piezoelectric substructures. Then the reduced model is presented and discussed.
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3.2.1 Using full unit cell model

For a periodic piezoelectric structure as it is shown in Figure 3.4, we firstly take a unit

cell and model it by any existed FEM package by using adaptive piezoelectric elements

[49]. When analyzing the free waves, external loads are not considered, and the dynamic

equations of the ith unit cell write

M


q̈L

q̈R

q̈I

q̈E

+ C


q̇L

q̇R

q̇I

q̇E

+ K


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qR

qI

qE

 =


fL

fR

0

fE

 (3.1)

where q is the generalized displacement array; f is the generalized force array; M, C and

K refer to the mass, damping and generalized stiffness matrices respectively. Subscripts

L, R, I and E respectively denote the left-side, right-side, internal mechanical and the

electric voltage DOFs as illustrated in Figure 3.4. Note that fE refers to the charges

stored at the electrodes and qE refers to the voltage between electrodes. An additional

equation should be given to describe the shunted electric circuits, it writes

fE = −YqE (3.2)

where Y is the external electric admittance between voltages and charges. If the piezo-

electric patches are not inter-connected in a unit cell, the admittance is a diagonal matrix,

namely Y = diag(Yi). If an electrode is open, then Yi = 0; if an electrode is shorted,

then Yi = +∞. Note that Y is likely frequency-dependent, for example when a Resistor-

Inductor-Capacitor circuit is shunted, Yi =
(
−ω2LE + jωRE + 1/CE

)−1
. For this reason

we denote it as Y(ω) as well.

Figure 3.4: Illustration of the unit cells in a piezoelectric periodic structure.

Specifically, the generalized stiffness matrix writes

K =


KLL KLR KLI HLE

KT
LR KRR KRI HRE

KT
LI KT

RI KII HIE

HT
LE HT

RE HT
IE Cp

 (3.3)
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where H refers the piezoelectric terms and Cp is the intrinsic capacitance matrix. The

generalized mass matrix writes

M =


MLL MLR MLI 0

MT
LR MRR MRI 0

MT
LI MT

RI MII 0

0 0 0 0

 (3.4)

Introducing Equation (3.2) into (3.1) and consider the harmonic motion. The dynamic

stiffness matrix at frequency ω writes

D̃ = −ω2M + jωC + K + Yg(ω) (3.5)

where

Yg =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Y

 (3.6)

Eliminating all the internal DOFs (qE and qI); it gives the condensed dynamic stiffness

matrix of the unit cell [
DLL DLR

DRL DRR

](
qL

qR

)
=

(
fL

fR

)
(3.7)

where[
DLL DLR

DRL DRR

]
=

[
D̃LL D̃LR

D̃RL D̃RR

]
+

[
D̃LI D̃LE

D̃RI D̃RE

] [
D̃II D̃IE

D̃EI D̃EE

]−1 [
D̃IL D̃IR

D̃EL D̃ER

]
(3.8)

Introducing the periodic boundary conditions (Equations (2.4) and (2.3)) into Equa-

tion (3.7), and eliminating fL and fR, it comes to the eigenvalue problem([
0 σI

−DRL −DRR

]
− λ

[
σI 0

DLL DLR

])(
qL

qR

)
= 0 (3.9)

Factor σ is then determined by the 2nd norm of the DRR matrix

σ =
‖DRR‖2
N2

(3.10)

where N is the count of columns of matrix DRR and also the count of DOFs at the left or

right cross-section. Having introduced the factor σ, the conditioning number of matrices

becomes smaller. Hence the eigensolutions are more efficiently and accurately computed.

Equation (3.9) yield the same eigenvalues of the transfer matrix. However, the eigen-

vectors given by Equation (3.9) are in the form of
(
φT

q λφT
q

)T
. By the statement

φf = DLLφq + λDLRφq (3.11)

included in Equation (3.7), the eigenvectors of Equation (3.9) can be post-processed to

the form φ =
(
φT

q φT
f

)T
which are also the eigenvectors of the transfer matrix.



3.2. WFEM for piezoelectric structures 91

Concerning the left eigenvectors, while scheme (3.9) is applied, an adjustment is

needed. If a row array
(
θ̂q,i θ̂f,i

)
is the left eigenvector obtained from Equation (3.9),

then (
θq,i θf,i

)
=
(
σθ̂q,i θ̂f,i

)
(3.12)

is the left eigenvector of the transfer matrix (see Appendix D for the demonstration).

Equation (3.9) is applicable for WFEM for all the applications, and it can be used to

replace (2.7).

3.2.2 Reduced model

Note that the reduce model proposed by Zhou et al. [88] (see section 2.2.2) is not appli-

cable in this situation. In their work, the Craig-Bampton method for modal reduction

was employed on all the internal DOFs. The admittance matrix Yg in Equation (3.5)

can not be diagonalized by the undamped modal shapes. Consequently the modal coordi-

nates are coupled with each other, then simply truncating the modes with higher natural

frequencies might induce unexpected errors.

For these reasons, we modify the reduced model using Craig-Bampton method such

that only qI is transformed into the modal space. The coordinates transformation is

defined by
qL

qR

qI

qE

 =


I 0 0 0

0 I 0 0

−K−1II KIL −K−1II KIR Ψ −K−1II HIE

0 0 0 I




qL

qR

y

qE

 = B


qL

qR

y

qE

 (3.13)

where Ψ =
[
ψ1 ψ2 · · · ψlm

]
. ψi is the ith natural mode of the unit cell with qL =

qR = qE = 0 and the corresponding natural frequencies is ωi. Namely, ψi and ωi satisfies(
−ω2

iMII + KII

)
ψi = 0 (3.14)

Only lm modes are kept to form Ψ, and the number is less than that of qI. The criterion

used to select the retained modes is

ωi < αfωm, i ∈ [1, 2, ..., lm] (3.15)

where ωm is the upper bound of the frequencies to be analyzed. By choosing different

values of factor αf, the number of the retained modes can be controlled. Introducing

transformation (3.13) into (3.1) and (3.5), the dynamic stiffness matrix˜is redefined by

D̃ = −ω2M̃ + jωC̃ + K̃ + Ỹg(ω) (3.16)

where
M̃ = BTMB

C̃ = BTCB

K̃ = BTKB

Ỹg = BTYgB
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Matrix D̃ obtained from Equation (3.16) has a much smaller size in comparison to the

one obtained from Equation (3.5). Then eliminating y and qE by introducing Equation

(3.16) into (3.8) will also lead to Equation (3.7). But the calculation in Equation (3.8) is

significantly accelerated due to the reduced matrix size of DII.

In the reduced model developed by Ref. [87, 102], the wave shapes at other frequencies

are chosen to form the transformation matrix. Hence theoretically their methods can be

applied. However, during the design process of the piezoelectric substructure, the electric

admittance will be set to different values so as to evaluate the performance [123, 201].

The coordinate transformation needs to be performed once again, after each modification

of the admittance.

By transforming and reducing only the internal mechanical DOFs while keeping the

electric DOFs, the proposed method leads to a more reasonable reduced model for the

piezoelectric structures. Especially, when the admittance is changed, there is no need to

re-calculate the reduced matrices M̃, K̃ and C̃.

3.3 Analysis of the assembled structure

Figure 3.5: Illustration of the modeling process of the proposed method, where the num-

bers indicate the modeling order.

Remind that the considered structural system is divided into the 1) near-field part

which is subject to external excitation and several 2) periodic substructures connected

subsequently to the near-field. The analysis of such built-up structure can be made by

three major steps, as illustrated in figure 3.5:

1. Model the near-field part by FEM;

2. Determine the wave basis of periodic substructures by WFEM. Calculate the equiv-

alent reflection matrix of each waveguide;

3. Determine the equivalent impedance of the waveguide that are directly connected to

the nearfield. To do this, the equivalent reflection matrices obtained in the second

step will be used.

The first step can be done by means of any existing FEM software. In this section the

second and third steps are described in detail. After these steps, all waveguides DOFs are

eliminated and the dynamics of the waveguides are into the near-field. To recover their

response, a post-processing procedure is needed, and it is reported at the end.
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3.3.1 Equivalent reflection matrix

Consider two waveguides (B and C) connected together, as shown in figure 3.6. Waveg-

uide B is regarded as the ‘host’ substructure because it is closer to the near-field than

waveguide C. The objective is to represent waveguide C as the reflection matrix applied

at its interface with waveguide B.

Figure 3.6: Illustration of two connected waveguides.

By WFEM the wave basis of waveguide B and C can be obtained by analyzing a unit

cell of them. The enhanced approaches for WFEM developed in this thesis can be applied,

as shown in chapter 2 for general cases and in the previous section for the piezoelectric

case. Suppose the wave basis for substructure B is composed of right eigenvector matrix Φ,

Left eigenvector matrix Θ and eigenvalue matrix Λb; and the wave basis for substructure

C is composed of right eigenvector matrix Υ, Left eigenvector matrix Θ̄ and eigenvalue

matrix Λc.

The displacement qt and internal force ft at the interface can be written in terms of

the wave amplitudes associated with the wave basis Φ of waveguide B. Alternatively, they

and also expressed in terms of basis Υ of waveguide C:(
qt

ft

)
=

[
Φ+

q Φ−q
Φ+

f Φ−f

](
a+

a−

)
=

[
Υ+

q Υ−q
Υ+

f Υ−f

](
e+

e−

)
(3.17)

At the other side of waveguide B, the wave amplitudes satisfy

g− = Rg+ (3.18)

where R is the reflection matrix of the boundary, g+ and g− are the amplitude array of

the positive and negative going waves at the cross-section respectively. If waveguide C is

infinite then R = 0; if the boundary condition is given (Neumann, Dirichlet or mixed)

then R can be calculated by transforming the specified displacement and force in wave

domain as shown in section 2.2.3. If waveguide C has a subsequent waveguide, then R is

calculated by setting C as host waveguide and calculate the equivalent reflection matrix

of the subsequent waveguide.

The wave amplitudes in waveguide C must also satisfy the transfer relation in wave

domain as shown in section (2.2.3); it writes(
g+

g−

)
=

[
+Λ

Lc/∆c
c

−Λ
Lc/∆c
c

](
e+

e−

)
(3.19)

where +Λc and −Λc are the diagonal matrices consisting of positive and negative eigen-

values for waveguide C, Lc the overall length and ∆c the unit cell length.
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Introducing equation (3.18) in (3.19) gives

e− =
(
−Λ−Lc/∆c

c ·R · +ΛLc/∆c
c

)
e+ (3.20)

= Rce
+ (3.21)

Eliminate e+ and e− in Equation (3.17) by introducing (3.21) and after some algebra; it

yields

a− = Reqa+ (3.22)

where

Req = −
(
Φ−q −YΦ−f

)−1 (
Φ+

q −YΦ+
f

)
(3.23)

and

Y =
[
Υ+

q + Υ−q Rc

] [
Υ+

f + Υ−f Rc

]−1
(3.24)

Matrix Req is the searched equivalent reflection coefficients of waveguide C applied

to waveguide B. Note that if reduced wave bases are used for the waveguides, which is

recommended by the authors, pseudo inverse will be involved in Equations (3.24) and

(3.23). To improve the numerical conditioning, the orthogonal relation of the left and

right eigenvectors can be used. Premultiplying left eigenvector matrix Θ at both sides of

Equation (3.17), inducing(
a+

a−

)
=

[
Θ+

q Θ+
f

Θ−q Θ−f

] [
Υ+

q Υ−q
Υ+

f Υ−f

](
e+

e−

)
(3.25)

which means (
a+

a−

)
=

[
Ypp Ypn

Ynp Ynn

](
e+

e−

)
(3.26)

where

Ypp = Θ+
q Υ+

q + Θ+
f Υ+

f (3.27)

Ypn = Θ+
q Υ−q + Θ+

f Υ−f (3.28)

Ynp = Θ−q Υ+
q + Θ−f Υ+

f (3.29)

and

Ynn = Θ−q Υ−q + Θ−f Υ−f (3.30)

Introducing Equation (3.21) into Equation (3.26) to eliminate e+ and e−, we can still

achieve (3.22) but the Req is give by

Req = − (Ynp + YnnRc) (Ypp + YpnRc)
−1 (3.31)

Once Req is given, the reflection matrix of waveguide B can also be determined and

introduced in its previous waveguide. If waveguide B is directly connected to the near-

field part, its dynamic features will be deduced into mechanical impedance and merged

into the near-field part, as presented in the following subsection.
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3.3.2 Equivalent impedance matrix

Consider the waveguide (A) that is directly connected to the near-field part at one end,

and at the other end the reflection matrix R has already been determined as described in

the previous subsection. The right eigenvalue matrix is Φ, the left eigenvalue matrix is Θ

and the eigenvalue matrix is Λa. The objective here is to connect the dynamic behavior

of the waveguide to the near-field part as shown in figure 3.7. Note that the near-field

substructure is described in physical domain by FEM. The dynamics of the waveguide

will also be represented as an equivalent mechanical impedance matrix.

Figure 3.7: Illustration of connection between near-field domain and a waveguide.

Firstly, at the interface the displacement and force can be expanded into wave ampli-

tudes, writes (
qB

fB

)
=

[
Φ+

q Φ−q
Φ+

f Φ−f

](
e+

e−

)
(3.32)

while at the other end the reflection matrix R leads to

g− = Rg+ (3.33)

Additionally, the transfer relation in wave domain constrains the wave amplitude between

different cross-sections as:(
e+

e−

)
=

[
+Λ

La/∆a
a

−Λ
La/∆a
a

](
g+

g−

)
(3.34)

where La is the overall length, ∆a is the length of a unit cell and +Λa and −Λa are

the diagonal matrices consisting of positive and negative eigenvalues for waveguide A

respectively.

Introducing equations (3.33) and (3.34) into (3.32), and eliminating all wave ampli-

tudes, leads to

fB = HeqqB (3.35)

where

Heq =
[
Φ+

f + Φ−f Ra

] [
Φ+

q + Φ−q Ra

]−1
(3.36)

and

Ra =− Λ−La/∆a
a ·R ·+ ΛLa/∆a

a (3.37)
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Matrix Heq is the searched equivalent mechanical impedance. If reduced wave bases

are used for the waveguides, Equation (3.36) can be re-written as

Heq =
[
Φ+

f Θ+
q + Φ−f RaΘ

+
q

] [
Φ+

q Θ+
q + Φ−q RaΘ

+
q

]−1
(3.38)

3.3.3 Solving and post-processing

Once the dynamics of the waveguides are condensed into equivalent impedance matrices,

they can be assembled into the near-field equations. Now we have the dynamic equations

obtained of the built-up structures, expressed only by near-field DOFs[
HII HIB

HBI HBB + Heq

](
qI

qB

)
=

(
fI

0

)
(3.39)

where subscripts I and B respectively indicate the internal DOFs of the near-field part

and the DOFs connected to the waveguides.

The response of the complete structure is calculated in different scales, by the following

steps:

1. Near-field scale. The near-field response qI and qB are obtained by solving Equa-

tion (3.39), and internal forces at the interface fB are calculated by equation (3.35).

2. Waveguide scale. For the nearest waveguide, wave amplitudes d+ and d− at the

interface with the near-field are determined by solving Equations (3.32), where the

orthogonality relations can be employed to avoid ill-conditioning. For the subse-

quent waveguides, wave amplitudes e+ and e− at the interface are calculated by

introducing the wave amplitudes of the previous waveguide into equation (3.17).

The wave amplitudes and the corresponding physical response inside a substructure

are determined in the WFEM framework as mention in chapter 2. The energy flow

through the nth cross-section of a substructure reads

Pn =
1

2
Re (−jωfn · q̄n) (3.40)

3. Cell scale. The response of the internal DOFs of a unit cell can be recovered once

the boundary DOFs are known. The specific equations are related to the unit cell

model. If the unit cell is modeled by full FEM, then qI is recovered by(
qI

qE

)
=

[
D̃II D̃IE

D̃EI D̃EE

]−1 [
D̃IL D̃IR

D̃EL D̃ER

](
qL

qR

)
(3.41)

If the reduced model proposed in this chapter is used, the internal modal DOFs are

recovered by (
y

qE

)
=

[
D̃yy D̃yE

D̃Ey D̃EE

]−1 [
D̃yL D̃yR

D̃EL D̃ER

](
qL

qR

)
(3.42)

and introducing y, qL, qR and qE int Equation (3.13), qI can be obtained.
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The proposed methodology is intrinsically a multi-scale approach. To investigate the

dynamics around excitation (input mobility, input power and energy storage in the near-

field etc.), the response in the near-field scale might be sufficient. While for evaluating

certain waveguide by energy flow and transmission loss etc., the response of the waveguide

scale is sufficient. To present the detailed response of the unit cells, the cell scale can be

used.

3.4 Validations

3.4.1 Energy flow in an infinite uniform beam

Let us consider an infinite uniform beam undergoes the excitation at the origin. The

structure is modeled by Euler-Bernoulli beam elements. Indeed this uniform structure

can be analyzed by WFEM alone as a single waveguide. To validate the proposed method

it is divided into the near-field part from x = −1 m to x = 1 m and 4 waveguides (2

finite, 2 infinite) with identical geometric and material parameters as shown in figure 3.8.

The cross-section of the structure is a rectangle with height of 5× 10−2 m and width of

5× 10−2 m. The considered material is steel with light Rayleigh damping, and the Young’s

modulus E = (1 + 10−4jω)×2.11× 1011 Pa and density 7.8× 103 kg/m3. Concerning the

waveguide modeling, unit cell length of 0.01 m is considered. It should be noted that for

uniform waveguide it is enough to consider one element as a unit cell, here 10 elements

are used just to validate the condensation and the post-processing of the methodology.

Figure 3.8: Calculation layout of infinite uniform beam.

Following the proposed procedure, the wave bases of each waveguide are calculated

by WFEM with DSM of a unit cell given by FEM package. The dispersion curves of the

positive going waves are shown in figure 3.9 in comparison with the analytical solutions.

The analytical solution could be found by introducing u(x, t) = ej(ωt−kx) into the Euler-

Bernoulli equation

ρA
∂2u(x, t)

∂t2
+ EI

∂4u(x, t)

∂x4
= 0

and introducing v(x, t) = ej(ωt−kx) into the longitudinal equation

ρA
∂2v(x, t)

∂t2
− EA∂

2v(x, t)

∂x2
= 0
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Then they yield 6 wavenumbers for each frequency, in which 3 of them are associated

with positive-going waves, write

kl = ω
√
ρ/E

kfp =
√
ω

(
ρA

EI

)1/4

kfe = −j
√
ω

(
ρA

EI

)1/4

where kl denotes the longitudinal wave, kfp the propagating flexural wave and kfe the

evanescent flexural wave. Note that with damping all the waves have complex wavenum-

bers.

Figure 3.9: The dispersion curves of the waveguides.

Solving eigenvalue problem (3.9) in different frequencies, the initial results are discrete

points in the wavenumber-frequency diagram. In order to present the evolution of a same

wave at different frequencies, one needs to search through these points and to link the

points with similar waveshapes. Here the Modal Assurance Criterion (MAC) is used to

identify the points with similar waveshapes among frequencies. MAC gives the similarity

of two shapes φ1 and φ2 as

MAC =
(φH

1 · φ2)2

(φH
1 · φ1)(φH

2 · φ2)
(3.43)

The MAC is a real value which varies from 0 to 1. In practice we define a threshold

δ ∈ [0, 1] so that if MAC > δ, two waveshapes are considered as a same wave. Empirical
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values for δ in the case of periodic structures are between 0.4 to 0.8. On the other hand

for isotropic structures, correlation can achieve with values as high as 0.99. In practice a

high δ value should firstly be attempted. If no correlated waves are found, a lower δ value

is used until all selected eigenvalues are correlated to a set of wave type. In this work

δ = 0.7 is used. Note that this identification is just an interpretation of the eigenvalue

solutions among different frequencies and does not affect the forced response calculation.

This simple approach leads to good results in most of the applications, except when modal

veering and crossing occur.

Figure 3.10 compares the forced response results with the analytical solution (see

the work of [82] for detail). The results of analytical solution is drawn by solid line

while the results of the proposed method are presented by different marker referring to

different scales. The contribution of evanescent waves can be seen in the near-field. The

propagating waves dominate the rest of the response so that the phase changes linearly

in space. The energy flow is obtained accordingly, and the results are compared in Figure

3.11, where a negative value indicates the energy flow in negative x direction. Because

of damping, the overall energy flow Pa has a downward trend in space. As explained by

[82], for flexural waves the energy flows under two forms, one associates with uy DOF,

denoted by Pu and another with θ DOF denoted by Pm. For mechanical field excited

by a transverse force, at the excitation point all the power is associated with Pu, with

the increase of distance some proportion of this power is transfered to Pm and at last

half of the incident power is transfered. All these comparisons have shown very good

agreement indicating that the proposed method can well capture the dynamics of this

infinite problem.

3.4.2 Forced response of a finite piezoelectric structure

In the second validation, let us increase the complexity of the structure. A finite solid-

element meshed structure is considered, shown in figure 3.12. It is constructed by bonding

10 groups of co-located piezoelectric patches onto a uniform host structure excited at the

center. Five groups of piezoelectric patches are periodically distributed at the right side

of the excitation while 5 other groups are located on the other side. The structure is

clamped on the right end and free at the left. The considered host material is steel without

damping, with a Young’s modulus of E = 2.11× 1011 Pa and a density of 7.8× 103 kg/m3.

The used piezoelectric material is PZT4 with parameters listed in Appendix A. While

applying the proposed method, this structure are divided into five parts: one near-field

part, two piezoelectric waveguides and two uniform far-field waveguides, as shown in figure

3.12. The meshes for a unit cell of the piezoelectric waveguides and far-field waveguides

are shown in figure 3.13a and 3.13b respectively where x is the propagating direction.

The dispersion curves of far-field waveguides in a frequency range of [0, 80] kHz are

presented in Figure 3.14. All the typical positive-going waves are observed. Four propa-

gating waves are recognized (wave index 0, 1, 4 and 5) and their shapes are shown in figure

3.15. It can be seen that wave 0 represents the flexural wave in z direction (figure 3.15a),

wave 1 represents the flexural wave in y direction (figure 3.15b), wave 4 represents the

torsional wave (figure 3.15c), and wave 5 represents the longitudinal wave (figure 3.15d).

Also two typical evanescent waves are observed, labeled wave 2 and wave 3, representing

the evanescent flexural waves in z and y direction respectively.
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Figure 3.10: Comparison of the displacement response between the analytical solution

and the proposed method

Figure 3.11: Comparisons of the energy flow between the analytical solution and the

proposed method
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Figure 3.12: The calculation layout of the finite piezoelectric structure

(a) Piezoelectric unit cell (b) Far-field unit cell

Figure 3.13: Unit cells of the piezoelectric and the far-field waveguides

To establish the wave bases of the piezoelectric waveguides, the proposed modal re-

duction approach is employed. All the internal mechanical DOFs are regarded as qc,

they have been condensed by only considering 10 modal DOFs. All the electric DOFs are

regarded as qn so that they are kept into the reduced dynamic stiffness matrix. Figure

3.16 compares the stiffness matrix of a unit cell before and after modal reduction. It

can be seen in Figure 3.16a that, before the reduction, the matrix is sparse and large

(722× 722). While after the reduction it tends to be dense and with a much smaller size

(102× 102). In the condensation process, 90 boundary DOFs are retained, which means

only a 12 × 12 matrix of the internal DOFs needs to be inverted after the reduction,

otherwise the inverse of a 632× 632 matrix of internal DOFs should be computed.

The dispersion curves of the piezoelectric waveguides are shown in figure 3.17, with

all the kept positive going waves included. The results are firstly validated by comparison

with those obtained without the modal reduction. Furthermore, as it was indicated by

[96] that the bounding frequencies of the band gaps can be calculated by two modal

analysis on one unit cell with the corresponding left and right DOFs under the constrain

qL = qR and qL = −qR respectively. So a classical modal analysis performed to offer the
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Figure 3.14: The dispersion curves of the far-field waveguides

(a) wave 0 at 29 642 Hz (b) wave 1 at 29 642 Hz

(c) wave 4 at 63 214 Hz (d) wave 5 at 29 642 Hz

Figure 3.15: Some waveshapes of the far-field waveguides. wave 0, 1, 4, 5 are z-flexural,

y-flexural, torsional and longitudinal waves respectively.
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(a) Before modal reduction (b) After modal reduction

Figure 3.16: Illustration of stiffness matrix of a unit cell in the form of log10(| · |)

frequency locations of the band gaps. Both comparison are summarized in figure 3.18,

good agreement can also be observed.

In Figure 3.17, overall 6 waves are observed, in which 4 waves (wave index 0, 1, 4 and

5) are propagating and 2 waves (wave index 2 and 3) are evanescent. Their shapes are

shown in figure 3.19, which indicates that wave 0 and 2 are propagating and evanescent

flexural waves in z direction respectively (Figure 3.19a and 3.19c), wave 1 and 3 are the

propagating and evanescent flexural waves in y direction (Figure 3.19b and 3.19d), wave

4 is the torsional wave (Figure 3.19e) and wave 5 is the longitudinal wave (Figure 3.19f).

With the reduced wave bases of the piezoelectric and far-field waveguides, the proposed

methodology is used to analyze the structural forced response. The validation data come

from the full FE model of the whole assembled structure, as shown in figure 3.12. In the

calculation, a resistance R = 1× 105 Ω is shunted to each piezoelectric patch. The FRF

of the uz DOF of one of the nodes which receives excitation is compared in figure 3.20 in

a wide frequency range, from 10 Hz up to 14 000 Hz. The response detail at 400 Hz are

also compared in figure 3.21 between full FE model and the proposed hybrid model. The

results are firstly presented on the near-field scale. Then the response of the waveguide

scale and unit cell scale are post-processed. Good agreement can be seen in both figures.

It should be noted that two reduction have been made on different stages. To obtain

the wave basis, a structural-modal reduction was conducted in order to accelerate the

calculation. Additionally, in forced response analysis, a reduced wave basis was employed

to avoid ill-conditioning. In this validation case, 10 of the overall 632 structural modes

are retained in the first reduction. Concerning reduced wave basis, only 6 of the overall

45 waves in the piezoelectric waveguides and 42 waves of the overall 45 waves in far-

field waveguides are kept. The agreement with the full model results indicates that these

reductions are accurate and the proposed method is applicable to solid-element modeling

case.

For more complex electric circuits, the FEM-WFEM method with the reduced model

can also provide good results. Figure 3.22 compares the results from different methods,

when an identical resistor-inductor circuit is shunted to each piezoelectric patch. The

calculated frequency is 3120 Hz, the resistance is 10 Ω and the inductance is 2.945 H.

The advantages in terms of computational time obtained from the proposed method
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Figure 3.17: The dispersion curves of the piezoelectric waveguide

Figure 3.18: Validation of the obtained dispersion curves
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(a) wave 0 at 7191 Hz (b) wave 1 at 5457 Hz

(c) wave 2 at 9667 Hz (d) wave 3 at 19 326 Hz

(e) wave 4 at 29 231 Hz (f) wave 5 at 49 538 Hz

Figure 3.19: Some waveshapes of the piezoelectric waveguides. Wave 0, 1, 2, 3, 4, 5 are z-

flexural propagation, y-flexural propagation, z-flexural evanescent, y-flexural evanescent,

torsional and longitudinal waves respectively.
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Figure 3.20: The FRF of the structure: uZ DOF of a node receives excitation

Figure 3.21: Response detail at 400 Hz: displacement of uz DOF of all the middle line

nodes
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Figure 3.22: Response detail at 3120 Hz when an identical R-L circuit is shunted to each

piezoelectric patches: displacement of uz DOF of all the middle line nodes

Figure 3.23: The consumed CPU time of different methods
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are presented in Figure 3.23, showing a comparison of a computational time for the FRF

of the structure discussed in this section. The FEM-WFEM hybrid models (implemented

in Python) with or without modal condensation technique are compared with the full FE

model (ANSYS 13.0). Performance differences can also be affected by the used computer

languages or commercial FE platforms. From figure 3.23, it can be seen that: 1) More

computational time is saved by using FEM-WFEM models with the increase of unit

cell (patch) number; 2) With the increase of the number of patches (unit cells), the

computational times of the FEM-WFEM models remain nearly the same, while the time

consumed by the full FE model is highly increased (by 150 percent when the number

of patches is doubled); 3) In both cases, employing modal condensation on the unit

cells induces around 33 percent of time saving to the FEM-WFEM model. Note that

the comparison are made by results obtained through different framework of computer

program based on quite different programing languages. Generally, a commercial software

can have a well optimized framework. Despite all that, a remarkable acceleration is

achieved, indicating the advantages of the proposed numerical tools.

3.4.3 Energy flow from excitation to infinite farfield through finite
piezoelectric substructures

Let us consider an open built-up structure with piezoelectric coupling. Indeed we can

simply change the free-clamped boundary condition of the structure considered in the

previous section (Figure 3.12) to the infinite-infinite condition. This can be done by

setting a zero boundary reflection matrix. However, the model shown in Figure 3.12 is

based on 3D solid mesh. It is difficult to find another analytical or numerical tool to

validate the results if we set the boundary conditions to be infinite. For this reason, we

still use a beam-based model, the aim is to validate the proposed numerical tool and give

some preliminary discussions.

Figure 3.24: FE mesh of the considered built-up structure, it is built by a uniform beam

with 21 groups of collocated piezoelectric patches respectively on the left and right parts

of the excitation (at x = 0).

The considered built-up structure is shown in Figure 3.24. It is built by a uniform beam

with 21 groups of collocated piezoelectric patches respectively on the left and right parts of
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the origin. The excitation is also located at x = 0, in the form of bending moment with am-

plitude 1 N m. The host beam material is steel with Young’s modulus 2.11× 1011 Pa and

density 7.8× 103 kgm−3. All mechanical damping is neglected. The host beam has width

x=5× 10−3 m and height 1× 10−3 m. The piezoelectric material is PZT4 shown in Ap-

pendix A. Each PZT patch has a same shape, with height 5× 10−4 m, width 5× 10−3 m,

and length x=0.1 m. The distance between two PZT patches is x=0.1 m. The PZT

patches which locate closest to the origin are at x = ±0.3 m.

The FEM tool presented in Appendix B is used to model such a structure. But all

the elements shown in Figure 3.24 has to be included. The ABC presented in Appendix

C can be used to simulate the far-field dynamics. In combine they provides another way

of solving the force response problem. The results will be used as a reference. For the

proposed FEM-WFEM hybrid method, the built-up structure is divided into 5 parts as

shown in the Figure 3.24. The FE mesh of the PZT waveguide is shown in Figure 3.25.

Figure 3.25: FE mesh of the unit cell of the PZT waveguide.

The calculations are made in the following situation using two methods (FEM with

ABC, and FEM-WFEM):

1. Undamped waveguide working at a propagating frequency. The frequency is set to

100 Hz and all the PZT patches are set to SC status. Results are shown in Figures

3.26 and 3.27.

2. Damped waveguide working at a propagating frequency. The frequency is set to

100 Hz and each PZT patche is shunted to a resistor with 1× 105 Ω. Results are

shown in Figures 3.28 and 3.29.

3. Undamped waveguide working at a band-gap frequency. The frequency is set to

123 Hz and all the PZT patches are set to SC status. Results are shown in Figures

3.30 and 3.31.

4. Damped waveguide working at a band-gap frequency. The frequency is set to 123 Hz

and each PZT patche is shunted to a resistor with 1× 105 Ω. Results are shown in

Figures 3.32 and 3.33.

In all the situations, good agreements can be seen between the full FEM and FEM-

WFEM hybrid models. The wave propagating features in periodic substructure is different
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Figure 3.26: Harmonic deformation of the built-up structure at a propagating frequency

of the flexural wave (100 Hz). All the PZT patches are set to SC status.

Figure 3.27: Energy flow of the built-up structure at a propagating frequency of the

flexural wave (100 Hz). All the PZT patches are set to SC status.
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Figure 3.28: Harmonic deformation of the built-up structure at a propagating frequency

of the flexural wave (100 Hz). Each PZT patch is shunted with a Resistor with 1× 105 Ω.

Figure 3.29: Energy flow of the built-up structure at a propagating frequency of the

flexural wave (100 Hz). Each PZT patch is shunted with a Resistor with 1× 105 Ω.
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Figure 3.30: Harmonic deformation of the built-up structure at a band-gap frequency of

the flexural wave (123 Hz). All the PZT patches are set to SC status.

Figure 3.31: Energy flow of the built-up structure at a band-gap frequency of the flexural

wave (123 Hz). All the PZT patches are set to SC status.
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Figure 3.32: Harmonic deformation of the built-up structure at a band-gap frequency of

the flexural wave (123 Hz). Each PZT patch is shunted with a Resistor with 1× 105 Ω.

Figure 3.33: Energy flow of the built-up structure at a band-gap frequency of the flexural

wave (123 Hz). Each PZT patch is shunted with a Resistor with 1× 105 Ω.
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from the uniform case (Figure 3.10). Two scales of deformation can be seen in Figure 3.26,

representing the dynamics of the waveguide and of the unit cell. When damping exists, the

energy low is decaying in space (Figure 3.29) and the waves become oscillating decaying

(Figure 3.29). When the waveguide works in a band-gap frequency, the deformation

becomes decaying in space (Figure 3.30) but a constant energy flow can be observed

(Figure 3.31). This actually acknowledges the fact that evanescent waves can also carry

energy as indicated by Ref. [194].

It is interesting to see that this energy flow is even larger than the case where the

waveguide works in a propagating frequency 3.26. This means that a band gap in the

periodic substructure does not directly link to a low-vibration and low-energy-flow fre-

quency range of the built-up structure. However, only by analyze the wave characteristics

of the waveguide in isolation one could not observe this phenomenon.

3.5 Conclusions

A general multi-scale numerical tool for computing the forced response and energy flow

is proposed in this chapter. The method can be applied for complex structures with

both periodic and non-periodic parts. The major numerical strategy is to model the non-

periodic part by FEM and the waveguides by WFEM, and then to adapt the models of the

substructures. Owing to the use of WFEM, when the number of unit cells is increasing,

the CPU time would not be significantly increased.

A reduced model for WFEM is proposed for the cases when there are piezoelectric ma-

terial and shunts in the unit cells. It modifies the work of Zhou et al. [88] by excluding the

electric DOFs from the reduction process. The proposed reduction process is independent

with the electric impedance so it has advantages when designing a piezoelectric system

where repetitive calculations are required. An enhanced eigenvalue scheme is proposed

to mitigate the ill-conditioning. The reduced model allows us to capture the dynamics

of unit cell by few unit cell modes. The use of this reduced model can further accelerate

the analysis of the FEM-WFEM approach. To do that the use of left eigenvectors are

necessary. The FEM-WFEM framework does not constrain the use of any reduced models

for WFEM, so the methods presented in chapter 2 can also be applied.

The hybrid FEM-WFEM approach was validated by variety of situations, where mod-

els based on analytical solutions, beam-level and solid level finite elements are used as

references. The correlation of results attest that the proposed method is accurate for both

wave-dominated infinite structures and mode-dominated finite structures. Especially, the

use of resistor and resistor-inductor shunting circuits are also validated.

Some preliminary results concerning the energy flow through piezoelectric waveguide

to the infinite far-field is presented. We show that a band gap in the periodic substructure

does not directly link to a low-vibration and low-energy-flow frequency range of the built-

up structure. This is due to the fact that a finite substructure working in band gap can

not reflecting all the injected energy flow. In such situations indeed the displacement

is decaying in space but the energy flow remain constant (not zero). The only way to

‘attenuate’ the energy is the damping mechanism. These results underline the necessity

of designing waveguides by integrating it into the host structure rather than designing in

isolation.
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Abstract: This chapter addresses the evaluation of electromechanical coupling for the

guided waves in piezoelectric composites. The Wave Electromechanical Coupling Factor

(WEMCF) is defined by two different ways, leading to a frequency formula and an energy

formula. During the passage of one wave, we show that the fraction of electric energy over

the mechanical one is linked to the variance between the open-circuit and short-circuit

propagating frequencies with the same wavenumber. If an appropriate indicator is chosen

for the electric energy, the WEMCF is consistent with the Modal Electromechanical

Coupling Factor (MEMCF) when a wave shape is also a modal shape of the structure.

This could happen at the border frequencies of a band gap. By using the Wave and

Finite Element Method (WFEM), WEMCF can be calculated via post-processing.

Using the model reduction scheme proposed in Chapter 3, the calculation can be

further simplified and accelerated. The analytical findings are validated by numerical

results. An application is given based on a built-up structure with periodic piezoelectric

substructures, showing the strong correlation between WEMCF and the best energy

transmission loss of the resistive PZT waveguide.
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4.1 Introduction

The electromechanical coupling factor (EMCF) has important influences in many appli-

cations of piezoelectric structures, such as vibration control, actuating and sensing. In

terms of structural modes, the Modal Electromechanical Coupling Factor (MEMCF) can

either be estimated by the open-circuit (OC) and short-circuit (SC) natural frequencies

[6] or by an energy-based formula [64]. A detailed review can be found in section 1.3.

However, in terms of waves, few criteria are available. Chen et al. [65] calculated

EMCF by k = (Voc − Vsc)/Vsc for Rayleigh-type surface acoustic waves in a semi-infinite

with alternating piezoelectric and non-piezoelectric super-lattices, where Voc and Vsc are

the group velocity in open-circuit and short-circuit situation respectively. Fan et al. [66]

used the Green’s function method to calculate the EMCF for a Lamb wave in a multi-

layered plate. To the author’s knowledge, no research effort has been devoted to evaluate

the EMCF for the guided waves in 1D and 2D periodic structures.

In this chapter, the EMCF for guided waves will be addressed, termed Wave Elec-

tromechanical Coupling Factor (WEMCF). We will first present some preliminary dis-

cussions to show the main concerns when defining the WEMCF: the first one is the

consistency with the MEMCF; and the second one is the estimation of WEMCF for gen-

eral piezoelectric waveguides. To address the first challenge an energy formula is proposed

and analytically demonstrated. To address the second concern, Wave and Finite Element

Method (WFEM) is employed to calculate the WEMCF as a post-process of the free

wave analysis. A numerical example is shown, validating the analytical findings. It is

also shown that the use of the reduced unit cell model can rapidly and accurately capture

the WEMCF. After that the control of energy flow for a built-up structure is considered

as an application. Two configurations of the PZT waveguide with different WEMCF

are optimized respectively in order attenuate the energy flow. We show that the best

performance of the resistive waveguide is strongly correlated to the WEMCF.

4.2 Preliminary discussions

According to the literature [123], when all the piezoelectric patches of a periodic struc-

ture are set to the SC or OC statuses. Different dispersion curves will be observed, as

illustrated in Figure 4.1. This implies that we can use the relative difference of the prop-

agating frequencies of OC and SC statues to define the WEMCF as what have been done

concerning MEMCF [2, 6, 64].

Note that the deformation of the unit cell at the border frequencies of a band gap,

namely A B and C in Figure 4.1, are also the modal shapes of the unit cell under certain

boundaries conditions [96]. This fact indicates that the coupling strength of these waves

(A, B and C) can also be given by MEMCF, writes

K2
W =

ω2
OC − ω2

SC

ω2
SC

(4.1)

where ωOC and ωSC are open and short circuit natural frequencies. Extending Equation

(4.1) at other frequencies leads to an definition of WEMCF. The main advantage of

this definition is that it allows WEMCF to be consistence with MEMCF at the border

frequencies of a band gap. It is reasonable for a same deformation of the unit cell to
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Figure 4.1: Illustration of dispersion curves for OC and SC status of a piezoelectric

waveguide.

be given a same number of its electromechanical feature, no matter the deformation is

understood as a wave or a mode.

Definition of WEMCF by Equation (4.1) may be reasonable and intuitive. But there

are two main challenges. The first one is that Equation (4.1) works only for propagating

waves, because band gaps may have different depth in OC and SC statuses, shown in

Figure 4.1. Consequently it is difficult to link the evanescent waves between OC and SC.

The second challenge is related to computational issues. For complex waveguide whose

dispersion relations has wave veering and intersection (see the example in Chapter 6), it

will be difficult to recognize same type of propagating waves from the dispersion relations

at OC and SC statues.

Alternatively, inspired by the dual formula for MEMCF, we may also WEMCF by the

fraction of certain energy fractions at one electrode status:

K2
1 =

We

V
(4.2)

where We is the electric energy and V is the mechanical energy. This alternative definition

works for both evanescent waves and propagating waves. It only requires the dispersion

curves at one situation so no efforts are needed to link the waves between OC and SC.

Wave shapes have to be known to quantitatively calculate We and V . Wave and

Finite Element Method (WFEM) can be employed to analyze the wave shapes. More

importantly the energies can be calculated by the reduced model with a smaller number

of DOFs. This way the computing of WEMCF can be accelerated.

In the following sections we will present two different ways for the calculation of

the energy terms in Equation (4.2). Since the consistency with MEMCF is strongly

desired, that means the one gives more accurate approximation of Equation (4.1) is of
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more interest. During the following discussions, some conclusions of the inverse formula of

WFEM are required in the analytical derivation. For the sake of clarity we will first briefly

review the inverse formula of WFEM before the introduction of two implementations of

WFEM. Note that the inverse formula is just used to demonstrate some properties of

the WEMCF, when it comes to calculations the direct formula presented in the previous

chapters are used.

4.3 WFEM with inverse formula

As discussed in previous chapters, in absence of any external loads and neglecting damp-

ing, the dynamic equations of a unit cell in the periodic piezoelectric structure write

M


q̈L

q̈R

q̈I

q̈E

+ K


qL

qR

qI

qE

 =


fL

fR

0

0

 (4.3)

Subscripts L, R, I and E respectively refer to the left-side, right-side and internal me-

chanical DOFs and the electric voltage DOFs, illustrated in Figure 4.2. Specifically, the

mass matrix has the form of

M =


MLL MLR MLI 0

MT
LR MRR MRI 0

MT
LI MT

RI MII 0

0 0 0 0

 (4.4)

and the generalized stiffness matrix K writes

K =

[
G −P

PT Cp + Y

]
(4.5)

where G refers to the mechanical stiffness, P the piezoelectric matrices, Cp the intrinsic

capacitance matrix and Y external electric impedance.

Figure 4.2: Illustration of the periodic piezoelectric structure.

According to the Bloch theory, the wave of the form ejωt−kx that travels in the periodic

structure should satisfy the condition

qR = λqL (4.6)
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where λ = e−jk∆; k is the wavenumber and ∆ is the length of the unit cell. Additionally,

the equilibrium between the adjacent cells implies

fR = −λfL (4.7)

Equation (4.6) and (4.7) can be rewritten into matrix forms, as

q =


qL

qR

qI

qE

 =


I 0 0

λI 0 0

0 I 0

0 0 I


 qL

qI

qE

 = Tbq̂ (4.8)

and I λ−1I 0 0

0 0 I 0

0 0 0 I




fL

fR

fI

fE

 = Tef =

 0

0

0

 (4.9)

Introducing these two transformations to Equation (4.3), by per-multiplying Te and mul-

tiplying Tb at both sides of the equation, we have

− ω2M̂q̂ + K̂q̂ = 0 (4.10)

where

M̂ = TeMTb (4.11)

K̂ = TeKTb (4.12)

With a given wavenumber k, eigenvalue problem (4.10) yields a group of solutions in

pair (ω, q̂). The overall number of solutions for one wavenumber equals to the number of

DOFs in one unit cell. Each of them represents a wave with shape q = Teq̂ that propagate

at frequency ω and wavenumber k. For a 1D periodic structure, the wavenumber k

can complex numbers but the imaginary parts are of limited values (according to band

gaps or damping). This means that not for any given k ∈ C there is a solution of

Equation (4.10). Generally we only search for solutions when k ∈ R and according the

periodicity k ∈ [−π, π], this only gives the dispersion curves of the propagating waves.

For these reasons in this thesis we always use the direct formula (giving ω, searching for

wavenumber and wave shapes) to analyze the full dispersion curves. Here we introduce

the inverse formula just to provide some equations required in the following sections, such

as Equation (4.10), (4.11) and (4.12).

4.4 Wave electromechanical coupling factor (WEMCF)

4.4.1 Two implementations

Suppose the OC dispersion curves have already been found by WFEM. For a wave with

shape φOC =
(
φT

L φT
R φT

I φT
E

)T
, wavenumber k and frequency ωOC. Two imple-

mentations of Equation (4.2) for WEMCF are propose, as

K2
1f =

Wfree

V
(4.13)
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and

K2
1b =

Wblock

V
(4.14)

where

V = (φ∗OC)HGφ∗OC (4.15)

is the mechanical potential energy, and

Wfree = φH
E

(
Cp + PTG−1P

)
φE (4.16)

is the electric potential energy stored in the free intrinsic capacitance which is the capac-

itance when imposing fL = fR = fI = 0. Moreover,

Wblock = φH
ECpφE (4.17)

is the electric potential energy stored in the block capacitance which is Cp, and

φ∗OC =
(
φT

L φT
R φT

I 0
)T

(4.18)

for the simplification of equations. Both K2
1f and K2

1b are the approximations of K2
W based

on different assumptions. The demonstrations are given as follows.

4.4.2 Demonstrations

If the wave is a propagating one, wavenumber k is a real number therefore λ is a complex

value with amplitude 1. Consequently Tb in Equation (4.8) is the conjugate transpose of

Te in Equation (4.9), namely

Tb = TH
e (4.19)

Introducing the open-circuit eigenvector q̂ = φ̂OC =
(
φT

L φT
I φT

E

)T
into Equation

(4.10) and multiplying both sides of the equation by φ̂H
OC, it gives

ω2
OC =

φ̂H
OCK̂φ̂OC

φ̂H
OCM̂φ̂OC

(4.20)

and according to Equations (4.19), (4.11) and (4.12), we know

φ̂H
OCK̂φ̂OC = φH

OCKφOC

φ̂H
OCM̂φ̂OC = φH

OCMφOC

leading to

ω2
OC =

φ̂H
OCK̂φ̂OC

φ̂H
OCM̂φ̂OC

=
φH

OCKφOC

φH
OCMφOC

(4.21)

This means that once the waveshape is known, we will also know the associated

wavenumber. Equation (4.21) shows such a relation in OC status, latter we will also

do this in SC status. But we will not use the “real” SC waveshape to calculate SC

propagating frequency but use the information in OC status to have a good guess of the

SC waveshape and use it to estimate the SC propagating frequency.
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4.4.2.1 Case 1

For short-circuit situation, if we assume that mechanical deformation under a same

wavenumber k remains the same, namely

φSC,1 =
(
φT

L φT
R φT

I 0
)T

(4.22)

Introducing φ̂SC,1 =
(
φT

L φT
I 0

)T
into Equation (4.10) and multiplying both sides of

the equation by φ̂H
SC,1, it gives

ω2
SC,1 =

φ̂H
SC,1K̂φ̂SC,1

φ̂H
SC,1M̂φ̂SC,1

=
φH

SC,1KφSC,1

φH
SC,1MφSC,1

(4.23)

where ωSC,1 is an approximated frequency for the SC case. Note that M matrix has zero

terms in the lines correspond to the electric DOFs, shown in Equation (4.4), it makes

φH
OCMφOC = φH

SC,1MφSC,1 (4.24)

According to Equation (4.22) and (4.5), there is

φH
OCKφOC = φH

SC,1KφSC,1 + φH
ECpφE (4.25)

Introducing Equations (4.21) and (4.23) into (4.1) and using (4.24) and (4.25), we obtain

ω2
OC − ω2

SC,1

ω2
SC,1

=
φH

ECpφE

(φ∗OC)HGφ∗OC

(4.26)

The right-hand-side of Equation (4.26) is exactly the same as Equation (4.14). The left

side of Equation (4.26) is an approximation of Equation (4.1). In this regard, we show

that

K2
W ≈ K2

1b (4.27)

which means that K2
1b is an approximation of K2

W with the assumption (4.22).

4.4.2.2 Case 2

The core of the demonstration in the previous section is to guess the SC wave shape

based on the OC wave shape, and it was assumed that the mechanical deformation under

a same wavenumber k remains the same in the SC and OC situations. More accurately,

we can remove the static contribution of the OC voltage from the mechanical field so as

to approximate the SC waveshape φSC,2. Specifically,

φSC,2 = φOC −
(

G−1PφE

φE

)
= φSC,1 −

(
G−1PφE

0

) (4.28)

(4.29)

Similarly, the following statement hold

ω2
SC,2 =

φ̂H
SC,2K̂φ̂SC,2

φ̂H
SC,2M̂φ̂SC,2

=
φH

SC,2KφSC,2

φH
SC,2MφSC,2

(4.30)
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and with the fact that

φH
OCKφOC = φH

SC,2KφSC,2 + φH
E

(
Cp + PTG−1P

)
φE (4.31)

we can give another implementation of K2
1, as

ω2
OC − ω2

SC,2

ω2
SC,2

=
φH

E

(
Cp + PTG−1P

)
φE

(φ∗OC)HGφ∗OC

(4.32)

Comparing this Equation with Equation (4.1) and (4.13), leads to

K2
W ≈ K2

1f (4.33)

which means that K2
1f is also an approximation of K2

W with the assumption (4.29).

4.5 Validations

By now we proposed three different ways to calculate WEMCF: one frequency formula

(4.1) and two energy formulas (4.13) and (4.14). Considering the implementation of

WFEM (full or reduced unit cell models), there are more paths for WEMCF, as shown in

Figure 4.4. For the calculation of K2
W, there are two ways to calculate the required SC and

OC frequencies. For the K2
1f and K2

1b that are based on energy terms, the shapes of the

whole unit cell are required. To do that three paths are possible: the full shapes obtained

by full WFEM which is the slowest, the full shapes obtained by reduced WFEM which

and the reduced shapes obtained by reduced WFEM. In combine there are 8 different

ways for WFEM: 3 for K2
1f, 3 for K2

1b and another 2 for K2
W.

(a) (b) (c)

Figure 4.3: Unit cells of the piezoelectric waveguides considered in this chapter: (a) unit

cell A which has been used in Chapter 3; (b) unit cell B which is a non-symmetric way

of choosing the unit cell for the infinite periodic structure with unit cell A; (c) unit cell

C which has longer PZT patches.

As mentioned, the consistency of WEMCF with MEMCF is strongly desired, and

to avoid additional numerical errors, the K2
W calculated by full WFEM is regarded as

reference. The piezoelectric waveguide with unit cell A shown in Figure 4.3a is used

and the z-axis transverse wave is targeted. A complete numerical investigation of such

8 different paths are conducted, and the highlighted results are presented in Figure 4.5.

The main observation is that all 3 paths for K2
1b have significant errors, even though the
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Figure 4.4: Illustration of different paths for the calculation of WEMCF in the framework

of WFEM.

Figure 4.5: Comparison of WEMCF calculated by using: full WFEM with KW (ref-

erence), full WFEM with K1b, full WFEM with K1f and reduced waveshape with K1f

(recommended).
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Figure 4.6: Dispersion curves and WEMCF for the piezoelectric waveguide with unit cell

A: only wave 0 (z transverse) and 3 (longitudinal) has significant values.

(a) 11 634 Hz: low WEMCF (b) 12 556 Hz: large WEMCF

(c) 46 475 Hz: low WEMCF (d) 50 077 Hz: large WEMCF

Figure 4.7: Waveshape of wave 0 of unit cell A at the border frequencies of the band gaps.
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Figure 4.8: Dispersion curves and WEMCF for the piezoelectric waveguide with unit cell

B; the results are the same as that with unit cell A.

(a) 11 634 Hz: low WEMCF (b) 12 556 Hz: large WEMCF

Figure 4.9: Waveshape of wave 0 of unit cell B at the border frequencies of the band gaps.

overall tendencies are the same as the reference. The other 5 paths all return acceptable

results with relative error less than 3%. This may due to the fact that assumption (4.29)

is more precise than (4.22).

A complete result of WEMCF for the piezoelectric periodic structure with unit cell

A is shown in Figure 4.6. It is shown that the z-axis transverse wave (wave 0) has

the most significant electromechanical coupling. Weaker WEMCF is observed for the

longitudinal wave. No coupling effects are reported for the torsional and y-axis waves.

These conclusions can be acknowledged by the geometric configuration of the unit cell

and engineering common sense. It is interesting to see that the largest and lowest values

happens at the border frequencies of the band gaps. The waveshapes of these waves are

presented in Figure 4.7. The symmetric wave shapes generates different kind of charges on
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Figure 4.10: Dispersion curves and WEMCF for the piezoelectric waveguide with unit

cell C.

(a) (b)

Figure 4.11: Waveshape of wave 0 of unit cell C: (a) at the first propagating zone; (b) at

the second propagating zone.

the electrode, canceling each other, leading to a very low WEMCF. On the contrary, anti-

symmetric shapes always generate same kind of charges hence maximize the WEMCF.

As discussed, among all the valid paths, the ones using K2
W are difficult to be pro-

grammed for general cases. There remains 3 valid paths for K2
1f: (1) using full shapes

obtained from full WFEM; (2) using full shapes obtained from reduced WFEM; (3) us-

ing reduced shapes. The CPU time for obtaining the full dispersion characteristics with

WFEM of unit cell A are compared in Figure 4.12. It shown that the post-processing

for WEMCF for the full WFEM is a heavy task, and the CPU time is nearly 3 times of

the free-wave analysis. While the reduced unit cell model is used, the computing time for

WEMCF is reduced even still based on full wave shapes. The CPU time has the same
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magnitude as the free-wave analysis. This is due to the fact that the reduced model can

accelerate the mapping from the cross-section DOFs to the internal DOFs by avoiding

the matrix inverse. Only minor additional time is required when reduced shapes are

used to compute the energy terms for WEMCF, it reduces the post-processing by 99% in

comparison to the full WFEM.

Figure 4.12: CPU time for the full dispersion characteristics with WFEM of unit cell A

by the energy formula K2
1f where the energies are calculated by: (1) using full shapes

obtained from full WFEM; (2) using full shapes obtained from reduced WFEM; (3) using

reduced shapes.

The infinite periodic structure with unit cell A can also be represented by an un-

symmetrical unit cell B, shown in Figure 4.3b. As discussed in the literature [84], the

dispersion curves should be the same as unit cell A. This conclusion is acknowledged in

Figure 4.8. We also show that the WEMCF results remain the same as well. The minimal

and maximal WEMCF still happen at the border frequencies of band gaps. While using

the unsymmetrical unit cell, the wave shape of a unit cell no longer has symmetricity

as shown in Figure 4.9, but the deformation on the PZT patches are still symmetric or

anti-symmetric, leading to zero or maximum WEMCF.

Finally, we analyze the WEMCF of PZT waveguide with unit cell C, shown in Figure

4.3c. The unit cell has the same length as unit cell A and B but with longer PZT

patches. The results are shown in Figure 4.10, where we observe a better WEMCF in

lower frequencies than higher ones. This can be explained by checking the wave shapes

shown in Figure 4.11. It can be seen that in higher frequencies the charges generated by

the deformation will start to cancel each other. The comparison between unit cell A and

C also acknowledges the engineering common sense that long PZT path works poorly in

high frequencies.
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4.6 Application: the design of resistive PZT waveguides

Let us consider a built-up structure constructed by bonding 2N groups of co-located

piezoelectric patches onto a uniform host structure. N groups of piezoelectric patches are

periodically distributed at the right side of the excitation while N other groups are located

on the other side. The structure is infinite both to the left and right side. The considered

host material is steel without damping, with a Young’s modulus of E = 2.11× 1011 Pa and

a density of 7.8× 103 kg/m3. The used piezoelectric material is PZT4. The FEM/WFEM

hybrid method described in Chapter 3 can be used to analyze the energy flow and forced

response. To do that, this structure is divided into five parts: one nearfield part, two

piezoelectric waveguides and two uniform far-field waveguides, as shown in Figure 4.13.

Figure 4.13: The considered built-up structure and the dividing of substructures :

nearfield part, piezo-waveguides and far-field parts.

Here we fix N = 21 and by shunting resistors to the PZT patches, the energy flow

can be attenuated. The aims are: (1) to find a criterion to represent the performance of

the PZT waveguide; (2) to show the relation between the performance criterion and the

WEMCF.

4.6.1 Energy transmission loss

Here we use unit cell A to construct the waveguide. Two cases of excitation applied on

the nearfield are considered, where the only difference is the location of forces:

• Excitation case 1: the external forces are applied in uz DOF of all the nodes that

are located in the origin cross-section of the nearfield (x = 0) with an amplitude of

1 N.

• Excitation case 2: the external forces are applied in uz DOF of all the nodes that

are located in the cross-section where x = 4× 10−3 m, also with an amplitude of

1 N.

The input and output power are obtained for different excitations, shown in Figure

4.14a and 4.14b respectively. Specifically, the input power is evaluated by the input forces
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(a)

(b)

Figure 4.14: Input and outflow power caused by: (a) excitation case 1; (b) excitation case

2.
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and the velocity response of the applied nodes. The output power is evaluated at the ends

of the left and right piezoelectric waveguide.

For each excitation, a resistive shunt of R = 1× 104 Ω is considered. As references,

the Open-Circuit (OC), namely R = ∞ and the Short-Circuit (SC), namely R = 0

situations are also calculated. In OC and SC situations, the output power equals the

input, hence in Figures 4.14a and 4.14b the input and output power are represented by

same lines. Figures 4.14a and 4.14b show the influence of the electric impedance on the

whole assembled system. Damping effect induced by the resistance are illustrated by the

difference of the output and input power. It can be seen that an additional strong peak

appears in the case 2 excitation, even in the SC situation. Interestingly, this peak is

located very closely or inside the band gap. The existence of this peak in the band gap

again acknowledges that a band gap may not always result in a ‘low energy transmission’

or ’low structural response’ phenomenon.

Figure 4.15: Comparison of transmission loss for excitation case 1 and case 2

Additionally, a power Transmission Loss (TL) indicator is defined as

TL = 10log10

(
Pin

Pout

)
(4.34)

and evaluated in both excitation cases. The results concerning power transmission loss are

compared in Figure 4.15. It can be seen that the TL in the two excitations are identical.

This happens because a same type of wave is excited (flexural wave along z axis), and

the dissipative ability induced by the electric shunts into a wave is independent with the

excitation. The peak of TL appears inside the band gap. Combining the results of energy

flow, we can remark that there is no direct link between a strong dissipative ability (high

TL) and a lower net energy flow. It is due to the fact that the input power is strongly

affected by the nearfield natural.
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By these calculation, we show that the TL is independent with the nearfield natures

and we will use it to represent the energy attenuation features of a resistive PZT waveg-

uide.

Figure 4.16: The best TL and WEMCF with respect to the frequency for PZT waveguide

with unit cell A and unit cell C.

4.6.2 Optimization for the best TL

Here we still let N = 21 and conduct the parametric studies of TL with respect to

the frequency and resistance. PZT waveguides with unit cell A and C are considered

respectively, and the results are shown in Figure 4.17. It can be seen that the best TL

and the associated resistance vary with frequency. Results also indicate some correlation

between the best TL and the WEMCF: unit cell A has a better WEMCF in the second

propagating zone; and the best TL is larger in the second propagating zone than in the

first one, shown in Figure 4.17a; unit cell C has better WEMCF in the first propagating

zone than the second, and a lower best TL can be observed in higher frequencies.

To illustrate this correlation more clearly, we plot the best TL with respect to the

frequency when using unit cells A and C in Figure 4.16, in association with the WEMCF

of wave 0 of unit cell A and C. In the first propagating zone, we can see that unit cell A

has stronger WEMCF than C, and the best TL when using A is better than C. In the

second propagating zone, we can see that unit cell A has weaker WEMCF than C, and

the best TL when using A is weaker than C.

This correlation between WEMCF and best TL allows to compare configurations

of unit cell without performing the forced response and energy analysis of the built-

up structure. It means the design for the geometric and electric parameters can be

done separately: first we determine the geometric parameters so as to achieve the best
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(a)

(b)

Figure 4.17: Parametric study of power transmission loss with respect to frequency and

resistance, when the piezoelectric waveguides use: (a) unit cell A; (b) unit cell C.
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WEMCF, only by free-wave analysis and post-processing; then we only consider the unit

cell with optimized geometrics to determine the electric parameters so as to achieve the

best power attenuation.

4.7 Conclusions

In this chapter we propose the concept of Wave Electromechanical Coupling Factor

(WEMCF). We show that to maintain the consistency with the classical Modal Elec-

tromechanical Coupling Factor, the WEMCF should also be defined by the frequency

difference of the OC and SC statues. However, this definition has difficulties in calcu-

lation for general piezoelectric waveguide for the need of computing dispersion curves

twice and matching waves between SC and OC statuses. An effective energy formula for

WEMCF is proposed, namely

K2
1f =

Wfree

V

where V is the mechanical energy during the passage of the wave and Wfree is the electric

energy stored in the free intrinsic capacitance. We show that this energy formula is equiv-

alent to the frequency formula. But with the energy formula we only need to analyze the

dispersion curves once and do not need to match waves from different electrode statuses.

This indicator can be calculated as a post-processing of the WFEM. The post-

processing can be time-consuming if the full WFEM is used. We recommend the use

of reduced wave shapes for a fast calculation of WEMCF; it reduces the CPU time for

computing WEMCF of the example structure to less than 1%.

An application is given, concerning the energy flow attenuation in a built-up struc-

ture by resistive PZT shunts. We show that the power transmission loss (TL) can be a

good indicator to represent the power attenuation feature of the waveguide because it is

independent with the nearfield excitation. Parametric study shows that the WEMCF is

strongly correlated to the best TL. This provides more insights to understand the waveg-

uide performance and it also allows the design for the geometric and electric parameters

to be done separately.





Chapter 5

A wave-based design of

semi-active piezoelectric

composites for broadband

vibration control

Abstract: This chapter deals with the design of periodic piezoelectric structures for

broadband vibration control. By shunting identical negative capacitances to the period-

ically distributed piezoelectric patches, a wide and continuous band gap is created so as

to cover the frequency range of interest. This way the modal density of the structure is

reduced and the modal shapes are localized at the boundaries. A large proportion of the

energy can then be removed or dissipated by a small number of dampers or energy har-

vesters integrated within the negative capacitance circuits. A design process is proposed

to achieve the wide band gap. The overall amount of piezoelectric materials is constrained

in order to keep mass of structures low. The Wave Electromechanical Coupling Factor

(WEMCF) is used as the criterion to optimize the geometric configuration. This allows

to reach the largest width of the band gap by using a stable value of negative capaci-

tance. The control of multiple high-order modes of a cantilever beam is considered as an

example. The vibration reduction performance of the designed piezoelectric structures is

presented and the influences of band gap resonance, resistor and the boundary condition

are discussed. The proposed approach is fully based on wave characteristics and it does

not rely on any modal information. It is therefore promising for applications at mid- and

high frequencies where the access to exact modal information is difficult.
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5.1 Introduction

Structural vibration is among key topics in aeronautic, automotive and naval industries.

It is closely related to the reliability and comfort of the vehicles. In many situations, the

vibration level needs to be reduced in a wide frequency range which contains plenty of

structural modes. Additionally, the vibration reduction techniques are often required to

be lightweight, especially in the aeronautic and automobile industries.

Since the 1970s, piezoelectric strategies for vibration control are drawing increasing

attention. The non centrosymmetric crystalline structure in piezoelectric materials en-

dows them with the ability to transform mechanical energy into electrical one and vice

versa [6]. By shunting an electric circuit one can modify the overall mechanical properties

without significantly increasing the structural weight. As it was shown by Hagood et

al. [18], a piezoelectric patch shunted by resistor-inductor circuit can be understood as a

lightweight tuned-mass damper for the structure, hence it can be used to control a single

vibration mode.

To achieve a broadband vibration control, one idea is to design a circuit with multiple

tuning frequencies, where each of them can be set to one resonance frequency of the

host structure. For example an applicable circuit can be made of several L-R-C branches

in parallel [143], or band-pass filters in parallel [145]. However certain modes may not

interact with the electric field. This happens when the shape of the electrode filters out

the corresponding modal strain [2]. Consequently, even with the aforementioned circuits,

the response contribution of the filtered modes inside the target frequency band will not

be reduced. To ensure good coupling between the electric field and multiple structural

modes, distributed piezoelectric strategies can be employed. One can use several patches

and locate them in such a way that no mode is filtered at the considered frequencies [147].

Alternatively, as proposed by Li et al. [59], a large piezoelectric patch with discretized

electrodes can also be used to optimize the generalized coupling factors for several modes.

The aforementioned broadband approaches can be classified as ‘mode-based’ methods

because the modal frequencies and shapes must be known prior to the design. The success

of these strategies is strongly dependent on the accuracy of the modal information of the

host structure. Unfortunately the exact modal frequencies and shapes of a structure are

difficult to know in mid- and high frequencies, because the boundaries are no longer ideal

[82] and the system is highly sensitive to parameter uncertainties. Synchronized Switching

Damping (SSD) based approaches [165, 166, 169, 170] do not rely on any tuned electric

techniques, and therefore overcome this problem. However in a multi-mode vibration

context the definition of the switching point still remains a challenge for the design of a

SSD system [178, 202].

Alternatively, the ‘wave-based’ methods have drawn considerable research attention

these years with the development of the periodic structures or ‘phononic materials’ [81]. In

the wave perception, structural deformation is regarded as the superposition of the wave

motions, while natural modes are understood as standing waves induced by the reflection

of waves on the boundaries [76–78]. The underlying idea of the wave-based methods for

vibration reduction is to modify the wave properties in the targeted frequency band so as

to dissipate or to localize the injected energy [157, 203]. Since the waves are independent

of the boundary conditions, the vibration reduction features induced by waves is not

sensitive to boundary conditions.
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One concept that is widely used among the wave-based methods is the ’band gap’

which appears in periodic structures. Bad gaps are frequency ranges in which propa-

gating waves become evanescent [75]. They can either be caused by the inhomogeneity

of the mechanical impedance in one unit cell of periodic structures (Bragg band gaps),

or caused by tuned resonators (local resonance (LR) band gaps). Langley [195] showed

that the waves in the band gaps hardly contribute to the overall modal density of a finite

periodic structure. In other words, the structure would have fewer (often zero) natural

modes in the band gaps, therefore probably a lower response. This brings naturally to the

idea of integrating periodic waveguides into the host structure and intentionally design

the frequency locations of band gaps so that they cover the target frequencies [197, 198].

However, it is important to remind that resonance peaks can still appear within a band

gap in the Frequency Response Function (FRF) of a finite periodic structure. This phe-

nomenon has been observed both numerically and experimentally [204, 205]. Mead [96]

showed that the appearance of these modes are related to boundary conditions and that

there are at most two modes inside one band gap. Few work can be found in the literature

to clearly explain the mechanism and to provide means to mitigate the negative influences

of the band gap resonances.

To create band gaps artificially, periodically distributed piezoelectric patches with

inductance circuits have already been considered in the literature [123, 201]. the work of

Chen er al. [123] on 2D structures shows that band gaps caused by piezoelectric strategies

feature strong directivity. Xiao et al. [92] show that tuning a LR band gap near a Bragg

band gap can induce a widened hybrid band gap. Concerning the design of the electric

impedances, several simple criteria have been proposed [72, 157, 203] to optimize the

periodically shunted electric impedances. Results show that the optimized resistance of

the external circuit has to be negative to cancel the material damping in order to reflect

all the injecting waves. This actually indicates that the localization of vibration does not

require any damping. These work have shown the feasibility of controlling the dynamics of

the structure by designing certain electric circuits. However, to the authors’ knowledge,

less attention has been paid on geometric design of the piezoelectric substructures or

composites.

In this chapter, a methodology is proposed for the design of periodic piezoelectric

structure with negative capacitances. The aim is to achieve a band gap which is wide

enough to cover the target frequency range. The overall mass of the piezoelectric materials

is strictly constrained, while the stability of the semi-active circuit has to be considered.

The parameters are determined totally by wave properties. To do this, Wave and Finite

Element Method (WFEM, see chapter 3 for detail) is employed to analyze the wave

characteristics. The Wave Electromechanical Coupling Factor (WEMCF, see chapter 4

for detail) is used to optimize the geometric parameters of the piezoelectric system.

A cantilever beam is chosen as an example, and a frequency range which contains

multiple higher order modes is treated. The consequences induced by the band gap,

especially the mechanisms for band gap resonances are clarified. Using the vibration

localization features of the band gap resonances, an efficient way of mitigate them is

proposed and validated. Finally the vibration reduction performance is examined under

different boundary conditions.
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5.2 Example: cantilever beam

To illustrate the design process, a cantilever beam with rectangular cross section is con-

sidered as an example. The material is steel with Young’s modulus 2.1× 1011 Pa and

mass density ρb = 7.8× 103 kg/m3. The length of the beam is Lb = 1 m, the height

is Hb = 2× 10−2 m and the width is 5× 10−2 m. Rayleigh damping is introduced into

the material by setting the mass term coefficient α = 1 and stiffness term coefficient

β = 1× 10−7. This gives light damping of all the modes under 5000 Hz (around 0.05%).

An external point force with amplitude 1 N is applied at the free end (x = 0m).

Figure 5.1: Illustration of the periodic piezoelectric beam.

The structure is modeled by beam elements in the following FEM and WFEM sim-

ulations. Traditional Euler-Bernoulli beam element is used to model the parts without

piezoelectric materials. A 1D Finite Element scheme is used to capture the piezoelectric

composite parts. The detailed information and validation of the finite element scheme

is presented in Appendix BThe piezoelectric material is PZT4 and the detailed material

constants can be found in Appendix A.

Frequency range [900Hz, 2000Hz] which covers the 5th, 6th and 7th resonances is tar-

geted. The objective is to reduce the forced response of the beam in this frequency range.

Collocated piezoelectric patches are periodically distributed on the beam as shown in

Figure 5.1. An identical negative-capacitance is shunted to each patch, then the external

electric admittance between the charge and the voltage becomes

Y =
Q

V
= −Cneg (5.1)

where Cneg is the absolute value of negative capacitance. For such a vibration control

system, design parameters are the number of the piezoelectric patches N , height of a

patch Hp, length of a patch Lp and the negative capacitance Cneg.

Also some constrains need to be considered. The first one is the overall mass of the

piezoelectric patches. We define the mass ratio, describing how much weight is added by
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piezoelectric material to the host structure, as

rm =
2NρpLpHp

ρbLbHb
(5.2)

where the factor 2 comes from the use of collocated patches. During the design rm is

required to be as small as possible. Secondly, since negative capacitance circuits are used,

Cneg should be selected from the stable zone so that it would not make the structure

unstable.

The process for determining the parameters to reduce the vibration response at the

frequencies of interest under these restrictions is presented in the following sections.

5.3 Design process and results

In the design process, the geometric parameters and the electric parameters are deter-

mined consecutively. Through the geometric design, the best WEMCF is found in the

targeted frequency range. This ensures that the mechanical characteristics can be ef-

ficiently modified by the electric parameters. Then the next step is the design of the

negative capacitance so as to have a band gap covering the targeted frequency range.

Compromise has to be made between the mass of the piezoelectric material and the safe

margin of the circuit. The general flow chart of the design process is shown in Figure 5.2,

and it will be explained with the example structure in detail.

5.3.1 Geometric design

The objective of the geometric design is to establish best WEMCF over all the targeted

frequency band. Since the geometric parameters of the host beam are known as constants,

the geometric parameters for the piezoelectric patches (Lp and Hp) can be represented

by non-dimensional ratios:

rL =
Lp

Lcell
= N

Lp

Lb

rH =
2Hp

Hb

(5.3)

(5.4)

where rL is the length ratio between piezoelectric patches to the host beam, and rH is the

height ratio. Substituting Equation (5.3) and (5.4) to (5.2), it gives

rm = rLrH
ρp

ρb
(5.5)

In the first place, the number of patches N should be given. It strongly changes

the periodicity of the system hence significantly affects the initial wave properties. The

dispersion curves and the associated WEMCF are calculated when N varies from 2 to 7.

Some of them are shown in Figure 5.3, where rH = 1 and rL = 0.5. In these calculation,

the PZT patches are open-circuit.

It is shown that the choice of the number of patches gives quite different initial dis-

persion curves to the design. One (e.g. N = 4) or several (e.g. N = 2) band gaps appear

around the targeted frequency range. They are caused only by the periodicity of the
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Figure 5.2: Flow chart of the design process.

mechanical properties of the piezoelectric patches. Since the open-circuit patches does

not dramatically change the dynamic contrast in the unit cells, these initial band gaps are

narrow. That is why we need to extend them by the electric circuits through electrome-

chanical coupling mechanisms. The WEMCF of the waves vary drastically around the

band gaps. Local maximum and minimum points of WEMCF locate at the bounding fre-

quencies of the band gaps. This is due to the fact that at these frequencies anti-symmetric

and symmetric standing waves arise into the cell [96]. An anti-symmetric wave generates

an equal amount of positive and negative charges on the electrode, inducing zero over-

all charge. On the contrary, a symmetric wave shape always generates only one type of

charge on the electrode which leads to a maximum overall change. Very small coupling

factors can also happen inside a propagating zone, as shown by the line associated with

N = 2 around 1.5× 103 Hz.

A very small WEMCF value means that it is difficult or even impossible to adjust

the mechanical properties by modifying the electric characteristics. Therefore one should

shift the waves with low WEMCF outside the targeted range. For a given N , parameter

studies are conducted with respect to rL and rH. Note that the values of the rL and rH

should also satisfy Equation (5.5). With a given mass ratio rm, rL and rH can only be

selected along a line f (rH, rL) = rm where f() can be found in Equation (5.5).

For the calculation of each set of geometric parameters, the frequency-dependent re-
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Figure 5.3: Dispersion relation and WEMCF of the structure with different number of

patches (N), when rH = 0.5 and rL = 0.75

sults of K2 are summarized into two criteria defined on the targeted frequency zone; they

are: 1) the average WEMCF, denoted by K2
aver and 2) the minimum WEMCF, denoted

by K2
min. Then the objective is to search rL and rH along a given mass ratio to: achieve

largest K2
aver and simultaneously satisfy K2

min > δcr. The threshold δcr is used to exclude

the cases where waves with very low WEMCF be inside the targeted frequency range. In

this chapter δcr = 0.005 is used.

Here we show the results of N = 4 in detail. Figure 5.4 shows the parameter studies of

K2
aver and K2

min with rL and rH. The statement K2
min > δcr stands for most (rL, rH) values

as it is shown in Figure 5.4b. However it is shown in Figure 5.4a that K2
aver peaks around

(rL = 0.8, rH = 2). The corresponding added mass ratio rm reaches approximately 1.6,

which is not a light-weight solution. A compromise has to be found. Instead of having

the global best point for K2 the choice of parameters will be made to have the best K2

under the restriction of the mass of piezoelectric materials. Lines along which the mass

ratio remain constant are plotted as well on Figure 5.4.

With the constrains rm = 0.1, rm = 0.3 and rm = 0.5 respectively, the results of

K2
aver and K2

min are shown in Figure 5.5. Best solutions are found for each rm and listed

in Table 5.1. They are also labeled by A, B and C respectively in Figure 5.4 and 5.5.

According to the results, the overall coupling condition becomes weaker when the mass

ratio decreases. Differences will be made when designing the electric impedance, and as

it will be shown later, there might not exist a stable design of the negative capacitance if

the coupling is too weak. In that case it is recommended to increase the added mass and

re-run the design, as shown in Figure 5.2. Alternatively one can propose several designs

with different added mass as what we did for the N = 4 case.

Following the same procedure, the results when N is assigned to other values are
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(a) Average coupling factor

(b) Minimum coupling factor

Figure 5.4: Average and minimum WEMCF from 900 Hz to 2000 Hz with respect to

the patch height and length when N = 4. Label A, B and C respectively refer to the

optimized points along different given mass ratios. A for rm = 0.1, B for rm = 0.3 and C

for rm = 0.5.
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Figure 5.5: Average and minimum WEMCF with respect to the patch length when the

mass ratio is constrained. Label A, B and C are respectively the optimized points along

different given mass ratios. A for rm = 0.1, B for rm = 0.3 and C for rm = 0.5.

Table 5.1: Proposed geometric designs of N = 4 case

mass ratio rm length ratio rL height ratio rH K2
aver K2

min label

0.1 0.36 0.29 0.97% 0.91% A

0.3 0.54 0.58 2.28% 1.98% B

0.5 0.64 0.82 3.38% 2.74% C

summarized in Table 5.2. Unlike the N = 4 case where configurations can be found at

very low mass ratio, in some cases, for example when N = 3 and N = 6, the mass ratio

has to be relatively higher, otherwise the WEMCF are very small at certain frequencies.

The average coupling factor for N = 3 and N = 6 cases can be found in Figure 5.6. The

domain satisfying K2
min > δcr is highlighted and it barely intersects the line of rm = 0.6

when N = 3 and the line rm = 0.8 when N = 6. These configuration might not be

regarded as ‘light weight’ designs but since they have higher coupling factors we keep

them as references and carry on with them in the following-up design process.

Moreover, it is not always possible to find a configuration satisfying all the constrains

for a given number of patches, as it is shown in Table 5.2 for the N = 5 case. From

Figure 5.7, it can be seen that no matter the length and the height of the piezoelectric

patches, the minimum coupling factor remains very small. Nevertheless, we still search for

a configuration along the line where mass ratio rm = 0.3 and the ‘optimal’ point is labeled

by H* (despite not satisfying the criterion K2
min > δcr). Configure H* provides similar level

of average coupling factor as others but it has frequencies at which the electromechanical
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(a) N = 3

(b) N = 6

Figure 5.6: Average coupling factor from 900 Hz to 2000 Hz with respect to the patch

height and length when N = 3 and N = 6. Label E and F refer to the optimized points

along the given mass ratios.
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Table 5.2: Proposed geometric configurations of other N values

N mass ratio rm length ratio rL height ratio rH K2
aver K2

min label

2 0.55 0.49 1.16 2.55% 1.50% D

3 0.60 0.70 0.89 2.44% 0.89% E

5 0.30 0.58 0.53 2.31% 2.65× 10−5 H*

6 0.80 0.95 0.37 3.57% 1.35% F

7 0.30 0.84 0.37 2.29% 1.91% G

coupling is rather weak. This configuration is kept as a negative reference and it will also

be carried into the next design process.

5.3.2 Negative capacitance design

After the geometric design, several configurations are proposed where parameters N , Lp

and Hp are given. For each configuration, we will check whether it is possible to have a

band gap to cover the targeted frequency range by designing negative capacitances. The

stability of the semi-active piezoelectric system can be analyzed by a structural modal

analysis of one unit cell [203]. Namely, the eigenvalue problem([
KII −HIE

HT
IE Cp −Cneg

]
− ω2

n

[
MII 0

0 0

])(
qI

qE

)
=

(
0

0

)
(5.6)

will be analyzed with different Cneg values. Equation (5.6) is obtained by Equations (3.3)

and (5.1) with the consideration of the fix-fix boundary condition (qL = qR = 0). Other

boundary conditions, such as free-free and free-fix can also be used, and they yield very

close results (in our case the data remains the same until the fifth effective number), as

shown in Figure 5.8. This is due to the fact that at the border of the unstable zone, the

negative capacitance dramatically changes the overall stiffness of the structure. Different

boundary conditions change the original effective stiffness but the extent is negligible in

comparison with the change caused by the negative capacitance. The unstable zone of

Cneg is the region in which the negative eigenvalues appear. Figure 5.9 shows the first

eigenvalue obtained by Equation (5.6) for each configuration. In Figures 5.8 and 5.9,

both positive and negative values are presented by the logarithmic scale and the unstable

zone is highlighted by a gray color. The detailed values are recorded in Table 5.3. It is

important to note that the stability issues considered here are from a theoretical point of

view. In practice, to implement a negative capacitance shunt there are more details to be

considered [158].

Knowing the stability zone, the design of negative capacitance can be conducted by

repetitively calculating the dispersion curves with different values of Cneg. The results of

some configurations are presented in where the attenuation constant (imaginary part of

the wavenumber) of the positive-going flexural wave under different Cneg and frequencies

are shown. The objective of this step is to find a Cneg value outside the unstable zone,

and with this value the periodic structure has a band gap covering the whole targeted

frequency. The unstable zone for negative capacitance is represented by a light gray
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(a) Average coupling factor

(b) Minimum coupling factor

Figure 5.7: Average and minimum coupling factors from 900 Hz to 2000 Hz with respect

to the patch height and length when N = 5. Label H* refer to the negative reference.
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Figure 5.8: First eigenvalues with respect to negative capacitance under different bound-

ary conditions.

Figure 5.9: First eigenvalues with respect to negative capacitance for each geometric

configuration.

box. The final choice of the negative capacitance for each configuration, if existed, is

highlighted by a yellow line.

The comparison between configuration A (Figure 5.10) and B (Figure 5.11) highlights

the influence caused by the choice of the average coupling factor. As was recorded in Table

5.2, both A and B have the same number of patches but A is obtained upon a lower mass

ratio and it has lower average coupling factors. Figure 5.10 shows that all the desired

Cneg values for configuration A are in the unstable zone. However, for configuration B it
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Figure 5.10: Configuration A: attenuation constant with respect to the negative capaci-

tance and frequency. The final choice does not exist.

Figure 5.11: Configuration B: attenuation constant with respect to the negative capac-

itance and frequency. The final choice of the negative capacitance is highlighted by a

yellow line.
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Figure 5.12: Configuration D: attenuation constant with respect to the negative capac-

itance and frequency. The final choice of the negative capacitance is highlighted by a

yellow line.

Figure 5.13: Configuration E: attenuation constant with respect to the negative capac-

itance and frequency. The final choice of the negative capacitance is highlighted by a

yellow line.
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Figure 5.14: Configuration F: attenuation constant with respect to the negative capac-

itance and frequency. The final choice of the negative capacitance is highlighted by a

yellow line.

Figure 5.15: Configuration G: attenuation constant with respect to the negative capac-

itance and frequency. The final choice of the negative capacitance is highlighted by a

yellow line.
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Table 5.3: Summaries of the impedance design

label N unstable zone for Cneg/Cps designed Cneg/Cps property

A 4 (1.010, 1.037) N/A

B 4 (1.010, 1.062) 1.007 stiffening

C 4 (1.010, 1.074) 0.999 stiffening

D 2 (1.015, 1.087) 1.006 stiffening

E 3 (1.008, 1.077) 1.008 stiffening

F 6 (1.008, 1.077) 1.089 softening

G 7 (1.003, 1.044) 1.047 softening

H* 5 (1.010, 1.057) N/A

Figure 5.16: Configuration H*: attenuation constant of with respect to the negative

capacitance and frequency. The final choice does not exist.

is possible to find a stable Cneg to create a broad band gap. It is also worth to note that

the used band gap can be the first one (Figure 5.14), the second one (Figure 5.11) or the

third one (Figure 5.12), depending on how many piezoelectric patches are used.

As was explained before, the Bragg band gaps are induced by the contrast of the

dynamic stiffness in the unit cell. It can be seen that both softening and stiffening

features of the negative capacitance can create broad band gaps, and the details are also

listed in Table 5.3.

It is impossible to find a Cneg value for configuration H*, but the reason is different

from A (overall coupling is too weak). For H*, there are always frequencies with very

low WEMCF. Consequently, inside the targeted frequency range it is impossible to have

a continuous band gap, as shown in Figure 5.16. This result indicates the reason why we
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need to satisfy the condition K2
min > δcr during the geometric design.

It is worth to note that the designed negative capacitances listed in Table 5.3 are very

close to the unstable zone. In practice a safety margin is needed, otherwise any pertur-

bation in the electrical parameters has the potential to destabilize the circuit. Except

configuration E, each design proposed in this chapter has some safety margin. To extend

the safety margin one can use more piezoelectric materials (see configuration A, B and

C) or use different number of patches (see configuration D and G). Generally, the system

will become heavier if larger margin is required. A compromise has to be found between

the width of the safety margin and the system weight. That is the reason why we did

not directly minimize the mass ratio at a given number of patches but set different values

of it and make comparisons. Moreover, in this chapter we use the PZT4 material as an

example. In practice it is suggested to use other piezoelectric materials that have lower

density. Once the material is given and the requirements of the safety margin is known,

the method proposed in this chapter can be directly applied to optimize the mass ratio

as well.

In summary, the choice of N gives different initial band gap parameters (locations and

width). In some cases, solutions can be found at very low mass ratio (N = 4, 7), while

in other cases solutions only exist when higher mass ratio is considered (N = 2, 3, 6).

Specially in some cases (N = 5), no solution can be found. The mass ratio constrains the

parameter space of the geometric parameters hence further affects the optimal WEMCF.

WEMCF further links to the safe margin of negative capacitance. So at a lower mass

ratio it might not possible to find a stable negative capacitance design (configuration A).

Note that at a same mass ratio there can also be multiple designs (30%, for B and G) or

no design (10%), depending on the number of patches. To achieve a design, the flow chart

shown in Figure 5.2 is not unique, alternatively one can also select a mass ratio value and

optimize across all N values and same conclusions will be found.

5.4 Performance and discussions

5.4.1 Band gap resonance

After the aforementioned design process, several piezoelectric structures are found, and

the parameters are listed in Tables 5.2 and 5.3. Each of the structure has a continuous

band gap covering the targeted frequency range (from 900 Hz to 2000 Hz). In this section

the vibration reduction performance of these structures is presented and explained when

a harmonic point force is applied at the free tip (see Figure 5.1).

In the band gap, the modal density is reduced. This feature is highlighted by Figure

5.17 where the response of design B is presented in comparison with the original one.

Results of the rotational DOF are shown. The displacement DOF can also be used and

they lead to same conclusions. We don’t show these results due to space limitations.

Another reason is that rotational DOF might be of more interest and importance at

higher frequencies as indicated by [82]. No resonance appears in the targeted frequency

range therefore the averaged response is significantly reduced. The Cneg applied lies

in the stiffening area so that the static response (0 Hz) is reduced accordingly. The

targeted frequency range is covered by the first band gap as shown in Figure 5.11, hence

[0 Hz, 900 Hz] is a propagating zone. It can deduced from Mead’s work [96] that there
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are either N-1 or N resonance peaks in a propagating zone, depending on the boundary

conditions, where N is the number of unit cells. There are 4 unit cells in design B and in

Figure 5.17 four resonance peaks are found, which matches well with the expectation.

Figure 5.17: FRF of the rotation DOF at the excitation point (x = 0 m) of design B in

comparison with the response of the original uniform structure.

However, a band gap does not guarantee to eliminate all the modes inside it, but

ensures that all modes in it have localized shapes. The existence of band gap resonances

can be deduced from Mead’s work [95, 96] concerning the relationship between the natural

frequencies of finite periodic structures and the bounding frequencies of the band gaps.

It was proved that only under certain boundary conditions some natural frequencies will

locate on the edges of the band gaps. Otherwise natural frequencies can locate either

inside or outside the band gaps. For mono-coupled systems, the boundary conditions

leading to zero band gap resonance can be predicted. For example a periodically simply

supported beam, the corresponding boundary condition is to have the structure clamped

at both ends. For multi-coupled periodic structures, e.g. the beam considered here, these

special boundary conditions become complicated. Some DOFs have to be fixed and others

are free according to the symmetry and for different kind of waves they may be different.

More importantly, these boundary conditions exist only when the unit cells are symmetric.

This implies that it might be difficult to avoid the band gap resonances, especially for

complex periodic structures.

It is worth to note that a band gap resonance does not conflict with the wave-shielding

mechanism of the evanescent waves. Indeed, a single evanescent wave does not transmit

energy. Only based on this, it is hard to explain the existence of a pure natural mode

in which the whole structure can reach an infinite kinetic energy except the nodes of

the modal shape. Bobrovnitskii [194, 206] and Kurze [207] explained that if there are

two evanescent waves (which is the case for a finite structure) with opposite directions
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and they form a ’mixed evanescent field’ which enables an energy flow. This energy flow

allows the injected power to be transmitted all over the structure. If the energy can

accumulate under certain situation (phase closure), a resonance will raise. Further more,

a band gap resonance can also be understood by the phase-closure principle [78] which

explains how waves can form a resonance. Namely once a propagating wave achieves

a closed-phase or zero-decay as it completes the circle around the whole system, it will

create a standing wave which corresponds to a structural mode. When an evanescent wave

is traced in the periodic structure the wave amplitude is decreasing, but the boundaries

can produces a reflected evanescent wave with larger amplitude than the incident one

(reflection coefficient larger than 1.0) [95], compensating the amplitude drop during the

travel. So it is still possible for an evanescent wave to achieve the phase closure conditions

on its own so as to form a mode. We can deduce that the modal shapes of the band gap

resonances are localized around the boundaries.

The band gap resonances can be seen from Figure 5.19 and 5.20 where the response

of design G are presented. 2 peaks of the FRF raise inside the band gap. Modal analysis

confirms that the two peaks correspond to two modes at 1035 Hz and 1890 Hz respectively.

The shapes of these two modes are shown in Figure 5.18, in comparison with a mode

outside the band gap (at 4758 Hz). As expected, large proportion of the vibration is

concentrated around the boundaries because they are formed by evanescent waves. On

the contrary, the mode at 4758 Hz is formed by propagation waves so it has uniformly

distributed nodes and anti-nodes. Due to the energy localization, the frequency averaged

response of the excitation point is increased as shown in Figure 5.19. On the other hand,

the response away from the excitation is reduced shown in Figure 5.20.

Figure 5.18: Modal shapes of band gap resonances in design G (at 1035 Hz and 1890 Hz)

in comparison with a common mode (at 4758 Hz)
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Figure 5.19: FRF of the rotation DOF at the excitation point (x = 0.0 m) of design G.

Figure 5.20: FRF of the rotation DOF away from the excitation point (x = 0.7 m) of

design G
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5.4.2 Resistor/harvester

Interestingly, the vibration of some parts of the structure (away from the source) has

already been reduced due to energy concentration. In this case only the impedance

contrast of the unit cell is changed and no additional damping mechanisms (resistor or

energy harvester) are introduced. In addition to this, the electric energy is also localized

to the same area, as shown in Figure 5.18, which allows to efficiently remove the energy

and therefore to reduce the vibration of the whole structure.

To illustrate this, resistors are considered in design G as a representation of any

electric circuits that possess damping or energy harvesting ability. They are connected to

the negative capacitance in series so that the electric impedance becomes:

Y =
Q

V
=

1

−1/Cneg + jωR
(5.7)

where R is the resistance. Two different cases of distributing the resistances are con-

sidered. In the first case an identical resistor with 20 Ω is connected to each negative

capacitance, and in total 7 resistors are used, called global resistance hereafter in this

chapter. In the second case only 2 resistors with 20 Ω are used, being connected to the

energy localized zones, namely the first and the last patches, called local resistance.

Figure 5.21: Deformation of configuration G at 1030 Hz with and without resistance.

The FRF at the excitation point (x = 0 m) of the two cases are calculated and com-

pared in Figure 5.19. It can be seen that the vibration peaks caused by the band gap

resonances are reduced by the damping mechanism induced by the resistors. Figure 5.20

presents the FRF at x = 0.7 m. The frequency averaged response is further suppressed

because of the additional damping. More importantly, inside the band gap, the global

resistance and local one have nearly the same performance, while in the propagating zone

the global resistance performs much better. This can be explained by the features of the

modal shapes of a band gap resonances as discussed before. The results indicate that the

local resistance is as an efficient way of removing the energy of a band gap resonance,

because the number of dampers/harvesters is much smaller than the global way.

Figure 5.21 compares deformation of the forced response peak at 1030 Hz among zero

resistance, global resistance and local resistance. It can be seen that with resistance,
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no matter global or local, the deformation is still localized. A band gap resonance is

essentially a solution of the eigenvalue problem which yields all the normal resonances.

So the common sense that the damping would not significantly change the modal shape

still works for a band gap resonance. Once again the results show only minor differences

between the local and the global distribution of the resistances.

As listed in Table 5.3, the negative capacitance used here is very close to its unstable

zone, so the electromechanical coupling is very strong when the negative capacitances are

connected. In this situation, the resistance can be chosen from a wide range of values.

It exists an optimal point depending on the frequency but on-optimal values can already

induce significant damping. For design G, resistances from 10 Ω to 1× 104 Ω are all

applicable (results are not presented). This gives a large tolerance if the resistance is

replaced by an energy harvesting circuit in the future.

5.4.3 Boundary conditions

During the design, no modal information of the structure is required. This implies that

the designed structures may have some features insensitive to boundary condition. With

the cantilever boundary condition, design B does not have band gap resonances as shown

in Figure 5.17. To examine the influence of boundary condition, a massless spring is

introduced to design B at the free tip (x = 0.0 m). Figure 5.22 shows the evolution of the

FRF at x = 0.75 m with respect to the supporting stiffness. One band gap resonance can

be seen at some supporting stiffness. Nevertheless, the modal density in the targeted range

is lower than the other frequency ranges with same bandwidth. Figure 5.23 summarizes

the frequency averaged response at x = 0.0 m and x = 0.75 m. A locally distributed

resistance is also considered and compared, namely one resistor of 50 Ω (the value is

roughly chosen for the same reason as noted at the end of the last subsection) is connected

to the patch nearest to the excitation and another resistance to the patch closest to the

clamped end.

It can be seen that the band gap enlarges the response difference between the near-field

(x = 0 m) and far-field (x = 0.75 m). Band gap resonances arise in a continuous range of

the supporting stiffness. In the absence of the band gap resonance, both near-field and

far-field response can be reduced in comparison with the original one. When band gap

resonances appear, the near-field response could be larger than the original response. On

the other hand, the far-field response can always be reduced no matter whether there

are band gap resonances or not. When damping mechanism is introduced only at the

boundaries, the negative influences of band gap resonances are effectively mitigated. The

far-field response is further reduced while the near-field response can be controlled to a

lower level in comparison to the original structure. This is due to the fact that a large

proportion of the vibrational energy is suppressed or removed. Although the exact value

concerning the vibration reduction degree varies, the response is dramatically reduced

over the given frequency band with all the given boundary conditions. In this regard, the

vibration reduction ability of the designed structures is boundary condition insensitive.
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Figure 5.22: FRF of the rotation DOF away from the excitation point (x = 0.75 m) of

design B with respect to the supporting stiffness

Figure 5.23: Frequency averaged response at x = 0.0 m and x = 0.75 m of design B with

respect to the supporting stiffness.
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5.5 Conclusions

The Wave Electromechanical Coupling Factor (WEMCF) can be used to design the ge-

ometric parameters of a piezoelectric system. It is defined by the ratio of the electric

energy over the mechanical energy during the passage of a wave. WEMCF can be easily

calculated as a post-process of the existing wave dispersion numerical tools. We show

that WEMCF is closely related to the success of obtaining a continuous band gap by

negative capacitance. If the frequency averaged WEMCF is too weak, the desired Cneg

value might be in the unstable zone. Additionally, one should also avoid to have very low

minimum WEMCF, otherwise a propagating zone will always be in the frequency range

of interest.

A design process is proposed in which the geometric and electric parameters are de-

termined consecutively in an iterative process. Both the average and minimum values

of WEMCF are used as criteria. These criteria are optimized when the overall mass of

the piezoelectric materials is constrained. Through the proposed design process, several

light-weight and stable semi-active piezoelectric systems are found, that all have a broad

band gap covering the interested frequency range. Results indicate that the amount of

piezoelectric materials should not be lower than a certain level otherwise the WEMCF

could not be good enough to extend the band gap with stable negative capacitances. For

the examples given in this chapter, the smallest weight of the PZT4 material used in the

final designs is around 30% of the host structure.

The designed piezoelectric structures have lower modal density than the original struc-

ture because of the band gap. Under some boundary conditions the modal density can

even be zero. Consequently the vibration is dramatically reduced. However it is not

always the case, band gap resonance can arise depending on the boundary condition. We

show that this phenomenon is not abnormal or confusing and it can be understood in

several ways. The modal shape of a band gap resonance is rather localized around the

boundaries, so the response in these areas will be increased. However, the part away from

the boundaries still have lower response, no matter whether there are band gap resonances

or not. These features are achieved only by enlarging the dynamic contrast of the unit

cell rather than increasing damping.

According to the vibration localization features of the band gap resonances, we show

that the vibrational energy can be removed by introducing only one resistor or harvester

to the PZT patch at each boundary. Inside the band gap, the vibration reduction per-

formance is almost identical with the case in which all the patches are connected to the

same resistor. This might lead us to an efficient way to harvest the energy and to combine

energy harvesting with the vibration reduction.

The systems are designed without knowing any modal information of the host struc-

ture. Moreover, the vibration reduction performance is also boundary condition insen-

sitive as it is examined by changing the supporting stiffness. Therefore this method is

promising at mid- and high frequencies where exact modal information is difficult to

access.





Chapter 6

Wave propagation and forced

response of a thin-wall structure

with periodic piezoelectric shunts

Abstract: Thin-wall structures are of great interest in many areas of mechanical en-

gineering such as the automotive industry. Such components play a leading role in the

energy transfer paths from the engine sources to panels, creating sound radiation and un-

wanted vibration leading to fatigue, and associated structural borne sound phenomenon.

Mastering the dynamical behavior of thin-wall structures can provide an efficient and

physically satisfactory means to passively optimize the car chassis. In this chapter we

apply the proposed numerical tools to a thin-wall structure coupled with periodic piezo-

electric patches and electric circuits. The aim is to (1) illustrate the industrial application

of the numerical methods; and (2) re-examine the conclusions obtained by simpler struc-

tures. Both free wave characteristics and forced response are analyzed, where resistive

and resonance circuits are considered. The WFEM with reduced unit cell model is then

validated by the WFEM with full unit cell model and the full FEM model. It is shown

that if the control factors for the reduction technique are properly chosen, it can improve

the accuracy while accelerating the calculation as expected. Resulting from the com-

plexity of the thin-wall structure, we show that some enhancements are not optional but

imperative. Additionally, the two equivalent ways for WEMCF are confirmed by the both

lower-order and high-order waves of the thin-wall structure.
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6.1 Outlines of the numerical tools

6.1.1 WFEM with reduced unit cell model

The main steps concerning the analysis of free waves and forced response by the WFEM

with reduced unit cell model are summarized in Figure 6.1. Free wave analysis starts

from solving the eigenvalue problem([
0 σI

−DRL −DRR

]
− λ

[
σI 0

DLL DLR

])(
qL

qR

)
= 0 (6.1)

at different frequencies, where σ = ‖DRR‖2/N2 and more context can be found in Chapter

3. If σ = 1, then Equation 6.1 is the original eigenvalue scheme that is widely considered

in the literature. The initial results are discrete points in the wavenumber-frequency

diagram. Commonly the propagating waves and waves in the band gaps are of greater

interest. In order to present the evolution of these waves at different frequencies, one needs

to filter the strong evanescent waves by checking the propagating constant. The next step

is searching through frequency points and linking the points with similar waveshapes. To

do that the Modal Assurance Criterion (MAC) is used to similarity of waveshapes among

frequencies. After wave matching, the data is presented by several curves, each showing

the relationship between the frequency and wavenumber, termed dispersion curve.

Figure 6.1: Flow chart of the enhanced wave and finite element method

In the forced response analysis, a wider rang of waves are selected from the eigenvalue

problems, forming the reduced wave basis. This is due to the fact that some evanescent

waves must be taken into account to provide sufficient shape functions for the cross-

section deformation. Wave-matching among frequencies is not necessary. But the left

eigenvectors are needed. Efforts have to be paid on distinguishing the positive-going and

negative-going waves.
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Three factors control the accuracy of the reduced wave basis: (1) factor αf for choosing

the retained modes of the unit cell and (2) factor σ used in the eigenvalue scheme to

balance the magnitude of matrix elements and (3) factor λCR that truncates the full

wave basis to form the reduced one. As it was reported in the literature [182], the

strongly evanescent waves yielded by the original eigenvalue scheme are of significant

errors. Therefore when all the waves were included in the forced response calculation,

unacceptable error was observed. If these waves hardly contribute to the overall response,

we can neglect them so as to avoid the numerical errors. However no clear rules for the

choosing of λCR can be found in the literature. In the work of Waki [182], λCR = e is

used; in the previous work of the thesis, λCR = 10 is used for a simple solid waveguide

(in Chapter 3); λCR = 109 is used for a non-symmetric waveguide (in Chapter 2).

By applying the enhanced WFEM to the thin-wall structure, we re-examine the influ-

ences of the three factors: the number of the retained modes, eigenvalue scheme and the

number of the kept waves.

Figure 6.2: FE model for the finite thin-wall structure.

6.1.2 WEMCF

WEMCF measures the coupling strength between the mechanical and electric field for

waves, and it is defined (in Chapter 4) by the fraction of the electric energy Wfree over

the elastic energy V during the passage of the wave, namely

K2
1f =

Wfree

V
(6.2)

WEMCF has been used as a criterion for the design of the piezoelectric beam as shown

in Chapter 5. Additionally, one important feature of WEMCF is that it can also be

calculated by the frequency difference of the OC and SC status, namely

K2
W =

ω2
OC − ω2

SC

ω2
SC

(6.3)

It is demonstrated that K2
1f ≈ K2

W in Chapter 4. This actually indicates that the proposed

WEMCF is consistent with the MEMCF at the border frequencies of the band gaps.
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By analyzing the WEMCF of some typical waves in the thin-wall structure, we re-

examine statement of K2
1 = K2

2. Moreover, WEMCF is used as a energy criterion, to

validate the accuracy of the WFEM with reduce unit cell model.

6.2 The considered thin-wall structure

Figure 6.2 shows the thin-wall structure. Piezoelectric patches are periodically bonded

on to it and for each unit cell there are two PZT patches. The geometric parameters of

one unit cell are shown in Figure 6.3 by international units and so as the FE mesh. For

one unit cell, the overall number of DOFs is 1896, with 336 on the left and right side,

1558 on the internal mechanical part and 2 on the electric part. The host material is steel

with Young’s modulus 2.11× 1011 Pa and density 7.8× 103 kg/m3, and the piezoelectric

patches are made of PZT4 (see Appendix A).

Figure 6.3: FE model for one unit cell of the thin-wall structure.

6.3 Free wave characteristics

6.3.1 With open-circuit shunts

Here we set the electric impedance to the open-circuit status, namely Y = 0. The

dispersion curves are calculated from 0 Hz to 2000 Hz by the full FE model of the unit cell

at first. The positive-going waves with λ < 10 are shown in Figure 6.4a. The first two

subplots show the real and imaginary parts of the wavenumbers respectively. The third

subplot presents the WEMCF of the waves.
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(a) (b)

Figure 6.4: Dispersion curves and WEMCF of the positive-going waves with λ < 10 when

piezoelectric patches are open-circuit: (a) Results obtained by full unit cell model; (b)

Comparison of reduced model with different αf.

In Figure 6.4a, several waves are recognized and labeled with different numbers. Waves

3, 4, 7, 8 are always propagating since 0 Hz, the waveshapes indicate that they are re-

spectively Y-axis flexural, Z-axis flexural, torsional and longitudinal waves, as shown in

Figure 6.5. With the increase of the frequency, some evanescent waves, for example no.

1, 2 and 9, are shifting to propagating waves. The cut-on frequency of wave 2 is around

800 Hz and it represents the pumping wave, as shown in Figure 6.5b. Two Bragg band

gaps are observed around 1500 Hz, created on wave 2 and 3 respectively. At the bounding

frequencies of the band gaps, WEMCF reaches the local maximum and minimum values.

This can be understood by checking the corresponding waveshapes. At 1264 Hz the wave-

shapes of wave 2 is shown in Figure 6.5a, and the shape is symmetric along the X-axis.

Consequently it generates different kinds of charge on the electrode and the overall change

and electric energy is zero.

Figure 6.4b compares the results obtained by full model and the proposed reduced

model when αf equals to 2, 3, 5 and 8. For each case 120 frequency points are calculated;

the CPU time and the size of reduced model are listed in Table 6.1. For the reduced model

with αf > 3, good agreements are observed both on wavenumber and WEMCF. For the

αf = 2 case, the reduced model gives inaccurate results after the first band gaps. Only

2 modes are retained when αf = 2, that explains the inaccuracy at higher frequencies.

The difference at CPU time among the reduced models are minor, and the using of these

reduced models save around 50 percent of the CPU time. In this regard, it is better

to set a relatively larger value of αf so as to ensure the accuracy while accelerating the

calculating.
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(a) wave 2 at 1264 Hz (b) wave 2 at 1464 Hz

(c) wave 3 at 1381 Hz (d) wave 4 at 1867 Hz

(e) wave 7 at 1682 Hz (f) wave 8 at 1732 Hz

Figure 6.5: Some propagating waveshapes of the thin-wall structure when piezoelectric

patches are open-circuit. The waves tranvel along the X-axis. Waves 2, 3, 4, 7, 8 are

respectively pumping, Y-axis flexural, Z-axis flexural, torsional and longitudinal waves.
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Table 6.1: Computation cost among different models for free wave analysis

Model Internal mechanical DOFs CPU Time /s

Full 1558 82.3

αf = 2 2 40.7

αf = 3 9 41.3

αf = 5 15 42.0

αf = 8 30 43.2

6.3.2 Validation of two equivalent ways for WEMCF

The results of WEMCF shown in Figure 6.4a and 6.4b are calculated by Equation 6.2

using the energy fraction. This is also the recommended way to calculate WEMCF. Alter-

natively, WEMCF can also be calculated from Equation 6.3, even though it is much more

complex than the previouse way. To do that another calculation with short-circuit is con-

ducted and 3 waves are selected for comparison, including both low-order and high-order

waves. The comparison of the results are shown in Figure 6.6. The results acknowledge

the statement that K2
1f ≈ K2

W. This illustrate the use of WEMCF for complex waveguides.

Figure 6.6: The comparison of WEMCF calculated from different means, for wave 0, 4

and 5.

6.3.3 With inductor shunts

Here we connect an identical inductor L = 2.69 H to the each PZT patch in the unit cell,

so as to tune with the intrinsic capacitance at 1300 Hz. The dispersion curves analyzed by
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full unit cell model are presented in Figure 6.7. Two additional band gaps can be found

from 1260 Hz to 1300 Hz. These band gaps are caused by the tuning effects of the shunted

inductor and the intrinsic capacitance hence they are termed the ‘local resonance (LR)

band gap’ in the literature [81]. The depth of the LR band gaps are much greater than

the Bragg band gaps, therefore the waveshapes decay dramatically in space. This feature

can be seen from the waveshapes of the pumping wave and flexural wave at 1297 Hz, as

shown in Figure 6.8.

Figure 6.7: Dispersion curves of the positive-going waves with λ < 10 when piezoelectric

patches are shunted with identical inductors, obtained by full WFEM with eigenvalue

scheme (6.1), full WFEM with original eigenvalue scheme and reduced WFEM with αf = 3

and αf = 2.

The reduced model with αf = 2 are αf = 3 are also employed on the same problem

and the results are compared in Figure 6.7. The remarks are similar with the open-

circuit case. The reduced model with αf = 2 starts to lose accuracy at higher frequencies

around 1400 Hz because the modes are inappropriately truncated. In addition, the original

eigenvalue scheme (σ = 1) is applied to the full unit cell model. The results are also

compared in Figure 6.7 and labeled as ‘FULL(σ = 1)’. Good agreements can bu found in

comparison with the other results obtained by using original scheme (6.1).

In the free wave analysis, we presented the positive-going waves with |λ| < 10,

namely the less-decaying ones and compared them in terms of the dispersion relation

and WEMCF. To have accurate predictions, the magnitude balance adjustment factor σ

is optional. The reduced model is applicable to accelerate the computation when αf is

greater than 3.
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(a) Pumping wave (b) Y-axis flexural wave

Figure 6.8: Waveshapes inside the LR band gap (at 1297 Hz).

6.4 Forced response (inductor shunts)

As it is shown in Figure 6.2, the periodic structure is shunted with identical inductors

at each PZT patches, the inductance is the same as that used in the previous section

(L = 2.69 H). The cross-sections are numbered by their x positions. We applied unit

forces on UX, UY, and UZ DOFs only at one edge of the first cross-section, in order to

excite more waves. Free boundary conditions are considered at rest DOFs of the left and

right boundaries. The full FEM model of the whole structure is used as the reference.

The analyzed frequency range is from 1000 Hz to 2000 Hz, with 900 points for the WFEM

and 180 points for the full FEM. In this section, the UY displacement of the corner node

at each cross-section labeled in Figure 6.3 is post-processed and compared with different

methods.

Firstly, we discuss the accuracy of the eigenvalue schemes. Figure 6.9 compares the

results obtained by using original eigenvalue scheme (labeled ‘FWFE(σ = 1)’) and the

modified eigenvalue scheme (6.1) (labeled ‘FWFE’). Full FE model of the unit cell and full

wave basis are used in both calculations. Figure 6.9a represents the Frequency Response

Function (FRF) at the excitation cross-section, and it can be seen that results obtained

by original eigenvalue scheme has significant errors at a lot frequencies, especially around

1200 Hz, 1500 Hz and 1800 Hz. While checking the FRF at cross-section 3, shown in

Figure 6.9b, the results obtained by original eigenvalue scheme matches very well with

the reference at the whole frequency range. This clearly shows that the errors observed

in Figure 6.9a are induced by the strong evanescent waves that are included in the full

wave basis. The results also indicate that original eigenvalue scheme could not predict

the strong evanescent waves with a acceptable accuracy. On the contrary, the results

obtained by eigenvalue scheme (6.1) have good agreements with the reference at both

cross-sections. This implies that the proposed eigenvalue scheme can properly predict the

strong evanescent waves.
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(a) On the first cross-section

(b) On the third cross-section

Figure 6.9: Comparison of FRF obtained by different eigencvalue schemes. Here the

WFEM uses full unit cell model and full wave basis.

Secondly we compare the influence of the reduced wave basis. Factors λCR = 103,

λCR = 107, λCR = 108, λCR = 109 are respectively considered. The numbers of kept

waves are compared in Figure 6.10. The results are summarized in Figure 6.11. It was

reported in the literature [24, 182] on relatively simple cased that a very small λCR is

sufficient. In the considered case, unacceptable error is observed when λCR = 103 is

used, which is larger than what was used in the aforementioned literature. Even when

λCR = 107 is considered by which 85 percent of the waves are retained, at some frequencies

(eg. from 1400 Hz to 1600 Hz) it will still induce some errors. According to the results,

λCR = 108 is recommended, by which less than 10 waves are neglected.

In Figure 6.11, the proposed eigenvalue scheme is used for all the cases. However,

when using the original eigenvalue scheme, frequently it failed to distinguish same num-

ber of positive-going and negative-going waves when large λCR is given because of the

errors. The following-up process of the forced response is consequently not applicable. In

our calculation, only when λCR = 103 the forced response with original eigenvalue scheme

works. According to the aforementioned results, it is insufficient to have a good agree-

ments with the reference. Moreover, incorrectly neglecting evanescent waves might break
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Figure 6.10: The comparison concerning the number of retained waves

Figure 6.11: Comparison of FRF obtained by keeping different waves. Here the WFEM

uses full unit cell model.

the conservation of energy and power. This explains the ‘damping’ behavior observed of

the λCR = 103 curve in Figure 6.11.

Thirdly we verify the reduced model of the unit cell. Factor αf was set to 9, 8, 6 and 4

respectively and the results are compared in Figure 6.12. When αf = 6 is used, the FRF at

some frequencies (eg. from 1500 Hz to 1700 Hz) still have errors. According to the results,

αf = 8 is recommended, by which 40 modes are retained from the overall 1558 ones. This

threshold is more strict that was made for the free wave analysis concerning less-decaying

waves. Nevertheless, the error induced by the reduced model is not as serious as it in the

wave reduction if the control factor is not correctly chosen.

The computational costs of methods with different choices of factors are compared

in Table 6.2. It is shown that the using of wave basis has already dramatically reduced

the calculation time, and by employing the reduced model the computing can be further

accelerated. The transfer matrix in the wave domain is diagonal, so the truncation of the

wave basis does not induce an additional acceleration.



172
Chapter 6. Wave propagation and forced response of a thin-wall structure

with periodic piezoelectric shunts

Figure 6.12: Comparison of FRF obtained by keeping different modes. The WFEM

methods used here are with reduced wave basis, and λ = 109.

Table 6.2: Computation cost of different models for forced response

method factors retained waves frequency points CPU time /s

FEM (ANSYS) N/A N/A 180 4274

WFEM (Python) λCR = +∞, αf = +∞ 336 900 630

WFEM (Python) λCR = 108, αf = 8 320± 5 900 347

WFEM (Python) λCR = 103, αf = 8 51± 2 900 340

6.5 Conclusions

In this chapter, the analysis of a electromechanical thin-wall structure is conducted by the

proposed numerical tools in the thesis. We show that the wave characteristics, electrome-

chanical coupling features and the forced response of the considered thin-wall structure

can be accurately obtained with a reasonable calculation time.

The complex dynamics of thin-wall structure provides are used to re-examine some

obtained conclusions in the previous chapters. The first one is the use of the WFEM with

reduced unit cell model and a new eigenvalue scheme. we show that for free wave analysis,

where the less-decaying waves are of more interest, the new eigenvalue scheme is optional.

But for the forced response analysis it is imperative. We also show that by keeping few

modes (αf = 8) of the unit cell, a effective unit cell model can be constructed and it

provides good results for the R-L resonance shunts. Moreover, by using such reduced

model, the analysis of free wave is reduced by 50% and forced response by 90 %. Finally,

we show that when excitation is complex and many waves are excited, more evanescent

waves are required for a good prediction for the forced response, here λCR = 108 is used,

retaining nearly all the waves. Note that the use of a reduced wave basis is more for

an purpose of accuracy not for acceleration. The second re-examined conclusion is the

two equivalent ways for the calculation of WEMCF. The equivalence is validated at both

low-order waves with simpler shapes and high-order waves with more complex shapes.

This means we can still use the energy fraction to predict the WEMCF, leading to a

convenient way for the electromechanical analysis of complex piezoelectric waveguides.
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Piezoelectric shunt circuits provide new electric design variables for the mechanical prop-

erty, which leads to an artificial modification of the guided wave characteristics. The con-

ducted work concerns the modeling, understanding, evaluation and design of the guided

waves in piezoelectric composites (periodic structures), leading to useful applications. The

main contributions of the conducted work are summarized below:

• The extensions of Wave and Finite Element method, including four aspects:

1. Several new reduced models based on free-interface CMS in combine with an

enhanced eigenvalue scheme have been proposed for the free-wave analysis. The

reduced models are applicable for any waveguides with proportional damping.

According to the numerical investigation on an asymmetric thin-wall structure,

we recommend the used of MacNeal’s reduction method in terms of efficiency,

which reduces the CPU time of free-wave analysis by 97%. The exact sub-

structure method is suggested in terms of the minimum model size, retaining

only 16 of the overall 4416 DOFs.

2. A new reduced model for the piezoelectric periodic structures has been pro-

posed for the free-wave analysis. It is also applicable for waveguides with local

dampers. The proposed reduction process is independent with the electric

impedance so it has advantages when designing a piezoelectric system where

repetitive calculations are required. The application on a thin-wall piezoelec-

tric structure shows that the CPU time of free wave is reduced by 50% and

forced response by 90%.

3. A new multi-scale numerical tool for computing the forced response and energy

flow is proposed. The method can be applied for built-up structures consist

of both periodic and non-periodic parts with finite/infinite extent. The major

idea is to model the non-periodic part by FEM and the periodic parts by

WFEM, and then to adapt the models of the substructures. Owing to the use

of WFEM, when the number of unit cells in periodic substructures is increasing,

the CPU time would not be significantly increased and remains low. Numerical

study on a finite built-up structure in forced response analysis shows a CPU

time reduction by 75% in comparison with the full FEM when there are 20

PZT patches.

4. Detailed numerical investigations concerning the use of reduced wave basis in

forced response analysis have been conducted on several different structures.

We show that some strong evanescent waves have to be kept even though

there are some inaccuracies in the wavenumbers, and the results still have

good agreements to the full finite element model. Directly truncating those

strong evanescent waves induces significant errors. This is due to the fact that

sufficient wave shapes has to be kept in the wave basis so as to approximately

satisfy the constrains on the boundaries. Also we confirm the necessity of using

the left eigenvectors to replace to inverse of the right eigenvector matrix.
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• The proposal of Wave Electromechanical Coupling Factor (WEMCF),

including:

1. The definitions of WEMCF. The concept of WEMCF is proposed to quantita-

tively evaluate the coupling strength between the electric and mechanical fields

during the passage of a wave. We show that the WEMCF can be calculated

either by an energy formula or by frequency formula. The equivalence of these

two formulas makes WEMCF consistent with the Modal Electromechanical

Coupling Factor.

2. The calculation of WEMCF. The WEMCF can be post-processed from the

free-wave characteristics obtained from WFEM through the energy formula.

This way the WEMCF can be calculated by computing dispersion curves only

once and does not need wave matching between OC and SC statuses. However,

the post-processing of WEMCF can be a time-consuming task for full WFEM.

The reduced model can be used to accelerate the calculation while maintain

the accuracy. For the example structure, it reduces the CPU time to less than

1%. The consistency with the frequency and energy formulas and the use of

reduced model for WEMCF are validated by a solid PZT waveguide and also

by a thin-wall PZT waveguide with both low-order and high-order waves.

3. The applications of WEMCF. The WEMCF is directly linked to the perfor-

mance of the waveguide. It is strongly correlated to the best energy transmis-

sion loss of the resistive PZT waveguide in a built-up structure. It is also linked

to the extreme width of the band gap that can be extended by a stable Neg-

ative capacitance. Hence the design for the geometric and electric parameters

can be done separately, and WEMCF can be used as an optimization objective

during the geometric design.

• The clarification of several concepts, including:

1. A band gap does not guarantee to eliminate all the modes inside it (even though

sometime the modal density can be zero), but ensures that all modes in it have

localized shapes.

2. A band gap in the periodic substructure does not directly link to a low-

vibration and low-energy-flow frequency range of the built-up structure. It

is due to the fact that a mix evanescent field can carry energy.

3. Both band gaps and damping can induce a non-zero imaginary part of

wavenumber, which means the attenuation of displacement when the wave

is traveling towards a far-field. However, the non-zero imaginary part of

wavenumber does not necessarily indicate the attenuation of energy flow.

Damping mechanism can ‘attenuate’ energy; but a undamped finite periodic

substructure can not ‘attenuate’ energy at band gap frequencies.

• The development of design process for multi-mode vibration control

based on band-gap mechanisms. Negative capacitance is used with a stabil-

ity consideration to enlarge the band gap. The geometric and electric parameters

are determined consecutively in an iterative process when the overall mass of the
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piezoelectric materials is constrained. The design process is purely based on wave

characteristics and it does not need any modal information of the host structure.

We shown that the vibration reduction performance is also boundary condition in-

sensitive. Therefore this method is promising at mid- and high frequencies where

exact modal information is difficult to access. The amount of piezoelectric materials

should not be lower than a certain level, otherwise the desired band gap can not be

achieved with stable negative capacitances.

• Suppression of band-gap resonances. According to the vibration localization

feature of the band gap resonances, we show that the vibrational energy can be

effectively removed by introducing few resistor to the negative capacitance circuits

near boundaries. Inside the band gap, the vibration reduction performance is almost

identical with the case in which all the patches are connected to the same resistor.





Perspectives

A straightforward direction for the future work is to extend or examine the numerical

strategies, coupling indicators and design processed into 2D structures. For instance we

can still build a 2D unit cell model by the free modes plus residual effects and impose 2D

periodic conditions, so as to analyze the free waves in a 2D waveguide. Since using wave

basis to calculate the forced response of a finite 2D has some difficulties to handle the

boundary conditions. The wave basis may be used to locate the band gaps rather than

being used in forced response. In principle, WEMCF is also applicable in 2D cases, so

we can still use it to design the geometrics. Similar ideas can be used to design a light-

weight structure with a wide band gap covering the working range of the 2D structure.

It remains unknown concerning the details and performances. Other suggested ideas for

future studies are:

• Applications of other CMS techniques to model the unit cell for WFEM. By now

the considered reduced models are based on some assumptions on the structural

damping. To extend the fast analyzing ability for the heavily damped structure

with non-proportional damping, some methods mentioned in Ref. [208] maybe

applicable.

• The predictions of band gap resonances. We observed that the band gap resonances

emerge when boundary stiffness is in a continuous range. It seems that there are

some general rules to determine the existence of these resonances, especially from

the wave perceptions. To do that the phase-closure principle [78] may be a promising

tool.

• Geometric optimization for the WEMCF of multiple waves. In our work we managed

to reduce the vibration caused by one wave type in a wide frequency range. It is

necessary to consider multiple waves if the structure and excitation is complex. To

do that significant WEMCF should be achieved for multiple waves by geometric

design. It may leads to a multi-input & multi-objective optimization problem.

• Generating energy by band-gap resonances. Instead of dissipating the localized

energy, it is promising to harvest energy from the structure. The localization allows

the use of few harvesters to remove large proportion of mechanical energy. To do

that we also need to know under which boundary conditions there will be band gap

resonances, which is an open question.

• Considering the influences of the ‘mistuning’ among unit cells of a periodic struc-

ture. In our work perfect periodic structures are considered. Even though some

studies have pointed out the performance of the periodic structure would not sig-

nificantly change if there are insignificant perturbation on the parameters, it is still

interesting to know the perturbation on which parameter will more likely worsen

the performance, which corresponds to a sensitive analysis.

• Experimental validations. The features of band gap resonances need to be experi-

mentally validated so as to confirm our understandings. Also the vibration reduction
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systems proposed in Chapter 5 require experimental validations. The main challenge

is that the NCs are very close to the instable zone. We may first experimentally

measure the stability of the NCs and then use the proposed design method to give

geometric and electric parameters. Note that the periodic structures use in exper-

iments are actually near-periodic structures, so the success of the validations also

indicate the robustness of the system.
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Appendix A

Material properties of the

piezoelectric material (PZT4)

Mass density: ρ = 7500kg/m3

Material stiffness matrix evaluated at constant electric field:

[cE ] = 1010 ×



13.2 7.1 7.3

7.1 13.9 7.3

7.3 7.3 11.5

3.06

3.06

3.06


Pa

Permittivity matrix evaluated at constant strain:

[εS ] =

805ε0

805ε0

805ε0


where ε0 = 8.85× 10−12C/(V ·m)

Piezoelectric stress coupling matrix:

[e] =



4.1

4.1

−14.1

−10.5

−10.5


N/(V ·m)





Appendix B

Finite element for triple-layered

piezoelectric beams

B.1 One dimensional constitutive relation

The proposed finite element is used to describe the triple-layered piezoelectric composite

beam shown in Figure B.1. With electric field established along the poling direction

(axis 3, along the thickness of element, see Table B.1), the full constitutive equations of

piezoelectric materials writes

{T} = [cE ]{S} − [e]{E}
{D} = [e]T{S}+ [εS]{E}

(B.1)

(B.2)

where {T} is the stress vector with 6 components, {S} the strain vector with 6 compo-

nents, {E} the electric field vector with 3 components, {D} the charge intensity vector

with 3 components. The matrices, [ce], [e], [εS ] are stiffness matrix evaluated at con-

stant electric field, piezoelectric matrix, permittivity matrix evaluated at constant strain,

respectively. The terms used here are consistent with [6]

subscript element coordinate description

1 x length

2 z width

3 y poling direction, thickness

4 zy (23)

5 yx (31)

6 xz (12)

Table B.1: Axis and subscript notation.

According to the Euler-Bernoulli assumption, the beam bended in axis 3 induces

dominated strain and stress in axis 1, while the stress along axis 2 and all the shear

strains are neglected. For stress along axis 3, there are two situations: 1) the size along

axis 3 is large enough in comparison with axis 1 and 2 so that strain along axis 3 will

be neglected (plane strain), and 2) the size along axis 3 is small enough in comparison

with axis 1 and 2 so that stress along axis 3 will be neglected (plane stress). In our case

we consider the plane stress situation, then the terms T2, T3, S4, S5, S6, E1, and E2 in

Equations (B.1) and (B.2) have already been known as zero. By eliminating these terms,

an 1D constitutive equation for the piezoelectric beam could be obtained

T1 = ć11S1 − é13E3

D3 = é13S1 + έ33E3

(B.3)

(B.4)
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Figure B.1: Geometric parameters and DOFs of Piezoelectric beam element.

The values of these equivalent parameters are quite different from the corresponding terms

in Equations (B.1) and (B.2) (i.e. c11, e13, ε33). For example, the 1D constitutive relation

of the PZT4 material presented in Appendix A is{
T1

D3

}
=

[
7.86e10 9.3

−9.3 1080ε0

]{
S1

E3

}
We can find

(ć11 − c11)/c11 = −40.5%

(é13 − e13)/e13 = 126.7%

(έ33 − ε33)/ε33 = 63.7%

showing significant differences induced by the plane stress assumptions. As it will be

shown latter in the validation cases, this treatment is necessary and correct.

B.2 Dynamic equations

The geometric parameters of the element are shown in Figure B.1 and listed in Table B.2.

Concerning the electric field, we regard the side that contacts to the host layer as GND

(i.e. has constant zero potential), and the another side as electrode-free. This enables the

element to handle the distributed electrodes in the future. The element has two nodes,

each of them has 5 DOFs, listed in Table B.3. The corresponding nodal loads are: forces

(Fx,Fy), moment (M) and electric charges (Qt, Qb).

notation description

b width of the element

L length of the element

hp height of the piezoelectric layer

hs height of the host layer

Table B.2: Geometric parameters of the piezoelectric element.

The polling direction of the top layer will be determined by the input data of the

constitutive equations. Namely it depends on the sign of term é13, as a negative value
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indicates that the poling direction is along positive y-axis. For the bottom layer, the

polling is defined by parameter κ by means of é13,b = κé13 so that κ = 1 for the same

direction as the top layer, κ = −1 for the opposite direction.

nodal DOF description corresponding load

Ux displacement along x-axis Fx

Uy displacement along y-axis Fy

θ rotation from x-axis to y-axis M

Vt potential of the top free side Qt

Vb potential of the bottom free side Qb

Table B.3: DOFs of the piezoelectric element.

To derive the dynamic equations of the element, first we define three space domains

to identify two piezoelectric layers and the host layer:

Ωs = {(x, y, z)|y ∈ [−hs/2, hs/2], x ∈ [0, L], z ∈ [0, b]}
Ωt = {(x, y, z)|y ∈ [hs/2, hp + hs/2], x ∈ [0, L], z ∈ [0, b]}
Ωb = {(x, y, z)|y ∈ [−hp − hs/2,−hs/2], x ∈ [0, L], z ∈ [0, b]}

Then the constitutive relations of the triple layered beam could be written in three cases:

T1 = csS1 (x, y, z) ∈ Ωs{
T1

D3

}
=

[
ć11 −é13

é13 έ33

]{
S1

E3

}
(x, y, z) ∈ Ωt{

T1

D3

}
=

[
ć11 −κé13

κé13 έ33

]{
S1

E3

}
(x, y, z) ∈ Ωb

(B.5)

Additionally, it is better to write the nodal variables in vector form, as:

{UN} =
[
Ux,1 Ux,2 Uy,1 θ1 Uy,2 θ2

]
{VN} =

[
Vt,1 Vt,2 Vb,1 Vb,2

]
{FN} =

[
Fx,1 Fx,2 Fy,1 M1 Fy,2 M2

]
{QN} =

[
Qt,1 Qt,2 Qb,1 Qb,2

]
Then we interpolate the continuous mechanical field into an weighted summary of the

nodal displacements:{
ux(x)

uy(x)

}
= [Nm]{UN} =

[
N1 N2 0 0 0 0

0 0 N3 N4 N5 N6

]
{UN} (B.6)

Similarly, for the electric potential:

P (x, y, z) =


[Nt]{VN} =

[
N7 N8 0 0

]
{VN} (x, y, z) ∈ Ωt

[Nb]{VN} =
[
0 0 N9 N10

]
{VN} (x, y, z) ∈ Ωb

0 (x, y, z) ∈ Ωs

(B.7)
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According to the Euler-Bernoulli theory, the strain caused by the deformation is

S1(x, y) =
dux

dx
− yd2uy

dx2
(B.8)

Introducing Equation (B.6) into (B.8), we express the strain filed by means of nodal

displacements

S1(x, y) = [Bm]{UN} =
[
B1 B2 B3 B3 B4 B5 B6

]
{UN} (B.9)

For the electric parts, the electric filed could be deduced from the potential by

E3(x, y, z) = −∂P (x, y, z)

∂y
(B.10)

Introducing equation (B.7) into equation (B.10), we express the electric filed by means of

nodal voltages as well

E3(x, y, z) =


[Bt]{VN} =

[
B7 B8 0 0

]
{VN} (x, y, z) ∈ Ωt

[Bb]{VN} =
[
0 0 −B7 −B8

]
{VN} (x, y, z) ∈ Ωb

0 (x, y, z) ∈ Ωs

(B.11)

The shape functions N1 to N10 and B1 to B8 are

N1 = 1− ξ (B.12)

N2 = ξ (B.13)

N3 = 1− 3ξ2 + 2ξ3 (B.14)

N4 = L
(
ξ − 2ξ2 + ξ3

)
(B.15)

N5 = 3ξ2 − 2ξ3 (B.16)

N6 = L
(
−ξ2 + ξ3

)
(B.17)

N7 =

(
−hs/2− y

hp

)
(1− ξ) (B.18)

N8 =

(
−hs/2− y

hp

)
ξ (B.19)

N9 =

(
−hs/2 + y

hp

)
(1− ξ) (B.20)

N10 =

(
−hs/2 + y

hp

)
ξ (B.21)

B1 = − 1

L
(B.22)

B2 =
1

L
(B.23)

B3 = − y

L2
(−6 + 12ξ) (B.24)
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B4 = − y
L

(−4 + 6ξ) (B.25)

B5 = − y

L2
(6− 12ξ) (B.26)

B6 = − y
L

(−2 + 6ξ) (B.27)

B7 = −1− ξ
hp

(B.28)

B8 = − ξ

hp
(B.29)

where ξ = x/L. Note that in N8 to N10 a linear through-thickness voltage variation is

assumed, which is not the only choice as reviewed by [49].

After expressing the continuous element field by nodal variables, the generalized La-

grange equation for electromechanical systems [2] is employed; it writes

d

dt

(
∂L
∂U̇N,i

)
− ∂L
∂UN,i

=
∂

∂(δUN,i)
δWnc

− ∂L
∂VN,i

=
∂

∂(δVN,i)
δWnc

(B.30)

(B.31)

where L is the Lagrange indicator, given by

L = T ∗ +W∗e − V (B.32)

and T ∗ the kinetic co-energy,W∗e the electric co-energy, V the mechanical potential energy,

and δWnc the virtual work of the external loads.

Kinetic energy

The kinetic energy of the element writes

T ∗ =

∫
Ω

1

2
ρ(y)u̇2

x(x)dΩ +

∫
Ω

1

2
ρ(y)u̇2

y(x)dΩ (B.33)

Introducing Equation (B.6) into Equation (B.33), the kinetic energy could be represented

in terms of nodal displacement

T ∗ =
1

2
{U̇N}T[Me]{U̇N} (B.34)

where

[Me] =

∫
Ωs

ρs[Nm]T[Nm]dΩ +

∫
Ωt∩Ωb

ρp[Nm]T[Nm]dΩ (B.35)

After integration, it becomes

[Me] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

m

∣∣∣∣1/3 1/6

1/6 1/3

∣∣∣∣ [0]2×4

[0]4×2
m

420

∣∣∣∣∣∣∣∣
156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.36)

where m = (ρshs + 2ρphp)bL, representing the overall mass of the element.
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Mechanical potential energy

The mechanical potential energy of the element writes

V =
1

2

∫
Ωs

csS
2
1dΩ +

1

2

∫
Ωb∩Ωt

ć11S
2
1dΩ− 1

2

∫
Ωt

é13S1E3dΩ− 1

2

∫
Ωb

κé13S1E3dΩ (B.37)

in which Equation (B.5) is used to simplify the integration domain. Introducing Equations

(B.9) and (B.11) into (B.37), the mechanical potential energy could be represented in

terms of nodal variables

V =
1

2
{UN}T[Ke]{UN} −

1

2
{UN}T[He]{VN} (B.38)

where

[Ke] =

∫
Ωs

cs[Bm]T[Bm]dΩ +

∫
Ωt∩Ωb

ć11[Bm]T[Bm]dΩ (B.39)

[He] =

∫
Ωt

é13[Bm]T[Bt]dΩ +

∫
Ωb

κé13[Bm]T[Bb]dΩ (B.40)

After integration, they become:

[Ke] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

kx

∣∣∣∣1 −1

1 −1

∣∣∣∣ [0]2×4

[0]4×2 ky

∣∣∣∣∣∣∣∣
12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L2 12 −6L

6L 2L2 −6L 4L

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.41)

and

[He] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

hx

∣∣∣∣ 1 1

−1 −1

∣∣∣∣ κhx

∣∣∣∣−1 −1

1 1

∣∣∣∣
hy

∣∣∣∣∣∣∣∣
−1 1

−L 0

1 −1

0 L

∣∣∣∣∣∣∣∣ κhy

∣∣∣∣∣∣∣∣
−1 1

−L 0

1 −1

0 L

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.42)

where

kx =
cshsb

L
+

2ć11hpb

L

ky =
csIsb

L
+

2ć11Ipb

L
, Is =

h3
sb

12
, Ip =

h3
pb

12
+ hpb

(
hp + hs

2

)2

hx =
é13b

2

hy =
é13γp

Lhp
, γp = bhp

hp + hs

2

Electric co-energy

The electric co-energy writes

We =
1

2

∫
Ωb∩Ωt

έ33E
2
3dΩ +

1

2

∫
Ωt

é13S1E3dΩ +
1

2

∫
Ωb

κé13S1E3dΩ (B.43)
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Introducing Equations (B.9) and (B.11) into (B.43), the electric co-energy could be rep-

resented in terms of nodal variables

W∗e =
1

2
{VN}T[He]

T{UN}+
1

2
{VN}T[Ce]{VN} (B.44)

where [He] is shown in Equation (B.42), and

[Ce] =

∫
Ωt

έ13[Bt]
T[Bt]dΩ +

∫
Ωb

έ13[Bb]T[Bb]dΩ (B.45)

After integration, it becomes

[Ce] = Cpzt

∣∣∣∣∣∣∣∣
1/3 1/6

1/6 1/3
[0]2×2

[0]2×2
1/3 1/6

1/6 1/3

∣∣∣∣∣∣∣∣ (B.46)

where Cpzt = έ33bL/hp is the intrinsic capacitance of one piezoelectric layer.

Element matrices

Now the kinetic co-energy (B.34), mechanical potential energy (B.38) and electric co-

energy (B.44) all have been expressed by means of nodal variables. Introducing them into

the Lagrange indicator (B.32) makes

L =
1

2
{U̇N}T[Me]{U̇N}+ {VN}T[He]

T{UN}+
1

2
{VN}T[Ce]{VN}

− 1

2
{UN}T[Ke]{UN} (B.47)

Introducing Equation (B.47) into (B.31), and with term δWnc given by

δWnc = {δUN}T · {FN} − {δVN}T · {QN} (B.48)

eventually we obtain the dynamics of the element in terms of nodal variables

[Me]{ÜN}+ [Ke]{UN} − [He]{VN} = {FN}
[He]

T{UN}+ [Ce]{VN} = {QN}
(B.49)

(B.50)

where [Me] is the element mass matrix, [Ke] the element stiffness matrix, [He] the element

piezoelectric matrix, and [Ce] the element capacitance matrix.

B.3 Electric circuits and electrodes

The shunted electric circuits could be resistors (Rt, Rb), capacitors (Ct, Cb), inductors

(Lt, Lb) or their combinations. This part is modeled by another element with only one

node and 4 DOFs. The governing equation writes

[Mc]{ËN}+ [Dc]{ĖN}+ [Kc]{EN} = {0} (B.51)
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where

{EN} = { Vt,1 Qt,1 Vb,1 Qb,1 }T (B.52)

is the element nodal variable vector, and the element matrices are

[Mc] =

∣∣∣∣∣∣∣∣
0 0

0 Lt
[0]2×2

[0]2×2
0 0

0 Lb

∣∣∣∣∣∣∣∣ (B.53)

[Dc] =

∣∣∣∣∣∣∣∣
0 0

0 Rt
[0]2×2

[0]2×2
0 0

0 Rb

∣∣∣∣∣∣∣∣ (B.54)

[Kc] =

∣∣∣∣∣∣∣∣
0 −1

−1 C−1
t

[0]2×2

[0]2×2
0 −1

−1 C−1
b

∣∣∣∣∣∣∣∣ (B.55)

Matrices [Kc], [Dc] and [Mc] are then assembled into the overall stiffness matrix, damping

matrix and mass matrix respectively according to the connection of the elements.

Electrodes, for instant very thin Copper layers, are often covered on the piezoelec-

tric material in practice. Since the proposed piezoelectric element is electrode free, extra

efforts must taken to simulate the electrodes. A electrode forces every point on it has

identical potential, this effect could be regard as a group of constraining equations among

those electric DOFs. Generally, there are two approaches of introducing additional con-

straining equations into FEM, one is Lagrange Multiplier Method [209] and another is

Penalty Method [210]. Since the Multiplier Method will induce zero diagonal components

in stiffness matrix and also increase the dimension of problem, here the Penalty Method

is used. The basic idea is to add a new term into the unconstrained mechanical potential

energy to obtain the constrained mechanical potential energy; it writes

Vc = V + {τ}T[α]{τ} (B.56)

where [α] is a diagonal matrix for the penalty factors, and

{τ} = [A]{U} − {B} (B.57)

To this end, the constraining equations

[A]{U} − {B} = {0} (B.58)

are taken into account of the Lagrange indicator by an approximate way, where {U} is

overall variable vector including displacement and voltage DOFs. Replacing the uncon-

strained mechanical potential energy by the constrained one as shown in Equation (B.56)

in Lagrange Equation (B.31), the constrained dynamics equations becomes

[M ]{Ü}+ ([K] + [A]T[α][A]){U} = {F}+ [A]T[α][B] (B.59)

where the electric constrains have been taken into account.
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B.4 Validations

Overall 24 test cases were conducted in order to validate the FEM code we have developed

(referred to as ‘P1DFEM’). All of these text cases have shown very good agreements with

the reference. The selected cases presented here are related to the validation of: 1) the

accuracy of the piezoelectric beam element, and 2) the implementation of the general

finite element procedure.

(a) in ANSYS

(b) in P1DFEM

Figure B.2: FEM meshes of the cantilevered beam.

A same cantilevered structure was modeled by ANSYS and P1DFEM respectively. It is

0.1 m long with rectangular cross-section (width 5× 10−3 m and height 1× 10−3 m). Two

Piezoelectric patches are co-located at the first half, with width 5× 10−3 m and height

1× 10−3 m. In ANSYS, solid elements (SOLID45 and SOLID95) are used as shown in

Figure B.2a where the purple part is the piezoelectric layer. In P1DFEM, conventional

Euler-Bernoulli beam elements are used to model the host structure and the proposed

elements are used to model the piezoelectric parts. Figure B.2b shows the meshes in

P1DFEM, where the red part is the piezoelectric elements. The host material is steel,

with Young’s modulus 2.1× 1011 Pa and mass density 7.8× 103 kg/m3. The piezoelectric

material is PZT4, presented in Appendix A.

Firstly, the natural frequencies of the structure with open circuit were calculated and
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compared, shown in Figure B.3. The ANSYS results are selected so that only longitudinal

and flexural modes are taken into the comparison. It is shown that relative error ANSYS

and P1DFEM is less than 4% regarding the first 10 modes.

Figure B.3: First 10 natural frequencies.

Secondly, the static response of the structure was computed, giving one of the electrode

a 1V voltage set another to short-circuit. The aim is to test the accuracy of electrome-

chanical coupling from the electric field to mechanical field. Figure B.4 compares the

results in DOF Ux and Uy. Both longitudinal and transverse motions are excited, reveal

the face that DOFs Ux and Uy are coupled only through the electric field.

Figure B.4: Static response to the electric excitation.
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Thirdly, the static response to a transverse force at the free tip was computed. The

aim is to test the accuracy of electromechanical coupling from the mechanical field to

electric field. The response are compared in Figure B.5. Note that the ANSYS results

of THXY (θ) in Figure B.5a were not directly exported from ANSYS but obtained by

performing numerical differential on the exported UY results.

(a) Uy and θ

(b) Vt and Vb

Figure B.5: Static response to the mechanical excitation.
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(a) Uy

(b) Vt

Figure B.6: Dynamic response to the mechanical excitation.

Fourthly, harmonic response to the applied force at the free end were computed from

0 Hz to 1000 Hz. The piezoelectric patches are open-circuit. The aim is to test the im-

plementation of the finite element procedure and the dynamic coupling of the mechanical

and electric fields. The Frequency Response Function (FRF) are compared regarding

the transverse displacement at the free top (Figure B.6a) and the potential of the upper
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piezoelectric path (Figure B.6b).

Figure B.7: FRF when resistive shunts with Rt = Rb = 1× 105 Ω are used.

Eventually, the FRF around the first resonance ( from 210 Hz to 230 Hz) was com-

pared when resistive shunts with Rt = Rb = 1× 105 Ω are considered. The aim is to

test the accuracy of concerning the dynamic behavior of piezoelectric shunts. All these

comparisons have shown good agreements between results obtained from P1DFEM and

ANSYS. The correlation indicates that the assumptions (Euler-Bernoulli, 1D constitutive

relation, linear through-thickness voltage variation) are suitable and they are correctly

implemented.





Appendix C

Artificial boundary conditions

(ABC) for rods and beams

ABC for infinite rod

The longitudinal motion u of an uniform infinite rod is governed by

EA
∂2u(x, t)

∂t2
−Aρ∂

2u(x, t)

∂x2
= Pu(x, t) (C.1)

where A is the cross-section area, ρ the mass density and E the Young’s modulus. In

terms of the harmonic (steady-state) motion at angular frequency ω, the displacement u

at xb > 0 writes

u(xb, t) = Uej(ωt−kxb) (C.2)

where ku = ω
√
ρ/E is the longitudinal wavenumber for the positive-going wave. Equation

(C.2) holds when there are no external loads at the far-field, namely Pu(x > xb, t) = 0.

Then the internal force applied to the far-field at xb > 0 becomes

f(xb, t) = EA
∂u

∂x
(xb, t) = jEAkuu(xb, t) (C.3)

So that we obtain the dynamic stiffness of the far field

Hu =
f(xb, t)

u(xb, t)
= jEAku = jωA

√
Eρ (C.4)

Equation (C.4) indicates that the far-field is equivalently a viscous damper, with

damping coefficient Ce = A
√
Eρ. This allows us to implement the ABC by bounding a

damper element at the boundaries of the near-field.

ABC for infinite beam

The governing equation of an infinite uniform Euler-Bernoulli beam writes

ρA
∂2v(x, t)

∂t2
+ EI

∂4v(x, t)

∂x4
= P (x, t) (C.5)

where I is the second moment of area of the cross-section. In terms of the harmonic

(steady-state) motion at angular frequency ω, transverse displacement v at xb > 0 writes

v(xb, t) =

(
Aejkvxb +

m∑
i

Bie
−kv(xb−xi)

)
e−jωt (C.6)



198 Appendix C. Artificial boundary conditions (ABC) for rods and beams

where kv = 4
√
ω2(ρA)/(EI). Equation (C.6) holds when there are no external loads at the

far-field, namely Pv(x > xb, t) = 0. Terms A and Bi are determined by the m excitations.

We can neglect the exponentially decaying terms caused by the evanescent waves and

only keep periodic terms corresponding to the propagating waves; it gives

v(xb, t) ≈ Aejkvxbe−jωt (C.7)

The rotation θ, internal bending moment Mi and transverse force Fi can then be

deduced 

θ(xb, t) =
∂v

∂x
(xb, t) = jkvv(xb, t)

Mi(xb, t) = −EI ∂
2v

∂x2
(xb, t) = EIk2

vv(xb, t)

Fi(xb, t) = −EI ∂
3v

∂x3
(xb, t) = −jEIk3

vv(xb, t)

(C.8)

(C.9)

(C.10)

From Equations (C.7), (C.8), (C.9) and (C.10), the equivalent dynamic stiffness can be

found 
Hv =

Fi(xb, t)

v(xb, t)
= −jEIk3

v

Hθ =
Mi(xb, t)

θ(xb, t)
= −jEIkv

(C.11)

(C.12)

It could be seen that Hv and Hθ have transcendental relations with frequency ω. The

ABC of longitudinal wave (C.4) can be simply regarded as a damper, so it is applicable in

both time-domain and frequency domain solvers. In flexural wave case the ABC we found

could only be used in frequency domain solvers directly. Because they do not correspond

to a simple combination of mass, stiffness or damper.

The ABC for Euler-Bernoulli beams can also be implemented by bounding two springs

between v and θ DOFs to the ground respectively at the ends of the near-field. How-

ever, the stiffness coefficients are frequency dependent according to Equations (C.11) and

(C.12).

Figure C.1: Illustration of the FE model with ABC for the uniform beam.

Validations

A uniform infinite beam under excitation at the origin is considered as an example to

validate the ABC and the implementation of these ABC in P1DFEM. The analytical

solutions presented by [82] are used as reference. The beam and the model is illustrated

in Figure C.1, where up to L = 1 m at the left and right sides are modeled by FEM,
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and the rest part are modeled by ABC. The beam has rectangular cross-section b = h =

5× 10−2 m, Young’s modulus 2.1× 1011 Pa and mass density 7.8× 103 kg/m3.

The origin mobility to the transverse force was calculated from 10 Hz to 1000 Hz, and

the results are compared in Figure C.2. No resonance appears at the curves because the

structure do not have any reflection mechanisms that induce standing waves.

Figure C.2: Origin mobility to transverse force

Next, we fix the frequency at 400 Hz and validate the spatial distribution of the so-

lutions. Applying a longitudinal excitation, the deformation and internal forces can be

calculated, shown in C.3a, and the energy flow are then compared, shown in C.3b. Apply-

ing a bending moment, the flexural waves can be excited and the transverse deformation

and internal forces are shown in Figure C.4a. The contribution of the evanescent waves

can be clearly seen. Energy flow is shown in Figure C.4b where the power associated with

v and θ DOFs are plotted separately and labeled as Pu and Pm.

All these comparisons have shown a very good agreement indicating the ABC for rods

and beams are correctly implemented.
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(a)

(b)

Figure C.3: Spatial distribution of the response induced by longitudinal force: (a) dis-

placement and internal forces; (b) Energy flow.
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(a)

(b)

Figure C.4: Spatial distribution of the response induced by bending moment: (a) dis-

placement and internal forces; (b) Energy flow





Appendix D

The relationship of the left

eigenvectors obtained from

Equation (3.9) and from Equation

(2.8)

Given that the row vector
(

xT
q xT

f

)
is a left eigenvector obtained from Equation (3.9)

and the associated eigenvalue is λ; by the definition of the left eigenvalue problem, they

satisfy (
xT

q xT
f

)([ 0 σI

−DRL −DRR

]
− λ

[
σI 0

DLL DLR

])
= 0 (D.1)

and it leads to (
σxT

q xT
f

)
(AR − λAL) = 0 (D.2)

where

AL =

[
I 0

DLL DLR

]
(D.3)

and

AR =

[
0 I

−DRL −DRR

]
(D.4)

Right multiplying the inverse the matrix AL, Equation (D.2) becomes(
σxT

q xT
f

) (
T̂− λI

)
= 0 (D.5)

where

T̂ = ARA−1
L (D.6)

At the other hand, from Equation (3.7) we know that(
qL

fL

)
= AL

(
qL

qR

)
(D.7)

and (
qR

−fR

)
= AR

(
aL

qR

)
(D.8)

Equations (D.7) and (D.8) imply that(
qR

fR

)
= ARA−1

L

(
qL

−fL

)
= T̂

(
qL

−fL

)
(D.9)
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Appendix D. The relationship of the left eigenvectors obtained from

Equation (3.9) and from Equation (2.8)

Equation (D.5) indicates that
(
σxT

q xT
f

)
is also a left eigenvector of matrix T̂ and

the associated eigenvalue is λ. Equation (D.9) reveals that T̂ is actually the transfer

matrix of the unit cell. In conclusion, we have proved that, if
(

xT
q xT

f

)
is an left

eigenvector of Equation (3.9), then
(
σxT

q xT
f

)
is the left eigenvector of the transfer

matrix with the same eigenvalue.
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The relationship of the left

eigenvectors obtained from

Equation (2.72) and from

Equation (2.8)

Given that the row vector
(

xT
q xT

f

)
is a left eigenvector obtained from Equation (2.72)

and the associated eigenvalue is λ; by the definition of the left eigenvalue problem, they

satisfy (
xT

q xT
f

)([HRL HRR

0 σ̄I

]
− λ

[
HLL HLR

−σ̄I 0

])
= 0 (E.1)

and it leads to (
xT

q σ̄xT
f

)
(AR − λAL) = 0 (E.2)

where

AL =

[
HLL HLR

−I 0

]
(E.3)

and

AR =

[
HRL HRR

0 I

]
(E.4)

Right multiply the inverse the matrix AL, Equation (E.2) becomes(
xT

q σ̄xT
f

) (
T̂− λI

)
= 0 (E.5)

where

T̂ = ARA−1
L (E.6)

At the other hand, from Equation (2.71) we know that(
qL

−fL

)
= AL

(
fL

fR

)
(E.7)

and (
qR

fR

)
= AR

(
fL

fR

)
(E.8)

Equations (E.7) and (E.8) imply that(
qR

fR

)
= ARA−1

L

(
qL

−fL

)
= T̂

(
qL

−fL

)
(E.9)
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Appendix E. The relationship of the left eigenvectors obtained from

Equation (2.72) and from Equation (2.8)

Equation (E.5) indicates that
(

xT
q σ̄xT

f

)
is also a left eigenvector of matrix T̂ and

the associated eigenvalue is λ. Equation (E.9) reveals that T̂ is actually the transfer

matrix of the unit cell. In conclusion, we have proved that, if
(

xT
q xT

f

)
is an left

eigenvector of Equation (2.72), then
(

xT
q σ̄xT

f

)
is the left eigenvector of the transfer

matrix with the same eigenvalue.
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Supplementary results for

Chapter 5

Here we show the dispersion curves of each final design proposed in chapter 5. In the

figures, ‘P+’ refers to the positive-going propagating waves and ‘E+’ the positive-going

evanescent waves. The specific negative capacitance values are listed in Table 5.3. Addi-

tionally, the geometric parameters listed in Table 5.1 and 5.2 are illustrated by plotting

the full FE mesh. Note that configuration A can doe lead to a stable design, so only the

FE mesh is shown.

Configuration A

Figure F.1: Finite element mesh of the cantilever beam with configuration A.
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Configuration B

Figure F.2: Finite element mesh of the cantilever beam with configuration B.

Figure F.3: Dispersion curves of the possitive-going waves when the designed negative

capacitance is shunted to configuration B, in comparison to the open-circuit results.
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Configuration C

Figure F.4: Finite element mesh of the cantilever beam with configuration C.

Figure F.5: Dispersion curves of the possitive-going waves when the designed negative

capacitance is shunted to configuration C, in comparison to the open-circuit results.
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Configuration D

Figure F.6: Finite element mesh of the cantilever beam with configuration D.

Figure F.7: Dispersion curves of the possitive-going waves when the designed negative

capacitance is shunted to configuration D, in comparison to the open-circuit results.
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Configuration E

Figure F.8: Finite element mesh of the cantilever beam with configuration E.

Figure F.9: Dispersion curves of the possitive-going waves when the designed negative

capacitance is shunted to configuration E, in comparison to the open-circuit results.
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Configuration F

Figure F.10: Finite element mesh of the cantilever beam with configuration F.

Figure F.11: Dispersion curves of the possitive-going waves when the designed negative

capacitance is shunted to configuration F, in comparison to the open-circuit results.
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Configuration G

Figure F.12: Finite element mesh of the cantilever beam with configuration G.

Figure F.13: Dispersion curves of the possitive-going waves when the designed negative

capacitance is shunted to configuration G, in comparison to the open-circuit results.
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