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Résumé : Cette thèse porte sur la modélisation, l'analyse et l'analyse numérique des équations aux dérivées partielles non-linéaires et non-locales avec des applications au trafic routier. Le trafic routier peut être modélisé à des différentes échelles. En particulier, on peut considérer l'échelle microscopique qui décrit la dynamique de chaque véhicule individuellement et l'échelle macroscopique qui voit le trafic comme un fluide et qui décrit le trafic en utilisant des quantités macroscopiques comme la densité des véhicules et la vitesse moyenne. Dans cette thèse, en utilisant la théorie des solutions de viscosité, on fait le passage entre les modèles microscopiques et les modèles macroscopiques. L'intérêt de ce passage est que les modèles microscopiques sont plus intuitifs et faciles à manipuler pour simuler des situations particulières (bifurcations, feux tricolores,...) mais ils ne sont pas adaptés à des grosses simulations (pour simuler le trafic dans toute une ville par exemple). Au contraire, les modèles macroscopiques sont moins évidents à modifier (pour simuler une situation particulière) mais ils peuvent être utilisés pour des simulations à grande échelle. L'idée est donc de trouver le modèle macroscopique équivalent à un modèle microscopique qui décrit un scénario précis (une jonction, une bifurcation, des différents types de conducteurs, une zone scolaire,...). La première partie de cette thèse contient un résultat d'homogénéisation et d'homogénéisation numérique pour un modèle microscopique avec différents types de conducteurs. Dans une seconde partie, on obtient des résultats d'homogénéisation et d'homogénéisation numérique pour des modèles microscopiques contenant une perturbation locale (ralentisseur, zone scolaire,...). Finalement, on présente un résultat d'homogénéisation dans le cadre d'une bifurcation.

Abstract: This work deals with the modelling, analysis and numerical analysis of nonlinear and non-local partial differential equations and their application to traffic flow. Traffic can be simulated at different scales. Mainly, we have the microscopic scale which describes the dynamics of each of the vehicles individually and the macroscopic scale which describes the traffic as a fluid using macroscopic quantities such as the density of vehicles and the average speed. In this PhD thesis, using the theory of viscosity solutions, we derive macroscopic models from microscopic models. The interest of these results is that microscopic models are very intuitive and easy to manipulate to describe a particular situation (bifurcation, a traffic light,...), however, they are not adapted for big simulations (to simulate the traffic in an entire city for example). Conversely, macroscopic models are less easy to modify (to simulate a particular situation) but they can be used for big simulations. The idea is then to find the macroscopic model equivalent to a microscopic model describing a particular scenario (a junction, a bifurcation, different types of drivers, a school zone,...). The first part of this work contains an homogenization result and a numerical homogenization result for a microscopic model with different types of drivers. The second part contains an homogenization and numerical homogenization result for microscopic models with a local perturbation (a moderator, a school zone,...). Finally, we present an homogenization result for a bifurcation.

Introduction générale

Cette thèse porte sur l'analyse et l'analyse numérique d'équations aux dérivées partielles non-locales avec des applications en particulier en trafic routier. La modélisation du trafic routier est particulièrement importante et permet de simuler comment le trafic réagirait à un changement dans les infrastructures ou encore à optimiser le flux du trafic. En effet, il existe des exemples où un changement dans l'infrastructure des routes n'a pas contribué à l'amélioration du trafic. Par exemple en Allemagne à Stuttgart en 1969, après un investissement dans un nouveau réseau routier la situation du trafic routier ne s'est pas améliorée jusqu'à la fermeture d'une des nouvelles routes (voir [START_REF] Knödel | Graphentheoretische Methoden und ihre Anwendungen. Econometrics and Operations Research[END_REF]). Ceci est connu comme le paradoxe de Braess. Durant les dernières années, beaucoup de travaux concernant la modélisation et simulation du trafic routier ont donc été réalisés.

Le trafic peut être modélisé à des différentes échelles : l'échelle microscopique (qui décrit la dynamique de chaque véhicule), l'échelle macroscopique (qui décrit des quantités macroscopiques comme la densité des véhicules, la vitesse moyenne,...) ou encore l'échelle mesoscopique (qui utilise la densité des véhicules et la vitesse moyenne des véhicules mais qui a également accès aux dynamiques de tous les véhicules). Simuler le trafic à chacune de ces échelles a ses propres avantages et désavantages. Dans ce travail on se concentre sur les échelles microscopiques et macroscopiques que nous détaillons maintenant.

Les modèles microscopiques sont très précis et intuitifs puisqu'ils décrivent comment chaque voiture réagit à une situation donnée. Par exemple, c'est facile de modéliser comment un véhicule réagit à la présence d'un ralentisseur, d'un feu ou de tout autre phénomène microscopique. On peut également prendre en compte le fait que tous les conducteurs n'ont pas le même comportement (quelques uns sont plus "agressif", autres prennent plus de temps à réagir, les limitations peuvent être différentes entres les voitures et les camions,...). Cependant, si l'on souhaite simuler le trafic à l'échelle d'une ville, on aurait besoin de prendre en compte tous les véhicules et toutes leurs interactions ce qui serait extrêmement coûteux du point de vue calcul informatique.

Dans cette situation, il est plus judicieux de considérer un modèle macroscopique qui modélise le trafic grâce à des quantités macroscopiques comme la densité de véhicules et la vitesse moyenne des véhicules. La contre partie est qu'il est beaucoup plus difficile de modéliser des phénomènes microscopiques comme la présence d'un feu tricolore par exemple. Cela vient également du fait que en général, les modèles macroscopiques sont basés sur des hypothèse difficilement vérifiables.

Par conséquent, il est très intéressant de pouvoir justifier les modèles macroscopiques grâce à des changements d'échelle dans les modèles microscopiques et voir comment les modèles macroscopiques peuvent garder en mémoire des phénomènes microscopiques (feu tricolore, ralentisseur, zone scolaire, différents types de conducteurs,...). Le problème de dériver des modèles macroscopiques à partir de modèles microscopiques a déjà été étudié pour des modèles microscopiques du type "follow-the-leader" (par exemple dans [AKRM02, DFR15, Hel98, LLK01]). Ces résultats ont été obtenus dans des cadres périodiques et pour des modèles assez simples. Dans cette thèse, nous considérons des modèles plus compliqués (et plus réalistes) et nous traitons également des problèmes avec des modèles non-périodiques. D'un point de vue mathématique, les modèles microscopiques peuvent être représentés par des équations aux dérivées partielles non-linéaires et non-locales (car la dynamique d'un véhicule dépend de la distance à celui de devant). Le bon cadre pour résoudre ces problèmes est la théorie des solutions de viscosité introduite par Crandall et Lions [START_REF] Crandall | Condition d'unicité pour les solutions généralisées des équations de hamilton-jacobi du premier ordre[END_REF][START_REF] Crandall | Viscosity solutions of hamilton-jacobi equations[END_REF] (on renvoie au User's guide de Crandall, Ishii et Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] et au livre de Barles [Bar94] pour une excellente introduction à cette théorie). En ce qui concerne les modèles macroscopiques, ils peuvent être vu comme des équations de Hamilton-Jacobi posées sur des réseaux et nous renvoyons à Imbert et Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] pour une introduction à cette théorie.

Dans les sections qui suivent, nous présentons rapidement des résultats existant pour le trafic routier, et on donne quelques modèles microscopiques et macroscopiques que l'on peut trouver dans la littérature. On montre rapidement comment les modèles classiques sont liés. On présente également les résultats mathématiques qu'on a utilisé dans cette thèse. Enfin, on présente les résultats principaux obtenus dans cette thèse.

Différents types de modèles pour le trafic routier 1.Modèles microscopiques pour le trafic routier

Dans cette section, on récapitule quelques modèles microscopiques classiques pour le trafic routier. A l'échelle microscopique, on considère que les véhicules sont sur une seule route et on utilise les notations suivantes : U j (t) est la position du j-ème véhicule au temps t et l j est la longueur de la voiture (comme illustré dans la Figure 1.1).

Les modèles du premier ordre et second ordre du type "follow-the-leader" (car-following models) décrivent respectivement la vitesse et l'accélération d'une voiture en fonction de la distance à la voiture qui se trouve devant. Le problème de simuler correctement le trafic a été largement étudié au cours des dernières années, notamment dans [BHN + 95, BT10, CHM58, Edi61, GHR61, GCM35, New61, Pip53], où on peut trouver des modèles du premier ou second ordre. Pour une introduction plus détaillé sur les modèles du type "follow-the-leader" on renvoie à [START_REF] Brackstone | Car-following: a historical review[END_REF][START_REF] Hoogendoorn | State-of-the-art of vehicular traffic flow modelling[END_REF]. 
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Modèles classiques du premier ordre

Un modèle microscopique du premier ordre décrit la vitesse de chacune des voitures. Ceci le rend peu réaliste dans le sens où il n'y a pas de temps de réaction (c'est à dire qu'un véhicule va adapter immédiatement sa vitesse en fonction de la distance à la voiture de devant, sans prendre en compte le temps de réaction du conducteur où le délai de freinage ou d'accélération). Ces modèles sont de la forme suivante, pour tout j ∈ Z et t > 0,

Uj (t) = V j (U j+1 (t) -U j (t)) , (1.1) 
où Uj est la vitesse de la j-ème voiture. La fonction V j est une fonction de vitesse optimale (OVF) dont les propriétés sont listées plus loin. On observe que ce modèle ne prend pas en compte la longueur des voitures, ceci vient du fait que la longueur peut être absorbée dans la fonction V j . On renvoie à [START_REF] Batista | Optimal velocity functions for car-following models[END_REF] pour des exemples de fonctions de vitesse optimale.

Les hypothèses classiques sur la fonction V j est qu'elle soit continue, croissante, bornée supérieurement et qu'il existe un h 0 ≥ 0 tel que V j (h) = 0 si h ≤ h 0 (h 0 représente une distance de sécurité). La Figure 1.2 donne une représentation schématique d'une fonction de vitesse optimale. Dans la suite on considérera souvent la cas où V j = V pour tout j ∈ Z, c'est à dire que tous les véhicules ont la même dynamique.

Modèles classiques du second ordre

On présente maintenant un modèle du second ordre (Modèle de Bando [BHN + 95]) qui décrit l'accélération de chacune des voitures. Ces modèles sont plus réaliste puisqu'ils prennent en compte un temps de réaction. On considère le modèle suivant, pour tout j ∈ Z et t > 0,

Üj (t) = a j (V j (U j+1 (t) -U j (t)) -Uj ), (1.2) 
où, Üj est l'accélération de la j-ème voiture. Le coefficient a j est la sensibilité du conducteur numéro j et V j est encore une fois une fonction de vitesse optimale (OVF). Le modèle cherche à faire coïncider la vitesse réelle des voitures avec la vitesse idéale donnée par la fonction de vitesse optimale. Dans les articles [BHN + 95, BT10] on peut trouver différents types de fonctions de vitesse optimale. 

Autres modèles microscopiques du second ordre

On présente maintenant rapidement d'autres modèles microscopiques du second ordre qui sont toujours du type "follow-the-leader". Néanmoins, dans ces modèles l'accélération de chacune des voitures ne dépend pas uniquement de la distance à la voiture qui se trouve devant mais aussi de la différence des vitesse entre les véhicules. En particulier, on voudrait mentionner le modèle introduit par Aw, Rascle et Materne [START_REF] Aw | Derivation of continuum traffic flow models from microscopic follow-the-leader models[END_REF], inspiré par celui introduit dans [START_REF] Gazis | Nonlinear follow-the-leader models of traffic flow[END_REF]. En utilisant les mêmes notations que précédemment, on considère pour tout t > 0, et tout i ∈ Z,

Üi = C Ui+1 -Ui (U i+1 -U i ) 1+γ + A T r V U i+1 -U i l -Ui , ( 1.3) 
avec A > 0, C > 0, γ > 0, l > 0 et le temps de relaxation T r > 0. Les constantes C, A et γ sont à choisir selon la situation que l'on veut modéliser (trafic congestionné ou fluide) et l représente la longueur d'une voiture. On peut voir que si C = 0, l = 1 et que l'on considère A/T r la sensibilité des conducteurs, on retrouve le modèle classique de Bando (1.2). On voudrait aussi mentionner l'intelligent-driver-model (IDM) développé par Treiber, Hennecke et Helbing [START_REF] Treiber | Congested traffic states in empirical observations and microscopic simulations[END_REF]. L'idée de ce modèle est de pouvoir prendre en compte les différents états du trafic (congestionné ou fluide) dans un seul modèle. Pour mieux voir ce que représentent chacun des termes, on introduit v i = Ui et on considère pour tout t > 0 et tout i ∈ Z, Dans ce modèle, v f ree (v) = a 1 -(v/v 0 ) δ est le terme d'accélération libre qui est dominant quand le trafic est fluide. Le terme -a(s * /s) 2 est le terme de décélération quand le trafic est congestionné, c'est le terme dominant quand la voiture i est trop proche de la voiture i+1. On observe que la décélération dépend du rapport entre l'inter-distance idéale et l'inter-distance réelle. L'IDM est plus réaliste et plus complexe que le modèle de Bando dans le sens où il prend en compte la différence entre les vitesses et qu'il peut correctement simuler le trafic congestionné. L'IDM reste un modèle pour une seule route, mais dans l'article de Kesting, Treiber et Helbing [START_REF] Kesting | Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[END_REF], les auteurs ont modifié l'IDM pour prendre en compte (de manière plus réaliste) des changements de voies. Ceci permettant de simuler le trafic avec plusieurs voies et avec des voitures pouvant changer de voie.

vi = a   1 - v i v 0 δ - s * (v i , ∆v i ) s i 2   , ( 1.4 

Modèle macroscopique classique : le modèle LWR

Concernant les modèles macroscopiques, le plus connu est le modèle LWR (Lighthill-Whitham-Richars) qui a été introduit dans [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]. Il est donné par l'équation aux dérivées partielle suivante :

∂ t ρ + ∂ y f (ρ) = 0, (1.6) 
où ρ(t, y) est la densité des véhicules au point y ∈ R (un point physique de la route) au temps t ∈ (0, +∞), et v(ρ) est la vitesse moyenne des véhicules. On appelle f (ρ) = ρv(ρ) le flux du trafic, et c'est aussi le diagramme fondamental qui caractérise le modèle. On peut remarquer que (1.6) utilise des coordonnées Eulériennes (y est un point sur la route). Cepedant, Wagner a montré dans [START_REF] Wagner | Equivalence of the euler and lagrangian equations of gas dynamics for weak solutions[END_REF] (pour les équations de dynamiques des gaz) que le problème (1.6) est équivalent à

∂ t s -∂ x v * (s) = 0, (1.7) 
où s(t, x) = 1/ρ est l'espacement entre les véhicules, x (une variable continue) représente le véhicule d'indice x et v * (s) = v(1/s). On peut voir que l'équation (1.7) utilise des coordonnées Lagrangiennes. De plus, si on note u 0 (t, x) la position du véhicule x, on a que (1.7) est équivalent (voir [START_REF] Leclercq | The Lagrangian coordinates applied to the LWR model[END_REF]) à

∂ t u 0 (t, x) = v * ∂ x u 0 , ( 1.8) 
avec s(t, x) = ∂ x u 0 (t, x). Cela implique que les modèles de type LWR peuvent être vus comme des équations de Hamilton-Jacobi du type (1.8). C'est essentiellement cette formulation que nous utiliserons pour les modèles macroscopiques apparaissant dans cette thèse.

Il existent différents types de diagrammes fondamentaux qui ont été introduit par différents auteurs. Dans le tableau suivant on en liste quelques uns.

[CHM58, [START_REF] Chandler | Traffic dynamics: studies in car following[END_REF]] [START_REF] Greenberg | An analysis of traffic flow[END_REF]] [START_REF] Greenshields | A study of traffic capacity[END_REF] Edie(1960)]

f (ρ) = f max 1 - ρ ρ max [Gre59,
f (ρ) = ρ • V critique • ln ρ ρ max [GCM35,
] f (ρ) = ρ • V max • 1 - ρ ρ max [Edi61,
f (ρ) = ρ • V max • exp - ρ ρ max [May90, M ay(1990)] f (ρ) = ρ • V max • exp - 1 a • ρ ρ max (1.9)

Autres modèles macroscopiques

Il est important de mentionner qu'il existe d'autres modèles macroscopiques. En effet, le modèle LWR présente plusieurs inconvénients le principal étant qu'il peut développer des discontinuités en temps finie. Ceci vient du fait que le modèle permet à la vitesse d'un véhicule de changer instantanément quand il traverse un choc (entre deux régions régulières). C'est pour cette raison que les modèles d'ordre supérieur ont été développés.

On peut citer par exemple le modèle Payne-Whitham (PW) [START_REF] Payne | Models of freeway traffic and control[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF]. Le modèle LWR suppose que la vitesse moyenne v dépend uniquement de la densité des véhicules ρ ce qui peut ne pas être valide dans certains cas. Pour corriger ceci, le modèle PW contient une équation sur la vitesse moyenne :

     ρ t + (ρv) x = 0 v t + vv x + 1 ρ (A e (ρ)) x = 1 τ (v e (ρ) -v),
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où v e (ρ) est la valeur d'équilibre pour la vitesse, (A e (ρ)) x /ρ est le terme d'anticipation et (v e (ρ) -v)/τ s'appelle le terme de relaxation. En 1995 Daganzo [START_REF] Daganzo | Requiem for second-order fluid approximations of traffic flow[END_REF] a mis en évidence quelques inconvénients du modèle PW. En particulier, dans certaines situations les véhicules pouvait avoir des vitesses négatives. Le modèle Aw-Rascle [AR00] a ensuite été proposé pour surmonté quelques remarques de Daganzo. Le modèle est donné par le système suivant

ρ t + (ρv) x = 0 (v + p(ρ)) t + v(v + p(ρ)) x = 0,
(1.10) avec p la "pression" qui est une fonction croissante de la densité. Ce modèle corrige les inconvénients du modèle PW. Pour plus d'information sur les modèles macroscopiques, on renvoie au livre de Piccoli et Garavello [START_REF] Garavello | Traffic flow on networks[END_REF].

Lien entre les modèles microscopiques et macroscopiques

Le problème de dériver des modèles macroscopiques à partir de modèles microscopiques a déjà été étudié pour des modèles du type "follow-the-leader". Notamment dans [DFR15, Hel98, LLK01], les auteurs, en utilisant la mesure empire de la position des véhicules, obtiennent une loi de conservation scalaire (modèle LWR). Dans le papier de Aw et al. [START_REF] Aw | Derivation of continuum traffic flow models from microscopic follow-the-leader models[END_REF], les auteurs, en utilisant une formulation équivalente de (1.3), ont été capables de dériver (dans le cas où A = 0), un système équivalent au modèle Aw-Rascle (1.10). Dans le cas général, ils arrivent à montrer que la discrétisation standard du modèle Aw-Rascle (en coordonnées Lagrangiennes) est équivalent à (1.3) discrétisé en temps. La plus part des résultats d'homogénéisation pour le trafic routier ont été obtenus pour une seule route, et il n'y a pas beaucoup de résultats dans les réseaux. Cependant, récemment Cristiani et Sahu ont présenté dans [START_REF] Cristiani | On the micro-to-macro limit for first-order traffic flow models on networks[END_REF] un modèle du premier ordre dans un réseau et montrent le lien avec un modèle multi-path (voir [START_REF] Bretti | An easy-to-use algorithm for simulating traffic flow on networks: numerical experiments[END_REF][START_REF] Briani | An easy-to-use algorithm for simulating traffic flow on networks: theoretical study[END_REF]). En fait, ils considèrent pour chaque chemin possible une population de véhicules. Leur résultat d'homogénéisation est alors fait dans un cadre très général, mais en supposant la convergence de la mesure empirique (pour chacune des populations) ce qui leur permet de montrer que la limite satisfait un modèle multi-path.

Dans le cadre de cette thèse, pour dériver les modèles macroscopiques, on utilise une version de la primitive de la mesure empirique de la position des véhicules comme introduit dans [START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF][START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF] pour la dynamique des dislocations. De plus, les résultats concernant le passage du microscopique au macroscopique dans cette section et dans le reste de cette thèse utilisent la théorie des solutions de viscosité. On renvoie au User's guide de Crandall, Ishii et Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] et au livre de Barles [Bar94] pour une introduction aux solutions de viscosité et à [Ish92, [START_REF] Ishii | Viscosity solutions for monotone systems of second-order elliptic pdes[END_REF][START_REF] Lenhart | Viscosity solutions for weakly coupled systems of first-order partial differential equations[END_REF] et leurs références pour des résultats concernant les solutions de viscosité dans les systèmes faiblement couplés.

Introduction générale

On commence par un résultat très simple où (U j (•)) j∈Z est une solution classique du modèle du premier ordre (1.1) ou du modèle classique du second ordre (1.2) avec V j = V et a j = a pour tout j ∈ Z. Pour commencer, on introduit une fonction avec un changement d'échelle,

       u ε (t, x) = εU x ε t ε , u ε (0, x) = u 0 (x) ∀ε > 0,
(1.11) où x est une variable continue qui représente l'indice de chacune des voitures et • est la partie entière inférieure. La condition initiale u 0 est simplement une fonction régulière telle que pour tout j ∈ Z et pour tout ε > 0 1 ε u 0 (jε) = U j (0).

On suppose que l'OVF et le coefficient a satisfont les hypothèses suivantes :

(A1) (Régularité)

V est continue et positive.

V est lipschitzienne et on note L sa constante de Lipschitz.

(A2) (Monotonie)

     V est croissante.
a ≥ 2L.

(A3) (Borne supérieure)

lim h→+∞ V (h) < +∞.
(1.12)

On note V max = ||V || ∞ et h 0 = 2V max /a.

(A4) (Borne inférieure)

V (h) = 0 pour tout h ≤ 2h 0 .

On a alors le résultat standard suivant dont la preuve peut se trouver, entre autres, dans [START_REF] Costeseque | Contribution to road traffic flow modeling on networks thanks to Hamilton-Jacobi equations[END_REF][START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF].

2.Résultats concernant le cadre mathématique

Theorem 1.1 (Homogénéisation des systèmes classiques). Supposons que (A1)-(A4) soient vérifiées et que la condition initiale u 0 ait été choisie correctement. On suppose également que V j = V et a j = a pour tout j ∈ Z. Alors la fonction u ε définie dans (1.11) converge localement uniformément sur (0, +∞) × R quand ε tend vers 0 vers l'unique solution de viscosité u 0 de l'équation aux dérivées partielles suivante,

∂ t u 0 = V (∂ x u 0 ) ∀(t, x) ∈ [0, T ] × R, u 0 (0, x) = u 0 (x) ∀x ∈ R.
(1.13) Remark 1.2. En utilisant le résultat présenté dans la Section 1.2, concernant les modèles macroscopiques, on a que (1.13) est équivalent au modèle macroscopique LWR avec le diagramme fondamental f (ρ) = ρ • V (1/ρ). Aussi, on remarque que la fonction u 0 est en fait la primitive de la densité des véhicules en coordonnées Lagrangiennes.

Résultats concernant le cadre mathématique

Comme évoqué précédemment, la bonne notion pour résoudre les équations étudiées dans cette thèse est la théorie de solutions de viscosité, introduite par Crandall et Lions [START_REF] Crandall | Condition d'unicité pour les solutions généralisées des équations de hamilton-jacobi du premier ordre[END_REF]. Il s'agit de solutions faibles pour des équations aux dérivées partielles de type Hamilton-Jacobi. On renvoie encore une fois au User's guide de Crandall, Ishii et Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], et au livre de Barles [Bar94] pour une excellente introduction à cette théorie. Une façon de voir que la notion de solutions de viscosité est bien adaptée est de considérer la fonction u définie par (1.11), avec ε = 1 et (U j ) j solution du modèle du premier ordre (1.1). La fonction u est une fonction discontinue et il faut donc définir une notion de solution faible. On peut alors montrer que cette fonction est une solution de viscosité (voir définition plus bas) de l'EDP (équation de Hamilton-Jacobi) suivante, qui est non-locale et non-linéaire, ∂u ∂t (t, x) = V (u(t, x + 1) -u(t, x)) pour tout (t, x) ∈ (0, +∞) × R. si pour toute fonction test ϕ ∈ C 1 (Ω) et tout (t, x) ∈ Ω tel que u -ϕ atteint un maximum (resp. un minimum) en (t, x), on a ϕ t (t, x) ≤ V (u(t, x + 1) -u(t, x)) resp. ϕ t ≥ V (u(t, x + 1) -u(t, x)) .

Une fonction u est une solution de (2.1), si u * est une sous-solution de (2.1) et u * est une sur-solution de 2.1.

La notion de solutions de viscosité est très puissante. Elle permet de définir une notion de solution avec très peu de régularité et permet également d'obtenir des résultat très utiles.

• Résultats de stabilité (voir [Bar13, CL81, CL83, Lio82]) : ils permettent de passer à la limite à l'intérieur de l'équation, en particulier, si on a une suite de sous-solutions (ou de sur-solutions) on peut passer à la limite (sous des conditions très faibles) et obtenir une sous-solution (ou une sur-solution).

• Principe de comparaison (voir [Bar13, CL81, CL83, Lio82]) : il permet de comparer des sous-solutions et des sur-solutions et est souvent utilisé pour obtenir l'unicité de la solution de viscosité du problème considéré. C'est l'argument principal de la théorie.

• Résultats d'existence via la méthode de Perron : H. Ishii a généralisé la méthode de Perron dans [START_REF] Ishii | Perron's method for Hamilton-Jacobi equations[END_REF] pour les equations de Hamilton-Jacobi. Il s'agit d'une méthode qui permet de construire une solution (a priori discontinue) d'une equation de Hamilton-Jacobi avec des hypothèses très faibles. Ensuite en utilisant le principe de comparaison on peut obtenir l'unicité (et aussi la continuité) de la solution.

• Homogénéisation : depuis les papiers de Lions, Papanicolaou et Varadhan [START_REF] Lions | Homogenization of hamilton-jacobi equations[END_REF] puis d'Evans [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear pde[END_REF][START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF], la théorie de l'homogénéisation pour les équations de Hamilton-Jacobi a connue de grands développements.

Dans ce qui suit, nous présentons des résultats concernant les solutions de viscosité posées sur des réseaux et sur l'homogénéisation spécifique.

Résultats sur les solutions de viscosité dans les réseaux

Dans les exemples précédents, les véhicules était sur la droite réelle. La réalité est bien sûr beaucoup plus compliqué et on peut imaginer des bifurcations, des jonctions, ou même tout un réseau. On peut donc voir que travailler dans un réseau devient nécessaire pour traiter des problèmes liés au trafic routier.

Récemment, la théorie des equations de Hamilton-Jacobi dans les réseaux a connue des grands progrès. Les premiers résultats ont été obtenus par Schieborn [START_REF] Schieborn | Viscosity solutions of Hamilton-Jacobi equations of Eikonal type on ramified spaces[END_REF] pour des 2.Résultats concernant le cadre mathématique équations eikonales dans les réseaux. Des travaux plus récents ont ensuite été effectués par Achdou, Camilli, Cutri et Tchou [START_REF] Achdou | Hamilton-jacobi equations constrained on networks[END_REF], Imbert, Monneau et Zidani [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF], et Schieborn et Camilli [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF]. Dans ces trois papiers, les hamiltonians sont convexes et les auteurs utilisent un approche du type contrôle optimal (en particulier pour montrer le principe de comparaison). On renvoie à [START_REF] Camilli | A comparison among various notions of viscosity solution for hamilton-jacobi equations on networks[END_REF], pour une comparaison entre les différentes notions de solutions de viscosité proposées dans [START_REF] Achdou | Hamilton-jacobi equations constrained on networks[END_REF], [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF] et [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF]. De même, on renvoie au travail récent de Camilli, Marchi et Schieborn [START_REF] Camilli | The vanishing viscosity limit for Hamilton-Jacobi equations on networks[END_REF] pour les équations eikonales dans les réseaux.

Imbert et Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] ont ensuite proposé une approche complètement EDP pour des équations de Hamilton-Jacobi quasi-convexe dans les réseaux. Cette approche repose sur la construction d'une fonction "sommet" qui permet de dédoubler les variables correctement près des jonctions. Nous présentons ci-dessous les éléments essentiels de cette approche qui sera utilisée pour les modèles macroscopiques apparaissant dans cette thèse.

Ils considèrent le cadre suivant pour une jonction. Ils étudient un nombre fini de branches, pour i = 1, . . . , N , chacune des branches R i est isométrique à [0, +∞) et

R = i=1,...,N R i avec R i ∩ R j = {0} pour i = j.
Toutes les branches sont collées à l'origine (le noeud). On note ∂ x u(x) la dérivée spatiale de u en x ∈ R i qui est définie par

∂ x u(x) = ∂ i u(x) si x ∈ R * i := R i \{0} (∂ 1 u(0), . . . , ∂ N u(0)) si x = 0.
Les auteurs considèrent alors l'équation de Hamilton-Jacobi suivante posée dans le réseau R      u t + H i (u x ) = 0 pour t ∈ (0, +∞) et x ∈ R * i u t + F (u x ) = 0 pour t ∈ (0, +∞) et x = 0 u(0, x) = u 0 (x).

(2.2) Les hypothèses sur les hamiltonians H i , pour i = 1, . . . , N , sont les suivantes

Hypothèse (FH) (Continuité) H i ∈ C(R).

(Convexité des ensembles de niveaux) Pour chaque i = 1, . . . , N , il existe un nombre réel p 0 i ∈ R tel que H i est décroissante sur (-∞, p 0 i ] H i est croissante sur [p 0 i , +∞).

(2.3)
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|p|→+∞ H i (p) = +∞.

Concernant la condition de jonction F : R N → R, on suppose qu'il s'agit d'une fonction continue et décroissante par rapport à toutes ses variables. Afin de pouvoir introduire une bonne définition de solution de viscosité pour (2.2), les auteurs introduisent une classe particulière de fonction test.

Classe de fonction test pour (2.2). Pour T > 0, soit R T = (0, T ) × R. On définit une classe de fonction test sur R T par C 1 (R T ) = {ϕ ∈ C(R T ), la restriction de ϕ à (0, T ) × R * i est C 1 pour i = 1, . . . , N } . Definition 2.2 (Solution de viscosité pour (2.2)). Une fonction semi-continue supérieurement (resp. inférieurement) u : [0, T ) × R → R est une sous-solution (resp. une sur-solution) de (2.2) sur R T si pour toute fonction test ϕ ∈ C 1 (R T ) et tout point (t, x) ∈ R T tel que u-ϕ atteint un maximum local (resp. un minimum local) en (t, x) ∈ R T , on a

ϕ t (t, x) + H i (ϕ x (t, x)) ≤ 0 (resp. ≥) si x ∈ R * i ϕ t (t, x) + F (ϕ x (t, x)) ≤ 0 (resp. ≥) si x = 0.
-Une fonction u est une solution de (2.2) sur R T si u * est une sous-solution de (2.2) et si u * est une sur-solution de (2.2) sur R T .

-Une fonction u est une solution de (2.2) sur [0, T ) × R si elle est solution sur R T et si u * (0, x) ≤ u 0 (x) et u * (0, x) ≥ u 0 (x) pour tout x ∈ R.

La définition précèdente peut être vue comme la définition standard de solution de viscosité. Néanmoins, pour avoir un résultat de stabilité pour (2.2), Imbert et Monneau ont introduit la notion de solution de viscosité "relaxée". Definition 2.3 (Solution de viscosité relaxée pour (2.2)). Une fonction semi-continue supérieurement (resp. inférieurement) u : [0, T ) × R → R est une sous-solution relaxée (resp. une sur-solution relaxée) de (2.2) sur R T si pour toute fonction test ϕ ∈ C 1 (R T ) et tout point (t, x) ∈ R T tel que u -ϕ atteint un maximum local (resp. un minimum local) en (t, x) ∈ R T , on a -si x ∈ R * i ϕ t (t, x) + H i (ϕ x (t, x)) ≤ 0 (resp. ≥)

-si x = 0, soit ϕ t (t, x) + H i (ϕ x (t, x)) ≤ 0 (resp. ≥) avec i ∈ {1, . . . , N } ou ϕ t (t, x) + F (ϕ x (t, x)) ≤ 0 (resp. ≥).

Une fonction u est une solution relaxée de (2.2) sur R T si u * est une sous-solution relaxée de (2.2) et u * est une sur-solution relaxée de (2.2) sur R T .

Les auteurs de [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] ont également montré qu'une condition de jonction F générale pouvait être remplacée par une condition de jonction F A de la forme suivante, pour tout p = (p 1 , . . . , p N )

F A (p) = max A, max i H - i (p i ) , avec H - i (q) =
H i (q) si q ≤ p 0 i , H i (p 0 i ) si q ≥ p 0 i . Parmi les résultats de [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF], les résultats suivants sont les plus importants dans le cadre de cette thèse :

• Pour une condition initiale u 0 uniformément continue, (2.2) admet une solution relaxée.

• En utilisant Définition 2.3, il y a stabilité des sous-solutions (resp. des sur-solutions) par passage au supremum (resp. au infimum).

• Les conditions de jonction de la forme F A sont toujours satisfaites au sens classique de viscosité (Définition 2.2). C'est à dire que une sous-solution (resp. sur-solution) relaxée est une sous-solution (resp. sur-solution) classique dans le cas où la condition de jonction est donné par F A .

• La condition de jonction générale F peut être réduite à une condition de jonction de la forme F A . En particulier, sous l'hypothèse (FH) il existe une constante A F ∈ R telle que n'importe quelle sous-solution (resp. sur-solution) relaxée de (2.2) est une sous-solution (resp. sur-solution) de

u t + H i (u x ) = 0 pour t ∈ (0, +∞) et x ∈ R * i u t + F A (u x ) = 0 pour t ∈ (0, +∞) et x = 0, (2.4) 
avec A = A F . On appelle une sous-solution de (2.4) une sous-solution "A-flux limited" (on appel de manière similaire les sur-solutions et les solutions de (2.4)).

• Il existe un principe de comparaison pour (2.4) avec la condition initiale u(0, x) = u 0 (x).

Pour finir, on voudrait rappeler un résultat essentiel de [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] et qui sera utilisé en particulier dans la preuve d'homogénéisation au point de jonction. Il s'agit d'une définition équivalente à la définition de sous et sur-solution au point de jonction. On considère l'équation de Hamilton-Jacobi suivante sur R\{0}, u t + H i (u x ) = 0 (t, x) ∈ (0, +∞) × R * i pour i = 1, . . . , N.

(2.5) Theorem 2.4 (Définition équivalente pour les sous/sur-solutions (Théorème 2.11 dans [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF])). Supposons que pour i = 1, . . . , N , H i satisfait l'hypothèse (HF) et on considère A ∈ [A 0 , +∞) avec A 0 = max i min p∈R H i (p). Soient p A i ∈ R des solutions arbitraires, pour i = 1, . . . , N , de

H i (p A i ) = H + i (p A i ) = A (2.6)
on fixe φ 0 (x) n'importe quelle fonction indépendante du temps telle que

∂ i φ 0 (0) = p A i .
(2.7)

Étant donné une fonction u : [0, T ) × R → R, les propriétés suivantes sont vraies.

1. Si u est une sous-solution semi-continue supérieurement de (2.5) satisfaisant u(t, 0) = lim sup (s,y)→(t,0),y∈R * i u(s, y) (2.8) alors u est une sous-solution "A 0 -flux limited".

Étant donné

A > A 0 et t 0 ∈ (0, T ), si u est une sous-solution semi-continue supérieurement de (2.5) satisfaisant (2.8) et si pour n'importe quelle fonction test ϕ touchant u par au-dessus en (t 0 , 0) avec ϕ(t, x) = g(t) + φ 0 (x) (2.9) pour un certain g ∈ C 1 (0, +∞), on a ϕ t + F A (ϕ x ) ≤ 0 en (t 0 , 0), (2.10) alors u est une sous-solution "A-flux limited" en (t 0 , 0).

3. Étant donné t 0 ∈ (0, T ), si u est une sur-solution semi-continue inférieurement de (2.5) et si pour pour toute fonction test ϕ touchant u par en-dessous en (t 0 , 0) avec ϕ satisfaisant (2.9), on a ϕ t + F A (ϕ x ) ≥ 0 en (t 0 , 0), (2.11) alors u est une sur-solution "A-flux limited" en (t 0 , 0).

simples. On présente maintenant les résultats principaux de la thèse. Ces résultats seront présentés en détail dans les chapitres suivants.

3.1 Homogénéisation d'un modèle discret du second ordre avec n 0 ∈ N types de conducteurs

On commence par introduire les résultats de [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF][START_REF] Salazar | Numerical homogenization of a second order discrete model for traffic flow[END_REF] qui sont détaillés dans les Chapitres 1 et 2.

Modèle général du second ordre avec n 0 ∈ N * types de conducteur

Le premier résultat de cette thèse est une généralisation du Théorème 1.1 au cas plus réaliste où l'on considère différents types de conducteurs et différents types de véhicules. Plus précisément, on considère n 0 ∈ N types de conducteurs et on rappelle que la dynamique est définie, pour tout j ∈ Z et t ≥ 0, par

Üj (t) = a j (V j (U j+1 (t) -U j (t)) -Uj ), (3.1) 
où U j dénote la position du j-ème véhicule, Uj sa vitesse et Üj son accélération. Les coefficients a j et les fonctions de vitesse optimale V j dépendent du conducteur. On fait les hypothèses suivantes sur les coefficients a j et les fonctions V j .

(B1) (Regularité) Pour tout j ∈ {1, ..., n 0 }, V j est continue et positive.

V j est lipschitzienne et on note L j sa constante de Lipschitz.

On note L = max ). Concernant le modèle du première ordre (1.1), on pourrait aussi le modifier pour prendre en compte différents types de conducteurs en modifiant les fonctions de vitesse optimale. Mais comme précisé plus haut, les modèle du second ordre sont plus réalistes. C'est pour cela que l'on considère uniquement ici le modèle du second ordre.

Aux hypothèses précédentes on ajoute une condition de périodicité (nécessaire pour réussir à faire le passage du modèle microscopique au modèle macroscopique).

(B5) (Périodicité sur le type de conducteur) Pour tout j ∈ Z,

a j+n 0 = a j et V j+n 0 = V j .

Homogénéisation du modèle du second ordre généralisé

Pour passer au modèle macroscopique, la technique consiste à introduire une fonction avec des variables continues : (u j ) j∈Z , définie par u j (t, x) = U j+ x n 0 (t) pour tout (t, x) ∈ [0, +∞) × R, (3.3) où • est la partie entière inférieure. On fait un changement d'échelle en introduisant un petit paramètre ε > 0, et la fonction (u ε j ) j∈Z définie par

u ε j (t, x) = εu j t ε , x ε . ( 3.4) 
En fait, quand ε tend vers 0, le nombre de véhicules par unité de longueur tend vers l'infini et le résultat principal de ce travail est que toutes les fonctions u ε j convergent localement uniformément sur (0, +∞) × R quand ε tend vers 0, vers la solution du problème suivant,

u 0 t (t, x) = F (u 0 x (t, x)) pour (t, x) ∈ (0, +∞) × R, u 0 (0, x) = u 0 (x) pour tout x ∈ R, (3.5) 
où F reste à être déterminée et la fonction u 0 est une fonction lipschitzienne telle que pour ε > 0, 1 ε u 0 jε n 0 = U j (0).
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Theorem 3.2 (Homogénéisation d'un système avec n 0 types of conducteurs (Théorème 1.3 dans [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF])). Supposons que (B1)-(B5) soient vérifiées. Considérons la fonction (u ε j ) j∈Z définie par (3.4). Alors, il existe une fonction continue F : R → R telle que pour tout j ∈ Z, les fonctions u ε j convergent localement uniformément sur (0, +∞) × R quand ε tend vers 0 vers l'unique solution de viscosité u 0 de (3.5).

Remark 3.3. On a vu précédemment que (3.5) est équivalent à un modèle macroscopique LWR avec un diagramme fondamental donné par f (ρ) = ρ • F (1/ρ) et avec u 0

x qui est l'inverse de la densité des voitures.

Propriétés qualitatives de l'hamiltonien effectif F Theorem 3.4 (Propriétés qualitatives de F (Théorème 1.9 dans [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF])). Supposons (B1)-(B5). Alors, pour tout p ∈ (0, +∞), les propriétés suivantes sont vérifiées : (iii) (Monotonie) F est croissante.

Injection du système d'EDOs dans un système d'EDPs

Pour que le résultat d'homogénéisation du Théorème 3.2 soit complet, il faut déterminer l'hamiltonien effectif F . On explique maintenant comment on le construit. Pour commencer, il faut injecter le système (3.1) dans un système d'EDPs. On utilise l'idée de [START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF]. On introduit pour tout j ∈ Z

Ξ j (t) = U j (t) + 1 α Uj (t) où α = 1 2 min j∈{1,...,n 0 } (a j ). (3.6)
On obtient alors le système d'EDOs suivant : pour tout j ∈ Z et t ∈ (0, +∞),

       Uj (t) = α(Ξ j (t) -U j (t)) Ξj (t) = (a j -α)(U j (t) -Ξ j (t)) + a j α V j (U j+1 (t) -U j (t)).
(3.7)
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On injecte ensuite le système d'EDOs dans un système d'EDPs, en introduisant les fonctions

(u, ξ) = ((u j (t, x)) j∈Z , (ξ j (t, x)) j∈Z ),
définies par

u j (t, x) = U j+ x n 0 (t) et ξ j (t, x) = Ξ j+ x n 0 (t),
où • est la partie entière inférieure. Par exemple, dans le cas où n 0 = 1, on a

u(t, x) = U x (t) et ξ(t, x) = Ξ x (t),
où x est une variable continue qui représente l'indice de chacune des voitures. Dans le cas où n 0 > 1, l'entier j nous permet de prendre en compte la périodicité des coefficients a j et des fonctions V j . La fonction (u, ξ) satisfait alors le système d'équations suivant, pour tout (t,

x) ∈ (0, +∞) × R et pour tout j ∈ Z,                                ∂u j ∂t (t, x) = α(ξ j (t, x) -u j (t, x)) ∂ξ j ∂t (t, x) = (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j (u j+1 (t, x) -u j (t, x)) u j+n 0 (t, x) = u j (t, x + 1)
ξ j+n 0 (t, x) = ξ j (t, x + 1).

(3.8)

On introduit ensuite le changement d'échelle suivant

u ε j (t, x) = εu j t ε , x ε et ξ ε j (t, x) = εξ j t ε , x ε . (3.9)
Quand ε tend vers 0, le nombre de véhicules par unité de longueur tend vers l'infini. On peut alors montrer que la fonction (u

ε , ξ ε ) = ((u ε j (t, x)) j∈Z , (ξ ε j (t, x)) j∈Z ) satisfait alors le problème de Cauchy suivant, pour tout (t, x) ∈ (0, +∞) × R,                                  ∂u ε j ∂t (t, x) = α ξ ε j (t, x) -u ε j (t, x) ε ∂ξ ε j ∂t (t, x) = (a j -α) u ε j (t, x) -ξ ε j (t, x) ε + a j α V j u ε j+1 (t, x) -u ε j (t, x) ε u ε j+n 0 (t, x) = u ε j (t, x + ε) ξ ε j+n 0 (t, x) = ξ ε j (t, x + ε), (3.10) avec comme condition initiale, u ε j (0, x) = u 0 x + jε n 0 et ξ ε j (0, x) = ξ ε 0 x + jε n 0 . (3.11)
Remark 3.5. Les fonctions de la condition initiale ont été artificiellement introduite, mais simplement il s'agit de fonctions régulières telles que pour tout ε > 0, on a pour tout j ∈ Z,

1 ε u 0 jε n 0 = U j (0) et 1 ε ξ ε 0 jε n 0 = U j (0) + 1 α Uj (0) .
On suppose que la condition initiale satisfait l'hypothèse suivante

(B0) (Borne de gradient) Il existe k 0 , K 0 > 0 telles que      0 < k 0 ≤ (u 0 ) x ≤ K 0 0 < k 0 ≤ (ξ ε 0 ) x ≤ K 0 .
On suppose également que

0 ≤ α(ξ ε 0 (x) -u 0 (x)) ≤ min     V max ε, α. u 0 x + ε n 0 -u 0 (x) 2     pour tout x ∈ R.
Remark 3.6. La condition (B0) implique qu'initialement, les véhicules ont assez d'espace entre eux. Concernant la dernière égalité dans (B0), formellement, on peut voir que si on utilise (3.6), on a

ξ j (t, x) = u j (t, x) + 1 α ∂u ∂t (t, x).
Ce qui veut dire que, après le changement d'échelle, en utilisant (3.9), on a

ξ ε j (t, x) = u ε (t, x) + ε α ∂u ε ∂t (t, x).
Par conséquent, la condition initiale doit satisfaire

ξ ε 0 x + jε n 0 = u 0 x + jε n 0 + ε α ∂u ε j ∂t (0, x).
Tout d'abord, cela implique que la condition initiale ξ ε 0 dépend de ε. La borne sur α (ξ ε 0 (x) -u 0 (x)) peut s'expliquer dans le sens où, initialement, dans le cas où les véhicules 20
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ont assez d'espace entre eux (k 0 ≥ 2h 0 n 0 ), alors la vitesse initiale de chacun des véhicules doit être inférieure à V max , c'est à dire

α (ξ ε 0 (x) -u 0 (x)) ≤ V max ε.
Dans le cas où initialement les véhicules ont moins d'espace entre eux, (k 0 ≤ 2h 0 n 0 ), la vitesse initiale de chacun des véhicules doit être bornée de telle manière à garantir la préservation de l'ordre des véhicules (u j ≤ u j+1 et ξ j ≤ ξ j+1 ), ce qui se traduit par

α (ξ ε 0 (x) -u 0 (x)) ≤ V max • u 0 x + ε n 0 -u 0 (x) 2h 0 = α • u 0 x + ε n 0 -u 0 (x) 2 .
En combinant les deux dernières inégalités, on retrouve la dernière inégalité de (B0).

Détermination de l'hamiltonien effectif F

Pour déterminer l'hamiltonien effectif, on utilise la notion de fonction enveloppe (comme dans [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF]) pour le système (3.8). La fonction F est déterminée implicitement avec le problème suivant : pour tout p ∈ R + , trouver l'unique réel λ = F (p) tel qu'il existe une famille de couples de fonctions enveloppes ((h j ) j , (g j ) j ) telle que (u j (t, x), ξ j (t, x)) = (h j (λt + px), g j (λt + px)) soit une solution de (3.8) sur R × R. Plus précisément, on a la définition suivante.

Definition 3.7 (Fonctions enveloppes pour un système avec n 0 types de conducteurs). Soient (V j ) j et (a j ) j telles que (B1)-(B5) soient satisfaites, p ∈ R + , et un réel λ ∈ R, on dit que la famille de fonctions ((h j ) j∈Z , (g j ) j∈Z ) est une fonction enveloppe pour (3.8) si elle satisfait pour tout j ∈ {1, ..., n 0 } et pour tout z ∈ R,

                         λ = α(g j -h j ) h j+n 0 (z) = h j (z + p) h j+1 (z) ≥ h j (z) h j (z) = z + h j (0)                            λ = (a j -α)(h j -g j ) + a j α V j (h j+1 -h j ) g j+n 0 (z) = g j (z + p) g j+1 (z) ≥ g j (z) g j (z) = z + g j (0) (3.12)
Remark 3.8. La notion de fonction enveloppe est différente de celle présentée dans [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF]. Ceci vient du fait que notre système (3.8) est invariant par addition de constantes alors que celui considéré dans [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF] est seulement invariant par addition de constantes entières. Ceci nous a permis de montrer que h j = 1 et g j = 1 et donc d'obtenir la forme particulière des h j et des g j .

Theorem 3.9 (Hamiltonien effectif et fonction enveloppe (Théorème 1.7 dans [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF])). Supposons que (A1)-(A5) soient vérifiées et soit p ∈ (0, +∞). Alors il existe un unique réel λ pour lequel il existe une fonction enveloppe ((h j ) j , (g j ) j ) satisfaisant (3.12). De plus, le réel λ = F (p), vu comme une fonction de p, est continue sur (0, +∞).

Remark 3.10. Par un simple calcul on trouve 

F (p) = V j (h j+1 (0) -h j (0)) ∀j ∈ Z. ( 3 
) x = (ξ 0 ) x = p. Alors ((u j ) j , (ξ j ) j ) satisfait u j (t, x) = px + u j (t, 0) et ξ j (t, x) = px + ξ j (t, 0), (3.14) 
et il existe une constante C, qui dépend uniquement de p, V max , α et n 0 telle que pour tout T ∈ (0, +∞),

u 1 (T, 0) T -F (p) ≤ C T . (3.15)
Remark 3.12. Cette proposition nous donne une manière d'approximer la fonction F en un seul point p ∈ R. Pour obtenir F sur un intervalle, l'idée est alors de discrétiser l'intervalle et pour chaque point de discrétisation p, d'approximer ((u j ) j , (ξ j ) j ), la solution de (3.8) avec une condition initiale telle que (u 0 ) x = (ξ 0 ) x = p. (3.8). On présente ensuite les schémas pour (3.8) utilisés dans [START_REF] Salazar | Numerical homogenization of a second order discrete model for traffic flow[END_REF]. On note ∆t le pas en temps et t n = n∆t. Le but est de calculer une approximation de la solution de (3.8) avec la condition initiale (px + pj/n, px + pj/n). En utilisant la forme particulière des solutions donnée par la Proposition 3.11, on est seulement intéressé par l'approximation numérique de u j (t n , 0) et de ξ j (t n , 0) que l'on notera respectivement u n j et ξ n j . On propose un schéma explicite et un schéma implicite pour calculer u n j et ξ n j .

Schémas numériques pour

Schéma explicite aux différences finies. On considère le schéma numérique suivant, pour tout j ∈ Z et pour tout n ∈ N,

                                 u n+1 j -u n j ∆t = α ξ n j -u n j ξ n+1 j -ξ n j ∆t = (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j u n n 0 +j = u n j + p ξ n n 0 +j = ξ n j + p, (3.16) 
avec la condition initiale

u 0 j = pj n 0 et ξ 0 j = pj n 0 . ( 3 

.17)

Schéma implicite aux différences finies. On considère également le schéma numérique suivant, pour tout j ∈ Z, et pour tout n ∈ N,

                                 u n+1 j -u n j ∆t = α ξ n+1 j -u n+1 j ξ n+1 j -ξ n j ∆t = (a j -α) u n+1 j -ξ n+1 j + a j α V j u n+1 j+1 -u n+1 j . u n j+n 0 = u n j + p ξ n j+n 0 = ξ n j + p (3.18)
avec la condition initiale donnée par (3.17). 

λ T = u n T 1 T . (3.20)
Theorem 3.14 (Estimation numérique de l'hamiltonien effectif (Théorème 1.5 dans [START_REF] Salazar | Numerical homogenization of a second order discrete model for traffic flow[END_REF])). Soit p>0, et soit λ T l'approximation numérique de F (p) donné par (3.20). Si u n j a été calculé avec le schéma explicite (resp. avec le schéma implicite), on suppose également que

∆t ≤ 1 max j∈{1,...,n 0 } (a j ) resp. ∆t ≤ 1 2α 1 + min j∈{1,...,n 0 } a j + 4α a j . Alors il existe deux constantes C 1 > 0 et C 2 > 0, telles que, λ T -F (p) ≤ C 1 T + C 2 (∆t + √ ∆t).
(3.21)

Homogénéisation d'un modèle contenant une perturbation locale

On présente maintenant les résultats de [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], [START_REF] Salazar | Numerical specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] et [START_REF] Forcadel | Homogenization of second order discrete model with local perturbation and application to traffic flow[END_REF] qui sont présentés dans les Chapitres 3, 4 et 5. Dans le premier papier, on obtient un résultat d'homogénéisation pour un modèle microscopique du première ordre contenant une perturbation locale. Dans le deuxième papier, on présente un résultat d'homogénéisation numérique qui vient compléter celui de [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF]. Dans le dernièr papier, on obtient un résultat d'homogénéisation pour un modèle microscopique du second ordre qui contient une perturbation locale.

L'idée de nos travaux est de considérer à l'échelle microscopique une perturbation locale qui ralentit les véhicules. On veut comprendre comment cette perturbation influence la dynamique du trafic à l'échelle macroscopique. On considère une perturbation située autour de l'origine (voir la Figure 3.3) avec un rayon d'influence r ∈ (0, +∞).

A l'échelle macroscopique, il est naturel d'obtenir une équation de Hamilton-Jacobi avec une condition de jonction en 0 (vu que la taille de la perturbation diminue avec le
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perturbation: rayon = r Récemment, la théorie des équations de Hamilton-Jacobi avec des conditions de jonction, ou plus généralement dans les réseaux, a connu de grands développements, particulièrement à partir des travaux de Achdou, Camilli, Cutri, et Tchou [START_REF] Achdou | Hamilton-jacobi equations constrained on networks[END_REF] et de Imbert, Monneau et Zidani [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF]. On renvoie également au travail de Imbert et Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] dans lequel, comme évoqué précédemment, les auteurs donnent une définition (de solution de viscosité) adaptée à des problèmes munis de conditions de jonction ainsi que des résultats de comparaison et de stabilité.

Dans cette section, on utilise, en particulier, l'idée développée par Achdou et Tchou dans [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF], puis par Galise, Imbert et Monneau dans [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], et par Lions dans son cours au "Collège de France" [START_REF] Lions | Lectures at collège de france[END_REF], qui consiste à construire des correcteurs dans des domaines tronqués.

Dans toute cette section, on considère uniquement le cas où

V j = V et a j = a pour tout j ∈ Z.

Modèle général du premier ordre

Dans cette section on introduit rapidement les résultats de [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] et qui sont présentés en détail dans le Chapitre 3. On considère un modèle microscopique de la forme

Uj (t) = V (U j+1 (t) -U j (t)) • φ (U j (t)) , ( 3.22) 
où la fonction φ : R → [0, 1] simule la présence d'une perturbation locale autour de l'origine qui ralentit les véhicules. On note r le rayon d'influence de cette perturbation.

Le but de ce modèle est de simuler la présence d'une perturbation locale atour de l'origine, par exemple un ralentisseur, un accident sur le bord de la route (les conducteurs ralentissent pour voir l'accident), une zone scolaire,... L'originalité de ce modèle est que l'on considère une perturbation locale et non pas périodique.

On fait les hypothèses suivantes sur V et φ :

Hypothèse (C)

• (C1) V : R → R est lipschitzienne, positive.

• (C2) V est croissante sur R.

• (C3) Il existe h 0 ∈ (0, +∞) tel que pour tout h ≤ h 0 , V (h) = 0. • (C4) Il existe h max ∈ (h 0 , +∞) tel que pour tout h ≥ h max , V (h) = V (h max ) =: V max . • (C5) Il existe un réel p 0 ∈ [-1/h 0 , 0) tel que la fonction p → pV (-1/p) soit décrois- sante sur [-1/h 0 , p 0 ) et croissante sur [p 0 , 0).
• (C6) La fonction φ : R → [0, 1] est lipschitzienne et φ(x) = 1 pour |x| ≥ r.

Remark 3.15. Les hypothèses (C1)-(C2)-(C3)-(C5) sont équivalentes aux hypothèses (A1)-(A2)-(A3)-(A4)

, on a ajouté l'hypothèse (C4) pour travailler avec V avec un support compact. Mais en modifiant légèrement les fonctions de vitesse optimal classiques, on peut construire des fonctions qui satisfont hypothèse (C). Par exemple, la fonction de Greenshield : 

V (h) =                0 for h ≤ h 0 , V max 1 - h 0 h n for h 0 < h ≤ h max , V max 1 - h 0 h max n for h max < h, avec n ∈ N\{0}.
v : [0, T ] × R → R, v(t, y) = U y (t).
Cette fonction satisfait pour tout (t, y) [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF]. C'est à dire en utilisant la primitive de la mesure empirique des positions des véhicules. De cette manière, on peut utiliser les résultats de Imbert et Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] pour les hamiltoniens quasi-convexes avec des conditions de jonction.

∈ [0, T ] × R v t (t, y) = V (u(t, y + 1) -u(t, y)) • φ (v(t, y)) , v(0, y) = v 0 (y). ( 3 
On veut étudier le trafic quand le nombre de véhicules par unité de longueur tend vers l'infini. Pour cela, on introduit la fonction de "distribution cumulative", ρ ε , définie par

ρ ε (t, y) = -ε   i≥0 H (y -εU i (t/ε)) + i<0 (-1 + H (y -εU i (t/ε)))   , avec H(x) = 1 if x ≥ 0 0 if x < 0.
Sous l'hypothèse (C), on peut montrer que la fonction ρ ε est une solution (éventuellement discontinue) de l'EDP non-locale suivante,

u ε t + M ε u ε (t, •) ε (x) • φ x ε • |u ε x | = 0 sur (0, +∞) × R (3.24)
où M ε est un opérateur non-local défini par

M ε [U ](x) = +∞ -∞ J(z)E (U (x + εz) -U (x)) dz - 3 2 V max et E(z) =      0 si z ≥ 0 1/2 si -1 ≤ z < 0 3/2 si z < -1, et J = V sur R.
À (3.24), on ajoute la condition initiale

u ε (0, x) = u 0 (x) sur R. (3.25)
On suppose aussi que cette condition initiale satisfait l'hypothèse suivante :

(C0) (Borne de gradient) La fonction u 0 est Lipschitz et satisfait 

-k 0 ≤ (u 0 ) x ≤ 0. ( 3 
|ρ ε (0, x) -u 0 (x)| ≤ f (ε), avec f (ε) → 0 quand ε tend vers 0.

Homogénéisation spécifiée du modèle du premier ordre

On définit k 0 = 1/h 0 et H : R → R, par

H(p) =          -p -k 0 pour p < -k 0 , -V -1 p |p| pour -k 0 ≤ p ≤ 0, p pour p > 0.
On remarque que la fonction H est continue, coercive lim On note 

H 0 = min p∈R H(p) = H(p 0 ).
         u 0 t + H(u 0 x ) = 0 pour (t, x) ∈ (0, +∞) × (-∞, 0) u 0 t + H(u 0 x ) = 0 pour (t, x) ∈ (0, +∞) × (0, +∞) u 0 t + F A (u 0 x (t, 0 -), u 0 x (t, 0 + )) = 0 for (t, x) ∈ (0, +∞) × {0} u 0 (0, x) = u 0 (x) pour x ∈ R, (3.27) 
où A est à déterminer et F A est définie par 

F A (p -, p + ) = max A, H + (p -), H -(p + ) , avec H -(p) = H(p) si p ≤ p 0 , H(p 0 ) si p ≥ p 0 , et H + (p) = H(p 0 ) si p ≤ p 0 , H(p) si p ≥ p 0 . ( 3 
U i (0) ≤ U i+1 (0) -h 0 .
On suppose également qu'il existe une constant R > 0 telle que, pour tout i ∈ Z, si

|U i (0)| ≥ R U i+1 (0) -U i (0) = h, avec h ≥ h 0 .
On définit alors la fonction u 0 (satisfaisant (A0)), par u 0 (x) = -x/h pour tout x ∈ R. Alors il existe A ∈ [H 0 , 0] tel que la fonction ρ ε définie par (3.24) converge vers l'unique solution u 0 de (3.27). De plus, on a que u 0 satisfait -k 0 ≤ u 0

x ≤ 0. 

φ 1 (x) ≤ φ 2 (x) alors A 1 ≥ A 2 .
(ii) (Interruption du flux) Soit φ une fonction satisfaisant (C6). Si φ = 0 dans un intervalle ouvert, alors on a

A = 0.

Détermination du limiteur de flux effectif A

Pour compléter le résultat de la section précédente, il est important d'expliquer comment est déterminé le limiteur de flux effectif A.

Comme toujours, le limiteur de flux effectif est déterminé de manière implicite comme étant l'unique constante λ telle qu'il existe une solution w à l'équation de Hamilton-Jacobi suivante

M [w](x) • φ(x) • |w x | = λ pour x ∈ R, (3.29) 
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avec les bonnes pentes à l'infini. Plus précisément, si on définit w ε par w ε (x) = εw(x/ε), on impose que w ε converge quand ε tend vers 0 vers une fonction W de la forme

W (x) = p -x1 {x<0} + p + x1 {x≥0} , avec p -et p + satisfaisant H(p -) = H -(p -) = A et H(p + ) = H + (p + ) = A.
Pour construire le couple (A, w), l'idée introduite par Achdou, Tchou [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] et Galise, Imbert et Monneau [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], est de considérer un problème dans la cellule sur une domaine tronqué puis de passer à la limite quand la taille du domaine tend vers l'infini. Pour prédire les bonnes pentes à l'infini, il faut donc imposer de bonnes conditions aux bords. Dans notre cas, l'équation (3.29) étant non-locale, il est difficile d'imposer ces conditions aux bords. C'est pour cette raison que nous introduisons un nouvel hamiltonien qui sera égal à l'opérateur non-local dans l'intervalle [-R, R] et qui sera remplacé par un hamiltonien local en dehors de [-R -1, R + 1] afin de pouvoir imposer des conditions aux limites. Plus précisément, pour l ∈ (r, +∞), r << l et r ≤ R << l, on considère le problème suivant : trouver λ l,R , tel qu'il existe une solution w l,R de

       G R x, [w l,R ], w l,R x = λ l,R si x ∈ (-l, l) H -(w l,R x ) = λ l,R si x = -l H + (w l,R x ) = λ l,R si x = l, (3.30) avec G R (x, [U ], q) = ψ R (x)φ(x) • M [U ](x) • |q| + (1 -ψ R (x)) • H(q), (3.31) et ψ R ∈ C ∞ , ψ R : R → [0, 1], telle que ψ R ≡ 1 sur [-R, R] 0 dehors de [-R -1, R + 1], et ψ R (x) < 1 ∀x / ∈ [-R, R]. (3.32)
Le limiteur de flux effectif A est alors construit comme la limite quand l tend vers +∞ puis R tend vers +∞ de λ l,R . La fonction w l,R permet de construire la fonction w avec les bonnes pentes à l'infini.

On a également le résultat suivant qui caractérise le limiteur de flux.

Theorem 3.21 (Limiteur de flux effectif (Théorème 2.10 dans [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF])). Supposons que l'hypothèse (C) soit satisfaite. On définit l'ensemble de fonctions suivant

S = {w t.q. ∃ une fonction lipschitzienne m et une constante C ≥ 0 t.q. ||w -m|| L ∞ (R) ≤ C .

Alors on a

A = inf {λ ∈ R : ∃ w ∈ S solution de (3.29) } .

Calcul numérique du limiteur de flux A

Comme on l'a dit précédemment, le limiteur de flux A est la limite de λ l,R quand l puis R tendent vers l'infini. On cherche alors à avoir une approximation de λ l,R . Pour cela, on suit la construction faite dans [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] et on considère le problème tronqué dans la cellule approchée, pour tout δ > 0

       δv δ + ψ R (x)M [v δ ](x) • φ(x) • |v δ x | + (1 -ψ R (x))H(v δ x ) = 0 pour x ∈ (-l, l) δv δ + H -(v δ x ) = 0 pour x = -l δv δ + H + (v δ x ) = 0 pour x = l. (3.33)
Il a été montré dans [2, Preuve de la Proposition 6.4] que -δv δ (0) → λ l,R quand δ → 0. On cherche maintenant à obtenir une approximation numérique de v δ (solution de (3.33)).

Schéma numérique pour (3.33). Le schéma numérique que nous utilisons pour l'opérateur non-local a été inspiré par celui de [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF][START_REF] Forcadel | An error estimate for a new scheme for mean curvature motion[END_REF] et le schéma numérique pour l'opérateur local a été inspiré par celui de [START_REF] Costeseque | A convergent scheme for hamilton-jacobi equations on a junction: application to traffic[END_REF].

On considère une grille uniforme de l'intervalle [-l, l] avec 2n + 1 points, n ∈ N\{0}, et on note le pas de discrétisation ∆x = l/n. Pour tout i ∈ {1, . . . , n}, on note x i = ∆x • i les noeuds de la grille. En particulier, on a

x 0 = 0, x -n = -l et x n = l.
Pour toute fonction discrète v : {1, . . . , n} → R, on note v son extension sur R continue par morceaux et définie par 

v (x) = n i=1 v i • χ Q i (x) (3.34) avec Q i =      [-l, -l + ∆x/2) si i = -n, [x i -∆x/2, x i + ∆x/2) si i ∈ {-n + 1, . . . , n -1} [l -∆x/2, l] si i = n. ( 3 
M d i [v] := M [v ](x i ) et M d i [v] := M [v ](x i ). ( 3 

.36)

Discrétisation du gradient. On considère les différences finies standard forward et backward du premier ordre :

D + v(x i ) = v(x i+1 ) -v(x i ) ∆x et D -v(x i ) = v(x i ) -v(x i-1 ) ∆x .
(3.37)
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Enfin, on définit Dv

i = (D -v(x i ), D + v(x i )).
Comme dans [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF], on utilise une discrétisation monotone de Osher et Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF] pour le gradient. Soit S = (p, q) ∈ R 2 . On définit une fonction qu'on utilise par la suite pour la discrétisation du gradient

G + (S) = max(p, 0) 2 + min(q, 0) 2 1/2 .
Discrétisation de l'opérateur local. En ce qui concerne l'opérateur H(•), comme dans [START_REF] Costeseque | A convergent scheme for hamilton-jacobi equations on a junction: application to traffic[END_REF] on considère la discrétisation suivante

H d (Dv i ) = max H + (D -v i ), H -(D + v i ) , (3.38) où H -et H + on été définies dans (3.28).
Finalement, on introduit pour toute fonction discrète v : {1, . . . , n} → R,

R i [v] := R i ([v], Dv i ) = ψ R (x i ) • M d i [v] • φ(x i ) • G + (Dv i ) + (1 -ψ R (x i )) • H d (Dv i ). On définit similairement R et R en remplaçant M d par M d .
Pour résumer, la version discrète de (3.33) est

       δv i + R i [v] = 0 pour i ∈ {-n + 1, . . . , n -1} δv i + H -(D + v i ) = 0 pour i = -n δv i + H + (D -v i ) = 0 pour i = n.
(3.39) 

Homogénéisation spécifiée d'un modèle du second ordre contenant une perturbation

On présente maintenant les résultats de [START_REF] Forcadel | Homogenization of second order discrete model with local perturbation and application to traffic flow[END_REF]. Les résultats pour le modèle du second ordre sont similaires à ceux présentés juste avant pour le modèle du premier ordre. L'intérêt de travailler avec un modèle du second ordre est qu'il est plus réaliste vu qu'il prend en compte le temps de réaction des conducteurs. Cependant, le fait de travailler avec un modèle du second ordre ajoute beaucoup de difficultés techniques. En effet, on a une combinaison entre les difficultés provenant du fait d'avoir un modèle contenant une perturbation locale mais aussi du fait qu'il s'agit d'un modèle du second ordre.
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Au départ on considère le modèle classique de Bando (1.2) et on le modifie afin de pouvoir simuler la présence d'une perturbation locale. On obtient le système suivant pour tout t > 0 et j ∈ Z, 

Üj (t) = a V (U j+1 (t) -U j (t)) • φ (U j (t)) -Uj (t) , ( 3 
(D) (Monotonie) a ≥ 4 ||V || ∞ ||φ || ∞ + ||φ || ∞ ||V || ∞ . Remark 3.23 (Remarque sur (D)). L'hypothèse (D) implique que pour tout (b, x) ∈ R 2 , la fonction f : z → a 2 z -2V (b + z) φ (x -z) est croissante.
Ceci est en fait, équivalent à l'hypothèse (B2) adaptée au fait que l'on a une perturbation. En effet, si l'on considère φ ≡ 1, on retrouve exactement (B2).

Pour obtenir un résultat d'homogénéisation pour (3.40) on est obligé de combiner les techniques utilisées pour le modèle (3.1) et le modèle (3.22). C'est à dire qu'il faut transformer (3.40) en un modèle du premier ordre à deux variables et ensuite utiliser deux fonctions de densité cumulatives. Plus précisément, on introduit pour tout j ∈ Z,

Ξ j (t) = U j (t) + 1 α Uj (t) avec α = a 2 .
Le système suivant est équivalent à (3.40) : pour tout j ∈ Z, pour tout t ∈ (0, +∞),

     Uj (t) = α (Ξ j (t) -U j (t)) Ξj (t) = α (U j (t) -Ξ j (t)) + 2V (U j+1 (t) -U j (t)) • φ (U j (t)) .
(3.41)

On peut voir qu'il s'agit de la même idée que dans [FIM09a, FIM12, 1]. Ensuite, on introduit deux fonctions cumulatives de distribution (comme dans [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF][START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF]) :

ρ ε et σ ε définies par ρ ε (t, y) = -ε   i≥0 H (y -εU i (t/ε)) + i<0 (-1 + H (y -εU i (t/ε)))   , (3.42) et σ ε (t, y) = -ε   i≥0 H (y -εΞ i (t/ε)) + i<0 (-1 + H (y -εΞ i (t/ε)))   .
(3.43)
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On peut montrer que (ρ ε , σ ε ) est une solution discontinue d'un système d'EDPs non-locales (voir Chapitre 5 pour plus de détails). On a alors le résultat suivant.

Theorem 3.24 (Condition de jonction par homogénéisation : application au trafic routier (Théorème 3.3 dans [START_REF] Forcadel | Homogenization of second order discrete model with local perturbation and application to traffic flow[END_REF])). Supposons que (C) et (D) sont vérifiées et qu'au temps initial

(U i (0), Ξ i (0)) i satisfont pour tout i ∈ Z 0 ≤ Ξ i (0) -U i (0) ≤ V max α , U i+1 (0) -Ξ i (0) ≥ h 0 , et U i+1 (0) -U i (0) ≤ h max .
De plus, on suppose qu'il existe une constante R > 0 telle que,

pour tout i ∈ Z, si |U i (0)| ≥ R, U i+1 (0) -U i (0) = h et si |Ξ i (0)| ≥ R Ξ i+1 (0) -Ξ i (0) = h, avec h max ≥ h ≥ h 0 . On définit u 0 (x) = -x/h. Alors il existe une unique constante A ∈ [H 0 , 0] telle que les fonctions ρ ε et σ ε définies respectivement par (3.42) et (3.43)
convergent localement uniformément vers l'unique solution de viscosité u 0 de (3.27).

Homogénéisation d'un modèle microscopique d'une bifurcation

On présente maintenant les résultats de [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF] qui seront détaillés dans le Chapitre 6. Dans ce papier, on a réussi à obtenir un résultat d'homogénéisation pour un modèle microscopique du premier ordre modélisant une bifurcation simple.

Modèle microscopique du premier ordre pour une bifurcation

La Figure 3.6 donne une représentation schématique du modèle microscopique que l'on considère. Plus précisément, on considère une voie entrante R 0 qui se sépare en deux voies sortantes R 1 et R 2 . On note toujours U i (t) la position du i-ème véhicule, et l'on suppose que les véhicules avec des indices impairs vont dans R 1 et que ceux avec des indices pairs vont vers R 2 . Pour finir, on suppose que sur chaque voie R i la vitesse de chacune des voitures est donnée par une fonction de vitesse optimal V i . A l'échelle macroscopique on s'attend à obtenir une équation de Hamilton-Jacobi dans chacune des voies et une condition de jonction à l'origine (voir la Figure 3.7, avec u 0

Zone de transition

O R 1 R 2 R 0 Ui = V 0 (U i+1 -U i ) Ui = V 1 (U i+2 -U i ) Ui = V 2 (U i+2 -U i )
x qui sera liée à la densité des véhicules et les hamiltoniens effectifs H i qui sont définies plus bas). Avant la bifurcation (i.e pour U i (t) << 0) on suppose que la vitesse de chacune des voitures est donnée par

Condition de jonction

R 0 O R 1 u 0 t + H 2 (u 0 x ) = 0 u 0 t + H 1 (u 0 x ) = 0 u 0 t + H 0 (u 0 x ) = 0 R 2
Ui (t) = V 0 (U i+1 (t) -U i (t)) , et après la bifurcation (i.e pour U i (t) >> 0) on suppose que Ui (t) = V 1 (U i+2 (t) -U i (t)) si i est impair V 2 (U i+2 (t) -U i (t)) si i est pair.
Pour faire le passage de la vitesse V 0 à V i , i = 1 ou 2, on introduit une fonction de transition
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φ et on considère le système suivant, pour tout i ∈ Z et pour tout t > 0 :

Ui (t) =        φ U i (t), V 0 (U i+1 (t) -U i (t)) , V 1 (U i+2 (t) -U i (t)) si i est impair φ U i (t), V 0 (U i+1 (t) -U i (t)) , V 2 (U i+2 (t) -U i (t))
si i est pair.

(3.44)

La fonction φ permet de faire la transition près de la bifurcation et est définie par

φ(x, a, b) =                          a si x < -h 0 -h max -1, (h 0 + h max )(min(a, b) -a) si -1 ≤ x + h 0 + h max < 0, -|x|(min(a, b) -a) + min(a, b) min(a, b) if -h 0 -h max ≤ x < -h 0 , |x| h 0 min(a, b) + 1 - |x| h 0 b si -h 0 ≤ x ≤ 0, b si x > 0,
avec h max > h 0 > 0. La Figure 3.8 donne une représentation schématique du modèle (3.44). 

Zone de transition

O -h 0 -h 0 -h max Ui = V 1 (U i+2 -U i ) Ui = V 0 (U i+1 -U i ) Ui = min(V 0 (U i+1 -U i ), V 1,2 (U i+2 -U i )) Ui = V 2 (U i+2 -U i ) -h 0 -h max -1 Ui = φ(U i , V 0 (U i+1 -U i ), V 1,2 (U i+2 -U i )) R 0 R 1 R 2
U i+1 -U i , mais sur R 1 et R 2 elle dépend de U i+2 -U i . De plus, on définit R = R 0 ∪ R 1 ∪ R 2 et R i ∩ R j = {0} pour i = j.
On remarque que physiquement les véhicules sont sur R, par contre le modèle (3.44) ne fait pas la différence quant à la localisation des véhicules sur R. Ceci vient du fait que l'on
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peut identifier R 0 ∪ R 1 et R 0 ∪ R 2 à
la ligne réelle. Par exemple, les véhicules avec des indices impairs vont bouger dans R 0 ∪ R 1 .

On appelle, zone de transition, l'intervalle [-h 0 -h max -1, 0], où les voitures vont changer d'une vitesse à l'autre. Concernant la fonction de vitesse optimale V i , pour i = 0, 1, 2, et φ, on suppose qu'elles satisfont l'hypothèse (C) mais au lieu de (C5) et (C6) qu'elles satisfont les hypothèses suivantes : 

• (C5') Les fonctions p → pV 0 (-1/p) et p → pV j (-2/p), pour j = 1, 2, sont strictement convexes respectivement sur [-1/h 0 , 0) et sur [-2/h 0 , 0).

Remark 3.25 (Zone de transition).

Les fonctions de vitesse optimale V i décrivent les dynamiques de chacune des voitures dans chacune des voies. Le rôle de la fonction de transition (et de la zone de transition) est de faire un passage continu d'une dynamique à l'autre. On peut voir qu'étant donnée la forme de la fonction de transition φ, si initialement les voitures ont suffisamment d'espace entre elles, il y aura toujours au moins une distance h 0 entre deux voitures consécutive, ce qui veut dire que dans le modèle (3.44) il y a un distance de sécurité h 0 qui évite toute collision.

Injection du système d'EDOs dans un système d'EDPs

Comme précédemment, on injecte le système d'EDOs dans un système d'EDPs. Pour faire cela, on sépare les véhicules en deux groupes, ceux qui vont en R 1 et ceux qui vont en R 2 et on introduit deux fonctions, la première étant la fonction de "distribution cumulative" pour les voitures avec des indices impairs,

ρ ε 1 (t, x) = -2ε •   i[2]=1, i≥0 H(x -εU i (t/ε)) + i[2]=1, i<0 (-1 + H(x -εU i (t/ε)))  
et la seconde étant la fonction de "distribution cumulative" des voitures avec des indices pairs,

ρ ε 2 (t, x) = -2ε •   i[2]=0, i≥0 H(x -εU i (t/ε)) + i[2]=0, i<0 (-1 + H(x -εU i (t/ε)))   -ε.
Ici et dans le reste de cette thèse, i [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] correspond au reste de la division euclidienne de i par 2 (soit 0 ou 1). On remarque que ces fonctions ont été définies sur R et non pas sur R,
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ceci vient encore une fois du fait que l'on peut identifier R 0 ∪ R 1 et R 0 ∪ R 2 à R. De plus, le coefficient 2 dans les fonctions précédentes a été ajouté artificiellement pour simplifier les calculs.

Sous l'hypothèse (C'), la fonction (ρ ε 1 , ρ ε 2 ) est une solution (de viscosité discontinue) de l'équation non-locale et non-linéaire suivante, pour (t, x) ∈ (0, +∞) × R,

               u ε t + φ x ε , N ε 0 u ε ε , ξ ε (t, •) ε (x), M ε 1 u ε (t, •) ε (x) • |u ε x | = 0 ξ ε t + φ x ε , N ε 0 ξ ε ε , u ε (t, •) ε (x), M ε 2 ξ ε (t, •) ε (x) • |ξ ε x | = 0, (3.45) où N ε 0 et M ε i pour i = 1, 2
, sont des opérateurs non-locaux définis par

N ε 0 (U, [Ξ]) (x) = R J 0 (z)F (Ξ(x + εz) -U (x))dz - 3 2 V 0 max , et M ε i [U ](x) = R J i (z)E(U (x + εz) -U (x))dz - 3 2 V i max , avec J i = V i pour i = 0, 1, 2, F (z) =      0 si z ≥ 1, 1/2 si -1 ≤ z < 1, 3/2 si z < -1, et E(z) =      0 si z ≥ 0, 1/2 si -2 ≤ z < 0, 3/2 si z < -2.
Pour le problème (3.45), on considère la condition initiale

u ε (0, x) = u 0 (x) ξ ε (0, x) = ξ 0 (x) pour tout x ∈ R, et on fait l'hypothèse suivante (E0) (Initial condition). Pour tout x ≤ 0, u 0 (x) = ξ 0 (x).
De plus, on suppose que pour tout x ∈ R

-2k 0 = - 2 h 0 ≤ (u 0 ) x ≤ 0 et -2k 0 ≤ (ξ 0 ) x ≤ 0.

Résultat de convergence pour une bifurcation simple

Avant de donner le résultat principal de [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF], on introduit trois fonctions, H 0 , H 1 , et H 2 que l'on utilise pour présenter notre résultat d'homogénéisation. Il s'agit des hamiltoniens effectifs dans chacune des voies. On définit k 0 = 1/h 0 , et H 0 : R → R, par

H 0 (p) =          -p -2k 0 pour p < -2k 0 , -V 0 -1 p • |p| pour -2k 0 ≤ p ≤ 0, p pour p > 0.
On introduit également, pour i = 1, 2, H i : R → R, définies par

H i (p) =          -p -2k 0 pour p < -2k 0 , -V i -2 p • |p| pour -2k 0 ≤ p ≤ 0, p pour p > 0.
Pour i = 0, 1, 2, on peut remarquer que la fonction

H i est continue, coercive lim |p|→+∞ H i (p) = +∞ et grâce à (C5'), il existe un unique point p i ∈ [-2k 0 , 0] tel que H i est décroissante sur (-∞, p i ), H i est strictement croissante sur (p i , +∞).
On note

H 0 = max i∈{0,1,2} min p∈R H i (p).
La Figure 3.9 donne une représentation schématique de H 0 , H 1 , et H 2 .

On veut un résultat d'homogénéisation quand le nombre de véhicules par unité de longueur tend vers l'infini, c'est à dire que l'on veut connaître le comportement de (ρ ε 1 , ρ ε 2 ) quand ε tend vers 0. Tout d'abord, on peut voir que le rayon de la zone de transition tend vers 0, et donc à l'échelle macroscopique on obtiendra une condition de jonction en 0.

On introduit, pour une fonction lisse u : 

[0, T ] × R → R, ∂ i u(t, x) qui correspond à la dérivée spatiale de u en x ∈ R i , pour i = 0, 1, 2, et on définit u x (t, x) := ∂ i u(t, x) si x ∈ R * i := R i \{0}, (∂ 0 u(t, 0), ∂ 1 u(t, 0), ∂ 2 u(t, 0)) si x = 0.
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H 0 p p 0 H 1 p 1 H 2 p 2 -k 0 -2k 0 min p H 0 (p) min p H 2 (p) min p H 1 (p)
Figure 3.9: Représentation schématique des hamiltoniens effectifs Theorem 3.26 (Théorème 2.5 dans [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF]). Supposons (C') vraie, et qu'au temps initial pour tout i ∈ Z, il y a au moins une distance h 0 entre deux véhicules consécutifs. On suppose également qu'il existe une constante R > 0 telle que, pour tout entier i ∈ Z, si

U i (0) ≥ R U i+1 (0) -U i (0) = h 1 si i[2] = 1 h 2 si i[2] = 0 et si U i (0) ≤ -R U i+1 (0) -U i (0) = h, avec h, h 1 , h 2 ≥ h 0 . On définit deux fonctions u 0 et ξ 0 (satisfaisant (E0)) par u 0 (x) = -x/h si x ≤ 0 -2x/h 1 si x > 0 et ξ 0 (x) = -x/h si x ≤ 0 -2x/h 2 si x > 0 pour tout x ∈ R.

Alors il existe une constante

A ∈ [H 0 , 0] telle que la fonction ρε (t, y) =      ρ ε 1 (t, -d(0, y)) pour (t, y) ∈ (0, +∞) × R 0 , ρ ε 1 (t, d(0, y)) pour (t, y) ∈ (0, +∞) × R * 1 , ρ ε 2 (t, d(0, y)) pour (t, y) ∈ (0, +∞) × R * 2 ,
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converge localement uniformément vers u 0 , l'unique solution de viscosité de

                   u 0 t + H 0 (u 0 x ) = 0 pour (t, x) ∈ [0, +∞) × R * 0 u 0 t + H 1 (u 0 x ) = 0 pour (t, x) ∈ [0, +∞) × R * 1 u 0 t + H 2 (u 0 x ) = 0 pour (t, x) ∈ [0, +∞) × R * 2 u 0 t + F A (∂ 0 u 0 (t, 0), ∂ 1 u 0 (t, 0), ∂ 2 u 0 (t, 0))) = 0 pour (t, x) ∈ [0, +∞) × {0} u 0 (0, x) = u 0 (d(0, x)) pour x ∈ R 0 ∪ R 1 , ξ 0 (d(0, x)) pour x ∈ R * 2 ,
où A est une constante qui reste à déterminer et où F A est définie par

F A (p 0 , p 1 , p 2 ) = max(A, H + 0 (p 0 ), H - 1 (p 1 ), H - 2 (p 2 )),
avec, pour i = 0, 1, 2,

H - i (p) = H i (p) si p ≤ p i , H i (p i ) si p ≥ p i , et H + i (p) = H i (p i ) si p ≤ p i , H i (p) si p ≥ p i .
De plus, on a pour tout 

(t, x) ∈ [0, +∞) × R, -2k 0 ≤ u 0 x ≤ 0 avec k 0 définie dans (E0
ρ0 (t, x) = u 0 (t, x) pour x ∈ R 0 , u 0 (t, x)/2 pour x ∈ R * 1 ∪ R * 2 .
Cependant, on ne peut pas expliciter la dynamique de ρ0 à cause de sa définition à l'origine.

Introduction

The goal of this paper is to obtain an homogenization result for a traffic flow model. More precisely, we are interested in a discrete model (of type "following the leader") which describes the dynamics of vehicles on a straight road. The microscopic model we consider was introduced by Bando et al. [BHN + 95] and is an optimal velocity model. The goal is then to describe the collective behaviour of the vehicles (in term of the density of vehicles) as the number of vehicles per unit length goes to infinity. We will see in particular that this problem can be seen as an homogenization result. Let us mention that the theory of homogenization for periodic Hamilton-Jacobi equations has known an important development since the pioneer works of Lions, Papanicolaou, Varadhan [START_REF] Lions | Homogenization of hamilton-jacobi equations[END_REF] and Evans [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear pde[END_REF]. We would like in particular to mention [START_REF] Camilli | Homogenization of monotone systems of hamilton-jacobi equations[END_REF] which is concerned with the homogenization of system and [FIM09a, FIM09b, FIM12, IMR08] for the homogenization of non-local equations (or systems).

General model with n 0 types of drivers

We begin by recalling the model introduced in [BHN + 95]. We consider that we have n 0 ∈ N types of drivers (or vehicles), and we consider the following optimal velocity model, for all j ∈ Z and t ≥ 0,

Üj (t) = a j (V j (U j+1 (t) -U j (t)) -Uj ), (1.1) 
where U j denotes the position of j-th vehicle, Uj is its velocity and Üj its acceleration.

The coefficients a j are the sensitivities of the drivers and V j are called optimal velocity functions (OVF) and depend on the driver.

To simplify the study and in order to be able to get homogenization, we impose the following periodic conditions a j+n 0 = a j and V j+n 0 = V j for all j ∈ Z.

The model we consider has some similarities with the one studied in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF] (in a different context). The main difference here is that the a j can depend on j which was a crucial arguments in the proof of [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF], in particular to get the order of the particles. Nevertheless, we will use the same strategy and we introduce for all j ∈ Z

Ξ j (t) = U j (t) + 1 α Uj (t) where α = 1 2 min j∈{1,...,n 0 } (a j ). (1.2)
We then obtain the following system of ODEs: for all j ∈ Z and t ∈ (0, +∞),

       Uj (t) = α(Ξ j (t) -U j (t)) Ξj (t) = (a j -α)(U j (t) -Ξ j (t)) + a j α V j (U j+1 (t) -U j (t)).
(1.3)
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Let us now give the assumptions on the functions V j and the coefficients a j :

(A1) (Regularity) For all j ∈ {1, ..., n 0 }, V j is continuous and non-negative.

V j is Lipschitz continuous and we denote by L j its Lipschitz constant.

We denote by L = max j∈{1,...,n 0 } L j .

(A2) (Monotonicity) For all j ∈ {1, ..., n 0 },

     V j is non-decreasing.
a j ≥ 4L.

(A3) (Upper bound) For all j ∈ {1, ..., n 0 },

lim h→+∞ V j (h) < +∞.
(1.4)

We denote by V max = max j (||V j || ∞ ) and h 0 = V max /α.

(A4) (Lower bound) For all j ∈ {1, ..., n 0 }, V j (h) = 0 for all h ≤ 2h 0 .

Remark 1.1. Conditions (A1)-(A3) are classical for the Bando model (see for example [BHN + 95], [BT10]

). Assumption (A4) appears for example in [START_REF] Batista | Optimal velocity functions for car-following models[END_REF]. We note that the second condition in (A2) appears in [BHN + 95] to get stability. Here, it allows us to show that U j → (a j -α)U j + a j α V j (U j+1 -U j ) is non decreasing, and so the system (1.3) is monotone.

(A5) (Periodicity of the type of drivers) For all j ∈ Z, a j+n 0 = a j and V j+n 0 = V j .

General system of PDE with n 0 types of drivers

As in [START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF], we inject the system of (ODE) in a system of (PDE) by considering the functions (u, ξ) = ((u j (t, x)) j∈Z , (ξ j (t, x)) j∈Z ), defined by

u j (t, x) = U j+ x n 0 (t) and ξ j (t, x) = Ξ j+ x n 0 (t),
where • denotes the floor integer part. For instance in the case n 0 = 1, we have

u(t, x) = U x (t) and ξ(t, x) = Ξ x (t),
where x is a continuous variable representing the index of each vehicle. In the case n 0 > 1, the integer j allows us to take into account the periodicity of the coefficients a j and the functions V j .

The function (u, ξ) satisfies the following system of equations (see Proposition 6.1), for all (t, x) ∈ (0, +∞) × R and for all j ∈ Z,

                               ∂u j ∂t (t, x) = α(ξ j (t, x) -u j (t, x)) ∂ξ j ∂t (t, x) = (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j (u j+1 (t, x) -u j (t, x)) u j+n 0 (t, x) = u j (t, x + 1)
ξ j+n 0 (t, x) = ξ j (t, x + 1).

(1.5)

However, we are more interested in the rescaled system, defined by

u ε j (t, x) = εu j t ε , x ε and ξ ε j (t, x) = εξ j t ε , x ε . (1.6)
As ε goes to 0, the number of vehicles per length unit goes to infinity. The function (u ε , ξ ε ) = ((u ε j (t, x)) j∈Z , (ξ ε j (t, x)) j∈Z ) satisfy the following Cauchy problem, for all (t, x) ∈ (0, +∞) × R,

                                 ∂u ε j ∂t (t, x) = α ξ ε j (t, x) -u ε j (t, x) ε ∂ξ ε j ∂t (t, x) = (a j -α) u ε j (t, x) -ξ ε j (t, x) ε + a j α V j u ε j+1 (t, x) -u ε j (t, x) ε u ε j+n 0 (t, x) = u ε j (t, x + ε) ξ ε j+n 0 (t, x) = ξ ε j (t, x + ε),
(1.7)
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completed with the initial condition

u ε j (0, x) = u 0 x + jε n 0 and ξ ε j (0, x) = ξ ε 0 x + jε n 0 . (1.8)
We assume that the initial condition satisfies the following assumption,

(A0) (Gradient bound)

There exist k 0 , K 0 > 0 such that

     0 < k 0 ≤ (u 0 ) x ≤ K 0 0 < k 0 ≤ (ξ ε 0 ) x ≤ K 0 .
We also assume that

0 ≤ α(ξ ε 0 (x) -u 0 (x)) ≤ min     V max ε, α. u 0 x + ε n 0 -u 0 (x) 2     for all x ∈ R.
Remark 1.2. Condition (A0) implies that initially the vehicles have enough space between them. Concerning the last inequality in (A0), formally we can see, using (1.2), that we have

ξ j (t, x) = u j (t, x) + 1 α ∂u ∂t (t, x),
which means that after rescaling, using (1.6), we have

ξ ε j (t, x) = u ε (t, x) + ε α ∂u ε ∂t (t, x).
Therefore, the initial condition must satisfy

ξ ε 0 x + jε n 0 = u 0 x + jε n 0 + ε α ∂u ε j ∂t (0, x).
First, this implies that the initial condition ξ ε 0 depends on ε. The bound on α (ξ ε 0 (x) -u 0 (x)) can be explained as follows, in the case where initially the vehicles have enough space between them (k 0 ≥ 2h 0 n 0 ), the initial velocity of each vehicle must be less than V max , so we have

α (ξ ε 0 (x) -u 0 (x)) ≤ V max ε.
In the case where vehicles have less space between them (k 0 ≤ 2h 0 n 0 ), the initial velocity of each vehicle must be bounded in such a way that the vehicles remain ordered (u j ≤ u j+1 and ξ j ≤ ξ j+1 ) (see Theorem 2.7), so we have

α (ξ ε 0 (x) -u 0 (x)) ≤ V max • u 0 x + ε n 0 -u 0 (x) 2h 0 = α • u 0 x + ε n 0 -u 0 (x) 2 .
Combining the two previous inequalities we obtain the last inequality in (A0).

The main purpose of this article is to prove that the viscosity solution of (1.7)-(1.8) converges uniformly on compact subsets of (0, +∞) × R as ε goes to 0, to the unique solution of the following problem

     u 0 t (t, x) = F (u 0 x (t, x)) for (t, x) ∈ (0, +∞) × R, u 0 (0, x) = u 0 (x) for x ∈ R, (1.9) 
where F has to be determined.

Theorem 1.3 (Homogenization of systems with n 0 types of drivers). Assume that (A1)-(A5) holds and that the initial datum u 0 , ξ ε 0 satisfy (A0). Consider the solution ((u ε j ) j∈Z , (ξ ε j ) j∈Z ) of (1.7)- (1.8). Then, there exists a continuous function F : R → R such that, for all j ∈ Z, the functions u ε j and ξ ε j converge uniformly on compact subsets of (0, +∞) × R as ε goes to 0 to the unique viscosity solution u 0 of (1.9). Theorem 1.4 (Homogenization of systems with n 0 types of sensitivities and one OVF). Assume that (A1)-(A5) are satisfied and that the initial datum u 0 , ξ ε 0 satisfy (A0). We also assume that V j = V for all j ∈ N. Let us consider the solution ((u ε j ) j∈Z , (ξ ε j ) j∈Z ) of (1.7)- (1.8). Then the effective Hamiltonian F is given by

F (p) = V p n 0 for all p ∈ R + .
(1.10)

Hull functions

We recall the notion of hull function (presented as in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF]) for the system (1.5) which is necessary for the proof of Theorem 1.3. It will allow us in particular to define the effective Hamiltonian F . We look for functions ((h j ) j , (g j ) j ) such that (u j (t, x), ξ j (t, x)) = (h j (λt + px), g j (λt + px)) is a solution of (1.5) on R × R.

Definition 1.5 (Hull function for system with n 0 types of drivers). Given (V j ) j and (a j ) j satisfying (A1)-(A5), p ∈ R + , and a real number λ ∈ R, we say that a family of functions
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((h j ) j∈Z , (g j ) j∈Z ) is a hull function for (1.5) if it satisfies for all j ∈ {1, ..., n 0 } and for all z ∈ R,

                         λ = α(g j -h j ) h j+n 0 (z) = h j (z + p) h j+1 (z) ≥ h j (z) h j (z) = z + h j (0)                            λ = (a j -α)(h j -g j ) + a j α V j (h j+1 -h j ) g j+n 0 (z) = g j (z + p) g j+1 (z) ≥ g j (z) g j (z) = z + g j (0) (1.11)
Remark 1.6. The notion of hull functions is a little bit different from the one presented in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF]. This comes from the fact that our system is invariant by addition of constant while the one considered in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF] was invariant by addition of integer constant only. This allows us to show that h j = 1 and g j = 1 and so to get the special form for h j and g j .

Theorem 1.7 (Effective Hamiltonian and hull functions). Assume (A1)-(A5) and let p ∈ (0, +∞). Then there exists a unique real λ for which there exists a hull function ((h j ) j , (g j ) j ) satisfying (1.11). Moreover the real λ = F (p), seen as a function of p, is continuous in (0, +∞).

Remark 1.8. A simple computation gives us that

F (p) = V j (h j+1 (0) -h j (0)) ∀j ∈ Z.
(1.12)

Qualitative properties of the effective Hamiltonian

We have the following results concerning F , and concerning the homogenized Hamilton-Jacobi equation (1.9).

Theorem 1.9 (Qualitative properties of F ). Assume (A1)-(A5). For any p ∈ (0, +∞), let F (p) denote the effective Hamiltonian given by Theorem 1.7. Then we have the following properties

(i) (Lower boundary) if p ≤ 2h 0 n 0 , we have F (p) = 0.
(ii) (Upper boundary)

lim p→+∞ F (p) = min j∈{1,...,n 0 } (||V j || ∞ ).
(iii) (Monotonicity) F is non-decreasing.

Remark 1.10. For example, an effective Hamiltonian can be of the form: Link with macroscopic models. In the literature we can find different types of macroscopic models. But we will focus on the first order model LWR (Lighthill-Whitham-Richards) (for more information on the LWR model see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] or for instance [START_REF] Garavello | Traffic flow on networks[END_REF]), which is defined by

h 0 h max h V max 0 V
∂ t ρ + ∂ y (ρv(ρ)) = 0, (1.13) 
where ρ(t, y) is the density of vehicles at the point y ∈ R (physical point on the road) at time t ∈ (0, +∞), and v(ρ) is the average speed of vehicles. We call f (ρ) = ρv(ρ) the traffic flux. It can be remarked that (1.13) uses Eulerian coordinates (y is physical point on the road). However, it was proven by Wagner in [START_REF] Wagner | Equivalence of the euler and lagrangian equations of gas dynamics for weak solutions[END_REF] (for equations of gas dynamics) that the problem (1.13) is equivalent to

∂ t s -∂ x v * (s) = 0, (1.14) 
where s(t, x) = 1/ρ is the spacing between the vehicles, x stands for the vehicle x (seen as a continuous variable) and v * (s) = v(1/s). We can see that equation (1.14) uses Lagrangian coordinates. Moreover, if we denote by u 0 (t, x) the position of the x vehicle, we have that (1.14) is equivalent (see [START_REF] Leclercq | The Lagrangian coordinates applied to the LWR model[END_REF]) to

∂ t u 0 (t, x) = v * ∂ x u 0 , (1.15)
with s(t, x) = ∂ x u 0 (t, x). From this we can see that equation (1.9) is equivalent to a macroscopic model of traffic flow of the LWR type, with v(ρ) := F 1 ρ .

Using Theorem 1.9, we can see that the flux of the macroscopic model, f (ρ) = ρv(ρ), satisfies some of the properties presented in [START_REF] Garavello | Traffic flow on networks[END_REF]:

1. f is a continuous function. 2. f (0) = f (ρ max ) = 0, with ρ max = n 0 h 0 .
The problem of deriving macroscopic models from microscopic models has already been studied for models of the type following the leader. We refer for example to [START_REF] Aw | Derivation of continuum traffic flow models from microscopic follow-the-leader models[END_REF][START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF][START_REF] Helbing | From microscopic to macroscopic traffic models[END_REF][START_REF] Lee | Macroscopic traffic models from microscopic car-following models[END_REF] where the authors rescaled the empirical measure and obtain a scalar conservation law (LWR model). In these papers at the microscopic scale the authors consider only one type of driver (a single optimal velocity function).

The originality of our work is that we work with the primitive of the empirical measure and at the macroscopic scale we obtain a Hamilton-Jacobi equation which is equivalent to the primitive of the LWR model. This approach gives different techniques of proof than those used when considering the empirical measure. This method allows us to treat more complex problems. For instance, to consider at the microscopic scale, a model that takes into account n 0 different types of drivers (considering the coefficients a j and the optimal velocity functions V j for j ∈ {1, ..., n 0 }). Another example is the case of microscopic models with a singular perturbation (see [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF]). Finally, simpler cases, for instance when we have a single optimal velocity function, are easily treated. In fact in that case we can explicitly determine the effective Hamiltonian (see Theorem 1.4).

Organisation of the article

In Section 2 we give some results concerning viscosity solutions for systems. In Section 3, we prove Theorem 1.3 assuming Theorem 1.7. In Section 4 we give the results concerning the existence of the hull functions.

Viscosity Solutions

This section is devoted to the definition and to useful results for viscosity solutions for systems like (1.5). The reader is referred to the user's guide of Crandall, Ishii, Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and the book of Barles [Bar94] for an introduction to viscosity solutions and to [START_REF] Ishii | Perron's method for monotone systems of second-order elliptic partial differential equations[END_REF][START_REF] Ishii | Viscosity solutions for monotone systems of second-order elliptic pdes[END_REF][START_REF] Lenhart | Viscosity solutions for weakly coupled systems of first-order partial differential equations[END_REF] and references therein for results concerning viscosity solutions for weakly coupled systems.

Definitions

We consider for 0 < T ≤ +∞ the following Cauchy problem, for j ∈ Z , t > 0 and x ∈ R,

                               ∂u j ∂t (t, x) = α(ξ j (t, x) -u j (t, x)) ∂ξ j ∂t (t, x) = (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j (u j+1 (t, x) -u j (t, x)) u j+n 0 (t, x) = u j (t, x + 1)
ξ j+n 0 (t, x) = ξ j (t, x + 1), (2.1) 
with the initial condition

u j (0, x) = u 0 x + j n 0 and ξ j (0, x) = ξ 0 x + j n 0 . (2.2)
We recall the definition of the upper and lower semi-continuous envelopes, u * and u * , of a locally bounded function u,

u * (t, x) = lim sup (τ,y)→(t,x) u(τ, y) and u * (t, x) = lim inf (τ,y)→(t,x)
u(τ, y). Definition 2.1 (Viscosity Solutions). Let T > 0, u 0 : R → R and ξ 0 : R → R satisfying (A0). For all j, let u j : R + × R → R and ξ j : R + × R → R be upper semi-continuous (resp. lower semi-continuous) locally bounded functions. We set Ω = (0, T ) × R. Let us consider that ((u j ) j , (ξ j ) j ) satisfies ∀j ∈ Z, ∀(t, x) ∈ Ω, u j+n 0 (t, x) = u j (t, x + 1) and ξ j+n 0 (t, x) = ξ j (t, x + 1).

-A function ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super-solution) of (2.1) on Ω if for all (t, x) ∈ Ω and for any test function ϕ ∈ C 1 (Ω) such that u j -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

ϕ t (t, x) ≤ α(ξ j (t, x) -u j (t, x)) (resp. ≥), (2.3) 
and for all (t, x) ∈ Ω, and any test function ϕ ∈ C 1 (Ω) such that ξ j -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

ϕ t (t, x) ≤ (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j (u j+1 (t, x) -u j (t, x)) (resp. ≥).
(2.4) -A function ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super-solution) of (2.1)-(2.2) if ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super solution) of (2.1) on Ω and if it satisfies moreover for all x ∈ R, j ∈ {1, ..., n 0 }, u j (0, x) ≤ u 0 x + j n 0 (resp. ≥) and ξ j (0, x) ≤ ξ 0 x + j n 0 (resp. ≥).
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-A function ((u j ) j , (ξ j ) j ) is a viscosity solution of (2.1) (resp. of (2.1)-(2.2)) if ((u * j ) j , (ξ * j ) j ) is a sub-solution and (((u j ) * ) j , ((ξ j ) * ) j ) is a super solution of (2.1) (resp. of (2.1)-(2.2)).

Results for viscosity solutions of (2.1)

Proposition 2.2 (Comparison Principle). Assume (A0) and (A1)-(A5). Let (u j , ξ j ) and (v j , ζ j )) be respectively a sub-solution and a super-solution of (2.1)- (2.2). We also assume that there is a constant K > 0 such that for all j ∈ {1, ..., n 0 } and for all (t, x) ∈ [0; T ] × R, we have

u j (t, x) ≤ u j (0, x) + K(1 + t), ξ j (t, x) ≤ ξ j (0, x) + K(1 + t) -v j (t, x) ≤ -v j (0, x) + K(1 + t), -ζ j (t, x) ≤ -ζ j (0, x) + K(1 + t). (2.5) If u j (0, x) ≤ v j (0, x) and ξ j (0, x) ≤ ζ j (0, x) for all x ∈ R, j ∈ Z, then u j (t, x) ≤ v j (t, x) and ξ j (t, x) ≤ ζ j (t, x) for all x ∈ R, j ∈ Z, t ∈ [0; T ].

Proof of Proposition 2.2.

This proof is similar to the one of Proposition 2.2 in [FIM12], because the system (2.1) is monotone as the one studied in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF] thanks to assumption (A2). Indeed, for systems of the following form, for j ∈ {1, ..., n 0 },

∂u j ∂t = f j (ξ 1 , • • • , ξ n 0 , u 1 , • • • , u n 0 ) , ∂ξ j ∂t = g j (ξ 1 , • • • , ξ n 0 , u 1 , • • • , u n 0 ) ,
we say that the system is monotone in the sense of Ishii and Koike [START_REF] Ishii | Viscosity solutions for monotone systems of second-order elliptic pdes[END_REF], if for all i, j ∈ {1, ..., n 0 }, i = j,

∂f j ∂ξ i ≥ 0 , ∂f j ∂u i ≥ 0 , ∂g j ∂ξ i ≥ 0 and ∂g j ∂u i ≥ 0. (2.6)
System (2.1) satisfies the previous definition, thanks to (A2). For the readers convenience, we give the details of the proof of Proposition 2.2. Thanks to the periodicity in (2.1), we only need to prove that

M = sup (0;T )×R max j∈{1,...,n 0 } max(u j (t, x) -v j (t, x), ξ j (t, x) -ζ j (t, x)) ≤ 0.
We argue by contradiction and assume that M > 0.

Step 1: the test functions. We introduce, for ε, γ > 0 and η > 0 small parameters, the functions

ϕ(t, x, y, j) = u j (t, x) -v j (t, y) - (x -y) 2 ε 2 - η T -t -γx 2 and φ(t, x, y, j) = ξ j (t, x) -ζ j (t, x) - (x -y) 2 ε 2 - η T -t -γx 2 .
First, we notice that these functions satisfy

ϕ(t, x, y, j) ≤ 2K(1 + T ) + K 0 |x -y| - (x -y) 2 ε 2 -γx 2 and φ(t, x, y, j) ≤ 2K(1 + T ) + K 0 |x -y| - (x -y) 2 ε 2 -γx 2 ,
where we used (2.5) and (A0). This implies that lim

|x|,|y|→+∞ ϕ = lim |x|,|y|→+∞ φ = -∞.
Therefore, given that ϕ and φ are upper semi-continuous functions, we have that the function ψ = max(ϕ, φ) reaches a maximum at some finite point that we denote by ( t, x, ȳ, j) ∈ [0, T ] × R × R × {1, . . . , n 0 }. We define M ε,η,γ = ψ( t, x, ȳ, j). Classically we have the following lemma.

Lemma 2.3. For η and γ small enough, we have the following properties.

(i) 0 < M 2 ≤ M ε,η,γ .
(ii) γ|x| → 0 as γ → 0.

(iii) |x -ȳ| → 0 as ε → 0.

Step 2: t > 0. By contradiction, let us assume that ψ reaches its maximum for t = 0. Let us for instance assume that ψ( t, x, ȳ, j) = ϕ( t, x, ȳ, j). In this case we have

0 < M 2 ≤ M ε,η,γ ≤ u 0 x + j n 0 -u 0 ȳ + j n 0 ≤ K 0 |x -ȳ|,
where we have used assumption (A0) for the last inequality. Using the fact that |x-ȳ| → 0 as ε → 0, we get a contradiction for ε small enough. Similarly, we get a contradiction if we assume that ψ( t, x, ȳ, j) = φ( t, x, ȳ, j).

Step 3: viscosity inequalities in the case ψ( t, x, ȳ, j) = ϕ( t, x, ȳ, j) . By duplication of the time variable and passing to the limit we have that there exist two real numbers a, b ∈ R, such that 2 , a ≤ α uj( t, x) -ξj( t, x) , and b ≥ α vj( t, ȳ) -ζj( t, ȳ) .

a -b = η (T -t)
Combining these inequalities, we obtain

η (T -t) 2 ≤ α(uj( t, x) -vj( t, ȳ) -(ξj( t, x) -ζj( t, ȳ))) ≤ 0,
where we have used the fact that ϕ( t, x, ȳ, j) ≥ φ( t, x, ȳ, j) for the last inequality. This gives us a contradiction from the fact that η > 0.

Step 4: viscosity inequalities in the case ψ( t, x, ȳ, j) = φ( t, x, ȳ, j). Like in the previous step, by duplication of the time variable and passing to the limit we have that there exist two real numbers a, b ∈ R, such that (2.8)

a -b = η (T -t) 2 (2.
Using the fact that ψ( t, x, ȳ, j) = φ( t, x, ȳ, j), we obtain the following properties.

• For all k ∈ {1, ..., n 0 }

u k ( t, x) ≤ v k ( t, ȳ) + ξj( t, x) -ζj( t, ȳ).
(2.9)

• ∀k / ∈ {1, ..., n 0 }, there is an l k ∈ Z and a k ∈ {1, ..., n 0 } such that k = k + l k n 0 , u k ( t, x) -v k ( t, ȳ) = u k( t, x + l k ) -v k( t, ȳ + l k ) ≤ξj( t, x) -ζj( t, ȳ) -γ x2 + γ(l k + x) 2 ≤ξj( t, x) -ζj( t, ȳ) + o γ (1), (2.10)
where we used the periodicity in (2.1) and the fact that ϕ( t, x + l k , ȳ + l k , k) ≤ φ( t, x, ȳ, j) for the first inequality and Lemma 2.3 for the second inequality. 

≤ aj α L • o γ (1) = o γ (1),
where we have used the monotonicity property (A2) (see Remark 1.1), (2.9), and the fact that j ∈ {1, ..., n 0 } for the second inequality, the fact that the function Vj is non-decreasing (see assumption (A2)) and (2.10) for the third inequality and the fact that the function Vj is Lipschitz continuous (see assumption (A1)) for the last inequality.

From the previous inequalities we get a contradictory for γ small enough. This ends the proof of Proposition 2.2.

We now give a comparison principle on bounded sets, to do this, we define, for a given point (t 0 , x 0 ) ∈ (0, T ) × R and for all r, R > 0, the set Q r,R = (t 0 -r, t 0 + r) × (y 0 -R, y 0 + R).

Proposition 2.4 (Comparison principle on bounded sets). Assume (A1)-(A5). Let

((u j ) j , (ξ j ) j ) (resp. ((v j ) j , (ζ j ) j )) be a sub-solution (resp. a super-solution) of (2.1) on the open set Q r,R ⊂ (0, T ) × R. Assume also that for all j ∈ {1, ..., n 0 },

u j ≤ v j and ξ j ≤ ζ j on Qr,R+1 \ Q r,R , then u j ≤ v j and ξ j ≤ ζ j on Q r,R for j ∈ {1, ..., n 0 }.
We now turn to the existence of a solution for equation (2.1). To do this we will use the following lemma.

Lemma 2.5 (Existence of Barriers). Assume (A0) and (A1)-(A3). There exist a constant

K 1 > 0 such that ((u + j (t, x)) j , (ξ + j (t, x)) j ) = u 0 x + j n 0 + K 1 t j , ξ 0 x + j n 0 + K 1 t j , 56
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and

((u - j (t, x)) j , (ξ - j (t, x)) j ) = u 0 x + j n 0 -K 1 t j , ξ 0 x + j n 0 -K 1 t j ,
are respectively super and sub-solutions of (2.1)-(2.2) for all T > 0. Moreover, the constant K 1 can be chosen to be

K 1 = max j∈{1,...,n 0 } (a j ). V max α .
Proof. Let us prove that ((u + j (t, x)) j , (ξ + j (t, x) j )) is a super-solution of (2.1)-(2.2). First, using (A0) with ε = 1 we have for all j ∈ {1, ..., n 0 },

α(ξ + j (t, x) -u + j (t, x)) = α ξ 0 x + j n 0 -u 0 x + j n 0 ≤ V max ≤ K 1 ,
and

(a j -α)(u + j (t, x) -ξ + j (t, x)) + a j α V j (u + j+1 (t, x) -u + j (t, x)) ≤ max(a j ) α V max ≤ K 1 , (2.11)
where we have used (A0) and the fact that for all j, ||V j || ∞ ≤ V max .

By applying Perron's method, joint to the comparison principle, we get the following result.

Theorem 2.6 (Existence and uniqueness of viscosity solutions for (2.1)). Assume (A0) and (A1)-(A5). Then there exists a unique solution ((u j ) j , (ξ j ) j ) of (2.1)- (2.2). Moreover, the functions u j , ξ j are continuous for all j ∈ Z.

We now prove that the cars remain in ordered during the evolution. Theorem 2.7 (Ordering of the cars). Assume (A0) and (A1)-(A5). Let ((u j ) j , (ξ j ) j ) be a solution of (2.1). Then u j and ξ j are non-decresing with respect to j.

In order to do the proof of this theorem we need the following lemma.

Lemma 2.8 (Bound on time-derivative). Assume (A1)-(A5)

. Let ((u j ) j , (ξ j ) j ) be a solution of (1.5), with initial condition ((u j (0, x)) j , (ξ j (0, x)) j ) satisfying (A0). Then for all (t, x) ∈ [0, T ] × R and for all j ∈ Z,

0 ≤ ξ j (t, x) -u j (t, x) ≤ V max α .
Proof. Since ξ j -u j is periodic in j it is sufficient to do this proof for j ∈ {1, ..., n 0 }. We will only do the proof for the upper bound since the proof for the lower bound is similar.

Step 1: test function. We introduce

M = sup (t,x)∈[0,T ]×R max j∈{1,...,n 0 } ξ j (t, x) -u j (t, x) - V max α .
We want to prove that M ≤ 0. To do this, we argue by contradiction and we assume that M > 0. We define the following function, with ε, η, γ > 0 small parameters,

ϕ(t, x, y, j) = ξ j (t, x) -u j (t, y) - |x -y| 2 ε 2 - η T -t - V max α -γ|x| 2 .
We can see that the function ϕ(t, x, y, j) reaches a maximum at a finite point ( t, x, ȳ, j) thanks to the existence of barriers (Lemma 2.5). By classical arguments, we have,

         M ε,η,γ = ϕ( t, x, ȳ, j) ≥ M 2
for γ and η small enough.

|x -ȳ| → 0 as ε → 0. γ|x| → 0 as α → 0.

(2.12)

Step 2: t > 0 for ε small enough. By contradiction, let us assume t = 0. Then using the fact that M ε,η,γ ≥ M/2 > 0, we get

0 < M ε,η,γ ≤ ξj(0, x) -uj(0, ȳ) - |x -ȳ| 2 ε 2 - η T -γ|x| 2 - V max α ⇒ η T < uj(0, x) -uj(0, ȳ) + ξj(0, x) -uj(0, x) - V max α ⇒ η T < K 0 |x -ȳ| + V max α - V max α ≤ K 0 |x -ȳ|, (2.13) 
where we have used for the third line assumption (A0). This is a contradiction for ε small enough.

Step 3: viscosity inequalities. We classically do a duplication of the time variable and passing to the limit, we get that there are real numbers a, b ∈ R such that Sending ε → 0, we get η T 2 ≤ 0, which is a contradiction.

a -b = η (T -t)
We now turn to the proof of Theorem 2.7.

Proof of Theorem 2.7.

Case 1: k 0 ≥ 2h 0 n 0 . In this case we have for all j ∈ Z and y ∈ R,

2V max α = 2h 0 ≤ u 0 y + j + 1 n 0 -u 0 y + j n 0
Now, we would like to prove that u j (t, y) < u j+1 (t, y) -h 0 . We argue by contradiction, let us assume that there exists a time

t * = inf {t, s.t ∃i ∈ Z, y ∈ R s.t u i (t, y) = u i+1 (t, y) -h 0 } .
Let us consider y ∈ R and i ∈ Z such that u i (t * , y) = u i+1 (t * , y) -h 0 . By continuity, there exists a time t 0 ∈ [0, t * ) such that

u i (t 0 , y) = u i+1 (t 0 , y) -2h 0 and u i+1 (t, y) -u i (t, y) ∈ [h 0 , 2h 0 ] for all t ∈ [t 0 , t * ].
Let us now see the equation satisfied by

(u i , ξ i ) for t ∈ [t 0 , t * ], using that V i (u i+1 (t, y) - u i (t, y)) = 0,                            (u i ) t (t, y) = α(ξ i (t, y) -u i (t, y)) (ξ i ) t (t, y) = (a i -α)(u i (t, y) -ξ i (t, y)) u i (t 0 , y) = u i+1 (t 0 , y) -2h 0 ξ i (t 0 , y) ≤ u i+1 (t 0 , y) -2h 0 + V max α .
(2.16)

The last inequality is justified by Lemma 2.8. We now construct a super-solution for this system by considering

     ūi (t, y) = Vmax a i (1 -e -a i (t-t 0 ) ) + u i+1 (t 0 , y) -2h 0 ξi (t, y) = ūi (t, y) + 1 α (ū i ) t (t, y),
with the initial condition

     ūi (t 0 , y) = u i+1 (t 0 , y) -2h 0 ξi (t 0 , y) = u i+1 (t 0 , y) -2h 0 + Vmax α .
Since t 0 < t * , we have

ūi (t * , y) < V max α -h 0 + u i+1 (t 0 , y) -h 0 = u i+1 (t 0 , y) -h 0 ≤ u i+1 (t * , y) -h 0 , (2.17) 
where we used for the first line the fact that 1-e a i (t * -t 0 ) < 1 and that α ≤ a i , for the second line the fact that h 0 = V max /α, and for the third line the fact that t * > t 0 and Lemma 2.8 which implies that the u j are non-decreasing in t. Using the comparison principle for (2.16) yields

u i (t * , y) ≤ ūi (t * , y) < u i+1 (t * , y) -h 0 . (2.18)
This is a contradiction with the definition of t * . Therefore, we have for all j ∈ {1, ...., n 0 }, for all (t, x) ∈ [0, T ] × R, that

u j (t, x) < u j+1 (t, x) -h 0 .
Now from Lemma 2.8 we know that for all (t, x) ∈ (0, +∞) × R and for all j ∈ Z,

     V max ≥ α(ξ j (t, x) -u j (t, x)) ≥ 0 V max ≥ α(ξ j+1 (t, x) -u j+1 (t, x)) ≥ 0,
from which we can easily deduce that for all j ∈ Z, for all (t, x) ∈ [0, T ] × R, we have

ξ j+1 (t, x) ≥ ξ j (t, x).
Case 2: 0 < k 0 ≤ 2h 0 n 0 . We use the following lemma: Lemma 2.9. Assume (A1)-(A5), let i ∈ Z, y ∈ R, and let 2h 0 -k 0 /n 0 ≥ δ > 0, also let us assume that 

u i (0, y) = u i+1 (0, y) -(2h 0 -δ) and 0 ≤ ξ i (0, y) -u i (0, y) ≤ 2h 0 -δ 2 , ( 2 
                           (u i ) t = α(ξ i -u i ) (ξ i ) t = (a i -α)(u i -ξ i ) u i (0, y) = u i+1 (0, y) -(2h 0 -δ) ξ i (0, y) ≤ u i+1 (0, y) -2h 0 + δ + 2h 0 -δ 2 ,
We can construct a super-solution of this system by considering

           ūi (t, y) = α 2h 0 -δ 2a i (1 -e -a i t ) + u i+1 (0, y) -2h 0 + δ ξi (t, y) = ūi (t, y) + 1 α (ū i ) t (t, y).
(2.20)

Therefore, for all t ∈ [0, t], we have

u i+1 (t, y) -u i (t, y) ≥ u i+1 (0, y) -u i (t, y) ≥ u i+1 (0, y) -ūi (t, y) ≥ 2h 0 -δ -α 2h 0 -δ 2a i ≥ 2h 0 -δ - 2h 0 -δ 2 ≥ 2h 0 -δ 2 ≥ 0, (2.21) 
where we have used for the first line the fact that u i+1 is non-decreasing in time (see Lemma 2.8), for the second line a comparison between u i and ūi , for the third line the definition of ūi (t, y) and the fact that 1 -e -a i t ≤ 1, and for the fourth line the fact that α ≤ a i . Similarly, we have

ξ i+1 (t, y) -ξ i (t, y) ≥ u i+1 (t, y) -ξi (t, y) ≥ u i+1 (t, y) -ūi (t, y) - 1 α (ū i ) t (t, y) ≥ 2h 0 -δ 2 - 2h 0 -δ 2 ≥ 0, (2.22) 
where we have used for the first line Lemma 2.8 and the fact that ξi ≥ ξ i , for the second line the definition of ξ.

Using this lemma, we deduce that in the case where there exist i ∈ Z and y ∈ R such that

u i+1 (0, y) -u i (0, y) 2 ≤ V max α = h 0 , (2.23) 
we have u i (t, y) ≤ u i+1 (t, y) and ξ i (t, y) ≤ ξ i+1 (t, y), for all time t ∈ [0, t * ], where t * is defined by

t * = inf{t, u i+1 (t, y) -u i (0, y) > 2h 0 }.
We can then use the same proof as in Case 1 to deduce that u i+1 (t, y) ≥ u i (t, y) + h 0 and ξ i+1 (t, y) ≥ ξ i (t, y) for all t ≥ t * .

Convergence

This section contains the proof of the main homogenization result (Theorem 1.3). This proof relies on the existence of hull functions and some properties of the effective Hamiltonian.

We recall two lemmas necessary for the proof of Theorem 1.3. We begin by a first result which is a direct consequence of Perron's method and Lemma 2.5 (with a rescaling in ε).

3.Convergence Lemma 3.1 (Barriers uniform in ε). Assume (A1)-(A5) and (A0).

Then there is a constant C > 0, such that for all ε > 0, the solution ((u ε j ) j , (ξ ε j ) j ) of (1.7)- (1.8) satisfies for all t > 0 and x ∈ R,

u ε j (t, x) -u 0 x + jε n 0 ≤ Ct and ξ ε j (t, x) -ξ 0 x + jε n 0 ≤ Ct.
Lemma 3.2 (ε-bounds on the gradient). Assume (A1)-( A5) and (A0). Then, the solution ((u ε j ) j , (ξ ε j ) j ) of (1.7)- (1.8) satisfies for all t > 0 , x ∈ R ,z ≥ 0 and j ∈ Z,

zk 0 ≤ u ε j (t, x + z) -u ε j (t, x) ≤ zK 0 , ( 3.1) 
and

zk 0 ≤ ξ ε j (t, x + z) -ξ ε j (t, x) ≤ zK 0 . (3.2)
Proof. We prove the lower bound (the proof for the upper bound is similar). Using assumption (A0), we get that for all j ∈ Z, for all x ∈ R, z ≥ 0,

u ε j (0, x + z) = u 0 x + z + jε n 0 ≥ u 0 x + jε n 0 + zk 0 ≥ u ε j (0, x) + zk 0 , (3.3) 
and

ξ ε j (0, x + z) ≥ ξ ε j (0, x) + zk 0 .
From the form of system (1.7), we know that the equation is invariant by addition of constants to the solutions. For this reason the solution associated to the initial data ((u ε j (0, x) + zk 0 ) j , (ξ ε j (0, x) + zk 0 ) j ) is ((u ε j (t, x) + zk 0 ) j , (ξ ε j (t, x) + zk 0 ) j ). We can also see that the equation is invariant by space translations. Therefore the solution associated to the initial data ((u j (0, x + z)) j , (ξ ε j (0, x + z)) j ) is ((u j (t, x + z)) j , (ξ ε j (t, x + z)) j ). Finally, from (3.3) and from the comparison principle (Proposition 2.2), we get

u ε j (t, x + z) ≥ u j (t, x) + zk 0 and ξ ε j (t, x + z) ≥ ξ ε j (t, x) + zk 0 .
Proof of Theorem 1.3.

Since, for all j ∈ Z, u ε j+n 0 (t, x) = u ε j (t, x + ε) and ξ ε j+n 0 (t, x) = ξ j (t, x + ε) it is sufficient to do this proof for j ∈ {1, ..., n 0 }.

We introduce for all j ∈ {1, ..., n 0 }, 

ūj
ξ ε j (t , x ).
Thanks to Lemma 3.1 we know that this functions are well defined. We also introduce v = max j∈{1,...,n 0 } max(ū j , ξj ) and v = min j∈{1,...,n 0 } min(u j , ξ j ). (3.4) Using the two previous lemmas we get that the function w = v, v, satisfies for all t > 0 and x, x ∈ R, x ≤ x ,

|w(t, x) -u 0 (x)| ≤ Ct, k 0 |x -x | ≤ w(t, x ) -w(t, x) ≤ K 0 |x -x |. (3.5) 
We want to prove that v is a sub-solution of (1.9) and that v is a super-solution of (1.9). Indeed, in this case, the comparison principle will imply that v ≤ v. But by construction v ≤ v, hence v = v = u 0 , the unique solution of (1.9). This implies that for all j ∈ {1, ..., n 0 }, ūj = u j = ξj = ξ j = u 0 and so u ε j and ξ ε j converge locally uniformly to u 0 . To prove that v is a sub-solution of (1.9), we argue by contradiction, we assume that there is a point ( t, x) ∈ R + × R and a test function φ ∈ C 1 such that

                         v( t, x) = φ( t, x) v ≤ φ on Q r,2r ( t, x) with r > 0 v ≤ φ -2η on Q r,2r ( t, x)\Q r,r ( t, x) with η > 0 φ t ( t, x) = F (φ x ( t, x)) + θ, with θ > 0.
(3.6)

We define p = φ x ( t, x) that according to (3.5) satisfies

0 < k 0 ≤ p ≤ K 0 .
Using Theorem 1.7, we define the hull functions ((h j ) j , (g j ) j ) associated to p such that

λ = F (p)
We now apply the perturbed test function method introduced by Evans [Eva89] in terms here of hull functions instead of correctors. Let us consider the following perturbed test functions for j ∈ {1, ..., n 0 },

φ ε j (t, x) = εh j φ(t, x) ε = φ(t, x) + εh j (0)

3.Convergence

and

ψ ε j (t, x) = εg j φ(t, x) ε = φ(t, x) + εg j (0).
We define the family of test functions (φ ε j ) j∈Z and (ψ ε j ) j∈Z by using the relation φ ε j+kn 0 (t, x) = φ ε j (t, x + εk) and ψ ε j+kn 0 (t, x) = ψ ε j (t, x + εk). We first want to prove that ((φ ε j ) j , (ψ ε j ) j ) is a super-solution of (1.7) in a neighbourhood of ( t, x).

To do this, we simply check the equations satisfied by the perturbed test functions, we denote by z = φ(t,x) ε to simply the notations. For j ∈ {1, ..., n 0 }, we have

(φ ε j ) t (t, x) = φ t (t, x) + α(g j (z) -h j (z)) -α(g j (z) -h j (z)) = α ε (ψ ε j (t, x) -φ ε j (t, x)) + (φ t (t, x) -λ) = α ε (ψ ε j (t, x) -φ ε j (t, x)) + φ t (t, x) -φ t ( t, x) + θ ≥ α ε (ψ ε j (t, x) -φ ε j (t, x)),
where we have used the equations satisfied by the hull functions for the second line, the definition of λ for the third line. For the fourth line we have used the fact that for r > 0 small enough, we have φ t (t, x) -φ t ( t, x) + θ 2 ≥ 0, because θ > 0 and φ is C 1 . Similarly, we have

(ψ ε j ) t (t, x) = φ t (t, x) = (a j -α)(h i (z) -g j (z)) + a j α V j (h j+1 (z) -h j (z)) -λ + φ t (t, x) ≥ (a j -α) ε (φ ε j (t, x) -ψ ε j (t, x)) + a j α V j φ ε j+1 (t, x) -φ ε j (t, x) ε + φ t (t, x) -φ t ( t, x) + θ 2 + θ 2 + a j α V j (h j+1 (z) -h j (z)) -V j φ ε j+1 (t, x) -φ ε j (t, x) ε .
It is then enough to prove that

θ 2 + a j α V j (h j+1 (z) -h j (z)) -V j φ ε j+1 (t, x) -φ ε j (t, x) ε ≥ 0. If j + 1 ∈ {1, ..., n 0 }, then, h j (z) = φ ε j (t, x) ε and h j+1 (z) = φ ε j+1 (t, x) ε ,
and the result is trivial.

If j + 1 / ∈ {1, ..., n 0 } then j = n 0 and we have

h j+1 (z) = h 1+n 0 (z) = h 1 (z + p) = φ(t, x) ε + p + h 1 (0), φ ε j+1 (t, x) = φ ε n 0 +1 (t, x) = φ ε 1 (t, x + ε) = φ(t, x + ε) + εh 1 (0). = φ(t, x) + εp + εh 1 (0) + o ε (ε).
This implies that

φ ε j+1 (t, x) ε = φ(t, x) ε + p + h 1 (0) + o ε (1) = h j+1 (z) + o ε (1).
This allows us to see that for r > 0 small enough, we get

θ 2 + a j α V j (h j+1 (z) -h j (z)) -V j φ ε j+1 (t, x) -φ ε j (t, x) ε ≥ 0.
Getting a contradiction. By definition: φ ε j → φ and ψ ε j → φ as ε → 0. Moreover, ūj ≤ v ≤ φ -2η on Q r,2r ( t, x)\Q r,r ( t, x) therefore, for ε small enough

u ε j ≤ φ ε j -η on Q r,2r ( t, x)\Q r,r ( t, x).
Similarly, we have

ξ ε j ≤ ψ ε j -η on Q r,2r ( t, x)\Q r,r ( t, x).
Using the comparison principle on bounded sets for (1.7), we get

u ε j ≤ φ ε j -η and ξ ε j ≤ ψ ε j -η on Q r,r ( t, x). (3.7)
Passing to the limit as ε → 0, we get v ≤ φ -η on Q r,r ( t, x) and this contradicts the fact that v( t, x) = φ( t, x). Therefore v is a sub-solution of (1.9) on (0, +∞) × R. Similarly, v is a super-solution of the same equation. Therefore, v = v = u 0 and u j and ξ j converge locally uniformly to u 0 for j ∈ {1, ..., n 0 }.

In this section, we construct the hull functions for (2.1). The construction follows the one of [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF] but we use here the fact that the system is invariant by addition of constants. This allows us to get the particular form of the hull functions.

Ergodicity

Proposition 4.1 (Particular form of the solution of (2.1)). Assume (A1)-(A5) and let p > 0. Let ((u j ) j , (ξ j ) j ) be the solution of (2.1) with u 0 (y) = ξ 0 (y) = py. Then ((u j ) j , (ξ j ) j ) satisfies

u j (t, y) = py + u j (t, 0) and ξ j (t, y) = py + ξ j (t, 0). (4.1)
Proof of Proposition 4.1. Using that equation (2.1) is invariant by space translations, invariant by addition of constants, and the fact that for all y, z ∈ R, j ∈ Z

u 0 y + z + j n 0 -pz = u 0 y + j n 0 and ξ 0 y + z + j n 0 -pz = ξ 0 y + j n 0 ,
we deduce, by the comparison principle, that u j (t, y + z) -pz = u j (t, y) and ξ j (t, y + z) -pz = ξ j (t, y).

Taking y = 0, we deduce the result.

Proposition 4.2 (Ergodicity). Assume (A1)-(A5)

, let ((u j ) j , (ξ j ) j ) be a solution of (2.1) with initial data u 0 (y) = ξ 0 (y) = py for some p > 0. Then there exists a constant λ ∈ R such that, for all (t, y)

∈ [0; +∞) × R, j ∈ {1, ..., n 0 }, |u j (t, 0) -λt| ≤ C 1 and |ξ j (t, 0) -λt| ≤ C 1 , ( 4.2 
)

and |λ| ≤ K 1 , (4.3)
with

C 1 = 4p + 2 V max α , ( 4.4) 
and K 1 defined in Lemma 2.5.

The proof of Proposition 4.2 is done in different steps, it uses the following classical lemma from ergodic theory (see for instance [START_REF] Kato | Perturbation theory for linear operators[END_REF]). Lemma 4.3. Consider Λ : R + → R a continuous function which is sub-additive, meaning that: for all t, s ≥ 0,

Λ(t + s) ≤ Λ(t) + Λ(s).
Then Λ(t) t has a limit l as t → +∞ and

l = inf t>0 Λ(t) t . (4.5) Proof of Proposition 4.2.
The main idea of the proof is to control the time oscillations. To do this we will use the following continuous functions for all T > 0,

λ u + (T ) = sup j∈{1,...,n 0 } sup t≥0 u j (t + T, 0) -u j (t, 0) T , λ u -(T ) = inf j∈{1,...,n 0 } inf t≥0 u j (t + T, 0) -u j (t, 0) T ,
and

λ ξ + (T ) = sup j∈{1,...,n 0 } sup t≥0 ξ j (t + T, 0) -ξ j (t, 0) T , λ ξ -(T ) = inf j∈{1,...,n 0 } inf t≥0 ξ j (t + T, 0) -ξ j (t, 0) T .
We also introduce

λ + (T ) = sup(λ u + (T ), λ ξ + (T )) and λ -(T ) = inf(λ u -(T ), λ ξ -(T )).
To get the result, it suffices to prove that λ + (T ) and λ -(T ) have a common limit λ as

T → +∞ such that |λ ± -λ| ≤ C 1 T .
To do this we would like to apply Lemma 4.3. Because of their definitions, we know that T → T λ u + (T ) and T → T λ ξ + (T ) are sub-additive, in the same way T → -T λ u -(T ) and T → -T λ ξ -(T ) are also sub-additive. Therefore if λ u ± (T ) and λ ξ ± (T ) are finite, we will get the convergence, and we will only have to prove that they have the same limit.

4.Ergodicity and construction of hull functions

Step 1: λ + (T ) and λ -(T ) converge as T goes to +∞. We want to use Lemma 4.3. Since T → T λ u + , T → T λ ξ + , T → -T λ u -and T → -T λ ξ -are sub-additive, we deduce that T → T λ + and T → -T λ -are sub-additive. It just remains to show that λ + and λ -are bounded (to get a finite limit). Using Lemma 2.8, we get that for all j ∈ {1, ..., n 0 } and for all t, T > 0, we have

-K 1 ≤ 0 ≤ u j (t + T, 0) -u j (t, 0) T ≤ V max ≤ K 1 (4.6)
and

-K 1 ≤ -max(a j -α) V max α ≤ ξ j (t + T, 0) -ξ j (t, 0) T ≤ V max α max j∈{1,...,n 0 } (a j ) ≤ K 1 , (4.7)
where we have used the equation satisfied by ξ j and the facts that

-a j V max α ≤ -(a j -α) V max α ≤ (a j -α)(u j (t, x) -ξ j (t, x)) ≤ 0, and 0 ≤ V j (u j+1 (t, x) -u j (t, x)) ≤ V max .
Step 2: Control on the time oscillations We now prove that λ + and λ -have the same limit. More precisely, we will prove that

|λ + (T ) -λ -(T )| ≤ C 1 T , with C 1 defined in Proposition 4.2.
By definition of λ ± (T ), for all ε > 0, there exists τ ± and v

± ∈ {u 1 , ...., u n , ξ 1 , ..., ξ n } such that λ ± (T ) - v ± (τ ± + T, 0) -v ± (τ ± , 0) T ≤ ε
Let us set for all j ∈ {1, ..., n 0 },

∆ u j = u j (τ + , 0) -u j (τ -, 0), ∆ ξ j = ξ j (τ + , 0) -ξ j (τ -, 0) and ∆ = sup j∈{1,...,n 0 } sup(∆ u j , ∆ ξ j ).
Using Proposition 4.1, we have

u j (τ + , y) = u j (τ -, y) + u j (τ + , 0) -u j (τ -, 0) ≤ u j (τ -, y) + ∆ and ξ j (τ + , y) = ξ j (τ -, y) + ξ j (τ + , 0) -ξ j (τ -, 0) ≤ ξ j (τ -, y) + ∆.
Using the comparison principle we get

u j (τ + + T, y) ≤ u j (τ -+ T, y) + ∆ (4.8)
and

ξ j (τ + + T, y) ≤ ξ j (τ -+ T, y) + ∆. (4.9)
Now we would like to estimate ∆. Let us assume that the maximum in ∆ is reached for the index j. We then have for all j ∈ {1, ..., n 0 },

∆ ≤ uj(τ + , 0) -uj(τ -, 0) + V max α ≤ u j+n 0 (τ + , 0) -u j-n 0 (τ -, 0) + V max α ≤ u j (τ + , 1) -u j (τ -, -1) + V max α ≤ u j (τ + , 0) -u j (τ -, 0) + V max α + 2p, (4.10) 
where we have used for the first line Lemma 2.8 (to compare uj and ξj), for the second line, the fact that (u j ) j is non-decreasing in j, for the third line the periodicity of the function u j , and for the last line we have used Proposition 4.1. Similarly we have

∆ ≤ ξ j (τ + , 0) -ξ j (τ -, 0) + V max α + 2p.
We now inject this results in (4.8) and (4.9), with y = 0, to obtain

u j (τ + + T, 0) -u j (τ + , 0) ≤ u j (τ -+ T, 0) -u j (τ -, 0) + V max α + 2p,
and

ξ j (τ + + T, 0) -ξ j (τ + , 0) ≤ ξ j (τ -+ T, 0) -ξ j (τ -, 0) + V max α + 2p.

4.Ergodicity and construction of hull functions

Using this two results we get that

v + (τ + + T, 0) -v + (τ + , 0) ≤ v -(τ -+ T, 0) -v -(τ -, 0) + 2 V max α + 4p,
where the possible comparison between ξ j and u j adds an additional V max /α, and the possible comparison between u j and u k adds an additional 2p. This implies that

T λ + (T ) ≤ T λ -(T ) + 2εT + C 1 .
Since this is true for all ε > 0, we get

|λ + (T ) -λ -(T )| ≤ C 1 T . ( 4 

.11)

Step 3: Conclusion. From the previous step we know that λ ± have the same limit. Let us denote it by λ, and by Lemma 4.3 we have, for all T > 0,

λ -(T ) ≤ λ ≤ λ + (T ).
Using (4.11), we deduce that

|λ ± -λ| ≤ C 1 T . (4.12)

Construction of hull functions

We now would like to prove the existence of time-space global solutions of (2.1).

Proposition 4.4. Let p > 0 and assume (A1)-(A5). Then, there exist some constants

((u ∞ j (0, 0)) j , (ξ ∞ j (0, 0)) j ) and a real number λ ∈ R such that for all (τ, y) ∈ R 2 , u ∞ j (τ, y) j , ξ ∞ j (τ, y) j = py + λτ + u ∞ j (0, 0) j , py + λτ + ξ ∞ j (0, 0) j ,
is a solution of (2.1). These constants satisfy, for all j ∈ Z,

u ∞ j+1 (0, 0) ≥ u ∞ j (0, 0) and ξ ∞ j+1 (0, 0) ≥ ξ ∞ j (0, 0). (4.13)
The interest of this result is that if we consider for all z ∈ R,

     h j (z) = z + u ∞ j (0, 0) if j ∈ {1, ..., n 0 } h j+n 0 (z) = h j (z + p),      g j (z) = z + ξ ∞ j (0, 0) if j ∈ {1, ..., n 0 } g j+n 0 (z) = g j (z + p), (4.14) 
then we have directly the following result.

Corollary 4.5. (Existence of hull functions). Assume (A1)-(A5)

, then there exists λ ∈ R such that there exist a hull function ((h j ) j , (g j ) j ) defined as in Definition 1.5.

Proof of Proposition 4.4.

Construction of a solution. In this step, we use the functions ((u j ) j , (ξ j ) j ) solution of (2.1) with u 0 (y) = ξ 0 (y) = py. For m ∈ R, we consider

u m j (t, 0) = u j (t + m, 0) -λm and ξ m j (t, 0) = ξ j (t + m, 0) -λm.
Since the equation is invariant by addition of constants and by time-translations, we deduce that

u m j (t, y) = py + u m j (t, 0) j , ξ m j (t, y) = py + u m j (t, 0) j , ( 4.15) 
is a solution of (2.1). Moreover, u m j is Lipschitz continuous in time thanks to Lemma 2.8 and as a consequence ξ m j is also Lipschitz continuous in time. Therefore we can use Ascoli Theorem to deduce that there is a sub-sequence of ((u m j ) j , (ξ m j ) j ) converging uniformly on compact sets to a Lipschitz continuous function

((u ∞ j ) j , (ξ ∞ j ) j ) which satisfies, for all k ∈ R,                u ∞ j (t + k, 0) = u ∞ j (t, 0) + λk u ∞ j (t, y) = py + u ∞ j (t, 0) u ∞ j+1 ≥ u ∞ j                ξ ∞ j (t + k, 0) = ξ ∞ j (t, 0) + λk ξ ∞ j (t, y) = py + ξ ∞ j (t, 0) ξ ∞ j+1 ≥ ξ ∞ j .
(4.16)

However, since k ∈ R, we deduce that u ∞ j (t, 0) = u ∞ j (0, 0) + λt and ξ ∞ j (t, 0) = ξ ∞ j (0, 0) + λt, ( 4.17) 
which implies the result.

Proof of Theorem 1.7.

Uniqueness of λ.

Given some p ∈ (0, +∞), let us assume that there exist λ 1 , λ 2 ∈ R with their corresponding hull functions ((h 1 j ) j , (g 1 j ) j ), ((h 2 j ) j , (g 2 j ) j ). Then we define for i = 1, 2 and j ∈ {1, ..., n 0 },

u i j (t, y) = h i j (λ i t + py) and ξ i j (t, y) = g i j (λ i t + py),
solution of (2.1). Let us denote by C = max j∈{1,...,n 0 } max i∈{1,2} |h i j (0)|, |g i j (0)| , then we have

u 1 j (0, y) ≤ u 2 j (0, y) + 2C and ξ 1 j (0, y) ≤ ξ 2 j (0, y) + 2C.
Using the comparison principle we get for all (t, x) ∈ (0, +∞) × R,

u 1 j (t, y) ≤ u 2 j (t, y) + 2C and ξ 1 j (t, y) ≤ ξ 2 j (t, y) + 2C.
Now we set y = 0 to deduce that for all t ∈ (0, +∞),

h 1 j (λ 1 t) ≤ h 2 j (λ 2 t) + 2C and g 1 j (λ 1 t) ≤ g 2 j (λ 2 t) + 2C,
which implies that

λ 1 t ≤ λ 2 t + 4C.
Because this is true for all t ∈ (0, +∞), we deduce that

λ 1 ≤ λ 2 .
The reverse inequality is obtained by exchanging ((h 1 j ) j , (g 1 j ) j ) and ((h 2 j ) j , (g 2 j ) j ), which proves that λ 1 = λ 2 and therefore the uniqueness of λ = F (p).

Continuity of the map p → F (p)

. This proof is similar to the one in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF] so we skip it.

Proof of Theorem 1.4 . It suffices to remark that

h j (z) = z + h j (0) and g j (z) = z + g j (0). with h j (0) = pj n 0 and g j (0) = pj n 0 + 1 α V p n 0 , (4.18)
is a solution of (1.11) with

λ = F (p) = V p n 0 .
Proof of Theorem 1.9.

Step 1: proof of the lower bound . If we have p ≤ 2h 0 n 0 , then we can see that

(h j (z)) j , (g j (z)) j = z + pj n 0 j , z + pj n 0 j ,
is a hull function for λ = 0. In fact we have

λ = α(g j (z) -h j (z)) = 0,
and

λ = (a j -α)(h j (z) -g j (z)) + a j α V j p n 0 = 0,
where we have used assumption (A4). Now by uniqueness of the effective Hamiltonian we have that F (p) = 0.

Step 2: proof of the upper bound. A simple computation gives F (p) = V j (h j+1 (0) -h j (0)), for all j ∈ Z However, we also know that h j+1 (0) ≥ h j (0) and that h j+n 0 (0) = h j (0) + p this means that there exists a i ∈ {j, ..., j + n 0 } such that h i+1 (0) -h i (0) ≥ p/n 0 . Therefore, using the fact that V i is non-decreasing, we have

V i p n 0 ≤ F (p) ≤ min j∈{1,...,n 0 } (||V j || ∞ ).
(5.1)

Passing to the limit as p goes to +∞, we get the desired result.

Step 3: proof of the monotonicity. Let p 1 , p 2 ∈ (0, +∞), and let λ 1 = F (p 1 ), λ 2 = F (p 2 ) be their respective effective Hamiltonians, each associated to the hull functions ((h 1 j ) j , (g 1 j ) j ) and ((h 2 j ) j , (g 2 j ) j ). We assume that p 2 > p 1 . Therefore, we have

h 1 n 0 (0) -h 1 0 (0) = p 1 < p 2 = h 2 n 0 (0) -h 2 0 (0).
From this, we can deduce that there exists an integer k ∈ {0, ..., n 0 -1} such that

h 1 k+1 (0) -h 1 k (0) < h 2 k+1 (0) -h 2 k (0).
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Now, using the monotonicity of V k , we get,

V k h 1 k+1 (0) -h 1 k (0) ≤ V k h 2 k+1 (0) -h 2 k (0) , which implies that λ 1 ≤ λ 2 .
Therefore the function F is non decreasing.

6 Appendix Proposition 6.1. Let ((U j ) j , (Ξ j ) j ) be a classical solution of (1.3), then the function ((u j ) j , (ξ j ) j ) defined by

u j (t, x) = U j+ x n 0 (t) and ξ j (t, x) = Ξ j+ x n 0 (t)
is a viscosity solution of the following system

                               ∂u j ∂t (t, x) = α(ξ j (t, x) -u j (t, x)) ∂ξ j ∂t (t, x) = (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j (u j+1 (t, x) -u j (t, x)) u j+n 0 (t, x) = u j (t, x + 1)
ξ j+n 0 (t, x) = ξ j (t, x + 1). (6.1) 
Proof. First, the periodicity condition, can easily be checked, in fact we have

u j+n 0 (t, x) = U j+n 0 + x n 0 (t) = U j+ x+1 n 0 (t) = u j (t, x + 1). (6.2)
We have a similar result for ξ j . We now prove that the function ((u j ) j , (ξ j ) j ) satisfies the equations in (6.1) in the viscosity sense (see Definition 2.1). Let ϕ be a test function such that u * j ≤ ϕ and u * j (t 0 , x 0 ) = ϕ(t 0 , x 0 ), by definition the functions u j are upper semi-continuous, so we have

U j+ x 0 n 0 (t) ≤ ϕ(t, x 0 ) and ϕ(t 0 , x 0 ) = U j+ x 0 n 0 (t 0 ).
Given that ((U j ) j , (Ξ j ) j ) is a classical solution of (1.3), it is also a viscosity solution of (1.3) and we obtain

∂ϕ ∂t (t 0 , x 0 ) ≤ α Ξ j+ x 0 n 0 (t 0 ) -U j+ x 0 n 0 (t 0 ) = α ξ * j (t 0 , x 0 ) -u * j (t 0 , x 0 ) . (6.3)
We have a similar result for ξ * j , therefore ((u j ) j , (ξ j ) j ) is a sub-solution of (6.1). The proof for super-solutions is similar and we skip it.

Introduction

The problem of correctly simulating traffic flow has a great interest since it can be used to see how traffic would react to a change in the infrastructure of the road (to understand if it is interesting to place a traffic light, if a bridge would help the traffic flow, how would a moderator affect the traffic...). Traffic flow can be simulated at different scales: the microscopic scale (which describes the dynamics of all the vehicles), the macroscopic scale (which describes macroscopic quantities such as the vehicle density, the average speed,...) and the mesoscopic scale (it uses the vehicle density and the average speed of the vehicles but still keeps track of the dynamics of all the vehicles). In the present work we only focus on the microscopic and the macroscopic scale.

The microscopic models are very precise and intuitive since they describe how each vehicle reacts to a situation. For instance it is easy to simulate how a vehicle would react to the presence of a moderator (at some point the vehicle notices the moderators and slows down, passes the moderator and then gradually increases its speed). However, to use microscopic models at a large scale would be computationally very costly. For instance if we would like to simulate the traffic in an entire city, we would need to consider all the vehicles.

The macroscopic models are more adapted to simulate traffic at a large scale, since they do not consider all the car-to-car interactions. However, they are often based on assumption that are hard to verify and also they are not very easy to modify. How does the density of vehicle reacts to the presence of a moderator? An example of a macroscopic model would be the LWR (Lighthill-Whitham-Richards) model introduce in [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] and inspired by fluid dynamics.

We can see that it is interesting to pass from a microscopic model to a macroscopic model, it can help to rigorously derive a macroscopic model from a model with solid assumptions and which is adapted to the situation we want to simulate (traffic light, moderator, bifurcation,...).

In this paper, we are interested in the numerical homogenization of a system of PDE that derives from a second order discrete model for traffic flow. The system studied in this paper was introduced in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], and derives from a microscopic model of "follow the leader" type, that was introduced by Bando et al [BHN + 95].

1.Introduction

In [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], the homogenization of the system was obtained and as it turns out, the homogenized system gives a macroscopic model for traffic flow which is defined by the so-called effective Hamiltonian. The main difficulty to use this result in practice is that the effective Hamiltonian cannot be explicitly computed in general. Therefore, the numerical computation of this effective Hamiltonian is very important and this is the main focus of the present paper. We will present an explicit and an implicit discretization of this effective Hamiltonian and we will give the corresponding error estimates.

General model with n 0 types of drivers

For the readers convenience we detail the microscopic model that we use in this paper. We consider a model with n 0 ∈ N types of drivers, defined, for all j ∈ Z and for all t ∈ (0, +∞), by Üj =

a j V j [U j+1 -U j ] -Uj , ( 1.1) 
where U j (t) denotes the position of the vehicle j, Uj (t) its velocity and Üj (t) its acceleration at a time t ∈ (0, +∞). The coefficients a j represent the drivers sensitivity (affects how quickly a driver adapts to a change in the road) and the functions V j are the optimal velocity functions (OVFs) of the drivers. Like in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], in order to simplify the scenario and to be able to obtain an homogenization result, we impose the following periodic conditions, a j+n 0 = a j and V j+n 0 = V j for all j ∈ Z.

Proceeding as in [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF], we introduce a well chosen artificial variable in order to work with a first order system, we consider for all j ∈ Z and for all t ∈ [0, +∞),

Ξ j (t) = U j (t) + 1 α Uj (t) where α = 1 2 min i∈{1,...,n 0 } (a i ). (1.2)
We obtain the following first order system of ODEs (which is equivalent to (1.1)), for all j ∈ Z and for all t ∈ (0, +∞),

       Uj (t) = α(Ξ j (t) -U j (t)) Ξj (t) = (a j -α)(U j (t) -Ξ j (t)) + a j α V j [U j+1 (t) -U j (t)] . (1.3)
Like in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], we consider the following assumptions concerning the coefficients a j and the functions V j : (A1) (Regularity) For all j ∈ {1, ..., n 0 }, V j is non-negative. V j is Lipschitz continuous and we denote by L j its Lipschitz constant.

We denote by L = max j∈{1,...,n 0 } L j .

(A2) (Monotonicity) For all j ∈ {1, ..., n 0 },

     V j is non-decreasing, a j ≥ 4L. (A3) (Upper boundary) For all j ∈ {1, ..., n 0 }, lim h→+∞ V j [h] < +∞. (1.4) We define V max = max j (||V j || ∞ ) and h 0 ≥ V max /α. (A4) (Lower boundary) For all j ∈ {1, ..., n 0 }, V j [h] = 0 for all h ≤ 2h 0 .
(A5) (Periodicity of the type of drivers) For all j ∈ Z,

a j+n 0 = a j and V j+n 0 = V j .

General continuous system with n 0 types of drivers

In order to obtain an homogenization result, it is necessary to inject the system of ODEs (1.3) into a system of PDEs (see [START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]). This is done by considering the functions (u, ξ) = ((u j ) j∈Z , (ξ j ) j∈Z ), (1.5) defined by

u j (t, x) = U j+ x n 0 (t) and ξ j (t, x) = Ξ j+ x n 0 (t) for all (t, x) ∈ (0, +∞) × R,
where • denotes the floor integer part. Moreover, the function (u, ξ) satisfies (see [1, Proposition A.1]) the following system of PDEs, for all (t, x) ∈ (0, +∞) × R and for all j ∈ Z,

                               ∂u j ∂t (t, x) = α(ξ j (t, x) -u j (t, x)) ∂ξ j ∂t (t, x) = (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j [u j+1 (t, x) -u j (t, x)] u j+n 0 (t, x) = u j (t, x + 1)
ξ j+n 0 (t, x) = ξ j (t, x + 1).

(1.6)
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We complete the previous system with the initial condition

u j (0, x) = u 0 x + j n 0 and ξ j (0, x) = ξ 0 x + j n 0 . (1.7) Remark 1.1.
The initial condition functions are artificially introduced, but simply they are regular functions such that, we have for all j ∈ Z,

u 0 j n 0 = U j (0) and ξ 0 j n 0 = U j (0) + 1 α Uj (0) .
If we denote by ((u j ) j , (ξ j ) j ) the solution of (1.6)-(1.7), then in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] it was proven that for all j ∈ Z, the rescaled functions u ε j and ξ ε j defined by

u ε j (t, x) = εu j t ε , x ε and ξ ε j (t, x) = εξ j t ε , x ε , (1.8)
converge uniformly on compact subsets of (0, +∞)×R as ε goes to 0, to the unique solution of

     u 0 t (t, x) = F (u 0 x (t, x)) for (t, x) ∈ (0, +∞) × R, u 0 (0, x) = u 0 (x) for x ∈ R, (1.9) 
where F is the effective Hamiltonian to be determined. As it turns out, the solution of (1.6) with the following initial condition, for all x ∈ R, and for all j ∈ Z,

u j (0, x) = u 0 x + j n 0 = ξ j (0, x) = ξ 0 x + j n 0 = p • x + j n 0 , (1.10)
can be used to compute the effective Hamiltonian that we denote by λ = F (p). Here and in the rest of the paper • symbolizes the product of two real numbers. We have the following result (see [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]Proposition 4.1]).

Proposition 1.2 (Particular form of the solution of (1.6) and approximation of λ). Assume (A1)-(A5) and let p > 0. Let ((u j ) j , (ξ j ) j ) be the solution of (1.6) with an initial condition such that (u 0 ) x = (ξ 0 ) x = p. Then ((u j ) j , (ξ j ) j ) satisfies

u j (t, x) = px + u j (t, 0) and ξ j (t, x) = px + ξ j (t, 0), (1.11)
and there exists a constant C, depending only on p, V max , α and n 0 such that for all T ∈ (0, +∞),

u 1 (T, 0) T -λ ≤ C T .
(1.12)

Remark 1.3. The well chosen initial conditions (1.10) simply translates the fact that the vehicles are initially uniformly distributed along the real line. This initial condition is used in [START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] in order to obtain the homogenization results.

Numerical schemes

We denote by ∆t the time step and by t n = n∆t. As explained before, the goal is to compute the solution of (1.6) with initial condition (1.10). Using the particular form of this solution given by Proposition 1.2, we are only interested in the numerical approximation of u j (t n , 0) and ξ j (t n , 0) that we will denote respectively by u n j and ξ n j . We propose an explicit and an implicit discretization of u n j and ξ n j .

Explicit finite difference scheme

We consider the following numerical scheme, for all j ∈ Z and for all n ∈ N,

                                 u n+1 j -u n j ∆t = α ξ n j -u n j ξ n+1 j -ξ n j ∆t = (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j u n n 0 +j = u n j + p ξ n n 0 +j = ξ n j + p, (1.13) 
with the initial condition

u 0 j = pj n 0 and ξ 0 j = pj n 0 . (1.14)

Implicit finite difference scheme

We also consider the following numerical scheme, for all j ∈ Z, and for all n ∈ N,

                                 u n+1 j -u n j ∆t = α ξ n+1 j -u n+1 j ξ n+1 j -ξ n j ∆t = (a j -α) u n+1 j -ξ n+1 j + a j α V j u n+1 j+1 -u n+1 j . u n j+n 0 = u n j + p ξ n j+n 0 = ξ n j + p (1.15)
with initial condition given by (1.14).
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Remark 1.4. Thanks to the particular form of the solution of (1.6) with the initial condition (1.10), the approximations of u j (t, x) and ξ j (t, x) are given respectively by u n j + px and ξ n j + px.

(1.16)

Numerical estimate of the effective Hamiltonian

Given n T ∈ N, we define T = n T ∆t and we introduce our approximation for the effective Hamiltonian,

λ T = u n T 1 T .
(1.17) Theorem 1.5 (Numerical estimate of the effective Hamiltonian). Let p>0, and let λ T be the numerical approximation of λ given by (1.17). If u n j is computed with the explicit scheme (resp. by the implicit scheme), we will assume that

∆t ≤ 1 max j∈{1,...,n 0 } (a j ) resp. ∆t < 1 2α 1 + min j∈{1,...,n 0 } a j + 4α a j .
Then there exist two constants C 1 and C 2 , such that,

λ T -λ ≤ C 1 T + C 2 (∆t + √ ∆t).
(1.18) Corollary 1.6. Let p>0, and let λ T be the numerical approximation of λ given by (1.17). If

∆t ≤ 1 T 2 ,
then we have,

λ T -λ = O 1 T . (1.19)

Organisation of the article

In Section 2, we give some definitions and results for viscosity solutions of the continuous problem (1.6). In Section 3, we give an error estimate between the continuous solution of (1.6) and its numerical approximation. In Section 4, we use the results of Section 3 to do the proof of Theorem 1.5. Finally, Section 5 is devoted to numerical simulations. Different examples are provided and we also present a numerical study of the error for the effective Hamiltonian.

In this section we present the definition of viscosity solutions for the system (1.6). We refer to the user's guide of Crandall, Ishii, Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and the book of Barles [Bar94] for a good introduction to viscosity solutions. We also refer to [Ish92, IK91, Len88] and references therein for results concerning solutions for systems of weakly coupled partial differential equations.

The proof of the results concerning the continuous problem can be founded in [FIM12] and [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF].

Definitions

Definition 2.1 (Viscosity Solutions). Let T > 0, u 0 : R → R and ξ 0 : R → R defined by (1.10). For all j, let u j : R + × R → R and ξ j : R + × R → R be upper semi-continuous (resp. lower semi-continuous) locally bounded functions. We set (1.6) on Ω if for all (t, x) ∈ Ω and for any test function ϕ ∈ C 1 (Ω) such that u j -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

Ω = (0, T ) × R. Let us consider that ((u j ) j , (ξ j ) j ) satisfies ∀j ∈ Z, ∀(t, x) ∈ Ω, u j+n 0 (t, x) = u j (t, x + 1) and ξ j+n 0 (t, x) = ξ j (t, x + 1). -A function ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super-solution) of
ϕ t (t, x) ≤ α(ξ j (t, x) -u j (t, x)) (resp. ≥), (2.1) 
and for all (t, x) ∈ Ω, and any test function ϕ ∈ C 1 (Ω) such that ξ j -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have (1.6) on Ω and if it satisfies moreover for all x ∈ R, j ∈ {1, ..., n 0 },

ϕ t (t, x) ≤ (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j [u j+1 (t, x) -u j (t, x)] (resp. ≥) (2.2) -A function ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super-solution) of (1.6)-(1.10) if ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super solution) of
u j (0, x) ≤ u 0 x + j n 0 (resp. ≥) and ξ j (0, x) ≤ ξ 0 x + j n 0 (resp. ≥). -A function ((u j ) j , (ξ j ) j ) is a viscosity solution of (1.6) (resp. of (1.6)-(1.10)) on Ω if ((u * j ) j , (ξ * j ) j ) is a sub-solution and (((u j ) * ) j , ((ξ j ) * ) j ) is a super solution of (1.6) (resp. of (1.6)-(1.10)).

Results for viscosity solutions

We now recall some of the results we find in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] for the continuous problem (1.6), that will help us in the rest of the paper. We also give a result for the discrete solutions. Theorem 2.2 (Existence and uniqueness of viscosity solutions for (1.6)). Assume (A1)-(A5). Then there exists a unique continuous solution ((u j ) j , (ξ j ) j ) of (1.6)-(1.10). Moreover, the solution satisfies

p. x + j n 0 -K 1 t ≤ u j (t, x), ξ j (t, x) ≤ p. x + j n 0 + K 1 t, ( 2.3) 
with

K 1 = max j∈{1,...,n 0 } (a j ). V max α .
(2.4)

Proposition 2.3 (Solutions of the numerical scheme (1.15)). Given ((u 0 j ) j , (ξ 0 j ) j ) an initial condition, if we have ∆t < 1 2α 1 + min j∈{1,...,n 0 } a j + 4α a j , ( 2.5) 
then for any n ∈ N, there exists a unique ((u n j ) j , (u n j ) j ) provided by the numerical scheme (1.15).

Proof. We do the proof by induction, and we want to prove that for ((u n j ) j , (ξ n j ) j ) there exists a unique ((u n+1 j ) j , (ξ n+1 j ) j ).

To do this, we use an equivalent formulation of (1.15), we have for all j ∈ {1, ..., n 0 -1},

ξ n+1 j = 1 ∆t(a j -α) ξ n j + ∆t(a j -α)u n+1 j + ∆ta j α V j u n+1 j+1 -u n+1 j u n+1 j = 1 1 + α∆t u n j + ∆tαξ n+1 j = 1 + ∆t(a j -α) 1 + a j ∆t u n j + α∆t 1 + a j ∆t ξ n j + a j ∆t 2 1 + a j ∆t V j u n+1 j+1 -u n+1 j =: G j (u n+1 ),
and

u n+1 n 0 = 1 + ∆t(a n 0 -α) 1 + a n 0 ∆t u n n 0 + α∆t 1 + a n 0 ∆t ξ n n 0 + a n 0 ∆t 2 1 + a n 0 ∆t V n 0 u n+1 1 -u n+1 n 0 + p = G n 0 (u n+1 ).
We want to prove that there exists a unique solution to u = G(u), with G = (G j ) j=1,..,n 0 . We want to use the fixed point theorem and it can easily be seen that

∂G j ∂u n+1 j = - a j ∆t 2 1 + a j ∆t V j u n+1 j+1 -u n+1 j , ∂G j ∂u n+1 j+1 = a j ∆t 2 1 + a j ∆t V j u n+1 j+1 -u n+1 j , ∂G n 0 ∂u n+1 n 0 = - a n 0 ∆t 2 1 + a n 0 ∆t V n 0 u n+1 1 -u n+1 n 0 + p ,
and

∂G n 0 ∂u n+1 1 = a n 0 ∆t 2 1 + a n 0 ∆t V n 0 u n+1 1 -u n+1 n 0 + p .
Therefore, we have

||DG|| 1 ≤ max j∈{1,...,n 0 } 2a j ∆t 2 1 + a j ∆t ||V || ∞ ≤ max j∈{1,...,n 0 } a j ∆t 2 1 + a j ∆t .α.
Using (2.5), we have that for all j ∈ {1, ..., n 0 },

a j ∆t 2 1 + a j ∆t < 1. (2.6)
Therefore G is a contraction mapping on R n 0 and by the fixed point theorem, there exists a unique fixed point u n+1 such that u n+1 = G(u n+1 ). By uniqueness of u n+1 we have uniqueness of ξ n+1 .

Proposition 2.4 (Discrete barriers). Assume (A1)-(A5).Then

u +,n j j , ξ +,n j j = pj n 0 + K 1 n∆t j , pj n 0 + K 1 n∆t j , and u -,n j j , ξ -,n j j = pj n 0 -K 1 n∆t j , pj n 0 -K 1 n∆t j ,
are respectivly super-and sub-solution of (1.13) and of (1.15) for all T > 0, with K 1 defined as in (2.4).

2.Viscosity solutions

Proof. Let us prove that u +,n j j , ξ +,n j j is a super-solution for (1.13) (the proof for (1.15) is the same so we skip it).

u +,n+1 j -u +,n j ∆t = K 1 ≥ α ξ +,n j -u +,n j = 0,
and

(a j -α) u +,n j -ξ +,n j + a j α V j u +,n j+1 -u +,n j ≤ max j∈{1,...,n 0 } (a j ) V max α ≤K 1 = ξ +,n+1 j -ξ +,n j ∆t .
The proof for u -,n j j , ξ -,n j j is similar, so we skip it.

The following lemma is applied later in the paper in order to use the viscosity inequalities of (1.6) at time T . Lemma 2.5 (Viscosity inequality at time T ). Let ((u j ) j , (ξ j ) j ) be a continuous sub-solution of (1.6) and let T > 0. For every test function ϕ ∈ C 1 ((0, +∞) × R) such that max(u j -ϕ) = u j (T, x 0 ) -ϕ(T, x 0 ) for some x 0 ∈ R, the following viscosity inequality holds:

ϕ t (T, x 0 ) ≤ α (ξ j (T, x 0 ) -u j (T, x 0 )) .

Similarly, for every test function

ϕ ∈ C 1 ((0, +∞) × R) such that max(ξ j -ϕ) = ξ j (T, x 0 ) -ϕ(T, x 0 ) for some x 0 ∈ R,
the following viscosity inequality holds:

ϕ t (T, x 0 ) ≤ (a j -α) (u j (T, x 0 ) -ξ j (T, x 0 )) + a j α V [u j+1 (T, x 0 ) -u j (T, x 0 )] .
Proof. The proof of this lemma is similar to the proof of Lemma 4.4 in [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF], so we skip it.

Crandall-Lions type error estimates for (1.6)

In this section, we prove an error estimate of Crandall-Lions type between the viscosity solution for the continuous problem We define for any (u n j ) n the following piecewise constant function

u j (t) = n∈{1,...,n T } u n j .χ [tn,t n+1 ) (t).
This function is simply a piecewise constant extension in time to [0, T ] of (u n j ) n . We will also use

q ∆t (u ) = sup j∈{1,...,n 0 } sup |t-s|≥∆t, t,s∈[0,1]   |u j (t) -u j (s)| |t -s|   . (3.1)
It should be noticed that since t, s ∈ [0, 1] in (3.1), q ∆t (u ) does not depend on T . We also introduce

q ∆t (u , v ) = sup(q ∆t (u ), q ∆t (v )).

Error estimate using the explicit scheme

Since we are working with an explicit scheme, we give a sufficient condition on the time-step to make the numerical scheme monotone.

Proposition 3.1 (Monotonicity of the explicit numerical scheme (1.13)). If we have

∆t ≤ 1 max j∈{1,...,n 0 } (a j ) , ( 3.2) 
then the numerical scheme (1.13) is monotone.

Proof. We have

       u n+1 j = (1 -α∆t)u n j + αξ n j ∆t ξ n+1 j = (1 -(a j -α)∆t)ξ n j + (a j -α)u n j ∆t + ∆t a j α V j u n j+1 -u n j , therefore the monotonicity condition is satisfied if ∆t ≤ min    1 α , 1 max j∈{1,...,n 0 } (a j -α)    . (3.3)
It can easily be seen that (3.2) implies (3.3).

Lemma 3.2 (Bound on discrete-time derivative). Assume (A1)-(A5). Let ((u n j ) j , (ξ n j ) j ) be a solution of (1.13), with initial data (u 0 j , ξ 0 j ) as defined in (1.14). If condition (3.2) is fulfilled, then for all j ∈ Z and for all n ∈ N,

0 ≤ u n+1 j -u n j ∆t ≤ V max , ( 3.4) 
and

- V max α max j∈{1,...,n 0 } (a j ) ≤ ξ n+1 j -ξ n j ∆t ≤ V max α max j∈{1,...,n 0 } (a j ). (3.5) Proof of Lemma 3.2.
Step 1: first inequality. We do the first part of the proof by induction on n, let us notice that (3.4) is equivalent to

0 ≤ ξ n j -u n j ≤ V max α , ( 3.6) 
for all n ∈ N. Let j ∈ Z, thanks to the initial condition (1.14), we have

0 ≤ ξ 0 j -u 0 j ≤ V max α .
Let us assume that

0 ≤ ξ n j -u n j ≤ V max α . (3.7)
Using the definition of ((u n j ) j , (ξ n j ) j ) as a solution of (1.13), we have

ξ n+1 j -u n+1 j ≤ ξ n j -u n j + ∆t a j u n j -ξ n j + a j α V j u n j+1 -u n j ≤ (1 -a j ∆t) ξ n j -u n j + a j α V max ∆t ≤ (1 -a j ∆t) V max α + a j α V max ∆t ≤ V max α , (3.8) 
where we have used assumption (A3) for the second line and (3.7) and (3.2) for the third line. In the same way we have

ξ n+1 j -u n+1 j ≥ ξ n j -u n j + ∆t a j u n j -ξ n j + a j α V j u n j+1 -u n j ≥ (1 -∆ta j ) ξ n j -u n j + 0 ≥ 0,
where we have used assumption (A1) for the second line, and we have used (3.2) and (3.7) for the last line. This ends the proof of (3.6).

Step 2: second inequality. Let j ∈ Z and n ∈ N, then we have

ξ n+1 j -ξ n j ≤ ∆t (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j ≤ a j α V max ∆t ≤ ∆t V max α max j∈{1,...,n 0 } (a j ),
where we have used assumption (A3) and (3.6) for the second line and (3.6) (upper inequality) for the third line. In the same, way we have

ξ n+1 j -ξ n j ≥ ∆t (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j ≥ a j ∆t u n j -ξ n j ≥ -∆t V max α max j∈{1,...,n 0 } (a j ), (3.9) 
where we have used assumption (A3) and (3.6).

Theorem 3.3 (Error estimate for the explicit scheme). Assume (A1)-(A5).

Let T > 0 and let ((u j ) j , (ξ j ) j ) be a solution of the continuous problem (1.6) with initial data

((u 0 (x + j/n 0 )) j , (ξ 0 (x + j/n 0 )) j ) such that (u 0 ) x = (ξ 0 ) x = p. Let ((v j ) j , (ζ j ) j ) be a solution of (1.13) with initial data (v 0 j , ζ 0 j ) and with ∆t such that (3.2) is satisfied. Then there exist constants K 2 , K 3 > 0 such that sup t∈[0,T ] max j∈Z max(|v j (t) -u j (t, 0)|, |ζ j (t) -ξ j (t, 0)|) ≤ µ 0 + (K 2 + K 3 )∆t +(T + 1).(K 2 + 1) √ ∆t +T (K 2 + K 3 )∆t,
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with

K 2 = max 2K 1 , 4K 1 q ∆t (v , ζ ), , µ 0 = max j∈{1,...,n 0 } max v j (0) -u j (0, 0) , ζ j (0) -ξ j (0, 0) , K 3 = max j∈{1,...,n 0 } max (a j + α), (a j -α) α + a j α + 2L α a j V max .
and K 1 defined in (2.4).

Proof. To do this proof, we will only prove that sup

t∈[0,T ] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ µ 0 + (K 2 + K 3 )∆t +(T + 1).(K 2 + 1) √ ∆t +T (K 2 + K 3 )∆t,
given that the other inequality is obtain similarly by exchanging the roles of ((u j ) j , (ξ j ) j ) and ((v j ) j , (ζ j ) j ). The proof of this theorem is inspired by the one of Crandall-Lions [START_REF] Crandall | Two approximations of solutions of hamiltonjacobi equations[END_REF]. We do the proof for j ∈ {1, ..., n 0 } and we obtain the result for j ∈ Z by periodicity of the solutions. In this proof we will consider T ≤ 1, and we will prove that sup

t∈[0,T ] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ µ 0 + (K 2 + 1) √ T ∆t +(K 2 + K 3 )∆t.
(3.10)

In fact if T ∈ (0, +∞) and we have the result for T ≤ 1, (3.10), then

sup t∈[0,T ] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ sup t∈[0,T -T ] max j∈Z max(v j -u j , ζ j -ξ j ) + T .(K 2 + 1) √ ∆t + T .(K 2 + K 3 )∆t ≤µ 0 + T -T .(K 2 + 1) √ ∆t + T .(K 2 + 1) √ ∆t + (1 + T ).(K 2 + K 3 )∆t ≤µ 0 + (T + 1) (K 2 + 1) √ ∆t + (K 2 + K 3 )∆t .
where we have used the fact that the result takes into account the error at the initial time.

We now introduce two test functions, for all j ∈ {1, ..., n 0 }

             ϕ(t, s, j) = v j (t) -u j (s, 0) - (t -s) 2 2ν -ηs φ(t, s, j) = ζ j (t) -ξ j (s, 0) - (t -s) 2 2ν -ηs.
We can see that the function ψ = max(ϕ, φ) reaches a maximum at a finite point ( t, s, j) ∈ [0, T ] × [0, T ] × {1, ..., n 0 }. We define

M ν,η = max (t,s,j)∈[0,T ]×[0,T ]×{1,...,n 0 } ψ(t, s, j).
Step 1: estimate of the maximum point of ψ. We want to prove that

| t -s| ≤ 4νq ∆t (v , ζ ) + 2∆t. (3.11)
To do this, we denote ŝ = ñ∆t, with ñ ∈ N, such that |s -ŝ| ≤ ∆t. We can assume that | t-s| ≥ 2∆t (otherwise the result is trivial). Then, using the fact that ψ(ŝ, s, j) ≤ ψ( t, s, j) (let us assume that for instance ψ = ϕ, we have the same result in the other case), we have

v j (ŝ) - (ŝ -s) 2 2ν ≤ v j ( t) - ( t -s) 2 2ν , This implies that ( t -s) 2 2ν ≤ q ∆t (v , ζ )| t -ŝ| + ∆t 2 2ν ≤ q ∆t (v , ζ )(| t -s| + ∆t) + | t -s| 2 8ν ⇒ 3| t -s| 2 8ν ≤ 3 2 q ∆t (v , ζ )| t -s|, ⇒ | t -s| ≤ 4νq ∆t (v , ζ ),
where we used ∆t ≤ | t -s|/2 for the second and third line. Now we would like to prove that for η big enough, we will have t = 0 or s = 0.We argue by contradiction and we assume that t > 0 and s > 0.

Step 2: case ψ( t, s, j) = ϕ( t, s, j).

Step 2.1: continuous viscosity inequality. Let us consider the following test function

w(s, 0) = v j ( t) - ( t -s) 2 2ν -ηs,
then uj -w reaches a minimum at (s, 0) and since uj is a super-solution, we get

q ν -η ≥ α(ξj(s, 0) -uj(s, 0)),
with q ν = ( ts)/ν.
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Step 2.2: discrete viscosity inequality. Let n ∈ N such that t = n∆t. Let us consider for all t ≥ t -∆t,

g(t) = (t -s) 2 2ν .
We now use the fact that ϕ(t, s, j) ≤ ϕ( t, s, j), which allows us to see that

v j (t) -g(t) ≤ v j ( t) -g( t) ⇔ g( t) -g(t) ≤ v j ( t) -v j (t).
Now we use the fact that v j is a piecewise constant function and choosing t := t -∆t,

g( t) -g( t -∆t) ∆t ≤ v j (n∆t) -v j ((n -1)∆t) ∆t ( t -s) 2 2ν∆t - ( t -s -∆t) 2 2ν∆t ≤ v n j -v n-1 j ∆t ( t -s) ν - ∆t 2ν ≤ α ζ n-1 j -v n-1 j ≤ α ζ n j + max j∈{1,...,n 0 } (a j ) V max α ∆t -v n j + V max ∆t ⇒ q ν - ∆t 2ν ≤ α ζ n j -v n j + K 3 ∆t, (3.12) 
where we have used for the third line the fact that (v j , ζ j ) is a sub-solution of (1.13), for the fourth line we have used Lemma 3.2, and for the fifth line we have used the definition of K 3 .

Step 2.3: subtracting the viscosity inequalities. We obtain directly

η ≤ ∆t 2ν + K 3 ∆t + α ζ j ( t) -ξj(s, 0) -v j ( t) -uj(s, 0) ≤ ∆t 2ν + K 3 ∆t, (3.13)
where we used the fact that ϕ( t, s, j) ≥ φ( t, s, j). We can see that if we define η := ∆t 2ν + K 3 ∆t and we choose η > η, we get a contradiction.

Step 3: case ψ( t, s, j) = φ( t, s, j). In this case, we proceed as before. When we subtract the two viscosity inequalities, we then obtain

η ≤ ∆t 2ν + K 3 ∆t + (aj -α) v j ( t) -uj(s, 0) -(ζ j ( t) -ξj(s, 0)) + aj α Vj v j+1 ( t) -v j ( t) -Vj uj +1 (s, 0) -uj(s, 0) . (3.14)
We can see that, in the case j ∈ {1, ..., n 0 }, using φ( t, s, j) ≥ ϕ( t, s, j) we get

v j ( t) -u j (s, 0) ≤ ζ j ( t) -ξj(s, 0). (3.15)
In the case j = n 0 + 1, using the periodicity conditions in the systems (1.6) and (1.13) with the particular form of the solution (see Proposition 1.2), we get

v n 0 +1 ( t) -u n 0 +1 (s, 0) = v 1 ( t) + p -u 1 (s, 0) -p ≤ ζ j ( t) -ξj(s, 0). (3.16)
Therefore, for all j ∈ {1, ..., n 0 + 1},

v j ( t) ≤ u j (s, 0) + ζ j ( t) -ξj(s, 0). (3.17) 
Now using (3.17) on (3.14) we get

η ≤ ∆t 2ν + K 3 ∆t + (aj -α) v j ( t) -uj(s, 0) -(ζ j ( t) -ξj(s, 0)) + aj α Vj v j+1 ( t) -v j ( t) -Vj uj +1 (s, 0) -uj(s, 0) ≤ ∆t 2ν + K 3 ∆t + aj α Vj v j+1 ( t) -uj(s, 0) + ζ j ( t) -ξj(s, 0) -Vj uj +1 (s, 0) -uj(s, 0) ≤ ∆t 2ν + K 3 ∆t,
where we have used the monotonicity assumption (A2) and (3.17) with j = j for the second inequality and the monotonicity assumption (A2) and (3.17) with j = j + 1 for the last inequality. Therefore, we obtain

η ≤ ∆t 2ν + K 3 ∆t.
As before, it suffices to choose η > η to obtain a contradiction. Therefore we have t = 0 or s = 0.
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Step 4: bound on the error. Let us assume that ψ( t, s, j) = ϕ( t, s, j), (the other case being similar).

Step 4.1: case t = 0. We get

M ν,η = v j (0) -uj(s, 0) - s2 2ν -ηs ≤ v j (0) -uj(s, 0) ≤ µ 0 + K 1 s ≤ µ 0 + K 1 |s -t| ≤ µ 0 + K 1 (4νq ∆t (v , ζ ) + 2∆t),
where we have used for the third line Theorem 2.2, for the fourth line, the definition of the initial data (1.14). Then, for the last line we have used inequality (3.11).

Step 4.2: case s = 0. Similarly, we get

M ν,η ≤ v j ( t) -uj(0, 0) ≤ K 1 t + v j (0) -uj(0, 0) ≤ µ 0 + K 1 (4νq ∆t (v , ζ ) + 2∆t).
Step 4.3: conclusion. We can see that we have the same upper bound in the two cases, therefore

M ν,η ≤ max(2K 1 , 4K 1 q ∆t (v , ζ )). (ν + ∆t) + µ 0 =: M. (3.18)
Now we can see that for all j ∈ Z and for all t ∈ [0, T ] ( we recall that we have chosen T ≤ 1),

v j (t) -u j (t, 0) -ηt ≤ M ν,η ≤ M, ⇒ v j (t) -u j (t, 0) ≤ M + T η * , with η * = K 3 ∆t + ∆t/ν = K 3 ∆t + √ ∆t/ √ T , choosing ν = √ T.∆t.
We have a similar result for ζ j -ξ j , therefore we have

M ≤ max(2K 1 , 4K 1 q ∆t (v , ζ )). √ T ∆t + ∆t + µ 0 .
Finally, we have sup

t∈[0,1] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤(K 2 + 1). √ T ∆t + (K 2 + K 3 T ).∆t + µ 0 ≤(K 2 + 1). √ T ∆t + (K 2 + K 3 ).∆t + µ 0 ,
where we have used the fact that T ≤ 1 and with

K 2 = max(2K 1 , 4K 1 q ∆t (v , ζ )).

Error estimate using an implicit scheme

Theorem 3.4 (Error estimate for the implicit scheme). Assume (A1)-(A5). Let T > 0 and let ((u j ) j , (ξ j ) j ) be a solution of the continuous problem (1.6) with initial data ((u 0 (x + j/n 0 )) j , (ξ 0 (x + j/n 0 )) j ). Let ((v j ) j , (ζ j ) j ) be a solution of (1.15) with initial data (v 0 j , ζ 0 j ) and with ∆t such that (2.5) is satisfied. Then there exist a constant K 2 > 0 such that

sup t∈[0,T ] max j∈Z max(|v j (t) -u j (t, 0)|, |ζ j (t) -ξ j (t, 0)|) ≤ µ 0 + K 2 ∆t(T + 1) +(T + 1).(K 2 + 1) √ ∆t,
with

K 2 = max 2K 1 , 4K 1 q ∆t (v , ζ ) , µ 0 = max j∈{1,...,n 0 } max v j (0) -u j (0, 0), ζ j (0) -ξ j (0, 0) .
Proof. The proof of this theorem is similar to the one of Theorem 3.3, and even simpler. The difference is that when obtaining the discrete inequality (like in (3.12)) there is no need to use Lemma 3.2, we have the result directly using the definition of the numerical scheme (1.15). That is the reason why for this theorem there is no constant K 3 . For the readers convenience, we give the details of the proof of Theorem 3.4.

We only prove that sup

t∈[0,T ] max j∈Z max(v j (t, 0) -u j (t, 0), ζ j (t, 0) -ξ j (t, 0)) ≤µ 0 + (T + 1) K 2 ∆t + (K 2 + 1) √ ∆t
given that the other inequality is obtain similarly by exchanging the roles of ((u j ) j , (ξ j ) j ) and ((v j ) j , (ζ j ) j ). The proof of this theorem is inspired by the one of Crandall-Lions [START_REF] Crandall | Two approximations of solutions of hamiltonjacobi equations[END_REF]. We do the proof for j ∈ {1, ..., n 0 } and we obtain the result for j ∈ Z by periodicity of the solutions. As in the proof of Theorem 3.3, we consider only T ≤ 1. We introduce two test functions, for all j ∈ {1, ..., n 0 },

             ϕ(t, s, j) = v j (t) -u j (s, 0) - (t -s) 2 2ν -ηs φ(t, s, j) = ζ j (t) -ξ j (s, 0) - (t -s) 2 2ν
-ηs.
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We can see that the function ψ = max(ϕ, φ) reaches a maximum at a finite point ( t, s, j) ∈ [0, T ] × [0, T ] × {1, ..., n 0 }. We define

M ν,η = max (t,s,j)∈[0,T ]×[0,T ]×{1,...,n 0 } ψ(t, s, j).
Step 1: estimate of the maximum point of ψ. Like before, we have

| t -s| ≤ 4νq ∆t (v , ζ ) + 2∆t.
Now we would like to prove that for η big enough, we will have t = 0 or s = 0.We argue by contradiction and we assume that t > 0 and s > 0.

Step 2: case ψ( t, s, j) = ϕ( t, s, j).

Step 2.1: continuous viscosity inequality. Let us consider the following test function

w(s, 0) = v j ( t) - ( t -s) 2 2ν -ηs,
then uj -w reaches a minimum at (s, 0) and since uj is a super-solution, we get

q ν -η ≥ α(ξj(s, 0) -uj(s, 0)), with q ν = ( t -s)/ν.
Step 2.2: discrete viscosity inequality. Let n ∈ N be such that t = n∆t. Let us consider for all t ≥ t -∆t,

g(t) = (t -s) 2 2ν .
We now use the fact that ϕ(t, s, j) ≤ ϕ( t, s, j), which allows us to see that

v j (t) -g(t) ≤ v j ( t) -g( t) ⇔ g( t) -g(t) ≤ v j ( t) -v j (t).
Now we use the fact that v j is a piecewise constant function and choosing t := t -∆t,

g( t) -g( t -∆t) ∆t ≤ v j (n∆t) -v j ((n -1)∆t) ∆t ( t -s) 2 2ν∆t - ( t -s -∆t) 2 2ν∆t ≤ v n j -v n-1 j ∆t ⇒ q ν - ∆t 2ν ≤ α ζ n j -v n j , (3.19)
For the third line we simply used the fact that (v j , ζ j ) is a solution of (1.15).

Step 2.3: subtracting the viscosity inequalities. We obtain directly

η ≤ ∆t 2ν + α ζ j ( t) -ξj(s, 0) -v j ( t) -uj(s, 0) ≤ ∆t 2ν , (3.20)
where we used the fact that ϕ( t, s, j) ≥ φ( t, s, j). We can see that if we define η := ∆t 2ν and we choose η > η, we get a contradiction.

Step 3: case ψ( t, s, j) = φ( t, s, j). In this case, we proceed as before. When we subtract the two viscosity inequalities, we then obtain

η ≤ ∆t 2ν + (aj -α) v j ( t) -uj(s, 0) -(ζ j ( t) -ξj(s, 0)) + aj α Vj v j+1 ( t) -v j ( t) -Vj uj +1 (s, 0) -uj(s, 0) .
We can see that, in the case j ∈ {1, ..., n 0 }, using φ( t, s, j) ≥ ϕ( t, s, j) we get

v j ( t) -u j (s, 0) ≤ ζ j ( t) -ξj(s, 0). (3.21)
In the case j = n 0 , using the periodicity conditions in the systems (1.6) and (1.13) with the particular form of the solution (see Proposition 1.2), we get

v n 0 +1 ( t) -u n 0 +1 (s, 0) = v 1 ( t) + p -u 1 (s, 0) -p ≤ ζ j ( t) -ξj(s, 0). (3.22)
Therefore, for all j ∈ {1, ..., n 0 + 1},

v j ( t) ≤ u j (s, 0) + ζ j ( t) -ξj(s, 0)
Now using monotonicity assumption (A2) (like in the proof of Theorem 3.3) we get η ≤ ∆t 2ν .

As before, it suffices to choose η > η to obtain a contradiction. Therefore we have t = 0 or s = 0.

3.Crandall-Lions type error estimates for (1.6)

Step 4: bound on the error. Let us assume that ψ( t, s, j) = ϕ( t, s, j), (the other case being similar we skip it).

Step 4.1: case t = 0. We get

M ν,η = v j (0) -uj(s, 0) - s2 2ν -ηs ≤ v j (0) -uj(s, 0) ≤ µ 0 + K 1 s ≤ µ 0 + K 1 |s -t| ≤ µ 0 + K 1 (4νq ∆t (v , ζ ) + 2∆t),
where we used for the third line Theorem 2.2, for the fourth line, the definition of the initial data (1.14). Then, for the last line we used inequality (3.11).

Step 4.2: case s = 0. Similarly, we get

M ν,η ≤ v j ( t) -uj(0, 0) ≤ K 1 t + v j (0) -uj(0, 0) ≤ µ 0 + K 1 (4νq ∆t (v , ζ ) + 2∆t).
Step 4.3: conclusion. We can see that we have the same upper bound in the two cases, therefore

M ν,η ≤ max(2K 1 , 4K 1 q ∆t (v , ζ )). (ν + ∆t) + µ 0 =: M. (3.23)
Now we can see that for all j ∈ Z and for all t ∈ [0, T ] (we recall that we have chosen T ≤ 1),

v j (t) -u j (t, 0) -ηt ≤ M ν,η ≤ M, ⇒ v j (t) -u j (t, 0) ≤ M + T η * , with η * = ∆t/ν = √ ∆t/ √ T , choosing ν = √ T ∆t.
We have a similar result for ζ j -ξ j , therefore we have

M ≤ max(2K 1 , 4K 1 q ∆t (v , ζ )). √ T ∆t + ∆t + µ 0 .
Finally, we have sup

t∈[0,1] max j∈Z sup(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ (K 2 + 1) √ T ∆t + K 2 ∆t + µ 0 , (3.24) with K 2 = max(2K 1 , 4K 1 q ∆t (v , ζ )).
This ends the proof of Theorem 3.4.

Estimate on the effective Hamiltonian for a discrete traffic flow model

This section is devoted to the proof of Theorem 1.5.

Proof of Theorem 1.5. Let us consider ((u j ) j , (ξ j ) j ) the solution to (1.6)-(1.10), and let us now consider a numerical approximation of u 1 (T, 0), given by (1.13) or (1.15), that we denote by u n T 1 . From Theorem 3.3 and Theorem 3.4, we have

u n T 1 -u 1 (T, 0) T ≤ max(K 2 + 1, K 2 + K 3 )(∆t + √ ∆t) 1 + 1 T .
Therefore, we have the following estimate

λ T -λ = u n T 1 T - u 1 (T, 0) T + u 1 (T, 0) T -λ ≤ C 1 T + C 2 (∆t + √ ∆t),
where we have also used Proposition 1.2.

Numerical Simulations

As seen in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], the Cauchy problem (1.9) is equivalent to a LWR macroscopic model (see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] or [START_REF] Garavello | Traffic flow on networks[END_REF] for more information on macroscopic models) of the form

∂ t ρ + ∂ y (ρv(ρ)) = 0, (5.1) 
where ρ(t, y) is the density of vehicles at time t at the physical point y (point on the road) and v(ρ) := F 1 ρ is the average speed of the vehicles. The equivalence between (1.9) and (5.1), was done in [START_REF] Leclercq | The Lagrangian coordinates applied to the LWR model[END_REF] and [START_REF] Wagner | Equivalence of the euler and lagrangian equations of gas dynamics for weak solutions[END_REF].

Since the interest of the homogenisation of (1.6) is to pass to a macroscopic model, we will give our numerical results in the form v(ρ) := F 1 ρ . Moreover, according to Theorem 1.4 in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], and in the case there is only one optimal velocity function, meaning V ≡ V j , for all j ∈ {1, ..., n 0 }, we have that the effective Hamiltonian is given by

F (p) = V p n 0 . (5.2)
We recall that to simulate traffic flow at a macroscopic scale, it is necessary to use a numerical scheme for the equivalent LWR model. We recommend [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF][START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] for numerical scheme for conservation laws like the LWR model.

Setting of the computation

To obtain a numerical estimation of λ = F (p), for p ∈ [0, +∞), we have to fix T , and solve (1.6) using one of our two finite difference schemes, with the initial condition (1.14) for p ∈ [0, +∞), to obtain u n T 1 , then our estimate is given by λ T = u n T 1 /T . To obtain the function F 1 ρ , we simply repeat the same process for different values of ρ ∈ (0, ρ 0 ]. We denote by ∆ρ our step in space for the interval (0, ρ 0 ].

First case: one type of driver

Let us begin with a simple case, we consider that we have only one type of driver, n 0 = 1, therefore, we have only one optimal velocity function V and one driver sensitivity a. We consider the model based on the Greenshields optimal velocity function,

V [h] =            0 if h ≤ h 0 , V max 1 - h 0 h n if h > h 0 , (5.3) 
with n ∈ N * . For the values of the different parameters we take similar values to the ones in [BT10, Table 2], for the Lincoln tunnel,

             V max = 58.86 km/h, h 0 = 9.64 m, a = 4nV max h 0 = 20.35 s -1 , n = 3, (5.4) 
we also fix ρ 0 = 180 vehicles/km, ∆ρ = 0.35 vehicles/km and T = 2000 s. Using (5.2) and the definition of v(ρ) in (5.1), we get that We consider only one type of driver, n 0 = 1. In red we have the numerical approximation and in green the theoretical value.

v(ρ) =            0 if ρ ≥ ρ max , V max 1 - ρ ρ max n if ρ < ρ max ,
Using the fact that we know the explicit form of v(ρ) (see (5.5)), we can analyse the relative error of our numerical estimation against T . To do this, we take different values for T from the interval T f inal 20 , T f inal , with T f inal = 200 s and ∆t = 1/T 2 for both numerical scheme. We choose the same time step for both schemes, in order to numerically verify Corollary 1.6. In fact, we expect to have a linear relationship between 1/T and the approximation error to the average speed. If we denote by λi the approximation of v(ρ i ) = F 1 ρ i with

ρ i = i∆ρ with i ∈ 1, ..., ρ 0 n 0 ∆ρ =: n max , ( 5.6) 
then we define the error plotted in Figure 5.2 by

Error = max i∈{1,...,nmax} λi -v(ρ i ) max i∈{1,...,nmax} |v(ρ i )| . ( 5.7) 
From Figure 5.2 we can see that the error decreases linearly with 1 T , which numerically verifies Corollary 1.6 in this particular case. Notice that for the explicit scheme, the error increases greatly for the last value of 1/T , this is due to the fact that for such a point the monotonicity condition (3.2) is no longer satisfied.

Second case: one optimal velocity function

Let us consider the same optimal velocity function as before, but with n 0 = 10 different sensitivities, we choose the a j coefficients at random in the interval [a, (1 + θ)a], with a defined as before.

Here and in the rest of the paper, the parameter θ ∈ [0, 1] is there to simply define the amplitude of the intervals in which we take the values of the coefficients appearing in the models. For this example, we consider the following numerical values for the parameters of the model:

         V max = 58.86 km/h, h 0 = 9.64 m, a j ∈ [a, (1 + θ)a], with a = 20.35 s -1 , j ∈ {1, ..., n 0 }, n = 3.
(5.8) Let us choose for example θ = 0.99. We fix ρ max = 180 vehicles/km, ∆ρ = 0.35 and T = 20000 s. It is easily verified that with these values we satisfy all of our assumptions. We also choose for the time steps 1/ max j∈{1,...,n 0 } (a j ) for the explicit scheme and 1/α for the implicit scheme (like before, given that a j > 1 for all j ∈ {1, ..., n 0 }, condition (2.5) is satisfied). In Figure 5.3, we can see the average speed that we obtain in this particular case.

Figure 5.3: Average speed using the explicit scheme (left) and the implicit scheme (right). We consider only optimal velocity function and n 0 = 10 different driver sensitivities. Remark 5.1. We can see that we have the same results in the first two cases, but we know that we should have v(ρ ) = V [1/(n 0 ρ )], the problem is that ρ is in (vehicles/n 0 )/km, so we denote by ρ = n 0 ρ the density in vehicles/km. That is the reason why we have the same results in both cases once we pass to the same units. Moreover, this numerical test allows us to numerically verify Theorem 1.4 in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], that gave us Formula (5.2), meaning that in the case we have only one optimal velocity function, we will have the same effective Hamiltonian, independently of the number of different driver sensitivities. Also it should be remarked that once we start having different values for the coefficients it becomes necessary to use larger values for T , and the use of the implicit scheme becomes more and more interesting to reduce the computation time.

Third case: n 0 type of drivers

Let us now consider a generalized Newell-based model (see [START_REF] Garavello | Traffic flow on networks[END_REF] for other models), that uses the following optimal velocity functions, for j ∈ {1, ..., n 0 },

V j [h] =            0, h ≤ h 0 V j max 1 -exp - h -h 0 b j n , h > h 0 .
(5.9)

For the different parameters we have chosen values that are close to the ones in [BT10, Table 2]. We set h 0 = 6.50 m, and the rest of the parameters we have chosen at random in the following intervals, for all j ∈ {1, ..., n 0 },

                       b j ∈ [(1 -θ)b, b] , with b = 0.013 km, V j max ∈ [(1 -θ)V max , V max ] , with V max = 54.11 km/h, a j ∈    4V max min j∈{1,...,n 0 } (b j ) , (1 + θ) 4V max min j∈{1,...,n 0 } (b j )    ,
(5.10) with θ ∈ [0, 1).

Numerical test.

We choose θ = 0.55, n 0 = 10, T = 2.10 6 , and for the time step we choose, for the implicit scheme 1/α and 1/ max i∈{1,...,n 0 } (a i ) for the explicit scheme. In this example we have min Remark 5.2. We can see that the effective Hamiltonian that we obtain in Figure 5.4 satisfies all the qualitative properties that were proven in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]:

v(ρ) = F 1 ρ is non-increasing, continuous and lim ρ→0 F 1 ρ = min j∈{1,...,n 0 } (||V j || ∞ ).
(5.11)

Let us take n 0 = 1 (one type of driver with the values of the parameters given by (5.10) for θ = 0), in order to compare the deformation. We can see the results in Figure 5.5. At the beginning of Section 5, we introduce the LWR model. In general such models are often defined by their flux f (ρ) = ρ • v(ρ), also called the fundamental diagram. In Figure 5.6, we present one last graphic where we can see the difference in the fundamental diagrams when we consider n 0 = 1 type of driver (with θ = 0) and when we consider n 0 = 10 types of drivers (with θ = 0.55).

Figure 5.5: Average speed using the explicit scheme (left) and the implicit scheme (right).

Considering n 0 = 1 and θ = 0, we only consider one type of driver. Remark 5.3. Unlike for the cases where we only had one optimal velocity function, we can see that the average speed function that we obtain in Figure 5.4 is different from the one in Figure 5.5. However, the form of the average speed remains the same and we also can see that v(ρ) = 0 for all ρ ≥ ρ max 153 vehicles/km which is another qualitative property of the effective Hamiltonian that was proven in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]. 

Abstract

In this paper, we focus on deriving traffic flow macroscopic models from microscopic models containing a local perturbation. At the microscopic scale, we consider a first order model of the form "follow the leader" i.e. the velocity of each vehicle depends on the distance to the vehicle in front of it. We consider a local perturbation located at the origin that slows down the vehicles. At the macroscopic scale, we obtain an explicit Hamilton-Jacobi equation left and right of the origin and a junction condition at the origin (in the sense of [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF]) which keeps the memory of the local perturbation. As it turns out, the macroscopic model is equivalent to a LWR model, with a flux limiting condition at the junction. Finally, we also present qualitative properties concerning the flux limiter at the junction. AMS Classification: 35D40, 90B20, 35B27, 35F20, 45K05. Keywords: specified homogenization, Hamilton-Jacobi equations, integro-differential operators, Slepčev formulation, viscosity solutions, traffic flow, microscopic models, macroscopic models.

Introduction

The goal of this paper is to derive a macroscopic model for traffic flow problems from a microscopic model. The idea is to rescale the microscopic model, which describes the dynamics of each vehicle individually, in order to get a macroscopic model which describes the dynamics of density of vehicles.

The problem of deriving macroscopic models from microscopic ones has already been studied for models of the type following the leader (i.e. the velocity or the acceleration of each vehicle depends only on the distance to the vehicle in front of it). We refer for example to [AKRM02, DFR15, Hel98, LLK01] where the authors rescaled the empirical measure and obtained a scalar conservation law (LWR model [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]). Recently, another approach has been introduced in [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF] (see also [START_REF] Forcadel | Homogenization of fully overdamped frenkel-kontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]) where the authors work on the primitive of the empirical measure and, at the limit, obtain a Hamilton-Jacobi equation which is the primitive of the LWR model.

The originality of our work is that we assume that there is a local perturbation that slows down the vehicles and we want to understand how this local perturbation influences the macroscopic dynamics. If the local perturbation is located around zero, at the macroscopic scale it is natural to get an Hamilton-Jacobi equation with a junction condition at zero and an effective flux limiter, the difficulty being to construct this effective flux limiter.

Recently, the theory of Hamilton-Jacobi equations with junction or more generally on networks has known important developments in particular since the works of Achdou, Camilli, Cutri, and Tchou [START_REF] Achdou | Hamilton-jacobi equations constrained on networks[END_REF] and Imbert, Monneau, and Zidani [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF]. In this direction, we would like to mention the recent work of Imbert and Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] in which they give a suitable definition of (viscosity) solutions at the junction which allows to prove comparison principle, stability and so on.

In this paper, we will use the ideas developed in [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF] in order to pass from microscopic models to macroscopic ones. In particular, we will show that this problem can be seen as an homogenization result. The difficulty here is that, due to the local perturbation, we are not in a periodic setting and so the construction of suitable correctors is more complicated. In particular, we will use the idea developped by Achdou and Tchou in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF], by Galise, Imbert, and Monneau in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] , and in the lectures of Lions at the "College de France" [START_REF] Lions | Lectures at collège de france[END_REF], which consists in constructing correctors on truncated domains.

Main results

General model: first order model with a single perturbation

In this paper, we are interested in a first order microscopic model of the form

Uj (t) = V (U j+1 (t) -U j (t)) • φ (U j (t)) , ( 2.1) 
where U j : [0, +∞) → R denotes the position of the j-th vehicle and Uj is its velocity. The function φ : R → [0, 1] simulates the presence of a local perturbation around the origin. We denote by r the radius of influence of the perturbation. The function V is called the optimal velocity function and we make the following assumptions on V and φ:

Assumption (A) • (A1) V : R → R + is Lipschitz continuous, non-negative. • (A2) V is non-decreasing on R.
• (A3) There exists a h 0 ∈ (0, +∞) such that for all h ≤ h 0 , V (h) = 0.

• (A4) There exists h max ∈ (h 0 , +∞) such that for all h ≥ h max , V (h) = V (h max ) =: V max .
• (A5) There exists a real p 0 ∈ [-1/h 0 , 0) such that the function p → pV (-1/p) is decreasing on [-1/h 0 , p 0 ) and increasing on [p 0 , 0).

• (A6) The function φ : R → [0, 1] is Lipschitz continuous and φ(x) = 1 for |x| ≥ r.

Remark 2.1. Assumptions (A1)-(A2)-(A3)-(A5) are satisfied by several classical optimal velocity functions, we have added assumption (A4) to work with V with a bounded support.

But by modifying slightly the classical optimal velocity functions, we obtain a function that satisfies all the assumptions. For instance, in the case of the Greenshields based models [START_REF] Greenshields | A study of traffic capacity[END_REF](see also [START_REF] Batista | Optimal velocity functions for car-following models[END_REF]):

V (h) =                0 for h ≤ h 0 , V max 1 - h 0 h n for h 0 < h ≤ h max , V max 1 - h 0 h max n for h > h max ,
with n ∈ N\{0}. Another optimal velocity function, based on the Newell model [START_REF] Newell | Nonlinear effects in the dynamics of car following[END_REF](see also [START_REF] Edie | Car-following and steady-state theory for noncongested traffic[END_REF]), is given by:

V (h) =                0 for h ≤ h 0 , V max 1 -exp - h -h 0 b n for h 0 < h ≤ h max , V max 1 -exp - h max -h 0 b n for h > h max ,
with n ∈ N\{0} and b ∈ [0, +∞). See Figure 2.

for a schematic representation of an optimal velocity function satisfying assumption (A).

h 0 h max h V max 0 V Figure 2
.1: Schematic representation of the optimal velocity function V .

Injecting the system of ODEs into a single PDE

In this paper, we will study the traffic flow when the number of vehicles per unit length tends to infinity by introducing the rescaled "cumulative distribution function" of vehicles, ρ ε , defined by

ρ ε (t, y) = -ε   i≥0 H (y -εU i (t/ε)) + i<0 (-1 + H (y -εU i (t/ε)))   , ( 2.2) 
with

H(x) = 1 if x ≥ 0 0 if x < 0. (2.3)
Under assumption (A), the function ρ ε satisfies in the viscosity sense (see Definition 3.1 and Theorem 8.1 for the proof of this result) the following non-local equation

u ε t + M ε u ε (t, •) ε (x) • φ x ε • |u ε x | = 0 on (0, +∞) × R, (2.4) 
where M ε is a non-local operator defined by

M ε [U ](x) = +∞ -∞ J(z)E (U (x + εz) -U (x)) dz - 3 2 V max (2.5)
and with

E(z) =      0 if z ≥ 0 1/2 if -1 ≤ z < 0 3/2 if z < -1,
and J = V on R.

(2.6)

2.Main results

In the rest of this paper, we couple equation (2.4) with the following initial condition

u ε (0, x) = u 0 (x) on R. (2.7)
We also assume that the initial condition satisfies the following assumption:

(A0) (Gradient bound)
The function u 0 is Lipschitz continuous and satisfies

-k 0 ≤ (u 0 ) x ≤ 0. (2.8)
Remark 2.2. This condition ensures that initially the vehicles have a security distance between them and since we are working with a first order model, this security distance will be preserved. We choose u 0 a regular function such that for all ε,

|ρ ε (0, x) -u 0 (x)| ≤ f (ε),
with f (ε) → 0 as ε goes to 0.

Remark 2.3 (Lagrangian formulation).

Another way to treat this problem is to consider a Lagrangian formulation, like in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], considering the function,

v : [0, T ] × R → R, v(t, y) = U y (t).
This function satisfies for all (t, y)

∈ [0, T ] × R v t (t, y) = V (u(t, y + 1) -u(t, y)) • φ (v(t, y)) , v(0, y) = v 0 (y).
(2.9)

The difficulty with this formulation is that the function φ is evaluated at v(t, y) and not at a physical point of the road. The notion of junction in this case is not well defined and this is why we use the formulation (2.4) (where the perturbation function is evaluated at a point of the road) instead of (2.9). This will allow us to use the results of Imbert and Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] concerning quasi-convex Hamiltonians with a junction condition.

Convergence result

We define k 0 = 1/h 0 and H : R → R, by

H(p) =          -p -k 0 for p < -k 0 , -V -1 p |p| for -k 0 ≤ p ≤ 0, p for p > 0.
(2.10)

Ch.3. Specified homogenization of a first order discrete model

Note that such a H is continuous, coercive lim |p|→+∞ H(p) = +∞ and because of (A5), there exists a unique point p 0 ∈ [-k 0 , 0] such that H is decreasing on (-∞, p 0 ), H is increasing on (p 0 , +∞).

(2.11)

We denote by

H 0 = min p∈R H(p) = H(p 0 ) (2.12)
and we refer to The main purpose of this article is to prove that the viscosity solution of (2.4)-(2.7) converges uniformly on compact subsets of (0, +∞) × R as ε goes to 0 to the unique viscosity solution of the following problem

         u 0 t + H(u 0 x ) = 0 for (t, x) ∈ (0, +∞) × (-∞, 0) u 0 t + H(u 0 x ) = 0 for (t, x) ∈ (0, +∞) × (0, +∞) u 0 t + F A (u 0 x (t, 0 -), u 0 x (t, 0 + )) = 0 for (t, x) ∈ (0, +∞) × {0} u 0 (0, x) = u 0 (x) for x ∈ R, (2.13) 
where A has to be determined and F A is defined by

F A (p -, p + ) = max A, H + (p -), H -(p + ) , (2.14) with H -(p) = H(p) if p ≤ p 0 , H(p 0 ) if p ≥ p 0 , and H + (p) = H(p 0 ) if p ≤ p 0 , H(p) if p ≥ p 0 . (2.15)
The following theorems are the main results of this paper, and their proof are postponed. The proofs of Theorem 2.4 and Theorem 2.8 are done in Section 5 and the proof of Theorem 2.5 is done in Section 8. Theorem 2.4 (Junction condition by homogenisation). Assume (A) and (A0). For ε > 0, let u ε be the solution of (2.4)-(2.7). Then there exists A ∈ [H 0 , 0] such that u ε converges locally uniformly to the unique viscosity solution u 0 of (2.13) (in the sense of Definition 3.6).

Theorem 2.5 (Junction condition by homogenisation: application to traffic flow). Assume (A) and that at the initial time, we have, for all i ∈ Z,

U i (0) ≤ U i+1 (0) -h 0 .
(2.16)

We also assume that there exists a constant R > 0 such that, for all i ∈ Z,

if |U i (0)| ≥ R U i+1 (0) -U i (0) = h,
with h ≥ h 0 . We define the function u 0 (satisfying (A0)) by u 0 (x) = -x/h for all x ∈ R. Then there exists A ∈ [H 0 , 0] such that the function ρ ε defined by (2.2) converges towards the unique solution u 0 of (2.13).

Remark 2.6. Condition (2.16) means that the initial condition is well-prepared.

Remark 2.7. We notice that in the case of traffic flow, (2.13) is equivalent (deriving in space) to a LWR model (see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]) with a flux limiting condition at the origin. In fact, the fundamental diagram of the model is pV (1/p) and u 0 x corresponds to the density of vehicles.

The following theorem ensures that when we use (2.13) we only evaluate the function

H in [-k 0 , 0].

Theorem 2.8. Assume (A0)-(A)

. Let u 0 be the unique solution of (2.13), then we have for all

(t, x) ∈ [0, T ] × R, -k 0 ≤ u 0 x ≤ 0,
with k 0 defined in (A0).

Remark 2.9 (Extension of the effective Hamiltonian). This theorem implies in particular that in the case of traffic flow, the effective Hamiltonian only needs to be computed for p ∈ [-k 0 , 0]. However, for the construction of the correctors it is necessary to work with a coercive Hamiltonian in R that is why we extend the function H in (2.10).

Effective Hamiltonian and effective flux-limiter

We define the non-local operator M p by

M p [U ](x) = +∞ -∞ J(z)E (U (x + z) -U (x) + p • z) dz - 3 2 V max .
(2.17)

We then have the following result Proposition 2.10 (Homogenization left and right of the perturbation). Assume (A). Then for every p ∈ [-k 0 , 0], there exists a unique λ ∈ R, such that there exists a bounded solution v of

M p [v](x) • |v x + p| = λ, x ∈ R, v is Z-periodic, (2.18) 
with M p defined in (2.17). Moreover, for p ∈ [-k 0 , 0], we have λ = H(p).

Proof. To prove this proposition, it is only necessary to notice that v = 0 is an obvious solution of (2.18) with λ = H(p). The uniqueness of λ is classical (see for instance [FIM09a, Proof of Proposition 4.6]) so we skip it.

To construct the effective flux-limiter A, we consider the following cell problem: find λ ∈ R such that there exists a solution w of the following Hamilton-Jacobi equation

M [w](x) • φ(x) • |w x | = λ for x ∈ R. (2.19)
More precisely, we have the following result, which proof is postponed until Section 6.

Theorem 2.11 (Effective flux limiter). Assume (A). We define the following set of functions

S = {w s.t. ∃ a Lipschitz continuous function m and C ≥ 0 such that ||w -m|| L ∞ (R) ≤ C}.
Then we have

A = inf {λ ∈ R : ∃ w ∈ S solution of (2.19) } .
Remark 2.12. This theorem allows us to characterize and give uniqueness to the flux limiter that we present in Section 4 which construction is presented in Section 6.

Qualitative properties of the effective flux limiter

We have the following qualitative properties on the effective flux limiter A, the proof of this result is postponed until Section 7.

Proposition 2.13 (Qualitative properties of the flux limiter). Assume (A). We have the following qualitative properties on the flux limiter.

(i) (Monotonicity of the flux-limiter). Let φ 1 , φ 2 : R → [0, 1] be two functions satisfying (A6). Let A 1 and A 2 be their respective flux limiters given by Theorem 2.4. If, for all x ∈ R, we have

φ 1 (x) ≤ φ 2 (x), then A 1 ≥ A 2 .

(ii) (Flux interruption) Let φ be a function satisfying (A6). If φ = 0 on an open interval, then we have

A = 0.

Notations

We recall the definition of the non-local operators that we used in this paper,

M [U ](x) = +∞ -∞ J(z)E (U (x + z) -U (x)) dz - 3 2 V max , (2.20) M p [U ](x) = +∞ -∞ J(z)E (U (x + z) -U (x) + p • z) dz - 3 2 V max . (2.21)
To each operator M , we associate the operator M which is defined in the same way except that the function E is replaced by the function Ẽ, defined by

Ẽ(z) =      0 if z > 0 1/2 if -1 < z ≤ 0 3/2 if z ≤ -1.
(2.22) Remark 2.14. Using the fact that E and V are bounded, we get that for every function U and every x ∈ R, we have

-M 0 = - 3 2 V max ≤ M [U ](x) ≤ 0. (2.23)
We also use the following notations for the upper and lower semi-continuous envelopes of a locally bounded function u:

u * (t, x) = lim sup s→t,y→x u(s, y) and u * (t, x) = lim inf s→t,y→x u(s, y).

Organization of the article

Section 3 contains the definition of the viscosity solutions for the problems we consider in the entire article and it also contains some results for those problems. In Section 4 we present some results on the correctors at the junction (Theorem 4.1) that will be used in Section 5 to prove Theorem 2.4. Section 6 contains the proof of Theorem 4.1. In Section 7 we give the proof of the qualitative properties of the flux-limiter. Finally, Section 8 details the link between the system of ODEs (2.1) and the PDE (2.4) (with ε = 1).

Viscosity solutions for (2.4) and (2.13)

Definitions

In order to give a general definition for all the non-local problems we consider, we will give the definition for the following equation, with p ∈ R, for all (t, x) ∈ (0, +∞) × R,

u t + ψ(x) • M p [u(t, •)](x) • φ(x) • |p + u x | + (1 -ψ(x)) • H(u x ) = 0 u(0, x) = u 0 (x), (3.1) 
with ψ : R → [0, 1] a Lipschitz continuous function. 

u : [0, +∞) × R → R is a viscosity sub-solution (resp. super-solution) of (3.1) on [0, T ] × R, if u(0, x) ≤ u 0 (x) (resp. u(0, x) ≥ u 0 (x)
) and for all (t, x) ∈ (0, T ) × R and for all ϕ ∈ C 2 ([0, T ] × R) such that u -ϕ reaches a maximum (resp. a minimum) at the point (t, x), we have

ϕ t (t, y) + ψ(x) • φ(x) • M p [u(t, •)](x) • |p + ϕ x (t, x)| + (1 -ψ(x))H(ϕ x (t, x)) ≤ 0 resp. ϕ t (t, x) + ψ(x) • φ(x) • Mp [u(t, •)](x) • |p + ϕ x (t, x)| +(1 -ψ(x))H(ϕ x (t, x)) ≥ 0 .

3.Viscosity solutions for (2.4) and (2.13)

We say that a function u is a viscosity solution of (3.1) if u * and u * are respectively a sub-solution and a super-solution of (3.1).

Remark 3.2. We use this definition in order to have a stability result for the non-local term. We refer to [START_REF] Da Lio | Nonlocal front propagation problems in bounded domains with neumann-type boundary conditions and applications[END_REF][START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF] for such kind of definition and to [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF]Proposition 4.2]. For the readers convenience we give the stability result and its proof.

Proposition 3.3 (Stability of the solutions of (3.1)). Let (u n ) n be a sequence of uniformly bounded upper semi-continuous functions (resp. lower semi-continuous functions) and let

u denote lim sup * u n (resp. u = lim inf * u n ). Let (t n , x n , p n ) → (t 0 , x 0 , p) in R 3 be such that u n (t n , x n ) → u(t 0 , x 0 ) (resp. u n (t n , x n ) → u(t 0 , x 0 )). Then lim sup n→+∞ * M pn [u n (t n , •)](x n ) ≥ M p [u(t 0 , •)](x 0 ) (3.2) resp. lim inf n→+∞ * Mpn [u n (t n , •)](x n ) ≤ Mp [u(t 0 , •)](x 0 ) . (3.3)
In order to prove Proposition 3.3, we use the following lemma which proof can be found in [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF]. (3.4)

Let (a n ) n be a sequence of R converging to zero. Then

L({f n ≥ a n }\{f ≥ 0}) → 0 as n → +∞ and 
L({f > 0}\{f n > a n }) → 0 as n → +∞,
where L(A) denotes the Lesbegue measure of measurable set A.

Proof of Proposition 3.3. We just do the proof for u. Let ε > 0. Using (2.6), we have that

E(β) = 1 2 1 {β∈[-1,0)} + 3 2 1 {β<-1} = 1 2 1 {β<0} + 1 {β<-1} .
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We get that 

R J(z)E(u n (t n , x n + z) -u n (t n , x n ) + p n .z)dz - R J(z)E(u(t 0 , x 0 + z) -u(t 0 , x 0 ) + p.z)dz = R J(z)
≥ - R J(z)1 {An(z)\A(z)} ≥ - ε 2 , R 1 2 J(z) 1 {u(t 0 ,x 0 +z)-u(t 0 ,x 0 )+p.z≥0} -1 {un(tn,xn+z)-un(tn,xn)+pn.z≥0} dz (3.6) ≥ - 1 2 R J(z)1 {Bn(z)\B(z)} ≥ - ε 2 , with      A n (z) = {u n (t n , x n + z) -u n (t n , x n ) + p n .z ≥ -1} ∪{u(t 0 , x 0 + z) -u(t 0 , x 0 ) + p.z ≥ -1} A(z) = {u(t 0 , x 0 + z) -u(t 0 , x 0 ) + p.z ≥ -1} and      B n (z) = {u n (t n , x n + z) -u n (t n , x n ) + p n .z ≥ 0} ∪{u(t 0 , x 0 + z) -u(t 0 , x 0 ) + p.z ≥ 0} B(z) = {u(t 0 , x 0 + z) -u(t 0 , x 0 ) + p.z ≥ 0}.
Using (3.5) and (3.6), we deduce that

M pn [u n (t n , •)](x n ) ≥ M p [u(t 0 , •)](x 0 ) -ε, (3.7)
for n big enough. This implies (3.2).

Definition 3.5 (Class of test functions for (2.13)). We denote by J ∞ := (0, +∞) × R,

J + ∞ := (0, +∞) × [0, +∞) and J - ∞ := (0, ∞) × (-∞, 0]. We define a class of test functions on J ∞ by C 1 (J ∞ ) = ϕ ∈ C(J ∞ ), the restriction of ϕ to J + ∞ and to J - ∞ is C 1 .
3.Viscosity solutions for (2.4) and (2.13) Definition 3.6 (Viscosity solutions for (2.13)). Let H be given by (2.10) and A ∈ R. An upper semi-continuous (resp. lower semi-continuous) function u : [0, +∞) × R → R is a viscosity sub-solution (resp. super-solution) of (2.13) if u(0, x) ≤ u 0 (x) (resp. u(0, x) ≥ u 0 (x)) and for all (t, x) ∈ J ∞ and for all ϕ ∈ C 1 (J ∞ ) such that

u ≤ ϕ (resp. u ≥ ϕ) in a neighbourhood of (t, x) ∈ J ∞ and u(t, x) = ϕ(t, x),
we have

ϕ t (t, x) + H(ϕ x (t, x)) ≤ 0 (resp. ≥ 0) if x = 0, ϕ t (t, x) + F A (ϕ x (t, 0 -), ϕ x (t, 0 + )) ≤ 0 (resp. ≥ 0) if x = 0.
We say that a function u is a viscosity solution of (2.13) if u * and u * are respectively a sub-solution and a super-solution of (2.13). We refer to this solution as A-flux limited solution.

Results for viscosity solutions of (3.1)

Proposition 3.7 (Comparison principle for (3.1)). Let T > 0. Assume (A0) and (A). Let u be a sub-solution of (3.1) and v be a super-solution of (3.1). Let us also assume that there exists a constant K > 0 such that for all (t, x) ∈ [0, T ] × R, u(t, x) ≤ u 0 (x) + Kt and -v(t, x) ≤ -u 0 (x) + Kt.

(3.8)

Then we have u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × R.

Proof. The only difficulty in proving the comparison principle comes from the non-local term, but in our case the proof is similar to the proof of [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF]Theorem 4.4]. For the readers convenience we give the details of the proof of Proposition 3.7.

Let us introduce

M = sup (t,x)∈[0,T ]×R {u(t, x) -v(t, x)} .
We want to prove that M ≤ 0, we argue by contradiction and assume that M > 0.

Step 1: the test function. Let us introduce the following test function,

ϕ(t, x, y) = u(t, x) -v(t, y) + p(x -y) - η T -t -e Bt (x -y) 2 2ε -αx 2 ,
where η, ε, and α are small, strictly positive parameters, and B is a constant to be chosen later. We can notice that we have

lim |x|,|y|→+∞ ϕ(t, x, y) = -∞.
In fact, using (3.8) and (A0) we have

ϕ(t, x, y) ≤u 0 (x) -u 0 (y) + p(x -y) + 2KT -αx 2 -e Bt (x -y) 2 2ε 
≤(k 0 + |p|)|x -y| + 2KT -αx 2 -e Bt (x -y) 2 2ε .
Using the fact that our test function is upper semi-continuous we can see that it reaches a maximum at a finite point that we denote by ( t, x, ȳ) ∈ [0, T ] × R × R. We also have the following result.

Lemma 3.8. For α and η small enough, we have

• M η,ε,α := ϕ( t, x, ȳ) ≥ M/2 > 0.
• |x -ȳ| → 0 as ε → 0.

• α|x| → 0 as α → 0.

Proof of Lemma 3.8. By definition of M , for all θ > 0,

∃(t θ , x θ ) ∈ [0, T ] × R such that M -θ ≤ u(t θ , x θ ) -v(t θ , x θ ) ⇒ M -θ - η T -t θ -αx 2 θ ≤ u(t θ , x θ ) -v(t θ , x θ ) - η T -t θ -αx 2 θ ,
choosing η and α small enough we have 0 < M/2 ≤ M η,ε,α . Using this result we can see that we have

αx 2 + e Bt (x -ȳ) 2 2ε ≤ u( t, x) -v( t, ȳ) + p(x -y) ≤ (k 0 + |p|)|x -ȳ| + 2KT,
where we have used 3.8 and (A0), this inequality allows us to directly deduce the rest of the lemma.

Step 2: case t = 0. In this particular case, using Lemma 3.8 we have

0 < ϕ(0, x, ȳ) = u 0 (x) -u 0 (ȳ) + p(x -y) - η T - (x -ȳ) 2 2ε -αx 2 , ⇒ η T ≤ (k 0 + |p|)|x -ȳ|,
using the fact that |x -ȳ| → 0 as ε → 0, we get a contradiction.
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Step 3: case t > 0. By duplication of the time variable and passing to the limit, we have that there exist two real numbers a, b ∈ R such that

a -b = η (T -t) 2 + Be B t (x -ȳ) 2 2ε
and

a ≤ -M p [u( t, •)](x) • φ(x) • |e B tp ε + 2αx| -ψ(x)H(e B tp ε + 2αx) b ≥ -Mp [v( t, •)](ȳ) • φ(ȳ) • |e B tp ε | -ψ(ȳ)H(e B tp ε ),
with p ε = (xȳ)/ε. Combining these inequalities we obtain

Be B t (x -ȳ) 2 2ε + η (T -t) 2 ≤ Mp [v( t, •)](ȳ) • φ(ȳ) • |e B tp ε | -M p [u( t, •)](x) • φ(x) • |e B tp ε + 2αx| + ψ(ȳ)H(e B tp ε ) -ψ(x)H(e B tp ε + 2αx) ≤M 0 |p ε | • ||φ || ∞ • |x -ȳ|e B t + Mp [v( t, •)](ȳ) • φ(x) • |e B tp ε | + o α (1) -M p [u( t, •)](x) • φ(x) • |e B tp ε | + ψ(x) H(e B tp ε ) -H(e B tp ε + 2αx) + ||ψ || ∞ |x -ȳ|H(e B tp ε ) ≤M 0 |p ε | • ||φ || ∞ • |x -ȳ|e B t + Mp [v( t, •)](ȳ) • φ(x) • |e B tp ε | + o α (1) -M p [u( t, •)](x) • φ(x) • e B t|p ε | + ||ψ || ∞ |x -ȳ|H(e B tp ε ), (3.9) 
where we have used (2.23), the fact that φ is Lipschitz continuous, Lemma 3.8, and the fact that ψ is Lipschitz continuous for the second inequality. Moreover, we have used Lemma 3.8 and the fact that H is Lipschitz continuous for the last inequality.

As in [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF], we define

A := z : Ẽ v( t, z) -v( t, ȳ) + p(z -ȳ) ≤ E u( t, z) -u( t, x) + p(z -x) .
However, we know that M η,ε,α is reached at ( t, x, ȳ), we have that for all z ∈ R, ϕ( t, z, z) ≤ ϕ( t, x, ȳ) meaning that we have

u( t, z) -u( t, x) + p(z -x) ≤ v( t, z) -v( t, ȳ) + p(z -ȳ) + αz 2 -e B t (x -ȳ) 2 2ε -αx 2 .
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This implies that

A c ⊂ {|z| ≥ R ε,α } , with R 2 ε,α = 1 α e B t (x -ȳ) 2 2ε + αx 2 .
We distinguish two cases.

Case 1: there exists a constant C ε > 0, such that for any α small enough we have

|x -ȳ| 2ε ≥ C ε . (3.11)
In this case, we have

{|z -ȳ| ≥ R ε,α } ⊂ |z| ≥ R ε,α , with R ε,α = -|ȳ| + R ε,α → +∞ as α → 0 (see Da Lio et al. Lemma 2.5 in [DLFM08]). This implies that Mp v( t, •) (ȳ) = R J(z -ȳ) Ẽ v( t, z) -v( t, ȳ) + p(z -ȳ) dz - 3 2 V max ≤ R J(z -ȳ)E u( t, z) -v( t, x) + p(z -x) dz - 3 2 V max + o α (1).
Using this and the fact that by definition ∀p ∈ R |H(p)| ≤ V max |p|, (3.9) becomes

η T 2 + Be B t (x -ȳ) 2 2ε ≤ (2M 0 ||φ || ∞ + 2V max ||ψ || ∞ ) (x -ȳ) 2 2ε e B t + o α (1) + e B t|p ε |φ(x). R J(z -ȳ).E u( t, z) -u( t, x) + p(z -x) dz -e B t|p ε |φ(x) R J(z -x).E u( t, z) -u( t, x) + p(z -x) dz ≤ 2M 0 ||Dφ|| ∞ + 3||φ|| ∞ .||DJ|| L 1 (R) (x -ȳ) 2 2ε e B t + o α (1) + 2V max ||ψ || ∞ (x -ȳ) 2 2ε e B t Choosing B = 2M 0 ||φ || ∞ + 3||φ|| ∞ .||DJ|| L 1 (R) + 2V max ||ψ || ∞ ,
we get a contradiction for α small enough.
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Case 2: there exists a subsequence α n , such that |x -ȳ| 2ε → 0 as n → +∞.

(3.12)

In this case, (3.9), gives us a contradiction, choosing B = 2M 0 ||φ || ∞ + 2V max ||ψ || ∞ and passing to the limit as n → +∞.

We now give a comparison principle on bounded sets, to do this, we define for a given point (t 0 , x 0 ) ∈ (0, T ) × R and for r, R > 0, the set

Q r,R (t 0 , x 0 ) = (t 0 -r, t 0 + r) × (x 0 -R, x 0 + R).
Theorem 3.9 (Comparison principle on bounded sets for (3.1)). Assume (A). Let u be a sub-solution of (3.1) and let v be a super-solution of (3.1) on the open set Q r,R ⊂ (0, T )×R. We assume that u (resp. v) is upper semi-continuous (resp. lower semi-continuous) on Q r,R . Also assume that

u ≤ v outside Q r,R, then u ≤ v on Q r,R .
Proof. The proof of this theorem is similar to the one of Proposition 3.7, so we skip it.

Lemma 3.10 (Existence of barriers for (3.1)). Assume (A0) and (A). There exists a constant

K 1 > 0 such that u + (t, x) = K 1 t + u 0 (x) and u -(t, x) = u 0 (x),
are respectively super and sub-solutions of (3.1).

Proof. We define

K 1 = M 0 • (|p| + k 0 ) + |H 0 |.
Let us prove that u + is a super-solution of (3.1). Using assumption (A0) and the form of the non-local operator and of H, we have

φ(x)ψ(x)M p [u 0 ](x) • |p + (u 0 ) x | + (1 -ψ(x)) • H((u 0 ) x ) ≥ -M 0 • |p + (u 0 ) x | + H 0 ≥ -M 0 (|p| + k 0 ) -|H 0 | = -K 1 ,
where we used (2.23) and (2.12). The proof for u -is simpler, it uses (2.23) and (2.12),

φ(x)ψ(x)M p [u 0 ](x) • |p + (u 0 ) x | + (1 -ψ(x)) • H((u 0 ) x ) ≤ 0.
Applying Perron's method (see [IMR08, Proof of Theorem 6], [START_REF] Alvarez | Viscosity solutions of nonlinear integro-differential equations[END_REF] or [START_REF] Imbert | A non-local regularization of first order hamilton-jacobi equations[END_REF] to see how to apply Perron's method for problems with non-local terms), joint to the comparison principle, we obtain the following result. Theorem 3.11 (Existence and uniqueness of viscosity solutions for (3.1)). Assume (A0) and (A). Then, there exists a unique solution u of (3.1). Moreover, the function u is continuous and there exists a constant K 1 such that

u 0 (x) ≤ u(t, x) ≤ u 0 (x) + K 1 t.

Results for viscosity solutions of (2.13)

Now we recall an equivalent definition (see [IM14, Theorem 2.5]) for sub and super solution at the junction. We will also consider the following problem, u t + H(u x ) = 0 for t ∈ (0, T ) and x ∈ R\{0}.

(3.13) Theorem 3.12 (Equivalent definition for sub/super-solutions). Let H given by (2.10) and consider A ∈ [H 0 , +∞) with H 0 defined in (2.12). Given arbitrary solutions p A ± ∈ R of

H p A + = H + p A + = A = H -p A -= H p A -, (3.14) 
let us fix any time independent test function φ 0 (x) satisfying

φ 0 x (0 ± ) = p A ± .
Given a function u : (0, T ) × R → R, the following properties hold true. i) If u is an upper semi-continuous sub-solution of (3.13) satisfying

u(t, 0) = lim sup (s,y)→(t,0), y∈R\{0} u(s, y), (3.15) then u is a H 0 -flux limited sub-solution.
ii) Given A > H 0 and t 0 ∈ (0, T ), if u is an upper semi-continuous sub-solution of (3.13), satisfying (3.15), and if for any test function ϕ touching u from above at (t 0 , 0) with ϕ(t, x) = ψ(t) + φ 0 (x), (3.16) for some ψ ∈ C 2 (0, +∞), we have

ϕ t + F A (ϕ x ) ≤ 0 at (t 0 , 0),
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then u is a A-flux limited sub-solution at (t 0 , 0). iii) Given t 0 ∈ (0, T ), if u is a lower semi-continuous super-solution of (3.13) and if for any test function ϕ satisfying (3.16) touching u from above at (t 0 , 0) we have

ϕ t + F A (ϕ x ) ≥ 0 at (t 0 , 0),
then u is a A-flux limited super-solution at (t 0 , 0).

Proof. The proof of Theorem 3.12 can be founded in [IM14, Theorem 2.5].

Control of the oscillations for (2.4)-(2.7)

Theorem 3.13 (Control of the oscillations). Let T > 0. Assume (A0)-(A) and let u be a solution of (2.4)-(2.7), with ε = 1. Then there exists a constants C 1 > 0 such that for all x, y ∈ R, x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

0 ≤ u(t, x) -u(s, x) ≤ C 1 (t -s) and -k 0 (x -y) -1 ≤ u(t, x) -u(t, y) ≤ 0, (3.17) with k 0 defined in (2.8).
Proof. In this proof we used the barriers given by Lemma 3.10 (with p = 0 and ψ ≡ 1), which means that the solution u of (2.4)-(2.7) with ε = 1 satisfies for all (t, x) ∈ [0, +∞)×R, 0 ≤ u(t, x) -u 0 (x) ≤ M 0 k 0 t.

(3.18)

In the rest of the proof we will use the following notation:

Ω = (t, x, y) ∈ [0, T ) × R 2 s.t. x ≥ y .
Proof of the bound on the time derivative. For all h ≥ 0, we have

u(0, x) ≤ u(h, x) ≤ M 0 k 0 h + u(0, x).
Using the fact that equation (2.4) is invariant by addition of constants to the solution and by translations in time, we deduce by the comparison principle that, for all (t, x) ∈ [0, +∞)×R, we have

u(t, x) ≤ u(t + h, x) ≤ M 0 k 0 h + u(t, x).
We deduce the result by choosing

C 1 = M 0 k 0 .
Proof of the upper inequality for the control of the space oscillations. We introduce,

M = sup (t,x,y)∈Ω {u(t, x) -u(t, y)} .
We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test function. For η, α > 0, small parameters, we define

ϕ(t, x, y) = u(t, x) -u(t, y) - η T -t -αx 2 -αy 2 .
Using (3.18), we have that

ϕ(t, x, y) ≤ u 0 (x) -u 0 (y) + 2M 0 k 0 T -α(x 2 + y 2 ) ≤ -α(x 2 + y 2 ) + 2M 0 k 0 T,
where we used assumption (A0) for the second inequality. Therefore we have

lim |x|,|y|→+∞ ϕ(t, x, y) = -∞.
Since ϕ is upper-semi continuous, it reaches a maximum at a point that we denote by ( t, x, ȳ) ∈ Ω. Classically we have for η and α small enough,

   0 < M 2 ≤ ϕ( t, x, ȳ),
α|x|, α|ȳ| → 0 as α → 0.

Step 2: t > 0 and x > ȳ. By contradiction, assume first that t = 0. Then we have

η T < u 0 (x) -u 0 (ȳ) ≤ 0,
where we used that u 0 is non-increasing, and we get a contradiction. The fact that x > ȳ, comes directly from the fact that ϕ( t, x, ȳ) > 0.

Step 3: viscosity inequalities. By doing a duplication of the time variable and passing to the limit we get that

η (T -t) 2 ≤ M [u( t, •)](ȳ) • |2αȳ| • φ(ȳ) -M [u(t, •)](x) • φ(x) • |2αx| ≤2M 0 • α(|x| + |ȳ|),
passing to the limit as α goes to 0, we obtain a contradiction.

3.Viscosity solutions for (2.4) and (2.13)

Proof of the lower inequality for the control of the space oscillations Let us introduce,

M = sup (t,x,y)∈Ω {u(t, y) -u(t, x) -1 -k 0 (x -y)} .
We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test function. For α, η > 0, small parameters we consider the function

ϕ(t, x, y) = u(t, y) -u(t, x) -1 -k 0 (x -y) -α(x 2 + y 2 ) - η T -t .
We have that

ϕ(t, x, y) ≤ u 0 (y) -u 0 (x) -α(x 2 + y 2 ) + 2M 0 k 0 T -k 0 (x -y) -1 ≤ -α(x 2 + y 2 ) + 2M 0 k 0 T.
Therefore, we have

lim |x|,|y|→+∞ ϕ(t, x, y) = -∞.
Using the fact that ϕ is upper-semi continuous we deduce that ϕ reaches a maximum at a finite point that we denote ( t, x, ȳ) ∈ Ω. Classically we have for η and α small enough,

   0 < M 2 ≤ ϕ( t, x, ȳ),
α|x|, α|ȳ| → 0 as α → 0.

Step 2: t > 0 and x > ȳ. By contradiction, assume that t = 0. Using the fact that ϕ( t, x, ȳ) > 0 and (A0), we have

η T < u(0, ȳ) -u(0, x) -k 0 (x -ȳ) -1 ≤ -1,
which is a contradiction. Hence t > 0. Using that ϕ( t, x, ȳ) > 0, we also deduce that x > ȳ.

Step 3: viscosity inequalities. By duplicating the time variable and passing to the limit we have that there exists two real numbers a, b, such that (a,

-k 0 + 2αȳ) ∈ D + u( t, ȳ), (b, -k 0 + 2αx) ∈ D -u( t, x) and a -b = η (T -t) 2 . (3.19)
Using that u is a sub-solution of (2.4)-(2.7) (with ε = 1), we get

a + M [u( t, •)](ȳ) • φ(ȳ) • | -k 0 + 2αȳ| ≤ 0. (3.20)
We claim that

M [u( t, •)](ȳ) = R J(z)E(u( t, ȳ + z) -u( t, ȳ))dz - 3 2 V max = 0.
Indeed, let z ∈ (h 0 , h max ]. If ȳ + z ≥ x, using that u is non-increasing in space, we get

u( t, ȳ + z) -u( t, ȳ) ≤ u( t, x) -u( t, ȳ) ≤ -k 0 (x -ȳ) -1 < -1.
If ȳ + z < x, using the fact that ϕ( t, x, ȳ + z) ≤ ϕ( t, x, ȳ) we obtain

u( t, ȳ + z) -u( t, ȳ) ≤ -k 0 z < -1.
This implies that we have for all z ∈ (h 0 , h max ],

E(u( t, ȳ + z) -u( t, ȳ)) = 3 2 .
Injecting this in the non-local term, we deduce the claim. Finally, the fact that u t ≥ 0 implies that a, b ≥ 0. Therefore, inequality (3.20) implies a = 0.

Finally, using (3.19), we obtain

η T 2 ≤ 0,
which is a contradiction. This ends the proof.

Correctors for the junction

The key ingredient to prove the convergence result is to construct correctors for the junction. The main result of this section is the existence of appropriate correctors. The proof of this theorem is presented in Section 6. Given A ∈ R, A ≥ H 0 , we introduce two real numbers p + , p -∈ R, such that

H p + = H + p + = H p -= H -p -= A. (4.1)
Due to the form of H (see (2.10)) this two real numbers exist and are unique.

Theorem 4.1 (Existence of a global corrector for the junction). Assume (A). i) (General properties)

There exists a constant Ā ∈ [H 0 , 0] such that there exists a solution w of (2.19) with λ = A and such that there exists a constant C and a globally Lipschitz continuous function m such that for all x ∈ R,

|w(x) -m(x)| ≤ C. (4.2)
ii) (Bound from below at infinity) If Ā > H 0 , then there exists a γ 0 such that for every γ ∈ (0, γ 0 ), we have

w(x + h) -w(x) ≥ (p + -γ)h -C for x ≥ r and h ≥ 0, w(x -h) -w(x) ≥ (-p --γ)h -C for x ≤ -r and h ≥ 0. (4.3)
iii) (Rescaling w) For ε > 0, we set

w ε (x) = εw x ε ,
then (along a subsequence ε n → 0) we have that w ε converges locally uniformly towards a function W = W (x) which satisfies

|W (x) -W (y)| ≤ C|x -y| for all x, y ∈ R, H(W x ) = A for all x ∈ R\{0}, (4.4) 
In particular, we have (with W (0) = 0)

W (x) = p + x1 {x>0} + p -x1 {x<0} . (4.5)

Proof of convergence

This section contains the proof of the main homogenization result (Theorem 2.4). This proof relies on the existences of correctors (Proposition 2.10 and Theorem 4.1).

We begin with two useful lemmas for the proof of Theorem 2.4. The first result is a direct consequence of Perron's method and Lemma 3.10.

Lemma 5.1 (Barriers uniform in ε). Assume (A0) and (A)

. There exists a constant C > 0 (depending only on M 0 and k 0 ) such that for all t > 0 and x ∈ R,

|u ε (t, x) -u 0 (x)| ≤ Ct.
The following lemma is a direct result of Theorem 3.13. Lemma 5.2 (Uniform gradient bound). Assume (A0) and (A). Then the solution u ε of (2.4)-(2.7) satisfies for all t > 0, for all x, y ∈ R, x ≥ y,

-k 0 (x -y) -ε ≤ u ε (t, x) -u ε (t, y) ≤ 0.
(5.1)

Before passing to the proof of Theorem 2.4, let us show how it allows us to prove Theorem 2.8.

Proof of Theorem 2.8. We want to prove that for all t ∈ [0, +∞) and for all x, y ∈ R, x ≥ y,

-k 0 (x -y) ≤ u 0 (t, x) -u 0 (t, y) ≤ 0.
(5.2)

Using Lemma 5.2, we have that the solution u ε of (2.4)-(2.7), satisfies for all (t, x, y)

∈ [0, +∞) × R × R, with x ≥ y, -k 0 (x -y) -ε ≤ u ε (t, x) -u ε (t, y) ≤ 0.
Now using Theorem 2.4, passing to the limit as ε → 0, we obtain the result.

We now turn to the proof of Theorem 2.4.

Proof of Theorem 2.4. We introduce

u(t, x) = lim sup ε→0 * u ε and u(t, x) = lim inf ε→0 * u ε . ( 5.3) 
Thanks to Lemma 5.1, we know that these functions are well defined. We want to prove that u and u are respectively a sub-solution and a super-solution of (2.13). In this case, the comparison principle will imply that u ≤ u. But, by construction, we have u ≤ u, hence we will get u = u = u 0 , the unique solution of (2.13).

Let us prove that u is a sub-solution of (2.13) (the proof for u is similar and we skip it). We argue by contradiction and assume that there exist a test function ϕ ∈ C 1 (J ∞ ) (in the sense of Definition 3.5), and a point ( t, x) ∈ (0, +∞) × R such that

         u( t, x) = ϕ( t, x) u ≤ ϕ on Q r,r ( t, x) with r > 0 u ≤ ϕ -2η
outside Q r,r ( t, x) with η > 0 ϕ t ( t, x) + H(x, ϕ x ( t, x)) = θ with θ > 0, (5.4) where

H(x, ϕ x ( t, x)) :=    H ϕ x ( t, x) if x = 0, F A ϕ x ( t, 0 -), ϕ x ( t, 0 + ) if x = 0.
Given Lemma 5.2 and (5.3), we can assume (up to changing ϕ at infinity) that for ε small enough, we have

u ε ≤ ϕ -η outside Q r,r ( t, x).
Using the previous lemmas we get that the function u satisfies for all t > 0 and x, y ∈ R, x ≥ y,

|u(t, x) -u 0 (x)| ≤ Ct, -k 0 (x -y) ≤ u(t, x) -u(t, y) ≤ 0.
(5.5)

First case: x = 0. We only consider x > 0, since the other case (x < 0) is treated in the same way. We define p = ϕ x ( t, x) that according to (5.5) satisfies

-k 0 ≤ p ≤ 0.
We choose r small enough so that x -2r > 0. Let us prove that the test function ϕ satisfies in the viscosity sense, the inequality

ϕ t + M ε ϕ ε (t, •) (x) • φ x ε • |ϕ x | ≥ θ 2 for (t, x) ∈ Q r,r ( t, x). ( 5.6) 
Let us notice that for ε small enough we have

φ x ε = 1 for all (t, x) ∈ Q r,r ( t, x).
For all (t, x) ∈ Q r,r ( t, x), we have for r small enough

ϕ t (t, x) + M ε ϕ ε (t, •) (x) • |ϕ x | = ϕ t ( t, x) + o r(1) + M ε ϕ ε (t, •) (x) • |ϕ x | = θ + o r(1) + M ε ϕ ε (t, •) (x) • |p| -H(p) =: ∆, (5.7) 
where we have used (5.4). We recall that for -k 0 ≤ p ≤ 0,

H(p) = M p [0](0)|p|.
Moreover, for all z ∈ [h 0 , h max ], and for ε and r small enough we have that

ϕ(t, x + εz) -ϕ(t, x) ε = zϕ x (t, y) + εz 2 ϕ xx (t, ξ(x, x + εz)) ≤ pz + o r(1) + cε,
where we have used the fact that ϕ ∈ C 2 and that z ∈ [h 0 , h max ]. Now using the fact that Ẽ is decreasing we have

Ẽ(pz + cε + o r(1)) ≤ Ẽ ϕ(t, x + εz) -ϕ(t, x) ε .
Using this result and replacing the non-local operators in (5.7) by their definition (see 2.17), we obtain

∆ ≥ θ + o r(1) + |p| hmax h 0 J(z) Ẽ(pz + cε + o r(1))dz -|p| hmax h 0 J(z) Ẽ(pz)dz. (5.8)
We can see that if we have p = 0, we obtain directly our result. However, if

-k 0 ≤ p < 0, R J(z) Ẽ(pz + cε + o r(1))dz = -V -1 -cε + o r(1) p - 1 2 V - cε + o r(1) p + 3 2 V max , R J(z) Ẽ(pz)dz = -V -1 p + 3 2 V max .
(5.9) Injecting (5.9) in (5.8) and choosing ε and r, we obtain

∆ ≥ θ + o r(1) + |p| • -V -1 -cε + o r(1) p + V -1 p ≥ θ + o r(1) -||V || ∞ • (cε + o r(1)) ≥ θ 2 ,
where we have used assumption (A1) for the second line.

Getting a contradiction. By definition, we have for ε small enough,

u ε ≤ ϕ -η outside Q r,r ( t, x).
Using the comparison principle on bounded subsets for (2.4)-(2.7), we get

u ε ≤ ϕ -η on Q r,r ( t, x).
Passing to the limit as ε → 0, we get u ≤ ϕ -η on Q r,r ( t, x) and this contradicts the fact that u( t, x) = ϕ( t, x).

5.Proof of convergence

Second case: x = 0. Using Theorem 3.12, we may assume that the test function has the following form

ϕ(t, x) = g(t) + p -x1 {x<0} + p + x1 {x>0} on Q 2r,2r ( t, 0), (5.10) 
where g is a C 1 function defined in (0, +∞). The last line in condition (5.4) becomes 

g (t) + F A (p -, p + ) = g (t) + A = θ at ( t, 0). ( 5 
ϕ ε (t, x) = g(t) + w ε (x) on Q 2r,2r ( t, 0), ϕ(t, x) outside Q 2r,2r ( t, 0).
(5.12)

We would like to prove that this function satisfies in the viscosity sense, for r and ε small enough,

ϕ ε (t, x) + M ε ϕ ε ε (t, •) (x) • φ x ε • |ϕ ε x | ≥ θ 2 on Q r,r ( t, 0).
Let h be a test function touching ϕ ε from below at (t 1 , x 1 ) ∈ Q r,r ( t, 0), so we have

w x 1 ε = 1 ε (h(t 1 , x 1 ) -g(t 1 )) ,
and

w(y) ≥ 1 ε (h(t 1 , εy) -g(t 1 )) ,
for y in a neighbourhood of x 1 ε . Since w does not depend on time, we have

h t (t 1 , x 1 ) = g (t 1
).

Therefore, we have

h t (t 1 , x 1 ) -g (t 1 ) + M [w] x 1 ε • φ x 1 ε • |h x (t 1 , x 1 )| ≥ A.
This implies that (using (5.11) and taking r small enough)

h t (t 1 , x 1 ) + M [w] x 1 ε • φ x 1 ε • |h x (t 1 , x 1 )| ≥ A + g (t 1 ) ≥ θ 2 .
Now for ε small enough such that εh max ≤ r, we deduce using the fact that M is a non-local operator with a bounded support that we have

M [w] x 1 ε = M ε ϕ ε (t 1 , •) ε (x 1 ) .
This implies that we have

h t (t 1 , x 1 ) + M ε ϕ ε (t 1 , •) ε (x 1 ) • φ x 1 ε • |h x (t 1 , x 1 )| ≥ θ 2 .
Getting the contradiction. We have that for ε small enough

u ε + η ≤ ϕ = g(t) + p -x1 {x<0} + p + x1 {x>0} on Q 2r,2r ( t, 0)\Q r,r ( t, 0).
Using the fact that w ε → W , and using (4.5), we have for ε small enough

u ε + η 2 ≤ ϕ ε on Q 2r,2r ( t, 0)\Q r,r ( t, 0).
Combining this with (5.12), we get that

u ε + η 2 ≤ ϕ ε outside Q r,r ( t, 0),
By the comparison principle on bounded subsets the previous inequality holds in Q r,r ( t, 0). Passing to the limit as ε → 0 and evaluating the inequality in ( t, 0), we obtain

u( t, 0) + η 2 ≤ ϕ( t, 0) = u( t, 0),
which is a contradiction.

Truncated cell problems

This section contains the proof of Theorem 4.1. To do this, we will construct correctors on truncated domains and then pass to the limit as the size of the domain goes to infinity. This idea comes from [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF]. For l ∈ (r, +∞), r << l and r ≤ R << l, we want to find λ l,R , such that there exists a solution w l,R of

       G R x, [w l,R ], w l,R x = λ l,R if x ∈ (-l, l) H -(w l,R x ) = λ l,R if x = -l H + (w l,R x ) = λ l,R if x = l, ( 6.1) 
with

G R (x, [U ], q) = ψ R (x)φ(x) • M [U ](x) • |q| + (1 -ψ R (x)) • H(q), (6.2) and ψ R ∈ C ∞ , ψ R : R → [0, 1], with ψ R ≡ 1 on [-R, R] 0 outside [-R -1, R + 1], and ψ R (x) < 1 ∀x / ∈ [-R, R]. (6.3)
To G R , we associate GR which is defined in the same way but the operator M is replaced by M .

Remark 6.1. The operator G R is used to have a local operator near the boundary and then to well define the boundary conditions.

Comparison principle for a truncated problem

Proposition 6.2 (Comparison principle on truncated domains). Let us consider the following problem for r < l 1 < l 2 and λ ∈ R, with and l 2 >> R.

GR (x, [v], v x ) ≥ λ for x ∈ (l 1 , l 2 ) H + (v x ) ≥ λ for x = l 2 , ( 6.4 
)

and for ε 0 > 0 G R (x, [u], u x ) ≤ λ -ε 0 for x ∈ (l 1 , l 2 ) H + (u x ) ≤ λ -ε 0 for x = l 2 , ( 6.5 
)

Then if u(l 1 ) ≤ v(l 1 ) we have u ≤ v in [l 1 , l 2 ].
Proof. The only difficulty in proving this result is the comparison at the boundary {l 2 }. However, for x close to l 2 , the function G R is actually the effective Hamiltonian H. Therefore, we can proceed as in the proof of [GIM15, Proposition 4.1] and so we skip the proof.

Remark 6.3. We have a similar result for l 1 < l 2 < -r and if for all x ∈ [l 2 , l 2 + h max ], u(x) ≤ v(x) and the following conditions are imposed at x = l 1 :

H -(v x ) ≥ λ for x = l 1 , H -(u x ) ≤ λ -ε 0 for x = l 1 .

Existence of correctors on a truncated domain Proposition 6.4 (Existence of correctors on truncated domains).

There exists a unique λ l,R ∈ R such that there exists a solutions w l,R of (6.1). Moreover, there exists a constant C (depending only on k 0 ), and a Lipschitz continuous function m l,R , such that

     H 0 ≤ λ l,R ≤ 0, |m l,R (x) -m l,R (y)| ≤ C|x -y| for x, y ∈ [-l, l], |w l,R (x) -m l,R (x)| ≤ C for x ∈ [-l, l], (6.6 
)

with H 0 = min H.
Proof. Given that G R does not depend explicitly on the time variable, we will classically consider the approximated problem

       δv δ + ψ R (x)M [v δ ](x) • φ(x) • |v δ x | + (1 -ψ R (x))H(v δ x ) = 0 for x ∈ (-l, l) δv δ + H -(v δ x ) = 0 for x = -l δv δ + H + (v δ x ) = 0 for x = l (6.7)
Step 1: construction of barriers. Using that 0 and δ -1 C 0 are respectively sub and super-solution of (6.7) with C 0 = |H 0 |, and that we have a comparison principle, we deduce that there exists a continuous viscosity solution, v δ of (6.7) which satisfies

0 ≤ v δ ≤ C 0 δ . (6.8)
Step 2: control of the space oscillations of v δ . Lemma 6.5. The function v δ satisfies for all x, y ∈ [-l, l], x ≥ y,

-k 0 (x -y) -1 ≤ v δ (x) -v δ (y) ≤ 0,
with k 0 defined in (A0).

Proof of Lemma 6.5. In the rest of the proof we will use the following notation,

Ω = (x, y) ∈ [-l, l] 2 such that x ≥ y .
Step 2.1: proof of the upper inequality. We want to prove that

M = sup (x,y)∈Ω v δ (x) -v δ (y) ≤ 0.
We argue by contradiction and assume that M > 0. We can see that M is reached for a finite point that we denote by (x, ȳ) ∈ Ω. Given that M > 0, we deduce that x = ȳ. Therefore, we can use the viscosity inequalities for (6.7).

-If (x, ȳ) ∈ (-l, l), we have

δv δ (x) + G R (x, [v δ ], 0) ≤ 0 δv δ (ȳ) + G R (ȳ, [v δ ], 0) ≥ 0,
combining these two inequalities with the fact that G R (x, [U ], 0) = 0, we obtain δM ≤ 0.

-If x = l and ȳ ∈ (-l, l), similarly we obtain δM ≤ 0, where we have used the fact that H + (0) = 0.

-If x ∈ (-l, l) and ȳ = -l, we obtain

δM ≤ H 0 ≤ 0,
where we used the fact that H -(0) = H 0 .

-If x = l and ȳ = -l, we obtain

δM ≤ H 0 ≤ 0.
For every value of x and ȳ we obtain a contradiction, therefore we have M ≤ 0.

6.Truncated cell problems

Step 2.2: proof of the lower inequality. We want to prove that

M = sup (x,y)∈Ω v δ (y) -v δ (x) -k 0 (x -y) -1 ≤ 0.
We argue by contradiction and assume that M > 0. We can see that M is reached for a finite point that we denote by (x, ȳ). Since M > 0, we deduce that x = ȳ. Therefore, we can use the viscosity inequalities for (6.7).

Case 1: ȳ ∈ (-l, l). If ȳ ∈ (-l, l), we have

δv δ (ȳ) + ψ R (ȳ)M [v δ ](ȳ) • φ(ȳ) • | -k 0 | + (1 -ψ R (ȳ))H(-k 0 ) ≤ 0. (6.9) We claim that M [v δ ](ȳ) = 0.
Indeed, for all z > h 0 , if x > ȳ + z using the fact that the maximum is reached for (x, ȳ), we deduce that

v δ (ȳ + z) -v δ (x) -k 0 (x -ȳ -z) -1 ≤ v δ (ȳ) -v δ (x) -k 0 (x -ȳ) -1 which implies that v δ (ȳ + z) -v δ (ȳ) ≤ -k 0 z < -1.
On the contrary, if x ≤ ȳ + z, using the fact that v δ is non-increasing in space, we have

v δ (ȳ + z) -v δ (ȳ) ≤ v δ (x) -v δ (ȳ) ≤ -k 0 (x -ȳ) -1 < -1.
We can therefore, conclude that for all z ∈ (h 0 , +∞), E(v δ (ȳ + z) -v δ (ȳ)) = - 3 2 and so we get M [v δ ](ȳ) = 0. Using also that H(-k 0 ) = 0, equation (6.9) becomes δv δ (ȳ) ≤ 0.

However, using the fact that v δ ≥ 0 (see (6.8)), we get δM ≤ δv δ (ȳ) -δv δ (x) ≤ 0, which is a contradiction.

Case 2: ȳ = -l. In this situation, the viscosity inequality becomes

δv δ (ȳ) + H -(-k 0 ) ≤ 0.
Using the fact that H

-(-k 0 ) = H(-k 0 ) = 0, we obtain δv δ (ȳ) ≤ 0,
and as in the previous case, we obtain a contradiction. This ends the proof of the lemma.

Step 3: construction of a Lipschitz estimate. Lemma 6.6. There exists a Lipschitz continuous function m δ , such that there exists a constant C, (independent of l, R and δ) such that

|m δ (x) -m δ (y)| ≤ C|x -y| for all x, y ∈ [-l, l], |v δ (x) -m δ (x)| ≤ C for all x ∈ [-l, l]. (6.10)
Proof of Lemma 6.6. Let us define m δ as an affine function in each interval of the form [ih 0 , (i + 1)h 0 ], with i ∈ Z, such that

m δ (ih 0 ) = v δ (ih 0 ) and m δ ((i + 1)h 0 ) = v δ ((i + 1)h 0 ).
Since m δ , v δ are non-increasing and

|v δ ((i + 1)h 0 ) -v δ (ih 0 )| ≤ k 0 h 0 + 1 = 2, we deduce that ∀x ∈ [ih 0 , (i + 1)h 0 ], -2 ≤ v δ ((i + 1)h 0 ) -m δ (ih 0 ) ≤ v δ (x) -m δ (x) ≤ v δ (ih 0 ) -m δ ((i + 1)h 0 ) ≤ 2,
and for all x, y ∈ [-l, l],

|m δ (x) -m δ (y)| ≤ 2k 0 |x -y|.
Step 4: passing to the limit as δ goes to 0. Using (6.8) and (6.10), we deduce that there exists δ n → 0 such that

δ n v δn (0) → -λ l,R
as n → +∞, m δn -m δn (0) → m l,R as n → +∞, the second convergence being locally uniform. Let us consider,

w l,R (t, x) = lim sup δn→0 * (v δn -v δn (0)) and w l,R = lim inf δn→0 * (v δn -v δn (0)).
Therefore, we have that λ l,R , m l,R , w l,R and w l,R satisfy

H 0 ≤ λ l,R ≤ 0, |w l,R -m l,R | ≤ C, |w l,R -m l,R | ≤ C, |m l,R x | ≤ C. (6.11)
By stability of the solutions we have that w l,R -2C and w l,R are respectively a sub-solution and a super-solution of (6.1) and

w l,R -2C ≤ w l,R .
By Perron's method we can construct a solution w l,R of (6.1) and thanks to (6.8) and (6.11), m l,R , λ l,R and w l,R satisfy (6.6).

The uniqueness of λ l,R is classical so we skip it. This ends the proof of Proposition 6.4.

Proposition 6.7 (First definition of the flux limiter). The following limits exist (up to a subsequence)

       A R = lim l→+∞ λ l,R A = lim R→+∞ A R .
(6.12)

Moreover, we have

H 0 ≤ A R , A ≤ 0.
Proof. This results comes from the fact that we have the following bound on λ l,R which is independent of l and R (see Proposition 6.4),

H 0 ≤ λ l,R ≤ 0.
Remark 6.8. This proposition does not ensure the uniqueness of the flux limiter A. However, since we know that such a limit exists, we can obtain the converge result. The uniqueness of A is given in Theorem 2.11. Proposition 6.9 (Control of the slopes on a truncated domain). Assume that l and R are big enough. Let w l,R be the solution of (6.1) given by Proposition 6.4. We also assume that up to a sub-sequence A = lim

R→+∞ lim l→+∞ λ l,R > H 0 .
Then there exists a γ 0 > 0 such that for all γ ∈ (0, γ 0 ), there exists a constant C (independent of l and R) such that for all x ≥ r and h ≥ 0

w l,R (x + h) -w l,R (x) ≥ (p + -γ)h -C. (6.13)
Similarly, for all x ≤ -r and h ≥ 0,

w l,R (x -h) -w l,R (x) ≥ (-p --γ)h -C. (6.14)
Proof. We only prove (6.13) since the proof for (6.14) is similar. For µ > 0 small enough, we denote by p µ + the real number such that

H(p µ + ) = H + (p µ + ) = λ l,R -µ.
Using that

H 0 < λ l,R ≤ 0,
we deduce that p µ + exists, is unique and satisfies -k 0 ≤ p µ + ≤ 0 for µ small enough. Let us now consider the function w + = p µ + x that satisfies

H(w + x ) = λ l,R -µ for x ∈ R.
We also have

M [w + ](x) = R J(z)E(p µ + (x + z) -p µ + x)dz - 3 2 V max = -1 p µ + 0 1 2 J(z)dz + +∞ -1 p µ + 3 2 J(z)dz - 3 2 V max = -V -1 p µ + .
For all x ∈ (r, l), using that φ(x) = 1, we deduce that

M [w + ](x) • φ(x) • |w + x | = -V -1 p µ + • |p µ + | = H(p µ + ) = λ l,R -µ,
and so the restriction of w + to (r, l] satisfies

G R (x, [w + ], w + x ) = λ l,R -µ for x ∈ (r, l) H + (w + x ) = λ l,R -µ for x = l.
Let us denote by g = w l,R -w l,R (x 0 ) and u = w + -w + (x 0 ) -2C, for some x 0 ∈ (r, l) and C defined as in Proposition 6.4. Then we have

g(x 0 ) = 0 ≥ -2C = u(x 0 ).
Using that g is a solution of (6.4) (with ε 0 = µ) and u is a solution of (6.5) joint to the comparison principle (Proposition 6.2) we get that

w l,R (x) -w l,R (x 0 ) = g(x) ≥ u(x) = p µ + (x -x 0 ) -2C.

6.Truncated cell problems

This implies that for all h ≥ 0 and for all x ∈ (r, l),

w l,R (x + h) -w l,R (x) ≥ p µ + h -2C.
Finally, if we choose γ 0 < |p 0 -p+ | (with p 0 defined in (2.12)), then

H(p + -γ) = H + (p + -γ),
and we can choose µ > 0 such that

p µ + = p + -γ.
This implies inequality (6.13).

Proof of Theorem 4.1. The proof is performed two steps.

Step 1: proof of i) and ii). The goal is to pass to the limit as l → +∞ and then as R → +∞. Using Proposition 6.4, there exists l n → +∞, such that

m ln,R -m ln,R (0) → m R as n → +∞,
the convergence being locally uniform. We also define

w R (x) = lim sup ln→+∞ * w ln,R -w ln,R (0) , w R (x) = lim inf ln→+∞ *
w ln,R -w ln,R (0) .

Thanks to (6.6), we know that w R and w R are finite and satisfy

m R -C ≤ w R ≤ w R ≤ m R + C.
By stability of viscosity solutions, w R -2C and w R are respectively a sub and a supersolution of

G R (x, [w R ], w R x ) = A R for x ∈ R (6.15)
Therefore, using Perron's method, we can construct a solution w R of (6.15) with m R , A R and w R satisfying

     |m R (x) -m R (y)| ≤ C|x -y| for all x, y ∈ R, |w R (x) -m R (x)| ≤ C for x ∈ R × R, H 0 ≤ A R ≤ 0. (6.16)
Using Proposition 6.9, if A > H 0 , we know that there exists a γ 0 and a constant C, such that for all γ ∈ (0, γ 0 ),

w R (x + h) -w R (x) ≥ (p + -γ)h -C for all x ≥ r, h ≥ 0, w R (x -h) -w R (x) ≥ (-p --γ)h -C for all x ≤ -r, h ≥ 0.
(6.17)

We now pass to the limit as R → +∞. We consider (up to some subsequence)

                                 w(x) = lim sup R→+∞ * w R -w R (0) , w(x) = lim inf R→+∞ * w R -w R (0) , A = lim R→+∞ A R , m = lim R→+∞ (m R -m R (0)).
The last convergence being locally uniform. Thanks to (6.16), we know that w and w are finite and satisfy

m -C ≤ w ≤ w ≤ m + C.
By stability of viscosity solutions, w -2C and w are respectively a sub and a super-solution of (2.19) with λ = A. Using Perron's method, we can then construct a solution w of (2.19) with λ = A that satisfies (4.2) and (4.3).

Step 2: proof of iii). We are now interested in the rescaled function w ε (x) = εw x ε .

Using (4.3), we have that

w ε (x) = εm x ε + O(ε).
Therefore, we can find a sequence ε n → 0, such that w εn → W locally uniformly as n → +∞, with W (0) = 0. Like in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF], arguing as in the proof of convergence away from the junction point, we have that W satisfies H(W x ) = A for x = 0.

6.Truncated cell problems

For all γ ∈ (0, γ 0 ), we have that if A > H 0 and x > 0,

W x ≥ p + -γ,
where we have used (4.3). Therefore we get

W x = p + for x > 0,
this result remains valid even if A = H 0 (in this particular case W x = p 0 ). Similarly, we get

W x = p -for x < 0.
which implies (4.4) and (4.5). This ends the proof of Theorem 4.1.

Proof of Theorem 2.11

Proof of Theorem 2.11. Up to a sub-sequence, we assume that A = lim We argue by contradiction and assume that there exists a λ < A and a function w λ ∈ S solution of (2.19). We assume that w λ (0) = 0 (if we are not in this situation, we do a translation since we have w λ -w λ (0) ∈ S). Arguing as in the proof of Theorem 4.1, we deduce that the function

w ε λ (x) = εw λ x ε has a limit W λ (with W λ (0) = 0) which satisfies H(W λ x ) = λ for x > 0,
which means that for all x > 0,

W λ x ≤ p λ + < p + with H(p λ + ) = H + (p λ + ) = λ. (6.18)
Similarly we have for all x < 0,

W λ x ≥ p λ -> p -with H(p λ -) = H -(p λ -) = λ. (6.19)
These inequalities imply that for all γ > 0, there exists a constant Cγ > 0 such that

w λ (x) ≤ (p λ + + γ)x + Cγ for x > 0, (p λ --γ)x + Cγ for x < 0, (6.20) 
In fact, if w λ does not satisfies (6.20), we cannot have (6.18) and (6.19). Using Theorem 4.1, we get

w λ < w for |x| ≥ R
if γ is small enough and R big enough. This implies that there exists a constant C R > 0 such that for all x ∈ R, we have

w λ (x) < w(x) + C R.
Let us now introduce, u(t, x) = w(x) + C R -At and u λ (t, x) = w λ (x) -λt both solutions of (2.4) with ε = 1 and u λ (0, x) ≤ u(0, x). Therefore, the comparison principle implies

w λ (x) -λt ≤ w(x) + C R -At
Dividing by t and passing to the limit as t goes to infinity, we get

A ≤ λ,
which is a contradiction.

Qualitative properties of the flux limiter

This section is devoted to the proof of Proposition 2.13.

Proof of Proposition 2.13. We perform the proof of each item separately.

Proof of (i).

In order to establish the monotonicity, we have to consider the approximated truncated cell problem (6.7). Let us consider v δ 1 and v δ 2 viscosity solutions of (6.7), respectively for φ 1 and φ 2 , with 0 ≤ φ 1 ≤ φ 2 . First, using the fact that the non-local operator is negative, we have

G 2 R (x, [U ], q) ≤ G 1 R (x, [U ], q), with G i R (x, [U ], q) = φ i (x) • M [U ](x) • ψ R (x) • |q| + (1 -ψ R (x))H(q), for i = 1, 2.
Therefore, we have

0 = δv δ 1 + G 1 R (x, [v δ 1 ], (v δ 1 ) x ) ≥ δv δ 1 + G 2 R (x, [v δ 1 ], (v δ 1 ) x ),
meaning that v δ 1 is a sub-solution of (6.7) with φ 2 . The comparison principle and (6.8) imply that

0 ≤ δv δ 1 ≤ δv δ 2 ≤ |H 0 |.
Passing to the limit as δ → 0, we obtain

0 ≥ λ 1 l,R ≥ λ 2 l,R ≥ H 0 .
Passing to the limit as l, R → +∞, we get the result.

Proof of (ii).

If φ = 0 on an open interval, then using [AHFM13, Lemme B.1], we can use the definition of a viscosity solution of (6.7) at a point where φ = 0 and therefore, we have

A = 0.

Link between the system of ODEs and the PDE

This section is devoted to the proof of Theorem 2.5, which is a direct application of our convergence result, Theorem 2.4.

Theorem 8.1. For ε = 1, the cumulative distribution function ρ defined by (2.2) is a discontinuous viscosity solution of

ρ t + M [ρ(t, •)](x) • φ(x) • |ρ x | = 0 for (t, x) ∈ [0, +∞) × R. (8.1)
Conversely, if u is a bounded and continuous viscosity solution of (8.1) satisfying for some time T > 0, and for all t ∈ (0, T )

u(t, x) is decreasing in x,
then the points U j (t), defined by u(t, U j (t)) = -(j + 1) for j ∈ Z, satisfy the system (2.1) on (0, T ).

Before giving the proof of Theorem 8.1, let us do the proof of Theorem 2.5.

Proof of Theorem 2.5. We recall that in Theorem 2.5, we have u 0 (x) = -x/h, with h ≥ h 0 . First, we would like to prove that for all ε > 0, we have

|ρ ε (0, x) -u 0 (x)| ≤ f (ε) for all x ∈ R, (8.2) 
with f (ε) → 0 as ε goes to 0. To do this, we define a piece-wise affine function v satisfying

ρ 1 (0, x) = v(x) for x = U i (0), for all i ∈ Z.
Given that for all U i+1 (0) -U i (0) ≥ h 0 , we notice that v is k 0 -Lipschitz continuous and by definition of ρ 1 (0, x), we have

ρ 1 (0, x) -v(x) ≤ 1 for all x ∈ R.
Let us consider the integer i 0 ∈ N defined by

i 0 = sup {i ∈ Z, s.t. U i (0) ≤ -R} .
Using the assumption that for all i ∈ Z such that U i (0) ≤ -R we have U i+1 (0) -U i (0) = h, we deduce that for all x ≤ U i 0 (0)

v(x) = - x h + U i 0 (0) h + ρ 1 (0, U i 0 (0)) = - x h + U i 0 (0) h -i 0 -1.
Let us now consider the integer i 1 ∈ N defined by

i 1 = inf {i ∈ Z, s.t. U i (0) ≥ R} .

Now using the assumption that for all

i ∈ Z such that U i (0) ≥ R we have U i+1 (0) -U i (0) = h, we deduce that for all x ≥ U i 1 (0) v(x) = - x h + U i 1 (0) h + ρ 1 (0, U i 1 (0)) = - x h + U i 1 (0) h -i 1 -1.
Moreover, we recall that for all ε > 0, we have ρ ε (0, x) = ερ 1 (0, x/ε), this implies that for all x / ∈ [εU i 0 (0), εU i 1 (0)],

|ρ ε (0, x) -u 0 (x)| ≤ ρ ε (0, x) -εv x ε + εv x ε -u 0 (x) ≤ε + ε max U i 1 (0) h -i 1 -1 , U i 0 (0) h -i 0 -1 . (8.3)
Similarly, we have for all x ∈ [εU i 0 (0), εU i 1 (0)],

|ρ ε (0, x) -u 0 (x)| ≤ ρ ε (0, x) -εv x ε + εv x ε -εu 0 x ε ≤ε + ε max y∈[U i 0 (0),U i 1 (0)] (|v(y) -u 0 (y)|) , (8.4)
where we have used the fact that εu 0 (x/ε) = u 0 (x). Combining (8.3) and (8.4) and choosing

f (ε) = ε + ε max U i 0 (0) h -i 0 -1 , max y∈[U i 0 (0),U i 1 (0)] (|v(y) -u 0 (y)|) , U i 1 (0) h -i 1 -1  
we deduce (8.2). Notice also that thanks to (8.2), we have

|(ρ ε ) * (0, x) -u 0 (x)| ≤ f (ε) + ε. (8.5)
Therefore, we have

u 0 (x) -f (ε) ≤ ρ ε (0, x) ≤ (ρ ε ) * (0, x) ≤ u 0 (x) + f (ε) + ε.
Using the fact that ρ ε is a viscosity solution of (2.4) and the comparison principle (Proposition 3.7) we deduce that (with u ε the continuous solution of (2.4) associated to the initial condition u 0 (x) = -x/h)

u ε (t, x) -f (ε) ≤ ρ ε (t, x) ≤ (ρ ε ) * (t, x) ≤ u ε (t, x) + f (ε) + ε,
where we have used the fact that (2.4) is invariant by addition of constants to the solutions. Passing to the limit as ε → 0 and using Theorem 2.4 we get that ρ ε → u 0 , which ends the proof of Theorem 2.5.

Proof of Theorem 8.1. Theorem 8.1 is a consequence of the following lemma.

Lemma 8.2 (Link between the velocities). Assume (A)

. Let ((U j ) j ) be the solution of (2.1) with

U j+1 (0) -U j (0) > h 0 . (8.6)
Then we have

Uj (t) = -M [u(t, •)](U j (t)) • φ(U j (t)), (8.7 
)

where E and J are defined in (2.6) and u(t, x) is a continuous function such that

u(t, x) = ρ * (t, x) = ρ(t, x) for x = U j (t), j ∈ Z, u is decreasing in x, (8.8)
with ρ defined in (2.2) (with ε = 1).

Proof. We drop the time dependence to simplify the presentation. Let j ∈ Z. Using the fact that u(U j ) = -(j + 1) and (8.8), we have for all z ∈ [0, +∞),

0 ≥ u(U j + z) -u(U j ) > u(U j+1 ) -u(U j ) = -1 if z ∈ [0, U j+1 -U j ) -1 ≥ u(U j + z) -u(U j ) if z ∈ [U j+1 -U j , +∞).
Given that u is continuous, this implies that

M [u](U j ) = U j+1 -U j 0 1 2 J(z)dz + +∞ U j+1 -U j 3 2 J(z)dz - 3 2 V max = -V (U j+1 -U j ) .
Combining this result with (2.1), we obtain (8.7).

Noticing that because of (8.8), we have for x = U j (t), j ∈ Z,

M [ρ * (t, •)](x) = M [u(t, •)](x) = M [u(t, •)](x),
and using Lemma 8.2, and Definition 3.1, we can see that ρ * is a discontinuous viscosity super-solution of (8.1). We obtain a similar result for ρ * , therefore, ρ is a discontinuous viscosity solution of (8.1).

We prove the converse. For the readers convenience we recall Proposition 4.8 from [FIM09b] that we will use later. The proof of this proposition remains almost the same in our case the only difference being the definition of the functions E and Ẽ. Lemma 8.3. Assume that θ : R → R is a non-decreasing and upper semi-continuous (resp. lower semi-continuous). Assume also that

θ(v) -v is 1-periodic in v.
Assume that ε = 1 in (2.4). Consider also a sub-solution (resp. a super-solution) u of (2.4). Then θ(u) is also a sub-solution (resp. a super-solution) of (2.4).

8.Link between the system of ODEs and the PDE

Using Lemma 8.3 we can conclude that ρ * = u (resp. ρ * = u ) is a viscosity super-solution (resp. sub-solution) of

∂ t ρ -c(t, x)∂ x ρ = 0 with c(t, x) = M [u(t, •)](x) • φ(x) = M [u(t, •)](x) • φ(x).
Using the fact that u is decreasing in space, we define

U i (t) = inf{x, u(t, x) ≤ -(i + 1)} = (u(t, •)) -1 (-i -1)
and we consider the functions t → U i (t). They are continuous because u is decreasing in x and is continuous in (t, x).

We now prove that the functions U i are viscosity solutions of (2.1). Let ϕ be a test function such that ϕ(t) ≤ U i (t) and ϕ(t

0 ) = U i (t 0 ). Let us now define φ(t, x) = -(i + 1) + ϕ(t) -x. It satisfies φ(t 0 , U i (t 0 )) = ρ * (t 0 , U i (t 0 )), and φ(t, x) ≤ ρ * (t, x) for U i (t) -1 < x < U i+1 (t).
This implies that

ϕ t (t 0 ) + c(t 0 , U i (t 0 )) ≥ 0 ⇔ ϕ t (t 0 ) ≥ -c(t 0 , U i (t 0 )) = -c i (t 0 ) = V (U i+1 (t 0 ) -U i (t 0 )).φ(U i (t 0 )).
This proves that U i are viscosity super-solutions of (2.1). The proof for sub-solutions is similar and we skip it. Moreover, since ci is continuous, we deduce that U i ∈ C 1 and it is therefore a classical solution of (2.1).

Chapitre 4

Numerical specified homogenization of a discrete model with a local perturbation W. Salazar 1

Abstract

The goal of this work is to present a numerical homogenization of a non-local PDE deriving from a first order discrete model for traffic flow that simulates the presence of a local perturbation. In a previous work, we have shown that the solution of the discrete microscopic model converges to the (unique) solution of a Hamilton-Jacobi equation posed on a network and with a junction condition (it can be seen as a flux limiter that keeps the memory of the local perturbation). The goal of this paper is to provide a numerical scheme able to provide an approximation of this flux-limiter. We show the convergence of this scheme and we provide some numerical results. AMS Classification: 35D40, 90B20, 35B27, 35F20, 45K05, 65M06.

Keywords: numerical specified homogenization, Hamilton-Jacobi equations, viscosity solutions, traffic flow, microscopic models, macroscopic models, convergence of numerical scheme.

Introduction

The problem of simulating traffic flow is very important, particularly because it allows us to know how the traffic would react to a change in the infrastructure of the road. Traffic flow can be simulated at different scales: the microscopic scale (which describes the dynamics of all the vehicles), the macroscopic scale (which describes macroscopic quantities such as the vehicle density, the average speed,...) and the mesoscopic scale (between the microscopic and the macroscopic scale). In this paper we only consider the microscopic and the macroscopic scales.

In this paper, we are interested in the numerical homogenization of a non-local PDE that derives from a microscopic first order model for traffic flow that simulates the presence of a local perturbation that does not depend on time (for instance a school zone, a moderator,...). The PDE was introduced in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] and derives from a first order traffic flow model of the type "follow-the-leader".

In [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], the homogenization of the PDE was obtained and it turns out that the homogenized system is defined by a function call the effective Hamiltonian and by a constant call the flux limiter. The effective Hamiltonian describes the dynamics of the traffic flow and the flux-limiter will defined how the local perturbation affects the macroscopic (homogenized) model. In fact, the effective Hamiltonian has been explicitly determined, however the flux-limiter constant is only implicitly determined. In this paper, we provide a numerical scheme for the computation of an approximation of the flux-limiter.

General model: first order model with a local perturbation

For the readers convenience, we detail the microscopic model from which derives the PDE we study later in this paper. We consider the following model where all the vehicles are considered as points placed in the real line, for all t > 0,

Uj (t) = V (U j+1 (t) -U j (t)) • φ (U j (t)) , ( 1.1) 
where U j : [0, +∞) → R denotes the position of the j-th vehicle and Uj is its velocity. The function φ : R → [0, 1] simulates the presence of a local perturbation around the origin. We denote by r the radius of influence of the perturbation. The function V is called the optimal velocity function and we make the following assumptions on V and φ:

Assumption (A) • (A1) V : R → R + is Lipschitz continuous, non-negative. • (A2) V is non-decreasing on R.

1.Introduction • (A3)

There exists h 0 ∈ (0, +∞) such that for all h ≤ h 0 , V (h) = 0.

• (A4) There exists h max ∈ (h 0 , +∞) such that for all h ≥ h max , V (h) = V (h max ) =:

V max .

• (A5) There exists a real number p 0 ∈ [-1/h 0 , 0) such that the function p → pV (-1/p) is decreasing on [-1/h 0 , p 0 ) and increasing on [p 0 , 0).

• (A6) The function φ : R → [0, 1] is Lipschitz continuous and φ(x) = 1 for |x| ≥ r.

Remark 1.1. Assumptions (A1)-(A2)-(A3)-(A5) are satisfied by several classical optimal velocity functions, we have added assumption (A4) to work with V with a bounded support.

But by modifying slightly the classical optimal velocity functions, we obtain a function that satisfies all the assumptions. For instance, in the case of the Greenshields based models [START_REF] Greenshields | A study of traffic capacity[END_REF](see also [START_REF] Batista | Optimal velocity functions for car-following models[END_REF][START_REF] Edie | Car-following and steady-state theory for noncongested traffic[END_REF][START_REF] Newell | Nonlinear effects in the dynamics of car following[END_REF][START_REF] Garavello | Traffic flow on networks[END_REF] for other classical optimal velocity functions):

V (h) =                    0 for h ≤ h 0 , V max   1 - h 0 h 2   for h 0 < h ≤ h max , V max   1 - h 0 h max 2   for h > h max .
In Figure 1.1 we give a schematic representation of an optimal velocity function satisfying assumption (A). 

Injecting the system of ODEs into a single PDE

In order to obtain an homogenization result, the authors borrowed the idea from [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF] and injected the system of ODE (1.1) into a single PDE. To do this, in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], it was introduced the following "cumulative distribution function" of vehicles ρ ε :

ρ ε (t, y) = -ε   i≥0 H (y -εU i (t/ε)) + i<0 (-1 + H (y -εU i (t/ε)))   , ( 1.2) 
with

H(x) = 1 if x ≥ 0 0 if x < 0. (1.3)
It was proven that under assumption (A) the function ρ ε satisfies in the viscosity sense the following non-local equation

u ε t + M ε u ε (t, •) ε (x) • φ x ε • |u ε x | = 0 on (0, +∞) × R, (1.4) 
where M ε is a non-local operator defined by

M ε [U ](x) = +∞ -∞ J(z)E (U (x + εz) -U (x)) dz - 3 2 V max (1.5)
with

E(z) =      0 if z ≥ 0 1/2 if -1 ≤ z < 0 3/2 if z < -1,
and J = V on R.

(1.6)

Convergence result

We define k 0 = 1/h 0 and H : R → R, by

H(p) =          -p -k 0 for p < -k 0 , -V -1 p |p| for -k 0 ≤ p ≤ 0, p for p > 0.
(1.7)

Note that such a H is continuous, coercive lim |p|→+∞ H(p) = +∞ and because of (A5), there exists a unique point p 0 ∈ [-k 0 , 0] such that H is decreasing on (-∞, p 0 ), H is increasing on (p 0 , +∞).

(1.8)

1.Introduction

We denote by

H 0 = min p∈R H(p) = H(p 0 ) (1.9)
and we refer to From [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], we have the following homogenization result.

Theorem 1.2 (Junction condition by homogenisation). Assume (A) and that at the initial time, we have, for all

i ∈ Z, U i (0) ≤ U i+1 (0) -h 0 .
We also assume that there exists a constant R > 0 such that, for all i ∈ Z, if

|U i (0)| ≥ R U i+1 (0) -U i (0) = h,
with h ≥ h 0 . We define the function u 0 (satisfying (A0)) by u 0 (x) = -x/h for all x ∈ R. Then there exists A ∈ [H 0 , 0] such that the function ρ ε defined by (1.2) converges uniformly on compact subsets of (0, +∞) × R as ε goes to 0 towards the unique solution u 0 of

         u 0 t + H(u 0 x ) = 0 for (t, x) ∈ (0, +∞) × (-∞, 0) u 0 t + H(u 0 x ) = 0 for (t, x) ∈ (0, +∞) × (0, +∞) u 0 t + F A (u 0 x (t, 0 -), u 0 x (t, 0 + )) = 0 for (t, x) ∈ (0, +∞) × {0} u 0 (0, x) = u 0 (x) for x ∈ R, (1 

.10)

where A has to be determined and F A is defined by

F A (p -, p + ) = max A, H + (p -), H -(p + ) , (1.11) with H -(p) = H(p) if p ≤ p 0 , H(p 0 ) if p ≥ p 0 , and H + (p) = H(p 0 ) if p ≤ p 0 , H(p) if p ≥ p 0 .
(1.12)

Moreover, u 0 satisfies -k 0 ≤ u 0 x ≤ 0.

Remark 1.3. We notice that in the case of traffic flow, (1.10) is equivalent (deriving in space) to a LWR model (see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]) with a flux limiting condition at the origin. In fact, the fundamental diagram of the model is pV (1/p) and u 0 x corresponds to the density of vehicles.

Construction of the flux-limiter

As we can see from Theorem 1.2, in order to have a complete homogenization result we only need to determine the flux limiter A. In the rest of the paper, we focus on obtaining a numerical approximation of the flux limiter. First we give a few characterizations of A that can be founded in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF].

In fact, the flux limiter is the unique constant λ such that there exists a solution w of the following Hamilton-Jacobi equation

M [w](x) • φ(x) • |w x | = λ for x ∈ R, (2.1) 
with the right slopes at infinity. We refer to [GIM15] and [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] for a more detailed explanation on these slopes.

In order to construct the corrector for the junction w and A, in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] the authors used the idea from [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and from the lectures of Lions at "Collège de France" [START_REF] Lions | Lectures at collège de france[END_REF], which is to construct the correctors in a truncated domain with good boundary conditions and then to expand the domain.

The effective flux limiter is then obtained as the limit as l → +∞, and then R → +∞ of λ l,R which is the unique constant for which the following truncated cell problem admits a solution (see [2, Proposition 6.4]): for l ∈ (r, +∞), r << l and r ≤ R << l, find λ l,R , such that there exists a solution w l,R of

       G R x, [w l,R ], w l,R x = λ l,R if x ∈ (-l, l) H -(w l,R x ) = λ l,R if x = -l H + (w l,R x ) = λ l,R if x = l, (2.2) with G R (x, [U ], q) = ψ R (x)φ(x) • M [U ](x) • |q| + (1 -ψ R (x)) • H(q), (2.3) 
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and ψ R ∈ C ∞ , ψ R : R → [0, 1], with ψ R ≡ 1 on [-R, R] 0 outside [-R -10, R + 10], and ψ R (x) < 1 ∀x / ∈ [-R, R].
(2.4)

Remark 2.1. The operator G R is used to have a local operator near the boundary and then to well define the boundary conditions.

To an approximation of λ l,R we follow the construction done in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] and consider the approximated truncated cell problem, for all δ > 0.

       δv δ + ψ R (x)M [v δ ](x) • φ(x) • |v δ x | + (1 -ψ R (x))H(v δ x ) = 0 for x ∈ (-l, l) δv δ + H -(v δ x ) = 0 for x = -l δv δ + H + (v δ x ) = 0 for x = l.
(2.5)

It is proven in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] that -δv δ (0) → λ l,R as δ → 0.

Organization of the paper

In Section 3 we introduce the definition of a viscosity solution for (2.5), we also present some classical results like the comparison principle and the stability. In the same section, we present a numerical scheme for (2.5), and we announce our main result which is a convergence result for the scheme. In Section 4, we provide the proof of the convergence result. In Section 5, we prove some properties regarding our numerical scheme that we use in practice to obtain a numerical approximation of the solution of (2.5). Finally, Section 6 contains some numerical simulations for different types of perturbations and we numerical verify some of the qualitative properties of A that were proven in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF].

Viscosity solutions for the approximated cell problem

In this section, we study (2.5). In order to simplify the notations, we drop the index δ in v δ . We also present the definition of viscosity solutions for (2.5). We refer to the User's guide of Crandall, Ishii, Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and the book of Barles [Bar94] for a good introduction to viscosity solutions.

Viscosity solution for the continuous approximated cell problem

For l ∈ (r, +∞), r << l and r ≤ R << l, we consider the following problem

       δv + ψ R (x)M [v](x) • φ(x) • |v x | + (1 -ψ R (x))H(v x ) = 0 for x ∈ (-l, l) δv + H -(v x ) = 0 for x = -l δv + H + (v x ) = 0 for x = l, ( 3.1) 
with

M [U ](x) = hmax h 0 J(z)E (U (x + z) -U (x)) dz - 3 2 V max (3.2)
with

E(z) =      0 if z ≥ 0 1/2 if -1 ≤ z < 0 3/2 if z < -1,
and J = V on R.

Similarly, we define

M [U ](x) = hmax h 0 J(z) Ẽ (U (x + z) -U (x)) dz - 3 2 V max (3.3) with Ẽ(z) =      0 if z > 0 1/2 if -1 < z ≤ 0 3/2 if z ≤ -1. (3.4) 
In order to simplify the notations, we introduce the following function

F (x, [v], v x ) =        ψ R (x)M [v](x) • φ(x) • |v x | + (1 -ψ R (x))H(v x ) if x ∈ (-l, l), H -(v x ) if x = -l, H + (v x ) if x = l.
Similarly, we define F by replacing M by M .

In this paper, we work with viscosity solutions, and the boundary conditions of (3.1) are interpreted in the classical sense of viscosity solutions with Neumann boundary conditions. That is why we introduce 

I(x, [v], v x ) =        ψ R (x)M [v](x) • φ(x) • |v x | + (1 -ψ R (x))H(v x ) if x ∈ (-l, l), min(H(v x ), H -(v x )) if x = -l, min(H(v x ), H + (v x )) if x = l, and Ĩ(x, [v], v x ) =        ψ R (x) M [v](x) • φ(x) • |v x | + (1 -ψ R (x))H(v x ) if x ∈ (-l, l), max(H(v x ), H -(v x )) if x = -l, max(H(v x ), H + (v x )) if x = l.
δv(x) + I(x, [v], ϕ ) ≤ 0 (resp. δv(x) + Ĩ(x, [v], ϕ ) ≥ 0).
We say that a function v is a solution of (3.1) if v * and v * are respectively a sub and a super-solution of (3.1).

Remark 3.2.

Like in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], we use this type of definition in order to have a stability result for the non-local term. We refer to [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. application to dislocations dynamics[END_REF][START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF] for such kind of definition.

We now give a slightly stronger result than a stability result for the sub and supersolutions of (3.1) that will be used to prove the consistency of the numerical scheme we present later in this paper.

Proposition 3.3 (Stability for (3.1)). Let (u m ) m be a sequence of measurable functions and let u denote lim sup

* u m (resp. u = lim inf * u m ). Let (x m , p m ) → (x 0 , p) in [-l, l] × R be such that u m (x m ) → u(x 0 ) (resp. u m (x m ) → u(x 0 )). Then lim inf m→+∞ F (x m , [u m ], p m ) ≥ I(x 0 , [u], p) (3.5) resp. lim sup m→+∞ F (x m , [u m ], p m ) ≤ Ĩ(x 0 , [u], p) . ( 3.6) 
In order to prove Proposition 3.3, we use the following lemma which proof can be found in [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF]. and

B m (z) = {u m (x m + z) -u m (x m ) ≥ 0} ∪ {u(x 0 + z) -u(x 0 ) ≥ 0}, B(z) = {u(x 0 + z) -u(x 0 ) ≥ 0}.
Using (3.9) and (3.10), we prove (3.8).

Given that x 0 ∈ (-l, l), for m big enough we have x m ∈ (-l, l). Using the definition of F and (3.8), we have

ψ R (x m )M [u m ](x m ) • φ(x m ) • |p m | + (1 -ψ R (x m ))H(p m ) ≥ψ R (x m )M [u](x 0 ) • φ(x m ) • |p m | + (1 -ψ R (x m ))H(p m ) -ε m ψ R (x m ) • φ(x m ) • |p m |.
Using the fact that the terms on the right are continuous, we pass to the limit as m goes to infinity to obtain (3.5).

Case 2:

x 0 = -l or x 0 = l. In this case, using Definition 3.1 and the continuity of H, we obtain (3.5). This ends the proof of Proposition 3.3.

Theorem 3.5 (Comparison principle). Let u and v be respectively a sub and a supersolution of (3.1) then we have for all

x ∈ [-l, l], u(x) ≤ v(x).
Proof. The proof of this Theorem comes from the comparison principle [FIM09b, Theorem 4.4] for the non-local term. The only remaining difficulty is proving this result at the boundaries. However, for x close to l 2 , the function G R is actually the effective Hamiltonian H. Therefore, we can proceed as in the proof of [GIM15, Proposition 4.1] in which the authors consider the boundaries as a network composed of a single lane and a junction point then they use the results from [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] and so we skip the rest of the proof. Notice that Definition 3.1 is equivalent at the boundaries to the definition of relaxed viscosity solution [IM14, Definition 2.1] in the case of a single lane with a junction point.

Theorem 3.6 (Existence and uniqueness). Assume (A). There exists a unique solution v δ of (3.1). Moreover, this solution is continuous and we have that for all

x ∈ [-l, l] 0 ≤ v δ (x) ≤ C 0 δ , with C 0 = min p∈R H(p) .
Proof. To prove this theorem we only need to notice that 0 and C 0 /δ are respectively a sub-solution and a super-solution of (3.1). Then combining Perron's method with the comparison principle (Theorem 3.5) we get the result we wanted. We refer to [IMR08, Proof of Theorem 6] and to [START_REF] Alvarez | Viscosity solutions of nonlinear integro-differential equations[END_REF][START_REF] Imbert | A non-local regularization of first order hamilton-jacobi equations[END_REF] to see how to apply Perron's method for problems with non-local terms.

Finally, we have the following result from [2, Proof of Proposition 6.4], which justifies considering (3.1) and looking for a numerical approximation of v δ . Proposition 3.7. We have the following limit as δ goes to 0 (up to a subsequence)

lim δ→0 -δv δ (0) = λ l,R .
(3.11)

Numerical scheme for (3.1)

The numerical scheme we use was inspired by the one from [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF][START_REF] Forcadel | An error estimate for a new scheme for mean curvature motion[END_REF] for the nonlocal operator and by [START_REF] Costeseque | A convergent scheme for hamilton-jacobi equations on a junction: application to traffic[END_REF] for the local operator. We consider a uniform grid of the interval [-l, l] with 2n+1 points, n ∈ N\{0}, and we denote by ∆x = l/n the discretization step. For all i ∈ {1, . . . , n}, we denote by x i = ∆x • i the nodes of the grid. In particular we have that x 0 = 0, x -n = -l and x n = l.

For every discrete function v : {1, . . . , n} → R, we denote by v its piecewise constant extension to R, defined by

v (x) = n i=1 v i • χ Q i (x) with Q i =      [-l, -l + ∆x/2) if i = -n, [x i -∆x/2, x i + ∆x/2) if i = -n and i = n [l -∆x/2, l] if i = n.
(3.12)

Discretization of the non-local operator

For all discrete function v : {1, . . . , n} → R, we define the following discrete non-local operators

M d i [v] := M [v ](x i ) and M d i [v] := M [v ](x i ). ( 3 

.13)

Discretization of the gradient We consider the standard forward and backward first order differences:

D + v(x i ) = v(x i+1 ) -v(x i ) ∆x and D -v(x i ) = v(x i ) -v(x i-1 ) ∆x . (3.14) Finally, we consider Dv i = (D -v(x i ), D + v(x i )).
Similarly to [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF], we consider the following Osher, Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF] upwind discretization of the modulus of the gradient. Let S = (p, q) ∈ R 2 . We define the following function, that we will use for the discretization of the gradient G + (S) = max(p, 0) 2 + min(q, 0) 2 1/2 .
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Discretization of the local operator Concerning the local operator H(•), like in [CLM15] we consider the following discretization

H d (Dv i ) = max H + (D -v i ), H -(D + v i ) , ( 3.15) 
where H -and H + were defined in (1.12).

Finally, we introduce for any discrete function v : {1, . . . , n} → R,

R i [v] := R i ([v], Dv i ) = ψ R (x i ) • M d i [v] • φ(x i ) • G + (Dv i ) + (1 -ψ R (x i )) • H d (Dv i ). (3.16)
Similarly, we define R and R by replacing M d with M d .

To summarize, in the rest of the paper, for all discrete function v : {1, . . . , n} → R, we consider the following numerical scheme. 

       δv i + R i ([v], Dv i ) = 0 for i ∈ {-n + 1, . . . , n -1} δv i + H -(D + v i ) = 0 for i = -n δv i + H + (D -v i ) = 0 for i = n. ( 3 

Viscosity solution for the numerical scheme for the approximated cell problem

To simplify the notations, we introduce the following notation

F i ([v], Dv i ) =        R i ([v], Dv i ) if x i ∈ (-l, l), H -(D + v i ) if x i = -l, H + (D -v i ) if x i = l.
(3.20)

Similarly, we define F by replacing R with R. We introduce the following definition of viscosity solution for (3.17).

Definition 3.9 (Viscosity solution for the approximated cell problem scheme). Let us consider a function v : {-n, . . . , n} → R. We say that v is a sub-solution (resp. a supersolution) of (3.17) if for all i ∈ {-n, . . . , n} we have

δv i + F i ([v], Dv i ) ≤ 0 (resp. δv i + Fi ([v], Dv i ) ≥ 0).
Then we say that v is a solution of (3.17) if and only if it is a sub and a super-solution.

Remark 3.10. The notion of discrete viscosity solutions is necessary here because of the discontinuity inside the non-local operator. In fact, we could not work with a regularise version of E because we do not have a stability result with respect to E. Moreover, in Section 4 and Section 5 we can see the interest in working with such a definition. The proof of existence of solutions for (3.17), will be postponed until Section 5.

The main result of this paper is the following convergence result which proof is postponed until Section 4.

Theorem 3.11 (Convergence).

Using the same notations as in (3.12). Let (v ∆x i ) i∈{-n,...,n} be a solution of (3.17), then the function v ∆x (defined as in (3.12)) converges locally uniformly as ∆x → 0 to the unique continuous viscosity solution of (3.1). Remark 3.12 (Condition on the discretization step). In the rest of the paper, we consider that the integer n is big enough (∆x is small enough) so that j 0 > 1. In fact, given the standard values of h 0 (> 2 meters), this is not a very restrictive condition but it helps to simplify the computations (regarding the monotonicity of the scheme) since for any i ∈ {1, . . . , n} the term v i+1 appears only on the gradient in F i ([v], Dv i ).

Remark 3.13 (Bounds on the non-local operator). Given the definition of the non-local operators M and M , we have that for any function U : R → R and any

x ∈ R, - 3 2 V max ≤ M [U ](x) ≤ M [U ](x) ≤ 0.
Given the definition of M d and M d , these inequalities hold for the discrete non-local operators.

Moreover, we have the following properties regarding the numerical scheme (3.17).

Lemma 3.14 (Monotonicity of F and F ). Assume (A). Let v, w be two discrete functions such that

v j ≤ w j for all j ∈ Z, (3.21) also assume that there exists an index i ∈ Z such that v i = w i , then we have

F i ([v], Dv i ) ≥ F i ([w], Dw i ) and Fi ([v], Dv i ) ≥ F i ([w], Dw i ).
Proof. We present the proof for Fi and we skip it for F i since the proof is similar. Let us begin by proving the monotonicity for the non-local term, first we want to prove that

M d i [v] ≥ M d i [w].
In fact, using the notations from Remark 3.8, we have

M d [v ](x i ) = hmax h 0 J(z)E * (v (x i + z) -v (x i )) dz - 3 2 V max = jmax j=j 0 x i +∆x/2 x j -∆x/2 J(z)E * (v (x i + z) -v (x j ))dz - 3 2 V max = jmax j=j 0 Q j J(z)dz {E * (v i+j -v i )} - 3 2 V max ≥ jmax j=j 0 Q j J(z)dz {E * (w i+j -w i )} - 3 2 V max = M d i [w],
where we have used for the last line the fact that Ẽ is non-increasing, with (3.21) and the fact that J is non-negative. Moreover, using (3.21), we have that

D + v i ≤ D + w i and D -v i ≥ D -w i .
This implies in particular that max(D + v i , 0) 2 ≤ max(D + w i , 0) 2 and min(D

-v i , 0) 2 ≤ min(D -w i , 0) 2 .
Combining the previous inequalities we have that G + (Dv i ) ≤ G + (Dw i ). We recall that M d is non-positive (Remark 3.13) and therefore, we have

M d i [v] • G + (Dv i ) ≥ M d i [v] • G + (Dw i ) ≥ M d i [w] • G + (Dw i ). ( 3 

.22)

Let us now prove the monotonicity for the local term, using the fact that H + is nondecreasing and that H -is non-increasing, we have that

H + (D -v i ) ≥ H + (D -w i ) and H -(D + v i ) ≥ H -(D + w i ),
this implies in particular that 

H d (Dv i ) = max(H -(D + v i ), H + (D -v i )) ≥ max(H -(D + w i ), H + (D -w i )) = H d (Dw i ). ( 3 

Convergence of the numerical scheme for the approximated cell problem

This section is devoted to the proof of Theorem 3.11 which is an adaptation of the proof of convergence from [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] to a non-local PDE. Before passing to the proof of Theorem 3.11, we give some preliminary results, concerning the discrete barriers of the solutions of (3.17). Proof. We only prove that v + is a super-solution, since the sub-solution case is similar and even simpler. Using the form of (3.1), we have that for all i ∈ {1, . . . , n}

δv + i + Fi [v + ], (0, 0) ≥ δv + i + H 0 = |H 0 | + H 0 = 0.
Therefore, v + is a super-solution of (3.1).

Proposition 4.2 (Discrete barriers)

. Let u - i = 0 and v + i = C 0 /δ for all i ∈ {1, . . . , n} with C 0 = |H 0 |. Then every solution v of (3.17) satisfies

u -≤ v ≤ v + .
Proof. Let us begin by proving that v -v + ≤ 0. We introduce M = max i∈{1,...,n} {v i -v + i }, we assume the maximum is reached for an index i 0 ∈ {1, . . . , n}. Therefore, we have

v i 0 -M = v + i 0 and ṽi := v i -M ≤ v + i for all i ∈ {1, . . . , n}. (4.1)
We notice that F i ([v], Dv i ) is invariant by addition of constant to v and therefore,

F i ([ṽ], Dṽ i ) = F i ([v]
, Dv i ). Moreover, using Lemme 3.14 and (4.1), we have

F i 0 ([v], Dv i 0 ) = F i 0 ([ṽ], Dṽ i 0 ) ≥ F i 0 ([v + ], Dv + i 0 ). (4.2)
Using the fact that v is a solution of (3.17) and in particular a sub-solution, we have

0 ≥ δv i 0 + F i 0 ([v], Dv i 0 ) ≥ δv + i 0 + δM + F i 0 ([v + ], Dv + i 0 ).
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In particular, replacing

v + i 0 = C 0 /δ we have δM ≤ -C 0 -F i 0 ([v + ], Dv + i 0 ) = 0 if i 0 = -n -C 0 if i 0 ∈ {-n + 1, . . . , n},
where we have used for the equality the definition of F and the fact that Dv + i 0 = (0, 0) (in this case the only term that is not equal to 0 is H

-(0) = H 0 = -C 0 ). Therefore, M ≤ 0.
The proof that v --v ≤ 0 is similar to the previous one and we skip it.

Proof of Theorem 3.11. We introduce

v(x) = lim sup y→x ∆x→0 v ∆x (y) and v(x) = lim inf y→x ∆x→0 v ∆x (y).
Here we have added the superscript ∆x in order for the proof to be clearer. Like in (3.12) the function v ∆x is the piecewise extension of a discrete function v ∆x which is a solution of (3.17) (see Definition 3.9). We want to prove that v and v are respectively a sub and a super-solution of (3.1). In fact if that is true, the comparison principle for (3.1) implies that v ≤ v on [-l, l]. However by construction we have that v ≤ v, which will imply that v = v = v δ the unique continuous solution of (3.1), this implies the local uniform convergence of v ∆x .

Let us now prove that v is a sub-solution of (3.1). We only do the proof in the subsolution case, since the super-solution case is very similar and we skip it. We argue by contradiction and assume that there exists a function ϕ ∈ C 1 ([-l, l]) and a point x ∈ [-l, l] such that v -ϕ reaches a strict local maximum at x and that we have

δv(x) + I(x, [v], ϕ x (x)) = θ > 0.
Moreover, without any loss of generality, we assume that u(x) = ϕ(x) and that ϕ ≥ 2 sup ∆x ||v ∆x || ∞ outside the ball B(x, r), where r > 0 is such that

u(x) -ϕ(x) ≤ 0 = u(x) -ϕ(x) in B(x, r). (4.3)
Then there exists sequences ∆x m ∈ [0, +∞) and

y m ∈ [-l, l], such that as m → +∞ ∆x m → 0, y m → x, v ∆xm (y m ) → v(x), and y m is a global maximum point of v ∆xm (•) -ϕ(•).
We denote by ξ m = v ∆xm (y m ) -ϕ(y m ), and we have that ξ m → 0 as m → +∞. Moreover, we have for all x ∈ [-l, l] v ∆xm (x) ≤ ϕ(x) + ξ m and v ∆xm (y m ) = ϕ(y m ) + ξ m .

We denote by x im the point in the grid such that y m ∈ Q im , therefore we have that

|x im -y m | ≤ ∆x m and 0 ≥ δv ∆xm im + F im v ∆xm , Dv ∆xm im ≥ δv ∆xm im + F im v ∆xm , Dϕ(y m ) ≥ δv ∆xm (y m ) + F x im , v ∆xm , ϕ (x 0 ) + o(∆x m ) ,
where we have used the fact that v ∆xm is a sub-solution of (3.17) for the first line. For the second line, we have considered

Dϕ(y m ) = ϕ(y m ) -ϕ(y m -∆x m ) ∆x m , ϕ(y m + ∆x m ) -ϕ(y m ) ∆x m
and have used the monotonicity of the discrete operator F im (Lemma 3.14). Finally, for the third line, we have used the fact that ϕ ∈ C 1 and the definition of F im . We now pass to the limit in the previous inequality

0 ≥ lim inf m→+∞ δv ∆xm (i m ) + F (x im , [v ∆xm ], ϕ (x 0 ) + o(∆x m )) ≥ δv(x) + I(x, [v], ϕ (x)),
where we have used Proposition 3.3 with u m = v ∆xm , x m := x im , p m := ϕ (x)+o(∆x m ) and notice that v ∆xm (x im ) = v ∆xm (y m ). The last inequality provides us with a contradiction which ends the proof of Theorem 3.11.

Discrete approximated cell problem

The following results are similar to the ones in [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF], for the reader convenience, we recall them and adapt them to our problem. The idea is to obtain some results on the numerical scheme that will help us to construct a solution to (3.17).

Comparisons for the numerical scheme

In this section, we prove the existence of solutions for the numerical scheme (3.17). We use the following notations, for every s ∈ R and every discrete function v, we define

D + v i (s) = v i+1 -s ∆x , D - v i (s) = s -v i-1 ∆x , D v i (s) = D - v i (s), D + v i (s) .
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For every i ∈ {1, . . . , n}, we set

M d i [v](s) = hmax h 0 J(z)E (v (x i + z) -s) dz - 3 2 V max M d i [v](s) = hmax h 0 J(z) Ẽ (v (x i + z) -s) dz - 3 2 V max and R i [v](s) = ψ R (x i ) • φ(x i ) • M d i [v](s) • G + (D v i (s)) + (1 -ψ R (x i )) • H d (D v i (s)) .
We define similarly Ri by replacing M d i with M d i . Finally, we define for all i ∈ {1, . . . , n},

F i [v](s) =        R i [v](s) if i ∈ {-n + 1, . . . , n -1} H -(D + v i (s)) if i = -n H + (D - v i (s)) if i = n.
Similarly we define Fi by replacing R i by Ri . 

(iii) F i [v](v i ) = F i ([v], Dv i ) and Fi [v](v i ) = Fi ([v], Dv i ). (iv) Fi [v](s) ≤ F i [v](t) for all s < t.

Lemma 5.2 (Comparison). Let v be a discrete function and let i ∈ {1, . . . , n}. There exists a unique

s i ∈ R such that -Fi [v](s i ) ≤ δs i ≤ -F i [v](s i ). (5.1)
Moreover, let w be a discrete function. Then the following implications hold:

(i) δw i + F i [w](w i ) ≤ 0 and w ≤ v ⇒ w i ≤ s i . (ii) δw i + F i [w](w i ) > 0 and w ≥ v ⇒ w i > s i . (iii) δw i + Fi [w](w i ) ≥ 0 and w ≥ v ⇒ w i ≥ s i . (iv) δw i + Fi [w](w i ) < 0 and w ≤ v ⇒ w i < s i
Proof. The existence of a s i ∈ R satisfying (5.1) comes from the fact that -F i [v](s) and -Fi [v](s) are non-increasing in s and that δs is strictly increasing in s. As for the uniqueness of s i , let us argue by contradiction and assume there exists s 1 i and s 2 i with s

1 i < s 2 i such that -Fi [v](s 1 i ) ≤ δs 1 i ≤ -F i [v](s 1 i ) and -Fi [v](s 2 i ) ≤ δs 2 i ≤ -F i [v](s 2 i ).
However, using (iv) from Remark 5.1, we have that

-F i [v](s 2 i ) ≤ -Fi [v](s 1 i )
, using this and combining the previous inequalities we obtain that

F i [v](s 1 i ) -Fi [v](s 2 i ) ≤ δ(s 2 i -s 1 i ) ≤ Fi [v](s 1 i ) -F i [v](s 2 i ) ≤ 0. (5.2)
This gives us that s 2 i -s 1 i ≤ 0 which is a contradiction. We now prove the implication (i), again we argue by contradiction and assume that w i > s i . Then using (5.1), we have

δw i > δs i ≥ -Fi [v](s i ) ≥ -Fi [w](s i ) ≥ -F i [w](w i ) ≥ δw i ,
where we have used for the third and fourth inequality respectively (ii) and (iv) from Remark 5.1. The previous inequality gives us the desired contradiction.

We now prove implication (ii). We argue by contradiction and assume that w i ≤ s i , using (5.1), we have

δw i ≤ δs i ≤ -F i [v](s i ) ≤ -F i [w](s i ) ≤ -F i [w](w i ) < δw i ,
where we have used for the third and fourth inequality respectively (ii) and (i) from the Remark 5.1. The previous inequality gives us the desired contradiction. The proofs of implications (iii) and (iv) are similar and we skip them.

Construction of minimal and maximal solutions

This section is devoted to the proof of existence and to the construction of minimal and maximal solutions. In order to prove the existence of discrete solution for (3.17), we will provide a constructive method that will also provide us with the minimal and maximal solutions.

Proposition 5.3 (Definition of the map Φ).

There exists a map Φ : R 2n+1 → R 2n+1 satisfying the following properties a) Let u -be a sub-solution of (3.17), i.e.,

δu - i + F i [u -](u - i ) ≤ 0 for all i ∈ {1, . . . , n}. Then i) u -≤ Φ[u -] (with u -= Φ[u -] if and only if u -is a solution).
ii) Φ[u -] is a sub-solution of (3.17). b) Let u + be a super-solution of (3.17), i.e.,

δu - i + Fi [u -](u - i ) ≥ 0 for all i ∈ {1, . . . , n}. Then i) u + ≥ Φ[u + ] (with u + = Φ[u + ] if and only if u + is a solution).
ii) Φ[u + ] is a super-solution of (3.17).

Proof. Let us prove the result for the sub-solutions (a).

Using Lemma 5.2, for every i ∈ {1, . . . , n} there exists a unique

s - i ∈ R such that -Fi [u -](s - i ) ≤ δs - i ≤ -F i [u -](s - i ) and u - i ≤ s - i , the second inequality comes from (i) in Lemma 5.2 considering w = u -. Using the real numbers s - i we construct the map Φ: Φ[u -] i = s - i
for all i ∈ {1, . . . , n}.

By construction we have u -≤ Φ[u -], with the equality if and only if u -is a solution of (3.17) (which proves (i) in (a)). Let us now prove that Φ[u -] is a sub-solution of (3.17). For all i ∈ {1, . . . , n}, by the definition of s - i , we have 0

≥ δs - i + F i [u -](s - i ) ≥ δs - i + F i Φ[u -] (s - i ) = δΦ[u -] i + F i Φ[u -] (Φ[u -] i )
, where we have used for the second inequality the fact that

F i [•](s) is non-increasing and that u -≤ Φ[u -]. Therefore, Φ[u -] is a sub-solution of (3.17).
In the case of the super-solutions, to prove (b), we define the map Φ in the same way. Using Lemma 5.2, for every i ∈ {1, . . . , n} there exists a unique

s + i ∈ R such that -Fi [u + ](s + i ) ≤ δs + i ≤ -F i [u + ](s + i ) and u + i ≥ s + i .
Like before, the map Φ is constructed using the real numbers s + i :

Φ[u + ] i = s + i for all i ∈ {1, . . . , n}.
Proceeding like before we can prove the rest of (b). We skip the rest of the proof and this ends the proof of Proposition 5.3.

Proposition 5.4 (Partial comparison principle).

Let u -and u + be respectively a sub and a super-solution of (3.17) such that u

-≤ u + then Φ[u -] ≤ Φ[u + ].
Proof. We argue by contradiction and assume that there exists a i 0 ∈ {1, . . . , n} such that

Φ[u -] i = s - i > s + i = Φ[u + ] i .
By definition of s + i , we have

0 ≤ δs + i + Fi [u + ](s + i ) < δs - i + Fi [u + ](s + i ) ≤ δs - i + F i [u + ](s - i ) ≤ δs - i + F i [u -](s - i ), (5.3)
where we have used the fact that s - i > s + i for the second inequality, and (i) and (ii) from Remark 5.1 for the third and fourth inequalities respectively. This inequality gives us the desired contradiction because of the definition of s - i .

Proposition 5.5 (Construction of solutions). Let u -and u + be respectively a sub and a super-solution of (3.17) such that u -≤ u + . We consider for every k ∈ N,

u -,k+1 = Φ[u -,k ], with u -,0 = u -,
and

v +,k+1 = Φ[v +,k ], with v +,0 = u + .
There exist two discrete functions u and v such that u -,k → u and v +,k → v as k → +∞. Moreover u and v are two solutions of (3.17). We define

Ψ[u -] := u and Ψ[v + ] := v.
Then we have

u -≤ Ψ[u -] ≤ Ψ[u + ] ≤ u + ,
and Ψ[u] = u if and only if u is a solution of (3.17).

Proof. Using Proposition 5.4 we get the following inequalities

u -≤ Φ[u -,k ] ≤ Φ[u -,k+1 ] ≤ • • • ≤ Φ[v +,k+1 ] ≤ Φ[v +,k ] ≤ v + .
Therefore, the sequence (u -,k ) k is non-decreasing and bounded from above by v + , and the sequence (v +,k ) k is non-increasing and bounded from below by u -. Passing to the limit as k goes to infinity in the previous inequalities, we obtain

u -≤ lim k→+∞ u -,k =: u =: Ψ[u -] ≤ Ψ[v + ] := v := lim k→+∞ v +,k ≤ v + .
Let us now prove that u is a solution of (3.17) (The proof for v is similar and we skip it). By definition of the sequence (u -,k ) k , we have for all k ∈ N and for all i ∈ {1, . . . , n},

-Fi [u -,k ](u -,k+1 i ) ≤ δu -,k+1 i ≤ -F i [u -,k ](u -,k+1 i ).
(5.4)

We recall that E and Ẽ are respectively lower and upper semi-continuous, which implies that R and R are also lower and upper semi-continuous and in particular that -R and -R are respectively upper and lower semi-continuous. Adding this to the continuity of the discrete gradient and of the functions H, H + , and H -and passing to the limit as k goes to +∞ in (5.4) implies

-Fi [u](u i ) ≤ δu i ≤ -F i [u](u i ),
which means that u is a solution of (3.17). Finally, the fact that Ψ[u] = u if and only if u is a solution comes from the properties of Φ (see Proposition 5.3).

Proposition 5.6 (Extremal solutions in the interval (u -, v + ) ). Let u -and v + be respectively a sub and super-solution of (3.17) such that u -≤ v + . Let Ψ[u -] and Ψ[v + ] be the two solutions provided by Proposition 5.5. Then every solution v of (3.17

) such that u -≤ v ≤ v + satisfies u -≤ Ψ[u -] ≤ v ≤ Ψ[v + ] ≤ v + .
Proof. Considering v as a super-solution of (3.17), and using Proposition 5.5, we get

u -≤ Ψ[u -] ≤ Ψ[v] = v.
Similarly, considering v as a sub-solution of (3.17), using Proposition 5.5, we have

v = Ψ[v] ≤ Ψ[v + ] ≤ v + .
Combining Lemma 4.1, Proposition 4.2, and Proposition 5.6 we obtain the following result.

Corollary 5.7. Let u - i = 0 and v + i = C 0 /δ for all i ∈ {1, . . . , n}. Let Ψ[u -] and Ψ[v + ] be the solutions provided by Proposition 5.5, then every solution v of (3.17) satisfies

Ψ[u -] ≤ v ≤ Ψ[v + ].
This section contains the application of the results from the previous sections. First we provide the algorithm used to obtain a numerical approximation of the flux-limiter and then we provide some numerical tests.

The algorithm

The following algorithm is inspired by the one in [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF], and by the results from Section 5. The idea of the algorithm is to build the extremal solutions from Corollary 5.7, to build the biggest sub-solution and the smallest super-solution. Therefore obtaining an interval that contains all the solutions of (3.17) and therefore obtaining an approximation of the solution of (3.1).

We introduce two parameters ε d and ε c respectively a tolerance to quit the dichotomy process updating the sub and super-solutions (numerical equivalent of Proposition 5.5) and a tolerance for the convergence of the numerical scheme.

1) Initialization: for

i = -n, . . . , n, u - i = 0 and v + i = C 0 δ .
2) Initialize dichotomy intervals: for i = -n, . . . , n,

s - lef t,i = u - i and s - right,i = u - i + 0, 1k - i with k - i the first integer such that δs - right,i + F i [u -](s - right,i ) > 0, and 
s + lef t,i = v + i -0, 1k + i and s + right,i = v + i with k + i the first integer such that δs + lef t,i + Fi [v + ](s + lef t,i ) < 0.
3) Dichotomy process: for i = -n, . . . , n optimize respectively in

s - i ∈ [s - lef t,i , s - right,i ] and s + i ∈ [s + lef t,i , s + right,i ], the inequalities δs - i + F i [u -](s - i ) ≤ 0 and δs + i + Fi [v + ](s + i ) ≥ 0 until s - right,i -s - lef t,i < ε d and s + right,i -s + lef t,i < ε d . If ||u --s - lef t || ∞ ≤ ε c and ||v + -s + lef t || ∞ ≤ ε c go to
Step 4 else swap u -↔ s - lef t and v + ↔ s + right and go to Step 2.

4)

The interval [u -, v + ] contains all the solutions of the numerical scheme (3.17) and therefore gives an approximation of the solution of (3.1). In particular, the value of A is approximated by the interval [-δv + 0 , -δu - 0 ]. Remark 6.1. Notice that this algorithm can be extremely costly computationally. However, we can easily apply parallel programming to steps 2) and 3) to accelerate the process.

Setting of the computation

We consider an uniform grid of the interval [-l, l] with 2n + 1 points, n ∈ N\{0}, and we denote by ∆x = l/n the discretization step. For all i ∈ {1, . . . , n}, we denote by x i = ∆x • i the nodes of the grid. For all the numerical computations, we consider for equation (3.1), the following values for the different parameters. For the computation of the discrete non-local operator, we recall the following result, using the notations from Remark 3.8 and from (3.12),

M [v ](x i ) = hmax h 0 J(z)E (v (x i + z) -v (x i )) dz - 3 2 V max = jmax j=j 0 x j +∆x/2 x j -∆x/2 J(z)E(v (x i + z) -v (x j ))dz - 3 2 V max = jmax j=j 0 x j +∆x/2 x j -∆x/2 J(z)E(v i+j -v i )dz - 3 2 V max = jmax j=j 0 E(v i+j -v i ) x j +∆x/2 x j -∆x/2 J(z)dz - 3 2 V max = jmax j=j 0 E(v i+j -v i )J j - 3 2 V max ,
with J j = V (x j + ∆x/2) -V (x j -∆x/2).

6.Numerical simulations

For the values of the different parameters for the optimal velocity function, we take Notice that given the definition (6.4), we have that if we consider two functions φ 1 and φ 2 with their respective minima φ 1 0 < φ 2 0 then for all x ∈ R, we have φ 1 (x) ≤ φ 2 (x). In order to see the influence of φ 0 ∈ [0, 1] on A, we discretize the interval [0, 1] φ 0 in 21 points (a step of 0.05) and we compute our estimate of A for each of those φ 0 . For each φ 0 , we plot two points, since we have an interval that approximates A. From Figure 6.4, we notice that the approximation is decreasing with φ 0 , which numerically confirms (i) of Proposition (6.2) and notice that for φ 0 = 0, we have that A is close to 0 which numerically confirms (ii) of (6.2).

     V max = 58 km/h, h 0 = 2 m, h max = 25 m.
In the case φ 0 = 1, the model is actually equivalent to a model without a perturbation. Therefore, we should not have a flux-limiting condition. Given the definition (1.11) of F A this can only happen if A = min p H(p). In our computational setting we have H 0 -11.16 and we have an approximation of -11.11 which is not very far and which also validates our numerical approach.

Influence of the radius of influence of the perturbation

We consider the same optimal velocity function as before and the same perturbation and we make the radius of influence of the perturbation vary in the interval [25, 75]. Like before, we make φ 0 vary inside the interval [0, 1]. In Figure 6.7, we compare the upper and lower bound of the approximation of A for different values of φ 0 . From Figure 6.7, we first notice that the approximation of A for φ numerically verifies Proposition 6.2. Moreover, we notice that the values for both perturbations are very similar. This actually could imply that the form of the perturbation does not influence the result but it is only φ 0 that determines the value of the flux limiter. In Figure 6.8, we plot the absolute difference between the two approximations and we notice the difference is very small. 

Influence of δ

We consider the optimal velocity function (6.3) with (6.5) and the perturbation (6.4), with r = 45 m and φ 0 = 0, 25. To see the influence of δ on the approximation of A, we fix l and R to the values of (6.1) and we make δ vary in [0.001, 0.1] with a step of 0.001. From Figure 6.9, we first we notice that there is a lot of oscillations on the behaviour From Figure 6.11 we remark that for l ∈ [180, 220] the approximation of A remains almost the same. The behaviour of the approximation for bigger values of l can be explain by the fact that first δ should go to 0 before passing to the limit as l goes to infinity. Therefore, there is a compromise to be made between l and δ. However, for δ = 0.001 taking l = 200 seems to give a reasonable approximation.
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Homogenization of second order discrete model with local perturbation and application to traffic flow
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Abstract

The goal of this paper is to derive a traffic flow macroscopic model from a second order microscopic model with a local perturbation. At the microscopic scale, we consider a Bando model of the type following the leader, i.e the acceleration of each vehicle depends on the distance of the vehicle in front of it. We consider also a local perturbation like an accident at the roadside that slows down the vehicles. After rescaling, we prove that the "cumulative distribution functions" of the vehicles converges towards the solution of a macroscopic homogenized Hamilton-Jacobi equation with a flux limiting condition at junction which can be seen as a LWR (Lighthill-Whitham-Richards) model.
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Introduction

The modelling and simulation of traffic flow is a challenging task in particular in order to design infrastructure. Indeed, there are some examples in which the construction of a new infrastructure did not improve the traffic. For example, in Stuttgart, Germany, after investments into the road network in 1969, the traffic situation did not improve until a section of newly build road was closed for traffic again (see [START_REF] Knödel | Graphentheoretische Methoden und ihre Anwendungen. Econometrics and Operations Research[END_REF]). This is known as the Braess' paradox. In the past years, a lot of work has been done concerning the modelling and simulation of traffic flows problems.

Traffic flow can be modelled at different scales depending on the level of details one wants to observe: the microscopic scale (describes the dynamics of each of the vehicles), the macroscopic scale (describes the dynamics of the density of vehicles) and the mesoscopic scale (describes the dynamics of the density of vehicles but the car-to-car interactions are not lost).

Microscopic models are considered more justifiable because the behaviour of every single vehicle can be described with high precision whereas macroscopic models are based on assumptions which are less verifiable. Another way to justify macroscopic models is to derive them from microscopic models by rescaling arguments.

The problem of deriving macroscopic models from microscopic ones has already been studied for models of the type following the leader (i.e. the velocity or the acceleration of each vehicle depends only on the distance to the vehicle in front of it). We refer for example to [AKRM02, DFR15, Hel98, HP10, LLK01] where the authors rescaled the empirical measure and obtained a scalar conservation law (LWR model). In particular, passing from microscopic to macroscopic model for second-order models was instead investigated in [START_REF] Aw | Derivation of continuum traffic flow models from microscopic follow-the-leader models[END_REF][START_REF] Greenberg | Extensions and amplifications of a traffic model of Aw and Rascale[END_REF], where the Aw-Rascle model is derived as the limit of a second order follow-the-leader model.

In this paper we establish a connection between a car-following model and a fluiddynamic model. This result is a generalization of the results of [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] to a second order microscopic model. We consider a second order microscopic model of follow-the-leader type with a local perturbation. In such model, the whole traffic flow is determined by the dynamics of the very first vehicle (the leader). We will establish a connection between this second order discrete model and a macroscopic model equivalent to a LWR model. The idea is to rescale the microscopic model, which describes the dynamics of each vehicle individually, in order to get a macroscopic model which describes the dynamics of density of vehicles.

The model we study here is similar to the one considered in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], but in our work, as in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], we assume that there is a local perturbation (located at the origin for example) that slows down the vehicles and we want to understand how this local perturbation influences the macroscopic dynamics. Due to this perturbation, it is natural to get an Hamilton-Jacobi equation with a junction condition at the origin and an effective flux limiter. Further, our result is stronger than the one in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] because our microscopic model is a second order model which is more realistic than the first order model considered in the last paper. From a mathematical point of view the fact of considering a second order model presents many technical difficulties. First, we need to consider a system of two non-local PDEs instead of a single equation [START_REF] Forcadel | Homogenization of accelerated frenkel-kontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]. Moreover, the two functions that we consider have to satisfy certain properties that derive from the physical characteristics of the microscopic model and those properties need to be proven for the system of non-local PDEs which is more complicated in the case of a second order model than in the case of a first order model.

Paper organization. The paper is organized as follows. In Section 2, we present the microscopic model for which we will present an homogenization result. In Section 3, we inject the system of ODEs into a system of PDEs and we present our main results. Section 3.3 is dedicated to the definition of the non-local operators which appear in the PDEs given in Section 3. In Section 4, we introduce the notion of viscosity solutions for the considered problems and give stability, existence and uniqueness results. In Sections 5 and 6 we present the correctors necessaries for the proof of convergence which is located in Section 7. Section 8 contains the proof of existence of correctors for the junction, where we use the idea developed in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF][START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] and in the lectures of Lions at the "College de France" [START_REF] Lions | Lectures at collège de france[END_REF], which consists in constructing correctors on truncated domains. In Section 9 we show the link between the system of ODEs and the system of PDEs which proof is in Appendix 11. Finally in Appendix 10 we analyse the properties of the microscopic model.

• (A4) There exists h max ∈ (h 0 , +∞) such that for all h ≥ h max , V (h) = V (h max ) =:

V max .

• (A5) The function p → pV (-1/p) is strictly convex on [-1/h 0 , 0).

• (A6) The function φ : R → (0, 1] is Lipschitz continuous and φ(x) = 1 for |x| ≥ r.

We denote by φ 0 = min

x∈[-r,r] φ(x) > 0. • (A7)(Monotonicity). a ≥ 4 ||V || ∞ ||φ|| ∞ + 4 ||φ || ∞ ||V || ∞ .
Remark 2.1 (Remark on (A6)). In the case φ = 0 on an open interval (therefore φ 0 = 0) all the vehicles left of the perturbation would come to a full stop. This case lacks any interest and therefore we can assume that φ 0 > 0.

Remark 2.2 (Remark on (A7))

. Assumption (A7) yields that for all (b, x) ∈ R 2 , the function

f : z → a 2 z -2V (b + z) φ (x -z)
is non-decreasing. This result is particularly important later in the paper because it implies that the systems we consider later in this work are monotone in the sense of Ishii and Koike [START_REF] Ishii | Viscosity solutions for monotone systems of second-order elliptic pdes[END_REF], which will imply the uniqueness of the solution we consider.

As we said in the introduction, in order to obtain an homogenization result for (3.1), we will inject the system of ODEs into a system of PDEs. To do so, we proceed as in [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF][START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] by introducing the rescaled "cumulative distribution function", which is the primitive of the rescaled empirical measure, defined by,

ρ ε (t, y) = -ε   i≥0 H (y -εU i (t/ε)) + i<0 (-1 + H (y -εU i (t/ε)))   (2.2) with H(x) = 1 if x ≥ 0 0 if x < 0. (2.
3)

The macroscopic model

We define H : R → R, by

H(p) =          -p -k 0 for p < -k 0 , -V -1 p • |p| for -k 0 ≤ p < 0, p for p ≥ 0.
(2.4)

Note that such H is continuous, coercive and because of (A5), there exists a unique point

p 0 ∈ [-k 0 , 0] such that    H is decreasing on (-∞, p 0 ) H is increasing on (p 0 , +∞), (2.5) 
and we denote by

H 0 := H(p 0 ) = min p∈R H(p) < 0. (2.6)
We want to show that the rescaled "cumulative distribution function" converges to the solution of the following macroscopic model.

             u 0 t + H(u 0 x ) = 0 for (t, x) ∈ (0, +∞) × (-∞, 0) u 0 t + H(u 0 x ) = 0 for (t, x) ∈ (0, +∞) × (0, +∞) u 0 t + F A (u 0 x (t, 0 -), u 0 x (t, 0 + )) = 0 for (t, x) ∈ (0, +∞) × {0} u 0 (0, x) = u 0 (x)
for x ∈ R.

(2.7)

where A has to be determined and F A is defined by

F A (p -, p + ) = max A, H + (p -), H -(p + ) , (2.8) with H -(p) = H(p) if p ≤ p 0 H(p 0 ) if p ≥ p 0 and H + (p) = H(p 0 ) if p ≤ p 0 H(p) if p ≥ p 0 .
(2.9)

The initial condition u 0 is a function that satisfies

-k 0 ≤ (u 0 ) x ≤ 0 and for all ε > 0 |ρ ε (0, x) -u 0 (x)| ≤ f (ε), (2.10)
with f (ε) → 0 as ε → 0. According to [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF], for all A ∈ R, there exists a unique solution u 0 of (2.7).

Remark 2.3. We notice that in the case of traffic flow, (2.7) is equivalent (deriving in space) to a LWR model (see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]) with a flux limiting condition at the origin. In fact, the fundamental diagram of the model is pV (1/p) and u 0 x corresponds to the density of vehicles.

Passage from a microscopic to a macroscopic model

The main result of this paper is the following convergence result. Theorem 2.4 (Passage from a microscopic to a macroscopic model). Assume (A). There exists a unique A ∈ [H 0 , 0] such that the function ρ ε defined by (2.2) converges locally uniformly towards the unique solution of (2.7).

Main results

Injecting the system of ODEs into a system of PDEs

In the rest of the paper, we will work with an equivalent formulation of (2.1). We borrow the idea from [FIM09a, FIM12, 1] and consider for all j ∈ Z,

Ξ j (t) = U j (t) + 1 α Uj (t) with α = a 2 .
Using this new function, we obtain the following system of ODEs equivalent to (2.1) for all j ∈ Z, for all t ∈ (0, +∞),

     Uj (t) = α (Ξ j (t) -U j (t)) Ξj (t) = α (U j (t) -Ξ j (t)) + 2V (U j+1 (t) -U j (t)) • φ (U j (t)) . (3.1)
In Appendix 10, we give some properties of system 3.1, such as maximal velocities of the vehicles and minimal and maximal distance between two consecutive vehicles.

We now introduce the "cumulative distribution function" for (Ξ j ) j , defined by

σ ε (t, y) = -ε   i≥0 H (y -εΞ i (t/ε)) + i<0 (-1 + H (y -εΞ i (t/ε)))   . (3.2)
Under assumption (A), (ρ ε , σ ε ) is a discontinuous viscosity solution (see Theorem 3.3) of the following non-local equation, for all (t, x) ∈ (0, +∞) × R,

           u ε t + M ε u ε ε (t, x), ξ ε ε (t, •) (x) • |u ε x | = 0 ξ ε t + L ε x ε , ξ ε ε (t, x), u ε ε (t, •) (x) • |ξ ε x | = 0. (3.3)
The definition of M ε and L ε is postponed to the next section. We submit equation (3.3) to the following initial condition. For all x ∈ R,

u ε (0, x) = u 0 (x) ξ ε (0, x) = ξ ε 0 (x). (3.4)
We also assume that the initial condition satisfies the following assumption.

(A0) (Gradient bound) Let k 0 = 1/h 0 . The functions u 0 and ξ ε 0 are Lipschitz continuous functions, such that

-k 0 ≤ (u 0 ) x ≤ 0 (3.5) -k 0 ≤ (ξ ε 0 ) x ≤ 0, (3.6) 
and

0 ≤ ξ ε 0 (x) -u 0 (x) ≤ ε. (3.7)
Remark 3.1. The initial conditions u 0 and ξ ε 0 are "regular" functions such that for all ε > 0 we have

|ρ ε (0, x) -u 0 (x)| ≤ f (ε) and |σ ε (0, x) -ξ ε 0 (x)| ≤ g(ε), (3.8)
with f (ε), g(ε) → 0 as ε goes to 0. For ε = 1, the conditions on the gradients translate the fact that at the initial time there is at least h 0 meters between two consecutive vehicles. In the rest of the paper we are interested in the behaviour of ρ ε and σ ε as ε goes to 0. This in fact translates to studying the behaviour of the traffic as the number of vehicles per unit length goes to infinity. For ε = 1 condition (3.7) translate the fact that at initial time the velocity of the vehicles must be bounded so the ordering of the vehicles is kept. The fact that ξ ε 0 depends on ε comes from the rescaling. In fact, given that σ ε is the "cumulative distribution function" of (Ξ j ) j which are defined using the velocity of the vehicles, an ε appears multiplying the velocity when rescaling (see [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]Remark 1.2]). Therefore, ξ ε 0 tends to u 0 as ε goes to zero. Finally, to simplify the notations, we denote by ξ 0 = ξ ε 0 for ε = 1.

Convergence result

Theorem 2.4 is a consequence of the following theorems. The proof of Theorem 3.2 is postponed until Section 7 and the proof of Theorem 3.3 is postponed until Section 9.

Theorem 3.2 (Junction condition by homogenization). Assume (A) and (A0)

. For ε > 0, let (u ε , ξ ε ) be the solution of (3.3)- (3.4). Then there exists Ā ∈ [H 0 , 0] such that u ε and ξ ε converge locally uniformly to the unique viscosity solution u 0 of (2.7).

Theorem 3.3 (Junction condition by homogenization: application to traffic flow). Assume (A) and that at initial time

(U i (0), Ξ i (0)) i satisfies 0 ≤ Ξ i (0) -U i (0) ≤ V max α , U i+1 (0) -Ξ i (0) ≥ h 0 , and U i+1 (0) -U i (0) ≤ h max .
We also assume that there exists a constant R > 0 such that, for all i ∈ Z, if

|U i (0)| ≥ R U i+1 (0) -U i (0) = h (3.9) and if |Ξ i (0)| ≥ R Ξ i+1 (0) -Ξ i (0) = h, (3.10) with h ∈ [h 0 , h max ].
We define two function u 0 and ξ ε 0 (satisfying (A0)) by u 0 (x) = ξ ε 0 (x) = -x/h for all x ∈ R. Then there exists a unique A ∈ [H 0 , 0] such that the functions ρ ε and σ ε defined by (2.2) and (3.2) converge locally uniformly towards the unique solution u 0 of (2.7).

Remark 3.4. Conditions (3.9) and (3.10) mean that the initial condition is well-prepared.

The following theorem ensures that when we use (2.7) we only evaluate the function H in the interval [-k 0 , 0]. The proof of Theorem 3.5 is postponed until Section 7.

Theorem 3.5 (Gradient bound). Assume (A0)-(A)

. Let u 0 be the unique solution of (2.7), then we have for all

(t, x) ∈ [0, T ] × R, -k 0 ≤ u 0
x ≤ 0, with k 0 defined in (A0).

Definition of the non-local operators

In this section, we clarify equation (3.3). We will give the definition of M and L, and then the definition of M ε and L ε . To do this, we first introduce the following functions.

E(z) =    -α if z ≥ 0 0 if z < 0, F (z) =    1 if z < 0 0 if z ≥ 0, I(z) =    1 if z ≥ -1 0 if z < -1, Ẽ(z) =    -α if z > 0 0 if z ≤ 0, F (z) =    1 if z ≤ 0 0 if z > 0, and Ĩ(z) =    1 if z > -1 0 if z ≤ -1.
For x, p ∈ R, we then define the following non-local operators

M p (U (x), [Σ]) (x) = D 0 E(Σ(x + z) -U (x) + pz)dz, K p (Σ(x), [U ]) (x) = D 0 F (U (x -z) -Σ(x) -pz)dz, N p (Σ(x), [U ]) (x) = D 0 I(U (x + z) -Σ(x) + pz)dz,
with D = h max + 3V max /(2α) + 2r/φ 0 (see Appendixes 10 and 11 for more details on where the constant D comes from). We can now define L p . For x, y ∈ R,

L p (y, Σ(x), [U ]) (x) = αK p (Σ(x), [U ]) (x) (3.11) -2V N p (Σ(x), [U ]) (x) + K p (Σ(x), [U ]) (x) • φ (y -K p (Σ(x), [U ]) (x)) .
In the same way, we define Mp , Kp and Ñp by replacing E, F and I respectively by Ẽ, F and Ĩ. Similary,

Lp (y, Σ(x), [U ]) (x) = α Kp (Σ(x), [U ]) (x) (3.12) -2V Ñp (Σ(x), [U ]) (x) + Kp (Σ(x), [U ]) (x) • φ y -Kp (Σ(x), [U ]) (x) .
For p = 0, we define

M (U (x), [Σ])(x) := M 0 (U (x), [Σ]) = D 0 E(Σ(x + z) -U (x))dz, (3.13) K (Σ(x), [U ]) (x) := K 0 (Σ(x), [U ]) (x) = D 0 F (U (x -z) -Σ(x))dz, (3.14) N (Σ(x), [U ]) (x) := N 0 (Σ(x), [U ]) (x) = D 0 I(U (x + z) -Σ(x))dz, (3.15) 
and

L (y, Σ(x), [U ]) (x) = αK (Σ(x), [U ]) (x) (3.16) -2V N (Σ(x), [U ]) (x) + K (Σ(x), [U ]) (x) • φ (y -K (Σ(x), [U ]) (x)) .
Remark 3.6 (Remarks on the non-local operators). First let us notice that the domain of integration in the non-local operators is bounded by a constant D := h max + 3V max /(2α) + 2r/φ 0 , this comes from the fact that the velocities of the vehicles as well as the distance between two consecutive vehicles from model 3.1 are bounded (see Appendix 10). In particular, there exists a constant M 0 > 0 (independent of p), such that we have the following bounds on the non-local operators,

-M 0 ≤ -αD ≤ M p (U (x), [Σ])(x) ≤ 0, M 0 ≥ D ≥ K p (Σ(x), [U ])(x) ≥ 0, M 0 ≥ D ≥ N p (Σ(x), [U ])(x) ≥ 0, M 0 ≥ αD ≥ L p (y, Σ(x), [U ])(x) ≥ -2V max ≥ -M 0 , with M 0 = max(2V max , αD, D).
Finally, we would like to point out that given the fact that the function V is nondecreasing (assumption (A2)) and that the function F ≥ 0 and therefore K(Σ, [U ])(x) ≥ 0, we have

L(y, Σ(x), [U ])(x) ≥ -2V N (Σ(x), [U ]) (x) .
(3.17)

Finally, we introduce for ε > 0,

M ε (U (x), [Σ]) (x) = D 0 E(Σ(x + εz) -U (x))dz, (3.18) K ε (Σ(x), [U ]) (x) = D 0 F (U (x -εz) -Σ(x))dz, (3.19) N ε (Σ(x), [U ]) (x) = D 0 I(U (x + εz) -Σ(x))dz, (3.20) (3.21)
and

L ε (y, Σ(x), [U ]) (x) = αK ε (Σ(x), [U ]) (x) (3.22) -2V N ε ((Σ(x), [U ]) (x) + K ε (Σ(x), [U ]) (x) • φ (y -K ε (Σ(x), [U ]) (x)) .
The bounds provided by Remark 3.6 remain valid for the non-local operators depending on ε > 0. [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], considering the functions, u(t, y) = U y (t) and ξ(t, y) = Σ y (t).

Remark 3.7 (Lagrangian formulation). Another way to treat this problem is to consider a Lagrangian formulation, like in

The couple (u, ξ) satisfies for all (t, y)

∈ [0, T ] × R          u t (t, y) = α (ξ(t, y) -u(t, y)) ξ t (t, y) = α (u(t, y) -ξ(t, y)) + 2V (u(t, y + 1) -u(t, y)) • φ(u(t, y)) u(0, y) = u 0 (y) ξ(0, y) = ξ ε 0 (y).
We note that the system we obtain is much more simple. Nevertheless, the difficulty with this formulation is that the function φ is evaluated at u(t, y) and not at a physical point of the road. At the macroscopic scale, we then expect to get a junction condition located at u = 0. The notion of junction in this case is not well defined and this is why we use the formulation (3.3)

(where the perturbation function is evaluated at a point of the road). This will allow us to use the results of Imbert and Monneau [IM14] concerning quasi-convex Hamiltonians with a junction condition.

This section is devoted to the definition and useful results for viscosity solutions of the problems considered in this paper. The reader is referred to the user's guide of Crandall, Ishii, Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and the book of Barles [Bar94] for an introduction to viscosity solutions. In order to give a general definition, we will give the definition of viscosity solutions for the following equation, with p ∈ R, and for all (t, x) ∈ (0, +∞) × R, 

             u t + ψ(x) • M p (u(t, x), [ξ(t, •)]) (x) • |p + u x | + (1 -ψ(x)) • H (u x ) = 0 ξ t + ψ(x) • L p (x, ξ(t, x), [u(t, •)]) (x) • |p + ξ x | + (1 -ψ(x)) • H (ξ x ) = 0 u(0, x) = u 0 (x) ξ(0, x) = ξ 0 (x),

Definitions

Definition 4.1 (Viscosity solutions for (4.1)). Let T > 0. Let u : R + × R → R and ξ : R + × R → R be upper semi-continuous (resp. lower semi-continuous) functions. We say that (u, ξ) is a viscosity sub-solution (resp. super-solution) of (4.1) on [0, T ] × R if u(0, x) ≤ u 0 (x) and ξ(0, x) ≤ ξ 0 (x) (resp. u(0, x) ≥ u 0 (x) and ξ(0, x) ≥ ξ 0 (x)) and for all (t, x) ∈ (0, T ) × R, and for any test function ϕ ∈ C 1 ((0, T ) × R) such that u -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

ϕ t + ψ(x) • M p (u(t, x), [ξ(t, •)]) (x) • |p + ϕ x | + (1 -ψ(x)) • H(ϕ x ) ≤ 0, (resp. ϕ t + ψ(x) • Mp (u(t, x), [ξ(t, •)]) (x) • |p + ϕ x | + (1 -ψ(x)) • H(ϕ x ) ≥ 0),
and for all (t, x) ∈ (0, T ) × R and any test function ϕ ∈ C 1 ((0, T ) × R) such that ξ -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

ϕ t + ψ(x) • L p (x, ξ(t, x), [u(t, •)]) (x) • |p + ϕ x | + (1 -ψ(x)) • H(ϕ x ) ≤ 0, (resp. ϕ t + ψ(x) • Lp (x, ξ(t, x), [u(t, •)]) (x) • |p + ϕ x | + (1 -ψ(x)) • H(ϕ x ) ≥ 0).
We say that (u, ξ) is a viscosity solution of (4.1) if (u * , ξ * ) and (u * , ξ * ) are respectively a sub-solution and a super-solution of (4.1). Remark 4.2. We use this definition in order to have a stability result for the non-local terms. We refer to [START_REF] Da Lio | Nonlocal front propagation problems in bounded domains with neumann-type boundary conditions and applications[END_REF][START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF] for such kind of definition. For the readers convenience, we give the stability result and its proof.

Proposition 4.3 (Stability of solution of (4.1)). Let (u n , ξ n ) be a sequence of uniformly bounded upper semi-continuous functions (resp. lower semi-continuous). Let

(u, ξ) = (lim sup * u n , lim sup * ξ n ) (resp. (u, ξ) = (lim inf * u n , lim inf * ξ n ) ) and let (t n , x n , p n ) → (t 0 , x 0 , p) in R × R × R be such that (u n (t n , x n ), ξ n (t n , x n )) → (u(t 0 , x 0 ), ξ(t 0 , x 0 )), (resp.(u n (t n , x n ), ξ n (t n , x n )) → (u(t 0 , x 0 ), ξ(t 0 , x 0 ))), then lim sup n→+∞ * M pn (u n (t n , x n ), [ξ n (t n , •)]) (x n ) ≥ M p u(t 0 , x 0 ), ξ(t 0 , •) (x 0 ), (4.2) resp. lim inf n→+∞ * Mpn (u n (t n , x n ), [ξ n (t n , •)]) (x n ) ≤ Mp u(t 0 , x 0 ), ξ(t 0 , •) (x 0 ) ,
and

lim sup n→+∞ * L pn (x n , ξ n (t n , x n ), [u n (t n , •)])(x n ) ≥ L p (x 0 , ξ(t 0 , x 0 ), [u(t 0 , •)])(x 0 ), (4.3) resp. lim inf n→+∞ * Lpn (x n , ξ n (t n , x n ), [u n (t n , •)])(x n ) ≤ Lp (x 0 , ξ(t 0 , x 0 ), [u(t 0 , •)])(x 0 ) .
In order to do the proof of Proposition 4.3, we use the following lemma which proof is given in [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF] . Lemma 4.4. Let (f n ) be a sequence of measurable functions of R and consider

f = lim sup * f n and f = lim inf * f n .
Let (a n ) n be a sequence of R converging to zero as n goes to infinity. Then

L {f n ≥ a n }\{f ≥ 0} → 0 as n → +∞ and L {f > 0}\{f n > a n } → 0 as n → +∞,
where L(A) denotes the lebesgue measure of the measurable set A.

4.Viscosity Solutions

Proof of proposition 4.3. We begin by proving (4.2). Let ε > 0, then by definition

M pn (u n (t n , x n ), [ξ(t n , •)])(x n ) -M p (u(t 0 , x 0 ), [ξ(t 0 , .)])(x 0 ) = D 0 E(ξ n (t n , x n + z) -u n (t n , x n ) + p n z)dz - D 0 E(ξ(t 0 , x 0 + z) -u(t 0 , x 0 ) + pz)dz = α D 0 1 {ξ(t 0 ,x 0 +z)-u(t 0 ,x 0 )+pz≥0} -1 {ξn(tn,xn+z)-un(tn,xn)+pnz≥0} dz ≥ -α D 0 1 {{fn≥0}∪{f≥0}\{f≥0}} dz with f n (z) = ξ n (t n , x n + z) -u n (t n , x n ) + p n z and f (z) = ξ(t 0 , x 0 + z) -u(t 0 , x 0 ) + pz.
Using Lemma 4.4, for n big we have that

-α D 0 1 {{fn≥0}∪{f≥0}\{f≥0}} dz ≥ -ε. (4.4)
Using (4.4), we deduce that

M pn (u n (t n , x n ), [ξ(t n , •)])(x n ) ≥ M p (u(t 0 , x 0 ), [ξ(t 0 , •)])(x 0 ) -ε,
which implies (4.2).

We turn now to the proof of (4.3). We recall that the definition of L is given in (3.16). To simplify the notations, we introduce

L pn = L pn (x n , ξ n (t n , x n ), [u n (t n , •)])(x n ) L p = L p (x 0 , ξ(t 0 , x 0 ), [u(t 0 , •)])(x 0 ), K pn = K pn (ξ n (t n , x n ), [u n (t n , •)])(x n ) K p = K p (ξ(t 0 , x 0 ), [u(t 0 , •)])(x 0 ), N pn = N pn (ξ n (t n , x n ), [u n (t n , •)])(x n ) N p = N p (ξ(t 0 , x 0 ), [u(t 0 , •)])(x 0 ).
Proceeding like before, we have for n big enough

K pn ≥ K p -ε, ( 4.5 
)

N pn ≤ N p + ε, (4.6)
and

|x n -x 0 | ≤ ε. (4.7)
Therefore, we have that

L pn = αK pn -2V (N pn + K pn ) φ (x n -K pn ) ≥ α (K p -ε) -2V (N pn + K p -ε) φ(x n -K p + ε) ≥ α (K p -ε) -2V (N p + ε + K p -ε) φ(x n -K p + ε) ≥ αK p -2V (N p + K p ) φ(x 0 -K p ) -αε -4V max ||φ || ∞ ε = L p -αε -4V max ||φ || ∞ ε,
where we have used Remark 2.2 combined with (4.5) for the first inequality, (4.6) and the fact that V is non-decreasing for the second inequality. Finally, for the third inequality, we have used (4.7) and the fact that φ is Lipschitz continuous. The previous inequality is true for all ε > 0, for n big enough and implies (4.3). This ends the proof of Proposition 4.3.

Viscosity solutions for (2.7)

The theory of viscosity solutions for Hamilton-Jacobi equations on networks was recently treated in several papers. We give here some results for viscosity solutions of (2.7) that will be used in the rest of paper and we refer to [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] for the general theory and for the proofs.

Definition 4.5 (Class of test function for (2.7))

. We denote by J ∞ := (0, +∞) × R, J + ∞ := (0, +∞) × (0, +∞) and J - ∞ := (0, +∞) × (-∞, 0) , we define a class of test function on J ∞ by

C 1 (J ∞ ) = {ϕ ∈ C(J ∞ ), the restriction of ϕ to J +
∞ and to J - ∞ are C 1 }. Definition 4.6 (Viscosity solution for (2.7)). An upper semi-continuous (resp. lower semicontinuous) function u : [0, +∞) × R → R is a viscosity sub-solution (resp. super-solution) of (2.7) if u(0, x) ≤ u 0 (x) (resp. u(0, x) ≥ u 0 (x)) and for all (t, x) ∈ J ∞ and for all

ϕ ∈ C 1 (J ∞ ) such that u ≤ ϕ (resp. u ≥ ϕ) in a neighbourhood of (t, x) ∈ J ∞ and u(t, x) = ϕ(t, x), we have ϕ t (t, x) + H(ϕ x (t, x)) ≤ 0 (resp. ≥ 0) if x = 0 ϕ t (t, x) + F A (ϕ x (t, 0 -), ϕ x (t, 0 + )) ≤ 0 (resp. ≥ 0) if x = 0.
We say that a function u is a viscosity solution of (2.7) if u * and u * are respectively a subsolution and a super-solution of (2.7).We refer to this solution as A-flux-limited solution.

Now we recall an equivalent definition (Theorem 2.5 in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF]) for sub and super solution at the junction. We will also consider the following problem, u t + H(u x ) = 0 for t ∈ (0, T ) and x ∈ R\{0}.

(4.8) Theorem 4.7 (Equivalent definition for sub/super-solutions). Let H given by (2.4) and consider A ∈ [H 0 , +∞) with H 0 defined in (2.6). Given arbitrary solutions p A ± ∈ R of

H p A + = H + p A + = A = H -p A -= H p A -, (4.9) 
let us fix any time independent test function φ 0 (x) satisfying

φ 0 x (0 ± ) = p A ± . Given a function u : (0, T ) × R → R, the following properties hold true. 1. If u is an upper semi-continuous sub-solution of (4.8) satisfying u(t, 0) = lim sup (t,y)→(t,0),y∈J * i u(s, y), (4.10)
then u is a H 0 -flux limited sub-solution.

2. Given A > H 0 and t 0 ∈ (0, T ), if u is an upper semi-continous sub-solution of (4.8) satisfying (4.10) and if for any test function ϕ touching u from above at (t 0 , 0) with

ϕ(t, x) = ψ(t) + φ 0 (x), (4.11) 
for some ψ ∈ C 1 (0, +∞), we have

ϕ t + F A ϕ x t 0 , 0 -, ϕ x t 0 , 0 + ≤ 0 at (t 0 , 0),
then u is a A-flux limited sub-solution at (t 0 , 0).

3. Given t 0 ∈ (0, T ), if u is a lower semi-continuous super-solution of (4.8) and if for any test function ϕ satisfying (4.11) touching u from above at (t 0 , 0) we have

ϕ t + F A ϕ x t 0 , 0 -, ϕ x t 0 , 0 + ≥ 0 at (t 0 , 0),
then u is a A-flux limited super-solution at (t 0 , 0).

Existence and uniqueness of viscosity solution for (4.1) with p = 0

We recall that for p = 0, our equation is

             u t + M (u(t, x), [ξ(t, •)])(x) • |u x | = 0 for (t, x) ∈ (0, +∞) × R, ξ t + L (x, ξ(t, x), [u(t, •)]) (x) • |ξ x | = 0 for (t, x) ∈ (0, +∞) × R, u(0, x) = u 0 (x) for x ∈ R, ξ(0, x) = ξ 0 (x)
for x ∈ R.

(4.12) Lemma 4.8 (Existence of barriers for (4.12)). Assume (A) and (A0). There exists a constant K 1 > 0 such that

(u -, ξ -) = (u 0 -K 1 t, ξ 0 -K 1 t) and (u + , ξ + ) = (u 0 + K 1 t, ξ 0 + K 1 t) (4.13)
are respectively sub-solution and super-solution of (4.12).

Proof. We define K 1 = M 0 k 0 . Let us prove that (u + , ξ + ) is a super-solution of (4.12). In fact, we have that

u + t + M (u + (t, x), [ξ + (t, •)])(x)|u + x | ≥ K 1 -M 0 k 0 = 0,
where we have used Remark 3.6 for the second inequality. Similarly, using that K ≥ 0 and

K 1 ≥ 2||V || ∞ k 0 , we have that ξ + t + L(x, ξ + (t, x), [u + (t, •)])(x)|ξ + t | ≥ 0.
The proof that (u -, ξ -) is a sub-solution is similar and we skip it.

Proposition 4.9 (Comparaison principle). Let T > 0. Assume (A)-(A0). Let (u, ξ) and (v, ζ) be respectively a sub-solution and a super-solution of (4.12). We also assume that there exists a constant C > 0 such that for all (t, x) ∈ [0, T ] × R, we have

u 0 (x) -Ct ≤ u(t, x) ≤ u 0 (x) + Ct, ξ 0 (x) -Ct ≤ ξ(t, x) ≤ ξ 0 (x) + Ct (4.14)
and

-u 0 (x) -Ct ≤ -v(t, x) ≤ -u 0 (x) + Ct, -ξ 0 (x) -Ct ≤ -ζ(t, x) ≤ -ξ 0 (x) + Ct. (4.15) If u(0, x) ≤ v(0, x) and ξ(0, x) ≤ ζ(0, x) for all x ∈ R, then u(t, x) ≤ v(t, x) and ξ(t, x) ≤ ζ(t, x) for all x ∈ R, t ∈ [0, T ].
Proof. Let us introduce

M = sup t∈[0,T ],x∈R max (u(t, x) -v(t, x), ξ(t, x) -ζ(t, x)) .
We want to prove that M ≤ 0. We argue by contradiction by assuming that M > 0.

4.Viscosity Solutions

Step 1: test functions. We introduce the following test functions

ϕ(t, x, y) = u(t, x) -v(t, y) - η T -t -e At (x -y) 2 2ε + γ x 2 2
and

ψ(t, x, y) = ξ(t, x) -ζ(t, y) - η T -t -e At (x -y) 2 2ε + γ x 2 2 ,
with η, γ small parameters, and A a constant to be chosen later. We denote by Φ(t, x, y) = max (ϕ(t, x, y), ψ(t, x, y)). Using (4.14) and (4.15) we have that

ϕ(t, x, y) ≤ u 0 (x) -u 0 (y) + 2CT - η T -t -e At (x -y) 2 2ε + γ x 2 2 ≤ 2CT + k 0 |x -y| - η T -t -e At (x -y) 2 2ε + γ x 2 2 .
We have a similar result for ψ which yields that lim

|x|,|y|→+∞ Φ = -∞.
Using the fact that our test functions are upper semi continuous, we can see that Φ reaches a maximum at some finite point that we denote by ( t, x, ȳ) ∈ [0, T ) × R × R. Classicaly we have for η and γ small enough,

           M η,ε,γ = Φ( t, x, ȳ) ≥ M 2 > 0, |x -ȳ| → 0 as ε → 0, γ|x| → 0 as γ → 0.
Step 2: t > 0 for ε small enough. By contradiction, let us assume that Φ reaches its maximum for t = 0. Let us for instance assume that Φ( t, x, ȳ) = ϕ( t, x, ȳ). In this case, we have

0 < M 2 ≤ u(0, x) -v(0, ȳ) - η T ≤ k 0 |x -ȳ| - η T .
Therefore, η T < k 0 |x -ȳ| and for ε small enough we get a contradiction. In the same way, we get a contradiction if we assume that φ( t, x, ȳ) = ψ( t, x, ȳ).

Step 3: viscosity inequalities in the case Φ( t, x, ȳ) = ϕ( t, x, ȳ). By duplication of the time variable and passing to the limit we have that there exist two real numbers a, b ∈ R such that

a -b = η (T -t) 2 + Ae A t (x -ȳ) 2 2ε + γ x2 2 (4.16) a + M (u( t, x), [ξ( t, •)])(x)|e A t (p ε + γ x) | ≤ 0 (4.17) b + M (v( t, ȳ), [ζ( t, •)])(ȳ)|e A tp ε | ≥ 0 (4.18) with p ε = x - ȳ ε
. Combining (4.16), (4.17) and (4.18), we obtain

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε + γ x2 2 ≤|e A tp ε | M (v( t, ȳ), [ζ( t, •)])(ȳ) -|e A tp ε |M (u( t, x), [ξ( t, •)])(x) + o γ , (4.19) 
where we have used the fact that M (u( t, x), [ξ( t, •)])(x) is finite according to Remark 3.6.

We distinguish two cases.

Case 1: there exists a subsequence γ n such that |x -ȳ| ε → 0 as n → +∞.

In this case, taking γ going to zero in (4.19) yields a contradiction.

Case 2: there exists a constant C ε > 0 such that for any γ small enough we have,

|x -ȳ| ε ≥ C ε .
Changing variables in (4.19) we can write

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε ≤ |e A tp ε | D+ȳ ȳ Ẽ(ζ( t, z) -v( t, ȳ))dz -|e A tp ε | D+x x E(ξ( t, z) -u( t, x))dz + o γ (1) ≤ |e A tp ε | D+ȳ ȳ Ẽ(ζ( t, z) -v( t, ȳ)) -E(ξ( t, z) -u( t, x))dz + |e A tp ε | x ȳ E(ξ( t, z) -u( t, x))dz + |e A tp ε | D+ȳ D+x E(ξ( t, z) -u( t, x))dz + o γ (1). (4.20)

4.Viscosity Solutions

We define

A = z ∈ R : Ẽ ζ( t, z) -v( t, ȳ) ≤ E ξ( t, z) -u( t, x) .
The inequality ϕ( t, x, ȳ) ≥ ψ( t, z, z) yields

ζ( t, z) -v( t, ȳ) ≥ ξ( t, z) -u( t, x) + e A t (x -ȳ) 2 2ε + γ x2 2 -γ z 2 2 .
This implies that

A c ⊂ {|z| ≥ R ε,γ } with R 2 ε,γ = 2 γ (x -ȳ) 2 2ε + γ x2 2 . Moreover Rε,γ = R ε,γ -|ȳ| → +∞ as γ → 0 (see Da Lio et al. in [DLFM08, Lemma 2.5]). This implies that D+ȳ ȳ Ẽ(ζ( t, z) -v( t, ȳ))dz = [ȳ,D+ȳ)∩A Ẽ(ζ( t, z) -v( t, ȳ))dz + [ȳ,D+ȳ)∩A c Ẽ(ζ( t, z) -v( t, ȳ))dz.
However, from Remark 3.6, we have that for γ small enough 0

≤ [ȳ,D+ȳ)∩A c -Ẽ(ζ( t, z) -v( t, ȳ])dz = [ȳ,D+ȳ]∩{|z|≥Rε,γ } -Ẽ(ζ( t, z) -v( t, ȳ))dz = [0,D]∩{|z+ȳ|≥Rε,γ } -Ẽ(ζ( t, z + ȳ) -v( t, ȳ))dz ≤ [0,D]∩{|z|≥ Rε,γ } -Ẽ(ζ( t, z + ȳ) -v( t, ȳ))dz = 0.
We deduce that for γ small enough,

D+ȳ ȳ Ẽ(ζ( t, z) -v( t, ȳ))dz ≤ D+ȳ ȳ E(ξ( t, z) -u( t, x))dz.
Then for γ small enough (4.20) implies

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε ≤ e A tp ε x ȳ E(ξ( t, z) -u( t, x))dz + D+ȳ D+x E(ξ( t, z) -u( t, x))dz + o γ ≤2αe A t (x -ȳ) 2 ε + o γ .
Choosing A = 4α, we get a contradiction.

Step 4: viscosity inequalities in the case Φ( t, x, ȳ) = ψ( t, x, ȳ). By duplication of the time variable and passing to the limit, we have that there exist two real numbers a, b ∈ R such that

a -b = η (T -t) 2 + Ae A t (x -ȳ) 2 2ε + γ x2 2 (4.21) a + L(x, ξ( t, x), [u( t, •)])(x) • |e A t(p ε + γ x)| ≤ 0 (4.22) b + L(ȳ, ξ( t, ȳ), [u( t, •)])(ȳ) • |e A tp ε | ≥ 0 (4.23)
with p ε = x-ȳ ε . Combining (4.21), (4.22) and (4.23), we obtain that

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε ≤|e A tp ε | L(ȳ, ξ( t, ȳ), [u( t, •)])(ȳ) -L(x, ξ( t, x), [u( t, •)])(x) + o γ . ( 4.24) 
We recall that we defined L and L using K and V (see (3.11) and (3.12)). Therefore, we can see that the right part of inequality (4.24) is finite (using Remark 3.6). We distinguish two cases.

Case 1: there exists a subsequence γ n such that |x -ȳ| ε → 0 as n → +∞.

In this case, taking γ to zero in (4.24) yields a contradiction.

Case 2: there exists a constant C ε > 0, such that for any γ small enough we have

|x -ȳ| ε ≥ C ε .
To simplify, we introduce

L = L(x, ξ( t, x), u[( t, •)])(x) L = L(ȳ, ζ( t, ȳ), [v( t, •)])(ȳ), K = K(ξ( t, x), [u( t, •)])(x) K = K(ζ( t, ȳ), [v( t, •)])(ȳ), N = N (ξ( t, x), [u( t, •)])(x) Ñ = Ñ (ζ( t, ȳ), [v( t, •)])(ȳ).
As above, we can prove K -K ≤ |x -ȳ| and N -Ñ ≤ |x -ȳ|.

4.Viscosity Solutions

We have that

L -L = α K -2V Ñ + K φ ȳ -K -L ≤ α (K + |x -ȳ|) -2V Ñ + K + |x -ȳ| φ (ȳ -K -|x -ȳ|) -L ≤ α (K + |x -ȳ|) -2V (N + K) φ (ȳ -K -|x -ȳ|) -L ≤ α|x -ȳ| + 2V (N + K) (φ (x -K) -φ (ȳ -K -|x -ȳ|)) ≤ α|x -ȳ| + 2 ||V || ∞ ||φ || ∞ |x -ȳ|, (4.25) 
where we have used for the first inequality the monotonicity (see Remark 2.2). The monotonicity of V yields the second inequality. The third and the final inequalities come from the definition of L and the fact that φ is a Lipschitz function and that V is bounded. Finally, combining (4.25) with (4.24), we obtain

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε ≤ e A t (x -ȳ) 2 ε (α + 2 ||V || ∞ ||φ || ∞ ) + o γ (1). (4.26) Taking A = 2 (α + 2 ||V || ∞ ||φ || ∞ )
, we get a contradiction in (4.26). The proof of Proposition 4.9 is now complete.

We now give a comparison principle on bounded sets, to do this, we define for a given point (t 0 , x 0 ) ∈ (0, T ) × R and for r, R > 0, the set

Q r,R (t 0 , x 0 ) = (t 0 -r, t 0 + r) × (x 0 -R, x 0 + R).
Proposition 4.10 (Comparison principle on bounded sets for (4.12)). Assume (A). Let (u, ξ) be a sub-solution of (4.12) and let (v, ζ) be a super-solution of (4.12) on the open set Q r,R ⊂ (0, T ) × R. We assume that u and ξ (resp. v and ζ) are upper semi-continuous (resp. lower semi-continuous) on Q r,R . Also assume that

u ≤ v and ξ ≤ ζ outside Q r,R , then u ≤ v and ξ ≤ ζ on Q r,R .
Applying Perron's method (see [IMR08, Proof of Theorem 6], [START_REF] Alvarez | Viscosity solutions of nonlinear integro-differential equations[END_REF] or [START_REF] Imbert | A non-local regularization of first order hamilton-jacobi equations[END_REF] to see how to apply Perron's method for problems with non-local terms), joint to the comparison principle, we obtain the following result. Theorem 4.11 (Existence and uniqueness of viscosity solutions for (4.12)). Assume (A0) and (A). Then, there exists a unique solution (u, ξ) of (4.12). Moreover, the functions u and ξ are continuous and there exists a constant K 1 > 0 such that

u 0 (x) -K 1 t ≤ u(t, x) ≤ u 0 (x) + K 1 t and ξ 0 (x) -K 1 t ≤ ξ(t, x) ≤ ξ 0 (x) + K 1 t. (4.27)

Control of the oscillations for (4.12)

We now present a theorem that provides a control on the oscillations in space of the solution of (4.12). This is a very important theorem, first because it will allow us to prove Theorem 3.5 and also because it presents some of the arguments we use later to build the correctors at the junction. Theorem 4.12 (Control of the space oscillations). Let T > 0. Assume (A0)-(A) and let (u, ξ) be the solution of (4.12) provided by Theorem 4.11. Then for all x, y ∈ R, x ≥ y and for all t ∈ [0, T ], we have

-k 0 (x -y) -1 ≤ u(t, x) -u(t, y) ≤ 0 (4.28)
and

-k 0 (x -y) -1 ≤ ξ(t, x) -ξ(t, y) ≤ 0, (4.29) 
with k 0 defined in (A0).

Proof. We use the following notation,

Ω = {(t, x, y) ∈ [0, T ] × R × R s.t. x ≥ y} .
Proof of the upper bound. We introduce M = sup (t,x,y)∈Ω max (u(t, x) -u(t, y), ξ(t, x) -ξ(t, y)) .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test functions. For η, γ > 0 small parameters, we define

ϕ(t, x, y) = u(t, x) -u(t, y) - η T -t -γx 2 -γy 2 and ψ(t, x, y) = ξ(t, x) -ξ(t, y) - η T -t -γx 2 -γy 2 .
We denote by Φ(t, x, y) = max (ϕ(t, x, y), ψ(t, x, y)). For x ≥ y, using (4.27) and (A0) we have

ϕ(t, x, y) ≤ u 0 (x) -u 0 (y) + 2K 1 T - η T -t -γx 2 -γy 2 ≤ 2K 1 T -γx 2 -γy 2 208 4.Viscosity Solutions ψ(t, x, y) ≤ ξ 0 (x) -ξ 0 (y) + 2K 1 T - η T -t -γx 2 -γy 2 ≤ 2K 1 T -γx 2 -γy 2 .
Therefore, we deduce

lim |x|,|y|→+∞ Φ(t, x, y) = -∞.
Since ϕ, ψ are upper semi continuous, Φ reaches a maximum on Ω at a point that we denote by ( t, x, ȳ). Classically we have for η and γ small enough

     0 < M 2 ≤ Φ( t, x, ȳ),
γ|x|, γ|ȳ| → 0 as γ → 0.

Step 2: t > 0 and x > ȳ. By contradiction, assume first that t = 0. For instance, we assume that Φ( t, x, ȳ) = ϕ( t, x, ȳ). In this case, we have that

η T ≤ u 0 (x) -u 0 (ȳ) ≤ 0,
where we have used the fact that u 0 is non increasing, and we get a contradiction. In the same way, we get a contradiction if Φ( t, x, ȳ) = ψ( t, x, ȳ). The fact that x > ȳ is obtained directly using that Φ( t, x, ȳ) > 0.

Step 3: viscosity inequalities in the case Φ( t, x, ȳ) = ϕ( t, x, ȳ). By duplication of the time variable and passing to the limit we get that

η T 2 ≤ η (T -t) 2 ≤ -M (u( t, x), [ξ( t, •)])(x) • |2γ x|, (4.30) 
where we have used the fact that M (u( t, ȳ), [ξ( t, •)])(ȳ) ≤ 0. Using Remark 3.6, we have that -M (u( t, x), [ξ( t, •)])(x) is bounded. Taking γ to zero, we get a contradiction in (4.30).

Step 4: viscosity inequalities in the case Φ( t, x, ȳ) = ψ( t, x, ȳ). By duplication of the time variable and passing to the limit we get that

η (T -t) 2 ≤ L(ȳ, ξ( t, ȳ), [u( t, •)])(ȳ)|2γ ȳ| -L(x, ξ( t, x), [u( t, •)])(x)|2γ x| ≤ 2M 0 (|γ x| + |γ ȳ|)
where we have used the bounds on L and L (see Remark 3.6). Taking γ to zero, we get a contradiction.

Proof of the lower bound. In order to prove our result, we will use the following lemma which proof is postponed.

Lemma 4.13. For all (t, x) ∈ [0, T ] × R, we have

0 ≤ ξ(t, x) -u(t, x) ≤ 1. (4.31) 
Now we would like to prove that for all ε > 0,

M = sup (t,x,y)∈Ω {ξ(t, y) -u(t, x) -(k 0 + ε)(x -y) -1} ≤ 0. (4.32)
In fact, if (4.32) is true, then taking ε to 0 and using (4.31) we directly obtain the lower inequalities in (4.28) and (4.29). We argue by contradiction and assume that M > 0.

Step 1: the test function. For η, γ > 0 small parameters, we define

ϕ(t, x, y) = ξ(t, y) -u(t, x) -(k 0 + ε)(x -y) -1 - η T -t -γx 2 .
Using (A0) and (4.27), we obtain that

ϕ(t, x, y) ≤ ξ 0 (y) -u 0 (x) + 2K 1 T -(k 0 + ε)(x -y) -1 - η T -t -γx 2 ≤ 1 + k 0 (x -y) + 2K 1 T -(k 0 + ε)(x -y) -1 - η T -t -γx 2 ≤ 2K 1 T -γx 2 -ε(x -y).
Therefore, we have that for (t, x, y)

∈ Ω lim |x|,|y|→+∞ ϕ(t, x, y) = -∞.
Since ϕ is upper semi continuous, ϕ reaches a maximum on Ω at a point that we denote by ( t, x, ȳ). Classically we have for η and γ small enough

     0 < M 2 ≤ ϕ( t, x, ȳ), γ|x| → 0 as γ → 0.
Step 2: t > 0 and x > ȳ. By contradiction, assume first that t = 0. Using (A0), we get a contradiction writing that

η T < ξ 0 (ȳ) -u 0 (x) -(k 0 + ε)(x -ȳ) -1 ≤ 1 + k 0 (x -ȳ) -(k 0 + ε)(x -ȳ) -1 ≤ 0.
If we assume that x = ȳ then, using the fact that ϕ( t, x, ȳ) > 0, we get that

0 < ξ( t, x) -u( t, x) -1 - η T - t ≤ 1 -1 - η T = - η T .
This inequality yields a contradiction.

4.Viscosity Solutions

Step 3: viscosity inequalities. By duplication of the time variable and passing to the limit we get that

η (T -t) 2 ≤ M (u(t, x), [ξ(t, •)])(x) • |2γ x + k 0 + ε| -L(ȳ, ξ( t, ȳ), [u( t, •)])(ȳ) • |k 0 + ε| ≤ -L(ȳ, ξ( t, ȳ), [u( t, •)])(ȳ) • |k 0 + ε|,
where we have used the fact that M (u( t, x), [ξ( t, •)])(x) ≤ 0. We replace L by its definition (3.16) and using (3.17), we have

η (T -t) 2 ≤ 2V N (ξ( t, ȳ), [u( t, •)])(ȳ) |k 0 + ε|. (4.33)
Now we want to prove that N (ξ( t, ȳ), [u( t, •)])(ȳ) ≤ h 0 . Indeed, if it is true, we will get a contradiction in (4.33) because V (h) = 0 ∀h ≤ h 0 . Let then z > h 0 . If ȳ + z ≥ x, then using that u( t, .) is non increasing, we get that

u( t, ȳ + z) -ξ( t, ȳ) ≤ u( t, x) -ξ( t, ȳ) < -k 0 (x -ȳ) -1 < -1.
If ȳ + z < x, using the fact that ϕ( t, x, ȳ + z) ≤ ϕ( t, x, ȳ), we obtain

ξ( t, ȳ + z) -ξ( t, ȳ) < -k 0 z ≤ -1.
Using Lemma 4.13, we get that u( t, ȳ + z) -ξ( t, ȳ) < -1. We deduce that I(u( t, ȳ + z)ξ( t, ȳ)) = 0 for z ≥ h 0 and so N (ξ( t, ȳ), [u( t, .)])(ȳ) ≤ h 0 .

We now turn to the proof of Lemma 4.13.

Proof of Lemma 4.13. The proof is divided into several steps.

Step 1: proof of the lower bound. We introduce

M = sup (t,x)∈[0,T ]×R {u(t, x) -ξ(t, x)} .
We want to prove that M ≤ 0 and argue by contradiction by assuming that M > 0.

Step 1.1: the test function. Let η, γ be small parameters, and A a constant to be chosen later. We introduce

ϕ(t, x, y) = u(t, x) -ξ(t, y) - η T -t -e At (x -y) 2 2ε -γx 2 .
Classically, ϕ reaches a maximum on [0, T ] × R × R at ( t, x, ȳ) and we have for η, γ small enough,

           0 < M 2 ≤ ϕ( t, x, ȳ), γ x → 0 as γ → 0, |x -ȳ| → 0 as ε → 0.
Step 1.2: t > 0 for ε small enough. We assume by contradiction that t = 0. We have that

0 < u 0 (x) -ξ 0 (ȳ) - η T ≤ k 0 |x -ȳ| - η T .
Taking ε small enough, we get a contradiction.

Step 1.3: viscosity inequalities. By duplication of the time variable and passing to the limit, we get that

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε ≤ e A t x - ȳ ε L(ȳ, ξ( t, ȳ), [u( t, •)])(ȳ) -M (u( t, x), [ξ( t, •)])(x) + o γ (1) ≤ e A t x - ȳ ε α K(ξ( t, ȳ), [u( t, •)])(ȳ) -M (u( t, x), [ξ( t, •)])(x) +o γ (1), (4.34) 
where we have used the fact that V ≥ 0. We claim that

-M (u( t, x), [ξ( t, •)])(x) ≤ α|x -ȳ| and K(ξ( t, ȳ), [u( t, •)])(ȳ) ≤ |x -ȳ|. (4.35) 
Indeed, for z > |x -ȳ|, using that ξ( t, •) is non increasing and that ϕ( t, x, ȳ) > 0, we have that

ξ( t, x + z) -u( t, x) ≤ ξ( t, ȳ) -u( t, x) < 0.
Therefore, using the definition of E we obtain that (for ε small enough such that |x -ȳ| ≤ D)

-M (u( t, x), [ξ( t, •)])(x) = - |x-ȳ| 0 E(ξ( t, x + z) -u( t, x))dz ≤ α|x -ȳ|.

4.Viscosity Solutions

Similarly, using the fact that u( t, •) is non increasing, for all z > |x -ȳ|, we have that

u( t, ȳ -z) -ξ( t, ȳ) ≥ u( t, x) -ξ( t, ȳ) > 0. Therefore, K(ξ( t, ȳ), [u( t, •)])(ȳ) = |x-ȳ| 0 F (u( t, ȳ -z) -ξ( t, ȳ))dz ≤ |x -ȳ|.
This ends the proof of (4.35). Injecting (4.35) into (4.34), we get that

η (T -t) 2 + Ae A t (x -ȳ) 2 2ε ≤ 2αe A t (x -ȳ) 2 ε + o γ (1).
Taking A = 4α, we get a contradiction for γ small enough.

Step 2: proof of the upper bound. We introduce

M = sup (t,x)∈[0,T ]×R {ξ(t, x) -u(t, x) -1} .
We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Let η, γ be small parameters. We consider

ϕ(t, x, y) = ξ(t, x) -u(t, y) -1 - η T -t - (x -y) 2 2ε -γx 2 .
Classically, ϕ reaches a maximum on [0, T ] × R × R at ( t, x, ȳ) and we have the following result for η and γ small enough

           0 < M 2 ≤ ϕ( t, x, ȳ), |γ x| → 0 as γ → 0, |x -ȳ| → 0 as ε → 0. (4.36)
As in the previous Step 1.2, we get that t > 0. By duplication of the time variable and passing to the limit we then get that

η (T -t) 2 ≤ M (u( t, ȳ), [ξ( t, •)])(ȳ) -L(x, ξ( t, x), [u( t, •)])(x) x - ȳ ε + o γ (1) ≤ 2V N (ξ( t, x), [u( t, •)])(x) x - ȳ ε + o γ (1), (4.37) 
where we have used the fact that M ≤ 0 and (3.17). We want to prove that N (ξ( t, x), [u( t, •)])(x) ≤ h 0 . In fact for all z ≥ h 0 , we have that x + z > ȳ for ε small enough, so using that ϕ( t, x, ȳ) > 0 we get that

u( t, x + z) -ξ( t, x) ≤ u( t, ȳ) -ξ( t, x) < -1.
We deduce that N (ξ( t, x), [u( t, .)])(x) = h 0 0 I(u( t, x + z) -ξ( t, x))dz ≤ h 0 . Using that V (h) = 0 for h ≤ h 0 , we get a contradiction in (4.37) for γ small enough.

Effective Hamiltonian and effective flux-limiter

In this section we provide a justification for the definition of the effective Hamiltonian H provided in (2.4), we use the following proposition.

Proposition 5.1. (Homogenization left and right of the perturbation) . Assume (A). Then

for every p ∈ [-k 0 , 0], there exists a unique λ ∈ R, such that there exists a bounded solution (w, χ) of

   M p (w(x), [χ]) (x)|p + w x | = λ αK p (χ(x), [w]) (x) -2V N p (χ(x), [w]) (x) + K p (χ(x), [w]) (x) |p + χ x | = λ x ∈ R (5.1) Moreover, for p ∈ [-k 0 , 0], we have λ = H(p) = -V -1 p |p|.
Proof. We claim that (w, χ) = 0, -p α V -1 p is a solution of (5.1) for λ = -|p|V -1 p .

-If p = 0, the result is obvious.

-

If p ∈ [-k 0 , 0), since -p α V -1 p + pz ≥ 0 if and only if z ∈ [0, V (-1/p) /α], then we have M p (w(x), [χ]) (x) = D 0 E - p α V -1 p + pz dz = -V -1 p , ( 5.2) 
we recall that D = h max +3V max /(2α)+2r/φ 0 . Similarly, for all z > 0, we have

p α V -1 p - pz < 0 if and only if z < V (-1/p) /α, then K p (χ(x), [w]) (x) = D 0 F p α V -1 p -pz dz = 1 α V -1 p .
(5.3) 214
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Finally, by definition we have that

N p (χ(x), [w]) (x) = D 0 I p α V -1 p + pz dz.
First, notice that thanks to assumption (A7), for all p ∈ [-k 0 , 0), we have

1 α V -1 p + 1 p < 0. Moreover, p α V -1 p + pz > -1 for z < -1 α V -1 p - 1 p
. We distinguish two cases.

Case 1:

-

1 α V -1 p - 1 p ≤ D.
In this case, we have

N p (χ(x), [w]) (x) = -1 α V -1 p - 1 p and N p (χ(x), [w]) (x) + K p (χ(x), [w]) (x) = - 1 p . ( 5.4) Finally, using (5.2), (5.3), and (5.4) 
, we obtain our desired result.

Case 2:

-

1 α V -1 p - 1 p > D.
In particular we have -1/p ≥ h max . Therefore, we have

N p (χ(x), [w]) (x) = D and K p (χ(x), [w]) (x) = V max α ,
this implies that

N p (χ(x), [w]) (x) + K p (χ(x), [w]) (x) = D + V max α > h max .
Combining this result to (5.3), we obtain

αK p (χ(x), [w]) (x) -2V N p (χ(x), [w]) (x) + K p (χ(x), [w]) (x) |p| = -V max |p| = -V -1 p • |p|.
(5.5) Using (5.2) and (5.5), we obtain our desired result. The uniqueness of λ is classical and we skip it. The proof is now complete.

In order to obtain an homogenization result, we need to find the effective flux-limiter. That is why we consider the following cell problem: find λ ∈ R such that there exists a solution (w, χ) of the following Hamilton-Jacobi equation, for x ∈ R,

M (w(x), [χ(•)]) • |w x | = λ L (x, χ(x), [w(•)]) (x) • |χ x | = λ. ( 6.1) 
In this section we present a result of existence of correctors for the junction, which will be used for the proof of Theorem 3.2. We use the following notation: given A ∈ R, A ≥ H 0 , we define two real numbers p -and p + defined by

H(p + ) = H + (p + ) = H(p -) = H -(p -) = A. (6.2)
Given the form of H, there exists only one couple of real numbers satisfying (6.2).

Theorem 6.1 (Existence of global corrector for the junction). Assume (A). i) (General properties) There exists a constant

A ∈ [H 0 , 0] such that there exists a solution (w, χ) of (6.1) with λ = A and such that there exists a constant C > 0 and a globally Lipschitz continuous function m such that for all x ∈ R,

|w(x) -m(x)| ≤ C and |χ(x) -m(x)| ≤ C. ( 6.3) 
ii) (Bound from below at infinity) If A > H 0 , then there exists a γ 0 > 0 such that for every γ ∈ (0, γ 0 ), we have for all x ≥ r + V max /α and h ≥ 0,

w(x + h) -w(x) ≥ (p + -γ)h, χ(x + h) -χ(x) ≥ (p + -γ)h (6.4)
and for x ≤ -r -V max /α and h ≥ 0,

w(x -h) -w(x) ≥ (-p --γ)h, χ(x -h) -χ(x) ≥ (-p --γ)h. ( 6.5) 
(iii) (Rescaling) For ε > 0, we set

w ε (x) = εw x ε and χ ε (x) = εχ x ε ,
then (up to a sub-sequence ε n → 0) we have that w ε and χ ε converge locally uniformly towards a function W which satisfies

|W (x) -W (y)| ≤ C|x -y| for all x, y ∈ R, H(W x ) = A for all x = 0. (6.6)
In particular, we have (with W (0) = 0),

W (x) = p + x1 {x>0} + p -x1 {x<0} . (6.7)
The proof of this theorem is postponed until Section 8.

This section is devoted to the proof of Theorem 3.2 which relies on the existence of correctors provided by Proposition 5.1 and Theorem 6.1. We will use the following lemmas, the first one being a direct consequence of Theorem 4.11.

Lemma 7.1. (Barriers uniform in ε). Assume (A0) and (A). There exist a constant K 1 > 0 such that for all t ≥ 0 and x ∈ R, we have

|u ε (t, x) -u 0 (x)| ≤ K 1 t and |ξ ε (t, x) -ξ 0 (x)| ≤ K 1 t (7.1)
The following lemma is a direct consequence of Theorem 4.12.

Lemma 7.2. (Uniform gradient bound). Assume (A0) and (A)

. Then the solution (u ε , ξ ε ) of (3.3) satisfies for all t ≥ 0, for all x, y ∈ R, x ≥ y,

-k 0 (x -y) -ε ≤ u ε (t, x) -u ε (t, y) ≤ 0, -k 0 (x -y) -ε ≤ ξ ε (t, x) -ξ ε (t, y) ≤ 0. (7.2)
Before passing to the proof of Theorem 3.2, let us mention that Theorem 3.5 is a direct consequence of this result joint to Theorem 3.2.

We now turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. We introduce

u(t, x) = lim sup ε→0 * u ε ξ(t, x) = lim sup ε→0 * ξ ε , u(t, x) = lim inf ε→0 * u ε ξ(t, x) = lim inf ε→0 * ξ ε , and v = max u, ξ v = min u, ξ .
We want to prove that v is a sub-solution of (2.7) and that v is a super-solution of (2.7). Indeed, in this case, the comparison principle will imply that v ≤ v. But by construction v ≤ v, hence v = v = u 0 , the unique solution of (2.7). This implies that u = u = ξ = ξ = u 0 and so u ε and ξ ε converge locally uniformly to u 0 . To prove that v is a sub-solution of (2.7), we argue by contradiction and assume that there is a point ( t, x) ∈ (0, +∞) × R and a test function

ϕ ∈ C 1 (J ∞ ) such that              v( t, x) = ϕ( t, x), v ≤ ϕ on Q r,r ( t, x) with r > 0, v ≤ ϕ -2η outside Q r,r ( t, x) with η > 0, ϕ t ( t, x) + H x, ϕ x ( t, x) = θ > 0, (7.3) where H x, ϕ x ( t, x) =    H ϕ x ( t, x) if x = 0 F A ϕ x ( t, 0 -), ϕ x ( t, 0 + ) if x = 0.
We can assume that for ε small enough (up to changing ϕ at infinity), we have

u ε , ξ ε ≤ ϕ -η outside Q r,r ( t, x). (7.4) 
Using Lemmas 7.1 and 7.2 we get that the functions u and ξ satisfy for all t > 0,

|u(t, x) -u 0 (x)| ≤ K 1 t and |ξ(t, x) -ξ 0 (x)| ≤ K 1 t for all x ∈ R, (7.5) 
and for x ≥ y,

-k 0 (x -y) ≤ u(t, x) -u(t, y) ≤ 0 and -k 0 (x -y) ≤ ξ(t, x) -ξ(t, y) ≤ 0. (7.6) 
We distinguish two cases.

Case 1: x = 0. We only consider the case x > 0, since the other case (x < 0) is treated in the same way. We define p = ϕ x ( t, x), that according to (7.6), satisfies

-k 0 ≤ p ≤ 0 (7.7)
We choose r small enough so that x -2r > 0. We introduce

ψ ε (t, x) = ϕ(t, x) -ε p α V -1 p .
We have the following lemma.

Lemma 7.3. (ϕ, ψ ε ) satisfies, in the viscosity sense, the inequality

           ϕ t + M ε ϕ ε (t, x), ψ ε ε (t, •) (x) • |ϕ x | ≥ θ 2 ψ ε t + Lε x ε , ψ ε ε (t, x), ϕ ε (t, •) (x) • |ψ ε x | ≥ θ 2 on Q r,r ( t, x). (7.8)

7.Proof of convergence

Proof of Lemma 7.3. For all (t, x) ∈ Q r,r ( t, x), we have for r small enough

ϕ t (t, x) + M ε ϕ ε (t, x), ψ ε ε (t, •) (x) • |ϕ x (t, x)| =ϕ t ( t, x) + o r(1) + M ε ϕ ε (t, x), ψ ε ε (t, •) (x) • |p| =θ + o r(1) + M ε ϕ ε (t, x), ψ ε ε (t, •) (x) • |p| -H(p) =:∆
where we have used for the first equality the regularity of the test function ϕ and the fact that the non-local operator M ε is bounded (see Remark 3.6) and (7.3) for the second equality.

If p = 0, we obtain directly our result. We then assume that p ∈ [-k 0 , 0). For all D ≥ z ≥ 0, and for ε and r small enough we have that

ψ ε (t, x + ε.z) -ϕ(t, x) ε ≤ pz - p α V -1 p + o r(1) + o ε (1),
where we have used the fact that ϕ ∈ C 1 . Now using the fact that Ẽ is non increasing, we have Ẽ

ψ ε (t, x + ε.z) -ϕ(t, x) ε ≥ Ẽ pz - p α V -1 p + o r(1) + o ε (1) . (7.9)
Moreover, we have that

pz - p α V -1 p + o r(1) + o ε (1) ≥ 0 iff z ≤ 1 α V -1 p + o r(1) + o ε (1).
We deduce that

M ε ϕ ε (t, x), ψ ε ε (t, •) (x) ≥ D 0 Ẽ pz - p α V -1 p + o r(1) + o ε (1) dz ≥ -V - 1 p + o r(1) + o ε (1).
(7.10) Using (7.9),(7.10) and the definition of H, we have for r and ε small enough,

∆ ≥ θ + o r(1) -V -1 p |p| + o r(1) + o ε (1) + V -1 p |p| = θ + o r(1) + o ε (1) ≥ θ 2 .
We now prove the second inequality in (7.8). Let us notice that for ε small enough, using the fact that the non-local operator Kε is bounded (see Remark 3.6) and the definition of φ, we have that

φ x ε -Kε ψ ε ε (t, x), ϕ ε (t, •) (x) = 1 for all (t, x) ∈ Q r,r ( t, x).
For all (t, x) ∈ Q r,r ( t, x), we have for r small enough

ψ ε t (t, x) + Lε x ε , ψ ε ε (t, x), ϕ ε (t, •) (x)|ψ ε x (t, x)| =ϕ t (t, x) + Lε x ε , ψ ε ε (t, x), ϕ ε (t, •) (x)|ϕ x (t, x)| =θ + o r(1) + Lε x ε , ψ ε ε (t, x), ϕ ε (t, •) (x)|p| -H(p) =:∆
If p = 0, we obtain directly our result. We then assume that p ∈ [-k 0 , 0). For all D ≥ z ≥ 0, and for ε and r small enough we have that

ϕ(t, x -εz) -ψ ε (t, x) ε ≤ -pz + p α V -1 p + o r(1) + o ε (1).
Now, using the fact that F is non increasing, we have that

D 0 F -pz + p α V -1 p + o r(1) + o ε (1) dz ≤ Kε ψ ε ε (t, x), ϕ ε (t, •) (x)
which yields that

1 α V -1 p + o r(1) + o ε (1) ≤ Kε ψ ε ε (t, x), ϕ ε (t, •) (x). (7.11) We now compute Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x).
As above, and using the fact that Ĩ is non decreasing, we have

Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x) ≤ D 0 Ĩ pz + p α V -1 p + o r(1) + o ε (1) dz.
(7.12)

7.Proof of convergence

We notice that thanks to assumption (A7), for all p ∈ [-k 0 , 0) we have

1 p + 1 α V -1 p < 0. Using that pz + p α V -1 p + o r(1) + o ε (1) > -1 if and only if z < - 1 p - 1 α V -1 p + o r(1) + o ε (1)
, we have distinguish two cases.

First case:

-

1 p - 1 α V -1 p + o r(1) + o ε (1) ≤ D. In this case, Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x) ≤ D 0 Ĩ pz + p α V -1 p + o r(1) + o ε (1) dz ≤ - 1 p - 1 α V -1 p + o r(1) + o ε (1). (7.13) Then, ∆ ≥θ + o r(1) + Lε x ε , ψ ε ε (t, x), ϕ ε (t, •) (x)|p| -H(p) ≥θ + o r(1) + α Kε ψ ε ε (t, x), ϕ ε (t, •) (x) -2V Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x) + Kε ψ ε ε (t, x), ϕ ε (t, •) (x) + V -1 p |p| ≥θ + o r(1) + V -1 p + o r(1) + o ε (1) -2V Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x) + 1 α V -1 p + o r(1) + o ε (1) + V -1 p |p| ≥θ + o r(1) + V -1 p |p| + o r(1) + o ε (1) -2V -1 p + o r(1) + o ε (1) |p| + V -1 p |p| ≥θ + o r(1) + o ε (1) ≥ θ 2 ,
where we have used the definition of Lε for the second inequality, (7.11) combined with assumption (A7) (see Remark 2.2) for the third inequality, (7.13) combined with the fact that V is non-decreasing for the fourth inequality and the fact V is a Lipschitz continuous function for the last inequality.

Second case:

-

1 p - 1 α V -1 p + o r(1) + o ε (1) > D.
In particular, by definition of D, we have -1/p ≥ h max for ε and r small enough. Then using (7.11) and the definition of Ñ ε , we obtain

Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x) ≤ D and V max α + o r(1) + o ε (1) ≤ Kε ψ ε ε (t, x), ϕ ε (t, •) (x).
Using assumption (A7) (see Remark 2.2) and the previous inequalities, we get, using the definition of Lε , that

Lε x ε , ψ ε ε (t, x), ϕ ε (t, •) (x) = α Kε ψ ε ε (t, x), ϕ ε (t, •) (x) -2V Ñ ε ψ ε ε (t, x), ϕ ε (t, •) (x) + Kε ψ ε ε (t, x), ϕ ε (t, •) (x) ≥V max + o r(1) + o ε (1) -2V D + V max α + o r(1) + o ε (1) ≥ -V max + o r(1) + o ε (1).
Therefore, we have

∆ ≥θ + o r(1) -V max |p| + o r(1) + o ε (1) + V -1 p |p| ≥θ + o r(1) + o ε (1) ≥ θ 2 ,
where we have used assumption (A4) (V (h) = V max ∀h ≥ h max ) and that -1/p ≥ h max . This ends the proof of Lemma 7.3.

Getting a contradiction. Using (7.4), we have for ε small enough,

u ε ≤ ϕ -η and ξ ε ≤ ψ ε -η outside Q r,r ( t, x).
Using the comparison principle on bounded subsets for (3.3), we get

u ε ≤ ϕ -η and ξ ε ≤ ψ ε -η on Q r,r ( t, x).
Passing to the limit as ε → 0, we get u ≤ ϕ -η and ξ ≤ ϕ -η on Q r,r ( t, x) and this contradicts the fact that v( t, x) = max u( t, x), ξ( t, x)) = ϕ( t, x).

7.Proof of convergence

Case 2: x = 0. Using Theorem 4.11, we may assume that the test function has the following form

ϕ(t, x) = g(t) + p -x1 {x<0} + p + x1 {x>0} on Q 2r,2r ( t, 0), (7.14) 
where g is a C 1 function defined on (0, +∞). The last line in condition (7.3) then becomes

g ( t) + F A (p -, p + ) = g ( t) + A = θ.
Let us consider (w, ζ) the solution of (6.1) provided by Theorem 6.1. We define

ϕ ε (t, x) =    g(t) + w ε (x) on Q 2r,2r ( t, 0) ϕ(t, x) outside Q 2r,2r ( t, 0), (7.15) ψ ε (t, x) =    g(t) + ζ ε (x) on Q 2r,2r ( t, 0) ϕ(t, x) outside Q 2r,2r ( t, 0). (7.16) 
We have the following lemma, Lemma 7.4. (ϕ ε , ψ ε ) satisfies in the viscosity sence, for r and ε small enough on Q r,r ( t, 0) ,

           ϕ ε t + M ε ϕ ε ε (t, x), ψ ε ε (t, •) (x) • |ϕ ε x | ≥ θ 2 ψ ε t + Lε x ε , ψ ε ε (t, x), ϕ ε ε (t, •) (x) • |ψ ε x | ≥ θ 2 .
(7.17)

Proof of Lemma 7.4. Let h be a test function touching ϕ ε from below at (t 1 , x 1 ) ∈ Q r,r ( t, 0), so we have

w x 1 ε = 1 ε (h(t 1 , x 1 ) -g(t 1 ))
and

w(y) ≥ 1 ε (h(t 1 , εy) -g(t 1 )) ,
for y in a neighbourhood of x 1 ε . Since w does not depend on time, we have that

h t (t 1 , x 1 ) = g (t 1 ).
Using that (w, ζ) is a solution of (6.1), we then deduce that

h t (t 1 , x 1 ) -g (t 1 ) + M w x 1 ε , [ζ] x 1 ε • |h x (t 1 , x 1 )| ≥ A, which implies h t (t 1 , x 1 ) + M w x 1 ε , [ζ] x 1 ε • |h x (t 1 , x 1 )| ≥ A + g (t 1 ) ≥ θ 2 ,
i.e.

h t (t 1 , x 1 ) + M ε ϕ ε ε (t 1 , x 1 ), ψ ε ε (t 1 , •) (x 1 ) • |h x (t 1 , x 1 )| ≥ θ 2 . (7.18)
Let f be a test function touching ψ ε from below at (t 2 , x 2 ) ∈ Q r,r ( t, 0). We have

ζ x 2 ε = 1 ε (f (t 2 , x 2 ) -g(t 2 ))
and

ζ(y) ≥ 1 ε (f (t 2 , εy) -g(t 2 ))
for y in a neighbourhood of x 2 ε . Since ζ does not depend on time, we have that

f t (t 2 , x 2 ) = g (t 2 ).
Therefore, using that (w, ζ) is a solution of (6.1), we get

f t (t 2 , x 2 ) -g (t 2 ) + L x 2 ε , ζ x 2 ε , [w] x 2 ε • |f x (t 2 , x 2 )| ≥ A, which implies f t (t 2 , x 2 ) + L x 2 ε , ζ x 2 ε , [w] x 2 ε • |f x (t 2 , x 2 )| ≥ A + g t (t 2 ) ≥ θ 2 .
Now for ε small enough such that εD ≤ r, we deduce from the previous inequality and using the fact that we consider non-local operators with bounded support, that we have

f t (t 2 , x 2 ) + Lε x 2 ε , ψ ε ε (t 2 , x 2 ), ϕ ε ε (t 2 , •) (x 2 ) • |f x (t 2 , x 2 )| ≥ θ 2 .

8.Proof of the existence of correctors at the junction

Getting the contradiction. We have that for ε small enough

u ε + η ≤ ϕ = g(t) + p -x1 {x<0} + p + x1 {x>0} on Q 2r,2r ( t, 0)\Q r,r ( t, 0) ξ ε + η ≤ ϕ = g(t) + p -x1 {x<0} + p + x1 {x>0} on Q 2r,2r ( t, 0)\Q r,r ( t, 0).
Using the fact that w ε , ζ ε → W with W (x) = p-x1 {x<0} + p+ x1 {x>0} (see Theorem 6.1), we deduce that for ε small enough, we have

u ε + η 2 ≤ ϕ ε and ξ ε + η 2 ≤ ϕ ε on Q 2r,2r ( t, 0)\Q r,r ( t, 0).
Combining this with (7.15) and (7.16), we get that

u ε + η 2 ≤ ϕ ε and ξ ε + η 2 ≤ ϕ ε outside Q r,r ( t, 0).
By the comparison principle on bounded subsets the previous inequality holds in Q r,r ( t, 0). Passing to the limit as ε → 0 and evaluating the inequality in ( t, 0), we obtain

u( t, 0) + η 2 ≤ ϕ( t, 0) and ξ( t, 0) + η 2 ≤ ϕ( t, 0)
which is a contradiction with the fact that v( t, 0) = max u( t, 0), ξ( t, 0) = ϕ( t, 0).

Proof of the existence of correctors at the junction

This section contains the proof of Theorem 6.1. We proceed as in [2, GIM15] and we will construct correctors on a truncated domain and then pass to the limit as the size of the domain goes to infinity. For l ∈ (r, +∞), r << l and r ≤ R << l we want to find λ l,R ∈ R such that there exists a solution (w l,R , χ l,R ) of

                       G 1 R (x, w l,R (x), [χ l,R ], w l,R x ) = λ l,R G 2 R (x, χ l,R (x), [w l,R ], χ l,R x ) = λ l,R if x ∈ (-l, l) H + (w l,R x ) = λ l,R H + (χ l,R x ) = λ l,R if x = l H -(w l,R x ) = λ l,R H -(χ l,R x ) = λ l,R if x = -l (8.1)
with

G 1 R (x, w(x), [χ], q) = ψ R (x)M (w(x), [χ])(x)|q| + (1 -ψ R (x))H(q), (8.2) 
G 2 R (x, χ(x), [w], q) = ψ R (x)L (x, χ(x), [w]) (x)|q| + (1 -ψ R (x))H(q). (8.3) Moreover, ψ R ∈ C ∞ , ψ R : R → [0, 1], with ψ R ≡ 1 on [-R, R] 0 on (-∞, -R -1] ∪ [R + 1, +∞), and ψ R (x) < 1 ∀x / ∈ [-R, R]. (8.4)
As in the previous sections, to G 1,2 R we associate G1,2 R which is defined in the same way but we replace the non-local operators M and L respectively by M and L.

Comparison principle for a truncated problem

Proposition 8.1 (Comparison principle on a truncated domain). Let us consider the following problem for r < l 1 < l 2 and λ ∈ R, with l 2 >> R.

           G1 R (x, u(x), [ξ], u x ) ≥ λ G2 R (x, ξ(x), [u], ξ x ) ≥ λ if x ∈ (l 1 , l 2 ) H + (u x ) ≥ λ H + (ξ x ) ≥ λ if x = l 2 (8.5) 
and for ε 0 > 0,

           G 1 R (x, v(x), [ζ], v x ) ≤ λ -ε 0 G 2 R (x, ζ(x), [v], ζ x ) ≤ λ -ε 0 if x ∈ (l 1 , l 2 ) H + (v x ) ≤ λ -ε 0 H + (ζ x ) ≤ λ -ε 0 if x = l 2 (8.6) Then if v(l 1 ) ≤ u(l 1 ) and ζ(l 1 ) ≤ ξ(l 1 ), we have v ≤ u and ζ ≤ ξ in [l 1 , l 2 ].
Proof. Like in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], the only new difficulty to prove this proposition is the comparison at l 2 . But since near l 2 , the system decouples itself, we can prooceed as in [GIM15, Proposition

.

Remark 8.2. We have a similar result if we exchange the boundary conditions, that is to say for

l 1 < l 2 < -r and if for all x ∈ [l 2 , l 2 + D], v(x) ≤ u(x) and ζ(x) ≤ ξ(x)
, and the following conditions are imposed at x = l 1 ,

           H -(u x ) ≥ λ H -(ξ x ) ≥ λ if x = l 1 H -(v x ) ≤ λ -ε 0 H -(ζ x ) ≤ λ -ε 0 if x = l 1 .

Existence of correctors on a truncated domain Proposition 8.3 (Existence of correctors on a truncated domain).

There exists a constant λ l,R ∈ R such that there exists a solution (w l,R , χ l,R ) of (8.1) for which there exists a constant C (depending only on k 0 ) and a Lipschitz continuous function m l,R , such that

               H 0 ≤ λ l,R ≤ 0, |w l,R (x) -m l,R (x)| ≤ C for all x ∈ [-l, l], |χ l,R (x) -m l,R (x)| ≤ C for all x ∈ [-l, l], |m l,R (x) -m l,R (y)| ≤ C|x -y| for all x, y ∈ [-l, l], |w l,R (x) -χ l,R (x)| ≤ C for all x ∈ [-l, l],
(8.7)

with H 0 defined in (2.6).

Proof. Classically, we consider the approximated truncated cell problem,

                       δv δ + G 1 R (x, v δ (x), [ζ δ ], v δ x ) = 0 δζ δ + G 2 R (x, ζ δ (x), [v δ ], ζ δ x ) = 0 if x ∈ (-l, l) δv δ + H + (v δ x ) = 0 δζ δ + H + (ζ δ x ) = 0 if x = l δv δ + H -(v δ x ) = 0 δζ δ + H -(ζ δ x ) = 0 if x = -l.
(8.8)

Step Proof of the upper inequality. We want to prove that

M = sup (x,y)∈Ω max v δ (x) -v δ (y), ζ δ (x) -ζ δ (y) ≤ 0. (8.11)
We argue by contradiction and assume that M > 0. Since v δ and ζ δ are continuous and x, y belong to a compact, M is reached for a finite point that we denote by (x, ȳ) ∈ Ω.

Given that M > 0, we deduce that x = ȳ. Therefore, we can use the viscosity inequalities for (8.8).

Let us for instance assume that M = v δ (x) -v δ (ȳ), the other case is similar so we skip it. We distinguish 3 cases:

-If (x, ȳ) ∈ (-l, l), we have

δv δ (x) + G 1 R (x, v δ (x), [ζ δ ], 0) ≤ 0 δv δ (ȳ) + G1 R (ȳ, v δ (ȳ), [ζ δ ], 0) ≥ 0.
Combining these inequalities with the fact that G i R (x, U, [Ξ], 0) = 0 for i = 1, 2, we obtain δM ≤ 0.

-If x = l and ȳ ∈ [-l, l), we obtain similarly δM ≤ 0, (8.12) using the fact that H + (0) = 0.

-If x ∈ (-l, l] and ȳ = -l, we obtain δM ≤ H 0 < 0, where we have used the fact that H -(0) = H 0 < 0.

For every value of x, ȳ we obtain a contradiction, therefore M ≤ 0.

Proof of the lower inequalities. In order to proof these inequalities, we will use the following lemma which proof is postponed. Lemma 8.5. For all x ∈ [-l, l], we have

0 ≤ ζ δ (x) -v δ (x) ≤ 1.
(8.13)

In order to prove (8.10), using Lemma 8.5 it is sufficient to prove that

M = sup (x,y)∈Ω ζ δ (y) -v δ (x) -k 0 (x -y) -1 ≤ 0. (8.14)
We argue by contradiction and assume that M > 0. Since Ω is compact and v δ and ζ δ are continuous, M is reached for a finite point that we denote by (x, ȳ) ∈ Ω. Since M > 0, we deduce that x > ȳ (thanks to Lemma 8.5). Therefore, we can use the viscosity inequalities for (8.8). We distinguish 4 cases:

-If x, ȳ ∈ (-l, l), we obtain

δζ δ (ȳ) + G 2 R (ȳ, ζ δ (ȳ), [v δ ], -k 0 ) ≤ 0 δv δ (x) + G1 R (x, v δ (x), [ζ δ ], -k 0 ) ≥ 0,
combining these inequalities and using the definition of M , we obtain

δM ≤ δζ δ (ȳ) -δv δ (x) ≤ G1 R (x, v δ (x), [ζ δ ], -k 0 ) -G 2 R (ȳ, ζ δ (ȳ), [v δ ], -k 0 ). (8.15)
Since the non-local operator M is negative and that H(-k 0 ) = 0 we deduce that

G1 R (x, v δ (x), [ζ δ ], -k 0 ) ≤ 0. We now claim that G 2 R (ȳ, ζ δ (ȳ), [v δ ], -k 0 ) ≥ 0.
Using H(-k 0 ) = 0 and (3.17), we get that

G 2 R (ȳ, ζ δ (ȳ), [v δ ], -k 0 ) = L ȳ, ζ δ (ȳ), v δ (•) (ȳ) • k 0 ψ R (ȳ) ≥ -2k 0 V N ζ δ (ȳ), v δ (•) (ȳ) .
(8.16)

Let us now prove that N (ζ δ (ȳ), [v δ (•)])(ȳ) ≤ h 0 . In fact, it is sufficient to prove that for all z ∈ (h 0 , D], we have

v δ (ȳ + z) -ζ δ (ȳ) < -1.
(8.17)

First, if z ≥ xȳ, using the fact that v δ is non increasing and that M > 0, we obtain

v δ (ȳ + z) -ζ δ (ȳ) ≤ v δ (x) -ζ δ (ȳ) ≤ -k 0 (x -ȳ) -1 < -1.
Second, in the case z < xȳ, using the fact that

ζ δ (ȳ + z) -v δ (x) -k 0 (x -ȳ -z) -1 ≤ ζ δ (ȳ) -v δ (x) -k 0 (x -ȳ) -1,
and using Lemma 8.5 we deduce that

v δ (ȳ + z) -ζ δ (ȳ) ≤ -k 0 z < -1. (8.18) This implies that N (ζ δ (ȳ), [v δ (•)])(ȳ) ≤ h 0 . Using assumption (A3) (V (h = 0) if h ≤ h 0 )
and injecting this result in (8.16) we get that G 2 R (ȳ, ζ δ (ȳ), [v δ ], -k 0 ) ≥ 0. Using (8.15) we then get a contradiction.

δζ δ (ȳ) + H -(-k 0 ) ≤ 0 δv δ (x) + G1 R (x, v δ (x), [ζ δ ], -k 0 ) ≥ 0.
Using the fact that H -(-k 0 ) = 0 and that G1 R (x, v δ (x), [ζ δ ], -k 0 ) ≤ 0 we obtain δM ≤ 0. -If x = l and ȳ ∈ (-l, l), we obtain

δζ δ (ȳ) + G 2 R (ȳ, ζ δ (ȳ), [v δ ], -k 0 ) ≤ 0 δv δ (x) + H + (-k 0 ) ≥ 0, using that G 2 R (ȳ, ζ δ (ȳ), [v δ ],
-k 0 ) ≥ 0 (see the first case) , and the fact that H + (-k 0 ) < 0, we directly obtain δM ≤ 0.

-If x = l and ȳ = -l, we obtain

δζ δ (ȳ) + H -(-k 0 ) ≤ 0 δv δ (x) + H + (-k 0 ) ≥ 0,
and so, we get δM ≤ 0. For every value of x, ȳ ∈ [-l, l] we get a contradiction, therefore we have M ≤ 0. This ends the proof of Lemma 8.4.

Step 3: construction of a Lipschitz estimate. We want to construct a Lipschitz continuous function m δ , such that there exists a constant C > 0 (independent of l and R) such that

     |v δ (x) -m δ (x)| ≤ C for all x ∈ [-l, l], |ζ δ (x) -m δ (x)| ≤ C for all x ∈ [-l, l], |m δ (x) -m δ (y)| ≤ C|x -y| for all x, y ∈ [-l, l]. (8.19)
We define m δ as an affine function in each interval of the form [ih 0 , (i + 1)h 0 ], with i ∈ Z, such that m δ (ih 0 ) = v δ (ih 0 ) and m δ ((i + 1)h 0 ) = v δ ((i + 1)h 0 ). Since m δ and v δ are non-increasing, and |v δ ((i + 1)h 0 ) -v δ (ih 0 )| ≤ k 0 h 0 + 1 = 2, we deduce that for all x ∈ [ih 0 , (i + 1)h 0 ], Choosing C = max(2k 0 , 3), we obtain (8.19).

-2 ≤ v δ ((i + 1)h 0 ) -m δ (ih 0 ) ≤ v δ (x) -m δ (x) ≤ v δ (ih 0 ) -m δ ((i + 1)h 0 ) ≤ 2, (8.
Step 4: passing to the limit as δ goes to 0. Using (8.9), Lemma 8.5 and (8.19), we deduce that there exists a subsequence δ n → 0 such that

δ n v δn (0) → -λ l,R as n → +∞, δ n ζ δn (0) → -λ l,R
as n → +∞, m δn -m δn (0) → m l,R as n → +∞. Therefore, we have that λ l,R , w l,R , w l,R , χ l,R , χ l,R and m l,R satisfy

H 0 ≤ λ l,R ≤ 0, |w l,R -m l,R | ≤ C, |w l,R -m l,R | ≤ C, |χ l,R -m l,R | ≤ C, |χ l,R -m l,R | ≤ C, |m l,R x | ≤ C, (8.21)
and thanks to Lemma 8.5, we have

|χ l,R -w l,R |, |χ l,R -w l,R | ≤ 1. (8.22)
By stability of viscosity solutions, we have that (w l,R -2C, χ l,R -2C) and (w l,R , χ l,R ) are respectively a sub-solution and a super-solution of (8.1), and

w l,R -2C ≤ w l,R and χ l,R -2C ≤ χ l,R .
By Perron's method, we can construct a solution (w l,R , χ l,R ) of (8.1) and thanks to (8.21) and (8.22), m l,R , w l,R , χ l,R and λ l,R satisfy (8.7).

The uniqueness of λ l,R is classical so we skip it. This ends the proof of Proposition 8.3.

Proof of Lemma 8.5. We separate the proof in two parts. This proof uses the vertex test function of the work of Imbert and Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF]Theorem 3.2] to treat the comparison between v δ and ζ δ near -l and l. In fact, we consider that we have a network composed of a single branch with two nodes (one in -l and the other in l). Near -l we consider an outgoing branch and near l we consider an incoming branch.

Step 1: proof of v δ (x) -ζ δ (x) ≤ 0 for all x ∈ [-l, l]. We want to prove that

M = sup x∈[-l,l] v δ (x) -ζ δ (x) ≤ 0.
We argue by contradiction and assume that M > 0. Given that v δ and ζ δ are continuous, M is reached at a finite point that we denote by x ∈ [-l, l]. We distinguish 3 cases according to the position of x in the interval [-l, l].

Case 1: x ∈ (-l, l). We define for ε a small parameter, We can also prove that

ϕ(x, y) = v δ (x) -ζ δ (y) - (x -y) 2 2ε - 1 2 (x -x) 2 + (y -x) 2 .
(x ε -y ε ) 2 ε → 0 as ε → 0. (8.24)
Furthermore, for ε small enough we have x ε , y ε ∈ (-l, l), and using the viscosity inequalities we obtain

δv δ (x ε ) + G 1 R (x ε , v δ (x ε ), [ζ δ ], p ε + (x ε -x)) ≤ 0 δζ δ (y ε ) + G2 R (y ε , ζ δ (y ε ), [v δ ], p ε -(y ε -x)) ≥ 0,
with p ε = (x ε -y ε )/ε. Combining these inequalities and using the definition of M , we
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obtain that δM ≤ G2 R y ε , ζ δ (y ε ), [v δ ], p ε -(y ε -x) -G 1 R x ε , v δ (x ε ), [ζ δ ], p ε + (x ε -x) ≤ (ψ R (x ε ) -ψ R (y ε ))H(p ε ) + ||ψ R || ∞ ||H || ∞ (|y ε -x| + |x ε -x|) +ψ R (y ε )α K(ζ δ (y ε ), [v δ (•)])(y ε ).|p ε -y ε + x| -ψ R (x ε )M (v δ (x ε ), [ζ δ (•)])(x ε ).|p ε + x ε -x| ≤ (ψ R (x ε ) -ψ R (y ε ))H(p ε ) + ||ψ R || ∞ ||H || ∞ (|y ε -x| + |x ε -x|) +ψ R (y ε )α K(ζ δ (y ε ), [v δ (•)])(y ε ).|p ε | -ψ R (x ε )M (v δ (x ε ), [ζ δ (•)])(x ε ).|p ε | +(αM 0 |y ε -x| + M 0 |x ε -x|) ≤ (ψ R (x ε ) -ψ R (y ε ))H(p ε ) + o ε (1) +ψ R (y ε )α K(ζ δ (y ε ), [v δ (•)])(y ε ).|p ε | -ψ R (x ε )M (v δ (x ε ), [ζ δ (•)])(x ε ).|p ε | (8.25)
where we have replaced G 1 R and G2 R by their definitions, used the fact that by definition H is a Lipschitz function and that that V ≥ 0 for the second inequality, used Remark 3.6 for the third inequality and (8.23) for the last inequality.

We will compute the right part of the inequality in different steps.

1-Concerning the local operator.

(ψ R (x ε ) -ψ R (y ε ))H(p ε ) ≤ ||Dψ R || ∞ |x ε -y ε ||H(p ε )| ≤ ||Dψ R || ∞ V max (x ε -y ε ) 2 ε = o ε (1) (8.26)
where we have used the regularity of ψ R for the first inequality, used the fact that by definition of H, we have |H| ≤ V max |p| for the second inequality and used (8.24) for the last inequality.

2-Concerning the non-local operator M . We claim that

M (v δ (x ε ), [ζ δ (•)])(x ε ) ≤ |x ε -y ε |.
To prove this, it suffices to prove that for all z > |x ε -

y ε | ζ δ (x ε + z) -v δ (x ε ) < 0.
Using the fact that ζ δ is decreasing, that x ε + z ≥ y ε and that M ε > 0, we obtain

ζ δ (x ε + z) -v δ (x ε ) ≤ ζ δ (y ε ) -v δ (x ε ) < 0.
Therefore we have

-ψ R (x ε )M (v δ (x ε ), [ζ δ ])(x ε ) = -ψ R (x ε ) |xε-yε| 0 E(ζ δ (x ε + z) -v δ (x ε ))dz ≤α|x ε -y ε |. (8.27)
In particular, this implies that

ψ R (x ε )M (v δ (x ε ), [ζ δ ])(x ε ) |p ε | ≤ α (x ε -y ε ) 2 ε = o ε (1).
(8.28)

3-Concerning the non-local operator

K. We claim that | K(ζδ(y ε ), [v δ (•)])(y ε )| ≤ |x ε -y ε |. As before, it suffices to prove that for all z > |x ε -y ε | v δ (y ε -z) -ζ δ (y ε ) > 0.
Using the fact that v δ is decreasing, that x ε ≥ y ε -z and that M ε > 0, we obtain

v δ (y ε -z) -ζ δ (y ε ) ≥ v δ (x ε ) -ζ δ (y ε ) > 0. Therefore we have ψ R (y ε ) K(ζ δ (y ε ), [v δ ])(y ε ) ≤ |x ε -y ε |.
(8.29)

Injecting (8.26), (8.27), and (8.29) into (8.25), we obtain δM ≤ o ε (1) and we get a contradiction for ε small enough.

Case 2: x = l. In this case, we use the vertex test function introduced by Imbert and Monneau. We refer to [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] for a detailed description of the vertex test function, but for the readers convenience we recall the properties that we used to complete this proof. The vertex test function G γ is associated to the single Hamiltonian H. We fix γ = δM/2. It satisfies the following properties.

(Regularity)

G γ ∈ C([-l, l] 2 ) G γ (x, •) ∈ C 1 ([-l, l]) for all x ∈ [-l, l] G γ (•, y) ∈ C 1 ([-l, l]) for all y ∈ [-l, l].
(8.30)

2. (Bound from below) G γ ≥ 0 = G(0, 0). with for all x ∈ [-l, l] and p ∈ R,

(Super

H(x, p) = H(p) if x ∈ [-l, l) H + (p) if x = l. (8.32)
We introduce the following test function, for ε > 0 a small parameter,

ϕ(x, y) = v δ (x) -ζ δ (y) -εG γ x ε , y ε - 1 2 (x -x) 2 + (y -x) 2 .
which like before reaches a maximum at a finite point (x ε , y ε ) ∈ [-l, l] and (8.23) remains true.

Using the viscosity equations, we have that

       δv δ (x ε ) + H x ε , G γ x x ε ε , y ε ε + (x ε -x) ≤ 0 δζ δ (y ε ) + H y ε , -G γ y x ε ε , y ε ε -(y ε -ȳ) ≥ 0.
Using the definition of M and combining the previous inequalities, we get that and given that γ = δM /2, we get a contradiction for ε small enough.

δM ≤H y ε , -G γ y x ε , y ε -(y ε -ȳ) -H x ε , G γ x x ε , y ε + (x ε -x) ≤H y ε , -G γ y x ε , y ε -H x ε , G γ x x ε , y ε + o ε (
Case 3: x = -l. This case is exactly like the previous one with the exception that the vertex test function must be adapted to treat the junction at -l. In particular, (8.32) is replaced by

H(x, p) = H(p) if x ∈ (-l, l] H -(p) if x = -l.
We skip the rest of the computation for this case.

In conclusion, we have M ≤ 0 and for all

x ∈ [-l, l], 0 ≤ ζ δ (x) -v δ (x).
Step 2: proof of ζ δ (x) -v δ (x) ≤ 1. We want to prove that

M = sup x∈[-l,l] ζ δ (x) -v δ (x) -1 ≤ 0.
We argue by contradiction and assume that M > 0. Give that v δ and ζ δ are continuous, M is reached at a finite point that we denote by x ∈ [-l, l]. We distinguish 2 cases according to the position of x in the interval [-l, l].

Case 1: x ∈ (-l, l). We define for ε a small parameter,

ϕ(x, y) = v δ (x) -ζ δ (y) -1 - (x -y) 2 2ε - 1 2 (x -x) 2 + (y -x) 2 .
Using the same arguments as before, the test function reaches a maximum at a finite point that we denote by (x ε , y ε ) ∈ [-l, l]. If we denote M ε = ϕ(x ε , y ε ) (8.23) and (8.24) remain valid.

For ε small enough we have x ε , y ε ∈ (-l, l), and using the viscosity inequalities we get that

δζ δ (x ε ) + G 2 R (x ε , ζ δ (x ε ), [v δ ], p ε ) ≤ 0 δv δ (y ε ) + G1 R (y ε , v δ (y ε ), [ζ δ ], p ε ) ≥ 0,
with p ε = (x ε -y ε )/ε. Combining these inequalities and using the definition of M , we obtain

δM ≤ G1 R (y ε , v δ (y ε ), [ζ δ ], p ε ) -G 2 R (x ε , ζ δ (x ε ), [v δ ], p ε ) ≤ (ψ R (x ε ) -ψ R (y ε ))H(p ε ) + 2ψ R (x ε )V N (ζ δ (x ε ), [v δ (•)])(x ε ) .|p ε |, (8.33) 
where we have replaced G 2 R and G1 R by their definition and used (3.17) and that M ≤ 0. We will compute the right part of (8.33) in different steps.

1-Concerning the local operator. Like before, we have

(ψ R (x ε ) -ψ R (y ε ))H(p ε ) ≤ ||Dψ R || ∞ |x ε -y ε ||H(p ε )| = o ε (1). (8.34)
2-Concerning the non-local operator N . We claim that

N (ζ δ (x ε ), [v δ (•)])(x ε ) ≤ h 0 .
To prove this, it suffices to prove that for all z ≥ h 0 , we have

v δ (x ε + z) -ζ δ (x ε ) < -1.
Since |x ε -y ε | → 0 as ε goes to 0, we have for all z ≥ h 0 and ε small enough that x ε +z ≥ y ε . Therefore, we get

v δ (x ε + z) -ζ δ (x ε ) ≤ v δ (y ε ) -ζ δ (x ε ) < -1,
where we have used the fact that v δ is decreasing for the first inequality and the fact that M ε > 0 for the second inequality. This implies that

V N (ζ δ (x ε ), [v δ (•)])(x ε ) ≤ V (h 0 ) = 0. (8.35)
Injecting (8.34) and (8.35) in (8.33), we obtain δM ≤ o ε (1), and we get a contradiction for ε small enough.

Case 2: x = l of x = -l. Proceeding like in the previous step we obtain directly a contradiction by using the properties of the vertex test function.

This ends the proof of Lemma 8.5.

Proposition 8.6 (First definition of the flux limiter). The following limits exists (up to some sub-sequence),

   A = lim R→+∞ A R , A R = lim l→+∞ λ R,l .
Moreover, we have

H 0 ≤ A, A R ≤ 0. (8.36)
Proof. This proposition is a direct consequence of (8.7).

Proposition 8.7 (Control of the slopes on a truncated domain). Assume that l and R are big enough. Let (w l,R , χ l,R ) be the solution of (8.1) given by Proposition 8.3. We also assume up to a sub-sequence, that A = lim R→+∞ lim l→+∞ λ l,R > H 0 . Then there exists γ 0 > 0 and a constant C > 0 (independent of l and R) such that for all γ ∈ (0, γ 0 ) and for all x ≥ r + D, h ≥ 0 we have

w l,R (x + h) -w l,R (x) ≥ (p + -γ)h -C (8.37) and χ l,R (x + h) -χ l,R (x) ≥ (p + -γ)h -C. (8.38)
Similarly, for all x ≤ -r -D and h ≥ 0,

w l,R (x -h) -w l,R (x) ≥ (-p --γ)h -C (8.39) and χ l,R (x -h) -χ l,R (x) ≥ (-p --γ)h -C. (8.40)
Proof. We only do the proof of (8.37)-(8.38), since the proof of (8.39)-(8.40) is similar and we skip it. For µ > 0, small enough, we denote by p + µ the real number defined by

H(p + µ ) = H + (p + µ ) = λ l,R -µ. (8.41)
Step 1: proof of i) and ii) We want to pass to the limit as l → +∞ and then as R → +∞ on the solution of (8.1) given by Proposition 8.3. Using (8.3), there exists l n → +∞, such that m ln,R -m ln,R (0) → m R as n → +∞, the convergence being locally uniform. We also define

w R (x) = lim sup n→+∞ * w ln,R -w ln,R (0) , w R (x) = lim inf n→+∞ *
w ln,R -w ln,R (0) , and

χ R (x) = lim sup n→+∞ * χ ln,R -χ ln,R (0) , χ R (x) = lim inf n→+∞ * χ ln,R -χ ln,R (0)
Thanks to (8.3), we know that these limits are finite and satisfy

m R -C ≤ w R ≤ w R ≤ m R + C. and m R -C ≤ χ R ≤ χ R ≤ m R + C.
By stability of viscosity solutions (w R -2C, χ R -2C) and (w R , χ R ) are respectively a sub-solution and a super-solution of

G 1 R (x, w R (x), [χ R ], w R x ) = A R G 2 R (x, χ R (x), [w R ], χ R x ) = A R .
(8.45)

Therefore, using Perron's method, we can construct a solution (w R , χ R ) of (8.45), with m R , A R , w R and χ R satisfying

     |m R (x) -m R (y)| ≤ C|x -y| for all x, y ∈ R, |w R (x) -m R (x)| ≤ C, |χ R (x) -m R (x)| ≤ C for all x ∈ R, |w R (x) -χ R (x)| ≤ C for all x ∈ R, H 0 ≤ A R ≤ 0. (8.46)
Using Proposition 8.7, if A > H 0 , we know that there exists a γ 0 > 0 and a constant C > 0 such that for all γ ∈ (0, γ 0 ), for all x ≥ r + D, and h ≥ 0,

w R (x + h) -w R (x) ≥ (p + -γ)h -C and χ R (x + h) -χ R (x) ≥ (p + -γ)h -C.
Similarly, for all x ≤ -r -D and h ≥ 0,

w R (x -h) -w R (x) ≥ (-p --γ)h -C and χ R (x -h) -χ R (x) ≥ (-p --γ)h -C.
Proceeding like before, we pass to the limit as R → +∞ in order to build a solution (w, χ) of (6.1) with λ = A that satisfies (6.3), (6.4) and (6.5).
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Step 2: proof of iii). Let us now consider the rescaled functions w ε = εw(x/ε) and χ ε (x) = εχ(x/ε). Using (6.3), we have that

w ε (x) = εm x ε + O(ε) and χ ε (x) = εm x ε + O(ε). (8.47)
Therefore, there exists a subsequence ε n → 0 as n → +∞, such that w εn , χ εn → W locally uniformly as n → +∞, (8.48)

with W (0) = 0. Proceeding as in the proof of convergence (Section 7), away from the junction point, we have that W satisfies

H(W x ) = A for x = 0.
This proves (6.6). Let us now prove (6.7). For x < 0, we have for all γ ∈ (0, γ 0 ), if A > H 0 ,

W x ≤ p -+ γ,
where we have used (6.5). Therefore, we have W x = p -for x < 0, this equality remains

valid if A = H 0 (indeed, if A = H 0 , we have p + = p -= p 0 = W x ).
For x > 0, we have for all γ ∈ (0, γ 0 ), if A > H 0 ,

W x ≥ p + -γ,
where we have used (6.4). Therefore, we have that W x = p + for x > 0, this result is still valid if A = H 0 .

Combining these results, we obtain (6.7).

Theorem 8.8 (Effective flux limiter). Assume (A). We define the following set of functions,

S = {(v, ζ) s.t. ∃ a Lipschitz continuous function m (with m(0)=0) and constant C > 0 s.t. ||v -m|| ∞ , ||ζ -m|| ∞ ≤ C} .
Then we have We argue by contradiction and assume that there exists λ ∈ E such that λ < A. We denote by (v λ , ζ λ ) a solution of (6.1) associated to λ. Arguing as in the proof of Theorem 6.1, Step 2, we deduce that the functions

A = inf{λ ∈ [H 0 , 0] : ∃(v, ζ) ∈ S
v ε λ (x) = εv λ x ε and ζ ε λ (x) = εζ λ x ε (8.50)
have a limit W λ (with W λ (0) = 0) which satisfies

H(W λ x ) = λ for x = 0.
This means that for all x > 0, we have

W λ x ≤ p λ + < p + with H(p λ + ) = H + (p λ + ) = λ. (8.51)
Similarly, for all x < 0, we have

W λ x ≥ p λ -> p -with H(p λ -) = H -(p λ -) = λ. (8.52)
These inequalities imply that for all γ > 0, there exists a constant Cγ such that

v λ (x), ζ λ (x) ≤ (p λ + + γ)x + Cγ for x > 0, (p λ --γ)x + Cγ for x < 0.
(8.53) Using Theorem 6.1 (ii), we have for γ small enough,

v λ ≤ w and ζ λ ≤ χ for |x| ≥ R.
This implies that there exists a constant C R such that for all x ∈ R, we have

v λ (x) < w(x) + C R and ζ λ (x) < χ(x) + C R.
Let us now introduce two functions (u, ξ) and (u λ , ξ λ ), defined by

u(t, x) = w(x) + C R -At, ξ(t, x) = χ(x) + C R -At, and u λ (t, x) = v λ (x) -λt, ξ λ (t, x) = ζ λ (x) -λt.
Both functions are solutions of (3.3) (with ε = 1) and u λ (0, x) ≤ u(0, x) and ξ λ (0, x) ≤ ξ(0, x).

Using the comparison principle (Proposition 4.9), we obtain

v λ (x) -λt ≤ w(x) -At + C R.
Passing to the limit as t goes to infinity, we get A ≤ λ, which is a contradiction.

This section is devoted to the proof of Theorem 3.3, which is a direct application of our convergence result, Theorem 3.2 joint to the following result.

Theorem 9.1. For ε = 1, (ρ, σ) defined by (2.2) and (3.2) is a discontinuous viscosity solution of the following equation

ρ t + M (ρ(t, x), [σ(t, •)]) (x) • |ρ x | = 0 σ t + L (x, σ(t, x), [ρ(t, •)]) (x) • |σ x | = 0 for (t, x) ∈ (0, +∞) × R. (9.1)
Conversely, if u and ξ are bounded and continuous functions such that (u, ξ) is a solution of (9.1) satisfying for some time T > 0, and for all t ∈ (0, T )

u(t, x) is non-increasing in x, ξ(t, x) is non-increasing in x, (9.2)
then the points (U j (t), Ξ j (t)) defined by u(t, U j (t)) = -(j + 1) and ξ (t, Ξj(t)) = -(j + 1) for j ∈ Z, satisfy the system (3.1) on (0, T ).

The proof of Theorem 9.1 is given in Appendix 11. Let us use Theorem 9.1 to do the proof of Theorem 3.3.

Proof of Theorem 3.3. We recall that in Theorem 3.3 we have u 0 (x) = ξ ε 0 (x) = -x/h. Let us begin by proving that for all x ∈ R and for all ε > 0, we have

|ρ ε (0, x) -u 0 (x)| ≤ f (ε) and |σ ε (0, x) -ξ ε 0 (x)| ≤ g(ε), (9.3)
with f (ε), g(ε) → 0 as ε goes to 0. Let us define a piece-wise affine function v satisfying ρ 1 (0, x) = v(x) for x = U i (0), for all i ∈ Z.

Given that for all U i+1 (0) -U i (0) ≥ h 0 , we notice that v is k 0 -Lipschitz continuous and by definition of ρ 1 (0, x), we have

ρ 1 (0, x) -v(x) ≤ 1 for all x ∈ R.
Let us consider the integer i 0 ∈ N defined by

i 0 = sup {i ∈ Z, s.t. U i (0) ≤ -R} .
Using the assumption that for all i ∈ Z such that U i (0) ≤ -R we have U i+1 (0) -U i (0) = h, we deduce that for all x ≤ U i 0 (0)

v(x) = - x h + U i 0 (0) h + ρ 1 (0, U i 0 (0)) = - x h + U i 0 (0) h -i 0 -1.
Let us now consider the integer i 1 ∈ N defined by

i 1 = inf {i ∈ Z, s.t. U i (0) ≥ R} .
Now using the assumption that for all i ∈ Z such that U i (0) ≥ R we have U i+1 (0) -U i (0) = h, we deduce that for all x ≥ U i 1 (0)

v(x) = - x h + U i 1 (0) h + ρ 1 (0, U i 1 (0)) = - x h + U i 1 (0) h -i 1 -1.
Moreover, we recall that for all ε > 0, we have ρ ε (0, x) = ερ 1 (0, x/ε), this implies that for all x / ∈ [εU i 0 (0), εU i 1 (0)],

|ρ ε (0, x) -u 0 (x)| ≤ ρ ε (0, x) -εv x ε + εv x ε -u 0 (x) ≤ε + ε max U i 1 (0) h -i 1 -1 , U i 0 (0) h -i 0 -1 .
(9.4)

Similarly, we have for all x ∈ [εU i 0 (0), εU i 1 (0)],

|ρ ε (0, x) -u 0 (x)| ≤ ρ ε (0, x) -εv x ε + εv x ε -εu 0 x ε ≤ε + ε max y∈[U i 0 (0),U i 1 (0)]
(|v(y) -u 0 (y)|) , (9.5)

where we have used the fact that εu 0 (x/ε) = u 0 (x). Combining (9.4) and (9.5) and choosing

f (ε) = ε + ε max U i 0 (0) h -i 0 -1 , max y∈[U i 0 (0),U i 1 (0)] (|v(y) -u 0 (y)|) , U i 1 (0) h -i 1 -1  
we deduce the first inequality in (9.3) and proceeding in the same way we obtain the second inequality. Using (9.3), we deduce that for all x ∈ R and for all ε > 0, we have

|(ρ ε ) * (0, x) -u 0 (x)| ≤ f (ε) + ε and |(σ ε ) * (0, x) -ξ ε 0 (x)| ≤ g(ε) + ε. (9.6)
Combining (9.3) and (9.6), we get

u 0 (x) -max(f (ε), g(ε)) ≤ ρ ε (0, x) ≤ (ρ ε ) * (0, x) ≤ u 0 (x) + max(f (ε), g(ε)) + ε ξ ε 0 (x) -max(f (ε), g(ε)) ≤ σ ε (0, x) ≤ (σ ε ) * (0, x) ≤ ξ ε 0 (x) + max(f (ε), g(ε)) + ε.
Step 1: proof of the upper bound in (10.3). Using assumptions (A1), (A4), and (A6), we notice that Ξ i -U i is a sub-solution of

   ż = -2αz + 2V max , z(0) = V max α . (10.4)
By comparison, we have

Ξ i (t) -U i (t) ≤ z(t) = V max α for all t ≥ 0.
Step 2: proof of the lower bound in (10.3). Using assumptions (A1), (A3), and (A6), we notice that Ξ i -U i is a super-solution of ż = -2αz, z(0) = 0. (10.5)

By comparison, we have

Ξ i (t) -U i (t) ≥ z(t) = 0 for all t ≥ 0.
This ends the proof of Proposition 10.1.

Proposition 10.2 (Conservation of the order in (10.1)). Assume (A) and (A0'), then the solution (U i , Ξ i ) i of (10.1) satisfies for all i ∈ Z, U i+1 (t) -Ξ i (t) ≥ h 0 for all t > 0.

(10.6)

In particular, using Proposition 10.1, this result implies that

U i+1 (t) -U i (t) ≥ h 0 and Ξ i+1 (t) -Ξ i (t) ≥ h 0 for all t > 0.
(10.7)

Proof. We will prove that for all δ > 0 small, we have

U i+1 (t) -Ξ i (t) ≥ h 0 -δ for all t > 0.
Then passing to the limit as δ goes to 0 we will obtain (10.6).

Let δ > 0, we argue by contradiction and assume there exists a time

t * = inf{t, s.t. ∃j ∈ Z s.t. U j+1 (t) -Ξ j (t) = h 0 -δ}.
10.Appendix: analysis of system (3.1) Let us consider j ∈ Z such that U j+1 (t * ) -Ξ j (t * ) = h 0 -δ. By continuity, there exists a time t 0 ∈ [0, t * ) such that

U j+1 (t 0 ) -Ξ j (t 0 ) = h 0 and U j+1 (t) -Ξ j (t) ∈ [h 0 -δ, h 0 ] for all t ∈ [t 0 , t * ].
Using Proposition 10.1, in particular that U j ≤ Ξ j , and assumption (A7) combined with Remark 2.2, we have that

α(U j -Ξ j ) + 2V (U j+1 -U j ) • φ(U j ) ≤ 2V (U j+1 -Ξ j ) • φ(Ξ j ) ≤ 2V (h 0 ) • φ(Ξ j ) = 0. (10.8)
This implies that (U j , Ξ j ) satisfies for all t ∈ [t 0 , t * ],

Uj = α(Ξ j -U j ) Ξj ≤ 0, with U j (t 0 ) ≤ Ξ j (t 0 ) Ξ j (t 0 ) = U j+1 (t 0 ) -h 0 .
Therefore, we have for all t

∈ [t 0 , t * ] Ξ j (t) ≤ U j+1 (t 0 ) -h 0 .
Using again Proposition 10.1, in particular that the functions (U i ) i are non-decreasing in time, we obtain that

Ξ j (t * ) ≤ U j+1 (t * ) -h 0 ,
which is a contradiction. This ends the proof of Proposition 10.2.

Proposition 10.3 (Maximal distance between two vehicles). Assume (A) and (A0'), then the solution (U i , Ξ i ) i of (10.1) satisfies for all i ∈ Z,

U i+1 (t) -U i (t) ≤ h max + 3V max 2α + 2r
φ 0 for all t > 0. (10.9)

In particular, using Proposition 10.1, we have that for all i ∈ Z,

U i+1 (t) -Ξ i (t) ≤ h max + 3V max 2α + 2r
φ 0 for all t > 0.

(10.10)

Proof. We will prove that for all δ > 0 small, we have for all i ∈ Z,

U i+1 (t) -U i (t) ≤ h max + 3V max 2α + 2r φ 0 + δ for all t > 0.
(10.11)

Passing to the limit in the previous inequality as δ goes to 0, we will obtain (10.9).

Ch.5. Specified homogenization of a second order discrete model

Let δ > 0, we argue by contradiction and assume there exists a time We distinguish three cases.

t * = inf
Case 1: U j (t 0 ) ∈ [-r, r]. The couple (U j , Ξ j ) satisfy for all t ∈ [t 0 , t * ] Uj = α(Ξ j -U j ) Ξj = α(U j -Ξ j ) + 2V max • φ(U j ), with    U j (t 0 ) = U j+1 (t 0 ) -h max 0 ≤ Ξ j (t 0 ) -U j (t 0 ) ≤ V max α . ( 10.13) 
In order to compare the distance U j+1 -U j when U j is inside the perturbation, we consider the worst case scenario where the vehicle j advances at a speed V max φ 0 and j + 1 advances at a speed V max , until U j ≥ r (meaning that the vehicle j is outside the perturbation).

To be more exact, we notice that the couple (U j , Ξ j ) is a super-solution of the following system

v = α(ζ -v) ζ = α(v -ζ) + 2V max φ 0 , with v(t 0 ) = U j+1 (t 0 ) -h max ζ(t 0 ) = v(t 0 ). (10.14)
Computing the solution of (10.14) we get

       v(t) = V max φ 0 2α e -2α(t-t 0 ) - V max φ 0 2α + V max φ 0 (t -t 0 ) + v(t 0 ) ζ(t) = - V max φ 0 2α e -2α(t-t 0 ) + V max φ 0 2α + V max φ 0 (t -t 0 ) + v(t 0 ) (10.15)
By comparison, we obtain that

U j (t) ≥ v(t) = V max φ 0 2α e -2α(t-t 0 ) - V max φ 0 2α + V max φ 0 (t -t 0 ) + v(t 0 ).
(10.16) 10.Appendix: analysis of system (3.1)

Let t = 1 V max φ 0 V max φ 0 2α
+ r -U j (t 0 ) + t 0 . Using (10.16), we have that U j ( t) ≥ r. We now prove that t < t * . In fact, for all t ∈ [t 0 , t], we have

U j+1 (t) -U j (t) ≤ U j+1 ( t) -U j (t 0 ) ≤ V max ( t -t 0 ) + U j+1 (t 0 ) -U j (t 0 ) = V max 1 V max φ 0 V max φ 0 2α + r -U j (t 0 ) + U j+1 (t 0 ) -U j (t 0 ) ≤ V max 2α + r -U j (t 0 ) φ 0 + h max ≤ V max 2α + 2r φ 0 + h max ,
where we have used Proposition 10.1 for the first line. From the previous inequality and the definition of t * , we deduce that t < t * . The couple (U j , Ξ j ) satisfies for all t ∈ [ t, t * ],

Uj = α(Ξ j -U j ) Ξj = α(U j -Ξ j ) + 2V max , (10.17) with        h max ≤ U j+1 ( t) -U j ( t) ≤ h max + 2r φ 0 + V max 2α 0 ≤ Ξ j ( t) -U j ( t) ≤ V max α .
(10.18)

We can easily compute the explicit form of the solution of (10.18),

U j (t) = V max α -Ξ j ( t) + U j ( t) e -2α(t-t) 2 - V max 2α + V max (t -t) + 1 2 Ξ j ( t) + U j ( t)
and

Ξ j (t) = Ξ j ( t) -U j ( t) - V max α e -2α(t-t) 2 + V max 2α + V max (t -t) + 1 2 Ξ j ( t) + U j ( t) .
Using Proposition 10. 

U j+1 (t) -U j (t) ≤V max (t -t) + U j+1 ( t) -V max (t -t) - 1 2 Ξ j ( t) + U j ( t) - V max α -Ξ j ( t) + U j ( t) e -2α(t-t) 2 + V max 2α ≤U j+1 ( t) - 1 2 Ξ j ( t) + U j ( t) + V max 2α ≤U j+1 ( t) -U j ( t) + V max 2α ≤h max + 2r φ 0 + V max α ,
where we have used Proposition 10.1 for the second and third inequality and we have used (10.18) for the last inequality. The previous inequality remains valid for t = t * which gives us a contradiction.

Case 2: U j (t 0 ) > r. In this case, the couple (U j , Ξ j ) satisfies system (10.17) for all t ∈ (t 0 , t * ], with the following initial conditions

   U j (t 0 ) = U j+1 (t 0 ) -h max 0 ≤ Ξ j (t 0 ) -U j (t 0 ) ≤ V max α .
(10.20)

As above, the explicit solution of (10.17)-(10.20) has the following form,

U j (t) = V max α -Ξ j (t 0 ) + U j (t 0 ) e -2α(t-t 0 ) 2 - V max 2α + V max (t -t 0 ) + 1 2 (Ξ j (t 0 ) + U j (t 0 )) and Ξ j (t) = Ξ j (t 0 ) -U j (t 0 ) - V max α e -2α(t-t 0 ) 2 + V max 2α + V max (t -t 0 ) + 1 2 (Ξ j (t 0 ) + U j (t 0 )) .
Arguing as above, we will obtain U j+1 (t * ) -U j (t * ) ≤ h max + V max 2α which is a contradiction.

Case 3: U j (t 0 ) < -r. We treat this case in 3 steps.

10.Appendix: analysis of system (3.1)

Step 1: left of the perturbation. We denote by t = inf {t ≥ t 0 s.t. U j (t) = -r} .

For all t ∈ [t 0 , t], the couple (U j , Ξ j ) satisfies (10.17)-(10.20) and therefore has the same form as the one presented in Case 2. In particular, for all t ∈ [t 0 , t], we have

U j+1 (t) -U j (t) ≤ h max + V max 2α . (10.21)
This implies that t < t * .

Step 2: inside the perturbation. In the interval [ t, t * ], the couple (U j , Ξ j ) satisfies (10.13) with the following initial condition

       U j+1 ( t) -U j ( t) ≤ h max + V max 2α 0 ≤ Ξ j ( t) -U j ( t) ≤ V max α . The couple (U j , Ξ j ) is a super-solution of v = α(ζ -v) ζ = α(v -ζ) + 2V max φ 0 , with    v( t) = U j+1 ( t) + h max + V max 2α ζ( t) = v( t). (10.22)
Computing the solution of (10.22), and by comparison, for all t ∈ [ t, t * ], we have

U j (t) ≥ V max φ 0 2α e -2α(t-t) - V max φ 0 2α + V max φ 0 (t -t) + v( t). Let t = 1 V max φ 0 V max φ 0 2α
+ r -U j ( t) + t. Using (10.16), we have that U j ( t) ≥ r. We now prove that t < t * . We recall that U j ( t) = -r. In fact, for all t ∈ [ t, t], we have

U j+1 (t) -U j (t) ≤ U j+1 ( t) -U j ( t) ≤ V max ( t -t) + U j+1 ( t) -U j ( t) = V max 1 V max φ 0 V max φ 0 2α + r -U j ( t) + U j+1 ( t) -U j ( t) ≤ V max α + 2r φ 0 + h max ,
where we have used Proposition 10.1 for the first line. From the previous inequality and the definition of t * , we deduce that t < t * .

11.Appendix: proof of Theorem 9.1

Using Proposition 10.1, in particular that Ξ j -U j ≤ D, we have

M (u (t, U j (t)) , [ξ (t, •)]) (U j (t)) = D 0 E (ξ (U j + z) -u (U j )) dz = Ξ j -U j 0 E (ξ (U j + z) -u (U j )) dz + D Ξ j -U j E (ξ (U j + z) -u (U j )) dz = -α (Ξ j -U j ) .
Combining this result with (3.1), we obtain (11.1). We now turn to the proof of (11.2). We begin by computing K (ξ (t, Ξ j (t)) , [u(t, •)]) (Ξ j (t)).

Using the fact that ξ (t, Ξ j (t)) = -(j + 1) and (11.4), we have for all z ∈ [0, +∞),

u(Ξ j -z) -ξ(Ξ j ) < u(U j ) -ξ(Ξ j ) = 0 if z ∈ [0, Ξ j -U j ) u(Ξ j -z) -ξ(Ξ j ) ≥ 0 if z ∈ [Ξ j -U j , +∞).
Thanks to Proposition 10.1, this implies that

K (ξ (t, Ξ j (t)) , [u (t, •)]) (Ξ j (t)) = Ξ j -U j 0 F (u (Ξ j -z) -ξ (Ξ j )) dz = Ξ j -U j .
We now turn to the computation of N (ξ (t, Ξ j (t)) , [u (t, •)]) (Ξ j (t)). We recall that thanks to Proposition 10.2, we have U j+1 -Ξ j ≥ h 0 . In particular, we have that

u(Ξ j + z) -ξ(Ξ j ) > u(U j+1 ) -ξ(Ξ j ) = -1 if z ∈ [0, U j+1 -Ξ j ) u(Ξ j + z) -ξ(Ξ j ) ≤ -1 if z ∈ [U j+1 -Ξ j , +∞).
Once more thanks to Proposition 10.3, we obtain

N (ξ (t, Ξ j (t)) , [u (t, •)]) (Ξ j (t)) = U j+1 -Ξ j 0 I (u (Ξ j + z) -ξ (Ξ j )) dz = U j+1 -Ξ j .
Combining the previous results with (3.16) and (3.1), we obtain (11.2).

Proof of Theorem 9.1. We remark that thanks to (11.3) and (11.4), we have for x = U j (t) and y = Ξ j (t), j ∈ Z,

M (ρ * (t, x), [σ * (t, •)]) (x) = M (u(t, x), [ξ(t, •)]) (x) ≥ M (u(t, x), [ξ(t, •)]) (x), and 
L (y, σ * (t, y), [ρ * (t, •)]) (y) = L (y, ξ * (t, y), [u(t, •)]) (y) ≥ L (y, ξ * (t, y), [u(t, •)]) (y).
Using Lemma 11.1, and Definition 4.1, we can see that (ρ * , σ * ) is a discontinuous viscosity super-solution of (9.1). We obtain a similar result for (ρ * , σ * ), therefore, (ρ, σ) is a discontinuous viscosity solution of (9.1).

We prove the converse. For the readers convenience we recall from [FIM09b, Proposition 4.8] that we will use later.

Lemma 11.2. Assume that θ : R → R is a non-decreasing and upper semi-continuous (resp. lower semi-continuous). Assume also that

θ(v) -v is 1-periodic in v.
Assume that ε = 1 in (3.3). Consider also a sub-solution (resp. a super-solution) (u, ξ) of (3.3). Then (θ(u), θ(ξ)) is also a sub-solution (resp. a super-solution) of (3.3).

Using Lemma 11.2 we can conclude that (ρ * , σ * ) = ( u , ξ ) (resp. (ρ * , σ * ) = ( u , ξ )) is a viscosity super-solution (resp. sub-solution) of

   ∂ t ρ -c(t, x)∂ x ρ = 0 ∂ t σ -d(t, x)∂ x σ = 0, with    c(t, x) = M (u(t, x), [ξ(t, •)]) (x) = M (u(t, x), [ξ(t, •)]) (x) d(t, x) = L (x, ξ(t, x), [u(t, •)]) (x) = L (x, ξ(t, x), [u(t, •)]) (x).
Using the fact that u and ξ are decreasing in space, we define

   U i (t) = inf{x, u(t, x) ≤ -(i + 1)} = (u(t, •)) -1 (-i -1) Ξ i (t) = inf{x, ξ(t, x) ≤ -(i + 1)} = (ξ(t, •)) -1 (-i -1),
and we consider the functions t → U i (t) and t → Ξ i (t). They are continuous because u and ξ are decreasing in x and are continuous in (t, x).

We now prove that the functions (U i , Ξ i ) are viscosity solutions of (3.1). Let ϕ be a test function such that ϕ(t) ≤ U i (t) and ϕ(t 0 ) = U i (t 0 ). Let us now define φ(t, x) = -(i + 1) + ϕ(t) -x. It satisfies φ(t 0 , U i (t 0 )) = ρ * (t 0 , U i (t 0 )), and

φ(t, x) ≤ ρ * (t, x) for U i (t) -1 < x < U i+1 (t).
This implies that

ϕ t (t 0 ) + c(t 0 , U i (t 0 )) ≥ 0 ⇔ ϕ t (t 0 ) ≥ -c(t 0 , U i (t 0 )) = -c i (t 0 ) = α (Ξ i (t 0 ) -U i (t 0 )) .
Let ψ be a test function such that ψ(t) ≤ Ξ i (t) and ψ(t 1 ) = Ξ i (t 1 ). Let us now define ψ(t, x) = -(i + 1) + ψ(t) -x. It satisfies 

ψ(t 1 , Ξ i (t 1 )) = σ * (t 1 , Ξ i (t 1 )),
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The goal of this paper is to derive a macroscopic traffic flow model, for a simple bifurcation, from a microscopic model. At the microscopic scale, we consider a first order model of the form "follow the leader" i.e. the velocity of each vehicle depends on the distance to the vehicle in front of it. We consider the case of a very simple bifurcation in which one road separates into two and one vehicle over two goes to the right and the other goes to the left. At the bifurcation, we then have to add a phase of transition because the vehicle in front will change. Moreover, we assume that the velocity on each of the roads can be different. At the macroscopic scale, we obtain an explicit Hamilton-Jacobi equation on each road and a junction condition (in the sense of [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF]) located at the bifurcation. From this case of a simple bifurcation, we then extend to more general scenarios. For instance, the case of a different distribution of the vehicles at the bifurcation or even to consider more than two outgoing roads. For these extensions we only present the results and explain how to adapt the proofs from the case of a simple bifurcation.

AMS Classification: 35D40, 90B20, 35B27, 35F20, 45K05. More precisely, we consider one incoming road R 0 which separates into two outgoing roads R 1 and R 2 . We denote by U i (t) the position of the i th vehicle, and we assume that the vehicles with an odd index go to R 1 while the ones with an even index go to R 2 . Finally, we assume that on each road R i the velocity of each vehicle is given by a function V i . In order to obtain our result we will proceed as in [FIM09a, FIM12, 2, 1] and rescale the microscopic model which describes the dynamics of each vehicle, in order to get a macroscopic model that describes the dynamics of the density of vehicles. At the macroscopic scale we will obtain a Hamilton-Jacobi equation on each branch and a junction condition at the origin (see Figure 1.2, where u 0

1.Introduction

Transition zone O R 1 R 2 R 0 Ui = V 0 (U i+1 -U i ) Ui = V 1 (U i+2 -U i ) Ui = V 2 (U i+2 -U i )
x is related to the density of vehicles (see below) and the effective Hamiltonians H i are defined in the next section. Finally, we give some extensions from the case of a simple bifurcation. We present the results in the case of more than two outgoing roads, and in the case we have a more general (but still periodic) distribution of the vehicles on each road. For the extensions, we do not give the details of the proofs, we only give some tips on how to adapt the proofs already presented in this paper.

Junction condition

R 0 O R 1 u 0 t + H 2 (u 0 x ) = 0 u 0 t + H 1 (u 0 x ) = 0 u 0 t + H 0 (u 0 x ) = 0 R 2
In this paper we will use the recent developments on Hamilton-Jacobi equations on networks, particularly the paper of Imbert and Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] which gives a suitable definition of viscosity solutions at the junction. In model (1.1), the vehicles with an odd index go to the road R 1 and the others go to the road R 2 . Since we work with a first order model, on R 0 the velocity of each vehicle depends on the distance U i+1 -U i , but on R 1 and R 2 it depends on U i+2 -U i .

1.Introduction

Transition zones

O -h 0 -h 0 -h max Ui = V 1 (U i+2 -U i ) Ui = V 0 (U i+1 -U i ) Ui = min(V 0 (U i+1 -U i ), V 1,2 (U i+2 -U i )) Ui = V 2 (U i+2 -U i ) -h 0 -h max -1 Ui = φ(U i , V 0 (U i+1 -U i ), V 1,2 (U i+2 -U i )) R 0 R 1 R 2
We will call the transition zone, the interval [-h 0 -h max -1, 0], where the vehicles will change from one model to the other. Concerning the optimal velocity functions V i , for i = 0, 1, 2, and φ, we do the following assumptions.

Assumption (A)

• (A1) V i : R → R + is Lipschitz continuous, non-negative.

• (A2) V i is non-decreasing on R.

• (A3) There exists h 0 ∈ (0, +∞) such that for all h ≤ h 0 , V i (h) = 0.

• (A4) There exists h max ∈ (h 0 , +∞) such that for all h ≥ h max , V i (h) = V i (h max ) =:

V i max .

• (A5) The functions p → pV 0 (-1/p) and p → pV j (-2/p), for j=1,2, are strictly convex respectively on [-1/h 0 , 0) and on [-2/h 0 , 0).

• 

Remark 1.1 (An extra perturbation).

In order to make the microscopic model more realistic, it is possible to modify it and add a local perturbation around the junction point (by multiplying the velocity with a certain function like in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF]), that would decrease the speed of the vehicles near the origin. However, in the rest of the paper the function φ is already treated like a local perturbation; adding an extra one would just complicate the notations without adding a mathematical interest (see [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] for how to treat a local perturbation in a microscopic model).

Remark 1.2 (The transition zone). The optimal velocity functions V i describe the dynamics of the vehicles on each branch. The role of the transition zone is to do a continuous transition from one dynamic to the next one. Notice that given the form of the transition (1.2), if initially the vehicles have enough space between them, there will always be at least a distance h 0 between two vehicles. Meaning that in model (1.1) there is always a safety distance h 0 that avoids any collisions.

Main results

Like in [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF][START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], we inject the system of ODE into a system of PDE. To do this, we separate the vehicles into two groups, those going into R 1 and those going into R 2 .

Injecting the system of ODEs into a system of PDEs

We introduce two functions, the first one is the rescaled "cumulative distribution function" of vehicles with an odd index

ρ ε 1 (t, x) = -2ε •   i[2]=1, i≥0 H(x -εU i (t/ε)) + i[2]=1, i<0 (-1 + H(x -εU i (t/ε)))   (2.1)
and the second one is the rescaled "cumulative distribution function" of vehicles with an even index

ρ ε 2 (t, x) = -2ε •   i[2]=0, i≥0 H(x -εU i (t/ε)) + i[2]=0, i<0 (-1 + H(x -εU i (t/ε)))   -ε,(2.2) with H(x) = 1 if x ≥ 0, 0 if x < 0. ( 2 

.3) simply allows us to obtain the index of the vehicles more easily: for

ε = 1, if i[2] = 1 then ρ ε 1 (t, U i (t)) = -(i + 1) and if i[2] = 0 then ρ ε 2 (t, U i (t)) = -(i + 1
). In particular, this implies (see Section 7) that if for instance i[2] = 1 and ε = 1, we have

N ε 0 (ρ ε 1 (t, •), [ρ ε 2 ]) (U i (t)) = -V 0 (U i+1 (t) -U i (t)) M ε 1 [ρ ε 1 (t, •)](U i (t)) = -V 1 (U i+1 (t) -U i (t)) .
We obtain a similar result if i [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] = 0. This results helps us inject the system of ODEs into a system of PDEs.

The new transition function φ comes from the fact that with the non-local operators we recover the opposite of the velocity of the vehicles.

Remark 2.2. Given the definition of the cumulative distribution function ρ ε

1 (resp. ρ ε 2 ) we expect that (ρ 1 ) x (resp. (ρ 2 ) x ) (the gradient of the limit of ρ ε 1 (resp. ρ ε 2 ) as ε goes to 0) is going to be the density of vehicles on R 0 and twice the density on R 1 (resp. R 2 ).

We complete (2.4) with the following initial conditions

u ε (0, x) = u 0 (x) for x ∈ R, ξ ε (0, x) = ξ 0 (x) for x ∈ R, (2.9) 
and we make the following assumptions:

(A0) (Initial condition). For all x ≤ 0, u 0 (x) = ξ 0 (x).

Moreover, we assume for all

x ∈ R -2k 0 = - 2 h 0 ≤ (u 0 ) x ≤ 0 and -2k 0 ≤ (ξ 0 ) x ≤ 0.

Convergence result

The effective Hamiltonians

Here, we introduce three Hamiltonians, H 0 , H 1 , and H 2 that we will use in the rest of the paper. They are the effective Hamiltonians on each of the branches R 0 , R 1 , and R 2 . We define k 0 = 1/h 0 and H 0 : R → R by

H 0 (p) =          -p -2k 0 for p < -2k 0 , -V 0 -1 p • |p| for -2k 0 ≤ p ≤ 0, p for p > 0.
(2.10)

2.Main results

We also define, for i = 1, 2, H i : R → R by

H i (p) =          -p -2k 0 for p < -2k 0 , -V i -2 p • |p| for -2k 0 ≤ p ≤ 0, p for p > 0.
(2.11)

For i = 0, 1, 2, let us notice that such H i is continuous, coercive lim |p|→+∞ H i (p) = +∞
and because of (A5), there exists a unique point p i ∈ [-2k 0 , 0] such that

H i is non-increasing on (-∞, p i ), H i is increasing on (p i , +∞), (2.12) 
We denote by where A is a constant to be determined and F A is defined by

H 0 = max i∈{0,1,2} min p∈R H i (p). ( 2 
F A (p 0 , p 1 , p 2 ) = max(A, H + 0 (p 0 ), H - 1 (p 1 ), H - 2 (p 2 )), (2.18) 
and for i = 0, 1, 2, we define 

H - i (p) = H i (p) if p ≤ p i , H i (p i ) if p ≥ p i , and 
H + i (p) = H i (p i ) if p ≤ p i , H i (p) if p ≥ p i . ( 2 

The homogenization result

Theorem 2.4 (Junction condition by homogenization). Assume (A0) and (A). For ε > 0, let (u ε , ξ ε ) be the solution of (2.4). Then there exists a unique constant A ∈ [H 0 , 0] such that the function ũε defined by (2.16) converges locally uniformly to the unique viscosity solution u 0 of (2.17).

The previous result will allow us to get the following homogenization result for the vehicles.

Theorem 2.5. Assume (A) and that at initial time we have, for all i ∈ Z, if the vehicles i and i + 1 are both in R 0 ,

U i (0) ≤ U i+1 (0) -h 0 , ( 2 

.20)

and if not

U i (0) ≤ U i+2 (0) -h 0 . ( 2 

.21)

We also assume that there exists a constant R > 0 such that for all

i ∈ Z, if U i (0) ≥ R U i+1 (0) -U i (0) = h 1 if i[2] = 1 h 2 if i[2] = 0 (2.22) and if U i (0) ≤ -R U i+1 (0) -U i (0) = h, ( 2 

.23)

with h, h 1 , h 2 ≥ h 0 . We define two functions u 0 and ξ 0 (satisfying (A0)) by

u 0 (x) = -x/h if x ≤ 0 -2x/h 1 if x > 0 and ξ 0 (x) = -x/h if x ≤ 0 -2x/h 2 if x > 0 for all x ∈ R.
Then there exists a unique constant A ∈ [H 0 , 0] such that the function 

ρε (t, y) =      ρ ε 1 (t, -d(0, y)) for (t, y) ∈ (0, +∞) × R 0 , ρ ε 1 (t, d(0, y)) for (t, y) ∈ (0, +∞) × R * 1 , ρ ε 2 (t, d(0, y)) for (t, y) ∈ (0, +∞) × R * 2 , ( 2 

Theorem 2.7. Assume (A0)-(A)

. Let u 0 be the unique solution of (2.17), then we have for all (t, x) ∈ [0, +∞) × R, -2k 0 ≤ u 0

x ≤ 0, with k 0 defined in (A0).

To construct the effective flux limiter A, we consider the following cell problem: find λ ∈ R such that there exists a solution (v, ζ) of the following Hamilton-Jacobi equation

φ (x, N 0 (v, [ζ])(x), M 1 [v](x)) • |v x | = λ, for x ∈ R, φ (x, N 0 (ζ, [v])(x), M 2 [ζ](x)) • |ζ x | = λ, for x ∈ R.
(2.25) Theorem 2.8 (Effective flux limiter). Assume (A). We define the following set of functions,

S = {(v, ζ) s.t. ∃ two Lipschitz continuous functions m 1 and m 2 s.t. m 1 (0) = m 2 (0) = 0 and a constant C > 0 s.t. ||v -m 1 || ∞ , ||ζ -m 2 || ∞ ≤ C} .
Then A is given by

A = inf{λ ∈ [H 0 , 0] : ∃(v, ζ) ∈ S solution of (2.25)}. ( 2 

.26)

Link with macroscopic models

Notice that the homogenization of (2.4), does not directly give the dynamics of the density of vehicles. In fact, in R 0 , u 0 is the primitive of the density of vehicles, but in R 1 and R 2 it is twice the primitive of the density of vehicles. Therefore, the integral of the density of vehicles in R is given by ρ0

(t, x) = u 0 (t, x) for x ∈ R 0 , u 0 (t, x)/2 for x ∈ R * 1 ∪ R * 2 .
(2.27) However, we cannot explicit the dynamics of ρ0 because of its definition at the origin.

-A function (u, ξ) is a sub-solution (resp. super-solution) of (3.1)-(3.4) if (u, ξ) is a sub-solution (resp. super-solution) of (3.1) on Ω and satisfies u(0, x) ≤ u 0 (x) (resp. ≥) and ξ(0, x) ≤ ξ 0 (x) (resp. ≥).

( Remark 3.2. We use this definition in order to have a stability result for the non-local operators (see [START_REF] Da Lio | Nonlocal front propagation problems in bounded domains with neumann-type boundary conditions and applications[END_REF][START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and neumann boundary conditions[END_REF] for similar definitions). We refer to [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF]Proposition 4.2] for the corresponding stability result. Definition 3.3 (Class of test functions for (2.17)). We denote R ∞ := (0, +∞) × R and 

R ∞ i := (0, +∞) × R * i for i = 0, 1, 2. We define a class of test functions on R ∞ by C 2 (R ∞ ) = {ϕ ∈ C(R ∞ ), the restriction of ϕ to R ∞ i , i = 0, 1, 2 is C 2 } . Definition 3.
: [0, +∞) × R → R is a viscosity sub-solution (resp. super-solution) of (2.17) if u(0, x) ≤ u 0 (x) (resp. u(0, x) ≥ u 0 (x)) and for all (t, x) ∈ R ∞ and for all ϕ ∈ C 2 (R ∞ ) such that u ≤ ϕ (resp. u ≥ ϕ) in a neighbourhood of (t, x) ∈ R ∞ and u(t, x) = ϕ(t, x),
we have

         ϕ t (t, x) + H 0 (ϕ x (t, x)) ≤ 0 (resp. ≥ 0) if x ∈ R * 0 , ϕ t (t, x) + H 1 (ϕ x (t, x)) ≤ 0 (resp. ≥ 0) if x ∈ R * 1 , ϕ t (t, x) + H 2 (ϕ x (t, x)) ≤ 0 (resp. ≥ 0) if x ∈ R * 2 , ϕ t (t, x) + F A (ϕ x (t, x)) ≤ 0 (resp. ≥ 0) if x = 0.
We say that u is a viscosity solution of (2.17) if u * and u * are respectively a sub-solution and a super-solution of (2.17). We refer to this solution as A-flux limited solution.

Thanks to the work of Imbert and Monneau [IM14], we have the following result which gives an equivalent definition of viscosity solutions for (2.17). We use this equivalent definition in the proof of Theorem 2.4 in Section 5. 

3.Viscosity solutions

H 0 p A 0 = H -p A 0 = A and H + i p A i = H i p A i = A, (3.7)
let us fix any time independent test function φ 0 (x) satisfying, for i = 0, 1, 2,

∂ i φ 0 (0) = p A i .
Given a function u : (0, T ) × R → R, the following properties hold true. i) If u is an upper semi-continuous sub-solution of (2.17) with A = H 0 , for x = 0, satisfying

u(t, 0) = lim sup (s,y)→(t,0), y∈R * i u(s, y), (3.8)
then u is a H 0 -flux limited sub-solution.

ii) Given A > H 0 and t 0 ∈ (0, T ), if u is an upper semi-continuous sub-solution of (2.17) for x = 0, satisfying (3.8), and if for any test function ϕ touching u from above at (t 0 , 0) with

ϕ(t, x) = ψ(t) + φ 0 (x), (3.9) 
for some ψ ∈ C 2 (0, +∞), we have

ϕ t + F A (ϕ x ) ≤ 0 at (t 0 , 0),
then u is a A-flux limited sub-solution at (t 0 , 0). iii) Given t 0 ∈ (0, T ), if u is a lower semi-continuous super-solution of (2.17) for x = 0 and if for any test function ϕ satisfying (3.9) touching u from above at (t 0 , 0) we have

ϕ t + F A (ϕ x ) ≥ 0 at (t 0 , 0),
then u is a A-flux limited super-solution at (t 0 , 0).

Results for viscosity solutions of (2.4)

Lemma 3.6 (Existence of barriers for (3.1)). Assume (A0) and (A)

. There exists a constant K 1 > 0 such that the functions (u + , ξ + ) and (u -, ξ -) defined by

(u + (t, x), ξ + (t, x)) = (K 1 t + u 0 (x), K 1 t + ξ 0 (x)) and (u -(t, x), ξ -(t, x)) = (u 0 (x), ξ 0 (x))
are respectively a super and sub-solution of (3.1).

Ch.6. Homogenization of a discrete model for a bifurcation

Proof. We define

K 1 = M 0 • (|p| + 2k 0 ) + 2 max i=0,1,2 max q∈|-2k 0 ,0] |H i (q)|
, where M 0 is defined in Remark 2.9. Let us prove that (u + , ξ + ) is a super-solution of (3.1). Using assumption (A0) and the form of the non-local operators and of H i , i = 0, 1, 2 we have

G1 p (x, u + (t, x), [ξ + (t, •)], [u + (t, •)], (u 0 ) x ) ≥ -M 0 • |p + (u 0 ) x | -2 max i=0,1,2 max q∈[-2k 0 ,0] |H i (q)| ≥ -M 0 (|p| + 2k 0 ) -2 max i=0,1,2 max q∈[-2k 0 ,0] |H i (q)| = -K 1 ,
where we have used Remark (2.9). Similarly, we have

G2 p (x, ξ + (t, x), [u + (t, •)], [ξ + (t, •)], (ξ 0 ) x ) ≥ -M 0 (|p| + 2k 0 ) -2 max i=0,1,2 max x∈[-2k 0 ,0] |H i (x)| = -K 1 .
(3.10)

The proof for the sub-solution is similar using that the non-local operators and H i ((u 0 ) x ) for i = 0, 1, 2 are non-positive. This ends the proof of Lemma 3.6. Proposition 3.7 (Existence and uniqueness for (3.1)). Assume (A). Let (u, ξ) (resp. (v, ζ)) be a sub-solution (resp. a super-solution) of (3.1)- (3.4). We also assume that there exists a constant K > 0 such that for all (t, x) ∈ [0, T ] × R, we have

u(t, x) ≤ u 0 (x) + K(t + 1), ξ(t, x) ≤ ξ 0 (x) + K(1 + t) -v(t, x) ≤ -u 0 (x) + K(1 + t), ζ(t, x) ≤ -ξ 0 (x) + K(1 + t). (3.11) If u(0, x) ≤ v(0, x) and ξ(0, x) ≤ ζ(0, x) for all x ∈ R, then u(t, x) ≤ v(t, x) and ξ(t, x) ≤ ζ(t, x) for all (t, x) ∈ [0, T ] × R.
In particular, the previous result combined with the Lemma 3.6 imply that there exists a unique solution (u, ξ) of (3.1)- (3.4). Moreover, the functions u and ξ are continuous and there exists a constant K 1 > 0 such that for all (t, x)

∈ [0, +∞) × R 0 ≤ u(t, x) -u 0 (x) ≤ K 1 t and 0 ≤ ξ(t, x) -ξ 0 (x) ≤ K 1 t.

3.Viscosity solutions

Proof. The first part of this result (comparison principle) is classical and uses the monotonicity properties of G (see for example [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. application to dislocations dynamics[END_REF][START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF] for a similar result) but for the readers convenience we give the proof in Appendix 9.

To prove the rest of Proposition 3.7, we apply Perron's method (see [IMR08, Proof of Theorem 6], [START_REF] Alvarez | Viscosity solutions of nonlinear integro-differential equations[END_REF][START_REF] Imbert | A non-local regularization of first order hamilton-jacobi equations[END_REF] to see how to apply Perron's method for problems with non-local terms), joint to the comparison principle.

We now give a comparison principle on bounded sets, we use the notations from (2.32). We now give a result on the control of the oscillations for the solution of (2.4) (with ε = 1). This result will be used in particular to prove Theorem 2.7. Theorem 3.9 (Control of the oscillations). Let T > 0. Assume (A0)-(A) and let (u, ξ) be a solution of (2.4)-(2.9), with ε = 1. Then there exists a constant C 1 > 0 such that for all x, y ∈ R, x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

0 ≤ u(t, x) -u(s, x) ≤ C 1 (t -s), 0 ≤ ξ(t, x) -ξ(s, x) ≤ C 1 (t -s) and -K 0 (x -y) -2 ≤ u(t, x) -u(t, y) ≤ 0, -K 0 (x -y) -2 ≤ ξ(t, x) -ξ(t, y) ≤ 0, (3.12) 
with K 0 := 2k 0 .

Proof. Using the barriers constructed in Lemma 3.6 (with p = 0, ψ + ≡ 1 and ψ -≡ 1) we deduce that (u, ξ) satisfies for all (t, x)

∈ [0, +∞) × R, 0 ≤ u(t, x) -u 0 (x) ≤ M 0 K 0 t and 0 ≤ ξ(t, x) -ξ 0 (x) ≤ M 0 K 0 t. (3.13)
In the rest of the proof we use the following notation

Ω = (t, x, y) ∈ [0, T ) × R 2 s.t. x ≥ y .
Step 1: proof of the bound of the time derivative. For all h ≥ 0, we have

u(0, x) ≤ u(h, x) ≤ M 0 K 0 h + u(0, x) and ξ(0, x) ≤ ξ(h, x) ≤ M 0 K 0 h + ξ(0, x).
Using the fact that (2.4) is invariant by addition of constant to the solution and by translation in time, we deduce by the comparison principle that, for all (t, x) ∈ [0, +∞) × R, we have

u(t, x) ≤ u(t + h, x) ≤ M 0 K 0 h + u(t, x)
and

ξ(t, x) ≤ ξ(t + h, x) ≤ M 0 K 0 h + ξ(t, x).
We deduce the result by choosing C 1 = M 0 K 0 .

Step 2: proof of the upper inequality for the control of the space oscillations.

We introduce

M = sup (t,x,y)∈ Ω max(u(t, x) -u(t, y), ξ(t, x) -ξ(t, y)). ( 3.14) 
We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 2.1: the test functions. For η, α > 0, small parameters, we define

     ϕ 1 (t, x, y) = u(t, x) -u(t, y) - η T -t -αx 2 -αy 2 , ϕ 2 (t, x, y) = ξ(t, x) -ξ(t, y) - η T -t -αx 2 -αy 2 .
Using (3.13), we have that

lim |x|,|y|→=∞ ϕ i (t, x, y)) = -∞.
Since ϕ 1 , ϕ 2 are upper semi-continuous, the function ψ = max(ϕ 1 , ϕ 2 ) reaches a maximum at a finite point that we denote by ( t, x, ȳ) ∈ Ω. Classically, we have for η and α small enough,

   0 < M 2 ≤ ψ( t, x, ȳ),
α|x|, α|ȳ| → 0 as α → 0.

Step 2.2: t > 0 and x > ȳ. By contradiction, assume first that t = 0. Then we have,

η T ≤ u 0 (x) -u 0 (ȳ) ≤ 0 or η T ≤ ξ 0 (x) -ξ 0 (ȳ) ≤ 0,
where we have used (A0), and we get a contradiction. The fact that x > ȳ comes directly from the fact that ψ( t, x, ȳ) > 0.

Step 2.3: viscosity inequalities. By doing a duplication of the time variable and passing to the limit we get, if

ψ( t, x, ȳ) = ϕ 1 ( t, x, ȳ), η (T -t) 2 ≤ -φ x, N 0 (u( t, •), [ξ( t, •)])(x), M 1 [u( t, •)](x) • |2αx| ≤ 2M 0 |αx| or, if ψ( t, x, ȳ) = ϕ 2 ( t, x, ȳ), η (T -t) 2 ≤ -φ x, N 0 (ξ( t, •), [u( t, •)])(x), M 2 [ξ( t, •)](x) • |2αx| ≤ 2M 0 |αx|,
where we have used the fact that the non-local operators are negative. This is a contradiction for α small enough.

Step 3: proof of the lower inequality for the control of the space oscillations. In order to do this part of the proof, we use the following lemma, which proof is postponed. Lemma 3.10. Assume (A0)-(A). Let T > 0, then the solution (u, ξ) of (2.4)-(2.9) (with ε = 1) satisfies

|ξ(t, x) -u(t, x)| ≤ 1 for (t, x) ∈ [0, T ) × (-∞, -h 0 ]. ( 3 

.15)

We now introduce, M = sup (t,x,y)∈ Ω max (u(t, y) -u(t, x) -K 0 (x -y) -2) and we want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 3.1: the test functions. For η and α small parameters, we introduce

ϕ(t, x, y) = u(t, y) -u(t, x) -K 0 (x -y) -2 - η T -t -αx 2
Using (3.13), we deduce that the function ϕ reaches a maximum at a finite point that we denote by ( t, x, ȳ) ∈ Ω and that for η and α small enough, we have

   0 < M 2 ≤ ψ( t, x, ȳ), α|x| → 0 as α → 0. (3.16)
Moreover, as in Step 2.2 we get that t > 0 and x > ȳ.

Step 3.2: getting a contradiction. By doubling the time variable and passing to the limit, we get

η (T -t) 2 ≤ φ x, Ñ0 (u( t, •), [ξ( t, •)](x), M1 [u( t, •)](x) • | -K 0 -2αx| -φ ȳ, N 0 (u( t, •), [ξ( t, •)](ȳ), M 1 [u( t, •)](ȳ) • |K 0 | ≤ -φ ȳ, N 0 (u( t, •), [ξ( t, •)](ȳ), M 1 [u( t, •)](ȳ) • K 0 , ( 3.17) 
where we have used the fact that the non-local operators are non-positive.

Let us now prove that

M 1 [u( t, •)](ȳ) = hmax h 0 J 1 (z)E(u( t, ȳ + z) -u( t, ȳ))dz - 3 2 V 1 max = 0. (3.18)
It is sufficient to prove that for all z ∈ (h 0 , h max ], we have

u( t, ȳ + z) -u( t, ȳ) < -2.
Let z ∈ (h 0 , h max ], if ȳ + z < x, using the fact that ϕ( t, x, ȳ + z) ≤ ϕ( t, x, ȳ), we observe that

u( t, ȳ + z) -u( t, ȳ) ≤ -K 0 z < -2.
If ȳ + z ≥ x, using the fact that u is non-increasing in space and that ϕ( t, x, ȳ) > 0, we obtain

u( t, ȳ + z) -u( t, ȳ) ≤ u( t, x) -u( t, ȳ) < -K 0 z -2 < -2.
We recall that (Remark 2.10) φ(x, a, b) = φ(x, a, max(a, b), b). In particular, given that the non-local operators are non-positive (Remark 2.9), we have

max N 0 (u( t, •), [ξ( t, •)])(ȳ), M 1 [u( t, •)](ȳ) = 0. (3.19)
Therefore, given the definition of φ in (2.8), the right-hand side term in (3.17) is equal to zero unless ȳ ≤ -h 0 -h max . Let us now prove that if ȳ ≤ -h 0 -h max , we have N 0 (u( t, •), [ξ( t, •)])(ȳ) = 0, which will directly give us a contradiction from (3.17). We claim that

N 0 (u( t, •), [ξ( t, •)])(ȳ) = hmax h 0 J 0 (z)F (ξ( t, ȳ + z) -u( t, ȳ))dz - 3 2 V 0 max = 0. (3.20)
In fact it is sufficient to prove that for all z ∈ (h 0 , h max ], we have

ξ( t, ȳ + z) -u( t, ȳ) < -1.
Step 1: the test function. For η and ε small parameters, we define

ϕ(t, x, y) = ξ(t, x) -u(t, y) -1 - L 2 (x -z) 2 - L 2 (y -z) 2 - (x -y) 2 2ε - η T -t .
As in the previous proof, we have that ϕ reaches a maximum at a finite point that we denote by

( t, x, ȳ) ∈ [0, T ) × B(z, δ) × B(z, δ).
By classical arguments, we have that

   0 < M 2 ≤ ϕ( t, x, ȳ),
|x -ȳ| → 0 as ε → 0.

Step 2: t > 0 for ε small enough. By contradiction assume that t = 0, then we have

η T < ξ 0 (x) -u 0 (x) -1 + 2k 0 |x -y| ≤ o ε (1),
where we have used assumption (A0) and we get a contradiction for ε small enough.

Step 3: |x -z| < δ and |ȳ -z| < δ. By contradiction assume that either |x -z| = δ or |ȳ -z| = δ, in which case, we have

0 < ϕ( t, x, ȳ) = ξ( t, x) -u( t, ȳ) -1 - L 2 (x -z) 2 - L 2 (ȳ -z) 2 - (x -ȳ) 2 2ε ≤ 2K 1 T + ξ 0 (x) -ξ 0 (ȳ) + ξ 0 (ȳ) -u 0 (ȳ) -1 - L 2 (x -z) 2 - L 2 (ȳ -z) 2 - (x -ȳ) 2 2ε ≤ 2K 1 T + 2k 0 |x -ȳ| - (x -ȳ) 2 2ε - L 2 δ 2 ≤ 2K 1 T + 4k 0 δ - L 2 δ 2 ≤ 0, (3.23) 
where we have used the barriers from Lemma 3.6 for the second line, assumption (A0) for the third line, and for the fourth line the fact that L = (4K 1 T + 8k 0 δ)/δ 2 . This gives us a contradiction.

Step 3: viscosity inequalities. By doubling the time variable and passing to the limit, we obtain that there exists two real numbers a, b ∈ R such that 

a -b = η (T -t) 2 , and a + φ x, N 0 (ξ( t, •), [u( t, •)])(x), M 2 [ξ( t, •)](x) • |p ε + L(x -z)| ≤ 0, b + φ ȳ, Ñ0 (u( t, •), [ξ( t, •)])(ȳ), M1 ( t, •)](ȳ) • |p ε -L(ȳ -z)| ≥ 0, with p ε = (x -ȳ)/ε. Combining these inequalities we obtain η T 2 ≤ -φ x, N 0 (ξ( t, •), [u( t, •)])(x), M 2 [ξ( t, •)](x) • |p ε + L(x -z)| . ( 3 
(ξ( t, •), [u( t, •)])(x), M 2 [ξ( t, •)](x)).
Let us prove that N 0 (ξ( t, •), [u( t, •)])(x) = 0, which, given that the non-local operators are non-positive, will imply that the entire right-hand side term in (3.24) is equal to zero.

As a matter of fact, using that |x -ȳ| → 0 as ε goes to 0, for all h ∈ [h 0 , h max ], we can assume that x + h > ȳ. Using the fact that u is decreasing in space we deduce that

u( t, x + h) -ξ( t, x) ≤ u( t, ȳ) -ξ( t, x) < -1, (3.25) 
where we have used the fact that ϕ( t, x, ȳ) > 0. This implies that N 0 (ξ( t, •), [u( t, •)])(x) = 0. This gives us a contradiction and ends the proof of Lemma 3.10.

Effective Hamiltonians and correctors for the junction

This section is devoted to the construction of correctors at the junction and far from the junction.

Correctors far from the junction

The following propositions explicit the construction of the effective Hamiltonians and of the correctors far from the junction.

Proposition 4.1 (Homogenization on R 0 ). Assume (A). Then for p ∈ [-2k 0 , 0], there exists a unique λ ∈ R, such that there exists a bounded solution

(v, ζ) of      N 0 p (v, [ζ])(x) • |v x + p| = λ, N 0 p (ζ, [v])(x) • |ζ x + p| = λ, v and ζ are Z-periodic. (4.1) Moreover, for p ∈ [-2k 0 , 0], we have λ = H 0 (p) = -V 0 -1 p |p|.
Proposition 4.2 (Homogenization on R 1 and R 2 ). Assume (A). Then for i = 1, 2 and for p ∈ [-2k 0 , 0], there exists a unique λ ∈ R, such that there exists a bounded solution v of

M i p [v](x) • |v x + p| = λ, v is Z -periodic, (4.2) with M i p defined in (3.3). Moreover, for p ∈ [-2k 0 , 0] we have λ = H i (p) = -V i -2 p |p|.
To prove the previous propositions, it is only necessary to notice that v = ζ ≡ 0 are obvious solutions to each problem.

Correctors at the junction

Like in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF][START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] in order to prove the convergence result we need to construct correctors for the junction. We now present the existence result of the appropriate correctors. The proof of this result is postponed to Section 6. Given A ∈ R, A ≥ H 0 , we introduce the real numbers p 1 + , p 2 + ∈ R such that

H 1 (p 1 + ) = H + 1 (p 1 + ) = A and H 2 (p 2 + ) = H + 2 (p 2 + ) = A (4.3)
thanks to the form of H 1 and of H 2 , there is only one couple of real numbers satisfying (4.3). We also introduce two real number p0 -and p 0 -defined by

p0 -= min{p, p ∈ E 0 } p 0 -= max{p, p ∈ E 0 } with E 0 = {p ∈ [-2k 0 , 0], H - 0 (p) = H 0 (p) = A}. (4.4)
Note that if A = 0, then p0 -= p 0 -. 

Theorem 4.3 (Existence of global corrector for the junction). Assume (A). i) (General properties) There exists a constant
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ii) (Bound from below at infinity) There exist two constants γ 0 > 0 and C > 0 such that for every γ ∈ (0, γ 0 ), we have for x > 0 and h ≥ 0,

w(x + h) -w(x) ≥ (p 1 + -γ)h -C χ(x + h) -χ(x) ≥ (p 2 + -γ)h -C (4.7)
and for x ≤ -h 0 -h max -1 and h ≥ 0 iii) (Rescaling) For ε > 0, we set

w(x -h) -w(x) ≥ (-p 0 --γ)h -C χ(x -h) -χ(x) ≥ (-p 0 --γ)h -C. ( 4 
w ε (x) = εw x ε and χ ε (x) = εχ x ε ,
then (up to a sub-sequence ε n → 0) we have that w ε and χ ε converge locally uniformly respectively towards W and X which satisfy respectively

     |W (x) -W (y)| ≤ C|x -y| for all x, y ∈ R, H 1 (W x ) = A for all x > 0, H 0 (W x ) = A for all x < 0. (4.9) and      |X(x) -X(y)| ≤ C|x -y| for all x, y ∈ R, H 2 (X x ) = A for all x > 0, H 0 (X x ) = A for all x < 0. ( 4 

.10)

In particular, we have (with

W (0) = 0 = X(0)), p 1 + x1 {x>0} + p 0 -x1 {x<0} ≤ W (x) ≤ p 1 + x1 {x>0} + p0 -x1 {x<0} (4.11) and p 2 + x1 {x>0} + p 0 -x1 {x<0} ≤ X(x) ≤ p 2 + x1 {x>0} + p0 -x1 {x<0} . (4.12)
This section contains the proof of Theorem 2.4, which relies on the existence of correctors provided by Propositions 4.1, 4.2 and Theorem 4.3. We will use the following lemmas for the proof of Theorem 2.4, the first one is a direct consequence of Perron's method and Lemma 3.6 and the second one is a direct consequence of Theorem 3.9.

Lemma 5.1 (Barriers uniform in ε). Assume (A0) and (A)

. Then there exists a constant C > 0, such that for all ε > 0, the solution (u ε , ξ ε ) of (2.4)-(2.9) satisfies for all t > 0 and x ∈ R,

|u ε (t, x) -u 0 (x)| ≤ Ct and |ξ ε (t, x) -ξ 0 (x)| ≤ Ct.

Lemma 5.2 (Control of the space oscillations). Assume (A0) and (A). Then the solution

(u ε , ξ ε ) of (2.4)-(2.9) satisfies for all t > 0, x, y ∈ R, x ≥ y, -2k 0 (x -y) -2ε ≤ u ε (t, x) -u ε (t, y) ≤ 0, -2k 0 (x -y) -2ε ≤ ξ ε (t, x) -ξ ε (t, y) ≤ 0. ( 5.1) 
Before doing the proof of Theorem 2.4, let us show how it will allow us to prove Theorem 2.7.

Proof of Theorem 2.7. We want to prove that for all

t ∈ [0, +∞), x, y ∈ R 0 ∪ R 1 , x ≥ y (or for all t ∈ [0, +∞), x, y ∈ R 0 ∪ R 2 , x ≥ y) -2k 0 • d(x, y) ≤ u 0 (t, x) -u 0 (t, y) ≤ 0.
Using Lemma 5.2, we have that ũε , defined by (2.16), satisfies for all

t ∈ [0, +∞), x, y ∈ R 0 ∪ R 1 , x ≥ y (or for all t ∈ [0, +∞), x, y ∈ R 0 ∪ R 2 , x ≥ y), -2k 0 • d(x, y) -2ε ≤ ũε (t, x) -ũε (t, y) ≤ 0.
Now using Theorem 2.4, and passing to the limit as ε → 0, we obtain the result.

Proof of Theorem 2.4. Let us introduce for

(t, x) ∈ (0, T ) × R, u(t, x) = lim sup ε→0 * u ε (t, x) and ξ(t, x) = lim sup ε→0 * ξ ε (t, x), ( 5.2) 
First case: ȳ = 0. We only consider ȳ ∈ R * 0 , since the other cases (ȳ ∈ R * 1 and ȳ ∈ R * 2 ) can be treated in the same way. We define p = ∂ 0 ϕ( t, ȳ) which, according to (5.6) satisfies -2k 0 ≤ p ≤ 0.

(5.7)

We choose, r > 0 small enough so that x + r < 0. Let us prove that the test function φ defined by φ(t, x) = ϕ(t, x e 0 ) for x < 0, (notice that φx ( t, x) = ∂ 0 ϕ( t, ȳ) and φt ( t, x) = ϕ t ( t, ȳ)) satisfies in the viscosity sense, the following inequality for (t, x) ∈ P r,r ( t, x),

φt + φ x ε , Ñ ε 0 φ(t, •) ε , φ(t, •) ε (x), M ε 1 φ(t, •) ε (x) • | φx | ≥ θ 2 .
(5.8)

Let us notice that for ε small enough we have for all (t, x) ∈ P r,r ( t, x), for k = 1, 2,

φ x ε , Ñ ε 0 φ(t, •) ε , φ(t, •) ε (x), M ε k φ(t, •) ε (x) = Ñ ε 0 φ(t, •) ε , φ(t, •) ε (x). (5.9)
For all (t, x) ∈ P r,r ( t, x), we have for r small enough φt (t, x)

+ Ñ ε 0 φ(t, •) ε , φ(t, •) ε (x) • | φx (t, x)| = φt ( t, x) + o r(1) + Ñ ε 0 φ(t, •) ε , φ(t, •) ε (x) • |p| = θ -H 0 (p) + o r(1) + Ñ ε 0 φ(t, •) ε , φ(t, •) ε (x) • |p| =: ∆, (5.10) 
where we have used (5.4) and the definition of p. We recall that for -2k 0 ≤ p ≤ 0, we have

H 0 (p) = N 0 p (0, [0])(0) • |p| = Ñ 0 p (0, [0])(0) • |p|.
Moreover, for all z ∈ [h 0 , h max ], and for ε and r small enough we have that

φ(t, x + εz) -φ(t, x) ε = z φx (t, x) + O(ε) ≤ pz + o r(1) + cε,
with c > 0 a fixed constant. Now using the fact that F is decreasing we have

F (pz + cε + o r(1)) ≤ F φ(t, x + εz) -φ(t, x) ε .
Using this result and replacing the non-local operators in (5.10) by their definition we obtain

∆ ≥ θ + o r + |p| hmax h 0 J 0 (z) F (pz + cε + o r(1))dz (5.11) -|p| hmax h 0 J 0 (z) F (pz)dz.
We can see that if we have p = 0, we obtain directly our result. However, if -2k 0 ≤ p < 0,

R J 0 (z) F (pz + cε + o r(1))dz = -V 0 -1 -cε -o r(1) p - 1 2 V 0 - -1 + cε + o r(1) p + 3 2 V 0 max , R J 0 (z) F (pz)dz = -V 0 -1 p + 3 2 V 0 max .
(5.12) Injecting (5.12) in (5.11) and choosing ε and r small enough, we obtain

∆ ≥ θ + o r(1) + |p| • -V 0 -1 -cε + o r(1) p + V 0 -1 p ≥ θ + o r(1) -||V 0 || ∞ • (cε + o r(1)) ≥ θ 2 , ( 5.13) 
where we have used assumption (A1) for the second line.

Getting the contradiction. By definition, for ε small enough and using (5.5), we have

u ε ≤ φ -η and ξ ε ≤ φ -η outside P r,r ( t, x).
Using the comparison principle on bounded sets for (2.4), we get u ε ≤ φ -η and ξ ε ≤ φ -η on P r,r ( t, x).

Passing to the limit as ε → 0, this implies v ≤ ϕ -η on Q r,r ( t, ȳ) and this contradicts the fact that v( t, ȳ) = ϕ( t, ȳ).

Remark 5.3. In the case ȳ ∈ R * 1 or ȳ ∈ R * 2 , (2.4) is completely decoupled for ε small enough in P r,r ( t, x) and therefore we can consider each line of (2.4) as independent.

Second case: ȳ = 0. Thanks to (5.6) (which implies (3.8)), we may use Theorem 3.5 and assume that the test function has the following form

ϕ(t, y) = g(t) + p 0 -y1 {y∈R * 0 } + p 1 + y1 {y∈R * 1 } + p 2 + y1 {y∈R * 2 }
on Q 2r,2r ( t, 0), (5.14) where g is a C 1 function defined in (0, +∞). The last line in condition (5.4) becomes (5.17)

g (t) + F A (p 0 -, p 1 + , p 2 + ) = g (t) + A = θ at ( t, 0). ( 5 
We claim that these functions satisfy in the viscosity sense, for r and ε small enough, on P r,r ( t, 0),

           ϕ ε t (t, x) + φ x ε , Ñ ε 0 ϕ ε (t, •) ε , ψ ε (t, •) ε , M ε 1 ϕ ε ε (t, •) (x) • |ϕ ε x | ≥ θ 2 , ψ ε t (t, x) + φ x ε , Ñ ε 0 ψ ε (t, •) ε , ϕ ε (t, •) ε , M ε 2 ψ ε ε (t, •) (x) • |ψ ε x | ≥ θ 2 ,
We only prove that ϕ ε is a super-solution (the case for ψ ε is similar and we skip it), let h be a test function touching ϕ ε from below at (t 1 , x 1 ) ∈ P r,r ( t, 0), so we have

w x 1 ε = 1 ε (h(t 1 , x 1 ) -g(t 1 )) ,
and

w(y) ≥ 1 ε (h(t 1 , εy) -g(t 1 )) ,
for y in a neighbourhood of x 1 ε . Since w does not depend on time, we have h t (t 1 , x 1 ) = g (t 1 ).
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Therefore, we have

h t (t 1 , x 1 ) -g (t 1 ) + φ x 1 ε , Ñ0 (w, [χ]) x 1 ε , M1 [w] x 1 ε • |h x (t 1 , x 1 )| ≥ A.
This implies that (using (5.15) and taking r small enough)

h t (t 1 , x 1 ) + φ x 1 ε , Ñ0 (w, [χ]) x 1 ε , M1 [w] x 1 ε • |h x (t 1 , x 1 )| ≥ A + g (t 1 ) ≥ θ 2 .
Now for ε small enough such that εh max ≤ r, we deduce from the previous inequality and using the fact that we consider non-local operators with bounded support, that we have

h t (t 1 , x 1 ) + φ x 1 ε , Ñ ε 0 ϕ ε (t 1 , •) ε , ψ ε (t 1 , •) ε (x 1 ), M ε 1 ϕ ε ε (t 1 , •) (x 1 ) • |h x (t 1 , x 1 )| ≥ θ 2 .
Getting the contradiction. Using (5.5) and (5.14), we have for ε small enough

u ε + η ≤ g(t) + p 0 -x1 {x<0} + p 1 + x1 {x>0} ξ ε + η ≤ g(t) + p 0 -x1 {x<0} + p 2 + x1 {x>0} ,
on P 2r,2r ( t, 0)\P r,r ( t, 0), Using the fact that w ε → W and ζ ε → X, and using (4.11), we have for ε small enough

         u ε + η 2 ≤ ϕ ε ξ ε + η 2 ≤ ψ ε ,
on P 2r,2r ( t, 0)\P r,r ( t, 0).

Combining this result with (5.16)-(5.17), we get

         u ε + η 2 ≤ ϕ ε ξ ε + η 2 ≤ ψ ε , outside P r,r ( t, 0).
By the comparison principle on bounded subsets the previous inequality holds in P r,r ( t, 0). Passing to the limit as ε → 0, we obtain

v + η 2 ≤ ϕ on Q r,r ( t, 0).
Evaluating this inequality in ( t, 0), we obtain a contradiction.

Remark 5.4. In order to prove that v is a super-solution, the test function in the case ȳ = 0, needs to be

ϕ(t, y) = g(t) + p0 -y1 {y∈R * 0 } + p 1 + y1 {y∈R * 1 } + p 2 + y1 {y∈R * 2 }
on Q 2r,2r ( t, 0). (5.18) This ends the proof of Theorem 2.4.

Step 1: existence of a solution. Using that (0, 0) and (C 0 /δ, C 0 /δ) are respectively sub and super-solution of (6.8), with C 0 = | min p∈R H 0 (p)| and that we have a comparison principle, we deduce that there exists a continuous viscosity solution (v δ , ζ δ ) of (6.8) which satisfies

0 ≤ v δ ≤ C 0 δ and 0 ≤ ζ δ ≤ C 0 δ . ( 6 
.9)

Step 2: control of the oscillations of v δ and ζ δ . Lemma 6.4. The functions v δ and ζ δ satisfy for all x, y ∈ [-l, l], x ≥ y,

-K 0 (x -y) -2 ≤ v δ (x) -v δ (y) ≤ 0 and -K 0 (x -y) -2 ≤ ζ δ (x) -ζ δ (y) ≤ 0,(6.10) with K 0 = 2k 0 .
Proof of Lemma 6.4. In the rest of the proof we will use the following notation

Ω = (x, y) ∈ [-l, l] 2 s.t. x ≥ y .
Proof of the upper inequality. We want to prove that

M = sup (x,y)∈ Ω max v δ (x) -v δ (y), ζ δ (x) -ζ δ (y) ≤ 0. (6.11)
We argue by contradiction and assume that M > 0. Since Ω is compact and v δ and ξ δ are continuous, we can see that M is reached for a finite point that we denote by (x, ȳ) ∈ Ω.

Given that M > 0, we deduce that x = ȳ. Therefore, we can use the viscosity inequalities for (6.8).

Let us assume for instance that M = v δ (x) -v δ (ȳ) (the other case is similar so we skip it).

We distinguish 3 cases.

-If (x, ȳ) ∈ (-l, l), we have

δv δ (x) + G 1 R (x, v δ (x), [ζ δ ], [v δ ], 0) ≤ 0 δv δ (ȳ) + G1 R (ȳ, v δ (ȳ), [ζ δ ], [v δ ], 0) ≥ 0
combining these inequalities with the fact that G(x, U, [Ξ], [U ], 0) = 0, we obtain δM ≤ 0.

-If x = l and ȳ ∈ (-l, l), we obtain similarly δM ≤ 0, (6.12)

We build m δ 2 the same way but using ζ δ instead of v δ . Moreover, let x ∈ [-l, h 0 ], first if x ≤ -h 0 , using Lemma 6.5, we have that Choosing C = max(2K 0 , 25) we obtain (6.16) and (6.17). This ends the proof of Lemma 6.6.

Step 4: passing to the limit as δ goes to 0. Using (6.9), Lemma 6.6 and (6.16), we deduce that there exists a subsequence δ n → 0 such that Therefore, we have that λ l,R , w l,R , w l,R , χ l,R , χ l,R and m l,R i , satisfy for i = 1, 2, By stability of viscosity solutions, we have that (w l,R -2C, χ l,R -2C) and (w l,R , χ l,R ) are respectively a sub-solution and a super-solution of (6.1), and w l,R -2C ≤ w l,R and χ l,R -2C ≤ χ l,R . By Perron's method, we can construct a solution (w l,R , χ l,R ) of (6.1) and thanks to (6.20)-(6.21), m l,R , w l,R , χ l,R and λ l,R satisfy (6.7) in which the first inequality is replaced by

min p∈R H 0 (p) ≤ λ l,R ≤ 0.
The first inequality of (6.7) comes from the fact that near {-l} and {l}, (6.1) contains only local operators H i for i = 0, 1, 2. Indeed, using [AHFM13, Lemme B.1], we can touch from above, near {-l} or {l}, the functions (w l,R , χ l,R ) with a regular test function ϕ. This implies that H i (ϕ x ) ≤ λ l,R for i = 0, 1 or 2 which gives max i∈{0,1,2} min p∈R H i (p) ≤ λ l,R . (

The uniqueness of λ l,R is classical so we skip it. This ends the proof of Proposition 6.3.

Proof of Lemma 6.5. This proof uses similar arguments to ones used in the proof of Theorem 3.9. We only prove that for all x ∈ [-l, -h 0 ] we have ζ δ (x) -v δ (x) ≤ 1, the proof for the second part of the result is similar and we skip it. First, let us prove the inequality on the interval [-R, -h 0 ].

Step 1: x ∈ [-R, -h 0 ]. Take z ∈ (-R, -h 0 ) and let α > 0 be some small parameter such that z ∈ [-R + α, -h 0 -α]. We denote by ∆ = {x ∈ [-l, l] s.t. |z -x| ≤ α} .

We want to prove that for L := 4C 0 /(δα 2 ), we have 2 for all x ∈ ∆. (6.23)

ζ δ (x) -v δ (x) ≤ 1 + L(x -z)
In fact, if we take x = z in the previous inequality, we obtain

ζ δ (x) -v δ (x) ≤ 1 for all z ∈ (-R, -h 0 )
Using the continuity of v δ and ζ δ , we deduce the result in [-R, -h 0 ]. In order to prove (6.23), we introduce

M = sup x∈∆ ζ δ (x) -v δ (x) -1 -L(x -z) 2 . (6.24)
We argue by contradiction and assume that M > 0.

Step 1.1: the test function. We define for ε a small parameter, the function

ϕ(x, y) = ζ δ (x) -v δ (y) -1 - L 2 (x -z) 2 - L 2 (y -z) 2 - (x -y) 2 2ε .
The function ϕ reaches a maximum at a finite point (x, ȳ) in the domain 

< ϕ(x, ȳ) = ζ δ (x) -v δ (ȳ) -1 - L 2 (x -z) 2 - L 2 (ȳ -z) 2 - (x -ȳ) 2 2ε ≤ 2 C 0 δ - L 2 α 2 = 0, (6.27) 
where we have used (6.9) and the fact that L = 4C 0 /(δα 2 ) for the second line, which gives us a contradiction.

Step 1.3: viscosity inequalities. Using the viscosity inequalities we obtain

δζ δ (x) + G 2 R (x, ζ δ (x), [v δ ], [ζ δ ], L(x -z) + p ε ) ≤ 0 δv δ (ȳ) + G1 R (ȳ, v δ (ȳ), [ζ δ ], [v δ ], -L(ȳ -z) + p ε ) ≥ 0,
with p ε = (xȳ)/ε. Combining these inequalities and using the definition of M , we obtain

δM ≤ G1 R (ȳ, v δ (ȳ), [ζ δ ], [v δ ], -L(ȳ -z) + p ε ) -G 2 R (x, ζ δ (x), [v δ ], [ζ δ ], L(x -z) + p ε ) ≤φ ȳ, Ñ0 (v δ , [ζ δ ])(ȳ), M δ 1 [v δ ](ȳ) .| -L(ȳ -z) + p ε | -φ x, N 0 (ζ δ , [v δ ])(x), M 2 [ζ δ ](x) .|L(x -z) + p ε | ≤ -φ x, N 0 (ζ δ , [v δ ])(x), M 2 [ζ δ ](x) .|L(x -z) + p ε |, (6.28) 
where we have used the fact that the non-local operators are non-positive (Remark 2.9) and that x, ȳ ∈ [-R, -h 0 ] which implies that ψ ± R (ȳ) = ψ ± R (x) = 1.

6.Truncated cell problem

Let us prove that N 0 (ζ δ , [v δ ])(x) = 0. It is sufficient to prove that for all h ∈ [h 0 , h max ], we have

v δ (x + h) -ζ δ (x) < -1.
In fact, using (6.26), for ε small enough, we can assume that for all h ∈ [h 0 , h max ], we have x + h > ȳ. Using the fact that v δ is non-increasing and that M > 0, we have

v δ (x + h) -ζ δ (x) ≤ v δ (ȳ) -ζ δ (x) < -1.
Using that the non-local operators are non-positive, we have that Therefore, for ε small enough, we can assume that x ε , y ε ∈ (-l, -R). Using the viscosity inequalities, we obtain

δζ δ (x ε ) + G 2 R (x ε , ζ δ (x ε ), [v δ ], [ζ δ ], (x ε -x) + p ε ) ≤ 0 δv δ (y ε ) + G1 R (y ε , v δ (y ε ), [ζ δ ], [v δ ], -(y ε -x) + p ε ) ≥ 0,
with p ε = (x ε -y ε )/ε. Combining these inequalities and using the definition of M , we obtain where we have used the regularity of ψ - R for the first inequality, the form of H 0 (the fact that |H 0 (p)| ≤ V 0 max |p|, see (2.10)), and (6.31) for the last inequality. Injecting (6.34) into (6.33), we obtain that δM ≤ o ε (1), which gives a contradiction for ε small enough.

δM ≤ G1 R (y ε , v δ (y ε ), [ζ δ ], [v δ ], -(y ε -x) + p ε ) -G 2 R (x ε , ζ δ (x), [v δ ], [ζ δ ], (x ε -x) + p ε ) ≤(1 -ψ - R (y ε ))H 0 (-(y ε -x) + p ε ) -(1 -ψ - R (x ε ))H 0 ((x ε -x) + p ε ) + ψ - R (y ε )φ y ε , Ñ0 (v δ , [ζ δ ])(y ε ), M δ 1 [v δ ](y ε ) .| -(y ε -x) + p ε | -ψ - R (x ε )φ x ε , N 0 (ζ δ , [v δ ])(x ε ), M 2 [ζ δ ](x ε ) .|(x ε -x) + p ε | ≤(1 -ψ - R (y ε ))H 0 (-(y ε -x) + p ε ) -(1 -ψ - R (x ε ))H 0 ((x ε -x) + p ε ) -ψ - R (x ε )N 0 (ζ δ , [v δ ])(x ε ).|(x ε -x) + p ε |,
Case 2: x = -l. We introduce

ϕ(x, y) = ζ δ (x) -v δ (x) -1 -εG γ x ε , y ε - 1 2 (x -x) 2 + (y -x) 2 ,
where G γ is the vertex test function introduce by Imbert and Monneau in [IM14, Theorem 3.2]. We fix γ = δM/2. We refer to [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] for a detailed description on the vertex test function and on how to build it, but for the readers convenience we recall the properties we use in this proof. Like in the previous case, the test function ϕ reaches a maximum at a point (x ε , y ε ) and (6.31) remains valid with x = -l. Proceeding like before, we obtain (6.32) but for ε small enough the only terms that remain are the local ones. Therefore, we have

δM ≤H 0 y ε , -(y ε -x) -G γ y x ε , y ε ε -H 0 x ε , x ε -x + G γ x x ε ε , y ε ε ≤H 0 y ε , -G γ y x ε , y ε ε -H 0 x ε , G γ x x ε ε , y ε ε + ||H 0 || ∞ (|x ε + l| + |y ε + l|)
≤γ + o ε (1). (6.38) This implies that δM/2 ≤ o ε (1) and we obtain a contradiction for ε small enough. Moreover, we have

H 0 ≤ A, A R ≤ 0.
Moreover, since min H 0 < λ l,R , for µ small enough, we have p 0 µ ∈ [-2k 0 , 0). We introduce w -= p 0 µ x = χ -. Like before, we can see that the restriction of w -to [-l, -h 0 -h max -1) satisfies

G 1 R (x, w -, [χ -], [w -], w - x ) = λ l,R -µ if x ∈ (-l, -h 0 -h max -1) H - 0 (w - x ) = λ l,R -µ if x = -l.
Similarly, the restriction of χ -to [-l, -h max -h 0 -1) satisfies

G 2 R (x, χ -, [w -], [χ -], χ - x ) = λ l,R -µ if x ∈ (-l, -h 0 -h max -1) H - 0 (χ - x ) = λ l,R -µ if x = -l.
Let us introduce, for some x 0 ∈ [-l, -h 0 -h max -1), g = w l,R -w l,R (x 0 ) h = χ l,R -w l,R (x 0 ), and

u = w --w -(x 0 ) - C v = χ --χ -(x 0 ) -C, (6.49) 
with C = Ch max + 3C where C > 0 is the constant provided by Proposition 6.3. Then, using Proposition 6.3, we have for all x ∈ [x 0 , x 0 + h max ]

g(x) = w l,R (x) -w l,R (x 0 ) ≥ -C|x -x 0 | -2C ≥ -Ch max -2C ≥ - C ≥ -C + p 0 µ (x -x 0 ) = u(x)
and h(x) = χ l,R (x) -w l,R (x 0 ) =χ l,R (x) -χ l,R (x 0 ) + χ l,R (x 0 ) -w l,R (x 0 )

≥ -Ch max -2C -C ≥ -C ≥ -C + p 0 µ (x -x 0 ) = v(x).

Using the comparison principle (Proposition 6.1) with the boundary conditions (6.6) (see Remark 6.2), we get that w l,R (x) -w l,R (x 0 ) ≥ p 0 µ (x -x 0 ) -C χ l,R (x) -w l,R (x 0 ) ≥ p 0 µ (x -x 0 ) -C.

Using Proposition 6.3, we have that |χ l,R (x 0 ) -w l,R (x 0 )| ≤ C. Therefore, up to changing the constant C > 0, we have w l,R (x) -w l,R (x 0 ) ≥ p 0 µ (x -x 0 ) -C χ l,R (x) -χ l,R (x 0 ) ≥ p 0 µ (x -x 0 ) -C.

This implies that for all h ≥ 0, and for all x ∈ (-l, -h 0 -h max -1),

w l,R (x -h) -w l,R (x) ≥ -p 0 µ h - C χ l,R (x -h) -χ l,R (x) ≥ -p 0 µ h -C.
Finally, if we choose γ 0 < |p 0 -p 0 -|, then we have

H 0 (p 0 -+ γ) = H - 0 (p 0 -+ γ).
Choosing µ > 0 such that p 0 µ = p 0 + + γ.

we obtain (6.42) and (6.43) .

Proof of Theorem 4.3. The proof is performed in two steps.

Step 1: proof of i) and ii). We want to pass to the limit as l → +∞ and then as R → +∞ for the solution of (6.1) given by Proposition 6.3. Using (6.3), there exists l n → +∞, such that for i = 1, 2, we have

m ln,R i -m ln,R i (0) → m R i
as n → +∞, the convergence being locally uniform. We also define Thanks to (6.3), we know that these limits are finite and satisfy

m R 1 -C ≤ w R ≤ w R ≤ m R 1 + C. and m R 2 -C ≤ χ R ≤ χ R ≤ m R 2 + C.
By stability of viscosity solutions (w R -2C, χ R -2C) and (w R , χ R ) are respectively a sub-solution and a super-solution of

G 1 R (x, w R (x), [χ R ], [w R ], w R x ) = A R G 2 R (x, χ R (x), [w R ], [χ R ], χ R x ) = A R (6.50)
Therefore, using Perron's method, we can construct a solution (w R , χ R ) of (6.50), with m R , A R , w R and χ R satisfying

         |m R i (x) -m R i (y)| ≤ C|x -y| for all x, y ∈ R, for i = 1, 2, |w R (x) -m R 1 (x)| ≤ C, |χ R (x) -m R 2 (x)| ≤ C for all x ∈ R, |w R (x) -χ R (x)| ≤ C
for all x ≤ h 0 , H 0 ≤ A R ≤ 0. (6.51) Using Proposition 6.8, if A > H 1 (resp. A > min H 2 ), we know that there exists γ 0 and a constant C > 0, such that for all γ ∈ (0, γ 0 ), for all x ≥ 0, and h ≥ 0,

w R (x + h) -w R (x) ≥ (p 1 + -γ)h -C resp. χ R (x + h) -χ R (x) ≥ (p 1 + -γ)h -C . (6.52)
Similarly, if we assume A > min H 0 , then we have similarly, for all x ≤ -h 0 -h max -1 and h ≥ 0, w R (x -h) -w R (x) ≥ (-p 0 --γ)h -C and χ R (x -h) -χ R (x) ≥ (-p 0 + -γ)h -C. (6.53) We now pass to the limit as R → +∞. We consider (up to a sub-sequence), for i = 1, 2,

                     w(x) = lim sup R→+∞ * w R -w R (0) , w(x) = lim inf R→+∞ * w R -w R (0) , χ(x) = lim sup R→+∞ * χ R -w R (0) , χ(x) = lim inf R→+∞ * χ R -w R (0) , A = lim R→+∞ A R , m i = lim R→+∞ (m R i -m R i (0)).
The last convergence being locally uniform. Thanks to (6.51), we know that the previous limits are finite and that Step 2: proof of iii). Let us now consider the rescaled functions w ε = εw(x/ε) and χ ε (x) = εχ(x/ε). Using (4.5), we have that

w ε (x) = εm 1 x ε + O(ε) and χ ε (x) = εm 2 x ε + O(ε). (6.55)
Therefore, there exists a subsequence ε n → 0 as n → +∞, such that w εn → W and χ εn → X locally uniformly as n → +∞, (6.56)

with W (0) = X(0) = 0. Arguing as in the proof of convergence away from the junction point, we have that (W, X) satisfies

           H 0 (W x ) = A H 0 (X x ) = A for x < 0, H 1 (W x ) = A H 2 (X x ) = A for x > 0.
This proves (4.9). Let us now prove (4.11). For x < 0, we have for all γ ∈ (0, γ 0 ), if A > min H 0 , W x ≤ p 0 -+ γ and X x ≤ p 0 -+ γ, where we have used (4.8). Therefore, we have p0 -≤ W x , X x ≤ p 0 -, (6.57) this inequality remains valid if A = min H 0 (in which case, given the form of H 0 , we have W x = X x = p0 -= p 0 -= p 0 ). For x > 0, we have for all γ ∈ (0, γ 0 ), if A > min H 1 (resp. A > min H 2 ),

W x ≥ p 1 + -γ resp. X x ≥ p 2 + -γ ,
where we have used (4.7). Therefore given the form of H 1 (resp. of H 2 ), we have that W x = p 1 + (resp. X x = p 2 + ) for x > 0, this result is still valid if A = min H 1 (resp. A = H 2 ). Combining these results, we obtain (4.11).

Proof of Theorem 2.8. Up to a sub-sequence, we assume that A = lim We argue by contradiction and assume that there exists λ ∈ E such that λ < A, associated with (v λ , ζ λ ) solution of (2.25). Arguing as in the proof of Theorem 4.3, we deduce that the functions v ε λ (x) = εv λ x ε and ζ ε λ (x) = εζ λ x ε (6.58) have as limits, as ε goes to 0, W λ and X λ (with W λ (0) = X λ (0) = 0) which satisfies

           H 0 (W λ x ) = λ H 0 (X λ x ) = λ for x < 0, H 1 (W λ x ) = λ H 2 (X λ x ) = λ for x > 0.
This means that for all x > 0, we have Similarly, for all x < 0, we have Let us now introduce two functions (u, ξ) and (u λ , ξ λ ), defined by u(t, x) = v(x) + C R -At, ξ(t, x) = ζ(x) + C R -At, and u λ (t, x) = v λ (x) -λt, ξ λ (t, x) = ζ λ (x) -λt.

W λ x ≤ p λ,
Both functions are solutions of (2.4) (with ε = 1) and u λ (0, x) ≤ u(0, x) and ξ λ (0, x) ≤ ξ(0, x).

Using the comparison principle (Proposition 3.7), we obtain

v λ (x) -λt ≤ v(x) -At + C R.
Dividing by t and passing to the limit as t goes to infinity, we get A ≤ λ, which is a contradiction.

7 Link between the system of ODEs and the system of PDEs Before the proof of Theorem 7.1, let us do the proof of Theorem 2.5.

Proof of Theorem 2.5. We recall that in Theorem 2.5, we have

u 0 (x) = -x/h if x ≤ 0 -2x/h 1 if x > 0 and ξ 0 (x) = -x/h if x ≤ 0 -2x/h 2 if x > 0 for all x ∈ R.
First, we would like to prove that for all ε > 0, we have |ρ ε 1 (0, x) -u 0 (x)| ≤ f (ε) for all x ∈ R (7.2) and |ρ ε 1 (0, x) -ξ 0 (x)| ≤ g(ε) for all x ∈ R, (

with f (ε), g(ε) → 0 as ε goes to 0. Let us begin by proving (7.2). To do this, we consider a piece-wise affine function v such that ρ 1 1 (0, x) = v(x) for x = U i (0), for all i ∈ Z such that i[2] = 1. (7.4)

First, given that for all i ∈ Z, U i+1 (0) -U i (0) ≥ h 0 , we notice that v is 2k 0 -Lipschitz continuous and by definition of ρ 1 1 , we have Using the assumption that for all i ∈ Z such that U i (0) ≤ -R we have U i+1 (0) -U i (0) = h, we deduce that for all x ≤ U i 0 (0)

v(x) = - x h + U i 0 (0) h + ρ 1 1 (0, U i 0 (0)) = - x h + U i 0 (0) h -i 0 -1.
Let us now consider the integer i 1 ∈ N defined by

i 1 = inf {i ∈ Z, s.t. i[2] = 1, U i (0) ≥ R} .
Now using the assumption that for all i ∈ Z such that i[2] = 1 and U i (0) ≥ R we have U i+2 (0) -U i (0) = h 1 , we deduce that for all x ≥ U i 1 (0)

v(x) = - 2x h 1 + 2U i 1 (0) h 1 + ρ 1 1 (0, U i 1 (0)) = - 2x h 1 + 2U i 1 (0) h 1 -(i 1 + 1).
Moreover, we recall that for all ε > 0, we have ρ ε 1 (0, x) = ερ 1 1 (0, x/ε), this implies that for all x / ∈ [εU i 0 (0), εU i 1 (0)],

|ρ ε 1 (0, x) -u 0 (x)| ≤ ρ ε 1 (0, x) -εv x ε + εv x ε -u 0 (x) ≤2ε + ε max 2U i 1 (0) h 1 -i 1 -1 , U i 0 (0) h -i 0 -1 .
(7.6)

Similarly, we have for all x ∈ [εU i 0 (0), εU i 1 (0)],

|ρ ε 1 (0, x) -u 0 (x)| ≤ ρ ε 1 (0, x) -εv x ε + εv x ε -εu 0 x ε ≤2ε + ε max y∈[U i 0 (0),U i 1 (0)]
(|v(y) -u 0 (y)|) , (7.7)

where we have used the fact that εu 0 (x/ε) = u 0 (x). Combining (7.6) and (7.7) and choosing

f (ε) = 2ε + ε max 2U i 1 (0) h 1 -i 1 -1 , max y∈[U i 0 (0),U i 1 (0)] (|v(y) -u 0 (y)|) , U i 0 (0) h -i 0 -1  
we deduce (7.2). Similarly, we can construct g(ε) such that (7.3) is satisfied. Notice also that thanks to (7.2) and (7. Moreover, we assume that for all x ∈ R -nk 0 = -n h 0 ≤ (u j,0 ) x ≤ 0 for all j = 0, . . . , n -1.

The effective Hamiltonians

Like in the case of a simple bifurcation, we will have an effective Hamiltonian on each road. We introduce H k , for k = 0, . . . , n which are the effective Hamiltonian on each of the roads R k for k = 0, . . . , n. We define k 0 = 1/h 0 and H 0 : R → R by 

Convergence result

Let (u ε j ) j be the solution of (8.3)-(8.7). It is possible to prove that the function defined by ũε (t, x) = u ε 0 (t, -d(0, x)) for (t, x) ∈ (0, +∞) × R 0 , u ε k-1 (t, d(0, x)) for (t, x) ∈ (0, +∞) × R * k , k ∈ {1, . . . , n}, (8.12)

For i = 0, 1, 2, V i is an optimal velocity function. The function φ is the same as before (see (1.2)).

In Figure 8.6, we have a schematic representation of model (8.21)-(8.22)-(8.23). We assume that the optimal velocities satisfy assumption (A), however, we need to change assumption (A5), to take into account the fact that we have a different distribution of vehicles.

Transition zones

O -h 0 -h 0 -h max Ui = V 0 (U i+1 -U i ) -h 0 -h max -1 Ui = min(V 0 (U i+1 -U i ), V 1,2 (U˜i -U i )) Ui = φ (U i , V 0 (U i+1 -U i ), V 1,2 (U˜i -U i )) Ui = V 2 (U i+1 -U i ) if i[n] ∈ {1, . . . , n -2} Ui = V 2 (U i+2 -U i ) if i[n] = n -1 Ui = V 1 (U i+2 -U i ) if i[n] = 0 R 0 R 1 R 2
• (A5") The function p → pV 0 (-1/p), p → pV 1 (-n/p) and p → pV 2 (-n/(p(n -1)) are strictly convex respectively on [-1/h 0 , 0), on [-n/h 0 , 0), and on [-nk 0 /(n -1), 0).

To simplify we call (A") assumption (A) with (A5") instead of (A5).

As before, for j = 0, . . . , n -1, we define the following "cumulative distribution functions"

ρ ε j (t, x) = -nε •   i[n]=j, i≥0 H x -εU i t ε + i[n]=j, i<0 -1 + H x -εU i t ε   + ε(n -1 -j).
(8.24)

Under assumption (A") we can prove that (ρ j ) j=0,...,n-1 is a (discontinuous viscosity)

8.Extensions

and for k = 0, 1, 2, we define Moreover, the unique solution u 0 of (8.31) satisfies -nk 0 ≤ u 0 x ≤ 0, with k 0 = 1/h 0 . Remark 8.8. Let us notice that if we choose n = 2, we recover the same result as the one from the case of a simple bifurcation (one vehicle goes left, the other goes right).

H - k (p) = H k (p
Like in the previous extension, we will give the equivalent of Theorem 3.9 in the case of the more general distribution of vehicles. Contrary to the case of n outgoing roads, there is a slight difference, in this case, when building the correctors away from the junction in R 2 . We will explain how to correctly choose them and how to obtain the effective Hamiltonian H 2 . Theorem 8.9 (Control of the oscillations). Let T > 0. Assume that (A") and (A0') are valid and let (u j ) j be a solution of (8.25), with ε = 1. Then there exists a constant C 1 > 0 such that for all x, y ∈ R, x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have 0 ≤ u(t, x) -u(s, x) ≤ C 1 (t -s), 0 ≤ ξ(t, x) -ξ(s, x) ≤ C 1 (t -s) and -K 0 (x -y) -n ≤ u(t, x) -u(t, y) ≤ 0, -K 0 (x -y) -n ≤ ξ(t, x) -ξ(t, y) ≤ 0, (8.33)

with K 0 := nk 0 .

Sketch of the proof of Theorem 8.9. We only give the ideas necessary to prove Theorem 8.9, and the order in which the proof must be done.

1. Prove the control of the oscillations in time using the barriers and the fact that the solutions are invariant by additions of constants and by translations in time.

2. Like in Theorem 3.9, prove that the functions u j are non-increasing in space.

3. Now we need a comparison between the functions (u j ) j solution of (8.25) (with ε = 1). We want to prove that for all x ∈ R, all t ∈ [0, T ] and for j = 1, . . . , n -2, we have -1 ≤ u j+1 (t, x) -u j (t, x) ≤ n -1. (8.34)

We also want to prove that for all x ≤ -h 0 and all t ∈ [0, T ],

-1 ≤ u 1 (t, x) -u 0 (t, x) ≤ n -1 and -1 ≤ u 0 (t, x) -u n-1 (t, x) ≤ n -1. (8.35)

Finally, we want to prove that for all x ≥ -h 0 and all t ∈ [0, T ], we have To do this, we argue classically by contradiction and assume that the supremum of -1 -u j+1 (t, x) + u j (t, x) over [0, T ] × R is strictly positive. (b) Using a localisation term, like in the proof of Lemma 3.10, prove that -1 ≤ u 1 (t, x) -u 0 (t, x) for all x ≤ -h 0 and all t ∈ [0, T ].

-2 ≤ u 1 (t,
(c) Similarly, prove that -1 ≤ u 0 (t, x) -u n-1 (t, x) for all x ≤ -h 0 and all t ∈ [0, T ].

(d) Using the previous results, deduce that for all x ≤ -h 0 , all t ∈ [0, T ], and for j = 0, . . . , n -2, we have u j+1 (t, x) -u j (t, x) ≤ n -1 and u 0 (t, x) -u n-1 (t, x) ≤ n -1.

(e) Using a localisation term, prove that for all x ≥ -h 0 and all t ∈ [0, T ], we have -2 ≤ u 1 (t, x) -u n-1 (t, x).

(f) Using the previous result and (8.37), deduce that for all x ≥ -h 0 , all t ∈ [0, T ] and for j = 1, . . . , n -2, we have u j+1 (t, x) -u j (t, x) ≤ n -1 and u 1 (t, x) -u n-1 (t, x) ≤ n -2.

4. Using the previous results, proceeding like in the proof of Theorem 3.9 prove the lower bounds on the control of the space oscillations.

Proposition 8.10 (Homogenization on R 2 ). Assume (A"). Then for p ∈ [-nk 0 , 0], there exists a unique λ ∈ R, such that there exists a bounded solution (v j ) j=1,...,n-1 of 

     N 2 p (v j , [v j+1 ])(x) • |∂ x v j + p| = λ for j=1,. . . ,n-2, L 2 p (v n-1 , [v 1 ])(x) • |∂ x v n-1 + p| = λ, v j for j = 1, . . . , n -1 is Z -periodic,

9.Appendix

Proof. Contrary to the construction of the correctors on R 0 and R 1 , we cannot consider the correctors equal to zero. However, we can see that choosing for j = 1, . . . , n -1,

v j ≡ j -1 n -1 ,
we obtain for j = 1, . . . , n -2

L 2 p (v n-1 , [v 1 ])(x) = N 2 p (v j , [v j+1 ])(x) = -V 2 -n p(n -1)
.

(8.38)

This ends the proof of Proposition (8.10).

Remark 8.11. From the previous extensions, we can imagine even more complex scenarios. For instance having a bifurcation with n outgoing roads, with a very general (but still periodic) distribution of vehicles. The technique remains the same for that type of problem but one has to consider a great number of "cumulative distribution functions".

Appendix

Proof of comparison principle in Proposition 3.7. We introduce M = sup (t,x)∈(0,T )×R max (u(t, x) -v(t, x), ξ(t, x) -ζ(t, x)) , we w ant to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test functions. For η, α and ε small parameters and A > 0 a constant to be chosen later, we define We have the same upper bound on ϕ 2 . Therefore, for i = 1, 2, we have lim |x|,|y|→+∞ ϕ i (t, x, y) = -∞.

         ϕ 1 (t,
Since ϕ 1 and ϕ 2 are upper semi-continuous, the function ψ = max(ϕ 1 , ϕ 2 ) reaches a maximum at a finite point that we denote by ( t, x, ȳ) ∈ [0, T ) × R × R. Classically, we have for α and η small enough,

         0 < M 2 ≤ ψ( t, x, ȳ),
α|x| → 0 as α → 0, |x -ȳ| → 0 as ε → 0.

(9.1)

Step 2: t > 0. By contradiction, assume t = 0. Then we have (if for instance ψ( t, x, ȳ) = ϕ 1 ( t, x, ȳ), we have a similar result in the other case), η T < u(0, x) -v(0, ȳ) + p(x -ȳ) ≤ u 0 (x) -u 0 (ȳ) + p(x -ȳ) ≤ (2k 0 + |p|)|x -ȳ|.

Using that |x -ȳ| → 0 as ε → 0, we obtain a contradiction for ε small enough.

Step 3: viscosity inequalities. We only consider the case ψ( t, x, ȳ) = ϕ 1 ( t, x, ȳ), since the other case is similar and so we skip it. By doubling the time variable and passing to the limit, there exists two real numbers a, b ∈ R such that Similarly, we get a similar bound on H 1 and so,

a -b = η (T -t) 2 + Ae A t (x -ȳ)
I 1 ≤ 2 V 1 max ||Dψ + || ∞ + V 0 max ||Dψ -|| ∞ (x -ȳ) 2 2ε
e A t + o ε (1). (9.4)

Step 3.2: bound on I 2 . Like in [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. application to dislocations dynamics[END_REF] and [START_REF] Forcadel | Homogenization of some particle systems with two-body interactions and of the dislocation dynamics[END_REF], we distinguish two cases. CASE 1: there exits a subsequence α n , such that, |x -ȳ| 2ε → 0 as n → +∞.

In this case, we choose

A = 2M 0 ||φ || ∞ ||D(ψ + ψ -)|| ∞ + 2 V 1 max ||Dψ + || ∞ + V 0 max ||Dψ -|| ∞ .
Using the fact that the non-local operators are bounded and choosing ε small enough and then passing to the limit as n goes to infinity (note that p ε → 0), we get a contradiction from (9.3). CASE 2: there exits a constant Cε such that for any α > 0, small enough, we have Using that ϕ 2 ( t, z, z) ≤ ϕ 1 ( t, x, ȳ), we obtain that ξ( t, z) -u( t, x) + p(z -x) ≤ζ( t, z) -v( t, ȳ) + p(z -ȳ)

-e A t (xȳ) 2 2ε + αx 2 -αz 2 , therefore, we have

A c ⊂    z / |z| > R ε,α := e A t α (x -ȳ) 2 2ε + x2 1/2    .
We also have that

{|z + x| ≥ R ε,α } ⊂ {|z| ≥ Rε,α := R ε,α -|x|},
and as in [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. application to dislocations dynamics[END_REF], Rε,α → +∞ as α goes to 0. Given that J 0 has a bounded support, this implies that for α small enough, we have R J 0 (zx)F (ξ( t, z) -u( t, x) + p(z -x))dz ≥ R J 0 (zx) F (ζ( t, z) -v( t, ȳ) + p(z -ȳ))dz.

9.Appendix

Using Injecting (9.4), (9.5) and (9.6), in (9.3), we obtain

a -b ≤ 2M 0 ||φ || ∞ ||D(ψ + ψ -)|| ∞ + 2 V 1 max ||Dψ + || ∞ + V 0 max ||Dψ -|| ∞ (x -ȳ) 2 2ε e A t + o α (1) + ψ + (ȳ)ψ -(ȳ)φ ȳ, Ñ 0 p (v( t, •), [ζ( t, •)])(ȳ), M 1 p [v( t, •)](ȳ) |p ε e A t| -ψ + (ȳ)ψ -(ȳ)φ ȳ, N 0 p (v( t, •), [ζ( t, •)])(x), M 1 p [v( t, •)](x) |p ε e A t| ≤ 2M 0 ||φ || ∞ ||D(ψ + ψ -)|| ∞ + 2 V 1 max ||Dψ + || ∞ + V 0 max ||Dψ -|| ∞ (x -ȳ) 2 2ε e A t + o α (1) + 2||ψ + φ -|| ∞ ||φ || ∞ ||DJ 1 || L 1 (R) + ||DJ 0 || L 1 (R) (x -ȳ) 2 2ε e A t,
where we have used assumption (A6) for the last inequality. Finally, choosing correctly A, we obtain a contradiction for α and ε small enough. This ends the proof of Proposition 3.7. 

Conclusion et perspectives

Homogénéisation stochastique

Dans la plupart des travaux de cette thèse, il y a une hypothèse de périodicité, par exemple dans [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] on considère que l'on a des blocs de n 0 types de véhicules, dans [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF] on considère une répartition uniforme des véhicules dans les voies sortantes de la bifurcation. Une possibilité pour surmonter ce manque de réalisme est de considérer des modélisations stochastiques. Par exemple, cela permettrait d'avoir des conducteurs avec différentes caractéristiques sans la condition de périodicité. De même, on pourrait considérer dans le cas d'une bifurcation avec une voie entrante et deux sortantes qu'en moyenne une voiture sur deux part à gauche et le reste à droite, ceci généraliserait le résultat de [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF].

Homogénéisation dans les réseaux

Dans cette thèse, on a réussi à obtenir un résultat d'homogénéisation pour une bifurcation. Par contre, il reste encore beaucoup de situations à traiter surtout du point de vue des réseaux pour le trafic routier. On peut chercher à déterminer le modèle macroscopique équivalent à une jonction (deux voies entrantes et une sortante), à un rond-point... D'autre part, on pourrait imaginer, à l'échelle microscopique, un modèle avec deux perturbations locales (voir la Figure 9.7). La difficulté est alors de savoir comment il est possible d'obtenir ce modèle macroscopique et comment on peut conserver séparément l'information de ces deux perturbations.

O Perturbation Perturbation

Homogénéisation de modèles avec accélération bornée

Dans les modèles macroscopiques que nous avons présenté dans cette thèse, l'accélération des véhicules n'est pas bornée. Par contre, il existe des modèles macroscopiques construits pour surmonter ce défaut. Il s'agit des modèles à accélération bornée, étudiés par Leclercq [START_REF] Leclercq | Modélisation dynamique du trafic et applications à l'estimation du bruit routier[END_REF][START_REF] Leclercq | Bounded acceleration close to fixed and moving bottlenecks[END_REF] et Lebacque [START_REF] Lebacque | A two phase extension of the lrw model based on the boundness of traffic acceleration[END_REF][START_REF] Lebacque | Two-phase bounded-acceleration traffic flow model: analytical solutions and applications[END_REF]. Ces modèles couplent l'équation de transport du modèle LWR avec une condition qui borne l'accélération des véhicules. On peut alors chercher à rigoureusement obtenir ce modèle macroscopique. Il faudrait donc trouver le modèle microscopique adéquat et utiliser la bonne technique d'homogénéisation pour garder la condition d'accélération bornée à l'échelle macroscopique.

Figure 1 . 1 :

 11 Figure 1.1: Représentation schématique des notations.

Figure 1 . 2 :

 12 Figure 1.2: Représentation schématique d'une fonction de vitesse optimale.

(2. 1 )Definition 2 . 1 .

 121 Ceci nous permet d'injecter tout le système d'EDOs (1.1) dans une seule EDP. Pour définir une solution de viscosité de (2.1), on introduit les enveloppes semi-continues supérieurement et semi-continue inférieurement de u :u * (t, x) = lim sup y→x s→t u(s, y) et u * (t, x) = lim inf y→x s→tu(s, y). Soit Ω = (0, +∞) × R. Une fonction semi-continue supérieurement (resp. inférieurement) u : Ω → R est une sous-solution (resp. une sur-solution) de (2.1) sur Ω,

( 3 . 2 )

 32 j∈{1,...,n 0 } L j . (B2) (Monotonie) Pour tout j ∈ {1, ..., n 0 }, supérieure) Pour tout j ∈ {1, ..., n 0 },lim h→+∞ V j (h) < +∞. On note V max = max j (||V j || ∞ ), h 0 = V max /α et α = minj∈1,...,n 0 (a j )/2.

3 .Remark 3 . 1 .

 331 Résultats principaux de cette thèse (B4) (Borne inférieure) Pour tout j ∈ {1, ..., n 0 }, V j (h) = 0 pour tout h ≤ 2h 0 . Comme précédemment, les hypothèses (B1)-(B4) sont classiques pour le modèle de Bando (voir par example [BHN + 95, BT10]

F

  (i) (Borne inférieure) si p ≤ 2h 0 n 0 , on a j∈{1,...,n 0 } (||V j || ∞ ).

Figure 3 . 3 :Figure 3 . 4 :

 3334 Figure 3.3: Représentation schématique d'une perturbation locale de rayon r à l'échelle microscopique.

|p|→+∞H

  (p) = +∞ et grâce à (C5), il existe un unique point p 0 ∈ [-k 0 , 0] tel que H est strictement décroissante sur (-∞, p 0 ), H est strictement croissante sur (p 0 , +∞).

Figure 3 . 5 :

 35 Figure 3.5: Représentation schématique de H.

. 35 )

 35 Discrétisation de l'opérateur non-local. Pour toute fonction discrète v : {1, . . . , n} → R, on définit un opérateur discret non-local

Figure 3 . 6 :

 36 Figure 3.6: Représentation schématique simplifiée du modèle microscopique.

Figure 3 . 7 :

 37 Figure 3.7: Représentation schématique du modèle macroscopique.

Figure 3 . 8 :

 38 Figure 3.8: Représentation schématique du modèle microscopique.

Finalement, on introduit

  pour tout x, y ∈ R la distance d(x, y) sur R, d(x, y) = |x -y| si x, y se trouvent dans la même voie, |x| + |y| sinon.

Figure 1 . 1 :

 11 Figure 1.1: Schematic representation of the effective Hamiltonian.

  (1.6)-(1.10) and the discrete solutions of the schemes (1.13)-( 1.14) and (1.15)-(1.14) namely, Theorem 1.5. The following proofs use the method introduced by Crandall and Lions in [CL84] and adapted in [CCM12].

( 5 . 5 )

 55 with ρ max = 1 h 0 . For the numerical tests, we choose, for the explicit scheme ∆t = 1/ max j∈{1,...,n 0 } (a j ) and for the implicit scheme ∆t = 1/α (which, given the definition of α, satisfies (2.5) because a > 1) to get the average speed (v(ρ)) on Figure 5.1.

Figure 5 . 1 :

 51 Figure 5.1: Average speed using the explicit scheme (left) and the implicit scheme (right).We consider only one type of driver, n 0 = 1. In red we have the numerical approximation and in green the theoretical value.

Figure 5 . 2 :

 52 Figure 5.2: Relative error for the explicit scheme (left) and the implicit scheme (right) against 1/T .

  j∈{1,...,n 0 } (||V i || ∞ ) = 26.50 km/h.

Figure 5 . 4 :

 54 Figure 5.4: Average speed using the explicit scheme (left) and the implicit scheme (right). Using the Newell optimal velocity function and considering n 0 = 10 different types of drivers.

Figure 5 . 6 :

 56 Figure 5.6: Flux of vehicles obtained using the implicit scheme and n 0 = 1 (with θ = 0) (left) and the flux of vehicles obtained using the implicit scheme with n 0 = 10 (with θ = 0.55) (and n 0 = 10) (right).
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 222 Figure 2.2: Schematic representation of H.

Definition 3 . 1 (

 31 Viscosity solutions for (3.1)). Let T > 0. An upper semi-continuous function (resp. lower semi-continuous)

Lemma 3 . 4 .

 34 Let (f n ) n be a sequence of measurable functions on R, and consider f = lim sup * f n and f = lim inf * f n .

  R . We want to prove that A = inf E, where E = {λ ∈ [h 0 , 0] : ∃ w ∈ S solution of (2.19)}, with S = {w s.t. ∃ a Lipschitz continuous function m and C ≥ 0 such that ||w -m|| L ∞ (R) ≤ C}.

Figure 1 . 1 :

 11 Figure 1.1: Schematic representation of the optimal velocity function V .

Figure 1 .Figure 1 . 2 :

 112 Figure 1.2: Schematic representation of H.

Definition 3 . 1 (

 31 Viscosity solution for the continuous approximated cell problem). An upper semi-continuous function (resp. lower semi-continuous) v : [-l, l] → R is a viscosity sub-solution (resp. a super-solution) of (3.1) in [-l, l], if for all x ∈ [-l, l] and all ϕ ∈ C 1 ([-l, l]) such that u -ϕ reaches a maximum (resp. a minimum) at the point x, we have

Lemma 3 . 4 .

 34 Let (f m ) m be a sequence of measurable functions on R, and consider f = lim sup * f m and f = lim inf * f m .(3.7)

  .23) Combining (3.22) and (3.23), we get Fi ([v], Dv i ) ≥ Fi ([w], Dw i ).

Lemma 4 . 1 (

 41 Existence of discrete barriers for (3.1)). Assume (A). The discrete functions defined byv - i = 0 and v + i = C 0 δ for all i ∈ {1, . . . , n} with C 0 = |H 0 | = | minp∈R H(p)| are respectively a sub and a super-solution of (3.1).

Remark 5 . 1 (

 51 Monotonicity of the numerical scheme). By the definition of F i and Fi and by Lemma 3.14, we have for all i ∈ {1, . . . , n}, (i) F i [v](s) and Fi [v](s) are non-decreasing with respect to s. (ii) F i [v](s) and Fi [v](s) are non-increasing with respect to v.

l

  = 200, R = 100, ε c = ε d = 0.001, and δ = 0.001. (6.1) For all the numerical computations, regarding the values for the discretization, we consider n = 400 and ∆x = 0.5. (6.2)

(6. 5 )

 5 For the local perturbation, we consider the radius of the perturbation r = 45 m. In Figure6.3, we have an example of the local perturbation for two different values of φ 0 .

Figure 6 . 3 :

 63 Figure 6.3: Example of φ with r = 45 m and φ 0 = 0, 25 (red) and φ 0 = 0, 5 (green).

Figure 6 . 4 :

 64 Figure 6.4: Approximation of A plotted versus different values of φ 0 .

  Figure 6.5 contains the approximation of A for φ 0 = 0, 25 and for different values of r ∈ [25, 75].

Figure 6 . 6 :

 66 Figure 6.6: The functions φ and φ, with r = 45 m and φ 0 = 0, 25.

Figure 6 . 7 :

 67 Figure 6.7: Lower bound for the approximation of A for φ and φ versus different values of φ 0 (left) upper bound for the approximation of A for φ and φ versus different values of φ 0 (right).

Figure 6 .

 6 Figure 6.8: Absolute difference of the lower bound for the approximation of A for φ and φ versus different values of φ 0 (left). Absolute difference of the upper bound for the approximation of A for φ and φ versus different values of φ 0 (right).

Figure 6 . 9 :

 69 Figure 6.9: Approximation of A versus different values of δ.

Figure 6 .

 6 Figure 6.11: Approximation of A versus different values of l.

(4. 1 )

 1 with ψ : R → [0, 1] a Lipschitz continuous function. We also use the following notations for the upper and lower semi-continuous envelopes of a locally bounded function u:u * (t, x) = lim sups→t,y→x u(s, y) and u * (t, x) = lim inf s→t,y→x u(s, y).

1 :Step 2 : control of the oscillations of v δ and ζ δ . Lemma 8. 4 .

 124 construction of barriers. Using that (0, 0) and (C 0 /δ, C 0 /δ) are respectively obvious sub and super-solution of (8.8), with C 0 = | min p∈R H 0 (p)| = -H 0 and that we have a comparison principle, we deduce that there exists a continuous viscosity solution (v δ , ζ δ ) of (8.8) which satisfies 0 ≤ v δ ≤ C 0 δ and 0 ≤ ζ δ ≤ The functions v δ and ζ δ satisfy for all x, y ∈ [-l, l], x ≥ y,-k 0 (x -y) -1 ≤ v δ (x) -v δ (y) ≤ 0 and -k 0 (x -y) -1 ≤ ζ δ (x) -ζ δ (y) ≤ 0. (8.10)Proof of Lemma 8.4. In the rest of the proof we will use the following notation Ω = (x, y) ∈ [-l, l] 2 s.t. x ≥ y .

  20) 8.Proof of the existence of correctors at the junction and for all x, y ∈ [-l, l], |m δ (x) -m δ (y)| ≤ 2k 0 |x -y|. Now using Lemma 8.5, we have |ζ δ (x) -m δ (x)| ≤ 3.

  The last convergence being locally uniform. Let us consider,w l,R = lim sup δn→0 * (v δn -v δn (0)) and w l,R = lim inf δn→0 * (v δn -v δn(0)) and χ l,R = lim sup δn→0 * (ζ δn -ζ δn (0)) and χ l,R = lim inf δn→0 * (ζ δn -ζ δn (0)).

  Since [-l, l] is compact and v δ and ζ δ are continuous functions, the function ϕ reaches a maximum at a finite point that we denote by (x ε , y ε ) ∈ [-l, l]. If we denote M ε = ϕ(x ε , y ε ), by classical arguments, we have that lim ε→0 M ε = M, lim ε→0 |x ε -y ε | = 0, and (x ε , y ε ) → (x, x) as ε goes to 0. (8.23)

  -linearity) There exists g : [0, +∞) → R non-decreasing and such that for all (x, y)∈ [-l, l] 2 g(|x -y|) ≤ G γ (x, y) Compatibility condition on the gradient) H(y, -G γ y (x, y)) -H(x, G γ x (x, y)) ≤ γ,(8.31) 

  solution of (6.1)}. (8.49) Proof of Theorem 8.8. Up to a sub-sequence, let A = lim R→+∞ lim l→+∞ λ l,R . We want to prove that A = inf E, with E = {λ ∈ [H 0 , 0] : ∃(v, ζ) ∈ S solution of (6.1)}.

  1 , W. Salazar1 

Figure 1 . 1 :

 11 Figure 1.1: Simplified schematic representation of the microscopic model.

Figure 1 . 2 :

 12 Figure 1.2: Schematic representation of the macroscopic (homogenized) model.

Figure 1 . 3 :

 13 Figure 1.3: Schematic representation of the microscopic model.

  A6) The function φ : R 3 → R is Lipschitz continuous with respect to each variable. For all (x, a, b) ∈ R, the functions φ(x, •, b) and φ(x, a, •) are non-decreasing. We denote by ||φ || ∞ , the smallest constant such that for all (x, a, b), (x , a , b ) ∈ R 3 , we have |φ(x, a, b) -φ(x , a , b )| ≤ ||φ || ∞ (|x -x | + |a -a | + |b -b |) .

Figure 2 . 4 :

 24 Figure 2.4: Schematic representation of the effective Hamiltonians.

. 6 )

 6 -A function (u, ξ) is a viscosity solution of (3.1) (resp. of (3.1)-(3.4)) if (u * , ξ * ) is a sub-solution and (u * , ξ * ) is a super-solution of (3.1) (resp. of (3.1)-(3.4)).

Theorem 3 . 5 (

 35 Equivalent definition for sub/super-solutions). Let H 0 and H i for i = 1, 2 be given by (2.10)-(2.11) and consider A ∈ [H 0 , +∞) with H 0 = max i∈{0,1,2}

  min p∈R H i (p). Given arbitrary solutions p 0 ∈ R and p A i ∈ R for i = 1, 2 of

Proposition 3 . 8 (

 38 Comparison principle on bounded sets for (3.1)). Assume (A). Let (u, ξ) be a sub-solution of (3.1) and let (v, ζ) be a super-solution of (3.1) on the open set P r,r ⊂ (0, T ) × R. We assume that u and ξ (resp. v and ζ) are upper semi-continuous (resp. lower semi-continuous) on P r,r . Also assume that u ≤ v and ξ ≤ ζ outside P r,r , then u ≤ v and ξ ≤ ζ on P r,r .

  A ∈ [H 0 , 0] such that there exists a solution (w, χ) of (2.25) with λ = A and such that there exists a constant C > 0 and two globally Lipschitz continuous functions m 1 and m 2 with m 1 (0) = m 2 (0) = 0 such that, for all x ∈ R,|w(x) -m 1 (x)| ≤ C and |χ(x) -m 2 (x)| ≤ C, (4.5) and for all x ≤ h 0 , |w(x) -χ(x)| ≤ C. (4.6)

  |v δ (x) -ζ δ (x)| ≤ 1. If x ∈ [-h 0 , h 0 ], we have |v δ (x) -ζ δ (x)| ≤ |v δ (x) -m 1 (x)| + |ζ δ (x) -m 2 (x)| + |m 1 (x) -m 2 (x)| ≤ 8 + |m 1 (x) -m 1 (-h 0 )| + |m 2 (-h 0 ) -m 2 (x)| +|m 1 (-h 0 ) -m 2 (-h 0 )| ≤ 8 + 1 + 4K 0 |x + h 0 | ≤ 9 + 8K 0 h 0 = 25,where we have used for the third inequality the fact that|m 1 (-h 0 ) -m 2 (-h 0 )| = |v δ (-h 0 ) -ζ δ (-h 0 )| ≤ 1and for the last inequality, the fact that x ∈ [-h 0 , h 0 ].

δ

  n v δn (0) → -λ l,R as n → +∞, δ n ζ δn (0) → -λ l,R as n → +∞, m δn i -m δn i (0) → m l,R i as n → +∞ for i = 1, 2.The last convergence being locally uniform. Let us consider,w l,R = lim sup δn→0 * (v δn -v δn (0)) and w l,R = lim inf δn→0 * (v δn -v δn (0))andχ l,R = lim sup δn→0 * (ζ δn -v δn (0)) and χ l,R = lim inf δn→0 * (ζ δn -v δn (0)).

min p∈R H 0 6 .

 06 (p) ≤ λ l,R ≤ 0, |w l,R -m l,R Truncated cell problem and for x ≤ h 0 , |χ l,R -w l,R | ≤ C, |χ l,R -w l,R | ≤ C.(6.21)

  (x, y) ∈ [-l, l] 2 s.t. |z -x| ≤ α and |z -y| ≤ α . ≤ M ε |x -ȳ| → 0 as ε → 0 (xȳ) 2 2ε → 0 as ε → 0. (6.26)Step 1.2: |x -z| < α and |ȳ -z| < α. By contradiction, assume that |x -z| = α or |ȳ -z| = α, in which case, we have 0

  max(N 0 (ζ δ , [v δ ])(x), M 2 [ζ δ ](x)) = 0.Given the form of the transition function (see Remark 2.10), (6.28) becomesδM ≤ -φ(x, 0, 0, M 2 [ζ δ ](x)) • |L(x -z) + p ε | = 0. (6.29)This gives us a contradiction and therefore M ≤ 0.Step2: x ∈ [-l, -R] . We introduce M = sup x∈[-l,-R] ζ δ (x) -v δ (x) -1 . (6.30)We want to prove that M ≤ 0 and we argue by contradiction and by assuming that M > 0.Given that ζ δ and v δ are continuous, M is reached for a point x ∈ [-l, -R]. First, let us notice that thanks to Step 1, M cannot be reached for x = -R. We distinguish 2 cases.Case 1: x ∈ (-l, -R). We introduceϕ(x, y) = ζ δ (x) -v δ (x) -1 -(x -y) 2 2ε -1 2 (xx) 2 + (yx) 2 ,which reaches a maximum at a point (x ε , y ε ) ∈ [-l, -R] 2 . We denote by M ε = ϕ(x ε , y ε ).By classical arguments, we can prove thatlim ε→0 M ε = M, limε→0(x ε -y ε ) 2 2ε = 0, and (x ε , y ε ) → (x, x) as ε goes to 0. (6.31)

( 6 .

 6 32)where we have used that φ(x ε , a, b) = a for x ε ≤ -h 0 -h max -1. Using that N 0 (ζ δ , [v δ ])(x ε ) = 0 (see Step 1), we get δM ≤(1 -ψ - R (y ε ))H 0 (-(y ε -x) + p ε ) -(1 -ψ - R (x ε ))H 0 (x ε -x + p ε ). (6.33) This implies that δM ≤(1 -ψ - R (y ε )) H 0 (-(y ε -x) + p ε ) -H 0 ((x ε -x) + p ε ) + ||(ψ - R ) || ∞ |x ε -y ε | H 0 ((x ε -x) + p ε ) ≤||H 0 || ∞ (|x ε -x| + |y ε -x|) + ||(ψ - R ) || ∞ |x ε -y ε | • V 0 max |(x ε -x) + p ε | ≤o ε (1)(6.34) 

6.Truncated cell problem 1 .

 1 (Regularity)G γ ∈ C([-l, l] 2 ) G γ (x, •) ∈ C 1 ([-l, l]) for all x ∈ [-l, l] G γ (•, y) ∈ C 1 ([-l, l]) for all y ∈ [-l, l]. (6.35) 2. (Bound from below) G γ ≥ 0 = G(0, 0).3. (Super-linearity) There exists g : [0, +∞) → R non-decreasing and such that for all (x, y) ∈ [-l, l] 2 g(|x -y|) ≤ G γ (x, y) and lim a→+∞ g(a) a = +∞. 4. (Compatibility condition on the gradient)H 0 (y, -G γ y (x, y)) -H 0 (x, G γ x (x, y)) ≤ γ, (6.36)with, for all x ∈ [-l, l] and p ∈ R,H 0 (x, p) = H -0 (p) if x = -l H 0 (p) if x ∈ (-l, l](6.37)

Proposition 6 . 7 (

 67 First definition of the flux limiter). The following limits exist (up to some sub-sequence)

w

  R (x) = lim sup n→+∞ * w ln,R -w ln,R (0) , w R (x) = lim inf n→+∞ * w ln,R -w ln,R (0) , and χ R (x) = lim sup n→+∞ * χ ln,R -w ln,R (0) , χ R (x) = lim inf n→+∞ * χ ln,R -w ln,R (0) .

m 1 -

 1 C ≤ w ≤ w ≤ m 1 + C. and m 2 -C ≤ χ ≤ χ ≤ m 2 + C. (6.54)By stability of viscosity solutions (w -2C, χ -2C) and (w, χ) are respectively sub-solution and super-solution of (2.25) with λ = A. Using Perron's method we can construct a solution (w, χ) of (2.25) with λ = A that satisfies (4.5), (4.6), (4.7) and (4.8).

  R . We want to prove that A = inf E, with E = {λ ∈ [H 0 , 0] : ∃(v, ζ) ∈ S solution of (2.25)}, and S = {(v, ζ) s.t. ∃ two Lipschitz continuous functions m 1 and m 2 s.t. m 1 (0) = m 2 (0) = 0 and a constant C > 0 s.t. ||v -m 1 || ∞ , ||ζ -m 2 || ∞ ≤ C} .

W λ x , X λ x ≥ p λ -> p 0 -

 0 with p λ -= min{p ∈ [-2k 0 , 0] : H 0 (p) = H -0 (p) = λ}. (6.61)These inequalities imply that for all γ > 0, there exists a constant Cγ such thatv λ (x) ≤ (p λ,1 + + γ)x + Cγ for x > 0, (p λ --γ)x + Cγ for x < 0. (6.62)andζ λ (x) ≤ (p λ,2 + + γ)x + Cγ for x > 0, (p λ --γ)x + Cγ for x < 0.(6.63)In fact if (v λ , ζ λ ) does not satisfy (6.62) and (6.63), we cannot have (6.59), (6.60), and (6.61). Using Theorem 4.3, we have for γ small enough and for R > 0 big enough,v λ ≤ v and ζ λ < ζ for |x| ≥ R.This implies that there exists a constant C R such that for all x ∈ R, we have v λ (x) < v(x) + C R and ζ λ (x) < ζ(x) + C R.

|ρ 1 1

 1 (0, x) -v(x)| ≤ 2 for all x ∈ R. (7.5)Let us consider the integer i 0 ∈ N defined byi 0 = sup {i ∈ Z, s.t. i[2] = 1, U i (0) ≤ -R} .

  3), we have|(ρ ε 1 ) * (0, x) -u 0 (x)| ≤ f (ε) + ε and |(ρ ε 2 ) * (0, x) -ξ 0 (x)| ≤ g(ε) + ε. (7.8)(A0') (Initial condition).For all x ≤ 0, and all j = 1, . . . , n -1, u 0,0 (x) = u j,0 (x).

  nk 0 for p < -nk 0 ,-V 0 -1 p • |p| for -nk 0 ≤ p ≤ 0, p for p > 0.(8.8)We also define, for k = 1, . . . , n, H k : R → R byH k (p) = nk 0 for p < -nk 0 , -V k -n p • |p| for -nk 0 ≤ p ≤ 0, p for p > 0.(8.9)For k = 0, . . . ,n, let us notice that H k is continuous, coercive lim |p|→+∞ H k (p) = +∞ and because of (A5'), there exists a unique point p k ∈ [-nk 0 , 0] such that H k is non-increasing on (-∞, p k ), H k is increasing on (p k ,

Figure 8 . 6 :

 86 Figure 8.6: Schematic representation of the microscopic model (8.21)-(8.22)-(8.23). The index ĩ denotes the index of the vehicle that will be in front of the vehicle i after the bifurcation.

J 2 J 2

 22 (z)F (Ξ(x + z) -U (x) + pz)dz -(z)G(Ξ(x + z) -U (x) + pz)dz -Moreover, for p ∈ [-nk 0 , 0] we have λ = H 2 (p) = -V 2 -n p(n -1)|p|.

  |x -ȳ| 2ε ≥ Cε .Let us now begin by comparing the non-local operators Ñ 0 p and N 0 p , we introduceA = {z / F (ζ( t, z) -v( t, ȳ) + p(z -ȳ)) ≤ F (ξ( t, z) -u( t, x) + p(z -x))}.

Figure 9 . 7 :Figure 9 . 9 :

 9799 Figure 9.7: Représentation schématique de deux perturbations à l'échelle microscopique.

  

  

) 1 .Différents types de modèles pour le trafic routier avec

 1 ∆v i = v i -v i+1 et s * "l'inter-distance idéale" définie par

		s * (v, ∆v) = h 0 + vT +	v∆v 2 √ ab	.	(1.5)
	Dans le tableau suivant on résume la signification de chacun des paramètres.
	Paramètre	signification			valeur classique
	v 0	vitesse idéale			130km/h
	a	accélération maximale		1.4m/s 2
	h 0	distance de sécurité (distance minimale)	2.0m
	T	temps de sécurité (temps de réaction)	1.5s
	b	décélération idéale		2.0m/s 2

  .40) où U j est la position de la j-ème voiture, Uj sa vitesse et Üj son accélération. Comme précédemment, la fonction φ simule la présence d'une perturbation locale autour de l'origine et on note r son rayon d'influence. Dans ce modèle, a et V représentent respectivement la sensibilité des conducteurs et la fonction de vitesse optimale. On suppose que V et φ satisfont l'hypothèse (C) et que l'on a également l'hypothèse suivante :

  ).

	Remark 3.27 (Lien avec les modèles macroscopiques). On peut voir que notre résultat
	d'homogénéisation ne donne pas directement les dynamiques des véhicules. En effet, sur
	R 0 , u 0 x est la densité des véhicules mais sur R 1 et R 2 c'est deux fois la densité des véhicules.
	Donc l'intégrale de la densité des véhicules sur R est donné par

  1 {un(tn,xn+z)-un(tn,xn)+pn.z<-1} -1 {u(t 0 ,x 0 +z)-u(t 0 ,x 0 )+p.z<-1} dz {un(tn,xn+z)-un(tn,xn)+pn.z<0} -1 {u(t 0 ,x 0 +z)-u(t 0 ,x 0 )+p.z<0} dz Using Lemma 3.4, we have for n big enough,

				(3.5)
	+	R	1 2	J(z) 1

R

J(z) 1 {u(t 0 ,x 0 +z)-u(t 0 ,x 0 )+p.z≥-1} -1 {un(tn,xn+z)-un(tn,xn)+pn.z≥-1} dz

  .11) Let us consider w the solution of (2.19) provided by Theorem 4.1, and let us denote

  1, for all t ∈ [ t, t * ], we have that U j+1 (t) ≤ V max (tt) + U j+1 ( t). (10.19) Therefore, combining the previous results, we have for all t ∈ [ t, t * ]

  In (2.16), we can replace u ε by ξ ε for x ∈ R 0 and we obtain the same homogenisation result. The coefficient 2 that appears in H i for i = 1, 2 and not in H 0 comes from the fact that we look one vehicle over two on R i and therefore the density of the vehicles is divided by 2.

	.19)
	Remark 2.3.

  .24) converges locally uniformly to the unique solution u 0 of (2.17).The goal of the following theorem is to show that the effective Hamiltonians in (2.17) are only evaluated for values in [-2k 0 , 0]. However, it is convenient to work with the extended Hamiltonians presented in (2.10)-(2.11) because it is necessary to have coercive Hamiltonians, in order to apply the results developed by Imbert and Monneau in[START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF].

	Remark 2.6. Conditions (2.22) and (2.23) mean that the initial condition is well-prepared.

  .24) Notice that because x < z+δ ≤ -h 0 , and because of the form of φ (Remark 2.10), the righthand side term in (3.24) is only a combination of the non-local term N 0 (ξ( t, •), [u( t, •)])(x) and of max(N 0

  .8) The first inequality in (4.7) is valid only if A > min H 1 and the second inequality is valid only if A > min H 2 . Similarly, the inequalities in (4.8) are valid only if A > min H 0 .

  For ε = 1, the cumulative distribution function (ρ 1 , ρ 2 ) defined by (2.1)-(2.2), is a discontinuous viscosity solution, for (t, x) ∈ [0, +∞) × R, of (ρ 1 ) t + φ (x, N 0 (ρ 1 , [ρ 2 (t, •)])(x), M 1 [ρ 1 (t, •)](x)) • |∂ x ρ 1 | = 0 (ρ 2 ) t + φ (x, N 0 (ρ 2 , [ρ 1 (t, •)])(x), M 2 [ρ 2 (t, •)](x)) • |∂ x ρ 2 | = 0. (7.1)Conversely, if (u, ξ) is a bounded and continuous viscosity solution of (7.1) satisfying for some T > 0, and for all t ∈ (0, T ),

Theorem 7.1. u(t, x) and ξ(t, x) are decreasing in x, then the points U i (t), defined by u(t, U i (t)) = -(i + 1) for i ∈ Z if i odd, and defined by ξ(t, U i (t)) = -(i + 1) for i ∈ Z if i even, satisfy the system (1.1) on (0, T ).

  ) if p ≤ p k , H k (p k ) if p ≥ p k ,andH H k (p k ) if p ≤ p k , H k (p) if p ≥ p k .

	+ k (p) =

  x) -u n-1 (t, x) ≤ n -2. (8.36)To prove (8.36)-(8.35)-(8.34), we need to proceed in the following order.(a) First, prove that for j = 1, . . . , n -2 -1 ≤ u j+1 (t, x) -u j (t, x) for all x ∈ R, all t ∈ [0, T ].(8.37)

  ȳ, v( t, ȳ), [ζ( t, •)], [v( t, •)], p ε e A t -p -G 1 p x, u( t, x), [ξ( t, •)], [u( t, •)], p ε e A t + 2αx -p ≤ G1 p ȳ, v( t, ȳ), [ζ( t, •)], [v( t, •)], p ε e A t -p -G 1 p x, u( t, x), [ξ( t, •)], [u( t, •)], p ε e A t -p + o α (1) ≤(ψ + (x) -ψ + (ȳ))H 1 (p ε e A t -p) + (ψ -(x) -ψ -(ȳ))H 0 (p ε e A t -p) + ψ + (ȳ)ψ -(ȳ)φ ȳ, Ñ 0 p (v( t, •), [ζ( t, •)])(ȳ), M 1 p [v( t, •)](ȳ) |p ε e A t| -ψ + (x)ψ -(x)φ x, N 0 p (v( t, •), [ζ( t, •)])(x), M 1 p [v( t, •)](x) |p ε e A t| + o α (1) ≤(ψ + (x) -ψ + (ȳ))H 1 (p ε e A t -p) + (ψ -(x) -ψ -(ȳ))H 0 (p ε e A t -p) + ψ + (ȳ)ψ -(ȳ)φ ȳ, Ñ 0 p (v( t, •), [ζ( t, •)])(ȳ), M 1 p [v( t, •)](ȳ) |p ε e A t| -ψ + (ȳ)ψ -(ȳ)φ ȳ, N 0 p (v( t, •), [ζ( t, •)])(x), M 1 p [v( t, •)](x) |p ε e A t| + M 0 ||φ || ∞ ||D(ψ + ψ -)|| ∞ (xȳ) 2 ε e A t + o α (1) =I 1 + I 2 + M 0 ||φ || ∞ ||D(ψ + ψ -)|| ∞ (xȳ) 2 ε e A t + o α (1), Using (2.10), we have that (ψ -(x) -ψ -(ȳ))H 0 (p ε e A t -p) ≤||Dψ -|| ∞ |x -ȳ| H 0 (p ε e A t -p) ≤||Dψ -|| ∞ |x -ȳ|V 0 max |p ε e A t -p| ≤||Dψ -|| ∞ V 0

				9.Appendix
	Combining these inequalities we obtain		
	a -b ≤ G1		
				(9.3)
	with		
	I 1 = (ψ max	(x -ȳ) 2 ε	e A t + |x -ȳ| • |p|
	≤2V 0 max ||Dψ -|| ∞	(x -ȳ) 2 2ε	e A t + o ε (1).

2 

2ε , and

a + G 1 p x, u( t, x), [ξ( t, •)], [u( t, •)], p ε e A t + 2αx -p ≤ 0 b + G1 p ȳ, v( t, ȳ), [ζ( t, •)], [v( t, •)], p ε e A t -p ≥ 0,

(9.2)

with

p ε = (xȳ)/ε. p + (x) -ψ + (ȳ))H 1 (p ε e A t -p) + (ψ -(x) -ψ -(ȳ))H 0 (p ε e A t -p)

and

I 2 =ψ + (ȳ)ψ -(ȳ)φ ȳ, Ñp (v( t, •), [ζ( t, •)])(ȳ), Mp [v( t, •)](ȳ) |p ε e A t| -ψ + (ȳ)ψ -(ȳ)φ ȳ, N p (v( t, •), [ζ( t, •)])(x), M p [v( t, •)](x) |p ε e A t|.

Step 3.1: bound on I 1 .

  this result, we can see thatÑ 0 p (v( t, •), [ζ( t, •)])(ȳ) ≤ N 0 p (u( t, •), [ξ( t, •)])(x) + ||DJ 0 || L 1 (R) |x -ȳ|. (9.5)In order to compare the non-local operators M 1 p and M 1 p , we introduceB = {z / Ẽ(v( t, z) -v( t, ȳ) + p(z -ȳ)) ≤ E(u( t, z) -u( t, x) + p(z -x))}.Given that ϕ 1 ( t, z, z) ≤ ϕ 1 ( t, x, ȳ), we get thatu( t, z) -u( t, x) + p(z -x) ≤v( t, z) -v( t, ȳ) + p(z -ȳ) -e A t (xȳ) 2 2ε + αx 2 -αz 2 ,therefore, we haveB c ⊂ {z / |z| > R ε,α }.Proceeding as before, we obtain for α small enough

R J 1 (zx)E(u( t, z) -u( t, x) + p(z -x))dz ≥ R J 1 (zȳ) Ẽ(v( t, z) -v( t, ȳ) + p(z -ȳ))dz.

With this result, we deduce that

M 1 p [v( t, •)](ȳ) ≤ M 1 p [v( t, •)](x) + ||DJ 1 || L 1 (R) |x -ȳ| (9.6)

.

(9.7)

  Dans cette thèse, nous avons obtenu des résultats nouveaux concernant les modèles macroscopiques pour le trafic routier, en utilisant des techniques d'analyse et d'analyse numérique. En particulier, nous avons obtenu des justifications rigoureuses de modèles macroscopiques connus (équivalent au modèle LWR) dans le cas d'une seule route. On a également obtenu des modèles macroscopiques équivalents pour des phénomènes microscopiques plus compliqués : différents types de conducteurs, des perturbations locales et des bifurcations. Il reste désormais plusieurs problèmes ouverts que je vais détailler ci-dessous.

3.Résultats principaux de cette thèse
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Ch.5. Specified homogenization of a second order discrete model

| ≤ C, |w l,R -m l,R 1 | ≤ C, |χ l,R -m l,R

| ≤ C, |χ l,R -m l,R 2 | ≤ C, |∂ x m l,R i | ≤ C, (6.20) 
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11.Appendix: proof of Theorem 9. 1 and

This implies that

This proves that (U i , Ξ i ) are viscosity super-solutions of (3.1). The proof for sub-solutions is similar and we skip it. Moreover, since ci and di are continuous, we deduce that U i , Ξ i ∈ C 1 and therefore (U i , Ξ i ) are classical solution of (3.1).

Let (a m ) m be a sequence of R converging to zero. Then L({f m ≥ a m }\{f ≥ 0}) → 0 as m → +∞ and L({f > 0}\{f m > a m }) → 0 as m → +∞, where L(A) denotes the Lesbegue measure of measurable set A.

Proof of Proposition 3.3. We just do the proof for u. We distinguish two cases.

Case 1: x 0 ∈ (-l, l). From the definition of F , we can see that the only problem we have is the non-local operator. We claim that for m big enough we have

(3.8)

Using (1.6), we have that

We get that 

Qualitative properties of A

Before passing to the numerical tests, we recall a final result from [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] regarding the qualitative properties of A, which we will numerically verify in the next section. Proposition 6.2 (Qualitative properties of the flux limiter). Assume (A). We have the following qualitative properties on the flux limiter:

(i) (Monotonicity of the flux-limiter). Let φ 1 , φ 2 : R → [0, 1] be two functions satisfying (A6). Let A 1 and A 2 be their respective flux limiters. If, for all x ∈ R, we have

then

(ii) (Flux interruption) Let φ be a function satisfying (A6). If φ = 0 on an open interval, then we have A = 0.

Numerical tests

Influence of φ 0

First, we would like to numerically verify (i) from Proposition 6.2 and to see the influence of φ 0 = min x φ(x). We consider a Greenshields optimal velocity function,

For the perturbation, we consider a function φ : R → [0, 1] defined by From Figure 6.5, we can see that in this case the approximation of A increases with the radius of the perturbation. However, for r ≥ 40m the approximation remains the same which could imply that for r big enough, the radius of the perturbation does not influence the value of A. Moreover, for smaller values of r, we can see that A is smaller (meaning that the flux is less limited) which is logical, since for a radius r = 0, we expect to have A = H 0 (in which case there is no perturbation).

Two different perturbations

Now we would like to take into account two different perturbations and see how our approximation of A changes with each perturbation. We consider the same perturbation as before and we introduce the following perturbation

We consider the same radius of influence r = 45 m. In Figure 6.6, we plotted the two perturbations φ and φ with φ 0 = 0, 25.

of the estimates of A. However, the upper and lower bound remain close to each other. Given that the difference between the estimates is small, we can assume that considering δ = 0.001 gives a good enough approximation of the flux-limiter.

Influence of R (transition between the non-local and local operators)

We consider the same optimal velocity function and perturbation as before, with the same parameters. To see the influence of R on the approximation of A, we fix l and δ to the values of (6.1) and we make R vary in [80, 150] with a step of 1. From Figure 6.10, we notice a lot a oscillation on the behaviour of the estimates for A when we make R vary. However, we notice that for R > 80 the difference between the upper and lower estimate is very small (less than 0.4). This would suggest that considering R > 80 is enough for a good approximation of A.

Influence of l

We consider the same optimal velocity function and perturbation as before, with the same parameters. To see the influence of l on the approximation of A, we fix R and δ to the values of (6.1) and we make l vary in [180, 300] with a step of 1.

A first main result

In this paper, we are interested in a second order microscopic model that can simulate the presence of a local perturbation. In order to do that, we considered a modified version of the model introduced by Bando et al in [BHN + 95]. More precisely, we consider a "followthe-leader" model of the following form

where U j denotes the position of the j-th vehicle, Uj its velocity and Üj its acceleration. The function φ simulates the presence of a local perturbation located at the origin and we denote by r its radius of influence. In this model, a ∈ R and V : R → R represent respectively the drivers sensitivity and the optimal velocity function. We make the following assumptions on V , φ and on the coefficient a.

Assumption (A)

• (A1) V : R → R + is Lipschitz continuous, non-negative.

Using that

we deduce that p + µ exists for µ small enough and

the correctors provided by Proposition 5.1 for

Given the definition of w + and χ + , we get

In particular this implies that

Finally, given that the non-local operator K is bounded by D (see Remark 3.6), we have for all x ∈ (r + D, l]

Combining the previous results, we can see that the restriction of (w + , χ + ) to (r + D, l] satisfies

Let us introduce, for some x 0 ∈ (r + D, l],

with C > 0 the constant provided by Proposition 8.3. Then we have

where we have used the fact that

Using that (g, h) is a solution of (8.5) and (u, v) is a solution of (8.6) (with ε 0 = µ), joint to the comparison principle (Proposition 8.1), up to changing the value of the constant C, we get that

This implies that for all h ≥ 0, and for all x ∈ (r + D, l),

Finally, if we choose γ 0 < |p 0 -p + |, then we have

Choosing µ > 0 such that

we obtain (8.37)-(8.38).

Proof of Theorem 6.1. The proof is performed in two steps.

10.Appendix: analysis of system (3.1) Using the fact that (ρ ε , σ ε ) is a viscosity solution of (3.3) and the comparison principle (Proposition 4.9) we deduce that (with (u ε , ξ ε ) the continuous solution of (3.3) associated to the initial condition

where we have used the fact that (3.3) is invariant by addition of constants to the solutions. Passing to the limit as ε → 0 and using Theorem 3.2 we get that ρ ε , σ ε → u 0 (the unique solution of (2.7) with (u 0 , ξ ε 0 ) for initial condition), which ends the proof of Theorem 3.3.

10 Appendix: analysis of system (3.1) In this section we present some properties of the solution

(10.1)

We couple system (10.1) with an initial condition (U i (0), Ξ i (0)) i that satisfy the following assumption.

(A0') (Initial conditions for (10.1)). For all i ∈ Z,

Proposition 10.1 (Bounds on the velocities of the vehicles). Assume (A) and (A0'), then the solution

Step 3: right of the perturbation. In the interval [ t, t * ], the couple (U j , Ξ j ) satisfies (10.17), with the following initial condition

Proceeding like before, we can prove that for all t ∈ [ t, t * ], we have

which gives us a contradiction for t = t * . This ends the proof of Proposition 10.3.

11 Appendix: proof of Theorem 9.1

Before we give the proof of Theorem 9.1, we need the following result.

Lemma 11.1 (Link between the velocities). Assume (A). Let ((U j ) j , (Ξ j ) j ) be the solution of (3.1) with an initial condition (U j (0), Ξ j (0)) j satisfying (A0'). Then we have

and

where u and ξ are continuous functions such that

where ρ and σ are defined respectively in (2.2) and (3.2) (with ε = 1).

Proof. We drop the time dependence to simplify the presentation. Let j ∈ Z. We recall that we chose D = h max + 3V max /(2α) + 2r/φ 0 . Using the fact that u(t, U j (t)) = -(j + 1) and (11.3), we have for all z ∈ [0, +∞),

Keywords: specified homogenization, Hamilton-Jacobi equations, integro-differential operators, Slepčev formulation, viscosity solutions, traffic flow, microscopic models, macroscopic models.

Introduction

Traffic flow can be characterized at different scales. The first one is the microscopic scale in which we describe the dynamics of each vehicles individually. Another one is the macroscopic scale that describes the collective dynamics of the vehicles with macroscopic quantities such as the density of vehicles and the average speed. The link between microscopic and macroscopic models has been extensively studied specially in the case of a single road. However, there are not many results concerning the homogenization of microscopic traffic flow models in networks.

In the case of a single road, we refer to [AKRM02, DFR15, Hel98, LLK01] where the authors rescaled the empirical measure in order to obtain a Lighthill-Whitham-Richards (LWR) model (see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]) at the macroscopic scale. Other works have been done by rescaling the primitive of the empirical measure in order to obtain a Hamilton-Jacobi equation (which is the primitive of a LWR model) at the macroscopic scale. Among those works we refer the readers to the papers [FIM09a, FIM09b, FIM12, 1], the last one being directly applied to traffic flow.

Moreover, the recent works [AT15, GIM15], and the ideas in the lectures of Lions at the "College de France" [START_REF] Lions | Lectures at collège de france[END_REF], concerning specified homogenization enabled us to consider a traffic flow model with a local perturbation and to deduce a macroscopic model with a junction condition (see [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF]). We would also like to refer to the paper of Colombo and Goatin [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], where the authors present an homogenization result from a LWR model with a discontinuous flow in space to a LWR model with a flow limiting condition at a single point.

Concerning homogenization results on networks, we would like to mention the recent work of Cristiani and Sahu [START_REF] Cristiani | On the micro-to-macro limit for first-order traffic flow models on networks[END_REF] where the authors present a first order microscopic model on a network and show the link to a multi-path model (see [START_REF] Bretti | An easy-to-use algorithm for simulating traffic flow on networks: numerical experiments[END_REF][START_REF] Briani | An easy-to-use algorithm for simulating traffic flow on networks: theoretical study[END_REF]). In fact they consider for each possible path a different population of vehicles. Their homogenization result is set in a very general network, however, they assume the convergence of the empirical measure (of each population) and they prove that the limit satisfies a multi-path model.

The present work focuses on obtaining a macroscopic model from a microscopic model for traffic flow in the case of a simple bifurcation. The schematic representation of the microscopic model is given in Figure 1.1.

General first order microscopic model for a junction

In this paper we are interested in a first order microscopic model for a simple bifurcation located at the origin, where we consider that the vehicles with odd indexes go to the left and vehicles with even indexes go to the right. We denote by U i the position of the i th vehicle and Ui its velocity. For i = 0, 1, 2 we call V i an optimal velocity functions. Before the bifurcation (i.e for U i (t) << 0) we assume that the velocity of each vehicle is given by

while after the bifurcation (i.e for U i (t) > 0) we assume that

In order to pass from the velocity V 0 to V i , i = 1 or 2, we introduce a transition function φ and we consider the following system for all t > 0:

(

The function φ allows a transition near the junction, and is defined by

with

Here and in the rest of this paper i [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] denotes the rest of the euclidean division of i by 2 (either 0 or 1). Under assumption (A), the function (ρ ε 1 , ρ ε 2 ) is a (discontinuous viscosity) solution (see Theorem 7.1) of the following non-local equation, for (t, x) ∈ (0, +∞) × R,

where N ε 0 and M ε i for i = 1, 2, are non-local operators defined by

and

with

and

(2.7) Finally, the function φ : R 3 → R, is defined by φ(x, a, b) = -φ(x, -a, -b) for all (x, a, b) ∈ R 3 . In particular it has the following form

(2.8) Remark 2.1 (Choice of the "cumulative distribution functions"). Contrary to [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], it is impossible to work with the integral of the empirical measure of the positions of all the vehicles. Indeed, near the bifurcation, the vehicles stop being in order (some go to R 1 and others to R 2 ), which makes it impossible to recover the distance U i+1 -U i . To overcome this difficulty, we consider a modified version of the integral of the empirical measure of the two types of vehicles (the ones going on R 1 and the ones going to R 2 ). This modification

The macroscopic model

The main objective of this article is to obtain an homogenisation result when the number of vehicles per unit length goes to infinity, that is to say what is the behavior of (ρ ε 1 , ρ ε 2 ) as ε goes to 0. First we can notice that the radius of the transition zone will go to 0, therefore at the macroscopic scale we will obtain a junction condition in 0 in the sense of Imbert and Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF]. We consider one incoming road R 0 (isometric to (-∞, 0]) and two outgoing roads R 1 and R 2 (isometric to [0, +∞)) and all the branches are glued at the origin. Moreover, we define

In order to give a more physical interpretation, we consider that the branches R 0 , R 1 and R 2 are generated respectively by the vectors e 0 , e 1 and e 2 , such that The main result of this article is to prove that the function ũε defined by

(2.16) converges locally uniformly on (0, +∞) × R as ε goes to 0 to the unique viscosity solution of the following problem

(2.17)

Notations and organization of the paper

We recall the definition of the non-local operators that we use in this paper,

and for i = 1, 2,

(2.29)

To each operator N and M , we associate the operators Ñ and M , which are defined in the same way except that the functions F and E are replaced by the functions F and Ẽ defined by

(2.30) Remark 2.9. Using the fact that E, F and V are bounded, there exists a constant M 0 such that for every U, Ξ and every x ∈ R, we have for i = 1, 2,

Remark 2.10 (Choice of the transition function). In some computation it is useful to specify the explicit dependence of the function φ(x, a, b) on max(a, b). That is why we use the following notation,

Finally, for a given point (t 0 , x 0 ) ∈ (0, +∞) × R, we define for r, r > 0, the set

and

Also for a given point (t 0 , y 0 ) ∈ (0, +∞) × R, we define for r, r > 0, the set

We denote by C > 0 a generic constant that may vary from one line to the next.

Organization of the paper. In Section 3, we introduce the definition of viscosity solutions for the considered problems and give stability, existence, and uniqueness results. Section 4 contains the results concerning the effective Hamiltonians and the correctors for the junction (Theorem 4.3) that are necessary for the proof of convergence (Theorem 2.4) which proof is located in Section 5. In Section 6, we present the proof of Theorem 4.3. In Section 7, we show the link between the ODEs and the system of PDEs. Finally, in Section 8, from the case of a simple bifurcation, we extend to more general scenarios.

Viscosity solutions

In this section we give the definition of viscosity solution of the equations we treat in this paper. We refer the reader to the user's guide of Crandall, Ishii, Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and the book of Barles [Bar94] for an introduction to viscosity solutions. We also refer the reader to [Ish92, IK91, Len88] for results concerning viscosity solutions for weakly coupled systems and to [START_REF] Imbert | Flux-limited solutions for quasi-convex hamiltonjacobi equations on networks[END_REF] for viscosity solutions on networks.

Definitions

In order to give a more general definition for all the non-local equations we will consider in this paper, we give the definition of a viscosity solution of the following equation, with p ∈ R,

with, for i = 1, 2,

and

To G i p we associate Gi p defined in the same way but with the non-local operators Ñ 0 p and M i p . For p ∈ [-2k 0 , 0], the non-local operators N 0 p and M i p are defined by

and for i = 1, 2

We also consider the following initial condition

that satisfies (A0).

We recall the definition of the upper and lower semi-continuous envelops, u * and u * , of a locally bounded function u, for all (t, x)

u(s, y).

(

We can now give the definition of viscosity solutions for (3.1).

Definition 3.1 (Definition of viscosity solutions for (3.1)). Let T > 0, u 0 : R → R, 

and if for all (t, x) ∈ Ω and for any test function ϕ such that ξ -ϕ attains a local maximum (resp. local minimum) at (t, x), we have

where we have used Lemma 3.10 for the first line (since ȳ + z ≤ ȳ + h max ≤ -h 0 ), the fact that ϕ( t, x, ȳ + z) ≤ ϕ( t, x, ȳ) for the second line and the fact that K 0 z > 2 for the third line.

If ȳ + z ≥ x, we then have

where we have used Lemma 3.10 for the first line, the fact that u is non-increasing in space for the second line, and the fact that ϕ( t, x, ȳ) > 0 for the third line. Injecting (3.18), (3.19), and (3.20) in (3.17), we obtain η/T 2 ≤ 0, which is a contradiction. The proof of the lower bound on the control of the space oscillations of ξ is done similarly and we skip it. This ends the proof of Theorem 3.9.

Proof of Lemma 3.10. We only prove that ξ(t, x) -u(t, x) ≤ 1 for x ≤ -h 0 and t ∈ [0, T ), the proof for the second part of the result is similar so we skip it. We will prove this result under a different form using the technique introduced by Ishii and Lions in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF] for the proof of local gradient estimates. Let z ∈ (-∞, -h 0 ) and δ > 0 a small parameter be such that z ≤ -h 0 -δ. We introduce ∆ = [0, T ) × B(z, δ).

We will prove that for a constant L := (4K 1 T + 8k 0 δ)/δ 2 , we have 2 for all (t, x) ∈ ∆.

(3.21)

In fact, if we take x = z in (3.21), we get

Using the continuity of the solution (u, ξ), we can pass to the limit in the previous inequality as z goes to -h 0 and we obtain the complete result. In order to prove (3.21), we introduce

and we want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

(5.3)

Thanks to Lemma 5.1 these functions are well defined. We also introduce

for (t, y) ∈ (0, T ) × R * 2 , and

We want to prove that v and v are respectively a sub-solution and a super-solution of (2.17). In this case, the comparison principle will imply that v ≤ v, but by construction we have v ≤ v, hence we will get v = v = u 0 , the unique solution of (2.17).

Let us prove that v is a sub-solution of (2.17) (the proof for v is similar and we skip it). We argue by contradiction and assume that there exists a test function ϕ ∈ C 2 ((0, +∞)×R) (in the sense of Definition 3.3), and a point ( t, ȳ) ∈ (0, +∞) × R such that

where

We denote by x = sign(ȳ)d(0, ȳ), with sign : R → R,

Given Lemma 5.2 and (5.2)-( 5.3), we can assume (up to changing ϕ at infinity) that for ε small enough, we have

(5.5)

Using the previous lemmas we get that the function v satisfies for all t > 0, x, y ∈ R * 0 (or

(5.6)

Truncated cell problem

This section contains the proof of Theorem 4.3. We proceed as in [2, GIM15] and we will construct correctors on a truncated domain and then pass to the limit as the size of the domain goes to infinity. For l ∈ (h 0 + h max + 1, +∞), h 0 << l and h 0 + h max + 1 ≤ R << l, we want to find λ l,R ∈ R such that there exists a solution (w l,R , χ l,R ) of

with, for j = 1, 2,

and

To G j R we associate Gj R which is defined in the same way by replacing the non-local operators N 0 and M j respectively by Ñ0 and Mj .

Comparison principle for a truncated problem Proposition (Comparison principle on a truncated domain). Let us consider the following problem for

6.Truncated cell problem

Proof. Like in [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], the only new difficulty to prove this proposition is the comparison at l 2 . But since near l 2 , the system decouples itself, we can prooceed as in [GIM15, Proposition 4.1]. Remark 6.2. We have a similar result if we exchange the boundary conditions, that is to say for l 1 < l 2 < -h 0 -h max -1, and if for all x ∈ [l 2 , l 2 + h max ] v(x) ≤ u(x) and ζ(x) ≤ ξ(x) and the following conditions are imposed at x = l 1 ,

Existence of correctors on a truncated domain Proposition 6.3 (Existence of correctors on a truncated domain).

There exists a constant λ l,R ∈ R such that there exists a solution (w l,R , χ l,R ) of (6.1). Moreover, there exists a constant C (depending only on k 0 ) and two Lipschitz continuous functions m l,R 1 and m l,R 2 , such that

Proof. We consider the approximated truncated cell problem, For every value of x, ȳ we obtain a contradiction, therefore M ≤ 0.

Proof of the lower inequality.

In order to proof this inequalities, we will use the following lemma whose proof is postponed. Lemma 6.5. For all x ∈ [-l, -h 0 ], we have

We want to prove that

We argue by contradiction and assume that M > 0. We can see that M is reached for a finite point that we denote by (x, ȳ) ∈ Ω. Since M > 0, we deduce that x > ȳ. Therefore, we can use the viscosity inequalities from (6.8).

Let us for instance assume that M = v δ (ȳ) -v δ (x) -K 0 (xȳ) -2 (the other case is similar and we skip it).

We distinguish 4 cases.

-If x, ȳ ∈ (-l, l), we obtain

-K 0 ) ≥ 0, combining these inequalities and using the definition of M , we obtain

We recall that the non-local operators are non-positive (see Remark 2.9) and that

To treat (6.15), we will compute

In fact, it is sufficient to prove that for all z ∈ (h 0 , h max ], we have

Let z ∈ (h 0 , h max ], if ȳ + z ≤ x, then using the fact that

If ȳ + z > x, using the fact that v δ is non-increasing and that M > 0, we obtain

We can therefore assume that -R -1 ≤ ȳ ≤ -h 0 -h max (if not we get a contradiction in (6.15)).

Let us now prove that for all -R -

In fact, it suffices to prove that for all z ∈ (h 0 , h max ], we have

Let z ∈ (h 0 , h max ]. If ȳ + z ≥ x, using the fact that ζ δ is non-increasing and Lemma 6.5 (since ȳ + z ≤ ȳ + h max ≤ -h 0 ), we obtain

where we used the fact that M > 0 for the third line. If ȳ + z < x, using Lemma 6.5 and that

we obtain

Injecting the previous results into (6.15), we get δM ≤ 0, which is a contradiction.

-If x ∈ (-l, l) and ȳ = -l, we obtain

Using the fact that H -0 (-K 0 ) = 0 we obtain δM ≤ 0, which is a contradiction. -If x = l and ȳ ∈ (-l, l), we obtain

using the result of the first case, and the fact that H + 1 (-K 0 ) < 0, we directly obtain δM ≤ 0, which is a contradiction.

-If x = l and ȳ = -l, we obtain

just like before, we obtain δM ≤ 0, which is a contradiction.

For every value of x, ȳ ∈ [-l, l] we obtain a contradiction, therefore we have M ≤ 0. This ends the proof of Lemma 6.4.

Step 3: construction of the Lipschitz continuous function.

Lemma 6.6. There exists two Lipschitz continuous functions m δ

1 and m δ 2 , such that there exists a constant C > 0 (independent of l and R) such that

(6.16)

Moreover, for all x ∈ [-l, h 0 ], we have

Proof. We only do the construction of m δ 1 , since the construction of m δ 2 is similar and we skip it. We define m δ 1 as an affine function in each interval of the form [ih 0 , (i + 1)h 0 ], with i ∈ Z, such that

Since m δ 1 and v δ are non-increasing, and

and for all x, y ∈ [-l, l],

Proof. This proof is a direct consequence of (6.7).

Proposition 6.8 (Control of the slopes on a truncated domain). Assume that l and R are large enough. Let (w l,R , χ l,R ) be the solution of (6.1) given by Proposition 6.3. If we assume up to a sub-sequence that A = lim

Then there exist γ 0 > 0 and a constant C > 0 (independent of l and R) such that for all γ ∈ (0, γ 0 ) and for all x ≥ 0 and h ≥ 0

Similarly, if we assume that A > min H 2 then we have for all x ≥ 0 and h ≥ 0

Finally, if we assume that A > min H 0 , we have for all x ≤ -h 0 -h max -1 and h ≥ 0,

Proof. We do the proof of Proposition 6.8 in two steps.

Step 1: proof of (6.40)-(6.41). We do the proof only for w l,R , since the truncated cell problem (6.1) decouples itself for x > 0. The proof for χ l,R is similar and we skip it. For µ > 0, small enough, we denote by p 1 µ the real numbers defined by

we deduce that p 1 µ exists for µ small enough and p 1 µ ∈ [-2k 0 , 0).

Let us now consider w

We also have

6.Truncated cell problem

For all x ∈ (0, l), we have

Using ( 6.46), we can see that the restriction of w + to (0, l] satisfies

notice that since x > 0 there is no actual dependence on χ + on the previous equation.

Let us introduce, for some x 0 ∈ (0, l], g = w l,R -w l,R (x 0 ) and u = w + -w + (x 0 ) (6.47)

Then we have

Using that g is a solution of (6.4) (in (0, l] the solutions are invariant by addition of constants) and u is a solution of (6.5) (with ε 0 = µ), joint to the comparison principle (Proposition 6.1), we get that

This implies that for all h ≥ 0, and for all x ∈ (0, l),

Finally, if we choose γ 0 < |p 1 -p 1 + |, then we have

Choosing µ > 0 such that

we obtain (6.40).

Step 2: proof of (6.42) and (6.43). The arguments are similar to the previous ones but for the readers convenience, we detail where the two proofs differ. For µ > 0, small enough, we denote by p 0 µ a solution of

7.Link between the system of ODEs and the system of PDEs

Therefore, we have

Using the fact that (ρ ε 1 , ρ ε 2 ) is a viscosity solution of (2.4) and the comparison principle (Proposition 3.7) we deduce that (with (u ε , ξ ε ) a continuous solution of (2.4) associated to the initial condition (u 0 , ξ 0 ))

Passing to the limit as ε → 0 and using Theorem 2.4 we get that

(7.9) converges locally uniformly to u 0 (unique solution of (2.17)), which ends the proof of Theorem 2.5.

Proof of Theorem 7.1. Theorem 7.1 is a consequence of the following lemma.

Lemma 7.2 (Link between the velocities). Assume (A). Let ((U i ) i ) be the solution of (1.1) with

)

where E and F are defined in (2.7), J i = V i for i = 0, 1, 2, and u and ξ are continuous functions, decreasing in x, such that

2) (with ε = 1).

Proof. We drop the time dependence to simplify the presentation. We only do the proof in the case i ∈ Z, i[2] = 0, the other case being identical.

In the case U i ≤ 0, all the vehicles remain in order, meaning that ξ(U i ) = -(i + 1) and -(i + 2) = u(U i+1 ) < u(U i ) < u(U i-1 ) = -i, using this and (7.13) we have for all z ∈ [0, +∞),

Given that u and ξ are continuous, this implies that

Now using (7.13), and the fact that ξ(U i ) = -(i + 1), we obtain

Again, given that ξ is continuous, this implies that

Combining (7.14) and (7.15), we get (7.12).

Thanks to (7.13), we have for

Similarly, we have for all

and using Lemma 7.2, and Definition 3.1, we can see that ((ρ 1 ) * , (ρ 2 ) * ) is a discontinuous viscosity super-solution of (7.1). We obtain a similar result for ((ρ 1 ) * , (ρ 2 ) * ) therefore, (ρ 1 , ρ 2 ) is a discontinuous viscosity solution of (7.1). We prove the converse. Using from [FIM09b, Proposition 11], we can conclude that ((ρ

(7.16)

Using the fact that u and ξ are decreasing, we define for all i ∈ Z, i[2] = 1,

and for all i ∈ Z, i[2] = 0,

and we consider the functions t → U i (t). They are continuous because u and ξ are decreasing in x and continuous in (t, x).

We now prove that the functions U i are viscosity solutions of (1.1). Let ϕ be a test function such that ϕ(t) ≤ U i (t) and ϕ(t 0 ) = U i (t 0 ). Let us now define φ(t, x) = -(i + 1) + ϕ(t) -x. Let us for instance consider i ∈ Z, such that i [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] = 0 then we have

This implies that

We obtain a similar result in the case i [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF] = 1. This proves that U i are viscosity supersolutions of (1.1). The proof for sub-solutions is similar and we skip it. Moreover, ci (•, U i (•)), for i = 1, 2, is continuous, we deduce that U i ∈ C 1 , and is therefore a classical solution of (1.1).

Extensions

In this section, we will introduce some extensions of model (1.1) for which an homogenization result is possible by using the same arguments as the ones used in the case presented in this paper. However, since the models we introduce in this section are more complex, many technical difficulties appear. Particularly, we will no longer be working with a system of two equations but with a more general system. We will not go into details of the proofs for each of the models, however we give some guidelines for any reader that would like to do the proofs in detail.

One incoming road, n outgoing roads

General model

Let us begin by considering a model where we have one incoming road R 0 and n ∈ N\{0} outgoing roads that we denote by R k , for k = 1, . . . , n. We consider a simple periodic setting and assume that the vehicle i ∈ Z such that i[n] = k -1 goes into R k , where i[n] denotes the rest of the euclidean division of i by n (therefore i[n] ∈ {0, . . . , n -1}). We consider the following model

where U i denotes the position of the i th vehicle and Ui its velocity. For i = 0, . . . , n, V i is an optimal velocity function. The function φ is the same as before and is defined in (1.2). In Figure 8.5, we have an schematic representation of model (8.1).

Transition zones We assume that the optimal velocities satisfy assumption (A). However, we need to change assumption (A5), to take into account the fact that we have n possible exits.

• (A5') The function p → pV 0 (-1/p) and p → pV k (-n/p) for k = 1, . . . , n are strictly convex respectively on [-1/h 0 , 0) and on [-n/h 0 , 0).

To simplify we call (A') assumption (A) with (A5') instead of (A5).

Injecting the system of ODEs into a system of PDEs

The technique remains the same as before and we inject the system of ODE (8.1) into a system of PDEs by considering n "cumulative distribution functions". For j = 0, . . . , n -1,

with H the heaviside function defined in (2.3).

Remark 8.1. We choose this type of "cumulative distribution function", to simplify the computations, because if i[n] = j, then we have ρ j (t, U i (t)) = -(i + 1).

Under assumption (A') we can prove that (ρ j ) j=0,...,n-1 is a (discontinuous viscosity) solution of the following non-local system of PDEs, for (t, x) ∈ (0, +∞) × R,

where N ε 0 and M ε j for j = 1, . . . , n are non-local operators defined by

and

with J j = V j for j = 0, 1, . . . , n,

Finally, the function φ is the same as the one in (2.8).

We will consider the following initial conditions, u ε j (0, x) = u j,0 (x) for x ∈ R and for j = 0, . . . , n -1, (8.7)

and we make the following assumptions.

8.Extensions

converges locally uniformly on compact subsets of (0, +∞) × R as ε goes to 0 to the unique viscosity solution of the following problem

where A is a constant to be determined and F A is defined by

where for k = 0, . . . , n,

Theorem 8.2 (Junction condition by homogenization). Assume (A0') and (A'). For ε > 0, let (u ε j ) j be the solution of (8.3)-(8.7). Then there exists A ∈ [H 0 , 0] such that the function defined by (8.12) converges locally uniformly to the unique viscosity solution u 0 of (8.13).

Theorem 8.3. Assume (A') and that at initial time we have, for all

and if not

We also assume that there exists a constant R > 0 such that, for all

with h ≥ h 0 and for j ∈ {1, . . . , n}, h j ≥ h 0 . We define the functions (u j,0 ) j (satisfying (A0')) by

Then there exists a constant A ∈ [H 0 , 0] such that the function

converges locally uniformly to u 0 the unique solution of (8.13).

Theorem 8.4. Assume (A0')-(A'). Let u 0 be the unique solution of (8.13), then we have for all

with k 0 defined in (A0').

Remark 8.5. First, notice that, at the macroscopic scale, we obtain a similar result like the one from the case of a simple bifurcation (and of course if n = 2 we find the same result).

In the introduction we mentioned that the main difficulty to obtain an homogenization result was to build the correctors at the junction since we are in a non-periodic setting. However, notice that in the proof of Proposition 6.3 (in the core of the proof of Theorem 4.3 which gives the existence of correctors at the junction) the key element is that we are able to control the oscillations in space of the solutions in the truncated domain for the approximated cell problem (Lemma 6.4). Notice also that the arguments used in that lemma are actually similar to the ones used to prove Theorem 3.9. That is why we will give the equivalent theorem in the case of n outgoing roads and then give some guidelines on how to prove it. Theorem 8.6 (Control of the oscillations). Let T > 0. Assume (A0')-(A') and let (u j ) j be a solution of (8.3)-(8.7), with ε = 1. Then there exists a constant C 1 > 0 such that for all x, y ∈ R, x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

Sketch of the proof of Theorem 8.6. We only give the ideas necessary to prove Theorem 8.6, and the order in which the proof must be done.

1. Prove the control of the oscillations in time using the barriers and the fact that the solutions are invariant by additions of constants and by translations in time.

2. Like in Theorem 3.9, prove that the functions u j are non-increasing in space.

3. Now we need a comparison between the functions (u j ) j solution of (8.3) (with ε = 1) for all x ≤ -h 0 . We want to prove that for all x ≤ -h 0 , all t ∈ [0, T ] and for j = 0, . . . , n -2,

To prove (8.20), we need to proceed in the following order.

(a) Using a localisation argument, like in the proof of Lemma 3.10, we prove that for all x ≤ -h 0 , all t ∈ [0, T ] and for j = 0, . . . , n -2, -1 ≤ u j+1 (t, x) -u j (t, x) and -1 ≤ u 0 (t, x) -u n-1 (t, x).

(b) Using the previous result, we deduce that for all x ≤ -h 0 , all t ∈ [0, T ] and for j = 0, . . . , n -2 u j+1 (x) -u j (x) ≤ n -1 and u 0 (x) -u n-1 (x) ≤ n -1.

4. Using the previous results, proceeding like in the proof of Theorem 3.9 prove the lower bounds on the control of the space oscillations.

A more general distribution of vehicles

Let us consider the case we have one incoming road R 0 and two outgoing roads R 1 and R 2 like in the case treated in detail in the previous sections. However, instead of considering one vehicle going to the left and one to the right, we consider a more general distribution of the vehicles (but still a periodic distribution). More precisely, let n ≥ 2 and assume that the vehicle i ∈ Z such that i[n] = 0 goes into R 1 and the rest of the vehicles go into R 2 (one vehicle goes left and n -1 go right). We then consider the following model for all i ∈ Z and all t > 0, -if i[n] = 0, where U i denotes the position of the i-th vehicle and Ui its velocity.

solution of the following non-local system of PDEs, for (t, x) ∈ (0, +∞) × R,

where N ε 0 and M ε 1 are defined respectively in (8.4) and (8.5). The non-local operator N ε 2 is defined like N ε 0 but with J 2 and V 2 max instead of J 0 and V 0 max (in order to recover the velocity V 2 on R 2 ). Finally, the non-local operator L ε 2 is defined by

with J 2 = V 2 and

(8.27)

The function φ is the same as the one in (2.8).

The effective Hamiltonians

Like in the previous scenarios, we have an effective Hamiltonian on each road. The effective Hamiltonians H 0 : R → R and H 1 : R → R are defined respectively in (8.8) and (8.9) while H 2 is defined by (with k 0 = 1/h 0 )

for -nk 0 ≤ p ≤ 0, p for p > 0.

(8.28) 

Convergence result

Theorem 8.7. Assume (A") and that at initial time between two consecutive vehicles there is atleast a distance of h 0 between them. We also assume that there exists a constant R > 0 such that for all i ∈ Z, if

with h, h 1 , h 2 ≥ h 0 . We define the functions u 0,0 and u 1,0 (satisfying (A0')) by

Then there exists a constant A ∈ [H 0 , 0] such that, for any k ∈ {0, . . . , n -1} and any j ∈ {1, . . . , n -1}, the function

ρ ε k (t, -d(0, y)) for (t, y) ∈ (0, +∞) × R 0 , ρ ε 0 (t, d(0, y)) for (t, y) ∈ (0, +∞) × R * 1 , ρ ε j (t, d(0, y)) for (t, y) ∈ (0, +∞) × R * 2 , (8.30) converges locally uniformly to u 0 the unique solution of where A is a constant to be determined and F A is defined by