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Introduction

The intriguing nature of light has fascinated philosophers-scientists since early stages
in history. The demonstration of the wave nature of light by Augustin Fresnel in the
French academy of Science has started a revolution that last until our days. Later,
the dual nature of photons opened even further perspectives for light. In particular,
the light-matter interactions have changed the scientific landscape by offering a set of
phenomena that are crucial in our days, for instance spectroscopy or the invention of
bulbs, microscopes and telescopes have changed the understanding of our environment.

After the developments of Maxwell, Hertz and Marconi (among others), light has been
used as an information carrier, it has brought another radical change, empowering
photonics as a required field to solve the bottlenecks of pure electronics becoming one of
the fundamental pillars of modern communication. All-optical solutions can provide both:
faster processing speed and lower power consumption, since the optical-electrical-optical
conversion is cut-out of these schemes. For instance, electronics limits the switching rates
to around 50 GHz.

The most promising effects for all-optical signal processing are offered by higher order
phenomena, which are referred as nonlinear optics. For instance, most all-optical
regeneration techniques, including self phase modulation (SPM), four-wave mixing and
cross-phase modulation are based on Kerr nonlinearity (a third order nonlinear effect).
To get a sufficient light-matter interactions (through higher order polarization terms)
for the desired effect, one can have different choices: use a material with high nonlinear
third order susceptibilities (χ(3)) or to increase the pump intensity. For the latter, one
can either use pulsed lasers or decrease the mode field area. In this view, micrometer
scale or sub-micrometer scale integrated waveguides can be used to exploit the refereed
higher order effects. The ultimate goal is to reduce the size of all-optical signal processing
devices by choosing highly nonlinear materials and appropriate structures for high mode
confinement requiring lower powers and allowing low-cost and fast signal processing
techniques that can be integrated on CMOS compatible wafers for mass production.

The measurement of third order nonlinear properties for telecommunication applications
operate in the near infrared window (1.55 µm to 1.60 µm) has been a subject of intense
study. One of the key point related to nonlinear materials, and that will be addressed in
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this work, concerns the precise measurement and characterization of the guided structures.
As an illustration, we show in Fig. 1 a plot of the two photon absorption coefficient, on
a semi-logarithmic scale, as a function of year published in the literature for GaAs. It
has been established that these large differences (around two orders of magnitude) are
not exclusively due to differences in the materials, but are due to experimental problems
and interpretation errors [1].

Although related to old results, this matter of fact highlights a specific picture: accurate
and stable experimental characterization of nonlinear integrated materials is difficult
to realize in most often conditions. In the context of this PhD work, that is centered
on the study nonlinear optical effects in high index contrast silicon nanowaveguides
with cross-section areas around 0.1 µm2 and cladding materials with possible giant
nonlinear properties, fully experimental characterization of the effective waveguide
nonlinear parameters is an even further challenging but important task.

Silicon microphotonics benefits from the well known material properties and the mature
fabrication methods associated with the strong microelectronics industry. The dimensions
and fabrication processes have allowed the integration of a large number of photonic
functions on a single chip. However, optical properties of silicon face limits in the
nonlinear regime, especially in the telecommunication waveband that is addressed in
this text. On one hand the nonlinear refractive index, is very high. On the other hand,
the two-photon absorption coefficient is also very large, which is responsible for the
generation of free carriers that modify the signal in intensity (absorption-FCA) and phase
(refraction-FCR) [2]. Even with these limitations, many nonlinear optical effects have
been demonstrated in silicon photonic wires. Liu et.al. have shown wavelength conversion
by four wave mixing [3] and Espinola et.al. [4] demonstrated Raman amplification using
only 20.5mW pump power and ∼1mW signal power.

Figure 1: The Two photon absorption coefficient as a function of year published for
GaAs [1].
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To overcome the free carrier and two-photon absorption in silicon, other nonlinear mate-
rials have being investigated for microphotonics. One choice is to fabricate waveguides
with materials from the III-V group, chalcogenides, amorphous crystals or nitrides.
Another one is to explore hybrid silicon platforms by covering silicon-on-insulator (SOI)
waveguides with high performance soft matter compounds.

Furthermore, there are two ways to localize the light in a nonlinear medium: optical
microcavities and slow light waveguides. Semiconductor photonic crystal cavities
have been demonstrated with very small volumes and ultrahigh Q factors of the order of
106, making them suitable for small footprint all-optical operations. The slowing down
effect of light can be achieved in photonic crystal waveguides which are in the same
time highly dispersive. Consequently, their geometry controls the behavior of the light
propagating into the structure an takes over by several orders of magnitude the natural
material dispersion.

In this context, the present thesis is devoted to the design and characterization of
integrated waveguides and cavities for third order nonlinear effects in silicon photonic
field-enhanced structures operating in the telecommunication waveband. The manuscript
is organized as follows:

Chapter 1 recalls the required concepts to understand the physics of specific nonlinear
quantities to be targeted, then the basics of waveguides and cavities are summarized.
Next, we present the procedures employed on silicon and silicon nitride to fabricate
integrated devices, followed by the linear measurements of these waveguides and others
realized in the frame of collaborations. Finally, we develop the vectorial nonlinear wave
equation and the traditional methods used to quantify effective third order nonlinear
waveguide parameters.

Chapter 2 presents a novel single beam non-destructive method to characterize the
effective nonlinearities of integrated structures: bi-directional top-hat Dispersive Scan
(D-Scan). The technique is a temporal analogue to the top-hat Z-Scan with a double side
injection that allows the critical measurement of the coupling efficiencies. The technique
is validated in a SOI waveguide and applied to other integrated materials, where some of
them have never been explored in the nonlinear regime around 1550 nm.

Chapter 3 explores a technique to enhance light-matter interactions in a microcavity in
the nonlinear regime. It consists in a coherent excitation of the resonator by a properly
shaped pulse that set in phase the excitation pulse and the resonant frequency drift
induced by free carrier refraction. The idea is proved in a SOI cavity made with two Bragg
mirrors and ps shaped pulses, consisting in the first experimental nonlinear coherent
excitation of microcavities.

Chapter 4 is devoted to the study of Slot Photonic Crystal Waveguides (SPhCW).
The design of dispersion engineered structures is performed in the first stage, being
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followed by their fabrication in our facilities. Next, the characterization of the group
delay is performed via external and internal interferometric techniques demonstrating
the presence of a usable slow light bandwidth. These structures are thoroughly studied
in the linear regime with different refractive cladding material indices. The chapter ends
with a simulation effort to optimize silicon hybrid nonlinear devices and preliminary
measurements of silicon photonic crystal waveguides in the nonlinear regime.

Finally, a summary restates the key results within the three directions of this work and
provides perspectives to exploit the characterization methods and to enhance device
performances of coupled and hybrid microcavities and slow light filled SPhCW.
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1 Third order nonlinear waveguide
structures
In this chapter we will introduce the general concepts of the nonlinear phenomena
to be studied in this thesis. Then, we present the physical principles of waveguiding
and resonant integrated structures such as strip, slot, photonic crystal waveguides and
resonators. Next, the fabrication steps of silicon structures are presented followed by
the materials used along this manuscript. Under this context, we refine the nonlinear
expressions to settle down the quantities to be measured and introduce a figure of merit.
In the last part, a brief introduction to the historical techniques to characterize third
order nonlinear parameters is stated.
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1.1. Introduction

“Miedo a la brutalidad de lo real(...) miedo a sentirse aislado, no reconocido y no
aplaudido”.

Mario Mendoza, La locura de nuestro tiempo.

1.1 Introduction

Soon after the invention of the laser [5], the nonlinear effects [6] have attracted the
attention of researchers. In integrated systems, due to the advance in lithography and
material structuring, nonlinear processes have been explored to open the possibility of
all-optical on-chip systems. In particular, third order nonlinear effects promise to play
an important role in functions requiring generation of new frequencies or logic operations.
The objective of this chapter is to introduce the concepts of third order nonlinear effects
in integrated structures. First, a general development is performed. Then, an explanation
of physical principles and materials of integrated waveguide structures is introduced.
Finally, the nonlinear effects are considered in waveguides to end with a brief introduction
of common methods to quantify the third order nonlinear coefficients in materials. In
Fig. 1.1 (a), we show a scheme of an electromagnetic field inducing a dipole oscillation
in a media, in particular, we will be interested in these kinds of light-matter interactions
in integrated waveguides. We depicted also an energy level diagram of two of the most
relevant nonlinear effects treated in this manuscript. (b) Self-phase modulation (SPM)
which is a contribution to the refractive index changes and (c) two-photon absorption
(TPA) effect.

𝐸 

ℏ𝜔 ℏ𝜔 

ℏ𝜔 𝑆𝑃𝑀 

𝑇𝑃𝐴 

𝑝 𝐸  

(a) 

(b) (c) 

Figure 1.1: (a) An electromagnetic wave at frequency ω with an electric field ~E,
inducing a dipole oscillation in an atom. Third-order nonlinear dipole transitions,
showing (b) self-phase modulation (SPM) and (c) two-photon absorption (TPA).
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Chapter 1. Third order nonlinear waveguide structures

1.2 Nonlinear Optics

Hereafter the nonlinear wave equation is first derived in the scalar approximation. We
assume bulk materials and transversal (diffraction) effects negligible. The deduction can
start from the macroscopic Maxwell’s equations for dielectric non-magnetizable media:

∇× ~E(~r, t) =−µ0
∂ ~H(~r, t)

∂t
, ∇× ~H(~r, t) =

∂ ~D(~r, t)

∂t
(1.1)

In the necessary constitutive equation, we split the polarization into linear and nonlinear
contributions:

~D(~r, t) = ε0 ~E(~r, t) + ~P (~r, t) = ε0 ~E(~r, t) + ~PL(~r, t) + ~PNL(~r, t) (1.2)

To derive the wave equation, the two curl equations are combined to obtain:

∇×∇× ~E(~r, t) =−µ0
∂2 ~D(~r, t)

∂t2
(1.3)

Assuming weak guidance approximation, one can consider [7]:

∇ · ~E(~r, t) =− 1
ε0
∇ · ~P (~r, t) = 0 (1.4)

With εij(ω) = δij + χ
(1)
ij (ω), the nonlinear Helmholtz equation in the Fourier domain can

be written down:

∆Êi(~r,ω) +
ω2

c2

∑
j

εij(ω)Êj(~r,ω) =−µ0ω
2P̂NLi (~r,ω) (1.5)

The nonlinear polarization can be seen as a source term in the equation, and is responsible
for the generation of new frequencies. In the following, we will discuss special solutions
to this equation, particularly for χ(3) effects. The third order nonlinearity is a universal
property, found in any material regardless of its spatial symmetry. This is the lowest order
nonvanishing nonlinearity for a broad class of materials, remarkably some in the CMOS
compatible platform such as Si, for which all the even-order nonlinear susceptibilities are
identically equal to zero for symmetry reasons (they present a natural centrosymmetric
lattice).

Third-order nonlinear susceptibility effects include a vast variety of processes, which are
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1.2. Nonlinear Optics

extensively used for frequency conversion and powerful methods for nonlinear microscopy
and spectroscopy. During this manuscript we will focus our attention in the (quasi-
)instantaneous (electronic Kerr and TPA) effects and their consequences, such as the
self-phase modulation or the free carrier generation in integrated structures. In the
following we will assume a field that propagates in the z direction and we will be interested
in its transverse profile, we will use the scalar approximation so that:

⇒ Ê(~r,z,ω0) =A(~r,z)eik0z with k0 =
ω2

0
c2 ε(ω0) (1.6)

Now, assuming the slowly varying envelope approximation (SVEA): |∂2A
∂z2 | � |k0

∂A
∂z |, we

can re-write the propagation wave equation as:

∂A(x,y)

∂z
= i

(∂2
x + ∂2

y)

2k0
A(x,y) + i

ω2
0

2k0ε0c2P
NL
ω0 e−ik0z (1.7)

It is possible to derive a simplified version if only considering the third order nonlinear
effects:

PNLω0 = 3ε0χ
(3) |Eω0 |

2Eω0 = 3ε0χ
(3) |Aω0 |

2Aeik0z (1.8)

∂A

∂z
= i

1
2k0

(∂2
x + ∂2

y)A+ i
ω0
c

3χ(3)
2n0

|A|2A (1.9)

This is the 2D (two-dimensional, in x and y) nonlinear wave equation, which could
be reformulated in terms of intensity as I = 2n0ε0c |A|2, with the normalization of the
amplitude u=

√
2n0ε0cA⇒ |u|2 = I.

∂u

∂z
= i

1
2k0

(∂2
x + ∂2

y)u+ i
ω0
c
n2 |u|2u (1.10)

The components of the third-order susceptibility tensor relates the the electric field
amplitudes to the nonlinear polarization components:

Pi(ωo+ωn+ωm) = ε0
∑
jkl

∑
mno

χ
(3)
ijkl(ωo+ωn+ωm;ωo,ωn,ωm)×Ej(ωo)Ek(ωn)El(ωm)

(1.11)

where i, j,k and l refer to the cartesian components of the field. The summation over
m,n and o contains the frequency combination such that the quantity ωo + ωn + ωm is

9



Chapter 1. Third order nonlinear waveguide structures

kept equal (energy conservation). Using intrinsic permutation symmetry, we can rewrite
the nonlinear polarization:

Pi(ωo+ ωn+ ωm) = ε0D
∑
jkl

χ
(3)
ijkl(ωo+ ωn+ ωm;ωo,ωn,ωm)×Ej(ωo)Ek(ωn)El(ωm)

(1.12)

where the degeneracy factor D represents the number of distinct permutations of the
frequencies ωo, ωm and ωn, such that:

D= 6, for ω1 6= ω2 6= ω3

D= 3, for ω1 = ω2 6= ω3

D= 1, for ω1 = ω2 = ω3

(1.13)

χ
(3)
ijkl is a fourth-rank tensor, containing 81 elements. In general, for crystalline solids

with low symmetry all the elements are independent and non-zero but for materials
with a higher degree of spatial symmetry (as the ones studied through this research),
the number of independent elements could be significantly reduced. If the material is
isotropic, the tensor elements are zero except if indices appear in even numbers, as the
response in all directions is equivalent. After considering the equivalence of coordinate
axes and the possibility of rotation, the nonzero elements are governed by the equation:

χijkl = χ1122δijδkl + χ1212δikδjl + χ1221δilδjk (1.14)

which is based on three independent elements in case of arbitrary field frequencies. χ(3)ijkl
is a complex quantity, so we will study the effects of the real part Re{χ(3)} associated
with an optical Kerr contribution and Im{χ(3)} with two-photon absorption (TPA).

1.2.1 Optical Kerr effect

Briefly, if we want to consider the optical Kerr effect, where ω1 = ω2 = −ω3 = ω,
then χ(3)ijkl(ω;ω,ω,−ω) by intrinsic permutation symmetry becomes: χ(3)1122(ω;ω,ω,−ω) =
χ
(3)
1212(ω;ω,ω,−ω) 6= χ

(3)
1221(ω;ω,ω,−ω), meaning χ(3)ijkl = χ

(3)
1212(δijδkl+ δikδjl)+χ

(3)
1221δilδjk,

so only two independent elements remain. Introducing this result into equation (1.12)
leads to:

Pi(ω) = 3ε0
∑
jkl

χ
(3)
ijkl(ω;ω,ω,−ω)Ej(ω)Ek(ω)El(−ω)

= 6ε0χ1122( ~E · ~E∗)Ei + 3ε0χ1221( ~E · ~E)E∗i
(1.15)

10



1.2. Nonlinear Optics

Or, equivalently

~P (ω) = 6ε0χ1122( ~E · ~E∗) ~E + 3ε0χ1221( ~E · ~E) ~E∗ (1.16)

Due to intrinsic permutation valid for nonresonant electronic response: χ(3)1122(ω;ω,ω,−ω) =
χ
(3)
1221(ω;ω,−ω,ω), so that:

~P (ω) = 2ε0χ
(3) | ~E|2 ~E + ε0χ

(3)( ~E · ~E) ~E∗ (1.17)

with χ(3) ≡ χ(3)1111 = 3χ(3)1122. The nonlinear polarization consists of two contributions
that have very different physical characters, since the first contribution corresponds to a
nonlinear induced index change whereas the second will be responsible for a nonlinear
induced polarization rotation of the field along the propagation (only linearly or circularly
polarized light are transmitted with their state of polarization unchanged).

In the case of linearly polarized light (we will study mainly the fundamental TE mode):
E1 =E,E2 =E3 = 0, the nonlinear polarization is reduced to: PNL1 = 3ε0χ

(3) |E|2E, so
the total polarization is then described by a linear and a nonlinear parts:

P1 = ε0χ
(1)E + 3ε0χ

(3) |E|2E = ε0χeffE (1.18)

Reminding the refractive index definition: n=
√

1 + χeff , that in the linear regime is
n0 =

√
1 + Re{χ(1)}, we can find a variation induced by the nonresonant χ(3) effect

(Re{χ(3)}):

n(|E|2) =
√

1 + Re{χ(1)}+ 3Re{χ(3)}|E|2 ≈
√

1 + Re{χ(1)}+ 3Re{χ(3)}|E|2

2
√

1 + Re{χ(1)}

= n0 +
3Re{χ(3)}|E|2

2n0
(1.19)

from where we can define the nonlinear refractive (optical Kerr) index n2 (in units of
m2/W), such that n= n0 + n2I where I stands for the electric field intensity, that is
related to the electric field component as I = 2n0ε0c |E|2, so the refractive index could
be rewritten as n= n0 + n22n0ε0c |E|2. Relating this definition with equation (1.19), the
expression for the nonlinear refractive index is:

n2 =
3

4n2
0ε0c

Re{χ(3)} (1.20)

11



Chapter 1. Third order nonlinear waveguide structures

𝑛2 < 0 

𝑛2 > 0 

(b) 

(a) 

Figure 1.2: (a) Self focusing and (b) defocusing of light.

At telecom wavelengths around 1550 nm, the values of n2 in semiconductors are very
large compared to that of silica. For instance, the nonlinear refractive index is 200
times larger in silicon. One of the processes that can occur as a result of the intensity
dependent refractive index n2 is self-focusing when n2 0 and defocusing when n2 0, which
is illustrated in Fig. 1.2 (a) and (b) respectively. These processes can occur when a
beam of light having a nonuniform transverse intensity distribution propagates through
a material for which n2 6= 0. The material effectively acts as a lens [8].

Analytical approach to estimate n2

By means of a two band model and the Kramers-Krönig (KK) relations (principle of
causality), Sheik-Bahae and co-workers [9] have deduced an expression for the bound
electronic nonlinear refractive index n2 in semiconductors and wide-gap optical solids.
This expression will be used in the next chapter to model novel materials and hybrid
waveguides that are not reported in the literature. The expression is given by:

n2(ω) =
40π

√
Ep

cn2
0E

4
g

K ′G2

(
h̄ω

Eg

)
(1.21)

where Eg is the gap energy, n0 the material index of refraction, Ep = 21 eV is the
Kane energy and K ′ is a numerical fitting coefficient that takes values of the order of
1.5× 10−8 if the energies are in eV. The function G2 describe the contributions from
different physical origins: two-photon transitions (TPA and Raman (R)), linear Stark
(LS), quadratic Stark (QS) and a divergent term (DT ). They are related as:

G2(x) =GTPA(x) +GR(x) +GLS(x) +GQS(x)−GDT(x) (1.22)

with
GTPA(x) =

1
(2x)6

[
− 3

8x
2(1− x)−1/2 + 3x(1− x)1/2 − 2(1− x)3/2

+ 2H(1− 2x)(1− 2x)3/2
] (1.23)
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1.2. Nonlinear Optics

GR(x) =
1

(2x)6

[
−3

8x
2(1 + x)−1/2 + 3x(1 + x)1/2 − 2(1 + x)3/2 + 2(1 + 2x)3/2

]
(1.24)

GLS(x) =
1

(2x)6

[
2− (1− x)3/2 − (1 + x)3/2

]
(1.25)

GQS(x) =
1

(4x)5

[
(1− x)−1/2 − (1 + x)−1/2 − x

2 (1− x)
−3/2 +

x

2 (1 + x)−3/2
]
(1.26)

GDT(x) =
1

(2x)6

[
− 2− 35x2

8 +
x

8 (3x− 1)(1− x)−1/2 − 3x(1− x)1/2 + (1− x)3/2

+
x

8 (3x+ 1)(1 + x)−1/2 + 3x(1 + x)1/2 + (1 + x)3/2
]

(1.27)

where H(x) is the Heaviside or step function. Eq (1.21) has only one variable quantity:
G2, so we plot in Fig. 1.3-Left, the different contributions and the overall shape in red as
function of hν/Eg. Fig. 1.3-Right shows the evolution for three bandgap materials of the
calculated n2 with operating energy normalized to the material bandgap. Interestingly,
the n2 values are expected to strongly vary nearby hν>0.7Eg. We have chosen as
example typical gap energies of integrated semiconductors (for Si, Eg=1.12 eV). We
have assume a linear index of n=3 for all the cases. It could be seen that for the same
excitation wavelength (1580 nm), the expected n2 is not inversely proportional to Eg.
The maximum nonlinearity is expected for the material with intermediate Eg. In our
work, these theoretical predictions will be used to understand some nonlinear refractive
index measured values and to estimate its magnitude for diverse wavelength ranges.
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Figure 1.3: Left: Frequency dependence of the various contributions to the nonlinear
refractive index. Right: Kerr coefficient evolution as a function of hν/Eg for artificial
materials with n=3. The dots corresponds to a photon energy at λ= 1.58 µm.
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Chapter 1. Third order nonlinear waveguide structures

Self Phase Modulation: SPM

The Kerr effect has an interesting and very important consequence in the optical pulse:
the self-phase modulation (SPM). This phenomenon introduces a symmetrical spectral
broadening in the pulse. We will use this effect to measure the induced nonlinear phase
shift and quantify the magnitude and sign of the real part of the third order nonlinear
susceptibility. As a first approximation we can use a simplified version of the propagation
Eq. (1.10):

∂u(z, t)

∂z
= i

2π
λ0
n2I(t)u(z, t) (1.28)

assuming a purely real χ(3) (lossless) material, the equation shows that the field derivative
undergoes a phase shift. Following the non-depleted approximation, one can assume that
I(z)≈ constant, so, enabling to integrate the previous differential equation:

u(z, t) = u(0)exp
(
i
2π
λ0
n2I(t)z

)
⇒ φNL(z, t) =

2π
λ0
n2I(t)z (1.29)

This is the self-induced phase shift, that follows the temporal intensity envelope and
increases proportionally with the propagated distance z. We can introduce the instanta-
neous variation of the pulse frequency or instantaneous pulsation as δω(t) =−dφNL(t)/dt,
so its shape is governed by the temporal derivative of the intensity as illustrated in Fig.
1.4. The self-phase modulation does not change the temporal pulse envelope but creates a
chirp. In Fig. 1.4 we display two envelopes (dashed lines) and their respective derivatives
(solid lines) for positive n2: a gaussian (blue) and sinus cardinal squared (orange), the
former for pedagogical reasons and the later because it coincides with the temporal
shape in our nonlinear experiments. In the gaussian case it is easier to understand that
the front of the pulse is shifted towards lower frequencies while the end of the pulse is
shifted towards higher frequencies when n2 is positive, the opposite will occur if n2 is
negative. The unchanged envelope and chirped pulses in the case of sinus cardinal pulse
are depicted in Fig. 1.4 for the two signs after a generic propagation length.
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Figure 1.4: Up: Temporal shape of the pulse envelope (dashed lines) and its respective
induced frequency shift (solid lines) for gaussian (blue) and sinus cardinal (orange) cases.
Down: Schematics of the invariance of the envelope and the induced chirp when a pulse
crosses a positive or a negative Kerr material with length L.

1.2.2 Two Photon Absorption

The real part of the third order nonlinear susceptibility is directly associated with the
phase changes of the high intensity beams. On the other hand, the imaginary part induces
a nonlinear modification of the material absorption. We are interested in semiconductors
transparent in the telecommunication window. But in some cases, the gap energy is
smaller than that of two photons, so if the density of energy is large enough, a two-photon
transition can be achieved from the valence to the conduction band. In practice, it means
that the delay between two photons should be smaller than the lifetime of a virtual
intermediate state. So finally, two photons can promote an electron to the conduction
band, leaving a hole in the valence band. This effect is proportional to the imaginary
part of the nonlinear third order susceptibility such that:

βTPA =
3ω

2ε0c2n2 Im{χ(3)} (1.30)
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Figure 1.5: TPA scheme for an indirect and a direct gap material.

As it could be seen from Fig. 1.5, to excitation of one electron to a higher real energy
state requires the annihilation of two photons, implying an additional losses source.

Neglecting higher order than two-photon transitions, the variation of the intensity is
governed by:

dI

dz
=−(α+ αTPA)I =−αI − βTPAI

2 (1.31)

where α corresponds to the linear propagation losses and αTPA = βTPAI, the two photon
absorption. So the nonlinear losses are an intensity dependent quantity.

Analytical approach to estimate βTPA

Similarly to the real susceptibility effect, Sheik-Bahae et al. [9] have derived an analytical
expression to estimate the TPA coefficient in semiconductors and wide-gap solids by
applying the causality principle (KK relations):

βTPA(ω) =
K ′
√
Ep

n2
0E

3
g

F2

(
h̄ω

Eg

)
(1.32)

where K ′ can be again considered to be a single free parameter, that here we will set as
previously equals to 1.5× 10−8. The universal function F2 is:

F2(x) =
(2x− 1)3/2

(2x)5 for x>1
2 (1.33)

and F2(x) = 0 otherwise. This restriction means that the TPA process vanishes for
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index n=3. Inset: Variation of the function F2 which vanishes for photon energy smaller
than half of the energy gap. The predicted βTPA is marked for the three materials at a
wavelength of 1580 nm.

h̄ω<Eg/2. As previously, we illustrate in Fig. 1.6 the predicted trends for three artificial
materials with n= 3.

Interestingly, this model predicts that the two-photon absorption probability does not
increase monotonically with the photon energy but reaches a maximum at h̄ω/Eg ≈ 0.7,
in the region where the Kerr coefficient is expected to vanish and change in sign. The
material exhibiting the largest n2 at λ = 1580 nm (Eg = 1.5 eV) shows a low βTPA,
instead the material with larger gap do not present TPA but exhibits a n2 one order
of magnitude lower, so it is important to consider all the variables for the design of
nonlinear devices.

1.2.3 Free Carrier Effects

As can be seen from Fig. 1.5, direct and indirect gap materials generate an electron-hole
pair after the absorption of two photons. As a consequence of TPA, the generation of
free carriers modifies the population density in the valence and the conduction bands
which conducts to a modification of the material susceptibilities. The master equation
that describes the density of carriers is given by:

d
dtNFC =− 1

τe
NFC + βTPA

I2

2 h̄ω (1.34)
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The first right side term describes the evolution of the carrier population weighted by
the recombination time τe. This corresponds to a relaxation time of the electrons from
the conduction band decaying into the valence band. The second term of the right hand
expression relates the rates of generated carriers by TPA, which is proportional to the
TPA coefficient and the energy of two photons. This effect is proportional to the square
of the intensity. Physically, this term corresponds to the creation of an electron-hole pair
by the annihilation of two photons.

Conversely to the Kerr and TPA processes that could be considered as instantaneous,
the free carrier effect has a dynamic nature meaning that carriers could be accumulated
for high enough intensities or sufficiently short duty cycles.

In fact, the relevance of free carriers is such that they change the effective susceptibility
of the medium, through a variation of the real part of the effective susceptibility called
free carrier refraction (FCR) and of the imaginary part called free carrier absorption
(FCA). This modification can be expressed as [10]:

χ= χ(1) + ∆χ(1) with ∆χ(1) = χFC = 2n0
(
σn (ω)NFC + i

c

2ωσa (ω)NFC

)
(1.35)

where n0 is the linear refractive index at the frequency ω, the quantities σn (ω) and
σa (ω) can be expressed in terms of the effective masses and mobilities of electrons and
holes [11]:

σn (ω) =−
q2

2ε0n0ω2

( 1
me

+
1
mh

)
E2
g

E2
g − ( h̄ω)2 (1.36)

σa (ω) =
q3

cε0n0ω2

( 1
µem2

e

+
1

µhm
2
h

)
E2
g

E2
g − ( h̄ω)2 (1.37)

where Eg is the semiconductor gap energy, q is the elementary electron charge equals to
1.602× 10−19 C. me, mh, µe and µh are the effective masses and mobilities of electrons
and holes, respectively. We have assumed that the number of holes and electrons are
equivalent (they are always in pairs).

In summary, the generated pairs affect the phase (refraction) and the intensity (absorption)
of the propagating wave. Generally the carrier recombination time is in the order of
nanoseconds for the materials treated in this manuscript. In the next chapter, as we will
be working with picosecond pulses with repetition rate of 50 MHz, these effects will be
negligible. For instance in silicon, the carrier lifetime is in the order of few nanoseconds.
As the free carrier density is driven by

∫ I2

h̄ωdt, at our operating intensities the temporal
separation between each pulse (∼ 20 ns) is enough for the FC relaxation.On the contrary,
in chapter 3, we will further explain and exploit the free carrier refraction (FCR) to
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1.3. Optical waveguides and cavities

increase the transmission efficiency of cavities.

We have described up to now, the basic relations for the phenomena that will be used
later. There are many other additional nonlinear effects that have been investigated and
exploited in integrated platforms during recent years but they are out of this thesis scope.

1.3 Optical waveguides and cavities

Optical signals are transfered by the use of transparent media that could confine the
light. Optical fibers have been largely used at research and industrial scales showing the
potential of using light waves for long distance information transmission. Usually, single
mode fibers use a low index variation to confine the light, allowing the propagation of the
fundamental mode over a wide spectral band and large distances with few losses. In high
refractive index contrast structures such as silicon-on-insulator (SOI) wires, generically
known as optical waveguides, the mode can be tightly confined. These small areas
limits the propagation distance due to optical losses but strongly increases light-matter
interactions, comprising the nonlinear effects.

The relative size between optical waveguides and single mode fibers can be appreciated in
Fig. 1.7, where we have also shown the index variations. Propagation losses, in general
terms, can be studied regarding two main physical origins: intrinsic losses (i.e. carrier
absorption in doping based waveguides) and extrinsic losses (i.e. sidewall scattering due
to fabrication imperfections and radiative losses into the substrate). The later will be
the subject of study as it requires optimization of the fabrication and design process.
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Figure 1.7: Scaled comparison between the size and refractive index profiles of a
monomode fiber and a single mode SOI waveguide.
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1.3.1 Enhancement of nonlinear effects in highly confined struc-
tures

In the previous sections we have introduced the basic relations for nonlinear optics in
infinite and diluted materials and a brief description of optical waveguides. Now, we
will see the effect of light confinement in light-matter interactions [12]. The electric
field and the polarization considered at the moment were external quantities that do
not describe all the dipole interactions required in dense media or highly localized light.
Indeed, as seen in Fig. 1.7, integrated waveguides allows the light confinement in sub-
micrometer sizes. One approach to fully describe our guided scenario is to consider
a classic electrostatic approximation and calculate the local field experienced by each
dipole. It can be expressed as the sum of the applied external field and the specific
electric field generated by the surrounding dipoles ( ~Eloc = ~Eext + ~Edip), the latest being
estimated through a perfect empty sphere surrounding each dipole : ~Edip = ~P (1)/(3ε0).
In isotropic media, ~P (1) could be calculated by taking into account the number of dipoles:
~P (1) =Nα~Eloc, so we can find a relation between the local field and the macroscopic field
that we measure; enabling to give a relation between the susceptibility (a macroscopic
quantity) and the polarizability (a microscopic quantity):

~Eloc(ω) = f(ω) ~E(ω), with f(ω) =
1

1− Nα
3ε0

(1.38)

To estimate the correction factor effect, we can relate the local field factor correction
(f(ω)) and the relative permittivity (εr(ω)):

εr(ω) = 1 + χ(1)(ω), f(ω) =
2 + εr(ω)

3 (1.39)

In dielectric materials εr(ω)>1, then the correction factor is always larger than 1,
therefore we call it enhancement factor. It can be further shown that the correction factor
scales with the susceptibility order, in such manner that the nth order susceptibility
contains a product of n+ 1 local field factors. If n>1 and all the frequencies are the
same (degenerated case):

χ
(n)
eff (~r,ω) = fn+1(ω)χ(n)(~r,ω) (1.40)

In table 1.1, we have summarized the nonlinear order susceptibility effects treated in this
manuscript and their corresponding expected enhancement effects.

While the local field factor corrections are included in the nonlinear susceptibility values
for bulk materials, we will next use this approach in order to take into account for
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1.3. Optical waveguides and cavities

Nonlinear effect order Factor
Kerr 3 f4

Two photon absorption (TPA) 3 f4

Free carrier refraction (FCR) 5 f6

Free carrier absorption (FCA) 5 f6

Table 1.1: Enhancement factors and effective order of the main nonlinear effects under
study.

the nonlinear enhancement effects that are observed in slow mode waveguides and/or
microcavities. In the first case, we will find a relation with the group velocity [13] and
in the second with the quality factor. Indeed, experimentally, one faces the difficulty of
relating the intensity of an electromagnetic wave inside a high contrast waveguide to the
intensity measured outside the waveguide. By demonstrating the group velocity (∇~k)
and Poynting (Π) vectors collinearity, we can rely the wave intensity to the Poynting
vector average:

f =
|E1|
|E0|

=

√
I1
I0

=

√
〈||Π1||〉
〈||Π0||〉

=

√√√√〈||∇~k1(ω)||〉
〈||∇~k0(ω)||〉

=

√
vg0
vg1

=

√
ng1
ng0

(1.41)

Using this relation to measure the nonlinearity in structured materials, we will have
a relation between the group index inside the structure and the bulk index material.
Dealing with powers (proportional to the squared of the electric field), we will introduce
another parameter S= f2 = ng/n0, called the slow down factor. So, the optical Kerr
and TPA effects will scale with S2.

1.3.2 Strip waveguide

Strip and ridge waveguides are the basic building blocks of photonic integrated circuits.
They exploit the high refractive index contrast between different planar materials. The
refractive index map for silicon-on-insulator (SOI) waveguides is depicted in Fig. 1.7.
The waveguide dimensions are smaller than the excitation wavelength (λ∼ 1550 nm).
The optical mode is found by solving the Maxwell equations (eigenvalue problem). In Fig.
1.8 (a), we depict the different components of the fundamental TE electromagnetic mode
(electric and magnetic fields) in a SOI strip (fully etched) waveguide. The silicon thickness
was 220 nm and the width 360 nm. It is noteworthy that the Ex is dominant component.
It can be seen the interaction with the waveguide walls, highlighting the importance of
proper fabrication quality. In Fig. 1.8 (b), we show the | ~E|2 = | ~Ex|

2
+ | ~Ey|

2
+ | ~Ez|

2 of a
SOI ridge waveguide.
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Figure 1.8: (a) Magnetic and electric field components of the fundamental TE mode
in a SOI strip waveguide. (b) | ~E|2 fundamental TE mode in a ridge SOI waveguide.

1.3.3 Slot waveguide

Integrated materials have the advantage of confining light in sub-micrometer dimensions.
Nevertheless the electronic properties of some semiconductors (particularly silicon)
limit the nonlinear waveguide performances. Taking advantage of the high contrast of
structures, slot waveguides were conceived to confine the light within a gap between
semiconductor rails [14]. A typical slot geometry is depicted in Fig. 1.9 for the case of
silicon. In order to keep the mode confined, the refractive index filling material must
be smaller than the refractive index of the rails. Its operational principle is based in
the continuity of the displacement electric field at interfaces. This means that for a
strong change in the refractive index, the electric field amplitude should suffer a very
strong discontinuity. For the case of TE mode, the displacement continuity applies to
the normal vectorial component implies:

~DN
Si = ~DN

Clad =⇒ εSi ~E
N
Si = εClad ~E

N
Clad =⇒ ~ENClad =

εSi
εClad

~ENSi (1.42)

So, the electric field amplitude inside the cladding (i.e. slot) region increases proportionally
to the ratio between the dielectric permittivities of the materials, meaning a stronger
effect for higher index contrast scenario. This structure allows a very intense guided
mode localized in the low refractive index medium, being confined in the low-refractive-
index slot region. Typical values for power confinement ratio in silicon slot monomode
waveguides filled with materials around the index of silica is 30% of the total power[15].

Given that the width of the slot is comparable to the decay length of the field, the electrical
field remains high across the slot, resulting in a dielectric power density larger in the
slot than in the silicon rails, as could be seen in Fig. 1.9. The extreme light confinement
possible in slot waveguides also results in significantly enhanced propagation losses due
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Figure 1.9: Schematics of a silicon slot waveguide covered with a material with
refractive index n=1.46. The fundamental TE mode is displayed at 1580 nm. In the
simulation case the rails are squares of 220 nm.

to increased interaction of the waveguiding mode with the sidewall surface roughness.
Extensive experimental studies have shown that surface roughness is responsible for high
propagation losses, which can become prohibitive for building dense integrated circuits.

1.3.4 Photonic crystal waveguides

A photonic crystal is a periodic arrangement at the wavelength scale of optical media
with different refractive indices. The particularity of this kind of periodic arrays is the
generation of energy bands where the light of specific frequencies is restricted to propagate
in some particular or in all directions of the crystal. This effect is analogous to the
electronic band diagrams in semiconductor crystals. In this manuscript we will focus the
attention on 1D and 2D photonic crystals. In the case of 2D photonic crystals, when the
lattice is shaped hexagonally, the energetic bandgap for the TE mode is omnidirectional,
so the light at specific wavelengths is restricted to travel through the material (photonic
bandgap). To exploit this feature, several kind of defects could be introduced in the
crystal in order to create cavities or waveguides. In a silicon on insulator wafer, one can
fabricate an periodic arrangement of holes. If one of the rows is not present, we introduce
a linear defect in the 2D crystal where light can be confined, this kind of waveguides
are named W1 as only one row was omitted. In Fig. 1.10, we display a scheme with
the layers used to fabricate SOI photonic crystals. The direction of light propagation is
shown with a red arrow. The use of high index contrast materials ensures the confinement
in the third dimension (y in the scheme) through total internal reflection.

There are three main limitations in photonic crystals that will be treated in further detail:
the highly dispersive nature of the defect bands that requires the understanding and
proper design of slow light modes; the injection in the photonic crystal which requires a
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Figure 1.10: Scheme indicating the light propagation direction in a hexagonal 2D (a)
W1 photonic crystal waveguide (W1-PhCW) and (b) Slot photonic crystal waveguide
(SPhCW).

careful account of the spatial mode distribution, for instance from strip to slot, from slot
to photonic crystal, within the photonic crystal between the different regimes of reduced
group velocity and the correspondent at the output. All these impedance mismatches
require the engineering of proper modal adapters. And finally a more statistical problem,
regarding the propagation losses of the waveguide in different regimes of the energy band.

In Fig. 1.11, we present a typical band diagram of a W1 PhCW. There are different
modes that appear after adding a defect in the crystal. They present different symmetry
properties so we classify them as even and odd modes [16], we also highlight the presence
of a light cone, that defines a limit for guided modes. As the even modes will be of central
importance, we have plotted its group index (proportional to the inverse of the first
derivative of the band) as a function of k. It is interesting to notice that as the frequency
approaches the k= π/a point, the group velocity vanishes. The ng values presented are
just to illustrate the dispersion profile of mode, but in reality it is not useful to target
group indices larger than 50, mainly due to fabrication limitations. Specific details about
the design, losses and dispersion of these structures will be given in following chapters.
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Figure 1.11: Left: Band diagram of the TE-like states for a waveguide formed by one
missing row of holes (W1). PGB: Photonic Bandgap. Right: Group index of the even
mode with the squared of the electric field profile at different k points.
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This effect is accompanied by a mode spreading. For this particular map, the period is
a = 410 nm and the ratio r/a= 0.30, so the wavelengths of the even mode are around
1520 nm.

Slot photonic crystal waveguide

Following the arguments to design slot waveguides, to have semiconductor photonic
crystal waveguides could limit the nonlinear performances at λ∼ 1550 nm. So, it will be
necessary to explore hybrid approaches able to exploit the slot and the slow light effects
with a low-index highly nonlinear material filling the slot. In Fig. 1.10, we display a
schematics of a photonic crystal in which a thin slot has been etched in the center of the
missing row of holes. Previously, slot photonic crystal waveguides (SPhCW) and cavities
have been proposed and used for sensing and nonlinear proposes [17, 18, 19].

The most interesting property of these kind of waveguides is the possibility to confine
two even modes. One being called the W1-like mode that follows similar characteristics
to that of the non-slotted photonic crystals (see Fig. 1.12). This mode will be extensively
exploited and systematically compared to the W1 waveguide-counterpart. Another even
mode is called true-slot mode (see Fig. 1.12) and follows a more specific dispersion curve.
It is mainly excited in large slot size waveguides (in silicon: Wslot> 150 nm).

By comparing the band diagrams of a W1 and a SPhCW (Fig. 1.11 and 1.12), we can
analyze the main changes introduced by the slot. In general terms, the shape of the
forbidden gap is not affected in contrast with the guided modes inside the bandgap. In
the W1 waveguide, there are two odd and one even modes for the described geometry.
The latter gets strongly perturbed by the presence of the slot and the related reduction
of the effective index results in an increase of the frequency. The larger the slot width,
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Figure 1.12: Left: Band structure of a SPhCW. PGB: Photonic Bandgap. Right:
Group index (first derivative of the band) of the W1-like even mode with the squared of
the electric field at different k points and shading the light cone position.
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the smaller the effective index, so the W1-like even mode can be excluded from the
bandgap towards the mode continuum. Another even mode appears, corresponding to
the fundamental slot mode projected into the bandgap [20]. Inversely, a decrease in the
slot width will correspond to smaller eigenfrequencies for the true-slot mode reaching the
limit of the bulk modes continuum.

In the two even modes (W1-like and true-slot), light is strongly confined inside the slot.
But as the interest in the last chapter will be centered in the W1-like mode, we have
displayed the group index curve as a function of the wavevector. It can be remarked
that conversely to a W1 waveguide, light do not spread as the group velocity decreases
but instead tends to be more confined. The light cone is defined by the index of silica,
it means that we are not working in membrane structures. Under such approach, the
mechanical stability is largely increased and the possibility of working with low index
materials (1.40<n<1.80) become straight-forward. On the other hand the main drawback
is the limitation of the bandwidth. As it can be seen, the available frequency bandwidth
for a given mode is significantly diminished. Furthermore, the dispersion engineering of
non-membrane modes is more difficult.

There are many engineering issues to be treated, mainly the dispersion, the losses and the
coupling into and from photonic crystal waveguides. The last chapter will be dedicated to
the study of dispersion and potentials for nonlinear proposes of these kind of waveguides
fabricated in silicon.

1.3.5 Optical Cavities and optical resonators

We have seen up to now that the light matter interactions could be reinforced by means
of highly confined structures and waveguides operating at wavelengths presenting large
group indices. But indeed, another way to increase these interactions (and in particular
the nonlinear ones) is the use of optical cavities. In their integrated version, these
resonant structures are intrinsically small and reach volumes close to the diffraction
limit. A common expression to normalize the effective mode volume is given by: Veff =∫

ε| ~E|2d3r

εmaxmax[| ~E|2]

(2n
λ

)3, being (2n
λ

)3 the diffraction limit. In addition to the reduction of
the interaction volume to enhance light-matter interactions [21], the photon lifetime
(τ) inside the cavity. It is directly evaluated through the quality factor defined as:
Q = ω0τ/2 = ω0/∆ω, where ω0 is the frequency of the resonance and ∆ω the cavity
linewidth.

During the last years, there has been a race to improve the figure of merit Q/Veff . An
incredible advance not just in the demonstration of passive microresonators such as
disks, rings or photonic crystal cavities but also in specific applications such as lasing, all
optical memories, silicon high-speed modulation, optical trapping, sensing and quantum
processes relying on these structures have proven their potential for enhancing light-
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1.3. Optical waveguides and cavities

matter interaction phenomena. In particular, 1D and 2D photonic crystal cavities have
been fabricated with quality factors on the order of one million with mode volumes
smaller than (λ/n)3 [22]. For instance, the use of photonic crystal cavities has allowed
the demonstration of devices with record performance such as ultra-fast commutators
consuming less than 1 fJ/bit [23], and the bistability effect has shown potential for
all-optical memories [24, 25].

Even though during this thesis we have experimentally worked with many types of
cavities and resonators for different applications, such as sensing or coupling testing
[26, 27, 28, 29], we will focus our attention in the bandwidth problem when using high
power optical beams. To study this phenomena, we have chosen a 1D photonic crystal
cavity (also called nanobeam cavity) [30] depicted in Fig. 1.13 (b) consisting in two
adapted Bragg mirrors. Due to its modeling simplicity (compared to other cavities) and
the fabrication tolerance allowing to easily reach quality factors of few thousands, they
have been used for laser with direct modulation speeds exceeding 100 GHz[31], quantum
applications and hybrid platforms [32, 33]. Nanobeam cavities have been fabricated in
several integrated materials such as Si [34], Si3N4[35] and SiO2[36].

Hereafter, we introduce a general model based on the coupled mode theory to describe
the temporal evolution of a (close to resonance) field confined in a microcavity [37].
We define the intracavity field amplitude as: u(t) =

√
Pu(t)τReiφu(t) with Pu(t) the

intracavity power, φu(t) the field phase and τR the cavity round trip time. Next, we
define the temporal evolution of such a field in the linear regime:

du(t)

dt
=−1

τ
u(t) + iωres0u(t) +

√
2
τe
sin(t) (1.43)

where |sin(t)|2 is the instantaneous power of the input signal and ωres0 the cavity
resonance frequency. The linear cavity photon lifetime τ/2 corresponds to 1/τ = 1/τ0 +
1/τe, where τ0/2 and τe/2 are the photon lifetimes related to the intrinsic cavity linear
losses and to the coupling constant between the waveguide and the cavity respectively. It
can be seen that the volume and the quality factor are implicit in the equation through
the cavity mode and the photon lifetime τ , respectively. Q= ω0τ/2 can be separated
in two contributions: Q0 = ω0τ0/2 related to the losses (intrinsic) and Qe = ω0τe/2 to
the waveguide-cavity coupling (extrinsic), such that: 1/Q = 1/Q0 + 1/Qe. We can also
find an expression for the output field: sout(t) =−sin(t) +

√
2/τeu(t)[38]. The previous

model is applicable to coupled cavities, such as the case (a) from Fig. 1.13. In the
nanobeam case (b), we will have an additional coupling that we could model as a second
(add-drop) waveguide. By including a coupling lifetime to the second waveguide τd, the
photon lifetime will have three components: 1/τ = 1/τ0 + 1/τe + 1/τd and assuming no
input from the add port (equivalently, only one side injection of the nanobeam cavity):
sdrop(t) =

√
2/τdu(t). So we end up with three equations that models the linear temporal
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Figure 1.13: SEM images for (a) L3 coupled cavity and (b) nanobeam cavity by
displaying the different terms used to generally model resonant systems.

evolution of the cavities that will be studied later on.

In chapter 3, we will introduce the general concepts of the intra-field evolution in optical
microcavities under strong peak powers, i.e. the nonlinear regime and use it to calculate
the resonance drift and the bandwidth limitation. We will offer a solution to overcome
this issue with experimental and numerical results.

1.4 Integrated photonics: materials and linear properties

The optical principles presented above were introduced without particular care of the
specific materials that can be used. Instead, it was a presentation of generic guiding
principles. In order to study precise light-matter interactions and quantify the different
phenomena, we should take into account the specific materials under study. Fig. 1.14
presents the chemical elements in their relative position in the periodic table that will be
of interest in this work.

Recalling some basic chemistry, tendency for chemical reactions of an atom is determined
by the electrons in “valence” (outermost) shell. For instance, Argon has a filled outer
shell (eight electrons) and has no tendency for chemical activity. On the other hand,
materials with only few electrons (one or two) ready to relinquish them, can react easily
with materials that are eager to receive them (with almost full outer shells). In between
those two extreme cases, there are interesting materials that are neither inert nor volatile,
among them, the well known Group IV, where we could find elements that have been
extensively used in integrated circuits (electrical and optical) such as carbon (nanotubes,
graphene, diamond,...), silicon (SOI, strain-Si, Si-PhC,...) and germanium (SiGe,...).
We have also the III-V materials such as Al, Ga, As, In and P that are successfully
used in the development of sources, detectors and modulators. Finally, Chalcogenide
glasses, composed by heavier materials in these III-VI region such as S, Sb, Te and
Se, have been proposed and later demonstrated as a suitable material to enhance third
order nonlinearities. Silicon dioxide (commonly known as Silica) and Silicon Nitride are
also interesting materials for integrated optics. The values presented in Fig. 1.14 were
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extracted from Ref [39].

These materials have very unique electric conductive behavior. In terms of the quantum
states for electrons associated with the electronic band structure, they have "partially"
filled states. This concept is quantified via the bandgap, corresponding to the energy
required for an electron to be promoted from the valence band towards the conduction
band, generating an electron-hole pair. This bandgap energy is a fundamental property
of the material and can be used to estimate the facility to emit or absorb photons
(transparency window) and the instantaneous nonlinear third order effects as seen in
section 1.2. An important difference between semiconducting materials is their electronic
band distribution. The material bandgap can be direct or indirect. For instance, in
silicon, its indirect gap makes it not suitable for active components (no laser).

In table 1.2, we present some of the bandgap energies for the materials that will be used
to fabricate waveguides. In order to facilitate the comparison it is convenient to remind
that the energy of one photon at 1550 nm is around 0.80 eV.

Nowadays the material sciences have a growing interest towards novel potential compounds
for nonlinear integrated proposes such as sensing, microscopy, all-optical data processing
and quantum information. For instance, polymers, nano and micro engineered artificial
materials and degenerate or amorphous semiconductors have proven unseen nonlinear
effects achievable with moderated powers.

III A IV A V A VI A 
5 10.8 6 12.0 7 14.0 8 16.0 

  B     C     N     O   

Boron Carbon Nitrogen Oxigen 
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  Al     Si     P     S   

Boron Silicon Phosphorous Sulfur 
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Figure 1.14: Section of the periodic table with the basic information regarding the
electron configuration. The group number corresponds to the quantity of electrons in
the outer "shell".
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Material Eg [eV] at 300K Gap type ωcut−off [PHz] λcut−off [µm]

Silicon 1.12 indirect 1.70 1.108
3.2 direct 4.86 0.388

Germanium 0.67 indirect 1.02 1.852
0.8 direct 1.22 1.551

Silicon Nitride (Si3N4) 5 indirect 7.60 0.248
Silicon dioxide (SiO2) 9 indirect 13.67 0.138

Table 1.2: Main materials to be used in this work with their respective gap energy and
cut-off wavelength which defines one of the transparency window limits.

1.4.1 Fabrication

This section introduces the fabrication concepts for structures simulated and prepared in
GDSII masks (comprehensible by the lithographic machines). All the SOI and silicon
nitride waveguides in this manuscript (strip, slot, photonic crystal waveguides and
cavities), were fabricated in the CTU (Centrale Technologique Universitaire), clean
room of the former IEF (Institut d’Electronique Fondamentale), now C2N (Centre de
Nanosciences et de Nanotechnologies), under the supervision of Ing. Xavier Le Roux
from MINAPHOT team.

After the simulation of the structures, we proceed by designing some GDSII masks for
the electronic lithography; in this task several software tools were used, for instance
L-Edit, KLayout, CleWin and a Python extension. SOITEC wafers were used with 2
different nominal silicon thickness: (221.7 ± 8.1) nm and (260.0 ± 20.5) nm and 2.0 µm
buried oxide layer. Mainly the 260 nm was used due to disposal. The crystal orientation
was <100>.

We have used a 80 keV electronic lithography machine: Nanobeam Ltd. nb4. We have
optimized the ICP (inductively Coupled Plasma) etching. The structures are formed in a
positive resist, so, it is required to define them by inversion (Fig. 1.15). After the resist
cleaning, there is a mechanical cleaving leaving measurable samples around 5 mm long
that include tapers and access waveguides.

The positive resist (ZEP 520-A) consists of a polymer chain sensitive to electronic
exposition. The exposed chains then react differently during the development. The
mentioned resist exhibits good selectivity and high resolution (<2 nm), making it adequate
to deal with our structures. For instance, typical minimum fully etched slot sizes of
around 60 nm are achieved.

Two parameters are critical to ensure the proper electron penetration that will determine
the etching quality: the deposited thickness and its homogeneity. To optimize this
procedure, the resist is diluted in methoxybenzene and deposited by spin-coating (6000
turns/min), with a final thickness of 90 nm. Finally, the sample with the resist is deposed
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Figure 1.15: Schematic representation of the different fabrication steps followed in the
clean room to fabricate silicon structures (strip, slot, PhC and cavities).

in a heated surface at 170◦C during 2 minutes. In Fig. 1.15, we summarize the fabrication
steps. We will briefly describe the different procedures followed to fabricate more complex
devices in a special subsection in the last chapter.

e-beam lithography

The .gds masks are treated in the nb4 softwares to define the electronic writing fields.
Depending on the kind of structures, the main and sub fields are optimized. Indeed, the
subfield center is more accurate than the extremes (where the electronic beam should
deflect), so the smallest motives should be located preferentially in the central area. Next,
the .gds are fragmented in the format .npf, where the machine drift should be verified in
order not to exceed the practical limit (47 MHz).

The e-beam lithography offers a good compromise between written surface and precision,
required for long photonic crystals. Even though, lithography is limited by diffraction, the
main advantage of eBL over optical lithography is that electrons are orders of magnitude
smaller than photons, so a higher resolution is achieved (maximum of 2 nm in our case),
and smaller features could be patterned. In the Nanobeam4, the electrons accelerate
from an electron gun with an energy of 80 keV. This potential reduces the electron
retro-diffusion in the resist, limiting proximity effects. The electron beam scans across
the surface point by point following the compromises coded in the .npf. Depending on
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the complexity of the mask, it could take from some tenths of minutes until one day of
writing.

The pattern is divided into several main writing fields. Inside each main field, the sample
stage is fixed at the center and the beam is deflected by a coil to insolate the rest. To
avoid the minimum beam aberrations the choice would be to decrease the main field
size but this approach increases the stitching errors (defined by the accuracy of the line
continuity, maintained by a laser interferometer), which corresponds to the limit between
main fields. In other words, as we increase the number of stage displacements, we also
increase the probability of mechanical errors. We should take into account also that the
larger is the displacement, the larger is the error probability, so the choice of main field
size is not evident.

Indeed, we have worked with large main fields (300x300 µm2) when the whole structure
could be contained inside that area, such as short photonic crystals or cavities. In other
cases, we have opted for larger number of smaller stitching errors with main fields of
50x50 µm2. We should keep in mind that the limit sizes for the main field are 1000x1000
µm2 and 50x50 µm2. Inside a main field, the electron beam scans the surface following
some sub-field distribution. Inside this sub-field, a second coil generates a finer deflection.
The limits for the sub-field are 25x25 µm2 and 5x5 µm2. For a maximum precision we
have chosen the smallest sub-field, even though it increases the total time. We should
note that the stitching errors from the sub-field are negligible with respect to the main
field ones. In Fig. 1.16, we show different scanning electron microscope (SEM) images
with common fabrication errors. In (a) we depicted the covering ZEP-520A resist on
top of the silicon layer. In (c), a common stitching error when changing main fields,
generating a source of strong scattering losses.

The resolution does not only depend on the acceleration energy or the main and sub
field elections, but also on the resist and the amount of dose of secondary and scattered
electrons that the resist can tolerate before being exposed. Finally, the development is
made with ZED-N50 during 40 seconds followed by 30 seconds treatment with MIBK and
isopropanol and then another 30s with isopropanol. Finally the sample is dried under a
nitrogen flow.

Etching

The step e) in Fig 1.15 is as important as the lithographic writing: the feature transfer.
Indeed, we should remove the non-protected silicon to obtain the desired depth structures.
This removal process is called etching and it can be done in two ways: wet chemical
etching (isotropic and very selective if a proper solution is chosen) and dry chemical
etching (using reacting gases). We have chosen to etch via ICP (inductively coupled
plasma), a highly anisotropic technique where plasma ionizes the SF6 and C4F8. The
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Figure 1.16: Scanning electron microscope (SEM) images to illustrate different fab-
rication results. (a) Waveguide after etching process and before the cleaning stage (f)
from Fig. 1.15, in this case the sample is under-etched. (b) Under-etching of a hole. (c)
Typical stitching error from a main field in a strip waveguide with a inset zoom. (d)
Properly etched 3 µm width waveguide with an isolation of 3 µm in each side. The 2 µm
buried oxide and the silicon under are also clear.

first one produces radicals that react with the material to be removed, forming volatile
products and the second creates a film that smooth the etched walls.

The process has been optimized, taking into account the different coils, the injected gas
flux and the etching time. As in silicon, we have worked in strip-ridge (not strip-loaded)
waveguides, the under-etching could be a problem with respect to the designed structure.
Finally, the remaining resist is removed with "piranha" (a halved mix of sulfuric acid
and hydrogen peroxide) immersion during 4 hours and a last step of plasma O2 that
removes the thin C4F8 film. In Fig. 1.16 (a) and (b), we show an under-etched slot
waveguide and photonic crystal hole respectively. It creates imperfections that affect the
light propagation and the bandgap in PhC.

As the followed optical injection methodology consists in butt-coupling technique, we
have mechanically cleaved the samples by two different approaches: creating a defect
that is propagated though the silicon crystallographic axis or by cutting the sample with
a diamond saw. The final sample length in the light propagation direction is typically of
5 mm.
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1.4.2 Linear optical properties of waveguides with different inte-
grated materials

We have introduced interesting materials that can be exploited in the optical domain
around 1550 nm, particularly CMOS compatible compounds. In this section we will
introduce some waveguiding structures that can be fabricated in those platforms and
particularly the ones that will be characterized in the nonlinear regime. The aim is to
briefly explain their linear properties and the fabrication processes performed in our
facilities. The photonic and slotted photonic crystal waveguide fabrication will be treated
independently in the final chapter as non-conventional procedures were tested.
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Figure 1.17: Schematics of the linear measurement set-up. CT400: Component Tester,
PC: (Fibered) Polarization control, PMF: Polarization maintaining fiber, DUT: Divice
under test, MO: Microscope objective, PF: Polarization filter, BS: Beam splitter, PD:
Photodetector. A camera view provides the image of the lensed fiber output and the
sample.

In Fig. 1.17, we present a schematic drawing of the set-up used for waveguide characteri-
zation. By using a component tester CT400 connected to a computer, we can control
and collect the transmission over more than 300 nm bandwidth (from 1280 nm until
1640 nm). After the optimization of the set-up, we obtain a transmission without sample
(fiber to PD) of around -13 dBm with an injection of 1 mW (0 dBm).

Strip and slot SOI waveguides

We have isolated the guides by 3 µm etching from both sides. The access waveguides have
a width of 3 µm (unless specified) to ease the injection and collection from/to objectives
or micro-lensed fibers. After, a mode adapter of 300 µm long is added to couple the light
in a strip monomode waveguide. In the case of slot waveguides, and additional coupler is
required. We will deal with these optimizations in the last chapter. A typical output
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SiO2 

223 nm 223 nm 
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221 nm Si Si 
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(a) (b) 

(c) (d) 

Figure 1.18: (a) and (b) SEM images for 220 nm width slot waveguides. The etching
quality could be appreciated. (c) SEM image showing the isolation of the waveguide and
the buried box below. (d) Cut back method for waveguides with 80 nm slot width (a),
calculated at 1530 nm [40].

power value of a monomode strip waveguide after propagation through all the set-up
components is of around -33 dBm (We recall that the reference transmission without
sample is of around -13dBm). By using the cut-back method, we have found typical
losses of 2-3 dB/cm of the TE mode.

Considering a total length of 5 mm and assuming that both facets have around the same
coupling efficiency, we can have an order of magnitude of the efficiencies that we will be
dealing with, in both the linear and nonlinear regime. The coupling losses are estimated
around 10 dB losses per facet, meaning injection and collection efficiencies are in the
order of 10%.

In Fig. 1.18, we show different SEM images of fabricated slot waveguide cross sections in
220 nm Si thickness platform. We highlight the etching quality for different slot sizes as
depicted in (a) and (b). The targeted slot rails were 220 nm × 220 nm, so the fabrication
process is properly calibrated. In (c), we show the waveguide isolation and in (d) the
cut-back method is applied to waveguides with slot size of 80 nm. The transmission
measurement for different lengths allows the estimation of the losses from the slope.
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Slot Width [nm] Losses at 1530 nm [dB/cm]
80 ± 10 7 ± 2
130 ± 10 8 ± 2
180 ± 10 15 ± 1

Table 1.3: Summary of waveguide losses for three different slot widths at 220 nm
height and applying the cut-back method considering 5 lengths filled with a liquid with
n=1.45.

After applying the cut-back method to different slot width waveguides we have obtained
typical propagation losses given in table 1.3. These values remain acceptable, taking
into account that not further optimization was performed, i.e. oxidation and removal or
coating by atomic layer deposition to decrease the wall roughness [41].

Silicon-Germanium

SOI technology is in the core of on-chip applications targeting mass production. Never-
theless, Germanium is also an interesting material for integrated proposes. It has been
extensively used due to its reliable properties to develop Si integrated photonic circuits.
Both Si and Ge exhibit large third order nonlinear susceptibilities, so they are interesting
for all-optical functionalities exploiting small confinement areas. Nevertheless, Ge has
gap properties that discourage its use as waveguiding structure at 1550 nm. However, it
has been exploited in applications to realize light sources [42, 43], modulators [44, 45]
and photodetectors [46, 47]. It is interesting to tune the energetic properties of Si and Ge
by fabricating devices with Si1−xGex alloys [48]. In particular Ge rich Si1−xGex (x>70%)
waveguides have not been experimentally explored in the nonlinear regime. Taking into
account that both materials exhibit large n2 coefficients, it is interesting to characterize
their alloys and explore potential applications in different frequency bands.

Ge and Si1−xGex alloy are group IV materials (see Fig. 1.14) which structure is organized
as a diamond crystal. In the alloy case, the repartition of Si and Ge atoms is homogeneous
but random by respecting the crystal stoichiometry, so there are no preferential planes
[49].

For a Si1−xGex alloy, the evolution of the energy bands has been experimentally evaluated
by Weber et al. [50] and gives an interesting point at around 85 % Ge concentration. For
smaller concentrations, the minimum of the conduction band is located in the valley X,
after overpassing this critical point, the minimum will be in the valley L. The underwritten
analytical expressions are deduced from the experimental data:

EΓ∆
g,ind = 1.155− 0.43x+ 0.206x2(eV) for x < 0.85 (1.44)
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1.4. Integrated photonics: materials and linear properties

EΓL
g,ind = 2.010− 1.270x(eV) for x > 0.85 (1.45)

Instead, the direct energy gap follows a linear energetic decrease from the value of the
direct energy gap of silicon (ESig,dir ∼4.1 eV) towards the direct energy gap of germanium
(EGeg,dir ∼0.8 eV)[50]:

Eg,dir = 4.185− 3.296x(eV) (1.46)

In Fig. 1.19, we plot the expected evolution of the bandgap energy for the direct and
indirect gap as a function of different Ge concentrations. We show in the right vertical
axis the corresponding wavelength. In Fig. 1.20, we show the absorption properties
reported in Ref. [51] for rich Ge (x>64%) SiGe alloys in bulk. It should be noticed
that when the concentration is closer to pure germanium (0% Si), the losses increases by
orders of magnitudes for wavelengths around λ∼ 1550 nm.

From theoretical predictions, as closer the wavelength is to the bandgap, the larger is
the third order susceptibility. So in our group MINAPHOT, Dr. Delphine Marris-Morini
has led efforts to develop a platform of Ge-rich Si1−xGex [48]. Using wafers grown by
a collaborative group of L-NESS from the Politechnico di Milano (Prof. G. Isella), my
colleague V. Vakarin has fabricated diverse ridge waveguides with different widths that
will be characterized in the nonlinear regime.

In Fig. 1.21, we present the general form of the buffer. Light is vertically confined in a 2
µm-thick relaxed Si1−xGex layer on top of a graded buffer that begins with a Si wafer
up to a layer of Si1.01−xGex−0.01. The Ge concentration x of the graded buffer is linearly
increased from 0 (Si wafer) up to x− 0.01 over a thickness of 11µm. The linear refractive

Δ minimum 

Si-like 

L minimum 

Ge-like 

Figure 1.19: Direct and indirect gap evolution for different Ge concentration in the
infrared wavelength window.
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Figure 1.20: Intrinsic absorption spectra in a series of Ge-rich Ge-Si alloys at 296 K.
Figure adapted from [51].

index variation is estimated by linearly interpolating the proportions of Si and Ge. We
have considered refractive indices for Si and Ge at a wavelength of 1.55 µm: 3.48 and
4.28 respectively.

Low energy plasma enhanced chemical vapor deposition (LEPECVD) was used for the
growth of the SiGe stack. Patterning was made by deep UV lithography followed by
inductive plasma (ICP) etching set to 1 µm to fabricate rib waveguides [52]. In Fig.
1.21, we show a scheme with the described dimensions. To limit the sidewall roughness

Si

11	μm

Si1-xGex 1	μm
1	μm

Width

2	μm

0 1

Figure 1.21: Left: Si1−xGex rib waveguides Si1−xGex with 1µm etching. The graded
buffer has a total thickness of 11µm. Right: Normalized fundamental TE mode profile
for a 1.6 µm width ridge waveguide for x = 0.80 (Si0.20Ge0.80) at 1550 nm.
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post treatment with hydrogen peroxide (H2O2) was performed. Finally, a diamond saw
cutting allowed to obtain devices of around 7 mm long. In the sample, three series of
identical waveguides were fabricated by changing the width. We have focused on TE
monomode waveguides, corresponding to widths between 1.4 µm and 4 µm. In particular
for the nonlinear comparison, 1.6 µm will be privileged. In Fig. 1.21 right, we show the
fundamental TE mode for a Si0.20Ge0.80 ridge waveguide with the chosen width at a
wavelength of λ= 1550 nm.

In accordance with the dependence of the absorption coefficient with Ge concentration
shown in Fig. 1.20, the waveguide propagation loss varies with the Ge quantity present in
the sample. For higher concentrations, the losses are larger. Using the cut-back method,
waveguide propagation losses around λ∼ 1550 nm have been estimated to 8-12 dB/cm
for a 70% Ge concentration, 10-16 dB/cm for a 80% and 20-26 dB/cm for a 90%.

Chalcogenide

Apart of Si and Ge, other materials are interesting for hybrid waveguide applications.
In this chapter we will introduce a particular kind of chalcogenide which are a class
of amorphous semiconductors. Chalcogenide glasses have been used for waveguiding
proposes since long ago, first in fibers and later on in integrated platforms [53]. They
are based on the chalcogen elements S, Se, and Te; then the glasses are formed with the
addition of other elements such as Ge, Sb or As. They exhibit interesting properties such
as the ability to switch between states making them suitable for optical memory proposes,
a large variety of third order nonlinear figure of merits depending on the particular
composition, low-phonon-energy materials and broad transparency in the visible and
infrared wavelengths. Therefore, they could be used for all-optical functionalities and
will be a part of study in this manuscript.

Refractive index 

at 1550 nm 

𝑛𝑆𝑈8 = 1.58 

𝑛𝐺𝑆𝑆 = 2.18 

𝑛𝑆𝑖𝑂2
= 1.45 

𝑛𝑆𝑖 = 3.48 
Si 

SiO2 

GSS (Ge23Sb7S70) 

SU8 

3 μm 

420 nm 

800 nm 

Figure 1.22: Index and layer thickness of the different layers of GSS chalcogenide on
insulator.
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SiO2 
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Figure 1.23: Broadband linear transmission of a strip and slot chalcogenide waveguides.
The insets display the mode at 1580 nm. The optical transmission level corresponds to
the measured values from fiber to fiber (in all the set-up).

In a collaboration with the research group in glass for advance photonics from MIT,
we have characterized GSS (Ge23Sb7S70) chalcogenide waveguides in the near infrared.
The partner group is specialized in glasses for midIR applications and flexible photonics
[54]. In Fig. 1.22, we depict a schematics with the size and refractive indices of the
platform. The chalcogenide is deposited by evaporation on an oxide coated silicon wafer
and patterned using UV contact lithography. Finally, SU-8 polymer is spin-coated on
the wafer. After some simulations, given the index maps of the structures, we have
provided the .gds masks to be used in the fabrication made by Prof. Juejun Hu MIT-
group. The specific details on the material and fabrication flow could be find in Ref.
[55]. The collaborators have sent the samples that were used to measure the real and
imaginary third order susceptibilities. Several structures have been fabricated to be
butt-coupled, among them, different strip waveguides in the monomode regime around
1580 nm, varying the width from 500 nm until 1000 nm. In order to check the influence
on different confinement modes, we have also fabricated several slot waveguides, so, in
principle, as a large part of the mode is expected to be confined in the SU8 layer, the
measured nonlinearity should decrease.

In Fig. 1.23 we show the measured transmission for strip and slot chalcogenide waveguides
and their respective calculated TE mode profiles. It is noteworthy that the index contrast
and fabrication quality allows a low loss mode propagation over the 5 mm length of the
waveguides and in a large wavelength band.
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1.4. Integrated photonics: materials and linear properties

Silicon nitride

Finally, we have fabricated waveguides in silicon nitride as it has been extensively used
in integrated optics, we will characterize the nonlinear response of waveguides around
1580 nm where nitride does not present TPA.

The use of stoichiometric silicon nitride (Si3N4) as a waveguiding material on silicon oxide
has attracted a lot of attention in recent years. Among others, due to the low scattering
losses, the wide transparency window, and the compatibility with Si microelectronic
technology. During this work we have started using this material, so the wafer and
machines calibration were required. Even though the e-beam, resist thickness and etching
times are different from Si, the fabrication steps and physical principles behind remain
the same.

The optical properties of silicon nitride for manufacturing proposes are less well known
than for SiO2 and Si, so we have performed some ellipsometric and SEM measurements
to determine the refractive index and the slab thickness. Rather than absorption from
the bulk, surface roughness is the main source of losses of Si3N4 therefore enabling a
path for achieving ultra low loss devices by simply addressing surface quality. Absorption
loss is mainly due to O-H bonds in SiO2, and N-H and Si-H bonds in Si3N4. Scattering
loss comes primarily from the interaction of light with the roughness of all the surfaces
in a high confinement waveguide.

Due to a lower index compared to silicon and negligible TPA nonlinear losses around 1550
nm (generally the bandgap between 4.5 and 5 eV depends on deposition conditions[56]),
silicon nitride has become an interesting material for linear and nonlinear integrated
functionalities. For instance a non-volatile all optical memory has been demonstrated
with nitride as host [57]. Regarding its nonlinear properties, we will measure and establish

𝑛𝑆𝑖3𝑁4(@1580nm) = 1.98 ± 0.01 

𝑛 𝜆 = 𝐴 +
𝐵

𝜆2
+
𝐶

𝜆4
 

with  𝐴 = 1.975 ± 0.0105 
𝐵 = 0.147 ± 0.008 
𝐶 = −0.021 ± 0.002 

Figure 1.24: Ellipsometric measurement of the nitride wafer. Next, the Cauchy
parameters with the given uncertainties after the data analysis and the calculated
refractive index at 1580 nm. The refractive index should be calculated with λ in
Angström.
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𝜆=1580 nm (a) (b) (c) 

Figure 1.25: (a) Optical transmission of a strip nitride waveguide with 407 nm x 800
nm. (b) Simulation of the mode for an index map corresponding to the strip waveguide
(400 nm x 800 nm). (c) Etching test of a nitride slot waveguide, the thickness is estimated
at around 407 nm.

the potentialities of nitride. Fig 1.24 shows the ellipsometric measurement of the nitride
waveguide with an index of 1.98±0.01 at 1580 nm in extremely good accordance with
literature values.

In Fig. 1.25, we show the transmission and TE fundamental mode of a strip silicon
nitride waveguide. In (c) we show an SEM image of a testing structure to calibrate the
fabrication. Some missing resist could be appreciated at the top, the shape showing that
the process is good but still to be optimized. The transmission level (∼ -25 dBm) shows
a proper injection of light and low propagation losses around the wavelengths that we
will use in the nonlinear regime. The propagation losses are estimated to be around 1-2
dB/cm and, as the index is lower than Silicon, the losses per facet are of 5-6 dB. This
will improve the injection efficiency for the nonlinear regime.

1.5 Vectorial Nonlinear wave equation

As explained in previous sections, optical nanostructures offer the possibility of engineering
diverse properties, allowing the structure optimization for given effects in specific spectral
bandwidths. This engineering process is mainly governed by the geometry and its related
refractive index structure. This will determine the fabrication requirements and the
guiding properties.

Regarding the nonlinear performance, the equations given at the beginning of this
manuscript are valid for low index contrast structures, for instance, silica optical fibers,
where the nonlinear susceptibility is constant over the entire cross-section, so the assump-
tion ~∇ · ~E (~r, t) = ε∇ · ~D(~r, t) = 0 remains valid. Nevertheless, in high index contrast
structures such as those of integrated optics, this approximation is not valid and a
vectorial derivation is required.

In this section we will introduce the parameters to be used, particularly to be determined
experimentally, such as the real and imaginary γ effective nonlinear parameters, the
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1.5. Vectorial Nonlinear wave equation

effective lengths and the effective area. This will be a robust platform to compare the
performance of different structures and the case of hybrid waveguides where only parts
of the cross section are nonlinear or have different nonlinearities.

We will assume that the field is composed only by guided modes, neglecting the existence of
radiative mode fields. The electric and magnetic fields can be expressed as a superposition
of guided modes.

~E (~r⊥,z, t) =
1
2
∑
p,ω

[
~Ep (~r⊥,z,ω)e

−iωt + c.c.
]

(1.47)

~H (~r⊥,z, t) =
1
2
∑
p,ω

[
~Hp (~r⊥,z,ω)e

−iωt + c.c.
]

(1.48)

where c.c. stands for complex conjugation. The sum is made over a discrete number of
frequencies corresponding to a finite normalization "volume" T in the temporal domain [58].
By considering only the forward propagating modes (unidirectional pulse propagation
[59]), one can express each field components as:

~Ep (~r⊥,z,ω) = ap (z,ω)~ep (~r⊥,ω)e
iβp(ω)z (1.49)

~Hp (~r⊥,z,ω) = ap (z,ω)~hp (~r⊥,ω)e
iβp(ω)z (1.50)

where βp(ω) corresponds to the propagation constant at the frequency ω. The power
of a given mode p measured at the output of the waveguide is set to Pp(z 7→∞,ω) =
|ap(z 7→∞,ω)|2. So, to fulfill this relation, we introduce orthonormal modes by calculating
the power flow for one specific mode [7].

Pp(z,ω) =
1
2

∫ ∫ +∞

−∞
Re
[
~Ep × ~H∗p

]
· ~z d2r

=
|ap(z,ω)|2

2

∫ ∫ +∞

−∞
Re
[
~ep ×~h∗p

]
· ~z d2r= |ap(z,ω)|2 Np

(1.51)

Where Np is a normalization factor. Therefore, we can introduce an orthonormal set of
eigensolutions for our problem:

êp =
~ep√
Np

, ĥp =
~hp√
Np

(1.52)
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Then, the general orthonormality condition for two forward propagating modes is:

∫ ∫ +∞

−∞
Re
[
êp × ĥ∗r − ĥp × ê∗r

]
· ~z d2r= 2δp,r (1.53)

with δp,r equals to 1 if p= r and 0 otherwise. Now, taking into account the presence
of a nonlinear source term along the waveguide, and assuming that this source is weak
enough to still consider êp and ĥp as a set of orthonormal modes of the waveguide in the
nonlinear regime, we have to assume that the modal power (or the power flow carried by
each mode) may vary with z.

~E(~r⊥,z,ω) =
∑
p,ω

ap(z)êp(~r⊥,ω)e
iβp(ω)z =

∑
p,ω

φp(z,ω)êp(~r⊥,ω) (1.54)

~H(~r⊥,z,ω) =
∑
p,ω

ap(z)ĥp(~r⊥,ω)e
iβp(ω)z =

∑
p,ω

φp(z,ω)ĥp(~r⊥,ω) (1.55)

The nonlinear wave equation can be derived from the linear one by adding a polarization
term as already shown at the beginning of the chapter. Starting from Maxwell’s equations
in frequency domain and considering a high-index contrast propagating media:

~∇× ~E (~r⊥,z,ω) = iωµ0 ~H (~r⊥,z,ω) (1.56)

~∇× ~H (~r⊥,z,ω) =−iω
(
ε0ε(~r⊥,ω) ~E (~r⊥,z,ω) + ~PNL (~r⊥,z,ω)

)
(1.57)

Using a set of solutions for the unperturbed system (~PNL = 0):

~∇× ~H(~r⊥,z,ω) =
∑
p

~∇×
(
φp(z,ω)ĥp(~r⊥,ω)

)
=

1
2
∑
p

φp
(
~∇× ĥp

)
+ ~∇(φp)× ĥp (1.58)

Knowing that

~∇(φp) =∇z(φp)~z = iβpφp~z (1.59)

and using the expression (1.57):

φp
(
~∇× ĥp

)
+ iβpφp~z× ĥp =−iωε0εφpêp =⇒

(
~∇× ĥp

)
+ iβp~z× ĥp =−iωε0εêp (1.60)
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And analogously for (1.56):

(
~∇× êp

)
+ iβp~z × êp = iωµ0ĥp (1.61)

Now, we will find a nonlinear wave equation via a perturbative approach (~PNL 6= 0).
Taking into account the dispersion: βp(ω) = β

(0)
p + ∆ωβ(1)p + ∆ω2

2 β
(2)
p + · · · and the z

dependence of the field amplitude term ap(z), meaning that:

~∇(φp) = iβp(ω)φp~z +
∂ap
∂z

exp (iβp(ω)z)~z (1.62)

We can re-write the expressions (1.60) and (1.61) after a scalar product with ê∗p and ĥ∗p:

∑
p

[
∂ap
∂z

+ i∆ωβ(1)p ap + i
∆ω2

2 β(2)p ap

]
(~z× ĥp) · ê∗p =−iω exp (−iβp(ω)z) ~PNL · ê∗p (1.63)

∑
p

[
∂ap
∂z

+ i∆ωβ(1)p ap + i
∆ω2

2 β(2)p ap

]
(~z × êp) · ĥ∗p = 0 (1.64)

where (~z × ĥp) · ê∗p =−~z · (ê∗p × ĥp) and (~z × êp) · ĥ∗p = ~z · (êp × ĥ∗p), so by adding these
last two expressions and integrating over the waveguide cross-section:

[
∂ap
∂z

+ i∆ωβ(1)p ap + i
∆ω2

2 β(2)p ap

]∫ ∫
[(ê∗p × ĥp) + (êp × ĥ∗p)] · ~z d2~r

=+iωe−iβp(ω)z
∫ ∫

~PNL · ê∗pd2~r

(1.65)

[
∂ap
∂z

+ i∆ωβ(1)p ap + i
∆ω2

2 β(2)p ap

] 1
2

∫ ∫
Re(êp × ĥ∗p) · ~z d2~r︸ ︷︷ ︸

1

=+iω
e−iβp(ω)z

4

∫ ∫
~PNL · ê∗pd2~r

(1.66)

∂ap
∂z

+ i∆ωβ(1)p ap + i
∆ω2

2 β(2)p ap =+iω
e−iβp(ω)z

4

∫ ∫
~PNL · ê∗pd2~r (1.67)

This is the nonlinear vectorial propagation equation. Now, we can use this expression to
find the different parameters to be measured afterwards with a clear meaning regarding
the mode and material properties. We will consider non-crossed effects even though their
inclusion in the calculation is straight forward.
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The nonlinear polarization could be written as:

~PNL(~r,ω) =
3
4ε0χ

(3) ~Ep(ω) ~Ep(−ω) ~Ep(ω) =
3
4ε0χ

(3)|ap|2apêpê∗pêpeiβ(ω)z (1.68)

So, the propagation equation (1.67) ignoring the dispersion terms reads:

∂ap
∂z

=+iω
3ε0
16 |ap|

2ap

∫ ∫
χ(3)êpê

∗
pêpê

∗
pd

2~r (1.69)

Next, we will consider χ(3) homogeneous and scalar in each integration section (in
particular, the waveguide material). And recalling that êp = ~ep/

√
Np:

∂ap
∂z

=+iω
3ε0
16 χ

(3)|ap|2ap

∫ ∫
SNL
|~ep|4 d2~r(

1
2
∫ ∫

Re
[
~ep ×~h∗p

]
· ~z d2~r

)2 (1.70)

We can decompose the envelope expression in terms of amplitude and phase: ap =
√
Ppe

iφp ,
so its derivative is given by: ∂ap

∂z =

[
1

2
√
Pp

∂Pp
∂z + i

√
Pp

∂φp
∂z

]
eiφp , we can write the real and

the imaginary part in the expression (1.70) independently, by using χ(3) = f4χ
(3)
mat =

S2Re[χ(3)mat] + i S2Im[χ
(3)
mat] = S2χ

(3)′
mat + i S2χ

(3)′′
mat . First for the real part (that will

correspond to the imaginary part of the susceptibility):

1
2
√
Pp

∂Pp
∂z

=−ωS2 3ε0
16 Im[χ(3)]Pp

√
Pp

∫ ∫
SNL
|~ep|4 d2~r(

1
2
∫ ∫

Re
[
~ep ×~h∗p

]
· ~z d2~r

)2 (1.71)

∂Pp
∂z

=−S2ω
3ε0
2 Im[χ

(3)
mat]

∫ ∫
SNL
|~ep|4 d2~r(∫ ∫

Re
[
~ep ×~h∗p

]
· ~z d2~r

)2P
2
p

=−S2 3ω
2ε0c2n2

0
Im[χ

(3)
mat]︸ ︷︷ ︸

βTPA

ε2
0c

2n2
0

∫ ∫
SNL
|~ep|4 d2~r(∫ ∫

Re
[
~ep ×~h∗p

]
· ~z d2~r

)2

︸ ︷︷ ︸
1

ANL

P 2
p

=−S
2βTPA
ANL

P 2
p =−γwgTPAP

2
p

(1.72)

So, we have found valid expressions for high index contrast structures for the nonlinear
effective area and the βTPA coefficient. Finally, for the imaginary part (corresponding to
the real part of the susceptibility):
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∂φp
∂z

= S2ω
3ε0
4 Re[χ(3)mat]

∫ ∫
SNL
|~ep|4 d2~r(∫ ∫

Re
[
~ep ×~h∗p

]
· ~z d2~r

)2Pp

= S2k0
3

4ε0n2
0c

Re[χ(3)mat]︸ ︷︷ ︸
n2

ε2
0c

2n2
0

∫ ∫
SNL
|~ep|4 d2~r(∫ ∫

Re
[
~ep ×~h∗p

]
· ~z d2~r

)2

︸ ︷︷ ︸
1

ANL

Pp

=
S2k0n2
ANL

Pp = γwgPp

(1.73)

Finally we will introduce a figure of merit that will take into account the nonlinear losses
and the kerr effect, either in the waveguide (taking into account the slowing down factor
and the effective area) or in the bulk material:

FOMTPA =
|γwg|

2πγwgTPA
(1.74)

This relation is valid for waveguides. If we assume the same material over the effective
area, we retrieve the classical third order figure of merit for bulk materials:

FOMTPA =
|Re[χ(3)mat]|

4πIm[χ
(3)
mat]

=
|n2|

λ0βTPA
(1.75)

This definition has been made based on 2π generated nonlinear phase shift. Hence
|φcritNL|= 2π= S2k0|n2|Icrit0 Leff , but the required intensity will also generate proportional
nonlinear losses. So, we define a general criterion for avoiding large losses such that
S2βTPAI

crit
0 Leff<1. By combining those two relations, we have a figure of merit that

is geometry-independent: |n2|
λ0βTPA

>1. The reader should be aware that this criteria is
different by a factor of two from the one proposed by [60] as they have chosen a shift of
4π to characterize a nonlinear material. This other FOM is also used in the literature so,
we will pay particular attention when comparing data from the state of the art. Such a
difference does not represent a change on the definition of the material properties.
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1.6 Characterization methods for nonlinear third order ef-
fects

The third order nonlinear properties lead to an interesting variety of phenomena, par-
ticularly in integrated optics where an intrinsic small area of interaction and strong
confinements are possible. These effects can be also used inversely to measure the
nonlinear parameters of a given waveguiding structure, not just the bulk. In most of the
relations hereafter and above, the linear properties of the devices such as the refractive
index, waveguide dispersion or propagation losses should be also known by means of
linear measurement methods.

In the nonlinear regime new materials are being engineered, under such context, a
proper technique to measure the optical nonlinearities is required for systematic material
optimization [61], particularly when considering optical waveguides, where effective
nonlinearities depend not only in the χ(3) values of the bulk material but also
in the confinement properties. Among the techniques for characterizing nonlinear
materials the most common ones are:

1) Z- Scan
2) Degenerate four wave mixing (DFWM)
3) Interferometric methods
4) Third harmonic generation (THG)
5) Nonlinear absorption - 1/T technique

Z-Scan

Among the techniques for measuring the effective complex third-order nonlinearities,
one of the simplest and preferred by experimentalists is the Z-Scan method[62]. The
latter is not only simple in the experiences but also in its interpretation. Z-scan allows
to determine, in sign and magnitude, the intensity dependent nonlinear changes in index
(Fig. 1.2) and absorption in bulk materials . Its simplest approach (closed aperture)
requires for implementation a single beam, a translation stage, a small structure and a far
field detector (Fig. 1.26 (a)). The transmittance is determined as a function of the sample
position (Z) measured with respect to the focal plane. The induced modifications in the
transversal beam profile, by nonlinear absorption and refraction are used to estimate the
nonlinear parameters of the sample.

As an example, assume a sample with negative nonlinear refractive index located in a
very negative Z position (i.e. close to the lens). In that case, the irradiance is low and the
nonlinear induced refractive index change is negligible, so the normalized transmittance
remains close to unity near this position (see Fig. 1.26 (b)). As the sample is brought
closer to focus, the beam irradiance increases leading to self-defocusing (focusing in the
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Figure 1.26: (a) Z-scan experimental apparatus in which the ratio D2/D2 is recorded
as a function of the sample position z. BS: Beam Splitter, L: Lens, D: detector. (b-c)
Normalized Z-scan transmittance of ZnSe measured using picosecond pulses at λ = 532
nm. The solid lines are the theoretical results. The S factor corresponds to the opening
of the aperture, in (b) at 40% and in (c) at 100% (no aperture)[62]. (c-d) Top-hat beams
compared to the gaussian counterpart and experimental results for a CS2 sample at
S=0.09 at λ = 532 nm [63].

case of a positive nonlinear refractive index Fig. 1.26 (d)). This negative nonlinear
refraction moves the focal point closer to the aperture increasingly collimating the beam
and resulting in enhanced transmittance through the aperture. As the sample is moved
past the focus, self-defocusing causes greater beam divergence in the far field, though
reducing the transmittance through the aperture. Finally, translating the sample further
toward the detector reduces the irradiance to the linear regime and returns the normalized
transmittance to unity. So if the peak is in the negative distances and the dip in the
positive, we can immediately deduce the sign of the Kerr coefficient as negative (Fig.
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1.26 (b)). In the positive case, one finds exactly the opposite: a peak in the positive Z
and a dip in the negative (Fig. 1.26 (d)).

Now, if we assume that the material presents nonlinear absorption, it has been shown
that in Z-Scan measurements two-photon absorption will suppress the peak and enhance
the valley of the dispersive curve. If nonlinear absorption and refraction are present
simultaneously, a numerical fitting procedure can be used to extract both the nonlinear
refractive and absorption coefficients. Alternatively, a second Z-scan with the open
aperture, so all the light could be collected, can independently determine the transmittance
losses for different irradiances (as a function of the Z position). Considering TPA only,
the Z-scan traces out a symmetric Lorentzian shape as the one shown in Fig. 1.26 (c).
The nonlinear absorption quantification is possible because we can collect the full pulse
energy and detect the output power as a function of the focusing in the sample.

This original approach has been refined by different methods to enhance the sensitivity[64,
65]. This method have also some drawbacks. For instance, as it is sensitive to any
nonlinear mechanism, it is rather difficult to identify the particular physical processes
that gave rise to the change of the refractive index or the absorption coefficient. Then,
series of measurements are required to separate diverse physical mechanisms. The
necessary scan range in an experiment depends on experimental factors such as the beam
properties (width of the pulse and frequencies) or the sample thickness L. However, the
z-scan method is not applicable to optical waveguides, as seen before, the mode remains
confined via a fixed refractive index profile.

Top hat Z-Scan

As a particular case of Z-scan and of high importance to this manuscript as a source of
analogy, there is the technique called top hat Z-scan. It is base in the same physical
principles of Z-scan but the sensitivity is improved due to the use of top-hat (double
truncated) beams. As any spectral broadening becomes easier to measure, sensitivity
can be improved by a factor of 2.5 compared to the gaussian beam counterpart [63, 66].
In Fig. 1.26 (d), we show a comparison between two dispersion traces, one for a gaussian
beam and the other for top-hat beams for the same conditions. The contrast between
peak and valley allow an easier quantification of the nonlinear phase shift.

Four wave mixing (FWM)

The wave mixing techniques are pump-probe based experiences, often referred to Transient
Absorption Spectroscopy (TAS) and commonly used for resolving the time dynamics
of absorption processes [67]. In particular, Four-wave mixing is a reliable technique
for determining the third-order nonlinear susceptibility χ(3), especially in waveguides.
Determination of Im {χ(3)} and |χ(3)| involves measurement of the pump-induced probe
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1.6. Characterization methods for nonlinear third order effects

power loss and the efficiency of coherent signal wave generation. Strictly speaking, the two
quantities represent different physical processes: Im[χ

(3)
mat(ω2 = ω1 + ω2 − ω1)] describes

two-photon absorption, whereas |χ(3)(ω3 = ω1 +ω1−ω2)| represents frequency generation.
In order to extract the sign of the real part, this technique must be supplemented with
another measurement. One advantage of this technique is the possibility to monitor the
nonlinear dynamics or in other words, the time dependence of the nonlinearities. As this
technique relies on the phase matching of several beams, the sensitivity of the alignment
is restrictive as the angles and overlaps must be carefully controlled.

The ability to resolve the time dynamics by adjusting the delay between the pump and
probe beams is particularly useful. It has been applied to numerous materials such as
semiconductors [68] and organic compounds [69]. In addition to adjusting the delay,
polarization between pulses can also be adapted, allowing for examination of χ(3) off
diagonal components [70].

In particular, the third-order nonlinear process of FWM in integrated waveguides has
raised particularly intense research due to its potential for a wavelength-tunable method
of signal amplification, conversion and regeneration in an integrated platform [71, 72,
73, 74, 75]. The main difficulty too exploit this effect is the phase matching condition
of beams separated in energy, typically by some tenths of nm, requiring a waveguide
dispersion management (tune the waveguide modal dispersion with the geometry). This
task is not obvious in highly dispersive structures such as photonic crystals. We will
explore this optimization in the last chapter of this manuscript.

Nearly degenerate three-wave mixing

When two of the used waves have the same frequency, the four wave mixing is called nearly
degenerate three-wave mixing. It consists of a strong pump at ω that interacts with a weak
beam at ω−∆ω to generate a new wave at 2ω− (ω−∆ω) = ω+ ∆ω. Considering a very
small frequency difference (∆ω� ω): χ(3)xxxx(−ω;ω,ω,−ω)' χ(3)xxxx(−ω− ∆ω;ω,ω,−ω +

∆ω). As the beams are energetically close, this technique is nearly phase-matched for
forward collinear propagation, simplifying the beam alignment.

Interferometric methods

Many experimental methods rely on interferometers to characterize the nonlinear refrac-
tive index of materials inserted in one of the arms. In the simplest case of a Mach-Zehnder
interferometer[76], one of the arms is set with a reference material with a known nonlinear
index and in the other arm the sample to be characterized. The set-up is then aligned
and compensated at low powers to be finally tested at high powers. Both materials will
experience a nonlinear phase shift and then the reference arm could be compensated
with neutral density filters until getting the same phase. More complex interferometric
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configurations have been proposed and demonstrated [77, 78, 79].

Third harmonic generation (THG)

Usually the characterization of a nonlinear third order medium based on the specific
interaction to be studied or exploited. For instance, in the previous methods, the study
was focused on the nonlinear variation of the refractive index as it is one of the most
interesting effects to exploit in nonlinear integrated circuits.

One way to characterize the pure electronic behavior of a material consists in studying
the third harmonic generation (THG) [80]. Such a high frequency oscillation requires the
intervention of a pure nonresonant electron cloud distortion. To develop this technique,
several problems need to be addressed. For instance at large enough powers, air could
generate third harmonics. In particular, for silicon, the third harmonic frequency is
absorbed, so it is not possible to efficiently propagate it in a waveguide. Nevertheless, Dr.
Monat and co-workers demonstrated in a photonic crystal waveguide that by coupling to
the continuum of radiation modes above the light line, the quasi-phase matched condition
between the third-harmonic signal (visible range) and the fundamental mode (NIR) could
be achieved. Even though Silicon absorbs at visible wavelengths (TH frequencies), by
the use of slow light and out-of-plane collection, researchers have succeeded in using
THG in integrated silicon waveguides [81, 82] to demonstrate a single-shot time-domain
integrated optical auto-correlator [83].

Non-linear absorption - 1/T technique

In the previous subsections, we have seen some procedures to estimate the nonlinear
effects in the phase of a pulse. Nevertheless, the imaginary part of the susceptibility have
not been directly treated. Indeed, this quantity is easier to quantify as it requires the
information of the transmission as a function of the input power. We will use a variation
of this technique to properly measure the effective γTPA in waveguides and it will be a
tool to characterize the coupling efficiencies in the facets.

A simple insight of this technique could be seen from basic relations. Indeed, if two
photon-absorption is the dominant nonlinear losses, the optical intensity can be written
as (in accordance with eq. (1.72)): dI/dt=−βTPAI

2. By integrating, we can find the
transmitted pulse energy as a function of the peak incoming intensity, that is normalized
by the transmission with the low intensity limit (T0). When (T − T0)/T0� 1 and for
a gaussian shaped pulse, it is easy to show that: T0/T = 1 + βTPAIinLeff/

√
8. So it is

a linear function of the intensity where, by tracing Iin vs. T/T0, we can find the TPA
coefficient of the material as the slope near the origin is directly proportional to this
quantity. In the next chapter we will develop the experimental issues and quantities
required to the proper extraction of γTPA in integrated waveguides.
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1.7 Conclusion

In this chapter we have presented the basic concepts of nonlinear optics and its link
with some materials and integrated waveguides. First, we have developed the general
quantities to be studied in the frame of bulk materials, then we have introduced the basic
concepts for waveguiding in integrated structures, such as strip, slot or photonic crystals.
These physical principles were followed by a presentation of interesting materials for
integrated proposes at wavelengths around λ∼1550 nm. They are mainly components
from chemical groups III-V and IV.

We have presented the principles and main problems in the fabrication methodology
for our silicon and silicon nitride samples. We have optimized the writing and etching
processes for 220/260 nm silicon thicknesses and for 400 nm thick silicon nitride. Also,
we have presented the general fabrication steps followed by our collaborators to elaborate
monomode SiGe and chalcogenide waveguides. Specifically, we have designed the masks
for silicon, silicon nitride and chalcogenide and performed the linear measurements of all
the samples. The work with internal and external collaborators was explicit along the
section.

Finally, we have developed the nonlinear vectorial wave equation applicable to our
waveguides in order to define the parameters to be measured. We have summarized
the most common techniques used to measure the third order nonlinear properties of
materials. Some of them are not suitable for waveguides and others are difficult to
implement and interpret.
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2 Bi-directional top hat D-Scan

In this chapter we present a technique to measure the real and imaginary effective
third order electronic susceptibilities in integrated devices. To this aim, we have de-
veloped a method to measure the coupling efficiencies. After presenting a semi-analytical
model, we introduce a set-up to meet the method requirements. The experimental proce-
dure is validated in a standard silicon-on-insulator (SOI) waveguide and then applied to
a series of interesting nonlinear integrated materials.
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2.1. Introduction

“Every really basic quantity is defined by a measuring procedure. . . The mapping of the
physical reality on a mathematical structure is the ultimate goal of physics”

Gunter Scharf, From Electrostatics to Optics, Springer Verlag, Berlin, 1994.

2.1 Introduction

The increasing sophistication of integrated optical devices and the demands on data
bandwidth in on-chip communications require the consideration of nonlinear interactions.
The trade-off between losses, high material nonlinearities, tight optical mode confine-
ment, and dispersion imposes the waveguide engineering to obtain adequate nonlinear
figures of merit. One interesting way to increase the degrees of design is to envisage
hybrid structures, designed with specific nonlinear materials covering CMOS compatible
waveguides.

Previously, we have introduced some methods to characterize the third order electronic
nonlinear parameters of materials. In particular and due to its simplicity the Z-Scan
technique [62] is currently the preferred one. Nevertheless, it cannot be applied directly
to waveguides. Instead, interferometric methods or phenomena requiring phase-matching
between diverse waves are usually applied to characterize them. Both kind of methods
require a careful alignment and present experimental constrains. In this context, there is
a need for the development of simpler characterization methods capable to measure the
nonlinear performances of waveguide structures, including hybrid and periodic integrated
devices.

By keeping the advantage of using a single beam, the Z-Scan technique has been
transposed in previous research to the temporal domain in order to characterize the
nonlinear refractive indices of optical fibers. The technique has been referred to
D-Scan, standing for Dispersive Scan, and consists in measuring the output spectral
broadening of transmitted pulses for various dispersion coefficients φ(2) applied to the
injected pulses [84, 85].

Regarding the structures of interest in the present work, we require the development of a
new technique to estimate effective nonlinear susceptibilities of integrated structures,
presenting not only SPM effects (as silica fibers) but also the instantaneous nonlinear
losses (TPA). In this chapter, we present a non-destructive single beam method, which
allows the measurement of nonlinear performance of different guided geometries and
materials based on the measurement of the bidirectional nonlinear transmission and the
application of a D-Scan technique with top hat pulse spectra. The devices under test
could present both Kerr and TPA effects. Unlike the case of optical fibers, the difficulty
in integrated structures lies in assessing the real power injected into the waveguide mode.
In the first section we apply the bidirectional procedure to extract the coupling coefficient
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values of each facet and then the γTPA = S2βTPA/ANL parameter (Eq. (1.72)), where
βTPA is the TPA coefficient, and ANL is the nonlinear effective area of the guided mode.

Then, in a second step, we apply a D-Scan measurement, using spectrally quasi-rectangular
pulses, being the analogous in the temporal domain of the top-hat Z-Scan [63, 86].
Irrespective of the injection and collection losses (in and out) of the guide, we measure the
nonlinear third order figure of merit FOMTPA = γ/(2πγTPA), with γ = k0S

2n2/ANL the
effective Kerr parameter. The expressions take into account the nonlinear enhancement
due to localization effects that are quantified as the ratio between the group index of
the waveguide to the bulk index of the material S = nwgg /n0 [87, 88, 89]. The technique
of top-hat D-Scan will be explained in section 2.3. Finally, with the measured value for
FOMTPA and γTPA, we can measure the effective Kerr parameter of the waveguide (γ)
related to the real part of the susceptibility.

The experimental set-up to stretch the pulse (i.e. vary the dispersion coefficient φ2) is
introduced and calibrated in section 2.4. The measurement methodology is validated in a
standard SOI waveguide (section 2.5) and finally applied to series of materials potentially
interesting for nonlinear integrated applications (section 2.6).

2.2 Bi-directional nonlinear transmission: measurement of
γTPA and coupling coefficients

The actual intensity coupled in guiding structures is usually estimated indirectly. In
optical fibers a bidirectional measurement of propagation losses has been proposed to
measure the coupling efficiencies [90, 91], but this method is limited to linear regime.

As expected, the induced absorption effects are easier to determine than the phase
variations, as they can be measured from a variation in the transmission as the injected
power changes. In this section, we will study the instantaneous (<1ps) two-photon
absorption (TPA) and use it as a monitoring quantity to estimate the coupling efficiencies
in both facets of a chip.

We require an experimental set-up that measures the optical average powers of pulsed
lasers independently of its pulse shape. In Fig. 2.1, we present a scheme of the set-up
to be used. PM stands for powermeter, BS: Beam splitter, MO: Microscope objective,
DUT: Device under test, κFA and κFB, the coupling coefficients from facets A and B,
and the indices (1) and (2) correspond to each injection direction. The DUT is assumed
to operate with non-negligible TPA absorption effect. It is noteworthy that the power is
measured outside the waveguide, so to estimate the injected and the transmitted powers
inside the waveguide, one has to assess at least two coupling coefficients (generically κin
and κout), which in our case include the the transmission of the microscope objectives
(MO).
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Figure 2.1: Set-up scheme to measure the coupling efficiencies and the nonlinear losses
coefficients.

Even though in our scheme we use microscope objectives, the following method can be
applied with injecting schemes that use gratings or lensed fibers. We start with the
expression of the output power as a function of the input power in the linear regime:

Pout = κlPin (2.1)

where κl is the coupling coefficient of the system. This parameter could be decomposed
in three terms: an input coupling coefficient (κin), which represents the amount of light
that is effectively injected into the waveguide and related to the coefficients κ(1)FA and κ(2)FB
respectively (Fig. 2.1 (1) and (2)); an output coupling coefficient (κout), representing
the light collected from the output of the waveguide corresponding to κ(1)FB and κ(2)FA in
Fig. 2.1 (1) and (2); and a term describing the (linear) propagation losses (α) inside the
waveguide:

κl = κinκoute
−αL = κ

(1)
FAκ

(1)
FBe

−αL = κ
(2)
FBκ

(2)
FAe
−αL (2.2)

Assuming that the waveguide operates in single mode regime and that the incident free
space beam is also a purely single transverse mode: κ(1)FA = κ

(2)
FA = κFA and κ(1)FB = κ

(2)
FB =

κFB. But, generally κFA 6= κFB (due to cleaving, possible angles, etc.).

In general, we will work with materials presenting nonlinear losses dominated by two
photon absorption (TPA). So we need to describe the depletion of the pulse intensity
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due to linear and nonlinear propagation losses, recalling the expression (1.31):

∂I

∂z
=−Sα′I(z, t)− S2βTPAI

2(z, t) (2.3)

Following an integration along the waveguide length L, the output intensity is given by:

I(L,t) =
I(0, t)e−Sα′L

1 + S2βTPAI(0, t)Leff
(2.4)

where the effective length of the waveguide Leff is given by:

Leff =
1− e−Sα′L

Sα′
=

1− e−αL
α

(2.5)

It can be seen from Eq. (2.4) that when S2βTPAI(0, t)Leff � 1, the output intensity
becomes I(z)⇒ 1

S2βTPALeff
, physically meaning that regardless the input intensity, the

maximum achievable value is determined by the waveguide linear (Leff) and nonlinear
(βTPA) losses. This limiting value is a restriction to achieve arbitrarily large refractive
index changes (i.e. modulation and switching), but could be exploited as a saturation
intensity value to prevent high energies reaching sensitive components.

To express the described peak intensities inside the waveguide in terms of power measured
with detectors, we should take into account the coupling efficiencies, so that: I(0, t) =
κin

Ppeak
in
ANL

and P peak
out = κoutI(L,t)ANL, where ANL is the effective mode area defined in

Eq. (1.72). We can re-write Eq. (2.4) in terms of the external peak powers:

P peak
out =

κlP
peak
in

1 + S2βTPAκin
Ppeak

in
ANL

Leff

=
κlP

peak
in

1 + γwgTPAκinP
peak
in Leff

(2.6)

with κl = κinκoute
−αL. The detectors conventionally measure powers integrating over

the time, so we need an additional parameter that takes into account the duration
and repetition rate of the laser in order to link peak with average powers, so that
P peak

in = ηPin =
Pin
τF and analogously P peak

out = ηPout =
Pout
τF , where τ is the pulse duration

in time units and F is the inverse of the repetition time in Hz. We can write Eq. (2.6)
in terms of measurable powers:

Pout =
κlPin

1 + γwgTPAκinηPinLeff
(2.7)
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where Pin and Pout are the average powers, input and output, respectively. It can be seen
that we recover the equation of the linear transmission (2.1) when the denominator tends
to the unity. And we obtain a saturation power independent of the input power when
γwgTPAκinηPinLeff� 1 equals to Pmax

out ⇒ κoute−αL

γwgTPAηLeff
. Finally, we can write this expression in

a most simple way:

Pin
Pout

=
1
κl

+
γwgTPAκinηLeff

κl
Pin = a+ bPin (2.8)

By plotting Pin/Pout, we should get a linear function of Pin with a slope that contains the
TPA coefficient. It is easy to extend this model for multiphoton absorption, which follows
a quadratic dependence with Pin for three photon absorption (ThPA). One important
parameter that we will be used constantly is the ratio between b and a, which depends
on the input coupling and the linear propagation losses, the other values being given by
the waveguide and the bulk material properties:

b

a
= γwgTPAκinηLeff (2.9)

This expression is valid regardless the direction of the injection. Now, we will inject the
power from both sides to establish 2 equations with 2 unknown parameters: the coupling
efficiencies in the facets A and B. From scheme of Fig. 2.1, one gets the relation:

b(1)

a(1)
= γwgTPAκFAηLeff

b(2)

a(2)
= γwgTPAκFBηLeff (2.10)

From where we can extract the ratio:

b(1)a(2)

b(2)a(1)
=
κFA
κFB

(2.11)

But we also know that a(2) = a(1) = (κFAκFBe−αL)−1, so we can determine each coeffi-
cient in terms of the experimental values a,b and the propagation losses:

κFA =

√
b(1)

b(2)a(1)e−αL
κFB =

√
b(2)

b(1)a(2)e−αL
(2.12)

It is clear that those relations are only valid for γwgTPA 6= 0. We have used the imaginary
susceptibility to measure the coupling efficiencies that are crucial experimental parameters

61



Chapter 2. Bi-directional top hat D-Scan

for the quantification of any kind of light matter interactions.

2.3 Top-hat D-Scan

The refractive effects are more difficult to quantify than the transmission ones because
they are associated to phase changes. So, to obtain the material coefficients related to
them, we need to rely on phenomena that induce changes in the spectral features or in
the polarization of the beam. In our case, we will use self-phase modulation induced
spectral broadening in pulsed regime to quantify them.

Indeed the method presented hereafter (D-Scan technique) is based on intensity-induced
temporal wave-front curvatures (Fig. 2.2) that we use to characterize the effective third
order nonlinear parameters of waveguide structures. We perform diverse approaches
to calculate and measure the dispersion effect in a nonlinear waveguide. We present
analytical and semi-analytical models that predict the spectral evolution of pulses inside
waveguides with different nonlinear properties.

In Fig. 2.2, we show an input pulse in the temporal domain passing trough an adjustable
2nd order dispersion medium that introduces an adaptable φ(2) = β2z on the pulse. At
the output of the dispersive medium the pulse is broadened and exhibits a parabolic

Figure 2.2: Scheme of the Top-Hat D-Scan displaying the effect of a waveguide analogous
to a temporal (Kerr) lens.
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temporal phase profile whose sign depends on the sign of the dispersion introduced [92],
leaving the spectrum unmodified. Inside the waveguide, intensity-induced refractive
effects will broaden the spectrum via self-phase modulation, acting as a temporal lens
(also called Kerr lens).

2.3.1 Pure Kerr waveguides: absence of two-photon absorption

Due to their electronic properties, some materials do not present two-photon absorption
at wavelengths around 1550 nm, for instance silica or silicon nitride. In this section, we
will consider waveguides without nonlinear losses, so we call them "pure Kerr" as they
only present intensity-dependent nonlinear refractive effects.

In appendix C, we have developed an analytical model assuming no TPA, small nonlinear
phase shifts and gaussian pulse shapes. Even though the tendencies and orders of
magnitude are useful to understand the physics behind a Kerr lens, we require a more
refined model to quantify the third order instantaneous effects for different pulse shapes.
For this matter, we will develop a semi-analytical approach to extend the analytical
model and find the evolution of the spectral peak intensity as a function of φ(2) for
different input powers and diverse excitation pulse shapes, in presence of TPA. Z-Scan
techniques appoint a relation between the peak to valley transmission variation and the
nonlinear phase (φNL) in order to quantify the magnitude and sign of the nonlinear
refractive index n2 [62]. We will recall those concepts and adapt them to the dispersive
(temporal) scan technique, leading to their extension towards integrated optical circuits.

First, we will describe the effect of a dispersive medium on a pulse through Fourier
analysis. In the frequency domain, the spectrum can be written as:

Ũ(z1,ν) =F [U (0, t)]e
iφ(2)(2πν)2

2 =F
[√

I0U (t)
]
e
iφ(2)(2πν)2

2 (2.13)

where we have separated the maximum peak intensity (I0) from the temporal pulse
shape (U(t)). The temporal profiles considered in this section follow a gaussian and sinus
cardinal (Sinc) temporal shapes. F stands for Fourier Transform and z1 is a propagation
position after the dispersive medium. It is noteworthy that |Ũ (0,ν)|2 = |Ũ(z1,ν)|

2, so
after the dispersive medium, the pulse is unaltered in the frequency domain. Nevertheless,
it implies a modification of the pulse in the temporal domain by introducing a chromatic
delay, increasing the pulse duration. Fig. 2.3 [93] shows a scheme explaining the effect of
a dispersive medium in a pulse for given φ(2). In (a), we show an un-chirped pulse with
no time delay between the spectral components. Here there is a direct Fourier relation
between the temporal and the frequency domain and it coincides with the the minimum
pulse duration achievable. In (b), we introduce a negative second order dispersion, so the
red components of the pulse are located at the front of the pulse. This spectral phase
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(a) (b) 

(c) 

Figure 2.3: Schematics of a pulse stretching. (a) Fourier limited pulse. (b) Stretched
pulse with a positive introduced dispersion (φ(2)>0), the red components are sent to the
front of the pulse increasing its duration and changing the phase relation but leaving the
spectral shape unaffected. (c) Different sign effect in the pulse duration and the relative
position of the different frequencies after the dispersive effect[93].

modifies the pulse duration preserving unaltered its spectral content. In (c) we show the
effect in the pulse for different dispersion signs. To find the pulse distribution in the
temporal domain, we should apply an inverse Fourier Transform (F−1) to the previous
expression:

U(z1, t) =F−1 {F
[√

I0U (t)
]
e
iφ(2)(2πν)2

2 } (2.14)

In Fig. 2.4 we display a typical variation of the full width half maximum (FWHM)
of the autocorrelation of a pulse (directly linked to the temporal duration) after the
introduction of a second order dispersion. It should be noted that the curve is symmetric,
meaning that the pulse duration is changed in the same proportion for opposite signs
but the frequency order in the pulse depends on the sign (Fig. 2.3).
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Figure 2.4: Typical variation of the full width half maximum (FWHM) of the pulse
autocorrelation as a function of the introduced dispersion. Pulse duration T0 = 1 ps.

64



2.3. Top-hat D-Scan

Next, the effect of the nonlinear medium can be calculated without further approximations
than the absence of TPA. The pulse undergoes a purely nonlinear phase shift that is
proportional to an intensity temporal variation:

U(z2, t) = U(z1, t)e
iφNL = U(z1, t)e

ik0n2I0Leff |U(t)|2 = U (z1, t)e
iφNL0|U(t)|2 (2.15)

where z2 is a propagation point after the waveguide. As the measurements will be
performed in the spectral domain, we proceed by applying a Fourier Transform:

Ũ(z2,ν) =F [U(z2, t)] =F
[
U(z1, t)e

iφNL0|U(t)|2
]

(2.16)

which can be implemented numerically via Fast Fourier Transform (FFT) algorithm for
discrete data sets. By monitoring of the output spectrum at fixed energy for various
dispersion one can expect different responses in the nonlinear regime (n2 non negligible).
Depending on the sign of the dispersion, respect to that of n2, one expects the Kerr
lens to counter-balanced the dispersion effect (in some case, a strict compensation is
expected), leading to reduction of the spectral broadening observed at φ(2) =0, or
to further accentuate the temporal wave front distortion leading to a larger spectral
broadening effect (case where n2 and φ(2) get the same sign). In other words, the
waveguide can be studied as a temporal lens introducing a nonlinear phase change to the
pulse (Fig. 1.2 and 2.2). Indeed, a thin lens in the spatial domain can be expressed in
terms of a phase transformation.

In order to quantify the interplay between the dispersion and the Kerr lens effect, it is
useful to introduce two markers: the normalized spectral peak power (NSPP) and the spec-

tral broadening through the r.m.s. spectral linewidth 2σλ = 2
√∫

λ2P (λ)dλ∫
P (λ)dλ

−
(∫

λP (λ)dλ∫
P (λ)dλ

)2

and P (λ) the specific power at a given wavelength.

In Fig. 2.5, we show the evolution of the NSPP and the 2σλ as a function of the
introduced dispersion for a temporal gaussian pulse with:

U(0, t) = U0e
− t2

2T2
0 (2.17)

where T0 is the pulse duration in this case set to 1 ps. This value is chosen because is in
the order of magnitude of the pulses to be used in experiments. We show the evolution for
different nonlinear phase shifts (i.e. intensities) and materials with positive and negative
nonlinear refractive indices n2. It can be noticed that the maxima (resp. minima) of
NSPP coincide with minima (resp. maxima) of the r.m.s. spectral linewidths. This can
be explained through the conservation of energy. An increase in the spectral broadening
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Figure 2.5: Left: Normalized Spectral Peak Power (NSPP) as a function of the second
order dispersion for different nonlinear phase shifts in a pure-Kerr element under a
gaussian excitation. Right:Total standard deviation as a function of the second order
dispersion parameter for different φNL0. Pulse duration T0 = 1 ps.

(2σλ) necessarily implies a reduction of the spectral power density. It can be noticed also
that for larger nonlinear shifts, the peak-to-valley (p-v) of both NSPP and 2σλ increases,
so we can use this criteria as a characterization quantity for the strength of the material
nonlinear Kerr coefficient.

To understand the behavior of the r.m.s. spectral linewidth, we have plotted in Fig. 2.6
the normalized spectra in dB for few specific φ(2) values. We selected a material with
n2>0 and set the nonlinear phase to φNL0 = 0.30π. The dispersive shape of the r.m.s.
linewidth obtained for D-Scan is strictly equivalent in dispersion to that obtained for
Z-Scan in position. For large dispersion coefficients (either positive or negative), the
pulse duration is too large to efficiently generate self-phase modulation induced spectral
broadening, and the 2σ curve asymptotically tends to the spectral width of the incident
pulse. For negative φ(2) side of the curve, the positive temporal lensing counter-balances
the dispersion effect by inducing a temporal front wave opposite in sign to that of the
chirped pulse (see Fig. 2.2), which reduces the spectral width and increases the the
spectral power density in the central wavelength. As the dispersion is set closer to
zero, the peak power increases in the temporal domain and the spectral broadening is
larger. For positive φ(2), the spectral broadening increases as the Kerr lens increment the
curvature of the temporal wave front of the incident chirped pulse, implying a reduction
of the NSPP as the spectrum reaches its largest spectral width. It is important to note
that the maximum 2σ(λ) point shifts towards φ(2) = 0 ps2 as the power nonlinear shift
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Figure 2.6: r.m.s. spectral linewidth for a pulse with temporal gaussian profile (T0 = 1ps)
for a nonlinear phase shift of 0.30π. Inset display the spectra at the most interesting
dispersion points. NT: Normalized transmission.

increases. Finally, increasing further the dispersion decreases the peak intensity and the
broadening becomes again negligible (baseline).

We can then establish a first empirical rule like in the Z-Scan technique. Regarding
the shape of 2σ(λ) curve and reading it from negative towards positive dispersions (left
to right), a valley followed by a peak is a signature for a positive nonlinear refraction
(n2>0). One finds the opposite for negative nonlinear refraction (n2<0): a peak followed
by a valley.

Finally, we can extract the peak-to-valley difference variation with the nonlinear phase
experienced by the pulse. As shown in Fig. 2.7, the curve exhibits an almost linear
dependence, so by knowing the injected intensity on the sample and deducing the
nonlinear phase shift by measuring the (2σλ)p−v, the value of n2 can be estimated. Even
though in the Z-Scan empirical slopes are used to retrieve n2 depending on the pulse
shape, we will use directly the simulation curves to match both the 2σ shapes and their
corresponding nonlinear phase shifts.

Analogously with the top-hat Z-Scan [63], which has been proved to increase the method
sensitivity by a factor of 2.5, we will use top-hat pulses in the frequency domain.
We can then define the pulse in time domain at z = 0 as a Sinc shape corresponding to
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Figure 2.7: (2σλ)p−v for a temporal gaussian pulse and varying φNL0 with a linear fit
in red.

the Fourier Transform of a rectangular spectral shape:

U(0, t) =
√
I0U(t) =

√
I0 sinc(t) =

√
I0

sin(ßt)
ßt (2.18)

We can directly apply the expression (2.16) to trace the 2σ(λ) and NSPP curves. Fig.
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Figure 2.8: Left: Normalized Spectral Peak Power (NSPP) as a function of the second
order dispersion for different nonlinear phase shifts. Right: Total standard deviation as
a function of the second order dispersion parameter for different φNL0. Pulse duration
T0 = 1 ps.
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Figure 2.9: r.m.s. spectral linewidth for a pulse with temporal sinus cardinal profile
(T0 = 1ps) for a nonlinear phase shift of 0.30π. Inset display the spectra at the most
interesting dispersion points. NT: Normalized transmission.

2.8 presents the results for a Fourier limited pulse of 1 ps duration.

By comparing with the gaussian pulses, it should be noticed that the scale for the
dispersion φ(2) has been decreased, as the maxima and minima are achieved with less
required dispersion. Furthermore, the values of 2σ(λ) are larger which is understandable
from rectangular-like shapes.

As done in the gaussian case, in Fig. 2.9, we have plotted the spectra for the selected
dispersion values for a waveguide presenting a positive n2 with a nonlinear phase shift of
0.30π. The trend analysis is less intuitive than in the gaussian case. For instance, the
NSPP curves present several zero crossing points. We will focus our attention in the
analysis of the r.m.s linewidth as it is an easier quantity to measure experimentally. If
we read the spectral evolution from left to right, the analysis made for the gaussian pulse
remains valid. But interestingly, the sensitivity to small nonlinear phase variation will be
increased in case of top hat spectral shape pulses. Finally, when we display (2σλ)p−v as a
function of the induced nonlinear shift. We also show a linear trend with a different slope
than the one in gaussian profiles. It is noteworthy that the corresponding (2σλ)p−v for a
nonlinear shift of 0.30π for a Sinc profile is 50% larger than the case of gaussian beams.
One can conclude that the top-hat D-Scan presents two advantages as the dispersive
shape of the 2σ curve is less extended in terms of dispersion, and as the intensity required
to achieve the same (2σλ)p−v is 50% smaller.
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Figure 2.10: (2σλ)p−v for a temporal sinus cardinal pulse and for different φNL0 until
φNL0 = 0.3π with its respective linear tendency in red.

2.3.2 Kerr and TPA waveguides: FOMT P A determination

In general, nonlinear refraction is accompanied by nonlinear absorption and transforms
the temporal shape of the pulse and its intensity variation along the propagation. For
general integrated components we must include both the linear and nonlinear loss effects
in the wave equation. Considering the two-photon absorption (TPA) and neglecting the
free carrier effects, the nonlinear phase follows the equation:

∂φNL(z, t)

∂z
= k0n2I(z, t) =

k0n2I(0, t)
1 + βTPAI(0, t)z

(2.19)

where k0 =
2π
λ . For simplicity the field enhancement factors are included in the nonlinear

Kerr and TPA coefficients. Now, using the expression for the intensity evolution over the
waveguide length, the accumulated phase can be written as:

φNL(L,t) = k0
n2

βTPA
ln (1 + βTPAI(0, t)L) (2.20)

In present relations, L coincides with the effective length accounting for the linear losses(
Leff =

1−exp(−αL)
α

)
. In Fig. 2.11, we show Setting the intensity and the length of the

sample for which φNL = φNL0 = π with no TPA, we have varied the βTPA coefficient
and calculated the φNL. We have chosen values for n2 and βTPA set around the reported
values for silicon. We can see that, as expected, when decreasing the TPA coefficient,
the phase shift is larger. We can also appreciate that having a large n2 could mitigate
the effect of TPA. Furthermore, if the later becomes negligible (βTPAI(0, t)L� 1), the
nonlinear phase shift becomes: φNL(L,t)≈ k0n2I(0, t)L.
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Figure 2.11: Nonlinear phase for different material parameters (around the Silicon
values) at t= 0. Left: nonlinear phase as a function of βTPA for different Kerr coefficients,
right: nonlinear phase as a function of Kerr coefficient for different βTPA.

Now, we can modify the calculation procedure from the equation (2.15) which represents
the field after the Kerr lens. It will affect the amplitude and the phase of the wave
according to the previous relations:

U(L,t) =
√
I(L,t)eiφNL(L,t)

=

√
I0

1 + βTPAI0 |U(t)|2L
U(t)exp

(
ik0

n2
βTPA

ln
(
1 + βTPAI0 |U(t)|2L

))
(2.21)

where I(0, t) = I0 |U(t)|2. We can express the nonlinear phase relation given in equation
(2.20) as:

φNL(L,t) = 2πFOMTPA ln
(

1 + φNL0 |U(t)|2

2πFOMTPA

)
(2.22)

with φNL0 = k0n2I0L. This expression shows that the FOMTPA is the most important
parameter to determine the maximum achievable phase shift. In Fig. 2.12, we can notice
that for larger figures of merit, the nonlinear losses do not restrict the nonlinear phase
shifts. On the opposite, for figures smaller than 1, the output shift gets saturated.

In an experimental configuration, we can re-write the equation (2.20) by using a and b
values obtained with the power curves at zero dispersion (Eq. (2.9)):

φNL(L,t) = 2πFOMTPA ln
(

1 + b

a
Pin

)
(2.23)
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Figure 2.12: Nonlinear phase over π at t= 0 as a function of different material figures
of merit and φNL0/π= k0n2I0L/π values.

So, inspired by the Z-Scan technique, we can use the peak-to-valley measurement of 2σλ
to extrapolate the nonlinear phase shift for a given input power. Finally by plotting
this quantity against the measured parameter 2π ln

(
1 + b

aPin
)
, we can find FOMTPA as

the slope of the line. It is important to notice that this procedure does not require the
knowledge of the coupling efficiencies, as they are contained in the experimental ratio
b/a.

Next, we will Fourier transform the expression (2.21) to analyze the spectra and the
trends of 2σ and the NSPP. The resulting expression is given by:

Ũ(L,ν) =F

[√
I0

1 + βTPAI0L |U(t)|2
U(t)exp

(
ik0

n2
βTPA

ln
(
1 + βTPAI0L |U(t)|2

))]
(2.24)

This expression has no analytical solution, so we need to solve it by operating with
discrete (numerical) Fourier transforms. In Fig. 2.13, we have used it to trace the trends
for different FOMTPA values (i.e. materials) with positive n2 by exciting with a gaussian
pulse with duration of T0 = 1 ps. We have used as intensity normalization criteria the
non-depleted spectral peak power at zero dispersion for each input power. The intensity
step was chosen in such way that in a pure Kerr element the phase shift increases by
0.20π.

The general shapes of 2σ keeps the same trends as the ones explained in previous
sections. Nevertheless, as the FOMTPA decreases, the nonlinear phase shifts are smaller
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Figure 2.13: D-Scan response for different materials with one order of magnitude
decrease of the FOMTPA, the Kerr coefficient was maintained constant, each color
correspond to the same input intensity. The gaussian pulse duration is set to 1ps (see
the 2σλ baseline). The effective propagation length is of 5 mm.

Figure 2.14: Output spectral and temporal characteristics for φNL = π with an input
gaussian pulse. Colormap in dB.
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(i.e. smaller (2σ)p−v). It is noteworthy that the intensity plot is symmetric, i.e. not
influenced by the sign of the dispersion coefficient but from the effect on the pulse temporal
duration. The minimum transmitted power is obtained for the largest peak
power, i.e. at φ(2) = 0 ps2. A given FOMTPA will then give specific features under
the D-Scan technique. Finally and as previously shown, a negative Kerr material
will inverse the curves with respect to the zero dispersion axis.

In order to understand the effect in the pulse temporal and frequency domains, we have
plotted in Fig. 2.14 a case where the nonlinear phase shift was set to π for a waveguide
with FOMTPA = 5.10. It can be seen that the pulse duration is symmetric with respect
to the zero dispersion point where the duration is set to 1 ps. As we stretch the pulse in
the time domain, the duration increases and due to energy conservation, the peak power
decreases, so we can expect smaller nonlinear effects. In the spectral domain, the spectral
broadening clearly decreases as the dispersion in absolute value largely increase. It can
be confirmed that for negative dispersion values close to zero, there is a spectral
compression which translates in larger peak power at the central frequency. Around
zero dispersion the broadening starts to increase due to higher peak powers and for small
positive dispersion, it can be noticed a decrease in the central peak power, even though
the pulse duration for the negative counterpart is the same.

Now, we present in Fig. 2.15 the D-Scan curves in the case of a sinus cardinal temporal
pulse. We have used a Fourier limited pulse with duration of T0 =1 ps and the same
conditions used with the gaussian profile (Fig. 2.13). We have intentionally reduced the
dispersion span from 4 to 3 ps2, due to the presence of the peak and valley points for
smaller dispersion values.

Some interesting features are evident, for instance in the case of FOMTPA = 0.05, the
valley in the 2σ curves overpasses the baseline and the curve tends to a symmetric shape.
In the case of the intensity curves, a pronounced deep is present at zero dispersion, as
expected the curve is symmetric with respect to φ(2) = 0 ps2 (as the pulse duration).

In Fig. 2.16, we display the frequency evolution as a function of the dispersion for a
temporal sinus cardinal pulse reaching a nonlinear phase shift of π in a waveguide with
FOMTPA = 5.10. We can see in the frequency domain a top-hat beam presenting larger
broadenings around the zero dispersion point, whereas for the central wavelength (SPP),
a peak in the negative and a valley in the positive regimes is more evident than in the
gaussian case. It is also important to confirm that the interesting features are obtained
for smaller dispersions compared to the gaussian case. In the temporal domain a sinus
cardinal pulse with symmetric broadening is shown.
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Figure 2.15: D-Scan response for different materials with one order of magnitude
decrease of the FOMTPA, the Kerr coefficient was maintained constant, each color
correspond to the same input intensity. The sinus cardinal pulse duration is set to 1ps
(see the 2σλ baseline). The effective propagation length is set to 5 mm.

Figure 2.16: Output spectral and temporal characteristics for φNL = π with an input
sinus cardinal pulse. Colormap in dB.

75



Chapter 2. Bi-directional top hat D-Scan

Retrieve of FOMTPA

Up to now, we have presented the trends of the spectral evolution in the nonlinear regime
for two different pulse shapes with the presence of TPA. We can relate the simu-
lation tool with experimental quantities in order to retrieve the nonlinear
properties of the waveguide. To this aim, we will use the peak-to-valley difference
in the r.m.s. spectral linewidth (2σ)p−v. We recall Eq. (2.20) and (2.23) from where we
confirm that βTPAI0Leff = Pinb/a.

For each value of (2σ)p−v, the experimental parameter 2π ln (1 + Pinb/a) can be linked
to a value of φNL as shown in Fig. 2.17. The slope of a line between 2π ln (1 + Pinb/a)
vs. φNL gives directly the FOMTPA value. The procedure then requires the knowledge
of the (2σ)p−v evolution for different input powers, but to determine the FOMTPA does
not require the knowledge of the coupling efficiencies, as their are implicit in the b/a
ratio.
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Figure 2.17: (2σ)p−v for different nonlinear materials as a function of φNL/π. In the
upper axis the corresponding experimental points given by the TPA analysis.

2.4 Experimental set-up

The experimental bench consists of a mode-locked erbium-doped fiber laser emitting
pulses with a repetition rate of F = 50MHz, the initial pulses are Fourier limited with
pulse duration of 150 fs and maximum average power of 182 mW. The output amplified
pulse is collimated and sent through a grating based stretcher that will change its
temporal and frequency characteristics.
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Pulse shaper

The chosen stretcher configuration offers the possibility to adjust the outgoing pulse
spectral linewidth and chirp coefficient. It is built with a folded system based on a
diffraction grating and an optical lens to modify the dispersion sign [94]. As shown in
Fig. 2.18, the pulse shaper comprises a diffraction grating followed by a doublet lens and
a mirror located at the focal plane distance f . A roof prism is used as retro-reflector to
fold the system. The spectral bandwidth of the pulses is adjusted by means of a slit set
in front of the mirror.

The behavior of the set-up can be easily understood if we first consider that the grating
and the mirror are located at the object and image focal planes of the lens respectively.
Following the dispersion effect of the grating, each spectral component of the incident
pulse (represented in Fig. 2.18 in the visible window) is focused in the image focal plane
of the lens. The spectral components of the incoming pulse are then spatially distributed
along the mirror with a constant phase relationship, meaning that no dispersion is

Retro-reflector 

Mirror 
𝑆𝑖𝑛 𝑆𝑜𝑢𝑡 

Mirror + 

Adjustable slit Doublet 
Diffraction grating 

𝑓 
Variable distance 

𝐿 𝛼 𝜙(2) 

Figure 2.18: Four passages pulse shaper. View from the top, discriminating the
different optical elements and the most important variables. Bottom: auxiliary tilted
view to appreciate the different passages through the grating.
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introduced. However, the spectral linewidth of the output pulse can be controlled by
adjusting the slit width placed in front of the mirror. In order to spatially separate the
outgoing pulse, the input pulse is sent above the optical axis of the lens such that the
beam is reflected back to the grating at a lower height (we have added an additional
tilted view in Fig. 2.18 to clarify the height difference). The beam is diffracted and
reflected back into the set-up at an even lower height by means of a roof prism. By doing
so, the shaped pulse exits at a height higher than the incoming beam to facilitate its
extraction. This set-up is actually the folded version of the 4-f set-up introduced by C.
Froehly et al. in [95].

The 2nd order dispersion coefficient φ(2) is introduced by varying the distance L between
the lens-mirror-slit set-up and the grating around the focal distance f using a variable
mechanical stage. By doing so, a curvature of the front wave is introduced at the mirror
location with a sign varying for the distance L set towards the focal distance. Because
the spatial distribution of the beam at the mirror mimics its spectral distribution, the
front wave distortion equivalently introduces a spectral phase of the form eıφ

(2)ω2 . By
either using a ray-optics based calculation or the more complete theoretical description
given in [94], one can show that φ(2) = −8π2c(L−f )

Λ2ω3 cos2 θR
, where Λ and θR are respectively the

grating period and the first-order diffraction angle. It is worth noting that this formula is
similar to the dispersion achieved with a pair of gratings set-up separated by a distance
g (instead of L− f) [96]. The main difference being that the sign of the dispersion is
always negative in the later, whereas it can be adjusted in the former through the sign of
the quantity L− f .

We selected a 1200 lines/mm grating that exhibits, for TE-polarized light, a diffraction
efficiency in the Littrow configuration higher than 85 % in the spectral range 1520-
1580 nm. The doublet lens has a focal lens f = 20 cm. Following these parameters,
few ps2 dispersion coefficient should be reached by varying the distance L

towards the focal plane by a quantity around 10 mm. A more detailed description
of the optical performance of each component could be found in [93].

A typical spectrum of the outgoing pulse is reported in the Fig. 2.19 showing an almost
rectangular-shaped form, in this case with a bandwidth set to 6.5 nm. The spectrum was
measured with an optical spectrum analyzer (OSA) and the temporal curve was obtained
with an autocorrelator. In red there is a fit of a 32nd order supergaussian in the spectral
domain and the autocorrelation of its Fourier transform in the temporal domain.

Numerical simulation of the input chirped spectrum

As shown in Fig. 2.19, an initial super-gaussian shaped pulse properly reproduces
the effect of the lossless dispersive medium in the spectral domain and retrieves the
autocorrelation duration for the Fourier limited case. As the pulse spectral components
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Figure 2.19: Characteristic spectrum and autocorrelation measurements with a
supergaussian fit in the spectral domain and its corresponding Fourier transform in
the temporal domain.

are affected by a phase ϕ(ω), it is convenient to operate in the frequency domain. The
spectral phase shift introduced by a dispersive material is given by ϕ(ω) = n(ω)ωL

c , where
n(ω) is the refractive index and L the propagation length. So the chirped pulse following
the introduced dispersion takes the form:

Schirped(ω) = Sinitial(ω)exp [iϕ(ω)] (2.25)

where Schirped(ω) =F [schirped(t)] and Sinitial(ω) =F [sinitial(t)], F denoting the Fourier
Transform operator. Assuming the pulse spectral width small compared to the central
frequency, the phase could be developed in Taylor’s expansion around ω0:

ϕ(ω) = ϕ(ω0) + ∆ω
dϕ

dω
|
ω0

+
∆ω2

2
d2ϕ

dω2 |
ω0

+
∆ω3

6
d3ϕ

dω3 |
ω0

+ . . .=
∞∑
n=0

∆ωn

n!
dnϕ

dωn
|
ω0

(2.26)

where ∆ω = ω− ω0. The notation ϕ(n) = dnϕ
dωn |

ω0
will be adopted in the following. The

effects of ϕ(ω0) and ϕ(1) during the propagation of the pulse in the dispersive medium
will be neglected, because ϕ(1) introduces a pure group delay. Since the second order
dispersion introduced by the set-up is small, higher order dispersive effects can be
neglected (unless specified), and the expression for the chirped pulsed follows:

Schirped(ω) = Sinitial(ω)exp
[
i
1
2∆ω2ϕ(2)

]
(2.27)

As can be appreciated in Eq. (2.27), the spectrum (in frequency domain) is multi-
plied by a second order phase term, so the power distribution over the frequencies is
not affected. Next, a Fourier transform is performed (schirped(t) = F [Schirped(ω)] =
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F {Sinitial(ω)exp
[
i1

2 ∆ω2ϕ(2)
]
}). A Matlab code is presented in section D.1. It was used

to calculate the FWHM autocorrelation duration for a input spectrum. The calculated
chirped temporal spectrum is multiplied by its complex conjugate to determine the
intensity and measure the FWHM duration of its autocorrelation that is plotted as a
function of the second order dispersion term in the upper axis of Fig. 2.20 and 2.21, the
two figures correspond to two different pulse linewidths.

The full width at half maximum (FWHM) of the autocorrelation traces recorded experi-
mentally for the stage positions varying over 25 mm is plotted with open circles in the
Fig. 2.20 . The stage position at "0 mm" coincides with the largest separation between
the grating and the lens. The symmetric shape of the curve shows that the pulses do
not suffer from any nonlinear phase distortion that could have been introduced in the
fiber laser module. In order to determine the relation between the stage position and the
dispersion coefficient φ(2), the auto-correlation traces of a linearly chirped rectangular
shape pulse spectrum (with a linewidth set at the maximum and minimum slit dimension)
have been numerically calculated for various φ(2) values. The curve for the simulated
FWHM autocorrelation width corresponding to a spectral width of around 7 nm for
φ(2) varying from -3 to +3 ps2 is reported in Fig. 2.20 with red solid line. The perfect
adjustment between the measured (in blue dots) and the expected pulse du-
rations proves that the pulses we generate respect the Fourier limit and that
higher order dispersion effects are negligible. Especially, for φ(2) = 0ps2 we verify
that the autocorrelation pulse duration is 2 ps, close to the Fourier-limit, which coincides
to a pulse duration of 1.1 ps. We are now able to connect the stage position with
the dispersion coefficient as shown in the fits of Fig. 2.20 and 2.21, which
exhibit linear dependence with slopes for the maximum and minimum slits
equal to 2.25± 0.02 ps2/cm and 2.38± 0.02 ps2/cm respectively. The accuracy is
limited by that of the stage position control estimated to 100 µm.
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Figure 2.20: Left: Measured and simulated FWHM duration for the maximum opened
slit (around 7 nm spectral width). Right: Calibration of the introduced dispersion as a
function of the stage position.

80



2.4. Experimental set-up

φ
(2) [ps2]

-3 -2 -1 0 1 2 3
F

W
H

M
 a

ut
oc

or
re

la
tio

n 
[p

s]

2

4

6

8

Simulation
Measurement

Stage Position [mm]
5 10 15 20 25

Stage Position [mm]
0 5 10 15 20 25

φ
(2

)  [p
s2

]

-3

-2

-1

0

1

2

3

φ
(2) = 0.238*x - 2.73

Measurement and
simulation correspondance
linear fit

Figure 2.21: Left: Measured and simulated FWHM duration for the minimum opened
slit (around 3.7 nm spectral width). Right: Calibration of the introduced dispersion as a
function of the stage position.

In our case we will be interested in dispersion coefficients comprised between +3 and
-3 ps2, coinciding with the range which has been simulated for the D-Scan method
in section 2.3. This result shows that the set-up is able to introduce a very
precise second order dispersion where its sign is also adjustable.

In Fig. 2.22, we superimposed the output spectra in dBm for a second order dispersion
range of 6 ps2 following the injection of the chirped beam inside a SOI strip waveguides
at low powers in order to avoid any nonlinear effect. The perfect superimposition of the
output spectra demonstrate the proper alignment of the stretcher respect to the injection
set-up and shows negligible variation in the coupling efficiency while varying the pulse
dispersion. We present the spectra in (a) dBm to highlight the sharp edges (top-hat
beam) and in (b) linear to compare the variation of power (<8%).

(a) (b) 

Figure 2.22: Overlap of 26 transmission spectra at low power measured trough a SOI
strip waveguide varying the stage position from 0 to 25 mm with a step of 1 mm (φ(2)
between +3 and -3 ps2) in (a) dBm and (b) linear scales.
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2.4.1 Injection Fiber characterization

In some of the coming experiences, we will use the bi-directional method introduced in
section 2.2. We have introduced polarization maintaining fibers (PMF) to guaranty a
monomode operation and a symmetric set-up. First, we will characterize them in the
picosecond nonlinear regime in order the quantify its contribution to the measurement.
To do so, we have implemented the set-up shown in Fig. 2.23. The pulse stretcher output
is injected inside the fiber with a x10 microscope objective.
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Figure 2.23: Experimental set-up injecting the light from 2 meters of polarization
maintaining fibers (PMF) used for the double side injection.

We have measured the output power as a function of different input powers for 1 m and
2 m fiber lengths. In Fig. 2.24 we display the expected linear trends as there is no TPA
in silica at the wavelength used (λ∼ 1570 nm).

From the slope of the lines, the efficiency could be estimated as a third of the input power
(i.e. for 9 mW injected, we can expect 3 mW in the output). All of this measurements
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Figure 2.24: Output power as a function of the input power for two different lengths
(1 m and 2 m) of polarization maintaining fibers.
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Figure 2.25: Output spectra of a two meters fiber at variable dispersion for different
average input powers: (a) 1 mW, (b) 5 mW, (c) 10 mW and (d) 12 mW.

were performed at zero dispersion point (L= f), so with Fourier limited pulses. Although
the Kerr coefficient in Silica is about 200 time smaller than that in silicon, it is necessary
to evaluate the Kerr contribution of the silica fiber in the spectral broadening that will be
measured with the set-up. In Fig. 2.25, we show the SPM spectral broadening measured
at the output fiber for a square-like input pulse as a function of the introduced dispersion
for 4 different input powers (1 mW, 5 mW, 10 mW and 12 mW). It can be noticed that a
larger spectral broadening effect is observed around zero dispersion, as it coincides with
shorter pulse durations. One can refer to Fig. 2.16 in order to highlight similarity in the
spectral evolution as a function of the introduced dispersion.

The different spectral measurements are recorded with a resolution of 0.5 nm over a span
of 30 nm in 1001 number of points (N) by using an optical spectrum analyzer (OSA)
Ando AQ66317. With those values we can obtain the average output power by a discrete
integration over the spectra:

Pout[mW] =
Span

Res×N

N∑
i=1

10Pi/10. (2.28)

Finally, we can use the r.m.s. spectral linewidth expression to quantify the spectral
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Figure 2.26: 2σ(2) and Pout plots as a function of the dispersion for different input
powers for 2 m silica fiber. The curvature show a characteristic positive Kerr material.

broadening as a function of the introduced dispersion at different powers. As it is well
known, the nonlinear Kerr refractive index of silica is positive, so we would expect trends
as the ones shown in Fig. 2.8.

The tendencies shown in Fig. 2.26 demonstrate the versatility of the top hat D-Scan
technique, as it could be applied to fiber configurations and is able to detect Kerr
coefficients as low as the one of Silica, at least one order of magnitude smaller than the
typical materials used throughout this thesis. We can also estimate from the curves some
uncertainties, in the case of 2σ is of around ±0.03 nm. From the power plot, we can
notice the absence of nonlinear absorption as a function of the pulse duration (chirp)
as expected for silica. At the same time, the broadening contribution from the fibers
will be taken into account in the following D-Scan experiments with nano-waveguides.
Nevertheless, we should notice that their contribution can be neglected for middle powers
and nonlinear waveguides based on silicon, chalcogenide or silicon-germanium alloys that
exhibit nonlinear susceptibilities more than 5 orders of magnitude larger [97] than silica
fibers, due to larger nonlinear material coefficients and smaller effective areas. On the
other hand, materials with lower nonlinear effective phase shift such as silicon nitride
will be more difficult to measure following this approach, and thus we will propose some
variations and further numerical treatment.

2.4.2 Set-up configurations

In Fig. 2.27 and 2.28, we present the set-up for the double side injection. Microscope
objectives are used to inject and collimate the light inside and outside the fibers and
the waveguides, respectively with magnifications of ×10 and ×60. It can be appreciated
that the fiber allows a symmetric configuration making the proposed set-up adequate to
perform the techniques introduced at the beginning of the chapter. We have used the
super-indices (1) and (2) to denote the two different injection directions, at the same
time, the letters A and B denote the two facet sides of the sample.

84



2.5. Methods validation with a SOI strip waveguide

𝑆𝑜𝑢𝑡 

Laser 

Polarizer 

cube 

𝜆/2 

Pulse 

Shaper 

𝜆/2 

Time 

𝜔 

Δ𝜔𝑝 
𝜶 

𝜏𝑝 

𝑆𝑖𝑛 

𝑆𝑜𝑢𝑡 

Sample 

𝜆/2 Polarizer 

cube 

OSA 

Polarizer 

cube 

𝜆/2 

𝜅(1)OSA 

𝜆/2 

𝜅(1)SB 𝜅(1)SA 𝜅(1)inj 

Figure 2.27: Experimental set-up injecting the light from 2 meters of polarization
maintaining fibers and the input side the facet A. κ(1)A = κ

(1)
injκ

(1)
SA and κ(1)B = κ

(1)
OSAκ

(1)
SB.

𝑆𝑜𝑢𝑡 

Laser 

Polarizer 

cube 

𝜆/2 

Pulse 

Shaper 

𝜆/2 

Time 

𝜔 

Δ𝜔𝑝 
𝜶 

𝜏𝑝 

𝑆𝑖𝑛 

𝑆𝑜𝑢𝑡 

Sample 

𝜆/2 
Polarizer 

cube 

OSA 

Polarizer 

cube 

𝜆/2 

𝜆/2 

𝜅(2)inj 

𝜅(2)SB 𝜅(2)SA 𝜅(2)OSA 

Figure 2.28: Experimental set-up injecting the light from 2 meters of polarization
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2.5 Methods validation with a SOI strip waveguide

Hereby we present the first experimental measurements in integrated waveguides. We
want to validate the proposed technique and set-up by using a squared-like Fourier limited
pulse when traveling through a highly nonlinear lossy material. Silicon is a well-known
material with large third order nonlinear properties.

To illustrate the two photon absorption process we have chosen monomode strip waveguide
with typical geometrical values, 260 nm height, 450 nm wide. For the first test, we
have removed the injection fiber to increase the available power. In Fig. 2.29, we have
plotted the output spectra for input powers varying from 0.1 to 13 mW and the output
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power (measured after integration of the output spectra) as a function of the input power
(measured with a powermeter). Our objective is to evaluate the energy of the injected
pulses from the analysis of the nonlinear transmission.

From the curves in Fig. 2.29, we can appreciate the symmetric spectral broadening
characteristic of a self-phase modulation induced by a pure optical Kerr effect. At this
point it is clear that the sensitivity to measure new generated frequencies is higher
with a rectangular like spectral shape (like in a double truncated spectrum) than in a
gaussian shape. For powers larger than 10 mW, the spectra present an evident blue shift
which is a characteristic of the refractive effect induced by the two-photon generated free
carriers. On the transmission curve (right side graph in Fig. 2.29), we have added a red
dashed line to show the expected linear behavior. The output power exhibits a saturation
characteristic from a nonlinear absorption effect (losses that depend on the intensity). In
the case of the chosen silicon waveguide, the maximum output power is around 4 µW.
This unbreakable maximum power is a limit for the achievable nonlinear phase shift, so
this curve is at the origin of the limitations of silicon for integrated nonlinear optics.

Now, we will use Eq. (2.8) to find two terms: the slope associated with the imaginary
part of the third order susceptibility and a constant term depending on the coupling
coefficients and linear propagation losses. In Fig. 2.30, we show the plot of Pin/Pout as
a function of Pin with the respective linear fit and equation.

The linear fit of the experimental data gives the following parameters a = 923.6 and
b= 176.2 mW−1 are estimated. Hereafter, our objective is also to get an estimation of
the coupling efficiencies. To do so, the TPA coefficient is kept as a known parameter,
equal to βTPA ≈ 8× 10−12 m/W. In this process, the input coupling efficiency plays a
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Figure 2.29: Left: Output spectra as a function of the input power for picosecond
regime pulses. Right: Input vs. Output Power for a silicon strip monomode waveguide.
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major role and could be easily found from the previous expressions (i.e. Eq. (2.9)):

κin =
b

a

ANL
S2βTPAηLeff

(2.29)

Using the relation between the average power and the peak power, the power coupled
inside the waveguide is calculated:

Ppeak inj = κinηPaver inj (2.30)

Merging the previous two expressions gives the relation between the incident power
(measured experimentally) and the injected power we need to assess:

Ppeak inj = Paver inj
b

a

ANL
S2βTPALeff

(2.31)

By taking the following parameters: ANL ≈ 0.12µm2, Leff ≈ 0.64mm, S ≈ 1.46 and
Paver inj = 10mW, we can estimate the injected peak power :

Ppeak inj ≈ 20W (2.32)

In terms of coupling efficiencies, it corresponds to κin ≈ 10%. Similarly, the injected
peak intensity I(0) is connected to the input power Pin = Paver inj through the relation
I(0) = κinPinη/ANL, so the typical intensity in the silicon strip waveguide is in the order
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Figure 2.30: Pin/Pout as a function of Pin in a SOI strip waveguide, showing the linear
fit in red and corresponding function.
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of I(0)≈ 165 ∗ 1012 W/m2 = 16.5 GW/cm2, corresponding to an injected energy in the
order of few pJ. The latest values strongly depend on the geometry, fabrication and
material of the waveguides, but they give a hint of the small coupling and the importance
of the accuracy in this measurement because only 1% difference in the injection could
drastically modify the results.

The impossibility to experimentally determine all the parameters of the experiment
(especially the TPA coefficient) under the present conditions, requires a specific procedure
to determine the injected power (i.e. coupling efficiencies), so we will apply the technique
proposed in section 2.2.

2.5.1 Silicon strip bi-directional nonlinear transmission

Here, we have chosen a standard SOI waveguide with no tapers (i.e. a constant cross
section) with the geometrical parameters: height equals to 340 nm, width of 520 mn
and geometrical length of 1 cm. It is a standard monomode strip waveguide and the
transverse distribution of the fundamental TE mode is presented in Fig. 2.31.

First, we performed the experiment at zero dispersion injecting the pulse from a fiber as
shown in the the set-up configurations depicted in Fig. 2.27 and Fig. 2.28. In Fig. 2.31,
we use the superindices (1) and (2) to denote injection from facet A and facet B of the
sample respectively. The evolution of the spectral broadening is presented, in the left,
when injecting from side A and in the right from B. The spectral broadening induced by
SPM is noticeable for input powers larger than 1.5 mW. The symmetry in all the spectra
is characteristic from a SPM effect. From the recorded output spectra, it can be seen that
the injection from the facet A is more efficient than that from the side B. This strong
difference question the assumption of symmetric coupling (injection is the same from
both sides) currently used in literature. The measured ratio Pin/Pout is plotted in terms
of Pin for the two injection senses in order to find the linear parameters a and b from the
linear trends. The experimental coefficients are a(1) = 17605± 184, b(1) = (1058.7± 34.5)
mW−1, a(2) = 14967± 162 and b(2) = (314.3± 30.4) mW−1. Finally, the mode calculation
allowed the estimation of an effective area of 0.107 µm2 by using the vectorial expression
in Eq. (1.72).

The relations to measure the coupling efficiencies, found for the bidirectional method (Eq.
2.12) can be easily adapted to our configuration, such that for the case (1): κ(1)in = κ

(1)
inj κSA

and κ(1)out = κSBκ
(1)
OSA

1, where κSA and κSB stand for the coupling efficiencies of the facet

1It is easy to demonstrate that the relation a(1)

a(2)
=
κ
(2)
inj

κ
(2)
OSA

κ
(1)
inj

κ
(1)
OSA

= constant, must be valid for all the cases.
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Figure 2.31: Spectra at zero dispersion for different powers when injecting by the
facet A (Top-left) and B (Top-right). We display the linear tendencies and relations for
Pin/Pout vs. Pin (Bottom-left) and the transverse distribution of the fundamental TE
mode and a picture of the injection and collection microscope objectives with the sample
(Bottom-right).

A and B. Analogously for the case (2).

(κSA)
2 =

b(1)

b(2)a(1)κ
(1)
injκ

(2)
OSA exp(−αlL)

(κSB)
2 =

b(2)

b(1)a(2)κ
(2)
injκ

(1)
OSA exp(−αlL)

(2.33)

In this configuration the coupling efficiencies were verified and the linear losses and
group index were estimated through the Fabry-Perot method, the values obtained
are: κ(1)inj = 27%,κ(1)OSA = 22%,κ(2)inj = 24%,κ(2)OSA = 29%,α= 0.5 cm−1,ng = 3.8. Finally,
with the values of b and a in both experiences, coupling coefficients of κSA = (6.4±
0.4)% and κSB = (2.5± 0.2)%, which are in the order of magnitude estimated in the
previous section.

Now, we can measure the effective TPA parameter of the waveguide: γwgTPA = βbulkTPAS
2/ANL,
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Figure 2.32: Comparison between the output spectra when injecting the same power
from both facets in experiments and simulations.

with units of (Wm)−1. Indeed, as we know the injection efficiencies and the param-
eters a and b from each injection case, we can use the expression (2.9) to measure
the effective parameter in each configuration independently. Taking into account
that the pulse duration is 1.20 ps (verified with simulations for the respective FT
width), then η ≈ 16600. We have an effective parameter for the strip waveguide of
γ

1cm(1)
TPA ≈ 26.8 (Wm)−1, γ

1cm(2)
TPA ≈ 26.9 (Wm)−1, with a calculated uncertainty of

9%, γ1cm
TPA ≈ 27± 2 (Wm)−1. As expected, the measured value is independent of the

injection side because it corresponds to a parameter linked to the waveguide.

To verify the results, we have simulated the broadening effect for the given injection
efficiency with the same initial power and by considering n2 = 4× 10−18 m2/W, which is
in the order of magnitude of the values given in the literature [98]. The two experimental
spectra at 10 mW input power are shown in Fig. 2.32. It can be seen that the broadening
is larger when side A is used as there is a broader spectrum generated by self-phase
modulation and a lower global transmission, because the losses due to TPA are also
larger. It is also important to notice that the agreement of the simulations with
the experimental spectra allows us to conclude that the method is reliable
and is able to extract the effective TPA parameter of the waveguide. We insist
on the fact that the present sample has no designed couplers to improve the injection
and that the simulated spectra in Fig. 2.32 do not result from a numerical fitting, as it
is often times done in numerous publications.

To test the method accuracy, we have changed intentionally the coupling in one of the
sides of the waveguide. In this case we have decreased the transmission of about half
of the optimum in the linear regime by decreasing the coupling from the facet A (in
this case by changing the height of the microscope objective). The spectra obtained are
shown in 2.33. It is already evident that the broadening achieved with the injection from
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Figure 2.33: Left: Pin/Pout vs. Pin at zero dispersion when injecting by the two facets
by decreasing the injection in the facet A. Right: Comparison between the output spectra
when injecting the same power from both facets (experiments and simulations).

the facet A is smaller. We cannot directly compare the coefficients extracted from the
linear plots Pin/Pout as the coupling efficiencies are involved in the expressions.

The re-calibrated set-up coupling coefficients are κ(1)inj = 24%,κ(1)OSA = 24%,κ(2)inj = 27%,
κ
(2)
OSA = 15%. It could be noticed that even if the injection stages remain the same, the

output were modified with respect to the previous experience. This change could be
explained with the modification of the output beam, as one of the facets introduces a
different collection/injection efficiency.

With those values and the information given by the double endfire coupling, we could
estimate efficiencies of κSA = 3.5% and κSB = 2.6%. This result is in perfect agreement
with the expected values, as the facet B was not modified and the facet A was expected
to decrease a half in the efficiency. Now, we have enough information to calculate the
effective TPA parameter from both experiences: γ1cmchanged−inj(1)

TPA ≈ γ1cmchanged−inj(2)
TPA ≈

28.0 (Wm)−1, again, this value should be the same regardless the injection and collection
efficiencies, so it must be the same as in the previous bi-directional experience. In this
case the same value was obtained with a difference of 4%.

From Fig. 2.33, a remarkable matching between the simulated and experimental spectra
can be confirmed. In this particular experience, larger uncertainties are expected because
the intentional misalignment could be slightly different in both cases.

After validating the method sensitivity, we proceed by measuring a geometrically identical
strip waveguide located on the same sample in order to determine if the method is able
to measure the same effective nonlinear parameter. Again the coupling coefficients of the
set-up were re-measured: κ(1)inj = 23%,κ(1)OSA = 29%,κ(2)inj = 28%,κ(2)OSA = 21%.

With all the values, we could estimate injection coefficients of κSA ≈ 4.1% and κSB ≈ 3.3%.
Those values are consistent with the spectra depicted in Fig. 2.34 where the nonlinear
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Figure 2.34: Left: Pin/Pout vs. Pin at zero dispersion when injecting by the two
facets in a second strip waveguide with the same geometry. Right: Comparison between
the output spectra when injecting the same power from both facets (experiments and
simulations).

effects are stronger when injecting from the side B, opposite facet compared to the previous
waveguide. It is also worth noticing that the κOSA value changes in all the experiences
but remain within the same range, in the optimized conditions, between 20% and 30%.
Finally, the estimation of the effective nonlinear parameter is: γ1cm−II(1)

TPA ≈ 34.4 (Wm)−1

and γ1cm−II(2)
TPA ≈ 34.5 (Wm)−1, where II denotes that a second waveguide was measured.

From these value, we can see that the order of magnitude of the effective susceptibility
is of the same order of magnitude for both waveguides, nevertheless, the difference can
be attributed to different propagation losses or a change in the effective area that could
come from the variation in the wafer thickness or a different width.

2.5.2 Top-hat D-Scan applied to a SOI waveguide

The spectral output measurements are repeated with pulses under different dispersion
φ(2) varying from -3.5 to +3.5 ps2 in the first waveguide characterized in the previous
section. It is important to note that the injection was done from the facet A. Applying
four different input powers Pin, the evolutions of the output power P (1)

out and the spectral
r.m.s. width 2σ from the transmitted pulses are presented in Fig. 2.35 (Up) as a function
of φ(2). The 2σ curves present a dispersive shape similar to the transmission curves
from Z-Scan (Fig. 1.26) and to the simulations performed in the D-Scan model section
(Fig. 2.16). In agreement with the positive sign of n2 for silicon, the maximum spectral
broadening is expected for a positive value of φ(2). Towards large dispersion values, the
self-phase modulation becomes negligible due to the wide-spreading of the pulses and
the spectral width tends to that of the input pulse as predicted from the D-Scan model.
We have superimposed in dashed lines the output power, demonstrating the presence of
TPA with an expected symmetric shape, in accordance with the simulations shown in
Fig. 2.15.
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Figure 2.35: Up: Spectral r.m.s. width variation of the output transmitted pulses as a
function of the applied dispersion φ(2) on the input pulses and their respective output
power. Down-Left: Experimental (dots) and simulated (dashed) peak to valley values as
a function of the TPA and nonlinear phase shift respectively. Down-Right: Figure of
merit measurement from the slope of the curve of 2π ln (1 + Pinb/a) vs. the nonlinear
phase.

From the r.m.s spectral linewidth plotted in Fig. 2.35-Top, we can measure directly the
(2σ)p−v. We have plotted this quantity as a function of 2π ln (1 + Pinb/a) (blue dots),
as proposed to retrieve the FOMTPA in section 2.3.2. We can overlap those points with
the (2σ)p−v as a function of the nonlinear shift φNL introduced by the waveguide from
the D-Scan model (dashed line). We have plotted in Bottom-Right, the relation between
φNL (semi-analytical) and 2π ln (1 + Pinb/a) (experiments). The slope of the line gives
directly the FOMTPA value, in our case equals to 0.50± 0.03, in very good agreement
with the reference values published for high resistivity silicon at telecom wavelengths.
The procedure applied to estimate the uncertainty is extensive to the other
measurements in this manuscript and for the FOMTPA is of 6%.

After properly finding the figure of merit of the waveguiding structure, our objective is to
separate the real and imaginary contributions. It is mandatory to measure the injection
efficiencies from both facets of the waveguide, called A and B. This has been already done
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Figure 2.36: (a) Superposition of the spectral broadening from simulation (lines)
and experiments (circles) with uncertainty bars for different calculated nonlinear phase
shifts proportional to the variation in power. (b) Experimental spectra registered at
Pin = 10mW and varying the second order dispersion. (c) Simulation results for a perfect
temporal sinus cardinal pulse and a nonlinear phase shift of 1.47 rad corresponding to
the same σp−v as (b) and the same dynamics.

by applying the double injection method giving the values 6.4 % and 2.5 %, respectively.
We have deduced the values of the effective nonlinear parameters defined by γTPA =

b(1)/(a(1)κ(1)injκSAηLeff) = 27± 2 W−1m−1 and γ = 2πFOMTPAγTPA = 85± 9 W−1m−1,
which corresponds to an uncertainty of 10% for the real susceptibility. Values
that are in the same order of magnitude of those reported in the literature [99].

By simulating the modal field distribution in the waveguide, the effective nonlinear area
ANL could be calculated and the bulk nonlinear coefficients could be extracted. Values
of n2 = 2.57× 10−18 m2/W and βTPA = 3.26× 10−12 m/W, are deduced, which are in
good agreement with the standard coefficients used in silicon. It is important to recall
that the high contrast in the peak-to-valley extraction is due to the rectangular pulse
shape that allows the measurement of very fine nonlinear phase shifts.

We have simulated the trends through the semi-analytical simulation of the system as a
temporal (Kerr) lens presenting TPA. In Fig. 2.36 we present the obtained curves from
simulations taking into account the experimental coefficients. Using the susceptibilities
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found previously, we have calculated the r.m.s. spectral linewidth that we present in
solid lines and the experimental values with their respective error bars. It is important to
recall that each point corresponds to one spectrum, so the model reproduces
properly the features found in the experiments. The apparent mismatch found
with the maximum power is attributed to the small contribution of the fiber. Also a
not evident increase in the experimental temporal width (larger sigma for the purple
line) will be discussed in the next chapter. Nevertheless, it is not a critical point as the
peak-to-valley difference is the same for simulation and experiment. We have finally
added the output spectra recorded for the maximum power (Pin = 10 mW) that exhibits
the maximum achieved nonlinearities. Next to it, we present the spectra obtained from
the simulation, corresponding to a nonlinear phase shift of 1.47 rad. From the simulations,
we reproduce features at the noise level (-30dB). Finally, we remark the fact that the
power transmission at the central wavelength follow an inverse trend with respect to
the dispersion than the standard deviation one. Indeed, the power is larger at 1584 nm
for negative dispersion values, then decreases for the positive, this is expected from the
NSPP as plotted in Fig. 2.15.

2.6 Nonlinear characterization of integrated photonic waveg-
uides

In this section we will apply the bi-directional D-Scan technique to characterize different
integrated materials. Some of the waveguides could be found in literature, so they will
be useful to validate the methodology. Also, the third order susceptibility of novel hybrid
structures and other semiconductor alloys will be presented. In particular some deeper
analysis will be performed when interesting features will be found.

We have seen that the expression for γ depends on several factors, such as the effective
area or the bulk material susceptibilities. We will indeed tune these parameters in order
to test the method and find interesting structures for integrated nonlinear applications.
For instance, we will explore in this chapter diverse materials such as Ge rich - Si-Ge
alloys with different concentrations, chalcogenide and silicon nitride.

2.6.1 Ge rich - Si-Ge alloys

Germanium (Ge) is an interesting material for integrated proposes, nevertheless its
electronic properties makes it an inconvenient material for the C-band telecom window
optical nonlinearities. Instead, Ge have been largely used for photodetection. Another big
interest of Ge in photonics is its transparency properties in the midIR window (between 3
and 14 µm), so this material shows potential for spectroscopic and nonlinear proposes in
the midIR (lower frequencies). An alternative to pure germanium or to SOI waveguides
also consists of waveguides having a Si1−xGex core, opening the possibility of tuning the
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optical properties by changing the Ge concentration x. In particular, the nonlinearities of
these compounds have not been thoroughly studied around λ∼1550 nm and are expected
to be very sensitive to any modification of the material energy bands.

As explained in section 1.4.2, there are two kind of gaps to be considered in SiGe alloys
that affect the material electronic properties (in particular light-matter interactions are
governed by this energetic landscape): the direct or indirect bandstructures, respectively
(section 1.4.2). Meanwhile, it is not clear to which concentration x, the indirect gap model
is applicable in order to estimate the nonlinear susceptibilities (section 1.2.1). Some
numerical explorations have been performed recently showing a limit around x = 0.80,
where the mismatch for the expected TPA from one model to the other varies by two
orders of magnitude [100].

In this context, these approaches have been tested in the present manuscript with
experimental data from pure Germanium and pure Silicon, so we will measure the
nonlinearities to give further insights about the trends and the limits of the theoretical
models used and evaluate the potentials of the SiGe alloys for nonlinear optics in the
telecom waveband.

The samples used in this section have been fabricated in wafers with three different Ge
concentrations in the core of the waveguide, x = 0.70, 0.80, 0.90, fabricated
in the L-NESS laboratory (Politecnico di Milano) in the frame of the EU INSPIRE
project coordinated by Dr. Delphine Morini. The concentration values were chosen due
to the interest of distinguishing the general behavior of the compound with respect to
the bandgap.

The fabricated waveguides consist of 1 µm etched in a 2 µm thick Si1−xGex alloy (section
1.4.2). To compare similar effective areas, we have chosen a width of 1.6 µm. In
this configuration we have single mode waveguides at 1570nm for the three
concentrations.

To have an order of magnitude from the theoretical predictions given in the literature,
we have provided some curves proposed in a review paper from Hon et al. [100]. In
Fig. 2.37, we have selected the figures showing concentrations and wavelengths used
in this manuscript. As it can be seen, the proposed trends of the real and imaginary
parts of the third order susceptibility are the same as the ones presented in section 1.2.1
and section 1.2.2 respectively. The linear refractive index of Si1−xGex was calculated
using the relation n(ω) = n0 + n1( h̄ω), where n0(x) = 4.01− 0.81(1− x) + 0.22(1− x)2

and n1(x) = 0.216− 0.211(1− x) + 0.089(1− x)2. The expressions used to calculate the
indirect bandgap energy, plotted in Fig. 2.37(a), were[101]: EΓ∆ = 1.11− 0.34x+ 0.227x2

and EΓL = 2.01− 1.46x+ 0.227x2, where EΓ∆ is the bandgap energy near the X valley
[Eig =EΓ∆(x) when x= 0 for Si], and EΓL is the bandgap energy at the L valley. For the
direct bandgap energy, a linear approximation was used taking into account the direct
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(a) (b) 

(c) (d) 

Figure 2.37: Theoretical predictions of Si1−xGex third order nonlinear properties from
the chosen gap model. (a) Calculated bandgap energy of EΓ∆,EΓL and Eg with respect to
the atomic fraction of Ge. (b) Theoretical χ(3)

′

1111 (real part of the susceptibility) dispersion
curves for different Ge concentration and applying the two models. (c) Theoretical βTPA
(imaginary part of the susceptibility) dispersion curves with x=0, 0.2, 0.4 and 0.6 using the
indirect bandgap model. (d) x=0.8, 0.9, 0.95 and 1 using the direct bandgap model[100].

bandgaps of Si (3.30 eV) and of Ge (0.82 eV)[101, 100]: Eg = 3.39− 2.57x. It is then
clear that the alloy direct bandgap decreases when the concentration of Ge (x) increases.

From those two kinds of bandgaps, the dispersion curves for the real part of the suscepti-
bility could be estimated by using the expression (1.21). As expected, the wavelengths
close to the material gap experience stronger light-matter interactions. For lower h̄ω
values (midIR), the material n2 tends to a constant value (Fig. 2.37(b)). The predicted
values are different when using a direct model gap (x>80%) or an indirect one (x<80%).

In the case of the imaginary part (two photon absorption), the wavelength range is
naturally restricted to the frequencies larger than the half of the cut-off (so lower
wavelengths than 3 µm for all the cases). The shape of the TPA could be traced back by
using Eq. (1.32). It could be noticed that for the TPA, the difference between the two
models is of two orders of magnitude, making almost impossible to estimate the genuine
nonlinear performance (figure of merit) with around 80% of Germanium. Furthermore,
in the case of the indirect bandgap model (Fig. 2.37 (c)), the trends of the TPA saturate
when increasing the Germanium concentration, making impossible an evident connection
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with the direct bandgap model. In the case of Fig. 2.37 (d), the trends were plotted
from a wavelength of 1.7 µm, so the wavelength we will use (around 1.58 µm) is not
represented but could be easily extrapolated.

In summary, there is a large interest in the characterization of SiGe waveguides in the
nonlinear regime but there is a lack of experimental data that can confirm theoretical
predictions in order to design devices for diverse wavelengths and proposes. The ex-
perimental set-up presented in section 2.4 and the bidirectional D-Scan technique will
be used to investigate the effective waveguide third order susceptibilities and provide
additional data about these alloys for nonlinear optics designers.

Si0.30Ge0.70 nonlinear characterization

The first concentration to be tested is the one with highest silicon concentration, so we
expect a larger bandgap energy. The measured propagation losses were estimated to
(10 ± 2) dB/cm by using the cut-back method. The calculated effective index for the
fundamental TE mode is neff = 4.02 and the effective area is Aeff = 5.38 µm2.

Differently from the case of silicon, we will present the spectral results in order to
determine if different features are appreciable. We could apply the bi-directional method
in order to estimate the coupling coefficients and the effective gamma parameter. In Fig.
2.38, we present the power spectra and the nonlinear transmission when injecting the
light from both sides. As usual, we had to characterize the different coupling efficiency
stages of the set-up. The measured values are: κ(1)inj = 24%, κ(1)OSA = 24%, κ(2)inj = 28% and
κ
(2)
OSA = 30%. The waveguide length is around L= 6 mm yielding to a Leff = 3.3 mm.

Applying the relations 2.33 with the coefficients found for both injections, we could
extract: κSA = 32% and κSB = 28%. A large coupling efficiency was expected due to
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Figure 2.38: Bi-directional nonlinear transmission characterization of the 70% Ge
concentration waveguide. (a) Output spectra as a function of the input power when
injecting from the facet A. (b) Injection from facet B. (c) Input over output power
showing the characteristic linear behavior.
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the broad waveguide cross-section, more than one order of magnitude larger than a
monomode silicon strip waveguide. It is also interesting to notice that in such kind of
geometries, the approximation κSA = κSB is reasonable.

From the relation found in Eq. 2.9, we could extract the effective TPA susceptibility with
the independent coefficients of each side: γ(1)TPA = 7.66 W−1m−1 and γ(2)TPA = 7.46 W−1m−1.
This value is smaller than the one found in the silicon waveguide, but it is important to
recall the dependency with the nonlinear effective area which in this case is around 45
times larger.

To extract the βTPA parameter from the material, we should take into account the slow
light enhancement coefficient (S = ng/n0 ≈ 4.33/4.04 = 1.07) and the nonlinear area
(ANL), such that: βTPA = γTPAANL/S2. Finally an average TPA coefficient from the two
experiences gives: βSi0.3Ge0.7

TPA = 3.5± 0.7 cm/GW. This value is, as expected, larger than
the case of silicon and from Fig. 2.37 (c) and (d), it is closer to the predicted indirect
bandgap model but still 2.5 times larger.

Now that we had the coupling and the TPA coefficient values, we could proceed to the
measurements with the D-Scan technique. As usual, we have varied the dispersion in the
chirped pulse in order to plot the spectral broadening variation. In Fig. 2.39 we present
the experimental broadening values (circles) and the corresponding simulation results
(solid lines) for the equivalent input intensities. The D-Scan procedure gives a figure of
merit FOMTPA = 0.26 which is lower than the values measured for silicon. We have seen
that the TPA parameter (βTPA) is much larger for this alloy.
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Figure 2.39: D-Scan applied to a 70% Ge concentration waveguide with 4 different
power levels. The simulation corresponding to the total nonlinear phase shift is shown in
solid lines with the corresponding input intensity difference.
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Chapter 2. Bi-directional top hat D-Scan

With the values of γwgTPA and FOMTPA, γwg was easily found by means of Eq. (1.74).
From the shape of the curves in Fig. 2.39, it is evident to conclude that the sign of n2 is
positive. So that:

γwg = 2πγwgTPAFOMTPA = 12.3 W−1m−1 (2.34)

We could extract the nonlinear index from this value or equivalently by using the Eq.
(1.75), such that:

n2 = λ0βTPAFOMTPA = 13.9× 10−18 m2

W (2.35)

From these values, we could extract an estimation of the real part of the third order
optical susceptibility (Re{χ(3)eff }) in order to compare the value predicted in Fig. 2.37
(b):

Re{χ(3)eff (ω0)}=
4ε0cn

2
0

3 n2(ω0) = 8.0× 10−19 m2

V2 (2.36)

This is in the same order of magnitude than the theoretical values proposed by Hon
et al. ([100]), but as it can be seen, the wavelength region (around 1580 nm) where
the measurement was performed is the most sensitive domain in term of third order
susceptibilities. At the end of this section we will give some insights about the trends
from this value.

Si0.20Ge0.80 nonlinear characterization

We have made an analogous procedure for another two concentrations by increasing
steps of 10 % of additional Ge. We expected a lower gap with respect to the previous
sample, so most likely a larger TPA probability. The measured propagation losses for a
1.6 µm waveguide width were estimated of 13 ± 3 dB/cm. In this case, after cleaving,
the waveguide had a geometrical length of 7 mm, yielding to a Leff = 2.9 mm, so, similar
to the effective interaction length of the previous concentration. The effective index
for the fundamental TE mode was estimated as neff = 4.10 and the effective area as
Aeff = 5.04 µm2.

The measured values for the set-up were: κ(1)inj = 24%, κ(1)OSA = 32%, κ(2)inj = 28% and
κ
(2)
OSA = 23%. When applying the bi-directional method, we have found coefficients

equal to a(1) = 528.4, b(1) = 24.6 mW−1, a(2) = 687.5 and b(2) = 41.25 mW−1. With
this coefficients, we could trace the coupling efficiencies in the facets: κSA = 31%
and κSB = 36%. Next, in an analog procedure as the previous sample, we could
extract two values for the effective TPA susceptibility: γ

(1)
TPA = 12.3 W−1m−1 and
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Figure 2.40: D-Scan applied to a 80% Ge concentration waveguide with 4 different
power levels. The simulation corresponding to the total nonlinear phase shift is shown in
solid lines with the corresponding input intensity difference.

γ
(2)
TPA = 11.8 W−1m−1. These values are larger than for the doping of 70%, indeed, as

predicted in Fig. 2.37, when the Ge concentration is increased, the TPA effect should
also increase.

Now, to compare the bulk coefficients, we have again further taken into account the slow
light enhancement coefficient (S = ng/n0 ≈ 4.44/4.12 = 1.08) and the nonlinear area
(ANL), such that: βSi0.2Ge0.8

TPA = 5.3± 1.0 cm/GW.

Similarly, from γwgTPA and FOMTPA, γwg was found by means of Eq. (1.74). From the
shape of the curves in Fig. 2.39, it is evident to conclude that the sign of n2 is again
positive. So that:

γwg = 2πγwgTPAFOMTPA = 13.6 W−1m−1 (2.37)

We could also extract the nonlinear index from this value or equivalently by using the
Eq. (1.75), such that:

n2 = λ0βTPAFOMTPA = 15.1× 10−18 m2

W (2.38)

Giving a Re{χ(3)eff (ω0)}:

Re{χ(3)eff (ω0)}=
4ε0cn

2
0

3 n2(ω0) = 9.1× 10−19 m2

V2 (2.39)
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Chapter 2. Bi-directional top hat D-Scan

Si0.10Ge0.90 nonlinear characterization

The final concentration to be tested was the one with highest germanium concentration.
Following the trends of the previous two samples, we expected larger propagation losses,
larger nonlinear losses and a smaller nonlinear figure of merit. Indeed, the measured
propagation losses were 20 ± 4 dB/cm. The geometrical length was estimated as
6 mm, giving an effective interaction length of Leff = 2.0 mm. The effective index
for the fundamental TE mode was estimated as neff = 4.18 and the effective area as
Aeff = 4.77 µm2.

The measured values for the set-up are: κ
(1)
inj = 28%, κ(1)OSA = 11%, κ(2)inj = 23% and

κ
(2)
OSA = 15%. When applying the bi-directional method, we find coefficients equal

to a(1) = 6237, b(1) = 511.9 mW−1, a(2) = 8071 and b(2) = 320.9 mW−1. With this
coefficients, we could trace the coupling efficiencies in the facets: κSA = 36% and κSB =

19%. Next, in an analog procedure as for the previous sample, we could extract two values
for the effective TPA susceptibility: γ(1)TPA = 29.0 W−1m−1 and γ(2)TPA = 29.4 W−1m−1.
Finally, to compare the bulk coefficients, we have considered the slow light enhancement
coefficient (S = ng/n0 ≈ 4.54/4.20 = 1.08) and the nonlinear area (ANL) such that:
βSi0.1Ge0.9

TPA = 11.9± 1.9 cm/GW.

These last results show a positive n2 and:

γwg = 2πγwgTPAFOMTPA = 7.34 W−1m−1 (2.40)
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Figure 2.41: D-Scan applied to a 90% Ge concentration waveguide with 4 different
power levels. The simulation corresponding to the total NL phase shift is shown in solid
lines with the corresponding input intensity difference.
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And:

n2 = λ0βTPAFOMTPA = 7.54× 10−18 m2

W (2.41)

Giving a Re{χ(3)eff (ω0)}:

Re{χ(3)eff (ω0)}=
4ε0cn

2
0

3 n2(ω0) = 4.7× 10−19 m2

V2 (2.42)

Nonlinear optical properties of rich Ge - SiGe alloys in the telecom waveband:
Discussion

From the photonic integration point of view, the combination of active devices with
efficient and low loss waveguides is of major importance. Form the measured values, the
first conclusion to be remarked is that we have not observed any negative Kerr coefficient,
as it could be expected when operating with photons with energies close to the material
gap.

Second, the extracted FOMTPA decreases when the doping concentration of Germanium
increases. This was expected from theoretical argumentation, but we found that this
reduction of the figure of merit comes from an increase of the TPA effect.

In Fig. 2.42, we show the theoretical prediction of the Kerr coefficient by using the direct
gap model. It can be noticed that the trends of n2 are predicted. Nevertheless, the
obtained values are not exactly the same. We should remark that the studied waveguides
were grown in a graded buffer and part of each optical mode is confined in the underneath
layer, so the effective nonlinearity needs to be considered as a whole. This feature is
crucial for applications in the midIR because the mode size will increase, nevertheless, the
Six−1Gex layer thickness can be increased in order to keep good confinement properties.

To summarize, we have reported to the best of our knowledge the first exper-
imental values for instantaneous nonlinearities in Ge-rich SiGe alloy waveg-
uides at a telecom wavelength (1.58 µm). The results are in agreement with the
theoretical predictions made previously but clarifies that effectively none of the models
(direct or indirect) is valid for Ge concentrations around 80%. We have experimentally
demonstrated the possibility of using the SiGe alloys as a nonlinear material for third
order nonlinearities. Furthermore, we demonstrate that the nonlinear properties of
SiGe waveguides could be tuned through innovative band-gap engineering, while the use
of such a graded buffer grants a high quality Ge-rich Si1−xGex layer on Si. We have
finally exploited the measurements to estimate the trends in the midIR region, giving a
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comprehensive picture for nonlinear photonics device designers in their efforts to explore
Ge and SiGe for various applications.

2.6.2 Chalcogenide

The high material nonlinearity of chalcogenides, combined with the offered strong
confinement makes them a good platform for ultrafast nonlinear optics and a key
technology for future ultrahigh-bandwidth optical communications systems [53]. Non-
linear optical properties of As–S–Se glasses were measured by the Z-Scan technique at 1.6
µm, and values of n2 up to 400 times the ones obtained for silica were observed [102]. Also,
chalcogenide platforms have been explored in integrated photonic crystal configurations
to exploit nonlinear effects [103]. In this section we will measure a chalcogenide GSS
(Ge23Sb7S70) waveguide in the nonlinear regime at λ∼1550 nm. To our knowledge, there
are no reported nonlinear values for this specific amorphous semiconductor.

From Fig. 2.43, we demonstrate that at the level powers used in the carried out
experiment, no TPA effect was observed. So, we could apply a linear procedure to
estimate the coupling efficiencies. We notice also from Fig. 2.43 (b) that the difference
between the two slopes is not distinguishable, so in this case the assumption of κin = κout
is valid. On the other hand, we can notice that the spectral broadening induced by SPM
is strong, so we can expect a large γ as expected.
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Figure 2.43: (a) Output spectra when injecting from both chalcogenide facets. (b)
Output power as a function of the input power.

The measurement of the linear coefficients gave the following values: after estimating the
κ
(1)
inj = 25%, κ(1)OSA = 26%:

κSA = κSB =

√
0.0019
κinjκOSA

≈ 17% (2.43)

φNL =
S2k0n2
ANL

PpLeff = γwgκinjκSAηPinLeff (2.44)

With Leff = 4.7 mm, for instance, taking the value of Pin = 10 mW, we could use
the extracted value for the nonlinear phase shift after the D-Scan model. Finally, we
measured a γwg ≈ 16.5 W−1m−1 which is in agreement with other integrated chalcogenide
waveguides [104]. Nevertheless we should note that depending on the chalcogenide
compound, the properties could differ substantially [53].

Finally, we used the relation (2.44) to estimate the Kerr coefficient in the chalcogenide
waveguide. For this propose, we calculated the effective nonlinear area by using the mode
depicted in Fig. 1.23 to obtain a n2 ≈ 8.3 ∗ 10−19 m2/W.

These results validate the use of the D-Scan technique on samples that do not
present TPA and highlight the interest of this kind of chalcogenide already
applied on flexible chips to exploit nonlinear phenomena.
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Figure 2.44: D-Scan applied to a monomode chalcogenide waveguide (420nm×800nm)
in the absence of TPA.

2.6.3 Silicon Nitride

Silicon nitride has opened up many new capabilities such as on-chip optical frequency comb
generation and ultrafast optical pulse generation and measurement [105]. Nevertheless the
nonlinear effects are very small compared to Silicon and on the same order of silica. For
this reason, we have injected the input beam directly from the stretcher, without crossing
through the silica fiber. This has increased by an order of magnitude the resolution but
has yet added difficulty for the estimation of the waveguide coupling efficiencies.

Fig. 2.45 displays the nonlinear properties of a nitride waveguide. Indeed the Kerr
coefficient is around 20 times smaller than in silicon. Furthermore, due to its smaller
refractive index, monomode waveguides have a larger effective area, requiring larger

  

  

  

(a) 
(b) 

Figure 2.45: Nonlinear transmission of a silicon nitride strip waveguide. a) Spectra
as a function of the average input power. b) Input power vs. output power showing no
saturation.
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powers to achieve the same intensities used in silicon waveguides.

The study of the nonlinear broadening was again performed by varying the second order
dispersion. Also the semi-analytical model was used and allowed the estimation of the
nonlinear phase shift generated by the studied waveguide.

In Fig. 2.46, we show the D-Scan trace for a stoichiometric Si3N4. In c), we have
plotted the simulated trends by considering the (2σ)p−v. d) Shows the spectra for the
largest optical intensity used. In this model, as for chalcogenide, no TPA was considered.
Following the linear coupling estimation procedure. We estimated a coupling efficiency of
∼ 5%, and with an Leff ≈ 0.8 cm, we estimated a γwg ≈ 1.6 W−1m−1, which corresponds
to a n2 ≈ 1.3 ∗ 10−19 m2/W.

This value is around 20 times lower than the value measured for n2 of silicon in section
2.5.2. The same proportion has been measured with other methods [105]. This result
shows that Si3N4 is a material ideal to make low loss waveguides, presenting a moderate

𝜙𝑁𝐿0 = 0.05𝜋 

  

 

  

Pin=14.5 mW (a) (b) 

(c) 
(d) 

Figure 2.46: Measurements and simulations for silicon nitride. a) Experimental D-
Scan. b) Spectra as a function of the second order dispersion for the maximum power
(corresponding to the blue curve of a)). c) and d) are the simulated trends by considering
the experimental conditions.
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linear refractive index and a low Kerr coefficient (compared with silicon) but with no TPA.
It thus opens the possibility to use large powers for nonlinear functionalities. Indeed, it
is noticeable that the largest supercontinuum generation on-chip has been obtained in
silicon nitride engineered waveguides [106].

2.7 Conclusion

In this chapter we have presented a novel method to characterize the instantaneous
effective nonlinear susceptibilities from waveguiding structures, for instance fibers or
integrated waveguides. We have introduced the model principles, a comparison between
different excitation forms and the convenience of using Top-hat beams to increase the
nonlinear phase shift sensitivity (from the r.m.s. spectral linewidth that quantifies
the spectral broadening induced by SPM). The determination of the FOMTPA was
performed by means of a temporal analog of the top-hat Z-Scan. We have used a
bidirectional injection procedure to discern the γ and the γTPA. The method allows the
proper extraction of the coupling efficiencies, which are required to properly quantify the
injected optical power in devices. The method could be used to compare the nonlinear
performance of hybrid waveguides or photonic crystals in silicon photonics.

The proposed methods were tested by using an experimental set-up which enables to
inject shaped pulses inside a waveguide with a well defined and characterized 2nd order
dispersion coefficient φ(2) variable in the range of ±3.5 ps2, coinciding with the range
required for a D-Scan study after the simulations of picosecond pulses. The input
coupling efficiency was demonstrated to remain constant as we vary the value of φ(2)
over the full tuning range for φ(2). Lastly, the nonlinear characterization of a monomode
SOI waveguide was performed to validate the method proposed. The obtained values
are in agreement with the standard quantities from the literature. The comparison
between experimental and simulated spectra and their evolution as a function of the
dispersion provided a remarkable correspondence. Regarding the uncertainties, the
injection estimation is measured with an error of around 7%, the imaginary susceptibility
with 9%, the FOMTPA with 6% and the real susceptibility with 10%.

The method is finally applied to different kinds of integrated materials, showing a good
agreement with experimental values in the literature and in the same order of magnitude
as theoretical predictions for waveguides never characterized before in the nonlinear regime
around λ∼ 1580 nm. Indeed, we have provided experimental values for SiGe waveguides
in order to enrich the modeling of the nonlinear properties of these kinds of alloys towards
applications in the midIR range. The presented results open perspectives towards the
implementation of the D-Scan technique in other wavelength regions. Furthermore, we
have measured some nonlinear properties of GSS (Ge23Sb7S70), used for flexible photonics
structures. We have found values in the same order of magnitude of chalcogenides with
similar compositions. As the refractive index of chalcogenides are moderate compare to
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the one of silicon, they could be used as a material for hybridization of silicon waveguides.
Finally, the measurement of stoichiometric Si3N4 has allowed the validation of the method
and demonstrated the material potentials for third order nonlinear applications due to
its negligible TPA.
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3 Nonlinear enhancement interac-
tion in coherently excited cavities

One of the advantages of photonic crystal microcavities is to strengthen the interaction
between an incident beam and the medium that makes up the cavity. On the other
hand, the reinforcement of the nonlinear refractive index or loss/gain changes in the
cavity limits the amount of energy that can be effectively coupled to the cavity mode.
The frequency shift of the cavity resonance caused by the nonlinear refractive index
variations precludes, in fact, the coincidence with the excitation signal frequency, thereby
decreasing the coupling efficiency. In order to maintain the benefit of light localization
throughout a pulsed excitation, we have experimentally and numerically studied the
behavior of a silicon nanobeam micro-cavity excited by a tailored chirped pulse whose
spectral phase relationship compensates for the nonlinear frequency drift of the cavity
resonance. The coherent control of microcavities has been already theoretically
proposed to enhance optical switching. In this work, we report both the experimental
achievement and numerical investigation of a SOI nonlinear micro-cavity designed with
two 1D Bragg mirrors (nanobeam) under coherent excitation, leading to an enhanced
intra-cavity nonlinear interaction.
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3.1. Introduction

“Mas o que sonha o possível tem a possibilidade real da verdadeira desilusão. Não me
pode pesar muito o ter deixado de ser imperador romano, mas pode doer-me o nunca ter
sequer falado à costureira que, cerca das nove horas, volta sempre a esquina da direita”.

Fernando Pessoa, O Livro do Desassossego.

3.1 Introduction

The strong light confinement achieved in photonic crystal microcavities allows the
enhancement of light-matter interactions, including nonlinear effects [107]. Recent
developments of all-optical nonlinear functions, like optical switches [23], NAND gates
[108] or all-optical random access memories [25], based on photonic crystal cavities rely
on their very high ratio between the factor Q and the mode volume V . The consecutive
strong enhancement of field intensity inside the cavity allows the realization of nonlinear
functions with very-low control energy [23, 108, 25]. However, the field enhancement
taking place inside high-Q microcavities necessarily restricts the signal bandwidth and the
amount of energy that can be transferred between the control pulse and the intra-cavity
material.

Among the nonlinear functions, low energy optical switches have been realized in non-
linear photonic crystal microcavities under the control of a resonant pulse in Silicon [24],
InP [109] (containing quantum wells), GaAs [110], InGaAsP [23], and GaInP [111]. Al-
though nonlinear refractive effects assist the switching operation, the imparted frequency
shift dynamics of the cavity resonance tends to limit the coupling efficiency of the control
pulse, inducing a modification of the cavity transmission for incoming optical signal.
The induced refractive index changes in these materials are mainly driven by optical
Kerr effect and by free carriers generated by either one-photon absorption or two-photon
absorption. Although nonlinear refractive effects induce the switching operation, the
imparted frequency shift dynamics of the cavity resonance, which is activated by the
front edge of the control pulse, tends to limit the coupling efficiency of the rest of the
pulse. As a result, the cavity enhancement effect is not maintained for the entire pulse
duration, even if the latter is longer than the cavity photon lifetime, thereby limiting the
energy transfer between the control pulse and the intracavity material. In addition, the
mismatch between the drifting cavity resonance frequency and the frequency content of
the control pulse leads to ringing behavior [112, 113], inducing temporal distortion on
the signal pulse [114].

Ultrashort pulses are not the only requirement for optimally maximize nonlinear
light-matter interactions, indeed Fourier limited pulses are less effective than pulses
with a suitable design of the spectral phase [115]. In order to better control the pulse
excitation of an optical resonance, the ideas of controlling either the coupling relationship
into micro-resonators in relation with the pulse shape [116], or the pulse shape itself in
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Figure 3.1: Scheme of a cavity under a pulse excitation in the nonlinear regime. (a)
Fourier limited pulse and (b) chirped pulse [93].

relation with the temporal behavior of the intra-cavity amplitude field [117], have been
theoretically investigated. The latter consists in transposing pulse shaping techniques
that are routinely used to coherently excite atomic or molecular transitions in order to
control light matter interactions [118, 119, 120]. In [117], the authors show with numerical
simulations that a pulse with a controlled spectral phase relationship, compensating for
the linear dispersion of the cavity resonance, can reduce the switching threshold power
of a bistable Kerr microcavity. A controlled two-pulse excitation scheme of a pure-Kerr
microcavity has also been theoretically investigated in [121]. And more recently, in [122],
the researchers proposed a method enabling a broader transmitted bandwidth than the
cavity resonance spectrum width by using a prechirped pulse and the optical Kerr effect.
Their numerical analysis showed that a proper pulse could transmit about 11.8 times
higher energy than an equivalent Fourier limited pulse. While these works deal with
the behavior of cavities operating under pure Kerr effect, theoretical investigations of
coherent excitation (tailored chirped pulse) of a semiconductor microcavity operating
under optical Kerr, two-photon absorption (TPA), free carrier refraction (FCR) and
free carrier absorption effects have been performed in [123]. In the case of silicon-based
microcavities, the optical resonance mainly experiences a frequency blue-shift driven by
the refractive index variation induced by free carriers generated by TPA. By delaying
blue spectral components, corresponding to a positive linear chirp, it is shown that the
benefit of light localization can be maintained throughout the pulsed excitation despite
the cavity resonance dynamic frequency shift as illustrated in Fig. 3.1.

After the first experimental observation of a coherent excitation of a nonlinear
micro-cavity performed by J. Oden in his PhD work [93], leading to an enhanced
intra-cavity nonlinear interaction, our contribution resides on a detailed and systematic
experimental study, along with numerical analysis of the coherent excitation. We
investigate the nonlinear behavior of a silicon-based microcavity coherently excited
with tailored positively chirped pulses with different spectral bandwidths and input
energies. An increase of up to a factor 2.5 of the carrier density generated inside the
cavity by TPA is demonstrated in comparison with Fourier transform limited pulses and
negatively chirped counterpart. In addition, we show an enhanced nonlinear interaction
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allowing to induce a very large frequency blue-shift of the cavity resonance reaching 19
times the linear cavity linewidth. Such a blue-shift is achieved in a silicon microcavity
with a Q factor close to 8 000, which is excited by a rectangular spectral shape pulse with
a linewidth equal to 6.5 nm, or 30 times the bandwidth of the cold cavity. This result
highlights the interest of such a coherent excitation to manipulate the optical bandwidth
and the nonlinear dynamics of optical cavities, which could address future trends in the
development of integrated resource-efficient ultra-high- speed optical communications
systems [124].

We have used the same experimental pulse stretcher and laser source presented in section
2.4. The linear and nonlinear behaviors of the cavity are experimentally investigated and
the transmission spectra are compared for different pulse excitations: Fourier limited,
positive and negative tailored chirped pulses. Our results illustrate the enhancement
of the interaction between an incident pulse with a pre-chirp and a nonlinear
optical resonator. We finally discuss the interest of such coherent excitation to
manipulate the optical bandwidth and the nonlinear dynamics of optical cavities and
its dependence on the pulse properties such as the bandwidth, central wavelength and
incident energy. All these procedures could address future trends in the development of
integrated optical functions.

3.2 Designed microcavity

We chose to experimentally investigate the coherent excitation in a Fabry-Perot type
microcavity engraved on a Silicon-On-Insulator (SOI) ridge waveguide, commonly known
as photonic crystal nanobeam resonator. The cavity geometry is based on two-symmetric
tapered Bragg mirrors [125] engraved on a 260×520 nm2 SOI ridge waveguide, which
offers small modal volume and quality factors Q of few thousands, compatible with few
picoseconds pulse duration. The high-reflectivity mirrors were designed with Bloch-mode-
engineering concepts [126]. They consist in a taper section with 4 holes and a periodic
section made of 4 holes with a 200 nm diameter and a 370 nm periodicity constant.
The parameters for the taper section have been optimized in order to achieve a quality
factor close to 8000. The taper hole diameters are 130, 160, 190 and 200 nm with the
center-to-center hole distances set to 320, 340, 360 and 370 nm (as shown in Fig. 3.2).
For achieving this design, three-dimensional (3D) numerical calculations of the mirror
reflectivity have been performed with the aperiodic Fourier modal method (a-FMM)
[127]. The distance between the centers of the two-inner holes of the cavity is set to 590
nm in order to localize the cavity resonance nearby λ = 1580 nm. Using a 3D FDTD
simulation, the calculated modal volume of the designed cavity is V = 0.8(λ/n)3, with n
= 3.48 the refractive index of silicon [93].

A SEM picture of the fabricated cavity is shown in the inset of Fig. 3.3. The SOI wafers
have been processed with the fabrication steps described in section 1.4.1. TE-polarized
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Figure 3.2: Geometrical parameters used to fabricate the cavity. The refractive indices
used for the simulations were 1.44 for silica and 3.48 for silicon at a targeted resonance
wavelength around 1580 nm.

light delivered by a tunable external cavity laser diode is injected into the access ridge
waveguide by using a micro-lensed fiber connected to a polarization-maintaining single
mode fibre. The transmitted light is collimated using a microscope objective followed by
a TE polarizer, and sent to a sensitive power-meter. As expected from the simulations,
the linear transmission measured by scanning the laser wavelength between 1530 and
1600 nm exhibits one peak shown in Fig. 3.3. The oscillations that are superimposed on
the peak originate from the Fabry-Perot effects occurring between the cleaved facets of
the device and the cavity mirrors. The 0.14 nm oscillation periodicity is in agreement
with the Free-Spectral-Range for a 2.5 mm long cavity, considering that the cavity is
situated at the middle of the 5 mm long waveguide. The microcavity peak transmission
plotted in black line in Fig. 3.3 is obtained following low-pass filtering of the Fourier
components of the recorded transmission. The Lorentzian fit, red line in Fig. 3.3, gives a
cavity resonance located at 1578.8 nm with a full width at half maximum (FWHM) of
∆λ0 =0.217 nm. The quality factor of the microcavity is estimated to Q = 7275, close to
the expected value, with a related photon lifetime τc = Q/ω equal to 6 ps.

Because the experiment consists in evidencing different spectral transmission behaviors
of the cavity as a function of input linear chirp of the excitation pulse, the dispersion of
the access waveguides must be taken into account. If we consider a 0.1 µm2 size SOI
ridge waveguide, the second-order dispersion coefficient for a TE polarized mode is about
β2 = 1 ps2/m [128]. For the shortest pulse duration T0 = 1 ps that will be considered in
the following, we verify that this dispersion effect can be neglected since the dispersion
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Figure 3.3: Linear transmission measurement of the Fabry-Perot type microcavity
(blue solid line). The Lorentzian fit of the low-pass filtered linear transmission (black
line) plotted in red solid line gives a quality factor Q = 7275. Inset: SEM picture of
the Silicon microcavity made of two-symmetric Bragg mirrors engraved on a SOI ridge
waveguide.

length LD = T 2
0 /|β2| equal to 0.5 m is much longer than the few millimeters waveguide

length.

3.3 Analytical approach

Using the linear parameters of the microcavity, we are now able to proceed with the
determination of the shaped pulse parameters that we need to generate in order to
demonstrate the coherent excitation of the microcavity under the nonlinear
regime. The experimental set-up scheme shown in Fig. 3.4 consists in controlling, by
means of a pulse shaper, the spectral phase relationship and linewidth of pulses delivered
by a laser prior to their injection inside the microcavity engraved on a nanowire. Under
the nonlinear regime, the injected pulses induce a refractive index variation ∆n(t) of
the intra-cavity material, which dynamically modifies the cavity resonance through the
relation ∆ω(t)/ω0 = −∆n(t)/n. By controlling the spectral phase relationship of the
pulse, we seek the instantaneous pulse frequency to follow the cavity resonance drift
and to maintain a resonant excitation of the cavity. In such a condition, the cavity is
expected to experience a larger frequency shift, which would demonstrate the coherent
excitation of a nonlinear cavity and its ability to control its nonlinear behavior.

For a silicon microcavity excited with a few ps pulse duration and at a low repetition
time around 20 ns, the nonlinear refractive index variation is predominately governed
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Figure 3.4: Experimental set-up used to excite the cavity. We recall the use of a
femtosecond source consisting on an Er-doped amplifier fiber laser. The beam is sent
into a grating-based pulse shaper prior to their injection into the sample by means of a
microscope objective.

by the free-carrier density N(t) generated by two-photon absorption (TPA) [123]. An-
ticipating that the carrier lifetime is much longer than the cavity photon lifetime,
the cavity frequency shift follows the time integral relation ∆ω(t)/ω0 =−σrN(t)/n=

−σr
n

∫ t
−∞

βTPA
2 h̄ω0

(
c|u(τ )|2
nV

)2
dτ , which depends on the intra-cavity pulse energy |u(t)|2, the

effective volume of the free-carriers σr and the TPA coefficient βTPA. This relation shows
that the cavity resonance exhibits, for a square temporal pulse shape, a linear blue shift
with time and ∆ω(t)' αt, with α the chirp parameter of the nonlinear cavity resonance.
The chirp is represented as the slope of the pulse in the time vs. frequency plot in Fig.
3.1 (b) and Fig. 3.4. As shown in section 2.4, the generation of an excited pulse with a
linear frequency chirp can be achieved through the propagation of a transform limited
pulse inside a second order dispersive medium, with a dispersion coefficient φ(2) ' 1/α.

We now assess pulse parameters that are optimal to coherently excite a cavity exhibiting
this resonance frequency shift, under the square temporal shape approximation. An order
of magnitude for the optimal amount of second-order phase and energy can be simply
calculated by setting a target value for the cavity frequency shift ∆ωp covered during the
pulse duration τp. The target we seek in this work would be to reach a nonlinear shift
equal to 30 times the linear cavity linewidth, meaning that ∆ωp = 30 ω/Q. Under a pulse
duration equal to the cavity photon lifetime τp = τc =Q/ω, the dispersion coefficient
value is estimated, through φ(2) = τp/∆ωp =Q2/(30 ω2), to a value of +1.3 ps2. This
required chirp value is achievable with the pulse shaper introduced in section 2.4 and used
for the D-Scan tests. Finally, we must estimate the amount of energy required to reach
such a blue shift range, or equivalently the amount of free-carrier density to be generated
inside the cavity. An order of magnitude of the energy is given by considering a squared
pulse shape in the time integral relation for N(t), which gives |u|2 = −nV

c

√
n2 h̄∆ωp
σr βTPA τp

[129], corresponding to a reasonable energy value of 0.4 pJ. With the attained peak
powers from the laser source introduced in section 2.4 (∼ 160 W) and the estimation
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of coupling coefficients on tapered silicon chips (∼ 10%) and in the ps regime, on-chip
pulse energies up to ∼16 pJ are possible to achieve, making the set-up suitable to attain
the required free carriers generation from silicon.

For all forthcoming estimations, we have used the following nonlinear parameters for
silicon βTPA = 0.8 cm/GW [98] and σr =−1.35 10−27 m3 [10].

3.4 Nonlinear behavior of a coherently excited microcavity

We next seek to study the nonlinear behavior of the previously characterized SOI
microcavity under a coherent excitation in order to demonstrate that a proper control
on the spectral shape of the excited pulse enables to control the intracavity nonlinear
interaction. This experimental study is performed by measuring the evolution of the
transmission spectra for different dispersion coefficients φ(2) at a fixed incident energy
and for two spectral shapes.

In addition to the dependence of the nonlinear behavior of the cavity under the spectral
phase relationship of the pulse, we would like to give an illustration of the spectral power
distribution effect. Because our pulse shaper in the present configuration cannot offer a
sufficient flexibility in that regards, we could only play with the injection current of the
two laser diode pumps of the fiber laser module. By doing so, we could slightly modify
the spectral power distribution of the incident pump. In Fig. 3.5, we display the cavity
spectra evolution by using two pulse excitations set at the same input power of 6.8 mW
and spectral bandwidth (we will refer to them as red-i, shown in (a) and purple-ii in
(b)). We recorded the transmission spectra varying the dispersion coefficients from -3.5
to +3 ps2 and we display the linear cavity in gray (× 5) as a guide to estimate the
blue-shift. Despite the small change in the spectral power distribution of the incident
pulse, the comparison between the two sets of transmission spectra in Fig. 3.5(a) and (b)
underlines the influence of both the spectral phase and power relationships.

The grating of the pulse shaper is slightly rotated in order to deliver pulses centered
around 1578 nm. The incident pump optical spectrum is plotted on the top of Fig.
3.5 with a red and purple dotted lines. At very low input power, the transmission
spectra plotted in gray line (×20) coincide with the linear transmission of the microcavity
previously depicted in Fig. 3.3. While the spectrum of the incident pulse is 30 times
larger than the linear cavity resonance, with a spectral linewidth set to 6.5 nm, only the
spectral components that coincide with the cavity resonance are transmitted.

For an incident power set to a fixed value of 6.8 mW, the transmission spectra recorded
for dispersion coefficients varying between -3.5 to +3 ps2 are plotted in Figure 3.5 for
two different excitation spectrum (i-red and ii-purple). We highlight that the input
power, spectral width and initial induced chirp are the same for both experiences, only
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Figure 3.5: Evolution of the transmission spectra of the cavity measured with varying
the chirped pulse excitation from φ(2) =−3.5 up to +3.5 ps2 for two different excitation
spectra (a) and (b). The spectral linewidth of the two excitation pulses are plotted in
red-i (a) and purple-ii (b) and the cold cavity transmission in gray (× 5).

the spectral content distribution (shape) is different. One can first notice that all the
transmission spectra are blue-shifted respect to the linear cavity resonance. Considering
a Fabry-Perot type microcavity, a frequency shift in the transmission spectra coincides to
that of the the cavity resonance, which in our case is driven by the refractive index change
induced by the free carriers generated by TPA. This nonlinear effect has been already
employed to realize all-optical switches on SOI micro cavities [130, 24]. Whereas the
transmission spectra under both excitations remain almost unchanged for negative chirps,
they clearly exhibit an increasing blue-shift content for positive values of φ(2) varying from
0 to around +1.6 ps2. Beyond the optimum control (ideal spectral delay), the blue shift
slightly decreases. Even though the cavity evolution under the two excitation pulses follow
the same trends. It can be seen in Fig. 3.5 that the optimum required chirp is slightly
different for both excitation spectra. In the case of excitation i-red, the largest transmitted
bandwidth is obtained when a pre-chirp of φ(2) =+1.6 ps2 is applied [131, 132]. In the
case of excitation ii-purple, the optimum pre-chirp is obtained at φ(2) =+1.2 ps2 [133].
This change can be understood as a more adequate wavelength distribution to excite free
carriers and also to charge the cavity within the new frequency after the blue-shift. The
result presented in this section demonstrate the possible optimization of the coherent
excitation not only with a linear chirp but also with the spectral shape used to excite
the cavity.

To give physical insights in the nonlinear cavity behavior, we compare in Fig. 3.6(a)
the transmission spectra achieved under the excitation i-red with φ(2) = 0 and with two
opposite chirps + and -1.6 ps2. Analogously, in Fig. 3.6(b), the three spectra are plotted
for the excitation ii-purple for chirps at + and -1.2 ps2. The cold cavity is plotted (×
5) in gray to compare with the transmission under 5 pJ incident energy. The nonlinear
output under a Fourier limited pulse excitation is plotted in blue. It is interesting to
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Figure 3.6: Measured incident (dashed line) and transmission spectra, plotted in
linear scale at low energy (gray line, ×5 in linear scale) and at 5pJ incident energy for
various chirped pulse excitations: Fourier-Transform limited pulses (blue line), negative
dispersion (brown-(a) and green-(b) curves) corresponding to the optimum positive
excitation φ(2) = +1.6ps2 (red-(a) curve) and φ(2) = +1.2ps2 (purple-(b) curve). (c)
Comparison between the optimum chirp for both spectra.

notice that even though the shift is very similar, in the case of the purple excitation (Fig.
3.6 (b)), the spectral content around 1578 nm is larger than in the red case (Fig. 3.6 (a)),
generating more free-carriers, exhibiting a larger blue-shift and a lower transmission. In
quantitative terms, under the red-i input excitation, the cavity exhibits 1.4 nm blue-shift
and under the purple-ii case is of 1.6 nm. In the time domain, the pulse duration, which
is about 1.1 ps, is shorter than the cavity photon lifetime and the cavity resonance is
excited in a slightly transient regime. In contrast, the two opposite chirped pulses exhibit
an autocorrelation pulse duration of around 8 ps, giving a pulse duration (5.7 ps) close
to the cavity photon lifetime.

Compared with the negative excitation chirps: in brown (Fig. 3.6 (a)) the output spectrum
at φ(2) =−1.6 ps2 and in green (Fig. 3.6 (b)) at φ(2) =−1.2 ps2, the transmission spectra
for φ(2) =+1.6 ps2 (red-(a)) and φ(2) =+1.2 ps2 (purple-(b)) lead to a larger blue-shift
and a remarkably broader transmission spectrum, which closely matches the input pulse
bandwidth. It can be seen that the resonant shift for negative chirps remains similar
than the one obtained with no pre-chirp. Whereas the two signed pulse excitations for
each of the two spectral shapes give the same pulse duration, they differ in the sign of
their spectral phase relation. Under the positive chirp case, the cavity is first excited by
the red components of the pulse. Although the red side of the pulse spectrum is detuned
from the centered wavelength of the cavity resonance, the transmission around 1580 nm
is not null, meaning that the cavity resonance starts to store some energy and to shift
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Figure 3.7: Measured incident (dashed line) and transmission spectra, plotted in dBm
scale at low energy (gray line, ×5 in linear scale) and at 5pJ incident energy for various
chirped pulse excitations: Fourier-Transform limited pulses (blue line), φ(2) =−1.2ps2

(green curve), φ(2) =+1.2ps2 (purple curve).

towards the blue. Owing to the linear time-frequency relation of the pulse, the coupling
efficiency to the drifted resonance can be maintained, increasing further the blue-shift
extension compared with the negative chirped pulse.

The unambiguous differences between the transmission spectra for the two chirped pulses
signify that the nonlinear behavior taking place inside the microcavity clearly depends
on the delay between the spectral components of the excited pulse. We claim that the
+1.6 ps2 chirped pulse excitation coincides with the situation where the delay between the
spectral components of the pulse matches the instantaneous cavity frequency drift, which,
with a good approximation, follows a linear time variation [123]. Aiming a comparison
between the transmitted bandwidth for both optimal excitations, we have added an
additional plot (Fig. 3.6 (c)) where the difference between the attained transmissions is
clearer.

In Fig. 3.7, we present the three spectra in dBm scale for the purple excitation in order
to appreciate the optimization of frequency generation and the covering of all the input
frequencies, meaning that all of them were at resonance.

The broader transmission spectrum, and equivalently the larger spectral blue-shift
experienced by the cavity resonance achieved with the positively chirped pulse, proves
that a larger amount of free-carriers have been generated inside the microcavity thanks
to a better energy transfer between the incident pulse and the intracavity material. The
larger spectral broadening achieved with the positively chirped pulse is necessarily assisted
by a higher carrier density generation and proves an enhanced nonlinear interaction
between the pulse and the intracavity material, equivalently a better energy transfer
between the incident pulse and the cavity resonance. In Fig. 3.8, the measured spectra
are evaluated under different figures of merit. In (a) we have plotted the r.m.s. spectral
linewidth (2σ) versus the introduced chirp. Taking into account that the 2σ of the
input pulse was 3.2 nm, we can see that the 2σ ratio between output and input spectra
increases from 50% at the baseline up to 125% for the optimum excitation. This ratio
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Figure 3.8: (a) Measured r.m.s. spectral linewidth for the chirp coefficients φ(2)
reported in Fig. 3.5 under two different excitation pulses. (b) Measured cavity blue-shift
in wavelength with respect to the linear cavity resonance. In the right axis: number of
times that an equivalent bandwidth to the FWHM of the cold cavity is transmitted.

determines the quantity of spectral content transmitted through the cavity. Indeed it is
larger than 100%, because other generated new frequencies, absent in the input pulse
are effectively measured in the output spectrum (Purple spectra in Fig. 3.7). In (b),
there are two axes, one representing the wavelength shift (towards the blue) with respect
to the linear cavity resonance and the right-axis consists in a comparison between the
output bandwidth (∆λout) and the bandwidth of the cold cavity (∆λ0). As previously
said, the cavity blue-shift is maintained at a fixed value ∆λout ≈ 1.6 nm for negative
dispersion coefficients, which tends to signify that the amount of energy transferred
from the incident pulse to the microcavity remains unchanged. On the other hand, the
cavity blue-shift behavior towards φ(2) > 0 shows an increase by a factor 2.5 between
0 and +1.2ps2 for the purple case, meaning that TPA generated carrier density is 2.5
times higher. For higher dispersion coefficients, the blue-shift experienced by the cavity
resonance decreases. A better transfer of energy between the incident pulse and the
intra-cavity material is achieved under the φ(2) =+1.2ps2 excitation pulse, leading to an
enhanced nonlinear interaction.

To compare with the preliminary values we targeted in section 3.3, we can use the values
of the right axis from Fig. 3.7 (b). While the cavity blue-shift is constantly equal
to ∆λout = 7× ∆λ0 for φ(2)<0, it reaches ∆λout = 15× ∆λ0 for the red excitation at
φ(2) =+1.6ps2 and 19× ∆λ0 for the purple excitation at φ(2) =+1.2ps2, values that are
close to the dispersion coefficient previously anticipated to reach a cavity blue-shift of
30×∆λ0. Note that, experimentally for both excitation spectra, the red side of the pulse
spectrum is red detuned from the linear cavity resonance by 2 nm, or equivalently by
10× ∆λ0, which is not counted in the evaluation of ∆λout in Fig. 3.8.

Finally, we can estimate the amount of absorbed energy achieved for φ(2) =+1.2 ps2

(purple excitation) by substituting the frequency blue shift ∆λout = 4.1 nm into the
relation given at the end of section 3.3, which gives an estimated energy of 0.3 pJ for a
refractive index variation ∆n/n = ∆λout/λ = 2.5 ×10−3. This variation is about one
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order of magnitude higher than the values reported in [134] in a SOI ring cavity with a
quality factor of 3 000, or in [135] in a SOI photonic crystal cavity with Q = 7 000.

3.4.1 Central excitation wavelength dependence

In previous experiences the excitation pulse was optimized in terms of its spectral
position respectively to the cold cavity resonance (shifted towards the blue with respect
to the resonance). So, the intra-cavity field could interfere constructively with the blue
components of the pulse. So the impact of the central wavelength position is crucial for
a proper excitation.

Experimentally, the tilt on the diffraction grating allows the change of the central
wavelength without modifying the characterized dispersion. Nevertheless, as the laser
gain-spectrum is not homogeneous, we obtain a different spectral shape (changing the
temporal pulse duration), but the general trends will be useful to understand the central
wavelength dependency. We will only study the most interesting case, meaning the
optimum dispersion to properly excite the cavity (φ(2)>0), for insights in the negative
and the Fourier limited regimes, the reader is invited to see Ref. [93].

In Fig. 3.9, we present the output spectra for different central wavelength excitations at a
fixed dispersion. We have used the purple excitation from the previous section and chosen
the optimum value: φ(2)= 1.2 ps2. In (a), the pulse is totally shifted towards the blue and
do not cover the resonant frequency of the cold cavity. The output wavelength content is
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Figure 3.9: Transmitted spectra in dBm as a function of the central excitation wave-
length for a φ(2)= 1.2 ps2. The spectral width and injected power are kept the same
for all the experiences. In dashed black the input spectrum, in blue the linear cavity to
locate the resonance and in red the recorded transmission.
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poor but interestingly, there is a small tail (10 dBm lower than the maximum transmission)
that matches with the resonant frequency. We attribute these new wavelengths to the
ones generated via SPM in the access waveguide. We can expect that for the Fourier
limited case, the spectral components at the resonant wavelength are larger as the pulse
peak intensity increases. After the cavity resonance wavelength is included in the pulse
bandwidth (b), the control is evident, yet not optimum. In this case as well as for (c)
and (d), the wavelengths shift towards the blue in a larger amount than the expected
Fourier limited case (usual blue shift), meaning a light-matter enhanced interaction due
to more generated free carriers. Finally for the cases (e) and (f), the coherent excitation
gets truncated as there is no bluer components available. In (e) the accumulation of
photons at the blue-side of the input spectrum indicates the possibility to inject lower
frequencies in the resonator.

3.4.2 Input energy dependence on the nonlinear interaction

Up to this point, we have experimentally demonstrated the enhanced nonlinear interaction
in a silicon microcavity by controlling the pulse frequency drift and we have seen the
effect of different linear chirps for two distinct input spectral shapes. Now, we would
like to dedicate this section to a more systematic study on the way to control the cavity
nonlinear transmission as a function of the input pulse energy and dispersion φ(2).

These experiences were performed in another nanobeam cavity. It could be noticed that
the excitation is not centered around ∼1578 nm but approximately to 1584 nm. The only
difference with respect to the previous cavity is the increase by 10 nm of the distance
between the center of the two-inner holes (600 nm in Fig. 3.2). The hole tapers and the
reflectivity mirrors are identical, so the measured quality factor and figures of merit are
of the same order of magnitude. The cavity linewidth is around δλ≈ 0.20 nm, giving
a quality factor around 8000 as for the previous cavity. This change was performed to
obtain more gain from the Er-doped laser and to demonstrate the coherent excitation in
a different structure.

First, we started using an excitation width of 7 nm, so slightly larger than the one used
in the previous demonstrations. The wavelength distribution was more homogeneous,
so we could expect a less optimum control than in the case of stronger lower frequency
components. In Fig. 3.10, we show the evolution as a function of the introduced
dispersion. We have plotted all the spectra from 1 mW (linear regime) until 13 mW in
steps of 4 mW. The pulse energy for the Fourier limited case inside the cavity is of few
pJ.

Fig. 3.10 (a) shows the linear case, when the nonlinear effects are negligible. As expected,
the transmission is equivalent to the cavity linewidth regardless the induced pre-chirp,
translating in an almost flat line of the r.m.s spectral linewidth (light blue - Fig. 3.10
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Figure 3.10: Energy dependence of the coherent control for a 7 nm pulse width. (a-d)
Output spectra for different injection powers: (a) 1 mW, (b) 5 mW, (c) 9 mW and (d) 13
mW. (e) Standard deviation as a function of the induced dispersion for different input
powers.
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Figure 3.11: Energy dependence of the coherent control for a 3.5 nm pulse width.
(a-c) Output spectra for different injection powers: (a) 3 mW, (b) 5 mW, (c) 7 mW. (d)
Standard deviation as a function of the induced dispersion for different input powers.

(e)). When the power is increased 5 times (Fig. 3.10 (b)), an asymmetric behavior with
respect to the sign of dispersion is noticed. Indeed, for positive chirps (red components
before the blue), a broader transmission is obtained. In the r.m.s spectral linewidth
curve (purple - 3.10 (e)) an increase is noticed, but the optimum point seems not to be
reached until 3 ps2. When the power is further increased up to 9 mW (Fig. 3.10 (c)), the
expected blue shift is faster, so the optimum drift is reached at lower dispersion, in this
case around 1.4 ps2, so of the same order of magnitude as the one used in the previous
cavity. We should recall that the input power in that experience was around 7 mW.

Finally, we present the highest attainable power (13 mW) and strong nonlinearities that
could be observed in the spectral evolution at different dispersions. When approaching
to the Fourier limited case, the spectral peak presents a fast red shift prior a fast
optimization, obtained at around 1 ps2.

We have performed a last study by using the same cavity but decreasing the bandwidth of
the excitation pulse (from 6.5 nm to 3.5 nm), meaning a Fourier limited case, increasing
the temporal width by a factor of ∼2. So, a pulse width of ∼2 ps was applied. Assuming
that the coupling efficiency was the same, we obtained pulse energies twice larger for the
same previous case input power. We have thus recalibrated the correspondence between
the stage position and the introduced dispersion, as shown in section 2.4.
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In Fig. 3.11, we present the spectra for three incident powers. With an input power of 3
mW (a), it can be observed that even though the control is present, the optimum value
is not reached for dispersion values lower than 3 ps2. Then a case where the average
input power is ∼5 mW allows an optimum control at around 1.7 ps2. It can be noticed
that the output spectral shape for the optimum case is remarkably flat, covering all the
wavelengths of the exciting pulse. Finally, we studied a case under input power equals to
7 mW (Fig. 3.11 (c)). As could be anticipated from the previous experiences, the best
spectral content is found at lower dispersion values (∼1.2 ps2), but the output is not as
flat as in the previous case.

These trends demonstrate the existence of an optimum dispersion value for each pulse
energy that allows the broadest possible output transmission. As expected, when more
energy is present, the cavity frequency shift is faster, requiring a stronger frequency drift
applied to the chirped pulse. It means that for higher energies, lower dispersion (strong
drift) optimizes the transmission.

3.5 Simulations

After the presentation on the transient operation of a microcavity under a coherent
excitation, we have demonstrated that through appropriate shaping of the incident
signal, the coupling efficiency and the enhancement of the non-linearities are shown
to be increased. Nevertheless it would be crucial to develop a tool that predicts the
optimum values for nonlinear light-cavity interactions. For instance: the pulse position
with respect to the cold cavity, the required pre-chirp for a given injected energy or even
more, the possibility of using other integrated materials or hybrid waveguides.

In this context, we conducted preliminary simulations of the nonlinear behavior of our
cavity by using the coupled mode theory which accurately emulates the limitation of
the energy that can be coupled inside a nonlinear resonator whose refractive index is
changing with time [123, 129].

The intracavity field dynamics can be described by two coupled ordinary differential
equations [129], where the dynamical variables are the intracavity field u(t) and the free
carrier density N(t):

du(t)

dt
= iω0

(
1− n2c

n2VK
|u(t)|2 − σr

n
N(t)

)
u(t)

−
(
ω0
2Q +

βTPAc
2

2n2VTPA
|u(t)|2 + σac

2n N(t)

)
u(t) +

√
ω0
Qe

sin(t)

(3.1)

dN(t)

dt
=− 1

τc
N(t) +

βTPA
2 h̄ω0

c2

n2V 2
FC

|u(t)|4 (3.2)
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Figure 3.12: Simulated transmission spectra of the cavity under chirped pulse excita-
tions varying from φ(2) =−3 to +3.5 ps2. The spectral linewidth of the incident pulse is
plotted in red line. The transmission spectrum calculated at low incident power is shown
in gray line.

where sin(t) is the temporal shape of the input pulse field defined as |sin(t)|2 = Pin(t),
with Pin(t) the incident pulse peak power, ω0 the angular frequency of the linear cavity, c
the speed of light in vacuum, h̄ the reduced Planck’s constant, VK and VTPA the Kerr and
two-photon absorption (TPA) nonlinear volumes (assumed equal) calculated by means

of FDTD simulations, giving VK = VTPA =

(∫
V
ε(~r)| ~E(~r)|2d3r

)2∫
V
ε2(~r)| ~E(~r)|4d3r

= 2.3(λ/n)3 and VFC ,

the volume related to free carrier effects VFC =

√√√√(∫V ε(~r)| ~E(~r)|2d3r

)3∫
V
ε3(~r)| ~E(~r)|6d3r

= 1.7(λ/n)3. The

linear parameters of the cavity were determined by the simulations initially performed in
section 3.2 and set to Q = 7 900 and Qe = 8 500 (coupling between the incident field
and the cavity). To complete the model, the nonlinear parameters of silicon were used,
for instance, the Kerr index n2, the TPA coefficient βTPA, the free carrier refraction
effective volume σr and the free carrier absorption effective area σa . The carrier lifetime
was set to τc = 0.4 ns [125]. For the modeling, a 32nd order supergasussian was used in
order to simulate the input spectral shape. As shown in previous works [123], we have
neglected nonlinear contribution from thermal effects.

For the sake of simplicity, the free carrier nonlinear effects occurring in the access
waveguide were not included in the present model. This assumption has been verified
through numerical simulations and nonlinear transmission measurements through an
equivalent strip waveguide with no cavity. On the contrary, the accumulated nonlinear
phase and power depletion due to the Kerr and TPA effects in the access waveguide are
included.
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Figure 3.13: Top: Extrapolated transmission map as a function of the wavelength
(horizontal axis) and the introduced dispersion (vertical axis). Colormap in nW. Bottom:
Correspondent simulated transmission. Colormap in a.u.

Keeping ϕ(2) = 0 ps2, 5 pJ Fourier-limited injected pulses induce a 1.4 to 1.6 nm blue-shift
of the cavity resonance (Fig. 3.8). The frequency blue-shift is governed by the time
varying refractive index of silicon induced by the free carriers being generated by TPA
during the pulse excitation. The larger spectral broadening achieved with the positive
chirped pulse is assisted by a higher carrier density generation and proves an enhanced
nonlinear interaction between the pulse and the intracavity silicon material. In Fig.
3.5, the red spectra correspond to the optimum control of the cavity, so the largest
coupled energy is obtained for the experimental (left) and the simulated (right) cases.
On the contrary, the green line curves show the spectra under the same chirp but with
an opposite sign, demonstrating that the enhancing effect is only obtained with positive
chirps. It can be seen that despite the periodic modulations in the experimental data,
the simulated spectra reproduce the trends of the coherent control that are observed
experimentally.

In Fig. 3.13, we present the comparison in a colormap between the numerical results and
the experimental measurements for the red excitation (as it the input pulse is closer to
the simulated one). It is interesting to remark the output asymmetry given by the model
following a broader transmission for positive dispersion values (coherent excitation). The
model also predicts the red shift present around the Fourier limited case. Also, the
optimum value obtained in the simulations is very close to the one extracted from the
experimental spectra at around φ(2) =+1.6ps2. These preliminary results shows that
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Figure 3.14: Intracavity field temporal evolution under different pulse excitations.

the adopted model can be used to anticipate the required compensation for particular
resonators with different materials and diverse quality factors.

Finally, we have simulated the intra-cavity energy in order to demonstrate that at the
proper excitation the temporal drift is compensated. Fig. 3.14 displays the calculated
intracavity fields for a frequency square-like pulse. The Fourier limited pulse (orange)
and the negative dispersion (blue) cases present a temporal drift and a decrease of the
coupled power that are compensated in the case of the positive dispersion (yellow). In
the latter, the simulated shape is very close to the envelope of the original sinus-cardinal
function used as input and the curve is almost symmetric.

3.6 Conclusion

We have experimentally demonstrated and thoroughly studied the coherent excitation of
a nonlinear SOI microcavity. By controlling the linear chirp of the excitation pulse, an
enhanced nonlinear interaction between the pulse and the intra-cavity silicon material is
experimentally verified. Compared with a Fourier-transform limited pulse of equal energy,
positively chirped pulse excitation enables to increase the free carrier density generated
by TPA by up to a factor of 2.5. It is accompanied by a large frequency blue-shift of
the cavity resonance reaching 19 times the linear cavity linewidth, corresponding to a
refractive index variation ∆n/n = 2.6× 10−3. These experimental results have been
verified using a coupled mode theory model that includes silicon nonlinearities.

The spectral pulse linewidth used to excite the silicon microcavity, with a Q factor
close to 8 000, is 30 times larger than the bandwidth of the cold cavity. Although our
experimental results do not include temporal measurements, one has to remind that the
variations in the transmission spectra are necessarily accompanied by differences in the
intra-cavity field dynamics, as illustrated in [123] for gaussian shape pulse excitations,

131



Chapter 3. Nonlinear enhancement interaction in coherently excited
cavities

underlying the interest of coherent excitation in the purpose of controlling the nonlinear
dynamics of optical cavities or optical devices.

Thanks to a physical analysis of the nonlinear behavior of the microcavity, we were able to
predetermine the pulse shape, in particular the spectral phase relationship approximated
to a positively linear chirp. Such an approach refers to an open-loop coherent control
scheme [118] that does not require any experimental feedback. In contrary, close-loop
scheme could be envisaged to excite optical resonators, as it is routinely achieved
for atomic and molecular resonances [136], which could be an interesting method to
characterize nonlinear dynamics of optical resonators and nonlinear parameters of intra-
cavity materials.

Finally, our study demonstrates the capability to manipulate the optical bandwidth
and the nonlinear dynamics of a cavity by means of a coherent excitation. The same
could be applied to more complex structures like coupled cavities or optimized with more
elaborated pulse shaping schemes. This coherent control of on-chip resonators may open
new routes for low-power optical switches [23] and all-optical memories [137].
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4 Dispersion engineered PhC for
hybrid and nonlinear integration

In this chapter we will explore the properties of slot photonic crystal waveguides (SPhCW).
We start with the design and simulation of the dispersion engineered structures, then
we introduce some fabrication improvements to obtain low loss waveguides. The linear
properties, in particular the dispersion curves are characterized under two different
methods for diverse covering refractive indices. Finally, we give insights in the optimization
of hybrid waveguides for nonlinear applications followed by some preliminary results on
the enhancement of light-matter interactions in the slow-light regime.
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4.1. Introduction

“Man könnte den ganzen Sinn des Buches etwa in die Worte fassen: Was sich überhaupt
sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man

schweigen”.

Wittgenstein, Tractatus Logico-Philosophicus (1922).

4.1 Introduction

In the first chapter, we have introduced the basic concepts of waveguiding in PhC
and the effects of introducing a slot for applications via hybrid integration (see section
1.3.4). In this chapter we will relate these physical principles to silicon based structures.
Indeed, the maturity of the Silicon on Insulator (SOI) platform allows the fabrication of
submicrometer patterns required to make holes and slotted defects with low propagation
losses while benefiting from a natural compatibility with the CMOS technology [138].
The two objectives of small footprint optical components and the shrinkage of energy
consumption for the information treatment require the enhancement of the light matter
interactions in small volumes. In this purpose, photonic crystal waveguides (PhCW) rise
as candidates due to their confinement and versatile dispersion properties including slow
light and possible control of group velocity dispersion (GVD) effects [16].

Besides, nonlinear phenomena in photonic integrated circuits [139, 18] have been con-
sidered as a promising route to ensure important functionalities like modulation or
commutation at higher rates than their electronic counterparts, especially by using
third-order nonlinear optical effects in silicon [140, 141]. Additionally, in slow light
structures, there is a scaling of the light matter interaction that depends on the group
index (ng). This behavior is quantified by the enhancement slow down factor defined as
S = ng/n, with n the material refractive index [142]. Third order nonlinear effects -such
as Kerr self phase modulation- scale with S2, which means proportionally to the square
of the group index [107, 87]. Consequently, slow light structures are of great interest due
to their improvement of the nonlinear device performance. However, their bandwidth
becomes narrower as the average group index (〈ng〉) increases and with no careful design
(i.e. engineering) of the waveguide, the wavefront is severely distorted by GVD [143].

Moreover, light propagation losses increase in the slow light domain due to back and
out-of-plane scattering [144], so there is a practical upper limit for the group index,
typically around 50. For W1 waveguides, where the fabrication errors are minor compared
to the slot case, the dramatic increase of extrinsic optical losses for large group indices
have shown that even for waveguide lengths of the order of 100-200a and ng≈50, the
modeling of the system departs from perfect Bloch-modes [145], so careful attention
should be addressed to the propagation losses.

An additional trade-off needs to be targeted: bandwidth-group index. A simple figure
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of merit to estimate the buffering capacity of a slow light structure comparing different
lengths or operating frequencies is the Normalized Delay Bandwidth Product (NDBP),
defined as NDBP ≈ 〈ng〉∆ω/ω, where 〈ng〉 is calculated within 10% variation with
respect to the mean group index value [146, 147]. We will use this parameter to
characterize the designed waveguides.

At telecommunication wavelengths, the strong two photon absorption (TPA) in silicon
and its associated effects related to the presence of a free carrier plasma (e.g. Free
carriers absorption and dispersion), indeed spoil the benefits of Kerr-induced nonlinear
phase shifts [141]. Even in the range of moderate propagation losses for ng<40, the
optimistic picture of enhanced optical nonlinearities by slow light phenomena is thus
severely counterbalanced by free carrier effects in silicon.

Furthermore, it has been shown that the expected nonlinear dependencies predicted
by analytical relations hold as long as both realistic losses and the dependency of the
mode shape with respect to the group index are taken into account [148], as well as
considering the multiphoton absorption and linear scattering effects [149]. To circumvent
these limitations, other materials with better nonlinear figures of merit than silicon, such
as GaInP, have been explored [150]. Nevertheless the costs of integrability make solutions
based on silicon still of prior interest. In this sense, hybrid silicon waveguides based on
a hollow core slot geometry have been proposed and demonstrated, first in a classical
picture [14] and later within a PhCW scheme [17]. In the versatile toolbox of PhCW,
these slotted (SPhCW) configuration have brought the possibility to add up slow light
and GVD-nearly-on-demand properties of PhCW with a hollow core waveguide geometry.
Indeed, in this chapter we will explore these structures and demonstrate for the first
time the fabrication of dispersion engineered (DE) SPhCW.

4.2 Design

Currently, combination of photonic crystals and photonic nanowires is considered as a
viable alternative for densely integrated, highly functional circuits, so we need to deal
with coupling stages that will have a non-negligible influence in the dispersion, losses
and nonlinear properties of the circuit. We will increase the complexity in the waveguide
design of the silicon samples by adding stages to couple the fundamental mode in several
geometries.

4.2.1 Coupling stages

Up to this point, we have considered in the experiments only slot and strip waveguides
in different materials, but we have not discussed the problem of injection efficiencies
when varying the waveguide geometry. The proper coupling between strip and PhC slow
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Figure 4.1: Left: First two coupling stages between a free space beam and a monomode
waveguide. The silicon height is typically 220 nm or 260 nm. Scheme not in scale. Right:
SEM image of the cleaved region.

light modes is crucial due to the difference of the transverse mode profile and the energy
density mismatch [151]. The problem becomes critical if a slot is added. So, in this
subsection we will give a brief summary of the design and fabrication efforts to optimize
each step. We will have mainly five transitions: (1) free space to multimode access
waveguide, (2) multimode to a monomode strip waveguide, (3) strip to slot waveguide,
(4) slot to fast light SPhCW and (5) fast to slow light SPhCW. Even though we have
worked with gratings to couple light in silicon waveguides [28], the used structures in
this manuscript are excited via butt-coupling. The first two stages are the same for all
the waveguides and are negligible for our purposes. Indeed a multimode input waveguide
of 3 µm width is set and a transition of 300 µm long is defined to end in a monomode
waveguide of around 450 nm width as shown in Fig. 4.1-Left. On the right of the image,
we present a SEM figure of the multimode access waveguide with the 3 µm isolation.
The 2 µm silica box underneath is appreciable.

The stage (3) is more complex as the mode shapes in strip and slot waveguides are
remarkably different. Indeed in recent years, several studies have been performed to
optimize this transition. Proposals as symmetric and asymmetric strip-loaded to slot
converters [152, 153], Y-like couplers [154] and side coupling converters [155, 41] have been
numerically and experimentally demonstrated by using electronic and optical lithography.
The latter two have been chosen in our studies, even though the side coupling will be
preferred (we will specify when the Y-like coupler will be used).

In Fig. 4.2 (a) and (b), we depict the SEM images of the two used coupler designs.
The typical length for the Y-like adapter is 15 µm and for the side-coupled 20 µm. We
present in (c) and (d) the normalized strip and slot fundamental TE modes at 1580 nm
for waveguides covered with a refractive index material of n=1.46. The reader could
notice that the two mode profiles are very dissimilar. Yet, we obtain losses lower than 1
dB for Y-like couplers and 0.2 dB for side couplers.
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Figure 4.2: (a) and (b) SEM images of strip to slot converters by Side coupling and
Y-like, respectively. (c) and (d) are the normalized fundamental modes for a strip and a
slot waveguides.

Next, the light propagates in the slot waveguide before arriving to the photonic crystal.
At this point, the energy density difference becomes the predominant problem to be
addressed. Indeed, apart from the modal spatial distribution, if the mode enters in a
slow light photonic crystal, the mode gets spatially compressed and the peak intensity
increases with the slow down factor S = ng/n0 [142]. In Fig. 4.3, we depict the effect of
that strong slow light mismatch in a W1 waveguide that was experimentally measured
via SNOM by Volkov et al. [156]. So, an additional coupling stage is required to optimize
the light injection in the slow light PhCW.

Even though some works have proposed to cancel the large fields associated with the slow
mode at the interface with the contribution of evanescent fields in abrupt interfaces[157],
we have chosen the transition steps proposed by Hugonin et al. [158] and experimentally
realized in W1 waveguides by Li et al. [147], where the mode transits from a propagation
invariant mode towards a fast light engineered PhC, prior the slow light waveguide. This
is obtained by tuning among the propagation direction the lattice period of the crystal.
The general principle is: the longer the distance between holes the larger the cut-off
wavelength (this is not a linear relation).

In our design, as shown in Fig. 4.4, the lattice constant variation is set to 10 nm and
the number of periods for each coupler lattice constant is set to 5. We show also with
a horizontal black line in (a) when the mode that enters in a fast light PhC crosses
to a slower guide and finally arrives to a structure operating near the bandgap. In
this example, the central waveguide period is 400 nm. It should be noticed that this
parameter will vary for other structures, particularly when the dispersion is tunned. The
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Figure 4.3: Pseudo-color near-field optical images recorded in the (a) linear (at λ =
1430 nm) and (b) slow-light (at λ = 1545 nm) regimes and directly superimposed on the
corresponding SEM images by making use of the corresponding SNOM topographical
images taken simultaneously with the optical ones. Figure from [156].

a= 400 nm 

a1= 410 nm 

a2= 420 nm 

(a) 
(b) 

Figure 4.4: Fast to slow light converter in a SPhCW. (a) Band diagram for the three
different periods depicted in (b). The figure is not in scale and was adapted from [159].
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objective is to have a slow light regime close to the optimum wavelength operation of
Er-doped fiber lasers (∼ 1580 nm).

4.2.2 Tuning the dispersion

One of the biggest interests in PhC is the possibility to exploit the slow light behavior
manifest close to the structure forbidden gap (limit of the Brillouin zone). In this subsec-
tion we will briefly describe the methods that we have numerically and experimentally
applied to control the dispersion curves of guided modes.

In Fig. 1.12, we have shown a dispersion diagram of a non-DE SPhCW. By using the
expression to estimate the group velocity for Bloch waves vg = dω/dk, we have plotted
the theoretical group index map as a function of the k vector. We attribute this slow light
behavior to a constructive interference of the subsequent transmitted and reflected waves
in a strongly dispersive medium. The component phase mismatch generates an envelope
that propagates slowly compared to the speed of light imparted by the non-structured
material. These phenomena have been used for applications in telecom such as delay
lines and buffers [160], modulators [140, 161] or the particular interest of this work,
enhancement of nonlinear effects like Third-Harmonic Generation (THG) [139], SPM
[89] and FWM [72]. But there is a compromise between two crucial parameters for signal
applications: the delay and the bandwidth. Indeed, we will see throughout this chapter
that for higher targeted group index, the obtained bandwidth with the same delay is
smaller. This requirement could be qualitatively explained by the fact that if different
spectral components experience dissimilar delays, the output signal will be chirped, so to
say, a chromatic dispersion due to the different group velocities will be introduced in the
pulse distorting the temporal information, critical in high speed schemes. To quantify
this effect the GVD expression is used:

GVD=− 1
λ2

(
dω

dk

)−1
(4.1)

To avoid the spreading problem, a method to optimize the dispersion diagram by
modifying the hole net of the crystal has been proposed. This procedure is called
dispersion engineering (DE). By this mean, we can perturb the coupling between the
index guided mode and the gap mode. As the guided light in the photonic crystal remains
highly confined in the defect, the tunning variables will be focused on the first three rows
of holes. Many approaches have been proposed and experimentally demonstrated in W1
waveguides such as the variation of the hole radius [146, 162], the shift of the row of holes
[147], the lattice shift of particular rows [163] or a combination of those techniques [164].

In Fig. 4.5 we present the case of tuning the row of holes (the fabrication tolerance is
larger) in order to illustrate the dispersion engineering procedure and the bandwidth-delay
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Figure 4.5: Geometry effect of modified W1 PhC waveguides: the first and second
rows of holes are displaced symmetrically about the waveguide axis. (a) Calculated
dispersion curves and (b) group indices, for the fundamental mode of the modified W1
PhC waveguides with given s1 and s2 values. The thick solid red line represents the flat
band slow light region [147].

trade-off. In the diagram shown in Fig. 4.5 (a), it could be noticed that for lower slopes,
the smaller the covered frequencies (y-axis). The derivative of this slope is the group
velocity, so for higher constant group velocities (shown with the red line), smaller the
bandwidth. Rather to discuss about group velocities it is more common to describe the
group index; as shown in Fig. 4.5 (b), for higher group indices (smaller group velocities)
the transmitted frequencies with the same group velocity (in red) are fewer.

To quantify this compromise, we use the normalized delay bandwidth (NDBP ) product
[87] as figure of merit defined as:

NDBP ≈ 〈ng〉∆ω
ω

(4.2)

where 〈ng〉 is calculated within 10% variation with respect to the mean group index
value as proposed in [146, 147]. Typically in W1 waveguides on SOI with air holes,
the maximum NDBP values are on the order of 0.30. This corresponds roughly to a
bandwidth of 36 nm for a group index of 12 [164]. Later we will clarify the interest
on moderate slow light regimes (ng<50). This optimum figure will be even smaller
for SPhCW, as the light line will restrict the available bandwidth due to the covering
material (index contrast reduced).
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At the present time, the dispersion properties of SPhCW have been explored numerically
with interesting results [165, 166] mainly in a free-standing configuration. Yet, they
remain essentially unexplored experimentally. The reasons stem first, from the sensitivity
of SPhCW dispersion properties on the fabricated geometrical parameters. For instance,
some of the theoretical proposals rely in exotic shapes or asymmetries that are difficult
to control in lithographic processes [166, 167], and second on the difficulty to directly
evidence the slow light and GVD waveguide features. Though, the control of slow-light
and GVD in SPhCW is essential in order to fully benefit from the hybrid integration of
soft matter (and low index) material on silicon (eg polymers). Furthermore, compared
to their standard plain counter-part, hybrid slotted structures are of greater interest due
to their even smaller effective areas [168].

In the next sections we will use the concepts of DE to simulate, fabricate and then
characterize for the first time slotted PhC devices.

4.3 Simulations

The initial geometry consists in a 260 nm silicon thin film SOI wafer with lattice constant
a = 420 nm, and hole radius r = 125 nm (0.30a) to ensure a wide TE bandgap. In
order to pre-tune the dispersion curve, the first and second rows of holes are shifted
towards and outwards the slot by 0.20a and 0.35a, respectively [169]. This first approach
was elected because the position of the holes is easier to control during fabrication than
their size and shape. Under these premises, the radius of the second row of holes is
kept fixed to 125 nm and the radius of the first row (r1) is swept between 95 nm (0.23a)
and 125 nm (0.3a) in order to quantify firstly the experimental effects deriving from
the modification of only one parameter [170] covering different group indices. Fig. 4.6
presents a schematics of the geometrical parameters obtained after optimization.

r= 125 nm 

a= 420 nm 

r1= variable Wslot= 110 nm 

s1= 0.20a s2= 0.35a 

Figure 4.6: Geometrical characteristics of the design structure.
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Figure 4.7: Left: Dispersion of the engineered modes as a function of the first radii.
Right: extracted group indices highlighting a 10 % variation of 〈ng〉. The dashed line
corresponds to frequencies above the light line.

Frequency band engineering of the proposed structure is studied first numerically by the
plane wave expansion method using the MPB software [171] for a quasi-TE polarization.
Eigenmodes have been calculated in a unit cell reproducing the geometrical parameters
described in the fabrication. A mesh resolution a/20= 21 nm and subpixel smoothing
were used. The cladding has been assumed to have a refractive index of 1.45, close to
the one of Silica and other interesting materials for hybrid integration.

The related results are shown in Fig. 4.7. From the depicted dispersion curves, there is a
clear increase of the ω(k) slope when the first row hole radius increases, which means
that a lower group index is achieved. Fig. 4.7-Right shows the group index as a function
of the cut-off wavelength difference for each geometry. The dashed lines represent the
leaky wavelengths above the light line and the color boxes have been used to calculate
the figures of merit of the structures summarized in table 4.1. Those quantities will be
confronted with experimental values.

In particular, the smallest radius structure will be intentionally over-engineered in order
to test the characterization methods. In general, bandwidths larger than 30 nm and
NDBP of the order of 0.20 are achieved. Note that these relatively modest group indices
would yet actually correspond to slow light enhancement of S= 10–14 in the cladding.

In Fig. 4.8, we display the different |E|2 profiles for the designed structures in the
slow light regime (at k = 0.46 ∗ 2π/a). It could be appreciated that a large part of

r1 [nm] 〈ng〉 (±10%) ∆λ [nm] NDBP
95 17.3 (±1.7) 9.8 0.108
105 10.8 (±1.1) 32.1 0.221
110 8.32 (±0.83) 35.1 0.186
125 6.30 (±0.63) 49.9 0.200

Table 4.1: Parameters calculated from simulations shown in Fig. 4.7 [170].
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Figure 4.8: |E|2 3D profile of the DE SPhCW modes for different radii at k =
0.46 ∗ 2π/a [170].

the dielectric energy interacts with the filling material, for instance highly nonlinear
compounds.

4.4 Fabrication

To confirm experimentally the simulation trends, the C2N/CTU-Minerve clean room
facilities were used to fabricate the structures by following the steps described in section
1.4.1. A careful calibration of the current and the knowledge of the relation between
the number of points to describe one motif and the mismatch between the drawn holes
and structures with respect to the real value was carefully effectuated with the help of
Ing. Xavier Le Roux. It is out of the scope of this chapter to describe each step and test
performed but in this section we will comment on an improvement in the fabrication of
the slot, as it is the main source of losses in the studied waveguides.

In Fig. 4.9, we display a schematic design of the different approaches followed in the
mask design. For this propose, we have assigned to the slot a different layer with respect
to the holes, so the dose used in the lithographic step could be, in principle, optimized
independently. All the approaches are a combination of two ideas: i) slicing the slot
to induce a preference electronic writing direction, as the machine will do it along the
smaller dimension, so the borders (rugosity) will be better defined an ii) the overlapping
of motifs to overdose the center of the slot. The optimized hole dose value for 2 nm step
lithography was found to be at 2.8 C/m2.

Under the electronic microscope none of the previous approaches show a significant
difference (same statistical deviation), but the optical transmission measurements per-
formed in the next section will help to understand the effects in the signal. In Fig. 4.10,
we show an optical image with different SPhCW lengths and their respective reference
waveguide containing a monomode strip with the same length as the SPhCW. It should
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Figure 4.9: Different writing geometries for the slot in the lithographic process.

be noticed that the beginning of each photonic crystal is vertically the same. Indeed, the
position of this critical part with respect to the main lithographic fields+sub-fields and
the propagation prior the crystal should be equivalent to guarantee a fair comparison. In
the same figure, the simple slot sections prior and after the PhC (couplers) are appreciable
with a different tone of blue. In Fig. 4.10 Left, a zoom of a 50 µm long waveguide (Fig.
4.10-Right bottom) is presented with its respective reference waveguide, the different
size in the hole radii is perceptible as well as the markers for the fast light to slow light
couplers.

Finally, a closer inspection with an electronic microscope (SEM) (Fig. 4.11) allows
us to differentiate the shift in the row of holes for the DE waveguide. Furthermore, a

Figure 4.10: Dark field optical microscope images. Left: Different SPhCW lengths
with a corresponding reference waveguide. Right: Zoomed image of the 50 µm long
waveguide.
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Figure 4.11: SEM figures of SPhCW. Right: Dispersion engineered (DE) waveguide
with small first radius and hole shift of the second row with an inset of the simulated
unit cell. Left: Non-DE waveguide.

superposition of the permittivity supercell used in the simulation with the fabricated
structure gives a very good accordance. This geometrical insights will be verified and
discussed in the optical measurements. Fig. 4.11-Right presents a non-DE SPhCW that
will be used for comparative proposes in the last section.

4.5 Properties of fabricated structures

The designed and fabricated structures are then explored in the linear optical regime,
particularly the study of the propagation dispersion is critical prior any nonlinear
consideration, for instance, the phase matching required for some of them is dominated
by the engineered crystal dispersion. In order to reproduce the simulated conditions, we
mechanically cleaved the samples and drop casted a Cargille liquid with refractive index
of 1.45 at 1550 nm.

4.5.1 Optical Transmission

Optical characterization was performed using two tunable lasers from Yenista to cover a
broad band from 1370 nm until 1640 nm in the set-up described in section 1.4.2. In Fig.
4.12, we display the transmission measurements for different SPhCW. In (a) to (c), we
show the transmission of 700 µm long PhC. The names T1 until T5 correspond to the
different design approaches explained in Fig. 4.9 with diverse slot doses: (a) 2.7 C/m2,
(b) 3.0 C/m2, (c) 3.4 C/m2, it should be reminded that the hole dose is set to 2.8 C/m2.
All the plots are given in dBm and the transmission of a strip waveguide is plotted as
reference.

It can be noticed that the transmission of the approach T1 presents a bandgap at larger
wavelengths, which is characteristic of smaller slot sizes. On the other hand, T2 and T4
present the higher frequency gaps, which could be easily explained from the overdose
expected from the overlapping approaches. More importantly, the best defined and
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(a) (b) 

(c) (d) 

Figure 4.12: (a) to (c) Transmission measurements of 700 µm long SPhCW by using
the test approaches numbered in Fig. 4.9 for (a) 2.7 C/m2, (b) 3.0 C/m2, (c) 3.4 C/m2

slot dose. (d) Transmission spectra for different lengths after the approach T1 for a slot
dose of 3.0 C/m2.

sharper band-edge is given after the approach T1. Regarding the doses, we have only
displayed the extrema and the optimum value (3.0 C/m2), but other values were tested.
The strong variation in the behavior after small changes reveals the importance of the
slot in the losses.

Fig. 4.12 (d) shows the transmission for different SPhCW lengths at a slot dose of
3.0 C/m2 for the approach T1. It could be appreciated that at short wavelengths, the
decrease of the transmission is related to the crossing of the light-line, region where out-of-
plane scattering becomes important. At longer wavelengths, light group velocity decreases
and backscattering reduces the transmission. Strong variations of the transmission are
typical of multiple scattering, as well known in PhCW. Even though, we have tapered
the passage between fast and slow light, with long structures the decrease of transmission
is appreciable in the slow light regime. In fact, we can conclude that the dose is the prior
variable to be optimized followed by the slot design.

Propagation Losses

Photonic crystals are theoretically lossless, but in the telecom wavelengths, the control
of size and position of motifs are limited by the fabrication technology. Furthermore, we
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are dealing with planar structures, so there is no forbidden gap to confine light in the
vertical direction, instead, the index contrast allows the guidance through total internal
reflection (TIR). So the guided modes decay within the crystal because of the bandgap
and within the cladding because they are index-guided. In the PhC, above the light line,
the wavevector does not satisfy the conditions for TIR, meaning that 2D PhCs exhibit
intrinsic losses.

Another kind of losses coming from the imperfections in the fabrication process are refereed
as extrinsic. Particularly, the limitations from the lithographic and etching processes
generate a disorder in the crystalline structure that is not exactly reproducible. For
instance, we should study it as an statistical experimental variable. In this frame, disorder
has been described by a correlation length that will define the coherent propagation of a
pulse or the loss of its coherence.

The losses problem is a very important affair for photonics. The use of PhC is interesting
if the respective propagation losses are permissible. For this matter, we can distinguish
different propagation regimes that are experimentally evident for SPhCW, as shown in
Fig. 4.13. In the first regime, marked in blue, the frequencies are above the light cone
(for our case short wavelengths), hence with a small wave vector, where the frequencies
are not well confined and the mode experiences important propagation loss. This effect
become more evident as the PhC length is increased.

As a criterion to assess the effect of disorder we choose the ratio of the SPhC length
LSPhC and the so-called mean free path l, which gives the scale of exponential decay
of the propagating wave due to disorder [151, 172, 173]. In the dispersive regime, that
we associate with the fast light and moderate slow light (ng<30) regimes, LSPhC/l� 1,
the attenuation length is much larger than the one of the PhC. In this region, light
propagation can be considered as ballistic, so rare scattering events are present. In
Fig. 4.13 this regime is evident between 1561 nm and 1580 nm, where the transmission
of all the SPhCW is roughly the same. This spectral region is the one interesting
for coherent applications. In the strong slow light regime, known also as diffusive,
LSPhC/l≈ 1: constructive and destructive interference mechanisms are then responsible
for the complex transmission spectrum. Several models have been proposed to account
either for the brutal variations or for the general drop [174, 175, 144] of the transmission.
In this regime, many scattering events occur and dominate over ballistic propagation.
In such a regime neither the dispersion curve, nor the group velocity can be defined
[151]. Here a partially coherent wave still transports energy but is not very useful for
telecommunication proposes requiring coherent propagation [176]. In the experimental
transmission, this regime is characterized by strong oscillations in the spectral response
that could be appreciated around 1581 nm.

Finally as we locate the pulse in the bandgap, we enter in a regime of arbitrary localized
states, here the attenuation length is shorter than the PhC length (LSPhC/l>1). In [177]
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Figure 4.13: Different propagation regimes characteristic of PhC waveguides.

researchers have demonstrated experimentally that structural perturbations imposed on
highly-dispersive photonic crystal-based waveguides give rise to spectral features that
bear signatures of Anderson localization. Sharp resonances with the effective Qs of over
30,000 are found in scattering spectra of disordered waveguides.

For the interesting regime, where the ballistic propagation is valid, the study of the losses
has been of common interest in order to exploit the slow light feature [173, 178, 144, 179,
180, 181, 174, 182]. As it was studied by O’Faolin et al [183], in a W1 waveguide, the
assumption of the entire hole as a scattering source fitted adequately the experimental
results. This mechanism plays an important role in the explanation of the backscattering
effect, because as ng increases, the latter becomes the dominant process, making the
mode exit the dispersive regime (also called ballistic) where the perturbative solution
approach is valid and entering in a diffusive regime where the dispersion curve and the
concept of group velocity are no longer valid and where we should rather speak about
partially coherent energy transport. Engelen et al.[143] have demonstrated the existence
of those regimes, after their measurements in W1 waveguides. For group velocities beyond
ng = 30, the losses scale proportionally to n2

g, meanwhile, bellow this value, the detected
intensity increases sublinearly.

4.5.2 Time of Flight measurements

An interferometric optical coherent tomography (OCT) technique was implemented,
allowing to measure the time-frequency transmittance using a partially coherent source
that allowed to extract quantities such as the complex frequency-dependence reflectance
or the group velocity from fringes analysis [168, 184, 174, 185]. A simplified scheme
of the set-up is presented in Fig. 4.14 that have been mounted with the valuable
help of Dr. Pierre Colman. It consists in placing the PhC waveguide in one arm of a
Mach-Zehnder interferometer (MZI). At the output, two counter-balanced photodiodes
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Figure 4.14: Interferometric set-up to measure the transmittance maps.

record the interferometric pattern. Additionally to the group index, it gives access the
arrival time distribution of the energy, useful to study disorder [184]. Here we used a
slightly different setup which does not require the use of a low coherent optical source.
Considering that light accumulates a phase shift φ(λ) = K(λ) ∗ L sample, the signal
recorded at the output is proportional to S(λ) ∝ |E0|2 ∗ T0(λ) ∗ cos(φ(λ)). Here it is
assumed the output of the waveguide is simply Eout = E0 ∗

√
T0 ∗ eiφ. The dispersion

could then be retrieved using the relationship ∆λfringes = λ2/(L ∗ ng) [186].

The spectrograms of 700µm-long DE SPhCW are shown in Fig. 4.15. The delay was
calibrated using a reference sample without SPhCW. The contributions from the access
waveguides were taken into account in the final measurement. So, to extract only the
photonic crystal information, the group index of the access was conservatively assumed
equal to 4 (in accordance with numerical simulations). The group index of the device
under test was then obtained by the deduction of the delay introduced by the access as

ngPhC =
ctT
LPhC

− LAngA
LPhC

(4.3)

where the sub-indices PhC and A stand for Photonic Crystal and accesses, respectively,
and tT is the total delay measured with the spectrogram.

The transmission level for long structures demonstrates the good fabrication quality;
and several of the investigated structures clearly exhibit a plateau in the group index
trend (i.e. same delay), demonstrating the potential of such waveguides for applications
requiring low GVD. Note that two lines can be seen on the spectrogram: the one at
lower group index that decreases continuously corresponds to the TM mode intentionally
coupled in. The dispersion of this mode is very close to the expected behavior of an
index-guided waveguide [184], meaning that it is not affected (i.e. not guided) by the
PhC design, and thus it serves as an internal reference to determine more precisely the
actual group index. No specific post-processing regarding the polarization of light was
thus performed. Regarding the thickness of the dispersion curve due to experimental
uncertainties, a criterion corresponding to a decay of 10 dB in the transmission for a given
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Figure 4.15: Spectrograms of different SPhCW: (a) r1= 95 nm, (b) r1= 105 nm, (c)
r1= 110 nm and (d) r1= 125 nm.

wavelength was chosen, corresponding to an estimation of ng with an average accuracy
of ±0.6 [170]. Let note that Fig. 4.16 gives also interesting qualitative features about the
propagation losses. Indeed dispersion engineering does not only modify the dispersion
properties of slow light modes, but also impacts their propagation losses [183, 187].

In Fig. 4.16, we display the extracted group index curves for different structures where
the points are experimental values and the solid lines are the corresponding fits. We have
plotted additional squares within a 10% variation in the average group index, marked
explicitly in the left axis. All of these values are used to estimate the NDBP (see
Eq. 4.2). In particular, we can zoom the largest curve to notice the over-engineering
predicted from the simulations. Indeed, the group index variation is larger than 10% after
1583.2 nm wavelength, giving a NDBP of 0.136. A summary with the extracted values is
presented in table 4.2, were a maximum NDBP value of around 0.16 is obtained.

In order to estimate the field enhancement in the photonic crystal, assuming a structure
with ng=15, the third order nonlinear properties of silicon is increased by a factor
S2
Si = (ng/n0−Si)

2 of around 18.6. In the same time, a material filling the slot with the
same refractive index used in these experiments encounters a S2

Fill = (ng/n0−Fill)
2 ≈ 107.0

enhancement. So, even with modest group indices corresponding to acceptable
losses through long propagation lengths for practical applications (700 µm,
here), the enhancement experienced by the slot material in ultra-small effec-
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Figure 4.16: Left: Extracted Group Index for the different spectrograms withing 10
dB (marked with color bars) and a 7th order polynomial fit. The average group index is
marked in the left axis. Purple: 95 nm, blue: 105 nm, green: 110 nm, orange: 125 nm.
Right: Zoom for the 95 nm radius case to describe an over-engineered waveguide.

tive areas is very promising regarding highly nonlinear liquids and polymers
with low refractive indices at λ = 1550 nm exhibiting ultra-fast response
[188, 189, 190]. For instance, in the lower ng obtained experimentally (ng ≈ 5.72), repre-
senting the best waveguide in terms of transmission, the expected slowdown enhancement
would be of S2

Fill = (ng/n0−Fill)
2 ≈ 15.

The resulting total effective nonlinearity experienced by the light is then a result of the
slow light enhancement S2 combined with the light confinement (i.e. the effective area).
Sometimes, large slow light enhancements are mitigated by larger effective area; this
is not the case here. To give out some numbers, if we consider the polymer PSTF66
(n2I = 2.8 ∗ 10−18 m2/W) [191] which has modest Kerr nonlinearity, then the waveguides
presented in this article, particularly for the case r1= 105 nm , would exhibit a Kerr
nonlinearity up to 1259/W/m: 165/W/m comes from the cladding itself while the
surrounding silicon PhC structure participates to 1094/W/m. But if other material with
better nonlinear properties, but still at the same refractive index, such as nanocomposites
(n2I ≈ 1 ∗ 10−16m2/W) [192], the Kerr nonlinearity would then be 6992/W/m with (as
expected) exactly the same contribution from silicon (1259/W/m) and 5898/W/m from
the cladding. These estimations highlight the importance of the cladding material.

r1 [nm] 〈ng〉 (±10%) ∆λ [nm] NDBP
95 15.4 (±1.5) 13.9 ± 1.0 0.136 ± 0.014
105 11.4 (±1.1) 21.5 ± 1.5 0.156 ± 0.018
110 7.64 (±0.76) 31.4 ± 1.8 0.153 ± 0.010
125 5.72 (±0.57) 36.6 ± 2.1 0.133 ± 0.014

Table 4.2: Parameters from the measured curves.
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4.5.3 Integrated MZI for slow light extraction

In order to confirm the light group index measured in the previous section, another com-
plementary method was implemented. We used integrated Mach-Zehnder interferometers
(MZI) containing one arm with a 200 µm long SPhCW and the other arm with a strip
waveguide as a reference. The coupling approach for the interferometer was analogous to
the one described in Ref. [193]. In Fig. 4.17, we display an optical microscope image of
the integrated structures. Different testing and reference devices were added, but in this
chapter the interesting structure will be the second from top to bottom.

The dispersion curves were extracted by means of the interference analysis, following the
relation [140]:

ng =
λmaxλmin

2L(λmax − λmin)
+ nrefg (4.4)

where λmax and λmin are the two wavelength extrema of a fringe, L the length of the
SPhCW and nrefg the group index of the reference arm. In the integrated MZI, the
reference arm was assumed to have a constant group index (nrefg ) equal to 3.8 (calculated
at λ=1.55 µm). In Fig. 4.18 we show an example of ng extraction for r1 = 105 nm. In
red, we mark the wavelength position of the maximum transmission and in green the
minimum. High contrast fringes decrease the uncertainty, so good quality fabrication is
required to ease the extraction. No filtering was performed, making difficult the group
index estimation close to the bandgap. Even though it is possible to extract higher
indices, we indeed prefer to assume a conservative approach in order not to deal with
diffusive features or localized/defect artifacts.

A clear remarkable flat band can be observed over several nanometers (∼ 20 nm), meaning
nearly-zero GVD. We remind that relatively modest group indices (∼ 15) were considered
to ensure a good trade-off between light-matter enhancement induced by slow light effect
and low propagation losses which have been demonstrated to increase quadratically with
the group index square after a given ng-threshold [183]. In the following, we will use this
method to study the effect of the covering material.

Figure 4.17: Optical image of a chip section. From bottom to up: i) strip reference
waveguide (RW), ii) 200 µm long SPhCW, iii) RW, iv) power division test device, v)
MZI - 200 µm SPhCW and strip, vi) MZI - 200 µm SPhCW and 100 µm SPhCW.
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Figure 4.18: Illustration of the group index (ng) extraction from the interference
fringes of an integrated MZI. (a) Transmission spectra with an overlap with the automatic
tracking of wavelength at maxima (red) and minima (green) values. (b) Group index
values after applying Eq. 4.4.

4.5.4 Second order dispersion curves (GVD)

Using the direct time of flight measurements (external MZI), a seventh order polynomial
fit was done following the higher transmission points for the TE mode in order to retrieve
the group index as a function of light wavelength. Now, from these curves, the group
velocity dispersion β2 coefficient[96] could be estimated through the first derivative of
the fit:

β2(λ) =−
λ2

2πcD=− λ2

2πc2
dng(λ)

dλ
(4.5)

where D is the standard optical fiber dispersion parameter, yet usually reported in
ps/(nm-mm) for integrated waveguides. Note that under normal dispersion (β2 > 0),
optical pulse broadens along light propagation. However, in the anomalous case (β2 <
0), an optical soliton can be formed and the pulse hence propagates without further
distortions[96]. To properly exploit the benefits of slow light, the dispersive compensation
condition needs to be achieved over a large spectral bandwidth. For instance, engineered
chalcogenide planar waveguides have been exploited for supercontinuum generation [104].

From Fig. 4.19, it is seen that the structures exhibit very interesting dispersion features,
especially in the large group index regions. Both normal (positive) and anomalous
(negative) GVD can be obtained and some SPhCWs exhibit an almost flat ng plateau over
more than 20 nm bandwidth. This is encouraging because state of the art nonlinear effects
in integrated optics have been demonstrated in the anomalous dispersion regime and for
relatively modest NDBP products [148, 194, 195, 196], demonstrating the important role
played by the optical losses (both linear and nonlinear) that must be meticulously treated.
As the proposed structures offer wavelength windows in the anomalous regime
with moderate losses, they are convenient for nonlinear applications.
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Figure 4.19: Second order dispersion extracted after the delay measurement.

As the radius increases, the dispersion becomes flatter and tends to zero over larger
intervals at the price of lower group indices. The flat behavior is explained by the
change of ng over short wavelength ranges, that is smoother for larger radii. The results
summarized in table 4.2 are confronted with the trends of Fig. 4.19: a decreasing
bandwidth (∆λ) as a function of the average group index increasing is related. We
obtained devices with experimental NDBP values ranging between 0.133 and 0.156, i.e.
extremely large for slotted waveguides limited by a silica and top cladding light lines.
By comparing with the simulated values shown in table 4.1, we see that the fabrication
errors (exact hole positions, sidewall roughness, etc.) tend to decrease the actual PhC
performances: designs with the best features (in theory) have often (in practice) very low
fabrication tolerance. Therefore it is also important to assess the robustness of the PhC
design –namely the sensitivity of the PhC’s features to small variations of the design
parameters-, and not to rely only on its theoretical performances. The designs with r1=
95 nm and r1= 105 nm appear to exhibit the best compromise regarding fabrication
errors.

4.5.5 Covering material refractive index effect in the dispersive
properties

During this thesis we have exploited the properties of PhC under different covering
linear materials which has allowed the demonstration of versatile cavity structures with
potential applications in biological sensing (the reader may consult Ref. [26, 27] as
this particular topic is out of the scope of this manuscript). Under the same spirit, we
have studied first numerically and then experimentally the robustness of the dispersion
engineered properties in SPhCW under different covering materials. This is of dramatic
importance due to the intrinsic index sensitivity of hollow core waveguides. It is then
expected that the properties of the hybrid waveguide will vary with the linear and
nonlinear characteristics of the covering material.
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Simple cleaning with ethanol and 

isopropyl alcohol 

Use of another index liquid 

SiO2 SiO2 SiO2 

Si Si Si 

Figure 4.20: Procedure scheme used to change the cladding optical material.

Up to this point we have assumed a covering refractive index of the structures close to
the one of silica (nClad ≈ 1.45). Our structures allowed a very simple procedure (Fig
4.20) to change the covering refractive index, so we could study different claddings in the
range of interesting polymers and thin films already reported in literature.

First, for the evaluation of the dispersion engineered structures, simulations were per-
formed using the MPB software [171] considering quasi-TE light polarization. The cell
parameters were nSi = 3.48, nSiO2 = 1.44 and nClad = 1.40,1.45 and 1.50. The structures
under test were the same as the ones used in previous sections. In this study, the radius
of the first row was swept to achieve different group indices. We considered for that
three different values: r1= 95 nm, r1= 105 nm and r1= 110 nm [165]. We have ignored
the case of r1= 125 nm as the obtained group indices are then very small. It can be
noticed that the consideration of the buried oxide layer and top cladding indices of the
same order considerably shrinks the available bandwidth below the light line, as it can
be noticed in Fig. 4.21.

In Fig 4.22, the transmission spectra of 50 µm long SPhCW for the three geometries are
displayed. The filling of the SPhCW was performed by drop-casting different commercial
Cargille liquids that were cleaned with Acetone and Ethanol between two successive
experiments with different liquids, as depicted in Fig. 4.20. A translation of the bandgap
as a function of the cladding index is observed, simultaneously with a slight reduction of
the average ng when the cladding index increases. Finally, the bandwidth for a constant
group index remains similar for different top cladding indices keeping preserved the
waveguide flat band slow light properties. We would like to remark that the finding
associated with the design presented remain valid for filling material whose index is lower
than ∼1.8. Above, the contrast between the slotted PhC and its surrounding is too weak
to allow propagation and proper confinement of light.

From Fig. 4.22, we can state that the fabrication limits are a critical parameter when
engineering SPhCW. Even though the photonic bandgap is clear for all the structures,
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(a) 

Radius r1 

(b) (c) 

(d) (e) 

Figure 4.21: MIT Photonic Band simulations for different conditions (a) Band diagram
of the different structures under the effect of changing the refractive index, No DE refers
to a structure with the same radius (r=125 nm) and no hole shift. The blue, green and
red curves correspond to Dispersion Engineered (DE) structures changing the position of
the first two row of holes and varying the radii for r1=95 nm, r1=105 nm and r1=110
nm, respectively. Inset: fundamental cell of a DE waveguide with r1=95 nm, (b-e) Effect
of the refractive index change on the dispersion of the structures [197].

smaller holes give rise to a reduction in the transmission close to the bandgap (case
a). This could be explained by the increased difficulty to fabricate smaller holes which
induces larger wall roughness, that are even more critical close to the bandgap (slow light).
On the contrary, hole radius of 110 nm (only 30 nm difference in diameter) provides a
net decay of 30 dB in a couple of nm. Also, as increasing the hole size, a waveguide
band-edge sensitivity increase is expected because the interaction between the mode and
the cladding material is higher.

The sensitivity of the bandgap position was estimated with a 20 dB transmission decay
basis and is in average of around 250 nm/RIU. This means that, for our case, a change
of 0.10 RIU gives a shift on the order of 25 nm. Beyond this known effect [198, 199], we
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Figure 4.22: Transmission spectra and sensitivity (parameter S) of different waveguides
as a function of the cladding index with the transmission (red) of a strip waveguide as
a reference. (a) r1=95 nm, (b) r1=105 nm, (c) r1=110 nm and (d) bandgap refractive
index sensitivity [197].

put hereafter the focus on investigating the effect of changing the cladding properties on
the slow light mode dispersion of the investigated hollow core waveguides.

In Fig. 4.23 (a), (c), (e), the transmission of the integrated MZI are shown for three
geometries, considering a n=1.50 top cladding material. The interference fringes contrast
and the clear cut-off wavelength (marked with a dashed blue line) reveal the high quality
of the fabricated structures.

It is interesting to notice that the contrast of the fringes follows the group index, as the
larger the introduced delay, the lower the contrast, so the MZI gets unbalanced due to
larger losses. Additionally, we assumed a conservative approach, considering that in the
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(b) 

(d) 

(f) 

(e) 

(c) 

(a) 

Figure 4.23: Dispersion curves extraction with 2 different approaches, on the left an
integrated MZI with a 200 µm SPhCW in one arm and on the right the reflectance maps
for 700 µm long crystals. (a)-(b) correspond to r1=95nm, (c)-(d) to r1=105nm and
(e)-(f) to r1=110nm for a fixed filling refractive index of n=1.50. Adapted from [197].

butt-coupling configuration, the strong FP resonances from the sample facets and the
features from the difussive and localized regimes hinder the measurement of large group
indices, requiring a post-filtering processing. The results observed in the simulations are
here confirmed. For instance, the larger the radii of the first row of holes, the smaller
the group index in the flat band region, but at the same time the larger the slow light
bandwidth.

We have also used the ToF set-up to confirm the findings. We show the transmittance
maps in Fig. 4.23, corresponding to the same geometry as for the integrated devices.
The main difference is the propagation length, indeed for the cases (a), (c) and (e), the
SPhCW is 200 µm long, while for (b), (d) and (f) is 700 µm.

Next, we have performed a similar analysis as for the case of nclad = 1.45 to extract the
group index curves and the second order dispersion evolution. We present the results
in Fig. 4.24, as visible from the comparison with Fig. 4.21, the close agreement with
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Figure 4.24: Experimental group index and derived second order dispersion curves for
the 3 geometries considered: r1=95 nm (a)-(b), r1=105 nm (c)-(d) and r1=110 nm (e)-(f).
Each one for three different filling indices. (g) Sensitivity of the two ZGVD-wavelengths
as a function of the index for different geometries [197].

the simulation is remarkable. From simulations, the effective area in the slot region[168]
is estimated to be around 0.03 µm2. The fraction of dielectric energy confined within
the slot[200] is around 27% at k= 0.46 * 2π/a for all the structures, and about 52% of
the energy is contained in the cladding region (including the holes and the field above
silicon).

Again, the dispersion parameter of the waveguides (b), (d) and (f) exhibits interesting
anomalous and normal zones, including two zero group velocity dispersion points. The
sensitivity of the dispersion curves is noteworthy considering that the hole radius changes
only by 5 nm in the first row and that the shape of the second order dispersion curve
remains almost unaltered. For this reason, we have plotted a curve showing the variation
of the ZGVD points as a function of the cladding index. From the trends, we can see
that this interesting region could be tuned very precisely as a function of the index,
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r1 [nm] Method 〈ng〉 (±10%) ∆λ [nm] NDBP

95 Integrated MZI 16.3 (± 1.6) 18 ± 2 0.18 ± 0.03
Time of Flight 15.1 (±1.5) 20 ± 2 0.19 ± 0.03

105 Integrated MZI 12.1 (±1.2) 21 ± 2 0.16 ± 0.01
Time of Flight 10.3 (±1.0) 24 ± 2 0.15 ± 0.01

110 Integrated MZI 9.03 (±0.90) 25 ± 3 0.14 ± 0.03
Time of Flight 7.58 (±0.76) 32 ± 3 0.15 ± 0.03

Table 4.3: Figures of merit for DE SPhCW filled with a n=1.50 liquid following two
different experimental procedures.

being promising for materials with narrow band properties or for using high power lasers
at specific wavelengths. It is also observed that the dispersion (positive and negative)
slightly decreases for larger refractive indices (as well as the group index), so, the slow
light dispersion curve becomes flatter.

Again, from the reflectance maps, one clear transmission line is strong at around 80
ps delay. This corresponds to a TM mode that is insensitive to the delay induced by
the SPhCW. This group delay time agrees with the length of the considered sample.
Also, as expected, the TE-transmission drops quickly when approaching the bandgap (i.e.
increasing the group index), validating our experiences from the integrated MZI devices.

This result highlights the discussed fabrication sensitivity of the waveguides, similar
geometries giving rise to very similar dispersion properties but still subject to some
possible frequency shift. It is stressed that both employed experimental methods are
based on a reference arm calibration. For the integrated MZI, it depends on the accuracy
of the considered reference group index, and for the second method in the delay calibration
of the external reference arm.

From measured curves, we have extracted important parameters and figures of merit
for the devices, such as the bandwidth and the NDBP. It can be seen the agreement of
the properties for both independent methods, even though the group index values for
measurements achieved with the integrated MZI scheme are slightly larger. Also, the
calculated NDBP values are large taking into account the theoretical limit of around 0.3
for our configuration. Fig. 4.24 and table 4.3 condensate the methodology and results
for only one refractive index case (n=1.50). Analogous experiences were performed for
the other two refractive indices using the same kind of devices. The reported values take
into account the uncertainty sources from the fabrication process until the data analysis.
There is a whole consistency between two independent devices measured in two different
set-ups and the 3D plane wave expansion (MPB) simulations.

The zero dispersion points are obtained in maxima and minima of the ng curve, and the
maxima and mimina of D correspond to a concavity change of the group index (zero group
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r1 = 95 nm r1 = 105 nm r1 = 110 nm Average
Cut-off

[nm/RIU] 235 ± 12 262 ± 13 257 ± 13 251 ± 21

1st ZGVD
[nm/RIU] 202 ± 10 206 ± 10 216 ± 11 208 ± 12

2nd ZGVD
[nm/RIU] 218 ± 11 212 ± 11 235 ± 12 222 ± 15

Max ng/RIU -29 ± 1 -16 ± 1 -22 ± 1 –
Max β2

[ps2/mm/RIU] -15.4 ± 0.8 -3.3 ± 0.2 -2.0 ± 0.1 –

NDBP for nClad =
[1.40 1.45 1.50]

[0.14 0.14 0.19]
± 16%

[0.17 0.16 0.15]
± 7%

[0.20 0.15 0.15]
± 20% –

Table 4.4: Figures of merit variations as function of the filling refractive index material
for the diverse DE SPhCW.

velocity dispersion point), so, there is a particular interest on the influence of the index
in those singular wavelengths. Finally, we like to point out that from a practical point of
view, independently of the exact variations of the group index (∼ -20/RIU) and ZGVD
position (∼ 210nm/RIU), the concern lies in the knowledge of the trends (i.e. increasing
the filling index results in a red shift for cut-off and ZGVD points and a decrease of
the group index) and in the demonstration of dispersion engineered waveguides with
good performances trough the variation of the NDBP. This figure of merit evolution
depends on the sensitivity of the group index and the frequencies suffering from the same
delay. The available bandwidth is roughly set by the frequency spacing between the two
ZGVD and the mean group index can be taken as the average of the group index values
at the ZGVD positions. Normally the general trend is an increase of the performance
(i.e. larger NDBP) for lower refractive indices. Indeed, it is noteworthy the fact that
the over-engineered waveguide by getting flatter with smaller group indices, increases
its NDBP from 0.14 to 0.19. So effectively in SPhCW, the cladding index is another
important parameter in the engineering process.

4.6 Towards hybrid nonlinear integration

In the continuity of the efforts described in previous sections, we will now develop a
numerical procedure to engineer nonlinear hybrid silicon based waveguides. The
idea is to use the potentials for silicon as waveguide and cover it with low-index (n∼1.6)
high performance third order nonlinear optical polymer and doped materials. The
main goal is to reduce the waveguide effective TPA susceptibility, or in other
terms, to maximize the FOMTPA. After fixing the covering material, we will study
different geometries with realistic physical values (possible to fabricate). Two types
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of waveguides will be analyzed. First, silicon simple slot guides by tuning the rail
and slot widths in order to find the maximum nonlinear figure of merit. In a second
subsection, the interest will be focused on SPhCW in the slow light regime. Interesting
insights about the mode evolution as a function of the group index and a comparison with
other kind of photonic crystals will be given. The last part of this section will be devoted
to exploit the experimental procedure of top-hat D-Scan to perform some preliminary
measurements in the nonlinear regime for slow light silicon photonic structures.

4.6.1 Nonlinear optimization of hybrid waveguides

The χ(3) nonlinear properties of slotted crystalline silicon photonic waveguides filled
with third-order nonlinear materials (NM) are studied here by calculating the effective
nonlinear susceptibilities associated to the silicon and cladding material, respectively.
The adopted approach circumvents the assumptions that the introduced NM dominates
the nonlinear behavior of the slotted waveguide and that strong light confinement due
to the slot or the slow light effects allow neglecting the two-photon absorption (TPA)
process in the silicon host [201].

Slot waveguides

Geometrical optimization of silicon-slotted waveguides is performed on the basis of the
nonlinear figure of merit (FOMTPA) of the guided mode, which is related to the balance
between the Kerr and the TPA effects. The obtained results reveal the importance of
properly choosing the waveguide width of the silicon rails in order to minimize the TPA
effect even by tolerating a reduced overall nonlinearity. The COMSOL software was used
to calculate the full-vectorial optical mode profiles required for this optimization and
two typical modes with different geometries are depicted in Fig. 4.25.

The covering material presents the following linear and nonlinear properties: refractive
index n0 = 1.80, Kerr index n2 = 2.0× 10−17 m2/W and FOMTPA = 5.0 at λ= 1.55 µm,
similar to materials used in other research [202, 203]. These parameters can be easily
tuned in the model.

As the propagating mode remains invariant, we will use an expression from Ref. [99]
(analogous to the one deduced in Eq. 1.73):

γwg =
i3ωΓ

4ε0A0v2
g

(4.6)

with

Γ =
A0
∫
ANL

e∗(r⊥,ω)χ
(3)(r⊥,−ω,ω,−ω,ω)

...e(r⊥,ω)e∗(r⊥,ω)e(r⊥,ω)dA

|
∫
A∞

n2(r⊥) |e(r⊥)|2 dA|
2 (4.7)
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where vg represents the modal group velocity, and A0 an arbitrary confined mode area that
cancels out when calculating the nonlinear waveguide parameter (γwg). The Γ parameter
corresponds to the effective waveguide nonlinear susceptibility as the weighted integral
of the tensor susceptibility over the slot waveguide mode described by its transverse
electric field distribution e(r⊥). This integral is calculated over ANL, the surface of
the waveguide cross-section corresponding to nonlinear materials (here, the NP and Si
regions).

These expressions take into account the contributions, for all the materials in the hybrid
structure, of the susceptibilities real and imaginary parts with respect to the mode field
distribution in the full waveguide cross-section. Additionally, this formulation of the
nonlinear waveguide coefficient allows a natural evaluation of the nonlinear contributions
of the different waveguide materials by estimating γSi and γCC over the host material
(Si) and the cover cladding (CC). The advantage of this formalism is the additivity
of the two susceptibilities to estimate the complete nonlinear figures of the hybrid
waveguide, so to say, γwg = γCC + γSi, implying that Re (γwg) = Re (γCC) + Re (γSi)
and Im (γwg) = Im (γCC) + Im (γSi).

In the first approach, the optimization of the nonlinear waveguide properties has been
conducted in a 220 nm thick silicon waveguide by sweeping the silicon rail (Wrail) and
slot (Wslot) widths in the ranges of 170 nm-to-240 nm and 50 nm-to-200 nm, respectively
as they are realistic values with respect to fabrication constrains. The lower rail width
was set to 170 nm in order to limit an excessive mode spreading by maintaining the
effective index(neff ) of the TE-mode reasonably above the cladding index (set to 1.8).
The waveguide nonlinear parameter (γwg) and light power confinement in both materials
(PCC and PSi) have been calculated as a function of Wrail and for a fixed slot width
value of 100 nm are shown in Fig. 4.26.

As expected, the contribution from the silicon rails is not negligible, so the engineering
of these rails is necessary. The overall trend of the FOMTPA is to decrease as the rail
width is larger. A closer inspection to Fig. 4.26 (a) and (b) allows us to understand this

Figure 4.25: Mode distribution for two different slot waveguides covered with a
nonlinear polymer (NP) for TE polarization at λ= 1550nm [201].
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Figure 4.26: Influence of the silicon rails width on the slot waveguide nonlinear
properties (Wslot=100 nm): (a) nonlinear parameter γ of the silicon rails, cover cladding
material, and full waveguide, respectively. The real parts are associated with the Kerr
effect while the imaginary ones are related to the TPA process. (b) Power confinement
in the two regions, respectively [201].

trend. As it could have been anticipated, it can be first observed that larger silicon rails
lead to an increase of the Kerr effect of silicon [Re (γSi)]. Yet, this trend is accompanied
by a simultaneous rise of the TPA process in silicon [Im (γSi)] due a nearly 37% of power
confinement in Si forWrail approaching 240 nm [Fig. 4.26 (b)]. On the contrary, reducing
Wrail down to 170 nm is responsible for a strong decrease of the optical power confined in
Si [down to 20% according to Fig. 4.26 (b)], which allows an efficient decrease of Im (γSi)

and thus of the imaginary part of the overall waveguide susceptibility [see Fig. 4.26 (a)].

Starting from these first results, the slot width influence was further investigated. Fig.
4.27 shows how individual nonlinear contributions change when Wslot increases from
40 to 200 nm. As mentioned in previous works, it is evident that the overall nonlinear
coefficient [Re (γwg)] increases by reducing the slot width [204, 205]. It can be also
seen that the silicon rails contribution to Re (γwg) is almost negligible in the full slot
width range. The interesting point of the discussion is yet not related to the real part
of the nonlinear parameter but to its imaginary component: reducing the slot width
is responsible for a stronger confinement of light in the silicon rails [see Fig. 4.27 (b)],
explaining the increase of the TPA contribution in silicon [see Fig. 4.27 (a)], and in turn
an increase of Im (γwg). On the contrary, enlarging the slot is responsible for a Re (γwg)
decrease, which is intrinsically not desired, but at the same time allows a significant
reduction of the TPA in silicon and thus a strong decrease of Im (γwg). The balance
between the two effects is summarized by the FOMTPA evolution, showing an increase
from FOMTPA=3.5 to 3.95 for slot widths ranging from 50 to 200 nm.
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Figure 4.27: Influence of the silicon slot width on the nonlinear properties for
(Wrail=170 nm): (a) nonlinear parameter γ of the silicon rails, cover cladding ma-
terial, and full waveguide, respectively. The real parts are associated with the Kerr effect
while the imaginary ones are related to the TPA process. (b) Power confinement in the
two regions, respectively [201].

In order to get a more complete picture of the possible slot waveguide geometry optimiza-
tion regarding the third-order optical nonlinearities, the calculated FOMTPA for various
Wslot and Wrail values is plotted in Fig. 4.28. It gives an overview of the necessary com-
promise between mode spreading (related to the effective index neff plotted with dotted
lines) and the desired FOMTPA. The maximum FOMTPA value of 4.25 is achieved for

2.0 

2.5 

3.0 

3.5 

4.0 

Figure 4.28: 2D-color map of slot waveguide FOMTPA in terms of the rail and slot
widths. Effective index values of the fundamental TE-mode are plotted with dotted lines,
while the single-mode region is highlighted. The two open circles show the two sets of
(Wrail, Wslot) leading to the maximum FOMTPA values [201].
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(Wrail, Wslot) equals to (140 nm, 120 nm) and (150 nm, 180 nm), indicated by the two
open circles in Fig. 4.28. In practice, the applied slot waveguide dimensions would have
to be chosen by considering both the linear and nonlinear optical propagation losses that
directly influence the waveguide effective nonlinear length. About linear losses, recent
results have shown that losses of SOI slot waveguide can be minimized down to around
2 dB/cm [40, 28] with rail widths of 220 nm, while this level could still be reduced by
oxidation surface treatments.

Slot Photonic Crystal Waveguides: SPhCW

We have also explored the FOMTPA optimization of propagating invariant waveguides
and we have shown that a minimization of the TPA effect (i.e. maximization of FOMTPA)
could be obtained for given values of rails and slot widths. The problem of nonlinear pulse
propagation has been studied since the beginning of the century [206] and has given keys
to study new physical phenomena. In this section, we consider the core structures of this
chapter: SPhCW. For these waveguides, another crucial feature should be addressed: the
effect of the slow light, both in the local field enhancement and in the mode distribution.
This additional degree of complexity is accompanied by a more complicated geometry
and the necessity of treating the 3D periodic Bloch mode.

Indeed, relying on slow light effects [207, 208, 193], we can enhance one step further the
interaction between light and the cladding nonlinear material. Although, as shown in the
previous section, the use of slotted waveguides brings improvement to the aforementioned
free carrier issue, it does not solve entirely the free carrier penalty as only a part of the
propagating optical mode dielectric energy is confined in the low index soft-material
filling the slot. As a consequence, TPA in silicon, which directly depends on the optical
mode spreading outside the slot, cannot be entirely removed. So, one fundamental
question arises, how does FOMTPA evolves as a function of ng?. In other words, is it
interesting to slow down the light to improve the performance of third order nonlinear
hybrid waveguides?.

Previous results dedicated to standard slow light W1 waveguides have shown that the
gap-guided mode field profile tends to spread in silicon when approaching the bandgap,
thus by increasing the slow down factors [142, 88]. As we have seen, the expected
enhancement of the third order effective nonlinear susceptibility (χ(3)) scales with n2

g

[71]. Considering reasonable slow down factors typically corresponding to ng=20-40, this
approach can lead to spectacular effective nonlinear parameter in Silicon γ values of a
few 1000 W−1m−1 in silicon PhCW [13], so at least one order of magnitude larger than
an already optimized simple slot waveguide covered with a highly nonlinear material (see
Fig. 4.26 and 4.27). But this improved picture is dismantled when the nonlinear losses
scaling (in the same ratio) spoils the slow light enhancement in the silicon structure.
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Figure 4.29: Schematic views of the investigated photonic crystal waveguide geometries
(W1-PhCW, NS-PhCW and WS-PhCW) and the corresponding normalized |E|2 of the
studied modes at k= 0.48 ∗ 2π/a. a= 400 nm, h= 260 nm.

In order to investigate this question, we consider here several PhC geometries, including
non-slotted and slotted waveguides. We calculate for each their dispersion and nonlinear
properties as a function of the light group index. Typical silicon photonic waveguide
parameters are considered, so that results obtained can be estimated as general trends
for this photonic platform. A lattice constant a= 400 nm and a silicon thin film of 260
nm height on a buried box of 2 µm have been first adopted. Standard linear refraction
index values of 3.48 and 1.44 at λ=1.55µm are set for Si and SiO2.

The present study is driven in regard with doped PMMA nonlinear polymers (NP), whose
base refractive index is very close to 1.50, as some of them having interesting nonlinear
optical properties at telecommunication wavelengths [192, 191]. A top cladding material
with a linear index of 1.5, a Kerr index n2 = 2× 10−17m2/W, and a TPA coefficient
βTPA = 2.6× 10−12 m/W (i.e. FOMNP

TPA ≈ 5.0) at λ=1.55µm are considered as a typical
situation of a strongly nonlinear soft-material filling the slot and holes of the SPhCW
[188].

The three investigated geometries are made of a W1 photonic crystal waveguide (W1-
PhCW), a narrow slot SPhCW (NS-PhCW) and wide slot photonic crystal waveguide
(WS-PhCW), respectively, as shown in Fig. 4.29. Choosing different values for the slot
width of the NS-PhCW (Wslot=100nm) and the WS-PhCW (Wslot=175nm), leads to the
possibility of exploiting the so-called “W1-like mode” and “true-slot mode” of slotted
photonic crystal waveguides, respectively, while ensuring large enough slots to avoid
fabrication issues and guarantee proper filling.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.30: Dispersion curves of the three photonic crystal waveguides with the
respective group index of the interesting particular mode: a) W1-PhCW - b) W1-even
mode, c) NS-PhCW - d) W1-like-even mode, e) WS-PhCW - f) True-slot mode. As an
inset the mode profile for different slow light values [209].

With respect to the standard situation of the W1-PhCW made of identical holes of 105
nm radius and width of

√
3a, the width of the NS-PhCW and WS-PhCW is enlarged to

1.25
√

3a, following previous guidelines [208, 193]. The diameter of the lattice holes of the
slotted waveguides are also adjusted to r1= 135 nm and r= 120 nm for the NS-PhCW
and r1= 125 nm and r= 115 nm for the WS-PhCW in order to prepare single-mode
propagation and nearly mid-gap conditions for each investigated Ey-even mode. The
band structure for the considered geometries and the group index and second order
dispersion of the specific mode under study are depicted in Fig. 4.30.

Similar approaches as those conducted in [99] and [210, 211] for silicon wire and W1
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waveguides, respectively, have been considered. As stated in these works, mode field
spreading in the silicon region can be responsible for the generation of carriers by the
TPA process, which in turn are responsible for the free-carrier dispersion and absorption
effects. These different mechanisms should be introduced in the nonlinear Schrödinger
equation (NLSE) that can be solved, for instance, by the split-step method [99].

Yet, in order to investigate the amount of free-carriers, estimation of only one parameter
is necessary as all terms of the NLSE depending on free carriers scale with it [210], the
overlapping factor κ. The 〈κ(z)〉 coefficient characterizes in fact the overlap between the
optical mode and the silicon region. This parameter (0< 〈κ(z)〉 <1) is of direct interest
for the quantitative estimation of the free carrier effects depending on the slow down
factor and giving the information about the amount of energy in silicon. The expression
of 〈κ(z)〉 is given by:

κ(z) =
an2

Si

∫
SSi
|e(r)|2 dS∫

VCell
∂
∂ω (ωn

2
c) |e(r)|

2 dV
(4.8)

〈κ(z)〉= 1
a

∫ a

0
κ(ξ)dξ (4.9)

where VCell is the volume of the fundamental cell, nc is the cladding refractive index, SSi
is the effective area in the cross-section (xy-plane) [99, 210, 74, 211].

We also recall another important metrics, the effective waveguide third-order susceptibility
at one specific z point over the waveguide lattice period [210, 211]:

Γ(z) =
a4 ∫

SNL
e∗(r)χ(3)(r)

...e(r)e∗(r)e(r)dS

|
∫
VCell

∂
∂ω (ωn

2
c) |e(r)|

2 dV |2
(4.10)

〈Γ〉= 1
a

∫ a

0
Γ(ξ)dξ (4.11)

where SNL corresponds to the optical nonlinear region. Similarly, averaging this quantity
over one lattice period leads to 〈Γ(z)〉, i.e. to the effective waveguide nonlinear suscepti-
bility. These two parameters have been calculated in the three waveguide configurations
described above, i.e. by considering the W1 and two slotted hybrid silicon photonic crystal
waveguides. This relation is identical to the one deduced in Ref. [212], nevertheless, as
we are working with a singular wavelength, we assume that the geometrical dispersion
dominates over the material dispersion which is considered negligible. In the three
cases, nonlinearity comes from both silicon and the nonlinear material filling
the holes and the slot. For each material, estimation of χ(3)′ and χ(3)′′ has been done
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from the n2 and βTPA parameters, as follows [99]:

ω

c
n2 +

i

2βTPA =
3ω

4ε0c2n2χ
(3)
eff (4.12)

The integrations over space in Eq. (4.8) and (4.10) were done over the full photonic
crystal lattice cell, i.e. by considering the complex nonlinear susceptibilities of both
materials: Si and NP. The calculated 〈Γ〉 was finally used to estimate the effective 〈γwg〉
in order to compare with the measurements and the calculations performed up to this
point. The expression for the effective waveguide susceptibility is given by:

〈γwg〉=
3ωn2

g

4ε0a2 〈Γ〉 (4.13)

The related results for the overlapping 〈κ(z)〉 calculations are shown in Fig. 4.31 (a). They
have been obtained after the master internship work of Junfei Xia under my co-supervision.
It can be appreciated that the mode field/silicon overlap in the W1 waveguide is extremely
large (>95%) and is nearly constant (although a very small decrease is appreciable).
On the other hand, for increasing slow down factors in slotted PhC waveguides, 〈κ(z)〉
decreases, meaning stronger interaction with the covering material. This overlap drops
further (by around 20%) for the wide SPhCW that exploits the so-called even true slot
mode (see Fig. 4.30 (e-f)).

To further analyze the waveguide properties, we plot in Fig. 4.31 (b) Re (γwg) and
Im (γwg) as a function of ng (with a double y-axis to manage two different scales). We
observe that group index values around 15-20 are sufficient to lead to Re (γwg) values of
5000-20000 W−1m−1 in hybrid slotted silicon photonic crystal waveguides, i.e. at least
50 times larger than those obtained for typical silicon slot waveguides [201].

The final firm information regarding the effect of slow waves on the Kerr/TPA balance
in the investigated standard and slotted PhCW is depicted in Fig. 4.31 (c). We plot here
FOMTPA of the three waveguides as a function of ng. FOMTPA is nearly constant for
the W1-PhCW, with a value slightly above the silicon material FOMTPA of 0.38. This
result is consistent with the fact that the overlap between the mode field and the nonlinear
material filling the holes is very weak. On the contrary, we clearly observe an increase of
FOMTPA for the two slow light slotted waveguide geometries, with a saturation for group
indices larger than 40 (ng>40), which is an encouraging result regarding propagation
losses and the measured flat bands in dispersion engineered SPhCW discussed in previous
sections.

To conclude, we show that properly filled silicon slotted photonic crystal waveguides have
not the same behavior as standard W1 ones with respect to the influence of slow light on
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(a) (b) 

(c) 

Figure 4.31: Nonlinear properties parameters vs. group indices; (a) Mode field/silicon
overlap factor; (b) Nonlinear waveguide parameter (real and imaginary parts); (c)
FOMTPA in the three investigated structures. Black, red and blue curves represent the
parameters in W1-PhCW, NS-PhCW and WS-PhCW, respectively [209].

the TPA process at telecommunication wavelengths. Both narrow and wide slot PhCW,
operating on the two slot PhCW modes (W1-like and true-slot modes, respectively), are
characterized by a mode field concentration in the slot for increasing slow down factors.
These results show that the hybrid platform made of non-membrane slow light slotted
silicon waveguides filled with nonlinear low-index materials can efficiently rely on slow
light effects for on-chip data processing. The relative free-carrier penalty indeed tends to
decrease with increasing slow light factors.

4.6.2 Preliminary nonlinear measurements

In the final section of this manuscript we would like to give some insights about initial
measurements on the designed photonic crystal structures under the D-Scan set-up. We
have started the integration of the engineered waveguides with other materials but the
linear characterization is still under progress. Nevertheless, we have performed some
measurements by using the refractive index liquids explored in previous sections. In
PhCW, the model and interpretation are more complex than in standard waveguides and
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Figure 4.32: Spectral broadening at zero dispersion for different regimes in a 50 µm
long W1 waveguide. PhC transmission in blue, input pulse in red and output transmission
in black. The average input power is specifically marked.

many of the features remain to be deeper explored. In particular, the losses (propagation,
coupling efficiencies, localized modes, etc.) and the intrinsic high dispersion in the slow
light regime change the response with respect to strip waveguides. Nevertheless, the
retrieved FOMTPA should be close to that of silicon neglecting the 3rd order NL response
of the liquid.

Nonlinear W1 PhCW

In Fig. 4.32, we have plotted the output transmission spectra of a 50 µm long W1
PhCW. The linear transmission of the waveguide is marked in blue for guideline. The
input Fourier limited pulses are plotted in red and the output spectra is shown in black.

Different responses can be appreciated as function of the central frequency position. First,
in (a), the pulse is intentionally located in the fast light regime. A characteristic and
typical symmetric broadening is observed. As the input pulse spectrum is closer to the
bandgap, the symmetric broadening is broken (b) and the red spectral components are
enhanced. We attribute this feature to the improved light-silicon interaction expected
in the slow light regime. Closer to the bandgap and with larger power, the asymmetry
is more evident, marking the entrance of the diffusive regime characterized with some
peaks. In (d), we are so close to the gap that the broadening gets truncated by the
forbidden frequencies, even if the input pulse has lower energetic content in the red, the
output pulse shows an enhancement in the original pulse edge. When some of the input
frequencies of the pulse enters the slow light regime, the generation of new frequencies is
noticeable by comparing the input and output spectra. Indeed, the output is flat while
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Figure 4.33: (a) Transmission of a 50 µm long W1 PhCW as a function of the
power. (b) Pin vs. Pout with a linear expected tendency in red to highlight the nonlinear
saturation. (c) Pin/Pout as a function of Pin with the respective linear fit.

the spectral content in the excitation pulse exhibits several dBm lower powers for lower
frequencies. Finally, in a last experience, the red part of the excitation pulse is located at
the border edge of the bandgap. As expected, there is no broadening in lower frequencies,
meaning that the exit strip waveguides do not generate any appreciable nonlinear effect.

A qualitative enhancement close to the photonic bandgap is then confirmed in W1
waveguides as have been already demonstrated and exploited in previous publications.
Next, we have placed the input spectrum in a interesting region, between the cases (c)
and (d). We show the output spectra as a function of the input power in Fig. 4.33 (a).
In (b) and (c) we perform a similar analysis as the one with previous waveguides (section
2.6).

Nonlinear SPhCW: importance of dispersion management

Coming back to our main interest, we now present preliminary results related to the
nonlinear properties of SPhCW. First, we analyze a 1 mm long non-DE SPhCW. In
Fig. 4.34, we present the measurements at zero dispersion pre-chirp for different powers.
As it can be appreciated in (b), the excitation pulse is located close to the bandgap.
Furthermore, it could be noticed in (a) that for large enough powers, there is a presence
of an asymmetric broadening. Part of the pulse spectrum is located in the diffusive
regime.

Next, in (c) we plot the usual linear curve of Pin/Pout vs. Pin. The large value obtained
for the parameter a (from the linear fit Pin/Pout=b*Pin+a), equals to 12068, is a indicator
for low coupling efficiencies or large linear propagation losses, two expected contributions
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Figure 4.34: (a) Output spectra of a 1 mm long SPhCW as a function of the input power.
(b) Linear transmission. (c) Pin/Pout vs. Pin with the linear fit and the corresponding
equation.

in long SPhCW. The first one from the additional couplers and the second due to the
out-of-plane and backscattering enhanced in the slow light regime. We would like to
remark that even though the spectra is not symmetric and we expect several phenomena
to occur, the linear trend is still present in (c).

Then, we have used this structure to test the D-Scan technique. As usual, we have varied
the input power and the injected pre-chirp (φ(2)). The trace of the standard deviation
(2σ) is depicted in Fig. 4.35. The first noticeable feature is the positive sign of the
nonlinearity, as expected the main contribution is attributed to silicon. Second, the
unusual shape of the 2σ curves that cannot be reproduced directly with our model. We
attribute this behavior to the strong GVD introduced by the waveguide in the regime
close to the bandgap. In such a non DE waveguide, β2 (and consequently the φ(2) = β2z)
is large, about tens of ps2/mm. We present in Fig. 4.35 (b) the spectra for the highest
available power (Pin = 15 mW) as a function of the introduced dispersion. It could be
noticed that, as expected, close to the zero dispersion point, the maximum (asymmetric)
broadening is present. In the dBm scale no particular features are observed.

In a second step, we want to work in a condition where the waveguide dispersive effect
can be neglected. We have used the DE-SPhCW with r1 = 105 nm studied in section
4.5. This geometry offers the best compromise of achieved ng, available bandwidth and
losses. The DE SPhCW length is 200 µm and the transmission overlapped with
the ng curve are depicted in Fig. 4.36. We have also plotted the pulse transmitted
through the SPhCW at low power (Pin = 0.1 mW) to illustrate the central frequency
and bandwidth of the excitation pulse. From the image, it can be appreciated that we
are in the ballistic regime of the waveguide and that the average group index is ng≈10.
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Figure 4.35: (a) D-Scan applied to a 1 mm long non-DE SPhCW covered with a
refractive index liquid. (b) Spectra measured for the largest input power as a function of
the introduced chirp (φ(2)).

We can estimate the dispersion length by considering the variation of the group index
as a function of frequency. To have an order of magnitude, we may refer to Fig. 4.24,
where we have calculated the dispersion expected for this geometry. It can be seen that
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in our case max(β2)≈ 1 ps2/mm. After the Fourier limited pulse, we estimated a pulse
duration of τ0 ≈ 1.2 ps. We can easily calculate the dispersion length as:

LD =
τ2

0
max (β2)

= 1.4 mm (4.14)

that compared to the dispersive waveguide length (L= 0.2 mm) gives L/LD = 0.14<1.
In a first approach, the dispersive effects can be neglected.

The bi-directional method is applied and the obtained slopes with the two side injection
shown with the spectra when injected from side (1). Conversely to the experience with
non DE SPhCW, we highlight the symmetry of the broadening exhibiting a compensated
transmission and ng over the exploited frequencies. The values measured in the set-up
are: κ(1)inj = 24%, κ(1)OSA = 25%, κ(2)inj = 27% and κ(2)inj = 30%, the losses are estimated to
be around 20 dB/cm. After using the coupling estimation equations, we have obtained
κSA = 5.1% and κSB = 4.0%. For a reminder of the notations and procedure please refer
to section 2.5.1.

Using these values the waveguide effective TPA nonlinear susceptibility is estimated to:
γTPA ≈ 63.3 (Wm)−1, which is already twice the value found for the strip waveguide. In
SPhCW a part of the mode is not in silicon but within the slot, so the estimated gamma
should be weighted with the effective mode area in silicon. After the calculation of the
3D modes, an estimated ANL ≈ 0.36 µm2 was obtained [170]. We performed a D-Scan to
complement the measurements and properly define the enhancement. We show in Fig.
4.37, the standard deviation and the output power by overlapping the measurements and
the simulation for a FOMTPA = 0.39 which is very close to the value measured in the
silicon used to fabricate the PhC, demonstrating the negligible effect of the liquid.

As expected, the model reproduces properly the trends, demonstrating a compensation of
the GVD and its importance when dealing with nonlinear effects. It has not been the case
for the previous PhC, where the maximum achievable broadening (max(2σ)) gets depleted.
Now, we can easily estimate the γ for the waveguide: γ = 2π ∗ FOMTPA × γTPA ≈ 155.1
(Wm)−1. Reminding that γ = S2n2k0/ANL, and assuming the n2 measured in previous
experiences, we can estimate a S2 ≈ 5.3 that corresponds (in silicon) to a ng ≈ 8. This is
a bit smaller than the value expected but we attribute this difference to the contribution
of the input access.

To sum up, we have experimentally demonstrated the enhancement of the nonlinear
effects in SPhCW which were properly engineered to avoid second order dispersion issues.
This represents a first milestone in the way to apply the technique and platform to
potential nonlinear materials that could cover the slot. Developing further the presented
preliminary results and upcoming samples covered with highly nonlinear interesting
materials is among the perspectives of this thesis.
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Figure 4.37: Left: Simulated and measured standard deviation is a 200 µm long
DE-SPhCW for different input powers with the corresponding nonlinear phase shift.
Right: Output power.

4.7 Conclusion

In this chapter, we have briefly explained the coupling design, fabrication issues and
strategies, simulation tools and characterization of SPhCW. We have reported experi-
mental results demonstrating the possible control of light group index, GVD sign and
bandwidth in long ShPCW (700 µm) through a proper design of the waveguide geomet-
rical parameters. These results are in agreement with 3D numerical calculations. We
stress that all experiences are carried out in SPhCW on SOI (i.e. non-free-standing air
membranes) where the holes [213] and the slot have been filled with different index liquids.
Hence it mimics the integration of soft matter materials such as polymers or doped
compounds [191, 192] in hybrid waveguides in the purpose of relying on a mechanically
robust and viable integration PhC-on-silicon scheme.

Experimental evidence for flat-band dispersion engineered behavior is provided for the
first time in SPhCW, meaning a compensation over a given bandwidth of the large
group velocity dispersion in the slow light regime. An Optical Coherent Tomography
(OCT) based method was used [184] in order to directly measure the optical delay and
to estimate the group index as a function of wavelength. We also demonstrate that the
advantages of slow light structures, optimized for low propagation losses and with careful
dispersion engineering, can thus be obtained in such hybrid structures filled by various
materials. This fact opens broad perspectives in view of the richness of materials that
can be drop-casted, spin-coat, or grown on top of silicon wafers including nonlinear and
active materials.

Slow light propagation with normalized delay-bandwidth product (NDBP) up to 0.20
with a transmission level only 5 dB lower than the one of reference SOI strip waveguides
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open the concrete possibility to use DE SPhCW for all optical processes. In particular,
they can be used for enhancing third order nonlinear optical effects through slow-light
boost while preserving the phase matching condition (flat band) for broadband four
wave mixing [214] and other nonlinear phenomena. We have finished the chapter with
simulations demonstrating the potential of the fabricated structures for nonlinear optics
and we gave first experimental insights on the light-matter enhancement in the slow light
regime for dispersion compensated waveguides.
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Summary and Perspectives

In this manuscript, we present our contribution to the analytical, numerical, and experi-
mental investigation of integrated devices for on-chip nonlinear all-optical functionalities
at telecommunication wavelengths. We have studied analytically and semi-analytically
a model that treats a waveguiding structure (regardless of its composition) as a Kerr
lens and in analogy with the Z- Scan technique for thin-film samples, and allows the
measurement of optical output spectra variations to determine the effective complex
nonlinear susceptibilities of optical waveguides. Furthermore, a simple bidirectional useful
technique to precisely determine coupling efficiencies from free space to chip has been
proposed and experimentally demonstrated. As this stage does not require pre-shaping
of optical pulses, it can be used to accurately estimate light injection efficiencies for
any integrated device. The method provides not only the magnitude of the effective
nonlinearity but also its sign. Interestingly, the measurement principles and the numerical
tools are easily scalable in wavelengths and size, making it suitable, for fibers or as a
tool to measure material nonlinear coefficients, for example in the midIR.

We have validated the method with known materials such as silicon or silicon nitride
waveguides at telecommunication wavelengths and we have explored Ge-rich GexSi1−x al-
loys filling literature data gaps in their direct-gap/indirect-gap band-structure region (i.e.,
from x=0.7 to x=0.9) where purely theoretical estimation of the expected nonlinearities
is difficult. We have also characterized chalcogenide waveguides under collaboration with
MIT. These materials, which are usually used for flexible photonics exhibit susceptibilities
comparable to silicon strip waveguides but with no two-photon absorption (TPA) around
λ=1.55 λm, thus opening room to the realization of a flexible nonlinear integrated optical
platform.

Next, we have explored configurations to further enhance light-matter nonlinear inter-
actions relying on enhanced electromagnetic field dielectric structures. In this purpose,
we have first designed and fabricated 1D silicon photonic crystal (Bragg) cavities with
moderate Q factors around 8 000. Then, by estimating the nonlinear blue shift generated
by free carrier refraction, we have used a set-up to optimize the output transmission
by changing input optical pulse spectral wavelength position in time. Furthermore, we
have explored parameters such as the central pulse wavelength, bandwidth and incident
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energy in order to understand the optimal conditions for an improved transmission,
demonstrating the resonance of large part of the input spectral content into the cavity.

We have shown that it is possible to enhance the intra-cavity field by phase shaping of
the input pulse, which opened the possibility to optimize the optical bandwidth and
the nonlinear dynamics for all-optical integrated functions. We have finally explored a
numerical tool to simulate the intracavity interactions that could be used to engineer
optimum pulses and cavities.

To fabricate our samples, we have used the clean room facilities in C2N/CTU. Furthermore,
we have explored novel methods to decrease the wall roughness responsible for the major
source of losses. We have done codes and simulations to optimize the dispersion properties
of SPhCW. After their fabrication, we could demonstrate for the first time that flat
band slow light transmission can be obtained in long (700 µm) waveguides over a
large bandwidth (∼ 25 nm) with robust dispersion features as function of the cladding
index. These results have opened perspectives for applications requiring enhanced light-
matter interactions and very small footprints with CMOS compatible hosts. Finally, we
have demonstrated with preliminary results that the light-matter interactions in these
structures are enhanced due to the slowing down of light, illustrating the potentials
of hybrid silicon photonics made of properly designed hollow core waveguides made of
slots properly filled with highly nonlinear materials. The latest shows the need for a
continued exploration of hybrid platforms to profit from the good waveguiding properties
and potential massive production of Silicon with the nonlinear performances of novel
materials such as polymers, doped-solids or liquids.

There are a lot of future research perspectives that this work has opened. We will draw
here the short term ones following the thesis results. Regarding the D-Scan technique
(chapter 2), we have made the first steps in measuring the silicon nitride waveguides
that we have fabricated, covered with semiconductor single wall carbon nanotubes (s-
SWCNT). The first results under the D-Scan show a negative Kerr coefficient, which
is very interesting for integrated applications. Further studies remain to be done by
controlling the CNT concentration and alignment. Another material that we have tested
is the strain silicon by a layer of silicon nitride under a pressure of (1000 ± 25) MPa
in order to achieve maximum stress. First results have shown an improvement of the
nonlinear figure of merit (from 0.38 of the original silicon waveguide to 0.48 in the silicon
strained), showing that this material can be used not only for χ(2) proposes [215] but
also to improve third order nonlinear characteristics of bulk Si. In these waveguides,
we have observed the presence of an additional absorption contribution at intermediate
power levels (average powers between 0.3 and 1 mW) that we attribute to the presence
of surface generated carriers. These kinds of physical phenomena have been recently
studied [216] and proposed for sensing applications. Under the same logic, we expect to
apply our method in novel functionalized oxides-strained waveguides under development
in our group.
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Improvements in the D-Scan technique could be done by following analogies with the
Z-Scan explorations, particularly variations as the two color Z-Scan [64], eclipsing Z-Scan
[65] or time-resolved Z-Scan[217], allowing measurements sensitive to diverse wavelengths,
polarization or time, respectively. Furthermore, the study of the orientation of molecules
is envisaged for hybridization for instance CNT or DDMEBT polymers. Considering
nonlinear temporal dynamics of waveguides, time resolved excite-probe techniques[218]
could be implemented for instance by using the zeroth order beam from the diffraction
grating of the set-up not exploited up-to-now.

Regarding the coherent excitation of nonlinear microcavities, we can increase the com-
plexity on the system by pumping photonic crystal coupled cavity waveguides (CCWs).
Furthermore, a better control in the amplitude and phase of the injection pulse could be
done to compensate the nonlinear shift of a given silicon cavity. In the same order of ideas,
integrated materials with different free carrier generation via two photon absorption
could be used to study their coherent control. Also, after the development of integrated
optics an on-chip pulse stretcher could be designed in order to optimize the pulse prior
the cavity, reducing the footprint by several orders of magnitude (from m to mm). In this
sense, we have also seen in this work that strongly dispersive structures such as dispersion
engineered photonic crystal waveguides reach second order dispersion coefficients in the
order of ps2/mm (Fig. 4.23), so we can target φ2 values in the order of the optimum
required for the tested nanobeam cavity (∼1.2 ps2) with a usable bandwidth and realistic
waveguide lengths.

The study of coupled cavities could give also interesting results regarding both coherent
excitations and slow light features. This could be envisaged for new frequency generation
or switching.

Considering fabrication disorder in SPhCW, we note that its study has been used only
as a mean to interpret experimental results, rather than being by itself a central point of
discussion. Nevertheless, some open problems that could be explored are worth noting,
for instance, when adding a slot, new questions about the losses rise, such as the definition
of the coherence length or the evolution of the losses as a function of the group index.
Precise knowledge of physics of energy dissipation in the slow-light regime may help to
identify the photonic designs truly suitable for practical slow light applications [151].

The set-up of time of flight measurements could be modified in order to measure the
nonlinear properties of integrated structures. We could extract the information of phase
changes indirectly via the interferometric method and track directly the nonlinear effects
for given dispersive properties.

Silicon dispersion engineered photonic crystals have also been demonstrated as promising
structures to generate entangled photons [219], but still the nonlinear losses are a big
constraint to improve the performance. So, it is of direct interest for quantum optics on
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chip [220] to use hybrid platforms.

To conclude, the presented characterization procedure, coherent excitation technique
and novel hybrid host reported in this thesis represent a fraction of recent achievements
in silicon integrated photonics, suggesting that microfabricated optical structures are
becoming a mature technology for nonlinear classical and/or quantum on-chip applications
with reduced footprints and required low powers.
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A Acronym Glossary

CMOS = Complementary metal-oxide semiconductor
CW = Continuous wave
FCA = Free carrier absorption
FCR = Free carrier refraction
FOM = Figure of merit

FWHM = Full width at half maximum
FWM = Four wave mixing

FT = Fourier transform
GVD = Group-velocity dispersion
ICP = Inductively coupled plasma

LEPECVD = Low energy plasma enhanced chemical vapor deposition
MZI = Mach-Zehnder interferometer

NDBP = Normalized delay bandwidth product
NSPP = Normalized spectral peak power
OSA = Optical spectrum analyzer

PECVD = Plasma enhanced chemical vapor deposition
PhC = Photonic crystal

PhCW = Photonic crystal waveguide
PMMA = Polymethylmethacrylate (C5O2H8)n

RIE = Reactive ion etching
SEM = Scanning electron microscope
SHG = Second harmonic generation
SOI = Silicon on insulator

SPhCW = Slot photonic crystal waveguide
SPM = Self-phase modulation
TE = Transverse electric

THG = Third harmonic generation
TIR = Total Internal Reflection
TM = Transverse magnetic
TPA = Two photon absorption
wg = Waveguide

ZGVD = Zero group-velocity dispersion
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B Symbol and Physical Units Glos-
sary

Symbol Physical parameter Expression Units

α Propagation losses α
[

dB
cm

]
= 10log10(e)α [cm−1]≈

4.34α [cm−1]
dB/cm

β
Mode propagation

constant m−1

β1
First-order dispersion

coefficient

β2
Second-order

dispersion coefficient β2 =− λ2

2πcD=− λ2

2πc2
dng(λ)
dλ

ps2/mm

βTPA
Two-photon

absorption coefficient
βTPA = 3ω

2ε0c2n2
0

Im{χ(3)} m/W

χ(2)
Second-order optical

susceptibility

χ(3)
Third-order optical

susceptibility χ(3) (SI) = 4π
32 × 10−8 χ(3) (cgs) m2/V2

ε Dielectric constant

ε0 Vacuum permittivity 8.854× 10−12 Fm−1 =
CV−1m−1

γ
Third order real

nonlinear coefficient γ = k0S
2n2/ANL (mW)−1

γTPA
Third order imaginary
nonlinear coefficient γTPA = S2βTPA/ANL (mW)−1

Leff Effective length Leff = (1− e−αL)/α m
λ Wavelength m
n Refractive index

n2
Nonlinear refractive
index, Kerr coefficient

n2 =
3

4ε0cn2
0

Re{χ(3)}; n2
[
m2

W

]
=

40π
cn n2 [esu] = 4.19·10−7

n n2 [esu]
m2/W
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C Analytical D-Scan model

We want to establish a mathematical relation between the second order dispersion
term (φ(2)) and two important quantities: the spectral peak intensity and the spectral
broadening. The latest is quantified by the standard deviation of the spectra.

σλ =

√√√√∫ λ2P (λ)dλ∫
P (λ)dλ

−
(∫

λP (λ)dλ∫
P (λ)dλ

)2
(C.1)

where P (λ) corresponds to the power as a function of the wavelength (experimentally
given by an Optical Spectrum Analizer (OSA)). To simplify the analytical calculation we
will assume a gaussian pulse in the paraxial approximation regime which at z = 0 has a
temporal profile given by:

U(0, t) = U0e
− t2

2T2
0 (C.2)

In the Fourier domain, we could propagate the wave in the space by a distance z:

Ũ(z,ν) = Ũ(0,ν)e
iβ2(2πν)

2z
2 = Ũ(0,ν)e

iφ(2)(2πν)2
2 = U0

√
2πT0e

− (2πν)2
2 (T 2

0−iφ
(2)) (C.3)

where Ũ is the Fourier transform of U , e
iφ(2)(2πν)2

2 is a transfer function and φ(2) = β2z is
the second order dispersion term in units of time squared. We could write the previous
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Appendix C. Analytical D-Scan model

expression in the temporal domain as:

U(z, t) =
U0√

1− iφ(2)

T 2
0

e

−
t2(T2

0 +iφ(2))

2
(
T4

0 +(φ(2))
2
)
= |U(z, t)|eiφ(z,t) (C.4)

where the wave amplitude and phase are given at any z point as:

|U(z, t)|= U0

4

√
1 +

(
φ(2)

T 2
0

)2
e
− t2

2T2(z) (C.5)

φ(z, t) =−t2
sign(φ(2))

(
|φ(2)|
T 2

0

)
2T 2

0

[
1 +

(
φ(2)

T 2
0

)2] (C.6)

T 2(z) = T 2
0 +

(
φ(2)

)2

T 2
0

= T 2
0

[
1 +

(
φ(2)

T 2
0

)2]
(C.7)

Now, we can propagate the field from z = 0 until just before the Kerr lens (z = z1) as
follows:

U(z1, t) =

√
I0

4

√
1 +

(
φ(2)

T 2
0

)2
e−

t2
2T2 e−i

ζ
2 t

2 (C.8)

with

ζ =
φ(2)

T 4
0

[
1 +

(
φ(2)

T 2
0

)2] (C.9)

After the nonlinear element (Kerr lens), in the temporal domain, only the field phase is
affected such that:

U(z2, t) = U (z1, t)e
iφNL(t) (C.10)

where φNL(t) contains the nonlinear phase introduced by the waveguide. In order to find
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an exact solution, we will first consider only the real part of the nonlinear susceptibility,
so the TPA effect will be considered negligible. To simplify the notation, we will also
consider the enhancement factor included in the Kerr coefficient. So, the nonlinear phase
shift in the temporal domain is written as:

φNL(t) =
k0n2I0Leff√
1 +

(
φ(2)

T 2
0

)2
e−

t2
T2 = k0n2Leff |U (z1, t)|2 (C.11)

For the next we define the nonlinear phase shift at t= 0, without nonlinear losses nor
dispersion (φ(2) = 0) as φNL0 = φNL(0) = k0n2I0Leff . This is the maximum attainable
phase shift as it corresponds to the highest peak power. The nonlinear phase has a
gaussian temporal shape, so to simplify the expression, we will assume the paraxial
approximation, which remains valid close to t= 0 as schematically shown in Fig. C.1.

e−
t2
T2 ≈ 1− t2

T 2 (C.12)

So the expression (C.10) will take the form

U(z2, t)≈U(z1, t)e

−i φNL0√
1+
(
φ(2)

T2
0

)2
t2
T2

= U(z1, t)e
−i η2 t

2 (C.13)

with

η=
2φNL0√

1 +
(
φ(2)

T 2
0

)2
1
T 2 (C.14)

0-t t

Paraxial approximation

φ
NL0

Figure C.1: Paraxial approximation of the temporal nonlinear phase profile.
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Appendix C. Analytical D-Scan model

Finally, with the equations (C.8) and (C.13), we could find the field in z2 in terms of the
initial intensity:

U(z2, t)≈
√
I0

4

√
1 +

(
φ(2)

T 2
0

)2
e−

t2
2T2 e−i

ζ
2 t

2
e−i

η
2 t

2
=

√
I0

4
√

1 + ξ2 e
− t

2
2 [

1
T2 +i(ζ+η)] (C.15)

where we have introduced the normalized parametric dispersion term ξ = φ(2)

T 2
0
. The

last expression is integrable under a Fourier transform (FT ), so we are able to find a
mathematical relation for the spectrum after the pure-Kerr nonlinear medium:

Ũ(z2,ν) = FT [U(z2, t)] = FT

[ √
I0

4
√

1 + ξ2 e
−πt

2
a2

]
=

a
√
I0

4
√

1 + ξ2 e
−πν2a2 (C.16)

with

a2 =
2πT 2

1 + iT 2(ζ2 + η2)
=

2πT 2
0 (1 + ξ2)

1 + i

[
ξ + 2φNL0√

1+ξ2

] (C.17)

Now, with this expression, we can calculate the two quantities analog to Z-scan techniques.
First: the spectral peak power as a function of φ(2).

P (ν = 0) = |Ũ(z2,ν = 0)|2 = 2πT 2
0
√

1 + ξ2√
1 +

[
ξ + 2φNL0√

1+ξ2

]2
P0 (C.18)

If there is only linear effects, i.e. φNL0 = 0, then P (ν = 0,φNL0 = 0) = 2πT 2
0P0, so the

spectral peak power gets independent of the second order dispersion term and proportional
to T 2

0 . Now, at zero dispersion, P (ν = 0,φ(2) = 0) = 2πT 2
0√

1+4φ2
NL0

P0 ≈ 2πT 2
0P0(1− 2φ2

NL0)

with the approximation valid for φNL0� 1
2 , or, in terms of π: φNL0� 0.16π. In Fig.

C.3 we show the expected shape of the Normalized Spectral Peak Power (NSPP) for
the case of pure-Kerr materials exhibiting positive and negative Kerr coefficients. It is
important to remark that at φ(2) = 0 ps2 (inset), it is not possible to define the sign of
the real susceptibility.

Now to determine the spectral standard deviation (σ) we will make use of the general
rules for gaussian distributions, indeed we can express them as: e−

u2
2σ2 , where the standard

deviation is implicit. In our case, we can express the intensity at the waveguide output
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as |Ũ |2 ∝ e−πν2[a2+(a∗)2]. Where a2 + (a∗)2 =
4πT 2

0 (1+ξ2)

1+
[
ξ+

2φNL0√
1+ξ2

]2 .

So the expression for the standard deviation in the frequency domain is:

σ2
ν =

1
2π [a2 + (a∗)2]

(C.19)

2σν =
1

π
√

2T0

√√√√√1 +
[
ξ + 2φNL0√

1+ξ2

]2

1 + ξ2 (C.20)
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Figure C.2: Total standard deviation as a function of the second order dispersion
parameter for different φNL0 with T0 = 1 ps and λ= 1570 nm. Inset: NSPP as a function
of φNL0 for φ(2) = 0 ps2, where a= λ2

√
2πcT0

.
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Figure C.3: Normalized Spectral Peak Power (NSPP) as a function of the second order
dispersion for different nonlinear phase shifts. Inset: NSPP as a function of φNL0 for
φ(2) = 0 ps2.

The change into a wavelength standard deviation is straightforward:

2σλ =
λ2

c
2σν =

λ2

πc
√

2T0

√√√√√1 +
[
ξ + 2φNL0√

1+ξ2

]2

1 + ξ2 (C.21)

The tendencies of this analytical expression can be studied. For 2σλ(φNL0 = 0) = λ2

πc
√

2T0
,

so inversely proportional to T0 and independent of the second order dispersion term
as found for the spectral peak power. If φ(2) = 0, then 2σλ = λ2

πc
√

2T0

√
1 + 4φ2

NL0 which
becomes 2σλ ≈ λ2

πc
√

2T0
(1 + 2φ2

NL0) if φNL0 � 1
2 and 2σλ ≈ λ2√2

πcT0
φNL0 if φNL0 � 1

2 , so
quadratic and linear behavior respectively as function of φNL0.

Finally, an evaluation of the curves displayed in Fig. C.2 will allow us to calculate the
peak to valley difference (2σλ)p−v. From Fig. C.4, the linear tendency is clearer for
higher nonlinear phases, but the question about the validity of the paraxial approximation
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Figure C.4: Peak to valley values for different φNL0 with a linear fit in red until
φNL0 = 0.3π.

range raises. This is the reason why we have also performed more rigorous numerical
simulations throughout this manuscript.
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D Basic codes

D.1 dispersion.m

For this code, a FWHM routine coded by Ebo Ewusi-Annan from University of Florida
was used at the end of the code.

1 % Calculation code to numerically measure the FWHM of an intensity
2 % autocorrelated spectrum affected by dispersion .
3 % Samuel F. Serna O. IEF -LCF
4 % 06/03/2014
5

6 clear all
7 close all
8 tic ,
9

10 %% Definition of the variables
11 N = 1025; % Number of steps ; Default 1025
12 lambda 0=1580e -9; % Central spectrum wavelength ; Default 1580e

-9 [m]
13 Window =200e -9; % Size of the wavelength window ; Default 200

[m]
14 width =5.72e -9; % Size of the transmitted spectrum : 3.7e -9

to 7.3e -9 [m] 5.8e -9 3.5e -9
15 Nphi 2=1001; % Number of phi2 points where the FWHM will

be measured
16 phim =4e -24; % Maximum phi2, the calculation will be

symmetrical , i.e. phim =3e -24= > phi 2=[ -3e -24: dphi 2:3e -24] [s]
17

18 c = 3e8; % Speed of light in vacuum [m/s]
19

20 lambdai = lambda 0- Window /2; % Initial wavelength [m]
21 lambdaf = lambda 0+ Window /2; % Final wavelength [m]
22 lambdav = linspace (lambdai ,lambdaf ,N);% Lambda vector
23

24 nu 0=c/ lambda 0; % Central frequency [1/s]
25 nuv= fliplr (c./ lambdav ); % Frequency vector ; Inverse relation so flip

the output
26 Trans = exp ( -(( lambdav - lambda 0)/ width *2) .^32) ; % Supergaussian 32 nd order to

simulate the spectrum
27 plot(nuv , Trans ) % Plot of the square ( super gaussian )

spectrum
28 xlabel (' Frequency \nu (s^{ -1}) '), ylabel (' Intensity [a.u.] ')
29
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30 dNu=nuv (2) -nuv (1); % Frequency differential [1/s]
31 Nu = nuv(end)-nuv (1) + dNu; % Inverted normalization parameter [1/s]
32 t = 1/ Nu * (-(N -1) /2 : (N -1) /2); % Calculation of the Fourier transformed

vector - time [s]
33

34 FWT=ones (1, Nphi 2); % Preallocation for speed
35 FWA=ones (1, Nphi 2);
36 Deltanu =nuv -nu 0.* ones(size(nuv)); % Taylor expansion term [1/s]
37 %% Calculation loop
38 for i=1: Nphi2
39 disp=exp (1i*(- phim +(2*i -1)*phim/Nphi 2) *2* pi*pi .* Deltanu .* Deltanu ); %

Dispersion term
40

41 Sin = fftshift ( width *fft( Trans .* disp)); % Fourier transform of the spectrum
times the dispersion phase

42 as=Sin .* conj(Sin); % Intensity of the pulse in temporal domain
43 dataT (: ,2)=as; % Creation of a matrix to use the FWHM

function
44 dataT (: ,1)=t;
45 FWT(i)=fwhm( dataT ); % FWHM of the pulse in intensity
46

47 asw= xcorr (as ,as); % Calculation of the Intensity
autocorrelation

48 tasw= linspace ( -2* max(t) ,2* max(t) ,2*N -1);% Size is twice the temporal vector
49 data (: ,2)=asw; % Creation of a matrix to use the FWHM

function
50 data (: ,1)=tasw;
51 FWA(i)=fwhm(data); % FWHM of the Intensity autocorrelation
52 end
53 %% Plot settings
54 FWAps =FWA *1e12; % Change to ps
55 phi 2= linspace (-phim ,phim ,Nphi 2); % phi2 vector
56 phi2ps=phi 2*1e24; % Change to ps ^{2}
57

58 figure ;
59 plot(phi2ps , FWAps )
60 grid on
61 xlabel ('\ phi ^{(2) } (ps ^{2}) '), ylabel ('FWHM autocorrelation [ps]')
62 toc
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La photonique sur silicium est arrivée à un niveau de maturité élevé et propose aujourd’hui un large panel 

de fonctions optiques (filtrage, distribution de lumière, etc) et optoélectroniques (modulation et 

photodétection rapides) permettant l’intégration de liens optiques complexes (liaisons rapides et 

multiplexés en longueur d’onde, récepteurs à formats de modulation avancés : DQSK, etc) et une co-

intégration sur le même substrat de circuits photoniques avec des circuits CMOS. Simultanément, le 

silicium, en tant que matériau, présente en lui-même un certain nombre de limitations physiques pour 

l’optoélectronique dans la bande télécom, en particulier sa structure de bandes indirecte et un niveau 

d’absorption à deux photons élevé, très gênant pour l’exploitation des effets optiques nonlinéaires d’ordre 

3. 

Cette thèse est une contribution à l’étude des propriétés optiques non-linéaires d’ordre 3 de structures 

hybrides sur silicium, mettant l’accent sur l’utilisation de matériaux actifs en rupture (chalcogénures, 

GeSi) et de structures de guidage ou de résonateurs à exaltation du champ électromagnétique. 

1. Mesure des nonlinéarités effectives du 3ème ordre d’un guide 

optique par une technique D-Scan bi-directionnelle 

La technique Z-scan est couramment utilisée pour mesurer les susceptibilités nonlinéaires d’ordre 3 d’un 

matériau [1]. En revanche, elle ne s’applique pas au cas des milieux guidés. Cette technique a néanmoins 

été transposée dans le domaine temporel afin de caractériser les indices nonlinéaires de fibres optiques [2, 

3]. La technique D-Scan, pour Dispersive Scan, consiste à faire varier le coefficient de dispersion 𝜑(2) 

appliqué aux impulsions et à mesurer l’évolution de leur largeur spectrale en sortie, modifiée par les effets 

d’automodulation de phase. 

Nous présentons à la suite la première caractérisation nonlinéaire complète effectuée grâce à l’utilisation 

d’une technique D-Scan modifiée dans un nano-guide présentant à la fois un effet Kerr optique et de 

l’absorption à deux-photons (TPA). Contrairement au cas des fibres optiques, la difficulté réside ici dans 

l’évaluation de la puissance réellement injectée dans le mode du nano-guide. Dans un premier temps, et 

indépendamment des pertes d’injection en entrée et en sortie du guide, nous faisons la démonstration de la 

possible mesure du facteur de mérite non-linéaire 𝐹𝑂𝑀𝑇𝑃𝐴 = 𝛾/2𝜋𝛾𝑇𝑃𝐴, avec 𝛾 = 𝑘0𝑆
2𝑛2/𝐴NL et 

𝛾𝑇𝑃𝐴 = 𝑆2𝛽𝑇𝑃𝐴/𝐴NL les nonlinéarités effectives Kerr et TPA du guide s’exprimant en fonction de 𝑛2 et 

𝛽𝑇𝑃𝐴, l’indice de réfraction nonlinéaire et le coefficient TPA du matériau, et de l’aire effective nonlinéaire 

du mode guidé 𝐴NL. Ces expressions tiennent également compte du renforcement des nonlinéarités par le 

rapport entre les indices de groupe du mode guidé et du matériau massif, soit : 𝑆 =  𝑛𝑔
𝑤𝑔

/𝑛𝑔. Par une 

mesure de transmission nonlinéaire bi-directionnelle, les valeurs des coefficients de couplage sur chaque 

facette du guide ainsi que le paramètre 𝛾𝑇𝑃𝐴 sont ensuite évalués expérimentalement. A partir de la 

mesure de 𝐹𝑂𝑀𝑇𝑃𝐴, on accède ainsi au coefficient Kerr 𝛾 du guide. Dans le souci de disposer d’une 

méthode très sensible, nous présentons le premier montage de type top-hat D-scan, qui utilise des 

impulsions de forme spectrale quasi-rectangulaire, l’équivalent dans le domaine spatial au montage top-

hat Z-scan [4, 5]. 

a. Montage Top-hat D-Scan bi-directionnel 

Le banc expérimental, décrit sur la figure 1.1, utilise un laser à fibre dopée Erbium fonctionnant en 

régime de verrouillage de modes qui délivre des impulsions de 150 fs de durée, avec un taux de répétition 

F = 50 MHz. Ces impulsions sont envoyées dans un étireur à réseau qui fixe le spectre des impulsions 

suivant une forme quasi-rectangulaire de largeur 7,3 nm et introduit un coefficient de dispersion 𝜑(2) 

ajustable. Pour 𝜑(2)= 0, la durée d’autocorrélation des impulsions est égale à 𝑇0 = 2 ps, c’est-à-dire 

proche de la limite de Fourier. Le faisceau polarisé issu de l’étireur est alors injecté dans une fibre 

monomode à maintien de polarisation (PM). Grâce un objectif de microscope (×65), le faisceau issu d’une 

fibre PM est injecté dans un nano-guide de type ridge fabriqué sur SOI (Silicon On Insulator) d’aire 
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effective 𝐴eff = 0,1 µm2  et de longueur 𝐿 = 5 mm. L’analyse des franges de Fabry-Perot du spectre de 

transmission linéaire donne accès aux pertes linéiques évaluées à 1 dB/cm et à la mesure de 𝑆 = 1,41. 

Deux cubes séparateurs de polarisation (PBS) sont disposés de part et d’autre du montage d’injection afin 

de contrôler l’état de polarisation du faisceau injecté et transmis, selon la direction TE. Les lames demi-

ondes (λ/2) servent à aligner les états de polarisation des cubes PBS avec les directions propres des fibres 

PM disposées en amont et en aval du montage. L’injection dans le guide peut se faire selon les deux 

directions opposées (1) et (2) (figure 1.1). 

  

Figure 1.1. Montage top-hat D-scan pour la caractérisation nonlinéaire bi-directionnelle d’un nano-guide. 

En bas : Vue en détail de l’étireur à réseaux.  

En fixant 𝜑(2)= 0 et une transmission dans la direction (1), et pour des puissances moyennes 

incidentes 𝑃in variant de 0,5 à 10 mW, les spectres des impulsions transmises sont tracés sur la figure 

1.2(a). Ils présentent un élargissement spectral symétrique dû à l’automodulation de phase induite par 

effet Kerr et qui augmente avec 𝑃in. A partir des spectres, la puissance moyenne de sortie 𝑃out (1) est 

calculée et le rapport 𝑃in/𝑃out (1) est tracé sur la figure 1.2(b) en fonction de 𝑃in. En présence de TPA, 

l’évolution attendue est donnée par 𝑃in/𝑃out = a + 𝑏𝑃in, avec a = 1/(𝜅in𝜅out exp (−αL), 𝑏 =
 𝛾𝑇𝑃𝐴𝑇0𝐹𝐿eff/(𝜅out exp(−𝛼𝐿)). Les coefficients 𝑎 et 𝑏 dépendent des efficacités de couplage en entrée 

𝜅in et en sortie 𝜅out du guide, de ses pertes linéiques α et de sa longueur effective 𝐿eff. Les valeurs a(1) et 

𝑏(1) indiquées sur la figure 1.2(b) pour la direction d’injection (1) sont déduites de l’ajustement linéaire 

des points expérimentaux. 
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Figure 1.2. (a) Spectres des impulsions transmises pour 𝜑(2) = 0 ps2 et des puissances  incidentes variant de 0,5 à 10 mW. (b) 

Courbes 𝑃𝑖𝑛/𝑃𝑜𝑢𝑡 en fonction de Pin mesurées suivant les deux sens d’injection (1) et (2). 

b. Mesure du 𝑭𝑶𝑴𝑻𝑷𝑨 d’un nano-guide indépendamment des pertes 

d’injection  

La mesure des spectres en sortie est alors répétée avec des impulsions dont la dispersion 𝜑(2) varie de -3 à 

+3 ps2. Pour différentes puissances incidentes 𝑃in, les évolutions de 𝑃out
(1)

 et de la largeur spectrale r.m.s 

2𝜎 des impulsions transmises sont représentées sur la figure 1.3(a) en fonction de 𝜑(2). Les courbes 2𝜎 

présentent une allure dispersive identique aux courbes Z-scan. En accord avec le signe positif de 𝑛2 pour 

le silicium, l’élargissement spectral maximal est atteint autour d’une valeur positive de 𝜑(2). 

Afin d’analyser nos résultats, nous simulons la propagation nonlinéaire de nos impulsions et suivant les 

approches pratiquées en Z-scan, on trace sur la figure 1.3(b) (traits pointillés) l’évolution calculée de 

l’écart (2𝜎)𝑃−𝑉 entre le maximum et le minimum de la courbe 2𝜎 en fonction du déphasage nonlinéaire 

𝜑𝑁𝐿 introduit par le guide. En présence de TPA, on montre que 𝜑𝑁𝐿 = 2𝜋𝐹𝑂𝑀𝑇𝑃𝐴 ln(1 + 𝛽𝑇𝑃𝐴𝐼0𝐿𝑒𝑓𝑓) 

avec 𝐼0 l’intensité injectée dans le guide. Sachant que 𝛽𝑇𝑃𝐴𝐼0𝐿𝑒𝑓𝑓 = 𝑃in𝑏
(1)/a(1), l’écart (2𝜎)𝑃−𝑉 mesuré 

expérimentalement en fonction de 2𝜋 ln(1 + 𝑃in𝑏
(1)/a(1)) est alors ajouté sur le graphe de la figure 

1.3(b) (points). Ainsi, pour chaque valeur de (2𝜎)𝑃−𝑉, le paramètre expérimental 2𝜋 ln(1 + 𝑃in𝑏
(1)/a(1)) 

peut être relié à une valeur 𝜑𝑁𝐿 comme le montre la courbe de la figure 1.3(c). Les points s’alignent 

remarquablement sur une droite dont la pente donne directement la valeur du 𝐹𝑂𝑀𝑇𝑃𝐴 mesuré égal à 0,5 

en accord avec les données de la littérature sur le silicium.  

Figure 1.3. (a) Pour différentes puissances incidentes, variation de la largeur spectrale r.m.s. 2𝜎 et de la puissance des impulsions 

transmises en fonction de la dispersion 𝜑(2). (b) Ecart calculé (reps. mesuré) entre les valeurs Min et Max de la largeur 2𝜎 en 

fonction du déphasage nonlinéaire 𝜑𝑁𝐿 (reps. du paramètre mesuré 2𝜋 ln(1 + 𝑃𝑖𝑛𝑏
(1)/a(1))). (c) Déphasage nonlinéaire en 

fonction du paramètre mesuré 2𝜋 ln(1 + 𝑃𝑖𝑛𝑏
(1)/a(1)). 

c. Mesure des nonlinéarités effectives Kerr et TPA d’un guide SOI  

Notre objectif est de mesurer les nonlinéarités effectives du guide. Il est alors nécessaire de déterminer les 

pertes d’injection au niveau de chacune des deux facettes du guide, repérées comme A et B. Les 
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paramètres a(1) et 𝑏(1) mesurés dans la direction d’injection (1) sont reliés aux pertes globales en entrée et 

en sortie 𝜅𝑖𝑛
(1)

= 𝜅𝑖𝑛𝑗
(1)

 𝜅𝐹𝐴 et 𝜅𝑜𝑢𝑡
(1)

 =  𝜅𝐹𝐵𝜅𝑂𝑆𝐴
(1)

, où 𝜅𝐹𝐴 et 𝜅𝐹𝐵 désignent les pertes de couplage au niveau 

des facettes A et B. Les pertes 𝜅𝑖𝑛𝑗
(1)

 et 𝜅𝑂𝑆𝐴
(1)

, identifiées sur la figure 1.1, sont mesurées sur le banc 

optique. Le sens d’injection dans le guide est ensuite inversé et les coefficients 𝜅𝑖𝑛𝑗
(2)

 et 𝜅𝑂𝑆𝐴
(2)

 sont mesurés. 

La courbe 𝑃𝑖𝑛/𝑃𝑜𝑢𝑡
(2)

 en fonction de 𝑃𝑖𝑛 est tracée sur la figure 1.2(b) et les coefficients a(2) et 𝑏(2) sont 

évalués par ajustement linéaire. 

En supposant les pertes sur les facettes identiques pour les deux directions, leurs valeurs se déduisent des 

relations (𝜅𝐹𝐴)2 = b(1)/ (b(2)a(1)κin
(1)

κOSA
(2)

exp(−αL)) et (𝜅𝐹𝐵)2 = b(2)/ (b(1)a(2)κin
(2)

κOSA
(1)

exp(−αL)), 

et valent respectivement 6,4 % et 2,5 %. Connaissant les efficacités de couplage, nous en déduisons les 

valeurs des nonlinéarités effectives définies par 𝛾𝑇𝑃𝐴 = 𝑏(1)𝑇0𝐹/ (a(1)κin
(1)

𝜅𝐹𝐴𝐿eff) = 0,22 W−1cm−1 et 

𝛾 =  2𝜋𝐹𝑂𝑀𝑇𝑃𝐴𝛾𝑇𝑃𝐴  =  0,69 W−1cm−1. En simulant la distribution de champ dans le guide, 𝐴𝑁𝐿 est 

calculée et les coefficients nonlinéaires du matériau déduits de nos mesures, 𝑛2 = 2,57 × 10−18 m2/W 

et 𝛽𝑇𝑃𝐴 = 3,26 × 10−12 m/W, sont en parfait accord avec les données de la littérature.  

2. Renforcement des interactions nonlinéaires par excitation 

cohérente d’une micro-cavité 

La réalisation de micro-cavités à cristal photonique permet de fortement augmenter les effets de 

localisation du champ et donc les interactions entre la lumière et le milieu intra-cavité, comme les 

interactions nonlinéaires. En revanche, le renforcement des nonlinéarités, qui induit des variations sur les 

propriétés du milieu, modifie les conditions de résonance de la micro-cavité au cours de son excitation et 

conduit à une diminution des effets de localisation. A la suite, nous traitons l’effet d’une nonlinéarité 

réfractive qui induit un décalage en fréquence de la résonance au cours de l’excitation et conduit à un 

désaccord entre les composantes spectrales de l’impulsion et celles de la résonance. Le bénéfice du 

renforcement du champ dans la cavité n’est plus alors maintenu, même si la durée de l’excitation excède 

la durée de vie des photons dans la cavité. 

Afin de préserver les effets de localisation, nous avons étudié expérimentalement le comportement 

nonlinéaire d’une micro-cavité de type Fabry-Pérot excitée par des impulsions á dérive de fréquence 

linéaire. La micro-cavité, fabriquée en silicium, est principalement soumise à la variation d’indice induite 

par l’augmentation de la densité de porteurs générés par absorption á deux photons (TPA), et qui produit 

un décalage vers le bleu de la résonance de la cavité. En appliquant une phase spectrale contrôlée à 

l’impulsion, on s’assure qu’à chaque instant une de ses composantes spectrales coïncide avec la fréquence 

de résonance de la cavité qui se décale vers le bleu. Bien que cette technique d’excitation cohérente soit 

couramment utilisée pour le contrôle des interactions lumière-matière dans des systèmes atomiques ou 

moléculaires [6], sa transposition aux résonateurs optiques n’avait fait l’objet jusqu’à présent que de 

travaux théoriques [7,8,9]. Nos résultats représentent la première démonstration du renforcement de 

l’interaction nonlinéaire dans une micro-cavité excitée de manière cohérente [10]. 

Nous avons conçu et fabriqué une microcavité Fabry-Pérot constituée de deux miroirs de Bragg gravés 

sur un guide ridge en Silicium sur Isolant (SOI) et dont le volume modal vaut 0,8(λ/n)
3
. Une photo de la 

cavité prise au microscope électronique à balayage (MEB) est présentée sur la figure 2.1. La mesure du 

spectre de transmission linéaire de la cavité montre un pic de transmission centrée autour de 1578,8 nm, 

avec une largeur de raie égale à 0,22 nm, coïncidant avec une résonance dont le facteur de qualité vaut Q 

= 7275, équivalent á une durée de vie des photons de 6 ps.  
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Figure 2.1. Dimensions pour la microcavité Fabry-Pérot en SOI plus une photo MEB de la structure fabriquée.  

Au cours de l’excitation en régime nonlinéaire, la génération des porteurs libres par TPA modifie de 

manière dynamique l’indice de réfraction du milieu. Le décalage vers le bleu de la résonance de la cavité 

est traité, en première approximation, comme une dérive de fréquence linéaire dans le temps [9]. Nous 

allons comparer la transmission de la cavité excitée de manière non-cohérente, avec des impulsions dont 

les composantes spectrales sont en phase (𝜑(2)= 0), et de manière cohérente, avec des impulsions de 

même énergie mais à dérive de fréquence linéaire (𝜑(2) ≠ 0). 

  

Figure 2.2. Évolution des spectres de transmission pour une énergie incidente de 3 pJ, mesurés (a) et simulés (b) pour des 

dispersions φ(2) variant de -3 à +3 ps2. Spectres des impulsions incidentes (en rouge) et de la résonance linéaire de la cavité (en 

gris). (c) Pour des impulsions de largeur spectrale 3 nm, largeurs spectrales r.m.s. des spectres transmis mesures en fonction de la 

dispersion φ(2) pour différentes puissances incidentes. 

La largeur spectrale des impulsions est fixée à 7,3 nm, qui excède celle de la résonance linéaire de la 

cavité (spectres indiqués sur la figure 2.2). Pour 𝜑(2)= 0, la durée d’autocorrélation des impulsions est 

mesurée égale à T0 = 2 ps, proche de la limite de Fourier. Pour une énergie injectée dans le guide de 3 pJ, 

l’évolution des spectres transmis á travers la cavité pour des dispersions 𝜑(2) variant de -3 à +3 ps
2
 est 

tracée sur la figure 2.2(a). L’ensemble des spectres présente un décalage de la résonance de cavité vers le 

bleu, comme attendu. Pour des dispersions négatives, où les composantes bleues de l’impulsion sont en 

avance sur les composantes rouges, le décalage de la résonance ne varie pratiquement pas. En revanche, il 

s’accentue très nettement pour 𝜑(2) compris entre 0 à +1,2 ps
2
 et diminue a nouveau pour 𝜑(2) > 1.2 ps2. 

Les valeurs positives de 𝜑(2) coïncident avec la situation schématisée sur la figure 1 où la cavité est 

excitée en premier lieu avec les composantes rouges de l’impulsion. Alors que la résonance  se décale 

vers le bleu, la dérive de fréquence appliquée sur l’impulsion maintient un couplage efficace et accentue 

le décalage. Le bénéfice de l’excitation cohérente est démontré en comparant les spectres obtenus pour 

deux impulsions de durée identique, supérieure à la durée de vie des photons dans la cavité, mais dont les 

dispersions diffèrent en signe. En particulier, les spectres obtenus pour les dispersions +1,2 et -1,2 ps
2
, qui 
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correspondent à une durée d’impulsion de 5,7 ps, montrent que le décalage vers le bleu de la résonance 

est nettement plus important pour 𝜑(2) = +1.2 ps2. Par ailleurs, on note que la largeur spectrale 

transmise coïncide pratiquement avec celle de l’impulsion incidente. A partir du décalage en fréquence, 

on montre que la densité de porteurs générée entre ces deux excitations est augmentée d’un facteur 2,5 et 

démontre le renforcement de l’interaction nonlinéaire entre une impulsion mise en forme et la micro-

cavité. 

Nous avons confronté nos résultats expérimentaux à des simulations numériques qui s’appuient sur la 

théorie des modes couplés. Les spectres simulés sont reportés sur la figure 2.2(b) et sont en très bon 

accord avec les spectres expérimentaux.  

Enfin, nous avons conduit une étude plus systématique sur la manière de contrôler la transmission 

nonlinéaire de la cavité en fonction de l’énergie des impulsions et de leur dispersion 𝜑(2). Les évolutions, 

pour différentes puissances incidentes, de la largeur spectrale r.m.s. des spectres transmis en fonction de 

la dispersion 𝜑(2) sont tracées sur la figure 2.2(c). Ces expériences ont été conduites avec des impulsions 

de largeur spectrale égale à 3 nm. Ces courbes démontrent qu’il existe, pour chaque énergie d’impulsion, 

une valeur de 𝜑(2) qui optimise la largeur spectrale transmise. Plus l’énergie des impulsions incidentes 

augmente et plus le décalage en fréquence est rapide, nécessitant d’appliquer sur les impulsions une plus 

forte dérive de fréquence (correspondant à une faible valeur de dispersion). 

 

Figure 2.3. (a) mesure de l'écart type pour les coefficients de chirp avec deux excitations. (b) Changement de longueur d'onde par 

rapport à la résonance de la cavité linéaire. Dans l'axe de droite: le nombre de fois qu'une bande passante équivalente à la valeur 

FWHM de la cavité froide est transmis. 

L’excitation cohérente d’un résonateur optique en régime nonlinéaire est démontrée expérimentalement 

pour la première fois. L’application d’une dérive de fréquence contrôlée sur des impulsions permet de 

renforcer leur interaction nonlinéaire avec une micro-cavité en silicium. À énergie constante, l’excitation 

cohérente augmente d’un facteur 2,5 la densité de porteurs générés dans la cavité, ce qui induit une 

variation d’indice ∆n/n = ∆λ/λ = 2,5 × 10
−3

, directement reliée à celle du décalage en longueur d’onde ∆λ 

de la résonance. Ce résultat illustre également la capacité à manipuler le spectre de transmission d’une 

cavité par le contrôle de son excitation, puisque les impulsions utilisées dans cette expérience ont une 

largeur spectrale 20 fois plus grande que celle de la résonance linéaire de la cavité (Figure 2.3). 

3. Ingénierie et fabrication des cristaux photoniques à fente: vers 

une plateforme nonlinéaire hybride    

Dans une dernière partie, notre travail s’inscrit dans une perspective d’intégration hybride de matériaux 

actifs sur silicium, en particulier de polymères nonlinéaires, permettant de conserver la maturité des 

processus technologiques de la filière silicium et les caractéristiques de guidage de la lumière qui en 

découlent et, simultanément, d’étendre l’amplitude des effets physiques par le biais des matériaux 

rapportés. Afin de maximiser l’amplitude des interactions matériaux/champ électromagnétique, notre 
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approche s’est focalisée sur des guides à cœur creux et à modes lents (guides cristaux photoniques à 

fente) [11]. 

Nous présentons tout d’abord les méthodes d’ingénierie de dispersion étudiées en simulation, notamment 

celle basée sur une ingénierie des trous à proximité de la fente, et exposons les résultats obtenus par la 

méthode des ondes planes 3D. On veut obtenir une dispersion de la vitesse de groupe (GVD) nulle sur 

plusieurs nanomètres de bande passante optique. La figure 3.1 montre la structure de base utilisée pour 

simuler les cristaux photoniques à fabriquer. Sont également présentes les courbes d’indice de groupe 

attendus et la distribution de champ dans les trois dimensions pour 𝑘 = 0.46 ∗ 2𝜋/a (régime lent). 

  

 

Figure 3.1. (a) Schéma illustrant la géométrie des cristaux photoniques simulés. (b) Extraction des courbes des indices de groupe 

pour chaque géométrie. (c) profils du mode guidés (|�⃗� |
2
) pour 𝑘 = 0.46 ∗ 2𝜋/a (régime lent) [12]. 

Les améliorations apportées à la conception des masques et à la fabrication ont permis d’accroître 

notablement la transmission des guides. Dans un premier temps, nous présentons les résultats de 

caractérisation linéaire obtenus sur une géométrie particulière présenté en Figure 3.2. On remarque les 

différents régimes de propagation déjà largement étudiés dans la littérature pour les cristaux photoniques 

sans fente (W1). On note notamment le fait que la transmission au-dessus du cône de lumière (bleu) 

chute, la présence de la région de propagation balistique , et enfin celle située près de la bande interdite où 

de multiples interférences apparaissent (régime diffusif). Nous avons ensuite effectué la caractérisation en 

transmission des échantillons fabriqués après leur remplissage par des liquides d’indice dans la gamme 

nliq=1,40 à nliq=1,50, par injection d’une source laser accordable au moyen d’une fibre lentillée puis 

collection du faisceau de sortie et analyse de son spectre. Dans un deuxième temps, des mesures d’ondes 

lentes ont été effectuées de manière complémentaires basées une méthode de temps de vol exploitant un 

interféromètre Mach-Zehnder externe, puis également par analyse de franges d’interférences obtenues à 

l’aide d’interféromètres intégrés. Nous avons étudié l’impact des variations des trous et du liquide de 

remplissage sur la dispersion des guides à modes lents. En Figure 3.3, nous montrons une photo MEB 

d’un cristal photonique fabriqué avec les mesures de temps du vol (b)-(d) liées, puis issues des MZI 

intégrés (c)-(e) pour, respectivement, un premier rayon de trou de 𝑟1=95 nm et 𝑟1=110 nm. 

(a) (b) 

(c) 
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Figure 3.2. Différents régimes de propagation caractéristique de guides d'ondes à cristal photonique. 

 

Figure 3.3. (a) Photo MEB du cristal photonique à fente à ingénierie de dispersion. Détail de la période exploitée lors des 

simulations PWE (MPB). (b) Mesure de temps de vol du cristal à fente de 700 μm de longueur pour 𝑟1=95 nm. (c) Mesure de 

transmission d’un interféromètre intégré présentant un bras de cristal à fente de 200 μm de longueur pour 𝑟1=95 nm. (d) et (f) : 

conditions identiques à (b) et (c) pour 𝑟1=110 nm [13]. 

 

 

 

(a) 

(b) 

(d) 

(c) 

(e) 
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Table 3.1. Paramètres extraits en fonction du matériau de remplissage, 

pour différents indices de réfraction et diverses géométries. 

 

La table 3.1 présente finalement un bilan des mesures effectuées. Les variations les plus importantes des 

paramètres y sont examinées afin d’estimer la performance des structures photoniques à lumière lente La 

sensibilité des bandes interdites en fonction de l’indice de remplissage en nanomètres par Unités d’Indice 

de Réfraction (nm/UIR) peut y être observée et l’on observe un décalage moyen de 250 nm/indice de 

réfraction. Ceci démontre l’intérêt de ces structures pour des applications en régime de capteur d’indice. 

Conclusion 

Les nonlinéarités effectives Kerr et absorption à deux-photons (TPA), ainsi que les pertes par couplage, 

d’un nano-guide ont été mesurées pour la première fois par une technique D-scan (transposée du Z-scan 

dans le domaine temporel), bi-directionnelle et utilisant des impulsions de forme spectrale quasi-

rectangulaire pour une sensibilité accrue. 

Le renforcement des interactions nonlinéaires dans une micro-cavité en silicium grâce à une excitation 

cohérente est démontré pour la première fois. En contrôlant la dérive de fréquence sur les impulsions, 

nous assurons à chaque instant que la fréquence d’excitation coïncide avec la fréquence de résonance de 

la cavité qui se décale vers le bleu au cours du temps sous l’effet des porteurs générés par absorption à 

deux photons. 

Les cristaux photoniques à fente offrent des perspectives intéressantes pour l’optique non linéaire en 

raison de la possibilité de confiner très fortement le champ électrique dans le cœur creux du guide et de le 

remplir par des matériaux à très fortes nonlinéarités optiques. Dans ce contexte, cette thèse présente aussi 

la réalisation de structures tout-diélectriques, à cœur creux (remplissables), sur substrat sur silicium sur 

isolant présentant une compensation de la dispersion dans une plage de longueur d’onde d’environ 20 nm 

dans le spectre des télécoms (1.55µm). Cette étape prépare l’intégration de matériaux actifs non-

linéaires sur SOI pour la réalisation de fonctions tout-optiques sur puce à haut débit. 
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Titre: Conception et caractérisation de structures photoniques sur sili-
cium pour les effets nonlinéaires du troisième ordre

Mots clés : Optique intégrée; optique non linéaire; silicium; techniques de carac-
térisation; plates-formes d’intégration hybrides; mise en forme d’impulsions.

Résumé:

Le traitement tout-optique des signaux sur puce est une option de rupture tech-
nologique s’inscrivant dans la continuité des récentes percées de la photonique sur
silicium et de sa co-intégration progressive avec l’électronique CMOS. Dans cette
perspective, l’optique est principalement introduite dans l’objectif de lever des ver-
rous technologiques de débit/bande passante sur puce et de puissance consommée.
Compte tenu de la miniaturisation poussée des guides silicium, dont les sections
sont typiquement de l’ordre de 0.1µm2, une réduction considérable de la puissance
optique nécessaire pour atteindre les effets non linéaires est obtenue en comparaison
des fibres optiques. Bien que le silicium non-contraint ne présente pas de réponse
non-linéaire du second ordre (χ(2)) en raison de la centrosymétrie de son réseau, les
effets de troisième ordre (χ(3)) y sont particulièrement forts mais néanmoins minorés
en raison de l’impact de l’effet d’absorption à deux photons (TPA) dans la fenêtre
des longueurs d’onde télécoms (λ∼1.55µm), qui génère à son tour des porteurs libres
induisant de l’absorption supplémentaire et des variations d’indice de réfraction.

Cette thèse est une contribution à l’exploration théorique et expérimentale d’une voie
visant à s’affranchir de ces difficultés et reposant sur l’intégration hybride des matéri-
aux actifs à faible indice de réfraction sur silicium. Dans cette approche, la plateforme
photonique silicium est utilisée pour ses propriétés extraordinaires de guidage de la
lumière tandis que les matériaux rapportés, luminescents ou présentant des propriétés
optiques non linéaires absentes dans le silicium, voient leurs propriétés décuplées par
l’exaltation du champ électromagnétique venant des structures photoniques silicium.

Plus précisément, le présent travail a été consacré à l’étude des nonlinéarités de
troisième ordre dans des structures intégrées à base de silicium exploitant des config-
urations de cavités à miroir de Bragg (nanobeam) et guides à cristaux photoniques à
modes lents. Tout d’abord, nous avons développé une méthode non destructive à
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faisceau unique pour caractériser les effets de troisième ordre instantanés, c’est à dire
la quantification de la susceptibilité complexe effective dans les guides d’ondes. La
méthode a été dénommée "Top-hat D-Scan bi-directionnelle" et constitue un analogue
temporel de la méthode Top-hat Z-Scan développée précédemment. Nous avons
établi un modèle analytique et numérique et nous rendons compte de la première
mesure d’un guide d’ondes en silicium utilisant une impulsion mis en forme dans
un étireur et complétée par une procédure d’injection bi-directionnelle. L’ensemble
instrumental développé constitue une expérience de métrologie des effets non-linéaires
dans des guides d’ondes silicium au meilleur niveau de l’état de l’art.

Forts de cet outil métrologique, nos travaux d’exploration des interactions non
linéaires lumière-matière ont été consacrés à deux grandes familles de nanostructures
photoniques : des microcavités optiques et guides d’ondes en régime de lumière
lente. Dans la première des deux situations, les variations d’indice provoquées par les
nonlinéarités sont responsables d’un décalage des fréquences de résonance excluant sa
coïncidence avec la fréquence du signal d’excitation et diminuant ainsi l’efficacité de
l’injection optique de manière drastique. Afin de maintenir le bénéfice de localisation
de la lumière tout au long de l’excitation pulsée, nous avons expérimentalement et
numériquement étudié le comportement d’une cavité en silicium conçue, fabriquée, et
enfin excitée par une impulsion présentant une puissance crête élevée. En contrôlant
temporellement la phase des composantes spectrales injectée, la relation de phase
spectrale compensant la dérive de fréquence non linéaire de la résonance de la cavité,
nous avons effectué une étude exhaustive sur l’excitation cohérente des micro-cavités
silicium non linéaire.

Enfin, nous avons consacré des efforts importants pour concevoir, fabriquer et
caractériser des guides d’ondes à cristaux photoniques (SPhCW) en silicium à fente,
matrice d’une intégration hybride de matériaux optiques non-linéaires sur silicium.
Les résultats rapportés fournissent la première preuve expérimentale d’un contrôle
précis des propriétés de dispersion de guides à cristaux photoniques à fente propres à
être remplis par des matériaux souples comme des polymères ou des couches minces
dopées. La dispersion de groupe des modes lents guidés est contrôlable en signe et en
amplitude et correspond à des bandes passantes optiques exploitables (∼10nm). Ces
résultats démontrent l’intérêt direct pour le traitement des données tout-optique sur
puce des guides à modes lents à cœur creux utilisant des effets optiques non linéaires
d’ordre trois pour le traitement tout-optique des données sur puce.
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Title: Design and characterization of Silicon Photonic structures for third
order nonlinear effects
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Abstract:

All-optical signal processing implemented in silicon photonics is considered as a
promising route to solve several bottlenecks for the realization of future dense and
mixed integrated electronic and photonic chips including ultrahigh data bit rate
issues and power consumption constraints. The control of optical signals by using
light intrinsically brings the advantage of removing electrooptical conversions and
opens the path to a large number of functions inherited from the telecommunication
field by using nonlinear optical processes, which yet traditionally need high optical
powers and long interaction lengths in optical fibers. In the context of the planar
silicon photonics technology, a dramatic reduction of the needed power to reach
optical nonlinear effects is obtained due to the sub-micrometer size of silicon wires
(∼450 nm×260 nm) in the telecommunication wavelength window, although silicon
does not exhibit second-order response (χ(2)) due to the centrosymmetry of its lattice.
Moreover, third-order effects (χ(3)) are partially spoiled in this material due to
the strength of the two-photon-absorption (TPA) effect, which in turn generates
free-carriers inducing additional absorption and refractive index changes.

One way to overcome this limitation is the hybrid integration on silicon of low index
soft materials with luminescence or nonlinear optical properties lacking to silicon. In
this context, the present work is devoted to the study of third order nonlinearities in
silicon-based integrated structures exploiting enhanced electromagnetic field effects
(e.g. in Si resonators and slow light waveguides). First, we have developed a dedicated
single beam non-destructive method to characterize the instantaneous third order
effects though the quantification of complex effective waveguide susceptibility. The
method is named “Bi-directional top-hat D-Scan” and consists in a temporal analogous
of the top-hat Z-Scan. We have established an analytical and numerical model and
we report the first measurement of a silicon waveguide by using a pulse shaping
set-up and a bi-directional procedure. The originality of our method stands in
the capability to measure in two steps: the 3rd order nonlinear Figure-Of-Merit
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(FOMTPA) independently of the injection losses, and the effective nonlinear waveguide
parameters (Kerr and TPA) taking into account measured coupling losses at each
facet . Furthermore, we have used the method to characterize other integrated novel
materials including Ge-rich GeSi alloys, and chalcogenide waveguides.

Additionally, two further enhancements of light-matter nonlinear interactions have
been explored within this work: optical microcavities and slow light waveguides.
In the first picture, index variations caused by non-linearities shift the resonance
frequencies precluding the coincidence with the excitation signal frequency, thereby
decreasing the injection efficiency. In order to maintain the benefit of light localization
throughout the pulsed excitation, we have experimentally and numerically studied
the behavior of a designed and fabricated silicon nanobeam cavity excited by a
high power tailored chirped pulse whose spectral phase relation compensates for
the nonlinear frequency drift of the cavity resonance. We report a numerical and
experimental study of the coherent excitation of a nonlinear micro-cavity, leading to
enhanced intra-cavity nonlinear interactions.

Finally, we have dedicated efforts to engineer, fabricate and characterize silicon
slot photonic crystal waveguides (SPhCW) in order to compensate their strong
dispersion present in the slow light regime while taking benefit from large group
index light propagation. Dispersion controls the dynamics of nonlinear effects so
we aimed at a way to tailor it. We experimentally demonstrated that low-index
materials can be incorporated in 700 µm long slot photonic crystal waveguides, and
hence can benefit from both slow-light field enhancement effect and slot-induced
ultra-small effective areas (<0.1µm2). We showed that their frequency dispersion
properties can be engineered from anomalous to normal dispersion, along with zero
group velocity dispersion (ZGVD) crossing points exhibiting a Normalized Delay
Bandwidth Product (NDBP) as high as 0.156. The reported results provide the
first experimental evidence for an accurate control of the dispersion properties of
fillable periodical slotted structures in silicon photonics, which is of direct interest for
on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon
technologies.
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Título: Diseño y caracterización de estructuras a base de silicio para
efectos no-lineales de tercer orden

Palabras clave: óptica integrada; óptica no lineal; silicio; técnicas de caracterización;
plataformas híbridas de integración; armonización de impulsos.

Resumen: Debido al incremento en la rata de intercambio de datos, se hace necesaria
una solución que facilite la comunicación rápida sin altos requerimientos energéticos.
El procesamiento de señales con el uso exclusivo de luz e implementados en la
plataforma de silicio es considerado como una ruta llamativa para resolver dicho
problemas en escalas sub-milimétricas con miras a la realización de futuros chips
integrados que sólo usen fotónica. El control de las señales ópticas mediante el uso
de la luz lleva intrínseca la ventaja de eliminar las conversiones electro-ópticas y abre
el camino a un gran número de funciones en el campo de las telecomunicaciones.
En particular, el uso de procesos ópticos no lineales, usualmente requiere altas
potencias ópticas y extensas longitudes de interacción en fibras ópticas. En el
contexto de la tecnología plana de silicio (on-chip), una reducción drástica de la
potencia necesaria para alcanzar los efectos no lineales ópticos se obtiene debido al
tamaño sub-micrométrico de las guías de onda fabricadas en silicio (∼450 nm×260
nm) en la ventana de longitudes de onda de las telecomunicaciones (λ∼ 1550 nm).
El silicio no presenta respuestas no lineales de segundo orden (χ(2) = 0) debido a la
centrosimetría de su malla cristalina, así que los efectos nolineales de tercer orden
(χ(3)) son los que requieren menores energías para ser explotados. Estos últimos son
parcialmente degradados debido a la alta probabilidad de absorción a dos fotones
(Two-photon absorption: TPA), que a su vez genera portadores libres que inducen
absorción y cambios en el índice de refracción adicionales.

Una forma de superar esta limitación es la integración híbrida del silicio con materiales
de bajo índice de refracción que presenten propiedades ópticas nolineales y de
luminiscencia, interesantes para funciones integradas alrededor de λ∼ 1550 nm. En
este contexto, el presente trabajo está dedicado al estudio de la no linealidad de
tercer orden en estructuras integradas basadas en silicio que explotan efectos de
confinamiento adicional del campo electromagnético (por ejemplo, cavidades ópticas y
guías de onda operadas en el régimen de luz lenta). En primer lugar, se ha desarrollado
un método no destructivo que requiere un único haz. Este método ha sido usado
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para caracterizar los efectos instantáneos (<1ps) de tercer orden, a saber: Kerr y
TPA. La medida consiste en la cuantificación de la susceptibilidad compleja efectiva
de una guía de onda. El método se denomina "Barrido en Dispersión con pulsos de
sombrero de copa" (Top-hat D-Scan por su nombre en inglés) y consiste en un análogo
temporal del conocido método de barrido en posición Z-Scan. Hemos establecido
un modelo semi-analítico y hemos reportado la primera medición de una guía de
onda de silicio usando impulsos armonizados (chirped pulses) y un procedimiento
de inyección bidireccional. La originalidad del mencionado método se encuentra en
la capacidad de medir en dos pasos diversos parámetros como: la figura de mérito
de nolinealidades de tercer orden (FOMTPA), independientemente de las pérdidas
de inyección, los parámetros nolineales efectivos de la guía de onda (Kerr y TPA) y
la medida precisa de las pérdidas de acoplamiento en cada faceta. Por otra parte,
hemos aplicado el método a guías de onda en otros materiales integrados incluyendo
aleaciones SiGe ricas en Germanio, calcogenuros y nitruro de silicio.

Además, otras opciones para mejorar la interacción no-lineal entre la luz y la materia
han sido exploradas en el marco de esta disertación, a saber: el uso de microcavidades
ópticas y de guías de onda en el régimen de luz lenta. En el primer caso, las
variaciones del índice causados por pulsos de altas energías cambian las frecuencias
de resonancia de la cavidad excluyendo la coincidencia con la frecuencia de la señal
de excitación, lo que disminuye, entre otras, la eficiencia en el acoplamiento. A fin de
mantener el beneficio de la localización de la luz a lo largo de la excitación pulsada,
se ha estudiado experimental y numéricamente el comportamiento de una cavidad
nanobeam en silicio excitada por un pulso adaptado de alta intensidad óptica cuya
relación de fase espectral compensa la deriva de frecuencia no lineal de la resonancia
de la cavidad. Este procedimiento demuestra un mejoramiento en la interacción
luz-materia intra-cavidad.

Finalmente, se han dedicado esfuerzos para diseñar, fabricar y caracterizar guías de
ondas de cristal fotónico a ranura (SPhCW por Slot Photonic Crystal Waveguides)
en silicio con el fin de compensar la fuerte dispersión presente en el régimen de luz
lenta mientras se aprovecha la propagación de la luz a un índice de grupo elevado.
La dispersión controla la dinámica de los efectos no lineales, por lo que es crucial
estudiar una forma de gestionarla. Hemos probado que las propiedades de dispersión
en SPhCW de 700 µm de largo pueden ser controladas precisamente, siendo esta la
primera demostración experimental manejando este tipo de guías. Los resultados
presentados proporcionan una opción para el diseño de guías híbridas, pudiéndose
llenar las ranuras con diversos materiales.
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