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Abstract

This thesis describes analysis and control approaches for the vibration and energy
flow through periodic structures. The wave description is mainly used to address the
structural dynamic problems considered in the thesis: forced response is calculated as
the superposition of the wave motions; natural modes are understood as standing waves
induced by the propagating waves that recover to the same phase after traveling a whole
circle of the finite structure.

One advantage of the wave description is that they can remarkably reduce the di-
mensions of structural dynamic problems. This feature is especially useful in mid- and
high frequencies where directly computing the full Finite Element Method (FEM) model
is rather time-consuming because of the enormous number of degree-of-freedoms. This
thesis extends one widely used wave-based numerical tool termed Wave Finite Element
Method (WFEM). The major improvements are the use of several Component Mode
Synthesis (CMS) methods to accelerate the analysis for general waveguides with propor-
tional damping or piezoelectric waveguides. The numerical error is reduced by using the
proposed eigenvalue schemes, the left eigenvectors and the reduced wave basis. Another
contribution is the multi-scale modeling approach for the built-up structures with both
periodic and non-periodic parts. The main idea is to model the non-periodic parts by
FEM, and model the periodic parts by WFEM. By interfacing different substructures as
reflection coefficients or mechanical impedance, the response of the waveguide is calcu-
lated in terms of different scales. These two contributions extend WFEM to more complex
structures and to more realistic models of the engineering applications.

Another benefit of the wave perception is that it leads to new ideas for vibration
control. In this thesis periodically distributed piezoelectric materials and shunt circuit
are used to artificially modify the wave properties by electric impedance. A novel metrics
termed the Wave Electromechanical Coupling Factor (WEMCF) is proposed, to quanti-
tatively evaluate the coupling strength between the electric and mechanical fields during
the passage of a wave. This factor can be post-processed from the wave characteristics
obtained from WFEM through an energy formula. We show that WEMCF is strongly
correlated to the best performance of the piezoelectric waveguide. Hence the design for
the geometric and electric parameters can be done separately. An application is given,
concerning the vibration reduction of a cantilever beam. WEMCF is used as an opti-
mization objective during the geometric design, when the overall mass of the piezoelectric
materials is constrained. Then the negative capacitance is used with a stability consider-
ation to enlarge the Bragg band gap. The vibration is localized and efficiently dissipated
by few boundary dampers. The wave-based design process yields several broadband, sta-
ble, lightweight and boundary condition insensitive solutions. Therefore, it is promising
at mid- and high frequencies where exact modal information is difficult to access.

Keywords: Multi-scale modeling, wave and finite element method, reduced model,
piezoelectric shunt, wave electromechanical coupling factor, broadband vibration control,
energy flow, periodic structure



Résumé

Cette these s’interesse au controle des flux d’énergie mécanique dans les structures
périodiques. Les problemes de dynamique des structures considérés dans cette these
sont abordés sous l'angle d’une description ondulatoire : la réponse forcée d’un systeme
est calculée comme une superposition d’ondes dans la structure, tandis que les modes
propres sont interprétés comme des ondes stationnaires.

Un des avantages de ’approche ondulatoire est qu’elle permet de réduire de maniere
importante la taille des problemes de dynamique. Ceci se révele particulierement utile
dans le domaine des hautes et moyennes fréquences, ou les calculs par éléments finis de-
viennent tres coliteux en temps a cause du grand nombre de degrés de liberté nécessaire
a la convergence du modele. Afin de contourner ce probleéme, cette these s’appuie sur la
méthode des éléments finis ondulatoires (WFEM). Une des principales améliorations pro-
posées est 'utilisation de plusieurs méthodes de synthéses modales (Component Mode
Synthesis (CMS)) pour accélérer l'analyse des guides d’ondes généraux en présence
d’amortissement ou de matériaux piézo-électriques. Les erreurs numériques restent faibles
du fait de l'utilisation d’une base de projection réduite constituée d’ondes propagatives.
Une autre contribution est le procédé de modélisation multi-échelle pour les assemblages
de structures périodiques et non-périodiques. L’idée principale est de modéliser les parties
non-périodiques par éléments finis, et les parties périodiques par WFEM. Les interactions
entre les différentes sous-structures sont modélisées par des coeflicients de réflexion ou des
impédances mécaniques. Ces travaux forment une extension de la WFEM & des structures
plus complexes et plus proches des applications industrielles.

Un autre intérét de la vision ondulatoire est qu’elle mene a de nouvelles idées pour le
controéle des vibrations. Dans cette these, des matériaux piézo-électriques shuntés disposés
périodiquement sont utilisés afin de modifier artificiellement la propagation des ondes
grace au couplage électromécanique. Un nouveau critere, nommé Wave Electromechanical
Coupling Factor (WEMCF), est proposé pour évaluer, en termes énergétiques, I'intensité
du couplage entre le champ électrique et le champ mécanique lors du passage d’une onde.
On montre que le WEMCEF est fortement 1ié a I'atténuation dans le guide d’ondes piézo-
électrique. La conception des parametres géométriques et électriques peut étre ainsi étre
effectuée séparément. Ce principe est appliqué a la réduction des vibrations d’une poutre
encastrée. Le WEMCF est utilisé comme fonction objectif pour I"optimisation durant la
conception géométrique, la masse totale de matériau piézo-électriques étant contrainte.
Un circuit a capacité négative est utilisé pour élargir le band-gap de Bragg. La stabilité
du systeme est prise en compte comme une contrainte sur la valeur de cette capacité.
Les vibrations sont localisées et facilement dissipées par 'introduction d’absorbeurs sur
la frontiere. Ce procédé de conception basée sur une approche ondulatoire aboutit a des
solutions stables, légeres, et insensibles aux conditions aux limites dans une large gamme
de fréquence. Par conséquent, il est prometteur pour analyser les structures en moyenne
et haute fréquence ou il est difficile d’accéder aux informations modales exactes.

Mots clés : modélisation multi-échelle, éléments finis ondulatoires, modele réduit,
piézo-électrique, facteur de couplage électromécanique ondulatoire, controle de vibration
en large bande, flux d’énergie, structure périodique
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Introduction

Scientific context

The research conducted in this thesis was aimed to explore the use of structural periodicity
so as to achieve the goals of wave filtering, energy reflection/attenuation and vibration
reduction. Piezoelectric materials and shunting circuits are considered as a mean to
modify the wave characteristics in a desired manner. The work can be related to three
main axes:

1) The efficient analysis methods for periodic structures/substructures. The under-
lying idea for applications of periodic structures is to artificially design certain charac-
teristics for the guided waves. For structures with piezoelectric patches, electric circuits
and complex geometries, the analytical solutions are difficult to access. Therefore an effi-
cient numerical tool that can simulate the wave characteristics (free-wave analysis) of the
periodic piezoelectric structures is needed. Moreover, in a more practical point of view,
probably the designed periodic component will finally become a substructure in a bigger
structural system. Thus a numerical tool that can analyze the energy flow and vibration
(forced response) in such built-up structural systems are also required.

2) The understanding of mechanisms that link the wave characteristics with the energy
flow and vibration. Analyzing a periodic structure in isolation, some conclusions have
already been drawn. For instance: a single evanescent wave exists in semi-infinite/infinite
structural systems can not carry energy; inside a frequency band gap, a finite periodic
structure has lower modal density. But are these conclusions still hold when we integrate a
periodic component into a larger structural system? For example, does a band gap in the
periodic substructure directly link to a low vibration and low energy flow frequency range
of the built-up structure? To answer these questions, we need to clarify the links between
the wave characteristics of a infinite periodic substructure and the dynamic behavior of
a finite periodic structure or a built-up structure with finite/infinite extent.

3) Design/optimization processes for the piezoelectric structures, for both geometric
and electric parameters. To reduce the vibration and energy flow at mid- and high fre-
quencies, a broadband performance is desired. In addition, this should be achieved for
given frequencies and excitations. To do that, design processes are required. In terms
of structural modes, generally the geometrics of are designed to obtain good electrome-
chanical coupling; the electric parameter are designed to maximize damping, to tune a
resonance, to minimize the energy density etc. Analogy to that, indicators that can also
evaluate the electromechanical coupling strength for waves are required. It will be better
if the indicators can be easily calculated from the existing or proposed numerical tools.
So that we can used these indicators to design the geometrics of a waveguide. For the
electric part, appropriate criteria should be used for different objectives. For example the
criterion for the energy reflection might be different from the one for vibration reduction.



2 Introduction

Outline of the thesis

The work related to the aforementioned point 1) is reflected in Chapters 2 and 3, the
proposed methods are further applied for more realistic structures, shown in Chapter 6.
Discussions related to the point 2) can be found in Chapters 3, 5 and 6. Solutions for the
point 3) are summarized in Chapters 4 and 5. A brief outline of chapters and appendices
are listed below.

e In Chapter 1, the results of conducted literature review are presented. The survey
concerns existing work based on piezoelectric materials for dynamic modeling, wave
analyzing, electromechanical coupling and vibration reduction. Remarks are given
at the end of each part.

e In Chapter 2, an efficient numerical tool for the free-wave analysis are proposed.
Based on the free-wave characteristics, the forced response can be computed once
the boundary conditions and excitations are given. The main claim is the use of
free-interface Component Modal Synthesis (CMS) methods into Wave and Finite
Element Method (WFEM) to accelerate the calculation. A periodic open thin-wall
structure is considered as an application, and aspects such as accuracy, efficiency
and convergence are discussed and compared with several different modal reduction
schemes. The influence of reduced wave basis for the accuracy of forced response
results are discussed.

e In Chapter 3, a numerical tool is developed for the prediction of vibration and
energy flow in built-up structure with both non-periodic and periodic parts. The
non-periodic part is modeled by FEM while the periodic substructures are described
by WFEM. Different parts are connected in a multi-scale manner such that the final
dimension of the problem are largely reduced. A new reduced model is proposed
for free-wave analysis of waveguides with piezoelectric shunts or local dampers.
Through detailed validations, we show that whit FEM/WFEM hybrid method is
an accurate and rapid tool for both finite and infinite structures.

e In Chapter 4, a criterion termed Wave Electromechanical Coupling Factor
(WEMCEF) is proposed. It quantitatively evaluates the coupling strength between
the electric and mechanical fields during the passage of a wave. We show that
the WEMCEF can be calculated either by an energy formula or by frequency for-
mula. The equivalence of these two formulas makes WEMCEF consistent with the
Modal Electromechanical Coupling Factor. WEMCF can be post-processed from
the free-wave characteristics obtained from WFEM. The reduced unit cell model
is recommended to accelerate the calculation. An application is given based on
a built-up structure with periodic piezoelectric substructures, showing the strong
correlation between WEMCEF and the best energy transmission loss of the resistive
PZT waveguide.

e In Chapter 5, a design process is proposed for periodic piezoelectric structures to
achieve broadband vibration control. The idea is to reduce the modal density and
concentrate the vibration to the dissipative boundaries. Band-gap resonances are
effectively suppressed and the mechanisms for these unusual modes are discussed.
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The WEMCF is used as the criterion to optimize the geometric configuration under
a constrained amount of PZT material. Negative capacitance is used to create a wide
band gap and its stability are considered as well. The design process yields several
solutions for the control of multiple high-order modes of a cantilever beam. The
proposed design process does not rely on any modal information and the vibration
reduction performance is also proved to be insensitive to the boundary conditions.

e In Chapter 6, the developed numerical tools are applied to a thin-wall structure cou-
pled with periodic piezoelectric patches. The aim is to (1) illustrate the industrial
application of the numerical methods; and (2) re-examine the conclusions obtained
by simpler structures. Resulting from the complexity of the thin-wall structure, we
show that some proposed enhancements are not optional but imperative. Addition-
ally, the two equivalent ways for WEMCEF are confirmed by the both lower-order
and high-order waves of the thin-wall structure.

e Concluding remarks and discussions concerning the perspective work can be found
after Chapter 6.

e The first appendix gives the material coefficients of the PZT material used in the
thesis. The second appendix gives the detailed derivation and validation of the
triple-layered piezoelectric beam element used in Chapter 3 and 5. The third ap-
pendix gives the derivation and validation of the Artificial Boundary Conditions
that are used in Chapter 3. The fourth appendix gives supplementary material for
Chapter 2. The fifth appendix gives supplementary material for Chapter 3. The
last appendix gives supplementary material for Chapter 5.






CHAPTER 1

Literature review

Abstract: In this chapter the existing work concerning the structures coupled with
piezoelectric materials are reviewed. First we briefly introduce the piezoelectric effects
and the commonly used materials. Dynamic models and the methods to obtain wave
characteristics from the dynamic models are outlined. Once the piezoelectric materials
and electric circuits are involved into the governing equations, these methods can be
directly used to predict the wave characteristics in piezoelectric structures. Then the
electromechanical couping factor which is of utmost importance for many applications
is individually reviewed. Finally the applications for vibration control are summarized.
Remarks are given at the end of each part. Several analogies and dualities can be
found such as the wave-mode duality, the duality between the vibration control and
energy harvesting and the analogy between SSD and dry friction. The analogy be-
tween electric networks and mechanical models inspires pure mechanical and electric
replacement models for piezoelectric structures. It also underlies many vibration con-
trol strategies such as electromechanical TMD, piezoelectric network and PEM structures.
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6 Chapter 1. Literature review

1.1 Piezoelectric materials

The concept of smart structure provides another promising possibility of solving a variety
of engineering issues, such as vibration control, noise reduction, fault diagnose, wireless
sensing, self powering and so on. Smart structures could be defined as ‘the structures
that can sense external disturbance and respond to that in a desired fashion’ [1]. Gen-
erally a smart structure can be implemented by integrating some ‘smart material’ that
couples at least another field to the mechanical field. This introduces new design vari-
ables (Degree-of-Freedoms, DOF's) to modify or measure the mechanical characteristics.
An additional subsystem can then be designed regarding the new variables so as to have
the coupled structural system work in a desired manner. These smart materials involve
electrorheological (ER) or magnetorheological (MR) fluids, magnetostrictive materials,
electrostrictive materials, shape memory alloys (SMA), piezoelectric materials and so on.
Figure 1.1 lists various effects that are observed in materials in response to various inputs:
mechanical, electrical, magnetic, thermal, light. The smart materials correspond to the
non-diagonal cells.

Output . ;
Strain EIES! | AMETHENs Temperature| Light
Input charge flux
. Piezo- Magneto- Photo-
I 2l
Stress | Elasticity electricity | striction elasticity
. ; ‘ Electro
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effect

Figure 1.1: Stimulus-response relations indicating various effects in materials [2]. The
smart materials correspond to the non-diagonal cells.

Figure 1.2 shows the energy density by unit mass with respect to the maximum fre-
quency; the diagonal lines indicate a constant power density per unit mass. Note that
all the material characteristics vary by several orders of magnitude. Among them all, the
piezoelectric materials have the advantages of light-weight, large working frequency range
and high power density, therefore they are undoubtedly the most mature and those with
the most applications.

The piezoelectric effect was first discovered by the bothers Pierre Curie and Jacques
Curie [4], who demonstrated that when certain crystalline materials were stressed, an
electric charge was produced on the material surface and the converse effect was also
available [5]. So the piezoelectric effect exists in two aspects: one is the direct piezoelectric
effect that describes the material’s ability to transform mechanical strain into electrical
charge; another is the converse effect, which indicates the ability to convert an applied
electrical potential into mechanical strain energy.
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Figure 1.2: Specific energy density vs. maximum frequency for various smart material
actuators [2].
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Figure 1.3: Illustration of piezoelectric effects [3]: (a) Tetragonal unit cell of lead ti-
tanate before and after poling; (b) a piezoelectric patch behaves like a capacitance, the
mechanical stress can also cause a charge separation.

Piezoelectric effect is closely related to the non-centrosymmetric crystalline structure
in Piezoelectric materials. One of the defining traits is that the molecular structure is
oriented such that the material exhibits a local charge separation, known as an electric
dipole. Throughout the material composition the electric dipoles are orientated randomly,
but when the material is heated above a certain point, i.e. the Curie temperature, and a
very strong electric field is applied simultaneously, the electric dipoles reorient themselves
relative to the electric field; this process is termed poling, shown in Figure 1.3a. Once the
material is cooled, the dipoles maintain their orientation and the material is then said to
be poled. After the poling process, the material will exhibit the piezoelectric effect.

When applying a mechanical stress, the dipole density field is subject to change. This
might either be caused by a re-configuration of the dipole-inducing surrounding or by re-
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orientation of molecular dipole moments under the influence of the external stress. The
change appears as a variation of surface charge density upon the crystal faces, i.e. as a
variation of the electric field extending between the faces caused by a change in dipole
density in the bulk. In this regard, a piezoelectric patch behaves like a capacitance as
shown in Figure 1.3b, mechanical stress, as well as an externally applied voltage, both
cause the charge separation.

Mathematically, such electromechanical behavior of a piezoelectric material can be
captured by two groups of linear equations [6]; the full 3D constitutive equations write

{T} = ["|{S} — [el{ £}
{D} = [e]"{S} + [°{E}

where {T'} is the stress vector with 6 components, {S} the strain vector with 6 compo-
nents, {E'} the electric field vector with 3 components, {D} the charge intensity vector
with 3 components. The matrices,[cF], [e], [¢°] are stiffness matrix evaluated at constant
electric field, piezoelectric matrix, permittivity matrix evaluated at constant strain, re-
spectively. Note that [e] matrix sets the bridge between the structural stress and the
applied electric field, representing the piezoelectric effect. The constitutive relation could
also be written in other forms, giving the relationship between the chosen two terms
among {T'}, {S}, {D} and {E} and the rest two [6]. For example, one can also write the
full 3D constitutive equations into

{8} = [s"HT} + [d{E} (1.1)
{D} = [d]"{T} + [e"{E} (1.2)

The most popular piezoelectric materials are Lead-Zirconate-Titanate (PZT) which is
a ceramic, and Polyvinylidene Fluoride (PVDF, see [7] for the detail) which is a polymer.
PZT has an isotropic behavior in the plate, due to the fact that di3 = d3o; namely the
electric field along the 3rd axis equally influences the stress in the 1st and 2nd axes.
On the contrary, when PVDF is polarized under stress, its piezoelectric properties are
highly anisotropic, with d3; =~ 5ds. A PVDF is much lighter (~ 1800kg/m?) than a
PZT (~ 7800kg/m?) but a PVDF is softer (Young’s modulus ~ 2.5 GPa) than a PZT
(~ 50 GPa). Some new piezoelectric materials in the nanoscale can be found in [8]. There
is no definitive answer as to which material is better. It depends on the restrictions and
requirements of the application.

1.2 Dynamic models for piezoelectric structures

In conventional structural dynamics, the governing equations of a mechanical system
could be established by means of the Hamilton’s Principle, once the kinetic coenergy and
potential energy of the system are written by a set of generalized coordinates compatible
with the kinematic constraints [9]. To model a structural system with common materi-
als, piezoelectric materials and electric networks, similar strategy exists. Preumont [2]
provides a generalized variational indicator writes

t2
VI = / W + 6T — 6We — 0V + Y Eda + > Fyoa; | dt
t1 k g
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where W} is the magnetic coenergy; We is the electric energy; T is the kinetic coen-
ergy; V is the elastic potential energy; ¢ is the generalized charge coordinates; x; is
the generalized displacement coordinates; Ej, is the applied electric potentials; F} is the
applied forces. It is proved that the actual path is that which cancels the vari-
ational indicator V.Z. with respect to all admissible variations dx; and dg; of
the path between two instants ¢; and ¢, at which dx; (1) = dz; (t2) = 0 and
dqr (t1) = dqx (t2) = 0.
On this basis, the corresponding generalized Lagrange’s equations follows

d <a£> oL _ .

dt \9gx) g
d oLy oL _ .
dt (%bj 83:]-_ J

where L is the Lagrange indicator, given by
L=Wr+T"—W; -V

Once the system configuration is determined, the energy and coenergy functions could
be written in terms of the selected generalized coordinates. Accordingly the governing
equations could be obtained using Lagrange’s equations.

In practice, sometimes the piezoelectric materials are intensionally designed such that
they work in a uniaxial strain/stress status. That is to say the applied electric field and
external forces would only induce significant response in one direction, such as when de-
signing torsional [10] or bending [11] transducers. Sometimes the mass of the piezoelectric
materials can be neglected in comparison with the host structure. This often happens
when designing a sensor [2]. When the piezoelectric materials are manufactured into
bars, beams, rings or plates, for example in the applications of energy harvesting [12], the
simplicity of geometries also leads to assumptions of the electric and mechanical fields.
In all these situations, the full 3D constitutive and geometric equations can be simpli-
fied, leading to lumped parameter models or distributed models which can be analytically
solved. For more complex situations, FEM can be used. These modeling strategies will
be respectively discussed.

1.2.1 Lumped parameter models

The Lumped parameter approach simplifies the description of the behavior of spatially
distributed physical systems into a topology consisting of discrete entities. For piezoelec-
tric systems, this approach often leads to an approximative model with 2 DOFs, one for
the mechanical displacement while another for the electric charge (or voltage). The corre-
sponding model parameters, such as mass, damping and stiffness coefficients are obtained
by equivalence.

In some applications this kind of equivalence is straightforward. Consider the piezo-
electric stack transducer shown in Figure 1.4, if the inertia of the piezoelectric stack and
the stiffness of the proof mass are neglected, it leads to a Lumped Parameter Model

(e )= Lo 67 ()

writing
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where x is the mechanical displacement, V' the voltage and @) the charge. For the detailed
derivation please refer to [13]. With this rather simplified model one can understand many
basic concepts of piezoelectric transducers, such as intrinsic capacitance, OC/SC statuses,
electromechanical coupling factor and so on. In the work of Mokrani [13], this model is
used to explore the damping performance of a nonlinear circuits. Similar strategies and
2DOF equations were considered to analysis piezoelectric bimorphs [14, 15], a thickness-
stretch oscillator [16] and a torsional energy generator [10].

T M
T S
o Q Electrodes | ]
4 N
+ o—
p,qling_ direction 0 —
v
Transducer 5
i=92 = =
T f
(@) (b)

Figure 1.4: (a) Unidimensional spring-mass system. (b) Piezoelectric linear transducer
made of n identical elements.

For a more complex situation as illustrated in Figure 1.5a, when a piezoelectric trans-
ducer is integrated into a host structure, the governing equations [17] write

[033213% C;?sL] pr] " [0332233 C;?sR] LZ] " L»;Up] - [F(()t)]

where the SDOF model is used for both the host structure and piezoelectric transducer.
Owing to the external capacitance, non-diagonal terms appear in the mass and stiffness

co +c33 —c33d33

c33d33 Cps
C L+

matrices. The governing equations can be rewritten into a simpler form

|:m 0 :| |:x1:| [do 0 :| |:331:| |:Co + €33 + Csq —Csd :| |:x1:| B |:F(t):|
Lt |t =

0 mp| [%2 0 dsa| [Z2 —Csd Csd +C5] |22 0
where 1 = z and 29 = z + UpCpS(C;ggdgg)_l. This means that the electromechanical
system shown in Figure 1.5a can be represented by a pure mechanical model shown in
Figure 1.5b. The shunted R-L-C circuit is equivalent to a spring-mass-damper system and
the coupling mechanism is represented by a string linking the mass of the host structure
and the ‘electric’ mass. This reveals the underlying mechanism of piezoelectric effect and
the similarity between mechanical systems and electric systems. The equivalence allows
us to firstly design a mechanical system and then implement it by piezoelectric materials
and the shunted electric circuits. This idea is widely used for vibration control [18, 19],
and more detailed information will be given in sections 1.5.

Alternatively, it is also possible to represent a piezoelectric structure by a pure electric
replacement model, as shown in Figure 1.6. The mechanical mass, stiffness and damping
are respectively transformed into electric inductor, capacitor and resistor. Mechanical
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Figure 1.5: Lumped parameter models with 2 DOFs [17]: (a) Mechanical model with
piezoelectric element connected to external LRC-network; (b) Mechanical replacement
model.

Figure 1.6: Two electric replacement models for SDOF mechanical system coupled with
a SDOF piezoelectric system and an external circuit [16]: (a) represent piezoelectric
coupling as a transducer, so that the variables’ unit and value remain untransformed; (b)
merge the coupling mechanism into the mechanical impedance, the mechanical variables
are transformed into the equivalent electric variables.
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force and displacement are equivalent to electric voltage and charge. This model allows
one to implement an effective structural system with ease and can focus on the electric
design. This idea has been used by Petit et al. [20] to preliminarily design a damping
circuits, and Lossouarn et al. [21, 22] to design multi-mode dampers.

Piezoelectric patch

R

I

R-shunt RL-shunt

Elastic structure
IL

Ext. forcing

Figure 1.7: A general case for piezoelectric structure [23].

The mechanical parameters of the lumped parameter models can be intuitively ob-
tained by assumptions and simplifications of the displacement and geometries, as previ-
ously discussed. Also the parameters can come from a complex structure/substructure for
which we only interested in few modes. Consider a general case for piezoelectric structures
as shown in 1.7, a reduced order model can be obtained by expanding the displacement
field U (x,t) onto N vibration modes

The electromechanical model of the problem is thus described by

mechanical coupling
L. . 5 ! — .
Gi + 25wigi +wiq — xiV = F;,Vie {1..N} (1.3)
N
CV—Q—I—Z xi¢i =0 (1.4)
0 4 [
electric i=1 coupling

in which N modal equations corresponding to the balance law of mechanical forces, and
one electrical equation, associated with the balance of electric charges on the electrodes.
With this strategy, one can reduce a distributed model or a refined Finite element model
to a lumped parameter model. Generally, ¢;(x) is the ith open-circuit natural modal
shape [2, 23, 24]. Note that the N modal coordinates are still coupled with each other
through the electric voltage, which is different from the conventional modal reduction
schemes. This will be further discussed in the following sections.

For complex structural systems, the lumped parameter models can also be employed
[25-27]. For one sector in the bladed disc show in Figure 1.8, a 2DOF mechanical model
can be used to describe the blade and a 2DOF electromechanical model is used for the
disc coupled with piezoelectric patches. The overall governing equations are assembled
by the equations of substructures.
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Figure 1.8: Lumped parameter models for a bladed disc [25]: (a) real structure; (b)
lumped parameter model.

1.2.2 Distributed parameter models

In principle, every piezoelectric system is governed by a group of partial differential
equations (PDE) associated with specified boundary and initial conditions, forming a
distributed parameter model. The analytical results could contribute to a deep under-
standing of the dynamics to structures coupled with piezoelectric materials. It becomes
an active area of research since the early 1990s. At the beginning researchers focused
on the modeling of piezoelectric stack actuators and bending actuators. By stacking the
piezoelectric layers on top of one another, the cumulative volume of piezoceramics in-
creases the energy delivered to a load. On the other hand, bending actuators [28] consist
of multiple piezoceramics layers with greater length than the stacked type. Those layers
can either be double mounted or single ended as a cantilever, as shown in Figure 1.9.
When electric voltage is applied, one layer extends and the other contracts, shown in
Figure 1.10, resulting a bending motion.

B ==
Z

(c) Bimorph iny
parallel connection

7 2
//%// T 1 % T ]
0) g/ : — é s ,
Z g&gﬁgﬁé‘gﬂ on é (d) Triple layer bender

Figure 1.9: Illustrations of cantilever-mounted piezoelectric unimorph, bimorph, and
triple layer morph benders [28].

In 1990, Smits et al. [30] derived a 4 X 4 static constitutive matrix for piezoelectric
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Figure 1.10: Basic intensive parameters of bimorph actuators after applying electric field
[29].

bimorphs, relating the canonical conjugates: bending moment & tip rotation, transverse
force & tip displacement, uniform pressure & volume displacement and voltage & charge.
Later, Smits and Ballato [15] determined the dynamic constitutive equations of bimorphs.
The starting point is the general solution of the Euler-Bernoulli beam theory. It has been
shown that all elements in the constitutive matrix have a built-in resonance factor that
causes the bimorphs to resonate at the mechanical resonance frequencies. A rather com-
prehensive literature review of piezoelectric bending mode devices and their applications
has been given by Smits et al. [31]. For the triple layer bender, Wang et al. [28] sys-
tematically derived the constitutive equations. As a special case, if the thickness of the
central elastic layer is set to 0, the constitutive equations become those for bimorph ben-
der, and the results are consistent with those derived by Smits et al. [15]. Crawley et
al. [32] compares the uniform strain model, Euler-Bernoulli model and FEM model for
piezoelectric benders. Based on comparison with more detailed finite element models and
experiments, the Bernoulli-Euler bending model was judged to accurately predict exten-
sional and bending deformations, shown in Figure 1.11. The deviation in net displacement
from the simple Bernoulli-Euler model was judged to be significant for shorter, thicker
actuators and for thick beams, where the influence of material shear was greatest.
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Figure 1.11: Comparison of induced bending strains from analytical and finite element
models [32].
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As discussed, there exists an equivalent electric representation of a lumped parameter
model for the piezoelectric structures. Cho et al. [33] proposed an exact equivalent
electric circuit representation for the piezoelectric bimorph beam. The electric network
has one electrical and four mechanical ports. For an electromechanical system where other
mechanical or electrical components are attached to the bimorph, an equivalent electric
circuit of the system can be thus generated by connecting the electrically equivalent
impedances to the circuit according to the mechanical boundary conditions or external
mechanical components, as shown in Figure 1.12.
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(?) flows (U, 1) and efforts (F}, V) of the segmented (b) series connections between the segmented
bimorph and substrate arm. bimorph and the substrate arm.

Figure 1.12: Equivalent electric circuit of the segmented piezoelectric bimorph and its
substrate arm with clamped-free boundary conditions [33].

However, the shear deformation and the rotational inertia have not been taken into
account in the work of Cho et al. Ha et al. [34] proposed another equivalent electric
network through an eight-by-eight impedance matrix with thickness effects. This leads to
an eight-port overall equivalent circuit. The effects of shear and rotational inertia and the
circuit conditions on the resonance/ antiresonance frequencies for a wide range of thickness
ratios have been studied using the circuit. These equivalent circuits can facilitate further
analyses of the electromechanical system for probing the effects of connecting external
systems, or of making modifications to the bimorph.

Erturk and Inman [35] presented an exact electromechanical solution of cantilevered
piezoelectric beams with Euler—Bernoulli beam assumptions. In their work a piezoelectric
beam is governed by

82M(.7), t) + 82wrel(x7 t)

where
the electrode is covered from z; to zo
21 (2, ¢ Tds dé
Mz,t) = 2@ vy (Y ay - Do ay)

0x2 dz dx
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is the internal bending moment caused by both transverse deformation w,e and piezoelec-
tric voltage V. The targeted applications are energy harvesters for transverse vibrations.
Thus the dynamic behavior of the beam around certain natural modes is of interest. A
modal superposition strategy is employed where the electrode-free eigenfunctions are used
to form the coordinate transforming relation. The governing equation in the modal do-
main is similar to Equations (1.3) and (1.4). The same authors extended the analytical
solution is to bimorph configurations with series and parallel connections of piezoceramic
layers and experimentally validated [36]. This model allows us to conveniently analysis the
dynamic response, equivalent parameters around few interested modes. It is promising for
applications in energy harvesting and vibration control. Fau-Penella and Puig-Vidal [37]
presented an equivalent circuit for the modal-superposition models, shown in Fig 1.13.
This representation is more intuitive and general than the ones shown in Figure 1.12.
The modal electromechanical coupling coefficients are represented by a set of transform-
ers with different transforming ratios. It also shows that the structural ‘modal’ DOF's are
coupled with each other through the voltage.
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Figure 1.13: Complete equivalent electrical circuit for piezoelectric cantilever [37].

Moreover, studies can be found in the literature for stepped beams [38] and multilayer
bending actuators [39]. The analysis of cantilevered piezoelectric beam with a mass on
its top was studied in [1], and was extended to 2-mass case and validated experimentally
[40]. Tt has been shown that the piezoelectric layer with an applied voltage equivalent to
a distributed load proportional to second derivative of the width of the electrode. This
leads us to design the shape of the electrode so as to design a modal actuator/ sensor [2].

There are also extensive studies concerning 2D structures such as a plate couples with
piezoelectric materials. Benjeddou et al. [41] proposed an exact two-dimensional ana-
lytical solution for the free-vibration analysis of simply-supported piezoelectric adaptive
plates. Layerwise first-order shear deformation theory (FSDT) kinematics, and quadratic
non-uniform electric potential, are assumed in the study. They compared the results to
available (exact) three-dimensional elasticity and finite-element solutions, showing that
the results were the closest to the exact coupled three-dimensional ones. This model
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was extended by Deii and Benjeddou [42] to show the influence of the electric boundary
conditions, plate side-to-thickness ratio and piezoceramic lamina thickness and position
on the electromechanical coupling of both in-plane and thickness modes. Preumont et
al. [2] studied the equivalent loads created by a voltage applied to the piezoelectric patch
bonded to the plate. They found that the piezoelectric loads consist of an in-plane force
normal to the contour of the electrode, and a constant moment acting on the contour of
the electrode.

Concerning the beams and plates with piezoelectric materials and electric circuits,
another important analytical modeling strategy is proposed by Dell’Isola and co-authors
[43, 44]. Their approaches are not for general cases but for beam/ plates with dis-
tributed piezoelectric materials and with periodic electric interconnections, termed Piezo-
electromechanical (PEM) structures, as shown in Figures 1.14 and 1.15.

Electrical circuit

Figure 1.14: Illustration of a PEM beam [45].

Analog circuit

Piezoelectric actuators [ ﬁ

Figure 1.15: Illustration of a PEM plate [44].

One of the underlying ideas of their methods is the mechanical-electric analogies. The
periodic interconnection of the piezoelectric patches (see Figure 1.16 for some examples),
can be regarded as a finite difference approximation to the electric voltage field. The
electric network can then be directly replaced by the spatial differential operator. The
mechanical field is also treated by a homogenization process, leading to a distributed
model. This way the PEM structures can be modeled by two groups of PDE, one for the
mechanical field and another for the electric field. For instance, the PEM beam with the
(S,S)-Network [46] shown in Figure 1.16 is modeled by the following distributed equations
if the electric network and disconnected

UW(X,t) + C%U(X, t)=0
b
(X, 1) — 620D (X, ) — By (X, 8) = 0

where U is the transverse displacement and 1 is the electric flux-linkage (defined as
the time primitive of the electric potential). Once the network is connected to the
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piezoelectric patches, the governing equations of the mechanical and electric fields are
coupling together, leading to complex PDEs. Let us see another example concerning
plates. The free motion of the PEM plate with a membrane-like network [47] shown in
Figure 1.17 is model by

mechanical COI_Iupling
L——— | .
U4+ aAAv — yA¢p =0

O+ 086 — BAG + YAD + §7Av =0

electric coupling

where v is the out-of-plane displacement and ¢ the electric flux-linkage. With these
distributed models, the wave and modal characteristics can be calculated with ease. Their
specific applications will be presented in sections 1.5.
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Figure 1.16: Circuit schemes of the modular lumped electric networks [46].

Note that one main aim of PEM is to use a passive electric network to modify the
vibration and wave characteristics of the host structure. One can first design a electric
network and use the aforementioned methodologies to see what is the equivalent elastic
media of such a network and how it influences the structural system. Alternatively, one
can also first design the attached elastic media such that the desired characteristics can
be achieved. In this case we have to find an implementation of such elastic media by
means of electric networks [48].
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Figure 1.17: Electrical connection scheme for the PEM plate considered in [47].

1.2.3 Finite element models

Finite Element Method (FEM) is a well-developed numerical technique in common use
for finding approximate solution to boundary value problems. It uses variational methods
to minimize an error function and produce a stable solution. FEM encompasses all the
methods for connecting many simple element equations over many small subdomains,
named finite elements, to approximate a more complex equation over a larger domain. The
idea of using FEM to analysis piezoelectric systems started in early 1970s, and nowadays
many kinds of element with different shape (like shell, beam, rod and solid elements)
and order are proposed. A comprehensive review can be found in [49]. Elements with no
electric DOF and those are capable to capture the ‘induced voltage’ are of special interest.

One concern of the FEM is that the model dimension (number of DOFs) are enor-
mous if the geometric or material configurations are complex, especially in mid- and high
frequencies. Model reduction strategies are accordingly proposed. Lazarus et al. [50, 51]
proposed a reduced model in which the system’s electrical state is fully described by only
a couple of variables per piezoelectric patches, namely the electric charge contained in the
electrodes and the voltage between the electrodes. The reduction is achieved by a modal
truncation based on short-circuit natural modes. Collet and Cunefare [52] proposed a
modified Craig-Bampton condensation able to take into account the entire piezoelectric
coupling as far as it is accurately introduced in the basic model employed. Two additional
displacement fields are introduced to the basis: 1) A set of the dual displacement fields
adjoint to the piezoelectric applied forces computed with homogeneous connecting Dirich-
let condition; and 2) A set of fields that are the inner normal modes with homogeneous
Dirichlet connecting conditions, orthogonal to the piezoelectric applied forces. The model
was experimentally validated in their study.

With its advantages, FEM has already been used to many applications of piezoelectric
structures. Pagani Jr et al. [53] used a full FEM model to determine the optimal weighted
array of a piezoelectric modal filter and so does in [54]. Complex interconnection of patches
or material blocks are required in such application, which is very difficult to model by
analytical methods. Kim et al. [55] used a FEM model to find the best location for
piezoelectric patches in a plate with only one edge clamped, to achieve the best vibration
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control performance. Bareille et al. [56] used a FEM model to design a torsional actuator;
designs with different number of patches and different ways of locating the patches are
compared. Applications can also be seen for rotor-machinery blades or bladed discs
coupled with piezoelectric patches [57, 58].

1.2.4 Remarks

Knowing the governing equations is the starting point towards piezoelectric actuating,
sensing, energy harvesting, vibration control, wave filtering and so on. Choosing an ap-
propriate modeling strategy is a trade-off between efficiency and accuracy. In applications
for energy harvesting, if the task is to design/optimize the electric circuits, the lumped pa-
rameter models can be used. It is similar in applications for vibration reduction when only
one patch is used to control one mode. In applications for spatial sensing and actuating,
the distributed models are required. It is also the case for multi-mode vibration control
in beam-like or plate-like structures. The analogy between the mechanical properties and
electric elements are well studied in the literature, leading to pure mechanical and pure
electric representation of piezoelectric systems. These replacement models provide in-
sights into the mechanism to understand and utilize the piezoelectric effects. It underlies
the PEM beams and plates proposed for broadband vibration control and noise isolation.
With the increase of complexity, FEM becomes a reliable numerical tool. Reduced models
can be used to mitigate the issue regarding matrix size.

It is worth to note that each models has its own assumptions. Lumped parameter
models are valid only in low frequencies or around certain natural modes. Distributed
parameter models has assumptions on the geometrics and on the stress & strain. The
distributed models used for PEM structures rely on the homogenization on both mechan-
ical and electric fields. This makes the models only valid when the wavelength is much
smaller than the patch dimension. In FEM the element type and mesh density need to
be carefully chosen to control the discretization error.

1.3 Electromechanical coupling factors

1.3.1 Definitions

Piezoelectric effect is the corner stone of all the piezoelectric based smart structures. It
naturally comes into a question that how do we quantitatively describe the ‘strength’ of
the electromechanical coupling for a piezoelectric material. The criteria that can mea-
sure the ‘converting capability’ are termed Electromechanical Coupling Factors (EMCF).
Moreover, there are two scales regarding EMCF. The first on is the material scale.
EMCEF in this scale is used to describe the couping strength or converting capability of a
piezoelectric material. EMCF in this scale is directly related to the material parameters.
It allows one to choose an appropriate piezoelectric material before it is manufactured
into certain components. The second one is the structure scale. EMCF in this scale
is expected to include the coupling strength of the whole structure, taking into account
the geometrics and the locations of piezoelectric material, as well as the frequency and
structural deformations (see [59] for an example). It allows one to design or optimize a
smart structure.
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Summarizing earlier studies [60-63], the last IEEE standard on piezoelectric materials
and transducers [6] uses two EMCF, one for the material scale [61] and another for the
structure scale [60].

For the material scale, the internal energy in a piezoelectric material writes

1

U= [ U8} + (Y (D)) o

Introducing the constitutive equations (1.1) and (1.2), leading to
U=U.+2Uy + Uy (1.5)

where U, , Upn, Uq are the elastic energy, electric energy and mutual energy respectively.
Specifically, they are

U=y [ (T) (s51(1)) v
Un =3 [ (T (a2 v
Ua =5 [ (YT ETHEY) do
The EMCF kg defined in [61] writes
U2
@:%% (1.6)

and it is used in IEEE standard [6] for uniform electro-elastic states. For instance for a
‘13’ thickness stretch mode, where the only 77 and FEs are non-zero, it leads to

2
dis
T D

€33C11

only depended on the material parameters. Similarly, terms k§3, k52>1 etc. can also be
obtained in the similar manner. These terms are also called static coupling factors.
They are especially useful in actuating and sensing where the deformation of piezoelectric
materials can be assumed.

For a host structure coupled with a piezoelectric transducer, i.e. the structure scale,
the EMCF can be obtained at each natural modes [60], by

2 a

ki = rra (1.8)
where w, is the resonance frequency in the FRF of V/Q, and w, is the anti-resonance
frequency. In fact, w, corresponds to the open-circuit frequency of the mode and w, to
the short-circuit modal frequency [2]. Term kq is also called Modal Electromechanical
Coupling Factor (MEMCF) [23]. Equation (1.8) also gives a convenient way to experi-
mentally measure the WEMCEF and it is widely used in practice. The MEMCF can also
be calculated from a energy-based formula [64]

Uoc — Usc

k3 = (1.9)

Uoc
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where Ugc is the internal energy of the structure when the electrodes are open and Ugc
is the internal energy for short-circuit electrodes.

To understand the equivalence between Equations (1.9) and (1.8), Preumont [2]
provided an intuitive interpretation. Consider a longitudinal piezoelectric transducer
subjected to the following mechanical cycle: first, it is loaded with a force F with
short-circuited electrodes; the resulting extension is A = F/Ky. The stored energy
is W1 = F?/(2Ks.). At this point, if we disconnect the electrodes and the transfer is un-
loaded according to a path of slope Ko = Kg./(1 — k?), the stored energy now becomes
Wy = F%(1 — k?)/(2Ksc), leaving Wi — Ws stored in the transducer. The ratio between
the remaining stored energy and the initial stored energy is (W1 — Ws)/W7 = k2, which
is the MEMCEF.

Equations (1.8) and (1.9) are proposed for modes where the structure has finite extend.
For open structural structures, the coupling mechanism is associated to waves. Various
definitions can be found for different cases. Chen et al. [65] calculated EMCF by

‘/()c_‘/;c

k=
Vse

for Rayleigh-type surface acoustic waves in a semi-infinite with alternating piezoelectric
and non-piezoelectric super-lattices, where V,. and V4. are the group velocity in open-
circuit and short-circuit situation respectively. Fan et al. [66] used the Green’s function
method to calculate the electromechanical coupling coefficient of a Lamb wave in a multi-
layered plate. To the writer’s knowledge, no research efforts has been devoted to evaluate
the EMCEF for the guided waves in 1D and 2D uniform or periodic structures.

AN AN

(a) (b)

Figure 1.18: Charge distribution of a cantilever beam with uniform piezoelectric materials
in the electrode-free situation (a) the first mode; (b) the third mode.

1.3.2 Optimization and enhancements

In practice a larger electromechanical coupling factor is always desired, corresponding to
an optimization problem. MEMCF can be used as a criterion for the design of geometric
parameters. To illustrate this, let us consider an electrode-free piezoelectric cantilever
beam. The first mode produces the same kind of charge on the surface of piezoelectric
materials. When a uniform electrode is attached, no generated charge is canceled as
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shown in Figure 1.18a, leading to a good coupling. However, the third mode generates
different kind of charges on the surface shown in Figure 1.18b. If a uniform electrode
is still used, charge with different signs would cancel each other out, leading to a very
low coupling factor. There are several ways to improve the MEMCF by modifying the
geometric parameters.

First, one can use shaped electrodes over a uniform piezoelectric material. Vasques
[67] suggested the using of a shaped electrode to optimize the MEMCEF for certain mode
while filtering out the other modes, leading to a spatial modal filter. This filter can be
used to sense, actuate or dampen the modal vibration without influencing other modes.
Vasques demonstrated that the optimized shape function for the width S(x) should be
proportional to the second order spatial derivation of the modal shape ¢, namely

2o (x
S(z) ddq;(Q )

and the optimized results are illustrated in Figure 1.19. Note that the width is required
to be vary in a continuous way, this may causes manufacturing difficulties in practice.

Uniform

Z(t)
Piezoelectric y R F(t),w(t)
transducer A0 (*) EL

2h,
’ 2h,
I

7

1st mode

Figure 1.19: Schematics for uniform and modal electrode configurations [67].

Alternatively, one can still use a number of simple rectangular piezoelectric patches
which are easy to be purchased. The aim is to find proper locations for them so as to
achieve acceptable MEMCEF for the targeted mode. Ducarne et al. [68] optimized the
placement, length and thickness of piezoelectric patches for two different configurations of
beam, shown in Figure 1.20. Note that the length of the patches and width are in many
cases chosen in priori to minimize the added mass of the patches, or simply because the
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area covered by the patches has to be limited. In such cases additional constrains have
to be considered.

Symmetric beam Asymmetric beam

Mode 1—k, =0.320 Mode 1—k;=0.236
/ /
Mode 2—k,=0.322 Mode 2—k;=0.222
w w/
Mode 2—k,=0.256 Mode 2—k;=0.152
w
Mode 3—k;=0.304 Mode 3—k3=0.190

Mode 3—k3=0.306 Mode 3—ky=0.166

Mode 3—ky=0.222 Mode 3—k3=0.123
W

Figure 1.20: Deformed shapes of the optimal configurations for an aluminum/PIC151
beam [68].

We can see that the optimal geometric parameters for MEMCEF vary dramatically
for different modes. To have a piezoelectric structure with good MEMCF for multiple
modes, Li et al. [59] designed a cantilever beam with distributed electrodes and a electric
network whose connection is frequency-dependent, shown in Figure 1.21. It is based
on the fact that the MEMCF for a single mode is determined by two factors: material-
structure coupling factor and modal position coupling function. The former is only related
to material properties and structure dimensions and the latter is related to position of
the electrode. Accordingly, they first distributed the electrodes into several small pieces
and design the connection patten of the electrodes for each mode. Then a ‘current flow’
network is used to decide the ‘weight’ of the connection pattens at a given frequency. The
strategy ensures electrodes with same kind of charge always being connected therefore
achieves best MEMCF for multiple modes.

Once the geometric parameters are decided, a semi-active circuit termed Negative Ca-
pacitance (NC) can be used to further enhanced the coupling strength. Its applications
can be seen in extensive studies [69-72]. Commonly a NC is implemented by the syn-
thesis electrical circuit shown in Figure 1.22 leading to Q¢ /Ve = —Cy,. The equivalent
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Figure 1.21: The layout of electrodes and electric networks to optimize MEMCF for the

first three modes of a cantilever beam [59].
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Figure 1.22: Synthesis electrical circuit as a NC commonly used in the literature.

capacitance can be determined by
Ry
Cheg = =—C
neg R2
where R, Ry and C are the resistances and capacitance shown in the figure; C, is the
absolute value of the negative capacitance. Commonly there are two configurations in the
literature to introduce one NC into the shunt circuit, namely the parallel and the series
configurations, shown in Figure 1.23. According to the work of Marneffe and Preumont
[73], for the parallel configuration, the OC natural frequency we. for the transducer be-

comes 9
Xi

Cp —Cy
while the SC natural frequency remains unchanged, namely @2, = ws.. This leads to the
change of MEMCEF for each mode

A

_ 2
woc - woc +



26 Chapter 1. Literature review

according to Equation (1.8), where k is MEMCF without NC and k is MEMCF with
parallel NC. If C}, < C},, an increase of the MEMCEF can be achieved.

—Cy

< |1 ® — external loads

A +
PPttt []Z T = []Z

IPiezoelectric external Piezoelectric
patch loads patch ]
- o
(a) (b)

Figure 1.23: Tllustration of a piezoelectric transducer connected to a negative in series (a)
and in parallel (b).

For the series configuration, the SC natural frequency @s. for the transducer becomes

2
~2 2 X;

Wee = Wae — o
SC SC
Cu —Cp

while the OC natural frequency remains unchanged, namely @2, = wee. This also induce
a change of MEMCF for each mode

2 Cn 12

G- (1-kH)C,
according to Equation (1.8), where k is MEMCF with series NC. If (1—k2)C,, < Cy, < Cp,
an increase of the MEMCF can also be achieved.

A comparison between series and parallel NC can be found in [73] and the stability
study reveals that the series configuration is better than the parallel one. Moreover, the
series configuration increases the equivalent capacitance (in contrast to the parallel case),
which further reduces the optimal value the inductance in a RL shunt and thus makes it
easier to implement electronically.
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Figure 1.24: The new configuration of using two NCs proposed by Berardengo et al. [74].

Note that a parallel NC only changes the OC natural frequencies, while a series NC
only changes the SC natural frequencies. A new configuration of using two NCs has been
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proposed by Berardengo et al. [74], shown in Figure 1.24. This changes at the same
time the short and open circuit resonance frequencies of the electromechanical system.
Consequently a better MEMCF and a wider stability zone can be achieved.

1.4 Analysis methods for wave characteristics

Wave propagation characteristics underlie the vibration and acoustic performance of struc-
tures. First, we can use wave characteristics to predict the vibration and acoustic per-
formances of structures [75]. Theoretically the wave-based methods can give the same
answer to a same structural dynamic problem as the mode-based methods, and this equiv-
alence is termed ‘wave-mode duality’ in the literature [76-78]. The wave-based methods
can analyze open structural systems and can also remarkably reduce the dimension of
problems. These features are especially useful in mid- and high frequencies. Secondly,
another important application is the structural health monitoring [79, 80], the wave-based
methods involve high frequency excitation and thereby can detect minute damages unlike
low-frequency vibration technique. Moreover, one can achieve some unusual dynamic fea-
tures by designing the wave characteristics, such as low modal density, negative refraction
and negative group velocity. These are related to the rising research field concerning the
periodic structures or the so-called ‘phononic structures’ [81].

With regard to these applications, the obtaining of the wave characteristics is essential.
This section gives a brief review of the existing tools that yield wave characteristics of a
given structure. Generally each of these methods is based on the governing equations of
the whole or part of the structure. By the approaches that have been mentioned in section
1.2, the piezoelectric materials can be included in the governing equations. In this regard,
here we only presents the methods in a general sense. Whether a method is applicable
for certain piezoelectric structures depend on whether the piezoelectric structures can fit
into the governing equations that underlies the method.

1.4.1 Analytical methods

Simple structures, for example a uniform rod and a uniform beam, are amenable to exact
analysis. For such waveguides the analytical solutions are available for the wavenumber,
the group velocity, and wave shapes [82]. As an example, for a thin beam where the
Euler-Bernoulli theory holds, the governing equation for free vibration is given in form

2 4
0%u(x,t) n EIa u(z,t)

pA ot? Ozt

=0

where p, E, A, I are density, young’s modulus, area and second moment of area respec-
tively. Assuming time- and space-harmonic motion, the displacement is written as

’LL(.%‘, t) — e—jkm—i—jwt
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where j = v/—1, k is the wavenumber and w the angular frequency. Substituting to the
governing equation, it yields four wave numbers

ki = +vwC
ko = —/wC
ks = +jv/wC
ka = —jy/wC

where C' = (pA/(EI ))1/ 4 The positive real and negative imaginary wavenumbers are
associated with the positive-going waves so that the waves propagate in the positive
direction of the beam and the other wavenumbers are associated with the negative-going
waves. So kj represents the positive-going propagating wave; ko represents the negative-
going propagating wave; ks represents the negative-going evanescent wave; k4 represents
the positive-going evanescent wave. Note each wavenumber is a function of the frequency,
this is termed dispersion equation/curves. Once the dispersion equations are obtained
the group velocity dw/0k and phase velocity w/k can be calculated.

A dispersion curve describes the relationship between the ‘frequency’ in space (k) and
in time (w). But the deformation and stress caused by the passage of the wave is not
given by dispersion relations. To express that we need to calculate the ‘wave modes’
or ‘wave shapes’. According to Euler-Bernoulli theory, the rotational deformation 6(x),
internal bending moment m(z) and internal transverse force f(x) can be known once the
displacement u(z) is given. Assembling them in a vector, we have

U 1

6 | ou/0x

f | | EIdu/oz?
m — E10*ud2?

By considering each wavenumber we obtain the corresponding wave shapes, ¢1, ¢2, @3,
¢4. The wave numbers k1234 and waveshapes ¢34 in combine is termed the ‘wave
basis’ [83]. The wave basis is the starting point of all the wave-based applications.
There are many useful properties of the wave basis [84, 85]. For instance, using the
wave shapes we can transform the physical state-vector S into the wave domain, as

4
- Z‘Wi = da (1.10)
=0

S o=

In physical domain, the state-vector at two different locations, say = x¢ and x = x1,
are related by a transfer matrix, namely

S(mo) = TS(.Tl)

It is not difficult to check that T is a full matrix. However, by transforming the S into a,
it can be proved [83] that

a(zo) = Aa(zy) (1.11)
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where A is a diagonal matrix only links to the wavenumbers and the distance between
two points xg — 1. More importantly, we have

A=3'Td (1.12)

These conclusions, shown in Equations (1.11) and (1.12), are very important as we will
see later.

Note that during the analysis towards wave basis, we do not consider any boundary
conditions, which means the waves we are searching for can be understood as the free
deformations that can happen in the unbounded media. This does not mean that wave
basis can only be used for infinite structures. For a finite structure, a boundary condition
only constrains the relationship between the injected wave and the reflected waves and
such a relation can be calculated by the wave basis. Let us still use the Euler-Bernoulli
beam as an example, if a free boundary condition is imposed at x = xo, namely f(z9) =0
and m(zo) = 0. Introducing these constrains to Equation 1.10, leading to

( ax(xo) > _ R( az(xo) )

aq(zo) az(zo)

where R is a 2 x 2 reflection matrix. This way the finite boundary conditions have been
considered and with that natural modes [78] and forced response [84] can be calculated.

The approach described above can be applied to other cases where the equation of
motion can be analytically expressed, such as plate and stiffened plate [86].

1 0 1 3 4
q; qr q qr a; qQ q
n=-2 n=-1 E n=0 E n=1 n=2 n=3
q g
f, fr

Figure 1.25: Ilustration of a uniform waveguide and the state vector of a unit cell [87].

1.4.2 Transfer matrix method

Equations (1.11) and (1.12) actually indicate that the wave characteristics are related
to the eigendecomposition of transfer matrix. So if the homogeneous problem of the
governing equations is difficult to search, one can try to first express the transfer relation
between two state vectors at the ends of one segment of the structure, as

()= (i) 419

where T is the transfer matrix. For uniform structures, the segment length A can be
arbitrary (Figure 1.25) while for the periodic structures (Figure 1.26), a smallest repetitive
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Figure 1.26: Illustration of a periodic waveguide. The choosing of the unit cell is not
unique: (al) 1st choice of unit cell (a2) Periodic structure considering al as unit cell.
(b1) 2nd choice of unit cell (b2) Same periodic structure as a2 considering bl as unit cell
[88].

segment should be used. Then a 1D periodic condition derived from the Bloch theory is

applied
dn+1 _ dn
< £ )_)\( fn > (114

leading to the following eigenvalue problem

(T — AI) < ‘3: ) =0 (1.15)

The eigenvalue is linking to the wavenumber A = e~7*2 and the associated eigenvector is
the corresponding waveshape.

This method has been applied to analyze the wave characteristics of periodic Timo-
shenko beam [89], nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam [90]
and periodic structures with local resonators [91, 92]. It should be noted that the transfer
matrix method can suffer from numerical ill-conditioning when solutions are to be found
numerically [75, 93].

Similarly, one can also started from the equation of motion using the receptance matrix

[94] i.e. reciprocal of the dynamic stiffness matrix, formed by
( fr, ) _ [OéLL OCLR:| ( qL )
fr QRL ORR] \ 4R
Applying the 1D periodic periodic condition, it leads to the polynomial eigenvalue problem

{)\204LR(LL)) — )\[aLL(w) + aRR(w)] + OéRL(UJ)}fL =0

The receptance method hs been used to analyze waves in periodic structures for mono-
coupled systems [95] and for multi-coupled systems [96] where the complex conjugate
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wavenumbers are described. Many general conclusions have been drawn in their studies.
The receptance method has also been used to analyze a periodic structure with local
resonance [97] as well.

1.4.3 Wave and finite element method

The Wave and Finite Element Method (WFEM) is an alternative to investigate wave
motion in general complicated waveguides. Free wave propagation in one-, two- and
three-dimensions can be analyzed for periodic structures using an FE model of a single
periodic section. The method starts from modeling a short section of a waveguide using
conventional FEs such that the equation of motion is given in terms of a discrete finite
number of DOFs, for time-harmonic motion it gives the form of dynamic stiffness ma-
trix. The transfer matrix and receptance matrix can be formed using elements of the
dynamic stiffness matrix by eliminating the internal DOFs. Then still applying a period-
icity condition (1.14) gives the eigenvalue problem for 1D structures. The eigenvalues and
eigenvectors represent the free wave propagation characteristics such as the wavenumbers
and wave modes.

However, it is not necessary for WFEM to use same eigenvalue schemes as the transfer
matrix method or the receptance method. A series of eigenvalue schemes have been
proposed, the main idea is the use generalized eigenvalue problem to replace the standard
eigenvalue problem (1.15). For example the zhong’s method [98] and the scheme used by
[24]. The main aim is to improve the numerical accuracy and reduce the ill-conditioning.
Using FEM to model a unit cell allows WFEM to be used for periodic structures with
complex geometric and material configurations. But a drawback is that the DOFs may
be enormous, inducing numerical errors and slowing the calculation. To address this,
reduced models for the unit cells can be used. The reduced model can be built from
modes of the unit cells [99-101] or waves of other frequencies [102-104], or both [105].
This thesis concerns the WFE method for 1D waveguides and it is specifically reviewed
in chapter 2.

For 2D periodic structures as illustrated in Figure 1.27, waves can propagate in two
directions x and y, represented by two wavenumbers ky and ky. The periodic conditions

write
Q2 = Axq1
a3 = A\yq1
Qs = AAyq1
qr = AxqL
qr = A\yqB
and

fL+ A+ A s+ A Tqu =0
fi, + 2\ 'ar =0
f5+ Ay 'qr =0
Considering them when solving the homogeneous problem of the unit cell, the wavenum-

bers and waveshapes can be obtained. The unknown variables are ky, ky and w, one can
fix a frequency and one of the wavenumber (say ky) and search for the other wavenumber
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Figure 1.27: Illustration of a 2D periodic waveguide and a unit cell [101].

ky, termed the ‘inverse form’. Alternatively one can fix both wavenumbers and search-
ing for the propagating frequencies, termed the ‘direct form’. Different forms leads to
different way to present the results. A typical results obtained from the inverse form is
shown in Figure 1.28 which is similar to the 1D case. Results of the direct form are often
presented by the phase constant surfaces as shown in Figure 1.29.

For simple waveguides, Mace et al. [106] showed free wave propagation in a rod, a
beam and a plate strip with simply-supported edges using the WFE method. They also
presented the free wave propagation in a layered sandwich beam. Applications of the WFE
method to more complicated waveguides are reviewed. Houillon et al. [107] analysed free
wave propagation in thin-walled structures in which an approach of evaluating the same
wave modes at two different discretised frequencies is proposed. Mencik and Ichchou [108]
investigated free wave propagation in a fluid-filled pipe considering acoustical-structural
coupling. They also predicted the coupling power between two different waveguides using
the WFE method [109]. This work was latter extended by Huang et al. [110-112] by
considering piezoelectric elements between two waveguides. Free wave propagation in a
fluid-filled pipe was also presented by Bocquillet et al [113]. They formulated an eigenvalue
problem using elements of the transfer matrix and numerical solutions were found with
initial estimates.
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Figure 1.28: Tllustration of results presentation for the inverse form [85].
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Figure 1.29: Illustration of results presentation for the direct form [105].

1.4.4 Artificial boundary conditions

All the previously mentioned methods require the analyzed structures or substructures
to be periodic or uniform. Sometimes the analysis of complex non-periodic structures
in a unbounded situation is required, such as to analyze a building’s reaction when an
earthquake wave is coming [114]. In such a situation, the earth can be regarded as in-
finitely large, and the waves can transmit through the interface between the building and
the earth. This is also useful in structural vibration analysis at mid and high frequencies
because the boundaries are no longer ‘ideal’ at such frequencies so the energy-exchange be-



34 Chapter 1. Literature review

tween near-field and far-field should be taken into account [82]. To simulate this ‘infinite’
boundary condition. there are many techniques such as Boundary Element Method [115],
Infinite Element Method [116] and Artificial Boundary Conditions (ABC) [114, 117-119].
Among them the ABC is most convenient to be introduced into FE model of the nearfield.
It is also considered in the thesis as a reference.

The general ideal of ABC is to firstly model the near-field using conventional FEM
and leave all boundaries free, then introduce certain constrain equations on the boundary
nodes so as to simulate the interaction of the far field which is not modeled in FEM.
The ABC has two major branches: the transmission boundary [114, 118] and the elastic-
viscous boundary [117-119].

Transmission boundary simulate the behavior of wave propagating out of the near-
field by artificially constrains the displacement and velocity of the boundary nodes using
the historic response data of near nodes, the 2nd-order transmission boundary shown in
Figure 1.30 writes

U(:Cb, t+ At) = QU(.%'b - CgAt, t) — U(:L'b - QCgAt, t— At)

where Cy is the group velocity. Elastic-viscous ABC simulates the behavior of far filed
by representing the stress-displacement and stress-velocity relation with a set of dampers
and spring in parallel, as shown in Figure 1.31. For instance, if the farfield is a uniform
rod, the equivalent transfer function for the ABC writes

H, - f(@, 1) — jwA/Ep

u(p, t)

where A is the cross-section area, p the mass density and E the Young’s modulus. The
derivation of elastic-viscous ABC for rods and beams are given in Appendix C.

/" Artificial Boundary Condition |

|

|
FE model for the near-field : Ca At Ca A1
1
|

Figure 1.30: Schematic of the 2nd-order transmission boundary used in 1-D problem.

A comparison between these two kinds of ABC has been reported by Zhao [118], it is
shown that the elastic-viscous type is more stable and accurate. For transmission ABC, it
suffering stability issues, and to conquer it an extra damping should be introduced to the
near filed. Here two questions rise: 1) the introduced damping would affect the simulation
accuracy and 2) the value of introduced damping lacks a decided rule. Moreover, when
dispersive wave happens, the parameter of wave speed should be approximated. New
methods like Dirichlet-to-Neumann (DtN) ABC [117] seem to be a good direction solving
this problem, but by now there is no ABC that is suitable and precise for all kind of
situations.
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Figure 1.31: Schematic of elastic-viscous ABC used in 2-D problem.

1.4.5 Remarks

Considering the complexity of engineering practice, WFEM seems to be a good choice for
the prediction of wave basis, but the numerical issues should be resolved and strategies
to reduce the size of matrices are necessary. Another interesting direction might be using
WFEM as a substructure technique to model a built-up structure having (1) both periodic
and non-periodic parts [110-112] or (2) multiple periodic parts [120-122].

To analyze free-wave characteristics along a given direction (angle) for a 2D periodic
structure, the WFEM leads to a transcendental eigenvalue problem, which cannot be
solved by conventional eigenvalue searching approaches [123]. Alternatively, treatment
of harmonic wave propagation through the setting up of a quadratic eigenvalue problem
has been considered for both 1D models [124] and multi-dimensional models [85]. The
advantages of the quadratic eigenvalue problem route are twofold: (1) it easily enables
the incorporation of frequency dependency in the material properties and (2) it readily
provides the wave solution for both spatially propagating and spatially decaying modes.
However, some of the required matrices in these methods can not be directly obtained from
the conventional FEM. That may increase the complexity and difficulty of the analyzing
process.

1.5 Piezoelectric strategies for vibration control

The application of piezoelectric-based structure for vibration control can be dated back
to 1980s when Forward [125] carried out a preliminary experimental demonstration of
using external electronic circuits to dampen mechanical vibrations in optical systems.
In that work both passive and active strategies were considered. In active vibration
control, piezoelectric transducers mounted in the host structure are performed as sensors
or actuators. A feedback loop is established with certain control laws so as to apply
active forces according to the sensor signal, as shown in Figure 1.32. Active control
has advantages such as high performance, modal selective and adaptive. Piezoelectric-
based active vibration strategies has been applied in many engineering cases, such as a
civil structure [126], a aircraft vertical tail [127] and a aeronautic blade suffering flutter
[128]. Comprehensive literature reviews regarding active vibration control can be found
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in [129, 130]. It can also be applied in combine with viscoelastic damping treatments to
enhance the performance, leading to hybrid active-passive damping treatments [131].
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Figure 1.32: Illustration of the active vibration and noise control [132].

One concern of the active control strategies is the requirements of external equipments
such as power sources, amplifiers and AC/DC converters and computers. On the other
hand, passive vibration control strategies directly connect dissipative electric circuits to
the transducers. Part of the electric energy converted from the mechanical field is then
dissipated, leading to structural damping. This strategy does not need external power
and generally the circuits are much simpler than the active strategies.

However, as it will be shown hereafter, passive strategies may not adaptive to the
environment changes, and they have difficulties to achieve a broadband performance.
External energy sources can be introduced to drive some electric circuits with special
features that are impossible to be achieved by passive circuits. Generally the external
energy is used to maintain a negative capacitance or status shifting circuits, rather than
driving actuators in active control methods. So these approaches are termed semi-active
strategies. Generally the energy consumption in a semi-active approach is relatively low,
so it is feasible to be powered by an energy-harvesting circuit generating energy from the
same host structure. This leads to self-powered vibration control systems. Though there
is no ‘external’ energy source in such a system, we still classify self-powered ones into the
semi-active category.

In this section we focus the review on passive and semi-active strategies for they are
more relevant to the thesis subject.

1.5.1 Passive strategies for single mode

A systematic research concerning the vibration control using passive circuits can be found
in 1990s by Hagood and Flotow [18]. Two shunting circuits, namely the resistive shunt
(a resistor alone) and the resonance shunt (RL series, see Figure 1.33) were discussed nu-
merically and experimentally with a cantilever beam. They found that both two circuits
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can be used to reduce the vibration of a single mode. The resistive shunt is equivalent to
a viscoelastic damping and there exists an optimal value for the resistor. The resonance
shunt can be tuned to the structural mode, performing as a lightweight mechanical vibra-
tion absorber. The best performances of the resonance shunt is better than the resistive
shunt while they are both determined by the MEMCEF.
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Figure 1.33: Illustration of some single-mode shunts.

Other configuration of circuits, such as the RL parallel circuit proposed by Wu [133]
and the RL-C parallel circuit [134, 135] can also reduce the vibration of a single mode,
shown in Figure 1.33. The additional capacitor in RL-C parallel circuit allows the reduc-
tion of the optimal value of the inductance by a factor 1+ «, where « is the ratio between
the external capacity and the capacity of the piezoelectric transducer. Caruso [136] stud-
ied the optimal values of the electric components belonging to three shunts shown in
Figure 1.33 by pole placement technique, taking into account the inherent structural
damping. The analysis showed that the RL series shunt circuit is the most effective one,
shown in Figure 1.34. The RL parallel shunt circuit performs very close to the RL series
circuit. But the optimal value of the tuning parameter for the RL parallel circuit does
not depend on the mechanical inherent damping and the piezoelectric coupling coefficient,
implying an easier tuning procedure. For the RL—C parallel circuit the value of the exter-
nal capacitance cannot be chosen too large in order to have an effective damping system,
and this implies a limitation on the reduction of the tuning inductance achievable with
this circuit.

New results regarding these simple circuits can still be seen recently, Thomas et al. [23]
found closed-form expressions for the optimization of the resistive and RL series circuits.
The vibration reduction brought by the shunt is measured with two indicators: an added
damping factor for the free vibration case and a gain reduction in the forced vibration
case. It is shown (Figure 1.35) that those indicators depend only on two parameters: the
MEMCEF and the structural damping. A new turning strategy for RL series circuit based
on the exact solutions is proposed by Soltani et al. [137]. Their solution imposes exactly
two equal peaks in the receptance function that are associated with the smallest possible
vibration amplitude of the host structure. Results show that the performance is superior
to all previous tuning rules for resonant circuit, but the improvement may be marginal
for small electromechanical coupling parameters.

The basic idea of the RL series, RL parallel and RL-C parallel shunts is to implement
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Figure 1.34: Dimensionless amplitude relevant to the three shunts optimized according
to the transfer function optimization technique [136].
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Figure 1.35: Optimal electrical parameter values for the tuned resistive and resonant
shunt and associated performances [23] where k; is the MEMCEF.

an Tuned Mass Damper (TMD), as shown in Figure 1.6. However, enhanced performance
of vibration control can be achieved by putting another reaction mass in series with the
existing TMD [138]. The total mass of a series TMD can be much smaller than a classic
TMD to achieve the same effectiveness of vibration suppression but at the cost of several
times of larger motion stroke. Zou and Cui [19] used a resonance piezoelectric shunt to
implement the secondary oscillator in such double-mass series TMD, as shown in Figure
1.36. By tuning both the resonances of the mechanical TMD and secondary piezoelectric
TMD close to that of the host structure, an enhanced performance is achieved as shown
in Figure 1.37. Moreover, the electromechanical series TMD does not suffer from large
motion stroke as in the mechanical double-mass series TMD.

Interestingly, a series TMD implemented by piezoelectric shunts for vibration reduc-
tion is similar to a generator for energy harvesting [1], as it is shown in Figure 1.38.
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Figure 1.36: Series TMD with electromagnetic resonant shunt [19].
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Figure 1.37: The frequency responses of electromagnetic shunt series TMD for Taipei
101 Tower (solid) in comparison with double-mass TMD (dashed-dotted), classic TMD
(dash), and system without TMD (dot), where all parameters are optimized to minimize
the H2 norm from external force to the displacement of the primary system [19].

Suppose we have a host structure, if the target is to reduce the vibration, according the
idea of series TMD, we can design a mechanical structure (which is a beam in the figure)
to implement the first TMD and integrate piezoelectric subsystem to realize the secondary
TMD. On the other hand for the energy harvesting, the beam is designed to create a large
strain on the piezoelectric patches when the host structure vibrates. The electric circuit
is then designed to store the converted energy rather than dissipate them. These also
require the beam and the electric circuit to be tuned to the interested frequency. That is
to say, the series TMD shown in Figure 1.36 can also be used as a energy harvester just
by changing the dissipative circuit into energy storage one [19].
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Figure 1.38: The similarity between a series TMD and an energy harvester, both realized
by piezoelectric strategies.

To store the electric energy, it is better to convert the alternating current (AC) to
the direct current (DC). A typical electric circuit for that is the bridge rectifier shown
in Figure 1.38, which is an arrangement of four diodes in a bridge circuit configuration.
Warkentin and Hagood [139] firstly examined the use of such nonlinear shunting circuit
to attain effective damping. Lesieutre et al. [140] addresses the damping associated with
a harvester that consists of a full-bridge rectifier, a filter capacitor, a switching DC-DC
step-down converter, and a battery. They show that the best induced loss factor depends
only on the MEMCF. Specifically they use a system with MEMCF of 26% to yield a
modal loss factor of 2.2%. According to Figure 1.35, this performance is better than
the resistive shunt where fiid(%%) = 1.69% but worse than the resonance circuit where
&R4(26%) = 13%.

Energy harvesting itself is another important research branch concerning the applica-
tion of piezoelectric materials. The efficiency of piezoelectric-based energy harvesting has
been proved in comparison with other electrostatic generators [141]. It has been brought
on by the modern advances to wireless technology and low-power electronics such as mi-
croelectromechanical systems [12]. Relating to vibration control, energy harvesting can
be used as a nonlinear passive strategy as introduced. It can also be used to drive the
low-power semi-active circuits as it will be presented in section 1.5.3.

1.5.2 Passive strategies for multiple modes

At mid- and high frequencies, the modal density and overlap of a structure are high [142].
At a given frequency band there might be several modes, their contributions to the vi-
bration can not be effectively reduced by a single resistive or resonance circuit. Electric
shunting circuit with multiple tuning frequencies were proposed, where each electric res-
onant is turned to a structural modal frequency. Hollkamp [143] directly shunted several
resonance circuits in parallel to the piezoelectric patch, as shown in Figure 1.39. The
reduction of vibration was experimentally observed in multiple modes.

However, tuning of the inductor in one branch in such circuit would interfere with
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Figure 1.39: Multi-mode vibration resonator circuits proposed by Hollkamp [143].

or caused de-tuning of the other branches, or even the entire shunt circuit. That is
why the design of circuit in [143] is not achieved by individually tuning each branch but
by directly optimizing the vibration behavior of on many unknown electric parameters.
Wu [144] reported a circuit consists of a ‘current blocker’ at each branch. The current
blocker is comprising of one parallel capacitor-inductor circuit that is placed in series with
each parallel RL circuit. Depending on the number of structural modes to be damped
simultaneously, a different number of blocker circuits are needed for each branch, as shown
in Figure 1.40 for a 3 modes case. This allows one to separately design each branch by
single-mode rules and integrate them together to get a multi-mode performance. Behrens
and Moheimani [145] further simplified the circuits such that less electric elements are
required, as shown in Figure 1.41. In stead of preventing the current from flowing at
a specific frequency, they allow the current to flow, by using a series capacitor-inductor
circuit. One current flow component is needed for each branch regardless of the number
of modes to be damped. Note that Figure 1.41 is similar with Figure 1.39, so maybe
we can remark that Behrens and Moheimani [145] actually proposed a way to design the
original circuit used by Hollkamp [143].
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Figure 1.40: Multi-mode vibration resonator circuits proposed by Wu [144] for 3 modes:
using current blockers plus parallel RL resonators.

As discussed in the previous section, for a mode with low MEMCF even if a electric
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Figure 1.41: Multi-mode vibration resonator circuits proposed by Behrens and Moheimani
[145]: using current-flow branches plus series RL resonator.

circuit with multi-mode damping ability is shunted, the vibration around the modal fre-
quencies could not be significantly reduced. So it is also important to attain reasonable
MEMCEF for multiple modes so as to achieve significant broadband damping performance.
This can be done by the geometric designs shown in Section 1.3.2. Alternatively, other
criteria can be found in the literature to obtain the best design for multi-mode vibration
control. Kim er al. [55] used two piezoelectric patches for multi-mode control of a plate
and the criterion is to maximize the modal voltages associated with the considered modes.
Ip and Tse [146] also optimized the spatial orientation of PZT patches to control a plate
structure. The criterion in their study is to optimize the modal displacement induced by
the voltage applied on the patch. Giorgio et al. [147] propose a strategy for controlling
n structural modes by n piezoelectric transducers shunted with a multi-terminal electric
network, as shown in Figure 1.42a. By introducing a proper transformation of electric
coordinates, a one to one correspondence between the modal mechanical and new electric
DOF is approximately attained. Further, the distribution of the piezoelectric transducers
is improved to maximize the damping performance. In their work a double clamped beam
and a fully clamped plate were developed to validate the technique and the multi-mode
vibration control performance is achieved, as shown in Figure 1.42b.

In the work of [55, 59, 146, 147], the distribution patten for the piezoelectric materials,
the electrodes and the geometric parameters are determined by optimization processes.
Then a multi-mode electric circuit is connected to the terminals so as to dissipate the
structural vibration. These two steps (geometric and electric design) are directly related
to the modes chosen to be reduced. For different modes the final configuration might be
rather different. The concept of Piezoelectric electromechanical (PEM) structure enables
one to tune all the modes at once [45, 148, 149] with a preselected configuration. A PEM
structure comprises of periodically distributed piezoelectric patches interconnected by a
periodic electric network. Examples of PEM structures can be seen in Figures 1.15 and
1.17 for a PEM plate and Figure 1.14 and 1.16 for PEM beams. The electric network
is designed to be resonant at all the structural characteristic frequencies and so that its
modal shapes may piezoelectrically interact with those of the host structure. These design
specifications allow one to control simultaneously all the modes, dispensing with the use
of either active elements or heavy inductors. The synergic behavior of the piezoelectric
patches leads to a very high perfomance in terms of energy transduction efficiency over a
frequency bandwidth in principle infinite.
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Figure 1.42: The distributed piezoelectric strategy proposed by Giorgio et al. [147]: (a)
optimizing five patches for five modes; (b) comparison between mobility of the controlled
and uncontrolled beam: the first five modes considered.

Dell’Isola and co-authors are among the major contributors are of PEM structures. In
2001, they [47] introduced the PEM plate shown in Figures 1.14 and 1.16. Such a PEM
plate is modeled as a coupled system of the Kirchhoff-Love plate and a membrane. It
is proven that a criterion exists assuring electromechanical coupling of by creating self-
resonance between the membrane modes and plate modes. This criterion allows for the
determination of the net-impedances maximizing the electromechanical energy exchange.
The modal shapes are shown in Figure 1.43, in a fully clamped case. The coincidence of
the electric (membrane) and mechanical (plate) modes happens not only in frequencies but
also in spatial distributions. In 2002, they [48] showed a another methodology to design
a PEM structure, new circuital analogs for the uniformly damped elastica and Kirch-
hoff-Love plate are found. In 2004 they [150] experimentally validated the effectiveness
of a PEM beam prototype obtained by interconnecting distributed piezoelectric elements
either by RL impedances (RL network), or R impedances (R network). They showed
that the PEM beams have smaller optimal inductance compared to classical piezoelectric
shunting, and the optimal inductance can be further reduced by increasing the number of
piezoelectric elements. Improved modeling and electric designing strategies are proposed
in [44, 151]. The performance of different circuit topologies for the interconnection of the
piezoelectric transducers were compared in [46].

Two homogenization processes are performed during the modeling of PEM, converting
1) the periodic piezoelectric structure into a uniform media and 2) the discrete electric
network to a continuous media. These all depend on the long wave-length assumption
hence only valid for lower order modes. In the work of Lossouarn et al. for rods [21] and
beams [22] , the network is kept discrete to get closer to real applications with a finite
number of piezoelectric patches. Two novel models based on a transfer matrix formulation
are presented. Both take into account a discrete electrical network but the first model
considers a discrete mechanical medium while the second keeps the continuity of the
beam. The first experimental validation of a multi-modal damping strategy involving a
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Figure 1.43: Modal basis for the clamped PEM plate [47], ‘m’ refers to the mechanical
modes and ‘e’ to the electric (membrane) modes.
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Figure 1.44: Mechanical frequency response functions [22]. The dotted line denotes the
experiment with open-circuited patches, the dashed line denotes the transfer matrix model
with a tuned network, and the solid line denotes the experiment with a tuned network.

beam /rod coupled to its discrete electrical analogue is presented, as shown in Figure 1.44.

In some engineering applications the host structure itself is periodic or near-periodic,
and the most apparent examples are components used in rotor machineries such as bladed
discs and circular shells, shown in Figure 1.45. Fan and Li [27] proposed two kinds of
piezoelectric network which construct a structure-electric-structure energy transfer path,
shown in Figure 1.46. The interaction forces are expected to perform like active force
among the network-connected structures when they are excited. Modal and response
analysis were conducted theoretically showing the network-connection introduces: 1) an
additional resonance frequency point and 2) an additional part in response proportion
to the average excitation over all components. Once the external forces applied on each
substructure are fixed, the key point of this idea is to construct a piezoelectric network
with appropriate Parameter study (the form of connection, the dimensions and content of
network as well as the value of electric components, etc.) that makes the additional term
of excitation caused by network connection and the external forces cancel each other out.
It is illustrated in Figure 1.47 that this technique is excitation sensitive. The optimized
performance is better than that of pure passive piezoelectric shunts. This idea was then
extended by Li et al [26] considering the mechanical coupling between periodic sectors.
The obtained result shows a parallel network is effective for nodal-diameter vibration
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while a series network is effective for the zero-nodal-diameter vibration.

Figure 1.45: An example of periodic structures originally existing in engineering applica-
tions: bladed disc [152].
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Figure 1.46: Piezoelectric networks proposed by Ref [26, 27]: (a) parallel network; (b)
series network.

However, in a more realistic situation there will be slight differences between sub-
structures, hereafter referred to as mistuning, such as the blade-to-blade differences in
geometry and material properties due to manufacturing tolerances or in-service degra-
dations. The structure then becomes nearly periodic or called mistuned and vibration
localization could occur under certain circumstances [154, 155]. This phenomenon could
lead to large vibration in certain regions of the structure and could be very harmful to
the system. The occurrence of localization may also significantly reduce the effectiveness
of structural modeling, and henceforth deteriorate design/control performance.

Tang and Wang [156] have demonstrated the use of piezoelectric networks for the vi-
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Figure 1.47: Major results obtained in Ref [27]: (a) amplitude of the 1st component
at resonance frequency based on Parallel Network under varying amplitude and phase of
average excitation; and (b) The response curve of short-circuit, open-circuit and optimized
piezoelectric shunts of single, non-connected component, compared with the optimized
curves of piezoelectric networks.
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Figure 1.48: Research highlights of Ref [153]: (a) the proposed piezoelectric network and
individual circuits; (b) maximum response of the blade-model beams versus frequency for
without circuit case, with traditional absorber case, and with the new optimal network
case.

bration reduction of mistuned periodic structures where piezoelectric materials distribute
onto both the blade and disk. Identical inductive piezoelectric circuits are applied to all
substructures to absorb the vibration energy, and the shunt circuits are connected to each
other with capacitive elements. With this design, the otherwise localized vibration energy
can be transferred into electrical form and stored in the inductors and piezoelectric ca-
pacitors, and this part of energy can propagate throughout the integral system by way of
the strong electrical coupling. A parameter study and experimental validation are further
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presented by Yu et al. [69]. Using a more convening dynamic model of the bladed disc,
the same authors [153] extended the electric design. They showed that (in Figure 1.48)
as compared to the traditional absorber, the optimal network is much more effective in
suppressing multiple harmonics simultaneously, and as a result, the maximum responses
are much lower throughout the frequency range.

Multiple network on a same bladed disc has recently been proposed [152]. By organiz-
ing 4n piezoelectric transducers (PZT patches) in two parallel loops of 2n patches each,
the demand on the inductors may be reduced by 4n? as compared to independent loops,
allowing the use of passive components.

1.5.3 Semi-active strategies

One of the most commonly considered semi-active strategies is the negative capacitance
circuit. As presented in Section 1.3.2, it can enhance the MEMCF and consequently
improve the performance of a existing passive circuit. By using NC one should also pay
attention to its stabilities [157, 158].
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Figure 1.49: Circuit diagram of a synthetic inductor.

Another popular semi-active strategy is the synthesis circuit used to analogy a in-
ductor. As presented, many passive strategies involve large inductances so as to tune
the circuits or filter the current flow. Yet the required inductance are often very large,
making them very difficult be realized in practice. As reported by Hagood et al. [18], the
optimal inductance is around 142H to tune a PZT patch at 33 Hz. The RL-C series circuit
can reduce the requirement of inductance but worsen the performance as well. By using
the Gyrator circuits shown in Figure 1.49, a circuit behaves like a inductor can be real-
ized. The circuit requires two operational amplifiers per inductor, creating an inductance
L = R1R3R5/Ry x C. By changing the variable resistor Ry, various inductance values
could be obtained. However, the gyrator circuit is not a pure inductor, it creates a resis-
tive component which is not desirable for designing the optimal resistance in the shunt
branch circuit [134]. This circuit has been applied in many studies [71, 134, 136, 152] as
an implementation of large inductances.

The control strategies proposed by Tang et al. [159], Morgan et al. [160], Davis et
al. [161] and Hollkamp et al. [162] can also be regarded as semi-active ones. But the
most important branch of semi-active strategies might be the ones based on switching
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circuit. Clark [163] proposed the State Switch Damping to open the electrode when the
structure starts moving away from its equilibrium position and to close when the structure
starts moving in the opposite direction. The shifting of piezoelectric transducer from
the OC status (high-stiffness) to the SC status (low-stiffness) creates a variable-stiffness.
Consequently, energy stored in the actuator from the structure while the actuator is in
its high-stiffness state, and the energy is dissipated (not returned to the structure) by
switching the actuator to its low-stiffness state. The Further work of the same author
[164] show that a better performance can be achieved if switching from OC to a resistive
shunts. In comparison with the tuned R-L shunt, the state-switched approach only works
better for off-resonance (particularly low-frequency) frequencies, and is less sensitive to
changes in system parameters.
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Figure 1.50: Illustrations of the circuits for SSDS, SSDI, SSDNC techniques.

Alternatively, the Synchronized Switch Damping on Short circuit (SSDS) technique
was firstly proposed Richard et al. [165] in 1999, as illustrated in Figure 1.50. Different
from the State Switch Damping, they proposed to close the electrodes during a very short
period of time because shortest time for the SC status led to the best damping efficiency.
They show that the best results are obtained for a threshold corresponding to a maximum
and a minimum of the considered signal (displacement or voltage). The damping efficiency
appears to be twice what is obtained with pure resistive damping and is equivalent to
what is achievable with a tuned inductor damper. It can work at any frequency without
the need for large inductor especially for low frequency applications. The principle of SSD
consists of keeping the sign of the electric charge in the piezoelectric transducer opposed
to the sign of velocity (see Figure 1.51), producing an effect equivalent to dry friction
[166].

Richard et al. [166] proposed to close the circuit on an inductor, termed Synchronized
Switch Damping on Inductor (SSDI), as illustrated in Figure 1.50. The inductor forms a
resonator with the intrinsic capacitance of the piezoelectric material. Hence opening the
circuit after half-circle of the electric resonance leads to a voltage which is 90 degrees out of
phase with the motion, enhancing the damping mechanism shown in Figure 1.52. Usually
the electric oscillating frequency is at least ten times higher than those of the mechanical
modes of interest to ensure the generated charge remains approximately constant during
switching process [168]. This makes the inductors for SSDI can be orders of magnitude
smaller than those of RL shunt. In [166] an inductor of 80 mH was used, making a
remarkable increase of the damping performance than the SSDS. The comparison studied
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Figure 1.51: The piezovoltage (in Volts, thick line) and the deflection of beam (in mm,
thin line) are plotted as a function of time. (a) Open circuit case and (b) the proposed
switching configuration [165].
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Figure 1.52: Illustration of the voltage waveforms of the SSDI technique [167].

conducted by Corr and Clark [169] confirms the superior damping performance of SSDI,
shown in Figure 1.53. The work also indicated that SSDI has a lower sensitivity to
environmental changes than the resonant shunt technique, and it is easier to be tuned.

In the study of Petit [20], it is shown that the performance of SSDI and SSDS is
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Figure 1.53: Experimental comparison of resonant shunting, state switching, and pulse
switching for a clamped—clamped aluminum beam [169].
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Figure 1.54: Illustration of the SSDV technique.

strongly dependent to the MEMCF. Ji et al. [170] proposed to replace the short-circuit
to a negative capacitor, illustrated in Figure 1.50, termed Synchronized Switch Damping
on Negative Capacitance (SSDNC). However, in the absence of an inductor, the high
current resulting from closing the switch produces saturations of the synthetic negative
capacitor. Petit [20] show that switching the electrodes on to a voltage source (SSDV,
illustrated in Figure 1.54) can compensate the low MEMCF by artificially increasing the
piezoelements voltage and thus reinforcing the damping. However when the mechanical
energy is dissipated, the transducer continues to recharge and inject energy into the
system. An improvement to SSDV was proposed by Badel et al. [171], which consisted
of adapting the voltage source to the amplitude of vibration; this technique is rather
complex.

SSD-based techniques can also be used to enhance the series piezoelectric TMD [19]
(Figure 1.37) as proposed by Lallart et al. [172]. According to the dual function of the
series TMD, it can both be used to dampen the structure or to generate energy for other

systems. Due to the low power requirement feature, it is promising to design self-powered
vibration control systems [173-176].
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The aforementioned work have fully demonstrated the use of SSD as effective damping
techniques for single mode vibration control. However, it has also been proven that
switching at each extremum of the reference signal (piezovoltage/displacement) is not
an optimal algorithm of SSD techniques in multimodal vibration control case, since its
principle only focuses on the highest detectable mode [177].

Many strategies aiming at improving the multi-modal damping effectiveness of the SSD
techniques are proposed [177-179]. Most of the enhanced strategies are based on threshold
detections, below which the control process is disabled. Moreover, these threshold criteria
are obtained by time domain signal process according to the history of dynamical response
in a given time window. For instance Corr and Clark [177] suggested that the switch
timing is determined according to the rate of energy change. When the product of the
applied voltage and the sum of the voltage rates for the controlled modes is less than
zero, the shunt switch will be shut for removing the energy from mechanical system.
Cherif et al. [180] used another control algorithm for triggering the switch named SSDI
max. In this method, both the modal displacement extrema and the sign of voltage
and its derivative are considered. If the voltage is positive and its derivative is negative
when maximum modal displacement occurs, the switch is triggered immediately, or it
should wait until this condition is fulfilled. Symmetric algorithm is used for the minimum
modal displacement detection. By implementing this algorithm, control voltage for a
targeted mode is artificially increased using the electric energy obtained from higher
modes. Improvement in the damping for targeted mode was numerically demonstrated
under bimodal and pulse excitations.

1.5.4 Remarks

The context of multi-mode vibration control is often related to mid- and high frequencies,
therefore the desired strategies should also be insensitive with the change of modal fre-
quencies induced by the changing of boundary conditions etc. In this regard, the passive
strategies are facing challenges because the designed locations for piezoelectric patches
may no longer be the best place for certain high-order mode under a small perturbation of
the boundary conditions. PEM plates may be a promising solution but the implementa-
tion requires an electric analogy of the mechanical fields; this may be difficult for complex
structures.

Concerning the semi-active strategies, multi-mode vibration control still remains an
open field for SSD techniques. Various studies suggest the use of observers to estimate
the modes and thus optimize the synchronization with a multi-mode structure. However,
these model-based solutions may bring more complexity to the system, which makes their
physical implementation even more complex than active techniques. Also the transfer and
subsequent dissipation of the mechanical energy into electrical form is distributed on the
frequency of the vibration and on its odd harmonics. This phenomenon can be harmful
if the resonance frequency of one of these harmonics is in coincidence with a structural
resonant mode [20].






CHAPTER 2
Model reduction schemes for the
wave and finite element method
using free modes of the unit cell

Abstract: In this chapter we introduce free-interface Component Modal Synthesis (CMS)
methods into WFEM to reduce the unit cell model. The aim is to accelerate the calcu-
lation while maintain the accuracy. Several free-interface CMS methods with different
approximations of the residual effects are implemented and compared. Adapting to the
reduced methods, a new eigenvalue scheme based on the compliance matrix is proposed.
We show that it is equivalent to the existing eigenvalue formulas. A periodic open thin-
wall structure is considered as an application where both free-wave characteristics and
forced response are computed. Aspects such as accuracy, efficiency and convergence are
discussed and compared with the Craig-Bampton’s fix-interface CMS method. Among
the implemented models, the minimum model size is achieved by the exact CMS method,
which only requires the modes below the maximum analyzing frequency, reducing the
model size from 4416 to 16. The most numerically efficient model for WFEM is built by
MacNeal’s CMS method, where the CPU time of free-wave analysis can be reduced by
97%.
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2.1 Introduction

The center of WFEM is the wave basis formed by the eigenvalues and eigenvectors of the
transfer matrix of one unit cell. However, there are several numerical issues to obtain the
wave basis as reported by Waki et al.[93]. One of these is the ill-conditioning of the stan-
dard eigenvalue scheme of the transfer matrix, especially when the Degree-of-Freedoms
(DOFs) of the unit cell are enormous. Generalized eigenvalue schemes with better nu-
merical stability are proposed, such as the one replacing force terms by displacement ones
[93] or Zhong’s method [98]. As a second issue, a big proportion of the waves are strong
evanescent waves whose eigenvalues are either very large or small. Negative- and positive-
going evanescent waves might not exactly coherent due to the numerical dispersion, even
though the generalized eigenvalue schemes are used. This would induce significant errors
in to the forced response calculation [181]. One idea is to use a reduced wave basis includ-
ing all the propagating waves and some less-decaying waves to express the cross-section
deformation, due to the fact that strong evanescent waves do not contribute much to the
overall response. Left eigenvectors of the transfer matrix should be calculated to avoid
the inverting of the reduced basis. This idea is used and validated in several applications
[24, 102, 104, 182].

Since a FEM unit cell model is used, a refined mesh is necessary to have good pre-
diction of the wave characteristics, as reported by Droz et al. [87]. However, the use of
large-size FEM model would worsen the aforementioned numerical issues. All these eigen-
value schemes are based on the condensed Dynamic Stiffness Matrix (DSM), obtained by
eliminating all the inner DOFs of the unit cell. A large sparse matrix corresponding to
the inner DOF's is inverted, and it may induce numerical errors into the condensed DSM
which can not be reduced by using an appropriate eigenvalue scheme. Moreover, the
condense DSM is frequency-dependent, which means the inverse of a big sparse matrix
is required at each frequency. This could dramatically increase the computational cost
when a large FE model is used. On the other hand, the size of the eigenvalue problem
is directly related to the number of DOFs at the boundaries. The use of a large FE
model with more boundary DOFs will also increase the computational cost for solving
the eigenvalue problem.

To accelerate the calculation of wave basis and mitigate the numerical error, reduced
models have been proposed. In the literature, there are two main strategies to reduce the
unit cell model for WFEM. Here we label them as wave-based [87, 102] and mode-based
models [24, 88, 101]. The wave-based strategy uses a set of wave shapes selected at some
preselected frequencies to express the cross-section deformation at the present frequency.
Not all the waves are kept and the selection of waves depends on the application. Duhamel
et al. [102] employed this strategy to compute the forced response, so the evanescent
waves should be selected and kept. [87] used similar idea to accelerate the calculation of
dispersion curves for propagating waves, hence only near-orthogonal propagating waves at
those frequencies are kept. By this strategy, the DOF's at the boundaries can be reduced
and so as the size of eigenvalue problem. To start this method, one needs to compute
the wave solutions at the preselected frequencies using the full FE unit cell model, which
increases the implementation difficulty.

Alternatively for the mode-based strategy, the unit cell model is reconstructed by
CMS methods before the WFEM procedure. Zhou et al. [88] apply the Craig-Bampton’s
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CMS method [183] to the unit cell model, where the DOFs at left and right boundaries
are kept in physical domain and all the inner DOF's are reduced to modal domain. This
way the inner DOFs are reduced and the calculation of the condensed DSM is highly
accepted. Later, the same authors applied the method into two dimensional structures
and experimentally validated the results [100, 101]. Fan et al. [24] extended this method
to structures with local dampers or piezoelectric shunts and applied to the periodic sub-
structures in an open built-up structural system. The accuracy of this strategy is ensured
by the principle of modal superposition and can be improved by retain more modes. It
is intuitive to combine Craig-Bampton’s method with WFEM because the boundaries
DOFs at which the periodic boundary conditions apply are kept in the physical domain.
Nonetheless, this convenience also constrains the size of the reduced model. Additionally,
for uniform structures whose unit cell does not necessarily have inner DOF's, this method
is not applicable. It remains a question whether free-interface CMS methods can be ap-
plied, where all the DOFs are transformed into modal domain. If applicable, it has the
potential to be applied for uniform structures and to obtain a smaller reduced model for
periodic structures. Besides, it is easier to include experimental data into the reduced
model.

In general, we can summarize that in WFEM, there are two time-consuming tasks
repetitively calculated at each frequency:

1. The inverse of a sparse matrix, whose size equals to the size of inner DOFs.

2. The solutions of a generalized eigenvalue problem, whose size equals to the size of
boundary DOFs.

As discussed, the wave-based strategy reduces the size of eigenvalue problem, while the
mode-based strategy reduces the size of matrix to be inverted. They both accelerate
the calculation, but in different stages of the WFEM calculation. The former is more
applicable for uniform structures with complex cross-section profile while the latter is
more suitable for periodic structures with a lot of inner DOFs. It is feasible to combine
these two strategies to analyze structures with numerous boundary and inner DOFs, as
it is shown by [105]. For most of the applications, using either strategy can achieve a
satisfying acceleration.

In this chapter, we explore the use of the free-interface CMS methods with the WFEM
as alternatives. The basic idea of free-interface CMS methods is to use low-oder free modes
plus residual effects to approximate the compliance matrix. Adapting to that, a new
eigenvalue scheme based on the force vector is proposed (section 2.3.3), and the results can
be easily recovered to the eigen-solutions of the transfer matrix. Free-interface methods
proposed by Hou [184], MacNeal [185], Rubin [186] and Qiu et al. [187] are considered
and implemented (section 2.3.1 and 2.3.2). They have different order of accuracy for the
residual effects from zero order to infinite order. As references, the full WFEM (section
2.2.1) and WFEM with Craig-Bampton’s method (section 2.2.2) are also implemented.
A periodic thin-wall structure with complex wave characteristics is considered as the
application (section 2.4). Comparison are made among the free-wave results obtained
by the implemented methods to illustrate the efficiency, convergence and accuracy issues
(section 2.5.1). For the forced response analysis, the accuracy on the strong evanescent
waves and their influences are discussed (section 2.5.2).
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2.2 The framework of the wave and finite element method

For the sake of clarity, we briefly review the WFEM for the free wave and forced response
analysis. Two models of the unit cell are presented: 1) full finite element model [107,
182] and 2) the reduced model based on Craig-Bampton’s CMS method [88]. A unit
cell is the smallest repetitive substructure of the periodic structure, as shown in Figure
2.1. Obtaining the finite element description of a single unit cell is the starting point of
WFEM. Imposing the periodic boundary conditions derived from the Bloch theorem, the
homogeneous problem in the periodic structure leads to an eigenvalue problem, whose
scheme can be formulated in many different ways. The solutions give wavenumbers and
associated wave shapes at each frequency, revealing how free waves can travel in the
structure. Additionally, the obtained left and right eigenvectors define the wave basis [85].
The wave basis has many useful properties which enable itself to diagonalize the transfer
matrix by a reduced set of left and right eigenvectors [122, 188]. The forced response of
the structure subject to external forces can then be obtained by wave decomposition and
superposition [93, 182].

CELL i+1

CELL i-1

Figure 2.1: Illustration of the unit cells in a periodic structure.

2.2.1 WFEM with full FE model of the unit cell

In the context of free-wave analysis, external loads are not considered. Isolating a unit
cell from the periodic structure and the discrete governing equations can be obtained by
existing FE tools:

dL qarL qarL fr,
M| gr | +C| gr | +K| ar | = fr (2.1)
dr ar ar 0

where q is the displacement vector; f is the internal force vector; a superimposed dot
denotes derivative with respect to time; M, C and K refer to the mass, damping and
stiffness matrices respectively. Subscripts L, R and I respectively denote the left-side,
right-side and internal DOFs as illustrated in Figure 2.1. In the context of harmonic
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motions, the dynamic equations of a unit cell at frequency w are given by
Dq= (-w’M +jwC+K)q=f (2.2)

where D is the dynamic stiffness matrix.
According to the Bloch theorem, when a free wave travels in the periodic structure,
the following conditions should be satisfied:

dr = Aqr, (2.3)

fr = —Af (2.4)

where A = e 7% describes the amplitude and phase changes when the wave travels from
the left side to the right side of a unit cell. k is the wavenumber and A is the length of
the unit cell. The minus sign appears in Equation (2.4) is induced by the equilibrium of
the internal forces.

The objective of the free wave analysis is to find deformation vector q associated
with a wavenumber k at frequency w to satisfy Equations (2.1), (2.3) and (2.4). Two
strategies are available in the literature. The first one is to fix a frequency w, and search
for all the k and q, termed the ‘direct form’ [75]. Alternatively, it is also possible to fix
a wavenumber k, and search for all w and q, termed the ‘inverse form’ [99]. The inverse
form is convenient to calculate the propagating waves and it is often applied on two-
dimensional structures [101]. The direct form can yield both propagating and evanescent
waves, and it is obligatory when the next step is a forced response analysis [106]. It is
more frequently used when analyzing one dimensional structures [88, 107, 122, 182, 188].

To have a coherent context, only the direct form is described here. Eliminating all the
internal DOFs qp from Equation (2.1) at frequency w, the condensed dynamic stiffness
matrix of the unit cell writes

[DLL DLR:| ( qar ) _ < fr, ) (2.5)
Dri. Dgrr| \ ar fr
where ~ ~ ~
DiL DLR:| |:DLL DLR] [DLI] = ~
= | x ~ — | = D D D 2.6
[DRL Drr Dri. Dgrr Dg| U D Dir] (2:6)

Substituting condition (2.3) into Equation (2.5) to eliminate f;, and fr, and considering
Equation (2.4), it comes to the eigenvalue problem

<[—§RL —DIRR] - [DILL D?JJ) ( 2; > =0 (2.7)

Equation (2.7) provides a better conditioned way to calculate the eigenvalues of the
transfer matrix

(T — AI) ( ‘35 ) =0 (2.8)

where L L
T = [ _DLRDLEI Dii 1] (2.9)
—Dgr + DrrD gD —DrrDij
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is the transfer matrix. It links the displacement and force at the left and right boundaries

(f&):T(?ﬁ) (2.10)

However, the eigenvector given by Equation (2.7) is in the form of ( (;qu )\qﬁqT )T. By the
statement

¢t = Drr¢g + ADLR®q (2.11)

included in Equation (2.5), the eigenvector of Equation (2.7) can be post-processed into

the form ¢ = ( ¢:f gb;F )T which is also the eigenvector of the transfer matrix T asso-
ciated with the same eigenvalue. The eigenvector ¢ corresponds to a wave shape that
exists in the structure at the given frequency, where ¢ is the nodal displacement and ¢s
the internal forces at the cell interface under the passage of the wave.

Overall 2N eigenvalues can be found, by solving Equation (2.8) or (2.7). The eigen-
values appear in pairs of (A, 1/)), each pair representing a positive- and a negative- going
wave along the propagating direction. This is caused by the fact that D and D are
symmetric (Hermitian) matrices [84]. If there is no damping mechanism, which means
T € R2VX2N " an eigenvalue A is either a complex number with [A| = 1 or a real number
greater or lower than 1. Therefore the corresponding wavenumber k is purely real or
imaginary, associated with a propagating or an evanescent wave respectively. If damping
mechanism is presented, namely T € C?V*2N | the eigenvalues can be complex numbers
and wavenumbers k are also complex numbers and all these waves are decaying. The
positive waves are those for which || < 1, namely the amplitude decrease along the prop-
agative direction. For the waves satisfying |\| = 1, the positive going ones are those with
a positive-going power flow, namely R(jwe - ¢¢) > 0. These discussions concerning the
distinguishing of waves can be summarized as

— propagating waves: |\| = 1, namely 3(k) =0

e positive-going: R(jwad, - ¢r) > 0, namely R(k) > 0
e negative-going: N(jweq - ¢r) < 0, namely R(k) < 0
— oscillating-decaying or evanescent waves: |A| # 1, namely (k) # 0
e positive-going: |A| < 1, namely (k) <0
e negative-going: || > 1, namely (k) > 0

Assembling eigenvectors by columns, we have matrix & :

o O
o= 9 “a 2.12
[fbf* @;} (212)
where _
®g = | bq1 Pg2 - %N}
g =] %41 Pq2 ¢§,N}
@j:_@l Oy o P_N]
or =| ¢ ¢ o i |
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and superscript + and — refer to the data belonging to positive and negative going waves
respectively.

To establish the eigen-decomposition of matrix T, left eigenvectors of T are required.
If a row vector ( ég 0? ) is the left eigenvector obtained from Equation (2.7), then it
is also the left eigenvector of T corresponding to the same eigenvalue. We also assemble
the left eigenvectors by rows to form a matrix

+ of
0= [ 8‘1 gi_} (2.13)
q

where the left eigenvector in the ¢th row has the same eigenvalue as the right eigenvector
in the ith column in matrix ®. At a given frequency, matrices ®, © and A define the
wave basis and they have the following orthogonal relationships

+
TP =A = [ A

_A]: ’ by (2.14)

when eigenvectors are normalized by
0P =1 (2.15)

It is worth to note that Equations (2.14) and (2.15) still hold when a reduced set of
associated left and right eigenvectors are kept in matrices © and ®. This property allows
us to use a reduced set of waves in the forced response analysis, and to avoid the searching
of the pseudo inverse of matrix ®.

2.2.2 WFEM with Craig-Bampton modal synthesis method

Searching for the inverse of Dy; in Equation (2.6) is time-consuming if the internal DOFs
of the unit cell are numerous. The computational time becomes an issue especially when
repetitive calculations are required with several groups of parameters to design a periodic
structure. To accelerate the calculation, a reduced model of the unit cell is proposed by
Zhou et al. [88, 101] based on the Craig-Bampton’s method.

First perform a modal analysis on the unit cell with all the boundary DOF's fixed.
Imposing q;, = qr = 0, the ith natural frequency w; and modal shape 1; can be obtained
by solving the eigenvalue problem

(—w?MH + KH) ;=0 (2.16)

Assembling modal shapes by columns, we obtain matrix ¥ = [ v P2 e Y ] Only
the first [, modes are used to form ¥, and I, < (w—2N) where w is the overall number
of DOF's of the unit cell and 2V is the number of DOFs at the boundaries. The criterion
used to select the retained modes is

wi < Wi, 1 € [1,2, .0y lrm) (2.17)

where wy, is the upper bound of the preselected frequencies to be analyzed. Factor oy
controls the number of the retained modes therefore affects the accuracy of the reduced
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model as well. To have good prediction of the dispersion curves associated with the
propagating waves, oy = 3 is suggested and numerically validated by Zhou et al. [88, 101].
A coordinate transformation is then defined

qL I 0 0 qL qL
ar = 0 I 0 ar :B aRr (2.18)
ar -K'Kn, -K;'Kig ¥ y y

Introducing this transformation into (2.1) and (2.2), and left-multiply matrix B™ at both
sides of the equations, the dynamic stiffness matrix D* writes

D* = —w’BTMB + jwuBTCB + BTKB (2.19)

Matrix D* has a much smaller size than D in Equation (2.2). Then eliminating the modal
coordinates y by introducing Equation (2.19) into (2.6) will also lead to Equation (2.5).
But the calculation in Equation (2.6) is significantly accelerated because

D = diag(—w? + 2j&wiw + w?) (2.20)
is a diagonal matrix due to the orthogonal relations
UTCp¥ = diag (26iw;)
MU =1
UTK VU = diag (w?)
where j is the imaginary unit and ¢; is the modal damping coefficient. One only needs to

construct the reduced stiffness, mass and damping matrices in Equation (2.19) once, then
the the free wave analysis at each frequency can be performed on the reduced model.

2.2.3 Forced response analysis using wave amplitudes

The forced response analysis based on WFEM can be understood as an accelerated trans-
fer matrix method. Owing to the orthogonal properties of the wave basis, calculating
the transferring of state vectors in wave domain is much quicker than in physical domain.
Once the wave basis (®, © and A) is obtained (by full unit cell model or any other reduced
models), the process of forced response remains the same.

The displacements and forces at a cross-section (say cross-section 0) between two unit
cells can be represented by a linear combination of the wave shapes

(1)-+(3)

where p™ and p~ are the amplitudes of the positive-going and negative-going waves at this
cross-section. Similarly, at the cross-section across ¢ unit cells in the positive direction,

(1)-o(r)

If no external forces applied in-between, we have

( ‘fl > =T < ‘3{? ) (2.23)

there is
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Introducing Equations (2.22) and (2.21) to (2.23), and using the orthogonal relations
(2.14) and (2.15), it can be proved that

(£)-+(2)

This is actually the transfer relation in wave domain.

Practically, it is not necessary to consider the full wave basis of 2N waves, because
the strong evanescent waves might have very minor contribution to the overall response
[189]. On the contrary, including all the waves even caused significant numerical errors
[182]. The 2l,y, kept waves (I, positive-going and [, negative-going) are the propagating
and less decaying ones, namely the ones satisfying

Acr < [A[ < 1/Acr (2.25)

where Acg is the factor which controls the maximum and minimum propagating constant
of the retained waves.

Left Right
Excitation cross-section Boundary
Boundary
. d+ N 2- «——at A C- -—
e — d- — gt ple—a- — C+.—>
| | 1 H HHHHLI a
X = _Anl number of cells: nl X=0 number of cells: n2 X = Anz

Figure 2.2: Ilustration of the wave amplitudes in a periodic structure.

Suppose we have a finite periodic structure subject to excitation at one cross-section
as shown in Figure 2.2. We can set the origin point to the excitation cross-section, and
it has ny unit cells at the negative-x side and no at the positive-x side. At the excitation
cross-section, the boundary condition writes

fleft — frignt + fex =0 (2.26)
Qleft — Aright = 0 (227)

where subscript ‘left’ (respectively ‘right’) denotes the cross-section with infinitely
small distance to the left (respectively right) side of the excitation cross-section. The
wave amplitudes are g™ and g~ associated with the ‘left’ cross-section and a™ and a~
for the ‘right’ one, as illustrated in Figure 2.2. Introducing Equation (2.21) to Equation
(2.27) and applying the orthogonal relation shown in (2.15), the force boundary condition
can be written in terms of wave amplitudes

(Zt)—(?):@(&) (2.28)

This also indicates that the wave amplitudes are not continuous at the cross-section where
external forces apply.
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Tracing the traveling of waves at the left part, we have

dt = (TA) gt (2.29)
d=(ANT"g (2.30)

and
dt =Rpd (2.31)

where Ry, is the reflection matrix at the left boundary of the structure, and d is the wave
amplitude at the left boundary. Introducing Equations (2.29) and (2.30) into (2.31) to
eliminate d, the wave amplitudes g™ and g~ are related by

g" =("A)"RL(A) g (2.32)

Note that [(*A)=™] ' = (tA)™.
Similarly, for the right part, there is

ct = (TA)™a" (2.33)
c =(A)"a (2.34)

and
¢ = Rgc™ (2.35)

where Ry is the reflection matrix at the right boundary of the structure, and c is the wave
amplitude at the right boundary. Introducing Equations (2.33) and (2.34) into (2.35) to
eliminate c, the wave amplitudes a* and a are related by

a = ((A) ™Ry (tA)2at (2.36)

The reflection matrix links the injected and reflected wave amplitudes at a boundary
[24, 182]. It can be determined once the boundary condition is known. Let us express the
boundary condition in a general way, as

Af+Bq=0 (2.37)

Again we express the forces and displacement by wave amplitudes, so that the reflection
matrix becomes

—1 . .
R = (A(Iﬁef n B(I)fff) (ADI + Bo) (2.38)

where superscript ref and inc refer to the reflected and injected waves respectively. For
the left boundary, superscript ref can be replaced by + and inc by -. When the reduced
wave basis is used, the calculation of R will pseudo-inversion. Equation (2.37) can be
premultiplied by left eigenvectors (e.g. @ﬁ{), yielding

R = (07 A" + 67BOL) (07 AP + 67 BOL") (2.39)

This way the numerical errors can be reduced.
If the structure has infinite extent, then

Rin = 0 (2.40)
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. If the left side of the structure is free, the reflection matrix writes

Rpfree — — (07 07) ' (67 ®]) (2.41)
If right side of the structure is fully constrained, the reflection matrix is

Rr = — (0F01) 7! (0f @) (2.42)

For more complex situations, such as several periodic substructures connected together,
or a periodic structure connected to a non-periodic components, the WFEM framework
need to be extended, which will be discussed in the next Chapter.

Solving the linear Equations (2.28), (2.32) and (2.36), waves amplitudes g™, g, a®
and a” are obtained. The wave amplitudes r of any other cross-section at z < 0 can be
obtained by introducing p = g in Equation (2.24). If the cross-section locates at x > 0,
then we introduce p = a in Equation (2.24). The displacement and force vectors at the
cross-section can then be recovered by Equation (2.21).

Having more unit cells in the structure only leads us to calculate a higher power of
matrix A in Equations (2.32) and (2.36). Since matrix A is diagonal, this only induces
minor computation increase. This is one of the major advantages of WFEM.

2.3 WFEM with free-interface modal synthesis method

Different with Craig-Bampton’s method, when free-interface CMS methods are used, all
the DOF's will be transformed into the modal domain. Only few low-order modes are kept.
The the contribution of the truncated high-order modes, termed the residual flexibility,
can be approximated and integrated to the overall compliance matrix of the unit cell. The
condensed compliance matrix can be easily obtained because there are no external forces
applied on the inner DOF's of the unit cell. This motivates us to use the internal forces at
the boundaries as the unknown variables, leading to a new eigenvalue problem. We further
demonstrate that this eigenvalue scheme is equivalent to the existing ones. Considering
the fact that in most applications of WFEM the unit cell is statically indeterminate, the
techniques to calculate the residual flexibility in such a case is given.

2.3.1 Reduced models of the unit cell

First we calculate the natural frequencies and modal shapes when the left and right
boundaries of the unit cell are free. The ith natural frequency w; and eigenvector 1,2, are
obtained by solving

(~wM+K); =0 (2.43)

where matrices K and M come from Equation (2.1) with size w x w. Assembling all
the modal shapes by columns we get matrix U= [ zﬁl 1&2 e 1[;w } where the vectors

are ranked by the associated natural frequencies in ascending order. The modes are
normalized such that
UMY =1 (2.44)

UTKY = Q = diag(w?) (2.45)
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The physical displacement can then be expressed as a linear superposition of the modal
shapes
: 2 ; Vi
q="Yy= [‘I’low \I’high} ( o ) (2.46)
Yhigh

where ¥ is the modal coordinate vector. Subscript ‘low’ refers to the retained low-order
modes while ‘high’ refers to high-order modes that will be truncated.

Using coordinate transformation (2.46) and Equations (2.44) and (2.45), Equation
(2.1) can be solved [190]. The relationship between the displacement vector and the force
vector writes

q=Hf = (Hlow + Hhigh) f (2.47)
where H is compliance matrix. The contribution of the low-order modes and high-order
modes in the compliance matrix are

A _1 A
Hlow = \Illow (Qlow - WQI) \I[T (248)

low

and
. .
Hupigh = Whigh (Qnigh — w’I) " Wiy, (2.49)

respectively.

The criterion used to determine the retained modes is the same as that was used in
the reduced model based on Craig-Beampton’s method (see section 2.2.2). The first Iy
modes that will be calculated should satisfy

wi < afwi, 1 € [1,2, ...y lpm] (2.50)

where wy, is the upper bound of the frequencies to be analyzed. Factor as controls the
number of the retained modes.

Knowing only Qlow and \i'low, the Hy;gp, is termed ‘residual flexibility’, representing
the contribution of the high-order modes to the compliance matrix at low frequencies. It
is shown by [187] that the exact residual flexibility can be divided into three parts

Hyigh = Hyi + w”Hps + w?Hypg (2.51)
where
Hyy = Wnigh Qi Viign (2.52)
H,, = H,,MH/, (2.53)
Hy3 = Hpigh MHp (2.54)
In practice, if the stiffness matrix K is nonsingular, namely it is invertible, we can use
statement
K™= 00 1T = W0, Q0 Wie o+ Wigh Oy Wi, (2.55)
to calculate the Hyy matrix by the known low-order modal information
Hy = K ' — 0,0 L 0T (2.56)

Introducing Equation (2.56) to (2.53), matrix Hys can be obtained. To obtain Hys,

iteration is needed because Hy;g,, which depends on Hy3 also appears at the right-hand-

side of Equation (2.54). It is suggested by [191] that we can initially guess Hl(l(i)g;h =
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Hy,; +w?Hy, and substitute it to Equation (2.54) to obtain H}(I%). We substitute H}(g)) into

Equation (2.51) to get the updated Hl(lli;h which starts the next iteration. The iteration

stops when H}(fizgh is close enough to Hl(lgﬁ ) and the convergence can be achieved within

few iterations [191].

Different approximation of the residual flexibility Hyien induces different accuracy
and computational cost. In this chapter we consider five different approximations of
Hyien and compare their performance when they are used with WFEM. The considered
reduced models are

1. Reduced model without residual flexibility. Namely only H)., is retained in Equa-
tion (2.47). The high-order modes and their residual are completely neglected, hence
the accuracy in terms of the prediction of the residual terms is zero-order. In the
remaining part of the chapter, this reduced model will be referred to as ‘Free (0th)’.
It is also known as Hou’s method [184].

2. Reduced model with first-order approximation of residual flexibility. The residual
flexibility Hyjgn is approximated by Hyjen ~ Hyq. It means that the static contri-
bution of the high-order modes is retained. It is also known as MacNeal’s method
[185]. In the remaining part of the chapter, this reduced model will be referred to
as ‘Free (1st)’.

3. Reduced model with second-order approximation of residual flexibility. The residual
flexibility Hy;gp, is approximated by fIhigh ~ Hy; + w?Hyp,. It is also known as
Rubin’s method [186]. In the remaining part of the chapter, this reduced model will
be referred to as ‘Free (2nd)’.

4. Reduced model with exact residual flexibility. The residual flexibility Hy;g, is cal-
culated by the exact formula shown in Equation (2.51). Iteration is needed as
presented before. It is also known as the exact substructure method proposed by
[187]. It is supposed to provide an accurate prediction of the residual matrix, at
least in principle. However due to the numerical error it might not be able to have
infinite order of accuracy as expected. In the remaining part of the chapter, this
reduced model will be referred to as ‘Free (4th+)’ (means at least better than fourth
order accuracy).

5. Reduced model with fourth-order approximation of residual flexibility. The residual
matrix Hyjen is approximated by Hyjen ~ Hpp + w?Hyps + w4H}(1%) where Hfl%) is
calculated by introducing Hﬁ?éh = Hy; + w?Hy, into Equation (2.54). It can be
regarded as the aforementioned exact substructure method without iteration. In
the remaining part of the chapter, this reduced model will be referred to as ‘Free

(4th)".

Among these reduced models, ‘Free (0th)’ is straightforward and it is also the simplest
one in terms of implementation, while its accuracy is the lowest. With the increase of
order, the implementation complexity increases. 'Free (1st)” and ‘Free (2nd)’ have similar
complexity because matrices Hy; and Hyy are frequency-independent therefore can be
calculated once the modal truncation are made. For ‘Free (4th+)’, we need to converge
the iteration at each frequency. Observing Equation (2.54), the sizes of matrices are nearly
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the same as the full stiffness matrix. The iteration is likely to slow down the calculation.
Using ‘Free (4th)’, we can illustrate the improvement of the accuracy and the extra time
consuming by the iteration in ‘Free (4th+)’.

2.3.2 Treatments for the singular stiffness matrix

Obtaining the first order term Hyy, is important to recover the residual flexibility, but
in Equation (2.56) matrix K should be nonsingular. Yet in most of the applications of
WFEM, the unit cell has rigid-body modes when the left and right boundaries are free.
Consequently Equations (2.55) and (2.56) are no longer applicable because matrix K is
singular. To solve this problem, we follow the method proposed in Ref [186, 191, 192],
and the main steps are summarized in this section.

Suppose the unit cell has r rigid body modes (r < 6) when the left and right boundaries

are free. Splitting Ulow = [\i’lr \i/le} , where the columns of Uy, are the r rigid body modal

shapes and columns of W, are the (lym — 7) low-order elastic modal shapes. Equation
(2.46) can then be rewritten as

q= [\i’lr \ife] < Vi ) (2.57)

Ye

where ¥, = [\ille \Tlhigh]. Same as the case where K is nonsingular, only the first .y
modes will be retained. To find the first order term Hy, we first find the overall static
flexibility of all the elastic modes

K, =9 0107 (2.58)

and remove the contribution of the low-order modes; it gives

Hy = K — 0,0, ' 0T (2.59)
where
K.!=PK'P? (2.60)
K = PTKP (2.61)
P =BTQ (2.62)
B=1I-MU,¥f (2.63)

Matrix Q is the constrain matrix used to make the unit cell statically determinate.
Imposing q = Qq. on Equation (2.1), the unit cell should have zero rigid body modes.
The rank of matrix Q has to be (w—r) and the size is wx (w—r). We have to appropriately
choose 7 DOF's in q to constrain so as to cancel r rigid body modes. In this chapter we
constrain the first » DOF's in q as suggested by [191]. Specifically, the constrain matrix is

Q:[ Orscwr) } (2.64)
I(w—r)x(w—r)

Note that Equation (2.1) is modeled by FEM and generally the DOFs linked to a same
node will be arranged by continuous indexes. For instance, suppose the unit cell has 6
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rigid body modes and constraining the first 6 DOFs (say ‘1UX’, ‘1UY’, ‘1UZ’, ‘2UX’,
2UY’, 2UZ’ for solid elements and ‘1UX’, ‘1UY’, ‘1UZ’, ‘1THXY’, ‘1THYZ’, ‘1THZX’
for shell elements) will be constrained.

Matrix P defines the transformation from the elastic deformation of the free-boundary
unit cell qe to the elastic deformation of the constrained unit cell q¢; the transformation
writes

qc = Pqe (265)

where the size of e is w x 1 and qc is (w —r) x 1. Elastic deformation q. is governed by
Mge + Kqe = Bf (2.66)

where vector Bf represents the combination of the external and inertial forces induces by
the rigid body motions. Introducing Equation (2.65) to (2.66), and left multiplying P,
it gives

Mg, + Kq. = PTBf (2.67)

where M = PTMP. It can be proved that

A

U, =PV, (2.68)
where W, is the eigenvector matrix of Equation (2.67). Moreover
UIKY, = Q. = diag (e, Qnign) (2.69)

if UMW, = I. This indicates that models (2.66) and (2.67) have the same non-zero
natural frequencies. Remind that our goal here it to find Kt = W.Q7 10T by using
Equation (2.68) and (2.69), it writes

b .00 =P 0 0TPT = PKIPT (2.70)

where K is a nonsingular matrix with size (w — ) x (w — 7). Removing the contribution
of the low-order elastic modes from K1, as shown Equation (2.59), we obtain the first

order residual flexibility Hj;. Subsequently, higher order residual terms Hys, Hy3 and
Hyjgn can be obtained in the same way when K is nonsingular.

2.3.3 Eigenvalue scheme for the wave characteristics

Once the compliance matrix H in Equation (2.47) is determined by one of the five consid-
ered models based on free modes plus residual effects, we can write the boundary DOFs
in terms of internal forces at the boundaries

qr Hyr, HLR] < fL )
= 2.71
( dr ) [HRL Hpr| \ fr 271)
Introducing Equation (2.3) into (2.71) to eliminate qr, and qr and considering Equation
(2.4); it gives the following eigenvalue problem

([P ] [ Ps]) () <o .
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where
_ Hr |2
=4/—= 2.
o N (2.73)

is introduced to balance the magnitudes of the compliance matrix and the identical matrix
I

Eigenvalues obtained by scheme (2.72) are the same as the eigenvalues of the transfer
matrix T Equations (2.7). It is due to the fact that they all search for the solutions
of Equation (2.1) under boundary conditions (2.3) and (2.4). The scheme suggested in
Equation (2.71) differs from the previous ones in the choice of unknown variables. An

eigenvector given by Equation (2.72) is in the form of ( d)fT —)\d)fT )T and it can be

(3)-[FW(n) e

which is the eigenvector of the transfer matrix T associated with the same eigenvalue .

T
q

recovered to the form

It can be proved (see E) that if a row vector ( Xo  xj ) is a left eigenvector obtained

from Equation (2.72), then
(67 o7 )= (x" oxl) (2.75)
is the left eigenvector of T associated with the same eigenvalue.
Once the eigenvalues and eigenvectors of T are obtained and organized in a same way

as mentioned in section 2.2.1 to form the wave basis (A, ® and ©). The process for forced
response analysis remains the same as it was outlined in section 2.2.3.

2.3.4 Remarks

The proposed eigenvalue scheme is based on the compliance matrix which can be obtained
directly by the employed free-interface CMS methods. Theoretically, we can still obtain
the condensed dynamic stiffness matrix by

|:DLL DLR] _ [HLL HLR]_I (2.76)

Dri, Drr Hgri, Hgr

In that way we can still use eigenvalue scheme (2.7). However, an additional matrix inverse
is required. It may cause unexpected numerical errors and additional computational cost.
For these reasons we recommend Equation (2.72) to analysis the free wave characteristics
when free-interface CMS methods are employed.

When full FE model of the unit cell is used, a time-consuming matrix inverse is needed
at each frequency to generate matrices for the eigenvalue problem (2.7). While using the
proposed reduced models, the matrix inverse is avoided by using Equations (2.48) and
(2.51) to calculate the compliance matrix. The retained low-order modes are frequency
independent, and so as the terms Hy; and Hyo used in the residual calculation. We only
need to calculate them once for the free-wave analysis at several frequency points. For
these reasons we expect an accelerated calculation of the dispersion relations and the wave
basis.

Compared with the reduced model with Craig-Bampton’s method, the proposed mod-
els with free modes yield same number of waves because the eigenvalue schemes have the
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same size. However, the retained number of DOFs with Craig-Bampton’s method could
not be smaller than the number of DOFs at boundaries. If we built the reduced model
by free modes plus the residual effects, the number of retained DOFs have no such re-
striction. By using more accurate approximation of the residual effects, it is promising to
further reduce the size of the retained DOF's.

Higher order of accuracy leads to a smaller size of retained modes (DOFs) but more
CPU time is required to recover the higher order residual effects. Compromise has to be
made among these factors. This will be discussed in the next section with the application.

2.4 Application: an asymmetrical thin-walled structure

The flow chart of WFEM with the proposed reduced models is outlined in Figure 2.3.
It starts from a modal analysis on the full FE model of the unit cell. Few low-order
modes of the free unit cell are calculated. The retained modes are determined by the
preselected frequency range to be analyzed. The next phase is the recovering of residual
flexibility from the retained low-order modes. To do that several techniques can be used
and their complexity increases with order of the accuracy. The next step is to solve the
eigenvalue problem based on the compliance matrix. Right eigenvalues and eigenvectors
are sufficient if the task is to obtain the dispersion curves of the waves. If the task is a
forced response analysis then we also need to calculate the left eigenvectors to mitigate
numerical error.

FEM model of a unit cell
M, K, C matrices

Obtain low-order free modes of the unit cell {€------ ¢ Underaprefixed frequency range |
Obtain residual flexibility LTI <&  Depending on the schemes

I

Free wave analysis

Need to banlance the magnititude

Solve eigenvalue problem D b of thematrlces --------------------
Construct wave basis, I ¢ Neglect strongly evanescent waves

using selected left and right eigenvectors

Left eigenvectors can be used to
(€-omenn ° reduce ill-conditioning

R H
Lttt L O X

Obtain reflection matrices
Calculate wave amplitudes,

O
A4

v
Forced response analysis
Obtain response in physics coordinates
Figure 2.3: Flow chart of the free wave and forced response analysis by WFEM with the
proposed reduced model.

The accuracy of the wave basis is mainly determined by two factors concerning the
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reduced model. The first one is the number of retained modes and the second one is
the accuracy of the approximated residual flexibility. When the analyst is predicting
the modal density or designing a spatial signal filter and so on. Dispersion curves of
the propagating waves are required, while strong evanescent waves are not of interest.
In other cases, for example when the analyst is predicting the power flow injected by
the excitation or checking the vibration reduction performance of the periodic structure,
forced response analysis in required. Then some strong evanescent waves have to be kept
in the wave basis and their accuracy becomes a concern. It remains a question that
how the reduced model affects the accuracy of the propagating and evanescent waves
respectively. It is also important to discuss how the accuracy of the evanescent<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>