
HAL Id: tel-01475023
https://theses.hal.science/tel-01475023

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation et contrôle de phénomènes physiques
Pierre-Luc Manteaux

To cite this version:
Pierre-Luc Manteaux. Simulation et contrôle de phénomènes physiques. Synthèse d’image et réalité
virtuelle [cs.GR]. Université Grenoble Alpes, 2016. Français. �NNT : 2016GREAM062�. �tel-01475023�

https://theses.hal.science/tel-01475023
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques-Informatique

Arrêté ministérial : 7 Août 2006

Présentée par

Pierre-Luc Manteaux

Thèse dirigée par François Faure
et codirigée par Marie-Paule Cani

préparée au sein Laboratoire Jean Kuntzmann (LJK)
et de EDMSTII

Simulation et contrôle
de phénomènes physiques

Thèse soutenue publiquement le 3 Octobre 2016,
devant le jury composé de :

Joëlle Thollot
Professeur, Université de Grenoble-INP, Présidente
Maud Marchal
Maître de conférences, INSA Rennes, Rapporteur
Christian Duriez
Directeur de recherche, INRIA Lille, Rapporteur
Florence Zara
Maître de conférences, Université de Lyon 1, Examinatrice
Paul G. Kry
Maître de conférences, McGill University, Examinateur
François Faure
Professeur, Université de Grenoble, Directeur de thèse
Marie-Paule Cani
Professeur, Université de Grenoble-INP, Co-Directeur de thèse

Remerciements

Je remercie tout d’abord François Faure et Marie-Paule Cani pour m’avoir
donné la chance de réaliser ce doctorat, pour m’avoir encouragé tout au long de
ces quatre ans et avoir partagé avec autant d’enthousiasme leur passion pour
la recherche. Je remercie François pour m’avoir tant appris sur la simulation
physique et pour m’avoir aidé à détricoter méticuleusement tant de questions
scientifiques. Je remercie Marie-Paule pour sa joie de vivre à chacune de nos
réunions, ses formidables intuitions et la générosité avec laquelle elle transmet
ses connaissances, ses idées et ses conseils.

J’ai eu la chance de collaborer avec de nombreuses personnes d’horizons
très différents pendant les projets de cette thèse. Merci à Stéphane Redon
pour sa patience et son implication sur mon premier projet de recherche et
sur la rédaction au long cours de l’état de l’art sur les méthodes adaptatives.
Merci à Weilun Sun et James O’Brien pour ces trois superbes mois passés à
Berkeley, c’est certainement l’expérience de recherche la plus forte que j’aurais
connue pendant cette thèse. Merci à Paul Kry pour son dynamisme, son retour
si pertinent sur mes travaux et son aide inestimable sur mes fautes d’anglais.
Merci aussi à Rahul Narain et Chris Wojtan pour les nombreuses discussions
autour des méthodes adaptatives. Je tiens également à remercier Chris pour
m’avoir accueilli à l’IST pendant trois semaines, d’avoir été aussi ouvert et
attentif sur toutes les pistes que l’on envisageait pour le contrôle de liquide.
J’ai été très impressionné par le dynamisme qu’il insuffle à son équipe de
recherche, ce fut un plaisir de partager leur quotidien. Merci à Ulysse Vimont,
pour son petit grain de folie et toutes ses heures passées à faire avancer notre
projet de sculpture de liquides. Je n’aurais pas pu le réaliser sans toi et le
passage à l’IST aurait été très différent. Enfin, j’ai été très heureux que l’on
puisse confronter autant d’idées toujours dans un esprit de collaboration.

La thèse m’a permis de découvrir le plaisir d’enseigner. Je souhaiterais
remercier tous les étudiants que j’ai rencontrés au cours de ces années. Ils m’ont
permis de trouver un équilibre quand la thèse n’avançait pas, de découvrir
d’autres pistes de recherche et de garder le lien avec ces années que j’ai passées
à l’ENSIMAG. Je tiens tout spécialement à remercier les groupes de projet
de spécialité, c’est toujours une expérience forte de suivre un petit groupe
d’étudiants pendant quatre semaines. Merci en particulier à Thibault Lejemble,

i

REMERCIEMENTS

Amélie Fondevilla, Thibault Blanc-Beyne et Nicolas Durin, qui ont su pousser
leur projet jusqu’à obtenir une publication dans une conférence internationale.
Merci également à Mickaël Ly, Ilyes Kacher, Mathieu Stoffel et Maxence
Hammen pour leur motivation sans failles, leur bonne humeur et pour avoir
su garder le contact une fois le projet terminé. Merci à Camille Schreck pour
sa combinaison très personnelle de l’humour et du sérieux et son aide dans
l’encadrement d’un projet de spécialité. Merci à Thomas Delame pour son
implication et sa détermination à donner un nouveau souffle aux TP du cours
de Graphique 3D.

Merci à tous les membres de IMAGINE et MAVERICK avec qui j’ai partagé
tant de bons moments à discuter, troller, jouer au baby-foot ou au ping-pong.
Merci à Léo pour sa présence indéfectible que ce soit pour des questions de
mathématiques, des relectures d’articles, du soutien moral ou des bières : je
n’imagine même pas comment ce serait passé ces quatre ans sans toi. Merci
à Hugo pour sa folie et son incroyable capacité à rendre réel ce que l’on n’ose
imaginer. Je pense que je me souviendrais encore très longtemps de notre
rapide passage aux studios Disney de Los Angeles et à ces quelques minutes
passées à regarder des rushs avec une des légendes de l’animation. Rien de
tout cela ne serait arrivé sans toi. Merci à Quentin et Ali pour tous ses bons
moments passés pendant notre viré en Californie après SIGGRAPH. Merci
à Damien pour sa sagesse dont j’ai tant aimé me moquer mais sans laquelle
je me serais senti bien démuni. Merci à Antoine pour sa bonne humeur et
son écoute, plus d’une fois ça m’a permis de décompresser et de repartir à
l’attaque. Merci à Matthieu, Romain et Thomas pour toutes les conversations
Sofaïenne.

Merci aux membres du jury pour leur relecture du manuscrit et leur impli-
cation tout au long de la soutenance.

Je remercie enfin mes amis et ma famille pour m’avoir supporté et encouragé
pendant ces quatre ans. Mon épouse, Nassima, pour avoir été à mes côtés
à chaque instant, qu’il soit bon ou mauvais. Mes parents, Marie-Hélène et
Gabriel, et mes sœurs, Anne-Elisabeth et Claire-Lucie, pour leur soutien et
toutes ses bouffées d’air qui m’ont aidé à poursuivre ce doctorat.

ii

Résumé

Simulation et contrôle de phénomènes physiques
En informatique graphique les phénomènes physiques simulés pour la création
d’animations, de jeux vidéos ou la conception d’objets sont de plus en plus
complexes : tout d’abord en terme de coût de calcul, l’échelle des simula-
tions étant de plus en plus importante ; ensuite en terme de complexité des
phénomènes eux-mêmes qui requièrent des modèles permettant de changer
d’état et de forme. Cette complexité grandissante introduit de nouveaux défis
quand il s’agit d’offrir à un utilisateur un contrôle sur ces simulations à grande
échelle. Dans de nombreux cas, ce contrôle est réduit à un cycle d’essais et
d’erreurs pour déterminer les paramètres de la simulation qui satisferont au
mieux les objectifs de l’utilisateur.

Dans cette thèse, nous proposons trois techniques pour répondre en partie
à ces défis. Tout d’abord nous introduisons un nouveau modèle adaptatif
permettant de réduire le temps de calcul dans des simulations Lagrangiennes
de particules. À l’inverse des méthodes de ré-échantillonnage, le nombre de
degrés de liberté reste constant au cours de la simulation. La méthode est ainsi
plus simple à intégrer dans un simulateur existant et la charge mémoire est con-
stante, ce qui peut être un avantage dans un contexte interactif. Ensuite, nous
proposons un algorithme permettant de réaliser la découpe détaillée d’objets
fins et déformables. Notre méthode s’appuie sur une mise à jour dynamique
des fonctions de forme associées à chaque degré de liberté, permettant ainsi
de conserver un nombre de degrés de liberté très faible tout en réalisant des
changements topologiques détaillés. Enfin, nous nous intéressons au contrôle
d’animations de liquide en s’inspirant des méthodes d’édition interactive de
formes en modélisation 3D. Dans ce système, l’utilisateur travaille directement
avec le résultat d’une simulation, c’est-à-dire une suite de maillages représen-
tant la surface du liquide. Des outils de sélection et d’édition spatio-temporelle
inspirés des logiciels de sculpture de formes statiques lui sont proposés.

v

Abstract

Simulation and control of physical phenomena
In computer graphics, the physical phenomena simulated for the creation of
animations, video games or the design of objects are more and more complex:
First, in terms of the computational cost, the scale of the simulations can
be extremely important; Then, in terms of the complexity of the phenomena
themselves, which require the models to be able to change their state and
shape. This growing complexity introduces new challenges in order to offer
control on these large scale simulations to the user. In many cases, this control
is reduced to a trial-and-error process in order to determine the parameters of
the simulation which best meet the objectives of the user.

In this thesis, we propose three techniques to tackle these challenges. First,
we introduce a new adaptive model which allows the reduction of the computa-
tional cost in Lagrangian simulations of particles. In contrast with re-sampling
strategies, the number of degrees of freedom remains constant throughout the
simulation. Therefore, the method is simpler to integrate into an existing
simulator and the memory consumption remains constant, which can be an
advantage in an interactive context. Then, we propose an algorithm which
allows the detailed cutting of thin deformable objects. Our method relies on
a dynamic update of the shape functions associated to the degrees of freedom,
which therefore allows the use of a very low number of degrees of freedom while
performing detailed topological changes. Finally, we focus on the control of
animations of liquid and take inspiration from interactive methods of shape
editing in the field of 3D modeling. We introduce a system where the user
directly edits the result of the simulation: a sequence of meshes representing
the surface of the liquid. We propose selection and editing spatio-temporal
tools inspired from static shape sculpting software.

vii

Contents

Contents ix

1 Introduction 1
1.1 A short story of physics-based animation 1
1.2 Classical mechanics & physics-based animation 2
1.3 Three challenges in physics-based animation 2

1.3.1 Adaptive physics-based animation 2
1.3.2 Detailed topological changes 3
1.3.3 Simulation control . 4

1.4 Contributions . 4
1.5 Structure of the document . 5
1.6 Publications by the author . 5

2 State of the art 7
2.1 Continuum mechanics . 7

2.1.1 Equations of motion . 8
2.1.1.1 Conservation of mass 8
2.1.1.2 Conservation of momentum 9
2.1.1.3 Eulerian vs. Lagrangian formulations 10
2.1.1.4 Numerical solution 11

2.1.2 Fluid mechanics . 17
2.1.2.1 Constitutive Law 17
2.1.2.2 Smoothed-Particle Hydrodynamics model . . . 18

2.1.3 Solid mechanics . 23
2.1.3.1 Constitutive Law 24
2.1.3.2 Frame-based model 25

2.1.4 Conclusion on continuum mechanics 29
2.2 Control of physics-based animation 29

2.2.1 Problem: The trial and error process 29
2.2.2 Space-time constraints paradigm 31

2.2.2.1 Parameters . 31
2.2.2.2 Constraints . 32
2.2.2.3 Numerical solution 32

ix

CONTENTS

2.2.3 Applications & Alternatives 32
2.2.3.1 Enriching an animation with physics 33
2.2.3.2 Guiding a simulation with animation data . . 33
2.2.3.3 Example-based simulation 34
2.2.3.4 Animation sampling 34
2.2.3.5 Animation editing 34

2.2.4 Conclusion on simulation control 34
2.3 Chapter conclusion . 35

3 Adaptive physics-based animation 37
3.1 Temporal adaptivity . 38

3.1.1 Adaptive time step selection 39
3.1.2 Adaptive integration . 44

3.2 Geometric adaptivity . 49
3.2.1 Structured meshes and grids 52
3.2.2 Unstructured meshes . 55
3.2.3 Meshless models . 60

3.3 Miscellaneous techniques for spatial adaptivity 64
3.3.1 Basis refinement . 64
3.3.2 Moving grids . 70
3.3.3 Mixed models . 72

3.3.3.1 Solids . 72
3.3.3.2 Fluids . 72

3.4 Discussion and concluding remarks 74

4 Extending ARPS to Graphical Simulations 77
4.1 Adaptively Restrained Particles 78
4.2 Extension to SPH fluid simulation 82

4.2.1 Incremental update . 82
4.2.2 Viscosity . 85
4.2.3 Modified inactivity criterion 85
4.2.4 Performance . 86

4.3 Extension to stiff objects: Implicit Integration 87
4.3.1 ARPS Implicit Integration 87

4.4 Implementation . 90
4.4.1 Parameters . 90
4.4.2 Linear solver . 91
4.4.3 Choice of the restraining function and criterion 91

4.5 Discussion and concluding remarks 91

5 Detailed Cutting with Sparse Sampling 93
5.1 Related work on cutting and fracture 95
5.2 Overview of the method . 96
5.3 Adaptive shape functions . 97

x

CONTENTS

5.3.1 Voronoi shape function 98
5.3.2 Non-manifold grid . 99

5.4 Frame re-sampling . 102
5.5 Incremental update . 102

5.5.1 Re-sampling . 103
5.5.2 Integration point update 103
5.5.3 Local weights update . 103

5.6 Results . 104
5.7 Discussion and concluding remarks 105

6 Sculpting of Liquid Animations 109
6.1 Overview of the method . 111
6.2 Feature extraction . 112

6.2.1 Detection . 112
6.2.2 Segmentation . 114
6.2.3 Aggregation . 115

6.3 Feature representation . 117
6.3.1 Computation . 118
6.3.2 Insertion . 119

6.4 Sculpting Tools . 119
6.5 Results . 120
6.6 Discussion and concluding remarks 123

7 Conclusion 125
7.1 Summary of the contributions 125
7.2 Limitations and future work . 126

A Remeshing 129

Bibliography 133

List of Figures 157

List of Tables 160

xi

Chapter 1

Introduction

1.1 A short story of physics-based animation

In 1937, the Walt Disney company presented its first full length animated
film, Snow white and the seven dwarfs. Based on traditional animation
techniques, every single image of the movie was drawn by hand. Years
and years of learning and expertise were necessary to the animators to

tackle this tremendous amount of work. The movie was a success and others
followed still involving more complex animations. Among them, the animation
of natural phenomena was certainly one of the most difficult to achieve due
to its visual complexity. Specialized artists would draw each frame of smoke,
water or dust animations.

In the middle of the eighties, the Pixar company started to present short
computer generated movies at the SIGGRAPH conference. Even though The
adventures of André and Wally B. was a success in 1984, it is Luxo Jr. in 1986
that showed that computer generated movies could compete with traditional
animations in conveying emotions. For this short movie, the pipeline of tra-
ditional animation had been adapted to computers. Drawing was replaced
by 3D modeling. Animators defined key-framed positions that the computer
would interpolate to produce the in-betweens. Finally, the computer would
also compute the shading of the scene. Modeling, animation and rendering
were presented as the pillars of computer graphics movies.

In this context, physics appeared as a way to automatically generate the
animation of complex natural phenomena. It would be able to handle the
high level of details expected from large scale smoke clouds, the complex
deformations arising from a twisting rope or the numerous interactions oc-
curring between colliding objects. Researchers focused on studying physics
with respect to computer graphics’ purposes. Aside from films, physics-based
animation was also developed for games, medical applications, education and
craft prototyping.

1

CHAPTER 1. INTRODUCTION

1.2 Classical mechanics & physics-based animation

Physics-based animation has a great big brother: Classical mechanics. Classical
mechanics group centuries of studies of how objects behave in the real world.
This experience was invaluable and certainly allowed physics-based animation
to progress extremely fast. The great strength of physics-based animation
is not being restrained by this heritage but being able to inspire from it.
The variety of applications resulting from physics-based animation and the
interaction with a user created a wide number of research prospects.

As to know if the relationship between classical mechanics and physics-
based animation is unilateral, the answer is definitely no. Physics-based an-
imation is not doomed to simply transpose advances in classical mechanics
to computer graphics. Neither it is only a subset of classical mechanics that
cheats to get fast, inaccurate but compelling results. First of all, the relation-
ship between the two fields is surely bilateral. Classical mechanics inspires
physics-based animation and physics-based animation inspires classical me-
chanics. This is confirmed by the growing number of works from physics-based
animation which are published in physics and mechanics conferences and vice
versa. For instance, our work on adaptive particle simulation [Man+13] was
inspired by the work of Artemova and Redon [AR12] which was published
in the Physical Review Letter journal. We could also cite the work Qiu et
al. [QLF16] on moving cartesian grids which was published in Journal of Com-
putational Physics and was inspired by the work of English et al. [Eng+13]
published at SIGGRAPH. Second, physics-based animation interacts more
and more with other fields such as machine learning or biology. This increasing
interdisciplinary brings new problems that may not have been investigated by
classical mechanics.

1.3 Three challenges in physics-based animation

1.3.1 Adaptive physics-based animation

One could say that it is only a matter of time before computers be powerful
enough to make intractable simulations run in real-time. Until now, this
prediction has always failed because of the growth of the required level of
details in physics-based animation. Finding the right model to describe a
phenomena is not sufficient, both efficient and accurate simulations are needed.

Several approaches have been proposed to reduce the computational time,
thus transforming off-line simulations into real-time ones and making in-
tractable simulations possible to compute. Among these approaches, we can
mention the use of reduced models, boundary only simulations and adaptive
techniques. Reduced models consist of precomputing a carefully chosen small
subset of degrees of freedom of the simulated object and running the simulation
only on this subset. Thus the computational cost can be reduced by several

2

1.3. THREE CHALLENGES IN PHYSICS-BASED ANIMATION

orders of magnitude. This approach, however, imposes constraints on the
range of phenomena that can be simulated, for instance topological changes
are not handled. Boundary only simulations consist of simulating volumetric
objects only via their surfaces. Finally, adaptive techniques propose to adapt
in space and time the representation of the deformable model in order to find
the best match between efficiency and accuracy.

In this manuscript we focus on this last method and present an extensive
study of adaptive models for physics-based animation in Chapter 3.

Adaptive techniques have a great history in classical mechanics and com-
puter graphics. The most common form of adaptivity consists of re-sampling
a new set of degrees of freedom along the simulation in order to concentrate
computational time where and when it is most needed based on accuracy
and visual criteria. Among the most common criticisms concerning adaptive
techniques, we retained two of them. First, adaptive techniques are notori-
ously hard to integrate in existing simulation frameworks: tey may require
to bend the technique to the framework or vice-versa. Even if they can bring
great speed ups, the amount of implementation work makes them unattractive.
Therefore, there is a great need for more general approach of adaptivity pro-
ducing less intrusive techniques. Second, adaptive methods are often subject
to popping artifacts when updating the resolution of the simulation. Especially
in computer graphics, these artifacts should be prevented.

In Chapter 4, we propose a new adaptive model to address these challenges.

1.3.2 Detailed topological changes

Complex simulations are often characterized by objects undergoing strong
changes of state and shapes. Material can flow, break and deform irreversibly.
This requires a robust handling of topological changes.

In the context of cutting and fracture, handling detailed topological changes
interactively remains a challenge. Games and surgical simulators need a de-
tailed and efficient representation of these topological changes. Because of
restrictions on the amount of memory and computational time for the simula-
tion, they cannot always afford adaptive techniques to handle the increasing
computational cost due to the changes.

Aside from the computational challenge, the discontinuities induced by
topological changes remain hard to faithfully represent. However, they are a
key ingredient to predict how an object will react under cutting or tearing.
This is particularly important when the user interaction needs to be taken into
account precisely, such as in surgical simulators.

Our second contribution, presented in Chapter 5 tackles this problem.

3

CHAPTER 1. INTRODUCTION

1.3.3 Simulation control

In computer graphics, controlling a simulation is of great importance in order to
meet artistic choices when designing an animation. Aside from the animation
field, prototyping is also in needs of techniques to control mechanical systems
so that it fulfills an objective.

Unfortunately, controlling a simulation to match specific goals is a hard
problem. Simulations are formulated as an initial value problem, meaning that
the whole behavior is determined by the parameters of the simulation such as
initial and boundary conditions or material parameters. Finding the right set
of parameters is often the result of a tedious trial and error process.

In contrast with animation, there is still no strong pipeline that leave
a user design a physics-based animation from scratch. The main challenge
remains to build high level control tools that would help the user to intuitively
design animations or prototypes. In the case of prototyping, these tools should
produce viable objects that respect the underlying mechanics. In the case
of animation, they should provide a way to adjust between what makes the
animation looks realistic and the artistic constraints which convey emotions.

Our last contribution, presented in Chapter 6 falls in this domain.

1.4 Contributions
The contributions of this work are as follows:

• First, we transfer and extend a new adaptive physically-based animation
technique from nanosystems simulation to computer graphics. In contrast
with classical methods, our technique is less intrusive, it requires minimal
changes in an existing simulator and retains physical accuracy. We
demonstrate its use in the case of particle-based fluid simulation and
extend it by proposing an implicit integrator for the simulation of elastic
solids animations.

• Second, we propose an algorithm for the efficient cutting of thin de-
formable objects using the frame-based deformable model. By dynami-
cally adapting the shape functions associated with the different degrees
of freedom, we take into account detailed topological changes in the
dynamics while keeping a very low number of degrees of freedom.

• Finally, we present a new technique to design an animation of liquid. In
contrast with previous work which focus on the control of the simulation,
we propose to directly sculpt liquid simulation results. The input of our
method is a sequence of meshes representing the surface of the liquid
over time. In our system the user can select sub-parts of the animation
and copy, cut, paste them at different space-time locations, in different
target animations.

4

1.5. STRUCTURE OF THE DOCUMENT

Aside from these technical contributions, a part of this thesis was dedicated
to the study of adaptive models for physics-based animation. This work led
to a state of the art review published in Computer Graphics Forum that we
present in Chapter 3.

1.5 Structure of the document
The document is divided into five main parts.

In Chapter 2, we introduce the basics of continuum mechanics that are
necessary for the whole understanding of the manuscript and we provide a
survey of methods allowing to control a physics-based animation.

In Chapter 3, we present a detailed description of existing adaptive models
for computer graphics.

In Chapter 4 we describe our adaptive technique for the non-intrusive and
efficient simulation of liquids and elastic solids.

In Chapter 5 we describe our method to perform detailed cutting of thin
deformable objects while keeping a very low number of degrees of freedom.

In Chapter 6 we describe our system to sculpt an animation of liquid by
using high level tools inspired from 3D modeling.

Finally, we conclude this work in Chapter 7 and discuss limitations and
possible future work.

1.6 Publications by the author

• [Man+13] Exploring the Use of Adaptively Restrained Particles for Graph-
ics Simulations
Workshop on Virtual Reality Interaction and Physical Simulation (VRI-
PHYS), 2013 (see Chapter 4)
Pierre-Luc Manteaux, François Faure, Stephane Redon, Marie-Paule
Cani
A video of ourmethod is available here: https://youtu.be/RpJjGAoqp50.

• [Man+15] Interactive detailed cutting of thin sheets
ACM SIGGRAPH Conference on Motion in Games (MIG), 2015 (see Chap-
ter 5)
Pierre-Luc Manteaux, Wei-Lun Sun, François Faure, Marie-Paule Cani,

5

https://youtu.be/RpJjGAoqp50

CHAPTER 1. INTRODUCTION

James F. O’Brien
A video of ourmethod is available here: https://youtu.be/coA_tcomWlE.

• [Lej+15] Interactive Procedural Simulation of Paper Tearing with Sound
ACM SIGGRAPH Conference on Motion in Games (MIG), 2015
Thibault Lejemble, Amélie Fondevilla, Nicolas Durin, Thibault Blanc-
Beyne, Camille Schreck, Pierre-Luc Manteaux, Paul G. Kry, Marie-Paule
Cani
A video of ourmethod is available here: https://youtu.be/EiP3fHqtZnk.

• [Man+16] Adaptive Physically-based Models in Computer Graphics
Computer Graphics Forum, 2016
Pierre-Luc Manteaux, Chris Wojtan, Rahul Narain, Stephane Redon,
François Faure, Marie-Paule Cani (see Chapter 2)

• The work presented in Chapter 6 has been submitted to the conference
Motion In Games 2016. A video of our method is available here: https:
//www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?
dl=0.

6

https://youtu.be/coA_tcomWlE
https://youtu.be/EiP3fHqtZnk
https://www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?dl=0
https://www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?dl=0
https://www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?dl=0

Chapter 2

Physics-based animation and
control: State of the art

This chapter presents a state of the art on physics-based animation
and control. As physics-based animation is a huge field of research,
we cannot cover it all. We choose to focus our review on two top-
ics which are directly related to the following chapters. First, we

propose a short introduction to continuum mechanics and to the different
physically-based models used through this thesis. Then, we describe various
approaches for the control of physically-based animations.

2.1 Continuum mechanics

Continuum mechanics allow the definition of general equations of motion for
a wide range of phenomena from liquids to deformable solids. In this section,
we propose a progressive introduction to the basics of continuum mechanics
and provide details about the physical models used in the following chapters.
Firstly, we describe how to formulate general equations of motion and we
present the different concepts and numerical tools used to solve them. Sec-
ondly, we present a constitutive law for fluid mechanics leading to Navier-Stokes
equations and we detail their discretization using the Smoothed-Particle Hy-
drodynamics (SPH) model that will serve as background for our contribution
in Chapter 4. Finally, we present a constitutive law for solid mechanics which
allows the simulation of elastic solids and we detail the discretization of the
equations of motion using the frame-based model that we use in Chapter 5. If
the reader looks for a wider presentation of the existing deformable models in
computer graphics, we suggest the survey of Nealen et al. [Nea+06].

7

CHAPTER 2. STATE OF THE ART

2.1.1 Equations of motion

The equations of motion describe the behavior of an object over time. They
are generally derived from conservation laws such as mass and momentum
conservation. A constitutive law is also used to depict the intrinsic behavior
of the simulated object. The remainder of this section first describes the
conservation laws used to formulate general equations of motion. Then we
detail the concepts and numerical tools used to solve these equations.

2.1.1.1 Conservation of mass

The conservation of mass states that, whatever the physical material which is
studied, mass cannot be created or destroyed. More precisely, if we look at a
small volume of the simulation domain, the variation of mass in that volume
should be equal to the flux of mass going through its border. In Figure 2.1,
we illustrate this law with the example of a glass of water. At a time t1, the
mass of the water should be equal to its mass at time t0 plus the mass of the
inflow and minus the mass of the outflow which occurred between t0 and t1.

Figure 2.1: Mass conservation. M(t1) = M(t0) +Min −Mout.

Mathematically, we can write the conservation of mass as

d

dt

(∫
V
ρ(t,x)dv

)
= −

∫
∂V
ρ(t,x)v(t,x) ·n(x)ds (2.1)

where

• ρ(t,x) is the density at a point x and at a time t.

• v(t,x) is the velocity at a point x and at a time t.

• V is a small volume of the simulation domain Ω.

• ∂V is the border of V.

• n(x) is the normal outward of V on a point x of ∂V.

8

2.1. CONTINUUM MECHANICS

This formulation involves an integral over the volume and its boundary. When
numerically solving this equation, it is simpler not to have to make the dis-
tinction between a small element of V and a small element of ∂V. By using
Stokes’ theorem, we have∫

∂V
ρv ·nds =

∫
V
∇ · (ρv) dv (2.2)

and we can rewrite Equation (2.1) as a single integral over V∫
V

(
∂ρ

∂t
+∇ · (ρv)

)
dv = 0. (2.3)

2.1.1.2 Conservation of momentum

The conservation of momentum is implied by Newton’s second law which
states that the forces applied on an object result into an acceleration which
is inversely proportional to the mass of the object. Figure 2.2 illustrates this
law in the case of two balls on which a same force is applied. The acceleration
induced by the force is more important for the small ball which has a mass
less important than the big ball.

Figure 2.2: Momentum conservation. The same force f is applied on two balls.
The resulting acceleration is inversely proportional to their mass.

Mathematically, this law can be written as∫
V
ρ(t,x)a(t,x)dv =

∫
V

f(t,x)dv (2.4)

where

• a(t,x) is the acceleration at a point x and at a time t.

• f(t,x) is the force applied on a point x and at a time t.

9

CHAPTER 2. STATE OF THE ART

By performing a Taylor-Young expansion on the acceleration, we can re-write
the momentum conservation as∫

V
ρ(t,x)

(
∂v
∂t

+ v · ∇v
)

(t,x)dv =
∫
V

f(t,x)dv. (2.5)

Two kind of forces are generally applied on an object, the external forces and
the internal forces. External forces describe the action of the surrounding
environment on the object. The simplest example is the weight, i.e. the force
applied by the constant gravity g on the object.∫

V
fext(t,x)dv =

∫
V
ρ(t,x)gdv (2.6)

Internal forces describe the reaction of the object to an external deformation.
Generally, they are defined by using a stress tensor σ(t,x) as∫

V
fint(t,x)dv =

∫
∂V
σ(t,x)n(x)ds. (2.7)

Basically, the stress relates the deformation of the object to its material proper-
ties by using a constitutive law. A constitutive law is specific to the phenomena
which is simulated. In Section 2.1.2 and Section 2.1.3, we will respectively de-
scribe the most common constitutive laws for incompressible fluids and solids.
For a detailed and intuitive definition of the stress tensor we refer the reader
to the SIGGRAPH course about real-time physics [Mül+08] by Müller et al.

Same as for the conservation of mass, we can use Stokes’ theorem to get a
single integral over V. ∫

V
fint (t,x) dv =

∫
V
∇ ·σ (t,x) dv (2.8)

Then, we can rewrite Equation (2.5) as∫
V

(
ρ

(
∂v
∂t

+ v · ∇v
)
−∇ ·σ − ρg

)
dv = 0. (2.9)

2.1.1.3 Eulerian vs. Lagrangian formulations

Eulerian and Lagrangian formulations are two different ways of interpreting the
equations of motion. To understand the key difference, we take the example of
the simulation of a river and use Figure 2.3 to illustrate it. Let us suppose that
we want to measure fluid properties such as velocity, density or temperature
of the river. A first possibility would be to measure it at a fixed location,
similarly to a buoy that would remain at the same spot and measures data at
regular intervals of time. This is the Eulerian viewpoint. A second possibility
is to measure it along a path that would follow the flow of the river, similarly
to an object floating on the river or a particle of water moving accordingly to

10

2.1. CONTINUUM MECHANICS

Figure 2.3: Eulerian vs. Lagrangian viewpoint. On the left, buoys are put at
fixed positions on a river and measure properties such as velocity, temperature,
etc. The Eulerian approach takes a similar approach. On the right, we
represent the river with particles of water which follows the flow of the river
and carry properties with them. This is similar to the Lagrangian viewpoint.

the flow. This is the Lagrangian viewpoint. Equation (2.3) and Equation (2.9)
are described for fixed locations. Put together, they define the equations of
motion from an Eulerian viewpoint:

∫
V

(
ρ

(
∂v
∂t

+ v · ∇v
)
−∇ ·σ − ρg

)
dv = 0

∫
V

(
∂ρ

∂t
+∇ · (ρv)

)
dv = 0

. (2.10)

In order to adopt the Lagrangian viewpoint, let us suppose that the fluid
properties are carried by particles and that q(t,x) denote one of this property
at a time t for a particle which is at a position x. If we want to compute the
derivative of q for the particle at position x, we have to use the total derivative:

dq(t,x)
dt

= ∂q

∂t
· dt
dt

+ ∂q

∂x ·
dx
dt

= ∂q

∂t
(t,x) + (∇q(t,x) ·v) (t,x). (2.11)

In Equation (2.9) which describes the momentum conservation, we can directly
use Equation (2.11) to adopt a Lagrangian viewpoint. For the mass conserva-
tion described in Equation (2.3), we first need to develop the divergence of the
product between density and velocity and then Equation (2.11) can be used.
Finally, we can write the equations of motion from a Lagrangian viewpoint:

∫
V

(
ρ
dv
dt
−∇ ·σ − ρg

)
dv = 0

∫
V

(
dρ

dt
+ ρ∇ ·v

)
dv = 0

. (2.12)

In the following sections, we will keep Equation (2.12) which will be used by
the deformable models used in Chapter 4 and Chapter 5.

2.1.1.4 Numerical solution

Once the equations of motion are stated, they are discretized in space and
time in order to be numerically solved.

11

CHAPTER 2. STATE OF THE ART

Spatial discretization The spatial discretization consists of approximating
the object to simulate using a finite number of samples. These samples carry
the degrees of freedom used to numerically solve the equations of motion. Then,
by using an interpolation method, it is possible to continuously approximate
quantities such as position, velocity, density and so on, at any location on the
domain. Finally, an integration rule, also called quadrature rule, is needed
in order to integrate these quantities over the domain. These are the main
components for solving the equations of motion: degrees of freedom, an inter-
polation method and a quadrature rule for the numerical integration over the
simulation domain.

There are multiple possibilities for these components. It is crucial to choose
them based on the goals of the simulation: What do we want to measure?
How will boundaries be represented? Will any topological changes occur? Are
there restrictions in terms of computational or memory cost? In the following
we briefly introduce the most commonly used solutions in computer graphics.

Degrees of freedom In Eulerian simulation, velocities are the most com-
mon independent degrees of freedom while Lagrangian simulations generally
use positions and velocities. We can also mention the use of affine frames to
capture translations, rotations and shearing. They are used in the frame-based
model which will be detailed in Section 2.1.3.2.

Usually, we distinguish two types of sampling of the degrees of freedom:
mesh-based and mesh-less (see Figure 2.4).

Figure 2.4: On the left a grid discretization, commonly used in Eulerian
simulations. In the middle an unstructured mesh discretization, commonly
used in mesh-based Lagrangian simulations. On the right, a point-based
discretization, commonly used in mesh-less Lagrangian simulations.

In mesh-based methods, the vertices of a mesh are used to sample the
degrees of freedom. For instance, Eulerian simulations usually use a carte-
sian grid which allows the accurate computation of derivatives. In contrast,
Lagrangian simulations are mostly based on unstructured triangular meshes
which allows the handling of complex boundaries. In mesh-less methods, the
samples are uniformly distributed over the domain. Depending on the simu-
lated phenomena, the structure may be quasi-nonexistent which brings a lot
of flexibility. For fluids, the neighborhood of the samples will change every

12

2.1. CONTINUUM MECHANICS

time whereas for elastic solids their neighborhood will remain the same as
long as the object does not undergo topological changes such as fracture or
cutting. Each of these samplings can benefit from adaptivity. We will detail
the different possibilities of spatial adaptivity in Section 3.2.

Interpolation Interpolation is used to approximate the physical quan-
tities over the domain such as density, displacement, pressure and so on. In
computer graphics, we can distinguish two major interpolation methods: poly-
nomial interpolation and kernel interpolation. For each of them, different
weights are used, as illustrated in Figure 2.5. The weights are also called shape
functions and can be seen as the region of influence of a sample.

Figure 2.5: Three examples of shape functions in 2D. Each color represents
the shape function associated to one sample point (black circle) carrying the
degrees of freedom. On the left, shape functions for bilinear interpolation
are illustrated. In the middle, barycentric shape functions are illustrated.
On the right, kernel-based shape functions that are used in SPH and MLS
interpolation are illustrated.

The choice of the interpolation method mainly depends on how the mate-
rial samples have been distributed. For a sampling based on cartesian grid,
trilinear interpolation is often used, for instance in Eulerian simulations [Bri08].
For unstructured triangle meshes, linear interpolation with barycentric weights
is the most popular choice to simulate elastic solids [Mül+08]. For mesh-less
samplings, the two most common kernel interpolation methods are Smoothed-
Particle Hydrodynamics (SPH) interpolation and Moving Least Squares (MLS)
interpolation. SPH interpolation has been used to simulate a wide range of
phenomena from fluid [DC99] to elastic solids [BIT09]. MLS has been intro-
duced by Müller et al. to simulate elastic and plastic deformations [Mül+04].
It was later extended to solids fracture by Pauly et al. [Pau+05] and interactive
cutting by Steinemann et al. [SOG09]. Both methods require a dense sampling
of th object and can be used using a cubic kernel as shape function. We will
provide more details about SPH and its use for the simulation of incompress-

13

CHAPTER 2. STATE OF THE ART

ible fluid in Section 2.1.2.2 and how to save computational time by using an
adaptive model in Section 4.2.

Mesh-based and mesh-less methods can be combined to get the best of
both worlds. In this case, two interpolation methods are used, one for the
mesh-based side and one for the mesh-less side. We refer the reader to the
recent SIGGRAPH course on the material point method [Jia+16]. In this
course, existing hybrid models are compared and the interpolation methods
to transfer data from one representation to another are described.

A common drawback of the methods mentioned above is that they require
a dense sampling. In Section 5.3, we will detail how to interactively han-
dle topological changes with a sparse sampling by using the Voronoi-based
interpolation method used in the frame-based model.

Spatial Integration Over the simulation, different physical quantities
such as density or internal forces, need to be integrated over the domain. There
is need for a quadrature rule. Many exist, most of the time the simple midpoint
rule is chosen (see Figure 2.6).

Figure 2.6: Illustration of the midpoint rule for a one dimensional function.
The integration domain is partitioned into uniform regions [xi, xi+1], an inte-
gration point x′i is sampled at the center of each partition and the function is
evaluated at the location of the integration points.

The domain is decomposed in a set of partitions, where each partition has
an associated volume Vi. Mid-Points x′i are sampled at the center of each
partition. They are called integration points. Then the integral of a function
f of class Ck+1 over a domain Ω is approximated by∫

Ω
f(x)dv '

∑
i

Vif(x′i). (2.13)

14

2.1. CONTINUUM MECHANICS

In mesh-based methods, it is common to consider one integration point at
the center of each element and integrate over the volume of the element. In
mesh-less methods, when the sampling is dense, integration points are often co-
located with the material samples and integrated over their associated volume.
However, when the sampling is sparse, an independent sampling of integration
points can be used to get a finer integration. This is the case in the frame-based
method that will be described in Section 2.1.3.2.

Time integration Let us assume that we spatially discretized the Lagrangian
equations of motion, Equation (2.12), using a finite number of samples N which
carry positions and velocities as degrees of freedom. For the sake of simplicity,
we also assume that each sample has a fixed mass through the simulation
which implies that mass conservation is ensured. Then, we can solely focus on
the conservation of momentum and its integration over the time range [0, T]
of the simulation.

As for spatial integration, the temporal domain is discretized. Ideally, this
discretization would adapt to the time scale of the simulation. For instance,
fast motion would require a fine discretization while a coarse discretization
would be sufficient for slow motion. We will detail the different techniques for
an adaptive discretization of time in Section 3.1. In the following, we simply
assume a uniform discretization of [0, T] defined by a time step ∆t. The
integration between two consecutive time steps tn and tn+1 can be written as∫ tn+1

tn
M
dv
dt
dt =

∫ tn+1

tn
fdt (2.14)

where

• v ∈ R3N concatenates the velocity of each sample.

• f ∈ R3N concatenates the forces applied on each sample.

• M ∈ R3N×3N concatenates the mass of each sample.

Many integration schemes can be used. Most of them can be explained using
the Taylor expansion of a function f :

f(x) =
k∑

α=0

(x− a)α

α! f (α)(a) +
∫ x

a

(x− t)k

k! f (k+1)(t)dt. (2.15)

By applying Equation (2.15) on v with k = 0, we have

v(tn+1) = v(tn) +
∫ tn+1

tn

dv
dt
dt (2.16)

which allows one to rewrite Equation (2.14) as

v(tn+1) = v(tn) +
∫ tn+1

tn
M−1fdt. (2.17)

15

CHAPTER 2. STATE OF THE ART

This expression can be further expanded in order to get more accurate results.
In computer graphics, this is the most used expansion. Finally, the integral
term in Equation (2.17) is generally computed with the rectangle quadrature
rule which we illustrate in Figure 2.7.

(a) (b)

Figure 2.7: Illustrations of the rectangle integration rules. A function f can
be integrated over a regularly sampled domain using either the left rectangle
rule (a) or the right rectangle rule (b).

For a left rectangle method, we get an explicit integration of the velocity:

v(tn+1) = v(tn) + ∆tM−1f(tn). (2.18)

For a right rectangle method, we get an implicit integration of the velocity:

v(tn+1) = v(tn) + ∆tM−1f(tn+1). (2.19)

We can apply the same rule for the integration of the positions. Depending
on which quantity is integrated first and which integration rule is used, we
can distinguish three main schemes used in computer graphics: forward Euler,
symplectic Euler and backward Euler. Forward Euler is the explicit integration
of both position and velocity. Figure 2.8 illustrates the integration of position
in 1D.

x(tn+1) = x(tn) + ∆tv(tn)

v(tn+1) = v(tn) + ∆tM−1f(tn)
(2.20)

Symplectic Euler is the explicit integration of velocity and implicit integration
of position:

v(tn+1) = v(tn) + ∆tM−1f(tn)

x(tn+1) = x(tn) + ∆tv(tn+1)
. (2.21)

Backward Euler is the implicit integration of both position and velocity:

v(tn+1) = v(tn) + ∆tM−1f(tn+1)

x(tn+1) = x(tn) + ∆tv(tn+1)
. (2.22)

16

2.1. CONTINUUM MECHANICS

Figure 2.8: Illustration of a 1D forward Euler time integration. The solution
is described by x(t) and the numerical approximation by x′(t).

On one hand, forward and symplectic Euler are easy to implement and cheap
to compute but stability is guaranteed for a restricted range of time steps. On
the other hand, backward Euler is more expensive as it requires the solution
of an equation but this is greatly compensated by the larger time steps which
can be used while ensuring stability. However, this speed-up comes at the
price of numerical damping which might be undesired. A nice way to solve
the non-linear equation of backward Euler is to expand the force expression
and linearize in order to fall back to solving a linear system. There, efficient
iterative methods such as the conjugate gradient can be used. In Section 4.3, we
describe the linear system resulting from the use of backward Euler and detail
how to combine it with the adaptive method that we present in Chapter 4.

2.1.2 Fluid mechanics

In this section, we describe a constitutive law for incompressible fluids such as
water and we detail how to solve the equations of motion by using the Smoothed-
Particle Hydrodynamics (SPH) model that we will use in Section 4.2.

2.1.2.1 Constitutive Law

Fluids, for instance smoke, mainly react to pressure and viscosity. The stress
tensor that we introduced in Section 2.1.1.2 is used to relate the deformation

17

CHAPTER 2. STATE OF THE ART

of the fluid to this two properties in the following constitutive law:

σ = −pI3×3 + η
(
∇v +∇vT

)
(2.23)

where

• I3×3 is the identity.

• p is the pressure applied on the fluid.

• η is the viscosity of the fluid.

By injecting this equation into Equation (2.8), we get the internal forces of
the fluid.

fint = ∇ ·σ = ∇ ·
(
−pI + η

(
∇v +∇vT

))
= −∇p+ η∆v (2.24)

If we want to describe an incompressible fluid such as water, we need to specify
that the mass should not vary over time:

dρ

dt
= 0. (2.25)

By using Equation (2.24) and (2.25) in the equations of motion described in
Equation (2.12), we now describe an incompressible fluid. These new equations
of motion are called the Navier-Stokes equations for an incompressible fluid:

∫
V

(
ρ
d

dt
v +∇p− η∆v− ρg

)
dv = 0

∫
V
∇ ·vdv = 0

. (2.26)

2.1.2.2 Smoothed-Particle Hydrodynamics model

Smoothed-Particle Hydrodynamics (SPH) is an interpolation method that can
be used to approximate Navier-Stokes equations in a Lagrangian way. SPH
was initially proposed by Monaghan [Mon92] and introduced in graphics by
Desbrun et al. [DC99]. The fluid is discretized into particles which represent
small volumes of the whole fluid and each quantity carried by the particle is
interpolated using SPH. In Chapter 4, we will describe how to easily combine
SPH with an adaptive model in order to save computational time.

SPH interpolation The interpolation of a function f and its derivatives of
order α at a position x using SPH are defined by these equations:

f(x) =
∫
V
f(x′)W (x− x′, h)dx′

Dαf(x) =
∫
V
f(x′)DαW (x− x′, h)dx′

. (2.27)

18

2.1. CONTINUUM MECHANICS

where

• W is a function called kernel.

• h is the smoothing radius, also called length scale, which represents the
support of W .

Let assume that the fluid is discretized using N particles. These particles play
two roles: First they carry the degrees of freedom and the fluid properties;
Second their positions are used as integration points. By applying the midpoint
rule from Equation (2.13), we get a discretized version of Equation (2.27):

f(x) =
N∑
i=1

f(xi)ViW (x− xi, h)

Dαf(x) =
N∑
i=1

f(xi)ViDαW (x− xi, h)

(2.28)

where

• Vi = mi/ρi is the volume of particle i.

• mi is the mass of particle i.

• ρi is the density of particle i.

How to choose the kernel The choice of the kernel varies depending
on the function to interpolate. In practice, the cubic kernel from Mon-
aghan [Mon92] (Figure 2.9) that we use in Chapter 4 works well. This kernel
meets properties which are generally required from W :

• W is normalized. Thus, constants are interpolated exactly.∫
V
W (x, h)dx = 1 (2.29)

• W has a compact support.

‖ x ‖≥ h =⇒ W (x, h) = 0 (2.30)

• W tends to the delta function when the length scale h tends to 0.

lim
h→0

W (x, h) = δ(x) (2.31)

• W should be symmetric to enforce invariance under rotation.

W (−x, h) = W (x, h) (2.32)

19

CHAPTER 2. STATE OF THE ART

Figure 2.9: Illustration of the 1D cubic kernel (in blue) used by Monaghan et
al. [Mon92] and its derivative (in red) for h = 1. Note that the support of W
is 2h.

• Depending on the function to interpolate the kernel should be positive
to prevent unphysical interpolated value.

W ≥ 0 (2.33)

Here we can notice a first limitation of SPH: For a constant function f , the
approximation of its derivatives using Equation (2.28) will not necessarily
vanish depending on W . In practice, we only need the first derivative. A
common practice to fix that is to consider the derivative of the product of f
with an arbitrary differentiable function that we note Φ:

∇f = 1
Φ (∇(fΦ)− f∇Φ) . (2.34)

In this case, we can approximate ∇(fΦ) and ∇Φ using Equation (2.28). If f
is constant, we will get ∇f = 0. In practice the density ρ is often used for Φ.
In the following paragraph, we will see another usage of this technique.

Application to Navier-Stokes equations First of all, let us discretize
Navier-Stokes equation (Equation (2.26)) on the sampling of the particles

20

2.1. CONTINUUM MECHANICS

using the midpoint rule:

N∑
i=1

(
ρi
d

dt
vi +∇pi − η∆vi − ρig

)
Vi = 0

N∑
i=1
∇ ·viVi = 0

. (2.35)

We can omit the mass conservation as we did before, by assuming that the
particles have a fixed mass through the simulation. Recently, Bender and
Koschier [BK15] demonstrated that this simplification prevents from using
larger time steps. But for the sake of simplicity, we will keep this approximation
in the remainder of this manuscript. Now, we can discretize each term of the
equations for a particle i using the SPH technique from Equation (2.28).

Density

ρi =
N∑
j=1

mjW (xi − xj, h) (2.36)

Pressure
pi = k (ρi − ρ0) (2.37)

where

• ρ0 is the rest density of the fluid (1000kg/m3).

• k is a stiffness parameter.

Equation (2.37) is a simple and cheap computation of the pressure. This
equation of state acts like a spring in order to enforce the incompressibility
of the fluid. However, a high stiffness is generally needed to get close to
incompressibility. Therefore, very small time steps are required to ensure
stability. Recently, new techniques were proposed to ensure incompressibility
while using larger time steps. We do not detail these methods in this manuscript
but refer the reader to the work of Ihmsen et al. [Ihm+14a] and Bender and
Koschier [BK15].

Pressure gradient

(∇p)i =
N∑
j=1

mj

ρj
pj∇W (xi − xj, h) (2.38)

Here we can notice that the resulting pressure force between two particles i
and j is not symmetric and therefore does not conserve linear and angular
momentum:

fpressureij = −mimj

ρiρj
pj∇W (xi − xj, h). (2.39)

21

CHAPTER 2. STATE OF THE ART

To remedy this problem, we can use Equation (2.34) with Φ = 1
ρi
:

(∇p)i = ρi

(
∇
(
pi
ρi

)
+ pi
∇ρi
ρ2
i

)
. (2.40)

Finaly, we re-use SPH interpolation to get a new approximation of the pressure
gradient:

(∇p)i = ρi

N∑
j=1

mj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇W (xi − xj, h). (2.41)

This results into symmetric pressure forces between two particles i and j

fpressureij = −mimj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇W (xi − xj, h). (2.42)

Velocity Laplacian

(∆v)i =
N∑
j=1

mj

ρj
vj∆W (xi − xj, h) (2.43)

Same as for the pressure gradient, this would result in a non-symmetric inter-
particle viscosity force:

f viscosityij = η
mimj

ρiρj
vj∆W (xi − xj, h). (2.44)

If we assume that the density is constant, which is the case in theory, we could
obtain symmetric forces by using Equation (2.34) with Φ = ρi. However, in
practice, the density is not constant and the evaluation of the Laplacian of the
kernel is sensitive to particle sampling, which makes this solution inadequate.
Actually, it is quite hard to correctly handle viscosity using SPH and this is still
an area of research, especially for liquids exhibiting complex viscous behaviors
such as coiling or buckling. We refer the reader to the recent work of Peer et
al. [Pee+15] and Takahashi et al. [Tak+15] about this topic. For fluid with
a low viscosity, Monaghan [Mon05] proposed a gradient-based formulation of
the Laplacian which results in symmetric forces:

(∆v)i = 1
ρi

N∑
j=1

mjΠij∇W (xi − xj, h) (2.45)

where

Πij = − 2hcs
ρi + ρj

vTijxij
|xij |2 + εh2 (2.46)

and cs is the speed of sound in the media and ε is a numerical constant to avoid
singularities. In practice, ε = 0.01 works well. We will use this formulation in
Section 4.2.

22

2.1. CONTINUUM MECHANICS

Time integration If we assume a uniform discretization of the time
based on a time step ∆t, symplectic Euler is common choice to integrate
the equations of motion over time and for a particle i we get the following
equations.

vi(tn+1) = vi(tn) + ∆t
mi

 N∑
j=1

(
fpressureij (tn) + fviscosityij (tn)

)
+mig

xi(tn+1) = xi(tn) + ∆tvi(tn+1)

(2.47)

We described the key ingredients of the SPH model and how to use them
to discretize Navier-Stokes equations. There is not enough space to cover
the exciting challenges related to the building of a full SPH simulator. For
a robust handling of static and dynamic boundaries, a surface tension model
and an efficient surface reconstruction pipeline, we refer to the work of Akinci
et al. [Aki+12b; AAT13; Aki+12a]. For a state of the art of optimization
techniques for SPH, we refer the reader to the work of Ihmsen et al. [Ihm+11].
For other references related to the handling of viscosity, multiphase simula-
tions and other problems, the state of the art report on SPH by Ihmsen et
al. [Ihm+14b] is a safe starting point.

2.1.3 Solid mechanics

In this section, we focus on the simulation of elastic objects. When submitted
to external forces, an elastic object reacts so that it comes back to its rest shape.
In contrast with fluids, internal forces are history dependent, they depend on
how much the object deformed compared to its rest shape. It becomes crucial
to be able to describe the deformation of an object in order to express its
reaction.

The deformation is modeled by a mapping Φ between the undeformed
configuration Ω0 and the deformed configuration Ω (see Figure 2.10). Φ is
called the displacement field:

Φ : R× Ω0 −→ Ω
(t,X) −→ x (2.48)

where

• t is the time.

• X is a point in the undeformed configuration.

• x = Φ(X, t) is the mapping of X into the deformed configuration at time
t.

23

CHAPTER 2. STATE OF THE ART

Figure 2.10: The displacement field Φ maps each point X from the rest
configuration Ω0 to a point x in the deformed configuration Ω.

The deformation gradient F describes the local state subject to rigid and/or
deformable displacement with respect to the undeformed configuration. It is
defined by the following equation.

F = ∂Φ
∂X

(2.49)

The strain tensor ε measures the deformation. There are many strain measures
such as the Green-Lagrange strain:

ε = 1
2
(
F TF − I

)
(2.50)

or its linearized version, the Cauchy strain:

ε = 1
2
(
F + F T

)
− I. (2.51)

In contrast with the Green-Lagrange strain, the Cauchy strain does not capture
well large rotations and therefore is mainly used for small deformations. In
Chapter 5, we use the Green-Lagrange strain for the simulation of elastic thin
sheets.

The displacement field, deformation gradient and strain tensor are the
main components of the constitutive law that relates the deformation to the
material properties of the object.

2.1.3.1 Constitutive Law

For elastic materials, the stress tensor σ can be described using constitutive
density energy Ψ that is derived with respect to the strain tensor ε:

σ = ∂Ψ
∂ε
. (2.52)

24

2.1. CONTINUUM MECHANICS

Different forms of energy exist. For an elastic material, also called Hookean
material, the density energy is the following equation,

Ψ = 1
2Hε

2 (2.53)

where H is called the stiffness tensor and is a 3×3×3×3 tensor. By injecting
Equation (2.53) into Equation (2.52), we get the following constitutive law:

σ = Hε. (2.54)

For isotropic materials, the number of material parameters in H can be reduced
to two, the Young’s modulus E and the Poisson’s ratio ν. These parameters
respectively describes the resistance of the object to extension and to shear-
ing. Moreover, the strain and stress tensor are symmetric which simplifies
Equation (2.54):

σ =

σ11
σ22
σ33
σ23
σ13
σ12

= H̃

ε11
ε22
ε33
2ε23
2ε13
2ε12

(2.55)

where

H̃ = E

(1 + ν) (1− 2ν)

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

. (2.56)

Instead of computing internal forces as the divergence of the stress, they can
be computed as the derivative of the density energy with respect to the degrees
of freedom:

f = −
∫
V

∂Ψ
∂x

T

dv. (2.57)

2.1.3.2 Frame-based model

There are many models to discretize the equations of motion for an elastic
solid: Moving Least Squares [Mül+04], finite element method [OH99], etc.
Here we choose to discretize these equations using the frame-based model, as
we will use it in Chapter 5 to handle interactive and detailed cutting of thin
elastic objects.

The frame-based model was introduced by Gilles et al. [Gil+11] to simulate
deformable objects. In contrast to other deformable models, it allows the

25

CHAPTER 2. STATE OF THE ART

simulation of complex object with very few degrees of freedom and to handle
heterogeneous materials easily [Fau+11]. Additionally, this work formalized the
concept of multi-layer physical framework. In the following, we first describe
what is a multi-layer framework and illustrate it in the case of the frame-based
model. Then we detail a standard choice for the different components of the
frame-based model: degrees of freedom, interpolation and integration. As in
the previous section, this section is a high level overview. Detailing collision
detection and response processes and giving a more accurate formulation of
viscosity via the strain rate are out of the scope of this chapter.

A multi-layer physical framework Most of the time, the different com-
ponents of a physics-based model are described as a monolithic framework:
degrees of freedom, interpolation, integration and constitutive law are put
together in one formula which computes the forces applied on the degrees of
freedom. On one hand, this provides a compact and implementation-friendly
expression. On the other hand, it requires assumptions on each component
and make it hard to distinguish what should be changed in order to integrate
collisions, to embed a visual model or to test variations of the initial model.

An interesting alternative is to build a multi-layer framework where each
component of a physics-based model represents a layer which is able to com-
municate with other layers through mappings. We distinguish three main
advantages: Firstly, the framework has then a great modularity, as different
components can be implemented separately, re-used and mixed together. A
direct consequence is the ease at prototyping. State of the art methods can be
implemented in hours instead of days. Comparisons of different models is much
easier. Secondly, as each layer can be discretized at its own resolution, the
granularity of the simulation can be easily controlled and computational tasks
better distributed. For instance, in the case of the frame-based model, the
sampling of the degrees of freedom is sparse to accelerate the time integration
while a denser sampling is used for the integration points in order to accurately
compute the deformation. Finally, embedding techniques, used to display a
fine visual model or to handles collision with a coarse representation, fits well
in this framework by using the displacement field to map these models to the
degrees of freedom.

In their work, Gilles et al. [Gil+11] proposed such an alternative by decom-
posing the computation of force using the derivation chain rule:

f = −
∫
V

(
∂Ψ
∂x

)T
dv = −

∫
V

(
∂F

∂x

)T (∂ε
∂F

)T (∂Ψ
∂ε

)T
dv. (2.58)

The three different layers are now visible: the degrees of freedom, the deforma-
tion gradient, the strain tensor and the constitutive density energy. Moreover,
we can distinguish the Jacobian of the mappings that link degrees of freedom
to deformation gradient and deformation gradient to strain. Notice that the

26

2.1. CONTINUUM MECHANICS

derivative of the constitutive density energy with respect to strain is actually
the stress tensor presented in Equation (2.52). In Figure 2.11, we illustrate
this framework in the case of the frame-based model.

Figure 2.11: Each component of the simulation is isolated and communicates
with other components through mappings. By doing so, the framework allows
fast prototyping and comparison of a wide range of deformable models.

Degrees of freedom Let assume that N samples have been uniformly dis-
tributed over the object. Each sample carries an affine frame T = (A, t) which
represents 12 degrees of freedom: 3 for translation t, 9 for the matrix A com-
bining rotation, scaling and shearing. Affine frames are expressed with respect
to their initial configuration T0 = (A0, t0).

Interpolation Linear blend skinning is used to interpolate the displacement
field and other quantities of the simulation. A deformed position x can be
interpolated as a weighted sum of the affine transformations applied to the
rest position x0:

x = Φ(x0) =
N∑
i=1

wi(x0)
(
ti +Aixrel0,i

)

xrel0,i = A−1
0,i (x0 − t0,i)

(2.59)

where

• xrel0,i is the relative position of x0 in the frame defined by T0,i.

• wi is the shape function associated to the frame i.

Different shape functions can be used. When using linear interpolation, three
properties are important in order to represent a physical behavior. First, the

27

CHAPTER 2. STATE OF THE ART

shape function should linearly decrease with respect to distance in the material.
Otherwise, the deformation will not be uniform with respect to the distance
from the frame. Second, the shape function should be positive. Third, the
shape functions should form a partition of unity. In practice, we use the
Voronoi-based shape functions. In Section 5.3, we will detail the computation
of Voronoi-based shape functions and how to dynamically update them to take
into account topological changes.

From the description of the displacement field (Equation (2.59)), the de-
formation gradient can then be derived:

F (x) = ∂x
∂x0

=
N∑
i=1
∇wi(x0)

(
ti +Aixrel0,i

)
+ wi

(
AiA

−1
0,i

)
. (2.60)

Spatial integration Any quadrature rule can be used. Here, for the sake
of simplicity, we suppose that we use the midpoint rule (see Equation (2.13))
briefly described in Figure 2.6. In contrast with the SPH model that we
described in Section 2.1.2.2, the sampling of the frames is very sparse. On
one hand this allows the integration of the equations of motion over time very
efficiently. On the other hand, there are not enough samples to accurately
measure the deformation. To remedy this, an additional denser sampling is
used for the integration points. Let assume that we sampled the object withM
integration points, then we can use the midpoint rule to compute the internal
forces for one frame,

fi = −
M∑
j=1

(
∂F

∂xi

)T (∂ε
∂F

)T (∂Ψ
∂ε

)T
(xj)Vj (2.61)

where

• xj is the position of the integration point j.

• Vj is volume associated to integration point j.

Temporal integration Assuming the mass matrix is lumped and that we
use symplectic Euler, the time integration of one frame i is the following.(

t′i(n+1)
A′i(tn+1)

)
=
(

t′i(tn)
A′i(tn)

)
+ ∆tM−1

i (fi(tn) +Mig)

(
ti(n+1)
Ai(tn+1)

)
=
(

ti(tn)
Ai(tn)

)
+ ∆t

(
t′i(n+1)
A′i(tn+1)

) (2.62)

Where Mi is the mass matrix of the frame i.

Mi =
∫
V
wTi ρwidv (2.63)

and ρ is the density of the object.

28

2.2. CONTROL OF PHYSICS-BASED ANIMATION

We described the key ingredients to simulate elastic solids using the frame-
based model. As for fluid mechanics, there are many other related topics that
we choose not to detail here. For the formulation of implicit Euler and a survey
of collision detection techniques, we respectively refer the reader to the course
of Witkin et al. [WBK01] and the work of Teschner et al. [Tes+05].

2.1.4 Conclusion on continuum mechanics

In this section, we briefly presented the basics of continuum mechanics. First,
we described how to design equations of motion and which numerical tools are
used to solve them. Then, for fluids and solids mechanics, we mentioned their
specificities and detailed a deformable model. We illustrated the fact that
continuum mechanics allows the automatic computation of realistic motion
from a wide range of phenomena. This strength mainly explains why hand-
made animations of physical phenomena have been replaced by physics-based
animation. However, controlling a physics-based model remains a tedious
task. It usually consists of tweaking parameters whose understanding require
advanced knowledge of the underlying model. In the end, the user apply a trial-
and-error process to find the parameters which produce a result close enough
to its expectations. In the following section, we present different methods for
the control of physics-based animation.

2.2 Control of physics-based animation
As we mentioned in the introduction, computer were used for producing an-
imations in two main ways. First, principles of traditional animation were
adopted, leaving the animator to describe the key-frames that would bring life
and style to characters. Second, physics was used to animate objects whose
complexity in terms of scale and behavior would have been intractable for a
single animator. Nowadays, these two use cases are only the extremities of a
large spectrum. In between lies the control of physics-based animations which
tends to take into account user directions, that will bring life and style, and
physics, that will handle the exciting complexity and dynamics of the physical
behavior. In this section, we illustrate the problem of simulation control and
describe the main solutions proposed so far.

2.2.1 Problem: The trial and error process

How to control a physics-based animation is an old problem in computer
graphics. In order to understand the different problems that arise, it is good to
start from the most naive way of controlling a physics-based animation: trial
and error.

Let us say we have to design an animation of a ball launched on the
ground that bounces twice before hitting the center of a target on the ground.

29

CHAPTER 2. STATE OF THE ART

The elastic behavior of the ball and the changes of speed make it a hard
animation for a key-framing animator. Using physically-based simulation
methods, the behavior takes some time to compute but can be easily solved.
As the simulation is an initial value problem, the whole behavior of the ball is
dictated by the initial and boundary conditions of the simulation, the material
parameters of the ball and the external forces that can be set to help guiding
the animation. The trial and error process consists of setting these conditions
and parameters, running the simulation and correcting the parameters until
the ball reaches the desired target (see Figure 2.12).

Figure 2.12: Trial and error process. The user runs successive simulations with
different parameters such as the initial height h and velocity v of the ball until
it reaches a desired target.

There are mainly three constraints which make this task a nightmare:

• Firstly, the computational time plays a major role. This is obvious but
still important to state. A real-time simulation will allow the user to
quickly explore parameters whereas an offline simulation might require
days and days of tuning. Here, we can mention procedural tools which are
generally much more efficient than simulation and therefore enable faster
editing loops. Unfortunately they are often limited to overly restrictive
models such as large open ocean surfaces [HNC02; Tes04b; JW15; Hor15].

• Secondly, the control is indirect and, most of the time, based on unin-
tuitive parameters which require some expertise about the underlying
physical model. The user cannot directly control the trajectory nor the
shape of the object.

• Thirdly, many physics-based animations describe a non-linear behavior.
Fluid animations are among them for instance. This non-linearity makes
it very hard to choose the right parameters. Small changes can produce
very different results making tedious to explore the range of possible
behaviors and almost impossible to respect specific artistic directions
such as timing, key positions, trajectories or shapes. Also, it prevents
the user from interactively controlling a low-resolution simulation and

30

2.2. CONTROL OF PHYSICS-BASED ANIMATION

then achieve a similar behavior with the same parameters at a higher
resolution.

2.2.2 Space-time constraints paradigm

A general approach for controlling a physics-based animation is to formulate it
as an optimization under constraints: "Find the value of the parameters such
that the physical behavior and user constraints are respected over the animation"
(see Figure 2.13).

Figure 2.13: Space-time constraints. An optimization problem is defined to
find the value of the parameters which solve the equations of motion while
respecting constraints defined by the user. In this example, the parameters
are the initial height h and velocity v of the ball and the constraints are the
position of the ball at different time. The ball has a mass of 1kg and is only
submitted to the gravity g.

Four challenges arise: What are the parameters we want to control, what
are the user constraints, how to formulate them and finally how to numerically
solve the problem? Witkin and Kass were among the first to introduce this
formulation to the computer graphics community in their pioneer work Space-
time constraints [WK88].

2.2.2.1 Parameters

The most common parameters are the positions of the material samples and
the external forces. A common drawback of using external forces is that the
necessary changes may become highly unrealistic. As an alternative, Coros et
al. [Cor+12] proposed to adapt the rest shape of the object from one frame
to another in order to induce internal forces that would match the user goals.
When large deformation occurs it is possible that the computed solution is at
the limit of the deformation that the object can reach. In order to enforce the
optimization, Li et al. [Li+14] proposed to optimize material parameters as
well.

31

CHAPTER 2. STATE OF THE ART

2.2.2.2 Constraints

Position, velocity and density are among the constraints that are most often
used for controlling an animation. Of course, they depend on the simulated
object: rigids, deformable solids, smoke, liquids, etc. Certainly, position con-
straints are the most intuitive for the user as they can be specified using
key-frames. However, designing a key-frame for a highly elastic object or vis-
cous materials might be extremely hard to achieve. Here, there is a direct link
to the works about surface modeling which propose to deform naturally an
object [SA07; Hil+11]. In some cases, these deformation tools can be seen as a
local static simulation of the object that computes its deformation from a dis-
placement induced by the user. For elastic objects, such deformation tool has
been proposed by Barbic et al. [BSG12]. For liquids, Pan et al. [Pan+13] pro-
pose an interactive method to deform wave shapes by sketching their profiles.
Thus, direct spatial deformation is made possible. Both fit in the framework
of surface modeling deformation. The only difference is that the functions
which are minimized are directly derived from the internal forces acting on
the object. These methods are particularly useful when interactively editing
an animation, especially when they are combined with high level deformation
tools such as sketching.

2.2.2.3 Numerical solution

In their work, Witkin and Kass [WK88] dealt with small systems and short
simulation period. Therefore, they could afford to directly solve the optimiza-
tion problem, meaning that at each iteration a whole simulation would be
computed. For instance, small rigid bodies simulation could be interactively
designed through this approach [Pop+00; PSE03]. For complex models and
large simulation time, this approach is intractable. Windowing methods al-
lowed to restrict the optimization to the space-time range of interests [Coh92].
In their work, [McN+04] proposed to use the adjoint method to efficiently
compute gradients in liquid simulation thus improving the performance of the
optimization. The approach was also used by Wojtan et al. [WMT06] for
handling large particle systems. For elastic bodies, the use of reduced model
allowed to achieve speed-ups of several order of magnitude, thus allowing to
interactively edit a physics-based animation [BSG12; Hil+12; Hah+12]. Since,
this approach has been further improved to be faster [Sch+14] and to deal
with large deformations [Li+14].

2.2.3 Applications & Alternatives

The strength of the space-time constraints paradigm relies on its very general
definition. Therefore, a large number of applications and methods can be
seen as offsprings of this approach. In the following, we distinguish different

32

2.2. CONTROL OF PHYSICS-BASED ANIMATION

applications of physics-based animation control and present alternatives to the
above methods.

2.2.3.1 Enriching an animation with physics

Given a full animation, a simulation is run in order to enhance the input
animation with detailed physically-based secondary motions. This approach
was successfully applied to enhance character animation with wrinkles and
folds of their skin by Bergou et al. [Ber+07]. In their work, they compute the
dynamics of thin shells on top of the animation by using a multi-resolution
approach. In fluid animation, details enhancing brings a lot of attention as
it would be easier to set up low resolution simulation and add details on top
of it without loosing the global behavior. A nice approach was proposed by
Mercier et al. [Mer+15] where they solve a Lagrangian wave simulation only
at the surface of the low resolution simulation.

2.2.3.2 Guiding a simulation with animation data

A large number of methods propose to guide a simulation without the need
of an expensive optimization problem. Generally these methods propose to
use external forces that are automatically computed from the user inputs
such as key-frames. One of the first approach of this kind was proposed by
Lamouret and Cani [LC96]. This approach was later extended to more involved
inputs such as simulation data. In the case of fluid, user-defined velocity
field [KMD06], distance fields [Yan+13] and control particles [Thü+06; MM13]
were proposed to control the trajectory of fluid animation. Still in the same
idea, there are many methods which propose to guide the behavior of an object
using geometric proxies which are easier to control for an artist than simulation
data. For example, artists can use a triangle mesh to specify a target shape
which will act as an attractor by adding artificial attraction forces based on the
distance to the mesh surface. Such approaches have been successfully developed
to drive smoke [FL04; HK04; SY05b] and liquid simulations [SY05a; Rav+12].
Taking this strategy further, the geometric proxies themselves can be defined
by a low-resolution fluid simulation. To achieve this, the artist quickly sets up
a coarse simulation and uses the output geometry to guide the main features
of a full resolution simulation. Several approaches modify a high-resolution
smoke simulation using optimization [Nie+09; NC10], patterns extracted as
skeleton [YCZ11], or sparse sampling [HK13]. For liquid simulations, Nielsen
and Bridson [NB11] propose to restrict the high resolution simulation to a thin
layer around a guiding coarse animation. Although each of these approaches
are able to successfully guide an animation, they do not enable direct control
of the resulting animation. Designing precise timing or feature scaling would
therefore still require iterative trial-and-error steps to converge toward a desired
animation.

33

CHAPTER 2. STATE OF THE ART

2.2.3.3 Example-based simulation

Instead of controlling the trajectory of an object, one might want to control how
it deforms when it collides with other objects. In exampled-based simulations, a
set of examples that represent the desired deformations is used to build a space
of preferred deformations from where internal forces will be deduced. This
method was first introduced by Martin et al. [Mar+11] for elastic deformations.
Jones et al. [Jon+16] propose a similar method to easily incorporate plastic
deformations in rigid bodies simulations.

2.2.3.4 Animation sampling

In multibody systems, the space-time constraints paradigm can hardly be used.
In cause, the large number of discontinuous contacts events which makes the
optimization problem particularly difficult to solve. In contrast, multibody
simulators are particularly fast, so fast that it is possible to run in parallel
a large number of simulations. In their work, [CF00] and [TJ07] leverage
this performance to sample the space of parameters of an animation and thus
finding those which satisfy the user constraints.

2.2.3.5 Animation editing

In contrast with simulation control, animation editing consists of deforming
in space and time the output of a simulator without the need to re-simulate.
Closely related to surface modeling, it has to take into account the temporal
dimension and its relation with space in order to propose new editing tools. In
these approaches, finding a natural way to deform an animation and ensuring
temporal consistency are amongst the main challenges. Very few methods have
been proposed, however it represents a much faster approach to edit animations.
Among the most interesting approaches, Pighin et al. [PCS04] propose to build
a space-time parametrization of a smoke animation using advected radial basis
functions. The parametrized data are then deformed using a trajectory-based
editing tool. Schpok et al. [SDE05] proposed to extract and parametrize
features such as vortices, uniform advection, sinks and sources to allow the
user to modify the parameters in a smoke simulation. For animations of liquid,
Raveendran et al. [Rav+14] propose a semi-automatic method to match two
animations and smoothly interpolate between them. This approach allows
a quick exploration of the parameter space such as boundary conditions or
viscosity parameter and therefore to produce a large number of new animations
without the need for re-simulation.

2.2.4 Conclusion on simulation control

All the methods mentioned above make a trade-off between realism and control.
On one hand, realism requires a high computational cost and makes methods

34

2.3. CHAPTER CONCLUSION

such as space-time constraints unattractive for interactive use. On the other
hand, giving the user full control may introduce unrealistic and unpleasant
behavior. Very few works explored the edit of an existing animation and how
to extend classical modeling techniques to animated content. We think that
this approach would allow the interactive design of physics-based animation
without the need to re-simulate. In Chapter 6, we will present a system for
the design of animations of liquid based on this idea.

2.3 Chapter conclusion
In this chapter, we proposed an introduction to continuum mechanics and
described a variety of methods for controlling simulations. Most of the time, the
practibility of these models and methods depends on the simulated phenomena
and the required computational time. Adaptivity is a general strategy to
achieve large scale simulations and resolve complex behaviors. In Chapter 3,
we propose a detailed review of these models. In Chapter 4, we extend an
adaptive model, initially proposed for nanosystems simulations, to speed-up
particle simulations in computer graphics, Then, we study how to perform
detailed topological changes with the frame-based model in Chapter 5, an
interesting approach which ensures a very small number of degrees of freedom
and therefore interactive performances. Finally, we explore a new way of editing
fluid animations in Chapter 6, where the user can manipulate sub-parts of the
animation interactively without the need to re-simulate.

35

Chapter 3

Adaptive techniques and
models for physics-based
animation

Complex real-world behaviors may exhibit multi-scale phenomena in space
and time, large deformations or topological changes. Sophisticated physical
models involving a tremendous number of degrees of freedom are required to
accurately reproduce these phenomena. This comes at a high memory and
computational price that can quickly become intractable or prevent from an
interactive usage. Adaptive models provide a general paradigm to solve these
efficiency goals.

We call a model or simulation method adaptive if it automatically adapts
the underlying mathematical representation, data structure and/or algorithm
at run time, based on the evolving state of the simulated system. The adap-
tation is designed to meet a given criteria which depends on the application.
Examples of frequently used criteria include reducing the overall computa-
tional complexity without loss of quality, improving the quality of real-time
simulation, or simulating more precisely the parts of the scene which the user
is currently interacting with.

In this chapter, we review the different families of adaptive methods and
present the way they have been applied in the different domains. In Sec-
tion 3.1, we present time adaptive techniques such as dynamic time stepping
and freezing techniques. Then, we focus on spatially adaptive techniques. Sec-
tion 3.2 discusses the most popular approach of spatial adaptivity: geometric
adaptivity(h-adaptivity where h classically refers to the size of elements in
the finite element method), which refers to varying the discretization reso-
lution via refinement and coarsening strategies. This chapter is subdivided
according to the types of adaptive spatial discretization. Section 3.3 covers

37

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

other spatial adaptivity approaches: basis refinement which adapts the number
of bases, their order (p-adaptivity where p stands for polynomial), the basis
functions themselves using enrichment, or, in subspace simulation, the defor-
mation modes of the basis; moving grids methods (r-adaptivity where r stands
for relocation) which relocate nodes without changing their connectivity; and
mixed models which selectively apply a combination of different computational
models. This organization reflects the taxonomy we propose in Figure 3.1. We
finally conclude and sketch future research avenues in adaptive simulation.

This chapter was published in Computer Graphics Forum, 2016 [Man+16].

Figure 3.1: Taxonomy of adaptive physically-based models in computer graph-
ics. Temporal adaptivity (see Section 3.1) and geometric adaptivity (see
Section 3.2) are the two most common strategies. Basis refinement (see
Section 3.3.1), moving grids (see Section 3.3.2) and mixed models (see Sec-
tion 3.3.3) are less common but proved to be very promising.

3.1 Temporal adaptivity
Animating any simulated object requires integrating its equations of motion
over time. There are many reasons why this integration procedure may need to
adapt to the circumstances of the simulation, whether for accuracy, consistency,
or stability. For instance, a system entering a highly nonlinear regime, such as
during fracture, requires smaller time steps to maintain the desired degree of
accuracy. Alternatively, adaptive time steps may be necessary to prevent the
system from entering an invalid state: for example, many collision resolution
schemes maintain the invariant that the system is never allowed to enter
an interpenetrating configuration, which can require adjusting the time step
according to the frequency of collisions. Finally, the stability of continuum-

38

3.1. TEMPORAL ADAPTIVITY

mechanical simulations is closely tied to the relationship between the time step
length, the spatial resolution, and the speed of propagation of information in
the system, so if either of the latter change (in the presence of spatial adaptivity
or fast-moving flow) the time step must be adapted as well.

Techniques for temporal adaptivity fall into two main categories. One ap-
proach focuses on time resolution, that is, how to choose an appropriate step
length for time integration. The second focuses on integration techniques them-
selves, seeking to switch between different integration schemes depending on
the local context. This section explores both of these possibilities for temporal
adaptivity.

3.1.1 Adaptive time step selection

Time step criteria First, let us focus on the simulation of continuous
media, like fluids and elastic solids, whose models are governed largely by
hyperbolic partial differential equations. Here the most prominent criterion for
time step selection is the Courant-Friedrichs-Lewy (CFL) condition [CFL28].
To understand this condition, we first note that the solution of a partial
differential equation at some point depends on a particular subset of initial
or boundary data; we call this subset of data the domain of dependence. The
CFL condition states simply that for any numerical scheme to converge to the
true solution, the domain of dependence of the numerical scheme must, in the
limit, contain the true domain of dependence of the underlying differential
equation. (Otherwise, one could perturb the initial data in the region outside
the numerical domain of dependence and change the true solution without
affecting the computed one.) The CFL condition can also serve as a stability
criterion thanks to the Lax-Richtmeyer equivalence theorem [LR56; Str04],
which states that a consistent finite difference method for a well-posed initial
value problem is convergent if and only if it is stable.

For example, for the classical wave equation ∂2
t f = c2∇2f , the domain of

dependence of any point (x, t) includes only points (x0, t0) with ‖x−x0‖ ≤ c(t−
t0), because information propagates only at the wave speed c. Consequently,
the time step ∆tmust be small enough to prevent information from propagating
outside the spatial stencil over a single time step. In particular, for the first-
order explicit finite difference scheme applied to the wave equation, where over
each time step a grid cell is only affected by adjacent grid cells (separated by
∆x), the CFL condition requires that c∆t ≤ ∆x.

In general, the CFL condition takes the form

C ≡ c∆t
∆x ≤ Cmax, (3.1)

39

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

where c is the speed of information propagation, and Cmax is a method-
dependent constant which depends on the size of the finite-difference stencils.
The dimensionless ratio C is known as the CFL number or the Courant number.
Note that implicit methods are not restricted by the CFL condition because
the solution at any point at the end of the time step depends on the values at
all the points at the beginning of the time step, so the numerical domain of
dependence is effectively infinite.

The CFL condition can be a useful heuristic even in situations where it does
not directly apply. In computer graphics, semi-Lagrangian advection [Sta99]
has been a popular scheme for solving the advection equation, as it is uncondi-
tionally stable and not restricted by the CFL condition [Bri08]. Nevertheless,
excessively large time steps can lead to undesirable artifacts such as numerical
dissipation and volume loss. Foster and Fedkiw [FF01] advocate limiting the
time step size using (3.1) with c being the maximum of the flow speed ‖u‖∞
over the domain, and Cmax = 5.

In Smoothed-Particle Hydrodynamics (SPH), each particle is affected by
other particles within its smoothing radius h, analogous to the grid separation
∆x in finite-difference methods. Consequently, time step selection criteria
based on the CFL condition can be applied. For pressure waves in compressible
SPH, we continue to have

∆t ≤ Cmax
h

c
, (3.2)

and values of Cmax between 0.25 and 0.4 have been used [Mon92; DC99]. Fast
relative motion of particles, which occurs especially during fluid-fluid or fluid-
solid collisions, can also produce artifacts due to interactions not considered
in (3.2). Therefore, one can introduce additional time step constraints based
on the instantaneous acceleration a and divergence of velocity ∇ ·v [Mon92;
DC99]:

∆t ≤ Λ
√

h

‖a‖ , (3.3)

∆t ≤ Γ
|∇ ·v| . (3.4)

Λ and Γ are dimensionless constants which Desbrun et al. [DC99] set to 0.5 and
0.005 respectively. Equation (3.3) can in fact be interpreted as a CFL-type
condition comparing the size of the spatial neighborhood, h, to a particle’s
relative displacement 1

2‖a‖∆t
2 due to acceleration over time ∆t. Finally, we

also point out that these criteria (3.2)–(3.4) may either be applied globally
by taking the minimum of all particles’ allowed time steps, or locally on a
per-particle basis (as we discuss below).

When adapting the time step based on higher-order derivatives such as
acceleration (3.3), care must be taken because such quantities can be much

40

3.1. TEMPORAL ADAPTIVITY

noisier than the system variables themselves, causing large fluctuations in ∆t.
Ihmsen et al. [Ihm+10] have observed that in incompressible SPH simulations,
these time step fluctuations can lead to spurious density shocks that destroy
the convergence of the simulation. A solution is to change ∆t gradually rather
than instantaneously: if the system violates any of the desired time step criteria,
∆t is decreased by a small amount ([Ihm+10] use 0.2%), otherwise, if it is
well within all the criteria, ∆t is increased by the same amount. This strategy
causes the time step to change smoothly towards the ideal step length. On the
other hand, it may also prevent the time step from changing quickly enough
to resolve sudden shocks, such as those from high-velocity impacts. Therefore,
Ihmsen et al. introduce an additional procedure that detects shocks if the
density error increases suddenly; if so, the simulation is rewound two time
steps and resumed with a sufficiently small ∆t.

Shock detection can be considered an example of an a posteriori time step
adaptation strategy, where undesirably large time steps are detected and re-
wound. This kind of approach is useful whenever it is costly or difficult to
estimate the right time step length in advance. Instead, we simply perform a
time step with the current estimate of ∆t, and then test whether it adequately
resolves the motion of the system. If not, we reject the step, decrease the time
step by setting ∆t← ∆t/α for some factor α > 1, and try again. When several
time steps in a row are successful, we increase the time step, ∆t← α∆t.

Bridson et al. [BFA02] use this approach for efficient collision handling in
cloth simulation, using a combination of inelastic repulsion forces and a robust
collision resolution algorithm. Inelastic repulsions are much more inexpensive
than full collision resolution, but as they only check proximity at discrete points
in time, they can easily fail to prevent interpenetrations if the cloth moves too
far in a single time step. If this happens, the time step is rejected and ∆t is
reduced; collision resolution is only triggered if after multiple failures the time
step falls to a specified minimum size. The collision resolution step incorporates
rigid impact zones [Pro97], which can be seen as a freezing technique and
is discussed in Section 3.1.2. Bargteil et al. [Bar+07] simulate plastic flow
using a finite element mesh, where excessive deformation of elements can be
problematic. They reject a time step if any edge changes significantly in length,
or a sudden acceleration takes place. Both methods discussed here use α = 2,
that is, time steps are halved or doubled as needed.

The main drawback of this a posteriori strategy is that the whole system
must be globally rolled back to its previous safe state, even if it was caused
by a localized event. In rigid bodies simulation, this challenge was addressed
by Mirtich [Mir00] to efficiently handle collisions. Inspired by the work of
Jefferson et al. [Jef85], he proposed a time warp algorithm to asynchronously
handle collision events. Here, the integration of a rigid body is interrupted
only when resolving an event that concerns it. This technique can be seen as a

41

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

local time stepping technique, and inspired works on asynchronous variational
integrators (AVIs) which we discuss later in this section.

Global time stepping The simplest way to perform adaptive time stepping
is to choose the time step that is safe for the entire simulation domain, and
perform integration for the entire system using that time step. That is to say,
given a time step criterion (or criteria) such as (3.2)–(3.4) that can be evaluated
locally, one evaluates the permissible time step ∆ti at all simulation points i,
and steps the entire system forward by a time step of length ∆t = mini ∆ti. For
methods that use implicit integration or other globally coupled schemes, such as
grid-based fluids with a global pressure solve, this is the only possible approach.
For this reason as well as for its conceptual and practical simplicity, global
time stepping is probably the most widely used form of temporal adaptivity
in practice.

It is worth pointing out here that adaptive time stepping is not a free lunch
for all time integration schemes. The Verlet, or leapfrog, scheme is second-
order accurate, and has excellent energy conservation properties thanks to
its symplectic nature, but both these features rely on the time step being
fixed. To maintain second-order accuracy with a variable time step, Bridson
et al. [BMF03] proposed a time integration scheme that combines a leapfrog
scheme for position with an implicit trapezoidal rule for velocity:

1: ṽn+1/2 = vn + ∆t
2 a(tn, xn, ṽn+1/2) . implicit

2: xn+1 = xn + ∆tṽn+1/2 . explicit
3: vn+1/2 = vn + ∆t

2 a(tn, xn, vn) . explicit
4: vn+1 = vn+1/2 + ∆t

2 a(tn+1, xn+1, vn+1) . implicit
Maintaining symplecticity is much more challenging, as naively varying the
time step can lead to instabilities and inconsistent energy behavior [Har+09].
Much more elaborate time stepping schemes are needed to recover energy
preservation, such as the asynchronous variational integrators discussed below.

Local time stepping In complex simulation scenarios, different regions of
the simulation domain may have very different time step requirements. For
example, resolving challenging collision and contact scenarios requires careful
time stepping, but only for the parts of the system that are affected by the
contact. Similarly, in simulations with adaptive spatial resolution, the CFL
condition requires finer-resolution regions to take smaller time steps. It can
become intractable to simulate the whole model in lockstep using the most
conservative time step. Instead, it is desirable to perform local time stepping,
integrating each element of the simulation at its own pace.

42

3.1. TEMPORAL ADAPTIVITY

Explicit integration schemes can readily incorporate local time stepping.
We illustrate this with a generic two-dimensional system,

q′1(t) = f1
(
t, q1(t), q2(t)

)
, (3.5)

q′2(t) = f2
(
t, q1(t), q2(t)

)
. (3.6)

If at time t, q2 requires a very small time step ∆t2, one can still integrate q1
with its own time step ∆t1, giving the following.

q1(t+ ∆t1) = q1(t) + ∆t1f1
(
t, q1(t), q2(t)

)
. (3.7)

Meanwhile, as q2 takes multiple steps to cover the same time interval, it will
require values of q1 at intermediate times t+∆t2, t+2∆t2, and so on; these can
be linearly interpolated from q1(t) and q1(t+ ∆t1). Equivalently, to simplify
bookkeeping, one can take the same small time steps ∆t2 for both q1 and q2,
but only evaluate q′1 at the first step and hold it fixed until a time ∆t1 has
been covered. This approach has the same computational advantage because
evaluation of f is the most expensive part in explicit methods.

Early work on SPH [DC96; DC99] recommended this approach for local
time stepping, using the CFL condition as the time step criterion. The same
technique was also used to simulate elastic bodies using spatially adaptive
finite element meshes [Deb+01], discussed in more detail in Section 3.2.2. For
a linear elastic material with density ρ and Lamé coefficients λ and µ, the
upper bound on the time step for an element can be approximated by

∆t ≤ h
√

ρ

λ+ 2µ (3.8)

where h is a measure of the size of the element, such as its inradius: skinnier ele-
ments or stiffer materials require smaller time steps. To improve the paralleliza-
tion of local time stepping for SPH fluids, Goswami and Batty [GB14] divide
the computational domain into blocks and choose time steps independently
per block.

Asynchronous variational integrators (AVIs) studied by Lew et al. [Lew+04]
are a family of time integration schemes that provide excellent energy conser-
vation behavior while allowing different elements of the system to use different
time steps. Unlike the local time stepping model described above, AVIs asso-
ciate a time step with each force rather than each variable. Thus each force
term applies a series of impulses to its associated nodes. The time step for a
particular term must remain constant throughout the simulation, but different
forces may have very different time steps. This approach is implemented as an
event-driven simulation loop, using a priority queue to schedule the updates
for all the forces in order. Thomaszewski et al. [TPS08] applied this approach
to cloth simulation with a finite element triangle mesh, choosing time steps

43

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

independently for each element using the CFL criterion (3.8). AVIs are known
to exhibit “resonance instabilities” that can potentially cause the energy to
increase without bound; however, these instabilities tend to be extremely weak
in solid mechanics problems [FDL07] and have not been observed to cause
difficulties in computer graphics [Har+09].

The energy conservation properties of AVIs hinge on the regular spacing of
the impulses applied by each force term, which makes collisions challenging to
incorporate: naively applying contact forces at the moment of collision breaks
the periodicity and destroys energy conservation, while applying contact forces
at regular intervals risks missing collisions. Recent work [Har+09; Ain+12] ad-
dresses this problem by replacing each contact force with a sum of stiffer and
stiffer penalty layers with smaller and smaller time steps, which together are
guaranteed to prevent interpenetration. While the number of penalty layers
is conceptually infinite, any given collision can only activate a finite number
of penalty layers, so the actual amount of computation is finite. Initial work
by Harmon et al. [Har+09] used kinetic data structures to detect all collision
events in advance. Ainsley et al. [Ain+12] instead adopt a speculative ap-
proach based on the time warp algorithm [Jef85; Mir00], analogous to the a
posteriori time step adaptation techniques discussed previously. An interval
of time is first simulated without considering any new collisions; then, collision
detection over the simulated interval is performed, and if new collisions are
found, those force terms are activated and the interval is re-simulated. Specu-
lative simulation greatly reduces the computation time spent in bookkeeping
and collision detection, and also allows for easy parallelization.

3.1.2 Adaptive integration

Adaptive choice of time integration scheme In some cases, such as
when the system involves highly stiff modes or poorly conditioned elements,
an adaptive choice of time step is no longer the most efficient strategy. The
time step requirements for explicit integration may become extremely restric-
tive. Instead, one may locally change the integration scheme to deal with the
problematic components, for example by switching to an implicit method or a
nonlinear one. By doing so adaptively, one can continue to use an inexpensive
explicit integration scheme for the remainder of the system.

In the finite element method, ill-shaped elements impose severe restrictions
on the allowed time step for explicit integration (3.8). When the object under-
goes topological changes such as cutting or fracture, it can be difficult to avoid
introducing such elements. As an alternative to local time stepping, where
ill-shaped elements would have to be simulated with extremely small time
steps, Fierz et al. [FSH11] propose an element-wise implicit-explicit (IMEX)
scheme. Here the same time step ∆t is used for the entire system, but ill-
shaped elements that would be unstable if explicitly integrated over ∆t are
instead simulated with an unconditionally stable implicit scheme. Nodes that

44

3.1. TEMPORAL ADAPTIVITY

are not adjacent to any ill-shaped element are integrated explicitly, then held
fixed as boundary conditions for implicit integration of the remaining nodes.
As long as the number of ill-shaped elements is low, this relaxes the time step
restriction faced by explicit integration, while minimizing the computational
cost and numerical dissipation associated with implicit integration.

Thin materials such as hair exhibit a high stiffness in their stretching modes,
but pose the additional challenge that their collision response is highly non-
linear due to the presence of rotation. Therefore, depending on the amount
of bending, an implicit first-order model for collisions may fail to capture the
correct response and lead to instabilities. Kaufman et al. [Kau+14] propose
an algorithm that adaptively chooses the degree of nonlinearity in each con-
tact resolution step to safely resolve the collision. Specifically, they adapt the
number of constrained Newton iterations used to solve the nonlinear contact
model, terminating when the stretch over all affected edges is sufficiently re-
duced. This allows for large simulation time steps in the face of many energetic
collisions, while efficiency is maintained because most collisions require only a
single iteration (equivalent to a linearly implicit step).

Freezing techniques Freezing techniques, also called sleeping techniques,
lie in between temporal and spatial adaptability: the degrees of freedom that
are considered unimportant in the simulation are kept constant in time for
a specified duration. This can be seen as animating them at a much larger
time scale, or as temporarily deactivating them. No memory is saved while
doing so, but computation time is reduced. These techniques are useful in
situations where the spatial domain is large and filled with many quiescent
objects. Therefore, game environments and surgical simulations are perfect
candidates for these methods. Conversely, freezing techniques may not be
useful in highly dynamic situations where most of the degrees of freedom are
active most of the time. In addition to defining good freezing criteria, the
main challenge of freezing techniques is to design a reactivation process of the
frozen degrees of freedom that ensures plausible subsequent motion.

In rigid objects simulation (see the survey of Bender et al. [Ben+12]),
important computational resources are dedicated to solving contacts between
the different objects of a scene. This process becomes unnecessarily expensive
when stacking occurs and nothing moves. In these cases, freezing techniques
prove to be useful for saving computational time without compromising the
plausibility of the simulation.

Schmidl [Sch02] uses a heuristic based on kinetic energy to determine
whether to freeze a body or not.

1
2mv2 + 1

2ω
T Iω <

p2
g

2m (3.9)

Where v and ω respectively denote the linear and angular velocity of the rigid
body of mass m and inertia tensor I, and pg = mg∆t is the momentum

45

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

that the body accumulates during a time step ∆t from gravity. If condition
(3.9) is fulfilled by the body during a user-defined number of consecutive time
steps, then it is frozen. Note that a single frozen body by itself does not save
computation time. Time is saved when multiple neighboring objects become
frozen, as their contact forces no longer need to be computed. The only way
for a frozen rigid body to be reactivated is when it receives a large impulse
during a collision. Once it is reactivated, the information is propagated to
all its direct neighbors and a given number of indirect neighbors, potentially
awakening them (see Figure 3.2a).

(a) (b)

Figure 3.2: Freezing techniques applied to rigid bodies stacking. At the stage
of contact solving, those methods can save computational time while ensuring
a plausible motion. In (a), quiescent rigid bodies are frozen (in hatched red)
in a stacking configuration. A collision event then awakes one of the rigid
bodies, and the active rigid body (in blue) propagates the information to
its neighbors. In (b), a contact graph stores stack ordering. During shock
propagation, a bottom-up traversal is performed and objects at each level are
frozen by assigning an infinite mass.

Freezing techniques have been used as a failsafe procedure for resolving col-
lisions and contact between rigid or deformable bodies. When many interacting
contacts are present, iterative processes for collision response can require an
excessively large number of iterations to converge, and early termination leaves
the system in an interpenetrating state. Freezing procedures are attractive in
this context as they can guarantee elimination of interpenetrations. However,
they also introduce loss of kinetic energy by treating contacts as fully inelastic,
and are therefore only invoked as a last resort after multiple iterations of a
physically correct solver have failed to resolve the collisions. For rigid body
contact, Guendelman et al. [GBF03] propose a shock propagation strategy
which freezes bodies progressively from the ground up. They start by building
a directed acyclic graph consisting of “levels” of objects that are resting on
objects of lower levels (cyclic dependencies are grouped into the same level).
A single bottom-up traversal of the graph resolves contacts level by level, as-

46

3.1. TEMPORAL ADAPTIVITY

signing infinite mass to lower-level objects for which contact is solved (see
Figure 3.2b). Rigid impact zones, described by Provot [Pro97] and Bridson et
al. [BFA02], are extensively used to resolve collisions in cloth. Nodes involved
in multiple interfering collisions are collected into disjoint sets called “impact
zones”, constructed by merging zones if their nodes are involved in the same
node-face or edge-edge collision. Each impact zone is made rigid by replacing
the motion of its nodes with a rigid body motion while preserving the total
linear and angular momentum. This process eliminates collisions within the
zone, but may introduce new collisions with nearby elements outside the zone.
Therefore, one must perform collision detection again and grow the impact
zones if new collisions are detected, iterating this process until no new collisions
occur.

Freezing techniques were also used for articulated rigid bodies, both for
dynamics [RGL05] and quasi-statics [RL06]: joints are activated or deactivated
based on user-defined error metrics, leading to a simplification of the whole
model and a sub-linear computational complexity.

Denoting by q̈C = (q̈1, . . . , q̈NC
)T the composite acceleration of an articu-

lated body C, where NC is the number of joints in C, the acceleration metric
value of C is defined as

A(C) =
∑
i∈C

q̈Ti Aiq̈i,

where Ai, i ∈ C, are symmetric, positive definite dJi×dJi weight matrices, and
dJi is the number of degrees of freedom of joint i in C. The weight matrices Ai

are required to depend at most on joint positions, and the simplest choice is the
identity matrix. The key to the sub-linear complexity is the demonstration that
the acceleration metric of each sub-articulated body is a quadratic function of
the forces applied to its handles (i.e. the free rigid bodies used to assemble sub-
articulated bodies in Featherstone’s methodology [RGL05]). As a result, the
acceleration metric may be computed before computing the joint accelerations
themselves. This is used during the top-down pass of Featherstone’s divide-and-
conquer algorithm to determine which joint accelerations should be computed
because they are sufficiently large [RGL05]. For example, if the acceleration
metric of the complete articulated body is small, then all joint accelerations
are small and joint velocities are constant for the current time step. A similar
metric is built for joint velocities to determine which joint positions should
remain constant, and thus which inter-body forces and inertial terms should
be updated. Once all position-dependent terms are up to date, the motion
metrics are available for the next time step, and a new set of active joints can
be determined.

It was shown that this approach could also help to speed up continuous col-
lision detection for articulated bodies [KRK08a] and haptics rendering [MR07],
as well as enable view-dependent articulated-body dynamics by combining

47

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

Figure 3.3: View-dependent dynamics of articulated bodies. Top: the algo-
rithm proposed by Kim et al. [KRK08a] automatically simplifies the dynamics
of a falling character as its distance to the viewer increases. Bottom: corre-
sponding rigidification at this time step (one color per rigid group).

motion metrics with visibility estimates [KRK08b] (see Figure 3.3). Gayle et
al. [GLM06] demonstrate how to perform contact handling with such an adap-
tive articulated-body method, which is used as the core of a physics-based
sampling algorithm for highly articulated chains [Gay+07] and cable route
planning [KGL07].

Recent work has sought to apply freezing techniques to accelerate SPH
fluid simulation. In these methods, particles are divided into two sets: a set
of active particles following a classical simulation step, and a set of inactive
particles that are skipped in the simulation. As physical quantities in SPH
are interpolated from neighbors, inactive neighbors of active particles also
need to be updated to ensure that active particles compute correct physical
quantities. Computation time is saved for inactive particles that only have
inactive neighbors. The main challenge in these methods is the definition of
the process to transform a particle from the inactive set to the active one and
vice versa. Indeed, as SPH is sensitive to particle distribution, an inadequate
transition of state can directly lead to instabilities. Additionally, a judicious
choice of criterion to decide whether a particle should be active or not is
essential.

Goswami and Pajarola [GP11] propose a simple method that evaluates the
active status of particles at each time step. Particles are marked as active if
they are close to the boundary or if their velocity exceeds a threshold. Inactive
neighbors of such particles are also added to the active set, and continue with
their last active velocity. All other particles are considered inactive. Unfortu-
nately, the resulting method does not obey Newton’s third law, resulting in
some loss of momentum. In the context of molecular simulation, Artemova
and Redon [AR12] propose a fundamentally different approach which ensures
momentum conservation. In Chapter 4, we extend their work to computer
graphics.

48

3.2. GEOMETRIC ADAPTIVITY

3.2 Geometric adaptivity

Geometric adaptivity describes various techniques that adapt the spatial resolu-
tion of a model by refining and coarsening its discretization. These techniques
are also referred in the literature as adaptive spatial refinement. However, as
they include coarsening as well, we adopted a more general term.

Geometric adaptive techniques have two major components: a refinement
criterion that determines where higher resolution is needed, and a refine-
ment/coarsening scheme that modifies the discretization to match the desired
resolution. Both physical and visual criteria have been employed in existing
work, and we discuss them in more detail below. The refinement scheme itself
essentially depends on the type of spatial discretization. In the following sub-
sections, we will deal with the three major kinds of discretization separately:
structured meshes and grids, unstructured meshes, and meshless models.

Refinement criteria The choice of refinement criteria plays a major role in
the quality of the resulting simulation. Many techniques use simple heuristics
such as the distance to boundaries, surface curvature, and the presence of
contacts. However, some authors have shown that employing criteria that are
more closely tied to the dynamics of the system can be important in many
contexts.

In elastic and plastic solids, the stress and strain in an element characterize
the amount of local deformation. Therefore, the values and gradients of these
quantities are often used to control refinement. Wu et al. [Wu+01] describe
several different error estimators of this type and discuss their relative advan-
tages, drawbacks, and performance. Going beyond estimating a scalar error,
Wicke et al. [Wic+10] define a metric tensor M that approximates the spatial
variation of strain by comparing deformation gradients of adjacent elements.
The matrix M is defined in such a way that it has large eigenvalues in direc-
tions in which the deformation changes most rapidly, and can thus be used to
control anisotropic refinement (see Figure 3.4).

If a multi-grid algorithm is used, the difference between the solution at the
current level, xj , and the one prolonged from the next coarser level, Pjxj+1,
provides a natural measure of the quality of xj+1. Otaduy et al. [Ota+07] weigh
the error by the local system matrix A to reduce possible popping in stiff
scenarios, leading to the error metric

e = ‖Aj(xj −Pjxj+1)‖, (3.10)

and perform refinement if e exceeds a predefined threshold.
Lower-dimensional bodies, like wires, strands, cloth, and thin sheets, un-

dergo not just stretching but also bending (and torsion, in the case of one-
dimensional strands). While the stretching forces within the material are much
stiffer than the bending forces, the bending deformation can often be more

49

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

Figure 3.4: Elastoplastic simulation with dynamic local remeshing [Wic+10].
By using the strain gradient as the refinement criterion, regions undergoing
severe deformation are refined locally.

visually important, and also introduces geometric nonlinearities that must be
carefully resolved. In this context, geometrical curvature and the presence of
contacts (which are likely to induce bending) are the most commonly used
refinement criteria. However, the interaction between stretching and bending
leads to additional considerations.

First, in the context of cloth simulation, Simnett et al. [SLD09] and Narain
et al. [NSO12] point out that elements under compression are likely to buckle
and should therefore also be refined, otherwise the wrinkles that would arise in
subsequent time steps will fail to be represented on the coarse mesh. By consid-
ering the trade-off between bending and stretching energy, Narain et al. esti-
mate that a sheet under compressive strain ε is likely to form wrinkles of width
proportional to

√
kb/(ksε) where kb and ks are the bending and stretching

stiffnesses respectively, providing an estimate of the extent of refinement nec-
essary. In the physics literature, Cerda and Mahadevan [CM03] have provided
a detailed semi-analytical analysis of wrinkle geometry that is valid far from
the small-deformation limit, and may be useful for future work in graphics.

Second, finer meshes allow higher-frequency modes of transverse oscillation,
leading to time step constraints and stability problems that can be fatal for
interactive applications. To ensure stability, Servin et al. [SLN08] propose a
coarsening criterion, reducing the resolution of the mesh so that only those
oscillations whose frequency is lower than the time stepping rate can be repre-
sented. For simulation of systems with stiff wires, they estimate the maximum
frequency of oscillations in a wire discretized with n nodes as

ωmax ≈ 2(n+ 1)

√
f

mL
, (3.11)

50

3.2. GEOMETRIC ADAPTIVITY

where f is the tension in the wire and m and L are its mass and length.
Requiring this frequency to be lower than 1/∆t gives an upper bound on n for
each wire.

In fracture simulation, the stress forms a singularity at the crack tip, which
must be resolved accurately with a fine resolution mesh for realistic crack
paths to be obtained. If the crack origin is known a priori, one can track
the crack path as the fracture proceeds and refine the mesh based on the
distance from the crack [BDW13]. However, if fracture is allowed to originate
anywhere, it is necessary to refine the mesh wherever stress is sufficiently high,
i.e. close to the material’s strength τ , because such regions may generate new
cracks. Koschier et al. [KLB14] refine elements whose tensile stress σ exceeds
a specified fraction of τ . Pfaff et al. [Pfa+14] choose the desired resolution of
the mesh to be proportional to tensile stress by requiring the length of each
edge e to satisfy

‖e‖ ≤ max
(
τ

2σ , 1
)
`min (3.12)

where `min is a user-specified refinement limit. This approach allows the mesh
to be coarsened again after the crack tip has passed.

It is also possible to perform view-dependent adaptivity by modulating
the refinement criteria based on visibility and distance from the camera.
Such techniques have been applied to the simulation of wires [SLN08] and
cloth [KNO14]. New issues arise in such contexts, such as preventing artifacts
when coarser regions come into the field of view and must be refined: Koh
et al. [KNO14] achieve this by smoothly increasing the resolution in advance
based on the known camera path.

Many adaptive methods for simulation of liquids have relied on the distance
to the free surface as the sole refinement criterion. However, much greater
adaptivity is possible by observing that in regions where the surface is flat and
does not exhibit detailed motion, it can also be coarsened without significantly
affecting the flow. Adams et al. [Ada+07] propose a purely geometrical criterion
based on an “extended local feature size” which measures the distance to the
surface and to the medial axis of the fluid volume. This criterion assigns coarse
resolution both far from the surface and near thick, flat surfaces. However,
it does not take the motion of the fluid into account. To detect regions with
significant flow detail, Hong et al. [HHK08] use a “deformation factor” that
locally estimates the Reynolds number,

Df = (u · ∇)u
ν∇2u , (3.13)

where u is the fluid’s velocity field and ν is its viscosity. Ando et al. [ATW13] use
a flexible sizing function that combines multiple criteria to set the desired res-
olution. Among them the depth of the liquid, the camera viewpoint, the fluid
surface curvature and the norm of the strain rate, e = ‖∇u‖F , in order to
preserve detailed motions.

51

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

3.2.1 Structured meshes and grids

Spatially adaptive simulation techniques can often benefit from symmetry or
structure, at the expense of flexibility. Techniques using hexahedral elements
or finite differences can use quadtrees or octrees to add spatial adaptivity.
Alternatively, techniques that use a volumetric tetrahedral mesh, like some
finite element methods or mass-spring systems, can easily take advantage of
structured meshes based on lattices. Special techniques can also combine grids
with “tall cells” or far-field grid structures, as discussed at the end of this
section.

The techniques described in this section are useful when one wishes to speed
up simulations by using local spatial adaptivity without completely committing
to an unstructured mesh technique. Structured meshes often allow more code
to be re-used when converting from a regular grid to an adaptive one, and
they are often more cache-coherent than fully unstructured meshes. However,
structured meshes do not have as much flexibility as unstructured ones.

Quadtrees and Octrees The spatially adaptive schemes of Hutchinson
et al. [HPH96] and Villard and Borouchaki [VB05] use quadtrees to directly
connect masses and springs, introducing T-junctions in the process. Ganovelli
et al. [GCS99] propose an octree-based multi-resolution method for determining
connectivity in a mass-spring system. Debunne et al. [Deb+99] simulate elastic
models using control nodes based on approximate finite differences operators,
and they use an octree-based refinement to increase detail based on a Laplacian
deformation metric. As discussed in several of the aforementioned works, the
main difficulty with using mass-spring models instead of approaches based
on continuum mechanics is the notion of convergence. Convergence is well-
studied in the finite element method, and it is trivial to show that increasing
spatial resolution will lead to a more accurate solution. Mass-spring models
can also converge under refinement if spring stiffness parameters are chosen
appropriately, but these stiffness values are not as straightforward to derive
compared to the stiffness matrix in a finite element method.

The works of Dick et al. [DGW11] and Seiler et al. [Sei+11] use an octree
to define a set of hexahedral finite elements in an elasticity simulation, which
is specifically used for simulating cuts in a deformable body. Dick et al. also
leverage the hierarchy provided by the octree in a geometric multi-grid method
for solving the elastodynamics. The work was subsequently extended to in-
teractively animate high resolution boundary surfaces [WDW11], to improve
collision handling [WDW13], and to simulate at haptic rates [WWD14]. For
more details on methods for cutting deformable bodies, please see the state of
the art report by Wu et al. [WWD15].

Researchers have also developed octree-based discretizations of the Navier-
Stokes equations, which lead to efficient animations of smoke and liquid [SY04;
LGF04; LFO05]. These approaches also inspired spatially adaptive works that

52

3.2. GEOMETRIC ADAPTIVITY

handle discontinuities across free surfaces [HK05], resolve extremely thin sur-
faces in bubbles and foam without losing volume [Kim+07], and animate multi-
phase fluids using regional level-sets [Kim10]. More recent work [FWD14] com-
bines an adaptive hexahedral finite element method based on octrees with
a multi-grid Poisson solver to animate highly detailed liquids. Bargteil et
al. [Bar+06] use octree-based spatial adaptivity to track detailed deforming
liquid surfaces using semi-Lagrangian contouring.

It is worth noting that quadtree and octree grid refinement can have sub-
tle side-effects when discretizing partial differential equations. In particular,
the regular staggered-grid discretization of the Poisson equation (which is
used for enforcing incompressibility in fluid flows [Bri08]) happens to satisfy
Stokes’ theorem and exactly integrates fluid fluxes — it doubles as a “finite
volume method” and can be alternatively derived using discrete exterior calcu-
lus [Cra+13]. When one replaces the regular grid with an octree, however, it
is unsafe to assume that such useful properties will still hold in the presence of
T-junctions. The previously-mentioned octree-based fluid simulation methods
counteracted this particular problem by carefully designing a new divergence
operator, and some researchers observed the emergence of spurious rotational
flows when refining an octree near liquid surfaces.

These subtle problems help explain the large number of adaptive BCC-
mesh-based liquid solvers discussed below, which do not exhibit T-junctions.

Adaptive BCC lattices A standard way to efficiently generate a tetra-
hedral mesh with spatial adaptivity is to combine a spatial hierarchy with
predefined lattice-based stencils. One particularly popular strategy combines
an octree with the body-centered cubic (BCC) lattice tetrahedralization. To
give some context, a regular BCC lattice is defined by first inserting vertices
at the corner of a regular cubic grid, inserting additional vertices at the center
of every grid cell, and then creating a Delaunay tetrahedralization of these
vertices. A spatially adaptive tetrahedral mesh is created similarly by first
creating a weakly-balanced octree (instead of a regular grid), inserting vertices
at the corners and centers of the octree cells, and then tetrahedralizing the
set of vertices. Please see the work of Molino et al. [Mol+03] and Labelle and
Shewchuk [LS07] for some examples of how to create such an octree-based
adaptive BCC mesh. This particular meshing strategy has several benefits:
the average tetrahedral element has a nearly optimal shape, the quality of
the worst element is bounded and completely acceptable in practice, and the
computation time required to build the mesh is orders of magnitude faster
than unstructured meshes, because it makes use of trees and precomputed
stencils.

Employing these ideas, Wojtan and Turk [WT08] use an adaptive non-
conforming BCC tetrahedralization to simulate highly plastic materials while
efficiently remeshing whenever element quality degrades (See Figure 3.5). Batty

53

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

Figure 3.5: A high resolution surface mesh (blue) embedded into a deforming
low resolution spatially-adaptive tetrahedral mesh based on a BCC lattice
(gold). The bottom row shows the cross section of the tetrahedral mesh,
illustrating the BCC structure. Image from Wojtan and Turk [WT08].

et al. [BXH10] use a similar meshing strategy to simulate inviscid fluids using
a finite-volume discretization. The method also handles embedded solid and
free-surface boundary conditions, even though the tetrahedral mesh does not
conform to the domain boundaries. Batty and Houston [BH11] extend this
work by adding an implicit viscosity model. As explained later in the Sec-
tion 3.2.3, Ando et al. [ATW13] also use an adaptive BCC mesh for simulating
liquids. Sifakis et al. [Sif+07] introduce the concept of “hard bindings” to
create an adaptive BCC lattice with T-junctions for the purposes of elastic
solid simulation.

Adaptively-refined BCC lattice is exceptionally useful in simulations re-
quiring tetrahedral meshes, because the structured lattice makes the expensive
operations of remeshing and re-sampling simulation data relatively insignifi-
cant. Although the structure of the mesh removes some control over the shapes
and nature of the spatial adaptivity, the structure also eliminates typical issues,
such as degenerate tetrahedra.

Tall cell grids Simulations of deep water also benefit from adaptive “tall
cell” techniques [Irv+06; CM11], which use regular grid cells near the water
surface (where detail and accuracy is important), and tall rectangular fluid cells
farther below the surface. This strategy effectively assumes that the behavior
in regions located deep underwater is simpler, in that the simulation variables

54

3.2. GEOMETRIC ADAPTIVITY

cannot change arbitrarily with depth. While we specifically discuss tall cell
grids here because of their use of geometric adaptivity, we will also address some
related height-field methods in Section 3.3.3. These methods seem to work
very well when the assumptions of the methods hold. However, there is reason
to believe that artifacts (like spurious reflecting waves or dissipating vortices)
can occur when the tall cells fail to properly resolve important dynamics.

Far-field grid structures Zhu et al. [Zhu+13] propose a method for fluid
simulation that maintains an efficient Cartesian grid structure but allows non-
uniform spacing between the nodes. This approach makes it easy to concentrate
smaller cells where the domain is more interesting and retain larger cells farther
away from areas of interest. In addition to concentrating detail in important
regions, this method also approximates non-reflecting boundary conditions by
greatly extending the boundaries of the simulation domain.

3.2.2 Unstructured meshes

Adaptivity on unstructured meshes is closely related to the problem of remesh-
ing. Considered purely as a geometrical problem, remeshing has been studied
extensively in computational geometry [CDS12] and in a modeling context
in computer graphics [All+08]. Indeed, the techniques adopted for adaptive
simulation often build on the framework of geometrical remeshing methods,
and extend them to a simulation context. A number of challenges arise when
performing remeshing during simulation, though. First, the mesh elements
must remain well-conditioned to avoid degrading the stability of the simula-
tion. Second, modifying the discretization on the fly risks introducing errors
in transferring energy and momentum to the new mesh, such as numerical
diffusion due to re-sampling, and discontinuous “popping” artifacts in thin
strands or sheets. Third, removing degrees of freedom must be done with care,
as a mesh with fewer DOFs cannot represent the previous system state ex-
actly. Depending on the characteristics of the simulated material—whether it
is elastic, plastic, or fluid; whether volumetric or lower-dimensional—different
remeshing methods are found to be appropriate.

Hierarchical schemes The simplest remeshing strategy is to use a fixed
hierarchical scheme for refinement, which provides guaranteed bounds on ele-
ment quality. Two such schemes are illustrated in Figure 3.6a, 3.6b. In cloth
simulation, triangle subdivision schemes such as 1-to-4 splits,

√
3 refinement,

and edge bisection have been employed [LV05; SLD09; BD12]. A similar
scheme for subdivision of tetrahedra was used by Koschier et al. [KLB14] for
volumetric fracture. Wu et al. [Wu+01] build on the concept of progressive
meshes [Hop96] to precompute FEM parameters, allowing adaptive simulation
of deformable bodies at interactive rates.

55

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

(a) (b) (c) (d)

Figure 3.6: Overview of refinement schemes for unstructured meshes. In
(a) and (b), the right half of a mesh is refined using (a)

√
3 refinement and

(b) hierarchical edge bisection, with inserted nodes highlighted in red. In
(c), we illustrate two levels of non-nested meshes. In (d), the three primitive
operations of local remeshing are applied to the middle edge: in reading order,
we show the original mesh, after an edge split, after an edge flip, and after one
of two possible edge collapses.

However, subdivision schemes still degrade element quality by a moder-
ate extent compared to an optimized mesh. When this is undesirable, an
alternative is to use a hierarchy of “non-nested meshes” at different resolu-
tions [Deb+00; Deb+01]; see Figure 3.6c. Each level of the hierarchy is a
complete mesh that does not necessarily share any nodes with meshes at other
levels, and can be independently optimized a priori. At run time, regions at
different levels of detail use subsets of different meshes. Coupling is achieved
by allowing the regions to overlap slightly; nodes in the overlap region in each
mesh are treated as inactive “ghost” nodes that are embedded in the containing
element of the other mesh. The work of Otaduy et al. [Ota+07] seamlessly
integrates such adaptive non-nested meshes with a multi-grid algorithm and
an adaptivity-aware collision detection technique.

Hair simulation can benefit from adaptivity, as the contact interactions
between hair strands lead to the formation of emergent clusters. Bertails et
al. [Ber+03] introduce a hierarchical structure called an adaptive wisp tree
(AWT), which represents hair clusters that can progressively split into smaller
clusters from the base to the tip. Refinement is performed by splitting a node
if its size and acceleration are large, while coarsening is performed by merging
sibling nodes if they have similar positions and velocities.

Nearly regular meshes Some techniques for liquid simulation use a struc-
tured mesh in the interior of the volume, but allow irregularities at boundaries
to better capture the dynamics of the free surface. These techniques benefit
from many of the advantages of structured meshes discussed in Section 3.2.1,
while still retaining much of the flexibility of unstructured meshes, such as the
ability to accurately match boundary conditions.

In such methods, one maintains a high-resolution representation of the
surface as a triangle mesh that is updated at each time step. The surface

56

3.2. GEOMETRIC ADAPTIVITY

is superimposed on a regular mesh structure such as an octree or a uniform
grid, and elements near the surface are modified, or new elements inserted, to
better conform to the surface. In particular, Chentanez et al. [Che+07] use the
isosurface stuffing algorithm [LS07] that generates an adaptive BCC lattice
whose surface tetrahedra are warped and possibly subdivided to conform to
the surface geometry. Using an octree to construct the lattice allows for coarser
resolution away from the free surface. Brochu et al. [BBB10] use a uniform
background lattice and introduce additional pressure samples along both sides
of the free surface to ensure that all surface features are resolved. The pressure
projection is then performed on a mesh consisting of the Voronoi cells of these
sample points.

Local remeshing In some contexts, it is desirable to allow the connectivity
structure of the mesh to be modified freely during the course of the simu-
lation. Such a requirement arises when anisotropic elements are needed to
resolve strongly directional features, or when the material exhibits both elastic
properties and unbounded deformation, such as in plastic flow.

While it is possible to perform global remeshing—that is, simply creating
a new simulation mesh from scratch whenever needed [Kli+06; Bar+07]—this
approach can lead to undesirable diffusion of stored physical quantities such
as plasticity information. An increasingly popular alternative is to remesh
locally using a set of local operations that refine, coarsen, and reshape existing
elements. In local remeshing techniques, any elements in the mesh that do not
satisfy the desired size and shape criteria are improved by careful application
of these operations. This process is repeated until all mesh elements are
satisfactory.

When performing remeshing, it is important to ensure that the mesh re-
mains well-conditioned for simulation, through the use of various element
quality measures [She02]. In 2D, the Delaunay triangulation optimizes several
important notions of mesh quality, including the minimum angle and the max-
imum circumradius of any triangle, but the Delaunay tetrahedralization in
3D provides few such guarantees, and more sophisticated mesh improvement
strategies may be required [Wic+10]. If anisotropic remeshing is desired, the
remeshing criterion is often expressed through a spatially varying metric tensor
M, with the goal being that each edge e should have eTMe ≈ 1. Equivalently,
we desire ‖M1/2e‖ ≈ 1; that is, we want edges to be of unit length and el-
ements to be equilateral in the transformed space of M1/2. This viewpoint
allows element quality metrics and Delaunay properties defined for isotropic
meshes to be carried over to the anisotropic setting.

For manifold triangle meshes, high-quality remeshing can be accomplished
using only the three simple operations of edge split, edge collapse, and edge
flip (see Figure 3.6d). Narain et al. [NSO12] use these operations in cloth
simulation, generating an adaptive anisotropic mesh that resolves detailed

57

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

Figure 3.7: The anisotropic remeshing algorithm of Narain et al. [NSO12] al-
lows detailed wrinkles in cloth to be resolved accurately with fine elements
(red), while much coarser elements (blue/green) are used in flat regions. Long,
narrow folds are best represented using anisotropic elements (yellow) aligned
with the curvature direction.

wrinkles and folds (see Figure 3.7). First, all edges that are unacceptably
long according to the refinement criterion are split, then edge collapses are
attempted as long as they do not create new unacceptable edges. During both
steps, edge flips are performed to maintain an approximately Delaunay mesh
relative to the anisotropic metric.

Local remeshing of tetrahedral meshes is significantly more involved, re-
quiring several different local operations and a complex schedule for the order
in which to apply them [KS07]. This technique was first applied to simula-
tion by Wicke et al. [Wic+10], who used it to minimize artificial diffusion in
elastoplastic flow. Subsequent work has applied such remeshing techniques to
simulation of incompressible liquids [MB12; Mis+12; Cla+13].

Misztal et al. [MB12; Mis+12] build a mesh over the entire simulation
domain, with some elements belonging to the fluid and the rest to the exterior,
while Clausen et al. [Cla+13] mesh only the fluid volume. The former approach
allows topological changes like collisions to be handled automatically without
special treatment, although at the cost of maintaining a mesh over a potentially
much larger domain. Clausen et al. also describe techniques for guaranteeing
incompressibility and momentum conservation that are applicable to both
approaches. Two key advantages offered by these methods are that (i) the
advection step causes no numerical diffusion, because physical quantities move
with the mesh nodes, and that (ii) surface tension can be modeled accurately
thanks to an explicit surface representation tied directly to the simulation
mesh.

58

3.2. GEOMETRIC ADAPTIVITY

Apart from simply adding or removing vertices, surface tracking algorithms
in fluid dynamics may also move vertices along the surface in order to optimize
mesh shapes. A process called “null-space smoothing”, which slides vertices
within the tangent space of a meshed surface, is used in several works [Jia07;
BB09; BBB10; Wic+10; Cla+13]. This strategy improves the quality of
simulation elements without changing the shape of the tracked surface.

Additional challenges and techniques When refinement is performed,
the position of the newly inserted node has to be chosen carefully. Simply
placing it at the midpoint of the original element can cause physical quantities
such as bending to change discontinuously, injecting artificial energy into the
system and leading to instabilities. Instead, it is better to adjust the mesh
locally to bring it into an energy-minimizing configuration. Spillmann and
Teschner [ST08] consider the positions of the new node xi and its neighbors
as variables and perform an optimization to minimize the total energy,

U(x1, . . . ,xn)−
n∑
j=1

fTj xj , (3.14)

where U is the internal energy due to elastic forces, and fj is the external force
acting on node j. A similar approach has been used for simulating the behavior
of stiff two-dimensional sheets such as paper and metal [NPO13; Pfa+14], but
with fj replaced with an acceleration-corrected term fj −mjaj to preserve the
instantaneous acceleration of each node.
Liquids with surface tension may freely transition between volumes, thin films,
filaments, and droplets; representing these transitions is a challenge for most
mesh-based techniques. Zhu et al. [Zhu+14] address this problem using non-
manifold meshes of mixed dimensionality, composed of tetrahedra, triangles,
segments, and points. Beyond the traditional remeshing operations that work
within a single dimensionality, they also provide operations for dimensionality
transitions via element collapse (e.g. transforming a thin triangle to a segment)
and merging (e.g. generating a tetrahedron to connect two adjacent triangles
with small dihedral angle).

Finally, we point out the recent “power particles” technique of de Goes
et al. [Goe+15], which builds an unstructured mesh at each time step using
a Voronoi-style power diagram. This can be viewed as a global remeshing
approach like the ones mentioned above [Kli+06; Bar+07], but this method
stores physical quantities on Lagrangian particles without maintaining an
explicit connectivity, and thus avoids numerical diffusion due to re-sampling.
While this work is not specifically an adaptive strategy, it is a form of spatial
discretization that makes adaptivity very easy to implement, and could be a
fruitful basis for future work in adaptive simulation.

59

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

(a) (b) (c)

Figure 3.8: Overview of adaptive meshless techniques. (a) Dynamic local
re-sampling applies splitting and coalescing operators to degrees of freedom in
order to locally refine and coarsen regions of interests (b) Multi-scale methods
couple several simulations with different resolutions. Coarser simulations are
used as boundary conditions for the finer resolutions. Feedbacks from the finer
resolutions are used to avoid divergences between two different resolutions.
(c) Hierarchical refinement dynamically activates or deactivates levels of a
precomputed hierarchy between degrees of freedom.

3.2.3 Meshless models

In the last two decades, numerous meshless models have been extended to
perform adaptive physically-based animation. They include Smoothed-Particle
Hydrodynamics (SPH) (see the survey of Ihmsen et al. [Ihm+14b]), fluid-
implicit particle (FLIP) (see the seminal work of Zhu and Bridson [ZB05]),
moving least squares (MLS) (see Muller et al. [Mül+04]) and frame-based
models (see Gilles et al. [Gil+11]). These models were used to describe a wide
range of phenomena, from fluids (SPH, FLIP) to solids (MLS, frame-based).

Due to the absence of fixed connectivity, meshless models are among the
most flexible models for spatial adaptivity. This flexibility, combined with
the variety of models, leads to an impressive number of re-sampling strategies,
developed to resolve details near splashes, large deformations, viscoplastic flows
and fractures. We classify these strategies into three categories: (1) dynamic
local re-sampling, (2) multi-scale methods, and (3) hierarchical refinement (see
Figure 3.8).

These different strategies make meshless models particularly useful for
material that undergo large irreversible deformations such as the one cited
above. However, it is important to keep in mind that the flexibility of meshless
models come with expensive nearest-neighbor search algorithms to determine
the connectivity between material samples at run time.

We inform the reader that complementary information about SPH adap-
tive techniques can be found in the state-of-the-art report by Ihmsen et
al. [Ihm+14b].

Dynamic local re-sampling The idea is to dynamically subdivide or merge
particles to fit a desired resolution (see Figure 3.8a). The success of this

60

3.2. GEOMETRIC ADAPTIVITY

strategy mainly relies on the re-sampling scheme’s ability to ensure stability, to
accurately represent boundaries, and to prevent popping artifacts. Depending
on the underlying model (SPH, FLIP, MLS) and its sensitivity to intense
re-sampling, different strategies have been proposed.

As a full particle-based method, the SPH model is a perfect candidate to
dynamic re-sampling. Yet, its sensitivity to particle distribution makes re-
sampling strategies challenging. First, the interaction between particles with
different sizes increases the error in the pressure term, leading to instabilities.
Therefore smooth grading of resolution is required to minimize this error.
Second, the change of positions during re-sampling can create a sudden change
in density which will result in violent pressure forces, which again lead to
instabilities (see Orthmann and Kolb [OK12]). Several methods that can be
combined were proposed to avoid these local change in density. First, instead of
computing the density based on positions, one can use the continuity equation
as done by Desbrun and Cani [DC99]. In order to avoid integration error to be
accumulated along the simulation, the density still needs to be re-computed
based on positions at a user-defined interval. Then, one can perform position
optimization to minimize errors during re-sampling [Ada+07] and use quantity
blending over time to smooth out inevitable sampling error [OK12]. Also, it
is important to keep in mind that another challenge is to efficiently retain the
parallel nature of SPH in the adaptive scheme. Zhang et al. [ZSP08] and Yan
et al. [Yan+09] propose two different methods to make splitting and merging
operators parallel.

More recently, dynamic re-sampling has been applied to FLIP. As FLIP
is a combination of grid and particles, two levels of adaptivity are possible:
one on the grid resolution, and the other on the particle sampling. Also,
only advection operations are performed on the particles, which results in a
less position-sensitive simulation and allows much more flexibility than SPH.
More precisely, FLIP does not apply density-based forces to the particles.
Consequently, sudden density changes due to particle splitting or merging do
not have the same catastrophic consequences as in SPH. However, damping
is introduced once particles are merged. This can be taken into account by
changing blending parameters of the FLIP simulator as suggested by Ando
et al. [ATT12]. Early works on adaptive FLIP perform adaptivity only on
particles based on a deformability criterion and the distance to surface [HHK08;
ATT12]. Ando et al. use the flexibility of FLIP regarding the particles’
positions in order to preserve fluid sheets by creating additional particles.
In both methods, the largest particle size is bounded by the cell size of the
underlying grid, which precludes aggressive adaptive sampling and the use of
a fully adaptive FLIP simulator. Ando et al. [ATW13] combine an adaptive

61

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

Figure 3.9: Ando et al. [ATW13] simulate liquid by combining adaptively-
sized FLIP particles (bottom, front) with an adaptive tetrahedral mesh for the
pressure solve (top, back).

BCC mesh (see Section 3.2.1) with adaptive particle sampling to handle highly
different resolutions. (see Figure 3.9).

When simulating solids, local re-sampling is essential in describing phenom-
ena such as large deformations and fracture. First, like mesh-based methods,
large deformations create poorly sampled regions leading to ill-conditioned
deformation gradients and instabilities. Second, as explained in Section 3.2, a
challenge in fracture simulation is to reach a sufficiently fine discretization near
the tip of the crack in order to obtain a realistic crack path. In these cases,
local re-sampling can greatly improve accuracy and stability while retaining
efficiency. However, there are two main challenges that require special care.

The first one consists of accurately describing material discontinuities. Most
of the time, shape functions are spherical and they must be modified so that
sharp boundaries can be represented. In their work on large viscoplastic
deformation and fracture, Pauly et al. [Pau+05] model discontinuities using
extended shape functions with transparency criteria, and locally modify a
sparse neighborhood graph to update connectivity. Another strategy was
proposed by Steinemann et al. [SOG09] to address the high cost of shape
functions update. It consists of using a visibility graph to efficiently handle
connectivity and approximate material distances used in computing shape
functions.

The second one comes from rendering artifacts that can occur at the surface
due to splitting. In this context, Jones et al. [Jon+14] propose a strategy to
re-sample elastoplastic simulation while alleviating popping artifacts. They
base their method on the evaluation of each particle neighbor’s density. This
evaluation is performed using a weighted covariance matrix computed in rest

62

3.2. GEOMETRIC ADAPTIVITY

space for each particle i, where uij denotes the vector between particle i and
particle j, its neighbor.

Bi =
∑
j

uijuTij
‖uij‖4

(3.15)

If the maximum eigenvalue of Bi is too small, then there are too few parti-
cles in the neighborhood and the particle is split in two. New particles are
positioned along each side of the eigenvector with the minimum eigenvalue.
In order to prevent from rendering artifacts, splittings which are not tangent
to the surface are rejected, and particles near the surface are split along the
middle eigenvector whose direction is tangent to the surface. Conversely, if
the minimum eigenvalue of Bi is too large, then there are too many particles
in the neighborhood and the particle is merged with its closest neighbor. The
new particle is positioned halfway between the two merged particles.

Multi-scale methods In multi-scale methods, several simulations with dif-
ferent resolutions are coupled in a hierarchical way (see Figure 3.8b). At the
coarsest simulation level L0, the whole domain is discretized. Then, each finer
simulation level Lr discretizes a subset of Lr−1 with a finer scale. This finer
subset is defined to match regions of interests that can be physically or visually
motivated. Transitions between two scales are bilateral: the coarsest simula-
tion level Lr is used to build boundary conditions for the finer simulation level
Lr+1 and feedbacks from a finer simulation level Lr+1 to a coarser simulation
level Lr are applied, in order to prevent dynamics of two different levels from
diverging. Solenthaler and Gross [SG11] and Horvath and Solenthaler [HS13]
apply this idea to SPH fluid simulation. Compared to merging and splitting
particles, the main advantage is that interactions between different resolutions
are not direct anymore. Thus, stability can be more easily ensured and large
differences in resolution can be handled. In Solenthaler and Gross’s approach,
a two-scale simulation is performed. High-resolution regions are defined based
on the distance to the surface and the view frustum. In these regions, low-
resolution particles emit finer particles according to a cubic pattern which
ensures a uniform space sampling. Relaxation steps are performed when par-
ticles enter the high-resolution region in order to avoid large pressure forces.
Horvath and Solenthaler extend the two-scale simulation to multi-scale simu-
lation, and avoid previous artifacts such as mass loss due to particle removal
and instabilities due to oversampling near boundaries.

Hierarchical refinement Dynamic re-sampling techniques were also used
in frame-based methods to simulate elastic deformations, see [Gil+11] for a full
description of the method. Tournier et al. [Tou+14] use a hierarchical approach
to achieve simplifications during deformation without popping artifacts (see
Figure 3.8c). The material is deformed using physically-based control frames
organized in a generalized hierarchy. The model can be simplified by attaching

63

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

frames to their parents at any time in their current relative positions. Acti-
vation and deactivation of nodes is performed based on relative velocity and
user-specified metrics, while integration points are updated according to the
hierarchy. These hierarchical techniques take advantage of their structure to
improve efficiency, but may lack of flexibility, especially regarding topological
changes.

3.3 Miscellaneous techniques for spatial adaptivity

By far the most popular approach to spatial adaptivity in computer graphics is
to add more computational elements where more accuracy or detail is desired,
as surveyed in Section 3.2. This type of spatial adaptivity is often called
h-refinement, because the length of an edge in a mesh is typically indicated
by the letter h. In addition to this tried-and-true strategy, there are other
fundamentally different approaches for achieving spatial adaptivity. In the
next sections, we will discuss strategies that refine the basis within a single
element (a superset of p-refinement, which refers specifically to the order of
a polynomial basis) and during a subspace simulation, strategies that use
multiple grids that move and overlap to track locations where more detail is
desired, and strategies that mix different reference frames in order to use the
computational degrees of freedom optimally.

3.3.1 Basis refinement

If we wish to achieve spatial adaptivity without explicitly remeshing (perhaps
because it is difficult to control element quality when remeshing, or because
a particular application requires that we preserve the original mesh), then we
can perform basis refinement instead. The concept of basis refinement can
be a difficult one to grasp for newcomers to the field. One of the best ways
to understand basis refinement is in the context of finite element methods
(FEM). In generic terms, FEM attempts to approximate a function (typically
the solution to a partial differential equation) with a very limited, very specific
subset of all possible functions. Most methods in computer graphics use linear
interpolation within each element, which essentially restricts the solution to
a piecewise linear function. For the purposes of this discussion, we would
say that the elements are using linear basis functions, and that the overall
solution is expressed in a piecewise-linear basis. However, we can actually
represent the solution more accurately (in the sense that the solution converges
more quickly under refinement) by using more elaborate bases, like piecewise
quadratic functions instead of piecewise linear ones.

This section discusses four types of basis refinement: hierarchical basis re-
finement, polynomial basis refinement, basis enrichment, and adaptive reduced
basis functions. The first three topics discuss adaptivity at the level of basis

64

3.3. MISCELLANEOUS TECHNIQUES FOR SPATIAL ADAPTIVITY

functions, whereas the fourth is about the adaptive creation of reduced basis
in reduced model simulations.

Hierarchical basis refinement In computer graphics, hierarchical basis
refinement has mainly been applied to finite element simulations (FEM) of
solids and shells [Cap+02; GKS02]. The idea is to refine computational basis
functions instead of elements. From a theoretical point of view, there are
no differences between hierarchical basis refinement and hierarchical element
refinement. Both adaptively add more degrees of freedom with increasingly
local support in order to improve accuracy where needed. Both use hierarchi-
cal schemes in order to efficiently sample the simulation domain. The main
differences are practical. By refining basis functions instead of elements, com-
patibility between regions with different resolutions are implicitly handled.
This makes adaptivity much easier and general.

For instance, hierarchical basis refinement allows a simple handling of T-
junctions. In FEM, each element’s node carries a basis and builds a local
stiffness matrix from its node’s stiffness which are then assemble into a global
stiffness matrix. During this process, only independent degrees of freedom
should add their contribution to the global matrix. However, when using
hierarchical element refinement, non-independent degrees of freedom are added
during the subdivision of the simulation mesh. They are called T-junctions
or T-nodes (see Figure 3.10) and require specific handling. Suddenly, a simple
subdivision scheme becomes dependent on the dimensionality, the element
type and the basis order, thus requiring important implementation work. In
contrast, hierarchical basis refinement handles T-nodes at the basis level by
making sure that no bases are redundant. The hierarchical structure makes
this process simple and thus offers a more general framework for adaptivity
which can handle arbitrary resolution differences.

(a) (b)

Figure 3.10: Refinement by element subdivision is attractive by its simplicity
for 2D and 3D meshes, however it introduces T-junctions (in red) at interface
between resolutions with different sizes. Bookkeeping or extra-remeshing oper-
ations are required to take care of these non-independent degrees of freedom.

Capell et al. [Cap+02] embed a high-resolution mesh in a hexahedral com-
plex and precompute a hierarchy of bases up to a given level of refinement.

65

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

During the simulation, depending on the amount of deformation, each level
of the hierarchy will refine or coarsen, thus updating the current set of active
bases. Basically, it is the same idea of [Deb+01] but from a basis point of
view.

The Conforming Hierarchical Adaptive Refinement Methods (CHARMS)
framework of Grinspun et al. [GKS02] generalizes the idea of spatially refining
the bases instead of the elements. They provide an in-depth explanation of the
concept and describe numerous results of basis refinement applied to shells,
solids and electrocardiography simulations. In fact, it is quite surprising that
this method was not more studied or extended in the last decade. A possible
explanation is the fact that, in the last few years, adaptivity proved to be
essential for large and complex deformations such as visco-elastic, visco-plastic
flows. In those cases, hierarchical refinement is not sufficient anymore to ensure
well-conditioning of the system matrices.

Polynomial basis refinement Polynomial basis refinement methods, also
called p-adaptivity, increase or decrease the order of the basis functions. For
a given spatial resolution, this allows the improvement of the quality of the
deformation without remeshing. In computer graphics, using high order ap-
proximation to resolve fine details is not new. However mixing different orders
of approximation to adaptively resolve details was only recently applied in the
context of fluid simulation and elastic deformations.

For fluid simulation, the smoothness of velocity and pressure makes p-
adaptivity potentially much more efficient than geometric adaptivity, because
the error per degree of freedom decreases exponentially with the approximation
order but only geometrically with the spatial resolution. In this favorable
context, Edwards and Bridson [EB12; EB14] use polynomial basis refinement
in a Discontinuous Galerkin FEM framework in order to simulate detailed
water with coarse grids. They use low-order bases deep inside the liquid and
increase the basis order closer to the liquid surface, where more visual detail
is desired (see Figure 3.11a). By using basis refinement instead of element
refinement, they can keep the simple structure of a low resolution Cartesian
grid while pushing back the limit on the scale of details in one cell. In terms
of cost, their method is approximately as expensive as a classical high spatial
resolution simulation but it provides much more details such as extremely thin
sheets.

Bargteil and Cohen [BC14] animate deformable bodies by combining lin-
ear and quadratic Bézier elements. The main advantage of their method is
the ability to locally increase degrees of freedom and to simulate nonlinear
geometry without remeshing (see Figure 3.11b). To decide whether an element
should be linear or quadratic, they compare the linear and quadratic predicted
positions of the midpoint of each edge of the element. If the difference be-
tween the two positions is larger than a threshold then the edge becomes

66

3.3. MISCELLANEOUS TECHNIQUES FOR SPATIAL ADAPTIVITY

(a) (b)

Figure 3.11: Illustrations of p-adaptive techniques for (a) fluids and (b)
deformable solids. In (a) Each fluid cell uses a different approximation space
depending on its distance to surface (blue line). Surface cells (in red) use
fourth order polynomial to precisely approximate pressure. A smooth grading
of the approximation is performed inside the fluid (lighter cells) that allows one
to save computational time. In (b) the canonical tetrahedron with quadratic
control points and next to it the quadratic deformation induced by the deformed
control mesh. Such a deformation would require many linear elements.

quadratic. If the difference is less than another threshold then it becomes
linear. Thus, some elements can have linear and quadratic edges, usually in
transition regions. Bargteil and Cohen observe that, as the number of degrees
of freedom increases, visual differences between linear and quadratic elements
become difficult to discern. Moreover, the additional cost remains important
and local deformations on the surface of a quadratic element due to collisions
still cannot be resolved without element refinement. Therefore, their method
is particularly efficient on low-resolution models, where it provides smoother
geometry and better dynamics quality.

In both cases, the differences of resolution between two regions that can be
achieved only using p-adaptivity are limited. An important avenue for research
would be to combine those methods with geometric adaptive techniques. Such
methods have been well studied in engineering fields and are called hp-adaptive
methods.

Basis enrichment Another way to add spatial detail to a physical model
without remeshing is by using “basis enrichment.” The main idea behind ba-
sis enrichment is to adaptively add carefully-chosen basis functions that are
specifically designed for the phenomena being modeled. (This is in contrast
to p-refinement, which is restricted to polynomial functions, regardless of the
phenomena being simulated.) For an example of basis refinement, consider an
object is being fractured; some material that used to be connected together
will have to be split in two. A simple linear basis function could be split into
two functions that are linear on one side of the fracture and zero on the other,
as illustrated in Figure 3.12.

67

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

Figure 3.12: A one-dimensional element with linear basis functions can simu-
late a fracture by enriching its basis. Here, the new basis functions drop off to
zero on the other side of the fracture site indicated by the dashed line, directly
encoding the severed connection.

This type of basis replacement effectively avoids remeshing by inserting
a fracture directly into the basis itself. Note that in this case, we opted to
enrich the basis with these particular “step” functions which drop to zero after
a certain point, instead of trying to fit some polynomial that might overshoot
or otherwise imperfectly capture the desired physics. Such basis enrichment
techniques have been termed the “general finite element method” (GFEM) or
“extended finite element method” (XFEM) [BGV09].

Adaptive basis enrichment methods have been recently applied in many
computer graphics contexts. The virtual node algorithm uses basis enrich-
ment to stabilize fracture and cutting simulations [MBF04; Heg+13]. Instead
of remeshing and potentially inserting poorly-conditioned elements, the vir-
tual node algorithm essentially copies the entire element and adapts its basis
functions to the fracture site. The virtual node algorithm has recently been
improved to robustly allow multiple cuts in a single element [SDF07; Wan+14].
One drawback to adaptive basis enrichment is that complicated cuts can require
arbitrarily complicated basis functions that may not be simple to compute.
In the case of cutting thin shells, Kaufmann and colleagues [Kau+09] note
that the most physically-appropriate enrichment functions require the solution
of a Laplace equation with time-varying boundary conditions. Similar basis
enrichment techniques may not be computationally feasible for the adaptive
simulation of more complicated volumetric phenomena.

Adaptive reduced bases As pointed out by Bargteil and Cohen [BC14],
volumetric elastic effects are usually low-resolution in space, because we often
care about longer time scales in computer graphics. Model reduction meth-
ods, also called subspace simulation, exploit this fact to turn extremely costly
nonlinear finite element simulations into interactive ones. The idea is to solve
equations of motion in a reduced basis that is usually computed using modal
analysis or from a database using principal component analysis (PCA). Thus,
instead of having a complexity dependent on the simulation mesh resolution,
it only depends on the size of the reduced basis (the number of deformation

68

3.3. MISCELLANEOUS TECHNIQUES FOR SPATIAL ADAPTIVITY

modes) which is much smaller. A cubature scheme is used to perform inte-
gration on only a reduced sets of well-chosen samples. In the end, this allows
simulation of nonlinear deformable models with orders of magnitude speed-up.

The drawbacks are that the creation of the basis requires heavy precom-
putation, and that the motion of the model is constrained to lie in this basis.
Furthermore, while the full finite element simulations often have local compact
basis functions and sparse system matrices (because each degree of freedom is
a vertex that only influences its neighbors locally), reduced simulations tend
to have global basis functions and dense system matrices (because each degree
of freedom impacts all points in space simultaneously). Small dense systems
are often more efficient than large sparse ones, but the increased storage re-
quirement limits how many modes can be feasibly included in model-reduced
simulations, and it limits the use of model reduction in settings where large
numbers of modes are essential for visually-plausible behavior (like cloth and
fluids). Therefore model reduction, alone, is truly efficient for smooth global
deformations and predictable scenarios where it is possible to build a basis
that remains constant over time. It is also only useful in situations where a
limited number of modes can adequately describe the system.

Several strategies have been proposed to overcome some of these draw-
backs by adaptively improving the reduced basis. Common components to
those strategies are the different processes to update the basis and the crite-
ria used to decide when the basis should be adapted. Moreover, a common
challenge is to ensure temporal coherence while adapting the basis. Kim and
James [KJ09] combine a full nonlinear simulation with subspace simulation in
order to exploit coherence in the global motion of the model. They incremen-
tally build a reduced-order nonlinear deformable model as the full nonlinear
simulation progresses. When possible, full nonlinear steps are skipped with
subspace steps resulting in significantly cheaper steps. The challenge of this
strategy is to provide efficient operators to update the reduced-basis and to
robustly choose which steps can be reduced. We briefly describe the two main
operations that compose the incremental construction of the basis: the updat-
ing operation and the downdating operation. The updating operation adds
a new vector to the basis only if it is significant. To do so, a displacement
vector received from a full simulation step is orthogonalized against the ex-
isting basis. If its norm is above a given threshold then it is concatenated
to the basis. The downdating operator is applied when the basis reached its
maximal size r and a new significant vector needs to be added. The basis is
then modified so that the r/2 most significant directions are preserved. Finally,
as the cubature (reduced integration) is dependent on the basis, it also needs
to be updated. The updating operation is triggered through different criteria
depending on the application. Kim and James describe criteria for quasi-static
and dynamic simulations. The dynamic case is particularly challenging as the
error is history dependent, which means that taking full steps after reduced

69

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

steps do not correct errors from the subspace simulation. This method presents
impressive speed up for nonlinear simulations. However, the performance is
highly dependent of the rate of expansion of the basis.

As subspace simulation tends to reproduce the global motion of an object, it
is particularly challenging to produce very local deformations in this framework.
A direct consequence is a simplification of the dynamic behavior. Harmon
and Zorin [HZ13] tackle this problem by including a priori knowledge in the
building of the basis. More precisely, they augment a standard precomputed
basis with a dynamic basis. This dynamic basis is built with custom functions
derived from analytic solutions to static load. Unpredictable local deformations
that arise due to collisions and contacts can then be handled. Moreover, as
the change in the basis is very local, they can ensure temporal coherence by
projecting the current subspace coordinate vector into the new basis whenever
it changes. However, a limitation of the addition of local modes is a restriction
on the time step size in order to properly represent the dynamics. Furthermore,
the size of local displacements is limited.
Pushing further the idea of using a priori knowledge in the building of a
reduced basis, Hahn et al. [Hah+14] perform adaptive subspace simulation of
cloth. They start with a large amount of high-resolution simulation data from
multiple training animations, and convert it into a database of low-dimensional
bases associated with poses. Then at each time step, they adaptively choose
a subset of low-dimensional bases in the data base depending on the pose
of a clothed character. Highly nonlinear folds and wrinkles, which are very
hard problems for subspace simulation, can then be reproduced. Dynamics
is damped near tightly constrained regions such as sleeves, but this may be
acceptable in practice for animating tight clothing.

Recently, Teng et al. [Ten+15] propose the use of subspace condensation to
locally switch between subspace and fullspace simulation at run time. When
dealing with localized deformations, this allows the behavior not to be limited
by a priori knowledge such as in [HZ13] and [Hah+14].

3.3.2 Moving grids

As mentioned in Section (3.2.1), grids are an efficient and simple data structure
compared to unstructured meshes. However, this simplicity is counterbalanced
by a severe lack of flexibility. Firstly, simulating fluids on very large domains
requires a prohibitive amount of memory. Secondly, focusing computational
resources on regions of interest remains a challenge. While octrees and other
adaptive structured meshes discussed in Section 3.2.1 address these challenges,
they lose the cache-coherent structure that makes uniform grids so efficient.
Moving grids methods, also called Chimera grids, allow more flexibility while
keeping the advantages of Cartesian grids. The main idea is to use one or
more computational grids and allow them to move at each time step to follow
the region(s) of interest.

70

3.3. MISCELLANEOUS TECHNIQUES FOR SPATIAL ADAPTIVITY

Shah et al. [Sha+04] propose a simple approach in which a single grid is used
whose location and size changes to enclose the region containing significant
flow. This strategy is useful when there is only a single region of interest in
the fluid, such as when simulating explosions.

A more versatile approach is to use multiple independently moving grids,
centered at each moving object in the scene. The grids may undergo pure
translation [CTG10], or may also rotate with the object [Dob+08; Eng+13];
in the latter case, centrifugal and Coriolis forces may also need to be taken
into account. A coarser background grid can also be used to represent the
global flow in the remainder of the domain not covered by any local grid. The
major question that arises in these approaches is how to couple the degrees of
freedom in regions where two or more grids overlap.

For interactive smoke simulation, Cohen et al. [CTG10] omit the coupling
step entirely. Instead, smoke particles that lie within multiple overlapping grids
are simply advected with a weighted average of the flow velocities indicated
by different grids. The resulting motion is not physically valid, but works well
for interactive applications.

To perform correct coupling for globally incompressible flow, there are
two possible strategies: solve for incompressibility as usual in each grid and
transfer data between them in an outer loop, or build a single discretization
that couples all the grids together. Dobashi et al. [Dob+08] use the former
approach to efficiently simulate interaction between smoke and rigid objects.
Pressure is solved using a modified Gauss-Seidel solver where each iteration
follows three steps. First, data from coarser grids is copied to the boundary
cells of finer grids for use as boundary conditions. Then, pressure is computed
independently on each grid. Finally, data from the interior cells of finer grids is
copied to overlapping coarser grids. This process is repeated until it converges;
unfortunately, convergence can be slow. More recently, English et al. [Eng+13]
developed a full moving Cartesian grids model. Instead of solving for pressure
on each grid separately, they combine all grids in a single discretization. Coarse
grid cells that contain the cell center of a finer cell are removed, and a Voronoi
mesh is built using the remaining cell centers. An monolithic Poisson solver
then computes the pressure over the entire mesh.

In summary, moving grids are a good solution for accelerating Eulerian fluid
simulation. In the applied math vocabulary, they belong to dynamic domain
decomposition methods. These methods tackle with success the challenge of
increasing the local accuracy of Cartesian grids methods while keeping their
natural efficiency. However, while such methods are extremely efficient for
environments where regions of interests are known or easy to compute, they
are not well suited for interactive scenarios where any number of new regions
of interest may pop up at any location and time, and where adaptive particle
simulation remain more appropriate.

71

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

3.3.3 Mixed models

Another important strategy for adaptively focusing computation in computer
animation is to selectively apply a mixture of different computational models.
The motivation is that every model has its own strengths and weaknesses, and
some are better suited to some situations than others. In particular, many
methods combine Eulerian reference frames (which describe motions relative
to a fixed point in space) with Lagrangian reference frames (which describe
motions relative to a physically important moving trajectory). The driving
goal is to judiciously combine techniques in a way that leverages the strengths
of each model and suffers none of the drawbacks.

While most of these mixed models represent a clever combination of tech-
niques whose whole is greater than the sum of its parts, the mixed models
which could not be classified as “adaptive” have been omitted from this work.
This section only discusses mixed models that adaptively change from one
model to another when the situation calls for it. This section is separated into
methods used to simulate solid objects and methods used to simulate fluids.

We note that numerous other techniques use two-way coupling between dif-
ferent phenomena ([CMT04; Rob+08; SSF08; RK13], to name a few). However,
while these approaches are adaptive in the sense that they modify computa-
tion depending on the phenomena being simulated, we feel these two-way
coupling methods are outside of the scope of this section. Instead of surveying
all possible combinations of different phenomena-specific discretizations, we
only discuss here methods that combine different discretizations of the same
phenomena in order to gain a computational speedup.

3.3.3.1 Solids

While most mixed models for simulating solid dynamics do not quite adapt
their models to their environment, both Sueda et al. [Sue+11] and Servin
et al. [Ser+11] successfully address the challenging problem of simulating
stiff elastic strands in a collision-heavy scenario. They accomplished this
by introducing Eulerian nodes into a largely Lagrangian strand simulation.
The Eulerian nodes sit still at important contact points, while the standard
Lagrangian nodes sample the strands as normal. These models are “adaptive”
under our definition, because the Eulerian nodes add local detail and their
location is decided during run-time.

3.3.3.2 Fluids

The large memory and computation requirements of 3D fluid discretizations
are undesirable, so 2D simplifications are often preferred when applicable.
In addition, an Eulerian reference frame is popular for guaranteeing a uni-
form mesh-spacing, maintaining cache-coherence, avoiding remeshing, and
describing swirling flows without explicitly sampling complicated trajectories.

72

3.3. MISCELLANEOUS TECHNIQUES FOR SPATIAL ADAPTIVITY

However, Eulerian methods are often inferior to their Lagrangian counter-
parts when sampling fine individual features like droplets and bubbles, or for
explicitly tracking many individual vortices.

This section describes many techniques that adaptively combine 2D/3D
and Eulerian/Lagrangian techniques in order to get the most out of a fluid
simulation. We first survey various methods that combine Eulerian techniques
with Lagrangian particles (droplets, bubbles, vortices, etc.). Next, we discuss
how some Eulerian models also use Lagrangian particles to couple directly
with SPH solvers. After that, we review some methods which combine 3D
solvers with 2D techniques or with surface physics.

Eulerian simulation & Lagrangian particles Several early methods com-
bined Eulerian fluid simulations with Lagrangian particles to animate splashing
droplets. O’Brien and Hodgins [OH95] combine a 2D pipe-based fluid model
with particle-based droplets. Holmberg and Wünsche [HW04] create an Eule-
rian waterfall model and used Lagrangian particles to animate spray, and Kim
et al. [Kim+06] used particles from a 3D surface tracker to fill in missing splash
details. Chentanez and Müller [CM10] combine an Eulerian discretization of
the shallow water equations with a Lagrangian simulation of spray, splash, and
foam particles. The particles add important missing details to the simulations
and are allocated dynamically at run-time.

Researchers also use Lagrangian particles to capture bubble behavior in
Eulerian simulations. Mould and Yang [MY97] augment a height-field model
with Lagrangian particles for droplets and bubbles. Many simulation meth-
ods [GH04; Hon+08; Pat+13] compute a 3D Eulerian fluid simulation, and
they represent bubbles that are too small to be resolved on the grid with La-
grangian particles. The differences in these methods lie in the varying bubble
dynamics and the subtleties of how to transition between the Eulerian grid
bubbles and the Lagrangian particle bubbles.

The main concept for these methods is to use an Eulerian representation
for the bulk of the flow, but to adaptively turn to a Lagrangian particle
representation whenever the Eulerian model is insufficient. This switching
point is often easy to detect, because it occurs exactly when the diameter of a
water droplet or bubble falls below the Eulerian grid resolution. Not only does
this strategy conserve mass and momentum better than simply deleting small
features, but it fills in visually important information by animating sprays as a
collection of small Lagrangian droplets and foams as a collection of Lagrangian
bubbles. Lagrangian droplets and bubbles are practically indispensable in a
production workflow, because the small expense of adding additional point
geometry with simple physics pays off with enhanced visual realism.

Eulerian simulation & SPH Eulerian methods can also be combined with
Lagrangian particles in other ways beyond droplets and bubbles. Losasso et

73

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

al. [Los+08] combine SPH with a FLIP simulation, Wang et al. [Wan+13] com-
bine SPH with a Lattice-Boltzmann simulation and Chentanez et al. [CMK14] com-
bine SPH with 3D Eulerian grid. This idea of adaptively switching between
Eulerian simulations and SPH is still an active research topic. Using SPH
instead of simple passive or ballistic particles is clearly more realistic, but it
comes with the expense of additional neighborhood operations and more deli-
cate numerical calculations in general. It is not clear yet whether the realism
gained by augmenting an Eulerian simulation with SPH particles is worth the
computational expense.

Combining 2D & 3D Several techniques like discretizing the shallow water
equations [LP02; Hag+05] or linearized wave equations [KM90; Tes04a; KB14]
are useful for reducing computational degrees of freedom, but we do not believe
they are inherently adaptive by themselves, and we do not discuss them in detail
in this document. However, several techniques utilize these 2D discretizations
in ways that we would classify as an adaptive “mixed-model” approach.

The work of Thürey et al. [TRS06] combines a 3D Lattice-Boltzmann
simulation with a 2D simulation of the shallow water equations, allowing a local
region that to adapt to 3D phenomena while distant motion remains a simple
height field. Chentanez et al. [CMK14] combine a 3D Eulerian solver with
both a 2D shallow water solver and a particle-based fluid simulation. Mixing
three models allows them to simulate extremely detailed water interactions at
efficient frame rates. These methods fit our definition of adaptivity, because
they both locally increase the computational degrees of freedom in interesting
regions, and these decisions of where to place the new degrees of freedom are
decided at run-time as the simulation progresses. As these papers suggest,
adaptively switching simulation dimensions will clearly make animations more
efficient, because the computational complexity plummets as the simulation
transitions from 3D to 2D. The only reservations here are that there is a
significant implementation expense to maintaining two or more solvers (one for
each dimension), and the seamless coupling between dimensions is a sensitive
process that is still being actively researched.

3.4 Discussion and concluding remarks

Adaptive physically-based models are becoming ubiquitous in computer graph-
ics. In the last decade, various techniques for almost all types of deformable
models have been proposed and extended. In this chapter, we have classified
adaptive techniques into five different categories: (1) temporal adaptivity, (2)
geometric adaptivity, (3) basis refinement, (4) moving grids and (5) mixed
models. For each category, we have described the variants that were developed
for different applications and have discussed their strengths and weaknesses.

74

3.4. DISCUSSION AND CONCLUDING REMARKS

Among those different categories, geometric adaptive techniques are the
most studied, and are perhaps the most intuitive due to their geometrical
nature. The many variations in application contexts such as dimensionality
and discretization have led to a proliferation of different innovative techniques.
Yet, as we have tried to show, there are also many commonalities between
aspects of disparate techniques, for example in terms of refinement criteria,
and there is potential for consolidation of the many approaches in this area.

In the opposite direction, mixed models represent an important area of work.
Unfortunately, as they rely on the specific characteristics of each model, it is
more difficult to extract general patterns and strategies. Even so, they perfectly
represent the idea and the versatility of adaptive techniques by combining the
strengths of different approaches as the simulation evolves.

For now, polynomial basis refinement represents only a small fraction of the
methods studied. In computer graphics, this is a very recent topic, but which
can build on strong foundations from engineering and applied mathematics
where it has been extensively studied. Results in solid and fluid simulation show
that polynomial basis refinement can indeed produce impressive animations.
One of the most exciting avenues of future research is the combination of this
technique with geometric adaptivity.

In subspace simulation, adaptive reduced bases can greatly extend the
range of deformation that can be achieved by introducing local and non-linear
deformations such as wrinkles. Nevertheless, there is still a large room for im-
provement and innovation, especially regarding the possibility to handle topo-
logical changes and couple different subspace simulations such as deformable
solids and fluids.

Even if there are only a few works that focus on temporal adaptivity,
these methods are widely used and play a crucial role in ensuring stability
and efficiency. Their importance is due to two main reasons. First, spatial
and temporal resolution are often strongly related. Secondly, the necessary
temporal resolution is inherently dependent on the events occurring during a
simulation and cannot always be predicted in advance, necessitating adaptive
techniques. As we seek to resolve details at increasingly finer time scales,
further research will be required to capture them without paying an exorbitant
computational cost.

Adaptive methods are not without limitations, and we briefly summarize the
major ones. At present, setting up a new adaptive method is quite difficult:
adaptive methods have often been application-specific so far, which makes
the study of existing solutions quite intricate. Adaptivity usually makes the
implementation of a model much more complex and may ruin the regularity of
computations, causing incompatibilities with GPU implementations. Evaluat-
ing the future overhead due to the online adaptation process is often difficult,
which may make such techniques unusable in performance-constrained contexts

75

CHAPTER 3. ADAPTIVE PHYSICS-BASED ANIMATION

such as interactive applications. There are also potential concerns relating to
simulation fidelity. If not tackled with care, popping between different spatial
and temporal resolutions may cause instabilities and visual artifacts. Further-
more, the energy diffusion that necessarily occurs when permanently adapting
a model may be an issue when an accurate simulation is required.

Nevertheless, the space of adaptive simulation techniques is vast and fruit-
ful, and many compelling benefits have been uncovered so far. There is much
room for future work in developing new adaptive methods which are both easier
to implement and still generic enough to be used in different applications. This
challenge requires methods which, for example, minimize the overhead due to
additional structures while making it possible to integrate different adaptation
criteria. Many other avenues of future research remain, including combinations
of different forms of adaptivity and techniques that adapt between different
dimensionalities, different formulations, and other characteristics that have
traditionally remained separate.

76

Chapter 4

Extending Adaptively
Restrained Particle
Simulation to Graphical
Simulations

Combining efficiency with visual realism has been one of the main
goals of computer graphics research in the last decade. In Chapter 3,
we presented adaptive models, a general strategy to concentrate the
computational time on the most interesting parts of an animated

scene. We observed that the two main approaches consist of adapting time or
spatial sampling. Although they can achieve impressive results, they are often
difficult to implement, they may be restricted to specific applications and they
sometimes generate discontinuity artifacts due to sudden simplifications.

A different approach for adaptive simulation [AR12] was proposed in the
context of molecular dynamics (MD). Contrary to most of the methods re-
viewed in Chapter 3, Adaptively Restrained Particle Simulations (ARPS) do
not adapt time or spatial sampling, but rather switch the positional degrees
of freedom of particles on and off, while letting their momenta evolve. The
key idea is that since most of the computation time is spent in computing
interaction forces based on positions, particles with low velocity could be con-
sidered fixed in space - and the corresponding interaction forces constant -
until they accumulate enough momentum to start moving again. Therefore,
inter-particles forces do not have to be updated at each time step, in contrast
with traditional methods that spend a lot of time there.

While freezing objects to gain computation time has been used in video
games (see Section 3.1.2), the question of when and how to release them
has not been extensively studied, and has mainly relied on ad hoc heuristics.

77

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

Adaptively Restrained Particle Simulations (ARPS), in contrast, introduce a
physically sound approach with proven correctness, and has been successfully
used in the context of predictive, energy-and momentum-conserving particle
simulation.

In this chapter, we explore the use of Adaptively Restrained (AR) particles
for graphics simulations. Our experiments show that this new, simple strategy
for adaptive simulations can provide significant speed-ups more easily than
traditional adaptive models. The key contributions of our work are as follows:

• We adapt ARPS to particle-based fluid simulations and propose an effi-
cient incremental algorithm to update forces and scalar fields.

• We introduce a new implicit integration scheme enabling to use ARPS
for stiff objects simulations such as cloth.

The remainder of this chapter is organized as follows: Section 4.1 presents
the initial formulation of ARPS that was introduced for molecular dynamics
simulations and explores its potential for computer graphics applications. Sec-
tion 4.2 and 4.3 respectively introduce our extension of ARPS to fluid and
stiff objects simulations. Section 4.4 deals with the practical implementation
and parameters tuning. Section 4.5 concludes and gives some perspectives of
future works.

The works described in this chapter were presented at the conference VRI-
PHYS 2013 [Man+13]. A video illustrating the method and the results is
available here: https://youtu.be/RpJjGAoqp50.

4.1 Adaptively Restrained Particles

Basic ideas: Adaptively Restrained Particle Simulations (ARPS) [AR12]
were recently developed to speed up particle simulations in the field of Molec-
ular Dynamics. They rely on Hamiltonian mechanics, where the state of a
particle system is described by a position vector x and a momentum vector p,
and its time evolution is governed by the following differential equations:

dp
dt

= −∂H
∂x

dx
dt

= +∂H
∂p

Here, the Hamiltonian H is the total mechanical energy given by

H(x,p) = 1
2pTM−1p + V (x) (4.1)

78

https://youtu.be/RpJjGAoqp50

4.1. ADAPTIVELY RESTRAINED PARTICLES

where the first term corresponds to the kinetic energy, while the second repre-
sents the potential energy. In [AR12], an adaptively restrained (AR) Hamilto-
nian is introduced.

HAR(x,p) = 1
2pTΦ(x,p)p + V (x) (4.2)

The matrix Φ is a block-diagonal matrix used to switch on or off the positional
degrees of freedom of the particles during the simulation. Each 3x3 block
corresponds to a particle i and is equal to Φi(xi,pi) = m−1

i [1− ρi(xi,pi)]I3x3.
The function ρi ∈ [0, 1] is called the restraining function. When ρi = 0,
Φi = m−1

i and the particle is active: it obeys standard (full) dynamics. When
ρi = 1, Φi = 0 and the particle is inactive (not moving). When ρi ∈ [0, 1], the
particle is in transition between the two states. The restraining function ρi of
each particle is used to decide when to switch positional degrees of freedom
on or off. In [AR12], ρi depends on the particle kinetic energy. The function
uses two thresholds, a restrained-dynamics threshold εr and a full-dynamics
threshold εf . It is defined as

ρi(pi) =

1, if 0 ≤ Ki(pi) ≤ εri
0, if Ki(pi) ≥ εfi
s(Ki(pi)) ∈ [0, 1], elsewhere

(4.3)

whereKi = p2
i /2mi is the kinetic energy, and s is a twice-differentiable function.

In practice a 5th-order spline is used.

Adaptive equations of motion: The adaptive equations of motions are
derived from the AR Hamiltonian (Equation (4.2)).

dp
dt

= −∂HAR
∂x = −∂V (x)

∂x

dx
dt

= ∂HAR
∂p = M−1[I − ρ(p)]p− 1

2pTM−1∂ρ(p)
∂p p

(4.4)

While the momenta evolve as in classical Hamiltonian mechanics, the positions
evolve differently. When a particle’s momentum is small enough, the particle
becomes inactive and stops moving. However, even if the particle is inactive,
its momentum may change. Therefore its kinetic energy may become large
enough again for the particle to resume moving. In general, particles switch
between active and inactive states during the simulation.

Notice that −∂V (x)
∂x is equal to f(x), the forces applied on the particle

system. In the initial formulation presented in Equation 4.2, these forces are
conservative and only depend on positions. In Section 4.2 and Section 4.3, we
detail how to use ARPS in dissipative systems where damping forces based on
velocity are used.

79

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

Finally, we introduce a notion that we will use in the following sections: the
effective velocity. It is the rate of position change of a particle i and can be
expressed by the following equation.

veffi = 1
mi

(
(1− ρi(pi))pi −

1
2 ‖ pi ‖2

∂ρi(pi)
∂pi

)
(4.5)

A simple example: Consider a 1D harmonic oscillator: a particle attached
to the origin with a perfect spring. Figure 4.1 shows a phase portrait of the
corresponding AR system.

Figure 4.1: Phase portrait of a harmonic oscillator. The red dotted ellipse
corresponds to standard Hamiltonian mechanics, while the solid black line
corresponds to ARPS. During restrained dynamics, the particle’s momentum
is accumulated. When enough energy has been accumulated, a transition
phase takes place leading the particle to switch back to full dynamics.

In classical mechanics, the trajectory of the state in this (position, momen-
tum) space is an ellipse, the size of which depends on the (constant) energy of
the system. Using ARPS, the position is constant (vertical straight parts) as
long as the kinetic energy is small enough, while it is an ellipse as long as the
kinetic energy is large enough. These trajectories are connected by a transition
corresponding to an energy between the two thresholds of Equation (4.3). The
closed trajectory corresponds to a constant adaptively restrained energy HAR.

Generalization: Due to the similarity of the adaptive kinetic energy with
the standard kinetic energy, particle systems simulated using ARPS exhibit the

80

4.1. ADAPTIVELY RESTRAINED PARTICLES

expected properties of standard physical simulation, namely the conservation
of momentum and (adaptive) energy. It is therefore possible to perform macro-
scopically realistic simulations with reduced computation time as illustrated
in Figure 4.2.

Figure 4.2: A particle is launched at high velocity toward a 2D static particle
system made of 5390 particles, resulting into a collision cascade [AR12]. On
the left, the result of a full dynamics simulation. The three other images
are the result of ARPS with different thresholds which allow a smooth trade
between efficiency and precision.

Computational performance: The authors of [AR12], Artemova and Re-
don, obtained significant speed-ups by exploiting the immobility of particles.
Figure 4.2 illustrates one of their result where a 10× speed-up was achieved in
a collision scenario while keeping a behavior close to the reference one. In this
example, inter-particles forces were derived from a Lennard-Jones potential.
To save time on inactive particles, they proposed an incremental method to
update the particles’ forces at each time step:

1. All forces that were acting on each active particle at the previous time
step are subtracted based on previous position.

2. New forces based on current positions are added to each active particle.

The increase of computational performance comes from the absence of force
computation between two inactive particles and the absence of neighbor search
for inactive particles. As these two steps are common bottlenecks in particle
simulation, significant speed-up can be achieved.

Potential benefits of extension to computer graphics: Molecular dy-
namics often inspired particle-based simulations in computer graphics. The
same bottleneck, namely inter-particles forces computation based on neighbor
search, is present in the two fields, so we can expect interesting performance
for ARPS in graphics. The remainder of this chapter explores two applications
of ARPS to graphical simulations:

81

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

1. Particle-based fluid simulation. Originally, ARPS has been applied to
conservative system. While fluid simulation involves position-based
forces, it also involves velocity-based viscosity forces that need to be
taken care of. We propose a simple method to handle them. Addition-
ally, we extend the incremental algorithm proposed by Artemova and
Redon to update forces as well as scalar fields.

2. Stiff object simulation. Explicit integration of stiff objects such as cloth
is expensive due to stability issues. A well known solution is to use
implicit integration instead. We derive an implicit formulation of ARPS
and propose a hybrid solver to exploit the inactivity of particles in cloth
simulation.

It is clear that ARPS is not well-suited for simulations where all degree of
freedom move: classical spatial adaptation is better suited in this case. In
contrast, ARPS is best suited for simulations where most parts are immobile
but may resume moving at any time. Even if these situations are not the
most visually exciting, they are very common in computer graphics: they
include simulation of characters clothing when many of the characters are at
rest, surgical simulations with local-only user interaction, and the animation
of large volumes of liquid, when most of it already came to rest.

4.2 Extension to SPH fluid simulation
As presented in section 2.1.2.2, SPH fluid simulation is widely used in computer
graphics andmany methods have been proposed [DC96], [MCG03], [SP09], [Ihm+14a].
SPH approximates fluid dynamics with a set of particles. The particles are
used to interpolate the properties of the fluid anywhere in space. Each particle
samples the fluid properties such as density, pressure or temperature. All
these properties are updated based on the particle neighbors and are used in
short-ranged inter-particle forces.

4.2.1 Incremental update

To integrate ARPS, we chose WCSPH (Weakly Compressible Smoothed Par-
ticle Simulation) [BT07], a standard SPH formulation [DC96], [MCG03]. For
the sake of simplicity, we limit our discussion to the main inter-particles forces:
pressure and viscosity. Algorithm 1 describes the classical simulation loop.

82

4.2. EXTENSION TO SPH FLUID SIMULATION

Algorithm 1 WCSPH simulation loop
for all particle i do

find neighbors j
end for
for all particle i do

compute density ρi (e.g. Eq. 2.36)
compute pressure pi using ρi (e.g. Eq. 2.37)

end for
for all particle i do

fpressurei = −mi

ρi
∇pi (e.g. Eq. 2.41)

fviscosityi = miη∇2vi (e.g. Eq. 2.45)
fi(t) = fpressurei + f viscosityi + f otheri

end for
for all particle i do

vi(t+ ∆t) = vi(t) + ∆tfi(t)/mi

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)
end for

ARPS can save time on each computation step involving the position of
the particles. In SPH fluid simulation, every property of a particle is computed
as a weighted sum of its neighbors’ property. And the weights are computed
based on the position of the particle and its neighbors. Therefore, time can be
saved as soon as a particle is close to immobility. This makes SPH a perfect
candidate for ARPS.

As long as a particle is inactive and is surrounded by inactive particles, its
properties and neighborhood do not need to be updated. In practice, this
includes pressure and viscosity forces as well as density and pressure scalar
field.

To gain computational time from the inactive particles, we extend the incre-
mental algorithm proposed in [AR12] (see Algorithm 2). In this algorithm we
denote as active every active or transitive particle. From one step to another,
only the contributions to physical properties from active particles are updated.
Thus, even inactive particles whose neighbors are active are kept up-to-date.

83

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

Algorithm 2 WCSPH+ARPS simulation loop
if step=1 then

Perform Algorithm 1
else

for all active particle and its neighbors i do
Subtract old density contribution from neighbor j
Subtract old pressure/viscosity force contribution from neighbor j

end for
for all active particle neighbors i do

find neighbors j
end for
for all active particle and its neighbors i do

Add new density contribution from neighbor j
Update pressure pi
Add new pressure/viscosity force contribution from neighbor j
Add new density contribution from neighbor j

end for
for all particle i do

vi(t+ ∆t) = vi(t) + ∆tfi(t)/mi

xi(t+ ∆t) = xi(t) + ∆tveffi (t+ ∆t)
Update particle’s state based on ρ(pi).

end for
end if

84

4.2. EXTENSION TO SPH FLUID SIMULATION

4.2.2 Viscosity

In SPH, viscosity forces play an important role in the stability of the simula-
tion and in the range of phenomena that can be simulated. However, ARPS
was designed for conservative systems and no damping terms involving the
velocity of the particle is involved, as we can see in the equation of motion (see
Equation 4.4). In ARPS, velocity can be represented in two different ways.
We may define it based on the momentum and set vi = pi/mi, or based on
the effective velocity veffi defined in Equation 4.5. In the first case, we can get
time-varying forces even for inactive particles, which we want to avoid. We
therefore use the effective velocity of the particle, as defined in Equation(4.5).
Applied to a harmonic oscillator, this results in the behavior illustrated in
Figure:4.3. The more the particle is damped the longer it remains inactive,
which is an intuitive behavior.

Figure 4.3: Phase portrait of our viscosity approach in ARPS. As with a
classic damped oscillator we obtain a spiral phase portrait.

4.2.3 Modified inactivity criterion

Since our viscosity force vanishes along with the effective velocity of the particle,
it drags down the kinetic energy asymptotically close to the inactivity threshold,
without ever reaching it. Consequently, particles only subject to viscosity forces
never become inactive, and we do not spare computation time, even when the
particles get nearly static. To remedy this problem, we consider inactive the
particles which effective velocity fall below a user-defined threshold.

85

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

4.2.4 Performance

We performed two experiments to measure computation time. The first one
is a classical dam break simulation made of 5000 particles. We can see in
Figure 4.4 that during fast movements most of the particles are active and the
adaptive simulation stays close to reference simulation. Therefore small scale
details like splashes are preserved.

Figure 4.4: A dam break simulation with 5000 particles simulated withWCSPH
(on the left) and with our adaptive method (on the right). On the right image,
blue corresponds to full-dynamics particles, green to transition particles and
red to restrained particles.

As soon as most particles come to rest and become inactive the speed-up
can be significant (see Table 4.1). For 15s, the mean speed-up is 3.8. The
speed-up can locally reach 25.7.

Simulation Time SPH ARPS Speed-up
15s 893s 232s {0.91, 25.73, 3.85}

Table 4.1: Dam break - Computation time and speed-up {min, max, mean}

The second experiment is the creation of a permanent flow with 4240
particles. As we can see in Figure 4.5, once the permanent flow is installed
a large amount of particles are restrained. We reach an interesting speed-up
while keeping a motion close to the reference (see Table 4.2).

Simulation Time SPH ARPS Speed-up
30s 2166s 814s {0.83, 3.99, 2.66}

Table 4.2: Permanent flow - Computation time and speed-up {min, max, mean}.

86

4.3. EXTENSION TO STIFF OBJECTS: IMPLICIT INTEGRATION

(a) (b) (c)

Figure 4.5: A permanent flow simulation with 4240 particles. (a) is a classic
WCSPH simulation. (b) is our adaptive method at the same time step as (a)
with restrained particles in red. (c) is our adaptive method once the permanent
flow is installed.

These examples show that ARPS can effectively be extended to speed
up liquid simulation in computer graphics. The next section consider its
application to cloth animation.

4.3 Extension to stiff objects: Implicit Integration

In this section we explore the application of ARPS to stiff objects simulations,
such as clothes, and propose an implicit integration scheme which saves com-
putation time for particles at rest. Implicit integration for cloth simulation
was introduced by Baraff and Witking [BW98]. An introduction to implicit
integration is proposed by Witkin et al. [WBK01]. While originally formulated
on velocity, it can be straightforwardly expressed on momentum. Instead of
integrating the momentum using the forces at the current time step, implicit
integration uses the forces at the end of the current step. As we do not know
these forces we end up with a non linear function. We can linearize this
function and solve the resulting linear system to obtain the next momentum

(I −∆t2KM−1)∆p = ∆t(f + ∆tKM−1p) , (4.6)

where f are the forces applied on the system, K = ∂f
∂x is the stiffness matrix

and M is the mass matrix. Solving the linear system is more costly than
explicit integration, but it allows the use of larger time steps without any loss
of stability, enabling to advance much faster. For our experiments, we used
simple spring forces between particles.

4.3.1 ARPS Implicit Integration

We derive an implicit integration scheme from Adaptively Restrained equations
of motion. The linear system has to take into account the state of the particles.

87

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

The discrete equations of motions for implicit Euler are

∆p = ∆tf(xn+1,pn+1)

∆x = ∆t
(
M−1(1− ρ(pn+1))pn+1

−1
2pTn+1M

−1∂ρ(pn+1)
∂p pn+1

) . (4.7)

We perform a Taylor-Young expansion of f(xn+1,pn+1) and introduce ∆x in
the expended momenta equation. We then perform a Taylor-Young expansion
of ρ(pn+1) in the momentum equation, which gives us the following equation
system.

(I −∆t2KRM−1)∆p = ∆t(f + ∆tKM−1s) (4.8)

R is a block-diagonal matrix where each 3× 3 block Rii is

Rii = I − ρ(pin)− pin
∂ρ(pin)
∂pi

T

−1
2pinpiTn

∂2ρ(pin)
∂p2

i

T

− ∂ρ(pin)
∂pi

piTn ,

(4.9)

while s is a 3N vector where N is the number of particles, and each si is

si = pin − ρ(pin)pin −
1
2piTn pin

∂ρ(pin)
∂pi

. (4.10)

Note that if all particles are inactive then we have R = 0 and s = 0 and we
get an explicit formulation.

I∆p = ∆tf (4.11)

Conversely, if all particles are active then R = I and s = p and we get the
classical implicit formulation of Equation(4.6). In the general case, we loop
over time using algorithm 3.

Algorithm 3 Implicit integration scheme
for each time step do

compute ρ,R, s, f .
compute A = I −∆t2KRM−1

compute b = ∆tf + ∆t2KM−1s
solve A∆p = b
compute pn+1 = pn + ∆p
compute xn+1 = xn + ∆tM−1 (R∆p + s)

end for

Figure 4.6 shows the phase portrait of a harmonic oscillator simulated using
our implicit formulation. As expected, the well-known numerical damping

88

4.3. EXTENSION TO STIFF OBJECTS: IMPLICIT INTEGRATION

Figure 4.6: Phase portrait of an implicit ARPS harmonic oscillator.

effect of implicit Euler provides us with the same behavior we could observe
with a damped harmonic oscillator.

To include a more controllable damping term in the physical model, we
derived an implicit formulation which includes a damping term fd = −γveff .

(I + ∆tγM−1R−∆t2KRM−1)∆p = ∆t(f + ∆tKM−1s+ fd) (4.12)

Solving the equation: We exploit inactive particles to save computation
time. As discussed earlier, inactive particles can be handled using explicit
integration, which is much simpler. When a particle is inactive and has no
active neighbors we do not need to include it in the linear system. We thus
build the minimal linear system, which only contains active particles and
their neighbors. These particles are implicitly integrated, while the others are
explicitly integrated.

Figure 4.7 shows a hanging cloth with active and inactive particles. At
the beginning all the particles become active. Then a moving front of inac-
tivation/reactivation traverses the cloth at decreasing frequency. The cloth
finally finds a rest position, where all the particles are inactive and simulated
explicitly, saving computation time. The particles can become active again if
external forces or imposed motion are applied. Table 4.3 shows performances
we achieved with our hybrid solver. As soon as a large number of particles

89

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

become inactive the simulation is explicitly integrated and interesting speed-up
can raise.

Figure 4.7: Hanging cloth. Left: traditional implicit simulation. Right:
implicit ARPS simulation with a varying set of active and inactive particles.

Simulation Implicit Hybrid Speed-up
Time
20s 16.9s 6.2s {0.77, 15.16, 2.73}

Table 4.3: Implicit vs Hybrid solver. Computation time and speed-up {min,
max, mean}.

However, while smoothly varying external forces are well handled by our
simulator, we noticed instabilities when interacting strongly with the model.
They seem to occur during the transition between the transitive and the full-
dynamics states. A more thorough study of the influence of the transition
function ρ on the stability of the system would be necessary to come up with
robust implicit ARPS simulations. This transition should be really well taken
to avoid any instabilities.

4.4 Implementation

4.4.1 Parameters

ARPS requires setting the two parameters, εr and εf of Equation 4.3. The main
goal of ARPS in computer graphics is to save time when nothing happens.
So we generally want a low εr not to miss interesting movements. When
sudden movements occur, we want a standard reaction, so we want the inactive
particles to quickly become active. This requires a short transition, i.e. εf close
enough to εr. However, due to discrete time integration, a short transition
may be stepped over, or not enough sampled, which may result in instabilities.
In table 4.4 we refer the thresholds used in our simulations.

90

4.5. DISCUSSION AND CONCLUDING REMARKS

εr εf Tolerance
SPH 1-e6 2-e5 8e-5
Cloth 0.05 1 1e-4

Table 4.4: ARPS thresholds for SPH and Cloth simulation

4.4.2 Linear solver

A linear equation solver is necessary in implicit integration, as presented in
Section 4.3. In contrast with most formulations, implicit ARPS generally
results in an unsymmetrical equation matrix, due to the matrix products
in Equation(4.8). We currently use a sparse LU solver from the umfpack
library, but it would be interesting to try a Conjugate Gradient method for
unsymmetrical matrices to control the computation time, as it is usually done
in implicit integration.

4.4.3 Choice of the restraining function and criterion

In ARPS the restraining function is a 5th-order spline. The spline directly
depends on particle kinetic energy which is the restraining criterion. The
implicit solver involves second derivatives of the restraining function, which
may have large values, leading to instabilities. We found that controlling the
state of the particles based on momenta norm rather than kinetic energies
seems to mitigate this and lead to more stable simulations. Investigating this
issue would be an avenue for future work.

4.5 Discussion and concluding remarks

In this chapter, we have shown that ARPS, a new, simple approach to adap-
tive simulation, can effectively be applied to computer graphics. We have
demonstrated that through two specific applications. For SPH simulations, we
have obtained significant speed-ups with only minor changes to the original
simulation method. For stiff materials, we achieved promising results for im-
plicit integration. From this work, we distinguished two main directions of
study. First, it is crucial to address the stability issues that we met. A first
step in this direction would be to conduct a careful study of the restraining
function. Second, we think that better results could be achieved by employing
non-physically-based transition criteria. Indeed, the current one, based on
kinetic energy, is well adapted to molecular dynamics simulation. However, in
computer graphics, we are more interested in visual results. Therefore, tran-
sition thresholds, based on visibility or distance to camera, would certainly
allow an even more focused computational power where it most contributes to
the quality of the result.

91

CHAPTER 4. EXTENDING ARPS TO GRAPHICAL SIMULATIONS

While ARPS allows one to save computational time and to maintain a con-
stant number of degrees of freedom, particle systems generally require a dense
sampling in order to produce visually plausible behavior. The large number
of degrees of freedom resulting from this sampling imposes a strict limit on
computational time and memory consumption. Recently, new deformable mod-
els have been proposed to achieve complex elastic behaviors with interactive
performance by using a very small number of degrees of freedom. The frame-
based model introduced in Section 2.1.3.2 for the simulation of elastic solids
belongs to this family. Unfortunately, these models are generally not able to
handle topological changes without a large computational time, which makes
them not interesting anymore. In the next chapter, we address this challenge
by introducing a novel method for the interactive and detailed cutting of thin
sheets.

92

Chapter 5

Detailed Cutting of Thin
Deformable Models with
Sparse Sampling

Combining interactive user actions and detailed convincing anima-
tions is crucial for the user’s experience in simulation and games.
Unfortunately, computational constraints limit the fidelity that can
be achieved with physics-based animation in interactive simulations.

Often, the simulated objects lack of details compared to the rest of the virtual
environment. Furthermore, operations that modify the structure of the sim-
ulated objects, such as cutting, may be incompatible with faster simulation
methods. When not prohibited, the latter generally exhibit strong limitations.
Indeed, the level of sampling of a physically-based model usually depends
on geometric complexity. Detailed cuts result in an increase of the sampling
which directly impacts the performance. In practice, the number of samples is
limited to ensure real-time performance. This limitation quickly prevents the
user from applying detailed cuts.

In this chapter, we address the issue of enabling detailed cuts of thin de-
formable sheets at interactive rates. Our method is able to capture detailed
cuts while using a relatively low number of control nodes for the physically-
based model. Our approach to decoupling the sampling of the physical and of
the geometric model, is to use a mesh-less simulation method called the frame-
based model [Gil+11] that we presented in Section 2.1.3.2. In this method,
the deformation field induced by animated frames is applied to the geometric
model using skinning weights. As each frame can cover a large, detailed region
of the geometric mesh, only a few of them are required.

To achieve user-driven cuts in a frame-based simulation, we allow cuts to
be performed anywhere over the underlying mesh. We build a non-manifold

93

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

grid that keeps track of the mesh topology at the simulation level and allows
us to incrementally adapt the frames regions of influence in order to represent
the cut. Although remaining low, the number of frames does increase during a
cut. In particular, when a model is cut apart, at least one frame is needed to
represent each disconnected component. Therefore, we detect crucial cutting
events, enabling us to automatically insert new frames when and where they
are needed. In order to reduce computations, we exploit the locality of the
ongoing cutting gesture to incrementally update all the data used for the
simulation.

Our contributions include:

• The building of a non-manifold grid to compute shape functions that
faithfully represent the complex topology of the visual mesh while keeping
a low number of control nodes (Section 5.3).

• The dynamic re-sampling of new frames into disconnected parts (Sec-
tion 5.4).

• The incremental update of the different components of the simulation
that were concerned by the cut (Section 5.5).

Our method can be used to simulate a wide variety of objects, such as
stretchable cloth or pieces of paper. It features a very low number of frame
nodes, high resolution mesh embedding, numerous and detailed cuts. Perfor-
mance ranges from interactive to offline depending on the desired accuracy and
the complexity of the cuts. We illustrate our method with examples inspired
by the traditional Kirigami artform.

We motivate our work with respect to existing methods for the simulation
of cutting and fracture in Section 5.1. We choose to not include this section in
Chapter 2 for two reasons: Firstly, this is a high level presentation of related
works and we think a more detailed presentation of the underlying mathematics
would be needed to be a part of the state of the art chapter; Secondly, this
configuration allows us to keep a more coherent discussion about our choices
for the model. In Section 5.6, we illustrate our method in different scenarios
and detail the computational results. Finally, we discuss limitations and future
work in Section 5.7.

The works described in this chapter were presented at the conference MIG
2015 [Man+15]. A video illustrating the method and its results is available
here: https://youtu.be/coA_tcomWlE.

94

https://youtu.be/coA_tcomWlE

5.1. RELATED WORK ON CUTTING AND FRACTURE

5.1 Related work on cutting and fracture

Cutting and fracture are both fascinating behaviors which can be simulated
separately. In fracture, stress measurements predict how the material breaks.
In cutting, the interaction with a tool defines the cut path. For more details
about cutting we refer the reader to the recent survey of Wu et al. [WWD15].
Our review focuses on the modeling of topological changes in deformable
models.

A first possibility consists of using the same model for physics simulation
and visualization. Topological changes are then mostly modeled by remeshing
operations. Simple and fast remeshing techniques such as element deletion or
element splitting were proposed. The latter was used in the first simulation
of brittle and ductile materials [OH99], [OBH02]. Methods that preserve ele-
ment quality by local and global remeshing have also been developed. They
recently led to stunning results in the simulation of multi-layered paper tear-
ing [BDW13] and sheets tearing [Pfa+14]. These methods cause the number of
simulation nodes to vary over the course of a simulation, and this variation can
be problematic in a realtime game context. By limiting the scope of remeshing
predictable realtime performance can be achieved [PO09]. An alternative to
remeshing is to enrich elements with additional basis so that discontinuities
can be represented. This is the core idea of the eXtended Finite Element
Method (XFEM). It was successfully applied for offline cutting of discrete
shells [Kau+09].

A second possibility is to separate the visual model from the physics model,
this is known as embedding. Numerous embedding techniques have been
proposed. The virtual node method [MBF04] embeds ill-shaped elements that
arise after remeshing inside of well-shaped elements. This allows the robust
simulation of detailed cuts [Wan+14]. However, the number of nodes increases
substantially with the complexity of the cut. To reduce it, hierarchical methods
were proposed and real-time cutting in medical applications has been achieved
using composite finite element method [WDW11]. Still, the number of nodes
grows quickly with the number of cuts and remains limited to ensure interactive
frame rate. Meshless methods avoid the problem of element quality. However,
boundary and discontinuities require extra effort to be sharply represented.
Pauly et al. [Pau+05] proposed to use visibility criterion to perform fracture.
Steinemann et al. [SOG09] used the visual model as a visibility graph to define
nodes connectivity. Both methods rely on a dense sampling near the surface
of the model and quickly impact performances as the number and the detail
of cuts increases. There are also work to carry complex materials [Nes+09]
and thin shells [RK13] in hexahedra elements.

Embedding techniques have inspired our work. They allow interesting
trade-off and show impressive cutting and fracture simulations. However, the
relation between the resolution of the physical model and the visualization

95

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

model remains very strong. Complex cuts result in a fast increase of the
number of nodes. We want to reduce this connexion as much as possible.
Complex topologies could be simulated with a very low number of nodes.
Then, interactivity and intuitive control would be at hand.

Few models have been proposed that simulate detailed deformable objects
using a low number of nodes. Subspace simulations [BJ05] compute a small ba-
sis of deformation modes in order to achieve real-time performance on detailed
models. However, the basis is acquired after heavy precomputations. Inter-
active scenario could not handle the update of the basis at each topological
change. More recently, [Gil+11] and [Fau+11] proposed a physics-based skin-
ning technique, called the frame-based method. Highly detailed meshes can
be embedded in very coarse simulations. The control nodes are affine frames
and the deformation field is described by a linear blend skinning. Classical
continuum mechanics is then used to solve for the dynamics. Skinning weights,
also called shape functions, are built on linear interpolation using discrete
Voronoi regions. Thus, for each frame, they can represent a large region of
influence with complex shape. Unfortunately, the current frame-based method
does not allow the shape functions to reflect the topological changes of the
embedded mesh.

5.2 Overview of the method
The goal of this work is to enable interactive detailed cutting of deformable
thin sheets. The frame-based method exhibits some of the key features we are
looking for: a very low number of nodes and a tunable separation between
visual and physical models. We build on this framework and extend it to
handle topological changes.

To transfer the cuts from the mesh to the frames, we continuously adapt the
shape functions to the evolving mesh topology. This allows us to keep a con-
stant number of nodes as long as there are no disconnected parts. In [Fau+11],
the shape functions are computed on a uniform grid. The structure is simple
and efficient. However, discontinuities that can be represented are very limited
and strongly connected to the grid resolution. Instead, we build a non-manifold
grid to compute topology-preserving shape functions (see Figure 5.1).

The main idea is that cut cells are duplicated and that each resulting
instance stores different connectivities. Therefore, grid resolution depends
much less on the mesh topology while keeping all topological informations.
We summarize our simulation loop in Algorithm 4 and detail our remeshing
algorithm in appendix A.

96

5.3. ADAPTIVE SHAPE FUNCTIONS

(a)

1

0

(b)

Figure 5.1: Comparison between shape functions computed on a uniform
grid and on a non-manifold grid. (a) The underlying mesh (black lines) is
cut by spiral (red line) and sampled with five control frames (blue circle). (b)
The shape functions for each of the frame with a uniform grid (top row) and
with a non-manifold grid (bottom row). Values range from 1 to 0 and are
respectively depicted from red to blue. We can observe that shape functions
computed on the non-manifold grid strictly preserve the details and topology
of the underlying mesh.

Algorithm 4 Simulation loop
for each time step do

perform a frame-based simulation step
split the mesh along the cut
embed the mesh in a non-manifold grid
add new frames if required
add new samples (collision, integration) if required
compute shape functions on the grid
incrementally update the samples

end for

5.3 Adaptive shape functions

In this section, we first summarize how Voronoi shape functions are tradition-
ally computed. Then we detail why a non-manifold grid is necessary, how to
build it and how to use it to compute the shape functions on complex topology.

Let wi(x) : Ω→ R be the shape function for the i-th control frame, where
Ω represents the domain. Starting from the Voronoi partition V of the set of
control frames, we can independently compute wi for each frame.

First, we compute the maximal distance dmax from the control node to its
Voronoi boundary Vb. Then we extend its Voronoi region Vi to twice dmax.
This gives a new region Ve which describes the final boundary of the shape
function. Now, we can compute wi inside Ve. We set wi to be 1 at the
frame position, 0 at the others and 0.5 on Vb. Finally, we linearly interpolate

97

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

wi between Vb, the frame position and the boundary of Ve. We detail the
interpolation in Algorithm 5 and in Figure 5.2.

Algorithm 5 Shapefunction computation
1: procedure Compute_Shapefunction
2: for each frame i do
3: Vi ← Voronoi region of i
4: Vb ← boundary of Vi
5: dmax ← maximum distance to Vi boundary
6: Ve ← extend Vi to 2.0× dmax
7: . dist(A,B) is the geodesic distance between A and B
8: for each grid cell j in Ve do
9: if j is inside Vi then

10: wi(j) = 0.5
(

1 + dist(j, Vb)
dist(j, Vb) + dist(j, i)

)
11: else if j is inside Ve then
12: wi(j) = 0.5

(
1− dist(j, Vb)

dist(j, i)− dist(j, Vb)

)
13: end if
14: end for
15: end for
16: end procedure

(a)

Vb
Vi

Ve

i
2dmax

(b)

j

dj,Vb

dj,i
j

dj,i

dj,Vb

(c)

Figure 5.2: Illustrations of Voronoi shape function computation. (a) Starting
from samples (blue circles), we build a Voronoi diagram using Dijkstra’s short-
est path algorithm. (b) Then, for each frame and its region Vi, we compute
the maximum distance dmax to its Voronoi boundary Vb. We extend Vi to
twice dmax which gives Ve. (c) Finally for each grid cell j in Ve we linearly
interpolate using distance to the frame position and distance to Vb.

5.3.1 Voronoi shape function

In practice, the Voronoi diagram is computed using Dijkstra’s shortest path
algorithm on a grid in order to preserve geodesic distances. For each frame,
the shape function is computed on the whole grid. As the grid resolution

98

5.3. ADAPTIVE SHAPE FUNCTIONS

can be quite coarse, this is particularly fast. Negative values are clamped
and weights are normalized to form a partition of unity. Then least-square
approximation is performed to evaluate the shape function and its derivatives
at specific positions.

Voronoi shape functions were designed in order to respect key properties
that are particularly useful for physics-based animation [Fau+11] . First, they
respect the Kronecker property, i.e wi(x) = δi(x) where wi(x) is the shape
function of node i, x is a spatial position and δi is Dirac function. Second,
they form a partition of unity, i.e

∑
iwi(x) = 1. Third, they are built to be

as linear as possible in order to produce uniform deformations. Finally, they
can easily be biased by material properties in order to represent heterogeneous
material.

5.3.2 Non-manifold grid

As mentioned above, in [Fau+11], shape functions are computed on a uniform
grid using Dijkstra’s shortest path algorithm to compute geodesic distance.
Starting from a uniform grid with a 8-neighbor connectivity, we could reflect
topological change by changing the connectivity of the cut cells. Then, when
we re-compute shape functions, the topology would automatically be taken
into account as we use geodesic distance.

Unfortunately, this strategy is very limited for uniform grids and would
only work in simple cases. For instance, several cuts that intersect or that
create disconnected components inside one cell could not be represented. Even
without cut, small gaps that lie inside one cell could not be correctly represented.
Geodesic distances would be false and the object would behave as if there were
no cuts or gaps. Augmenting the resolution would not solve the problem. We
would fight the same issue as previous methods. Our grid resolution would be
highly dependent on the complexity of the topology and the geometry of the
object. It would directly impact performances.

We want each grid cell to be able to represent the connectivities of the
different disconnected components that lie in the cell. To do so, each cut cell
is duplicated as many times as it contains disconnected parts. Each duplicate
has a specific connectivity built from the material connectivity. This results
in a data structure called non-manifold grid (see Figure 5.3).

Non-manifold grids are used by many other cutting methods to embed fine
geometric details in coarse finite element simulations. However, we make a
completely different use of it. Instead of duplicating control nodes as the cells
are cut, thereby increasing their number and the computation time, we use
the grid to adapt the shape functions to the evolving topology of the mesh.
Most of the time, the number of nodes can remain constant while representing
detailed geometry and multiple cuts.

99

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

(a) (b) (c)

Figure 5.3: Illustrations of different possibilities for a non-manifold cell with
eight connectivity (a). In (b), the cell is simply cut into two cells. Each dupli-
cate of the cut cell has a specific connectivity that represent the cut topology.
In (c), multiple disconnected components can be contained inside one cell.
The cell is duplicated four times. Three of the duplicates have no connectivity.
However they can embed complex geometry and then be simulated by adding
new frames for each of the component. The fourth duplicate keeps its eight
neighbors and remains independent from the three other.

There are several ways to compute this non-manifold grid. In our method,
we start by embedding the mesh in a uniform grid. Mesh elements that overlap
a grid cell are detected using intersections tests and are assigned to it. Then,
for each grid cell, we use a flood fill algorithm to detect the disconnected parts
of the mesh. This informs about how many duplicates need to be created for
the cell. Finally, for each duplicate we establish its connectivity by comparing
its geometry with the geometry of the neighbor cells duplicates. We summarize
our method in Algorithm 6 and illustrate the main steps in Figure 5.4.

(a) (b) (c) (d)

Figure 5.4: We describe the building of the non-manifold grid for the center
cell of the grid. (a) The mesh is embedded in a uniform grid. (b) First, we
store the overlapping geometry in the cell. (c) Then we detect disconnected
parts using a flood fill algorithm. (d) Finally the cell is duplicated. For each
duplicate, we look for other duplicates that share geometry and establish its
connectivity.

100

5.3. ADAPTIVE SHAPE FUNCTIONS

Algorithm 6 Non-manifold grid building
1: procedure Build_Non_Manifold_Grid(grid G, mesh M)
2: Build_Grid_Geometry(G,M)
3: Duplicate_Grid_Cell(G)
4: Build_Grid_Connectivity(G)
5: end procedure
6:
7: procedure Build_Grid_Geometry(grid G, mesh M)
8: for each cell i of G do
9: Store overlapping element of M

10: end for
11: end procedure
12:
13: procedure Duplicate_Grid_Cell(grid G, mesh M)
14: for each cell i of G do
15: C ← disconnected component of M in i
16: for each component j of C do
17: Duplicate the cell i
18: Store j in the duplicate
19: end for
20: end for
21: end procedure
22:
23: procedure Build_Grid_Connectivity(grid G)
24: for each cell i of G do
25: N ← neighbor cells of i
26: for each duplicate j of i do
27: for each duplicate k in N do
28: if j and k shares geometry then
29: Create a link between j and k
30: end if
31: end for
32: end for
33: end for
34: end procedure

101

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

5.4 Frame re-sampling

As long as no parts of the model are disconnected, our method the use of a
constant number of control frames. However, when parts are disconnected, we
need to sample it with at least one frame in order to simulate it.

We start by detecting empty regions i.e lists of connected cells that are
not influenced by any frame. This is done using a flood fill algorithm on
the grid containing the shape functions values. These empty regions are
then sampled using a farthest sampling algorithm. Finally, the samples are
uniformly distributed by applying several Lloyd relaxation steps. For now,
the number of frames which are sampled is user-defined but we would like to
investigate for setting it automatically (see Section 5.7).

As a cut progresses, it may happen that only one frame influences a large
region. Then this region can only express affine motion. Depending on the
material properties, the size and the shape of the region, this can result in
unconvincing behaviors. For rigid materials this is not a problem but for soft
material this can quickly become unrealistic. We propose a simple strategy to
solve some of these cases. For each frame, we look for regions where the shape
function value is above a user-defined threshold wmax. Then if the volume of
the region is above a maximal volume threshold vmax, we uniformly re-sample
the region. This strategy allows the detection of large regions which are mostly
influenced by only one frame and are the most likely to need re-sampling. For
now, wmax and vmax are user-defined.

As regions of influence are very large, the popping artifacts induced by
adding instantaneously one additional frame can be noticeable. In order to
reduce them we propose a simple strategy. Once the position of the new
frame in the undeformed, material space has been chosen, we use the previous
deformation field to interpolate its new position, orientation and velocity.

5.5 Incremental update

The domain and the shape functions continuously change during cutting.
Therefore, all the simulation data that are related to the domain or the shape
functions need to be updated at each time step a cut occurs. Fortunately,
cutting is often a local phenomenon. We exploit this locality to incrementally
update only what is necessary and therefore save substantial computational
time.

In our case, there are several simulation components that need to be up-
dated. The first of this component contains the integration points that compute
deformation gradients and transfers internal forces to the control frames. Then
there is the collision component, a simple set of points, that transfers exter-
nal forces to the control frames. Finally, there is the mesh that we visualize
whose vertices positions are interpolated from the frame positions. Each of

102

5.5. INCREMENTAL UPDATE

this component can have its own resolution. Their data are computed from
the control frames using interpolation. This layer-based organization allows
the separation of the resolutions of the physical simulation, the interactive
model and the visual rendering to achieve a good trade-off between realism
and performance.

In the following sections we describe the mechanisms we used to incremen-
tally update the different components of the simulation.

5.5.1 Re-sampling

As for the frames, we always need to have at least one collision node and
one integration point inside each part of the model. Otherwise, we cannot
compute deformations or interact with these parts of the model. Usually, there
are much more collision nodes and integration points than frames. Instead of
adding new points only when we detect new empty regions, we perform a few
Lloyd relaxation steps at each time step to always keep a uniform sampling of
the domain. In a progressive cut scenario, only a small number of samples will
need to be updated at each time step and will result in an efficient incremental
update. However, if disconnected parts are created from a cut, we apply the
re-sampling strategy discussed in Section 5.4. We detect the disconnected
parts using a flood fill algorithm and uniformly re-sample them.

5.5.2 Integration point update

Integrations points are used to compute deformation gradients and transfer
internal forces to the frames. To do so, each integration point are interpreted
as a small volume of the domain and carries a position, a region’s volume
and the volume moments. As soon as a cut occurs, the region’s volume of
integration points close to the cut will change and it becomes necessary to
update these integration points. This can be easily done by storing an explicit
description of the region of the integration point i.e a list of cells. If the cut
goes through one of these cells then we update the integration point data.

5.5.3 Local weights update

Weights and derivatives are interpolated from the grid to positions of the
different samples: collision nodes, integration points and mesh vertices. At
each cut, we need to update these values. In an interactive context, we cannot
afford to perform interpolation for all these samples. Once again, we leverage
the fact that a cut is very often a local event, sometimes progressive, and will
impact only a small fraction of the different samples. Our idea is to perform
incremental update of weights and derivatives by detecting the low number
of samples that were impacted by the cut. At each time step, if a cut was
performed, we compare the new shape functions with the previous ones and

103

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

detect the grid cells which have been impacted by the cut. All the samples
that are contained or are neighbors of these cells need to be updated. In the
end, even if we have control frames that covers large regions of the domain
compared to classical simulations, simulation data that need to be updated
remains spatially local.

5.6 Results

We illustrate our method in a variety of simulations where a piece of paper
undergoes progressive scripted cuts. As we use several layers of samples (frames,
collision nodes, integration points), choosing a good trade off between accuracy
and performance is essential. In all the examples, we used the minimum number
of samples we could without compromising visual results. Frame re-sampling
was required to simulate disconnected parts. However it appears that no
additional collision nodes or integration points were required. We can deduce
that our relaxation strategy is sufficient to keep the object uniformly sampled
along the simulation.

Figure 5.5a shows a long spiral cut in a sheet of paper simulated with only
5 frames. The shape functions of the frames faithfully represent the cut as
shown in Figure 5.1. To illustrate that our method can handle multiple cuts
and still simulate complex deformations, the creation of a Kirigami is shown
in Figure 5.5b. 48 cuts are performed and it only required 47 frames and 400
integration points to produce a plausible behavior.

(a) (b)

Figure 5.5: Progressive cutting of a spiral using only five control frames (a).
Simulating complex deformations resulting from Kirigami cutting (b). Note
that an horizontal stretching force results into a twist of the bands of material,
as in real experiments using paper.

Detailed cuts can be performed and separated components can be handled
as shown in Figure 5.6a. In a cloth sheet, we progressively cut bunny, teapot,
dragon and armadillo shapes. Each time a new object is completely cut, it is
automatically re-sampled with additional frames.

104

5.7. DISCUSSION AND CONCLUDING REMARKS

As we explained, the non-manifold grid can represent an arbitrary number
of connectivity in one cell. This is particularly useful in order to represent
intersecting cuts as shown in Figure 5.6c.

(a) (b) (c)

Figure 5.6: (a) Several highly detailed shapes are cut in a deformable sheet.
Each disconnected part is automatically re-sampled with additional control
frames. (b) Simulation of a highly detailed cut that falls under gravity and
remains attached to the main part by a thin piece of paper. (c) Two cuts
intersect to form a vortex shape. This illustrates the abilities of the non-
manifold grid to handle multiple intersecting cuts.

All our examples run at interactive frame rate during the whole simulation
(see Table 5.1). Frame rates were collected on a twelve-core 3.20 GHz Intel
Xeon CPU with 15.6 GB RAM.

#frame #vertices Lowest FPS

Name Grid Size Initial Final Initial Final #collision #integration Before
Cutting

During
Cutting

After
Cutting

Spiral (Fig. 5.5a) 40× 40 5 5 81 2111 200 200 60 14.4 60
Kirigami (Fig. 5.5b) 68× 68 47 47 4225 7453 600 800 11.3 3.2 10.9
Patchwork (Fig. 5.6a) 50× 50 5 12 4225 8253 200 200 60 6.8 45
Vortex (Fig. 5.6c) 68× 68 5 5 4225 4889 200 200 45 7.2 35.7
FallingGuy (Fig. 5.6b) 100× 50 10 10 289 861 500 500 60 8.2 60

Table 5.1: Resolution of the different components of the simulation and
timings.

We noticed that even if a cut only concern a few grid cells, the number of
data to re-compute is much more important. This comes from the fact that
each frame can cover a large region and changes arising from a local cut can be
important. Fortunately, our incremental update mechanisms allows the saving
of numerous unnecessary computations as shown in Table 5.2.

5.7 Discussion and concluding remarks

In this chapter, we presented a novel method to simulate highly detailed cuts
with a sparse set of control nodes which allows interactive frame rates. This
approach can be seen as a reduced simulation that handles topological changes
without requiring expensive precomputations. Of course, our work is not
without limitations and brings interesting directions for future work.

105

CHAPTER 5. DETAILED CUTTING WITH SPARSE SAMPLING

Percentage of update for a cutting step
Name %grid cell %shape function cell %vertices %collision nodes %integration points
Spiral (Fig. 5.1a) 0.07 28.1 61.5 27.2 41.3
Kirigami (Fig. 5.5b) 1.06 15.9 17.8 15.8 20.3
Patchwork (Fig. 5.6a) 0.02 2.78 4.33 2.55 7.15
Vortex (Fig. 5.6c) 0.08 10.3 12.8 9.2 24.2
FallingGuy (Fig. 5.6b) 0.09 5.84 11.4 5.77 14.9

Table 5.2: Percentage of updated data in a cutting time step. We averaged
the percentage for the whole cutting time. We notice that even if very few
grid cell are affected, it implies important changes on the shape functions and
the samples that are associated to these values.

Firstly, as very few frames are used, one cut may generate large changes in
the weight distribution and produce popping artifacts that cannot be avoided
using our interpolation strategy. This is particularly noticeable when simulat-
ing soft materials and can be seen in some of ourPatchwork example. Strategies
proposed by [NPO13] and [Tou+14] in the context of adaptive simulations
could be used to limit this problem.

Secondly, for large deformations, the surface can look bumpy. There are
several reasons for this problem. Linear blend skinning, used to approximate
the displacement field, produces well known artifacts that could be solved
using a better skinning approach such as dual quaternion skinning. Also, the
shape functions derivatives are discontinuous and this is particularly noticeable
during high deformations. One could easily change the shape functions and
still use the non-manifold grid to depict the topology.

Thirdly, our implementation is far from being optimal. Currently the non-
manifold grid and the shape functions are re-computed from scratch at each
cut. We could enjoy a dynamic acceleration structure to incrementally update
our non-manifold grid. Shape functions could also be incrementally updated.
Finally, there are several parts of our method that could enjoy parallelization
such as samples interpolation.

Finally, we would like to extend our work to 3D. The implementation
of our current non-manifold grid would require a tetrahedron representation
of the object. We would like to investigate the method of [RK13] to build
this structure only from the object surface. We think that the frame-based
framework can be used to produce interactive detailed fracture simulation.
The main challenge is to accurately compute stress tensors which are then
used to determine fracture direction. Instead of using a dense sampling of
frames and integration points to compute the stress tensors, we would like
to combine a low resolution stress tensor measurement with procedural detail
generation as in the work of [Che+14] and [Lej+15]. In a similar direction, we
would like to investigate advanced sampling strategies in order to automatically
determine how many frames are required for a given region. This would involve

106

5.7. DISCUSSION AND CONCLUDING REMARKS

the material property, the size and the shape of the region that needs to be
sampled.

In this chapter and the previous one, we explored different simulation tech-
niques which enable efficient computations and topological changes. When
experimenting these two methods, a substantial amount of time was dedicated
to adjust the parameters of the simulation: time step, damping, stiffness, ini-
tial and boundary conditions, in order to achieve the results we had in mind.
As we explained in Section 2.2, controlling a physics-based simulation is a hard
problem, especially when it exhibits complex topological changes, such as in
liquid simulations. In the next chapter, we address this problem by proposing
a novel method to sculpt animations of liquid using intuitive tools inspired
from shape modeling.

107

Chapter 6

Sculpting of Liquid
Animations

Due to advances in fluid simulation methods over the last two decades,
animations of liquid has become commonplace in 3D animation
productions. The animations can be either highly realistic — for
example showing plausible fluid dynamics and interactions with

obstacles — or they can exhibit a more expressive behavior to convey specific
artistic intentions. In both cases, it is essential for the artist to be able to
control the simulation in order to achieve their goals.

As mentionned in Section 2.2, the simulation control is generally achieved
through the careful setting of a large number of parameters such as initial
conditions, boundary conditions, viscosity, or external forces. We briefly sum-
marize why the tuning of these parameters is particularly difficult. First, they
only offer indirect control over the animation, which makes them quite non-
intuitive. Second, it is usually not possible to have interactive visual feedback
when modifying the parameters, due to the high computational cost of liquid
simulation. Third, the inherently non-linear nature of fluid behavior makes it
difficult to transfer parameter values from a low to a high resolution simulation.
In consequence, achieving a desired effect requires a tedious trial-and-error
loop, where computation is restarted multiple times from scratch with different
parameters. In many cases, this process does not allow tight control over a se-
quence of waves and splashes with specific magnitudes or shapes and occurring
in a specific order.

In this chapter, we attempt a significanly different approach. Instead
of controlling a simulation, we propose an interactive sculpting system for
seamlessly editing pre-computed animations of liquid, without the need for
any re-simulation. Our system is based on a copy/edit/paste approach: The
user can efficiently select consistent and visually important space-time parts
of an animation, such as moving waves or droplets, that we call space-time
features; Once selected, these space-time features can be copied and edited

109

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

in both space and time in order to change their size, orientation, trajectory
or speed; Finally, the edited space-time features can be pasted back into any
destination animation at a specific position and time set by the user.

Using our tools, the user can edit and progressively refine any input sim-
ulation result, possibly using a library of pre-computed space-time features
extracted from other animations. In contrast to the trial-and-error loop usually
required to edit animation results through the tuning of indirect simulation
parameters, our method gives the user full control over the edited space-time
behaviors.

To enable the use of arbitrary animations of liquid computed using vary-
ing simulation techniques, we based our editing framework on generic inputs;
our method allows input mesh sequences without point-wise correspondences
between frames, and with arbitrary changes of topological genus between two
consecutive time steps. Also, we focused on three requirements to make our
method useful in realistic cases. First, the selection of the effect in the origi-
nal simulation must be as simple and straightforward for the user as possible.
Therefore, once space-time features have been computed, the user can select
them using a simple click on the surface. Secondly, pasting the selected ef-
fect onto the final animation should be handled automatically, with seamless
adaptation of the pasted fluid effect to the destination surface. Finally, the
pipeline of selection, copy, edit and paste steps should be computed efficiently
in order to enable interactive user feedback.

The key contributions of our work are as follows:

• A semi-automatic method to tag salient regions in an animation of liquid.

• An algorithm that extracts coherent space-time features from a mesh
sequence with tagged vertices.

• A space-time feature representation independent from the original ani-
mation.

• A set of editing operations that allow the extraction, manipulation, and
insertion of space-time features into an animation.

The remainder of this chapter is organized as follows: Section 6.1 presents
our solution to this problem; Section 6.2 explains how space-time features
are computed; Section 6.3 deals with the space-time features representation;
Section 6.4 details the tools we offer for manipulating space-time features;
Section 6.5 shows results obtained with our method; Section 6.6 draws the
limits of our approach and gives some perspectives on future work.

The works described in this chapter have been submitted to the conference
MIG 2016. We describe our method and results in the video here: https://
www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?dl=0.

110

https://www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?dl=0
https://www.dropbox.com/s/0cob2nuztdimjol/fluidSculpting_MIG2016.mp4?dl=0

6.1. OVERVIEW OF THE METHOD

6.1 Overview of the method
As mentioned above, this chapter focuses on editing animations of liquid. To
be independent from the simulation method, we take as input a sequence
of meshes without any correspondences between the mesh vertices from one
frame to another. Due to the arbitrary topology of the meshes and to the
temporal coherence to be maintained for numerous geometric details, editing
each frame with a shape modeling tool would represent a tremendous amount
of work. Instead, we propose to manipulate a higher level representation of the
animation of liquid that we call space-time features. A space time feature is a
sub-part of the animation, i.e. a sequence of sub-parts of the liquid surface.

Our editing pipeline generalizes standard sculpting tools [FCG00] based on
cut/copy/edit/paste operations. It is made of three steps which are illustrated
in Figure 6.1.

Figure 6.1: Pipeline of our method: An input fluid animation is given as
a mesh sequence. It is pre-processed into a higher-level space-time feature
representation. This representation allows the user to iteratively select features
from the animation and edit them before inserting them back to the animation.
Alternatively, features can be saved and re-imported in this animation or a
different one.

The first step extracts space-time features from the animation. As these
features represent regions that deform over time, it would be too tedious for a
user to define them by hand. We propose a semi-automatic method to detect
salient regions in an animation of liquid from which space-time features will be
automatically computed. The user can then easily select them using picking:
a click at a specific location at a given frame in time results in the automatic
selection of the associated feature with its full range in space and time. The
second step computes representations of the selected space-time features that
are independent from the input animation. They enable space-time features
to be transferred from one animation to another. Finally, the last step consists
of editing the space-time features and pasting them back into an animation.

111

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

6.2 Feature extraction
In the feature extraction step, our method defines the space-time features that
the user would like to manipulate. This process is divided into three steps,
as described in Figure 6.2: detection, segmentation and aggregation. While
detection is semi-automatic (it is interleaved with user interaction to define
customized regions of interest throughout the animation), segmentation and
aggregation are fully automatic.

Figure 6.2: Feature extraction process, from left to right: an initial mesh
sequence representing a fluid animation is subjected to a feature detection
process, followed by a segmentation step, which results in a frame feature
representation. A final aggregation step allows the building of a temporally
coherent feature structure.

Notation The input of our method is a mesh sequence over the time steps
t that we note M = (M t), where M t is a manifold triangular mesh. We note
T (.) the temporal length (i.e. the number of frames) and L(.) the characteristic
spatial length of any space-time sequence (mesh sequence or feature). Given a
triangular mesh X, we call NX the set of its vertices and PX the set of its faces.
A vertex can carry attributes. We note A(n,X) the value of the attribute
A at the vertex n of the mesh X. In the following, we will note pos(n,X),
norm(n,X), and curv(n,X) for positions, normal and curvature respectively.
∆A(n,X) designates the Laplace-Beltrami operator applied to the attribute
A at vertex n of the mesh X.

6.2.1 Detection

The detection phase aims at defining a sequence of regions of interest R = (Rt)
on M . A region Rt is represented as a set of vertices of M t; we call this
structure a mesh part.

To let the user easily and intuitively define R, we propose a semi-automatic
tool. This tool is based on two key components that we describe in detail
below: curvature analysis and topological filtering. Combined together they

112

6.2. FEATURE EXTRACTION

let the user define R in a coarse-to-fine manner: First, curvature analysis is
used to automatically detect salient features at each frame and initialize R.
Then, topological filtering allows one to interactively adjust R. We also added
a painting tool that allows the user to fine-tune each Rt if needed by locally
removing or adding vertices from R by clicking.

Multi-resolution curvature analysis. We chose a curvature criteria to
extract features as it is a natural asset for detecting waves and ripples in anima-
tions of liquid. Moreover, the intimate relationship between surface curvature
and liquid surface dynamics had already led previous work to use curvature
as a tool to enrich liquid simulations, for example with splashes [Tak+03],
foam [Ihm+12] and textures [Nar+07].

Curvature is computed at each vertex n of the animation meshes M t using
the following formula,

curv(n,M t) = norm(n,M t) ·∆pos(n,M t). (6.1)

Vertices are colored with respect to their curvature magnitude, enabling the
user to interactively observe the curved regions and their deformations on the
fluid surface while playing the animation (see Figure 6.3a). Then we provide
two sliders that the user can interactively tune to filter the curvature and select
meaningful regions. These sliders represent:

• A number of iterations β of Laplacian diffusion on the curvature values.
We define the i-th iteration of the Laplacian curvature diffusion as

curvi+1(n,M t) = curvi(n,M t)− λ.∆curvi(n,M t) (6.2)

with curv0(n,M t) = curv(n,M t) and i ∈ [0, β]. In our experiment, we
used λ = 1 as a diffusion factor. Laplacian diffusion of the computed
curvature values is used to decrease the spatial frequency of the curvature
function over the surface. This allows the user to select broader regions
in an efficient way without actually smoothing the geometric details on
the mesh (see Figure 6.3b).

• A threshold γ on the curvature of R. All the vertices whose curvature is
above γ are added to R. This allows the user to control the extent of R
(see Figure 6.3c).

In the end, we can mathematically define a region of interest for a frame
t as

Rt = {n ∈ NMt |curvβ(n,M t) > γ}. (6.3)

113

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

(a) Mean curvature (b) Smoothed curvature

(c) Curvature thresholding (d) Topological closure

Figure 6.3: Curvature analysis-based feature detection.

Topological filtering. In many cases, curvature-based selection is not suf-
ficient to extract meaningful animation features. For instance, in Figure 6.3c,
the user might want to select the whole crown splash and not only its contour as
it has been done with the curvature analysis tool. To remedy these issues, we
extend mathematical morphological operators (MMOs) to polygonal meshes.
They allow the user to interactively and easily refine the regions of interest
detected by the curvature analysis. We propose two main tools:

• Erosion for disconnecting, reducing or removing parts of R.

• Dilatation for connecting and enlarging parts of R.

Both tools can be combined for performing openings and closures of R. In
practice, these tools were particularly useful for selecting regions such as the
interior part of the circular wave in Figure 6.3d, achieved with a closure. For
a detail overview of MMOs, we refer the reader to the work of Serra [Ser86].

6.2.2 Segmentation

Once R has been computed, the segmentation step decomposes each Rt into
connected components (Ctk)k,t, where k is the index of the component. Mathe-
matically, a region of interest for a frame t can be defined as the disjoint union
of its connected components,

Rt =
⊔
k

Ctk | ∀t ∈ [0, T (M)− 1]. (6.4)

114

6.2. FEATURE EXTRACTION

The decomposition is computed using the straightforward breadth-first search
on each frame in parallel. We call each Ctk a frame feature.

6.2.3 Aggregation

Finally, the aggregation step extracts temporally coherent sequences of frame
features that we call space-time features. The process is divided into two
steps as illustrated in Figure 6.4. First, we build a graph of all possible frame
feature connections, and then we compute a vertex-disjoint path cover of that
graph. Temporal coherency of the resulting paths is enforced by minimizing a
geometric matching cost described below. We call the resulting paths space-
time features.

(a) Initial DAG (b) Vertex-disjoint path cover

Figure 6.4: Left: Frame features (red dots) are assembled into a directed
acyclic graph as described in Section 6.2.3. Each edge of the graph carries a
cost computed with Equation (6.5). Edges whose cost is over a user-defined
threshold (gray dashed lines) are discarded. Right: a vertex-disjoint minimum-
cost path cover has been computed based on Algorithm (7). The extracted
paths represent space-time features.

Graph construction. We build a directed acyclic graph G = (VG, EG)
representing the possible connections between frame features (see figure 6.4a).
The set of nodes VG is made of the frame features

(
Ctk
)
k,t while the set of

edges EG is made of oriented edges eij linking each pair of consecutive frame
features Cti and Ct+1

j .

Edge cost computation For every edge eij ∈ EG, we compute a cost
measure ωij . This measure relates to the geometrical matching between its
two endpoints vi and vj . We divided ωij into three terms:

• dij : The distance between the centers of mass of vi and vj .

• sij : The difference of the surface area between vi and vj .

115

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

• vij : The difference of volume between vi and vj . vij is computed only if
both vi and vj are closed.

The edge cost ωij is a weighted sum of these terms, normalized by the ap-
propriate power of l = L(M), the characteristic size of the bounding box of
M ,

ωij = ωd

(
dij
l

)2
+ ωs

(
sij
l2

)2
+ ωv

(
vij
l3

)2
. (6.5)

For all the examples of this chapter we used (ωd, ωs, ωv) = (0.6, 0.2, 0.2). We
chose to favor the closeness between frame features and consider difference
of surface and volume equally. After the cost computation, we discard edges
whose cost is below a threshold ε that we set to 0.3× l in our examples. Higher
thresholds lead to fewer edges in the graph and more disconnected paths.

Vertex-disjoint path cover computation. To the authors’ knowledge,
there is no standard algorithm for computing minimum weight vertex-disjoint
path cover. We propose an algorithm based on Kruskal’s algorithm for com-
puting minimum spanning trees [Kru56]: All vertices are first copied from the
input graph to the output one; edges of the input graph are considered in
ascending order of cost and added to the output graph if they satisfy a given
topological condition. In Kruskal’s algorithm, the condition is that the edge
does not form a cycle in the output graph. In ours, the condition is that both
of its endpoint vertices have strictly fewer than two neighbors. This allows us
to ensure that the resulting path cover will be vertex-disjoint.

We detail our vertex-disjoint path cover process in Algorithm 7 using the
following notation:

• G, V and E represents respectively a graph, a set of vertices and a set
of edges;

• in and out subscripts refer to input and output elements;

• ve0 and ve1 refer to the endpoints of edge e in both Gin and Gout (since
Vin = Vout);

• deg(v) is the degree of vertex v in Gout;

• sort(E) is the in-place sort of the edges of E in the ascending cost order.

116

6.3. FEATURE REPRESENTATION

Algorithm 7 Vertex-disjoint path cover computation
Gin = (Vin, Ein)
Gout = (Vout, Eout)
Vout = Vin
Eout = ∅
sort(Ein)
for all e ∈ Ein do

if deg(ve0) < 2 and deg(ve1) < 2 then
Eout ← e

end if
end for

At the end of this algorithm, the graph Gout consists of all frame-features
Vout connected by inter-frame links Eout. Eout represents independent paths,
as illustrated in Figure 6.4b, which are optimal in the sense that the algorithm
greedily minimizes our edge cost metric. These paths describe the space-time
features.

6.3 Feature representation

Space-time features can be seen as a simple set of vertices belonging to M .
This representation is, however, inconvenient for direct manipulation as it
strongly depends on the input animation and therefore cannot be transferred
from one animation to another. To be able to copy, edit and paste space-time
features in different animations, we propose to build a representation of a
space-time feature which is independent from M .

In the remainder of this chapter, we will note a space-time feature repre-
sentation Fi =

(
F ti
)
ts(Fi)≤t≤te(Fi) where ts/e(Fi) are the starting/ending frame

index of Fi and F ti is the frame feature representation of Fi at the frame t.
Also, we denote by S(F ti) the mesh part of M t corresponding to F ti .

We distinguish two representations depending on whether the frame feature
has boundaries or not (see Figure 6.5).

In the first case, we use a mesh representation, notedM(F ti) and composed
of a simple 3D mesh. It is used to represent a connected component of the
liquid, such as droplet or a larger body of water. In the second case, we use a
differential representation, noted (τd(F ti), τn(F ti)), and composed of a pair of
textures representing a displacement map and a normal map. It is used for
frame features representing a local sub-part of a larger body of water, such as a
single wave on the surface of an ocean. A space-time feature can be composed
of frame features from both categories. A typical case of mixed representation
is an isolated drop falling into a larger body of water and becoming a detail
of this larger surface.

117

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

(a) Mesh representation (b) Differential representation

Figure 6.5: Depending on whether the frame feature has closed boundaries or
not, it is stored either as a mesh (left) or as a displacement field (right).

In the following of this section, we detail the computation of both repre-
sentations and how they can be inserted back into a different animation. This
will be useful later for copying and pasting features.

(a) Copying (b) Pasting

Figure 6.6: Left: The displacement representation of a mesh part S is built
from the sampling of the displacement field transporting S′ toward S, and
the normal field of S′. Right: This representation can be inserted back into a
mesh part Π by projecting a displacement and a normal on vertices of Π′. The
difference of normals between S′ and Π′ is used for orienting the displacements,
which are in turn used for generating the deformed surface Π′′.

6.3.1 Computation

Building the mesh representation of a frame feature F ti simply consists of
transforming S(F ti) into an independent mesh M(F ti).

Building the differential representation of a frame feature is slightly more
complex. The process is described in Figure 6.6a and consists of three steps:
Starting from the initial frame feature surface S(F ti) we compute a smooth

118

6.4. SCULPTING TOOLS

version S′(F ti) using Laplacian smoothing on the inner part of the surface
S(F ti) \ ∂S(F ti). We note pos(n, S) the position of vertex n on surface S; note
that S(F ti) and S′(F ti) describes the same vertices, but with different positions.
Then we compute the displacement of each vertex n ∈ N from S′(F ti) to S(F ti),

disp(n, S′(F ti), S(F ti)) = pos(n, S(F ti))− pos(n, S′(F ti)). (6.6)

Finally, we map for every vertex n, disp(n, S′(F ti), S(F ti)) onto S′(F ti), and
sample the linearly interpolated values into the texture τd(F ti). We similarly
sample the normals of S′(F ti) into τn(F ti). The samplings are performed on
the GPU using the standard off-screen rasterization pipeline.

6.3.2 Insertion

Mesh representations are trivially inserted by copying M(F t′i) into M t. To
insert a feature representation (τd(F t

′
i), τn(F t′i)) into M t at location p, we first

need to identify the part Π ⊂ M t which will be deformed. Starting from
NΠ = {n0} where

n0 = argmin
n∈NMt

(‖pos(n,M t)− p‖), (6.7)

we progressively dilate Π until it fills the bounding box of size L(F t′i) centered
in p. Once Π has been computed, we compute its smooth version Π′ on
which we project τd(F t

′
i) and τn(F t′i), yielding two attributes for each vertex

n ∈ NΠ′ , a displacement disp0(n,Π′) and a normal norm0(n,Π′). We define a
new attribute rot(n,Π′) = rot(norm0(n,Π′), norm(n,Π′)), a rotation matrix
mapping norm0(n,Π′) into norm(n,Π′). Each vertex n ∈ NΠ is displaced of
rot(n,Π′)× disp0(n,Π′), yielding the deformed surface Π′′. These operations
allow one to counter the effects of low-resolution shapes of both S(F ti) and Π.
Figure 6.6b illustrates these steps.

6.4 Sculpting Tools

Once space-time features representations have been computed, they can either
be manipulated by the user to modify the current animation, or they can be
extracted and re-used in another animation to enrich it. This section described
the set of tools we propose; they are essentially the space-time analogue of
common tools used for sculpting static geometry [FCG00; SS10; Tak+11].

Selection The first thing one might want from an interaction system is to
specify which of the multiple entities of the scene are to be interacted with.
This is usually performed through object selection. In our case, objects are
space-time features and they can be selected and grouped by clicking on their
shape at a given frame.

119

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

Copy and cut The copy operation consists of creating the representation
of the selected features, as explained in Section 6.3.1. The cut operation is
similar to the copy operation, except that the representation of the feature is
removed from the animation after it has been computed. Once a feature or a
feature group has been copied or cut, its representation becomes the current
input data of further tools. It is later designated as “the current feature.”

Export and import The current feature can be exported into a dedicated
binary file format which stores its representation at each frame. This allows it
to be imported back later to the same animation, or into a different one. Once
imported, a feature becomes the current feature.

Paste The pasting operation allows a user to insert the current feature into
a target animation, as explained in Section 6.3.2.

Space-time Deformation The user might want to use the feature in a
different spatial and temporal configuration from the one in which it was
extracted, so we propose adapted deformation tools. The position, orientation
and spatial scale of the current feature can be controlled with the mouse, and a
real-time visual feed-back allows the user to set the feature in the configuration
they require. By navigating in the animation, the user can also choose the
initial frame of the current feature and set a time scale. This leads to a
speed-up or slowdown of the feature animation.

Fade in and out When pasting a wave, the user can specify a fade in and
a fade out interval. This means that that the feature will not immediately
appear, but instead it smoothly grows in the beginning of its lifetime and
smoothly disappears before the last frame of its lifetime. We achieve this
effect by linearly blending the pasted displacement field over time with weights
varying between 0 and 1.

Trajectory editing Space-time deformations influence all frames at once,
whereas the user might want to control each frame individually. Per-frame
spatial feature manipulation is achieved through a dedicated feature trajectory
edit tool. This tool allows a user to displace the representation of a feature at
a given frame while visualizing the positions of the feature at all the frames.

6.5 Results

In this section, we detail results achieved using our sculpting system. They
illustrate the different tools described in the Section 6.4 and how we used
them.

120

6.5. RESULTS

Boat wake In Figure 6.7, we illustrate the capability of our method to ex-
tract space-time features from arbitrary inputs (e.g. Eulerian or Lagrangian
simulation, spectral methods, shallow water, real liquid surface acquisition)
and combine them to create a plausible animation. We start from two anima-
tions: The first one (Figure 6.7a) was computed using the FLIP simulation
method [ZB05] and represents a boat traversing a fluid tank and forming
a wake. The second one (Figure 6.7b) is a procedural animation of ocean
computed using the method of [Tes04b] and exhibits numerous small scale
details. Then we extract the boat wake and paste it on the ocean animation
at three different positions with different scales and orientations (Figures 6.7c
and 6.7d).

(a) Boat simulation (b) Procedural ocean

(c) Pasting of the wake (d) Multiple pasting

Figure 6.7: From the animation of boat generated using a FLIP simulation
(left), our sculpting system allows the extraction of the wake of the boat in a
single space-time feature. Then we can manipulate this feature and paste it
into an ocean animation generated procedurally (middle). Editing the feature
and pasting it multiple times allows the interactively modeling a complex scene
(right) without re-simulating.

Animation enrichment An interesting aspect of our method is that it can
be used to enrich static objects or non-fluid objects with a fluid-like behavior.
In Figure 6.8, we enriched a static object with a splash extracted from an

121

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

animation of liquid. More generally, our method allows the combination of
results obtained with very different methods such as procedural animation, Eu-
lerian and Lagrangian simulations, shallow water simulation, or artist-created
animations.

(a) Initial simulation at time t0 (b) Initial simulation at time t1

(c) Final animation at time t0 (d) Final animation at time t1

Figure 6.8: From an initial simulation of a falling drop (a, b) space-time
features can be extracted and pasted back into an other mesh, generating a
new animation (c, d).

Trajectory editing In Figure 6.9, we applied several edits to a space-time
feature capturing a crown splash. First, we temporally remapped the feature
to slow it down. Second, we pasted it twice on a static plane at different
locations. Third, we edited the trajectory of the droplets to change the height
of their fall. Finally, we used a fading out to obtain a smooth transition with
the initial plane.

122

6.6. DISCUSSION AND CONCLUDING REMARKS

(a) t = t0 (b) t = t1 (c) t = t2

Figure 6.9: From an existing animation of liquid we extracted a complete
crown splash into a single space-time feature. The feature combines both the
fall of a drop and the resulting splash. We edit and paste this feature twice
at different locations and modify the height of the droplets. Here, we show
different frames of the final animation.

6.6 Discussion and concluding remarks

In this chapter, we introduced a new method for interactively editing existing
liquid animations. We based our approach on an intuitive sculpting metaphor
where the user can select, copy, edit and paste coherent space-time features.
This approach allows a user to quickly design new animations. Our method is
not without limitations and we suggest several directions for future work.

Physical consistency Even though the space-time features selected by
the user capture realistic behavior, the way they are edited and inserted may
spoil the realism of the resulting animation. As we do not check for physical
consistency, the plausibility of the result depends on the user’s artistic skill.
An extension of our method would be to adapt the destination surface so
that it matches the input features under physical constraints such as volume
preservation. To incorporate further physical constraints such as momentum
conservation, using mesh sequences as input would not be sufficient anymore
and additional information such as velocity would be required. Designing an
interactive editing method given these constraints may be difficult to achieve.

Resolution issues Geometrical details may be lost when pasting a fea-
ture if the resolution of the target mesh sequence is too coarse. To remedy this
limitation, we could add an automatic mesh refinement scheme such that the
resolution of the target mesh always locally matches the resolution of details
in the pasted feature.

Aggregation robustness The aggregation of regions of interest into
space-time features is a key component of our approach. However, as it is
based on geometrical similarities between two consecutive frames, it might fail

123

CHAPTER 6. SCULPTING OF LIQUID ANIMATIONS

if the time step between two frames is too large or if parts of the water body
are moving too fast, such as in the case of dynamic splashes with lots of fast
moving droplets. Even if it has not been an issue for our results, we would like
to enforce the robustness of the aggregation step by adding a new metric which
would measure the physical coherency between two regions of interest. This
metric would take into account some inferred velocity for the region. It could
also incorporate some cause and effect relationships; for example, a falling
drop will cause waves.

Memory consumption For our results, we worked with short sequence
of animations of liquid but when editing a large sequence of high resolution
meshes and extracting potentially large space-time features, memory consump-
tion may become a problem. A classical solution would be to use a multi-
resolution approach. The user would manipulate a low resolution version of
the animation which would ensure interactivity. Then, the user’s edits choices
would be transferred to the high resolution version of the animation as an
off-line post-process.

Feature editing We proposed basic tools for the space-time edition of
features and there are several avenues for future work. Firstly, our copy/paste
method is only able to deal with simple deformations of a surface. By using
the work of [Tak+03] to extract and insert displacement fields, we could handle
much more complex cases. Secondly, we would like to propose a space-time
sculpting tool close to space deformers such as constant volume tools [Ang+06;
FTS06] and topology modifiers [SCC11]. The idea would be to let the user
sculpt a specific frame and to interpolate the deformation over time. Finally,
we think it would be useful to let any edited parameter (scale, rotation, etc.) to
be key-framed in order to make time-varying effects more easily controllable.

124

Chapter 7

Conclusion

In this manuscript, we detailed several approaches to simulate and con-
trol mechanical models in computer graphics. Here, we summarize the
different contributions, their limitations and perspectives of future work.

7.1 Summary of the contributions

We can divide this work into two main types of contributions.
The first focus was the study of new techniques towards the efficient sim-

ulation of mechanical models. Aside from our state of the art on adaptive
models, we proposed two approaches tackling this goal. First we introduced a
new adaptive method that allows the acceleration of simulations with very few
modifications of an existing simulator. In contrast with the usual re-sampling
schemes, the method only requires the adaptattion of the time integrator.
We demonstrated the efficiency of this method on particle-based fluid and on
cloth simulation. Second we proposed a method to handle detailed topological
changes while keeping a very low number of degrees of freedom. This was
made possible by a dynamic update of the shape functions associated to each
degrees of freedom in order to take into account the new topology into the
dynamics. Combined with an incremental update of the simulation data and
an interpolation of the positions and velocities of the degrees of freedom, this
method allows the simulation of detailed cutting of thin sheets at interactive
rates.

Our second focus was on the control of physics-based animation. We
proposed a new system to edit an animation of liquid. Instead of enforcing a
simulation with user constraints, we proposed to build tools that would allow
the user to edit existing animations. Starting from a simple sequence of meshes
representing the surface of the liquid, the user can select coherent chunks of
the animation and edit them with standard paradigms inspired from surface
modeling such as copy, edit, paste and temporal tools from movie editing

125

CHAPTER 7. CONCLUSION

such as temporal remapping. Pushing forward this space-time deformation
framework, the user can re-use parts of an animation in other animated scenes.

7.2 Limitations and future work

Adaptively Restrained Particles First, the method could be easily im-
proved by exploring more visual criteria to adapt the simulation. In particular,
the use of criteria varying in space and time was not explored and the robust-
ness of the method to such variations is not clear. Second, the interest of
the method is restrained to cases where parts of the simulation do not move.
Closely related to this freezing technique, we would like to investigate the
simplification of parts of a model that behave rigidly. In many cases, elastic
deformations are concentrated near the surface of the object while the interior
may have a rigid like behavior. We think it would be interesting to identify
and simplify these parts.

Detailed cutting of thin sheets There are a large number of directions
that could be investigated to improve this method. First, the popping artifacts
that can occur when the number of degrees of freedom changes should be
prevented. Pfaff et al. [Pfa+14] proposed an optimization-based approach to
reduce popping as much as possible in fracture scenario. We could start from
their work to see if it would fit the frame-based model. Second, fracture could
be integrated by combining a sparse computation of the stress tensor and a
procedural method to generate details along the crack. Third, the extension
of our method to volumetric objects would require a robust method to build
the non-manifold grid we use to update the shape functions. In related works
the building of such a grid is made using the volumetric discretization of the
object [MCS15; Mit+15]. In our case, it is essential to build the grid only
from the surface of the object. Finally, we would like to incorporate plastic
deformations while keeping a very low number of degrees of freedom and bring
our model to real time performance.

Fluid sculpting The actual system cannot handle large simulations involv-
ing very turbulent flows. The first reason is the memory size of such animations.
In order to alleviate this problem, we could interact with a low resolution ver-
sion of the animation and then apply all the transformations of the user to
the high resolution version. The second reason is that waves resulting from
turbulent flows may present complex topology which could not be faithfully
captured by our approach based on displacement field. We think that state
of the art method in surface modeling are not sufficient to deal with such
surfaces. Instead we would like to use the mesh of these waves as a target
to the surface where the waves are being pasted and use a constant volume
deformation tool. This would help solving another limitation of our work

126

7.2. LIMITATIONS AND FUTURE WORK

which is the physical consistency of the deformation. When pasting waves or
droplets, there are no guarantee except the user’s experience that the result
would look realistic. With constant volume deformation we hope that physical
consistency would be enforced. Finally we think that we only scratched the
surface of the all the temporal edit operations. Building temporal tools that
would enforce consistency from one frame to another is an exciting avenue for
future research.

127

Appendix A

Remeshing

In Chapter 5, topological changes are applied on the visual model which is
a triangular mesh. As the mesh is only used for visualization. Simulation
robustness will not be determined by its elements’ quality. Therefore we used
an extremely simple remeshing algorithm. The input are the mesh and a
polyline that represents the cut. We start by remeshing along the polyline so
that the mesh conforms with it. Then we duplicate the mesh vertices along this
polyline to create the crack. The whole procedure is summarized in algorithm
8 and illustrated in Figure A.1. The remeshing part uses vertex insertion and
edge split operations (see Figure A.2). The splitting part only uses vertex split
operation (see Figure A.3).

129

APPENDIX A. REMESHING

Algorithm 8 Remeshing Algorithm
1: procedure Cut_Along_Segment(Segment S, mesh M)
2: Insert_Segment(S, M)
3: P̃ ← edges corresponding to S
4: Split_Along_Polyline(P̃ ,M)
5: end procedure
6:
7: procedure Insert_Segment(Segment S, Mesh M)
8: S̃ ← subdivide S at intersection with M edges
9: for each point i of S̃ do

10: E ← closest edge to i
11: V ← closest vertex to i
12: F ← closest triangle to i
13: if distance(E,i)< εedge then
14: Split E at i
15: else if distance(V ,i)< εvertex then
16: Snap i to V
17: else
18: Split F at i
19: end if
20: end for
21: end procedure
22:
23: procedure Split_Along_Polyline(Polyline P , Mesh M)
24: for each vertex V of P do
25: Split triangles around V according to P
26: end for
27: end procedure

130

(a) (b) (c)

Figure A.1: Illustration of our remeshing algorithm. (a) For remeshing, we
start from an input mesh and a polyline that represents the cut. (b) First we
re-mesh along the polyline so that the mesh is conform with the cut. (c) Then
we split the mesh vertices along the polyline.

(a) (b) (c)

Figure A.2: Illustrations for edge splitting and vertex insertions. (a) The
input mesh. (b) After edge splitting. (c) After vertex insertions.

(a) (b) (c)

Figure A.3: Illustrations for the vertex splitting operation. (a) A mesh which
is conform with the polyline (in red). (b) We start by assigning each triangle
around the vertex to split to one side of the polyline. (c) We duplicate the
vertex and modify each of the triangles accordingly to its side.

131

Bibliography

[AAT13] Nadir Akinci, Gizem Akinci, and Matthias Teschner. “Versatile
Surface Tension and Adhesion for SPH Fluids”. In: ACM Trans.
Graph. 32.6 (Nov. 2013), 182:1–182:8.

[Ada+07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas.
“Adaptively Sampled Particle Fluids”. In: ACM Trans. Graph.
26.3 (July 2007).

[Ain+12] Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus
Tamstorf. “Speculative Parallel Asynchronous Contact Mechan-
ics”. In: ACM Trans. Graph. 31.6 (Nov. 2012), 151:1–151:8.

[Aki+12a] Gizem Akinci, Nadir Akinci, Markus Ihmsen, andMatthias Teschner.
“An Efficient Surface Reconstruction Pipeline for Particle-Based
Fluids”. In: Workshop on Virtual Reality Interaction and Phys-
ical Simulation. Ed. by Jan Bender, Arjan Kuijper, Dieter W.
Fellner, and Eric Guerin. The Eurographics Association, 2012.

[Aki+12b] Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solen-
thaler, and Matthias Teschner. “Versatile Rigid-fluid Coupling
for Incompressible SPH”. In: ACM Trans. Graph. 31.4 (July
2012), 62:1–62:8.

[All+08] Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco At-
tene. “Recent Advances in Remeshing of Surfaces”. English. In:
Shape Analysis and Structuring. Ed. by Leila De Floriani and
Michela Spagnuolo. Mathematics and Visualization. Springer
Berlin Heidelberg, 2008, pp. 53–82.

[Ang+06] Alexis Angelidis, Marie-Paule Cani, Geoff Wyvill, and Scott King.
“Swirling-sweepers: Constant-volume Modeling”. In: Graph.
Models 68.4 (July 2006), pp. 324–332.

[AR12] Svetlana Artemova and Stephane Redon. “Adaptively Restrained
Particle Simulations”. In: Phys. Rev. Lett. 109 (19 Nov. 2012),
p. 190201.

133

BIBLIOGRAPHY

[ATT12] Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. “Preserving Fluid
Sheets with Adaptively Sampled Anisotropic Particles”. In: IEEE
Transactions on Visualization and Computer Graphics 18.8 (Aug.
2012), pp. 1202–1214.

[ATW13] Ryoichi Ando, Nils Thürey, and Chris Wojtan. “Highly Adaptive
Liquid Simulations on Tetrahedral Meshes”. In: ACM Trans.
Graph. 32.4 (July 2013), 103:1–103:10.

[Bar+06] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien, and
John A. Strain. “A semi-Lagrangian Contouring Method for Fluid
Simulation”. In: ACM Trans. Graph. 25.1 (Jan. 2006), pp. 19–
38.

[Bar+07] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg
Turk. “A Finite Element Method for Animating Large Viscoplas-
tic Flow”. In: ACM Trans. Graph. 26.3 (July 2007).

[BB09] Tyson Brochu and Robert Bridson. “Robust Topological Opera-
tions for Dynamic Explicit Surfaces”. In: SIAM J. Sci. Comput.
31.4 (June 2009), pp. 2472–2493.

[BBB10] Tyson Brochu, Christopher Batty, and Robert Bridson. “Match-
ing Fluid Simulation Elements to Surface Geometry and Topol-
ogy”. In: ACM Trans. Graph. 29.4 (July 2010), 47:1–47:9.

[BC14] Adam W Bargteil and Elaine Cohen. “Animation of Deformable
Bodies with Quadratic Bézier Finite Elements”. In: ACM Trans-
actions on Graphics (TOG) 33.3 (2014), p. 27.

[BD12] Jan Bender and Crispin Deul. “Efficient cloth simulation using an
adaptive finite element method”. In: Virtual Reality Interactions
and Physical Simulations (VRIPhys). Ed. by Jan Bender, Arjan
Kuijper, Dieter Fellner, and Éric Guérin. 2012.

[BDW13] Oleksiy Busaryev, Tamal K. Dey, and Huamin Wang. “Adaptive
Fracture Simulation of Multi-layered Thin Plates”. In: ACM
Trans. Graph. 32.4 (July 2013), 52:1–52:6.

[Ben+12] Jan Bender, Kenny Erleben, Jeff Trinkle, and Erwin Coumans.
“Interactive Simulation of Rigid Body Dynamics in Computer
Graphics”. In: EUROGRAPHICS 2012 State of the Art Reports.
Cagliari, Sardinia, Italy: Eurographics Association, 2012.

[Ber+03] F. Bertails, T-Y. Kim, M-P. Cani, and U. Neumann. “Adaptive
Wisp Tree: A Multiresolution Control Structure for Simulating
Dynamic Clustering in Hair Motion”. In: Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’03. San Diego, California: Eurographics Asso-
ciation, 2003, pp. 207–213.

134

BIBLIOGRAPHY

[Ber+07] Miklós Bergou, Saurabh Mathur, MaxWardetzky, and Eitan Grin-
spun. “TRACKS: Toward Directable Thin Shells”. In: ACM
SIGGRAPH 2007 Papers. SIGGRAPH ’07. San Diego, Califor-
nia: ACM, 2007.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson. “Robust
Treatment of Collisions, Contact and Friction for Cloth Anima-
tion”. In: ACM Trans. Graph. 21.3 (July 2002), pp. 594–603.

[BGV09] Ted Belytschko, Robert Gracie, and Giulio Ventura. “A review
of extended/generalized finite element methods for material mod-
eling”. In: Modelling and Simulation in Materials Science and
Engineering 17.4 (2009), p. 043001.

[BH11] Christopher Batty and Ben Houston. “A Simple Finite Volume
Method for Adaptive Viscous Liquids”. In: Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’11. Vancouver, British Columbia, Canada:
ACM, 2011, pp. 111–118.

[BIT09] Markus Becker, Markus Ihmsen, and Matthias Teschner. “Coro-
tated SPH for Deformable Solids”. In: Proceedings of the Fifth
Eurographics Conference on Natural Phenomena. NPH’09. Mu-
nich, Germany: Eurographics Association, 2009, pp. 27–34.

[BJ05] Jernej Barbič and Doug L. James. “Real-Time Subspace Inte-
gration for St. Venant-Kirchhoff Deformable Models”. In: ACM
Transactions on Graphics (Proc. SIGGRAPH) 24.3 (Aug. 2005),
pp. 982–990.

[BK15] Jan Bender and Dan Koschier. “Divergence-Free Smoothed Par-
ticle Hydrodynamics”. In: Proceedings of the 2015 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM,
2015.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. “Simulation of Clothing
with Folds and Wrinkles”. In: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’03. San Diego, California: Eurographics Association, 2003,
pp. 28–36.

[Bri08] Robert Bridson. Fluid Simulation for Computer Graphics. Ak
Peters Series. Taylor & Francis, 2008.

[BSG12] Jernej Barbič, Funshing Sin, and Eitan Grinspun. “Interactive
Editing of Deformable Simulations”. In: ACM Trans. Graph.
31.4 (July 2012), 70:1–70:8.

135

BIBLIOGRAPHY

[BT07] Markus Becker and Matthias Teschner. “Weakly compressible
SPH for free surface flows”. In: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation.
SCA ’07. San Diego, California: Eurographics Association, 2007,
pp. 209–217.

[BW98] David Baraff and Andrew Witkin. “Large Steps in Cloth Simu-
lation”. In: Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’98. New
York, NY, USA: ACM, 1998, pp. 43–54.

[BXH10] Christopher Batty, Stefan Xenos, and Ben Houston. “Tetrahedral
Embedded Boundary Methods for Accurate and Flexible Adaptive
Fluids”. In: Proceedings of Eurographics. 2010.

[Cap+02] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zo-
ran Popović. “A Multiresolution Framework for Dynamic Defor-
mations”. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’02. San Antonio,
Texas: ACM, 2002, pp. 41–47.

[CDS12] Siu-Wing Cheng, Tamal Krishna Dey, and Jonathan Richard
Shewchuk. Delaunay Mesh Generation. CRC Press, Dec. 2012.

[CF00] Stephen Chenney and D. A. Forsyth. “Sampling Plausible So-
lutions to Multi-body Constraint Problems”. In: Proceedings of
the 27th Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’00. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 219–228.

[CFL28] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen
Differenzengleichungen der mathematischen Physik”. German.
In: Mathematische Annalen 100.1 (1928). English translation:
Courant et al., “On the partial difference equations of mathemat-
ical physics”, IBM J. Res. Dev. (1967)., pp. 32–74.

[Che+07] Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James
F. O’Brien, and Jonathan R. Shewchuk. “Liquid Simulation on
Lattice-based Tetrahedral Meshes”. In: Proceedings of the 2007
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. SCA ’07. San Diego, California: Eurographics Associa-
tion, 2007, pp. 219–228.

[Che+14] Zhili Chen, Miaojun Yao, Renguo Feng, and Huamin Wang.
“Physics-inspired Adaptive Fracture Refinement”. In: ACM Trans.
Graph. 33.4 (July 2014), 113:1–113:7.

136

BIBLIOGRAPHY

[Cla+13] Pascal Clausen, Martin Wicke, Jonathan R. Shewchuk, and James
F. O’Brien. “Simulating Liquids and Solid-liquid Interactions
with Lagrangian Meshes”. In: ACM Trans. Graph. 32.2 (Apr.
2013), 17:1–17:15.

[CM03] E. Cerda and L. Mahadevan. “Geometry and Physics of Wrin-
kling”. In: Phys. Rev. Lett. 90 (7 Feb. 2003), p. 074302.

[CM10] Nuttapong Chentanez and Matthias Müller. “Real-time Simula-
tion of Large Bodies of Water with Small Scale Details”. In: Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’10. Madrid, Spain: Eurographics
Association, 2010, pp. 197–206.

[CM11] Nuttapong Chentanez and Matthias Müller. “Real-time Eulerian
Water Simulation Using a Restricted Tall Cell Grid”. In: ACM
Trans. Graph. 30.4 (July 2011), 82:1–82:10.

[CMK14] Nuttapong Chentanez, Matthias Müller, and Tae-Yong Kim. “Cou-
pling 3D Eulerian, Heightfield and Particle Methods for Interac-
tive Simulation of Large Scale Liquid Phenomena”. In: Euro-
graphics/ ACM SIGGRAPH Symposium on Computer Anima-
tion. Ed. by Vladlen Koltun and Eftychios Sifakis. Eurographics
Association, 2014, pp. 1–10.

[CMT04] Mark Carlson, Peter J Mucha, and Greg Turk. “Rigid fluid:
animating the interplay between rigid bodies and fluid”. In: ACM
Transactions on Graphics (TOG). Vol. 23. 3. ACM. 2004,
pp. 377–384.

[Coh92] Michael F. Cohen. “Interactive Spacetime Control for Anima-
tion”. In: Proceedings of the 19th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’92. New
York, NY, USA: ACM, 1992, pp. 293–302.

[Cor+12] Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Chris-
tian Schumacher, Robert Sumner, andMarkus Gross. “Deformable
Objects Alive!” In: ACM Trans. Graph. 31.4 (July 2012), 69:1–
69:9.

[Cra+13] Keenan Crane, Fernando De Goes, Mathieu Desbrun, and Peter
Schröder. “Digital Geometry Processing with Discrete Exterior
Calculus”. In: ACM SIGGRAPH 2013 courses. SIGGRAPH ’13.
Anaheim, California: ACM, 2013.

[CTG10] Jonathan M. Cohen, Sarah Tariq, and Simon Green. “Interac-
tive Fluid-particle Simulation Using Translating Eulerian Grids”.
In: Proceedings of the 2010 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. I3D ’10. Washington, D.C.:
ACM, 2010, pp. 15–22.

137

BIBLIOGRAPHY

[DC96] Mathieu Desbrun and Marie-Paule Cani. “Smoothed Particles:
A New Paradigm for Animating Highly Deformable Bodies”. In:
Proceedings of the Eurographics Workshop on Computer Anima-
tion and Simulation ’96. Poitiers, France: Springer-Verlag New
York, Inc., 1996, pp. 61–76.

[DC99] Mathieu Desbrun and Marie-Paule Cani. Space-Time Adaptive
Simulation of Highly Deformable Substances. Anglais. Rapport
de recherche RR-3829. INRIA, 1999.

[Deb+00] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan
H. Barr. “Adaptive Simulation of Soft Bodies in Real-Time”. In:
Computer Animation 2000, April, 2000. Philadelphia, Etats-Unis,
June 2000, pp. 133–144.

[Deb+01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan
H. Barr. “Dynamic Real-time Deformations Using Space & Time
Adaptive Sampling”. In: Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’01. ACM, 2001, pp. 31–36.

[Deb+99] Gilles Debunne, Mathieu Desbrun, Alan H. Barr, and Marie-
Paule Cani. “Interactive multiresolution animation of deformable
models”. In: Eurographics Workshop on Computer Animation
and Simulation’99, September, 1999. Ed. by Nadia Magnenat-
Thalmann and Daniel Thalmann. Computer Science. Springer,
Sept. 1999, pp. 133–144.

[DGW11] C. Dick, J. Georgii, and R. Westermann. “A Hexahedral Multi-
grid Approach for Simulating Cuts in Deformable Objects”. In:
Visualization and Computer Graphics, IEEE Transactions on
17.11 (Nov. 2011), pp. 1663–1675.

[Dob+08] Yoshinori Dobashi, Yasuhiro Matsuda, Tsuyoshi Yamamoto, and
Tomoyuki Nishita. “A Fast Simulation Method Using Overlap-
ping Grids for Interactions between Smoke and Rigid Objects”.
In: Computer Graphics Forum 27.2 (2008), pp. 477–486.

[EB12] Essex Edwards and Robert Bridson. “A high-order accurate
particle-in-cell method”. In: International Journal for Numerical
Methods in Engineering 90.9 (2012), pp. 1073–1088.

[EB14] Essex Edwards and Robert Bridson. “Detailed Water with Coarse
Grids: Combining Surface Meshes and Adaptive Discontinuous
Galerkin”. In: ACM Trans. Graph. 33.4 (July 2014), 136:1–136:9.

[Eng+13] R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. “An
Adaptive Discretization of Incompressible Flow Using a Multitude
of Moving Cartesian Grids”. In: J. Comput. Phys. 254 (Dec.
2013), pp. 107–154.

138

BIBLIOGRAPHY

[Fau+11] François Faure, Benjamin Gilles, Guillaume Bousquet, and Di-
nesh K. Pai. “Sparse Meshless Models of Complex Deformable
Solids”. In: ACM Transactions on Graphics. Proceedings of
SIGGRAPH’2011 30.4 (July 2011), Article No. 73.

[FCG00] Eric Ferley, Marie-Paule Cani, and Jean-Dominique Gascuel. “Prac-
tical Volumetric Sculpting”. In: Visual Computer 16.8 (2000),
pp. 469–480.

[FDL07] William Fong, Eric Darve, and Adrian Lew. “Stability of Asyn-
chronous Variational Integrators”. In: Proceedings of the 21st In-
ternational Workshop on Principles of Advanced and Distributed
Simulation. PADS ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 38–44.

[FF01] Nick Foster and Ronald Fedkiw. “Practical Animation of Liquids”.
In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. ACM,
2001, pp. 23–30.

[FL04] Raanan Fattal and Dani Lischinski. “Target-driven Smoke An-
imation”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 441–
448.

[FSH11] B. Fierz, J. Spillmann, and M. Harders. “Element-wise Mixed
Implicit-explicit Integration for Stable Dynamic Simulation of
Deformable Objects”. In: Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA
’11. Vancouver, British Columbia, Canada: ACM, 2011, pp. 257–
266.

[FTS06] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. “Vec-
tor field based shape deformations”. In: ACM TOG, proc. of
SIGGRAPH. 2006.

[FWD14] F. Ferstl, R. Westermann, and C. Dick. “Large-Scale Liquid
Simulation on Adaptive Hexahedral Grids”. In: Visualization
and Computer Graphics, IEEE Transactions on PP.99 (2014),
pp. 1–1.

[Gay+07] Russell Gayle, Stephane Redon, Avneesh Sud, Ming C Lin, and
Dinesh Manocha. “Efficient motion planning of highly articu-
lated chains using physics-based sampling”. In: Robotics and Au-
tomation, 2007 IEEE International Conference on. IEEE. 2007,
pp. 3319–3326.

[GB14] Prashant Goswami and Christopher Batty. “Regional Time Step-
ping for SPH”. Anglais. In: Eurographics 2014. Ed. by Eric
Galin and Michael Wand. Eurographics Association, Apr. 2014,
pp. 45–48.

139

BIBLIOGRAPHY

[GBF03] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. “Non-
convex Rigid Bodies with Stacking”. In: ACM Trans. Graph.
22.3 (July 2003), pp. 871–878.

[GCS99] Fabio Ganovelli, Paolo Cignoni, and Roberto Scopigno. “In-
troducing Multiresolution Representation in Deformable Object
Modeling”. In: Proceedings of SCCG99. 1999, pp. 149–158.

[GH04] S. T. Greenwood and D. H. House. “Better with Bubbles: En-
hancing the Visual Realism of Simulated Fluid”. In: Proceedings
of the 2004 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. SCA ’04. Grenoble, France: Eurographics
Association, 2004, pp. 287–296.

[Gil+11] Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Di-
nesh K. Pai. “Frame-based Elastic Models”. In: ACM Trans.
Graph. 30.2 (Apr. 2011), 15:1–15:12.

[GKS02] Eitan Grinspun, Petr Krysl, and Peter Schröder. “CHARMS: A
Simple Framework for Adaptive Simulation”. In: ACM Trans.
Graph. 21.3 (July 2002), pp. 281–290.

[GLM06] Russell Gayle, Ming C. Lin, and Dinesh Manocha. “Adaptive Dy-
namics with Efficient Contact Handling for Articulated Robots.”
In: Robotics: Science and Systems. The MIT Press, 2006, pp. 231–
238.

[Goe+15] Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov,
andMathieu Desbrun. “Power Particles: An Incompressible Fluid
Solver Based on Power Diagrams”. In: ACM Trans. Graph. 34.4
(July 2015), 50:1–50:11.

[GP11] Prashant Goswami and Renato Pajarola. “Time Adaptive Ap-
proximate SPH”. In: Proceedings Eurographics Workshop on
Virtual Reality Interaction and Physical Simulation. 2011.

[Hag+05] Trond Runar Hagen, Jon M Hjelmervik, K-A Lie, Jostein R
Natvig, and M Ofstad Henriksen. “Visual simulation of shallow-
water waves”. In: Simulation Modelling Practice and Theory 13.8
(2005), pp. 716–726.

[Hah+12] Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert
Sumner, Stelian Coros, and Markus Gross. “Rig-space Physics”.
In: ACM Trans. Graph. 31.4 (July 2012), 72:1–72:8.

[Hah+14] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W.
Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus
Gross. “Subspace Clothing Simulation Using Adaptive Bases”.
In: ACM Trans. Graph. 33.4 (July 2014), 105:1–105:9.

140

BIBLIOGRAPHY

[Har+09] David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tam-
storf, and Eitan Grinspun. “Asynchronous Contact Mechanics”.
In: ACM Trans. Graph. 28.3 (July 2009), 87:1–87:12.

[Heg+13] Jan Hegemann, Chenfanfu Jiang, Craig Schroeder, and Joseph M
Teran. “A level set method for ductile fracture”. In: Proceed-
ings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM. 2013, pp. 193–201.

[HHK08] Woosuck Hong, Donald H. House, and John Keyser. “Adaptive
Particles for Incompressible Fluid Simulation”. In: Vis. Comput.
24.7 (July 2008), pp. 535–543.

[Hil+11] Klaus Hildebrandt, Christian Schulz, Christoph Von Tycowicz,
and Konrad Polthier. “Interactive Surface Modeling Using Modal
Analysis”. In: ACM Trans. Graph. 30.5 (Oct. 2011), 119:1–
119:11.

[Hil+12] Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz,
and Konrad Polthier. “Interactive Spacetime Control of De-
formable Objects”. In: ACM Trans. Graph. 31.4 (July 2012),
71:1–71:8.

[HK04] Jeong-Mo Hong and Chang-Hun Kim. “Controlling Fluid Anima-
tion with Geometric Potential: Research Articles”. In: Comput.
Animat. Virtual Worlds 15.3-4 (July 2004), pp. 147–157.

[HK05] Jeong-Mo Hong and Chang-Hun Kim. “Discontinuous Fluids”.
In: ACM Trans. Graph. 24.3 (July 2005), pp. 915–920.

[HK13] Ruoguan Huang and John Keyser. “Automated sampling and con-
trol of gaseous simulations”. English. In: The Visual Computer
29.6-8 (2013), pp. 751–760.

[HNC02] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. “In-
teractive Animation of Ocean Waves”. In: ACM-SIGGRAPH -
EG Symposium on Computer Animation (SCA’02). San Antonio,
United States, July 2002.

[Hon+08] Jeong-Mo Hong, Ho-Young Lee, Jong-Chul Yoon, and Chang-
Hun Kim. “Bubbles Alive”. In: ACM Trans. Graph. 27.3 (Aug.
2008), 48:1–48:4.

[Hop96] Hugues Hoppe. “Progressive Meshes”. In: Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996,
pp. 99–108.

[Hor15] Christopher J Horvath. “Empirical directional wave spectra for
computer graphics”. In: Proceedings of the 2015 Symposium on
Digital Production. ACM. 2015, pp. 29–39.

141

BIBLIOGRAPHY

[HPH96] Dave Hutchinson, Martin Preston, and Terry Hewitt. “Adaptive
Refinement for Mass/Spring Simulations”. In: Proceedings of
the Eurographics Workshop on Computer Animation and Simula-
tion ’96. Poitiers, France: Springer-Verlag New York, Inc., 1996,
pp. 31–45.

[HS13] C Horvath and Barbara Solenthaler. Mass Preserving Multi-Scale
SPH. Pixar Technical Memo 13-04. Pixar Animation Studios,
2013.

[HW04] Nathan Holmberg and Burkhard C. Wünsche. “EfficientModeling
and Rendering of Turbulent Water over Natural Terrain”. In:
Proceedings of the 2Nd International Conference on Computer
Graphics and Interactive Techniques in Australasia and South
East Asia. GRAPHITE ’04. Singapore: ACM, 2004, pp. 15–22.

[HZ13] David Harmon and Denis Zorin. “Subspace Integration with
Local Deformations”. In: ACM Trans. Graph. 32.4 (July 2013),
107:1–107:10.

[Ihm+10] Markus Ihmsen, Nadir Akinci, Marc Gissler, andMatthias Teschner.
“Boundary Handling and Adaptive Time-stepping for PCISPH”.
In: Proceedings of the Seventh Workshop on Virtual Reality In-
teractions and Physical Simulations, VRIPHYS 2010, Copen-
hagen, Denmark, 2010. Ed. by Kenny Erleben, Jan Bender, and
Matthias Teschner. Eurographics Association, 2010, pp. 79–88.

[Ihm+11] Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias
Teschner. “A Parallel SPH Implementation on Multi-Core CPUs”.
In: Computer Graphics Forum (2011).

[Ihm+12] Markus Ihmsen, Nadir Akinci, Gizem Akinci, andMatthias Teschner.
“Unified Spray, Foam and Air Bubbles for Particle-based Fluids”.
In: Vis. Comput. 28.6-8 (June 2012), pp. 669–677.

[Ihm+14a] Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher
Horvath, and Matthias Teschner. “Implicit Incompressible SPH”.
In: IEEE Transactions on Visualization and Computer Graphics
20.3 (2014), pp. 426–435.

[Ihm+14b] Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas
Kolb, and Matthias Teschner. “SPH Fluids in Computer Graph-
ics”. In: Eurographics 2014 - State of the Art Reports. Ed. by
Sylvain Lefebvre and Michela Spagnuolo. The Eurographics As-
sociation, 2014.

[Irv+06] Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald
Fedkiw. “Efficient Simulation of Large Bodies of Water by Cou-
pling Two and Three Dimensional Techniques”. In: ACM Trans.
Graph. 25.3 (July 2006), pp. 805–811.

142

BIBLIOGRAPHY

[Jef85] David R. Jefferson. “Virtual Time”. In: ACM Trans. Program.
Lang. Syst. 7.3 (July 1985), pp. 404–425.

[Jia+16] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stom-
akhin, and Andrew Selle. “The Material Point Method for Sim-
ulating Continuum Materials”. In: ACM SIGGRAPH 2016
Courses. SIGGRAPH ’16. Anaheim, California: ACM, 2016,
24:1–24:52.

[Jia07] Xiangmin Jiao. “Face Offsetting: A Unified Approach for Explicit
Moving Interfaces”. In: J. Comput. Phys. 220.2 (Jan. 2007),
pp. 612–625.

[Jon+14] Ben Jones, Stephen Ward, Ashok Jallepalli, Joseph Perenia, and
Adam Bargteil. “Deformation Embedding for Point-Based Elasto-
plastic Simulation”. In: ACM Trans. Graph. 33.2 (Mar. 2014).

[Jon+16] Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W. Bargteil.
“Example-based Plastic Deformation of Rigid Bodies”. In: ACM
Trans. Graph. 35.4 (July 2016).

[JW15] Stefan Jeschke and Chris Wojtan. “Water Wave Animation via
Wavefront Parameter Interpolation”. In: ACM Transactions on
Graphics (TOG) 34.3 (2015), p. 27.

[Kau+09] Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grin-
spun, and Markus Gross. “Enrichment Textures for Detailed
Cutting of Shells”. In: ACM Trans. Graph. 28.3 (July 2009),
50:1–50:10.

[Kau+14] Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-
Marie Aubry, and Eitan Grinspun. “Adaptive Nonlinearity for
Collisions in Complex Rod Assemblies”. In: ACM Trans. Graph.
33.4 (July 2014), 123:1–123:12.

[KB14] Todd Keeler and Robert Bridson. “Ocean waves animation using
boundary integral equations and explicit mesh tracking”. In:
ACM SIGGRAPH 2014 Posters. ACM. 2014, p. 11.

[KGL07] Ilknur Kabul, Russell Gayle, andMing C. Lin. “Cable Route Plan-
ning in Complex Environments Using Constrained Sampling”. In:
Proceedings of the 2007 ACM Symposium on Solid and Physical
Modeling. SPM ’07. Beijing, China: ACM, 2007, pp. 395–402.

[Kim+06] Janghee Kim, Deukhyun Cha, Byungjoon Chang, Bonki Koo, and
Insung Ihm. “Practical Animation of Turbulent Splashing Wa-
ter”. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’06. Vienna, Austria:
Eurographics Association, 2006, pp. 335–344.

143

BIBLIOGRAPHY

[Kim+07] Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao,
and Jarek Rossignac. “Simulation of Bubbles in Foam with the
Volume Control Method”. In: ACM Trans. Graph. 26.3 (July
2007).

[Kim10] Byungmoon Kim. “Multi-phase Fluid Simulations Using Regional
Level Sets”. In: ACM Trans. Graph. 29.6 (Dec. 2010), 175:1–
175:8.

[KJ09] Theodore Kim and Doug L. James. “Skipping Steps in De-
formable Simulation with Online Model Reduction”. In: ACM
Trans. Graph. 28.5 (Dec. 2009), 123:1–123:9.

[KLB14] Dan Koschier, Sebastian Lipponer, and Jan Bender. “Adaptive
Tetrahedral Meshes for Brittle Fracture Simulation”. In: Pro-
ceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. Copenhagen, Denmark: Eurographics
Association, 2014.

[Kli+06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez,
and James F. O’Brien. “Fluid Animation with Dynamic Meshes”.
In: ACM Trans. Graph. 25.3 (July 2006), pp. 820–825.

[KM90] Michael Kass and Gavin Miller. “Rapid, stable fluid dynamics for
computer graphics”. In: ACM SIGGRAPH Computer Graphics.
Vol. 24. 4. ACM. 1990, pp. 49–57.

[KMD06] Yootai Kim, Raghu Machiraju, and Thompson David. “Path-
based Control of Smoke Simulations”. In: Proceedings of the
2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’06. Vienna, Austria: Eurographics Association,
2006, pp. 33–42.

[KNO14] Woojong Koh, Rahul Narain, and James F. O’Brien. “View-
Dependent Adaptive Cloth Simulation”. In: The Eurographics
/ ACM SIGGRAPH Symposium on Computer Animation, SCA
’14, Copenhagen, Denmark, 2014. Eurographics Association, 2014,
pp. 159–166.

[KRK08a] Sujeong Kim, Stephane Redon, and J. Kim Young. “Continuous
Collision Detection for Adaptive Simulation of Articulated Bod-
ies”. English. In: Visual Computer 24.4 (Apr. 2008), pp. 261–
269.

[KRK08b] Sujeong Kim, Stephane Redon, and Young J. Kim. “View-dependent
dynamics of articulated bodies”. In: Computer Animation and
Virtual Worlds 19.3-4 (2008), pp. 223–233.

[Kru56] Joseph B Kruskal. “On the shortest spanning subtree of a graph
and the traveling salesman problem”. In: Proceedings of the
American Mathematical society 7.1 (1956), pp. 48–50.

144

BIBLIOGRAPHY

[KS07] Bryan Matthew Klingner and Jonathan Richard Shewchuk. “Ag-
gressive Tetrahedral Mesh Improvement”. In: Proceedings of the
16th International Meshing Roundtable. Oct. 2007, pp. 3–23.

[LC96] Alexis Lamouret and Marie-Paule Cani. “Scripting Interactive
Physically-Based Motions with Relative Paths and Synchroniza-
tion.” In: Computer Graphics Forum. Computer Graphics Forum
15.1 (1996). Preliminary version in Graphics Interface 95, pub-
lished under the name Marie-Paule Gascuel, pp. 25–34.

[Lej+15] Thibault Lejemble, Amélie Fondevilla, Nicolas Durin, Thibault
Blanc-Beyne, Camille Schreck, Pierre-Luc Manteaux, Paul G.
Kry, and Marie-Paule Cani. “Interactive Procedural Simulation
of Paper Tearing with Sound”. In: Proceedings of the 8th ACM
SIGGRAPH Conference on Motion in Games. MIG ’15. Paris,
France: ACM, 2015, pp. 143–149.

[Lew+04] A. Lew, J. E. Marsden, M. Ortiz, and M. West. “Variational
time integrators”. In: Int. J. Numer. Methods Eng 60 (2004),
pp. 153–212.

[LFO05] Frank Losasso, Ronald Fedkiw, and Stanley Osher. “Spatially
adaptive techniques for level set methods and incompressible flow”.
In: Computers and Fluids 35 (2005).

[LGF04] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. “Simulating
Water and Smoke with an Octree Data Structure”. In: ACM
Trans. Graph. 23.3 (Aug. 2004), pp. 457–462.

[Li+14] Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun
Bao, and Mathieu Desbrun. “Space-time Editing of Elastic Mo-
tion Through Material Optimization and Reduction”. In: ACM
Trans. Graph. 33.4 (July 2014), 108:1–108:10.

[Los+08] Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw.
“Two-Way Coupled SPH and Particle Level Set Fluid Simulation”.
In: IEEE Transactions on Visualization and Computer Graphics
14.4 (July 2008), pp. 797–804.

[LP02] Anita T Layton and Michiel van de Panne. “A numerically effi-
cient and stable algorithm for animating water waves”. In: The
Visual Computer 18.1 (2002), pp. 41–53.

[LR56] P. D. Lax and R. D. Richtmyer. “Survey of the stability of linear
finite difference equations”. In: Communications on Pure and
Applied Mathematics 9.2 (1956), pp. 267–293.

[LS07] François Labelle and Jonathan Richard Shewchuk. “Isosurface
Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles”.
In: ACM Trans. Graph. 26.3 (July 2007).

145

BIBLIOGRAPHY

[LV05] Ling Li and Vasily Volkov. “Cloth Animation with Adaptively
Refined Meshes”. In: Proceedings of the Twenty-eighth Aus-
tralasian Conference on Computer Science - Volume 38. ACSC
’05. Newcastle, Australia: Australian Computer Society, Inc.,
2005, pp. 107–113.

[Man+13] Pierre-Luc Manteaux, François Faure, Stephane Redon, andMarie-
Paule Cani. “Exploring the Use of Adaptively Restrained Par-
ticles for Graphics Simulations”. In: VRIPHYS 2013 - 10th
Workshop on Virtual Reality Interaction and Physical Simulation.
VRIPHYS 2013 - 10th Workshop on Virtual Reality Interaction
and Physical Simulation. Lille, France: Eurographics Association,
2013, pp. 17–24.

[Man+15] Pierre-Luc Manteaux, Wei-Lun Sun, François Faure, Marie-Paule
Cani, and James F. O’Brien. “Interactive Detailed Cutting of
Thin Sheets”. In: Proceedings of the 8th ACM SIGGRAPH Con-
ference on Motion in Games. MIG ’15. Paris, France: ACM,
2015, pp. 125–132.

[Man+16] P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and
M.-P. Cani. “Adaptive Physically Based Models in Computer
Graphics”. In: Computer Graphics Forum (2016), n/a–n/a.

[Mar+11] Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and
Markus Gross. “Example-based Elastic Materials”. In: ACM
SIGGRAPH 2011 Papers. SIGGRAPH ’11. Vancouver, British
Columbia, Canada: ACM, 2011, 72:1–72:8.

[MB12] Marek Krzysztof Misztal and Jakob Andreas Bærentzen. “Topology-
adaptive Interface Tracking Using the Deformable Simplicial Com-
plex”. In: ACM Trans. Graph. 31.3 (June 2012), 24:1–24:12.

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. “A Virtual Node
Algorithm for Changing Mesh Topology During Simulation”. In:
ACM Trans. Graph. 23.3 (Aug. 2004), pp. 385–392.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. “Particle-
based Fluid Simulation for Interactive Applications”. In: Pro-
ceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. SCA ’03. San Diego, California: Euro-
graphics Association, 2003, pp. 154–159.

[McN+04] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos
Stam. “Fluid Control Using the Adjoint Method”. In: ACM
Trans. Graph. 23.3 (Aug. 2004), pp. 449–456.

146

BIBLIOGRAPHY

[MCS15] Nathan Mitchell, Court Cutting, and Eftychios Sifakis. “GRID-
iron: An Interactive Authoring and Cognitive Training Founda-
tion for Reconstructive Plastic Surgery Procedures”. In: ACM
Trans. Graph. 34.4 (July 2015), 43:1–43:12.

[Mer+15] Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore
Kim, and Derek Nowrouzezahrai. “Surface Turbulence for Particle-
based Liquid Simulations”. In: ACM Trans. Graph. 34.6 (Oct.
2015), 202:1–202:10.

[Mir00] Brian Mirtich. “Timewarp Rigid Body Simulation”. In: Proceed-
ings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’00. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 2000, pp. 193–200.

[Mis+12] M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. Bunch
Christensen, J. A. Bærentzen, and R. Bridson. “Multiphase Flow
of Immiscible Fluids on Unstructured Moving Meshes”. In: Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’12. Lausanne, Switzerland: Euro-
graphics Association, 2012, pp. 97–106.

[Mit+15] Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Efty-
chios Sifakis. “Non-manifold Level Sets: A Multivalued Implicit
Surface Representation with Applications to Self-collision Pro-
cessing”. In: ACM Trans. Graph. 34.6 (Oct. 2015), 247:1–247:9.

[MM13] Jamie Madill and David Mould. “Target Particle Control of
Smoke Simulation”. In: Proceedings of Graphics Interface 2013.
GI ’13. Regina, Sascatchewan, Canada: Canadian Information
Processing Society, 2013, pp. 125–132.

[Mol+03] Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fed-
kiw. “A Crystalline, Red Green Strategy for Meshing Highly
Deformable Objects with Tetrahedra”. In: IMR. 2003, pp. 103–
114.

[Mon05] J. J. Monaghan. “Smoothed particle hydrodynamics”. In: Re-
ports on Progress in Physics 68.8 (Aug. 2005), pp. 1703–1759.

[Mon92] J. J. Monaghan. “Smoothed particle hydrodynamics”. In: An-
nual Review of Astronomy and Astrophysics 30 (1992), pp. 543–
574.

[MR07] S. Morin and S. Redon. “A Force-Feedback Algorithm for Adap-
tive Articulated-Body Dynamics Simulation”. In: Robotics and
Automation, 2007 IEEE International Conference on. Apr. 2007,
pp. 3245–3250.

147

BIBLIOGRAPHY

[Mül+04] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M.
Alexa. “Point Based Animation of Elastic, Plastic and Melting
Objects”. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’04. Grenoble, France:
Eurographics Association, 2004, pp. 141–151.

[Mül+08] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. “Real
Time Physics: Class Notes”. In: ACM SIGGRAPH 2008 Classes.
SIGGRAPH ’08. Los Angeles, California: ACM, 2008, 88:1–
88:90.

[MY97] David Mould and Yee-Hong Yang. “Modeling water for computer
graphics”. In: Computers & Graphics 21.6 (1997), pp. 801–814.

[Nar+07] Rahul Narain, Vivek Kwatra, Huai-Ping Lee, Theodore Kim,
Mark Carlson, and Ming C. Lin. “Feature-guided Dynamic Tex-
ture Synthesis on Continuous Flows”. In: Proceedings of the 18th
Eurographics Conference on Rendering Techniques. EGSR’07.
Grenoble, France: Eurographics Association, 2007, pp. 361–370.

[NB11] Michael B. Nielsen and Robert Bridson. “Guide Shapes for High
Resolution Naturalistic Liquid Simulation”. In: ACM Trans.
Graph. 30.4 (July 2011), 83:1–83:8.

[NC10] Michael B. Nielsen and Brian B. Christensen. “Improved Varia-
tional Guiding of Smoke Animations”. In: Computer Graphics
Forum 29.2 (2010), pp. 705–712.

[Nea+06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxer-
man, and Mark Carlson. “Physically Based Deformable Models in
Computer Graphics”. In: Computer Graphics Forum 25.4 (2006),
pp. 809–836.

[Nes+09] Matthieu Nesme, Paul Kry, Lenka Jerabkova, and François Faure.
“Preserving Topology and Elasticity for Embedded Deformable
Models”. In: ACM Transactions on Graphics. Proceedings of
ACM SIGGRAPH 2009 28.3 (Aug. 2009), Article No. 52.

[Nie+09] Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug
Roble, and Ken Museth. “Guiding of Smoke Animations Through
Variational Coupling of Simulations at Different Resolutions”. In:
Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation. SCA ’09. New Orleans, Louisiana:
ACM, 2009, pp. 217–226.

[NPO13] Rahul Narain, Tobias Pfaff, and James F. O’Brien. “Folding and
Crumpling Adaptive Sheets”. In: ACM Trans. Graph. 32.4 (July
2013), 51:1–51:8.

148

BIBLIOGRAPHY

[NSO12] Rahul Narain, Armin Samii, and James F. O’Brien. “Adaptive
Anisotropic Remeshing for Cloth Simulation”. In: ACM Trans.
Graph. 31.6 (Nov. 2012), 152:1–152:10.

[OBH02] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins.
“Graphical Modeling and Animation of Ductile Fracture”. In:
Proceedings of ACM SIGGRAPH 2002. San Antonio, Texas:
ACM Press, Aug. 2002, pp. 291–294.

[OH95] J. F. O’Brien and J. K. Hodgins. “Dynamic Simulation of Splash-
ing Fluids”. In: Proceedings of the Computer Animation. CA ’95.
IEEE Computer Society, 1995, pp. 198–.

[OH99] James F. O’Brien and Jessica K. Hodgins. “Graphical Modeling
and Animation of Brittle Fracture”. In: Proceedings of ACM
SIGGRAPH 1999. ACM Press/Addison-Wesley Publishing Co.,
Aug. 1999, pp. 137–146.

[OK12] Jens Orthmann and Andreas Kolb. “Temporal Blending for Adap-
tive SPH”. In: Comp. Graph. Forum 31.8 (Dec. 2012), pp. 2436–
2449.

[Ota+07] Miguel A. Otaduy, Daniel Germann, Stephane Redon, andMarkus
Gross. “Adaptive Deformations with Fast Tight Bounds”. In:
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation. SCA ’07. San Diego, California:
Eurographics Association, 2007, pp. 181–190.

[Pan+13] Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hu-
jun Bao. “Interactive Localized Liquid Motion Editing”. In:
ACM Trans. Graph. 32.6 (Nov. 2013), 184:1–184:10.

[Pat+13] Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald
Fedkiw. “A Hybrid Lagrangian-Eulerian Formulation for Bubble
Generation and Dynamics”. In: Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’13. Anaheim, California: ACM, 2013, pp. 105–114.

[Pau+05] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus
Gross, and Leonidas J. Guibas. “Meshless Animation of Fractur-
ing Solids”. In: ACM Trans. Graph. 24.3 (July 2005), pp. 957–
964.

[PCS04] Frédéric Pighin, Jonathan M. Cohen, and Maurya Shah. “Mod-
eling and Editing Flows Using Advected Radial Basis Functions”.
In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. SCA ’04. Grenoble, France:
Eurographics Association, 2004, pp. 223–232.

149

BIBLIOGRAPHY

[Pee+15] Andreas Peer, Markus Ihmsen, Jens Cornelis, andMatthias Teschner.
“An Implicit Viscosity Formulation for SPH Fluids”. In: ACM
Trans. Graph. 34.4 (July 2015), 114:1–114:10.

[Pfa+14] Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F.
O’Brien. “Adaptive Tearing and Cracking of Thin Sheets”. In:
ACM Trans. Graph. 33.4 (July 2014), 110:1–110:9.

[PO09] Eric G. Parker and James F. O’Brien. “Real-Time Deformation
and Fracture in a Game Environment”. In: Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. Aug. 2009, pp. 156–166.

[Pop+00] Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran Popović,
and Andrew Witkin. “Interactive Manipulation of Rigid Body
Simulations”. In: Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’00.
New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 2000, pp. 209–217.

[Pro97] Xavier Provot. “Collision and self-collision handling in cloth
model dedicated to design garments”. English. In: Computer
Animation and Simulation ’97. Ed. by Daniel Thalmann and
Michiel van de Panne. Eurographics. Springer Vienna, 1997,
pp. 177–189.

[PSE03] Jovan Popović, Steven M. Seitz, and Michael Erdmann. “Motion
Sketching for Control of Rigid-body Simulations”. In: ACM
Trans. Graph. 22.4 (Oct. 2003), pp. 1034–1054.

[QLF16] Linhai Qiu, Wenlong Lu, and Ronald Fedkiw. “An Adaptive
Discretization of Compressible Flow Using a Multitude of Moving
Cartesian Grids”. In: J. Comput. Phys. 305.C (Jan. 2016),
pp. 75–110.

[Rav+12] Karthik Raveendran, Nils Thuerey, Chris Wojtan, and Greg Turk.
“Controlling Liquids Using Meshes”. In: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’12. Lausanne, Switzerland: Eurographics Association, 2012,
pp. 255–264.

[Rav+14] Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk.
“Blending Liquids”. In: ACM Trans. Graph. 33.4 (July 2014),
137:1–137:10.

[RGL05] Stephane Redon, Nico Galoppo, and Ming C. Lin. “Adaptive
Dynamics of Articulated Bodies”. In: ACM Trans. Graph. 24.3
(July 2005), pp. 936–945.

150

BIBLIOGRAPHY

[RK13] Olivier Rémillard and Paul G. Kry. “Embedded Thin Shells for
Wrinkle Simulation”. In: ACM Trans. Graph. 32.4 (July 2013),
50:1–50:8.

[RL06] Stephane Redon and C. Lin Ming. “An Efficient, Error-Bounded
Approximation Algorithm for Simulating Quasi-Statics of Com-
plex Linkages”. Anglais. In: Computer-Aided Design (2006).

[Rob+08] Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan
Su, and Ronald Fedkiw. “Two-way coupling of fluids to rigid and
deformable solids and shells”. In: ACM Transactions on Graphics
(TOG). Vol. 27. 3. ACM. 2008, p. 46.

[SA07] Olga Sorkine and Marc Alexa. “As-rigid-as-possible Surface Mod-
eling”. In: Proceedings of the Fifth Eurographics Symposium on
Geometry Processing. SGP ’07. Barcelona, Spain: Eurographics
Association, 2007, pp. 109–116.

[SCC11] Lucian Stanculescu, Raphaëlle Chaine, and Marie-Paule Cani.
“Freestyle: Sculpting meshes with self-adaptive topology”. In:
Computers & Graphics. 2011.

[Sch+14] Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel,
and Klaus Hildebrandt. “Animating Deformable Objects Using
Sparse Spacetime Constraints”. In: ACM Trans. Graph. 33.4
(July 2014), 109:1–109:10.

[Sch02] H. Schmidl. “Optimization-based animation”. PhD thesis. The
University of Miami, 2002.

[SDE05] Joshua Schpok, William Dwyer, and David S. Ebert. “Modeling
and Animating Gases with Simulation Features”. In: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. SCA ’05. Los Angeles, California: ACM,
2005, pp. 97–105.

[SDF07] Eftychios Sifakis, Kevin G. Der, and Ronald Fedkiw. “Arbitrary
Cutting of Deformable Tetrahedralized Objects”. In: Proceedings
of the 2007 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. SCA ’07. San Diego, California: Eurographics
Association, 2007, pp. 73–80.

[Sei+11] Martin Seiler, Denis Steinemann, Jonas Spillmann, and Matthias
Harders. “Robust Interactive Cutting Based on an Adaptive
Octree Simulation Mesh”. In: Vis. Comput. 27.6-8 (June 2011),
pp. 519–529.

[Ser+11] M. Servin, C. Lacoursière, F. Nordfelth, and K. Bodin. “Hybrid,
Multiresolution Wires with Massless Frictional Contacts”. In:
Visualization and Computer Graphics, IEEE Transactions on 17.7
(July 2011), pp. 970–982.

151

BIBLIOGRAPHY

[Ser86] Jean Serra. “Introduction to mathematical morphology”. In:
Computer vision, graphics, and image processing 35.3 (1986),
pp. 283–305.

[SG11] Barbara Solenthaler and Markus Gross. “Two-scale Particle Sim-
ulation”. In: ACM Trans. Graph. 30.4 (July 2011), 81:1–81:8.

[Sha+04] Maurya Shah, Jonathan M. Cohen, Sanjit Patel, Penne Lee,
and Frédéric Pighin. “Extended Galilean Invariance for Adap-
tive Fluid Simulation”. In: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA
’04. Grenoble, France: Eurographics Association, 2004, pp. 213–
221.

[She02] J Shewchuk. “What is a good linear finite element? interpolation,
conditioning, anisotropy, and quality measures (preprint)”. In:
University of California at Berkeley 73 (2002).

[Sif+07] Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fed-
kiw. “Hybrid Simulation of Deformable Solids”. In: Proceedings
of the 2007 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. SCA ’07. San Diego, California: Eurographics
Association, 2007, pp. 81–90.

[SLD09] Timothy J. R. Simnett, Stephen D. Laycock, and Andy M. Day.
“An Edge-based Approach to Adaptively Refining a Mesh for
Cloth Deformation”. In: TPCG. 2009, pp. 77–84.

[SLN08] M Servin, C Lacoursiere, and F Nordfelth. “Adaptive resolu-
tion in physics based virtual environments”. In: SIGRAD 2008
(2008).

[SOG09] Denis Steinemann, Miguel A. Otaduy, and Markus Gross. “Split-
ting meshless deforming objects with explicit surface tracking”.
In: Graphical Models 71.6 (2009). 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA 2006), pp. 209–220.

[SP09] B. Solenthaler and R. Pajarola. “Predictive-corrective Incom-
pressible SPH”. In: ACM Trans. Graph. 28.3 (July 2009), 40:1–
40:6.

[SS10] Ryan Schmidt and Karan Singh. “Meshmixer: an interface for
rapid mesh composition”. In: ACM SIGGRAPH 2010 Talks.
ACM. 2010.

[SSF08] Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. “Two-way
coupling of rigid and deformable bodies”. In: Proceedings of the
2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. Eurographics Association. 2008, pp. 95–103.

152

BIBLIOGRAPHY

[ST08] Jonas Spillmann and Matthias Teschner. “An Adaptive Contact
Model for the Robust Simulation of Knots”. In: Comput. Graph.
Forum 27.2 (2008), pp. 497–506.

[Sta99] Jos Stam. “Stable Fluids”. In: Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’99. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 121–128.

[Str04] J. Strikwerda. Finite Difference Schemes and Partial Differential
Equations, Second Edition. Society for Industrial and Applied
Mathematics, 2004. eprint: http://epubs.siam.org/doi/pdf/
10.1137/1.9780898717938.

[Sue+11] Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh
K. Pai. “Large-scale Dynamic Simulation of Highly Constrained
Strands”. In: ACM Trans. Graph. 30.4 (July 2011), 39:1–39:10.

[SY04] Lin Shi and Yizhou Yu. “Visual smoke simulation with adaptive
octree refinement”. In: Proceedings of the Seventh IASTED In-
ternational Conference on Computer Graphics and Imaging. 2004,
pp. 13–19.

[SY05a] Lin Shi and Yizhou Yu. “Controllable Smoke Animation with
Guiding Objects”. In: ACM Trans. Graph. 24.1 (Jan. 2005),
pp. 140–164.

[SY05b] Lin Shi and Yizhou Yu. “Taming Liquids for Rapidly Changing
Targets”. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’05. Los Angeles, Cal-
ifornia: ACM, 2005, pp. 229–236.

[Tak+03] Tsunemi Takahashi, Hiroko Fujii, Atsushi Kunimatsu, Kazuhiro
Hiwada, Takahiro Saito, Ken Tanaka, and Heihachi Ueki. “Real-
istic Animation of Fluid with Splash and Foam”. In: Computer
Graphics Forum 22.3 (2003), pp. 391–400.

[Tak+11] Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi,
Tamy Boubekeur, and Olga Sorkine. “GeoBrush: Interactive
Mesh Geometry Cloning”. In: Computer Graphics Forum (pro-
ceedings of EUROGRAPHICS) 30.2 (2011), pp. 613–622.

[Tak+15] Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki
Nishita, and Ming C. Lin. “Implicit Formulation for SPH-based
Viscous Fluids”. In: Computer Graphics Forum 34.2 (2015),
pp. 493–502.

[Ten+15] Yun Teng, Mark Meyer, Tony DeRose, and Theodore Kim. “Sub-
space Condensation: Full Space Adaptivity for Subspace Defor-
mations”. In: ACM Trans. Graph. 34.4 (July 2015), 76:1–76:9.

153

http://epubs.siam.org/doi/pdf/10.1137/1.9780898717938
http://epubs.siam.org/doi/pdf/10.1137/1.9780898717938

BIBLIOGRAPHY

[Tes+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L.
Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-
Thalmann, W. Strasser, and P. Volino. “Collision Detection for
Deformable Objects”. In: Computer Graphics Forum 24.1 (2005),
pp. 61–81.

[Tes04a] Jerry Tessendorf. “Interactive water surfaces”. In: Game Pro-
gramming Gems 4 (2004), pp. 265–274.

[Tes04b] Jerry Tessendorf. “Simulating Ocean Surface”. In: Siggraph
course notes. ACM, 2004.

[Thü+06] N. Thürey, R. Keiser, M. Pauly, and U. Rüde. “Detail-preserving
Fluid Control”. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’06. Vienna, Austria:
Eurographics Association, 2006, pp. 7–12.

[TJ07] Christopher D. Twigg and Doug L. James. “Many-worlds Brows-
ing for Control of Multibody Dynamics”. In: ACM Trans. Graph.
26.3 (July 2007).

[Tou+14] Maxime Tournier, Matthieu Nesme, François Faure, and Ben-
jamin Gilles. “Seamless Adaptivity of Elastic Models”. English.
In: Graphics Interface. Ed. by Paul G. Kry and Andrea Bunt.
Canadian Information Processing Society Toronto, May 2014,
pp. 17–24.

[TPS08] Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer.
“Asynchronous cloth simulation”. In: Computer Graphics Inter-
national (2008).

[TRS06] Nils Thürey, Ulrich Rüde, and Marc Stamminger. “Animation of
Open Water Phenomena with Coupled Shallow Water and Free
Surface Simulations”. In: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA
’06. Vienna, Austria: Eurographics Association, 2006, pp. 157–
164.

[VB05] J. Villard and H. Borouchaki. “Adaptive Meshing for Cloth An-
imation”. In: Eng. with Comput. 20.4 (Aug. 2005), pp. 333–
341.

[Wan+13] Chang-Bo Wang, Qiang Zhang, Fan-Long Kong, and Hong Qin.
“Hybrid Particle-grid Fluid Animation with Enhanced Details”.
In: Vis. Comput. 29.9 (Sept. 2013), pp. 937–947.

[Wan+14] Yuting Wang, Chenfanfu Jiang, Craig Schroeder, and Joseph
Teran. “An Adaptive Virtual Node Algorithm with Robust Mesh
Cutting”. In: Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation. Ed. by Vladlen Koltun and Eftychios
Sifakis. The Eurographics Association, 2014.

154

BIBLIOGRAPHY

[WBK01] Andrew Witkin, David Baraff, and Michael Kass. “Physically
Based Modeling”. In: Online SIGGRAPH Course Notes. 2001.

[WDW11] Jun Wu, Christian Dick, and Rüdiger Westermann. “Interactive
High-Resolution Boundary Surfaces for Deformable Bodies with
Changing Topology”. In: Proceedings of 8th Workshop on Virtual
Reality Interaction and Physical Simulation (VRIPHYS) 2011.
2011, pp. 29–38.

[WDW13] Jun Wu, Christian Dick, and Rüdiger Westermann. “Efficient
Collision Detection for Composite Finite Element Simulation of
Cuts in Deformable Bodies”. In: The Visual Computer (Proc.
CGI 2013) 29.6-8 (2013), pp. 739–749.

[Wic+10] Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian
Burke, Jonathan R. Shewchuk, and James F. O’Brien. “Dynamic
Local Remeshing for Elastoplastic Simulation”. In: ACM Trans.
Graph. 29.4 (July 2010), 49:1–49:11.

[WK88] Andrew Witkin and Michael Kass. “Spacetime Constraints”. In:
Proceedings of the 15th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’88. New York, NY,
USA: ACM, 1988, pp. 159–168.

[WMT06] Chris Wojtan, Peter J Mucha, and Greg Turk. “Keyframe con-
trol of complex particle systems using the adjoint method”. In:
Proceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation. Eurographics Association. 2006,
pp. 15–23.

[WT08] Chris Wojtan and Greg Turk. “Fast Viscoelastic Behavior with
Thin Features”. In: ACM Trans. Graph. 27.3 (Aug. 2008), 47:1–
47:8.

[Wu+01] Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Ten-
dick. “Adaptive Nonlinear Finite Elements for Deformable Body
Simulation Using Dynamic Progressive Meshes”. In: Computer
Graphics Forum 20.3 (2001), pp. 349–358.

[WWD14] Jun Wu, Rüdiger Westermann, and Christian Dick. “Real-Time
Haptic Cutting of High Resolution Soft Tissues”. In: Studies in
Health Technology and Informatics (Proc. Medicine Meets Virtual
Reality 2014) 196 (2014). Published by IOS Press, pp. 469–475.

[WWD15] Jun Wu, Rüdiger Westermann, and Christian Dick. “A Survey of
Physically Based Simulation of Cuts in Deformable Bodies”. In:
Computer Graphics Forum (2015).

155

BIBLIOGRAPHY

[Yan+09] He Yan, Zhangye Wang, Jian He, Xi Chen, Changbo Wang,
and Qunsheng Peng. “Real-time Fluid Simulation with Adap-
tive SPH”. In: Comput. Animat. Virtual Worlds 20.2-3 (June
2009), pp. 417–426.

[Yan+13] Ben Yang, Youquan Liu, Lihua You, and Xiaogang Jin. “Techni-
cal Section: A Unified Smoke Control Method Based on Signed
Distance Field”. In: Comput. Graph. 37.7 (Nov. 2013), pp. 775–
786.

[YCZ11] Zhi Yuan, Fan Chen, and Ye Zhao. “Pattern-guided Smoke An-
imation with Lagrangian Coherent Structure”. In: ACM Trans.
Graph. 30.6 (Dec. 2011), 136:1–136:8.

[ZB05] Yongning Zhu and Robert Bridson. “Animating Sand As a Fluid”.
In: ACM Trans. Graph. 24.3 (July 2005), pp. 965–972.

[Zhu+13] Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and
Ronald Fedkiw. “A New Grid Structure for Domain Extension”.
In: ACM Trans. Graph. 32.4 (July 2013), 63:1–63:12.

[Zhu+14] Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald
Fedkiw. “Codimensional Surface Tension Flow on Simplicial Com-
plexes”. In: ACM Trans. Graph. 33.4 (July 2014), 111:1–111:11.

[ZSP08] Yanci Zhang, Barbara Solenthaler, and Renato Pajarola. “Adap-
tive Sampling and Rendering of Fluids on the GPU”. In: Pro-
ceedings of the Fifth Eurographics / IEEE VGTC Conference on
Point-Based Graphics. SPBG’08. Los Angeles, CA: Eurographics
Association, 2008, pp. 137–146.

156

List of Figures

2.1 STAR mechanics: Mass conservation 8
2.2 STAR mechanics: Momentum conservation 9
2.3 STAR mechanics: Eulerian vs. Lagrangian 11
2.4 STAR mechanics: Discretization 12
2.5 STAR mechanics: Shape functions 13
2.6 STAR mechanics: Spatial integration 14
2.7 STAR mechanics: Rectangle integration rules 16
2.8 STAR mechanics: Temporal integration 17
2.9 STAR mechanics: Cubic kernel . 20
2.10 STAR mechanics: Displacement field 24
2.11 STAR mechanics: Multi-layer framework 27
2.12 STAR control: Trial and error process 30
2.13 STAR control: Space-time constraints 31

3.1 STAR adaptivity: Taxonomy . 38
3.2 STAR adaptivity: Rigid body freezing 46
3.3 STAR adaptivity: Articulated rigid body freezing 48
3.4 STAR adaptivity: Tetrahedral remeshing 50
3.5 STAR adaptivity: Body-centered cubic mesh 54
3.6 STAR adaptivity: Refinement schemes for unstructured meshes . . 56
3.7 STAR adaptivity: Anisotropic remeshing of triangular meshes . . . 58
3.8 STAR adaptivity: Meshless techniques 60
3.9 STAR adaptivity: Hybrid refinement of meshes and particles . . . 62
3.10 STAR adaptivity: T-junction . 65
3.11 STAR adaptivity: p-adaptive techniques 67
3.12 STAR adaptivity: XFEM illustration 68

4.1 ARPS: Phase portrait of a ARPS harmonic oscillator 80
4.2 ARPS: Collision Cascade from [AR12] 81
4.3 ARPS: Phase portrait of a damped ARPS harmonic oscillator . . 85
4.4 ARPS: Dam break simulations . 86
4.5 ARPS: Permanent flow simulations 87
4.6 ARPS: Phase portrait of an implicit ARPS harmonic oscillator . . 89
4.7 ARPS: ARPS cloth simulation . 90

157

List of Figures

5.1 Frame-based cutting: Comparison of shape functions 97
5.2 Frame-based cutting: Voronoi shapefunction computation 98
5.3 Frame-based cutting: Non-manifold grid illustration 100
5.4 Frame-based cutting: Non-manifold grid building 100
5.5 Frame-based cutting: Spiral and Kirigami cutting examples 104
5.6 Frame-based cutting: Examples of detailed cutting 105

6.1 Fluid sculpting: Overview . 111
6.2 Fluid sculpting: Feature extraction 112
6.3 Fluid sculpting: Feature detection 114
6.4 Fluid sculpting: Feature aggregation 115
6.5 Fluid sculpting: Feature representation 118
6.6 Fluid sculpting: Copy/Paste . 118
6.7 Fluid sculpting: Boat wake . 121
6.8 Fluid sculpting: Drop on bunny . 122
6.9 Fluid sculpting: Droplets . 123

A.1 Frame-based cutting: Remeshing algorithm 131
A.2 Frame-based cutting: Edge splitting and vertex insertion 131
A.3 Frame-based cutting: Vertex splitting 131

158

List of Algorithms

1 ARPS: WCSPH simulation . 83
2 ARPS: WCSPH+ARPS simulation 84
3 ARPS: Implicit integration scheme 88
4 Frame-based cutting: Simulation loop 97
5 Frame-based cutting: Shapefunction computation 98
6 Frame-based cutting: Non-manifold grid building 101
7 Fluid sculpting: Aggregation 117
8 Frame-based cutting: Remeshing algorithm 130

159

List of Tables

4.1 ARPS: Dam break - Measurements 86
4.2 ARPS: Permanent flow - Measurements 86
4.3 ARPS: Implicit vs. Hybrid solver - Measurements 90
4.4 ARPS: Parameters for ARPS solver 91

5.1 Frame-based cutting: Resolution & timings 105
5.2 Frame-based cutting: Incremental update timings 106

160

	Contents
	Introduction
	A short story of physics-based animation
	Classical mechanics & physics-based animation
	Three challenges in physics-based animation
	Adaptive physics-based animation
	Detailed topological changes
	Simulation control

	Contributions
	Structure of the document
	Publications by the author

	State of the art
	Continuum mechanics
	Equations of motion
	Conservation of mass
	Conservation of momentum
	Eulerian vs. Lagrangian formulations
	Numerical solution

	Fluid mechanics
	Constitutive Law
	Smoothed-Particle Hydrodynamics model

	Solid mechanics
	Constitutive Law
	Frame-based model

	Conclusion on continuum mechanics

	Control of physics-based animation
	Problem: The trial and error process
	Space-time constraints paradigm
	Parameters
	Constraints
	Numerical solution

	Applications & Alternatives
	Enriching an animation with physics
	Guiding a simulation with animation data
	Example-based simulation
	Animation sampling
	Animation editing

	Conclusion on simulation control

	Chapter conclusion

	Adaptive physics-based animation
	Temporal adaptivity
	Adaptive time step selection
	Adaptive integration

	Geometric adaptivity
	Structured meshes and grids
	Unstructured meshes
	Meshless models

	Miscellaneous techniques for spatial adaptivity
	Basis refinement
	Moving grids
	Mixed models
	Solids
	Fluids

	Discussion and concluding remarks

	Extending ARPS to Graphical Simulations
	Adaptively Restrained Particles
	 Extension to SPH fluid simulation
	 Incremental update
	Viscosity
	Modified inactivity criterion
	Performance

	Extension to stiff objects: Implicit Integration
	 ARPS Implicit Integration

	Implementation
	 Parameters
	Linear solver
	Choice of the restraining function and criterion

	Discussion and concluding remarks

	Detailed Cutting with Sparse Sampling
	Related work on cutting and fracture
	Overview of the method
	Adaptive shape functions
	Voronoi shape function
	Non-manifold grid

	Frame re-sampling
	Incremental update
	Re-sampling
	Integration point update
	Local weights update

	Results
	Discussion and concluding remarks

	Sculpting of Liquid Animations
	Overview of the method
	Feature extraction
	Detection
	Segmentation
	Aggregation

	Feature representation
	Computation
	Insertion

	Sculpting Tools
	Results
	Discussion and concluding remarks

	Conclusion
	Summary of the contributions
	Limitations and future work

	Remeshing
	Bibliography
	List of Figures
	List of Tables

