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ABSTRACT 

The musculoskeletal system is composed of muscles, skeletal elements and connective tissues 

such as tendon and muscle connective tissue. Functional locomotion via this system relies on a 

precise coordination between its different components. Muscle connective tissue contributes to 

the elasticity and rigidity of muscles, while tendons transmit forces generated by muscles to the 

bone to allow body motion. Despite their distinct mesodermal origins, differentiation of muscle 

and connective tissue progenitor cells are closely related throughout limb development. In 

contrast to muscle and skeleton, connective tissue patterning and formation remain poorly 

investigated. In order to identify molecular mechanisms underlying connective tissue formation 

during limb development, five zinc-finger transcription factors were investigated: OSR1, OSR2, 

EGR1, KLF2 and KLF4. These transcription factors are expressed in distinct subcompartments 

of the musculoskeletal system and influence the differentiation of limb mesenchymal cells upon 

overexpression. To further investigate their roles at the molecular level, several genome-wide 

strategies were employed in limb mesenchymal explant cultures overexpressing each of the 

transcription factors. Whole-transcriptome sequencing revealed that the transcription factors 

share common regulatory functions and positively regulate biological processes related to signal 

transduction, cell communication and biological adhesion. ChIP-sequencing on histone tail post-

translational modifications revealed that the differentially expressed genes were enriched for 

both active and repressive chromatin signatures at their promoters, suggesting that they are 

dynamically regulated and might therefore contribute to connective tissue differentiation. 

Occupancy of each transcription factor was finally investigated via ChIP-sequencing to 

distinguish between indirect and direct target genes. Altogether, the combination of in vivo and 

in vitro data with genome-wide profiling brings molecular insights underlying the differentiation 

of connective tissue cells. These results provide a framework for future investigations to better 

understand the interconnectivity between components of the musculoskeletal system. 
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RÉSUMÉ 

Le système musculo-squelettique se compose des muscles, du squelette et du tissu conjonctif qui 

comprend, entre autres, les tendons et le tissu conjonctif musculaire. La locomotion est assurée 

par ce système via une coordination précise entre ses différents composants. Le tissu conjonctif 

musculaire contribue à l’élasticité et à la rigidité des muscles, alors que les tendons transmettent 

les forces musculaires à l’os nécessaires aux mouvements du corps. Malgré leurs origines 

mésodermiques distinctes, la différentiation des cellules progénitrices du muscle et du squelette 

est étroitement liée tout au long du développement des membres. Contrairement au muscle et au 

squelette, la mise en place et la formation du tissue conjonctif restent à ce jour peu étudiées. Afin 

d’identifier les mécanismes moléculaires sous-jacents à la formation du tissu conjonctif au cours 

du développement du membre, cinq facteurs de transcription à doigt de zinc ont été examinés : 

OSR1, OSR2, EGR1, KLF2 et KLF4. Ces facteurs de transcriptions sont exprimés dans 

différents sous-compartiments du système musculo-squelettique et leur surexpression influence 

la différentiation des cellules mésenchymateuses. Afin d’élucider leurs rôles au niveau de la 

régulation génique, plusieurs stratégies à haut-débit ont été mises en place dans des cultures de 

cellules mésenchymateuses de membres surexprimant chacun des facteurs de transcription. Le 

séquençage du transcriptome global a révélé que les facteurs de transcription partagent des 

fonctions régulatrices communes liées à la transduction du signal, à la communication cellulaire 

et à l’adhésion cellulaire. L’analyse par séquençage à haut-débit de modifications post-

traductionnelles des queues d’histone a montré que les gènes différentiellement exprimés étaient 

enrichis pour des signatures d’activation et de répression chromatiniennes, suggérant qu’ils sont 

dynamiquement régulés et qu’ils pourraient contribuer à la différentiation du tissu conjonctif. 

Les sites de fixation à l’ADN ont été finalement étudiés par séquençage à grande échelle afin de 

distinguer les gènes cibles directs des cibles indirectes. En résumé, la combinaison de données in 

vivo et in vitro avec des méthodes de profilage à haut-débit a permis de mettre en évidence les 

mécanismes moléculaires sous-jacents à la différentiation des cellules du tissu conjonctif. Ces 

résultats fournissent une base pour des travaux futurs visant à mieux comprendre l’inter-

connectivité entre les différents composants de l’appareil locomoteur. 
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ZUSAMMENFASSUNG 

Das muskuloskeletale System besteht aus den Muskeln, dem Skelett und verschiedenen 

Bindegeweben wie den Sehnen und dem Muskel-Bindegewebe. Die präzise Koordination 

zwischen den verschiedenen Komponenten dieses Systems ist eine Grundvoraussetzung für die 

Funktionalität des Bewegungsapparates. Das Bindegewebe der Muskeln trägt zu Elastizität und 

Rigidität des Muskels bei, die von den Muskeln generierte Kraft wird von den Sehnen auf das 

Skelett übertragen, um Bewegung zu ermöglichen. Obwohl Muskeln und das Muskel-

Bindegewebe der Extremität einen unterschiedlichen mesodermalen Ursprung in der 

Entwicklung haben, ist ihre Entwicklung eng aneinander gekoppelt. Während die Entwicklung 

von Muskeln und Skelett intensiv beforscht wurden, ist über die Entwicklung des Bindegewebes 

sehr wenig bekannt. Um molekulare Mechanismen der Bindegewebsentwicklung zu 

identifizieren, wurden in dieser Arbeit fünf verschiedene Transkriptionsfaktoren untersucht: 

OSR1, OSR2, EGR1, KLF2 und KLF4. Diese Transkriptionsfaktoren werden in verschiedenen 

Bereichen des muskuloskeletalen Systems exprimiert und ihre Überexpression beeinflusst die 

Differenzierung von mesenchymalen Zellen. Um ihre molekulare Rolle zu charakterisieren, 

wurden verschiedene Genom-weite Analysestrategien durchgeführt, wofür Explantatkulturen 

von mesenchymalen Vorläuferzellen der Extremität verwendet wurden. Eine 

Transkriptomanalyse per RNA-Sequencing zeigte, dass alle fünf Transkriptionsfaktoren 

bestimmte gemeinsame regulatorische Funktionen miteinander teilen; so regeln sie biologische 

Prozesse, die mit der Signaltransduktion, der Zell-Zell Kommunikation und der biologischen 

Adhäsion assoziiert sind. ChIP-Sequencing auf verschiedene Histonmodifikationen zeigte, dass 

die Promotoren der differentiell regulierten Gene für spezifische aktivierte wie auch repressive 

Chromatinmodifikationen angereichert waren. Dies deutet auf dynamisch regulierte Gene hin, 

und somit wahrscheinlich auf Gene, die in die Differenzierung des Bindegewebes involviert 

sind. Die direkte Bindung der Transkriptionsfaktoren an die DNA wurde schließlich durch ChIP-

Sequencing analysiert, um zwischen direkten und indirekten Zielgenen unterscheiden zu können. 

Zusammengefasst erlaubt die hier unternommene Kombination aus in vivo und in vitro Analysen 

in Kombination mit Genom-weiten Methoden einen ersten molekularen Einblick in die 

Komplexität der Differenzierung des Bindegewebes. Die hier vorgestellten Ergebnisse stellen 

damit einen Ausgangspunkt für weitere Arbeiten dar, um die Interaktion der verschiedenen 

Komponenten des muskuloskeletalen Systems besser zu verstehen. 



 

 xii 

NOTATIONS AND ABBREVIATIONS 
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INTRODUCTION 

A. From a single unit to a multi-compartment system 

In tetrapods, limb development initiates by expansion of lateral plate mesoderm cells at specified 

positions along the rostrocaudal axis of the embryo following an epithelial to mesenchymal 

transition (Gros and Tabin 2014; Figure 1A). Lateral plate progenitor cells will give rise to the 

skeleton, tendons and muscle connective tissue, whereas limb myogenic progenitor cells 

originate from another mesoderm compartment, the somites. Both cell populations accumulate 

under the ectodermal tissue to form a circular bulge, the limb bud, and then continue their 

progression distally while the limb grows and develops. 

 
Figure 1. Development of the vertebrate limb. (A) Limb bud formation. Muscle progenitor cells originate from 
the hypaxial lip of the dermomyotome and migrate towards the limb field to reach lateral plate mesoderm-derived 
progenitor cells. Both cell populations accumulate and proliferate beneath the ectoderm to shape an emerging 
protrusion, the limb bud. Lateral plate mesodermal and somitic progenitor cells will constitute the distinct elements 
of the limb musculoskeletal system. (B) Gene regulatory networks mediating the early patterning of the mouse 
developing limb outgrowth. The proximodistal axis is established by a gradient between the expression of retinoic 
acid (RA) from the trunk and the distal apical ectodermal ridge (AER; blue). The anteroposterior patterning is 
controlled by the anterior zone of polarizing activity (ZPA; red) via a gradient of SHH signalling. Mesenchyme is 
depicted in grey. Dashed lines indicate unclear molecular mechanisms. (C) Skeletal elements of the chick forelimb. 
Chick wing skeleton is partitioned into the proximal stylopod (humerus; blue), intermediate zeugopod (radius, ulna; 
yellow) and distal autopod (metacarpals, green; digits, red). By convention, the chick forelimb digits are numbered 
2, 3 and 4 along the anteroposterior axis. Adapted from Gilbert 2013; Zuniga 2015. 

Limb development is coordinated in three dimensions along the proximal-distal (shoulder-finger; 

hip-toe), anterior-posterior (thumb-pinkie) and dorsal-ventral (knuckle-palm) axes (Figure 1B), 

although the time could be included as fourth dimension. The growth along the proximodistal 

axis is under the influence of the apical ectodermal ridge (AER), via the secretion of the 

fibroblast growth factors FGF4 and FGF8, which induces the proliferation of mesenchymal cells 

located beneath the AER (reviewed in Tabin and Wolpert 2007). The anteroposterior 
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specification is controlled by the secretion of Sonic hedgehog (Shh) from the zone of polarizing 

activity (ZPA) (Riddle et al. 1993), which confers the digit identity through a timely- and 

spatially-dependent concentration gradient (reviewed in Tabin and McMahon 2008). The 

dorsoventral polarity is determined by the ectoderm through the dorsal expression of Wnt7a 

(Dealy et al. 1993; Parr et al. 1993) and the ventral expression of En1 (Engrailed-1) (Logan et al. 

1997; Loomis et al. 1996). The development of the three limb axes is coordinated at the cellular 

and molecular levels, which influences the correct polarity and patterning of the different 

components of the musculoskeletal system and leads ultimately to a fully functional limb 

(reviewed in Rabinowitz and Vokes 2012; Zuniga 2015). 

Skeleton development 

The skeleton of tetrapod limbs consists in the assembly of bone and cartilage elements via joints 

and is divided into three regions along the proximal-distal axis: the stylopod (humerus, femur), 

adjacent to the body wall; the zeugopod (radius, ulna; tibia, fibula), as intermediate region; and 

the autopod (carpal, fingers; tarsal, toes), at the distal extremity (Figure 1C). In vivo experiments 

in chick embryos have demonstrated that the AER is essential in the establishment of the limb 

skeleton. Indeed, AER removal at different time points induces the loss of skeleton elements 

along the proximodistal axis. Early AER ablation results in proximal truncations, while late AER 

removal affects only distal elements (Saunders 1948). In addition to their role during cell 

differentiation (reviewed in Cerdá-Esteban and Spagnoli 2014; Le Guen et al. 2015), Hox genes 

contribute also to the specification of the three skeleton elements along the proximodistal axis, 

especially Hoxa and Hoxd paralogous gene clusters. Similarly to the collinear expression within 

the main body axis, expression from Hoxa9/Hoxd9 to Hoxa13/Hoxd13 genes follows a proximal 

to distal pattern during early limb development that recapitulates the stylopod, zeugopod and 

autopod (reviewed in Zakany and Duboule 2007). Indeed, specification of the stylopod is under 

the control of Hox9 and Hox10 paralogous genes, whereas Hoxa11 and Hoxd11 genes are 

involved in the specification of the zeugopod, and Hox12 and Hox13 paralogous genes in the 

patterning of the autopod. At later stages of limb development, the production of Shh by the ZPA 

induces the expression pattern of Hoxd10-13 genes following the anterior-posterior axis that 

contributes to the digits morphogenesis (Zakany et al. 2004). The Shh receptor Ptch1 appears to 

be an important mediator of Shh diffusion during digit patterning since its attenuated expression 

has been recently linked to the lost of digits in artiodactyls (Cooper et al. 2014; Lopez-Rios et al. 

2014). Shh activates the bone morphogenetic protein (BMP) antagonist Gremlin (Grem1) to 

downregulate BMP signalling and to maintain the expression of Fgf8 in the AER (Benazet et al. 

2009). Although SHH signalling mediates the establishment of distal-posterior limb elements 
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(ulna, fibula; digits 2-5), proximal-anterior structures (stylopod; radius, tibia; digit 1) are Shh 

independent and require the expression of the Iroquois homeobox transcription factors (TFs) Irx3 

and Irx5 (Harfe et al. 2004; Li et al. 2014). 

Formation of limb skeleton along the three developmental axes requires the concomitant 

differentiation of lateral plate mesoderm-derived mesenchymal cells into cartilage. The 

endochondral ossification is the process consisting in the commitment of mesenchymal cells into 

chondrocytes to form cartilage that will be further replaced by bone tissue (Figure 2). 

 
Figure 2. Schematic representation of the chondrogenesis process during limb development. 
Endochondral ossification during limb development is a multistep process requiring the compaction of 
mesenchymal progenitor cells into precartilaginous nodules, the proliferation of chondrocytes until reaching 
a hypertrophic state and the replacement of apoptotic hypertrophic chondrocytes by osteoblasts. Adapted 
from Shimizu et al. 2007. 

First, mesenchymal progenitor cells aggregate in the middle of the limbs into compact nodules 

forming precartilaginous condensation regions that are characterized by a strong expression of 

the SRY-box TF Sox9 (Zhao et al. 1997). Inner cells commit towards a cartilage lineage, 

whereas outer cells remain at first sight undifferentiated to form perichondrium, a layer of dense 

irregular connective tissue. Initiation of cartilage condensation regions requires the expression of 

N-cadherin and N-CAM adhesion molecules (Oberlender and Tuan 1994; Widelitz et al. 1993) 

and signal transduction via the BMP signalling receptor BMPRIB (Zou et al. 1997). Inner cells 

undergoing chondrogenesis start proliferating and secrete a cartilaginous extracellular matrix 

(ECM) composed of type-II, -IX and -XI collagens and aggrecan. Later, chondrocytes stop 

dividing to reach a hypertrophic state while expressing Indian hedgehog (Ihh) and parathyroid 

hormone-related protein (PTHrP) to control their maturation (Vortkamp et al. 1996). The 

maturation of chondrocytes into hypertrophic chondrocytes is positively regulated by the Runt 

TF Runx2 (Stricker et al. 2002). Hypertrophic chondrocytes elongate and produce type-X 

collagen that will contribute to the bones to reach their final size. In addition, they secrete the 

vascular growth factor VEGF that will be required for the formation of blood vessels (Gerber et 

al. 1999), as well as Ihh that will induce perichondrium cells to differentiate into osteoblasts via 

Runx2 expression. Finally, hypertrophic chondrocytes undergo apoptosis and are gradually 
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replaced by osteoblasts recruited via blood vessels (Hatori et al. 1995). In parallel, perichondrial 

osteoblasts form a bone matrix and express the zinc-finger TF Osterix (also known as Sp7) via 

WNT signalling to differentiate into osteocytes (Hu et al. 2005; Nakashima et al. 2002). 

Signalling pathways are critical during the chondrogenesis process. BMP signalling is crucial for 

the compaction of undifferentiated mesenchymal cells into precartilaginous nodules and 

throughout their commitment into chondrocytes (Yoon et al. 2005). Overexpression of Noggin, a 

BMP antagonist (Zimmerman et al. 1996), blocks chondrogenesis and prevents the formation of 

cartilage in chick limbs (Pizette and Niswander 2001). In addition, the proliferation pace of 

chondroblasts is tightly controlled by a crosstalk between BMP and FGF signalling pathways 

(Minina et al. 2002), whereas chondrocyte hypertrophy results from a synergetic balance 

between BMP and Ihh/PTHrP signalling cascades (Long et al. 2004; Zhang et al. 2003). WNT 

signalling has been associated with contradictory effects during chondrogenesis. For instance, 

Wnt3a accelerates BMP2-mediated chondrogenesis (Fischer et al. 2002), whereas Wnt1, Wnt5a 

and Wnt7a inhibit cartilage formation (Rudnicki and Brown 1997; Tufan and Tuan 2001). 

However, other observations pointed out an opposite effect of Wnt3a and Wnt5a on 

chondrogenesis. Wnt3a has been shown to inhibit chondrogenesis in vitro and in vivo and to 

downregulate Sox9 expression (ten Berge et al. 2008), while overexpression of Wnt5a enhances 

cartilage nodule formation in micromass cultures (Church et al. 2002). In addition, activation of 

the canonical WNT/β-catenin signalling pathway in chick chondrocytes accelerates their 

hypertrophic maturation (Kitagaki et al. 2003), whereas conditional deletion of β-catenin in mice 

depicted a delayed endochondral ossification (Akiyama et al. 2004). 

Skeletal muscle development 

In vertebrates, limb skeletal myogenic cells originate from the somites. Limb muscle 

development involves the successive steps of migration, organisation into dorsal and ventral 

muscle masses, differentiation and muscle splitting (Figure 3). Signals produced by the limb 

lateral plate mesoderm trigger muscle progenitor cells to delaminate from the lateral edge of the 

dermomyotome and migrate towards the limb buds (Chevallier et al. 1977; Christ et al. 1977; 

Hayashi and Ozawa 1995; Jacob et al. 1978; Solursh et al. 1987). Muscle progenitor cells 

express the paired box TF Pax3 and Pax7 (Relaix et al. 2005). Delamination and migration of 

myogenic progenitor cells are under the control of several molecules. Migration of muscle 

progenitor cells requires the Pax3-dependent expression of the ladybird homeobox TF Lbx1 

(Brohmann et al. 2000; Gross et al. 2000; Mennerich et al. 1998; Schäfer and Braun 1999). The 

scatter factor (SF; also known as hepatocyte growth factor, HGF), induced by FGF signalling 

(Heymann et al. 1996), is expressed in limb mesenchyme and interacts with its receptor c-Met 
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expressed by myogenic progenitor cells to trigger their delamination and migration (Bladt et al. 

1995; Daston et al. 1996). The migration is also under the control of the chemokines Cxcl12 

(also know as Sdf1) and EphA5, which are both expressed in the limb mesenchyme, and that 

interact with their respective receptors Cxcr4 and EphA4 expressed in Pax3
+ cells (Vasyutina et 

al. 2005; Swartz et al. 2001). Therefore, the migration of myogenic progenitor cells is also 

dependent of extrinsic signals produced by limb mesenchyme. 

 
Figure 3. Schematic representation of the myogenesis process during chick forelimb development. Myogenesis 
initiates by delamination of muscle progenitor cells from the hypaxial lip of the somitic dermomyotome in response 
to signals from the adjacent lateral plate mesoderm. Myogenic progenitor cells migrate towards the limb field, enter 
within the limb bud and split into ventral and dorsal premuscular masses. Myogenesis depends on a fine tuning 
between proliferation and differentiation triggered by activation of the MRFs. The first multinucleated myotubes are 
visible at E4.5 in the chick embryo wing. Finally muscle masses undergo cleavage and splitting to give rise to the 
different limb muscles. Genes involved or potentially involved at each step are depicted. Adapted from Buckingham 
et al. 2003; Duprez 2002. 

After migration, Pax3
+ progenitor cells undergo the myogenic regulatory program under the 

influence of the myogenic regulatory factors (MRFs). The MRFs are the master genes of the 

skeletal muscle lineage, which include the basic helix-loop-helix (bHLH) TFs Myf5, MyoD, 

myogenin and Mrf4 (also known as Myf6). Overexpression of each of these factors commits a 

non-muscle cell towards a myogenic lineage, while preventing other cell fates (Auradé et al. 

1994; Choi et al. 1990; Davis et al. 1987; Delfini and Duprez 2004). First signs of muscle 

differentiation are observed at E5 in chick limbs. Limb muscle growth relies on a fine balance 

between cell proliferation and differentiation. Pax3 and Pax7 are involved in muscle progenitor 

proliferation in addition to Myf5 and MyoD that control this process by a cell-cycle dependent 

mutually exclusive expression (Collins et al. 2009; Kitzmann et al. 1998). High level of Myf5 

expression is associated with proliferating primary mouse myoblasts, whereas high expression of 

MyoD induces cell cycle withdrawal and differentiation initiation in vitro. In chick embryos, 

MYF5 expression is related to proliferating myoblasts, whereas MYOD is not detected (Delfini et 

al. 2000). In addition, Notch signalling pathway is involved in the maintenance of proliferating 

myogenic progenitor cells (Delfini et al. 2000; Zalc et al. 2014). Transcriptional repressors have 

been also associated with the regulation of the tuning between proliferation and differentiation of 
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myoblasts. Msx1 is expressed in the lateral dermomyotome of the somites and in migrating 

Pax3
+ cells and its repression is followed by Myf5 activation (Houzelstein et al. 1999). Msx1 

overexpression in differentiated mouse myotubes induces their dedifferentiation and reversion to 

a proliferative state (Odelberg et al. 2000), while Myf5 displays a reduced level of facultative 

heterochromatin in its vicinity and a higher expression level in Msx1
-/- mutant mice (Wang et al. 

2011a). Another transcriptional repressor, Sim2 (single-minded 2), which is mainly expressed in 

ventral muscle masses of mouse and chick embryo limbs (Coumailleau and Duprez 2009), 

represses MyoD expression by direct binding to its enhancer region and prevent muscle 

differentiation to allow a preferential muscle growth in ventral limb regions (Havis et al. 2012). 

The dorsal and ventral muscle masses are composed of proliferating Pax3/Pax7 progenitor cells 

and committed muscle cells, the myoblasts. Myoblast differentiation is marked by their exit from 

cell cycle followed by the expression of MyoD and the synthesis of muscle-specific proteins such 

as actin and myosin. Myogenin is also involved in muscle differentiation (Andrés and Walsh 

1996; Bergstrom and Tapscott 2001). Committed myoblasts align together to form 

multinucleated myofibres by fusion of their membranes. The molecular mechanisms underlying 

myoblast fusion are not completely resolved in vertebrates. However, myoblast fusion is 

mediated by ECM components such as cell adhesion molecules (N-, V-CAM), fibronectin, 

integrins, cadherins and meltrins (reviewed in Hindi et al. 2013). Following the first fusion of 

myoblasts, myofibres keep growing by recruiting further myoblasts. Myoblast recruitment is 

mediated by the secretion of paracrine factors from newly formed myofibres, such as interleukin-

4 (IL-4) (Horsley et al. 2003). Recently, the identification of myomaker (also known as 

TMEM8C) as a main actor triggering myoblast fusion opens new avenues to understand this 

biological process (Millay et al. 2013). Muscle masses undergo progressive splitting to give rise 

to the individual limb muscles. Although this process remains unclear, innervation and 

vascularization are thought to be involved in the cleavage process of muscle masses as it has 

been shown in chick embryos (Rong et al. 1992; Tozer et al. 2007). 

To a similar extent with skeleton morphogenesis, signalling pathways contribute to muscle 

formation throughout limb development. Overexpression of SHH in chick limbs at the onset of 

the myogenic program induces muscle hypertrophy (Amthor et al. 1998; Duprez et al. 1998), 

whereas homozygous deletion of Shh in the mouse gives rise to a severe reduction of muscle 

formation (Krüger et al. 2001). Migration and activation of the myogenic program are 

independent of Shh activity as these both processes occur normally in Shh-mutant mice (Krüger 

et al. 2001). In addition to contribute to both delamination and migration of muscle progenitor 

cells via the scatter factor, FGF signalling have been associated with the activation of myoblast 
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proliferation while inhibiting their differentiation in vitro (reviewed in Olson 1992). Expression 

of FGF2, FGF4 and FGF8 in the limb AER prevents muscle differentiation by inhibiting MYOD 

transcription in order to maintain the distal migration of muscle progenitor cells (Robson and 

Hughes 1996). Similarly to skeleton development, WNT signalling has been characterized as a 

promoter and as an inhibitor of myogenesis. In mouse somitic explant cultures, Wnt1 activates 

Myf5 expression, whereas Wnt7a induces MyoD transcription (Tajbakhsh et al. 1998). In vitro 

experiments have highlighted that β-catenin negatively regulates myogenic differentiation 

(Gavard et al. 2004; Goichberg et al. 2001), whereas a recent in vivo study showed that β-catenin 

positively regulate the number of foetal muscle progenitor cells (Hutcheson et al. 2009). 

Although being mostly known for its role in bone and cartilage development, BMP signalling is 

also involved during myogenesis. In combination with FGF signalling and the scatter factor, 

BMP4 prevents the differentiation of myogenic progenitor cells during their migration (Pourquié 

et al. 1996; Amthor et al. 1998). At later stages of limb development, during foetal myogenesis, 

BMP signalling upregulates the expression of PAX3 and MYOD (Amthor et al. 1999) and 

promotes foetal muscle growth (Wang et al. 2010). 

Tendon development 

Tendon is a dense regular connective tissue composed of type-I collagen fibres extending 

laterally along the tendon axis and embedded in dense irregular connective tissue sheaths. Limb 

tendon cells originate from the lateral plate mesoderm (Kieny and Chevallier 1979; Figure 4). 

 

Figure 4. Schematic representation of the tenogenesis process during mouse limb development. Scx-expressing 
cells originate from the lateral plate mesoderm and subsequently subdivide into three tendon primordia. Each 
primordium gives rise to the distinct tendons of the knee/elbow, heel/wrist and hand/foot joints. Genes expressed, 
involved or potentially involved in tendon development are indicated. Muscles and tendons are depicted in red and 
green, respectively. Adapted from Gaut and Duprez 2016. 

In contrast to myogenesis and chondrogenesis, tendon development, also termed tenogenesis, 

remains poorly described. The identification of an early marker of tendon progenitor cells, the 

bHLH TF Scleraxis (Scx), facilitated the understanding of tendon development (Schweitzer et al. 

2001). Ectopic expression of Scx in human bone marrow-derived mesenchymal stem cells 
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induces the expression of tendon-associated genes and prevents their differentiation into 

chondrocytes and osteoblasts, although they retain their capacity to commit towards the 

adipogenic lineage (Alberton et al. 2012). Conversely, Scx-deficient mice present severe defects 

in tail and limb force-transmitting tendons, ranging from their complete lost to the 

disorganization of their structure, while anchoring tendons of the back remain weakly affected 

(Murchison et al. 2007). 

In the developing limb, Scx-expressing primordium is marked by two distinct cell populations: 

Scx
+/Sox9

− progenitor cells and Scx
+/Sox9

+ progenitor cells (Sugimoto et al. 2013b). The latter 

cells commit into either tenocytes by maintaining Scx and repressing Sox9, or chondrocytes by 

downregulating Scx and sparing Sox9, at places where tendon-bone junctions will take place 

(Blitz et al. 2013; Sugimoto et al. 2013a). In the chick, tendon progenitor cells are organized into 

three primordia along the proximal-distal axis of the hindlimb (Kardon 1998). Proximal 

primordium gives rise to the future tendons of the knee (thigh-shank), intermediate primordium 

to the future tendons of the intertarsal joint (shank-foot), and distal primordium to the future 

tendons of the metatarsal-phalangeal and interphalangeal joints. Scx positively regulates the 

expression of type-I collagen, the main functional component of tendon (Léjard et al. 2007; 

Murchison et al. 2007). It is noteworthy that tendon specificity is given by the spatial 

organisation of type-I collagen fibrils and not by its expression itself, since this collagen is found 

in many other tissues and organs. Besides Scx, three additional TFs have been identified as being 

expressed in developing tendons: Mkx, Egr1 and Egr2 (Anderson et al. 2006; Lejard et al. 2011). 

Although these TFs are not tendon-specific, ectopic expression of Mkx or Egr1 in mesenchymal 

stem cells promotes the expression of tendon-associated genes and collagens as well as impairs 

their commitment towards other cell fates (Guerquin et al. 2013; Liu et al. 2015b; Otabe et al. 

2015). Mkx-null mice exhibit tendon differentiation defects visible by a reduction of tendon 

collagen fibrils and smaller tendons (Ito et al. 2010; Kimura et al. 2011; Liu et al. 2010). 

Homozygous deletion of Egr1 in the mouse induces a disorganization of tendon collagen fibrils, 

reduced tendon mechanical properties and an impaired healing following tendon injury 

(Guerquin et al. 2013). A recognized tendon marker for tenocytes is tenomodulin (Tnmd) 

(reviewed in Dex et al. 2016). Tnmd encodes a glycoprotein that is present in differentiated 

tendon cells and necessary for their proliferation and maturation (Docheva et al. 2005). Recently, 

two global gene expression profiles of Scx
+ cells isolated from mouse limbs between E11.5 and 

E14.5 have been generated (Havis et al. 2014; Liu et al. 2015a). Both studies identified a 

valuable resource of genes regulated during limb tendon development that will necessarily 

contribute to extend the comprehension of the tenogenesis process. 
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In addition to TFs, two main signalling pathways, FGF/MAPK/ERK and TGF-β/Smad2/Smad3, 

have been associated with tendon specification and differentiation based on their influence on 

Scx expression in chick and mouse embryos. Ectopic expression of FGF4 in chick forelimbs 

upregulates SCX and TNC expression (Edom-Vovard et al. 2002). TNC is a gene that encodes 

tenascin, an ECM protein that is associated, among others, with developing tendons (Hurle et al. 

1990). However, application of FGF4 in mouse limb explants or murine mesenchymal stem cells 

downregulates Scx expression, suggesting a different effect of FGF signalling in chick and 

mouse (Havis et al. 2014). Additionally to this finding, the authors observed an increased Scx 

expression upon inactivation of MAPK/ERK signalling by chemical reagent in both culture 

models. TGF-β signalling has been identified as the most enriched pathway in a gene expression 

profiling of mouse Scx
+ cells isolated from limbs by FACS sorting (Havis et al. 2014). Treatment 

by TGF-β2 of mouse limb explants or murine mesenchymal stem cells increases the level of Scx 

expression and tendon-associated genes (Havis et al. 2014; Pryce et al. 2009). By contrast, 

chemical blocking of Smad2/Smad3 intracellular signalling pathway in mouse limb explants 

displays the opposite pattern with a strong downregulation of Scx transcription (Havis et al. 

2014). Consistently, application of TGF-β2 in chicken micromass cultures made of limb 

mesenchymal cells promotes the expression of SCX and TNMD, while inhibiting 

chondrogenesis, whereas chemical inactivation of SMAD2 and SMAD3 reverts the cell fate 

commitment (Lorda-Diez et al. 2009). In addition, disruption of TGF-β signalling in the mouse 

by deleting either Tgfb2 alone, both Tgfb2 and Tgfb3 genes, or by inactivating the type-II TGF-β 

receptor TGFBR2, leads to severe limb tendon defects from E12.5 (Pryce et al. 2009). BMP 

signalling seems to act in an opposite manner to TGF-β signalling by restricting Scx expression, 

while inactivation of BMP signalling via the BMP antagonist Noggin upregulates Scx expression 

(Schweitzer et al. 2001). 

Muscle connective tissue development 

Muscle connective tissue (MCT) belongs to the category of the connective tissue proper. It is a 

loose irregular connective tissue that is arranged as an interwoven meshwork of irregular fibres. 

MCT was described as being able to drive non-muscle cells to depict muscle-like structures 

(Grim and Wachtler 1991). As cells forming the skeleton and tendons, limb MCT cells are 

derived from the limb lateral plate mesoderm (Chevallier et al. 1977; Christ et al. 1977). 

However, in contrast to cartilage, bone and skeletal muscle, but similar to tendon, no master 

regulator for MCT formation has been identified yet. Although several TFs have been 

characterized as being related to MCT during limb development, they all seem to be expressed in 

distinct or partly overlapping MCT cell populations. The component of WNT signalling TCF4 
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was the first described MCT marker gene (Kardon et al. 2003). Overexpression of a dominant 

negative form of TCF4 in chick limbs induces both muscle patterning and myofibre organization 

defects. TCF4 is among the most downstream effectors of the canonical WNT/β-catenin 

signalling pathway (Korinek et al. 1997). Ectopic activation of the WNT/β-catenin signalling in 

chick legs leads to the appearance of additional muscles as compared to contralateral limbs, 

indicating that TCF4-expressing cells from the MCT may contribute to create a resident pattern 

by extrinsic signals for muscle development (Kardon et al. 2003; Figure 5). The role of the 

WNT/β-catenin pathway was also evidenced in the axolotl, where overexpression of active β-

catenin induces ectopic muscle formation in the regenerating limb (Nacu et al. 2013). Tcf4 

exhibits a similar expression pattern during mouse limb development, as well as in neonatal and 

postnatal mice (Mathew et al. 2011). Conditional homozygous deletion of Tcf4 induces severe 

limb muscular defects and co-cultures of Tcf4-expressing fibroblasts with myoblasts enhances 

myotube formation as compared to myoblasts cultured alone. In addition, Tcf4
+ cells contribute 

to muscle regeneration upon injury by dynamic and reciprocal interactions with myogenic 

satellite cells since ablation of either satellite cells or Tcf4
+ fibroblasts results in impaired muscle 

healing (Murphy et al. 2011). Nonetheless, Tcf4 is not only restricted to MCT cells as it is also 

detected in tenocytes, chondrocytes and at low levels in myogenic cells. 

 

Figure 5. Schematic representation of muscle connective tissue formation during limb development. Muscle 
progenitor cells delaminate and migrate towards the limb field in response to signals coming from the adjacent 
lateral plate mesoderm. Muscle connective tissue progenitor cells migrate in the limb bud in close association to 
muscle progenitor cells and lie adjacent to proliferating and differentiating muscle cells. Genes expressed or 
involved or potentially involved are indicated. Tbx4 and Tbx5 are expressed in the hindlimb and forelimb, 
respectively. Muscles are depicted in red; MCT is represented in blue. Adapted from Kardon et al. 2003. 

More recently, two T-box TFs, Tbx5 and Tbx4, have been associated with forelimb and 

hindlimb MCT, respectively. Both factors are broadly expressed in the mesenchyme prior to 

limb bud initiation and throughout chick and mouse limb development (Hasson et al. 2007; 

Logan et al. 1998; Naiche and Papaioannou 2007; Rallis et al. 2003). Conditional deletion of 

either Tbx5 or Tbx4 in limb mesenchyme leads to severe muscle and tendon defects (Hasson et 

al. 2010). Although muscle and tendon specification and differentiation remains unaffected, 

mutant mice display muscle splitting and tendon defects. Interestingly, forelimb and hindlimb 
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skeleton elements remain unaffected upon deletion of either Tbx5 or Tbx4, respectively, 

suggesting that skeleton patterning occur independently of muscle/tendon patterning. Muscle and 

tendon patterning seem to be dependent on WNT signalling and biological adhesion since β-

catenin and N-cadherin were strongly reduced in Tbx5 and Tbx4 mutant embryos. Two 

additional zinc-finger TFs, Osr1 and Osr2, have been identified as being related to limb MCT. 

Prior to chick limb bud initiation, OSR1 expression is detected in the lateral plate mesoderm 

suggesting that it is expressed in mesenchymal progenitor cells (Stricker et al. 2006). Later 

during limb development, Osr1 and Osr2 are widely expressed and partly overlapping in limbs 

of mouse and chick embryos. Interestingly, their expression patterns are closely associated with 

myogenic cells during limb development although both OSR factors are not expressed in muscle 

cells (Stricker et al. 2012). Ectopic expression of Osr1 and Osr2 in undifferentiated myogenic 

cells or bone marrow stromal cells reduces their capacity to differentiate into myotubes or 

osteoblasts, respectively. Retroviral overexpression of Osr1 in chick hindlimb induces a 

reduction of tendons and skeleton elements. In addition, double mutant mice for Osr1 and Osr2 

display increased cartilage differentiation in synovial joints and abnormal joint fusion (Gao et al. 

2011). Osr1-deficient mice exhibit mispatterning of individual muscles and myotendinous 

junctions as well as increased expression levels of tendon- and cartilage-associated genes 

(Vallecillo García et al., in revision). Altogether, Osr1 and Osr2 seem to control the 

differentiation of mesenchymal cells into irregular connective tissue. 

Muscle interaction with other compartments of the musculoskeletal system 

The musculoskeletal system gives the ability for an organism to move by a precise coordination 

between its components. Forces generated by muscle contraction are transmitted to the skeleton 

via connective tissue to allow body motion. Connective tissue is one of the main constituents of 

the body that supports, connects and separates tissues and organs from each other. The term of 

connective tissue gathers together an ensemble of tissues such as tendon and MCT, which are 

intimately linked to muscles. In the developing limb, MCT cells are positioned surrounding 

muscles but also interstitial to the muscle fibres and play a role of binder providing elasticity and 

rigidity for muscle function. Throughout limb development, lateral plate-derived connective 

tissue cells are temporally and spatially associated with myogenic cells. Each individual muscle 

is characterized by its own organization, fibre orientation and composition, while expressing a 

similar gene program. Resident tissues at places where muscles will form are then good 

candidates to contribute to the correct muscle patterning. Indeed, emerging evidence have 

highlighted that interactions between muscle and connective tissue are crucial for proper limb 

patterning and morphogenesis. 
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Muscle-bone interaction. Muscle development requires bone formation and modifications of 

skeleton induce changes in muscle formation. Limb skeleton develops autonomously and is 

uncoupled of soft tissue patterning (Li et al. 2010). However, the arrangement of muscles, 

orientation of muscle fibres and integration of tendons must be related to some extent to the 

skeletal elements for proper organization of the limb musculoskeletal system. Indeed, 

manipulations of chick limb buds clearly evidenced that musculature and skeletal structures are 

closely associated. For instances, ZPA grafts to the anterior margin of limb buds lead to 

duplicated skeletal structures and muscles (Duprez et al. 1999; Robson et al. 1994). Likewise, 

reversion of the dorsal-ventral axis in chick limb bud by rotation of the ectoderm results in the 

dorsoventral respecification of both skeleton and muscles (Akita 1996). In addition, IHH 

signalling, which is important during chondrogenesis, have been lately associated with muscle 

patterning. In chick embryos, downregulation of IHH results in muscle and skeletal defects in 

hindlimbs, similarly to those observed in Ihh-deficient mouse embryos, while restoration of SHH 

signalling rescues muscle masses (Bren-Mattison et al. 2011). As previously mentioned, Hox11 

paralogous genes function in the establishment of the zeugopod during limb development. 

Hoxa11; Hoxd11 double mutant mice exhibit skeleton, muscle and tendon mispatterning in the 

zeugopod (Swinehart et al. 2013). However, when only one of both paralogous genes is deleted, 

either Hoxa11
−/− or Hoxd11

−/−, patterning defects remain exclusively visible for muscles and 

tendons, while zeugopod skeleton appear normal. Whether muscle and skeleton development 

occurs autonomously, proper patterning of both tissues seem related since mechanical forces 

driven by muscles contribute to bone shape, growth and fracture healing as well as joint 

formation (Hall and Herring 1990; Hosseini and Hogg 1991; Kahn et al. 2009; Rot et al. 2014; 

Sharir et al. 2011). 

Muscle-tendon interaction. The interface between muscle and tendon is named the 

myotendinous junction and consists in interdigitations of the basement membranes of tenogenic 

and myogenic cells through interactions between tendon collagen fibrils and muscle laminins or 

integrins (Bökel and Brown 2002; Tidball and Lin 1989). Reciprocal interplay between muscles 

and tendons that are necessary for the correct patterning of both tissues have been highlighted 

(Soler et al. 2004; Wan et al. 2012; Figure 6). In chick and mouse limbs, late tendon 

development requires the presence of muscles (Bonnin et al. 2005; Edom-Vovard et al. 2002; 

Eloy-Trinquet et al. 2009; Huang et al. 2015; Kardon 1998). The absence of muscles induces 

defects in the segregation of tendon primordia into individual tendons leading to their 

degeneration (Huang et al. 2015; Kardon 1998). Reciprocally, surgical removal of tendon 

primordia at the early onset of hindlimb development causes the appearance of ectopic muscle in 

the knee of chick embryos (Kardon 1998). FGF signalling seems to be involved in tendon-
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muscle interplay (Edom-Vovard et al. 2001). In chick embryos, FGF4 is expressed in muscles, 

close to myotendinous junctions. Overexpression of FGF4 induces an upregulation of SCX and 

TNC expression, and vice versa, downregulation of FGF4 is followed by downregulation of SCX 

expression. FGF signalling modulators Pea3, Spry1 and Spry2 are expressed at myotendinous 

junctions in both mouse and chick embryo limbs, and their expression is dependent on muscles 

and FGF4 activation (Eloy-Trinquet et al. 2009). However, if late tendon development is muscle-

dependent, early tendon development does not require the presence of muscles. Induction of Scx 

expression in the developing limb occurs normally in Myod
−/−; Myf5

−/− and Pax3 mutant mice 

(Brent et al. 2005; Schweitzer et al. 2001), as well as in muscleless chick limbs (Edom-Vovard et 

al. 2002; Kardon 1998). Therefore, although initiation of muscle and tendon patterning occurs 

independently of each other, maintenance and establishment of muscles and tendons are closely 

related and seem to require spatial, temporal and mechanical interactions between both tissues. 

Indeed, it has been recently characterized that correct positioning of the flexor digitorum 

superficialis muscle in the mouse forelimb arises after differentiation and is dependent on both 

muscle contraction and tendons (Huang et al. 2013). In Drosophila, similar muscle-tendon 

interactions exist for flight motility. In contrast to the mesodermal origin in vertebrates, tendons 

(and exoskeleton) originate from the ectoderm and contribute to the connection between the 

exoskeleton and flight muscles. Tendons initiate their development independently of muscles but 

require muscle attachment to pursue their patterning at later stages (reviewed in Schweitzer et al. 

2010; Soler et al. 2016). 

 

Figure 6. Representation of the limb musculoskeletal system in the mouse and the fruit fly. (A,B) 
Lateral views of the musculoskeletal system of the mouse embryonic hindlimb at E14.5. Muscles are 
labelled in red; tendons in green; nerves in blue. (C,D) Three-dimensional reconstruction of appendicular 
muscles and tendons of the tibia (C) and the femur (D) in Drosophila 55h after pupae formation. Muscles 
are depicted in green; tendons in red. In contrast to vertebrates, muscles are anchored in the exoskeleton 
in the fly. Extracted from Soler et al. 2004; Wan et al. 2012. 
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Muscle-MCT interaction. Despite their distinct embryonic origin, spatial organisation and 

differentiation of MCT cells occur in close proximity to myogenic cells. Although MCT 

develops normally in muscleless limbs, emerging evidences have highlighted that muscle 

patterning is under the influence of MCT (Grim and Wachtler 1991; Kardon et al. 2003). Ectopic 

expression or mutation of the MCT markers Tcf4, Tbx4, Tbx5, Osr1 or Osr2 leads to patterning 

defects of limb skeletal muscles (Hasson et al. 2010; Kardon et al. 2003; Mathew et al. 2011; 

Murphy et al. 2011; Stricker et al. 2012; Vallecillo García et al., in revision). This highlights the 

requirement of MCT for skeletal muscle formation. Reciprocally, MCT function requires signals 

from muscles. For instance, type-VI collagen is an ECM protein found in muscle endomysium 

and is a recognized marker of MCT. Mutations in the genes COL6A1, COL6A2 or COL6A3 are 

associated with myopathies and muscular dystrophy (reviewed in Lampe and Bushby 2005). 

Activation of the enhancer required for Col6a1 expression in MCT cells is dependent on muscle 

cells, since its expression is absent in muscleless limbs (Braghetta et al. 2008). In addition, lysyl 

oxidase (Lox), which is an extracellular copper enzyme contributing to the formation of 

collagens and elastin (Mäki 2009), is expressed in myofibres in the mouse developing limb 

(Kutchuk et al. 2015). Lox-deficient mice exhibit shorter and smaller skeletal muscles, as well as 

disorganized MCT depicting type-I collagen fibres with increased diameter and a higher 

concentration of Tcf4 (Kutchuk et al. 2015). Although the molecular interplay between MCT 

and muscle remains poorly characterized, reciprocal interactions between both tissues seem to be 

required for proper limb morphogenesis. A recent transcriptomic approach performed on isolated 

mouse Osr1-expressing cells revealed that Osr1 positively regulates genes encoding chemokines, 

cytokines, ECM proteins and adhesion molecules (Vallecillo García et al., in revision). By 

analogy with the previous observations related to Tcf4, Tbx4 and Tbx5 misexpression, MCT may 

contribute to establish a resident environment during limb development. 

B. From a single gene to a multi-layered network 

All cells constituting a multicellular eukaryotic organism share the same genetic information. 

However, the choice of differentiation taken by a progenitor cell encompasses dramatic 

phenotypic changes that differ between the hundreds of different cell types within a multicellular 

organism. For instance, mesenchymal progenitor cells derived from the lateral plate mesoderm 

or the somites will give rise to the different tissues of the limb musculoskeletal system, such as 

muscle, cartilage, tendon or MCT. All these cells possess the same DNA sequence in their 

nucleus but the retrieval of this information underlies a precise temporal and spatial control. 

Expression of the genetic information is therefore achieved by the realization of specific 
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developmental regulatory programs taking place that will drive the cells to follow the 

appropriate differentiation process. These developmental programs consist in a fine tuning 

between the repression and the expression of a given set of genes in response to certain extrinsic 

or intrinsic signals, at a specific location and/or at a precise time. The orchestrated process 

leading to the activation or inactivation of a gene cannot therefore rely only on the binding or the 

release of the RNA polymerase II (Pol II), respectively. It rather involves a plethora of 

checkpoints ranging from the chromatin structure to the base composition along the gene locus 

ultimately leading to the expression of a given gene. 

Regulation of gene transcription 

Gene expression is defined according to two biological processes, namely transcription and 

translation, each being dependent on an additional constant, the mRNA and protein degradation 

rate, respectively (Figure 7). The abundance of proteins is a balance between protein half-life 

and the number of proteins synthetized from the transcripts, which are themselves dependent on 

their half-life and the rate of gene transcription. A recent study has quantified protein and 

transcript abundances for ~5,000 protein-coding genes in mouse fibroblasts revealing a median 

transcription rate of 2 mRNA molecules per hour (Schwanhäusser et al. 2011). Although mRNA 

and protein half-lives are not correlated as compared to the number of transcripts vs. number of 

proteins, genes with similar mRNA and protein stabilities share common biological functions. 

Indeed, genes with both stable mRNAs and proteins are generally involved in housekeeping 

functions, whereas genes with stable mRNAs but unstable proteins mainly encode secreted 

proteins, adhesion molecules and ECM components. By contrast, TFs and chromatin-modifying 

enzymes have a short half-life and are synthetized from unstable transcripts, which is consistent 

with their dynamic function in gene regulation. 

 

Figure 7. Quantitative model of gene expression. Transcripts are synthetized with the 
transcription rate vsr and degraded according to the constant kdr. Protein abundances are 
balanced between the translation rate ksp and the degradation constant kdp. Median synthesis 
rates and half-lives (blue) are indicated according to Schwanhäusser et al. 2011. 
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The first step of mRNA transcriptional initiation is marked by the recruitment of the pre-

initiation complex (PIC) at the promoter (Figure 8A). The PIC consists in a multiprotein 

complex formed between the Pol II, a 12-subunit enzyme, and the general transcription factors 

(GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH (reviewed in Sainsbury et al. 2015). The 

Pol II undergoes afterwards an elongation phase to synthetize the mRNA until termination, 

which corresponds to the release of the transcript from the Pol II. Repetition of these three steps 

then determines the gene expression levels. However, emerging evidence have highlighted that 

mRNA transcription is not a linear process and is rather precisely regulated at each step in order 

to ensure the proper timing of mRNA synthesis. One of the sophisticated mechanisms limiting 

the transcription rate is associated with the pausing of the Pol II 30-60 nucleotides downstream 

of the gene transcriptional start site (TSS; Figure 8B). Although several reports on a limited 

number of genes evidenced blocked Pol II at promoters (reviewed in Adelman and Lis 2012), the 

first genome-wide analysis of Pol II occupancy in mammalian cells revealed that accumulation 

of the PIC at the gene TSS is a promoter-proximal common feature (Kim et al. 2005). Later, a 

study in human embryonic stem cells correlated Pol II accumulation with chromatin signatures 

associated with transcriptional activity, suggesting that paused Pol II had previously initiated 

transcription (Guenther et al. 2007). The notion of pausing was finally demonstrated by a 

genome-wide sequencing of nascent transcripts in human lung fibroblasts since paused Pol II 

had the ability to re-initiate transcription in vitro (Core et al. 2008). Pol II pausing is broadly 

observed at genes with a wide range of expression levels in metazoans, suggesting that it is a 

general poising mechanism to control the expression of active genes rather than an inactivation 

mechanism (reviewed Adelman and Lis 2012). Stability of Pol II promoter-proximal pausing 

seem to be mediated by the core promoter elements (Kwak et al. 2013; Li and Gilmour 2013), 

and by the cooperation of TFs with the negative elongation factor (NELF) and the DRB-

sensitivity-inducing factor (DSIF) (reviewed in Adelman and Lis 2012). In addition to control 

gene expression levels, Pol II pausing is thought to keep the chromatin in an opened state 

accessible for TFs by preventing nucleosome rearrangement as well as to facilitate 5’-end 

capping of nascent transcripts prior to productive elongation (reviewed in Adelman and Lis 

2012). Release of paused Pol II is under the control of the positive transcription elongation factor 

b (P-TEFB) that phosphorylates the Pol II carboxy-terminal domain, NELF and DSIF, thus 

freeing the Pol II for productive mRNA synthesis (reviewed in Jonkers and Lis 2015; Figure 

8C). 
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Figure 8. Schematic representation of initiation of gene transcription. (A) Recruitment of the Pol II at the core 
promoter elements by the GTFs resulting in the formation of the PIC. (B) Transcription initiation followed by Pol II 
pausing 30-60 bp downstream of the gene TSS mediated by the factors NELF and DSIF. (C) Release of paused Pol 
II for productive elongation following phosphorylation of the Pol II carboxy-terminal domain, NELF and DSIF 
orchestrated by P-TEFB. CTD, carboxy-terminal domain; GTF, general transcription factor; TSS, transcriptional 
start site. 

Transcript synthesis through elongating Pol II is not a unidimensional process and the elongation 

rate is subjected to variations. Indeed, elongation speed is rather non-optimal at the transcription 

initiation of mammalian genes. Gradual accumulation and post-translational modifications 

(PTMs) of transcriptional machinery components seem to enhance the elongation rate to reach 

its maximum after a few kilobases (reviewed in Jonkers and Lis 2015). In addition, impediments 

encountered by the Pol II along the gene body induce elongation rate fluctuations, resulting in a 

gene-dependent transcription rate. Exon density, GC-content and long-terminal repeats are 

overall negatively correlated with the elongation rate, whereas long genes with low-complexity 

sequence and distant from other simultaneously transcribed genes are generally associated with 

faster elongation rates (Jonkers et al. 2014; Veloso et al. 2014). Reduced Pol II elongation rate at 

exons seems to be related to alternative splicing and exon skipping (reviewed in Jonkers and Lis 

2015). Once having reached the polyadenylation signal, the Pol II pauses to seemingly increase 

the efficiency of the transcriptional termination process (reviewed in Porrua and Libri 2015). In 

metazoans, transcription termination corresponds to the release of the nascent mRNA transcript 

mediated by a cleavage complex composed of CPSF, CstF, CFI and CFII, followed by the 

dismantling of the elongation complex. Pol II pausing appears to be associated with formation of 

RNA-DNA hybrids (referred as R-loops) and further recruitment of the RNA exonuclease 

XRN2, which degrades the 3’-end of the nascent transcript remaining after cleavage. 
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DNA regulatory elements 

To elucidate the complexity behind gene expression, the US National Human Genome Research 

Institute (NHGRI) initially launched in 2003 the Encyclopaedia of DNA Elements (ENCODE) 

project. This worldwide consortium intended to identify the functional elements that composed 

the human genome besides the 1.22% of the DNA sequence encoding proteins (ENCODE 

Project Consortium 2012). By 2012, the ENCODE consortium had generated over 1,600 data 

sets covering 147 different human cell types and claimed that 80.4% of the human genome is 

functional. This controversial term of “functional” engendered an unprecedented debate among 

the scientific community. Indeed, the definition of functionality is contradictory with the long-

standing notion that the human genome is mainly composed of non-coding regions, the so-called 

“junk DNA” (Ohno 1972). The DNA elements thus defined as functional by the ENCODE 

consortium corresponds to the regions of DNA that have a biochemical function, which is 

distinguishable from the evolutionary functional regions (Germain et al. 2014). In other words, 

the genome does not carry only functional elements giving rise to proteins, but also numerous 

regulatory elements that contribute to gene expression and repression. However, to the same 

extent as for limb development, gene regulation processes ultimately leading to gene expression 

or repression remain only partially resolved. 

Besides exonic sequences, the genome is composed of multiple domains that ensure the 

regulation of gene expression. These control elements can be divided into two main categories: 

promoters and enhancers. Basically, promoters correspond to domains located near the TSSs 

where Pol II binds and initiates transcription. Tetrapod promoters can be divided into two main 

classes depending on their base composition: GC- and AT-rich promoters (Carninci et al. 2006; 

Yamashita et al. 2005). GC-rich promoters are characterized by the presence of CpG islands and 

are related to both ubiquitous and differentially regulated genes. In contrast, AT-rich promoters 

contain the TATA-box and are frequently associated with tissue specificity (Barrera et al. 2008). 

Enhancers are cis-regulatory elements that can be located in close proximity but also distant to 

their targeted gene and that contribute to regulate the transcriptional activity independently of 

their position, orientation and distance (Banerji et al. 1981, 1983). Long-range regulation 

between a distal enhancer and its target gene is exemplified with the SHH locus. Mutation in an 

enhancer located nearly 1 Mb upstream of SHH is responsible for preaxial polydactyly in human 

(Lettice et al. 2003). Deletion of this enhancer in the mouse results in truncated limbs (Sagai et 

al. 2005). Likewise, Sox9 and Myf5 expression are also under the control of distant-acting 

enhancers (Carvajal et al. 2001; Wunderle et al. 1998). 
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Promoters and enhancers are marked by the recruitment of protein effectors that bind directly to 

DNA (activators) or indirectly through protein-protein interactions (coactivators). The repertoire 

of genes composing the human genome encodes for approximately 7-10% of DNA-binding 

protein effectors (Maston et al. 2006). TFs are protein effectors that are typically composed of 

three domains: (i) a DNA-binding domain, which recognizes a specific sequence motif; (ii) a 

trans-activating domain, which ensures the activation or silencing function; and (iii) a protein-

protein interaction domain, which allows the cooperation with other proteins. TFs are gathered 

together in families based on the structural similarities within their DNA-binding domain such as 

the presence of a homeodomain (Hox, Pax), a basic helix-loop-helix structure (MyoD, 

myogenin) or a zinc-finger domain (Krüppel, Engrailed). The TF specificity of DNA binding is 

conferred by a short and degenerate recognition motif of 6-20 bp (reviewed in Luscombe et al. 

2000). In general, the degeneracy level of recognition site does not prevent TFs to bind but 

influences the binding affinity of the TF for a given DNA sequence (Badis et al. 2009). 

However, TF recognition sites contain usually 4-6 constrained positions that truly dictate 

specificity since their modification or mutation can alter TF binding (Ibrahim et al. 2013; 

Wienert et al. 2015). In addition, TF-TF cooperativity is frequently observed with the formation 

of homo- or hetero-dimers between related TFs but also between TFs of distinct structural 

families (Jolma et al. 2015). The resulting recognition site is then usually composed of two half-

motifs, which can be different from the preferential binding motif of each interacting partner. In 

Drosophila for instance, Extradenticle (Exd) interacts with several Hox proteins such as Labial 

(Lab) and Ultrabithorax (Ubx) during body axis patterning. The heterodimers thus formed 

recognize distinct consensus sequences that differ from the specific motif when they bind 

individually to DNA, which could then contribute to the specificity of Hox factors in vivo 

(Slattery et al. 2011). However, genome-wide analyses of TF occupancy have revealed that a 

high proportion of binding sites are devoid of a canonical binding motif, indicating that the 

specificity of TFs does not solely rely on the DNA sequence (Ernst and Kellis 2013). On the 

other hand, by considering the core binding site of 4-6 bp and the large size of eukaryotic 

genome, a TF has the potential to bind over hundreds of thousands positions (Wunderlich and 

Mirny 2009). Instead, TFs occupy a limited number of sites, suggesting that additional 

constraints must exist to prevent TFs to bind in an uncontrolled manner along the genome. A 

recent study in the sea quirt Ciona intestinalis in regard to the occupancy of the TFs GATA and 

ETS along the Otx-a enhancer has revealed that enhancer specificity is mediated by a 

suboptimization of the TF-binding sites (TFBS) (Farley et al. 2015). Indeed, incorporation of 

higher affinity binding motifs and optimal adjustment of motif spacing resulted in aberrant 
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enhancer activity and ectopic expression of the gene reporter. Therefore, attenuated enhancer 

activity through suboptimal TF binding seems to mediate the specificity of gene expression. 

Chromatin modelling 

The regulation of gene expression depends on the capability of TFs to bind on promoter and 

enhancer regulatory domains. Therefore, recognition of the specific sequence motif and DNA 

binding of the TFs rely on the accessibility of the chromatin (Kaplan et al. 2011; Thurman et al. 

2012). DNA is packaged into chromatin structures named nucleosomes that are tightly regulated. 

A nucleosome consists of an octameric protein complex composed of a dual core of the histone 

proteins H2A, H2B, H3 and H4, wrapped around by ~150 bp of DNA and stabilized together by 

the histone protein H1 (Luger et al. 1997). The level of compaction of the nucleosome structure 

defines the chromatin state and by extension the level of gene expression. Condensed 

nucleosomes, namely heterochromatin, are generally associated with silencing due to a high 

compaction level that makes the DNA sequence inaccessible. By contrast, euchromatin is rather 

related to active gene expression owing to its relaxed nucleosome structure thus providing 

accessibility to DNA sequence. Histone proteins are relatively small and composed of two 

domains, a globular core region and a N-terminal tail protruding from the nucleosome. Although 

the globular domain is also dynamically regulated (reviewed in Lawrence et al. 2016), histone 

tails are subjected to various PTMs such as acetylation, methylation, phosphorylation and 

ubiquitination (reviewed in Bannister and Kouzarides 2011; Figure 9).  

 
Figure 9. Post-translational modifications of histone protein tails. Overview of the main covalent histone 
modifications frequently found at the protruding tail of the histone proteins H2A, H2B, H3 and H4. Residues are 
depicted in grey. Amino-acid positions are depicted in black underneath starting from the N-terminal extremity. 
Histone PTMs associated with transcriptional activation are indicated above and those associated with 
transcriptional repression are displayed beneath. Ac, acetylation; Me, methylation; P, phosphorylation; Ub, 
ubiquitination. Adapted from Hamon and Cossart 2008. 

The variety of histone modifications, affected residues and involved histone proteins constitute a 

code of chromatin structure (re-)modelling (Strahl and Allis 2000). Although this function has 
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been more associated with the globular domain (reviewed in Tessarz and Kouzarides 2014), 

PTMs on histone tails can also alter nucleosomal architecture. Acetylation of the lysine 16 of 

histone H4 (H4K16ac) loosens chromatin structure by preventing nucleosome cross-interactions 

(Shogren-Knaak et al. 2006), whereas trimethylation of H4K20 (H4K20me3) increases 

chromatin compaction in vitro (Lu et al. 2008). However, such role seems rather exceptional 

since the complete removal of histone tails does not affect nucleosome stability (Ausio et al. 

1989). Histone tail-extension modifications can also promote the recruitment of protein effectors 

such as chromatin-modifying enzymes and TFs (Clements et al. 2003; Vettese-Dadey et al. 

1996), as well as to prevent the access of chromatin remodelling complexes (Shao et al. 1999). 

PTM of histone residues is a highly dynamic and reversible process regulated by histone-

modifying enzymes. Histone methylation is under the control of histone methyltransferases 

(HMTs), whereas demethylation is controlled by histone demethylases (HDMs). Deposition of 

methyl groups can either mark an active, or a repressive chromatin state, depending on the 

histone residue methylated and the level of methylation (Cosgrove et al. 2004). For example, 

H3K4 and H3K36 trimethylations (H3K4me3, H3K36me3) are usually associated with 

euchromatin and active transcription (Bannister et al. 2005; Schneider et al. 2004), whereas 

H3K9 methylation marks constitutive heterochromatic regions (Noma et al. 2001). Constitutive 

heterochromatin is found in the vicinity of permanently silenced genes, such as those located 

near centromeres, or in gene deserts (Rosenfeld et al. 2009). By contrast, facultative 

heterochromatin is related to genes that are dynamically regulated through addition or removal 

of methyl groups. H3K27 trimethylation (H3K27me3) is strongly correlated with facultative 

heterochromatic regions. For example, H3K27me3 is localised at the TSS of Hox genes in 

embryonic stem cells or at early stage of development thus preventing their expression. KDM6A 

(also known as UTX) and KDM6B (also known as JMJD3) lysine demethylases are then 

recruited during differentiation and development to catalyse the demethylation of H3K27 

residues and allow Hox gene transcription (Agger et al. 2007; Lan et al. 2007). In zebrafish, 

UTX has two homologues UTX1 and UTX2. Utx1 morphants display defects of the posterior 

part of the trunk consistent with the moderate expression of the related hox genes normally 

involved in the patterning of the tail (Lan et al. 2007). Unlike histone methylation, deposition of 

acetyl groups loosens the chromatin structure due to their negative charge. Histone acetylation 

and deacetylation are mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), 

respectively. H2BK5, H3K4, H3K9, H3K27 and H3K36 acetylations are for instances highly 

correlated with transcriptionally active genes (Wang et al. 2008). Additionally, chromatin 

signatures can directly affect gene transcription. For instances, H3K79me2 and H3K20me1 are 

correlated with higher elongation rates, whereas H3K36me3 appears to slowdown transcription 
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speed (Jonkers et al. 2014; Veloso et al. 2014). Likewise, deposition of H3K9me2 is associated 

with paused Pol II at transcription termination sites (reviewed in Porrua and Libri 2015). Taken 

together, histone modifications contribute therefore to mediate the accessibility or the 

obstruction to the DNA elements, and consist in a high-order control of gene expression. 

Promoter and enhancer domains 

Beyond the distance separating them from their target genes, promoters and enhancers can be 

distinguished by their local chromatin structure (Figure 10). Indeed, promoters are generally 

enriched for H3K4 trimethylated (H3K4me3); whereas enhancers are frequently associated with 

the presence of H3K4 mono-methylated (H3K4me1), the absence of H3K4me3 and binding of 

the transcriptional coactivator p300 (Barski et al. 2007; Heintzman et al. 2007; Visel et al. 2009). 

Promoter signatures such as H3K4me3 enrichment and DNase I hypersensitivity sites, which are 

characteristic of opened chromatin regions, are highly conserved across cell types (Roadmap 

Epigenomics Consortium et al. 2015; Thurman et al. 2012). Although this is particularly true for 

promoters associated with broadly-expressed genes, tissue-specific promoters tend to be less 

conserved across tissues and species (FANTOM Consortium et al. 2014; Young et al. 2015). By 

contrast, active enhancers are more restricted to certain tissues and species (Andersson et al. 

2014). Indeed, a comparison of the chromatin landscape between murine macrophages isolated 

from different tissues revealed that enhancers recapitulate better the distinct gene expression 

profiles observed than promoters (Lavin et al. 2014). Another study comparing active promoters 

and enhancers in liver tissue across 20 mammalian species separated by up to 180 million years 

converged towards similar observations. Proximal promoters depict a remarkable conservation in 

terms of H3K4me3 enrichment and underlying DNA sequence, whereas distal promoters rapidly 

diverged across lineages and species (Villar et al. 2015). 

 
Figure 10. Schematic representation of promoter and enhancer architecture. Promoters are positioned near 
gene transcriptional start sites (TSSs), whereas enhancers can be located far away from their target gene. Mono- and 
tri-methylation of H3K4 (H3K4me1, H3K4me3) are highly enriched at enhancer and promoter regions, respectively. 
Ratio between both chromatin signatures and distance to closest TSS have been widely used to discriminate 
promoter and enhancer domains. Adapted from Kim and Shiekhattar 2015. 
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However, despite their distinct features, promoters and enhancers share several architectural and 

functional commonalities. A typical example is related to the basic definition of promoters 

regarding their property to allow binding of the Pol II and further transcription initiation. Two 

independent genome-wide studies revealed that Pol II can be also recruited at active enhancer 

regions and initiate the synthesis of non-coding RNAs. These enhancer RNAs (eRNAs) were 

observed for the first time in neuronal cells and macrophages in response to membrane 

depolarization and lipopolysaccharide (LPS) stimulation, respectively (De Santa et al. 2010; Kim 

et al. 2010). Since then, eRNAs have been identified in other mammalian cells, including 

myoblasts and embryonic stem cells (reviewed in Lam et al. 2014; Mousavi et al. 2013). By 

using time course experiments, it has been shown that eRNA transcription is the earliest 

transcriptional event triggered during the commitment of stem cells and the differentiation of 

developmental progenitor cells (Arner et al. 2015). Besides RNA polymerase II binding, eRNA-

producing enhancers share common features with conventional active enhancers such as cell-

type specificity and identical, albeit more enriched, histone modifications, including H3K4me1, 

H3K27ac and H3K79me2 (Djebali et al. 2012). The majority of eRNAs are relatively short (< 2 

kb), appear to be unspliced, can be polyadenylated or not and are retained in the nucleus. In 

addition, eRNA transcription can occur in both directions from the center of the enhancer 

domain (Kim et al. 2010). Transcriptional bidirectionality, also named divergent transcription, 

was initially described at promoters where it appeared that reverse-oriented nascent transcripts 

(referred as PROMPTs) were synthetized upstream of the transcription initiation site (Core et al. 

2008; Preker et al. 2008; Seila et al. 2008). Divergent transcripts have a short lifetime due to 

rapid decay and are thought to prevent nucleosome repositioning and DNA supercoiling, to 

buffer the downstream gene transcription, or more recently to contribute to TF occupancy 

(Sigova et al. 2015). Although transcriptional bidirectionality has been considered as a general 

feature of eukaryotic active promoters, it seems that most of divergent transcripts arise actually 

from their own reverse-oriented core promoter (Duttke et al. 2015). In addition, intragenic 

enhancers are capable to serve as alternative promoters to synthetize non-coding transcripts 

sharing exons with their host gene (Kowalczyk et al. 2012). 

By analogy with their transcriptional activities, promoters and enhancers share actually similar 

histone modifications. Ratio between H3K4me1 and H3K4me3 signals have been widely used to 

distinguish enhancers from promoters (Heintzman et al. 2009). However, H3K4me3 is also 

frequently detected at actively transcribed enhancers (Pekowska et al. 2011). The H3K4 

methylation state seems most likely to simply reflect the transcriptional activity. Independently 

of transcript stability, the overall reduced transcription initiation level at enhancers as compared 

to promoters may contribute to the weaker enrichment of H3K4me3 mark at distal regulatory 
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regions (Core et al. 2014; Koch et al. 2011). Consistently, H3K79 bi- and tri-methylation 

(H3K79me2/3), which are observed at actively transcribed gene bodies (Pokholok et al. 2005; 

Schübeler et al. 2004; Steger et al. 2008), are also detected at enhancers with transcriptional 

activity (Bonn et al. 2012; Djebali et al. 2012). DNase I hypersensitivity sites correspond to 

accessible DNA regions resulting from nucleosome depletion and are associated with TF-

binding events. Both promoter and enhancer regions are highly correlated with DNase I 

hypersensitivity (Dong et al. 2012; Thurman et al. 2012). Whereas previous studies have 

highlighted that interacting promoter-enhancer pairs harbour similar TF-binding events (Bienz 

and Pelham 1986; Bohmann et al.; Parslow et al. 1987), recent genome-wide analyses have 

suggested the opposite pattern where bound TFs appear to be distinct between both interacting 

regulatory domains (Rada-Iglesias et al. 2011; Shen et al. 2012; Thurman et al. 2012). However, 

the distinct binding site pattern observed may result from the local base composition between 

promoters and enhancers. Indeed, enhancers display a lower GC content as compared to 

promoters that are in general enriched for CpG islands. TF-binding motifs identified in GC-low 

promoters actually resemble to those present in their interacting enhancers (Andersson et al. 

2014). Besides promoter-enhancer interactions, high-order chromatin organization also exists 

through promoter-promoter interactions (Li et al. 2012). Unlike promoter-enhancer interactions 

that are mainly related to tissue-specific genes, promoter-promoter associations are common to 

both housekeeping and non-ubiquitous genes. Additionally, genes involved in such 

combinational associations display similar expression profiles suggesting a transcriptional 

cooperation. Altogether, these recent genome-wide studies infer that promoters can act as 

enhancer-like structures and vice versa, enhancers possess promoter-like capacities, which 

emphasize a high-order complexity to regulate gene expression and repression. 

Transcription factor binding 

Genome-wide analyses of TF occupancy reported from a few hundreds to several tens of 

thousands of binding sites per TF along eukaryotic genomes (ENCODE Project Consortium 

2012; Johnson et al. 2007; Robertson et al. 2007). A recent in vitro study combining TF 

knockdown and gene expression profiling revealed a weak correlation between TFBS and 

differentially expressed genes upon TF knockdown (Cusanovich et al. 2014). According to this 

observation, most of the TFBS would be non-functional since only a few binding events have an 

impact on gene expression. Several evolutionary studies have attempted to decipher the TFBS 

functionality. Indeed, if the binding of a given TF at a certain location is functionally relevant, it 

is reasonable to suppose that the TF-binding sequence is under strong evolution constraint. A 

comparison of two liver-specific TFs CEPBα and HNF4α across five vertebrates separated by up 
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to 80 million years showed a strong divergence in their binding sites although the recognition 

motif is highly conserved (Schmidt et al. 2010). Most of the discrepancy between species-related 

TFBS could be explained by the underlying sequence, since 60-85% of binding losses were 

related to substitution, insertion or deletion events. However, 40-50% of lost TFBS were 

compensated by another binding event within 10 kb. Similar observations were reported when 

comparing the occupancy of three hepatocyte TFs across five mouse species separated by up to 

20 million years. The more the species are distant the higher is the divergence of the TF-binding 

profiles (Stefflova et al. 2013). Nevertheless, regions that were bound by several TFs were more 

conserved across rodent species suggesting a stronger sequence constraint for DNA elements 

with higher TF occupancy. By contrast, Drosophila species depict a generally higher 

conservation level in their TFBS as compared to mammals (Bradley et al. 2010; He et al. 2011; 

Paris et al. 2013). Although this could be correlated with a higher frequency of conserved 

elements across Drosophila genomes (37-53% vs. 3-8% for mammals; Villar et al. 2014), to a 

similar extent with mammalian species, regions with shared TFBS and located near genes were 

overall more evolutionary conserved (Paris et al. 2013; Wong et al. 2015). Taken together, these 

studies suggest that the cooperative regulation of tissue-specific TFs and their binding co-

dependence depict the TFBS functionality. By contrast, numerous TFBS seem rather non-

functional and tend to rapidly evolve. Although it is a matter of debate whether non-functional 

TFBS are truly non-functional, it has been proposed that these binding sites could contribute to 

buffer TF dosage (Veitia et al. 2013). On the other hand, extensive investigations on a higher 

number of TFs indeed revealed that TFs usually tend to bind as clusters in high-occupancy target 

(HOT) regions (Gerstein et al. 2010; modENCODE Consortium et al. 2010; Moorman et al. 

2006; Nègre et al. 2011; Yip et al. 2012). HOT regions appear to be a good indicator of TFBS 

functionality since they are correlated with interacting loci, Pol II recruitment and spatiotemporal 

gene expression (Foley and Sidow 2013; Heidari et al. 2014; Kvon et al. 2012). By contrast, low-

occupancy target regions tend to be rather non-functional since they mostly fail to drive 

expression in transgenic gene reporter assays (Fisher et al. 2012). 

In addition to chromatin remodelling complexes, nucleosome condensation is mediated by TFs 

as well, the so-called pioneer factors (Figure 11). These effector proteins are thought to bind and 

penetrate compacted nucleosomes to facilitate the recruitment of chromatin-modifying enzymes 

and to pioneer the access of secondary TFs. For instance, MyoD cooperates with the homeobox 

TF Pbx1 to recruit the SWI/SNF remodelling complex at the promoter of Myog for further 

binding and transcription induction (Berkes et al. 2004; de la Serna et al. 2005). Similarly, Pax7 

interacts with the Wdr5-Ash2L-MLL2 histone methyltransferase complex in the vicinity of 

Myf5. Its recruitment induces the trimethylation of H3K4 followed by transcriptional expression 
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of Myf5 (McKinnell et al. 2008). In addition, TFs usually require the involvement of co-factors 

to successively bind to DNA elements or to orchestrate their regulatory potential (Figure 11). TF 

co-factors do not necessarily bind to DNA and are therefore recruited through protein-protein 

interactions. In the budding yeast Saccharomyces cerevisiae for instance, a complex is formed 

between the TF Cbf1 and the non-DNA-binding co-factors Met4 and Met28. The resulting 

complex binds to an extended sequence of the Cbf1-Met4 recognition motif therefore increasing 

its binding specificity (Siggers et al. 2011). Such latent specificity has been also characterized in 

hematopoietic cell specification. The non-DNA-binding co-factor Fog1 interacts with Gata1 to 

positively regulate the differentiation of megakaryocytes and erythrocytes (Tsang et al. 1997), 

whereas Fog1 acts negatively to the formation of eosinophils and mast cells mediated by Gata1 

(Cantor et al. 2008; Querfurth et al. 2000). Disruption of the Gata1-Fog1 complex by mutating 

one residue of Gata1 prevents the binding of Gata1 at certain locations while enhancing new 

Gata1 binding sites (Chlon et al. 2012), indicating that a co-factor can act as an activator and/or 

as a repressor on TF occupancy. 

 
Figure 11. Schematic representation of transcription factor binding at DNA regulatory elements. Accessible 
promoters and enhancers are prone to the binding of TFs, which are recruited either via DNA-protein interactions by 
recognizing their own binding motif, or through protein-protein interactions. Pioneer factors (blue) have in general a 
high occupancy along the genome and promote the recruitment of specific TFs (pink) and co-factors (brown). 
Adapted from Kim and Shiekhattar 2015. 

Hierarchical cooperativity 

A time course experiment of murine primary dendritic cells stimulated with lipopolysaccharide 

(LPS) revealed a gradual molecular response via dynamic TF-binding events that correlated well 

with further recruitment of the Pol II and transcription initiation (Garber et al. 2012). This study 

established a hierarchical network composed of three distinct molecular states: (i) a static state 

corresponding to the pioneer factors Spi1 (also known as PU.1) and Cebpb that were already 

bound prior to cell stimulation; (ii) a prime response with TFs that rapidly bind upon LPS 

stimulation near genes that will be further activated; and (iii) a dynamic state associated with a 
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third wave of TFs that are additionally recruited and that induce the expression of antigen-

response genes. Therefore, TFs seem to act in a coordinate manner via successive cooperative 

recruitments to orchestrate relevant cell-response programs upon environmental cues. It is 

noteworthy that pioneer factors seem to have a dual role in initiating gene expression. They can 

mediate chromatin accessibility through binding to nucleosomes and they can maintain 

nucleosome-free regions while being bound. On the other hand, it seems that transcriptional 

activity is rather regulated by the timing of TF occupancy than the timing of TF expression. 

Indeed, a comparison of MyoD occupancy profile between 50%-, 95%-confluent myoblasts and 

myotubes revealed that most of the MyoD binding sites are shared across all cell populations 

(Cao et al. 2010a). However, the intensity of MyoD enrichment differed between proliferating 

myoblasts and differentiated myotubes. For instance, genes involved in muscle formation and 

function depicted a higher MyoD occupancy in myotubes as compared to myoblasts. Several 

models have been proposed to illustrate the cooperative TF binding in cis-regulatory regions 

(Figure 12). 

 

Figure 12. Models of transcription factor-binding at cis-regulatory regions. (A) Enhanceosome model. The TF 
cooperativity requires that all TF-binding motifs are present and spatially organized. (B) Billboard model. The 
spatial arrangement of the TF-binding motifs is looser and the TF cooperativity is less constraint. (C) TF collective 
model. The same cluster of TFs can bind to different enhancers independently of both motif composition and 
positioning. TF cooperativity depends on protein-DNA contacts and protein-protein interactions. Adapted from 
Spitz and Furlong 2012. 

The enhanceosome model relies on the strict presence of the binding motif of all TFs and their 

appropriate positioning to ensure protein-protein interactions in addition to protein-DNA 

contacts (Panne et al. 2007; Thanos and Maniatis 1995; Figure 12A). This model involves a 

strong binding cooperativity between TFs since small sequence alterations disrupt enhancer 

activity. A more flexible cooperativity has been proposed later with the billboard model, in 

which some TFs bind cooperatively while others are recruited independently or additionally 

(Kulkarni and Arnosti 2003; Figure 12B). Therefore, enhancer activity is less restrictive to the 

spatial organization of the binding motifs and only driven by a subset of bound TFs. However, 
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accumulating evidence has suggested that enhancer activity is mediated by a very flexible TF 

motif content and relies on a collective TF recruitment (Junion et al. 2012; Figure 12C). In this 

model, enhancer regions harbour diverse binding motifs for only a subset of the TFs and the TF 

recruitment relies on both protein-DNA and protein-protein interactions. A cluster of TFs can 

then bind to several enhancers independently of the motif composition and removal of one TF 

reduces or even abrogates enhancer activity. Overall, cooperativity between TFs and their co-

factors at specific enhancers occurs in a context-dependent manner, which emphasizes a 

combinatorial regulatory function to control gene expression (Stampfel et al. 2015). 

Physical interaction between distal enhancers and their target genes is rendered possible via 

DNA folding (Figure 13). Chromatin is indeed organized into spatial subdivisions, the 

topologically associated domains (TADs), which bring together a gene promoter with its 

corresponding distal regulatory elements (Dixon et al. 2012). Such high-order chromatin 

architecture seems to be the first prerequisite to regulate gene expression during cell 

differentiation and proliferation (de Wit et al. 2013; Naumova et al. 2013). For instance, during 

mouse limb development, a permutation between two TADs in the Hoxd gene cluster coincides 

with the inversion of expression observed for the subsequent patterning of the arm/forearm and 

the hand (Andrey et al. 2013). Consequently, TAD structure appears to be a critical regulatory 

unit to promote enhancer-promoter interaction and it is not surprising that disruptions of TAD 

have been recently associated with developmental pathologies such as limb syndromes 

(Lupiáñez et al. 2015). However, chromatin organization alone is not sufficient to drive gene 

expression since chromosome conformation appears rather stable and static across cell types and 

during development (Ghavi-Helm et al. 2014; Jin et al. 2013). Therefore, transcription initiation 

is rather dependent on an accumulation of multiple environmental cues such as three-

dimensional interactions, local chromatin states that render regulatory domains accessible, and 

cooperative binding of a cohort of context-dependent TFs. Although the demarcation of TAD 

boundaries and the precise mechanism by which enhancers are brought in close proximity to 

promoters remain mainly unsolved, protein-protein interactions between the activation domain 

of the TFs and the PIC seem to be mediated by the Mediator, a multiprotein complex composed 

of 26 subunits in mammals (Figure 13). Mediator subunit composition and structure are highly 

dynamic, which emphasizes an additional tuning to orchestrate gene expression (reviewed in 

Allen and Taatjes 2015). The large size of the Mediator complex constitutes an extensive 

molecular scaffold that transduces regulatory signals between the TFs and the PIC since they do 

not directly interact. Initiation of transcription is marked by the disruption of Pol II contacts with 

the Mediator and the PIC via phosphorylation of its carboxy-terminal domain by TFIIH, 
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followed by its release from the promoter (Kim et al. 1994). Pol II then undergoes a productive 

elongation phase ultimately leading to mRNA synthesis. 

 
Figure 13. Schematic representation of RNA polymerase II recruitment. DNA 
looping brings enhancers located distally near their target gene. Although this 
mechanism remains unclear, CTCF and Cohesion are thought to contribute to promoter-
enhancer interactions (not shown). The Mediator (yellow) is a large multiprotein 
complex that mediates the recruitment of the pre-initiation complex (PIC; red), which is 
composed of the Pol II and GTFs, for further transcription initiation. Adapted from Kim 
and Shiekhattar 2015. 

C. PhD project outline 

Fundamental and applied research on skeletal muscle has been mainly focused for decades by 

examining muscle cells, their progenitors and their properties. As aforementioned in the previous 

section, muscle development does not depend solely on muscle cells themselves. Several recent 

lines of evidence have indeed demonstrated that environmental cues coming from the 

surrounding tissues are crucial during muscle embryogenesis. However, connective tissue 

differentiation and formation, and their precise role in muscle development remain to date poorly 

investigated. The PhD thesis presented here intends to characterize the molecular mechanisms 

underlying the differentiation of connective tissue cells during limb development to provide a 

framework for future analyses of connective tissue and muscle interconnectivity. In this regard, 

five zinc-finger TFs were selected: OSR1, OSR2, EGR1, KLF2 and KLF4. 
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Selection of connective tissue-associated transcription factors 

Odd-skipped related 1 and 2 (OSR1, OSR2) are expressed in the MCT in close vicinity to 

myogenic cells throughout limb development in chick and mouse embryos (Stricker et al. 2006, 

2012). Both TFs induce the differentiation of mesenchymal cells into irregular connective tissue 

by repressing tendon-, bone- and cartilage-associated genes in culture systems (Stricker et al. 

2012). Osr1-deficient mouse embryos die at E14.5 and depict defects in individual skeletal 

muscles and myotendinous junctions (Vallecillo García et al., in revision). During early limb 

development, Osr1 and Osr2 expression are partly restricted by FGF signalling since blocking of 

FGF receptors in forelimb bud explants extends their expression domain (Lewandowski et al. 

2015). Besides their role during muscle patterning, Osr1 and/or Osr2 have been related to heart, 

kidney, joint, tooth and palate development in mice (Gao et al. 2011; James et al. 2006; Lan et 

al. 2004; Mugford et al. 2008; Xu et al. 2014; Zhang et al. 2009). Recently, OSR1 has been 

characterized as a tumour suppressor in gastric cancer via activation of p53 and repression of 

TCF/LEF (Otani et al. 2014), while osr2 has been shown to promote sox9a and col2a1 

expression as well as fin chondrogenesis in zebrafish (Lam et al. 2013). In Xenopus, osr1 and 

osr2 are involved in lung specification by regulating the BMP-WNT signalling crosstalk (Rankin 

et al. 2012). 

Early growth response 1 (EGR1) is expressed in tendons close to muscle attachments during 

chick and mouse limb development (Lejard et al. 2011). Ectopic expression of EGR1 in chick 

neural tubes or in murine mesenchymal stem cells is sufficient to induce the expression of 

tendon-associated genes and collagens, and to promote tendon differentiation (Guerquin et al. 

2013; Lejard et al. 2011). Consistently, Egr1-deficient mice display tendons with disorganized 

collagen fibrils, reduced expression of tendon-associated genes and decreased biomechanical 

properties, as well as impaired healing capacity following injury (Guerquin et al. 2013). In 

addition to its role in tendon differentiation and repair, Egr1 regulates cell growth, survival, 

migration and apoptosis in response to external stimuli including mechanical forces and stress 

(reviewed in Bhattacharyya et al. 2011; Pagel and Deindl 2011). EGR1 has been associated with 

thymocyte, brain, kidney, bone and adipose tissue development as well (Bettini et al. 2002; 

Boyle et al. 2009; Hansson et al. 2012; Knapska and Kaczmarek 2004; Suva et al. 1991). 

Krüppel-like factors 2 and 4 (KLF2, KLF4) are expressed in chondrogenic condensation regions 

in limb buds of chick and mouse embryos (Antin et al. 2010; Cameron et al. 2009). Although 

their role in limb development is presently not elucidated, both KLF factors have been associated 

with various biological processes such as haematopoiesis and the development of lung, 

thymocytes, heart, gut, skin and vessels (reviewed in Cao et al. 2010b; McConnell and Yang 
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2010; Park et al. 2016). Most importantly, both KLF factors are able to maintain the pluripotency 

of embryonic stem cells (Jiang et al. 2008), especially KLF4, which is one of the four key factors 

sufficient for cell reprogramming (Takahashi and Yamanaka 2006). In addition, Klf2 and Klf4 

have been associated with adipogenesis. Klf2 inhibits adipogenesis by preventing the expression 

of PPARγ and Klf2-null mouse embryonic fibroblasts (MEFs) differentiate faster into adipocytes 

than wild-type cells (Sen Banerjee et al. 2003; Wu et al. 2005). By contrast, Klf4 promotes 

adipogenesis of murine pre-adipocyte cells by activating C/EBPβ in conjunction with Egr2, 

while Klf4 knockdown prevents their differentiation into adipocytes (Birsoy et al. 2008). More 

recently, both factors have been shown as being involved in myoblast fusion through the ERK5 

signalling pathway. Indeed, Klf2 or Klf4 knockdown in myoblasts decreases myotube formation, 

while not affecting the expression of muscle differentiation genes. Reciprocally, overexpression 

of both Klf factors enhances myoblast fusion by generating larger myotubes with higher number 

of nuclei (Sunadome et al. 2011). 

Deciphering the molecular aspects of connective tissue cell differentiation 

Considering the close association existing between connective tissues (MCT, tendon) and 

muscle, the five zinc-finger TFs, OSR1, OSR2, EGR1, KLF2 and KLF4, constitute therefore 

good candidates to decipher the influence of connective tissue during limb muscle development. 

For this study, the chick embryo was chosen as animal model given its ease to manipulate in 

vitro and in vivo (e.g. Biau et al. 2007; Bourgeois et al. 2015; DeLise et al. 2000). First, the 

endogenous expression of the five TFs was investigated during chick limb development. Second, 

their influence on cell differentiation processes was evaluated upon overexpression of each TF in 

vivo in chick forelimbs, as well as in vitro in a high-density culture of mesenchymal cells 

extracted from chick limb buds. To further evaluate their influence at the molecular level, a 

whole-transcriptome sequencing (RNA-seq) approach was performed to identify the gene 

regulatory programs orchestrated by each TF. This approach was supplemented by a genome-

wide strategy of chromatin immunoprecipitation followed by massively parallel DNA 

sequencing (ChIP-seq) to determine two types of protein-DNA interactions: (i) chromatin 

architecture, by assessing histone tail PTMs that are characteristic of promoters, enhancers and 

facultative heterochromatin; and (ii) TF occupancy, so as to distinguish between indirect and 

direct target genes. The combination of these three levels of gene regulation allowed me to 

design a novel, unique and unexplored global regulatory network underlying connective tissue 

cell differentiation. Finally, a few interesting candidate target genes were selected and concisely 

characterized to validate the gene regulatory model. 
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MATERIALS AND METHODS 

A. Experimental procedures 

Fertilized chicken eggs 

Fertilized eggs used for in situ hybridization were provided by the Institut de Sélection Animale 

(JA 57 strain, Lyon, France). Chicken micromass cultures were prepared from fertilized eggs 

obtained from VALO BioMedia (Lohmann Selected Leghorn strain, Osterholz-Scharmbeck, 

Germany). White Leghorn fertilized eggs (HAAS, Strasbourg, France) were used for the 

preparation of chicken embryo fibroblasts and grafts. Embryos were staged according to the 

number of days in ovo and the Hamburger-Hamilton (HH) stages (Hamburger and Hamilton 

1951). 

In situ hybridization probes 

To target the endogenous expression of the transcription factors (TFs), the following probes were 

used: cOSR1 and cOSR2 (Stricker et al. 2006); cEGR1 (Lejard et al. 2011); cKLF2 and cKLF4 

(Antin et al. 2010). These probes were also used to detect the expression of the TFs from the 

RCAS-BP(A) retroviruses, except for cOSR1 and cKLF4 probes, which are located outside of 

the coding sequences (CDSs) cloned. Primers were designed to generate new probes for these 

both factors (Supplemental table S1). Expression of tendon and myogenic markers were assessed 

with the following probes: cSCX (Schweitzer et al. 2001); cTNMD (chEST332f24, Source 

BioScience); cMYOD (Pourquié et al. 1996); and cMYOG (Delfini and Duprez 2004). Antisense 

digoxigenin-labelled mRNA probes were synthetized by using SP6 or T7 RNA polymerases and 

the Riboprobe in vitro transcription system (Promega), and finally purified by using Illustra 

ProbeQuant G-50 columns (GE Healthcare). Successful probe synthesis was monitored on a 1% 

agarose gel. 

In situ hybridization on paraffin sections 

Fertilized chicken eggs were incubated at 37°C for 4.5 days (HH24-25) or 9.5 days (HH35-36) 

to investigate the endogenous expression of the TFs. Forelimbs and/or hindlimbs were harvested 

and fixed overnight at 4°C in 60% ethanol, 30% FA and 10% acetic acid. Limbs were washed 

twice with 70% ethanol and either stored at 4°C, or incubated for 30 min to 1 hour in 70% 

ethanol according to their embryonic stage. Limbs were dehydrated by successive baths in 95% 

ethanol (once) and 100% ethanol (twice), for 30 min to 1 hour, depending on the embryonic 
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stage. Limbs were transferred in a first bath of 100% toluene until falling down and transferred 

into a second bath of 100% toluene until becoming transparent. Limbs were then incubated 

overnight at 65°C in Paraplast (Sigma Aldrich). Limbs were then embedded in Paraplast and 

stored at room temperature until further processing. Paraffin blocks were cut by using a 

Microtome (Microm) with a thickness of 8-10 µm. Tissue sections were incubated at 37°C for at 

least 24 hours before further processing. 

Paraffin was first removed from tissue sections by three successive baths of 100% toluene for 5 

min. Sections were then rehydrated by successive baths of 5 min with decreasing concentrations 

of ethanol (from 100% to 30%) and kept in 1X PBS. Tissue sections were permeabilized by 

treatment with 1 µg/µL of proteinase K in 1X PBS for 7 min at 37°C, washed 5 min in 1X PBS, 

fixed 20 min with 4% PFA in 1X PBS, washed again 5 min in 1X PBS and kept in SSC 2X for at 

least 5 min. 1/100th volume of antisense digoxigenin-labelled mRNA probes in hybridization 

buffer (50% formamide, 10% dextran sulphate, 1 mg/mL yeast RNA, 1X Denhardt’s solution, 3 

mM Tris-base, 9 mM Tris-HCl, 200 mM NaCl, 5 mM NaH2PO4-H2O, 5 mM Na2HPO4, 5 mM 

EDTA) was added to each tissue section and incubated overnight at 65°C in a wet chamber 

containing paper soaked with 50% formamide and 2X SSC. Sections were then washed in three 

baths of 50% formamide, 1X SSC, 0.1% Tween 20, and blocked for at least 2 hours in 1X MAB 

supplemented with 0.1% Tween 20, 2% blocking reagent (Roche) and 20% goat serum. Sections 

were then incubated with anti-digoxigenin-AP antibody (Roche, 11093274910) diluted 1:2,000 

in blocking solution. Tissue sections were washed five times with 1X MAB and 0.1% Tween 20, 

twice with 1X NTMT (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween 

20). Detection was performed at 37°C in the dark in 1X NTMT containing 22.5 µg/mL NBT 

(Roche) and 120 µg/mL BCIP (Roche). Sections were finally washed in 1X PBS and mounted 

with Aquatex (Merck). 

If desired, muscle fibres were labelled by immunohistochemistry after the in situ hybridization 

procedure prior to mounting. Tissue sections were washed three times in 1X PBS, incubated for 

2 hours with mouse anti-MF20 antibody (Hybridoma Bank) recognizing sarcomeric myosin 

heavy chains, washed three times in 1X PBS, incubated for 1 hour with goat anti-mouse IgG2b-

HRP (Southern Biotech, 1090-05) diluted 1:50 in blocking solution, washed three times in 1X 

PBS and stained by using DAB and H2O2. 

Molecular cloning of the transcription factors 

The protein CDSs of the TFs OSR1 (NM_001168709.1), OSR2 (NM_001170344.1), EGR1 

(NM_204136.2), KLF2 (XM_418264.4) and KLF4 (XM_004949369.1) were amplified by PCR 

from chick embryo cDNA samples by using primers spanning from the translational start site to 
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the last triplet before the stop codon and carrying a digestion site for NcoI or BsmBI, and EcoRI, 

respectively (Supplemental table S1). TF coding sequences were digested with the corresponding 

restriction enzymes and ligated into an in-house modified version of the pSlax-13 vector 

(Morgan and Fekete 1996) containing a triple FLAG-tag and a digestion site for SpeI, previously 

linearized with NcoI and EcoRI. This intermediate vector enabled to fuse the triple FLAG-tag C-

terminally to the CDS of each TF. Directional cloning was finally performed by using ClaI and 

SpeI in order to insert the fused protein-coding sequences into the RCAS-BP(A) vector (Hughes 

2004). Sanger sequencing was performed to validate the integrity of the five inserts by using the 

BigDye v3.1 kit and an ABI 3700 capillary sequencer (Applied Biosystems). All the molecular 

biology procedures were carried out according to Sambrook and Russel 2001. 

Grafts of virus-producing cells into chick embryo limbs 

Chicken embryo fibroblast (CEF) cells extracted from E10 (HH36) chick embryos were 

transfected with each RCAS-BP(A) construct carrying the CDS of the TFs by using the Calcium 

Phosphate Transfection kit (Invitrogen), and passaged for at least one week at 37°C in DMEM 

medium (Gibco) containing 4.5 g/L of glucose and supplemented with 10% FBS (Sigma-

Aldrich), 1% chicken serum (Gibco), 1% L-glutamine (Gibco) and 1% penicillin/streptomycin 

(Gibco). On the last day, cells were passaged into a non-coated petri dish to form aggregates due 

to their inability to adhere on the plastic. Cell aggregates of approximately 50-100 µm in 

diameter were grafted into forelimb buds of E2.5 (HH17-18) chick embryo as previously 

described (Duprez et al. 1996b). Grafted and non-grafted contralateral wings were harvested at 

E9.5 (HH35-36) for either whole-mount in situ hybridization against MYOG, or in situ 

hybridization on paraffin-embedded tissue sections. Whole embryos were harvested at E11.5 

(HH37-38) for skeletal preparation. 

Whole-mount in situ hybridization 

Grafted embryos were harvested at E9.5 (HH35-36). Heads were cut off, viscera were removed 

and embryos were fixed overnight at 4°C with 4% FA in 1X PBS. Embryos were rinsed twice 

with PBT (1X PBS, 0.1% Tween 20), incubated for 15 min once in 50% methanol in PBT and 

twice in 100% methanol. Embryos were stored at -20°C until further processing. Rehydration of 

embryos was performed by successive bath of 15 min with decreasing concentration of methanol 

in PBT (from 75% to 25%). Embryos were finally washed twice for 15 min in PBT. Membrane 

permeabilization was performed for 20 min with 20 µg/µL proteinase K in PBT, followed by 2 

rinsing in PBT. Embryos were fixed for 20 min with 4% FA and 0.1% glutaraldehyde in PBT, 

followed by one rinsing in PBT and one bath of 5 min in PBT. Embryos were rinsed with 

hybridization mix (50% formamide, 1.3X SSC, 5 mM EDTA, 50 µg/mL yeast RNA, 0.2% 
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Tween 20, 0.5% CHAPS, 100 µg/mL heparin) and incubated for 1 hour in hybridization mix. 

Embryos were then incubated for 36 hours at 70°C with 1/100th volume of antisense 

digoxigenin-labelled mRNA probes in hybridization mix. Embryos were rinsed twice and 

washed three times for 30 min at 70°C in hybridization mix, followed by an incubation for 20 

min at 70°C in 0.5X MAB, 0.05% Tween 20, 50% hybridization mix. Embryos were then rinsed 

twice and washed twice for 30 min at room temperature in 1X MAB, 0.1% Tween 20. Embryos 

were incubated for at least one hour in blocking solution containing 1X MAB, 0.1% Tween 20, 

2% blocking reagent (Roche) and 20% goat serum. Embryos were incubated overnight with anti-

digoxigenin-AP antibody (Roche, 11093274910) diluted 1:2,000 in blocking solution. Embryos 

were rinsed three times and washed for 2 days with rocking in 1X MAB, 0.1% Tween 20. 

Embryos were washed twice for 10 min in 1X NTMT (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 

50 mM MgCl2, 0.1% Tween 20). Detection was finally performed at 37°C in the dark in 1X 

NTMT containing 22.5 µg/mL NBT (Roche) and 120 µg/mL BCIP (Roche). Staining was 

stopped in 1X PBT, embryos were fixed for 30 min with 4% PFA in 1X PBS and stored at 4°C. 

Skeletal preparation 

E11.5 (HH37-38) embryos were harvested for skeletal preparation as previously described 

(Ojeda et al. 1970; Simons and van Horn 1971). Viscera and eyes were removed, embryos were 

washed with 1X PBS and fixed for 24 hours in 80% ethanol, 20% acetic acid and 15 mg/mL 

Alcian blue 8GX (BDH) for cartilage staining. Embryos were dehydrated by several washes in 

100% ethanol up to one week. Bones were coloured by using a solution of 0.1 mg/mL Alizarin 

Red S (Sigma-Aldrich) and 0.5% KOH. Embryos were then incubated in a solution of 1% KOH 

and 20% glycerol until tissues became transparent and washed in 20% glycerol. Finally, skeletal 

preparations were incubated in successive baths of increasing concentration of glycerol (from 

40% to 100%). 

Retroviral particle production 

RCAS-BP(A) viruses carrying each of the TF coding sequences were produced with chicken 

DF1 cells (ATCC). DF1 cells were transfected by using PEI (Polysciences) and kept in culture 

for one week in DMEM medium (Gibco) containing 4.5 g/L of glucose and supplemented with 

10% FBS (Biochrom), 2% chicken serum (Sigma-Aldrich), 1% L-glutamine (Lonza) and 1% 

penicillin/streptomycin (Lonza). Retrovirus-infected cells were then maintained under starvation 

conditions for three days in DMEM medium containing 1 g/L of glucose and supplemented with 

1% FBS, 0.2% chicken serum and 1% penicillin/streptomycin. Retroviruses were harvested 

every day by pipetting the supernatant, flash-frozen in liquid N2 and stored at -80°C. Virus 

supernatants were thawed at 37°C, filtered by using a 0.45-µm vacuum system (Millipore) and 
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ultra-centrifuged for three to four hours at 4°C at 22,000 rpm. Supernatants were discarded and 

pellets were resuspended in the remaining drops by shaking for 1 hour at 4°C on ice. 

Concentrated viruses were aliquoted, flash-frozen in liquid N2 and stored at -80°C. 

Virus titration was performed by immunocytological staining using an in-house antibody 

directed against the RCAS-BP(A) envelope glycoprotein (mouse hybridoma cell line 3C2). DF1 

cells were infected with viruses serial diluted for 24 hours. Cells were fixed with 4% PFA in 1X 

PBS for 15 min, washed three times in DPBS (Gibco) and blocked for 30 min in MST solution 

(DMEM 1 g/L of glucose, 10% FBS, 0.2% Triton X-100). Cells were then incubated overnight 

at 4°C with the antibody directed against the RCAS envelope protein diluted 1:5 in MST 

blocking solution. Cells were washed three times in DPBS and incubated for 30 min with a 

biotinylated anti-mouse IgG antibody (Vector Laboratories) diluted 1:500 in MST blocking 

solution containing 0.005% of horse serum. Cells were washed three times in PBS supplemented 

with 0.1% of Tween-20, cell membranes were permeabilized for 30 min in 0.3% H2O2/methanol 

and washed three times in PBS and 0.2% Tween-20. Cells were finally stained by using the 

Vectastain Elite ABC and the DAB Peroxidase Substrate kits (Vector Laboratories). Virus titre 

was calculated by counting the number of brown cells stained by the peroxidase reaction for a 

given viral dilution. 

Chicken micromass cultures 

Chicken micromass (chMM) cultures were prepared as previously described (DeLise et al. 2000; 

Ibrahim et al. 2013; Solursh et al. 1978). Fertilized chicken eggs were incubated at 37.5°C and 

60% of humidity for 4.5 days (HH24-25). Fore- and hindlimb buds were dissected and collected 

in DPBS (Gibco). Limb buds were washed three to five times in prewarmed Hanks’ Balanced 

Salt Solution (HBSS; Lonza) and digested for 15 min at 37°C in prewarmed Dispase solution 

(Gibco) at 3 mg/mL to dissociate the ectoderm from the mesenchyme. Limb buds were washed 

eight to ten times with prewarmed HBSS to discard the ectoderm. Limb mesenchyme was then 

incubated for 30 min at 37°C in 1 mL of a prewarmed digestion solution composed of 0.1% 

Collagenase type Ia (Sigma-Aldrich), 0.1% Trypsin (Gibco) and 5% FBS (Biochrom) in DPBS. 

Mesenchymal tissues were then pipetted up and down to obtain a single-cell suspension. Cells 

were transferred in 9 mL of prewarmed chMM medium consisting of DMEM/Ham’s F-12 (1:1) 

medium (Biochrom) supplemented with 10% FBS, 0.2% chicken serum, 1% L-glutamine and 

1% penicillin/streptomycin. Cell suspension was passed through a 40-µm strainer (Fischerbrand) 

to filter single cells and 10 additional mL of prewarmed chMM medium were used to wash the 

cell strainer. Cells were spun down 5 min at 1,000 rpm, resuspended in 5 mL of prewarmed 

chMM medium and counted by using a Neubauer chamber. Volume was adjusted to reach 2x107 
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cells/mL with prewarmed chMM medium and RCAS-BP(A) retroviral particles were added at a 

ratio 1:1 to obtain a final concentration of 1.6x107 cells/mL. 10 µL of this virus/cell suspension 

were seeded per well on a 24-well cell culture plate and incubated for 2 hours at 37°C until cells 

adhere. Finally, 1 mL of chMM medium was carefully added to each drop. Cultures were kept at 

37°C for five days and medium was renewed every two days. 

Histological staining 

Histochemistry was used to assess viral dissemination and cell differentiation processes within 

the chMM cultures after 5 days of infection with each of the produced retroviruses. Viral 

flagged-TF expression was monitored by using a mouse antibody directed against the triple-

FLAG tag (Sigma-Aldrich, F1804). Muscle differentiation was assessed by using a mouse anti-

MF20 antibody (Hybridoma Bank). Immunohistological staining was performed as described for 

the retrovirus titration procedure by using the Vectastain Elite ABC and the DAB Peroxidase 

Substrate kits (Vector Laboratories). Anti-FLAG and anti-MF20 antibodies were used at a 

dilution of 1:500 and 1:100, respectively. Muscle differentiation was measured by determining 

the percentage of culture area covered by myotubes in four distinct regions of 500x500 pixel2 for 

each chMM culture using ImageJ (Schneider et al. 2012). To visualize the overall morphology of 

RCAS-infected chMM cultures, an Eosin staining was performed. Cultures were fixed with 4% 

PFA in 1X PBS at 4°C overnight, washed three times in 1X PBS, stained for 2 min with 2.5 g/L 

of Eosin (Sigma-Aldrich) in 80% ethanol and 0.5% acetic acid, and finally washed five times in 

1X PBS. Cartilage differentiation in chMM cultures was assessed by Alcian blue staining. 

Cultures were fixed for 30 min with Kahle’s fixation solution (1% formalin, 30% ethanol and 

4% acetic acid), washed three times with 1X PBS and stained overnight at 4°C in 1% Alcian 

blue in 0.1 M HCl. Cultures were then washed five times in 1X PBS and dried at room 

temperature. Chondrogenic matrix areas were measured by using ImageJ (Schneider et al. 2012). 

Western blot 

The integrity of the retroviral TF expression was validated by Western blot. Protein extracts 

were obtained from infected chMM cultures (6 wells) by harvesting the cells in RIPA buffer 

containing 50 mM HEPES-KOH pKa 7.55, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% Na-

deoxycholate supplemented with protease inhibitors (Roche), and passing them at least five 

times through a 0.4-mm needle. Protein concentration was determined by using the Micro BCA 

protein assay kit for microplates (Thermo Fischer). 10 µg of each protein sample were mixed 

with 4X boiling Laemmli loading buffer (62.5 mM Tris-HCl pH 6.8, 1% SDS, 10% glycerol, 

0.005% bromophenol blue, 355 mM 2-merceptoethanol) and incubated for 10 min at 95°C. 

Protein samples were spun down for 3 min at 3,000 x g and separated by SDS-PAGE using a 
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stacking gel with 5% acrylamide/bis-acrylamide (125 mM Tris-HCl pH 8.8, 0.1% SDS, 0.1% 

APS, 0.1% TEMED) and a separation gel with 12% acrylamide/bis-acrylamide (0.4 M Tris HCl 

pH 8.8, 1% SDS, 1% APS, 0.1% TEMED) in 1X migration buffer (25 mM Tris-HCl pH 7.5, 250 

mM glycine, 0.1% SDS). Transfer was performed overnight at 4°C at 20 V in 50 mM Tris-HCl, 

50 mM glycine, 20% methanol and 0.04% SDS, on a Immobilon PVDF membrane (Millipore, 

0.45-µm pore size) previously activated for 3 min in 100% methanol. Membranes were washed 

twice in 1X TBS (10 mM Tris-HCl pH 7.5, 150 mM NaCl) and blocked overnight at 4°C in 5% 

milk in 1X TBS containing 0.1% Tween 20. Membranes were washed four times in 1X TBS and 

0.1% Tween 20, and incubated 2 hours at room temperature with either a mouse anti-FLAG 

antibody (Sigma-Aldrich, F1804) diluted 1:1,000, or a rabbit anti-Histone H3 antibody (Abcam, 

ab1791) diluted 1:10,000 in 5% milk in 1X TBS and 0.1% Tween 20. After four washes in 1X 

TBS and 0.1% Tween 20, membranes were incubated for 1 hour at room temperature with either 

a goat anti-mouse IgG peroxidase conjugate antibody (Calbiochem, DC08L), or a goat anti-

rabbit IgG peroxidase conjugate antibody (Calbiochem, DC03L), diluted 1:1,000 in 5% milk in 

1X TBS and 0.1% Tween 20. Membranes were finally washed four times in 1X TBS and 0.1% 

Tween 20. Proteins were detected by using the Western Lightning Plus-ECL (PerkinElmer) 

reagents. 

Gene expression profiling 

Two biological replicates of chMM cultures were prepared from two independent pools of 4.5-

day-old limb buds and infected for 5 days with RCAS-BP(A) retroviruses carrying each of the 

TFs or no recombinant protein as control. For each replicate, RNA extracts were obtained by 

harvesting 6 culture wells with RLT buffer (Qiagen). Total RNAs were purified by using the 

RNeasy mini kit (Qiagen) in combination to a DNase I (Qiagen) treatment to prevent genomic 

DNA contamination. Quality of RNA extracts was monitored on a 1% agarose gel. RNA 

samples were given to the sequencing facility of the Max Planck Institute for Molecular Genetics 

for high-throughput sequencing. RNA libraries were prepared by using the TruSeq Stranded 

mRNA Library Preparation kit (Illumina), which enables to preserve the RNA strand orientation. 

Strand-specific 50-bp paired-end reads were generated by using a HiSeq 2500 sequencer 

(Illumina) with a mean insert size of ~150 bp (Supplemental table S2). 

Cell cross-link 

RCAS-BP(A)-infected chMM cultures from the two independent biological replicates used for 

RNA-sequencing were also harvested for cross-linking. After 5 days of growth, chMM cultures 

were digested for 60 min at 37°C in a solution of 0.1% Collagenase type Ia in chMM medium. 

Cultures were scratched by using a scraper and pipetted up and down to obtain a cell suspension. 
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Cell suspensions were spun down for 5 min at 1,000 rpm, washed with DPBS and spun down 

again for 5 min at 1,000 rpm. Pellets were resuspended in 10 mL of cold chMM medium and 

kept on ice. Cells were cross-linked in 1% FA for 10 min on ice. Fixation was quenched with 

125 mM of glycine. Cross-linked cells were spun down for 5 min at 1,000 rpm and washed twice 

with cold DPBS. After a final centrifugation step of 5 min at 1,000 rpm, pellets were flash-

frozen in liquid N2 and stored at -80°C. 

Nuclear extraction 

Nuclear extracts were prepared according to Ibrahim et al. 2013; Lee et al. 2006. Cross-linked 

cells were thawed and incubated for 10 min at 4°C with gentle rocking in 10 mL of Lysis Buffer 

1, containing 50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% 

NP-40, 0.25% Triton X-100 and protease inhibitors (Roche). Cells were spun down for 5 min at 

4°C at 2,700 rpm and incubated for 10 min at room temperature with gentle rocking in 10 mL of 

Lysis Buffer 2, containing 10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA and protease inhibitors (Roche). Cell nuclei were spun down for 5 min at room 

temperature at 2,700 rpm followed by resuspension in 1.5 mL of cold Lysis buffer 3, containing 

10 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA 0.1% Na-deoxycholate, 

0.5% N-lauroylsarcosine and protease inhibitors (Roche). 

Chromatin sonication 

Nuclear extracts were sonicated by using a Bioruptor NexGen (Diagenode) for 45 cycles of 30-

sec pulse and 30-sec pause with high intensity at 4°C. 150 µL of Triton X-100 were added to 

each sonicated fraction and spun down for 10 min at 4°C at 16,000 x g to remove cell debris. 

Supernatants were carefully retrieved and transferred into a fresh tube. 100 µL were taken for 

chromatin concentration assay, while the rest of each sonicated sample was flash-frozen in liquid 

N2 and stored at -80°C. 5M NaCl was added to each chromatin aliquot to read a final 

concentration of 0.5M NaCl. Chromatin aliquots were incubated for 15 min at 99°C with shaking 

(1,300 rpm) to reverse the cross-link. 4 µL of RNAse A were added, samples were briefly 

vortexed and incubated for 30 min at 37°C to digest RNAs. 4 µL of proteinase K were added, 

samples were briefly vortexed and incubated for 30 min at 55°C to digest proteins. 4 µL of 5 

mg/mL glycogen were finally added to each chromatin sample followed by 2.5 volumes of cold 

100% ethanol and incubated for 2 hours at -20°C. Chromatin samples were then spun down for 

30 min at 4°C at 15,000 x g, pellets were washed with cold 70% ethanol and spun down again 

for 10 min at 4°C at 15,000 x g. Supernatants were removed, pellets were dried at room 

temperature and resuspended in 20 µL of ddH2O. Chromatin samples were incubated 30 min at 
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37°C for complete resuspension. Concentrations were measured and used to estimate the 

concentration of chromatin in the nuclear extracts according to the following formula: 

!!"#$%&'!×!!!"#$#%"&'"' !× !
!!"#$%&'!!"#$%&#

!!"#$%&'

!!"#$%&'!!"#$%&#

 

Efficiency of the sonication was monitored by analysing the remaining chromatin aliquots on a 

1% agarose gel. Chromatin sonication was considered as sufficient and successful if DNA was 

fragmented between 200 and 500 bp. 

Chromatin immunoprecipitation 

Nuclear extracts from both biological replicates were used for chromatin immunoprecipitation 

(ChIP). Histone modifications were investigated in the chMM cultures infected with empty 

RCAS-BP(A) retroviruses carrying no recombinant protein, whereas the chMM cultures infected 

with RCAS-BP(A) particles carrying each of the TF CDS were used to investigate the TF-

binding sites. The following antibodies and volumes were used to establish the chromatin 

landscape within the chMM cultures: 4 µL (4 µg) of mouse anti-H3K4me1 (Abcam, ab8895); 8 

µL of mouse anti-H3K4me2 (Abcam, ab32356); 4 µL of mouse anti-H3K4me3 (Millipore, 07-

473); 4 µL (4 µg) of mouse anti-H3K27ac (Abcam, ab4729); and 4 µL (4 µg) of mouse anti-

H3K27me3 (Millipore, 07-449). 10 µL (10 µg) of mouse anti-FLAG (Sigma-Aldrich, F1804) 

were used to target the retroviral TFs. 

10 µg (~8 culture wells) and 30 µg (~24 culture wells) of chromatin extracts were used for ChIP 

against the histone marks and against the TFs, respectively. Aforementioned volumes of 

antibody were mixed to the chromatin fractions and incubated overnight at 4°C with gentle 

rocking. 50 µL of each chromatin extract were kept as input control and stored at -20°C until 

cross-link reversal. 40 µL of magnetic beads (Dynabeads protein G; Thermo Fischer) were used 

per ChIP. Prior to add them to the chromatin samples, magnetic beads were first blocked by four 

successive washes with 0.25% BSA in DPBS and finally resuspended in 100 µL of this blocking 

solution. Coated beads were then mixed to the antibody-chromatin complexes and incubated for 

at least 3 hours at 4°C with gentle rocking. Beads were then captured with a magnet, supernatant 

was discarded, and washed six times with cold RIPA buffer, containing 50 mM HEPES-KOH 

pKa 7.55, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% Na-deoxycholate and protease 

inhibitors (Roche). Complexes were washed once with 500 µL of cold TE buffer, containing 10 

mM Tris-HCl pH 8.0, 1 mM EDTA, 50 mM NaCl and protease inhibitors (Roche). Supernatant 

was removed and complexes were spun down for 3 min at 4°C at 1,000 x g. Remaining 

supernatant was removed, complexes were resuspended in 210 µL of Elution buffer (50 mM 
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Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS) and incubated for 30 min at 65°C with shaking (900 

rpm). Eluates were spun down for 1 min at 16,000 x g and 200 µL of supernatant was carefully 

retrieved. 

Input controls and ChIP eluates were then handled in parallel. 1/10th volume of 5M NaCl was 

added to each input and ChIP samples followed by an incubation overnight at 65°C to reverse 

the cross-link. Both sample types were then processed as for the chromatin concentration assay 

with successive incubations with RNAse A and proteinase K to remove RNAs and proteins, 

respectively, and followed by ethanol precipitation and resuspension in ddH2O. Precipitated 

ChIP and input samples were finally given to the sequencing facility of the Berlin-Brandenburg 

Center for Regenerative Therapies for high-throughput sequencing. Libraries were prepared by 

using the NEBNext Ultra DNA Library Preparation kit for Illumina (New England Biolabs). 50-

bp single-end reads were generated by using a HiSeq 1500 sequencer (Illumina; Supplemental 

tables S3, S4). 

Expression pattern of interesting targeted genes 

Primers listed in Supplemental table S1 were used to generate probes detecting the following 

targets: ADGRG2 (XM_015272749.1); ANXA1 (NM_206906.1; GEISHA ID, ANXA1.UApcr); 

CBFA2T2 (NM_001011689.1); NTN1 (L34549.1; Murakami et al. 2010); WNT4 

(NM_204783.1; GEISHA ID, WNT4.UApcr); WNT11 (NM_204784.1; GEISHA ID, 

WNT11.UApcr). Products amplified by PCR from chick embryo cDNA samples were cloned 

into the pCRII-TOPO vector (Invitrogen). Depending on the insert orientation, plasmids were 

linearized by either SpeI (Thermo Fischer), or NotI (Thermo Fischer). Probe synthesis was 

performed as aforementioned. Endogenous expression of the listed putative targeted genes was 

investigated by in situ hybridization on whole-mount at E5.5 (HH27-28) and paraffin-embedded 

tissue sections at E8 (HH34). 

B. Computational analysis 

Transcript-discovery approach 

RNA-seq data obtained from both control biological replicates were used to more accurately 

define the gene expression profile within the chMM culture. Firstly, strand-specific read pairs 

were mapped against the chicken genome galGal4 (Hillier et al. 2004) by using TopHat2 v0.14 

(Kim et al. 2013) with the following parameters: -r 150; -N 3; --read-edit-dist 3; --library-type fr-

firststrand; -i 50; -G. UCSC (galGal4) and Ensembl (release 75) annotations were downloaded 

from Illumina iGenomes and compared by using Cuffcompare from the Cufflinks suite v2.1.1 
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(Trapnell et al. 2010). Identical genes were retrieved only once and merged with the unique 

genes from each annotation. In case of discordant genes, the gene annotation with the best 

coverage was selected. The resulting gene annotation model composed of 17,318 genes was used 

as input for TopHat2 mapping. Transcript discovery was performed for each replicate by using 

Cufflinks (-b; -u; -library-type, fr-firststrand; -g) and the combined gene annotation model as 

guide. Resulting annotations were merged into a single model by using the Cufflinks tool 

Cuffmerge. 

In addition, a second transcript-discovery approach was led independently of the genome 

sequence. Low-quality RNA-sequencing reads from control chMM cultures were first filtered 

out by using the FASTX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit). Reads with a 

median quality value lower than 28 were discarded. Filtered read pairs were then trimmed by 

using Trimmomatic v0.32 (Bolger et al. 2014) with the following parameters: ILLUMINACLIP 

TruSeq3 paired-end for HiSeq, seedMismatches 2, palindromeClipThreshold 30, 

simpleClipThreshold 10; LEADING 5; TRAILING 5; MINLEN 36. Complete read pairs were 

then assembled by using Trinity r20140717 (Grabherr et al. 2011) with default parameters except 

for the library type set at RF. Resulting contigs were compared to the gene sequences obtained 

by the first approach by using BLAST v2.2.31+ (Camacho et al. 2009) (-strand plus; -dust no; -

soft_masking no). Contigs were assigned to a given gene if they matched at least 40 bp with a 

percentage of identities higher than 90%. Assigned contigs that were not fully covered by a 

given gene were further processed to extract continuous uncovered regions of at least 400 bp. 

Remaining contigs were mapped against the galGal4 genome by using BLAST. Contigs were 

assigned to a given gene if they were located between two gene features, potentially 

corresponding to an exon missed by Cufflinks, or in the vicinity of a first or last exon, potentially 

corresponding to a missing 5’- or 3’-untranslated region (UTR), respectively. Remaining 

unmapped contigs were retrieved as they could correspond to non-defined genomic regions. 

Unmapped, unassigned and non-covered contigs or regions were compared to each other to 

remove redundant regions. Unique contig sequences were gathered together as an additional 

chromosome and separated to each other by 250 bp. 

Gene sequences retrieved from both transcript-discovery approaches were then compared to 

existing databases for gene name assignment. First, genes were compared to the NCBI RefSeq 

transcript database by using BLASTN (-strand plus; -dust no; -soft_masking no). Comparison 

was limited to Aves (birds) sequences (taxid 8782), including the chicken annotation galGal5 

lately released (http://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/103). Genes 

with a percentage of identities higher than 75% and 90% for bird and chicken genes, 
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respectively, and covering or covered by at least 50% of their length were assigned to the 

corresponding hits. Non-annotated gene sequences were then compared against the NCBI human 

(taxid 9606) and mouse (taxid 10090) non-redundant protein database by using BLASTX (-

strand, plus; -seg, no). Genes with a percentage of homology of at least 30% and covered by at 

least 50% of their length were filtered. Matching protein accession numbers were converted into 

gene accession numbers by using the Hyperlink Management System (Imanishi and Nakaoka 

2009). Open reading frame (ORF) prediction was finally performed on remaining genes by using 

TransDecoder v2.1.0 (Haas et al. 2013) with strand specificity (-S). ORFs of at least 100 amino 

acids were annotated by using Trinotate v3.0.1 (https://trinotate.github.io). Functional annotation 

was based on the following protein predictions: (i) BLASTX and BLASTP homology search 

against the SwissProt database (Bairoch et al. 2004); (ii) protein domain prediction against the 

Pfam database (Punta et al. 2012) by using HMMER v3.1b2 (Finn et al. 2011); (iii) peptide 

signal prediction by using SignalP v4.1 (Petersen et al. 2011); and (iv) transmembrane domain 

prediction by using tmHMM v2.0c (Krogh et al. 2001). Resulting functional annotation was 

divided into three categories: (i) putative proteins, for which at least one protein domain could be 

identified; (ii) uncharacterized proteins, corresponding to ORFs for which no protein domain 

could be identified; and (iii) non-coding RNAs, corresponding to genes with an ORF shorter 

than 100 amino acids. 

Altogether, this dual transcript-discovery approach enabled to define an annotation model of 

21,347 unique genes that was used afterwards as reference for the analysis of the chMM culture 

expression profiles. 

Differential expression analysis 

RNA-seq strand-specific read pairs generated for each chMM culture condition and replicate 

were first mapped against the chicken genome galGal4 by using TopHat2 (-r 150; -N 3; --read-

edit-dist 3; --library-type fr-firststrand; -i 50; -G) and the annotation model from the transcript-

discovery approach as guide. Alignment maps for each replicate of each condition were split by 

strand by using SAMtools v1.2 (Li et al. 2009b) according to the FLAG field (strand plus: -f 128 

-F 16, -f 80; strand minus: -f 144, -f 64 -F 16). Fragments (both reads of a pair) mapped on gene 

features were counted by using featureCounts v1.4.6-p3 (Liao et al. 2014) with the following 

parameters: -p; -s 2; --ignoreDup; -B; -R. Chimeric fragments aligned on different chromosomes 

were taken into consideration to overcome the gene fragmentation due to the location of gene 

parts on multiple chromosome contigs. Reads unmapped on the galGal4 genome and mapped but 

unassigned due to the absence of gene feature were extracted and parsed to remove singletons. 

Resulting complete read pairs were then mapped against the corresponding RCAS-BP(A) 
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construct sequence by using TopHat2 (same parameters, except that no gene annotation model 

was provided). Remaining unmapped read pairs were aligned by using TopHat2 (same 

parameters) against the created contig containing all the de novo gene sequences identified by 

Trinity. Alignment maps were split by strand by using SAMtools and fragments were counted 

only for the strand plus by using featureCounts with the same options, except that chimeric read 

pairs were ignored (-C). 

Fragment counts for each biological replicate of each chMM culture condition were summed and 

normalized by using DESeq2 v1.8.1 (Love et al. 2014). The DESeq2 normalization method is 

based on the assumption that most genes are not differentially expressed (DE) when comparing 

two conditions. First, DESeq2 calculates the geometric mean for each gene across all conditions 

and replicates. Second, it divides the fragment count of each gene for each sample by this mean. 

A scaling factor is finally defined for each sample as the median of these ratios, which is then 

applied to all genes of the corresponding sample. This normalization method thus computed 

corrects for library size and RNA composition bias between samples (Supplemental figures 

S1A,B) and has been demonstrated to be more sensitive and powerful as compared to using raw 

fragment counts (Dillies et al. 2013). To evaluate the discrepancy among biological replicates 

and conditions, a regularized-logarithm transformation was applied to normalized fragment 

counts (Love et al. 2014). This additional normalization shrinks together genes with low 

fragment counts among samples while genes with high fragment counts remain unaffected 

(Supplemental figure S1C), thus stabilizing both fragment count variance and biological noise. 

Hierarchical clustering was then performed among chMM culture expression profiles by 

computing the Euclidean distances between the biological replicates across all conditions. 

Differential expression analysis was finally carried out by comparing the normalized fragment 

counts of chMM cultures overexpressing each of the TFs against the control chMM cultures by 

using DESeq2 and a false-discovery rate (FDR, alpha) of 0.01. Genes with an absolute fold 

change of at least 2 and a Benjamini-Hochberg adjusted p-value (Benjamini and Hochberg 1995) 

below 0.01 were considered as being differentially expressed, resulting in a total of 10,712 DE 

genes across all conditions. 

Estimation of transcript abundances 

Transcripts per million (TPM) values (Li et al. 2009a; Wagner et al. 2012) were preferred to 

Reads/Fragments per kilobase of transcript per million (RPKM/FPKM) values (Mortazavi et al. 

2008) to estimate the transcript abundances within each biological replicate. Both calculation 

methods are based on the normalization of fragment counts by the gene length but they differ in 

the normalization factor used. TPM values are estimated by using the total number of 
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reads/fragments overlapping gene features, whereas RPKM/FPKM values are normalized by the 

total number of sequenced reads/fragments. Nevertheless, the latter estimation method has been 

shown to be inconsistent among samples (Dillies et al. 2013). TPM values were then calculated 

by using the DESeq2 normalized fragment counts to limit the library size effect across samples 

and the following formula (Wagner et al. 2012): 

!"#"!"#$%&'(!!"#$%!×!!"#$!"#$%!

!"#"!"#$%!!× !
!"#"!"#$%&'(!!"#$%!×!!"#$!"#$%!

!"#"!"#$%!

!×!10
! 

Genes with a TPM value of at least 1 were considered as being expressed. 

Prediction of cell type abundances 

To assess the propensity of the TFs to influence particular cell fates within the chMM cultures, 

transcript abundances of genes related to differentiation and developmental processes were 

investigated. Lists of genes belonging to given Gene ontology (GO) terms were extracted by 

using the QuickGO tool (Binns et al. 2009) and restraining the research to the Tetrapoda taxon 

(tetrapods, taxid 32523). The following cell types and tissues and their associated GO terms were 

investigated: (i) bone (GO:0060348) and bone cell (GO:0098751) development; (ii) cartilage 

development (GO:0051216) and chondrocyte differentiation (GO:0002062); (iii) muscle cell 

development (GO:0055001) and differentiation (GO:0042692), myoblast development 

(GO:0048627) and differentiation (GO:0045445); (iv) tendon development (GO:0035989) and 

tendon cell differentiation (GO:0035990); (v) adipose tissue development (GO:0060612) and fat 

cell differentiation (GO:00454444); and (vi) embryonic skeletal system development 

(GO:0048706) and morphogenesis (GO:0048704). The list of genes associated with tendon 

development was supplemented with the top 100 genes enriched in mouse Scx-expressing cells 

(Havis et al. 2014). Unique genes were extracted and filtered to keep only those with a TPM 

value of at least 1 across all chMM culture samples. Paired Wilcoxon rank-sum test was used to 

assess separately both alternative hypotheses, greater or less, when comparing for a given GO 

term the transcript abundances of TF-overexpressing chMM cultures against control cultures. 

Estimation of overexpression levels 

Retroviral expression of each TF within chMM cultures was estimated by mapping the raw 

RNA-seq paired-end reads against the corresponding RCAS-BP(A) construct sequence with 

TopHat2 (same parameters as previously). Mapped read pairs from the strand plus were 

extracted by using SAMtools and counted by using featureCounts (-p; -s 2; --ignoreDup; -B; -C; 

-M; --fraction; --minReadOverlap 50; -R). Three regions common to all constructs and unique to 

each viral splicing variant were selected: gag and env CDS (first and second splicing variant, 
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respectively) and a region spanning from the triple-FLAG tag to the 3’LTR (third splicing 

variant). Fragment counts were normalized by the corresponding DESeq2 size factor and the 

region length. Proportion of each splicing variant was determined by subtracting the normalized 

fragment count between the three regions. Overexpression level was estimated based on the 

assumption that the endogenous expression of a given TF is constant when an infected cell 

expresses the corresponding TF virally. Therefore the following formula was applied: 

!"#!"#$% − !!"#!"#$%"& !×!!"#$#"%!"#!!!"#!!"#$%$&'!!"#$"%&

!"#!"#$%"&

 

K-means gene clustering 

DE genes identified for each TF-overexpressing chMM culture were gathered together. The 

resulting 4,298 non-redundant DE genes were clustered by using K-means (Hartigan and Wong 

1979) based on the DESeq2 normalized fragment counts across samples. K-means is a centroid 

clustering method used to partition a number of observations into a given number of clusters 

such that observations in a same cluster are as similar as possible to each other as compared to 

observations in another cluster. In term of gene expression, a given cluster would contain genes 

with a similar expression pattern such as up- or down-regulation within a certain number of 

conditions that would not be shared by the remaining conditions and that would be only 

observed in this particular cluster. K-means clustering was performed by using GENE-E 

(http://www.broadinstitute.org/cancer/software/GENE-E) with a row distance metric set at 1 

minus Pearson correlation and 2,000 iterations. The number of K clusters was defined at 8 

because lower values did not separate distinct gene clusters and higher values subdivided 

meaningful gene clusters. 

Gene ontology analysis 

Gene ontology (Ashburner et al. 2000) analyses were performed for given gene lists by using the 

PANTHER statistical overrepresentation test r20160321 (Mi et al. 2010) and the Bonferroni 

correction for multiple testing (Dunn 1961). The following annotations were interrogated: 

PANTHER version 10.0 released on 2015-05-15 for GO-slim biological process, GO-slim 

cellular component, pathways and protein class; GO ontology database released on 2016-04-23 

for GO biological process complete. 

ChIP-sequencing 

Two types of protein-DNA associations were investigated genome-widely within the chMM 

cultures. Firstly, both biological replicates from the chMM cultures infected with RCAS-BP(A) 

retroviral particles carrying no recombinant protein were used to characterize the chromatin 



 

 47 

landscape.  The following histone modification profiles were explored: H3K4me1, H3K4me2, 

H3K4me3, H3K27ac and H3K27me3. Secondly, the binding sites of the five TFs were 

investigated within both biological replicates of chMM cultures infected with RCAS-BP(A) 

retroviruses carrying the corresponding TF CDS. For both ChIP-seq series, sonicated DNA from 

the nuclear fractions used for each sample was sequenced as input control. 

50-bp single-end reads generated for each ChIP and input fractions were first filtered on their 

quality by using the FASTX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit). Reads 

with a median quality value of minimum 28 were retrieved and mapped against the chicken 

genome galGal4 by using BWA v0.5.9 (Li and Durbin 2009) with default parameters. Uniquely 

mapped reads were then extracted by parsing the alignments containing the tag “XT:A:U”. 

Duplicated reads were finally removed by using the tool rmdup from SAMtools v1.2 (Li et al. 

2009b). Resulting alignment maps were then separately processed depending on the investigated 

profile, histone marks or transcription factor-binding sites (TFBS). 

Histone modification peak calling 

Peak calling for the histone mark ChIP-seq was performed as suggested by the ENCODE 

consortium and the Roadmap Epigenomics project (Kellis et al. 2014; Roadmap Epigenomics 

Consortium et al. 2015). For each histone modification, peaks were called independently for 

each biological replicate and for the pooled biological replicates, each time against the merged 

input control of both replicates, by using MACS2 v2.1.0.20140616 (Zhang et al. 2008) and the 

following parameters: --bw 400 (according to the sonicated DNA migration gel); -g 1.0e9; --to-

large. Except for the H3K27me3 mark, peak calling was performed twice for each replicate and 

pooled replicate: (i) narrow peaks passing a p-value (-p) of 0.01; and (ii) broad peaks passing an 

additional broad-peak p-value (-p 0.01; --broad; --broad-cutoff) of 0.1. Only broad peaks were 

called for the H3K27me3 ChIP-seq due to its diffused signal. Broad peaks detected for each 

replicate and pooled replicate that contain at least one narrow peak were extracted by using 

BEDtools intersect v2.24.0 (Quinlan and Hall 2010). Final sets of peaks for each histone 

modification were obtained by filtering broad peaks called for the pooled replicates that are 

shared between both biological replicates independently. 

Identification of regulatory domains 

Regulatory domains were defined according to the combination of the different histone 

modification profiles obtained by ChIP-seq, independently of the gene annotation model. 

Domains were divided into three categories: (1) promoters; (2) enhancers; and (3) repression 

islands. (1) Promoters were defined according to the presence of H3K4me3 signal. (2) Enhancers 
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corresponded to regions enriched for H3K4me1 and devoid of H3K4me3 signal. (3) Repression 

islands were distinguished by the unique presence of H3K27me3 signal. Regions enriched for 

H3K4me2 but with no detectable H3K4me1 signal were classified as promoters, whereas regions 

containing both H3K4me1/2 marks were defined as enhancers.  Promoter and enhancer domains 

were further subcategorised into four distinct states according to the active marks H3K4me3 and 

H3K27ac, and the repressive mark H3K27me3: (i) inactive, no active and repressive signal 

detected (H3K4me3−, H3K27ac−, H3K27me3−); (ii) poised, no active mark but repressive signal 

detected (H3K4me3−, H3K27ac−, H3K27me3+); (iii) active, only active mark detected 

(H3K4me3+ and/or H3K27ac+, H3K27me3−); and (iv) bivalent, both active and repressive marks 

detected (H3K4me3+ and/or H3K27ac+, H3K27me3+). 

Quality control of transcription factor-binding profiles 

The ENCODE consortium defined a series of quality metrics intending to validate ChIP-seq TF-

binding profiles prior to biological interpretation (Landt et al. 2012). Strand cross-correlation 

analysis was performed by using the get.binding.characteristics function (srange 0,400; bin 5; 

cluster 2; accept.all.tag F) from SPP v1.11 (Kharchenko et al. 2008). Quality of the TF ChIP-seq 

data was evaluated following the ENCODE consortium recommendations: 

i. PCR bottleneck coefficient (PBC; ≥ 0.8 for 10 million uniquely mapped reads), 

calculated by dividing the number of non-redundant uniquely mapped reads by the 

number of uniquely mapped reads. Low PBC value is indicative of a low-complexity 

library; 

ii. Normalized strand correlation (NSC; ≥ 1.05), determined by the cross-correlation 

analysis and corresponding to the ratio between the ChIP peak and the background 

signal. Low NSC value is indicative of a weak enrichment; 

iii. Relative strand correlation (RSC; ≥ 0.8), determined by the cross-correlation analysis and 

corresponding to the ratio between the ChIP peak and the phantom peak (read-length 

peak). Low RSC value is indicative of a weak signal-to-noise ratio. 

Irreproducible discovery rate analysis 

In addition, the ENCODE consortium developed a method to evaluate the consistency between 

biological replicates called the irreproducible discovery rate (IDR) analysis (Landt et al. 2012; Li 

et al. 2011a). The IDR analysis is based on the assumption that the most significant peaks of two 

biological replicates are most likely consistent between both replicates and therefore correspond 

to a real signal. In contrast, less significant peaks of two biological replicates are expected to be 

detected in only one replicate and therefore correspond to a background (noise) signal. This 
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method thus relies on the reproducibility between independent biological replicates rather than a 

fixed threshold during the peak calling procedure. 

The IDR analysis was performed on the TF-binding profiles generated for both biological 

replicates of the chMM cultures overexpressing each of the TFs. The ENCODE consortium 

recommends to assess the IDR on three different levels: (i) the true replicate consistency, by 

comparing both biological replicates; (ii) the self-replicate consistency, by randomly 

subsampling the signal of each biological replicate into two pseudo-replicates, which is a good 

indicator of the signal-to-noise ratio; and (iii) the pooled-replicate consistency, by merging the 

signal of both biological replicates and randomly partitioning it into two pseudo-replicates. For 

each replicate, self pseudo-replicate and pooled pseudo-replicate, peaks were called by using 

MACS2 v2.1.0.20140616 (Zhang et al. 2008) with low-stringency parameters to obtain a 

significant list of peaks (--bw 130|135, as determined by the cross-correlation analysis; -g 1.0e9; 

--to-large; -p 0.025). IDR analysis was performed on the top 125,000 peaks according to their p-

value by using the following parameters: peak.half.width -1; min.overlap.ratio 0; is.broadpeak F; 

ranking.measure p.value. The number of peaks passing an IDR threshold of 0.01 were retrieved 

for each replicate and pseudo-replicate and compared to each other. The ENCODE consortium 

recommends that the number of peaks between each comparison is within a factor of 2. 

Determination of the transcription factor-binding sites 

The IDR analysis is dominated by the replicate with the weakest signal. Consequently, a 

significant number of peaks with real signal found in the replicate of higher quality are rejected 

by the IDR analysis because they are not detected in the replicate of lower quality. Therefore, 

peak calling was performed on the pooled biological replicates for each TF. The final set of 

TFBS was determined by selecting the number of peaks with an IDR threshold below 0.01 

obtained from the pooled-replicate consistency analysis. The global ChIP enrichment for each 

TF was finally determined by computing the fraction of sequencing reads located in the final set 

of called peaks (FRiP; ≥ 0.01) using BEDtools coverage v2.24.0 (Quinlan and Hall 2010). 

Binding motif analysis 

Motif analysis was performed by using DREME v4.11.2 (Bailey 2011) with default parameters 

on the 150-bp sequences surrounding the summits of the 1,000 most significant TF peaks that 

overlap with promoters and enhancers. Recognition motifs thus identified were then compared 

against motif databases by using Tomtom v4.11.2 (Gupta et al. 2007) with default parameters. 
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Assessment of the similarity between the ChIP-seq profiles 

Histone mark and TF coverage profiles were generated by using the tool bdgcmp from MACS2 

v2.1.0.20140616 (Zhang et al. 2008). ChIP-seq signal was normalized independently for each 

biological replicate against the pooled input controls of both replicates according to the negative 

log10 of the Poisson p-value (-m ppois). Normalized signal coverage was then determined 

genome-widely in 500-bp non-overlapping windows. For histone marks, ChIP-seq coverage 

profiles were compared across all histone modifications and all biological replicates by using the 

Pearson correlation. For TF-binding profiles, similarity was assessed between all biological 

replicates and TFs by using a principal components analysis (PCA) (Hotelling 1933) with the R 

function prcomp (center TRUE; scale. TRUE). 

Data visualization 

RNA-seq alignment maps of both biological replicates for each chMM culture condition were 

merged and split by strand by using SAMtools v1.2 (Li et al. 2009b). Strand-specific maps of 

pooled replicates were then converted into bedgraph format by using the genomeCoverageBed 

tool v2.24.0 (Quinlan and Hall 2010) with the following parameters: -bg; -ibam; -split; -g; -scale. 

Read coverage was normalized between conditions by using the DESeq2 size factor of each 

biological replicate and calculated as follows: 
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ChIP-seq profiles of both biological replicates for each histone modification and TF were 

merged and normalized against the corresponding pooled input controls by using the tool 

bdgcmp from MACS2 v2.1.0.20140616 (Zhang et al. 2008). Signal normalization was 

performed by using the negative log10 of the Poisson p-value (-m ppois). 

RNA- and ChIP-seq coverage profiles were finally converted into bigwig format by using the 

bedGraphToBigWig tool (Kent et al. 2010) with default parameters. Resulting files were 

uploaded to an internal server of the Max Planck Institute for Molecular Genetics and linked to 

the UCSC genome browser (Kent et al. 2002) as custom tracks. Data can be accessed and 

visualized via the following link: https://goo.gl/85kn3x 
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RESULTS 

A. Characterization of the transcription factors 

The five transcription factors (TFs) OSR1, OSR2, EGR1, KLF2 and KLF4 were initially 

selected based on their involvement or supposed involvement in the differentiation of 

mesenchymal cells towards distinct musculoskeletal lineages during limb development. 

The TFs are related to subcompartments of the musculoskeletal system 

Endogenous expression of the TFs has been mainly explored by whole-mount in situ 

hybridization (ISH) at early stages of chick limb development. OSR1 and OSR2 are strongly and 

broadly expressed in forelimb and hindlimb mesenchyme between E3.5 and E6 (HH22-28) 

(Stricker et al. 2006). EGR1 is expressed in tendon close to muscle attachments in the chick 

forelimb at E7 (HH30) (Lejard et al. 2011). KLF2 and KLF4 are expressed locally in the 

proximal part of the chick hindlimb at E5-5.5 (HH26-27) (Antin et al. 2010). KLF2 expression is 

restricted to the anterior proximal mesoderm, while KLF4 expression is detected in the dorsal 

and ventral proximal mesoderm. Both factors are detected at chondrogenic condensation regions 

where bone will form at E5. To identify more precisely the expression pattern of each TF, ISH 

were performed on tissue sections. Two developmental stages of the chick limb were analysed: 

E4.5 (Figure 14; Supplemental figure S2) and E9.5 (Figure 15; Supplemental figure S3). 

 

Figure 14. Endogenous expression of the transcription factors in hindlimbs of E4.5 chick embryos. ISH for 
SCX (A,E), EGR1 (B), KLF2 (C), KLF4 (D), MYOD (F), OSR1 (G) and OSR2 (H) genes in hindlimbs of E4.5 
(HH24-25) chick embryos. (A-D) Adjacent and transverse sections were hybridized with SCX, EGR1, KLF2 and 
KLF4 probes (blue). Magnification 5X. (E-H) Adjacent and transverse sections were hybridized with SCX, MYOD, 
OSR1 and OSR2 probes (blue). Magnification 5X. Top, dorsal; left, posterior. SCX is a tendon-specific marker; 
MYOD is a muscle-specific marker. 

In contrast to the tendon marker SCX, the expression of EGR1, KLF2 and KLF4 was not detected 

in E4.5 limb buds (Figures 14A-D; Supplemental figures S2A-B). Both OSR1 and OSR2 

transcripts were detected in the dorsal and ventral parts of E4.5 limb buds, partly overlapping 

with SCX expression and surrounding muscle masses visualised with MYOD expression (Figures 

14E-H; Supplemental figures S2E-H). 
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Figure 15. Endogenous expression of the transcription factors in hindlimbs of E9.5 chick embryos. ISH for 
SCX (A,E,E’,H,L,L’), EGR1 (B,I,M,M’), KLF2 (C,F,F’), KLF4 (D,G,G’), OSR1 (J,N,N’) and OSR2 (K,O,O’) 
genes in hindlimbs of E9.5 (HH35-36) chick embryos. (A-D) Adjacent and longitudinal sections were hybridized 
with SCX, EGR1, KLF2 and KLF4 probes (blue) followed by immunohistochemistry with the MF20 antibody 
(brown). Magnification 5X at the zeugopod level. Top, anterior; left, proximal. (E-G) Adjacent and transverse 
sections were hybridized with SCX, KLF2 and KLF4 probes (blue) followed by immunohistochemistry with the 
MF20 antibody (brown). Magnification 5X at the knee level. Top, posterior; left, dorsal (E’-G’) Magnification 10X 
of ventral regions of sections (E-G). (H-K) Adjacent and longitudinal sections were hybridized with SCX, EGR1, 
OSR1 and OSR2 probes (blue) followed by immunohistochemistry with the MF20 antibody (brown). Magnification 
5X. (L-O) Adjacent and transverse sections were hybridized with SCX, EGR1, OSR1 and OSR2 probes (blue) 
followed by immunohistochemistry with the MF20 antibody (brown). Magnification 5X at the stylopod level; top, 
posterior; left, dorsal. (L’-O’) Magnification 10X of posterior-dorsal regions of sections (L-O). SCX is a tendon-
specific marker; MF20 targets skeletal muscle myosin. 

At E9.5, EGR1 expression is observed in tendons at myotendinous junctions, in both hindlimbs 

(Figure 15) and forelimbs (Supplemental figure S3), similar to what was observed at E7 (Lejard 

et al. 2011). KLF2 and KLF4 are expressed in tissues delineating tendons in knee (Figures 15A-

G’) and wrist (Supplemental figures S3A-H’) regions. The expression pattern of KLF2 and KLF4 

seems to surround SCX expression domains. OSR1 and OSR2 are more broadly expressed in the 

limb (Figures 15H-O). Their transcripts are detected in muscle connective tissue (MCT), in 

between muscle fibres, although OSR1 is also detected surrounding muscle masses (Figures 

15L’-O’; Supplemental figures S3I-L). 
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OSR1 and OSR2 overexpression induces musculoskeletal defects in forelimbs 

Considering their particular expression patterns in distinct compartments of the musculoskeletal 

system, I wondered to which extent the five TFs influence the establishment of a functional and 

proper limb during development. To investigate this, the coding sequence (CDS) of each TF was 

inserted into a retroviral vector, the RCAS-BP(A), which stands for replication-competent ASLV 

long terminal repeat with a splice acceptor (Hughes 2004). When transfected into avian cells, 

this vector allows the production of replication-competent retroviral particles that are 

externalized, then infect surrounding cells and finally integrate into their genome. Therefore, the 

overexpression of the recombinant protein is not only restricted to transfected cells and their 

progeny, but will also spread in dividing cells. Cells producing viral particles carrying each of 

the TF coding sequences were grafted into embryo forelimbs at early onset of limb development, 

E2.5 (HH17-18), when limb bud starts forming. Infected and contralateral wings were harvested 

later at E9.5 for ISH and at E11.5 for skeletal preparation (Figure 16). 

 
Figure 16. Overexpression of the transcription factors in chick embryo limbs. Grafts of cells producing 
retroviruses carrying no recombinant protein (A,A’), OSR1 (B,B’), OSR2 (C,C’), EGR1 (D,D’), KLF2 (E,E’) or 
KLF4 (F,F’) CDS at E2.5 into chick forelimb buds. (A-F) Skeletal preparation of E11.5 forelimbs, bone is stained 
in red, cartilage in blue. Black arrowheads highlight skeleton defects in humerus, radius, ulna, metacarpals and 
phalanges. (A’-F’) Whole-mount ISH at E9.5 with MYOG probes (purple). MYOG is a specific-muscle marker. 
White arrowheads highlight defects in forearm muscles. 
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Skeletal preparation at E11.5 of forelimbs grafted with cells overexpressing either OSR1, or 

OSR2, highlighted defects in skeleton (Figures 16B,C; black arrowheads). Although being more 

pronounced for OSR1 overexpression, both OSR factors induced a reduction of bone size and 

thickness, visualised with reduced Alizarin Red S staining and a shorter alula (thumb) as 

compared to the control. In addition, a bending of the humerus was visible for the wings grafted 

with OSR2-overexpressing cells (Figure 16C). Consistent with the skeleton phenotype, forearm 

muscles were overall smaller in the wings for which OSR1 and OSR2 were overexpressed 

(Figures 16B’,C’; white arrowheads). These muscle defects are reminiscent to those observed in 

mutant mice for the MCT markers Tbx4 and Tbx5 (Hasson et al. 2010). In contrast to OSR1 and 

OSR2, overexpression of EGR1, KLF2 and KLF4 did not reveal any obvious phenotype in 

skeleton and muscle patterning (Figures 16D-F’). I found it surprising considering that ectopic 

expression of Egr1 in murine mesenchymal stem cells induces tendon differentiation and 

prevents their commitment into osteocytes and adipocytes in vitro (Guerquin et al. 2013). In 

addition, KLF2 and KLF4 are expressed in chondrogenic condensation regions at E5 in chick 

embryo limbs, suggesting that they could be involved in cartilage formation (Antin et al. 2010). 

The TFs influence cell differentiation processes in the chMM cultures 

To further investigate the influence of the five TFs, the chicken micromass (chMM) model was 

preferred as it partly mimics differentiation processes occurring in the developing limb in vivo 

(Daniels et al. 1996). Mesenchymal cells extracted from E4.5 limb buds were plated in a high-

density culture to maintain contacts between cells and kept in culture for five days. To allow 

overexpression of each TF, cells were mixed with retroviruses carrying each of the TF coding 

sequences prior to seeding. This combined system of chMM culture with RCAS-BP(A)-

mediated overexpression of recombinant proteins has been shown to be particularly relevant to 

investigate chondrogenesis (Kuss et al. 2009; Stricker et al. 2012; Ibrahim et al. 2013). 

Overall morphology of the chMM cultures for each overexpression condition was visualized by 

Eosin staining (Figures 17A-F). Cartilage differentiation was assessed by Alcian blue staining 

(Figures 17A’-F’), which displays specific affinity for glycosaminoglycans of the cartilaginous 

extracellular matrix (ECM). Myotube formation associated with muscle differentiation was 

estimated by immunohistochemistry against sarcomeric myosin heavy chains (Figures 17A’’-

F’’). Cartilage and muscle defects observed in OSR1- and OSR2-overexpression grafts were 

confirmed in the chMM cultures. Both OSR factors induced a strong reduction in cartilage 

nodule and myotube formation after five days of culture (Figures 17B’,B’’,C’,C’’). Both 

differentiation processes were slightly more affected upon overexpression of OSR2 than OSR1 

as compared to control cultures (Figures 17G,H; 33% vs. 42% of chondrogenic matrix 
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production; 53% vs. 63% of formed myotubes). Given that the overall morphology of the 

chMMs is similar between OSR1/2-overexpressing cultures and control cultures (Figures 17A-

C), the reduction of cartilage and myotube formation is more likely due to an effect on cell 

differentiation rather than an increased cell death. 

 

Figure 17. Cell differentiation within the chMM culture conditions. Histological staining of chMM cultures 
overexpressing no recombinant protein (A,A’,A’’), OSR1 (B,B’,B’’), OSR2 (C,C’,C’’), EGR1 (D,D’,D’’) KLF2 
(E,E’,E’’) or KLF4 (F,F’,F’’) after 5 days of culture. (A-F) Cell cytoplasm stained with Eosin. (A’-F’) Cartilage 
nodules stained with Alcian blue. (A’’-F’’) Myotubes stained by immunohistochemistry with the MF20 antibody 
targeting sarcomeric myosin heavy chains. (G) Quantification of chondrogenic matrix production by measuring the 
stained area in each culture condition as compared to the control cultures. (H) Quantification of muscle 
differentiation level by assessing the percentage of culture area covered by myotubes. Average ± SEM; paired 
Student’s t-test: ns, non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

In contrast to the in vivo graft experiments that revealed no obvious phenotype, effects on 

cartilage and muscle differentiation was observed in the chMM cultures overexpressing EGR1, 

KLF2 and KLF4. Similarly to OSR1 and OSR2, KLF2 induced a reduction of chondrogenic 

matrix production (Figure 17E’) and myotube formation (Figure 17E’’), but to a lower extent 

(Figures 17G,H; 74% and 81%, respectively). Likewise, KLF4 overexpression induced a slight 

reduction in both cartilage and muscle differentiation within the chMM cultures (Figures 

17G,H). Interestingly, cartilage nodules appeared less dense in the center of the micromass but 

covered almost the entire culture (Figure 17F’). EGR1 was the only factor that increased the 

chondrogenic matrix production within the chMM cultures when overexpressed (Figures 

17D’,G; 13% of increase), although its overexpression did not induce any significant change in 

myotube formation (Figures 17D’’,H). 

To further investigate the influence of the TFs on cell differentiation processes within the chMM 

cultures, a gene expression profiling was performed by means of whole-transcriptome 

sequencing (RNA-seq; Supplemental table S2). RNA-seq data generated for each TF-

overexpressing chMM culture were normalized by using DESeq2 (Love et al. 2014; 

Supplemental figures S1A,B). Normalized fragment counts were converted into transcripts per 

million (TPM) values (Wagner et al. 2012) to estimate transcript abundances. Genes belonging 
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to gene ontology (GO) categories related to bone, cartilage, muscle, tendon, adipose tissue and 

embryonic skeletal development and differentiation (see Materials and Methods section for the 

complete list of GO accession numbers) were retrieved. The gene list related to tendon was 

supplemented with the 100 genes identified as the most expressed in mouse limb Scx-positive 

cells at E14.5 (Havis et al. 2014). Transcript abundances for the selected genes were compared 

between each TF-overexpressing chMM culture and the control cultures (Figure 18). 

 
Figure 18. Transcript abundances within GO terms related to cell differentiation and development. Transcript 
abundances of genes belonging to GO terms related to bone (A), cartilage (B), muscle (C), tendon (D), adipose 
tissue (E) and embryonic skeletal system (F) differentiation and development. TPM values were averaged between 
both biological replicates of each chMM culture condition. Only the genes with a mean TPM value of at least 1 
across all samples were compared to the controls. Rows, GO terms; columns, overexpressed TF. Genes (dots) were 
plotted by comparing their abundance between the TF-overexpressing chMM cultures (x-axis) and the control 
chMM cultures (y-axis). Genes depicted in brown are more abundant in the TF-overexpressing cultures, whereas 
coloured genes are more abundant in the control cultures. Paired Wilcoxon rank-sum test using both alternative 
hypotheses: “greater” or “lower” transcript abundances than the control cultures; significant if P < 0.05 (bold). 
TPM, transcripts per million. 
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Consistent with the phenotype observed in grafted wings and chMM cultures, genes belonging to 

cartilage GO terms were less abundant in OSR1- and OSR2-overexpressing cultures as 

compared to the controls (Figure 18B; Wilcoxon rank-sum test, P < 0.05). Surprisingly, muscle-

associated genes were more abundant in both OSR chMM cultures in spite of the strong 

reduction of formed myotubes (Figure 18C; Wilcoxon rank-sum test, P < 0.05). Genes 

associated with bone differentiation and development were more abundant in the chMM cultures 

overexpressing EGR1, KLF2 and KLF4, as compared to the controls (Figure 18A; Wilcoxon 

rank-sum test, P < 0.05), while genes related to cartilage and muscle GO terms remain overall 

unchanged (Figures 18B,C). Although these TFs are expressed in tendons or in tissues 

delineating tendons, expression levels of tendon-related genes were similar in EGR1-, KLF2- 

and KLF4-overexpressing chMM cultures as compared to the controls (Figure 18D). Finally, 

genes involved in adipose tissue differentiation and development were found less abundant upon 

overexpression of EGR1 and KLF2 than in the control cultures (Figure 18E; Wilcoxon rank-sum 

test, P < 0.05), which is in agreement with previous observations. Indeed, multipotent murine 

cells ectopically expressing Egr1 lose their ability to differentiate into adipocytes (Guerquin et 

al. 2013); and murine embryonic stem cells deficient for Klf2 are able to commit into pre-

adipocytes, while being unable to differentiate afterwards into adipocytes (Wu et al. 2005). 

In general, overexpression of each TF increased the expression levels of genes associated with 

embryonic skeletal system development and morphogenesis GO terms as compared to the 

controls (Figure 18F; Wilcoxon rank-sum test, P < 0.05). Altogether, these results highlight 

distinct differentiation potentials of chMM cultures upon overexpression of each TF, especially 

for OSR1 and OSR2, which strongly reduced cartilage and muscle differentiation. 

B. Gene expression profiling 

In order to characterize the regulatory function orchestrated by each TF, RNA-seq data obtained 

for all chMM culture conditions were further examined. Given the changes observed at the 

cellular level, variations in gene expression levels are expected to occur depending on the 

overexpressed TF. 

Improving the gene expression quantification 

Despite many efforts led over the last past decade, the chicken genome remains incomplete and 

fragmented (Hillier et al. 2004). The chicken karyotype is composed of 38 autosomal 

chromosomes and 2 additional sexual chromosomes (Bloom et al. 1993). Out of these autosomal 

chromosomes, 10 are macrochromosomes, with lengths similar to those in mammals, and 28 are 
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microchromosomes, with lengths ranging from ~2 to less than ~25 Mb (Hillier et al. 2004). 

Chicken microchromosomes have a high recombination rate, contain an elevated number of 

repetitive elements and are GC-rich, which significantly induces bias and sequencing errors 

when using high-throughput technologies (Chen et al. 2013; Dohm et al. 2008). In addition, 

microchromosomes are gene dense and enriched in CpG islands, which is the result of shorter 

intronic sequences (McQueen et al. 1998; Smith et al. 2000). Consequently, the fourth version of 

the Gallus gallus genome (galGal4) released in November 2011 is still highly fragmented 

despite significant improvement since its first release. Out of the 40 chromosomes, 31 are 

sequenced and retain more than 9,000 gaps. In addition, the genome is composed of ~15,000 

additional contigs that are not aligned to any chromosome or assigned with low confidence. In 

early 2016, the new version galGal5 of the chicken genome has been released on the NCBI, 

which slightly improve the previous version. Nevertheless, at the time of this thesis, this new 

version was not available on the UCSC browser yet. Therefore, all the following analyses were 

performed on the Gallus gallus genome version galGal4. 

RNA-seq data processing and results are highly dependent on the quality of the genome 

sequence and the associated gene annotation model. Indeed, quantification of transcript 

abundances relies on the gene coverage resulting from the primary mapping step of the 

sequencing reads along the genome. Determination of differentially expressed (DE) genes 

between two conditions is then based on the variation of the read coverage. It is therefore 

coherent that an inaccurate definition of gene features would induce a bias in the gene expression 

quantification and by extension in the detection of DE genes. In order to enhance the RNA-seq 

data quantification, a transcript-discovery approach was first led to improve the existing galGal4 

gene annotation model by using the sequencing reads generated from the control chMM cultures. 

Strand-specific libraries were prepared to keep the orientation of sequencing reads and therefore 

to know from which DNA strand genes are transcribed. This library type is particularly useful 

when two genes located on each strand overlap. On one hand, the transcript-discovery approach 

was performed by using the reference genome and its associated UCSC/Ensembl gene 

annotation model as guide (Figure 19A). This first approach intended to more accurately 

determine exon-intron junctions, to correct or complete existing annotated genes, and to identify 

unannotated genes. On the other hand, a complementary approach was carried out independently 

of the genome sequence. RNA-seq reads were assembled de novo and then compared to the 

genes identified with the first approach (Figure 19B). This second strategy was of double 

purpose: (i) it corrected the gene fragmentation by associating gene parts located on multiple 

chromosomes or contigs together; (ii) it identified gene regions or complete genes that did not 

belong to the genome due to the presence of gaps or uncharacterized sequence. 
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Figure 19. Workflow to design the gene annotation model. Sequencing reads obtained from both biological 
replicates of the control chMM cultures were used to generate a comprehensive gene annotation model. (A) 
Transcript-discovery approach performed by using the chicken genome galGal4 as guide to define gene features. (B) 
De novo transcript assembly computed independently of the reference genome to correct the gene fragmentation and 
to identify uncharacterized genes and gene regions. (C) Functional annotation of the 21,347 identified genes was 
carried out by comparison against Aves gene sequences (taxid: 8782), human and mouse protein database 
interrogation (taxid: 9606, 10090) and ORF prediction followed by protein domain identification. 

Genes identified by this dual transcript-discovery approach were further annotated by database 

comparison and protein domain prediction (Figure 19C). Genes were first compared to bird gene 

sequences, taking advantage of the recent increase of available genomic data within avian 

species and their high DNA sequence conservation (Zhang et al. 2014). Undefined genes were 

then compared at the protein level against mouse and human databases. Open reading frame 

(ORF) and protein domain predictions were finally performed on remaining unannotated genes 

by using homology search against SwissProt (Bairoch et al. 2004) and Pfam (Punta et al. 2012) 

databases, and sequence analysis tools to identify transmembrane domains and peptide signals. 

The resulting gene annotation model was composed of 21,347 genes. More than 19,000 

(~91.0%) genes were found on one single chromosome or unplaced contig, whereas almost 

2,000 (9.2%) genes were identified as being fragmented, including 478 (2.2%) genes that were 

located on multiple ordered chromosomes (Figure 20A). The computed gene annotation was 

mostly constituted of protein-coding genes (~16,700; ~78.0%), although 672 (3.1%) and 1,410 

(6.6%) genes remain partly annotated (putative proteins having at least one protein domain 

detected) and unannotated (uncharacterized proteins with no protein domain identified but an 

ORF of at least 100 amino acids), respectively (Figure 20B). Remaining genes corresponded to 

miscellaneous genes (213 genes, 1.0%; such as spliceosome complex members, ribosomal RNAs 

and pseudogenes) and non-coding RNAs (4,418 genes, 20.7%) for which no sufficient ORF 

could be predicted (Figure 20B). 
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Figure 20. Characteristics of the established gene annotation model. The gene annotation model designed from 
the dual transcript-discovery approach was composed of 21,347 genes. (A) Proportion of gene location on 
chromosomes and contigs of the chicken reference genome galGal4. 9.2% of identified genes are fragmented due to 
their location on multiple chromosomes and contigs. (B) Annotated gene biotypes. Putative proteins correspond to 
genes for which at least one protein domain could be detected. Uncharacterized proteins are genes with an ORF of at 
least 100 amino acids without protein domain identified. Genes with no ORF predicted were classified as non-
coding RNAs. (C) Sequencing read assignment across all samples and conditions depending on the gene annotation 
model used. The combined transcript-discovery approach raised the assignment rate of 20-22% as compared to the 
UCSC and Ensembl reference annotations. 

Most importantly, the dual transcript-discovery approach significantly improved the percentage 

of RNA-seq read pairs assigned to gene features (Figure 20C). Indeed, between 83 and 90% of 

sequencing read pairs were assigned to gene features when using the newly designed gene 

annotation model as reference, as compared to an assignment rate of 62-69% when using both 

galGal4 UCSC and Ensembl reference annotations. In other words, the transcript-discovery 

approach enabled to retrieve 20-22% more information from the RNA-seq data across all 

samples and conditions. 

Estimation of the levels of transcription factor overexpression 

Overexpression of the TFs in the chMM cultures was performed by using the RCAS-BP(A) 

system. During cell infection, the RCAS-BP(A) envelope glycoprotein interacts with a specific 

surface receptor of the host cell (Hunter 1997). The retroviral genome is then introduced into the 

host cell and integrates into its genome after reverse transcription. As being replication-

competent, new viral particles are produced and can then infect surrounding cells if not already 

infected. Indeed, the expression of the envelope glycoprotein within the host cell blocks the 

surface receptor and prevents infection of the cell by additional retroviruses of the same 

subgroup. Retroviral infection of the chMM cultures was performed by using a ratio virus/cell of 

1:1, which leads to the assumption that cells contain only one copy of the RCAS-BP(A) genome. 

In addition to be stable, reproducible and independent of the transfection efficiency, RCAS-

BP(A) overexpression of recombinant proteins is moderate as compared to other viral vectors 

such as the CMV and SV40. Indeed, a recent study using the same combined system of chMM 
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culture and RCAS-BP(A) infection determined by absolute quantification that the levels of 

overexpression are approximately between 3 and 5 folds (Ibrahim et al. 2013). 

The transcription along the RCAS-BP(A) genome gives rise to three distinct splicing variants 

(Hughes 2004; Figure 21A). Although the three isoforms carry the inserted TF coding sequence, 

only the shorter one encodes a functional protein. To evaluate the correct overexpression level of 

the recombinant protein, it is therefore necessary to first distinguish the proportion of each 

splicing variant. Across all chMM culture conditions, the TF-encoding isoforms corresponded 

from one third to one fifth of all splicing variants (Figure 21B). 

 

Figure 21. Organization of the viral genome. (A) RCAS-BP(A) retroviruses express three alternative transcripts. 
The first isoform is used for gag and pol expression; the second variant encodes the envelope glycoprotein (env); 
and the last transcript is the only variant that gives rise to the expression of a functional TF. SD, splice donor site; 
SA, splice acceptor site; LTR, long terminal repeat. (B) Proportion of each retroviral splicing variant across the 
chMM culture conditions and replicates. Transcript abundances were estimated by comparing the read coverage 
along three regions unique to each splicing variant (gag, env and 3’LTR). (C) Fold change of expression levels for 
each TF virally overexpressed as compared to its endogenous level within the control chMM cultures. 

Since both endogenous and retroviral expression levels cannot be distinguished from the RNA-

seq data, expression fold change of TFs was calculated as compared to their abundance within 

the control cultures, assuming that the endogenous expression level of each TF did not change 

upon retroviral overexpression. EGR1, KLF2 and KLF4 were overexpressed by 8-25 folds in 

their corresponding chMM cultures as compared to the control cultures (Figure 21C). 

Surprisingly, the overexpression level was of ~160 and ~56 folds for OSR1 and OSR2 in the 

OSR1- and OSR2-overexpressing cultures, respectively (Figure 21C), suggesting that their 

endogenous expression may have increased upon overexpression. One possible explanation is 

that OSR1 and OSR2 positively regulate their own expression by a positive feedback loop, so-

called “autogenous regulation”. This mechanism has been mainly described in bacteria 

(reviewed in Wall et al. 2004), but it has been also identified in the activation of the Mos-MEK-

p42 MAPK cascade during the maturation of Xenopus oocytes (reviewed in Ferrell 2002). A 
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second alternative hypothesis is related to the cell differentiation effects within the TF-

overexpressing chMM cultures. Overexpression of OSR1 and OSR2 strongly reduced the 

differentiation potential of limb mesenchymal cells into cartilage and muscle to promote their 

differentiation into irregular connective tissue, as previously observed with the mouse TFs 

(Stricker et al. 2012). The increased expression levels of OSR1 and OSR2 may then result from 

the increased number of connective tissue cells, which express endogenously each factor. 

The gene expression profiles in culture recapitulate the limb expression 

patterns 

To further investigate the regulatory function of each TF, RNA-seq data obtained for each TF-

overexpressing chMM culture were analysed by using DESeq2 (Love et al. 2014). Computing 

the Euclidean distance across all chMM culture conditions and biological replicates revealed a 

consistency between gene expression profiles and gene expression patterns observed by ISH 

(Figure 22). 

 

Figure 22. Sample-to-sample distance across chMM cultures. Euclidean 
distance was calculated across all biological replicates and conditions by using 
the regularized-logarithm transformed fragment counts. Gene expression profiles 
are clustered in accordance with the TF expression patterns observed by ISH. 

In agreement with the unique phenotypes observed in the grafts and the chMM cultures, both 

OSR factors are closer to each other than to any other TF regarding their gene expression 

profiles (Figure 22). Hierarchical clustering highlighted a second cluster composed of EGR1, 
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KLF2 and KLF4 gene expression profiles, in which both KLF factors were gathered together 

(Figure 22). These two main clusters are highly consistent with the gene expression patterns 

observed by ISH. Indeed, OSR1 and OSR2 are expressed in the MCT, whereas EGR1, KLF2 

and KLF4 expression are detected in tendons or in tissues surrounding tendons. Finally, gene 

expression profiles within the chMM cultures infected with retroviral particles carrying no 

recombinant protein were separated to all other conditions, indicating that overexpression of 

each TF induced changes at the molecular level. Differential expression analysis was then 

performed by using DESeq2 and a false-discovery rate (FDR) of 0.01. Genes with a fold change 

higher than 2 or lower than 0.5 and a Benjamini-Hochberg adjusted p-value (padj) below 0.01 

were considered as being differentially expressed (DE). Between 1,369 and 2,907 DE genes 

were thus detected for each TF-overexpressing chMM culture as compared to the control 

cultures, resulting in a total of 10,712 DE genes across all the chMM cultures (Figure 23). 

Almost two thirds (6,956; 64.9%) of these genes were found upregulated.  

 
Figure 23. 10,712 differentially expressed genes in all chMM cultures. Volcano plots of the 10,712 DE genes 
detected in the chMM cultures overexpressing EGR1 (A), KLF2 (B), KLF4 (C), OSR1 (D) or OSR2 (E) as 
compared to the control cultures. (A) 1,369 DE genes detected upon EGR1 overexpression. (B) 2,150 DE genes 
detected upon KLF2 overexpression. (C) 2,907 DE genes detected upon KLF4 overexpression. (D) 1,997 DE genes 
detected upon OSR1 overexpression. (E) 2,289 DE genes detected upon OSR2 overexpression. DE genes: log2(fold 
change) ≥ 1 or ≤ -1; padj < 0.01; FDR 0.01. Downregulated genes are depicted in blue, upregulated genes in red. 
padj, Benjamini-Hochberg adjusted p-value. 

The TFs share common regulatory patterns 

The 10,712 DE genes across all the chMM culture conditions corresponded to a list of 4,298 

non-redundant genes, indicating that the TFs share common regulatory targets (Figure 24A). 
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143, 330, 114, 133 and 767 genes were identified as being differentially expressed specifically 

upon overexpression of OSR1, OSR2, EGR1, KLF2 and KLF4, respectively (Figure 24A). 2,811 

(65.4%) genes were regulated by at least two TFs and 726 (16.9%) DE genes were identified in 

all chMM cultures (Figure 24A). Although being expressed in distinct subcompartments of the 

musculoskeletal system, the TFs seem to share a core of common regulatory processes. 

 

Figure 24. 4,298 unique differentially expressed genes across all chMM cultures. (A) Venn diagram of the 
10,712 DE genes identified in all chMM culture conditions. Given the high number of common regulated genes, 
4,298 non-redundant genes out of the 10,712 DE genes (40.1%) were found. (B) Heatmap of the 48 genes regulated 
in opposite directions across all chMM cultures. Hierarchical clustering was performed by using the one minus 
Pearson correlation. 

Interestingly, fold change comparison (whether the gene is upregulated or downregulated) of the 

DE genes shared by at least two TFs revealed a high consistency among the TF regulatory 

patterns. Only 48 (1.7%) shared DE genes were identified as being regulated in opposite 

directions between the subset of TFs that misregulate them (Figure 24B). Among these 48 genes, 

IBSP (also known as BSP), a gene encoding a bone sialoprotein, was found upregulated by 

KLF2 and KLF4 while being downregulated by OSR1 and OSR2. IBSP, which is expressed by 

skeletal-associated cells such as chondrocytes and osteoblasts (Bianco et al. 1991), is a major 

component of the bone non-collagenous ECM (Fisher et al. 1990). Ibsp knockout mice are 

smaller and display impaired bone growth and repair (Malaval et al. 2009). In contrast, GREM1 

(Gremlin 1) was upregulated by OSR1 and OSR2, and repressed upon KLF2 and KLF4 

overexpression. This gene encodes a member of the BMP antagonist family involved in limb bud 

progression by controlling the feedback loop between SHH and FGF4 (Zuniga et al. 1999). In 

vivo experiments in chick embryos showed that Gremlin regulates early limb outgrowth and 

represses chondrogenesis (Merino et al. 1999). In addition, GREM1 expression is detected in 
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mature skeletal myofibres and interstitial muscle cells suggesting a role during myogenesis 

(Frank et al. 2006). Considering their distinct role in promoting and repressing chondrogenesis, 

the opposite regulation of IBSP and GREM1 between both OSR and KLF factors is overall 

correlated with the previous observations in the chMM cultures and the in vivo graft 

experiments. 

Given the high consistency in the TF regulatory patterns and the elevated number of shared 

targeted genes, a gene clustering approach was led on the 4,298 non-redundant DE genes by 

using K-means (Hartigan and Wong 1979). This method intends to partition a list of genes into a 

given number of clusters such that genes belonging to a same cluster are as similar as possible in 

term of their expression pattern, while being as distant as possible of the expression pattern of 

genes belonging to the other clusters. By using this approach, the 4,298 unique DE genes were 

partitioned into 8 clusters (Figure 25A). A gene ontology (GO) analysis was further performed in 

order to identify potential biological processes enriched within each cluster (Figure 25B). 

 

Figure 25. K-means gene clustering of the differentially expressed genes. (A) Gene clusters identified by K-
means partitioning on the 4,298 non-redundant DE genes. The number of K clusters was fixed at 8 because lower 
values did not separate distinct gene clusters and higher values subdivided meaningful gene clusters. (B) GO 
analysis for biological processes of the DE genes belonging to each K-means cluster. GO terms related to cell 
differentiation and development are depicted in green, cell signalling and communication in red, cell adhesion in 
blue. Clusters having no significant enrichment for the specified GO terms are depicted in grey. 
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The cluster I was composed of downregulated genes across overexpression of each TF (Figure 

25A), which are mainly involved in ion transport and metabolic processes (Figure 25B). By 

contrast to this cluster, the cluster VIII was enriched for genes being upregulated by all TFs 

within the chMM cultures (Figure 25A). These genes are associated with metabolism, gene 

expression, cellular component organization and the regulation of cell signalling and 

communication (Figure 25B). The clusters II, III, IV and V corresponded to genes upregulated 

specifically by each TF or couple of closely related TFs (Figure 25A). Genes positively 

regulated by the TFs are mainly enriched for cell differentiation, mesoderm development, cell 

signalling and biological adhesion (Figure 25B). Consistently with the previous observation that 

genes associated with muscle differentiation and development are more abundant in OSR1- and 

OSR2-overexpressing chMM cultures as compared to the native chMM cultures, Both OSR 

factors positively regulate genes involved in muscle organ development (Figure 25B; cluster II). 

The cluster VI, which depicted an opposite expression pattern to the cluster II, is composed of 

genes downregulated by OSR1 and OSR2 overexpression (Figure 25A). Genes belonging to this 

cluster are enriched for biological processes related to chondrogenesis (Figure 25B), which is in 

agreement with the cartilage phenotype and reduction observed in grafted wings and chMM 

cultures, respectively. The cluster VII, contrasting to the cluster IV, corresponded to genes being 

downregulated by KLF2 and KLF4 overexpression (Figure 25A) and related to cell signalling 

and adhesion (Figure 25B). 

The TFs share common regulatory functions 

The gene clustering approach revealed that a major proportion of genes upregulated by the 

selected connective tissue-associated TFs are involved in signal transduction and biological 

adhesion. To further investigate this interesting feature, signalling pathway enrichment analysis 

was performed on the complete set list of DE genes identified for each TF independently. 

Consistent with the previous observation that the TFs share common regulatory patterns, the TF-

associated DE genes were related to common signalling pathways (Figure 26A). Of remarkable 

interest, Integrin, Cadherin and WNT signalling pathways were enriched across all chMM 

culture conditions. On the other hand, some signalling pathways were rather enriched for a 

subgroup of TFs (Figure 26A). In particular, Axon guidance regulation mediated by netrin was 

associated with both OSR factors; Cytoskeletal regulation by Rho GTPase was common to 

OSR1, OSR2 and EGR1; TGF-beta signalling pathway was enriched for OSR1, OSR2 and 

KLF2; whereas Notch signalling pathway was highlighted in both KLF factors. 
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Figure 26. Signalling pathway enrichment analysis of the differentially expressed genes. (A) GO analysis on 
the DE genes identified upon overexpression of each TF within the chMM cultures. Signalling pathways highlighted 
in bold were further analysed. DE genes having no enrichment for the specified Panther pathway are depicted in 
grey. (B,C) Boxplots of the global expression level for the DE genes (B) and non-DE genes (C) belonging to the 
selected Panther pathways. Log2 fold changes of each gene were averaged across all chMM culture conditions and 
replicates. Number of genes (n) is indicated on the bottom. Statistical test: paired Wilcoxon rank-sum test, p-values 
are indicated on the top, significant if P < 0.05. 

DE genes associated with each aforementioned signalling pathway were retrieved and further 

processed. By comparing the averaged fold change across all TFs for each DE gene, it appeared 

that DE genes within each selected pathway were overall significantly upregulated with a 

median log2 fold change close to 1 (Figure 26B; Wilcoxon rank-sum test, P < 0.05). This 

tendency was not observed for the remaining non-DE genes associated with each of the 

signalling pathway (Figure 26C; median log2 fold change close to 0). Therefore, it seems that 

the TFs positively activate these signalling pathways by upregulating a core of targeted genes. 

Nevertheless, a proportion of DE genes associated with the Integrin and TGF-beta signalling 

pathways rather appeared downregulated (Figure 26B; lower whisker). Closer look of these two 

pathways highlighted a set of genes specifically repressed by both OSR factors (Supplemental 

figures 4A,B). Most of these downregulated genes are associated with cartilage and bone 

development, which is consistent with the previous observations that overexpression of OSR1 

and OSR2 represses chondrogenesis in grafted forelimbs and chMM cultures. 

Considering the strong enrichment for biological processes related to signal transduction, cell 

communication and biological adhesion, DE genes should encode proteins associated with these 

functions such as receptors, secreted molecules and ECM proteins. To validate this hypothesis, 
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overrepresentation analyses on cellular component, molecular function and protein class were 

carried out on the 4,298 non-redundant DE genes. As expected, DE genes identified across all 

TFs were enriched for proteins associated with the ECM, plasma membrane and cytoskeleton 

(Figure 27A). This was confirmed by the molecular function and protein class GO analyses with 

enrichment for receptor, ECM and cytoskeletal proteins as well as signalling and cell adhesion 

molecules (Figures 27B,C). DE genes encoding proteins associated with cell adhesion, 

cytoskeleton, ECM and signal transduction were further investigated. The averaged fold change 

was calculated across all TFs for each DE gene associated with these protein classes. Similarly to 

the signalling pathways, DE genes within each selected protein class were overall significantly 

upregulated (Figure 27D; median log2 fold change close to 1; Wilcoxon rank-sum test, P < 

0.05), as compared to the remaining non-DE genes (Figure 27E; median log2 fold change close 

to 0). 

 
Figure 27. GO enrichment analyses on the differentially expressed genes. (A,B,C) Overrepresentation test of the 
4,298 non-redundant DE genes for cellular component (A), molecular function (B) and protein class (C) GO terms. 
(D,E) Boxplots of the global expression level for the DE genes (D) and non-DE genes (E) belonging to the selected 
protein classes. Log2 fold changes of each gene were averaged across all chMM culture conditions and replicates. 
Number of genes (n) is indicated on the bottom. Statistical test: paired Wilcoxon rank-sum test, p-values are 
indicated on the top, significant if P < 0.05. 
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Altogether, the gene expression profiling of the chMM cultures overexpressing each TF 

highlighted a core of common regulatory functions across all TFs. The connective tissue-

associated TFs positively regulate biological processes related to cell signalling, communication 

and adhesion. Given that the TFs belong to distinct subcompartments of the musculoskeletal 

system, it is tempting to associate these biological functions more broadly. Connective tissues 

could be then involved in establishing an environment where cell-cell interactions and 

communications would take place and contribute to the development of a proper limb. 

C. Chromatin landscape 

The activation or the repression of a gene is highly dependent on a biological process mediating 

the chromatin accessibility along promoter and enhancer regulatory domains. Promoters and 

enhancers are associated with specific histone tail post-translational modifications, which can be 

assessed genome-widely by means of chromatin immunoprecipitation followed by massively 

parallel DNA sequencing (ChIP-seq). To further investigate the TF regulatory patterns, I 

performed ChIP-seq on five histone modifications frequently detected in promoters, enhancers 

and repressive islands (Supplemental table S3). 

Defining the regulatory domains 

The chromatin landscape was assessed in two independent biological replicates of 5-day chMM 

cultures infected with native retroviral particles carrying no TF coding sequence (Supplemental 

figure S5). Five histone modifications were investigated by ChIP-seq: mono-, bi- and tri-

methylation of lysine 4 of the histone protein H3 (H3K4me1, H3K4me2 and H3K4me3), 

acetylation and trimethylation of lysine 27 of the histone protein H3 (H3K27ac and H3K27me3). 

Histone mark coverage profiles for each biological replicate were generated by normalizing the 

ChIP-seq enrichment signal against the corresponding input controls (sonicated DNA sequenced 

to measure chromatin accessibility). Similarity across all histone modifications and replicates 

was assessed by computing the Pearson correlation. Biological replicates for each histone 

modification were highly consistent and clustered together (Figure 28A). H3K4 bi- and tri-

methylated were strongly correlated and enriched at the transcriptional start site (TSS) of 

annotated transcripts (Figures 28A,B). H3K27ac was more correlated with H3K4me3 than with 

any other histone mark and detected surrounding the TSS (Figures 28A,B), as expected since 

these both modifications are associated with transcriptional activation (Santos-Rosa et al. 2002; 

Creyghton et al. 2010). In contrast, H3K27me3 was weakly detected at TSSs and H3K4me1 was 

not globally enriched in the vicinity of TSSs (Figure 28B). 
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Figure 28. Histone modification signal profiles. (A) Similarity across histone modification enrichment profiles 
and biological replicates. Signal coverage was normalized against the input controls by using the negative log10 of 
the Poisson p-value. Pearson correlation across all histone modifications and biological replicates was computed in 
500-bp non-overlapping windows along the whole genome. (B) Normalized mean histone ChIP-seq signal 
surrounding the TSS of all transcripts. Signal was normalized by using the negative log10 of the Poisson p-value. 
TSS, transcriptional start site. 

Peak calling of the different ChIP-seq profiles was performed by following the ENCODE and 

Roadmap Epigenomics consortiums’ recommendations (Kellis et al. 2014; Roadmap 

Epigenomics Consortium et al. 2015). Only the peaks that were identified in both biological 

replicates for each histone mark were further processed. Regulatory domains were determined by 

combining the different histone modification profiles. Due to the chromosome fragmentation and 

therefore gene fragmentation of the chicken genome, promoters and enhancers were not defined 

according to the TSS position, as it is usually performed. H3K4me3 is a mark that is frequently 

found at promoter regions (Barski et al. 2007; Heintzman et al. 2007). Although it can also be 

observed at enhancer regions (Pekowska et al. 2011), the presence of H3K4me3 signal was used 

to identify promoter regions, since it is strongly enriched surrounding the TSS (Figure 28B). 

Consistent with its association to enhancer regions (Heintzman et al. 2007) and low enrichment 

at the TSS (Figure 28B), H3K4me1 signal was used to define enhancers. H3K4me2 is a mark 

that is found at both promoter and enhancer regions (He et al. 2010; Heintzman et al. 2007; 

Kaikkonen et al. 2013). Remaining H3K4me2 regions, which were devoid of H3K4me1 and 

H3K4me3 signals, were classified as promoters. In total, 20,427 promoters and 55,597 enhancer 

regions were thus defined (Figures 29A,B). H3K27me3, a Polycomb group-associated repressive 

mark (Cao et al. 2002; Czermin et al. 2002; Kuzmichev et al. 2002; Müller et al. 2002), is a 

signature of facultative heterochromatin. Regions enriched for this histone modification and 

devoid of any other mark were defined as repression islands, which accounted for 71,664 

domains (Figure 29C). 
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Figure 29. Regulatory domains. (A) 20,427 identified promoters. (B) 55,597 identified enhancers. (C) 89,981 
regions associated with the H3K27me3 repressive mark. (D) Association of regulatory domains with gene TSSs. 
Chromatin domains were searched in the region surrounding TSS positions ranging from 10-kb upstream to 2.5-kb 
downstream. The regulatory domain located the closest to the TSS position was associated with the corresponding 
gene. Number of regions (n) for each category is indicated. 

Promoter and enhancer regulatory domains were then further divided into four chromatin states: 

(i) inactive; (ii) poised; (iii) active; and (iv) bivalent. The distinction of the four states was based 

on the presence or absence of H3K4me3 and H3K27ac, which are both marks enriched in the 

vicinity of actively transcribed regions, as well as on H3K27me3, which is associated with 

facultative heterochromatin. H3K27ac is a modification detected in both active promoter and 

enhancer (Creyghton et al. 2010; Heintzman et al. 2009), whereas H3K27me3 is a signature of 

poised enhancer (Rada-Iglesias et al. 2011) and bivalent promoter (Azuara et al. 2006; Bernstein 

et al. 2006). Inactive regulatory domains corresponded to promoters and enhancers only enriched 

for H3K4me2 and H3K4me1/2, respectively (Figures 29A,B; Table 1). Poised domains were 

characterized by the absence of active mark (H3K4me3 and/or H3K27ac) and the presence of the 

repressive mark H3K27me3 (Figures 29A,B; Table 1). Active domains were defined by the 

unique presence of an active mark (promoters: H3K4me3 and/or H3K27ac; enhancers: 

H3K27ac), whereas bivalent domains were composed of both active and H3K27me3 repressive 
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marks (Figures 29A,B; Table 1). Overall, the repression-associated H3K27me3 domains were 

identified in 6,262 (7.0%) promoters and 12,055 (13.4%) enhancers (Figure 29C). 

Table 1. Promoter and enhancer regulatory domains. Red, active marks; brown, repressive mark. 

 
To evaluate the consistency between the regulatory domains thus defined and the genes 

identified by the transcript-discovery approach, TSS position of each transcript was retrieved. 

Genes belonging to the de novo assembled chromosome were ignored due to the lack of 

information regarding their surrounding genome sequence and arrangement. For the remaining 

genes, since the 5’-untranslated regions (UTRs) were the least well-defined by the transcript-

discovery approach, an extended region surrounding TSS positions was investigated as 

compared to the usual -2.5/+2.5-kb window. Region from 10-kb upstream to 2.5-kb downstream 

around TSS positions were first scanned for the presence of promoter domains. The closest 

promoter identified was then associated with the corresponding transcript. Regions lacking of 

promoter domain were further investigated for the presence of enhancer domains and repression 

islands. The domain detected in the closest vicinity of each TSS was then linked to the 

corresponding transcript. Out of the 20,380 genes with at least one transcript located on the 

chicken genome sequence, 15,899 (78.0%) genes had their TSS associated with a promoter 

domain (Figure 29D). Remaining genes had their TSS in a close vicinity of an enhancer domain 

(1,677; 8.2%), a repression island (1,384; 6.8%) or not associated with any regulatory domain 

(1,420; 7%) in the investigated coverage area (Figure 29D). 

DE genes are associated with bivalent promoters 

In total, 13,254 promoters were detected near gene TSSs (Figure 30A). Genes were mostly 

associated with an active (9,589; 72.3%) or bivalent (3,355; 25.3%) chromatin state. 

Interestingly, the proportion of bivalent promoters was higher near the TSS of DE genes (36.9%) 

than for all genes (25.3%) or a set of randomly selected genes (19.5%) with similar expression 

levels (Figure 30). 

State Promoters((H3K4me2(only;(H3K4me2/3) Enhancers((H3K4me1;(H3K4me1/2)

Inactive H3K4me2+only H3K4me1+only;+H3K4me1/2

Poised
H3K4me2

H3K27me3

H3K4me1;+H3K4me1/2

H3K27me3

Active
H3K4me2

H3K4me3,+H3K27ac

H3K4me1;+H3K4me1/2

H3K27ac

Bivalent

H3K4me2

H3K4me3,+H3K27ac

H3K27me3

H3K4me1;+H3K4me1/2

H3K27ac

H3K27me3
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Figure 30. Promoter states associated with genes. Promoter regulatory domains identified in the vicinity of all 
genes (A), DE genes (B) and randomly selected genes (C). Regions surrounding TSS positions ranging from 10-kb 
upstream to 2.5-kb downstream were covered. Number of regions (n) for each category is indicated. 

This tendency was confirmed by assessing the averaged signal for each histone modification at 

TSS positions. The H3K27me3 signal was higher in the TSS vicinity of DE genes (Figure 31A), 

as compared to the random set of genes (Figure 31B). Consistent with the increased repressive 

signal, the active marks H3K4me3 and H3K37ac had a weaker signal at the TSS of DE genes 

than that of randomly selected genes (Figures 31A,B; y-axis scale). 

 

Figure 31. Histone mark coverage profiles at the TSS of differentially expressed genes. Normalized histone 
ChIP-seq signal surrounding the TSS of DE genes (A) and randomly selected genes (B). Signal was normalized by 
using the negative log10 of the Poisson p-value. TSS, transcriptional start site. 

To investigate this dual association of active and repressive marks, the 4,298 DE genes were 

filtered based on three criteria: (i) gene located on one single chromosome with a minimum size 

of 10 kb; (ii) gene body length of at least 1 kb; and (iii) -10/+2.5-kb regions around TSS within 

the chromosome borders. The resulting list was composed of 3,070 genes. The same criteria 

were applied to the randomly selected genes giving rise to a set of 3,080 random genes. 10-kb 

regions surrounding each TSS were retrieved and split into 100 intervals of 200 bp. For the 

genes having multiple transcripts with distinct TSS positions, the most upstream TSS was 

selected. Regulatory domains contained in each 200-bp interval were recovered in order to 

identify the most dominant domain per interval and plotted (Figure 32). Consistent with the 
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previous observations, DE genes were more associated with bivalent promoter domains than it 

would occur by chance (Figures 32A,D). The higher distribution of bivalent promoters was 

independent of the gene expression levels given the similarity in the range of gene expression of 

both gene sets (Figures 32A,D; white curves). The H3K4me3 active signal was less enriched and 

spread in the vicinity of DE gene TSSs (Figure 32B), as compared to the randomly selected 

genes (Figure 32E). In contrast, the Polycomb group-associated repressive histone modification 

H3K27me3 was much more abundant at the TSS of DE genes (Figures 32C,F). Bivalent 

promoter domains have been identified for the first time in embryonic stem cells (Bernstein et al. 

2006; Mikkelsen et al. 2007). They are associated with genes that are dynamically regulated such 

as those involved during development and cell fate commitment. Bivalent domains maintain 

genes in an unstable silent state, which can be reverted for rapid gene activation and expression. 

Recently, bivalent domains have also been identified in adult skeletal muscle stem cells (Liu et 

al. 2013), suggesting a role as an epigenetic state memory for cell reprogramming. 

 

Figure 32. Promoter state surrounding the TSS of differentially expressed genes. Distribution maps of active 
and repressive histone marks at the TSS of 3,070 DE genes (A,B,C) and 3,080 random genes (D,E,F). (A) 
Distribution of active (blue) and bivalent (red) promoter domains at the TSS of DE genes. (B,C) Enrichment of 
H3K4me3 (B, blue) and H3K27me3 (C, red) signal at the TSS of DE genes. (D) Distribution of active (blue) and 
bivalent (red) promoter domains at the TSS of randomly selected genes. (E,F) Enrichment of H3K4me3 (E, blue) 
and H3K27me3 (F, red) signal at the TSS of randomly selected genes. Intervals with a main regulatory domain 
being different from active and bivalent promoter are depicted in grey. Genes were ordered according to their 
expression level (white curve). TPM, transcripts per million; TSS, transcriptional start site. 
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Nevertheless, given the multiple cell types within the chMM cultures, the bivalent promoter 

domains observed in the vicinity of the DE genes could simply reflect cell-type specific genes. 

Indeed, these genes could be activated (H3K4me3+/H3K27me3−) and therefore expressed in a 

subpopulation of cells, while being repressed (H3K4me3−/H3K27me3+) in another 

subpopulation of cells. However, the combination of both active and repressive histone marks, 

whether they are located at the same loci or in distinct cell populations, provides the relevant 

feature that these genes are dynamically regulated, as opposed to housekeeping and ubiquitous 

genes that would be active and expressed in most of the cells. 

D. Transcription factor-binding sites 

After detection of DE genes upon overexpression of OSR1, OSR2, EGR1, KLF2 and KLF4, and 

definition of the chromatin landscape within the chMM cultures, I next analysed which genes are 

directly regulated by each TF. To address this question, I performed a second series of ChIP-seq 

experiments targeting the individual TFs (Supplemental table S4). This approach intended to 

identify the TF-binding sites (TFBS) in order to distinguish the directly regulated genes from 

those that are indirectly regulated. 

Quality control and peak calling 

Due to the absence of specific and sufficient antibodies targeting each of the selected chicken 

TFs, a triple-FLAG (3F) tag was fused C-terminally to the CDS of each TF prior to its insertion 

into the RCAS-BP(A) vector. All the TFs could then be targeted by using a single antibody 

directed against this tag. This experimental setup allowed a high reproducibility and a direct 

comparison of each TFBS set, but also prevented a bias in peak detection in regards to different 

antibody specificities. In addition, the moderate RCAS-BP(A)-mediated TF overexpression level 

limits the identification of binding site artefacts that would result if the TFs would be express at 

a level far from their physiological level (Ibrahim et al. 2013). ChIP-seq was performed on two 

independent biological replicates of 5-day chMM cultures overexpressing each of the selected 

TFs. Prior to ChIP, retroviral infection and overexpression of the tagged TFs were assessed by 

immunohistochemistry (Figure 33A) and Western blot analysis (Figure 33B) against the 3F tag. 
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Figure 33. Detection of the 3F-tagged transcription factors within the chMM cultures. (A) 
Immunohistochemistry with an anti-FLAG antibody to detect the infection of retroviral RCAS-BP(A) 
particles carrying each of the TF CDS fused at their 3’-end with the triple-FLAG tag. (B) Western blot 
analysis of the 3F-tagged recombinant proteins overexpressed in chMM cultures. TFs were detected 
by using an anti-FLAG antibody; protein amount in each sample loaded was controlled by using an 
anti-H3 antibody recognizing histone proteins H3. Control corresponded to a chMM culture infected 
with native retroviral particles carrying no recombinant protein and no triple-FLAG CDS. 

ChIP-seq coverage profiles obtained for each biological replicate and TF were normalized 

against the corresponding input controls by using the negative log10 Poisson p-value. Similarity 

across all normalized signal profiles was assessed genome-widely in 500-bp non-overlapping 

windows by principal components analysis (PCA). Although the two first principal components 

accounted for 84.2% of the global variance across ChIP-seq profiles, they did not allow a 

sufficient separation of all signal profiles, except for EGR1 (Figure 34A). However, comparison 

of the second and third principal components partitioned the TF signal profiles into three distinct 

quadrants (Figure 34B). Both biological replicates of each TF signal profile were clustered 

together, as for TF-related couple profiles. EGR1 enrichment profiles were located in one 

quadrant, both OSR1 and OSR2 profiles were gathered together in a same quadrant, as for both 

KLF2 and KLF4 replicates in a third quadrant. Therefore the PCA analysis revealed two 

features: (i) both biological replicates of each TF are consistent; (ii) both factors of a same 

subgroup (OSR1 and OSR2; KLF2 and KLF4) have a similar distribution across the genome. 

 
Figure 34. Principal components analysis of the transcription factor-signal profiles. PCA 
analysis of the normalized ChIP-seq signal profiles of all TFs and biological replicates. (A) Biplot of 
PC1 vs. PC2. (B) Biplot of PC2 vs. PC3. ChIP-seq signal was normalized by using the negative 
log10 of the Poisson p-value. PC, principal component. 
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At the time of the first release of publicly available data in September 2012, the ENCODE 

consortium defined a set of good practices and metrics to assess the quality of TF-related ChIP-

seq experiments (Landt et al. 2012). The guidelines thus provided intended to standardize the 

analysis of TF ChIP-seq data prior to biological interpretation. ChIP-seq data generated for each 

TF were then analysed according to the ENCODE recommendations (Supplemental table S4). 

Strand cross-correlation analysis was first performed to evaluate the enrichment signal in each 

ChIP-seq data set. This analysis is based on the accumulation of sequencing reads on each DNA 

strand towards the binding location of the protein of interest. It is therefore dependent of the 

fragment size distribution generated during DNA sonication. This analysis offers a relevant 

assessment of the signal-to-noise ratio to distinguish between true binding sites with a sufficient 

enrichment signal and binding artefacts with a weak enrichment signal. The cross-correlation 

analysis is accompanied of two quality metrics to evaluate the signal-to-noise ratio: (i) the 

normalized strand correlation (NSC; ≥ 1.05); and (ii) the relative strand correlation (RSC; ≥ 0.8). 

Both metrics assess the ratio of the ChIP signal over the background signal and the ratio of the 

ChIP peak over the phantom peak (read-length peak). Overall, the TF cross-correlation analyses 

passed both thresholds fixed by the ENCODE consortium (Figure 35; Supplemental figure S6; 

Supplemental table S4). One replicate of the KLF2 ChIP-seq was suboptimal with a NSC value 

below 1.05, indicative of a weak enrichment; however, its RSC value was above 0.8 (Figure 

35B). In addition, one of the KLF4 ChIP-seq replicates had a moderate enrichment (NSC of 

1.037) but its RSC value was at 1.263 (Supplemental figure S6G). 

 

Figure 35. Cross-correlation analysis of ChIP-seq enrichment. Strand cross-correlation plot of EGR1-3F RepB 
(A) and KLF2-3F RepA (B) to evaluate the signal-to-noise ratio of the ChIP-seq enrichment profiles. NSC, 
normalized strand correlation (≥ 1.05); RSC, relative strand correlation (≥ 0.8). The first peak corresponds to the 
phantom peak identified at the sequencing-read length; the second peak corresponds to the ChIP peak identified at 
the half of the fragmentation length. 
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Peaks for each TF were then called by using MACS2 (Zhang et al. 2008) and low-stringency 

thresholds. Indeed, the ENCODE consortium recommends to perform a consistency analysis by 

assessing the irreproducible discovery rate (IDR) to identify TFBS rather than using a fixed 

threshold during peak calling (Landt et al. 2012; Li et al. 2011a). The IDR analysis assumes that 

the most enriched peaks and by extension the most significant ones are more likely to be 

consistent between biological replicates than noise peaks. IDR analysis was first performed on 

the peak sets detected for both replicates of each TF using a consistency threshold of 0.01 

(Figure 36; Supplemental figure S7; Supplemental table S4). The highest consistency between 

both biological replicates was obtained for the ChIP-seq against EGR1 (Figure 36A). By contrast 

and in agreement with the cross-correlation analysis, both replicates of KLF2 ChIP-seq were the 

least consistent (Figure 36B). Due to the weaker enrichment signal obtained for the RepA, the 

number of significant peaks between both replicates was low. Indeed, the IDR analysis is 

dominated by the replicate with the weakest quality, which results in the loss of the significant 

peaks identified in the replicate of higher quality due to an inconsistency between both 

replicates. 

 
Figure 36. Replicate consistency IDR analysis. IDR analysis on the peaks identified for both biological replicates 
of EGR1-3F (A) and KLF2-3F (B) ChIP-seq. Peaks (N) passing an IDR threshold of 0.01 were considered as 
consistent between both replicates. 

To obtain the final list of peaks for a given TF, the ENCODE consortium recommends to 

perform an IDR analysis on the pooled biological replicates. Signal profiles of both replicates for 

each TF ChIP-seq were merged and randomly partitioned into two pseudo-replicates. Peaks were 

called with low stringency thresholds and compared by IDR analysis (Figure 37; Supplemental 

figure S8; Supplemental table S4). The number of peaks that passed an IDR threshold of 0.01 
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was used to identify the final set of peaks for each TF. Peaks were called on the pooled 

enrichment profiles of both biological replicates for each TF and sorted according to their p-

value. The number of top peaks retrieved corresponded to the number of consistent peaks 

identified by the pooled-replicate IDR analysis for each TF (Figure 37; Supplemental figure S8; 

Supplemental table S4). As a result, the numbers of binding sites selected for each TF were as 

follows: OSR1, 20,983; OSR2, 22,403; EGR1, 16,627; KLF2, 21,352; KLF4, 14,519. To 

validate this final set of peaks, especially for KLF2 that showed the lowest consistency between 

its both replicates, an additional quality metric was measured, the fraction of sequencing reads 

that are located in the final set of selected peaks (FRiP, ≥ 0.01). Each biological replicate had a 

FRiP value between 1.2 and 3.3% (Supplemental table S4). KLF2 RepA and KLF4 RepA had a 

FRiP value of 1.7 and 1.2%, respectively. Although their signal-to-noise ratio was suboptimal to 

moderate according to the cross-correlation analysis (Figure 35B; Supplemental figure S6G), the 

FRiP value above 1% indicated that their ChIP-seq enrichment profile was composed of true 

signal. In addition for KLF4, the ratio between replicate consistency and pooled-replicate 

consistency IDR analyses was below the threshold of 2 required by the ENCODE consortium 

(Supplemental figures S7C, S8C). By contrast, the ratio of both IDR analyses for KLF2 was over 

3 (Figures 36B, 37B). Therefore, using the output of the replicate consistency IDR analysis 

would have strongly underestimated the number of binding sites for KLF2. 

 
Figure 37. Pooled-replicate consistency IDR analysis. IDR analysis on the peaks identified for the pooled 
biological replicates of EGR1-3F (A) and KLF2-3F (B) ChIP-seq. Both biological replicates of each TF ChIP-seq 
were merged and randomly partitioned into two pseudo-replicates. Peaks (N) passing an IDR threshold of 0.01 were 
considered as consistent between both pseudo-replicates. 
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Functionality of TFBS 

In order to assess their functionality, binding sites identified for each TF were compared with the 

regulatory domains and the gene annotation model (Figure 38A). The TFs depicted a variable 

occupancy of regulatory domains and gene features. From 10.3% to 41.6% of TFBS were found 

in promoters, whereas between 7.1% and 18.9% of TFBS were contained in enhancers. More 

than half (55.9%) of EGR1 binding sites were located within promoters and enhancers, while 

KLF2 had only 17.9% of occupancy in these regulatory domains. Intriguingly, between 8.6% 

and 14.2% of TFBS overlapped with repression islands, consisting in regions of facultative 

heterochromatin. Given that the chromatin landscape was solely assessed in the control chMM 

cultures, it is possible that these regions become accessible upon TF overexpression. In total, 

from 32.7% to 64.4% of TF-binding events occurred in chromatin domains. The remaining 

TFBS located aside from chromatin domains were mainly found in intergenic regions (20.6%-

37.0%) or introns (16.3%-24.2), while no more than 6.0% of binding sites overlapped with exons 

(Figure 38A). 

 
Figure 38. Transcription factor-binding events within DNA regulatory domains. (A) Proportion of TFBS in 
chromatin domains and gene features. (B) TF recognition motifs. Position weight matrices (PWMs) were assessed 
from the 1,000 most significant peaks located within promoters and enhancers for each TF (summits ± 75 bp). 

TF-binding events located in promoters and enhancers are likely to be functional and therefore to 

contribute to the regulation of gene expression. The 3,819-9,291 (17.9%-55.9%) binding sites for 

each TF identified in these domains were retrieved for further analysis. TF-binding specificity 

was assessed by investigating their recognition motif. De novo motif analysis was performed on 

the 1,000 most significant binding sites for each TF (Figure 38B). Recognition motifs identified 

for OSR1 and OSR2 are highly consistent with their known binding sites in Drosophila and the 

mouse (Badis et al. 2009; Meng et al. 2005). Both factors recognize a very similar binding motif 

although OSR1 motif at position 2 is more stringent than OSR2 motif (A vs. [A/G]). In 

agreement with previous reports, EGR1 and KLF4 binding motifs are enriched in 

cytosine/guanine (Badis et al. 2009; Chen et al. 2008; Jolma et al. 2013). In contrast to the other 

TFs, KLF2 binding motif is not known. However, its recognition motif is highly consistent with 

the core binding sequence of the KLF protein family (Sunadome et al. 2011). Besides for the 
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matrix positions 2 and 4 (C vs. [C/G]; H vs. C), the KLF2 recognition motif is similar to the 

secondary motif identified for KLF4. Both binding motifs identified for KLF4 may contribute to 

its regulatory pattern observed in the chMM cultures, considering the 767 DE genes specifically 

identified for KLF4 and the 1,866 DE genes shared with KLF2 (Figures 24A, 25A). 

E. Characterization of candidate target genes 

To validate the DE genes identified by RNA-seq and the TFBS detected by ChIP-seq, a few 

candidate genes were selected. All the DE genes upregulated by at least one TF were first 

retrieved. Then, regions spanning from 10-kb upstream of the TSS to 2.5-kb downstream of the 

3’UTR were investigated for the presence of TFBS located within a promoter or enhancer 

regulatory domain. The resulting list of potential direct target genes was then manually parsed to 

identify interesting candidate genes. Six genes were thus selected and further characterized by 

ISH at two chick developmental stages: E5.5 (HH27-28) and E8 (HH34). By analogy with the 

chMM cultures, E5.5 corresponds to one day following the developmental stage at which 

cultures were prepared, and E8 is similar to 5-day cultures when muscle fibres are formed. 

Selected candidate genes 

Given their similar regulatory profiles, a common target of OSR1 and OSR2 was selected, 

namely WNT11. Both OSR factors bind at the same location within an intronic region detected as 

an active enhancer in the chMM cultures (Figures 39A,A’). WNT11 is a secreted component of 

the non-canonical WNT planar cell polarity pathway. It is involved in cell adhesion and 

migration by acting on cadherins and focal adhesion proteins, as well as in the differentiation of 

cardiac, hematopoietic and bone marrow-derived cells (reviewed in Uysal-Onganer and Kypta 

2012). In chick embryos, WNT11 has been shown to regulate muscle fibre type and orientation 

during myogenesis (Anakwe et al. 2003; Gros et al. 2009). In addition, WNT11 is expressed in 

joints and hypertrophic chondrocytes during chick limb development, suggesting a role in 

cartilage formation (Witte et al. 2009). 

Additionally to WNT11, ADGRG2 (also known as GPR64) is upregulated upon overexpression 

of OSR1 and OSR2 in the chMM cultures, although only a binding site for the latter was found 

in its vicinity (Figures 39B,B’). ADGRG2 encodes an adhesion G protein-coupled receptor, 

which is expressed in epididymis and crucial to maintain male fertility (Davies et al. 2004; 

Kirchhoff et al. 2006). Recent studies in the mouse have suggested that ADGRG2 is involved in 

adipogenesis and osteoblast differentiation since its expression is regulated by the TFs Prdm16 

and Runx2, respectively (Harms et al. 2014; Teplyuk et al. 2008). 
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Figure 39. Candidate target genes of the transcription factors. (A-E) UCSC browser screenshots depicting the 
TFBS detected in regulatory domains associated with the selected candidate genes by ChIP-seq. (A’-E’) Expression 
levels of the selected target genes within each TF-overexpressing chMM cultures determined by RNA-seq. Red, 
OSR1-3F; orange, OSR2-3F; green, EGR1-3F; blue, KLF2-3F; purple, KLF4-3F. 

WNT4 is another member of the non-canonical WNT signalling pathway with a protein 

sequence highly similar to WNT11. In the chMM cultures, WNT4 was detected as being 

upregulated upon EGR1 overexpression and was associated with an EGR1 binding site in its 

promoter region (Figures 39C,C’), which is consistent with previous findings in the uterine 

endometrium during mouse pregnancy (Liang et al. 2014). Besides its role as promoter of 

ovarian development while repressing male sexual development (reviewed in Biason-Lauber and 

Chaboissier 2015), WNT4 is involved in joint development, bone formation and chondrocyte 

maturation (Hartmann and Tabin 2000; Loganathan et al. 2005; Später et al. 2006). In addition, 

WNT4 overexpression in chick limbs upregulates PAX7 and MYOD, increases muscle masses 
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and enhances fast-type myofibre formation, indicating a role during myogenesis (Takata et al. 

2007). 

CBFA2T2 (also known as MTGR1) is a transcriptional co-repressor that mediates pluripotency 

and germline specification (Tu et al. 2016). In the chMM cultures, CBFA2T2 is upregulated 

upon EGR1, KLF2 and KLF4 overexpression, which bind to two distinct promoter regions, each 

being associated with an alternative isoform (Figures 39D,D’). Although CBFA2T2 has been 

shown to repress Notch signalling as well as to contribute to intestinal and hematopoietic cell 

differentiation (Ajore et al. 2012; Parang et al. 2015), its role during embryo development 

remains to be determined. 

ANXA1 (also known as LPC1) encodes a calcium-dependent phospholipid-binding protein and is 

upregulated by both KLF factors in the chMM cultures, although only KLF4 binds to its 

promoter region (Figures 39E,E’). ANXA1 has been associated with an anti-inflammatory 

activity and seems to control adiposity (reviewed in Akasheh et al. 2013). In addition, ANXA1 is 

involved in cell migration, cytoskeleton organization and is thought to mediate developmental 

and regenerative myogenesis (reviewed in Bizzarro et al. 2012; Leikina et al. 2015). 

Expression pattern of the TFs and their target genes in E5.5 chick limbs 

The expression of the selected target genes was first characterized by whole-mount ISH at E5.5 

(Figure 40), which corresponds to a developmental stage where most of the limb cells have 

reached their final localization and actively initiate their differentiation process. 

WNT11 is expressed in forelimb mesenchyme along the proximodistal axis highly consistent 

with the expression pattern of OSR2, as well as the posterior OSR1 expression domain (Figures 

40A-C; white arrowheads). ADGRG2 expression is restricted to the proximal-posterior level of 

the forelimb, overlapping with OSR2 expression (Figures 40C,D). EGR1 and WNT4 display 

similar expression domains at the proximal-posterior part of the forelimb (Figures 40E,F) 

although EGR1 expression extends more distally. EGR1, KLF2 and KLF4 are all expressed in 

limb distal mesenchyme underneath the AER, which is in agreement with the expression pattern 

of their direct target gene CBFA2T2 (Figures 40E,G-I; white arrowheads). ANXA1 and KLF4 are 

both expressed in the stylopod, adjacent to the trunk and at the proximal-anterior level, as well as 

posteriorly in the zeugopod (Figures 40I,J). 
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Figure 40. Expression of selected target genes in chick forelimbs at E5.5. 
Whole-mount ISH for OSR1 (A), WNT11 (B), OSR2 (C), ADGRG2 (D), 
EGR1 (E), WNT4 (F), KLF2 (G), CBFA2T2 (H), KLF4 (I) and ANXA1 (J) 
genes in forelimbs of E5.5 (HH27-28) chick embryos. Forelimbs were 
hybridized with the corresponding probes (purple). 

Given the high consistency between the regulatory profiles of all TFs, an additional target gene 

was selected, NTN1, which is upregulated in the chMM cultures upon overexpression of each TF 

and for which all the TFs bind at the same location within an intronic enhancer (Figures 41A,B). 

NTN1 encodes a laminin-related secreted protein, which is involved in axon guidance and 

biological adhesion through interactions with multiple receptors, such as integrins, during 

nervous system development (Serafini et al. 1996; Srinivasan et al. 2003; Yebra et al. 2003). 

Although this gene has been mostly investigated for its role during neural development, a recent 

study has highlighted that NTN1 promotes osteoclast differentiation by inducing cytoskeletal 

rearrangements (Mediero et al. 2015). In E5.5 chick embryos, NTN1 is expressed in the stylopod 

of both forelimbs and hindlimbs as well as in the hindlimb zeugopod, and display overlapping 

expression domains with those of each TF (forelimbs: Figures 40A,C,E,G,I and 41C black 

arrowheads; hindlimbs: Figures 41D-I white arrowheads). 
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Figure 41. NTN1 is directly regulated by all transcription factors within the chMM cultures. (A) UCSC 
browser screenshot depicting the TFBS detected in an intronic enhancer of NTN1 by ChIP-seq. (B) Expression 
levels of NTN1 within each TF-overexpressing chMM culture determined by RNA-seq. Red, OSR1-3F; orange, 
OSR2-3F; green, EGR1-3F; blue, KLF2-3F; purple, KLF4-3F. (C) Whole-mount ISH with NTN1 probes (purple) in 
forelimbs of E5.5 (HH27-28) chick embryo. (D-I) Whole-mount ISH for OSR1 (D), OSR2 (E), KLF2 (F), KLF4 
(G), EGR1 (H) and NTN1 (I) genes in hindlimbs of E5.5 (HH27-28) chick embryos. Hindlimbs were hybridized 
with the corresponding probes (purple). FL, forelimb. 

The TFs and their target genes display overlapping expression domains in 

limb tissues at E8 

To correlate the expression patterns of the TFs and their target genes with the components of the 

musculoskeletal system, ISH were performed on forelimb tissue sections at E8, when the final 

pattern of muscle, tendon and bone is established in limbs. WNT11, a common target gene of 

both OSR factors, is expressed anteriorly in the wrist, in a region depicting OSR1 expression 

(Figures 42A,A’,B,B’; black arrowheads). In addition, WNT11 expression is detected 

surrounding a ventral muscle, consistent with OSR2 expression (Figures 42B,B’’,C,C’; white 

arrowheads). The specific target gene of OSR2, ADGRG2, is broadly expressed surrounding 

bones and muscles, overlapping with OSR2 expression pattern but not OSR1 (Figures 

42C,C’,D,D’; white arrowheads). 
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Figure 42. Endogenous expression of OSR1 and OSR2 target genes in forelimbs of E8 chick embryos. ISH for 
OSR1 (A,A’), WNT11 (B,B’,B’’), OSR2 (C,C’) and ADGRG22 (D,D’) genes in forelimbs of E8 (HH34) chick 
embryos. (A-D) Adjacent and transverse sections were hybridized with OSR1, WNT11, OSR2 and ADGRG2 probes 
(blue) followed by immunohistochemistry with the MF20 antibody (brown). Magnification 5X at the wrist level. 
(A’-D’) Magnification 10X of ventral regions marked with black and white arrowheads of sections (A-D). MF20 
targets skeletal muscle myosin. Top, ventral; left, posterior. 

ANXA1, which is directly upregulated by KLF4 in the chMM cultures, is expressed in regions 

delineating tendons similarly to KLF4 (Figures 43B,B’,C,C’; black arrowheads). As expected 

considering the similar expression pattern between both KLF factors in limbs of E9.5 chick 

embryos, ANXA1 expression also overlaps with that of KLF2 at E8 (Figures 43A,A’,C,C’; black 

arrowheads). ANXA1 was detected as being upregulated in the chMM cultures overexpressing 

KLF2 as well (Figures 39E’). However, given the absence of a binding site in the vicinity of 

ANXA1 gene body, ANXA1 is more likely to be an indirect target gene of KLF2. 

 
Figure 43. Endogenous expression of ANXA1, a target gene of KLF4, in forelimbs of E8 chick embryos. ISH 
for KLF2 (A,A’), KLF4 (B,B’) and ANXA1 (C,C’) genes in forelimbs of E8 (HH34) chick embryos. (A-C) Adjacent 
and transverse sections were hybridized with KLF2, KLF4 and ANXA1 probes (blue) followed by 
immunohistochemistry with the MF20 antibody (brown). Magnification 5X at the wrist level. (A’-C’) Magnification 
10X of ventral regions marked with black arrowheads of sections (A-C). MF20 targets skeletal muscle myosin. Top, 
dorsal; left, posterior. 
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DISCUSSION 

Development of the musculoskeletal system requires spatial, temporal, molecular and 

mechanical interactions between its components for proper morphogenesis and functionality. 

Throughout limb development, muscle and connective tissue cells are intimately associated 

suggesting that they differentiate in a coordinate manner and interact with each other. What are 

these interactions and how do they take place remain two fundamental unanswered questions 

that need to be addressed. In contrast to skeletal muscle and skeleton elements, connective 

tissues remain poorly characterized although emerging evidence have highlighted that they are 

essential throughout limb embryogenesis. The PhD thesis presented here intended to decipher 

the molecular mechanisms taking place during connective tissue differentiation that could 

influence skeletal muscle development. By analysing several layers of gene regulation, such as 

gene expression profiles, chromatin landscape and transcription factor (TF) occupancy, I 

established the regulatory patterns of connective tissue-associated TFs in chick limb cells. 

A. Designing a three-level transcriptional network 

Development of high-throughput sequencing technologies over the last past two decades has 

greatly contributed to decipher the complexity underlying gene expression in eukaryotic cells. 

Nowadays, various strategies can be applied to investigate genome-widely a particular gene 

regulation process depending on the biological question to address. Large-scale technologies 

offer remarkable advantage by providing the global repertoire of e.g. gene expression levels or 

TF occupancy, which are compensated by the complex computational analysis that they require. 

Improving the gene annotation of the chicken genome 

Since its first release in 2004 and despite significant improvements over the last past decade, the 

Gallus gallus genome is presently not complete and highly fragmented (Hillier et al. 2004). One 

of the main challenges is raised with the intrinsic fragmentation of the chicken karyotype and its 

28 microchromosomes. Since January 2016, the fifth version of the chicken genome has been 

released. As compared to the fourth version, this release includes ~200 more Mb and ~5,000 

additional annotated genes but retains 10% of its sequence as unassigned. Improvement of the 

chicken genome is an on-going project and a sixth version will be released in a near future 

(Wesley Warren, USA; personal communication). At the time of this thesis, this fifth version 

was not available. Therefore, all the analyses have been carried out on the fourth version of the 

Gallus gallus genome released in 2011 (galGal4). 
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In contrast to ChIP-seq experiments, the wide range of different applications renders the 

establishment of standard procedures to analysis RNA-seq data difficult. From the experimental 

design to the detection of differentially expressed (DE) genes, generation and computational 

processing of gene expression profiles differ depending on the biological questions to address. 

Read mapping is one of the critical steps that will further influence sample normalization, gene 

quantification and the identification of relevant target genes. Besides the choice of the 

appropriate mapper, the quality of the reference genome or transcriptome along which RNA-seq 

reads are aligned is of pivotal importance since quantification is computed according to read 

coverage. In the absence of an appropriate reference genome, de novo assembly relies on read 

overlaps to build contigs as long as possible. This strategy has been widely used to generate new 

genome sequences but it can also be applied on RNA-seq data to build transcript sequences. 

Prior to the analysis of RNA-seq data per se, sequencing reads obtained from both chicken 

micromass (chMM) culture replicates infected with RCAS-BP(A) retroviruses carrying no 

recombinant protein were used to improve the gene annotation model. RNA-seq libraries were 

prepared to maintain strand specificity and to sequence both extremities of transcript fragments 

(paired-end sequencing). A first approach was led by using the galGal4 reference genome as 

guide. Sequencing reads were mapped along the genome followed by a transcript-discovery 

strategy that computed read coverage and exon-intron junctions from gapped alignments and 

distance between both reads of each pair. This strategy intended to correct existing annotated 

genes and to identify missing genes from the galGal4 reference annotation. A second transcript-

discovery approach was also carried out independently of the reference genome. Sequencing 

reads were de novo assembled to reconstruct full-length transcripts. Transcripts thus generated 

were then compared with the genes identified by the first approach to correct gene 

fragmentation. Indeed, 2,771 (15.6%) genes were identified among the ~15,000 unplaced contigs 

associated with the galGal4 genome, including 1,031 (4.8%) genes that are located on one main 

chromosome and additional contigs due to the presence of numerous gaps of unknown sequence 

(Figure 20A). Although the new version of the chicken genome succeeded to assign most of 

these unplaced contigs to a main chromosome, their exact localization remains unclear. The 

resulting gene annotation model was composed of 21,347 genes accounting for 4,029 additional 

genes as compared to the UCSC and Ensembl reference annotations associated with the galGal4 

genome version (Figure 20B). Therefore, combination of both transcript-discovery approaches 

enabled to correct existing genes, to annotate new genes and to gather gene parts that were split 

together. Most importantly, the designed gene annotation model increased the assignment rate of 

sequencing reads by 20-22% as compared to when using both galGal4 reference annotations, 

thus contributing to a more accurate estimation of transcript abundances (Figure 20C). 
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The recent sequencing of a wide range of avian species have provided extensive insights into 

evolutionary and adaptive traits within birds (Zhang et al. 2014). DNA conservation of protein-

coding genes greatly facilitated the annotation of the 21,347 genes identified by the dual 

transcript-discovery approach. By combining DNA sequence comparison against avian genes 

with protein sequence comparison against mammal species and protein domain prediction, 

14,847 (69.5%) genes could be assigned and 672 (3.1%) putative protein-coding genes could be 

identified (Figure 20B). The 5,828 remaining genes were divided between uncharacterized 

proteins and non-coding RNAs (ncRNAs) based on the detection of an open reading frame 

(ORF) or not, respectively (Figure 20B). However, genes encoding uncharacterized proteins 

could be also potentially non-coding since none of the protein domains investigated were 

detected within their putative ORF. Nevertheless, ncRNAs remain challenging to annotate 

according to a recent study comparing an extensive repertoire of long multi-exonic ncRNAs 

across 11 tetrapods separated by up to 370 million years, ranging from Xenopus to human and 

including chicken and platypus (Necsulea et al. 2014). Besides their overall weak conservation 

as compared to protein-coding sequences, long ncRNAs (lncRNAs) depict high tissue specificity 

and rapidly diverge through evolution, which render their annotation difficult by comparing with 

other species. 

Distinguishing true ChIP-seq signal 

Assessing gene expression profiles in the chMM cultures upon overexpression of each TF 

highlighted overall regulatory processes influenced by the TFs and connective tissue cells, but it 

does not provide the exact molecular mechanisms driven by the TFs. Indeed, changes in gene 

expression levels arose not only from TF occupancy, but also from downstream regulatory 

events following direct binding of each selected TF. Determination of TF-binding sites (TFBS) 

is therefore critical to distinguish between directly and indirectly targeted genes. Development of 

the ChIP-seq technology greatly enhances the exploration of TF occupancy by enabling a 

genome-wide resolution of protein-DNA interactions (Barski et al. 2007; Johnson et al. 2007; 

Mikkelsen et al. 2007; Robertson et al. 2007). Since then, ChIP-seq has been widely used to 

become a standard technique to assess various DNA-binding proteins such as TFs, polymerases, 

histones, chaperones and chromatin-modifying enzymes. Therefore, efforts have been made to 

standardize ChIP-seq data analysis prior to biological interpretation. Although the analysis of 

histone occupancy profiles remain challenging due to their broad domains and diffused signal, 

the ENCODE consortium established a list of quality metrics and methods to validate TF ChIP-

seq data (Landt et al. 2012). One of the main fundamental questions regarding ChIP-seq data is 

related to the binding signal: do the peaks visualized after ChIP-seq read mapping correspond to 
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true signal resulting from TF binding, or background signal originating from unspecific binding 

or amplification artefact? Evaluation of signal-to-noise ratio is therefore a first prerequisite to 

validate ChIP-seq data. When considering a protein bound at a certain location, DNA 

fragmentation by sonication occurs on each side while the binding site remains protected. DNA 

fragments encompassing this location are purified during the ChIP procedure and one can 

assume that sequencing arises from both ends. Therefore, the center of the binding site is marked 

by an accumulation of sequencing reads originating from both forward and reverse strands. By 

contrast, noise signal lacks this shift stranded read density. Cross-correlation analysis can thus 

measure the ratio between true and noise signal and determine if the enrichment is sufficient 

enough to distinguish binding peaks from potential artefacts. 

A second issue related to ChIP-seq experiments is to ensure the reproducibility between binding 

profiles of biological replicates. Reproducibility can be assessed by measuring the Pearson 

correlation coefficient of read coverage along the genome (Bardet et al. 2012). Nevertheless, 

Pearson correlation can be dominated by regions located near centromeres, telomeres and 

repeats, that usually depict strong ChIP-seq signal (Bailey et al. 2013). Such regions have been 

blacklisted by the ENCODE consortium and the 1000 Genomes project, which recommend to 

remove them prior to data analysis. However, these regions remain undefined for the chicken 

genome. Another approach to measure ChIP-seq reproducibility is the irreproducible discovery 

rate (IDR) analysis (Landt et al. 2012). ChIP-seq peaks are characterized by their significance 

level based on the read coverage, signal-to-noise ratio and p-value or q-value. When comparing 

two sets of peaks for the same TF, the most significant peaks are more likely to be consistent 

between both replicates, whereas noise peaks are more prone to display a weaker consistency. 

Such approach appears to be more powerful to identify TFBS as compared to significance 

metrics such as false-discovery rate (FDR), p-value and q-value, since it takes into account both 

replicates instead of treating them independently (Landt et al. 2012). Cross-correlation and IDR 

analyses were used to assess the quality of the TF occupancy profiles generated from the chMM 

cultures. Both replicates of OSR1, OSR2 and EGR1 ChIP-seq profiles passed all the ENCODE 

thresholds, whereas one replicate for KLF2 and KLF4 displayed a suboptimal signal-to-noise 

ratio, albeit sufficient for further analysis (Figures 35, 36, 37; Supplemental figures S6, S7, S8; 

Supplemental table S4). The number of peaks identified for both KLF factors may be therefore 

underestimated due to the loss of low-affinity binding sites, which display a weaker signal as 

compared to high-affinity binding regions. Due to the broad domains obtained with ChIP-seq on 

histone proteins, cross-correlation and IDR analyses cannot be applied and quality metrics still 

remain to be developed. Histone domains were identified according to a significance threshold 

fixed by the peak caller and following the ENCODE and Roadmap Epigenomics consortiums’ 
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recommendations (Kellis et al. 2014; Roadmap Epigenomics Consortium et al. 2015). 

Consistency between histone domains of both replicates was evaluated independently of their 

significance. 

Addressing the functionality of transcription factor-binding events 

Despite the advances in the development of genome-wide strategies and the increasing 

knowledge of gene regulation processes, defining the functionality of TF-binding events remains 

challenging. Between 14,519 and 22,403 binding sites were identified per TF in the chMM 

cultures, which contrasts with the 1,369-2,907 DE genes detected in the same cultures. Although 

some binding events may correspond to false-positives due to the expression of the TFs in cells 

that do not normally express them, the use of RCAS-BP(A)-mediated TF overexpression limits 

such artefacts. Indeed, the absolute overexpression level from retroviral particles has been 

estimated between 3 and 5 folds per cell (Ibrahim et al. 2013). Consistent with a previous study 

correlating TFBS and DE genes upon TF knockdown, most of the TF-binding events identified 

in the chMM cultures would be non-functional, in terms of regulating gene expression 

(Cusanovich et al. 2014). While studies have suggested that TFBS simply reflect chromatin 

accessibility (John et al. 2011; Li et al. 2011b), other reports have proposed that TFBS may 

contribute to chromatin remodelling and nucleosome positioning to influence gene expression at 

later stages or in response to signals (Cao et al. 2010a; Buck and Lieb 2006; Iwafuchi-Doi et al. 

2016). On the other hand, conventional ChIP methods measure steady-state TF occupancy, 

whereas competitive ChIP experiments in the yeast highlighted that TFs depict a high binding 

turnover (Lickwar et al. 2012). Therefore, assessing binding kinetics rather than Boolean 

occupancy may be a more relevant measure of TF-binding functionality (Chen et al. 2014). In 

addition, TF specificity often relies on the cooperativity with other TFs and co-factors. For 

example, preventing Gata1 to interact with its non-DNA-binding partner Fog1 alters its 

occupancy profile while enhancing its binding at other locations (Chlon et al. 2012). Clustering 

of multiple TF-binding events at high-occupancy target (HOT) regions seem to be a better 

predictor of functional cis-regulatory modules (Foley and Sidow 2013; Heidari et al. 2014; 

Junion et al. 2012; Kvon et al. 2012). Therefore, overexpression of a single TF in the chMM 

cultures may reflect its binding sites that contain its recognition motif, but locations that require 

cooperative recruitment may be missed. 

Several approaches have been developed to more accurately distinguish between functional and 

non-functional TF-binding events from an initial ChIP-seq experiment. While some studies have 

investigated evolutionary constraints of TF occupancy between distant species or organisms (e.g. 

Schmidt et al. 2010; Ballester et al. 2014), others have focused on co-occupancy by combining 
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multiple ChIP-seq data sets of functionally related TFs (e.g. Junion et al. 2012), or by associating 

TF binding with chromatin states and domains (e.g. Heintzman et al. 2007; Ernst and Kellis 

2010, 2013). The latter approach was chosen for this thesis by assessing different histone tail 

post-translational modifications associated with promoters and enhancers, as well as 

transcriptional activity and repression (Supplemental figure S5). In addition to link TFBS and 

DNA regulatory domains, this approach provides valuable insights into chromatin states 

complementary to gene expression levels. 20,427 promoters and 55,597 enhancers were thus 

identified in the chMM cultures (Figures 29A,B). Assignment of regulatory domains with their 

target genes remains a difficult task and has often relied on the closest proximity between both 

elements. This strategy is rather relevant for promoter regions, which are generally located in the 

vicinity of gene transcriptional start sites (TSSs). Indeed, 15,899 (78.0%) genes had their TSS 

associated with a promoter, whereas 1,677 (8.2%) gene TSSs were closely related to an enhancer 

(Figure 29D). In contrast to promoters, enhancers can be located distally to their target genes. 

Therefore, an enhancer may not necessarily regulate the closest gene but another gene located 

several hundreds of kilobases upstream or downstream. Additional genome-wide techniques 

have been developed in regards to identify chromatin interactions by chromosome conformation 

captures (Fullwood et al. 2009; Lieberman-Aiden et al. 2009). Continuous improvements of such 

techniques have greatly enhanced their resolution. It is now feasible to visualize chromatin 

contacts spanning within 1 kb (Rao et al. 2014). Comparison of TFBS and regulatory domains 

identified between 17.9% and 55.9% of TF occupancy in promoter and enhancer regions (Figure 

38A). Assessing the contribution of TF-binding events to regulate gene expression requires 

additional functional assays such as luciferase reporter assay or electrophoretic mobility shift 

assay (EMSA). However, in vitro methods do not obviously reflect the context-dependent 

contribution of a TF. In vivo assays are therefore more reliable to validate TF functionality on 

gene expression. Given the absence of good chicken antibodies available for these TFs, I chose 

to compare the expression domains of a few interesting candidate genes with their corresponding 

TF in chick limbs by in situ hybridization experiments. Although this approach does not prove 

the direct regulation of the TF with its target gene, it provides at least preliminary insights into 

the relationship that may exist between them in regards to their endogenous expression. 

B. Effects of the transcription factors on cell differentiation 

The five zinc-finger TFs, OSR1, OSR2, EGR1, KLF2 and KLF4, were selected based on their 

expression within different compartments of the musculoskeletal system and their potential 

involvement in mediating connective tissue differentiation. To assess their influence on cell 
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differentiation, I chose to combine chMM cultures of limb mesenchymal cells with retroviral-

mediated overexpression of each TF. The chMM culture system offers a versatile experimental 

model to investigate differentiation processes occurring in the developing limb. Limb 

mesenchymal cells of E4.5 chick embryos contain different cell types that are mostly 

undifferentiated at this stage of development. The chMM culture model has been widely used to 

study chondrogenesis (e.g. DeLise et al. 2000; Stricker et al. 2012), but it seems also adapted to 

assess myogenesis since limb mesenchymal cells differentiate spontaneously into muscle cells in 

chMM cultures (Duprez et al. 1996a). Although adipogenesis and tenogenesis do not occur 

spontaneously in chMM cultures, levels of genes associated with these differentiation processes 

were altered depending on the overexpressed TF. In contrast to other cell culture systems, limb 

mesenchymal cells in chMM cultures maintain interactions between cell types and undergo 

actively various differentiation processes. It is therefore a good experimental alternative to 

investigate the influence of TFs on connective tissue cell differentiation, while maintaining their 

interactions with myogenic cells. I believe that these chMM cultures reflect cell interactions and 

differentiation processes that occur during the formation of the musculoskeletal system during 

limb development. 

Odd-skipped related 1 and 2 (OSR1, OSR2) 

During chick limb development, OSR1 and OSR2 are expressed in muscle connective tissue 

(MCT), surrounding muscle masses at E4.5 and myofibres at E9.5 (Figures 14G,H, 15J,K,N-O’; 

Supplemental figures S2G,H, S3K,L), which is consistent with previous observations (Stricker et 

al. 2006, 2012). Interestingly, some muscles were associated with expression of both OSR1 and 

OSR2, whereas other muscles were accompanied with expression domains of either OSR1 or 

OSR2 only, or none of them. It indicates that both OSR factors are expressed in distinct 

subpopulations of limb MCT. This observation is consistent with a recent study in mice showing 

that only a fraction of Osr1+ cells express the MCT marker Tcf4 (Vallecillo García et al., in 

revision). In agreement with previous observations (Stricker et al. 2012), Overexpression of 

OSR1 or OSR2 in chick forelimbs induced a size reduction of skeletal elements (Figures 16B,C). 

Accordingly in chMM cultures, the formation of cartilage nodules and the expression of 

cartilage-associated genes were decreased (Figures 17B’,C’,G, 18B, 25). Similarly, limb Osr1+ 

cells isolated from mouse embryos fail to differentiate into chondrocytes when cultured under 

chondrogenic conditions (Vallecillo García et al., in revision). Although no significant change 

was observed in OSR1- and OSR2-overexpressing chMM cultures, homozygous deletion of 

Osr1 induces an upregulation of tendon-associated genes such as Scx and Tnmd in Osr1+ cells 

indicating that Osr1 prevent tendon differentiation (Vallecillo García et al., in revision). 
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Altogether, these results indicate that OSR1 and OSR2 direct the differentiation of mesenchymal 

cells into connective tissue by repressing cartilage and tendon differentiation. Consistently, 

MCT-associated genes COL3A1, COL6A5 and FN1 (fibronectin 1) were significantly 

upregulated upon overexpression of OSR1 and OSR2 in chMM cultures (Supplemental figure 

S9A). 

Although Osr1 is not expressed in myogenic cells in chick and mouse embryos, Osr1-deficient 

mice display muscle patterning defects (Stricker et al. 2012; Vallecillo García et al., in revision). 

Consistently, retroviral overexpression of OSR1 or OSR2 led to muscle size reduction in chick 

limbs and decreased myotube formation in chMM cultures (Figures 16B’,C’, 17B’’,C’’,H). 

Surprisingly, genes associated with muscle differentiation were significantly more abundant in 

OSR1- and OSR2-overexpressing chMM cultures as compared to control cultures (Figure 18C, 

25). 87.3% (268/307) of these genes were found to be expressed (transcript abundances ≥ 1) as 

well in Osr1+ cells isolated by FACS from E13.5 mouse limbs (Vallecillo García et al., in 

revision). Developmental limb Osr1+ cells give rise to fibro-adipogenic (FAP) cells (Vallecillo 

García et al., in revision). In addition, Osr1 and Osr2 are expressed in a subpopulation of FAPs, 

the SCA1+/PW1+ interstitial cells (Stumm 2016). At early stages of disease, FAPs activate a pro-

myogenic program by chromatin remodelling in dystrophic muscles, which would contribute to 

enhance the regenerative capacity of the muscle satellite cells (Saccone et al. 2014). Therefore, it 

is possible that both OSR factors activate a similar pro-myogenic program or maintain the 

expression of muscle-associated genes within the chMM cultures, while preventing the cells to 

differentiate toward a muscle lineage. 

Early growth response 1 (EGR1) 

EGR1 is expressed in tendons close to muscle attachments in limbs of E7 and E9.5 chick 

embryos (Lejard et al. 2011; Figures 15B,I,M,M'; Supplemental figures S3B,B',F,F',J). Although 

it is not clear whether EGR1 regulates the formation of myotendinous junctions, Egr1-deficient 

mice display disorganized and less robust tendon collagen fibrils (Guerquin et al. 2013). 

Retroviral overexpression of EGR1 in chick forelimbs did not reveal an obvious defect in muscle 

and skeleton organization (Figures 16D,D’). Although it increased the production of 

chondrogenic matrix, EGR1 overexpression in chMM cultures did not alter the expression of 

cartilage- or muscle-related genes (Figures 17D’,G, 18B,C). By contrast, the SCX and COL1A1 

tendon markers were significantly upregulated upon EGR1 overexpression (Supplemental figure 

S9B). In addition, EGR1 negatively regulated genes involved in adipogenesis in chMM cultures 

(Figure 18E). Altogether, these results are consistent with previous observations in mice. EGR1 

is sufficient to direct tendon differentiation in murine mesenchymal stem cells by promoting the 
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expression of tendon-associated genes and collagens (Guerquin et al. 2013). In addition, ectopic 

expression of Egr1 in these cells prevents their differentiation into adipocytes while they retain 

their ability to undergo chondrogenesis when cultured under adipogenic or chondrogenic 

conditions, respectively (Guerquin et al. 2013). Likewise, upregulation of Egr1 in murine pre-

adipocytes inhibits their differentiation into adipocytes, and conversely, downregulation of Egr1 

enhances their differentiation (Boyle et al. 2009). On the other hand, overexpression of EGR1 in 

chMM cultures increased the expression of bone-associated genes (Figure 18A), whereas 

activation of Egr1 in mouse mesenchymal stem cells prevents their differentiation into 

osteocytes when cultured under osteogenic conditions (Guerquin et al. 2013). 

Krüppel-like factors 2 and 4 (KLF2, KLF4) 

KLF2 and KLF4 are expressed in tissues delineating tendons of the knee and the wrist of E8 and 

E9.5 chick embryos (Figures 15C,D,F-G’, 43A-B’; Supplemental figures S3C-D’,G-H’). 

Similarly to EGR1, overexpression of KLF2 and KLF4 in chick forelimbs did not lead to a 

skeleton defect but upregulated the expression of bone-related genes in chMM cultures (Figures 

16E,F, 18A). Conversely to EGR1, both KLF factors reduced the production of chondrogenic 

matrix when overexpressed in chMM cultures, while not affecting the expression of cartilage-

related genes (Figures 17E’,F’,G, 18B). In agreement with previous observations in the mouse 

(Sen Banerjee et al. 2003; Wu et al. 2005), overexpression of KLF2 in chMM cultures repressed 

adipogenesis-related gene expression (Figure 18E). Although KLF2 and KLF4 overexpression in 

chMM cultures did not significantly affect the global expression of tendon-associated genes, 

they were sufficient to upregulate the tendon markers SCX and COL1A1 (Supplemental figure 

S9B). Therefore, it will be interesting to perform in situ hybridization on tissue sections against 

tendon markers such as SCX and TNMD to investigate tendon formation upon overexpression of 

KLF2 or KLF4 in chick limbs. 

Overexpression of KLF2 and KLF4 in chick forelimbs did not reveal an obvious defect in 

muscle patterning (Figures 16E’,F’). By contrast, overexpression of KLF2 and KLF4 in chMM 

cultures displayed a significant, albeit moderate, reduction of culture area covered by myotubes 

as compared to control cultures (Figures 17E’’,F’’,H). In the mouse, Klf2 and Klf4 have been 

highlighted as being involved in myoblast fusion but not in their differentiation (Sunadome et al. 

2011). Indeed, misexpression of either Klf2 or Klf4 does not alter the expression of muscle 

differentiation genes. In addition, ectopic expression of each factor is not sufficient alone to 

trigger the fusion of mesenchymal stem cells, but requires the concomitant induction of Myod. 

Consistently, genes associated with muscle differentiation were overall not significantly affected 

by overexpression of both KLF factors (Figure 18C). 
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In summary, based on expression pattern in chick limbs, histological staining and gene 

expression profiles upon retroviral overexpression, it appears that the TFs differentially influence 

cell differentiation processes in chMM cultures (Figure 44). OSR1 and OSR2 drive the 

formation of MCT at the expense of cartilage and muscle differentiation. EGR1 promotes the 

expression of the tendon marker SCX, while contributing positively to chondrogenic matrix 

production and the expression of bone-related genes. KLF2 and KLF4 upregulate the expression 

of SCX and bone-associated genes but represses the production of chondrogenic matrix and 

myotube formation. 

 
Figure 44. Overview of cell differentiation processes in chMM cultures. Cell type prediction was based on 
histological straining and changes in gene expression levels. When overexpressed in chMM cultures, the TFs 
positively (+) or negatively (−) influence the differentiation of limb mesenchymal cells into adipose tissue, MCT, 
cartilage, bone, tendon or muscle. 

C. Regulatory profiles of the transcription factors 

In addition to their distinct expression domains within the musculoskeletal system, the five TFs 

influence cell differentiation processes in chMM cultures. To further elucidate their molecular 

role, three levels of gene regulation were investigated by means of genome-wide strategies: (i) 

gene expression profiling to identify DE genes; (ii) chromatin signatures associated with 

promoters, enhancers and facultative heterochromatin to assess DNA regulatory domains; and 

(iii) TF-binding events to characterize their targeted genes. 

Biological processes and signalling pathways regulated by connective tissue 

cells 

The 10,712 DE genes detected across all TF-overexpressing chMM cultures corresponded to a 

list of 4,298 non-redundant genes (Figure 24A). 726 (16.9%) DE genes were identified in all TF-
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overexpressing chMM cultures, indicating that the five TFs share a core of common regulatory 

processes despite their expression domain within different subcompartments of the 

musculoskeletal system. On the other hand, the TFs displayed specific regulatory patterns. KLF4 

and OSR2 exhibited the highest specificity with 767 (17.8%) and 330 (7.7%) genes detected as 

differentially expressed only in each condition, respectively. By contrast, less than 150 (2.6-

3.3%) DE genes were specifically detected upon overexpression of OSR1, EGR1 or KLF2. In 

addition, 2,811 (65.4%) genes were differentially expressed upon overexpression of at least two 

different TFs, including 419 (9.7%) and 492 (11.4%) specific genes common to both OSR and 

KLF factors, respectively. However, K-means clustering of all DE genes did not highlight an 

OSR2-specific cluster as compared to KLF4 (Figure 25A). Rather, DE genes identified upon 

overexpression of both OSR factors tended to cluster together, suggesting that they may share 

more targets than identified, although these genes did not pass the fixed thresholds. 

Gene ontology (GO) analysis on the DE genes highlighted that all TFs share involvement in 

biological processes related to cell communication and migration, as well as biological adhesion 

(Figure 25B). Consistently, genes encoding cytoskeletal proteins, receptors, cell adhesion and 

signalling molecules as well as components of the extracellular matrix (ECM) were positively 

regulated by the TFs (Figure 27). The ECM is a three-dimensional insoluble and non-cellular 

network composed of secreted macromolecules, providing temporal, positional and physical 

information to influence developmental processes and cell migration (reviewed in Charras and 

Sahai 2014; Rozario and DeSimone 2010). ECM functionality relies on its composition between 

fibrous proteins (collagens, elastin) and glycoproteins (fibronectin, proteoglycans, laminin) that 

mainly contribute to its structural architecture and organization (reviewed in Mecham 2012). 

Further analysis of DE genes identified for each TF revealed that the TFs positively regulate 

components of the Integrin and Cadherin signalling pathways, as well as cytoskeletal 

organization controlled by Rho GTPase and axon guidance mediated by netrin (Figure 26). In 

addition, TFs positively regulate members of the WNT, TGF-β and Notch signalling pathways 

(Figure 26). The ECM acts as a source of developmental signals by sequestering and diffusing 

paracrine factors. For example, heparin sulphate proteoglycans can bind to WNT, FGF and TGF-

β signalling components as well as Ihh to regulate chondrogenesis (reviewed in Kirn-Safran et 

al. 2004). If the ECM can accumulate and disseminate secreted molecules from one cell, it must 

also transmit these signals to surrounding cells. Cell-cell and cell-ECM interactions are mediated 

by receptors spanning from the cytoplasm to the extracellular region, namely the integrins 

(reviewed in Humphrey et al. 2014). Cadherins are cell surface glycoproteins involved in 

calcium-dependent cell adhesion and favour intercellular interactions (reviewed in Halbleib and 

Nelson 2006). On the other hand, the intracellular domain of the cadherins can alter cell 
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morphology and adhesion by interacting with the actin cytoskeleton. Cadherin-dependent 

remodelling of the actin cytoskeleton is mediated by Rho GTPases, which converts soluble actin 

into actin filaments that bind at the cadherins (reviewed in Etienne-Manneville and Hall 2002). 

Therefore ECM constitutes an important mediator during cell differentiation, migration and 

adhesion by providing an extensive scaffold for signal transduction between cell surface 

receptors and secreted factors. These results are consistent with the notion that connective tissue 

cells provide extrinsic signals for the patterning of surrounding tissues such as muscles. 

Characterization of genes directly regulated by the TFs 

The gene expression profiles reflect the global function of connective tissue cells, whereas 

distinguishing between directly and indirectly regulated genes highlight the regulatory programs 

specifically driven by the TFs. In order to assess the TF functionality, six putative target genes 

(NTN1, WNT11, ADGRG2, WNT4, CBFA2T2 and ANXA1) were selected by associating their 

expression fold change upon TF overexpression in the chMM cultures with the presence of 

TFBS within regulatory domains located in their vicinity (Figures 39, 41A,B). NTN1 is a 

laminin-related secreted protein, which is involved in axon guidance, biological adhesion via 

interactions with integrins, cytoskeletal organization and osteoclast differentiation (Mediero et 

al. 2015; Serafini et al. 1996; Srinivasan et al. 2003; Yebra et al. 2003). WNT4 and WNT11 are 

secreted components of the non-canonical planar cell polarity pathway, which act on cell 

adhesion and migration by interacting with cadherins and focal adhesion proteins. Both proteins 

seem to be involved in joint development and muscle fibre organization (Anakwe et al. 2003; 

Gros et al. 2009; Hartmann and Tabin 2000; Loganathan et al. 2005; Später et al. 2006; Takata et 

al. 2007; Witte et al. 2009). ADGRG2 is an adhesion G protein-coupled receptor that is regulated 

by the TFs Prdm16 and Runx2 and thus may mediate adipocyte and osteoblast differentiation 

(Harms et al. 2014; Teplyuk et al. 2008). CBFA2T2 encodes a transcriptional co-repressor acting 

on Notch signalling and recently characterized as a mediator of pluripotency and germline 

specification (Tu et al. 2016). ANXA1 is a calcium-dependent phospholipid-binding protein that 

regulates cell migration and organization of the cytoskeleton, while being thought to mediate 

muscle development and regeneration (reviewed in Bizzarro et al. 2012; Leikina et al. 2015). 

The six selected candidate genes displayed overlapping expression domains with their 

corresponding TF in limbs of E5.5 chick embryos (Figures 40, 41C-I). Further exploration of 

WNT11, ADGRG2 and ANXA1 expression in forelimbs at E8 confirmed the spatial and temporal 

link between the TFs and their respective target genes, while being seemingly not expressed in 

muscle fibres (Figures 42, 43). By contrast, NTN1 and WNT4 did not depict overlapping 

expression domains with their corresponding TFs in forelimbs of E8 chick embryos. 
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Nevertheless, they were detected in joints outside of muscle area (Supplemental figure S10). 

These candidate genes thus primarily validate the in vitro data obtained in the chMM cultures. It 

would be therefore interesting to further investigate genome-widely the TF occupancy profiles 

and the DE genes. Identifying the specific ECM components and signalling pathway members 

that each TF directly regulate would bring insights regarding their specific molecular 

mechanisms. 

DE genes are enriched for bivalent promoter domains 

Interestingly, exploring histone tail modifications related to transcriptional activity and 

repression (H3K4me3, H3K27me3) revealed that DE genes were significantly associated with 

bivalent promoter domains (Figures 30, 31, 32). Bivalent domains were originally identified in 

embryonic stem cells and enriched in lineage-regulatory genes (Azuara et al. 2006; Bernstein et 

al. 2006; Ku et al. 2008; Mikkelsen et al. 2007; Pan et al. 2007; Zhao et al. 2007). Based on their 

reversibility, two molecular mechanisms have been proposed. On one hand, H3K27me3 may 

contribute to maintain pluripotency by poising lineage-regulatory genes and prevent their 

aberrant transcription upon differentiation by tuning their activation. On the other hand, 

H3K4me3 may preserve lineage-regulatory genes from permanent silencing by impeding DNA 

methylation or the recruitment of transcriptional repressors, while allowing their rapid and 

synchronous transcriptional induction upon differentiation (Boettiger and Levine 2009; Fouse et 

al. 2008). Although a sequential ChIP on H3K4me3 and H3K27me3 marks would be necessary 

to validate the bivalent promoter structure of DE genes (Bernstein et al. 2006; Pan et al. 2007), 

co-localization of both histone modifications may simply reflect the cell heterogeneity in the 

chMM cultures (Hong et al. 2011). Indeed, DE genes could be expressed in a subpopulation of 

cells (H3K4me3), while being repressed in another subset of cells (H3K27me3). Both signals 

observed in the ChIP-seq data would therefore result from the average of each cell population. In 

both cases, bivalent domains indicate that DE genes are overall dynamically regulated in contrast 

to housekeeping and ubiquitous genes, active in most of the cells, and permanently repressed 

genes. This indicates that DE genes are differentially regulated in distinct cell populations and 

therefore likely to play a role in the differentiation and/or function of these populations. 

For this study, the chromatin landscape was performed only in the chMM cultures infected with 

retroviral particles carrying no recombinant protein. It would be interesting to extend the 

investigation of the chosen histone modifications in the different TF-overexpressing chMM 

cultures. Indeed, a recent report has shown that chromatin profiles are highly dependent on the 

microenvironment and the ontogeny (Lavin et al. 2014). Tissue-resident macrophages display 

distinct enhancer signatures that correlate well with their different gene expression profiles and 
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embryonic origins. More intriguingly, transplantation of either adult bone-marrow macrophages 

or differentiated tissue-resident macrophages into another environment was sufficient to switch 

their chromatin landscape. Therefore, assessing chromatin dynamics in the chMM cultures upon 

TF overexpression could bring insights on critical enhancers that contribute to the differentiation 

of connective tissue cells. In addition, two recent reports have demonstrated that Egr1 can 

mediate nucleosome positioning in murine hepatocytes and that Klf4 can act as a pioneer factor 

and bind to compacted chromatin during human fibroblast reprogramming (Riffo-Campos et al. 

2015; Soufi et al. 2012). This suggests that both factors may be involved in regulating chromatin 

accessibility during connective tissue cell differentiation. Extending the chromatin landscape to 

each TF-overexpressing chMM culture could also bring insights into the 8.6%-14.2% of TF-

binding events that were located in regions of facultative heterochromatin (Figure 38A). 

Identification of misregulated non-coding RNAs 

Although this thesis has only focused on the DE genes with a known biological function, 550 

(12.8%) genes encoding putative ncRNAs were identified as being differentially expressed in 

TF-overexpressing chMM cultures. Assessing the functionality of ncRNAs remains elusive due 

to their weak evolutionary conservation (Necsulea et al. 2014). While some ncRNAs arise from 

transcribed enhancers (eRNAs), others, referred as PROMPTs, originate from promoters in the 

reverse orientation of the coding genes (Core et al. 2008; De Santa et al. 2010; Kim et al. 2010; 

Preker et al. 2008; Seila et al. 2008). Although their role is presently unclear, PROMPTs and 

eRNAs could be distinguished from other ncRNAs by comparing their location with the 

presence of promoters and enhancers identified in the chMM cultures. Characterization of 

eRNA-producing enhancers is of particular interest given that eRNA synthesis is the first 

transcriptional event arising during the differentiation of developmental progenitor cells (Arner 

et al. 2015). On the other hand, long non-coding RNAs (lncRNAs) appears to be critical 

regulators during embryogenesis such as limb development (Carlson et al. 2015; Wang et al. 

2011b). Recently, a study in the bat has identified several lncRNAs being differentially 

expressed between forelimbs and hindlimbs (Eckalbar et al. 2016). Two of these lncRNAs are 

expressed in interdigit tissue in the developing limb, suggesting that they could be involved in 

digit patterning. In addition, ncRNAs have been shown to regulate skeletal muscle formation 

(reviewed in Simionescu-Bankston and Kumar 2016). For instance, the lncRNA H19 promotes 

myoblast differentiation by repressing Smad1, Smad5 and Cdc6, as well as mediates the 

proliferation and the number of satellite cells in the adult muscle (Dey et al. 2014; Martinet et al. 

2016). 
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D. Future prospects 

The transcriptional network presented here brings new insights into the molecular mechanisms 

orchestrated by the connective tissue-related TFs. Although additional connective tissue-

associated TFs could be implemented, this regulatory network offers valuable resources and 

opens new investigation roads to better understand the influence of connective tissues during 

limb development. Of particular interest, it would be interesting to perform TF recognition motif 

analyses within the regulatory domains of directly and indirectly DE genes. Such TF-binding 

prediction could highlight additional co-factors and TFs that may extend the list of effector 

proteins involved in connective tissue patterning. It is noteworthy that besides CBFA2T2, whom 

expression was not detected in limbs of E8 chick embryos, the five remaining target genes 

selected were all expressed in connective tissues at this stage. Although supplementary stages are 

necessary to fully define their expression pattern, selected candidate genes in addition to the 

other DE genes should increase the limited number of connective tissue markers currently 

available. 

The chMM culture appears to be a relevant in vitro model to investigate molecular and cellular 

interactions between the different cell types of the musculoskeletal system. The ability of limb 

mesenchymal cells to differentiate into distinct cell types in response to developmental signals 

offers multiple applications when in vivo testing is limiting. Prediction of cell differentiation 

relies so far on the expression of specific differentiation markers or histological staining. Given 

the increasing number of available data sets and continuous progress in genome-wide 

technologies, I believe that it will be feasible in a near future to predict more accurately the 

propensity of given cells to differentiate towards certain lineages within a multicellular 

population. Combining several layers of gene regulation, such as gene expression profiles, 

chromatin landscape and TF occupancy, should enable to decipher the developmental programs 

triggered by a progenitor cell during its commitment. Similar strategies have been applied in 

metagenomics by incorporating whole-genome sequencing and polymorphism signals to identify 

microbial species within a given environment or tissue (Human Microbiome Project Consortium 

2012). Although the complexity within a multicellular organism is far beyond its genetic 

information, the recent development of single-cell transcriptome profiling seems to provide 

remarkable progress towards the determination of cell identity (Grün et al. 2016). 

Tendon repair following injury often results in formation of scar tissue with reduced functional 

and mechanical properties as compared to native tendons. To date, there is no method that 

enables to restore normal tendon tissue in response to injury. Deciphering the molecular aspects 

of tendon development and differentiation would enhance the ability to provide better treatments 
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for tendon healing. Similarly, muscle regeneration following injury or in degenerative conditions 

remains not fully elucidated. In addition to the central role of satellite cells in muscle 

regeneration, emerging evidence have highlighted the importance of signals coming from 

surrounding tissues promoting muscle repair. MCT cells appear to be important mediators of 

regenerative mechanisms in the adult (Murphy et al. 2011; Stumm 2016). To a similar extent 

with tendons, elucidating the molecular interplay between MCT and muscles during 

development would bring valuable insights to better understand muscle repair. 
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SUPPLEMENTAL INFORMATION 

Supplemental figures 

 

Supplemental figure S1. RNA-seq fragment count normalization. Distribution of raw (A), DESeq2 normalized 
(B) and regularized-logarithm transformed (C) fragment counts across all samples. The normalization factor 
computed by DESeq2 enables to correct library size and RNA composition bias, while the regularized-logarithm 
transformation shrinks together genes with low fragment counts. 

 

 

 

 
Supplemental figure S2. Endogenous expression of the transcription factors in forelimbs of E4.5 chick 
embryos. ISH for SCX (A,E), EGR1 (B), KLF2 (C), KLF4 (D), MYOD (F), OSR1 (G) and OSR2 (H) genes in chick 
forelimbs of E4.5 (HH24-25) chick embryos. (A-D) Adjacent and transverse sections were hybridized with SCX, 
EGR1, KLF2 and KLF4 probes (blue). Magnification 5X. (E-H) Adjacent and transverse sections were hybridized 
with SCX, MYOD, OSR1 and OSR2 probes (blue). Magnification 5X. Top dorsal; left, posterior. SCX is a tendon-
specific marker; MYOD is a muscle-specific marker. 
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Supplemental figure S3. Endogenous expression of the transcription factors in forelimbs of E9.5 chick 
embryos. ISH for SCX (A,A’,E,E’,I), EGR1 (B,B’,F,F’,J), KLF2 (C,C’,G,G’), KLF4 (D,D’,H,H’), OSR1 (K) and 
OSR2 (L) genes in forelimbs of E9.5 (HH35-36) chick embryos. (A-D) Adjacent and longitudinal sections were 
hybridized with SCX, EGR1, KLF2 and KLF4 probes (blue) followed by immunohistochemistry with the MF20 
antibody (brown). Magnification 2.5X at the zeugopod level. Top, anterior; left, proximal. (A’-D’) Magnification 
5X of posterior regions of sections (A-D). (E-H) Adjacent and transverse sections were hybridized with SCX, 
EGR1, KLF2 and KLF4 probes (blue) followed by immunohistochemistry with the MF20 antibody (brown). 
Magnification 5X at the wrist level. Top, posterior; left, dorsal. (E’-H’) Magnification 10X of posterior regions of 
sections (E-H). (I-L) Adjacent and longitudinal sections were hybridized with SCX, EGR1, OSR1 and OSR2 probes 
(blue) followed by immunohistochemistry with the MF20 antibody (brown). Magnification 5X. SCX is a tendon-
specific marker; MF20 targets skeletal muscle myosin. 
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Supplemental figure S4. Differentially expressed genes belonging to the Integrin and TGF-beta signalling 
pathways. (A) Heatmap of the 56 DE genes associated with the Panther Integrin signalling pathway. (B) Heatmap 
of the 26 DE genes associated with the Panther TGF-β signalling pathway. Hierarchical clustering was performed 
by using the one minus Pearson correlation. Genes related to cartilage and bone development/differentiation are 
depicted in red. 

 

 

Supplemental figure S5. Chromatin landscape in the vicinity of MYOG in chMM cultures. Five covalent 
histone tail modifications were investigated by ChIP-seq in chMM cultures infected with retroviruses carrying no 
recombinant protein: H3K4me1, H3K4me2, H3K4me3, H3K27ac and H3K27me3. These post-translational 
modifications are frequently found in promoter and/or enhancer regulatory domains. H3K4me3 and H3K27ac are 
associated with transcriptional activity, whereas H3K27me3 is a mark of facultative heterochromatin. 
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Supplemental figure S6. Cross-correlation analysis of ChIP-seq enrichment. Strand cross-correlation plot of 
OSR1-3F RepA (A), RepB (B); OSR2-3F RepA (C), RepB (D); EGR1-3F RepA (E); KLF2-3F RepB (F); KLF4-3F 
RepA (G), RepB (H), to evaluate the signal-to-noise ratio of the ChIP-seq enrichment profiles. NSC, normalized 
strand correlation (≥ 1.05); RSC, relative strand correlation (≥ 0.8). The first peak corresponds to the phantom peak 
identified at the sequencing read length; the second peak corresponds to the ChIP peak identified at the half of the 
fragmentation length. 
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Supplemental figure S7. Replicate consistency IDR analysis. IDR analysis on the peaks identified for both 
biological replicates of OSR1-3F (A), OSR2-3F (B) and KLF4-3F (C) ChIP-seq. Peaks (N) passing an IDR 
threshold of 0.01 were considered as consistent between both replicates. 
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Supplemental figure S8. Pooled-replicate consistency IDR analysis. IDR analysis on the peaks identified for the 
pooled biological replicates of OSR1-3F (A), OSR2-3F (B) and KLF4-3F (C) ChIP-seq. Both biological replicates 
of each TF ChIP-seq were merged and randomly partitioned into two pseudo-replicates. Peaks (N) passing an IDR 
threshold of 0.01 were considered as consistent between both pseudo-replicates. 
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Supplemental figure S9. Expression levels of connective tissue-associated genes in chMM 
cultures. (A) Relative expression of the MCT-related genes COL3A1, COL6A5 and FN1 in OSR1- 
and OSR2-overexpressing chMM cultures as compared to control cultures (padj < 10-5). (B) Relative 
expression of the tendon-related genes SCX and COL1A1 in EGR1-, KLF2- and KLF4-
overexpressing chMM cultures as compared to control cultures (padj < 10-5). 

 

 

 

 

Supplemental figure S10. Endogenous expression of WNT4 and NTN1 genes in forelimbs of E8 chick 
embryos. ISH for SCX (A,A’), EGR1 (B,B’), WNT4 (C,C’) and NTN1 (D,D’) genes in forelimbs of E8 (HH34) 
chick embryos. (A-D) Adjacent and transverse sections were hybridized with SCX, EGR1, WNT4 and NTN1 probes 
(blue) followed by immunohistochemistry with the MF20 antibody (brown). Magnification 5X at the wrist level. 
(A’-D’) Magnification 10X of regions marked with black arrowheads of sections (A-D). MF20 targets skeletal 
muscle myosin. Top, dorsal; left, posterior. 
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Supplemental tables 

Supplemental table S1. Primer list. 

 
 

Target Accession Sense Sequence Purpose

OSR1 NM_001168709.1 forward GCATCCATGGGAAGTAAGACTCTGCCGG RCASBBP(A)Fconstructs

reverse GCATGAATTCGCACTTAAGTTTGGCAGGTTTCAG

OSR2 NM_001170344.1 forward GCATCCATGGGCAGCAAGGCGCTGCCGG RCASBBP(A)Fconstructs

reverse GCATGAATTCGGCTGTGCCGCCGTAGATCACAG

EGR1 NM_204136.2 forward GCATCGTCTCCCATGGCTGCGGCCAAGGCAGAG RCASBBP(A)Fconstructs

reverse GCATCGTCTCGAATTCGCAAATCTCAATTGTCCTTGGAGAAAAG

KLF2 XM_418264.4 forward GCATCGTCTCCCATGGCGCTGAGCGATACCATC RCASBBP(A)Fconstructs

reverse GCATCGTCTCGAATTCCATGTGCCGCTTCATGTGCAG

KLF4 XM_004949369.1 forward GCATCGTCTCCCATGCGGCAGCCCCCCGG RCASBBP(A)Fconstructs

reverse GCATCGTCTCGAATTCAAAGTGCCTCTTCATGTGTAAGGCG

OSR1 NM_001168709.1 forward TTCTGACCACCTTTCCAACC ISHFprobeF(CDS)

reverse TCCTTTACTTGCGTGTGCAG

KLF4 XM_004949369.1 forward CATCCTCTCCAACTCCCTCA ISHFprobeF(CDS)

reverse CGGCATCAGCTCTTGGTACT

ADGRG2 XM_015272749.1 forward TGGGGATTTGCTTTCTTCAC ISHFprobe

reverse AGCTTCCTCCCCATTTTGTT

ANXA1 NM_206906.1 forward TATGAAGGGGCTTGGAACTG ISHFprobe

reverse ACATAAAGCGACCAGGATGG

CBFA2T2 NM_001011689.1 forward TGGAGATGGTGGAGAAGACC ISHFprobe

reverse CCCAAACTTCCCCCTTAGAG

NTN1 L34549.1 forward GACGAGAACGAGGACGACTC ISHFprobe

reverse GACGAGAACGAGGACGACTC

WNT4 NM_204783.1 forward GAGCTGGACAAGTGTGGATG ISHFprobe

reverse GCAAGAGAGAAGCAGGGTCA

WNT11 NM_204784.1 forward TGATATCAGGCCGGTTAAGG ISHFprobe

reverse GAAGGTCCCATTGGAAGTCA
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Supplemental table S2. RNA-seq mapping and assignment metrics. 

 

 

Supplemental table S3. Histone ChIP-seq metrics. 

 

Cells TF Replicate Genome
Number5of5sequenced5

read5pairs

Number5of5mapped5

read5pairs

Percentage5of5

mapped5read5pairs

Number5of5

genes

Number5of5read5pairs5

in5gene5features

Percentage5of5

assigned5read5pairs

DESeq25size5

factor

Number5of5genes5

with5TPM5>=51

Number5of5DE5genes

(DESeq2;5FDR50.01;5absolute5

FC5≥52;5padj5<50.01)

chMM5d5 Empty RepA galGal4 61,293,829 57,226,361 93.4% 21,350 51,233,721 83.6% 0.6251886 16,407

chMM5d5 Empty RepB galGal4 70,336,622 65,997,861 93.8% 21,350 59,297,870 84.3% 0.7125234 16,075

chMM5d5 OSR1[3F RepA galGal4 108,450,226 106,731,154 98.4% 21,350 95,874,397 88.4% 1.1457763 15,667

chMM5d5 OSR1[3F RepB galGal4 112,332,929 109,359,879 97.4% 21,350 95,309,147 84.8% 1.1472096 15,773

chMM5d5 OSR2[3F RepA galGal4 105,566,039 103,430,587 98.0% 21,350 93,496,499 88.6% 1.1373227 15,752

chMM5d5 OSR2[3F RepB galGal4 96,930,250 94,485,092 97.5% 21,350 85,072,771 87.8% 1.0213997 15,565

chMM5d5 EGR1[3F RepA galGal4 119,974,859 117,063,128 97.6% 21,350 106,079,374 88.4% 1.2019170 15,489

chMM5d5 EGR1[3F RepB galGal4 101,138,411 99,474,007 98.4% 21,350 90,175,670 89.2% 1.0538920 15,591

chMM5d5 KLF2[3F RepA galGal4 110,560,901 107,231,699 97.0% 21,350 97,733,305 88.4% 1.1331060 15,434

chMM5d5 KLF2[3F RepB galGal4 102,353,299 99,545,240 97.3% 21,350 91,316,919 89.2% 1.0990220 15,411

chMM5d5 KLF4[3F RepA galGal4 85,196,270 81,486,895 95.6% 21,350 74,139,243 87.0% 0.8774570 15,539

chMM5d5 KLF4[3F RepB galGal4 109,766,442 105,073,271 95.7% 21,350 94,891,254 86.4% 1.1156930 15,581

TPM,5Transcripts5per5million

DE,5Differentially5expressed

FDR,5False[discovery5rate

FC,5Fold5change

padj,5Benjamini[Hochberg5adjusted5p[value

2,907

[

1,997

2,289

1,369

2,150

Cells TF Replicate Antibody Genome
Number8of8

sequenced8reads

Number8of8

filtered8reads

Number8of8uniquely8

mapped8reads

Number8of8non;

redundant8reads

MAC28fragment8

length8(bp)

Number8of8broad8peaks8

containing8at8least8one8

narrow8peak

Consistent8peaks8

between8replicates8

(≥850%8of8overlap)

FRiP

chMM8d5 Empty RepA H3K4me1 galGal4 32,728,349 32,346,896 27,046,822 24,999,383 144 0.591

chMM8d5 Empty RepB H3K4me1 galGal4 77,812,312 76,941,575 65,749,235 58,690,985 135 0.526

chMM8d5 Empty RepA H3K4me2 galGal4 42,765,665 41,831,465 31,567,636 24,271,924 124 0.755

chMM8d5 Empty RepB H3K4me2 galGal4 26,874,878 26,424,579 19,593,355 15,425,235 132 0.797

chMM8d5 Empty RepA H3K4me3 galGal4 29,152,101 28,419,579 20,485,834 11,703,101 130 0.877

chMM8d5 Empty RepB H3K4me3 galGal4 52,421,293 51,395,575 34,920,103 16,148,365 123 0.861

chMM8d5 Empty RepA H3K27ac galGal4 24,041,688 23,753,596 19,273,271 17,945,631 134 0.473

chMM8d5 Empty RepB H3K27ac galGal4 41,319,840 40,875,224 31,786,381 26,662,123 130 0.499

chMM8d5 Empty RepA H3K27me3 galGal4 30,007,876 29,634,749 22,549,312 19,045,315 144 0.616

chMM8d5 Empty RepB H3K27me3 galGal4 26,254,540 25,863,980 19,495,679 16,656,352 145 0.642

FRiP,8Fraction8of8reads8in8peaks

71,864

70,275

44,714

95,918

53,960

21,238

60,263

34,995

18,274

42,481
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Supplemental table S4. Transcription factor ChIP-seq quality metrics. 

 

 

Cells TF Replicate Antibody Genome
Number8of8

sequenced8reads

Number8of8

filtered8reads

Number8of8uniquely8

mapped8reads

Number8of8non;

redundants8reads

PBC

(≥0.8)

NSC

(≥1.05)

RSC

(≥0.8)

SPP8fragment8

length8(bp)

Self;consistent8

peaks8(IDR<0.01)

Self;consistent8

IDR8(<2)

Replicate;consistent8

peaks8(IDR<0.01)

Pooled8self;consistent8

peaks8(IDR<0.01)

Replicate;

consistent8IDR8(<2)

FRiP

(≥0.01)

chMM8d5 OSR1;3F RepA anti;FLAG galGal4 56,540,298 56,011,868 26,455,037 19,193,921 0.726 1.047 1.680 130 19,472 0.014

chMM8d5 OSR1;3F RepB anti;FLAG galGal4 32,725,733 32,506,774 18,122,153 13,210,252 0.729 1.063 2.081 130 21,839 0.022

chMM8d5 OSR2;3F RepA anti;FLAG galGal4 43,416,394 43,028,638 19,420,420 14,401,100 0.742 1.063 1.657 130 20,311 0.019

chMM8d5 OSR2;3F RepB anti;FLAG galGal4 41,411,543 41,137,694 23,477,039 17,417,387 0.742 1.055 1.935 130 22,169 0.024

chMM8d5 EGR1;3F RepA anti;FLAG galGal4 43,318,998 42,892,862 19,258,524 13,628,197 0.708 1.101 1.922 135 20,435 0.019

chMM8d5 EGR1;3F RepB anti;FLAG galGal4 26,740,191 26,556,705 15,155,849 11,268,462 0.744 1.121 1.968 135 18,588 0.033

chMM8d5 KLF2;3F RepA anti;FLAG galGal4 24,741,066 24,500,869 17,146,390 14,032,420 0.818 1.023 0.962 130 7,128 0.017

chMM8d5 KLF2;3F RepB anti;FLAG galGal4 35,046,332 34,782,452 17,222,767 13,485,356 0.783 1.090 2.899 130 23,391 0.027

chMM8d5 KLF4;3F RepA anti;FLAG galGal4 60,269,846 59,991,651 29,222,190 21,664,401 0.741 1.037 1.283 135 14,274 0.012

chMM8d5 KLF4;3F RepB anti;FLAG galGal4 35,627,835 35,369,563 26,294,445 17,348,739 0.660 1.054 3.166 135 24,595 0.024

PBC,8PCR8bottleneck8coefficient

NSC,8Normalized8strand8correlation

RSC,8Relative8strand8correlation8

IDR,8Irreproducible8discovery8rate

FRiP,8Fraction8of8reads8in8peaks

21,352 3.264

14,519 1.182

20,983 1.018

22,403 1.037

16,627 1.417

1.723

20,622

21,599

11,737

6,542

12,281

1.122

1.091

1.099

3.282
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