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Introduction

La chimie de coordination est un domaine de recherche diversifié et fertile. De nombreuses
et originales propriétés (magnétisme, luminescence, réactivité) peuvent en effet naître de
l’interaction entre cations métalliques et ligands, et peuvent en outre être finement con-
trôlées par une ingéniérie chimique appropriée. Plusieurs modèles ont été successivement
étudiés et appliqués avec succès pour décrire les propriétés des composés de coordination;
par exemple, la théorie du champ cristallin et son successeur, la théorie du champ des
ligands.
Ces modèles sont très précieux pour le chimiste, dans la mesure où ils offrent un cadre
théorique robuste pour comprendre, interpréter et rationaliser les observations expéri-
mentales, comme par exemple les variations dans les propriétés optiques d’une série de
complexes. En général, ils possèdent une solide base théorique et ont dans le même temps
l’avantage d’être relativement généraux et souples dans leur formulation.
Néanmoins, ces modèles sont tous intrinsèquement limités et peuvent être trop simplifiés
pour pouvoir réellement s’appliquer à des cas concrets. Par exemple, la théorie du champ
cristallin est bien formulée pour des complexes présentant de hautes symétries, tandis que
les composés étudiés peuvent être assez peu – voire pas du tout – symétriques.
Dans de tels cas, il est utile de revenir aux bases théoriques de ces modèles. Grâce à
l’intense développement informatique de ces dernières années, les domaines d’application
de la chimie quantique se sont considérablement élargis. De plus en plus de systèmes
peuvent être étudiés par des calculs de haut niveau, les limites de taille étant sans cesse
repoussées. En parallèle de ce développement technique, le développement d’interfaces
plus ergonomiques de nombreux programmes de chimie quantique permet un élargissement
de leur public vers les non-spécialistes (pour peu qu’ils soient tout de même familiers avec
la chimie quantique). Il est donc de plus en plus aisé de vérifier et de compléter nos
modèles.
De fait, il nous apparait fort probable que la pratique expérimentale s’appuie de plus en
plus sur la théorie au cours des années à venir. Un dialogue toujours plus fourni entre
les deux domaines ne saurait être que fructueux, laissant envisager la possibilité à terme
que les expérimentateurs eux-mêmes effectuent des calculs de chimie quantique sur les
systèmes qui les intéressent, et vice-versa.

Le présent travail s’insère dans cette idée de "construire des ponts" entre expérience
et modélisation. La partie expérimentale de cette thèse a été effectuée dans l’équipe
de Chimie Inorganique Moléculaire et Précurseurs du Laboratoire des Multimatériaux
et Interfaces (LMI), et la partie théorique au sein de l’équipe Chimiométrie et Chimie
Théorique de l’Institut des Sciences Analytiques de Lyon (ISA).
Au cours de cette thèse, nous nous sommes principalement intéressés à la description et la
compréhension de propriétés magnétiques, de luminescence et de réactivité de complexes
de coordination. Le chapitre 1 présente les fondamentaux de la chimie quantique et
computationnelle. Y sont développés les outils utilisés dans le reste du manuscrit, à savoir

15
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les théories de Hartree-Fock, post Hartree-Fock et de la Fonctionnelle de la Densité. Une
mention toute particulière est réservée à la DFT conceptuelle, qui a été intensivement
utilisée au cours de ce travail.
Dans le chapitre 2, nous donnons un certain nombre d’éléments de théorie relatifs à la
chimie de coordination et ses modèles. Une part importante de ce chapitre est dédiée
au magnétisme moléculaire qui, s’il ne se résume pas à la chimie de coordination, a une
importance majeure dans le développement de cette dernière et aussi dans le présent
travail.
Le chapitre 3 revisite les interactions métal-ligands en chimie de coordination par la DFT
conceptuelle. Le travail est triple : dans un premier temps, nous proposons une nouvelle
approche computationnelle du Descripteur Dual, basée sur un formalisme de théorie des
perturbations indépendantes du temps. Dans un second temps, à travers une courte
étude des propriétés de coordination des ligands nous illustrons la puissance prédictive de
ce descripteur. Enfin, il est utilisé dans un dernier temps pour caractériser et rationaliser
l’effet trans dans les complexes de coordination octaédriques. Pour la première fois, nous
proposons une échelle purement théorique des ligands trans-orienteurs. Ces deux études
ont été réalisés en collaboration avec Vincent Tognetti et Laurent Joubert (Université de
Rouen).
Dans le chapitre 4, nous nous intéressons aux propriétés physico-chimiques de complexes
de cuivre(II) et de bases de Schiff dérivant d’acides aminés chiraux, en particulier au
magnétisme. L’un des but de cette étude est en effet de déterminer si la chiralité de
nos ligands a un impact sur les propriétés magnétiques des complexes formés. Dans
ce chapitre, nous présenterons donc les synthèses et les propriétés magnétiques et de
réactivité de ces derniers, que nous rationaliserons par des études DFT et post Hartree-
Fock (DDCI, NEVPT2). Les calculs DDCI ont été réalisés en collaboration avec Marie-
Bernadette Lepetit (Institut Néel, Grenoble).
Enfin, le chapitre 5 présente les synthèses et caractérisations magnétiques de deux familles
de complexes de coordination mononucléaires de lanthanide. Pour la plupart, ces com-
posés présentent un comportement de molécule-aimant induit par le champ. La dy-
namique de l’aimantation de ces complexes a pu être rationalisée grâce à une étude de
leurs propriétés de luminescence et des calculs ab initio, les résultats demeurant cependant
préliminaires dans le cas de la seconde famille de composés. Les mesures de luminescence
ont été réalisés en collaboration avec Olivier Maury et François Riobé (ENS Lyon), et
les calculs ab initio en collaboration avec Julie Jung et Boris le Guennic (Université de
Rennes 1).



Chapter 1

Elements of quantum chemistry

The aim of quantum chemistry is to describe chemical systems, i.e. molecules or solids,
through the equations of quantum mechanics. To this extent, many different formulations
and methods were developed. The goal of this chapter is to present them. Here, we decided
to focus on the concepts, rather than going deep into the algebraic details. The main idea
is to provide, for the non-specialist, the flavour of these methods, leaving the mathematical
details to the dedicated textbooks. With this idea in mind, it seemed rather logical for
us to leave aside all the methods that were not employed in this thesis. Presenting them
all would indeed be quite a Promethean task, and we may refer the curious reader to the
hereafter cited textbooks.

1.1 Solving the Schrödinger equation
First of all, let us restrict the scope to molecular systems, in which we will consider nuclei
as classical particles. The central problem in quantum chemistry is thus to solve the
stationary Schrödinger equation:

H|Ψ〉 = E|Ψ〉 (1.1)

for a given molecule with M nuclei A and N electrons i.1,2 The wavefunction Ψ contains all
the information on the the system. Here, we will be considering the chemical properties
only at a fixed geometry, and we will assume the motions of electrons and nuclei can
be separated (Born-Oppenheimer approximation).3 In such a case, the total energy is
distributed into two components, one related to the nuclei exclusively, and one related to
the electrons. We will only focus on the latter, which is expressed as:

Hel =
M∑

A=1

N∑
i=1

− ZA

|RA − ri|
+

N∑
i=1

−1

2
∇2

r +
N∑
i=1

N∑
j>i

1

|ri − rj|
(1.2)

= Ven + Te + Vee (1.3)

with Ven the electron-nuclei attraction, Te the kinetic energy of the electrons and Vee the
electron-electron repulsion energy.4
Obviously, the two first operators are monoelectronic, i.e. the contribution from each
electron can be treated separately from that of the others. Considering only these two
terms, the Schrödinger equation could be analytical solved. Often, they are gathered into
a monoelectronic operator h(i). Vee on the other hand is a two-electrons operator, and
the contribution of a specific electron i cannot be decorrelated from the contribution of
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18 1. Elements of quantum chemistry

the other electrons j(i).5,6 Because of this latter term, in the general case the Schrödinger
equation cannot be analytical solved.
In order to describe correctly molecules, we thus need to devise efficient approximations.
They can be developed in two different frameworks, which are presented in the following.
The first one is based on a wavefunction formalism: the Hartree-Fock approximation and
its corrections, the so-called post Hartree-Fock methods. The second one is based on the
electron density: the Density Functional Theory. Noteworthy, this approach is formally
exact if applied to a non-degenerate ground state. However, as we will show its exact
formulation is inapplicable, and approximations are also called.

1.2 Wavefunction based theories

1.2.1 Hartree-Fock method

The Slater determinant

Before getting into the details of the Hartree-Fock formalism, we may say a few words
about the wavefunction itself. The electrons are indiscernible particles, which furthermore
obey the Pauli principle of exclusion, due to their fermionic nature.1,7 These two properties
imply that the wavefunction must change its sign upon the exchange of two electrons: Ψ
is said to be antisymmetric. If we assume we can develop the wavefunction over a basis
of monoelectronic orbitals φi, a convenient form of Ψ is given by the Slater determinant:

Ψ =
1√
N !

∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
...

...
...

φ1(xN) φ2(xN) . . . φN(xN)

∣∣∣∣∣∣∣∣
, (1.4)

where xi represents the position ri and spin (γ=α or β) of electron i. For the sake of sim-
plicity, in the following we will use the common and simplified notation Ψ = |φ1φ2 . . . φN〉.

The Hartree-Fock approximation

The Hartree-Fock approximation states that the wavefunction Ψ can indeed be written as
a single Slater determinant.6,8 Fundamentally, this implies that the fully coupled problem
in equation (1.3) has been simplified to a mean field approach. The electron-electron
repulsion can thus be explicited for each electron, feeling the influence of the N-1 remaining
electrons. The energy of the system can then be written as:

E = 〈Ψ|Hel|Ψ〉 =
N∑
i=1

〈φ1 . . . φi . . . φN |h(i)|φ1 . . . φi . . . φN〉

+
N∑
i=1

N∑
j>i

〈φ1 . . . φi . . . φj . . . φN |
1

|ri − rj|
|φ1 . . . φi . . . φj . . . φN〉

−
N∑
i=1

N∑
j>i

〈φ1 . . . φi . . . φj . . . φN |
1

|ri − rj|
|φ1 . . . φj . . . φi . . . φN〉

(1.5)

(i)Actually, we retrieve a N-body in interaction scheme.
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=
N∑
i=1

〈φi|h(i)|φi〉+
N∑
i=1

N∑
j>i

〈φiφj|
1

|ri − rj|
|φiφj〉 − 〈φiφj|

1

|ri − rj|
|φjφi〉 (1.6)

=
N∑
i=1

hi +
N∑
i=1

N∑
j>i

〈φi|Jj(i)|φi〉 − 〈φi|Kj(i)|φi〉 (1.7)

In equation (1.7), the first term in the double sum is called the Coulomb term. It translates
the repulsion between one electron in the orbital φi and another electron in φj. The
second term has no classical counterpart. It translate the energetic stabilisation when the
electrons in orbitals φi and φj are exchanged, hence its name exchange energy.
To solve the Schrödinger equation within this scheme, one thus needs to minimise E
(variational principle). An additional condition to this minimisation is the fact that
the orbitals φi must be orthonormal.5 This leads to the minimisation of the following
Lagrangian:

L = 〈Ψ|Hel|Ψ〉 −
N∑
i=1

N∑
j=1

εij(〈φi|φj〉 − δij). (1.8)

Each εij has the dimension of an energy, and their sum over j yield the energy of the
orbital φi. Practically, the Lagrangian is minimised using a Self-Consistent Field (SCF)
procedure: from a set of guess orbitals, the value of L is computed. The orbitals are
then modified in order to diminish L, and the calculation develops until convergence is
detected.

Restricted and Unrestricted Hartree-Fock

The Hartree-Fock formalism thus permits the calculation of the ground state wavefunction
and energy, under the approximation that the former can be written as a single Slater
determinant. Actually, two formulations are found: Restricted (RHF) and Unrestricted
(UHF) Hartree-Fock calculations.
In the former case, the orbitals occupation can only be 2 or 0. If we separate the spin and
spatial component of the orbitals φ = ζ(r)χ(γ), this implies that the spatial parts ζ(r)
are set to be equal for two electrons with spin α and β. Note this is what one usually
assumes when drawing a molecular orbital diagram (two electrons per orbital at most).
In the UHF description on the other hand, one allows the spatial parts for spin α and β
to be different, and orbitals occupations can only be 1 or 0. Such a formalism is needed
if one wants to describe open-shell structures (radicals, transition metal ions). It is also
necessary in order to describe correctly homolytic bond cleavage.7 Yet, as underlined in
the latter reference, even though UHF yields in that case an improvement over RHF, it
may still be quite inaccurate. This is the consequence of the underlying simplifications in
the Hartree-Fock formulations: the mean-field and mono-determinental approximations.
We will show in the following section how the descriptions can be improved, starting from
a RHF or UHF calculation.

1.2.2 Post-Hartree Fock methods

The correlation energy

In the previous section, we mentioned that the Hartree-Fock formalism implicitly describes
the electron-electron repulsion by a mean-field approach. Hence, in such calculations
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the actual correlation – which we will precisely define later – between the electrons is
mistreated. Usually, one defines the correlation energy7 as

Ecorr = Eexact − EHF . (1.9)

The goal of the post Hartree-Fock approaches reduces more or less to the computation of
an accurate enough Ecorr.

Working on the wavefunction: the full CI development

Formally, the mean-field approximation that is used throughout the Hartree-Fock model
is not coming from a simplification of the Hamiltonian, but rather from the arbitrary form
of the wavefunction. The Slater determinant of equation (1.4) is indeed an antisymmetric
function, but any linear combination of such determinants would also be an antisymmetric
function.
Actually, provided that there exists an infinite basis of orbitals φi, the exact wavefunction
Ψ should be a linear combination of all the possible Slater determinants constructed on
this basis.5,9 Let’s consider the following Slater determinant, solution of the Hartree-Fock
equations:

|ΨHF 〉 = |φ1φ2 . . . φaφbφc . . . φN . . . φrφsφt . . .〉 (1.10)

with an infinite number of orbitals. φa, φb and φc represent occupied orbitals, and φr, φs,
φt virtual (unoccupied) ones. We can construct an infinity of orthogonal determinants by
promoting L (L ≤ N) electrons from the occupied orbitals to the virtual ones:

|Ψr
a〉 = |φ1φ2 . . . φrφbφc . . . φN . . . φaφsφt . . .〉 (1.11)

|Ψrs
ab〉 = |φ1φ2 . . . φrφsφc . . . φN . . . φaφbφt . . .〉 (1.12)

|Ψrst
abc〉 = |φ1φ2 . . . φrφsφt . . . φN . . . φaφbφc . . .〉 ... (1.13)

Doing so, we actually build all the possible determinants with the given orbital basis.
They are called n-excited determinants. Hence, we can write the wavefunction as

|Ψ〉 = c0|ΨHF 〉+
N∑
a=1

∞∑
r=N+1

cra|Ψr
a〉+

N∑
a=1
b>a

∞∑
r=N+1
s>r

crsab|Ψrs
ab〉+ . . . (1.14)

Conceptually, equation (1.14) develops the wavefunction upon all the possible electronic
configurations. Though these determinants are mutually orthogonal, they are going to
be coupled by the Hamiltonian, and as such each determinant is likely to interact with
the others, directly or not. This development is called "Full Configuration Interaction"
(full-CI).(ii)

(ii)Actually, the Brillouin’s theorem states that the interaction of |ΨHF 〉 with the mono-excited |Ψr
a〉 is

null. Furthermore, the Slater rules imply that there is no interaction through H between determinants
differing by more than 2 orbitals. Thus, the CI matrix can be written as the block matrix:⎛

⎜⎜⎜⎜⎜⎜⎝

〈ΨHF |H|ΨHF 〉 0 〈ΨHF |H|D〉 0 0 . . .
〈S|H|S〉 〈S|H|D〉 〈S|H|T 〉 0 . . .

〈D|H|D〉 〈D|H|T 〉 〈D|H|Q〉 . . .
〈T |H|T 〉 〈T |H|Q〉 . . .

〈Q|H|Q〉 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.15)

where |S〉, |D〉, |T 〉, |Q〉 represent the subsets of simple, double, triple and quadruple excitations, respec-
tively.
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Stating the obvious, it is rather cumbersome to deal with an infinite number of basis
functions. In a full-CI calculation, one will often restrict to a finite number of orbitals
N ′ � N . The calculated energy will thus be an upper bond of the exact energy, and
one can arbitrarily set the precision of the calculation by adjusting N ′. Yet, the cost
of the calculation becomes quickly prohibitive, since the number of Slater determinants
increases quickly with N ′, and thus with N :(

N ′

N

)
=

N ′!

N !(N ′ −N)!
. (1.16)

Full-CI calculations are said to scale exponentially with the number of orbitals, and will
thus be limited to very simple systems, with a low number of atoms. These may not be
the most interesting systems to study. Further levels of simplifications are still needed if
one wants to take the effects of correlation into account.

Truncating the CI development

A first simplification that comes to mind is simply to truncate the development of equation
(1.14). There are indeed physical arguments for this simplification. First of all, the more
electrons are promoted to virtual orbitals, the higher in energy will be the resulting
configuration. Furthermore, from the form of the full-CI matrix (cf. equation (1.15)) it
appears that only the doubly excited determinants couple directly with the Hartree-Fock
determinants. Truncating at the second order would then give:

|Ψ〉 = c0|ΨHF 〉+
N∑
a=1

N ′∑
r=N+1

cra|Ψr
a〉+

N∑
a=1
b>a

N ′∑
r=N+1
s>r

crsab|Ψrs
ab〉 (1.17)

Ecorr = c0

N∑
a=1
b>a

N ′∑
r=N+1
s>r

crsab〈ΨHF |H|Ψrs
ab〉. (1.18)

This approach is called CISD10: Configuration Interaction of Single and Double excita-
tions. In a similar way, one can define a CIS and CID development.
The truncation alleviates a large part of the computational effort, but this simplification
has a down side. First of all, even though only the doubly excited determinants are di-
rectly coupled to the Hartree-Fock one, they are all interacting indirectly. Neglecting this
interaction will change the coefficients cra and crsab, and as such the calculated correlation
energy.7
More importantly, the truncated CI development is not size-extensive. This means the
energy of N independent molecules will indeed be different to N times the energy of an
isolated one. This is due to the truncation to a given order, which does not necessarily
allow excitations on all the molecules at the same time.8 For instance, for a system of two
identical molecules, at the second order the only possible determinants are the following:

• |0, 0〉 for the ground configuration (0 indicating the non-excited determinant for one
molecule)

• |0, S〉 and |S, 0〉 for the mono-excitation (S indicating singly excited determinants)

• |S, S〉, |0, D〉 and |D, 0〉 for the di-excitations (D representing the doubly excited
determinants).
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No cross-double excitations |D,D〉 are possible since they correspond formally to a quadru-
ple excitation (four electrons in four orbitals).
A possible solution comes from an alternative formulation in the framework of the second
quantization theory: the coupled cluster formulation.11 Let’s define two operators:

T1|ΨHF 〉 =
N∑
a=1

N ′∑
r=N+1

cra|Ψr
a〉 (1.19)

T2|ΨHF 〉 =
N∑
a=1
b>a

N ′∑
r=N+1
s>r

crsab|Ψrs
ab〉. (1.20)

T1 is a creation/annihilation operator: it annihilates an electron in ΨHF , in the orbital a,
and creates an electron in the orbital r. Similarly T2 annihilates two electrons in ΨHF ,
in the orbitals a and b, and creates two electrons in the orbitals r and s. The CISD
wavefunction can thus be written as

|ΨCISD〉 = (1 + T1 + T2) |ΨHF 〉. (1.21)

Basing on these two operators only, we can define another wavefunction: the CCSD
(Coupled Cluster restricted to the Single and Double excitations) wavefunction

|ΨCCSD〉 = e(T1+T2)|ΨHF 〉. (1.22)

The interest of this formulation is more obvious if we expand the exponential as a series:

|ΨCCSD〉 =
(
1 + (T1 + T2) +

1

2
(T1 + T2)

2 + . . .

)
|ΨHF 〉 (1.23)

=

(
1 + (T1 + T2) +

1

2
(T 2

1 + 2T2T1 + T 2
2 ) + . . .

)
|ΨHF 〉 (1.24)

using the commutation properties of the two operators T1 and T2.
Indeed, from this development it appears that we are able to access the single and double
excitations, but also some of the triples and quadruples, from the T2T1 and T 2

2 terms.
Furthermore, CCSD is size-extensive. Yet, it is still a very expensive and heavy formalism,
with a N ′6 scaling,12 hence restricted to small-size systems. For instance, on a small
complex of 17 heavy atoms and 21 hydrogens, the initialisation step of a CCSD calculation
in Gaussian 09 (with triple-zeta quality bases) is requiring more than 16 Go of disk space!
Very likely, this approach will not be accessible for the kind of molecules we will be
interested in in this thesis.

Perturbative approach: Møller-Plesset approach

The aim of Møller-Plesset (MP) approach8,13 is to correct the Hartree-Fock wavefunction
and energy basing on the framework of Rayleigh-Schrödinger perturbations. The inge-
nious idea is to treat the r−1

ij potential as a perturbation of the Hartree-Fock mean field
one. Let’s start from the so-called Fock operator

H0 =
N∑
i=0

F(i) =
N∑
i=1

(
h(i) +

N∑
j=1

Jj(i)−Kj(i)

)
. (1.25)
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As one must note, the eigenvalues Ek
0 of this operator are not the Hartree-Fock energies,

but rather the sum of the orbitals energies (for the given state k). This is due to the
second sum (over the bielectronic operators), whose indices are not limited to j > i.
The genuine Hamiltonian of the system, as defined in equation (1.3), can be written as

Hel = H0 + V (1.26)

with

V =
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

N∑
j=1

Jj(i)−Kj(i). (1.27)

Assuming the correction on energies due to the application of V will be small, we can
indeed apply the time-independent perturbation theory. We will call E(i)

k the ith correction
of the energy of state k, Ψ(i)

k the corresponding wavefunctions correction, and E0 and Ψ0

the ground eigenvalue and eigenvector. At the first order, we have:

E
(1)
0 = 〈Ψ0|V|Ψ0〉 (1.28)

= 〈Ψ0|
N∑
i=1

N∑
j>i

1

rij
|Ψ0〉 − 〈Ψ0|

N∑
i=1

N∑
j=1

Jj(i)−Kj(i)|Ψ0〉 (1.29)

=
1

2
〈Ψ0|

N∑
i=1

N∑
j>i

Jj(i)−Kj(i)|Ψ0〉 − 〈Ψ0|
N∑
i=1

N∑
j=1

Jj(i)−Kj(i)|Ψ0〉 (1.30)

E
(1)
0 = −1

2
〈Ψ0|

N∑
i=1

N∑
j>i

Jj(i)−Kj(i)|Ψ0〉 (1.31)

and:

Ψ
(1)
0 =

N ′∑
k

〈Ψ0|V|Ψ(0)
k 〉

E0 − E
(0)
k

|Ψ(0)
k 〉. (1.32)

The first order correction thus allows to retrieve the Hartree-Fock energy. At the second
order in energy, the result is more interesting:

E
(2)
0 =

N ′∑
k

l �=k

〈Ψ0|V|Ψ(0)
k 〉〈Ψ(0)

k |V|Ψ0〉
E0 − E

(0)
k

. (1.33)

Indeed, we may identify the |Ψ(0)
k 〉 determinants to the n-excited determinants in equations

(2.11) to (2.13). Furthermore, because of the Brillouin’s theorem we know only the doubly
excited determinants will couple with the ground state wavefunction. As such, we may
write:

E
(2)
0 =

N,N ′∑
a,b>a
r,s>r

〈Ψ0|V|Ψrs
ab〉〈Ψrs

ab|V|Ψ0〉
εa + εb − εr − εs

. (1.34)

At the second order of perturbation, the correlation energy will thus simply be:

Ecorr ≈ E0 + E
(1)
0 + E

(2)
0 − EHF = E

(2)
0 . (1.35)
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A major interest of the MP2 (second order Møller-Plesset) approach is its relatively low
complexity: it evolves as N ′5,12 along with a fairly good representation in energy. The
higher order formulations (MP3, MP4...) are rarely used, since they do not bring a marked
improvement with respect to their cost (N ′6 and N ′7, respectively). Actually, MP2 itself
presents a quite marked drawback: it does not comply with the Ritz (variational) principle,
hence the computed energy has no lower bound. This can likely be problematic during a
calculation...

Multi-Reference methods

Static correlation. So far, we have presented the improvements that can be brought
to the Hartree-Fock description, starting from a single Slater determinant. The different
approximations we presented allow to retrieve a part of the correlation energy that stems
from the dynamic interaction of electrons, hence its name dynamical correlation. Another
kind of correlation can also be encountered, called static correlation.
For an easy grasp of the concept, let’s consider the case of a d1 metal ion in an octahedral
ligand field, for instance [V(NH3)6]4+. As we will see in the next chapter, the ligand field
induces a splitting of the d metal atomic orbitals (AO), such that the three non-bonding
dxz, dxy and dyz metal AO are degenerate. The unpaired electron of V4+ could thus be
placed in any of the three dxz, dxy and dyz orbitals, as represented on Figure 1.2.1.

dxy dxz dyz

dx2−y2 dz2

(a)

dxy dxz dyz

dx2−y2 dz2

(b)

dxy dxz dyz

dx2−y2 dz2

(c)

Figure 1.2.1: Ground electronic configurations associated to the localisation of a single electron in a d
metal AO, in the case of an octahedral field.

In such cases, quantum mechanics suggests the actual wavefunction will be a linear combi-
nation of each "limit" configuration (a), (b) and (c) (with coefficients that should roughly
be of the same order of magnitude).7,8 In the Hartree-Fock formulation on the other hand,
we would expect to converge to one of the three determinants. We would thus miss a cor-
relation effect that is not linked to the dynamic interaction of electrons, but rather to
the fact that some systems may be described by several "limit forms". This is the effect
of static correlation, which will be encountered for any system that cannot be properly
described by a single determinant.
As one may infer already, this correlation effect is likely to be significant in the case of
coordination complexes. In order to retrieve it, we should optimise not only the coeffi-
cients of each orbital in the Hartree-Fock determinant, but also all the orbitals themselves
(through the coefficients of the atomic orbitals that compose them). This is what one
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achieves with the multi-reference methods. Obviously, the double optimisation of both
the determinants and the orbital is a complex problem, and simplifications can be made.

Complete Active Space SCF (CASSCF). A first simplification can be achieved
using physical arguments. If the chemical and physical properties of molecules are essen-
tially due to the electrons, one can furthermore state they are primarily related to the
valence electrons, with a very small impact of the fine structure of core electrons(iii). This
suggests that corrections due to the multi-reference nature of the wavefunction are going
to be predominant only on the valence electrons, i.e. those located near the Fermi level
in the Hartree-Fock reference determinant. In the same spirit, the correction due to the
virtual orbitals is likely to be relevant only for the few ones located near the HOMO -
LUMO gap. Actually, chemists often use this approximation - as we did in Figure 1.2.1.
In a CASSCF calculation,8,14,15 we thus restrict the construction of the CI determinants
to a subset of M orbitals near the Fermi level, populated by N electrons. This subset is
called the active space, in opposition to the remaining orbitals that are called inactive(iv).
Such a calculation is generally called a CAS(N ,M). Starting from a reference Hartree-
Fock determinants, all the possible electronic configurations of N electrons in M orbitals
are build, and then optimised. For instance, the case of Figure 1.2.1 corresponds to a
CAS(1,3): the unpaired electron can be located in any of the three metal AO.
As one can see, the main degree of freedom in the CAS formulation is the choice of the
active space. For instance, in the previous CAS(1,3) example, no ligand to metal charge
transfer can be reproduced, since the ligands electrons and orbitals are not introduced in
the active space. In order to take this effect into account, one would need to incorporate
the latter in the active space. Nevertheless, one cannot extend the active space to all the
orbitals, because of the factorial scaling of the method. As a result, one often has to go
through a trial and error approach. Among the possible criteria, one may follow the final
occupation of the orbitals. As a rule of thumb, all the orbitals with an occupation above
1.98 or below 0.02 can be removed from the active space - they even should be removed
to avoid instabilities.16

State Averaged CASSCF (SA-CASSCF). With the CASSCF methodology, it is
then possible to compute the wavefunction for any state, ground or excited, associated to
a given spin multiplicity. If we consider the case of the d1 ion of Figure 1.2.1, obviously all
states are going to be spin doublets. If, on the other hand, we consider a Dy3+ ion (4f 9

electronic configuration), then several spin multiplicities are possible: sextet, quartet and
doublet.
In a state-averaged calculation, the wavefunction is not optimised to describe a unique
state, but rather to reproduce a set of states, usually with the same multiplicities. This
is a quite powerful formulation, since a large number of electronic states can be described
with a reduced number of orbitals.
In a SA-CASSCF calculation, one obtains what are called "spin-free" wavefunctions. The
expression is rather plain: the considered configurations are irrespective of the actual spin
projection. For instance, in the case of a Dy3+ ion, 9 electrons are to be placed in 14
different spin-orbitals. This leads to evaluate 2002 different determinants, but they can
be gathered in doublets, quartets and sextets. In the end, there are only 735 different

(iii)Note that this is completely wrong for Mossbauer shifts, for instance.
(iv)Sometimes a distinction is made between the occupied inactive orbitals and the empty ones, which

are then called "virtual".
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configurations to compute: 21 sextets, 224 quadruplets and 490 doublets(v).17 As can be
infered from the choice of the example, these kind of calculations are going to be very
useful to reproduce the properties of lanthanide complexes, whose wavefunctions are going
to be highly non-monodeterminantal and thus will present a large static correlation.

Adding the dynamic correlation As we said, in a (SA-)CASSCF calculation the
static correlation is taken into account, but not the dynamic correlation. It could be
desirable to also take those effects into account; for instance, in Chapter 4 we will deal
with Cu(II) complexes, for which both dynamical and static correlations are important.
They can be incorporated in a perturbative manner, retrieving a formulation that is
similar to the Møller-Plesset one, but based on a CASSCF (or SA-CASSCF) wavefunction.
Usually, the perturbation development is truncated at the second order: this is the so-
called (SA-)CASPT2 approach.18,19 Experience shows that, for most of the lanthanide
ions, the correction due to dynamic correlation is very small and can safely be neglected.
Actually, only Yb(III) and Ce(III) ions seem to need the PT2 correction in order to
reproduce correctly experimental trends.20 These two lanthanide ions are also known to
have a singular redox behaviour: the 4f and 6s,5d orbitals are close in energy, and they
may also be close to the ligands orbitals.21 As such, electronic configurations with electron
transfers from (or to) the 4f shell to the 6s, 5p or ligands orbitals may have a large weight
in the wavefunction for Yb(III) and Ce(III) than for the other lanthanides. Since these
orbitals have a larger extent in space than the 4f , the electron-electron interaction may
to be stronger in these "excited" configurations. Hence, this may explain why Ce(III) and
Yb(III) call for the inclusion of dynamical correlation, more than any other lanthanide.
Another second-order formulation exists, called N-Electron Valence Perturbation Theory
(NEVPT2). It is very close to CASPT2, but is based on a different zeroth order Hamil-
tonian: the so-called Dyall Hamiltonian.22 This Hamiltonian is constructed in such a way
that it is equal to the CASSCF Hamiltonian in the active space, and to the zeroth order
Møller-Plesset one in the inactive and virtual spaces. Without going into much details, this
formulation offers several advantages over CASPT2, noticeably a strict size-consistency
and the absence of the so-called intruder states(vi).

Dynamic correlation can also be incorporated by the means of a CI development on the
basis of the CASSCF wavefunctions. As one may infer, the complexity of such calculations
is higher than that of a Hartree-Fock based CI. Yet, many approximations have been
proposed that allow a practical implementation of such methods. Noticeably, it can be
shown that most of the excitations included in the CI development are irrespective of the
spin state.24,25 Said otherwise, if one is interested only in the energy difference between,
let’s say, the singlets and the triplets states - for instance while evaluating a magnetic
coupling between two copper(II) ions -, most of the matrix elements of equation (1.15)
do not need to be evaluated, because they will be shared by all the states. The only
excitations that actually need to be calculated are the 1h, 1p, 1h1p, 2h, 2p, 2h1p and
1h2p, following the usual terminology, as shown in Figure 1.2.2.
This leads to a tremendous alleviation of the computation task, and such calculation be-
come feasible for relatively large systems. This approach is called "Difference Dedicated
CI", DDCI, also called DDCI-3 (3 refers to the number of degree of freedom, i.e. the max-
imum order of the allowed excitations).26 Further simplifications are also implemented,

(v)And one can verify that 21× 6 + 224× 4 + 490× 2 = 2002.
(vi)Which are singly and doubly excited states that display a quasidegenerate energy with the reference

states.23
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Figure 1.2.2: Schematic representation of the different excitations included in the DDCI-n calculations.

named DDCI-2 (only single and double excitations) and DDCI-1 (only single excitations).

1.3 Density Functional theory

1.3.1 Why resorting to density?
In the previous section, we were interested in solving the Schrödinger equation in terms of
wavefunctions and energy. For the ground state, the problem reduces to the minimisation
of E [Ψ] with respect to Ψ, i.e. the minimisation of a functional of Ψ. The solution E is
uniquely determined by the form of the functional, which is itself uniquely determined by
the Hamiltonian.27

In Density Functional Theory (DFT), the energy is expressed as a functional of the elec-
tron density, which can be written as

ρ(r) = N

∫
. . .

∫
|Ψ(r1, s1, r2, s2 . . . rN, sN)|2ds1dr2ds2 . . . drNdsN (1.36)

rather than the wavefunctions.1 The goal is multiple: first, the electron density is a quan-
tum observable, and direct comparisons can be made with experiments - for instance using
X-Ray diffraction or Polarised Neutron Diffraction.28 Furthermore, the wavefunction is a
complicated function of 4N variables for a molecule of N electrons (3 spatial coordinates
per electron, plus the spin momentum), in general complex. On the other hand, the elec-
tron density is a real function of 3 coordinates only (4 with the inclusion of spin). Direct
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interpretations based on the electron density may thus be considered, while they remain
rather unlikely basing on wavefunctions.
In the following, we will present the two founding theorems of DFT, which prove it is
possible to express the energy as a functional of electron density. We will also show how
DFT is implemented in practice, and the associated limitations with each formulation.

1.3.2 The Hohenberg-Kohn theorems
The first Hohenberg-Kohn theorem29–31 provides the proof that energy can be written as
a unique functional of the electron density, which is a necessary condition to be fulfilled
if we want to reformulate the Schrödinger equation in a framework of electron density.
More precisely, it states:

HK-Theorem 1. The external potential v(r) is determined, within a trivial additive
constant, by the electron density ρ(r).

Since in equation (1.3) the only system-dependant term is the external (nuclei-electrons)
potential, as a consequence from this theorem we find that the Hamiltonian is uniquely
determined by the electron density. The energy of the system is then directly determined
by ρ(r). The proof of this theorem is very simple and elegant, and we thus felt it could
be presented here.

Proof. Let’s consider two chemical systems S1 and S2, which only differ by their external
potential (hence their structure), v1(r) and v2(r). They are thus described by two different
Hamiltonians H1 and H2. The ground state (non-degenerate) solutions of the Schrödinger
equations for these two systems are (E1,Ψ1) and (E2,Ψ2). We will assume S1 and S2 are
described by the same electron density. If we use Ψ1 as a trial function for H2, by the
variational principle it comes that

E2 < 〈Ψ1|H2|Ψ1〉 (1.37)

and similarly

E1 < 〈Ψ2|H1|Ψ2〉. (1.38)

We can re-write equations (1.37):

E2 < 〈Ψ1|H1|Ψ1〉+ 〈Ψ1|H2 −H1|Ψ1〉 (1.39)

E2 < E1 +

∫
ρ(r) (V2(r)− V1(r)) dr (1.40)

and (1.38):

E1 < E2 −
∫
ρ(r) (V2(r)− V1(r)) dr (1.41)

which directly lead to:

E1 + E2 < E2 + E1. (1.42)

This is clearly impossible, hence S1 and S2 cannot be described by the same electron
density if v1(r) 	= v2(r) (up to a trivial additive constant).
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The electron density is thus uniquely determined by the external potential, i.e. by the
structure of the molecule and the eventual external fields. In practice, the first Hohenberg-
Kohn theorem is not sufficient because of its non constructive form: it proves E is a unique
functional of ρ(r), but we do not know how to compute it. The second theorem provides
a variational principle for DFT:

HK-Theorem 2. For any trial electron density ρ̃(r) that verifies

ρ̃(r) ≥ 0

∫
ρ̃(r)dr = N

we have

E0 ≤ E [ρ̃(r)] (1.43)

where E0 is the ground state energy and E [ρ̃(r)] is the energy density functional, applied
to ρ̃(r).

This implies that DFT is rigorously formulated only for a non degenerate ground state,
and that SCF procedures can be applied in order to determine the true ground state
density and energy, starting from any well-conditioned guess.

1.3.3 The Kohn-Sham ansatz
Yet, a strong caveat exists: DFT is formally an exact theory, provided that we know the
exact form of the energy functional. In the same way that we can separate the kinetic,
electron-electron and electron-nuclei contribution to the Hamiltonian, we can write

E [ρ] = T [ρ] + Vee [ρ] +

∫
ρ(r)v(r)dr (1.44)

= FHK [ρ] +

∫
ρ(r)v(r)dr (1.45)

with T [ρ] the kinetic energy functional, Vee [ρ] the electron-electron repulsion functional
and FHK [ρ] the Hohenberg Kohn functional. Since only the external potential is system
dependant, FHK [ρ] is also called universal functional.
In order to solve the Schrödinger equation in that case, we thus need to determine the
analytical form of the universal functional. The problem is two-fold: we do not know the
form of the kinetic part in an electron density representation, and the electron-electron
term is also unknown. This last term can be rewritten:

Vee [ρ(r)] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Enc [ρ(r)] = J [ρ] + Enc [ρ] (1.46)

where J [ρ] represents a classical Coulomb interaction, and Enc [ρ] all the non-classical
contributions to Vee (exchange and dynamic correlation).

There are, overall, two terms whose analytical forms are not known. The brilliant idea of
Kohn and Sham32 was to express them as corrections applied to a much simpler system.
In their so-called ansatz(vii), they considered a fictitious system of N non-interacting
(vii)German word that can be approximately translated as "start, initialisation". It consists of an edu-
cated guess to solve a given problem, often being the solution of a simplified equation.



30 1. Elements of quantum chemistry

electrons, evolving in an external potential VS such that ES = E and ρS(r) = ρ(r). The
system is also such that its electron density can be decomposed over a set of spin-orbitals:

ρ(r) =
2N∑
i=1

|φi(r)|2. (1.47)

The expression of the kinetic energy of such a system is fairly simple:

TS [ρ] = −1

2

2N∑
i=1

〈φi|∇2|φi〉 (1.48)

and the energy of the fictitious system is simply

ES [ρS] = E [ρ] = TS [ρ] +

∫
ρ(r)VS(r)dr. (1.49)

We may then rewrite equations (2.44) and (2.49) as

E [ρ] = TS [ρ] + T [ρ]− TS [ρ] + J [ρ] + Enc [ρ] +

∫
ρ(r)v(r)dr (1.50)

= TS [ρ] + J [ρ] +

∫
ρ(r)v(r)dr+ Exc [ρ] . (1.51)

Every terms in equation (1.51) are known but Exc [ρ], which is called the exchange-
correlation functional. This term, generally small compared to the other contributions,
translates the deviation from the fictitious systems, i.e. it conveys informations about
the correlation and the exchange between the electrons.
The Kohn Sham ansatz might seem to be a simple trick on the equations, but it actu-
ally permits the numerical calculation of most contributions to the energy, transforming
the problem of solving the Schrödinger equation into finding an appropriate exchange-
correlation functional. An important part of research in computational chemistry is ded-
icated to this task. The next section summarises briefly the different kind of functionals
that were proposed, and their relative efficiencies.

1.3.4 The Jacob’s ladder and the limits of the model
As we said, thanks to the Kohn-Sham ansatz the resolution of the Schrödinger equation
is reduced to the determination of an accurate exchange-correlation functional. Several
different forms of functionals were proposed over time, and are usually classified along
what Perdew called the "Jabob’s ladder of DFT", represented on Figure 1.3.1.33

The lowest rung of the ladder corresponds to the Local Density Approximation functionals,
which are well formulated for a uniform (or slowly varying) electron gaz. They are more
efficient for describing solids with a rather high delocalisation of the electron density
(conductors), rather than molecules which may present strong local variations of the
density - noticeably around the nuclei. As a result, they are more or less unused in the
modelisation of molecular systems.
The second rung corresponds to the Generalised Gradient Approximation functionals.
Their analytical form involve the electron density and its first derivative, or rather a re-
duced gradient ∇ρ(r)/ρ(r) (which prevents any risk of divergence in a gradient expansion).
These functionals can yield a very efficient description of molecular systems, noticeably
they permit a fairly efficient reproduction of vibrational spectra.
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Hybrid HF exchange
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Figure 1.3.1: Schematic representation of the Jacob’s ladder of DFT.

On the third rung, one finds the meta-GGA, which are based on the electron density, its
gradient and its Laplacian. Though in principle more efficient than the GGA, they are
not as much employed as the latter. This may be due to the small improvement over
computational effort ratio these functional give, as compared to the GGA.34

Hybrid functionals, on the fourth rung of the ladder, are on the contrary very popu-
lar functionals. They incorporate a certain percentage of Hartree-Fock exchange, along
with a GGA exchange/correlation. They tend to be very efficient to describe reaction
mechanisms and optical spectra.
Finally, the last rung corresponds to the double hybrids, which incorporate Hartree-Fock
exchange and MP2 correlation. They are not much used for the moment, mostly because
of the rather prohibitive cost of the calculations.
Nevertheless, we must say that the picture is not as rigid as suggested by the Jacob’s
ladder, and really depends on the studied systems. Most of functionals are indeed bench-
marked to reproduce the properties of some molecular sets (for instance small copper
coordination complexes), and there may be cases where GGA work generally better than
hybrid functionals.
As a closing remark, DFT is a very efficient theoretical framework, provided that the
studied system can be represented efficiently with a single determinant, i.e. if static
correlation is negligible. Its algorithmic complexity is close to that of a Hartree-Fock
calculation (N ′3 to N ′4), with much better results. Actually, DFT calculations yield
comparable results to post-Hartree Fock calculations, even very close to CCSD(T). It will
be intensively used in this manuscript, noticeably for reactivity studies.

1.3.5 A few words on TDDFT

So far, we discussed the possibility to solve the Schrödinger equation for the ground state
only. This is the consequence of the variational principle employed in the first Hohenberg-
Kohn theorem. Actually, it also possible to access the low excited states in a density-based
formalism, called Time Dependent DFT. As suggested by the name, the excited states are
evaluated in a framework of time-dependent perturbations of the ground density. We will
not discussed it into details, but rather provide a qualitative framework of understanding,
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highly inspired by C. J. Cramer.8
Let us consider a molecule whose ground-state density and energy are known. It is placed
in an oscillating electrical field

E = r cos (ωt) (1.52)

with r the position operator(viii) and ω the frequency of the field. As underlined by Cramer,
the polarisability of the molecule is well approximated by

〈α〉 =
P∑
i �=0

|〈Ψ0|r|Ψi〉|2
ω − (Ei − E0)

(1.53)

where the indices i = {1, . . . , P} are attributed to the different excited states.
It is rather plain from this formula that the polarisability diverges when ω equals any
excitation energy. Using a Green’s function approach, it is then possible to determine
directly the poles of 〈α〉 without having to compute all the excited states energies and
densities, hence it is possible to determine the excitation energies.
It is furthermore possible to access the excited electron densities, thanks to the Runge-
Gross theorem.35 It can be seen as an extension of the first Hohenberg-Kohn theorem, and
proves that at any time t during a time-dependent perturbation there is a unique mapping
between the external potential and the electron density. Said otherwise, provided we know
the form of the perturbation, we can access the electron density at any time, and it will
be linked - via perturbation theory - to the ground and excited states densities.

1.4 Conceptual DFT, or DFT for Chemical Reactivity
Thanks to Hohenberg-Kohn and Runge-Gross theorems, we know that there is a unique
mapping between the electron density at a given time and the wavefunction. This has a
direct implication which we did not develop much up to now: the electron density contains
as much information on the system as the wavefunction does. In the following, we will
restrict ourselves to the ground state. By construction, ρ(r) contains all the measurable
information on it, thus implying that the ground state properties can be entirely described
using electron density.30

This is the cornerstone of Conceptual DFT.36,37 In CDFT, one is indeed interested in de-
scribing the properties of a given system using electron density-based descriptors, defined
in first principles. The first reported one is the chemical potential μ. Already present in
Hohenberg and Kohn original paper,29 it is defined as the first derivative of energy with
respect to the number of electrons in the system:

μ =

(
∂E

∂N

)
v(r)

. (1.54)

Physically, this descriptor translates the stabilisation or destabilisation a molecule endures
when the number of electrons is varying at a constant geometry, i.e. the tendency to
give away or hold back electron density. μ is then closely related to the concept of
electronegativity, and using a very simple line of argument Parr showed that μ is actually
the opposite of χ.30,38

(viii)Note this form of E seems less arbitrary once it is recognised that an electrical field has the same
symmetry properties as the position operator.
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The consequences were enormous: for the first time since the concept was introduced
in chemistry, it was possible to unequivocally define electronegativity, noteworthy for
molecules or fragments of molecules, and not only for atoms and ions. Furthermore, it
appears μ is negative for stable systems, and as such E is a decreasing function of N .
If we take the second order derivative with respect to N , we introduce another descriptor
η that is linked to the concavity of the energy. η translates the variations of the energy
stabilisation consequent to a change in the number of electrons: the bigger η, the more
quickly μ varies with N . This descriptor is actually defining hardness in the sense of
Pearson’s Hards and Soft Acids and Bases theory.39 Indeed, high values of η are going to
be associated to systems unlikely to vary much their number of electrons (sharp evolution
of μ with N), thus species that will not interact in a covalent but rather ionic way (no
sharing of electron density), as hard species do. Low η values on the other hand will
characterise systems that may accept a rather large variation of their number of electrons,
thus soft species.
These two descriptors (and all the successive N -derivatives of E) are global descriptors,
in the sense that they apply to the whole molecule. Taking derivatives with respect to the
other natural variable, v(r), allows to introduce locality - and even non-locality at high
orders. The first derivative is simply the electron density,

(
δE [ρ]

δv(r)

)
N

= ρ(r) (1.55)

where δ indicate functional derivatives. Taking then the N derivative of ρ(r) introduces

f(r) =

(
∂ρ(r)

∂N

)
v(r)

=

(
δμ

δv(r)

)
N

(1.56)

which translates the variations of electron density upon an electron uptake or release. In a
frontier orbital framework (FMO), this descriptor will thus be related to the HOMO and
LUMO orbitals densities, hence explaining the name of Fukui fonction.40 The second-order
N derivative of ρ(r) is even more interesting:

Δf(r) =

(
∂2ρ(r)

∂N2

)
v(r)

(1.57)

called the Dual Descriptor (DD), conveys similar information on the reactivity as the
Fukui function, without presenting its principal flaw.41 It is indeed well-defined, while the
left f−(r) and right f+(r) derivatives associated to f(r) are not identical. Actually, it can
be shown that the DD approximates to the difference of both Fukui functions, and in a
FMO framework

Δf(r) ≈ f+(r)− f−(r) ≈ ρLUMO(r)− ρHOMO(r). (1.58)

From this last expression, it becomes rather plain that the DD is a reactivity and selectiv-
ity descriptor: regions associated to a negative value of the DD are prone to cede electron
density, i.e. are nucleophilic, while positive values are associated to electrophilicity.
In Chapter 4, we will propose a new formulation for this descriptor, and extensively use
it to rationalise the chemical properties of ligands and complexes.
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1.5 Basis sets and relativistic corrections

1.5.1 Basis sets
In the previous sections, we detailed the theoretical formulation of different methods of
quantum chemistry, setting aside the practical details of the calculations.
As we have seen, bases of orbitals are used in the computations, and they are generally
devised to reproduce atomic orbitals, whose combination will yield molecular orbitals.
They usually consist in sets of functions, which are called basis sets. There are of two
types: the Slater-type orbitals (STO), and Gaussian-type orbitals (GTO).8,9

The STO decay exponentially with the distance to the nucleus, and yield a very efficient
representation of the electron density behaviour in the vicinity of nuclei (cusp). GTO, on
the other hand, do not present this cusp because of their Gaussian form. However, linear
combination of Gaussian functions can approximate efficiently this cusp. They also offer
the advantage that products and convolution products of Gaussian functions are Gaussian
functions, hence they permit a strong speed-up in computations compared to STO.
In this work, we used either STO – calculations with the Amsterdam Density Functional
program – and GTO basis sets – calculations with Gaussian09 and ORCA –. These basis
sets were split-valence ones, which means the valence electrons are modelled with more
functions than the core ones. 6-311++G(2d) is an example of such basis sets: the core
electrons are represented by 6 primitive Gaussian functions, while the valence electrons
are represented by 3 different bases of functions. The first one is a linear combination of 3
primitive Gaussian functions, while the second and third are unique primitive. The "++"
label indicates that additional functions are incorporated to all atoms to model more effi-
ciently the density far away from the nucleus, and are called diffuse functions. The suffix
"(2d)" indicates that two d-type polarisation functions are also added to non-H atoms,
in order to allow the atomic orbitals to distort, in a way that recalls the hybridisation
theory.
A further step in the previous idea can be taken: for elements with a largeN , core electrons
are not going to have a large influence on most of the physical properties, and they may
be modelled at a relatively low level without impacting the accuracy. Eventually, they
may not be treated explicitly and be replaced by a local potential acting on the valence
electrons: this is the pseudo-potential approach. In this work, we used principally the
Stuttgart-Dresden (SDD) pseudopotential for heavy atoms (metal cations).9

1.5.2 Relativistic corrections
Scalar relativistic corrections. We will end this chapter by underlining an implicit
hypothesis was used throughout these sections. Here, we assumed the electrons were
quasi-classical particles, in the sense that no relativistic effect was explicitly taken into
account. When dealing with heavy elements, like late transition metals and lanthanides,
this is far from being true.
One thus needs to reformulate the Schrödinger equation in a relativistic frame. Generally,
this is achieved using the Dirac equation

HDΨ = EDΨ (1.59)

with

HD =

(
EUU + c2 OUL

OUL ELL − c2

)
(1.60)
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where the matrix elements are 2× 2 matrices themselves.42 This approach is not without
problems, since the Dirac Hamiltonian presents two continua of states, above +c2 and
below −c2. This means that bound states are found only between these two limit values,
which are the only states that may interest us.
The solutions of the Dirac equation are 4-dimension vectors, which can be separated in
two 2-dimensions vectors ψ and χ, respectively called the large and small components and
associated to the 2× 2 matrices in HD. The only solutions that interest us are the large
components, being the only solutions related to the bound states. Two formulations were
proposed to obtain them only.
The first one is the Zeroth Order Regular Approximation (ZORA).43 Without going too
deep into the algebra, it is based on a series expansion of the large-component terms of
HD, truncated at the zeroth order. It already contains the so-called "scalar relativis-
tic corrections" to the Schrödinger equation, and proved to yield a relatively efficient
description of atoms and molecules.
The second correction is the Douglas-Kroll-Hess approximation.44 In that case, the Hamil-
tonian is not simplified but block-diagonalised, in order to decouple the large and small
components. To do so, a series of unitary transformations are applied on HD, which
progressively remove the non-diagonal terms. Formally, the derivation is exact if the ex-
pansion is infinite, but it was shown that the approximation is already efficient at low
orders.
In the following, we will mostly be using the second-order DKH approximation for lan-
thanide ions, and we will not directly evaluate relativistic effects for transition metals.
In that latter case, the use of small-core pseudopotential actually provides an already
efficient description, thus eluding the need to explicitly compute relativistic corrections.45

Spin-orbit coupling Aside from the scalar corrections, relativistic effects also have an
impact on the kinetic momenta of atoms and molecules. Noticeably, in general spin and
orbit moments are no longer decoupled: this is the so called spin-orbit coupling, which
can be represented by the following Hamiltonian:4,46

Hso = λL̂ · Ŝ (1.61)

with L̂ and Ŝ the spin and orbit moment operators.
While it may be safely ignored for light transition elements, this effect becomes very strong
for lanthanide ions. For instance, a Dy3+ ion with a 4f 9 valence electronic configuration
cannot be simply described as a ground S = 5/2 spin state, because S is no longer an
appropriate quantum number.21 The correct quantum number becomes the total momen-
tum |L − S| ≤ J ≤ L + S, and in that case the ground state is finally 6H15/2, thus with
J = 15/2.
In order to model correctly the properties of lanthanide ions (and late transition met-
als), one thus needs to take this effect into account during the calculations. Here, we
will principally consider it for the lanthanide ions. It will thus be computed on top of the
DKH/SA-CASSCF (PT2) calculations through the Restricted Active Space State Interac-
tion Spin-Orbit (RASSI-SO) procedure, which evaluates the spin-orbit coupling between
all the calculated states.47,48

1.6 Long story short...
In the following, we will use the different levels of theory according to the studied system,
trying to use the most adequate framework whenever possible. More specifically, when
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we will be dealing with reactivity, we will principally use tools from DFT and conceptual
DFT, because of both their simplicity and conceptual strength. Nevertheless, because of
the single-determinant nature of DFT methods, whenever ground state degeneracy will
be found we will have to use post-Hartree Fock methods. An example will be provided in
Chapter 3.
When dealing with magnetic properties, because of the needed accuracy (around the tenth
of cm−1 in the case of the weakly coupled trinuclear complex of Chapter 4), we will focus
solely on post-Hartree Fock methods. In the case of the lanthanide complexes of Chapter
5, as previously said we will principally use SA-CASSCF-based methods, while for the
complexes of Chapter 4 DDCI and NEVPT2 methods appear to be the most appropriate.



Chapter 2

Elements of coordination chemistry and
molecular magnetism

To the beginner, chemistry is often seen as a world of bright colours. Many of them are due
to transition metal complexes, like the well-known royal blue [Cu(NH3)4]2+ complex. A
coordination complex, or coordination compound, is made of one or several metal cations,
bonded to inorganic or organic ions or molecules called ligands.49

As we will recall in the following sections, properties of coordination compounds are
intimately related to their molecular and electronic structures. A special mention will be
given to molecular magnetism, whose scope is not restricted to coordination chemistry
but which flourished within it.

2.1 From Werner’s work to the ligand field theory

2.1.1 First studies of octahedral complexes

The middle and end of the nineteenth century have witnessed the development of what
could be called "structural chemistry", whose aim was to describe the molecular structure
of compounds. Chemists indeed realised that different compounds could be described by
the same total formula, although their properties were completely different. Among them,
two classes of compounds were found: organic molecules on one hand, and complexes on
the other.
Thanks to the work of, noticeably, Van’t Hoff and Le Bel,50 the problem could be partially
solved for organic molecules by supposing saturated carbon atoms tend to be tetrahedral.
This permitted noteworthy to understand why some molecules, with the same "scalar"
properties - melting point, et caetera - could show either a positive or negative deviation
of polarised light: at molecular formula, different backbones of atoms in space will be
associated to different compounds.
Using the same line of arguments, others tried to solve the problem for coordination
compounds – with great difficulty, as suggested by the adjective "complex" –. Alfred
Werner studied intensively cobalt(III) complexes. With a fantastic intuition, he supposed
the metal cation in these structures had a central role, being used as a scaffold by the
ligands.51 Extending the idea of Le Bel and Van’t Hoff, he supposed it would similarly
be located on the center of a regular polyhedron – here, an octahedron – and the ligands
would be located on the vertices. Isomerism would then be due to differences in the
sequence of ligands on the vertices. For this theory, which has been proved afterwards by
X-ray diffraction experiments, Alfred Werner received the Nobel Prize for Chemistry in

37
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1913.52

2.1.2 Crystal field theory

Werner’s theory permitted to link differences in properties to differences in geometry
for coordination complexes, but it did not allow to understand why, fundamentally, the
properties were different. Neither could it explain why the octahedral(i) symmetry was
obtained.
Explanation was provided with the advent of quantum chemistry. The first model to
be proposed was the Crystal Field theory, hereafter abbreviated CF.53,54 The idea is the
following: the energy levels of the complex, which will ultimately determine the properties,
can be deduced from those of the free ion, undergoing a perturbation due to the ligands.
This perturbation was initially described as a Stark effect: ligands act essentially in an
electrostatic manner, lifting the degeneracy of the metal energy levels, but also of its d or
f AOs.

x y

z

Figure 2.1.1: Schematic representation of an octahedral complex. The metal cation is represented by
the blue sphere, while the red spheres represent the ligands.

Let us consider the example of an octahedral complex, pictured on Figure 2.1.1. In the
case of a transition metal, the relevant valence orbitals to consider are the d metal AOs:
dxy, dyz, dxz, dx2−y2 and dz2 . These AOs will shift in energy because of the electrostatic
field induced by the ligands. On a first crude approximation, the field can be considered
isotropic; as a consequence, all AOs are equally destabilised ("spherical field" situation
on Scheme 2.1.1). If we now set the ligands on their actual positions in the complex,
the dx2−y2 and dz2 AOs are further destabilised. They indeed point directly towards the
ligands, and thus electrons in these AOs will strongly interact with the ligands field. On
the other hand, the dxy, dyz and dxz AOs present nodes on the ligands positions. They
will not be destabilised, and if the ligands field is set to have the same magnitude as the
isotropic one, they will even be slightly stabilised, because of a barycentre rule.

The same construction can be applied to lanthanide (and actinide) ions. In that case,
the relevant valence AOs are the 4f (and 5f) orbitals. They are represented on Figure
2.1.2, and the expected energy splitting in an octahedral field is given on Scheme 2.1.2.
The peculiar energy splittings obtained in the CF model permit to account for many
properties of coordination complexes, depending on their symmetry. Noteworthy, using
only symmetry arguments one can already find out that the d orbitals will be splitted in
two subsets in an octahedral field: the irreducible representations (RI) of the quadratic

(i)Actually, we know now that other symmetries can be obtained, such as tetrahedral, square-based
pyramidal...
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Energy

"In vacuum"

"Spherical field"

dxy dxz dyz

dx2−y2 dz2

Octahedral field

+3/5Δo

−2/5Δo

Scheme 2.1.1: Energy diagram focusing on the d metal AO in an octahedral field. Δo represents the
total energy splitting between the lowest and highest AOs.
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yxx
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yxx
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Figure 2.1.2: Schematic representation of the f orbitals, from top left to bottom right: fz3 , fz(x2−y2)

and fxyz. The fx3 and fy3 can be deduced from the fz3 AO by an appropriate rotation of the frame.
The same is true for the fy(x2−z2) and fx(y2−z2), from the fz(x2−y2).

Energy

"In vacuum"

"Spherical field"

fxyz

fx(y2−z2)

fy(x2−z2)

fz(x2−y2)

fx3 fy3 fz3

Octahedral field

Scheme 2.1.2: Energy diagram focusing on the f metal AO in an octahedral field.
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operators x2 − y2, z2, xy, xz and yz operators in the Oh point group are, respectively,
Eg (twice-degenerate) and T2g (three-times degenerate).55 They should thus be found at
different energies, even though we may not precise which set of orbitals will be destabilised.
Similarly, in the same point group the third-order operators (related to the f orbitals)
are represented by the T1u (three-times degenerate), T2u (three-times degenerate) and A2u

RI.56 This point highlights the importance of symmetry. The properties of the complexes
will be linked to their energy patterns, which are directly due to the symmetry of the
complexes. This is actually Curie’s principle: "When some causes induce some effects,
the symmetry elements of the causes are necessarily found in the effects." (ii)

One of the great successes of this model is that it explains why many transition metal
complexes are coloured: electronic transitions can occur within the d AOs, and fall in the
visible range. It also permits to understand why, for instance, some Fe(II) complexes are
magnetic and some others not: depending on the splitting between the lowest and highest
orbitals, the six d electrons of Fe(II) will tend to pair in the three lowest orbitals (low
spin state) or on the contrary to locate in all the accessible AOs (high spin state).

2.1.3 Ligand field theory

Yet, the CF model involves parameters that cannot be derived from a purely theoretical
point of view, and as such raises many questions. Noticeably, how can we quantify the
energy splitting? And why are some complexes more coloured than others?
These two questions can actually be answered if we now consider covalent effects in the
metal-ligand interaction.58 This is what is achieved by the successor of the crystal field
theory, the so-called ligand field theory, which is built in the framework of the Molecular
Orbitals (MO) theory. The basic idea in that case is to draw the whole MO diagram of
the complexes, thus involving explicitly the ligands in the construction. Interestingly, the
splitting pattern of the d orbitals is very similar in the two models. As such, and since
it can be found in any advanced inorganic chemistry textbook,51,54 we will not develop it
here, but we may emphasise two points.
First, thanks to this approach it is now possible to quantify the energy splitting but
also to understand why some complexes present more intense electronic transitions than
others. In the CF model, the only possible transitions are d → d electron transitions.
Using symmetry argument, we can indeed see that these transitions are forbidden: the
representation product corresponding to the dipole transition moment (DTM) does not
contain the all-symmetric representation Γ0,59,60

(ΓDTM = Γd ⊗ Γ�r ⊗ Γd) 	⊃ Γ0. (2.1)

For instance, if we consider a d1 ion in an octahedral field, the ground state will have a T2g
symmetry. Formally, d-d excitations will consist in the promotion of the electron from a
t2g orbital to a eg orbital, which implies d-d excited states will have a Eg symmetry. The
dipole moment, on the other hand, transforms as the translation operators, and in the Oh

point group it is thus represented by the T1u irreducible representation. The symmetry
representation of the transition dipole moment will thus be the product Γ = T2g⊗T1u⊗Eg.
From the character table of the Oh point group:

(ii)"Lorsque certains causes produisent certains effets, les éléments de symétrie des causes doivent se
retrouver dans les effets produits."57.
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E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd
3 0 -1 1 -1 -3 -1 0 1 1 T1u
3 0 1 -1 -1 3 -1 0 -1 1 T2g
2 -1 0 0 2 2 0 -1 2 0 Eg

18 0 0 0 2 -18 0 0 -2 0 Γ

it comes rather directly that Γ does not contain the all-symmetric representation (denoted
A1g in Oh). The number of occurrence of A1g in Γ is indeed

a(A1g) =
1

48
(1× 18 + 0 + 0 + 0 + 2× 6− 18× 1 + 0 + 0− 2× 3 + 0) = 0. (2.2)

By taking the ligands orbitals explicitly in the ligand field model, we allow a mixing of
the d metal AOs and the σ, p or π type ligands orbitals. As such, the representation
product in equation (2.1) is modified and may now involve Γ0: the selection rule is lifted.
Furthermore, using the same symmetry arguments, it appears that other transitions are
now feasible, from or to ligands orbitals, to or from metal orbitals. One speaks of Ligand
to Metal or Metal to Ligand Charge Transfer (LMCT/MLCT). The selection rule in
these cases is even less strictly observed, and the corresponding transitions are even more
intense (extinction coefficient ε ∼ 102− 106 L.mol−1.cm−1, compared to the ε ∼ 100− 102

L.mol−1.cm−1 of d-d transitions).51

Second, these charge transfer effects can actually be more generally described as electron
density transfers from one part of the complex to another. Through this subtlety, we can
generalise the previous concepts in non-MO frameworks.

2.1.4 The metal-ligands interaction and the Klopman-Salem model

Actually, this whole section can be generalised in a non-MO framework. The CF model
can indeed be seen as a focus on the electrostatic contribution to the total metal-ligands
interactions. The ligand field theory on the other hand retrieves the covalent – or density
relaxation – contribution to the interaction. Conceptually, we fall back onto an extended
Klopman-Salem model for the coordination complexes.61,62 (iii)

Generally, transition metals will tend to interact in a covalent way with ligands, i.e.
they tend to act as soft acids (in the sense of the Parr-Pearson HSAB theory).39 This
of course becomes less true when their oxidation degree is high, high charges leading the
electrostatic interaction to prevail. Similarly, lanthanide ions will tend to act as hard
acids, interacting principally in an electrostatic manner with the ligands.21 This is due to
the small spatial extent of the 4f orbitals, which explains why lanthanide cations present
very similar reactivities – they all almost act as 3+ point charges – . In the following
chapters, we will principally use these lines of arguments (rather than CF or ligand field
analyses). Noticeably, Chapter 4 is dedicated to revisiting coordination chemistry through
conceptual DFT.

(iii)We indeed remind that, in this model, the energy of interaction between two molecules is expressed
in separated contributions, depending on their electrostatic (charge-charge, solvent shell reorganisation)
or covalent (orbital overlap) nature.
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2.2 Molecular magnetism

2.2.1 Diamagnetism, paramagnetism and related properties

Every substance reacts to the application of a magnetic field �H by an induced mag-
netic moment �m. This reaction can essentially be of two kinds: either the sample repels
the magnetic field lines, hence �m opposes — at least partially — �H, or it concentrates
them, hence �m and �H point in the same direction.63 The first situation is referred to
as diamagnetism. It is a microscopic analogue of the Lenz’ law of electrodynamics, due
to the electron motion. The electronic cloud around a nucleus can indeed be seen as a
current loop (orbital momentum of the electrons), which will react to the application of
the magnetic field through an additional current i that opposes the perturbation. It is a
general property of matter, in the sense that the only condition for a sample to present
diamagnetism is to bear electrons.
The second situation is referred to as paramagnetism. It is only encountered in open-shell
structures such as radicals, transition metals and rare earth ions, and is due to the non
zero angular momentum of electrons.
It is possible to define a quantity that links the induced magnetisation to the applied
magnetic field:64

¯̄χ =
d�m

d �H
=

⎛
⎝χxx χxy χxz

χxy χyy χyz

χxz χyz χzz

⎞
⎠ (2.3)

called the magnetic susceptibility. Formally, it is a second-rank tensor, which we assume
to be symmetric. It is always possible to diagonalise such tensor(iv)

¯̄χ =

⎛
⎝χu 0 0

0 χv 0
0 0 χw

⎞
⎠ (2.4)

where the eigenvectors �u, �v and �w are called the magnetic axes. If the three components
of the diagonal tensor are equal, then the magnetic susceptibility is simply a scalar, and
the magnetism is said to be isotropic. In the following, we will assume this is the case,
else stated otherwise. We will also assume the magnetic field is small, in which case the
magnetisation evolves linearly with field:

�m = χ �H. (2.5)

Generally, χ is the sum of a diamagnetic (χD < 0) and paramagnetic (χP > 0) term

χ = χD + χP . (2.6)

Often, the paramagnetic susceptibility is much stronger than the diamagnetic one, which
furthermore tends to be temperature independent. It can also be quite correctly repro-
duced from tabulated data, the so-called Pascal tables.65 Since we are interested in the
paramagnetic component of susceptibility, we can simply withdraw from the measured
susceptibility the diamagnetic (tabulated) component, χP = χ−χD. For the sake of sim-
plicity, in the following we will use the term "susceptibility" in the sense of paramagnetic
susceptibility.
(iv)Provided naturally that its determinant is not zero, which will be the case here.
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2.2.2 The van Vleck equation
As we said, the paramagnetic susceptibility is the consequence of the interaction of the
angular momentum of unpaired electrons with a magnetic field. We also know from
quantum mechanics that to each energy level Ei of the system will be associated a specific
total angular momentum Ji, hence a specific magnetisation mi.1 It can be expressed as

mi = −∂Ei

∂H
(2.7)

with Ei the energy of level i.
Overall, the molar magnetisation will be the resultant of the levels contribution, weighted
by their population:66

M = NA

∑
i

mi exp
(

−Ei

kBT

)
∑
i

exp
(

−Ei

kBT

) . (2.8)

Van Vleck suggested an approximation of this formula, based on a series expansion of the
energy with respect to H:(v) 68,69

Ei =
∞∑
k=0

E
(k)
i Hk = E

(0)
i + E

(1)
i H + E

(2)
i H2 + . . . (2.9)

The levels magnetisation is thus straightforwardly

mi =
∞∑
k=1

−kE(k)
i Hk−1 = −E(1)

i − 2E
(2)
i H + . . . (2.10)

If the field is small enough, the energy expansion can be safely truncated at the first order.
Furthermore, the exponential can be expanded as a Taylor series:

exp

(−Ei

kBT

)
≈ exp

(
−E(0)

i

kBT

)(
1− E

(1)
i H

kBT

)
. (2.11)

Hence we have

M = NA

∑
i

−E(1)
i exp

(
−E

(0)
i

kBT

)(
1− E

(1)
i H

kBT

)
∑
i

exp

(
−E

(0)
i

kBT

)(
1− E

(1)
i H

kBT

) . (2.12)

If the magnetisation is zero when the field is turned off, we get:

∑
i

−E(1)
i exp

(
−E(0)

i

kBT

)
= 0 (2.13)

thus

M =
NAH

kBT

∑
i

(E
(1)
i )2 exp

(
−E

(0)
i

kBT

)
∑
i

exp

(
−E

(0)
i

kBT

) . (2.14)

(v)Note that this corresponds to an expansion in Zeeman’s kth order effects.67
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Equation 2.14 is called the Van Vleck equation (truncated at the first order). As one
can already infer, it provides a direct link between the measured magnetisation and the
quantum levels of the system under study. It is thus possible to deduce an energy diagram
from magnetic measurements, or on the contrary to compute magnetisation from an
energy diagram.
In the following subsection, we will show how this can be achieved for the transition
metals and lanthanide complexes that will be presented in this manuscript. It is largely
inspired from Olivier Kahn’s (land marking) book, and the reader is referred to it for any
further details.64

2.2.3 Magnetism of coordination complexes: basic principles
As we briefly evoked in the previous section, the Hamiltonian that describes the interaction
of a given system with a magnetic field is the Zeeman Hamiltonian:

HZE = μB

N∑
i=1

(
�Li + ge�Si

)
· �H (2.15)

with �Li and �Si the orbital and spin momenta of electron i, and ge the gyromagnetic factor
of the free electron.
Provided that the zero-energy spectrum is known, one simply needs to compute the Zee-
man Hamiltonian energy spectrum in order to determine the magnetic properties of the
system.

Isotropic case

Let us first consider the case of molecules with a unique magnetic centre and with �Li = �0,
and no higher-order anisotropy. The Zeeman Hamiltonian in that case reduces to the
projection of the total spin along the magnetic field. This actually will be the case for
Cu(II) (isotropic S = 1/2 ion) and Gd(III) (isotropic S = 7/2 ion). Provided that �H

is constant, the energy spectrum of HZE is thus simply the energy spectrum of the Ŝz

operator, EZE =MSμBH. It is quite simple to show that, in such cases,

χ =
NAg

2μ2
B

3kBT
S(S + 1) =

C
T
. (2.16)

This is the Curie Law (with C the Curie constant).
Lets us now consider the (more interesting) case of a heterodinuclear complex, involving
two species A and B such that SA 	= SB. We will assume these two magnetic centres
are isotropically coupled (Heisenberg coupling). As such, the zero-field energies are now
given by the following Hamiltonian:

HHDV V = −JŜA · ŜB (2.17)

where J is called the magnetic coupling between A and B. Note that J > 0 is associated
to a ferromagnetic coupling, and J < 0 to an antiferromagnetic coupling.(vi) The deter-
mination the energy spectrum of HHDV V was proposed by Heisenberg, Dirac and Van
Vleck. Let us consider the total spin Ŝ = ŜA+ ŜB. From the law of composition of kinetic
momenta and commutation rules, it follows that

|SA − SB| ≤S ≤ SA + SB (2.18)

(vi)If SA 	= SB , the antiferromagnetic case can also be described as ferrimagnetic.
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Ŝ2 = Ŝ2
A+Ŝ

2
B + 2ŜAŜB. (2.19)

From equation (2.19), one easily gets that

HHDV V = −J
2

(
Ŝ2 − Ŝ2

A − Ŝ2
B

)
(2.20)

which involve the quadratic spin operators whose eigenvalues are known. The energies
can then simply be written as:

E(S) = −J
2
(S(S + 1)− SA(SA + 1)− SB(SB + 1)) (2.21)

= −J
2
S(S + 1) + constant. (2.22)

For the sake of simplicity, we will set the constant to zero (shifting the energies). The
resulting spectra are displayed on Scheme 2.2.1.

J < 0

Energy

|SA − SB|

|SA − SB|+ 1

...

SA + SB

J > 0

Energy

SA + SB

|SA − SB|+ 1

...

|SA − SB|

Scheme 2.2.1: Energy spectrum of the Heisenberg-Dirac-Van Vleck Hamiltonian, for the antiferromag-
netic (left) and ferromagnetic (right) cases.

The resulting states will be further split by the application of a field, because of the
Zeeman effect. If we use the same notation as in equation (2.14), we have

Ei = −J
2
Si(Si + 1) + μBgMSi

(2.23)

E
(0)
i = −J

2
Si(Si + 1), E

(1)
i = μBgMSi

(2.24)

for any state i associated to the spin Si. For instance, if we set SA = SB = 1/2, as could
be found for instance in a dinuclear Cu(II) complex, two states can be constructed:

• S = 0, singlet state, with E(0)(S = 0) = 0 and E(1)(S = 0) = 0;

• S = 1, triplet state, with E(0)(S = 1) = −J and E(1)(S = 1) = −μBg, 0, μBg.

The Van Vleck formula reduces in that case to

χ =
M

H
=

NA

kBT

0 + (−μBg)
2 exp (+J/kBT ) + 0 + (μBg)

2 exp (+J/kBT )

1 + 3 exp (+J/kBT )
(2.25)
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=
2NAg

2μ2
B

kBT

1

3 + exp (−J/kBT )
. (2.26)

Thus, the thermal variation of χ (or even better, χT ) provides direct information on J:
it is possible to gain information on the coupling between these two spins by the simple
measurement of susceptibility versus temperature.
This is unfortunately not always the case. In Chapter 5, we will study an asymmetric
trinuclear complex of Cu(II), where all the spins are supposed to be coupled. A schematic
representation of such complexes is given on Figure 2.2.1. If we label A, B, and C the
three copper centres, the zero-field Hamiltonian now writes

HCu3
= −JABŜA · ŜB − JACŜA · ŜC − JBCŜB · ŜC . (2.27)

The solutions in that case are less straightforward. We are interested here in the coupling
of three S = 1/2 spins. The solutions are thus going to be quartet (S = 3/2) and doublet
(S = 1/2) states.

JAB

JAC

JBC

A

B

C

Figure 2.2.1: Schematic representation of an asymmetric Cu(II) trinuclear complex.

Only one quartet state can actually be build, by aligning all the spins. We will label that
state | ↑↑↑〉, where the direction of the arrows indicates the spin projection (up or down)
for, respectively, spin A, B or C. The energy of this state is thus simply given by the
expectation value of the Hamiltonian

E(3/2) = 〈↑↑↑ |HCu3
| ↑↑↑〉 =− JAB〈↑↑↑ |ŜA · ŜB| ↑↑↑〉

− JAC〈↑↑↑ |ŜA · ŜC | ↑↑↑〉
− JBC〈↑↑↑ |ŜB · ŜC | ↑↑↑〉.

(2.28)

The Heisenberg-Dirac-Van Vleck approach of equation (3.19) can, as previously, be un-
folded and yields:

E(3/2) = −JAB + JAC + JBC

4
. (2.29)

The doublet states may be more difficult to picture. Three doublet configurations can
indeed be constructed by flipping one spin in | ↑↑↑〉: | ↓↑↑〉, | ↑↓↑〉 and | ↑↑↓〉, and the
expected doublet states are going to be linear combinations of these "limit forms".
They will be eigenvectors of the Hamiltonian, i.e. they are such that HCu3

is diagonal in
their basis. Overall, the problem reduces then to the diagonalisation of HCu3

in the sub-
space of doublet configurations. In the {| ↓↑↑〉, | ↑↓↑〉, | ↑↑↓〉} basis, the matrix elements
of HCu3

are⎛
⎝(JAB + JAC − JBC)/4 −JAB/2 −JAC/2

−JAB/2 (JAB + JBC − JAC)/4 −JBC/2
−JAC/2 −JBC/2 (JAC + JBC − JAB)/4

⎞
⎠ (2.30)
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where we used equation (2.19) and(vii)

Ŝ2 = Ŝ+
A Ŝ

−
A + Ŝ+

A Ŝ
−
B + Ŝ−

A Ŝ
+
B + Ŝ+

B Ŝ
−
B − ŜAz − ŜBz + Ŝ2

Az + Ŝ2
Bz + 2ŜAzŜBz. (2.33)

The problem is thus to solve det(HCu3
−EI3) = 0 (where I3 represents the identity matrix).

This leads to a third degree polynomial, which can be factorised once it is recalled that one
of the energies (root of the polynomial) is necessarily equal to the energy of the quartet,
E(1/2)1 = E(3/2) (MS = ±1/2 component of the quartet). After a bit of calculation,
the two other roots are found:

E(1/2)2,3 =
JAB + JAC + JBC

4

±
√

(JAB − JBC)2 + (JBC − JAC)2 + (JAC − JAB)2

8
.

(2.34)

It is then here also possible to express susceptibility from the coupling constants, but
the reciprocal is not true. This is rather logical: in Van Vleck’s formula, the relevant
parameters are not the absolute energies of each state but rather their relative energies.
Here, we want to relate two energy differences (three-state system) to three independent
coupling constants, which is not possible.

Anisotropic case

Let us now consider the possibility, for the system, to show some magnetic anisotropy.
By magnetic anisotropy, we mean the possibility to display different values of the mag-
netisation for a same magnitude of the field, depending only on the orientation of the
latter.
This is a direct consequence of the spin-orbit coupling. In the simplest case, the orbital
momentum is negligible in the ground state, but not in the excited ones. This will
generally be the case for transition metal octahedral complexes. Ground and excited
states may then be coupled through the spin-orbit Hamiltonian of equation (1.61), with
L and S being the total spin and orbital moment. This leads to two phenomena: first,
the gyromagnetic factor becomes anisotropic (gu 	= gu 	= gw). Furthermore, if the spin is
larger than 1/2, one may observe an energy splitting between substates with a different
absolute value of MS: this is the so-called Zero Field Splitting (ZFS). Phenomenologically,
the ZFS Hamiltonian can be written as

HZFS = Ŝ ¯̄DŜ (2.35)

where ¯̄D is a traceless and symmetric tensor,(viii) called the ZFS or anisotropy tensor.
Equation (2.35) can also be found written as

HZFS = D

[
Ŝ2
z −

S(S + 1)

3

]
+ E

(
S2
x + S2

y

)
(2.36)

(vii)We remind that the Ŝ+ and Ŝ− operator verify

Ŝ+| ↑〉 = |0〉, Ŝ−| ↑〉 = | ↓〉 (2.31)

Ŝ+| ↓〉 = | ↑〉, Ŝ−| ↓〉 = |0〉 (2.32)

(viii)Traceless since, overall, the sum of the levels energy should remain unchanged.
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where the D and E parameters are related to the eigenvalues of ¯̄D by the following
equations

D =
3Dz

2
(2.37)

E =
|Dx −Dy|

2
(2.38)

(assuming x, y and z are the principal axes for both ¯̄D and ¯̄g). They are called, respec-
tively, axial and rhombic anisotropy parameter.
This form of anisotropy will principally be encountered for transition metals ions, with
spins larger than 1/2. As such, it will not be considered in the following, since we will focus
in this thesis on the magnetic properties of Cu(II) (S = 1/2) and lanthanide complexes
only.
In this latter case, the orbital momentum in the ground state is non negligible, and
may thus be coupled by the spin-orbit coupling to the spin momentum.(ix) Furthermore,
previously we implicitly assumed that the spin-orbit coupling was only acting as a small
perturbation on the eigenstates of the (spin) Hamiltonian. This implied that the spin
quantum number S remained an adapted quantum number – in the sense that it still
permitted to describe the state of the system –.
This is no longer the case if the spin-orbit interaction is large enough, compared to the
other terms in the Hamiltonian. In the case of the lanthanide ions, the magnitude of the
spin-orbit interaction becomes comparable to the magnitude of the other terms of the
free ion Hamiltonian (103 cm−1 compared to 104 cm−1, respectively)70. Spin is thus no
longer a relevant quantum number, and since the degeneracy of the ground state is lifted
according to the value of the total angular momentum

Ĵ = L̂+ Ŝ (2.39)

J will be the new relevant quantum number. We can infer from this formula that magnetic
anisotropy will be caused by the orbital momentum L̂, provided naturally that it is itself
anisotropic. This is likely to happen, thanks to the coordination of ligands around the
lanthanide cation. The crystal field splitting (presented in the previous section), lifting
the degeneracy of the orbitals depending on their relative orientation with respect to the
coordination sphere, may indeed preferentially stabilise orbitals pointing along (a) specific
direction(s) in space. As a result, the different orientations in space become non-equivalent
– we lose the spherical symmetry of the free ion –, and so do the different components
of L̂, and thus of Ĵ . As we will see in the following section, this anisotropy can be very
large. Actually, it is often much larger than transition metals anisotropy.

In summary, we have seen so far that, introducing more and more term to the Hamilto-
nian of a metal free ion, we may describe more and more precisely its magnetic properties.
Noteworthy, the approach that was unfolded at the beginning of this section remains valid
in the anisotropic case – one may still invoke Van Vleck’s formula –, even though much
more difficult to handle. We also see the tremendous importance of the coordination
symmetry and geometry, since they will act on the energy splitting and thus on the ex-
ponentials of Van Vleck’s formula, but also on the anisotropy itself. In a way, controlling
coordination should permit to control anisotropy.

(ix)Note that this may also be true for transition metal complexes, noticeably those of Co(II).
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S4

Figure 2.2.2: Crystal structure of the Mn12 complex, represented as viewed along the �a (left) and �c
axes. Colour scheme: Mn(III), purple; Mn(IV), orange; O, red; C, gray. H atoms omitted for the sake of
clarity. The S4 axis direction is indicated by the blue arrow.

2.2.4 Single Molecule Magnets
The latter point has actually been a central issue of coordination chemistry in the last
twenty five years. Indeed, at the beginning of the 1990s was discovered the first Sin-
gle Molecule Magnet (SMM), [Mn12O12(CH3COO)16(H2O)4] (simplified as Mn12). This
complex was first synthesised in 1980, but its intriguing magnetic properties were charac-
terised and explained only thirteen years later.71,72 In 1993, it was indeed discovered that
this complex could retain its magnetisation in the absence of any external magnetic field,
and for very long times at low temperatures – about 2 months at 2 K –.
In other words, this complex acts, at least at low temperatures, as a molecular equivalent
of the magnets. The word molecular is very important: the slow relaxation is not due to
an extended (solid state) order, but solely to its uniaxial magnetic anisotropy. The picture
is actually quite simple: because of this uniaxial anisotropy, the magnetic moment will
preferentially orient along the easy axis, and will tend to avoid the hard axes directions
(hence their name). They should be found at 90◦ from the easy axis,(x) which means the
continuous reversal of magnetisation – "upside down" – will be quite severely hampered:
relaxation of magnetisation will thus be slowed down.

u v

w

u v

w

)()(

Scheme 2.2.2: Schematic representation of the reversal of magnetisation in the isotropic (left) and
uniaxal anistropic (right) cases. The magnetisation vector is represented by the cyan arrow, and the blue
volume represents the susceptibility tensor ellipsoid. w is taken as the easy axis.

Actually, in the case of the Mn12 complex it could be shown that the temperature depen-
(x)Being the eigenvectors of a symmetrical real tensor, the magnetic axes are necessarily orthogonal.
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dence of the magnetisation dynamics obeys an Arrhenius law

νrel = ν0 exp

(
−ΔE

kBT

)
(2.40)

with

ΔE = |D|S2 = 66K (2.41)

and S = 10 (ferrimagnetic coupling of the Mn(IV) and Mn(III) ions).(xi) Physically, this
expression means the relaxation from the MS = +10 substate towards the MS = −10
substate proceeds via a thermal activation to the MS = 0 substate, as pictured on Scheme
2.2.3.(xii)

MS = −10

Energy

MS = +10

MS = 0

Scheme 2.2.3: Schematic representation of the relaxation of magnetisation in Mn12.

As one may note, the energy barrier ΔE involves both the uniaxal anisotropy parameter
and the total spin. The higher these parameters (in absolute value), the slower the
relaxation. In order to obtain more efficient SMMs, because of the apparent quadratic
evolution of S chemists tried at first to develop systems with giant spins. Indeed, more
efficient SMMs means higher working temperatures, but also higher magnetic moments.
Unfortunately, even though very large S values could be obtained – such as S =83/273

–, no improvement was observed on the relaxation rates. Actually, it could be shown
that the diagonal terms of the ZFS Hamiltonian actually evolve as S−2, thus making ΔE
globally independent of S.74

Furthermore, the reason for the slow relaxation of Mn12 is its high anisotropy, which
is itself due to a rather efficient addition of the local anisotropies of the Mn(III) and
Mn(IV) ions. The fact that the single ion anisotropies add instead of subtract is due the
high symmetry – tetragonal – which force the easy axes of each ion to lie approximately
along the S4 axis. In order to optimise the SMM behaviour, it is thus better to control

(xi)One may note the form of the energy term, which is directly linked to the ZFS Hamiltonian of
equation (2.35).
(xii)Indeed, relaxation of magnetisation means that the system is able to reverse its magnetic moment,
hence to exchange the population of the MS = ±10 substates.
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strictly the way local anisotropies interact, and this calls for rather small assemblies of
very anisotropic ions.75

The discovery of the first Single Ion Magnet in the early 2000’s can be seen as a wonderful
support to this idea. In 2004, Ishikawa indeed showed that two mononuclear lanthanide
complexes, [TbPc2]– and [DyPc2]– (with Pc = phthalocyanate), displayed a slow relaxation
of magnetisation at quite high temperatures (between 10 K and 40 K).76 This was solely
due to the magnetic anisotropy of the complexes, which overall contains only a single
paramagnetic centre. This discovery lead to a huge research effort on lanthanide-based
single molecule magnets, and noteworthy on mononuclear Ln-based SMM.77,78

The lanthanide ions appear indeed very promising in the seek for more efficient SMM. As
we mentioned earlier, because of the strong spin-orbit coupling they may indeed present
strong single-ion anisotropies, and for the last half of them (Tb - Yb) they also present high
magnetic moments(xiii). Furthermore, since the crystal field controls the final anisotropy,
in turn it should be possible to control anisotropy through an appropriate tuning of the
coordination sphere.
This was summarised in 2008 by Rinehart and Long,79 who offered guidelines to design
lanthanide-based SMMs, basing on the mutual adaptation of the 4f electron density in
the substates with the highest |MJ | value and the ligand field. It appears that lanthanide
cations can be separated into two classes, showing either a prolate or oblate deformation of
the 4f electron density in these substates (as compared to the ideal spherical distribution
of the free ion). Ligand fields displaying a marked negative charge density encapsulating
these "deformation ellipsoids" are thus expected to stabilise them, hence inducing or
reinforcing an energy barrier between the different MJ substates.
Yet, we will see in Chapter 6 that this model, though quite elegant, is too simplified.
Relaxation of magnetisation is indeed a very complicated phenomenon, involving mecha-
nisms that are not restricted to the level of the isolated molecule.80 Let us consider the
case of a SMM in its crystalline state, assuming that intermolecular magnetic interactions
are negligible. Relaxation of magnetisation in that case can occur through four different
mechanisms.(xiv)

First, the two degenerate ground states with opposite magnetisation may not be com-
pletely uninteracting. Provided that these two states may "communicate", quantum tun-
nelling of magnetisation can occur, through the fast inversion between these two substates.
"Communication" between the states may be induced for instance by hyperfine coupling
between the electronic and nuclear spin, which indirectly couples the two components of
the ground doublet. The resulting relaxation rate is independent of temperature, but is
on the other hand strongly dependent on the magnetic field magnitude. Indeed, provided
that a magnetic field is applied on the system, the degeneracy in the ground state is lifted
and thus the quantum tunnelling should be suppressed. Overall, the rate of magnetic
relaxation due to quantum tunnelling writes

νQTM =
1

a+ bH2
(2.42)

with a and b two constants.
Second, the molecule is not suspended in a vacuum, but embedded within a crystal lattice.
This implies every molecule feels an electric (Madelung) field created by all the point
charges in the crystal. The quantum state of each molecule is thus dependent on this
electric field, and because of the spin-orbit coupling this means the magnetic properties
(xiii)For a more than half-filled shell, we remind that J = L+ S, while for a less than half-filled shell one
gets J = |L− S|.
(xiv)The curious reader is referred to Stevens’ publication for more details.81
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are likely going to be impacted by any variation of the Madelung field. Since we study
molecules at a non-zero temperature, vibration modes are expected to be populated, which
in turn means all the point charges that contribute to the Madelung field may be moving.
The Madelung potential is then expected to be time dependent, and its variations in time
induce the so-called spin-phonon coupling, i.e. the coupling of magnetic properties and
vibrations.
The interplay between the vibration modes and magnetic states thus allows magnetisation
to relax, through three different mechanisms. First, the direct relaxation, which consists
in the absorption of a vibration quantum �ω exactly equal to the energy gap between two
states. It is a field and temperature dependent mechanism:

νdirect =
(
cH2 + dH4

)
T. (2.43)

Second, the Orbach relaxation, which can be seen as double direct mechanism: the system
absorbs a first quantum �ω to reach an intermediate state |ψint〉, and then releases another
quantum �ω2 in order to reach the final state. It is temperature dependent but field
independent:

νOrbach = ν0 exp

(
−ΔE

kBT

)
(2.44)

with ΔE = |�(ω − ω2)|. One may note the mono-exponential – Arrhenius-like – form,
reminiscent of equation (2.40).
Finally, the Raman relaxation, which can be seen as an Orbach mechanism involving a
"virtual" intermediate state (excitation energies are much larger than the energy span of
the ground configuration). The relaxation rate for this mechanism is strongly temperature
dependant:

νRaman = eT n (2.45)

with n being an integer, and e being possibly field independent.
Overall, the magnetisation dynamics for an isolated yet crystallised SMM is thus expected
to be the resultant of these different contributions, being noted furthermore that each
mechanism can intervene several times – for instance, two Orbach relaxations with differ-
ent energy barriers can be found –. In turn, SMM are very complex systems whose proper-
ties are still very hard to control, if it is only possible. Indeed, single ion anisotropies seem
now quite easy to control, but we still do not know how to ensure the highly anisotropic
molecules will behave as SMMs in the solid state. As we will show in Chapter 6, play-
ing solely on the energy barriers in the system may not be the most appropriate way to
design SMM, since "under barrier" phenomena (i.e., Raman and direct relaxations) may
completely control the relaxation rate.

2.2.5 Characterising magnetic anisotropy locally

So far, we did not mention how magnetic anisotropy can be measured and quantified from
the experimental point of view. Many different experimental techniques are available, and
the curious reader is referred to the Molecular Magnetism Website82 (www.molmag.de) for
more details and informations. In the following paragraphs, we will present two techniques
that were used during this thesis: angular-resolved magnetometry and polarised neutron
diffraction.
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Angular-resolved magnetometry

Scheme 2.2.4 represents a simplified magnetometry experiment: a sample (red rectangle)
is placed in the middle of a superconducting circuit, which consists in three successive
coils. The coiling orientation is alternating when going from top to bottom. Initially, the
cavity is empty and a vertical static magnetic field is applied. Since the magnetic flux is
not evolving with time, no voltage appears across the circuit (Lenz’ law).
If now we introduce a sample in the cavity, then the magnetic flux is perturbed. Yet,
if the sample is static no electric signal will be measured, since the magnetic flux is not
varying in time. If on the other hand we move the sample or if we set the magnetic field
to be alternating, then a voltage is expected across the circuit, which can be linked to
the vertical component of the magnetic moment of the sample. Because of the setup, the
voltage versus position is expected to show a "cardinal sine"-like shape, with a maximum
in 0 and minima in ±L (if the sample is paramagnetic).
In "classical" SQUID(xv) magnetometry, one usually measures the magnetic moment of
a sample with respect to field magnitude, temperature, AC field frequency or even light
irradiation, on a powder sample. This means that the measured magnetic moment is av-
eraged over all possible orientations of the molecules. Direct information on the magnetic
anisotropy cannot be obtained at this point.

0

-L

L

Scheme 2.2.4: Schematic representation of a magnetometer

In angular resolved magnetometry,83,84 the same kind of measurements are performed but
on a single crystal, whose orientation is precisely known and can be controlled (additional
parameter). In the apparatus we used, the single crystals were fixed on a rotating sample
holder, aligning the rotation axis with a lattice direction. The measurement of the mag-
netisation against the rotation angle and temperature or magnetic field magnitude thus
provides information on the magnetic properties at the level of the crystal lattice. If we
write the susceptibility tensor according to equation (2.3), then the measured magnetic
moment will be expressed as:85

mmeas =
1

N

N∑
i∈Lattice positions

(
¯̄χi · �H

)
·

�H

|| �H||
. (2.46)

If the crystal lattice contains no symmetry equivalent positions, then sum of equation
(2.46) reduces to a single term. Hence, measuring the magnetisation as a function of
angle for three non collinear rotation axes should, in principle, permit to extract every
(xv)SQUID: Superconduction QUantum Interference Device. This device translates the magnetic flux
produced by the studied sample into a current – using Lenz’ induction law –, which is itself translated
into a voltage directly linked to the magnetic moment of the sample.
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component of the susceptibility tensor, and thus access experimentally the molecular
magnetic anisotropy.
This is also true if only inversion-related positions are found in the lattice: applying an
inversion symmetry operation should not lead magnetic moments to oppose the magnetic
field (unstable equilibrium). The susceptibility tensor is indeed invariant under space
inversion:28

i ( ¯̄χ) =

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ ·

⎛
⎝χxx χxy χxz

χxy χyy χyz

χxz χyz χzz

⎞
⎠ ·

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ (2.47)

= (−1)2 I3 · ¯̄χ · I3 = ¯̄χ. (2.48)

Molecules related by an inversion symmetry are thus expected to yield the same mag-
netisation, and one can express the magnetic moment of a unit cell as being N times the
magnetic moment of a molecule, with N the number of equivalent positions. As such,
angular-resolved magnetometry allows the unambiguous determination of the molecular
magnetic anisotropy in triclinic crystal cells.
This is unfortunately untrue if other symmetry operations are found in the unit cell. For
instance, in a monoclinic P2/m cell there are four symmetry related positions:

• (x,y,z): asymmetric unit position

• (-x,y,-z): equivalent of the former through the 2-fold axis

• (x,-y,z): equivalent of (x,y,z) through the mirror plane

• (-x,-y,-z): equivalent of (x,y,z) through both operations.

It is rather plain to see that the two last positions can be deduced from the two first ones
via an inversion operation, hence they may safely be discarded. Equation (2.46) in that
case reduces to

mmeas =
2

4
×

[(
¯̄χ · �H

)
+
(
C2( ¯̄χ) · �H

)]
·

�H

|| �H||
(2.49)

where C2 is the 2-fold rotation operator. After a bit of calculations, the term within the
bracket in equation (2.49) is found to be equal to

(
¯̄χ · �H

)
+
(
C2( ¯̄χ) · �H

)
= 2

⎛
⎝χxx Hx + χxz Hz

χyy Hy

χxz Hx + χzz Hz

⎞
⎠ with �H =

⎛
⎝Hx

Hy

Hz

⎞
⎠ . (2.50)

It is thus clear that an angular-resolved measurement on a monoclinic single-crystal cannot
provide a complete information on the molecular susceptibility tensor: the off-diagonal
terms involving y are absent from equation (2.50). The same reasoning can be applied
on any higher order symmetry, thus implying that angular-resolved magnetometry itself
cannot allow a complete determination of the molecular magnetic anisotropy for crystal
cells with at least a monoclinic symmetry.
Still, the diagonal and some off-diagonal terms are still present in equation (2.50). This
means that, depending on the orientation of the magnetic field, it should be possible
to see through the value of mmeas an effect of the anisotropy. For instance, we have
plotted on Figure 2.2.3 the angular dependence of mmeas for a rotation along the �b axis,
with the �c axis initially set along the magnetic field, and for different relative values
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of the χij terms (more specifically, for 0 ≤ χzz ≤ 0.75χxx, and also for χzz = 0.2χxx

and −0.75χxx ≤ χxz ≤ 0.75χxx). The effect of anisotropy on these curves is plain, thus
showing angular-resolved SQUID measurements may be of interest even in the case of a
monoclinic cell. Noteworthy, the effect of the off-diagonal components can be retrieved
from the shift of the curve extrema.

θ

mmeas

θ = −90◦ θ = +90◦

θ

mmeas

θ = −90◦ θ = +90◦

Figure 2.2.3: mmeas = f(θ) plots for a rotation along the �b axis of a monoclinic cell, according to
equation (2.50). Upper part: evolution of mmeas depending on the relative values of χxx and χzz,
fixing χzx = 0. Colour scheme: from blue to violet, fixed χxx and variable χzz (from 0.2χxx to 0.75χxx).
Lower part: evolution of mmeas with χzz = 0.2χxx, with χzx varying from −0.75χxx (green) to +0.75χxx

(orange).

Polarised Neutron Diffraction (PND)

We have seen in the previous paragraphs that angular-resolved magnetometry does not
allow to retrieve a complete information on the magnetic anisotropy at the molecular
level. This is because SQUID magnetometry is not exactly a local probe, in the sense
that it yields information on the unit cell rather than on the isolated complex. Polarised
Neutron Diffraction, on the other hand, allows an unambiguous determination of the
magnetic susceptibility tensor at the single molecule level.
Neutrons are massive and chargeless fermionic particles, and some of their properties are
gathered in Table 2.1.70 Because of their zero electric charge, they may penetrate deeply
into matter without interaction. Their large mass also permits to thermalise them, which
thus allows to attribute them a specific wavelength thanks to de Broglie’s equation(xvi).
(xvi)If we neglect the gravitational potential energy, we may write the total energy of a neutron as being
equal to its kinetic energy, E = 1/2mnp

2. Placed in a temperature controlled bath (for instance a pool
of water), a neutron will tend to equal its energy to kBT . Using de Broglie’s equation, we get:

λ =
h

p
=

h√
2kBTmn

. (2.51)

Of course, if we consider an ensemble of neutrons we need to consider a more accurate model; neutrons
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Table 2.1: Some physical characteristics of the neutron.

Masse mn = 1.675 10−24 g
Charge qn = 0 C
Spin S = 1/2

This means neutrons can be used, exactly as X-Rays, to perform diffraction experiments
on single crystals. Thermal and "hot" neutrons (thermalised at room temperature and
around 1000 ◦C, respectively) indeed present wavelengths in the order of 1 Å, thus are
adapted to the study of molecular compounds.
The interaction of neutrons with crystalline matter is two-fold.86 First, neutrons may
interact with nuclei at very short distances, through the strong nuclear interaction. The
resulting nuclear structure factor can be written as(xvii)

FN(Q) =
maille∑

j

bj exp (iQ · rj) (2.52)

with Q the scattering vector and bj the scattering length of atom j, located at rj. The
similarity with the equations of X-Ray diffraction is rather striking.
Being also fermionic particles, neutrons may furthermore interact with the magnetic mo-
ments in the lattice. The corresponding magnetic form factor writes

FM(Q) =
maille∑

j

¯̄χj ·H fj,M(Q) exp (iQ · rj) (2.53)

where ¯̄χj represents the magnetic susceptibility tensor of atom j, and fj,M(Q) its nor-
malised magnetic scattering factor(xviii).
Interestingly, the scattered amplitudes stemming from these two form factors are of the
same order of magnitude. Nuclear and magnetic diffusion are thus of a comparable inten-
sity. If we assume the neutron beam is polarised along the z direction, then the diffracted
intensity can be written as

I± ∝ |FN |2 + |F⊥
M |2 + P± (

FNF
⊥�
M,z + F �

NF
⊥
M,Z

)
(2.54)

where � indicates a complex conjugate, and P± the real polarisation of the neutron beam
for the up (+) and down (-) orientations. As one can infer from equations (2.54) and (2.53),
comparison of the scattered intensities for a upwards and downwards beam polarisation
should, in principle, yield information on the atomic susceptibility tensors.87,88

In a PND experiment, one measures the diffracted intensities for each Bragg peak, suc-
cessively with a up and down beam polarisation, under a static magnetic field whose
orientation with respect to the lattice axes is known. Practically, the sample is placed at
the end of a rod, in a cryostat, and a vertical magnetic field is applied to it. The crystal is
then rotated thanks to the rod, and for each angular position "up" and "down" diffracted

being fermions, the mean wavelength should be given by a similar formula, involving furthermore a
Fermi-Dirac statistics weighing.
(xvii)Assuming the neutron wavelength is much larger than the strong interaction length, which in will be
the case here: λ ∼ Å, compared to 10−4 Å for the interaction length.

(xviii)Note that, actually, the magnetic scattering amplitude will be related only to the component of
FM (Q) that will be perpendicular to the scattering vector Q. Furthermore, equation (2.53) is only valid
for small magnetic fields, such that magnetisation evolves linearly with field.
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intensities are collected using either a bidimensional detector or a single detector placed in
the diffracted beam direction. This operation is performed for three different orientations
of the crystal (for instance, first �a vertical, then �b, then �c).

sm

b

s

b

f

c

Scheme 2.2.5: Schematic representation of PND diffractometer. Labels: M , monochromator; F, flipper;
S, sample; B, magnetic field orientation; C, 2D detector.

In the end, one obtains a set of {h, k, l, Rhkl} values with

Rhkl =
I+

I−
=

|FN |2 + |F⊥
M |2 + P+

(
FNF

⊥�
M,z + F �

NF
⊥
M,Z

)
|FN |2 + |F⊥

M |2 + P−
(
FNF⊥�

M,z + F �
NF

⊥
M,Z

) (2.55)

being called the flipping ratio. The deviation of this ratio from unity is a marker of
magnetic scattering, and its values can be used in a least-square refinement to determine
the χij terms for each atom of the lattice, basing on equation (2.53). Generally, and
it will be the case in Chapter 6, the magnetic moment is due essentially to the central
metal cation of a complex. As such, one focuses on the susceptibility tensor of the latter,
considering all the other atoms as being magnetically innocent(xix) (χij = 0).

2.3 Long story short

In conclusion, we have seen through this Chapter how, by the interplay of ligands and
metal cations (either transition metals or lanthanides), coordination may lead to a fine
tuning in their electronic structures, eventually giving the resulting complexes original
physical and chemical properties.
As we have seen, ligands are more than mere point charges – as they are modelled in the
crystal field model –, and depending on their nature the properties of the corresponding
complexes may vary significantly. In the following Chapter, we propose to revisit these
ligands effects using a conceptual-DFT based approach. More specifically, we will see how
the Dual Descriptor and the Molecular Electrostatic Potential permit to retrieve efficiently
their coordination properties, i.e. binding geometries and charge transfer character. Fol-
lowing this line of argument, we then propose to study and rationalise the trans effects of
octahedral complexes. This effect, which consists in the differential reactivity or stability
of a metal-ligand bond depending on the ligand on the trans position, is indeed rather
ubiquitous in coordination chemistry and yet remained for a long time misunderstood.

(xix)Note that, when the magnetic properties are isotropic or the field high, one can also use PND to
determine spin density maps. In that case, it is possible to determine spin delocalisation or polarisation
on ligands.
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In Chapter 4, we will consider both the reactivity and magnetic properties of some Cu(II)
complexes. As we will show, here also they can be understood in the simple terms of
electron density donation, back-donation and electrostatic interactions.
Finally, in Chapter 5 we will be interested in the magnetic properties of some lanthanide
complexes showing a SMM behaviour. We will show how, using local and global measure-
ments we were able to understand the physical mechanisms behind the slow relaxation of
magnetisation they display.



Chapter 3

Revisiting the metal-ligand interactions
through conceptual DFT

In this chapter, we wish to study some coordination complexes from the viewpoint of con-
ceptual DFT. In a first time, we present an original approach of the dual descriptor, based
on time independent perturbation theory. Then, through a rather simple study, we show
how conceptual DFT can help to understand the chemical properties of ligands. Finally,
we show on a rather large set of complexes how conceptual DFT allows to rationalise a
phenomenon that remained largely misunderstood for almost a century: the trans effect.

3.1 State specific Dual Descriptor
In Chapter 2, we introduced the Dual Descriptor (DD) Δf(r) according to its first deriva-
tion41

Δf(r) =

(
∂2ρ(r)

∂N2

)
v(r)

. (3.1)

Evaluation of the derivative in this equation can be cumbersome, and people generally
use a finite difference approximation to evaluate it:

Δf(r) ≈ ρN+1(r)− ρN(r)

(N + 1)−N
− ρN(r)− ρN−1(r)

N − (N − 1)
= ρN+1(r) + ρN−1(r)− 2ρN(r) (3.2)

with ρN+i(r) representing the electron density of the molecule with an addition of i elec-
trons(i). Noteworthy, this derivation is formally exact at 0 K.
Though helpful, this formulation has strong limitations. Noticeably, addition of one elec-
tron formally changes the spin state of the molecule. In the case of organometallic species,
it is not plain which spin state to consider. Furthermore, the anionic state could be un-
bound, thus hampering the calculation.
An alternative formulation was proposed in 2013 by C. Morell and V. Tognetti, using
electron density differences between the ground and the excited states.89 The key idea

(i)If we assume furthermore that addition or subtraction of electrons leave the orbital diagram un-
changed (frozen orbital hypothesis), we retrieve equation 1.58:

Δf(r) ≈ ρLUMO(r)− ρHOMO(r). (2.58)

59
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was to describe the early stages of a chemical event as a perturbation from the state where
molecules are infinitely remote from each other, thus involving the ground and excited
states of the isolated molecules to built the real electron density. The electron density
variation between this situation and the starting point (isolated molecules) should thus
be equal to the DD. Therefore, one can write:

Δf(r) =
∞∑
i=1

ωi (ρi(r)− ρ0(r)) (3.3)

with ρi(r) the electron density in the ith excited state, and ωi being a weighting parameter.
Unfortunately, no mathematical formula is accessible for the weighting parameter. In this
formulation, Δf(r) is coined "generalised Dual Descriptor", and the electron density
differences are referred to as "state specific Dual Descriptors". Conceptually, it makes
sense that the higher in energy the excited state, the less it contributes to the ground
state reactivity. One would then expect a form that involves a strong convergence with
the excited state energy, as found for instance in the molecular polarisability formula.8
Returning to perturbation theory, we can actually convince ourselves that ωi indeed con-
verge with the excitation energies. Let us consider two molecules, initially separated by
an infinite distance. At time t = 0, they are separated by a distance R, large compared
to their mean radius. They thus start to interact with one another, as pictured on Figure
3.1.1.

(2) R

(1)

Figure 3.1.1: Schematic representation of the two molecules in interaction.

Because of the large distance, the interaction can be considered to be only electrostatic(ii).
Molecule (1), acting as a collection of point charges, induces an electric field in space,
noticeably on molecule (2). The reverse is also true.
Calling V(r) the potential from which the field derives, using the same notations as in
Chapter 2 we may express the Hamiltonian of the electrostatic interaction of (2) with the
field of (1)

Hint = −
∫
R3

ρ(r)V(r)d3r+
∑
nuclei

ZiV(ri) (3.4)

in complete analogy with classical electrostatics.90

A simple form of perturbation would thus be such that Hint is modulated by a factor
λ(iii) 4

Hpert = λHint. (3.5)

Let the solutions of the unperturbed Schrödinger equation be:

H|n〉 = En|n〉. (3.6)

(ii)Note that other forms of perturbations could be considered, for instance basing on dispersion effects.
(iii)Physically, this factor may represent the magnitude of the potential; λ � 1 means a small perturba-

tion.
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Assuming the perturbation is small (λ << 1), the wavefunction correction at the first
order can be expanded on the basis of the unperturbed |n〉 states. If the system is in the
non-degenerate ground state |0〉, the perturbed wavefunction |Ψ〉 writes:

|Ψ〉 = c0

(
|0〉+

∑
k �=0

〈k|Hpert|0〉
Ek − E0

|k〉
)

(3.7)

with c0 a normalisation constant. It is rather simple to show that

c0 = ±
√√√√ 1

1 +
∑
k �=0

|〈k|Hpert|0〉|2
(Ek−E0)

2

(3.8)

the actual sign of c0 being meaningless (phase factor).
From equation (3.7), it is rather plain that the perturbation induced by an incoming
ligand indeed involves the unperturbed excited states, and is weighted by the excitation
energies as expected. As such, we may also expect the electron density perturbation will
be weighted by the excitation energies. The perturbed electron density actually writes:

ρpert(r1) = N

∫
Ψ�Ψds1dx2 . . . dxN

= c20

(
ρ0(r1) + 2

∑
k �=0

〈k|Hpert|0〉
Ek − E0

ρk0(r1)

)

+ c20

(∑
k �=0

∑
l �=0

〈k|Hpert|0〉〈l|Hpert|0〉
(Ek − E0)(El − E0)

ρlk(r1)

) (3.9)

with ρ0(r1) the unperturbed ground electron density, and ρlk(r1) the transition density
between states k and l (note that k = l corresponds to the electron density of state k).
The variation of electron density from the unperturbed state to the perturbed state is
then

Δρ(r) = ρpert(r)− ρ0(r)

= ρ0(r)
(
c20 − 1

)
+ c20

(∑
k �=0

|〈k|Hpert|0〉|2
(Ek − E0)2

ρk(r)

)

+ c20

⎛
⎜⎜⎝2

∑
k �=0

〈k|Hpert|0〉
Ek − E0

ρk0(r) +
∑
k �=0

∑
l �=0
l �=k

〈k|Hpert|0〉〈l|Hpert|0〉
(Ek − E0)(El − E0)

ρlk(r)

⎞
⎟⎟⎠

(3.10)

where we have explicitly separated the k = l situation (and dropped the irrelevant 1
index on the position operator). Since we are primarily concerned with the electron
density evolution in the ground state, we may at first neglect the other (k 	= l) terms,
because they are related to "connections" between the different excited states. Using
equation (3.8), we can then write

Δρ(r) = c20

(∑
k �=0

|〈k|Hpert|0〉|2
(Ek − E0)2

(ρk(r)− ρ0(r)) + 2
∑
k �=0

〈k|Hpert|0〉
Ek − E0

ρk0(r)

)
. (3.11)
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This electron density variation is expected to convey the same meaning as the DD: it
translates the electron density variations upon the perturbative approach of a molecule.
As we can notice, we do not retrieve a direct mapping with the state-specific formulation,
because of the second term (transition densities). It is tempting to state that these terms
are negligible, but no clear argument can be put forward to confirm this.
However, we can still note the explicit convergence of both terms of equation (3.11) with
the excitation energy, thus suggesting the reactivity is primarily controlled by the very
first excited states. Of course, this argument needs to be tempered by the impossibility to
unambiguously relate the weighting parameters ωi of the state-specific equation (3.3) to
the excitation energies, and also by the presence of the matrix terms 〈k|Hpert|0〉 in both
terms of equation (3.11). These indeed suggest that higher excited states may contribute
significantly to the ground state reactivity, provided that they are efficiently connected to
it by the perturbation. This is actually in perfect line with published data: sometimes, one
needs to consider the second or third state-specific DD in order to describe correctly the
reactivity of molecules. Noteworthy, this also correlates to an older study of Pearson, who
tried to link optical properties to reactivity: he eventually had to come to the conclusion
that some molecules do not show a marked reactivity despite a low lying excited state,
and assumed this was due to the nature of the excited state (non-reactive).91

Figure 3.1.2: Computed isosurfaces of DD for H2 (top) and benzene (bottom), calculated using the
frontier MO densities (left), the first excited state density (middle) or an average of the ground electron
densities under an electrostatic field of 0.1 a.u. (right). Method: B3LYP/6-311+G*. Colour scheme:
Δf(r) < 0, red; Δf(r) > 0, blue.

A new computational approach of the DD. More interestingly, the previous de-
velopment suggests a new way to compute the DD. In order to explicit the weight of each
excitation in equation (3.3), we indeed identified the DD to the electron density variation
upon the application of an electrostatic field. Actually, many quantum chemistry software
offer the possibility to take into account such a field explicitly(iv). It is then possible to
compare directly the electron densities with and without an external field, and as such to
access the DD.
In fact, this quantity will not be exactly equivalent to the one we may obtain using the
finite difference scheme or the state-specific formulation. In these cases indeed, no as-
(iv)Or implicitly, placing point charges in space in order to create a field.
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sumption is made on the geometry of approach of the incoming reagent. This means we
should consider any possible orientation of the electrostatic field in order to have a com-
plete and precise picture of the DD. Such calculations might not be used in practice, but
a lot of information may already be obtained if we consider three non-coplanar directions
of the field and, for each direction, 2 possible orientations – for instance, ±x, ±y, ±z –.
Two examples are provided on Figure 3.1.2, where we represent the DD according to the
Frontier MO approximation – cf. formula (1.58) –, the first state-specific DD, and the
electron density variation upon the application of an electrostatic field, for a molecule of
dihydrogen and a molecule of benzene. The three approaches deliver similar responses,
with a marked nucleophilicity due to the σ bond for H2 and to the π electron cloud for
benzene. Slight distortions are observed when comparing the "usual" DD formulations
and the electrostatic response, and may likely be due to the limited number of electrostatic
field orientations we considered here.
Note: in total line with Pearson’s argument, we are linking reactivity and molecular
polarisability. Most probably, the previous development may be written in terms of local
polarisability.92 This will receive our attention in a very close future.

3.2 Dual Descriptor and Molecular Electrostatic Po-
tential: complementary tools for the study of am-
biphilic ligands

In Chapter 3, we presented the basic concepts of the metal-ligand interactions in co-
ordination complexes. Noticeably, we discussed the fact that all the concepts that are
usually introduced in a MO theory framework can actually be generalised in an extended
Klopman-Salem model.61,62 We propose to develop these arguments in this part.
Our first study concerns the modelling of the coordination properties of ligands. In
the simplest scheme, metal cations are perfect Lewis acids, displaying a total deficit of
electrons, and ligands are perfect Lewis bases that coordinates in order to counteract the
metal acidity.51,54 Stating the obvious, this means metal cations in complexes will display
a rather marked electrophilicity and ligands a strong nucleophilicity, or marked charges if
the species are hard.
Nevertheless, it is also known that ligands may display some electrophilicity, and metal
cations can also display a donor character.93 Coordination is thus the resultant of different
charge transfers and electrostatic interactions, and if we want to model it correctly we
need to use adapted descriptors for these different phenomena. The DD seems particularly
fit to describe the charge transfer phenomena. Electrostatic effects, on the other hand,
can be efficiently accounted for by the Molecular Electrostatic Potential (MEP).94,95 In
the following subsection, we will explain how we may extract quantitative information
from these two descriptors.

3.2.1 Theoretical model

Molecular Electrostatic Potential

MEP is defined as the electrostatic potential created at any point ri by the electron density
and nuclei distribution,

MEP (ri) =
∑
M

ZM

|RM − ri|
+

∫
R3

ρ(r)

|r− ri|
d3r, (3.12)
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and can be seen as a measure of the stabilisation or destabilisation a point charge would
feel if placed at any point ri. Regions with MEP < 0 are attractive for positive charges,
while regions with MEP > 0 are repulsive. Noteworthy, if the system has a zero total
charge we expect to observe both kind of regions in space. On the other hand, if the
ligand is charged there may be only one type of regions – for instance, only MEP > 0 if
it is cationic.

Condensed Grand-canonical Dual Descriptor

Here, we decided to study a set of small molecules which are known to be efficient ligands
or not, and to see if the combination of the DD and the MEP allowed us to rationalise their
coordination chemistry straightforwardly. We gathered them in sets of similar reactivity
(expected or known), in Table 3.1.
Since we are comparing systems with different number of electrons, it is not possible to
compare directly the DD values. This is because the DD is formulated in the canonical
ensemble(v). A similar quantity can be defined in the grand-canonical ensemble(vi) 36,37

Δs(r) =

(
∂2ρ(r)

∂μ2

)
v(r)

=
Δf(r)

η2
− γ

η3
f(r) (3.13)

where γ is the hyperhardness (N -derivative of the chemical hardness) and f(r) the Fukui
function. Since the ratio γ/η3 is generally small (at least γ/η3 is smaller than 1/η2), we
can safely neglect the last term of equation (3.13). The grand-canonical DD (GCDD)
thus approximates to the DD scaled by the square of the chemical hardness, which we
will compute as the energy difference ELUMO − EHOMO.
The GC-DD, as the DD, should integrate to 0 over all space, which means the system
should display both nucleophilic and electrophilic basins. In order to get a quantitative
information, and at the same time to ease the interpretation, it is desirable to be able
to condense the GC-DD in each nucleophilic and electrophilic basin. Vincent Tognetti
recently developed a program that allows such a condensation, named Domains.96 Briefly,
this program follows the nodal planes of a given real function of R3(vii), thus defining
domains into which the function can be integrated. From this condensation scheme, it is
possible to obtain the integrated value over a domain, the mean value (integrated value
divided by the volume), the volume of the domain, and the location of the barycentre and
of each domain.

Table 3.1: Series of ligands.

Series Ligands
1 H2, ethene
2 F2, Cl2, Br2, I2
3 O2, O2

–·, O2
2–

4 NO+, CO, CN–

5 NO·

6 SCN–

7 Acac, Hfac

(v)I.e., for fixed N and E.
(vi)With a fixed chemical potential but a varying number of electrons.
(vii)In the Gaussian Cube format.
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Computational details

Structures of ligands in Table 3.1 were fully optimised at the DFT level of theory (B3LYP).
Calculations were carried out using 6-31G(d) basis sets, except for

• the thiocyanate ion SCN–, modelled using the 6-31+G(d) basis set;

• the dihalogens, modelled using the DGDZVP basis set.

In the latter case, the DGDZVP basis set was used to ensure the internal consistency of
the method (same basis set and functionnal for the whole series).
The ten first excited states were calculated at the TD-B3LYP level, and the GC-DD was
– unless stated otherwise – evaluated using the first excited state. All calculations were
performed with Gaussian 09, using default parameters, unless mentioned.97

3.2.2 Results and discussion

Series 1: H2 and ethene. Ethene and dihydrogen usually present a similar reactivity
as ligands, coordinating in a η2 mode with their main bond. The computed DD and
MEP surfaces are presented on Figure 3.2.1, and it is plain to see that we retrieve the
expected chemical behaviour. Both ligands indeed present a nucleophilic development in
the middle of their main bond (H-H or C=C), where they are supposed to coordinate.
MEP indicates the same coordination mode, since (negative) minima are found on the
same positions. In the case of ethene, the minimum value is one order of magnitude larger
than that of H2, which suggest ethene may be a more efficient ligand than hydrogen –
which is actually experimentally observed.
Furthermore, electrophilic developments are seen in the vicinity of the nucleophilic con-
tribution, and as such one could expect these two ligands to give rise to MLCT. Such
back-bonding effects have actually been observed in some ethylene complexes, such as
tris-ethylene nickel(0).98 They are also consistent with the difficulty to ascertain the ox-
idation degree of some dihydrogen complexes,99 and the propensity of H2 to give rise to
oxidative addition – for instance in Vaska’s complex [IrCl(CO)(PPh3)2].100

Figure 3.2.1: Up: DD isosurfaces for H2 (left) and ethene (right). Isovalues: ±4.103 (green, positive;
red, negative). Down: MEP maps on density isosurfaces (10−3 a.u.), values ranging from +3.00 × 10−2

(blue) to −3.00 × 10−2 (red) in the case of ethene, 1.00 × 10−3 to −1.00 × 10−3 (same colours) for H2.
Calculations at the (TD)-B3LYP/6-31G(d) level.
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Table 3.2: Condensed GC-DD values for the dihalogens.

Molecule Nucl. cont. (a.u.) Elec. cont. (a.u.)
F2 -9.17 9.17
Cl2 -21.27 21.32
Br2 -31.39 31.49
I2 -48.06 48.12

Series 2: dihalogens. Dihalogens were gathered in the same series for rather obvious
reasons. As Rogachev and Hoffmann pointed out,101 despite having accessible lone pairs
they do not tend to coordinate efficiently. Actually, they tend to oxidatively add to any
complex, and only a few iodine complexes could be isolated so far.102–105

We represented on Figure 3.2.2 the first state-specific GC-DD and MEP maps for series
2. Note that in these cases the two first excited states are exactly degenerate (π� → σ�

excitations in a MO framework), and the corresponding state-specific DD are exactly alike
but rotated along the molecular axis. For the sake of simplicity, we only display here one
of them.
All dihalogens present very similar features, as could be expected. They all display elec-
trophilicity along the molecular axis, and nucleophilic contributions on each side of the
bond, where we would expect to find the lone pairs in a Lewis scheme. These features
are in good agreement with the known data on iodine complexes. It is indeed displaying
a donor (nucleophilic) character when coordinating in a bent "side-on" geometry, and an
acceptor character when coordinating in a linear fashion. This is also corroborated by
the MEP: negative MEP values are indeed only found on the sides of the halogen atoms,
where the coordination is mostly expected (donor character). The maximal values of the
MEP are found along the molecular axes, forming so-called σ holes.106

In both cases (GC-DD and MEP), the values are significantly increasing when moving
from fluorine to iodine. Noticeably, it is plain from the graphical representation that the
negative MEP areas are larger in the case of the heavy halogens, thus suggesting they
may more efficiently stabilise cations than the lighter ones. This is also retrieved at the
GC-DD level: integrated values, displayed in Table 3.2, are larger the heavier the halogen.

Figure 3.2.2: Up: DD isosurfaces for F2, Cl2, Br2 and I2 (from left to right). Isovalues: ±4.103. Down:
MEP maps on density isosurfaces (10−3 a.u.), values ranging from +1.00× 10−2 to −1.00× 10−2. Same
colour scheme as in Figure 3.2.1. Calculations at the (TD)-B3LYP/DGDZVP level.

We are thus able to retrieve the coordination properties of iodine, and we may also
guess why such a little number of acceptor I2 complexes are found: linear coordination
indeed leads the metal cations to approach iodine via its σ hole. From the viewpoint
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Figure 3.2.3: DD and MEP isosurfaces for series 3. Same isovalues and colour scheme for the DD
surfaces as previously. MEP ranges: −10−2 to 10−2 a.u. in the case of dioxo, −0.28 to −0.21 a.u. for
superoxo and −0.55 to −0.45 a.u. for peroxo. Calculations at the (TD)-B3LYP/6-31G(d) level for the
dioxo and peroxo ligands, and at the SA-CAS(7,4)/6-31G(d) level for superoxo.

of electrostatics, this interaction is destabilising, and will only be feasible if the covalent
interactions (bonding and back-bonding) are stronger.
The rarity of dihalogen based complexes seems nevertheless unaccounted by our model.
This is not a pitfall, but merely a question of viewpoint. As we noted previously, most
of the time dihalogens simply oxidise coordination compounds (through oxidative addi-
tion).103 They indeed display high redox potential107 (standard values of +2.866 V/ECS,
+1.358 V/ECS, +1.087 V/ECS and +0.536 V/ECS down the series), and from these nu-
merical values the differentiation between iodine and the other halogens is rather plain.
Here, we decided to focus on the coordination properties, and thus we implicitely as-
sumed electron density perturbations – compared to the case of isolated ligands – would
be small. Stating the obvious, an oxidative addition is not a small perturbation, and it
is not surprising that we actually miss the point.

Series 3: from dioxo to peroxo. O2 and its related anions, namely superoxo O2
–·

and peroxo O2
2–, are of utmost importance in bioinorganic chemistry. They indeed take

part in respiratory mechanisms, but also in oxidation cycles.108,109

Figure 3.2.3 presents the DD and MEP isosurfaces for these three molecules. As one can
see, the features are very different. In the case of dioxo, the DD displays nucleophilicity
mainly away from the O-O bond, but also slightly along the molecular axis. On the other
hand, electrophilicity is found on the sides of the molecule, pointing out of the molecular
axis with some angle. Interestingly, the GC-DD has a perfect cylindrical symmetry, as
would be expected. These features can be understood rather straightforwardly in the
framework of MO theory (see the MO diagram below). The nucleophilic contribution
indeed displays a shape that is reminiscent of (occupied) bonding 2π and 2σ orbitals,
whereas the electrophilic part resembles antibonding (semi-occupied) 2π� and (vacant)
2σ� orbitals.
In any case, dioxygen seems likely to coordinate via its main bond, in a way that resembles
the coordination of H2. However, unlike dihydrogen the MEP values on this site are quite
positive (9.10−3 a.u.), suggesting that cations may not approach this position. The only
negative MEP values are actually found on the sides of O atoms, roughly at the same
position as the electrophilic lobes of the DD (red arrow on Figure 3.2.3). This means
that dioxygen will likely tend to approach cations by its electrophilic areas. As such, we
would expect dioxygen to behave like an acceptor ligand when coordinating in a bent
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side-on geometry to cations, and like a donor when coordinating by the main bond.
However, even in this latter geometry dioxygen may present an acceptor character, since
electrophilic basins surround the coordinating nucleophilic area.
These findings are in quite good agreement with known data on dioxygen coordination. To
our best knowledge indeed, dioxygen always reduces upon coordination, either to superoxo
or peroxo. For instance, in the oxygenated form of haemoglobin,110 the Fe(II)-porphyrin
complex is transformed to what is best described as a Fe(III)-superoxo complex. In the
catechol-oxidase complex,108 the two Cu(I) centres oxidise to Cu(II) upon chelation of
dioxygen, which thus may be described as a peroxo ligand.

2s

2pz2py2px

2s

2pz2py2px

2σs

2σ∗s

2σx

2σ∗x

2πy

2π∗y

2πz

2π∗z

O O2 O

Scheme 3.2.1: MO diagram for dioxygen in its ground triplet state.

Actually, the DD features of peroxo are very reminiscent of those of the dihalogens. This
could be quite expected since O2

2– and F2 are isoelectronic, and in the framework of the
MO theory their wavefunction are expect to be very similar. Similar coordination prop-
erties can be expected: acceptor character when coordinating in a linear fashion, donor
when coordinating in a bent geometry. In terms of MEP, since peroxo is a dianion we
would rather expect to observe only negative values on the isodensity surface. This is
indeed the case, which means that any geometry of approach of a cation would virtually
be stabilising. The maximal stabilisation is expected when approaching peroxo by the
middle of the O-O bond, since a ring of minimum MEP is observed on this region. This
in total compliance with the known geometry of coordination of peroxo in the aforemen-
tionned oxidase complex: upon coordination to the two Cu(I) centres, dioxygens reduces
to peroxo, which remains fixed to the Cu(II) ions since the geometry that O2 adopted is
also stabilising for peroxo. Furthermore, our calculations suggests an explanation of the
mechanism behind the reactivity of this oxidase complex. It is indeed known to oxidise
phenols, which means the complex tends to accumulate more electrons. This could be
achieved by taking advantage of the electrophilic basins of peroxo, which in the enzymatic
pocket are pointing outside the coordination area (thus very likely in contact with the
environment).
In the case of superoxo, things are slightly more complex. Indeed, it is expected to display
a degenerate ground state(viii). This is actually obvious if we look at the MO diagram of
(viii)Which we completely yet unintentionally overlooked in the publication relative to this work. An
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O2, displayed on Scheme 3.2.1: an additional spin down electron could be placed either in
the 2π�

y or 2π�
z MO, and both configurations will have the same energy. Thus, superoxo

cannot be properly modelled using DFT. Here, we modelled superoxo using SA-CASSCF
calculations, as implemented in ORCA 3.0.111 From the MO diagram, we restricted the
active space to the 2π and 2π� orbitals, thus leading to CAS(7,4) calculations. The
starting set of MO was provided by a ROPBE calculation(ix). Since the degeneracy of the
ground state is two, we averaged the CASSCF calculation over the two lowest doublet
roots.
In this case, it seemed convenient to use our newly proposed formulation of the DD. We
thus performed a set of SA-CASCCF calculations with and without a dipolar electrostatic
field, set along 3 orthogonal directions, with two opposite orientations each(x). As one
can see from Figure 3.2.3, the aspect of the DD for superoxo is very close to that of
dioxygen. In the framework of MO theory, this is rather logical: the MO diagrams are
very similar. In terms of MEP, here also only negative values are observed, which is logical
since superoxo is an anion. Absolute minima are found on each side of the bond, in a way
that recalls the features of peroxo. Note that on Figure 3.2.3, the MEP representation
is given only for one of the two CASSCF roots, hence explaining why the cylindrical
symmetry is not apparent(xi).
Overall, superoxo is expected to coordinate easily to cations (electrostatic stabilisation),
and to display both donor and acceptor behaviour depending on the coordination geom-
etry.

Series 4: nitrosium, carbonyl and cyanide. NO+, CO and CN– are isoelectronic
species, and it is well established now they show similar coordination properties. Notice-
ably, they are known to provide roughly the same crystal field splitting, which indicates
they tend to have the same donor and acceptor properties.51,54 This is actually plain from
the aspect of the DD, represented on Figure 3.2.4. In all cases indeed, the same shapes
are obtained(xii). Nucleophilic domains are observed along the molecular axes, pointing
outwards from the molecules. They are larger on the most electropositive atom (C in
carbonyl and cyanide, N in nitrosium), which is generally the coordinating atom. Inter-
estingly, these domains point exactly towards the local minima of the MEP (along the
molecular axis). This suggests these species would coordinate in a linear fashion, which
is actually observed.
The development of electrophilic domains in the vicinity of this coordination area fur-
thermore suggests they would tend to display rather strong back-bonding. This is also
experimentally observed, these ligands being characterised by very strong ligand fields.
Actually, we may even retrieve the tendency described in the spectrochemical series: ni-
trosium is indeed expected to display a smaller ligand field that carbonyl and cyanide.

erratum will soon follow.
(ix)It is generally advised to use the output of any correlated method as input for the CASSCF calcula-

tion, thus explaining the choice of a DFT method.16
(x)Dipolar electrostatic fields are unfortunately not yet implemented in ORCA. We thus modelled them

using two opposite point charges (magnitude 1 u.a.) placed at 4 Å and 4.5Å of the molecule. For each
direction, a second calculation was performed by permutting the point charges.
(xi)A weird bug of ORCA lead the program to exit without printing the CASSCF density matrix, and

thus the MEP calculations first involve the reconstruction of the latter from the MOs. The program thus
computes the electron density for one of the two roots only, and there seems to be no way to get the
MEP for the SA-CASSCF density matrix...
(xii)Note that, as what was observed for dihalogens, the two first excitations for these molecules are in
each case degenerate, and lead exactly to same DD representation, simply rotated along the molecular
axis. For the sake of simplicity, we simply represent here the first state-specific DD.
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Condensation of the GCDD yields the values listed in Table 3.3, which agree with the
expected tendency.

Table 3.3: Condensed GC-DD values for series 4.

Molecule Nucl. cont. (a.u.) Elec. cont. (a.u.)
CN– -5.07 5.06
CO -4.38 4.37
NO+ -3.18 3.17

Figure 3.2.4: DD isosurfaces (top) and MEP maps (bottom) for series 4. Same colour scheme and
isovalues for the DD isosurfaces as Figure 3.2.3. MEP ranges: −2.10−2 to 2.10−2 a.u. in the case of
carbonyl, 0.25 to 0.30 a.u. for nitrosium and −0.24 to −0.23 a.u. for cyanide. Calculations at the
(TD)-B3LYP/6-31G(d) level.

Our calculations thus reproduce quite well the general behaviour of the series, but they
also account for the slight differences between the different ligands. For instance, nitrosium
and carbonyl tend to form isolated complexes, while cyanide is known to yield bridged
entities, like the Prussian blue analogues.112 This is probably due to the fact that MEP is
negative on every point of the isodensity surface of cyanide, thus enabling coordination via
the N atom of cyanide. Furthermore, the DD features also permit to rationalise the strong
magnetic couplings that can be observed in these Prussian blue analogues: because of the
marked back-bonding ability of cyanide, an efficient interaction can be engaged between
the two bridged cations.64

We can also understand why the vast majority of cyanide and carbonyl complexes tend
to be linear, while nitrosyl complexes display a much wider range of geometries. In the
two former cases, there is an interplay between covalent and electrostatic control, which
both suggest linear coordination should be favored. In the latter case of NO+, on any
point of the isodensity surface the MEP is positive, thus repulsive for cations. This means
coordination of NO+ will only be controled by covalent interactions, and thus will depend
a lot on the relative philicity of the metal cation: when the metal centre will be rich in
electrons, NO+ will tend to act as an acceptor ligand and coordinate in a bent fashion,51

while electron-deficient metal centres will lead NO+ to coordinate in a linear fashion,
acting principally as an electron donor.113

Series 5: nitrosyl. In the previous section, we discussed a few results for NO+, which
is one of the limit forms that one usually writes to describe the behaviour of a one-
electron donor nitrosyl ligand. Nitrosyl is indeed known to be a non-innocent ligand,
whose oxidation state is never plain: it always balances between NO+ and NO–.114,115



3.2. DD and MEP: complementary tools for the study of ambiphilic ligands 71

Usually, nitrosyl is introduced in the reaction medium in its neutral state NO·, and thus
it may be relevant to study the DD and MEP feature of this species.
They are represented on Figure 3.2.5. In that case, we also had to use SA-CASSCF
calculations since the ground state of NO· is twice degenerate. This is rather plain to
see from the MO diagram, displayed on Scheme 3.2.2. Here also, we limited the active
space to the 2π and 2π� orbitals, thus employing SA-CAS(5,4) calculations. We also
averaged over the first two doublet roots, and used the same electrostatic formulation as
for superoxo. As one can see from Figure 3.2.5, we retrieve a shape that is reminiscent of
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Scheme 3.2.2: Part of the MO diagram of NO·.

Figure 3.2.5: DD isosurfaces (left) and MEP maps (right) for NO·. Same colour scheme and isovalues
for the DD as in Figure 3.2.4. MEP ranges: −0.012 a.u. to +0.012 a.u. Calculations at the SA-
CAS(5,4)/6-31G(d) level.

what was observed for series 4(xiii). As already underlined in the case of superoxo, this is
rather logical in the framework of MO theory: the first excitations in both cases involve
the same kind of orbitals. We thus retrieve a nucleophilic contribution along the molecular
axis, which is more pronounced on the N atoms. This is in a very good agreement with
experimental data, nitrosyl coordinating systematically by the nitrogen atom.(xiv) We also
retrieve a marked electrophilicity in the vicinity of the coordination area, which is also
consistent with the strong acceptor behaviour nitrosyl displays when coordinating.
MEP shows diffuse minima around both N and O atoms, which suggest coordination
by the nitrogen atoms can be achieved in a linear or bent geometry, as experimentally

(xiii)Note that, since we decided to average over the two ground CASSCF roots, we actually observe a
perfect cylindrical symmetry.
(xiv)O-coordination is also found, but only in metastable states, and upon light irradiation of a N-bonded
complex.
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observed(xv). From the shape of the DD, we can expect nitrosyl to display a much more
donor character when coordinating in a linear fashion. This is actually the case, nitrosyl
being found linearly coordinated to electrophilic metal cations (electron deficient), while
bent coordinations are encountered in more electron-rich complexes.

Series 6: thiocyanate. Thiocyanate is an ubiquitous ligand in coordination chemistry,
thanks to its ambidenticity. It is indeed known to coordinate hard species by its N atom,
and in a linear geometry, while it coordinates soft metals by its S atom, usually in a bent
geometry.116 The MEP and DD are displayed on Figure 3.2.6.
As one can see, the nitrogen atom shows essentially a nucleophilic behaviour, while the
sulfur atom displays both electrophilic and nucleophilic contributions. The largest con-
tributions are found on the sulfur, which complies with our expectations: in a HSAB
framework, sulfur should appear more reactive than the N atom (which is hard). Fur-
thermore, from the shape of the nucleophilic basin on the S atom we would expect a bent
coordination of thiocyanate, as observed. On the other hand, the MEP suggests linear
N-coordination, since the absolute minimum on the isodensity surface is observed along
the molecular axis. Once again, this is in good agreement with experimental data.

Figure 3.2.6: DD isosurfaces (left) and MEP map (right) for SCN–. Same colour scheme and DD
isovalues as Figure 3.2.5. MEP ranges: −0.2 a.u. to −0.15 a.u. Calculations at the (TD)-B3LYP/6-
31+G(d) level.

Acetylacetonate and hexafluoroacetylacetonate. Acetylacetonate (acac) and its
hexafluorinated analogue (hfac) are two widely used ligands in coordination chemistry.
Noticeably, they are often used for their "Lewis acidity enhancement" properties: when
coordinated to a metal cation, they tend to exacerbate its electrophilicity (hfac being
more effective than acac).117 This means they both need to be both good electron donors
and acceptors.
This is retrieved at the DD level, as can be seen from Figure 3.2.7. In both cases indeed,
nucleophilic domains are observed on the (coordinating) oxygen atoms, pointing inside the
conjugated plane. They are reminiscent of oxygen lone-pairs, as expected, and are found
in the same region as the MEP minima (-0.28 a.u. for acac, -0.23 a.u. for hfac). This is
in very good agreement with experimental expectations: acac and hfac are expected to
coordinate metal cations by their O atoms, in the molecular plane. As one may notice,
electrophilic developments can be found perpendicular to the nucleophilic domains on
oxygen atoms. Their shape is reminiscent of a π� orbital, as could be expected, and
suggest both ligands should display a marked tendency towards back-bonding. This is
indeed expected from their Lewis acidity enhancement activity.
From our calculations, the difference between the hydrogenated and fluorinated form is not
obvious. The value of the minimum of the MEP is smaller for hfac, as could be expected
(xv)The same bug as previously applies here: MEP representation here holds for one of the two CASSCF
roots, thus explaining the non-cylindrical symmetry.
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Figure 3.2.7: DD isosurfaces (top) and MEP maps (bottom) for acac (left) and hfac (right). Same
colour scheme as Figure 3.2.5. MEP ranges: −0.28 a.u. to −0.10 a.u. (acac), −0.21 a.u. to −0.10 a.u.
(hfac). Calculations at the (TD)-B3LYP/6-31G(d) level.

from the strong electron-withdrawing behaviour of trifluoromethyl group. Comparatively,
one would then expect acac to show a coordination that is more driven by electrostatics
than what hfac does. Furthermore, if we look more into details, we can see that the
electrophilic and nucleophilic developments of hfac are very comparable, while in the case
of acac the nucleophilic contributions are more extended in space than the electrophilic
ones. Likely, this will make hfac a more electron withdrawing ligand than acac (relatively
to the donor character), as experimentally observed.

3.2.3 Conclusion

In this section, we have seen that both the DD and the MEP allow, at the price of very
simple calculations on ligands, to retrieve their coordination properties. In most cases,
MEP and DD suggest the same coordination geometry. However, there are cases where
both descriptors are complementary but not equivalent. For instance, in the case of
dioxo we have seen that electrostatic effects lead O2 to coordinate as a strongly acceptor
ligand, because the nucleophilic areas are located in rather electropositive regions. This
permitted us to explain the impossibility to isolate genuine dioxygen complexes so far:
they all reduce to superoxo or peroxo. More generally, the DD permits to retrieve very
simply the electronic behaviour of the ligands, but the scope is not limited to this.
As we will show in the next section, the DD may indeed be a valuable tool in the ratio-
nalisation of the chemical properties of coordination compounds, for instance allowing us
to rationalise the trans effects in octahedral complexes.
Note: as already evoqued in this section, this work has been published in Phys. Chem.
Chem. Phys. 2014, 16, 15558-15569.

3.3 A new approach of the trans effects in octahedral
complexes

In this section, we propose to show how the DD permits to rationalise and understand the
chemical properties of some coordination complexes. More specifically, we will interest
ourselves on the trans effects in octahedral complexes.
Trans effects are characterised by the modulation of a coordination bond in a complex
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under the influence of the ligand on the opposite position in the coordination sphere (hence
the label trans).51,54,118 They are mostly observed in square-planar119 and octahedral
complexes,120 and can be divided into two distinct phenomena: the Kinetic Trans Effect
and the Static Trans Effect.
In the first case, the modulation impacts the substitution kinetics of a ligand: the more
trans-orienting a ligand is, the faster the ligand on the opposite coordination will be
replaced. In the second case, the effect is purely static, and it is the metal-ligand bond
lengths that are perturbed: the more trans-orienting a ligand is, the longer the opposite
bond is. These effects are widely used in inorganic chemistry, being used in complexes with
marked catalytic activities and selectivity for instance,121–123 but also acting in natural
metalloproteins124–126 or anti-cancer drugs127–129.
As such, understanding the origins of both STE and KTE is of paramount importance.
Many experimental and theoretical studies were devoted to this task,130–138 and it is only
quite recently that KTE was firmly rationalised in the case of square planar complexes.
It could be shown indeed, on a rather representative set of square-planar complexes, that
two main mechanisms were acting beneath their KTE.139,140

First of all, as was long presumed by coordination chemists, electron donation effects have
an important role: if the ligand on the trans position is an efficient electron donor, it may
lead the opposite coordination site to be quite saturated with electrons. This leads to a
marked Pauli repulsion between the electron density on the metal cation and the electron
density from the ligand, which thus interacts more weakly with the metal and should be
more easily replaced.
In addition to this Pauli repulsion effect, the trans orienting ligands can furthermore ease
the metathesis on the opposite coordination position by their back-bonding properties.
They can indeed withdraw electron density on the metal cation on the positions where an
incoming ligand would attack, and as such they tend to stabilise the transition states of
metathesis. This can be understood quite straightforwardly in a MO theory framework,
as pictured on Scheme 3.3.1.
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Scheme 3.3.1: Schematic representation of the Pauli repulsion (left) and back-bonding (right) mecha-
nisms beneath the KTE in square-planar complexes.

We thus wondered whether the same lines of argument could hold in the case of the
octahedral complexes; we felt there were no reasons they would not. As we can see, the
two effects acting beneath the KTE of square-planar complexes involve the same kind of
mechanisms as those we were discussing in the previous part: electron density reshuffles
(readaptations). This suggests we could tentatively probe them using the DD.

3.3.1 Theoretical model

Theoretical tools

Here again, we employed the state-specific formalism in order to compute the DD, which
we scaled using the square of the chemical hardness in order to obtain the Grand Canonical
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DD. We also employed Domains condensation scheme, in order to extract quantitative
information on the trans effects.
We also used another tool, which was not developed in the framework of conceptual
DFT: the Extended Transition State - Natural Orbitals for Chemical Valence (ETS-
NOCV).141–143 When two isolated molecules are allowed to interact, the electron density
of the total system can be written as a sum of the electron densitites of each separated
fragment plus a deformation term. The NOCV are the eigenvectors Ψi of this deformation
density matrix (Δρ(r)). Mathematically, this translates as

Δρ(r) =
∑
m

νm
[
−Ψ−m(r)

2 +Ψm(r)
2
]

(3.14)

where it appears clearly that the NOCVs are paired.
Without getting too involved with the mathematics behind the NOCV, we can briefly state
they permit to decompose the electron density reorganisation between the two fragments
into well-defined orbital contributions with a given number of transferred electrons νm.
Thus, it is possible for instance to distinguish between σ and π donation effects, and
to quantitatively evaluate the effect of each, thus enabling comparisons.144 Furthermore,
thanks to the Extended Transition State formalism, it is possible to associate with each
NOCV pair a given energetic stabilisation, thus helping the comparisons.145

Methodology and computational details

Here, we want to probe both STE and KTE in the case of octahedral complexes. In
terms of reactivity, it is assumed that most of octahedral complexes undergo dissociative
metatheses: first the replaced ligand leaves the coordination sphere, and then it can be
replaced by another one – see Scheme 3.3.2 –.51,54 From the viewpoint of steric hindrance,
this seems to make sense: the metal cation at the centre of an octahedron is much more
shielded from its environment than it is in a square planar complex.
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Scheme 3.3.2: Schematic representation of the dissociative mechanism of metathesis in an octahedral
complex.

In turn, this means the unsaturated [ML4T] entity might be the relevant species to study
if we want to characterise the reactivity of an octahedral coordination complex. Further-
more, we can see that studying this species would allow us to gain some insight on the
STE too: looking at the electronic properties of this unsaturated compound could give us
information on the way it may accomodate a supplementary ligand on its vacancy.
We used a two-fold approach. First, we tried to characterise the trans effects by compar-
ing, in the same complex, the cis and trans positions of coordination (relative to the most
trans-orienting ligand), or by comparing the trans positions in two similar complexes.
We thus chose a set of complexes that were known to display a marked STE or KTE,
associated to a ligand that could also be found on the cis position with respect to the
most trans-orienting ligand. They are given in Table 3.4.
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Table 3.4: List of the studied complexes.

Label Formula Specifity
4.1 [Co(NH3)2(NO2)3(CH3)]– STE, d6, σ donors
4.2 [NbO(NCS)5]2– STE, d0, σ and π donors
4.3 [RhL(PMe3)2(Cl)3] STE, d6, σ and π donors
4.4-H2O [Rh(NH3)4(H2O)2]3+ KTE, d6, σ donors
4.4-Cl [Rh(NH3)4(Cl)(H2O)]2+ KTE, d6, σ and π donors
4.5-OH [Co(en)2(OH)(H2O)]2+ KTE, d6, σ and π donors
4.5-SO3 [Co(en)2(SO3)(H2O)]+ KTE, d6, π acceptors

We optimised their structure without symmetry restraint, at the B3LYP/6-311G(d) +
SDD(metal) level, using Gaussian 09(xvi). Then, we removed either the ligand on the
trans or cis position (with respect to the studied trans-orienting ligand), and we com-
puted the GCDD of the resulting fragments. We also evaluated the NOCV associated to
the coordination of the removed ligand to the corresponding fragments, using ADF2013
(B3LYP/TZV/Small Core).146

Second, we built two families of "theoretical" complexes having the same structures and
only differing by one ligand T. We optimised their structures, then removed the ligand
trans to T and computed the GC-DD of the corresponding unsaturated fragment. Using
Domains, we condensed the GC-DD and tried to build a semi-quantitative scale of the
trans-orienting ligands. Note that here we used the latest implementation of Domains,
in which the user may define a radial threshold in order to suppress contributions from
areas that are too close to nuclei (and thus supposedly not involved into reactivity). In
the following, we employed the following thresholds: 0.2 a.u. for the DD (all points of the
DD below 0.2 a.u. in absolute value were discarded) and 0.5 bohr as a radius threshold
(all points closer than 0.5 bohr from any nucleus are discarded).

3.3.2 Results and discussion

Comparing cis and trans positions

Complex 4.1. Complex 4.1, [Co(NH3)2(NO2)3(CH3)]–, is known to display a marked
STE due to the methyl ligand.147 The Co(III)-NO2

– bond is indeed 0.10 Å longer when
trans to the CH3

– ligand. We thus here built two [ML5] fragments by removing either
the trans (4.1-trans) or cis (4.1-cis) nitrito (with respect to methyl), and calculated the
GC-DD for these two fragments.
As one can see from Figure 3.3.1, the GC-DD for the two species are quite similar. They
noteworthy comprise a nucleophilic part recalling a non-bonding metal d orbital, and
an electrophilic part that develops towards the coordination vacancy. This electrophilic
feature could be expected: since we removed a ligand, thus very likely a nucleophile, we
would expect the resulting fragment to display a marked electrophilicity, at least on the
former position of the ligand.
The electrophilic domain D+

Co looks much larger on the cis position than on the trans
one. This is completely confirmed by the condensation with Domains, see Table 3.5. The
integrated value of the GC-DD is approximately 7 times smaller for 4.1-trans compared
to 4.1-cis, and since the volume of the corresponding basins are much more comparable

(xvi)In the case of the S and P atoms, we employed the 6-311+G(d) basis set, since it is known diffuse
functions are called if one wants to correctly model these atoms.
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Figure 3.3.1: GC-DD isosurfaces for 4.1-cis (left) and 4.1-trans (right), at a ±0.4 a.u. isovalue.
Electrophilic D+

Co domains are highlighted with an asterisk. Colour scheme: red, negative values; green,
positive values.

(30 % smaller for 4.1-trans), as a result the mean value of the GC-DD is also much smaller
for 4.1-trans.

Table 3.5: Numerical values from the condensation of the electrophilic domains of the GC-DD, for
fragments 4.1-cis and 4.1-trans. Δs(D+

Co) is the integrated GC-DD value over domain D+
Co, Δs(D+

Co)
the mean GC-DD value and V (D+

Co) the volume of the domain. All values in a.u.

Complex 4.1-cis 4.1-trans
Δs(D+

Co) 145.6 21.4
V (D+

Co) 24.1 17.6
Δs(D+

Co) 6.0 1.2

These results mean that 4.1-cis displays much more electrophilicity on the vacant coor-
dination position, which means it binds much more to a nucleophile than 4.1-trans. We
would thus expect the cobalt - nitrito bond to be much stronger on the cis position than
on the trans one: we retrieve a STE.
We also retrieve a similar information at the NOCV level. We represent on Figure 3.3.2
the deformation densities for the main (±1) NOCV pairs associated to the coordination
of a nitrito ligand to the previous fragments. As one can see, in both cases the incoming
NO2

– ligand loses electron density, which relocates between the nitrito and the cobalt
atom: a cobalt-nitrite bond is formed. Other electron density movements are seen on
the rest of complex, which can be understood as the withdrawal of an excess electron
density that was transferred by the remaining ligands in the [ML5] fragments, in order to
counteract the vacancy.
Graphically, the relocation basin between nitrite and cobalt is smaller trans to the methyl,
which would suggest a smaller electron density delocalisation. Actually, the NOCV pair in
that case is associated to a total movement of 0.57 electrons and an energy stabilisation
of 31.3 kcal.mol−1, whereas in the case of the cis nitrito 0.66 electrons are exchanged,
leading to a stabilisation of 40.1 kcal.mol−1. We thus retrieve a less stabilising interaction
trans to the methyl, and the formed bond is expected to be weaker since it involves less
electrons: we retrieve the expected STE.

Complex 4.2. Complex 4.2, [NbO(NCS)5]2–, is also known to show a marked STE due
to the oxido ligand:148 the thiocyanate ligand trans to O2– is indeed located 0.18 Å further
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Figure 3.3.2: Deformation densities for the first NOCV pair associated to the coordination of a nitrito
ligand to 4.1-cis (left) and 4.1-trans (right), at a ± 4× 10−3 a.u. isovalue. Electron density relocation
(depletion, respectively) areas are depicted in green (red).

Figure 3.3.3: GC-DD isosurfaces for 4.2-cis (left) and 4.2-trans (right), at a ±0.4 a.u. isovalue. Colour
scheme: red, negative values; green, positive values.

from the niobium atom than the cis ones.(xvii)

As for complex 4.1, we thus built to fragments by removing one SCN– ligand, either trans
to the oxide (4.2-trans) or cis (4.2-cis). We represent on Figure 3.3.3 the GC-DD for
these two fragments. Once again, the DD contributions on the metal are very similar.
Noticeably, the electrophilic domains on the niobium are reminiscent of a non-bonding dxy
metal AO, which can be understood quite easily in the framework of ligand field theory
(this is the LUMO, thus likely associated to an electrophilic behaviour).
In the case of 4.2-cis, these electrophilic domains are well designed to host a π donor
ligand, and thus they may stabilise efficiently a N-bonding thiocyanate. On the other
hand, in the case of 4.2-trans such a stabilisation is not expected: the electrophilic
developments are orthogonal to the eventual thiocyanate-niobium bond. As such, we
do not expect the thiocyanate trans to O2– to actually interact in a covalent way with
the rest of the complex. This could be expected from our former study, since we know
N-coordination is driven mostly by electrostatic effects.
In turn, this means the trans thiocyanate is expected to be less strongly bound the niobium
than the cis ones. Actually, from the shape of the GC-DD in 4.2-cis, we can furthermore

(xvii)Note that, formally, the Nb(V) ion has a d0 electronic configuration.
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Figure 3.3.4: Deformation densities for the first (left) and second (right) NOCV pairs associated to
the coordination of a thiocyanato ligand to 4.2-cis (top) and 4.2-trans (bottom), at a ± 4 × 10−3 a.u.
isovalue. Electron density relocation (depletion, respectively) areas are depicted in green (red).

see that the trans SCN– mostly acts as an isolated (uncoordinated) thiocyanate. Unfor-
tunately, we cannot use the condensation scheme in that case to quantify the differences
between the cis and trans positions. Nevertheless, we do still retrieve a STE.
We also retrieve it at the NOCV level. Coordination of a thiocyanate to 4.2-cis or 4.2-
trans indeed yields two main NOCV pairs, which correspond to the formation of a σ and
π bond, as shown on Figure 3.3.4. The σ bond formation leads to the exchange of 0.47
electrons in the case of 4.2-cis and a stabilisation of 30.4 kcal.mol−1, while only 0.34
electrons are exchanged in the case of 4.2-trans and -18.0 kcal.mol−1 are gained. The π
bond formation on the other hand leads to an exchange of 0.47 electrons in the case of
4.2-cis and a stabilisation of 12.7 kcal.mol−1, while 0.52 electrons are exchanged in the
case of 4.2-trans and 8.1 kcal.mol−1 are gained.
Overall, roughly the same number of electrons are exchanged in the formation of the π
bonds, but the formation of the cis bond is energetically favoured. In the case of the σ
bond, the difference between the cis and trans coordination is even more marked (both in
electron numbers and energy stabilisation). We thus retrieve a weaker coordination trans
to oxido than cis.

Complex 4.3. Complex 4.3, [RhL(PMe3)2(Cl)3] (with L = dimethylaminocarbene), is
known to present a quite marked STE:120 the Rh(III)-Cl– bond is 0.08 Å longer when
trans to the carbene. Following the same approach as previously, we built two fragments
by removing either the trans (4.3-trans) or cis (4.3-cis) chloride (with respect to the
carbene).
As one can see from Figure 3.3.5, the shape of the GC-DD around the metal cation is very
similar to what we observed for complex 4.1. Noticeably, we retrieve the d-AO shaped
electrophilic contribution developing towards the coordination vacancy. Here also, the
volume of this domain seems bigger on the cis position. This is confirmed by Domains,
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Figure 3.3.5: GC-DD isosurfaces for 4.3-cis (left) and 4.3-trans (right), at a ±0.4 a.u. isovalue. Colour
scheme: red, negative values; green, positive values.

since the volume of the cis basin is about 50% larger than the trans one. As we can see
from Table 3.6, once again we retrieve much larger numerical values (either integrated or
averaged) for the GC-DD on the cis position, which suggests that coordination trans to
the carbene is less effective: we retrieve a STE.
This also the case if we look at the NOCV associated to the coordination of a chloride to
4.3-trans or 4.3-cis – see Figure 3.3.6 –. In both cases, a main NOCV pair is observed,
associated to an exchange of 0.76 electrons and a stabilisation of 46.7 kcal.mol−1 in the
case of 4.3-cis, and an exchange of 0.65 electrons and a stabilisation of 37.4 kcal.mol−1 in
the case of 4.3-trans. We thus retrieve a weaker coordination on the trans position with
respect to carbene, as expected.

Table 3.6: Numerical values from the condensation of the electrophilic domains of the GC-DD, for
fragments 4.3-cis and 4.3-trans. Δs(D+

Rh) is the integrated GC-DD value over domain D+
Rh, Δs(D+

Rh)
the mean GC-DD value and V (D+

Rh) the volume of the domain. All values in a.u.

Complex 4.3-cis 4.3-trans
Δs(D+

Rh) 47.3 19.8
V (D+

Rh) 30.7 20.3
Δs(D+

Rh) 1.5 1.0

Comparing trans orienting ligands

In the three previous examples, we have compared cis and trans positions in the same
complex, in order to highlight both STE and KTE. Now, we propose to focus only on
one position in two related complexes, which will only differ by the ligand on the trans
position. In principle, this should permit to compare different trans orienting ligands.

Complexes 4.4. Complexes (4.4), namely trans-[Rh(NH3)4(H2O)X]n+ with (X,n) =
(H2O,3) or (Cl–,2), display a marked KTE.149 Water substitution indeed proceeds 5000
times faster when X = Cl–.
According to our methodology, we thus built two [ML5] fragments by removing the water
ligand in both complexes (respectively, fragments [ML5]-4.4-H2O and [ML5]-4.4-Cl). As
one can see from Figure 3.3.7, the GC-DD for these two fragments is once again similar to
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Figure 3.3.6: Deformation densities for the first NOCV pairs associated to the coordination of a chloride
ligand to 4.3-cis (top) and 4.3-trans (bottom), at a ± 4×10−3 a.u. isovalue. Electron density relocation
(depletion, respectively) areas are depicted in green (red).

Figure 3.3.7: GC-DD isosurfaces for [ML5]-4.4-H2O (left) and [ML5]-4.4-Cl (right), at a ±0.4 a.u.
isovalue. Colour scheme: red, negative values; green, positive values. Electrophilic D+

Rh domains are
highlighted by an asterisk.

what we observed for complex 4.1. In this case, it is not plain whether [ML5]-4.4-H2O or
[ML5]-4.4-Cl display the larger electrophilic domain on the trans position. Condensation
is thus very helpful in this case. Condensed values, recapped in Table 3.7, indicate clearly
that electrophilicity is more pronounced for X = H2O: the integrated value of GC-DD are
approximately doubled compared to X = Cl–, and since the volumes are not that different
the average value of the GC-DD is also considerably larger for [ML5]-4.4-H2O.

Overall, we expect a much stronger coordination of water on that position when X =
H2O, and thus a much slower substitution kinetics: we retrieve the expected KTE.

This is also confirmed at the NOCV level, as sketched on Figure 3.3.8. Coordination of
water to both fragment give rise to a main NOCV pair, with a basin of electron density
relocation between the O and Rh atoms (formation of a bond). When X = H2O, 0.48
electrons are transferred, which induces a stabilisation of 31.0 kcal.mol−1. On the other
hand, when X = Cl– 0.36 electrons only are transferred, and the stabilisation is only of
16.7 kcal.mol−1. The water molecule in 4.4-H2O is thus way more stabilised than it is in
4.4-Cl. Its replacement should thus be much slower, as observed.
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Table 3.7: Numerical values from the condensation of the electrophilic domains of the GC-DD, for
fragments [ML5]-4.4-H2O and [ML5]-4.4-Cl. Δs(D+

Rh) is the integrated GC-DD value over domain D+
Rh,

Δs(D+
Rh) the mean GC-DD value and V (D+

Rh) the volume of the domain. All values in a.u.

Complex [ML5]-4.4-H2O [ML5]-4.4-Cl
Δs(D+

Rh) 43.9 21.9
V (D+

Rh) 25.2 19.2
Δs(D+

Rh) 1.7 1.1

Figure 3.3.8: Deformation densities for the first NOCV pair associated to the coordination of an aqua
ligand to [ML5]-4.4-H2O (left) and [ML5]-4.4-Cl (right), at a ± 4× 10−3 a.u. isovalue. Electron density
relocation (depletion, respectively) areas are depicted in green (red).

Complexes 4.5. In the case of complexes 4.5, [Co(en)2(X)(H2O)]n+ with (X,n) = (OH–,
2) and (SO3

2–,1), a strong KTE could also be evidenced experimentally.150,151 In this case,
water substitution occurs 2000 times faster if X = SO3

2–. Unfolding the same approach as
previously, we thus constructed two fragments by removing the water molecule, yielding
respectively [ML5]-4.5-OH and [ML5]-4.5-SO3. The GC-DD surfaces for both fragments
are represented on Figure 3.3.9.
Once again, the features are quite similar to what we observed for other complexes. As one
may notice however, the features are more distorted in the case of [ML5]-4.5-SO3. This
could be rather expected, since sulfite is also known to be π-acceptor ligand (and thus the
shape of the DD should in principle be modified). As one may notice, the electrophilic

Figure 3.3.9: GC-DD isosurfaces for [ML5]-4.5-OH (left) and [ML5]-4.5-SO3 (right), at a ±0.4 a.u.
isovalue. Colour scheme: red, negative values; green, positive values. Electrophilic D+

Co domains are
highlighted by an asterisk.
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Figure 3.3.10: Deformation densities for the first NOCV pair associated to the coordination of an aqua
ligand to [ML5]-4.5-OH (left) and [ML5]-4.5-SO3 (right), at a ± 4× 10−3 a.u. isovalue. Electron density
relocation (depletion, respectively) areas are depicted in green (red).

basin trans to SO3
2– is much smaller than trans to HO–, which suggests electrophilicity

in [ML5]-4.5-SO3 will be weaker compared to [ML5]-4.5-OH. This is indeed the case if
we look at the condensed values in Table 3.8. The integrated value of the electrophilic
domain of the GC-DD is indeed 3.5 times larger trans to hydroxo, and since the volume of
this domains is only twice larger than the volume of the basin trans to sulfito, the average
GC-DD values are also markedly larger for hydroxo. As a result, we would expect a much
stronger coordination for water when trans to hydroxo, as observed.

Table 3.8: Numerical values from the condensation of the electrophilic domains of the GC-DD, for
fragments [ML5]-4.5-OH and [ML5]-4.5-SO3. Δs(D+

Co) is the integrated GC-DD value over domain
D+

Co, Δs(D+
Co) the mean GC-DD value and V (D+

Co) the volume of the domain. All values in a.u.

Complex [ML5]-4.5-OH [ML5]-4.5-SO3
Δs(D+

Co) 73.7 20.0
V (D+

Co) 33.6 13.4
Δs(D+

Co) 2.2 1.5

In this case too, NOCVs for the coordination of the removed ligand are in good agreement
with the GC-DD,as exemplified on Figure 3.3.10. For the two complexes, one main NOCV
pair is observed, and is predictably associated to a relocation of electron density between
the metal cation and the water ligand (formation of a bond). The relocation basin is much
smaller in the case of sulfito, which suggests a much weaker coordination. This is retrieved
in the number of transferred electrons – 0.33 electrons if X = HO–, 0.22 electrons if X
= SO3

2– – as well as in the energy stabilisation – 15.6 kcal.mol−1 against 6.3 kcal.mol−1,
respectively. We thus retrieve unambiguously a trans effect.

Towards a quantitative scale?

From the different previous examples, it appears that our computational strategy allows
to characterise the trans effects. Noticeably, in the last paragraphs we have seen that
we could rather reliably compare different trans-orienting ligands using the GC-DD, in
a quantitative fashion using the domains condensation. Interestingly, it appears from
these examples that the trans effects are mostly related to a modulation of the "electron
density demand" on the studied coordination positions, since the weakest electrophilicities
were systematically found on the positions where STE or KTE were expected. This is
actually in perfect line with the conclusions of both Chval and De Proft. Indeed, Chval
and coworkers139 proposed that the trans effect would be due to a "competition between
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the ligands [...] for the opportunity to donate their electron density to the central" metal
cation, while de Proft and coworkers140 suggested that a very efficient donation from
the trans ligand would translate into an accumulation of electron density on the studied
position and thus an enhanced Pauli repulsion. It is rather clear that both effects would
translated into a decrease of the electrophilicity.
The following step is then to check whether we could use the same kind of theoretical
framework to provide the first theoretically-based scale of the trans-orienting ligands. In
many inorganic textbooks, one can indeed read that all ligands exert an influence on the
other ones in the coordination sphere, and that the resulting trans effects are piloted by
the strongest trans-orienting ligand. Summarising a large number of experiments, the
following scale is generally assumed:

CO ≈ CH3
− ≈ NO2

− > Cl− > Pyridine > NH3 > H2O

where the comparison operator > means "stronger trans-orienting ligand than". Note
that this scale is obtained over a large set of very different experiments, which may be
hardly comparable (different solvents, temperatures...). As such, many exceptions are
known, and the scale may furthermore vary substantially depending on the metal cation.
We thus decided to study two families of complexes, 4.4-X [Rh(NH3)4(H2O)X]m+ and4.6-
X [Ru(NH3)5X]m+,152 with X belonging to the previous series. Note that the first series
derive from complexes 4.4, hence their label 4.4-X.
The shape of the DD for these complexes is exactly similar to what we previously observed,
and as such we did not display them here. Result of the condensation of the GC-DD for
complexes 4.4-X and 4.6-X are gathered in Tables 3.9 and 3.10, respectively.(xviii)

Table 3.9: GC-DD condensation for the [ML5] fragments deriving from complexes 4.4-X. All values in
a.u.

X = Δs(D+
Rh) V (D+

Rh) Δs(D+
Rh)

CH3
– 9.5 10.7 0.88

CO 14.1 15.8 0.89
NO2

– 1.6 4.5 0.36
Pyridine 36.4 24.9 1.47
NH3 18.5 17.9 1.03
Cl– 21.9 19.2 1.14
H2O 43.9 25.2 1.74

As one can remark from these tables, the ranges of both the volumes and the integrated
GC-DD values are quite large. On the other hand, the averaged values of the GC-DD are
in a much narrower range (from 0.36 to 1.74), and are all close to unity. They thus seem
more adapted to build a quantitative scale of the trans-orienting ligands. Furthermore,
the chemical meaning of these values are rather simple to understand, since they have the
same unit as the GC-DD: they are a measure of the mean electrophilicity in the vicinity
of the metal cation.
Thus, using the averaged values, we obtain the two following ranking (from the lowest
GC-DD value to the highest):

NO2
− < CH3

− ≈ CO < NH3 < Cl− < Pyridine < H2O

(xviii)Note that [Ru(NH3)6]
2+ was not considered. The reason is rather simple: because of its perfect

octahedral symmetry, no differentiation is expected between trans and cis positions: as such, it is not
expected to display any trans effect.
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Table 3.10: GC-DD condensation for the [ML5] fragments deriving from complexes 4.6-X. All values
in a.u.

X = Δs(D+
Rh) V (D+

Rh) Δs(D+
Rh)

CH3
– 22.4 28.9 0.77

CO 18.3 21.5 0.85
NO2

– 21.0 35.2 0.60
Pyridine 29.4 26.1 1.13
Cl– 36.3 26.4 1.37
H2O 43.2 30.6 1.41

for complexes 4.4-X, and

NO2
− < CH3

− < CO < Pyridine < Cl− < H2O

for complexes 4.6-X. These rankings are in a rather good agreement with the experimen-
tal series, especially regarding the strongest trans-orienting ligands. Carbonyl, methyl
and nitrito are indeed well placed in the series, displaying markedly small values of the
GC-DD. On the other hand, weak trans-orienting ligands seem less well ordered. The
discrepancies with the experimental series are most probably stemming from the diver-
sity of experimental conditions in which substitution rates or structural parameters are
obtained: it may be quite hard to compare a metathesis reaction in water, which is a very
polar solvent, to another one occuring in THF... Furthermore, we are comparing different
complexes, and differences in the values were to be expected. It should also be reminded
that our approach is quite crude, in the sense that we do not allow the [ML5] species to
relax, neither that we looked at a complete reaction path.
Most probably, an absolute scale of the trans-orienting ligands, using our theoretical
approch, cannot be build. Anyhow, we are able to provide a semi-quantitative scale,
which could be used as a general (though imperfect) guide.

3.3.3 Conclusion

In this section, we showed how tools from conceptual DFT and related paradigms could be
used to rationalise the chemical properties of coordination complexes, noteworthy allowing
to understand the physical mechanisms acting beneath the trans effects in octahedral
complexes.
As what was observed for square-planar complexes, trans effecs in octahedral complexes
primarily come from the differential ability of ligands to donate their electron density to
the metal cation, leading certain coordination positions to be quite saturated with electron
density and thus less "demanding" for a ligand. Monitoring the electrophilicity, we were
able to characterise, and more importantly, to quantify the trans effects in a rather large
set of coordination complexes.
Finally, using a local condensation scheme, we managed to build semi-quantitative scales
of the trans-orienting ligands which happen to reproduce quite correctly the experimental
trends, even though the model we used may not be the most precise.
Note: this work has been published in Phys. Chem. Chem. Phys. 2016, 18, 982–990.
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3.4 Long story short
Throughout these two studies, we aimed to examine the efficiency and adequacy of con-
ceptual DFT in the understanding an rationalisation of the properties of coordination
compounds. Starting from a very simple study on ligands, we saw that using two well
designed tools, namely the electrostatic potential and dual descriptor, we were able to
retrieve quite correctly the coordination geometries they would adopt, but also to gain
information about their electronic properties once coordinated. Furthermore, in some
cases we were able to understand experimental facts, such as the scarcity of dioxygen
complexes.
The DD also proved to be a valuable tool in the study of the trans effects of octahedral
complexes. Indeed, it appeared that these effects are essentially due to a modulation
of the electrophilicity of the metal cation under the influence of the ligand on the trans
position.
We believe the scope is much wider, and that conceptual DFT is a framework of choice for
the rationalisation of the properties of coordination complexes. Noticeably, we have seen
in the first study a few problems arose when the ground state of the studied molecules
are degenerate. In the framework of FMO theory, such cases may be problematic. In the
framework of DFT, they are even unreachable, since the fundamental hypothesis beneath
the Hohenberg-Kohn theorems are no longer holding. This is not true for conceptual
DFT, since we base our interpretations on electron density, no matter its origin.
Actually, this last point suggests we could imagine to perform conceptual DFT calculations
basing solely on experimental data: using X-ray diffraction, it is indeed possible to obtain
electron density maps, which could be used for C-DFT calculations...



Chapter 4

Amino-acid based copper complexes:
from reactivity to molecular
magnetism.

4.1 Introduction

Polynuclear metal complexes have attracted a large interest in research because of the
fascinating physical properties they may present, among which one may find catalytic
activity and magnetism.153 For instance, as we have seen in Chapter 3, the biological
properties of some enzymes are due to the presence of a polynuclear complex in their ac-
tive site.108,109 One may cite as an example the catechol oxidase, whose dinuclear copper
complex is used to oxidise di-phenols into orthoquinones. Laccase154 is another interesting
copper-based example: its trinuclear complex indeed permits the activation of O2, pro-
ceeding through what is called a "native intermediate", which is an antiferromagnetically
coupled trinuclear copper(II) centre.
This intermediate is of paramount importance in the process, and many trinuclear Cu(II)
complexes were synthesised as prototypes of this enzyme. Furthermore, such antiferro-
magnetically coupled trinuclear Cu(II) complexes may also be good candidate for spin
frustration.155,156 Indeed, there is no possible way to arrange a triangular system of three
S = 1/2 spins in such a way that all pairs of spins will be antiferromagnetically coupled
– see Scheme 4.1.1 –. Such frustrated systems are very interesting, because they present

? S = 1/2

S = 3/2
E

Scheme 4.1.1: Schematic representation of frustrated trinuclear Cu(II) complex, and the corresponding
energy diagram.

a degenerate ground state(i). As such, they could be employed as molecular qubits, i.e.

(i)The reader may retrieve this degeneracy from equation (2.34), setting all the coupling constants to
the same value J .

87
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molecule-based quantum bits of information.(ii) Note that SMMs are also proposed to be
efficient candidates for this purpose.
In 2008, our team reported the synthesis of a trinuclear Cu(II) complex based on an
amino-acid derived ligand, L0

2–, along with a bridging μ3−OH– ligand.158 This complex
displayed an unambiguous antiferromagnetic coupling, but because of its low symmetry
no frustration was actually observed. High level calculations (DDCI-2 and approximate
DDCI-3), performed by Dr. Boris Le Guennic and Prof. Vincent Robert, indeed showed
the doublet states were not degenerate. Nevertheless, the complex presented another
interesting feature: the lowest doublet and quartet states were indeed found to be de-
generate, a rather unexpected characteristic. Furthermore, this could only be deduced at
the highest level of theory – at the DDCI2 level, the computed coupling was indeed still
ferromagnetic –.

O NH

O O

R

�2−

Figure 4.1.1: Studied amino-acids derived ligands. R = H, L0
2–; R = Me, L1

2–; R = iPr, L2
2–; R =

iBu, L3
2–.

These very interesting results stimulated a further study on the subject. Noteworthy, the
subtlety of the observed magnetic properties of the previous complex suggests a slight
modification of the ligand may result in a marked effect. Interestingly, the synthetic
procedure that permitted to isolate L0

2– can be easily modified, and parent ligands using
different amino-acids (alanine, valine and leucine, vide infra) had already been obtained
during the PhD theses of Sarah Petit and Amel Messai.159,160 We thus evaluated the
coordination ability of these ligands, and studied the magnetic properties of the obtained
complexes. The results are presented in the following sections.

4.2 Syntheses and structures

4.2.1 Syntheses and structures of the ligands

In this study, we proposed to study the effect of subtle modifications on ligand L0
2–. We

thus tried to obtain these complexes using more branched versions of L0
2–, replacing the

starting amino-acid (glycine) by an alkylated one: alanine (R = methyl on Figure 4.1.1),
valine (R = isopropyl) and leucine (R = isobutyl). Note that these amino-acids are chiral,
and thus each ligand can be prepared in its enantiopure (D, L) or racemic (DL) forms.
As we have just said, the corresponding ligands had already been synthesised by Sarah
Petit and Amel Messai, through a very simple procedure: acetylacetone is simply added
to an aqueous solution of the corresponding amino acid with potassium hydroxide, and
the mixture is left to react for a few hours at room temperature. Though being very
efficient in the case of glycine and alanine – yields between 80 % and 90 % – , the method
proves less successful in the case of valine (62 %), and does not afford at all the expected

(ii)Actually, there are more requirements to be fulfilled, which are called the "Loss-DiVincenzo criteria":
the states need to be well-defined (which is the case), should be easily prepared, show low decoherence,
be easily characterised and easy to manipulate.157
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compound with leucine if room temperature is too low. Furthermore, the crude product
of reaction with this procedure tend to incorporate a lot of water, as evidenced by its
characteristic IR signal, which is quite hard to remove.(iii)
This led us to employ a slightly modified synthetic procedure: water is replaced by
methanol, and the reaction is conducted at reflux instead of room temperature. With
this method, yields are much better (98% - 99%) and the synthesised potassium salts are
found pure (see Appendix A.1 for the experimental details).(iv)

Quite interestingly, our different characterisation techniques point to slightly different
structures than the presumed one for L0H

–. Indeed, IR and NMR spectra suggest our
different LnH

– (n = 0 - 3) species are better described as being enaminones (bearing both
ketone and enamine motifs), rather than imino-enol, both in the solid state (IR) and in
water solution (NMR in D2O). Unfortunately, no crystallisation procedure afforded large
enough crystals to directly confirm this through X-Ray diffraction.
We thus modelled DL1H

– at the DFT level, using the hybrid B3LYP functional161 and
Pople’s basis set 6-311++G(d),162 and using water as an implicit solvent (PCM), with
Gaussian 09.97 In the first optimisation, the starting geometry corresponded to Figure
4.1.1. Then, we displaced the proton that was located on the nitrogen atom to the
ketone oxygen, and optimised once more the geometry. Moreover, we also considered
another conformation of the carbon backbone of this ligand. Indeed, the drawn formula
on Figure 4.1.1 is such that the two successive unsaturated bonds are in a relative cis
conformation, but it is known that such systems may also present a trans configuration
(which would consist here in turning the ketone oxygen upwards).50 We then performed
two supplementary geometry optimisations, starting from the corresponding trans guess
configurations.

Table 4.1: Relative energies (in kcal/mol) of the different optimised geometries of ligand DL1H
–, at the

B3LYP/6-311++G(d)/PCM(H2O) level.

NH OH
cis 0.00 +13.98
trans +4.23 +26.66

Overall, we obtained four different geometries, that we label cis-NH, cis-OH, trans-NH
and trans-OH, respectively.(v) Frequency calculations were performed in each case to
ensure they correspond to genuine energy minima, and were also used to compute the free
energies corresponding to these four geometries. They are listed in Table 4.1.
As one may remark, the minimum value is found for the cis-NH form, in good agreement
with our characterisations. Noticeably, even though the energy differences between the
all the conformers seem rather small, they are nonetheless significant. For instance, if we
presume conversion between cis-NH and trans-NH may happen(vi) at room temperature,
the ratio between the two forms should be given by the corresponding Boltzmann popula-
tion factor. In that case, this factor leads to a partition into 99.92% of cis-NH and 0.08%
of trans-NH: we can safely neglect all conformations but cis-NH in the liquid state. This
(iii)Water could still be evidenced by IR after 2 weeks of desiccation in vacuum.
(iv)In addition, chirality of ligands DL1H

– and LL1H
– was confirmed by circular dichroism measurements

on methanol solutions.
(v)Note that we did not consider the iminone form (both ketone and imine motifs), since 1H NMR

unambiguously points to a sp2 hybridation of the central carbon of the acetylacetone backbone (only one
H is observed).
(vi)I.e., that the energy barrier for this process is small enough – which our calculations does not confirm

or infirm –.
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is furthermore confirmed by the consistency of the experimental and calculated 1H NMR
chemical shifts and coupling constant for this conformation (using the GIAO formalism
as implemented in Gaussian), as shown in Appendix A.1.

4.2.2 Coordination properties

In summary, we isolated 9 different ligands (as potassium salts):

• DL1HK, LL1HK, DLL1HK, starting from the corresponding alanines,

• DL2HK, LL2HK, DLL2HK, starting from the corresponding valines,

• DL3HK, LL3HK, DLL3HK, starting from the corresponding leucines,

and looked for their coordination properties towards transition metals. As we have seen
in the previous chapter, DFT calculations can provide appreciable information for this.
Since we know the glycine analogue coordinates when deprotonated, in a geometry that is
close to the one of cis-NH, we here considered a deprotonated form of this latter structure,
by simply removing the hydrogen atom from the amine group. We then computed the
DD without geometry optimisation, using the state-specific formalism,89 focusing on the
first excited state and using the same level of theory as previously. We also performed
the same calculation for the non-deprotonated form, and in both cases we also evaluated
the MEP.94

We represent on Figure 4.2.1 the result of these calculations. First, at the DD level we
notice similarities between the two compounds. We indeed observe a marked electrophilic-
ity on the imine and ketone groups, together with a non negligible nucleophilicity on the
central carbon. This latter characteristic is more pronounced in the deprotonated form,
indicating a relocation of charge density on this carbon. We retrieve a similar charac-
teristic in the case of the nitrogen atom, that becomes much more nucleophilic upon the
H abstraction – which is quite logical. On the other hand, the ketone oxygen show the
reverse tendency: it appears to be much more nucleophilic in the protonated form that in
the deprotonated one. This can be understood rather simply: since the DD integrates to
zero over space, an increase of nucleophilicity on one site must be accompanied either by
an increase of electrophilicity or a reduction of nucleophilicity elsewhere in the molecule.
As we do not observe an increase in electrophilicity through deprotonation – which is
rather logical, since we increased the charge of the system –, we understand why the
nucleophilicity of the ketone oxygen is decreasing.
At the MEP level, we observe an interesting feature: in the protonated form, the neg-
ative charge tends to locate on the carboxylate group, and also on the ketone oxygen,
as evidenced by the large negative values on these sites. In the deprotonated form, we
retrieve these negative charges, but they are somehow masked by the much larger one on
the nitrogen atom, which bears the lowest MEP values.
If we summarise, these two species involve a hard negative charge on the carboxylate – low
MEP values and no significant DD contribution –, which may be quite fitted to stabilise
lanthanide cations.21 On the other hand, they also present softer sites, which display both
low values of the MEP, non negligible nucleophilic DD contributions with electrophilic
contributions in their vicinity. They are thus quite fitted to stabilise transition metal
cations.63
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Figure 4.2.1: Up: DD isosurfaces for DL1H
– (left) and DL1

2– (right), as computed at the B3LYP/6-
311++G(d)/PCM(H2O) level. Isovalue: ±4× 10−3. Positive values are depicted in green, and negative
values in orange.
Down: MEP projection on density isosurfaces (ρ(r) = 4× 10−3 a.u.) for DL1H

– (left) and DL1
2– (right),

at the same level of theory. Colour gradient: red, lowest MEP values; green: highest MEP values.

4.2.3 Complexations

We then tried to coordinate different metal cations, using a similar synthetic procedure as
the one previously employed for the trinuclear Cu(II) complex of L0

2–: a simple mixture
of methanolic solutions of the ligand and the metal salts, in a 1:1 ratio, in the presence
of a weak base (here triethylamine). The following metal cations were scrutinised: Cu2+,
Cr3+, Co2+, Mn2+, VO2+, Ni2+ and Zn2+.(vii) For all these ions, a marked change of colour
is observed without addition of base. For instance, addition of an acid green CuCl2 ·2 H2O
solution to a pale yellow solution of DL1HK leads to a dark green mixture. In the case of
Zn2+, the resulting solution shows a slightly more intense yellow colour. Upon addition of
triethylamine, a further colour change is observed; for instance, the previous dark green
solution turns to a deep and dark blue. In the case of Zn2+, a colour change is also
observed, the resulting solution turning to a much stronger yellow.
Such colour changes suggest coordination takes place, in two steps. First, in the absence
of base we already observe a coordination, which likely involves the conjugated enaminone
part of our ligands (more intense colour of the Zn(II) complex). Second, upon addition
of base it is very likely that we deprotonate the ligand, thus changing drastically the
electronic structure of the resulting complex and as such its absorption properties.
Nevertheless, crystallisation of these complexes proved nearly impossible. Indeed, we
never managed to isolate any crystalline material in the case of Cr3+, Co2+, Mn2+, VO2+,

(vii)Note that a trinuclear complex of Cu(II) was already obtained by Sarah Petit, basing on the alanine
derivative, but was not thoroughly studied because of a lack of time.
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Ni2+ and Zn2+. In the case of Cu(II), depending on the counter-ion and the experimen-
tal conditions, we managed to characterise four crystal structures, which are presented
hereafter.

Trinuclear complexes 4.1 and 4.2

Reaction of DL1HK and LL1HK with CuCl2 · 2 H2O affords compounds 4.1 and 4.2 as
single crystals, suitable for X-Ray diffraction. Both compounds crystallise in the non enan-
tiogenic P212121 space group, and the found formulas are K2[Cu3(μ2−DL1)3(μ3−OH)]2 ·
5 H2O for 4.1 and K2[Cu3(μ2−LL1)3(μ3−OH)]2 · 5 H2O for 4.2. The crystallographic pa-
rameters are listed in Table B.1. In both crystal structures, two independent trinuclear
complexes are found within the unit cell, along with two K+ ions and five crystallised
water molecules. Interestingly, 4.1 and 4.2 are not exactly enantiomorphic, since the
lattice parameters are slightly different from one structure to the other. Also, the ob-
tained crystal structures do not match the one that was isolated by Sarah Petit (which
incorporated four water molecules).
We represent on Figure 4.2.2 the molecular structure of one complex of the asymmetric
unit of 4.2. It is highly reminiscent of the one that was obtained with L0

2–, showing a
half-cubane-like Cu3O4 core. As one may note from Tables B.2 and B.3, the complexes are
quite asymmetric, all coordination bonds showing slightly different properties (distances
and angles). Nevertheless, they all present similar global aspects, and the observed varia-
tions in angle or bond length remain rather small. We may then discuss the coordination
geometries basing on one complex only.

Figure 4.2.2: Representation of one of the complexes in the asymmetric unit of 4.2. H atoms were
omitted for the sake of clarity.

It is plain from Figure 4.2.2 that the Cu(II) ions are penta-coordinated, with a O4N
environment. The local geometry can be described as a distorted square-based pyramid,
as evidenced by the Addison parameters (ranging from 0.09 to 0.22).(viii) The basal plane
of this pyramid is constituted by a L1

2– ligand, in addition to the bridging hydroxyde.
Axial coordination is ensured by the ketone oxygen of the neighbouring ligand, and the
measured bond lengths are much longer than those measured in the basal plane (around
2.5 Å, to be compared to the 1.9 Å on the basal plane).

(viii)We remind that the Addison parameter, defined as τ = Δθ/60 with Δθ the difference between the
two largest angles in the coordination sphere, characterises the geometry of penta-coordinate complexes:
perfect square-based geometry corresponds to τ = 0, while trigonal bipyramid corresponds to τ = 1.163
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Interestingly, the basal planes of the three Cu(II) ions within a trinuclear complex are
almost perpendicular (calculated angle between the mean planes of 81◦ to 87◦). This
was actually already observed in the case of L0

2–, and was partially responsible for the
very weak antiferromagnetic coupling. If we indeed consider the crystal field diagram
of Cu(II) in a square-based pyramid geometry, we indeed expect the unpaired electrons
to locate in the dx2−y2-based orbitals, which will be quasi-orthogonal here. As such,
the overlap between these magnetic orbitals is expected to be weak, and according to
Kahn’s argument so must be the antiferromagnetic coupling.64 We may then expect a
very weak antiferromagnetic coupling for 4.1 and 4.2. Noteworthy, bridging through the
ketone oxygens is not expected to convey any efficient magnetic coupling, as the axial
coordination bonds are long and the Cu-O-Cu angles close to 90 ◦.

Polymeric complexes 4.3 and 4.4

Surprisingly, reacting LL1HK with another Cu(II) salt, namely CuSO4·5 H2O, permitted to
isolate another complex: [Cu(μ3−LL1)]∞ (4.3). The same reaction with LL3HK yielded
a similar compound, [Cu(μ3−LL3)]∞ (4.4). The two complexes are monodimensional
coordination polymers, the monomeric unit being simply composed of one Cu(II) ion and
one ligand – see Figure 4.2.3.
We may actually understand why we do not retrieve the former trinuclear complexes: they
were anionic complexes, and as such needed positive counter ions (K+ ions from the ligand
salt in this case, but triethylammonium ions were also present) in order to crystallise.
Here, we employed a sulfate salt of Cu(II), and ammonium or alkaline sulfates are not
expected to be soluble in methanol: we thus precipitated all the counter-ions (massive
white precipitate as a side product), which prevented the formation of the trinuclear
complex.
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Figure 4.2.3: Structure of the [Cu(μ3−LL1)] polymer 4.3, seen along the �c axis (left), and detail on the
asymmetric unit numbering scheme (right).

The crystallographic parameters of both 4.3 and 4.4 are gathered in Table B.4. The
structures of both complexes are very similar (nearly isostructural). In both cases, the
Cu(II) ions are located in the coordinating pocket of one ligand, and the coordination
sphere is completed by the carboxylate oxygens of two neighbouring ligands. This leads
to a slightly distorted square-based pyramid geometry around Cu(II), as shown by the
low values of the Addison parameter (0.10 and 0.06, respectively).
Interestingly, unlike what could be observed in the case of the trinuclear complexes, the
basal planes of neighbour Cu(II) ions in the polymer are far from being orthogonal (cal-
culated angle between the mean planes of 68◦ for 4.3, 71◦ for 4.4). A marked antiferro-
magnetic coupling could be expected. We depict on Figure 4.2.4 the two successions of
bonds that could serve as support for a magnetic coupling. We remind that, in order to
promote a strong antiferromagnetic coupling, one needs to have a strong overlap of the
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Figure 4.2.4: Possible magnetic coupling pathways in 4.3, highlighted in cyan and green.

magnetic orbitals, which can be achieved if the path is short (monoatomic bridge) and the
successive coordination bonds not orthogonal. Here, quite obviously the cyan path will
not lead to a strong antiferromagnetic coupling, as it is long (and the two coordination
bonds are quasi orthogonal). On the other hand, the green paths fulfils both criteria (the
angle between the two successive coordination bonds is 128.4(1)◦ in both structures, and
the associated dihedral angle is 113.0(1) ◦ in 4.3 and 111.0(1) in 4.4).
As such, we may expect complexes 4.3 and 4.4 to present a strong antiferromagnetic
coupling and, because of their polymeric nature, a 1D magnetic order at low temperature.

Structure in solution

So far, we have presented and discussed the crystal structures we could evidence using our
different ligands and Cu(II) salts. Actually, these complexes were not the only compounds
in the reaction mixture. Each time, an off-white (from white to pale blue) powder could
also be isolated, and sometimes beautiful blue crystals could also be found. These were
shown to be [Cu(Acac)2] complexes (with Acac = acetylacetonate) by X-Ray diffraction.
The observation of this Acac complex suggests our ligands hydrolysed in the reaction
medium. Indeed, we remind our syntheses are akin to Schiff base condensations50 (con-
densation of an amine on a carbonyl group, with the release of water), and these reactions
are known to be reversible. Nevertheless, our ligands are rather original since they can be
synthesised in water – while Schiff base usually decompose in water –. They thus seem
to be quite water-resistant, at least as potassium salts. We may then wonder if it is not
coordination (or deprotonation) that triggers the hydrolysis. This could explain why we
did not manage to isolate most of the complexes.
We thus decided to model the hydrolysis reaction at the DFT level, in order to determine
its feasibility. But prior to that study, we need to know the structure of our complexes
in solution. We first looked at the absorption spectra of both 4.1, 4.2, 4.3 and 4.4 in
methanol. Surprisingly, 4.3 and 4.4 dissolved quickly and easily – a rather unexpected
feature for coordination polymers –. More surprising is the strong similarity of the spectra,
irrespectively of the trinuclear or polymeric structure. For instance, we report on Figure
4.2.5 the absorption spectra for 4.2 and 4.3. An almost perfect superimposition is seen,
with in both cases a large absorption band around 645 nm (ε = 84(1) L.mol−1.cm−1 for
4.2), as well as a strong absorption in the UV region.
Such a strong similarity suggests the absorbing species in the two solutions are the same,
which is rather unexpected. Actually, UV spectra for all crude reaction mixtures are
similar, regardless of the Cu(II) salt or the ligand. Very likely, all our complexes have the
same general structure in solution.
The effect of the solvent on the absorption spectra of 4.2 and 4.3 was also studied, and
only small shifts were observed. For instance, the maximum of absorption of 4.3 moves
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Figure 4.2.5: Absorption spectra for 4.2 (blue) and 4.3 (red), in methanol.

Figure 4.2.6: Left: X-band EPR spectra (ν = 9.41 GHz) for frozen methanol solutions of 4.2 (red) and
4.3 (blue), at 118 K. Right: EPR spectrum of 4.2 at the same frequency and temperature, measured on
a powder sample of 4.2.

from 645 nm in methanol to 634 nm in pyridine and 612 nm in chloroform. The fact that
the absorption features remain nearly unchanged upon change in the solvent indicates the
latter is not involved in the first coordination sphere of our complexes.(ix) Furthermore,
the good solubility of our complexes in chloroform suggests they are neutral in solution.
In order to gain more insight on the molecular structure, we then turned ourselves to EPR
measurements on methanolic solutions. In good agreement with the UV measurements,
the X-band spectra for 4.2 and 4.3 are very similar, as shown on Figure 4.2.6. One may
also notice the major difference between the solution and solid spectra, which suggest
completely different geometries should be considered.(x) Actually, similar results were
obtained for the glycine analogue, and also for the alanine derivative synthesised by Sarah
Petit. At that time, interpretation of the spectra proved tricky. Indeed, the four first peaks
of the EPR spectra (2600 G - 3200 G) can be attributed to a hyperfine splitting pattern
of a gZ = 2.26 peak, with the I = 3/2 nuclear spin of one copper atom (A(Cu) = 169G).
Only one copper atom thus seems to be seen, which was unexpected because of the solid
state structure. Two hypotheses were then presented to account for this: either the
complexes display a perfect C3 symmetry in solution, thus rendering all three Cu(II) ions

(ix)And the weak solvatochromism, in addition to the low ε value for the visible range absorption, suggest
the observed transition is of the d− d type.

(x)In the case of 4.3, no solid state spectra could be recorded, because of a lack of signal. As we will
show in section 4.4, this is due to a strong antiferromagnetic coupling.
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equivalents, or a mononuclear complex is formed in solution. The latter hypothesis is the
most probable, considering the results of the UV measurements (how could a μ3-hydroxo
complex form from the polymer structures?).
In the second region of the spectra (3200 G - 3500 G), a more complicated pattern is
seen, which was formerly interpreted as being the result of two gX = 2.06 and gY = 2.01
signals split by a superhyperfine coupling with the nuclear I = 1 spin of nitrogen. We
may invoke the same interpretation here, noteworthy since the field separation between
successive peaks is almost constant (ca. 17(2) G), and is thus consistent with a unique
superhyperfine coupling. One may also note the good agreement with the previously
deduced superhyperfine coupling constant (ca. 16 G).
Overall, EPR measurements point to a mononuclear Cu(II) complex, involving a single
coordinating nitrogen atom, and thus most presumably a single tri-coordinating ligand.
Other ligands must be found in the coordination sphere, as Cu(II) ions usually display
coordination numbers of four, five or six. We can presume they are water molecules, since
it is the only common compound in all our syntheses (the Cu(II) salts being hydrated).(xi)

The corresponding formula is thus expected to be [CuLn(H2O)m].
We then tried to perform geometry optimisations at the DFT level, in order to determine
the exact geometry. We first employed B3LYP as functional and D95V basis sets164 for
all elements but Cu, which was modelled using a Los-Alamos pseudo-potential and the
corresponding double-zeta basis set (LANL2DZ). Optimisations with one to four water
molecules were undertook, using an implicit solvent model (methanol, PCM) and in every
cases in the final geometry only one water molecule remains coordinated, in a distorted
square-planar geometry. The remaining water molecules arrange around the complex,
forming H-bonds with the coordinated water but also with the different functional groups
of the ligand. Noteworthy, when four water molecules are involved, we observe a H-bond
between one uncoordinated water molecule and the central (malonic-like) carbon of the
ligand (this water molecule being itself H-bonded to another one). This latter feature is
rather simply understood from our previous DD calculations, as this carbon is expected
to be quite nucleophilic in L1

2–, but is nevertheless very interesting. It indeed suggests
the backbone of our ligand is able to interact with water molecules, which a necessary
condition to be fulfilled if we look for an hydrolysis pathway.
Confidence in this structural model is furthermore given from the rather good reproduction
of the EPR parameters: g1 = 2.04, g2 = 2.05, g3 = 2.16, A(Cu) = 225G and A(N) =
19G, as computed at the B3LYP/def2-TZVPP/DKH level,165 using an implicit solvent
correction (COSMO) for methanol (ORCA 3.0).166

We then turned to a much higher level of theory, optimising our structures with the
dispersion-corrected ωB97xD functional,167 and using 6-311++G(d) for all elements, plus
Stuttgart-Dresden pseudopotentials on the copper atom,168 with the same implicit solvent
correction as previously. Such a high level may indeed be needed, as H-bonds are seen (and
may not be properly described using B3LYP). Interestingly, in that case the optimised
geometries show a square-based pyramid geometry around the Cu(II) ion, with a weakly
axially coordinated water molecule (ca. 2.32 Å away from Cu, compared to 2.03 Å in
the basal plane). The B3LYP and ωB97xD geometries are thus quite different, though
we may state that somehow an agreement exists between both descriptions, as the axial
coordination seems rather weak. Furthermore, we retrieve the same kind of H-bonding
between an uncoordinated water molecule and the "malonic" central carbon atom of the
ligand, this water molecule being here also stabilised by another water molecule (but, in

(xi)And in the case of the coordination polymers, we may assume that the needed water molecules are
withdrawn from the atmosphere or from the solvents, which may indeed incorporate a non negligible
proportion of water.
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that case, coordinated to the Cu(II) ion).

Figure 4.2.7: Solution structure of the Cu(II) complex of DL1
2–, with four explicit water molecules.

Actually, from the computed EPR properties, we may indeed see that the structural
discrepancies do not seem to have a dramatic effect; we indeed find g1 = 2.04, g2 = 2.06,
g3 = 2.17, A(Cu) = 206G and A(N) = 18G, using the same level of theory as previously.
We may then assume that our lower level description is already rather good, though
naturally fine effects (and eventually geometrical effects) could be missed.

4.3 Reactivity studies

As such, we decided to first model the hydrolysis reaction using the lower level of theory, in
order to obtain a first, rough estimate of the Potential Energy Surface for our system. The
basic idea here was to ease the search of Transition States, which is a rather complicated
task already at our lower level of theory, and which becomes incredibly complex with
ωB97xD (which presents here slow and problematic SCF and geometry convergences).
We present hereafter the results.

4.3.1 First approach with B3LYP

Reminder: all calculations were performed at the B3LYP/D95V/LanL2DZ level of the-
ory, with inclusion of an implicit solvent (methanol, PCM + keywords "Dis, Rep, Cav"(xii)

for a more accurate energetic representation of the solvent cavity). In every cases, tran-
sition state structures were optimised, and the PES were computed using the Intrinsic
Reaction Path (IRC)170 as implemented in Gaussian09. Systematically, the reagent and
product structures determined from these IRC calculations were fully optimised.

First step: protonation of the ligand. In the previously optimised structure, a H-
bond could be seen between one water molecule and the central carbon of our ligand. This
particular structure suggested the first step in our hydrolysis mechanism would likely be
the protonation of this carbon. Among the products of this first step, we indeed expect
to find an hydroxide ion, which is a much better nucleophile than water, and which may
attack the enamine carbon, as pictured on Scheme 4.3.1.

(xii)"Dis" computes and includes the total solute-solvent dispersion interaction energy,169 "Rep" includes
the solute-solvent repulsion dispersion energy and "Cav" includes the solute cavitation energy.
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Scheme 4.3.1: Proposed mechanism for the first step of the reaction. The molecular structure is here
simplified for the sake of clarity.

Quite surprisingly, in our calculation these two processes occur almost simultaneously, the
protonation of the carbon being quickly followed by the nucleophilic attack of hydroxide
on the enamine carbon. The structures of the starting reagent (R1), transition state
(TS1) and product (P1) are given on Figure 4.3.1. As one may note, the TS structure
actually corresponds to the addition of OH–, the protonation occurring just before TS1
(thus yielding a rather unusual shape of the IRC curve). Interestingly, we retrieve a
six-centre intermediate for the reaction, with an additional water molecule, which are
depicted on Scheme 4.3.2. This supplementary H2O actually helps the proton transfer,
and stabilises the hydroxide group on a reactive position, thus permitting the following
nucleophilic attack.

Scheme 4.3.2: Simplified representation of the six-centre structure of TS1.

Product P1 is less stable than R1 (+31 kcal/mol), and despite the additional water
molecule, the free energy activation barrier is high: +40 kcal/mol. Such a high barrier
mechanism is hardly feasible at room temperature, whereas our reaction occurs sponta-
neously in such conditions. Nevertheless, we may expect a large stabilisation of the TS
with the inclusion of dispersion, as it involves many water molecules. In turn, we should
observe a decrease in the energy barrier, which may render this reaction feasible.

Second step: prototropy. As such, we kept on studying the reaction pathway with our
low level method. Product P1, which serves as a starting point for the second elementary
step, has a rather remarkable structural feature. The proton on the alcohol group (that
was formerly added to the ligand backbone) is indeed pointing towards the imino nitrogen
atom. From a chemical point of view, we know that our reactions must, at some point,
lead to the addition of two protons on this nitrogen atom, in order to retrieve the starting
deprotonated amino-acid. We thus looked if a direct 1,3 protonation from the hydroxyl
to the imine was possible.
As shown on Figure 4.3.2, we indeed manage to optimise a TS structure for such a 1,3
proton transfer, displaying a four centres core. The deduced IRC curve here shows a more
usual aspect, and product P2 has the same free energy as P1 (computed difference of only
0.02 kcal/mol). The energy barrier for this process is much lower than previously, ca.
17.4 kcal/mol, and thus quite feasible at room temperature.
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Figure 4.3.1: Structures of the reagent, transition state and product for the first reaction step, and
corresponding IRC curve. The six centres intermediate sub-structure is highlighted in green.

Figure 4.3.2: Structures of the reagent, transition state and product for the second reaction step, and
corresponding IRC curve. The four centres intermediate sub-structure is highlighted in green.

Third step: another prototropy. In order to complete our reaction, as we said we
need to add another proton on the nitrogen. It is rather plain in the structure of product
P2 that no acidic proton is found in the vicinity of the N atom. However, a water molecule
is found near the deprotonated alcohol group, and the latter seems to interact with one of
its proton (distance of 1.48 Å). We thus wondered if the alkoxy group could be protonated
once again and be used to transfer an additional proton on the nitrogen.
A TS structure could here also be optimised (though it proved a bit more difficult to find),
and is represented on Figure 4.3.3. As one can remark, we retrieve here also a six-centres
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core, the water molecule being used once again as a proton channel. Interestingly, we
thus deprotonate the central carbon of the ligand, rather than the water molecule.
The free energy barrier for this process is 9.5 kcal/mol, and noticeably product P3 is more
stable than reagent R3 (-12 kcal/mol), but still less stable than the starting reagent (+20
kcal/mol).(xiii)

Figure 4.3.3: Structures of the reagent, transition state and product for the third reaction step, and
corresponding IRC curve. The six centres intermediate sub-structure is highlighted in green.

Fourth step: intramolecular metathesis. From product P3, there is no simple way
to transfer a proton to the nitrogen: any approach of an acidic proton is prevented by
the presence of the first transferred H atom on this group, which is quite rigidly oriented
because of the coordination with copper.
We thus looked for a reaction path that would decoordinate this nitrogen and make the
second protonation more probable. Starting from the geometry of P3, a possibility would
rely on an intramolecular metathesis: in the vicinity of this coordination position, we
indeed also have an alcohol group, which can coordinate too. We thus searched a TS for
this metathesis (depicted on Scheme 4.3.3), and found one. Its geometry is depicted on
Figure 4.3.4.

Scheme 4.3.3: Simplified representation of the searched fourth reaction path..

(xiii)Note that, on Figure 4.3.3, the IRC coordinate axis is inverted. This is not a mistake, but is due to
the fact that there is no way to precise in which direction the reaction should be unfolded, and as such
the program somehow picks the direction at random.
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Here again, the free energy barrier is quite low (24.2 kcal/mol), and the P4 product is
found to be less stable than P3 (+13.6 kcal/mol).(xiv)

Figure 4.3.4: Structures of the reagent, transition state and product for the fourth reaction step, and
corresponding IRC curve. The six centres intermediate sub-structure is highlighted in green.

Final step: prototropy and rearrangement. From product P4, we can then quite
straightforwardly see how to proceed in order to transfer a second proton on the nitrogen
atom: the alcohol group is indeed now well positioned to interact with the amine group,
and the proton transfer should be quite easy. We thus looked for a reaction path that
would allow to perform directly this proton transfer (with a four-centre structure).
We represent on Figure 4.3.5 the obtained R5, TS5 and P5 geometries. In this case also,
the energy barrier is not high (25.5 kcal/mol), and more importantly the reaction in that
case is found to be exothermic (-33 kcal/mol). Actually, product P5 has a slightly lower
free energy than the initial reagent (-2 kcal/mol).(xv)

Furthermore, we can see that this product corresponds to the expected products of hy-
drolysis: we indeed retrieve the starting amino acid (in the carboxylate form) and the
acetylacetonate moiety, coordinating the Cu(II) ion.

Long story short. We represent on Scheme 4.3.4 the total free energy profile for our
reaction. The weak exothermicity suggests the degradation should indeed take place in
a sensible manner, as it is thermodynamically slightly favoured. Actually, the thermo-
dynamic stabilisation of degradation is largely underestimated in this approach, as the
aminoacid complexes of copper (and the potassium salts, also) are sparingly soluble in
methanol.
(xiv)In that case, the IRC curve seem to show an opposite tendency, but it only displays the electronic
energy and not the free energy (with thermodynamic corrections.
(xv)Note that here, optimisation after the IRC calculation proves to be very important. Following the
reaction coordinate defining our TS does not indeed allow to retrieve product P5, since the C-N bond is
not fully broken yet (distance of 1.72 Å).
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Figure 4.3.5: Structures of the reagent, transition state and product for the fifth reaction step, and
corresponding IRC curve. The four centres intermediate sub-structure is highlighted in green.

On the point of view of kinetics, the first energy barrier is of course too high to allow
the reaction to actually take place in solution. The other energy barriers on the other
hand are acceptable, being sufficiently high to prevent the reaction to occur too quickly
at room temperature, in good agreement with experimental evidences: the complexes do
not decompose at once, but slowly and during the recrystallisation process.
We thus turned ourselves to the higher level modelling, namely at the ωB97xD/6-311++G(d)
+ SDD level. The results are presented hereafter.
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Scheme 4.3.4: Complete energy profile for the hydrolysis reaction of [CuDL1(H2O)] in methanol, with
four explicit water molecules, at the B3LYP/D95V/LanL2DZ level.
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4.3.2 Refining with ωB97xD.
First step: protonation of the ligand. In this case too, the optimised structure
in solution presents a marked H-bond between a water molecule and the central carbon
atom, and thus we searched a transition state corresponding to this protonation.
Starting from TS1 structure, we are unable to locate a transition state. However, we
manage to optimise one, which interestingly corresponds only to the protonation (and
not to a protonation + nucleophilic attack on the hydroxide). We represent the optimised
geometry on Figure 4.3.6, as well as the reagent (R1ω) and product (P1ω) structures.

Figure 4.3.6: Structures of the reagent, transition state and product for the first reaction step, calculated
at the ωB97xD/6-311++G(d)/SDD level. The six centres intermediate sub-structure is highlighted in
green.

As one can notice, TS1ω involves a six-centres structure, and the overall proton transfer is
achieved between the coordinated water molecule and the carbon (the initially H-bonded
water molecule serving only as a proton channel). The free energy barrier for this process
is only 22.7 kcal/mol, and P1ω is found 13.0 kcal/mol above the initial reagent. Note that
in this case, IRC calculations proved to be very tricky, and inevitably crash after a few
points on both directions. We thus directly optimised the reagent and product structures,
and as such cannot provide IRC curves.

Second step: second prototropy and nucleophilic attack. In the previous reaction
path, protonation of the central carbon was immediately followed by a nucleophilic attack
of OH– on the imino carbon. Here, the reaction does not follow immediately, and the
product of the first step is not in an appropriate geometry to allow this: the hydroxide
ligand is indeed in trans position with respect to the nitrogen, and a water molecule is
located on the axial coordination position (thus blocking any hydroxide displacement).
Nevertheless, a proton transfer between this water molecule and the coordinated hydroxide

Figure 4.3.7: Structures of the reagent, transition state and product for the second reaction step, calcu-
lated at the ωB97xD/6-311++G(d)/SDD level. The five centres intermediate sub-structure is highlighted
in green.

could possibly allow the nucleophilic attack, and thus we looked for the corresponding
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transition state TS2ω. We represent on Figure 4.3.7 the geometries for this TS and the
corresponding product and reagent structures. In that case too, IRC calculations proved
unsuccessful, and we had to fully optimise the geometries.
As one may note, here again we observe a two-steps phenomenon, with a first proton
transfer between the coordinated hydroxide and the water molecule, followed by the nu-
cleophilic attack of the resulting OH– on the enamine group. The activation energy for
this process is also rather low, e. g. 20.8 kcal/mol, and after optimisation product P2ω
is found lying 11.0 kcal/mol below P1ω.

Third step: nitrogen protonation. Basing on our previous results, we would expect
the next step to consist in a proton transfer from the hydroxyl group towards the nitrogen
atom, though we apparently do not retrieve the former H-bond between hydroxyl and
nitrogen. Nevertheless, scanning the N-H distance(xvi) permitted to isolate a TS for this
prototropy. In this case, IRC calculations were quite complicated, crashing within a
few steps, and we thus had to directly optimise both reagent (R3ω) and product (P3ω)
geometries. The corresponding structures are provided on Figure 4.3.8. As one can notice,
we retrieve a four-centres intermediate species, as was observed at the B3LYP level.
Here also, the activation energy is rather modest, ca. 22.6 kcal/mol, and product P3ω is
found 0.7 kcal/mol above reagent R3ω and 2.9 kcal/mol above the initial reagent R1ω.
However, a striking difference with the B3LYP calculations must be noted: in the geom-
etry of P3ω, no water molecule is found in the vicinity of the "deprotonated hydroxyl
group". As such, we cannot follow the same reaction scheme from this point, as the
following step in B3LYP was a proton transfer from a water molecule to this oxygen – a
proton that was afterwards transferred to the nitrogen atom, leading to the breaking of
the C-N bond –.

Figure 4.3.8: Structures of the reagent, transition state and product for the third reaction step, calcu-
lated at the ωB97xD/6-311++G(d)/SDD level. The four centres intermediate sub-structure is highlighted
in green.

Fourth step: second nitrogen protonation. Nevertheless, as careful inspection of
the molecular structure of P3ω reveals the presence of an acidic proton in the vicinity
of the protonated imino group. Indeed, because of the different reactions, the ligand
backbone started to fold, and one of the protons on the initally protonated carbon is now
pointing toward the nitrogen atom, and is found a 2.66 Å from it, as pictured on Figure
4.3.9.
We thus considered the possibility of a direct proton transfer from the carbon atom to the
nitrogen, and first performed a relaxed geometry scan on the N-H distance. The result of
this scan is provided on Figure 4.3.10.

(xvi)Using the relaxed scan in Gaussian 09.
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Figure 4.3.9: Detail on the geometry of product P3ω, highlighting the proximity of an acidic proton
to the nitrogen atom (dashed line). For the sake of clarity, water molecules and the amino-acid methyl
groups were omitted.

Figure 4.3.10: Relaxed geometry scan on the N-H distance, computed at the ωB97xD/6-
311++G(d)/SDD level. Inset: detail of the molecular structure at the cusp.

A cusp is clearly observed on this curve, at a N-H distance of 2.55 Å, suggesting that
a transition state may be found on the potential energy surface close to this point. We
can notice that the relative energy of this point is rather high (ca. 38.0 kcal/mol), but
it does not imply the potential energy barrier will be large. Indeed, it is only a rough
estimate of the electronic energy of the TS, and does not take into account thermodynamic
corrections.
We thus tried to optimise a TS structure starting from this point, but the only structure
we found for the moment does not permit to retrieve product P3ω as a starting reagent.
As one can see on Figure 4.3.11, in this TS the C-N bond is indeed already broken,
and the H atom is found lying exactly in between the central carbon atom and the
nitrogen. Actually, this TS corresponds to an intermolecular prototropy between the two
expected products of reaction (acetylacetonate and alanine), rather than the expected
intramolecular prototropy.
We are thus still working on this TS structure, but as one can note from Figure 4.3.10
protonation of the nitrogen is accompanied by a large electronic energy stabilisation (ca.
20.0 kcal/mol). The corresponding reaction will thus very likely be thermodynamically
favoured. Actually, a free geometry optimisation starting from the minimum of the scan
curve – represented on Figure 4.3.12 – yields a total stabilisation of 28.2 kcal/mol with
respect to P3ω, and thus of 25.3 kcal/mol with respect to R1ω. The overall reaction is
then indeed strongly favoured from the viewpoint of thermodynamics.

Summary

We report on Scheme 4.3.5 the resulting energy profile for our reaction at the ωB97xD/6-
311++G(d)/SDD level.
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Figure 4.3.11: Found TS structure for the fourth reaction step. C, H and N atoms involved in this
reaction are highlighted in green.

Figure 4.3.12: Optimised structure for the minimum of the scan curve 4.3.11, at the ωB97xD/6-
311++G(d)/SDD level.
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Scheme 4.3.5: Energy profile for the hydrolysis reaction of [CuDL1(H2O)] in methanol, with four explicit
water molecules, at the ωB97xD/6-311++G(d)/SDD level.

The overall exothermicity suggests the hydrolysis reaction should indeed take place, and
provided that the last energy barrier is not too high, the reaction should also be quite
favoured from the viewpoint of kinetics. As expected, dispersion interactions have a major
impact on our reaction: energy barriers are systematically lower compared to the ones
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we obtained with B3LYP, but the reaction path is also quite different. For instance, the
first reaction step in B3LYP (protonation of the central carbon and hydroxylation of the
enamine carbon) can be decomposed into two steps with ωB97xD. The last step also
seems to be slightly different, because the starting reagent geometries in ωB97xD and
B3LYP do not match. Nevertheless, both computational methods point to the same final
hydrolysis products, and also to the overall feasibility of the process.
In our experiments, we thus very likely witness a competition between two processes: on
one hand, the evaporation of the solvent and the crystallisation of the desired complexes,
and on the other hand the degradation of the mononuclear complexes in solution because
of water. Performing the synthesis in rigorously anhydrous conditions should allow to
isolate only the desired compounds. Corresponding experiments are planned in the near
future.

4.4 Magnetic properties
As we mentioned in the introduction of this chapter, we synthesised complexes 4.1 and
4.2 noteworthy since they may display interesting magnetic properties, among which is
spin frustration. We thus performed static magnetic measurements on these compounds,
which we present in the following subsections. Nevertheless, in the course of our syntheses,
we also isolated coordination polymers 4.3 and 4.4, and we also studied their magnetic
properties.

4.4.1 Coordination polymers 4.3 and 4.4
Let us then first consider coordination polymers 4.3 and 4.4. As we formerly saw, their
structures are very similar, and noteworthy they present very close bridging patterns,
which seem fitted to promote a strong antiferromagnetic coupling. As such, we said
we could expect these complexes to present a 1D order, behaving as monodimensional
antiferromagnets.64

We present on Figure 4.4.1 the thermal evolution of susceptibility for these two com-
pounds. Both curves present very similar aspects, with a slow increase from room tem-
perature to intermediate temperatures, a local maximum at 80(5) K for 4.3 and 100(5) K
for 4.4, and a marked increase at very low temperature. The two first features are rather
characteristic of antiferromagnetic 1D chains, the presence of an antiferromagnetic cou-
pling being furthermore confirmed by the continuous decrease of χmT with temperature
for both complexes. The low temperature divergence, on the other hand, is not an ex-
pected feature of 1D antiferromagnetic chains. It may be due to a paramagnetic impurity
or border effects, as seen in the case of [Cu(C2O4)].1/3H2O.171 In any case, fittings with
a spin 1/2 chain model proved unsuccessful here.
Anyway, from the location of the maxima of the two curves, we may get an estimate of
the coupling parameter, as we expect to have

kBTmax

|J | = 0.641. (4.1)

Here, this leads to |J | = 87(5) cm−1 for 4.3 and 108(5) cm−1 for 4.4: we indeed observe
a rather strong antiferromagnetic coupling. Note that the difference in magnetic coupling
between both compounds is very marked, despite the similarity of the structures. Actually,
from Table B.5 we can see that the bridging pattern in both structure is nearly identical;
for instance, the angle between successive Cu(II) ions through the bridging O atom is
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Figure 4.4.1: χm = f(T ) (left) and M = f(H) curves (right) for complexes 4.3 (red) and 4.4 (blue).
Susceptibility measurements were performed under a static field of 1000 Oe, and magnetisation was
measured at 2 K.

128.4(1)◦ in both cases. However, the coordination sphere around Cu(II) varies slightly
from one complex to the other, as evidenced for instance by the Addison parameter
(0.10 for 4.3, 0.06 for 4.4), and is a probable cause for the observed difference in the
magnetic coupling. We thus retrieve the line of arguments of O. Kahn: subtle changes
in the geometry, especially on the bridging part of our complexes, can lead to marked
differences in the magnetic behaviour.

4.4.2 Trinuclear complexes

Foreword

As we have seen previously, in the crystal structures of both 4.1 and 4.2 there are two
crystallographically independent complexes. The magnetic study of both complexes is
thus expected to be a quite complicated task, and for the sake of simplicity we decided
to focus on 4.2 only. The study of 4.1 will be undertaken in the near future.

Experimental data

Let us now focus on trinuclear complex 4.2. We present on Figure 4.4.2 the temperature
dependence of its susceptibility and field dependence at 2 K of its magnetisation.
From the χmT = f(T ) curve, it is rather plain to see that a weak antiferromagnetic
coupling is acting: the χmT product is indeed almost constant between 300 K and 100 K,
and drops abruptly below 50 K, to reach 0.31 cm3.K.mol−1 at 2 K. The room temperature
value, 1.20 cm3.K.mol−1, is in the expected range for 3 uncoupled S = 1/2 spins with a
Landé factor g ≥ 2, here equal to ca. 2.06. On the other hand, the 2 K value is too low
for a single S = 1/2 spin (expected value of 0.375 cm3.K.mol−1).64 Interestingly, such a
low 2 K value was not observed in the case of the glycine derivative (0.42 cm3.K.mol−1),
and we may wonder if it is a sign of anisotropic or antisymmetric (Dzyaloshinski-Moriya)
couplings, themselves being signs of frustration or of the relaxation of a frustration.156(xvii)

We then tried to fit the magnetic data assuming a unique magnetic coupling between
all our three Cu(II) ions (using the Van Vleck formula and equations (2.29) and (2.34),
setting all couplings equal to J). Doing so, we managed to model quite correctly the

(xvii)Yet, such couplings might also have been observed for the glycine derivative, since it is chiral (though
the ligand is not).
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Figure 4.4.2: χmT = f(T ) (left) and M = f(H) curves (right) for complex 4.2. Susceptibility
measurements were performed under a static field of 1000 Oe, and magnetisation was measured at 2 K.
The solid lines on the susceptibility curve correspond to fittings with two Van Vleck equations for an
equilateral triangle (see text for more details).

experimental data with an antiferromagnetic coupling J = −9.1(5) cm−1 and a Landé
constant g = 2.51(1). This last value is rather high for a Cu(II) based complex – one
expecting a value much closer to 2.003 – and suggests this fitting is only a mathematical
artefact. If we let g take different values in the doublet (gD) and quartet (gQ) states, thus
rewritting the Van Vleck equation as

χT =
NAμ

2
B

4kB

g2D + 5g2Q exp
(

3J
2kBT

)
1 + exp

(
3J

2kBT

) , (4.2)

we obtain a better agreement with the experimental data and more "physical" values:
gD = 1.96(3), gQ = 2.11(1), J = −7.4(2) cm−1. We can remark that the coupling is here
also rather weak. Nevertheless, we know from X-Ray diffraction that our complexes are
rather unsymmetrical, and as such the physical meaning of these fittings is rather dubious.
Unfortunately, as we showed in Chapter 2 we cannot deduce from our experimental data
three different magnetic couplings, as the Van Vleck equation for an asymmetric triangular
complex bases only on two energy differences.

Theoretical modelling

We thus decided to study 4.2 with the tools of theoretical chemistry, in the same spirit as
what was previously done in the case of the glycine derivative. Here, we are interested in
modelling the lowest energy states of our trinuclear complexes, and more specifically we
will focus on the first quadruplet and the two first doublet states. To do so, many different
methods have been used in the literature, but three of them appear to be most frequently
used: Broken-Symmetry DFT (BS-DFT), DDCI and CASPT2/NEVPT2 calculations.

A few words on BS-DFT. As suggested by the name, BS-DFT172–174 is based on
Density Functional Theory, and is thus a relatively "cheap" method (from a computational
point of view). The basic idea beneath it is very simple: one first evaluates the ground
state energy for a given spin multiplicity, for instance in our case the quartet state of one of
the trinuclear complexes, and computes the associated wavefunction. Then, one spin (for
instance on any of our Cu atom) is flipped and the energy of this new (doublet) "state" is
computed, without any orbital relaxation nor SCF cycle. The energy difference between
the high spin state and this spin-flip state is directly related to the magnetic coupling.
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Formally, this flipping is equivalent to the reversal of one spin in the MO diagram ceteris
paribus, and as such the obtained wavefunction is not an eigenfunction of the spin operator
S2: it does not respect the symmetry of the Hamiltonian, hence the label BS.
BS-DFT calculations have already been successfully applied in the case of trinuclear com-
plexes,175–177 noticeably of Cu(II), and we wondered whether they could be used in our
case. We got in touch with Dr. Jean-Marie Mouesca (CEA Grenoble), a specialist of BS-
DFT calculations, and quickly realised our complexes cannot be efficiently described with
this approach. There indeed exists a strong caveat in BS-DFT calculations: not only the
magnetic orbitals symmetry is broken, but also is the symmetry of the bridge orbitals.178

This may result in a potentially non negligible overlap of the magnetic orbitals through
the bridge, which should be orthogonal for the calculations to make sense. In our case,
the bridging ligand is very small (monoatomic connexion), and thus a strong overlap is
likely to occur, preventing the use of BS-DFT.

Multireference modelling. We then turned ourselves to wavefunction based-methods,
and we first considered DDCI calculations,24,26 which we performed in collaboration with
Dr. Marie-Bernadette Lepetit (Institut Néel, Grenoble). As we mentioned in Chapter 2,
DDCI calculations are based on a CI expansion of CASSCF wavefunctions for different
spin multiplicities, in which most of the excitations are not explicitly treated as they
are redundant in the different spin states. Overall, three classes of excitations only are
considered in DDCI calculations:

• mono-excitations: LMCT, i.e. excitations from the inactive space to the active
space (labelled 1h), MLCT (from the active space to virtual orbitals, labelled 1p),
and direct inactive to virtual excitations (1p− 1h);

• di-excitations: double excitations from the inactive space towards the active space
(2h), or from the active space towards the virtual orbitals (2p);

• tri-excitations: coupling of 1p − 1h excitations with LMCT (1p − 2h) or MLCT
(2p− 1h);

and further simplifications also exist: DDCI-1 (which only incorporates the mono- excita-
tions) and DDCI-2 (which incorporates mono- and di-excitations). Here, as was previously
done in the case of the glycine derivative, we considered the successive levels of approxi-
mation. This comes from two reasons: first, this allows to get information on the different
mechanisms acting beneath the magnetic couplings in our trinuclear complexes.179 Second,
our complexes are huge systems, and the highest level calculations could simply be unaf-
fordable because of the high computational cost.(xviii) For this reason, we also considered
NEVPT2 calculations,22 which are known to be much less computationally demanding,
and proved to be rather efficient in the modelling of magnetic couplings. They indeed
involve formally similar excitations as the DDCI-3 calculation, however it is known that
they tend to miss higher order effects which are included in the DDCI procedure, and
thus may underestimate the magnetic couplings.25,180

In any case, we did not model the whole crystal asymmetric unit at once, but considered
each complex separately. For both of them, the same chain of calculations was applied:
first, we converged the unrestricted Hartree-Fock wavefunction for the quartet state. This
UHF wavefunction was used as an input for a restricted-open shell calculation, which was
itself used as a starting point for a CASSCF calculation. Here, our active space will
consist in the three highest orbitals, occupied by three electrons (the 3 dx2−y2 orbitals

(xviii)Actually, several crashes on the laboratory cluster led us to this conclusion...
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one would expect in a crystal-field approach). Finally, the CASSCF wafunction was used
as a starting point either for a DDCI-n or SA-CASSCF/NEVPT2 calculation.(xix) All
computations were made using ORCA 3.0, and both DDCI-n and NEVPT2 calculations
were performed at the CINES. All elements were modelled using a triple-zeta quality
basis set with polarisation (TZVP),165 and core electrons of the Cu atoms were replaced
by Stuttgart-Dresden pseudopotentials (ECP10MDF).168 In the case of the DDCI-n and
NEVPT2 calculations, RI approximation was employed and, correspondingly, the auxil-
iary TZV/C basis set was used. In order to give an idea of the complexity of the system,
we may simply say that we deal here with 1006 basis functions...

Let us first focus on the CASSCF results. We represent on Figure 4.4.3 the optimised
active orbitals for one complex. As one can note, the MOs all involve the three Cu(II)
ions, as well as the central hydroxo bridge. The metal contributions are very reminiscent
of dx2−y2 AOs, as expected from crystal field theory; we may thus expect our different
descriptions to bear some physical meaning.

Figure 4.4.3: Representation of the active space for one complex in the asymmetric unit of 4.2, as
computed at the CASSCF level. The same orientation is given for the three MOs, and for the sake of
clarity all heavy atoms but Cu are depicted in gray.

At the SA-CASSCF level of theory, a total ferromagnetic coupling is seen, as evidenced by
the stabilisation of the quartet state over the doublets. Nevertheless, the energy splitting
is very small: 9.6 cm−1 between the quartet and the first doublet (8.3 cm−1 for the
second complex in the asymmetric unit), 12.8 cm−1 between the quartet and the second
doublet (respectively 13.1 cm−1). As such, already at the SA-CASSCF level we are able
to reproduce the low magnitude of the magnetic exchange, if not its sign.

At the RI-DDCI-1 level, the calculations converge without any difficulty, since the
number of Configuration State Functions (excitations) is low, e.g. 8594. Nevertheless,
the correction on the energies differences is quite moderate, not to say negligible: only -0.7
cm−1 for the first doublet, and -0.5 cm−1 for the second. This tends to suggest that, in our
case, single excitations do not contribute significantly to the antiferromagnetic exchange.
Interestingly, the energy differences are quite close to those obtained in the case of the
glycine analogue (+7.0 cm−1 and +14.0 cm−1, respectively), which suggests that maybe
the same line of argument already held for this compound.
At the RI-DDCI-2 level, things are much more complex, as the number of CSF explodes:
3824070 CSF per complex! Several tests were performed at the CINES, but even one

(xix)Note that we employed state-specific orbitals for the NEVPT2 calculations.
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hundred and twenty hours of computation on one hundred and sixty eight cores (20160
CPU hours!) did not allow the first iteration to finish.
Among all these CSF, some may not be relevant for our system: excitations from C-H
bonds for instance should not contribute significantly to the magnetic coupling. We may
thus consider suppressing some excitations from our CI space, in order to alleviate the
computational effort. However, selecting them by hand would be a tremendous task (as
there are 1006 orbitals to consider). Furthermore, ORCA does not permit to do this for
the moment, as it only allows to select excitations within a MO energy window. Still,
using this energy window selection we may already simplify a bit our CI space: MOs 5 to
37 (occupied) and 953 to 1005 (virtual) indeed involve only non-coordinating atoms. We
could thus select only MOs 37 to 953 in the CI procedure (saving eighty-nine MOs), the
correction from the four first MOs being most presumably negligible.(xx)

Doing so, the number of CSF reduces slightly (moving to 3635542), which is seemingly
not enough for the calculation to proceed. We could crop a little more the CI space, but
we would not be able then to evaluate the relevance of the computed energies. As such,
DDCI calculations for our system seem to be out of reach for the moment.

At the RI-NEVPT2 level on the other hand, no convergence problem is seen. The
correction on the energy differences is much more marked than what was seen at the
DDCI-1 level: the first doublet is now only 2.8 cm−1 above the quartet state, and the
second one is found at +8.1 cm−1. Overall, the second-order corrections thus enhance the
antiferromagnetic character of the coupling, as was observed in the case of the glycine
analogue. More information can be gained from a comparison of the energy corrections
in the quartet (Q1) and doublet (D1 and D2) states. The results are summed up in Table
4.2.

Table 4.2: Detail of the NEVPT2 energy corrections for doublets states D1 (Δ1) and D2 (Δ2), with re-
spect to the quartet state corrections (values in cm−1), based on a CAS(3,3) reference wavefunction. Nota-
tion: V rs,[0]

ab , excitation from two inactive orbitals a, b towards two virtuals orbitals r, s; V rs,[−1]
ai , inactive-

virtual and active-virtual excitation; V is,[1]
ab , inactive-active and inactive-virtual excitation; V ij,[2]

ab , double
inactive-active excitation; V

rs,[−2]
ij , double active-virtual excitation; V

rj,[0]
ai , inactive-virtual and active-

active excitation; V rj,[−1]
ii , active-virtual and active-active excitation; V ik,[+1]

aj , inactive-active and active-
active excitation. The DDCI equivalent notation is also given.

Excitations "DDCI equivalent" Δ1 Δ2

V
rs,[0]
ab 2h− 2p -0.4 -0.3
V

rs,[−1]
ai 1h− 2p 2.0 1.3
V

is,[+1]
ab 2h− 1p -3.5 -2.8
V

ij,[+2]
ab 2h -3.3 -3.4
V

rs,[−2]
ij 2p -1.2 -1.2
V

rj,[0]
ai 1h− 1p 0.0 2.2
V

rk,[−1]
ij 1p -0.5 -0.4
V

ik,[+1]
aj 1h -0.1 -0.1

First of all, we may note the similar and low impact of the double inactive-virtual ex-
citations V rs,[0]

ab on the energy differences. In the DDCI scheme , these excitations are
(xx)Indeed, the corrections to the energy difference at the DDCI-2 level evolve as 1/ΔEΔE′, where ΔE
and ΔE′ are the 2h or 2p excitation energies. In the case of the four lowest MOs, these energy difference
should be very high, thus rendering the correction very small.
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not explicitly computed as they are expected to be provide the same energy variation on
every spin state, thus simply shifting the energy levels without changing their relative
separations.180 Here, the value is not exactly zero as we employ different sets of orbitals
for each state (canonical orbitals for the NEVPT2 calculations).
Second, we may note that for both D1 and D2 the essentials of the antiferromagnetic
contribution stem from three excitations, which are akin to the DDCI 2h, 2p and 2h− 1p
excitations. Interestingly, in the case of dinuclear Cu(II) complexes it has been observed
that 2h and 2p contributions are antiferromagnetic but weaker than the other ones.25

This is obviously not the case here. Another interesting thing is the opposite sign of the
2h− 1p and 1h− 2p contributions, which is in good agreement with previously published
studies.180

Finally, as one can note for doublet D1 the V rj,[0]
ai , V rk,[−1]

ij and V
ik,[+1]
aj excitations only

have a small stabilising effect. This is very interesting, since these excitations correspond
to the ones that are evaluated at the DDCI-1 level, where a very weak stabilisation
of the doublets was observed. On the other hand, for doublet D2 the V

rj,[0]
ai ("1h −

1p") component is more marked, with a positive value (ferromagnetic action). This was
not expected, as at the DDCI-1 level the overall correction for both doublet states is
very similar. Nevertheless, we need to remind that these two types of calculations are
not based on the same reference wavefunction, and as such direct comparison is tricky.
Furthermore, we know higher order effects are neglected in the NEVPT2 formulation,
which are not in the DDCI calculations, and as such the weights of the ionic determinants
in D2 are possibly underestimated. According to Malrieu,25 this mechanically reduces
the antiferromagnetic (stabilising) contributions in this state, and thus may yield a total
ferromagnetic behaviour. In his 2002 publication, he offers a possibility to overcome this
difficulty: "enlarging the CAS to include in this way part of the higher order effects".

We thus enlarged the active space, including the three lowest doubly occupied MOs
(CAS(9,6)SCF). At the SA-CASSCF level, the energy differences remain exactly the same,
which is rather logical from the composition of the CAS wavefunctions. They indeed
merely develop on the determinants where these MOs are doubly occupied, as such they
behave mostly as "inactive" orbitals. At the NEVTP2 level on the other hand, results
are more interesting. Both doublets are indeed found at lower energies: +2.3 cm−1 for
D1, +7.6 cm−1 for D2. Furthermore, we can observe in Table 4.3 that all components but
V

rj,[0]
ai remain rather unchanged, for both doublets. Most of the stabilisation thus stems

from these 1h − 1p like contributions, which tends to suggest that indeed the weights of
the ionic determinants in D2 were underestimated, but also in D1.
We then wondered how we could further increase the active space, without making the
computational effort too high. According to Malrieu, higher order effects are especially
missed when the ligands are polarisable.(xxi) Incidentally, this statement hints a way to
rationally enlarge the active space: as we already mentioned in Chapter 3, polarisabil-
ity and reactivity are close concepts, and we know reactivity can be described at first
order using the frontier MOs.40 Here, we could thus include in the active space orbitals
corresponding to the frontier MOs of LL1

2–.
Actually, in the previous CAS(9,6) calculation, the three additional (nearly inactive)
orbitals involved only two of the ligands, two of these MOs corresponding to the expected
π-like HOMO, and the third one being a combination of a π contribution on the enaminone
part of a ligand and a σ� contribution on its carboxylate group. In this configuration, the
highest inactive orbital proved to be the expected third ligand-based HOMO, and thus

(xxi)From the DD computation on ligand L1
2–, we may indeed expect the latter to be quite polarisable.
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Table 4.3: Detail of the NEVPT2 energy corrections for doublets states D1 and D2, with respect to the
quartet state corrections (values in cm−1), based on a CAS(9,6) reference wavefunction. Same notations
as in Table 4.2.

Excitations "DDCI equivalent" Δ1 Δ2

V
rs,[0]
ab 2h− 2p -0.4 -0.3
V

rs,[−1]
ai 1h− 2p 1.9 1.3
V

is,[+1]
ab 2h− 1p -3.3 -2.7
V

ij,[+2]
ab 2h -3.3 -3.3
V

rs,[−2]
ij 2p -1.2 -1.2
V

rj,[0]
ai 1h− 1p -0.6 1.5
V

rk,[−1]
ij 1p -0.5 -0.4
V

ik,[+1]
aj 1h -0.1 0.0

Table 4.4: Detail of the NEVPT2 energy corrections for doublets states D1 and D2, with respect to the
quartet state corrections (values in cm−1), based on a CAS(11,7) reference wavefunction for the second
trinuclear complex. Same notations as in Table 4.2.

Excitations "DDCI equivalent" Δ1 Δ2

V
rs,[0]
ab 2h− 2p -0.5 -0.4
V

rs,[−1]
ai 1h− 2p 2.8 1.4
V

is,[+1]
ab 2h− 1p -4.6 -2.9
V

ij,[+2]
ab 2h -3.6 -3.5
V

rs,[−2]
ij 2p -1.2 -1.2
V

rj,[0]
ai 1h− 1p -2.8 0.9
V

rk,[−1]
ij 1p -0.7 -0.5
V

ik,[+1]
aj 1h -0.3 0.2

was included in the active space of a supplementary SA-CAS(11,7)/NEVPT2 calculation.
As a result, the lowest doublet state shows a further stabilisation, being found only +2.0
cm−1 above the ground quartet state. D2 on the other hand is found at the same energy,
and overall the contributions from each excitation class remain rather constant.
Interestingly, for the other complex in the unit cell an antiferromagnetic behaviour is
already retrieved at the SA-CAS(11,7)/NEVPT2 level: doublet D1 is found to be the
ground state, Q1 is found 2.6 cm−1 above the latter and doublet D2 is found at +9.3
cm−1. Such a difference of behaviour is remarkable because of the strong similarities
these two complexes presented at the SA-CASSCF level. This is quite in line with Kahn’s
findings: subtle structural effects lead to marked changes in the magnetic properties. We
report in Table 4.4 the different relative NEVPT2 corrections for doublets D1 and D2.
As one may note, the total correction is principally piloted by the same contributions as
those involved for the first trinuclear complex. We may however notice that values for D1
are markedly more negative, which results in the observed antiferromagnetic character.
Nevertheless, these results are not sufficient to reproduce the χT = f(T ) curves, as
an overall slightly ferromagnetic behaviour is observed. Further extension of the active
spaces to include the ligands-based LUMOs (CAS(11,10)) were attempted but proved for
the moment rather unsuccessful, convergence of the CASSCF wavefunctions being very
problematic in these case (close to zero occupations). Nevertheless, we seem to be on the
right direction, with a global tendency towards antiferromagnetism. Further efforts will
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then be devoted to converge the CAS(11,10) calculation (with inclusion of the LUMOs) in
the very close future. Note also that the ill reproduction of the experimental curves may
also be due to orientations effects. The two trinuclear complexes in the lattice indeed
display different relative orientations, and their magnetic moments may thus somehow
cancel out. However, this would imply an Ising (non Heisenberg)-like behaviour of spins,
which is quite unexpected: we indeed do not expect any magnetic anisotropy in this
system, and as such the molecular magnetic moments should, at all times, align with the
magnetic field.

4.5 Conclusion

Through this study, we have seen how computational chemistry could be used as a strong
support to experiments. First, DFT calculations were successfully employed to determine
unambiguously the structural formula of our ligands in solution. Then, we employed the
same kind of approach as in Chapter 3 to rationalise their coordination properties.
We thus employed these ligands to synthesise coordination complexes with various tran-
sition metal cations, and in the case of Cu(II) we were able to characterise four crystal
structures (two coordination polymers and two trinuclear complexes). We were also able
in that case to elicit the structures in solution, through a series of spectroscopic charac-
terisations and DFT calculations. We also tentatively rationalised the reactivity of these
species, using DFT calculations at two different levels of theory. We could show that there
may be a competition between the crystallisation of our complexes and their degradation
by water. Indeed, a reaction mechanism for hydrolysis could be computed, and in both
cases the hydrolysis products are more stable than the starting reagents, thus render-
ing the reaction thermodynamically favourable. Inclusion of dispersion in our theoretical
model proved critical here, lowering considerably the energy barriers for the different ele-
mentary steps of reaction – and in some cases, modifying the steps themselves –. For the
moment, the last transition state structure could not be optimised, but calculations are
still undertaken to correct this.
Finally, we studied the magnetic properties of the crystalline compounds, and in the case
of the trinuclear complexes employed high level ab initio calculations to gain a better
understanding on these systems. They indeed display a weak antiferromagnetism, and
we wondered whether magnetic frustration could be observed. In agreement with the
previously published results on the glycine-based analogue, the lower levels of theory
do not permit to retrieve the experimental magnetic properties: almost no variation is
observed between the SA-CASSCF and DDCI-1 levels, which both yield a ferromagnetic
coupling.
The DDCI-2 level of theory is merely unaffordable in our case, the system being way too
large. This lead us to consider a different theoretical approach, based on perturbation
theory, namely NEVPT2 calculations. They indeed formally contain all the excitations
involved in the DDCI-3 formalism, but at a reduced computational cost, and could thus
be employed here. At this level of theory, a much better description is obtained, espe-
cially when the active space is enlarged to include ligands polarisation effects: at the
CAS(11,7)/NEVPT2 level, we indeed retrieve a very small energy gap between the first
doublet and the ground quadruplet for one of our complexes, while for the second one
an antiferromagnetic behaviour is even seen. Though these results do not allow, for the
moment, to reproduce correctly the magnetic properties of our complexes, they are very
encouraging and suggest a further enlargement of the active space might be sufficient to
get a sound description of our system. These calculations are currently considered, but
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marked convergence issues hamper their realisation for the moment.
In a concluding remark, these results seem to comfort the fact that NEVPT2 calculations
are adapted to the modelling of weak magnetic couplings, as previously stated. This is
very interesting, since in the past years NEVPT2 calculations were quite overlooked on
this topic, DDCI methods being generally preferred – but being not always applicable,
because of the size of the systems under study –. We thus hope our study may encourage
others to use such calculations.



Chapter 5

Lanthanide-based mononuclear
complexes: experimental and
theoretical studies of single molecule
magnets

In Chapter 3, we introduced the basics of molecular magnetism, and noticeably we pre-
sented Single Molecule Magnets. These compounds have attracted a large interest in
research due to the slow relaxation of magnetisation they present at the single molecule
scale, which is up to date not completely mastered. Indeed, though the different mecha-
nisms behind magnetic relaxation are known, we still do not know how to finely control
them.
In this context, we propose here to study the magnetisation dynamics of some very simple
lanthanide complexes. The first section deals with a thorough study of the [LnTp2NO3]
family, which present a rather exceptional dynamics. The second section, more prelimi-
nary, shows how we may rather straightforwardly extend this family of complexes through
adequate modifications in the synthetic process. The first results on the "new" complexes
suggest more efficient and/or more exotic SMMs are at reach.

5.1 Study of [LnTp2NO3], a family of mononuclear com-
plexes

5.1.1 Syntheses and crystal structures

The [LnTp2NO3] complexes (Ln = Dy (5.1), Ho (5.2), Er (5.3), Yb (5.4) and Y (5.5))
were obtained through a very simple synthetic procedure: a simple mixture of two
methanolic solutions of a rare earth nitrate Ln(NO3)3 · xH2O (x = 5 or 6) and KTp
(potassium hydrotrispyrazolylborate)181 affords the complexes at relatively high yields
(see Appendix A.2.2 for the synthetic details). Their crystal structures are presented on
Figure 5.1.1.
They all crystallise in the monoclinic P21/c space group, and their single crystals always
present the same shape (elongated platelet). Crystallographic data is gathered in Table
B.8 in Appendix B.4. The asymmetric unit consists of a mononuclear complex, with
two N,N,N-bound tridentate Tp– ligands and one O,O-bound bidentate nitrate ligand,
coordinated to the central Ln(III) ion. The coordination polyhedron around the Ln(III)

117
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ion is highly unsymmetrical (see Table B.6 for more details). It may be described as
a distorted square antiprism, with a strong distortion stemming from the biting angle
between the nitrate and the Ln(III). This yields a final C1 symmetry. Noteworthy, no π-
stacking nor H-bond are seen in the packing and the lanthanide ions are quite remote from
each other. For instance, the shortest Yb(III)-Yb(III) distance is 8.4864(2) Å. Complexes
within the unit cell may thus likely be considered isolated.

Figure 5.1.1: ORTEP drawing of the [LnTp2NO3] complexes 5.1 to 5.5, ellipsoids drawn at 50%
probability. Example: [YbTp2NO3] 5.4.

Quite interestingly, we did not manage to obtain the same complexes with other lanthanide
ions. Attempts with any lanthanide between La and Gd proved unsuccessful, while in the
case of Tb we only managed to obtain a few milligrams of [TbTp2NO3] in a single occasion,
which furthermore degraded over a recrystallisation attempt. In another occasion, we
managed to isolate transient [LnTp2NO3(H2O)] species (Ln = Tb, Gd, La), which also
degraded over time and recrystallisation. The crystal structures of the [LnTp2NO3(H2O)]
complexes are presented on Figure 5.1.2, and the XRD parameters are displayed in Table
B.8. These complexes crystallise in the triclinic P 1̄ space group, the asymmetric unit
consisting of a single complex.

Figure 5.1.2: Molecular structure of the [LnTp2NO3(H2O)] complexes (Ln=Tb, Gd, La). Example:
Tb.

The [LnTp2NO3(H2O)] molecular structure is quite reminiscent of that of the [LnTp2NO3]
complexes, but with the addition of a coordinating water molecule. In Chapter 3, we
claimed that lanthanide ions all presented a similar reactivity, behaving mostly as +3
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point charges. Actually, it would be more accurate to state that they act almost as +3
diffuse charges. Indeed, it is known that the ionic radii of the Ln3+ ions are strongly
decreasing from La3+ (1.16 Å in 8-coordinence) to Yb3+ (0.985 Å): this is the so-called
lanthanide contraction.(i) 21,182 This contraction leads the early lanthanides to prefer higher
coordinences, which permit to stack more ligands in the coordination sphere in order to
shield their positive charge.

Figure 5.1.3: Electrostatic potential maps for [YTp2NO3], projected on a sphere of 1 Å (top) and 2.4
Å (bottom) of radius, as calculated at the PBE-DKH/TZVP level in ORCA. Colour scale is indicated
next to each Figure (in atomic units). Images were build using Gnuplot, and for the sake of simplicity
and clarity only the backbone of the ligands was represented in blue lines.

We thought this simple effect could lead the [LnTp2NO3(H2O)] structure to be much more
stable for the early lanthanide than the 8-coordinated one. We thus ran a very simple DFT
calculation(ii) on [YTp2NO3] in order to get a better insight on this. On Figure 5.1.3, we
represent the computed molecular electrostatic potential, projected onto a sphere centred
around the yttrium cation, with a radius of 1.0 Å and 2.4 Å. From these two images, it
is rather clear that the potential on any point of these surfaces is positive, thus electro-
attractive. A maximum of potential appears between the coordination position of the
nitrate and one Tp– ligand, and a negative charge or a properly oriented dipole would be
quite stabilised on this position. Interestingly, it roughly corresponds to the position the
additional water molecule occupies in the [LnTp2NO3(H2O)] complexes, but in the case
of the yttrium derivative the coordination sphere is such that this position is obstructed
by the Tp– and nitrate ligands.

(i)To the expected diminution in ionic radius – ionic radii decreasing as one moves to right in the
periodic table, for instance r(Ti2+) = 0.86 Å > r(Zn2+) = 0.74 Å – adds a relativistic effects, that
over-expresses the reduction.

(ii)PBE-DKH/TZV with a geometry optimisation, using ORCA.
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If now we increase the ionic radius of the lanthanide, the coordination sphere should
relax in such a way that the potential hole may become accessible for a supplementary
ligand, thus explaining why we rather obtain the [LnTp2NO3(H2O)] structure for the early
lanthanides.(iii)

5.1.2 Probing the lanthanide contraction

The lanthanide contraction thus seems to have a direct impact on the synthesis of our
complexes, and we thought it may be interesting to try to probe it, more or less quanti-
tatively.(iv)

Raman spectroscopy should, in principle, allow such a study. Quite surprisingly, we only
found one literature reference that looked explicitly for the impact of the lanthanide con-
traction on the Raman spectra,183 and this further motivated this study. In collaboration
with the group of Prof. C. Reber at the University of Montréal, we measured the Raman
spectra of complexes 5.1 to 5.5, at both room temperature and 80 K, in the solid state,
using a 785 nm laser excitation. The room temperature spectra in the 200 cm−1 - 1800
cm−1 region are provided on Figure 5.1.4.
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Figure 5.1.4: Room temperature Raman spectra for complexes 5.1 to 5.5. Colour scheme is provided
in caption. Excitation ad 785 nm, 10% of laser intensity, 4 accumulations and 10 seconds of exposition.

As one may remark, the spectra are very similar from one complex to another, which could
be expected. However, if we zoom we can see that the maxima of several transitions shift
depending on the lanthanide. This is the case, for instance, of the transition around 1025
cm−1 on Figure 5.1.5. We have thus plotted the Raman shifts of these peaks with respect
to the ionic radii of the lanthanide in 8-coordinence,182 and a quite general trend appears,

(iii)As for the degradation of these complexes, it is maybe due to an hydrolysis of the Tp– ligands.
The water molecule in the [LnTp2NO3(H2O)] structure is indeed quite well located to interact with the
borohydride.
(iv)At a global level, this can be achieved quite straightforwardly. Indeed, it rather obvious that there

exists a linear relationship between the volume of the crystal lattice and the cube of the ionic radii of the
lanthanide (see Figure B.4.2 in Appendix): the larger the radius, the larger the volume.
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Figure 5.1.5: Zoom in the 880 cm−1 - 1160 cm−1 region of the room temperature Raman spectra for
complexes 5.1 to 5.5.

as exemplified on Figure 5.1.6. In all cases, an almost linear relationship is observed. It
not clear whether the Raman shift should actually display a linear dependence with the
ionic radius of the lanthanide, but the decreasing tendency is quite easy to understand. A
larger ionic radius indeed means a smaller charge density (at constant charge), and in turn
this means the electrostatic interaction with the ligands is expected to be significantly
smaller the higher the radius. Raman peaks are thus expected to shift to the left when
moving from Yb to Dy, which is observed.
The fact that shifts are not observed for all vibrations is also quite simple to understand:
molecular vibrations involving atoms that are far away from the lanthanide (C-H vibra-
tions of the cycles, for instance) should not be much perturbed by its replacement. In
turn, large shifts will likely indicate that the vibration involves atoms in the first co-
ordination sphere of the lanthanide. In order to confirm this idea, and also to ease the
attribution of the peaks, we performed a DFT modelling of the Raman spectrum of 5.5(v)

at the B3LYP-DKH level, choosing 6-311++G(d) as a basis set for all elements184 but Y,
which was modelled using the def2-TZVP basis set (ORCA). Note that this calculation,
though seemingly simple, took about 982 hours to complete on the laboratory cluster (on
a 12 cores node)!
We present on Figure 5.1.7 the calculated Raman spectrum. As one may notice, a certain
degree of agreement between the calculated and experimental curves is obtained, notice-
ably in the low frequencies region.(vi) On the other hand, larger discrepancies are seen in
the intermediate region (1000 - 1500 cm−1) of the spectrum, the computed peaks being
shifted by up to 80 cm−1 with respect to the experimental ones. Actually, we could ex-
pect such an energy mismatch(vii) here, as the experimental Raman spectra were recorded
on powder samples, whereas the calculations are performed on an isolated molecule in a

(v)Being a lighter element, and displaying a closed shell, [YTp2NO3] seemed a much simpler system to
study than any other complex in the family.
(vi)Here, we will not discuss the relative intensities of the peaks, since it is strongly dependent on both

the chosen FWHM and the apparatus sensitivity.
(vii)Even on simple systems, more or less marked mismatches are observed.184–186
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Figure 5.1.6: Plot of the Raman shifts with respect to the ionic radii of the corresponding lanthanide
for 4 transitions, at room temperature. The solid red line is simply a guide for the eye..

vacuum. We thus miss all the crystal state effects: collective vibrations, electrostatic and
dispersion embedding...
Nevertheless, despite the energy shift we may expect the "isolated molecule in a vacuum"
description to provide relevant information on the vibrations of 5.5 in the solid state,
thus helping us to assign the different vibration peaks. Let us focus on the four peaks
of Figure 5.1.6. To the first vibration mode, observed at 353 cm−1, corresponds a series
of intermediate to weak computed vibrations, between 271 cm−1 and 339 cm−1. These
different peaks all correspond to out-of-plane vibrations of the pyrazole groups of the Tp–

ligands, as exemplified on Figure 5.1.8.
To the second vibration mode, centred around 745 cm−1, correspond three principal vi-
brations, computed at 770 cm−1, 778 cm−1 and 783 cm−1. The first one corresponds to a
scissoring movement of the nitrate ligand, in good agreement with published data.187 The
second and third ones, on the other hand, are mainly associated to a rocking movement
of the hydride.
The third vibration mode, around 1025 cm−1, may be associated to a series of vibrations
at 1071 cm−1, 1082 cm−1, 1086 cm−1, 1087 cm−1 and 1092 cm−1, respectively. The four
first modes correspond to streching vibrations of the pyrazole rings, characterised by a
strong modulation of the coordination bonds Y - N. The last mode, on the other hand,
is associated to a symmetric streching of the nitrate ligand, also in good agreement with
previously published data.188,189

Finally, to the 1214 cm−1 experimental peak corresponds four vibrations at ca. 1216 cm−1,
1220 cm−1, 1232 cm−1 and 1248 cm−1. The two first modes are associated to a wagging
movement of two pyrazole of each Tp– ligand, while the two last modes are associated to
the associated twisting vibration.
In summary, the four shifting vibration modes of Figure 5.1.6 seem in any case to involve



5.1. Study of [LnTp2NO3], a family of mononuclear complexes 123

Figure 5.1.7: Experimental (blue) and calculated (orange) Raman shifts for 5.5, at the B3LYP/6-
311++G(d)/def2-TZVP level. For the sake of clarity, the full width at half maximum was set to 1.0
cm−1 for the calculated curve.

coordination atoms. This correlates very well with our expectations, and gives support
to our discussion: there indeed is a non negligible impact of the lanthanide contraction
on the Raman spectra of the [LnTp2NO3] complexes.

5.1.3 Luminescence of the [LnTp2NO3] complexes.

At first, we synthesised complexes 5.1 to 5.5 for their magnetic properties. However, they
also display interesting visible and near-IR luminescence, which can furthermore help to
understand the magnetic properties we observed.190–198

It is indeed known that lanthanide ions may display a metal-centred luminescence.199

Thanks to the efficient shielding of the 4f AOs, non-radiative de-excitations are indeed
severely reduced and internal 4f → 4f transitions can be observed. In collaboration with
Dr. Olivier Maury and Dr. François Riobé (ENS Lyon), we thus studied the luminescence
properties of complexes 5.1 to 5.4 – note that we did not consider the yttrium derivative
here, since it is not a lanthanide element and as such may not present any 4f → 4f
transition –.
Under a 300 nm excitation(viii), only the Dy and Yb derivatives 5.1 and 5.4 did display
luminescence. We represent on Figure 5.1.9 and 5.1.10 the room temperature and 77 K
luminescence spectra for these two complexes.
The room temperature spectrum of 5.1 displays two principal series of transitions, at circa
475 nm and 575 nm. They correspond to the expected 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2

transitions of the Dy3+ ion, respectively.199 A better resolution is observed at 77 K, yet it
is not possible to fully resolve the different transitions. The 6H15/2 and 6H13/2 states are
indeed expected to be splitted in, at most, 8 and 7 Kramers doublets (KD) by the ligand
field. One could thus expect to distinguish up to 8 and 7 peaks, respectively, for the two

(viii)This corresponds roughly to the wavelength domain where ligands are absorbing. Direct excitation
of the lanthanide is indeed expected to be quite inefficient, and it is assumed that generally luminescence
occurs via an energy transfer from the ligands to the lanthanide – the so-called antenna effect–.
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Figure 5.1.8: Molecular representation of the computed vibration modes of 5.5, at 339 cm−1 (top left),
770 cm−1 (top right), 1071 cm−1 (center left), 1092 cm−1 (center right) and 1216 cm−1 (bottom).

transitions. Here, we may only observe 3 peaks and 5 shoulders in the first massive, and
6 peaks in the second one. In the first case, one may try to isolate the 8 peaks through
a deconvolution of the spectrum into Gaussian functions. Unfortunately, this procedure
is not working here. This could be due to the fact that the emitting 4F9/2 state is also
expected to be splitted into several (here 5) KD, and it is not clear whether luminescence
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Figure 5.1.9: Luminescence spectra of 5.1 under a 300 nm excitation, at room temperature (red) and
77K (blue), in the solid state.

should originate only from the lowest energy KD. It is indeed known that Kasha’s rule200

may not be strictly observed in the case of lanthanide luminescence, and thus assigning the
peaks and shoulders in the luminescence spectrum is a fairly complicated task.192,193,196

Figure 5.1.10: Luminescence spectra of 5.4 under a 300 nm excitation, at room temperature (red) and
77K (blue), in the solid state. Coloured asteriks in the 77 K spectrum correspond to the assignation of
the peaks as two different transitions.

Such a breaking in Kasha’s rule may actually be acting in the case of 5.4. The two room
temperature peaks, observed at 985 cm−1 and 1030 cm−1 respectively, indeed resolve into
7 well-defined peaks and a large one – the corresponding wavelengths and wavenumbers
are given in Table 5.1 –. However, we would only expect to observe 4 peaks, since they
correspond to the 2F5/2 → 2F7/2 transition, and the ground 2F7/2 state should not resolve
into more than 4 KD. The fact that the luminescence spectrum does not change when
5.4 is in solution in CH2Cl2 ensures the doubling does not originate from the existence
of two different emitters in the solid state(ix). The uniqueness of the emitting species is

(ix)This hypothesis was proposed since in the P21/c space group two non equivalent positions are found
in the lattice. As such, even if the molecular structure for these two positions are exactly the same, they
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also confirmed by the luminescence decay measurements, which fit nicely with a unique
monoexponential function τ = y0 + A0 exp (−t/τYb) with τYb = 10(1) μs.
Altogether, these facts suggest that we actually observe a luminescent deexcitation from
two KD of the excited 2F5/2 state towards the 4 KD of the ground 2F7/2 state. This
hypothesis is supported by the fact that successive transitions are separated by the same
energy splitting, of ca. 85(12) cm−1. The observed spectrum thus very likely consists of
two series of 4 transitions that are simply shifted by 85 cm−1. The consistency of the
obtained energy diagrams for the ground state, considering either one series or the other,
seems to confirm this idea. Ab initio calculations at the SA-CASPT2(x) level also provide
a rather good agreement with this hypothesis, yielding a similar energy diagram and an
energy splitting in the 2F5/2 state of 71 cm−1.

Table 5.1: Wavelength and associated transition energies corresponding to the luminescence peaks of
5.4.

λ (nm) ν̄ (cm−1)
972.0(5) 10288(5)
979.0(5) 10215(5)
987.0(5) 10132(5)
996(2) 10040(20)
1006.0(5) 9940(5)
1015.0(5) 9852(5)
1022.0(5) 9785(5)
1031.0(5) 9699(5)

E (cm−1)

0.0

+153(5) +160(5)
+110

+331(20) +352(5)
+396

+516(5) +508(5) +527

Figure 5.1.11: Left: luminescence spectra of 5.4 under a 300 nm excitation, at 77K in the solid state
(blue) and in a frozen CH2Cl2 solution (red). Right: deduced energy diagrams considering the first (red)
or second (green) series of peaks, and calculated (black) at the SA-CASPT2 level.

Actually, we can devise an experiment that would confirm or infirm our hypothesis. The
relative luminescence intensities between the two series of transitions should indeed obey
a Maxwell-Boltzmann distribution,

I2
I1

= exp

(
−ΔE5/2

kBT

)
(5.1)

are bathed in potentially different Madelung fields and as such may present slightly different physical
properties.

(x)See below for the computational details.
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with Ii the intensity of a given transition from the ith KD of state 2F5/2, and ΔE5/2 the
energy difference between the two emitting KD of this state. This could be checked in a
survey of the temperature dependence of the luminescence. Unfortunately, the equipment
at the moment does not afford such a study – the 77 K spectra were indeed recorded on
a powder sample immersed in liquid nitrogen –. It is nevertheless planned in future, a
cryostat being installed on the spectrometer at the ENS Lyon.(xi)

Anyhow, as can be seen from the energy diagrams in Figure 5.1.11, large energy gaps
are expected between the different KD of the 2F7/2 state. They may constitute energy
barriers for the reversal of magnetisation, thus turning 5.4 into a potential candidate for
a SMM behaviour.

5.1.4 Static magnetic properties
We thus studied the magnetic properties of complexes 5.1 to 5.4; once again, 5.5 was
not considered since it is expected to be diamagnetic (closed shell).

Powder measurements

Figure 5.1.12: χmT = f(T ) curves for complexes 5.1 to 5.4, measured on powder samples under a
1000 Oe static field.

The temperature dependence of the χmT product for these complexes is displayed on
Figure 5.1.12. In every cases, the χmT product decreases with temperature, and rather
slowly at high temperatures. The lanthanide-lanthanide distances in the crystal lattice
being quite large – above 8 Å –, we may presume this thermal evolution is primarily
controlled by the progressive depopulation of the CF levels. We indeed remind that
magnetic coupling in lanthanide complexes is almost always dipolar (weak to negligible
orbital overlap), and that such a magnetic coupling decays strongly with distance.
Yet, it may be actually acting in the case of the Ho(III) derivative 5.2, since the 2 K
value of χmT is much smaller (of about 75%) than the room temperature one, and the
thermal variations are more pronounced for this complex. Nevertheless, this could also
(xi)This new installation actually raised many questions, noticeably whether it is possible to actually

control the temperature of the illuminated sample. First measurements tend to show that, when turning
the irradiation on, samples may heat by as much as 25 K!
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be due to the presence of a non magnetic state lying close in energy to the ground one –
if it is not even the ground state –. We believe this last hypothesis to be more probable.
Indeed, complexes 5.1 and 5.2 have comparable room temperature χmT values and as
such should present similar single-ion magnetisation. They should then display similar
dipolar magnetic couplings, whereas they are not expected to present similar CF patterns
– Ho(III) being a non Kramers ion, while Dy(III), Er(III) and Yb(III) are –.
The room temperature χmT values for all these complexes depart slightly to the ones
we would expect in the free ion model.64 The discrepancies are very likely related to the
inadequacy of this free ion model. For instance, as we have seen from the luminescence
measurement, the 4 KD of the ground 2F7/2 state of 5.4 are split by more than 500 cm−1.
As such, we cannot state that the thermal energy at room temperature (207 cm−1 at 298
K) is much larger than the CF splitting for this complex, which would be a necessary
condition to the application of the free ion model.

Table 5.2: χmT values for complexes 5.1 to 5.4, at 2 K and 300 K, in cm3.K.mol−1.

Complex χmT at 2 K χmT at 300 K Free ion value
5.1 8.63 13.16 14.17
5.2 3.17 12.7 14.07
5.3 7.74 11.38 11.48
5.4 1.41 2.82 2.57

Field dependence of magnetisation at 2 K is presented on Figure 5.1.13. Here also, a
strong similarity is observed between the Dy(III), Er(III) and Yb(III) derivatives. They
all display a monotonous increase and a saturation at high fields – above 2 T – to markedly
low values: 4.77 μB for 5.1, 4.78 μB for 5.3 and 2.06 μB for 5.4.(xii) Such low saturation
values are usually observed when the complexes display a marked anisotropy201. This
suggests complexes 5.1, 5.3 and 5.4 could behave as SMMs, and as we will see in the
following paragraphs they indeed do.

Figure 5.1.13: Magnetisation versus field curves for complexes 5.1 to 5.4, measured on powder samples
at 2 K.

(xii)In the free ion model, we would indeed expect saturation values of 10 μB for 5.1 and5.2, 9 μB for
5.3 and 4 μB for 5.4.64
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In contrast, the Ho(III) derivative does present not a marked saturation, even at 5 T. In
the low field region, a remarkable feature is observed: the increase of magnetisation is not
monotonous, an inflexion point being found around 0.4 T. Such a sigmoidal aspect of the
curve is often observed when the studied compound presents two states that are very close
in energy, such that the Zeeman splitting can invert their order in the energy diagram.
Altogether, the static magnetic data on 5.2 tend to suggest that a low, non magnetic state
should be found in its energy diagram. Magnetic relaxation at low temperature is thus
expected to be quite fast for this complex, which should not display any SMM behaviour.
This is actually what is observed, as we will show in the following paragraphs.

Single crystal measurements

Magnetic measurements on powder samples for complexes 5.1, 5.3 and 5.4 suggest they
may display rather large anisotropies. As we have seen in Chapter, because of the mon-
oclinic structure of these compounds, only Polarised Neutron Diffraction may allow to
characterise their magnetic anisotropy at the molecular level.
We thus decided to study the [LnTp2NO3] complexes using Polarised Neutron Diffraction
experiments. Nevertheless, we saw in Chapter 2 that the magnetic susceptibility tensor
approach is only applicable when magnetisation evolves linearly with field. The field
dependence of the single crystal magnetisation thus needs to be known prior to any PND
experiment, because we will need to apply the highest possible field in order to measure
the least ambiguous flipping ratios, yet with a linearity constraint.87,88

Angular resolved magnetometry. As such, we first performed angular resolved mag-
netometry measurements on complex 5.4, in collaboration with Dr. Jean-François Jacquot
(CEA Grenoble). The shape of the studied single crystal is given on Figure 5.1.14, orien-
tations being deduced from an X-Ray diffraction experiment.

�b

�c

Figure 5.1.14: Shape of the studied single crystal of 5.4, with the crystallographic axes highlighted.

Since both �b and �c axes can be easily related to a geometric feature of the crystal (�b is
found along the longest direction, �c is parallel to the second longest direction), we decided
to set them as rotation axes. We thus glued the sample by first setting the rotation axis
along the �c direction and with �b vertical, and then by setting �b as the rotation axis and
�c vertical. We report on Figure 5.1.15 the measured magnetisation at 2 K for these two
experiments.
It is rather plain to see that a marked anisotropy is found in both cases. In the first
experiment, a minimum is found at 20◦ (value of 0.40 μB at 2.0 T), and accordingly a
maximum is found 90◦ further (value of 2.39 μB at 2.0 T). This suggests a crystal hard
axis of magnetisation is found near �b, while a crystal easy axis if found in the vicinity of
the reciprocal �a� axis.
This is confirmed by the second experiment, where a maximum value (of 2.22 μB at 2.0
T) is observed at a 80◦ angle, thus near the �a� axis, while a minimum (of 0.68 μB at
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2.0 T) is seen near the �c axis (at 170◦). The discrepancies between the maximal values
of magnetisation in both experiments furthermore suggest that the crystal easy axis is
not located precisely along the �a� axis, but that it rather has components along each
lattice vector. Note also that a part of the difference may stem from the incertainty on
the starting position of the crystal, since it might have slightly moved when the glue was
drying. We can actually try to evaluate that shift: at a 90◦ angle, for the same field
magnitude we would expect to measure the same magnetisation in both experiments,
since it corresponds to a situation where the field is parallel to �a�. At 2.0 T, we indeed
get 2.27 μB for the first experiment, and 2.20 μB for the second one, thus suggesting the
considered field orientations are quite precise.
Note : the curves for the second experiment seem to present a slight asymmetry, which
is unexpected. This is due to a weariness of the rotating sample holder, that impacted
the first angles on each measurements (and which ended in a breakdown of the apparatus
at the end of the collection). As such, we have a limited confidence in the first portion
(θ < 20◦) of the curves for the second measurement, because of the uncertainty on the
actual angle value. Nevertheless, the remaining data points can be trusted. Additional
measurements are planned in the close future.

Figure 5.1.15: Magnetisation at 2 K for [YbTp2NO3] 5.4, for static fields between 0.0 T (brown) and
2.0 T (light magenta). Left panel: rotation along the crystal �c axis, �b initially set vertical. Right panel:
rotation along the �b axis, �c initally set vertical.

Figure 5.1.16: Field dependence of the magnetisation of 5.4 at 2 K along the easy and hard axes
projections determined in the first (•) and second (◦) angular-resolved magnetometry measurement.
Solid lines are a guide for the eye.
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Polarised Neutron Diffraction. Anyhow, a marked crystal magnetic anisotropy is
observed, which suggest a strong molecular magnetic anisotropy could also be found.
We thus studied complex 5.4 by the means of PND on the 5c1 and 6T2 lines at the
Laboratoire Léon Brillouin (Saclay), in collaboration with Dr Béatrice Gillon. As we
already said in Chapter 2, these experiments are performed by rotating the single crystal
along a particular axis where the magnetic field is applied. Three collections, for three
non coplanar directions of the field are required in order to reconstruct the magnetic
susceptibility tensors.87,88

Here, because of the particular shape of the crystals three field directions seemed to im-
pose: along �a�, �b and �c(xiii). We thus set a single crystal of 5.4 with these orientations, in
an aluminium sample holder filled with quartz wool (which does not interact with the neu-
tron beam, and permits to prevent any reorientation of the sample in the magnetic field),
and collected the diffracted intensities at 2 K, for alternating up and down polarisation
of the neutron beam.
The magnitudes of the applied magnetic fields were deduced from the single crystal SQUID
measurements (see Figure 5.1.16). They are recapped in Table 5.3, along with their real
orientation in the lattice. Here, we must mention the rather exceptional character of
these measurements. The sample we studied was indeed rather large from the viewpoint of
standard crystallography – about 1.5 mm3 –, but rather small in the frame of PND, which
calls for samples larger than 3 mm3. Because of this, data treatment proved challenging,
since many diffraction peaks were hidden by the powder diffraction of aluminium (from
the sample holder).
We furthermore had to perform the collections several times, in order to obtain a better
statistics on the diffraction peaks. When the field was applied along the hard axes, the
flipping ratios were actually so small that we had to switch to the thermal line 6T2 – with
a much higher neutron flux – in order to extract significant signal from our experiments.
Overall, 139 inequivalent Bragg peaks with |1−R| > 2σ could be extracted and used for
the refinement of the magnetic susceptibility tensor. Note that we employed the room
temperature X-Ray structure to perform the data treatment. In principle, we should have
solved the structure at 2 K prior to the PND experiment, but major delays at the LLB
hampered this experiment – which was planned – to happen. However, indexation of the
diffraction peaks with the room temperature lattice cell parameters proved successful,
which suggest no phase transition occurs in the 300 K - 2 K temperature range and that
the cell parameters, overall, do not evolve much with temperature.

Table 5.3: Field magnitude, orientations and number of relevant reflections used in the PND experi-
ments. Orientations are given in the so-called CCSL reference frame ( �a�/a�,�b/b,�c/c).

λ (Å) Field (T) Orientation Type of axis No. of equiv. reflns.
0.84 0.67 (-0.973 ; -0.009 ; 0.232) easy 29
1.40 1.70 (-0.051 ; -0.992 ; -0.116) hard 67
1.40 1.50 (0.095 ; 0.074 ; 0.993) mean 43

We then refined the magnetic susceptibility tensor of the Yb atoms stepwise, in the CCSL
reference frame (�i = �a�/a�,�j = �b/b,�k = �c/c).202 First, we evaluated the diagonal term
χll corresponding to each collection; for example, in the first experiment we set the field
roughly along the �a� axis, and as such this collection should permits us to access χii.

(xiii)They are indeed all associated to a specific feature of the crystal, respectively being perpendicular to
the largest face, parallel to the longest axis and parallel to the second longest axis.
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Table 5.4: Eigenvalues (in μB/T ) and components of the corresponding eigenvectors of the local sus-
ceptibility tensor in the orthonormal (�i,�j,�k) basis.

Eigenvalues (μB/T ) �i component �j component �k component
2.454(1) 0.895 -0.414 -0.166
0.2992(2) -0.133 0.107 -0.985
0.007(2) 0.425 0.904 0.040

Then, we treated doublets of collections in order to refine the corresponding off-diagonal
terms – for instance, the first and second experiments in order to refine χij –. Finally, all
the collections were merged and the total tensor was refined, which yields in the CCSL
frame:

¯̄χ =

⎛
⎝1.97(10) −0.91(5) −0.33(6)

0.43(1) 0.14(3)
0.36(2)

⎞
⎠ . (5.2)

This tensor can be easily diagonalised, yielding the magnetic axes directions and the cor-
responding eigenvalues, as listed in Table 5.4. It is rather plain to see that we indeed
observe a strong single-ion anisotropy on the Yb(III) ion. It is principally uniaxial, al-
though a non negligible (12%) transverse component is observed. From the components
in the CCSL frame, we can see that indeed the easy axis is located near the reciprocal �a�
axis, while the hard axes are closer to the �b and �c axes.
As one may notice, the eigenvalues in Table 5.4 are given with error bars. Contrarily
to the diagonalisation procedure, evaluating the uncertainty on the eigenvalues of a 3 ×
3 symmetric and real matrix is a quite tedious task. Since no general procedure was
found(xiv), we developed a small Fortran program – expectedly called Uncertainties – to
compute the error bars. The source code can be found in Appendix. Very simply, this
program discretises the problem: for each component χab ±Δχab of the non-diagonalised
tensor, we build a (user-defined) number of values comprised betwen χab − Δχab and
χab +Δχab, and for each of these values we diagonalise the matrix. This is done for each
of the 6 tensor components, independently but keeping the symmetry condition χab = χba.
The program thus computes the eigenvalues for all of the possible matrices, and isolates
their extrema. It also computes the variance, which we used as an error bar(xv).
We can also try to represent this tensor in the form of an ellipsoid (as what is generally
done for the thermal displacements of atoms in XRD). This is achieved on Figure 5.1.17.
The anisotropy is rather plain from this figure. As one may notice, the easy axis follows
a direction that is roughly perpendicular to the Yb-NO3 direction. The overall tensor
seems to be "sandwiched" between the two Tp– ligands, but no further correlation with
structure al features can be found. Susceptibility tensor could also be calculated at the
CASPT2/RASSI-SO level,47,48 and is represented on the same figure. As one may notice,
differences are observed between the two models, but the general tendency remains similar.
Noticeably, the easy axes point in quite similar directions. The discrepancies on the hard
axes may be due to the actual computational conditions: the calculations are performed
on an isolated complex in a vacuum, while the measurements are performed on molecules
within a crystal.
(xiv)And the mathematicians we contacted ensured us there were none. They suggested to discretise the
problem, and also stressed that error bars on the orientations (eigenvectors) would probably be out of
reach, since small variations in the eigenvalues can lead to marked changes in orientation.
(xv)Extremal eigenvalues are indeed found quite different from the average ones, but they appear to have
a negligible weight.
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Figure 5.1.17: Ellipsoid representation of the PND (left) and ab initio (right) susceptibility tensor.

Comparing PND and single-crystal SQUID measurements. As we have just
seen, the susceptibility tensor we deduced from PND experiments agrees qualitatively well
with the computed one, and also with the single crystal SQUID measurements. Actually,
we can even push the comparison further. We should indeed be able to evaluate the
magnetisation for any orientation of a magnetic field, starting from the PND or ab initio
susceptibility tensor. This means we can try to reproduce the single crystal SQUID curves
of Figure 5.1.15, through the evaluation of

m =
�H(θ) · ¯̄χ · �H(θ)

| �H(θ)|
(5.3)

with θ the rotation axis(xvi).
In the first experiment, we measured magnetisation while rotating the crystal around the
�c axis, with �b initially vertical. This means the magnetic field in this experiment can be
written, in the CCSL frame,

�Hexp1 =

⎛
⎝H sin θ
H cos θ

0

⎞
⎠ (5.4)

with θ the rotation angle. Similarly, in the second experiment the field writes

�Hexp1 =

⎛
⎝H sin θ

0
H cos θ

⎞
⎠ . (5.5)

We thus developed another program, called Conversion, to compute the magnetisation
for a list of user-defined orientations of the magnetic field, basing either on a PND or ab
initio susceptibility tensor. The source code can be found in Appendix. In the current
implementation, field orientations can be given either in the CCSL or crystal frame. In
the case of a PND susceptibility tensor, the tensor must be expressed in the CCSL frame
– which is the default in the refinement procedure we used –. In the case of ab initio
data, the tensor is given in the calculation frame, and the change of basis is performed
using the positions of three non-coplanar atoms in the lattice and calculation frame. The
different equivalent positions in the lattice must also be given, in a matrix form, in order
to evaluate the average magnetisation over one unit cell.
(xvi)The first scalar product yields the magnetisation vector, and the second yields the projection of
magnetisation along the field direction, which is what we actually measure in such SQUID experiment.



134 5. Lanthanide-based complexes: experimental and theoretical studies of SMMs

Figure 5.1.18: Comparison between the experimental (◦) and calculated (–, ab initio; –, PND) mag-
netisation versus angle curves, for a rotation around the �c axis with�b initially vertical (left) and a rotation
around �b, with �c initially vertical (right).

We represent on Figure 5.1.18 the outcome of this program. As one can see, the qual-
itative agreement is retrieved, though deviations are observed. In the first experiment,
the maximum in the experimental curve is observed at 115◦, while PND and ab initio de-
duced curve present a maximum at 101◦ and 86◦, respectively. In the case of the second
experiment, the maximum is found at 80◦ from the experimental curves, and at 90◦ in
both PND and ab initio deduced curves.
Several factors may be involved in these deviations. First of all, as we already noticed,
there is a slight mismatch between the expected and actual orientations of the crystal
in the SQUID experiments, because of the experimental setup. Furthermore, we also
noticed a slight disagreement between PND and ab initio susceptibility tensor, which
is most likely due to the simplifications in the CASPT2 calculations. Finally, we also
employed some simplifications in the PND approach, which yield a certain uncertainty.
Noticeably, we used the room-temperature structure to perform the susceptibility tensor
refinement. Small deviations could likely be expected, and as we already noticed small
deviations in the tensor component can result in marked differences in the orientations of
the eigenvectors.
Nevertheless, the agreement is quite correct, noticeably on the second experiment. Our
different approaches are thus rather self-consistent, and noteworthy we may trust the ab
initio model to be quite correct.
Note: for the moment, we only managed to study 5.4 by the means of PND. This is
partly due to the proposals procedure, which yields incompressible delays, but it is also
the consequence of the numerous experiments we had to perform on our Yb(III) sample.
Nonetheless, studies of 5.1 and 5.3 are planned in the close future.

5.1.5 AC magnetic properties

As we have seen, the Yb(III) derivative 5.4 displays a marked magnetic anisotropy, and
powder measurements on 5.1 and 5.3 suggest they may also do. From the luminescence
measurements, we also saw a strong energy splitting between the Kramers Doublets (KD)
of 5.4 in the ground state – circa 150 cm−1 –.
Together, these characteristics suggest this complex – if not the whole [LnTp2NO3] family
– may present a slow dynamics of magnetisation at low temperature, at least under a
static magnetic field. We thus performed AC squid measurements on powder samples for
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all complexes, under a static field of 0 Oe and 2000 Oe. No signal is observed in zero field,
while at 2000 Oe a non zero out-of-phase magnetic moment is measured for 5.1, 5.3 and
5.4, as shown on Figure 5.1.19. Quite expectedly, nothing is observed in the case of the
Ho(III) derivative, as suggested by the static measurements.
On the other hand, the observation of a non zero AC component for both Dy(III), Er(III)
and Yb(III) derivatives is quite unexpected. In the framework of Rinehart and Long’s
model,79 these ions are indeed expected to display markedly different magnetic behaviours,
since their 4f electron density is not expected to interact in a similar fashion with the
ligand field. More precisely, Er(III) and Yb(III) ions show a prolate deformation of their
4f electron density in the MJ = ±J substate, while Dy(III) shows an oblate deformation.

Figure 5.1.19: AC susceptibility curves for complexes 5.1 (upper left), 5.2 (upper right) and 5.4
(bottom), under a static field of 0.2 T and in the frequency range [1 Hz; 1400 Hz] (brown to gray).

At first, this observation was very surprising(xvii), but soon Sessoli and coworkers re-
ported a similar behaviour in the [Ln(trensal)] family of complexes203 (with trensal =
2,2’,2”tris(salicylideneiminato) triethylamine). More specifically, they observed a simi-
lar slow dynamics of magnetisation for the Er and Dy derivatives at low temperature,
and using a combination of spectroscopies they were able to rationalise it. In that case
indeed, magnetisation dynamics is not solely governed by a "single-ion" energy barrier
mechanism, but also by other direct and Raman spin-phonon relaxations (see Chapter
2 for a reminder on these mechanisms), and as such Rinehart and Long model does not
apply.80,81

Following this inspiring example, we studied in more details the magnetisation dynamics
of our complexes. On Figure 5.1.20, we represent the Arrhenius plots ln ν = f(T ), de-
duced from the maxima of the χ′′

m = f(T ; ν) curves. A marked deviation from linearity is
seen in these plots, suggesting that the dynamics is not solely governed by energy-barrier
(Arrhenius-like) mechanisms. Frequently, these deviations are assigned to quantum tun-
nelling of magnetisation (QTM), and one uses the linear portion of the curve to determine
(xvii)The first magnetic measurements on these complexes were performed in 2013, and no literature
example was then published.
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Figure 5.1.20: Arrhenius plots ln ν = f(/T ) for complexes 5.1 (upper left), 5.3 (upper right) and 5.4
(bottom), as deduced from the maxima of the out-of-phase susceptibility at 2000 Oe. The solid red lines
are a guide for the eye.

the energy barrier.204–206 Here, since we applied a static magnetic field of a rather high
magnitude (2000 Oe), we would not expect to observe any remaining QTM, and as such
it is quite unlikely that such an approach would yield meaningful energy barriers. In fact,
doing so we obtain in this case energy barriers of 25.8(6) K for 5.1, 40.0(5) K for 5.3
and 30(1) K for 5.4. This last value does not correlate at all with the CF splitting we
deduced from luminescence (which was around 100 cm−1), and the other two values do
not correlate either with the calculated ones (see Tables 5.6 and 5.7 below). As such we
have little to no confidence in these energy barriers.
We thus decided to analyse the experimental data using a more complete description,
involving also Raman and direct relaxation mechanism.203 To do so, we fitted the ν = f(T )
curves using

ν = aT + bT n + ν0 exp

(
−ΔE

kBT

)
. (5.6)

Yet, as one can remark this last equation involves a rather large number of parameters
compared to the number of data points. In order to avoid any overparametrisation, we
then fixed some of them. First of all, in the case of the Yb(III) derivative 5.4 we know
the possible values for ΔE, thanks to the luminescence spectrum, and as such we may
keep this parameter fixed. In the case of the Er(III) and Dy(III) derivative, we do not
have these experimental values, but we may also employ the ab initio energy barriers to
do so.
Doing so, we obtained the following equations as best fits:

νDy = 38(2)T + 2.99(5)× 10−2T 7, (5.7)
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νEr = 11(2)T + 6.97(7)× 10−4T 9, (5.8)
νYb = 13(2)T + 6.36(5)× 10−3T 9. (5.9)

Let us interpret these results. First of all, it is rather striking that no energy-barrier
mechanism is involved here. To the best of our knowledge, this is the third time such an
unexpected magnetic behaviour is reported.190,191

Furthermore, we also remark that the Raman exponent is equal to 7 for 5.1, and 9 for
5.3 and 5.4. We may wonder if we actually retrieve the expected differentiation between
Dy(III) on one hand and Er(III) and Yb(III) on the other hand. Moreover, these values
also bear much information on the magnetisation dynamics. Indeed, when n = 7 the
magnetic relaxation occurs between two states |a〉 and |b〉 that are not related by Kramers
conjugation – for instance, |a〉 = | + 5/2〉 and |b〉 = | − 3/2〉. On the other hand, when
n = 9 the two quantum states involved in the relaxation of magnetisation are Kramers
conjugate.81 At this stage, it thus seems the magnetic relaxation of 5.1 is fundamentally
different from the one of 5.3 and 5.4.

Note: an additional support to our model for the dynamics of magnetisation comes
from the field dependence of the out-of-phase susceptibility. The corresponding curves are
given in Appendix. In short, for complexes 5.3 and 5.4 no marked variation is observed
at high frequencies, as could be expected from a T 9 Raman relaxation (field-independent).
On the other hand, at lower frequencies small shifts can be observed, also in good agree-
ment with our model: the direct relaxation is preponderant at lower temperature (thus
lower frequencies), and it is field dependent. In the case of 5.1, variations are observed
both at low and high frequencies, here again in good agreement with our model: at low
frequency, the direct contribution dominates, and it is field dependent. At higher frequen-
cies, the rate of relaxation is governed by the T 7 Raman contribution, which is also field
dependent.
We also gain support from the study of the χ′′

m = f(χ′
m) curves at constant temperature

– the so-called Cole-Cole plots.207 When the relaxation of magnetisation occurs through
a unique mechanism, these curves are indeed expected to be perfect semi-circles. When
several mechanisms are involved, because of the distribution of relaxation rates these
curves distort. If the different relaxation rates are very different, we may expect the
Cole-Cole plot to consist in juxtaposed and separated semi-circles, while in the case of
comparable rates the different semi-circles would be fused and the overall curve would
present a distorted semi-circular shape. In this latter case, one may characterise the
distortion via a phenomenological parameter α, which tends to zero for a single relaxation
process, and to one when the distribution of relaxation rates is wide.208

Here, in the case of the Yb(III) derivative 5.4 we obtain slightly distorted semi-circles,
which can be fitted by a Cole-Cole equation with α values ranging from 0.25(3) at 2
K to 0.13(4) at 4 K. These values are in good agreement with our expectation: at lower
temperature, both direct and Raman mechanisms contribute significantly to the relaxation
rate (89 % and 11 % respectively, at 2 K), thus yielding a marked deviation of α from
0. When increasing the temperature, the contribution of the Raman process becomes
largely predominant (96% at 4 K, for instance), and the systems tends to ideality, with
α tending to 0. On the other hand, in the case of 5.1 and 5.3 the curves present a
more complex shape. In both cases, at low χ′

m values (i.e, high frequencies) we observe a
semi-circular shape, while for the higher χ′

m values (lower frequencies) additional points
are seen, which seem to belong to a second semi-circle (though more data points would
be needed to ascertain this). This correlates nicely with the characteristic of the direct
and Raman relaxation processes of these two complexes. Indeed, for both 5.1 and 5.3
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the Raman process is less involved at low temperature (5% and 2% at 2K, respectively),
and the transition between the two relaxation processes is more abrupt than what it is
the case of 5.4. As such, the two processes are quite separated, which translates into two
peculiar Cole-Cole plots.

5.1.6 Ab initio modelling
Here again, theoretical support is very valuable. We thus modelled complexes 5.1, 5.3
and 5.4 at the SA-CASSCF/RASSI-SO level, using basis sets from the ANO-RCC library,
and with the following contractions:

• [8s7p4d3f2g1h] for Dy, Er, Yb;

• [4s3p2d] for the coordinating atoms (N, O);

• [3s2p1d] for the non-coordinating C, N, O, B atoms;

• [2s] for the H atoms.

In all cases, the active spaces consisted of the 7 4f orbitals. In the case of 5.1, we
computed 21 sextets, 224 quadruplets and 300 doublets(xviii) at the SA-CASSCF level.15

Among all these roots, 21, 128 and 107 of them were, respectively, included in the state-
interaction procedure. Similarly, for 5.3 35 quadruplets and 112 doublets were computed
at the SA-CASSCF level, and were all included in the RASSI-SO calculation. Finally, for
5.4 7 doublets were optimised at the MS-CASPT218 level, and allowed to interact in the
RASSI-SO procedure.
We performed the calculations using Molcas 8.0,210 in collaboration with Dr. Boris Le
Guennic and Dr. Julie Jung (Université Rennes 1). For these three complexes, the
accuracy of the model was checked by comparison between computed and experimental
data. As we have already seen, in the case of 5.4 the calculation provides a nice agreement
with the single crystal SQUID data and the luminescence spectrum. The agreement with
the powder magnetic measurements can also be obtained quite directly (the Single_Aniso
routine of MOLCAS211 indeed permits to compute susceptibility and magnetisation at
different fields ans temperatures). As one can see from Figure 5.1.21, it is quite correct
for the three complexes, though the calculations seem to overestimate the χmT value for
5.1 at low temperature. Nevertheless, magnetisation seems quite correctly reproduced,
which suggest the theoretical models can be trusted.
In Table 5.5, 5.6 and 5.7, we give the |MJ〉 decomposition of the wavefunctions of the
KD in the respective ground states of complexes 5.1, 5.3 and 5.4. Though quite tedious
to read, these tables yield valuable information. It is indeed rather plain that both 5.3
and 5.4 present a high degree of mixing in all their KD(xix), while 5.1 presents a ground
KD with a relatively low extent of mixing. These marked mixing are a likely cause for
the strong QTM212 – we indeed remind that, though we did not consider any QTM
contribution in the analysis of the magnetisation dynamics under 2000 Oe, we still do
not observe any out-of-phase peak in the AC susceptibility at zero constant field, thus
implying a strong QTM is acting here.
Single_Aniso also permits to compute the Transition Dipole Moments (TDM), which
give information about the feasibility of the transitions between the different substates in
the energy diagram. Here, these TDM may allow us to understand the QTM and direct

(xviii)490 doublets should be included,209 but the current implementation of MOLCAS restricts the number
of roots to 300.
(xix)I.e., the wavefunction of a given KD involves different |MJ〉 basis vectors.
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Figure 5.1.21: Comparison between the calculated (solid lines) and experimental (bullets) M = f(B)
(left) and χmT = f(T ) curves (right). Colour scheme: 5.1, green; 5.3, red; 5.4, blue.

Table 5.5: Decomposition of the wavefunctions corresponding to the 8 KD of the ground 6H15/2 state
of 5.1, on the basis of the |MJ〉 vectors, and relative energies (in cm−1). Convention: n in Ψ+

n indexes
the KD (the higher in energy, the larger n), and + indicates that only substates associated to a positive
magnetic moment are represented (the conjugated substates are deduced by changing the sign of MJ).
To ease the reading, only the norms of the (complex) coefficients are displayed, and values above 0.5 are
highlighted (bold font).

Ψ+
1 Ψ+

2 Ψ+
3 Ψ+

4 Ψ+
5 Ψ+

6 Ψ+
7 Ψ+

8

Rel. E 0 87 124 134 162 183 241 546
|+ 15/2〉 0.96 0.15 0.07 0.01 0.11 0.01 0.01 0.00
|+ 13/2〉 0.03 0.04 0.20 0.35 0.32 0.10 0.22 0.07
|+ 11/2〉 0.21 0.23 0.36 0.22 0.37 0.24 0.11 0.03
|+ 9/2〉 0.06 0.08 0.26 0.45 0.23 0.14 0.30 0.21
|+ 7/2〉 0.10 0.34 0.14 0.24 0.19 0.25 0.18 0.10
|+ 5/2〉 0.01 0.11 0.33 0.33 0.37 0.19 0.28 0.40
|+ 3/2〉 0.07 0.28 0.19 0.06 0.43 0.42 0.23 0.20
|+ 1/2〉 0.01 0.03 0.26 0.19 0.13 0.23 0.14 0.55
| − 1/2〉 0.05 0.30 0.07 0.08 0.13 0.56 0.08 0.24
| − 3/2〉 0.00 0.04 0.31 0.09 0.08 0.13 0.22 0.49
| − 5/2〉 0.04 0.34 0.07 0.17 0.14 0.34 0.24 0.15
| − 7/2〉 0.01 0.12 0.42 0.43 0.25 0.12 0.34 0.30
| − 9/2〉 0.03 0.50 0.06 0.28 0.17 0.20 0.34 0.06
| − 11/2〉 0.00 0.12 0.26 0.29 0.30 0.13 0.48 0.14
| − 13/2〉 0.02 0.48 0.42 0.17 0.32 0.24 0.27 0.01
| − 15/2〉 0.00 0.01 0.02 0.10 0.07 0.03 0.11 0.02

processes, but not the Raman ones (since they involve virtual states which cannot be
computed explicitly). Analysis of these TDM can also be a fairly tedious task (in the case
of Er and Dy, 60 values should be considered), but we may summarise quite simply the
results. First of all, for all three complexes we can observe a non negligible TDM within
all the KD, noticeably in the ground ones. As a result, a strong QTM is expected for
these three complexes, as observed.
If this QTM is suppressed (application of an external field), then other relaxations should
be sought. The rule of thumb in these cases is to find the shortest path, associated to
the highest TDM values. As one can imagine, in the cases of Er and Dy the matter may
be quite complicated, and indeed it is. For the sake of simplicity, on Schemes 5.1.1, 5.1.2
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Table 5.6: Decomposition of the wavefunctions corresponding to the 8 KD of the ground 4I15/2 state
of 5.3, on the basis of the |MJ〉 vectors, and relative energies (in cm−1). Convention: n in Ψ+

n indexes
the KD (the higher in energy, the larger n), and + indicates that only substates associated to a positive
magnetic moment are represented (the conjugated substates are deduced by changing the sign of MJ).
To ease the reading, only the norms of the (complex) coefficients are displayed, and values above 0.5 are
highlighted (bold font).

Ψ+
1 Ψ+

2 Ψ+
3 Ψ+

4 Ψ+
5 Ψ+

6 Ψ+
7 Ψ+

8

Rel. E 0 49 83 153 189 236 283 312
|+ 15/2〉 0.80 0.24 0.14 0.10 0.10 0.01 0.28 0.00
|+ 13/2〉 0.19 0.49 0.49 0.15 0.14 0.04 0.43 0.02
|+ 11/2〉 0.43 0.21 0.53 0.15 0.02 0.03 0.33 0.04
|+ 9/2〉 0.20 0.31 0.45 0.38 0.21 0.04 0.22 0.14
|+ 7/2〉 0.27 0.37 0.30 0.21 0.30 0.06 0.17 0.06
|+ 5/2〉 0.10 0.44 0.23 0.23 0.26 0.13 0.48 0.20
|+ 3/2〉 0.03 0.24 0.29 0.51 0.07 0.27 0.34 0.11
|+ 1/2〉 0.03 0.07 0.12 0.24 0.33 0.46 0.28 0.28
| − 1/2〉 0.03 0.12 0.03 0.47 0.26 0.25 0.15 0.24
| − 3/2〉 0.03 0.13 0.03 0.24 0.24 0.25 0.11 0.43
| − 5/2〉 0.05 0.23 0.02 0.25 0.12 0.38 0.20 0.13
| − 7/2〉 0.02 0.13 0.02 0.15 0.52 0.33 0.09 0.34
| − 9/2〉 0.03 0.21 0.05 0.10 0.33 0.41 0.17 0.20
| − 11/2〉 0.00 0.06 0.10 0.07 0.16 0.23 0.07 0.50
| − 13/2〉 0.02 0.16 0.11 0.05 0.26 0.20 0.05 0.33
| − 15/2〉 0.00 0.05 0.00 0.04 0.22 0.23 0.05 0.26

Table 5.7: Decomposition of the wavefunctions corresponding to the 4 KD of the ground 2F7/2 state
of 5.4, on the basis of the |MJ〉 vectors, and relative energies (in cm−1). Convention: n in Ψ+

n indexes
the KD (the higher in energy, the larger n), and + indicates that only substates associated to a positive
magnetic moment are represented (the conjugated substates are deduced by changing the sign of MJ).
To ease the reading, only the norms of the (complex) coefficients are displayed, and values above 0.5 are
highlighted (bold font).

Ψ+
1 Ψ+

2 Ψ+
3 Ψ+

4

Rel 0 110 396 527
|+ 7/2〉 0.53 0.00 0.04 0.00
|+ 5/2〉 0.73 0.15 0.17 0.13
|+ 3/2〉 0.36 0.12 0.34 0.39
|+ 1/2〉 0.11 0.04 0.12 0.57
| − 1/2〉 0.04 0.12 0.45 0.65
| − 3/2〉 0.16 0.18 0.68 0.27
| − 5/2〉 0.14 0.57 0.22 0.10
| − 7/2〉 0.08 0.77 0.35 0.05

and 5.1.3 we represented the energy diagram for the ground states of 5.1, 5.3 and 5.4,
and we symbolised the different TDM values using a colour code: in gray, we depict the
lowest quartile, in blue the second, in green the third and in red the highest one.
From these three schemes, it appears that many different pathways are eligible. It is
then quite hard to pinpoint exactly which states are involved in the direct relaxation
mechanisms, but nonetheless these mechanisms are quite feasible.
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Finally, we may also gain information on the Raman relaxation process. In the case of
the Yb(III) and Er(III) derivatives, we indeed observe a T 9 dynamics, which according to
Stevens is expected when the relaxation takes place within a KD.81 Said otherwise, for
these two complexes the relaxation process would be associated to a horizontal transition
in Schemes 5.1.2 and 5.1.3 (passing through a virtual state). If we assume our magnetic
system is at equilibrium with the thermal bath, we may then postulate that the relaxation
occurs within the ground KDs. In the case of the Dy(III) derivative on the other hand, a
T 7 dynamics is observed, which is expected when the relaxation process links two substates
that are not forming a KD. This means that, in Scheme 5.1.1, the (rate limiting) process
would be associated to a diagonal or vertical transition. Using the same assumption as
previously, we may postulate that the starting state for this transition will belong to the
ground KD.
We may even try to push this development further, wondering whether there is a link
between the strong mixing in all the KD of the ground states of the Yb(III) and Er(III)
derivatives and the efficient "horizontal magnetic relaxation" they present. Indeed, one
usually considers mixing "increases the communication" within the two components of a
KD, eventually leading to a more efficient QTM. Here, we may wonder if the same line of
argument holds for other relaxation processes. It could indeed account for the fact that
the Dy(III) derivative does not show such "horizontal relaxation" processes, because of
the low extent of mixing in its ground KD. Nevertheless, three experimental evidences
are not sufficient to build such a model, and in order to confirm or infirm this hypothesis
we would need to gather more data...

Energy

m (μB)

Scheme 5.1.1: Energy diagram and TDM of 5.1, as computed at the SA-CASSCF/RASSI-SO level.

5.1.7 Long story short

In short, we have synthesised and characterised a new family of lanthanide mononuclear
complexes, [LnTp2NO3], which present interesting magnetic properties. Indeed, though
they do not present a genuine SMM behaviour, they display a slow dynamics of mag-
netisation under the application of a static magnetic field, which is quite unexpected in
the framework of Rinehart and Long’s model. Using a combination of experimental and
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Scheme 5.1.2: Energy diagram and TDM of 5.3, as computed at the SA-CASSCF/RASSI-SO level.

Energy

m (μB)

Scheme 5.1.3: Energy diagram and TDM of 5.4, as computed at the SA-CASPT2/RASSI-SO level.
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theoretical characterisations, we have been able to show this is due to the fact that the
dynamics of magnetisation for these complexes is not governed by any Arrhenius-like be-
haviour, but is rather entirely controlled by Raman and direct mechanism. To the best
of our knowledge, such a peculiar magnetisation dynamics was only reported twice, and
not for a family of complexes, thus making these compounds rather original.
Furthermore, we have also been able to tentatively rationalise this exotic magnetic be-
haviour. In both cases, ab initio calculations reveal a marked propensity towards QTM
as well as many possible direct relaxation pathways. On the other hand, the tempera-
ture dependence of the Raman mechanism indicates a fundamental difference between the
Dy(III) derivative and the Er(III) and Yb(III) derivatives. In the first case, the relax-
ation mechanism links two states that are not conjugated by Kramers theorem, while in
the latter case a horizontal relaxation is likely involved. Interestingly, this differentiation
can be tentatively correlated to the extent of mixing in the wavefunctions of the ground
KD: it is strong in the cases of the Er(III) and Yb(III) derivatives, suggesting an effi-
cient "communication" can be observed between the two components of the ground KDs,
whereas almost no mixing is observed in the case of the Dy(III) derivative, indicating a
much less efficient "interplay" within the ground KD. Notwithstanding, we remind that
caution must be taken with these interpretations, as they are based on a rather limited
set of experimental evidences.
Nevertheless, and quite surprisingly, they would lead to retrieve a connection with Rine-
hart and Long’s model. Indeed, the lower mixing in 5.1 could be interpreted as the fact
that the ligand field of our complexes suits more the oblate Dy(III) ion than the prolate
Er(III) and Yb(III) ions, at least in their ground KD.
Because of the potentially strong importance of such a model, we wanted to gather more
experimental evidences, and we thus considered a closely related family of mononuclear
complexes(xx), which we present hereafter.

5.2 The [LnTp2Acac]: towards more efficient SMM?
As we have just seen, the [LnTp2NO3] complexes present very interesting magnetic prop-
erties, which are likely related to their structure. As chemists, we then wondered whether
we could finely tune these properties by an appropriate modification on the ligands. Sim-
ilar complexes structures were already reported in the literature,213,214 and noticeably
we found an interesting family of complexes whose properties were left unexplored: the
[LnTp2(Acac)] family. Formally, they can be seen as [LnTp2NO3] complexes where the
nitrate ligand has been substituted by an acetylacetonate. These complexes seemed easy
to synthesise, and also to functionalise, the acetylacetonate moiety presenting several
functionalisable carbons. We thus decided to synthesise these complexes and to study
their luminescent and magnetic properties. We remind here that the results are prelimi-
nary, noticeably because of a series of breakdowns on the different apparatuses we used
(magnetometer, spectrometer).

5.2.1 Syntheses and crystal structures.
The details of the synthetic procedures are given in Appendix A.2.3, and are adapted
from the previously published methods. They are both quite reminiscent of the one used
to obtain the [LnTp2NO3] complexes: a solution of the lanthanide salt – here, a chloride

(xx)Hoping their magnetic properties would be similar to those of the [LnTp2NO3] complexes, as their
structures are rather resemblant.
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– is added to a solution of the ligands, leading to a precipitate that is recrystallised either
in a CH2Cl2/heptane or CHCl3/heptane mixture.214

Different crystal structures are obtained, depending on the solvent and the lanthanide
ion. They can be separated into three families.

Complexes 5.6 to 5.12. The first family of complexes crystallises in the monoclinic
P21/c space group, and they were obtained for Ln = Ce 5.6, Pr 5.7, Nd 5.8, Sm 5.9,
Gd 5.10, Tb 5.11, Dy 5.12. All these complexes are isostructural, and correspond to
the published one for Ce(III).215 They were crystallised using either dichloromethane or
chloroform as solvent. The asymmetric unit consists of a single [LnTp2Acac] complex and
is depicted on Figure 5.2.1, and the crystallographic parameters are gathered in Table B.9.
The coordination geometry here also can be viewed as distorted square-base antiprism,
though it has been shown previously that it is more accurately described as a bicapped
trigonal prism.

Figure 5.2.1: ORTEP drawing of the [LnTp2Acac] complexes 5.6 to 5.12 (ellipsoids drawn at 50%
probability). Example of [DyTp2Acac] 5.12.

Complexes 5.13 to 5.16. This second family of complexes is not isomorphic, but
they are all crystallising in a primitive monoclinic space group and the unit cell contains
a co-crystallised solvent molecule. 5.13, 5.14 and 5.15 are isostructural (P21/c), and
were obtained using chloroform as solvent. The formula of the asymmetric unit for these
three complexes is [LnTp2Acac] · CHCl3. Complex 5.16 crystallises in the monoclinic
P21/n space group, and its asymmetric unit is composed of a [LnTp2Acac] complex plus a
crystallised CH2Cl2 molecule. Noteworthy, the solvents molecules in these four structures
are not disordered, and in the case of 5.13 to 5.15, a 2D-lamellar structuration is actually
observed (see Appendix B.5.1). Noteworthy, these structures were not reported previously.

Complexes 5.17 to 5.19. The third family of complexes is also not isomorphic, but
they are all crystallising in the triclinic P 1̄ space group. The asymmetric units of 5.17
and 5.18 contain two independent [HoTp2Acac] and [YbTp2Acac] complexes respectively,
while in the case of 5.19 only one [YbTp2Acac] complex and a crystallised chloroform
molecule are found. Note that the structure of 5.19 was also not reported previously.
Overall, the molecular structures of all these complexes are rather similar. Yet, because
of the marked differences in their crystal packing, we may not directly compare their
physical properties in the solid state. For instance, if we recall the magnetic properties of
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our previous [LnTp2NO3] complexes, we saw that the slow dynamics at low temperature
was not governed by single-molecule properties but entirely by vibrations (either molecular
or collective). In such case, a modification of the environment of the complexes will very
likely impact the observed property, since many vibration modes will be perturbed.
As such, we will focus in the following on the first family of complexes only. In contrast
with the [LnTp2NO3] family, here the structures are found only for the lighter lanthanide
ions.(xxi) In agreement with our former approach, we studied their luminescent and mag-
netic properties. Because of a lack of time, we have not yet studied them at the CASSCF
level. This study is planned in a close future.

5.2.2 Luminescence spectra.
We first studied the luminescence properties of complexes 5.6 to 5.12, at both room
and liquid nitrogen temperatures. To the exception of the Ce(III) 5.6 and Gd(III) 5.10
derivatives, they present moderate to strong luminescence peaks in the 400 nm - 1200 nm
range.

Complex 5.7, [PrTp2Acac]. We report on Figure 5.2.2 the luminescence spectra of
5.7. As one can see, a signal is already observed at room temperature, but presents a very
low resolution. A large background noise is also observed, which to date remains unex-
plained.(xxii) At low temperature, the resolution is slightly better, though the background
contribution remains rather intense. In order to increase the signal over noise ratio, we
thus focused on parts of the spectral range and performed several acquisitions with very
long collection times (up to half an hour for a 30 nm window).

Figure 5.2.2: Visible luminescence spectra of 5.7 under a 300 nm irradiation, at room temperature
(red curve) and 77 K (blue).

This allows us to identify four 4f → 4f transitions:199 3P0 →3 H4 around 490 nm,
3P0 →3 H5 around 545 nm, 3P0 →3 H6 around 615 nm and 3P0 →3 F2 around 650 nm.
As one may note, these are all fluorescent transitions (ΔS = 0). Noteworthy, an additional
peak seemed to be observed at 575 nm at room temperature, but is not seen at 77 K and

(xxi)Note that we also retrieve the effect of the lanthanide contraction in the lattice cell volumes, as
exemplified in Figure B.5.2
(xxii)Note that the large bump between 400 nm and 450 nm corresponds to the residual ligand fluorescence.
This band is not usually observed, since the lanthanide luminescence is much more intense. Here, the
Pr(III) signal is weak enough to permit its observation.
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does not correspond to any expected transition of the Pr(III) ion. We may then suppose
it also was a part of the unexplained background noise. A new campaign of measurement
is planed in the close future in order to ascertain this fact, but a spectrometer breakdown
delays it for the moment...

Complex 5.8, [NdTp2Acac]. We present on Figure 5.2.3 the near-IR luminescence
spectrum of 5.8. A broad band is observed at room temperature around 1073 nm, which
resolves into three peaks at 77 K, at 1062 nm, 1073 nm and 1090 nm respectively. Accord-
ing to literature, they correspond to the expected 4F3/2 →4 I11/2 transition of Nd(III).199

Two interesting things may be noted here. First, we only observe 3 separated peaks on the
spectrum, while we could expect to observe at least – assuming Kasha’s rule is obeyed –
6 transitions. Most probably, these transitions are simply not observable with our exper-
imental conditions, being too weak – although we also employed very long measurements
here –.
Second, we do not either observe the 4F3/2 →4 I9/2 transition, which would be expected
around 900 nm. As such, our luminescence study does not allow us to gain any information
on the ground 4I9/2 state.

Figure 5.2.3: Near-IR luminescence spectra of 5.8 under a 300 nm irradiation, at room temperature
(red curve) and 77 K (blue).

Complex 5.9, [SmTp2Acac]. On the other hand, the luminescence spectra of the
samarium derivative 5.9 are rich in information. They are depicted on Figure 5.2.4.
As one can see, three series of peaks are observed at room temperature, respectively
around 565 nm, 603 nm and 648 nm, corresponding to the expected 4G5/2 → 4H5/2,
4H7/2 and 4H9/2 transitions.199 A fourth one around 705 nm (4G5/2 → 4H11/2) can also
be guessed, but it shows a very low intensity and as such was not represented here. At
77 K, the three series are nicely resolved, yielding massifs of three, four and five peaks
respectively. The corresponding wavelengths and wavenumbers are given in Table 5.8.
These numbers of peaks are exactly the one we would expect to observe, since they
correspond to the degeneracy of the 4HJ states. If we then assume Kasha’s rule is obeyed,
we can tentatively draw the energy diagram for the three first 4HJ states of 5.9.This is
achieved on Figure 5.2.8. Note that in the case of the second series of transitions (towards
the 4H7/2 state), the second luminescence peak seems to be split in two components at 77
K, and as such there is a larger uncertainty on the position of the corresponding KD in the
diagram. Two phenomenon may cause this apparent splitting: the lifting of Kasha’s rule,
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Table 5.8: Wavelengths, absolute and relative wavenumbers associated to the luminescence peaks of
5.9 at 77 K, measured under an irradiation at 300 nm. The relative values are calculated with respect
to the highest energy peaks of each transition.

Transition λ (nm) ν̄ (cm−1) ν̄rel (cm−1)
4G5/2 → 4H5/2 562.0(5) 17794(16) 0

567.0(5) 17637(16) +157(32)
575.0(5) 17391(15) +403(31)

4G5/2 → 4H7/2 597.0(5) 16750(14) 0
604(1) 16556(28) +194(42)
607.0(5) 16474(14) +276(28)
610.0(5) 16393(14) +357(28)

4G5/2 → 4H9/2 644.5(5) 15516(12) 0
647.5(5) 15444(12) +72(24)
651.5(5) 15349(12) +167(24)
655.5(5) 15256(12) +260(24)
659.0(5) 15175(12) +341(24)

or vibronic effects. We may postulate the second hypothesis is the right one, since we do
not observe any peak below the minimum wavelength (560 nm) for this transition(xxiii).
In any case, we can see that we obtain a nicely resolved energy diagram for the ground
state, and we can observe a rather strong CF splitting: +403(31) cm−1 between the first
and last KD. As such, this complex might be a good candidate for the observation of a
SMM behaviour, provided it is magnetically anisotropic – and setting aside the problem
of the very weak paramagnetism of Sm(III) –.64

Figure 5.2.4: Visible luminescence spectra of 5.9 under a 300 nm irradiation, at room temperature
(red curve) and 77 K (blue).

Complex 5.11, [TbTp2Acac]. We present on Figure 5.2.5 the luminescence spectra
of 5.11 at room and liquid nitrogen temperatures. The observed pattern is very charac-
teristic of Tb(III), with four series of peaks centred around 490 nm, 545 nm, 585 nm and

(xxiii)Which would be the case if luminescence from excited KD of the 4G5/2 state were active: deexcitation
towards the lowest energy KD of the ground state would occur at a higher energy than expected if the
emitting state is not the lowest energy KD, thus at lower wavelengths.



148 5. Lanthanide-based complexes: experimental and theoretical studies of SMMs

620 nm, respectively corresponding to the 5D4 → 7F6, 7F5, 7F4 and 7F3 transitions.199

Interestingly, resolution does not increase much when cooling to 77 K, but luminescence
become stronger – though it already was very strong at room temperature –. Anyway,
luminescence of the Tb(III) ion does not generally convey much information on the coor-
dination geometry or the crystal field: one says that Tb(III) luminescent transitions are
"insensitive" of the coordination sphere. Changes in the coordination sphere will indeed
impact principally the overall luminescence efficiency (the so-called quantum yield) and
the lifetimes of the emitting state, through modifications of the non-radiative deexcitation
mechanisms, but not much the emission wavelengths.

Figure 5.2.5: Visible luminescence spectra of 5.11 under a 300 nm irradiation, at room temperature
(red curve) and 77 K (blue).

Complex 5.12, [DyTp2Acac]. On the other hand, the luminescence of the Dy(III)
ion can be quite markedly modulated by the crystal field. We represent on Figure 5.2.6
the measured spectra for 5.12 at room and liquid nitrogen temperatures.

Figure 5.2.6: Left: visible luminescence spectra of 5.12 under a 350 nm irradiation, at room tempera-
ture. Right: zoom on the first series of peaks, measured at 77 K.

As one can remark, the room temperature spectrum recalls the one we obtained for
[DyTp2NO3], though striking differences are observed. We indeed retrieve two principal
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transitions at 480 nm and 575 nm, corresponding to the expected 4F9/2 → 6H15/2 and
4F9/2 → 6H13/2 deexcitations, and a third one around 650 nm, corresponding to the
4F9/2 → 6H11/2 emission.199

At 77 K, we observe a marked increase in resolution for these transitions. More specifically,
if we focus on the first series we may observe twelve clear luminescence peaks, indicating
that Kasha’s rule is most probably not obeyed in this case. Yet, we do not observe a
doubling of the number of luminescence peaks, and as such we cannot propose an unam-
biguous and direct attribution of each transition, as we did in the case of [YbTp2NO3].
Nevertheless, and unlike in the case of [DyTp2NO3], we may presume that among these
twelve peaks we may find the eight expected transitions of the 4F9/2 → 6H15/2 deexci-
tation, plus four so-called hot bands.(xxiv) As such, it could still be possible to deduce
the energy diagram of 5.12 in the ground state, provided that we could determine which
peaks in the emission spectrum correspond to hot bands.

Figure 5.2.7: Left: excitation spectrum of 5.12, measured at 576 nm and 77 K. Right: superimposition
of the excitation (black curve) and luminescence (red curve) spectra at 77 K. The blue dashed line indicates
the (0,0) transition in both spectra, the asterisks denote the hot-bands in the luminescence spectrum and
the empty circles the hot-bands in the excitation spectrum.

To do so, we measured the excitation spectrum of 5.12 at 77 K, at 576 nm. We remind
that such a measurement consists in varying the wavelength of the exciting (incident)
beam on the sample and studying how this impacts the luminescence intensity at a fixed
λ. Here, we chose the wavelength to correspond to the emission maximum at room
temperature, which itself corresponds to the 4F9/2 → 6H13/2 transition of Dy(III). As
such, any maximum in the spectrum will be associated to an absorption transition from
the ground state of our complex towards an excited state that is located above (or equal
to) the emitting 4F9/2 state of Dy(III) – thus, to a ligand- or Dy(III)-centred excited state
–.
From the curve in Figure 5.2.7, three series of fine transitions can be observed, ap-
proximately centred around 21500 cm−1, 22500 cm−1 and 23500 cm−1 respectively.(xxv)

These peaks all correspond to 4f − 4f absorptions, and can be respectively assigned to
6H15/2 → 4F9/2, 6H15/2 → 4I15/2 and 6H15/2 → 4G11/2 transitions.21,199

The first of these transitions is of particular interest for us, as its reciprocal (4F9/2 →
6H15/2) is also observed in the luminescence spectrum. Both massifs of peaks should thus

(xxiv)The term "hot band" underlines the fact that these supplementary transitions are permitted by the
non-negligible thermal population of the excited states.
(xxv)Actually, a fourth one may be guess above 25000cm−1 as well, likely corresponding to the 6H15/2 →
4H21/2 absorption of Dy(III).
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partly overlap, ideally on a single peak corresponding to the transition between the lowest
KDs of both states (highest energy emission and lowest energy absorption). As one can
observe on the right side of Figure 5.2.7, several peaks actually overlap, complicating the
assignment of each band.
Let us denote the transitions by (n,m) where n and m respectively label the KDs in the
6H15/2 and 4F9/2 states (0 standing for the lowest energy KD). In the excitation spectrum,
five intense bands are observed at 21150(9), 21213(9), 21321(9), 21431(9) and 21505(9)
cm−1 respectively, and five much weaker transitions are observed at 20816(9), 20868(9),
20929(9), 21017(9) and 21088(9) cm−1. Since 4F9/2 is expected to be split in five KD
because of the low symmetry of our complex, and as the lowest KD of 6H15/2 will most
probably display the largest statistical population at 77 K, we may presume that the
five intense bands actually correspond to the (0,m) transitions with 0 ≤ m ≤ 4, and
the following ones to (n,m) transitions with n 	= 0. With this assumption, the band
at 21150(9) cm−1 can be attributed to the (0, 0) transition, and any absorption (resp.
emission) band at lower (higher) energy will thus be associated to a hot band.
If we now focus on the luminescence spectrum, we can see that two peaks are found above
the (0, 0) transition, at 21317(9) and 21209(9) cm−1 respectively, and correspond to the
second and third intense excitation bands. They may thus be respectively attributed to
the (0, 2) and (0, 1) (hot bands) transitions. The fourth luminescence peak, found at
21088(9) cm−1, is associated to the first weak excitation band, and thus corresponds to a
(1,m) transition. Since its intensity is also weak in the luminescence spectrum, we may
presume that the emitting KD is weakly statistically populated at 77 K, suggesting that
m = 1.
The fifth luminescence peak, found at 21013(9) cm−1, also corresponds to a weak excita-
tion band and thus can be associated to a (1,m) transition. The observed luminescence
intensity being non negligible, we may postulate in that case that m = 0. Actually, know-
ing the position of the (0, 0), (0, 1) and (1, 1), we could alread deduce the energy of the
(1, 0) luminescent transition:

E(1, 1)− E(1, 0) = E(0, 1)− E(0, 0) (5.10)

which yields E(1, 0) = 21025(27) cm−1, in very good agreement with our assignment.
Furthermore, one may note that in both the excitation and luminescence spectra this
transition presents a shoulder around 20998(9) cm−1, which very likely corresponds to a
hot-band.
The sixth luminescence band, found at 20934(9) cm−1, is associated to a rather strong
intensity and very likely corresponds to a (n, 0) transition, and we may state that n = 2
here. As one may note, we also retrieve an excitation band at this energy, which is
rather unexpected: the (2, 0) absorption band should indeed be very weak, as the third
KD of 6H15/2 should display a very small statistical population at 77 K. Here, this is
most probably the very strong luminescence intensity that permits to observe such weak
transitions.
At 20860(9) cm−1, we find a shoulder in the luminescence spectrum, which very likely
corresponds to a hot-band (thus, a (n, 1) transition). We may thus presume it actually
consists in the (3,1) excitation band, and that the following intense peak at 20807(9) cm−1

is the corresponding (3,0) transition. As one may note, the energy gap between these two
bands (ca. 56 cm−1) is very close to the one between the (0,1) and (0,0) transition (ca.
63 cm−1), supporting this hypothesis.
The next four intense bands at 20751(8), 20614(8), 20542(8) and 20483(8) cm−1 are
also very likely associated to (n, 0) transitions, and we may attribute them to the (4,0),
(5,0), (6,0) and (7,0) excitations respectively. As one may note, we furthermore observe
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a shoulder at 20670(8) cm−1 (on the second peak), which very likely corresponds to
an additional hot-band. It is indeed found 56 cm−1 above the second transition, thus
suggesting it may be the (5, 1) transition.

We summarised the luminescence data in Table 5.9 and drew the energy diagram in
Figure 5.2.8. As one may note, the energy splitting in the ground 6H15/2 state is very
marked, with a total energy span of 663(17) cm−1. Furthermore, we also notice a strong
energy splitting between the two first KD, which indicates 5.12 might be a good candidate
for the observation of a SMM behaviour. As we will see in the following, it is indeed the
case.

Table 5.9: Absolute and relative luminescence energies associated to the 6H15/2 → 4F9/2 transition of
5.12 at 77 K, measured under an irradiation at 350 nm. The relative values are calculated with respect
to the (0,0) transition, and the values in bold font highlight the energy splitting in the ground state.

E (cm−1) Erel (cm−1) Attribution
21317(9) -171(18) (0,2)
21209(9) -63(18) (0,1)
21146(9) 0 (0,0)
21088(9) 58(18) (1,1)
21013(9) 133(18) (1,0)
20986(9) 160(18) (2,1)
20934(9) 212(18) (2,0)
20863(9) 283(18) (3,1)
20807(9) 339(18) (3,0)
20751(8) 395(17) (4,0)
20670(8) 476(17) (5,1)
20614(8) 532(17) (5,0)
20542(8) 604(17) (6,0)
20483(8) 663(17) (7,0)

4H5/2

E

4H7/2

4H9/2

6H15/2

Figure 5.2.8: Detail of the relative energy diagrams of 5.9 and 5.12, deduced from the 77 K spectra.
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5.2.3 Static magnetic properties
We thus studied the magnetic properties of these complexes, and first focused on the static
responses. The thermal dependence of the χmT product is presented on Figure 5.2.9. As
one can remark, to the exception of the Gd(III) derivative we retrieve a thermal evolution
for these complexes that is similar to the one we observed for the [LnTp2NO3] complexes,
with a monotonous decrease with temperature.(xxvi) In the case of 5.10, the χmT product
is nearly constant between 300 K and 6 K – with a value of 7.63 cm3.K.mol−1 –, and then
presents an abrupt decrease between 6 K and 2 K, to a final value of 5.23 cm3.K.mol−1.
These features are very classical of an isolated Gd(III) ion,64 and suggests strongly that
no significant intermolecular magnetic coupling is acting. As such, we may postulate the
thermal variations of the χmT product for all these complexes are due to crystal field
effects only.

Figure 5.2.9: Left: χmT = f(T ) curves for complexes 5.6 to 5.12, measured under a static field of 0.2
T on powder samples. Right: focus on the low temperature-low susceptibility area. Colour scheme: 5.6,
yellow; 5.7, cyan; 5.8, pink; 5.9, brown; 5.10, violet; 5.11, green; 5.12, orange.

Table 5.10: Measured and expected χmT values at 300 K for complexes 5.6 to 5.12, in cm3.K.mol−1.
Note that, for the Sm(III) derivative, the 300 K was not accessible and thus the 30 K value is given
instead.

Complex χmT (300 K) Free ion value
5.6 0.92 0.80
5.7 1.36 1.60
5.8 1.87 1.64
5.9 0.11 (30 K) 0.09
5.10 7.63 7.88
5.11 13.16 11.82
5.12 12.93 14.17

The observed room temperature values are in rather good agreement with the expected
ones in the free ion model, as highlighted in Table 5.11. The discrepancies may here also
be due to the inadequacy of the free ion model, since we know from the interpretation
of the luminescence spectra of 5.9 and 5.12 that the crystal field splitting may be much
larger than the thermal energy.

(xxvi)Note that, in the case of the Sm(III) derivative 5.9, the paramagnetic moment is too low to be
measured above 30 K.
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Figure 5.2.10: Left: magnetisation versus field curves for complexes 5.6 to 5.12, measured at 2K on
powder samples. Right: focus on the signal of 5.9. Same colour scheme as Figure 5.2.9.

Table 5.11: Measured and expected (in the free ion model) magnetisation values at 2 K and 5 T for
complexes 5.6 to 5.12, in μB .

Complex m Free ion value
5.6 0.81 2.14
5.7 0.66 3.20
5.8 1.10 3.27
5.9 0.08 0.71
5.10 5.46 7.00
5.11 5.32 9.00
5.12 4.51 10.00

On Figure 5.2.10, we represent the field dependence of magnetisation at 2 K for complexes
5.7 to 5.12. As one may notice, the Gd(III) derivative 5.10 does not seem to present
a marked saturation of its magnetisation, as expected. It indeed usually behaves like an
ideal and isotropic S = 7/2 spin, and thus presents a slow saturation of its magnetisation
with field. The Sm(III) derivative 5.9 does also not present a clear saturation of its
magnetisation, which is not surprising either. The fact that the 4H7/2 excited state of
Sm(III) is very close in energy to the ground 4H5/2 state indeed often leads Sm(III)
complexes to present an original magnetic behaviour compared to other lanthanide ions.
Here, we know from the luminescence measurements that the lowest KD of the excited
4H7/2 state of Sm(III) lies only 641(30) cm−1 above the highest KD of the ground 4H5/2

state, an energy difference that is of the order of magnitude of the CF splitting in the
ground state (403(31) cm−1). Very high fields are then required in order to reach the
saturation of magnetisation.
For the other complexes, magnetisation is nearly saturated at 5 T, and it is plain from
Table 5.11 that the final values are far from the ideal ones. As we previously said, this is
the likely sign of magnetic anisotropy, and since we saw that the CF splitting may be quite
large for these complexes – at least, we now this is the case of the Sm(III) and Dy(III)
derivative – they may present a slow relaxation of magnetisation at low temperature.

5.2.4 AC magnetic properties

We thus studied the susceptibility dynamics of all these complexes, to the exception of
the Gd(III) derivative. Indeed, as we formerly said Gd(III) is not expected to present
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any single-ion anisotropy because of its zero orbital momentum. As such, we would not
expect 5.10 to present any SMM behaviour.

Complex 5.6, [CeTp2Acac]. In the case of the Ce(III) derivative 5.6, we did not
observe any out-of-phase signal in the absence of a static magnetic field, neither did we
observe any modification of the in-phase signal. Hence, 5.6 does not display any genuine
SMM behaviour. We may presume this is, once again, the consequence of a strong QTM.
However, if we turn a static field on, a lag in the magnetic response starts to appear.
Noteworthy, this complex is, to our best knowledge, the second mononuclear Ce(III)
complex to present such a property, and only three other Ce(III)-based SMMs or field-
induced SMM were reported so far in the literature.216–218

We present on Figure 5.2.11 the χ′′
m = f(T ; ν) curves measured under a static field of

500 Oe. We retrieve the same kind of aspect as what we observed for the [LnTp2NO3]
complexes, though striking differences are seen. First of all, the signal over noise ratio is
much lower here than previously. This is the consequence of the overall weaker magnetism
of complex 5.6, as evidence by the low values of susceptibility (maximum around 0.04
cm3.mol−1 for the out-of-phase component). Additional measurements are called, but
unfortunately(xxvii) the magnetometer also broke down, delaying these measurements until
further notice.
Second, we may also notice that the high frequency curves display an interesting charac-
teristic at low temperature: χ′′

m does not decrease to zero, but rather seems to saturate
at a positive value. Usually, this is associated to a remnant QTM effect,219 which would
here not be completely suppressed at 500 Oe.
The dynamics of magnetisation of 5.6 may thus, at least at low temperature, be partially
controlled by QTM. At higher temperatures, other phenomena are likely involved, and
the temperature-frequency dependence of the maxima of the χ′′

m = f(T ; ν) curves may
yield valuable information. We represent on the right side of Figure 5.2.11 the ν = f(T )
curves for 5.6, in a log-log scale. It is plain from this Figure that there is an almost
linear dependency of ln ν with respect to ln T , which would be in good agreement
with either direct or Raman mechanisms. A marked deviation from linearity in the
corresponding Arrhenius plot furthermore suggests that barrierless mechanisms may be
acting (see Appendix D.2.1).
We thus tried to fit the ν = f(T ) data using these different mechanisms, in a stepwise
approach. First, we used the higher temperature points in the Arrhenius plot ln ν =
f(1/T ) in order to determine the eventual energy barrier, using a linear fitting. This
yielded ΔE = 33(2) K. Then, we tried to fit the ln ν = f(ln T ) curves using a linear
approach too, in order to determine the eventual Raman exponent n. Letting n be a
real number, we obtain n = 6.7(2), thus suggesting a T 7 Raman mechanism should be
involved. Then, we tried to fit the whole data set using a combination of this T 7 Raman
mechanism, an Orbach relaxation with ΔE = 33 K (fixed, thus we will not obtain an
error bar on this parameter), a direct relaxation mechanism (cT ) and a remnant QTM
contribution (d):

ν = aT 7 + ν0 exp

(
−ΔE

kBT

)
+ cT + d. (5.11)

As a result of this fitting procedure, we obtain

ν = 0.9(1)× 10−2 T 7 + 0.8(1)× 106 exp

(
−33

T

)
+ 13(2), (5.12)

(xxvii)Well, we may definitively say we are quite unlucky with machines...
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Figure 5.2.11: Left: χ′′
m = f(T ; ν) curves for complex 5.6, under a static field of 500 Oe and for

frequencies ranging from 1 Hz (brown) to 1200 Hz (pink). Right: frequency versus temperature plots for
the maxima of the χ′′

m = f(T ; ν) curves, in log-log scale. The solid red line corresponds to the best fit.

and we can see from Figure 5.2.11 that the agreement with the experimental data is very
good.(xxviii) Noteworthy, no direct contribution seems to be involved here.
Furthermore, we find here a T 7 Raman contribution, which is a very interesting result.
Indeed, we already observed such a Raman mechanism in the case of [DyTp2NO3], whose
structure is akin to the one of 5.6. In this latter case, the predominance of this T 7

mechanism could be linked to the quasi-null mixing in the ground KD (leading to a
negligible Kramers conjugation with any other state in the energy diagram), which itself
may be related to the adequacy of the ligand field with respect to the 4f electron density
deformation in this KD. We thus retrieved the same line of arguments as in Rinehart and
Long’s model, but applied to the Raman mechanisms.
Here, since 5.6 and 5.1 have similar structures, we may presume their ligand fields would
show a certain extent of similarity. Moreover, we also know that Dy(III) and Ce(III)
ions are expected to present similar magnetic properties in the framework of Rinehart
and Long’s model(xxix). Thus, using our findings on 5.1 we could already propose that,
provided that the magnetisation dynamics of 5.6 occurs – at least partially – via a Raman
mechanism, this latter would present the observed T 7 temperature dependence.
It thus seems that Rinehart and Long’s model, which was initially formulated to ra-
tionalise energy-barrier dependent dynamics of magnetisation, can be extended to the
rationalisation of Raman relaxation mechanisms. Nevertheless, we do not know the gen-
erality of such findings: can this extended model be applied on any complex, or is it only
working here because of the specificities of our complexes? The answer to such a question
requires a huge work, but we may already try to see if this model applies on the other
[LnTp2Acac] complexes.

Complex 5.7, [PrTp2Acac]. In the case of complex 5.7, no out-of-phase signal is seen
in the absence or presence of a static field. Furthermore, the in-phase susceptibility does
not either present any frequency dependence, thus suggesting that 5.7 does not present
any SMM or field-induced SMM behaviour. This is maybe not surprising: Pr(III) is indeed
a non-Kramers ion, as is Ho(III). As such, it may not present a two-fold degenerate ground
state, which is a necessary requirement for the observation of a SMM behaviour. Actually,

(xxviii)Unfortunately, due do the low signal over noise ratio, we cannot exploit the χ′′
m = f(χ′

m) (Cole-Cole)
plots in order to add a supplementary confirmation. Complementary measurements are thus truly needed
here.

(xxix)They indeed present an oblate deformation of their electron density in the MJ = ±J KD.
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Figure 5.2.12: Left: χ′′
m = f(T ; ν) curves for complex 5.8, under a static field of 2000 Oe and for

frequencies ranging from 1 Hz (brown) to 1200 Hz (blue). Right: frequency versus temperature plots for
the maxima of the χ′′

m = f(T ; ν) curves, in log-log scale. The solid red line corresponds to the best fit.

if we look more carefully to the static magnetic properties, we can notice a drop in the
χmT product at very low temperature, similar to what we observed in the case of the
Ho(III) complex 5.2. Most probably, 5.7 presents a non magnetic state low lying state,
which leads to a very fast magnetic relaxation at low temperature.

Complex 5.8, [NdTp2Acac]. In the case of 5.8, we also observe a non-zero out-of-
phase signal under an applied static field. Noteworthy, only three other Nd(III) based
SMM or field-induced SMM were reported up to date, and they are all polynuclear com-
plexes.217,220,221 Complex 5.8 is thus, as 5.6, a rather original and unusual compound.
Here, we first set the field at 2000 Oe, which yielded us the curves represented on Figure
5.2.12.(xxx) As one can see, we retrieve the same kind of aspect as previously for the
out-of-phase component, with two noticeable facts. First, the signal over noise ratio is
much better here, because of the much larger magnetic moment of 5.8. Furthermore, we
can also remark that χ′′

m tends to zero at low temperature for the highest frequencies,
thus suggesting any remnant QTM process can be safely neglected here. Actually, this is
not much surprising, since the applied field is rather high (and we know QTM is strongly
decreasing with magnetic field).
On the other hand, the ln ν = f(ln T ) plot on the right side of Figure 5.2.12 strongly
suggests Raman or direct mechanisms are involved in the dynamics of magnetisation of
5.8, since a marked linearity is observed. Deviations from linearity in the Arrhenius
(ln ν = f(1/T )) plot are furthermore seen, which supports the action of barrierless
processes. We thus unfold the same procedure as for complex 5.6: first, we tried to fit
the high temperature points of the Arrhenius plot using a linear function, which yields
an apparent energy barrier of 35.0(5) K. Then, we also performed a linear fitting on the
ln ν = f(ln T ) curve, which yields a slope of around 8.50(8), hence suggesting a T 9

Raman mechanism should be involved here.
Then, we tried to fit either the ln ν = f(ln T ) and ln ν = f(1/T ) curves using

ν = ν0 exp

(
−35.0

T

)
+ aT 9 + bT (5.13)

(xxx)We planned measurements at different static fields, and also at zero field, but the SQUID broke down
before we could perform them...
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(with a fixed energy barrier). In this case, the fitting procedure proved quite tricky, and
we had to try several starting sets of parameters to find a good agreement with both
curves. Eventually, we obtained:

ν = 9, 5(3)× 10−4 T 9 + 0.16(4)T. (5.14)

As one can see, we do not retrieve an Arrhenius contribution in this case, as what was
observed for the [LnTp2NO3] complexes. Nevertheless, we observe a two-process mag-
netisation dynamics, which agrees qualitatively well with the shape of the Cole-Cole
χ′′
m = f(χ′

m) curves in Appendix D.2.2. We indeed retrieve a semi-circular shape, and
the quality of the data at higher temperature allows to fit the curves with a Cole-Cole
equation, with α ranging from 0.03(2) at 4 K to 0.14(2) at 3.2 K. These values are in
the range of those we obtained for the [LnTp2NO3], and meet our expectations: at higher
temperatures, the T 9 Raman relaxation dominates, leading α to tend to zero, while at
lower temperature both phenomena are active and thus the range of relaxation rates is
larger (hence α is greater).
Interestingly, the temperature dependence of the Raman relaxation (T 9) implies the mag-
netic relaxation occurs within two states that are conjugated by Kramers theorem. As
such, as previously we may presume this is due to a marked mixing in the different KD
of the ground 4I9/2 state of Nd(III), and noteworthy in the states that are involved in the
relaxation of magnetisation. Such an extended mixing implies the ligand field in 5.8 does
not suit any of the pure MJ substates perfectly, in contrast to what we deduced for 5.6.
This can actually be once again understood in the framework of Rinehart and Long’s
model. Indeed, if we consider the 4f electron density distortions in the different MJ

substates of Ce(III) and Nd(III) (as evaluated for perfectly isolated ions), we can notice a
marked difference between these two ions. In the case of Ce(III), the 4f electron density
is markedly prolate when MJ = ±1/2, and becomes markedly oblate when MJ = ±5/2
(MJ = ±3/2 being an intermediate case). If we presume the ligand field in 5.6 will suit
oblate 4f electron density deformations, we could then expect the ground KD to be a
nearly pure | ± 5/2〉 state.
In the case of Nd(III), in all the MJ substates the 4f electron density deformation is
intermediate between prolate and oblate. Since the ligand field for this complex should
be same as the one of 5.6, it is not expected to be adequate for any of these substates,
and in turn we expect to observe a high degree of mixing in every KD, which should lead
an eventual Raman process to display a T 9 temperature dependence, as observed.

Complex 5.9, [SmTp2Acac]. We then turned to complex 5.9, which despite its weak
magnetism may be an interesting – if not exotic – compound to study. Indeed, a literature
survey revealed only one Sm(III)-based SMM has been reported so far, and it appears this
compound is a polynuclear Mn(III)-Sm(III) complex, whose SMM behaviour may not be
exclusively due to the lanthanide cation.SmSMM
In zero field, a frequency dependence of the in-phase susceptibility can be evidenced, as
shown on Figure 5.2.13. Here, we focused only on a limited temperature and frequency
range, because of the very low magnetic moment of the sample (below 10−8 emu, which is
near the sensitivity limit of a MPMS Squid). We indeed had to perform long measurements
(averaging over 5 values, long collection), and despite these drastic conditions we could
not measure any significant out-of-phase signal. Nonetheless, complex 5.9 is very likely a
SMM, and we would need additional measurements on a high-sensitivity magnetometer
in order to confirm this.
Noteworthy, the application of a static magnetic field (of 500 Oe) in this case seems to
deteriorate the signal. Most probably, this comes from the fact that a part of the in-
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Figure 5.2.13: χ′′
m = f(T ; ν) curves for complex 5.9, under a static field of 0 Oe (left) and 2000 Oe

(right), measured at 1 Hz (blue), 200 Hz (green), 600 Hz (orange) and 1200 Hz (red).

Figure 5.2.14: χ′′
m = f(T ; ν) curves for complex 5.12, under a static field of 0 Oe (left) and 500 Oe

(right), for frequencies ranging from 1 Hz (brown) to 1200 Hz (pink).

phase signal moves to the out-of-phase component, thanks to the suppression of QTM,
and as such the in-phase component becomes smaller – thus harder to measure – while
the out-of-phase component remains too small to be characterised...

Complex 5.11, [TbTp2Acac]. In the case of complex 5.11, no out-of-phase compo-
nent is observed either under a zero or 2000 Oe dc field. Furthermore, no frequency
dependence of the in-phase susceptibility can be evidenced, thus suggesting 5.11 does
not present a SMM or field-induced SMM behaviour. This may not be surprising since
Tb(III) is, as Pr(III) or Ho(III), a non Kramers ion, thus expected to display a completely
different magnetism with respect to Kramers ions.

Complex 5.12, [DyTp2Acac]. Finally, we also studied the AC response of 5.12, both
under a static field and in zero field. We represent the result of these measurements on
Figure 5.2.14.
It is plain to see that a frequency dependent out-of-phase signal is measured in both cases,
thus suggesting 5.12 behaves as a genuine SMM. The zero field curves do not display any
visible maximum, which we assume to be lying below 2 K. Interestingly, we can notice that
the frequency dependence of these curves is not monotonous: at constant temperature,
between 1 Hz and 400 Hz the χ′′

m values are increasing, and above 400 Hz they start to
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Figure 5.2.15: Frequency/temperature curves for the relaxation of magnetisation of complex 5.12,
measured under a zero (red) and 500 Oe (blue) dc field. Right panel: Arrhenius (log-reciprocal) repre-
sentation. Solid lines correspond to the best fits (see the text for more details).

decrease – to reach, at 1200 Hz, values that are close to those measured at 100 Hz.
Obviously, here we cannot employ the same methodology as previously to analyse the
dynamics of magnetisation(xxxi). Fortunately, an analytical expression exists for the out-
of-phase component, at constant temperature, as a function of the frequency of the field
(ν) and the relaxation time (τ):222

χ′′
m = (χT − χS)

(2πντ)1−α cos(πα/2)

1 + 2(2πντ)1−α sin(πα/2) + (2πντ)2−2α
(5.15)

where χT is the limit value of susceptibility for ν → 0, χS the limit value for ν → +∞,
and α the Cole-Cole distortion parameter. Using this equation to fit the χ′′

m = f(ν) curves
for all the temperatures thus permitted us to obtain the rate/temperature data for 5.12
at 0 Oe, which we represent on Figure 5.2.15.
Expectedly, the corresponding frequencies are high (above 2000 Hz), thus explaining why
we were not able to observe any maximum. We can also notice on the Arrhenius plot a
clear saturation of the relaxation rate at low temperature, in good agreement with the
expected prevalence of QTM. Interestingly, QTM does not seem to be the only active
mechanism in this regime, since a clear temperature dependence is seen. Additional
support comes from the α values, which range between 0.13(4) at 2 K and 0.11(2) at 8
K, thus suggesting a (narrow) distribution of relaxation rates is present. The Cole-Cole
plots seem to confirm this, the curves showing in all cases a rather semi-circular shape
(see Appendix D.2.2).
We then tried to model the dynamics of magnetisation using a combination of QTM,
Raman and Arrhenius mechanisms, using the same approach as previously.
Linear fitting of the high temperature region of the Arrhenius plots yielded an apparent
energy barrier of 4.3(6) K. This value does not correspond at all to the energy spectrum
we deduced from luminescence, and bears little meaning, thus suggesting no Arrhenius
contribution is actually involved here. On the other hand, no linearity is seen is the
ln ν = f(ln T ) plot, which does not permit us to propose any n value for an eventual
Raman contribution. From Figure 5.2.15, it appears that the temperature dependence of

(xxxi)It is indeed rather difficult to analyse the temperature/frequency dependence of maxima that do not
exist...
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Figure 5.2.16: Cole-Cole plots for 5.12, measured under a static field of 500 Oe, between 2 K (dark
blue) and 16 K (gray). For the sake of clarity, the low (T < 8K) and high (T > 8K) temperature plots
were separated. Solid lines in the high temperature plots correspond to the best fits.

the relaxation rate is slow, suggesting a low n value. Fitting of the data with

ν = ν0 + aT n + bT (5.16)

setting n as a real parameter yields n = 2.7(1). This very low value is quite surprising.
Indeed, as we have seen previously, Raman processes usually display a T 9 or T 7 temper-
ature dependence, with some accounts of T 5 dynamics when the phonon energy is much
larger than the energy difference between the magnetic states.81 A T 3 Raman dynamics
is thus rather unexpected, but it is generally assumed that n values between 1 and 6
are acceptable, and may reflect deviations from the Debye phonon model.223 Here, fixing
n = 3 leads to a rather nice reproduction of the experimental data, and we finally obtain
a QTM frequency of 1972(4) Hz.
If now we consider the 500 Oe data, the dynamics of magnetisation is even more inter-
esting. First, as one may see from Figure 5.2.14, the temperature range in which the AC
signal is observed is much larger than previously, with an out-of-phase response up to 16
K. Furthermore, several mechanisms are likely involved here, since at high frequencies a
marked increase of χ′′

m is seen at low temperatures, in addition to the maxima at higher
temperatures. This becomes plain if we look at the Cole-Cole plots, depicted on Figure
5.2.16. At low temperature, we indeed retrieve a semi-circular shape, plus additional
points at the lowest frequencies (right side of curves), as we observed for [DyTp2NO3]. As
temperature increases, the semi-circles get buried and the "tail" points shift to the left,
seemingly forming a new semi-circle. This becomes more obvious above 8 K, where the
first semi-circles are completely suppressed, while the second fully develop.219

We thus seem to observe a transition between a low temperature process (or mixture of
processes) and a high temperature one. This becomes more obvious on Figure 5.2.17,
where we represent explicitly the temperature dependence of the Cole-Cole plots. We
indeed observe a first relaxation process at very low temperatures and high frequencies,
which is progressively replaced by a second relaxation process, that is much slower (lower
frequency) at low temperature. In three dimensions (T, χ′

m, χ′′
m), this results in a "moun-

tain" landscape, the summits being associated with these two processes.
Quite likely, the low temperature process is – at least partially – driven by a remnant
QTM. We indeed remind that QTM in zero field was found to be rather strong (1908
Hz), and if we assume – as was observed for other mononuclear Dy(III) SMM – that the
QTM rate of relaxation varies as ν0Oe/(1 + bH2) with b ∼ 10−5 Oe−2, then at 500 Oe the
remnant QTM should still be non negligible (around 1500 Hz).191,203

On the other hand, the high temperature process may be driven by Arrhenius, Raman or
direct processes. Nevertheless, fitting of the ν = f(T ) curves in the whole temperature
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Figure 5.2.17: Top: 3D plot of the temperature dependence of the Cole-Cole curves for 5.12, measured
under a static field of 500 Oe. Bottom: corresponding top view. High values of χ′′

m are depicted in red,
intermediate values in yellow, and low values in blue.
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range case may be a quite complicated task, because of the admixture of relaxation
mechanisms. We may still try to focus on the highest temperature region (13.2 K to 16.0
K), where the Cole-Cole plots seem to present little to no distortion, suggesting the first
mechanism is definitively turned off.
Fitting of the Cole-Cole plots proves possible in that temperature region, and the corre-
sponding α values range, respectively, between 0.05(2) to 0.01(1). First of all, the possi-
bility to fit the data confirms the admixture of the low and high temperature regimes is
not encountered any more. Furthermore, the low α values point to a unique relaxation
process in this temperature region.
ln ν = f(1/T ) and ln ν = f(ln T ) plots both present a marked linearity in this temper-
ature range. In the first case, we obtain an energy barrier of 117(5) K, whereas in the
second case we obtain a slope of n = 8.8(3), thus implying a T 9 Raman mechanism could
be active in that case. Interestingly, the deduced energy barrier does not match exactly
the one we obtained using luminescence (87(5) cm−1, to be compared to the expected
133(18) cm−1). We may thus consider that the high temperature regime is principally
driven by T 9 Raman mechanism, though we cannot unambiguously opt for one mechanism
or the other basing solely on experimental evidences...

5.2.5 Ab initio modelling
In order to clarify this, we thus tried to unfold the same computational methodology
as for the [LnTp2NO3] complexes, i.e. SA-CASSCF+RASSI-SO calculations with nine
electrons spanning the seven 4f orbitals of Dy(III). We employed the same ANO basis
sets and contractions, and used the same number of roots (21 sextets, 224 quartets and
300 doublets) in the RASSI-SO calculation.
However, in that case the reproduction of the magnetic properties is rather poor, and
we do not retrieve the same crystal field splitting of the ground 6H15/2 state of Dy(III).
Actually, we did not manage either to reproduce the magnetic properties of 5.8 and 5.9,
as exemplified on Figure 5.2.18. It thus seems that our approach, though quite standard,
fails to correctly reproduce the physical behaviour of these [LnTp2Acac] complexes. For
the moment, we do not know the exact reason of these difficulties, but they seem quite
systematic over the family, and might be related to the specificity of the [LnTp2Acac]
complexes.
We discussed this problem with Dr. B. Le Guennic, and we are currently performing
a series of calculations in order to identify the cause of these problems. Possibly, this
is related to the definition of the active space. In our calculations, the only degrees of
freedom are indeed the occupations (and composition) of the 4f orbitals, assuming that
the ligands can be efficiently represented by a unique set of orbitals and occupations in all
the CASSCF states we are computing. This may actually not be a good approximation,
as the electronic structure of our ligands may vary from one state to another, in order
to stabilise the different CASSCF roots. Here, we may presume that Acac will tend to
present this kind of behaviour, as it is a rather polarisable ligand (with an extended
π-conjugated system). As such, we should include some ligands orbitals in our active
space (both occupied and virtual) in order to permit such polarisation effects. These
calculations are currently performed.

5.2.6 Long story short
In short, basing on the interesting properties of the [LnTp2NO3] complexes, we synthesised
and studied a similar family of lanthanide complexes, [LnTp2Acac]. Though virtually
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Figure 5.2.18: Comparison between the experimental (bullet points) and computed (solid lines) mag-
netic properties of 5.12 (left, red curves), 5.8 (middle, green curves) and 5.9 (right, blue curves).

any Ln(III) ion can be used to obtain these complexes, we observed a non negligible
polymorphism for the heavier ones, which forced us to restrict the study to the lighter
lanthanides (Ce - Dy). To the exception of the Ce(III) and Gd(III) derivatives, these
complexes present moderate to strong luminescence upon excitation at 300 nm, in the
near IR range – Nd(III) derivative 5.8 – or in the visible range. In the case of the Sm(III)
5.9 and Dy(III) 5.12 derivatives, a very high resolution can be obtained on the 4f → 4f
transitions, allowing to draw their energy diagrams in the ground state on an experimental
basis. Note that one often has to use deconvolution procedure to achieve this, which is
not the case here.
From the viewpoint of magnetism, these complexes proved also very interesting. In the
case of the Ce(III) and Nd(III) derivatives, we were indeed able to evidence a field-induced
SMM behaviour, which up to date was only reported once for mononuclear complexes
based on these lanthanide ions. More interestingly, we could tentatively rationalise the
observed temperature dependence of the relaxation rate using the same line of arguments
as in Rinehart and Long’s model. In the case of the Ce(III) complex, the slow relaxation is
indeed partially piloted by a T 7 Raman relaxation, as was also observed for [DyTp2NO3].
In that latter case, we could show this T 7 process stemmed from the adequacy of the ligand
field towards the oblate electron density deformation in the ground MJ = ±15/2 KD. In
the case of Ce(III), the MJ = ±5/2 KD also presents a similar oblate deformation of the
4f electron density, and since the [LnTp2Acac] and [LnTp2NO3] structures are rather alike,
we may expect the same line of argument to hold. In the case of Nd(III) on the other hand,
a T 9 dynamics is observed, consistent with the fact that no MJ substate presents a clear
oblate deformation of the 4f electron density (no MJ is specifically strongly stabilised,
and large extents of mixing can be expected).
We also seem to observe a slow relaxation in the case of the Sm(III) derivative, even in
the absence of a static magnetic field. However, in this latter case the signal is too low
to draw any conclusion, and we would need to measure the AC response of this sample
again. In the case of the Dy(III) derivative, a genuine SMM behaviour is observed. In zero
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field, the slow relaxation is piloted by a fast QTM, in addition to a phonon-bottleneck
limited direct process. Turning on a static field drastically changes the AC response,
two regimes of relaxation being evidenced. The first regime is observed at very low
temperatures, and most presumably corresponds to the zero-field processes. The second
regime is observed at much higher temperatures, and its nature is less clear. A strong
temperature dependence is indeed observed, originating from a single process that can be
analysed as stemming either from an Arrhenius or Raman (T 9) mechanism. Using the
same line of argument as previously, we might suppose the dynamics of magnetisation is
actually piloted by the Arrhenius mechanism, since we would rather expect a T 7 Raman
contribution. Nevertheless, a non negligible mismatch is observed between the deduced
energy barriers from luminescence spectroscopy and fitting of the magnetic data, and we
thus strongly need the support of theoretical calculations.

5.3 Conclusion
In this section, we showed how a combination of experimental – magnetism, luminescence,
X-ray diffraction – and theoretical studies allowed to rationalise the physical properties
of two related series of lanthanide coordination complexes, [LnTp2NO3] and [LnTp2Acac].
In both cases, field-induced or genuine SMM behaviours could be evidenced, even though
quite unexpected in the framework of Rinehart and Long’s model, since they involve
lanthanide ions with very different 4f electron density deformations in their KD. We
could show that, as already reported, these unexpected slow magnetisation dynamics are
the consequence of the presence of barrierless relaxation processes, noticeably Raman and
direct mechanisms, which were not considered in the former model.
Nevertheless, our findings seem to suggest one of these mechanisms – the Raman relaxation
– could be rationalised using a similar line of argument as in this model. More explicitly, a
T 9 Raman dynamics could be expected when the ligand field is not well adapted to the 4f
electron density deformation in any ±MJ substate, because this induces a strong mixing
in all the possible KD – thus all relaxation pathways connect Kramers conjugated states.
On the other hand, if the ligand field is adapted to the 4f electron density deformation in
one of the ±MJ substate – ideally, the MJ = ±J one, as it leads to the highest magnetic
moment – we may expect a T 7 Raman dynamics, since the ground KD will be a pure MJ

substate.
Of course, we would need to complete this study in order to confirm or infirm this hy-
pothesis. Further theoretical modelling of the [LnTp2Acac] complexes is planned in the
close future, as well as complementary measurements(xxxii). We would also need to study
supplementary complexes, in order to accumulate evidence for (or against) our model.
Here, we may use the high tunability of the acetylacetone ligand. We could indeed
employ different β-diketonate ligands in order to enlarge the family of [LnTp2L] com-
plexes, with L a bis-oxygenated ligand. Actually, a first attempt of synthesis involving
1,5-diphenylacetylacetone proved successful, thus comforting us in this approach.

(xxxii)Though we principally wait for the apparatuses to be fixed, which may take some times unfortu-
nately...



General conclusion

Throughout this thesis, our work focused on the description and rationalisation of the
properties of coordination complexes, by combining experiments and quantum calcula-
tions, with the underlying goal of installing a fruitful dialogue between both approaches.

To do so, we first employed tools from the framework of conceptual Density Functional
Theory in order to rationalise the coordination properties of ligands, thus revisiting the
ligand field theories in the words of Parr and Pearson (i.e. philicities and chemical hard-
ness). The success of this first survey led us to study the trans effects in octahedral
complexes within the same framework. With a very simple theoretical model, we man-
aged to characterise and rationalise these effects using a very similar line of arguments.
Briefly speaking, we could show that trans effect is simply the translation of a reduction
in the electrophilicity of the trans position, which itself very likely originates from the
ability of certain ligands to efficiently donate their electron density to the metal cation.
A rule of thumb thus appeared, in good agreement with experiment: the more donor, the
more trans-orienting. More interestingly, using a real space partition of the Dual Descrip-
tor, we could quantify this electrophilicity modulation and, for the first time, contemplate
the possibility to build a purely theoretical scale of the trans-orienting ligands. Though
only semi-quantitative, as a consequence of the different approximations lying within our
theoretical approach, this scale proved nevertheless to correlate nicely with experimental
data.

We then turned ourselves to the syntheses and characterisation of transition metal
complexes of amino-acids based Schiff base analogues. Though syntheses of the ligands
proved very simple, isolation of the corresponding complexes was very challenging, and
for all transition metal ions we used but Cu(II), was impossible. In that latter case, only
two trinuclear complexes and two 1D coordination polymers could be isolated, and in all
cases side compounds were found, suggesting hydrolysis took place.
To explain this, resorting to both experimental and computational studies proved very
valuable. This indeed allowed to determine the solution structure of the free ligands and
their Cu(II) complexes, which in turn allowed to initiate a survey of the reactivity of
the latter towards water. To do so, we employed a two-steps approach: first finding the
reaction mechanism at a relatively low level of theory (in this case, B3LYP plus double-
zeta basis sets and pseudopotentials on Cu), and use this first path as an input for a higher
level calculation (ωB97xD, triple zeta basis sets with diffuse and polarisation functions,
and pseudopotentials on Cu). At the lower level, we managed to find a reaction mechanism
that indeed leads to the formation of the starting amino-acid and acetylacetone moieties,
but its first step is too energetically expensive to take place. At the higher level of theory,
this first step decomposes into two elementary processes, with much lower energy barriers,
thus rendering the process rather feasible. Nevertheless, we did not manage yet to retrieve
the full reaction path at the higher level of theory – after nearly two years of work –, and
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more calculations are called in order to confirm our results. It could also be interesting
to perform the same kind of survey for the other transition metal cations we employed.
We also studied the magnetic properties of the four aforementioned crystalline compounds.
In the case of the coordination polymers, a strong antiferromagnetism is seen, whereas
in the case of the trinuclear complexes a weak antiferromagnetic coupling is observed.
Because of the triangular geometry of these complexes, we wondered whether this antifer-
romagnetic coupling would result in a frustrated magnetism or, as was already observed
in the case of the glycine-based analogue, in a much more exotic situation with quasi
degenerate quartet and doublet states. We thus tried to model these complexes using
very high level ab initio calculations. In agreement with what was observed in the case
of the glycine derivative, only the highest level calculations seem to properly model our
system. At the SA-CASSCF or DCCI-1 level of theory, a total ferromagnetic picture
is indeed obtained, and a tendency towards antiferromagnetism is only observed at the
NEVPT2 level – the DDCI-2 and DDCI-3 approaches being out of reach because of the
size of our system. Interestingly, in agreement with Malrieu’s conclusion we seem to tend
to a more accurate description by a systematic enlargement of the active space in the
NEVPT2 calculations, and using the outcome from our first study we proposed a rational
way to perform these enlargements. Unfortunately, convergence becomes more and more
problematic as the active space size increases, but we have good hope that this approach
will eventually succeed.

In a third time, we turned ourselves to lanthanide-based mononuclear Single Molecule
Magnets. In the first family of complexes we studied, based on late lanthanide ions,
a rather unexpected similar field-induced slow dynamics of magnetisation could be ev-
idenced for Dy(III), Er(III) and Yb(III) ions. Using a combination of magnetic and
luminescence measurements, in addition to SA-CASSCF(PT2)/RASSI-SO calculations,
we managed to identify the cause of this apparent similarity: the slow dynamics, in these
three cases, is not governed by any energy-barrier dependent mechanism, but by Raman
and direct processes, and as such Rinehart and Long’s model does not hold. Nevertheless,
we managed to rationalise the temperature dependence of the Raman processes using the
very same lines of argument as those involved in this model, thus suggesting it could be
extended.
Unfortunately, we did not manage to isolate the same kind of complexes with earlier
lanthanides in order to confirm it. Using very simple DFT calculations, we could show
that most probably this is due to the lanthanide contraction, which renders the structure
unstable for larger (earlier) ions. Incidentally, we could prove by Raman spectroscopy
that, indeed, the lanthanide contraction has a sensible impact on our complexes.
We thus turned ourselves to a closely related family of complexes, changing the nitrate for
a 2,4 pentanedionate ligand. Though already reported in the literature, these complexes
were not fully characterised, and noteworthy their magnetic and luminescence properties
were not studied. We synthesised the complexes for all the lanthanide ions we had at our
disposition, and focused in this preliminary study on the earlier elements (La-Nd, Sm,
Gd-Dy) which are isostructural. Most of these complexes displayed a field-induced SMM
behaviour, and in the case of the Dy(III) derivative the slow dynamics of magnetisation
could still be observed under a zero static field. Evidences tend to suggest the same is
true for the Sm(III) derivative, but the signal was too low to be unambiguously assigned.
Interestingly, the field-induced SMM behaviour of the Nd(III) and Ce(III) derivative is
also partly piloted by Raman relaxation, and could be rationalised using the same line
of arguments as previously. More interestingly, the Dy(III) derivative displays a complex
dynamics under a static field, with two distinct regimes of relaxation. Interestingly, the
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nature of both the low temperature and high temperature regimes remains elusive, and
further measurements and ab initio calculations are needed in order to fully rationalise
this slow dynamics of magnetisation.





Conclusion générale

Au travers de cette thèse, nous nous sommes attachés à décrirer et rationaliser les pro-
priétés de complexes de coordination par l’emploi simultané de la chimie expérimentale
et théorique, avec pour but sous-jacent d’instaurer un dialogue fructueux entre les deux
approches.

Pour ce faire, nous avons dans un premier temps employé les outils de la théorie de la
fonctionnelle de la densité conceptuelle afin de rationaliser les propriétés de coordination
des ligands, revisitant de fait les théories de type "champ de ligand" dans une approche
de type Parr-Pearson (i.e., en termes de philicités et dureté chimique). Le succès de
cette première étude nous a ensuite amené à analyser les effets trans dans les complexes
octaédriques par le même genre d’approche. A partir d’un modèle théorique très simple,
nous avons alors pu caractériser et rationaliser ces effets par des raisonnements très sim-
ilaires. En bref, nous avons pu montrer que ces effets trans traduisent simplement une
réduction de l’électrophilie au niveau de la position de coordination trans, originant elle-
même de la faculté qu’ont certains ligands de pouvoir efficacement "donner" de la densité
électronique au cation métallique. Une règle générale s’est alors dessinée, en bon accord
avec les données expérimentales : plus un ligand est donneur de densité électronique, et
plus il est trans orienteur. De manière plus intéressante, nous avons pu quantifier cette
modulation de l’électrophilie grâce à une partition du descripteur dual par domaines, et
pour la première fois pu envisager la constitution d’une échelle purement théorique des
ligands trans-orienteurs. Malgré son caractère semi-quantitatif, conséquence directe des
nombreuses simplifications induites par notre approche théorique, cette échelle concorde
néanmoins efficacement aux données expérimentales.

Nous nous sommes ensuite intéressé à la synthèse et à la caractérisation de complexes
d’éléments de transition et de ligands de type "base de Schiff" dérivant d’acides aminés.
Bien qu’il se soit révélé très simple d’isoler les ligands, la synthèse des complexes a en
revanche été une tâche particulièrement ardue. En effet, de tous les éléments de transition
employées, seul le Cu(II) nous a permis d’isoler quatre solides cristallins (deux polymères
de coordination monodimensionnels, et deux complexes trinucléaires), et des co-produits
d’hydrolyse ont systématiquement été observés.
Dans ce cas, l’utilisation jointe de méthodes expérimentales et computationnelles s’est
avérée payante. En effet, nous avons pu de ce fait déterminer la structure adoptée en
solution par les ligands libres mais aussi par les complexes de cuivre, ce qui nous a ensuite
laisser envisager la possibilité d’étudier la réactivité de ces derniers vis-à-vis de l’eau.
Pour ce faire, nous avons employé une stratégie en deux étapes : dans un premier temps,
chercher le mécanisme de la réaction d’hydrolyse en solution à un relativement bas niveau
de théorie (ici, B3LYP et des bases de qualité double-zêta, les électrons de cœur du cuivre
étant représentés par un pseudopotentiel), puis utiliser le chemin ainsi déduit comme point
de départ d’une série de calculs de plus haut niveau (ici, ωB97xD, bases triple-zêta avec
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inclusion de polarisation et de fonctions diffuses, et pseudopotentiel sur le cuivre). Au
plus bas niveau, nous avons effectivement pu déterminer un chemin réactionnel menant
à la formation des réactifs initiaux – acide aminé et acétylacetonate –, mais le coût
énergétique de la première étape est trop haut pour être envisageable en pratique. Au plus
haut niveau, cette première étape se décompose en deux processus élémentaires, auxquels
sont associés de bien plus faibles barrières d’énergie et donc bien plus envisageables en
pratique. Néanmoins, nous n’avons pas pu retrouver l’entièreté du chemin réactionnel à
ce niveau de théorie – malgré deux ans de travail –, et des calculs supplémentaires sont
donc nécessaires avant de pouvoir confirmer définitivement la validité de ces résultats. Il
serait aussi intéressant de pratiquer le même genre d’étude dans le cas des autres éléments
de transition employés expérimentalement.
Quoiqu’il en soit, nous avons aussi étudié les propriétés magnétiques des quatre solides
cristallins précédemment mentionnés. Dans le cas des polymères de coordination, un
antiferromagnetisme marqué est observé, comme attendu, tandis que dans le cas des
complexes trinucléaires un faible couplage antiferromagnétique semble agir. Du fait leur
géométrie triangulaire, nous nous sommes demandés si ce couplage antiferromagnétique
se pouvait se traduire par de la frustration magnétique, ou si – de manière similaire à ce
qui avait été vu dans le cas d’un complexe analogue dérivé de la glycine – un magnétisme
plus exotique encore n’était pas à l’œuvre, avec deux états quadruplet et doublet quasi
dégénérés. Nous avons donc cherché à modéliser ces complexes par des calculs ab initio
de très haut niveau. En accord avec les résultats précédemment obtenus dans le cas de
l’analogue à base de glycine, seuls les plus hauts niveaux de théorie semblent fournir une
description correct de nos complexes. En effet, au niveau SA-CASSCF comme DDCI-
1, un comportement ferromagnétique est obtenu, et seuls les calculs NEVPT2 montrent
une tendance vers l’antiferromagnétisme – les calculs de type DDCI-2 et DDCI-3 étant
interdits par la trop grosse taille de notre système –. De manière intéressante, en accord
avec les conclusions de Malrieu nos calculs semblent montrer une meilleure description
au fur et à mesure de l’élargissement de l’espace actif. Par ailleurs, les résultats de notre
première étude nous ont permis de suggérer une méthode rationnelle pour réaliser ces
élargissements, mais des problèmes de convergence nous ont pour le moment empêché de
confirmer pleinement ces hypothèses. Nous avons néanmoins bon espoir que ces résultats
soient confirmés dans un futur proche.

Dans un troisième temps, nous nous sommes intéressés à d’autres composés au mag-
nétisme original : les molécules aimants mononucléaires à base d’ion lanthanides. Au
sein de la première famille de complexes que nous avons étudié, basés sur les lanthanides
tardifs, nous avons pu mettre en évidence une similaire lente dynamique de l’aimantation
pour les composés de Dy(III), Er(III) et Yb(III). Par la combinaison de mesures magné-
tiques, de luminescence et de calculs SA-CASSCF(PT2)/RASSI-SO, nous avons pu mettre
en évidence la cause de cette apparente similarité : dans ces trois cas, la dynamique de
l’aimantation à basse température n’est pas gouvernée par des mécanismes de type Ar-
rhénius, mais plutôt par des mécanismes Raman et direct. De fait, le modèle de Rinehart
et Long (qui n’incorpore pas ces mécanismes) ne s’applique a priori plus. Néanmoins,
nous avons pu rationaliser la dépendance en température des mécanismes Raman en invo-
quant le même genre d’arguments que ceux utilisés dans ce modèle, suggérant ainsi qu’il
pourrait possiblement être étendu.
Malheureusement, il n’a pas été possible d’isoler le même genre de complexes avec d’autres
ions lanthanides (du début de la série), et donc de confirmer ou d’infirmer directement
notre hypothèse. Un simple calcul DFT nous a permis de suggérer que cette impossibilité
est une conséquence de la contraction des lanthanides, la structure cherchée devenant
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instable pour les trop gros ions lanthanides. Incidemment, nous avons aussi pu mettre en
évidence l’impact de la contraction des lanthanides sur nos complexes par spectroscopie
Raman.
Nous nous sommes donc tournés vers une seconde famille de complexes, apparentée à la
précédente (le ligand nitrate étant remplacé par un acetylacetonate). Bien que déjà décrits
dans la littérature au cours des années 1980, ces complexes n’avaient pas été étudiés en
détail, et en particulier leurs propriétés magnétique ou de luminescence n’avaient pas été
caractérisées. Nous avons donc synthétisé les complexes correspondant à l’ensemble des
ions lanthanides à notre disposition, et nous nous sommes tout particulièrement intéressés
aux lanthanides du début de la série (La-Nd, Sm, Gd-Dy) pour cette étude préliminaire,
puisque les complexes ainsi isolés sont isostructuraux. La plupart de ces complexes ont
présenté un comportement de molécule-aimant induit par le champ, et dans le cas du
dérivé de dysprosium une dynamique lente de l’aimantation a même pu être mise en
évidence en l’absence de champ. Les premières mesures sur l’analogue de samarium
suggèrent qu’il présente aussi un véritable comportement SMM, mais le signal s’est avéré
trop faible pour être traité en détail.
De manière intéressante, la dynamique lente de l’aimantation sous champ des complexes
de Nd(III) et Ce(III) s’avère partiellement pilotée par un mécanisme Raman, dont la
dépendance en température peut se rationaliser par les mêmes arguments que précédem-
ment. De façon plus intéressante encore, la dynamique de l’aimantation du dérivé de
Dy(III) sous champ est très complexe, impliquant deux régimes distincts de relaxation.
La nature de ces deux régimes reste assez mystérieuse, et des mesures complémentaires,
ainsi que des calculs ab initio sont donc nécessaires.





Appendix A

Syntheses

Mass spectra were performed at the "Centre commun de spectrométrie de masse de
l’Université Claude Bernard - Lyon 1". NMR spectra were recorded at the "Centre Com-
mun de RMN de l’Université Claude Bernard - Lyon 1", on a AVS 300 Bruker apparatus
(300 MHz).

A.1 Schiff bases deriving from α amino acids

A.1.1 Ligands syntheses

Figure A.1.1: Reaction scheme corresponding to the synthesis of LL1HK. The same procedure was
used for all the α amino-acids listed in Chapter 4.

The procedure is adapted from S. Petit,159 and was used for alanine, leucine and valine
(D, L and DL):
1.114 g (12.5 mmol) of L-alanine are suspended in 12.5mL of a 1 M solution of KOH
in methanol (1 equivalent), at room temperature. After 30 minutes of stirring, the solid
partly dissolves and yields a fine suspension. 1.252 g (1 equivalent) of 2,4-pentanedione are
dissolved in 5 mL of methanol and added dropwise to the mixture. The solution quickly
becomes yellow. It is then refluxed overnight (typical experiment, 17 hours), yielding a
yellow-orange clear solution (no traces of solid remaining). The reaction mixture is allowed
to cool down, and the solvent is removed under reduced pressure (rotary evaporator). The
resulting yellow solid is washed with petroleum ether, then extracted with methanol and
filtered. Methanol is removed under reduced pressure, yielding 2.561 g of LL1HK as a
white-yellow solid. Yield: 98%.

NMR spectroscopy of DL1HK and DL2HK (in D2O):

DL1HK: δ = 1.33 ppm (d, J=7.16 Hz, 3H - f), δ = 1.85 ppm (s, 3H - a or c), δ = 1.90
ppm (s, 3H - c or a), δ = 4.02 ppm (q, J=7.16 Hz, 1H - e), δ = 5.07 ppm (s, 1H - b).
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Table A.1: ESI mass spectrometry (in MeOH) and IR (powder sample).

Ligand IR: ν̄C−−O ν̄C−N ESI (u)
LL1HK 1595 cm−1 1515 cm−1 +172.1, [LL1H3]+

1537 cm−1 −170.0, [LL1H]–
DL1HK 1593 cm−1 1515 cm−1 +172.1, [DL1H3]+

1538 cm−1 −170.0, [DL1H]–
DLL1HK 1598 cm−1 1515 cm−1 +172.1, [DLL1H3]+

1535 cm−1 −170.0, [DLL1H]–
LL2HK 1599 cm−1 1511 cm−1 +200.1, [LL2H3]+

1537 cm−1 −198.1, [LL2H]–
DL2HK 1598 cm−1 1514 cm−1 +200.1, [DL2H3]+

1535 cm−1 −198.1, [DL2H]–
DLL2HK 1597 cm−1 1517 cm−1 +200.1, [DLL2H3]+

1541 cm−1 −198.1, [DLL2H]–
LL3HK 1595 cm−1 1516 cm−1 +214.1, [LL3H3]+

1546 cm−1 −212.3, [LL3H]–
DL3HK 1597 cm−1 1516 cm−1 +214.1, [DL3H3]+

1545 cm−1 −212.3, [DL3H]–
DLL3HK 1597 cm−1 1518 cm−1 +214.1, [DLL3H3]+

1538 cm−1 −212.3, [DLL3H]–

DL2HK: δ = 0.76 ppm (d, J=6.78 Hz, 1H - f ’), δ = 0.84 ppm (t, J=5.93 Hz, 6H - g’),
δ = 1.81 ppm (s, 3H - a or c), δ = 1.88 ppm (s, 3H - c or a), δ = 3.81 ppm (qd, J=4.14
Hz, 1H - e’), δ = 5.07 ppm (s, 1H - b).

Calculated: δ = 1.27 ppm (J=6.10 Hz, f), δ = 1.86 ppm (c), δ = 1.90 ppm (a), δ =
3.88 ppm (J=6.10 Hz, e), δ = 4.85 ppm (b).
For DL1H

–, on an optimised structure with an implicit solvent (H2O, PCM), at the
B3LYP/6-311++G(d) level, using the GIAO method. Chemical shifts are relative to
TMS, computed at the same level of theory.

A.1.2 Complexations
The procedure is derived from S. Petit, and was applied for the D, L and DL enantiomers
of ligands L1HK, L2HK and L3HK: 159

87 mg (0.5 mmol) of CuCl2 · 2 H2O (or 125 mg of CuSO4 · 5 H2O) are dissolved in 5 mL
of methanol, and added dropwise to a solution of 105 mg (1 equivalent) of LL1HK in 5
mL of methanol. The resulting solution is of a deep emerald green colour, which changes
to dark blue upon addition of 0.15 mL (2 equivalents) of triethylamine. After filtration,
this solution is left to slowly evaporate. Within a few weeks, the reaction mixture is
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almost dry and, in the cases of L1HK and L2HK ligands, several crystals are seen as well
as an off-white powder. The two solids are easily separated using sonication in heptane,
affording single crystals amenable for X-ray diffraction.

Powder X-ray diffraction: Comparison between the calculated and experimental pow-
der X-ray diffractograms reveal the uniqueness of the obtained crystalline phases.

A.2 Hydrotris-pyrazolylborohydride based lanthanide
complexes

A.2.1 KTp synthesis

Figure A.2.1: Reaction scheme corresponding to the synthesis of KTp.

The procedure is adapted from S. Trofimenko:181

1.079 g (0.02 mol) of KBH4 and 5.438 g (0.08 mol, 4 equivalents) of pyrazole are mixed
together in a 100 mL round bottomed flask, and placed in an oil bath. The flask is
connected to an air condenser, itself connected to a safety flask and a 2 L measuring
cylinder filled with water and inverted in a reservoir of water (apparatus for collection of
gas over water). The mixture is stirred and the temperature is increased progressively to
190 ◦C, with 30 min. plateaux at 105 ◦C and 125 ◦C. After 4 to 6 hours, a total volume
of 1340 mL of H2 is collected (3 equivalents). The slurry, consisting of KTp in molten
pyrazole, is then cooled down to room temperature. 20 mL of toluene are added, and the
mixture is stirred and heated until the solid pyrazole has completely dissolved (around 90
◦C). The resulting fine suspension is filtered, washed with 2×20 mL of toluene, 2×20 mL
of heptane, 2×10 mL of pentane and let to dry in air. The procedure affords 3.117 g of
KTp as a white, crystalline solid. Yield: 62%.

ESI mass spectrometry (in MeOH):

m/Z (u) Intensity (%) Ion
-213.2 100 [Tp]–
-449.2 60 [NaTp2]–
-685.0 20 [Na2Tp3]–

NB: no signal is observed in the positive m/Z area.

1H NMR in CD3OD, 300 MHz: δ = 6.15 ppm (t, 3H); δ = 7.15 ppm (d, 2H); δ =
7.50 ppm (d, 3H).
NB: The hydride H is not seen, as underlined by Trofimenko.
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A.2.2 [LnTp2NO3] complexes
The following method has been employed for Ln = Dy, Ho, Er, Yb and Y.
234 mg of Yb(NO3)3 · 6 H2O (0.5mmol) were dissolved in 10 mL of methanol, and added
dropwise to a solution of 252 mg of KTp (2 equivalents) in 10mL of methanol. Precipi-
tation occurs during the addition. The resulting suspension is stirred for 5 to 10 minutes
at room temperature, then evaporated to dryness (rotary evaporator). The solid is then
extracted with 2×10 mL of dichloromethane, or 2×15 mL of chloroform, and the remain-
ing solid is washed with an additional aliquot of the same solvent. The solution is then
layered with heptane (2 to 5 mL) and left to slow evaporation. Single crystals are obtained
within 5 to 10 days.

ESI mass spectrometry (in CH2Cl2): each time a single peak is observed, corre-
sponding to a [LnTp2]+ ion: +589.1 u (Dy), +591.3 u (Ho), +592.4 u (Er), +600.1 u
(Yb), +515.3 u (Y). Nothing is observed in the negative m/Z region.

Powder X-ray diffraction: Comparison between the calculated and experimental pow-
der X-ray diffractograms reveal the uniqueness of the obtained crystalline phases.

A.2.3 [LnTp2Acac] complexes
The following methods have been employed for Ln = La - Nd, Sm - Er, Yb and Y.

Non-aqueous way. 252 mg of KTp (1 mmol), 0.5 mL of a 1M solution of KOH in
methanol (0.5 equivalent) and 0.05 mL of 2,4-pentanedione (AcacH, 0.5 equivalent) are
mixed in 10 mL of methanol. 187 mg of DyCl3 · 6 H2O (0.5 equivalents), dissolved in 10
mL of methanol, are added dropwise to the previous solution. Precipitation occurs during
the addition, and the resulting suspension is stirred at room temperature for 10 additional
minutes. Afterwards, the solvent is removed under reduced pressure (rotary evaporator).
Then, the solid is extracted in 3×10 mL of CH2Cl2, and the solution is layered with
heptane (5 mL). It is then left to slowly evaporate. Single crystals are obtained within
one week, possibly after recristallisation (La, Sm).

Aqueous way. Adapted from J. Moss215. 252 mg of KTp (1 mmol), 0.05 mL of AcacH
(0.5 equivalents) and 0.5 mL of a 1M solution of KOH in water are mixed in 10 mL of
water. 187 mg of DyCl3 · 6 H2O (0.5 equivalents), dissolved in 10 mL of water, are added
to the previous solution. Precipitation occurs immediately, and the resulting suspension
is stirred for 10 minutes. 20 mL of dichloromethane is then added, and the mixture is
vigorously stirred for 10 minutes. The resulting two liquid phases are separated, and the
organic layer is dried with Na2SO4. It is then filtered, layered with heptane (5 mL) and
left to slowly evaporate. Single crystals are obtained within one week.

ESI mass spectrometry (in CH2Cl2): nothing is seen in the negative nor positive
m/Z region.

Powder X-ray diffraction: Comparison between the calculated and experimental pow-
der X-ray diffractograms reveal the uniqueness of the obtained crystalline phases.



Appendix B

Crystal structures

B.1 Single crystal X-ray diffraction: details
Single crystal X-ray diffractions were performed at the LMI. Diffracted intensities were
collected on a 4-circles XCalibur apparatus (Oxford Diffraction), at room temperature,
under a Mo Kα radiation (λ = 0.7107 Å). Data reduction and absorption corrections were
computed using CrysAlis. Unless otherwise stated, structure solutions were calculated
by the charge flipping method, using Superflip (as implemented in the software suite
Crystals). In a few cases, the structure solutions were found by direct methods, using
SIR97.
In both cases, missing H atoms were found by difference Fourier density mapping. All but
H atoms were then anisotropically refined by least squares on F, using Crystals. When
relevant, disordered solvent effects were taken into account using the SQUEEZE option
of the PLATON program.
All the figures were drawn using VESTA 3.3.2.

B.2 Trinuclear copper(II) complexes 4.1 and 4.2

Figure B.2.1: Structure of the two [Cu3(μ2−LL1)3(μ3−OH)]– complexes found within the asymmetric
unit of structure 4.1. The relative orientations are different.

Notice relative to tables B.2 and B.3:

� geometrical parameters and their error bars were computed using Mercury;

177
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Figure B.2.2: Structure of the two [Cu3(μ2−DL1)3(μ3−OH)]– complexes found within the asymmetric
unit of structure 4.2. The relative orientations are different.

Table B.1: Cell and refinement parameters for the single crystal X-Ray diffraction study of
K2[Cu3(μ2−LL1)3(μ3−OH)]2 · 5 H2O (4.1) and K2[Cu3(μ2−DL1)3(μ3−OH)]2 · 5 H2O (4.2). NIR/NR.R:
number of independent reflections versus number of refined reflections.

Complex 4.1 4.2
Formula C48H78Cu6K2N6O25 C48H78Cu6K2N6O25
FW (g.mol−1) 1598.64 1598.64
a (Å) 23.715(1) 14.3538(6)
b (Å) 20.8777(8) 23.7444(7)
c (Å) 13.1738(6) 20.8813(7)
α, β, γ (◦) 90 90
V (Å3) 7017.6(5) 7116.8(4)
Z 4 4
Space group P212121 P212121
μ (cm−1) 1.978 1.951
F000 3280 3280
NIR/NR.R 16350/8360 16444/9033
N. parameters 785 785
Flack 0.03(3) 0.05(2)
R(F, I > 3σ(I)) 8.06% 6.77%
Rw(F, I > 3σ(I)) 7.85% 4.42%
GooF 1.0004 0.9069

� when relevant, these parameters are given for each trinuclear complex within the asym-
metric unit (the three first values corresponding to one complex, the three last to
the second complex);

� d(Cu-X) are the distances between a given copper atom and its neighbours. Oket,s labels
the closest ketone-like O atom, Oket,l the bridging ketone-like O atom from the other
ligand, OCOO the coordinating O atom from the carboxylate group, and OOH the O
atom from the bridging hydroxide;

� X̂CuX and ĈuXCu are the associated coordination angle, X being defined similarly to
the previous case;

� d(Cu-OOH) represents the calculated distance between the hydroxide and the mean
plane defined by the three copper atoms of a given trinuclear complex.
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Table B.2: Selected distances (in Å) related to the coordination sphere of the Cu atoms in complexes
4.1 and 4.2.

Parameter Complexes 4.1 Complexes 4.2 Average for 4.1 Average for 4.2

d(Cu-N)

1.927(9) 1.924(6)
1.893(9) 1.910(6) 1.90(3) 1.91(1)
1.880(9) 1.903(7)
1.929(9) 1.931(6)
1.92(1) 1.908(6) 1.91(2) 1.91(2)
1.89(1) 1.889(7)

d(Cu-Oket,s)

1.904(7) 1.906(6)
1.900(9) 1.903(5) 1.898(7) 1.904(6)
1.891(6) 1.902(4)
1.921(9) 1.922(6)
1.920(9) 1.918(5) 1.91(2) 1.91(1)
1.897(6) 1.90(1)

d(Cu-Oket,l)

2.501(9) 2.562(4)
2.463(7) 2.477(5) 2.47(3) 2.48(4)
2.451(8) 2.464(6)
2.545(9) 2.556(4)
2.54(1) 2.535(7) 2.5(1) 2.50(9)
2.389(7) 2.418(5)

d(Cu-OCOO)

1.93(1) 1.950(5)
1.926(7) 1.941(6) 1.92(1) 1.93(2)
1.921(9) 1.916(6)
1.963(9) 1.964(5)
1.963(9) 1.916(4) 1.95(3) 1.93(3)
1.926(9) 1.913(6)

d(Cu-OOH)

3.213(2) 3.219(1)
3.131(2) 3.138(1) 3.15(6) 3.13(6)
3.117(2) 3.130(1)
3.183(2) 3.185(1)
3.159(2) 3.163(1) 3.16(2) 3.16(2)
3.131(2) 3.138(1)

d(Cu-OOH) 0.751 0.727 0.73(3) 0.72(2)0.700 0.706

B.3 Copper(II) coordination polymers



180 B. Crystal structures

Table B.3: Selected angles (in ◦) related to the coordination sphere of the Cu atoms in complexes 4.1
and 4.2.

Parameter Complexes 4.1 Complexes 4.2 Average for 4.1 Average for 4.2

̂CuOOHCu

108.9(3) 110.0(2)
107.3(3) 106.2(2) 108(1) 107(3)
106.9(3) 105.2(2)
109.1(4) 109.3(2)
105.6(3) 107.5(2) 106(3) 108(2)
104.4(3) 107.0(2)

̂CuOketCu

92.0(3) 91.5(4)
91.4(4) 90.9(2) 108(1) 107(3)
87.9(4) 90.9(2)
92.1(3) 91.6(2)
91.6(3) 90.9(2) 91.6(5) 90(2)
91.1(3) 89.0(3)

a

b

c

C1
C2

C3

C4 C5

C6

C8

O3C7O2

Cu1

O1

N1

Figure B.3.1: Structure of the [Cu(μ2−LL1)] polymer 4.3, seen along the �c axis (left), and detail on
the asymmetric unit numbering scheme (right).

ab

C1
C2

C3

C4 C5

N1O1

Cu1

O2

C7

C3

C6
C8

C9

C10a

C10b

Figure B.3.2: Structure of the [Cu(μ2−LL1)] polymer 4.4, seen along the �c axis (left), and detail on
the asymmetric unit numbering scheme (right).
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Table B.4: Cell and refinement parameters for the single crystal X-Ray diffraction study of
[Cu(μ2−LL1)] (4.3) and [Cu(μ2−DL1)] (4.4). NIR/NR.R: number of independent reflections versus num-
ber of refined reflections.

Complex 4.3 4.4
Formula C8H11Cu1N1O3 C11H17Cu1N1O3
FW (g.mol−1) 232.73 274.81
a (Å) 5.0016(3) 4.9606(4)
b (Å) 12.7365(9) 8.9692(9)
c (Å) 14.7029(8) 27.702(2)
α, β, γ (◦) 90 90
V (Å3) 936.6(1) 1234.5(2)
Z 4 4
Space group P212121 P212121
μ (cm−1) 2.304 1.764
F000 476 572
NIR/NR.R 2180/1797 2826/2227
N. parameters 119 146
Flack 0.04(2) -0.01(3)
R(F, I > 3σ(I)) 2.98% 4.24%
Rw(F, I > 3σ(I)) 3.93% 4.50%
GooF 0.9809 0.9455

Table B.5: Selected geometrical parameters relative to the environment of the copper(II) ions in struc-
tures 4.3 and 4.4. Distances are given in Å and angles in ◦. Addison parameter τ is dimensionless.

Polymer 4.3 Polymer 4.4
d(Cu-O2) 1.990(2) 1.977(3)
d(Cu-O3’) 1.996(2) 1.982(3)
d(Cu-O1) 1.896(3) 1.888(3)
d(Cu-N) 1.921(3) 1.908(3)
d(Cu-O3”) 2.512(3) 2.564(3)
N̂CuO1 95.2(1) 95.1(2)
N̂CuO2 83.5(1) 83.7(2)
N̂CuO2’ 170.8(1) 168.2(2)
̂O2′CuO2 83.5(1) 83.7(2)
̂CuO2Cu 128.4(1) 128.4(1)

τ 0.10 0.06
Geometry SBP SBP
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B.4 [LnTp2NO3] crystal structures

Figure B.4.1: ORTEP drawing of the [LnTp2NO3] complexes 5.1 to 5.5, ellipsoids drawn at 50%
probability. Example: [YbTp2NO3] (5.4).

Table B.6: Geometrical parameters related to the the first coordination sphere of lanthanide ions for
the [LnTp2NO3] complexes.

Parameter [DyTp2NO3] [HoTp2NO3] [ErTp2NO3] [YbTp2NO3] [YTp2NO3]
Ln-Npyr (Å) 2.448(4) 2.394(2) 2.383(2) 2.353(2) 2.399(2)

2.472(4) 2.470(2) 2.465(2) 2.437(2) 2.475(2)
2.404(4) 2.429(2) 2.411(2) 2.408(2) 2.456(2)
2.460(4) 2.442(2) 2.442(2) 2.391(2) 2.436(2)
2.445(4) 2.442(2) 2.452(2) 2.414(2) 2.449(2)
2.496(4) 2.483(2) 2.479(2) 2.452(2) 2.488(2)

Ln-O (Å) 2.399(3) 2.393(2) 2.394(2) 2.355(2) 2.386(2)
2.460(3) 2.446(2) 2.428(2) 2.421(2) 2.446(2)

N̂LnN (◦) 70.9(1) 70.7(3) 71.25(9) 71.22(7) 70.86(7)
71.0(1) 70.8(3) 71.92(8) 71.44(7) 70.89(8)
76.4(1) 77.7(3) 77.20(9) 77.40(7) 76.98(7)
77.7(1) 77.4(3) 78.21(8) 78.70(8) 77.75(8)
80.0(1) 80.5(3) 80.59(9) 81.11(7) 80.34(7)
80.3(1) 80.8(3) 81.10(8) 81.39(8) 80.54(8)

ÔLnO (◦) 52.5(1) 52.83(7) 52.9(3) 53.34(7) 52.85(7)
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Figure B.4.2: Correlation diagram between the volume of the lattice cell of complexes 5.1 to 5.5 and
the cube of the ionic radii of the corresponding lanthanides (from182). The blue line is the best linear fit
(R2 = 0.969).
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Figure B.5.1: ORTEP drawing of the [LnTp2Acac] complexes 5.6 to 5.12 (ellipsoids drawn at 50%
probability). Example of [DyTp2Acac] (5.12).
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Figure B.5.2: Correlation diagram between the volume of the lattice cell of complexes 5.6 to 5.12 and
the cube of the ionic radii of the corresponding lanthanides (from182). The blue line is the best linear fit
(R2 = 0.974).
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Figure B.5.3: 2D-lamellar structure of complexes (5.13) to (5.15).

B.5.2 Triclinic structures

Table B.11: Cell and refinement parameters for the single crystal X-Ray diffraction study of the mono-
clinic [LnTp2Acac] · solvent structures 5.17 to 5.19. NIR/NR.R: number of independent reflections versus
number of refined reflections.

Complex 5.17 5.18 5.19
Formula [HoTp2Acac]2 [YbTp2Acac]2 [YbTp2Acac] · CHCl3
FW (g.mol−1) 1380.20 1396.42 1507.77
a (Å) 11.791(5) 12.7547(3) 11.9386(9)
b (Å) 15.927(5) 14.8810(3) 15.900(2)
c (Å) 18.436(5) 16.1033(4) 18.462(2)
α (◦) 68.046(5) 99.060(2) 112.053(7)
β (◦) 74.238(5) 104.945(2) 105.816(6)
γ (◦) 89.952(5) 92.950(2) 90.315(1)
V (Å3) 3071(2) 2902.6(1) 3102.1(4)
Z 2 2 2
Space group P1̄ P1̄ P1̄
μ (cm−1) 2.618 3.265 3.149
F000 1368 1380 1484
NI.R / NR.R 15743/10857 14126/10785 14266/8082
N. parameters 721 721 337
R (F, I > 3σ(I)) 3.90% 2.48% 6.49%
Rw (F, I > 3σ(I)) 4.03% 3.29% 7.10%
GooF 1.1162 1.0310 1.0730

Note: Due to the low number of reflections, thermal displacements for complex 5.19 were
only refined isotropically.





Appendix C

Powder X-Ray diffractogramms

C.1 [LnTp2NO3] complexes
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Figure C.1.1: Powder X-Ray diffractogramm of complex 5.1 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.1.2: Powder X-Ray diffractogramm of complex 5.2 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.1.3: Powder X-Ray diffractogramm of complex 5.3 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.1.4: Powder X-Ray diffractogramm of complex 5.4 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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C.2 [LnTp2Acac] complexes

C.2.1 Monoclinic structures
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Figure C.2.1: Powder X-Ray diffractogramm of complex 5.6 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.2.2: Powder X-Ray diffractogramm of complex 5.7 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.2.3: Powder X-Ray diffractogramm of complex 5.8 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.2.4: Powder X-Ray diffractogramm of complex 5.9 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.
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Figure C.2.5: Powder X-Ray diffractogramm of complex 5.12 under a Cu Kα radiation (blue line). The
red line is the expected pattern from the single-crystal X-Ray diffraction experiment.



Appendix D

Complementary magnetic data

D.1 AC magnetometry of the [LnTp2NO3] complexes

D.1.1 Field dependence of the AC susceptibility

Figure D.1.1: χ′′
m = f(B;T )) plots for complexes (5.1) (top), (5.3) (middle) and (5.4) (bottom), at

three different frequencies.
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198 D. Complementary magnetic data

D.1.2 Cole-Cole plots

Figure D.1.2: Cole-Cole (χ′′
m = χ′

m) plots for complexes (5.1) (top left), (5.3) (top right) and (5.4)
(bottom), under a static field of 2000 Oe and between 2K and 6K.

D.2 AC magnetometry of the [LnTp2Acac] complexes

D.2.1 Arrhenius plot for (5.6)

Figure D.2.1: Arrhenius plot lnν = f(1/T ), for complex (5.6), under a static field of 500Oe. The solid
line is a guide for the eye.

D.2.2 Cole-Cole plots
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Figure D.2.2: Cole-Cole (χ′′
m = χ′

m) plots for complexes (5.8) (left) and (5.12) (right), under static
fields of respectively 2000 Oe and 0 Oe.





Appendix E

Programs

E.1 Uncertainties

Program Uncertainties

implicit none

double precision , dimension (3,3) :: chi , chitodiag , chidiag , minchi

double precision , dimension (3,3) :: delta , tmp , step

double precision , dimension (3) :: eigen ,supeigen ,mineigen ,vartmp1 ,var

integer :: num , a, b, c, d, e, f

integer ,dimension (3,3) :: inc

double precision :: time1 ,time2 ,yoy

integer :: i,j,k,l,m,n,o

double precision , dimension (:), allocatable :: eigenval1 ,eigenval2 ,eigenval3

character(LEN =80) :: entree , filename

write (6,*) ’File␣containing␣the␣tensor␣?␣(format␣:␣)’

write (6,*) ’x11 ,␣Dx11 ,␣step11 ’

write (6,*) ’x12 ,␣Dx12 ,␣step12 ’

write (6,*) ’x13 ,␣Dx13 ,␣step13 ’

write (6,*) ’x22 ,␣Dx22 ,␣step22 ’

write (6,*) ’x23 ,␣Dx23 ,␣step23 ’

write (6,*) ’x33 ,␣Dx33 ,␣step33 ’

write (6,*) ’␣without␣.dat␣extension ’

read (5,*) entree

CALL CPU_TIME(time1)

! First we get the data

filename = TRIM(entree )//’.dat’

OPEN(unit=12,file=TRIM(filename),action=’read’)

read(unit=12,fmt =*) chi(1,1), delta (1,1), inc(1,1)

read(unit=12,fmt =*) chi(1,2), delta (1,2), inc(1,2)

read(unit=12,fmt =*) chi(1,3), delta (1,3), inc(1,3)

read(unit=12,fmt =*) chi(2,2), delta (2,2), inc(2,2)

read(unit=12,fmt =*) chi(2,3), delta (2,3), inc(2,3)

read(unit=12,fmt =*) chi(3,3), delta (3,3), inc(3,3)

! we set the matrices (real , symmetric)

inc (2 ,1)=inc(1,2)

inc (3 ,1)=inc(1,3)

inc (3 ,2)=inc(2,3)

delta (2 ,1)= delta (1,2)

delta (3 ,1)= delta (1,3)

delta (3 ,2)= delta (2,3)

chi (2 ,1)=chi(1,2)

chi (3 ,1)=chi(1,3)

chi (3 ,2)=chi(2,3)

! then we compute the step in chi for the computation of the eigenvalues
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do i=1,3

do j=1,3

step(i,j)=delta(i,j)/inc(i,j)

end do

end do

! we then compute the tensor for each component set to its minimum value

do i=1,3

do j=1,3

minchi(i,j)=chi(i,j)-delta(i,j)

end do

end do

! The following 3 lines be commented if the calculation is huge (scales as increment ^6),

! since the arrays eigenvalK will contain all the computed eigenvalues

num=(inc (1 ,1)+1)*( inc (1 ,2)+1)*( inc (1 ,3)+1)*( inc (2 ,2)+1)*( inc (2 ,3)+1)*( inc (3 ,3)+1)

allocate(eigenval1(num),eigenval2(num),eigenval3(num))

k=1

! we set the testing values first as the eigenvalues of the starting tensor

do i=1,3

do j=1,3

tmp(i,j)=chi(i,j)

end do

end do

call DSYEVC3(tmp ,eigen)

do i=1,3

mineigen(i)=eigen(i)

supeigen(i)=eigen(i)

end do

! and we start the loop scanning the 6 components

do a=0,inc(1,1)

do b=0,inc(1,2)

do c=0,inc(1,3)

do d=0,inc(2,2)

do e=0,inc(2,3)

do f=0,inc(3,3)

tmp (1 ,1)= minchi (1 ,1)+ step (1,1)*a

tmp (1 ,2)= minchi (1 ,2)+ step (1,2)*b

tmp (1 ,3)= minchi (1 ,3)+ step (1,3)*c

tmp (2 ,2)= minchi (2 ,2)+ step (2,2)*d

tmp (2 ,3)= minchi (2 ,3)+ step (2,3)*e

tmp (3 ,3)= minchi (3 ,3)+ step (3,3)*f

tmp (2 ,1)=tmp(1,2)

tmp (3 ,1)=tmp(1,3)

tmp (3 ,2)=tmp(2,3)

! we just build the working matrix , that will be diagonalised

call DSYEVC3(tmp ,eigen)

do i=1,3

if(eigen(i).GT.supeigen(i)) then

supeigen(i)=eigen(i)

else if(eigen(i).LT.mineigen(i)) then

mineigen(i)=eigen(i)

end if

end do

! and we tested the components , to check whether they are smaller

! or bigger than the previous min or max

! if so, we store them as new extrema. That way , we do not

! actually have to store the data

! The next 4 lines actually store the data (debugging option),

! and they may be commented for big calculations

eigenval1(k)=eigen (1)

eigenval2(k)=eigen (2)

eigenval3(k)=eigen (3)

k=k+1

end do

end do

end do

end do

end do

end do
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write (6,*) ’Maximum␣value␣for␣each␣component␣’

write (6,*) supeigen (1), supeigen (2), supeigen (3)

write (6,*) ’Minimum␣value␣for␣each␣component ’

write (6,*) mineigen (1), mineigen (2), mineigen (3)

write (6,*) ’Starting␣eigenvalues ’

call DSYEVC3(chi ,eigen)

write (6,*) eigen(1),eigen (2),eigen (3)

! Same thing as before: if there is a huge number of

! points to compute , these lines may be commented

write (6,*) ’␣’

write (6,*) ’Maximal␣values␣read␣from␣the␣whole␣data␣set’

write (6,*) MAXVAL(eigenval1),MAXVAL(eigenval2),MAXVAL(eigenval3)

write (6,*) ’Minimal␣values␣read␣from␣the␣whole␣data␣set’

write (6,*) MINVAL(eigenval1),MINVAL(eigenval2),MINVAL(eigenval3)

filename = TRIM(entree )//’.out’

OPEN(unit=13,file=TRIM(filename),action=’write’)

do j=1,3

vartmp1(j)=0

var(j)=0

end do

do i=1,num

write (13,*) eigenval1(i),eigenval2(i),eigenval3(i)

vartmp1 (1)=( eigenval1(i)-eigen (1))*( eigenval1(i)-eigen (1))

vartmp1 (2)=( eigenval2(i)-eigen (2))*( eigenval2(i)-eigen (2))

vartmp1 (3)=( eigenval3(i)-eigen (3))*( eigenval3(i)-eigen (3))

do j=1,3

var(j)=var(j)+(1.0/( num *1.0))* vartmp1(j)

end do

end do

Close (13)

write (6,*) ’Variance ’

write(6,"(ES12.5E3)") var(1),var(2),var(3)

CALL CPU_TIME(time2)

yoy=time2 -time1

write (6,*) ’Calculation␣completed␣in␣’,yoy ,’s’

end program Uncertainties

The DSYEVC3 subroutine (diagonalisation of matrices) can be found in "J. Kopp, Int. J. Mod. Phys. C 19 (2008), 523-548".
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E.2 Conversion
PROGRAM CalcM

implicit none

character(LEN =80) :: choice ,input ,orient ,output ,filename

character(LEN =80) :: sortie1 ,sortie2 ,sym

real(8), parameter :: pi =3.14159265358979 d0

character(len =80) :: formdat

integer :: N,M,P

real(8), dimension (:,:), allocatable :: fields

real(8), dimension (3,3) :: chi ,Mccslcri ,Mmolcal ,Mcrimol

real(8), dimension (3,3) :: Mcriccsl ,Mcalmol , Mmolcri

real(8), dimension (:,:), allocatable :: moments ,symop

real(8), dimension (:), allocatable :: meanmom

real(8), dimension (3) :: fieldi ,momveci ,fieldcry ,mat1 ,mat2

real (8) :: momi

real (8) :: time1 ,time2 ,time3 ,tottime

integer :: i,j

CHARACTER(LEN =80) :: at0cry ,at1cry ,at2cry ,at3cry ,at0cal ,at1cal ,

CHARACTER(LEN =80) :: at2cal ,at3cal ! atoms labels in the .inp file

real(8), dimension (3) :: Ybcry , X1cry , X2cry , X3cry

! central and other atoms positions in the lattice cell

real(8), dimension (3) :: Ybcal , X1cal , X2cal , X3cal

! same , in the calculation frame

real(8), dimension (3,3) :: chical ! susceptibility tensor

real(8), dimension (3) :: v1ccsl ,v2ccsl ,v3ccsl ! CCSL basis vectors

write (6,*) ’******************************************************************** ’

write (6,*) ’CalcM ’

write (6,*) ’Frederic␣Guegan ’

write (6,*) ’march␣2016’

write (6,*) ’␣’

write (6,*) ’Program␣for␣the␣calculation␣of␣single␣crystal␣magnetisation␣from␣PND’

write (6,*) ’or␣ab␣initio␣data’

write (6,*) ’␣’

write (6,*) ’******************************************************************** ’

write (6,*) ’␣’

write (6,*) ’␣Which␣kind␣of␣data␣would␣you␣like␣to␣use␣:␣PND(p)␣or␣Ab␣Initio(a)␣?’

read (5,*) choice

write (6,*) ’␣Name␣of␣the␣input␣file␣(without␣.inp␣extension)␣?␣’

read (5,*) input

write (6,*) ’␣Name␣of␣orientations␣file␣(without␣.dat␣extension)␣?␣’

read (5,*) orient

write (6,*) ’␣Name␣of␣the␣output␣file␣(without␣.out␣extension)␣?␣’

read (5,*) output

write (6,*) ’␣Name␣of␣the␣symmetry␣file␣(without␣extension␣.sym)␣?␣’

read (5,*) sym

CALL CPU_TIME(time1)

! Now we read the symmetry file

filename = TRIM(sym)//’.sym’

open(unit=10,file=TRIM(filename),action=’read’)

read(unit=10,fmt =*) M

allocate(symop(M,9)) ! we set the size of the array containing the symmetry operations

do i=1,M

read(unit=10,fmt =*) symop(i,1),symop(i,2),symop(i,3),symop(i,4)&

&,symop(i,5), symop(i,6),symop(i,7),symop(i,8),symop(i,9)

end do ! we read the symmetry matrices

close (10)

The \texttt{DSYEVC3} subroutine (diagonalisation of matrices) can be found in "J.␣Kopp ,␣\textit{Int.␣J.␣

! We get the orientation data

filename = TRIM(orient )//’.dat’

open(unit=12,file=TRIM(filename),action=’read’)

read(unit=12,fmt =*) N

allocate(fields(N,4)) ! we define the number of orientations to consider

P=N*M

allocate(moments(P,3)) ! and the total number of computed values

allocate(meanmom(N)) ! and the number of mean magnetisation (for the whole symmetries)
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do i=1,N

read(unit=12,fmt =*) fields(i,1), fields(i,2), fields(i,3), fields(i,4)

end do

! Here we read the orientations of fields and stocked them in the array ’fields ’

close (12)

! Now we get the information contained within the input file.

filename = TRIM(input )//’.inp’

open(unit=11,file=TRIM(filename),action=’read’)

read(unit=11,fmt =*) at0cry ,Ybcry(1), Ybcry(2),Ybcry (3)

read(unit=11,fmt =*) at1cry ,X1cry(1), X1cry(2),X1cry (3)

read(unit=11,fmt =*) at2cry ,X2cry(1), X2cry(2),X2cry (3)

read(unit=11,fmt =*) at3cry ,X3cry(1), X3cry(2),X3cry (3) ! Atoms positions in the lattice

read(unit=11,fmt =*) at0cal ,Ybcal(1), Ybcal(2),Ybcal (3)

read(unit=11,fmt =*) at1cal ,X1cal(1), X1cal(2),X1cal (3)

read(unit=11,fmt =*) at2cal ,X2cal(1), X2cal(2),X2cal (3)

read(unit=11,fmt =*) at3cal ,X3cal(1), X3cal(2),X3cal (3) ! Same in the calculation frame

read(unit=11,fmt =*) chical (1,1), chical (1,2), chical (1,3), chical (2,1)&

&,chical (2,2), chical (2,3), chical (3,1), chical (3,2), chical (3,3)

! susceptibility tensor

read(unit=11,fmt =*) v1ccsl (1), v1ccsl (2), v1ccsl (3)

read(unit=11,fmt =*) v2ccsl (1), v2ccsl (2), v2ccsl (3)

read(unit=11,fmt =*) v3ccsl (1), v3ccsl (2), v3ccsl (3) ! CCSL vectors in the lattice cell

CLOSE (11)

! We prepare the matrices

do i=1,3

Mcriccsl(i,1)= v1ccsl(i)

Mcriccsl(i,2)= v2ccsl(i)

Mcriccsl(i,3)= v3ccsl(i)

end do ! Mcriccsl is OK

do i=1,3

Mcrimol(i ,1)= X1cry(i)-Ybcry(i)

Mcrimol(i ,2)= X2cry(i)-Ybcry(i)

Mcrimol(i ,3)= X3cry(i)-Ybcry(i)

end do ! Mcrimol is OK

do i=1,3

Mcalmol(i ,1)= X1cal(i)-Ybcal(i)

Mcalmol(i ,2)= X2cal(i)-Ybcal(i)

Mcalmol(i ,3)= X3cal(i)-Ybcal(i)

end do ! Mcalmol is OK

call inverse(Mcalmol ,Mmolcal ,3)

call inverse(Mcrimol ,Mmolcri ,3)

call inverse(Mcriccsl ,Mccslcri ,3)

! and we inversed the three previous matrices

! Nota: they may not be all used , but we may assume their computation

! is not a tremendously demanding task

if(choice.EQ.’p’) then

call PND(P,N,M,fields ,chical ,Mcriccsl ,moments ,symop ,meanmom)

else if(choice.EQ.’a’) then

call Abinit(P,N,M,fields ,chical ,Mccslcri ,Mcrimol ,Mmolcal ,moments ,symop ,meanmom)

else

write (6,*) ’Unrecognised␣data␣label.␣Please␣check.’

end if

sortie1 = TRIM(output )//’1.out’

OPEN(unit=13,file=TRIM(sortie1),action=’write’,status=’new’)

write (13,*) ’****************************************************************** ’

write (13,*) ’CalcM ’

write (13,*) ’Frederic␣Guegan␣’

write (13,*) ’march␣2016’

write (13,*) ’␣’

write (13,*) ’␣Program␣for␣the␣calculation␣of␣single␣crystal␣magnetisation␣from␣PND’
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write (13,*) ’␣or␣ab␣initio␣data␣’

write (13,*) ’␣’

write (13,*) ’****************************************************************** ’

write (13,*) ’␣Implemented␣by␣:’

write (13,*) ’␣’

write (13,*) ’␣Frederic␣Guegan ,␣University␣of␣Lyon␣1␣’

write (13,*) ’␣frederic.guegan(at)univ -lyon1.fr’

write (13,*) ’␣’

write (13,*) ’␣␣Team␣Crystallography␣and␣Molecular␣Engineering␣(Prof.␣D.␣Luneau)␣’

write (13,*) ’␣␣Multimaterials␣and␣Interfaces␣Laboratory␣(LMI ,␣UMR␣CNRS -UCBL␣5615) ’

write (13,*) ’␣’

write (13,*) ’␣␣Team␣Chemometrics␣and␣Theoretical␣Chemistry␣(Prof.␣C.␣Morell)␣’

write (13,*) ’␣␣Lyon␣Institute␣for␣Analytical␣Sciences␣(ISA ,␣UMR␣CNRS -UCBL -ENS␣5280)’

write (13,*) ’␣’

write (13,*) ’****************************************************************** ’

write (13,*) ’␣This␣program␣is␣freely␣distributed␣and␣modifiable␣by␣anyone.’

write (13,*) ’␣I␣do␣not␣guarantee␣the␣exactitude␣of␣the␣calculations␣(though ’

write (13,*) ’␣I␣did␣my␣best).␣Please␣feel␣free␣to␣contact␣me␣if␣you␣find␣any’

write (13,*) ’␣error␣in␣the␣code␣!’

write (13,*) ’****************************************************************** ’

write (13,*) ’␣’

write (13,*) ’␣’

write (13,*) ’Type␣of␣data:␣’

if(choice.EQ.’p’) then

write (13,*) ’␣␣␣␣PND␣experiment␣’

else if(choice.EQ.’a’) then

write (13,*) ’␣␣␣␣Ab␣initio␣data␣’

end if

write (13,*) ’␣’

write (13,*) ’Printing␣the␣matrices␣used␣for␣the␣transformation:’

write (13,*) ’Mcalmol␣:’

do i=1,3

write (13,*) Mcalmol(i,1), Mcalmol(i,2), Mcalmol(i,3)

end do

write (13,*) ’␣’

write (13,*) ’Mmolcal␣:’

do i=1,3

write (13,*) Mmolcal(i,1), Mmolcal(i,2), Mmolcal(i,3)

end do

write (13,*) ’␣’

write (13,*) ’Mcriccsl␣:’

do i=1,3

write (13,*) Mcriccsl(i,1), Mcriccsl(i,2), Mcriccsl(i,3)

end do

write (13,*) ’␣’

write (13,*) ’Mccslcri␣:’

do i=1,3

write (13,*) Mccslcri(i,1), Mccslcri(i,2), Mccslcri(i,3)

end do

write (13,*) ’␣’

write (13,*) ’Mcrimol␣:’

do i=1,3

write (13,*) Mcrimol(i,1), Mcrimol(i,2), Mcrimol(i,3)

end do

write (13,*) ’␣’

write (13,*) ’Mmolcri ’

do i=1,3

write (13,*) Mmolcri(i,1), Mmolcri(i,2), Mmolcri(i,3)

end do

write (13,*) ’␣’

write (13,*) ’␣’

write (13,*) ’␣Results␣for␣all␣symmetries ’

write (13,*) ’␣’

write (13,*) ’␣Theta␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Mcalc␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣H␣norm’

do i=1,P
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write (13,*) ’␣’,moments(i,1),’␣’,moments(i,2),’␣’,moments(i,3)

end do

call CPU_TIME(time2)

tottime=time2 -time1

write (13,*) ’␣’

write (13,*) ’Total␣time␣of␣execution␣(s):’,tottime

close (13)

sortie2 = TRIM(output )//’2.out’

OPEN(unit=14,file=TRIM(sortie2),action=’write’,status=’new’)

write (14,*) ’****************************************************************** ’

write (14,*) ’CalcM ’

write (14,*) ’Frederic␣Guegan␣’

write (14,*) ’march␣2016’

write (14,*) ’␣’

write (14,*) ’␣Program␣for␣the␣calculation␣of␣single␣crystal␣magnetisation␣from␣PND’

write (14,*) ’␣or␣ab␣initio␣data␣’

write (14,*) ’␣’

write (14,*) ’****************************************************************** ’

write (14,*) ’␣Implemented␣by␣:’

write (14,*) ’␣’

write (14,*) ’␣Frederic␣Guegan ,␣University␣of␣Lyon␣1␣’

write (14,*) ’␣frederic.guegan(at)univ -lyon1.fr’

write (14,*) ’␣’

write (14,*) ’␣␣Team␣Crystallography␣and␣Molecular␣Engineering␣(Prof.␣D.␣Luneau)␣’

write (14,*) ’␣␣Multimaterials␣and␣Interfaces␣Laboratory␣(LMI ,␣UMR␣CNRS -UCBL␣5615) ’

write (14,*) ’␣’

write (14,*) ’␣␣Team␣Chemometrics␣and␣Theoretical␣Chemistry␣(Prof.␣C.␣Morell)␣’

write (14,*) ’␣␣Lyon␣Institute␣for␣Analytical␣Sciences␣(ISA ,␣UMR␣CNRS -UCBL -ENS␣5280)’

write (14,*) ’␣’

write (14,*) ’****************************************************************** ’

write (14,*) ’␣This␣program␣is␣freely␣distributed␣and␣modifiable␣by␣anyone.’

write (14,*) ’␣I␣do␣not␣guarantee␣the␣exactitude␣of␣the␣calculations␣(though ’

write (14,*) ’␣I␣did␣my␣best).␣Please␣feel␣free␣to␣contact␣me␣if␣you␣find␣any’

write (14,*) ’␣error␣in␣the␣code␣!’

write (14,*) ’****************************************************************** ’

write (14,*) ’␣’

write (14,*) ’␣’

write (14,*) ’Type␣of␣data:␣’

if(choice.EQ.’p’) then

write (14,*) ’␣␣␣␣PND␣experiment␣’

else if(choice.EQ.’a’) then

write (14,*) ’␣␣␣␣Ab␣initio␣data␣’

end if

write (14,*) ’␣’

write (14,*) ’Printing␣the␣matrices␣used␣for␣the␣transformation:’

write (14,*) ’Mcalmol␣:’

do i=1,3

write (14,*) Mcalmol(i,1), Mcalmol(i,2), Mcalmol(i,3)

end do

write (14,*) ’␣’

write (14,*) ’Mmolcal␣:’

do i=1,3

write (14,*) Mmolcal(i,1), Mmolcal(i,2), Mmolcal(i,3)

end do

write (14,*) ’␣’

write (14,*) ’Mcriccsl␣:’

do i=1,3

write (14,*) Mcriccsl(i,1), Mcriccsl(i,2), Mcriccsl(i,3)

end do

write (14,*) ’␣’

write (14,*) ’Mccslcri␣:’

do i=1,3

write (14,*) Mccslcri(i,1), Mccslcri(i,2), Mccslcri(i,3)

end do
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write (14,*) ’␣’

write (14,*) ’Mcrimol␣:’

do i=1,3

write (14,*) Mcrimol(i,1), Mcrimol(i,2), Mcrimol(i,3)

end do

write (14,*) ’␣’

write (14,*) ’Mmolcri ’

do i=1,3

write (14,*) Mmolcri(i,1), Mmolcri(i,2), Mmolcri(i,3)

end do

write (14,*) ’␣’

write (14,*) ’␣’

write (14,*) ’␣Results␣for␣all␣symmetries ’

write (14,*) ’␣’

write (14,*) ’␣Theta␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Mcalc␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣H␣norm’

do i=1,N

write (14,*) ’␣’,moments(i,1),’␣’,meanmom(i),’␣’,moments(i,3)

end do

call CPU_TIME(time3)

tottime=time3 -time1

write (14,*) ’␣’

write (14,*) ’Total␣time␣of␣execution␣(s):’,tottime

close (14)

end program CalcM

subroutine PND(P,N,M,fields ,chi ,Mcriccsl ,moments ,symop ,meanmom)

! Subroutine for the calculation of the magnetisation induced by a field applied

! along a given direction , from the local susceptibility tensor (deduced from

! PND experiments) and in the linear approximation : m = XH.

! Arguments: N, number of field orientations ; fields , array of the field orientations;

! chi , susceptibility tensor ; Mcriccsl , matrix of the CCSL vectors in the lattice basis.

! Output of subroutine : array of calculated moments versus theta , and norm of the

! magnetic field (control , should be 1).

implicit none

character(len =80) :: formdat ,sym

integer :: N,M,P

real(8), dimension(N,4) :: fields

real(8), dimension (3,3) :: chi ,Mcriccsl ,Opsym ,chisym ,tOpsym ,tmp

real(8), dimension(P,3) :: moments

real(8), dimension(N) :: meanmom

real(8), dimension(M,9) :: symop

real(8), dimension (3) :: fieldi ,momveci ,fieldcry

real (8) :: momi

integer :: i,j,k,l,t

write (6,*) ’****************************************************************** ’

write (6,*) ’PND’

write (6,*) ’Frederic␣Guegan ’

write (6,*) ’march␣2016’

write (6,*) ’␣’

write (6,*) ’␣Evaluation␣of␣the␣single␣crystal␣magnetisation␣from␣PND␣experiments␣’

write (6,*) ’␣’

write (6,*) ’****************************************************************** ’

write (6,*) ’␣Format␣of␣the␣orient.dat␣file␣(CCSL:yes ,␣crystal:no)’

read (5,*) formdat

if(formdat.EQ.’yes’) then

do i=1,N

meanmom(i)=0

end do

do j=1,M

do i=1,N

fieldi (1)= fields(i,2)

fieldi (2)= fields(i,3)
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fieldi (3)= fields(i,4)

! we first assign to fieldi the direction of the field at point i

do k=1,3

l=k+3

t=k+6

Opsym(1,k) = symop(j,k)

Opsym(2,k) = symop(j,l)

Opsym(3,k) = symop(j,t)

! we built the matrix for each symm operation (loop in j)

end do

do l=1,3

do t=1,3

tOpsym(l,t)=Opsym(t,l)

! we transpose the symmetry matrix

end do

end do

write (6,*) tOpsym (1,1), tOpsym (1,2), tOpsym (1,3)

write (6,*) tOpsym (2,1), tOpsym (2,2), tOpsym (2,3)

write (6,*) tOpsym (3,1), tOpsym (3,2), tOpsym (3,3)

tmp=MATMUl(chi ,Opsym)

! we begin the symmetry transformation of chi

chisym=MATMUL(tOpsym ,tmp)

momveci=MATMUL(chisym ,fieldi)

momi=momveci (1)* fieldi (1)+ momveci (2)* fieldi (2)+ momveci (3)* fieldi (3)

! scalar product of vec(m) and vec(H)

k=i+(j-1)*N

moments(k ,1)= fields(i,1)

moments(k ,2)= momi

moments(k ,3)= sqrt(fieldi (1)* fieldi (1)+ fieldi (2)* fieldi (2)+&

&fieldi (3)* fieldi (3))

meanmom(i)= meanmom(i)+momi/(M*1.0)

end do

end do

else if(formdat.EQ.’no’) then

do j=1,M

do i=1,N

fieldcry (1)= fields(i,2)

fieldcry (2)= fields(i,3)

fieldcry (3)= fields(i,4)

fieldi=MATMUL(Mcriccsl ,fieldcry)

do k=1,3

l=k+3

m=k+6

Opsym(1,k) = symop(j,k)

Opsym(2,k) = symop(j,l)

Opsym(3,k) = symop(j,m)

end do

do l=1,3

do m=1,3

tOpsym(l,m)=Opsym(m,l)

! we transpose the symmetry matrix

end do

end do

tmp=MATMUl(chi ,Opsym)

! we begin the symmetry transformation of chi

chisym=MATMUL(tOpsym ,tmp)

momveci=MATMUL(chisym ,fieldi)

momi=momveci (1)* fieldi (1)+ momveci (2)* fieldi (2)+ momveci (3)* fieldi (3)

! scalar product of vec(m) and vec(H)

k=i+(j-1)*N

moments(k ,1)= fields(i,1)

moments(k ,2)= momi

moments(k ,3)= sqrt(fieldi (1)* fieldi (1)+ fieldi (2)* fieldi (2)+&

&fieldi (3)* fieldi (3))

meanmom(i)= meanmom(i)+momi/(M*1.0)

end do

end do

else

write (6,*) ’Unrecognised␣format␣identifier ,␣please␣check.’

end if
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end subroutine PND

subroutine Abinit(P,N,M,fields ,chi ,Mmolcri ,Mcalmol ,Mcriccsl ,moments ,symop ,meanmom)

! Subroutine for the calculation of the magnetisation induced by a field applied along

! a given direction , from ab initio calculated susceptibility tensor and in the linear

! approximation : m = XH.

! Arguments: N, number of field orientations ; fields , array of the field orientations;

! chi , susceptibility tensor ; Mcricssl , matrix of the CCSL vectors in the lattice basis;

! Mmolcri , inverse of the matrix of three vectors (based on 4 non collinear atoms) in the

! lattice cell ;

! Mcalmol , inverse of the same matrix but in the basis of the calculation (orthonormal frame).

! Output of subroutine : array of calculated moments versus theta , and norm of the

! magnetic field (control , should be 1).

implicit none

character(len =80) :: formdat

integer :: N,P,M

real(8), dimension(N,4) :: fields

real(8), dimension (3,3) :: chi ,Mcriccsl ,tMcriccsl ,Mcalmol ,Mmolcri

real(8), dimension (3,3) :: mat1 ,mat2 ,mat3 ,mat4

real(8), dimension (3,3) :: chiccsl ,Opsym ,tOpsym ,chisym ,tmp

real(8), dimension(p,3) :: moments

real(8), dimension(N) :: meanmom

real(8), dimension(M,9) :: symop

real(8), dimension (3) :: fieldi ,momveci ,fieldcry

real (8) :: momi ,norm

integer :: i,j,l,t,k

write (6,*) ’******************************************************************************** ’

write (6,*) ’Abinit ’

write (6,*) ’Frederic␣Guegan ’

write (6,*) ’march␣2016’

write (6,*) ’␣’

write (6,*) ’␣Evaluation␣of␣the␣single␣crystal␣magnetisation␣from␣Ab␣initio␣calculations␣’

write (6,*) ’␣’

write (6,*) ’******************************************************************************** ’

write (6,*) ’␣Format␣of␣the␣orient.dat␣file␣(CCSL:yes ,␣crystal:no)’

read (5,*) formdat

if(formdat.EQ.’yes’) then

do i=1,N

meanmom(i)=0

end do

mat1=MATMUL(Mcalmol ,Mmolcri)

! matrix from the calculated frame to the crystal one

do i=1,3

do j=1,3

mat2(i,j)=mat1(j,i)

end do

end do ! mat2 = t(mat1)

do i=1,3

do j=1,3

tMcriccsl(i,j)= Mcriccsl(j,i)

end do

end do ! we transpose Mccslcri

mat3=MATMUL(mat2 ,chi)

mat4=MATMUL(mat3 ,mat1)

mat1=MATMUL(mat4 ,Mcriccsl)

chiccsl=MATMUL(tMcriccsl ,mat1)

norm=chiccsl (1 ,1)*( chiccsl (2,2)* chiccsl (3,3)- chiccsl (3 ,2)* chiccsl (2,3))-&

chiccsl (1 ,2)*( chiccsl (2,1)* chiccsl (3,3)- chiccsl (3 ,1)* chiccsl (2 ,3))+&

chiccsl (1 ,3)*( chiccsl (2,1)* chiccsl (3,2)- chiccsl (3 ,1)* chiccsl (2 ,2))

write (6,*) norm

do j=1,M

do i=1,N

fieldi (1)= fields(i,2)

fieldi (2)= fields(i,3)

fieldi (3)= fields(i,4)

! we first assign to fieldi the direction of the field at point i

do k=1,3

l=k+3

t=k+6
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Opsym(1,k) = symop(j,k)

Opsym(2,k) = symop(j,l)

Opsym(3,k) = symop(j,t)

! we built the matrix for each symm operation (loop in j)

end do

do l=1,3

do t=1,3

tOpsym(l,t)=Opsym(t,l)

! we transpose the symmetry matrix

end do

end do

tmp=MATMUl(chiccsl ,Opsym)

! we begin the symmetry transformation of chi

chisym=MATMUL(tOpsym ,tmp)

momveci=MATMUL(chisym ,fieldi)

! evaluation of the magnetisation in the CCSL lattice

momi=momveci (1)* fieldi (1)+ momveci (2)* fieldi (2)+ momveci (3)* fieldi (3)

! scalar product of vec(m) and vec(H) : magnetisation along the field direction

k=i+(j-1)*N

moments(k ,1)= fields(i,1)

moments(k ,2)= momi

moments(k ,3)= sqrt(fieldi (1)* fieldi (1)+ fieldi (2)* fieldi (2)+&

&fieldi (3)* fieldi (3))

meanmom(i)= meanmom(i)+momi/(M*1.0)

end do

end do

else if(formdat.EQ.’no’) then

do i=1,N

! we do the same thing as previously , but we also change the frame for the field (cry -> CCSL)

meanmom(i)=0

end do

mat1=MATMUL(Mcalmol ,Mmolcri)

! matrix from the calculated frame to the crystal one

do i=1,3

do j=1,3

mat2(i,j)=mat1(j,i)

end do

end do ! mat2 = t(mat1)

do i=1,3

do j=1,3

tMcriccsl(i,j)= Mcriccsl(j,i)

end do

end do ! we transpose Mccslcri

mat3=MATMUL(mat2 ,chi)

mat4=MATMUL(mat3 ,mat1)

mat1=MATMUL(mat4 ,Mcriccsl)

chiccsl=MATMUL(tMcriccsl ,mat1)

norm=chiccsl (1 ,1)*( chiccsl (2,2)* chiccsl (3,3)- chiccsl (3 ,2)* chiccsl (2,3))-&

chiccsl (1 ,2)*( chiccsl (2,1)* chiccsl (3,3)- chiccsl (3 ,1)* chiccsl (2 ,3))+&

chiccsl (1 ,3)*( chiccsl (2,1)* chiccsl (3,2)- chiccsl (3 ,1)* chiccsl (2 ,2))

write (6,*) norm

do j=1,M

do i=1,N

fieldcry (1)= fields(i,2)

fieldcry (2)= fields(i,3)

fieldcry (3)= fields(i,4)

! we first assign to fieldi the direction of the field at point i

fieldi=MATMUL(Mcriccsl ,fieldcry)

do k=1,3

l=k+3

m=k+6

Opsym(1,k) = symop(j,k)

Opsym(2,k) = symop(j,l)

Opsym(3,k) = symop(j,m)

end do

do l=1,3

do m=1,3

tOpsym(l,m)=Opsym(m,l)

! we transpose the symmetry matrix

end do

end do

tmp=MATMUl(chiccsl ,Opsym)

! we begin the symmetry transformation of chi



212 E. Programs

chisym=MATMUL(tOpsym ,tmp)

momveci=MATMUL(chisym ,fieldi)

! evaluation of the magnetisation in the CCSL lattice

momi=momveci (1)* fieldi (1)+ momveci (2)* fieldi (2)+ momveci (3)* fieldi (3)

! scalar product of vec(m) and vec(H) : magnetisation along the field directio

k=i+(j-1)*N

moments(k ,1)= fields(i,1)

moments(k ,2)= momi

moments(k ,3)= sqrt(fieldi (1)* fieldi (1)+ fieldi (2)* fieldi (2)+&

&fieldi (3)* fieldi (3))

meanmom(i)= meanmom(i)+momi/(M*1.0)

end do

end do

else

write (6,*) ’Unrecognised␣format␣identifier ,␣please␣check.’

end if

end subroutine Abinit

The inverse subroutine (inversion of matrices) was implemented by Alexander Godunov (Old Dominion University, USA),
and can be found on his webpage (http://ww2.odu.edu/∼agodunov/computing.html).
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Dual descriptor and molecular electrostatic
potential: complementary tools for the study of
the coordination chemistry of ambiphilic ligands

Frédéric Guégan,*a Pierre Mignon,a Vincent Tognetti,b Laurent Joubertb and
Christophe Morell*a

In this paper, we show that the ambiphilic properties of some organic ligands in organometallic complexes

may be retrieved readily from simple calculations in the framework of conceptual density functional theory

(C-DFT): namely, the dual descriptor (DD) and the molecular electrostatic potential (MEP) of the ligands

afford a rather straightforward interpretation of experimental trends such as the bonding geometry and the

electronic properties of complexes in terms of s-, p- and back-bonding. The studied ligands were chosen

to be representative of the wide variety organometallic chemistry offers, ranging from neutral to charged

systems and from diatomic to polyatomic molecules. The present approach is general since all relevant

parameters are retrieved from the electron density, obtained either from a DFT or post-Hartree–Fock calcu-

lation. It is believed to be helpful for organometallic chemists, since it allows a deep understanding and may

be used as a predictive tool of the coordinating properties of ligands.

1 Introduction

The interplay between metallic cation(s) and organic ligand(s)
is the cornerstone of organometallic chemistry.1 According to
the simplest scheme, the metallic cations are perfect Lewis
acids and the ligands, perfect Lewis bases.2 However, these
ideal cases are certainly not the most interesting from the
theoretical and practical point of view. Indeed, most of the
time, ligands can also be electrophilic and metals may display a
nucleophilic character. This results in non-obvious situations
where electron transfers may occur either from ligands to
metals and the other way around (as involved for instance in
the Dewar–Chatt–Duncanson model3). As a consequence,
charge transfers are likely to occur, and, in the end, coordina-
tion bonds are intermediate between purely ionic and purely
covalent. The limits of the so-called Klopman–Salem model,4,5

stating that reactions usually imply either a charge or an orbital
control, are in these cases reached. Hence, to get a complete
picture of the chemical behaviour of organometallic com-
pounds one has to rely upon two descriptors, one of them
characterizing the charge transfer while the other should
describe the electrostatic interactions.

Within the canonical ensemble, such descriptors can be
deduced from a survey of the variations of the total energy when
the molecule reacts with another compound. To do so, we can
perform a second order Taylor expansion of the variations of
the total molecular energy with respect to the variation of the
external potential dv(r) and the number of electrons dN:

dE½vðrÞ;N� ¼ mdN þ Z
2
dN2 þ dENN þ

ð
rðrÞdvðrÞd3r

þ dN

ð
f ðrÞdvðrÞd3rþ 1

2

ðð
wðr; r0ÞdvðrÞdvðr0Þd3r d3r0

(1)

with ENN the nuclei–nuclei repulsion energy, m the electronic
chemical potential, Z the molecular hardness, f (r) the Fukui
function and w(r, r0) the non-local linear response kernel (whose
evaluation is rather cumbersome and will not be considered in
this study). The two first contributions on the right-hand side of
eqn (1) are global properties which describe the general
response of the molecule as a whole. Conversely, the other
terms are essentially local and bear information on the possible
regioselectivity of the process, which is the main target of our
study. These local terms can be merged into two groups, the
first contribution being

dE1 = dENN +
Ð
r(r)dv(r)d3r (2)

¼
ð

�
X
M

ZMdD r� RMð Þ þ rðrÞ
 !

dvðrÞd3r (3)
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for a system composed of M atoms of atomic charge ZM, located
at RM positions (and dD being the Dirac distribution). It is plain
to see that this term will essentially contain the electrostatic
contributions to the energy variation, plus an exchange and
correlation contribution. However, knowing that electrostatic
effects are usually more long-ranged than exchange and correla-
tion effects for a charged species, if we assume that our reaction
implies ions which are quite remote from each other (early
stages of the reaction) the incoming reactant can be treated to
a first approximation as a point charge, placed at Rpc. The
variations of the external potential will thus be approximated by

dvðrÞ ¼ � dq
r� Rpc

�� �� (4)

Putting eqn (4) in eqn (3) yields

dE1 ¼ dq
X
M

ZM

ð
dD r� RMð Þ
r� Rpc

�� �� d3r�
ð

rðrÞ
r� Rpc

�� ��d3r
 !

(5)

¼ dq
X
M

ZM

RM � Rpc

�� ���
ð

rðrÞ
r� Rpc

�� ��d3r
 !

¼ dq �MEP Rpc

� �
(6)

where MEP is the molecular electrostatic potential. As a result,
this first local term seems to be fit for the description of
chemical properties driven by charge interactions.

On the other hand, the second term of eqn (1)

dE2 = dN
Ð
f (r)dv(r)d3r (7)

involves the Fukui function, which is defined as

f ðrÞ ¼ @rðrÞ
@N

� �
vðrÞ

(8)

Actually, because of the discontinuity of the energy derivatives
with respect to the number of electrons, one should rather
consider the left (dN o 0) and right (dN 4 0) derivatives,
respectively corresponding to the f �(r) and f +(r) Fukui functions.
From their definitions, it is obvious that f +(r) allows one to find
the electrophilic regions, which are likely to gain electrons
(dN 4 0), and f �(r) is more fit for looking for the nucleophilic
regions (which are prone to lose electron density). This suggests
that dE2 would be rather adapted to describe chemical properties
that are driven by ‘‘orbital’’ interactions or more properly by
charge density interactions (between nucleophilic and electro-
philic regions). As a result, the two local contributions dE1 and
dE2 should be complementary to study ambiphilic ligands, in
the spirit of an extended Klopman–Salem model (where one
considers both electrostatic and ‘‘orbital’’ contribution). A
further step can be taken by replacing the two Fukui functions
by a single descriptor, the dual descriptor (DD):6,7

Df ðrÞ ¼ @2rðrÞ
@N2

� �
vðrÞ

(9)

It has indeed been shown that this descriptor also conveys
information about the charge density interaction. More speci-
fically, one has Df (r) 4 0 wherever the molecule is likely to

receive electron density (electrophilic regions) and Df (r) o 0
wherever the density is likely to escape (nucleophilic regions).

As a consequence, the combination of the MEP and the DD
seems to be adapted to study the coordination chemistry of
organometallic complexes. A further simplification of the pro-
blem can still be made, considering that usually experimental-
ists focus on the ligand properties rather than on the metal
properties. This is likely due to the fact that changing the metal
results in dramatic changes in chemical behaviour, while the
synthetic variations of the ligand, such as pendant arms or
donor–acceptor substituent, lead to more subtle adjustments.
The problem at hand is therefore reduced to a proper descrip-
tion of the ligand properties. They must be characterized at
both a global and a local level, that is to say being able to
ascertain whether the ligand is rather nucleophilic, electrophilic
or both, and its regioselectivity or regiospecificity.

So, in line with recently published studies,8–10 we propose
to use a combination of the DD and the MEP to explain the
coordination abilities of ambiphilic or potentially ambiphilic
ligands towards metallic cations. To do so, the needed equa-
tions are recalled in Section 2, where the details of the compu-
tation of the two descriptors are also given. An emphasis is
made on the decomposition of the dual descriptor, which
allows one to quantify and to build a scale of electrophilicity/
nucleophilicity for the studied ligands. In Section 3, different
examples are shown and analysed, with a special emphasis on
the rationalisation of the experimental trends. Noticeably,
ambiphilic behaviours are explicitly rationalised in terms of
electron density (‘‘orbital’’) and charge interactions. Finally, the
paper ends with some concluding remarks.

2 Theoretical and computational
details
State specific and usual dual descriptor

As discussed in the introduction, calculation of both the MEP
and the DD for different ligands should allow us to map quite
efficiently their reactivity. Most of computational software now
include direct calculations of molecular electrostatic properties
(up to the hexapole moment). However it is not necessarily the
case for the dual descriptor. Furthermore, eqn (9) is not readily
applicable and thus needs to be developed. Usually, two layers
of approximations are used:11

� Finite difference approximation: one usually approximates
the derivative in eqn (9) by the finite variations of the density
upon addition or subtraction of electron. This yields

Df ðrÞ � rNþ1ðrÞ � rNðrÞ
ðN þ 1Þ � ðNÞ � rNðrÞ � rN�1ðrÞ

ðNÞ � ðN � 1Þ
� �

¼ rNþ1ðrÞ þ rN�1ðrÞ � 2rNðrÞ
(10)

where rN�i(r) represents the electron density of the system under
addition or subtraction of one electron, at constant geometry.

� Frozen orbital hypothesis: if the orbitals remain
unchanged upon addition and subtraction of one electron,
the only non-zero contribution in the previous difference arises
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from the frontier orbitals. By identification of the two fractions
in eqn (10), one gets

Df (r) E rLU(r) � rHO(r) (11)

with rLU(r) and rHO(r) being the densities of the LUMO and
HOMO obtained in a SCF calculation on the system with N
electrons.

Some problems arise with these formulations. First, regard-
less of the frozen orbital hypothesis, eqn (11) suffers from
severe limitations: when considering a highly correlated sys-
tem, canonical orbitals do not convey any relevant information,
or when either the LUMO or HOMO shows some degeneracy,
this equation becomes quite meaningless. Moreover, when the
studied compounds are already negatively charged, the addi-
tion of one electron (as done in eqn (10)) might also not be
plain. The possible self-ionisation would be missed because of
the restricted size of the basis set (the additional electron being
localised on an unphysical state). These formulations are also
not well formulated for open-shell systems, where the resulting
spin state after addition or subtraction of one electron is not
obvious. A powerful formulation was recently proposed by
some of the authors, and seems well suited for this kind of
study: the state specific dual descriptor.12 In this formulation,
the dual descriptor is calculated as the variations in electron
density between the excited states and the ground state:

Df(i)(r) = r(i)(r) � r(0)(r) (12)

with r(i)(r) the density of the excited state i (i = 0 meaning
ground state). The physical meaning of this development is
quite simple: as two reagents approach one another, they exert
a mutual perturbation on their densities, through a variation of
the external potential. As a result, the perturbed density of a
molecule in this reacting configuration is markedly different
from the ground state density of the isolated molecule. Assum-
ing that no geometric relaxation occurs – i.e., the variation of
the external potential is only due to the approach of the other
reagent – this perturbation can be developed on the basis of all
the excited states of the isolated molecule. In other words, the
approach of a reagent changes the external potential in such a
way that excited states can be stabilised, hence yielding a more
accurate representation of the properties of the reacting mole-
cule than what the isolated ground state configuration would.

Ideally one should sum up the Df(i) contributions of all the
excited states into the so-called extended DD, with a weighting as
all the states will not contribute in the same way to the reactivity.
The fact is that this weighting remains unknown, but one can
assume reasonably that the higher in energy a state is, the less it
will contribute to the reactivity in the ground state, as exempli-
fied by the sum-over-states formula giving the molecular polari-
sability.13 As a rule of thumb, one might quite often rely upon
the very first excited states (first or second) and resume the
extended DD to the corresponding state-specific DD.14

Description by domains and quantification

Since the DD sums to 0 over the molecule (by construction of
the DD), both electrophilic and nucleophilic sites should be

present on a given reagent, and there is no reason for an atom
to show only one of the two behaviours. In fact, it will be shown
hereafter that atoms quite generally exhibit both contributions.
However, caution must be taken if one wants to compare the
electrophilic and nucleophilic contributions between different
ligands. The ‘‘crude’’ numerical values can indeed only be
compared between systems with the same number of electrons.
One can relieve this condition by moving from the canonical to
the grand canonical ensemble;15 upon the Legendre transform
E - O = E � mN (with m the electronic chemical potential) one
can define a grand-canonical dual descriptor:

@2rðrÞ
@m2

� �
vðrÞ

¼ Df ðrÞ
Z2

� g
Z3

f ðrÞ (13)

with Z and g being respectively the chemical hardness and
hyperhardness, and f (r) being the Fukui function. The last term
of eqn (13) can quite reasonably be neglected, since the ratio
g/Z3 is generally quite small, even though hyperhardness is not
necessarily close to zero, unlike what is generally assumed.16

Hence, in the following we will restrict to the computation of
the first term Df (r)/Z2, Df (r) being computed through the first
state specific (canonical) dual descriptor.

Another step must be taken if one wants to compare the
chemical properties of different ligands. The grand canonical
DD is indeed a local function. Yet, usually reactivity in chemi-
stry is discussed in terms of reactive sites, thus using a ‘‘coarse-
grained’’ description of the reaction. One must then translate
local properties into atomic or fragment contributions. This
approach is called condensation, the most widespread being
the one developed by Yang and Mortier,17 based on atomic
charges q(A) (whatever their definition). For instance, the con-
densed values of the Fukui functions are

f �(A) = 8[qN(A) � qN�1(A)] (14)

with qN�1(A) the charge of an atom A when an electron is added
to or withdrawn from the molecule through a vertical process
(no geometrical rearrangement). The extension to the state-
specific dual descriptor is quite straightforward:

Dfi(A) = qGS(A) � qESi(A) (15)

where qGS(A) is the charge of A in the ground state and qESi(A)
the charge in the ith excited-state. Albeit very useful, such a
scheme presents some severe drawbacks. Consider for instance
a neutral diatomic molecule A2. By symmetry, qN�1(A) = 81

2,
which yields

8A f �(A) = 1
2, Df (A) = 0. (16)

In other words, such a scheme is unable to distinguish
between H2, O2, N2 and F2 for instance, whereas their reactivity
strongly differs as it will be shown in the next section.

We recently devised a new approach that is able to discri-
minate between such molecules. The real space is divided into
non-overlapping domains Di of constant sign for the DD. In
practice, from a DD Cartesian grid (cube file), a given grid point
is said to belong to the interior of one and only one domain if
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the DD takes the same sign at every neighbouring point.
Refinements were also implemented in order to assure the
robustness of this assignment and the stability of such a grid-
based algorithm. Once these domains are obtained, the corre-
sponding condensed values are defined by

Df Dið Þ ¼
ð
Di

Df ðrÞd3r (17)

These integrals are computed numerically on the Cartesian
grid. In order to assess the accuracy of such a procedure, one
should monitor that X

i

Df Dið Þ � 0 (18)

As an even more coarse-grained representation, the following
descriptors can also be evaluated:

DfD
þ ¼

X
i=Df Dið Þ4 0

Df Dið Þ (19)

DfD
� ¼

X
i=Df Dið Þo 0

Df Dið Þ (20)

which measure the overall predominant electrophilic and
nucleophilic propensities. Note that the DD normalisation
implies that DfD

+ = �DfD
�. It is also worth adding that from this

partition, other domain properties could be evaluated such as
populations, barycentres, and moments. Their computation and
their use will be described in a forthcoming paper.

Computational details

All ligand structures presented in Table 1 were fully optimised
without symmetry restriction at the DFT level of theory. All
calculations were carried out using the hybrid B3LYP functional
and the 6-31G* gaussian basis set except for the thiocyanate
anion and the dihalogens. The SCN� anion was optimised
using the 6-31+G* basis set, as previous studies stressed the
need to use diffuse functions to properly model sulfur
atoms.18,19 Dihalogens were optimised using the full-electron,
double-zeta with polarisation functions DGDZVP basis set,20 to
ensure consistency of the results and since iodine is unavail-
able in the 6-31G* basis set. Frequency calculations were
performed at the same level of theory to check for no imaginary
value. Then, the first ten excited states were computed in the

framework of time dependent DFT (TD-B3LYP). Subsequently,
the DD was computed according to eqn (12), using the density
of the first excited states.

Grand canonical DDs (approximated by their first state-
specific components) were represented as isosurfaces, and
MEP obtained from the ground state calculations were mapped
on density isosurfaces (1 � 10�3 a.u.), using GaussView 5.21

Chemical hardness was simply computed as the energy differ-
ence Z E ELUMO � EHOMO. When relevant, condensations of the
DD were computed according to the former scheme (eqn (19)
and (20)) in order to relieve ambiguities or add a supplementary
level of explanation to the discussion.

All calculations were carried out using the Gaussian09 code
and utilities.22 Condensations were made using a home made
program.

3 Discussion

Various systems were studied here, merged as shown in the
series listed in Table 1. The groups were assembled according
to the similarities of the ligand reactivity – as H2 and ethene
for instance – or according to the number of electrons – as for
series (4). Results are discussed hereafter.

Series (1): H2 and ethene

Ethene and dihydrogen usually show a similar reactivity as
ligands, since they both interact by their main bond, coordinat-
ing in a Z2 mode1 (cf. Scheme 1(a)). Therefore, it seemed rather
logical to compare their features at the DD and MEP level,
represented in Fig. 1. As formerly said, one can see that both
nucleophilic and electrophilic parts are observed on the same
atoms. The nucleophilic area is indeed located on both sides of
the bond (H–H or CQC), indicating a coordination promoted
by these bonds. MEP surfaces indicate the same coordination
mode, since negative potential surfaces (stabilising for a cation)
are found on the sides of the main bonds. In the case of H2, the
minimal value is small (ca. �3 � 10�3 a.u.) and the attractive
domain quite narrow, which suggests quite a weak bonding.
In the case of ethene, the minimal value for the potential is one
order of magnitude larger (ca. 3 � 10�2 a.u.) and the attractive
domains are larger in space, hence implying a stronger bonding
capability for ethene as compared to H2. This is consistent with
the known geometries and relative stability of hydrogen and
ethene complexes, for instance [W(PiPr)2(CO)3(H2)] and Zeise’s
salt1 [PtCl3(C2H4)]

�. Furthermore, electrophilic systems are
found, pointing outward from the molecule, essentially p* or
s*-like (in the framework of MO theory23). They develop in the
neighbourhood of the coordinating site, suggesting quite an
efficient backbonding. This is in perfect line with experimental
results on ethylene-based complexes, such as tris-ethylene
nickel(0)24 where quite an efficient back-bonding is seen.
The reactivity of H2 is also well reproduced, as seen for
instance in the oxidative addition of H2 on Vaska’s complex25

[IrCl(CO)(PPH3)2], or the relative difficulty to ascertain the

Table 1 Series of studied ligands

Series number Ligands

1 H2, CH2CH2

2 F2, Cl2, Br2, I2
3 O2, O2

�, O2
2�

4 NO+, CO, CN�

5 NO�
6 SCN�

7

Acetylacetonate, hexafluoro-acetylacetonate
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oxidation state of the hydrogens in H2 based complexes,
between di-hydrido and neutral dihydrogen.26

Series (2): dihalogens

Isosurfaces in the case of the dihalogens from F2 to I2 are
represented in Fig. 2. Here, caution must be taken when using
the term ligand. Indeed, as Rogachev and Hoffmann already
stressed previously27 (and references therein), despite the lone
pairs that should turn dihalogens into very good ligands, only a
few transition metal complexes involving iodine are known,28–31

and to the best of our knowledge, none involving other halogens.
Nevertheless, it seemed rather logical to investigate not only

iodine, but also lighter parent compounds, and to check if any

disparity could be found. The general trends are globally the
same for the first two excited states (they are degenerated, and
give the same results). All compounds show electrophilicity
along the molecular axis, essentially s*-like (in the framework
of MO theory), while nucleophilic areas point on both sides
of the bond where one would expect to find lone pairs.
These features are consistent with the aforementioned study,
where iodine is considered to be essentially electrophilic while
coordinating in a linear fashion, and nucleophilic when
coordinating on a ‘‘bent-side on’’ mode. The MEP is also in
quite a good agreement, developing negative contribution on
the sides of the molecules where the nucleophilic lobes are
located, and positive (repulsive) contributions along the molec-
ular axes. These electrophilic and positive MEP areas represent
general features of halogen compounds, the so-called s-holes.32

The bent-side on coordination seems therefore plausible, and is
more probable for the heavier halogens since both the minimal
values and extents of the attractive MEP domains are larger
(from ca. �3 � 10�3 a.u. for F2 to �7 � 10�3 a.u. for I2 and Br2).
The larger proclivity of the heaviest halogens towards coordina-
tion is also stressed by the increase in the spatial extent of the
nucleophilic parts of the DD as one moves from fluorine to
iodine. It is likewise found in the condensed values of the DD, as
shown in Table 2. As a remark, it is worth noticing that the
condensation scheme respects the condition of a zero integral of
the DD (eqn (18)).

It is plain to see that nucleophilic contributions are increas-
ing when moving from fluorine to iodine, suggesting a more
efficient coordination for heavier dihalogens. Both this ten-
dency and the topological features of the DD account for the
coordination geometry of iodine31 in [Rh(CF3CO2)4(I2)], and two
more factors might play a role in the non-existence of other
donor dihalogen complexes. First, the weak electrostatic stabi-
lisation (for chlorine and fluorine) can be insufficient to allow a
cation approach. Furthermore, dihalogens are quite strong

Scheme 1 Schematic representation of (a) the Z2 coordination mode of ethene (left) and H2 (right); (b) the reaction of [(dpp-nacnacCH3)Rh(phdi)] with
iodine; (c) the reaction of dioxo with the haem moiety in haemoglobin; (d) coordination of peroxo in the [(Cu(TMPA))2(O2)]

2+; (e) coordination of peroxo
in the catechol oxidase complex.

Fig. 1 Up: DD isosurfaces for H2 and ethylene (from left to right).
Isovalues: �4 � 10�3 a.u., green: Df 4 0, red: Df o 0. Down: MEP maps
on density isosurfaces, same order. Isodensity: 1� 10�3 a.u., values ranging
from 3.00 � 10�2 (blue) to �3.00 � 10�2 a.u. (red) in the case of ethene,
1.00 � 10�3 to �1.00 � 10�3 for H2.
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oxidants, hence suggesting that the complexes they might form
would not be stable and would undergo oxidative addition with
the cleavage of the halogen–halogen bond. This tendency
would be exacerbated for the first dihalogens, which show the
highest redox potentials (we recall here the standard potentials:
E0(F2/F

�) = 2.866 V/ECS, E0(Cl2/Cl
�) = 1.358 V/ECS, E0(Br2/Br

�) =
1.087 V/ECS versus E0(I2/I

�) = 0.536 V/ECS).33 This hypothesis
is supported by the reactivity of [(dpp-nacnacCH3)Rh(phdi)]
towards dihalogens.29 Indeed, addition of chlorine or bromine
to this complex leads to an oxidation of the metal center and a
cleavage of the halogen–halogen bond, while addition of iodine
does not. In this case, a linear-acceptor iodine ligand is found,
which is consistent with the description obtained by the DD.
The supposed mechanism is depicted in Scheme 1(b). Actually,
two other linear-acceptor iodine based complexes are known:28,30

[Pt(dmpe)2(I2)] and [PtI(C6H3(CH2NMe2)2)(I2)]. This small number
of examples seems to agree well with the previous discussion
about the redox activity and both the smaller developments of the
DD for lighter halogens, and another feature may explain the
relative rarity of complexes based on acceptor iodine. It is indeed
plain to see that the linear coordination is electrostatically dis-
favoured, since the MEP displays along the molecular axis of the
dihalogens its largest value, ca. 0.022, 0.038, 0.049, and 0.052 a.u.
from F2 to I2.

As a result, one can see that coordination abilities of
dihalogens are quite similar according to the DD and the
MEP analyses. Both show a tendency towards donation in a
bent-side on geometry, which is expected to be favoured only
for the heavier dihalogens. An acceptor ability in a linear
coordination geometry is also found, which is expected to be

also quite effective for the heavier halogens since they display
a smaller gap between their HOMO and LUMO than the lighter
ones (ca. Z = 6.98 eV for fluorine, 3.05 eV for iodine) with both
higher values of the electrophilic grand canonical dual descrip-
tor. Still, these calculations seem to fail to reproduce the rarity
of dihalogen-based complexes. In fact, the question is whether
this rarity comes from poor coordination abilities or from
other causes. As already discussed, the oxidative potential of
dihalogens is quite a likely cause of the very few occurrences of
dihalogen based complexes. This is the subject of a reactivity
study; yet an implicit assumption is that we only consider
coordination properties, meaning small perturbations of the
electron densities, and not reactivity. With respect to this,
our description is correct, and in fact the missing trends can
be quite easily found since reactivity can be attained through a
proper (yet slightly different) interpretation of the DD. For
instance, the positive regions of the DD indicate acceptor
regions in terms of coordination, but also the regions that
would induce an electrophilic attack. The difference between
the two approaches lies in the considered phenomenon: a
slight electron delocalisation (from the metal to the ligand
here) or a complete electron transfer (oxidative addition).

Series (3): from dioxo to peroxo

Isosurfaces for dioxo, superoxo and peroxo ions are represented
in Fig. 3. These ligands are not supposed to show the same
reactivity, but they form an electrochemical series that inter-
venes quite often in bioinorganic chemistry34 (cell respiration,
oxidation cycles).

The differences between all these ligands are striking. The
nucleophilicity of dioxo (Fig. 3(a),(A)) is essentially located
along two orthogonal directions, either along the molecular
axis or perpendicular to it. The main development is found in
the interatomic plane, which would suggest a chelate mode of
coordination, but since the MEP value in this area is positive –
it corresponds to the maximum value of ca. 9 � 10�3 a.u. – this
coordination mode is rather disfavoured. In fact, slightly nega-
tive values of the MEP are found on the sides of each oxygen
atom (ca. �2 � 10�3 a.u.), forming circular potential domains

Fig. 2 DD isosurfaces (up) and MEP maps on density isosurfaces (down) for the dihalogens from F2 (indices A, B and C) to I2 (index D). DD isovalues:
�4 � 10�3 a.u., MEP ranges: [�1.00 � 10�2; 1.00 � 10�2] a.u.; same color scheme as Fig. 1.

Table 2 Condensed grand canonical dual descriptor for the dihalogens,
sorted by positive or negative contribution

Molecule DfD
+/Z2 (a.u.) DfD

�/Z2 (a.u.)

F2 9.17 �9.17
Cl2 21.27 �21.32
Br2 31.39 �31.49
I2 48.06 �48.12
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at the same places one finds electrophilic parts of the DD. This
suggests that dioxygen would essentially bind in a bent side-on
way, acting as an acceptor ligand, as depicted on the left side of
Scheme 1(c). Still, coordination by the central nucleophilic area
could be encountered when covalent interactions are stronger
than electrostatic interactions. In such a case dioxo is also
expected to be quite a good acceptor ligand. It develops indeed
large electrophilic lobes in the vicinity of the coordination area.
Eventually, in these two geometries the acceptor tendency
could lead to a certain reactivity, as what was formerly dis-
cussed for dihalogens. These results seem to be in a rather good
agreement with the known reactivity of dioxo towards com-
plexes: to the best of our knowledge, no dioxygen complex has
been yet unambiguously characterised. Indeed, O2 undergoes
in all cases one or several electron back-transfer, e.g. in the
haemoglobin complex35 where a side-on superoxo is found as
sketched in Scheme 1(c), or in the oxidative addition of O2 to
iridium complexes36 where usually a chelate peroxo is finally
formed. These results are also quite easily understandable in
the framework of MO theory. The nucleophilic parts on the
molecular axis arise from s* contributions, while the central
one stems from the bonding p system, which would be stabi-
lised by the approach of an electron-acceptor species. The
electrophilic parts are due to the anti-bonding p* system, which
in contrast would be stabilised by an interaction with an
electron-giving species.

Superoxo (Fig. 3(b),(B)) shows also a balanced trend since
both nucleophilic and electrophilic sites show similar develop-
ments. In terms of MO theory, they seem to arise essentially
from orthogonal p* contributions. This suggests that superoxo
would be a fairly good donor ligand, with a possibility to show
chelation, and some slight ability for back-bonding due to the
development of electrophilic areas in the vicinity of the bond-
ing region. MEP in this case shows only negative values, due to
the negative charge of the ligand. Hence, electrostatic inter-
action is in any case stabilising, but it still makes sense to check

for the local minima in order to have a better idea of the
regioselectivity of a cation approach. The MEP surface in this
case was then represented between its minimal and maximal
values. It is plain to see that two potential wells are defined
above and below the O–O bond, but not in a circular shape
(ca. �0.28 a.u.). It is worth noticing that the nucleophilic parts
of the DD are also located below and above the O–O bond. Both
descriptors thus strongly support the hypothesis of a chelating,
donor superoxo. Little back-bonding is expected in this geo-
metry, as the only reachable electrophilic parts are the ones
located in the middle of the O–O bond. Yet, as formerly said
the electrostatic interaction is stabilising at any point on the
isodensity surface. Situations where stabilisation due to orbital
interaction would take precedence over electrostatic interaction
are therefore possible. For instance, the displacement of a
ligand could increase the back-bonding or the s-bonding while
decreasing the electrostatic stabilisation. Depending on the
balance between both effects, this displacement will be
favoured or not. As a result, geometries involving a cation not
exactly located in the potential well, but rather on one of its
sides could be encountered. This is also in good agreement
with the known reactivity of superoxo; for instance, as already
discussed in the haemoglobin complex O2

� binds in a bent-side
on form to Fe(III) (yielding a strong s-donation).

In the case of peroxo (Fig. 3(c),(C)) finally, the DD represen-
tation is very close to what was seen for fluorine. This was
expected since they are isoelectronic. The same kind of reactivity
is therefore expected at the DD level: chelate or bent donor, or
linear and acceptor ligand. Since peroxo is a dianion, here also
one expects to observe only negative values of the potential,
hence suggesting one to use the same representation (between
min and max values). Again, the minimal values are found
within the bond area, but this time the potential domain is
circular (continuum of minimal values, ca. �0.54 a.u.). The
chelate mode of coordination is then strongly supported, even
if any cation approach is favoured with respect to the MEP

Fig. 3 DD isosurfaces (up) and MEP maps on density isosurfaces (down) for O2, O2
� and O2

2� (indices A, B and C). DD isovalues: �4 � 10�3 a.u., MEP
ranges: [�1.00 � 10�2; 1.00 � 10�2] a.u., [�2.80 � 10�1; �2.30 � 10�1] a.u. and [�5.50 � 10�1; �4.50 � 10�1] a.u. respectively; same color scheme as
Fig. 1.
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(negative values). In this bonding mode, little back-bonding
might occur thanks to the central electrophilic developments
of the DD, in the middle of the O–O bond. In that case indeed,
the O–O bond length is quite long (ca. 1.62 Å) and the MEP is
strongly negative, hence permitting a close approach of a cation
and a subsequent strong interaction with this electrophilic part.

All these tendencies are also in good agreement with the
known reactivity of peroxo as a ligand. For instance, in the
catechol–oxidase complex, dioxo first binds to two copper(I)
ions and then undergoes two electron back-transfer, yielding
peroxo bound to two copper(II) in a chelate way as shown in
Scheme 1(d) and (e). This complex can then oxidise organic
molecules such as phenols,34 hence exploiting the relative
electrophilicity of peroxo (middle-bond developments). As pre-
viously said for peroxo, here also other geometries are possible
since the MEP is attracting towards cations anywhere on
the surface. This allows one to understand the geometry of
the [(Cu(TMPA))2(O2)]2+ complex, where a peroxo bridges to
copper(II) in a end-to-end, bent fashion (cf. Scheme 1).37 In this
case indeed, the chelate binding mode seems disfavoured due
to steric hindrance generated by the pyridine coordinating
groups. Another possible way to bind the metallic cations
through the donor parts of peroxo is to bridge by a bis-
monohapto mode (Z1 � Z1), as experimentally observed. In
these cases also, the combination of both the DD and the MEP
allows one to retrieve the coordination chemistry and also the
reactivity of O2 based complexes.

Series (4): nitrosyl, carbonyl, cyanide

As previously stated, the ligands in series (4) are isoelectronic and
it is well established that they show similar coordination abilities.
For instance, carbonyl, cyanide and nitrosyl are known to yield
roughly the same kind of crystal field energy splitting, meaning
that they show the same kind of donor and acceptor abilities.1 DD
andMEP isosurfaces are represented in Fig. 4. DD displays similar
features: nucleophilic domains are found along the molecular
axes, pointing outwards from the molecule. They are more

developed on the most electropositive atom, which is known
to be the coordinating one (C in CO, N in NO+, C in CN�), and
can be understood in the framework of the MO theory as
arising from s orbitals. These nucleophilic contributions point
in the direction of the minima of MEP (�2 � 10�2 a.u. for C in
CO, �0.24 a.u. for C in CN�, 0.24 a.u. for N in NO+), strongly
supporting linear coordination mode (with a donor ligand). The
development of electrophilic domains in the vicinity of this
coordination area (essentially p* like) indicates a strong ten-
dency towards back-bonding. This is consistent with the fact
that these ligands are known to be strong field ligands, with
the following order within the spectrochemical series:2 NO+ o
CO E CN�. The order within this series is furthermore
retrieved from the spatial extent of the DD, being larger for
carbonyl and cyanide as compared to nitrosyl. This is also plain
from the condensed values of the grand canonical DD, as
reported in Table 3: NO+ shows lower contributions (ca. �
3.2 a.u.) than CO (ca. � 4.4 a.u.) and cyanide (ca. � 5.1 a.u.).

In the case of cyanide and carbonyl, the minimal values
of the MEP found on the coordinating atom correspond to
genuine potential wells; the interplay between charge and
covalent interaction therefore suggests that the coordination
will essentially imply a linear donor ligand, with a large back-
bonding, as observed. In the case of cyanide, since the MEP is
negative everywhere, coordination by the N atom is also plau-
sible, even though coordination by the C atom is preferred. This
accounts quite well for the observed coordination trends of
cyanide, noticeably the possibility to form C,N (end-to-end)
bridges like in the prussian blue analogues.38 In these com-
pounds, the large back-bonding manifests itself in the generally

Fig. 4 DD isosurfaces (up) and MEP maps on density isosurfaces (down) for CO, NO+ and CN� (indices from A to C). DD isovalues: �4 � 10�3 a.u., MEP
ranges: [�2.00 � 10�2; 2.00 � 10�2] a.u. (CO), [2.48 � 10�1; 3.10� 10�1] a.u. (NO+), [�2.40 � 10�1; �2.30 � 10�1] a.u. (CN�); same color scheme as Fig. 1.

Table 3 Condensed grand canonical dual descriptor for CO, NO+ and
CN�, sorted by positive or negative contribution

Molecule DfD
+/Z2 (a.u.) DfD

�/Z2 (a.u.)

CN� 5.06 �5.07
CO 4.37 �4.38
NO+ 3.17 �3.18
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large magnetic coupling between the cations. In the case of
carbonyl, the relative strength of charge interaction is expected
to be lower than what is observed in cyanide, hence suggesting
that the restriction to the linear coordination might be weaker,
accounting for the possibility to obtain the bent-carbonyl
complex carboxyhaemoglobin.39 This last example is further
explained if one remembers that iron in the haem complex is
rather nucleophilic (as illustrated by the back-transfer in oxy-
haemoglobin between Fe(II) and dioxo), hence trying to increase
its interaction with the electrophilic parts of the DD and
therefore coordinating in a bent fashion. Finally, in the case
of nitrosyl, since no negative MEP value is found, the minimal
value corresponds to a repulsive potential (towards cations). As
a result, charge control alone limits any coordination (effect of
the positive charge). No real interplay between charge and
orbital control can be found, and the reactivity must then be
controlled solely by orbital interactions. This accounts quite
well for the variety of behaviours that nitrosyl can show: when
reacting with quite a nucleophilic metal, it will essentially
behave like an acceptor in a bent ‘‘side-on’’ geometry,2 as in
[Ir(PPh3)2(CO)(NO)Cl]

+. In contrast, when reacting with an
electrophilic metal, it would behave like a linear donor,40 as
in [Fe(CN)5NO]

�, with a large tendency to back-bonding.

Nitrosyl

In the previous series, we discussed a few results for NO+, which
is one of the limit forms that one usually writes to describe the
behaviour of a one-electron donor nitrosyl ligand. NO is indeed
a non-innocent ligand, and its electronic state is almost never
plain:41 it always balances between NO+ and NO�. The cationic
form might not be the best form to describe NO, especially
when aiming to describe its reactivity. Indeed, the positive
charge results in an electrostatic repulsion that might forbid
complexation. Let us now focus on the neutral, radicalar form
NO�. Computations of the DD and the MEP are shown in Fig. 5.
Again, both electrophilic and nucleophilic contributions to the
dual descriptor are spatially developed, and might be of similar
importance for the reactivity. Yet, the differences with the
cationic form are marked: instead of planar electrophilic and
nucleophilic parts, orthogonal p*-like contributions are observed.
They are mainly located on the N, suggesting a coordination by
the nitrogen. This is supported by MEP analysis, showing two

local minima on the sides of the N atom (ca. �12 � 10�3 a.u.),
to be compared with the local minima on the sides of the O
(ca. �8 � 10�3 a.u.). These features are localised on the same
places as the nucleophilic parts of the DD, hence suggesting two
possible coordination geometries: either bent and donor, with a
slight tendency towards back bonding owing to electrophilic areas
not far from the coordination area, or linear and strongly donor
(p-donation) with a larger tendency towards back-bonding.
This linear form is possible since along the molecular axis the
MEP values are negative, hence stabilising for a cation (balance
between the full electrostatic stabilisation and the back-bonding).
The bent geometry is therefore expected when NO binds to quite a
nucleophilic metal, which is consistent with the known data on
nitrosyl: the bent form is associated with a 1e donor character
while the linear form is associated with a 3e donor character.41

This is also seen in the Feltham–Enemark model:42 the more the
{MNO} entity contains electrons, the more bent the nitrosyl
would be.

Yet, something might seem odd to the reader, since this
analysis is in a partial contradiction with the former one on
the cationic form: here, the bent geometry is associated with a
donor character, while for the cationic form it is related to an
acceptor ability. This is actually consistent with the known ‘‘non-
innocent’’ character of nitrosyl as a ligand and the fundamental
ambiguity that stems from the arbitrary assignment of an
electronic state to it. Indeed, instead of considering an acceptor
nitrosyl and a donor iridium(I) ion in [Ir(PPh3)2(CO)(NO)Cl]

+, one
might have thought of a donor nitrosyl bound to an acceptor
iridium(II); the apparent problem is only a matter of electron
localisation, which should not be encountered while considering
entire complexes in which the electronic state of nitrosyl is not
relevant (but the total number of electrons is).

Thiocyanate

Thiocyanate is another example of ambidentate ligands, char-
acterised by the so-called geometry signatures:41 thiocyanate
coordinates by the N atom to hard metals, in a linear geometry,
or by the S atom to soft metals, in a rather bent-side on
geometry.43 The MEP and DD maps are displayed in Fig. 6.
One must bear in mind that a proper quantum calculation of
sulfur-containing compound supposes the inclusion of diffuse
and polarisation functions, thus suggesting the use of the
6-31+G* basis set in this case. From the DD analysis, it seems
that the N atom is essentially nucleophilic, while the sulfur

Fig. 5 DD isosurface (left) and MEP maps on density isosurfaces (right) for
NO�. DD isovalues: �4 � 10�2 a.u., MEP range: [�1.20 � 10�2; 1.20 � 10�2]
a.u.; same color scheme as Fig. 1.

Fig. 6 DD isosurface (left) and MEP maps on density isosurfaces (right) for
SCN�. DD isovalues:�2� 10�2 a.u., MEP range: [�1.99� 10�1;�1.50� 10�1]
a.u.; same color scheme as Fig. 1.
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atom shows both components. The nucleophilic parts can be
viewed as arising from essentially p*-like orbitals (in the frame-
work of MO theory), with a hint of s character for the nitrogen
atom, and the largest component is found on the sulfur.
This suggests that both atoms are able to act as donor ligands,
with essentially no back-bonding while coordinating by the
nitrogen, and in contrast a possible back-bonding when
coordinating by the sulfur in a bent fashion. MEP also shows
that any coordination is possible, since at the chosen isodensity
all the values are negative. Yet, the minimal value is found
along the SCN bond on the nitrogen (ca. �0.20 a.u.), and the
maximal value is found along the bond but on the S atom
(ca. �0.15 a.u.).

As a result, one expects hard metals to coordinate by the
N atom since they are most likely to undergo charge control,
while in contrast soft metals, likely to undergo covalent control,
would rather bind to the sulfur since it shows the largest
nucleophilic contribution and also the possibility to yield
back-bonding. In the case of N-bonding, the geometry is
expected to be linear (orientation along the minimal MEP
value, along the bond). The S-bonded complexes are expected
to be bent because of the better back-bonding (with respect to a
linear situation) and at the same time a larger electrostatic
interaction. The coordination properties of thiocyanate are here
very well reproduced.

Acetylacetonate and hexafluoroacetylacetonate

Acetylacetonate (acac) is widely used in coordination chemistry,
acting as a donor but also quite efficient in enhancing the Lewis
acidity of metallic cations, which supposes quite a good attrac-
tor behaviour; its hexafluorinated counterpart (hfac) shows the
same reactivity, with a larger Lewis acidity enhancement.44

The computed MEP and DD surfaces are represented in Fig. 7.
It is plain to see that both descriptors indicate a coordination by
the two oxygen atoms, preferentially in the molecular plane: the
nucleophilic parts of the DD consist essentially of the p-type lone
pairs of the oxygens, lying in the molecular plane. On the other

hand, a (negative) electrostatic potential well is located between
the two oxygens, in the same position (ca. �0.23 a.u. for hfac,
�0.28 a.u. for acac), while other parts of the molecules show
positive values of the MEP (which suggests that the charge is
quite localised within the two oxygens). One would then expect
quite a strong donor character for these ligands, as it is generally
observed experimentally. But one can also see that the electro-
philic part of the DD, though mostly located on the carbonyl
carbons, also develops on the oxygens, perpendicular to the
molecular plane. These electrophilic areas are in an appropriate
place to allow quite an efficient back-bonding from metal
orbitals, thus enhancing its Lewis acidity. This is also experi-
mentally observed. The difference between the protonated and
fluorinated form is not really obvious, except that hfac is
expected to be a weaker ligand, since MEP minimum is smaller
and the spatial extent of the DD is smaller. The MEP feature is
quite easily explained if one remembers that trifluoromethyl
groups are electron withdrawing, hence delocalising the anionic
density over the whole molecule and not only between oxygens.
A more careful look at the DD reveals that the electrophilic and
nucleophilic parts are rather comparable for hfac, in contrast to
the situation of acac where the nucleophilicity is preponderant.
This is likely due to the trifluoromethyl groups, which by low-
ering the density lead to lower the local nucleophilicity and
also the local electrophilicity. As a result, hfac is expected to be
a stronger electron-withdrawing ligand as compared to acac,
which is consistent with its higher ‘‘lewis acidity enhancement’’
properties.44

4 Conclusion

In this article, we have shown that the computation of the dual
descriptor and the molecular electrostatic potential allows one
to interpret the coordination chemistry of ligands in terms of
acceptor/donor abilities balanced by electrostatic interactions.
The variety of the chosen examples (ranging from neutral
diatomic to charged polyatomic ligands) supports the general-
ity of the proposed method, not only for geometry interpreta-
tion but also its prediction. In many cases, both descriptors
provide similar information, but in some cases ambiguities
could only be relieved by the combination of the two descrip-
tions. For instance, in the case of dioxygen (coordination by the
electrophilic part of the ligand thanks to the molecular
potential) or thiocyanate (coordination possible on every posi-
tion according to the MEP, limitation to two possibilities
thanks to the DD). This tool might be useful for the community
of coordination chemists, since it allows one to map unam-
biguously and at the price of rather simple DFT calculations the
relative local nucleophilicity or electrophilicity of a ligand,
hence permitting to predict the preferential coordination geo-
metries of a given ligand. Furthermore, the effectiveness of the
proposed method suggests that it could be worth checking if
any complementary information would not be obtained by
considering the dual potential45,46 instead of the dual descrip-
tor. Yet, the combination of both DD and MEP already allowed

Fig. 7 DD isosurface (up) and MEP maps on density isosurfaces (down) for
acetylacetonate and hexafluoro-acetylacetonate (indices A and B). DD
isovalues: �4 � 10�2 a.u., MEP ranges: [�2.80 � 10�1; �1.00 � 10�1] a.u.
(acac), [�2.30� 10�1;�1.00� 10�1] a.u. (hfac); same color scheme as Fig. 1.
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us to get an insight into the electronic properties of a ligand,
enabling for instance to ascertain which geometries would
allow back-bonding and which ones would not. Furthermore,
the scope is not limited to these points. Previous studies indeed
showed that charge-transfer excitations could be easily com-
puted and explained based on the variations of the density
upon a vertical excitation,47 which are precisely what one
computes when looking for the state-specific DD.48 This means
that one can access, in a single and unified framework, both
reactivity and optical properties of a molecule, and at a rela-
tively low computational cost.
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Towards the first theoretical scale of the trans
effect in octahedral complexes†

Frédéric Guégan,*ab Vincent Tognetti,c Laurent Joubert,c Henry Chermette,a

Dominique Luneaub and Christophe Morell*a

In this paper, we show that trans effects in octahedral complexes can primarily be related to differences

in the ability, for a given ligand, to cede electron density to the metal cation under the influence of the

ligand at the trans position. Using tools from conceptual DFT or from related paradigms, we highlight

these effects on a set of representative examples and further provide the basis for a computational trans

effect scale. This quantification notably retrieves the experimental trans orienting series.

1. Introduction

The Kinetic Trans Effect (KTE), sometimes simply called the
‘‘trans effect’’, is a well-known phenomenon in coordination
chemistry since its discovery in 1926.1 It is characterised by the
increase in the substitution kinetics of a ligand in a complex,
under the influence of the ligand at the opposite coordination
position (whence the label ‘‘trans’’).2,3 A static analogue to this
effect is also known: the Structural Trans Effect (STE), some-
times called ‘‘trans influence’’.4 It is characterised by an
increase of a metal–ligand bond length, under the influence
of the ligand at the opposite coordination position.

Both STE and KTE are frequently epitomised by square planar
complexes, with a d8 electronic configuration of the metal cation,5

and octahedral complexes, with either a d6 or d0 metal electronic
configuration.6 More rarely, they can be observed for lanthanide,7

actinide8,9 or even iodine10,11 complexes. These two effects are
known to be a likely cause of several chemical properties, ranging
from catalytic activity and selectivity12–14 to metalloprotein
reactivity15–18 and anti-tumoral activity.19–21

As such, understanding the origin and mechanisms beneath
both the STE and the KTE seems to be necessary. Many
experimental and theoretical studies have been dedicated to

this task and, to our best knowledge, have not been fully
conclusive yet. All these efforts can be traced back to the
1930s when an electrostatic model22–25 was proposed, based
on polarisation effects between the central metal and the
ligands. However, its conclusions are generally in contradiction
with the outcome of a later model by Chatt, Dewar and
Duncanson (CDD).26,27 The CDD model, even though elegant,
only works for the KTE observed with p-acceptor ligands and is
unable to account for the generality of the trans effects.

Eventually, some other authors tried to correlate metal–ligand
s or p bond strength with the trans effects using experimental
evidences, such as direct measurements of UV charge transfer
bands.28,29 Lately, many different theoretical studies have con-
firmed that both electron donations and back-donations30,31 are
acting beneath the KTE of square planar complexes, the former by
destabilising the complex, and the latter by stabilising the transi-
tion states of metathesis.32 Yet, such confirmations are still needed
in the case of octahedral complexes.

There is no apparent reason why the same line of argument
might not be applied. Furthermore, it is plain to see that there
is a common ground for all these approaches. In all cases indeed,
trans effects can be understood in terms of electron density
deformations. For instance, within the CDD model, trans effects
are investigated by monitoring the electron transfers from the
metal to the ligands. Similarly, in the electrostatic approach, the
dipole moment arises from electron density distortion due to
charge accumulation or depletion at given sites. In the case of
the donation/back-donation scheme, the extent of electron density
shared between the ligand and the metal, as compared to the case
of isolated species, could be the relevant parameter to follow.

Conceptual DFT33–35 (C-DFT) is an elegant framework for
characterizing such effects. It expresses the chemical properties
of a given system through a set of quantum descriptors. These
are based on the response of either the energy or the electron
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density to external perturbations.36 Obviously, such a framework is
adapted for an in-depth investigation of the physical roots of the
trans effects in octahedral complexes. Two tools are particularly
well fitted to monitor the variations of the electron density, namely
the Dual Descriptor (DD)37–39 and the Extended Transition State–
Natural Orbitals for Chemical Valence40–42 (ETS–NOCV). The latter
does not strictly belong to C-DFT, still it uses a density deformation
matrix and therefore its theoretical framework is quite close to
C-DFT. These two indexes combined together have proved to be
very efficient to characterise, understand and rationalise the
electron density evolution during a chemical process.43,44

In this work, the results of a combined DD/ETS-NOCV survey
are reported. In the first part, the physical bases for both
descriptors are briefly recalled (see the ESI† for more details).
In the second part the methodology to unravel the STE and the
KTE is presented. It is then applied on a set of representative
examples. The third part is dedicated to the elaboration of a
semi-quantitative scale of trans orienting groups. The paper
ends with some concluding remarks.

2. Theoretical background
2.1 State specific grand canonical dual descriptor

The usual dual descriptor Dfusual(r)
45 is defined as the second

derivative of the electron density r(r) with respect to the
number of electrons N, in a frozen geometry (the external
potential v(r) remaining constant).

DfusualðrÞ ¼ @2rðrÞ
@N2

� �
vðrÞ

(1)

It allows the characterisation, in a single representation, of
regions within a molecule that are prone to cede (Df (r) o 0) or
receive (Df (r) 4 0) electron density, the so-called nucleophilic
and electrophilic regions in organic chemistry,38,46 and their use
to understand the reactivity of organometallic complexes47,48 has
recently been advocated.

Several approximations of the DD are found in the literature,
and are developed in the ESI.† Here, we use a recently devised
formulation, the so-called ‘‘state-specific’’ approach,49–51 where
the DD is identified as a sum of electron density differences
between the nth excited and the ground states – the so-called
nth state specific DDs. Indeed, most of the limitations of the
usual approximations are avoided in this formalism; noticeably,
the eventual orbital degeneracy is no longer a problem, nor the
spin states of themolecules and their associatedN + 1/N� 1 forms
(see the ESI† for more details). Furthermore, the DD within this
approach is expected to take into account polarisation effects,52

and as such to represent reactivity more accurately. More specifi-
cally, we focus on the first state specific DD Df1(r), which usually
provides the major contribution to reactivity:

Df1(r) = r1(r) � r0(r) E Dfusual(r) (2)

Here, we are interested in comparing chemical systems with
different numbers of electrons N. Eqn (1) and (2) hold only for
a fixed N value (canonical ensemble), and the Legendre

transformation to the grand-canonical ensemble is needed if
one wants to set N as a free parameter. The result of such a
transformation has already been reported50 (and the details are
recapped in the ESI†), and it can be shown that one simply
needs to divide the canonical DD by the square of the molecular
hardness Z in order to obtain the Grand-Canonical Dual
Descriptor (SS-GCDD) Ds(r):

DsðrÞ � DfusualðrÞ
Z2

� r1ðrÞ � r0ðrÞ
Z2

: (3)

For the sake of simplicity and concision, we will refer to the
SS-GCDD as the DD in the following.

2.2 DD partition into reactive domains

In order to extract themeaningful chemical information contained
within the DD, it is relevant to partition it into domains of constant
sign D�

i , associated with a univocal and specific reactivity. More
precisely, all points belonging to a given D+

i (respectively D�
i )

feature a positive (resp. negative) DD value and are surrounded
by neighbours exhibiting the same DD sign that corresponds to a
predominant electrophilic (resp. nucleophilic) behaviour.

Such a real space partition can be achieved using DOMAINS, a
recently developed code.53 In the latest version of the program,
two thresholds are implemented in order to get a clearer picture
of the domains. The first threshold, tr, excludes from the
domains any point in space that would be closer than tr to
any nucleus. This allows us to withdraw the contribution of
core regions, which are not expected to contribute significantly
to the reactivity, or which may not be accurately described
(with the use of pseudo-potentials). The second threshold, tDD,
allows a better separation of the domains by excluding any
point in space associated with a norm of the DD that is inferior
to tDD (lower boundary). This permits an efficient delimitation
of the reactive sites.

It is possible to integrate the DD within these domains, and
thus to gain a deeper insight into the reactivity of the corres-
ponding sites. More precisely, it is possible for each domain
D�
i to compute its volume, VD�

i
, the integrated value of the DD

within this volume, Ds(D�
i ), and the average value of the DD in

the domain, Ds D�
ið Þ. This last value is expected to yield the

most valuable information on the domain reactivity, since it
shares the same unit as the DD. As we will show in the last part,
those average values will actually be the basis for a quantifica-
tion of the trans effect.

2.3 Extended transition state–natural orbitals for chemical
valence (ETS–NOCV)

The NOCV Ci are the eigenvectors that diagonalise the defor-
mation density Dr(r) of two isolated fragments when they are
allowed to interact. Mathematically this can be translated by

DrðrÞ ¼
X
m

nm �C�mðrÞ2 þCmðrÞ2
� �

: (4)

Practically, the NOCVs permit the decomposition of the electron
density deformation on the basis of the orbitals of each isolated
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fragment. It therefore helps in monitoring the evolution of the
electron density during a chemical process. For instance, it is
possible to distinguish between s and p bonding, and also to
separate donation and back- donation effects;54 physics beneath
the interactions is thus unveiled. In addition to this decomposition
of the electron density transfers, an assessment of the associated
energetic stabilisation is possible, through the framework of the
extended transition state.55

2.4 Computational details

All the structures of complexes presented in this work have
been fully optimized without symmetry restrictions at the
B3LYP level of theory using the Gaussian09 package.56 Pople
basis sets are used for all the coordinating atoms: 6-311+G(d)
for S and P atoms, 6-311G(d) for the other ones. Metal cations
are modelled with the Stuttgart–Dresden Electron Core Poten-
tials (ECP) and the corresponding basis set (keywords SDD in
Gaussian09).57 Frequency calculations have been performed at
the same level of theory to ensure that the obtained geometries
correspond to genuine minima of the potential energy hyper-
surface (the coordinates are reported in the ESI†). To evaluate
the DDs, the first ten excited states have been computed using
the Time Dependant DFT framework (TD-B3LYP), and the DD
has been subsequently evaluated using eqn (2) and (3).49

Chemical hardness has been approximated as Z = ELUMO �
EHOMO. Condensation was performed using DOMAINS,53 and the
same threshold values were used for all complexes: tDD =
0.2 a.u. and tr = 0.5 a.u.

To ensure that computed DD are reliable, they have also been
calculated using two other exchange–correlation functionals
(PBE0 and M06-2X) for a few complexes. As expected the results
are very similar and make the DD a trustable descriptor. In the
same spirit, the adequacy of the basis sets and ECP has been
confirmed by additional calculations on the cobalt complexes, at
the B3LYP/6-311++G(2d,2p) (C, H, N, O)/Wachters+f (Co) level.58,59

Apart from computation time, which increases a lot, the tendency
remains the same (though the figures change, naturally), hence
giving confidence in the adequacy of the computational model.
The NOCV calculations have been performed using the Amsterdam
Density Functional program (ADF2013),60 at the B3LYP/TZP-small
core level of theory. Both the DD and NOCV density deformations
have been represented using GaussView 5.61

3. Trans effect in octahedral
complexes

Note: in the following, the labels trans and cis will refer to the
corresponding position in a complex with respect to the strongest
trans orienting ligand.

3.1 Methodology

The aim of this study is to characterise and rationalize the trans
effects in octahedral complexes. As pictured in Scheme 1, two
approaches have been unfolded. First, the differences in the
electronic demand between the cis and the trans positions in a

given complex are compared, highlighting the trans effect induced
by a specific ligand T (left side of the figure). To do so, the
geometries of the full complexes are optimised, and afterwards
either the cis or trans ligand L is removed. The DDs of the
corresponding incomplete [ML4T] complexes are computed, as
well as the NOCVs associated with the coordination of the
removed ligands. As exemplified in the following, this approach
permits the characterisation of the STE, where one often compares
two bond lengths in the same complex (inner reference).

Second, we compare the electronic demand at the trans
positions in two similar [ML5T] and [ML5T0] complexes, differing
only by the trans orienting ligands T and T0. A similar approach to
the previous was used: the first optimisation of the structure,
followed by the removal of trans ligands. The DDs of the corres-
ponding fragment complexes [ML4T] and [ML4T0] are calculated,
as well as the NOCVs associated with the coordination of the
removed trans ligands. This approach likely allows the character-
isation of the KTE, where one usually compares two complexes
only differing by the trans orienting ligand.

The validity of these approaches is supported by the fact that
ligand substitution in octahedral complexes generally proceeds
via dissociative mechanisms. [ML5] moieties therefore bear
some chemical meaning as potential intermediates.2 In the
following discussion, the two approaches are developed in
order to assess the efficiency of both tools (DD and NOCV) to
retrieve and rationalise the trans effects. The complexes listed
in Table 1 have been chosen to be representative of the variety
both trans effects offer, either in electronic configuration
(d0 and d6 for the STE, d6 for the KTE), period of the metal
(4 and 5) or ligand nature (s or p donor, p acceptor).

Scheme 1 Schematic representation of the applied methodology; left
side, highlight of the differentiation between trans and cis ligands. Right
side, comparison between two trans orienting groups T and T’.

Table 1 List of the studied complexes. Complex S3 is given in ESI

Label Formula Specificity

1 [Co(NH3)2(NO2)3(CH3)]
� STE, d6, s donors

2 [NbO(SCN)5]
2� STE, d0, s, p donors

3-H2O [Rh(NH3)4(H2O)2]
3+ KTE, d6, s donors

3-Cl [Rh(NH3)4(H2O)Cl]
2+ KTE, d6, s, p donors

4-OH [Co(en)2(H2O)OH]2+ KTE, d6, s, p donors
4-SO3 [Co(en)2(H2O)SO3]

+ KTE, d6, p acceptor
S3a [RhL(PMe3)2Cl3] STE, d6, s, p donors

a L = dimethylaminocarbene.
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3.2 Comparing cis and trans positions

3.2.1 The first example of a d6 STE complex: [Co(NH3)2-
(NO2)3(CH3)]

�. The first chosen example, [Co(NH3)2(NO2)3(CH3)]
�

(1), is known to show a marked STE62 due to the methyl ligand.
Indeed, the Co(III)–NO2

� bond length is 0.10 Å longer trans to
CH3

� than cis. Two [ML5] fragments have been built by removing
either the trans or a cis nitrito ligand. The DDs computed for the
fragments are presented in Fig. 1. The similarity between the
metal contributions to the DD in both fragments is striking. They
comprise a nucleophilic part reminiscent of a non-bonding
metal d orbital, and an electrophilic part developing towards
the coordination vacancy. The latter feature could be expected:
removing a ligand, i.e. a nucleophile, will logically exacerbate the
electrophilicity of the remaining [ML5] species.

This electrophilic basin looks noticeably larger in 1-cis than
in 1-trans, even using an isovalue that is twice higher. The
results of the condensation on these domains are summarised
in Table 2. In the case of 1-trans, the integrated value is about
7 times smaller than that of 1-cis. The volume of the domain is
also smaller for 1-trans, but in a much weaker proportion

(roughly 30%). In the end, the mean value of the DD Ds Dþ
Co

� �
is much higher for 1-cis than for 1-trans. The trans position,
being much less electrophilic than the cis one, is then expected
to stabilise ligands less efficiently: the associated metal–ligand
bond is expected to be longer.

This is in total compliance with the experimental results.
This could also be retrieved using NOCVs for the coordination
of nitrite to the [ML5] fragments. The deformation density
associated with the first (and main) NOCV pair is represented

in Fig. 2. In both cases the incoming ligand (NO2
�) loses

electron density, which relocates between the ligand and the
cobalt atom: a cobalt–nitrite bond is formed. Furthermore,
some internal relocations are observed on the [ML5] moiety.

Those can be seen as the withdrawal of an excess of electron
density that was transferred from the ligands to the metal
cation to counteract the coordination vacancy. The coordina-
tion of the cis nitrito is associated with a NOCV (�1) energetic
stabilisation of 40.1 kcal mol�1 and a transfer of 0.66 electrons.
On the other hand, the coordination of the trans nitrito is
associated with an energetic stabilisation of 31.3 kcal mol�1

and a transfer of 0.57 electrons. The metal–ligand bond is then
weaker at the trans position, and as such we retrieve the
expected STE.

3.2.2 An example of a d0 STE complex: [NbO(SCN)5]
2�. The

second example, [NbO(SCN)5]
2� (2), is known to exhibit a

marked STE due to the oxide ligand:63 the Nb(V)–SCN� bond
length is 0.18 Å longer trans to the oxido as compared to the
cis position. One can notice formally the d0 electronic configu-
ration of the metal cation. Similarly to complex 1, two [ML5]
fragments have been built by removing the trans thiocyanate
(2-trans) or the cis one (2-cis), and the DD has been computed.
The results are displayed in Fig. 3.

The DD contributions on the metal cation are again similar.
Noticeably, the electrophilic part recalls a non-bonding metal d
orbital, in perfect line with the previous example. Indeed, in the
framework of MO theory, these non-bonding orbitals are empty
in the d0 case, thus likely associated with electrophilicity, and
fully occupied in the d6 case, and associated with nucleophilicity.
In the case of 2-cis, these electrophilic domains are adapted to fit
a p-donor ligand, and thus may efficiently stabilise a N-bonding
thiocyanate.

2-trans will not offer such a stabilisation: the electrophilic
domains develop perpendicularly to the eventual thiocyanate–
niobium bond. The trans thiocyanate is then expected to be
much less stabilised than the cis one. Furthermore, the DD lobes
on the trans thiocyanate in 2-cis are much more developed than
on any other one. The aspect is indeed very typical of an isolated
SCN� ligand, thus suggesting that this ligand in the complex

Fig. 1 DD isosurfaces for the [ML5] fragments derived from complex 1.
Left: 1-trans, deprived of the trans nitrito group with respect to methyl,
�0.4 r Ds(r) r 0.4 a.u. Right: 1-cis, deprived of the cis nitrito with respect
to methyl, �0.2 r Ds(r) r 0.2 a.u. Surfaces colours: orange, Ds(r) o 0;
green, Ds(r) 4 0. Colour scheme: red, O atoms; blue, N atoms; grey,
C atoms; white, H atoms: lavender, Co atoms. Coordination vacancies are
directed on the right side of each [ML5] fragment, and green arrows point
towards the D+

Co domains. Methyl ligands are highlighted.

Table 2 DD condensation for [ML5] fragments deriving from complex 1.
All values in atomic units

1-cis 1-trans

Ds(D+
Co) 145.6 21.4

V(D+
Co) 24.1 17.6

Ds Dþ
Co

� � 6.04 1.22

Fig. 2 Deformation density for the first NOCV pair, associated with the
coordination of a nitrito ligand to 1-trans (left) and 1-cis (right). Isovalue:
Dr(r) = �4 � 10�3 a.u. Colour scheme: orange, r(r) depletion; green, r(r)
accumulation. Atom colours and orientations of the fragments were
chosen as in Fig. 1. The incoming ligand is located on the right side of
each complex, and methyl ligands are highlighted.
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behaves more like a free ligand than a coordinated one, not to say
like a leaving group. Unfortunately, the same partition as pre-
viously could not be applied: only negligible values of the DD at
the trans position could be obtained, since no development of the
DD is observed at that position. Actually, this is not a pitfall: if
no quantification is possible in that case, one is still able to
characterise a trans effect.

More insight is gained from the ETS-NOCV study of the
coordination of thiocyanate to the [Nb(SCN)4O]

� fragments.
The results are recapped in Fig. 4. In the case of the cis SCN�,
the main energetic stabilisation is associated with the for-
mation of a s bond (NOCV�2,�30.4 kcal mol�1, 0.47 electrons
transferred), but the highest number of transferred electrons is
associated with the formation of a p bond (NOCV �1,
�12.7 kcal mol�1, 0.49 electrons). A different tendency is observed

for the trans SCN�: an energetic stabilisation of �18.0 kcal mol�1

for the s bond formation (NOCV �1), and 0.34 electrons trans-
ferred, �8.1 kcal mol�1 and 0.52 electrons for the p bond
formation (NOCV �2).

Roughly the same number of electrons is transferred during
the formation of the p bonds, but the associated energetic
stabilisation is much higher for cis SCN�. Regarding the s bond
formation, both the number of transferred electrons and the
energetic stabilisation are higher in the case of cis SCN�. Thus
one expects trans thiocyanate to be much less stabilised in the
complex than the cis ones, and as such to be more weakly
coordinated: a STE is retrieved.

3.3 Comparing trans orienting ligands

3.3.1 An example of a KTE complex: [Rh(NH3)4(H2O)X]
n+.

The two previous examples, in addition to the 3 other examples
provided in the ESI,† confirmed that it is possible to highlight
differences between the trans and cis positions in given com-
plexes, and to relate these differences to a possible STE or a
KTE. A further step can be taken if one compares two different
trans orienting ligands, with the remains of the complex being
conserved.

Let us consider [Rh(NH3)4(H2O)X]
n+, with X = H2O, n = 3

(3-H2O) and X = Cl�, n = 2 (3-Cl). It was shown experimentally
that water substitution proceeds 5000 times faster for 3-Cl than
for 3-H2O.

64 In agreement with our methodology, we built two
[ML5] fragments based on these two complexes by removing the
coordinated water molecule (ML5-3-H2O and ML5-3-Cl), and
computed the corresponding DD, as represented in Fig. 5. The
DD features are very similar to those observed for complex 1.
Noticeably, we retrieve the d AO-type nucleophilic contribution
on the metal, and the electrophilic development towards the
vacancy. It is not plain whether ML5-3-H2O or ML5-3-Cl bears
the largest contribution at first sight.

Results of the condensation are gathered in Table 3, and
help us to answer this question. The integrated value of the DD
for ML5-3-H2O is approximately twice the value for ML5-3-Cl,
while the volume of the basins remains rather similar. As a
consequence, the mean value of the DD is higher for ML5-3-H2O:
the associated vacancy exhibits a higher electrophilicity than
ML5-3-Cl. The water molecule should then be more stabilised in

Fig. 3 DD isosurfaces for the [ML5] fragments derived from complex
2, 2-trans (left) and 2-cis (right). Isovalues: �0.2 r Ds(r) r 0.2 a.u. Same
colour scheme as in Fig. 1, the S atoms are depicted in yellow. Top, view
along the O–Nb(V) bond; bottom, side view. Green arrows highlight the
D+
Nb domains, and an asterisk highlights the oxide position.

Fig. 4 Deformation density associated with the first (upper side) and
second (lower side) NOCV pairs, for the coordination of a thiocyanate to
2-cis (left) and 2-trans (right). The same colour scheme as in Fig. 2, the
incoming ligand being located on the right side. Isovalue: Dr(r) = �4 �
10�3 a.u. Oxide ligand positions are highlighted by asterisks.

Fig. 5 DD isosurfaces for the [ML5] fragments built from 3-Cl (left) and
3-H2O (right). The same colour scheme and isovalues as in Fig. 3. Cl atoms
are represented in olive, and green arrows point towards the D+

Rh domains.
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3-H2O than in 3-Cl, and as such to be less easily replaced: we
retrieve a KTE.

This is also confirmed at the NOCV level, as sketched in
Fig. 6. In both cases, a basin of electron density relocation is
observed between the incoming water and the rhodium cation,
indicating the formation of a s bond. Further reorganisation of
electron density is observed on the remaining of the ligand. It
can be assigned here also to a withdrawal of excess electron
density that was transferred from the ligands to the metal
cation, in order to counteract the coordination vacancy. The
coordination of water to ML5-3-H2O is associated with a transfer
of 0.48 electrons, and an energetic stabilisation of 31.0 kcal mol�1.

On the other hand, coordination to ML5-3-Cl leads only to the
transfer of 0.36 electrons and a stabilisation of 16.7 kcal mol�1.
The incoming water molecule is then much less stabilised in 3-Cl
and one expects its replacement to proceed much quickly: the
KTE is retrieved.

3.3.2 Another KTE complex: [Co(en)2(H2O)X]
n+. Let us now

consider the case of [Co(en)2(H2O)X]
n+, with X = OH�, n = 2

(4-OH) and X = SO3
2�, n = 1 (4-SO3) (en = ethylenediamine). This

complex involves a p-acceptor ligand, and thus differences in
the aspect of the DD with respect to the previous cases might be
expected. It was shown experimentally that water substitution
is 2000 times faster in 4-SO3 than in 4-OH.65,66 In the same
spirit as previously, we built two [ML5] fragments by removing
the coordinated water molecule of 4-SO3 (ML5-4-SO3) and 4-OH
(ML5-4-OH), and computed the DD.

The results are presented in Fig. 7. The metal cation here
also bears a nucleophilic domain with a shape reminiscent of a
d-type metal AO, and an electrophilic domain developing
towards the vacancy. In the case of 4-SO3 the domains look
quite distorted, and the electrophilic one is very small as compared

to 4-OH. This apparent lower electrophilicity is retrieved in numer-
ical values from the condensation, recapped in Table 4.

The integrated value is indeed between 3 to 4 times larger
for ML5-4-OH than for ML5-4-SO3, and the mean value is also
much larger. More electrophilicity is then seen on the vacancy
when the trans ligand is hydroxo, thus suggesting the coordinated
water would be much more stabilised in 4-OH than in 4-SO3.

This is also completely retrieved at the NOCV level, as repre-
sented in Fig. 8. During coordination of water to the [ML5]
fragments, a basin of electron density relocation is observed
between H2O and the cobalt atom, indicating as previously the
formation of a s bond. From the graphical point of view, this
relocation of electron density is much larger for 4-OH than for
4-SO3.

This is retrieved in the numerical values: coordination of
water to 4-OH involves the relocation of 0.33 electrons and a
stabilisation of 15.6 kcal mol�1. On the other hand, only
0.22 electrons are transferred during coordination to 4-SO3,

Table 3 DD condensation for [ML5] fragments deriving from complex 3.
All values in atomic units

ML5-3-H2O ML5-3-Cl

Ds(D+
Rh) 43.9 21.9

V(D+
Rh) 25.2 19.2

Ds Dþ
Rh

� � 1.74 1.14

Fig. 6 Deformation density associated with the first NOCV pair for the
coordination of H2O to ML5-3-Cl (left) and ML5-3-H2O (right). The same
colour scheme and isovalues as Fig. 4, the incoming ligands being located
on the lower side (same orientation as in Fig. 5).

Fig. 7 DD isosurfaces for the [ML5] fragments built from 4-OH (left) and
4-SO3 (right). The same colour scheme and isovalues as in Fig. 3. Green
arrows point towards the D+

Co domains, hydroxide and sulfite being
highlighted.

Fig. 8 Deformation density associated with the first NOCV pair for the
coordination of H2O to ML5-4-OH (left) and ML5-4-SO3 (right). The same
colour scheme, orientations and isovalues as Fig. 2. The incoming water
molecule is located on the lower side.

Table 4 DD condensation for [ML5] fragments deriving from complex 4.
All values in atomic units

4-OH 4-SO3

Ds(D+
Co) 73.7 20.0

V(D+
Co) 33.6 13.4

Ds Dþ
Co

� � 2.19 1.49
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with a stabilisation of 6.3 kcal mol�1. As a result, coordination
of water is much weaker when trans to a sulfito ligand, as
compared to hydroxo. One would then expect an easier sub-
stitution in that case, as observed experimentally.

4. A quantitative scale

From the previous examples, it appears that our methodology
permits us to highlight the trans effects by either differentiating
the cis and trans positions in a given complex, or by comparing
two different trans orienting ligands. Furthermore, using our
recently devised topological partition of the DD we have been
able to relate these effects to differences in electrophilicity at
given sites around the metal cation: systematically, lower values
were observed at the position where either a STE or a KTE is
expected. This is in perfect line with the conclusions of both
Chval and De Proft (and co-workers).31,32 The former inter-
preted the trans effects as a ‘‘competition between the ligands
[. . .] for the opportunity to donate their electron density to the
central’’ metal cation. On the other hand, the latter proposed
that a very efficient donation from the trans orienting ligand
would translate in an electron density accumulation at the trans
position, which in turn would induce a strong Pauli repulsion
with the trans ligand, hence destabilising it. It is obvious that
both effects would translate in a smaller electrophilicity at the
trans position with respect to the strongest donor, as observed.

We intend to show in this last part that this electrophilicity
can be used to draw a quantitative scale of the trans orienting
ligands. This scale resembles the experimental one, which is
roughly as follows (ranking from high STE to low):2,3,6

CH3
� E CO E NO2

� 4 Cl� 4 Pyridine 4 NH3 4 H2O

Let us then consider complex 3 derivatives [Rh(NH3)4(H2O)X]
n+

with X belonging to the previous series. If we apply the same
methodology as in part 3.3, for every fragment [Rh(NH3)4X]

n+ an
electrophilic domain is observed on the metal cation, pointing
towards the vacancy. Because the shapes of the DD are always the
same, in the following we will only discuss the condensed values.
They are all summed up in Table 5.

As previously, the ranges of both the integrated DD values
and the volume of the electrophilic domains are large. On the
other hand, the mean values are rather close to unity (ranging
from 0.36 to 1.74 a.u.), with a smaller dispersion. Furthermore,
as we discussed in the ‘‘Theoretical backgrounds’’ part, these
mean values are also more readily understandable than mere
integrated values, having the same units as the DD. In our
context, they are the best index to build a quantitative scale.

Ranking the ligands from the lowest to the highest mean

values Ds Dþ
Rh

� �
, one obtains:

NO2
� o CH3

� E CO o NH3 o Cl� o Pyridine o H2O

which is close to the experimental series. Noticeably, one
retrieves that the high field ligands are associated with the
lowest electrophilicity, and as such to stronger trans effects.

On the other hand the order of the weak trans orienting ligands
seems to be less correctly reproduced.

This was rather expected, since the experimental series is
averaged over large sets of complexes, studied under rather
different conditions (temperature, solvents). This experimental
series provides a rough trend, rather than a precise order, and
many exceptions are known.6 As such, our computed ranking
might actually bear much meaning than the experimental
series. Noticeably, it should be possible to isolate the contribu-
tion of each experimental parameter – temperature, pressure,
solvent – to the overall trans effect, using a purely computa-
tional framework. Such a study goes beyond the scope of this
paper, and may be the subject of a following survey.

In order to confirm our calculated scale, at least in the
strong-field part of the series, we decided to study another
series of complexes,67 [Ru(NH3)5X]

n+ (5) with the same X – to the
exception of NH3, which would be meaningless, since no
differentiation would be seen due to the octahedral symmetry.
The shape of the DD is also very similar to the previous
examples, and we will only discuss the numerical values
summarised in Table 6. The order of the ligands ranked from

the lowest to the highest Ds Dþ
Ru

� �
is:

NO2
� o CH3

� o CO o Pyridine o Cl� o H2O

As one can remark, the same order as the previous is
obtained for the lowest contributions, with NO2

�, CH3
� and

CO being strong trans orienting ligands in both cases. On the
other hand, the order of the weak trans orienting ligands is
different, being closer to the experimental trends.

5. Conclusions

In conclusion, we showed that it is possible to retrieve the
trans effects for some octahedral complexes, using tools from

Table 5 DD condensation for [ML5] fragments deriving from complex 3.
All values in atomic units

X Ds(D+
Rh) V(D+

Rh) Ds Dþ
Rh

� �
CH3

� 9.5 10.7 0.88
CO 14.1 15.8 0.89
NO2

� 1.6 4.5 0.36
Pyridine 36.4 24.9 1.47
NH3 18.5 17.9 1.03
Cl� 21.9 19.2 1.14
H2O 43.9 25.2 1.74

Table 6 DD condensation for [ML5] fragments deriving from complex 5.
All values in atomic units

X Ds(D+
Ru) V(D+

Ru) Ds Dþ
Ru

� �
CH3

� 22.4 28.9 0.77
CO 18.3 21.5 0.85
NO2

� 21.0 35.2 0.60
Pyridine 29.4 26.1 1.13
Cl� 36.3 26.4 1.37
H2O 43.2 30.6 1.41
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conceptual DFT or close paradigms. It seems that both effects
are due to differences in the way electron density is likely to
reorganise in the complex, under the influence of a specific
ligand. This ligand, by decreasing the need for electron density
at the trans position, weakens the associated metal–ligand
bond and as such leads to an increase in the bond length or
kinetics. Monitoring the electrophilicity then allows the charac-
terisation and quantification of the trans effects, and permitted
us to build a quantitative scale of the trans orienting ligands
following a systematic approach. This scale, although not
perfect, follows rather closely the experimental trends. This
suggests that trans effects are primarily controlled by the
electron density donation properties of the ligands at the trans
position. The rather large diversity of the studied cases, either
in transition metal series and ligand types, suggests that these
findings are quite general.

Both trans effects are often encountered in coordination
chemistry, but failed to be precisely understood. We hope our
results will help us to change this fact, and may for instance
allow us to rationally design molecular devices for specific drug
delivery or catalysis, based on the KTE. For a wider scope, we
hope our combined DD/NOCV study will stimulate further
research effort, in order to enlighten the physics beneath
metal–ligand interaction in coordination complexes.
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Joint experimental and theoretical approaches in coordination
chemistry:
"from the trans effects to Single Molecule Magnets"

Résumé :
Dans ce travail, nous nous sommes principalement intéressé à la description et à la rationalisation de
certaines propriétés des complexes de coordination, par des approches mixtes expérience/théorie.
La première de ces études, purement théorique, revisite les propriétés de coordination des ligands par
des méthodes de type DFT conceptuelle. Dans un premier temps, les ligands seuls sont étudiés, puis les
résultats de cette première approche sont utilisés pour caractériser et rationaliser les effets trans dans les
complexes octaédriques.
La deuxième étude ci-présentée concerne la synthèse et la caractérisation de complexes polynucléaires de
Cu(II) et de ligands de type base de Schiff dérivés d’acides aminés. Dans un premier temps, la réactivité
de ces complexes en solution est rationalisée par des mesures spectroscopiques et des calculs de type DFT.
Puis, les propriétés magnétiques de deux complexes trinucléaires sont présentées et analysées grâce au
support de calculs ab initio de haut niveau.
Enfin, dans la troisième étude nous nous intéressons à des complexes mononucléaires d’ion lanthanides
présentant une dynamique lente de l’aimantation à basse température. Des mesures magnétiques, mais
aussi de luminescence et de diffraction de neutrons polarisés, combinées à des calculs de type SA-
CASSCF/RASSI-SO permettent de rationaliser les propriétés magnétiques ainsi observées.

Mots-clés :
Chimie de coordination, chimie théorique, magnétisme moléculaire, cristallographie, luminescence.

Abstract: In this work, we focused on the description and rationalisation of certain properties of co-
ordination complexes through the use of joint experiment/theory approaches.
The first study is purely theoretical, and revisits the coordination properties of ligands using conceptual
DFT methods. In a first time, ligands alone are studied, and the results of this study are then employed
to characterise and rationaliser the trans effects in octahedral complexes.
The second study deals with the syntheses and characterisation of polynuclear Cu(II) complexes deriving
from amino-acid based Schiff base-like ligands. In a first time, the reactivity of these complexes in solution
is rationalised through the use of spectroscopies and DFT calculations. Then, the magnetic properties of
two trinuclear complexes are presented and analysed thanks to high level ab initio calculations.
Finally, in the third study we focus on mononuclear lanthanide-based complexes presenting a slow dynam-
ics of magnetisation at low temperature. Magnetic measurements, as well as luminescence and polarised
neutron diffraction experiments, combined to SA-CASSCF/RASSI-SO calculation allow the rationalisa-
tion of the observed magnetic properties.

Keywords:
Coordination chemistry, theoretical chemistry, molecular magnetism, crystallography, luminescence.


