
HAL Id: tel-01475260
https://theses.hal.science/tel-01475260

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the security of embedded systems against physical
attacks

Alberto Battistello

To cite this version:
Alberto Battistello. On the security of embedded systems against physical attacks. Cryptography
and Security [cs.CR]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLV047�.
�tel-01475260�

https://theses.hal.science/tel-01475260
https://hal.archives-ouvertes.fr

T
H
E
S
E

NNT: 2016SACLV047

Thèse de Doctorat
de

L’Université Paris-Saclay
préparée à

l’UVSQ - Université de
Versailles-Saint-Quentin-en -Yvelines

ÉCOLE DOCTORALE no 9 : STIC - Sciences et Technologies de
l’Information et de la communication

Spécialité de doctorat “Informatique”

par

Alberto Battistello

On the security of embedded systems against
physical attacks

Thèse présenté et soutenue à Paris, le June 29, 2016

Jury
M. Goubin Louis, Directeur Université de Versailles
M. Giraud Christophe, Co-Encadrant Oberthur Technologies
M. Jean-Sébastien Coron, Rapporteur Université du Luxembourg
M. Emmanuel Prouff, Rapporteur Safran Identity and Security
M. Benedikt Gierlichs, Examinateur Katholieke Universiteit Leuven
M. Sylvain Guilley, Examinateur TELECOM-ParisTech

M. David Pointcheval, Président École Normale Supérieure
M. Gilles Zémor, Examinateur Université de Bordeaux
M. Christophe Clavier, Invité Université de Limoges

UVSQ - Laboratoire LMV,
45 avenue des Etats-Unis
78035 Versailles, France

Titre: Sécurité des systèmes cryptographiques embarqués vis à vis des attaques
physiques

Mots clés: Embarqué, cryptographie, canaux auxiliaires, fautes

Résumé: Le sujet de cette thèse est l’analyse de sécurité des implantation cryp-
tographiques embarquées. La sécurité a toujours été un besoin primaire pour les com-
munications stratégiques et diplomatiques dans l’histoire. Le rôle de la cryptologie a
donc été de fournir les réponses aux problèmes de sécurité, et le recours a la cryptanalyse
a souvent permis de récupérer le contenu des communications des adversaires. L’arrivée
des ordinateurs a causé un profond changement des paradigmes de communication et
aujourd’hui le besoin de sécuriser les communication ne s’étend aux échanges commer-
ciaux et économiques. La cryptologie moderne offre donc les solutions pour atteindre
ces nouveaux objectifs de sécurité, mais ouvre la voie à des nouvelles attaques: c’est
par exemple le cas des attaques par fautes et par canaux auxiliaires, qui représentent
aujourd’hui les dangers plus importants pour les implantations embarquées. Cette thèse
résume le travail de recherche réalisé ces trois derniers années dans le rôle d’ingénieur
en sécurité au sein d’Oberthur Technologies. La plupart des résultats a été publiée sous
forme d’articles de recherche [9,13–17] ou de brevets [1–6]. Les objectifs de recherche en
sécurité pour les entreprises du milieu de la sécurité embarqué sont doubles. L’ingénieur
en sécurité doit montrer la capacité d’évaluer correctement la sécurité des algorithmes
et de mettre en avant les possibles danger futurs. Par ailleurs il est désirable de décou-
vrir des nouvelles techniques de défense qui permettent d’obtenir un avantage sur les
concurrents. C’est dans ce contexte que ce travail est présenté.

Ce manuscrit est divisé en quatre chapitre. Le premier chapitre présente une intro-
duction aux outils mathématiques nécessaires pour comprendre la suite. Des résultats
et notions fondamentaux de la théorie de l’information, de la complexité, et des proba-
bilités sont présentés, ainsi qu’une introduction à l’architecture des micro-ordinateurs.

Le chapitre suivant présente la notion d’attaque par faute et des stratégies connues
pour contrecarrer ce type d’attaques. Le corps du deuxième chapitre est ensuite dédié à
notre travail sur le code infectif pour les algorithmes symétriques et asymétriques [15–
17] ainsi que à notre travail sur les attaques par faute sur courbes elliptiques [13].

Le troisième chapitre est dédié aux attaques par canaux auxiliaires, et présente une
introduction à certains attaques et contremesures classiques du domaine. Ensuite nos
deux nouveaux attaques ciblant des contremesures considérées sécurisées sont présen-
tés [9,14]. Dans ce troisième chapitre est enfin présenté notre nouvelle attaque combinée
qui permet de casser des implémentations sécurisées à l’état de l’art.

A la fin de ce manuscrit, le quatrième chapitre présente les conclusions de notre
travail, ainsi que des perspectives pour des nouveaux sujets de recherche.

Pendant nos investigations nous avons trouvé différentes contremesures qui per-
mettent de contrecarrer certains attaques. Ces contremesures ont été publiées sous
la forme de brevets [1–6]. Dans certains cas les contremesures sont présentées avec
l’attaque qu’elles contrecarrent.

I

Title: On the security of embedded systems against physical attacks

Keywords: Embedded, cryptography, side-channels, faults

Abstract: The subject of this thesis is the security analysis of cryptographic im-
plementations. The need for secure communications has always been a primary need
for diplomatic and strategic communications. Cryptography has always been used to
answer this need and cryptanalysis have often been solicited to reveal the content of
adversaries secret communications. The advent of the computer era caused a shift in
the communication paradigms and nowadays the need for secure communications ex-
tends to most of commercial and economical exchanges. Modern cryptography provides
solutions to achieve such new security goals but also open the way to a number of new
threats. It is the case of fault and side-channel-attacks, which today represents the most
dangerous threats for embedded cryptographic implementations. This thesis resumes
the work of research done during the last years as a security engineer at Oberthur Tech-
nologies. Most of the results obtained have been published as research papers [9,13–17]
or patents [1–6]. The security research goals of companies around the world working
in the embedded domain are twofold. The security engineer has to demonstrate the
ability to correctly evaluate the security of algorithms and to highlight possible threats
that the product may incur during its lifetime. Furthermore it is desirable to discover
new techniques that may provide advantages against competitors. It is in this context
that we present our work.

This manuscript is divided into four main chapters.
The first chapter presents an introduction to various mathematical and computa-

tional aspects of cryptography and information theory. We also provide an introduction
to the main aspects of the architecture of secure microcontrollers.

Afterwards the second chapter introduces the notion of fault attacks and presents
some known attack and countermeasure. We then detail our work on asymmetric and
symmetric infective fault countermeasures [15–17] as long as on elliptic curves fault
attacks [13].

The third chapter discusses about side-channels, providing a brief introduction to
the subject and to well known side-channel attacks and countermeasures. We then
present two new attacks on implementations that has been considered secure against
side channels [9,14]. Afterwards we discuss our combined attack which breaks a state-
of-the-art secure implementation [10].

Finally, Chap. 4 concludes this works and presents some perspectives for further
research.

During our investigations we have also found many countermeasures that can be
used to thwart attacks. These countermeasures have been mainly published in the form
of patents [1–6]. Where possible some of them are presented along with the attack they
are conceived to thwart.

II

Acknowledgments Acknowledgments represent one of the most funny parts of writ-
ing a thesis. The main reason is that the humorous style makes the acknowledgments
particularly light to read, while offering at the same time a brief aperçu of the author’s
character. I will thus do my best to respect this tradition.

It is incredible the number of people I have met during these years and while the
margin of this page is too narrow to cite all of them, I will do my best to acknowledge
those who most participated in this work. So I start with a great thank to all people
which I have encountered and which in some way participated to this manuscript.

My journey into cryptography started with Prof. Ezio Stagnaro of the University
of Padova, which introduced me to the pleasure of maths in its course of algebraic
geometry. His courses were a pleasure as much as his digressions on fishing, prosti-
tutes and Ramanujan. My first thoughts go to him, which instilled the passion which
accompanies me everyday.

I am very grateful to Christophe Giraud, which mentored me during these last
years. His experience, rigor and advice allowed me to grow both as a scientist and as
an engineer. It is amazing how he helped me to develop my knowledge, and how he
still have so many lessons to teach.

A special thank also goes to Prof. Louis Goubin, for accepting me as a Ph.D student
and guided me during these three years. I would also like to thank all the members of
the PRISM group of UVSQ for their warm welcome each time I was there.

I also thank Christophe Clavier, Jean-Sébastien Coron, Benedikt Gierlichs, Sylvain
Guilley, David Pointcheval, Emmanuel Prouff and Gilles Zémor, for honoring me by
taking part in the jury committee of my thesis.

My adventure in France would not have been the same without Gilles Zémor, Em-
manuel Fleury and Guilhem Castagnos for their courses, for their support and for the
many frank advice they provided whenever I was in need.

I would also like to mention my colleagues at Oberthur Technologies Guillaume
Dabosville, Rina Zeitoun, Soline Renner, Laurie Genelle, Olivier Chamley, Thomas
Chabrier, Yannick Bequer, Sarah Lopez, Nicolas Debande and in particular Philippe
Andouard, Guillaume Barbu and Nicolas Morin, which helped me in so many occasions,
while teaching me the secrets of physical security and sharing many funny moments
and beers. I likely want to thank my other co-authors: Guénaël Renault, Jean-Sébastien
Coron and Emmanuel Prouff for the invaluable discussions and lessons I learned from
them.

I would like to thanks Prof. Alberto Tonolo and Prof. Alessandro Languasco for
introducing me to cryptography. At the same time I’d like to thank all the people
at Universitas Patavina, in particular: Luca Vidale, Marco Beggio, Enrico Carlesso,
Andrea Greggio, Andrea Donazzan, Mario Collavo, Davide Soldan, and Daniela Adore
for the uncountable moments of fun we had together while becoming the engineers that
we are. Kudos to you!

I also send a great thank to the guys at Apple. It has been a wonderful and extremely
exciting experience to work with you. Thank you very much for transmitting me the
love for research which has been the starting point of the present work.

A particular thought goes to my family: Giuseppe, Romana and Francesco. You are
present in all my work and your support, love and examples will always guide my life.
Finally I would like to thanks Elisa for accepting to share the wonderful adventure of
life with me. There is no obstacle in life that we can’t overcome together.

III

Contents

1 Introduction 9
1.1 Mathematical Tools . 10
1.2 Cryptosystems . 22
1.3 Secure Microcontrollers . 32

2 Fault Attacks 37
2.1 Fault Attacks . 39
2.2 RSA Detective to Infective Countermeasure Translation Analysis 47
2.3 Analysis of the “Multiplicative” AES Infective Countermeasure 52
2.4 Analysis of the “Dummy-Rounds” AES Infective Countermeasure . . . 55
2.5 Analysis of the CHES 2014 AES Infective Countermeasure 58
2.6 Common Points Attack on ECC . 66
2.7 Conclusion . 73

3 Side-Channel Attacks 74
3.1 Side-Channels . 76
3.2 Horizontal Side-Channel Attacks and Countermeasures on the ISW

Masking Scheme . 86
3.3 Security Analysis of the Orthogonal Direct Sum Masking 106
3.4 A Combined Fault and Side-Channel Attack on CRT-RSA 116
3.5 Conclusion . 125

4 Conclusions and Open Problems 126
4.1 Fault Attacks . 126
4.2 Side-Channel Attacks . 126
4.3 Open Problems . 127

A Annexes 145
A.1 The [16,8,5]-code and Related Matrices 145
A.2 CHES 2014 AES Infective Attacks Success Probabilities 146
A.3 Mutual Information Approximation . 149
A.4 Proof of Lemma 2 . 150
A.5 Generalization of Mask Refreshing for Arbitrary n 152

IV

List of Figures

1.1 An example of Substitution-Permutation Network with 3 rounds. . . . 27

2.1 Success rate vs number of faulted ciphertexts depending on the attacker’s
capability to induce a constant error. 54

2.2 Success rate to recover 12 bytes of the last round key vs number of
faulted ciphertexts depending on the attacker’s capability to induce a
constant error. 58

2.3 Experimental probability of obtaining a useful faulty ciphertext by skip-
ping Step 12 during the q-th loop of Alg. 6 for t = 30. 62

2.4 Experimental probability of obtaining a useful faulty ciphertext by stick-
ing λ at 0 during the q-th loop of Alg. 6 for t = 30. 63

2.5 Experimental probability of obtaining a useful faulty ciphertext by dis-
turbing Step 3 of Alg. 6. 64

2.6 Experimental probability of obtaining a useful faulty ciphertext by a
injecting random error fault on Step 13 of Alg. 6 for t = 30. 65

2.7 Outcome probability for each bit-size of the result point order. 69

2.8 Outcome probability for the bit-size of each result point order greatest
factor. 70

2.9 Cumulative outcome probability for each point order biggest factor bit-size. 70

3.1 Percentage of recovered shares with respect to n for σ = 2, 3, 3.5 and k = 4 93

3.3 Results for the attack of Sec. 3.2.4 when n varies between 1 and 40. . . 97

3.4 Results for the attack of Sec. 3.2.5 when n varies between 1 and 10. . . 98

3.5 The recursive MatMult algorithm, where R represents the RefreshMasks
Algorithm, and ⊗ represents a recursive call to the MatMult algorithm. 101

3.6 Recursive definition of RefreshMasks, with the pre-processing layer LI ,
the two recursive applications of RefreshMasks to the two halves of the
shares, and the post-processing layer LO. 102

3.7 RefreshMasks as composition of gadgets 103

3.8 pdf of the Hamming weights of the Boolean masking scheme vs ODSM
masking scheme. 109

3.9 Difference of the number of leakages between 4 and 11 and the rest. . . 110

3.10 Result of the attack with σ = 0 for 10, 000 leakages. 111

3.11 Result of the attack with σ = 1 for 10, 000 leakages. 111

3.12 Result of the attack with σ = 2 for 10, 000 leakages. 111

3.13 Expectation and variance of real leakages when z = 0 and z 6= 0. 113

3.14 Hamming weights’ pdf of encoded values for ODSM Vs Shuffled ODSM. 115

3.15 Result of the attack with σ = 0 and σ = 1 for 10, 000 leakages. 115

3.16 Main steps of a CRT-RSA implementation secure against SCA and FA. 117

V

LIST OF FIGURES

3.17 Convergence of the correlation for the 256 possible values ki for the secret
(the correct one being depicted in black) depending on the number of
side-channel measurements (×500) for different levels of noise σ and
fault injection success rates r. 120

A.1 RefreshMasks as composition of gadgets 153

VI

List of Tables

2.1 Number of disturbed AES executions required depending on constant
error and success rates. 54

2.2 Probability of obtaining a useful faulty ciphertext by skipping Step 12
during the q-th loop of Alg. 6. 61

2.3 Probability of obtaining a useful faulty ciphertext by sticking λ at 0
during the q-th loop of Alg. 6. 63

2.4 Probability of obtaining a useful faulty ciphertext by disturbing Step 3
of Alg. 6. 64

2.5 Probability of obtaining a useful faulty ciphertext by injecting a random
error fault on Step 13 of Alg. 6. 65

2.6 Average time to solve the ECDLP for different bit-sizes of the biggest
factor of the order of the point by using NIST P-192 as original curve. . 71

2.7 Countermeasures effectiveness against our new attack. For the point
blinding countermeasure we assume that the same fault can be injected
in two executions. 72

3.1 First attack: number of shares n as a function of the noise σ to succeed
with probability > 0.5 . 93

3.2 Iterative attack: number of shares n as a function of the noise σ to
succeed with probability > 0.5 in F24 (first row) and in F28 (second row). 94

3.3 Size t required (in bytes) for the method to work and timings (Magma
V2.17-1), as a function of the lattice dimension in Case 1 (ε known,
being an 8-bit integer). 123

3.4 Size t required (in bytes) for the method to work and timings (Magma
V2.17-1), as a function of the lattice dimension in Case 2 (ε unknown,
being a 32-bit integer). 123

VII

Chapter 1

Introduction

“It is curiosity that makes me wake
up in the morning.”

Federico Fellini

Contents
1.1 Mathematical Tools . 10

1.1.1 Algebra and Number Theory 10

1.1.2 Probabilities . 16

1.1.3 Complexity Theory . 18

1.1.4 Lattices . 19

1.1.5 Coding Theory . 21

1.2 Cryptosystems . 22

1.2.1 Cryptographic Schemes . 22

1.2.2 Security Models . 24

1.2.3 Advanced Encryption Standard 26

1.2.4 RSA . 29

1.2.5 ECDSA . 31

1.3 Secure Microcontrollers . 32

1.3.1 Processor . 33

1.3.2 Random Sources . 34

1.3.3 Physical Attacks . 35

9

CHAPTER 1. INTRODUCTION

1.1 Mathematical Tools

This section summarizes notions of number theory, probabilities, complexity theory,
algebra and coding theory. While we do not claim to be exhaustive on these subjects,
we try to provide all the necessary notions required to understand the results presented
in this manuscript.

1.1.1 Algebra and Number Theory

The purpose of number theory is to study the behavior of integers. Further investi-
gations include more general inquiries which provide further insight into the general
structures of mathematics. In particular we investigate the concepts of group, ring and
field, which are the basic tools required in modern cryptography.

Groups

The first and most important structure identified on the integers is that of a group.
We provide in this section a glimpse of the theory of groups and on the use of group
structures to investigate some problems related to cryptography.

Definition 1 (Natural numbers). The set 0, 1, 2, 3, . . . is called the set of natural
numbers and is denoted by the symbol N.

Definition 2 (Integers). The set . . . ,−3,−2,−1, 0, 1, 2, 3, . . . is called the set of inte-
gers and is denoted by the symbol Z.

Definition 3 (Least Residue System). The subset of integers Zn = {0, 1, . . . , n − 1}
is called the least residue system modulo n. It is used to identify the common choice
for representing the classes of equivalences modulo the integer n, that is each element
a ∈ Zn represents the values in the set {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . .}.

In the following we drop the notation a in favor of the more practical a when no
confusion may arise.

We furthermore use the notation Z∗n which stands for Zn \ {0}.

Definition 4 (Group). A set G with the composition operation ◦ is a group if:

• ∀ g,h ∈ G,g ◦ h ∈ G;

• ∃ e ∈ G such that e ◦ g = g ◦ e = g ∀g ∈ G; e is the neutral element or identity
of G;

• ∀ g ∈ G ∃ h ∈ G such that h ◦ g = g ◦ h = e; h is the inverse of g ∈ G and is
denoted by g−1;

• ∀ g,h, j ∈ G,g ◦ (h ◦ j) = (g ◦ h) ◦ j; this property is called associativity;

If furthermore:

• g ◦ h = h ◦ g ∀ g,h ∈ G; this property is called commutativity

then (G, ◦) is a commutative or abelian group.

10

CHAPTER 1. INTRODUCTION

Typically, the group (Zn,+) is an abelian group, with neutral element 0. Further-
more, (Z∗n,×) is also a group, with neutral element 1. The former is conventionally
called the additive group, the latter the multiplicative group of integers modulo n. In
multiplicative groups the expression gn stands for g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸

n times

, while the notation ng

is often preferred in additive groups.

Definition 5 (Subgroup). Let (G, ◦) be a group, if H is a subset of G and H is a
group with respect to ◦, then H is a subgroup of G.

Definition 6 (Cyclic Group). A group (G, ◦) is cyclic if there exists g ∈ G such that
∀ h ∈ G, ∃n ∈ N such that h = gn. Such an element g is called generator of the cyclic
group.

The notation 〈g〉 is commonly used to denote the set of elements generated by g,
i.e.: 〈g〉 = {g0,g,g2, . . . ,gn−1}.

Definition 7 (Order of an element). The order of an element g ∈ G is the smallest
positive integer n (if it exists) such that gn = e, and it is denoted o(g).

Definition 8 (Finite Group). A group is said to be finite if it has a finite number of
elements.

Theorem 1 (Gauss). It can be proved that for n = 1, 2, 4, pα, 2pα, where p is a prime
number and α > 1, the multiplicative group Z∗n is cyclic. In particular it can be proved
that if p is prime, then Z∗p is a finite multiplicative cyclic group.

Proof. This is a famous result of Gauss. Due to the length of the proof we refer the
reader to [84].

Theorem 2 (Lagrange). In a finite group (G, ◦) each element g ∈ G satisfies o(g)
divises |G|.

Proof. Let g ∈ G and o(g) = d. If d = |G| then we have nothing to demonstrate.
Otherwise, if d < |G| then there exists h1 ∈ G\ 〈g〉. Let us consider the set H1 =
{h1 · gj : j = 0, . . . , n − 1}, it can be observed that |H1| = d and that H1

⋂ 〈g〉
= ∅. If G = H1∩〈g〉 then |G| = 2d. Otherwise consider the subset H2 generated by
h2 ∈ G\(〈g〉∩H1). H2 has d distinct elements and is disjoint from 〈g〉 ∪H1. Repeat the
process until all elements of G have been consumed. The process terminates because
G is finite.

Corollary 1. Let (G, ◦) be a finite group, then for each element g ∈ G, g|G| = e.

Proof. Let d = o(g) then |G| | d ∈ N, so we can write g|G| = (gd)|G||d = e.

A particular case of the above result is the following:

Theorem 3 (Fermat). If p is prime and p - a then ap−1 ≡ 1 mod p.

Proof. The theorem is a consequence of 1.

Definition 9 (Euler totient function). The set of elements of Zn having a multiplica-
tive inverse is denoted Z∗n and its cardinality is denoted ϕ(n), called the Euler totient
function.

11

CHAPTER 1. INTRODUCTION

We recall here some interesting result on groups and in particular on integers that
are of fundamental importance for modern cryptography.

Definition 10 (multiples). The set of multiples of an integer d ∈ Z is denoted dZ =
{ad : a ∈ Z}.

Definition 11 (greatest common divisor). Given two or more integers n1, . . . , nr ∈ Z
not all zero, the greatest common divisor of n1, . . . , nr (gcd(n1, . . . , nr)), is the largest
positive integer that divides the numbers without a remainder.

Theorem 4 (Euclid). Given two integers n,m ∈ Z, let A(n,m) = {an + bm : a, b ∈
Z} and d = gcd(n,m). Then A(n,m) = dZ so that there exists λ, µ ∈ Z such that
λn+ µm = d.

Proof. We want to prove that A(n,m) = dZ. It is easy to notice that d | λn+ µm for
all λ, µ. Then assume δ = λn+µm is the smallest positive element in A(n,m), it exists
as long as m or n is not null. We want to show that δ | d. Let us take the remainder r
of the division of n by δ. Let n = δq+ r then r ∈ A(n,m) because r = (1−λq)n−µqm
by substituting the expression for δ. Moreover r is smaller than δ by division, thus it is
0 because δ is by definition the smallest element of A(n,m). Equivalently δ | m. Thus
δ | d so δ = d.

Euclid proved that it is possible to write the gcd between two integers as a linear
combination of the two, and provided an algorithm to compute the integer coefficients
λ, µ of the linear combination. The interest of this algorithm is that it allows to compute
the multiplicative inverse of an element of the field Z∗n.

A great theorem of unknown author is the famous Chinese Remainder Theorem,
dating back at least to the 3rd century. In order to understand it we need the following
results.

Definition 12 (group homomorphism). Let (G,+), (R, ◦) be two groups. A map f :
G→ R is called a group homomorphism if f(x+ y) = f(x) ◦ f(y), for every x, y ∈ G.

Definition 13. The kernel of a group homomorphism f : G→ R is

Kerf = {g ∈ G : f(g) = e}

where e is the neutral element of R. A bijective group homomorphism is called a group
isomorphism.

In the following we use the notation eR to explicitly denote that e ∈ R when neces-
sary.

Proposition 1. Given a group homomorphism f : G→ R, if Kerf = {eR} then f is
injective (∀ x, y x 6= y ⇒ f(x) 6= f(y)).

Proof. Since f(eG) = eR it follows that Kerf = {eR} if f is injective. Conversely
assume Kerf = {eR}. Assume by contradiction that there exists x, y ∈ G such that
x 6= y but f(x) = f(y). Let x = y + a for some a ∈ G \ {eR}. Then by homomorphism
we have f(y) = f(x) ◦ f(a) which implies a ∈ Kerf , a contradiction.

12

CHAPTER 1. INTRODUCTION

Theorem 5 (Chinese Remainder Theorem (CRT)). Let n1, n2, . . . , nr ∈ Z \ {0}, and
gcd(ni, nj) = 1 ∀ i 6= j, then the solution to the system of modular equations

x ≡ a1 mod n1
x ≡ a2 mod n2
. . .
x ≡ ar mod nr

is unique modulo n1 · n2 · . . . · nr.

Proof. In fact we can prove, more generally, that

f : ZN → Zn1×, . . . ,×Znr

given by f(x) = (x mod n1, . . . , x mod nr) is an isomorphism. It is easy to see that f
is a homomorphism of groups. Now let us prove that Kerf = {e}. If n ∈ Kerf then
n = 0 mod n1, . . . , n = 0 mod nr. This means that n1 | n, . . . , nr | n, so n1 · · ·nr | n,
so n ∈ NZ. This proves that Kerf ⊆ NZ. Now let n ∈ NZ. Then we can write
n = k ·n1 · · ·nr for some k ∈ Z. So we obtain n1 | n, . . . , nr | n. This proves that NZ ⊆
Kerf . So Kerf = {e}, thus f is injective. Now we can observe that the cardinality
of ZN and Zn1×, . . . ,×Znr are the same, thus from the pigeonhole principle we can
conclude that f is also surjective, thus an isomorphism.

Despite the author of the CRT being still unknown a good deal of its history can
be found in [102].

Finite Fields

Further investigation on numbers allow definitions that are more and more precise, and
which collect objects sharing even more interesting properties. This is the case of rings
and fields, which are the subject of this section.

Definition 14 (Commutative Ring). A set R together with the operations + and ×
is a commutative ring with identity if (R,+) is an abelian group with neutral element
0, and the neutral element of × is 1 6= 0, it is associative and commutative, and
the distributive property is satisfied:

• ∀ x,y, z ∈ R, (x+ y)× z = (x× z) + (y × z).

In this work we will omit the symbol × to indicate a× b when no confusion arise.

Definition 15 (unit). An element x of a ring R is called a unit if there exists y ∈ R
such that xy = yx = 1. In this case y is denoted x−1 and called the inverse of x. The
set of units in R is denoted R∗.

Definition 16 (Irreducible elements). An element r of a ring R\R∗ is called irreducible
if r = ab for a, b ∈ R implies that either a or b is a unit.

Thus if r is irreducible and u is a unit, then ur is also an irreducible element.

Definition 17 (factorization into irreducible elements). A non-zero element r of a ring
R\R∗ is said to have a factorization into irreducible elements if there exists irreducible
elements p1, p2, . . . , pr ∈ R such that

r = p1 · p2 · · · pr .

13

CHAPTER 1. INTRODUCTION

Definition 18 (Prime element). A non-zero element p of a ring R \ R∗ is called a
prime element if p | xy for x, y ∈ R implies that p | x or p | y.

Definition 19. A prime element is irreducible.

Proof. Let p be a prime element. Suppose that p = ab. By definition of a prime element
we can conclude that p | a or p | b. Suppose that p | a. Then we can write a = rp for
some r ∈ R. This implies that p = rpb. Now rb = 1 implies that b is a unit. Thus p is
irreducible.

Definition 20 (Characteristic). Let R be a ring. The characteristic of a ring is the
smallest positive integer n (if it exists), such that 1 + 1 + . . .+ 1︸ ︷︷ ︸

n times

= 0 ∈ R. If n does

not exists, then R is said to have characteristic 0.

Definition 21 (Field). A commutative ring R with identity is a field if R \ {0} is a
group with respect to the × operation. In this case we denote the field R in order to
emphasize the field notation.

In other words a field K is a group with respect to both ”addition” and ”multiplica-
tion”. Furthermore each element different from 0 must have a multiplicative inverse. A
field is said to be finite if it has a finite number of elements. We denote by Fq a finite
field with q elements.

Definition 22 (Polynomial ring). The polynomial ring, K[X], in X over the ring K
is defined as the set of expressions, called polynomials, in X, of the form:

P (X) = a0X + a1X
2 + . . .+ an−1X

n−1

where a0, a1, . . . , an−1, the coefficients of P (X), are elements of K, and X,X2, . . ., are
formal symbols (”the powers of X”). By convention X0 = 1 and X1 = X, and the
product of powers of X is defined by the formula X lXk = X l+k. The symbol X is called
a variable or indeterminate.

Definition 23 (Irreducible polynomials). A polynomial a0X + a1X
2 + . . .+ an−1X

n−1

with coefficients a0, a1, . . . , an−1 (over K) is irreducible, over K, if it cannot be factored
into the product of two non-constant polynomials with coefficients in K.

Theorem 1 shows that it is easy to build fields with p elements just by taking Zp,
where p is a prime number. However, it is much more difficult to build finite fields of
non prime orders.

The canonical way to obtain a field Fq of cardinality q = pα is called algebraic
closure. It consists in generating the smallest field K that contains Fp and the roots of
an irreducible polynomial of degree α with coefficients in Fp. A finite field of q = pn

elements is often denoted GF (pn), where GF stands for ”Galois Field”, in honor of the
famous French mathematician.

Example 1. A classical example is the construction of the complex field C with the
polynomials over the real numbers R[X] and the polynomial x2 + 1, irreducible over R.
By reducing each polynomial of R[X] modulo x2 + 1, one obtain elements of the form

a + Xb, where a, b are real coefficients and X
2 = −1, due to the modular reduction.

The set obtained is a field which is isomorphic, by changing the variable X with i, to
the complex field C, that is {a+ ib : a, b ∈ R, i2 = −1 ∈ R}.

14

CHAPTER 1. INTRODUCTION

Elliptic Curves

Among the most interesting objects discovered in number theory are Elliptic Curves.
Their study allowed to prove one of the most interesting theorem of Fermat [174], and
they are at the basis of many modern cryptosystems. We will however restrain our
investigation to some basic definition and properties that are sufficient to understand
the remainder of this work. However, for further information we suggest [122] and [99].

Let K be a field with Char(K) 6= 2, 3, and a, b ∈ K. The short Weierstraß form of
an elliptic curve is defined by the following equation:

E : y2 = x3 + ax+ b (1.1)

The set of points (x, y) ∈ K × K satisfying (1.1), together with the point at infinity
O is denoted E(K). For any point P = (xP , yP) ∈ E(K), the opposite is defined as
−P = (xP ,−yP), and P + O = O + P = P . For any two points P = (xP , yP) and
Q = (xQ, yQ) ∈ E(K), the sum R = (xR, yR) of P +Q is defined as:

- If P 6= −Q then: {
xR = s2 − xP − xQ
yR = s(xP − xR)− yP

with

s =

(yQ−yP)
(xQ−xP) if P 6= Q
(3x2

P+a)
(2yP) otherwise

- If P = −Q then P +Q = P − P = O

The set E(K) with the“+”operation defined above forms an abelian group with neutral
element O. For the point operations to be well defined it is important to avoid non
singular curves. This condition translates into verifying that both partial derivatives
does not annihilates. By applying this condition to the curve equation one obtains:{

δE
δx

= x2 + a = 0
δE
δy

= 2y = 0

Solving the system provides the condition for non singular curves:

27b2 + 4a3 = 0 (1.2)

We denote by q the cardinality (or order) of E(K). For common curves it is often the
product of a big prime times a small cofactor. In the following we will drop the explicit
field notation when it is implicit or when it is not necessary for the given statement.

Discrete Logarithm

The discrete logarithm problem in a finite group (G, ·) can be stated as follows: compute
x from g and y = x · g. The integer x is called the discrete logarithm of y in base g,
x = logg (y). We will restrict our attention to the case where G is a finite cyclic group
of prime order q and g is a generator of G. In the above, we use bold letters to denote
elements of G, so that no confusion arises with scalars, such as x. We write the group
operation in additive notation: x · g is simply x · g = g + · · ·+ g, where g is repeated x
times. Examples of cryptographic interest are the subgroup of order q of (Zp,×) where
q is a large prime factor of p− 1, and subgroups of prime order of an elliptic curve.

15

CHAPTER 1. INTRODUCTION

1.1.2 Probabilities

We recall in this section some notations and results of probability theory on discrete
random variables that are used in the remainder of this work. For an introduction to
probability theory the user can refer to [150].

Definition 24. An experiment is a procedure that yields one of a given set of outcomes.
The individual possible outcomes are called simple events. The set of all possible out-
comes is called the sample space.

We will only considers discrete sample spaces; that is, sample spaces with only
finitely many possible outcomes. Let the simple events of a sample space S be labeled
s1, s2, . . . , sn. Because the value of a random variable is determined by the outcome
of the experiment, we may assign probabilities to the possible values of the random
variable.

Definition 25. A probability distribution P on S is a sequence of numbers p1, p2, . . . , pn
that are all non-negative and sum to 1. The number pi is interpreted as the probability
of si being the outcome of the experiment.

Definition 26. An event E is a subset of the sample space S. The probability that
event E occurs, denoted P (E), is the sum of the probabilities pi of all simple events si
which belong to E. If si ∈ S, P ({si}) is simply denoted by P (si).

Definition 27 (random variable). A random variable is a measurable function from
the set of possible outcomes to some event E.

A sequence of random variables is said to be independent and identically distributed
(i.i.d), if each random variable has the same probability distribution as the others and
all are mutually independent.

Definition 28 (probability mass function). For a discrete random variable X, we
define the probability mass function p(·) of X by

p(a) = P ({X = a}) .

Definition 29 (Expectation). If X is a discrete random variable having a probability
mass function p(·), then the expectation, or the expected value, of X, denoted by E[X],
is defined by

E[X] =
∑

xp(x) .

Definition 30 (variance). Given a random variable X with expectation µ, then the
variance of X, denoted by V ar(X), is defined by

V ar(X) = E[(X − µ)2 .]

It is often useful to be able to get some prediction on the results of experiments
involving two random variables. This is the subject of conditional probability.

16

CHAPTER 1. INTRODUCTION

Conditional Probabilities

Definition 31. Let E1 and E2 be two events with P (E2) > 0. The conditional proba-
bility of E1 given E2, denoted P (E1 | E2), is

P (E1 | E2) = P (E1 ∩ E2)
P (E2) .

P (E1 | E2) measures the probability of event E1 occurring, given that E2 has occurred.

Definition 32. Events E1 and E2 are said to be independent or mutually independent
if P (E1 | E2) = P (E1).

Observe that if E1 and E2 are independent, then P (E1 | E2) = P (E1) and P (E2 |
E1) = P (E2). That is, the occurrence of one event does not influence the likelihood of
occurrence of the other one.

Theorem 6 (Bayes). If E1 and E2 are events with P (E2) > 0, then

P (E1 | E2) = P (E1)P (E2 | E1)
P (E2) .

Theorem 7 (Law of total probability). Let {Bn : n = 1, 2, 3, . . .} is a finite or countably
infinite partition of the sample space and each event Bn is measurable, then for any
event A of the same probability space:

P (A) =
∑
n

P (A ∩Bn .

Birthday paradox

Definition 33. The birthday paradox analyzes the probabilities that in a set of ran-
domly chosen people, some pair of them will have the same birthday.

The birthday paradox can be generalized to the following problem.

Proposition 2. Let E be a finite set. The probability P (n) of extracting at least twice
the same element in n uniform extractions is

P (n) = 1− |E|!
(|E| − n)! ·

1
|E|n

.

The probability P (n) can be approximated by using Taylor series to

P (n) = 1− e−
n·(n−1)

2·|E| .

The name birthday paradox comes from the fact that for birthdays (assuming non
leap years) P (n) is greater than 0.5 as soon as n > 23. Thus as soon as 23 people
are interviewed, chances are that two of them share the same birthday, which seems
counterintuitive at first glance.

17

CHAPTER 1. INTRODUCTION

Birthday Paradox in Cryptography

While the birthday paradox seems a mathematical curiosity, it is of fundamental im-
portance in cryptography. Its generalization can be (very) roughly approximated to

the fact that as soon as n =
√
|E| elements are uniformly extracted from a set of size

|E|, then it is probable that a collision has been found. This provides a practical lower
bound for the number of queries required to find a collision on the outputs of a given
function, for example, on hash functions.

1.1.3 Complexity Theory

The theory of complexity dates back to the work of Alan Turing [166, 167] at the end
of 30’s. Its main objective is to provide mathematical models to classify computational
problems according to the resources needed to solve them. The classification should
capture the intrinsic difficulty of the problem, measuring resources such as time and
storage space.

Definition 34 (Algorithm). An algorithm is a well-defined ordered sequence of ele-
mentary steps that takes a variable input and halts with an output.

This definition is rather informal, as the concept of elementary steps is not well
defined. While a more formal definition can be achieved by introducing objects like
Turing machines, we do not need such deep formalism, and it is easier to think of
algorithms as a computer program written in some language which takes some variable
input and halts with an output after some time.

Definition 35 (input size). The size of the input of an algorithm is the minimum
number of bits required to represent an input of the algorithm.

Definition 36 (running time). The running time of an algorithm is the number of
elementary steps to be executed on a particular input.

The lack of a specific definition of “elementary step” comes in hand on particular
algorithms, where it may be substituted with “binary operation” or “machine instruc-
tion” or “modular multiplication”, etc., depending on what is more appropriate for the
context.

Definition 37 (worst-case). The worst-case running time of an algorithm is an upper
bound on the running time of the algorithm for any input, expressed as a function of
the input size.

Definition 38 (average-case). The average-case running time of an algorithm is the
average running time of the algorithm on uniformly distributed inputs.

Asymptotic Notation

The big O notation describes the asymptotic behavior of a function when the argument
tends towards a particular value or infinity, usually in terms of simpler functions.

Definition 39 (Big O). Let f and g be two functions defined on some subset of the real
numbers. One writes f(x) = O(g(x)) if and only if there exists a positive real number
c and a real number x0 such that for any x > x0 we have:

|f(x)| ≤ c|g(x)| .

18

CHAPTER 1. INTRODUCTION

Example 2. Simple examples of the Big O notation allows to define the complexity of
some naive algorithm with respect to the number of binary operations involved. In the
following assume n,m ∈ Z and n > m such that log(n) approximates the bits required
to write n or m. Then:

• the complexity of m+ n is O(log(m) + log(n)), which corresponds to O(log(n))

• the complexity of m · n is O(log(m) · log(n)), equivalently O(log2(n)),

• the complexity of the extended Euclid’s algorithm(Theorem 4) on input n,m is
O(log2(n)) (see [108]),

Definition 40 (polynomial complexity). An algorithm is said to have polynomial
complexity if its worst-case running time on input of size log(n) bit is a function of
the form O(logk(n)), for a constant k.

Definition 41 (exponential complexity). An algorithm is said to have exponential
complexity if its worst-case running time on input of size log(n) bit is a function of
the form O(nk) = O(exp(klog(n)), for a constant k.

Definition 42 (sub-exponential complexity). An algorithm is said to have sub-exponential
complexity if its worst-case running time on input of size log(n) bit is a function of
the form O(exp(εlog(n)), for any ε > 0.

1.1.4 Lattices

We review in this section some results on lattices. These results are mostly taken
from [125,126,134].

Definition 43 (vector space). A vector space V over a field K is a set with two
operations:

• an internal composition law denoted ”+” called addition,

• an external left composition law denoted ”·”, called scalar multiplication.

The elements of K are called scalars, those of V are called vectors and are denoted
with bold letters. It is required that (V,+) is an abelian group. This means that there
exists a neutral element denoted 0, called null vector, and that each vector v has an
opposite denoted −v. Furthermore the following properties must be satisfied for the ’·’
law:

• distributivity on the left with respect to the + and on the right with respect to the
field addition:

a · (v + u) = a · v + a · u , ∀ a ∈ K, ∀ v,u ∈ V
(a+ b) · v = a · v + b · v , ∀ a, b ∈ K, ∀ v ∈ V

• pseudo-associativity with respect to the multiplication in K,

(ab) · v = a · (b · v) , ∀ a, b ∈ K, ∀ v ∈ V

• the multiplicative neutral element of K, denoted 1 is neutral on the left for ·.

1 · v = v , ∀ v ∈ V

19

CHAPTER 1. INTRODUCTION

Definition 44. Let S = {v1, v2, . . . , vn} be a finite subset of a vector space V over a
field K.

1. A linear combination of S is an expression of the form a1v1 + a2v2 + · · ·+ anvn,
where each ai ∈ K.

2. The set S is linearly dependent over K if there exist scalars a1, a2, . . . , an, not all
zero, such that a1v1 + a2v2 + · · · + anvn = 0. If no such scalars exist, then S is
linearly independent over K.

3. A linearly independent set of vectors that spans V is called a basis for V.

Definition 45 (euclidean norm). On a n-dimensional space Rn, the intuitive notion
of length of the vector v = (v0, v1, . . . , vn−1) is captured by the formula:

‖v‖ :=
√
v2

0 + v2
1 + . . .+ v2

n−1

and ‖v‖ is called the euclidean norm of the vector v.

Definition 46 (lattice). A lattice is a discrete (additive) subgroup of Rn. In particular
an integer lattice is a subgroup of Zn.

Alternatively, a lattice L may also be defined as:

L =
{

d∑
i=1

aivi : ai ∈ Z
}
.

where d is the lattice dimension and the set of vi is a basis of L. All bases of a lattice
have the same dimension denoted dim(L). Since a lattice is discrete by definition, it
has a shortest non-zero vector: the euclidean norm of this vector is called the first
minimum, and is denoted by λ(L).

Definition 47 (volume). Let L be a lattice, the volume vol(L) of the lattice corresponds
to the d-dimensional volume of the parallelepiped spanned by the bi’s.

In the important case of full-dimensional lattices where dim(L) = n, the volume is
equal to the absolute value of the determinant of any lattice basis.

Definition 48 (Minkowski’s i-th minimum). Given a lattice L, the Minkowski’s i-th
minimum denoted λi(L) is defined as the minimum of max1≤j≤i‖vj‖ over all linearly
independent lattice vectors v0, . . . ,vd−1.

Algorithmic Problems

Definition 49 (Shortest Vector Problem (SVP)). Given a basis of a lattice L, find u
such that ‖u‖ = λ(L).

A relaxed SVP is the approximated SVP, where it is asked a non-zero vector v ∈ L
with norm bounded by some approximation factor: ‖u‖ = f(d)λ(L).

Definition 50 (Closest Vector Problem (CVP)). Given a basis of a lattice L ⊆ Rn

and a vector v ∈ Rn find u such that the distance between v and u is minimal, i.e.
‖v− u‖ ≤ ‖v−w‖ , ∀ w ∈ L.

20

CHAPTER 1. INTRODUCTION

Again there exists an approximated problem where it is only required to find a
vector whose distance to v is bounded by some approximation factor.

No polynomial time algorithm is known for approximating either SVP or CVP to
within a polynomial factor in the dimension d. However, there exists polynomial time
algorithms that achieve sub exponential factors solutions, all of these algorithms are
based on the LLL algorithm [115]. It has been remarked that such algorithms typically
perform much better than it is theoretically guaranteed.

Theorem 8 (Lenstra Lenstra Lovaz (LLL)). Given as input a basis of a lattice L, LL
provably outputs in polynomial time a basis (b0, b1, . . . , bd−1) satisfying:

‖b1‖ ≤ 2(d−1)/4vol(L)1/d , ‖bi‖ ≤ 2(d−1)/2λi(L) and
d∏
i=1
‖bi‖ ≤ 2(d2)/2vol(L).

Proof. For the proof of this result we refer the reader to [115].

The above theorem thus shows that it is possible to approximate the SVP within
a factor 2d−1/2. Furthermore, Shnorr [154] improved this result by showing that it
is possible to achieve a bound of 2O(d(loglogd)2/logd) and Ajtai et al. [1] improved it to
2O((dloglogd)/logd). The LLL algorithm finds many useful applications, in this work we
focus on one of them, which allows to find small roots of univariate and multivariate
modular equations. The main result on the subject is due to Coppersmith [54,55] who
showed how to find roots of modular polynomials in polynomial time.

Theorem 9 (Coppersmith). Let f(x) be a monic polynomial of degree δ in one variable
modulo an integer n of unknown factorization. One can find all integers x0 with f(x0) ≡
0 mod n and ‖x0‖ < n

1
δ in time polynomial in log n and δ.

The core idea consists in reducing the problem to solving univariate polynomial
equations over the integers, by transforming modular roots into integral roots. More
precisely, it constructs a polynomial P (X) ∈ Z[X] whose roots are all the x0 ∈ Z that

verifies f(x0) = 0 mod N and ‖x0‖ < N
1
δ . P (X) is constructed such that it can easily

be solved over Z. To do so, several multiples of f are considered, all admitting x0 as a
root modulo Nm for a given parameter m. The lattice spanned by these polynomials
thus contains a polynomial V which admits x0 as root modulo Nm and which has small
coefficients. If x0 is small enough then its solution will hold over the integers and thus
can easily be solved. The LLL algorithm thus allows to ”extract” such polynomial from
the lattice as the smallest (up to a polynomial factor) vector. Despite lattices being an
exciting and developing field, they only play a small role in this work. We thus refer
the interested reader to the work of Nguyen et al. [133,134] for further investigations.

1.1.5 Coding Theory

The following section provides basic definitions and notations sufficient to understand
the masking scheme discussed in Sec. 3.3.

Definition 51 (Linear Code). A linear code C of length n and dimension k is a subspace
of dimension k of the vector space Fn2 .

A word of the code C is then a vector w such that w ∈ C.

21

CHAPTER 1. INTRODUCTION

Definition 52 (Supplement of vector space). The supplement of the vector space C
in Fn2 is the set of vectors D such that C ⊕D = Fn2 , where ⊕ denotes the direct sum of
two vector spaces.

Then an element z in Fn2 can be decomposed uniquely as the sum of two elements
c and d, respectively in C and D:

z = c⊕ d (1.3)

Definition 53 (Generating matrix). The vectors of the basis of a linear code C forms
the generating matrix of C.

In the following we will denote respectively by G and H the generating matrices of
C and D. Then every element of C (resp. D) can be written uniquely as xG (resp. yH)
for some x (resp. y) in Fk2 (resp. Fk′2):

z = xG⊕ yH (1.4)

Definition 54 (Dual code). The dual code of C is the linear code C⊥ = {w ∈ Fn2 |∀c ∈
C, c · w = 0}. This notion is similar to that of the orthogonal of a vector space.

In the case where C⊥ = D, it comes straightforwardly that the dimension of D is
n− k if the dimension of C is k.

Finally, we recall a necessary and sufficient condition to have C and C⊥ supplemen-
tary in Fn2 :

Proposition 3. Without loss of generality (a permutation of coordinates might be
necessary), we can assume that the generating matrix of C is systematic, and thus
takes the form [Ik‖M], where Ik is the k × k identity matrix. The supplementary D of
C is equal to C⊥ iff the matrix Ik ⊕MMT is invertible.

1.2 Cryptosystems

In this section we recall basic notions on information theory, introduced by Shannon at
the end of the 40’s [159, 160]. In particular we focus on information security, in order
to provide the concepts of attacker and basic concepts of cryptography. For further
references we suggest [122, 164]. In this section we also describe the cryptosystems
which are of interest for the understanding of this work. While many more interesting
algorithms exist, space constraints do not allow us to include them all.

1.2.1 Cryptographic Schemes

The theory of information provides models of the reality in order to capture the relevant
aspects of information exchanges. We thus start with some notation which describe our
model.

Definition 55. A finite set A is called the alphabet of definition. For example, A =
{0, 1}, the binary alphabet, is a frequently used alphabet of definition. Note that any
alphabet can be encoded in terms of the binary alphabet. For example, since there are
32 binary strings of length five, each letter of the English alphabet can be assigned a
unique binary string of length five.

22

CHAPTER 1. INTRODUCTION

Notation. A setM is called the message space.M consists of strings of symbols from
an alphabet of definition. An element of M is called a plaintext. For example, M may
consist of binary strings, English texts, computer codes, etc.

Notation. A set C is called the ciphertext space. C consists of strings of symbols from
an alphabet of definition, which may differ from the alphabet of definition for M. An
element of C is called a ciphertext.

Notation. K denotes a set called the key space. An element of K is called a key.

Definition 56 (Encryption function). Each element e ∈ K uniquely determines a
bijection fromM to C, denoted by Ee. The bijection Ee is called an encryption function
or an encryption transformation. Note that Ee must be a bijection if the process is to
be reversed and a unique plaintext recovered for each distinct ciphertext. Similarly, for
each d ∈ K, Dd denotes a bijection from C to M (i.e., D : C →M). The bijection Dd

is called a decryption function or decryption transformation.

The process of applying the transformation Ee to a message m ∈ M (resp. Dd to
a message c ∈ C) is usually referred to as encrypting m (resp. decrypting c) or the
encryption of m (resp. decryption of c).

Definition 57 (Cryptosystem). A cryptosystem consists of a tuple {M, C,E,D,K}
where Ee : e ∈ K is the encryption transformation and Dd : d ∈ K the decryption trans-
formation with the property that for each e there is a key d ∈ K such that Dd = E−1

e ;
that is, Dd(Ee(m)) = m for all m ∈M. A cryptosystem is sometimes referred to as a
cipher. The keys e and d in the preceding definition are referred to as a key pair and
sometimes denoted by (e, d). Note that e and d could be the same.

Thus the construction of a cryptosystem requires to select a message space M, a
ciphertext space C, a key space K, a set of encryption transformations Ee : e ∈ K, and
a corresponding set of decryption transformations Dd : d ∈ K.

Definition 58 (block cipher). A block cipher is an encryption scheme which breaks up
the plaintext messages to be transmitted into strings (called blocks) of a fixed length t
over an alphabet A, and encrypts one block at a time.

Definition 59 (Symmetric cryptosystem). An encryption scheme is said to be sym-
metric if for each associated encryption/decryption key pair (e, d), it is computationally
“easy” to determine d knowing only e, and to determine e from d.

The term symmetric comes from the fact that for most practical encryption schemes,
e = d.

Definition 60 (Asymmetric cryptosystem). An encryption scheme is said to be asym-
metric if it is not symmetric.

Despite such simple definitions and differences, symmetric and asymmetric cryp-
tography play very different roles in a secure communication. For example, a user may
publish her asymmetric encryption key e, such that everybody can encrypt messages
for her. The difficulty of retrieving d from e in an asymmetric scheme assures that
only the user can decipher the messages. Due to this fact we will often refer to the
encryption key of an asymmetric cryptosystem as the public key, and to the decryp-
tion key as the private key. It is necessary, however, to remark that in all practical

23

CHAPTER 1. INTRODUCTION

cases asymmetric cryptography algorithms has greater computational complexity than
symmetric ones. For this reason their use is often limited to the secure exchange of a
symmetric key between two parties, that can afterwards use symmetric cryptography
to secure their communications.

Asymmetric cryptography does provide many handy tools to overcome particular
tricky problems. For example the Diffie-Hellman key exchange protocol [66] based on
the discrete log allows the secure exchange of keys between two parties over an insecure
channel. Another example of the use of asymmetric cryptography are modern digital
signatures, which are described by the following three algorithms.

Definition 61 (Key generation algorithm). A key generation algorithm K, which, on
input 1k, where k is the security parameter, outputs a pair (pk, sk) of matching public
and private keys. Algorithm K is probabilistic.

Definition 62 (Signing algorithm). A signing algorithm Σ, which receives a message
m and the private key sk, and outputs a signature σ = ∑

sk(m). The signing algorithm
might be probabilistic.

Definition 63 (Verification algorithm). A verification algorithm V , which receives
a candidate signature σ, a message m and a public key pk, and returns an answer
Vpk(m,σ) testing whether σ is a valid signature of m with respect to pk. In general, the
verification algorithm need not be probabilistic.

In order to achieve such functionalities various algorithms have been proposed. We
will describe in the remainder of this section two of the basic constructions that provide
the above functionalities.

1.2.2 Security Models

A fundamental premise in cryptography is that the sets M, C,K, {Ee : e ∈ K}, {Dd :
d ∈ K} are public knowledge. When two parties wish to communicate securely using
an encryption scheme, the only thing that they keep secret is the particular key pair
(e, d) which they are using, and which they must select.

Informally a cryptosystem is said to be breakable if a third party, without prior
knowledge of the key pair (e, d), can systematically recover plaintext from correspond-
ing ciphertext within some appropriate time frame. We provide more precise definitions
below.

Cryptographic Goals

The objective of information security is to provide a set of tools and techniques in
order to assure a given set of goals on the digital information exchanged between two
or more parties. We list hereafter the goals of information security.

Definition 64 (Confidentiality). Confidentiality is achieved when the exchanged mes-
sages can be read only by authorized users.

Definition 65 (Data Integrity). Data Integrity is achieved when it is possible to detect
the unauthorized alteration of transmitted data. To assure data integrity, one must
have the ability to detect data manipulation by unauthorized parties. Data manipulation
includes such things as insertion, deletion, and substitution.

24

CHAPTER 1. INTRODUCTION

Definition 66 (Authentication). Authentication goal is achieved when it is possible to
assure that a message was sent by the purported author.

Definition 67 (Non repudiation). Non repudiation goal is achieved when it is not
possible for one user to deny some previous commitment or action.

Attacker Models

The security of a cryptosystem can be defined only with respect to the resources of
the attacker and her objectives or goals. For example, an attacker which knows the
symmetric key of a cryptosystem can systematically break it. It is thus more interesting
to evaluate the difficulty for the attacker to retrieve the key when she does not know
it. We thus recall the classical framework of resources and goals which is considered for
an attacker against a cryptosystem.

All attackers are assumed to employ Brute-force attacks. In this scenario the at-
tacker tries all possible keys until the correct one is found. While almost all ciphers are
vulnerable to such an attack (for a counterexample refer to the one time pad citeMil1882
), the difficulty relies not on the cryptosystem properties but only on the key length.
If the key is sufficiently long, then the time required to retrieve the key makes the
attack useless with respect to the cryptographic goal. For example, in some exchanges
the confidentiality of data may be required only for a few minutes, if an attacker needs
several days to brute force the key, then the cryptosystem is considered secure against
brute force with respect to key recovery. The resources which the attacker may use are
the following:

Definition 68 (Ciphertext-only attack (COA)). In this scenario the attacker has ac-
cess only to the ciphertexts which are exchanged between parties, and has no access to
the plaintext

Definition 69 (Known-plaintext attack (KPA)). In this scenario the attacker has
access to a limited number of pairs of plaintext and the corresponding enciphered texts.

Definition 70 (Chosen-plaintext attack (CPA)). In this scenario the attacker can
choose a number of plaintexts to be enciphered and have access to the resulting cipher-
texts. If furthermore at each step the attacker can analyze the previous result and choose
the next plaintext, it is called Adaptive Chosen-Plaintext Attack (CPA2).

Definition 71 (Chosen-ciphertext attack (CCA)). In this scenario the attacker can
choose arbitrary ciphertext and have access to plaintext decrypted from it. If further-
more at each step the attacker can analyze the previous ciphertext-plaintext pairs before
choosing the next ciphertext, it is called Adaptive chosen-ciphertext attack (CCA2).

Definition 72 (Related-key attack). In this scenario the attacker has access to cipher-
text encrypted from the same plaintext using other (unknown) keys which are related
to the target key in some mathematically defined way.

The goals of the attacker are:

Definition 73 (Total break). Disclosing the private key of the cryptosystem. It is the
most drastic attack. It is termed total break.

25

CHAPTER 1. INTRODUCTION

Definition 74 (Semantic Security). In cryptography, a cryptosystem is semantically
secure if any adversary that is given the ciphertext of a certain message m (taken from
any distribution of messages), and the message’s length, cannot determine any partial
information on the message with probability non-negligibly higher than all attackers
that only have access to the message length (and not to the ciphertext). A cryptosystem
is said to be semantically broken if it is not semantically secure.

Definition 75 (Indistinguishability). The indistinguishability property of a cryptosys-
tem is characterized by the following game. The adversary chooses two sequences of
message pairs, (M0,1,M1,1), . . . , (M1,q,M1,q), where, in each pair, the two messages have
the same length. The encryption scheme is used to produce a sequence of ciphertexts
C1, . . . , Cq that is returned to the adversary, where either (1) Ci is an encryption of
M0,i for all 1 ≤ i ≤ q or, (2) Ci is an encryption of M1,i for all 1 ≤ i ≤ q. During en-
cryptions, the encryption algorithm uses the same key but fresh randoms, or an updated
state, each time. The encryption scheme is said to be indistinguishable if the adversary
cannot distinguish with probability better than random guess whether M0,1, . . . ,M0,q or
M1,1, . . . ,M1,q were encrypted.

Definition 76 (Malleability). An encryption algorithm is malleable if it is possible
for an adversary to transform a ciphertext into another ciphertext which decrypts to a
related plaintext. That is, given an encryption of a plaintext m, it is possible to generate
another ciphertext which decrypts to f(m), for a known function f , without necessarily
knowing or learning m.

It is remarkable that in some particular scenarios, like homomorphic encryption,
malleability is considered as a positive property rather than a weakness.

The goals of an attacker against signature schemes slightly differs:

Definition 77 (Universal forgery). Constructing an efficient algorithm which is able to
sign any message with significant probability of success. This is called universal forgery.

Definition 78 (Existential forgery). Providing a single message/signature pair. This
is called existential forgery.

In the following sections we provide some example of cryptosystems which are of
particular interest for this work.

1.2.3 Advanced Encryption Standard

We recall that a cryptosystem is said to be symmetric if it is computationally easy to
retrieve the decryption key from the encryption key and vice-versa (59).

The Advanced Encryption Standard (AES) has been published in 2001 after a pro-
cess started in 1997 by the National Institute for Standards and Technology (NIST) [81].
Its development has been motivated by some serious weaknesses found in its predeces-
sor, the Data Encryption Standard (DES), which was standardized in 1977. The AES is
an SPN-based symmetric key cryptosystem originally known as Rijndael. An SPN cryp-
tosystem, from the acronym of Substitution-Permutation-Network, denotes a general
cryptosytems construction, which tries to realize the suggestions of Shannon [159,160].
Shannon suggested that a cryptosystem should perform two main operations on in-
put values, namely substitution and permutation, where substitution is in charge of
breaking linearity between input and output, and permutation should spread input
differences as much as possible into the output. The SPN construction suggests to

26

CHAPTER 1. INTRODUCTION

Figure 1.1 – An example of Substitution-Permutation Network with 3 rounds.

build a set of rounds which applies substitution and permutation blocks to the round
input. An example of an SPN network is depicted in Figure 1.1, where the Si blocks
are the substitution boxes and P represents the permutation block.

A block-size of 128 bit can be used with three different key-lengths, namely: 128,
192, or 256 bits. The number of rounds Nr associated with each key is 10, 12, and 14,
respectively.

The AES internal state is usually represented as a matrix of 16 bytes, where the
128-bit of the state are arranged row-wise. AES transformations operate bit-wisely,
where each byte is interpreted as an element in the field GF (28). Therefore each byte
is interpreted as a finite field element using the polynomial representation

∑7
i=0 biX

i.
The AES is composed of four functions, denoted SubBytes, ShiftRows, MixColumns
and AddRoundKey.

SubBytes The SubBytes transformation is a non-linear byte invertible substitution
that operates independently on each byte of the State using a substitution table (S-
Box). The SubBytes is composed of the following two functions:

• Inversion in the finite field GF (28) where the element 0x00 is mapped to itself.

• The affine transformation which maps each byte bi by using the transformation:
bi = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci, where ⊕ is the
addition modulo 2 and ci is the i-th bit of 0x63.

27

CHAPTER 1. INTRODUCTION

ShiftRows In the ShiftRows transformation, the bytes in the last second, third and
fourth rows of the State are cyclically shifted over 1, 2, and 3 bytes respectively.

MixColumns The MixColumns transformation operates on the State column-by-
column, treating each column as a four-term polynomial. The columns are considered
as polynomials over GF (28) and multiplied modulo x4 + 1 with a fixed polynomial
a(x) = {03}x3 + {01}x2 + {01}x+ {02}.

AddRoundKey In the AddRoundKey transformation, a Round Key of the same
size of the State is combined with the latter by an addition modulo 2.

Alg. 1 describes the encryption of one block of plaintext. We do not explicitly state
the decryption algorithm, as it only requires to perform each operation backward and
use the Round Keys from the last to the first.

Algorithm 1: AES Encryption Algorithm

Inputs : byte in[16], word w[4 * Nr + 1]
Output: byte out[16]

1 byte state[16]
2 state = in
3 AddRoundKey(state, w[0, Nb-1])
4 for round = 1 step 1 to Nr-1 do
5 SubBytes(state)
6 ShiftRows(state)
7 MixColumns(state)
8 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

9 end
10 SubBytes(state)
11 ShiftRows(state)
12 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
13 out = state
14 return (out)

Known attacks

When AES has been conceived particular choices has been guided by attacks discovered
in its predecessor, the DES. As an example the structure of the S-Boxes has been
conceived in order to thwart differential and linear cryptanalysis [24,120].

Since its publication the AES security has been challenged by a very broad set of
attacks. Some attack have been found on reduced versions of the cipher, for exam-
ple Biryukov et al. [26] show how to break AES variants with up to 10 rounds. The
best attacks on full AES has been obtained by Bogdanov et al. [33] being able to re-
trieve the AES key with 2126.0 operations for AES-128, 2189.9 for AES-192 and 2254.3

for AES-256. A number of related-key attacks have also been demonstrated in several
publications [26–28], attaining a complexity of 296 for one out of every 235 keys. How-
ever, properly designed protocols should take care not to allow related-keys, thus the
practicality of these attacks has been criticized. It is worth noticing, however, that such
attacks still require billions of years on modern computers, thus they do not represent

28

CHAPTER 1. INTRODUCTION

a real threat for the security of involved communications. For further details on the key
schedule, on implementations tricks, and an overview of the choices that led to such
algorithm, we refer the reader to [64].

1.2.4 RSA

Diffie, Hellman and Merkle, in their exceptional work [66], suggested the use of trap-
door functions to provide asymmetric cryptography. However, practical realizations of
such cryptosystems were only discovered about a year later by Rivest, Shamir and
Adleman [147]. The cryptosystem, known as RSA by the names of its inventors is one
of the most used, studied, challenged, and discussed of all times.

Definition 79 (one-way function). A function f from a set X to a set Y is called a
one-way function if f(x) is “easy” to compute for all x ∈ X but for “essentially all”
elements y ∈ Im(f) it is “computationally infeasible” to find any x ∈ X such that
f(x) = y.

Conceptually, a one-way function is a function that is difficult to invert once com-
puted. Typical examples of one-way functions are Hash functions.

Definition 80 (Hash function). A hash function is a computationally efficient function
mapping binary strings of arbitrary length to binary strings of some fixed length, called
hash-values.

Definition 81 (Trapdoor one-way function). A trapdoor one-way function is a one-
way function f : X → Y with the additional property that given some extra information
(called the trapdoor information) it becomes feasible to find for any given y ∈ Im(f),
an x ∈ X such that f(x) = y.

Algorithm

The RSA algorithm is commonly used to ensure privacy and authenticity of digital
data. We provide hereafter a simplified version of the RSA algorithm. Let N = p · q
be the product of two large primes of about the same size. Then we can compute
two values e, d such that d = e−1 mod ϕ(N), where ϕ(N) = (p − 1) · (q − 1) is the
size of the multiplicative field Z∗N . The pair (N, e) is the public key, and (N, d) is the
private one. Let M ∈ Z∗N be a message. M can be encrypted by computing the value
C = M e mod N . The ciphertext C can then be decrypted by computing Cd mod N . It
is relatively easy to prove that the two transformations are mutually inverse. It simply
comes from the fact that ed ≡ 1 mod ϕ(N) ⇒ ed = 1 + kϕ(N). As ϕ(N) is the order
of ZN , by Theorem 2 Mϕ(N) ≡ 1 mod N for any M in Z∗N . Now Cd = (M e)d = M ed,
by substituting ed with 1 + kϕ(N) we obtain Cd = M1+kϕ(N) ≡M1 mod N . The same
happens if we compute S = Md mod N and then Se mod N .

As e usually denotes the public exponent, and d the private one, the transformation
C = M e mod N is called encryption as only the owner of the private key can retrieve
the initial message. On the other hand S = Md mod N is called signature as it only
needs public parameters to retrieve the initial message and thus anyone can verify that
the owner of the private key has ”signed”M . A compound of many attacks on the RSA
and a good resource for an initial study on the subject is the work of Boneh [35].

29

CHAPTER 1. INTRODUCTION

Complexity The complexity of one RSA exponentiation can be roughly approxi-
mated by assuming that a multiplication is performed for each bit of the exponent.
In this case we can bound the operations performed during an exponentiation by the
bit-size of the exponent, times the complexity of one multiplication. As modular mul-
tiplications are performed, one can expect the size of operands to be approximately
the same size of the modulus, thus approximately O(log2(N)) elementary operations,
see Sec. 1.1.3. We thus obtain that an RSA decryption (equivalently a signature) takes
O(log(d)log2(N)) operations, or O(log3(N)) if d and N have the same size.

CRT-RSA

The CRT-RSA algorithm allows a speedup of about 4 times over a classical RSA
implementation.

The CRT-RSA speedup exploits the properties of the Chinese Remainder Theorem(
Theorem 5) in order to independently compute the exponentiations modulo p and
modulo q. Two subfield exponents are computed as dp = d mod (p − 1) and dq =
d mod (q − 1) and stored together with the private key. The message M is also split
in two : Mp = M mod p and Mq = M mod q. Afterwards two exponentiations are
performed: {

Sp = Mdp
p mod p

Sq = Mdq
q mod q (1.5)

Finally Sp and Sq are combined to obtain the signature S by using e.g., Garner’s
formula: S = Sq + q · (iq · (Sp − Sq) mod p) where iq = q−1 mod p. The complexity of
the CRT-RSA can be evaluated with respect to the complexity of the standard RSA.
Assume that p and q have the same size, assume also that the final recombination takes
negligible time with respect to the exponentiations.

The ratio between the execution time of the standard RSA and that of a single CRT-

RSA exponentiation is O(log3(N))
O(log3(N1/2)) . Assuming the constant c > 0 embedded in the Big

O notation Sec. 1.1.3 to be independent on the size of the input, for N greater than

a given threshold the ratio becomes c·log3(N)
c·log3(N1/2) . By taking into account both sub-field

exponentiations and simplifying the square root with the log we obtain: 23·c·log3(N)
2·c·log3(N) = 4,

thus standard RSA is about four times slower than the CRT-RSA with the assumptions
made above, and by considering the recombination step negligible with respect to the
exponentiations.

While the asymptotic complexities remain the same, the practical gain makes the
RSA-CRT the favored version for implementation in most platforms.

Parameter choices The security of RSA is strictly connected with the difficulty
of factorization. It is known that being able to factor the public modulus implies a
complete break of the RSA cryptosystem. Indeed once p, q are known the adversary can
compute ϕ(n) and thus retrieve the private key as the modular inverse of e mod (ϕ(n)).
Inversely it can be shown that knowledge of the public and private keys allows factoring
the public modulus N . A probabilistic algorithm is as follows. Recall that knowledge
of d and e allows to compute de − 1 = `ϕ(N) for some ` ∈ Z. Now, ϕ(N) is even
so let k = `ϕ(N) = 2tr for r odd. As a2tr ≡ 1 mod N ∀ a ∈ Z∗n, ak/2 is a square
root of 1 modulo N that have four roots. Nontrivial roots of 1 modulo N are of the
form x = 1 mod p and x = −1 mod q. So gcd(x − 1, N) reveals a nontrivial factor
of N . Randomly choosing a ∈ Z∗N the probability to obtain a nontrivial root of 1

30

CHAPTER 1. INTRODUCTION

is at least 0.5, so after u tries the attacker has probability greater than 1 − 2−u of
successful factorization. Furthermore May [121] showed that there exist a deterministic
polynomial time algorithm to retrieve the factors p, q form the knowledge of e, d,N . In
view of these attacks, the choice of parameters (i.e the size of p, q and their structure)
must be done in order to avoid the possibility for the attacker to factor the public
modulus N . There exists factorization algorithms such as the Pollard rho that have
running time bounded using the birthday paradox by O (

√
n) steps. In particular if

p ≪ q then the factorization has running time bounded by the square root of the
smaller prime p. It is thus wise to choose p, q of the same size n1/2 in order to avoid
such attacks. The best known general factorization algorithm is the general number

field sieve which have complexity O
(

exp
((

64
9 b
) 1

3 (log b) 2
3

))
. Most recent efforts in

factorization techniques demonstrated the possibility to factor a 768-bit RSA modulus
by using high sophisticated equipment [107]. In view of these results NSA recommends
to use modulus of at least 2048 bits as of 2014. Concerning the public and private keys
it has been shown by Wiener [173] that whenever d < n1/4/3 then it is easy to recover
d from N, e. We recommend the reader to refer to the work of Boneh [35] which collects
all of the attacks on RSA appeared up to 2010.

1.2.5 ECDSA

In 1994 the US Digital Signature Standard DSA was proposed [79], essentially as an
adaptation of the ElGamal signature scheme [73]. With the advent of ECCs, it has
been remarked that it was possible to adapt the DSA to elliptic curves, providing
faster algorithms for both signature and verification.

Scalar Multiplication and ECDLP. The scalar multiplication of the curve point
P by the scalar k ∈ N is denoted [k]P . This is defined as the addition of the point P
to himself k times. The interest of scalar multiplication in cryptography is due to its
computational one-wayness. In fact it is easy to compute the result point Q = [k]P
but it is computationally difficult to compute the integer k knowing Q and P . This
problem is known as the ECDLP and it is one of the fundamental building blocks
used to construct cryptographic protocols on elliptic curves [109, 127]. The ECDLP
is an interesting problem that challenges mathematicians from decades. For example,
by using the Pollard’s ρ [138] or Shanks’ “baby-step/giant-step” algorithm [158], the
problem can be solved in time polynomial on the square root of the biggest factor of
the order of the base. For example, for a curve of order q prime, the complexity of the
aforementioned attacks is O(q0.5) and no significantly better algorithms are known.

Algorithm

Signer and verifier must beforehand agree on a common curve E(Fp), and a point
P ∈ E(Fp). Both the curve E(Fp) and the point on it are public parameters. We will
denote with fx(P) the function that returns the x-coordinate of a point P on the
elliptic curve. The signer then produces a private key denoted d ∈ Zq−1 and a public
key Q = d[P], shared with the verifier. In order to sign a message m, the user produces
an ephemeral key k and computes the point R = [k]P . She then computes the value r
by extracting the x-coordinate of the point R. She afterwards computes

s = SHA(m) + rd

k
mod q , (1.6)

31

CHAPTER 1. INTRODUCTION

where SHA(m) denotes the algorithm described in the US Secure Hash Standard [162].
Once obtained the signature (r, s), the verifier computes hm = SHA(m), and accepts
the signature if

r = fx([s−1([h]P + [r]Q)]) (1.7)

holds.

Known Attacks It has been showed that as soon as two signatures shares the same
ephemeral key k, then the secret key can easily be retrieved by an attacker. By us-
ing Eq. 1.6 we can write the two signatures as{

s1 = hm1 +rd
k

mod q
s2 = hm2 +rd

k
mod q

Then the attacker can retrieve the secret d by computing s1 − s2 = k(hm1 + rd) −
k(hm2 + rd), which gives k(hm1 − hm2). As the value hm1 − hm2 can be computed by
the attacker which knows m1 and m2, she can inverse the value and retrieve k.

If it was not sufficient to show that a fresh k must be regenerated at each execution,
Howgrave-Graham et al. [101] and Nguyen et al. [132] showed that the knowledge of
a few bits of k on different signatures are sufficient to retrieve the secret key by using
LLL techniques.

Pollard-ρ The best known algorithm for solving the DLP independently of the
specific group G is Pollard’s ρ algorithm. In order to compute the discrete log of y in
base g a random walk is computed on the elements of G starting from g. The elements
produced are of the form ag + by where the next element xi+1 is chosen between

• xi+1 = g + xi

• xi+1 = 2xi

• xi+1 = y + xi

depending on a random looking but deterministic computation, using e.g. hash values.
The values xi together with their representation aig + biy. When a collision is found
in the list the requested discrete logarithm becomes known. We also recall that the

expected running time of Pollard’s ρ algorithm is
√
πn/2.

1.3 Secure Microcontrollers

It was back in 1968 and 1969 that the first patents for automated chip card were
submitted. Later on Roland Moreno patented the memory card concept (1974). The
original idea was to have a miniaturized device capable of storing information such
that it was impossible for an attacker to tamper with the embedded data. Such devices
were originally deployed in France to store the credit of users for public phones, such
that at each call the user credit was debited by the phone machine. Later on, similar
ideas were applied to banking accounts, allowing transactions without the physical
exchange of money. Such microcontrollers were originally in the form of smart cards,

32

CHAPTER 1. INTRODUCTION

but have since been widely developed, evolving their initial form, shape and destination
of use. They are nowadays real miniaturized computers, which are intended to provide
secure communication between several different devices. We can today find the usual
smart card format in credit cards, passports, sim cards, etc., Further miniaturized
processors can be found in smartphones in the form of a secure element, allowing
the access to secured services. Also, Machine-to-machine (M2M) applications allow
secure communications between personal vehicles, or the access to on-board controls
like the driving system through wireless channels. Finally, IoT devices start to embed
some miniaturized device similar to a secure element in order to provide cryptographic
services with very high security.

Concerning smart cards, their physical support is a plastic rectangle on which can
be printed user readable information. The support usually also carry a magnetic stripe
or a bar code label. The micro-processor presents eight contacts in accordance with the
ISO 7816 standard but only six are actually useful contacts. The contacts relies the
power supplies (Vcc, Vpp), ground, clock, reset and an I/O link to the micro-processor
pins.

A micro-processor is build of several modules, each solving a particular function.
In the remainder of this section we present the principal building blocks which can be
found on a modern micro-processor architecture, from processing units to memories. We
provide a brief detail of its characteristics and some figures of state-of-the-art examples.
We afterwards briefly introduce the concept of physical attacks that will be the object
of this manuscript.

1.3.1 Processor

A Processor or central processing unit (CPU) is the electronic circuitry that carries
out the instructions of a computer program by performing the basic arithmetic, logical,
control and input/output (I/O) operations specified by the instructions. A processor
contains several building blocks, mainly operation units like an ALU, and memories
like registers. We now detail each of them.

Definition 82 (ALU). An arithmetic and logic unit (ALU) is the digital electronic
circuit within a CPU that performs arithmetic and bitwise logical operations on binary
numbers. The inputs of the ALU are called operands, and the operation-code indicating
the operation to perform on the operands. Additionally, an ALU often exchanges infor-
mation with a status register which carries information on the result of the current or
previous operations.

Definition 83 (Register). A processor register is a small amount of storage available
as part of a digital processor, such as a central processing unit (CPU). Such registers
are typically addressed by mechanisms other than main memory and can be accessed
faster. Almost all computers, load data from a larger memory into registers where it is
used to feed operands and code to an ALU.

The size of the CPU registers actually defines the size of data on which CPU can
work on each instruction, thus for example we can find smart cards with 8-bit up to 32-
bit CPU registers. In general a micro-processor may contain a number of different ALUs,
a general purpose one for coding communication routines, high level protocols, etc., and
possibly further computation units specific to some kind of algorithm. For example it
is possible to find an integrated AES co-processor to provide high throughput AES
routines. In order to keep the assembler language the more portable, the instructions to

33

CHAPTER 1. INTRODUCTION

the co-processors are usually provided by writing into dedicated registers. Such registers
contain for example the particular cipher settings key size, encryption or decryption,
key value, etc., and many other depending on the co-processor functional specification
and objective.

Definition 84 (Memory). Data storage on a micro-processor is referred as memory.

Different types of memories can be present at the same time on a micro-processor,
for example, ROM, EEPROM, FLASH, etc. Each kind presents different scopes, for
example ROM memories are writable only once, thus the program executed from ROM
cannot be modified once written during the mask-producing stage. Instead, RAM mem-
ories can be written and read at will and store information as long as they are powered.

In order to provide an example of the current microcontrollers technologies, we
list in Figure 1.3.1 some of the characteristics of the top products targeting secure
banking applications. The manufacturers have been chosen as the three most important
manufacturers according to their stock price.

Manufacturer Family Memory CPU Sym Asym

NXP Semiconductors SmartMX2

• 384KB ROM

• 144KB EEPROM

• 8KB RAM

8/32-bit DES, AES RSA, ECC

Infineon Technologies SLE
• 348KB Flash

• 10KB RAM
16-bit DES, 3DES,

AES
RSA, ECC

STMicroelectronics ST33

• 512-1280KB
Flash

• 30kB RAM

ARM
SC300

3DES, AES RSA, ECC

1.3.2 Random Sources

A smart card is often responsible for producing its own keys and secret parameters,
thus it is a fundamental security requirement that it is capable of producing reliable
random bits. During for example an ECDSA signature, the card is required to provide
the ephemeral key k. It has been shown that the difficulty for an attacker to guess
even a few bits of such a value between different executions is fundamental in order
to assure the security of the overall algorithm [101,132]. That is for such reasons that
every smart card provides a unit that is responsible for generating random bits.

Definition 85 (TRNG). A True Random Number Generator (TRNG) is a hardware
device that generates random numbers from a physical process.

Typical examples of sources of such physical processes are thermal noise or the
photoelectric effect.

Definition 86 (PRNG). A Pseudo Random Number Generator (PRNG) also called
deterministic random bit generator is an algorithm for generating a sequence of num-
bers whose properties approximate the properties of sequences of random numbers.

34

CHAPTER 1. INTRODUCTION

The sequence generated by the PRNG is not truly random, as it can be completely
determined by a small set of initial values called seed. Despite being deterministic, they
can be very useful in particular settings, where for example the output bits are not
directly used as keys.

1.3.3 Physical Attacks

In order to introduce the concept of physical attacks we like to cite an interesting work
of Zhou et al. [182]:

[. . .] This kind of “separation of concerns” between security mechanisms
and their implementation has enabled (and is, arguably, necessary for) rig-
orous theoretical analysis and design of cryptosystems and security pro-
tocols. However, in the process, various assumptions are made about the
implementation of security mechanisms. For example, it is typically as-
sumed that the implementations of cryptographic computations are ideal
“black-boxes” whose internals can neither be observed nor interfered with
by any malicious entity. [. . .] In practice, however, these security mecha-
nisms alone are far from being complete security solutions. It is unrealistic
to assume that attackers will attempt to directly take on the computational
complexity of breaking the cryptographic primitives employed in security
mechanisms. An interesting analogy can be drawn in this regard between
strong cryptographic algorithms and a highly secure lock on the front door
of a house. Burglars attempting to break into a house will rarely try all
combinations necessary to pick such a lock; they may break in through
windows, break a door at its hinges, or rob owners of a key as they are
trying to enter the house. Similarly, almost all known security attacks on
cryptographic systems target weaknesses in the implementation and deploy-
ment of mechanisms and their cryptographic algorithms. These weaknesses
can allow attackers to completely bypass, or significantly weaken, the the-
oretical strength of security solutions.

The first works on the subject are those of Kocher et al. from 1996 to 1999 [110–112].
However, some hints on the risk posed by side-channels had already been suggested by
Van Eck [168] concerning phreaking on CRT displays in 1985. While these were the
first academic results, various secret services around the world already exploited such
weaknesses as of WWII. For example the NSA reports the deciphering of encrypted
teletyped messages using a far away freestanding oscilloscope [83] as of 1943. The MI5
exploited EM and acoustic emanations to spy on the French and Egyptian embassies
in London during the STOCKADE and ENGULF operations [176] of the cold war.

A physical attack thus stands for an attack on an embedded cryptosystem that
exploits the physical behavior (i.e. interactions) of the micro-processor with the envi-
ronment in order to obtain sensitive information susceptible of allowing the attacker
to break the cryptosystem. It is thus mandatory to update the attacker model in order
to take into account such developments. We can distinguish two different behaviors
for the attacker, which lead to two almost orthogonal sets of attacks types. A Fault
Attack (FA) is an attack on a cryptosystem where the attacker tries to tamper with
the encryption device in order to produce an erroneous computation. These are called
active attacks due to the active role of the attacker during the tampering, trying to
modify the normal execution flow, memory values, etc., of the micro-processor, in order

35

CHAPTER 1. INTRODUCTION

to exploit the faulty result to retrieve sensitive information. We analyze in detail this
subject in Chap. 2.

On the other hand a side-channel is any information that can be retrieved from
the encryption device that is neither plaintext nor ciphertext and that does not involve
tampering with the encryption device. Consequently, a Side-Channel Attack (SCA)
exploits side-channels to retrieve sensitive information on the cryptosystem. There exist
several such physical interactions, for example time attacks, acoustic or power attacks.
We provide a more precise treatment of the subject in Chap. 3. The terminology in the
literature is not quite set, thus some work may refer to side-channel attacks as passive
attacks in contrast to active attacks. Also, some authors denotes side-channel attacks
with the acronym PA (for Power Analysis) for historical reasons.

It is the subject of this work to extend and improve current knowledge on side-
channel and fault attacks and countermeasures on microprocessors.

36

Chapter 2

Fault Attacks

“ If it is provably secure, it is
probably not”

Lars Knudsen

Contents
2.1 Fault Attacks . 39

2.1.1 Fault Vectors . 39

2.1.2 Fault Models . 40

2.1.3 General Countermeasures . 41

2.1.4 Fault Attack on CRT-RSA 42

2.1.5 Fault Attacks on ECC . 44

2.1.6 Fault attacks on AES . 45

2.2 RSA Detective to Infective Countermeasure Translation
Analysis . 47

2.2.1 Countermeasure Presentation and General Remarks 47

2.2.2 Infective Aumüller et al. Countermeasure 48

2.2.3 Analysis of the Infective Aumüller Countermeasure 49

2.2.4 Infective Vigilant et al. Countermeasure 50

2.2.5 Analysis of the Infective Vigilant Countermeasure 51

2.2.6 Conclusion . 52

2.3 Analysis of the “Multiplicative” AES Infective Counter-
measure . 52

2.3.1 Countermeasure presentation 52

2.3.2 Attack Description . 53

2.3.3 Simulations . 53

2.3.4 Conclusion . 54

2.4 Analysis of the “Dummy-Rounds” AES Infective Coun-
termeasure . 55

2.4.1 Countermeasure Presentation 55

2.4.2 Attack Description . 55

37

CHAPTER 2. FAULT ATTACKS

2.4.3 Simulations . 57

2.4.4 Conclusion . 58

2.5 Analysis of the CHES 2014 AES Infective Countermeasure 58

2.5.1 Countermeasure Presentation 59

2.5.2 Attacks . 60

2.5.3 Conclusion . 66

2.6 Common Points Attack on ECC 66

2.6.1 Common Points . 66

2.6.2 Fault Attack Using Common Points 67

2.6.3 Simulations . 69

2.6.4 Countermeasures . 71

2.6.5 Conclusion . 72

2.7 Conclusion . 73

In this chapter we start by presenting the classical model of fault attacks in view
of the resources of the attacker described in Chap. 1. We then present the two main
different families of fault attacks: simple and differential. In particular we provide some
classical examples for both and introduce the classical countermeasures used to thwart
them. Afterwards we present our contributions to the area of so-called infective com-
putation, which seems a promising yet subtle subject for the research community. In
particular in Sec. 2.2 we present our publication at the FDTC 2015 workshop which an-
alyzes the security of some RSA infective countermeasures [16]. Afterwards we present
our contributions to infective symmetric cryptanalysis. In particular in Sec. 2.3 and
Sec. 2.4 we present the results of our analyses published at FDTC 2014 on two sym-
metric infective countermeasures [15]. Afterwards we analyze the security of a recent
publication in Sec. 2.5 [17]. The results of this work have been published at COSADE
2016. All the previous results are joint works with Christophe Giraud. We conclude this
chapter with our contribution to elliptic curve security against fault attacks, where we
show that state-of-the-art countermeasures may not be secure as one may consider
in Sec. 2.6. We have published this result at COSADE 2014 [13].

38

CHAPTER 2. FAULT ATTACKS

2.1 Fault Attacks

Cryptosystems are nowadays implemented as software or hardware circuits in portable
devices, like smartcards, smartphones, and many other devices of the “smart” fauna.
It thus becomes practical for an attacker to steal a smart device to attack it. It is also
common to provide users with a device embedding a third party secret key. It seems
counter intuitive, but it is at the base of very useful applications like music distribution
and digital right management control. However, the presence of secret keys on the users’
device represents a great risk, and the implementation thus needs to be protected from
attacks. It is thus evident that simple black box attacks are no more sufficient to model
modern attackers, which may be impersonated by the very user of the device, which
can tamper with the cryptosystem internals in order to modify its execution. It is
thus the objective of this session to present the threats caused by attackers tampering
with the running cryptosystem, and to highlight some of the new attack paths and
countermeasures that we suggested in this field.

As we have discussed in Chap. 1, a fault attack is an active attack where the attacker
tries to disturb the execution flow or the data manipulated by the microprocessor in
order to obtain a wrong result. We recall here the definition of fault attacks:

Definition 87 (Fault Attack). A Fault Attack (FA) is an attack on a cryptosystem
where the attacker tries to tamper with the encryption device in order to produce an
erroneous computation.

2.1.1 Fault Vectors

Several ways exists to tamper with the code execution and memories. The first example
of disturbances where the accidental effect of cosmic rays at high altitudes and outer
atmosphere on semiconductors [183] encountered for example by the NASA or Boeing
during their missions. Further researches allowed the community to discover many
other fault vectors, which can be better controlled (at least up to some degree) by the
attackers. We list hereafter the most common fault vectors found in literature [8]:

• Power Glitches: Inject a glitch (i.e an instantaneous peak), into the VCC/Gnd
microprocessor pins.

• Clock Glitches : Inject an asynchronous instantaneous change in the clock source,

• Light : Inject a powerful light beam into the silicon’s microprocessor. In particular
laser sources are light sources with high instantaneous power and tight frequency
band often centered around the infrared.

• Electro-Magnetic (EM): Inject a particular electro-magnetic radiation into the
microprocessor’ metal layers.

The exact error induced in the computation by a fault depends on many factors,
ranging from the fault vector, the fault locality, the technology of the microprocessor,
and many more. As a result it is difficult to know in advance the kind of fault which
an algorithm has to withstand. Instead, it is common to produce a list of probable
faults and study the resistance of the algorithm against them. Such a list is often
denoted as the fault model, and may be proper to the fault vector and the particular
microprocessor. We introduce in the next section the most common fault models used
in the literature.

39

CHAPTER 2. FAULT ATTACKS

2.1.2 Fault Models

Fault models represent the possible kinds of error that may be introduced by the
attacker into the code and the probability to obtain each of them. For example it is
common to assume that an attacker can turn the value of a register into 0x00. Such
a statement translates to the stuck-at-zero fault model, with associated probability
of obtaining such particular fault. Other fault models, that are indeed less common,
assume the effect of the fault to be a XOR of the register content with an error value,
which may be controlled or not by the attacker. Furthermore, when the probability is
not specified we assume that the fault occurs with 100% probability. In this section we
recall some of the most popular fault models used in the literature [7, 105].

Random Error In the random error fault model scenario, the attacker can change
the value of a chosen variable into a random value unknown to the attacker. We remark
that it is often also useful to consider the so called unknown constant error model, which
is similar to the random error one but assumes that the random value injected into the
value remains constant among different fault campaigns.

Stuck-at With a stuck-at fault, we model an attacker that can set the value of a
variable to a given value during a particular step of the algorithm. In the literature
two main kinds of stuck-at faults seems to be relevant, namely stuck-at-0 and stuck-
at-1. Where the former models an attacker that can set a variable to zero, the latter
accounts for attackers that can set every bit of a variable to one. Even if it may seem
quite unrealistic to set a whole variable to zero for example, especially if it is composed
of several bytes, this fault model finds real application when variables are passed by
reference instead of by value. This means that the value is accessed through a pointer
and in this case an attacker can fault the pointer to address a zone of the memory that
contains only zeros.

Instruction Skip The instruction skip fault model formalizes an attacker that can
skip the execution of (one or more) consecutive instructions of her choice. Depending
on the granularity of the analysis the model may account for faults that skip pseudo-
code down to assembly code level instructions. As a general rule the attacker can
skip instructions at the same abstraction level as the definition of the algorithm to be
attacked.

Bit flip This model assumes that the attacker is able to flip each bit of a chosen
variable.

We will see in the following how the different fault models can be used to break
particular cryptosystems. However it is a matter of fact that some simple observations
allow the reader to understand why fault attacks represent such a threat for security.
We have seen in Sec. 1.2.2 that one of the goals of digital signatures is to certify
that a message was sent by the purported author. In such protocols, the output of the
verification algorithm is a simple “Accept” or“Refuse”, 0 or 1 in binary. It thus becomes
feasible for an attacker to disturb the result of the verification algorithm, turning a 1
into a 0. The receiver may thus accept a counterfeited message thus breaking the
authenticity goal of the cryptosystem. Even though such attack may seem really simple
and obvious countermeasures can easily thwart it, there exists a whole bunch of other
attacks that prove stronger, whilst keeping the attack complexity very low. It is thus

40

CHAPTER 2. FAULT ATTACKS

obvious that many countermeasures have been conceived to thwart fault injections. In
practice there exist general countermeasures that can detect and protect from a very
wide range of faults and ad-hoc countermeasures adapted to particular algorithms. In
the following we provide examples for some of them.

2.1.3 General Countermeasures

Two main kinds of general countermeasures exists against fault attacks, namely hard-
ware and software countermeasures. While the former are very effective, they require
space on chip, which in turn increases the size of the silicon surface and thus the cost
of the chip. On the other hand, software countermeasures do not require physical space
but they require memory/speed trade-offs which are often difficult to achieve. Fur-
thermore, algorithmic countermeasures allow to exploit mathematical properties of the
algorithm in order to reduce the countermeasure overhead. For example several sug-
gestions for asymmetric countermeasures, mainly for CRT-RSA, have been suggested,
and we investigate some of them in the following.

Hardware

The most common hardware countermeasure are current and voltage regulators. Such
hardware modules allow to limit the effectiveness of glitches in the microprocessor in-
puts. In order to thwart laser faults, instead, light sensors are often employed. Such
physical modules can detect peaks of electromagnetic radiations in some specific fre-
quency range (namely those of lasers). Light sensors are very effective versus specific
fault vectors in thwarting fault attacks, however they occupy physical space, thus they
suffer from two main drawbacks. First of all there can not be too much of them be-
cause of the cost of the space on silicon. Furthermore, depending on each light sensor
detection area, sensitive modules far enough may remain unprotected. For these reasons
light sensors are usually considered as deterrents rather than effective countermeasures.
Further example of hardware countermeasures are glitch detectors, which can thwart
current/voltage peaks injected in the input pins. Despite their cost in silicon space,
they are often used due to their high efficiency. More advanced techniques rely on the
use of redundant circuits. Duplicating the hardware grants the detection of incoherent
states between the multiple elements executing the same operations or storing the same
data.

Software

Among software countermeasures, the one which emerged as one of the most general and
powerful is redundancy. Similarly to the use of redundant circuits in hardware, the most
general version of such countermeasure consists in doubling the algorithm execution
and then comparing the results before output. If the results of the two executions are
different then a security action may be taken, otherwise one of the two results can
be output. The basic assumption is that the attacker is not capable of disturbing the
algorithm twice with the same fault. Evolutions of such countermeasures can protect
from various kinds of fault models. The countermeasure can obviously be adapted to
protect from several faults, however the cost in term of execution is clearly linear in the
order of faults that one wants to thwart. The redundancy countermeasure is particularly
interesting in asymmetric cryptography where particular algebraic structures of the

41

CHAPTER 2. FAULT ATTACKS

cryptosystem can be exploited to achieve redundancy without actually doubling the
algorithm. We discuss some of them in the following.

These two general countermeasures can be adapted to exploit some of the properties
of the particular algorithm to be protected. In the next sections we discuss the fault
effects on algorithms like the CRT-RSA, ECC and AES, and some of the countermea-
sures commonly adopted.

2.1.4 Fault Attack on CRT-RSA

In this section we recall the classic fault attack on CRT-RSA cryptosystems of Boneh et
al. [21], we then provide an overview of some properties of the CRT-RSA cryptosystem
that may be used to thwart such attack.

While it may seem impossible to gain information from an erroneous result, this kind
of attack showed to be extremely powerful against modern cryptographic algorithms.
The first ones who noticed the risk posed by faults were researchers at the Bellcore
Labs [34]. As described in Sec. 1.2.4, in order to break the security of RSA it is sufficient
to retrieve one of the secret factors p or q of the public modulus N . While factoring N
is a well known hard problem, the so called “Bellcore” attack [34] demonstrated that
if an error occurred during one of the subfield computations of the CRT-RSA, then
the corresponding faulty signature can be used to factor the modulus. Indeed, if one of
the two subfield computations of Eq. 1.5 is wrong, let us say Sp (the case where Sq is
wrong is similar), then the recombination step produces a signature S̃ wrong modulo
p and correct modulo q, i.e.: {

S − S̃ 6≡ 0 mod p
S − S̃ ≡ 0 mod q . (2.1)

They noticed that the secret factor q of N can thus be retrieved by computing
gcd(S − S̃, N). The attack was further improved by Lenstra [114] who showed that
by computing gcd(S̃e − M,N), the attacker does not even need the knowledge of a
correct signature to recover the private key. The power of such attack relies on the
facts that it only needs one faulty computation and that it is not straightforward to
protect algorithms from faults. Indeed many authors provided ideas to thwart such
attacks, in the following we present some of their results.

CRT-RSA Countermeasures

The CRT-RSA presents particular algebraic properties that can be used to build ad
hoc countermeasures to thwart fault attacks. These properties have been exploited by
various authors (e.g. [4, 60, 157, 171]) to suggest cheap and efficient countermeasures.
Two main approaches have been suggested in the literature to thwart faults in software,
namely detective and infective countermeasures. In the following we present both of
them with some examples.

Detective countermeasures There exist three main families of detective counter-
measures suggested in theory and still used in practice. While many other countermea-
sures exists [91, 145], we have chosen to limit our presentation to those necessary to
understand this work and that are mostly adopted. We are going to give some details
of each of them in the following. The Shamir countermeasure against fault attacks,
is due to Adi Shamir and firstly appeared in [157]. The idea is to perform the two

42

CHAPTER 2. FAULT ATTACKS

computations of Eq. 1.5 modulo p · r and q · r respectively where r is a small random
variable:

{
S ′p = Mdp mod p · r
S ′q = Mdq mod q · r . (2.2)

In this way, the integrity of each sub-field signature S ′p and S ′q can be verified by
comparing the values modulo r.

Aumüller et al. in [4] suggested some improvement of Shamir’s countermeasure.
They suggest to verify that p · r and q · r have been correctly computed modulo p and q
respectively. They also add other tests to verify the signature S by comparing it versus
S ′p modulo p and S ′q modulo q. If an inconsistency is found, an error is returned and a
security action may be taken. Once again, Yen et al. [181] published at ICICS 2002 an
improvement of the countermeasure to thwart some new attack they found.

The countermeasure of Vigilant exploits the fields properties by using a set of four
values denoted Ap, Bp, Aq, Bq. The four values have the following properties. Let the
field Fp, where all numbers are modulo p, be extended by using the modulo p ·r2, where
r, p are co-prime numbers. Now Ap, Bp have been chosen such that:{

Bp = 1 mod r2

Bp = 0 mod p · r2

{
Ap = 0 mod r2

Ap = 1 mod p · r2 .

The following properties are verified:

• A2
p = Ap mod p · r2

• B2
p = Bp mod p · r2

• ApBp = 0 mod p · r2

Taking m′p = Apmp + Bp(1 + r) mod p · r2, by using the properties of Ap, Bp one can
deduce:

m′p
x = Apmp

x +Bp(1 + x · r) mod p · r2 (2.3)

for any x. Now from the above properties it follows that:

{
m′p

x = Apmp
x mod p

Bp ·m′p
x = Bp(1 + x · r) mod r2

Where the property Bp(1 + r)x = Bp(1 + x · r) mod r2 is easily proven by the fact that
working modulo r2 boils down to reduce modulo the ideal generated by r2, which in turn
means that all polynomials of degree greater than 1, (i.e: a+ rb) are reduced to 0. Now
the countermeasure consists in exploiting these properties to perform computations
modulo p ·r2, (resp. q ·r2) and verifying the computation modulo r2 by using Bp ·m′p

x =
Bp(1+x·r) mod r2 with a simple multiplication instead of an additional exponentiation.

Finally, in order to generate Ap, Bp, it has been remarked that one can simply take:

{
Bp = p · (p−1 mod r2)
Ap = 1−Bp mod p · r2 .

Computations modulo q are symmetric.

43

CHAPTER 2. FAULT ATTACKS

Infective Countermeasures In 2001, Yen et al. [180] suggested another approach
to thwart the Bellcore attack. To secure a CRT-RSA they proposed to spread a possible
fault into both subfield computations results. Two protocols were proposed in [180].
Unfortunately both were broken by Yen et al. in [178, 179] by adapting the Bellcore
attack [21].

In 2003, Blömer et al. suggested in [31] another protocol to realize infective com-
putation on CRT-RSA algorithm. They suggested to return a random power of the
signature if a fault is injected in one of the two subfield exponentiations. The authors’
security proof was based on the resistance to all known attacks. This method called
BOS was later broken by Wagner in [172] thus proving that such security proofs are
not exhaustive.

Trying to resurrect infective computation, Ciet et al. [50] proposed at FDTC 2005
an adaptation of the BOS method which was resistant to the attacks found by Wagner.
However, this method was broken by Berzati et al. in [22], in which was suggested a
patch to circumvent the flaw but no security analysis was given.

In 2010, Schmidt et al. [153] proposed an exponentiation resistant to both side-
channel and fault attacks by using an infective countermeasure. Once again this method
was broken. Feix et al. found a flaw in the exponent blinding procedure that allows
attackers to retrieve the private key [77]. They proposed a patch to thwart their attack
but offered no guarantee against other possible attack paths.

In Sec. 2.2 we present our results on the security analysis of some recent propositions
on asymmetric infective countermeasures.

In the following section we present the fundamental results of fault attacks on elliptic
curves cryptosystems and their countermeasures.

2.1.5 Fault Attacks on ECC

Before presenting the main fault attacks published so far, we recall that the ECDLP
can be efficiently solved if the order of the logarithm base is smooth [116]. This can
happen for example if the input point does not lie on the curve, as observed in [3].

The first DFA on elliptic curves was published in [23]. Similarly to [3], the authors
of [23] suggest to disturb the input point P after the parameters checking such that
the faulted point P ′ does not lie on the original curve. The attacker may be able to
retrieve information on the secret scalar using the corresponding faulty output since
the curve on which the computation has been done probably has a smooth order. A
second attack presented in [23] suggests that by disturbing intermediate values during
the scalar multiplication, one may be able to retrieve information on the secret scalar.
The idea is to guess the produced error value and a few bits of the secret. The attacker
then computes the scalar multiplication backward up to the fault, corrects the error,
and recomputes onward to obtain the result. If it is the correct result, then it is likely
that the guesses were correct. It is clear that the entropy of the guesses must not be
too high in order to exhaustively test them, thus the attack starts with faults near the
end of the computation, then steps backward as more bits are known.

In [32], the authors propose another DFA that targets non adjacent form ECC
implementations. By disturbing the sign of a point during the scalar multiplication
they can retrieve the signed bits of the secret scalar k. As they need several faulty
outputs to mount their attack, they focus on implementations that use the same secret
scalar for all executions.

Further analysis of faults on ECC was carried out in [49]. The authors improved

44

CHAPTER 2. FAULT ATTACKS

the results of [23] by observing that an unknown fault on one of the coordinates of the
input point produces a wrong curve parameter b which can be retrieved as a solution
of the curve equation with the output point coordinates as known values. The authors
also observed that a fault in the prime p defining the field K produces a curve where the
input point will likely have smooth order, thus breaking the security of the cryptosys-
tem. Finally [49] also shows that a fault in one of the public parameters (typically a
in Eq. 1.1) is likely to transfer the elliptic curve on a new one where the ECDLP is eas-
ier to solve. They observe that by substituting the input and output point coordinates
in Eq. 1.1 the solution of the obtained system allows the attacker to recover the faulted
curve parameters. As it was the case for CRT-RSA, ad-hoc countermeasures have been
suggested to thwart fault attacks on ECCs. We present them in the following.

ECC Countermeasures

In order to thwart fault attacks on elliptic curves several countermeasures have been
conceived. First of all, the authors of [3] suggest that all implementations should verify
that the point lies on the curve before performing the scalar multiplication. Namely, in
order to thwart faults on the input values, Biehl et al. suggested in [23] to test if the
input point lies on the curve before and after the scalar multiplication. Furthermore,
the attacks of Biehl et al. [23] should also be thwarted if point on curve security
countermeasure is adopted.

The authors of the BOS attack [32] suggest a more sophisticated countermeasure to
thwart the attack presented in their work. The countermeasure they suggest is called
combined curve check. They build a new curve containing both the given curve and a
smaller one, such that scalar multiplication on the small curve is fast. Given the result of
the scalar multiplication on the combined curve, with a simple modular reduction they
can retrieve the result on both the given curve and the small one. Thus by executing a
second scalar multiplication on the small curve they can compare the result with the
one obtained from the combined curve and detect faults.

Finally, Ciet et al. remark in [49] that public parameters must be checked for faults
prior and after the scalar multiplication. They also claim that performing these checks
by using integrity checks (i.e.: cyclic redundancy check) or by point on curve test offer
the same security level, while the former should perform faster.

We show in Sec. 2.6 that this claim is false by exhibiting an attack that can break
the cryptosystem if the tests are performed by point on curve test.

The next section introduces fault attacks on AES, Due to the intrinsic difference
between symmetric and asymmetric cryptography, the philosophy of the attack is quite
different.

2.1.6 Fault attacks on AES

Since the appearance of fault attacks on asymmetric cryptosystems by Boneh et al. [34],
the cryptographic community started exploring the effectiveness of faults on any sort of
cryptosystem. Differential fault attacks (DFA) have been found on the Data Encryption
Standard [25] and soon afterwards on AES [90]. We explain now how the DFA on AES
works in its general principles. The basic principle of the DFA on AES is to inject a
random fault into one byte of the MixColumns input before the last round execution.
The faulty ciphertext thus obtained is then compared to a correct ciphertext derived
from the same message under the same key. Under such fault assumptions, the correct
and faulty ciphertext differ in four bytes due to the MixColumns execution during the

45

CHAPTER 2. FAULT ATTACKS

9-th round. By guessing the 32-bit value of the key on the differing bytes, one can
rewind the computation of the correct and faulty ciphertext independently up to the
input of the Sbox of the 9-th round. By XOR-ing the two internal states before the
Sbox Input, the effect of the 9-th round AddRoundKey is suppressed due to the XOR
linearity. The attacker can thus further rewind the computation up to the value of the
differential between the two internal states before the execution of the MixColumns
of the 9-th round. This information allows the attacker to decide if the key guess was
correct. Indeed, a correct key guess leads to a differential internal state with a single
byte different from 0, the one impacted by the fault. A wrong guess leads instead to
a differential with more than one single byte different from 0. This attack can only
retrieve 32 bits of key at a time, and some wrong guesses may, rarely, lead to false
positives. To overcome these drawbacks one needs several faulty ciphertexts, usually
between three and four to correctly retrieve the key. Several authors worked to improve
the effectiveness and performance of this attack. In particular by adapting the fault
model, the attack round, and exploiting particular AES properties, the works of Piret
and Quisquater [137] and of Mukapadhyay [130] showed that one or two single faults
are indeed sufficient to completely retrieve an AES-128 secret key.

In view of such attacks it is thus mandatory to provide efficient and effective coun-
termeasures. We present in the following the most used of them.

AES Countermeasures

There exists several countermeasures to thwart fault attacks on symmetric ciphers.
However most of them are based on generic countermeasures that fit several symmetric
schemes rather than ad-hoc countermeasures. This is a direct consequence of the effort
put into removing any property linking plaintext and ciphertext during cryptosystem
development. This effort is required to remove mutual information between ciphertext
and plaintext which may reduce the security of the cryptosystem from a general in-
formation theoretic point of view. Furthermore attacks like the differential and linear
cryptanalysis [24,120] have shown that relationships between intermediate rounds can
be exploited in order to break the security of the cryptosystem.

We thus find among the most common countermeasures for AES the redundancy
technique that aims at detecting inconsistencies between different executions on the
same inputs. These techniques have been adapted in order to check only once the correct
execution, for example by performing encryption-then-decryption and comparing the
input of encryption with the output of decryption. Several other adaptation of the
redundancy countermeasure exist, based for example on error detection and correcting
codes.

It is therefore interesting to note that several authors suggested infective coun-
termeasures for symmetric cryptosystems, mainly AES and DES, which are based on
redundancy techniques. For example Lomné et al. [117] presented at FDTC 2012 an
infective countermeasure for the AES based on the use of multiplicative random mask-
ing. Another infective countermeasure have been presented by Gierlichs et al. [88] at
LatinCrypt 2012 and is built upon the idea of random dummy rounds. These works
generated interest on infective symmetric countermeasures, we thus present our secu-
rity analysis of these countermeasures, as long as some development by Tsupamudre et
al. [165] and our subsequent analysis in Sec. 2.3, 2.4 and 2.5.

After this brief introduction to the various fault attacks and countermeasure on
different cryptosystems, we are going to analyze in the remainder of this chapter several

46

CHAPTER 2. FAULT ATTACKS

different countermeasures that have been suggested in literature. For each of them we
explain the countermeasure in detail and suggest fault attacks that can be used to
break it.

We start in the next section with the analysis of two infective countermeasures
suggested for the CRT-RSA. The results of our joint work with Christophe Giraud
shows that the translation method to transform detective to infective countermeasures
is not secure.

2.2 RSA Detective to Infective Countermeasure Trans-

lation Analysis

We present in this section our security analysis of the CRT-RSA infective countermea-
sures published at FDTC 2014. We show that the suggested infective versions of the
classical Aumüller et al. and of Vigilant et al. countermeasures cannot withstand fault
attacks. We use simple fault models like the stuck-at-zero and random-error to break
the countermeasure. Furthermore we prove that the method suggested by the authors
of [143] to translate detective countermeasures to infective ones is not yet mature. We
finally provide evidence of the threat posed by messages with particular properties like
M = ±1 and M = 0 with respect to the Bellcore attack.

2.2.1 Countermeasure Presentation and General Remarks

The authors of [143] developed an interesting theory to translate a detective counter-
measure into an infective one. In [143] the authors provide a formal analysis of two
well known detective fault countermeasures, namely those of Aumüller et al. [4] and
of Vigilant et al. [60]. The use of the formal tool finja allowed them to simplify the
two aforementioned countermeasures whilst preserving the same level of security. Af-
terwards they proved the security of their method in order to show that it is possible to
convert a detective countermeasure into an infective one while keeping the same level
of security.

We recall here Proposition 4 of [143] which provides the proof of security of the
translation.

Proposition 4. Each test-based (resp. infective) countermeasure has a direct equivalent
infective (resp. test-based) countermeasure.

Proof. (from [143]) The invariants that must be verified by countermeasures are mod-

ular equality, so they are of the form a
?≡ b mod m, where a, b and m are arithmetic

expressions. It is straightforward to transform this invariant into a Boolean expression
usable in test-based countermeasures: if a != b [mod m] then return error;.

To use it in infective countermeasures, it is as easy to verify the same invariant by
computing a value which should be 1 if the invariant holds: c := a - b + 1 mod m;.

The numbers obtained this way for each invariant can then be multiplied and their
product c∗, which is 1 only if all invariants are respected, can be used as an exponent
on the algorithm’s result to infect it if one or more of the tested invariants are violated.
Indeed, when the attacker perform the Bellcore attack by computing gcd(S − S̃c∗ , N)
as defined in Sec. 2.1.4 then if c∗ is not 1 the attack would not work.

The above result is constructive in the sense that it explicitly states how to translate
from one type of countermeasure to the other.

47

CHAPTER 2. FAULT ATTACKS

However, we noticed that the security of the translation is only guaranteed with
respect to the classical Bellcore attack that uses gcd(S− S̃c∗ , N). Other variants of the
Bellcore attack, like the one in [22] that uses gcd(N, (S̃e −mγ)) for example, are not
taken into account. Therefore, it seems that to preserve the validity of the certificate
after translation one would need to prove it for each and every variant of the Bellcore
attack, which is computationally infeasible.

In the following we thus recall the two infective algorithms suggested in [143] and
use the above observations to challenge the security of their results.

2.2.2 Infective Aumüller et al. Countermeasure

As described in Sec. 2.1.4, the countermeasure of Aumüller et al. [4] is based on an
earlier proposal of Shamir [157]. Aumüller et al. suggested particular additional verifi-
cations in order to provide further protection versus fault attacks.

The basic idea to transform the detective countermeasure of Aumüller et al. into an
infective one is to produce an infective exponent whenever the detective countermeasure
should have returned an error. This exponent is afterwards used to raise the faulty
signature to a random power. By applying the strategy described in Sec. 2.2, the authors
of [143] thus suggest Alg. 2 and states that their algorithm is secure versus random
and stuck-at-0 fault models in particular.

Algorithm 2: CRT-RSA with Infective Aumüller’s Countermeasure [143, Alg.
13]

Inputs : Message M, key (p, q, dp, dq, iq)
Output: Signature Md mod N , or a random value in ZN

1 Choose a small random integer r
2 p′ = p · r
3 c1 = p′ + 1 mod p
4 q′ = q · r
5 c2 = q′ + 1 mod q
6 S ′p = Mdp mod ϕ(p′) mod p′
7 S ′q = Mdq mod ϕ(q′) mod q′
8 Sp = S ′p mod p
9 Sq = S ′q mod q

10 S = Sq + q · (iq · (Sp − Sq) mod p)
11 c3 = S − S ′p + 1 mod p
12 c4 = S − S ′q + 1 mod q
13 Spr = S ′p mod r
14 Sqr = Sq mod r
15 c5 = Sdq mod ϕ(r)

pr − Sdp mod ϕ(r)
qr + 1 mod r

16 return Sc1c2c3c4c5 mod N

At a first look it seems that Alg. 2 has a security comparable to [4]. While the
random exponent used for the infection seems effective to mask a potential faulty
signature, we observe that Ciet and Joye already suggested an infective countermea-
sure based on a random exponentiation [50] but their countermeasure was broken by
Berzati et al. [22].

48

CHAPTER 2. FAULT ATTACKS

In Sec. 2.2.3 we exhibit two attacks that can retrieve the secret key from the output
of Alg. 2 by using the same fault model as in [143].

2.2.3 Analysis of the Infective Aumüller Countermeasure

We present in this section two fault strategies that allow an attacker to retrieve the
private key of the CRT-RSA cryptosystem when protected with the countermeasure
described in Sec. 2.2.2.

Random Fault Attack on Alg. 2

Our first attack starts by querying the implementation for the signature of the message
M = 1 (the value M = −1 can be used similarly) which should produce a correct
signature S = 1. However, during the execution of Alg. 2 the attacker disturbs Step 6
with a random fault and thus transforms the variable S ′p into the randomized faulty

variable S̃ ′p. The effect of such a fault is to produce a wrong value S̃p at Step 8 and

a wrong signature S̃ = Sq + q · (iq · (S̃p − Sq) mod p) at Step 10, which is not further
modified until the last step.

We have noticed that such a faulty signature is not efficiently infected by the expo-
nentiation in Step 16 of Alg. 2. Indeed we noticed that before the infection of Step 16
we have:

S̃ 6= 1 mod p and S̃ = 1 mod q .

Such a faulty signature is invariant by exponentiation modulo q but not modulo p. The
infective exponentiation thus produces a random value modulo p and 1 modulo q. The
attacker can thus use the faulty signature S̃ to compute gcd(S̃ − 1, N) which exposes
a nontrivial factor of N whatever the value of the infective exponents c1, . . . , c5.

We also noticed that the attack presented in this section works similarly if the fault
is injected at Steps 6, 7, 8 or 9 of Alg. 2, thus exposing four different fault target
variables to the attacker.

Stuck-at-0 Fault Attack on Alg. 2

Our second attack on Alg. 2 exploits a fault injected by using a stuck-at-0 fault model.
This attack works even if the input message of the algorithm is not chosen or unknown
to the attacker. We thus assume in the following that the attacker queries Alg. 2 for
the signature of a random message M .

By disturbing Step 6 with a stuck-at-0 fault during the algorithm execution, the
value of S ′p is set to 0, while S ′q is not modified. These two values are then reduced
modulo p and q during Steps 8 and 9 respectively, and recombined into a faulty sig-
nature S̃ at Step 10. All these modifications preserve the property S̃ = 0 mod p. The
faulty signature is not modified until the last step of the algorithm when the infective
exponents are applied. However, as the value 0 is invariant by exponentiation, after the
infection of Step 16 the faulty signature is:

S̃ = 0 mod p and S̃ 6= 0 mod q .

The attacker can thus compute gcd(S̃, N) to retrieve the nontrivial factor p of N ,
whatever the value of the infective exponents.

While we assume that the fault is injected at Step 6, we remark that our attack
works similarly if the fault is injected at any step from 7 through 9 of Alg. 2.

We present and analyze now the second infective countermeasure suggested in [143].

49

CHAPTER 2. FAULT ATTACKS

2.2.4 Infective Vigilant et al. Countermeasure

The second infective countermeasure suggested in [143] and depicted in Alg. 3, has
been inspired by the original detective countermeasure of [60]. While the latter is still
considered secure, we show in this work that the same does not hold true for its infective
counterpart, at least as suggested in [143]. As we have discussed in Sec. 2.1.1, the
Vigilant countermeasure exploits four coefficients, Ap and Bp modulo p and Aq and Bq

modulo q, to perform a cheap comparison.
The authors of [143] based their countermeasure on the original idea of the algorithm

but removed some error detection step and changed the remaining ones into infective
exponent updates. The infective exponents are then applied to the signature before
output. The rationale is that if no fault is injected then the infective exponent equals 1
and the correct signature is output, otherwise the faulty signature is raised to a random
exponent such that it is useless for the attacker.

By applying the strategy described in Sec. 2.2, the authors of [143] thus sug-
gest Alg. 3 and state that their algorithm is secure versus random and stuck-at-0
fault models in particular.

Algorithm 3: CRT-RSA with Infective Vigilant’s Countermeasure [143, Alg.
11]

Inputs : Message M, key (p, q, dp, dq, iq)
Output: Signature Md mod N , or a random value in ZN

1 Choose a small random integer r.
2 N = p · q
3 p′ = p · r2

4 ipr = p−1 mod r2

5 Mp = M mod p′
6 Bp = p · ipr
7 Ap = 1−Bp mod p′
8 M ′

p = Ap ·Mp +Bp · (1 + r) mod p′
9 q′ = q · r2

10 iqr = q−1 mod r2

11 Mq = M mod q′
12 Bq = q · iqr
13 Aq = 1−Bq mod q′
14 M ′

q = Aq ·Mq +Bq · (1 + r) mod q′
15 S ′p = M ′dp mod ϕ(p′)

p mod p′
16 Spr = 1 + dp · r
17 cp = M ′

p +N −M + 1 mod p
18 S ′q = M ′dq mod ϕ(q′)

q mod q′
19 Sqr = 1 + dq · r
20 cq = M ′

q +N −M + 1 mod q
21 S ′ = S ′q + q · (iq · (S ′p − S ′q) mod p′)
22 Sr = Sqr + q · (iq · (Spr − Sqr) mod p′)
23 cs = S ′ − Sr + 1 mod r2

24 return S = S ′cpcqcs mod N

Once again, Alg. 3 uses a final exponentiation as infective vector, we thus raise the

50

CHAPTER 2. FAULT ATTACKS

same objections expressed in Sec. 2.2.2 about this choice.

2.2.5 Analysis of the Infective Vigilant Countermeasure

We present in this section two fault strategies that allow an attacker to retrieve the
private key of the CRT-RSA cryptosystem when protected with the countermeasure
described in Sec. 2.2.4.

Random Fault Attack on Alg. 3

The first attack that we present on the Vigilant-based infective countermeasure of [143]
exploits a random fault to retrieve the value of one of the secret factors of the public
modulus N . Similarly to Sec. 2.2.3, our attack starts by querying the implementation
for the signature of the message M = 1. For the sake of simplicity we use M = 1
but the case M = −1 works similarly. During Step 15 the attacker injects a random
fault such that variable S ′p is faulted into a random value S̃ ′p. As the fault does not

impact the value S ′q, the recombination during Step 21 computes a faulty signature S̃ ′

which is randomized modulo p but is still congruent to 1 modulo q. This value is not
modified until the last step, where the infective exponents are applied. However, the
faulty signature is invariant by exponentiation modulo q since Sq = 1. The same is not

true modulo p, as S̃ ′p have been randomized by the fault. The gcd between S̃−1 and N
thus reveals the nontrivial factor q of the public modulus N thus breaking the security
of the algorithm.

We remark that the attack presented in this section can also be applied if the fault
disturbs Step 5, 8, 11, 14 or 18, thus exposing 6 different fault targets to the attacker.

Stuck-at-0 Fault Attack on Alg. 3

The second attack that we present against Alg. 3 exploits a stuck-at-0 fault to introduce
an exponentiation invariant into one of the faulty signature sub-fields.

In order to mount the attack we assume that a random message M is used as
input, furthermore the attacker does not need to know its value. The attacker starts
by injecting a stuck-at-0 fault at Step 15 such that the variable S ′p is changed into

0. Afterwards at Step 21 the faulty variable produces a wrong signature S̃ ′ which is
equal to 0 modulo p and an unknown value, different from 0 modulo q. Afterwards
the infective exponents are applied, but similarly to what we have noticed above, they
do not have effect on 0, i.e. after the application of the infective exponents, the faulty
signature S̃ ′ is such that: {

S̃ ′ ≡ 0 mod p
S̃ ′ 6≡ 0 mod q

. (2.4)

Once the attacker is in possession of such a faulty signature, she can retrieve the value
of the secret prime p by computing the gcd between S̃ and N .

For the sake of simplicity we only present the effect of a fault on Step 15, however
the attack presented in this section works similarly for a fault injected at Steps 5, 8,
11, 14 and 18, so that the attacker can freely choose among 6 different steps of the
algorithm as a target for its fault.

51

CHAPTER 2. FAULT ATTACKS

2.2.6 Conclusion

Our work exhibits a critical flaw in the main proof of security of the two infective
countermeasures for CRT-RSA suggested at FDTC 2014. Furthermore two attacks are
presented on each of the two infective countermeasures derived by using the translation
method of [143]. Although the corresponding detective countermeasures have been
certified secure versus randomizing, stuck-at-0 and instruction-skip attacks by the finja
formal verification tool, the security of the infective countermeasures has been certified
by using an original translation method. We show that the proof of the translation
security provided in [143] is flawed. We then use such a remark to develop two attacks
on the infective algorithms suggested in [143]. For both countermeasures, the first
attack uses a chosen message input and retrieves the secret key by using one single
randomizing fault. Our second attack does not require knowledge of the input message
and uses a single stuck-at-0 fault to retrieve the private key. The basic idea of our attacks
is to use exponentiation invariants to bypass the infective countermeasures. We remark
that by accepting input messages equals to ±1 mod N , Alg. 2 and Alg. 3 inherently
present some security problems. Our work, however, shows that the algorithms are not
secure even when these particular values are not accepted on input. The aim of this
work is to point out that the approach taken in [143] needs further investigation and
improvements to be sound.

The next section presents another attack on asymmetric cryptosystems. We in-
troduce the concept of common points, and show how to use them to break some
countermeasures for elliptic curve cryptosystems.

Sec. 2.2 focused on fault attacks on the RSA cryptosystems. The following three
sections instead concerns symmetric infective countermeasures.

We present in the next section the results of our joint analysis with Christophe
Giraud on a symmetric infective fault countermeasure based on multiplications.

2.3 Analysis of the “Multiplicative” AES Infective

Countermeasure

Infective symmetric countermeasure appear to be an attractive alternative to redun-
dant countermeasures because in principle they do not need a double computation.
We will see, however that every infective symmetric countermeasure makes use of a
double computation to perform. This is mainly due to the intrinsic lack of exploitable
properties between input and output of the cryptosystem. In this section we describe
and analyze the first AES infective countermeasure that appeared in the literature.

2.3.1 Countermeasure presentation

The infective countermeasure for the AES algorithm by Lomné et al. [117] presented at
FDTC 2012 is based on the use of multiplicative random masking. The authors state
that infection countermeasures applied before the final round of the AES algorithm
are useless, mainly due to the various attacks that have been published on the last
round. Let us thus apply their countermeasure on an AES ciphertext C0 and a redun-
dant computation ciphertext C1, masked with Boolean masks M0 and M1 respectively,
cf. Alg. 4.

52

CHAPTER 2. FAULT ATTACKS

Algorithm 4: FDTC 2012 Countermeasure

Inputs : C0 ⊕M0, C1 ⊕M1, M0,M1 and a fresh mask M2 6= 0 and 6= 1
Output: The correct ciphertext C0 or the infected ciphertext C̃0⊕M2 · (C̃0⊕C1)

1 a←M2 · (C0 ⊕M0)
2 b←M2 · (C1 ⊕M1)
3 c← a⊕ b
4 d←M0 ⊕M1
5 e←M2 · d
6 f ← (C0 ⊕M0)⊕ c
7 g ← f ⊕ e [= (C0 ⊕M0)⊕M2 · (C0 ⊕ C1)]
8 return (g ⊕M0)

The authors remark that upon a correct execution C0 = C1. Once the algorithm is
executed, the user obtains C0 if no fault was injected during the AES execution or the
faulty ciphertext C̃0 masked by M2 ·(C̃0⊕C1) otherwise. For optimization purposes the
authors state that without loss of security the product in GF(2128) may be replaced by
16 products in GF(28) as long as the bytes of M2 remain independent. In the following
we will thus take into account this improvement. The random distribution property
of M2 should provide enough masking on the faulty output, but the restriction to be
different from 0 and 1 seems to introduce a bias on the output. We will show in the
following how an attacker can exploit this bias.

2.3.2 Attack Description

Let us assume that the attacker is able to use the fault model suggested in the original
paper [117], that is she can inject the same unknown byte error among different exe-
cutions. Moreover we assume that the attacker disturbs the first AES execution such
that the faulty input C̃0 of Alg. 4 corresponds to C0i ⊕ ε on byte i. In such a case the
attacker obtains gi ⊕M0i = C̃0i ⊕M2i · ε as value for the ith byte of the output.

By observing that the byte M2i is always different from 0 and 1 and that the
fault is constant, one deduces that the two values C̃0i and C̃0i ⊕ ε = C0i are never
output at byte i when reiterating this attack on another execution of the AES-128
using the same input message. The attacker will thus disturb the AES execution until
she obtains 254 different values for the ith byte of the output of Algorithm 1. The two
missing values being C0i and C̃0i , the attacker can thus infer the value of C̃0i since the
correct ciphertext value C0 is known.

By injecting faults on the 8th round, the diffusion property of the cipher will spread
the constant error among the whole output. She can thus retrieve all the 16 bytes of
the faulty ciphertext with the same faults used to retrieve the first one. Once the faulty
ciphertext value is recovered, the attacker is thus able to retrieve the full AES-128 key
by using the attack described in [130].

2.3.3 Simulations

Simulations of the attack were done on AES-128 by disturbing one byte of the state
of the 8th round before the MixColumns transformation. Different scenarios were sim-
ulated depending on the constant fault probability (i.e the percentage that the same
fault is induced). For a 100% constant fault injection success rate, the attacker reit-

53

CHAPTER 2. FAULT ATTACKS

erates the fault until all but two values are returned for each byte. For fault injection
success rates below 100% the attacker retains the two values that appear the less, and
as said before she eliminates the one which is equal to the correct ciphertext.

Figure 2.1 shows the success rate over 100 000 simulations of the different attacks
(for probabilities to inject the same error equals to 100%, 90% and 75%) to recover the
value of the faulty ciphertext. Once the faulty ciphertext value being recovered, one
applies the attack of [130] to deduce the corresponding AES-128 key.

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

uc
ce

ss
 r

at
e

Number of faulty ciphertexts

100%
 90%
 75%

Figure 2.1 – Success rate vs number of faulted ciphertexts depending on the attacker’s capa-
bility to induce a constant error.

Further results on simulations are given in Table 2.1 where one can observe that
for the success rate to reach 99%, on average 3 300, 6 000 and 11 000 AES executions
are required if the attacker’s ability to inject the same constant error is 100%, 90% and
75% respectively. Table 2.1 also shows that even for an awkward attacker that is able
to inject the same constant fault with only 25% probability, the attack is still possible
and with 145 000 AES executions the success rate reaches 99%.

Percentage of constant error \ Success rate 90% 99%
100% 2 700 3 300
90% 4 700 6 000
75% 8 500 11 000
50% 24 000 32 000
25% 115 000 145 000

Table 2.1 – Number of disturbed AES executions required depending on constant error and
success rates.

2.3.4 Conclusion

This section described a fault attack on the first symmetric infective countermeasure
known in the literature. The infective countermeasure of Lomné et al. [117] is based
on multiplicative random masks. Our attack exploits a bias on the multiplicative mask
and retrieves the full AES-128 key with only 2 200 faults on average. It seems possible

54

CHAPTER 2. FAULT ATTACKS

to patch the countermeasure by generating a single 128− bit mask value, however, the
overhead generated by a 128− bit by 128− bit multiplication seems prohibitive.

In the following section we present the results of our joint work with Christophe
Giraud on the analysis of the security of another symmetric infective countermeasure
conceived for DES and AES against fault attacks.

2.4 Analysis of the “Dummy-Rounds” AES Infec-

tive Countermeasure

In this section we describe the symmetric infective countermeasure suggested in [88].
We discuss its security and show a fault attack that allows to break the countermeasure
security with a limited number of faults.

2.4.1 Countermeasure Presentation

At LatinCrypt 2012, Gierlichs et al. [88]1 proposed an infection countermeasure based
on the use of dummy rounds and declined it for the AES and DES algorithms. For the
sake of simplicity, we present in Alg. 5 their countermeasure applied to the particular
case of AES-128, where RandomBit() denotes a function returning a random bit and
SNLF represents a nonlinear function where SNLF(0) = 0. The RoundFunction(S, k)
is defined as the composition of the four AES transformations SubBytes, ShiftRows,
MixColumns and AddRoundKey applied to state S and round key k. Let us also denote
β and k0 such that RoundFunction(β, k0) = β. In order to keep the SPA resistance
of the scheme, the round-key addition at the beginning of the algorithm is defined
as a specific RoundFunction which is composed of dummy SubBytes, ShiftRows and
MixColumns transformations. The same method applies for the last round which is
defined as a specific RoundFunction with a dummy MixColumns transformation.

The principle of Alg. 5 is to perform each round twice. First a redundant round
computation is done then the effective round is performed. These two rounds results
are stored in intermediate states S1 and S0 respectively. Any difference between effective
and redundant rounds infect effective state S0 through Steps 9 and 11. Furthermore each
time RandomBit() outputs 0, a dummy round is executed and its result is stored in S2.
Whenever dummy round result is not equal to β then Steps 8 and 10 infect subsequent
computations. One may note that one last dummy round is always executed in the last
step 14 of the algorithm to spread possible infections.

In [88], the authors provide a security analysis that takes into account only classical
literature attacks. We show that this analysis is not sufficient and that their counter-
measure is flawed when applied to the AES algorithm.

2.4.2 Attack Description

For the sake of simplicity, we applied the countermeasure to AES-128, however the
same attack applies on other key sizes. As a general observation about the proposed
countermeasure, we remark that the last while loop (i.e. i = 22) always performs the

1The ePrint version of the paper [89] corrects some typographic error of the original version.
However, we notice that this updated version is not correct in the case of AES. We present in Alg. 5
the updated version of their method.

55

CHAPTER 2. FAULT ATTACKS

Algorithm 5: LatinCrypt 2012 Countermeasure applied on AES-128
Inputs : P, roundkeys kj, j ∈ {1, . . . , 11}, derived from AES key K, β, k0
Output: C = AES-128(P,K)

1 State S0 ← P ; Redundant state S1 ← P ; Dummy state S2 ← β
2 R0 ← 0; R1 ← 0; R2 ← β; i← 1
3 while i ≤ 22 do
4 r ← RandomBit
5 a← (i ∧ r)⊕ 2(¬r)
6 b← di/2er
7 Sa ← RoundFunction(Sa, kb)
8 Ra ← Sa ⊕R2 ⊕ β
9 e← r(¬(i ∧ 1)) · SNLF(R0 ⊕R1)

10 S2 ← S2 ⊕ e
11 S0 ← S0 ⊕ e
12 i← i+ r

13 end
14 S0 ← S0 ⊕ RoundFunction(S2, k0)⊕ β
15 return (S0)

following steps:

7 S0 ← RoundFunction(S0, k11)
8 R0 ← S0 ⊕R2 ⊕ β
9 · · ·
10 S2 ← S2 ⊕ SNLF(R0 ⊕R1)
11 S0 ← S0 ⊕ SNLF(R0 ⊕R1)

This last loop thus represents the execution of the last effective round of the block
cipher. Therefore the only round that is executed after the last effective one is the
dummy round of Step 14. We thus noticed that if the last effective round is disturbed
then the infection is limited to the efficiency of 1 dummy round.

Let us assume that the attacker is able to inject an error ε on the input of the last
effective round (i.e. on S0 at the beginning of Step 7 of Alg. 5 when i = 22). For the
sake of simplicity, we assume that the fault disturbs the first byte s of the second row
of S0 (i.e. s = S01), but the attack can be easily extended to any byte of the 3 last rows
of the state. The differential between the faulty and the redundant intermediate states
after Step 7 at loop i = 22 is thus:

S̃0 ⊕ S1 =

0 0 0 0
0 0 0 α
0 0 0 0
0 0 0 0

where α = SubByte(s⊕ε)⊕SubByte(s). The same differential is reflected in temporary
states differential R̃0⊕R1 due to Step 8. Once applied, the nonlinear transformation of
Step 9 does not change the shape of the differential, apart for transforming the faulted
value α into SNLF(α). Steps 10 and 11 then spread this infection to the dummy and

56

CHAPTER 2. FAULT ATTACKS

effective states, obtaining in particular after Step 11:

S̃0 ⊕ S0 =

0 0 0 0
0 0 0 α⊕ SNLF(α)
0 0 0 0
0 0 0 0

 .

As stated above, only the dummy round of Step 14 is executed afterwards in which
the faulty dummy state S̃2 re-infects the output. However, one can observe that the
ShiftRows transformation of the dummy round moves the infection to column 3 thus not
masking column 4. By denoting β̃ = RoundFunction(S̃2, k0) at Step 14, the resulting
differential between a correct and a faulty output is thus:

C ⊕ C̃ =

0 0 (β ⊕ β̃)8 0
0 0 (β ⊕ β̃)9 α⊕ SNLF(α)
0 0 (β ⊕ β̃)10 0
0 0 (β ⊕ β̃)11 0

 .

From this relation, we explain hereafter how the byte 13 of the last round key can be
retrieved.

From the correct ciphertext C, for each key byte hypothesis kh ∈ {0, ..., 255} she
computes the corresponding last round input byte:

sh = SubByte−1(C13 ⊕ kh),

and for each error hypothesis εh ∈ {1, ..., 255} she computes αh = SubByte(sh ⊕ εh)⊕
SubByte(sh) and tests if the following equality holds:

αh ⊕ SNLF(αh) = (C ⊕ C̃)13 .

With one pair of correct/faulty ciphertexts the attacker reduces the space of possible
key and error byte values from 28(28−1) to 29 on average. By using a constant unknown
byte fault model (i.e. the same unknown error is assumed to occur repeatedly during
different executions), the intersection of the results of the attack on three pairs of
correct/faulty ciphertexts is likely to reveal the value of the corresponding key byte
with high probability. By iterating the attack on the other bytes of the three lower
rows of the last round state and with a 4-byte brute-force she can retrieve the full
AES-128 key.

The random execution of dummy rounds can still disturb the attacker as she won’t
be able to always target the last round of the effective computation. However one may
note that for a fault injected before the last round or in a dummy round, the differential
C̃ ⊕ C will be nonzero in more indexes than those expected, she can thus discard the
corresponding faulty output. Furthermore, the same observation allows the attacker to
deduce which byte was faulted, thus she does not need control on fault localization.

2.4.3 Simulations

The attack was simulated by injecting a constant unknown byte fault on the last three
rows of the input of round 10. For our simulations we set the SNLF to be the byte-wise
applied AES-inversion as suggested in [88]. We computed over 100 000 experiments the
success rate to recover the corresponding last three rows of the last round key, the 4

57

CHAPTER 2. FAULT ATTACKS

missing bytes being then recovered by performing a fast exhaustive search. Simulations
were performed in three different contexts depending on the attacker’s ability to inject
the same constant fault. Namely, we performed simulations with a probability of in-
jecting the same error of 100%, 90% and 75% respectively. The corresponding results
are depicted in Figure 2.2.

30 35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Number of faulty ciphertexts

100%
 90%
 75%

Figure 2.2 – Success rate to recover 12 bytes of the last round key vs number of faulted
ciphertexts depending on the attacker’s capability to induce a constant error.

2.4.4 Conclusion

This section described a fault attack on the symmetric infective countermeasure based
on redundant and dummy rounds suggested in [88, 89]. We observe that if a fault is
induced during the last round of the algorithm, the infection of the error is limited.
This section shows that by exploiting this weakness one can retrieve the full AES-128
key with 36 faults on average.

Sec. 2.5 discusses an improvement of the infective countermeasure that thwarts the
attack described in this section. Our discussion will focus on the security of such new
version of the countermeasure and on the difficulty to correctly implement it in the
presence of fault attacks. This is a joint work with Christophe Giraud.

2.5 Analysis of the CHES 2014 AES Infective Coun-

termeasure

At CHES 2014 an interesting evolution of the symmetric infective countermeasure
of [88] was presented. In [165] Tsupamudre et al. presented some improvements of
the attacks discovered in [15] and suggested modifications of the original infective
countermeasure in order to withstand the attacks found. In this section we study the
proposition of [165] and show several flaws in its design. We suggest four different
attack paths that allow the attacker to bypass the infective countermeasure by using
three different fault models.

58

CHAPTER 2. FAULT ATTACKS

2.5.1 Countermeasure Presentation

The infective countermeasure suggested at CHES 2014 by Tupsamudre et al. [165]
is based on the work presented at LatinCrypt 2012 by Gierlichs et al. [88] and it is
meant to resist the attack presented in Sec. 2.4. For the sake of simplicity we recall
in Alg. 6 the CHES 2014 countermeasure suggested in [165] applied to AES-128. For
more information about AES, the reader can refer to [81].

Algorithm 6: CHES 2014 Countermeasure applied on AES-128
Inputs : Plaintext P , round keys kj for j ∈ {1, . . . , 11}, pair (β, k0), security

level t ≥ 22
Output: Ciphertext C = AES-128(P ,K)

State R0 ← P ; Redundant state R1 ← P ; Dummy state R2 ← β
i← 1, q ← 1
rstr ← {0, 1}t // #1(rstr) = 22,#0(rstr) = t− 22
while q ≤ t do

λ← rstr[q] // λ = 0 implies a dummy round
κ← (i ∧ λ)⊕ 2(¬λ)
ζ ← λ · di/2e // ζ is actual round counter, // ζ = 0 is for
dummy round
Rκ ← RoundFunction(Rκ, k

ζ)
γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕R1)
δ ← (¬λ) · BLFN(R2 ⊕ β)
R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
i← i+ λ
q ← q + 1

end
return (R0)

Alg. 6 uses three states denoted R0, R1 and R2 for the cipher, the redundant and
the dummy rounds respectively. The execution order of these rounds is given by a
random bit string rstr generated at the beginning of the algorithm. Each “0” on the
string encodes a dummy round, while a “1” encodes a redundant or cipher round. Each
time a “1” occurs, an index i is incremented and a redundant round (resp. a cipher
round) is executed if i is odd (resp. even). Alg. 6 thus executes a loop over the rstr
string bits and executes a cipher, redundant or dummy round accordingly. One may
note that Alg. 6 computes the redundant round before the cipher round all along the
algorithm and dummy rounds can happen randomly at any time.

Dummy rounds are executed over a dummy state R2 which is initialized to a random
128-bit value β and by using the round key k0 which is computed such that:

RoundFunction(β, k0) = β . (2.5)

The number of dummy rounds is parameterized by a security level t chosen by the
developer. More precisely, this parameter represents the whole number of cipher, re-
dundant and dummy rounds performed during Alg. 6 execution. For instance in the
case of AES-128, t− 22 dummy rounds will be performed.

Regarding the infective part, a first infection is activated after each cipher round
if its state R0 is different from the redundant state R1 (Steps 9 and 11). Moreover
another infection occurs if R2 6= β after the execution of a dummy round (Steps 10 and

59

CHAPTER 2. FAULT ATTACKS

11). These infections consist in replacing the cipher state R0 with the random value
R2, leaving no chance to the attacker to obtain information on the secret key once the
infection is applied. To do so, a Boolean function BLFN is used which maps non-zero
128-bit values to 1 and outputs 0 for a null input.

Compared to the original LatinCrypt 2012 proposal, the CHES 2014 infective coun-
termeasure differs by the way of dealing with the sequence of cipher, redundant and
dummy rounds which is now done by using a random string rstr and by the way the
infection is performed which is now fully random.

Despite the security analysis of Alg. 6 presented in [165], we show in the next section
that it may be insecure if implemented as such. Furthermore we show that an attacker
can recover the full secret key for each of the three most popular fault models used in
literature.

2.5.2 Attacks

In this section we firstly present the principle of our attacks which are based on the
fact that the variables dealing with the number of rounds to perform are not protected.
We then exploit this remark to suggest four different attacks that use different fault
models such as the instruction skip, the stuck-at and the random error fault model.

Principle of Our Attacks

Due to the improvements of Alg. 6 compared with the original LatinCrypt 2012 coun-
termeasure, it is impossible for the attacker to obtain any information on the secret key
once the infection has occurred. In order to thwart this countermeasure, we thus inves-
tigate the possibility to disturb the number of executed rounds since the corresponding
variable is not protected in integrity. Indeed, if the attacker succeeds in disturbing the
number of rounds she may be able to retrieve the secret key from the corresponding
faulty ciphertext [48,72]. In the remainder of this section, we show how such an attack
works if the last round of an AES-128 has been skipped.

If the attacker knows a correct and a faulty ciphertext obtained by skipping the
last AES round then it is equivalent to know the input S10 and the output S11 of the
last round. Due to the lack of MixColumns transformation during the last AES round,
the last round key k11 can be recovered byte per byte by XORing the corresponding
bytes of S10 and S11:

k11
i = S11

i ⊕ SBox(S10
SR−1(i)) , ∀i ∈ {1, . . . , 16}, (2.6)

where SR corresponds to the byte index permutation induced by the transformation
ShiftRows. In such a case, the attacker can recover the full AES-128 key from only one
pair of correct and faulty ciphertexts.

One may note that this attack works similarly if the attacker knows the input and
the output of the first round. For further details on the first round attack the reader
can refer to [48].

In the following, we describe different ways of disturbing Alg. 6 by using several
fault models such that it does not perform the AES with the correct number of rounds
whereas no infection is performed. In our description we make use of AES-128 as a
reference, however our attacks can apply straightforwardly to other key sizes.

60

CHAPTER 2. FAULT ATTACKS

Attack 1 by Using Instruction Skip Fault Model

The attack presented in this section exploits the fact that whenever the variable i is
odd and λ = 1 then a redundant round is executed and that this kind of round does
not involve any infection. To exploit this remark, we assume that the attacker is able
to skip an instruction of its choice by means of a fault injection.

Description If the attacker skips Step 12 of Alg. 6 after the last redundant round
then the increment of i is not performed. Therefore i stays odd so the last cipher round is
replaced by another redundant round. As no infection is involved for redundant rounds,
the algorithm returns the output of the penultimate round. The attacker can thus take
advantage of such an output to recover the secret key as explained in Sec. 2.5.2.

Efficiency As explained in Sec. A.2, the probability of skipping the last cipher round
and thus to recover the AES key after disturbing r different AES executions by skipping
Step 12 during the q-th loop is given by:

Pr = 1−
1−

(
q−1
20

)(
t−q

1

)
(
t

22

)
r . (2.7)

where t is the total number of rounds performed during Algorithm 6, i.e. the number
of while loops.

Some numerical values of (2.7) are given in Table 2.2 for t equal to 30, 40 and 50,
q = t− 3, · · · , t− 1 and r = 1, · · · , 4. One can notice that if the fault is injected when
q equals t then the attack does not work because all the rounds have already been
executed.

t q Number r of faults
1 2 3 4

30 27 11.80% 22.21% 31.39% 39.49%
28 30.34% 51.48% 66.20% 76.46%
29 53.10% 78.01% 89.69% 95.16%

40 37 19.34% 34.93% 47.52% 57.66%
38 28.06% 48.24% 62.76% 73.21%
39 29.62% 50.46% 65.13% 75.46%

50 47 18.96% 34.32% 46.77% 56.86%
48 22.00% 39.16% 52.54% 62.98%
49 18.86% 34.16% 46.57% 56.65%

Table 2.2 – Probability of obtaining a useful faulty ciphertext by skipping Step 12 during the
q-th loop of Alg. 6.

By analyzing Table 2.2, one can deduce the best strategy for the attacker. For
example if t = 30 then the attacker should target the 29-th loop in order to obtain the
best chances of retrieving the key with the minimal number of fault injections.

Experiments The attack described in this section has been simulated for t = 30 and
for each q between 25 and 29. The experiment has been repeated 3 000 times for each
configuration. The results of our tests are depicted in Figure 2.3.

61

CHAPTER 2. FAULT ATTACKS

Figure 2.3 – Experimental probability of obtaining a useful faulty ciphertext by skipping Step
12 during the q-th loop of Alg. 6 for t = 30.

By comparing Figure 2.3 and the row t = 30 of Table 2.2, one can notice that the
experiments perfectly match with the theoretical results.

Attack 2 by Using Stuck-at 0 Fault Model

In this section we use the stuck-at 0 fault model where we assume that the attacker
can set to zero a variable of her choice. As for the attack presented in Sec. 2.5.2, the
goal of the attacker is to skip the execution of the last cipher round.

Description To avoid the execution of the last cipher round by using a stuck-at 0
fault model without activating an infection, the attacker can set to zero the variable
λ right after Step 5 during the loop involving the last “1” of rstr, i.e. during the loop
dealing with the last cipher round. The computation of the last cipher round is thus
skipped since λ = 0 implies a dummy round. The attacker thus retrieves an exploitable
faulty ciphertext that can be used to retrieve the secret key as described in Sec. 2.5.2.
As no consistency check is performed on λ, rstr nor on the number of cipher rounds
executed, Alg. 6 does not detect the fault.

Efficiency We detail in Sec. A.2 the reasoning to compute the probability of obtain-
ing at least one useful faulty ciphertext after disturbing r different AES executions by
setting λ to 0 after Step 5 of the q-th loop. Such a probability is given by:

Pr = 1−
1−

(
q−1
21

)
(
t

22

)
r . (2.8)

Some numerical values of (2.8) are given in Table 2.3 for t equal to 30, 40 and 50,
q = t− 2, · · · , t and r = 1, · · · , 4.

By comparing Table 2.3 with Table 2.2, one may note that the attack presented in
this section is more efficient than the one presented in Sec. 2.5.2, especially when the
attacker targets the last loop execution.

Experiments We simulated the attack for t = 30 and for q from 27 to 30. For each
value of q we performed 3 000 tests with random rstr. The results of such experiments
are depicted in Figure 2.4.

62

CHAPTER 2. FAULT ATTACKS

t q Number r of faults
1 2 3 4

30 28 5.06% 9.86% 14.42% 18.75%
29 20.23% 36.37% 49.24% 59.51%
30 73.33% 92.89% 98.10% 99.49%

40 38 11.36% 21.42% 30.35% 38.26%
39 25.38% 44.33% 58.46% 69.00%
40 55.00% 79.75% 90.89% 95.90%

50 48 14.14% 26.29% 36.71% 45.66%
49 25.14% 43.96% 58.05% 68.60%
50 44.00% 68.64% 82.44% 90.17%

Table 2.3 – Probability of obtaining a useful faulty ciphertext by sticking λ at 0 during the
q-th loop of Alg. 6.

Figure 2.4 – Experimental probability of obtaining a useful faulty ciphertext by sticking λ at
0 during the q-th loop of Alg. 6 for t = 30.

Attack 3 by Using Random Error Fault Model

We show in this section how the attacker can use the random error fault model to
obtain a useful faulty ciphertext. In this fault model, we assume that the attacker can
change the value of a chosen internal variable into a random value.

Description Due to its central role in the infection and scheduling, string rstr is
very sensitive. However, the authors of [165] do not suggest any mean of ensuring its
integrity. We thus investigated this path and we noticed that an attacker can disturb
the generation of rstr at Step 3 of Alg. 6 such that it does not contain 22“1”anymore. If
the fault disturbs the string rstr such that it contains only 21 (resp. 20) “1” then Alg. 6
does not execute the last cipher round (resp. the last redundant and cipher rounds). In
both cases no infection is performed allowing the attacker to exploit the corresponding
faulty ciphertext to recover the secret key as explained in Sec. 2.5.2.

Efficiency The probability to obtain at least one useful faulty ciphertext after dis-
turbing r different AES executions by randomly modifying the least significant byte of
rstr during Step 3 is given by:

Pr = 1−

(
1−

(
8∑
i=1

(
t−8

22−i

)(8
i

)(
t

22

) i∑
j=1

(
i
j

)(8−i
j−1

)
255

+
8∑
i=2

(
t−8

22−i

)(8
i

)(
t

22

) i∑
j=2

(
i
j

)(8−i
j−2

)
255

))r
. (2.9)

63

CHAPTER 2. FAULT ATTACKS

For more details about the computation of this probability, the reader can refer
to Sec. A.2.

Table 2.4 gives the probability to obtain a useful faulty ciphertext for t equal to 30,
40 and 50.

t Number r of faults
1 2 3 4

30 41.63% 65.93% 80.11% 88.39%
40 34.72% 57.39% 72.18% 81.84%
50 24.60% 43.15% 57.13% 67.67%

Table 2.4 – Probability of obtaining a useful faulty ciphertext by disturbing Step 3 of Alg. 6.

Experiments Figure 2.5 shows the results obtained by simulating the attack de-
scribed above. The simulations have been performed by generating a random string
rstr and disturbing it with an 8-bit random error. The test has been performed 3 000
times for each t equal to 30, 40 and 50.

Figure 2.5 – Experimental probability of obtaining a useful faulty ciphertext by disturbing
Step 3 of Alg. 6.

Attack 4 by Using Random Error Fault Model

This section describes a second attack that can be mounted by using the random error
fault model.

Description The idea of the attack is to disturb the increment of index q at Step 13
of Alg. 6 during the execution of the first cipher round. We noticed that if the distur-
bance produces an error e such that q ⊕ e > t then the evaluation at Step 4 is false
and the algorithm returns. If the algorithm computes only one cipher round then the
attacker can use such an output to retrieve the first round key, cf. [48]. It is important
to notice that in order to retrieve a useful output, the attacker needs to disturb the
execution during the first cipher round and not after a redundant or dummy round.

64

CHAPTER 2. FAULT ATTACKS

Efficiency As detailed in Sec. A.2, the probability to obtain at least one useful faulty
ciphertext after disturbing r different AES executions by injecting a random error
during Step 13 of the q-th loop is given by:

Pr = 1−
1− 28 − t

28

3∑
i=2

(
q
i

)(
t−q
22−i

)
(
t

22

)
r . (2.10)

We give in Table 2.5 the probability that the attacker retrieves a useful faulty
ciphertext for t equal to 30, 40 and 50 and for q from 2 to 4.

t q Number of faults
1 2 3 4

30 2 46.88% 71.78% 85.01% 92.04%
3 73.67% 93.07% 98.17% 99.52%
4 60.52% 84.42% 93.85% 97.57%

40 2 24.99% 43.73% 57.79% 68.34%
3 48.66% 73.64% 86.47% 93.05%
4 58.22% 82.55% 92.71% 96.95%

50 2 15.17% 28.05% 38.96% 48.23%
3 32.88% 54.95% 69.76% 79.70%
4 45.58% 70.38% 83.88% 91.23%

Table 2.5 – Probability of obtaining a useful faulty ciphertext by injecting a random error
fault on Step 13 of Alg. 6.

The attacker can use Table 2.5 to choose the best strategy for her attack. For
example for t = 30, one obtains the best chances to retrieve a useful faulty ciphertext
by attacking the third loop. Furthermore when comparing the efficiency of our four
attacks, the attack presented in this section is the most efficient one.

Experiments We mounted several simulations where we disturbed the Step 13 of
the q-th loop with a random byte error e. We mounted the experiments for t = 30 and
for q from 2 to 6. For each different q we repeated the experiment 3 000 times. The
results of such experiments are shown in Figure 2.6.

Figure 2.6 – Experimental probability of obtaining a useful faulty ciphertext by a injecting
random error fault on Step 13 of Alg. 6 for t = 30.

65

CHAPTER 2. FAULT ATTACKS

The simulations shows that this attack has a remarkable success rate. For example
for t = 30, an attacker that reiterates the fault injection only twice during the third
loop has a probability of retrieving a useful faulty ciphertext greater than 90%.

2.5.3 Conclusion

This section presents a security analysis of the infective countermeasure of CHES 2014.
Our attack targets variables and instructions that have been explicitly added to the
original countermeasure in order to thwart fault attacks. While the new infective coun-
termeasure gives no information to the attacker once the infection is applied, we discov-
ered that it does not protect the number of cipher rounds effectively executed. By using
this remark we applied the three most popular fault models and found four different
attack paths that allow an attacker to recover the secret key of the underlying cryp-
tosystem. For each attack we studied the success probability and performed simulations
that validated our theoretical results.

With this work we also remark that the lack of formal security proofs in this field
is clearly an issue. We hope that new ideas may pave the way to formally prove the
security of cryptosystems against fault-based cryptanalysis.

In the next section we change the target of our analysis. We abandon the infective
countermeasure and analyze generic ECC implementations countermeasures against
faults. The results of this work were published at the COSADE 2014 workshop.

2.6 Common Points Attack on ECC

In this section we present a fault attack against elliptic curve cryptosystems that ex-
ploits particular points presents on some elliptic curves. We start by introducing the
concept of common points, afterwards we show how to use them in a fault attack
against elliptic curve cryptosystems to retrieve sensitive values. The basic idea of our
attack is to input a point that lies on a family of curves that includes a weak one (i.e.
a smooth one). The attacker then forces the computation on the weak curve by means
of a fault injection. She can then use the output to solve the ECDLP and retrieve the
secret. The advantage in using common points is that they allow the faulty values to
successfully pass the point on curve test even if a parameter has been faulted.

2.6.1 Common Points

Definition 88 (Common Point). Let F be a family of elliptic curves, a point P is a
common point for the family of curves F , iff P ∈ E , ∀ E ∈ F .

Example 3 (Common Point). Consider for example Eq. 1.1 over a field K with
Char(K) 6= 2, 3, and let b = g2 ∈ K:

y2 = x3 + ax+ g2 (2.11)

The family of curves obtained by varying parameter a ∈ K has two common points,
namely the points (0,±g) satisfy the curve equation for any a.

Among the whole family described in Ex. 3, most curves have composite order.
Furthermore some of them have smooth order, allowing an attacker to solve the ECDLP

66

CHAPTER 2. FAULT ATTACKS

in a reasonable time. Common points are thus contained in any curve whose b is a
quadratic residue for the underlying field. Among the curves proposed in FIPS 186-
4 [80], only P-224 does not, and four out of eight curves proposed in SECG [163] can
be attacked. In the following we present our new fault attack that makes use of these
points.

2.6.2 Fault Attack Using Common Points

In order to apply our attack it is necessary for the attacker to be able to choose the
input point of the scalar multiplication and to obtain the corresponding result. The
reader will notice that these assumptions are weaker than the ones of [74, 93], as we
need no leakage hypothesis nor a particular fault model.
Our attack is divided in four steps as detailed below:

• Step 1: the attacker sends a point P = (0,±g) to the embedded device, and dis-
turbs the curve parameter a into ã at the beginning of the scalar multiplication.

• Step 2: the device performs the scalar multiplication on the faulted curve E ′ :
y2 = x3 + ã · x+ g2, and return the value Q̃ = [d]P ∈ E ′.

• Step 3: From Q̃ = (xq, yq), the attacker can recover the value ã by solving the
equation y2

q = x3
q + ã · xq + g2.

• Step 4: the attacker can then solve the ECDLP on the curve E ′, which will work
if the order o of Q̃ is smooth.

We remark that in Step 1 the attacker does not need a particular fault model to perform
the attack. Furthermore, when the order of E ′ is smooth, our attack does involve a single
fault, which means that a single, successful execution is sufficient to completely break
the cryptosystem. This property is particularly useful for two reasons. First of all our
attack does not suffer from the fact that the secret scalar may be freshly regenerated at
each execution. Furthermore it works in environments where the number of executions
is limited, while other attacks that need to be reiterated a considerable number of times
like [32,75] may be thwarted.

The simulations carried out in Sec. 2.6.3 show that the order of E ′ is smooth 45%
of the time. We show in the following that the other 55% of the results also provide
very useful information on the secret scalar.

Attack Application on Not-so-Smooth Orders

When the order o of Q̃ is not smooth enough to use square root attacks [139] for
instance, the attacker can still gain information on the secret scalar value. Let us assume
that the secret scalar is fixed for multiple executions. For an order o that contains
a big factor of ` bits, the attacker can use Pohlig-Hellman decomposition [116] and
retrieve the secret scalar modulo small factors of size log(o)− ` bits on each execution.

Thus by performing the attack on log(o)
log(o)−` executions on average, she can accumulate

the information thanks to the Chinese Remainder Theorem and completely reveal the
secret scalar.

67

CHAPTER 2. FAULT ATTACKS

Comparison with Existing Attacks

In the following, we compare the efficiency of our attack with previously published
ones [23, 32, 49, 74]. The attack of [49] uses a fault similar to the one we use to solve
the ECDLP, however it is thwarted by simply testing if the point is on the curve after
the scalar multiplication. As the authors explain in their work, by faulting parameter
a into ã, the input point P does not lie on the curve Ẽ given by the equation:

Ẽ : y2 = x3 + ã · x+ b

There exists instead a value b′ such that P lies on the curve Ẽ ′ defined by:

Ẽ ′ : y2 = x3 + ã · x+ b′

As the curve operation formulae do not involve curve parameter b, the scalar multipli-
cation is in fact done on Ẽ ′. At the end of the multiplication, the result point will also
lie on Ẽ ′, and thus will not satisfy the equation of curve Ẽ . As b has not been modified,
by testing if the result point lies on the curve, the attack is thwarted. On the contrary,
due to the use of a common point, our attack is not detected by this countermeasure.
Indeed the common point P satisfies the curve equation for any a. In particular the
input point lies on the curve Ẽ , thus the scalar multiplication is performed on it. This
implies that the result of the multiplication Q̃ lies on the same curve. Thus our attack
is not detected by testing if P̃ or Q̃ satisfies the equation for Ẽ if a is not reloaded
before the final point on curve test.

The fault attacks of [23,32] need the faulted result of several executions to retrieve
the secret scalar value. Hence, implementations using random scalar nonces, or with
a limited number of executions may not be vulnerable to them. The point on curve
countermeasure suggested by [23] does not detect our attack as explained above, and
the verification countermeasure suggested in [32] is not effective as we do not disturb
the scalar multiplication.

The authors of [74] use a fault to drop the regular input point into a weaker curve
(characterized by a wrong b′) where the faulted point will leak information by SSCA.
However they need a strong hypothesis on the fault model and on the leakage for the
attack to work. As a common point lies on all curves with the same b, the fault model
required by our attack is very relaxed. Indeed, any random fault on the parameter a
provides information on the secret scalar. We insist on the fact that our attack needs no
SCA hypothesis, which make it work on implementations that do not leak information
if the point at infinity is handled during the multiplication, contrary to the attack
presented in [74].

Attack Scenario

Unfortunately, to the best of our knowledge the attack scenario that we describe is not
applicable to any protocol. However our context is similar to the one of [23] Section 4.1
or [82] Section 3 for example, where the attacker can choose the input point P , and get
the output Q of the scalar multiplication. While no actual protocol is concerned, we
stress that embedded cryptographic developers should choose their countermeasures in
order to avoid the attack that we present here, and new cryptographic protocols should
be conceived in order to avoid falling into our attack scenario.

68

CHAPTER 2. FAULT ATTACKS

2.6.3 Simulations

In order to validate the efficiency of our attack, simulations have been performed on
Pari/gp software [136] by using the standard elliptic curve P-192 proposed in FIPS
186-4 [80].

The attack was mounted by using input point P = (0,
√
b). Afterwards, one byte

of the value a was disturbed with an error before the multiplication. For each byte j
of a, and for each value e between 1 and 28 − 1, the error was simulated by assigning
a ← a ⊕ 28∗je. The scalar multiplication Q̃ = [k]P was computed for a random value
k and the faulty output point Q̃ was returned. Afterwards for each output point the
cardinality o of the new curve was computed by using the Pari/gp implementation of
the SEA algorithm [155].

In order to study the probability of revealing the whole secret k with a single fault,
the size of the order o was collected for all faulted executions. At most log2(o) bits
of information can be obtained on the value k for a point Q̃ resulting from a faulted
scalar multiplication. Thus the secret k can be fully revealed only if the bit-size of o
and k are similar. Figure 2.7 shows the occurrence probability of the different order
sizes obtained during the campaign. From the results it is clear that once the value
of k is retrieved with one application of our attack, the remaining secret bits can be
obtained by brute force since at most 18 bits are missing.

Figure 2.7 – Outcome probability for each bit-size of the result point order.

The second analysis concerns the probability that the resulting ECDLP is smooth
enough to be solved by modern computers. For each result the cardinality of the faulted
curve is factored to extract the bit-size of its biggest prime factor. Figure 2.8 displays
the probability that the faulted curve cardinality contains a biggest factor of a cer-
tain bit-size. To better understand this result in Figure 2.9 is plotted the cumulative
outcome probability of the previous distribution. In other words, Figure 2.9 shows the
probability that the biggest factor of the faulted curve cardinality is smaller than a
certain bit-size. We assume that the computation limits of modern parallel Pollard’s
rho implementations are bound to 112 bits complexity [36], thus as “smooth” orders we
consider orders whose biggest prime factor is smaller than 112 bits. From the experi-
ments it can be observed that the probability to obtain sufficiently small sizes for the
biggest factor exceeds 45%.

69

CHAPTER 2. FAULT ATTACKS

Figure 2.8 – Outcome probability for the bit-size of each result point order greatest factor.

Figure 2.9 – Cumulative outcome probability for each point order biggest factor bit-size.

Finally, in order to obtain information on the time required to solve the logarithm,
the attack was mounted on faults that produced a smooth order result. It has been
chosen to mount the ECDLP on results whose order biggest factor was 42, 52, and
62 bits. These sizes have been chosen starting by the smallest obtained, in order to
speed up the computation time to collect more results. The ECDLP was solved by
using Pari/gp library function elllog without optimization. The computation times
were evaluated on a 3 .10GHz personal computer with 8GB RAM. The average time
was computed over 500 executions for the 42-bit ECDLP, over 205 for the 52-bit, and
over 4 for the 62-bit ECDLP. For random values of the secret key k the results are
shown in Table 2.6, for example for a curve whose order biggest factor is 42 bits, the
required time is 53 seconds on average. Thus it is clear that our attack is definitely
practical on smooth order curves.

70

CHAPTER 2. FAULT ATTACKS

Table 2.6 – Average time to solve the ECDLP for different bit-sizes of the biggest factor of
the order of the point by using NIST P-192 as original curve.

Biggest factor bit-size #Tests Avg time

42 500 53 sec
52 205 20.6 min
62 4 19.21 hours

2.6.4 Countermeasures

Three conditions are necessary to mount the attack described in this section, namely
to control the input point, to know the result of the scalar multiplication, and to have a
quadratic residue as parameter b of the curve. In the following, various state-of-the-art
countermeasures are analyzed. In addition to standard FA countermeasures we also
focus on an SCA countermeasure which provides a good level of resistance against
attacks. Finally, Table 2.7 resumes the results of the countermeasure analysis provided
in this section.

Initial and Final Checks

Intuitively, initial and final parameters checking could thwart the attack described
here , as the curve parameters are disturbed, and thus no more consistent. As already
remarked in [74], the initial checks are ineffective if the fault is injected after the
countermeasure application. However for our attack to work, the adversary needs to
retrieve the output, which is not returned if the final checks fail. The authors of [49],
suggest that parameters checking can be performed by means of integrity check or by
point on curve testing, and that the two mechanisms offer the same security level. This
work shows that this claim is false if parameter a is not reloaded from memory before
the final checks. Indeed it is straightforward to see that the initial point on curve test
does not detect the disturbance of a due to the fact that the input common point lies
also on the disturbed curve. Furthermore, if a is not reloaded from memory before the
final point on curve test, as the scalar multiplication is performed on the faulted curve,
the output point Q̃ lies on it. Thus the final point on curve test succeeds and the result
is output.

Combined Curve

The countermeasure proposed in [32] against the sign change attack is applicable to
curves over prime fields. The authors suggest to generate a random prime t and a new
random curve Et := E(Ft). They obtain then a “combined” elliptic curve Ept := E(Zpt)
which contains Et and the original curve. By performing the scalar multiplication on
Ept and Et they can then verify the result by using a modular reduction. This counter-
measure is ineffective against our attack as we do not disturb the scalar multiplication.

Point Blinding

Intuitively a DSCA countermeasure hardly thwarts a fault attack, however the second
countermeasure proposed in [57] performs well against faults, as remarked in [74]. The
author of [57] suggests to thwart DSCA by pre-computing S = [k]R for a random point
R, then computing Q = [k](P + R) and returning Q − S. Then at each execution a

71

CHAPTER 2. FAULT ATTACKS

random bit b is generated and the random points are updated with R ← (−1)b[2]R
and S ← (−1)b[2]S. Such a countermeasure counteracts efficiently our attack if the
attacker has no control on the fault. However, if she can inject the same error twice,
such a countermeasure can be bypassed. Indeed, let us assume that for two consecutive
executions the bit b equals 0 (the case b = 1 is similar). For the same fault injected
in the two executions she will thus obtain two results: Q1 = [k](P + 2R) − [2]S and
Q2 = [k](P + 4R) − [4]S. As the value S is pre-computed, the scalar multiplications
[2]S and [4]S are done over E , while the computation of [k](P + [j]R) for j = 1, 2 is
done over Ẽ . Furthermore if the fault is injected before the update of R and S, the
doubling of these two values is also done over Ẽ . The attacker thus computes over Ẽ ,
the value Q2 − [2]Q1 = [k]P + [4k]R− [4]S − [2k]P − [4k]R+ [4]S, by simplifying she
obtains Q2− [2]Q1 = [k](P − [2]P), and thus she can mount the ECDLP on the faulted
curve as the result is independent of R.

Table 2.7 – Countermeasures effectiveness against our new attack. For the point blinding
countermeasure we assume that the same fault can be injected in two executions.

Countermeasure Result

point on curve before multiplication Ineffective
Integrity Check before multiplication Ineffective
point on curve after multiplication Ineffective
Integrity Check after multiplication Effective
Combined Curve Ineffective
Point Blinding Ineffective

2.6.5 Conclusion

This section introduced the concept of common points, i.e. points that lie on a whole
family of curves, which have never been remarked before. Then we show how to exploit
their properties in our new attack to thwart state-of-the-art secure implementations
with a single fault. By forcing the computation to be performed on another curve
of the family, an attacker can try to solve the ECDLP on this new curve which is
expected to be weaker than the standard one. The use of common points overcome the
drawbacks of other known attacks, such as the need for high accuracy on the injected
error. Furthermore it was claimed that one of the most complete still less expensive
solutions to thwart fault attacks is to test that the used point lies on the curve. Our new
attack shows that implementations relying on this countermeasure are in fact in a great
danger. Simulations of our attack show that it is practical on most standard curves,
and that the probability of success for a single execution exceeds 45%. By analyzing
state-of-the-art countermeasures, we show that our attack is thwarted only by verifying
the integrity of the curve parameter a at the end of the scalar multiplication. Last but
not least, we exploited common points to mount a very efficient fault attack but one
should wonder if there is no other way to make the most of these points by producing
other kind of attacks or countermeasures. While there exists no actual protocol allowing
the attacker to choose the input point and retrieve the result of a scalar multiplication,
we stress that our work should be interpreted as a warning and a reason to avoid such
kind of protocols. In particular we remark that some recent work did not take into
account our admonishment and may be broken by using our strategy [144].

72

CHAPTER 2. FAULT ATTACKS

2.7 Conclusion

In this chapter we have introduced the concept of fault attacks which represents one of
the most challenging threats to embedded cryptography. We have described in Sec. 2.1
some of the classical and more powerful fault attacks both on asymmetric and sym-
metric cryptosystems. In particular we have described the effect of fault attacks on
the CRT-RSA cryptosystem, together with three of the most effective countermeasures
used in practice. We have afterwards detailed the effects of faults on ECCs, and we have
presented the countermeasures that have been suggested by researchers to thwart such
attacks. Concerning symmetric cryptosystem we have focused particularly on AES,
where we have detailed how differential fault attacks work. Among the various coun-
termeasures for both symmetric and asymmetric cryptosystems we have presented the
idea of infective countermeasures, which has been initially suggested for CRT-RSA but
various authors adapted it to symmetric cryptography. This second chapter presents
some of our work on fault attacks and infective countermeasures.

In Sec. 2.2 we analyze a recent proposal for translating redundant countermeasures
into infective ones. We show that the two countermeasures obtained by using such
approach are not resistant. Despite the translation method seems promising we suggest
that more research should be devoted to the subject before practical application should
rely on it.

Afterwards we have analyzed recent proposals for symmetric infective countermea-
sures. In particular we analyze the security of the first published infective countermea-
sure [117] for symmetric cryptosystems in Sec. 2.3. Our analysis reveals how a little bias
on the infection data allows an attacker to break the countermeasure with a reasonable
number of faults.

Further works on infective symmetric countermeasures has been presented in Sec. 2.4.
The authors of [88] suggest a countermeasure based on the use of dummy and redun-
dant rounds to protect symmetric implementations. Our contribution revealed flaws
on the countermeasure design that allows an attacker to retrieve sensitive information
despite an interesting ad promising approach to security.

Our work on the analysis of [88] seems to have motivated others to perform fur-
ther research within the infective computation domain. Indeed soon after our analysis
of [88], another version of the countermeasure has been published [165], which enjoys
an information theoretic proof of security. We present in Sec. 2.5.1 our analysis of the
new countermeasure where we suggest some fault path that has not been detected by
their authors as well as possible countermeasures.

On the subject of pure fault attacks we also present our work on ECCs in Sec. 2.6.
We have suggested the concept of common points on elliptic curves to the community
and a detailed attack against state of the art countermeasures. We were the first to
provide reasons why ECC cryptosystems should not allow the user to choose both the
input point and retrieve the resulting point of a scalar multiplication. Our remark is of
importance for modern protocols, for example some of the countermeasures suggested
in [144] can be broken by using our common points attack.

73

Chapter 3

Side-Channel Attacks

“Asymptotically we’re all dead. ”

Jacques Patarin

Contents
3.1 Side-Channels . 76

3.1.1 Side-Channel Vectors . 76

3.1.2 Towards a Leakage Model . 77

3.1.3 Simple Side-Channel Attacks 79

3.1.4 Differential Side-Channel Analysis 81

3.1.5 On the Order of Side-Channel Attacks 83

3.1.6 Countermeasures . 84

3.2 Horizontal Side-Channel Attacks and Countermeasures
on the ISW Masking Scheme 86

3.2.1 Notation . 87

3.2.2 Horizontal DPA Attack . 88

3.2.3 Complexity Lower Bound: Entropy Analysis of Noisy Ham-
ming Weight Leakage . 89

3.2.4 First Attack: ML Attack on a Single Matrix Row 91

3.2.5 Second Attack: Iterative ML Attack 93

3.2.6 Numerical Experiments . 94

3.2.7 Practical Results . 94

3.2.8 A Countermeasure against the previous Attacks 98

3.2.9 Mask Refreshing with Complexity O(n · logn) 101

3.2.10 Conclusion . 105

3.3 Security Analysis of the Orthogonal Direct Sum Masking 106

3.3.1 Orthogonal Direct Sum Masking Scheme 107

3.3.2 Side-Channel Analysis of the Masking Scheme 108

3.3.3 Maximum likelihood attack 112

3.3.4 Possible Fix-Ups and Residual Issues 113

74

CHAPTER 3. SIDE-CHANNEL ATTACKS

3.3.5 Conclusion . 116

3.4 A Combined Fault and Side-Channel Attack on CRT-RSA 116

3.4.1 Context of the Attack . 116

3.4.2 The attack . 117

3.4.3 Experiments . 119

3.4.4 Reducing the Attack Complexity Using Coppersmith’s Methods121

3.4.5 Bringing Up the Original Problem to Solving a Modular Equa-
tion . 121

3.4.6 Countermeasures . 124

3.4.7 Conclusion . 125

3.5 Conclusion . 125

As it has been explained in Chap. 2, the interaction between an embedded device
executing a cryptographic algorithm and its environment may reveal sensitive infor-
mation about the cryptosystem. In Chap. 2 we have investigated some of the threats
posed by an attacker who physically interacts with the hardware in order to modify its
internal state. In this chapter we are going to investigate some of the attacks that can
be mounted by passively observing the physical emissions of embedded devices. The
term Side-Channel Analysis (SCA) is commonly used to denote this kind of attack.

The remainder of this chapter is organized as follows. In Sec. 3.1 we provide a
introduction to side-channels. We recall the best known side-channel vectors and we
introduce the theory of leakage models. We afterwards provide examples of simple and
statistical side-channel attacks and countermeasures. Afterwards we present in Sec. 3.2
our recent result in horizontal side-channel attacks [14]. We show that indefinitely
increasing the number of shares used to protect implementations from side-channel
attacks may, under particular conditions, be counter-productive and provide advantages
to the attacker. This joint work with Jean-Sebastien Coron, Emmanuel Prouff and
Rina Zeitoun has been published at the CHES 2016 conference. In Sec. 3.3 we discuss
a recent suggestion for a new class of side-channel and fault attacks countermeasure.
We present our analysis of the countermeasure against side-channel attacks [9]. This
is a joint work with Guillaume Barbu and is still unpublished. In Sec. 3.4 we present
an attack that uses a combination of faults and side-channel analysis to break state-
of-the-art CRT-RSA countermeasures secured against fault and side-channel attacks.
The results of this joint work with Guillaume Barbu, Guillaume Dabosville, Christophe
Giraud, Guenael Renault, Soline Renner and Rina Zeitoun, have been published at the
PKC 2013 conference. Finally Sec. 3.5 concludes the chapter.

75

CHAPTER 3. SIDE-CHANNEL ATTACKS

3.1 Side-Channels

We have seen in Chap. 2 that the classical concept of black-box cryptography is no
longer sufficient to model the reality of attackers. Fault attacks are, however, very in-
vasive, as the attacker must often be able to reach very sensitive zones of the hardware
to inject his fault. Also, the disturbances introduced by fault vectors may be detected by
the cryptosystem, which may try, under particular circumstances, to kill itself instead
of revealing sensitive information. Whenever such drawbacks cannot be afforded by the
attacker, an alternate solution exists. In 1998 Kocher et al. [110–112] showed that, as
in many other physical processes, the real execution of an algorithm generates physical
observables (leakages) that can be measured by an attacker and that reveal additional
information on the execution internals. In this section we present different kinds of
physical observations that may reveal information on the sensitive data manipulated
by an algorithm. Furthermore, many different methods allow to extract information
from leakage traces. Which one to choose depends on many factors, among them com-
plexity and effectiveness. We introduce the most common of them, together with a brief
introduction to the theoretical models that have been developed in the literature and
some of the classical simple and statistical side-channel attacks and countermeasures.

3.1.1 Side-Channel Vectors

In order to capture side-channel information several different physical interactions ex-
ist that can be observed and measured by the attacker, depending both on its re-
sources and on the physical access to the device. On their first known historical ap-
pearances [83,177], side-channel attacks exploited sound and radio-frequencies leakages
to retrieve secret information. However, attacker techniques and instruments evolved
with the continuous research and interest in the field. Nowadays a wide range of phys-
ical interactions can be measured and analyzed by the attacker, each one with its own
advantages. We list hereafter the known physical observables that have been reported
in the literature. We provide examples of use and, where possible, the first appearance
in the literature of the discussed vector.

• Acoustic: Acoustic cryptanalysis consists in measuring the frequencies in the au-
dible spectrum, between 20Hz and 20KHz produced by the device while running
a given algorithm. The measure can be performed by using a simple microphone
and can provide astonishing information. The first known examples of its use can
be dated back to the cold war, around 1955, when the British MI5 used a micro-
phone to decode the secret code information used by the Egyptian and French
Hagelin embassy during the Suez crisis communications [177]. Although it may
seem a too simple attack vector to be useful against modern cryptography, re-
searchers have recently demonstrated its effectiveness in retrieving the RSA key
used by a remote desktop computer [86].

• Time: (TA) Measuring the time taken to perform an operation has been one
of the first attack vectors used in the literature. Its first appearance is due to
Kocher et al. [111,112] which used timing analysis to break CRT-RSA cryptosys-
tems. Recent works demonstrated its effectiveness against modern cryptography
as in [19,20].

• Temperature: Temperature analysis aims at measuring the temperature variances
of the hardware during an operation. Probably due to intrinsic inertia of the

76

CHAPTER 3. SIDE-CHANNEL ATTACKS

temperature and the consequent slow evolution this attack vector has not been
extensively used to mount attacks on cryptosystems.

• Power Consumption: Power consumption or power analysis (PA) is one of the
the most widely known and used attack vectors nowadays. Originally introduced
by Kocher et al. [111, 112]. It mainly consists in measuring the evolution of the
power absorbed by the device under test during operations. Historically the most
powerful source of side-channel information, its name is often used to denote
attacks using side-channel information like Simple Power Analysis and Differential
Power Analysis.

• Electro-Magnetic Emissions : Similarly to power consumption, electromagnetic
analysis (EMA) turned out to be one of the most informative vectors for the side-
channel attackers. The main idea is to use an electromagnetic probe to capture
wide band electromagnetic emissions generated by the digital components of the
hardware when switching states. The main difference with power analysis is the
locality of EMA. While the power absorbed by the chip is generated by all of its
components, an electromagnetic probe can be placed on a specific component (i.e:
ALU, co-processors, RAM, etc..) and provide information generated only by the
element located below the probe. Electromagnetic side-channels were introduced
by Kocher et al. [111,112].

• Photonic Emissions : It has been recently observed that CMOS technology can
release data-dependent energy in the form of photon emissions [78, 152]. These
emissions can be captured by using dedicated hardware, for example by using
Near InfraRed (NIR) cameras, to retrieve sensitive data. This kind of attack
mainly focuses on retrieving sensitive information from memories, which presents
slow refresh rates, better fitting the requirements of commodity NIR cameras.

The side-channel vectors are used to acquire additional information on the instruc-
tions executed by a given hardware. However, the precise form of the information re-
trieved is relatively hard to define. Several theories have thus been suggested to model
the leaked information. In the following section we describe such theoretical models.

3.1.2 Towards a Leakage Model

The theory of side-channel attacks and countermeasures has known a fast evolution in
the last few decades due to its effectiveness in breaking cryptosystems that were not
conceived to withstand physical attacks. The need to provide proofs of security in this
new framework, together with the need for a rigorous approach to model side-channel
attacks and countermeasures, motivated theoreticians to search for a suitable model.
A model has to be simple, yet it has to provide a good approximation of reality (which
is itself usually very complex) and, as remarked by Micali and Reyzin in [124], non-
trivial work must be achievable within its confines. As a first (not chronological) and
general remark, we recall the paradigm suggested in [124]. They suggested that the
model should take into account only data manipulated during computations, which is
nowadays known as the only computation leaks paradigm. This axiom states that for
each leakage sample the amount of information retrieved by the attacker is limited to
the sole data and instructions that have been used during the observed computation.
Similarly to the lack of a formal definition of elementary step encountered in Sec. 1.1.3,
here the term single computation is not well defined, hence it can be adapted to the

77

CHAPTER 3. SIDE-CHANNEL ATTACKS

granularity required for the expression of the algorithm. The paradigm is justified by
the fact that data which are not manipulated have no reason to absorb or release
energy. Some objection to this constraint has been moved [98]. In particular the model
cannot take into account, for example the so called cold-boot attacks [97]. However,
it has been fruitfully used during the last years to construct and prove side-channel
countermeasures and to simulate side-channel attacks [6,42,58,59,85,95,142,146]. We
list hereafter some of the best known models that are used by different works to prove
very interesting results in the only computation leaks paradigm. We finally remark that
leakage models allows studying particularly complex protocols by proceeding from basic
blocks up to higher representation levels.

Noisy Leakage Model

The first model has been suggested by Chari et al. in [44]. The idea of Chari et al. is to
assume that when observing a physical phenomenon produced by the hardware under
test, the attacker is provided with an observation modeled as a value depending on the
internal state of the hardware, plus a tunable Gaussian noise component.

The model as suggested by Chari et al. has been extended and we thus assume
that the information L(x) provided by physical observables to the attacker during the
manipulation by the hardware of the value x is of the form:

L(x) = f(x) +N (µ, σ2) (3.1)

where N (µ, σ2) is a Gaussian noise of mean µ and standard deviation σ. The Gaussian
noise parameters can be tuned in order to allow simulation of more or less informative
leakages. The function f takes into account the fact that the hardware may only leak a
part of the value manipulated. While many choices are possible for f , like for example
the Hamming distance or higher degree combinations of the bits of x, the Hamming
weight is the de-facto standard for the research in the field, justified by its simplicity
yet realistic approximation of reality. We recall that given a value x on n bits (i.e
x = x0, . . . , xn−1), its Hamming weight is given by the following equation:

HW (x) =
n−1∑
i=0

xi

In the following we will refer to this model as the noisy Hamming weight leakage model
where we want to stress that f corresponds to the Hamming weight. By using a leakage
model it is possible for example, to analyze an algorithm execution by substituting x
with the different values that are taken by the algorithm variables during the execution.

Threshold Probing Model

Among the other models that have been suggested in the literature we recall in par-
ticular the t-threshold probing model by Ishai et al.. The authors of [103] provide a
completely different approach than that of Chari et al. [44]. Informally speaking, the
t-threshold probing model suggests that an adversary can probe no more than t in-
termediate values produced during the execution of the algorithm. The adversary can
freely choose the instant of acquisition for each probe, such that, for example, she may
probe the t intermediate values at once, or at different times. However, probes cannot
be moved during one execution, and each probe can be used only once per execution.

78

CHAPTER 3. SIDE-CHANNEL ATTACKS

More formally, the t-threshold probing model can be defined as follows. Let an algo-
rithm A be defined as a set X = {x1, . . . , x`} of ` intermediate results. On attacking,
the adversary specifies a set of indexes I = {i1, . . . , it} ⊆ {1, . . . , `} for t ≤ `. After-
wards, the algorithm executes and returns to the adversary, additionally to the classical
input and outputs, the sequence xi for each i in I.

We also recall that recently it has been shown in [69] that it is possible to reduce
the security in (a slightly different notion as described in [140] of) the noisy leakage
model to the security in the t-threshold probing model.

Random Probing Model

We remark that a known variant of this model is the ε-random probing model. Let us
consider a function f as the one which best approximates the leakage of the device
under test. Thus In the ε-random probing model, instead of selecting the set of indexes
to probe, each index in {1, . . . `} is probed and returns f(xi) with probability εi ≤ ε.
In [69], the authors also show that by using the ε-random probing model, it is possible
to reduce noisy leakage security to t-threshold security.

These models are used to describe attacks and countermeasures in the remainder of
this chapter. In our following description we abuse the term power analysis to describe
attacks that exploits any side-channel vector, not only power consumption. In the next
section we describe the first side-channel attack on cryptosystems that appeared in the
literature, originally described by Kocher et al. in [111]. We also describe in particular
its adaptation to the AES, and some of the most effective countermeasures that have
been conceived to protect implementations in the presence of side-channel leakages.

3.1.3 Simple Side-Channel Attacks

Simple side-channel attacks try to recover sensitive information by observation of single
leakage traces. They are often denoted by the acronym SPA, standing for Simple Power
Analysis. Two main strategies exist to recover sensitive information by simple analysis.
The first strategy tries to identify dependencies between instructions and leakage traces,
while the second one tries directly to exploit dependencies between leakages and data.
However, as a first example, we remark that simple power analysis may provide useful
reverse engineering information on the algorithm to the attacker.

Instruction dependency

Among simple attacks the most intuitive is probably instruction-data dependency at-
tacks. This kind of attack is characterized by the attacker trying to retrieve sensitive
information thanks to the execution of portions of code that depends on the sensitive
variable’s value. In order to illustrate how this attack works, we recall here a classical
example about the verification of a PIN (Personal Identification Number). We assume
that the attacker is given an hardware that stores a secret 10-digits PIN. Furthermore
she is provided with a keyboard to enter a user PIN. If she finds the value of the
secret PIN then she wins and evil things happen. We provide in Alg. 7 an example
pseudo-code that may be internally used by the hardware to test the user input PIN.

Without further countermeasures, a brute-force attack requires at most 1010 ' 230

tests to disclose the secret PIN. On the other hand, we observe that such an algorithm
presents a weakness in the way it handles wrong PINs. We assume that each loop
in Alg. 7 takes equal time to execute. By measuring the time taken by the device to

79

CHAPTER 3. SIDE-CHANNEL ATTACKS

Algorithm 7: Simple PIN test

Inputs : 10 digit user-PIN
Output: “Yes” or “No”

1 for i = 0 to 9 do
2 if user-PIN[i] 6= PIN[i] then return (“No”);
3 end
4 return (“Yes”)

answer a given PIN, the attacker can greatly reduce the attack complexity. She can, for
example, try all the 10 different values for the first digit of the PIN. She can decide which
of the values is correct by comparing the execution time taken to answer each query. Due
to the early exit at Step 2, all wrong values will return upon comparing the first digit,
where the correct value requires a comparison of at least the two first digits, thus taking
at least twice the time of the others. By using this technique she can iterate the same
attack on all 10 digits, and reduce the total number of steps required to retrieve the PIN
to 10 ∗ 10 ' 27 � 230. We have chosen to present the reader with a simple example in
order to better understand instruction-data dependency attacks. Other interesting and
more sophisticated attacks of the same philosophy exist and allow, for example, to break
unprotected implementations of the square-and-multiply exponentiation algorithm, or
equivalently multiply-and-add scalar multiplication algorithms on ECCs [113]. It is
almost impossible to be exhaustive due to the large body of work produced, thus we
have provided here only some examples of simple attacks. However, we remark that
whenever the execution of an instruction depends on some sensitive data value, then
there exists a potential threat for the implementation.

Data dependency

Simple side-channel attacks may also provide information in other settings. We dis-
cuss here how to retrieve information on sensitive variables when only data-leakages
dependencies are available. Let us for example assume that the power consumption
during an implementation execution carries information on the values manipulated by
the algorithm (due to a noisy leakage model, for example). Furthermore it may be
possible, for example, to retrieve a good approximation of the Hamming weight of in-
termediate variables. While it has been shown that finding out the Hamming weights
on algorithms like the DES or the AES alone may be of little help, this information
may be exploited to mount an attack. For example, Goubin [93] demonstrated that
detecting long sequences of zeros may allow to break unprotected scalar multiplication
algorithms. More recent works relies on the fact that a long sequence of zeros or ones
may be better recognizable by simple side-channels to break an AES-GCM [19,20].

Countermeasures

Since the introduction of simple power analysis by Kocher et al. [111,112], several sound
countermeasures have been identified. In the following we describe some of the counter-
measures that have been found in the literature to thwart simple side-channel attacks.
The first and most important countermeasure against simple side-channel attacks is to
construct algorithms whose flow is independent of the sensitive data manipulated. In
the PIN test example (Alg. 7), instruction-data independence can be achieved quite

80

CHAPTER 3. SIDE-CHANNEL ATTACKS

easily. Indeed we show in Alg. 8 another version of the same algorithm that is secure
against the timing attack described before.

Algorithm 8: SPA Secure PIN test

Inputs : 10 digit user-PIN
Output: “Yes” or “No”

out = “Yes”;
for i = 0 to 9 do

if user-PIN[i] 6= PIN[i] then out =“No”;
end
return (out)

Several authors suggested algorithms that trade off speed versus security, this is the
case for example of the so called“regular algorithms”like the square-and-multiply always
or the Montgomery Ladder exponentiation algorithms for both RSA and ECC [57,
91, 106]. Another well known and interesting example is the Side-Channel Atomicity
introduced by Chevallier-Mames et al. [47]. The countermeasure consists in re-writing
an algorithm, in particular exponentiation and scalar multiplications, by using common
building blocks of code in order to break dependency between instructions and data.

In the next section we present advanced attacks that use statistical treatments to
reduce the noise present on the traces and to retrieve the sensitive variables manipu-
lated.

3.1.4 Differential Side-Channel Analysis

When simple side-channel attacks are not sufficient to break cryptographic implemen-
tations, attackers can resort to Differential side-channel Analysis. Often denoted Dif-
ferential Power Analysis (DPA) for historical reasons, it has been first described by
Kocher et al. [111] in 1998. This kind of attack is based on statistical analysis of a
set of leakage traces acquired on the hardware under test. Differential power analysis
has received great interest since its introduction, probably due to two main factors.
The first reason is its impressive efficiency to break cryptosystem implementations and
SPA protected implementations. The second is probably due to the early development
of useful models that allowed to produce formal research [103,124]. In the following we
use the AES as an example to describe how DPA may be applied to a cryptographic
algorithm.

Differential Power Analysis

In order to explain how DPA works, we use the example of AES-128. The algorithm,
as described in Chap. 1, Sec. 1.2.3, takes a 128-bit input message, and combines it
with a 128-bit key to obtain the ciphertext. In the first round of the algorithm each
message byte is combined (XOR) with one byte of the first round key. Afterwards each
byte of the result is passed through a nonlinear function denoted S-Box. The aim of
the attacker is to retrieve the secret round key. She can count on a set on known input
messages mi and a set of leakage traces ci corresponding to the treatment of the first
round. In the following we assume that the side-channel observations of the attacker can
be modeled by a noisy leakage model. A statistical method that allows to detect data-
dependent statistical correlations among a set of measurements is commonly denoted

81

CHAPTER 3. SIDE-CHANNEL ATTACKS

DPA. The original method based on difference of means consists in dividing the set
of measurements into two subsets, then computing the average of each subset and the
difference between the averages of these subsets. Then two possibilities arise, either
the choice which guided the assignment of each trace to a set is uncorrelated with the
measurement, in this case the difference of averages will asymptotically should approach
zero. Otherwise, in the case of a correct assignment of the traces, the difference of the
averages asymptotically approaches a non-zero value. The selection function used to
assign traces to a set can be chosen among those relating the message byte and the
key byte. For example, by using one of the intermediate functions of the first round
like the output of the XOR or the one of non linear transformations like the S-Box. We
provide in the following a brief list of different statistical distinguishers that have been
suggested in the literature to mount statistical side-channel attacks.

Other Statistical Distinguishers

Since the introduction of DPA, more sophisticated attacks have been suggested in the
literature. They are mainly based on the choice of different statistical distinguishers that
are better suited to detect statistical correlations between measurements in particular
circumstances, or that provide better tolerance to noise.

Correlation Power Analysis The Correlation Power Analysis (CPA), based on
the Pearson Correlation coefficient has been introduced in [39] in order to provide an
alternative distinguisher to DPA. The CPA coefficient of a set of traces C and a set of
hypothesis H is given by:

ρ(C,H) = cov(C,H)
σCσH

CPA appears to be more tolerant to noise than DPA and generally provides better
experimental results by revealing correlations with a lower number of traces. This
is probably due to the fact that its formula takes into account both the mean and
the variance of the measurements. Moreover its inclusion of a leakage model on the
formulas allows for more precise results (as long as the model is consistent with the
observations). However the main drawback of the CPA is its need for a leakage model.
The attacker must indeed guess the model of the leakage of the hardware for the attack
to be successful. If the real leakage model is too different from the theoretical guessed
model, then the distinguisher may converge too slowly or not work at all.

Mutual Information Analysis The Mutual Information Analysis (MIA), is based
on the estimation of the mutual information between curves and hypotheses. It has
been suggested by Gierlichs et al. in [87].

In its basic version, the attacker builds, for a given leakage model, a set of theoretical
distributions conditioned by the key values hypotheses. Afterwards she collects leakages
which are used to estimate the distribution of the samples in each point. By comparing
the estimated distribution against the theoretical ones, the retained key guess is the one
which minimizes the distance between the observed and the theoretical distributions.

Depending on the metric used to compute the distance between the distributions
one can trade computational complexity for detection efficiency. MIA mainly differs
from other distinguishers in that it can detect correlations between measurements and
non-linear functions of the leakage model. Another fundamental difference between

82

CHAPTER 3. SIDE-CHANNEL ATTACKS

MIA and other distinguishers is that MIA can detect leakages to any statistical order
(see Sec. 3.1.5). For more details we refer the reader to [12,87,170].

Linear Regression Analysis Linear Regression Analysis has been introduced in [67,
151]. Among the advantages provided by this distinguisher is the fact that together with
the best correlating hypothesis, it finds a set of coefficients describing a leakage model
that (for a chosen metric) minimizes the distance between the hypotheses and the
observations. Thus the attacker retrieves both the best correlating key hypothesis, and
the best matching leakage model in each observation sample. The obtained leakage
model can then be plugged into attacks that require less computational resources than
LRA, like for example CPA. Further details can be found in [63,67,151].

Maximum Likelihood (Template) Analysis Template attacks, initially suggested
by Chari et al. are the strongest possible form of side-channel attack in an information
theoretic sense [45]. As their authors observe, instead of trying to remove or reduce
the noise in traces, template attacks tries to precisely model the noise in order to fully
extract information in a single sample. Template attacks often require access to so
called open-samples, an identical experimental device to the one under attack that can
be programmed at will by the attacker. Attacks that can exploits open-samples are also
called profiled attacks, in contrast with non-profiled attacks where the weaker adversary
is only able to observe the targeted device behavior. The idea of template attack is to use
the maximum likelihood approach together with details of the cryptographic function
being attacked. We provide here the idea of the maximum likelihood approach, while
a more precise and formal definition will be given in Sec. 3.2. We assume that the
attacker knows a set of samples x0, . . . , xn of i.i.d observations from a distribution with
unknown pdf f0(·). Let f0 belongs to a family of distribution functions parametrized
by a parameter θi ∈ Θ (i.e.: f0(·) = f(· | θ0). The attacker wants to find an estimator
that gets as close to θ0 as possible. The idea is to find the value θi which maximizes
the value:

L(θi) =
n∏
i=0

f(xi | θi)

In practice this boils down to find the θi for which the set of observations are the most
probable.

3.1.5 On the Order of Side-Channel Attacks

We briefly discuss in this section different terminologies used in the literature to address
the order of side-channel attacks. In the literature we can find different definitions,
sometimes confusing, about the order of side-channel countermeasures and attacks (see
for example [58,63,95,123,129,142]. The same terminology is indeed used to define two
different concepts, hence the confusion. Let us describe them in the following.

Multi-variate Order

The attacks that we have presented in Sec. 3.1.4 exploits leakage information in one
particular point of the curve to find dependencies between manipulated data and ob-
servations. However, it has been observed that it is interesting to combine (with a
carefully selected function) two leakage points together and mount the attack on the

83

CHAPTER 3. SIDE-CHANNEL ATTACKS

resulting value [123]. It is common, for example on leakage observations made of sev-
eral time samples, to multiply different time samples on the same leakage trace. The
hope is that such computation reveal information concealed by particular side-channel
countermeasures (c.f. Sec. 3.1.6).

However, the attacker may not be aware of which points are to be combined, hence
she may try to compute all combinations of pairs of points. Consequently, given an
initial curve of n points, she obtains a resulting curve of n2 points. Hence this approach
presents two main drawbacks: the number of points to analyze for each observation
grows exponentially and the number of curves required to retrieve information from
them grows. However, in some circumstances this strategy may pay off and break
(first-order) side-channel secure implementations [123]. It has been proved that some
combination functions are better suited in particular circumstances (see [141]).

Statistical order

In the literature there also exists another notion of attack order, which comes from
statistical analysis, and that concerns the order of the statistical distinguisher used in
the attack. As we have seen, the DPA attack reveals differences on the mean value of
carefully selected sets of curves. As the mean is the 1-st order statistical moment of a
random variable, DPA is defined, in this context, as a 1-st order statistical attack. It
is also possible to mount DPA attacks based on the variance of the leakages. As the
variance is the 2-nd statistical moment of a random variable, hence variance-DPA is a
2-nd order statistical attack. As one may guess countermeasures exist that are secure
against t-order side-channel attacks for large t, but that are thwart by a “simple” bi-
variate side-channel attack.

Thus in the remainder of this manuscript we adopt the standard notation of high-
order for both notions, while we identify if it is multi-variate or statistical when neces-
sary to avoid confusion. After this clarification on our notation, we can describe in the
rest of this section some of the best known side-channel countermeasures.

3.1.6 Countermeasures

We divide the countermeasures in two categories, those which use heuristic methods
to increase traces noise (for example reducing the SNR), whose objective is to reduce
attacks efficiency, and the proven countermeasures which can provably thwart side-
channel attacks under reasonable assumptions.

Heuristic

Heuristics countermeasures consist in strategies to reduce the Signal-to-Noise Ratio
(SNR) of the traces in order to reduce the efficiency of statistical attacks. Among them
we can find hardware countermeasures such as the insertion of random clock skews (jit-
ter) during computation with the purpose of breaking traces synchronization, such that
the same point on all traces does not carry the information about the same computa-
tion. Other hardware countermeasures consist in activating unused hardware modules
which consume power during a sensitive computation, such that the power absorbed
by the sensitive computation will be masked by the power absorbed by the other hard-
ware modules. Other hardware countermeasures devoted to thwart EMA, involve the
insertion of additional metal layers to shield and disturb the electro-magnetic emissions

84

CHAPTER 3. SIDE-CHANNEL ATTACKS

of the device [38, 51]. Similar to hardware countermeasures there exist software coun-
termeasures that can achieve similar results. This is the case for example of the jitter
countermeasure, which can be achieved in software by random addition of idempotent
instructions. Similar concepts can be applied at higher levels by executing several times
the sensitive algorithm on dummy data. The real execution can then be randomly ex-
ecuted among all the dummy ones. This countermeasure, like all the other presented
above can only slow down attackers, but a sufficiently motivated hacker can just acquire
more traces to reduce the noise introduced by the heuristic countermeasure.

Proven

Another approach to thwart side-channel attacks consists in finding sound countermea-
sures that can be proven to be safe with some (reasonable) assumption.

Various techniques to protect algorithms from leakage have been inspired by secret
sharing [29, 156] or multi-party computation [46]. Furthermore the notion of t-order
security in the multi-variate connotation has the same origins.

The basic idea is to randomly split a secret into several shares such that the adver-
sary needs all of them to reconstruct the secret. Masking was soon identified as a sound
countermeasure when side-channel attacks appeared in the literature [44,94]. For exam-
ple, given a sensitive variable x, it can be split (shared) into t shares by generating t−1
random variables {x0, . . . , xt−2}. The last share is computed as xt−1 = x⊕x0⊕. . .⊕xt−2.
The sensitive computation can then be performed on each share separately. Afterwars,
the sensitive result value can be obtained as: x = x0 ⊕ . . . ⊕ xt. More formally, for
two positive integers n and d, a (n, d)-sharing of a variable x defined over some finite
field F2k is a random vector (x1, x2, . . . , xn) over F2k such that x = ∑n

i=1 xi holds (com-
pleteness equality) and any tuple of d − 1 shares xi is a uniform random vector over
(F2k)d−1. If n = d, the terminology simplifies to n-sharing. Since then, many works
have been published to address the practical implementation and/or the security of
masking for various ciphers. This strategy provides the correct result as long as the
function computed on the shares is linear with respect to the sharing method, i.e: XOR
in our example. However, as soon as a non linear function needs to be performed on
the sensitive data, further ideas must be found. In particular the AES S-Box involve a
non-linear step (with respect to the XOR), and its computation requires several mul-
tiplications of the shares. One solution consists in using precomputed tables to obtain
the result of the non linear step [58,62,65,131]. However, in order to reduce the memory
footprint of the countermeasure, other solutions have been suggested. This is the case
for example of the ISW secure multiplication scheme over F2 introduced by Ishai et al.
in [103]. We present in the following its extension to any field F2k proposed by Rivain
and Prouff in 2010 [146].

It has been shown that the ISW scheme is secure against a bn/2c–order attack in
the probing security model, see [103]. Furthermore, it has been shown [61,70,140] that
the Rivain-Prouff scheme of [61, 146] achieves security at order bn/2c in the probing
security model.

In the next section we suggest an analysis of the Rivain-Prouff scheme against
horizontal attacks. We show the counter intuitive result that in particular settings
increasing the number of shares may reduce the system security instead of augmenting
it.

85

CHAPTER 3. SIDE-CHANNEL ATTACKS

Algorithm 9: SecMult
Require: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Ensure: the n-sharing (ci)i∈[1..n] of x? · y?

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ←$ F2k

4: rj,i ← (ri,j + xi · yj) + xj · yi
5: end for
6: end for
7: for i = 1 to n do
8: ci ← xi · yi
9: for j = 1 to n, j 6= i do ci ← ci + ri,j

10: end for
11: return (c1, c1, . . . , cn)

3.2 Horizontal Side-Channel Attacks and Counter-

measures on the ISW Masking Scheme

Using secret sharing at the implementation level enables one to achieve provable se-
curity in the so-called probing security model [103]. In this model, it is assumed that
an adversary can recover information on a limited number of intermediate variables
of the computation. This model has been argued to be practically relevant to address
so-called higher-order (i.e.: multi-variate) side-channel attacks and it has been the basis
of several efficient schemes to protect block ciphers [6, 42, 58, 59, 85, 95, 142, 146]. More
recently, it has been shown in [69] that the probing security of an implementation ac-
tually implies its security in the more realistic noisy leakage model introduced in [140].
More precisely, if an implementation obtained by applying the compiler in [103] is se-
cure at order n in the probing model, then [70, Theorem 3] shows that the success
probability of distinguishing the correct key among |K| candidates is bounded above
by |K| · 2−n/9 if the leakage Li on each intermediate variable Xi satisfies:

I(Xi;Li) 6 2 · (|K| · (28n+ 16))−2 ,

where I(·; ·) denotes the mutual information and where the index i ranges from 1 to
the total number of intermediate variables.

In this section we investigate what happens when the above condition is not sat-
isfied. Since the above mutual information I(Xi;Li) can be approximated by k/(8σ2)
in the Hamming weight model in F2k , where σ is the noise in the measurement (see
Sec. A.3), this amounts to investigating the security of Ishai-Sahai-Wagner’s (ISW)
implementations when the number of shares n satisfies:

n > c · σ

As already observed in previous works [52,169], the fact that the same share (or more
generally several data depending on the same sensitive value) is manipulated several
times may open the door to new attacks which are not taken into account in the probing
model. Those attacks, sometimes called horizontal [52] or (Template) algebraic [135,169]
exploit the algebraic dependency between several intermediate results to discriminate
key hypotheses.

86

CHAPTER 3. SIDE-CHANNEL ATTACKS

In this paper, we exhibit two (horizontal) side channel attacks against the ISW
multiplication algorithm. These attacks show that the use of this algorithm (and its
extension proposed by Rivain and Prouff in [146]) may introduce a weakness with
respect to horizontal side channel attacks if the sharing order n is such that n > c · σ2,
where σ is the measurement noise. While the first attack is too costly (even for low noise
contexts) to make it applicable in practice, the second attack, which essentially iterates
the first one until it achieves a satisfying likelihood, shows very good performances. For
instance, when the leakages are simulated by noisy Hamming weights computed over F28

with σ = 1, it recovers all the shares of a 21-sharing. We also confirm the practicality
of our attack with a real life experiment on a development platform embedding the
ATMega328 processor (see Section 3.2.7). Actually, in this context where the leakages
are multivariate and not univariate as in our theoretical analyses and simulations, the
attack appears to be more efficient than expected and recovers all the shares of a
n-sharing when n > 40.

We also describe a variant of Rivain-Prouff’s multiplication that is still provably
secure in the original ISW model, and also heuristically secure against our new attacks.
Our new countermeasure is similar to the countermeasure in [76], in that it can be
divided in two steps: a “matrix” step in which starting from the input shares xi and yj,
one obtains a matrix xi · yj with n2 elements, and a “compression” step in which one
uses some randomness to get back to a n-sharing ci. Assuming a leak-free component,
the countermeasure in [76] is proven secure in the noisy leakage model, in which the
leakage function reveals all the bits of the internal state of the circuit, perturbed by
independent binomial noise. Our countermeasure does not use any leak-free component,
but is only heuristically secure in the noisy leakage model (see Section 3.2.8 for our
security analysis).

Eventually, we describe in Section 3.2.9 a new mask refreshing algorithm with com-
plexity O(n · log n) instead of O(n2) for the classical algorithm in [11]. A completely
different mask refreshing algorithm is described in [118], with complexity only O(n);
however our new algorithm is significantly simpler. Our new mask refreshing algorithm
enables to decrease the complexity of the previous variant of Rivain-Prouff’s multiplica-
tion from O(n2 log n) to O(n2), hence the same complexity as the original Rivain-Prouff
multiplication.

3.2.1 Notation

Calligraphic letters, like X , are used to denote finite sets (e.g. F2n). The corresponding
large letter X denotes a random variable over X , while the lower-case letter x a value
over X . The probability of an event ev is denoted by Pr[ev]. The probability distribution
function (pdf for short) of a continuous random variable X is denoted by fX(·). It
will sometimes be denoted by pX(·) if X is discrete. The pdf of the random variable
X|Y is denoted by fX|Y (·). The expectation and the variance of a random variable X
are respectively denoted by E [X] and Var [X]. The covariance between two random
variables X and Y is denoted by Cov [X, Y]. The Signal to Noise Ratio (SNR) of a
univariate noisy observation L of a random variable X defined as the signal, is defined
as SNR .= Var[E[L|X]]

E[Var[L|X]] (where we recall that E [L | X] and Var [L | X] are both viewed as

functions of the random variable X).

The Gaussian distribution of dimension t with t-size expectation vector µ and t× t
covariance matrix Σ is denoted by N (µ,Σ). We recall that the corresponding proba-

87

CHAPTER 3. SIDE-CHANNEL ATTACKS

bility density function (pdf) is defined for every ` ∈ Rt as:

f(`) = 1√
(2π)tdet(Σ)

exp
(
−1

2(`− µ)′ · Σ−1 · (`− µ)
)
, (3.2)

where (·)′ denotes the transposition operation and det(·) denotes the matrix determi-
nant. The corresponding cumulative distribution function (cdf) F is defined for every
(ai, bi)i∈[1..t] ∈ ((R ∪ {−∞,+∞})2)t by

F (a,b) =
∫ bt

at
· · ·

∫ b2

a2

∫ b1

a1
f(`1, `2, · · · , `t) d`1d`2 · · · d`t

.=
∫ b

a
f(`) d` , (3.3)

with `
.= (`1, `2, · · · , `t), a .= (a1, a2, · · · , at) and b .= (b1, b2, · · · , bt).

If the dimension t equals 1, then the Gaussian distribution is said to be univariate
and its covariance matrix is reduced to the variable variance denoted σ2. Otherwise, it
is said to be multivariate.

The entropy H(X) of a discrete r.v. X defined over F2k aims at measuring the
amount of information provided by an observation of X. It is defined by H(X) =
−∑x∈F2k

fX(x) log fX(x). The differential entropy extends the notion of entropy to
continuous, and possibly t-dimensional, r.v. Contrary to the entropy, the differential
entropy can be negative. In the case of a real valued random variable ~L, it is defined
by:

H(~L) = −
∫
`∈Rt

f~L(`) log(f~L(`))d` . (3.4)

If ~L is a t-dimensional Gaussian r.v. with covariance matrix Σ (i.e. its pdf is defined
by (3.33)), then its entropy satisfies the following equality:

H(~L) = 1
2 log((2πe)tdet(Σ)) . (3.5)

In the general case, there is no analytical expression for the differential entropy of a
r.v. X whose pdf mixes more than one Gaussian pdf. However, upper and lower bounds
can be derived [43].

An algorithm with domain (F2k)n is said to be (n−1)th-order secure in the probing
model if on input an n-sharing (x1, x2, . . . , xn) of some variable x, it admits no tuple of
n− 1 or less intermediate variables that depends on x. An algorithm achieving such a
security is resistant to the class of (vertical) (n− 1)th-order side-channel attacks under
the only computation leaks assumption [124].

3.2.2 Horizontal DPA Attack

Problem description.

Let (xi)i∈[1..n] and (yi)i∈[1..n] be respectively the n-sharings of x? and y? (namely, we
have x? = x1 + · · · + xn and y? = y1 + · · · + yn). We assume that an adversary gets,
during the processing of Algorithm 9, a single observation of each of the following
random variables for 1 ≤ i, j ≤ n:

Li = ϕ(xi) +Bi (3.6)

L′j = ϕ(yj) +B′j (3.7)

L′′ij = ϕ(xi · yj) +B′′ij (3.8)

88

CHAPTER 3. SIDE-CHANNEL ATTACKS

where ϕ is an unknown function which depends on the device architecture, where Bi,
B′j are Gaussian noise of standard deviation σ/

√
n, and B′′ij is Gaussian noise with

standard deviation σ. Namely we assume that each xi and yj is processed n times, so
by averaging the standard deviation is divided by a factor

√
n, which gives σ/

√
n if we

assume that the initial noise standard deviation is σ. The random variables associated
to the ith share xi and the jth share yj are respectively denoted by Xi and Yj. Our
goal is to recover the secret variable x? (and/or y?).

3.2.3 Complexity Lower Bound: Entropy Analysis of Noisy
Hamming Weight Leakage

For simplicity, we first restrict ourselves to a leakage function ϕ equal to the Hamming
weight of the variable being manipulated. In that case, the mutual information I(X;L)
between the Hamming weight of a uniform random variable X defined over F2k and a
noisy observation L of this Hamming weight can be approximated as:

I(X;L) ' k

8σ2 , (3.9)

if the noise being modeled by a Gaussian random variable has standard deviation σ.
This approximation, whose derivation is given inSec. A.3, is only true for large σ.

To recover a total of 2n shares (n shares of x? and y? respectively) from 3n2 Ham-
ming weight leakages (namely each manipulation leaks according to (3.6)-(3.8) with
ϕ = HW), the total amount of information to be recovered is 2n · k if we assume that
the shares are i.i.d. with uniform distribution over F2k . Therefore, since we have a total
of 3n2 observations during the execution of Algorithm 9, we obtain from (3.9) that the
noise standard deviation σ and the sharing order n must satisfy the following inequality
for a side channel attack to be feasible:

3 · n2 · k

8σ2 > 2n · k . (3.10)

We obtain an equality of the form n > c · σ2 for some constant c, as in a classical
(vertical) side channel attack trying to recover x? from n observations of intermediate
variables depending on x? [44]. This analogy between horizontal and vertical attacks
has already been noticed in previous papers like [52] or [18]. Note that in principle
the constant c is independent of the field degree k (which has also been observed in
previous papers, see for instance [161]).

Attack With Perfect Hamming Weight Observations

We consider the particular case of perfect Hamming weight measurements (no noise).
We show that even with perfect observations of the Hamming weight, depending on the
finite-field representation, we are not always guaranteed to recover the secret variable
x?.

More precisely, we consider the pdf of the random variable corresponding to perfect
Hamming weight measurements:

~H | Xi
.= (HW(Xi),HW(Yj),HW(Xi · Yj)) | Xi

defined for every xi ∈ F2k and every triplet (h1, h2, h3) ∈ [0..k]3 by:

f ~H|Xi((h1, h2, h3), xi) .= Pr[HW(Xi) = h1,HW(Yj) = h2,HW(Xi · Yj) = h3 | Xi = xi] .
(3.11)

89

CHAPTER 3. SIDE-CHANNEL ATTACKS

If the probability distributions f ~H|Xi=xi are distinct for every xi ∈ F2k , then one can
recover the secret variable x? with overwhelming probability from enough measure-
ments. However this property depends on the finite field F2k and its representation.
For example in F24 , if the representation F24 ' F2[t]/(t4 + t + 1) is used then it may
be checked that the finite field elements xi = t + 1 and x′i = t3 + t2 are associated
to identical distributions fxi and fx′i ; so we cannot distinguish between xi and x′i (the
other field elements have distinct probability distributions). In F28 , for the representa-
tion F28 ' F2[t]/(t8 + t4 + t3 + t + 1) (as used in AES), all finite field elements have
distinct probability distributions, but this is not always the case with other irreducible
polynomials.

In summary, even with perfect observations of the Hamming weight, depending
on the finite-field representation, we are not always guaranteed to recover the secret
variable x?; however for the finite field representation used in AES the attack enables
to recover the secret x? for a large enough number of observations.

Maximum Likelihood Attack: Theoretical Attack with the full ISW State

For most field representations and leakage functions, the maximum likelihood approach
used in the previous section (in particular in (3.11)), recovers the i-th share of x? from
an observation of Li and an observation of (L′j, L′′ij) for every j ∈ [1..n]. It extends
straightforwardly to noisy scenarios and we shall detail this extension in Section 3.2.4.
However, the disadvantage of this approach is that it recovers each share separately,
before rebuilding x? and y? from them. From a pure information theoretic point of view
this is suboptimal since (1) the final purpose is not to recover all the shares perfectly
but only the shared values and (2) only 3n observations are used to recover each share
whereas the full tuple of 3n2 observations brings more information. Actually, the most
efficient attack in terms of leakage exploitation consists in using the joint distribution
of (Li, L′j, L′′ij)i,j∈[1..n] to distinguish the correct hypothesis about x? = x1 +x2 + · · ·+xn
and y? = y1 + y2 + · · ·+ yn.

As already observed in Section 3.1.6, during the processing of Algorithm 9, the
adversary may get a tuple (`ij)j∈[1..n] (resp. (`′ij)i∈[1..n]) of n observations for each Li
(resp. each L′j) and one observation `′′ij for each L′′ij. The full tuple of observations

(`ij, `′ij, `′′ij)i,j is denoted by ~̀, and we denote by ~L the corresponding random variable 1.

Then, to recover (x?, y?) from ~̀, the maximum likelihood approach starts by estimating
the pdfs f~L|X?=x?,Y ?=y? for every possible (x?, y?), and then estimates the following

vector of distinguisher values for every hypothesis (x, y):

d?ML(~̀) .=
(
f~L|(X?,Y ?)(~̀, (x, y))

)
(x,y)∈F2

2k
(3.12)

The pair (x, y) maximizing the above probability is eventually chosen.

At a first glance, the estimation of the pdfs f~L|X?=x?,Y ?=y? seems to be challenging.
However, it can be deduced from the estimations of the pdfs associated to the ma-
nipulations of the shares. Indeed, after denoting by px,y each probability value in the
right-hand side of (3.12), and by using the law of total probability Theorem 7 together

1In (3.6)-(3.8), it is assumed that the observations (`ij)j∈[1..n] and (`′
ij)i∈[1..n] are averaged to build

a single observation with noise divided by
√
n. This assumption is not done here in order to stay as

general as possible.

90

CHAPTER 3. SIDE-CHANNEL ATTACKS

with the fact that the noises are independent, we get:

22kn · px,y =
∑

x1,··· ,xn∈F2k
x=x1+···+xn

∑
y1,··· ,yn∈F2k
y=y1+···+yn

n∏
i,j=1

fLi|Xi(`ij, xi) · fL′j |Yj(`
′
ij, yj) · fL′′ij |XiYj(`

′′
ij, xiyj) .

Unfortunately, even if the equation above shows how to deduce the pdfs f~L|(X?,Y ?)(·, (x?, y?))
from characterizations of the shares’ manipulations, a direct processing of the proba-
bility has complexity O(22nk). By representing the sum over the xi’s as a sequence of
convolution products, and thanks to Walsh transforms processing, the complexity can
be easily reduced to O(n2n(k+1)). The latter complexity stays however too high, even
for small values of n and k, which led us to look at alternatives to this attack.

3.2.4 First Attack: ML Attack on a Single Matrix Row

Attack Description.

In this section, we explain how to recover each share xi of x? separately, by observing
the processing of Algorithm 9. Applying this attack against all the shares leads to the
full recovery of the sensitive value x? with some success probability, which is essentially
the product of the success probabilities of the attack on each share separately.

Given a share xi, the attack consists in collecting the leakages on (yj, xi · yj) for
every j ∈ [1..n]. Therefore the attack is essentially a horizontal version of the classi-
cal (vertical) second-order side-channel attack, where each share xi is multiplicatively
masked over F2k by a random yj for j ∈ [1..n].

The most efficient attack to maximize the amount of information recovered on Xi

from a tuple of observations ~̀
.= `i, (`′j, `′′ij)j∈[1..n] ←↩ ~L

.= Li, (L′j, L′′ij)j∈[1..n] consists
in applying a maximum likelihood approach [44, 96], which amounts to computing the
following vector of distinguisher values:

dML(~̀) .=
(
f~L|Xi(~̀, x̂i)

)
x̂i∈F2k

(3.13)

and in choosing the candidate x̂i which maximizes the probability.
Let us respectively denote by f(·, ·), f ′(·, ·) and f ′′(·, ·) the pdfs fLi|Xi(·, ·), fL′j |Yj(·, ·)

and fL′′ij |XiYj(·, ·). Since the variables Li | Xi = x̂i and all the variables (L′j, L′′ij | Xi = x̂i)
are mutually independent whatever x̂i ∈ F2k , we have:

f~L|Xi(~̀, x̂i) = f(`i, x̂i)
n∏
j=1

f(L′j ,L
′′
ij)|Xi((`

′
j, `
′′
ij), x̂i) . (3.14)

Applying the law of total probability, the pdf of (L′j, L′′ij) | Xi = x̂i can moreover be
developed such that:

f(L′j ,L
′′
ij)|Xi((`

′
j, `
′′
ij), x̂i) =

∑
y∈F2k

f(L′j ,L
′′
ij)|(Xi,Yj)((`

′
j, `
′′
ij), (x̂i, y)) · pYj(y) , (3.15)

that is
f(L′j ,L

′′
ij)|Xi((`

′
j, `
′′
ij), x̂i) = 2−k

∑
y∈F2k

f ′(`′j, y) · f ′′(`′′ij, x̂i · y) , (3.16)

since the Yj’s are assumed to have uniform distribution and since the variables L′j |
Yj = y and L′′ij | XiYj = x̂i · y are independent.

91

CHAPTER 3. SIDE-CHANNEL ATTACKS

Eventually, each score f~L|Xi(~̀, x̂i) in (3.13) may be computed based on the following
expression:

f~L|Xi(~̀, x̂i) = 2−nkf(`i, x̂i) ·
n∏
j=1

(∑
y∈F2k

f ′(`′j, y) · f ′′(`′′ij, x̂i · y)
)
,

where all the distributions are Gaussian ones (and hence can be easily evaluated).
Hence, an approximation of the pdf in (3.13) can be deduced from the approximations
(aka templates) of the distributions associated to the manipulations of the shares Xi,
Yj and XiYj.

In practice, one often makes use of the equivalent (averaged) log-likelihood distin-
guisher d′ML(·) which, in our case, may be defined as:

d′ML(~̀) = 1
n

log dML(~̀) + k log 2 (3.17)

'

 1
n

(
log f(`i, x̂i) +

n∑
j=1

log{
∑
y∈F2k

f ′(`′j, y) · f ′′(`′′ij, x̂i · y)}
)

x̂i∈F2k

.(3.18)

Remark 1. The same approach described in this section can be applied to iteratively
recover each share yj of y. The attack description can be straightforwardly deduced
by exchanging the roles of Xi and Yj (and the indices i and j). For instance, (3.15)
becomes:

f(Li,L′′ij)|Yj((`i, `
′′
ij), ŷj) =

∑
x∈F2k

f(Li,L′′ij)|(Xi,Yj)((`i, `
′′
ij), (x, ŷj)) · pXi(x) . (3.19)

Complexity Analysis

As mentioned previously, given a share xi, the attack consists in collecting the leakages
on (yj, xi · yj) for every j ∈ [1..n]. Therefore the attack is essentially an horizontal
version of the classical (vertical) second-order side-channel attack. In principle the
number n of leakage samples needed to recover xi with good probability (aka the
attack complexity) should consequently be n = O(σ4) [44, 96, 161]. This holds when
multiplying two leakages both with noise having σ as standard deviation. However here
the leakage on yj has a noise with a standard deviation σ/

√
n instead of σ (thanks to

the averaging step). Therefore the noise of the product becomes σ2/
√
n (instead of

σ2), which gives after averaging with n measurements a standard deviation of σ2/n,
and therefore an attack complexity satisfying n = O(σ2), as in a classical first-order
side-channel attack.

Numerical Experiments

The attack presented in Sect. 3.2.4 has been implemented against each share xi of a
value x, with the leakages being simulated according to (3.6)-(3.8) with ϕ = HW. For
the noise standard deviation σ and the sharing order n, different values have been
tested to enlighten the relation between these two parameters. We stated that an
attack succeeds iff the totality of the n shares xi have been recovered, which leads
to the full recovery of x?. We recall that, since the shares xi are manipulated n times,
measurements for the leakages Li and L′j have noise standard deviations σ/

√
n instead

of σ. For efficiency reasons, we have chosen to work in the finite field F24 (namely k = 4
in previous analyses).

92

CHAPTER 3. SIDE-CHANNEL ATTACKS

σ (SNR) 0 (+∞) 0.2 (25) 0.4 (6.25) 0.6 (2.77) 0.8 (1.56) 1 (1)
n 12 14 30 73 160 284

Table 3.1 – First attack: number of shares n as a function of the noise σ to succeed with
probability > 0.5

200 300 400 500 600 700 800 900 1000 1100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of shares

P
er
ce
n
ta
g
e
o
f
re
co
v
er
ed

sh
a
re
s

Basic attack Efficiency k = 4 and σ = 2, 3, 3.5

Attack 1 for noise std = 2
Attack 1 for noise std = 3
Attack 1 for noise std = 3.5

(a) Basic Attack

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shares

P
er
ce
n
ta
g
e
o
f
re
co
v
er
ed

sh
a
re
s

Iterative attack Efficiency k = 4 and σ = 2, 3, 3.5

Attack 2 for noise std = 2
Attack 2 for noise std = 3
Attack 2 for noise std = 3.5

(b) Iterative Attack

Figure 3.1 – Percentage of recovered shares with respect to n for σ = 2, 3, 3.5 and k = 4

For various noise standard deviations σ with SNR = k(2σ)−2 (i.e. SNR = σ−2 for
k = 4), Table 3.1 gives the average minimum number n of shares required for the attack
to succeed with probability strictly greater than 0.5 (the averaging being computed
over 300 attack iterations). The attack complexity n = O(σ2) argued in Sect. 3.2.4 is
confirmed by the trend of these numerical experiments. Undeniably, this efficiency is
quickly too poor for practical applications where n is small (clearly lower than 10) and
the SNR is high (smaller than 1). However, it must be noticed that the attack quickly
recovers 90% of the shares even for σ = 2, 3 (see Figure 3.1a), and the shares which
are not recovered (because they are not given the maximum likelihood) have a good
ranking. Consequently, combining this attack with one of the Key Enumeration (KEA)
techniques recently developed (see e.g. [92,119]) should significantly increase the attack
efficiency.

3.2.5 Second Attack: Iterative ML Attack

Attack Description

From the discussions in Sect. 3.2.3, and in view of the poor efficiency of the previous
attack, we investigated another strategy which targets all the shares simultaneously.
Essentially, the core idea of our second attack described below is to apply several
attacks recursively on the xi’s and yj’s, and to refine step by step the likelihood of each
candidate for the tuple of shares. Namely, we start by applying the attack described
in Section 3.2.4 in order to compute, for every i, a likelihood probability for each
hypothesis Xi = x (x ranging over F2k); then we apply the same attack in order to
compute, for every j, a likelihood probability for each hypothesis Yj = y (y ranging
over F2k) with the single difference that the probability pXi(x) in (3.19) is replaced by

93

CHAPTER 3. SIDE-CHANNEL ATTACKS

the likelihood probability which was just computed2. Then, one reiterates the attack to
refine the likelihood probabilities (pXi(x))x∈F2k

, by evaluating (3.15) with the uniform
distribution pYj(y) being replaced by the likelihood probability new-pYj(y) which has
been previously computed. The scheme is afterwards repeated until the maximum taken
by the pdfs of each share Xi and Yj is greater than some threshold β. In order to
have better results, we perform the whole attack a second time, by starting with the
computation of the likelihood probability for each hypothesis Yj = y instead of starting
by Xi = x.

We give the formal description of the attack processing in Algorithm 10 (in order to
have the complete attack, one should perform the while loop a second time, by rather
starting with the computation of new-pYj(y) instead of new-pXi(x)).

3.2.6 Numerical Experiments

The iterative attack described in Algorithm 10 has been tested against leakages sim-
ulations defined exactly as in Section 3.2.4. As previously we stated that an attack
succeeds if the totality of the n shares xi have been recovered, which leads to the full
recovery of x?. For various noise standard deviations σ with SNR = k(2σ)−2, Table 3.2
gives the average minimum number of shares n required for the attack to succeed with
probability strictly greater than 0.5 (the averaging being computed over 300 attack
iterations). The first row corresponds to k = 4, and the second row to k = 8 (the
corresponding SNRs are SNR4 = σ−2 and SNR8 = (

√
2σ2)−1). Numerical experiments

yield greatly improved results in comparison to those obtained by running the basic
attack. Namely, in F24 , for a noise σ = 0, the number of shares required is 2, while 12
shares were needed for the basic attack, and the improvement is even more confirmed
with a growing σ: for a noise σ = 1, the number of shares required is 25, while 284
shares were needed for the basic attack. It can also be observed that the results for
shares in F24 and F28 are relatively close, the number of shares being most likely slightly
smaller for shares in F24 than in F28 . This observation is in-line with the lower bound
in (3.10), where the cardinality 2k of the finite field plays no role. Once again, it may
be observed that the attack quickly recovers 90% of the shares even for σ ∈ {2, 3, 3.5}
(see Figure 3.1b), and the shares which are not recovered (because they are not given
the maximum likelihood) have a good ranking. Consequently, combining this attack
with KEA should still increase the attack efficiency.

σ (SNR4, SNR8) 0 (+∞,+∞) 0.2 (25, 17.67) 0.4 (6.25, 4.41) 0.6 (2.77, 1.96) 0.8 (1.56, 1.10) 1 (1, 0.7071)

n (for F24) 2 2 3 6 13 25
n (for F28) 5 6 8 11 16 21

Table 3.2 – Iterative attack: number of shares n as a function of the noise σ to succeed with
probability > 0.5 in F24 (first row) and in F28 (second row).

3.2.7 Practical Results

We provide in this section practical experiments for the attacks described in Sec. 3.2.4
and 3.2.5 on a commercial development board.

2Actually to get the probability of Xi | ~L instead of ~L | Xi, Bayes’ Formula is applied which
explains the division by the sum of probabilities in the lines 14 and 19 in Algorithm 10.

94

CHAPTER 3. SIDE-CHANNEL ATTACKS

Algorithm 10: Iterative Maximum Likelihood Attack

Require: a threshold β, an observation `i of each Li, an observation `′j of each L′j
and one observation `′′ij of each L′′ij (the random variables being defined as in
(3.6)-(3.8))

Ensure: a n-tuple of pdfs (pXi)i (resp. (pYi)i) such that, for every i ∈ [1..n], at least
one x̂i (resp. ŷj) satisfies pXi(x̂i) > β (resp. pYi(ŷj) > β)

1: for i = 1 to n do
2: for x ∈ F2k do {Initialize the likelihood of each candidate for Xi}
3: pXi(x) = fLi|Xi(`i, x)
4: end for
5: for y ∈ F2k do {Initialize the likelihood of each candidate for Yi}
6: pYi(y) = f~L′i|Yi

(`′i, yi)
7: new-pYi(y) = pYi(y)
8: end for
9: end for

10: while end 6= n do
11: end← 0
12: for i = 1 to n do
13: for x ∈ F2k do {Compute/Update the likelihood of each candidate for Xi}
14: new-pXi(x) =

2−(2n+1)k pXi (x)∑
x′∈F2k

pXi (x
′)
∏n
j=1

∑
y∈F2k

new-pYj (y)∑
y′∈F2k

new-pYj (y′) · fL′′ij |XiYj(`
′′
ij, x · y)

15: end for
16: end for
17: for i = 1 to n do
18: for y ∈ F2k do {Compute/Update the likelihood of each candidate for Yi}
19: new-pYi(y) =

2−(2n+1)k pYi (y)∑
y′∈F2k

pYi (y
′)
∏n
j=1

∑
x∈F2k

new-pXj (x)∑
x′∈F2k

new-pXj (x′) · fL′′ij |XiYj(`
′′
ij, x · y)

20: end for
21: end for
22: for i = 1 to n do
23: if maxx(new-pXi(x)) > β and maxy(new-pYi(y)) > β then
24: end + +
25: end if
26: end for
27: end while

95

CHAPTER 3. SIDE-CHANNEL ATTACKS

Setup In order to provide real life experiments of the attack described in this work we
have mounted it against a development platform embedding the ATMega328 processor.
The presence of decoupling capacitors between the ground pins of the processor and
the reference ground did not allow us to correctly measure the power consumption of
the processor. We therefore de-soldered the ground pins of the processor and connected
them to a 20 OHm resistor whose other end was connected to the reference ground.
After this preparation, we used a passive probe connected to an oscilloscope in order to
register the current absorbed by the processor by measuring the difference of potential
at the ends of the resistor. Thanks to a probe bandwidth of 500MHz, we pre-filtered
all the frequencies higher than 200MHz. We moreover used a sampling rate of 100MHz
on the oscilloscope as the best compromise between accuracy and measurement trace
size.

Leakage Characterization

For our implementation of Alg. 9, the mov instruction is used to manipulate the shares
xi, yj and the multiplication results xi · yj. We therefore chose to target it in our
attack experiments. An advantage of targeting a single instruction that manipulates
all the values is that we obtain homogeneous leakages for all the manipulated data.
Furthermore, the mov instruction may be found in many different architectures and we
therefore think that our attack can be reproduced quite easily.

For the leakage characterization phase, we measured 200, 000 leakages of the mov

instruction parametrized with randomly generated values. Each measure was composed
of 340 points, which is essentially the size of a relevant sample of instantaneous measures
for the mov instruction in our setup. This campaign allowed us to characterize the
leakage related to the processing mov y,x for x ranging between 0 and 255 and for
y being constant (our implementation uses the same destination register for all the
shares); more precisely, each x was associated to a mean vector µx ∈ R340 and a
covariance matrix Σx ∈ R340 × R340. The 256 means are plotted in Figure 3.2a. To
reduce the dimension of our templates, we afterwards estimated the signal-to-noise
ratio of the acquisitions at each point in order to identify the best points of interest for
our attack. The results are plotted in Figure 3.2b.

0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Leakage point

M
ea
n
v
a
lu
e

Means of Experimental Leakages

(a) Mean vectors of all 256 classes.

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SNR of Experimental Leakages

Leakage point

S
N
R

v
a
lu
e

(b) SNR on each leakage point.

The peaks in Figure 3.2b allowed us to choose a first set of points. In addition,
a simple maximum likelihood attack on each of these points separately has also been
mounted in order to find those who provided the most information. This step finally
provided us with a set of 11 points to mount our attack. It may be observed that the best
SNR obtained with our setup is around 0.07 which, for our simulations, corresponds
to the case k = 16 and σ = 3.75, and k = 256 and σ = 3.2. Our experiments should

96

CHAPTER 3. SIDE-CHANNEL ATTACKS

therefore be compared to the simulations plotted in the gray dot-and-dashed curve
in Figure 3.1a (for the basic attack) and in 3.1b (for the iterative attack).

Attacks

Thanks to the characterization described in the previous section, we performed the
attacks of Sec. 3.2.4 and 3.2.5 against our implementation of Alg. 9 parametrized with
different sharing orders n.

Maximum Likelihood Attack Experiments As a first experiment we tested the
attack of Sec. 3.2.4 in order to evaluate the evolution of the rank of the correct hypoth-
esis on a single share xi when n varies. In Figure 3.3a we plot the ranking of the correct
hypothesis, in red, among all 256 byte values, for each n between 1 and 40. The results
have been obtained by averaging the result among 100 repetitions of the same attack
for each order. From Figure 3.3a we can observe that the correct hypothesis is ranked
among the first 50 values as soon as n > 10. We also observe that we need n > 35 for
the correct hypothesis to be firmly ranked first by the basic attack.

During the same attack we have also evaluated the average number of shares of
x? correctly retrieved for each order n. This allowed us to obtain an estimation of
the minimum sharing order n required to successfully mount the attack. The result of
such evaluation is depicted in Figure 3.3b. Even if n = 40 appears to be a necessary
condition to directly recover all the shares, the post-processing of our attack results
with a KEA algorithm [92, 119] should allow to recover them for smaller n (n = 10
seems to be achievable at a reasonable cost).

0 5 10 15 20 25 30 35 40
260

240

210

190

170

150

120

90

60

30

1

Number of shares

A
v
er
a
g
e
R
a
n
k
o
f
co
rr
ec
t
sh
a
re

Average rank vs number of shares

(a) Avg rank of the correct hypothesis vs
number of shares.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shares

P
ro
b
a
b
il
it
y
o
f
re
co
v
er
ed

sh
a
re
s

Recovered shares vs number of shares

(b) Avg number of correctly retrieved
shares.

Figure 3.3 – Results for the attack of Sec. 3.2.4 when n varies between 1 and 40.

Iterative Attack Experiments We have afterwards mounted the attack described
in Sec. 3.2.5 in order to measure the success probability with respect to the mask-
ing order. As before we provide the average ranking of the correct hypothesis (in red)
for different values of the order n. Due to time constraints only 10 repetitions of the
attack have been averaged. The evolution of the rank of the correct hypothesis is de-
picted in Figure 3.4a. As before, we also provide the average number of shares correctly
retrieved for each order n in Figure 3.4b.

Even if we did not get results as smooth as for previous experiments, we can observe
an overall better detection rate for the iterative attack if we compare to the basic one (as
actually expected). Furthermore, we have averaged the results of the above attack on 10
repetitions when n = 20, 30, 40. For such order we have obtained an average number of

97

CHAPTER 3. SIDE-CHANNEL ATTACKS

1 2 3 4 5 6 7 8 9 10
260

200

150

100

50

0

Number of shares

A
v
g
R
a
n
k
o
f
co
rr
ec
t
sh
a
re

Average rank vs number of shares

(a) Avg rank of the correct hypothesis vs
number of shares.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of shares

P
ro
b
a
b
il
it
y
o
f
re
co
v
er
ed

sh
a
re
s

Recovered shares vs number of shares

(b) Avg number of correctly retrieved
shares.

Figure 3.4 – Results for the attack of Sec. 3.2.5 when n varies between 1 and 10.

correctly retrieved shares of 0.88, 0.93 and 0.97, respectively. We thus remark again that
by using KEA post-processing on the results of our attack the correct hypothesis should
be recovered with a reasonable number of shares. In particular it seems reasonable to
assume that n = 10 provides better results and lower costs with respect to the basic
attack.

Experiments Conclusions

We have successfully proved the effectiveness of our attack on a real implementation
using the ATMega328 processor. We obtain better results on our experimentations than
those predicted by theory in Sec. 3.2.4 and Sec. 3.2.5 for similar SNR values. We have
investigated such behavior and we conjecture that the better results are due to the
use of a multi-variate attack on 11 points for the experimental attacks, where the
theoretical results are computed for a mono-variate attack. The more points allows for
an improvement of the global SNR which can explain the disparity between theory and
practice success probabilities.

3.2.8 A Countermeasure against the previous Attacks

Description

In the following, we describe a countermeasure against the previous attack against the
Rivain-Prouff algorithm. More precisely, we describe a variant of Algorithm 9, called
RefSecMult, to compute an n-sharing of c = x? · y? from (xi)i∈[1..n] and (yi)i∈[1..n].
Our new algorithm is still provably secure in the original ISW probing model, and
heuristically secure against the horizontal side-channel attacks described in the previous
sections.

As observed in [76], the ISW and Rivain-Prouff countermeasures can be divided in
two steps: a“matrix” step in which starting from the input shares xi and yj, one obtains
a matrix xi · yj with n2 elements, and a “compression” step in which one uses some
randomness to get back to an n-sharing ci. Namely the matrix elements (xi · yj)1≤i,j≤n
form an n2-sharing of x? · y?:

x? · y? =
(

n∑
i=1

xi

)
·

 n∑
j=1

yj

 =
∑

1≤i,j≤n
xi · yj (3.20)

and the goal of the compression step is to securely go from such an n2-sharing of x? ·y?
to an n-sharing of x? · y?.

98

CHAPTER 3. SIDE-CHANNEL ATTACKS

Algorithm 11: RefSecMult
Require: n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Ensure: an n-sharing (ci)i∈[1..n] of x? · y?

1: Mij ← MatMult((x1, . . . , xn), (y1, . . . , yn))
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: ri,j ←$ F2k

5: rj,i ← (ri,j +Mij) +Mji

6: end for
7: end for
8: for i = 1 to n do
9: ci ←Mii

10: for j = 1 to n, j 6= i do ci ← ci + ri,j
11: end for
12: return (c1, c1, . . . , cn)

Our new countermeasure (Algorithm 11) uses the same compression step as Rivain-
Prouff, but with a different matrix step, called MatMult (Algorithm 12), so that the
shares xi and yj are not used multiple times (as when computing the matrix elements
xi·yj in Rivain-Prouff). Eventually the MatMult algorithm outputs a matrix (Mij)1≤i,j≤n
which is still an n2-sharing of x? ·y?, as in (3.20); therefore using the same compression
step as Rivain-Prouff, Algorithm 11 outputs an n-sharing of x? · y?, as required.

Algorithm 12: MatMult
Require: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Ensure: the n2-sharing (Mij)i∈[1..n],j∈[1..n] of x? · y?

1: if n = 1 then
2: ~M ← [x1 · y1]
3: else
4: ~X(1) ← (x1, . . . , xn/2), ~X(2) ← (xn/2+1, . . . , xn)
5: ~Y (1) ← (y1, . . . , yn/2), ~Y (2) ← (yn/2+1, . . . , yn)
6: ~M (1,1) ← MatMult(~X(1), ~Y (1))
7: ~X(1) ← RefreshMasks(~X(1)), ~Y (1) ← RefreshMasks(~Y (1))
8: ~M (1,2) ← MatMult(~X(1), ~Y (2))
9: ~M (2,1) ← MatMult(~X(2), ~Y (1))

10: ~X(2) ← RefreshMasks(~X(2)), ~Y (2) ← RefreshMasks(~Y (2))
11: ~M (2,2) ← MatMult(~X(2), ~Y (2))

12: ~M ←
[
~M (1,1) ~M (1,2)

~M (2,1) ~M (2,2)

]
13: end if
14: return ~M

As illustrated in Fig. 3.5, the MatMult algorithm is recursive and computes the
n × n matrix in four sub-matrix blocs. This is done by splitting the input shares xi
and yj in two parts, namely ~X(1) = (x1, . . . , xn/2) and ~X(2) = (xn/2+1, . . . , xn), and

similarly ~Y (1) = (y1, . . . , yn/2) and ~Y (2) = (yn/2+1, . . . , yn), and recursively processing

the four sub-matrix blocs corresponding to ~X(u) × ~Y (v) for 1 ≤ u, v ≤ 2. To prevent

99

CHAPTER 3. SIDE-CHANNEL ATTACKS

the same share xi from being used twice, each input block ~X(u) and ~Y (v) is refreshed
before being used a second time, using a mask refreshing algorithm. An example of
such mask refreshing, hereafter called RefreshMasks, can for instance be found in [69];
see Algorithm 13. Since the mask refreshing does not modify the xor of the input
n/2-vectors ~X(u) and ~Y (v), each sub-matrix block ~M (u,v) is still an n2/4-sharing of

(⊕ ~X(u)) · (⊕ ~X(v)), and therefore the output matrix ~M is still an n2-sharing of x? · y?,
as required. Note that without the RefreshMasks, we would have Mij = xi · yj as in
Rivain-Prouff.

Algorithm 13: RefreshMasks

Input: a1, . . . , an
Output: c1, . . . , cn such that

∑n
i=1 ci = ∑n

i=1 ai
1: for i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← {0, 1}k
5: ci ← ci + r
6: cj ← cj + r
7: end for
8: end for
9: return c1, . . . , cn

Since the RefreshMasks algorithm has complexity O(n2), it is easy to see that the
complexity of our RefSecMult algorithm is O(n2 log n) (instead of O(n2) for the orig-
inal Rivain-Prouff countermeasure in Alg. 9). Therefore for a circuit of size |C| the
complexity is O(|C| · n2 log n), instead of O(|C| · n2) for Rivain-Prouff. The following
lemma shows the soundness of our RefSecMult countermeasure.

Lemma 1 (Soundness of RefSecMult). The RefSecMult algorithm, on input n-sharings
(xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively, outputs an n-sharing (ci)i∈[1..n] of
x? · y?.

Proof. We prove recursively that the MatMult algorithm, taking as input n-sharings
(xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively, outputs an n2-sharing Mij of x? · y?.
The lemma for RefSecMult will follow, since as in Rivain-Prouff the lines 2 to 12 of Alg.
11 transform an n2-sharing Mij of x? · y? into an n-sharing of x? · y?.

The property clearly holds for n = 1. Assuming that it holds for n/2, since the

RefreshMasks does not change the xor of the input n/2-vectors ~X(u) and ~Y (v), each

sub-matrix block ~M (u,v) is still an n2/4-sharing of (⊕ ~X(u)) · (⊕ ~X(v)), and therefore

the output matrix ~M is still an n2-sharing of x? · y?, as required. This proves the
lemma.

Remark 2. The description of our countermeasure requires that n is a power of 2, but
it is easy to modify the countermeasure to handle any value of n. Namely in Algorithm
12, for odd n it suffices to split the inputs xi and yj in two parts of size (n− 1)/2 and
(n+ 1)/2 respectively, instead of n/2.

100

CHAPTER 3. SIDE-CHANNEL ATTACKS

x1
...
xn

2

xn
2 +1
...
xn

y1 . . . yn
2

yn
2 +1

. . . yn

⊗ ⊗R

R R

⊗ ⊗R

Figure 3.5 – The recursive MatMult algorithm, where R represents the RefreshMasks Algo-
rithm, and ⊗ represents a recursive call to the MatMult algorithm.

Security Analysis

Proven security in the ISW probing model.

Lemma 2 (t-SNI of RefSecMult). Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of the
SecMult operation, and let (ci)1≤i<n be the output shares. For any set of t1 intermediate
variables and any subset |O| ≤ t2 of output shares such that t1 + t2 < n, there exist two
subsets I and J of indices with |I| ≤ t1 and |J | ≤ t1, such that those t1 intermediate
variables as well as the output shares c|O can be perfectly simulated from x|I and y|J .

Heuristic security against horizontal-DPA attacks. We stress that the previous
lemma only proves the security of our countermeasure against t probes for n ≥ t+1, so
it does not prove that our countermeasure is secure against the horizontal-DPA attacks
described in previous sections, since such attacks use information about n2 intermediate
variables instead of only n− 1.

As illustrated in Fig. 3.5, the main difference between the new RefSecMult algorithm
and the original SecMult algorithm (Alg. 9) is that we keep refreshing the xi shares
and the yj shares blockwise between the processing of the finite field multiplications
xi · yj. Therefore, as opposed to what happens in SecMult, we never have the same xi
being multiplied by all yj’s for 1 ≤ j ≤ n. Therefore an attacker cannot accumulate
information about a specific share xi, which heuristically prevents the attacks described
in this paper.

3.2.9 Mask Refreshing with Complexity O(n · log n)
In this section we describe a new mask refreshing algorithm with complexity O(n·log n)
instead of O(n2) for the classical algorithm recalled in previous section. For simplicity
we first assume that n is a power of 2; we refer to Appendix A.5 for a generalization
to arbitrary n. Note that a completely different mask refreshing algorithm is described
in [118], with complexity only O(n); however our algorithm is simpler.

As illustrated in Fig. 3.6, our algorithm is defined recursively. First, a pre-processing
layer LI is applied on the n input shares ai, corresponding to lines 5 to 9 of Algorithm
14 below. Then the RefreshMasks algorithm is applied recursively on the two halves

101

CHAPTER 3. SIDE-CHANNEL ATTACKS

R

R

LO

c1

cn/2

cn/2+1

cn

LI

b1

bn/2

bn/2+1

bn

a1...
an

d1...
dn

Figure 3.6 – Recursive definition of RefreshMasks, with the pre-processing layer LI , the two
recursive applications of RefreshMasks to the two halves of the shares, and the post-processing
layer LO.

of the shares. Eventually a post-processing layer LO is applied (same as LI), before
outputting the output shares di (it corresponds to Lines 12 to 16 in Alg. 14).

Algorithm 14: RefreshMasks
Require: a1, . . . , an
Ensure: d1, . . . , dn such that

⊕n
i=1 di = ⊕n

i=1 ai
1: if n = 2 then
2: r ←$ {0, 1}k
3: return (a1 ⊕ r, a2 ⊕ r)
4: end if
5: for i = 1 to n/2 do
6: ri ←$ {0, 1}k
7: bi ← ai ⊕ ri
8: bn/2+i ← an/2+i ⊕ ri {bi ⊕ bn/2+i = ai ⊕ an/2+i}
9: end for

10: (c1, . . . , cn/2) ← RefreshMasks(b1, . . . , bn/2)
11: (cn/2+1, . . . , cn)← RefreshMasks(bn/2+1, . . . , bn)
12: for i = 1 to n/2 do
13: ri ←$ {0, 1}k
14: di ← ci ⊕ ri
15: dn/2+i ← cn/2+i ⊕ ri {di ⊕ dn/2+i = ci ⊕ cn/2+i}
16: end for
17: return (d1, . . . , dn)

Correctness.

The correctness of Algorithm 14 is straightforward to verify recursively. Namely for
all 4 blocks in Fig. 3.6, the xor of the outputs is the same as the xor of the inputs.
Therefore globally we must have

⊕n
i=1 di = ⊕n

i=1 ai.

Complexity.

Let T (n) be the complexity of RefreshMasks. We have T (n) ≤ 2 ·T (n/2)+c ·n for some
constant c. One can show recursively that T (n) ≤ 2i · T (n/2i) + i · c · n, which implies
T (n) = O(n · log n).

102

CHAPTER 3. SIDE-CHANNEL ATTACKS

R1

R2

LOLI

I1I4 I2

I3

S1
1

S1
2

S2

S3

I O

Figure 3.7 – RefreshMasks as composition of gadgets

Security.

The following lemma shows that our new RefreshMasks algorithm achieves the same
property as the previous RefreshMasks, namely t-SNI security.

Lemma 3 (t-SNI of RefreshMasks). Let (ai)1≤i≤n be the input shares of the RefreshMasks
algorithm, and let (di)1≤i≤n be the output shares. For any set of t intermediate variables
and any subset |O| ≤ tO of output shares such that t + tO < n, there exists a subset I
of indices with |I| ≤ t, such that the distribution of those t intermediate variables as
well as the output shares d|O can be perfectly simulated from a|I .

Proof. The proof is based on the two following simple lemmas.

Lemma 4. Let a1, a2 ∈ {0, 1}k be inputs, and let r ←$ {0, 1}k. Let I be a subset of
the variables {a1, a2, r} and let O be a subset of the variables {a1⊕ r, a2⊕ r}. Then the
variables in I ∪ O can be perfectly simulated from I1 ∈ {∅, {a1}} and I2 ∈ {∅, {a2}},
with |I1| ≤ t1 + |O|/2 and |I2| ≤ t2 + |O|/2, for some positive integers t1, t2, with
t1 + t2 ≤ |I|.

Proof. If |O| = 2 or |I | ≥ 2 then we can let I1 = {a1} and I2 = {a2}. If |O| = 1 and
|I | = 0 then the variable in O can be perfectly simulated by a random value. If |O| = 1
and |I | = 1, assume without loss of generality that O = {a1 ⊕ r}; then if I = {a1} or
I = {r}, we let I1 = {a1}; if I = {a2}, we let I2 = {a2}, and we can perfectly simulate
a1 ⊕ r with a random value. If |O| = 0 then the simulation is straightforward.

Lemma 5. Let a1, a2 ∈ {0, 1}k be inputs, and let r ←$ {0, 1}k. Let I be a subset of
the variables {a1, a2, r} and O ∈ {∅, {a1 ⊕ r}}. Then the variables in I ∪O ∪ {a2 ⊕ r}
can be perfectly simulated from I ⊂ {a1, a2}, with |I| ≤ 2 · |O|+ |I |.

Proof. If |O| = 1 or |I | ≥ 2 we can take I = {a1, a2}. If |O| = 0 and |I | = 0, we can
simulate a2⊕r with a random value. If |O| = 0 and |I | = 1, if I = {a1} we let I = {a1}
and we can again simulate a2 ⊕ r with a random value; if I = {r} or I = {a2} then
we let I = {a2}.

We proceed with the proof of Lemma 3, by recurrence on the number n of input
shares. The case n = 2 is straightforward, and similar to Lemma 4. Namely if tO = 1
then t = 0 and thanks to the random mask r at Line 2 we can simulate the correspond-
ing output variable with a random value; if t = 1 then tO = 0 and the simulation of
the probed intermediate variable is straightforward.

We now consider the algorithm with n shares. We label the gadgets from 1 to 4
starting from right to left, with I i the corresponding probed intermediate variables
(see Fig. 3.7). We start with the rightmost gadget LO, with I1 the corresponding set

103

CHAPTER 3. SIDE-CHANNEL ATTACKS

of probed intermediate variables. For simplicity we can assume that within I1 only the
intermediate variables ri, ci and cn/2+i are probed, and not the output variables ci⊕ ri
and cn/2+i ⊕ ri, since such output variables can be equivalently obtained from O, for a
smaller value of t, and therefore a stronger bound for |I|.

By applying Lemma 4 on each set of intermediate variables {ci, cn/2+i, ri} and
output variables {ci⊕ ri, cn/2+i⊕ ri} for all 1 ≤ i ≤ n/2, and summing the inequalities,
we obtain that the gadget LO can be perfectly simulated from two sets of input indices
S1

1 ⊂ {1, . . . , n/2} and S1
2 ⊂ {n/2 + 1, . . . , n}, such that

|S1
1 | ≤ t1 + tO/2, |S1

2 | ≤ t2 + tO/2 (3.21)

for some positive integers t1, t2, with t1 + t2 ≤ |I1|.
We now consider the R1 and R2 gadgets, which are recursive applications of Re-

freshMasks with n/2 shares. The t-SNI condition t+ tO < n for applying Lemma 3 on
R1 is therefore:

|I2|+ |S1
1 | < n/2 (3.22)

and when such condition is satisfied we have from Lemma 3 that the probed interme-
diate variables in I2 and the output variables in S1

1 can be simulated from a subset of
input indices S2 such that |S2| ≤ |I2|. Similarly the t-SNI condition for gadget R2 is:

|I3|+ |S1
2 | < n/2 (3.23)

When such condition is not satisfied for R1 or R2 we say that the corresponding gadget
is saturated. In that case, to properly simulate the probed intermediate variables and
output variables of the gadget, one must know all inputs of the gadget. As will be seen
below, the proof of Lemma 3 is based on the fact that the two gadgets R1 and R2
cannot be both saturated, that is at least R1 or R2 must be non-saturated.

Namely consider the following two inequalities:

|I2|+ t1 + tO/2 < n/2 (3.24)

|I3|+ t2 + tO/2 < n/2 (3.25)

Using |S1
1 | ≤ t1 + tO/2, we have that Inequality (3.24) implies Condition (3.22) for

gadget R1; similarly using |S1
2 | ≤ t2 + tO/2, we have that Inequality (3.25) implies

Condition (3.23) for gadget R2. Moreover, at least one of the two inequalities (3.24) or
(3.25) must be satisfied, since otherwise, using t1 + t2 ≤ |I1|:

n ≤ |I2|+ t1 + tO/2 + |I3|+ t2 + tO/2 ≤ |I2|+ |I3|+ |I1|+ tO ≤ t+ tO

which contradicts the bound t+ tO < n. As mentioned previously, this shows that the
gadgets R1 and R2 cannot be both saturated.

If both inequalities (3.24) and (3.25) are satisfied, then both gadgets R1 and R2 are
non-saturated, and by recursively applying Lemma 3 on both gadgets, we get |S2| ≤ |I2|
and |S3| ≤ |I3|. One can therefore let I = S2 ∪ S3 and simulate the LI gadget as in
the real circuit3; we then have as required:

|I| ≤ |S2|+ |S3| ≤ |I2|+ |I3| ≤ t

Assume now wlog that (3.24) is satisfied and (3.25) is not. Then R1 is non-saturated
and we can apply Lemma 3 on R1, which gives as previously |S2| ≤ |I2|. For R2 we

3When both R1 and R2 are non-saturated, the LI gadget is actually useless.

104

CHAPTER 3. SIDE-CHANNEL ATTACKS

cannot necessarily apply Lemma 3, so we must take S3 = {n/2+1, . . . , n}, which means
that all inputs of R2 must be simulated. We now consider the LI gadget. We can assume
wlog that all intermediate variables probed in I4 are of the form ai, an/2+i and ri, since
all output variables ai ⊕ ri and an/2+i ⊕ ri can be probed in I2 and I3. By applying
Lemma 5 for all 1 ≤ i ≤ n/2 on each set of intermediate variables {ai, an/2+i, ri} and
output variable ai⊕ ri, where all output variables an/2+i⊕ ri must be simulated (since
R2 is saturated), and by summing the inequalities, we construct I ⊂ {1, . . . , n} such
that:

|I| ≤ 2 · |S2|+ |I4| ≤ 2 · |I2|+ |I4| (3.26)

It remains to show that |I| ≤ t. Since by assumption (3.24) is satisfied and (3.25) is
not, we have:

|I2|+ t1 + tO/2 < n/2 ≤ |I3|+ t2 + tO/2
which gives using t2 ≤ |I1|:

|I2| ≤ |I3|+ t2 ≤ |I3|+ |I1|

Then from (3.26) we obtain:

|I| ≤ 2 · |I2|+ |I4| ≤ |I2|+ |I3|+ |I1|+ |I4| ≤ t

as required, which terminates the proof of Lemma 3.

Remark 3. One can argue that our construction is somewhat minimal. Namely if we
remove the pre-processing layer LI , then the adversary can let O = {1, . . . , n/4} ∪
{n/2 + 1, . . . , 3n/4}, which implies that the first n/4 output variables of R1 must be
simulated; the adversary can then probe the remaining n/4 output variables of R1,
which implies that R1 is now saturated. Then without LI one must have |I| = n/2;
with |I | = n/4 this contradicts the bound |I| ≤ |I |, while with |O| = n/2 the condition
|I |+ |O| < n is still satisfied.

Similarly, if we remove the post-processing layer LO, then the adversary can saturate
R1 by letting O = {1, . . . , n/2}. Then all inputs of R1 must be known, and for each
intermediate probe at the input of R2, one must add two additional indices in I, which
contradicts the bound |I| ≤ t.

Remark 4. Using the above RefreshMasks algorithm for our countermeasure of Section
3.2.8, its complexity becomes O(n2) instead of O(n2 · log n), hence the same complexity
as the original ISW countermeasure.

3.2.10 Conclusion

Since the publication of the private circuit transformers, several papers have investi-
gated their security under some assumptions about the adversary capability and the
amount of noise in the information leakages. This eventually led Duc et al. [70] to state
at Eurocrypt 2015 that the number of leakage observations needed to significantly re-
duce the guessing entropy of the secret parameter of an implementation protected with
sharing at order n is bounded below by O(σ2n), where σ is the minimum instanta-
neous standard deviation of the noise in the observations. However, for this security
bound to apply, the amount of information leaking in each observation must decrease
when n increases, which implies that the noise standard deviation must increase ac-
cordingly. This condition is a strong limitation when the amount of noise cannot be

105

CHAPTER 3. SIDE-CHANNEL ATTACKS

accurately controlled by the security designers. This paper questions the security of an
implementation when the above bound does not apply, which occurs when the number
of shares n is greater than c · σ2 (which occurs e.g. when the noise is constant and
n increases). In particular, we exhibit two (template) horizontal side-channel attacks
against the Rivain-Prouff’s secure multiplication scheme [146] and we analyze their effi-
ciencies thanks to several simulations and experiments. We argue that they are efficient
iff the number of shares n is greater than c · σ2 for some constant c, which implies that
the condition in Duc et al.’s paper is not only sufficient but also necessary. Eventually,
we propose an improved version of Rivain-Prouff’s secure multiplication which is secure
against our attacks.

In the next section we analyze a suggestion for a side-channel countermeasure for
symmetric ciphers suggested by Bringer et al. in [40] that can achieve security against
t-th order statistical attacks and security against faults at once. This work challenges
the countermeasure security and shows practical attacks exploiting simple side-channel
analysis and 1-st order statistical attacks.

3.3 Security Analysis of the Orthogonal Direct Sum

Masking

In this section, we introduce the Orthogonal Direct Sum Masking (ODSM) counter-
measure as it was defined in [40]. We then detail how the authors apply it in the case
of an AES implementation.

In [41], Bringer et al. introduced a masking scheme based on a specific encoding of
the sensitive data and the corresponding mask. Following this scheme, the masking of
sensitive data x with the random quantity m is obtained by computing z = xF ⊕mG,
where:

• G is a generator matrix of the binary linear code C of length n, dimension k and
minimum distance d

• F is a k× n matrix with k rows in Fn
2 all linearly independent of each other and

not belonging to the binary linear code C.

Recovering x from the encoded word z can be achieved by multiplying z by the parity-
check matrix of C: zHT = xFHT ⊕ mGHT = xFHT . The authors then describe an
application of this scheme to the AES.

However, as pointed out by Moradi in [128] certain limitations exist when choosing
the matrix F in order to retrieve the sensitive value x from xFHT . Namely, one should
ensure that the application x 7→ xKHT is bijective, ie. (KHT)−1 shall exist.

In addition, the author stresses that the application of the scheme to the AES re-
quires a mask correction at each round of the cipher algorithm.

Finally, the work of Azzi et al. in [5] adapts the ODSM scheme to enhance the fault
detection capability through non-linear functions. However this comes at the cost of
additional computations with regards to the side-channel resistance property. We now
describe the original ODSM scheme of Bringer et al..

106

CHAPTER 3. SIDE-CHANNEL ATTACKS

3.3.1 Orthogonal Direct Sum Masking Scheme

As previously stated, the construction of the ODSM lies on the fact that for the con-
sidered code C, we have C⊥ ⊕ C = Fn2 . Indeed, in this case we have G ·HT = 0 and H
is the parity matrix of C. Consequently, in (1.4) we can recover x and y from z:

x = zGT (GGT)−1 (3.27)

y = zHT (HHT)−1 (3.28)

The principle of the masking scheme consists in representing a sensitive k-bit data
x by a n-bit data z according to (1.4), where y is an (n− k)-bit random mask.

The sensitive value x can be easily recovered from z by using (3.27). In addition,
the integrity of the manipulated data z can be verified as often as required by checking
the integrity of the mask y thanks to (3.28), which provides the security against fault
injection.

Based on this principle, the authors suggest to perform computation within the
encoded/masked representation. Actually they show how applying operations on the
sensitive value x can be achieved by applying associated operations on the encoded
value z. To reach this goal, they split the different operations required into three cate-
gories and show how to proceed in each one:

2-operand operations. In this case, they focus their attention on the xor operation.
Actually this case is quite straightforward since it is only necessary to encode the
operand and perform the xor. For instance, supposing we need to xor a round key ki to
x, we would have to compute z′ = z ⊕ kiG. And we can check that x⊕ ki is computed
within the masking scheme:

z′ = z ⊕ kiG = (x⊕ ki)G⊕ yH (3.29)

Binary linear operations. Let L be the matrix corresponding to the desired bi-
nary linear operation, then they suggest to construct a so-called masked binary linear
operation whose corresponding matrix L′ is constructed as follows:

L′ = GT (GGT)−1LG⊕HT (HHT)−1H (3.30)

And we can check again that xL is correctly computed within the masking scheme
when zL′ is computed.

Nonlinear transformations. In this case, a masked version S ′ of the transformation
S can be computed:

∀z ∈ Fn2 , S ′(z) = S(zGT (GGT)−1)G⊕ zHT (HHT)−1H (3.31)

S(x) is correctly obtained within the masking scheme when computing S ′(z).
Following these guidelines, the authors claim that various computations can be

carried out within the coset C ⊕ d of the linear code C, with d a mask randomly chosen
in D = C⊥.

107

CHAPTER 3. SIDE-CHANNEL ATTACKS

ODSM in Practice: Application to the AES

The ODSM can be applied, in particular, to an implementation of the AES. For that
purpose, the authors consider the 128-bit version of the cipher and propose to use
the binary linear code of parameters [16,8,5] (meaning n = 16 and k = 8) which
has a supplementary dual in F16

2 .4 Indeed, once the initial state has been encoded,
the different operations of the AES can be straightforwardly constructed as previously
described.

AddRoundKey. The round key bytes only need to be encoded before being added
to the encoded state: z = z ⊕ kG.

ShiftRows. The ShiftRows operation remains unchanged. It only processes 16-bit
words instead of 8-bit.

MixColumns. MixColumns can be computed by using the linear application gener-
ated from the matrix of the xtime application by (3.30).

SubBytes. For the SubBytes operation, two approaches were proposed in [40]. The
first one is a look-up table approach which requires to precompute the 16-bit output
S ′(z) for all z as per (3.31). We note that this method implies a quite heavy memory
overhead as a 128kB-table needs to be stored (216 16-bit values). The second approach
actually performs the SubBytes outside of the code and thus involves the recomputation
of a new masked S ′ transformation for each encryption to ensure a proper masking. It
is then necessary to compute for all x in Fk2:

S ′recomp(x) = S(x⊕ x′)⊕ x′′, with x′ and x′′ randomly chosen in Fk2 (3.32)

The SubBytes is then performed as described in Alg. 15. Our analysis is actually

Algorithm 15: Masked SubBytes transformation on z = xG⊕ yH

z = z ⊕ x′G;
x = zGT (GGT)−1;
x = S ′recomp(x);
z′ = xG⊕ yH;
z′ = z′ ⊕ x′′G;
return z′;

independent of the choice of either of the two approaches.

3.3.2 Side-Channel Analysis of the Masking Scheme

In this section we provide a deep analysis of the side-channel resistance of the masking
scheme suggested in [40]. We demonstrate that it is possible to mount a first-order side-
channel attack versus the countermeasure meant to be resistant to high-order attacks.

4For the generating and parity matrices G and H and for L and L′ corresponding to the standard
and masked versions of the xtime linear application of this code, we refer the reader to [40].

108

CHAPTER 3. SIDE-CHANNEL ATTACKS

Striking Differences

The authors of [40] proved the security of the ODSM scheme versus d-th order side-
channel analysis, where d+ 1 is the distance of the dual code C⊥. Thus, with respect to
the parameters of [40], the code is proved to be secure versus 4-th order attacks, 5 being
the minimal distance of the dual code. The proof of security relies on the observation
that the expected value of the leakage is independent of the sensitive value x (up to
the 4th order statistical moments), after the encoding xG⊕ yH with mask y.

(a) Boolean masking pdf. (b) ODSM masking pdf.

Figure 3.8 – pdf of the Hamming weights of the Boolean masking scheme vs ODSM masking
scheme.

Figure 3.14 shows the expected probability density functions (pdf) of the Hamming
weight (HW) of masked values for both boolean masking and the ODSM scheme. The
results are obtained by collecting the distribution of the HW of z = x⊕ y for Boolean
masking (Figure 3.8a), and z = xG⊕ yH for ODSM, where x is fixed, and y takes all
values in Fk2 (Figure 3.8b).

As expected, in the boolean masking scheme the distributions are independent of
the sensitive values, such that all distributions are superposed and only one curve
is visible. On the other hand, in the ODSM scheme the distributions depend on the
sensitive values and we can distinguish 22 different distributions, each one related to a
particular set of sensitive values. In particular the distributions of the sensitive value
x = 0 and x = 46 show striking differences. We remark that an encoded value with
HW of 0 can only be produced by encoding the sensitive value x = 0 with a mask
y = 0. Similarly a HW of 16 can only be obtained when the encoded sensitive value
equals 46. From Figure 3.8b we thus observe that the extremum HW value 0 (resp. 16)
is only present on the distribution of x = 0 (resp. x = 46). We further remark that for
a sensitive encoded value equal to x = 0 (resp. x = 46), the HW of the encoded value
can never be 4, 3, 2 or 1 (resp. 12, 13, 14, 15).

We show in the following that it is possible to exploit such striking differences by
using 1st-order statistics in order to retrieve the sensitive values.

Means-only attack on the ODSM distribution

We have noticed that the difference between the leakage distributions of the ODSM
masking scheme and that of classical boolean masking scheme may lead to weaknesses
that have not been taken into account in [40]. In this section we exhibit an actual
attack that exploits these very differences to retrieve the key value by using only 1st-
order statistics on carefully selected leakages.

109

CHAPTER 3. SIDE-CHANNEL ATTACKS

The basic idea of our attack comes by observing the distributions of Figure 3.8b.
The distributions present a left skewness (i.e.: asymmetry about the mean) for x = 0,
and a right skewness when x = 46. While such skewness do not bias the average of
all values, it does when the average is computed only on the leakages below a given
Hamming weight. In practice we exploit the fact that the skewness preserves the mean
only when computed on all values, but produces detectable biases on subsets of them.

Observing Figure 3.8b one notice that the mean of all leakage values below 9 and
those above 9 are not equals for all the 22 classes, in particular z = 0G ⊕ yH and
z = 46G ⊕ yH should present remarkable differences due to the skewness. We thus
argue that it provides a distinguisher for the values 0 and 46.

A more careful partitioning leads to even better and more accurate results. We
divide the curves into two sets:

• a first set containing leakages with Hamming weight between 4 and 11,

• a second set for the remaining leakages.

The absolute difference of the two sets on theoretical distributions is depicted in Fig-
ure 3.9, for each message, for all masks.

Figure 3.9 – Difference of the number of leakages between 4 and 11 and the rest.

We further remark that this choice for the two sets allows to retrieve only the value
corresponding to 46, as the skewness on 0 is not captured by such partitioning.

Simulations

In this section we show the results of the application of our attack described in Sec-
tion 3.3.2 to simulated leakages of the ODSM scheme. For our simulations we computed
the value z = Sbox(m⊕ki)G⊕yH, where y is in F2k freshly regenerated at each execu-

tion. For each value z we computed the corresponding leakage ~̀= HW (z) +B, where
B is a Gaussian noise with standard deviation σ. In order to evaluate the success
rate of our attack with different noise levels, we have performed different campaigns
where σ varies from 0 to 2. For each campaign we have simulated the leakage of 10, 000
computations for each byte value.

We start our attack by computing the minimum and the maximum values among all
leakages. Then define the range s of all leakages as the difference between the maximum
and minimum values, divided by 16. We then use this value to split the leakages into
the two sets, the first containing those leakages whose value falls between s∗4 and s∗11
and the second with the remaining leakages. We finally analyze the absolute difference
of the two sets for each message. As observed in Figure 3.9, only the message m which

110

CHAPTER 3. SIDE-CHANNEL ATTACKS

Figure 3.10 – Result of the attack with σ = 0 for 10, 000 leakages.

Figure 3.11 – Result of the attack with σ = 1 for 10, 000 leakages.

gives Sbox(m ⊕ ki) = 46 should produce a peak on the difference of means. Thus the
peak found for a particular message m reveals Sbox(m⊕ ki) = 46, so the attacker can
retrieve the secret key byte ki = Sbox(46)−1 ⊕m.

The key byte value used for our simulations is 43, thus we expect to obtain peaks
for the message of value 233 = Sbox(46)−1 ⊕ 43. Figure 3.10 to Figure 3.12 show the
results obtained by using 10, 000 noisy executions for each message m. The left part
corresponds to the value of the absolute differences for each message (thus for each of
the 256 values we depict the value of the difference of means). The right part depicts
the maximum value of the absolute difference for each key, sampled after each 100
curves. For right-side figures, the correct message hypothesis (233) is depicted in red.

We present the pseudocode of our attack in Alg. 16.

We notice that our attack needs a huge number of curves to retrieve the key value
even for relatively low noise simulations. For example, for σ = 1, we need about 384, 000
curves (1500 ∗ 256) in order to retrieve the correct key hypothesis. The need for a
considerable number of curves can be interpreted as a consequence of the masked
values living in F2

216, and thus far more samples are required to obtain a representative
sample of the underlying distribution. However, we remark that as soon as there is no
noise, very few hundred traces are necessary to retrieve the correct key.

We want to stress the fact that despite the security proof given in [40], our attack
shows that it is possible to retrieve the secret values protected with the ODSM scheme
by using a first-order statistic on carefully selected leakages.

Figure 3.12 – Result of the attack with σ = 2 for 10, 000 leakages.

111

CHAPTER 3. SIDE-CHANNEL ATTACKS

Algorithm 16: Means Attack on AES-128 ODSM scheme.

// Find min and max values
l max = maxm∈Fk2 ,0≤i<]curves(leakage(m, i));
l min = minm∈Fk2 ,0≤i<]curves(leakage(m, i));
// Derive HW boundaries
leakage size=(l max - l min) / 16;
set1 limit = leakage size × 4;
set2 limit = leakage size × 11;
// Separate curves
for m from 0 to 255 do

for i from 0 to 10, 000 do
if set1 limit ≤ leakage(m, i) ≤ set2 limit then

set2(m)+= leakage(m, i);
else

set1(m)+= leakage(m, i);
end

end

end
// Select best candidate based on difference of means
best message = maxm(abs(set2(m)− set1(m))/10, 000);
return k = Sbox(46)−1⊕ best message

We finally insist on the fact that despite our attack applies here to the ODSM
scheme with the parameters of [40], most choices of the code would succumb to such
an attack.

3.3.3 Maximum likelihood attack

In this section we present a further attack to the countermeasure. As we have remarked
in Sec. 3.3.2, the leakage corresponding to an HW of 0 can only be produced if both
the sensitive value x and the mask y equal to 0. We thus suggest that it is possible to
use a maximum likelihood (template) attack to distinguish the curves manipulating a
variable z whose HW equals 0 from the others.

Template attacks are generally divided into two phases. In the first phase (profiling)
the sensitive data is known to the attacker, for example she may employ an open sample,
while in the second phase (attack) she tries to recover some unknown sensitive data by
using new observations and the information collected during the profiling phase.

More formally, let us assume that the attacker retrieves a set of observations of the
random variable z, where each observation has the form ~̀ = ϕ(z) + B, where ϕ is an
unknown function and B a Gaussian noise with standard deviation σ. She can estimate
the expectation ~µ0 and covariance Σ0 of ~̀ when z = 0 and ~µ1,Σ1 when z 6= 0.

For a Gaussian distribution of expectation µ and covariance matrix Σ, the proba-
bility density function (pdf) of ~̀ ∈ Rt is defined as:

f(~̀) = 1√
(2π)tdet(Σ)

exp
(
−1

2(~̀− ~µ)′ · Σ−1 · (~̀− ~µ)
)
. (3.33)

So by evaluating fl|z=0 and fl|z 6=0 she obtains the likelihood that z = 0 was the manip-
ulated value.

112

CHAPTER 3. SIDE-CHANNEL ATTACKS

Figure 3.13 – Expectation and variance of real leakages when z = 0 and z 6= 0.

Experiments

We have tested the template attack against a real device and we provide in this section
the results of our experiments.

The target of our experiment is an ATMega328P device. We have by-passed the
decoupling capacitors of the device which may filter out useful signals. We have then
connected the oscilloscope to the device and measured the difference of potential at the
ends of a resistor placed between the ground pin of the ATMega328P and the ground
of the device. We have finally pre-filtered the input of the oscilloscope at 20Mhz and
sampled the data at 100Mhz. Our settings allow to obtain small curves while keeping
as much information as possible.

We have then collected 250, 000 leakages where we controlled the value of the mask.
A random bit was used to select if z = 0 or z 6= 0 was used by the implementation.
Knowledge of the random bit allowed us to split the set of acquisition between those
with z = 0 and those with z 6= 0 to build templates. We also used this knowledge to
verify the confidence of the likelihood distinguisher.

We show in Figure 3.13 the differences between the expectation of the two sets.
It is possible to distinguish important differences between them, in particular around
points 250 and 300.

During attack phase we have acquired 250, 000 more curves and tried to separate
them into two sets. The knowledge of the value of the random bit allowed us to verify
the success rate of the distinguisher. We have used 80 points to estimate the pdfs
of Eq. 3.33. These points were chosen as those providing the highest variance between
the expectations of the two sets. In this settings we obtained 99.84% of correct detection
rate.

Our attack thus demonstrates that even for real devices it is possible to break the
countermeasure by using only first and second order statistical attacks.

3.3.4 Possible Fix-Ups and Residual Issues

As shown in Section 3.3.2 and Section 3.3.3 the differences between the distributions
of the Hamming weight of masked values for different inputs can be exploited by an
attacker to recover manipulated secrets. In this section we propose a method to improve
the resistance of the scheme to the attacks that we have presented in this work while
preserving the fault detection capability.

113

CHAPTER 3. SIDE-CHANNEL ATTACKS

Conservative Shuffling

In this section we suggest how to add algorithmic noise to the ODSM scheme in order
to defeat the attack introduced previously. We show that our countermeasure preserves
the fault detection capability and the possibility to perform computation within the
masking scheme.

Our method relies on shuffling the generating matrices G and H of the code C andD,
losing the systematic form of C’s generating matrix. Successively applying permutations
on the columns of these matrices allows to randomize the mappings between elements
of Fk2 and C (resp. Fn−k2 and D) by randomizing the codewords of C (resp. D) itself.
We can note that the properties of the associated codes remain unchanged as we only
reorder the columns of the generating matrices. In particular the duality between C
and D is preserved since we apply the same permutation on both matrices G and H.
This can be seen by recalling that any permutation of n columns of a k × n matrix
can be realized by multiplying from the right this matrix by a permutation matrix P .
Further recalling that P is orthogonal (PP T = I), it comes straightforwardly that :

GP (HP)T = GP (P THT) = G(PP T)HT = GHT = 0 (3.34)

Such a process can be easily achieved at the cost of up to 12 bits of random used to
select two columns to permute and an amount of circular shift. For the XOR operation,
the permutation can be straightforwardly applied to the encoding of the operand:
z′ = z ⊕ kiGP . For the linear operation, the permutation needs to be reflected on the
L′ matrix of (3.30):

L′′ = (GP)T (GP (GP)T)−1LGP ⊕ (HP)T (HP (HP)T)−1HP (3.35)

= P T (GT (GGT)−1LG)P ⊕ P T (HT (HHT)−1H)P (3.36)

= P T (GT (GGT)−1LG⊕HT (HHT)−1H)P (3.37)

= P TL′P (3.38)

For the non-linear operation, only the table recomputation approach seems to be achiev-
able with reasonable overhead as the look-up table approach would require to recompute
the S ′ table for all z. Alg. 15 should then be adapted as exposed in Alg. 17.

Algorithm 17: Masked SubBytes transformation on z = xGP ⊕ yHP

z = z ⊕ x′GP ;
x = z(GP)T (GGT)−1;
x = S ′recomp(x);
z′ = xGP ⊕ yHP ;
z′ = z′ ⊕ x′′GP ;
return z′;

Using such shuffled matrices for each encryption, we obtain the distribution depicted
in Figure 3.14b. Figure 3.14a is recalled for comparison purpose.

We can see that the distribution gives a much less explicit hint on the manipulated
value compared to the original one. However we can still observe differences in the
distributions for each value, supporting a residual weakness. Nevertheless, the attack
described in Section 3.3.2 now fails even with a low noise level as can be seen in
Figure 3.15.

114

CHAPTER 3. SIDE-CHANNEL ATTACKS

(a) Original ODSM pdf. (b) Shuffled ODSM pdf.

Figure 3.14 – Hamming weights’ pdf of encoded values for ODSM Vs Shuffled ODSM.

Figure 3.15 – Result of the attack with σ = 0 and σ = 1 for 10, 000 leakages.

Residual Issue: encoding 0

From the observation of Figure 3.14a and Figure 3.14b we can see that one potential
weakness of the original scheme is not taken care of by our method. Indeed, we observe
that the value xG⊕ yH = 0x0000 can only be obtained when x = 0x00.

By assuming that the attacker can detect the manipulation of the value 0x0000
then she directly knows the corresponding value 0x00 of the internal AES state. Such
a weakness is not present in traditional boolean masking, where all masked values can
be produced by all secret values.

Such an attack may not be merely theoretical since the hypothesis of retrieving the
Hamming weight of internal values of more than one byte by SPA has been exploited
in recent publications [19, 20] in order to retrieve the operands of a 128-bit scalar
multiplication.

We further remark that a similar SPA weakness would affect the ODSM scheme for
any choice of code. Indeed, since the codes C and D are complementary duals and from
the definition of C and D we know that:

∀ z ∈ Fn2 , ∃! (x, y) ∈ Fk2 × Fn−k2 such that z = xG⊕ yH

This holds in particular when z = 0, which is thus equivalent to xG = yH and to x =
y = 0. Consequently even when randomizing G and H, we can only observe a value of
null Hamming weight when the sensitive value x and the mask y are null. Unfortunately,
as we have shown in Section 3.3.3 such weakness may be exploited by using template
attacks. We can nevertheless stress that in case the attacker cannot control the value
of the mask she may not be able to build the templates and consequently the attack
should not work.

115

CHAPTER 3. SIDE-CHANNEL ATTACKS

3.3.5 Conclusion

The definition of new countermeasures tackling in the same effort side-channel anal-
ysis and fault attacks is definitely a challenging task. The ODSM scheme succeeds
in providing both a way to detect errors and ensuring the independency of the mean
and the variance of the Hamming weight of masked data. However in this work we
demonstrate that the distributions of Hamming weights of the ODSM encoded data
are actually dependent on the sensitive values being manipulated, which renders the
scheme helpless against a side-channel attack considering only 1st-order statistical mo-
ment of the observed leakage. Furthermore we have shown that some measures can
be taken in order to reduce the leakage exposed when observing the Hamming weight
distributions for a given sensitive value, although it turns out that the scheme cannot
be made totally SCA-resistant. Still, countermeasures based on coding theory appear
as promising candidates to improve the resistance of cryptographic implementations
against both side-channel and fault attacks. In particular, the definition of methods
allowing to perform the complete execution of an algorithm under the protection of the
code is an interesting line of research for future works.

The last work that we present in this chapter is an attack that exploits both fault
and side-channel physical analysis. By using a combination of FA and SCA we show
that it is possible to break a CRT-RSA countermeasure that has been conceived to
resist each of them, but not both together.

3.4 A Combined Fault and Side-Channel Attack on

CRT-RSA

The idea to combine SCA and FA first appeared in 2007 when Amiel et al. proposed a
so-called Combined Attack (CA) on an RSA implementation protected against FA and
SPA [2].

They noticed that by setting to zero one of the temporary registers used in the
Montgomery ladder, its structure becomes unbalanced, revealing the value of the secret
exponent by SPA.

Following this publication, three other works have been published taking advantage
of this new way of defeating embedded security. Two of them present a CA against
a secured AES implementation [148, 149]. The third one focuses on the elliptic curve
scalar multiplication [74].

Despite its theoretical effectiveness, the combination of SCA and FA is very difficult
in practice, explaining the lack of practical experiments in the current literature.

3.4.1 Context of the Attack

As stated in Sec. 2.1.4 and Sec. 3.1.4, several countermeasures have been developed
to protect CRT-RSA embedded implementations against both SCA and FA. In the
following, we consider an CRT-RSA algorithm protected:

• against SCA by using message and exponent blinding as suggested in [175], a
regular exponentiation algorithm such as the Square Always [53] and a mask
refreshing method along the exponentiation such as the one presented in [71].
Moreover, the blinding is kept all along the CRT-recombination.

116

CHAPTER 3. SIDE-CHANNEL ATTACKS

• against FA by verifying the signature using the public exponent e [34]. In addition,
we also use the approach presented in [68] which mainly consists in checking the
result of the verification twice to counteract double FA attacks.

Fig. 3.16 depicts the main steps of such an implementation where the ki’s are random
values (typically of 64 bits) generated at each execution of the algorithm and S ′p, S

′
q

and S ′ represent the blinded version of Sp, Sq and S respectively.

False True

Return S′ mod N

S′e mod N
?= m

S′ mod k4N

SCA-resistant CRT-recombination

S′q mod k3qS′p mod k1p

SCA-resistant expo SCA-resistant expo

m + k2q mod k3qm + k0p mod k1p

Blinding Blinding

m

Security action

Figure 3.16 – Main steps of a CRT-RSA implementation secure against SCA and FA.

In the following, we assume that the fault injected by the attacker follows either
the bit-flip, the stuck-at or the unknown constant error fault models (cf. Sec. 2.1.2).
Moreover, we assume the attacker is able to choose which byte of the message is affected
by the fault.

As mentioned in Sec. 2.1.4, injecting a fault during the signature computation leads
to a faulty signature that allows the attacker to recover the private key. However in
the implementation considered in this work, the verification with the public exponent
detects such a disturbance and the faulty signature is never revealed to the attacker.
The main contribution of this work is to show that in this case, an SCA can still allow
the attacker to gain enough information on the faulty signature to recover the private
key.

3.4.2 The attack

At first glance, it seems impossible to perform such an attack during the signature
process due to the blinding countermeasure. However by observing Figure 3.16, one

117

CHAPTER 3. SIDE-CHANNEL ATTACKS

may note that the faulty signature S̃ remains blinded until the end of exponentiation
with e modulo N . Therefore if we can express S̃e mod N in terms of the message m and
of the private key then we can perform an SCA on this value. In the next section, we
exhibit such a relation allowing us to mount a CA on an SCA-FA-resistant CRT-RSA
implementation.

A Useful Relation

Proposition 5. If a fault ε is induced in m such that the faulty message m̃ is equal to
m+ ε at the very beginning of the computation of Sp then

S̃e ≡ m+ εqiq mod N , (3.39)

where S̃ corresponds to the faulty signature.

Proof. By definition of the CRT-RSA signature, we have:{
S̃ ≡ (m+ ε)d mod p
S̃ ≡ md mod q (3.40)

It comes then straightforwardly that:{
S̃e ≡ m+ ε mod p
S̃e ≡ m mod q (3.41)

Finally, applying Gauss recombination to (3.41) leads to (3.39) since:

S̃e ≡ pipm+ qiq(m+ ε) mod N (3.42)

≡ (pipm+ qiqm) + εqiq mod N (3.43)

≡ m+ εqiq mod N , (3.44)

where ip = p−1 mod q.

One may note that a similar relation holds if m is disturbed at the very beginning
of Sq computation due to the symmetrical roles of p and q in both branches of the
CRT-RSA. For the sake of simplicity, we will use the case where Sp computation is
disturbed in the rest of this work.

Recovering the Private Key

Following the attack’s principle depicted in Sec. 3.4.2 and using 5, we will now present
in detail the main steps of our attack.

Firstly, the attacker asks the embedded device to sign several messages mi through a
CRT-RSA implemented as described in Sec. 3.4.1. For each signature, the computation
of Sq is performed correctly and a constant additive error ε is injected on the message
mi at the beginning of each Sp computation. Then during each signature verification,
the attacker monitors the corresponding side-channel leakage Li which represents the
manipulation of S̃ei mod N .

From 5, we know that there exists a sensitive value k satisfying the relation S̃ei mod
N = mi + k. Therefore, the attacker will perform a CPA to recover this sensitive value
by computing ρk(mi + k,Li) for all the possible values of k (cf. Sec. 3.1.4).

118

CHAPTER 3. SIDE-CHANNEL ATTACKS

Depending on the set {(mi, S̃
e
i mod N)}i, it follows from Eq. 3.39 that k will be

equal either to εqiq mod N or to εqiq mod N −N .

Therefore, the value k̂ producing the strongest correlation at the end of the CPA
will be one of these two values. Once k̂ recovered, the attacker must then compute the
gcd between k̂ and N , which leads to the disclosure of q. From this value, the private
key is straightforwardly computed.

Regarding the practicality of our fault model (i.e. a constant additive fault), one
may note that by fixing a small part of the message (e.g. a byte), the disturbance of such
a part in either the stuck-at, the bit-flip or the unknown constant fault model results
in a constant additive error during the different signature computations. Therefore our
fault model is definitely valid if the attacker can choose the messages to sign, or even
if she can only have the knowledge of the messages and attack only those with a given
common part.

Finally, one may note that it is not possible to perform a statistical attack targeting
the full value of k at once due to its large size (i.e. dlog2(N)e bits). However, one can
attack each subpart of this value, for instance by attacking byte per byte starting with
the least significant one in order to be able to propagate easily the carry. It is worth
noticing that CPA only applies when the corresponding part of the message varies.
Therefore, if the attacker fixes the MSB of the message, then the corresponding set of
measurements can be used to recover the whole but last byte of k̂. In such a case, a
brute force search can be used to recover the missing byte.

In the next section, we present simulations of our attack which prove the efficiency
of our method and which are based on the attacker’s capability to inject the same fault
and on the noise of the side-channel measurements.

3.4.3 Experiments

The success of the attack presented in Sec. 3.4.2 relies on the ability of the attacker to
both measure the side-channel leakage of the system during the signature verification
and induce the same fault ε on the different manipulated messages.

In order to evaluate the effectiveness of this attack, we have experimented it on
simulated curves of the side-channel leakage L, according to the Gaussian noise leakage
model (Eq. 3.1). In the framework of our experiments, we consider that the processor
manipulates 8-bit words and we use three different levels of noise, namely σ = 0.1, 1
and 5.

As well as the side-channel leakage, the faults were also simulated by setting the
most significant word of the message m to all-0 at the very beginning of the Sp com-
putation.

These faults were induced with a given success rate r, varying in our different
experiment campaigns (namely 50%, 10% and 1%).

Depending on the experimental settings, all the different words of the secret value
will be equivalently correlated with the simulated curves. The graphs presented in Fig-
ure 3.17 present the convergence of the correlation for each possible value k of one
particular byte (the 5th least-significant byte) of the secret depending on the number
of side-channel measurements with different simulation settings σ and r.

As exposed in Figure 3.17, the number of traces required to recover the secret
value depends essentially on the fault injection success rate. This comes from the fact
that every wrongly-faulted computation can be considered as noise in the scope of our
statistical analysis. The number of curves required to retrieve the secret word grows

119

CHAPTER 3. SIDE-CHANNEL ATTACKS

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

nb curves (× 500)

ρ

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

nb curves (× 500)

ρ

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

nb curves (× 500)

ρ

σ = 0.1, r = 50% σ = 1, r = 50% σ = 5, r = 50%

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nb curves (× 500)

ρ

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nb curves (× 500)

ρ

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nb curves (× 500)

ρ

σ = 0.1, r = 10% σ = 1, r = 10% σ = 5, r = 10%

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

nb curves (× 500)

ρ

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

nb curves (× 500)

ρ

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

nb curves (× 500)

ρ

σ = 0.1, r = 1% σ = 1, r = 1% σ = 5, r = 1%

Figure 3.17 – Convergence of the correlation for the 256 possible values ki for the secret (the
correct one being depicted in black) depending on the number of side-channel measurements
(×500) for different levels of noise σ and fault injection success rates r.

as the fault injection success rate decreases and to a fewer extent as the noise of the
side-channel leakage increases.

With regards to the results obtained when σ = 5 and r = 10%, which appear to be
plausible values in practice, it took us 3.35 seconds to retrieve one byte of the secret
value by performing the CPA on 15, 000 curves of 128 points each5. Assuming a genuine
curve should be made of at least 5, 000 points, we can estimate the time required to
practically perform the attack to about 1 minute 5 seconds per byte. That is to say, it
takes about 2 hours 20 minutes to recover the complete secret value if we consider a
1024-bit RSA module.

For the sake of clarity, we restrained the experiments presented here to the case
where the processor manipulates 8-bit words, and thus ε is an 8-bit error. The same
experiments have been run for processor word-size up to 32 bits with success. Besides,
about the same number of curves were necessary for the CPA to highlight the correct
secret byte.

The next section shows how it is possible to considerably reduce the complexity of
our attack thanks to the use of lattice techniques.

5The execution time given here and in Sec. 3.4.5 have been obtained on a 32-bit CPU @3.2GHz

120

CHAPTER 3. SIDE-CHANNEL ATTACKS

3.4.4 Reducing the Attack Complexity Using Coppersmith’s
Methods

This section aims at improving the attack complexity using Coppersmith’s methods.
It is in line with the problem of factorizing N knowing half part of prime p (or q),
that was solved in [56]. With respect to our case, we highlight that if the CA presented
in Sec. 3.4.2 provides about half of the secret εqiq mod N , then the other half part
can be straightforwardly computed by solving a well-designed modular polynomial
equation that we elaborate in the sequel. Besides, we deal with two cases (ε known and
unknown), depending on the fault model that is considered.

3.4.5 Bringing Up the Original Problem to Solving a Modular
Equation

Suppose we are given the t least significant bits (LSB) of the secret εqiq mod N . The
latter value can be rewritten as follows:

εqiq ≡ 2tx0 + k mod N , (3.45)

where t and k are known values, and x0 is the dlog2(N)− te-bit unknown integer that
is to be recovered.

Lemma 6. The unknown secret part x0 is solution of the polynomial Pε(x):

Pε(x) = x2 + c (2t+1k − 2tε) x+ c (k2 − kε) ≡ 0 mod N , (3.46)

where c = (22t)−1 mod N , k, t, N are known, and ε is the induced fault.

Proof. The Bézout identity applied to our context yields that primes p and q interrelate
with integers ip = p−1 mod q and iq = q−1 mod p by the following relation:

pip + qiq ≡ 1 mod N . (3.47)

Multiplying (3.47) by ε leads to the relation εpip + εqiq ≡ ε mod N , or equivalently to
εpip ≡ ε − εqiq mod N . Therefore, replacing εqiq using (3.45) allows us to deduce an
equivalence for εpip:

εpip ≡ ε− 2tx0 − k mod N . (3.48)

As N = pq, we then multiply (3.45) by (3.48), to get the relation:

εqiq · εpip ≡ (2tx0 + k) · (ε− 2tx0 − k) ≡ 0 mod N . (3.49)

Eventually, developing the right-hand side of (3.49), and multiplying by c = (22t)−1 mod
N leads to the obtention of the monic polynomial Pε(x).

The initial problem of retrieving the unknown part of εqiq mod N is thereby al-
tered in solving the modular polynomial equation (3.46). In the sequel, we deal with
two possible cases regarding ε, whether it is known to the adversary or not.

In the first case we assume that the fault ε is known to the adversary. This case
corresponds to the bit-flip and stuck-at fault models (Sec. 2.1.2) since the message is
known to the attacker and the fault location can be chosen. In both cases, since the

121

CHAPTER 3. SIDE-CHANNEL ATTACKS

fault ε is known, the problem is reduced to solving a univariate modular polynomial
equation, cf. Eq. 3.46. This problem is known to be hard. However, when the integer
solution x is small, Coppersmith showed [55] that it can be retrieved using the well-
known LLL algorithm. Accordingly, we induce the following proposition:

Proposition 6. Given N = pq and the low order 1/2 log2(N) bits of εqiq mod N and
assuming ε is known, one can recover in time polynomial in (log2(N), d) the factoriza-
tion of N .

Proof. From Coppersmith’s Theorem [56], we know that, given a monic polynomial
P (x) of degree d, modulo an integer N of unknown factorization, and an upper bound
X on the desired solution x0, one can find in polynomial time all integers x0 such that

P (x0) ≡ 0 mod N and |X| < N1/d . (3.50)

In our case we have d = 2, and since x0 is a dlog2(N) − te-bit integer, we know that
|x0| < X = 2dlog2(N)−te . Thus, the condition in (3.50) becomes 2dlog2(N)−te < N1/2 ,
i.e.

t >
1
2 log2(N) . (3.51)

Therefore, knowing at least half part of the secret εqiq mod N allows to recover the
whole secret. As previously done, computing gcd(εqiq mod N,N) provides the factor-
ization of N .

Note that the method is deterministic, and as will be seen further (Table 3.3), it is
reasonably fast.

Now let us assume for the second case that the fault ε is known to the adversary.
This case is met in the unknown constant fault model (Sec. 2.1.2). In such a case, one
can consider the polynomial Pε(x) as a bivariate modular polynomial equation with
unknown values x and ε. This specific scheme has also been studied by Coppersmith and
includes an additional difficulty of algebraic dependency of vectors which induces the
heuristic characteristic of the method [55]. As depicted in Sec. 3.4.5, in our experiments
nearly 100% of the tests verified the favorable property of independency. Accordingly,
in this vast majority of cases, the following proposition holds:

Proposition 7. Under an hypothesis of independency (see discussion above), given
N = pq and the low order 1/2 log2(N) + s bits of εqiq mod N , where s denotes the bit-
size of ε, and assuming ε is unknown, one can recover in time polynomial in (log2(N), d)
the factorization of N .

Proof. Coppersmith’s Theorem for the bivariate modular case [55] notifies that given
a polynomial P (x, ε) of total degree d, modulo an integer N of unknown factorization,
and upper bounds X and E on the desired solutions x0, ε0, it may be possible (heuristic)
to find in polynomial time all integer couples (x0, ε0) such that

P (x0, ε0) ≡ 0 mod N and |X · E| < N1/d . (3.52)

In our case, we have d = 2 and E = 2s. The integer x0 is dlog2(N)−te-bit long, therefore
we haveX = 2dlog2(N)−te. Thus, the condition in (3.52) becomes 2dlog2(N)−te·2s < N1/2 ,
i.e.

t >
1
2 log2(N) + s . (3.53)

This means that knowing s more bits of the secret εqiq mod N than before, would allow
the recovering of the whole secret.

122

CHAPTER 3. SIDE-CHANNEL ATTACKS

Table 3.3 – Size t required (in bytes) for the method to work and timings (Magma V2.17-1),
as a function of the lattice dimension in Case 1 (ε known, being an 8-bit integer).

Size t required
86 72 70 69 68 67 66 65 64

(bytes)

Dimension of
3 9 11 15 17 23 37 73 Theoretical

the lattice
Time for LLL

< 0.01 0.03 0.07 0.29 0.52 2.63 34.25 2587.7 bound
(seconds)

Table 3.4 – Size t required (in bytes) for the method to work and timings (Magma V2.17-1),
as a function of the lattice dimension in Case 2 (ε unknown, being a 32-bit integer).

Size t required
86 78 76 74 73 72 71 70 69

(bytes)

Dimension of
5 12 22 35 51 70 117 201 Theoretical

the lattice
Time for LLL

< 0.01 0.02 0.16 1.17 5.88 30.22 605.9 12071.1 bound
(seconds)

Remark 5. The bound of success in Proposition 7 can actually be slightly improved
using results of [30]. Indeed, Coppersmith’s bound applies to polynomials whose mono-
mials shape is rectangular, while in our case the monomial ε2 does not appear in P (x, ε)
which corresponds to what they called an extended rectangle in [30]. For the sake of sim-
plicity, we only mentioned Coppersmith’s bound since practical results are similar.

Results From Our Implementation

We have implemented this lattice-based improvement using Magma Software [37], with
N a 1024-bit integer i.e. 128 bytes long, in the cases where ε is an 8-bit known value
(for Case 1) and a 32-bit unknown value (for Case 2). We chose Howgrave-Graham’s
method [100] for the univariate case, and its generalization by Jochemsz et al. [104] for
the bivariate case since both have the same bound of success as Coppersmith’s method
(sometimes even better for [104]) and they are easier to implement. As we know, the
theoretical bound given in Coppersmith’s method is only asymptotic [56]. Thus, we
report in Table 3.3 (for Case 1) and in Table 3.4 (for Case 2) the size t (in bytes)
of the secret εqiq mod N that is known to the attacker before applying Coppersmith’s
method, the lattice dimension used to solve (3.46) and finally the timings of our attack.

As depicted in Table 3.3, and combining these results with the experiments of Sec. 3.4.3,
the best trade-off is to perform a CPA on the 66 first bytes, taking 66 × 1m05s =
1h11m30s, and to retrieve the 62 remaining bytes using lattices in 34.25s, bringing the
total time up to 1 hour 12 minutes, instead of the previous 2 hours 20 minutes.
In order to illustrate Case 2, we have chosen to rather show our results for ε being a 32-
bit value, since when ε is 8-bit long, we obtained slightly better results by considering
the 255 possible values of the variable ε together with their corresponding polynomials
Pε(x), and by running the method on each of the polynomials until finding the solution
x0 that allows to factorize N. This indeed leads to a best trade-off of 70 bytes required

123

CHAPTER 3. SIDE-CHANNEL ATTACKS

from the CPA and the 58 remaining bytes computed with lattices by performing 255
times the LLL algorithm in the worst case, for a total of 68× 1m05s+ 255× 0.52s, i.e.
1 hour 16 minutes instead of 2 hours 20 minutes. Besides, this exhaustive search can
be performed in parallel and it also has the advantage to be deterministic.
However, when ε is 32-bit long, an exhaustive search becomes impractical and, as de-
picted in Table 3.4, the best trade-off would be to perform a CPA on 72 bytes and
to compute the 56 remaining bytes with lattices (even if heuristic, it worked in nearly
100% of the tests in practice), resulting in a total of 72× 1m05s + 30.22s, i.e. 1 hour
18 minutes instead of the previous 2 hours 20 minutes.

3.4.6 Countermeasures

In this section, we describe different countermeasures to protect an implementation
against the CA presented in Sec. 3.4.2.

Blind Before Splitting

Our first proposition consists in avoiding the possibility to inject the same fault during
several signature computations. To do so, we deport the blinding of the input message
m before executing the two exponentiations modulo p and q:

m′ = m+ k0N mod k1N , (3.54)

with k0 and k1 two n-bit random values generated at each algorithm execution (n being
typically 64). Hence S ′p = m′dp mod k2p and S ′q = m′dq mod k3q.

This countermeasure prevents an attacker from injecting always the same error
during the signature computation. Indeed if the fault is injected on m at the very
beginning of one exponentiation, then the corresponding error cannot be fixed due to
the blinding injected by Eq. 3.54.

Moreover, if the fault is injected when the message m is manipulated in Eq. 3.54,
then the error ε impacts the computation of both S ′p and S ′q, leading to non-exploitable
faulty outputs.

Such a countermeasure induces a small overhead in terms of memory space since
m′ must be kept in memory during the first exponentiation but the execution time
remains the same.

Verification Blinding

Our second countermeasure aims at annihilating the second hypothesis of our attack:
a predictive variable is manipulated in plain during the verification. To do so, we inject
a dlog2(N)e-bit random r before performing the final reduction with N , cf. Eq. 3.55.
Therefore, each and every variable manipulated during the verification is blinded.

((S̃e + r −m) mod k1N) mod N ?= r . (3.55)

One may note that the final comparison should be performed securely with regards to
the attack described in [117] since information on εqiq could leak if such a comparison
was performed through a substraction.

The cost of such a countermeasure is negligible since it mainly consists in generating
a dlog2(N)e-bit random variable.

124

CHAPTER 3. SIDE-CHANNEL ATTACKS

3.4.7 Conclusion

With this work we have introduced a new combined attack on CRT-RSA. Even if a
secure implementation does not return the faulty signature when the computation is
disturbed, we show how to combine FA with SCA during the verification process to
obtain information on the faulty signature. Such information allows us to factorize the
public modulus and thus to recover the whole private key. We also show that Copper-
smith’s methods to solve univariate and bivariate modular polynomial equations can
be used to significantly reduce the complexity of our new attack. Finally, we provide
simulations to confirm the efficiency of our method and we present two countermea-
sures which have a very small penalty on the performance of the algorithm. Our main
objective was to prove that stacking several countermeasures does not provide global
security despite addressing each and every attack separately. Therefore, the main con-
sequence of this work is that fault injection countermeasures must also be designed to
resist SCA and vice versa.

3.5 Conclusion

In this chapter we have investigated the problem of passive physical attacks, also de-
noted as side-channel attacks. While fault attacks Chap. 2 are very invasive and can be
detected, side-channel attacks are less intrusive, can be concealed and can provide sim-
ilar results as faults. They have been one of the main concerns of the recent advances
in cryptographic implementations both on attacks and countermeasures. In Sec. 3.1 we
have thus briefly recalled the framework used in research to analyze side-channel at-
tacks. Namely we have recalled the various kind of side-channel vectors, together with
the various theoretical models that emerged in the literature to study the subject. We
have afterwards recalled the main strategies to break implementations for both sym-
metric and asymmetric algorithms, together with some of the countermeasures that
have been found to thwart them. One of the countermeasures for symmetric ciphers
that have been widely studied is the Rivain-Prouff [146] secure multiplication counter-
measure. In Sec. 3.2 we introduce our recent work which has been submitted to CHES
2016. By exploiting the repeated manipulation of the variables used in the secure multi-
plication we show that it is possible to break with an horizontal attack in the Gaussian
leakage model [14]. We afterwards present in Sec. 3.2 the results of our work of security
analysis of a recent publication which exploits the properties of linear codes to secure
symmetric implementations from both side-channels and fault attacks. We also provide
some suggestion to patch the problem that we have found [9]. Finally, in Sec. 3.4 we
present an attack that have been published at PKC 2013 against CRT-RSA secure im-
plementations. We have used an attack combining a fault and a side-channel to mount
a Bellcore attack against an CRT-RSA implementation protected against faults and
side-channels. We show that this countermeasure is not sufficient against an attacker
that employs both of them at the same time. In our work we also suggest some possible
efficient countermeasures against our new attack [10].

125

Chapter 4

Conclusions and Open Problems

This thesis focuses on the security of cryptographic schemes in real world implementa-
tions. It has been shown that far from the classical model of black box security, modern
cryptographic implementations need to withstand attacks where the enemy knows the
system, but also she is given partial access to its sensitive internal state. Two main ex-
pressions exists of such a model, namely fault attacks and side-channel attacks. While
the former deals with attackers that can tamper with the algorithm internals, the lat-
ter concerns physical observables that depends on the sensitive internal states. Our
work considers both these aspects to evaluate the security of embedded cryptosystems
implementations.

4.1 Fault Attacks

In the second chapter we have analyzed the security of various countermeasures to
thwart fault attacks. Similarly to what happens for block ciphers, it is still not clear
how to provide a sound model for analyzing cryptographic primitives against faults;
thus it is often let to the community the role of validating the security of new counter-
measures by continuous challenge. Our work mainly focused on the security of infective
countermeasures. We have suggested attacks against several infective countermeasures,
both asymmetric and symmetric ones. We have demonstrated that almost none of the
infective countermeasures suggested in the literature provide enough confidence to be
viable. We thus think that a sound model for theoretical analysis of fault attacks is
becoming more and more urging in order to provide sound proofs of security for coun-
termeasures and improved design techniques for new ciphers.

We have also analyzed the soundness of fault countermeasures for elliptic curves
when special input points are chosen by the attacker. One of the main results of this
work is a concrete reason to avoid cryptosystems where users can choose the input
point and retrieve the result of the scalar multiplication on an elliptic curve.

4.2 Side-Channel Attacks

The third chapter of this thesis deals with side-channel attacks on cryptographic imple-
mentations. We have worked on three different aspects of side-channel security. First of
all we have analyzed the security of a recently suggested countermeasure for the AES
cryptosystem, based on the use of dual codes. We observe that serious biases in the
countermeasure are detectable with far less effort than what was suggested in the orig-

126

CHAPTER 4. CONCLUSIONS AND OPEN PROBLEMS

inal work. Thus we have suggested some cheap variants of the countermeasure which
may avoid our attack.

Afterwards, theoretical investigations led us to show practical examples of symmet-
ric masking schemes in which increasing the number of shares used to thwart high-order
side-channel attacks may indeed reduce the overall security when the noise distribution
affecting each observation is constant, which is what we typically observe in practice.
Despite mostly theoretical, this works tackle a very important issue of practical imple-
mentations that seems to be often underestimated by designers.

Finally we investigated the security of state-of-the-art RSA implementations, we
show that the common countermeasure consisting in verifying the signature with the
public exponent may indeed open the way to attacks that combine fault and side-
channel analysis. Our work allows to put into perspective the common development of
countermeasures, which are often directed against faults or side channel attacks, and
fails to thwart combinations of the two.

4.3 Open Problems

During our research we have found some interesting problems which may require further
investigations.

Concerning infective countermeasures we remark that despite a number of cryptan-
alytic attacks, this paradigm still seems a promising subject which may solve problems
related to classical countermeasures. However, all suggested infective algorithms seem
to be adaptations of classical countermeasures. Thus it would be of interest to inves-
tigate if there exists infective algorithms that are intrinsically different from classical
ones, and to what extent they do really provide better countermeasures.

As already mentioned earlier in this manuscript, another line of research that should
be investigated is the development of a formal model for the study of the security of
cryptographic implementations in the presence of faults. While this problem is not
new to the community, only limited advances have been made, in particular concerning
automatic formal analysis tools. Where side-channel analysis can count on countermea-
sures proven under some particular model, fault countermeasures still often relies on
the intuition of cryptographers to withstand attacks.

Finally, as we have observed, common points on elliptic curves provide a useful
resource to attackers. However there seems to be no investigation on the use of such
particular points to build efficient countermeasures, which may be possible due to
their interesting properties. Furthermore we suggest that such particular points may
be useful to provide efficient implementation tricks for elliptic curve algorithms.

127

Personal Bibliography

[1] Guillaume Barbu and Alberto Battistello. Analysis of a Code-based Countermea-
sure against Side-Channel and Fault Attacks, Unpublished .

[2] Guillaume Barbu, Alberto Battistello, Guillaume Dabosville, Christophe Giraud,
Guénaël Renault, Soline Renner, and Rina Zeitoun. Combined Attack on CRT-RSA
- Why Public Verification Must Not Be Public? In Public-Key Cryptography–PKC
2013, pages 198–215. Springer, 2013.

[3] Alberto Battistello. Common Points on Elliptic Curves: The Achilles’ Heel of Fault
Attack Countermeasures. In Constructive Side-Channel Analysis and Secure De-
sign, pages 69–81. Springer, 2014.

[4] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking
Scheme. In Cryptographic Hardware and Embedded Systems-CHES 2016. Springer,
2016.

[5] Alberto Battistello and Christophe Giraud. Fault analysis of infective AES compu-
tations. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013 Workshop
on, pages 101–107. IEEE, 2013.

[6] Alberto Battistello and Christophe Giraud. Lost in Translation: Fault Analysis
of Infective Security Proofs. In Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2015 Workshop on. IEEE, 2015.

[7] Alberto Battistello and Christophe Giraud. A Note on the Security of CHES
2014 Symmetric Infective Countermeasure. In Elisabeth Oswald and François-
Xavier Standaert, editors, Third International Workshop on Constructive Side-
Channel Analysis and Secure Design – COSADE 2016, LNCS, pages 101–107.
IEEE, Springer, 2016.

128

Bibliography

[1] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 601–610. ACM, 2001. 21

[2] F. Amiel, B. Feix, L. Marcel, and K. Villegas. Passive and Active Combined At-
tacks – Combining Fault Attacks and Side Channel Analysis –. In L. Breveglieri,
S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and
Tolerance in Cryptography – FDTC 2007, pages 92–99. IEEE Computer Society,
2007. 116

[3] A. Antipa, D. Brown, A. Menezes, R. Struik, and S. Vanstone. Validation of
elliptic curve public keys. In Public Key Cryptography—PKC 2003, pages 211–
223. Springer, 2003. 44, 45

[4] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. volume
2523 of Lecture Notes in Computer Science, pages 260–275. Springer, 2003. 42,
43, 47, 48

[5] S. Azzi, M. Christofi, D. Vigilant, and B. Barras. Using Linear Codes as a
Fault Countermeasure for Nonlinear Operations: Application to AES and Formal
Verification. 2015. 106

[6] J. Balasch, S. Faust, and B. Gierlichs. Inner Product Masking Revisited. In
E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
I, volume 9056 of Lecture Notes in Computer Science, pages 486–510. Springer,
2015. 78, 86

[7] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s
Apprentice Guide to Fault Attacks. Cryptology ePrint Archive, Report 2004/100,
2004. http://eprint.iacr.org/2004/100. 40

[8] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.
39

[9] G. Barbu and A. Battistello. Analysis of a Code-based Countermeasure against
Side-Channel and Fault Attacks, Unpublished . I, II, 75, 125

[10] G. Barbu, A. Battistello, G. Dabosville, C. Giraud, G. Renault, S. Renner, and
R. Zeitoun. Combined Attack on CRT-RSA - Why Public Verification Must Not

129

http://eprint.iacr.org/2004/100

BIBLIOGRAPHY

Be Public? In Public-Key Cryptography–PKC 2013, pages 198–215. Springer,
2013. II, 125

[11] G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, and B. Grégoire. Composi-
tional Verification of Higher-Order Masking: Application to a Verifying Mask-
ing Compiler. Cryptology ePrint Archive, Report 2015/506, 2015. http:

//eprint.iacr.org/. 87, 150

[12] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-
Charvillon. Mutual information analysis: a comprehensive study. Journal of
Cryptology, 24(2):269–291, 2011. 83

[13] A. Battistello. Common Points on Elliptic Curves: The Achilles’ Heel of Fault
Attack Countermeasures. In Constructive Side-Channel Analysis and Secure De-
sign, pages 69–81. Springer, 2014. I, II, 38

[14] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal Side-Channel
Attacks and Countermeasures on the ISW Masking Scheme. In Cryptographic
Hardware and Embedded Systems-CHES 2016. Springer, 2016. I, II, 75, 125

[15] A. Battistello and C. Giraud. Fault analysis of infective AES computations.
In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013 Workshop on,
pages 101–107. IEEE, 2013. I, II, 38, 58

[16] A. Battistello and C. Giraud. Lost in Translation: Fault Analysis of Infective
Security Proofs. In N. Homma and V. Lomné, editors, Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2015 Workshop on. IEEE, IEEE, 2015. I,
II, 38

[17] A. Battistello and C. Giraud. A Note on the Security of CHES 2014 Symmetric
Infective Countermeasure. In E. Oswald and F.-X. Standaert, editors, Third In-
ternational Workshop on Constructive Side-Channel Analysis and Secure Design
– COSADE 2016, LNCS, pages 101–107. IEEE, Springer, 2016. I, II, 38

[18] A. Bauer, É. Jaulmes, E. Prouff, and J. Wild. Horizontal and Vertical Side-
Channel Attacks against Secure RSA Implementations. In E. Dawson, editor,
Topics in Cryptology - CT-RSA 2013 - The Cryptographers’ Track at the RSA
Conference 2013, San Francisco,CA, USA, February 25-March 1, 2013. Proceed-
ings, volume 7779 of Lecture Notes in Computer Science, pages 1–17. Springer,
2013. 89

[19] S. Beläıd, J.-S. Coron, P.-A. Fouque, B. Gérard, J.-G. Kammerer, and E. Prouff.
Improved side-channel analysis of finite-field multiplication. In Cryptographic
Hardware and Embedded Systems–CHES 2015, pages 395–415. Springer, 2015.
76, 80, 115

[20] S. Beläıd, P.-A. Fouque, and B. Gérard. Side-channel analysis of multiplications
in GF (2128). In Advances in Cryptology–ASIACRYPT 2014, pages 306–325.
Springer, 2014. 76, 80, 115

[21] Bellcore. New Threat Model Breaks Crypto Codes. Press Release, Sept. 1996.
42, 44

130

http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY

[22] A. Berzati, C. Canovas, and L. Goubin. (In)security against Fault Injection At-
tacks for CRT-RSA Implementations. In L. Breveglieri, S. Gueron, I. Koren,
D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in Cryp-
tography – FDTC 2008, pages 101–107. IEEE Computer Society, 2008. 44, 48

[23] I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic curve cryp-
tosystems. In Advances in Cryptology—CRYPTO 2000, pages 131–146. Springer,
2000. 44, 45, 68

[24] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991. 28, 46

[25] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in Cryptology—CRYPTO’97, pages 513–525. Springer, 1997. 45

[26] A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir. Key re-
covery attacks of practical complexity on AES-256 variants with up to 10 rounds.
volume 6110, pages 299–319. Springer, 2010. 28

[27] A. Biryukov and D. Khovratovich. Related-key Cryptanalysis of the Full AES-192
and AES-256. 2009. http://eprint.iacr.org/2009/317. 28

[28] A. Biryukov, D. Khovratovich, and I. Nikolic̀. Distinguisher and Related-key
attack on the Full AES-256. In S. Halevi, editor, Advances in Cryptology –
CRYPTO ’09, volume 5677 of Lecture Notes in Computer Science, pages 231–
249. Springer, 2009. 28

[29] G. Blakely. Safeguarding cryptographic keys. In National Comp. Conf., vol-
ume 48, pages 313–317, New York, June 1979. AFIPS Press. 85

[30] J. Blomer and A. May. A Tool Kit for Finding Small Roots of Bivariate Polyno-
mials over the Integers. In R. Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of LNCS, pages 251–267. Springer, 2005. 123

[31] J. Blömer, M. Otto, and J.-P. Seifert. A New RSA-CRT Algorithm Secure against
Bellcore Attacks. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM Confer-
ence on Computer and Communications Security – CCS 2003, pages 311–320.
ACM Press, 2003. 44

[32] J. Blömer, M. Otto, and J.-P. Seifert. Sign change fault attacks on elliptic curve
cryptosystems. In Fault Diagnosis and Tolerance in Cryptography, pages 36–52.
Springer, 2006. 44, 45, 67, 68, 71

[33] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the
full AES. volume 7073, pages 344–371. Springer, 2011. 28

[34] D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Cryp-
tographic Protocols for Faults. In W. Fumy, editor, Advances in Cryptology –
EUROCRYPT ’97, volume 1233 of LNCS, pages 37–51. Springer, 1997. 42, 45,
117

[35] D. Boneh et al. Twenty years of attacks on the RSA cryptosystem. Notices of
the AMS, 46(2):203–213, 1999. 29, 31

131

http://eprint.iacr.org/2009/317

BIBLIOGRAPHY

[36] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery.
Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles
using sloppy reduction. International Journal of Applied Cryptography, 2(3):212–
228, 2012. 69

[37] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993). 123

[38] S. Briais, J.-M. Cioranesco, J.-L. Danger, S. Guilley, D. Naccache, and T. Por-
teboeuf. Random active shield. In G. Bertoni and B. Gierlichs, editors, Fault
Diagnosis and Tolerance in Cryptography – FDTC 2012, pages 103–113. IEEE,
IEEE Computer Society, 2012. 85

[39] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In Cryptographic Hardware and Embedded Systems-CHES 2004, pages
16–29. Springer, 2004. 82

[40] J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi. Orthogonal
Direct Sum Masking: A Smartcard Friendly Computation Paradigm in a Code,
with Builtin Protection against Side-Channel and Fault Attacks. In D. Naccache
and D. Sauveron, editors, Information Security Theory and Practice International
Workshop – WISTP 2014, volume 8501 of LNCS, pages 40–56. Springer, 2014.
106, 108, 109, 111, 112, 145

[41] J. Bringer, H. Chabanne, and T. H. Le. Protecting AES against side-channel
analysis using wire-tap codes. Journal of Cryptographic Engineering, 2(2):129–
141, 2012. 106

[42] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-Order
Masking Schemes for S-Boxes. In A. Canteaut, editor, FSE, volume 7549 of
Lecture Notes in Computer Science, pages 366–384. Springer, 2012. 78, 86

[43] M. Carreira-Perpinan. Mode-finding for mixtures of Gaussian distributions
Carreira-Perpinan. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions, 22(11):1318–1323, November 2000. 88

[44] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches
to Counteract Power-Analysis Attacks. In M. J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666
of Lecture Notes in Computer Science, pages 398–412. Springer, 1999. 78, 85, 89,
91, 92

[45] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In B. S. K. Jr., Ç. K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 13–28. Springer, 2002. 83

[46] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty Unconditionally Secure
Protocols (Extended Abstract). In J. Simon, editor, Proceedings of the 20th

132

BIBLIOGRAPHY

Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 11–19. ACM, 1988. 85

[47] Chevallier-Mames, Benôıt and Ciet, Mathieu and Joye, Marc. Low-cost solutions
for preventing simple side-channel analysis: Side-channel atomicity. Computers,
IEEE Transactions on, 53(6):760–768, 2004. 81

[48] H. Choukri and M. Tunstall. Round Reduction Using Faults. In L. Breveglieri and
I. Koren, editors, Workshop on Fault Diagnosis and Tolerance in Cryptography
– FDTC 2005, LNCS. Springer, 2005. 60, 64

[49] M. Ciet and M. Joye. Elliptic curve cryptosystems in the presence of permanent
and transient faults. Designs, codes and cryptography, 36(1):33–43, 2005. 44, 45,
68, 71

[50] M. Ciet and M. Joye. Practical Fault Countermeasures for Chinese Remaindering
Based RSA. In L. Breveglieri and I. Koren, editors, Workshop on Fault Diagnosis
and Tolerance in Cryptography – FDTC 2005, LNCS, pages 124–132. Springer,
2005. 44, 48

[51] J.-M. Cioranesco, J.-L. Danger, T. Graba, S. Guilley, Y. Mathieu, D. Naccache,
and X. T. Ngo. Cryptographically secure shields. In Hardware-Oriented Security
and Trust (HOST), 2014 IEEE International Symposium on, pages 25–31. IEEE,
2014. 85

[52] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal
Correlation Analysis on Exponentiation. In M. Soriano, S. Qing, and J. López,
editors, Information and Communications Security - 12th International Confer-
ence, ICICS 2010, Barcelona, Spain, December 15-17, 2010. Proceedings, volume
6476 of Lecture Notes in Computer Science, pages 46–61. Springer, 2010. 86, 89

[53] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Square Always
Exponentiation. In D. J. Bernstein and S. Chatterjee, editors, INDOCRYPT
2011 - 12th International Conference on Cryptology in India, volume 7107 of
LNCS, pages 40–57. Springer, 2011. 116

[54] D. Coppersmith. Finding a small root of a bivariate integer equation; factoring
with high bits known. volume 1070 of Lecture Notes in Computer Science, pages
178–189. Springer, 1996. 21

[55] D. Coppersmith. Finding a small root of a univariate modular equation. volume
1070 of Lecture Notes in Computer Science, pages 155–165. Springer, 1996. 21,
122

[56] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997. 121, 122, 123

[57] J. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Cryptographic Hardware and Embedded Systems, pages 292–302.
Springer, 1999. 71, 81

[58] J. Coron. Higher Order Masking of Look-Up Tables. In P. Q. Nguyen and
E. Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual

133

BIBLIOGRAPHY

International Conference on the Theory and Applications of Cryptographic Tech-
niques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of
Lecture Notes in Computer Science, pages 441–458. Springer, 2014. 78, 83, 85,
86

[59] J. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary
finite fields and application to side-channel countermeasures. J. Cryptographic
Engineering, 5(2):73–83, 2015. 78, 86

[60] J.-S. Coron, C. Giraud, N. Morin, G. Piret, and D. Vigilant. Fault Attacks and
Countermeasures on Vigilant’s RSA-CRT Algorithm. In L. Breveglieri, M. Joye,
I. Koren, D. Naccache, and I. Verbauwhede, editors, Fault Diagnosis and Toler-
ance in Cryptography – FDTC 2010, pages 89–96. IEEE Computer Society, 2010.
42, 47, 50

[61] J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel secu-
rity and mask refreshing. In Fast Software Encryption, pages 410–424. Springer,
2013. 85

[62] J.-S. Coron and A. Tchulkine. A new algorithm for switching from arithmetic
to boolean masking. In Cryptographic Hardware and Embedded Systems-CHES
2003, pages 89–97. Springer, 2003. 85

[63] G. Dabosville, J. Doget, and E. Prouff. A new second-order side channel attack
based on linear regression. Computers, IEEE Transactions on, 62(8):1629–1640,
2013. 83

[64] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013. 29

[65] B. Debraize. Efficient and provably secure methods for switching from arithmetic
to boolean masking. In Cryptographic Hardware and Embedded Systems–CHES
2012, pages 107–121. Springer, 2012. 85

[66] W. Diffie and M. E. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644–654, 1976. 24, 29

[67] J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert. Univariate side channel
attacks and leakage modeling. Journal of Cryptographic Engineering, 1(2):123–
144, 2011. 83

[68] E. Dottax, C. Giraud, M. Rivain, and Y. Sierra. On Second-Order Fault Anal-
ysis Resistance for CRT-RSA Implementations. In O. Markowitch, A. Bilas,
J.-H. Hoepman, C. J. Mitchell, and J.-J. Quisquater, editors, Information Secu-
rity Theory and Practices – WISTP 2009, volume 5746 of LNCS, pages 68–83.
Springer, 2009. 117

[69] A. Duc, S. Dziembowski, and S. Faust. Unifying Leakage Models: From Prob-
ing Attacks to Noisy Leakage. In Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
423–440, 2014. 79, 86, 100

134

BIBLIOGRAPHY

[70] A. Duc, S. Faust, and F. Standaert. Making Masking Security Proofs Concrete
- Or How to Evaluate the Security of Any Leaking Device. In Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, pages 401–429, 2015. 85, 86, 105

[71] V. Dupaquis and A. Venelli. Redundant Modular Reduction Algorithms. In
E. Prouff, editor, Smart Card Research and Advanced Applications, 10th Inter-
national Conference – CARDIS 2011, LNCS, pages 102–114. Springer, 2011. 116

[72] J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, A. Tria, and
T. Vaschalde. Fault Round Modification Analysis of the Advanced Encryption
Standard. In IEEE International Symposium on Hardware-Oriented Security and
Trust – HOST 2012, pages 28–39. IEEE, 2012. 60

[73] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in cryptology, pages 10–18. Springer, 1985. 31

[74] J. Fan, B. Gierlichs, and F. Vercauteren. To infinity and beyond: combined attack
on ECC using points of low order. In Cryptographic Hardware and Embedded
Systems–CHES 2011, pages 143–159. Springer, 2011. 67, 68, 71, 116

[75] J.-C. Faugere, C. Goyet, and G. Renault. Attacking (EC) DSA given only an
implicit hint. In Selected Areas in Cryptography, pages 252–274. Springer, 2012.
67

[76] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting
circuits from leakage: the computationally-bounded and noisy cases. In Advances
in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, French Riviera, May
30 - June 3, 2010. Proceedings, pages 135–156, 2010. 87, 98

[77] B. Feix and A. Venelli. Defeating with Fault Injection a Combined Attack Resis-
tant Exponentiation. In W. Schindler and S. Huss, editors, Third International
Workshop on Constructive Side-Channel Analysis and Secure Design – COSADE
2013, LNCS. Springer, 2013. 44

[78] J. Ferrigno and M. Hlavác. When AES blinks: introducing optical side channel.
Information Security, IET, 2(3):94–98, 2008. 77

[79] P. FIPS. 186-2. digital signature standard (dss). National Institute of Standards
and Technology (NIST), 2000. 31

[80] FIPS PUB 186-4. Digital Signature Standard. National Institute of Standards
and Technology, July 2013. 67, 69

[81] FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards
and Technology, Nov. 2001. 26, 59

[82] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault attack on elliptic curve
Montgomery ladder implementation. In Fault Diagnosis and Tolerance in Cryp-
tography, 2008. FDTC’08. 5th Workshop on, pages 92–98. IEEE, 2008. 68

135

BIBLIOGRAPHY

[83] J. Friedman. Tempest: A signal problem. NSA Cryptologic Spectrum, 1972. 35,
76

[84] C. Gauss and A. Clarke. Disquisitiones Arithmeticae. Springer, 1986. 11

[85] L. Genelle, E. Prouff, and M. Quisquater. Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In B. Preneel and T. Takagi,
editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 240–
255. Springer, 2011. 78, 86

[86] D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via low-bandwidth
acoustic cryptanalysis. In Advances in Cryptology–CRYPTO 2014, pages 444–
461. Springer, 2014. 76

[87] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information analysis.
In Cryptographic Hardware and Embedded Systems–CHES 2008, pages 426–442.
Springer, 2008. 82, 83

[88] B. Gierlichs, J.-M. Schmidt, and M. Tunstall. Infective Computation and Dummy
Rounds: Fault Protection for Block Ciphers without Check-before-Output. In
A. Hevia and G. Neven, editors, LATINCRYPT 2012, volume 7533 of LNCS,
pages 305–321. Springer, 2012. 46, 55, 57, 58, 59, 73

[89] B. Gierlichs, J.-M. Schmidt, and M. Tunstall. Infective Computation and Dummy
Rounds: Fault Protection for Block Ciphers without Check-before-Output. Cryp-
tology ePrint Archive, Report 2012/678, 2012. http://eprint.iacr.org/. 55,
58

[90] C. Giraud. Dfa on aes. In Advanced Encryption Standard–AES, pages 27–41.
Springer, 2004. 45

[91] C. Giraud. An RSA implementation resistant to fault attacks and to simple
power analysis. Computers, IEEE Transactions on, 55(9):1116–1120, 2006. 42,
81

[92] C. Glowacz, V. Grosso, R. Poussier, J. Schüth, and F. Standaert. Simpler and
More Efficient Rank Estimation for Side-Channel Security Assessment. In G. Le-
ander, editor, Fast Software Encryption - 22nd International Workshop, FSE
2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054
of Lecture Notes in Computer Science, pages 117–129. Springer, 2015. 93, 97

[93] L. Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In
Public key cryptography—PKC 2003, pages 199–211. Springer, 2003. 67, 80

[94] L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of LNCS, pages 158–172. SV, 1999. 85

[95] V. Grosso, E. Prouff, and F. Standaert. Efficient Masked S-Boxes Processing
- A Step Forward -. In D. Pointcheval and D. Vergnaud, editors, Progress in
Cryptology - AFRICACRYPT 2014 - 7th International Conference on Cryptology
in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings, volume 8469 of
Lecture Notes in Computer Science, pages 251–266. Springer, 2014. 78, 83, 86

136

http://eprint.iacr.org/

BIBLIOGRAPHY

[96] S. Guilley, A. Heuser, and O. Rioul. A Key to Success - Success Exponents for
Side-Channel Distinguishers. In A. Biryukov and V. Goyal, editors, Progress in
Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryptology
in India, Bangalore, India, December 6-9, 2015, Proceedings, volume 9462 of
Lecture Notes in Computer Science, pages 270–290. Springer, 2015. 91, 92

[97] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember:
cold-boot attacks on encryption keys. Communications of the ACM, 52(5):91–98,
2009. 78

[98] S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In Theory
of Cryptography, pages 107–124. Springer, 2011. 78

[99] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford
University Press, 1979. 15

[100] N. Howgrave-Graham. Finding small roots of univariate modular equations re-
visited. In 6th IMA International Conference, volume 1355, pages 131 – 142.
Springer, 1997. 123

[101] N. Howgrave-Graham and N. Smart. Lattice attacks on Digital Signature
Schemes. In Designs, Codes and Cryptography, volume 23, pages 283–290, 2001.
32, 34

[102] L. H. Ing. The History of The Chinese Remainder Theorem. Mathematical
Medley, 30, 2003. 13

[103] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, pages 463–481, 2003. 78, 81, 85, 86

[104] E. Jochemsz and A. May. A Strategy for Finding Roots of Multivariate Polyno-
mials with New Applications in Attacking RSA Variants. In ASIACRYPT’06,
pages 267–282, 2006. 123

[105] M. Joye and M. Tunstall. Fault Analysis in Cryptography. Springer, 2012. 40

[106] M. Joye and S.-M. Yen. The Montgomery powering ladder. In Cryptographic
Hardware and Embedded Systems-CHES 2002, pages 291–302. Springer, 2002. 81

[107] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, et al. Factorization of a 768-bit RSA
modulus. In Advances in Cryptology–CRYPTO 2010, pages 333–350. Springer,
2010. 31

[108] D. Knuth. The Art of Computer Programming 2: Seminumerical Algorithms.
MA: Addison-Wesley, 1968. 19

[109] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987. 31

137

BIBLIOGRAPHY

[110] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO
’96, volume 1109 of LNCS, pages 104–113. Springer, 1996. 35, 76

[111] P. Kocher, J. Jaffe, and B. Jun. Introduction to Differential Power Analysis and
Related Attacks. Technical report, Cryptography Research Inc., 1998. 35, 76, 77,
79, 80, 81

[112] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. volume 6110, pages
388–397, 2010. 35, 76, 77, 80

[113] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential power
analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011. 80

[114] A. Lenstra. Memo on RSA Signature Generation in the Presence of Faults.
Manuscript, 1996. 42

[115] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982. 21

[116] C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based schemes
using a prime order subgroup. In Advances in Cryptology—CRYPTO’97, pages
249–263. Springer, 1997. 44, 67

[117] V. Lomné, T. Roche, and A. Thillard. On the Need of Randomness in Fault
Attack Countermeasures – Application to AES. In G. Bertoni and B. Gierlichs,
editors, Fault Diagnosis and Tolerance in Cryptography – FDTC 2012, pages
85–94. IEEE Computer Society, 2012. 46, 52, 53, 54, 73, 124

[118] S. F. Marcin Andrychowicz, Stefan Dziembowski. Circuit compilers with O(1/log
n) leakage rate. In M. Fischlin and J.-S. Coron, editors, Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages
586–615. Springer, 2016. 87, 101

[119] D. P. Martin, J. F. O’Connell, E. Oswald, and M. Stam. Counting Keys in
Parallel After a Side Channel Attack. In T. Iwata and J. H. Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 313–337. Springer, 2015. 93,
97

[120] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Advances in Cryptology – EUROCRYPT ’93, volume 765 of LNCS, pages 386–
397. Springer, 1993. 28, 46

[121] A. May. Computing the RSA secret key is deterministic polynomial time equiv-
alent to factoring. In Advances in Cryptology–CRYPTO 2004, pages 213–219.
Springer, 2004. 31

[122] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC press, 1996. 15, 22

138

BIBLIOGRAPHY

[123] T. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In Cryptographic Hardware and Embedded Systems—CHES 2000, pages
27–78. Springer, 2000. 83, 84

[124] S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Ab-
stract). In M. Naor, editor, Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceed-
ings, volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer,
2004. 77, 81, 88

[125] D. Micciancio. Lattice-based cryptography. In Encyclopedia of Cryptography and
Security, pages 713–715. Springer, 2011. 19

[126] D. Micciancio. The geometry of lattice cryptography. In Foundations of security
analysis and design VI, pages 185–210. Springer, 2011. 19

[127] V. Miller. Use of Elliptic Curves in Cryptography. In H. Wiliams, editor, Advances
in Cryptology – CRYPTO ’85, volume 218 of LNCS, pages 417–426. Springer,
1985. 31

[128] A. Moradi. Wire-Tap Codes as Side-Channel Countermeasure–an FPGA-based
experiment–. 106

[129] A. Moradi. Wire-Tap Codes as Side-Channel Countermeasure. In Progress in
Cryptology–INDOCRYPT 2014, pages 341–359. Springer, 2014. 83

[130] D. Mukhopadhyay. An Improved Fault Based Attack of the Advanced Encryption
Standard. In B. Preneel, editor, AFRICACRYPT 2009, volume 5580 of LNCS,
pages 421–434. Springer, 2009. 46, 53, 54

[131] O. Neiße and J. Pulkus. Switching blindings with a view towards IDEA. In Cryp-
tographic Hardware and Embedded Systems-CHES 2004, pages 230–239. Springer,
2004. 85

[132] P. Nguyen and I. Shparlinski. The Insecurity of the Elliptic Curve Digital Signa-
ture Algorithm with Partially Known Nonces. In Designs, Codes and Cryptogra-
phy, 2003. 32, 34

[133] P. Q. Nguyen. La géométrie des nombres en cryptologie. PhD thesis, Université
de Paris 07, 1999. 21

[134] P. Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In Revised
Papers from the International Conference on Cryptography and Lattices, CaLC
’01, pages 146–180, London, UK, UK, 2001. Springer-Verlag. 19, 21

[135] Y. Oren, M. Renauld, F. Standaert, and A. Wool. Algebraic Side-Channel Attacks
Beyond the Hamming Weight Leakage Model. In E. Prouff and P. Schaumont,
editors, Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th
International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings,
volume 7428 of Lecture Notes in Computer Science, pages 140–154. Springer,
2012. 86

[136] T. PARI-Group. Pari/gp , version 2.5.3, Bordeaux. 2013. 69

139

BIBLIOGRAPHY

[137] G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad. In C. Walter, Ç. Koç,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2003, volume 2779 of LNCS, pages 77–88. Springer, 2003. 46

[138] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathe-
matics, 15(3):331–334, 1975. 31

[139] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of computation, 32(143):918–924, 1978. 67

[140] E. Prouff and M. Rivain. Masking Against Side-Channel Attacks: a Formal Se-
curity Proof. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013 - 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, volume 7881 of LNCS, pages 142–159. SV, 2013. 79, 85, 86

[141] E. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order differential
power analysis. Computers, IEEE Transactions on, 58(6):799–811, 2009. 84

[142] E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In B. Preneel and T. Tak-
agi, editors, Cryptographic Hardware and Embedded Systems, 13th International
Workshop – CHES 2011, volume 6917 of Lecture Notes in Computer Science,
pages 63–78. Springer, 2011. 78, 83, 86

[143] P. Rauzy and S. Guilley. Countermeasures against High-Order Fault-Injection
Attacks on CRT-RSA. In A. Tria and D. Choi, editors, Fault Diagnosis and
Tolerance in Cryptography – FDTC 2014, pages 68–82. IEEE, 2014. 47, 48, 49,
50, 51, 52

[144] P. Rauzy, M. Moreau, S. Guilley, and Z. Najm. Using modular extension to
provably protect ecc against fault attacks. Cryptology ePrint Archive, Report
2015/882, 2015. http://eprint.iacr.org/. 72, 73

[145] M. Rivain. Securing rsa against fault analysis by double addition chain exponen-
tiation. In Topics in Cryptology–CT-RSA 2009, pages 459–480. Springer, 2009.
42

[146] M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International
Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, pages
413–427, 2010. 78, 85, 86, 87, 106, 125

[147] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–
126, 1978. 29

[148] B. Robisson and P. Manet. Differential Behavioral Analysis. In P. Paillier and
I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems – CHES
2007, volume 4727 of LNCS, pages 413–426. Springer, 2007. 116

140

http://eprint.iacr.org/

BIBLIOGRAPHY

[149] T. Roche, V. Lomné, and K. Khalfallah. Combined Fault and Side-Channel
Attack on Protected Implementations of AES. In E. Prouff, editor, Smart Card
Research and Advanced Applications, 10th International Conference – CARDIS
2011, LNCS, pages 152–169. Springer, 2011. 116

[150] S. Ross. A First Course in Probability. Pearson Prentice Hall, 2010. 16

[151] W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential side
channel cryptanalysis. In Cryptographic Hardware and Embedded Systems–CHES
2005, pages 30–46. Springer, 2005. 83

[152] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert. Simple pho-
tonic emission analysis of AES. volume 7428 of Lecture Notes in Computer Sci-
ence, pages 41–57. Springer, 2012. 77

[153] J.-M. Schmidt, M. Tunstall, R. Avanzi, I. Kizvhatov, T. Kasper, and D. Oswald.
Combined implementation attack resistant exponentiation. In M. Abdalla and
P. Barreto, editors, LATINCRYPT 2010, volume 6212 of LNCS, pages 305–322.
Springer, 2010. 44

[154] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science, 53(2):201–224, 1987. 21

[155] R. Schoof. Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux, 7(1):219–254, 1995. 69

[156] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
85

[157] A. Shamir. How to check modular exponentiation. Eurocrypt’97 rump session,
1997. 42, 48

[158] D. Shanks. Class number, a theory of factorization, and genera. In Proc. Symp.
Pure Math, volume 20, pages 415–440, 1971. 31

[159] C. E. Shannon. A Mathematical Theory of Communication. Bell system technical
journal, 27:379–423, 623–656, 1948. 22, 26

[160] C. E. Shannon. Communication Theory of Secrecy Systems. Bell system technical
journal, 28:656–715, 1949. 22, 26

[161] F. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World Is Not Enough: Another Look on Second-
Order DPA. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010 -
16th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings, volume 6477
of Lecture Notes in Computer Science, pages 112–129. Springer, 2010. 89, 92

[162] S. H. Standard. FIPS 180-1. Secure Hash Standard, NIST, US Dept. of Com-
merce, Washington DC April, 9:21, 1995. 32

[163] Standards for Efficient Cryptography Group (SECG). SEC 2 Ver 2.0 : Rec-
ommended Elliptic Curve Domain Parameters. Certicom Research, Jan. 2010.
67

141

BIBLIOGRAPHY

[164] D. R. Stinson. Cryptography: theory and practice. CRC press, 2005. 22

[165] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Destroying Fault Invariant with
Randomization – A countermeasure for AES Against Differential Fault Attacks.
In L. Batina and M. Robshaw, editors, Cryptographic Hardware and Embedded
Systems – CHES 2014, volume 8731 of LNCS, pages 93–111. Springer, 2014. 46,
58, 59, 60, 63, 73

[166] A. Turing. On computable numbers, with an application to the entschei-
dungsproblem. J. of Math, 58:345–363, 1938. 18

[167] A. M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 2(1):161–228, 1939. 18

[168] W. Van Eck. Electromagnetic radiation from video display units: an eavesdrop-
ping risk? Computers & Security, 4(4):269–286, 1985. 35

[169] N. Veyrat-Charvillon, B. Gérard, and F. Standaert. Soft Analytical Side-Channel
Attacks. In P. Sarkar and T. Iwata, editors, Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., Decem-
ber 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer
Science, pages 282–296. Springer, 2014. 86

[170] N. Veyrat-Charvillon and F.-X. Standaert. Mutual information analysis: how,
when and why? In Cryptographic Hardware and Embedded Systems-CHES 2009,
pages 429–443. Springer, 2009. 83

[171] D. Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault
Attacks. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and
Embedded Systems – CHES 2008, volume 5154 of LNCS, pages 130–145. Springer,
2008. 42

[172] D. Wagner. Cryptanalysis of a Provable Secure CRT-RSA Algorithm. In B. Pfitz-
mann and P. Liu, editors, ACM Conference on Computer and Communications
Security – CCS’04, pages 82–91. ACM Press, 2004. 44

[173] M. J. Wiener. Cryptanalysis of short RSA secret exponents. Information Theory,
IEEE Transactions on, 36(3):553–558, 1990. 31

[174] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Annals of Mathe-
matics, pages 443–551, 1995. 15

[175] M. Witteman, J. van Woudenberg, and F. Menarini. Defeating RSA Multiply-
Always and Message Blinding Countermeasures. In A. Kiayias, editor, Topics in
Cryptology – CT-RSA 2011, volume 6558 of LNCS, pages 77–88. Springer, 2011.
116

[176] P. Wright and P. Greengrass. Spycatcher: The candid autobiography of a senior
intelligence officer. Dell Publishing Company, 1987. 35

[177] P. Wright and P. Greengrass. Spycatcher: The candid autobiography of a senior
intelligence officer. Dell Publishing Company, 1987. 76

142

BIBLIOGRAPHY

[178] S.-M. Yen and D. Kim. Cryptanalysis of Two Protocols for RSA with CRT Based
on Fault Infection. In L. Breveglieri and I. Koren, editors, Workshop on Fault
Diagnosis and Tolerance in Cryptography – FDTC 2004, pages 381–385. IEEE
Computer Society, 2004. 44

[179] S.-M. Yen, D. Kim, and S. Moon. Cryptanalysis of Two Protocols for RSA with
CRT Based on Fault Infection. In L. Breveglieri, I. Koren, D. Naccache, and J.-P.
Seifert, editors, Fault Diagnosis and Tolerance in Cryptography – FDTC 2006,
volume 4236 of LNCS, pages 53–61. Springer, 2006. 44

[180] S.-M. Yen, S.-J. Kim, S.-G. Lim, and S.-J. Moon. RSA Speedup with Residue
Number System Immune against Hardware Fault Cryptanalysis. In K. Kim,
editor, Information Security and Cryptology – ICISC 2001, volume 2288 of LNCS,
pages 397–413. Springer, 2001. 44

[181] S.-M. Yen, S. Moon, and J.-C. Ha. Hardware fault attack on rsa with crt revisited.
In Information Security and Cryptology—ICISC 2002, pages 374–388. Springer,
2002. 43

[182] Y. Zhou and D. Feng. Side-Channel Attacks: Ten Years After Its Publication
and the Impacts on Cryptographic Module Security Testing. IACR Cryptology
ePrint Archive, 2005:388, 2005. 35

[183] J. F. Ziegler and W. Lanford. Effect of cosmic rays on computer memories.
Science, 206(4420):776–788, 1979. 39

143

Personal Patents Bibliography

[1] Guillaume Barbu, Alberto Battistello, Christophe Giraud, and Soline Renner.
Method for testing the security of an electronic device against an attack, and elec-
tronic device implementing countermeasures, 09 2012. I, II

[2] Alberto Battistello, Olivier Chamley, and Christophe Giraud. Procede et systeme
pour la verification de la validitè d’une signature numerique de message, 11 2013.
I, II

[3] Alberto Battistello, Guillaume Dabosville, Christophe Giraud, and Laurie Genelle.
Géneration de message pour test de génération de clés cryptographiques, 09 2015.
I, II

[4] Alberto Battistello and Christophe Giraud. Generation of cryptographic keys, 10
2016. I, II

[5] Alberto Battistello, Christophe Giraud, Guillaume Dabosville, and Laurie Genelle.
Integrity Verification of Key Pairs, 06 2015. I, II

[6] Alberto Battistello, Christophe Giraud, Julien Matha, and Nicolas Morin. Contre-
mesure à la préparation des cartes pour détecter des attaques lumière, 08 2012. I,
II

144

Appendix A

Annexes

A.1 The [16,8,5]-code and Related Matrices

As exposed in Appendix B of [40], the selected code was picked up from the Magma
linear code database.

We give hereafter the generating and parity matricesG andH as well as the matrices
GT (GGT)−1 and HT (HHT)−1 used for the projections from Fn2 to C and D respectively
and finally the matrices L and L′ corresponding to the standard and masked xtime
linear application.

G =

1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1

H =

1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1

145

APPENDIX A. ANNEXES

GT (GGT)−1 =

0 0 1 1 1 0 0 1
0 0 1 0 0 1 0 1
1 1 1 1 1 0 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 1 0
0 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1
1 1 0 0 0 1 1 0
0 1 0 1 1 0 1 0
1 1 0 0 0 1 0 1
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1
1 0 0 0 1 1 0 0
1 0 0 1 0 1 1 1
0 1 1 1 0 0 1 0

, HT (HHT)−1 =

0 1 0 0 1 1 1 0
1 1 1 0 1 0 0 1
0 0 1 1 0 0 0 1
1 0 0 1 0 0 1 1
1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 0 1 1
0 1 0 1 1 0 1 0
1 1 1 0 0 0 1 1
1 0 1 1 0 1 0 0
1 1 0 1 1 0 1 0
0 1 1 0 1 1 0 1
0 0 1 1 1 1 0 1
0 1 0 1 1 0 1 1
1 0 1 0 0 1 1 0
1 0 0 1 1 1 0 1

L =

0 0 0 1 1 0 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

Recalling L′ = GT (GGT)−1LG⊕HT (HHT)−1H,

L′ =

1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0
1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1
1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0
0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0
0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0
1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1
0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1
1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1
0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1
1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1
1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0

A.2 CHES 2014 AES Infective Attacks Success Prob-

abilities

We describe here the success probabilities of the different attacks described in Sec. 2.5.

146

APPENDIX A. ANNEXES

A.2.1 Probability of Success of Attack 1
The success of Attack 1 depends on the chances for the attacker to fault the increment
of i in the loop corresponding to the last redundant round execution. Let us denote by
e1 the event of faulting the last redundant round during the q-th loop. The probability
P(e1) is thus the probability of having a bit-string rstr that contains 20 “1” on the first
q − 1 positions, one bit set on the q-th position and a last sub-string with only one
bit set on the last t− q positions. The corresponding number of such sub-strings being
equal to

(
q−1
20

)
,
(

1
1

)
and

(
t−q

1

)
respectively, this leads us to

(
q−1
20

)(
t−q

1

)
exploitable rstr

strings.
By dividing this value by the number of possible rstr strings, we obtain the prob-

ability P(e1):

P(e1) =

(
q−1
20

)(
t−q

1

)
(
t

22

) . (A.1)

As described in Sec. A.2.5, we then compute by using Eq. A.14 the probability to
obtain at least one useful faulty ciphertext by repeating the fault injection r times.

A.2.2 Probability of Success of Attack 2
Let us evaluate the probability that the event e2 of obtaining a useful faulty ciphertext
by setting to zero the variable λ at Step 5 of Alg. 6 happens. The probability P(e2)
corresponds to the probability of obtaining a string rstr that has 21 bits set on the first
q− 1 positions, a “1” on the q-th position and only “0”’s on the last t− q positions. As
we have done in Sec. A.2.1, we compute this probability as the number of such strings
divided by the total number of possible rstr strings. As there is only one possibility
that the last t− (q − 1) bits of rstr are exactly “1 0 · · · 0”, we thus obtain:

P(e2) =

(
q−1
21

)
(
t

22

) , (A.2)

As described in Sec. A.2.5, we then compute by using Eq. A.14 the probability to
obtain at least one useful faulty ciphertext by repeating the fault injection r times.

A.2.3 Probability of Success of Attack 3
Let us denote by e3 the event that a random byte error disturbs the string rstr such
that it contains only 21 or 20 “1”. To evaluate the probability P(e3) that the event
e3 occurs, let us assume for the sake of simplicity that the attacker disturbs the least
significant byte B of rstr which corresponds to a random byte fault model. By firstly
evaluating the case 21, we observe that the probability that a bit-string has exactly 21
bits set on the first t− 8 positions and the remaining “1” in one of the last 8 positions
is:

P(HW (B) = 1) =

(
t−8
21

)(
8
1

)
(
t

22

) , (A.3)

where we denote by HW (B) the Hamming weight of the byte B. Equation (A.3)
corresponds to the probability that the last byte of rstr has an Hamming weight equal
to 1. By summing the corresponding probabilities for all the Hamming weights between

147

APPENDIX A. ANNEXES

1 and 8 we obtain the probability that the last byte of rstr has an Hamming weight
greater than zero:

P(HW (B) > 0) =
8∑
i=1

(
t−8
22−i

)(
8
i

)
(
t

22

) . (A.4)

Now, let us compute the probability of injecting a random error on a byte of Hamming
weight i such that the byte contains only i−1 “1” after the disturbance. We thus count
for each possible value of B how many 8-bit values e exist such that HW (B ⊕ e) =
HW (B)− 1. This corresponds to the number of possible errors setting to “0” j bits “1”
while setting to “1” j − 1 bits “0”. Afterwards we divide the result by the number of
possible values for the error e:

P(HW (B ⊕ e) = HW (B)− 1|B)

=
∑HW (B)

j=1 (HW (B)
j)(8−HW (B)

j−1)
255 .

(A.5)

This corresponds to the probability that HW (B ⊕ e) = HW (B) − 1 by injecting a
random error e on a random 8-bit value B.

By combining the two probabilities above, we obtain the probability that rstr con-
tains 21 “1” after a random error injection on the last byte of rstr:

P(HW (B ⊕ e) = 21) =
8∑
i=1

(
t−8
22−i

)(
8
i

)
(
t

22

) i∑
j=1

(
i
j

)(
8−i
j−1

)
255 . (A.6)

For the case where rstr contains only 20 “1”, we use the same reasoning and we obtain:

P(HW (B ⊕ e) = 20) =
8∑
i=2

(
t−8
22−i

)(
8
i

)
(
t

22

) i∑
j=2

(
i
j

)(
8−i
j−2

)
255 . (A.7)

Thus the total probability of disturbing the generation of one byte of rstr such that it
contains a total of 21 or 20 “1” is:

P(e3) =
8∑
i=1

(
t−8
22−i

)(
8
i

)
(
t

22

) i∑
j=1

(
i
j

)(
8−i
j−1

)
255 +

8∑
i=2

(
t−8
22−i

)(
8
i

)
(
t

22

) i∑
j=2

(
i
j

)(
8−i
j−2

)
255 . (A.8)

As described in Sec. A.2.5, we then compute by using Eq. A.14 the probability to
obtain at least one useful faulty ciphertext by repeating the fault injection r times.

A.2.4 Probability of Success of Attack 4
In the following we denote by e4 the event that the error e is injected after a cipher
round and is such that q⊕ e > t. In order to evaluate the probability P(e4) we need to
compute:

• the probability that the error e leads to q ⊕ e > t,

• the probability that the attacker disturbs the algorithm after a cipher round and
not after a redundant or dummy round.

148

APPENDIX A. ANNEXES

For the first probability, without loss of generality, we assume that q is coded over
one byte which should be the case in practice. We thus obtain that the probability of
injecting an 8-bit error e such that q ⊕ e > t depends only on t and is given by:

P(q ⊕ e > t) = 28 − t
28 . (A.9)

In order to evaluate the second probability we remark that it is equivalent to the
probability that the string rstr contains two or three “1” in the first q positions. We
recall that rstr is a string with 22 “1” at most. Thus the number of possible strings
rstr with only two “1” in the first q positions is:(

q

2

)(
t− q
20

)
. (A.10)

Summing Eq. A.10 to the number of possible strings rstr with only three “1” in the
first q positions we obtain the number of favorable cases for the attacker:(

q

2

)(
t− q
20

)
+
(
q

3

)(
t− q

22− 3

)
. (A.11)

By dividing by the total number of possible rstr strings we thus obtain the probability
that the algorithm has executed only one cipher round after q rounds:

P(HW (rstr[1, . . . , q]) ∈ [2, 3]) =

(
q
2

)(
t−q
20

)
+
(
q
3

)(
t−q
19

)
(
t

22

) , (A.12)

where rstr[1, . . . , q] denotes the sub-string of rstr between the first and the q-th posi-
tion. By combining the two probabilities we obtain:

P(e4) = 28 − t
28

3∑
i=2

(
q
i

)(
t−q
22−i

)
(
t

22

) , (A.13)

which corresponds to the probability that the algorithm returns an exploitable faulty
ciphertext by injecting a random error after q rounds.

As described in Sec. A.2.5, we then compute by using Eq. A.14 the probability to
obtain at least one useful faulty ciphertext by repeating the fault injection r times.

A.2.5 Attack Repetition Probability

For each attack, we denote by P(ei) the probability that event ei occurs. By assuming
that P(ei) is independent for each execution we can compute the probability of getting
at least one useful faulty ciphertext by repeating the fault injection r times as:

Pr = 1− (1− P(ei))r . (A.14)

A.3 Mutual Information Approximation

In this section, we develop the mutual information between the Hamming weight of
uniform random variable X defined over F2k and a noisy observation L of this Hamming
weight, the noise being modeled by a Gaussian random variable with 0 mean and

149

APPENDIX A. ANNEXES

standard deviation σ. By definition, we have L = HW(X) +B, with B ∼ N (0, σ2). By
definition of the entropy, we have:

H(X|L) = H(X,L)−H(L) . (A.15)

Given X, the distribution of L is Gaussian with standard deviation σ. The differen-
tial entropy corresponding to a Gaussian distribution with standard deviation σ is
ln(σ
√

2πe), whereas the entropy of a uniform random variable over F2k is k. We there-
fore get:

H(X,L) = H(X) + H(B) = k + ln(σ
√

2πe) (A.16)

The distribution of L is the sum of two distributions. We can model the distribution
of HW(X) as Gaussian with standard deviation σk =

√
k/2; this is true for large k.

The sum of two independent and normally distributed random variables has a normal
distribution. Moreover, its mean and variance are simply obtained by summing those
of the added variables. In our context, this gives:

H(L) ' ln
(√

(σ2
k + σ2)2πe

)
' ln

(√
(k/4 + σ2)2πe

)
(A.17)

Combining (A.15)-(A.17) leads to:

H(X | L) ' k + ln(σ
√

2πe)− ln
(√

(k/4 + σ2)2πe
)
' k + 1

2 ln
(

σ2

k/4 + σ2

)

' k + 1
2 ln

(
1

1 + k/(4σ2)

)
' k − k

8σ2 ,

after approximating ln(1− U) by −U , and k/(k + 4σ2) by k/4σ2 (which is true when
σ2 � k). Eventually, the amount of information I(X;L) .= H(X)−H(X | L) given by
the noisy Hamming weight leakage can be approximated for σ2 � k by:

I(X;L) ' k

8σ2

A.4 Proof of Lemma 2

Our proof is essentially the same as in [11]. We construct two sets I and J corre-
sponding to the input shares of x? and y? respectively. We denote by Mij the result of
the subroutine MatMult((x1, . . . , xn), (y1, . . . , yn)). From the definition of MatMult and
RefreshMasks, it is easy to see that each Mij can be perfectly simulated from xi and yj;
more generally any internal variable within MatMult can be perfectly simulated from xi
and/or yj for some i and j; for this it suffices to simulate the randoms in RefreshMasks
exactly as they are generated in RefreshMasks.

We divide the internal probes in 4 groups. The four groups are processed separately
and sequentially, that is we start with all probes in Group 1, and finish with all probes
in Group 4.

• Group 1: If Mii is probed, add i to I and J .

• Group 2: If ri,j or ci,j is probed (for any i 6= j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we denote by
U the common value of I and J after the processing of Group 1 and 2 probes.

150

APPENDIX A. ANNEXES

• Group 3: If Mij ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .

• Group 4: If Mij is probed (for any i 6= j), then add i to I and j to J . If some
probe in MatMult requires the knowledge of xi and/or yj, add i to I and/or j to J .

We have |I| ≤ t1 and |J | ≤ t1, since for every probe we add at most one index in I
and J . The simulation of probed variables in groups 1 and 4 is straightforward. Note
that for i < j, the variable rij is used in all partial sums cik for k ≥ j; moreover rij is
used in rij ⊕Mij, which is used in rji, which is used in all partial sums cjk for k ≥ i.
Therefore if i /∈ U , then rij is not probed and does not enter in the computation of any
probed cik; symmetrically if j /∈ U , then rji is not probed and does not enter in the
computation of any probed cjk.

For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij, Mij,
Mij ⊕ rij, Mji and rji. In particular, we let rij ← F2k , as in the real circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real
circuit. If Mij ⊕ ri,j is probed (Group 3), we can also simulate it since i ∈ U and
j ∈ J by definition of the processing of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable
cik, since otherwise i ∈ U . Therefore rij is not used in the computation of any
probed variable (except rji, and possibly Mij ⊕ ri,j). Therefore we can simulate
rji ← F2k ; moreover if Mij ⊕ rij is probed, we can perfectly simulate it using
Mij ⊕ rij = Mji ⊕ rji, since j ∈ U and i ∈ J by definition of the processing of
Group 3 variables.

• Case 4: i /∈ U and j /∈ U . If Mij ⊕ ri,j is probed, since rij is not probed and does
not enter into the computation of any other probed variable, we can perfectly
simulate such probe with a random value.

From cases 1, 2 and 3, we obtain that for any i 6= j, we can perfectly simulate any
variable rij such that i ∈ U . This implies that we can also perfectly simulate all partial
sums cik when i ∈ U , including the output variables ci. Finally, all probed variables are
perfectly simulated.

We now consider the simulation of the output variables ci. We must show how to
simulate ci for all i ∈ O, where O is an arbitrary subset of [1, n] such that t1 + |O| < n.
For i ∈ U , such variables are already perfectly simulated, as explained above. We
now consider the output variables ci with i /∈ U . We construct a subset of indices V
as follows: for any probed Group 3 variable Mij ⊕ rij such that i /∈ U and j /∈ U
(this corresponds to Case 4), we put j in V if i ∈ O, otherwise we put i in V . Since
we have only considered Group 3 probes, we must have |U | + |V | ≤ t1, which implies
|U |+ |V |+ |O| < n. Therefore there exists an index j? ∈ [1, n] such that j? /∈ U∪V ∪O.
For any i ∈ O, we can write:

ci = Mii ⊕
⊕
j 6=i

rij = ri,j? ⊕

Mii ⊕
⊕
j 6=i,j?

rij

151

APPENDIX A. ANNEXES

We claim that neither ri,j? nor rj?,i do enter into the computation of any probed
variable or other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j? nor any partial sum cik
was probed; similarly j? /∈ U so neither rj?,i nor any partial sum cj?,k was probed, and
the output cj? does not have to be simulated since by definition j? /∈ O. Finally if
i < j? then Mi,j? ⊕ ri,j? was not probed since otherwise j? ∈ V (since i ∈ O); similarly
if j? < i then Mj?,i ⊕ rj?,i was not probed since otherwise we would have j? ∈ V since
j? /∈ O. Therefore, since neither ri,j? nor rj?,i are used elsewhere, we can perfectly
simulate ci by generating a random value. This proves the Lemma.

A.5 Generalization of Mask Refreshing for Arbi-

trary n

In this section we describe the generalization of our new mask refreshing algorithm
from Section 3.2.9 to arbitrary n. We note that to ensure the t-SNI property such
generalization is not completely straightforward; for example if at lines 16 and 17 of
Algorithm 18 below we would replace bn/2c by dn/2e, then for n = 3 we would have
d3 = a3 and the algorithm could not be t-SNI.

Algorithm 18: RefreshMasks
Require: a1, . . . , an
Ensure: d1, . . . , dn such that

⊕n
i=1 di = ⊕n

i=1 ai
1: if n = 1 then
2: return (a1)
3: end if
4: if n = 2 then
5: r ←$ {0, 1}k
6: return (a1 ⊕ r, a2 ⊕ r)
7: end if
8: for i = 1 to bn/2c do
9: ri ←$ {0, 1}k

10: bi ← ai ⊕ ri
11: bbn/2c+i ← abn/2c+i ⊕ ri {bi ⊕ bbn/2c+i = ai ⊕ abn/2c+i}
12: end for
13: if n mod 2 = 1 then
14: bn ← an
15: end if
16: (c1, . . . , cbn/2c) ← RefreshMasks(b1, . . . , bbn/2c)
17: (cbn/2c+1, . . . , cn)← RefreshMasks(bbn/2c+1, . . . , bn)
18: for i = 1 to bn/2c do
19: ri ←$ {0, 1}k
20: di ← ci ⊕ ri
21: dbn/2c+i ← cbn/2c+i ⊕ ri {di ⊕ dbn/2c+i = ci ⊕ cbn/2c+i}
22: end for
23: if n mod 2 = 1 then
24: dn ← cn
25: end if
26: return (d1, . . . , dn)

The following Lemma shows that our new RefreshMasks algorithm is still t-SNI for

152

APPENDIX A. ANNEXES

R1

R2

LOLI

I1I4 I2

I3

S1
1

S1
2

S2

S3

I O

Figure A.1 – RefreshMasks as composition of gadgets

arbitrary n.

Lemma 7 (t-SNI of RefreshMasks). Let (ai)1≤i≤n be the input shares of the RefreshMasks
operation, and let (di)1≤i≤n be the output shares. For any set of t intermediate variables
and any subset |O| ≤ tO of output shares such that t + tO < n, there exists a subset I
of indices with |I| ≤ t, such that the distribution of those t intermediate variables as
well as the output shares d|O can be perfectly simulated from a|I .

Proof. We show how to adapt the proof of Lemma 3 to arbitrary n. The case n = 2 is
the same as previously. We now consider the algorithm with n ≥ 3 shares.

As previously we start with the LO gadget. Note that for even n the LO gadget is
the same as in the proof of Lemma 3, but for odd n there is a special wire corresponding
to dn = cn We show that for the input indices S1

1 and S1
2 required to simulate LO, we

always have:
|S1

1 | ≤ t1 + btO/2c, |S1
2 | ≤ t2 + dtO/2e (A.18)

for some positive integers t1, t2, with t1 + t2 ≤ |I1|; this is an adaptation of (3.21) for
arbitrary n. As previously we assume that within I1 only the intermediate variables ri,
ci and cbn/2c+i are probed, and not the output variables ci ⊕ ri and cbn/2c+i ⊕ ri, since
such output variables can be equivalently obtained from O; similarly if n mod 2 = 1,
we assume that I1 does not contain the variable dn = cn.

We first consider the LO gadget without the wire dn = cn when n mod 2 = 1,
which we denote by L′O; we denote by O′ the corresponding set of output variables
that must be simulated, and t′O = |O′|. For n = 0 mod 2 we have L′O = LO and
t′O = tO. We can then apply Lemma 4 as previously for all 1 ≤ i ≤ bn/2c on each set
of intermediate variables {ci, cbn/2c+i, ri} and output variables {ci ⊕ ri, cbn/2c+i ⊕ ri};
summing the inequalities, we obtain that the gadget L′O can be perfectly simulated
from two sets of input indices S1

1 ⊂ {1, . . . , bn/2c} and S ′12 ⊂ {bn/2c+ 1, . . . , 2bn/2c},
such that |S1

1 | ≤ t1 + t′O/2 and |S ′12| ≤ t2 + t′O/2 for some positive integers t1, t2, with
t1 + t2 ≤ |I1|. Since |S1

1 | and |S ′12| are integers, we can use the bounds:

|S1
1 | ≤ t1 + bt′O/2c, |S ′12| ≤ t2 + bt′O/2c (A.19)

We now consider the full gadget LO. When n = 0 mod 2, we have L′O = LO, so we
can take S1

2 = S ′12; then with t′O = tO, from (A.19) we obtain the bounds in (A.18).
When n mod 2 = 1, we must consider the additional wire dn = cn. We distinguish two
cases. If n /∈ O, then we have t′O = tO, and we can take S1

2 = S ′12; therefore we obtain
again (A.18). Finally if n ∈ O, we have t′O = tO − 1, and we can take S1

2 = S ′12 ∪ {n}.
This gives from (A.19):

|S1
2 | ≤ |S ′

1
2|+ 1 ≤ t2 + b(tO − 1)/2c+ 1 ≤ t2 + dtO/2e

153

APPENDIX A. ANNEXES

which gives again (A.18).
We now consider the R1 and R2 gadgets. For R1 the t-SNI condition is:

|I2|+ |S1
1 | < bn/2c (A.20)

and when such condition is satisfied we have that the probed intermediate variables in
I2 and the output variables in S1

1 can be simulated from a subset of input indices S2

such that |S2| ≤ |I2|. Similarly for gadget R2 the t-SNI condition is:

|I3|+ |S1
2 | < dn/2e (A.21)

Note that when n = 3 we can still apply Condition (A.20) on R1; in that cases it
requires |I2| = |S1

1 | = 0, and then |S2| = 0.
Consider now the following two inequalities:

|I2|+ t1 + btO/2c < bn/2c (A.22)

|I3|+ t2 + dtO/2e < dn/2e (A.23)

As previously, we have using (A.18) that Inequality (A.22) implies Condition (A.20)
for gadget R1, and similarly Inequality (A.23) implies Condition (A.21) for R2. And as
previously, at least one of the two inequalities (A.22) or (A.23) must be satisfied, since
otherwise, using bx/2c+ dx/2e = x for any x ∈ Z, we obtain using t1 + t2 ≤ |I1|:

n ≤ |I2|+ t1 + btO/2c+ |I3|+ t2 + dtO/2e ≤ |I2|+ |I3|+ |I1|+ tO ≤ t+ tO

which contradicts the bound t+ tO < n. This again shows that the two gadgets R1 and
R2 cannot be both saturated.

If both inequalities (A.22) and (A.23) are satisfied, then both gadgets R1 and R2 are
non-saturated, and by recursively applying Lemma 3 on both gadgets, we get |S2| ≤ |I2|
and |S3| ≤ |I3|. One can therefore let I = S2 ∪ S3 and simulate the LI gadget as in
the real circuit; we then have as required:

|I| ≤ |S2|+ |S3| ≤ |I2|+ |I3| ≤ t

Assume now that (A.22) is satisfied and (A.23) is not. Then R1 is non-saturated
and we can apply Lemma 3 on R1, which gives as previously |S2| ≤ |I2|. For R2 we
take S3 = {bn/2c + 1, . . . , n}, which means that all inputs of R2 must be simulated.
We now consider the LI gadget. By applying Lemma 5 for all 1 ≤ i ≤ bn/2c on each
set of intermediate variables {ai, abn/2c+i, ri} and output variable ai ⊕ ri, where all
output variables abn/2c+i ⊕ ri must be simulated, and by summing the inequalities, we
construct I ⊂ {1, . . . , n} such that:

|I| ≤ 2 · |S2|+ |I4|+ (n mod 2) ≤ 2 · |I2|+ |I4|+ (n mod 2) (A.24)

where the additional term (n mod 2) comes from the wire bn = an when n mod 2 = 1;
namely we must have n ∈ I since n ∈ S3.

It remains to show that |I| ≤ t. Since by assumption (A.22) is satisfied and (A.23)
is not, we have:

|I2|+ t1 + btO/2c < bn/2c
|I3|+ t2 + dtO/2e ≥ dn/2e = bn/2c+ (n mod 2)

154

APPENDIX A. ANNEXES

which gives:
|I2|+ t1 + btO/2c+ (n mod 2) < |I3|+ t2 + dtO/2e

which implies:
|I2|+ (n mod 2) < |I3|+ t2 + (tO mod 2)

and therefore:
|I2|+ (n mod 2) ≤ |I3|+ t2 ≤ |I3|+ |I1|

Then from (A.24) we obtain:

|I| ≤ |I2|+ |I3|+ |I1|+ |I4| ≤ t

as required.
Assume conversely that (A.23) is satisfied and (A.22) is not. Then R2 is non-

saturated and we can apply Lemma 3, which gives as previously |S3| ≤ |I3|. For
R1 we take S2 = {1, . . . , bn/2c}, which means that all inputs of R1 must be simulated.
We now consider the LI gadget. By applying Lemma 5 for all 1 ≤ i ≤ bn/2c on each
set of intermediate variables {ai, abn/2c+i, ri} and output variable abn/2c+i ⊕ ri, where
all output variables ai ⊕ ri must be simulated, and by summing the inequalities, we
construct I ⊂ {1, . . . , n} such that:

|I| ≤ 2 · |S3|+ |I4| ≤ 2 · |I3|+ |I4| (A.25)

Namely when n mod 2 = 1, if n ∈ S3 we can put n in I, and therefore the bound
(A.25) still applies.

Since by assumption (A.23) is satisfied and (A.22) is not, we have:

|I2|+ t1 + btO/2c ≥ bn/2c
|I3|+ t2 + dtO/2e < dn/2e = bn/2c+ (n mod 2)

which gives:
|I3|+ t2 + dtO/2e < |I2|+ t1 + btO/2c+ (n mod 2)

which implies:
|I3| < |I2|+ t1 + (n mod 2)

and therefore:
|I3| ≤ |I2|+ t1 ≤ |I2|+ |I1|

Then from (A.25) we obtain as previously:

|I| ≤ 2 · |I3|+ |I4| ≤ |I3|+ |I2|+ |I1|+ |I4| ≤ t

as required. This terminates the proof of Lemma 7.

155

APPENDIX A. ANNEXES

156

	Introduction
	Mathematical Tools
	Cryptosystems
	Secure Microcontrollers

	Fault Attacks
	Fault Attacks
	RSA Detective to Infective Countermeasure Translation Analysis
	Analysis of the ``Multiplicative'' AES Infective Countermeasure
	Analysis of the ``Dummy-Rounds'' AES Infective Countermeasure
	Analysis of the CHES 2014 AES Infective Countermeasure
	Common Points Attack on ECC
	Conclusion

	Side-Channel Attacks
	Side-Channels
	 Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking Scheme
	Security Analysis of the Orthogonal Direct Sum Masking
	A Combined Fault and Side-Channel Attack on CRT-RSA
	Conclusion

	Conclusions and Open Problems
	Fault Attacks
	Side-Channel Attacks
	Open Problems

	Annexes
	The [16,8,5]-code and Related Matrices
	CHES 2014 AES Infective Attacks Success Probabilities
	Mutual Information Approximation
	Proof of Lemma 2
	Generalization of Mask Refreshing for Arbitrary n

