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1 INTRODUCTION 

 

1.1 EPITHELIAL LUMEN MORPHOGENESIS 

1.1.1   Polarized epithelial tissues 

 

All epithelial tissues share common features, despite their morphological diversity. 

Epithelial cells can be organized into simple monolayers or stratified multiple layers and 

their morphology can be classified into squamous (thin and flat), cuboidal (square) or 

columnar (barrel-shaped). Regardless their different organizations, all epithelial cells 

are tightly packed, closely connected through adherence and tight junctions and highly 

polarized.  

Epithelial cells are polarized in respects to their neighbouring cells in X and Y (planar 

cell polarity) as well as in respect to the luminal surface in Z (apico-basal polarity). In 

this thesis I will focus on the apico-basal cell polarization, which is characterized by 

clearly segregated plasma membrane domains as well as polarized distribution of cell 

organelles and the cytoskeleton. The apical and basolateral plasma membrane domains 

are segregated by tight junctions and characterized by distinct lipid and protein 

compositions. The apical domain faces the lumen, whereas the basal domain is in 

contact with the basal lamina, which in turn is linked to the extracellular matrix of 

connective tissue. During development or upon injury, epithelial cells undergo cell 

division, which is a critical process since the cells have to maintain the integrity of the 

tissue while experiencing drastic cell shape remodelling.  

How exactly epithelial cells establish and maintain their apico-basal polarization in the 

context of cell division are long standing questions that I will discuss in detail during 

this thesis.  
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Figure 1: Classification of vertebrate epithelia. 

This scheme illustrates the different types of epithelial tissues in respect to their localization in 
the human body.                                                    

From: http://pharmaworld.pk.cws3.my-hosting-panel.com/BodySystemDetail.asp?tId=43  

 

 

1.1.2 Polarity complexes in epithelial polarity 

 

Three evolutionary conserved polarity complexes play a major role in the establishment 

and maintenance of epithelial polarity: the Crumbs (Crumbs/PALS1/PATJ) complex, the 

PAR (Par6/Par3 /aPKC) complex and the Scribble (Scribble/Dlg/Lgl) complex. These 

polarity complexes, their functions and interactions are conserved from invertebrates to 

humans. Therefore many studies have been carried out in C. elegans and Drosophila 

melanogaster, due to the well-known cell fates and the ease of genetic manipulation.  
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The discovery of the Par complex 

The Par (partitioning-defective) proteins 1-4 were initially identified in a genetic screen 

for maternal lethal mutants in C. elegans in 19881. Loss of Par proteins induces 

symmetric cell division through partition defects of cytoplasmic polarity regulators 

during early cell division. Interestingly, the idea that cell division is tightly coupled with 

polarity and cell fate in terms of asymmetric segregation of cytoplasmic regulatory 

proteins was already established in the early 1980s. Investigation of the distribution of 

P-granules during cell division in the early C. elegans embryos demonstrated that P-

granules localized asymmetrically in the cytoplasm during cell division and determined 

which daughter cell would develop into a somatic cell and which one into a germ-line 

daughter cell2.  

Only one decade later the Par-5 (also called 14-3-3) and Par-6 were discovered in a 

screen for maternal effect lethal mutations in C.elegans3. The last component of the 

Par (Par6/Par3/aPKC) complex, aPKC, was also discovered in C. elegans, displaying the 

same phenotype as the Par mutants4. Furthermore it was demonstrated that Par3 

interacts with aPKC and that their localization in the C. elegans embryo is mutually 

dependent4, whereas Par6 is required to maintain Par3 at the cell periphery3,5. These 

studies discovered and descripted for the time the function of a polarity complex.  

 

The function of polarity complexes in apico-basal polarity establishment 

The apical plasma membrane domain of epithelial cells is defined by the Crumbs 

complex, which antagonizes with the subapical Par complex and with the basolateral 

localized Scribble complex in order to segregate two distinct membrane domains. 

Membrane segregation is achieved by different mechanisms that include mutual 

antagonism, positive or negative feed-back loops, inhibition, recruitment and formation 

of lateral diffusion barriers (tight junctions in vertebrate epithelial cells or the 

subapical complex/marginal zone in invertebrates).  
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The tight junctions (also called zonulae occludentes) are composed of Occludins, 

Claudins and Jam-A, which are anchored to the actin cytoskeleton via PDZ containing 

proteins such as ZO-1, -2, -3. The adherence junctions (zonulae adhaerens) are located 

underneath the tight junctions and are composed of Cadherins and Nectins, and are 

connected to the actin cytoskeleton via Catenins and Afadin. Adeherence junctions are 

a prerequisite for tight junctions since Nectin, in cooperation with Cadherin, assist to 

recruit Jam-A, Occludin and Claudin to the apical side of adherence junctions6,7. Nectin 

and Jam-A recruit Par3, a component of the Par complex, to the apical junctions, which 

is an important player in tight junction formation and apico-basal polarity 

establishemnt8–12.  

 

 

Figure 2: Polarity and junctional complexes in polarizing epithelial cells.  

Localization of polarity complexes, adherence and tight junction proteins during the 
establishment of epithelial apico-basal polarity in vertebrate cells. Left: unpolarized epithelial 
cell, Right: polarized epithelial cell. From reference: 7 
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Depletion of Par3 in MDCK cysts leads to abnormal multiple lumen cysts and impaired 

tight junction formation through mistargeting of apical proteins12. Interestingly, rescue 

experiments using a Par3 mutant unable to bind aPKC cannot rescue the MDCK single 

lumen formation, but can rescue tight junction formation. This indicates, that aPKC- 

mediated phosphorylation of Par3 is required for apical polarity establishment, but 

dispensable for tight junction formation12.  

This observation is in line with the fact that aPKC phosphorylation of Par3 occurs at the 

apical plasma membrane and leads to immediate dissociation of Par3 from the 

complex12. Par3 phosphorylation is mediated through Par6, which is activated by Cdc42 

and recruited to the apical domain through PALS1 and Crumbs12. Moreover it was 

demonstrated in Drosophila that Par1 phosphorylates Par3, which induces Par3 binding 

to 14-3-313. The binding to 14-3-3 competes with the binding of Par3 to aPKC and thus 

inhibits association of Par3 with aPKC/Par6. In addition Par1 binds to 14-3-3 and thus 

competes with Par3 for the binding site, thus leading to physical separation of the 

apical Par3 domain and the lateral Par1 domain.   

Par3-mediated tight junction formation in contrast is independent of the Par complex 

but depends on binding to the Rac1 GEF Tiam1 and therefore local Rac1 activation11. 

Active Rac1 assists PI3K activation, which activates Rac1 in a positive feed-back loop in 

Drosophila14 as well as during MDCK cysts development15. It was shown in Drosophila that 

apically-localized Crumbs represses this feed-back loop, while it is negatively regulated 

through Rac1 and PI3K14. This example of a tightly-regulated positive feed-back loop 

helps to restrict PI3K-induced conversion of PtdIns(4,5)P2 into PtdIns(3,4,5)P3 to the 

basolateral membrane, since it is inhibited by Crumbs at the apical membrane domain. 

Moreover PI3K is recruited to lateral junctions by E-cadherin where it recruits Disc Large 

and generates PtdIns(3,4,5)P3, which in turn recruits Scribble to form the basolateral 

Scribble complex and antagonizes the apical Crumbs complex 16–18.  
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Figure 3: Polarity complexes in polarized vertebrate epithelial cells 

This scheme illustrates the interaction between polarity complexes in polarized vertebrate 
epithelial cells.  From reference: 19 

 

 

The role of lipids in apico-basal polarity establishment 

The apical plasma membrane domain is rich in PtdIns(4,5)P2, whereas the basolateral 

domain is dominated by PtdIns(3,4,5)P3 
20. The segregation of these lipids is mainly 

achieved through polarized localization of the phoshapatease PTEN and the kinase PI3K.  

It was shown in Drosophila and MDCK cells that Par3 can bind PTEN through its PDZ3 

domain and thus recruits PTEN to the apical membrane and apical junctions21–23. Par3 

itself is recruited to the apical junctions via binding to cell adhesion molecules8–12, but 

also via its binding to phosphoinositides through its PDZ2 domain21,22. Furthermore Par3 

can associate transiently with the apical aPKC/Par6 complex.  

PTEN catalyses the conversion of PtdIns(4,5,6)P3 into PtdIns(4,5)P2  and therefore helps 

to recruit Cdc42 through Annexin2 (a PtdIns(4,5)P2-binding protein)24. Cdc42 in turn 
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participates in the activation of aPKC through Par6. Furthermore, aPKC phosphorylates 

Lgl, which induces its degradation and therefore supresses basolateral identity at the 

apical pole.  

However, Par3 also activates Rac1 and PI3K through binding to the Rac1 effector Tiam1 

and thus promotes generation of PtdIns(3,4,5)P3. Hence, Par3 with its localization at the 

apical adherence junctions triggers tight junction formation and the establishment of 

the apical domain through PTEN/PtdIns(4,5)P2/Annexin/Cdc42 as well the establishment 

of the basolateral domain through Tiam1/Rac1/PI3K/PtdIns(3,4,5)P3.  

Interestingly when PtdIns(3,4,5)P3 is inserted ectopically into the apical membrane of 

MDCK cells, this is sufficient to locally change the membrane identity20. PtdIns(3,4,5)P3 

insertion recruits PI3K to the apical membrane, thus inducing a positive feedback loop 

that induces transcytosis of basolateral proteins from the ECM facing membrane to the 

apical membrane domain. Indeed, a biotinylation assay demonstrated that basolateral 

proteins such as p58 and Syntaxin4 are endocytosed from the basolateral membrane and 

targeted towards the PtdIns(3,4,5)P3 insertion site. In line with these results, addition of 

the PI3K inhibitor LY204002 reduces the cell height of MDCK 2D monolayers through 

inhibiting the expansion of the lateral domains20. Thus, local PI3K activity is sufficient to 

initiate the formation of basolateral domains.  

Similarly, addition of PtdIns(4,5)P2 to the basoalteral domain in MDCK 3D cysts is 

sufficient to target apical proteins such as actin  and PODXL to the basolateral domain24. 

Hence, the distribution of different phosphoinositides, controlled by phosphatases and 

kinases, drives cell polarity through recruitment of polarity proteins that directly 

interact with lipids.  
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Figure 4:  Exogenous PtdIns(4,5)P2 reverses the orientation of the apical membrane   

Exogenous addition of PtdIns(4,5)P2 from the basolateral site of polarized MDCK cysts induces 
delocalization of PODXL(gp135), ZO-1 and actin from the apical membrane to the basolateral 
membrane. From reference: 24 

 

 

1.1.3   Polarized traffic - Apical and basolateral sorting signals 

 

Newly synthesized membrane proteins are trafficked from the endoplasmic reticulum to 

the Golgi and through the trans-golgi network (TGN), where they are sorted and 

delivered to the correct plasma membrane domain. Some of these proteins will be 

sorted directly towards the apical or basolateral domain, others will be delivered to the 

basolateral domain from where they undergo transcytosis to the apical membrane. Upon 

endocytosis (clathrin-dependent or clathrin-independent), apical and basolateral cargo 

enter into Rab5-positive apical or basolateral early endosomes (AEE or BEE, 

respectively)25–27. From there, the cargo can be recycled back to the membrane of 

origin, transcytosed towards the opposite membrane domain or enter into late 

endosomes and lysosomes for degradation 28–31.  
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The sorting signals for basolateral proteins are usually located in the cytoplasmic tail. 

Most of these sorting signals are tyrosine-based or contain dileucine motifs such as 

”NPxY”, “YxxO” or “D/ExxxLL”32–34. In some cases, these basolateral sorting motifs can 

also serve as endocytosis signals and can interact with subunits of clathrin adapter 

complexes. The clathrin adapter AP-1B is for example required for the basolateral 

sorting of vesicular stomatitis virus glycoprotein G (VSV-G), the low-density lipoprotein 

receptor (LDLR) and E-cadherin in mammalian epithelial cells35,36. In C. elegans 

however, AP-1 is not only required for basolateral sorting but also for the apical sorting 

of essential polarity proteins such as Cdc42 and Par637. Interestingly, AP-1 regulates the 

sorting of E-cadherin both in vertebrates and in C. elegans, although E-cadherin 

localizes to the basolateral membrane in vertebrates and to the apical membrane in C. 

elegans38, highlighting the plasticity of sorting mechanisms.   

Apical sorting signals are often more complex than basolateral sorting signals and can 

include posttranslational modifications such as N- and O-linked glycosylation in 

combination with lipid raft association, dimerization of the protein or the presence of a 

GPI anchor or a PDZ domain32,33. GPI-anchored proteins are often sorted from the TGN 

to the apical membrane in polarized epithelial cells. However, there are also GPI-

anchored proteins that are sorted to the basolateral membrane. Fusion of GPI to the 

ectodomain of basolateral proteins was shown to redirect these proteins to the apical 

membrane39,40 and it was furthermore shown that GPI-mediated apical sorting requires 

oligomerization and raft-association of the proteins41–43. Basolateral-sorted GPI-anchored 

proteins however, do not require oligomerization for their sorting43. Interestingly, it was 

also shown that at least for some proteins that are naturally glycosylated and GPI-

anchored such as the membrane dipeptidase (MDP), the glycosylation is required for 

apical sorting, but not the GPI anchor44. Removal of the glycosylation therefore leads to 

basolatral targeting of MDP. It was shown for the p75 neurotrophin receptor (p75NTR) 

that its O-glycosylation, but not the N-glycosylation important for its apical sorting and 

removal of the O-glycosylation is sufficient to target p75NTR to the basolateral plasma 

membrane45. The polymeric immunoglobulin receptor (pIgR) is biosynthetically targeted 

to the basolateral domain, where it can bind its ligand IgA and take the transcytosis 
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route to the apical membrane. For this protein it was shown that removal of the 

glycosylation reduces its transcytosis rate, but does not inhibit it completely46. Instead a 

small sequence of 11 aminoacids in the cytoplasmic domain of pIgR is sufficient for 

basolateral to apical transcytosis. Other proteins such as the P2Y4 receptorc rely on 

hydrophobic residues near the COOH-terminus for their apical targeting47.  

These examples show that there is no unique apical targeting signal and that several 

mechanisms are employed to ensure the correct apical sorting. 

 

 

1.1.4  Polarized Mechanisms of epithelial lumen formation in vitro 

and in vivo 

 

The formation of lumen is a highly conserved feature among vertebrates and 

invertebrates, though the mechanisms for lumen formation are very diverse even within 

the same species. Lumen can be established de novo from an already pre-existing 

epithelial monolayer or from unpolarized single cells or cell aggregates.  

 

1.1.4.1  Lumen formation from polarized epithelia 

 

A polarized monolayer can form lumen through processes called wrapping or budding 

(branching). In this case the monolayer undergoes either invagination to form tubes 

with an open lumen or folds and pinches of a tubular epithelium that are in both cases 

already polarized (Fig.5)48. Wrapping can be found in vivo in the vertebrate neural tube, 

whereas budding is observed in the ureteric bud in the kidney and the lung epithelia48.  
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Figure 5: Two mechanisms of lumen formation in polarized epithelia. 

This scheme illustrates epithelium lumen formation from polarized cells through two distinct 
processes called “budding” and “wrapping”. Apical membrane (red) and cell-cell junctions 
(green). From reference: 48 

 

 

1.1.4.2   Lumen formation from unpolarized epithelia 

 

The major processes to establish a lumen from nonpolarized cells are described as cord 

hollowing, cell hollowing and cavitation.   

 

Cavitation 

Cavitation is the formation of a lumen within a cell aggregate through apoptosis of the 

inner lying cells. This process of lumen formation was initially studied in vitro, using 

MCF-10 cells (mammary gland cells) that were cultured in Matrigel. It has been shown 

that MCF-10 cell undergo a phase of proliferation and polarization that is followed by 

apoptosis of the inner lying cells that are not in contact with the extracellular 

matrix49,50. These inner cells do not receive survival signals from the ECM and thus 

undergo apoptosis, leading to a hollow acini-like sphere. This model of cavitation can be 

found in vivo in the mammary and the salivary glands.  

 



  
 

 12 

 

Figure 6:  Cavitation – a mechanism of lumen formation in polarized epithelia.  

This scheme illustrates in vitro lumen formation of mammary epithelia through apoptosis of the 
inner lying cells. From reference: 49 

 

 

Hollowing 

Another mechanism of lumen formation is described as hollowing, where a lumen will 

form de novo between two or more cells from pre-existing cell-cell contacts through 

coordinated membrane traffic, cell division and polarization (cord hollowing). Hollowing 

can also occur within one cell through fusion of vesicles in the cytoplasm that form a 

lumen that traverse the whole cell (cell hollowing). Cord hollowing can be observed in 

vitro in intestinal epithelial Caco-2 cells as well as in canine Madin Derby kidney cells 

(MDCK). In vivo, it is observed for example in the Drosophila melanogaster tracheal 

system, in the Zebrafish gut and in the elongating nephron in the mouse kidney51.  Cell 

hollowing in contrast has been described in vivo in the excretory cells of C. elegans as 

well as in the tracheal terminal cells in Drosophila melanogaster52.  
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!  

Figure 7: Hollowing – two mechanisms of lumen formation in polarized epithelia. 

This scheme illustrates the differences between cord hollowing (a) and cell hollowing 
(b). Junctions are marked in green; apical vesicles and domains in red. From reference: 52 

 

 

Cell hollowing - Seamless tube formation in Drosophila Melanogaster 

Seamless tubes consist of a single cell with an intracellular tube that can be found in 

the Zebrafish vasculature53, the Drosophila trachea and the C. elegans excretory 

system54. The tube forms through a process where intracellular vesicles coalesce and 

thereby form a tube, which requires endocytosis, endocytic recycling as well as 

pinocytosis54–58. In the Drosophila tracheal cells, it was shown that tube formation 

requires endocytosis since Rab5 and Syntaxin7 mutants show impaired seamless tube 

formation56. Interestingly, perturbations of early endosome formation induce elevated 

levels of Crumbs and phosphorylated Moesin, which leads to cystic dilation of the 

seamless56. It was further shown that Crumbs is required to recruit or to stabilize 

Moesin. Moesin in turn is required for luminal actin remodelling and targeting of Crumbs 

-positive vesicles in cooperation with the synaptotagmin like protein Bitesize59. 
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Moreover it has been shown that tracheal seamless tube formation depends on minus-

end directed microtubular trafficking of apical cargos. Importantly, the trafficking of 

apical cargos, such as Crumbs3, is mediated by the Rab35 GTPase and its GAP whacked, 

which will be discussed on page 59. 

 

 

Figure 8: Dorsal trunk and dorsal branch of the Drosophila trachea 

This scheme illustrates different types of tubules that can be found in the Drosophila trachea. 
The dorsal trunk (DT) consists of multicellular tubes that are separated by junctions (red). The 
dorsal branch (DB) consists two dinstinct types of tubes: The autocellular tube, a single cell 
wrapped around the luminar space and sealed by an autocellular junction. The seamless tube, a 
single cell with a lumen and without junctions. Terminal cells at each branch of the dorsal 
branch form seamless tubes. From reference: 60 

 

 

Cord Hollowing – Formation of the renal vesicle 

During formation of the mammalian nephron for example, the cap mesenchyme 

becomes compacted to form a cell aggregate that undergoes MET and thus forms a 

sphere with an open lumen, which is called the renal vesicle51. The pre-tubular 

aggregate contains Par3-positive membrane domains that will coalesce to form the 

future apical membrane, which is mediated by the adherence junction protein Afadin. 

Consequently, depletion of Afadin leads to discontinuous, multiple lumen in the mouse 
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nephron. Then the renal vesicle elongates to form the s-shaped body that fuses to the 

ureteric bud tubule to form a continuous lumen. The process of the formation of the 

renal vesicles is very similar to the “hollowing” mechanism observed in renal MDCK 

cysts. However, to date, it is not known whether the formation of the renal vesicle is 

initiated by a single cell or by multiple cells. We do not know either whether this might 

be coupled to cell division, as it is the case in MDCK cystogenesis.  

 

 

 

Figure 9: Lumen formation in the developing nephron. 

This scheme illustrates the lumen formation of the developing nephron. The condensed 
mesenchyme (CM) forms the pre-tubular aggregate (PA) through compaction. The pre-tubular 
aggregate develops further to a polarized sphere that is called the renal vesicle (RV). The renal 
vesicle elongates and forms the S-shaped body (SB), which forms a continuous lumen with the 
ureteric bud (UB). Renal vesicle (black); apical membrane of the renal vesicle (red), ureteric bud 
(green); ureteric bud lumen (blue). From reference: 51  
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1.1.5   MDCK cells as a model for epithelial lumen formation 

 

1.1.5.1 Polarity in MDCK cells cultures in 2D or 3D 

 

MDCK cells are canine kidney tubule cells that are widely used as a model for epithelial 

polarity establishment and polarized membrane trafficking. When cultured on 

permeable filter supports, MDCK cells form a polarized monolayer with clearly 

segregates apical and basolateral plasma membrane domains.  Already in 1976 Misfeldt 

et al demonstrated that MDCK monolayers formed functional epithelial tissues with 

physiological transport and permeability characteristics61. The epithelial morphology 

was described as asymmetrical with apical microvilli and occluding junctions in between 

the cells. Following studies described the segregation of certain membrane proteins to 

the apical or basolateral domain, such as the basolateral NaK-ATPase62,63 and the apical 

localized aminopeptidase63 as well as the segregation of phospholipids64. Bacallao et al 

further described an asymmetric organization of cell organelles in filter-grown MDCK 

monolayers65. The authors describe continuous cellular remodelling, such as apical 

movement of the Golgi apparatus, the centrioles and tight junctions as well as apico-

basal orientation of the microtubule network upon junction formation. These 

observations lead furthermore to the hypothesis that the microtubular arrangement in 

polarized epithelial cells as well as the apical localized Trans Golgi Network could 

promote polarized trafficking of apical proteins towards the apical plasma membrane65.  

Polarized MDCK 2-dimensional (2D) monolayers are widely used as a model to study 

epithelial cell -polarization, polarized membrane trafficking as well viral and pathogen 

infections. However, in comparison to in vivo epithelial tissues, 2D MDCK monolayers 

have acknowledgeable limits that can be only overcome using 3-dimensional (3D) MDCK 

cyst cultures.  
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Figure 10: Polarized renal cells in vitro and in vivo. 

These images show polarized renal MDCK cells in 2D (a) and 3D (b) in vitro and murine proximal 
tubular cells in vivo.  

(a) Polarized epithelial monolayer: MDCK cells grown for 7 days on a transwell filter. PODXL 
(red); β-catenin (green); DAPI (blue) 

(b) Polarized epithelial cyst: MDCK cells grown for 48 in Matrigel. PODXL (red); β-catenin 
(green); DAPI (blue) 

(c) Polarized proximal tubules: paraffin embedded mouse kidney section, showing a 
proximal tubule. The apical membrane is marked by the Megalin receptor (red), the cell 
volume is marked by β-tubulin (green) and the nuclei were stained with DAPI (blue).  

 

 

When cultured in an extracellular matrix environment (Matrigel or collagen type I), 

MDCK cells establish an apical membrane and a lumen de novo. First, a single, 

unpolarized cell divides and establishes an apical membrane in between the two 

daughter cells, which will expand to form an open lumen. Subsequent cell divisions will 

occur perpendicular towards the apico-basal axis to establish a multi-cellular 

monolayered cyst with an open lumen.  

These 3D MDCK cysts resemble in vivo epithelial tissues in many aspects. They represent 

a useful tool to study epithelial polarity establishment, cell-ECM interactions, epithelial 

to mesenchymal transition and tubulogenesis, which cannot be realized in 2D MDCK 

monolayers. Furthermore, it has been shown that MDCK cells cultured in an 

extracellular matrix such as Matrigel display different gene expression patterns than 

MDCK cells grown in 2D monolayers66. Interestingly, genes that are upregulated in 3D 

versus 2D cultures are often found to be downregulated in glandular cancers66. 



  
 

 18 

 

Figure 11: Model of cyst development. 

This scheme illustrates the process of MDCK cyst development from a single unpolarized cell to a 
cyst with an open apical lumen.  

 

 

1.1.5.2 The role of membrane traffic in MDCK cystogenesis 
 

One of the first studies on MDCK 3D cystogenesis was performed by the group of James 

Nelson. They showed that MDCK cells grown in collagen formed cysts with an open 

apical lumen and a basolateral membrane that faces the extracellular matrix67.  MDCK 

cells in suspension, however, secreted and established a basal lamina in the centre of 

the cyst, while the apical membrane faced the ECM. Furthermore, this study 

demonstrated that cell-cell contacts between MDCK cells were sufficient to trigger the 

segregation of an apical and basolateral membrane and the formation of tight junctions. 

Later studies demonstrated that the establishment of the apical domain is mediated 

through the phosphatase PTEN that catalyses the conversion of PtdIns(3,4,5)P3 to 

PtdIns(4,5)P2 at the future apical membrane24. As discussed previously, Annexin2 binds 

to PtdIns(4,5)P2 and recruits Cdc42 to the future apical membrane, which in turn 

recruits aPKC to induce the formation of an apical membrane. Cdc42 has furthermore 

been shown to be crucial for the correct spindle orientation during cystogenesis. 
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Indeed, depletion of Cdc42 leads to a multiple lumen phenotype, as expected for 

defective spindle orientation (discussed in detail on page 127-130)68.  

Of note, the apical recruitment of Cdc42 and other cytosolic apical determinants such 

as aPKC was shown to be at least partially dependent on polarized membrane 

traffic69,70. The recruitment of transmembrane proteins to the apical membrane in MDCK 

cysts relies, as expected, as well on directed membrane traffic. Ferrari et al 

demonstrated for the first time the stepwise formation of an apical membrane starting 

from the 2-cell aggregate to the formation of a pre-apical patch (PAP) at the contacting 

surface through insertion of Podocalyxin-positive vesicles from apical recycling 

endosomes (Figure 12). This is followed by maturation of the PAP through the formation 

of tight junctions and the enrichment of water and ion channels to expand the lumen71.  

 

Figure 12: Lumen formation in MDCK cysts. 

This scheme illustrates how MDCK cells (2-cell aggregate) establish a preapical patch through 
fusion of vesicles containing apical proteins at the cell-cell contact (I). The maturation of the 
preapical patch is characterized by insertion of water and ion channels into the prepical 
membrane (II) which allows lumen initiation (III) follwed by lumen enlargement (IV). E-cadherin 
(green); PODXL (red; water and ion channels (blue). From reference: 71 

 

A detailed description of the underlying mechanisms of apical membrane formation 

during MDCK cystogenesis was then provided by Bryant et al. in 201072. Bryant and 

colleagues described how apical proteins undergo transcytosis from the ECM-facing 

membrane towards the future apical membrane to promote lumen formation. Apical 

proteins, including PODXL, are initially localized at the outer ECM-facing membrane of a 

so-called early aggregate (a 2-cell cyst), before internalization into Rab11-positive 

endosomes onto which Rab8 is recruited. Initially, PODXL is stabilized at the outer 
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membrane through RhoA/ROCKI-dependent phosphorylation of Ezrin (a binding partner 

of PODXL and NHERF1)73. Integrins on the ECM facing membrane activate FAK-mediated 

phosphorylation of the RhoA GAP p190A and thereby inactivation of RhoA and its kinase 

ROCKI. The inactivation of RhoA/ROCKI causes a decrease of Ezrin phosphorylation, 

leading to destabilization of the PODXL/NHERF1/Ezrin complex. Complete 

destabilization of the complex and thus endocytosis of PODXL is achieved through 

PKCβII-meditated phosphorylation of PODXL and NHERF1.  

  

Figure 13: Model of PODXL transcytosis in early MDCK cysts.  

This scheme illustrates the molecular cue of PODXL transcytosis during polarity establishment in 
early MDCK cysts.  

1. PODXL is stabilized at the outer membrane through RhoA/ROCKI-dependent 
phosphorylation of Ezrin.   

2. The PODXL/Ezrin/NHERF1 complex is destabilized through integrin mediated RhoA 
inactivation. 

3. PKCβII-meditated phosphorylation of PODXL and NHERF1 induces PODXL endocytosis. 
4. PODXL, in association with NHERF2, transcytoses to the AMIS.  
5. PODXL exocytosis at the AMIS and re-formation of the PODXL/Ezrin/NHERF1 complex via 

PP2A. From reference: 73 

 

AMIS 
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These PODXL positive vesicles are then trafficked towards the cell-cell contacts through 

association of Cdc42 and its GEF Tuba72.  The apical vesicles are tethered through the 

exocyst, which in cooperation with aPKC and Par3 induces the formation of the Apical 

Membrane Initiation Site (AMIS). After fusion of the Rab8/Rab11/PODXL-positive vesicles 

to the AMIS, PODXL re-associates with NHERF and Ezrin after dephosphorylation through 

PP2A and give rise to the Pre-apical patch. The Pre-apical patch will then expend to an 

open lumen through pumps and channels. Here, PODXL was described as the earliest 

apical marker that could be detected at the AMIS.    

 

 

Figure 14: Localization of PODXL and Rab11 during cyst development. 

In the early aggregate PODXL is localized at the ECM-facing membrane (i). Then PODXL is 
internalized into Rab11-positive recycling endosomes at the 2-cell stage (j). Following exocytosis 
of PODXL at the apical membrane (k), PODXL no longer co-localizes with (l,m), which is now 
localized subapical. From reference: 72.  
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Figure 15: Stages of MDCK cyst development. 

(a) Localization of PODXL (red) in different stages of MDCK cyst development from an early 
aggregate to a multicellular cyst with an open apical lumen.  

(b) Illustration of proteins localized at the AMIS and on PODXL-positive vesicles. Par3, aPKC, 
Sec8 and Sec10 are the earliest proteins detected at the AMIS and assist in the 
recruitment of PODXL-positive vesicle. From reference: 72 

 

Furthermore, it was shown that Rab27A associates with PODXL vesicles prior to fusion at 

the apical membrane in 2D and 3D MDCK cultures66,74. These Rab27A-positive vesicles 

are targeted to the apical membrane through Slp2-a and Slp4-a in cooperation with 

Rab27A, Rab3 and Stx366. Slp2-a targets Rab27A/PODXL vesicles to the apical membrane 

through binding to PtdIns(4,5)P2, which is enriched at the apical membrane. 

Simultaneously, Slp4-a, which is bound to Rab3 and Rab27A on the vesicle, associates 

with membrane-bound Stx3 and thus tethers the vesicle to the apical membrane prior to 

fusion. Indeed, depletion of Stx3 or Slp4-a leads to an accumulation of PODXL vesicles 

due to impaired fusion. In contrast, Slp2-a depletion delays and mislocalizes the fusion 

of PODXL vesicles, thus showing a role for Slp2-a in apical targeting to PtdIns(4,5)P2 

enriched membranes66.   
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Figure 16: Fusion of PODXL-positive vesicles at the apical membrane. 

(a) Slp2-a targets Rab27-positive vesicles to the PtdIns(4,5)P2 enriched membrane. Tethering of 
the vesicle occurs via binding of Slp4-a to Stx3, Rab27 and Rab3.  

(b) Depletion of Stx3 or Slp4-a impairs the tethering and fusion of Rab27-positive vesicle to the 
PtdIns(4,5)P2 enriched future apical membrane. As a result these vesicles accumulate underneath 
the plasma membrane. Depletion of Slp2-a impairs the correct targeting of Rab27-positive 
vesicles and leads thus to mislocalized fusion. This results in the establishment of multiple 
lumen. From reference:66 

 

 

1.1.5.3   The role of the extracellular environment 

 

The composition and stiffness of the extracellular matrix, as well as the cell 

confinement, play important roles in the establishment of epithelial polarity in MDCK 

cysts as well as in vivo75. Loss-of function phenotypes of single ECM components in 

different in vivo models such as M. musculus, D. rerio, X. laevis, G. galus and C. elegans 

demonstrate prenatal or post-natal death for many of the tested components75. 

a b 
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Furthermore ECM stiffness and composition is associated with tissue invasion and 

proliferation in epithelial cancers, and impaired lumen formation in 3D cell cultures76–78. 

Interestingly, high cell confinement combined with a stiff laminin matrix leads to 

junctional stability, aPKC activation at the cell contacts and polarized centrosome 

positioning and therefore correct lumen formation79. This demonstrates that other 

parameters, such as cell confinement and ECM composition, can compensate for high 

ECM stiffness. Furthermore, the matrix stiffness is constantly regulated by the cell’s 

secreted matrix metalloproteinases and lysil oxidases that induce laminin proteolysis 

and collagen crosslinking76. Dysregulation of ECM modifications was found in different 

types of carcinomas and cancer cell invasion, thus cancer cells can modulate the ECM to 

promote their own invasion76,80. Moreover, it was shown in vitro in MCF-10 mammary 

acini that cancer derived mammary acini fail to assemble laminin and collagen type IV81. 

Interestingly, the assembly of lamini and collagen was shown to depend on a rotational 

movement of the acini within the matrix. MCF-10 mammary acini rotate 360° every 4 

hours during cyst development to assemble secreted laminin and collagen type IV, 

whereas cancer derived acini do not exhibit this rotational movement.  

Importantly, the composition of the ECM can also influence the apico-basal polarity axis 

through integrin signalling, which will be discussed in detail in the next chapter.  

 

 

1.1.5.4  Inversion of apico-basal polarity and other abnormal                    
phenotypes in cysts 

 

Different cyst phenotypes 

MDCK cells cultured in Matrigel give rise to cysts with a single open lumen. However, 

disruption of certain genes or manipulation of the extracellular environment results in 

in a variety of cyst phenotypes such as multiple lumen, no lumen, filled lumen, 

cytoplasmic vesicles/vacuoles, expansion of the apical domain, luminal apoptosis 

inverted cysts and small cysts. Analysis, quantification and distinction between these 
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phenotypes rely on specific markers of the apical and basolateral domain as well as the 

tight- and adhesion junctions. As shown in Figure 17, different cysts phenotypes are 

categorized using PODXL as apical marker and β-catenin as basolateral marker.  

In this chapter I will briefly introduce the most common cyst phenotypes and then focus 

on the rarely observed inverted cyst phenotype.  

 

 

Figure 17: Overview of MDCK cyst phenotypes. 

Representative images of various MDCK cyst phenotypes after 72h culture in Matrigel.              
The abnormal phenotypes were obtained by addition of different p110 inhibitors, giving rise to a 
variety of phenotypes. Cysts were stained with PODXL (red), β-catenin (green), DAPI (blue). 
From reference: 82 

 

 

The multiple lumen phenotype 

One of the most frequently observed phenotypes is probably the multiple lumen 

phenotype, which will be discussed in detail on page 127-131. Disruption of genes that 

are involved in spindle orientation (eg. Cdc4268,83,84, aPKC85, Par685, Par386, LGN87) often 

give rise to multi-luminal cysts. The axis of cell division and the localization of the 

cleavage furrow determine the site for apical vesicle fusion and lumen formation88,89. In 

normal conditions, cells divide tangentially towards the lumen. In contrast, spindle 

orientation defects can lead to perpendicular cell divisions and thus formation of a 

second lumen between the two daughter cells. The disruption of tight junctions can also 

result in multiple lumen, as it was shown for Par386, Pals190, PatJ91. The multiple lumen 
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phenotype has been associated with several cancers, such as non-invasive breast 

carcinomas and non-invasive ductal carcinomas, that are characterized by the presence 

of multiple lumen in vivo50.  

 

 

 

 
Figure 18: Spindle orientation in MDCK cysts. 

In normal conditions, MDCK cells orientate their mitotic spindle perpendicular to the apico-basal 
axis, leading to symmetric cell division. Both daughter cells form an apical membrane at the 
central lumen. The midbody is closely localized to the apical lumen. In abnormal conditions 
however, perturbation of either the midbody localization (I) or the spindle positioning (II) can 
lead to the formation of an additional lumen. From reference: 92 
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No lumen phenotypes: Filled lumen and apical vesicle accumulation 

Transformation of MDCK cells with the Maloney sarcoma virus induces EMT and filling of 

the cyst lumen, a hallmark for most epithelial glandular cancers93. The same phenotype 

was also observed upon over-activation of the well-known oncogene Ras94. Another 

frequently observed cyst phenotype is the accumulation of internal vesicles that contain 

apical cargo proteins. This phenotype often entirely disrupts apico-basal polarity or 

leads to multiple small lumens. Depletion of genes involved in apical 

targeting/tethering such as Rab366, Rab872, Rab1172, Rab276666, Slp366, Slp466, Syntaxin366 

and exocyst components66,72, result in these defects.  

 

 

 

Figure 19: Apical vesicle accumulation in MDCK cysts after specific protein 
depletion. 

(a) Localization of GFP-Slp4-a and PODXL in MDCK cysts depleted for Stx3. PODXL-positive 
vesicles accumulate in close proximity to the plasma membrane (also GFP-Slp4-a-
positive). Additionally a pool of GFP-Slp-4a is mistargeted to the basolateral membrane 
(yellow arrows). 

(b) Depletion of Rab27a/b or Rab3b leads to accumulation of PODXL-positive vesicles 
(arrowheads). From reference: 66 

 

 

 

a b 
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Inverted cyst phenotype 

The inverted cyst phenotype is characterized by the absence of a lumen and the 

presence of mis-localized apical proteins to the ECM facing membrane. Inversion of 

apico-basal polarity upon experimental perturbation is a rather rare, but very 

interesting phenotype, since this phenotype has been observed in different cancers as 

well as in cases of intestinal disorders such as multiple intestinal atresia (MIA)95 and 

microvillus inclusion disease (MVID)96.  

Indeed, inversion of apico-basal polarity is characteristic for micropapillary breast 

carcinomas and micropapillary and is correlated to a high risk of metastasis and poor 

prognosis97–102. Interestingly, polarity inversion has also been observed in micropapillary 

carcinomas of the intestine, the urether103, the thyroid104 and in colorectal 

micropapillary carcinomas99,105. It is assumed that inversion of polarity could facilitate 

the secretion of metalloproteinases responsible for stromal and vascular invasion. 

Furthermore, polarity inversion could facilitate the detachment of tumour cells from 

the stroma and thus promote invasion106. However the molecular mechanisms that 

causes polarity inversion in micropapillary carcinomas remains elusive.  

MIA patients suffer from malformation of the intestine that can prevent the normal 

transit of the digestion products, which is often caused by mutation in the TTC7A gene, 

which encodes the tetratricopeptide repeat domain 7A95. It was shown that patients 

display impaired apico-basal polarity with loss of the apical pole function. Interestingly, 

the apical brush boarder protein Villin was weakly detected at the luminal surface, thus 

indicating first signs of apico-basal polarity inversion. Furthermore intestinal organoids 

from MIA patients developed a complete apico-basal inversion and lacked an open 

lumen when cultured in Matrigel. This inverted polarity phenotype could be rescued by 

pharmacological inhibition of Rho kinase (ROCK) with Y-27632, suggesting that TTC7A 

directly or indirectly inhibits ROCK activity95. The role of ROCK in apico-basal polarity 

will be discussed in detail later in this section.  

Recently, also the intestinal disorder MVID has been linked to apico-basal polarity 

inversion96. MVID is characterized by cytoplasmic microvillus inclusions and a loss of 
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apical microvilli, which is often caused by mutations of MYO5B or in some cases 

mutation of STX396,107.  The establishment of apically localized microvilli and depends 

on functional myosin Vb and its interaction with Rab8 and Rab11107. Furthermore, apical 

exocytosis of apical cargos such as GLUT5, CFTR and NHE3 depends on a functional of 

myosin Vb /Rab8/Rab11-dependent trafficking followed by Slp4-a /Stx3-dependent 

tethering and fusion at the apical membrane108.  Genome edited Caco-2 cells, carrying a 

human mutation of Myo5B display multiple disorganized lumen when cultured in 

Matrigel accompanied by loss of apical microvilli108. However, recently it has been 

demonstrated that depletion of Myo5B in Caco-2 cells leads to an inversion of apico-

basal polarity as marked by basolateral mislocalized Par6B, Ezrin and PKC96. 

Importantly, a partial polarity inversion could also be found in some human intestinal 

samples from MVID patients96.   

Inversion of apico-basal polarity has also been observed in MDCK 3D cysts cultures. This 

phenotype was first observed by the group of James Nelson. This lab showed that MDCK 

cells cultured in suspension without addition of ECM components establish inverted cysts 

with the apical membrane facing towards the culture medium67. Furthermore no real 

lumen establishes. However, cells secret laminin, a component of the basal lamina, into 

the intercellular space. The importance of the extracellular environment was further 

demonstrated by Ojakian and Schwimmer, who showed that MDCK cysts in suspension 

could re-orientate their polarity upon addition of an extracellular matrix, such as 

collagen109. Indeed, MDCK cells in suspension develop to inverted cysts, where the 

apical membrane faces the medium. Replacement of the culture medium with collagen I 

induces a reversion of apcio-basal polarity, and microvilli can be observed in the centre 

of the cysts within 6 hours.  
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Figure 20: MDCK cells grown in suspension. 

Phase-contrast images (C-E) and scanning electron microscopy (C’-E’) of MDCK cells grown in 
suspension for 24h (C, C’), 2-3 days (D, D’) and 4-5 days (E, E’). From reference: 67 

 

 

 

Figure 23:  Re-orientation of apico-basal polarity. 

MDCK cells cultured in either collagen to establish a cyst with an apical lumen or cultured in 
suspension to establish an inverted cyst without a lumen. The inversion of apico-basal polarity 
can be re-orientated by addition of collagen for 24-48h. From reference: 15 
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The interaction between the cell and the extracellular matrix is mediated through 

integrrins and focal adhesions complexes. Integrins are non-covalently bound 

heterodimers consisting of an α- and a β-subunit.  The composition of the α- and β-

subunit determines the ligand specificity. For example α2β1 binds primarily to collagen 

type I that is often used as ECM for MDCK 3D cysts cultures. The heterodimers α3β1, 

α6β1 and α7β1 bind preferentially to laminin, the major component of Matrigel and 

only α1β1 can bind to collagen I and laminin110,111.  

 

 

Figure 22: Classification of intergrin heterodimers. 

This scheme illustrates the ligand specificity of the different integrin heterodimers. From 
reference: 111 

 

 

In MDCK cysts β1-integrins are localized exclusively to the basolateral membrane109. 

Interestingly, blocking of β1-integrin function using monoclonal blocking antibodies, 

inhibits re-orientation of apico-basal polarity upon collagen addition. This indicates that 

β1-integrin is indeed the major integrin in MDCK cysts, required to sense and to interact 

with the extracellular environment.  
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Interestingly, a recent study showed that β1-integrin blockage or depletion of β1-

integrin in MDCK cysts cultured in Matrigel (instead of collagen I) did not induce 

inversion of apico-basal polarity, but instead a front-rear polarity phenotype73. This 

front-rear polarity is characterized by an inversion of apico-basal polarity of a few cells 

within the cyst, whereas the other cells exhibit normal polarity orientation, thus leading 

to a front-rear polarity of the entire cyst. Importantly, the leading cells with inverted 

polarity do not show an EMT-like behaviour: they do not migrate out of the cysts and 

they do not form tubular structures or thin protrusions as observed upon HGF induced 

tubulogenesis.  

 

 

Figure 24: Depletion of β1-integrin leads to a front-rear polarity. 

Parental or β1-integrin-GFP expressing MDCK cells were transfected with control shRNA or β1-
integrin shRNA and cultured in Matrigel for 48h. Cysts were stained for PODXL (red) and β-
catenin (blue). Cysts depleted of β1-integrin show a front-rear polarity phenotype. From 
reference: 73 

 

 

The same front-rear phenotype was observed upon inhibition of PKC using either the 

PKC inhibitor GÖ-6976, depletion of PKCβ or depletion of the focal adhesion kinase 

(FAK). These results describe a pathway where β1-integrin signalling through FAK and 

p190RhoGAP inhibits RhoA/ROCK activation and Ezrin phosphorylation at the ECM facing 



  
 

 33 

membrane to destabilize the PODXL/NHERF1/Ezrin complex. PKCβII assists to the 

destabilization by phosphorylation of PODXL and NHERF1 and thus enables PODXL 

internalization and transcytosis towards the AMIS as described earlier on. Interestingly, 

cysts that exhibit the described front-rear polarity also show impaired rotational 

movement as observed in long-term time-lapse microscopy.  

The front-rear polarity phenotype was described by the authors as a partial rescue of 

the inverted polarity phenotype due to the presence of other ECM components such as 

laminin, compared to pure collagen I. Previously, it was shown in pure collagen I-

cultured MDCK cysts that β1-integrin activates Rac1, which inhibits Rho-mediated ROCKI 

activation112. Consequently, expression of a constitutive active mutant of the Rac1 

effector Pak1 induced polarity inversion, as observed upon β1-integrin blockage. 

Interestingly, Pak1-mediated polarity inversion could be rescued by addition of 

exogenous laminin or Matrigel (contains laminin) into the collagen I matrix112.  

These results seem to be surprising, but could be simply explained by the presence of 

other integrin heterodimers that can bind to laminin. Indeed, blocking of β1-integrins 

inhibits the binding to collagen receptors, but does not completely inhibit the binding to 

laminin since the heterodimer α6β4-integrin would still be able to interact with laminin. 

α6β4-integrin is indeed expressed in MDCK cells, however from previous studies it is not 

entirely clear whether α6β4-integrin is required for laminin binding and could therefore 

compensate for the loss of β1-integrins in the presence of laminin113.  

Additionally, it has been shown that MDCK cells express another laminin receptor which 

is the heterodymeric glycoprotein Dystroglycan82. Dystroglycan is a hig-affinity laminin 

receptor that consists of a β-subunit and a non-covalently bound α-subunit114. Moreover, 

depletion of Dystroglycan in MDCK cells induces complete inversion of apico-basal 

polarity in MDCK Matrigel cultures, thus indicating that Dystroglycan acts as a potent 

laminin receptor in MDCK cysts82.  

Taken together, the presence of either Dystroglycan or α6β4-integrin could potentially 

explain why exogenous laminin can rescue Pak1-mediated polarity inversion and why 

β1-integrin blockage or depletion in Matrigel cultured MDCK cysts induces only a partial 
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polarity inversion. Moreover, these above mentioned studies demonstrate that the 

choice of the extracellular matrix in 3D cell cultures can have important impact on the 

obtained results.  

The role of Rac1 in cystogenesis for example, was mainly studies in collagen I-based 3D 

cell cultures. It was demonstrated that Rac1 activation plays an important role in β1-

integrin mediated collagen/laminin signalling and polarity orientation in MDCK cysts and 

collagen overlay cultures115. Collagen I binding to β1-integrin leads to Rac1 activation, 

which is required for the assembly of secreted laminin and thereby correct polarity 

orientation115. Moreover, blocking of β1-integrin leads to RhoA activation, which by 

itself causes an inversion of apico-basal polarity116. In turn, inhibition of RhoA, ROCK I or 

myosin II restores normal polarity orientation after blockage of β1-integrin or expression 

of DA Rac1116. Interestingly, it was furthermore shown that Arf6 activation is required 

for Rac1 activation, inducing laminin assembly and a positive feedback loop for Rac1 

activation117. Depletion of Arf6 induces polarity inversion in collagen cultured or 

Matrigel cultured MDCK cysts due to Rac1 inactivation and impaired laminin assembly. 

However, the same study demonstrates that the inversion of polarity induced by Arf6 

depletion can be rescued by ROCK inhibition in collagen cultures, but not in Matrigel 

cultures. Furthermore the sole presence of excess laminin in the Matrigel did not induce 

a partial rescue of polarity inversion induced by Arf6 depletion as reported for polarity 

inversion induced by blocking of β1-integrin73,117.  

These results open the possibly that β1-integrin-mediated Rac1 activation and Arf6-

mediated Rac1 activation might function in two distinct pathways to orient apico-basal 

polarity.  
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Figure 25: Model for Arf6-mediated activation of Rac1 and basement membrane 
remodelling. 

This scheme illustrates how Arf6 activation in MDCK cysts activates Rac1, which positively 
regulates laminin deposition. Upon Arf6 depletion, Rac1 is not activated, leading to impaired 
laminin deposition and polarity inversion. From reference: 117 

 

 

Rac1 activation was also shown to activate the PI3-kinase/protein kinase B pathway in 

collagen embedded MDCK cysts to correctly orientate apico-basal polarity15. 

Of note, investigation of the role of PI3 kinase isoforms in 3D Matrigel cultures 

demonstrated that inhibition of the p110delta isoform induced complete apico-basal 

polarity inversion, which was not partially rescued through the laminin contained in the 

Matrigel as previously shown for Arf6-mediated polarity inversion82,117. Depletion or 

inactivation of p110delta affected laminin and type IV collagen assembly around the 

cyst and decreased the expression of integrins. Furthermore p110delta expression is 

positively regulated by extracellular matrix components such as collagen type IV, 

Fibronectin, poly-D-lysin and laminin, indicating that PI3 kinase p110delta acts 

upstream of the β1-integrin-laminin-Rac1 pathway82.  
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Referring to the possibility of having distinct Rac1 pathways that could be activated 

either by β1-integrin or by Arf6, it is of interest that Arf6 activation has been recently 

linked to PI3K activity118. PI3K-mediated generation of PtdIns(3,4,5)P3 recruits the Arf6 

GEF ARNO (also known as CYTH2) to the plasma membrane, leading to Arf6 activation 

and thereby also Rac1 activation in COS-7 cells118.  

Thus, inversion of epithelial apico-basal polarity seems to arise from distinct pathways, 

which are not inclusively coupled to ECM-induced signalling. However, ECM-independent 

polarity inversion has been reported in only two instances of Arf6 depletion and PI3K 

inactivation. Whether these two pathways could be indeed linked remains to be 

investigated.  

 

 

1.1.5.5 The role of cytokinesis in polarity establishment  

 

Cell division and epithelial cell polarity are two interdependent processes in 

multicellular organisms that must be well coordinated119–121. In an epithelial monolayer, 

the functional diffusion barrier of adherence and tight junctions must be maintained at 

all-time even when cells undergo morphological changes as during cell division. It has 

been suggested that epithelial cells maintain their apico-basal polarity as well their 

junctions during cell division121. It has been shown that E-cadherin and ZO-1 maintain 

their localization in dividing MDCK cells grown in a polarized monolayer as well as E-

cadherin, Crumbs and Notch in the pupal Drosophila epithelium122–124. However, the 

localization of apically localized proteins during cell division is debated. In the 

Drosophila ectoderm for example the PAR complex was shown to remain apically, 

whereas its localization is disrupted during cell division in Drosophila ovary follicle 

cells125,126.  

During cytokinesis, which is the final step of cell division that physically sepereates the 

two dauther cells, a contractile actomyosin ring forms at the cell equator to drive 
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ingression of the furrow. Towards the end of cytokinesis, a dense structure called 

midbody will form at the central part of the intercellular bridge. It has been shown that 

the midbody could serve as a platform for the recruitment of the abscission 

machinery119. It was furthermore shown that the position of the midbody determines the 

site of apical membrane formation119. In the Drosophila follicular epithelium for 

example, ectopic positioning of the midbody initiates an apical domain at this 

location127. The same concept of apical membrane initiation has been also suggested to 

occur in MDCK cysts. In early MDCK cysts the polarity protein Crumbs3 is trafficked in 

Rab11-positive recycling endosomes along the bridge microtubules towards the 

midbody88. Here, Crumbs3 assists the recruitment of the Par-aPKC complex to initiate 

an apical membrane and thus links cytokinesis and midbody positioning to the 

establishment of apico-basal polarity88. 

 

 

 

Figure 26: Coupling of MDCK lumen formation with cell division. 

This scheme illustrates how a single unpolarized MDCK cell, embedded in Matrigel, divides, 
polarizes and gives rise to an apical lumen. Crb3a-positive vesicles are localized at the spindle 
poles before being transported along the bridge microtubules towards the site of cytokinesis, 
where they are exocytosed. This event marks the initiation of an apical membrane through 
recruitment of the Par6-aPKC complex, allowing the establishment of an apical membrane along 
with the establishment of tight junctions. From reference:88 
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It was further shown that the Rab11 effector FIP5 was required to connect the Rab11-

postive recycling endosomes to the microtubule motor Kinesin-289,128. During telophase 

FIP5 dephosphorylation leads to SNX18-dependent formation of FIP5 endosomes that 

contain apical cargo such as PODXL and Crumbs3. These endosomes move then with the 

help of Kinesin-2 along the bridge microtubules to fuse at the cleavage furrow plasma 

membrane where the apical membrane and later the lumen will be established89,128.  

 

Figure 27: Model for apical lumen initiation.  

(A) This scheme illustrates how apical endosomes are transported along the bridge 
microtubules during cell division to initiate an apical lumen at the site of cytokinesis. 

(B) Illustration of Kinesin-2/FIP5-mediated trafficking of Rab11/FIP5-positive endosomes 
during cell division. From reference: 89 
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These studies support the idea that regulators of cytokinetic abscission might be also 

involved in the establishment of polarity, as it is the case for Rab11. The Rab11 

effectors FIP3 and FIP4 have furthermore been shown to interact with Arf6129, a protein 

that is implicated in apico-basal polarity130 as well as in cytokinesis131,132. In addition, 

the regulation of the lipid composition of the plasma membrane seems to show 

analogies between cytokinesis and polarity133. PTEN and PI3K are major regulators of 

the Phosphoinositides during polarity establishment and indeed it was shown that they 

are also required for the formation of the cleavage furrow for cytokinesis120,133,134. 

Moreover it has been suggested that the PtdIns(4,5)P2 enriched membrane of the 

cleavage furrow could be analogue to the PtdIns(4,5)P2 enriched apical membrane in 

polarized epithelial cells120,133. Nevertheless the exact localization and function of many 

polarity proteins during cell division needs yet to be determined.  

 

 

 

Figure 28: Membrane domains in polarized and dividing cells. 

This scheme illustrates the cellular distribution of dinstinct membrane domains marked by 
PtdIns(3,4,5)P3 (pink) and PtdIns(4,5)P2 (green) during chemotaxis, cytokinesis, growth cone 
formation and epithelial cell polarization. Note that PtdIns(4,5)P2 is enriched at the cleavage 
furrow in diving cells as well at the apical domain of polarized epithelial cells. From 
reference:133 
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1.2 PODOCALYXIN 

 

1.2.1   Structure 

 

Podocalyxin (PODXL) is also known as podocalyxin-like protein, GP200, PC, PCLP, PCLP-1 

or GP135 for the canin PODXL. PODXL belongs to the CD34 family of cell surface 

transmembrane proteins that comprises CD34, Endoglycan and PODXL. All of these three 

proteins have an extensively O- and N-glycosylated and sialylated extracellular domain 

and belong therefore also to the family of the sialomucins135,136. Furthermore, they all 

have a single transmembrane helix and a highly conserved cytoplasmic tail. The 

cytoplasmic tail of PODXL is highly conserved between species (approx. 95% between 

rat, rabbit and human), while the extracellular domain has very little sequence 

homology, but a very similar structure. The cytoplasmic tail contains putative 

phosphorylation sites for PKC and CKII as well as a PDZ binding motif.  Endoglycan and 

PODXL share the same PDZ binding motif DTHL, which is slightly different in CD34 

(DTEL). Interestingly, the expression patterns in tissues are completely different 

between these three proteins, suggesting that they might exhibit similar functions in 

specific tissues135.  
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Figure 29: Protein structures of CD34 family members. 

This scheme illustrates the similarities of the protein structures of the CD34 family members 
CD34, PODXL and Endoglycan. All members have an O-glycosylated (horizontal lines with 
arrowheads) and sialylated (horizontal lines) extracellular mucin domain with putative sites for 
N-glycosylation (lines with circles). Additionally all members have a cysteine-containing globular 
domain (dark blue), a juxtamembrane stalk region (yellow), a transmembrane domain (light 
blue) and a cytoplasmic tail (red) with putative phosphorylation sites and a PDZ-binding motif 
(DTEL or DTHL). Only Endoglycan contains a polyglutamic-acid-rich extracellular domain (pink) 
and unpaired cysteine residues that facilitate homodimerization. From reference: 135 

 

 

1.2.2 Tissue Expression 

 

Although PODXL was first discovered as the most abundant glycoprotein in kidney 

podocytes137, it is known today that its expression is very diverse.  Just after the first 

discovery of PODXL, it was also detected lining the surface of vascular endothelia in the 

kidney138 and other tissues139. More recently it has been shown that PODXL is expressed 
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in all three germ layers during mouse embryogenesis140. With maturation of the embryo 

its expression decreased, followed by a postnatal burst in hematopoetic progenitors 

when they colonize the spleen and the bone marrow. At 4 weeks after birth, the PODXL 

expression is restricted to Sca-1; c-kit+Lin- cells in the bone marrow with potential 

hematopoetic stem cell activities.140 However, in more differentiated hematopoetic 

cells, PODXL expression is restricted to platelets, their precursors and 

megakaryocytes140. Moreover PODXL expression was also found in the brain in a subset 

of neurons throughout development141.  

The expression of PODXL is positively regulated through binding of WT1 to conserved 

elements within the PODXL gene promoter and negatively regulated through p53-

mediated transcriptional repression142. WT1 is exclusively expressed in kidney cells and 

therefore cannot explain how PODXL expression is regulated in other tissues. Butta et al 

found that PODXL transcriptional regulation is supported by SpI sites and that DNA 

methylation of the CpG promoter islands contributes to control tissue specific 

expression.143 

 

 

1.2.3  Discovery and Function 

 

Podocalyxin was initially identified in renal glomerular epithelial cells by the group of 

Farquhar in 1984137. They identified a 140kDa protein as the major sialoprotein of the 

glomerulus and called it Podocalyxin since it is the major component of the glycocalyx 

of podocytes (PODOcyte glycoCALYX proteIN). The same group kept investigating 

PODXL in the new-born rat kidney, characterized its posttranslational modifications and 

suggested a role for PODXL in podocyte morphology136. Further studies in PODXL null 

mice confirmed that PODXL was essential for kidney development, since new-born mice 

died within 24h after birth from anuric renal failure144. During kidney development the 

glomerular epithelium undergoes remodelling from a typical polarized epithelium with 
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adherence and tight junctions to a specialized glomerular epithelium with remodelled 

junctions145. The podocytes form footprocesses with intercellular spaces (filtrations 

slits) to allow passage of glomerular filtrate, which is called the slit diaphragm. 

Podocytes from PODXL null mice did not form footproccesses and slit diaphragms but 

instead exhibited stable junctions, thus blocking glomerular ultrafiltration of the urine. 

Importantly, the opening of these intercellular spaces is mediated by sialylated proteins 

through their negative electrostatic repulsion146, suggesting that PODXL is required for 

the opening of the filtration slits. 

 

 

    

 

Figure 30: Glomerular filter in wild-type and PODXL null mice. 

(a) Schema of the glomerular filter: PODXl null mice lack the interdigitating foot processes, 
leading to a lack of of filtration slit area.  

(b) Transmission electron micrographs of E18 kidneys from podxl
+/+ and podxl

-/- embryos. 

podxl
-/- mice show a complete loss of the slit diaphragm (SD) and foot processes (FP). 

GBM= glomerular basement membrane. From reference: 147 

 

 

a b 
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Apart from the anuric renal failure, PODXL knock out (KO) mice were born with mild to 

severe edema and omphalocele, which means that the gut remained outside of the 

abdomen. The presence of edema suggests an additional role for PODXL during vascular 

development 144. Indeed PODXL was shown to play a role in vascular lumen formation in 

mice148. Together with the sialomucin CD34, PODXL acts in separating the apical 

surfaces of contacting endothelial cells to induce vascular lumen formation through 

negative cell-surface repulsion. PODXL KO mouse embryos showed a delay in aortic 

lumen formation and failed to recruit Moesin and F-actin to the endothelial cell-cell 

contacts.   

 

 

Figure 31: Vascular lumen formation in the developing aorta. 

This scheme illustrates the establishment of polarity and progressive lumen formation in the 
vasculature.  

(A) Endothelial cells form adherence junctions along their cell-cell contact. 
(B) Recruitment of CD34-sialomucins (including PODXL) to the cell-cell contact site and 

repulsion of the two adjacent membranes.  
(C) Recruitment of F-actin to the cell-cell contact by PKC mediated phosphorylation of 

Moesin. 
(D) ROCK activation through VEGF-A induces recruitment of non-muscle Myosin II to the F-

actin enriched cell-cell contact. Opening of the lumen occurs via ROCK mediated 
contractility and interstitial fluids infiltrate into the lumen. From reference: 148 
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Due to its anti-adhesive properties, PODXL was described to act as a molecular 

“TeflonTM”144. In vitro studies in MDCK cells and CHO Chinese hamster ovary cells 

confirmed the anti-adhesive properties, since overexpression of PODXL decreased cell-

cell aggregation and cell adhesion149. Contrary to these results, two other studies 

showed that PODXL expression enhanced cell adhesion of CHO cells to vascular 

endothelial cells150 and to platelets151. It has been suggested that these opposing 

observation of PODXL function in cell adhesion arose due to different expression levels. 

Nielsen and McNagny suggest that low levels of PODXL could drive integrins to the 

basolateral plasma membrane and thereby increase cell adhesion, whereas high levels 

of PODXL would induce apical membrane expansion, as reported in several studies 152–

154, which in turn reduces the basolateral surface and thus decreased cell adhesion.  

 

 

 

Figure 32: Role of PODXL in cell adhesion. 

(A) Membrane-protein-segregation model: Low levels of PODXL at the apical domain force 
integrins to the basal membrane, thereby increasing cell adhesion.  

(B) High levels of PODXL at the apical domain recruit F-actin and induce microvilli 
formation. Relocalization of F-actin to the apical domain leads to reduced F-actin at the 
basolateral domain, thereby decreasing integrin-mediated adhesion. From reference: 135 
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In addition to the anti- and pro-adhesive functions mediated by the negatively charged 

mucin domain, the cytoplasmic tail of PODXL was also shown to be essential for many 

functions. The group of Farquhar demonstrated that the cytoplasmic tail of PODXL plays 

an important role in podocyte architecture through association with Ezrin. They showed 

that PODXL forms a stable complex with active Ezrin and NHERF2, and is therefore 

linked to the actin cytoskeleton. NHERF2 functions here as a scaffolding protein linking 

PODXL to Ezrin and the actin cytoskeleton155,156. Interestingly PODXL can interact with 

NHERF1 and NHERF2 in vitro, but only NHERF2 colocalizes with PODXL in vivo on 

podocytes. In contrast, NHERF1 is mainly localized in the proximal tubules where it 

interacts with NHE3157. PODXL has also been shown to bind directly, and indirectly 

through NHERF2, to Ezrin in MDCK cells158. Ezrin binds directly to the juxtamembrane 

region of the PODXL cytoplasmic tail and to the C-terminal FERM domain of NHERF. 

NHERF in turn binds directly to the C-terminus of PODXL via its PDZ domain, thus 

establishing an indirect link between Ezrin and PODXL158. PODXL activates RhoA through 

NHERF and Ezrin, leading to redistribution of actin filaments to the apical membrane. A 

PODXL mutant lacking the NHERF2 binding site was not connected to actin did not 

induce redistribution of actin to the apical membrane and did not increase RhoA 

activity. The binding site for Ezrin was localized to the juxtamembrane region of PODXL 

“HQRISQRKDQQR”.  In addition to the link to the actin cytoskeleton through Ezrin, 

PODXL also co-localizes with Cortactin at the apical membrane in rat glomerocytes and 

both proteins can be co-immunoprecipitated from glomerular rat cell lysate159.  

Moreover PODXL was also found in a complex with CLIC5A together with Ezrin and 

NHERF2 in the mouse glomerulus. CLIC5A leads to PtdIns(4,5)P2  accumulation at the PM 

through interaction with PIP5 kinases, enhances Ezrin activation by phosphorylation and 

therefore actin dependent cell-surface remodelling160.  

In conclusion these studies demonstrate that PODXL is involved in many different 

cellular processes through its negatively charged extracellular domain and through its 

cytoplasmic tail.  
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Figure 33: Interactions of the PODXL cytoplasmic tail. 

PODXL interacts with Ezrin both directly and indirectly through NHERF1. PODXL interacts with 
NHERF1 via its PDZ-binding motif, which in turn interacts with Ezrin. Ezrin recruits Rho-GDI, 
leading to the release of Rho-GDP, which is converted to Rho-GTP in the presence of NHERF1 
(likely because NHERF1 recruits a RHOA GEF). Active RhoA leads to Ezrin activation and allows its 
binding to F-actin. From reference: 158 

 

 

1.2.4   PODXL in polarity 

 

Interestingly, at the same time when Podocalyxin was first identified in the kidney 

glomerulus, the group of Ojakian and Schwimmer worked on 135kDa glycoprotein 

gp135161. They found that GP135 localized exclusively to the apical membrane domain in 

polarized MDCK cells in an actin-dependent manner. Further studies on MDCK cells 

cultured in a collagen matrix used GP135 as a marker to define the apical membrane in 

MDCK cysts, without attributing any further function67.   

In 2005, the classical apical marker gp135 was identified as PODXL and its function in 

epithelial cell polarization was demonstrated 2D polarized monolayers and in 3D MDCK 

cysts152. Depletion of PODXL delayed apico-basal cell polarization when grown as 2D 
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monolayers on transwell filters and impaired single lumen formation in MDCK cysts.  

PODXL depletion also affected cell morphology: the cells appeared generally larger and 

flatter compared to control cells and apical markers such as GP114 and PLAP were less 

polarized. Interestingly, when cells were freshly plated onto coverslips, PODXL was the 

only apical protein that segregated into an apical domain without even junctions had 

formed. This apical localization of PODXL was independent of neosynthethized protein 

or endocytosis of basal localized PODXL. These results indicated that the restricted 

localization of PODXL on freshly plated cells was either due to membrane diffusion or 

more likely due to directed trafficking of a pre-existing internal pool of PODXL. Indeed, 

PODXL was found in Rab11-positive recycling endosomes that could quickly deliver 

PODXL to the dorsal plasma membrane. It was also previously shown that an internal 

pool of PODXL vesicles could replenish cell surface PODXL within 1h after removal of 

surface PODXL by trypsin162.  

 

Figure 34: PODXL is restricted to a specialized the apical domain in MDCK cells. 

In MDCK cells in suspension, PODXL is evenly distributed at the plasma membrane. Upon contact 
with a solid support, PODXL is excluded from the contact site, while other apical proteins are 
evenly distributed. Upon establishment of cell-cell contacts, PODXL becomes excluded from the 
junctions, but not other apical proteins. Only upon full polarization, also other apical proteins 
are excluded from the basolateral domain. From reference: 152 

 

In freshly plated cells, PODXL mutants lacking the cytoplasmic tail were found on the 

basal/ventral plasma membrane, indicating that the restriction and stability of PODXL 

at the dorsal membrane is likely due to its interaction with NHERF2, Ezrin and the actin 

cytoskeleton.  In fully polarized MDCK monolayers, the apical sorting of PODXL depends 

on the extracellular O-glycosylation-rich region and the cytoplasmic PDZ-binding 
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motif152,154. Deletion of either the O-glycosylation rich domain or the PDZ-binding motif 

leads to basolateral missorting of PODXL, which was even stronger when both domains 

were deleted. A fusion construct, substituting the PDZ binding motif with 

EBP50/NEHRF1 could rescue the PDZ-deleted mutant, but rescued only partially the 

mutant missing the O-glycosylation rich domain. Furthermore, it was shown that newly- 

synthesized PODXL binds to NHERF1 through its PDZ-binding motif at the TGN, which 

induced oligomerization during the sorting process (Figure 35). After delivery to the 

apical membrane, PODXL is stabilized by the actin cytoskeleton through binding to Ezrin 

and NHERF-1. 154 However, another study showed that it is PODXL that recruits NHERF-1 

to the apical membrane, which depends on binding to the PDZ domain. This study 

demonstrates that deletion of the PDZ domain disrupts NHERF-1 recruitment but not the 

recruitment of Ezrin and actin to the apical membrane. Furthermore, the 

transmembrane and extracellular domains of PODLX were sufficient to induce microvilli 

formation in absence of NHERF-1153.  

 

  

Figure 35: Biosynthetic route of PODXL from the ER to the apical plasma membrane.  

(A) PODXL is released from the membrane-associated ribosome and directed into the ER via 
its peptide signal. 

(B) The polypeptide becomes O- and N-glycosylated along the biosynthetic route. 
(C) Binding of NHERF1 to the cytoplasmic tail of PODXL induces clustering of PODXL through 

oligomerization of NHERF1. From reference: 154 
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Interestingly, it was suggested that also other proteins with PDZ binding domains such 

as NHE3, CFTR, Crb3 could bind to NHERF2 and therefore indirectly interact with 

PODXL. NHERF2 thereby could crosslink apical transmembrane proteins to stabilize the 

apical domain152.  

The apical trafficking of PODXL is also mediated by Rab GTPases. It has been shown that 

PODXL is trafficked in Rab11- and Rab8-positive endosomes and that both Rab GTPases 

regulate its apical targeting in MDCK cyst 3D cyst cultures as described on page 19-2172. 

Furthermore, it was shown that Rab27A associated with PODXL vesicles prior to fusion 

at the apical membrane66,74. These Rab27A/PODXL-positive vesicles are targeted to the 

apical membrane through Slp2-a and Slp4-a in cooperation with Rab27A, Rab3 and Stx366 

as described on page 22-23.  

PODXL-depleted MDCK cells grown in Matrigel fail to form single lumen cysts, but 

instead form either multiple lumen or filled cysts without a lumen73,152. PODXL depletion 

impairs the apical localization of other apical proteins such as Crumbs3, Syntaxin-3 and 

CNT1, which accumulate in Rab11a-positive endosomes beneath the plasma membrane 

and therefore completely disrupt the establishment of an apico-basal polarity73. We 

observed the same phenotype upon PODXL depletion in GFP-Crumbs3 expressing MDCK 

cysts (Figure 4g in the published manuscript).  

 

Figure 36: Depletion of PODXL leads to an accumulation of apical vesicles. 

Depletion of PODXL in MDCK cysts leads to an accumulation of apical vesicles positive for Stx3, 
Crumbs3, Rab11 and CNT1. From reference: 73 
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Another study in contrast did not observe any effects of PODXL depletion on cyst 

formation, but on tubulogenesis in MDCK cells cultured in collagen matrix. When MDCK 

cysts are exposed to HGF, cells will protrude out into the collagen matrix and form 

tubules. This study demonstrated that PODXL-depleted cells lost the ability of tube 

formation in a collagen matrix upon HGF stimulation163. In a different model of 

cystogenesis, using human pluripotent stem cells (hPSCs), PODXL KO hPSCs retained 

their pluripotent characteristics, but failed to form lumen when cultured in a GelTrex 

matrix. PODXL KO hPSCs developed solid spheroids without lumen, showing that PODXL 

is required for epiblast spheroid lumenogenesis. The function of PODXL on lumen 

formation was dependent on the sialylated extracellular domain since treatment with 

protamine sulphate, a positively charged polycation, inhibited lumen formation in the 

presence of PODXL164.  

 

 

1.2.5   PODXL in cancer and disease  

 

Most of the human cancers arise from epithelial cells due to misregulation of important 

regulatory or polarity proteins. Overexpression of PODXL has been found in many 

different kinds of tumors and has been especially associated with cancer progression of 

invasive and aggressive tumors with poor prognosis165. For certain tumors, PODXL is even 

used as a diagnostic marker to assess the risk and prognosis as for renal cell carcinomas, 

kidney cancer (nephroblastoma), ovarian cancer, thyroid cancer, lung cancer, prostate 

cancer, brain cancer (astrocytoma), gastric cancer and colorectal cancer165–167. In vitro 

and in vivo studies showed that PODXL expression increases cell motility and invasion 

and that PODXL expression potentially downmudulates the immunsystem.  

Expression of PODXL in glyoblastoma cell lines increases soluble/intracellular β-catenin 

levels, MMP9 expression and therefore cell invasion and proliferation. PODXL expression 

furthermore induces p38 MAPK activity and inactivated gGSK-3β. Thus, PODXL promotes 
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invasion and proliferation through elevation of β-catenin signalling through p38 

MAPK/GSK-3β pathway, whereas depletion of PODXL has the reverse effects. 168 The role 

of PODXL in invasion was also confirmed in MCF-7 breast cancer and PC3 prostate cancer 

cells. The overexpression of PODXL in these cell types increased the migration and 

invasive potential through up-regulated expression of metalloproteinases such as MMP1 

and MMP9 and elevated MAPK and PI3K activity169. Injection of PODXL over-expressing 

MCF-7 breast cancer cells into the mouse mammary gland causes tumor invasion, which 

is not the case when control cells are injected 170.  

Furthermore, expression of PODXL in MCF7 breast cancer cells impairs T-cell 

proliferation and induces resistance to NK –cell mediated cytolysis. PODXL decreases the 

expression of NK cell activating receptors on the cell surface in a contact-dependent 

manner. Interestingly, NK cells could acquire PODXL from MCF-7 cells by a process 

known as trogocytosis. This study suggests that PODXL expressed on tumor cells could 

have an immunomodulatory role that can help tumor cells to evade the immune 

response171. PODXL depletion in contrast attenuates the development of in vitro 

tumorspheres in different cell lines172. Correspondingly, depletion of PODXL decreases 

tumor growth and invasiveness in vivo when PODXL depleted-cells were injected into 

mice. Interestingly, injection of an anti-PODXL antibody effectively blocked tumor 

growth in mice and therefore suggest PODXL antibodies as a potential target for 

monoclonal antibody therapy 172.  

Recently, PODXL has also been suggested to play a role in neuronal development and in 

vitro studies in PC12 cells demonstrated that PODXL KO induces neurite outgrowth and 

enhances neurite branching. This was confirmed ex vivo, using primary neurons from 

PODXL KO mice173. Interestingly, a frameshift mutation leading to the loss of PODXL 

protein was found to be the cause in some cases of Parkinson’s disease, reinforcing the 

potential role for PODXL in neurodevelopment174.   
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1.3 FUNCTIONS OF THE RAB35 GTPASE  

 

1.3.1   Rab GTPases  

 

Coordinated and polarized membrane traffic is essential for the establishment of apico-

basal polarity. Newly synthesized proteins are either delivered directly to their destined 

basolateral or apical plasma membrane domain or are undergo transcytosis from the 

basolateral to the apical domain. Furthermore, maintenance of the apical and 

basolateral plasma membrane requires regulated endocytosis as well as recycling from 

both membrane domains. One of the major regulators of vesicular membrane traffic are 

Rab GTPases. More than 70 different Rab GTPases are expressed in mammals and 

together they regulate vesicle formation, motility, docking, and membrane remodelling 

and fusion (Figure 37). Rab GTPase activation and inactivaton is tightly controlled by 

Guanine Exchange Factors (GEFs), which catalyze GTP loading and GTPase activating 

proteins (GAPs), which trigger GTP hydrolysis of bound GTP to GDP (Figure 38). Inactive 

GDP-bound Rabs are bound to GDI, which keeps them soluble in the cytoplasm. Upon 

dissociation of the GDI, Rab GTPases can bind to membranes via their prenyl anchor and 

are available for activation through specific GEFs.  In their activated GTP-bound form, 

Rab GTPases can recruit specific effector proteins to their membrane, including coat 

proteins, motor proteins and SNAREs, thus promoting cargo sorting, trafficking and 

membrane fusion. 
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Figure 37: Localization of Rab GTPases. 

This scheme illustrates the subcellular localization of Rab GTPases. Each membrane domain is 
marked by distinct Rab GTPases or a combination of multiple Rabs. From reference: 175 

 

 

Figure 38: The Rab GTPase switch. 

Newly synthesized Rab proteins, in the GDP-bound form, are recognized by Rab escort proteins 
(REPs), which present the Rab to a geranylgeranyl transferase leading to geranylgeranylation of 
the two C-terminal cysteine residues. Next, the Rab protein is recognized by a Rab GDP 
dissociation inhibitor (GDI), which associates Rabs to membrane via interaction with a 
membrane-bound GDI displacement factor (GDF). The inactive GDP-bound Rab is converted into 
its active GTP-bound state by exchange of GDP for GTP. This exchange is catalysed by a guanine 
nucleotide exchange factor (GEF), which causes conformational changes. In the GTP-bound state 
Rabs can bind to effector proteins. Active Rabs return to their inactive state through hydrolysis 
of GTP, which is catalysed by GTPase activating proteins (GAPs). From reference: 175 
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Interestingly, it has been demonstrated that the plasma membrane localization of 

Rab35 is GTP-dependent and additionally requires its C-terminal polybasic region, which 

is not present in Rab1A and Rab1B176,177.  At the same time the lab identified Rab35 as a 

key regulator of endocytic recycling and cytokines in a RNAi screen in Drosophila S2 

cells for cytokinesis defects178. Depletion of Rab35 in Drosophila S2 cells leads to 

binucleated cells due to failure of cytokinetic abscission. Further investigations in Hela 

cells revealed then that Rab35 controls a fast endocytic recycling pathway from early 

endosomes to the plasma membrane, required for the terminal steps of 

cytokinesis178,179. 

Since then, many studies confirmed the role of Rab35 in endocytic recycling of diverse 

cargo, including receptors and adhesion molecules, thus leading to a wide range of 

Rab35-mediated cellular functions. Apart from its role in endocytic recycling Rab35 has 

emerged as an important factor in cancer biology and cell polarity. 

We wrote a comprehensive review on Rab35 functions, which have been appended in 

the annex.  

 

1.3.2  Rab35 – a regulator of endocytic recycling and cytokinesis 
 

The importance of Rab35 in membrane traffic and cytokinesis was first discovered in a 

RNAi screen in Drosophila S2 cell for cytokinesis defects in the lab178. An increase of 

binucleated cells was observed upon depletion of Rab5, Rab11 and Rab35, with Rab35 

leading to the strongest phenotype. Further investigations in Hela cells revealed that 

Rab35 controls a fast endocytic recycling pathway from early endosomes to the plasma 

membrane, required for the terminal steps of cytokinesis178,179. Consequently, depletion 

or inactivation of Rab35 led to an accumulation of endocytic carriers, such as 

transferrin and transferrin receptor. The key role of Rab35 in endocytic recycling was 

further strengthened when Rab35 was identified in a C. elegans genetic screen for yolk 

endocytosis.180 The group of Grant found that loss of Rab35 in C. elegans results in an 

accumulation of yolk receptors in dispersed vesicles, confirming the role of Rab35 in 
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endocytic recycling. Rab35 dependent recycling has also been described for Megalin 

trafficking in L2 rat yolk sac cells181,  KCa2.3 trafficking human embryonic kidney cells 

and human microvascular endothelial cells (HMEC-1)182, insulin stimulated GLUT4 

trafficking in adipocytes183 and MHC-1 trafficking in COS-7 cells.  

 

Rab35 effectors in endocytic recycling and cytokinesis 

Three effector proteins of Rab35 have been identified and characterized: OCRL, MICAL-

L1 and ACAP2, which mediate Rab35 functions.  

 

OCRL 

OCRL is a phosphatidylinositol 5-phosphatase that preferentially hydrolyses PtdIns(4,5)P2 

to PtdIns4P. Loss-of function mutations in the OCRL gene lead to the Lowe Syndrome 

and Dent2 disease, both characterized by congenital cataract, mental retardation and 

reabsorption defects in proximal renal cells, thus leading to kidney failure. 

Interestingly, it has been shown that cells isolated from Lowe Syndrome patients exhibit 

an accumulation of clathrin-coated vesicles, positive for PtdIns(4,5)P2, actin and 

transferrin receptor, as previously observed in Rab35-depleted cells184. Indeed, 

depletion of OCRL in Hela cells phenocopies the recycling and cytokinesis defects of 

Rab35 depletion179. Rab35 activation is required to recruit OCRL onto early endosomes, 

in order to hydrolyse PtdIns(4,5)P2, thereby prevent F-actin polymerization to allow 

uncoating of the clathrin-coated vesicles185. However, the activation of Rab35 on early 

endosomes is temporally tightly regulated by the GAP EPI64B and the GEF connecdenn1. 

During the formation of the clathrin-coated pit, the Arf6 GTPase recruits the Rab35 GAP 

EPI64B as well as the PI5-kinase to maintain PtdIns(4,5)P2 levels high. Just after the 

scission of the clathrin-coated vesicle Rab35 becomes activated through connecdenn1, 

which binds to the clathrin adaptor AP-2. Active Rab35 recruits OCRL onto these new-

born ensosomes to hydrolyse PtdIns(4,5)P2
185(Figure 39).  
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Figure 39: Rab35 in endocytic recycling. 

This scheme illustrates the localization of Rab35 and its GAPs and GEFs during endocytosis and 

recycling. From reference: 186 

 

Interestingly the cytokinesis defects in OCRL- or Rab35-depleted cells can be explained 

by the same molecular mechanism. It was shown that Rab35 is enriched at the plasma 

membrane of the cleavage furrow during cell division. Here, Rab35 recruits OCRL to 

locally hydrolyse PtdIns(4,5)P2 in order to prevent F-actin polymerization in the 

intercellular bridge and thereby allow successful cytokinesis179 (Figure 40). Indeed, F-

actin is highly enriched in Rab35- or OCRL-depleted cells, not only on endosomes, but 

also in the intercellular bridge, thus preventing cytokinesis. These cytokinesis defects 

can furthermore be rescued by low non-toxic doses of Latrunculin A179.  
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Figure 40: Function of Rab35 in cytokinesis. 

(a) Ingression of the cleavage furrow is mediated by F-actin and myosin II, leading to the 
formation of an intercellular bridge and the midbody (M).  

(b) A secondary constriction site occurs close to the midbody, driven by Rab11/FIP3 and 
ESCRT-III. The proper localization of ESCRT-III is inhibited by F-actin, which therefore 
needs to be cleared from the intercellular bridge. Rab35-GTP recruits the 5-phosphatase 
OCRL to the intercellular bridge in order to hydrolyse PtdIns(4,5)P2, thereby preventing 
F-actin polymerization. Furthermore Rab11/FIP3 endosomes bring p50RhoGAP to the 
intercellular bridge, which assists to restrict F-actin. From reference: 187 

 

 

ACAP2 and MICAL-L1 

Following clathrin-dependent or clathrin-independent endocytosis into early EEA1 

positive endosomes, endocytic cargo can converge into Arf6 positive tubular recycling 

endosomes or take the lysosomal route to be degraded. Rab35 and Arf6 activation in 

these tubular endosomes is regulated through a mutual antagonism, which involves 

EPI64B ad ACAP2. Active Arf6 recruits its effector EPI64B, which inactivates Rab35, 

whereas active Rab35 recruits its effector ACAP2, which is a GAP of Arf6. 
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Active Rab35 directly and indirectly through Arf6, recruits its effector MICAL-L1 onto 

Arf6 positive tubular endosomes188–190. MICAL-L1 together with ACAP2 promote the 

recruitment of EHD1, a protein which is known to induce membrane fission due to its 

similarities to Dynamin188,190. MICAL-L1 associates directly with EHD1, whereas ACAP2 

promotes EHD1 recruitment indirectly through inactivation of Arf6 and thereby 

maintenance of PtdIns4P, a scaffold factor for EHD1188. Additionally MICAL-L1 also 

promotes recycling through recruitment of Rab8, Rab13 and Rab36 (Figure 39). 

This pathway has been investigated in Hela cell and a human DCs in the case of MHC-II 

recycling from tubular endosomes to the plasma membrane191 as well as in a variety of 

neuronal cells during neurite outgrowth190,192–194.  

 

 

1.3.3  A role for Rab35 in polarity  

 

To date, a role for Rab35 in polarity establishment has only been reported in the case of 

seamless tube formation in Drosophila tracheal terminal cells57. Growth of seamless 

tubes is polarized along the proximodistal axis and regulated by Rab35 and its GAP 

Whacked (~30% identity to human EPI64A-C). Expression of a dominant active mutant of 

Rab35 or depletion of Whacked leads to tube overgrowth, whereas expression of a 

dominant negative mutant of Rab35 or overexpression of Whacked causes ectopic lumen 

formation due to distal overgrowth. As mentioned earlier on, seamless tubes form by 

cell hollowing, where vesicles are trafficked to the centre of the cell and fuse to form 

an internal tube (Figure 8). This study demonstrated that Whacked and Rab35 direct the 

transport of apical membrane vesicles to the distal tip of terminal cell branches to 

induce seamless tube growth.  
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1.3.4  Functions of Rab35 in cancer  

 

Interestingly, the first functions of Rab35 that were discovered in 2004 and 2006 

involved regulation of p53 transcriptional activity195 and interaction with the oncogenic 

tyrosine kinase NPM-ALK196. Overexpression of Rab35 suppresses the PRPK-induced p53 

transcriptional activity through direct binding to PRPK, indicating a potential tumor 

suppressor function for Rab35, which need further investigation. The function of the 

direct interaction with the oncogenic tyrosine kinase NPM-ALK in contrast has not been 

studied so far. Furthermore it has been shown that Rab35 expression is up regulated in 

human ovarian cancers and it is suggested that Rab35 might be an androgen responsive 

gene and could function as a biomarker of androgen receptor function in ovarian 

cancer197.  

 

Cell adhesion and  migration 

More recently, Rab35 has been associated with cancer development through different 

mechanisms. Rab35 was shown to promote cell adhesion and inhibit cell migration 

through ACAP2-driven inactivation of Arf6 and subsequent down-regulation of Arf6- 

dependent β1-integrin and EGF-receptor recycling198. Of note the no effect of Rab35 

depletion on integrin recycling could be detected in an earlier study by the same group 

in different cell culture conditions199. Rab35 depletion in turn induces decreased cell 

adhesion and increased cell migration, which are characteristics of EMT as found in 

cancers. Interestingly, human cancer databases show that Rab35 expression is indeed 

down-regulated in some cancers with elevated Arf6 activity198.  

Furthermore Rab35 was shown to be negatively regulated by the microRNA-720 (miR-

720), which is up regulated in cervical tumors200. In Hela cell miR-720 down regulates 

Rab35 expression and thereby promotes cell migration200.  
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However, another study demonstrated that Rab35 depletion does not promote, but 

instead inhibits cell migration in MCF-7 cells201. It was found that Rab35 co-

immunoprecipitates with Dvl2, a protein that plays a role in the signal transduction of 

the Wnt5a pathway201. Wnt5a induces Rac1 and Dvl2 activation, which promotes cell 

migration in MCF-7 cells. Zhu et al showed that Wnt5a could activate Rab35 through 

Dvl2 and that Rab35 depletion was sufficient to inhibit Wnt5a induced Rac1 activation 

and cell migration. Rab35 acts here downstream of Wnt5a and Dvl2 and upstream of 

Rac1 to regulate cell migration201.  

 

PI3K/AKT signalling  

Another mechanism by which Rab35 has been linked to cancer is the PI3K/AKT signaling 

pathway. Rab35 was identified in a screen for AKT phosphorylation in Hela cells202. 

Depletion of Rab35 suppressed AKT phosphorylation in Hela cells and other cell types, 

whereas expression of a dominant active mutant of Rab35 induced constitutive AKT 

phosphorylation and therefore activation of the PI3K/AKT signalling pathway. Rab35 

functions downstream of growth factor receptors and upstream of PDK1 and mTORC2, 

likely through regulation of PI3K, since Rab35-GTP co-immunoprecipitated with PI3K. In 

normal conditions, the growth factor receptor PDGFR-α is activated at the cell 

membrane by PDGF-AA ligand, then internalized and sorted into Lamp2-positive 

endosomes where liganded PDGFR-α drives PI3K/AKT signalling202. Expression of o 

dominant active mutant of Rab35 is sufficient to drive PDGFR-α into Lamp2 positive 

endosomes even in absence of a ligand, leading to constitutive AKT phosphorylation. 

Rab35 expression did not affect other growth factor receptors such as EGFR202, although 

Rab35 was previously reported to play a role in EGFR recycling198. Moreover it has been 

demonstrated that AKT-dependent phosphorylation releases the autoinhibition of the 

Rab35 GEF connecdenn1, thus increasing GEF activity and the binding to Rab35 and 

therefore promoting Rab35 activation203. Hence, Rab35 activation and AKT 

phosphorylation likely act together in positive feedback loop. 
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Interestingly, two somatic Rab35 mutations were found in human cancers that 

constitutively activate PI3K/AKT signaling202. The same mutations expressed in Hela 

cells phenocopied the expression of a dominant active mutant of Rab35, suggesting that 

Rab35-dependent recycling of certain growth factor receptors could play an emerging 

role in cancer development.  

 

Folliculin – a putative Rab35 GEF involved in tumorigenesis  

Moreover, Rab35 has been shown to bind in vitro to the tumor suppressor Folliculin204. 

Mutations of Folliculin lead to the BHD syndrome, characterized by fibrofolliculomas, 

cystic lung disease and renal cell carcinoma205. Interestingly, it was shown that FLCN 

exhibit GEF activity towards Rab35, at least in vitro204. Depletion of FLCN in vitro leads 

to increased cell-cell adhesions and impaired cell polarization in 3D cysts in T84 cells in 

Matrigel and in IMCD3 cells in Geltrex matrix206,207. Of note, also Rab35 is implicated in 

the formation and remodelling of adherence junctions208 and its activation might be 

thus regulated by FLCN. Rab35 has been shown to regulate the cadherin trafficking and 

stabilization at cell-cell contacts in C2C12 myoblasts and Hela cells208.  

Additionally, FLCN depletion causes cytokinesis defects resulting in binucleated cells206, 

another similarity to Rab35 regulated pathways, indicating that FLCN might act as a GEF 

for Rab35 in multiple cellular processes, potentially also in the establishment of 

epithelial apico-basal polarity. However, further studies will be necessary to investigate 

whether Rab35 plays a role in FLCN loss-of-function carcinomas and to confirm FLCN’s 

GEF activity towards Rab35 in vivo.  

 

 

 

 



  
 

 63 

1.3.5   Other functions of Rab35 
 

Besides its function in endocytic recycling, cytokinesis and its emerging role in polarity 

and cancer, Rab35 is also involved in many other cellular processes including cell 

migration neurite outgrowth, phagocytosis and infection (Figure 41).  

 

Figure 41: Functions of the Rab35 GTPase 

This scheme illustrates the different cellular functions of Rab35 at the plasma membrane and its 

regulation by GAPs and GEFs. From reference: 186  
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Notably, Rab35 is involved in many cellular process that involve regulation of 

PtdIns(4,5)P2 and F-actin through recruitment of different effectors. As mentioned 

above Rab35 regulates PtdIns(4,5)P2 and F-actin levels on early endosomes and in the 

intercellular bridge through recruitment of OCRL.  

Furthermore, Rab35 was shown to regulate actin dynamics in Drosophila. Depletion of 

Rab35 or expression of a dominant negative mutant of Rab35 during Drosophila 

development induces malformation of the bristles, such as sharp bends and forked 

ends209. These malformed bristles are caused by lose and disconnected actin 

organization, suggesting a role for Rab35 in actin remodelling. The protein that directly 

links Rab35 to actin dynamics is Fascin, an actin bundling protein that has been 

identified as a new effector for Rab35. It was further demonstrated that overexpression 

of Fascin can rescue the bristle phenotype induced by Rab35 depletion, putting Fascin 

downstream of Rab35. Using Drosophila S2 cells the authors demonstrated that active 

Rab35 ectopically expressed at the mitochondrial membrane was sufficient to induce 

actin bundling around the mitochondria209.  

More recently the McPherson lab has investigated the differences between the 3 major 

Rab35 GEFs connecdenn1-3. Interestingly, connecdenn3 but not connecdenn1 and 2 can 

bind to actin and colocalizes with Rab35, Fascin and actin. Furthermore co-expression 

of Rab35 with connecdenn3 induces the formation of actin protrusions but not co-

expression with connecdenn1 and 2. This study suggests that connecdenn3 recruits and 

activates Rab35 at actin filaments and Rab35 in turn recruits its effector fascin to 

induce actin bundling210.  

A third Rab35-regulated pathway that acts on actin dynamics involves Rac1 and Cdc42. 

Although Rab35 does not interact directly with Rac1 or Cdc42, it has been shown that 

Rab35 promotes the recruitment of Cdc42 and Rac1 to the phagocytic cup in SL2 cells, 

where Rab35 promotes the formation oft the phagocytic cup through Cdc42/Rac1-

mediated actin remodelling211. Moreover Rab35 regulates neurite outgrowth in PC-12 

cells and NHE-115 cells through via a Cdc42 dependent pathway193. It was furthermore 

shown that Rab35 can activate Cdc42 in vitro, although the exact mechanism remains 
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elusive193. A link between Rac1 and Rab35 was established in MCF-7 breast cancer cells, 

demonstrating that Rab35 form a complex with Dvl2, a protein involved in the Wnt5 

signal transduction pathway201. Wnt5a activates Rab35 through Dvl2, which induces Rac1 

ativation. However, the mechanism for this activation cascade remains to be 

established.  

 

 

1.4 THESIS RATIONALE 

 

De novo establishment of an apical membrane is a complex process that has been linked 

to symmetry breaking steps during cytokinesis in several instances88,89,128. It has been 

furthermore suggested that proteins involved in epithelial cell polarization could also 

play a role during cytokinesis and vice-versa120. Although cytokinesis failure as well as 

polarity defects are associated with tumorigenesis, investigation of underlying 

molecular mechanisms that couple cytokinesis with epithelia polarity have only been 

started recently.   

The thesis project was initially based on the result of a Yeast-two hybrid screen using 

Rab35Q67L (GTP-bound) as bait179. This screen revealed a potential interaction between 

Rab35 and the cytoplasmic tail of the apical transmembrane protein Podocalyxin. 

Podocalyxin is implicated in many cellular processes that involve cell adhesion and 

membrane repulsion, cell morphology as well as epithelial cell polarity. Moreover 

PODXL overexpression is associated with tumor progression and poor prognosis in many 

different carcinomas. Rab35 is a known as a regulator for endocytic recycling and 

cytokinetic abscission, but raises increasing attention in cancer research in the last few 

years. The interaction between Rab35 and PODXL could therefore potentially link the 

known functions of Rab35 with PODXL mediated epithelial polarity and cancer 

progression and thus shed light on novel mechanisms and functions coupling cytokinesis 

with the initiation of apico-basal polarity through Rab35.  
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The major goals and questions of my thesis were initially the following: 

" Characterization of the PODXL/Rab35 interaction 

Is PODXL an effector protein of active GTP-bound Rab35? 

 

" Investigation of PODXL traffic/recycling in polarized (3D cysts) and 

unpolarized MDCK cells by time-lapse microscopy 

Do Rab35 and PODXL co-localize on endosomes? 

Does Rab35 regulate the traffic/recycling of PODXL? 

Is Rab35 required for the apical targeting of PODXL? 

 

" Investigation of the potential function for Rab35 in epithelial polarity using 

MDCK 3D cysts 

Does Rab35 inactivation/depletion affect apico-basal polarity? 

Does Rab35 inactivation/depletion affect the apical localization of PODXL?  

 

" Deciphering the function/mechanism of the PODXL/Rab35 interaction  

Does blocking of the PODXL/Rab35 interaction phenocopy Rab35 

inactivation/depletion? 
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2 RESULTS 

 

2.1   Summary 

 

Most of the human cancers arise from epithelial cells and the loss of epithelial apico-

basal polarity is a hallmark in tumor progression. It has been shown that the initiation of 

epithelial polarity is tightly connected to cell division and polarized membrane traffic, 

but how this is coordinated at a molecular level remains unknown. During my thesis I 

addressed this question in renal MDCK cells, which develop 3D polarized cysts with an 

open apical lumen from a single cell when cultured in Matrigel. Unpolarized renal MDCK 

cells establish an apical membrane already at the first cell-cell interface during the 

two-cell stage, and this is coupled to cytokinesis by an unknown mechanism. 

Unexpectedly, I found that the Rab35 GTPase directly interacts with the cytoplasmic 

tail of the apical transmembrane protein Podocalyxin (PODXL, also known as GP135), a 

classical apical marker essential for epithelial polarity and lumen formation. 

Interestingly, Rab35 was enriched at the future apical membrane during the first cell 

division before PODXL or any other tested apical proteins could be detected. Depletion 

of Rab35 or replacement of endogenous PODXL by the mutant PODXL V496A/Y500A 

unable to interact with Rab35, prevented PODXL and other apical proteins to become 

enriched at the future apical membrane during the first cell division. Consequently, a 

complete inversion of apico-basal polarity was observed in these conditions. 

Furthermore, the experimental delocalization of Rab35 to mitochondrial membranes 

induced a striking accumulation of vesicles containing PODXL, Crb3, Cdc42 and aPKC 

around the mitochondria, leading to a loss of apico-basal polarity.  From these results I 

conclude that Rab35 acts as a direct tether for transcytosed PODXL-containing vesicles 

at the future apical membrane, and thereby plays a crucial role in triggering the 

establishment of apical polarity. In addition, this work provides a molecular mechanism 

for coupling the site of cytokinesis to the initiation of polarity and lumen localization in 

3D structures. 
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2.2   Published Manuscript 
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Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly

coupled with cell division, but the underlying molecular mechanisms are largely unknown.

Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a

crucial role in polarity initiation and apical lumen positioning during the first cell division of

cyst development. At the molecular level, Rab35 physically couples cytokinesis with the

initiation of apico-basal polarity by tethering intracellular vesicles containing key apical

determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the

lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between

Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to

complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of

Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of

apico-basal polarity and lumen opening at the centre of cysts.
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Many epithelial organs are composed of a polarized cell
monolayer surrounding a central apical lumen. Renal
Madin-Darby canine kidney (MDCK) cells cultured in

Matrigel form polarized hollow spheres (cysts) that represent a
powerful model for deciphering the establishment of epithelial
polarity and lumen formation1–5. The de novo apico-basal
polarity in cysts arises from successive divisions of a single,
non-polarized cyst-founding cell6,7. During the first cell division,
apical transmembrane proteins such as Podocalyxin (PODXL, a
classical apical marker also known as GP135) and Crumbs3 are
transcytosed from the plasma membrane facing the extracellular
matrix (ECM) towards the first cell–cell contact site8–10.
Membrane traffic is therefore essential for this symmetry-
breaking step, which specifies the location of the apical
membrane initiation site (AMIS) and thus the central position
of the future apical lumen10–12. Recent data indicate that the
location of the cytokinetic bridge between the first two daughter
cells determines the location of the AMIS12–15, yet the molecular
mechanisms coupling the first cell division with apical lumen
formation are largely unknown. We previously identified Rab35
as a unique Rab GTPase present at the cleavage site that promotes
cytokinetic abscission in HeLa cells16–20. Given the postulated
analogy between the cytokinetic plasma membrane and the apical
membrane of polarized epithelial cells21, we hypothesized that
Rab35 might play a role in apico-basal polarity events. Here we
show that the Rab35 GTPase is localized at the cell–cell interface
and at the future AMIS during cytokinesis, where it captures
vesicles transporting key apical determinants via a direct
interaction with the cytoplasmic tail of PODXL. Through this
original mechanism of vesicle tethering, Rab35 thus couples cell
division with initiation of apico-basal polarity and lumen
formation.

Results
Rab35 directly interacts with PODXL at the apical membrane.
We first identified a potential connection between Rab35 and
PODXL through a yeast two-hybrid screen using the active,
GTP-bound mutant of Rab35 (Rab35Q67L) as a bait. We found
that the cytoplasmic tail of PODXL (aa 476–551) interacted
selectively with Rab35WT and Rab35Q67L, but not with
Rab35S22N, the GDP-bound, inactive form (Fig. 1a). In contrast,
no interaction was detected between the PODXL tail and the
GTP-locked mutants of Rab6A or Rab GTPases involved in
cystogenesis like Rab8, Rab11A or Rab27A (Fig. 1a). Using
recombinant proteins, we confirmed that the PODXL/Rab35
interaction was direct and specific for the GTP-bound con-
formation of Rab35 (Fig. 1b). In addition, endogenous PODXL
could be co-immunoprecipitated from MDCK cells expressing
Rab35WT or Rab35Q67L, but not from Rab35S22N-, Rab6AQ72L-,
Rab8AQ67L-, Rab11Q70L- or Rab27AQ78L-expressing cells
(Fig. 1c). To examine where this direct interaction takes place
during cystogenesis, we stained for endogenous PODXL in
MDCK cells stably expressing mCherry-Rab35. During initial
phases of three-dimensional (3D) cyst development, PODXL
vesicles concentrated on endosomal recycling compartments at
the two-cell stage (arrowheads) and then concentrated at the
AMIS (arrow), as previously reported9,10,14 (Fig. 2a(iii)).
Importantly, we noticed that Rab35 was present at the first
cleavage furrow before any detectable co-localization with
PODXL (Fig. 2a(ii)). Early signs of co-localization were
observed when PODXL started to be trafficked towards the
cytokinetic bridge (Fig. 2a(iii), and zoom (vii)). A remarkable
close apposition between PODXL-containing vesicles and
membrane-bound Rab35 was thus initially detected at the
AMIS. Subsequently, PODXL strongly co-localized with Rab35
at the AMIS and at the apical membrane (Fig. 2a(iv–vi) and

Fig. 2b). We observed that Rab35 was not restricted to the
AMIS (defined by ZO-1) and that part of Rab35 also localized
on its sides (b-catenin positive) at the first cell–cell interface
(Supplementary Fig. 1a,b and Discussion). Altogether, these
results indicate that PODXL is a genuine Rab35-interacting
protein and suggest that Rab35 could play a critical role in early
steps of cyst development.

Rab35 depletion leads to a complete inversion of polarity.
To test the potential function of Rab35 in apico-basal polarity
establishment and PODXL-dependent lumen formation, we
depleted Rab35 using independent siRNAs (Fig. 3a and
Supplementary Fig. 2a) or shRNAs (Supplementary Fig. 2b,c),
and seeded single MDCK-depleted cells into Matrigel for 48 h.
In control siRNA conditions, the majority of cysts (475%)
developed a single, PODXL-positive central lumen surrounded by
an epithelial monolayer (Fig. 3b,c). In contrast, only 40% of
Rab35-depleted cysts formed a single apical lumen. Remarkably,
Rab35 depletion led to the appearance of cysts with inverted
apico-basal polarity, characterized by mislocalization of PODXL
to the outer, ECM-facing plasma membrane (Fig. 3b,c). The
remaining Rab35-depleted cysts displayed either multiple lumens
or intracellular vacuoles (‘other abnormal cysts’; Fig. 3b,c and
Supplementary Fig. 2a). All these phenotypes were fully rescued
with siRNA-resistant Rab35WT but not with the Rab35S22N

mutant (Fig. 3c). The same defects were confirmed using an
shRNA targeting a different region of Rab35 mRNA, and were
similarly rescued with Rab35WT but not with the GDP-bound
Rab35 (Supplementary Fig. 2b,c). In addition, expression of the
Rab35 GAP EPI64B/TBC1D10B (refs 22–24) phenocopied Rab35
depletion (Supplementary Fig. 2d,e). Thus, both depletion and
inactivation of Rab35 lead to defects in cyst development.

Using a Rab35 shRNA-IRES-GFP MDCK cell line, we
established that fluorescence-activated cell sorting (FACS)-sorted
cells that expressed the highest levels of green fluorescent protein
(GFP) corresponded to the most Rab35-depleted cells (Fig. 3d).
Interestingly, the most-depleted cells were the most prone to
develop into inverted cysts (up to 50% of cysts, Fig. 3d, and full
rescue by Rab35WT in Supplementary Fig. 2f), indicating that
polarity inversion is observed when Rab35 is reduced below a
critical threshold. We thus focused on understanding why Rab35
depletion led to this striking phenotype. We first investigated
whether polarity markers other than PODXL were also inverted
upon Rab35 depletion. Whereas the classical apical markers
F-actin, aPKC and Crumbs3 were strongly enriched at the central
apical membrane in control cysts, they were all delocalized to the
peripheral membrane facing the ECM after Rab35 depletion
(Fig. 3e). Consistent with genuine inversion of polarity, the baso-
lateral marker b1-integrin was absent from the membrane facing
the ECM (Fig. 3e). Of note, lateral adherens junctions stained by
E-cadherin formed correctly (Fig. 3e). In addition, ZO-1-labelled
tight junctions were present, but with inverted location (Fig. 3e).
Intracellular organization was also inverted, since sub-apical
compartments such as the Golgi apparatus or the recycling
compartment labelled by Rab11 were delocalized underneath the
membrane facing the ECM (Fig. 3e). Finally, primary cilia, which
always form at the apical luminal membrane in control cysts,
sprouted from the ECM-facing membrane after Rab35 depletion
(Fig. 3e). Altogether, we conclude that strong Rab35 depletion
leads to a complete inversion of apico-basal polarity in cysts.

Ectopic fusion of PODXL vesicles upon Rab35 depletion. We
next addressed whether inversion of polarity upon Rab35
depletion occurred already in the initial steps of cyst develop-
ment. As a first approach, we fixed control- and Rab35-depleted
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cysts 24 h after seeding single cells into Matrigel, and analysed
PODXL localization at the two-cell stage (Fig. 4a). While 58% of
control cysts displayed PODXL at the AMIS (Fig. 4a, arrow), this
was the case in 38% of Rab35-depleted cysts (Fig. 4a,b). Inter-
estingly, in line with the increase of inverted cysts observed at
48 h (Fig. 3c), Rab35 depletion led to an increase of cysts with
PODXL abnormally located at the membrane facing the ECM
already at 24 h (Fig. 4a, arrowheads). This abnormal localization
was fully rescued by the expression of siRNA-resistant Rab35WT,
but not of GDP-locked Rab35S22N (Fig. 4b). We next turned to
time-lapse microscopy of cells expressing GFP-PODXL to pre-
cisely characterize how inversion of polarity arose in Rab35-
depleted cysts (Fig. 4c). In control cysts, PODXL was present at
the plasma membrane and on vesicles during the first metaphase,
then it was internalized into internal recycling compartments
during telophase, but not yet localized at the AMIS

(Supplementary Movie 1, Fig. 4c top panels, time 0:50; and also
Fig. 2a(ii)). Finally, the recycling compartments from both cells
moved towards the intercellular bridge and PODXL started to
strongly accumulate at the AMIS (Fig. 4c, top panels, arrows).
This first description in live cells of PODXL trafficking from the
one-cell stage to the two-cell stage of cystogenesis is fully con-
sistent with previous observations in fixed cysts, indicating that
PODXL is transcytosed towards the AMIS at the two-cell stage10.
Importantly, PODXL also reached the recycling compartments
after Rab35 depletion (Fig. 4c, bottom panels, time 00:30–00:40;
and Supplementary Movie 2). However, as these compartments
moved towards the cell–cell interface, they became dimmer and a
concomitant increase of PODXL back to the ECM-facing plasma
membrane was observed. Two hours after mitosis onset, PODXL
eventually localized abnormally to the ECM-facing membrane
(Fig. 4c, bottom panels, arrowheads). Other examples of movie
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snapshots are presented in Supplementary Fig. 3. Taken together,
these results indicate that inversion of polarity results from the
inability of internalized PODXL-containing vesicles to fuse at
the membrane surrounding the first cytokinetic bridge in
Rab35-depleted cysts.

As Rab35 has been involved in the timing of cytokinetic
abscission17, we investigated whether this could influence the
establishment of polarity. We thus depleted Cep55, a protein
critical for abscission in HeLa cells, and found indeed a strong
delay in cytokinetic abscission in MDCK cells (Supplementary
Fig. 4a). However, Cep55 depletion had no effect on apico-basal
polarity in cysts (Supplementary Fig. 4b). Therefore, abscission
delay cannot account for the inversion of polarity observed after
Rab35 depletion.

To test whether the interaction between PODXL and Rab35
was essential for normal cyst polarity, we designed a C-terminal
mutant of PODXL unable to bind Rab35 (Supplementary Fig. 4c).
We reasoned that Rab GTPases usually interact with partners
through hydrophobic amino acids, and screened for mutations
that would disrupt the interaction. Using recombinant proteins,
we found that the combination of the two point mutations
V496A/Y500A in the PODXL cytoplasmic tail completely

abolished the binding to Rab35 (Fig. 4d). We then replaced
endogenous PODXL with either GFP alone, siRNA-resistant
version of GFP-PODXL WT or GFP-PODXL V496A/Y500A
(Fig. 4e). In PODXL-depleted cysts expressing GFP alone, we
observed a striking increase of cysts without lumen but no
polarity inversion (Fig. 4f). This was accompanied by the
accumulation of apical recycling endosomes (positive for
Crumbs3) close to the plasma membrane (Fig. 4g), as reported
previously in ref. 25. This is consistent with a role of PODXL
upstream or at the fusion step of these vesicles with the future
apical membrane, as well as for lumen opening25–27. Ruling out
off-target effects, the defects observed in PODXL-depleted cysts
were fully rescued by expression of GFP-PODXL WT (Fig. 4f).
Importantly, replacing endogenous PODXL with GFP-PODXL
V496A/Y500A was sufficient to invert cyst polarity, without the
need to deplete Rab35 (Fig. 4f, arrow). Time-lapse microscopy of
the first cell division revealed that PODXL V496A/Y500A was
internalized but failed to be correctly delivered to the presumptive
AMIS, and instead accumulated back to the ECM-facing plasma
membrane (Fig. 4h and Supplementary Movie 3). Thus, a PODXL
mutant unable to interact with Rab35 triggers inversion of cyst
polarity from the two-cell stage by preventing fusion of PODXL
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zoomed region). (b) Localization summary of PODXL (green) and Rab35 (red) through cell division of the cyst-founding cell, two-cell cyst and four-cell
cyst. Blue lines: intercellular bridge microtubules. Nuclei are figured in blue. Arrows point towards the AMIS and the first apical membrane.
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Figure 4 | Ectopic fusion of PODXL-positive vesicles to the ECM-facing membrane on Rab35 depletion or disruption of Rab35/PODXL interaction.
(a) Staining for PODXL, b-catenin and DAPI in control- or Rab35-depleted two-cell cysts fixed 24 h after seeding in Matrigel (merge and single channels,
as indicated). Scale bar, 10mm. (b) Localization of PODXL at the two-cell-stage cyst (24 h in Matrigel) after indicated depletion and plasmid transfection.
Mean±s.d., N¼ 3 independent experiments, 150–200 two-cell cysts analysed per condition. Two-way analysis of variance (ANOVA): **Po0.01,
***Po0.001, NS, not significant. (c) Top two rows: snapshots of time-lapse microscopy from control MDCK cells seeded into Matrigel and expressing
mCherry-Rab35WT (red) together with GFP-PODXL (green). Bottom row: snapshots of time-lapse microscopy from Rab35 shRNA MDCK cells seeded into
Matrigel and expressing GFP-PODXL. Arrowheads indicate ectopic localization of PODXL after the first division. Scale bar, 10mm. Time stamps: (hour:min)
using mitotic entry as origin. (d) GST-pull down experiment as described in Fig. 1b, using either GST alone, GST–PODXL tail (aa 476–551) as in WT or
GST–PODXL tail (aa 476–551) with the two substitutions V496A and Y500A. (e) MDCK cells treated with PODXL siRNAs for 3 days and transfected with
indicated plasmids. Western blot showing PODXL (loading control: b-tubulin). For comparison, dilutions of lysates from control siRNA-treated MDCK cells
transfected with plasmids encoding GFP alone have been used. 100% correspond to the amount loaded in the PODXL siRNA conditions. (f) Proportion of
normal cysts, cysts without lumen (but not inverted), inverted cysts and other abnormal cysts following seeding of the cells described in e. in Matrigel
for 48 h. Mean±s.d., N¼ 3 independent experiments, 150–500 cysts analysed per condition. Two-way ANOVA: *Po0.05; ***Po0.001; NS, not significant.
(g) MDCK cells as described in e were co-transfected with GFP-Crumbs3, fixed after 48 h in Matrigel and stained as indicated. Magnification:
GFP-Crumbs3-positive vesicles close to the plasma membrane in displayed PODXL-depleted cyst. Scale bar, 10 mm (2mm for zoomed region).
(h) Snapshots of time-lapse microscopy from PODXL-depleted MDCK cells seeded into Matrigel and expressing mCherry-Rab35WT (red) together
with siRNA-resistant GFP-PODXL full-length V496A Y500A mutant (green). Single PODXL channel also displayed in grey levels. Arrowheads indicate
ectopic localization of PODXL mutant after the first division. Scale bar, 10 mm.
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vesicles at the first cell–cell interface, exactly as observed after
Rab35 depletion. Remarkably, fusion of the PODXL-positive
vesicles to the ECM-facing membrane is sufficient to invert apical
polarity, likely because they can transport key apical determinants
such as aPKC, Cdc42 and Crumbs3 (refs 10,14 and see below).

GTP-bound Rab35 directly tethers PODXL-positive vesicles.
Given the physical interaction between Rab35 and the PODXL
cytoplasmic tail, as well as the unique localization of Rab35 at the
cleavage furrow before PODXL vesicle fusion, these results raised
the exciting possibility that Rab35 might act as a direct tether that
would capture internalized PODXL vesicles, and thus determine
AMIS and lumen location at the cyst centre. To test this tethering
model, we experimentally delocalized a GTP-locked mutant of
Rab35 to the mitochondrial membrane, by fusing it to the
mitochondria-targeting signal of Listeria monocytogenes ActA
(ref. 28; Rab35Q67L-Mito). As expected, this Rab35-chimera
localized exclusively to the mitochondrial surface in MDCK cells
(Fig. 5a–l). Strikingly, expression of this construct was sufficient
to tether vesicles positive for PODXL at the surface of
mitochondria, these vesicles appeared as dotty structures closely
apposed to the smooth staining of Rab35Q67L-Mito (Fig. 5a
arrowheads). Importantly, no PODXL vesicles were tethered
around mitochondria if the GDP-bound mutant of Rab35
was used (Rab35S22N-Mito; Fig. 5b) or when GTP-locked
Rab11AQ70L-Mito was expressed (Supplementary Fig. 5a). Using
live cell imaging, we confirmed that individual PODXL vesicles
were tethered around mitochondria by Rab35Q67L-Mito, but not
by Rab35S22N-Mito (Supplementary Movie 4). Using Rab35Q67L-
Mito to tether PODXL vesicles to mitochondria, we found that
these vesicles also contained crucial apical determinants such as
GFP-Crumbs3 (Fig. 5c), GFP-Cdc42 (Fig. 5e) and aPKC (Fig. 5g).
This was not observed in Rab35S22N-Mito-expressing cells
(Fig. 5d,f,h). Furthermore, Rab11-postive vesicles were also
tethered around mitochondria by Rab35Q67L-Mito but not by
Rab35S22N-Mito (Supplementary Fig. 5b,c), consistent with
PODXL and Rab11 being trafficked in the same vesicles9,10,14.
As expected for a direct tethering through Rab35 interaction with
the PODXL cytoplasmic tail, the tethering of Rab11-positive
vesicles crucially depended on the presence of PODXL, since it
was lost upon PODXL depletion (Fig. 5i,j). To confirm the
importance of the PODXL/Rab35 interaction in vesicle tethering,
we analysed cells in which endogenous PODXL had been
replaced by either siRNA-resistant GFP-PODXL V496A/Y500A
or GFP-PODXL WT. As anticipated, in contrast to vesicles
containing GFP-PODXL WT (Fig. 5l), vesicles containing GFP-
PODXL V496A/Y500A failed to be tethered around
mitochondria by Rab35Q67L-Mito (Fig. 5k). Altogether, we
conclude that GTP-bound Rab35 tethers intracellular vesicles
containing key apical markers (PODXL, aPKC, Cdc42 and
Crumbs3) through physical interaction with the cytoplasmic tail
of PODXL.

Delocalizing Rab35 on mitochondria prevents AMIS formation.
If this Rab35-dependent tethering mechanism is important for
apical membrane determination, one should expect profound
polarity defects when Rab35 is delocalized from the plasma
membrane. We thus analysed the consequences of delocalizing
Rab35 at mitochondria during cystogenesis. Interestingly, we
observed that the proportion of cysts with PODXL correctly
localized at the AMIS was strongly reduced upon Rab35Q67L-
Mito expression, in line with B50% of cysts displaying PODXL
vesicles at mitochondria (Fig. 6a, 24-h cysts). This was accom-
panied by the absence of an apical membrane, as shown by a
continuous b-catenin staining at the cell–cell interface

(Supplementary Fig. 5d,f,h,j, arrows). While Par3 localized to the
tight junctions, other apical proteins such as Crumbs3, Cdc42 and
aPKC were not correctly localized in the centre of the two-cell-
stage cyst in Rab35Q67L-Mito-expressing cells (Supplementary
Fig. 5d,f,h,j). As expected, apical determinants localized normally
at the two-cell stage in cysts expressing Rab35S22N-Mito
(Supplementary Fig. 5e,g,i,k). As a consequence, expression of
Rab35Q67L-Mito resulted in the appearance of disorganized cysts
without lumen, since PODXL-positive vesicles were tethered
around mitochondria throughout cyst development (Fig. 6b, 48-h
cysts). In contrast, PODXL was normally enriched at the AMIS
after Rab35S22N-Mito expression (Fig. 6a), and cysts with a
PODXL-positive apical lumen developed normally in this
condition (Fig. 6b). Thus, delocalizing GTP-bound Rab35 on
mitochondria displaced PODXL-positive vesicles from the plasma
membrane, which prevented AMIS formation and apico-basal
polarity establishment.

Discussion
Understanding how apical polarity is established de novo and
how lumens form in epithelial organs represent crucial biological
questions1–5. In certain organs, such as the acini of exocrine
glands, lumens result from the apoptosis of inner glandular cells,
through a process called cavitation1. In contrast, lumen formation
can arise in other tissues through hollowing, for instance, during
the development of vascular endothelia and kidneys1. In the
developing mouse aorta, apical membrane establishes de novo
from pre-existing cell–cell contacts by targeted exocytosis of
apical cargos towards the AMIS27. In this system, lumen opening
involves PODXL, whose anti-adhesive properties promote
cell–cell repulsion. During kidney embryogenesis, the existence
of an AMIS has also been described before lumen formation and
its elongation into a tubular nephron29. MDCK cells form cysts
very similar to the embryonic renal vesicle, thus making them an
attractive model to study apico-basal establishment and lumen
morphogenesis in vitro. This led to the key concept that MDCK
cysts establish an apical membrane at the two-cell stage through
transcytosis of apical proteins, including PODXL, which will later
delimit an open lumen9,10 (Fig. 2b). Interestingly, transcytosis
events are temporally and spatially associated with the
positioning of the cytokinetic bridge microtubules, which likely
promote the delivery of apical recycling endosomes towards the
AMIS at the centre of the two-cell cyst14. Accordingly, kinesin-2-
dependent apical trafficking of the Rab11/FIP5-positive
endosomes towards the AMIS during cytokinesis is important
for the formation of a single, central apical lumen12,15. Thus, the
formation of the AMIS, which is defined by the tight junction
marker ZO-1 (ref. 12), Par3/aPKC and the exocyst subunit Sec8
(ref. 10), must be coordinated with cytokinesis. However, the
molecular mechanisms coupling cell division, delivery of apical
initiation determinants and lumen formation remained elusive.

Here we propose that Rab35 acts as a molecular tether that
captures PODXL-containing vesicles around the cytokinetic
bridge of the cyst-founding cell (Fig. 7). This simple model
explains how lumen formation is coupled with the position of the
first division apparatus, at the centre of the cyst. Rab35 is indeed
localized at the AMIS labelled by ZO-1 around the cytokinetic
bridge (Supplementary Fig. 1a). There, we observed co-localiza-
tion between Rab35 and b-catenin (Supplementary Fig. 1b,
arrowheads). This suggests that at least at early stages when
PODXL has not yet fused to the AMIS (Supplementary Fig. 1a,b),
the AMIS overlaps with adherens junction markers. This
observation has been confirmed with co-localization between
ZO-1 and b-catenin on the side of the tubulin-positive bridge
(Supplementary Fig. 1c). Later, after establishment of the apical
membrane (positive for PODXL), there is a clear segregation

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11166 ARTICLE

NATURE COMMUNICATIONS | 7:11166 | DOI: 10.1038/ncomms11166 | www.nature.com/naturecommunications 7



between adherens junction markers and apical markers
(Supplementary Fig. 1d), suggesting remodelling of the junctions.
Thus, the AMIS is a dynamic compartment and its molecular
definition changes with time. In addition, a pool of Rab35
also localizes at the cell–cell interface not labelled by ZO-1
(Supplementary Fig. 1b). Interestingly, we observed that PODXL

vesicles are tethered/fused mainly at the ZO-1-positive AMIS (as
expected) but also on its sides (Supplementary Fig. 1e, arrow-
heads), where Rab35 is also present. This is consistent with the
proposed tethering model, and suggests that a pool of POXL
vesicles can also interact with b-catenin/Rab35-positive mem-
branes close to the AMIS. This raises the possibility that vesicles
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transfected for 72 h with plasmids encoding either fluorescently tagged Rab35Q67L or Rab35S22N fused to the mitochondrial targeting signal of ActA
(-Mito), as indicated. In the merged images, Rab35-Mito proteins are displayed in red, and PODXL, GFP-Crumbs3, GFP-Cdc42 or aPKC in green.
(i,j) MDCK cells were treated with either control or PODXL siRNAs for 72 h, and co-transfected for 72 h with plasmids encoding mCherry-Rab11WT

and either GFP-Rab35Q67L-Mito or GFP-Rab35S22N-Mito, as indicated. (k,l) MDCK cells were co-transfected for 72 h with plasmids encoding
mCherry-Rab35Q67-Mito and either GFP-PODXL WT or GFP-PODXL V496A Y500A. In the merged images, Rab35Q67L-Mito is displayed in red, and
PODXLWT or mutant in green. For a–l individual channels in grey levels and higher magnification of the regions delimited by a dash line are displayed,
as indicated. Scale bars, 10mm for unzoomed regions and 2 mm for zoomed regions. Arrowheads indicate examples of close-apposition vesicles (green)
with mitochondrial Rab35Q67L (red).
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could deliver PODXL mainly at the membrane surrounding the
bridge (AMIS) but also on its sides, and that apical proteins later
coalesce into a single domain while junctions are being
remodelled.

Contrary to known tethering machineries (for example, exocyst)
that link membranes via assembly of protein sub-complexes
found on either membrane, Rab35 tethers vesicles through a
physical, direct interaction with the cytoplasmic tail of one of
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Figure 6 | Delocalizing GTP-bound Rab35 on mitochondria prevents AMIS formation and apico-basal polarity establishment. (a) MDCK cells
transfected with either GFP-Rab35S22N-Mito or GFP-Rab35Q67L-Mito were seeded into Matrigel for 24 h, cysts were fixed and stained for PODXL and
F-actin (phalloidin). Merged images and single channels in grey levels are displayed, as indicated. Scale bar, 10 mm. Graphs: proportion of cysts with PODXL
normally localized at the apical membrane (left graph) or with PODXL localized at the mitochondria (right graph) in each condition. Mean±s.d.,
N¼ 3 independent experiments, 100–200 two-cell cysts analysed per condition. Two-way analysis of variance (ANOVA): ***Po0.001. (b) MDCK cells
were transfected for 24 h with plasmids encoding either GFP-Rab35Q67L-Mito or GFP-Rab35S22N-Mito and seeded into Matrigel for 48 h. Cysts were then
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Figure 7 | Model for coupling the first cyst cytokinesis and the initiation of the apical lumen at the centre of cysts. Rab35 located at the cell–cell
interface surrounding the first intercellular bridge (red) directly tethers internalized PODXL-positive vesicles (green) containing Crumbs3, aPKC and Cdc42
through direct binding to the PODXL cytoplasmic tail. This allows the targeting of vesicles transporting both lumen-promoting factors and key apical
determinants to initiate apical polarity at the centre of the cyst-founding cell.
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their transmembrane cargo. This thus represents a new mode
of tethering, through trans interaction between the acceptor
compartment and intracellular vesicles. Indeed, Rab GTPases
have been shown to be essential regulators of traffic by promoting
vesicle formation, targeting and fusion of Rab-positive vesicles
with the acceptor compartment18,19. Here we provide the
evidence that Rab GTPases can unexpectedly act as direct
and specific receptors for vesicles. Several examples of
Rab/transmembrane cargo interactions have been reported (for
example, Rab4/CFTR cystic fibrosis chloride channel), but their
mechanistic significance remains largely unclear30. This novel
tethering mode could thus resolve the function of Rab/cargo
interactions beyond cyst development. Interestingly, nothing was
known about Rab35 in epithelial polarity, except that it regulates
branching of polarized seamless tracheal tubes in Drosophila31.
We show here that Rab35 plays a critical role for selectively
defining the destination of vesicles that initiate the establishment
of polarity. Of note, Rab35 has been involved in the trafficking of
a number of cargoes from the endosomes, such as TfR or CI-MPR
(refs 16,17,32–34). However, there is no effect of Rab35 depletion
on endogenous PODXL or GFP-PODXL internalization from
the plasma membrane (Supplementary Fig. 6a–d). Thus, the
inversion of polarity observed after Rab35 depletion does
not result from the retention of PODXL at the ECM-facing
membrane. In addition, depletion of the two known
Rab35 effectors in trafficking (OCRL (ref. 32) and MICAL-L1
(refs 33,35)) did not lead to polarity inversion (Supplementary
Fig. 6e–g), as previously shown for OCRL in pure Matrigel
cultures36. This suggests that Rab35 depletion does not impair
PODXL trafficking through early endosomes, as reported for TfR
and CI-MPR in HeLa cells32, and is in agreement with the
presence of transcytosed PODXL in recycling endosome after
Rab35 depletion (Fig. 4c and Supplementary Fig. 3a). Altogether,
these observations are consistent with a function of Rab35 in
targeting PODXL vesicles generated from the Rab11-positive
recycling compartment to the future apical membrane (Fig. 7). Of
note, the fusion of PODXL vesicles to the AMIS occurs between 1
and 10 h after the metaphase–anaphase transition in control
situations, depending on the cysts (Supplementary Fig. 3b). The
same cyst-to-cyst variability is observed in Rab35-depleted cysts,
until internalized PODXL is fused back to the ECM-facing
membrane (Supplementary Fig. 3b). Thus, the process of apical
membrane establishment in wild-type cysts is robust but the
timing varies.

Our study reveals that PODXL plays a pivotal and broader role
in cyst development than previously expected. First, PODXL
plays a role in lumen opening, likely by its negatively charged,
anti-adhesive extracellular domain25–27. Second, our data support
the idea that PODXL, directly or more likely indirectly, is
necessary for the fusion of the vesicles to the plasma membrane.
Indeed, in the absence of PODXL, vesicles containing Crumbs3
do not fuse with the plasma membrane, but rather appear close
to the cortex (Fig. 4g), confirming previous reports25. Third,
PODXL directly participates in the tethering of vesicles
containing key determinants for the establishment of the
apico-basal polarity to the future apical surface (this study).
Accordingly, PODXL-positive vesicles transport other
transmembrane apical proteins (for example, Crumbs3) and
also a pool of the cytosolic apical determinants such as Cdc42 and
aPKC (Fig. 5 and refs 10,37). While vesicular transport (in that
case through the PODXL/Rab35 interaction) is the only way for
targeting transmembrane apical proteins, this mechanism also
possibly contributes to target a pool of Cdc42/aPKC at the
future apical domain. However, other pathways (such as the
PtdIns(4,5)P2–Annexin2–Cdc42 pathway3) likely function in
parallel to deliver cytosolic apical determinants. The importance

of PODXL-vesicle fusion at the first cell–cell interface likely
explains why Rab35, together with multiple but non-redundant
mechanisms of tethering (Rab11/exocyst, Rab11/FIP5/cingulin
and Rab27/Slp4-a (refs 7,10–12,38)), is essential for correct
initiation of apico-basal polarity in cysts. While Rab35 appears as
a major factor promoting the establishment of the apical domain,
it is likely the combination of different tethering and fusion
factors, together with bridge microtubules and directed molecular
motors12,15, that collectively allow the definition of a robust and
properly localized apical membrane.

Complete inversion of cyst polarity has been described in only
a few instances39–45. In particular, depletion of b1-integrin
interrupts laminin signalling from the extracellular matrix cues
and leads to inverted cysts when cultured in pure collagen I
matrices41. As Rab35 regulates b1-integrin recycling in HeLa
cells46,47, one can wonder whether Rab35 depletion could
additionally perturb polarity by preventing b1-integrin
trafficking to the cell surface. This is unlikely since Rab35
depletion, on the opposite, increases recycling of b1-integrin to
the plasma membrane46. In addition, PODXL is not known to be
involved in b1-integrin trafficking and replacing endogenous
PODXL by a PODXL mutant that cannot interact with Rab35 is
sufficient to induce polarity inversion, even without depleting
Rab35 (Fig. 4f,h). Finally, further work revealed that b1-integrin
depletion does not lead to complete inversion of polarity but
rather to impaired polarity reorientation characterized by
collective front–rear polarization and motility25, when MDCK
cells are cultured in Matrigel (our conditions).

Rab35 depletion and overexpression of the Rab35GAP EPI64B
experiments revealed that both Rab35 and its level of activation are
important for correct establishment of apico-basal polarity and
lumen localization (Fig. 3c and Supplementary Fig. 2d,e). This is
fully consistent with the observation that PODXL interacts
specifically with active, GTP-bound Rab35 (Fig. 1a–c).
Interestingly, the Rab35 GAP EPI64B can directly bind to
NHERF1/EBP50 (ref. 48), which itself interacts with Ezrin and
PODXL at the ECM-facing membrane25. It is possible that the
former interaction contributes to maintain low levels of GTP-bound
Rab35 at the ECM-facing membrane. Conversely, since Rab35 is
directly recruited by PtdIns(4,5)P2 (ref. 49), it is likely that high
levels of PtdIns(4,5)P2 at the cleavage furrow, as well as the
conversion of PtdIns(3,4,5)P3 into PtdIns(4,5)P2 via PTEN at the
apical plasma membrane3 promote Rab35 localization at this site.

Finally, Rab35 and PODXL have been found to be differentially
expressed in several cancers: Rab35 is downregulated in
several tumours, including renal carcinomas46,50, whereas
PODXL overexpression has been identified as a potent marker
for highly aggressive and metastatic cancers with poor
prognosis51,52. Since perturbed polarity is associated with
tumour progression, the finding that Rab35 directly interacts
with PODXL and that its inactivation perturbs both PODXL
targeting and polarity may explain the emerging role of Rab35
and PODXL in tumorigenesis46,50–53.

Note added in proof: The Fukuda laboratory identified through
comprehensive RNAi screens the Rab GTPases mediating
podocalyxin transcytosis and showed that different sets of Rabs,
including Rab35, coordinate its transport during cell polarization
in 2D and 3D MDCK cells. For more details, see: Mrozowska P.
and Fukuda M. Regulation of podocalyxin trafficking by Rab
small GTPases in 2D and 3D epithelial cell cultures. The Journal
in Cell Biology, in press (2016).

Methods
Antibodies and plasmids. The following antibodies were used for immuno-
cytochemistry experiments: mouse anti-PODXL (DSHB Hybridoma 3F2/D8
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deposited by G.K. Ojakian); human anti-acetylated-tubulin C3B9-hFc (Institut
Curie, Paris, France); goat anti-b-catenin (sc-31,000; Santa Cruz Biotechnology);
rabbit anti-ZO-1 (61-7300, Invitrogen); rabbit anti-Par3 (07-330, Millipore); mouse
anti-E-cadherin (610181; BD Transduction Laboratories); rabbit anti-aPKCz (C-20,
Santa Cruz); mouse anti-integrin b1 (4B4, Coulter Clone); mouse anti-CTR433
(a kind gift from M. Bornens, Institut Curie, Paris, France); and recombinant
hVHH anti-GFP-hFc (Institut Curie, Paris, France). Fluorescently labelled
secondary antibodies were purchased from Jackson Laboratories. Phalloidin
647 was purchased from Sigma-Aldrich. Mouse anti-b-tubulin (Clone Tub 2.1,
Sigma-Aldrich), mouse anti-6xHis (Clone HIS-1, Sigma-Aldrich), mouse anti-GFP
(11814460001; Roche), mouse anti-Flag (M2, Sigma-Aldrich), rabbit anti-Rab35
(described in ref. 16) and secondary horseradish-peroxidase-coupled antibodies
(Jackson Laboratories) were used for western blot experiments.

The following plasmids were used for the yeast two-hybrid experiments
presented in Fig. 1a: pGAD-rabbit PODXL cytoplasmic tail (aa 476–551);
pGAD-rabbit PODXL V496A Y500A cytoplasmic tail (aa 476–551); pLex-human
wild-type Rab35 K173 (aa 1–173); pLex-human Rab35Q67L K173 (aa 1–173);
pLex-human Rab35S22N K173 (aa 1–173); pLex-human Rab11Q70L Y173 (aa
1–173); pLex-human Rab6AQ72L (aa 1–173); pLex-human Rab8AQ67L (aa 1–183);
and pLex-human Rab27AQ78L (aa 1–201). Plasmids used for immunofluorescence
were the following: pmCherry-human Rab35WT (siRNA-resistant)17; pmCherry-
human Rab35S22N (siRNA-resistant)17; pEGFP-rabbit wild-type PODXL (a kind
gift from K. Simons); GFP-human Crumbs3 (a kind gift from A. Le Bivic);
peGFP-human Cdc42 (a kind gift from S. Etienne-Manneville); pmCherry Rab11
(a kind gift from B. Goud); peGFP canine Rab11 (a kind gift from Z. Lenkei);
pEGFP-EPI64BWT; pEGFP-EPI64BR409A; and pmCherry-tubulin. The plasmids
for the mitochondria-targeting experiments pGFP-Rab35Q67L-Mito, pmCherry-
Rab35Q67L-Mito, pGFP-Rab35S22N-Mito, pmCherry-Rab35S22N-Mito, pGFP
canine Rab11AQ70L-Mito and pmCherry canine Rab11AQ70L-Mito were
constructed by PCR as followed: cDNA encoding Rab proteins lacking their last
cysteins Rab35S22N (aa 1–200), Rab35Q67L (aa 1–200) and Rab11Q70L (aa 1–212)
were fused at their COOH terminus to DNA encoding the mitochondrial targeting
sequence ‘LILAMLAIGVFSLGAFIKIIQLRKNN’ of L. monocytogenes ActA.
All constructs were Rab35 shRNA-resistant. All mutations were obtained by
Quickchange (Invitrogen).

RNA interference. The following siRNAs were used: canine Rab35, 50-GCTCAC
GAAGAACAGTAAA-30 (Sigma-Aldrich); canine PODXL, 50-CACTGGAAGTGA
TGGAGACCT-30 (ref. 26; Sigma-Aldrich); canine Cep55, 50-AGCAAGAAATCAA
ATAACA-30 (Smartpool Sigma-Aldrich); canine MICAL-L1, 50-GAGAGAAGGTG
CTGATGCA-30 (ref. 54; Sigma-Aldrich); canine OCRL, 50-GGTTCCCTGCCATT
TTTCA-30 (ref. 36; Sigma-Aldrich); and control luciferase, 50-CGUACGCGGAA
UACUUCGA-30 (Sigma-Aldrich). The following shRNAs were used: control
shRNA, 30-GTCTCCACGCGCAGTACATTT-50; and Rab35 shRNA, 30-CTGGTC
CTCCGAGCAAAGAAA-50 (Amsbio). Lentiviral particles of pLenti-H1-shRNA-
Rsv-IRES-Pyromycin and pLenti-H1-shRNA-Rsv-IRES-GFP-Pyromycin were
provided by Amsbio. The shRNA expression is driven by a tetracycline inducible
cytomegalovirus promoter. Rab35 siRNAs were transfected using Amaxa 2 days
before seeding cells into Matrigel. Cep55 and PODXL siRNAs were transfected 24
and 48 h before seeding cells into Matrigel.

Yeast two-hybrid screen and experiments. A yeast two-hybrid screen with
human Rab35Q67L (aa 1–194) fused to LexA as a bait was carried out by
Hybrigenics SA (Paris, France), using a human placenta complementary
DNAGal4-activating domain (GAD)-fusion library17. Specificity experiments
(Fig. 1a) were performed by co-transforming the Saccharomyces cerevisae reporter
strain L40 with either pGAD-rabbit PODXL (aa 476–551) or pGAD alone together
with either pLex-human wild-type Rab35 (aa 1–173), pLex-human Rab35Q67L

(aa 1–173), pLex-human Rab35S22N (aa 1–173), pLex-human Rab11Q70L (aa
1–173), pLex-human Rab6AQ72L (aa 1–173), pLex-human Rab8AQ67L (aa 1–183)
or pLex-human Rab27AQ78L (aa 1–201). The later plasmids encode for Rab
proteins without their COOH-terminal hypervariable regions. Transformed yeast
colonies were selected on DOB agarose plates without tryptophan and leucine.
Colonies were picked and grown on DOB agar plates with histidine (to select
co-transformants) and without histidine (to detect interactions).

Cell cultures and transfections. MDCK II cells (ATCC) were grown in
alpha-MEM medium supplemented with 10% fetal bovine serum, 100 U ml! 1

pernicillin/streptomycin and 200 mM glutamine. Cells were transfected using
Amaxa Kit L (Lonza) following the manufacturer’s instructions.

Lentiviral transductions and stable cell lines. A stable cell line expressing
mCherry-Rab35 was obtained by transfection using AMAXA, followed by selection
with 100 ng ml! 1 Genetecin (G418) for 2 weeks and FACS sorting for mCherry-
positive cells. Stable cell lines expressing control shRNA IRES GFP, Rab35 shRNA
IRES GFP, control shRNA or Rab35 shRNA are obtained by lentiviral transduction
(10 multiplicity of infection, 107 particles per ml) in growth medium and
5 mg ml! 1 Polybrene, following selection with 1 mg ml! 1 Pyromycin 72 h after
transduction. Cells expressing control shRNA IRES GFP or Rab35 shRNA IRES

GFP were sorted by FACS for low, medium and high levels of GFP fluorescence
intensities.

Two-dimensional cell culture and immunofluorescence. MDCK cells grown
on coverslips were fixed with 4% paraformaldehyde (PFA) for 10 min at room
temperature, quenched with 50 mM NH4Cl for 20 min, permeabilized in 0.1%
Triton X-100 for 3 min and incubated in blocking buffer (0.2% BSA, 0.05% saponin
and PBS) for 20 min. In Fig. 5a–l and Supplementary Fig. 5a–c, cells were stained
with a primary antibody mouse anti-PODXL (1:1,000) and rabbit anti-aPKCz
(1:1,000) in blocking buffer for 1 h, washed with PBS, incubated with a secondary
antibody (1:1,000) in blocking buffer for 1 h, washed, stained with DAPI
(4,6-diamidino-2-phenylindole) and mounted with Mowiol.

3D cultures in Matrigel and immunofluorescence. MDCK cells were
resuspended in culture medium containing 0.3 mg ml! 1 phenol red-free Matrigel
(Corning) and seeded into Matrigel-coated eight-well chamber slides (Milicell EZ
slide eight-well glass; Millipore) at a concentration of 6,000 single cells per well.
Chamber slides were coated with 10 ml pure Matrigel per well and incubated at
37 !C for 2 min before cell seeding. The cells were incubated for the indicated
period of time before fixation with 4% PFA for 30 min at room temperature. Cells
were then treated with 50 mM NH4Cl for 20 min, permeabilized with 0,5% Triton
X-100 for 15 min and incubated with a primary antibody in PBS 0.3% saponin for
2 h at room temperature followed by 1 h incubation with a secondary antibody
(1:1,000) or labelled Phalloidin (1:4,000) in PBS 0.3% saponin. Nuclei were stained
with DAPI for 5 min, chambers were removed and the slides were mounted with
Mowiol. The following concentration of primary antibodies were used: mouse
anti-PODXL (1:1,000); human anti-acetylated-tubulin (1:200); goat anti-b-catenin
(1:200); rabbit anti-ZO-1 (1:200); rabbit anti-Par3 (1:200); mouse anti-E-cadherin
(1:200); rabbit anti-aPKCz (1:1,000); mouse anti-integrin b1 (1:200); and mouse
anti-CTR433 (1:50).

Immunofluorescence microscopy and deconvolution. Images were acquired
with an inverted Ti E Nikon microscope, using a " 100 1.4 NA (numerical
aperture) PL-APO objective lens or a " 60 1.4 NA PL-APO VC objective lens and
MetaMorph software (MDS) driving a CCD (charge-coupled device) camera
(Photometrics Coolsnap HQ)55,56. Z-stacks were acquired with a distance of
130 mm. The 16-bit images were deconvolved using Huygens Professional software
(SVI) to reduce off-plane background fluorescence (2–20 iterations, signal/noise
40). Images were then converted into 8-bit images using ImageJ software (NIH).
Images in Fig. 4g, Supplementary Figs 1, 2d, 5d-k, 6f were acquired using an
inverted Eclipse Ti E Nikon microscope equipped with a CSU-X1 spinning disk
confocal scanning unit (MDS), driving a EMCCD Camera (Evolve 512 Delta,
Photometrics) Images were acquired with a " 100 1.4 NA PL-APO objective lens
and MetaMorph software (MDS).

Time-lapse microscopy. Two-dimensional cultures (Supplementary Movie 4 and
Supplementary Fig. 4a): For time-lapse phase-contrast microscopy, transient or
stably transfected MDCK cells were plated on 35-mm glass dishes (MatTek) and
put in an open chamber (Life Imaging) equilibrated in 5% CO2 and maintained at
37 !C. Time-lapse sequences were recorded every 5 min for 48 h (Supplementary
Fig. 2a) or every second (Supplementary Movie 4) using a Nikon Eclipse
Ti inverted microscope with a " 20 0.45 NA Plan FluorELWD objective
(Supplementary Fig. 4a) or a " 100 1.4 NA PL-APO objective (Supplementary
Movie 4) controlled by Metamorph 6.1 software (Universal Imaging). This
microscope was equipped with a cooled CCD camera (HQ2; Roper Scientific).
In Supplementary Fig. 4a, cytokinetic abscission time was quantified in mCherry-
tubulin-transfected cells by time-lapse microscopy starting from furrow ingression
until the cut of the intracellular bridge. In all, 100 cells per condition were analysed.
Supplementary Movie 4 was deconvolved using Huygens Professional software SVI
(2 iterations, signal/noise 10).

3D cultures for time-lapse microscopy. Transient or stably transfected MDCK
cells were resuspended in culture medium containing 0.3 mg ml! 1 phenol red-free
Matrigel (Corning) and seeded into coated glass bottom 24-well plates (MatTek) at
a concentration of 10,000 single cells per well. The glass was coated with poly-L-
lysine-g-polyethyleneglycol (SuSoS) to create an anti-adhesive surface, followed by
coating with 5 ml pure Matrigel before cell seeding. Time-lapse sequences were
recorded with a Nikon Eclipse Ti inverted microscope at 5 min for 24 h, " 100 1.4
NA PL-APO objective. Image sequences were deconvolved using Hyugens Pro-
fessional software (SVI) as described above and assembled with ImageJ software
(Supplementary Movie 1–3).

Antibody internalization assay. MDCK cells stably expressing control shRNA or
Rab35 shRNA (Supplementary Fig. 6a,b) were plated into six-well plates (500,000
cells per well), washed with cold medium, incubated on ice for 10 min and then
incubated with anti-PODXL antibodies 1:400 for 30 min on ice. MDCK cells were
washed twice with cold medium; warm medium was added and cells were shifted at
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37 !C for various time points. Cells were then shifted back on ice and remaining
surface-bound antibodies were removed by treatment with 1 mg ml! 1 Pronase
(Sigma-Aldrich) for 30 s on ice. The cells were fixed with 4% PFA for 10 min at
room temperature, quenched with 50 mM NH4Cl for 20 min, permeabilized in
0.1% Triton X-100 for 3 min, incubated in blocking buffer (0.2% BSA, 0.05%
saponin and PBS) for 20 min and stained with secondary anti-mouse PE antibodies
(1:200) before FACS analysis. FACS analysis was carried using MoFlo Astrios,
FACS machine (Beckman Coulter) and FlowJo software. For Supplementary
Fig. 6c,d: MDCK cells stably expressing Rab35 shRNA were transfected with
GFP-PODXL WT for 24 h; MDCK cells stably expressing control shRNA were
depleted of endogenous PODXL using siRNAs for 3 days and transfected with
either GFP-PODXL WT or GFP-PODXLV496A/Y500A for 24 h. The antibody
internalization and FACS analysis was performed as described above, but using
anti-GFP primary antibodies (recombinant hVHH anti-GFP-hFc; 1:400) and
anti-human PE secondary antibodies.

Co-immunoprecipitation assays. MDCK cells were transfected with either
3xFlag-tagged Rab35WT, Rab35S22N, Rab35Q67L, Rab11AQ70L, Rab6AQ72L,
Rab8AQ67L or Rab27AQ78L for 24 h using Amaxa. Cells were lysed in 25 mM
Tris (pH 7.5), 150 mM NaCl, 10 mM MgCl2 and 0.1% Triton X-100 (lysis buffer).
Post-nuclear supernatants (20 min at 20,000g) were incubated with anti-Flag M2
affinity gel (Sigma-Aldrich) for 2 h, washed with lysis buffer, resuspended into
1" Laemmli buffer and boiled at 95 !C for 5 min. The amount of co-immuno-
precipitated PODXL in each condition was probed by western blot analysis using
anti-Flag antibodies (1:2,000).

Bacterial expression and recombinant protein purification. 6xHis–Rab11AWT

full-length, 6xHis–Rab6AWT full-length, 6xHis–Rab35WT full-length, GST–PODXL
WT (aa 476–551), GST–PODXL V4496A Y500A (aa 476–551) or glutathione
S-transferase (GST) alone were expressed in the BL21 pLysS strain of Escherichia
coli after induction with 1 mM isopropyl-b-D-thiogalactopyranoside at 37 !C for
3 h. Cells were lysed with PBS containing 1 mg ml! 1 lysozyme, 1 mM dithiothreitol
and protease inhibitor (Roche) by sonication on ice. The GST fusion proteins were
affinity-purified using glutathione Sepharose 4B (GE Healthcare) and eluted
with 20 mM HEPES at pH 7.5, 150 mM NaCl and 20 mM reduced glutathione.
6xHis-fused proteins were affinity-purified using Ni-NTA Magnetic Agarose Beads
(Qiagen) and were eluted in 50 mM Tris (pH 8), 150 mM NaCl, 2 mM MgCl2 and
250 mM imidazole.

GST-pull down and western blot experiments. 6xHis–Rab35WT,
6xHis–Rab11AWT and 6xHis–Rab6AWT were exchanged with either 1 mM GDP or
200mM GTPgS in 25 mM Tris (pH 7.5), 100 mM NaCl, 10 mM EDTA, 5 mM
MgCl2 and 1 mM dithiothreitol for 1 h at 37 !C. Nucleotides were then stabilized
with 20 mM MgCl2. GST–PODXL WT (aa 476–551), GST–PODXL V496A Y500A
(aa 476–551) or GST alone were loaded onto glutathione Sepharose 4B beads
(Pharmacia) in 25 mM Tris (pH 7.5), 1 mM MgCl2 and 0.2% BSA for 1 h at 4 !C.
Beads were then incubated with exchanged 6xHis-Rab proteins in 25 mM Tris
(pH 7.5), 50 mM NaCl, 10 mM MgCl2, 0.1% Triton X-100 and 0.2% BSA. Beads
were washed, resuspended into 1" Laemmli buffer and boiled at 95 !C for 5 min.
Pulled-down 6xHis–Rab proteins were detected by western blot using anti-6xHis
antibodies (1:5,000) and GST-tagged proteins loaded on beads were detected by
Ponceau red staining. Full scans of all western blots are displayed in Supplementary
Figs 7 and 8.

Statistical analysis. MDCK cysts were scored into categories and displayed as
mean proportions±s.d. from three independent experiments. Significance was
calculated using a two-way analysis of variance with a Tukey post hoc test. For
abscission times, a non-parametric Kolmogorov–Smirnov test was used. In all
statistical tests P40.05 was considered as not significant.
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Supplementary Figure 1: Rab35 is present at the AMIS 

MDCK cells stably expressing GFP-Rab35WT were cultured in Matrigel for 16h and 

stained for PODXL, acetylated tubulin and ZO1 (a) or b-catenin (b,d). Arrowheads 

indicate the localization of the AMIS (a-b) or the apical membrane (d). Bar: 10 µm 

(zoom: 2 µm) (c) MDCK cells were cultured in Matrigel for 16h and stained for 

PODXL, acetylated tubulin, ZO1 and b-catenin. (e) MDCK cells stably expressing 

GFP-Rab35WT (displayed in red) were cultured in Matrigel for 16h and stained for 

PODXL (green) and acetylated tubulin (blue). Magnification shows the accumulation 

of PODXL-vesicles around the Rab35 positive membrane. Bar: 10 µm (zoom: 2 µm) 

 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 2: Rab35 depletion by either siRNAs or shRNAs leads to  

abnormal cyst development. 

(a) MDCK cells were treated with Rab35 siRNAs for 48 h and seeded into Matrigel 

for 48 h. Cysts were fixed and stained for PODXL (green), β-catenin (red) and DNA 

(DAPI, blue). Examples of normal cysts, inverted cysts and other abnormal cysts 

(multiple lumen shared by neighbouring cells or with intracellular vacuoles) upon 

Rab35 depletion. Bar:  10 µm. (b) Western blot of MDCK cell lysates that stably 

express shRNAs targeting Rab35 mRNA, using antibodies detecting PODXL, β-

tubulin and Rab35, as indicated. 100% or dilutions of the lysate from control shRNA 

were loaded for comparison (lysate from Rab35 depletion corresponds to 100%). 

Rab35 depletion reduced by >90% of endogenous Rab35 levels. (c) MDCK cells that 

stably expressed either shRNAs targeting luciferase (control) or Rab35 mRNAs were 

transfected with plasmids encoding mCherry alone, siRNA-resistant mCherry- 

Rab35WT or siRNA-resistant mCherry-Rab35S22N, as indicated. 48 h after seeding in 

Matrigel, the proportion of normal cysts, inverted cysts or other abnormal cysts based 

on PODXL staining was quantified. Mean ± SD, N= 3 independent experiments, 300-

600 cysts analysed per condition. Two-way ANOVA: p<0.001(***), ns: not significant. 

(d) MDCK cells were transfected with either GFP-EPI64BWT, GFP-EPI64BR409A or 

GFP alone and seeded into Matrigel for 48h. Cysts were fixed and stained for 

PODXL. Merged images and single channels in grey levels are displayed, as 

indicated. Bar: 10 µm. (e) Proportion of normal cysts with a single lumen, inverted 

cysts and other abnormal cysts in each condition. Mean ± SD, N= 3 independent 

experiments, >500 cysts analysed per condition. Two-way ANOVA: 

p<0.001(***),p<0.01(**). (f) MDCK cells that stably expressed either control shRNA 

IRES GFP or Rab35 shRNA IRES GFP were sorted for high levels of fluorescence 

(GFP high). Cells were then transfected with plasmids encoding mCherry alone, 

shRNA-resistant mCherry- Rab35WT or shRNA-resistant mCherry-Rab35S22N, as 

indicated, and seeded into Matrigel for 48 h. The proportion of inverted cysts based 

on PODXL staining was quantified in each condition. Mean ± SD, N= 3 independent 

experiments, 100-600 cysts analysed per condition. Two-way ANOVA: p<0.001(***), 

ns: not significant. 

 

  



 

 

 

 

 

Supplementary Figure 3: Additional time-lpase examples of control and Rab35-

depleted cysts, and time to form the first apical membrane. 

(a) Snapshots of time-lapse microscopy (as in Fig. 4) from control MDCK cells 

expressing GFP-PODXLWT seeded into Matrigel (top row), Rab35-depleted cells 

expressing GFP-PODXLWT (middle row) and PODXL-depleted cells expressing GFP-

PODXLV496A Y500A (bottom row). Arrows indicate the apical membrane in control cysts 

and arrowheads the inverted apical membrane in Rab35 depleted or PODXL mutant 

expressing cells . Bar: 10 µm. Time stamps: [hour:min] using mitotic entry as origin. 

(b) Quantification of the time to establish an apical membrane from mitosis onset 

until PODXL enrichment at the cell-cell contact (control cysts) or PODXL enrichment 

at the ECM-facing membrane (Rab35 depleted cysts or GFP-PODXL mutant 

expressing cysts).  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4: Defects in cytokinesis abscission does not perturb cyst 

development. 

(a) MDCK cells were treated with either control (red) or Cep55 (black) siRNAs for 72 

h and recorded by phase-contrast time-lapse microscopy for 48 h. Abscission time 

counted from furrow ingression to actual abscission (x-axis) are presented as 

cumulative percentage (y-axis). Note the strong delay in abscission observed after 

Cep55 depletion. (b) MDCK cells were treated with either control or Rab35 siRNAs 

for 48 h and seeded into Matrigel for 48 h. Left panels: Cysts were fixed and stained 

with phalloidin to detect apical F-actin (red), anti-acetylated-tubulin antibodies to 

visualize cytokinetic bridges (green) and DAPI (blue). Projections of z-stacks are 

presented. Single channel for acetylated-tubulin is also displayed in grey levels. Note 

the accumulation of cytokinetic bridges upon Cep55 depletion, indicating delayed 

cytokinesis in 3D cysts. Bar: 10 µm. Right panel: Proportion of normal and abnormal 

cysts after control or Cep55 depletion, based on PODXL staining. Mean ± SD, N= 3 

independent experiments, 300-500 cysts analysed per condition. Two-way ANOVA: 

ns: not significant. (c) Carboxy-terminal sequence of PODXL cytoplasmic tail (aa 

476-551). The position of Valine 496 and Tyrosine 500 essential for Rab35 binding 

are indicated in red. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 5: Rab35Q67L-Mito tethers vesicles containing PODXL and 

Rab11 around mitochondria. 

(a) MDCK cells were transfected for 72 h with plasmids encoding GFP-Rab11Q70L 

fused to the mitochondrial targeting signal of ActA (-Mito), fixed and stained for 

PODXL. (b-c) MDCK cells were co-transfected for 72 h with plasmids encoding 

mCherry-Rab11WT and either GFP-Rab35Q67L-Mito (b) or GFP-Rab35S22N-Mito (c), 

fixed and stained with DAPI. (a-c): merged images, individual channels in grey levels 

and higher magnification of the regions delimited by a dash line are displayed, as 

indicated. Bar: 10 µm for unzoomed regions and 2 µm for zoomed regions.  

Arrowheads indicate examples of close apposition vesicles (green) with 

mitochondrial Rab35Q67L (red). (d-k) MDCK cells were co-transfected with plasmids 

encoding either GFP-Rab35Q67L-Mito (d, f, h, j) or GFP-Rab35S22N-Mito (e, g, i, k), 

together with GFP-Crumbs3 (d-e) or GFP-Cdc42 (h-i). Cells were seeded into 

Matrigel for 24h, fixed and stained with β-catenin (d-e, h-i), β-catenin and aPKC (f-g) 

or β-catenin and Par3 (j-k) as indicated. Arrows indicate the β-catenin marked baso-

lateral membrane. Bar: 10 µm 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 6: Rab35 depletion does not affect PODXL endocytosis. 

(a-b) MDCK cells stably expressing control shRNA or Rab35 shRNA were incubated 

with anti-PODXL antibodies at 4°C and then shifted to 37°C to allow antibody 

internalization for various time points as indicated. Remaining surface bound 

antibodies were removed by pronase treatment (except for baseline control (a)), cells 

were fixed, permeabilized and stained with secondary fluorescent antibodies before 

being analysed by FACS. The graph in (a) presents the fluorescent intensity of 

surface bound anti-PODXL antibody before internalization. (c-d) Endogenous 

PODXL was depleted with siRNAs and replaced by either GFP-PODXLWT (blue line) 

or GFP-PODXLV496A Y500A (green line) in MDCK cells stably expressing control 

shRNA. The red line shows MDCK cells stably expressing Rab35 shRNA that were 

transfected with GFP-PODXLWT (red line). Internalization of exogenous PODXL was 

analyzed as in (a-b), by using anti-GFP antibodies. All graphs present triplicates of 

representative experiments. Mean ± SD. In b and d, values are normalized to 

baseline (surface bound antibodies before internalization) and substracted from 

background fluorescent at t0. (e) Western Blot of MDCK cells transfected with either 

OCRL siRNA, MICAL-L1 siRNA or control siRNA for 3 days. (f) MDCK cysts 

transfected with either OCRL siRNAs, MICAL-L1 siRNAs or control siRNAs were 

seeded into Matrigel for 48h and stained for PODXL (green), β-catenin (red), DAPI 

(blue). Bar: 10 µm (g) Proportion of normal cysts, inverted cysts and other abnormal 

cysts of control cysts, OCRL-depleted cysts and MICAL-L1-depleted cysts after 48h 

in Matrigel. Mean ± SD, N= 3 independent experiments, >300 cysts analysed per 

condition. Two-way ANOVA: ns: p>0.05.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7: uncropped images for presented Western Blots (I) 

(a) corresponds to Fig. 1c; (b) corresponds to Fig. 1b; (c) corresponds to Fig. 3a; (d) 

corresponds to Fig. 3d. Red squares indicate cropped regions as displayed in the 

Figures.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 8: uncropped images for presented Western Blots (II) 

(a) corresponds to Fig. 4d; (b) corresponds to Fig. 4e; (c) corresponds to 

Supplementary Fig. 2b; (d-e) corresponds to Supplementary Fig. 6e. Red squares 

indicate cropped regions as displayed in the Figures.  
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Response to Reviewers 

" Rab35 GTPase couples cell division with initiation of epithelial  
apico-basal polarity and lumen opening" 

 
 
We thank the three Reviewers for their positive comments and suggested experiments. We 
have provided additional experiments and Figures as well as explanations in the revised 
manuscript to address all their comments.  
 
New experimental data have been added as Fig.1, Fig.4 and Supplementary Fig. S1, S2, S3, 
S4, S5, S6. 
 
We provide below a full response to each comment raised by the Reviewers. 
We believe that the added experimental data and Reviewer's suggestions helped us to 
reinforce the conclusions of the manuscript. 
 
 
Reviewer #1 (Remarks to the Author): Expert in apical-basal polarity and morphogenesis 
 
This is an elegant study showing that Rab35 is essential for directing apical targeting to the 
cytokinetic cleavage site to establish apical-basal polarity in MDCK cells. Klinkert and 
colleagues provide extensive and very convincing data that Rab35 binds directly to 
podocalyxin to recruit apical polarity proteins to the Apical Membrane Initation Site, and 
that lumen formation is dependent on this interaction.  
 
I have no major concerns with the work presented and only one minor recommendation 
that further discussion be included as to whether apical trafficking coupled to cytokineses 
is a general mechanism of lumen formation. 
 
We thank the Reviewer for this very positive evaluation of our work. We now provide a full 
discussion of the presented data and, in particular, of this point (p. 12/13) 
 
 
Reviewer #2 (Remarks to the Author): Expert in Rabs and epithelial polarity 
 
This is a well-written and very interesting manuscript that focuses on understanding the 
machinery governing the targeting of apical cargo-containing endosomes during apical 
lumen formation. Apical lumen formation is a new and emerging field, yet the mechanisms 
targeting apical organelles to the apical lumen initiation site (AMIS) remains unclear. As 
the result, this is a very timely and potentially very interesting study. However, study has 
multiple inconsistencies and technical issues that makes some of the data difficult to 
interpret. As consequence of that, I do not believe that data, as presented, supports 
author's conclusions. First, in order to serve as a specific apical endosome targeting factor, 
Rab35 needs to be specifically enriched at AMIS. Shown data does to demonstrate that. 
Actually, it appears that Rab35 is as enriched at AMIS as at adherens junctions. Second, 
Rab35 has been shown to have several functions (many actually shown by this group). It is 
crucial to show that Rab35 is actually AMIS tether, rather then regulator of PODXL 
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endocytosis. Actually, in my opinion, data better fits with the model that Rab35 affects 
the internalization of PODXL at the plasma membrane, thus affecting its transport to the 
AMIS. Thirdly, it is unclear why PODXL knock-down does not give the same phenotype as 
rab35 knock-down. Finally, while mitochondria recruitment studies are very elegant, the 
fact that Rab35 affects aPKC and Cdc42 recruitment is very puzzling. I strongly believe 
that all these issues need to be addressed before manuscript can be published. Detailed 
list of concerns/questions is shown below. 
 
We thank the Reviewer for his/her comments and questions that helped us clarify several 
points in the revised manuscript. We have now addressed all points in new Figures 1 and 4 
and Supplementary Figures S1, S2, S3, S4, S5, S6. 
 
All the questions raised above are answered in the response to the specific points below.  
 
The new experimental data now  
- demonstrate that Rab35 has no effect on PODXL internalization,  
- clarify the localization of Rab35 with respect to AMIS components and AJ markers 
- explain why PODXL and Rab35 depletions lead to distinct phenotypes  
- and provide an explanation for the observed Cdc42/aPKC recruitment on vesicles.  
 
We believe that these new experiments strengthen the conclusions of the manuscript and 
support the proposed model. 
 
1) Figure 1. Rab11 is probably not the best negative control for Rab35 and PODXL binding. 
Some of the known Rab35 effectors, such as OCRL, are also known to bind Rab6. As the 
result, it is important to test the ability of Rab6 to bind PODXL. Additionally, binding data 
to Rab8 and Rab27 needs to be shown (at least in supplemental figures). I am also confused 
about panel c. Why FLAG-Rab11-Q70L is so much bigger then FLAG-Rab35? Even with FLAG 
tag, Rab11 should only about 22-23 kDa in size. 
 
As requested, we now thoroughly investigated possible interactions between Rab6 and 
PODXL, and found no interaction between these two proteins. Indeed, GTP-Rab6 does not 
interact by 2-hybrid (new Fig. 1a). Moreover, recombinant Rab6 loaded with GTP-γS does 
not bind to PODXL (Fig 1b). Finally, GTP-locked mutant of Rab6 does not coIP with PODXL 
(Fig. 1c).  
 
The binding data for Rab8/Rab27 previously mentioned as “data not shown” are now 
displayed in the new Fig. 1a, as suggested. The absence of binding was also confirmed by 
co-IP experiments (new Fig. 1b). 
 
We expressed Rab proteins tagged with 3 Flag tags and a linker, which shifts the calculated 
molecular weights of Rab11 and Rab35 to 30 kDa and 26 kDa, respectively. The relative 
apparent molecular weights in SDS-PAGE/Western blot are consistent with the predicted 
values (new Fig. 1c). 
 
We now dedicated a full figure (new Figure 1) to describe these additional negative 
controls. 
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2) Figure 1d. While Rab35 is clearly enriched at the site of adhesion between two cells, it 
does not appear to be that enriched and the AMIS. From previous work by Keith Mostov 
lab, it is clear that most of the interface between two cells is actually zona adherens, that 
contains cadherin and catenin based cell-cell adhesion junctions. AMIS usually is only small 
portion located in the middle of cell-cell interface. It contains several tight junction 
proteins (such as ZO1) and lacks cadherin/catenin. If authors want to conclude that Rab35 
is enriched at AMIS, they need to show co-staining of Rab35 enriched in AMIS using known 
AMIS markers, such as Z01 or Par3/6. Lack of Rab35 in cadherin/catenin containing 
adherencs junctions also needs to be shown. 
 
 
As requested, we now provide evidence that Rab35 is indeed localized at the AMIS labeled 
by ZO1 around the cytokinetic bridge (Fig. S1a). There, unexpectedly, we observed 
colocalization between Rab35 and b-catenin (Fig. S1b, arrowheads). This suggests that, at 
least at early stages when PODXL has not yet fused to the AMIS (Fig. S1a-b), the AMIS 
overlaps with adherens junction markers. This observation has been confirmed with 
colocalization between ZO1 and b-catenin on the side of the tubulin-positive bridge in 
Supplementary Fig. S1c. As expected, after establishment of the apical membrane 
(PODXL+), there is a clear segregation between adherens junction markers and apical 
markers (Fig. 1d), suggesting remodeling of the junctions. Thus, the AMIS appears as a 
dynamic compartment and its molecular definition changes with time, a noteworthy point 
that is now discussed (page 13/14). 
 
In addition, a pool of Rab35 also localizes at the cell-cell interface not labeled by ZO1 (Fig. 
S1c). Interestingly, we observed that PODXL vesicles are tethered/fused mainly at the 
ZO1-positive AMIS (as expected, Fig. S1e solid arrowhead) but also on its sides (Fig. S1e, 
arrowheads), where a fraction of Rab35 is also present. This is consistent with the 
proposed tethering model, and suggests that a pool of PODXL vesicles can also interact 
with beta-catenin/Rab35-positive membranes close to the AMIS (discussed on page 14). 
This raises the possibility that vesicles could deliver PODXL mainly at the membrane 
surrounding the bridge (AMIS) but also on its sides, and that apical proteins later coalesce 
into a single domain while junctions are being remodeled. 
 
 
A detailed description of Rab35 localization with respect to ZO1/beta-catenin is now 
included in the result section (page 5) and in the discussion (page 13/14). 
 
 
3) Data of Rab35 GAP EPI64B needs to be shown (including GAP-dead EPI64B mutant). 
 
The data showing that overexpression of the Rab35 GAP EPI64B (but not the GAP-dead 
mutant R409A, as expected) leads to polarity inversion is now displayed in the new 
Supplementary Fig. S2d and S2e.  
 
 
4) Figure 3C. It seems that in Rab35 knock-down cells PODXL is not efficiently endocytosed 
(compare plasma membrane staining to that of control cells). Why authors focus on Rab35 
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as a targeting factor rather then endocytosis factor? That is especially puzzling since 
authors previously published that Rab35 regulates endocytosis. Affecting endocytosis 
rather then targeting better explain "inverted cyst" phenotype. Authors need to add 
quanitative analysis of the effect of Rab35 on PODXL endocytosis.  
 
We thank the Reviewer for pointing out this question of a possible role of Rab35 in 
endocytosis, that we have now extensively addressed in the experiments presented in new 
Figure S6. 
 
Indeed Rab35 has been shown to regulate endocytic recycling of TfR from endosomes to 
the plasma membrane1–3 and endosomes-to-TGN retrograde traffic of CI-M6PR4. However, it 
should be pointed out that no effect of Rab35 inactivation on internalization has been 
detected1. This makes sense since Rab35 is loaded on endosomes only after the fission of 
Clathrin-coated vesicles from the plasma membrane, as described recently4. 
 
We nevertheless carefully tested the Reviewer’s hypothesis that Rab35 might affect PODXL 
internalization in MDCK cells.  
 
First, we depleted Rab35 and observed no differences in steady state amounts of 
endogenous PODXL at the cell surface (Fig. S6a). In addition, we performed a quantitative 
internalization assay of endogenous PODXL (antibody uptake after binding at 4°C and chase 
at 37°C for up to 4h). We observed no differences in the internalization kinetics between 
control-depleted and Rab35-depleted cells (Fig. S6b). 
 
Second, we followed the internalization of GFP-PODXL and, again, no difference in the 
trafficking of exogenous GFP-PODXL was observed upon Rab35 depletion (Fig. S6d, blue vs. 
red line). As a consequence, Rab35 depletion did not increase GFP-PODXL localization at 
the plasma membrane (Fig. S6c). Importantly, polarity inversion was also observed by 
introducing mutations in the PODXL tail making it unable to interact with Rab35, even if 
Rab35 was not depleted. Again, this is not because the GFP-PODXL V496A Y500A mutant 
was not properly internalized (Fig. S6d, green line). 
 
Finally, we analyzed polarity after depletion of OCRL4 and MICAL-L1 5,6, which are the two 
known Rab35 effectors in trafficking. Depletion of these Rab35 effectors did not lead to 
polarity inversion (consistent with previous work testing the effect of OCRL knock-down in 
matrigel 7). 
 
Altogether, we conclude that the inversion of polarity observed upon Rab35 depletion does 
not result from a defect in PODXL internalization from the plasma membrane. The fact 
that internalization is not blocked after Rab35 depletion is also consistent with the 
observation that a major pool of PODXL is present on recycling endosomes before 
disappearing from this compartment during the inversion process (Fig. 4c and S3a).  
Nevertheless, even in control cysts, a small pool a PODXL can be seen at the plasma 
membrane at the 2-cell stage while most PODXL is internalized before delivery to the 
AMIS, and this varies from cyst to cyst. We provide additional videos in new Fig. S3b (and 
kept the original ones) to document this variability. In addition, the time between mitotic 
exit and apical membrane formation lies between 1 and 10 hours, depending on cysts, both 
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in controls (PODXL in the center) and in Rab35-depleted cells (PODXL at ECM-facing 
membrane) (new Fig. S3b). We think that describing for the first time these two levels of 
variability is an important finding for researchers interested in MDCK cysts, and we now 
discussed this on page 15. 
 
Additionally, aome of PODXL does appear at the AMIS, but them disappear again, leading 
to very specific accumulation only at the plasma membrane facing matrix. How do authors 
explain that? Affecting targeting should not lead to active exclusion of PODXL from AMIS 
memranes. 
 
We agree that a small fraction of PODXL can be initially detected at the cell-cell interface 
in Rab35-depleted cells, then progressively disappears from this location and eventually 
exclusively localizes to the ECM-facing membrane. 
 
In both normal and depleted cysts, we expect that once the amount of PODXL (and other 
co-transported transmembrane proteins such as Crumbs3) has reached a threshold on a 
given membrane, this now defines the apical-like membrane. On the contrary, low levels 
of PODXL are characteristic of the basolateral-like membrane.  
 
We assume that, in the absence of Rab35, fusion of internalized vesicles could initially 
happen anywhere at plasma membrane of the cell, but more frequently at the ECM facing 
membrane due to the surface difference between ECM-facing membrane vs. cell-cell 
contact membrane. We therefore expect that the small pool of PODXL at the cell-cell 
contact (basolateral-like) will be iteratively removed by endocytosis (as at the basolateral 
membrane in normal cells) and thus progressively targeted to the ECM-facing membrane 
(apical-like). 
 
This explanation is coherent if Rab35 is not required for the fusion process, but rather 
helps tethering vesicles containing apical markers (PODXL, Crumbs3) at the right place. We 
now clearly discuss that Rab35 is a major factor (obviously not the only one) that promotes 
the establishment of the apical domain. Indeed, in wild-type situation, it is likely the 
combination of different tethering and fusion factors, together with bridge microtubules 
and directed molecular motors8,9 , that collectively allow the definition of a robust and 
properly localized apical membrane (page 16). 
 
 
5) Figure 3F. Images of phenotypes need to be shown (also showing other polarity markers, 
such as Crumbs and ZO1). I do not understand why PODXL knock-downs lead to cysts 
without lumens. PODXL may affect lumen opening, but should not affect cell ability to 
form lumens. Additionally, if PODXL is key to forming normal lumens, I would expect that 
knock-down should also lead to inverted cysts. 
 
The requested images are provided in new Fig. 4g, both for Rab35-depleted cysts and for 
cysts in which PODXL has been replaced by wild-type or mutant PODXL (unable to interact 
with Rab35). 
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Consistent with previous reports 10,11 and with the data presented in the initial manuscript, 
depletion of PODXL leads to cysts without lumen and without polarity inversion (Fig. 4f). 
The reason for the absence of lumen and for the lack of polarity inversion is explained by 
the accumulation of apical recycling endosomes (Crumbs3+ and Rab11+), close to the 
plasma membrane 11 (see examples in new Fig. 4g). This accumulation can also be seen 
underneath the plasma membrane facing the ECM (see example below, Fig.A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A: MDCK cells treated with PODXL siRNAs for 3 days and co-transfected with GFP-
Crumbs3. Cysts were fixed after 48h and stained for Phalloidin (red) and for endogenous 
PODXL (greyscale, single channel), as indicated. The magnification of the PODXL depleted 
cyst shows GFP-Crumbsb3-positive vesicles close to the ECM-facing membrane marked by 
Phalloidin. Bar:  10 mm (2mm for zoomed region). 
 
 
Therefore, upon PODXL depletion, key apical polarity determinants are not delivered to 
the plasma membrane, consistent with ref.11. This indicates that PODXL is (directly or 
indirectly) necessary for the fusion of the vesicle to the plasma membrane, besides its 
function in lumen opening. 
 
In contrast, PODXL is expressed at normal levels in Rab35-depleted cells (western blot Fig. 
3a). In the absence of the tethering factor Rab35, PODXL-positive vesicles can still fuse to 
the plasma membrane (since PODXL is present), but this does not occur at the correct 
location, leading to the observed inversion of polarity. Consistent with this explanation, 
the inversion of polarity after Rab35 depletion depends on the presence of PODXL, since 
double Rab35/PODXL depletion phenocopies the single PODXL depletion (see below, Fig. B 
and compare to Fig. 4f).  
 
The additional data  (Fig. A, B) could be included in a supplementary Figure if the 
Reviewer feels that it is important. 
 
In summary, as now discussed on page 16, PODXL has multiple functions: it promotes 1) 
fusion of the vesicles to the plasma membrane, directly or more likely indirectly;  2) 
Rab35-dependent tethering of apical recycling endosomes to the future apical membrane; 
and 3) lumen opening.   
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Figure B: MDCK cells stably expressing control shRNA or Rab35 shRNA were transfected 
with control siRNA or PODXL siRNA for 3 days and cultured in Matrigel for 48h. The graph 
displays the proportion of normal cysts, cysts without lumen (but not inverted), inverted 
cysts and other abnormal cysts. Mean ± SD, N= 3 independent experiments, 150-500 cysts 
analysed per condition. Two-way ANOVA:  p<0.001(***), ns: not significant. 
 
 
 
6) Figure 4. I am a bit puzzled that Rab35-mito mediated recruitment of Cdc42 and aPKC 
to endosomes. None of these proteins relay of endosomes to be delivered to tight junctions 
and AMIS. Instead, it is well established that their recruitment is mediated by Par3/6 
complex. How do authors explain that? Does Par3/6 are also recruited to mitochondria? 
 
It has been previously shown that a pool of Cdc42 is trafficked on Rab11/PODXL-double 
positive endosomes during cystogenesis12. aPKC can also be transported on these 
endosomes 13. Of note, endosomes have also been implicated in the transport of a fraction 
of Cdc42 to the plasma membrane in other circumstances, such as during migration of 
astrocytes14. Altogether, this explains why a fraction of Cdc42/aPKC could be detected 
around mitochondria upon delocalization of Rab35 to mitochondria. Although aPKC, Par6 
and Par3 are known to form a complex, we did not detect Par3 on tethered 
Rab11+/PODXL+ endosomes (data not shown, and see below). However, it is has been 
suggested that Par3 could dissociate from this complex upon phosphorylation by aPKC 
through active Cdc4215. 
 
 
 
7) Figure 5. Where does Cdc42, aPKC and Par3/6 localize in 3D cultures when Rab35-mito 
is expressed (see comments above). 

 
As requested, we have addressed this question experimentally (new Fig. S5f-k). 
 
Consistent with the results of the mitochondrial targeting experiment (Fig. 5), we observed 
that PODXL (Fig. 6), Crumbs3a (new Fig. S5d), aPKC (new Fig. S5f) and Cdc42 (new Fig. 
S5h) are recruited to mitochondria upon expression of Rab35 Q67L-Mito in 3D cultures. As 
expected from the comments in point #6 above, Par3 localized to the tight junctions and 
was not detected around mitochondria (new Fig. S5j).  
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Reviewer #3 (Remarks to the Author): Expert in epithelial polarity and podocalyxin 
 
The manuscript by Klinkert et al describes a novel interaction and function interplay 
between the Rab35 GTPase and the apical polarity protein Podocalyxin in spheroid lumen 
formation. The authors demonstrate that Rab35 directly binds the cytoplasmic domain in a 
GTP-dependent fashion. During lumen formation in the MDCK epithelial cell spheroid 
model, Rab35 is targeted to the so-called apical membrane initiation site ('AMIS') prior to 
Podxl vesicles to be delivered to form the lumen. In contrast to other pathways describing 
membrane traffic of Podxl to the lumen from the Mostov, Prekeris, and Martin-Belmonte 
labs, Rab35 does not appear to co-localize to transcytosing Podxl vesicles. Instead, Rab35 
appears to tether Podxl to the AMIS, in order to form lumens during 3D culture of MDCK 
epithelial cells. The authors define key residues in Podxl required for the interaction of 
Podxl with Rab35. Interestingly, knockdown of Rab35 or a combination of Podxl knockdown 
and re-expression of non-Rab35-binding Podxl demonstrates that Podxl is internalized 
during polarity reorientation, but in the absence of functional interaction with Rab35 is not 
stabilized at the AMIS, and returns to the periphery of early aggregates. The net outcome 
of all of this is defective lumen formation - either total inversion of cysts, or formation of 
multiple, instead of single, lumens. Mistargeting Rab35 to mitochondria similarly disrupts 
lumen formation. Strikingly, this also results in the mistargeting of several other apical 
factors - Crumbs3, Cdc42, aPKC. 
 
The work is elegantly performed and presented, and was a pleasure to review. The impact 
is likely broad for cell polarity, membrane traffic, and cell division fields. I have no 
experimental criticisms or suggestions. 
 
We thank the Reviewer for this very positive evaluation of our work. We have modified the  
Figures 2b, added new data in Fig. S6, and rewritten extensively our discussion to take into 
account all the minor comments below.  
 
  
 
Minor comments 
 
In the model and images in figure 1, there is a stage missing from what was originally 
described by the Kroschewski lab (Ferrari et al, PMID: 18946028), between single cell and 
two cell stages. After division, Podxl is localized at the plasma membrane in an inverted 
fashion before transcytosis to the lumen. This is quantified in the authors' own data in 
Figure 3b. This should be included in the schema. 
To clarify this point, we have modified the schematic drawing as requested (new Fig. 2 
bB).  
 
 
The discussion section is brief and not sufficient: this needs to be significantly expanded 
and rewritten to discuss their results in the context of what is known about apical polarity. 
How does their mechanism fit into the mechanism for polarity orientation described by 
Keith Mostov's lab where beta1-integrin controls polarity reorientation and gives polarity 
defect similar to this work ? Given that Rab35 has been shown to regulate b1-integrin 
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trafficking (PMID: 23264734; PMID: 25344254), how does their Rab35 mechanism relate? 
(The data in Fig. 3g likely show this is a separate, parallel mechanism). 
 
We have now discussed why it is unlikely that Rab35 depletion leads to inversion of 
polarity by perturbing b1-integrin (p. 17). Of note, beta1-integrin depletion does not lead 
to complete inversion of polarity (as described in the present study) but rather to impaired 
polarity reorientation characterized by collective front-rear polarization and motility 
{Bryant, 2014 #2194}, when MDCK cells are cultured in Matrigel (our conditions). We did 
not observe such collective front-rear polarization after Rab35 depletion. 
 
 
How Rab35 is regulated should be discussed. Is the Rab35 GEF known? Similarly, the Rab35 
GAP EPI64B (which the authors state the overexpression of which phenocopies Rab35 
knockdown) binds to the Podxl-binding protein EBP50, which is critical for lumen formation 
in this system. These potential interplays should be discussed. 
 
We have now discussed the interaction between EPI64B and EBP50/NHERF1, and possible 
significance in the discussion (page 17). Connecdenn1 is a major Rab35 GEF (work from 
McPherson Lab), but future work will be needed to determine if it activates Rab35 during 
cystogenesis. We also now mention that Rab35 localization depends on PtdIns(4,5)P2 
interaction, a property that we discuss in the line of the PtdIns(4,5)P2-Annexin2-Cdc42 
polarity pathway described in Martin-Belmonte et al. 2007. 
 
 
What does binding of Rab35 to Podxl do? Are there endocytic motifs present in Podxl? 
Information about the mutant forms of Podocalyxin is missing. How were these mutations 
selected and defined? Does Rab35 binding mask a potential endocytic motif? 
 
We experimentally addressed whether Rab35 could affect PODXL internalization (new Fig. 
S6). We found that Rab35 depletion had no effect on PODXL endocytosis. This is now 
detailed in the discussion (page 15). 
 
We also added information about the characterization and the rationale behind the 
selection of the double PODXL mutant V496A Y500A that lost its ability to bind to Rab35 
(page 8). 
 
Overall, the data and manuscript are excellent. If the discussion were updated with the 
above comments, this will greatly enhance an already great work.  
 
Thank you for this enthusiastic consideration of our work.  
!
! !
!
!
!
!
!
!
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3 DISCUSSION 

 

The Rab35 GTPase plays a crucial role in the initiation of apico-basal polarity 

establishment in MDCK 3D renal cysts. During the first cell division of cyst development 

apical transmembrane proteins such as PODXL are transcytosed from the outer ECM-

facing membrane towards the AMIS where the apical membrane will be established. At 

this stage Rab35 localizes to the membrane surrounding the intercellular bridge (the 

AMIS) and the adjacent adherence junctions and acts as a tether for PODXL-vesicles 

through direct and GTP-dependent binding to its cytoplasmic tail. Ectopic expression of 

GTP-bound Rab35 on the mitochondrial membrane induces the accumulation of PODXL-

vesicles around the mitochondria and reveals that these vesicles carry important apical 

determinants such as Crumbs3, apKC and Cdc42.  

Hence, active Rab35 tethers apical determinants at the AMIS to initiate apical 

membrane formation through direct binding of PODXL (Figure 42).  

Expression of the PODXL mutant V496A/Y500A that cannot bind to Rab35 or depletion of 

Rab35 equally leads to mistargeting of PODXL-vesicles to the ECM-facing plasma 

membrane and consequently to an inversion of apico-basal polarity. 
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Figure 42: Model for coupling cell division and the initiation of apico-basal polarity.  

This model shows how the first cyst cytokinesis is linked with the initiation of the apical lumen at 
the centre of the cyst. Rab35 (red) is localized at the cell-cell contacts, surrounding the 
intercellular bridge. There, Rab35 tethers PODXL-positive (green) vesicles through direct binding 
of the PODXL cytoplasmic tail. The PODXL-positive vesicles carry other important polarity 
determinants such as aPKC, Cdc42 and Crumbs3, which can initiate an apical membrane at the 
centre of the cyst. From reference:212 

 

 

3.1   Definition of the AMIS 

 

The Apical Membrane Initiation Site (AMIS) was first described by Bryant et al in 2010, 

who defined the AMIS as a special zone of the cell-cell contacts of a 2-cell stage cyst, 

where the first fusion of PODXL vesicles can be observed72. PODXL co-localizes there 

with Par3 and Sec8 just before the expansion and segregation of the apical plasma 

membrane. Maturation of the AMIS requires activation of the Cdc42-Par6/aPKC 

complex, recruited by Rab11 and Rab8. At the same time another study demonstrated 

that the initiation of the apical membrane and the future lumen is coupled to cell 

division through delivery of Crumbs3 positive vesicles along the bridge microtubules88. 

Although Schlüter and colleagues did not introduce the term “AMIS”, they nevertheless 

described a membrane domain around the bridge microtubules that becames enriched 

in Crumbs3 and PODXL, and hence represents an apical membrane initiation site, which 

expends after completion of cytokinesis. The group of Prekeris further described the 
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formation of the midbody during cytokinesis as a symmetry breaking event that sets a 

landmark for AMIS formation89,128. Vesicles positive for Crumbs3, PODXL and Rab11-

FIP3/FIP5 are trafficked via Kinesin-2 along the bridge microtubules towards the 

midbody where they fuse the adjacent plasma membrane (AMIS). The AMIS is positive 

for tight junction markers such as ZO-1 and Cingulin, as well as the Exocyst complex 

(Figure 43).   

 

 

Figure 43: The Apical Membrane Initiation Site (AMIS). 

This scheme illustrates the composition of the AMIS in early MDCK cysts. The blue box highlights 
proteins and protein complexes known to be localized at the AMIS. The red box highlights the 
apical endosomes and the associated proteins (red). From reference: 213 

 

 

Furthermore it was demonstrated that lipids play an important role in AMIS formation. 

AMIS formation at the previously basolateral cell-cell contacts requires the conversion 

of PtdIns(3,4,5)P3 to PtdIns(4,5)P2 via the phosphatase PTEN21,24,214. The enrichment of 
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PtdIns(4,5)P2 is essential for the recruitment of Annexin2 and Cdc42, the Exocyst 

subunits Exo70a and Sec3, as well as Slp2-a and Rab35.  

However, the AMIS seems likely to be a transient membrane domain that can harbour 

apical proteins, tight junction proteins as well as basolateral proteins at the same time 

before segregation of clearly defined membrane domains occurs. Here, we demonstrate 

that basoloteral markers such as β-catenin co-localize with the tight junction marker 

ZO-1 at the AMIS (Supplementary Figure 1 in the published manuscript). Furthermore, 

we show that PODXL vesicles fuse mainly in close proximity to the intracellular bridge, 

as described in previously88,89,128, but also, unexpectedly, at its sides (Supplementary 

Figure 1 in the published manuscript). This indicates that either the AMIS is indeed 

demarcated by the tight junction-positive zone and thus fusion of apical vesicles is not 

limited to the AMIS, or the AMIS stretches over the cell-cell contacts and is thus not as 

restricted as believed. In any case it seems that remodelling of previous adherence 

junctions and newly formed tight junctions play an important role during AMIS 

formation.  

 

 

3.2  How is Rab35 recruited to the AMIS? 

 

Inactive GDP-bound geranylated Rab GTPases are delivered from the cytosol to specific 

membrane domains with help of a GDI and inserted into the membrane by a GDI 

dissociation factor (GDF)215,216. Membrane bound Rab GTPases are then activated by 

Rab-specific GEFs that enable them to recruit Rab-specific effector proteins. How 

exactly Rab GTPases are recruited to specific membrane domains is incompletely 

understood, but it is suggested that a combination of features such as specific GEFs, 

specific effector proteins as well the hypervariable domain of each Rab GTPase 

determines its membrane localization176,217,218.  
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It is known that Rab35 is targeted to the plasma membrane via its polybasic-prenyl 

plasma membrane targeting motif176,177. This polybasic domain interacts with negatively 

charged phosphatidylinositide lipids, preferentially with PtdIns(4,5)P2. It has been 

shown that the AMIS is highly enriched in PtdIns(4,5)P2 through conversion of 

PtdIns(3,4,5)P3 to PtdIns(4,5)P2 via the phosphatase PTEN24, thus increasing the affinity 

for Rab35 binding. However, GEF mediated nucleotide exchange is also necessary for 

the insertion of prenylated Rab35 into the membrane177, and it remains speculative 

which GEF mediates Rab35 activation at the AMIS. Therefore it would be of great 

interest to investigate the known Rab35 GEFs connecdenn1-3 and Folliculin during MDCK 

cystogenesis.   

 

 

3.3   Rab35 and other tethering mechanisms at the AMIS 

 

Fusion of vesicles to their target membrane is mediated through tethering steps and 

engagement with SNARE proteins that mediate membrane fusion219–223. Typically a Rab 

GTPase is activated and recruited onto vesicular membranes by its specific GEF. The 

Rab GTPase can then bind molecular motors to mediate vesicle targeting along 

microtubules or actin cables. Once the vesicles reache their target membrane, Rab 

GTPases can interact with tethering factors located on the acceptor membrane, while 

v-SNAREs located on the vesicle interact with t-SNAREs at the acceptor membrane to 

mediate vesicle docking and fusion (Figure 44).  
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Figure 44: Vesicle budding and fusion. 

(1) Vesicle formation and coat assembly at the donor compartment. 
(2) Vesicle uncoating and transport along cytoskeletal tracks. 
(3) Tethering of vesicles to the acceptor compartment by Rab protein/tether factor 

complexes. 
(4) Docking of vesicles to the acceptor compartment is mediated by v-SNARES and t-SNARES. 
(5) Membrane fusion ad release of cargo. Trans-SNARE complexes promote vesicle fusion. 

From reference: 224 

 

Besides the classical mechanism of vesicle tethering however, Rab GTPases can mediate 

tethering in different ways. Rab GTPases located at the vesicle as well as the acceptor 

membrane can bind the same effector and thus mediate tethering over tens of 

nanometers225. Some Rab GTPases have also been shown to dimerize and could as such 

act as membrane tethers over smaller distances of less than 10 nm225. A third 

mechanism for Rab mediated tethering is the formation of a SNARE trans complex where 

the Rab GTPase recruits a SNARE binding regulator that binds to the SNAREs on the 

opposite membranes  (Figure 45). Here, we describe a fourth mechanism by which the 

Rab GTPase is activated on the acceptor membrane and mediates tethering through 

direct binding of a transmembrane protein on the vesicle. Active Rab35 is bound to the 

future apical membrane (acceptor membrane) where it tethers apical vesicles through a 

direct interaction with the cytoplasmic tail of the transmembrane protein PODXL 

(Figure 45).  
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Figure 45: Rab-dependent tether mechanisms. 

(A) This scheme illustrates three well-characterized Rab-tether mechanisms: Rab effector 
tether, Rab-Rab tether and the SNARE trans-complex. From reference: 225 

(B) Proposed model for a Rab-cargo tether, showing a direct interaction between a Rab 
GTPase (blue) and a transmembrane cargo (green) (eg. Rab35 and PODXL). 

 

A classical Rab tethering mechanism at the apical membrane in MDCK cysts has been 

well described for the case of Rab27 and Rab3. Vesicle-bound v-SNARE-like Slp4-a 

associates with the apical membrane-bound t-SNARE Stx3 and thus tethers 

Rab27A/Rab3/PODXL positive vesicle to the apical membrane in MDCK cysts66. Depletion 

of either Stx3 or Slp4-a leads to an accumulation of intracellular vesicles, due to 

impaired vesicle fusion. In addition it was shown in Caco-2 3D cysts that Munc18-2 

assists the Slp-4a/Stx3-mediated vesicle tethering by direct binding to both SNAREs226. 

Moreover, the v-SNARE Vamp7 interacts with Rab11 and Stx3, thus enabling Stx3 to form 

A 

B 
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a multi-Rab tethering complex comprising Rab3, Rab8, Rab27 and Rab11226. Rab8 and 

Rab11 are furthermore involved in the Exocyst-mediated tethering through interaction 

with the Exocyst subunit Sec1572,226,227.  

 

Figure 46: Delivery of apical cargo to the apical plasma membrane. 

This scheme illustrates how apical vesicles are tethered at the apical plasma by multiple 
mechanisms. From reference: 226 

 

The Exocyst is probably one of the best-studied plasma membrane tethering complexes. 

This octameric complex is comprised of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 

and Exo84. The exocyst associates with the plasma membrane via binding of Exo70 and 

Sec3 to PtdIns(4,5)P2 
228–230(Figure 47 and Figure 48). It tethers vesicles via binding of 

Sec15 to the Rab GTPases Rab11 and Rab8 whereas the subunits Sec5 and Exo84 can 

bind to RalA220 and Exo70 and Sec3 bind additionally to Cdc42231,232, Arf6129 and RhoA232. 

The Exocyst has also been shown to act as a tethering complex at the apical membrane 

during MDCK cystogenesis72. Here, Rab11 and Rab8 cooperate to recruit Sec15 to the 

AMIS, which mediates vesicle tethering through interaction with other exocyst complex 

subunits (Sec10/Sec8) that are recruited to the AMIS via the Par3/aPKC complex72,227.  
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Figure 47: The composition of the Exocyst complex.  

The Exocyst subunit Exo70 directly associates with PtdIns(4,5)P2 at the plasma membrane (PM) 
via its positively charged residues. Exo70, together with Sec3, interact with other Exocyst 
subunits that are localized on the vesicle, thereby tethering the vesicle to the PtdIns(4,5)P2-rich 
plasma membrane. From reference: 228 

 

 

 

Figure 48: Exocyst-mediated vesicle tethering and fusion. 

The Exocyst subunits Sec3 and Exo70 associate with the plasma membrane through interactions 
with Rho/Cdc42 and PtdIns(4,5)P2, respectively. Formation of the exocyst complex mediates 
vesicle tethering  and regulates SNARE complex assembly through intercation between Sec6 and 
the t-SNARE Sec9233, leading to membrane fusion. From reference: 234 
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The question that rises here is: why do so many different apical tethering mechanisms 

co-exist and why does only depletion of Rab35 lead to inversion of apico-basal polarity? 

The tethering of apical vesicles needs to be a very robust process, since mis-localized 

apical proteins can have drastic consequences for an epithelial tissue. Moreover 

different tethering complexes can be differentially expressed in certain tissues to 

ensure tissue plasticity. One could also imagine that different tethering complexes act 

at different distances or are temporally differentially activated, thus having different 

tethering complexes activated for apical membrane initiation and maintenance. One 

should also consider that tethering of apical vesicle could be regarded as a stochastic 

event where single weak interactions cannot sufficiently tether vesicles, but a cascade 

of multiple tethering events could allow for robust vesicle tethering (Figure 49). 

 

Figure 49 : Co-existence of multiple tethering complexes at the AMIS. 

This scheme depicts how multiple tethering complexes, including Rab35, co-exist to ensure 
efficient tethering of apical vesicles at the AMIS. From reference: 235 
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3.4   Why does Rab35 depletion lead to inversion of AB polarity? 

 

The Rab35 GTPase acts as a tether to capture PODXL-positive vesicles at the AMIS to 

facilitate their fusion. Depletion or inactivation of Rab35 disrupts this tethering 

mechanism and leads to an inversion of apico-basal polarity due to fusion of PODXL 

vesicles at the wrong plasma membrane domain. Likewise, disruption of the 

PODXL/Rab35 interaction through expression of the PODXL mutant V496A/Y500A that 

does not interact with Rab35 induces apico-basal polarity inversion. 

In contrast, depletion of other tethering factors such as Syntaxin 3 or Exocyst subunits 

lead to an accumulation of apical cargo in the cytoplasm or the formation of multiple 

small lumen due to fusion to the wrong membrane, but do not induce polarity inversion.  

 

Why does depletion of Rab35 lead to an inversion of apico-basal polarity? Is there a 

default pathway for PODXL-vesicles? 

PODXL-vesicles trafficked in Rab11-postive recycling endosomes on the biosynthetic 

route through the TGN or on the transcytosis route from the basolateral to the apical 

domain. It was shown that PODXL trafficking to the apical membrane depends on a 

combination of the PDZ domain and NHERF1 interaction as well as glycosylation of the 

extracellular domain of PODXL152. Disruption of these apical targeting motifs leads to 

basolateral mistargeting of PODXL, suggesting that PODXL is indeed trafficked to 

basolateral membranes by default if apical sorting motifs are missing. This default 

pathway could also play a role in Rab35-depleted cysts. Although the actual apical 

targeting of PODXL is not impaired, the last step prior to fusion, the tethering of PODXL-

vesicles, is inhibited and could thus activate the basolateral default pathway.  
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Could Rab35 be involved in the apical trafficking/sorting of PODXL-vesicles? 

Since we did not observe a strong co-localization of Rab35 and PODXL or Rab35 and 

Rab11 on endosomes, it seems unlikely that Rab35 is involved in the actual trafficking of 

PODXL. Furthermore, ectopic expression of active Rab35 on the mitochondria leads to 

accumulation of PODXL-positive vesicles around the mitochondria even when 

endogenous Rab35 is depleted (unpublished results). This indicates that Rab35 is not 

required for the trafficking of PODXL to the mitochondrial membrane.  

 

Could Rab35 binding to the PODXL cytoplasmic tail compete with other binding 

partners? 

Interestingly, apico-basal polarity inversion upon Rab35 depletion can be rescued by 

expression of siRNA resistant Rab35 WT but not by the dominant active mutant Rab35 

Q67L (data not shown). This indicates that the PODXL/Rab35 interaction needs to be 

regulated transiently and that Rab35 might compete with other proteins for the binding 

of the PODLX cytoplasmic tail. One could imagine that PODXL-vesicles are tethered at 

the AMIS via long distance tethers such as the Exocyst complex, from where they move 

closer to the Rab35/PODXL tether and the Slp-4/Stx3 tether that allows membrane 

fusion.  

During the tethering steps, I propose that active Rab35 localized at the AMIS binds to 

the cytoplasmic tail of PODXL prior to Slp-4/Stx3 mediated membrane fusion. It is 

possible that the Rab35 binding could limit the access to the PODXL phosphorylation site 

at Ser-415, which was shown to be dephosphorylated by PP2A at the apical membrane73. 

It was suggested that PP2A dephosphorylates PODXL and NHERF-1 at the apical 

membrane to allow formation of the PODXL/NHERF-1 complex to stabilize PODXL at the 

membrane. Interestingly, NHERF-1 can bind the Rab35 GAP EPI64B and could therefore 

recruit EPI64B to induce Rab35 inactivation and thus dissociation of PODXL to facilitate 

PODXL dephosphorylation and stabilization at the apical membrane.  
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However, this would explain why depletion of Rab35 or expression of the PODXL mutant 

could prevent stabilization of PODXL at the apical plasma membrane domain, but not 

why it then fuses to the basolateral plasma membrane.  

Therefore, I can imagine two possible explanations how Rab35 depletion could induce 

polarity inversion: 

 

1) Rab35 competes with another protein for the binding of the PODXL cytoplasmic tail. 

Binding of Rab35 to the PODXL tail at the apical membrane could occupy the binding 

site for other proteins that are for example required for basolateral trafficking. In this 

case Rab35 would have a dual function at the apical membrane in assisting the 

tethering of PODXL-vesicles but also in preventing its basolateral trafficking.  

This hypothesis requires an interaction between the PODXL cytoplasmic tail and another 

protein that mediates basolateral traffic (e.g. a Rab GTPase) or a minus-end directed 

motor. Mass spectrometry of co-immunoprecipitated proteins from PODXL WT in 

comparison to PODXL V496A/Y500A could reveal such a potential binding partner.  

 

2) The Rab35/PODXL tether is dominant over the other tethering mechanisms. 

However, during the initial steps of apico-basal polarity establishment, during the first 

cyst cytokinesis, the apical and basolateral domains are not yet defined. It was 

demonstrated by Bryant et al, that early MDCK cysts have to re-orientate the polarity 

axis, thus inducing the transcytosis of apical membrane proteins that are initially 

localized at the outer ECM-facing membrane73. The endocytosis of PODXL is induced 

through β1-integrin mediated signalling and PODXL phosphorylation by PKCβII. PODXL 

phosphorylation destabilizes the Ezrin/NHERF-1/PODXL complex and thus facilitates 

internalization and transcytosis. 
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Depleting Rab35 or blocking of the Rab35/PODXL interaction does not impair PODXL 

internalization as demonstrated by an antibody internalization assay in Rab35 depleted 

and control cells as well as PODXL mutant expressing MDCK cells (Supplementary Figure 

6a-d in the published manuscript). Moreover it was recently shown in Hela cells that 

Rab35 is recruited onto clathrin coated vesicles after scission and therefore is not 

involved in the step of cargo internalization178,185. 

When Rab35 is depleted, it is true that PODXL appears very quickly at the basolateral 

membrane in early cystogenesis as observed by time-lapse microscopy. Nevertheless, 

PODXL is clearly observed in Rab11-positive recycling compartments and also in lower 

quantities at the cell-cell contacts in very early cysts upon Rab35 depletion. This 

demonstrates that PODXL internalization is indeed not impaired upon Rab35 depletion 

and that PODXL can be trafficked towards the cell-cell contacts, but finally fuses at the 

outer ECM-facing membrane. 

 

2a) The Rab35/PODXL tether is dominant over the other tethering mechanisms and 

asymmetric PODXL distribution reinforces a positive feed-back loop 

The definitive establishment and segregation of the apical and basolateral plasma 

membrane domain is likely a very fast process, driven by feed-back loops to create 

asymmetric protein distributions. Therefore it is likely that already little amounts of 

apical proteins (contained in PODXL-positive vesicles) can drive apical polarity 

establishment once they are enriched to a certain threshold. This means that once this 

threshold is reached, apical polarity complexes as well as kinases and phosphatases and 

the exocytic machinery would become enriched at this membrane. Hence, even apical 

tethering complexes such as the exocyst and Syntaxin 3 could become enriched at the 

ECM-facing membrane once the asymmetry of apical determinants is broken towards the 

“wrong”, ECM-facing membrane upon Rab35 depletion. 
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 2b) The Rab35/PODXL tether is dominant over the other tethering mechanisms and the 

asymmetric distribution of PODXL is skewed to the basolateral membrane due to its 

larger surface. 

If PODXL-vesicles were not directly targeted towards the apical membrane through 

Rab11-associated plus-end directed motors, then its delivery would occur randomized to 

the basolateral or the apical membrane. Nonetheless, its distribution would be skewed 

to the basolateral membrane due to its larger surface. This means that the cell has to 

overcome the advantage of basolateral vesicle targeting in order to enrich apical 

proteins at the much smaller apical membrane domain. The presence of tethering 

complexes at the apical membrane would represent one such mechanism that assists to 

accumulate PODXL-vesicles. The delivery of apical vesicle is furthermore likely a very 

dynamic process where many vesicles go back and forth and not every single vesicle 

that arrives at the apical membrane would automatically undergo apical fusion. 

Therefore, weakening of the tethering mechanism through depletion of Rab35 would 

allow vesicles to move back to the basolateral membrane and here,as mentioned 

before, a positive feed-back loop could help to establish an apical membrane at the 

CEM facing membrane and thus invert apico-basal polarity.  

 

Taken together, I presented here different hypotheses that could explain why depletion 

of Rab35 or blocking of the PODXL/Rab35 interaction leads to a complete inversion of 

apico-basal polarity in MDCK cysts. Nonetheless, it needs to be emphasized that one of 

the major differences between the Rab35-mediated tethering compared to other 

tethering machineries is the fact that the Rab35/PODXL tethering complex does not 

interact directly with SNARE proteins (at least it has not been demonstrated yet). All of 

the here reviewed tethering complexes interact with SNARE proteins, thus disruption of 

these complexes not only disrupts tethering but possibly also fusion, which is required 

for polarity inversion.  
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3.5   Significance of other Rab-cargo interactions 

 

Active, GTP-bound, Rab GTPases can interact with specific cytosolic effector proteins 

and recruits them to specific membranes. Through interaction with coat components, 

motor proteins and SNARES, Rab GTPase regulate the sorting, traffic, docking and fusion 

of vesicular cargo. However, Rab GTPases can also interact directly with the 

cytoplasmic domain of vesicular cargos.  

The first direct Rab/cargo interaction was identified by Van Ijzendoorf et al. who 

demonstrated a direct binding between GTP-bound Rab3b and pIgR236. Binding of the 

ligand dIgA induces the dissociation of the Rab3b from pIgR to allow signalling through 

exocytosis and ligand release at the apical membrane. The interaction domain was 

mapped to the membrane –proximal 14 amino acids. Since then many other direct Rab-

cargo interaction have been discovered including interactions with integrins237,238, ion 

channels239–242, GPCRs243–245 and intermediate filament proteins246–248. The human 

angiotension II type 1 receptor (AT1R) belongs to the superfamily of GPCRs and can 

interact with Rab4, Rab5, Rab7 and Rab11 as shown by co-IP244. Furthermore these Rab 

GTPases compete for the binding to AT1R, which was shown to occur within the last 10 

aminoacids of the cytoplasmic tail. The binding of all RabGTPases was inhibited upon 

mutagenesis of the proline 354 and cysteine 355. However, it was only demonstrated 

that AT1R could form a complex with the above-mentioned Rab GTPases, but it was not 

shown that these interactions are indeed direct. Rab11 in contrast has been shown to 

bind directly in a GTP dependent manner to the GPCR TP-β245. Also in this case the 

interaction site is composed of a short amino acid sequence (335-344) within the 

cytoplasmic tail. Blocking of the direct interaction was shown to perturb the trafficking 

from Rab5-positive endosomes to Rab11-positive perinuclear recycling endosomes. Also 

Rab1 binds directly and GTP dependent to the cytoplasmic domain of the GPCR β2-

adrenergic receptor (β2AR) to regulate its anterograde trafficking243 . The binding of 

Rab1-GTP requires a dileucine motif, localized in the proximal part of cytoplasmic tail. 

Interestingly the same binding motif is also required for binding of Rab8 to β2AR249. As 
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mentioned above, integrins can also bind directly to Rab GTPases as shown for Rab25 

and α5β1237 integrin and for Rab21 and α2β1 integrin238. The interaction with Rab25 was 

demonstrated to be direct and GTP-dependent and drives cell migration and invasion of 

ovarian cancer cells in a 3D matrix by directing the localization of integrin-recycling 

vesicles237. Also the Rab21-integrin interaction was shown to be direct and to promote 

cell migration and adhesion in a breast cancer cell line238.  

 

 

Figure 50: Rab GTPases-cargo direct interactions. 

This scheme illustrates the known direct interaction between Rab GTPases and a transmembrane 
cargo. 

(a) Anterograde trafficking 
(b) Transcytosis 
(c) Exocytosis 
(d) Transport from TGN to PM 
(e) Recycling 
(f) Internalization 
(g) Endosomal sorting 
(h) Lysosomal delivery.  

From reference: 247 
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It seems that Rab GTPase/cargo direct interactions are very specific and lack a common 

binding motif. The above-mentioned de Rab/cargo interactions regulate the traffic, 

recycling or the exocytosis of the cargo proteins and not the tethering of cargo vesicles, 

as it is the case for the PODXL/Rab35 interaction. The major difference between the 

above-mentioned interactions and the PODXL/Rab35 interaction is the particular plasma 

membrane localization of Rab35. None of the other here mentioned RabGTPases 

localize primarily to the plasma membrane and thus cannot function as a plasma 

membrane tether. If Rab/crago interactions occur in trans, it is likely that these 

interaction facilitate the tethering between vesicles, for example to transfer cargo from 

Rab5-positive endosomes to Rab11-positive recycling endosomes as described for the 

Rab11/TP-β interaction245. However, Rab/cargo interactions can also occur in cis, 

thereby binding the transmembrane cargo while being localized on the same membrane 

and simultaneously binding to another partner such as a motor protein or another Rab 

GTPase. Furthermore, Rab/cargo direct interaction can regulate membrane traffic 

through competitive binding as shown for Rab3b, which competes for pIgR binding with 

the ligand pIgA to regulate apical exocytosis and ligand signalling236. However, the 

emerging role of Rab/cargo direct interaction requires further investigation and might 

open a completly new view on Rab GTPase regulated vesicular membrane traffic.  

 

 

3.6  The role of Rab35 interacting proteins in apico-basal polarity 

establishment 

 

The Rab35 effector OCRL 

One effector protein of Rab35 is the phosphatidylinositol 5-phosphatase OCRL. 

Mutations of the OCRL gene can lead to the Occulo Renal Syndrome of Lowe and Dent2 

disease, both characterized by congenital cataracts, mental and growth retardation and 

renal proximal tubule dysfunction (Fanconi syndrome)250. The preferred substrate of the 
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OCRL phosphatase are PtdIns(4,5)P2 and PtdIns(3,4,5)P3, which are converted to 

PtdIns4P and PtdIns(3,4)P respectively.    

Rab35 was shown to interact directly with the phosphatase OCRL in Hela cells and to 

regulate its localization at the intracellular bridge during cytokinesis. Correct 

localization of OCRL leads to conversion of PtdIns(4,5)P2 to PtdIns4P and prevents F-

actin polymerization to allow successful abscission of the two daughter cells179. 

Similarily OCRL is recruited onto new born endosomes by Rab35 in Hela cells, which 

induces PtdIns(4,5)P2 hydrolysis that allows uncoating and traffic these endosomes185. A 

definite role for OCRL during MDCK cystogenesis has so far not been demonstrated. One 

study showed that depletion of OCRL impaired cyst formation when MDCK cells were 

cultured in a collagen/Matrigel mix251, whereas another study showed only mild defects 

in MDCK cystogenesis (cultured in 100% Matrigel), but impaired cilia formation252. 

However, none of these studies observed an inversion of apico-basal polarity upon OCRL 

depletion. When we cultured MDCK cells in 2% Matrigel, we did not observe any defects 

in cytogenesis upon OCRL depletion (Supplementary Fig. 6f,g of the published 

manuscript). Of note, OCRL shares 45% homology with the 5-phosphatase INPPP5B, 

which could rescue OCRL depletion, as demonstrated in OCRL KO mice253. Interestingly, 

it has been shown that MDCK cells express significant levels of INPP5B, that could rescue 

the OCRL depletion254.  

A role for Rab35 and OCRL (or INPP5B) during cytokinesis and endosomal traffic in MDCK 

cysts is likely, but has not been demonstrated yet. However the inversion of polarity 

upon Rab35 depletion is unlikely caused by cytokinesis defects, since depletion of OCRL 

alone does not affect cystogenesis. Moreover depletion of Cep55, a key player of 

cytokinesis, leads to a prolonged abscission time in MDCK cells grown on glass but does 

not impair cyst development (Supplementary Figure 4a,b in the published manuscript). 

 

The Rab35 effector ACAP2  
 
Arf6 was shown to negatively regulate Rab35 activation through the Rab35 GAP EPI64B, 

which was identified as an effector of Arf6. The Arf6 mediated regulation of Rab35 was 
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shown to regulate an endocytic pathway essential for cytokinetic abscission132. 

Interestingly, the Rab35 effector ACAP2 is also a GAP for Arf6, leading to mutual 

antagonistic regulation of Arf6 and Rab35 activation192. Arf6 activation in MDCK cysts 

was shown to induce lumen filling and multiple lumen as well as disruption of adherence 

junctions through enhanced growth factor receptor internalization and signalling130. Arf6 

depletion in contrast was shown to induce apico-basal polarity inversion through Rac1 

inactivation and impaired laminin assembly117. Interestingly, it was shown in COS-7 cells 

that the Rab35/Arf6 mutual antagonism also plays a role in cell migration, EMT and 

tumorogenesis198. Rab35 promotes cell-cell adhesion through maintaining cadherins at 

the cell surface. Furthermore Rab35 negatively regulates integrin recycling through 

ACAP2 mediated inhibition of Arf6. Depletion of Rab35 induces Arf6 activation, which 

leads to enhanced integrin and EGFR recycling and reduced recycling of cadherins, thus 

inhibiting cell-cell adhesions and promoting cell migration198. The question that rises 

here is whether the Rab35 dependent apico-basal polarity inversion can be explained 

through Arf6 dysregulation and Rac1 inactivation. This is unlikely, since we could show 

that polarity inversion clearly depends on the direct interaction between PODXL and 

Rab35. Replacement of endogenous PODXL with the PODXL mutant V496A Y500A, unable 

to interact with Rab35, also leads to apico-basal polarity inversion. Although it was 

shown in one study that Arf6 depletion lead to Rac1 inactivation and therefore polarity 

inversion, it seems unlikely that Rac1 inactivation is mediated through Rab35, but 

further investigations would be necessary to clarify this point117.  

 

The Rab35 GAP EPI64B 

As mentioned above, Rab35 activity is negatively regulated by its GAP EPI64B. 

Interestingly, EPI64B binds to both PDZ domains of NHERF1 (EBP50), which binds to 

active Ezrin and PODXL255 at the plasma membrane. We demonstrated that active Rab35 

binds to the cytoplasmic tail of PODXL to tether arriving PODXL endosomes at the future 

apical plasma membrane. The NHERF1/Ezrin/PODXL complex assembles upon membrane 

fusion to stabilize PODXL at the plasma membrane73. It is possible that EPI64B is 
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required to inactivate Rab35 in order to disrupt the Rab35/PODXL interaction to enable 

assembly of the NHERF1/Ezrin complex. Another possibly would be that EPI64B 

inactivates Rab35 at the ECM-facing membrane and thus prevents Rab35 mediated 

PODXL tethering at the wrong plasma membrane. Both hypotheses will need further 

investigation to clarify the role EPI64B. However, EPI64B over-expression induces apico-

basal polarity inversion in the presence of Rab35, thus demonstrating that EPI64B is the 

major Rab35 GAP in MDCK cysts.  

 

 

 

 

Figure 51: Model for EPI64B-mediated stabilization of the PODXL/NHERF1/Ezrin 

complex. 
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Rab35 GEFs: connecdenn1-3 and Folliculin 

Other Rab35 interacting proteins are the Rab35 GEFs conncedenn1-3199,256 and the 

recently discovered GEF Folliculin204. Connecdenn1-3 have not been associated with any 

role in epithelial polarity so far, however it was shown that phosphorylated 

Connecdenn1 binds to 14-3-3203, a protein that also binds phosphorylated Par-3 at the 

apical domain during early polarity establishment257. Binding of 14-3-3 to Connecdenn1 

releases its auto inhibition and increases its GEF activity as well as the binding to 

Rab35203. Hence, connecdenn1 could potentially activate Rab35 at the apical membrane 

through assistance of 14-3-3.  

Although the GEF activity of Folliculin towards Rab35 was so far only demonstrated in 

vitro and not in cells204, Folliculin has been linked to epithelial polarity in two 

independent studies206,207. It was shown that depletion of Folliculin impairs single lumen 

formation of T84 human colon carcinoma cells in Matrigel207 and in murine collecting 

duct mIMCD3 cells cultured in Geltrex matrix206. Folliculin-depleted epithelial cysts 

display filled lumen, but not inversion of apico-basal polarity. However, the impaired 

lumen formation in these studies was linked to impaired Rho activation upon Folliculin 

depletion as well as defects in junction formation. Nevertheless it remains to be 

investigated whether depletion of Folliculin or connecdenn leads to polarity inversion in 

MDCK cells and could be thus indentified as the major Rab35 GEF in MDCK cystogenesis.   
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3.7   Other potential functions for Rab35 in epithelial polarity 

 

3.7.1  The role of Rab35 in subsequent cell divisions in MDCK cysts 

 

During each cell division of cystogenesis, cells have to orientate their cell division axis, 

remodel junctions and deliver neosynthesized and recycled proteins to the newly 

defined membrane domains. The correct orientation of the mitotic spindle during 

mitosis is regulated through a polarized localization of the force generator complex 

(Gαi, LGN, NuMA) that links the spindle microtubules to the cell cortex. GαI binds to the 

plasma membrane via its G-protein coupled subunit and serves as an anchor for LGN. 

LGN in turn binds to NuMA, which associates to the dynein/dynactin complex and thus 

generates a pulling force on the astral microtubules87,258–261. However the “correct” 

orientation of the mitotic spindle depends on the cell type, since cells can divide planar 

as in simple cuboidal epithelial monolayer, or perpendicular in a stratified epithelium 

such as the epidermis. In non-polarized Hela cells, it has been shown in the lab that the 

polarized cortex localization of the LGN/NuMA complex depends on Gαi and SLK 

mediated phosphorylation of ERM258. These results were also confirmed in apical 

progenitor cells of the mouse embryonic cortex258. However, it has not been 

investigated yet, whether this mechanism applies in polarized epithelial cells. During 

symmetric planar cell division as in MDCK cells, the apical localized aPKC/Par complex 

phosphorylates LGN and thus inhibits its binding to GαI at the apical cortex262. Indeed, 

impaired localization of the aPKC/Par complex through depletion of Cdc42, aPKC or 

Par3, results in randomized spindle orientation85. Furthermore it was shown that Plexin-

B2 localizes to the basolateral plasma membrane in MDCK cells and mouse kidney 

epithelial cells and controls the cell division axis through activation of Cdc42263. It was 

also shown that IQGAP is involved in planar spindle orientation in MDCK cells through 

modulating the cortical localization of NuMA264. However, it has been suggested that 

multiple mechanisms could compensate for each other to ensure robust spindle 

orientation265. 
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Defects in the orientation of the mitotic spindle have often been associated with 

multiple lumen phenotypes in MDCK cysts due to mistrafficked apical proteins or 

tumorogenesis at least in Drosophila in Lgl and Dlg mutants266.  

However, the impact on misoriented spindles is under debate and seems to depend on 

the type of tissue. It has been shown in the imaginal wings disk of Drosophila 

melanogaster that misaligned spindles leads to extrusion of the perpendicular divided 

cells, which undergoes apoptosis. Inhibition of apoptosis in this context induces 

formation of a tumor-like cell mass267. On the other hand, it was shown in the 

developing ureteric bud of the mouse that epithelial cells can protrude out of the 

epithelial monolayer to round up for mitosis in the luminal space, while remaining 

connected to the epithelium via a basal process. During cytokinesis only one of the 

daughter cells inherit the basal process and re-inserts into the epithelium, while the 

other daughter cell, now localized in the luminal space does not undergo apoptosis, re-

inserts a few cells further back into the epithelium268. In MDCK cysts in contrary, 

depletion of genes involved in spindle orientation is associated with either lumen filling 

or the multiple lumen phenotype68,83–85,87.  

A role for Rab35 in spindle orientation has not been investigated yet, although Rab35 

was shown to localize to the meiotic spindle micrtotubules in mouse oocytes. Rab35 

depletion in mouse oocytes leads abnormal spindle morphology, thus suggesting a role 

for Rab35 in spindle formation269. Of note, we did not observe any Rab35 at the mitotic 

spindle in GFP-Rab35 genome edited Hela cells (unpublished data).  

Rab35 depletion in MDCK cysts leads to inverted polarity, but also to multiple lumens. 

Interestingly, the proportion of the inverted cyst phenotype, but not the multiple lumen 

phenotype, correlated with the efficiency of Rab35 depletion (Figure A in Annex). 

However, both phenotypes could be rescued by expression of RNAi or shRNA resistant 

Rab35 WT, indicating that both of these phenotypes are specific for Rab35. 

Nevertheless, further investigation is needed to determine the cause of the multiple 

lumen phenotype, since multiple lumen could form either through a misaligned spindle 

or through mistargeted apical proteins (Figure 52).  
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Figure 52: Development of multiple lumen in MDCK cysts 

This scheme illustrates how MDCK cysts develop a single lumen in normal conditions or multiple 
lumen due to a misaligned spindle or due to mistargeted apical proteins.  

 

 

To date, it is not known whether MDCK cells remain completely polarized during 

mitosis, although it was shown that adherence and tight junctions are maintained124,270. 

Our unpublished data suggests that at least a part of PODXL is re-distributed and 

undergoes transcytosis during telophase in subsequent cell divisions. However, the 

contribution of neosynthesized PODXL to this transcytosed pool of PODXL is unknown. 

One could imagine several different potential models for subsequent cell divisions: In 

model (a) PODXL remains at its apical localization during mitosis at the 2-cell stage 

(Figure 53). After ingression of the furrow adherence and tight junction are formed 

before cytokinetic abscission occurs and neo synthesized PODXL is trafficked towards 

the pre-existing apical membrane, where Rab35 is present. Here Rab35 could act as a 

tether for PODXL-vesicles as described for the first cell division. 
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In model (b) PODXL is endocytosed during mitosis, targeted towards the opposite poles 

and transcytosed, together with neosynthesized PODXL, to establish an apical 

membrane de novo. Also here Rab35 could act as a tether for PODXL-vesicles (Figure 

53).  

 

Figure 53: Rab35 and PODXL localization during the second cell division in MDCK 
cysts. 

This scheme shows two models of PODXL and Rab35 localization during the second cell division in 
MDCK cysts.  

 

 

During my thesis I have addressed the question whether Rab35 is involved in subsequent 

cell divisions in MDCK cysts after apico-basal polarity is already established (unpublished 

results). MDCK cells, stably expressing a Doxycycline repressible Rab35 shRNA were 

grown for 4 days in Matrigel to form cysts with a single open lumen. After 24 hours, 

doxycycline was washed out and expression of Rab35 shRNA was induced. MDCK cysts 

(a)

(b)

PODXL
adherence junctions
Rab35-positive plasma membrane
tight junctions

zoom (a) zoom (b)
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were fixed after 24h (control) and after 3 days to assess the cyst phenotypes (Figure B 

in Annex). Interestingly, Rab35 depletion after apico-basal polarity establishment did 

not lead to inverted cysts, but lead to the formation of multiple lumen. This result 

indicates that Rab35 could be involved in the subsequent cell division after polarity 

establishment, although the mechanism by which Rab35 depletion induces multiple 

lumen remains speculative.  

 

 

3.7.2 The Role of Rab35 in adherence junction integrity  

 

Rab35 has been shown to regulate adherence junction formation. Depletion of Rab35 in 

COS-7 cells induces an accumulation of N- and E-cadherin in intracellular vesicles due to 

impaired recycling198. Therefore Rab35 depletion decreases the cell surface localisation 

of cadherins and therefore decreases cell-cell adhesion. Furthermore Rab35 itself 

localizes to adherence junctions in C2C12 myoblasts and in Hela cells, where it 

regulates the recruitment of N- and M-cadherin to the junctions, their stabilization and 

their association with p120 catenin208. Interestingly, depletion or inactivation of Rab35 

not only leads to an accumulation of cadherins in intracellular vesicles, but also reduces 

PtdIns(4,5)P2 levels at the junctions. Moreover, PtdIns(4,5)P2 was shown to be required 

for junction formation and for Rab35 recruitment, thus leading to a positive feed-back 

loop during adherence junction formation.  

Surprisingly, to my knowledge, the requirement of adherence junctions for epithelial 

apico-basal polarity establishment has been barely investigated in vertebrate epithelia. 

One can assume that adherence junction formation plays an important role in polarity 

establishment since tight junctions develop from adherence junctions and proteins that 

are required for the establishment of polarity are often also required for junction 

formation as in the case of Par3 or Scribble. Moreover adherence junctions were shown 



  
 

 132 

to regulate the position of the midbody127 and thereby likely also the positioning of the 

apical lumen.  

Interestingly, the importance of adherence junctions and lumen formation is well 

established in vascular lumen formation. Here the cells establish adherence junctions 

that are mainly composed of vascular-endothelial cadherin (VE-cadherin) and establish a 

lumen through delivery of anti-adhesive molecules (PODXL and Cd34) to the junctions to 

tear the membrane apart148. Importantly, Par3 and Par6 associate with VE-cadherin and 

are required for lumen formation271. The exocytosis of PODXL and Cd34 at the Par3/Par6 

marked junctions follows the recruitment of F-actin and non-muscle myosin II that are 

required for cell shape remodelling148 (Figure 54).  

 

 

Figure 54: The function of electrostatic repulsion in vascular lumen formation. 

This scheme illustrates how negatively charged sialomucins, like PODXL, CD34 or Endoglycan can 
induce electrostatic repulsion to separate to adjacent membranes in order to open a lumen. 
From reference: 272 
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However, to date nothing is known about Rab35 during vascular endothelial lumen 

formation. It is possible that Rab35 acts as a regulator for junction formation through 

recycling of VE-cadherin and as a tether for PODXL-vesicles. Interestingly, it has been 

shown in vivo, that also epithelial cells can establish lumen at pre-existing junctions 

through apical constriction without the need of preceding cell divisions51,273,274. This 

raises the question of whether Rab35 could be also involved in apical membrane 

initiation and establishment without the requirement for cytokinesis. However, to 

answer this question further investigation would be required; for example by studying 

potential apical membrane and lumen formation of MDCK 2-cell aggregates that are not 

daughter cells.  

 

 

3.8   Is the Rab35/ PODXL interaction a general mechanism? 

 

It is possible that the Rab35/PODXL interaction in apico-basal polarity establishment 

presents a general mechanism that could be found in vivo in various tissues. Rab35, but 

not PODXL, is ubiquitously expressed in all human tissues. Although the expression of 

PODXL is restricted to certain tissues and cell types in adult tissues, PODXL is expressed 

in all three germ layers during mouse embryogenesis 140.  Introduction of PODXL point 

mutations V496A /Y500A in mice could shed light on the impact of the Rab35/PODXL 

interaction in vivo. Moreover, these in vivo studies could for the first time link the 

inverted polarity phenotype observed in MDCK cells to a pathological phenotype in vivo, 

such as developmental defects or cancer initiation, progression or metastasis. 

Interestingly, several somatic missense mutations of PODXL were found in samples from 

human carcinomas that are in close proximity to the Rab35 interaction domain.  
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transmembrane domain-----KDQQRLTEELGTVENGYHDNPTL-----DTHL*   (human PODXL) 

                                                  Rab35 binding domain 

 

The PODXL mutant V496A /Y500A (canin) corresponds to V503A /Y507A for human 

PODXL.  

 

Somatic mutation  Human tissue sample 

R495W pancreas carcinoma 

E504K   skin malignant melanoma 

G506S skin malignant melanoma 

D509N  skin malignant melanoma 

D509G   large intestine carcinoma 

 

(from: http://cancer.sanger.ac.uk/cosmic, a database for somatic mutations in cancer) 

 

It would be of interest to investigate whether these somatic mutations found in human 

cancers abolish the interaction with Rab35 and whether these mutations also lead to 

apico-basal polarity inversion in MDCK cysts.  

 

Moreover, it could be possible that Rab35 can interact with other members of the CD34 

family such as CD34 or Endoglycan and thus could represent a general mechanism in 

tissues with differential expression of members of the CD34 family.  
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4 CONCLUSION AND FUTURE PERSPECTIVES 

 

The major goal of my PhD project was to investigate PODXL as a potential novel 

effector of Rab35 during polarity establishment in 3D MDCK cysts. I found that PODXL is 

indeed a Rab35 effector, since the PODXL cytoplasmic binds directly and specifically to 

GTP-bound Rab35 in vitro and in vivo. PODXL is the first transmembrane protein 

discovered to interact directly with Rab35. Most Rab GTPase/transmembrane protein 

interactions involve transmembrane receptors, integrins or ion channels where the 

direct interaction is essential for the correct trafficking. 

Initially, it seemed obvious that Rab35 could regulate the recycling of PODXL towards 

the apical membrane. However, time-lapse microscopy experiments revealed that 

PODXL, as previously reported, is transported in Rab11-positive recycling endosomes, 

showing only little overlap with Rab35-positive endosomes. This observation ruled out 

that Rab35 is recruited onto PODXL-positive endosomes to regulate its apical recycling. 

The only place where PODXL and co-localize was the apical, or future apical membrane, 

and PODXL was recruited onto this membrane after Rab35. Depletion of Rab35 in MDCK 

cysts leads to apico-basal polarity inversion, demonstrating for the first time that Rab35 

is indeed involved in epithelial polarity establishment. However, the molecular cause of 

polarity inversion needs to be elucidated. Therefore, I set out to investigate whether 

the presence of GTP-Rab35 on the plasma membrane was sufficient to target PODXL to 

this membrane. Ectopic expression of active Rab35 on the outer mitochondrial 

membrane induced an accumulation of PODXL-positive in close apposition to the 

mitochondria. This demonstrated that active Rab35 acts as a potent tether for PODXL-

positive vesicles through a direct and GTP-dependent interaction. This hypothesis was 

furthermore strengthened by the fact that inhibition of this direct interaction by 

expression of the PODXL mutant V496A Y500A completely abolished the Rab35 

dependent tethering in MDCK cysts, leading to apico-basal polarity inversion.  

This new concept of a direct Rab-cargo interaction at the acceptor membrane might 

shed light onto other Rab35-dependent pathways. Rab35 is a unique Rab GTPase 
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localized at the plasma membrane and could therefore represent a general tethering 

mechanism, which is not exclusive for PODXL. For example the role of Rab35 in exosome 

secretion might involve tethering of an unknown protein275. However, interactions with 

transmembrane proteins can easily be missed in Yeast-two hybrid screens due to their 

hydrophobic residues, which make them also difficult to detect by mass spectrometry.  

 

To continue with the Rab35/PODXL interaction, further studies are needed to fully 

understand why Rab35 depletion or blocking of the PODXL/Rab35 interaction leads to 

apico-basal polarity inversion. Importantly, a very recent publication from the group of 

Fukuda confirms that loss of Rab35 by CRISPR/Cas9-mediated KO or depletion of Rab35 

by siRNAs leads to apico-basal polarity inversion in MDCK cysts276. However, it was also 

shown that inverted Rab35-depleted cysts re-orient their polarity back to normal within 

72h of culture in Matrigel. Contrarily to this result, I did not observe any re-orientation 

of polarity in Rab35-depleted cysts, even after 7 days of culture in Matrigel. The results 

obtained by the group of Fukuda might possibly reflect an adaptation of MDCK cells to 

the loss of Rab35 by up-regulation of an unknown rescue pathway. The levels of Rab35 

depletion as well as the duration of depletion might explain why Rab35 depleted cysts 

can re-orient their polarity in some cases and why I did not observe any re-orientation 

even after 7 days in culture in my experiments.   

In any case, it would be interesting to investigate further whether Rab35 depletion can 

indeed cause an up-regulation of other rescue pathways. In COS-7 cells for example it 

has been shown that Rab35 long-term depletion of Rab35 can up-regulate Rab5 by an 

unknown mechanisms, which has been suggested to compensate for the trafficking 

defect199.  

Furthermore, depletion of the Rab35 effector and ARF6 GAP ACAP2 or overexpression of 

Rab35 T76S T81A, a mutant that cannot interact with ACAP2, induces inversion of apico-

basal polarity276. It would be interesting to investigate whether Rab35 T76S T81A can 

still interact with PODXL and whether inhibition of the Rab35/ACAP binding decreases 

Rab35 activity and thus indirectly influences the binding of PODXL to Rab35.  



  
 

 137 

Moreover it would be interesting to investigate the role of Rab35 in subsequent cell 

division more in detail as well as the potential role for PODXL in cytokinetic abscission.   

Interestingly, both, Rab35 and PODXL have been independently associated with 

tumorigenesis. Therefore, further studies are needed to investigate whether the 

Rab35/PODXL interaction could be involved in cancer development, progression or 

metastasis in various tissues, if disrupted. Finally, development of PODXL V496A/Y500A 

transgenic animal models such as mice or Zebrafish could be a useful tool to study the 

Rab35/PODXL interaction in vivo.  
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Figure A:  Rab35 depletion levels correlate with cyst phenotypes 

(a) MDCK cells stably expressing either Rab35 shRNA IHRES GFP or control shRNA IHRES GFP 

were sorted for low, intermediate and high GFP expressing cells and seeded into 

Matrigel. Cysts were fixed after 48 hours and cyst phenotypes were quantified.  

p<0.05 (*) p<0.01 (**), p<0.001(***), ns: not significant. (compared to corresponding 

control) 

(b) MDCK cells stably expressing either Rab35 shRNA IHRES GFP (high) control shRNA IHRES 

GFP (high) were transfected with either mCherry alone or with mCherry-Rab35 WT for 

24h and seeded into Matrigel. Cysts were fixed after 48h and cyst phenotypes were 

quantified. p<0.05 (*), p<0.001(***), ns: not significant. 

a 

b 
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Figure B: Inversion of apico-basal polarity inversion requires Rab35 depletion during 

the first cell division of cyst development. 

MDCK Tet-Off cells stably expressing either Rab35 shRNA or control shRNA under a tetracycline-

regulated promoter were either cultured in the presence of Doxycyline (shRNA not expressed) or 

without Doxycyline (shRNA expressed).  

Cyst phenotypes were quantified after 4 days in Matrigel.  

Blue bars show cyst phenotypes in MDCK cells expressing control (dark blue) and Rab35 shRNA 

(light blue) without any Doxycycline: shRNAs are expressed throughout the cyst development.  

Green bars show cyst phenotypes in MDCK cells expressing control (dark green) and Rab35 shRNA 

(light green) in the presence of Doxycycline: shRNAs are not expressed.  

Grey bars show cyst phenotypes in MDCK cells expressing control (dark grey) and Rab35 shRNA 

(light grey), which were cultured initially in the presence of Doxycycline (shRNAs not expressed) 

and were then shifted into Doxycycline-free culture medium (24h after seeding into Matrigel), 

leading to shRNA expression only after the first cell division in Matrigel. Note that depletion of 

Rab35 after the first cell division does not lead to apico-basal polarity inversion, but to other 

abnormal phenotypes. p<0.05 (*) p<0.01 (**), p<0.001(***), ns: not significant. (compared to 

corresponding control) 
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Abstract

Rab35 is one of the first discovered members of the large Rab GTPase

family, yet it received little attention for 10 years being considered merely

as a Rab1-like GTPase. In 2006, Rab35 was recognized as a unique

Rab GTPase localized both at the plasma membrane and on endosomes,

playing essential roles in endocytic recycling and cytokinesis. Since then,

Rab35 has become one of the most studied Rabs involved in a growing

number of cellular functions, including endosomal trafficking, exosome

release, phagocytosis, cell migration, immunological synapse formation

and neurite outgrowth. Recently, Rab35 has been acknowledged as

an oncogenic GTPase with activating mutations being found in can-

cer patients. In this review, we provide a comprehensive summary of

known Rab35-dependent cellular functions and detail the few Rab35

effectors characterized so far. We also review how the Rab35 GTP/GDP

cycle is regulated, and emphasize a newly discovered mechanism that

controls its tight activation on newborn endosomes. We propose that

the involvement of Rab35 in such diverse and apparently unrelated cel-

lular functions can be explained by the central role of this GTPase in

regulating phosphoinositides and F-actin, both on endosomes and at

the plasma membrane.
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membrane traffic, phagocytosis, phosphoinositides, PtdIns(4,5)P2, Rab
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Rab35: an evolutionarily conserved Rab
GTPase localized both on endosomes and at
the plasma membrane

Rab GTPases are key regulators of membrane trafficking in
eukaryotic cells, and regulate multiple steps of intracellular
transport by controlling vesicle budding, lipid remodeling,
interaction with molecular motors and the cytoskeleton,
vesicle tethering and fusion (1). This is achieved by the
localization of GTP-bound (active) Rab GTPase at the
cytoplasmic surface of specific intracellular compartments

and by the recruitment of particular effectors by each Rab
(1). Rab35 was first cloned from human skeletal muscle in
1994 and found to be ubiquitously expressed (2). System-
atic sequencing later revealed that Rab35 is conserved in
all animal metazoans and seems to even predate the rise
of metazoans, as it has been identified in an organism that
branched off from the premetazoan lineage after fungi,
but before choanoflagellates (3). Rab35 was initially called
H-Ray and later Rab1C due to its high sequence similarity
to Rab1A and Rab1B, and indeed Rab35 clusters with
Rab1A and Rab1B in the now complete phylogenetic tree
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of Rab GTPases (3). However, despite strong homology
of Rab35 with Rab1A and B in the catalytic GTPase
domain and switch regions, they clearly differ in the last
C-terminal 30 amino acids. Accordingly, Rab35 and the
two Rab1 isoforms have distinct membrane localizations
as well as different cellular functions. Rab1A and Rab1B
localize to the endoplasmic reticulum (ER) and Golgi and
regulate ER-to-Golgi vesicular traffic (1), whereas Rab35
localizes to both endosomes and the plasma membrane,
as detailed below. A distinct feature of Rab35 is its evo-
lutionarily conserved polybasic C-terminal extremity.
Interestingly, the plasma membrane localization of Rab35
is GTP-dependent and involves this region through its
direct binding to the negatively charged phosphoinositides
PtdIns(4,5)P2 and PtdIns(3,4,5)P3 (4–6).

Initial studies suggested that overexpressed GFP-Rab35
could shuttle between the plasma membrane, cytosol and
nucleus (7), although the later is thought to be an artifact
of overexpression (8). However, endogenous Rab35 and
episomally expressed epitope tagged-Rab35 are localized
both at the plasma membrane and on a fraction of endo-
somes in mammalian cells (8–13), which has been recently
confirmed using genome-edited cell line (14). This dual
localization is conserved, as it is also found in Caenorhab-
ditis elegans (15). To our knowledge, Rab35 is a unique
Rab in animal cells by being clearly localized both at the
plasma membrane and on endosomes. The significance of
specific roles for Rab35 at the plasma membrane will be
discussed later.

Rab35 promotes endocytic recycling

Rab35 was first identified in a comprehensive RNAi screen
for cytokinesis defects in Drosophila S2 cells (8), in the
search for regulators linking membrane traffic with the
physical separation of the daughter cells at the end of mito-
sis (16,17). An increase of binucleated cells was observed
upon depletion of Rab5, Rab11 and Rab35, with loss of
Rab35 giving the strongest phenotype. Cytokinesis failure
was associated with the presence of large intracellular vac-
uoles suggesting a trafficking block. Further investigation
in HeLa cells revealed that Rab35 controls a fast endocytic
recycling pathway from endosomes to the plasma mem-
brane. Consequently, depletion or inactivation of Rab35
using the dominant-negative mutant Rab35 S22N led to an

accumulation of endocytic carriers such as transferrin (Tf)
and Tf receptor (TfR) at the limiting membrane of intra-
cellular vacuoles (8,13). Defects in TfR recycling were later
confirmed in Rab35-depleted cells (18).

The key role of Rab35 in endocytic recycling was fur-
ther strengthened when Rab35 was identified in a C.
elegans genetic screen for yolk endocytosis in oocytes
(15). Loss-of-function mutations in Rab35 (also known
as RME-5, or receptor-mediated endocytosis-5) result in
strong defects in yolk protein internalization associated
with an accumulation of yolk receptors in dispersed small
vesicles. Careful phenotypic analysis revealed that Rab35
functions at the level of cortical endosomes in the early
steps of endocytic recycling, a finding recently confirmed
in HeLa cells (14). Epistasis experiments in C. elegans also
suggested that Rab35 functions in a recycling pathway in
parallel to that controlled by Rab11, consistent with a role
for Rab35 in fast endocytic recycling in mammals (8).

Rab35-dependent endocytic recycling back to the plasma
membrane has actually been reported for diverse car-
goes. Specifically, Rab35 controls the trafficking of major
histocompatibility complex class-II (MHC-II)-peptides in
HeLa-CIITA cells (9), MHC-I in COS-7 cells and HeLa
cells (12,19,20), T-cell receptor (TCR) in Jurkat T cells (13),
Ca2+-activated K+ channel KCa2.3 in human embryonic
kidney cells and human microvascular endothelial cells
(HMEC-1) (21), Megalin in L2 rat yolk sac cells when auto-
somal recessive hypercholesterolemia (ARH) is depleted
(22), GLUT4 in adipocytes (23), M- and N-Cadherin in
C2C12 and COS-7 cells (10,20) and β1-integrin in COS-7
and HeLa cells (11,20). In addition, Rab35 depletion or
inactivation also perturbs trafficking from the endosomes
to the trans Golgi network (TGN) of internalized Shiga
toxin (24), or CI-mannose-6-phosphate receptors (14).

Altogether, there is clear evidence that Rab35 controls the
trafficking of unrelated cargoes at the level of endosomes,
indicating that Rab35 plays a fundamental and conserved
role after cargo internalization.

OCRL, MICAL-L1 and ACAP2: three key
effectors of Rab35 in endocytic trafficking

Effector proteins bind specifically to active, GTP-bound
Rabs, and mediate their cellular effects. Three Rab35

2 Traffic 2016



Rab35 GTPase in Endocytic Recycling and Beyond

effectors, OCRL, MICAL-L1 and ACAP2 have been char-
acterized and explain the role of Rab35 in regulating
phosphoinositides on endosomes, endosomal fission and
cargo recycling.

OCRL
Initial work in Drosophila and human cells indicated
that Rab35 plays a critical role in regulating the levels
of the PtdIns(4,5)P2 lipid on endosomes (8). Inactiva-
tion of Rab35 using Rab35 S22N dominant-negative
mutant induces the formation of intracellular vacuoles
that are abnormally rich in PtdIns(4,5)P2, suggesting
that Rab35 limits this phosphoinositide in normal cells.
Interestingly, these vacuoles are rapidly covered by the
PtdIns(4,5)P2-binding protein SEPTIN2 and slowly accu-
mulate F-actin. The delocalization of SEPTIN2 from the
plasma membrane onto these vacuoles likely explains
the cleavage furrow instability and cytokinesis failure
observed upon Rab35 inactivation in human cells, or
Rab35 depletion in Drosophila cells (8).

This raised the question of why PtdIns(4,5)P2 accu-
mulates on endosomes when Rab35 is inactivated.
GTP-bound Rab35 is known to bind directly to the
PtdIns(4,5)P2 phosphatase OCRL (25,26), an enzyme
that selectively hydrolyses PtdIns(4,5)P2 into PtdIns4P
(27–31). Mutations in OCRL are responsible for the
Oculo-Cerebro-Renal syndrome of Lowe, a rare genetic
disease characterized by reabsorption defects in renal cells,
congenital cataract and mental impairment (27–29,31). At
the cellular level, OCRL depletion perturbs endocytic recy-
cling and trafficking from endosomes to the TGN (32,33),
which is reminiscent of the defects observed after Rab35
depletion.

A recent study revealed that GTP-bound Rab35 directly
recruits OCRL onto clathrin-coated endosomes, just after
their scission from the plasma membrane (14). In addition,
depletion of either Rab35 or OCRL leads to accumula-
tion of PtdIns(4,5)P2- and F-actin-binding proteins on
enlarged peripheral endosomes, and delays trafficking of
internalized mannose-6-phosphate receptor to the TGN.
Similarly, Rab35 depletion leads to the accumulation of N-
and M-cadherin in transferrin-, clathrin- and AP2-positive
endosomes in C2C12 myoblasts (10). Altogether, Rab35
functions with OCRL to promote PtdIns(4,5)P2 hydrolysis

on newborn endosomes, hence clathrin uncoating and
subsequent trafficking and sorting steps from early endo-
somes (14). This indicates a crucial role of Rab35 in
defining the lipid identity of peripheral endosomes before
they fuse to give rise to early endosomes.

MICAL-L1 and ACAP2
In addition, Rab35 plays a later role on recycling endo-
somes positive for ARF6 (34,35), through the coordinated
recruitment of the Rab35 effectors MICAL-L1 and the
ARF6 GAP centaurin β2/ACAP2 (25,36). This mecha-
nism has been particularly well studied during neurite
outgrowth in PC12 cells in response to NGF stimulation
(37–41). Expression of a partially constitutive active
mutant (Rab35 Q67L) (42) promotes neurite outgrowth
in PC12 cells and in N1E-115 cells, whereas expression
of a constitutively active mutant of ARF6 inhibits neurite
outgrowth and endocytic recycling (34,38,43,44). Upon
nerve growth factor (NGF) stimulation, Rab35 accumu-
lates on ARF6-positive perinuclear recycling endosomes
and recruits both MICAL-L1 and ACAP2 (36,38). Then,
MICAL-L1 together with ACAP2 controls the recruit-
ment of EHD1, a protein inducing membrane fission
due to its similarities to dynamin (39,40,45). Mechanisti-
cally, MICAL-L1 associates directly with EHD1, whereas
ACAP2 promotes EHD1 recruitment indirectly through
the inactivation of ARF6 and thereby maintenance of
PtdIns4P, a scaffold factor for EHD1 (39). This is con-
sistent with previous findings indicating that Rab35 is
required for EHD1 recruitment on recycling endosomes
(12). In parallel to promoting fission of tubular endosomes
through EHD1, MICAL-L1 also recruits downstream
Rabs (namely Rab8, Rab13 and Rab36), which promote
recycling (36,40). Thus, Rab35 plays a pivotal role on
ARF6-positive recycling endosomes both by inactivating
ARF6 and by recruiting MICAL-L1, which in turn recruits
additional Rabs and EHD1 (Figure 1).

In addition to the Rab35/ARF6 antagonism described
above, the correct sorting of cargoes that enter by clathrin-
independent endocytosis (such as CD44, CD98 and
CD147) depends on Rab35 activation and ARF6 inac-
tivation on sorting/recycling endosomes (44). When
clathrin-mediated endocytic pathway is inhibited,
ARF6-GTP levels are upregulated and functional
experiments indicate that Rab35 is on the contrary
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Figure 1: Functions of Rab35 in membrane traffic. PtdIns(4,5)P2 homeostasis during endocytosis and recycling is regulated by
Rab35 and its effectors. In clathrin-coated pits, PtdIns(4,5)P2 levels (green) are high: ARF6 directly recruits the PtdIns 5-kinase and
inhibits Rab35 activation by recruiting its RabGAP EPI64 (orange circles). After scission of the endosome from the plasma membrane,
the AP2-binding Rab35 GEF DENND1A (light blue circle) activates Rab35 (red circles) on newborn endosomes, where it recruits the
PtdIns(4,5)P2 phosphatase OCRL (blue squares). This promotes PtdIns(4,5)P2 hydrolysis, clathrin uncoating and cargo sorting. On the
recycling endosomes Rab35 activation, which antagonizes with ARF6 activation through the Rab35 effector ACAP2 (light blue square),
recruits MICAL-L1 (green ovals) and thereby EHD1 (orange ovals) and other Rab GTPases (black circles) to allow scission of the tubular
endosomes and to promote recycling to the plasma membrane.

inactivated. As a consequence, the sorting of cargoes
of the ARF6-dependent pathway is perturbed (44). At
the molecular level, one can imagine that depletion
of clathrin inhibits Rab35 activation, as it depends on
AP2/clathrin-binding guanine exchange nucleotide factors
(GEFs) (12,14,15). As a consequence, the Rab35 effector
ACAP2 may not be properly recruited on recycling endo-
somes, which would translate into abnormally elevated lev-
els of ARF6-GTP. Consistent with this mechanism, the lev-
els of ARF6-GTP clearly increase when Rab35 is depleted
(20). Altogether, there is clear evidence that Rab35 nega-
tively regulates ARF6 activation on recycling endosomes,
which is important for correct recycling of cargoes. Such a

Rab35/ARF6 antagonism has been further confirmed dur-
ing the regulation of oligodendrocyte differentiation (46).

GEFs and GAPs control tight activation
of Rab35 on newborn endosomes

The Rab35 GTP/GDP cycle is governed by interaction
with GEFs and GTPase-activating proteins (GAPs) (1).
Several Rab35 GEFs and GAPs have been identified (47),
the best characterized being DENND1A and EPI64A-C,
which altogether regulate a burst of Rab35 activation on
newborn endosomes.
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Rab35 GEFs
DENND1 family
DENND1A is a major GEF for Rab35 in the endocytic
pathway (48). In mammals, the DENND1 family is com-
posed of DENND1A (also known as connecdenn 1),
DENND1B (connecdenn 2) and DENND1C (connec-
denn 3). The DENN domain (differentially expressed in
neoplastic versus normal cells) is an evolutionarily con-
served module present in all eukaryotes (49,50), first iden-
tified as a Rab-binding module in the Rab6/Rab11 inter-
acting protein Rab6ip1 (51,52), and later found to display
Rab GEF activity (48). The first hint that DENND1A func-
tions as a Rab35 GEF came through the identification of its
C. elegans homologue (RME4) in the same screen for
mutants defective in receptor-mediated endocytosis of
yolk proteins that identified Rab35/RME5 (15). Epistasis
experiments indicated that RME4 acts upstream of Rab35
in endocytic recycling, and mutations in RME4 and RME5
lead to similar trafficking defects (15). Finally, RME4 inter-
acts specifically with GDP-bound Rab35, suggesting that
it acts as a Rab35 GEF (15). It was subsequently demon-
strated that indeed DENND1A is a bona fide GEF for Rab35
in vitro (12). Importantly, disrupting DENND1A function
impairs trafficking through endosomes, as observed upon
Rab35 depletion in several cell types (12,14,15), indicating
that it is a functional Rab35 GEF. Of note, DENND1A
might have other yet-to-be-identified target(s), as the
RME4 mutant has a stronger endocytic phenotype than
the RME5 mutant in C. elegans, at least in certain cell
types (15).

Before knowing that it is a Rab35 GEF, DENND1A/
connecdenn1 had been previously characterized as a novel
clathrin-coated vesicle (CCV) component, which interacts
directly with clathrin, with the α-ear of the endocytic
clathrin adaptor AP-2, and with the accessory proteins
intersectin, endophilin A1 and adaptin-ear-binding
coat-associated protein (NECAP) (53,54). Accordingly,
DENND1A partially colocalizes with AP-2 (12,15). An
exceptional feature of DENND1A is its strong inter-
action with the surface of CCVs in vitro, even under
conditions where clathrin is removed, suggesting a role
after CCV formation (53). This strong association likely
results from combined interactions between DENND1A
and Rab35 itself, and with the AP-2, accessory proteins,
14-3-3 proteins and phosphoinositides (12,55). Detailed

TIRF-microscopy-based analysis recently revealed that
DENND1A is loaded onto CCVs just after the scission
of CCPs from the plasma membrane and a few seconds
before Rab35 itself (14). AP-2 binding is necessary, but not
sufficient to explain the DENND1A recruitment profile, as
AP-2 is present in CCPs well before CCVs scission from
the plasma membrane. Altogether, multiple reports indi-
cate that DENND1A is a major Rab35 GEF that activates
Rab35 on CCVs to promote endocytic recycling of various
cargoes after internalization.

Among the 26 DENN-containing proteins in Man, three
(DENND1A, DENND1B and DENND1C, plus alterna-
tive spliced variants) constitute the DENND1 subfamily
(48,50). The Rab35/DENND1B complex was the first
crystal structure of a Rab/DENN-containing protein
solved, and it provided hints on how DENN GEFs act at
the molecular level (56). All members of the DENND1
family have robust, although differential GEF activity
toward Rab35 and interact with the clathrin machinery
(57). Indeed, DENND1A-C associates with AP-2 (through
different mechanisms), clathrin and phosphoinositides
(12,48,57,58). DENND1B is expressed more broadly than
DENND1A, and might functionally replace DENND1A,
although clear differences in AP-2-colocalization and
CCV binding exist (57). DENND1C is distinct as it dis-
plays an additional in vitro GEF activity for Rab13 (but
weaker than for Rab35) (59,60), and as it binds directly to
actin and partially colocalizes with the actin cytoskeleton
(60). In contrast to DENND1A-B that activates Rab35
on endosomes, DENND1C is important for activating
Rab35-mediated functions in actin remodeling (60), as
described later.

Folliculin
Folliculin (FLCN) is a potential Rab35 GEF and displays a
selective GEF activity toward Rab35, at least in vitro (61).
The primary sequence of FLCN does not reveal a discern-
able DENN domain, but unexpectedly, the atomic structure
of the C-terminal part of FLCN revealed the presence of a
DENN module (61). Loss-of-function mutations in FLCN
leads to a rare genetic disease, the Birt-Hogg-Dubé syn-
drome (BHD) characterized by benign skin tumors and
elevated incidence of renal carcinomas (62). FLCN impacts
on numerous cell functions and regulates for instance
mTORC signaling (63), as recently found for Rab35 (see
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below). However, further studies are needed to demon-
strate whether FLCN is a functional Rab35 GEF in cells.

Rab35 GAPs
TBC1D10A-C/EPI64A-C
While Rab35-GTP inhibits ARF6 by recruiting ACAP2 as
described above, ARF6-GTP also inhibits Rab35 activa-
tion. Indeed, ARF6-GTP directly interacts with EPI64A-C
(TBC1D10A-C) (64), which constitutes a family of func-
tional GAPs for Rab35 (13,19,24,65). Consequently,
overexpression of either a constitutively active mutant
of ARF6 (ARF6 Q67L), EPI64, or a dominant-negative
of Rab35 (Rab35 S22N) all lead to the formation of
PtdIns(4,5)P2-rich vacuoles that block endocytic cargo
recycling and inhibit cytokinesis (13,19,21). In addi-
tion, ARF6-GTP and EPI64 both reduce the levels of
Rab35-GTP in cells (19), as measured by a high affinity
trap with a domain of RUSC2 (66). Tissue expression of
EPI64A-C differs, and each of these GAPs likely regulates
Rab35 in a cell type-specific manner (13,19). Interest-
ingly, ARF6 is present in clathrin-coated pits (19,67),
where it recruits EPI64B, thus preventing activation of
Rab35 in CCPs (19). Total internal reflection fluorescence
(TIRF)-microscopy confirmed that EPI64B is present
on CCPs, but not on CCVs (14), likely because it is
retained at the cell cortex through its interaction with the
Ezrin-interacting protein EBP50 (64).

The presence of the Rab35 GAP EPI64B before CCP scis-
sion combined to the recruitment just after the scission of
the Rab35 GEF DENND1A explains the precise spatial and
temporal activation of Rab35 on newborn clathrin-coated
endosomes (14). This mechanism of regulation ensures
that Rab35 recruits OCRL only after CCP scission in
order to hydrolyze PtdIns(4,5)P2. Before CCP scission,
PtdIns(4,5)P2 production is essential for recruiting key
CCP proteins. It is favored both by ARF6 (which inter-
acts with a PtdIns4P 5-kinase) and by preventing Rab35
activation thus OCRL recruitment. On the contrary, after
scission, Rab35 is activated and recruits OCRL on new-
born endosomes. This induces PtdIns(4,5)P2 hydrolysis
and promotes clathrin uncoating (14) (Figure 1). In con-
clusion, ARF6 and Rab35 are part of a putative bi-stable
switch: ARF6-GTP inhibits Rab35 activation through
binding to Rab35 GAP EPI64, whereas Rab35-GTP
inhibits ARF6 activation through binding to ARF6 GAP

ACAP2 (Figure 1). In other words, it is predicted that
at a membrane it is either Rab35-GTP/ARF6-GDP, or
Rab35-GDP/ARF6-GTP. As described in the last section
this could be important to control local phosphoinositide
levels and F-actin dynamics.

Skywalker/TBC1D24
Mutations in the neuronal Rab35 GAP Skywalker
(TBC1D24) revealed that Rab35 is implicated in endo-
somal sorting of synaptic vesicle proteins in Drosophila
neuromuscular junctions (68). Increasing the levels of
active Rab35 facilitates endosomal trafficking, which
boosts neurotransmission. Whether TBC1D24 inactivates
Rab35 only in neurons and whether this regulation is
evolutionarily conserved remains to be investigated.

TBC1D13
Upon insulin stimulation glucose transport in adipocytes
is stimulated by the translocation of the glucose trans-
porter GLUT4 from internal membranes to the plasma
membrane. Overexpression of the Rab GAP TBC1D13
prevents GLUT4 translocation following insulin stimula-
tion and reduces Rab35 activation in cells (69). Further-
more, TBC1D13 is a Rab35 specific GAP in vitro and the
defects observed after TBC1D13 overexpression could be
rescued by coexpression of a constitutively active Rab35
Q67L mutant. In addition, TBC1D13 is also a Rab10 effec-
tor suggesting a potential Rab cascade whereby Rab10
recruits TBC1D13 to inactivate Rab35 on a compartment
that remains to be characterized (69). Further work will be
needed using Rab35- or TBC1D13-depleted cells to con-
firm a role for activation of endogenous Rab35 in the traf-
ficking of GLUT4 upon insulin stimulation, and to poten-
tially extend the role(s) in other cell types of this ubiqui-
tously expressed GAP.

Rab35 functions in immunity
and phagocytosis

As mentioned above, Rab35 regulates the trafficking of key
immune receptors: MHC-I, MHC-II-peptide complex and
the TCR (9,12,13,19,20).

Depletion of Rab35 in COS-7 cells indeed inhibits the recy-
cling of MHC-I back to the plasma membrane after its
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internalization through clathrin-independent endocytosis.
This leads to an accumulation of MHC-I in early endo-
somes due to failure of EHD1 recruitment onto early endo-
somes (12,20). Inactivation of Rab35 in HeLa cells also
leads to the intracellular accumulation of MHC-I, here in
vacuoles that are positive for TfR, but negative for early
endosome markers such as Rab5 and EEA1 (19).

In addition, mature MHC-II-peptide complexes are endo-
cytosed in a clathrin-independent manner and their recy-
cling requires Rab35 (9). Expression of ARF6 T27N, or
Rab35 S22N dominant-negative mutants in HeLa-CIITA
cells both induces the accumulation of MHC class-II on
vesicular structures positive for ARF6, Rab35 and EHD1,
and impairs recycling.

Finally, the formation of the immune synapse requires
enrichment of TCR and other signaling molecules at the
contact site between T cells and antigen presenting cells.
Inactivation of Rab35 by overexpression of Rab35 GAP
EPI64C (preferentially expressed in hematopoietic cells),
or of the dominant-negative mutant Rab35 S22N inhibits
TCR recycling (13). Altogether, this prevents TCR enrich-
ment at the contact site and impairs conjugate formation.
The role of Rab35 in TCR recycling has been recently
confirmed in mouse TH2 cells (70). Depletion of Rab35
or mutations in DENND1B delays TCR down-regulation
from the cell surface following receptor activation, thus
enhances TCR signaling, increases TH2 cytokine produc-
tion and leads to hyperallergic responses (70). It remains
to be established how Rab35 regulates TCR internalization
that could be indirect, as Rab35 is loaded on endosomes
only after internalization (14). Interestingly, impaired
Rab35 activation is linked to asthma, as human TH2 cells
from patients harboring asthma-associated DENND1B
variants phenocopy Dennd1b−/− TH2 cells.

Besides being involved in normal trafficking of immune
receptors, Rab35 also contributes to immunity by regu-
lating phagocytosis. During FcR-mediated phagocytosis
in macrophages Rab35 is found at the base of the phago-
cytic cup (71). Depletion or inactivation of Rab35 leads
to decreased phagocytosis due to impaired membrane
extensions and phagocytic cup formation. Conversely,
GTP-bound Rab35 recruits ACAP2 to inactivate ARF6,
which promotes actin-rich protrusions and is necessary

for the final phagosome closure. Interestingly, Rab35
is deactivated immediately after phagosome formation,
while ARF6 gets transiently activated (72). This tight
regulation is necessary for successful phagocytosis and
highlights again the mutual Rab35/ARF6 antagonism
already described above in the trafficking section. A role
for Rab35 in phagocytosis and innate immunity has also
been described in Drosophila (73,74). Rab35 mutant flies
show strong susceptibility to infection and inactivation
of Rab35 strongly inhibits the formation of actin-rich
protrusions required for phagocytosis (74).

Hijacking of the Rab35 pathway by pathogens

Intracellular pathogens often use and modulate their host
cells’ trafficking machineries to direct proteins and mem-
branes to their vacuole, which is required for pathogen
survival and replication. The bacteria Legionella pneu-
mophila induces posttranslational modifications of host
Rab GTPases Rab1 and Rab35 to modulate endocytic and
exocytic pathways, respectively (75). Legionella secretes
two enzymes that covalently modify host Rab1 and Rab35:
DrrA (which mediates the covalent attachment of an AMP
moiety to a specific tyrosine or AMPylation) and AnkX
(which mediates the covalent attachment of phospho-
choline moiety to a specific serine or phosphocholination)
(75,76). Consequently, AnkX expression reduces Rab35
binding to its GEF DENND1A and mimics Rab35 deple-
tion. In addition, phosphocholination reduces the extrac-
tion of Rab35 from membranes by GDI (GDP dissociation
inhibitor), at least in vitro (5,76). Besides AnkX, Legionella
secrete another effector protein (LepB) that in vitro displays
GAP activities toward Rab1, Rab3, Rab8, Rab13 and Rab35
(77). Thus, different bacterial effectors target Rab35 and its
inactivation is central for Legionella infection.

In urinary tract infections caused by intracellular
uropathogenic Escherichia coli (UPEC), Rab35 facilitates
UPEC survival within vacuoles in bladder epithelial cells
(18). Indeed, UPEC enhances the expression of both Rab35
and TfR and recruits these proteins to UPEC-containing
vacuoles, thereby enhancing iron delivery into the vacuole.
In addition, Rab35 helps UPEC to escape lysosomal degra-
dation, which further promotes intracellular survival of
UPEC. The compartment occupied by UPEC reassembles
that of Anaplasma phagocytophilum and also recruits
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Rab35 (78), perhaps to similarly promote iron delivery to
the bacteria.

Rab35 is also known to play a role in the extracellular
release of the Bacillus anthracis virulence factor anthrax
lethal toxin. In RPE cells, both Rab11 and Rab35 are
required for the delivery of exosomes loaded with the
toxin into the extracellular medium (79). Apart from infec-
tion, the role for Rab35 in exosome secretion had been
demonstrated in oligodendrocytes and in MDCK cells
(65,80). Interestingly, expression of active Rab35 Q67L
reduces the motility of LysoTracker-labeled vesicles, sug-
gesting that active Rab35 might promote vesicle tethering
to facilitate membrane fusion and exosome secretion (65).
A similar Rab35-dependent tethering mechanism has been
recently demonstrated during apico-basal polarity estab-
lishment in renal epithelial cells, as described in the next
section.

Rab35 functions in cytokinesis and cell
polarity

Cell division and cell polarity are two processes that are
tightly linked to each other, and Rab35 has not only been
implicated in both processes, but also couples them.

The importance of Rab35 in cytokinesis was first discov-
ered in a RNAi screen in Drosophila S2 cell for cytokinesis
defects, as mentioned above (8). Depending on the level of
Rab35 depletion/activation, Drosophila or human cells dis-
play either bridge instability leading to binucleated cells, or
delayed abscission (26). As found on newborn endosomes
in interphase cells, Rab35 controls OCRL localization at
the plasma membrane of the cytokinetic bridge connecting
the daughter cells. This allows PtdIns(4,5)P2 hydrolysis that
is necessary for preventing F-actin accumulation during
late cytokinesis, and thus for successful abscission. Indeed,
abscission in HeLa cells is greatly delayed in OCRL- or
Rab35-depleted cells, and this is associated with increased
levels of PtdIns(4,5)P2 and F-actin at the bridge. Inter-
estingly, low nontoxic doses of Latrunculin-A rescue the
delay in abscission indicating that Rab35/OCRL controls
actin clearance necessary for completion of abscission (26).
Unexpectedly, Rab35 has also been involved in an earlier
step of cell division, in the formation and maintenance
of microtubule-based meiotic spindles in mice oocytes

(81). Depletion of Rab35 in oocytes induces abnormal and
multipolar spindles and decreases polar body extrusion.
How Rab35 could influence spindle morphology remains
to be investigated and could possibly involve PtdIns(4,5)P2
and thus septins.

Recently, Rab35 has been found to couple cytokinesis with
the establishment of apico-basal polarity in MDCK cyst
development (82). MDCK cells cultured in matrigel form
single cell layer spheres (cysts) with a central apical lumen.
Each cyst results from the successive division of a single,
initially unpolarized cell. Strikingly, inactivation of Rab35
leads to cysts with complete inversion of apico-basal polar-
ity and lacking open lumens. In normal cysts, Rab35 targets
intracellular vesicles transporting aPKC, Cdc42, Crumbs3
and the lumen promoting factor podocalyxin to the mem-
brane surrounding the first cytokinetic bridge, which
defines the apical initiation site. Rab35 is enriched at the
cleavage furrow and tethers apical-vesicles through a direct
interaction with the cytoplasmic tail of podocalyxin. There-
fore, PODXL is as a novel effector of Rab35 and Rab35
physically couples cytokinesis with initiation of apico-basal
polarity. The importance of Rab35 in apical polarity in
3D MDCK cysts has been confirmed recently (83). Inter-
estingly, ACAP2 is an effector of Rab35 in 3D but not
in 2D cultures, highlighting the fundamental differences
in trafficking between the two conditions (83). Impor-
tantly, the implication of Rab35 in polarity establishment
has also been reported in vivo in seamless tube forma-
tion in Drosophila tracheal terminal cells (84). Growth
of seamless tubes is polarized along the proximodistal
axis and is regulated by Rab35 and its GAP Whacked (a
homologue of EPI64A-C). GTP-bound Rab35 directs the
transport of apical membrane vesicles to the distal tip of
terminal cell branches to induce seamless tube growth.
Interestingly,

Rab35 functions in cell migration and cancer

The first potential link between Rab35 and tumorigene-
sis came from the existence in lymphoma cells of a com-
plex between Rab35 and the oncogenic chimeric kinase
NPM-ALK, but the functional significance of this inter-
action needs to be investigated (85). Along the same line,
Rab35 was found associated with the p53 kinase PRPK
and overexpression experiments suggest it may regulate
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p53 transcriptional activity (7). Furthermore, Rab35 might
represent a biomarker of ovarian cancer, as Rab35 expres-
sion is upregulated in this cancer (86).

Rab35 depletion in COS-7 cells leads to phenotypes resem-
bling epithelial–mesenchymal transition (EMT), includ-
ing decreased cell adhesion and increased cell migration,
which is often observed for cancer cells (20). In COS-7
cells, Rab35 activity and the mutual antagonism with ARF6
are required to maintain N- and E-cadherin at the cell
surface to promote cell–cell adhesion (20). This is consis-
tent with previous studies showing that Rab35 depletion
inhibits C2C12 myoblast fusion through impaired cad-
herin recycling to the plasma membrane (10). Rab35 is pro-
posed to inhibit cell migration through ACAP2-dependent
inactivation of ARF6, which results in an inhibition of
the β1-integrin and epidermal growth factor (EGF) recep-
tor recycling (20). However, a separate study in HeLa
and MDA-MB-231 cells did not detect a role for Rab35
in β1-integrin recycling, but instead an inhibitory role
of Rab35 in β1-integrin internalization (11). The reason
for this apparent discrepancy is not known, but it could
depend on differences in cell types and experimental setups
(see discussions in 11 and 20).

In cancer cells Rab35 activation is regulated through sev-
eral mechanisms. First, Rab35 expression is suppressed
in a subset of cancers characterized by elevated ARF6
activity (20), reinforcing the notion of the ARF6/Rab35
antagonism. Furthermore, Rab35 is negatively regulated by
microRNA-720 (miR-720), which is upregulated in cervi-
cal tumors (87). In HeLa cells overexpression of miR-720
diminishes Rab35 expression and thereby promotes cell
migration (87), as also observed in COS-7 cells (20).

In contrast with the studies mentioned above, Rab35 deple-
tion does not promote, but instead inhibits cell migra-
tion when breast cancer MCF-7 cells are stimulated by
Wnt5a (88). Here, Rab35 acts downstream of Wnt5a and
Dvl2 and upstream of Rac1 to promote cell migration,
although the mechanisms by which Wnt5a and Dvl2 acti-
vate Rab35 and Rac1, respectively, remain to be estab-
lished. Altogether, the role of Rab35 in cell migration is thus
complex, depending on the cell type and might be influ-
enced by external cues that modulate signal transduction
pathways.

Quite recently, Rab35 has been directly linked to cancer
through its regulatory role in the phosphatidylinositol-
3-kinase (PI3K)/ AKT signaling pathway (89), as pre-
viously noted (20). Depletion of Rab35 suppresses
phosphorylation-induced AKT activation in different
cell types, whereas expression of a GTP-bound Rab35
Q67L mutant induces constitutive AKT signaling. Rab35
functions downstream of growth factor receptors and
upstream of PDK1 and mTORC2, possibly by regulating
PI3K as Rab35-GTP co-immunoprecipitated with the
lipid kinase. Expression of active Rab35 is sufficient to
drive PDGFR-α into Lamp2-positive endosomes even in
absence of ligands, leading to constitutive AKT phospho-
rylation. Interestingly, AKT-dependent phosphorylation
releases the auto-inhibition of the Rab35 GEF DENND1A,
thus increasing GEF activity and binding to Rab35 and
in such a way promotes Rab35 activation (55). Hence,
Rab35 activation and AKT phosphorylation potentially
act together in a positive feedback loop. Importantly, in
human cancers two somatic Rab35 mutations were found
to constitutively activate PI3K/AKT signaling. When over-
expressed in HeLa cells the same mutations phenocopied
the expression of GTP-locked Rab35, suppressing apop-
tosis and promoting cellular transformation. Altogether,
this suggests that Rab35-dependent recycling of specific
growth factor receptors plays a driving role in cancer
development.

Rab35: a key regulator of F-actin
at the plasma membrane

At first sight the cellular functions of Rab35 seem to be
very diverse: endocytic recycling, cytokinesis, phagocyto-
sis, migration, neurite outgrowth, membrane protrusion,
cancer and infection (Figure 2). However, many of these
regulatory functions in actin dynamics can be explained
by a common, fundamental role played by Rab35 at
the plasma membrane. Indeed, Rab35 regulates many
actin-based phenomena. Rab35 depletion inhibits neurite
outgrowth (38–40,60) and membrane extension (74,90),
as mentioned previously. Interestingly, Rab35 colocalizes
with Cdc42, Rac1 and RhoA in PC12 and N1E-115 and
BHK neuronal cells, activates Cdc42 and stimulates neurite
outgrowth in a Cdc42-dependent manner through actin
remodeling (37). In addition, Rab35 translocates from

Traffic 2016 9



Klinkert and Echard

Figure 2: Functions of Rab35 at the plasma membrane. Rab35 (red circles) regulates many cellular functions in association with
specific effector proteins. Note that most cellular functions involve the regulation of F-actin polymerization either through Rac1/Cdc42
activation, ARF6 inactivation or through OCRL-mediated PtdIns(4,5)P2 hydrolysis.

recycling endosomes to neurite tips upon NGF stimu-
lation (91). Finally, Rab35 also regulates Rac activity in
Wnt5-induced migration (88), as well as Rac and Cdc42
localization during phagocytosis in Drosophila (74).
Altogether, there is a body of evidence arguing for an
important role for Rab35 in local targeting and activation
of both Rac and Cdc42 at the plasma membrane. How
Rab35 promotes Rac and/or Cdc42 activation is a key open
question for future studies.

Consistent with a strong link between Rab35 and the actin
cytoskeleton, inactivation of Rab35 during Drosophila
development induces malformation of bristles that are
actin-based structures (90). Malformed bristles are caused
by lose and disconnected actin, suggesting a direct role

for Rab35 in actin organization. Accordingly, the actin
bundling protein fascin is an effector of Rab35 and
overexpression of fascin can rescue the bristle phenotype
induced by Rab35 depletion, placing fascin downstream
of Rab35. Using Drosophila S2 cells it was further demon-
strated that active Rab35 ectopically expressed at the
mitochondrial membrane was sufficient to induce actin
bundling around the mitochondria (90). Consistent with
Rab35 promoting actin-based protrusions, overexpres-
sion of the constitutively active mutant Rab35 Q767L
leads to long cell extensions in BHK cells, Drosophila
S2 and SL2 cells, NIH3T3, Jurkat T cells and HeLa cells
(4,13,37,60,74,90,92). Co-overexpression of DENND1C
and wild-type Rab35 has an even greater impact on the
formation of cell protrusions, indicating that in cell shape
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morphology changes the actin-binding GEF DENND1C
is likely responsible for Rab35 activation (60). How-
ever, it would be important to test this idea directly in
DENND1C-depleted cells. Interestingly, the colocalization
between Rab35 and fascin is enhanced when DENND1C
is overexpressed in mammalian cells. Thus, it is proposed
that DENND1C is recruited by actin, then locally acti-
vates Rab35, which in turn recruits fascin to induce actin
filament bundling and membrane protrusions (60).

In other cellular functions involving Rab35 such as cytoki-
nesis, phagocytosis or migration, several other Rab35
effectors regulating PtdIns(4,5)P2 levels (e.g. OCRL and
ACAP2) could contribute to regulate local F-actin remod-
eling in parallel to ARF6, Rac and Cdc42 (26,71,93,94).

Conclusions and open questions

Rab35 plays a fundamental and evolutionarily conserved
role in endocytic recycling of diverse cargos from the endo-
somes to the plasma membrane. This trafficking func-
tion relies on Rab35 effectors that promote PtdIns(4,5)P2
hydrolysis and clathrin uncoating after endosome scission
from the plasma membrane (OCRL), fission of tubular
recycling endosomes through the recruitment of additional
Rabs and EHD1 (MICAL-L1) and inactivation of the ARF6
GTPase on recycling endosomes (ACAP2). Rab35 appears
a few seconds after endosome scission and as its colocaliza-
tion with the early endosomal maker Rab5 is limited, it is
postulated that Rab35 is recruited transiently on newborn
endosomes and is lost from early endosomes (14). While
the Rab35 GEF on newborn endosome is the AP2-binding
protein DENND1A, the identity of the GEF(s) acting at the
level of recycling endosomes remains elusive. The functions
of Rab35 and ARF6 are interdependent, as the Rab35 GAP
EPI64 is an effector of ARF6 and the ARF6 GAP ACAP2
is an effector of Rab35. The potential mutual antagonism
between Rab35 activation and ARF6 activation has been
reported in many instances, but visualizing the conversion
of Rab35-GTP by ARF6-GTP (and vice versa) on internal
membranes will require the development of GTP-specific
biosensors for live-cell imaging.

Besides being localized on endosomes, Rab35 is a unique
Rab GTPase due to its presence at the plasma membrane.

However, it is difficult to determine what is the impor-
tance of Rab35 in directly recruiting effectors at the plasma
membrane, versus the importance of endosomal Rab35
in delivering effectors to the plasma membrane. Actually,
Rab35-dependent trafficking appears to target Rac and
Cdc42 to the plasma membrane during phagocytosis and
during neurite outgrowth, and to be a major positive reg-
ulator of their activation through mechanisms that remain
to be discovered. In addition, Rab35 favors protrusions by
recruiting the actin-bundling factor fascin. A major ques-
tion for the future is to identify the GEFs that locally acti-
vate Rab35 at the plasma membrane during cell migra-
tion, cytokinesis, membrane protrusions and phagocyto-
sis. As on endosomes, Rab35 recruits the PtdIns(4,5)P2
phosphatase OCRL at the plasma membrane to regulate
local actin clearance during cytokinesis. It is likely that the
same functional module regulates actin clearance at the
base of the phagocytic cup during phagosomal closure, as
described for both OCRL and Rab35 (93,94). We thus spec-
ulate that Rab35-recruitment of OCRL and F-actin remod-
eling might be an ancestral function of Rab35 both on
endosomes and at the plasma membrane.

Posttranslational modifications such as phosphocholina-
tion and AMPylation of Rab35 seem to play a major role in
successful bacterial infection. Surprisingly, little is known
about Rab35 posttranslational modifications that might
modulate Rab35 function in normal cells. Clearly, geranyl-
geranylation of the C-terminus of Rab35 is not sufficient
to explain its unique plasma membrane localization (as
Rabs in general are prenylated at their C-terminus), which
critically depends on its polybasic tail. Rab35 is phospho-
rylated at least nine positions (http://www.phosphonet.ca),
notably in the C-terminal extremity (SKRKKRCC). One
can imagine that phosphorylation of the tail will change
the affinity of Rab35 for the plasma membrane and thus
regulates Rab35 distribution between endosomes and
the plasma membrane. Phosphorylation of another small
GTPase RhoA at S188 is known to regulate its association
with the plasma membrane (95) giving credence to the
notion that S194 phosphorylation might do the same for
Rab35.

There is also an urgent need for animal models to
understand Rab35 functions in vivo. Surprisingly,
loss-of-function mutants in C. elegans and Drosophila
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melanogaster are viable, although they affect yolk inter-
nalization and increase susceptibility to infections,
respectively (15,74). Other Rab GTPases are strongly
upregulated after Rab35 depletion (e.g. Rab5) (12), sug-
gesting potential functional compensations. However,
rab35 KO is embryonic lethal in mice (see discussion in
21) and future work will certainly reveal interesting func-
tions of Rab35 during development. Finally, identifying
additional Rab35 effectors will be essential in the future,
and together with specific GEFs, might directly connect
Rab35 to a number of diseases such as asthma, the Lowe
syndrome, the BHD syndrome and cancer.
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RESUME 
 

L’établissement de la polarité apico-basale dans les tissus épithéliaux est étroitement 

lié à la division cellulaire, mais les mécanismes moléculaires sous-jacents n’ont pas 

encore été établis. A l’aide d’un modèle de culture en 3 dimensions de cellules rénales 

(MDCK), j’ai montré que lors du développement d’un cyst, la GTPase Rab35 joue un rôle 

majeur dans l’établissement de la polarité et le positionnement du lumen pendant la 

première division cellulaire. Au niveau moléculaire, Rab35 permet de coupler 

l’initiation de la polarité apico-basale avec la cytocinèse via l’attachement au sillon de 

clivage de vésicules intracellulaires contenant des déterminants clé de l’établissement 

de la polarité. Ces vésicules transportent notamment les protéines aPKC, Cdc42, 

Crumbs3 ainsi que le facteur d’ouverture de la lumière Podocalyxin. De plus, 

l’attachement de ces vésicules au sillon de clivage dépend de l’interaction directe entre 

Rab35 et la queue cytoplasmique de Podocalyxin. Par conséquence, l’inactivation de 

Rab35 entraine une inversion complète de la polarité apico-basale des kystes 3D. J’ai 

mis en évidence un nouveau mécanisme de ciblage des vésicules intracellulaire au site 

de clivage dépendant de la protéine Rab35 impliqué à la fois dans l’initiation de la 

polarité apico-basale et dans l’ouverture de la lumière au centre du cyst.  

 

Mot clés: polarité epithélial, cytocinèse, Podocalyxin, Rab35 GTPase, 3D MDCK cysts 

 

ABSTRACT 
 

Establishment and maintenance of apico-basal polarity in epithelial organs must be 

tightly coupled with cell division, but the underlying molecular mechanisms are largely 

unknown. Using 3D cultures of renal MDCK cells (cysts), I found that the Rab35 GTPase 

plays a crucial role in polarity initiation and apical lumen positioning during the first 

cell division of cyst development. At the molecular level, Rab35 physically couples 

cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles 

containing key apical determinants at the cleavage site. These vesicles transport aPKC, 

Cdc42, Crumbs3 and the lumen promoting factor Podocalyxin, and are tethered through 

a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. 

Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 

3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting 

provides a simple mechanism for triggering both initiation of apico-basal polarity and 

lumen opening at the centre of cysts. 

 

Keywords: Epithelial polarity, cytokinesis, Podocalyxin, Rab35 GTPase, 3D MDCK cysts 

 


