
HAL Id: tel-01474877
https://theses.hal.science/tel-01474877v1
Submitted on 23 Feb 2017 (v1), last revised 10 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel Methods for the Interactive Design of Complex
Objects and Animations

Ulysse Vimont

To cite this version:
Ulysse Vimont. Novel Methods for the Interactive Design of Complex Objects and Animations. Graph-
ics [cs.GR]. Université Grenoble Alpes, 2016. English. �NNT : �. �tel-01474877v1�

https://theses.hal.science/tel-01474877v1
https://hal.archives-ouvertes.fr

Communauté
Grenoble AlpesUNIVERSITÉ

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques - Informatique
Arrêté ministériel du 7 août 2006

Présentée par

Ulysse VIMONT

Thèse dirigée par Marie-Paule CANI et
co-encadrée par Damien ROHMER

préparée au sein du Laboratoire Jean Kunzmann
dans l’École Doctorale MSTII

Nouvelles Méthodes pour la
Modélisation Interactive
d’Objets Complexes
et d’Animations

Thèse soutenue publiquement le 1er décembre 2016,
devant le jury composé de :

Mme. Joëlle THOLLOT
Professeur, Grenoble INP, Présidente
M. Tamy BOUBEKEUR
Professeur, Telecom ParisTech, Rapporteur
M. Loïc BARTHE
Professeur, Université Paul Sabatier, Rapporteur
M. Michael WIMMER
Professeur Associé, Technische Universität Wien, Examinateur
Mme. Marie-Paule CANI
Professeur, Grenoble INP & Ensimag, Directeur de thèse
M. Damien ROHMER
Maître de Conférence, CPE Lyon, Co-encadrant de thèse

http://www.communaute-univ-grenoble-alpes.fr/
https://team.inria.fr/imagine/ulysse-vimont/
https://team.inria.fr/imagine/marie-paule-cani/
http://imagecomputing.net/damien.rohmer/
http://www-ljk.imag.fr/
http://edmstii.ujf-grenoble.fr/
http://maverick.inria.fr/~Joelle.Thollot/
http://perso.telecom-paristech.fr/~boubek/
https://www.irit.fr/~Loic.Barthe/
https://www.cg.tuwien.ac.at/staff/MichaelWimmer.html
https://team.inria.fr/imagine/marie-paule-cani/
http://imagecomputing.net/damien.rohmer/

À ma famille, présente et future.

Abstract

As virtual content continually grows in quantity and quality, new challenges arise.
Amongst others, generating and manipulating 3D shapes and animations have become
intricate tasks. State of the art methods attempt to hide this complexity through complex
tools, which exploit content semantics for running optimization procedures, yielding
constraint matching outputs. However, the control offered by such methods is often
indirect, object-specific, and heavy, which imposes long trial-and-error cycles and restrains
artistic freedom.

The focus of this thesis is twofolds: First, improving user control through interactive
and direct content manipulation; Second, enlarging the spectrum of manipulable content
with innovative or generic content representations.

We introduce three new mehods related to 3D shapes design: A part-based modeling
tool allowing to generate assembly shapes with semantic adjacency constraints; A painting
tool for distributing objects in a 3D scene; And a grammar-based hierarchical deformation
paradigm, enabling the interactive deformation of complex models. We also propose two
methods related to the design of animated contents: A vectorial editing tool to synthesize
consistent waterfall scenes; And finally a sculpting method enabling to design new liquid
animation from examples.

iv

Résumé

L’accroissement de la demande en contenu virtuel, tant en termes qualitatifs que
quantitatifs, révèle de nouveaux défis scientifiques. Par exemple, la génération et la
manipulation de formes 3D et d’animation sont particulièrement difficiles. Les méthodes
modernes contournent ces difficultés en proposant des approches basées sur des algorithmes
d’optimisation. Ces derniers utilisent des connaissances a priori sur les données à manipuler
afin de générer de nouvelles données satisfaisant des contraintes dictées par l’utilisateur.
De tels outils présentent le désaventage d’être indirects, couteux, et non génériques, ce qui
limite la liberté artistique de l’utilisateur en le contraignant à de nombreux essais.

Les objectifs de cette thèse sont pluriels. D’une part, elle vise à améliorer le contrôle
de l’utilisateur en proposant des méthodes de manipulation interactives et directes. D’une
autre, elle cherche à rendre ces méthodes capables de manipuler des contenus plus variés
en proposant des outils novateurs et génériques.

Plus précisément, cette thèse introduis trois méthodes de modélisation d’objets 3D. La
première est une méthode basée exemple de génération d’objets composites caractérisés par
l’adjacence de leurs sous-parties. La seconde propose une interface de types “peinture” pour
décrire les distributions d’objets dans une scène 3D. La troisième étend le princides des
grammaires génératives à la déformation d’objets hiérarchiques. Nous proposons également
deux méthodes de modélisation d’animation. La première offre de modéliser des scènes
natuelles de cascades grâce à des controlleurs vectoriels. La seconde permet de sculpter une
animation de liquide en manipulant directement ses éléments spatio-temporels saillants.

v

vi

Remerciements

Je remercie mes encadrants Marie-Paule et Damien, qui m’ont aidé dans la tâche
difficile de réaliser cette thèse.

Je remercie également tout mes collaborateurs : Arnaud, Pierre-Luc, Han, Sylvain,
Antoine, Niloy, Bedrich, Stefanie, Pierre, Michael, et Chris.

Je remercie tout ceux qui m’ont cotoyé pendant cette thèse, à l’Inria et ailleurs, ceux
avec qui j’ai partagé mes journée be travail et souvent beaucoup plus : Guillaume, Léo,
Thomas, Thomas, Aarohi, Adela, Matthieu, Quentin, Kevin, Armelle, Estelle, Laura, Even,
Pablo, Gregoire, Robin, Camille, Tibor, Romain, Romain, Catherine, Sanie, Florence,
Laurent, Harold, Vincent, Cedric, Moreno, Lucian, Richard, Vineet, Ali, Remi, James,
Rémi, Rémi, François, Jean-Claude, Olivier, et encore beaucoup d’autres que j’oublie (ne
le prenez pas mal).

Je remercie toutes les personnes avec qui j’ai partagé des moments en dehors de la thèse,
colocs, voilocs et amis : Benoît, Vanessa, Hélène, Anaïs, Clement, Lydia, Nacho, Céline,
Lucie, Marion, Loïc, Antoine, Ninon, Olivier, Seb, Guillaume, Guillaume, Cyrielle, Lorie,
Pauline, Frank, Cassandre, Rebecca, John, Robin, Lorena, Marc, Gabi, Steff, Christophe,
Thibaud, Agathe, David, Jerôme, Lorène, et encore une fois j’en oublie la moitié.

Enfin, je remercie ma famille pour son soutient constant et indéfectible, et Sandra pour
absolument tout.

vii

Contents

1 Introduction and Motivations 1

1.1 What is virtual content? . 2
1.1.1 Uses . 2
1.1.2 Data representation . 3
1.1.3 Creation . 4

1.2 Why is 3D shape creation a hard task? . 4
1.2.1 Size of virtual objects . 5
1.2.2 Shape space versus mesh space . 6
1.2.3 Path in the mesh space . 7

1.3 The case of animation . 7
1.3.1 Frame-based parameter interpolation 7
1.3.2 Simulation . 8

1.4 Overview of this thesis . 8
1.4.1 Contributions . 8
1.4.2 Publications . 9
1.4.3 Outline . 10
1.4.4 Video . 10

2 Previous work 11

2.1 Introduction . 12
2.2 Static Objects Generation . 13

2.2.1 Procedural modeling . 13
2.2.2 Inverse procedural modeling . 17
2.2.3 Sketch-based modeling . 17
2.2.4 Example-based modeling . 18
2.2.5 Limitations of generation methods 20

2.3 Static Objects Deformation . 20
2.3.1 Low-level deformation methods . 20
2.3.2 Structure-aware shape deformation 22
2.3.3 Sketch-based deformation . 24
2.3.4 Limitations of deformation methods 25

2.4 Animation Design . 25
2.4.1 Fluid animation modeling . 25
2.4.2 Fluid animation control . 26

2.5 Conclusion . 29

viii

CONTENTS

3 Design of Static Objects 31

3.1 Introduction . 32
3.1.1 Complex object framework . 32
3.1.2 Coherency . 34
3.1.3 Example-based modeling of complex objects 35

3.2 Part-Based Modeling . 36
3.2.1 Introduction . 37
3.2.2 Overview of the solution . 37
3.2.3 Main contribution: Geometrical Sub-Object Deformation 42
3.2.4 Results . 43
3.2.5 Discussion . 46

3.3 Worldbrush . 48
3.3.1 Vectorial analysis . 48
3.3.2 World painting . 50
3.3.3 Main contribution: RDF Interpolation 53
3.3.4 Results . 55
3.3.5 Discussion . 55

3.4 Deformation Grammars . 61
3.4.1 Introduction . 61
3.4.2 Deformation Grammars . 62
3.4.3 Bilateral Grammar Rules . 64
3.4.4 Results . 67
3.4.5 Discussion . 71

3.5 Conclusion . 75
3.5.1 Controllability versus complexity trade-off 75
3.5.2 Smart tools versus smart shapes . 75

4 Design of Animation 77

4.1 Introduction . 78
4.1.1 Temporality of animations . 79
4.1.2 Preservative structures . 79

4.2 Waterfall scenes . 81
4.2.1 Motivation . 81
4.2.2 Overall system . 83
4.2.3 Main contribution: waterfall classification 95
4.2.4 Results . 96
4.2.5 Discussion . 100

4.3 Fluid Sculpting . 100
4.3.1 Introduction . 101
4.3.2 Overview . 102
4.3.3 Feature extraction . 103
4.3.4 Feature representation . 109
4.3.5 Sculpting Tools . 110
4.3.6 Results . 111
4.3.7 Discussion . 113
4.3.8 Conclusion . 115

4.4 Conclusion . 117

ix

CONTENTS

5 Conclusion 119

5.1 Summary of this thesis . 120
5.2 Future work . 120

5.2.1 Continuous deformations as an animation 120
5.2.2 Deformation diffusion using preservative structures 121
5.2.3 Deformation of preservative structures 121

A Bibliography 123

B List of Figures 141

C List of Tables 143

D List of Algorithms 144

x

Chapter 1
Introduction and Motivations

Contents

1.1 What is virtual content? . 2

1.1.1 Uses . 2

1.1.2 Data representation . 3

1.1.3 Creation . 4

1.2 Why is 3D shape creation a hard task? 4

1.2.1 Size of virtual objects . 5

1.2.2 Shape space versus mesh space 6

1.2.3 Path in the mesh space . 7

1.3 The case of animation . 7

1.3.1 Frame-based parameter interpolation 7

1.3.2 Simulation . 8

1.4 Overview of this thesis . 8

1.4.1 Contributions . 8

1.4.2 Publications . 9

1.4.3 Outline . 10

1.4.4 Video . 10

1

1.1. WHAT IS VIRTUAL CONTENT?

R
ecent years have seen the emergence of digitization as a major change in our
customs: communication, entertainment, access to information and consumption
have been impacted at large extends. One of the facets of this major trend is the

increase in the demand for virtual content.This chapter explains the challenges of virtual
content design, and relates those challenges to the contributions of this thesis.

1.1 What is virtual content?

In our context, we call “virtual content” the data used for representing objects and
scenes in computers. It is the main data considered in the Computer Graphics field. This
section describes the contexts in which this content is used, how it is represented, and the
different ways to create it.

1.1.1 Uses

Virtual content aiming at describing object geometry was first developed in the domain
of Computer Assisted Design (CAD), as for instance in the work of Bézier (1966) for the
design of smooth curves and surface. 2D data such as Bézier curves are easily represented
on a standard display such as a screen. When given 3D data, it is natural to try to visualize
them as well. Visualization consists in transforming 3D data into 2D images. This can
be performed using various methods, such as rasterization or ray tracing for example.
This transformation can be done for two purposes: better understanding the underlying
data, or actually getting images. The first setup is known as scientific visualization. It
aims at representing data such that some underlying structure or associated phenomenon
may appear in the clearest and most comprehensive way. It may be used for instance
in cases where 3D data are dense and intricate, such as medicine or geography; or when
it is not possible to see it directly, as the data produced by an electron microscope or a
multi-spectral telescope. Note that in scientific visualization, the core structure is the
original data, not the resulting image, therefore any modification of the data should be
avoided to preserve its accuracy. In contrast, the second setup – which I call entertainment
visualization – aims at producing the image in itself, not at understanding a specific
phenomenon. This resulting image should be pleasant for the viewer, be plausible when
depicting a real phenomenon, or may even drive an artistic concept. Computations may
need to be interactive when dealing with creation interfaces, games, or navigation for
instance. To achieve such goals, data may need to be adapted and modified before the
rendering step. Note that entertainment visualization is widely spread in the special effect
industry, in the area of computer-animated films, and in video games.

If not for visualization, 3D data also find their place in industrial applications such
as architecture, serious games, and mechanical design. These contexts require virtual
content to describe not only the shape of objects, but also other properties such as
the constitutive materials and their mechanical behaviors. These data are used within
numerical simulations, which virtually reproduce the evolution of the model under given
laws prescribed by other scientific fields (e.g. mechanics). Such simulations yield results
which are transposable to real objects, such as physical stress resistance.

Nowadays, real-time imaging and simulation capabilities allow interactive applications
such as surgical training. This speed allows for even more intricate real-virtual relationships:

2

CHAPTER 1. INTRODUCTION AND MOTIVATIONS

For example, augmented reality allows to interleave on-the-fly video streams with specific
data. Such techniques are used many different contexts from video games (see Niantic
(2016) for example) to medical intervention assistance (see Manescu et al. (2013) for an
example of VR-assisted hadron therapy).

Fast 3D content acquisition technologies such as LIDARs allows to create virtual content
from real world scenes at interactive rates. Such advances benefit previous applications
and open new ones: For instance, it enables embedded computer systems to use a virtual
representation of the world surrounding them. This permits such systems to interact with
their environment for example by grasping objects or planning routes. This allows robots
to be autonomous, as in self-driving cars (Lee et al. (2014)) or UAV (i.e. drones, see
Tisdale et al. (2009)).

Finally, real objects can also be created from virtual content directly, for instance
using 3D printing technology. Such techniques are particularly well adapted to per-unit
production scenarios such as prosthetics fabrication, as explained by Rengier et al. (2010).

Scope of this thesis. This manuscript primarily focuses on virtual content creation
for entertainment visualization. More precisely, it describes several methods aiming at
facilitating the generation of virtual content from an artistic stand point. This means
that the virtual objects we will be manipulating are not associated with real object – as it
would be the case for CAD for instance.

Although this context partially frees us from accuracy and realism constraints, an
object model should still convey the “idea” that its creator (the 3D artist) intended. For
example, considering the model of a real-life object, some constraints have to be respected
for it to “look like” what it represents. This notion is further explored in Section 3.1.1.
Besides, other constraints should be taken care of: Methods described here should be
interactive and allow for very different object representations and interaction modes.

Now, let us see how virtual content is represented.

1.1.2 Data representation

The “virtual content” described in the previous section is a very general notion, since it
fits the needs of different applications. Even when designed for entertainment visualization
only, such data may represent various properties: surfacic appearance, shape, or motion
for instance.

More precisely, surfacic appearance models (such as BRDFs) belong to the sub-field
of rendering and are out of the scope of this thesis. We will instead focus on shapes
and motions, which are themselves wide notions and can be represented using different
structures: Shapes are often represented as polygonal meshes, sometimes associated with
a subdivision scheme, but other useful structures exist such as implicit surfaces, NURBS,
or height-fields; Motion data is most of the time encoded as animation curves prescribing
changes over time of appearance or shape model parameters, up to a whole new model at
each time step.

In the remainder of this thesis, we will not focus on data representation, except when
it is necessary to the understanding of the contribution. Besides, most methods presented
in this manuscript leverage object semantics in order to offer ways of interacting with its
representation. Semantic data can usually be represented as tags associated to objects or
object parts. It is generally added as a post-process on top of geometrical or animation

3

1.2. WHY IS 3D SHAPE CREATION A HARD TASK?

data. Semantic data inference is out of the scope of this thesis: In the following, unless
stated, we assume that semantic information is provided as part of the input data used by
the presented methods.

Let us now investigate the process of virtual content creation.

1.1.3 Creation

Virtual content creation is usually performed by skilled professional artists using
modeling software such as Maya (2016), ZBrush (2016), BlenderFoundation (2014), or
Neobarok (2016). Such software usually offer two main features: primitive insertion tools
and shape modeling tools. Primitive insertion tools propose to add a pre-defined object
model into the scene: for example canonical solids (e.g. platonic polyhedron, spheres, cones,
or cylinders), or procedurally generated content (e.g. l-systems for plants or parametrized
human models). Shape modeling tools enable artists to modify a shape in various ways,
such as: picking an object subpart, affine transforming the selected parts, subdividing,
smoothing, or assembling it with other shapes.

In practice, artists start by identifying mentally a shape to obtain, and might create
some sketches for prototyping their creation. This goal can be fuzzy, allowing for artistic
leeway; or precise, leaving no room for inaccuracies. In both cases, artists decide what
primitive to start from, and what chain of edits will lead them to their goal given the
editing tools they have. The first result is then matched against artistic requirements (e.g.
“This fish should look more aggressive”). This will lead the artist to identify modifications
on the shape (e.g. “Teeth should be bigger and eyes smaller”), and produce a second
version of it. This iterative process is repeated until the result converges to a state where
artistic requirements are matched.

In summary, the characters and the sceneries used in virtual worlds need to carry an
emotional charge. It might be clear from the beginning that a character must look mean,
the practical appearance of this character emerges through several iterations. The output
of a production iteration might even influence the actual goal by modifying the initial
requirements. Hence artistic content creation is not a linear process.

Starting from this assessment, this thesis presents contributions aiming at eas-

ing the artistic creation process. We propose methods for handling virtual content
directly while making abstraction of its complexity. They enable artists to favor expres-
siveness over handling technical requirements inherent to virtual content manipulation.

1.2 Why is 3D shape creation a hard task?

What remains hard is modeling. The structure inherent in three-dimensional
models is difficult for people to grasp and difficult too for user interfaces to reveal
and manipulate. Only the determined model three dimensional objects, and they
rarely invent a shape at a computer, but only record a shape so that analysis or
manufacturing can proceed. The grand challenges in three-dimensional graphics
are to make simple modeling easy and to make complex modeling accessible to
far more people.

— Robert F. Sproull (1990)

4

CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Two and a half decades after this observation, numerous research papers in Computer
Graphics still start by stating that 3D modeling is a complex and intricate task. Despite a
recent popularization, this task is indeed reserved to skilled artists in industrial contexts.
Such professional have learned to handle complex 3D creation softwares. As stated before,
even skilled artists need time to create a shape, and several shape creation or modification
iterations are needed for converging toward a requirement-matching result. This makes
3D models creation (as well as other types of virtual content) a costly task in a production
budget (e.g. a special effect sequence in a film).

But what makes this task so difficult? Indeed, building a 3D model means setting the
parameters of a virtual object representation. As discussed in the previous section, various
structures are available for representing a same object (e.g. mesh or implicit surface).
However, choosing a representation is not a practical difficulty since most of modeling
software impose a given structure and/or propose efficient conversions from one to another.
This section investigates the challenges of 3D shape creation and relates them to the notion
of shape space.

1.2.1 Size of virtual objects

As stated earlier, the most popular structure used for representing virtual objects is the
mesh. A mesh is a piece-wise planar surface approximation over polygonal regions (usually
triangular or quadrangular). It is usually defined as a list of 3D coordinates representing
the positions of the polygons’ vertices, and a list of indices representing the adjacency of
vertices within polygons. Vertices and faces are called mesh primitives;

Let O be an object of size L, and λ be the mean shortest distance between small-scale
details on the surface of O. The surface of O can be decomposed in non-overlapping
regions {pi} containing a single small-scale detail. There is an order of magnitude of

(
L
λ

)2

such regions, each having a surface of λ2.
Let M be a mesh representing O with N vertices. According to the Nyquist-Shannon

theorem, each small-scale patch pi must be sampled with at least two vertices. This yields
that N > 2.

(
L
λ

)2
. Note that for aesthetic reasons (such as representing curved areas

without angles), the actual number of vertices in a mesh is usually much higher than this
theoretical lower bound. Still, this gives an idea of the size of a mesh in terms of number
of vertices.

Virtual worlds often reproduce real world features, including terrains, characters, and
buildings. Such objects have big scale ranges, i.e. have big L

λ
ratios. Accordingly, meshes

representing such object will have large numbers of vertices, increasing quadratically.
Lots of vertices means lots of 3D coordinates to set for the artist creating the mesh.

The complexity of the 3D shape creation task can partially be explained by this great
number of degrees of freedom in the model. Luckily, editing tools allow to simplify this
task by allowing to modify several degrees of freedom at once: proportional editing, virtual
sculpting, adaptative sampling, and texture-based displacement map are some examples.

Still, these tools rely on the artist performing per-primitive edit operations. For this
reason, high quality meshes keep requiring lots of efforts.

5

1.2. WHY IS 3D SHAPE CREATION A HARD TASK?

1.2.2 Shape space versus mesh space

Given two shapes, any human can assess their visual similarity. This gives the intuition
that a metric space for shapes does exist. We call this space the shape space. Any concept
– e.g. “fish” – can be identified with a subset of the shape space where shapes are identified
as fish shapes by a human. The more precise the concept – e.g. “tuna” – the smaller the
subset (in the sense of set inclusion). The notion of shape space is very close to Plato’s
theory of Forms (see Carpenter and Fine (2008)).

The problem with the shape space is that it fully relies on human subjectivity for its
definition. As a result, each human has its own shape space, which might look alike on a
coarse scale (all fish have fins) but might differ on details (marine biologists might have
richer and more precise ideas of how fish shapes are than the average human). Besides,
if shapes can exist in the human mind, they have no unique or natural (i.e. human-
independent) representations. That is the work of the artist to transform a concept into
an actual shape representation, using their own shape space and shape representation
creation skills. These two attributes may qualify the style of the artist.

Given a representation structure – mesh for instance – we can define a representation
space – a mesh space – of all possible representations. Note that the mesh space defined
here is similar to the “shape space” introduced by Kilian et al. (2007) but without fixing
the mesh topology.

The mesh space is human-independent, quantifiable, and more importantly it can
be mapped onto the shape space, constituting a practical interface to it. However, this
mapping is only injective: a single shape can have very different representations, as shown
in figure 1.1.

(a) (b) (c) (d)

Figure 1.1 – Different meshes can represent the same shape. Here the same sphere (a) is
represented through a UV tessellation (b), an icosahedron subdivision (c), and a cube-marched
spherical implicit field (d).

There are various explanations for the above discrepancy. Given a shape, different tes-
sellations are possible, which all have their benefits. For example: quad-based tessellations
are better suited to skinning animation, triangle-based tessellations are more generic. Even
inside each tessellation scheme, primitives can be placed differently depending on the shape
features to be captured. Finally, the same shape can be represented at different resolutions
(e.g. for efficiency), yielding different representation. Creating a shape representation
imposes to take many design decision which will influence the output. The knowledge
required to make these decisions is part of the expertise that makes the artistic task so
intricate.

6

CHAPTER 1. INTRODUCTION AND MOTIVATIONS

1.2.3 Path in the mesh space

As stated earlier, mesh design is iterative. Each iteration leads from an input mesh M0

(a primitive or non final representation) to an output mesh M1 (improved representation).
Each of these endpoints is represented as a point in the mesh space. Both are connected
by a path representing the sequence of edits made by the artist. Denning et al. (2015)
presented a technique for summarizing and visualizing such paths for educational purposes.

Given identical sets of endpoints, different artists will create different mesh paths
connecting them. Here again, the artist will use their knowledge and the tools offered to
them for performing the edits. The high number of possibilities once again requires some
expertise to find the best editing path, which contributes to the difficulty of the mesh
creation task.

1.3 The case of animation

The previous section explained the difficulties raised by static 3D shape creation. This
section explores the challenges of animation creation.

Animations are based on static shapes: The evolution of the intrinsic parameters of
the shape representations through time creates the animation. Therefore, creating an
animation always starts with creating at least one static shape, following the process
described above.

The previous section relied on the 3D data quantity and ambiguity for explaining
the complexity of 3D shape creation. Animated content possesses an extra dimension
compared to static 3D content. The challenges of animation creation are therefore a
superset of the ones described above.

Two animation design paradigms exist: frame-based parameters interpolation, and
simulation. The remaining of this section details the challenges posed by these two
alternative setups.

1.3.1 Frame-based parameter interpolation

In this setup, the artist specifies the values of some model parameters at specific time
steps called key-frames. These values are interpolated over time using various schemes:
nearest neighbor value, linear or cubic interpolation for example.

Frame-based parameter interpolation offers two main advantages: A high degree of
control over the animation; And fast computations (parameter interpolation is direct and
generally allows for interactive display).

The parameters set by the artist are often not directly those of the visual model (such
as vertices positions). Instead, deformation tools based on bounding boxes, proxy geometry,
skeletons, or cages allow to set visual parameters on simplified model and to automatically
transfer the resulting deformations to the whole mesh. More sophisticated deformations
are also possible, such as ad-hoc procedural scripts.

The function associating input parameters to the actual deformed shape is called the
rigging. The space of the rigging input parameters has been conveniently called rig space
by Hahn et al. (2012). The rig-space is a reduced base for deformations in the mesh space.
For a given mesh, it represents a parametrization of the sub-space surrounding it in the
mesh space.

7

1.4. OVERVIEW OF THIS THESIS

Once the 3D shape model has been created and rigged, the artist control their mesh
in the rig space. This makes it easier since it possesses much fewer dimensions. Even
then, values have to be set for each of its degrees of freedom at each key-frame. This still
represents a large amount of data to be created by the artist. The data creation itself
is hard, since it requires the artists to design interpolation curves which will result in a
motion which is hard to anticipate.

Besides, these parameters still represent purely static shapes: limbs positions and
orientations for example. Key-framing fundamentally imposes to set such static parameters
for later interpolating them. This goes against the temporal nature of animation and once
again require lots of knowledge and experience from the artist to create such content.

1.3.2 Simulation

The simulation paradigm relies on a physical interpretation of the mesh data: it is
considered to be the surface of a liquid or of a solid for example. From this physical
interpretation, a motion is derived through the laws of physics: Navier-Stokes or Newton
equations of motion respectively. Such simulations are costly in terms of computations and
therefore in terms of time. On the other hand, they are able to produce realistic results in
terms of both shapes and speeds.

Here, the artist has much fewer degrees of freedom than before: They can only influence
the simulation by setting initial conditions (initial position, shape, and velocity for example)
and physical parameters (such that fluid viscosities or object masses).

The non-linearity of the laws of mechanics makes it impossible to precisely predict the
behavior of a complex mechanical system through a long period of time. Therefore, the
artist has to run lots of simulations, modifying the degrees of freedom incrementally until
converging to the desired result.

1.4 Overview of this thesis

The goal of the work presented here it to propose alternative editing paradigms, specific
methods, or practical solutions to the challenges of creating both static and animated
content. The common denominator of these approaches is their attempt to offer an
editing interface to the shape space rather than focusing on the representation space.
Content is not considered at the vertex level or at the key-frame level. Instead, semantic
segmentations are used for processing object parts as high-level primitives. This enables
the artist to focus on the relationships between object parts (object’s constraints) and their
modeling intent (external constraints) rather than on managing the structure representing
the object.

1.4.1 Contributions

3D modeling This thesis first introduces a framework for decomposing the consistency
of a complex objects along its hierarchical structure. This framework is then used for
presenting the other contributions regarding 3D modeling: A sub-structure deformation
method based on linear blend skinning, allowing to perform sub-structure substitution
in a part-based modeling method; A distributions descriptor interpolation method based
on optimal transport, allowing to create new distributions and distribution gradients

8

CHAPTER 1. INTRODUCTION AND MOTIVATIONS

inside a distribution painting framework; And a grammar-based framework for sculpting
hierarchical objects.

Animation modeling This thesis also introduces the notion of temporality of an ani-
mation, resulting in a temporality-based classification of animations. The novel concept
of preservative structure derives from this classification. Preservative structure editing
emerges as a paradigm for animation modeling, and is illustrated into two different methods:
A waterfall network editing framework based on a novel quantitative waterfall classification
is presented; We finally present a general liquid animation editing framework relying on a
preservative structure called space-time features set, computed from raw input animation
data and allowing to perform direct edits on the animated content.

1.4.2 Publications

The contributions presented in this manuscript have been first introduced in the fol-
lowing papers:

Liu, H., Vimont, U., Wand, M., Cani, M.-P., Hahmann, S., Rohmer, D., and Mitra,
N. J. (2015). Replaceable substructures for efficient part-based modeling. Computer
Graphics Forum, Proceedings of Eurographics 2015, 34(2):503–513

Emilien, A., Vimont, U., Cani, M.-P., Poulin, P., and Benes, B. (2015). Worldbrush:
Interactive example-based synthesis of procedural virtual worlds. ACM Transactions On
Graphics (TOG), Proceedings of SIGGRAPH 2015, 34(4):106

Vimont, U., Rohmer, D., and Cani, M.-P. (2016). Deformation grammars: Hierarchi-
cal constraint preservation under deformation. Submitted at Computer Graphics Forum

Emilien, A., Poulin, P., Cani, M.-P., and Vimont, U. (2014). Interactive procedural
modelling of coherent waterfall scenes. Computer Graphics Forum, 34(6):22–35

Manteau, P.-L., Vimont, U., Rohmer, D., Cani, M.-P., and Wojtan, C. (2016). Space-time
sculpting of liquid animation. To appear in the proceedings of Motion In Games 2016

Most of this work was done in collaboration with other researchers, to whom I express
my gratitude. In parallel of this thesis, I also collaborated with Sylvain Meylan on DNA
model generation. This work will not be discussed here; It was published in the following
paper:

Meylan, S., Vimont, U., Incerti, S., Clairand, I., and Villagrasa, C. (2016). Geant4-
dna simulations using complex dna geometries generated by the dnafabric tool. Computer
Physics Communications, 204:159–169

9

1.4. OVERVIEW OF THIS THESIS

1.4.3 Outline

The remainder of this manuscript is organized into four chapters.
Chapter 2 gives an overview of the state of the art in static and animated shape

modeling.
Chapter 3 presents the notions of complex object and consistency as a general framework

for semantic model generation and deformation. It then details three methods allowing to
design static shapes in innovative ways: a part-based method for designing constrained
shape assemblies, a painting metaphor for creating objects distributions, and a generic
grammar-based framework for sculpting hierarchical objects.

Chapter 4 deals with the modeling of animated content, and more precisely with the
control of liquid animations. It relies on a classification of animations from which follows
the notion of preservative structure. It is used inside a waterfall network editing method,
and a general liquid animation editing framework.

Finally, Chapter 5 concludes this thesis and draws perspectives for future work.

1.4.4 Video

Most results presented in this thesis are best seen in video. I compiled the videos
accompanying the articles corresponding to the contributions presented in this manuscript
in the following web page:

https://team.inria.fr/imagine/article-videos/

Alternatively, this web page can be accessed through the following QR-code:

10

https://team.inria.fr/imagine/article-videos/

Chapter 2
Previous work

Contents

2.1 Introduction . 12

2.2 Static Objects Generation . 13

2.2.1 Procedural modeling . 13

2.2.2 Inverse procedural modeling . 17

2.2.3 Sketch-based modeling . 17

2.2.4 Example-based modeling . 18

2.2.5 Limitations of generation methods 20

2.3 Static Objects Deformation . 20

2.3.1 Low-level deformation methods 20

2.3.2 Structure-aware shape deformation 22

2.3.3 Sketch-based deformation . 24

2.3.4 Limitations of deformation methods 25

2.4 Animation Design . 25

2.4.1 Fluid animation modeling . 25

2.4.2 Fluid animation control . 26

2.5 Conclusion . 29

11

2.1. INTRODUCTION

T
his chapter describes how previous methods have addressed the challenges of
complex object and animation modeling. Object modeling has evolved since the
beginning of Computer Graphics. Recent advances in computers hardwares in the

last two decades have opened new possibilities. Numerous works have addressed the initial
problems and opened new ones.

Since the subject addressed in this thesis is large, the review of previous work will
be focused on recent and/or relevant work. References to more comprehensive literature
reviews are inserted; Please refer to those for a more extensive presentation of the state of
the art on a particular subject.

This chapter is organized as follows: Section 2.1 presents the trends among virtual
content manipulation methods; Section 2.2 describes the object generation literature;
Section 2.3 focuses on object deformation as a creative tool; Section 2.4 deals with object
animation, with an emphasis on fluid animation and control; Section 2.5 concludes this
chapter and draws the directions that this thesis explored.

2.1 Introduction

Control

Consistency

Automatism

Figure 2.1 – The methods presented in this chapter propose a compromise between three
antagonistic aspects of modeling.

Since 3D modeling and animation are hard, numerous methods have attempted to ease
these tasks in various ways.

One way to achieve easy modeling is to build a method in charge of generating the
geometry. Such methods may integrate constraints for creating highly realistic and detailed
models. This the typical case of procedural methods. They fall in the red and/or yellow
part of the diagram represented in Figure 2.1. The problem of such methods is that they
fail to incorporate direct user control (the blue disk of the diagram). Indeed, considering
that such methods attempt to create specifically constrained result aiming at realistic
appearance with low degrees of freedom, user input might be in contradiction with the
method’s structure. The input parameters of the procedural method may be seen as a
specific language in which any user intent must be translated. This problem is further
discussed in Section 2.2 § Procedural modeling.

12

CHAPTER 2. PREVIOUS WORK

Inverse methods are an automation of this translation step. Starting from a user intent,
such methods try and find suitable input parameters for the (forward) procedural method.
These approaches require first a suitable way for the users to formulate their expectations,
and second, a appropriate metric to compare this expectation to the output of the forward
method.

Both forward and inverse methods perform the model creation task without the user
being able to intervene within the actual generation process. In order for the creation
process to actually be creative, metaphor methods aim to let the user participate through
the model synthesis. This participation often relies on user inputs mimicking traditional
media: drawing, painting, sculpting (hence the term "metaphor").

Example-based methods may or may not allow many user expectations to be taken into
account. Their specificity is to settle what "realism" means through instances of objects
considered as realistic. Such objects (i.e. examples) are used by the method for creating
new objects in the same "style", or the same definition of realism.

The following sections use these axes as a method classification regarding generation,
deformation and animation of 3D models. The frontiers between method families might
be fuzzy, as between some inverse procedural and example-based methods. In such cases I
tried to pick the option favoring clarity.

2.2 Static Objects Generation

This section focuses on static generation methods, i.e. methods aiming at creating
3D models without concern on their animation, as opposed to methods presented in
Section 2.4. These methods also differentiate themselves from deformation methods
presented in Section 2.3 as they create a model which is not intended to be re-used as an
input of the method;

Various static object generation paradigms are presented: forward and inverse proce-
dural modeling (Sections 2.2.1 and 2.2.2), sketch-based modeling (Sections 2.2.3), and
example-based modeling (Sections 2.2.4). Each paradigm is illustrated with relevant refer-
ences and analyzed through the scope of its utility from a user perspective. Generation
methods have global strength and weaknesses which are analyzed and commented (in
Section 2.2.5).

2.2.1 Procedural modeling

Procedural generation aims at creating a representation of an object using a mathe-
matical description of the property to represent. In our case, this property is the shape of
the object.

One of the first and most general-purpose procedural generation method was created
by Perlin (1985); It consists in a mathematical function casually called Perlin noise, which
can look either smooth or noisy depending on some parameter value. This function has
been used for representing terrains, clouds, and other virtual world features in the early
ages of Computer Graphics, as explained by Ebert et al. (2002).

A virtual object representation has to satisfy some constraints in order to be understood
and accepted as valid (this point is developed in Section 3.1.2). As a result, more special-
purpose methods have been developed, which better satisfy constraints of the various

13

2.2. STATIC OBJECTS GENERATION

(a) Terrain procedurally gener-
ated by Génevaux et al. (2013)
using hydrological principles.

(b) The method of
Talton et al. (2011)
is used for controlling
a procedural model
(constraint in inset).

(c) The method of Zhou et al.
(2007) is both example-based
(left inset: example data) and
sketch-based (right inset: user
stroke).

Figure 2.2 – Static generation methods can be classified into families: procedural (a), inverse
procedural (b), example-based or sketch-based (c).

objects populating virtual worlds. Some objects have been studied extensively: terrains,
ecosystems, and cities.

This section presents methods grouped by the type of object they generate. Other
references regarding virtual world modeling can be found in the survey of Smelik et al.
(2014).

2.2.1.1 Terrains

Virtual terrains have received a lot of attention in computer graphics research. Here
are presented a sub-set of references relating to terrain generation. A more comprehensive
survey of geological modeling methods has been done by Natali et al. (2013).

In most cases terrain are represented as height fields, as in the work of Prachyabrued
et al. (2007) presenting a method for generating stylized 2D maps. However, height-fields
do not allow to represent natural elements such as caves, overhangs, or arches. Gamito
and Musgrave (2001) offers to solves this issue by introducing horizontal displacements
generating overhangs, while Peytavie et al. (2009a) proposes a layer-based representation
allowing any topological configuration. Besides, particular land features do not fit in
those representations and have to be modeled independently: For example, Peytavie et al.
(2009b) presents a convenient tool for modeling rock piles, and Beardall et al. (2007)
introduces a volumetric weathering model for creating goblins.

A virtual terrain has scales typically ranging from a few meters or less, up to several
kilometers. The ratio of these scales (around 104) combined with the height-fields repre-
sentation makes terrain files too big to handle with standard methods. Geiss (2007) and
Vanek et al. (2011) offers a GPU terrain structure allowing detailed terrain to be generated
in real time. Rusnell et al. (2009) and Génevaux et al. (2015) propose feature-based
terrains representations allowing to overcome scale range issues.

Erosion is one of the key phenomenon of the evolution and the appearance of a terrain.
This phenomenon is not considered by standard fractal-based methods. Kelley et al.
(1988) and Musgrave et al. (1989) first introduced erosion simulation in computer graphics.
Roudier et al. (1993) added the sedimentary deposition phenomenon to this scheme. Chiba

14

CHAPTER 2. PREVIOUS WORK

et al. (1998) proposed a velocity-field model for erosion influence. Beneš and Forsbach
(2001) introduced the influence of several layers of rock with different erosion behaviors and
extended this method in Beneš and Forsbach (2002), Beneš and Arriaga (2005), and Benes
et al. (2006). Neidhold et al. (2005), Krištof et al. (2009), Mei et al. (2007), Šťava et al.
(2008) proposed improvements of the method for making it interactive, allowing to indirect
control of the erosion process. Most of these methods rely on liquid simulation, which is
only valid at small scale. As a result, large-scale phenomenon such as dendrite landscapes
are not generated by those methods. Pytel and Mann (2013) takes a different approach
based on hypsometric analysis which produces multi-scale results. Other approaches
achieving such results are based on explicit river models.

Rivers have a major influence on the appearance of a terrain. This influence is not
independent of that of erosion, but explicitly considering rivers as terrain primitive yields
very different results compared to erosion simulation. Prusinkiewicz and Hammel (1993)
first used rivers as a terrain generation primitive to be used in fractal schemes. Since,
Belhadj and Audibert (2005) introduces a bottom-up approach for creating a terrain from
ridges and rivers. Teoh (2009) extends this idea by proposing a river network generation
algorithm. Derzapf et al. (2011) offers a fast solution allowing large terrain generation.
Génevaux et al. (2013) rely on a novel implicit structure for defining a terrain through
hydrological concepts (see Figure 2.2a).

Finally, Cordonnier et al. (2016) combines tectonically uplift with a geological river
influences for creating realistic terrains and mountains.

2.2.1.2 Ecosystems

Virtual worlds usually contain virtual life. When different types of life live in the same
system, it is called an ecosystem. Deussen et al. (1998) first proposed a set of tools for
creating ecosystems based on a simulation. Beneš et al. (2011) describes a method for
populating urban environments with plants. However, most work focuses on individual
plant modeling.

L-systems have originally been introduced by Lindenmayer (1968). This generative
plant model has since been extensively used and improved, as shown by Prusinkiewicz
and Lindenmayer (2012). de Reffye et al. (1988) integrated various elements such as
leaves, flowers and fruits in the model. Měch and Prusinkiewicz (1996) added environment
interaction to the development model. Power et al. (1999) and Boudon et al. (2003)
proposed tools for interactively manipulate the model and browse the shape space it
parametrizes. Beneš et al. (2009) introduced an interactive model for plant generation
with limited resource management (such as water or light). Peyrat et al. (2008) used
L-systems as a leave generation model. Pirk et al. (2012) proposed an interactive tree
model adaptation method allowing the tree to adapt to its environment. Apart from trees,
other plant have been the subject of procedural modeling methods: for example Desbenoit
et al. (2004) uses a Diffusion Limited Aggregation model to represent lichen growth.

2.2.1.3 Cities

Ecosystem modeling allow to create natural sceneries. Man-made sceneries have also
been studied. Merrell and Manocha (2011) and Lars Krecklau (2011) offer methods for
modeling interconnected structures such as bridges and roller coasters. However, cities

15

2.2. STATIC OBJECTS GENERATION

have received the biggest interest from the research community as shows in the survey of
Vanegas et al. (2010b).

Parish and Müller (2001) introduced the concepts of city procedural modeling. Vanegas
et al. (2009) added the possibility for the method to handle post-generation constraints.
Scharl (2010) introduced a method for choosing and placing residential houses given a
parcel layout. Lipp et al. (2011) proposed an interactive layer-based city layout method.
Vanegas et al. (2012b) focused on the parcel subdivision of residential areas. Steinberger
et al. (2014a) presented heavy optimizations allowing to generate a whole city model on
the GPU and to visualize it in real time.

Buildings are sub-parts of cities, and have been studied on their own. Wonka et al.
(2003) first proposed a grammar-based building generation framework, which has since
been extended by Müller et al. (2006), Larive and Gaildrat (2006), and Schwarz and Müller
(2015). Lipp et al. (2008) extended the grammar-based paradigm by providing visual
rules. Whiting et al. (2009) introduced physical constraints into the process. Kelly and
Wonka (2011) enriched facade exteriors with an extrusion-based method. Steinberger et al.
(2014b) proposed a parallel implementation allowing the building models to be generated
on the GPU.

Tutenel et al. (2011) introduced a method for mixing different room layouts in a
same building, and Barroso et al. (2013) offered to mix building parts generated with
different grammar rules. Some sub-parts of buildings have been studied in particular: Ilcik
et al. (2015) details a layer-based facade generation algorithm. Merrell et al. (2010) and
Leblanc et al. (2011) designed methods for creating room layouts inside residential houses
and building floors respectively. Merrell et al. (2011) proposed a method for generating
furniture layouts inside rooms from design guidelines. Zheng et al. (2016) introduced a
method for adapting chair models to body poses according to ergonomics principles.

Apart from buildings, roads have also been studied on their own. Chen et al. (2008a)
introduced a road-based city modeling method. Galin et al. (2010) and Galin et al. (2011)
proposed procedural road generations methods for connecting cities.

Rural environments are somehow more constrained by their environment than cities.
Bruneton and Neyret (2008) created a vectorial description for such environments, and
Emilien et al. (2012) proposed a method for generating countryside village.

Various models might be difficult to use altogether for generating a single world model
because of badly interacting models. Smelik et al. (2011) proposes a way of combining
outputs of different methods into a consistent virtual world model using a declarative
approach.

2.2.1.4 Limitations

We saw that many methods address different problems and sub-problems in very
specific ways. Some attempts were made for integrating all these methods inside a single
ubiquitous system (see Smelik et al. (2011)). This system should use each method in
its specific scale and phenomenon. However, most systems take specific inputs, and
produce non-predictable and non-constrained outputs. As a result, procedural methods
are under-used in real-case production scenarios.

Another explanation for this under-usage is the counter-intuitiveness of most procedural
tools: The black box effect. The input is often a set of, sometimes obscure, parameters,
and it is uneasy for a user to know how to modify these to reach a given goal. Inverse
methods offer a different paradigm which circumvents this issue.

16

CHAPTER 2. PREVIOUS WORK

2.2.2 Inverse procedural modeling

The concept of inverse methods is simple: Given a procedural model and a goal to
achieve, inverse methods attempt to find the input parameters of the model which will
produce the closest to the goal object. In order to achieve this, a comparison metric has
to evaluate the distance between the output of the model and the goal. This distance is
used as a cost function in an optimization procedure. In a way, it is an automation of the
creation process described in Section 1.

Bokeloh et al. (2010) presented a symmetry analysis method allowing to build a shape
grammar from raw input 3D models. Št’ava et al. (2010) proposed an inverse procedural
model for 2D L-systems from vectorial drawing inputs, and Benes et al. (2011) extended it
for defining the input with vectorial guides. Vanegas et al. (2010a) introduced an algorithm
for generating the 3D model of a building from a set of calibrated input pictures. Talton
et al. (2011) generalized inversed procedural modeling to any grammar-based forward
procedural model using a Metropolis algorithm (see Figure 2.2b). Vanegas et al. (2012a)
and Št’ava et al. (2014) addressed city and tree modeling respectively using this paradigm.
Ritchie et al. (2015) optimized Monte Carlo Markov Chain algorithm (MCMC) by allowing
incompletely generated models to be evaluated.

Inverse procedural modeling methods assume that the result is already known before
it is created, which is not always the case. Besides, starting from a goal and letting the
method perform the generation does not leave much artistic leeway. Another modeling
paradigm is much closer to traditional artistic design process: sketch-based modeling.

2.2.3 Sketch-based modeling

Sketch-based modeling relies on a metaphor offering an intuitive modeling interface.
It can naturally be used for designing 2D vector graphics. Kazi et al. (2012) proposed
a method allowing to design such content while offering the advantages of computer-
generated data. A review of sketch-based modeling for 2D applications has been made by
Hurtut (2010).

Sketch-based modeling has also been used for generating 2D content on 3D objects.
For example, Sun et al. (2013) introduced a sketch-based texturing method, and Schmid
et al. (2011) used strokes for creating expressive paint-like volumetric texturing.

Here, we focus on sketch-based modeling of 3D shapes. More in-depth analysis of such
methods are presented in Olsen et al. (2009) and Cook and Agah (2009).

3D sketch-based modeling was first introduced by Igarashi et al. (1999) with the Teddy
system, allowing the design of arbitrary 3D shapes from strokes. This system was later
extended by Karpenko and Hughes (2006), Schmidt et al. (2007), and Bernhardt et al.
(2008).

The Harold system proposed by Cohen et al. (2000) offered an original way to create
2D billboards in 3D space, resulting in a doodle-like scene. But in most cases, sketch-based
3D modeling techniques focus on the design of a single object of a given type: Chen et al.
(2008b), Wither et al. (2009), and Longay et al. (2012) proposed methods for creating trees;
Wither et al. (2008) introduced a method for creating clouds; McCrae and Singh (2009)
presented a method for creating road networks; Schmidt et al. (2009) analyses 3D scaffold
strokes for reconstructing the geometry of man-made objects; Gain et al. (2014) proposed a
city modeling sketch-based system; And Entem et al. (2015) recently introduced a method
for creating 3D shapes of animals.

17

2.2. STATIC OBJECTS GENERATION

2.2.3.1 Terrains

Among all objects which have been studied in particular in sketch-based modeling
terrains are again well represented. Watanabe and Igarashi (2004) first introduced a
method for deforming a plan from 3D stokes, creating mountains. This approach has since
been extended by Gain et al. (2009), Hnaidi et al. (2010), and Bernhardt et al. (2011) for
faster and more realistic results.

dos Passos and Igarashi (2013) and Tasse et al. (2014) proposed first-person set-ups
where strokes are directly interpreted as mountain profiles for creating the terrain.

de Carpentier and Bidarra (2009) proposed patch-based height-field brushes for painting
terrains from above.

Finally, Zhou et al. (2007) proposed a top-view set-up where strokes are analyzed for
matching ridges in example height-field patches (see Figure 2.2c). This method has since
been extended by Tasse et al. (2012) for taking height constraints into account. Gain et al.
(2015) also uses real-world data and mixes it with constraints diffusion.

2.2.3.2 Limitation

Sketch-based methods allow either to used strong hypothesis for interpreting a single
drawing, or to progressively model an object with few hypothesis. The second setup which
is very artist-oriented. One of the major draw-backs of those methods is that they usually
only rely on user inputs for creating the object. This limits the complexity of the object
to be generated.

Some recent methods differ from the others in that they use real-world data for
generating the output. They also comply with an other model generation paradigm:
example-based modeling.

2.2.4 Example-based modeling

Example-based techniques rely on existing instances of the object to model for creating
new ones. They can rely on standard machine leaning techniques (as in the method of
Talton et al. (2012), which creates a grammar from a set of examples), or on ad-hoc
descriptors (as proposed by Gal et al. (2007) for generating shape matching 3D assemblies
from object collections). As such, some example-based techniques also comply with the
inverse procedural paradigm, where the target has similarities with the set of examples.

This paradigm is very useful for creating variations in an object family and for mixing
pieces of objects. Recently, some methods attempted to take benefit of big datasets for
creating new custom shapes.

2.2.4.1 2D textures

The example-based paradigm has been successfully used in texture synthesis, as
explained by Wei et al. (2009). For example, Ashikhmin (2001) proposed a method for
synthesizing natural textures. As stated in Section 2.2.1, terrains can be represented as
height-fields, which are essentially textures. Brosz et al. (2006) and Pang and Zhao (2009)
took advantage of this for proposing example-based terrain synthesis methods inspired by
the texture synthesis literature.

18

CHAPTER 2. PREVIOUS WORK

A texture can also be discrete, it is then referred to as a 2D arrangement or distribution.
Ijiri et al. (2008), Hurtut et al. (2009), Jenny et al. (2010), and Landes et al. (2013)
introduced methods for synthesizing such arrangements from example in the context of
2D vector graphics.

2.2.4.2 3D distributions

3D distributions have been studied more recently. Yu et al. (2011) introduced a method
for arranging pieces of furniture in a room from example displays. Yeh et al. (2012)
used MCMC for generating constraints-matching 3D distributions. Guerrero et al. (2015)
proposed a method for learning shape placement rules on a polygon and to propagate
these rules on other polygons of the scene.

The method presented in Section 3.3 rely on example-based distribution analysis and
synthesis method integrated inside a paint-based distribution modeling framework.

2.2.4.3 Part-based modeling

Some methods propose to decompose an object into parts, and to use parts from
different example objects for creating a new one. This is called part-based modeling.

Funkhouser et al. (2004) first introduced this concept in a method allowing to copy
and paste salient mesh parts from one mesh to another. Kraevoy et al. (2007) extended
this concept by proposing an automatic replaceable sub-part detection algorithm. Schmidt
and Singh (2010) proposed to handle mesh details by representing them as displacements
(note that this method is extended to mesh sequence in Section 4.3). Takayama et al.
(2011) mixed both approaches by creating a resilient parametrization of the rest shape.
The method presented in Section 3.2 introduces a way to re-combine object parts while
preserving their type adjacency.

Xu et al. (2012) proposed an evolutionary algorithm allowing to mix objects of the
same family for generating variations. Chaudhuri et al. (2011) and Kalogerakis et al.
(2012) offered probabilistic approaches allowing it to select relevant parts in a large set of
objects. Zheng et al. (2013) introduced the notion of symmetric functional arrangements
as a key component of semantically valid part assembly.

Jain et al. (2012) proposed a method for interpolating two structurally similar objects
(i.e. generating in-betweens) by progressively substituting parts of the second into the first.
Alhashim et al. (2014) extended this concept by making this interpolation continuous and
handling topology changes.

2.2.4.4 Transfer

Another way to take advantage of example objects is to apply some properties of a given
object to another. This is called transfer. Brouet et al. (2012) introduced a method for
transferring garment designs from one character to another. Dicko et al. (2013) proposed
a method for transferring anatomical 3D data from one character to another. Ma et al.
(2014) presented an automatic method for segmenting details and structure allowing it to
perform style transfer on various input data.

19

2.3. STATIC OBJECTS DEFORMATION

2.2.4.5 Limitations

Example-based modeling methods require examples of what the user wants to model for
them to work. This is both a strength – since it allows the user to benefit from potentially
existing models – and a weakness – since it also limits the scope of reachable results.

But static generation techniques are also limited on a larger scope, as explained next.

2.2.5 Limitations of generation methods

All previous methods are dedicated to high quality model creation. More precisely,
these methods attempt to maximize the quality of the created model compared to the
time required to generate it.

On the other hand, detailed models are heavy in terms of data size, and uneasy to
manipulate. In particular, deforming a model might "break" some constraints that this
model was supposed to satisfy, making it non consistent. This would not be a problem
if models were ready to use: There would be no need to manipulate them before using
them. However, generation methods do not usually integrate all required constraints of all
possible use cases of the model they create – for the reason that those use cases are not
always predictable. For instance a city model might need to be deformed for the sake of
the story taking place in it, of a character model might undergo some changes for it to
fit inside cloth models. In both cases, a city model must look like a city and a character
model must look like a character.

For this reason, model generation methods are often associated with deformation
methods. Such methods are presented in the next section.

2.3 Static Objects Deformation

The idea behind deformation methods is that an object model does not necessarily
have to be built from scratch in one single pass. The creative process often starts from an
initial object, and evolves toward a given goal, as with some sketch-based methods (see
section 2.2.3). This very goal can also evolve through the creation process.

If not for creating an object, deformation methods can be used for modifying an existing
object – e.g. an object created by another artist, generated using a static generation
method, or downloaded from an online shape repository. This deformation aims at adapting
the model to a particular purpose, and should preserve some of its attributes. The set of
attributes to be preserved depend on the method used for performing the deformation.

2.3.1 Low-level deformation methods

What we call here low-level deformation methods are methods focused on the object
representation at the representation level.

2.3.1.1 Sculpting tools

When sculpting clay, the starting point is the initial clay piece, which is progressively
transformed into the final result. Sculpture is therefore an attractive metaphor for artistic
shape modeling.

20

CHAPTER 2. PREVIOUS WORK

(a) The as-rigid-as-possible de-
formation scheme of Sorkine
and Alexa (2007) allows to set
vertex position constraints (in
red) while respecting the local
shape of the model.

(b) The method of Kraevoy
et al. (2008) permits the non-
homogeneous resizing of a
man-made objects while main-
taining the circularity of its
parts.

(c) Zimmermann et al.
(2008) proposed a
method for sketching
object deformations
by modifying their
silhouette.

Figure 2.3 – Low-level deformation method focus on shape-preserving deformation (a) while
structure-aware deformation methods analyze the high-level structure of a shape for preserving
its consistency (b). On the other hand, sketch-based deformation method emphasize intuitive
shape edits (c).

Ferley et al. (2000) introduced a volumetric shape representation suited for virtual
sculpture and sub-object copy-paste. McDonnell et al. (2001) created a sculpting framework
including haptic feed-back. Angelidis et al. (2006) proposed a volume-preserving space
deformation method aimed at sculpting meshes. von Funck et al. (2006) pursued this path
by introducing a volume- and smoothness-preserving space deformation method.

Volume preserving space deformation methods allow to handle a volumetric property
while using a much more efficient surfacic representation. Stanculescu et al. (2011) extended
this possibility by proposing a topology-varying surfacic structure called quasi-uniform
meshes.

Sculpting tools often define space deformation fields which are usually independent
from the structure of the object. This tends to damage this structure. Handle-based
techniques offer an alternative solution which solves this issue, as shown next.

2.3.1.2 Handle-based

Handle-based methods rely on the following setup: Given a rest shape represented as a
mesh, the user tags a set of vertices called handles; Handles are moved to a pose position;
The method automatically computes new positions for all the other (non handle) vertices
by running a deformation-minimizing optimization. A survey of such methods was done
by Botsch and Sorkine (2008).

Sorkine et al. (2004) proposed such a method through a Laplacian-based encoding
of vertex neighborhood. This method was later extended by Igarashi et al. (2005) for
real-time deformation of 2D shapes; And Sorkine and Alexa (2007) pursued with a fast
3D solution (see Figure 2.3a).

Botsch and Kobbelt (2005) proposed a handle-based deformation method working with
arbitrary 3D topologies. Sumner et al. (2005) introduced an example-based algorithm for
handle mesh deformation.

21

2.3. STATIC OBJECTS DEFORMATION

Operating mesh deformation at the vertex level can be tiresome for large meshes.
For easing the process, proxy deformation methods propose to deform a higher level
representation of the object.

2.3.1.3 Proxy geometries

A proxy geometry is a simplified version of the representation of an object. Its
components are linked to the actual representation of the object, usually through weights.
Those weights can often be computed automatically. The idea behind proxy geometry is
that a deformation can be applied to it, and will be forwarded to the object representation.
It allows to manipulate far less degrees of freedom than by deforming the model directly.

A cage is a set of volumetric cells which approximate the model. Each cell contains a
sub-part of the model which will be influenced when the cage is deformed. Nieto and Susín
(2013) presents a survey of modern cage-based deformation methods. Modern cage-based
deformation methods attempt to preserve the model smoothness at cage interfaces, such
as presented by Gonzàlez et al. (2013).

Unlike cages, skeleton components (called bones) are usually contained inside the object
representations. Bones are suited for representing nearly-cylindrical geometries, such as
the limbs of a character. It is often used for posing character models, and through pose
interpolation for animating them (see Section 2.4). Skeleton-based mesh deformation is
called skinning, and offer multiple possibilities, as shown in the SIGGRAPH course of
Jacobson et al. (2014). Modern skinning methods tend to preserve geometrical properties,
such as volume (see Vaillant et al. (2013)).

Shape approximations can also be used as proxy geometries for deformation, as shown
by Thiery et al. (2013).

2.3.1.4 Limitations

By definition,low-level deformation methods do not take any object-specific data into
consideration for deforming it. It makes them very generic, but somehow limited: some
objects have specific constraints which cannot be ignored for correctly deforming them.
Structure-aware shape deformation methods attempt to take such constraints into account.

2.3.2 Structure-aware shape deformation

As stated by Mitra et al. (2014), structure-aware shape deformation methods often
rely on a two-step pipe-line: The first step aims at computing a set of features on an
input model. In the second step, the identified features are automatically preserved while
the user deforms the object. In the following, methods are sorted by category of feature
preservation criteria.

2.3.2.1 Geometric details

Some authors call “detail” a small scale geometric component of a shape, as opposed
to the “main shape” of the object. For example, the scales on the skin of a dragon can be
considered as details due to their scale and repetition. Such details are often of a given
size and shape which should be preserved, even though the main shape is deformed.

22

CHAPTER 2. PREVIOUS WORK

Chen and Meng (2009) proposed to represent geometrical details on an object as layers
of geometric textures. This distinction allows them to apply non homogeneous scaling
on the base object, and example-based texture synthesis on the detail texture. Alhashim
et al. (2012) extended this method for arbitrary space deformations thanks to an adapted
parametrization. Miao and Lin (2013) proposed to use local saliency measure of Lee et al.
(2005) to perform a saliency-preserving local deformation. Dekkers and Kobbelt (2014)
extended the notion of seam carving (already used in image-based deformation by Avidan
and Shamir (2007) and Dong et al. (2009) for example) to mesh geometry, allowing meshes
to be deformed while preserving salient features. Rohmer et al. (2015) Proposed a method
for duplicating and removing geometric details through shape deformation.

Detail preservation methods are usually targeted at deforming organic shapes. Let us
now explore other categories of objects.

2.3.2.2 Salient features

Man-made objects often exhibit salient features such as sharp edges. The shape of
these features is usually essential to the functionality of the object, and therefore is seems
natural to aim at preserving it through deformation.

Kraevoy et al. (2008) first proposed a non-homogeneous resizing method preserving
circular features of man-made object models (see Figure 2.3b). Gal et al. (2009) introduced
a deformation method relying on a feature-based shape representation called wires. Stan-
culescu et al. (2013) proposed a set of feature tags used inside rules defining how features
are topologically transformed when deformed. Note that this introduces the notion of
deformation behavior, that is later explored in Section 3.4.

Man-made objects often have another characteristic structure: linear arrangement.These
structures have been studied through structure-aware deformation methods as we will see
now.

2.3.2.3 Linear arrangements

Repetitive patterns in man-made objects often take the form of linear arrangements.
Such structures can naturally be stretched along their repetition axis without changing
their spatial frequency by duplicating the repeated element.

Owada et al. (2006) introduced a sketch-based interface for deforming repetitive pattern
elements. Bokeloh et al. (2011) introduced the notion of “sliding docker” for proposing
a deformation method based on axial controllers. Bokeloh et al. (2012) extended these
notions to two-dimensional linear arrangements. Milliez et al. (2013) offered an original
sub-part multiple-rest state algorithm for deforming one dimensional structures.

When the elements composing a man-made object are not as structured as in a linear
arrangement, other deformation methods have to be devised.

2.3.2.4 Components manipulation

Component-based deformation methods propose to manipulate one or multiple sub-
parts of an object while maintaining geometrical relationships between them.

Zheng et al. (2011) computes specific controllers for the components of complex 3D
models, allowing the user to deform the right degrees of freedom for each component while
maintaining inter- and intra-parts consistency. Controllers can be grouped, forming a

23

2.3. STATIC OBJECTS DEFORMATION

hierarchy. This method closely relates to the contributions presented in Section 3.4 of this
manuscript.

Guerrero et al. (2014) proposed an edit propagation method allowing to preserve
geometric relationships in 2D vector graphics (which can be extended to 2D layout of 3D
objects).

2.3.2.5 Datasets exploration

Big datasets containing many different models of a same class of object are now a
commonplace. Datasets exploration methods use such repositories for extracting structural
knowledge about the object and devising object-specific deformations.

Ovsjanikov et al. (2011) introduced a method for exploring shape repositories through
continuous variations. Yumer et al. (2015) proposed an innovative method for associating
quantitative semantic ratings to a shape, and proposed a shape deformation paradigm
based on modifications of these ratings.

2.3.3 Sketch-based deformation

Sketch-based deformation methods aim at inferring a 3D object deformation from a
user-sketched screen-space stroke. The idea behind such interaction is that it is more
intuitive for the user to describe deformation over the projected representation of the
model rather than in the full 3D space.

Singh and Fiume (1998) proposed a sketch-based method for deforming 3D models
based on pre-defined “wires”, which are structural curves on the object. Apart from this
method, most sketch-based deformation techniques do not rely on other data than the
shape to deform. A distinction can be made between contour deformation and skeleton
deformation.

2.3.3.1 Contour deformations

Also called “over-sketching”, contour deformation methods interpret the user sketch as
a silhouette constraint. The two major challenges are then to identify the object contour
part to deform, and the deformation to apply for satisfying the constraint. Such methods
are more suited for creating details on shapes.

Nealen et al. (2007) and proposed a method in which both the region to deform and
the constraint have to be sketched. Zimmermann et al. (2007) and Zimmermann et al.
(2008) extended the previous method by automatically computing the region to deform
based on the constraint (see Figure 2.3c).

2.3.3.2 Skeleton deformations

Skeleton deformation methods do not interpret user strokes as silhouette constraints.
Instead, they consider them as constraints on the mean shape of a portion of the object.
Such methods are better suited to prescribing large scale deformation, such as limb
positions on character models.

Kho and Garland (2007) devised a two-stroke method, where the first stroke defines the
region of the shape to be deformed, and the second stroke describes the shape constraint.

24

CHAPTER 2. PREVIOUS WORK

Guay et al. (2013) rely on animation skeleton for prescribing single stroke deformations
used for posing.

2.3.4 Limitations of deformation methods

Numerous object deformation methods managed to propose solutions to many sub-
problems, in terms of property to preserve through edits or in terms of deformation input
setup. As with object generation, all of these methods bring a valuable contribution,
but all those contributions are hard to put together. The work presented in Section 3.4
proposes a method for mixing multiple deformation methods in a single hierarchical object.

The last method we discussed deals with poses. Several poses for a same shape are
interpolated for creating an animation. Hence, deformation methods can often be used for
creating animations. However, the following section presents a type of animation that can
not be represented by pose interpolation: fluid animation.

2.4 Animation Design

“Animation” itself is an extremely large notion, ranging from the dynamic facial
expressions on a virtual character to the motion of a collapsing building. Here, we focus
on fluid animation; i.e. the motion of liquids and gas.

Unlike most objects in Computer Graphics, fluids are by definition very variable in
their shape. This raises particular challenges in terms of modeling and control, as we will
see now.

2.4.1 Fluid animation modeling

As with static shapes, animation modeling can be tackled from several angles. The
difficulty of handling animated data makes automated methods beneficial. As a result,
procedural and simulation methods are prominent. Note that in the context of fluid
animation, “procedural” means non simulation-based procedural.

2.4.1.1 Procedural

The range of shapes and behaviors that can be taken by fluids makes it hard to model
their animated geometry. Instead, the velocity field can be modeled procedurally: For
example, Bridson et al. (2007) proposed a method based on Perlin noise (Perlin (1985))
for generating an incompressible velocity disturbance.

However, under certain hypothesis, fluids can be represented quite simply. The most
common example is the representation of waves using height-fields. Various procedural
models were proposed for modeling animated deep water waves: Hinsinger et al. (2002),
Tessendorf (2004), and Nielsen et al. (2013). Recently, Jeschke and Wojtan (2015) and
Horvath (2015) proposed wave models suited to shallower waters.

The method presented in Section 4.2 uses a procedural model for representing waterfalls.
These models are efficient but uneasy to integrate with other object (e.g. a boat) and

limited (it only represents waves). For these reasons, most fluid models rely on simulation,
as we will see now.

25

2.4. ANIMATION DESIGN

2.4.1.2 Simulation

Since the seminal work of Stam (1999) proposing to solve Navier-Stokes equations in a
stable way, many fluid simulation methods have been proposed. Liquids in simulations are
often represented as particles, as in the SPH model (see the survey of Ihmsen et al. (2014)
for more details), or as a coupled particle-grid structure in the FLIP model (as in the
method of Ferstl et al. (2016)). Concerning smoke, see the survey of Huang et al. (2015).

2.4.1.3 Limitations

Both procedural and simulation fluid models can produce detailed and realistic results.
On the other hand, the output of such methods is very hard to control.

Control is a central point in modeling, and the next section describes methods attempt-
ing to provide it.

2.4.2 Fluid animation control

When using procedural modeling tools, control can be performed through the setting
of input parameters. As for static object generation method, parameter setting is non-
intuitive and tiresome. However, to my knowledge, no inverse procedural modeling method
offers to find those parameters automatically. Besides, as stated above, the limited scope
of procedural fluid models makes that simulation is used in most cases.

Simulations are notoriously hard to control. However, some work has been done
in that direction: Since the introduction of space-time constraints by Witkin and Kass
(1988), direct editing of simulation has been addressed in different contexts. Rigid bodies
simulations have been addressed by Popović et al. (2000), Chenney and Forsyth (2000),
and Twigg and James (2007); Whereas deformable objects simulations have been tackled
by Wojtan et al. (2006), Barbič et al. (2009), Barbič et al. (2012), Schulz et al. (2014),
and Li et al. (2014). However, few work address fluid surfaces, due to their constantly
changing shape and topology that makes the output geometry inaccessible to standard
deformation tools. This section focuses on two main methods for designing fluid animations:
by controlling the simulation, and by editing the animation.

2.4.2.1 Fluid simulation control

The general approach for controlling a simulation is based on trial and error. Besides,
as mentioned in Chapter 1, this process has severe drawbacks which make the design of
fluid animation especially tedious. To overcome these limitations, several methods propose
to guide the fluid behavior by using geometric proxies which are easier to control than the
high resolution fluid simulation data itself.

Parameter tuning The classical forward method consisting in tuning the input param-
eters of the simulation has been little developed.

Foster and Metaxas (1997) introduced a method based on simulation parameter tuning,
but the range of results achievable through this method is very limited. Brousset et al.
(2016) proposed a wave simulation controlling method based on intuitive wave parameters.

Changing parameter values is not always the easiest way to achieve a creative result
with fluid simulation. Inverse methods presented after introduce more intuitive controls.

26

CHAPTER 2. PREVIOUS WORK

(a) The method of Raveen-
dran et al. (2012) allows the
user to control liquid simula-
tion using animated meshes
(here, the mesh of a dancer).

(b) Mercier et al. (2015) pro-
posed a method for adding de-
tails to a liquid animation, en-
hancing the resolution of the
inputs (up: original anima-
tion, down: up-sampled ani-
mation).

(c) Thürey (2016) offers to
interpolate between mul-
tiple simulation-generated
animations for creating new
ones.

Figure 2.4 – Fluid control is often performed using external animation data for generating forces
(a), or by increasing the resolution of an existing animation (b). However, some novel methods
propose to use animation data directly without re-simulating (c).

Key-frame-based control Key-frames are commonplace in animation modeling outside
fluids. Transposing them in the context of fluid modeling seems natural.

Some methods were proposed by Treuille et al. (2003), Mihalef et al. (2004) and
McNamara et al. (2004). However, matching a particular shape at a particular time of the
animation is not the only nor the most desirable controlling method that can be desired.

Surface-based control Artists can use an animated triangle mesh to specify a moving
target shape for the fluid. This is usually done by adding artificial attraction forces to
fluid particles or grid based on the distance to the mesh surface.

Such approaches have been successfully developed to drive smoke by Fattal and
Lischinski (2004), Hong and Kim (2004), and Shi and Yu (2005a). Liquids simulations
have also been addressed by Shi and Yu (2005b) and Raveendran et al. (2012) (see
Figure 2.4a).

These methods require to run a full fluid simulation in order to see the results. That is
not the case of resolution enhancement methods.

Resolution enhancement As an extension to surface-based control, the attracting
surface itself can be define using a low-resolution fluid simulation. To achieve this, the
artist quickly sets up a coarse simulation and uses the output geometry to guide the main
features of a full resolution simulation.

This resolution enhancement approach has been applied to smoke simulation using
optimization by Nielsen et al. (2009) and Nielsen and Christensen (2010). Yuan et al.
(2011) used patterns extracted as skeleton, and Huang and Keyser (2013) used sparse
sampling. Huang et al. (2011) proposed a method for constraining a fine-scale smoke
simulation to reproduce the features of a coarse-scale one.

For liquid simulations, Nielsen and Bridson (2011) proposed to restrict the high
resolution simulation to a thin layer around a guiding coarse animation defining the
constraint.

27

2.4. ANIMATION DESIGN

In order to add details without running extra simulations, simulation results can be
processed for adding procedural or physically-based animated details. Narain et al. (2007)
proposed a texture-based method for adding details to a liquid mesh sequence. Kim et al.
(2013) and Mercier et al. (2015) extended this approach for creating geometrical details
on top of such animations (see Figure 2.4b). Horvath and Geiger (2009) developed a
resolution-enhancement method for controlling fire animations.

Trajectory-based control Fluid trajectories, for their part, may also be a control asset.
Kim et al. (2006) proposed to control these trajectories using user-defined velocity fields,
while Yang et al. (2013) introduced a control method based on distance fields. Thürey
et al. (2006) and Madill and Mould (2013) proposed to use specific control particles.

Feature-based control Although each of these approaches are able to successfully
guide a fluid simulation, they do not enable direct control of the resulting fluid. Designing
precise timing or feature scaling would therefore still require iterative trial-and-error steps
to converge toward a desired animation. Few attempts have been made to enable direct
control on the simulation.

Schpok et al. (2005) proposed to extract and parametrize features such as vortices,
uniform advection, sinks, and sources to allow the user to modify the parameters in a
smoke simulation.

In the context of liquid simulation, Pan et al. (2013) proposed a method to deform
wave shapes by sketching their profiles. This approach enables direct spatial deformation
but does not allow temporal editing, and the simulation needs to be re-computed from the
modified frame onwards.

Data-based control Videos are sometimes useful as examples of desired results. Bhat
et al. (2004) proposed a method for directly editing waterfall video using flow strokes.
However videos are 2D. But some methods propose to use videos for constraining a
simulation, yielding video-matching 3D animated fluid representations.

Wang et al. (2009) introduced a model for reconstructing a liquid animation from a
depth video. Gregson et al. (2014) proposed a method for achieving this reconstruction
for smoke using multiple view-points. Okabe et al. (2015) proposed an extension using a
single view-point.

Limitations Simulation control methods still offer indirect control mechanisms. Besides,
re-running a simulation until a desired output is generated is often sub-optimal, since
it makes it impossible to select a given region in space and time for using it in another
context.

2.4.2.2 Fluid animation editing

Animation editing methods aim to directly modify the result of a simulation without
the need to re-simulate. In contrast with simulation control, animation editing is often a
faster approach to slightly modify an existing animation.

Very few works have been proposed for the edit of fluid animations. For smoke and
explosion animations, Pighin et al. (2004) proposed to parametrize density and temperature

28

CHAPTER 2. PREVIOUS WORK

fields from the simulation using advected radial basis functions. The parametrized data
are then deformed using a trajectory-based editing tool.

For liquid animations, Raveendran et al. (2014) proposed a semi-automatic method
to match two animations and smoothly blend between them. Thürey (2016) extended
this concept using a 5D optical flow parametrization allowing it to interpolate between
multiple animations of liquid and smoke (see Figure 2.4c). These methods can quickly
produce in-between frames and explore the “animation shape space” between multiple
animations.

However, the interpolation paradigm limits itself to space defined by pre-computed
data, and do not offer tools for creating completely new animations. This limits the range
of achievable results and the expressiveness of the method.

Section 4.3 introduces a method for analyzing general liquid animations in order to
propose high-level edit operations.

2.5 Conclusion

To conclude, there is an enormous amount of research into all three axes presented
here. While producing good results independently, most of those methods are often hard
to combine in a same pipe-line. From an artist stand-point, this limits the usability of
such methods.

Besides, methods offering high-quality results – procedural static object generation
techniques and physically-based fluid simulation – often offer little user control. Once
more, artists might be driven away from using such methods because of their lack of
controllability.

This thesis proposes direct methods for generating and/or manipulating complex virtual
content through direct tools. When this is possible, these methods re-use state-of-the-art
work and integrate these in a more usable framework.

29

2.5. CONCLUSION

30

Chapter 3
Design of Static Objects

Contents

3.1 Introduction . 32

3.1.1 Complex object framework . 32

3.1.2 Coherency . 34

3.1.3 Example-based modeling of complex objects 35

3.2 Part-Based Modeling . 36

3.2.1 Introduction . 37

3.2.2 Overview of the solution . 37

3.2.3 Main contribution: Geometrical Sub-Object Deformation . . . 42

3.2.4 Results . 43

3.2.5 Discussion . 46

3.3 Worldbrush . 48

3.3.1 Vectorial analysis . 48

3.3.2 World painting . 50

3.3.3 Main contribution: RDF Interpolation 53

3.3.4 Results . 55

3.3.5 Discussion . 55

3.4 Deformation Grammars . 61

3.4.1 Introduction . 61

3.4.2 Deformation Grammars . 62

3.4.3 Bilateral Grammar Rules . 64

3.4.4 Results . 67

3.4.5 Discussion . 71

3.5 Conclusion . 75

3.5.1 Controllability versus complexity trade-off 75

3.5.2 Smart tools versus smart shapes 75

31

3.1. INTRODUCTION

C
hapter 1 highlighted the difficulties arising from 3D shape modeling, whereas
chapter 2 presented some existing solutions allowing to overcome these issues in
some cases. This chapter extends the possibilities of interactive complex shape

design by presenting three novel methods. Each of these enable to reuse already existing
objects or scenes in order to create new ones. Therefore they belong to the vast family of
example-based techniques. Their respective core idea can be summarized as follows:

— Using existing shape segmentation for automatically learning connection rules and
generating new valid shapes (Section 3.2);

— Analyzing local distribution properties of groups of objects for re-synthesizing it at
user-selected locations through a painting metaphor (Section 3.3);

— Decomposing general deformations along complex objects hierarchies for a generally
coherent deformation behavior under sculpting interactions (Section 3.4).

Methods are presented in chronological order of inception, but more importantly in
ascending order of user control, which is at the core of recent development in Computer
Graphics research. Besides, they fit into a common framework, which is presented next
(Section 3.1).

3.1 Introduction

This section introduces the notions of complex object and coherency. Initially introduced
by Vimont et al. (2016) for defining deformation grammars, this framework is used here
as a reference frame for the study of 3D shape modeling.

3.1.1 Complex object framework

In the remainder of this manuscript, we call simple object a geometric object in the
classical sense. It is fully defined by the internal parameters of its visual representation:
For example, it can be a triangular mesh defined using the positions of its vertices and
their indexing into faces.

The notion of complex object recursively extends the notion of simple object by adding
a set of hierarchical parameters which are references to sub-objects. Sub-objects can
themselves be simple or complex. The internal parameters of a complex object do not
always correspond to a visual representation: For instance a heap of stones may include
internal parameters such as a maximum slope or number of stones, while the visual
representation may be only be stored in its children - e.g. simple objects representing the
individual stones. In the remaining of this chapter, we call element any complex or simple
object.

Given an element ε, its sub-objects (if any) are called its children, noted C(ε). Accord-
ingly, ε has a parent noted P (ε) such that ε ∈ C(P (ε)).

In our formalism, each element ε is associated with a semantic type t(ε): For example
the type "stone" for a simple object representing a stone.

Notations relative to complex objects are summarized in table 3.1.

3.1.1.1 Creating a complex object

Complex objects are general enough for representing a wide variety of 3D shapes, as
shown in Figure 3.1. The idea behind this formalism is to order any complex shape into a

32

CHAPTER 3. DESIGN OF STATIC OBJECTS

Symbol Description

ε element
C(ε) children set of element ε

P (ε) parent of element ε

t(ε) type of element ε

Table 3.1 – Notations relative to complex objects.

meaningful hierarchy allowing interactions at different levels. The way this hierarchy is
created is not discussed here: It can be described manually by a user or may result from
the use of a procedural modeling tool to build the object, such as a shape grammar (see
Figure 3.2) or a L-system for a tree, as described by Prusinkiewicz and Lindenmayer (2012).
Alternatively, this hierarchy could be retrieved from an input shape using hierarchical
segmentation method such as the one of Attene et al. (2006).

roof partwall

brick tile

house

(a)

trunc

branch

(b)

Figure 3.1 – Complex objects can be used for organizing various objects into hierarchies, such
as houses (a) and trees (b). Here is a simplified view where only the type of each sub-object is
shown (a house has in fact multiple walls, and a tree has multiple branches and sub-branches).
Note that in the house example, only the simple objects have a visual representation (the house
is made of bricks and tiles), while all objects store a trunk or branch model in the tree example.

3.1.1.2 Example

Let us expand a concrete and naive example of a complex object: a tree. It is constituted
of a cylindrical trunk and branches subdivide at their extremity into a few smaller branches,
as seen in Figure 3.4a. This tree can be represented as a complex object ε0, using a large

33

3.1. INTRODUCTION

R0 : A 7→ B ⊕ CRules:
R1 : B 7→ D ⊕ E
R2 : C 7→ F ⊕G

Symbols:
N = {A, B, C}

Σ = {D, E, F, G}

Axiom: A

Object hierarchy:
A

CB

D E F G

Figure 3.2 – Standard use of grammars to define hierarchical shapes.

Branch N

Internal data Hierarchical data

branch
geometry

- child 0

- child 1

Branch N + 1

Internal data Hierarchical data

branch
geometry

- child 0

- child 2

Branch N + 2

Internal data Hierarchical data

branch
geometry

- child 1

- child 1

Figure 3.3 – A tree model can be organized hierarchically into a complex object. This allows to
consider individually each level of the hierarchy as well as the relationships between levels.

cylinder (for the trunk) as internal representation – in this case this representation is also
visual – plus a set of references to the main branches. Each branch is itself represented
as a cylinder plus a set of references to children branches, as shown in Figure 3.3. The
smallest branches at the extremities are simple objects, with only a visual representation
but no sub-branch; The other ones are complex objects. All are of the same semantic type
as ε0.

3.1.2 Coherency

When dealing with virtual content in general (and 3D shapes in particular), one implicit
phenomenon is at the root of the experience: The user (video game player, engineer, movie
viewer for example) accepts the virtual model as a valid representation or visual model
of what is supposedly displayed on the screen. For that, car models must look like cars,
characters like characters, and landscapes like landscapes. This stands even though the
actual cars, characters, and landscapes do not exist and might not even correspond to any
real-life object.

This last point leads us to postulate that model validation should not fully rely on
the geometrical representation. Also important is a set of semantic constraints that the
model must satisfy to look like what it is representing: Cars must have wheels in contact
with the ground, characters must have limbs and move, landscapes must be huge and

34

CHAPTER 3. DESIGN OF STATIC OBJECTS

static. These constraints are highly important to ensure that the model will be correctly
interpreted and accepted.

3.1.2.1 Terminology

Of course this notion has been called differently in previous works: structure (Bokeloh
et al. (2012), Mitra et al. (2014)), soundness (Whiting et al. (2009)), manufacturability
(Brouet et al. (2012)), and more (design, validity, consistency). In this chapter, we use the
word coherency for designating this semantic link between an object and its representation.

In the framework of complex objects, the coherency of an element can be expressed as a
function of its parameters. More precisely, two sub-notions can be differentiated: Internal
coherency, which relies on internal parameters of the element; Hierarchical coherency,
which relies on hierarchical parameters of the element.

3.1.2.2 Example

In the case of the simple tree model already discussed, the internal coherency of a
branch could be for instance the cylindricity of the internal triangular mesh that represents
it. The hierarchical coherency of a branch could be that all its sub-branches start from its
extremity, or that their radius should be smaller.

3.1.3 Example-based modeling of complex objects

Section 3.1.1 defined a very general framework for considering hierarchical 3D shapes,
while Section 3.1.2 explained what makes these shapes usable. This last point highlights
the usefulness as well as the difficulty of modeling complex objects: They are ubiquitous
and rely on a vast set of constraints to be coherent. It becomes therefore attractive to
re-use complex object models once created: this is the goal of example-based techniques.
However, naively modifying such models might break one of the constraints they were
previously satisfying, making them non coherent.

Performing the synthesis or the deformation of a complex object model without breaking
its coherency is the challenging goal explored by this chapter.

3.1.3.1 Example

To illustrate the difficulty of deforming a complex object while maintaining its coherency,
let us consider the former tree example.

Let us consider a geometrical deformation d : R3 → R3. Directly applying d on the tree
mesh (by displacing individual mesh vertices) make the whole model loose its coherency:
Branches are not cylinders anymore, as can be seen in Figure 3.4. In some cases, this
prevents the model to be recognized as a tree.

The notion of shape space explained in Section 1.2 offers another explanation of this
difficulty. A classical deformation tool without knowing of the shape space of the object it
is deforming will unavoidably take the object model out of its shape sub-space. On the
other hand, the notion of coherency gives some conditions on a model for belonging to
the shape sub-space. These conditions can be used for designing coherency-preserving
deformations. Alternatively, they can be used for projecting a model back on the shape
space after it has been deformed.

35

3.2. PART-BASED MODELING

(a) (b)

Figure 3.4 – An initial complex object (a) is deformed by the user using a local deformation tool
applied at the top right. (b): The object is deformed as a whole without any constraint being
maintained; Note how the geometry branches gets degenerated.

Section 3.4 presents a general hierarchical deformation interpretation framework al-
lowing to maintain coherency through such deformation. But before that, we explore two
other example-based methods that respectively tackle example based modeling of assembly
shapes and object distributions.

3.2 Automatic Synthesis: Part-Based Modeling

The work presented in this section results from an international collaboration with
Han Liu (KAUST), professor Michael Wand (Universiteit Utrecht), professor Stefanie
Hahmann (Université Grenoble Alpes/Inria), and professor Niloy J. Mitra (UCL). The
resulting paper was published in the CGF journal (see Liu et al. (2015)) and presented at
the Eurographics conference in 2015 (www.eurographics2015.ch):

Liu, H., Vimont, U., Wand, M., Cani, M.-P., Hahmann, S., Rohmer, D., and Mitra,
N. J. (2015). Replaceable substructures for efficient part-based modeling. Computer
Graphics Forum, Proceedings of Eurographics 2015, 34(2):503–513

This section is organized as follows: Sub-section 3.2.1 roots the problem of part-based
modeling in the framework of complex objects; Sub-section 3.2.2 explains the solution
offered in this work; Sub-section 3.2.3 details the geometrical part of the method, which
is my main contribution to this work; Sub-section 3.2.4 shows results of this method
and draws its limitations and perspectives. For a review of related works, please refer to
Section 2.2.

36

www.eurographics2015.ch

CHAPTER 3. DESIGN OF STATIC OBJECTS

3.2.1 Introduction

This work addresses the problem of part-based modeling of 2-levels complex objects.
The top level of the hierarchy is a single complex object ε0 with no visual representation.
The bottom level is composed of the parts of ε0 and carries its visual representation.

The main assumption on the object can be formulated as a strong topological top-level
hierarchical coherency: Two bottom-level elements εi and εj should be connected (i.e. in
contact) only if the pre-recorded type connectability table R allows it: R(t(εi), t(εj)) =
true.

3.2.1.1 Shape graph and docking rules

The coherency formulation supposes that bottom-level elements can be connected to one
another similarly to jigsaw puzzle pieces. This connection is at once topological (semantic
types corresponds to connectible pieces) and geometric (the shapes of the elements indeed
form a connection). The geometrical connection zone on each element is called a docking
site. On the topological side, these connections can be represented as a graph, which we
call shape graph, noted G = (V, E) (see Figure 3.6). The semantic type of an element
t(ε) translates into a constraint on having a given set of docking sites, and therefore the
connectability table can be represented as a boolean matrix where each cell represents
a docking rule, i.e. an element type pair docking site matching (see Figure 3.10). These
rules constitute what we call a tiling grammar.

3.2.1.2 Part-based modeling

When creating the 3D shape of a complex object, it might be hard to ensure that the
set of all constraints between its elements – i.e. its coherency – is respected. As explained
by Mitra et al. (2014), part-based modeling offers to use a preexisting coherent complex
object model as input, and to mix and match its elements in a coherency-preserving
manner in order to generate an output.

3.2.2 Overview of the solution

The cornerstone of this approach is to identify substitutable substructures inside pairs
of annotated input complex objects. Once identified, such substructures can be replaced
by one another, creating a novel complex object, as illustrated in Figure 3.5.

3.2.2.1 Input specifications

The input of this method is composed of segmented 3D models representing complex
objects such as element assemblies. The model in itself is a triangulated mesh, and each
element is supposed to be represented as a singular connected component inside the mesh.
Each part has a label which represents its functionality.

Another semantic information is required as input: connections between parts. Two
parts can be "connected" to one another if they share some user-defined functional rela-
tionship. Connections between parts are stored as a graph where the nodes represent the
elements (with associated label) while the edges represent connections between elements.
See Figure 3.6.

37

3.2. PART-BASED MODELING

M1

M2

SM1
1 SM2

1

SM1
2 SM2

2

SM2 ′
1

SM1
2

M ′
2

Figure 3.5 – Pipe-line of the part-based modeling method: Starting from a pair of segmented
complex objects (M1, M2) as input, our method identifies matching sub-objects (SM2

1 , SM2
2).

After deforming SM2
1 into SM2′

1 , it can be assembled with SM1
2 for creating a new coherent

complex object M ′
2.

(a) Shape M (b) Shape graph G

Figure 3.6 – For a given 3D model M , the shape graph G expresses topological information
which will further be used by the method. Parts of M correspond to nodes of G, while part
connections correspond to edges.

38

CHAPTER 3. DESIGN OF STATIC OBJECTS

The shape graph will later be used as a coarse-level shape abstraction allowing to treat
the problem of finding replaceable substructures in the topological domain. The geometry
of the substructures will be taken into account later. The de-correlation of both aspects of
this intricate problem allows to tackle the topological sub-problem without geometrical
constraints which makes it easier. This constitutes both the benefits and the drawbacks of
this approach, as will be discussed in Section 3.2.4.

Symbol Description

M complex object model
SM replaceable sub-structure

V shape graph nodes
E shape graph edges

G = (V, E) shape graph
S sub-graph

G∗ dual shape graph
dS∗ matching cut

G′ transformed graph
M ′ transformed object

TSM,SM ′ geometrical transformation from SM to SM ′

R rule table

Table 3.2 – Notations relative to replaceable sub-structures.

3.2.2.2 Topological processing pipeline

The most challenging part of the method is the replaceable sub-structure identification.
Thanks to shape graphs, this problem boils down to a particular case of subgraph matching.
However, this problem is still NP-hard (see Cook (1971)).

As explained in Figure 3.7, the method presented here circumvents this complexity by
using a heuristic approach:

— Let G1 and G2 be two shape graphs respecting the coherency rules R.
— Compute G∗

1 and G∗
2 their dual shape graphs.

— Two equivalent circuits ∂S∗
1 and ∂S∗

2 are identified inside G∗
1 and G∗

2. ∂S∗
1 and ∂S∗

2

have the same length, and contain dual nodes of the same type in the same order.
— In the primal space, ∂S∗

1 and ∂S∗
2 corresponds edge sequences which isolate two

subgraphs (a.k.a. cuts), noted S1 ⊂ G1 and S2 ⊂ G2.
— By construction, S1 and S2 satisfy the same border constraints, they are said

replaceable. A novel pair of shape graphs can be generated by replacing S1 with S2

inside G1 and S2 by S1 inside G2, yielding G′
1 and G′

2 respectively. The replaceability
of S1 and S2 insures that G′

1 and G′
2 still abide by R.

Dual graph Given a shape graph G, we consider its dual graph G∗ such that nodes of
G∗ correspond to edges of G, and carry a type composed of the two types of its extremity
vertices. Two nodes of G∗ are connected if and only if:

— their primal counter-parts are incident; and
— their primal counter-parts are consecutive in the local ordering system of the adjacent

node.

39

3.2. PART-BASED MODELING

G1

G2

G∗
1 G1

S1

S2

S2 S1

G∗
1

G∗
2 G∗

2

∂S∗
2

∂S∗
1

G2 G′
2

G′
1

(a) Shape graphs (b) Dual graphs (c) Matching circuits (d) Matching cuts (e) Replaced graphs

Figure 3.7 – From left to right: Two input shape graphs G1 and G2 are analyzed through their
duals G∗

1 and G∗
2. Identical circuits ∂S∗

1 and ∂S∗
2 are found, which yields a pair of cuts in

the primal space. Those cuts isolate a pair of sub-graphs S1 and S2 which are replaceable by
construction: They can be substituted, generating the two output graphs G′

1 and G′
2, which are

coherent shape variations of the original.

The local ordering system of a node is a way of ordering edges adjacent to a node n. A
plane P approximating the centers of its 1-neighborhood is computed using principal
component analysis (PCA); Projected edge centers are clock-wise ordered and consecutive
corresponding dual nodes are connected in G∗ (see figure 3.8).

P

1

2
3

4

5 6

Figure 3.8 – Shape graph nodes are projected onto the local neighborhood approximation plane
P and clock-wise ordered (left). Consecutive dual nodes (i.e. primal edges) in that ordering are
connected in the dual shape graph (left).

This particular type of dual graph is closely related to the notion of line graph in graph
theory, which is commonly used in graph isomorphism problems, as shown by Whitney
(1932).

Replaceable subgraphs are characterized by pairs of corresponding cuts that still
respect all of the learned rules (i.e. matching) when the interior of one is exchanged with
the interior of another. We call the resultant operations (grammar-consistent) subgraph
substitution.

∂S∗
1 = ∂S∗

2 = (), , , , , , , , , , , , , , , ,

Figure 3.9 – Two graphs are replaceable if and only if their frontier cuts are equivalent. Here,
both cuts ∂S∗

1 and ∂S∗
2 from graphs of Figure 3.7 are equivalent.

40

CHAPTER 3. DESIGN OF STATIC OBJECTS

R =

Figure 3.10 – Substituting replaceable subgraphs implicitly preserves the coherency of the object.
Here an adjacency matrix represents the coherency of the graphs of Figure 3.7.

Dual graph algorithm The search algorithm can be more conveniently formulated
using dual shape graphs pair (G∗

1, G∗
2). In this configuration, we search for a pair of

isomorphic subgraphs, which is a standard NP-hard problem. However, we have some
extra constraints:

— Both subgraphs must be circuits; Such subgraphs are isomorphic if and only if they
have the same cardinality.

— Node types should appear in the same order along the two circuits.
This allows us to devise Algorithm 1: For each pair of nodes (v1, v2) ∈ V ∗

1 × V ∗
2

such that t(v1) = t(v2) it recursively depth-first searches for type-matching neighbors.
The algorithm therefore explores similar paths between both graph, backtracks when
encountering different node types, and outputs the path when it is closed. The early
determination of path mis-match practically allows to discard many invalid circuits.

Algorithm 1 Matching cut depth first search.

This algorithm is called for all pairs of nodes in V ∗
1 × V ∗

2 taken as initial cuts.

Input: Two dual node sequences C1 = (vi
1)i, C2 = (vj

2)j of same size L and node types
t(vi

1) = t(vi
2)∀i ∈ [1 . . . L]

if C1 and C2 form cycles then

Return success
end if

Collect all unvisited adjacent nodes of vL
1 and vL

2 , denoted as N1 and N2;
if |N1| = 0|||N2| = 0 then

No matching cut can be found, return failure
end if

for all ni
1 ∈ N1 do

label ni
1 as visited

for all nj
2 ∈ N2 do

label nj
2 as visited

if t(ni
1) == t(nj

2) then

C1 ← ni
1, C2 ← nj

2

if DFS(C1, C2) then

Return success
end if

pop ni
1 from C2

pop nj
2 from C1

end if

end for

end for

41

3.2. PART-BASED MODELING

Robustness to real-world imperfections Exact matching can fail in practice due
to imperfect input such as inconsistent annotations, imprecise segmentations, or small
shape variations. In particular, we have observed in our experiments that the ordering of
non-manifold graphs using PCA-based tangent-plane projection is not always reliable.

We therefore permit limited violations of the ordering by introducing dummy edges that
cover sparse outliers. We add a potential dummy edge to the dual graph between all nodes
with a graph distance of two (nodes with distance one directly connected), irrespective of
grammatical constraints, thereby short-cutting over local defects. We minimize the number
of violations by exhaustively searching graphs with up to q ∈ {0, 1, 2, 3 . . .} violations.
This search is exponential in q. In our experiments, we used q ≤ 2.

3.2.3 Main contribution: Geometrical Sub-Object Deformation

Once the subgraphs to be substituted have been identified, the actual sub-structure (i.e.
the elements associated to the nodes of the subgraph) replacement is still to be performed.

In the following, we consider two input complex objects O1 and O2 along with their
respective shape graphs G1 = (V1, E1) and G2 = (V2, E2). Let S1 ⊂ G1, S2 ⊂ G2 denote
the replaceable subgraphs, and SM1 and SM2 the corresponding sub-structures. We look
for a geometrical transformation TSM2,SM1

such that TSM2,SM1
(SM2) fits into O1, yielding

O′
1. Note that TSM1,SM2

= T −1
SM2,SM1

can be computed in the exact same way.

3.2.3.1 Boundary constraint

In order for SM2 to fit in place of SM1, we consider only boundary geometrical
constraints: The shape of the boundary of SM2 should match the one of SM1, and the
rest of the sub-structure should nicely blend inside this boundary.

For k ∈ {1, 2}, let us consider an edge ei
k ∈ ∂S∗

k . This edge connects two vertices:
one belongs to SMk, noted v1, and the other belongs to Gk \ SMk, noted v2. We note
BB1 and BB2 the axis-aligned bounding boxes of the elements associated with v1 and v2

respectively. We associate ei
k to an orthonormal frame f(ei

k) representing the position and
the orientation of the connection between v1 and v2. It is computed as follow:

— The origin O of f(ei
k) is computed as the center of the bounding boxes intersection

BB1 ∩BB2;
— The X axis of f(ei

k) is aligned with the line connecting bounding box centers
(B̂B1, B̂B2);

— The Z axis is the normalized projection of (0, 0, 1) on the plane (O, X);
— The Y axis is computed directly as Y = Z ×X.

BB1

BB2

BB1 ∩BB2

f(ei
k)

Figure 3.11 – Boundary frame position and orientation are defined from the bounding boxes of
adjacent elements.

42

CHAPTER 3. DESIGN OF STATIC OBJECTS

3.2.3.2 Skinning weights computation

We note tf(ei
2
),f(ei

1
) the rigid transformation from f(ei

2) to f(ei
1). TSM2,SM1

is computed
as a per-vertex linear combination of those rigid transformations using classical linear blend
skinning. Skinning weights are computed per vertex using normalized inverse distances to
frame origins.

Rigid element case. Non-homogeneous weighting over an element’s vertices induces
a non-rigid transformation of this element. For allowing given elements to be rigidly
transformed, the user has the possibility to tag them; This results in the weights of all
vertices of the element to be averaged.

Now that the substructure substitution pipe-line has been fully described, let us now
look upon the results of the method.

3.2.4 Results

This section shows results of the method and opens a discussion on its limitations.
Replacing complex objects sub-structures allows to generate variations. We support

three main modes of replacement, which are described next: Cross-object replacement,
In-object replacement, and Structural variation.

3.2.4.1 Cross-object replacement

This first mode of replacement happens when matching substructures are substituted
between two different complex object models. This is the standard replacement mode.
Figure 3.12 shows synthesized shape variations obtain from a pair of input ball track
models. Once a given cross-model replacement has been performed, two output objects are
generated, which can in turn be used as input. The number of potential input therefore
grows quadratically, allowing for a wide variety of shape variations.

Figure 3.13 shows that a family of complex objects (here: tractor models) can be
combined amongst one another. This multiple inputs yields again a broad variety of
outputs.

3.2.4.2 In-object replacement

Here, matching substructures are detected and replaced inside the very same object.
The method is the same as for cross-object replacement, where the first model is duplicated
for creating the second one. In this case, care has to be taken not detect trivial cases:
when both subgraphs are actually similar. Figure 3.14 presents results of in-object
replacement on castle, playgrounds and racetracks models. An interesting case arises when
one substructure is also a substructure of the other substructure: S1 ⊂ S2. Here, replacing
S2 with S1 re-introduces S1 into M , which again allows to replace S1 with S2 iteratively.

3.2.4.3 Structural variation

Finally, complex objects can be topologically combined (subgraphs are indeed replaced)
while keeping their element’s geometry. This is called structural variation. Examples of
this replacement mode are shown in Figure 3.15.

43

3.2. PART-BASED MODELING

Original Synthetized

Figure 3.12 – Starting ball track models, replaceable subgraphs result in plausible synthesis
results.

Original Synthetized

Figure 3.13 – Starting tractors models, replaceable subgraphs result in plausible synthesis results.

44

CHAPTER 3. DESIGN OF STATIC OBJECTS

Iter 10Iter 2

Iter 4Iter 2

Iter 2Iter 1Iter 2 Iter 1

Figure 3.14 – Starting from single castle, playground, racetrack models, matching subgraphs are
progressively found and replaced, generating new coherent complex objects.

Original Synthetized

Figure 3.15 – Structural variations (right) are created using the element already present in the
initial objects (left).

45

3.2. PART-BASED MODELING

3.2.5 Discussion

The method presented in this section has several limitations, which are discussed here.

3.2.5.1 Local coherency guarantee

First, the only coherency guarantee offered by this method is local: Global coherency
can be violated since it is not captured by the shape graph, as shown in Figure 3.16.

input no entry no exitinvalid path

Figure 3.16 – Various synthesis results marked as invalid due to violation of global constraints
(e.g., no entry, no exit, or no connection between entry-exit).

3.2.5.2 Sensibility to input data

Second, as any example-based method, ours only allows to reproduce cases observed
in the example data. This is usually overcome by using an extensive example data-base,
supposed to contain all coherent cases. This is however not possible for larger examples
due to algorithmic complexity: The NP-hard nature of the underlying graph isomorphism
problem constraints the method to rely on a heuristic algorithm which complexity makes
it intractable on large example.

In consequence, the method might lack the amount of variation necessary for building
interesting objects in complex cases. Dummy edges and permitted violation intend to
improve this point, but they also discard the coherency of the output object if used too
extensively. The experiments have shown that the likelihood for an input example to
contain interesting replaceable sub-structure is not as high as initially expected.

Besides, the topological description of the model based on the shape graph is very
dependent on the ordering of the edges extracted from the PCA, which makes it uncertain
for highly non planar cases.

3.2.5.3 Topological versus geometrical coherency

Third, the replaceable sub-structure identification is only based on topological attributes:
In many cases, the actual feasibility of the replacement relies on the geometry of the
sub-structure.

46

CHAPTER 3. DESIGN OF STATIC OBJECTS

For example, even when the topological matching allows it, putting huge sub-structure
in place of a tiny one creates important geometrical distortion of the corresponding
parts. A geometrical deformation penalty should be added, discarding such subgraph
replacements. Such geometrical constraints are not handled by the method. Besides,
discarding topologically valid solutions might restrict the solution space, which might
become problematic.

3.2.5.4 User control

Last, the method offers little user control: Examples are generated, and the user can
only select the one they prefer. There is no possibility for them to express their needs,
neither in terms of geometry nor functionality.

The next section describes a method which allows for much more user-control through
a painting interface.

47

3.3. WORLDBRUSH

3.3 Painting of Object Distributions and Graphs:

Worldbrush

The work presented in this section results from a collaboration with Arnaud Émilien
(Université Grenoble Alpes/Inria), professor Pierre Poulin (Université de Montréal), and
professor Bedrich Benes (Purdue University). The resulting paper was published in the
ACM TOG journal (see Emilien et al. (2015)) and presented at the Siggraph conference in
2015 (http://s2015.siggraph.org/):

Emilien, A., Vimont, U., Cani, M.-P., Poulin, P., and Benes, B. (2015). Worldbrush:
Interactive example-based synthesis of procedural virtual worlds. ACM Transactions On
Graphics (TOG), Proceedings of SIGGRAPH 2015, 34(4):106

This section is organized as follows: Sub-section 3.3.1 describes the complex object
model based on correlated distributions used in this method; Sub-section 3.3.2 explains
how this model is used inside a painting tool; Sub-section 3.3.3 details the distribution
interpolation method, which is my main contribution to this work; Sub-section 3.3.4 shows
results of this method and draws its limitations and perspectives. For a review of related
work, please refer to Section 2.2.

Note that beside my main contribution detailed in Section 3.3.3, my participation to
this project ranged from the map rendering mode to input data creation (see results in
Section 3.3.4).

3.3.1 Vectorial analysis

As in the previous section (see 3.2), the method we propose here still uses the example-
based paradigm. However, it differs on almost every other aspects: It deals with element
distributions instead of assemblies, which allows to represent more organic scenes as
opposed man-made objects; This allows the coherency definition to be less stringent and
more efficient to compute; In turn this allows more user control and interactivity. All
these attributes fit into an artist-friendly painting metaphor.

3.3.1.1 Virtual world vectorial description

A virtual world (also call virtual scene) is described as a multi-level complex object.
At the top of the hierarchy stands the virtual world itself. Its children are distributions.
Each distribution is composed of a set of elements associated to positions, and optionally
orientations and connections (for graphs). Here are the types we consider:

1. ground

2. island

3. mountain

4. hill

5. river

6. road

7. castle

8. house

9. farm

10. big rock

11. pine tree

12. red tree

13. rock

14. small rock

15. grass

The list above also defines an order between element types, from low to high. This
order is used for simplifying world synthesis: It is done in ascending order, which for

48

http://s2015.siggraph.org/

CHAPTER 3. DESIGN OF STATIC OBJECTS

example allows not to consider trees while creating a castle.

3.3.1.2 Natural scene coherency

As for replaceable sub-structures, this method relies on a particular notion of coherency.
It is defined by the distribution of the positions of all the elements of the scene.

These arrangements are usually represented by pair correlation function (PCF). Such
PCF are the normalized histograms of the distances between element positions. They
are computed within each element class (the set of elements of the same type), as well as
between element of a class versus the elements of lower classes.

Two other arrangement descriptors can be used: Point distributions can be described
relatively to graphs using point to graph distance histograms; Point distributions can be
compared to external 2D data through value histograms. Those descriptors are illustrated
in Figure 3.17.

We call the set of descriptors for a homogeneous zone of the scene a color. The learning
phase of this method, presented in the painting metaphor as the pipette tool, aims at
acquiring a color. It consists of the computation of selected descriptors in a user-defined
zone, and storing the resulting color in the color container that we call the palette.

λR

λV

λR,V

λRλR,V

λV

d

hR hV hR,V

0

1

0

λR

λV

d

1

0

1

0
0 λV λR

(a) PCF (b) GCF (c) Map

v

hR hV hR hV

Figure 3.17 – Element distributions are described through three types of histograms: (a) Pair
Correlation Functions represent distances repartition across and inside isolated element types;
(b) Graph Correlation Functions represent distances repartition from isolated element types to
their closest graph neighbor; (c) Map Correlation Functions represent isolated element likelihood
depending on external parameters.

49

3.3. WORLDBRUSH

3.3.2 World painting

This section explains how the world model described in the previous section is used
through painting tools. Almost all of these tools rely on the same base: the synthesis
algorithm.

3.3.2.1 Synthesis algorithm

Once a color C has been computed and selected in the palette, it can be used for
synthesizing an arrangement similar to the one it was extracted from into a new zone D.
For this we use the same method than Geyer and Møller (1994) and Hurtut et al. (2009):
Metropolis-Hasting Algorithm 2, which proceeds as follow: Starting from a randomly
initialized arrangement X0, a fixed number T of iterations are performed. An iteration t
consists in generating a variation X ′ of Xt. The modification is randomly picked between
two possibilities: Element birth, where X ′ = X ∪ {u} and u is a random position in D.
Element death, where X ′ = X \ {u} and u ∈ X. Both modifications are associated with
an acceptance ratio R; a modification is accepted (i.e. Xt+1 ← X ′) with the probability R.
In the element birth case, the acceptance ratio is computed as follow:

Rb =
fC(X ′)
fC(X)

(3.1)

where fC is a color-dependent evaluation function which will be discussed later. In the
case of death, we compute the acceptance death as follow:

Rd = 1−
fC(X)
fC(X ′)

(3.2)

Note that the expression for Rb and Rd are different here than in the original articles of
Hurtut et al. (2009) and Emilien et al. (2015). Some experiments have led me to this new
formula for Rd. It arises by considering an element death, written as D : X ′ = X \ {u} as
the complementary event of the element birth, written as B : Y ′ = Y ∪ {u}. The simple
variable change Y ′ = X and Y = X ′ is equivalent to considering a death (u is removed
from X) as a birth birth (u is added to Y). However it yields very different results than
what was done before, due to the balance between birth and death ratio values. In fact,
using such balanced ratios, I’ve found that there is no need for normalization anymore.

3.3.2.2 Evaluation function

Metropolis-Hasting algorithm relies on the computation of acceptance ratios. Such
ratios are composed of an evaluation function fC where:

fC(X) ∝
∏

x∈X

∏

t(Yk)≤t(x)

∏

y∈Yk

h
t(x),t(y)
C (d(x, y)) (3.3)

where h
t(x),t(y)
C is a correlation function between categories t(x) and t(y) according to color

C. It is set to a normalized histogram that measures interaction between such categories.
d is the Euclidean distance normalized by the width of the bins used in the histogram, as
described by Öztireli and Gross (2012).

50

CHAPTER 3. DESIGN OF STATIC OBJECTS

Algorithm 2 : Modified Metropolis-Hasting algorithm for distribution synthe-

sis
Randomly initialize output arrangement X0 = X such that f(X0) > 0
for all time-steps t ∈ [1, T] do

alter current arrangement Xt by randomly
Element birth:

Add random element u: X ′ = X ∪ {u}

Compute acceptance rate R = f(X′)
f(X)

Element death:

Remove random element u: X ′ = X \ {u}

Compute acceptance rate R = 1− f(X)
f(X′)

Accept perturbation with probability R (Xt+1 ← X ′)
end for

The evaluation function is called many times during Algorithm 2, and its cost is in
O(‖X‖2), which makes it very slow. Fortunately, fC(X) being expressed as a product, the
birth acceptance ratios can be simplified as:

Rb =
∏

t(Yk)≤t(u)

∏

y∈Yk

h
t(u),t(y)
C (d(u, y)) (3.4)

which is in O(‖X‖). The death acceptance ratio can be simplified in the same way. This
results in a much faster algorithm.

3.3.2.3 Editing tools

Some tools only differ in the definition of the synthesis and influence zones. Figure 3.18
illustrates these differences:

Paste : The user can manually select a zone to synthesize in using a rectangle controller
or a closed spline. See Figure 3.19 and Figure 3.20.

Gradient : The user can select a rectangle region for synthesizing a color gradient.
This zone is split into slices inside which an interpolated color is used for synthesis.
See Figure 3.22.

Brush : The user moves its cursor on the virtual world surface; A circular synthe-
sis zone centered around each trajectory sample is progressively generated. See
Figure 3.21.

Stretch : Given a rectangular zone, a cut orthogonal to the stretching direction is
found. It is extruded in the stretch direction for defining the synthesis zone. See
Figure 3.23.

The move tool is different: when a zone is selected for moving, its color is computed
and maintained through the motion despite the change of environment. This is done
through a modified Metropolis-Hasting algorithm allowing a single operation on the element
consisting of displacing it while keeping every other element untouched. If a better position
is found this way for any element, it is kept. On the other hand, if the probability of any
point is below a threshold and no better position if found, it is temporarily discarded.

51

3.3. WORLDBRUSH

(a) Paste (b) Gradient (c) Brush (d) Strech

Figure 3.18 – Each tool has its proper synthesis (in cyan) and influence zone (in green). The
user-defined synthesis zone is enlarged for creating the influence zone while pasting (a). Each
synthesis zone uses the neighboring zones for influence in the gradient tool (b). The union of
previous influence zones is used in brushing (c). The extruded cut is used for synthesis while the
whole selected zone serves as influence in stretching (d).

(a) (b)

Figure 3.19 – Pasting consists in synthesizing a distribution matching the currently selected color.
It can be done without influence: only elements inside the selected zone are accounted for during
synthesis, which might create discontinuities (left). An influence region can be used for avoiding
such discontinuities (right). It is used for neighbor look-up, but not for seeding new elements.

52

CHAPTER 3. DESIGN OF STATIC OBJECTS

Figure 3.20 – Village synthesis: Color from an exemplar (left) is used to generate a larger
village (right).

Figure 3.21 – Brushing consists in synthesizing the distribution inside a moving zone. Here, from
left to right, a gesture is progressively decomposed into circular synthesis zones, creating an
intuitive painting tool.

3.3.3 Main contribution: RDF Interpolation

Once acquired, a given color can be used through the tools mentioned above. However
in some circumstances, the desired color is not available to acquire in the initial scene.
For that reason, our method offers to create new colors from existing ones through color
interpolation.

3.3.3.1 Interpolating density function

The idea behind color interpolation is quite intuitive: mixing two input color for
creating a third one, like it is made with paint. However, mixing distribution colors is
more complicated than mixing classical colors: interpolating linearly the color histogram
leads to unwanted results.

This comes from the use we have of histograms: peaks in the functions create high
values of correlation, which in turns allows the corresponding attribute (element distance,
graph distance, or map value, see Section 3.3.1) to be used by a candidate during generation.
When interpolating linearly two histograms with different peaks, the linear interpolation
still presents all features of both initial histograms, only weighted by the interpolation
coefficient, as shown in Figure 3.25.c. Linearly interpolated correlation function will lead
to results presenting both characteristics of input samples in various proportions instead
blending those characteristics into one another.

The result we aim for is the one of Figure 3.25.d: features of the initial histograms are
re-located and blended into the output. This result is obtained through mass transport
(see Bonneel et al. (2011)).

3.3.3.2 Mass transport solution

Solving mass transport problems require to use an optimization procedure, which makes
it too slow for our purpose, even using a parallel implementation. Fortunately, Read (1999)

53

3.3. WORLDBRUSH

Figure 3.22 – An example of the linear gradient tool applied with the two example colors in
insets.

(a) (b)

Figure 3.23 – Seam-carving-based stretching. Top: Initial arrangement. Bottom: New trees
have been seamlessly inserted in the empty region, preserving the visual appearance of the
distributions.

describes a very fast method for interpolating one dimensional histograms known as inverse
cumulative density functions (ICDF). This method is explained in Figure 3.26: Given two
input histograms f and g, we consider their integrals F and G, computed as cumulated
sums; Integrals are then normalized: F̂ = F

‖F ‖
and Ĝ = G

‖G‖
; The interpolated normalized

integral is computed through inverses: Ĥ−1
t = (1− t).F̂ −1 + t.Ĝ−1; De-normalization is

performed using an interpolated amplitude: Ht = ((1 − t).‖F‖ + t.‖G‖).Ĥt; A simple
differential operation allows us to retrieve ht.

3.3.3.3 Color interpolation results

Color interpolation yields fast and conclusive results, as shown in Figure 3.27.

54

CHAPTER 3. DESIGN OF STATIC OBJECTS

Figure 3.24 – Left to right, top to bottom: Moving a selection while maintaining constraints,
and favoring object displacement rather than births and deaths, to increase temporal coherence.

f(x)

x

(a)

g(x)

x

(b)

x

hlinear
0.5 (x)

(c)

x

(d)

hicdf
0.5 (x)

Figure 3.25 – Two input histograms (a) and (b) are interpolated linearly (c), resulting in a mix
of features. Optimal transport on the other hand allows to morph features of the first histogram
into those of the second one (d). Both interpolations use the same parameter t = 0.5.

3.3.4 Results

This section describes some of the results obtained with the method.
Figure 3.28 presents a wide scene fully created with our tool by an artist: Object

distributions were created by hand on small areas, corresponding colors were learned using
the pipette tool and used for painting the whole scene.

Figure 3.29 showcases the use of an existing input scene (here a map of the Middle
Earth designed by Tolkien (1955)). In this case, the input data is an image (bottom left),
which has been converted into a vectorial representation (upper left) by hand.

3.3.5 Discussion

The method presented here has several limitations, which are discussed here.

3.3.5.1 Input of an interaction matrix

One limitation is of practical interest: for the method to work, the user has to provide
an interaction matrix. This matrix specifies which element type depends on which other
(which is unilateral and imposes the order of generation), and specifies the property to be
analyzed for creating the corresponding color (pair correlation function, graph distance, or
map correlation). Despite being a large constraint on the usability of our method, this input
follows the analysis the user makes of their data and is therefore unavoidable. However,
only few possibilities make sense in the context of world synthesis, which drastically reduces
the possible choices.

The method of Hurtut et al. (2009) is faced with the same issue of having to identify
which descriptor is best suited for discriminating elements. Their approach is to compute
all kinds of descriptors on the input data and then to select those which are the most

55

3.3. WORLDBRUSH

x x

F̂ −1

f(x) F̂ (x)

xx

Ĝ−1

g(x) Ĝ(x)

t

1− t

x x

Ĥt(x)ht(x)

∫

∫

()−1

d
dx

()−1

()−1

in
terpola

tion

x

x

x

Ĥ−1
t

Figure 3.26 – Inverse cumulative density function interpolation: Both input histograms f

and g are integrated, normalized, inversed, and interpolated with parameter t. The resulting
function processed the other way: inversed, de-normalized (using an interpolated amplitude),
and differentiated, for obtaining the in-between ht.

d d ddd

f h0.25 g
t = 0.25

Interpolated distributionsDistribution 0 Distribution 1

t = 0.5 t = 0.75
h0.5 h0.75

Figure 3.27 – Colors are interpolated using mass transport on pair correlation functions.

56

CHAPTER 3. DESIGN OF STATIC OBJECTS

Figure 3.28 – Starting from an empty scene, the user defined some colors by hand and used those
for painting the whole content. On the left are shown close-ups on details of the scene.

Figure 3.29 – A map of Middle Earth (bottom left) has been converted to a vectorial description
(upper left) by an artist and used as input in our method. After learning colors of the input and
using those for painting new element, the user created a new map (right).

57

3.3. WORLDBRUSH

relevant. The same approach could be used with our method by computing several possible
descriptors and choosing the best one based on significance criteria. For example, in the
case of histograms, significance could be computed using the cumulated difference between
a given histogram and a constant 1-valued reference.

3.3.5.2 Distributions descriptor issues

Figure 3.30 presents a case in which a structured element distribution fails to be
correctly reproduced through copy-paste. This comes from the inability of a PCF to
correctly represent structured input, except for blue noise or clustered distribution.

(a) (b)

Figure 3.30 – Failure case: The color computed from a structured element distribution (left)
in not relevant: The pasting of such color results in an almost random distribution (right).
This comes from the PCF distributions descriptor not capturing spiral patterns: Left and right
examples have the same PCF, despite being visually different.

On the one hand, a more elaborated distribution descriptor could be conceived, which
discriminates inputs based on their structure. Such a descriptor could be used as a corre-
lation function in the acceptance ratio computation of the Metropolis-Hasting algorithm,
allowing to generate relevant output distribution. However speed is a critical aspect of
interactive modeling, and PCF performs well on this panel because of its second order
nature (pairs of points are compared) and the possibility to simplify ratios, yielding a time-
linear sample estimation. It is likely that a more complex descriptor would not have such
good properties, discarding the possibility to use it for interactive applications. Besides,
such a descriptor should capture a wide variety of structures while being scale-independent,
which is complex and ambiguous. For example, given a spiral shaped element distribution,
which larger distribution should have the same evaluation? The answer to this question
relies on the semantic understanding of what the distribution represents, which is far from
our current methodology.

On the other hand, representing blue noise or clustered distributions can be done with
a much simpler model than PCF. For example, a piecewise Strauss correlation function as
the one represented in Figure 3.31 allows to represent the same distributions as the full
histograms we use, and has only 6 parameters (compared to more than 100 in a histogram).
These parameters can be learned from the input distribution as it is done by Hurtut et al.
(2009), and later re-used during generation.

Besides a compact memory representation, such a model would be much easier to
interpolate: It would only require to interpolate input parameters, instead of mass-
transporting a full histogram. This is due to parameters sampling the abscissa of the
function; Such parameters move the features horizontally when interpolated, which is
equivalent to morphing function features.

58

CHAPTER 3. DESIGN OF STATIC OBJECTS

(a) (b)

(d)(c)

Figure 3.31 – A PCF containing typically a hundred parameters (a) is used for synthesizing a
clustered distribution (c). A qualitatively similar result (d) can be obtained using a much simpler
Piece-wise Strauss model described by less than 10 parameters (b).

For 2D PCF, no equivalent procedural correlation function exists; this would be an
interesting area to look into. My intuition is that a piece-wise constant 2D function over
partial concentric rings (see Figure 3.32) should be a proper 2D extension of the piecewise
Strauss correlation function. The resulting descriptor should be easy to interpolate, which
is currently not possible in 2D using ICDF. Alternatively, another method of Bonneel et al.
(2015) allows to interpolate 2D histograms in a fast manner. Such a method could be used
for blending complex bi-dimensional colors.

3.3.5.3 Content nature

Worldbrush could easily be extended for handling other type of content than virtual
worlds such as general vectorial textures or ecosystems for example. However, theoretical
limitations exist on the nature of the content one can paint using this approach:

3D distributions are present in virtual worlds such as in bird flocks, clouds, stars, or tree
leaves. In addition, 2D and 3D distributed elements can also be animated, which adds yet
another dimension to the problem. Our method is limited to 2D element distribution and
handling such content requires using other distributions descriptors and other interaction
metaphors. Indeed,the distribution descriptors we use are defined in 2D; They might be
extended to higher dimensions, but then the cost of a sample estimation will increase.
Besides, the painting metaphor itself relies on 2D tools; Extensions to 3D have been
proposed, as in the recent work of Schmid et al. (2011).

Even when dealing with 2D content, our method shows limitations: when this content
is hierarchical. More precisely, editing 2D content in a coarse-to-fine way is not problematic.

59

3.3. WORLDBRUSH

(a) (b)

Figure 3.32 – 2D histograms made of constant pieces over circular rings might be a suitable
model for representing 2D interactions between distributed elements.

On the other hand, fine-to-coarse operation sequences are to be avoided, since large-scale
edits might over-write previous small-scale ones. Artistic freedom requires a mix of both
paradigms, which is not directly possible with Worldbrush.

The remaining of this manuscript deals with other types of content: Section 3.4 details
a method for sculpting 3D hierarchical content; And Chapter 4 take care of animated
content.

60

CHAPTER 3. DESIGN OF STATIC OBJECTS

3.4 Sculpting of Complex Hierarchical Objects:

Deformation Grammars

The work presented in this section represents the major outcome of this thesis concerning
static object design. The resulting paper was submitted at the Computer Graphics Forum
journal and is accepted with minor revisions:

Vimont, U., Rohmer, D., and Cani, M.-P. (2016). Deformation grammars: Hierarchical
constraint preservation under deformation. Submitted at Computer Graphics Forum

This section is organized as follows: Sub-section 3.4.1 introduces the problematic of
complex object sculpting; Sub-section 3.4.2 explains what deformation grammars are and
how they help to deform complex objects; Sub-section 3.4.3 extends deformation grammar
for allowing bottom-up deformation behaviors; Sub-section 3.4.4 shows results of this
method and draws its limitations and perspectives.

For a review of related work, please refer to Section 2.3.

3.4.1 Introduction

Previous sections have proposed solutions for generating specific types of complex
objects based on specific coherency definitions. Despite being useful in specific contexts,
those methods lack generality: They solve an editing problem while making lots of
assumptions on the nature and the structure of the object to be edited. These object-
specific approaches have the advantage to benefit from knowledge about the object, which
drive the approach in term of coherency formulation as well as in terms of interaction
tools or modeling metaphor.

Here, we focus on the other end of this spectrum by creating a method which relies on
few assumptions about the object while allowing a wide variety of interactions. Namely,
the object is only supposed to be a complex object as defined in Section 3.1. We offer to
interact with using any deformation tool. This is thoroughly explained in Section 3.4.2.1; It
intuitively corresponds to a set-up where an initial coherent complex object is progressively
modified while maintaining its coherency rather than plainly synthesized.

We claim that the following features are essential for an artist-driven deformation tool,
and address them specifically:

— The coherency of the whole model should be maintained throughout deformation.
The user should be able to select the coherency criteria for each type of element
and at different scales, in order to fully express their intent.

— A hierarchical model should be editable at different scales, ranging from local to
global ones.

— The artist should be able to apply the edits in the order they wish, not only from
coarse to fine scales.

Our solution is based on the new concept of deformation grammars. The latter enable to
define deformation interpretation rules and allow us to freely deform a complex object
while maintaining its coherency.

61

3.4. DEFORMATION GRAMMARS

3.4.2 Deformation Grammars

This section introduces deformation grammars as an efficient tool to setup coherency-
preserving deformations for complex objects.

3.4.2.1 Definitions: Object deformation

A deformation is any function which maps the values of an object’s parameters. For
example, if the object is visually represented using a mesh, an example of deformation is
d : R3 → R3. d can be used to change all the vertices positions at once.

Classically, applying a deformation d to a complex object G (which we call object
deformation and noted using the couple D = (G, d)) is performed by applying the
deformation independently to the visual representations of each of the object’s sub-parts.
In contrast, our formalism enables us to redefine the application of a deformation in a
hierarchical way, a first step for enabling us to preserve the consistency of complex objects
through deformations. The hierarchical decomposition is done as follows:

An element deformation is defined as the edit of the element’s internal parameters,
which we call the internal deformation, followed by the element deformations applied to
its children (if any), which we call hierarchical deformation. Using the element formalism
for G, where G = ε0 is the highest element in the hierarchy, this enables us to rewrite the
object deformation of G in a hierarchical way, as follows:

D0 = (ε0, d)
Di = (εi, d) = Di

internal ⊕Di
hierarchical

Di
hierarchical =

⊕

εj∈C(εi)

Dj
∀εi ∈ E (3.5)

where ⊕ stands for the independent application of element deformations on a set of
elements. This operator also allows to combine any internal element deformation with
other deformations.

The hierarchical definition of deformations in Equation 3.5 is instrumental for al-
lowing various sets of coherency constraints to be maintained when deforming complex
objects. Section 3.4.2 explains how we express this deformation propagation process using
deformation grammars, and how to use it for preserving the full coherency of the object.

3.4.2.2 Definition: Grammar

Formal grammars are widely used in Computer Graphics for representing hierarchical
processes. More specifically, shape grammars such as the one in Figure 3.2 are often used
to generate the static geometry of complex objects as in Müller et al. (2006), Emilien et al.
(2012), Schwarz and Müller (2015). In this work, we extend the scope of formal grammars
to handle the hierarchical deformation of complex objects.

A deformation grammar models a deformation behavior for a complex object under a
set of deformations. It is defined as any formal grammar by:

— a set of non terminal symbols N .
— a set of terminal symbols Σ
— an axiom A ∈ N
— a set of production rules P = {Ri}

62

CHAPTER 3. DESIGN OF STATIC OBJECTS

Symbols. A symbol is an element deformation D = (ε, d), where ε ∈ E and d is an
arbitrary deformation. A terminal symbol is the deformation of the internal parameters
of an element, while a non-terminal symbol is a regular deformation. Symbols can be
assembled using the independent application operator ⊕.

In our example of a tree model (see Section 3.1.2.2), a terminal symbol is the geometric
transformation of a single branch, while a non-terminal symbol is the deformation of a
branch and all its descendants.

Axiom. The axiom is a non terminal symbol created by the user. It represents the
object deformation intent, such as a free-form deformation interactively generated through
a sculpting tool. It is the initial symbol which will be decomposed into other symbols,
until only terminal symbols remain.

In our example, the axiom is the deformation that the user wants to apply to the tree
model. It is processed as a deformation of the highest element ε0 in the object’s hierarchy
(i.e. the trunk, see Equation (3.5)) and decomposed hierarchically using the grammar
rules.

Rules. A rule is the substitution of a symbol by a ⊕ of other symbols. In other words,
it is the interpretation of an element deformation into the deformations of its components.
It is defined with respect to a type of element t(ε) and a type of deformation t(d):

R(t(ε), t(d)) : D = (ε, d) 7→ D′ (3.6)

where D′ is an element deformation preserving the coherency of elements of the type t(ε).
Following Equation (3.5), we define D′ as follows:

D′ = Dinternal ⊕Dhierarchical . (3.7)

Dinternal = (ε, d′) is a terminal symbol; It is a deformation that applies to the internal
parameters of the element ε and preserve its internal coherency. Dhierarchical is a non-
terminal symbol; It calls for the independent application of deformations of the children of
ε that preserve the hierarchical coherency of ε:

Dhierarchical =
⊕

e∈C(ε)

Dε,e(e) , (3.8)

where Dε,e = (e, de) is an element deformation that preserves the hierarchical coherency
between ε and e. It will be further processed for element e by the rule R(t(e), t(de)) for
preserving the coherency of e (see Equation (3.6)).

The rules, in the form of Equation (3.6), are defined by the user for each type of
deformation and each type of element, by specifying Dε

internal(ε) and Dε,e used in Equations
(3.7) and (3.8). They enable to control the behavior of a complex object under arbitrary
deformations, and in particular to preserve the coherency of the object, as illustrated next.

3.4.2.3 Example

Let us come back to our example of the tree model and detail the process of creating a
deformation grammar. The structure of the object has been described in Section 3.1.1 and
the associated coherency constraints in Section 3.1.2.

63

3.4. DEFORMATION GRAMMARS

We consider a sculpting deformation behavior using a free-form deformation d : x ∈
R3 → d(x) ∈ R3. The deformation is controlled by the user’s mouse displacement, applying
a weighted local translation in the view plane.

Defining a grammar rule boils down to define Dinternal and Dhierarchical (see Equa-
tions (3.6, 3.7)).

Let us start with Dinternal, which preserves the internal coherency of a branch. We call
pstart and pend the extremities of the branch geometry. In order to preserve the cylindrical
geometry of the branch, Dinternal needs to be an affine transformation whose matrix M
can be expressed as:

M = T× R × S

where:
— T = trans (d(pstart)− pstart)

— R = rot
(

d(pend)−d(pstart)
‖d(pend)−d(pstart)‖

, pend−pstart

‖pend−pstart‖

)

— S = scale
(

pend−pstart

‖pend−pstart‖
, ‖d(pend)−d(pstart)‖

‖pend−pstart‖

)

and:
— trans(x) is the translation of vector x;
— rot(a, b) is the rotation from vector a to vector b;
— scale(a, s) is the scaling of axis a and magnitude s
In the current case, Dinternal does not disconnect a branch from its initially connected

children. However, in the general case, one can define Dhierarchical in such a way that it
re-connects a branch with its children. According to Equation 3.8, it requires to define the
deformation from a branch ǫ to its child e:

Dǫ,e
hierarchical = trans(pe

start − pǫ
end)

(a) (b) (c) (d)

Figure 3.33 – Deforming a tree model (as in Figure 3.4) using deformation grammar results in
coherent tree shapes, according to our tree definition.

3.4.3 Bilateral Grammar Rules

As stated in Section 3.4.1, an object should be editable at different scales (i.e. by
editing parts at different levels of the hierarchy) in an arbitrary order. But the deformation

64

CHAPTER 3. DESIGN OF STATIC OBJECTS

(a) (b) (c) (d)

Figure 3.34 – Bilateral grammar rules allow us to deform a complex object at any level of the
hierarchy. (a): An initial model has one of its elements deformed. (b): Result when a local edit
is applied to a sub-branch without the use of bilateral grammar rules. (c): Using our bilateral
grammar rules maintains coherency, here by ensuring that the edited branch stays in contact
with its parent. (d): An alternative rule is used to automatically split elongated branches and
generate new sub-branches.

grammars defined so far starts from a deformation of the top level element ε0 and propagate
down the hierarchy to preserve coherency. Figure 3.4b shows that applying the deformation
on another element than ε0 breaks the object coherency at the parent level as the parent
does not interpret the deformation. Still, as already stated, local edition should be allowed
at any time of the edition in order to enable fine user control.

In order to maintain the object’s global coherency during the deformation at any
hierarchical level, deformation grammars needs to handle upward coherency management.

3.4.3.1 Closed-loop problem

Let us consider a tree model with two branches ε1 and ε2 such that ε2 ∈ C(ε1), and ε2

receives a deformation d from the user.
A naive solution to allow for upward coherency management consists in creating an

ascending grammar rule R (t(ε2), t(d)) generating a deformation of ε1. For example, we
could have Rascending (t(ε2), t(d)) : D = (ε2, d) 7→ D′ = (ε1, d), where D′ is a non terminal
symbol. But D′ would be interpreted into a deformation of ε2 following Equation 3.8.
This results in a loop creating non-terminal symbols, and never converging to terminal
ones. The deformation operation does not terminate in this case.

3.4.3.2 Deformation emitter specification

Our solution to this problem is to incorporate the deformation emitter inside symbols,
which are now defined as:

D = (ε, d, S) ∈ Σ ∪N (3.9)

where ε ∈ E is the deformed element, d the deformation and S ∈ E ∪ {0} is the emitter of
the deformation. By convention, deformations directly generated by the user are associated
with the emitter S = 0. Rules can now make use of this new information to avoid the
closed-loop problem, as explained next.

65

3.4. DEFORMATION GRAMMARS

3.4.3.3 Emitter-specific grammar rules

The objective is now to enable the propagation of the interpretation of a deformation
up and down the hierarchy of a complex object, but only when needed, and in particular
while avoiding loops. To this end, we modify the rules defined using Equation (3.6) into
emitter-specific grammar rules encoding whether the deformation of an element may
influence or not other elements. In our solution, this influence only depends on the type
of relation t between the emitter element and the deformed element, where t(ε, S) can
take the values none, child, parent, self, as defined in Section 3.1. We therefore define our
emitter-specific grammar rules by replacing Equation (3.6) by

R(t(ε), t(d), t(ε, S)) : D = (ε, d, S) 7→ D′ . (3.10)

where the interpreted deformation D′ is generally defined as D′ = Dup ⊕Ddown, where

Dup = (p(ε), d, ε) , (3.11)

is an element deformation applied on the parent of ε, propagating therefore the interpreta-
tion upward in the hierarchy until ε = ε0, and Ddown an element deformation applied to
the children, and used to propagate the deformation downward to the leaves. Depending
on the relation type t(ε, S), only one of these deformations needs to be applied, in order to
ensure the preservation of coherency while avoiding the closed-loop propagation problem.
This is achieved using:

— R(t(ε), t(d), parent) : D 7→ Ddown ,
where Ddown = Dinternal ⊕Dhierachical. This corresponds to the basic case (Equa-
tion (3.5) of a deformation transmitted by from a parent to its children in the
hierarchy.

— R(t(ε), t(d), child) : D 7→ Dup ⊕Ddown ,
where Ddown = (S, dinterpreted, ε) is the interpreted deformation preserving the hier-
archical coherency of ε. This enables to coherently transform the other children
when one of them has been edited, while still propagating the deformation to the
parent for preserving higher level coherency.

— R(t(ε), t(d), none) : D 7→ Dup.
This enables the deformation to reach a common ancestor, where the consistency
will be preserved between ε and its parent.

— R(t(ε), t(d), self) : D 7→ Dinternal.
This enables internal consistency to be maintained using a terminal symbol.

3.4.3.4 Example

Let us now extend the example of Section 3.4.2.3 in order to allow for bilateral
deformation interpretation. We consider an affine deformation d applied on a branch
ε2 6= ε0 of a tree. We need to handle those according to

R(t(ε1), t(d), child) : D(ε1, d, ε2) 7→ D′ = (ε2, d′, p(ε1)) (3.12)

66

CHAPTER 3. DESIGN OF STATIC OBJECTS

We define d′ as the affine transformation which displaces one extremity of S while
preserving the other one:

d′(pε2

start) = d(pε2

start)

d′(pε2

end) = pε2

end

(3.13)

On Figure 3.34c, we can see that the interpreted deformation keeps ε1 and ε2 connected,
which respects the coherency of the tree. Figure 3.34d shows an alternative rule which
splits elongated branches and generates new sub-branches.

Let us consider the case where a branch ε2 6= ε0 receives an affine deformation emitted
by the user D0 = {ε2, A, 0}. First we need to notify the parent of ε2, ε1 = p(ε2). This is
the role of Dup = {ε2, A, ε1}. In order to preserve the hierarchical coherency of ε1 while
deforming ε2, Dup needs to be interpreted as follows:

Dup 7→ D1 = {ε2, B, ε1} (3.14)

where B is the affine transformation which preserves pε2

start while deforming pε2

end as A:

B = T× R × S× T−1 (3.15)

where:
— T = trans (pε2

start)

— S = scale
(

p
ε2
end

−p
ε2
start

‖p
ε2
end

−p
ε2
start‖

,
‖A p

ε2
end

−p
ε2
start‖

‖p
ε2
end

−p
ε2
start‖

)

— R = rot (pε2

end − pε2

start , A pε2

end − pε2

start)
The bilateral deformation grammar can be expressed using those three rules:
— R(branch, affine, none) : (ε, A, S) 7→ (p(ε), A, ε)
— R(branch, affine, child) : (ε, A, S) 7→ (S, B, ε)
— R(branch, affine, parent) : (ε, A, S) 7→ (ε, A, ε)

⊕

e∈C(ε)

(e, A, ε)

3.4.3.5 Persistent editing

Enabling to apply deformations at different levels of the hierarchy greatly increases
the user’s freedom. With this method, small scale edits may, however, be overwritten by
subsequent higher level modification, leading to the loss of specific user changes.

Bilateral deformation grammars allow us to seamlessly solve this issue by keeping track
of previously locally edited elements. Once an element ε is locally edited by the user,
it can be tagged as persistent. Grammar rules can then take this tag into account for
preserving these elements.

Therefore any global deformation applied later on the object will not modify the
previously edited element enabling the user to iterate between global and local deformations
as desired.

3.4.4 Results

This section develops several possible applications, inspired by state of the art de-
formation methods, to demonstrate the versatility of our framework. All the examples
were implemented using different deformation grammar rules, within the same interactive
sculpting software. We also refer the reader to the video accompanying this work.

67

3.4. DEFORMATION GRAMMARS

3.4.4.1 Grammar creation

Independently of the category of complex object to be deformed, the creation of a new
deformation grammar proceeds as follows

1. Design the hierarchy of the object, or use the hierarchy inherited from a previous
procedural generation method;

2. For each type of element in the object, identify its internal and hierarchical coherency
rules;

3. Based on steps 1 and 2, identify the deformation types applicable to each type of
element;

4. Create a set of downward rules for each pair of element types and associated
deformation type;

5. Optionally enrich the set of rules with upward rules allowing to maintain upward
hierarchical coherency.

Since a rule is needed for every tuple (t(element), t(deformation), t(relation)), the
number of rules to design is directly correlated to: the number of element types; for each
element type, the number of possible deformation types; for each element type, the number
of possible children types.

The example grammars presented in this section contain between two and ten rules.
Each rule typically takes 10 to 30 minutes to be designed by an experienced user.

3.4.4.2 Organic shapes

We start by demonstrating our deformation grammar on complex objects representing
organic shapes.

Figure 3.35 shows three steps of an interactive tree modeling session. In this example,
we use the rules given in Section 3.4.2.3 to ensure that branches remain cylindrical and
adjacent. We added a bilateral grammar rules enabling to prevent self-intersection between
the different object parts. This rule applies the initial deformation to the uppermost
branch of the hierarchy ε0 with the initial target branch as emitter. The deformation
is propagated down the hierarchy only if it does not generate intersections between the
sub-branches. Branches longer than a threshold are split and new branches appear at the
junction between consecutive branches at the same hierarchical level, using a call to a
local L-system generation. Note that our interface makes possible to dynamically change
the deformation behavior by activating or deactivating specific rules at run time: This is
used, for instance, for interpreting a subsequent free-form deformation as a radius change
only in Figure (3.35c).

3.4.4.3 Man-made objects

In order to show the versatility of the application of our deformation grammars, we
set-up rules to model a deformable house. The house is a hierarchical heterogeneous object
whose hierarchy is the following: A house object is composed of floors and a roof. Each
floor is composed itself of walls and windows. In this example, the coherency properties
are the following: Adjacent walls must be orthogonal, the maximum height of each floor is
bounded, and the roof is positioned at the top of the last floor. See Figure 3.36 (second
column).

68

CHAPTER 3. DESIGN OF STATIC OBJECTS

(a) (b) (c)

Figure 3.35 – Deformation grammars allow us to freely deform organic shapes such as trees.(a):
Initial tree;. (b): Deformed tree; Note that the geometry of the branches is non degenerated
and that junctions are evenly distributed. (c): Tree deformed while free form deformations are
interpreted as a radius changes; Dynamic rule changes allow us to manipulate the object in a
context-specific manner.

(a) (b)

Figure 3.36 – An initial house (a) is deformed by the user while preserving properties typical of
man made objects such as wall orthogonality and floor linear arrangement (b).

This example also illustrates the possibility to element specific deformation interpre-
tation, i.e. rules depending on the nature of the deformation: For example, a vertical
translation of the roof is propagated to the house object and interpreted as a global vertical
scaling, which allows the roof to be supported by the walls at every time. In turn, a house
scaling is interpreted as a scaling of the last floor. A floor higher than a given threshold
splits into two floors on top of each other, an in return a floor too low is merged with the
underlying one. A translation of a wall piece is interpreted a horizontal wall extrusion,
which also results in a re-generation of the roof thanks to our bilateral grammar rules.

3.4.4.4 Object distributions

Objects distributions are hard to deform because of the inter-object constraints, such as
non penetration and relative positions (see Emilien et al. (2015)). They can be represented
as complex objects. Usually, the parent element in the hierarchy does not have any
visual representation, but stores the distribution parameters to be maintained as internal
parameters. The objects in the distribution are its children. We implemented three

69

3.4. DEFORMATION GRAMMARS

different examples in order to illustrate the ability of deformation grammars to maintain
the coherency in the case of distributions.

The first example, shown in Figure 3.37, is a forest, i.e. a distribution of trees. Naively
applying a user-defined deformation to this forest would either create empty regions between
adjacent trees, or make some of them too close to each other. We aim at preserving the
visual density of trees. This requires to merge trees that are too close, and to create new
ones in large empty spaces.
Let us consider that the initial trees are associated to an underlying Delaunay triangular
mesh whose vertices are the tree positions. Displacing the trees is expressed as the
deformation of the mesh. Our solution for maintaining the visual appearance of the
distribution is based on quasi-uniform meshes Stanculescu et al. (2011), which are re-
expressed as a specific case of our deformation grammar, as follows: Mesh vertices are
maintained at a distance d such that ddetail

2
< d < ddetail (where ddetail is a constant learned

from the input distribution). The edge collapse and split operations used to maintain the
distribution’s coherency trigger the elements merging and splitting respectively, which are
new types of deformations.

(a) (b)

Figure 3.37 – (a) Initial 2D distribution of trees. (b) Deformed distribution with newly inserted
trees in the stretched regions.

We also show a similar example in Figure 3.38, where houses can split or merge based
on the same rules. But this time, splitting a large house results in creating several smaller
ones, while merging has the opposite effect. Such effect could be used, for instance, for
compacting a village while preserving the number of inhabitants it can house.

The third example, shown in Figure 3.39, is a volumetric distribution representing
a flock of birds. Elements are merged when they come close to each other (using an
element-specific merge transformation), therefore avoiding any intersection. In this case, a
grid-based acceleration structure was used to compute element neighborhood.

3.4.4.5 Color transformation

Deformation grammars are not limited to geometrical transformation interpretation:
As an illustration, we used the deformation grammar framework to design a color definition
tool on distributions as shown in Figure (3.40).

3.4.4.6 Heterogeneous distributions

One of the main advantages of our deformation grammar formalism is its ability to
seamlessly handle heterogeneous distributions. Therefore, once a deformation behavior
has been described in our framework, it can be further reused as a sub-elements of a larger

70

CHAPTER 3. DESIGN OF STATIC OBJECTS

Figure 3.38 – An initial distribution of houses (in left) is interactively deformed by the user using
space deformation (middle and right figures). Closed-by houses are merged into larger one to
model the increased density.

scene, and interact with other elements. For instance, outdoor scenes such as the one
illustrated in Figure 3.41, are defined by assembling the deformation behaviors of the tree
distributions, bird flocks, and houses where the root element is the entire scene. The rule
interpreting the deformation of the whole scene simply forwards input deformations to
its children (the house, the bird flock, and the tree distribution), and prevents them to
inter-penetrate. Each element can be either globally deformed, or individually while still
preserving the individual and global coherency.

3.4.4.7 Persistent editing

Figure (3.42) illustrates persistent editing. In this case, a forest tree is locally deformed
by the user (Figure 3.42b). Next, a global deformation is applied on every tree. If the
persistent edit is not applied, the trees may be re-dispatched for maintaining tree density,
therefore destroying all previous manual editing operations (Figure 3.42c). Instead, using
our persistent editing method on a similar global deformation enables us to preserve the
local aspect of the tree while still allowing it to be translated, and other trees to be
deformed (see Figure 3.42d).

3.4.5 Discussion

In this section we first compare results obtained with deformation grammars with
results of state-of-the-art methods targeted at particular object types. We then discuss
the advantages and drawbacks of using deformation grammars.

3.4.5.1 Comparison to state of the art methods

Two methods aiming at deforming complex objects can be relevantly compared to
ours in terms of results: Emilien et al. (2015) with the Worldbrush system (described in
details in section 3.3) and Longay et al. (2012) with their TreeSketch system.. Each of
these methods focuses on a particular type of complex object: distributions of elements
and trees, respectively. Although we do not provide in our implementation the specific
user interfaces dedicated to trees and elements distributions, enabling to achieve the high

71

3.4. DEFORMATION GRAMMARS

(a) (b)

Figure 3.39 – The user can freely deform this bird flock while maintaining some properties: All
bird instances are similar, and non inter-penetrating.

quality interaction provided in these prior works, our deformation grammar would enable
to capture similar deformation behaviors: Indeed, all the sub-elements used in these two
works only require to me moved, built, and deleted while maintaining specific rules. On the
one hand, integrating the histogram preservation as a coherency criteria would enable to
interactively deform a 2D distribution of elements similarly to WorldBrush. On the other
hand, implementing new deformation types such as element painting, and new branch
behavior for trees, would enable to model the deformation behavior of TreeSketch. One of
the advantages of using our deformation grammar in such cases would be to fully integrate
these two different behaviors within a single framework. Then, within the same scene,
the user could seamlessly design the distribution of trees of a forest, while being able to
control each of the trees similarly to the approach in TreeSketch.

3.4.5.2 Suitability for deforming procedurally generated objects

As shown in Section 3.4.4.2, deformation grammars are particularly well suited to
interact with shapes defined using shape grammars. These objects are hierarchical by
nature and they can be generated dynamically, enabling us to easily set rules that add or
delete parts of the object when the latter is deformed. The tree example of Section 3.4.2
and 3.4.3 uses this principle for generating new branches after splitting elongated ones.

3.4.5.3 Challenges of the faithfulness versus consistency trade-off

We call faithfulness of a deformation interpretation the difference between the non
interpreted and the interpreted deformation.

The faithfulness is positively correlated with the predictability of the deformation
behavior, and therefore to the intuitiveness of the deformation tool: The more the

72

CHAPTER 3. DESIGN OF STATIC OBJECTS

(a) (b)

Figure 3.40 – The user can paint an original set of trees (a) with another color (b). The change
of color is interpreted by the rule such that only the foliage is affected, not the trunk.

(a) (b)

Figure 3.41 – A single deformation gesture allows to deform various objects at once , preserving
different coherencies.

interpreted deformation corresponds to the input deformation (i.e. the deformation
interpretation is faithful), the more the object will behave in the way the user expects
it to. On the other hand, a perfectly faithful deformation interpretation will probably
alter the coherency of the object, losing all interest. A compromise is to be found between
coherency preservation and interpretation faithfulness.

The problem with this trade-off is that its value can be application-specific. Even in
some applications, depending on the phase, of conception, different trade-offs could be
required. For example, a faithfulness-oriented in the shape exploration phase of the object
conception could allow more freedom to the artist, whereas it might become less necessary
in the final phase.

Ideally, a deformation behavior could be designed, which let the user choose a trade-off
(through a slider or a switch). This would require the deformation behavior to handle
the change of trade-off as a deformation. Pushing the trade-off toward consistency would
therefore require to enhance the object, which might prove difficult.

73

3.4. DEFORMATION GRAMMARS

(a) (b)

(c) (d)

Figure 3.42 – (a): Initial set of trees. (b): Local editing of a single tree. (c): Global deformation
without persistent editing leads to a loss of the previous user edits. (d): Global deformation with
our persistent editing method enables to preserve the local aspect of the previously deformed
tree.

3.4.5.4 Over-constrained coherency

Related to the faithfulness, an object with many constrains may not provide enough
degrees of freedom to be deformed as expected. As interpreted deformation will fall inside
some very limited deformation space, which may result into a deformation behavior of
little interest. For instance, a cube constrained to stay cubic will only allow uniform
scaling deformations which may be considered too restrictive by the user.

Note, however, that even with restrictive individual behaviors, the deformation of
complex heterogeneous objects combining different types of elements at different levels of
a hierarchy will still look rich and expressive.

3.4.5.5 Stochasticity

Stochasticity allows grammars to choose which of several applicable rules to use
according to a random law Ritchie et al. (2015). This property is heavily used with shape
generation grammars for allowing various shapes to be generated from a single input.

In the case of deformation grammars, the variation of the deformation behavior is
not desirable because the intuitiveness of the deformation interpretation relies on its

74

CHAPTER 3. DESIGN OF STATIC OBJECTS

predictability. Besides, such random behavior prevent the use of undo/redo patterns,
which is very useful in design processes. Therefore, we did not explored this track.

3.5 Conclusion

In this chapter, we discussed three methods for designing static 3D shapes from example.
These methods allow us to create new content while fulfilling semantic constraints; This
constitutes a progress compared to previous artist-oriented 3D shape design processes.

3.5.1 Controllability versus complexity trade-off

The two first methods presented in this chapter propose to model a complex object
given a predefined coherency. They are at two opposite of an interesting scale: the
controllability versus complexity scale.

The first method identifies replaceable substructures inside complex objects (see
Section 3.2). It relies on a complex coherency synthesizing valid complex object models
which are sparse in the shape space and hard to create. It leads to a method having a
very low user controllability.

The second method offers a painting interface to element distributions (see Section 3.3).
It relies on a simple and easy to compute coherency which allows real-time and local user
edits. This makes the method having a high user control at the cost of the complexity of
its outputs.

Finally, the third method formalizes hierarchical object deformation in a grammar-
based framework (see Section 3.4). It compromises between those two by allowing arbitrary
deformation (which means high controllability) on arbitrary object (including complex
ones). This is done at the cost of not automatically performing coherency preservation:
this method performs no "learning" on the input object. The user is required to provide
rules which tells how to preserve coherency, which implicitly contains the definition of this
coherency. This is in accordance with Figure 2.1, which tells us that any method has to
compromise between automatism, coherency, and control.

3.5.2 Smart tools versus smart shapes

In the future, I imagine the "smartness" necessary to more intuitive modeling interfaces
will not be found in "smart tools" but rather in "smart shapes". Smart tools are capable of
analyzing the shape they model or deform in order to preserve its coherency. However,
this requires for the architect to build one tool per type of object, and for the user to learn
to use as many tools. As discussed in Section 1, this is part of the difficulties of 3D shape
modeling: the large body of knowledge necessary for mastering modeling tools.

In contrast, smart shapes can be arbitrarily deformed while maintaining artist-defined
or auto-detected coherencies. This offers the advantage of separating the user (who can
use the deformation tool they want) from the object (which can maintain its coherency
automatically).

Ideally, such "smart shapes" should be able to represent arbitrary complex object,
including spatiotemporal ones such as animations. Chapter 4 presents some advances in
this specific direction.

75

3.5. CONCLUSION

76

Chapter 4
Design of Animation

Contents

4.1 Introduction . 78

4.1.1 Temporality of animations . 79

4.1.2 Preservative structures . 79

4.2 Waterfall scenes . 81

4.2.1 Motivation . 81

4.2.2 Overall system . 83

4.2.3 Main contribution: waterfall classification 95

4.2.4 Results . 96

4.2.5 Discussion . 100

4.3 Fluid Sculpting . 100

4.3.1 Introduction . 101

4.3.2 Overview . 102

4.3.3 Feature extraction . 103

4.3.4 Feature representation . 109

4.3.5 Sculpting Tools . 110

4.3.6 Results . 111

4.3.7 Discussion . 113

4.3.8 Conclusion . 115

4.4 Conclusion . 117

77

4.1. INTRODUCTION

T
his chapter addresses the topic of modeling animated virtual content. The chal-
lenges arising from this task are recalled in Section 1.3: The high number of
degrees of freedom of the animation data, and the difficulty of visualizing and

interacting with it using 2D interfaces.
More precisely, this chapter restricts its concerns to liquid animation. This specific

kind of animation is particularly challenging to model and control: It is usually cast as a
simulation problem, as shown in Section 2.4. However, Section 1.3.2 recalls the control
problems associated to this category of solutions: Only a few degrees of freedom are
available to the user, and they are often counter-intuitive; Besides, the non-linear nature
of liquid behaviors makes that edits of the simulation parameters can have unpredictable
consequences. What is more, simulation-generated liquid animations are usually not
temporally consistent representation-wise (each frame of the animation is represented
with a different mesh with no correspondence between frames), which makes the editing
impractical.

The two research contributions presented in this chapter are based on a facilitating
paradigm that I call preservative structure editing. The principle is simple: instead of
editing directly the raw data representing the animation, the user can manipulate a spatial
and temporal consistent structure used as a proxy for interacting with the content. Similarly
to the rig-space, the preservative structure constitutes a reduced basis for parameterizing
the animation data.

This chapter is organized as follows: Section 4.1 presents more thoroughly the preser-
vative structure paradigm as well as a classification of animated content allowing some
simplifications on this structure in some cases; Section 4.2 illustrates this simplification
in the case of time-limited dependency phenomena with an editing method for waterfall
scenes; Section 4.3 extends the concept to fully time dependent phenomenon with a general
structure for representing liquid animation; Finally, Section 4.4 concludes on the topic of
animated content modeling and identifies several perspectives for preservative structures
editing.

4.1 Introduction

Modeling animation in general is difficult in particular because animation data linking
geometry and time is complex to manipulate. However, some animations may have a
static component which can be modeled independently from their temporal component
making them more easy to manipulate.

This section introduces the notion of temporality of an animation. Temporality allows
us to distinguish between animations for which time and space are independent and
animations for which they are intrinsically correlated. This notion can be used as an
efficient mean for simplifying the representation and the modeling of phenomena falling in
the first class.

Phenomena of the second class are more difficult to handle. In such case, this section
also proposes the notion of preservative structure aiming at establishing an editable
interface in cases where space and time are correlated.

78

CHAPTER 4. DESIGN OF ANIMATION

4.1.1 Temporality of animations

Fluid simulations produce animation data which are typically represented as mesh
sequences. Such data are heavy and uneasy to handle since they represent a full shape a
each time step.

However some animated phenomena are in a stable state when their motion flow varies
little over time. Consider the animation of a fire at the end of a torch: The appearance of
this phenomenon at a given instant does not contain any information on that instant. An
other way to say this is that given two random frames of the animation, it is impossible
to tell which comes first. We call these kind of phenomena stationary by analogy with
stationary textures (in our case the ergodicity is temporal rather than spatial).

Note that static (i.e. completely motionless) phenomena are a trivial sub-case of
stationarity. The lack of relative temporal position implies that stationary phenomena
have no natural beginning nor end. This makes good candidates for looping videos, as it
has been exploited by Liao et al. (2013).

Now, consider the animation of a burning match. Each frame can be localized in time
from the position of the sparkle on the stick. The bigger the unburned part of the stick
is, the sooner the frame comes. We call these phenomenon transient. They represent a
transition between two stable states: Completely unburned and completely burned in the
case of the burning match.

A third category of phenomena can be identified: periodic phenomena, in which a frame
can be localized in time modulo a given period at which the phenomenon repeats itself.
It is for example the case of the day-night cycle: Frames can be ordered (e.g. using the
sun angle) only if they come from the same day. More generally, a transient phenomenon
where the system evolves toward a state it has taken before actually describes the cycle of
a periodic phenomenon. Such phenomena are seldom within the domain of fluids, and will
therefore not be considered in the remaining of this chapter.

We call temporality the property of an animation to be stationary, transient, or periodic.
Note that the temporality of a phenomenon is linked to the duration of the corresponding
animation: The torch fire will eventually die because of lack of combustible. The animation
is stationary during the period of stability between the ignition and the extinguishment. If
the animation exceeds these bounds, a frame can be partially localized in time (before/after
ignition/extinguishment). In turn, the animation of the match can be considered stationary
over very small periods of time during which a negligible length of stick will be burned.

Sections 4.2 and 4.3 respectively presents solutions to stationary and transient fluid
animation modeling. Both solutions are based on preservative structures, presented next.

4.1.2 Preservative structures

Animated content can be seen as 3D content changing over time. This change must
be subtle: to consecutive frames must present some similarities for the movement illusion
to work (this is called beta movement). If two consecutive frames are too dissimilar,
objects from the first are not recognized in the second. Therefore, the impression that the
same object switched from one configuration to another disappear. It is replaced by the
impression that an object vanished and that another appeared.

We define the preservative structure of an animation as a representation of what is
preserved between consecutive frames. It thus encodes the correspondence between frames.

79

4.1. INTRODUCTION

The preservative structure exists between each two consecutive frames, and is therefore a
spatio-temporal object.

Preservative structures for stationary animations The notion of preservative struc-
ture is easy to understand on stationary phenomena. Indeed, a stationary phenomenon
is always associated with an underlying static shape: this is actually its preservative
structure. Let us consider some examples: The smoke escaping from a chimney is confined
in an envelope, which is a static shape characteristic of this flow. The trajectory of a river
can be seen as a static path.

An interesting example of preservative structure of periodic animation has been used by
Jordao et al. (2014) for animation editing. This work uses crowd patches: a specific data
representation for crowds where static shapes are the preservative structure. This static
shape is edited (using the method of Milliez et al. (2013)) and "dressed" with animation.

An other example using preservative structure has been developed by Bhat et al. (2004)
in the case of waterfall video sequences. This example is based on the optical flow of
the video stream. Optical flow is a good example of preservative structure for 2D raster
animated data. It also fits our restriction on stationary animations since the optical flow
of videos for such phenomenon is almost constant.

In summary, preservative structures in the case of stationary phenomena are static
shapes. Those shapes are related to the spatial component of the animation, independently
of the temporal aspect. This spatial component can be edited using standard shape
modeling tools.

Section 4.2 describes a method which uses the static paths of a waterfall network for
creating a vectorial editing framework. Now, let us investigate what preservative structures
are in the case of transient animations.

Preservative structures for transient animations In the case of transient anima-
tions, no time-independent structure can be found in the data. This is natural since by
definition those animations do not have any time-independent component.

Since the changes between pairs of consecutive frames of the animation are not constant,
the preservative structure is defined per frame: it is therefore fully spatio-temporal. More
precisely, it encodes the correspondences within each pair of consecutive frames.

Once again, the optical flow of a video stream is an insightful analogy. We saw before
that the videos of stationary phenomena have temporally constant optical flow (which
might vary in space however). In turn the optical flow of a transient phenomenon video
varies along time. Each frame of optical flow indicates for each pixel the displacement of
the corresponding value in the animation. In the same way, the preservative structure of a
transient animation indicates how frame data are transported across frames at each frame
interval.

Section 4.3 describes a method which extracts a preservative structure from an arbitrary
3D liquid animation. This structure enables us to design spatio-temporal editing tools
allowing to directly manipulate the main features of the animation. But first, let us explore
the stationary case of 3D waterfall networks.

80

CHAPTER 4. DESIGN OF ANIMATION

4.2 Vectorial editing of stationary animations:

the case of waterfall scenes

The work presented in this section results from a collaboration with Arnaud Émilien
(Université Grenoble Alpes/Inria) and Pierre Poulin (Université de Montréal). The
resulting paper (Emilien et al. (2014)) was published in the CGF journal and presented at
the Eurographics conference in 2015 (www.eurographics2015.ch):

Emilien, A., Poulin, P., Cani, M.-P., and Vimont, U. (2014). Interactive procedural
modelling of coherent waterfall scenes. Computer Graphics Forum, 34(6):22–35

The remaining of this section is organized as follows: Section 4.2.1 introduces the prob-
lem of waterfall scene editing; Section 4.2.2 gives an overview of the method; Section 4.2.3
details one of my main contribution to this work: a quantitative waterfall classification;
Section 4.2.4 presents some results of this method; Section 4.2.5 discusses the results and
draws limitations of this work.

4.2.1 Motivation

Procedural modeling is a convenient paradigm for automatically modeling complex
objects and scenes; It has been applied in many contexts such as terrains, trees, buildings,
street networks, or cities generation (see Section 2.2). In addition to its efficiency for
generating details, its power lies in its ability to ensure that certain constraints are
respected—for instance from a physical, biological, or architectural viewpoint—making it
much easier for the user to create consistent models.

However, when one has a very specific goal in mind, the intricate parameters of these
automatic procedures can be very cumbersome to tune. In such situations, it would be
advantageous to separate coarse-scale and fine-scale editing: The coarse scale modeling
could easily be handled by the artist using adequate tools, while the fine-scale details
could be automatically generated by the method, while ensuring both fine- and coarse-
scale consistency. In this section, we apply this paradigm of interconnected procedural
generation and interactive user-control to the modeling of animated waterfall scenes.

4.2.1.1 Waterfalls

Waterfall scenes as the one depicted in Figure 4.1 offer some of the most beautiful
landscapes in nature. So much that hikers will spend hours walking through difficult
terrain for their gratifying sight. Therefore, it seems legitimate to integrate such assets
inside virtual worlds. However, waterfalls modeling presents two major difficulties: They
might take various appearances, requiring different representations at once; Waterfalls and
terrain shapes are intrinsically connected: The terrain guides the waterfall it supports
while being carved by the passing water, creating a complex interaction. As a result, no
easy-to-use method for designing waterfall scenes has been developed so far in computer
graphics.

Given a terrain fit for supporting a waterfall, different solutions currently exist for
modeling water bodies: One consists in using physically based simulation of fluids, which
produces realistic flows; Unfortunately, the volumetric scale range of a waterfall requires

81

www.eurographics2015.ch

4.2. WATERFALL SCENES

Figure 4.1 – Picture of trou de fer on Ile de la Réunion (courtesy of Serge Gélabert). Such
beautiful sceneries are very difficult to reproduce in virtual worlds.

huge representations, which makes this solution intractable. Another solution is to
manually create waterfall models with standard modeling tools, using manifold meshes
and/or particles, and to position and animate them by hand. Both of these methods
require a terrain suited for supporting a waterfall, which is impossible to check before
the waterfall is modeled. Changing the terrain requires to completely recreate the whole
waterfall model, and vice versa.

4.2.1.2 Contributions

In this work, we combine interactive and procedural methods to ease the process of
designing consistent waterfall scenes. Our solution is based on a new interactive procedural
model for flowing water networks. It enables users to easily shape complex waterfall scenes
while automatically enforcing the consistency of the results in terms of hydraulic flow and
terrain embedding. Our main contributions include the introduction of:

— a slope-flow diagram-based classification of waterfalls;
— three parametric models for designing waterfall elements;
— a procedural method for ensuring the waterfall network consistency;
— automatic methods for locally adapting water trajectories to the terrain and/or the

terrain to the flow.
All these contributions combine nicely into a vectorial editing framework allowing

an artistic approach to river and waterfall scenery design. The resulting scene could be
either used as a synthetic environment for games or films, or as an initial setup for further
refinements through physically-based simulation.

4.2.1.3 Preservative structure

Rivers and waterfalls are typical stationary phenomena. It seems therefore natural to
aim at editing a static shape for modeling their animations. This shape is the preservative
structure we are looking for.

Our goal is to offer some simple tools for editing the shape of the waterfalls trajectories,
in the form vectorial controllers. Those controllers are used for generating a finer-scale
representation of the waterfall network. This representation is converted into a texture-
animated mesh, and the latter is used for adequately deforming the terrain so that flow
consistency is preserved.

82

CHAPTER 4. DESIGN OF ANIMATION

The challenges of waterfall scene editing rely in the inter-relationship between the
terrain and the waterfall rather than in the animated nature of the waterfall. Still, it
shows how stationary phenomena can be modeled using static shape modeling tools.

4.2.2 Overall system

The goal of this method is to leave the coarse-scale design of waterfall scenes in the
hands of the user, while automatically generating consistent and detailed results. The
pipe-line of our method is illustrated in Figure 4.2. Here is an overview of each step:

1. Given the navigable 3D view of a terrain, the user starts by creating a coarse
representation of the waterfall network geometry (trajectories and flow of the water
bodies) and topology (direction and connection of the bodies). For doing this, the
user selects a controller type: contact, free-fall, and pool; Then he places 3D control
points which are interpolated using Cardinal Splines. We call the resulting oriented
vectorial controller network U ; The later is interactively checked and adapted
for down-hill validity (all rivers must go down-hill with a minimum slope). This
step is detailed in Section 4.2.2.1.

2. Each arc of the controller network corresponds to a waterfall. A custom hydraulic
resolution procedure allows us to compute a flow in each of those arcs, yielding
what we call the hydraulic graph G. This step is detailed in Section 4.2.2.2

3. Each point of an arc of the hydraulic graph can be associated with a flow and a slope.
These two parameters determine a class to which this point belongs, according
to our quantitative waterfall classification described in Section 4.2.3. Each arc
is divided into constant-class segments, and this class is used for computing fine
parameters such as the width and the precise trajectory. We call the result the
waterfall network W . This step is detailed in Section 4.2.2.3.

4. Lastly, all data contained in the waterfall network are combined inside a geometrical
representation called the integration mesh M. The latter is used for defining
terrain deformations and combined with segment types for creating parameter maps
used for rendering (fine scale speed, rock and foam densities, and wave intensity).
Finally, the integration mesh is used as a visual representation for the water surface;
It is textured and animated from the fine-scale parameters computed previously.
This step is detailed in Section 4.2.2.4.

Users give two kinds of information about the waterfall they create: its coarse type
(by selecting the appropriate tool), and its coarse geometry (by positioning control points).
Both informations are used inside the two-level quantitative classification scheme for
yielding fine-scale information: a precise type (allowing to predict fine-scale parameters)
and a precise geometry (through types-specific subdivision).

Note that the controller network is still editable at any time: each edit of the controller
network triggers the processing of the whole pipe-line. This allows the user to iteratively
modify the animated waterfall scene model.

The user can interactively visualize all the data produced by the system, as shown in
Figure 4.3.

83

4.2. WATERFALL SCENES

plunge
river

cascade
stream
horsetail
pool

(d) Waterfall network

(a) Initial scene (c) Hydraulic graph

pool
free-fall
contact

source well
branch

(f) Final scene (e) Integration mesh

(b) Controller network

control point
connection

contact
free-fall
pool

U
se

r
ed

it
s

H
y
d
ra

u
li
c

re
so

lu
ti

on

Types determination

G
eom

etrical
ex

tru
sion

T
errain

d
eform

ation

U G

WM

Figure 4.2 – Overview of our waterfall editing framework. An original terrain (a) is used as
a support for creating a vectorial controller network U (b). A flow computation procedure
transforms U into a hydraulic graph H (c). Flow and slope are combined for determining a local
waterfall types (d) which let us infer the geometry of the river M (e). Finally, the terrain is
deformed and integrated with the animated river (f).

(a) Initial terrain (b) Controller network (c) Speed map

(d) Waterfall types (e) Deformed terrain (f) Final result

Figure 4.3 – Interactive visualization of each step of our pipe-line.

84

CHAPTER 4. DESIGN OF ANIMATION

4.2.2.1 Network creation

The user builds a controller network U composed of a set of vectorial elements {Vi}
called controllers. A controller Vi is a cardinal spline associated to a controller type
αi ∈ { free-fall, contact, pool }. Cardinal splines are defined through control points; A
control points can be shared between multiple controllers.

In terms of user interface, the user starts by selecting a controller type. Depending on
the latter, different design tools are offered:

— A contact controller is created by positioning a series of 3D control points on the
terrain (and optionally over and under it);

— A pool controller is first defined by a flat plane, on which is defined a closed contour
with 2D control points;

— A free-fall controller is created by positioning two endpoints in 3D, the lower one
being typically placed inside a pool.

Free-fall and contact controllers are oriented according the ordering of their control points:
The first inputed control points are preceding (i.e. are considered up-stream of) the later
ones.

During editing, point and curve magnets are used to facilitate the interactive creation
of the connections between elements, like in most classical vectorial editing tools. Moreover,
the user can insert, delete, and move control points on each curve, and cut or merge
controller curves.

To ease the adaptation of the controller network to the underlying terrain, the user
can project all control points onto the terrain. They can also define, if desired, an offset
from the terrain’s local height for each control point. When the projection tool is used for
pools, which are constrained to be flat, the plane level is automatically set to the average
height of all projected contour points.

Extremity control points of a controller can be re-used for starting a new controller,
creating a junction. When a controller Vi starts at the control point where another
controller Vj ends, we say that Vj precedes Vi.

Minimum slope For U to be consistent, the system must ensure that each control point
is higher than all its successors (in the same controller as well as in successive ones). This
allows the water to flow "down" in the user-defined direction.

This is done by using some automatic correction of the user-defined positions, during
a traversal of the controller network (see Figure 4.4): Starting with the sources of the
network, and traversing it in a topological sorted order, we check that each control point
maintains a given slope with each of its successors. If not, the failing control point is
lowered to match the constraint. Pool contour planes are lowered if necessary, according
to the full set of incoming controllers. At this stage, loops in the controller network are
detected and deleted.

4.2.2.2 Hydraulic resolution

Starting from the controller network U , we build the hydraulic graph G as an oriented
graph representing the flow of our waterfall network. G is composed of:

— a set of typed nodes N = {βj}, where βj ∈ { source, well, branch, pool } is a node
type; and

85

4.2. WATERFALL SCENES

smin smin smin

pj,k+1

pj,k+2

pj,k+3

pj,k

(a) (b) (c) (d)

Figure 4.4 – Minimum slope constraints are imposed on each node of the controller network, to
make it consistent with the user-defined flow direction. From left to right: An initial controller
network (a) is progressively modified (b, c, d). The algorithm performs a breadth-first traversal
of U and lowers every node which do not satisfy the minimum slope constraint.

— a set of weighted arcs A = {aj}, with aj = (β0
j , β1

j , γj), where β0
k is the origin, β1

k is
the end, and γj is the flow passing through of the arc.

Graph construction A node in G is generated for each free-fall, contact controller
extremity, and for each pool in U . Pool controller nodes are given the type pool; Controller
extremities associated to multiple free-fall and contact controllers are given the type branch;
Other controller extremities are given the type source if they have no predecessor, and
well otherwise. Arcs are created between corresponding nodes of G for all free-fall and
contact controllers of U .

Flow computation All water exchange in the network are supposed to be represented
in G. This means that the flow is constant through the arcs of the graph, and that the
incoming flow of a node equals its outgoing flow. Expressing this at each node of the
hydraulic graph leads to a system of interconnected equations.

For solving this system, the graph is traversed in dependency order from the sources
to the wells, and a node type-dependent heuristic is used for progressively determining arc
flows. This enables us to take into account the user specifications on the relative strength
of the input flows, and to generate a solution that best matches the coarse geometric
trajectories in terms of branching angles at each node, as explained next.

Branch flow repartition The flow of an outgoing arc at a branch node should depend
on the angles between the inflow and outflow arcs, to capture the natural course of water.
For instance, we expect that most of the flow should follow its own original direction.

Let {aj} be the set of input arcs of branch node βi. Each aj can be associated with an
incoming direction represented as a normalized vector uj (see Figure 4.5). Let {bk} be
the set of outgoing arcs of βi, and {vk} their corresponding directions. We distribute the
incoming flow

∑
j γj to each output arc according to a normalized weight w̄j,k defined as:

wj,k = 1 + (uj · vk) w̄j,k =
wj,k∑
l

wj,l

. (4.1)

The outgoing flow γk for arc bk is computed as:

γk =
∑

j

γjw̄j,k. (4.2)

86

CHAPTER 4. DESIGN OF ANIMATION

u0

v0

v1

v2

Figure 4.5 – Flow repartition in a branch. Left: Input and output directions. Right: Resulting
flow exchange, drawn as segment thicknesses.

Pool flow repartition Because the shape of a pool could be complex, distributing the
flow according only to the angles between inflows and outflows would not be realistic, while
computing a full simulation would be computationally expensive and could be unusable
in an interactive system Zhu et al. (2011). Instead, we simply distribute inflows equally
to all the outgoing arcs, except when we need to take into account relative flow-strength
pre-set by the user for these branches.

4.2.2.3 Procedural fine-scale generation

In this section, we generate the waterfall network W from the controller network
U , which contains the waterfalls coarse trajectories, and the hydraulic graph G, which
contains the flow information. The waterfall network is composed of waterfall segments
Si, interconnected by waterfall nodes Bi.

We start the construction process by subdividing the controller trajectories into fine-
scale trajectories. Subdivided trajectories are waterfall segments. We compute the type of
each segment using the classification from Section 4.2.3 and deduce visual parameter for
each of them.

pi

pi+1

m

p

c

a
x

v

w

b

(a) (b) (c)

Figure 4.6 – Recursive subdivision process for waterfall network segments: (a) The segment
[pi, pi+1] is subdivided at its middle m, which is moved along perpendicular direction p. (b) The
final position x is the point that minimizes our cost function C(x). (c) The process is iterated
until segments are smaller than the threshold l.

87

4.2. WATERFALL SCENES

Fine-scale trajectories In order to procedurally refine the coarse-scale trajectories
created by the user, we provide a fractal-like subdivision scheme based on midpoint
displacement. This scheme adapts the fine-scale trajectories to the underlying terrain
while matching user inputs (see Figure 4.6).

Let ai = (pj, pj+1, γi) be an arc of G. We subdivide this segment at its middle point m

and move it along p, the normalized vector orthogonal to [pj, pj+1] in the top view plane.
This creates two new segments, V = [pi, m] and W = [m, pi+1], and we note v and w their
respective normalized directions. The new point can be written x = m + λp, λ ∈ [−τ, τ],
where τ is the maximal displacement amplitude. While the original midpoint displacement
scheme randomly selects a value for λ, we choose the value which minimizes the following
cost function:

C(x) = wg.Cg(x) + wa.Ca(x) + wr.Cr(x) (4.3)

where Cg(x) is the gradient cost, Ca(x) the angle cost, and Cr(x) the random cost. The
values wg, wa, and wr are weight coefficients associated to those costs; We set wg = 1,
wa = 0.1, and wr = 0.2 for all our examples.

The gradient cost favors paths that go down the slope of the terrain; We define it as:

Cg(x) =
1
4

[∣∣∣∣∣1 +

∫
[0,1] g̃(pθ

pi,x
).v dθ

‖pi+1 − x‖

∣∣∣∣∣+
∣∣∣∣∣1 +

∫
[0,1] g̃(pθ

x,pi+1
).w dθ

‖x− pi‖

∣∣∣∣∣

]
(4.4)

where vector g̃(x) is the normalized gradient of the terrain elevation at position x, and
pθ

a,b is a linear interpolation of a and b with coefficient θ. Cg will be minimal for paths
descending the height gradient: g̃(x).v = −1 if v is descending through the biggest slope.

The angle cost prevents undesirable sharp angles that could appear between two
consecutive segments, because of their independent subdivisions. We take into account the
angles a = (pi−1pi, pix), b = (pix, xpi+1), and c = (xpi+1, pi+1pi+2) (in radians), created at
the introduction of new point x (see Figure 4.6), as:

Ca(x) =
(

a

π

)2

+

(
b

π

)2

+
(

c

π

)2

(4.5)

The random cost aims at creating meanders on flat terrains. It is based on a 2D
Perlin noise. Note that is value is negligible compared to the gradient cost on non flat
terrains (due to a low wr).

The segments are recursively subdivided until their length is inferior to l. The maximal

displacement amplitude is the half of the segment length: τi = ‖pi+1−pi‖
2

. The detail
size l is proportional to the flow: li = γi/σ . This enables us to get a more detailed
trajectory for small flow values, enabling streams to become more winding than rivers. In
our prototype we use σ = 0.5.

Waterfall Network Construction The waterfall network is composed of waterfall
segments Si = (si, γi, κi, δi, ǫi, ζi) where:

— si is the segment vector;
— γi the flow going through the segment;
— κi ∈ { stream, horsetail, cascade, rapid, block, river, ribbon, plunge, ledge, cataract }

the waterfall type according to our classification (see Section 4.2.3);
— δi the speed of the flow; and
— ǫi and ζi respectively the width and depth of the riverbed (Figure 4.7).

88

CHAPTER 4. DESIGN OF ANIMATION

These segments are interconnected by waterfall nodes Bj = (µj, γj, ζj) where:
— µj ∈ { source, well, branch, pool } is the node type;
— γj is the total incoming flow; and
— ζj is the depth.
Each segment vector si is directly extracted from the subdivided trajectories computed

previously, and its flow γi is equal to the flow of its corresponding graph arc. All consecutive
segments are connected by a branch node with only one input and one output. The other
segments are connected by the waterfall nodes Bj constructed from the hydraulic graph
nodes Nk and their associated controller Vl. The remaining parts of this section describe
how the other segment properties are computed.

For each waterfall segment Si, we know its slope si and its flow γi. These values
automatically determine the type of waterfall segment κi, as explained in Section 4.2.3.

Note that the user may define a non-plausible waterfall controller, e.g., defining a
free-fall on a flat terrain, or a contact on a vertical terrain, the waterfall segment may lie
outside of the valid range of values in the slope-flow graph. In this case, the parametric
model is still used by considering the closest type, but the user is notified (i.e., the related
segment is drawn in red). He can then either validate the current design (even if it is not
fully realistic), or select more realistic controllers.

The final step in the generation of the waterfall network is to compute the properties
of each segment Si, i.e., its speed δ, its riverbed width ǫ and depth ζ, from the slope and
flow information we have. We propose a resolution that leads to satisfying results while
being intuitive and fast to compute. Our hypothesis is to consider the waterfall segment
as a closed pipe, with a constant flow and a triangular cross section (Figure 4.7). In this
case, the flow can be expressed by:

γ =
δǫζ

2
(4.6)

Since we have one equation with three unknowns and complex inter-dependencies, a
physically accurate solution should rely on strong assumptions, which would not be
justified here. Instead, we decided to solve the system by providing simple and intuitive
functions to compute these variables.

We first propose to solve for the speed as a simple linear function of slope s: δ = k.s,
where k ∈ R+. Then, we set the depth as a function fd of the width and of the segment
type as: ζ = fd(ǫ, γ). Note that our slope constraint enforces that s > 0 everywhere for a
waterfall segment. In our prototype, we used k = 10 and fd(ǫ, γ) = γ

2
.

γ ζ

ε

δ

Figure 4.7 – In first approximation, waterfall segments are considered as having a triangular
section and constant flow. This simplification is used for computing the segment width and
depth from the flow.

Applying Equation 4.6 is now possible, which allows us to compute the width and to
deduce the depth value. While simple, our model efficiently provides plausible results using
intuitive parameters. In Figure 4.8, the procedural component of our modeling system

89

4.2. WATERFALL SCENES

correctly handles a reduction of the input flow: When the upstream flow is manually
reduced, the following free-fall flow reduces accordingly, as shown in Figure 4.8. The
subsequent nodes in the graph are then affected. Note how the type of the outgoing
element automatically changes, i.e., from ledge to plunge.

(a) (b)

(c) (d)

Figure 4.8 – The water flow has a direct impact on the visual appearance of the waterfall. This
is due to the fall geometry (a bigger flow implies a larger fall) and to its appearance: a bigger
flow means a different type, which is set to look different.

4.2.2.4 Geometrical embedding

The data computed until now are used for generating an integration mesh. It is used
as a visual representation for the water surface, but also for creating parameter maps and
for defining terrain deformation.

Integration mesh The integration mesh is a 3D mesh defining the waterfall surface. It
is composed of the surface meshes for all waterfall elements, as shown in Figure 4.9. It is
generated using the fine-scale network trajectories and the widths of the segments.

The mesh parts corresponding to contact elements are computed by extruding segment
trajectories of their half width ǫ

2
along their normal in the horizontal plane. Pool and

branch meshes are simply triangulated from their contours. Free-fall meshes are extruded
from the borders of their incoming segments and follow the free-fall element curve. We
carefully handle the connections between mesh parts, namely between contact and branch
meshes, contact and pool meshes, and contact and free-fall meshes.

Parameter maps creation To further animate and decorate the waterfall, we use
waterfall type-dependent parameters. These parameters are encoded into parameter maps,

90

CHAPTER 4. DESIGN OF ANIMATION

Contact

Pool

Free Fall

Branch

Figure 4.9 – The integration mesh is generated procedurally from the refined waterfall trajectories
and flow data. Each element is generated independently while satisfying boundary constraints.

as shown in Figure 4.12. A parameter map is computed by rendering the integration mesh
viewed from above into a texture, similarly to the road footprints of Bruneton and Neyret
(2008). During this process, we render each sub-mesh in a gray-scale map, depending on
its type and on the map that is being computed.

Terrain decorations are generated using the water map, which corresponds to the
integration mesh footprint. This map is used to mask the procedural seeding of trees and
plants to prevent a generation within the water surface, and also to change the terrain
texture to, for instance, a bedrock one.

Table 4.1 lists a set of parameter values depending on the waterfall type. By using
these values as gray scale values during the map computations, we generate a foam map,
a rock map, and a disturbance map. The foam map identifies the presence of foam on the
water surface and is used to select the water diffuse texture; The rock map indicates the
density of rocks to generate; The disturbance map relates to the amplitude of the waves
on the water surface (see Figure 4.10).

The variation of values depending on the waterfall type allows increases of the visual
difference between them, and the overall appearance of the scene. Note that some filtering
is applied to these maps to reduce visible transitions between different types.

The speed map is a texture that represents the 2D speed of all water in contact with
the terrain in the scene. It is used for animating the textures of the water surface.

Figure 4.11 shows how the speed of the water is computed depending on the type of
the segment. We use different approaches to compute the surface speed of contacts, pools,
and branches. For a contact, the speed at point x is given by:

δx = δc

(
1−
‖x− c‖

‖b− c‖

)
(4.7)

where c and b are the projections of x along the cross section on the main axis and on the
shore respectively. For a pool, a fixed number of 2D fluid simulation steps are evaluated
(see Stam (1999)). For a branch, we use a standard interpolation method based on a
standard technique of weighting by the inverse distance; Each point pi is considered as a

91

4.2. WATERFALL SCENES

(a) Riverbed (b) River rocks (c) Water surface

(d) Foam texture (e) Wave displacement (f) Final scene

Figure 4.10 – Each parameter map is used for generating procedural details of the waterfall.
Original details of the terrain are removed if they are inside the river bed.

velocity constraint δi. The speed within a branch is given by δx =
∑

i ωiδi. Interpolation
weights ωi are computed using the equation:

ωi =
ω̃i∑
i ω̃i

(4.8)

ω̃i =
∏

j

(
1−
‖x− pi‖

‖pj − pi‖

)
(4.9)

Finally free-fall are not rendered like the other parts in the speed map, but their mesh
part is instead animated using a standard ballistic velocity model.

p0(x)
p1(x)

x

(a) Contact

p0

p2

p1

x

(d) Branch

p1

p2

p0

x

(b) Pool

Constained

Computed

(c) Free-fall

p0

p1

x

Figure 4.11 – Each element of the integration mesh is associated to a speed computation procedure.

Terrain deformation The terrain is stored as a heightfield, on which a deformation
map is applied to adapt it to waterfalls. This deformation map is computed using a
vectorial constrained Poisson solution, as inspired by the terrain modeling method of

92

CHAPTER 4. DESIGN OF ANIMATION

river

plunge

pool

river

stream
cascade

horsetail

stream

(a) Tagged integration mesh (b) Parameter maps

speed

foam

rocks

waves

(c) Animated river

2
D

p
ro

je
ct

io
n

P
ro

ce
d
u
ra

l
m

o
d
el

Figure 4.12 – The integration mesh M associated to the waterfall types (a) allows us to define
parameter maps (b): Speed, rock density, foam, and wave intensity; These are used in a procedural
model generating the animated details of the waterfall surface (c).

Hnaidi et al. (2010). However, our solution differs from theirs on three points: It propagates
deformations (i.e., height differences) instead of heights; It generates three different types
of constraints: riverbanks, riverbeds, and overhang; As a result of our approach, small
details on the original terrain will remain on the terrain after deformation.

Riverbanks constrain the terrain to match the border of the integration mesh. The
difference d is the value that will be diffused within our solver such that is matches 0 on
∂M. We also diffuse a gradient constraint to ensure that the neighborhood of the terrain
just outside of the waterfall is higher than its border (see Figure 4.13a). Please refer to
Hnaidi et al. (2010) for more details about the diffusion algorithm.

The border constraints do not provide any control on the river profile. For this reason,
riverbeds constraints are added. For a given point x located inside the waterfall border
we create a height constraint based on its distance to y ∈ ∂M, the nearest point of the
border. A profile function fd is applied on this distance for creating the river profile. The
operation is repeated on a dense sampling basis (see Figure 4.13b). This defines a set of
additional elevation constraints processed using our solver, as shown in Figure 4.14.

d

(a) (b) (c)

Figure 4.13 – The initial terrain (a) is deformed for satisfying boundary constraints (b) forming
the riverbanks, as well as profile constraints (c) forming the riverbed. See also Figure 4.14

In order to create overhangs, we generate a horizontal displacement map based on
the same diffusion technique. This map is then used to deform the terrain, as presented
by Gamito and Musgrave (2001). Along the border at the top of a free-fall, we set a
displacement constraint λu, where u is the free-fall direction and λ a constant defined
by the user. In addition, we set a displacement constraint −λu along the border of
the receiving pool, under the free-fall (see Figure 4.15). As shown in Figure 4.16, these
two constraints generate a flipped "S" curve. The top of the overhang is extended in
the direction of the flow, and the bottom of the receiving pool extending into the cliff,
simulating erosion and falling rocks.

93

4.2. WATERFALL SCENES

(a) Original terrain (b) Carved river bed

Figure 4.14 – The river bed is created by deforming the terrain, changing the texture, and adding
animated fake caustics.

λu

−λu

overhang

erosion

Figure 4.15 – Overhangs are a visually important feature of free falls due to erosion. We model
this phenomenon with a horizontal displacement field proportional to the water speed at the top
of the fall and to its opposite at the bottom. See figure 4.16.

(a) (b)

Figure 4.16 – Resulting waterfall without (a) and with (b) procedural overhang.

94

CHAPTER 4. DESIGN OF ANIMATION

4.2.3 Main contribution: waterfall classification

(a) Block (b) Cascade (c) Cataract (d) Horsetail (e) Ledge

(f) Plunge (g) Rapid (h) Ribbon (i) River (j) Stream

Figure 4.17 – Artist view of the ten types of visually distinguishable waterfalls we use in our
classification. © Estelle Charleroy.

As we saw, a waterfall type κi is a fine-scale semantic information concerning waterfall
segments Si. That type is essential in the creation of the waterfall segment representation,
since it will be used in the parameter map generation step, which in turn dictates the final
appearance of the waterfall. Distinctive waterfall segment appearances help to identify
the waterfall state and create more impressive scenes.

Several classifications of waterfalls have been proposed by hydro-geologists and/or
artists, such as the one depicted in Figure 4.17. There are two main classification systems:
volume based , and shape based. The volume based classifications such as the one presented
by Beisel (2006) sorts the waterfall in classes using their water flow as only descriptor.
However, very different-looking waterfalls can have similar flows; This proves that it does
not suffice for visually discriminating waterfalls. On the other hand, the geometry-based
classifications such as the ones presented by Danielsson and Danielsson (2006) or Plumb
(2005) only provide visual classes, without any quantitative way of determining the type
of a precise waterfall part.

Our approach consists in combining those two classification schemes in order to get
the visual distinctiveness of shape-based classifications and the deterministic procedure
of volume-based methods. More precisely, the volume and other quantitative parameters
are used as inputs to describe the type of a waterfall. In turn, each type is associated
to appearance parameters that we are able to use as outputs for creating the waterfall
representation.

On a coarse level, waterfalls parts can be separated into three categories: those flowing
in contact with the terrain, those free-falling in a reception pool, and the reception pool
itself. These categories correspond to the controller types αi used for creating the controller
network.

On a finer level, we need to distinguish sub-categories inside each coarse category. By
studying the existing classifications and looking at many real cases, we noticed that the
geometrical type of a waterfall mostly depends on two important parameters: the intensity
of the water flow, and the slope of the terrain. Indeed, by reducing the flow intensity, a

95

4.2. WATERFALL SCENES

Input Output

Type Slope Flow Foam Rocks Waves Particles

Fr
ee

-f
al

l Ribbon 90° 10 % 0 0.3 0 0

Plunge 90° 20 % 1 0.4 0 0.2

Ledge 90° 50 % 0 0.5 0 0.5

Cataract 90° 80 % 1 1 1 1

C
on

ta
ct

Stream 10° 20 % 0 0.2 0 0

River 5° 50 % 0 0.2 0.1 0

Rapid 10° 50 % 0.2 0.5 0.5 0

Horsetail 50° 20 % 1 0 0 0

Cascade 30° 30 % 0.5 1 1 0

Block 50° 60 % 1 0 0.2 0

Table 4.1 – Properties for each type of waterfall. The coordinates (slope, flow) indicate the
location in the classification graph of Figure 4.18. The slope values indicate an average inclination
in degrees, and the flow values give more a percentage of a maximal flow. Foam, rocks, disturbance,
and particles are parameters in the range [0, 1] used for the procedural generation and for the
rendering.

river becomes a stream, a cascade becomes a horsetail, and a cataract becomes a plunge.
Increasing the slope also transforms a river into a rapid or a block.

This leads to the classification depicted in the flow/slope diagram of Figure 4.18, where
all geometrical types are positioned as seeds of a Voronoï segmentation. Table 4.1 contains
the seed coordinates we used in our prototype. These coordinate describe archetypes of
each fine-scale waterfall type in terms of slope and flow. They were set by trials and
errors to provide interesting behavior during the modeling sessions. The types of water
flows on the left belong to contact waterfall-segments, and the ones on the right belong to
free-fall waterfall-segments. However in our case, the coarse type is imposed by the user
through a choice of controller type: If a waterfall segment falls outside of its category in
the slope-flow diagram, the user is notified.

Each waterfall segment is assigned a type depending on its closest archetype neighbor
in the slope-flow diagram. This property is used by our geometrical generation algorithm,
as seen in the previous section.

4.2.4 Results

The system is implemented in C++, using OpenGL and GLSL Compute Shaders. The
computations are performed on computer equiped with an NVidia 660GTX GPU and
an Intel Xeon E5-1650 CPU running at 3.20 GHz with 16 GB of memory. The system
uses two threads: one CPU thread for the interface and computation control, and one
CPU/GPU thread for the GPU computations and rendering.

96

CHAPTER 4. DESIGN OF ANIMATION

Slope

F
lo

w

Contact

River Block
Cataract

Ledge

Plunge

RibbonHorsetail

Stream

Cascade

Rapid

Free-fall

Figure 4.18 – Slope-flow diagram allowing to quantitatively discriminate waterfall types. Types
regions are Voronoï cells, which seeds coordinate are given in Table 4.1.

Rendering The waterfalls in our editor are rendered in real time using the integration
mesh and the parameter maps computed earlier (Figure 4.12). We use the technique
of "tiled directional flow" (see van Hoesel (2011)) for the animation of both the normal
texture of the waves and the diffuse texture of the foam. The splashes at the bottom of
the falls are rendered using particles emitted from the free-fall ends.

Evaluation Figures 4.3 and 4.21 show an overview of our system under editing, with
different stages described in caption. The accompanying video (see Section 1.4.4) gives a
much better understanding of our system in action, and illustrates several of the features
described in the previous sections.

In Figure 4.19, we show a photo of a real waterfall network, and the result of a
10-minute session with our modeling system; We started with a terrain resembling to the
original photo, but without riverbeds. The figure shows that coherent waterfalls similar to
those on the photo can be easily modeled, while guaranteeing their physical plausibility.

Figure 4.20 shows a non-realistic scene created by an artist during a short modeling
session. It shows that our system enable its users to create locally realistic scenes while
leaving them free of the large-scale design.

We organized a user modeling session with two experienced digital artists. After a
20-minute training period, they were both able to create waterfall scenes such as the
waterfall presented in Figure 19, all in under 30 minutes. We asked to reproduce the scene
of Figure 4.19a with classical modeling tools, such as Maya (2016). It took them more
than two days to reach an equivalent level of detail for both the waterfall and terrain
deformation; the longest part being the manual deformation of the heightfield to match
the waterfall mesh. Of course, Maya (2016) has not been designed to specifically model
waterfalls, but this preliminary experiment shows how specialized tools can be beneficial.

97

4.2. WATERFALL SCENES

Computation times (ms)

Fig. n G W M Terrain Speed Maps Proc.

4.19 36 2 2 112 758 258 428 284

4.3 17 1 1 177 677 404 428 297

4.21 29 1 1 77 871 494 428 324

4.20 26 1 2 30 1115 482 428 302

Table 4.2 – Performances of our waterfall editing framework. From left to right, the columns of
the table list the figure number and the number of waterfall controllers, followed by computation
times for the hydraulic graph generation (G), waterfall network generation (W), mesh generation
(M), terrain adaptation using a 2048x2048 resolution, speed map generation, details map (foam,
disturbance, and rocks) generation, and procedural detail generation.

The artists were pleased by the ease of use of our system and its efficiency. However, they
expressed a desire for finer control over the result.

Performance Our system generates a complex waterfall network over a terrain in a few
seconds (see Table 4.2). The number of elements does not have a huge impact on the
computation time. Indeed, most of our pipe-line uses a fixed size grid, so its complexity is
independent of the number of waterfall elements. When increasing the number of elements,
only the time for mesh generation, the riverbed constraints dense sampling (sub-part of
the terrain deformation algorithm), and the internal speed computation of pool varies
noticeably.

In order to ensure the consistency of our results, each time an element is modified by
the user, we run all computations again. Many simple optimizations could readily detect
what needs to be recomputed, and thus could greatly improve the efficiency of our system;
however, we felt that such optimizations were not essential in the current version of our
prototype.

(a) Initial goal (b) Artist result (c) Controller network

Figure 4.19 – The initial goal presented in Section 4.2.1 has been achieved by an artist using our
tool in 10 minutes.

98

CHAPTER 4. DESIGN OF ANIMATION

(a) Controller network (b) Interactive rendering

Figure 4.20 – Our interactive framework also allows the user to design non-realistic sceneries
with realistic details.

(a) Controller network (b) Waterfall types

(c) Carved terrain (d) Final result

Figure 4.21 – Switching easily between the layers of the system allows users to fully understand
the tool they use.

99

4.3. FLUID SCULPTING

4.2.5 Discussion

One limitation of our method comes from the trajectory subdivision algorithm. The
recursive nature of this algorithm limits the adaptation of paths in complex cases: A
locally good node position at a given step might be a bad global choice. For instance,
if there are too many obstacles on the path, the heuristic will select a point to avoid
them globally, but this selection may prevent further steps to avoid them completely. A
solution inspired by algorithms for procedural roads such as Galin et al. (2010), should
be applicable to procedural river trajectories. Another possibility would be to allow user
specified nodes to be moved automatically.

Another limitation comes from the terrain deformation technique. The terrain is
only adapted locally, and therefore it does not preserve any global hydraulic or geologic
properties. Indeed, a waterfall network can be created at an undesirable location on the
terrain, failing to respect natural river paths shaped by the terrain slope. While this may
lead to non plausible terrains, it also gives more artistic freedom to the user, which we
feel is an important property of our system. The heightfield representation of the terrain
is another limitation, as it prevents the creation of caves and underground waterfalls,
although horizontal displacement maps enable us to create overhangs (see Gamito and
Musgrave (2001)). With support for stack-based terrains as it is done by Peytavie et al.
(2009a), our system could handle more complex terrain elements.

Our method is limited in space: Our terrain deformation method relies on a grid-based
representation, which limits its application to relatively small terrains. In our examples,
we used a 2048x2048 grid with a resolution of 10 pixels per meter (= 0.254 dpi). As a
result, the terrain is limited to approximately 200x200 square meters due to GPU cache
size. Adapting our terrain representation to the structure proposed by Génevaux et al.
(2015) would be a solution.

Finally, our method is also limited in time. It relies on the assumption that waterfalls
are stationary. This hypothesis only stands for short periods (typically some weeks
or month). Waterfall networks evolve on a larger temporal scale: sources run dry or
overflow, meanders increase or disappear, overhangs collapse. At this scale, waterfalls
are a transient phenomenon. Our model could be adapted for allowing such variations of
flow and trajectories. The next section describes a method able to handle such transient
phenomenon through a particular preservative structure.

4.3 Transient Animation Modeling:

Fluid Sculpting

The work presented in this section results from a collaboration with Pierre-Luc Manteau
(Université Grenoble Alpes/Inria), Chris Wojtan (IST Austria), as well as my advisors
Marie-Paule Cani and Damien Rohmer. The resulting paper was presented at the MIG
conference in 2016 (https://mig2016.inria.fr/) and published in the conference pro-
ceedings:

Manteau, P.-L., Vimont, U., Rohmer, D., Cani, M.-P., and Wojtan, C. (2016). Space-
time sculpting of liquid animation. To appear in the proceedings of Motion In Games 2016

100

https://mig2016.inria.fr/

CHAPTER 4. DESIGN OF ANIMATION

The remaining of this section is organized as follows: Section 4.3.1 recalls the challenges
of modeling transient liquid animations; Section 4.3.2 presents space-time features as
a preservative structure suited to this problem; Section 4.3.3 explains how space-time
features are computed from a raw mesh sequence; Section 4.3.4 deals with the space-time
features representation; Section 4.3.5 details the tools we offer for manipulating space-time
features; Section 4.3.6 shows results obtained with our method; Section 4.3.7 draws the
limits of our approach and discuss its perspectives. A review of previous work tackling
fluid animation modeling can be found in Section 2.4.

Note that this work has to main contributors who are both co-first authors of the
resulting paper. Sections related to feature computation and representation (4.3.3 and 4.3.3)
are my main contributions to this work.

4.3.1 Introduction

Due to advances in fluid simulation methods over the last two decades, liquid animation
has become commonplace in 3D animation productions. The animations can be either
highly realistic — for example showing plausible fluid dynamics and interactions with
obstacles — or they can exhibit a more expressive behavior to convey specific artistic
intentions. In both cases, it is essential for the artist to be able to control the simulation
in order to achieve their goals.

Generally, the simulation control is achieved through the careful setting of a large
number of parameters such as initial conditions, boundary conditions, viscosity, or external
forces. Several reasons make the tuning of these parameters especially difficult. First,
they only offer indirect control over the animation, which makes them quite non-intuitive.
Second, it is usually not possible to have interactive visual feedback when modifying the
parameters, due to the high computational cost of liquid simulation. Third, the inherently
non-linear nature of fluid behavior makes it difficult to transfer parameter values from a
low to a high resolution simulation. In consequence, achieving a desired effect requires a
tedious trial-and-error loop, where computation is restarted multiple times from scratch
with different parameters. In many cases, this process does not allow tight control over
a sequence of waves and splashes with specific magnitudes or shapes and occurring in a
specific order.

In this work, we propose a significantly different approach. Instead of controlling a
simulation, we propose an interactive sculpting system enabling to edit pre-computed
liquid animations. Our system is based on a copy/edit/paste approach: The user can
select coherent and visually important space-time parts of a liquid animation, such as
waves or droplets, that we call space-time features; These space-time features can then be
edited in both space and time in order to change their size, orientation, trajectory or speed.
Finally, the edited space-time feature can be inserted into any destination animation at a
specific position and time set by the user.

To enable the use of arbitrary liquid animations computed using varying simulation
techniques, we based our editing framework on generic inputs; our method allows input
mesh sequences without point-wise correspondences between frames, and with arbitrary
changes of topological genus between two consecutive time steps. Also, we focused on
three requirements to make our method useful in realistic cases. First, the selection of

101

4.3. FLUID SCULPTING

the effect in the original simulation must be as simple and straightforward for the user
as possible. Therefore, once space-time features have been computed, the user can select
them using a simple click on the surface. Secondly, pasting the selected effect onto the
final animation should be handled automatically, with seamless adaptation of the pasted
fluid effect to the destination surface. Finally, the pipeline of selection, copy, edit, and
paste steps should be computed efficiently in order to enable interactive user feedback.

The key contributions of our work are as follows:
— A semi-automatic method to tag salient regions in a liquid animation.
— An algorithm that extracts coherent space-time features from a mesh sequence with

tagged vertices.
— A space-time feature representation independent from the original animation.
— A set of editing operations that allow the extraction, manipulation, and insertion

of space-time features into an animation.
The main challenge of this work is to build a preservative structure from a highly

non coherent space-time signal. The animations we manipulate are transient, and the
very nature of liquids makes it hard to establish correspondences between frames of the
animation. A drop can merge into or emerge from another body of water, a wave can
vanish or reflect. These dramatic changes of both geometry and topology mean that the
objects the user want to manipulate are evanescent; This is typically not the case in rigid
or character animation where a manipulable object – e.g. a character limb – is guaranteed
to exist over the whole animation. Space-time features are the ubiquitous preservative
structure that we use for retrieving local coherence from mesh sequence input data.

4.3.2 Overview

In this work, we focus on editing liquid animations. To be independent from the
simulation method, we take as input a sequence of meshes without any correspondences
between the mesh vertices from one frame to another. Due to the arbitrary topology of the
meshes and to the temporal coherence to be maintained for numerous geometric details,
editing each frame with a shape modeling tool would represent a tremendous amount of
work. Instead, we propose to build and manipulate a higher level representation of the
liquid animation that we call space-time features. A space time feature is a sub-part of the
animation, i.e. a sequence of sub-parts of the liquid surface. It establishes a connection
between successive frames of the animation: it is therefore a preservative structure.

Our editing pipeline generalizes standard sculpting tools such as those presented by
Ferley et al. (2000): cut/copy/edit/paste. It is made of three steps which are illustrated
in Figure 4.22. The first step extracts space-time features from the animation. As these
features represent regions that deform over time, it would be too tedious for a user to
define them by hand. We propose a semi-automatic method to detect salient regions in a
liquid animation from which space-time features will be automatically computed. The
user can then easily select them using picking: a click at a specific location at a given
frame in time results in the automatic selection of the associated feature with its full range
in space and time. The second step computes representations of the selected space-time
features that are independent from the input animation. They enable space-time features
to be transferred from one animation to another. Finally, the last step consists of editing
the space-time features and pasting them back into an animation.

102

CHAPTER 4. DESIGN OF ANIMATION

F
ea

tu
re

e
x

tr
a
c
ti

o
n

F
ea

tu
re

s
e
le

c
ti

o
n

F
ea

tu
re

e
d

it
in

g

F
ea

tu
re

in
s
e
r
ti

o
n

User

Iterative Interaction loop

Input mesh Input
features

Exported feature
database

Output
features

Output mesh
sequence sequence

Figure 4.22 – Pipeline of our method: An input fluid animation is given as a mesh sequence. It
is pre-processed into a higher-level space-time feature representation. This representation allows
the user to iteratively select features from the animation and edit them before inserting them
back to the animation. Alternatively, features can be saved and re-imported in this animation or
a different one.

Fe
at

ur
e

D
et

ec
ti

on

Fe
at

ur
e

Se
gm

en
ta

ti
on

Fe
at

ur
e

A
gg

re
ga

ti
on

Figure 4.23 – Feature extraction process, from left to right: an initial mesh sequence representing
a fluid animation is subjected to a feature detection process, followed by a segmentation step,
which results in a frame feature representation. A final aggregation step allows us to build a
temporally coherent feature structure.

4.3.3 Feature extraction

In the feature extraction step, our method defines the space-time features that the
user would like to manipulate. This process is divided into three steps, as described in
Figure 4.23: detection, segmentation, and aggregation. While detection is semi-automatic
(it is interleaved with user interaction to define customized regions of interest throughout
the animation), segmentation and aggregation are fully automatic.

Notation The input of our method is a mesh sequence over the time steps t that we note
M = (M t), where M t is a manifold triangular mesh. We note T (.) the temporal length
(i.e. the number of frames) and L(.) the characteristic spatial length of any space-time
sequence (mesh sequence or feature). Given a triangular mesh X, we call NX the set of
its vertices and PX the set of its faces. A vertex can carry attributes. We note A(n, X)
the value of the attribute A at the vertex n of the mesh X. In the following, we will note

103

4.3. FLUID SCULPTING

pos(n, X), norm(n, X), and curv(n, X) for positions, normal, and curvature respectively.
∆A(n, X) designates the Laplace-Beltrami operator applied to the attribute A at vertex n
of the mesh X. A comprehensive list of notations can be found in Table 4.3.

4.3.3.1 Mesh part manipulation

Most of the operations we propose for manipulating mesh sequence rely on a particular
structure that we call mesh part. Intuitively, it represents a localized region on a triangular
mesh. Space-time features are represented as sequences of such mesh parts. The remaining
of this section defines more rigorously this structure as well as the operations it can
undergo.

We define R a part of mesh X = (NX , PX) as a subset of its vertices: R ⊂ NX .
The border of R, noted ∂R, is defined by:

∂R = {n ∈ R|∃ni ∈ neib(n), ni 6∈ R} (4.10)

where neib(n) is the set of neighbors of n in X:

neib(n) = {n′ ∈ NX |∃p ∈ PX , n ∈ p ∪ n′ ∈ p} (4.11)

Mathematical morphology operators. R being itself a set, usual set operations can
be performed on it such as union, intersection and difference. More geometric operations
can also be defined: R can be eroded into ero(R) using the following relation:

ero(R) = {n ∈ R|∄ni ∈ neib(n), ni 6∈ R} (4.12)

which is equivalent to ero(R) = R \ ∂R.
Reciprocally, R can be dilated into dil(R) using the following relation:

dil(R) = {n ∈ NX |∃ni ∈ neib(n), ni ∈ R} (4.13)

Dilation can be extended to an arbitrary order k:

dilk(R) = dil(. . . dil(︸ ︷︷ ︸
k terms

R) . . .) (4.14)

The same stands for erosion:

erok(R) = ero(. . . ero(︸ ︷︷ ︸
k terms

R) . . .) (4.15)

We call opening of order k the mesh part defined as:

opek(R) = dilk(erok(R)) (4.16)

and closure of order k the mesh part defined as:

clok(R) = erok(dilk(R)) (4.17)

These operations will be used in the detection phase. For a detail overview of mesh
part mathematical morphology, we refer the reader to the work of Serra (1986).

104

CHAPTER 4. DESIGN OF ANIMATION

4.3.3.2 Detection

The detection phase aims at defining a sequence of regions of interest R = (Rt) on M .
A region Rt is represented as a mesh part.

To let the user easily and intuitively define R, we propose a semi-automatic tool. This
tool is based on two key components that we describe in detail below. Combined together
they let the user define R in a coarse-to-fine manner: First, curvature analysis is used to
automatically detect salient features at each frame and initialize R. Then, topological
filtering allows us to interactively adjust R. We also added a painting tool that allows
the user to fine-tune each Rt if needed by locally removing or adding vertices from R by
clicking.

Multi-resolution curvature analysis. We chose a curvature criteria to extract features
as it is a natural asset for detecting waves and ripples in liquid animations. Moreover, the
intimate relationship between surface curvature and liquid surface dynamics had already
led previous work to use curvature as a tool to enrich liquid simulations, for example
with splashes (see Takahashi et al. (2003)), foam (see Ihmsen et al. (2012)), textures (see
Narain et al. (2007)), and fine-scale turbulences (see Mercier et al. (2015)).

Curvature is computed at each vertex n of the animation meshes M t using the following
formula:

curv(n, M t) = norm(n, M t) ·∆pos(n, M t) (4.18)

Vertices are colored with respect to their curvature magnitude, enabling the user to
interactively observe the curved regions and their deformations on the fluid surface while
playing the animation (see Figure 4.24a). Then we provide two sliders that the user can
interactively tune to filter the curvature and select meaningful regions. These sliders
represent:

— A number of iterations β of Laplacian diffusion on the curvature values. We define
the i-th iteration of the Laplacian curvature diffusion as:

curvi+1(n, M t) = curvi(n, M t)− λ.∆curvi(n, M t) (4.19)

with curv0(n, M t) = curv(n, M t) and i ∈ [0, β]. In our experiment, we used λ = 1
as a diffusion factor. Laplacian diffusion of the computed curvature values is used to
decrease the spatial frequency of the curvature function over the surface. This allows
the user to select broader regions in an efficient way without actually smoothing
the geometric details on the mesh (see Figure 4.24b).

— A threshold γ on the curvature of R. All the vertices whose curvature is above γ
are added to R. This allows the user to control the extent of R (see Figure 4.24c).
In the end, we can mathematically define a region of interest for a frame t as:

Rt = {n ∈ NMt|curvβ(n, M t) > γ} (4.20)

Topological filtering. In many cases, curvature-based selection is not sufficient to
extract meaningful animation features. For instance, in Figure 4.24c, the user might want
to select the whole crown splash and not only its contour as it has been done with the
curvature analysis tool. To remedy these issues, we use the mathematical morphology
operators presented in Section 4.3.3.1. They allow the user to interactively and easily
refine the regions of interest detected by the curvature analysis.

105

4.3. FLUID SCULPTING

(a) Mean curvature (b) Mean curvature

(c) Curvature thresholding (d) Topological closure

Figure 4.24 – Curvature analysis-based feature detection.

We propose two main tools:
— Erosion for disconnecting, reducing or removing parts of R; and
— Dilatation for connecting and enlarging parts of R.

Both tools can be combined for performing openings and closures of arbitrary degree on R.
In practice, these tools were particularly useful for selecting regions such as the interior
part of the circular wave in Figure 4.24d, achieved with a closure.

4.3.3.3 Segmentation

Once R has been computed, the segmentation step decomposes each Rt into connected
components (Ct

k)k,t, where k is the index of the component. Mathematically, a region of
interest for a frame t can be defined as the disjoint union of its connected components:

Rt =
⊔

k

Ct
k | ∀t ∈ [0, T (M)− 1] (4.21)

The decomposition is computed using the straightforward breadth-first search on each
frame in parallel. We call each Ct

k a frame feature.

4.3.3.4 Aggregation

Finally, the aggregation step extracts temporally coherent sequences of frame features
that we call space-time features. The process is divided into two steps as illustrated in
Figure 4.25. First, we build a graph of all possible frame feature connections, and then we
compute a vertex-disjoint path cover of that graph. Temporal coherency of the resulting
paths is enforced by minimizing a geometric matching cost described below. We call the
resulting paths space-time features.

106

CHAPTER 4. DESIGN OF ANIMATION

t1 t2 t3

(a) Initial DAG

t1 t2 t3

(b) Vertex-disjoint path cover

Figure 4.25 – Left: Frame features (red dots) are assembled into a directed acyclic graph as
described in Section 4.3.3.4. Each edge of the graph carries a cost computed with Equation (4.22).
Edges whose cost is over a user-defined threshold (gray dashed lines) are discarded. Right:
a vertex-disjoint minimum-cost path cover has been computed based on Algorithm (3). The
extracted paths represent space-time features.

Graph construction. We build a directed acyclic graph G = (VG, EG) representing the
possible connections between frame features (see figure 4.25a). The set of nodes VG is
made of the frame features (Ct

k)k,t while the set of edges EG is made of oriented edges eij

linking each pair of consecutive frame features Ct
i and Ct+1

j .

Edge cost computation For every edge eij ∈ EG, we compute a cost measure ωij.
This measure relates to the geometrical matching between its two endpoints vi and vj. We
divided ωij into three terms:

— dij: The distance between the centers of mass of vi and vj.
— sij: The difference of the surface area between vi and vj.
— vij: The difference of volume between vi and vj. vij is computed only if both vi and

vj are closed.
The edge cost ωij is a weighted sum of these terms, normalized by the appropriate power
of l = L(M), the characteristic size of the bounding box of M :

ωij = ωd

(
dij

l

)2

+ ωs

(
sij

l2

)2

+ ωv

(
vij

l3

)2

(4.22)

For all the examples of this paper we used (ωd, ωs, ωv) = (0.6, 0.2, 0.2). We chose to favor
the closeness between frame features and consider difference of surface and volume equally.
After the cost computation, we discard edges whose cost is below a threshold ǫ that we set
to 0.3× l in our examples. Higher thresholds lead to fewer edges in the graph and more
disconnected paths.

Vertex-disjoint path cover computation. To the authors’ knowledge, there is no
standard algorithm for computing minimum weight vertex-disjoint path cover. We propose
an algorithm based on Kruskal (1956) algorithm for computing minimum spanning trees:
All vertices are first copied from the input graph to the output one; edges of the input
graph are considered in ascending order of cost and added to the output graph if they

107

4.3. FLUID SCULPTING

∂S

S

S′

norm(n, S′)

disp(n, S′, S)

ra
st

er
iz

at
io

n

norm(n, Π′)
norm0(n, Π′)

disp0(n, Π′)

rot(n, Π′)× disp0(n, Π′)

Π

Π′

Π′′

p
ro

jection

(a) Copying (b) Pasting

τnorm

τdisp

Figure 4.26 – (a): The displacement representation of a mesh part S is built from the sampling
of the displacement field transporting S′ toward S, and the normal field of S′. (b): This
representation can be inserted back into a mesh part Π by projecting a displacement and a
normal on vertices of Π′. The difference of normals between S′ and Π′ is used for orienting the
displacements, which are in turn used for generating the deformed surface Π′′.

satisfy a given topological condition. In Kruskal’s algorithm, the condition is that the
edge does not form a cycle in the output graph. In ours, the condition is that both of its
endpoint vertices have strictly fewer than two neighbors. This allows us to ensure that the
resulting path cover will be vertex-disjoint.

We detail our vertex-disjoint path cover process in Algorithm 3 using the following
notation:

— G, V , and E represents respectively a graph, a set of vertices, and a set of edges;
— in and out subscripts refer to input and output elements;
— ve

0 and ve
1 refer to the endpoints of edge e in both Gin and Gout (since Vin = Vout);

— deg(v) is the degree of vertex v in Gout;
— sort(E) is the in-place sort of the edges of E in the ascending cost order.

Algorithm 3 Vertex-disjoint path cover computation

Gin = (Vin, Ein)
Gout = (Vout, Eout)
Vout = Vin

Eout = ∅
sort(Ein)
for all e ∈ Ein do

if deg(ve
0) < 2 and deg(ve

1) < 2 then

Eout ← e
end if

end for

At the end Eout represents independent paths, as illustrated in Figure 4.25b, which are
optimal in the sense that the algorithm greedily minimizes our edge cost metric. These

108

CHAPTER 4. DESIGN OF ANIMATION

(a) Mesh representation (b) Differential representation

Figure 4.27 – Depending on whether the frame feature has closed boundaries or not, it is stored
either as a mesh (a) or as a displacement field (b).

paths describe the space-time features.

4.3.4 Feature representation

Space-time features can be seen as a simple set of vertices belonging to M . This
representation is, however, inconvenient for direct manipulation as it strongly depends on
the input animation and therefore cannot be transferred from one animation to another.
To be able to copy, edit and paste space-time features in different animations, we propose
to build a representation of a space-time feature which is independent from M .

In the remainder of the section, we will note a space-time feature representation
Fi = (F t

i)ts(Fi)≤t≤te(Fi)
where ts/e(Fi) are the starting/ending frame index of Fi and F t

i is
the frame feature representation of Fi at the frame t. Also, we denote by S(F t

i) the mesh
part of M t corresponding to F t

i .
We distinguish two representations depending on whether the frame feature has

boundaries or not (see Figure 4.27). In the first case, we use a mesh representation,
noted M(F t

i) and composed of a simple 3D mesh. It is used to represent a connected
component of the liquid, such as droplet or a larger body of water. In the second case,
we use a differential representation, noted (τd(F t

i), τn(F t
i)), and composed of a pair of

textures representing a displacement map and a normal map. It is used for frame features
representing a local sub-part of a larger body of water, such as a single wave on the surface
of an ocean.

A space-time feature can be composed of frame features from both categories. A typical
case of mixed representation is an isolated drop falling into a larger body of water and
becoming a detail of this larger surface.

In the following of this section, we detail the computation of both representations and
how they can be inserted back into a different animation. This will be useful later for
copying and pasting features.

4.3.4.1 Computation

Building the mesh representation of a frame feature F t
i simply consists of transforming

S(F t
i) into an independent mesh M(F t

i).
Building the differential representation of a frame feature is slightly more complex.

The process is described in Figure 4.26a, and consists of three steps: Starting from the
initial frame feature surface S(F t

i) we compute a smooth version S ′(F t
i) using Laplacian

109

4.3. FLUID SCULPTING

smoothing on the inner part of the surface S(F t
i) \ ∂S(F t

i). We note pos(n, S) the position
of vertex n on surface S; note that S(F t

i) and S ′(F t
i) describes the same vertices, but with

different positions. Then we compute the displacement of each vertex n ∈ N from S ′(F t
i)

to S(F t
i):

disp(n, S ′(F t
i), S(F t

i)) = pos(n, S(F t
i))− pos(n, S ′(F t

i)) (4.23)

Finally, we map for every vertex n, disp(n, S ′(F t
i), S(F t

i)) onto S ′(F t
i), and sample the

linearly interpolated values into the texture τd(F t
i). We similarly sample the normals of

S ′(F t
i) into τn(F t

i). The samplings are performed on the GPU using the standard off-screen
rasterization pipeline.

4.3.4.2 Insertion

Mesh representations are trivially inserted by copying M(F t′

i) into M t.
To insert a feature representation (τd(F t′

i), τn(F t′

i)) into M t at location p, we first need
to identify the part Π ⊂M t which will be deformed. Starting from NΠ = {n0} where

n0 = argmin
n∈NMt

(‖pos(n, M t)− p‖) (4.24)

we progressively dilate Π until it fills the bounding box of size L(F t′

i) centered in p.
Once Π has been computed, we compute its smooth version Π′ on which we project

τd(F t′

i) and τn(F t′

i), yielding two attributes for each vertex n ∈ NΠ′, a displacement
disp0(n, Π′) and a normal norm0(n, Π′). We define a new vertex attribute for each vertex
n as the rotation matrix issued from the two vectors norm0(n, Π′) and norm(n, Π′):

rot(n, Π′) = rot(norm0(n, Π′), norm(n, Π′))

Each vertex n ∈ NΠ is displaced of rot(n, Π′)× disp0(n, Π′), yielding the deformed surface
Π′′. These operations allow to counter the effects of low-resolution shapes of both S(F t

i)
and Π. Figure 4.26b illustrates these steps.

4.3.5 Sculpting Tools

Once space-time features representations have been computed, they can either be
manipulated by the user to modify the current liquid animation, or they can be extracted
and re-used in another liquid animation to enrich it. This section described the set of
tools we propose; they are essentially the space-time analogue of common tools used for
sculpting static geometry such as those presented by Ferley et al. (2000), Schmidt and
Singh (2010), or Takayama et al. (2011).

Selection The first thing one might want from an interaction system is to specify which
of the multiple entities of the scene are to be interacted with. This is usually performed
through object selection. In our case, objects are space-time features, and they can be
selected and grouped by clicking on their shape at a given frame.

Copy and cut The copy operation consists of creating the representation of the selected
features, as explained in Section 4.3.4.1. The cut operation is similar to the copy operation,
except that the representation of the feature is removed from the animation after it has

110

CHAPTER 4. DESIGN OF ANIMATION

been computed. Once a feature or a feature group has been copied or cut, its representation
becomes the current input data of further tools. It is later designated as "the current
feature."

Export and import The current feature can be exported into a dedicated binary file
format which stores its representation at each frame. This allows it to be imported back
later to the same animation, or into a different one. Once imported, a feature becomes
the current feature.

Paste The pasting operation allows a user to insert the current feature into a target
animation, as explained in Section 4.3.4.2.

Space-time Deformation The user might want to use the feature in a different spatial
and temporal configuration from the one in which it was extracted, so we propose adapted
deformation tools. The position, orientation, and spatial scale of the current feature can
be controlled with the mouse, and a real-time visual feed-back allows the user to set the
feature in the configuration they require. By navigating in the animation, the user can
also choose the initial frame of the current feature and set a time scale. This leads to a
speed-up or slowdown of the feature animation.

Fade in and out When pasting a wave, the user can specify a fade in and a fade out
interval. This means that that the feature will not immediately appear, but instead it
smoothly grows in the beginning of its lifetime and smoothly disappears before the last
frame of its lifetime. We achieve this effect by linearly blending the pasted displacement
field over time with weights varying between 0 and 1.

Trajectory editing Space-time deformations influence all frames at once, whereas the
user might want to control each frame individually. Per-frame spatial feature manipulation
is achieved through a dedicated feature trajectory edit tool. This tool allows a user to
displace the representation of a feature at a given frame while visualizing the positions of
the feature at all the frames.

4.3.6 Results

In this section, we detail results achieved using our sculpting system. They illustrate
the different tools described in the Section 4.3.5 and alternative usage of our method that
we found interesting.

Boat wake In Figure 4.28, we illustrate the capability of our method to extract space-
time features from arbitrary inputs (e.g. Eulerian or Lagrangian simulation, spectral
methods, shallow water, real liquid surface acquisition) and combine them to create a
plausible animation. We start from two animations: The first one (Figure 4.28a) was
computed using the FLIP simulation method of Zhu and Bridson (2005) and represents
a boat traversing a fluid tank and forming a wake. The second one (Figure 4.28b) is
a procedural animation of ocean computed using the method of Tessendorf (2004) and
exhibits numerous small scale details. Then we extract the boat wake and paste it on

111

4.3. FLUID SCULPTING

the ocean animation at three different positions with different scales and orientations
(Figures 4.28c and 4.28d).

(a) Boat simulation (b) Procedural ocean

(c) Pasting of the wake (d) Multiple pasting

Figure 4.28 – From the animation of boat generated using a FLIP simulation (left), our sculpting
system allows us to extract the wake of the boat in a single space-time feature. Then we can
manipulate this feature and paste it into an ocean animation generated procedurally (middle).
Editing the feature and pasting it multiple times allows us to interactively model a complex
scene (right) without re-simulating.

Trajectory editing In Figure 4.29, we applied several edits to a space-time feature
capturing a crown splash. First, we temporally remapped the feature to slow it down.
Second, we pasted it twice on a static plane at different locations. Third, we edited the
trajectory of the droplets to change the height of their fall. Finally, we used a fading out
to obtain a smooth transition with the initial plane.

Animation enrichment An interesting aspect of our method is that it can be used to
enrich static objects or non-fluid objects with a fluid-like behavior. In Figure 4.30, we
enriched a static object with a splash extracted from a liquid animation. More generally,
our method allows us to combines results obtained with very different methods such as
procedural animation, eulerian and lagrangian simulations, shallow water simulation, or
artist-created animations.

112

CHAPTER 4. DESIGN OF ANIMATION

(a) t = t0 (b) t = t1 (c) t = t2

Figure 4.29 – From an existing liquid animation we extracted a complete crown splash into a
single space-time feature. The feature combines both the fall of a drop and the resulting splash.
We edit and paste this feature twice at different locations and modify the height of the droplets.
Here, we show different frames of the final animation.

4.3.7 Discussion

Our method is not without limitations, and we suggest several directions for future
work.

Physical consistency Even though the space-time features selected by the user capture
realistic behavior, the way they are edited and inserted may spoil the realism of the
resulting animation. As we do not check for physical consistency, the plausibility of the
result depends on the user’s artistic skill. An extension of our method would be to adapt
the destination surface so that it matches the input features under physical constraints such
as volume preservation. To incorporate further physical constraints such as momentum
conservation, using mesh sequences as input would not be sufficient anymore and additional
information such as velocity would be required. Designing an interactive editing method
given these constraints may be difficult to achieve.

Resolution issues Geometrical details may be lost when pasting a feature if the resolu-
tion of the target mesh sequence is too coarse. To remedy this limitation, we could add
an automatic mesh refinement scheme such that the resolution of the target mesh always
locally matches the resolution of details in the pasted feature.

Aggregation robustness The aggregation of regions of interest into space-time features
is a key component of our approach. However, as it is based on geometrical similarities
between two consecutive frames, it might fail if the time step between two frames is too
large or if parts of the water body are moving too fast, such as in the case of dynamic
splashes with lots of fast moving droplets. Even if it has not been an issue for the results
of this paper, we would like to enforce the robustness of the aggregation step by adding a
new metric which would measure the physical coherency between two regions of interest.
This metric would take into account some inferred velocity for the region. It could also
incorporate some cause and effect relationships; for example, a falling drop will cause
waves.

113

4.3. FLUID SCULPTING

(a) Initial animation at t = t0 (b) Initial animation at t = t1

(c) Final animation at t = t0 (d) Final animation at t = t1

Figure 4.30 – From an initial simulation of a falling drop (a, b) space-time features can be
extracted and pasted back into an other mesh, generating a new animation (c, d).

114

CHAPTER 4. DESIGN OF ANIMATION

Memory consumption For our results, we worked with short sequence of liquid an-
imations but when editing a large sequence of high resolution meshes and extracting
potentially large space-time features, memory consumption may become a problem. A
classical solution would be to use a multi-resolution approach, as shown by Ponchio and
Hormann (2008). The user would manipulate a low resolution version of the animation
which would ensure interactivity. Then, the user’s edits choice would be transferred to the
high resolution version of the animation as an off-line post-process.

Feature editing We proposed basic tools for the space-time edition of features and
there are several avenues for future work. Firstly, our copy/paste method is only able
to deal with simple deformations of a surface. By using the work of Takahashi et al.
(2003) to extract and insert displacement fields, we could handle much more complex cases.
Secondly, we would like to propose a space-time sculpting tool close to space deformers
such as constant volume tools of Angelidis et al. (2006) or von Funck et al. (2006) and
topology modifiers as in Stanculescu et al. (2011). The idea would be to let the user sculpt
a specific frame and to interpolate the deformation over time. Finally, we think it would
be useful to let any edited parameter (scale, rotation, etc.) to be key-framed in order to
make time-varying effects more easily controllable.

4.3.8 Conclusion

This section introduces the first method for interactively editing existing transient fluid
animations. Our method is based on an intuitive sculpting metaphor where the user can
select, copy, edit and paste coherent space-time features. This approach allows a user to
quickly design new liquid animations. In the future, we think that our representation for
space-time features could be extended and used to manipulate animations at a higher level,
similarly to a story-board. This kind of preservative structure would require to be built
upon semantic knowledge about liquids.

Another interesting extension would be to develop the same notion of feature-based
editing on other fluid animation types such as gas. Here, one of the main challenges
is to identify the structure for representing features, as well as a good metric for time
consistency.

115

4.3. FLUID SCULPTING

Symbol Description

M = (M t)0≤t<T (M) Mesh sequence

T (.) Number of frames in argument

L(.) Characteristic length in argument

NX Nodes of mesh X

PX Polygonal faces of mesh X

pos(n, X) Position of vertex n ∈ NX

norm(n, X) Normal of vertex n ∈ NX

disp(n, X1, X2) pos(n, X2)− pos(n, X1)

Fi = (F t
i)ts(Fi)≤t≤te(Fi) ith feature of the animation

ts/e(Fi) Starting/ending frame index of Fi

S(F t
i) Part of M t corresponding to F t

i

X ′ Smoothed version of mesh or mesh part X

M(F t
i) Mesh representation of F t

i

(τd(F t
i), τn(F t

i)) Differential representation of F t
i

C(X) Centre of mass of surface X

A(X) Area of surface X

V (X) Volume of surface X

G Frame features adjacency graph

VG = {F t
j }t,j Vertices of graph G

EG = {et
ij}t,r(i,j) Edges of graph G

ωt
ij Cost of et

ij (see Equation 4.22)

dt
ij ‖C(S(F t

i))− C(S(t+1
j))‖

at
ij ‖A(S(F t

i))−A(S(t+1
j))‖

vt
ij ‖V (S(F t

i))− V (S(t+1
j))‖

ωd Edge cost distance weight

ωa Edge cost area weight

ωv Edge cost volume weight

Table 4.3 – Notations used throughout this article. Subscript (resp. superscript) indices are used
for spatial (resp. temporal) indexing. Parenthesis (resp curly braces) are used for ordered (resp
unordered) sets.

116

CHAPTER 4. DESIGN OF ANIMATION

4.4 Conclusion

This chapter introduced the notions of animation temporality and preservative structure.
These two concepts have been illustrated in two situations: The waterfall scenes modeling
framework illustrates the static nature of preservative structures in stationary animation;
This structure is used for offering dedicated editing tools as well as for formulating
constraints on the object consistency. The liquid animation editing method offers to build
a preservative structure allowing us to manipulate features of a transient animation.

Animation modeling is an interesting but difficult task. Considering animation tem-
porality offers an original view point on this problem. Stationary animations have been
well studied, but some intricate phenomena (of the same order than the waterfall-riverbed
coupling) typical of complex objects still raise some challenges. For example, I believe
that 3D fire and smoke modeling methods based on preservative structure editing would
be worth investigating. On the other hand, transient phenomenon are still an area where
interactive editing is far from wide-spread. In this regard, editing preservative structures
seem promising.

To go further, it would be beneficial to elaborate a generic multi-scale spatio-temporal
analysis framework for decomposing an animation into several constant-temporality compo-
nents. For example, rivers and waves can be described as stationary or periodic phenomena
at some scale and/or in specific referential. The idea would be to build a representation
of these phenomena allowing to edit independently each of these components with tools
dedicated to their own temporality. For instance, wave frequency and amplitude could be
manipulated globally (using periodic animation editing tools), while each wave could be
sculpted independently.

117

4.4. CONCLUSION

118

Chapter 5
Conclusion

Contents

5.1 Summary of this thesis . 120

5.2 Future work . 120

5.2.1 Continuous deformations as an animation 120

5.2.2 Deformation diffusion using preservative structures 121

5.2.3 Deformation of preservative structures 121

119

5.1. SUMMARY OF THIS THESIS

T
his, thesis introduced several contributions, some of which solve specific problems
(such as the histogram interpolation method or the waterfall classification), and
others are more general (such as deformation grammars and preservative structures).

This chapters outlines the contributions that were presented, and discusses several axes
for future work.

5.1 Summary of this thesis

In this thesis, we proposed solutions to major challenges in static and animated content
modeling.

We introduced a framework defining a complex objects as a hierarchical structure and
showed that the consistency of such objects can be decomposed hierarchically at the element
level. This framework was used as a reference for presenting three main contributions
regarding 3D modeling: Firstly, we presented a sub-structure deformation method for a
part-based generation framework synthesizing complex object variations; Secondly, we
developed a distribution descriptor interpolation algorithm within a color-painting inspired
framework for distribution generation and authoring; Finally, we introduced deformation
grammars as a generic and efficient way to interpret arbitrary deformation on complex
objects.

We also introduced the notion of temporality of an animation as a way to classify
animations as stationary or transient. The associated concept of preservative structure
can be used as an efficient simplification in the case of stationary animations, as shown
in a class-based waterfall editing framework. Transient animations can also be described
by preservative structures, as illustrated in the case of general liquid animations. These
structures were defined as the fluid features, and interacting with them enabled interactive
editing of general liquid animations.

5.2 Future work

As shown in Chapter 2, static object deformations have been well studied, allowing
these to become a new way of creation, while animation deformation is still a novel subject.
In my view, many static object deformation methods could benefit from being extended
to animation deformation. Some recent work already used static object generation and
deformation paradigms for generating controllable animated content (see Milliez et al.
(2014) and Hyun et al. (2016) for example).

5.2.1 Continuous deformations as an animation

One of the most obvious ways to use deformation methods for creating animations
is to use continuous deformation methods. In this setup, the pre-deformation and post-
deformation states of the object are considered as successive in time. The in-between
states are those created by the deformation method. Time can be associated with the
duration of the deformation gesture (i.e. the “real time” of the user) or to the amount of
deformation. This last case frees the user from having to perform the deformation at the
right speed, but imposes a pre-defined animation speed.

The challenge here is twofold.

120

CHAPTER 5. CONCLUSION

First, animation-aware deformation tools or behaviors have to be defined. That is,
for example, a deformation behavior for a character or a plant model which interprets
resizing as growing. Another example would be the deformation of a forest where new trees
grow in new areas. Handling such complex cases could be achieved by using deformation
grammars with temporal continuity preserving rules.

Second, usable interaction tools have to be provided to the user for iteratively and
efficiently editing their animated creations. One particular challenge when using the
“deformation as animation” paradigm is to make the user edit the animated content while
it is been played. Alternatively, a static spatio-temporal representation could be found,
allowing to apply space-time deformations without synchronization issues.

5.2.2 Deformation diffusion using preservative structures

Another potential future work would be to use preservative structures to transfer
static deformation methods to the animation domain: Since these structures encode
correspondences between frames, it might be possible to apply some deformation method
onto one frame of an animation and to extend the edit to adjacent frames using the
preservative structure.

For example, consider a liquid animation on which a set of features has been computed.
The users could sculpt a particular frame of the animation using their favorite deformation
tool, without worrying about time continuity. The feature set could be used for diffusing
the user deformation through time in the animation: This way, a given feature (e.g. a
wave) having been deformed at a given frame could be seamlessly deformed in adjacent
frames too. This would allow the animation to be continuous despite very time-localized
edits. Pan et al. (2013) started to look in that direction with very promising results.

5.2.3 Deformation of preservative structures

Preservative structure as presented in Chapter 4 might also be considered as complex
objects in the sense of Chapter 3. In that case, some complex object generation or
deformation methods could be used for handling animated content. For instance, let
us consider how the three methods presented in Chapter 3 could be used for deforming
preservative structures.

The part-based complex object generation method presented in Section 3.2 could be
re-formulated as an event-based complex animation generation method. In such a method,
we could introduce an event graph, equivalent of the shape graph for animated content,
corresponding to a "topological story-board" where semantic constraints would represent
simultaneity or causality. This method could be used in the domain of computational
story-telling for creating and editing new event chains.

Transferring the concepts of WorldBrush (see Section 3.3) to animation also seems
to be worth considering. In this setup, the manipulated objects would be space-time
distributions of similar events that could represent phenomena such as rain drops falling.
A painting metaphor could certainly be devised, the main challenge being to define an
intuitive space-time canvas on which to paint.

Finally, deformation grammars (see Section 3.4) could be used for deforming preservative
structures represented as space-time complex object. This would be particularly interesting
in the case where the preservative structure is multi-scale due to multiple temporality

121

5.2. FUTURE WORK

components (as discussed in Section 4.3.7), since this structure would certainly be heavy and
hard to manipulate. Such structures could be used for representing multi-scale animated
phenomenon such as crowd movements, fire, or waves. Creating such a setup would require
to define spatio-temporal deformations such as time stretching and compression, along
with regular space deformations. In addition to the challenging creation of an efficient
user interface for such deformations, another difficulty would be to define the relevant
consistency properties for such objects.

122

Appendix A
Bibliography

Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., and Zhang, H. (2014). Topology-varying 3D
shape creation via structural blending. ACM TOG, proc. of SIGGRAPH. 19

Alhashim, I., Zhang, H., and Liu, L. (2012). Detail-replicating shape stretching. The
Visual Computer. 23

Angelidis, A., Cani, M.-P., Wyvill, G., and King, S. (2006). Swirling-sweepers: Constant-
volume modeling. Graph. Models. 21, 115

Ashikhmin, M. (2001). Synthesisizing natural textures. Proc. Symp. on Interactive 3D
Graphics (I3D). 18

Attene, M., Falcidieno, B., and Spagnuolo, M. (2006). Hierarchical mesh segmentation
based on fitting primitives. The Visual Computer. 33

Avidan, S. and Shamir, A. (2007). Seam carving for content-aware image resizing. ACM
Trans. Graph. (SIGGRAPH). 23

Barbič, J., da Silva, M., and Popović, J. (2009). Deformable object animation using
reduced optimal control. ACM Trans. Graph. 26

Barbič, J., Sin, F., and Grinspun, E. (2012). Interactive editing of deformable simulations.
ACM Trans. Graph. 26

Barroso, S., Besuievsky, G., and Patow, G. (2013). Visual copy and paste for procedurally
modeled buildings by ruleset rewriting. Computers and Graphics. 16

Beardall, M., Farley, M., Ouderkirk, D., Reimschussel, C., Smith, J., Jones, M., and Egbert,
P. (2007). Goblins by spheroidal weathering. Proceedings of the Third Eurographics
conference on Natural Phenomena. 14

Beisel, Jr, R. H. (2006). International Waterfall Classification System. 95

Belhadj, F. and Audibert, P. (2005). Modeling landscapes with ridges and rivers: Bottom up
approach. Proceedings - GRAPHITE 2005 - 3rd International Conference on Computer
Graphics and Interactive Techniques in Australasia and Southeast Asia. 15

123

Benes, B., Št’ava, O., Měch, R., and Miller, G. (2011). Guided procedural modeling.
Computer Graphics Forum (Eurographics). 17

Benes, B., Těšínskỳ, V., Hornyš, J., and Bhatia, S. K. (2006). Hydraulic erosion. Computer
Animation and Virtual Worlds. 15

Beneš, B., Andrysco, N., and Št’ava, O. (2009). Interactive modeling of virtual ecosystems.
Proceedings of the Eurographics Workshop on Natural Phenomena (NPH). 15

Beneš, B. and Arriaga, X. (2005). Table mountains by virtual erosion. Proceedings of the
Eurographics Workshop on Natural Phenomena (NPH). 15

Beneš, B. and Forsbach, R. (2001). Layered data representation for visual simulation of
terrain erosion. Proceedings of the Spring Conference on Computer Graphics (SCCG).
15

Beneš, B. and Forsbach, R. (2002). Visual simulation of hydraulic erosion. WSCG
Proceedings of the International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision. 15

Beneš, B., Massih, M. A., Jarvis, P., Aliaga, D. G., and Vanegas, C. A. (2011). Urban
ecosystem design. Symposium on Interactive 3D Graphics and Games (I3D). 15

Bernhardt, A., Maximo, A., Velho, L., Hnaidi, H., and Cani, M.-P. (2011). Real-time
terrain modeling using cpu-gpu coupled computation. XXIV SIBGRAPI. 18

Bernhardt, A., Pihuit, A., Cani, M.-P., and Barthe, L. (2008). Matisse : Painting 2d
regions for modeling free-form shapes. SBM’08 - Eurographics Workshop on Sketch-Based
Interfaces and Modeling. 17

Bézier, P. (1966). Définition numérique des courbes et surfaces. Automatisme. 2

Bhat, K. S., Seitz, S. M., Hodgins, J. K., and Khosla, P. K. (2004). Flow-based video
synthesis and editing. ACM Transactions on Graphics (SIGGRAPH). 28, 80

BlenderFoundation (2014). Blender. 4

Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. (2011). Pattern-aware shape
deformation using sliding dockers. ACM Trans. Graph. (SIGGRAPH Asia). 23

Bokeloh, M., Wand, M., and Seidel, H.-P. (2010). A connection between partial symmetry
and inverse procedural modeling. ACM Trans. Graph. (SIGGRAPH). 17

Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. (2012). An algebraic model for
parameterized shape editing. ACM TOG, proc. of SIGGRAPH. 23, 35

Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. (2015). Sliced and radon wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision. 59

Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. (2011). Displacement interpo-
lation using lagrangian mass transport. ACM Transactions on Graphics (SIGGRAPH
ASIA 2011). 53

124

Botsch, M. and Kobbelt, L. (2005). Real-time shape editing using radial basis functions.
Computer graphics forum. 21

Botsch, M. and Sorkine, O. (2008). On linear variational surface deformation methods.
IEEE transactions on visualization and computer graphics. 21

Boudon, F., Prusinkiewicz, P., Federl, P., Godin, C., and Karwowski, R. (2003). Interactive
design of bonsai tree models. Computer Graphics Forum, Proc. Eurographics. 15

Bridson, R., Houriham, J., and Nordenstam, M. (2007). Curl-noise for procedural fluid
flow. ACM Transactions on Graphics (TOG). 25

Brosz, J., Samavati, F., and Sousa, M. (2006). Terrain synthesis by-example. GRAPP
2006 - Proceedings of the International Conference on Computer Graphics Theory and
Applications (GRAPP). 18

Brouet, R., Sheffer, A., Boissieux, L., and Cani, M.-P. (2012). Design preserving garment
transfer. ACM Transactions on Graphics. 19, 35

Brousset, M., Darles, E., Meneveaux, D., Poulin, P., and Crespin, B. (2016). Simulation
and control of breaking waves using an external force model. Computers & Graphics. 26

Bruneton, E. and Neyret, F. (2008). Real-time rendering and editing of vector-based
terrains. Computer Graphics Forum (Eurographics). 16, 91

Carpenter, A. and Fine, G. (2008). Plato on knowledge and forms: selected essays. 6

Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. (2011). Probabilistic reasoning
for assembly-based 3d modeling. ACM Transactions on Graphics (TOG). 19

Chen, G., Esch, G., Wonka, P., Müller, P., and Zhang, E. (2008a). Interactive procedural
street modeling. ACM Transactions on Graphics (SIGGRAPH). 16

Chen, L. and Meng, X. (2009). Anisotropic resizing of model with geometric textures.
2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling. 22

Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O., and Kang, S. B. (2008b). Sketch-based
tree modeling using markov random field. ACM Transactions on Graphics (SIGGRAPH
Asia). 17

Chenney, S. and Forsyth, D. A. (2000). Sampling plausible solutions to multi-body
constraint problems. Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques. 26

Chiba, N., Muraoka, K., and Fujita, K. (1998). An erosion model based on velocity fields
for the visual simulation of mountain scenery. Journal of Visualization and Computer
Animation. 14

Cohen, J. M., Hughes, J. F., and Zeleznik, R. C. (2000). Harold: A world made of
drawings. Proceedings of the International Symposium on Non-photorealistic Animation
and Rendering (NPAR). 17

125

Cook, M. T. and Agah, A. (2009). A survey of sketch-based 3-d modeling techniques.
Interacting with Computers. 17

Cook, S. A. (1971). The complexity of theorem-proving procedures. Proceedings of the
third annual ACM symposium on Theory of computing. 39

Cordonnier, G., Braun, J., Cani, M.-P., Benes, B., Galin, E., Peytavie, A., and Guérin, E.
(2016). Large scale terrain generation from tectonic uplift and fluvial erosion. Computer
Graphics Forum (Proc. EUROGRAPHICS 2016). 15

Danielsson, M. and Danielsson, K. (2006). Waterfall Lover’s Guide Northern California.
95

de Carpentier, G. J. P. and Bidarra, R. (2009). Interactive GPU-based procedural
heightfield brushes. Proceedings of the International Conference on Foundations of
Digital Games (FDG). 18

de Reffye, P., Edelin, C., Françon, J., Jaeger, M., and Puech, C. (1988). Plant models
faithful to botanical structure and development. SIGGRAPH Comput. Graph. 15

Dekkers, E. and Kobbelt, L. (2014). Geometry seam carving. Computer-Aided Design. 23

Denning, J. D., Tibaldo, V., and Pellacini, F. (2015). 3dflow: continuous summarization
of mesh editing workflows. ACM Transactions on Graphics (TOG). 7

Derzapf, E., Ganster, B., Guthe, M., and Klein, R. (2011). River networks for instant
procedural planets. Computer Graphics Forum (Pacific Graphics). 15

Desbenoit, B., Galin, E., and Akkouche, S. (2004). Simulating and modeling lichen growth.
Computer Graphics Forum (Eurographics). 15

Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P.
(1998). Realistic modeling and rendering of plant ecosystems. SIGGRAPH Comput.
Graph. 15

Dicko, A.-H., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., and Cani, M.-P. (2013).
Anatomy transfer. ACM Transactions on Graphics (TOG). 19

Dong, W., Zhou, N., Paul, J.-C., and Zhang, X. (2009). Optimized image resizing using
seam carving and scaling. ACM Transactions on Graphics (SIGGRAPH Asia). 23

dos Passos, V. A. and Igarashi, T. (2013). Landsketch: A first person point-of-view
example-based terrain modeling approach. Proceedings of the International Symposium
on Sketch-Based Interfaces and Modeling (SBIM). 18

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. (2002). Texturing
and Modeling: A Procedural Approach. 13

Emilien, A., Bernhardt, A., Peytavie, A., Cani, M.-P., and Galin, E. (2012). Procedural
generation of villages on arbitrary terrains. The Visual Computer. 16, 62

Emilien, A., Poulin, P., Cani, M.-P., and Vimont, U. (2014). Interactive procedural
modelling of coherent waterfall scenes. Computer Graphics Forum, 34(6):22–35. 81

126

Emilien, A., Vimont, U., Cani, M.-P., Poulin, P., and Benes, B. (2015). Worldbrush:
Interactive example-based synthesis of procedural virtual worlds. ACM Transactions
On Graphics (TOG), Proceedings of SIGGRAPH 2015, 34(4):106. 48, 50, 69, 71

Entem, E., Barthe, L., Cani, M.-P., Cordier, F., and Van de Panne, M. (2015). Modeling
3d animals from a side-view sketch. Computers & Graphics. 17

Fattal, R. and Lischinski, D. (2004). Target-driven smoke animation. ACM Trans. Graph.
27

Ferley, E., Cani, M.-P., and Gascuel, J.-D. (2000). Practical volumetric sculpting. Visual
Computer. 20, 102, 110

Ferstl, F., Ando, R., Wojtan, C., Westermann, R., and Thuerey, N. (2016). Narrow band
flip for liquid simulations. Computer Graphics Forum. 26

Foster, N. and Metaxas, D. (1997). Controlling fluid animation. Computer Graphics
International, 1997. Proceedings. 26

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S.,
and Dobkin, D. (2004). Modeling by example. ACM Transactions on Graphics (TOG).
19

Gain, J., Marais, P., and Neeser, R. (2014). City sketching. 17

Gain, J., Marais, P., and Strasser, W. (2009). Terrain sketching. Proc. Symp. on Interactive
3D Graphics and Games (I3D). 18

Gain, J., Merry, B., and Marais, P. (2015). Parallel, realistic and controllable terrain
synthesis. Computer Graphics Forum. 18

Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. (2009). iwires: an analyze-and-edit
approach to shape manipulation. ACM TOG, proc. of SIGGRAPH. 23

Gal, R., Sorkine, O., Popa, T., Sheffer, A., and Cohen-Or, D. (2007). 3D collage: Expressive
non-realistic modeling. NPAR: Proceedings of the 5th International Symposium on Non-
Photorealistic Animation and Rendering. 18

Galin, E., Peytavie, A., Guérin, E., and Beneš, B. (2011). Authoring hierarchical road
networks. Computer Graphics Forum (Pacific Graphics). 16

Galin, E., Peytavie, A., MarÃ©chal, N., and GuÃ©rin, E. (2010). Procedural generation
of roads. Computer Graphics Forum (Eurographics). 16, 100

Gamito, M. N. and Musgrave, F. K. (2001). Procedural landscapes with overhangs. 10th
Portuguese Computer Graphics Meeting. 14, 93, 100

Geiss, R. (2007). Generating complex procedural terrains using the gpu. GPU Gems. 14

Génevaux, J.-D., Galin, E., Guérin, E., Peytavie, A., and Beneš, B. (2013). Terrain genera-
tion using procedural models based on hydrology. ACM Trans. Graphics (SIGGRAPH).
14, 15

127

Génevaux, J.-D., Galin, E., Peytavie, A., Guérin, E., Briquet, C., Grosbellet, F., and
Benes, B. (2015). Terrain modelling from feature primitives. Computer Graphics Forum.
14, 100

Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for
spatial point processes. Scandinavian journal of statistics. 50

Gonzàlez, F., Paradinas, T., Coll, N., and Patow, G. (2013). *cages: A multi-level,
multi-cage based system for mesh deformation. ACM Transactions on Graphics. 22

Gregson, J., Ihrke, I., Thuerey, N., and Heidrich, W. (2014). From capture to simulation:
Connecting forward and inverse problems in fluids. ACM Trans. Graph. 28

Guay, M., Cani, M.-P., and Ronfard, R. (2013). The line of action: an intuitive interface
for expressive character posing. ACM Transactions on Graphics. 25

Guerrero, P., Jeschke, S., Wimmer, M., and Wonka, P. (2014). Edit propagation using
geometric relationship functions. ACM TOG, proc. of SIGGRAPH. 24

Guerrero, P., Jeschke, S., Wimmer, M., and Wonka, P. (2015). Learning shape placements
by example. Tog, Siggraph. 19

Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. (2012).
Rig-space physics. ACM transactions on graphics (TOG). 7

Hinsinger, D., Neyret, F., and Cani, M.-P. (2002). Interactive animation of ocean waves.
ACM-SIGGRAPH - EG Symposium on Computer Animation (SCA’02). 25

Hnaidi, H., Guérin, É., Akkouche, S., Peytavie, A., and Galin, É. (2010). Feature
based terrain generation using diffusion equation. Computer Graphics Forum (Pacific
Graphics). 18, 93

Hong, J.-M. and Kim, C.-H. (2004). Controlling fluid animation with geometric potential:
Research articles. Computer Animation and Virtual Worlds. 27

Horvath, C. and Geiger, W. (2009). Directable, high-resolution simulation of fire on the
gpu. ACM Transactions on Graphics (TOG). 28

Horvath, C. J. (2015). Empirical directional wave spectra for computer graphics. Proceed-
ings of the 2015 Symposium on Digital Production. 25

Huang, R. and Keyser, J. (2013). Automated sampling and control of gaseous simulations.
The Visual Computer. 27

Huang, R., Melek, Z., and Keyser, J. (2011). Preview-based sampling for controlling
gaseous simulations. Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 27

Huang, Z., Gong, G., and Han, L. (2015). Physically-based smoke simulation for computer
graphics: a survey. Multimedia Tools and Applications. 26

Hurtut, T. (2010). 2d artistic images analysis, a content-based survey. 17

128

Hurtut, T., Landes, P.-E., Thollot, J., Gousseau, Y., Drouillhet, R., and Coeurjolly, J.-F.
(2009). Appearance-guided synthesis of element arrangements by example. Proc. Symp.
on Non-Photorealistic Animation and Rendering (NPAR). 19, 50, 55, 58

Hyun, K., Lee, K., and Lee, J. (2016). Motion grammars for character animation. Computer
Graphics Forum. 120

Igarashi, T., Matsuoka, S., and Tanaka, H. (1999). Teddy: a sketching interface for 3d
freeform design. ACM TOG , Proc. of Siggraph. 17

Igarashi, T., Moscovich, T., and Hughes, J. F. (2005). As-rigid-as-possible shape manipu-
lation. ACM Transactions on Graphics (SIGGRAPH). 21

Ihmsen, M., Akinci, N., Akinci, G., and Teschner, M. (2012). Unified spray, foam and air
bubbles for particle-based fluids. Vis. Comput. 105

Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. (2014). Sph fluids
in computer graphics. 26

Ijiri, T., r Měch, R., Igarashi, T., and Miller, G. (2008). An example-based procedural
system for element arrangement. Computer Graphics Forum (Eurographics). 19

Ilcik, M., Musialski, P., Auzinger, T., and Wimmer, M. (2015). Layer-based procedural
design of facades. Computer Graphics Forum. 16

Jacobson, A., Deng, Z., Kavan, L., and Lewis, J. (2014). Skinning: real-time shape
deformation. ACM SIGGRAPH. 22

Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. (2012). Exploring shape variations
by 3d-model decomposition and part-based recombination. Computer Graphics Forum.
19

Jenny, B., Hutzler, E., and Hurni, L. (2010). Point pattern synthesis. The Cartographic
Journal. 19

Jeschke, S. and Wojtan, C. (2015). Water wave animation via wavefront parameter
interpolation. ACM Transactions on Graphics (TOG). 25

Jordao, K., Pettré, J., Christie, M., and Cani, M.-P. (2014). Crowd sculpting: A space-time
sculpting method for populating virtual environments. CGF, proc. of Eurographics. 80

Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. (2012). A probabilistic model
for component-based shape synthesis. ACM Transactions on Graphics (TOG). 19

Karpenko, O. A. and Hughes, J. F. (2006). Smoothsketch: 3D free-form shapes from
complex sketches. ACM Transactions on Graphics (SIGGRAPH). 17

Kazi, R. H., Igarashi, T., Zhao, S., and Davis, R. (2012). Vignette: Interactive texture
design and manipulation with freeform gestures for pen-and-ink illustration. Proc.
SIGCHI Conference on Human Factors in Computing Systems (CHI). 17

Kelley, A. D., Malin, M. C., and Nielson, G. M. (1988). Terrain simulation using a model
of stream erosion. SIGGRAPH Comput. Graph. 14

129

Kelly, T. and Wonka, P. (2011). Interactive architectural modeling with procedural
extrusions. ACM Transactions on Graphics. 16

Kho, Y. and Garland, M. (2007). Sketching mesh deformations. Acm siggraph 2007
courses. 24

Kilian, M., Mitra, N. J., and Pottmann, H. (2007). Geometric modeling in shape space.
ACM Transactions on Graphics (TOG). 6

Kim, T., Tessendorf, J., and Thürey, N. (2013). Closest point turbulence for liquid surfaces.
ACM Transactions on Graphics (TOG). 28

Kim, Y., Machiraju, R., and David, T. (2006). Path-based control of smoke simulations.
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 28

Kraevoy, V., Julius, D., and Sheffer, A. (2007). Model composition from interchangeable
components. Computer Graphics and Applications, 2007. PG’07. 15th Pacific Conference
on. 19

Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. (2008). Non-homogeneous resizing
of complex models. ACM Transactions on Graphics (SIGGRAPH Asia). 21, 23

Krištof, P., Beneš, B., Krivánek, J., and Št’ava, O. (2009). Hydraulic erosion using
smoothed particle hydrodynamics. Computer Graphics Forum (Eurographics). 15

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society. 107

Landes, P.-E., Galerne, B., and Hurtut, T. (2013). A shape-aware model for discrete
texture synthesis. Computer Graphics Forum (EGSR). 19

Larive, M. and Gaildrat, V. (2006). Wall grammar for building generation. Proceedings
of the 4th international conference on Computer graphics and interactive techniques in
Australasia and Southeast Asia. 16

Lars Krecklau, L. K. (2011). Procedural modeling of interconnected structures. CGF,
proc. of Eurographics. 15

Leblanc, L., Houle, J., and Poulin, P. (2011). Component-based modeling of complete
buildings. Proceedings of Graphics Interface. 16

Lee, C. H., Varshney, A., and Jacobs, D. W. (2005). Mesh saliency. ACM transactions on
graphics (TOG). 23

Lee, U., Yoon, S., Shim, H., Vasseur, P., and Demonceaux, C. (2014). Local path planning
in a complex environment for self-driving car. Cyber Technology in Automation, Control,
and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on.
3

Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. (2014). Space-time
editing of elastic motion through material optimization and reduction. ACM Trans.
Graph. 26

130

Liao, Z., Joshi, N., and Hoppe, H. (2013). Automated video looping with progressive
dynamism. ACM Transactions on Graphics (TOG). 79

Lindenmayer, A. (1968). Mathematical models for cellular interactions in development i.
filaments with one-sided inputs. Journal of Theoretical Biology. 15

Lipp, M., Scherzer, D., Wonka, P., and Wimmer, M. (2011). Interactive modeling of city
layouts using layers of procedural content. Computer Graphics Forum. 16

Lipp, M., Wonka, P., and Wimmer, M. (2008). Interactive visual editing of grammars for
procedural architecture. ACM Transactions on Graphics (SIGGRAPH). 16

Liu, H., Vimont, U., Wand, M., Cani, M.-P., Hahmann, S., Rohmer, D., and Mitra, N. J.
(2015). Replaceable substructures for efficient part-based modeling. Computer Graphics
Forum, Proceedings of Eurographics 2015, 34(2):503–513. 36

Longay, S., Runions, A., Boudon, F., , and Prusinkiewicz, P. (2012). Treesketch: Interactive
procedural modeling of trees on a a tablet. Symposium on Sketch-Based Interfaces and
Modeling (SBIM). 17, 71

Ma, C., Huang, H., Sheffer, A., Kalogerakis, E., and Wang, R. (2014). Analogy-driven 3d
style transfer. Eurographics 2014. 19

Madill, J. and Mould, D. (2013). Target particle control of smoke simulation. Proceedings
of Graphics Interface 2013. 28

Manescu, P., Azencot, J., Ladjal, H., Beuve, M., and Shariat, B. (2013). Human liver
multiphysics modeling for 4d dosimetry during hadrontherapy. International Symposium
on Biomedical Imaging. 3

Manteau, P.-L., Vimont, U., Rohmer, D., Cani, M.-P., and Wojtan, C. (2016). Space-time
sculpting of liquid animation. To appear in the proceedings of Motion In Games 2016.

Maya, A. (2016). Autodesk, inc. 4, 97

McCrae, J. and Singh, K. (2009). Sketch-based path design. Proceedings of Graphics
Interface (GI). 17

McDonnell, K. T., Qin, H., and Wlodarczyk, R. A. (2001). Virtual clay: a real-time
sculpting system with haptic toolkits. Proceedings of the 2001 symposium on Interactive
3D graphics. 21

McNamara, A., Treuille, A., Popović, Z., and Stam, J. (2004). Fluid control using the
adjoint method. ACM Trans. Graph. 27

Mei, X., Decaudin, P. c., and Hu, B.-G. (2007). Fast hydraulic erosion simulation and
visualization on GPU. Proceedings - Pacific Conference on Computer Graphics and
Applications. 15

Mercier, O., Beauchemin, C., Thuerey, N., Kim, T., and Nowrouzezahrai, D. (2015).
Surface turbulence for particle-based liquid simulations. Transactions on Graphics
(SIGGRAPH Asia). 27, 28, 105

131

Merrell, P. and Manocha, D. (2011). Model synthesis: A general procedural modeling
algorithm. Visualization and Computer Graphics, IEEE Transactions on. 15

Merrell, P., Schkufza, E., and Koltun, V. (2010). Computer-generated residential building
layouts. ACM Transactions on Graphics (AIGGRAPH Asia). 16

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. (2011). Interactive furniture
layout using interior design guidelines. ACM Transactions on Graphics (TOG). 16

Meylan, S., Vimont, U., Incerti, S., Clairand, I., and Villagrasa, C. (2016). Geant4-dna
simulations using complex dna geometries generated by the dnafabric tool. Computer
Physics Communications, 204:159–169.

Miao, Y. and Lin, H. (2013). Visual saliency guided global and local resizing for 3d models.
Computer-Aided Design and Computer Graphics (CAD/Graphics). 23

Mihalef, V., Metaxas, D., and Sussman, M. (2004). Animation and control of breaking
waves. Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation. 27

Milliez, A., Noris, G., Baran, I., Coros, S., Cani, M.-P., Nitti, M., Marra, A., Gross, M.,
and Sumner, R. W. (2014). Hierarchical motion brushes for animation instancing. Proc.
Workshop on Non-Photorealistic Animation and Rendering (NPAR). 120

Milliez, A., Wand, M., Cani, M.-P., and Seidel, H.-P. (2013). Mutable elastic models for
sculpting structured shapes. CGF, proc. of Eurographics. 23, 80

Mitra, N. J., Wand, M., Zhang, H., Cohen-Or, D., and Bokeloh, M. (2014). Structure-aware
shape processing. Eurographics - State of the Art Reports. 22, 35, 37

Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L. (2006). Procedural
modeling of buildings. ACM Trans. Graph. (SIGGRAPH). 16, 62

Musgrave, F. K., Kolb, C. E., and Mace, R. S. (1989). The synthesis and rendering of
eroded fractal terrains. SIGGRAPH Comput. Graph. 14

Měch, R. and Prusinkiewicz, P. (1996). Visual models of plants interacting with their
environment. SIGGRAPH Comput. Graph. 15

Narain, R., Kwatra, V., Lee, H.-P., Kim, T., Carlson, M., and Lin, M. C. (2007). Feature-
guided dynamic texture synthesis on continuous flows. Proceedings of the 18th Euro-
graphics Conference on Rendering Techniques. 28, 105

Natali, M., Lidal, E. M., Viola, I., and Patel, D. (2013). Modeling terrains and subsurface
geology. Eurographics, State of the Art Report. 14

Nealen, A., Sorkine, O., Alexa, M., and Cohen-Or, D. (2007). A sketch-based interface for
detail-preserving mesh editing. ACM SIGGRAPH 2007 courses. 24

Neidhold, B., Wacker, M., and Deussen, O. (2005). Interactive physically based fluid and
erosion simulation. Proceedings of the Eurographics Workshop on Natural Phenomena
(NPH). 15

132

Neobarok (2016). Lucian stanculescu. 4

Niantic (2016). Pokémon go. 3

Nielsen, M. B. and Bridson, R. (2011). Guide shapes for high resolution naturalistic liquid
simulation. ACM Trans. Graph. 27

Nielsen, M. B. and Christensen, B. B. (2010). Improved variational guiding of smoke
animations. Computer Graphics Forum. 27

Nielsen, M. B., Christensen, B. B., Zafar, N. B., Roble, D., and Museth, K. (2009).
Guiding of smoke animations through variational coupling of simulations at different
resolutions. Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. 27

Nielsen, M. B., Söderström, A., and Bridson, R. (2013). Synthesizing waves from animated
height fields. ACM Transactions on Graphics (TOG). 25

Nieto, J. R. and Susín, A. (2013). Cage based deformations: a survey. Deformation models.
22

Okabe, M., Dobashi, Y., Anjyo, K., and Onai, R. (2015). Fluid volume modeling from
sparse multi-view images by appearance transfer. ACM Trans. Graph. 28

Olsen, L., Samavati, F. F., Sousa, M. C., and Jorge, J. A. (2009). Sketch-based modeling:
A survey. Computers & Graphics. 17

Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. (2011). Exploration of continuous
variability in collections of 3d shapes. ACM Transactions on Graphics (TOG). 24

Owada, S., Nielsen, F., and Igarashi, T. (2006). Copy-paste synthesis of 3d geometry with
repetitive patterns. International Symposium on Smart Graphics. 23

Öztireli, A. C. and Gross, M. (2012). Analysis and synthesis of point distributions based
on pair correlation. ACM TOG, proc. of SIGGRAPH. 50

Pan, Z., Huang, J., Tong, Y., Zheng, C., and Bao, H. (2013). Interactive localized liquid
motion editing. ACM Trans. Graph. 28, 121

Pang, M.-Y. b. and Zhao, R.-B. b. (2009). Algorithm for synthesizing large-scale virtual
terrain from images using radially weighted blending. 18

Parish, Y. I. H. and Müller, P. (2001). Procedural modeling of cities. SIGGRAPH Comput.
Graph. 16

Perlin, K. (1985). An image synthesizer. SIGGRAPH Comput. Graph. 13, 25

Peyrat, A., Terraz, O., Merillou, S., and Galin, E. (2008). Generating vast varieties of
realistic leaves with parametric 2gmap l-systems. The Visual Computer. 15

Peytavie, A., Galin, E., Grosjean, J., and Merillou, S. (2009a). Arches: a framework for
modeling complex terrains. Computer Graphics Forum (Eurographics). 14, 100

133

Peytavie, A., Galin, E., Grosjean, J., and Merillou, S. (2009b). Procedural generation of
rock piles using aperiodic tiling. Computer Graphics Forum (Pacific Graphics). 14

Pighin, F., Cohen, J. M., and Shah, M. (2004). Modeling and editing flows using
advected radial basis functions. Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 28

Pirk, S., Stava, O., Kratt, J., Massih Said, M. A., Neubert, B., Mech, R., Benes, B., and
Deussen, O. (2012). Plastic trees: interactive self-adapting botanical tree models. ACM
Transactions on Graphics. 15

Plumb, G. A. (2005). Waterfall Lover’s Guide Pacific Northwest. 95

Ponchio, F. and Hormann, K. (2008). Interactive rendering of dynamic geometry. IEEE
Transaction on Visualization and Computer Graphics. 115

Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. (2000). Interactive
manipulation of rigid body simulations. Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques. 26

Power, J. L., Brush, A. J. B., Prusinkeiwicz, P., and Salesin, D. H. (1999). Interactive
arrangement of botanical l-system models. Symposium on Interactive 3D Graphics. 15

Prachyabrued, M., Roden, T. E., and Benton, R. G. (2007). Procedural generation of
stylized 2d maps. Proceedings of the International Conference on Advances in Computer
Entertainment Technology (ACE). 14

Prusinkiewicz, P. and Hammel, M. (1993). Fractal model of mountains with rivers.
Proceedings - Graphics Interface. 15

Prusinkiewicz, P. and Lindenmayer, A. (2012). The algorithmic beauty of plants. 15, 33

Pytel, A. and Mann, S. (2013). Self-organized approach to modeling hydraulic erosion
features. Computers & Graphics. 15

Raveendran, K., Thuerey, N., Wojtan, C., and Turk, G. (2012). Controlling liquids using
meshes. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 27

Raveendran, K., Wojtan, C., Thuerey, N., and Turk, G. (2014). Blending liquids. ACM
Trans. Graph. 29

Read, A. L. (1999). Linear interpolation of histograms. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment. 53

Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen,
R., Kauczor, H.-U., and Giesel, F. L. (2010). 3d printing based on imaging data: review
of medical applications. International journal of computer assisted radiology and surgery.
3

134

Ritchie, D., Mildenhall, B., Goodman, N. D., and Hanrahan, P. (2015). Controlling
procedural modeling programs with stochastically-ordered sequential monte carlo. 17,
74

Rohmer, D., Hahmann, S., and Cani, M.-P. (2015). Real-time continuous self-replicating
details for shape deformation. Computers & Graphics. 23

Roudier, P., Peroche, B., and Perrin, M. (1993). Landscapes synthesis achieved through
erosion and deposition process simulation. Computer Graphics Forum (Eurographics).
14

Rusnell, B., Mould, D., and Eramian, M. (2009). Feature-rich distance-based terrain
synthesis. The Visual Computer. 14

Scharl, J. (2010). A constraint based system to populate procedurally modeled cities with
buildings. Proceedings of CESCG 2010. 16

Schmid, J., Senn, M. S., Gross, M., and Sumner, R. W. (2011). Overcoat: an implicit
canvas for 3d painting. ACM Transactions on Graphics (TOG). 17, 59

Schmidt, R., Khan, A., Singh, K., and Kurtenbach, G. (2009). Analytic drawing of 3d
scaffolds. ACM Transactions on Graphics (TOG). 17

Schmidt, R. and Singh, K. (2010). Meshmixer: an interface for rapid mesh composition.
ACM SIGGRAPH 2010 Talks. 19, 110

Schmidt, R., Wyvill, B., Sousa, M. C., and Jorge, J. A. (2007). Shapeshop: Sketch-based
solid modeling with blobtrees. ACM SIGGRAPH 2007 courses. 17

Schpok, J., Dwyer, W., and Ebert, D. S. (2005). Modeling and animating gases with
simulation features. Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 28

Schulz, C., von Tycowicz, C., Seidel, H.-P., and Hildebrandt, K. (2014). Animating
deformable objects using sparse spacetime constraints. ACM Trans. Graph. 26

Schwarz, M. and Müller, P. (2015). Advanced procedural modeling of architecture. 16, 62

Serra, J. (1986). Introduction to mathematical morphology. Computer vision, graphics,
and image processing. 104

Shi, L. and Yu, Y. (2005a). Controllable smoke animation with guiding objects. ACM
Trans. Graph. 27

Shi, L. and Yu, Y. (2005b). Taming liquids for rapidly changing targets. Proceedings of
the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 27

Singh, K. and Fiume, E. (1998). Wires: A geometric deformation technique. SIGGRAPH
Comput. Graph. 24

Smelik, R., Tutenel, T., de Kraker, K., and Bidarra, R. (2011). A declarative approach to
procedural modeling of virtual worlds. Computers & Graphics. 16

135

Smelik, R. M., Tutenel, T., Bidarra, R., and Benes, B. (2014). A survey on procedural
modelling for virtual worlds. Computer Graphics Forum. 14

Sorkine, O. and Alexa, M. (2007). As-rigid-as-possible surface modeling. Symposium on
Geometry Processing. 21

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. (2004).
Laplacian surface editing. Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing. 21

Stam, J. (1999). Stable fluids. ACM SIGGRAPH. 26, 91

Stanculescu, L., Chaine, R., and Cani, M.-P. (2011). Freestyle: Sculpting meshes with
self-adaptive topology. Computers & Graphics. 21, 70, 115

Stanculescu, L., Chaine, R., Cani, M.-P., and Singh, K. (2013). Sculpting multi-dimensional
nested structures. Computers & Graphics. 23

Šťava, O., Beneš, B., Brisbin, M., and Křivánek, J. (2008). Interactive terrain modeling
using hydraulic erosion. 15

Št’ava, O., Benes, B., Měch, R., Aliaga, D. G., and Krištof, P. (2010). Inverse pro-
cedural modeling by automatic generation of l-systems. Computer Graphics Forum
(Eurographics). 17

Št’ava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O., and Benes, B. (2014).
Inverse procedural modelling of trees. Computer Graphics Forum. 17

Steinberger, M., Kenzel, M., Kainz, B., Mueller, J., Wonka, P., and Schmalstieg, D.
(2014a). On-the-fly generation and rendering of infinite cities on the GPU. Computer
Graphics Forum, Proc. Eurographics. 16

Steinberger, M., Kenzel, M., Kainz, B., Müller, J., Wonka, P., and Schmalstieg, D. (2014b).
Parallel generation of architecture on the GPU. Computer Graphics Forum, Proc.
Eurographics. 16

Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. (2005). Mesh-based inverse
kinematics. ACM transactions on graphics (TOG). 21

Sun, Q., Zhang, L., Zhang, M., Ying, X., Xin, S.-Q., Xia, J., and He, Y. (2013). Texture
brush: An interactive surface texturing interface. Proc. Symp. on Interactive 3D Graphics
and Games (I3D). 17

Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H.
(2003). Realistic animation of fluid with splash and foam. Computer Graphics Forum.
105, 115

Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T., and Sorkine, O. (2011).
Geobrush: Interactive mesh geometry cloning. Computer Graphics Forum (proceedings
of EUROGRAPHICS). 19, 110

136

Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., and Měch, R. (2012). Learning
design patterns with Bayesian grammar induction. Proc. ACM Symp. on User Interface
Software and Technology (UIST). 18

Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. (2011). Metropolis
procedural modeling. ACM TOG, proc. of SIGGRAPH. 14, 17

Tasse, F., Gain, J., and Marais, P. (2012). Enhanced texture-based terrain synthesis on
graphics hardware. Computer Graphics Forum. 18

Tasse, F. P., Emilien, A., Cani, M.-P., Hahmann, S., and Dodgson, N. (2014). Feature-based
terrain editing from complex sketches. Computers & Graphics. 18

Teoh, S. (2009). Riverland: An efficient procedural modeling system for creating realistic-
looking terrains. Advances in Visual Computing. 15

Tessendorf, J. (2004). Simulating ocean surface. TOG (Siggraph course notes). 25, 111

Thiery, J.-M., Guy, É., and Boubekeur, T. (2013). Sphere-meshes: shape approximation
using spherical quadric error metrics. ACM Transactions on Graphics (TOG). 22

Thürey, N. (2016). Interpolations of smoke and liquid simulations. Transactions on
Graphics (to appear). 27, 29

Thürey, N., Keiser, R., Pauly, M., and Rüde, U. (2006). Detail-preserving fluid control.
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 28

Tisdale, J., Kim, Z., and Hedrick, J. K. (2009). Autonomous UAV path planning and
estimation. IEEE Robotics & Automation Magazine. 3

Tolkien, J. R. R. (1955). The Lord of the Rings. 55

Treuille, A., McNamara, A., Popović, Z., and Stam, J. (2003). Keyframe control of smoke
simulations. ACM Trans. Graph. 27

Tutenel, T., Smelik, R., Lopes, R., de Kraker, K., and Bidarra, R. (2011). Generat-
ing consistent buildings: A semantic approach for integrating procedural techniques.
Computational Intelligence and AI in Games, IEEE Transactions on. 16

Twigg, C. D. and James, D. L. (2007). Many-worlds browsing for control of multibody
dynamics. ACM Trans. Graph. 26

Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel,
O., and Paulin, M. (2013). Implicit skinning: real-time skin deformation with contact
modeling. ACM Transactions on Graphics (TOG). 22

van Hoesel, F. (2011). Tiled directional flow. 97

Vanegas, C. A., Aliaga, D. G., and Benes, B. (2010a). Building reconstruction using
manhattan-world grammars. Computer Vision and Pattern Recognition, IEEE Confer-
ence on. 17

137

Vanegas, C. A., Aliaga, D. G., Beneš, B., and Waddell, P. A. (2009). Interactive design
of urban spaces using geometrical and behavioral modeling. ACM Trans. Graph.
(SIGGRAPH Asia). 16

Vanegas, C. A., Aliaga, D. G., Wonka, P., Müller, P., Waddell, P., and Watson, B. (2010b).
Modelling the appearance and behaviour of urban spaces. Computer Graphics Forum.
16

Vanegas, C. A., Garcia-Dorado, I., Aliaga, D. G., Benes, B., and Waddell, P. (2012a).
Inverse design of urban procedural models. ACM Trans. Graph. (SIGGRAPH Asia). 17

Vanegas, C. A., Kelly, T., Weber, B., Halatsch, J., Aliaga, D. G., and Müller, P. (2012b).
Procedural generation of parcels in urban modeling. Computer Graphics Forum (Euro-
graphics). 16

Vanek, J., Benes, B., Herout, A., and Št’ava, O. (2011). Large-scale physics-based terrain
editing using adaptive tiles on the GPU. IEEE Computer Graphics and Applications. 14

Vimont, U., Rohmer, D., and Cani, M.-P. (2016). Deformation grammars: Hierarchical
constraint preservation under deformation. Submitted at Computer Graphics Forum. 32

von Funck, W., Theisel, H., and Seidel, H.-P. (2006). Vector field based shape deformations.
ACM TOG, proc. of SIGGRAPH. 21, 115

Wang, H., Liao, M., Zhang, Q., Yang, R., and Turk, G. (2009). Physically guided liquid
surface modeling from videos. ACM Transactions on Graphics (TOG). 28

Watanabe, N. and Igarashi, T. (2004). A sketching interface for terrain modeling. SIG-
GRAPH Posters. 18

Wei, L.-Y., Lefebvre, S., Kwatra, V., Turk, G., et al. (2009). State of the art in example-
based texture synthesis. Eurographics, State of the Art Report. 18

Whiting, E., Ochsendorf, J., and Durand, F. (2009). Procedural modeling of structurally-
sound masonry buildings. ACM TOG, proc. of SIGGRAPH. 16, 35

Whitney, H. (1932). Congruent graphs and the connectivity of graphs. American Journal
of Mathematics. 40

Wither, J., Boudon, F., Cani, M.-P., and Godin, C. (2009). Structure from silhouettes:
a new paradigm for fast sketch-based design of trees. Computer Graphics Forum
(Eurographics). 17

Wither, J., Bouthors, A., and Cani, M.-P. (2008). Rapid sketch modeling of clouds.
Proceedings of the Eurographics Workshop on Sketch-Based Interfaces and Modeling
(SBIM). 17

Witkin, A. and Kass, M. (1988). Spacetime constraints. Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques. 26

Wojtan, C., Mucha, P. J., and Turk, G. (2006). Keyframe control of complex particle
systems using the adjoint method. 26

138

Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. (2003). Instant architecture. ACM
Transactions on Graphics (SIGGRAPH). 16

Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. (2012). Fit and diverse: set evolution for
inspiring 3d shape galleries. ACM Transactions on Graphics (TOG). 19

Yang, B., Liu, Y., You, L., and Jin, X. (2013). A unified smoke control method based on
signed distance field. Comput. Graph. 28

Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. (2012). Synthesizing
open worlds with constraints using locally annealed reversible jump MCMC. ACM
Trans. Graph. (SIGGRAPH). 19

Yu, L. F., Yeung, S. K., Tang, C. K., Terzopoulos, D., Chan, T. F., and Osher, S. J. (2011).
Make it home: automatic optimization of furniture arrangement. ACM Transactions on
Graphics (TOG)-Proceedings of ACM SIGGRAPH 2011, v. 30, no. 4, July 2011, article
no. 86. 19

Yuan, Z., Chen, F., and Zhao, Y. (2011). Pattern-guided smoke animation with lagrangian
coherent structure. ACM Trans. Graph. 27

Yumer, M. E., Chaudhuri, S., Hodgins, J. K., and Kara, L. B. (2015). Semantic shape
editing using deformation handles. ACM TOG, proc. of SIGGRAPH. 24

ZBrush (2016). Pixologic. 4

Zheng, Y., Cohen-Or, D., and Mitra, N. J. (2013). Smart variations: Functional substruc-
tures for part compatibility. Computer Graphics Forum. 19

Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. (2011). Component-wise
controllers for structure-preserving shape manipulation. CGF, proc. of Eurographics. 23

Zheng, Y., Liu, H., Dorsey, J., and Mitra, N. J. (2016). Ergonomics-inspired reshaping and
exploration of collections of models. IEEE Transactions on Visualization and Computer
Graphics. 16

Zhou, H., Sun, J., Turk, G., and Rehg, J. (2007). Terrain synthesis from digital elevation
models. IEEE Trans. Visualization and Computer Graphics. 14, 18

Zhu, B., Iwata, M., Haraguchi, R., Ashihara, T., Umetani, N., Igarashi, T., and Nakazawa,
K. (2011). Sketch-based dynamic illustration of fluid systems. ACM Trans. on Graphics
(SIGGRAPH Asia). 87

Zhu, Y. and Bridson, R. (2005). Animating sand as a fluid. ACM Transactions on Graphics
(TOG). 111

Zimmermann, J., Nealen, A., and Alexa, M. (2007). Silsketch: Automated sketch-based
editing of surface meshes. Proceedings of the Eurographics Workshop on Sketch-based
Interfaces and Modeling (SBIM). 24

Zimmermann, J., Nealen, A., and Alexa, M. (2008). Sketching contours. Computers &
Graphics. 21, 24

139

140

Appendix B
List of Figures

1.1 Different meshes representing the same shape 6

2.1 Antagonistic aspects of modeling . 12
2.2 Shape generation . 14
2.3 Shape deformation . 21
2.4 Fluid animation control . 27

3.1 Example of complex objects . 33
3.2 Standard use of grammars to define hierarchical shapes. 34
3.3 Hierarchy of the tree example . 34
3.4 Complex object deformation . 36
3.5 Part-based modeling: General pipeline . 38
3.6 Shape graph . 38
3.7 Part-based modeling: Topological pipeline 40
3.8 Dual shap graph node ordering . 40
3.9 Matching cuts . 40
3.10 Rule table . 41
3.11 Boundary frame . 42
3.12 Results: Iterated cross-objects replacement 44
3.13 Results: Multiple cross-objects replacement 44
3.14 Results: In-object replacement . 45
3.15 Results: Structural variation . 45
3.16 Invalid replacements . 46
3.17 World element distribution descriptors . 49
3.18 Editing tools . 52
3.19 Color pasting and influence . 52
3.20 Pasting colors with graphs . 53
3.21 Tool: Brush . 53
3.22 Tool: Gradient . 54
3.23 Tool: stretch . 54
3.24 Tool: move . 55
3.25 Histogram interpolation: linear versus mass transport 55
3.26 Mass transport histogram interpolation pipeline 56

141

3.27 Histogram interpolation results . 56
3.28 Result: full 3D scene . 57
3.29 Result: map of Middle Earth . 57
3.30 Failure case . 58
3.31 PCF vs Piecewise Strauss correlation functions 59
3.32 2D histogram . 60
3.33 Tree deformation . 64
3.34 Bilateral grammar tree deformation . 65
3.35 Result: Tree . 69
3.36 Result: House . 69
3.37 Result: Forest . 70
3.38 Result: Village . 71
3.39 Result: Volumetric distributions . 72
3.40 Result: Color transformation . 73
3.41 Result: 3D scene . 73
3.42 Result: Persistent editing . 74

4.1 Goal: Trou de Fer . 82
4.2 Overview of the waterfall editing framework 84
4.3 Interactive visualization of each step of our pipe-line 84
4.4 Minimum slope . 86
4.5 Branch flow repartition . 87
4.6 Waterfall subdivision process . 87
4.7 Waterfall coarse-scale geometry . 89
4.8 Flow influence visualization . 90
4.9 Integration mesh . 91
4.10 Procedural details visualization . 92
4.11 Fine-scale speed computation . 92
4.12 Parameter maps pipeline . 93
4.13 Riverbed . 93
4.14 Riverbed visualization . 94
4.15 Overhang . 94
4.16 Overhang visualization . 94
4.17 Artist representation of waterfall types . 95
4.18 Slope-flow diagram for waterfall classification 97
4.19 Trou de fer model . 98
4.20 Artist-created non realistic scene . 99
4.21 Visualization layers . 99
4.22 Fluid sculpting method overview . 103
4.23 Feature extraction . 103
4.24 Curvature analysis . 106
4.25 Feature aggregation . 107
4.26 Feature displacement representation . 108
4.27 Representation choice . 109
4.28 Boat wake pasting result . 112
4.29 Drop pasting result . 113
4.30 Bunny result . 114

142

Appendix C
List of Tables

3.1 Notations relative to complex objects. 33
3.2 Notations relative to replaceable sub-structures. 39

4.1 Properties for each type of waterfall . 96
4.2 Performances of our waterfall editing framework 98
4.3 FluidSculpting: notations . 116

143

Appendix D
List of Algorithms

1 Matching cut depth first search . 41
2 Metropolis-Hasting algorithm for distribution synthesis 51
3 Vertex-disjoint path cover computation . 108

144

