
UNIVERSITÉ PARIS DESCARTES
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Résumé

Dans cette thèse, nous nous intéressons à différents modèles mathématiques de
traitement d’images numériques dits de bas niveau. Si l’approche mathématique
permet d’établir des modèles innovants pour traiter les images, ainsi que l’étude
rigoureuse des propriétés des images qu’ils produisent, ils impliquent parfois l’utili-
sation d’algorithmes très consommateurs de temps de calcul et de mémoire. Aussi,
nous portons un soin particulier au développement d’algorithmes rapides à partir
des modèles mathématiques considérés.

Nous commençons par effectuer une présentation synthétique des méthodes
mathématiques basées sur la dualité de Legendre-Fenchel permettant la minimi-
sation d’énergies faisant intervenir la variation totale, fonctionnelle convexe non-
différentiable, ceci afin d’effectuer divers traitements sur les images numériques.

Nous étudions ensuite un modèle de discrétisation de la variation totale inspiré
de la théorie de l’échantillonnage de Shannon. Ce modèle, appelé ≪ variation totale
Shannon ≫ permet un contrôle fin de la régularité des images sur une échelle
sous-pixellique. Contrairement aux modèles de discrétisation classiques qui font
appel à des schémas aux différences finies, nous montrons que l’utilisation de la
variation totale Shannon permet de produire des images pouvant être facilement
interpolées. Nous montrons également que la variation totale Shannon permet un
gain conséquent en matière d’isotropie et ouvre la porte à de nouveaux modèles
mathématiques de restauration.

Après cela, nous proposons une adaptation du modèle TV-ICE (Iterated Condi-
tional Expectations, proposé en 2014 par Louchet et Moisan) au cas du débruitage
d’images en présence de bruit de Poisson. Nous démontrons d’une part que le
schéma numérique issu de ce modèle consiste en un schéma de point fixe dont la
convergence est linéaire, d’autre part que les images ainsi produites ne présentent
pas d’effet de marche d’escalier (staircasing), contrairement aux images obtenues
avec l’approche plus classique dite du maximum a posteriori. Nous montrons
également que le modèle Poisson TV-ICE ainsi établi repose sur l’évaluation
numérique d’une fonction gamma incomplète généralisée nécessitant une prise
en compte fine des erreurs numériques inhérentes au calcul en précision finie et
pour laquelle nous proposons un algorithme rapide permettant d’atteindre une
précision quasi-optimale pour une large gamme de paramètres.

Enfin, nous reprenons les travaux effectués par Primet et Moisan en 2011
concernant l’algorithme astre (A contrario Smooth TRajectory Extraction) dédié
à la détection de trajectoires régulières à partir d’une séquence de nuages de
points, ces points étant considérés comme issus d’une détection préalable dans une
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séquence d’images. Si l’algorithme astre permet d’effectuer une détection opti-
male des trajectoires régulières au sens d’un critère a contrario, sa complexité en
O(K2) (où K désigne le nombre d’images de la séquence) s’avère être rédhibitoire
pour les applications nécessitant le traitement de longues séquences. Nous propo-
sons une variante de l’algorithme astre appelée cutastre qui préserve les per-
formances de l’algorithme astre ainsi que certaines de ses propriétés théoriques,
tout en présentant une complexité en O(K).

Abstract

In this thesis, we focus on several mathematical models dedicated to low-level
digital image processing tasks. Mathematics can be used to design innovative
models and to provide some rigorous studies of properties of the produced images.
However, those models sometimes involve some intensive algorithms with high
computational complexity. We take a special care in developing fast algorithms
from the considered mathematical models.

First, we give a concise description of some fundamental results of convex
analysis based on Legendre-Fenchel duality. Those mathematical tools are par-
ticularly efficient to perform the minimization of convex and nonsmooth energies,
such as those involving the total variation functional which is used in many image
processing applications.

Then, we focus on a Fourier-based discretization scheme of the total varia-
tion, called Shannon total variation, which provides a subpixellic control of the
image regularity. In particular, we show that, contrary to the classically used
discretization schemes of the total variation based on finite differences, the use
of the Shannon total variation yields images that can be easily interpolated. We
also show that this model provides some improvements in terms of isotropy and
grid invariance, and propose a new restoration model which transforms an image
into a very similar one that can be easily interpolated.

Next, we propose an adaptation of the TV-ICE (Total Variation Iterated Con-
ditional Expectations) model, recently proposed by Louchet and Moisan in 2014,
to address the restoration of images corrupted by a Poisson noise. We derive an
explicit form of the recursion operator involved by this scheme, and show linear
convergence of the algorithm, as well as the absence of staircasing effect for the
produced images. We also show that this variant involves the numerical evalua-
tion of a generalized incomplete gamma function which must be carefully handled
due to the numerical errors inherent to the finite precision floating-point calculus.
Then, we propose an fast algorithm dedicated to the evaluation of this generalized
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incomplete gamma function, and show that the accuracy achieved by the proposed
procedure is near optimal for a large range of parameters.

Lastly, we focus on the astre (A contrario Smooth TRajectory Extraction)
algorithm, proposed by Primet and Moisan in 2011 to perform trajectory detection
from a noisy point set sequence. We propose a variant of this algorithm, called
cutastre, which manages to break the quadratic complexity of astre with
respect to the number of frames of the sequence, while showing similar (and even
slightly better) detection performances and preserving some interesting theoretical
properties of the original astre algorithm.
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Raedersdorff et son équipe, pour l’aide qu’ils m’ont apportée à de multiples oc-
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règne au MAP5 se nourrit grandement des nombreuses discussions amicales qu’ils
partagent avec simplicité. Je tiens également à remercier Thierry Stœhr, membre
de l’équipe SCRIPT de l’université Paris Diderot, pour m’avoir fait découvrir
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Douady, Jérôme Fournier, Pascal Lopez et Lionel Moisan.

Que de bons moments passés avec plusieurs générations de dynamiques doc-
torants, post-doctorants, ATER, ingénieurs de recherche, ou stagiaires ! Un grand
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Les images sont omniprésentes dans notre quotidien, nous les percevons à
l’aide de nos yeux et les analysons à l’aide de notre cerveau qui s’est entrâıné
depuis notre naissance à en extraire de l’information utile et à la traiter, per-
mettant par exemple la reconnaissance de visages, de formes, ou l’estimation de
la distance qui nous sépare d’un objet en mouvement, de sa vitesse, etc. Si la
plupart du temps, l’exécution de ces tâches nous semble immédiate et ne conduit
pas à un sentiment d’≪ effort perceptuel ≫ intense, on estime que le cerveau hu-
main y consacre plus de la moitié de sa capacité totale. Depuis l’avènement de
l’ère numérique, le traitement d’images numériques s’est imposé comme un do-
maine à part entière du traitement du signal, en particulier du fait de la nature
bien spécifique des signaux qu’il met en jeu. Ces dernières décennies, des modèles
mathématiques ont été développés dans le but de représenter, comprendre et ma-
nipuler les images numériques afin de les transformer ou d’en extraire de l’infor-
mation utile. On distingue deux niveaux de traitements, les traitements dits de
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14 Chapitre 1. Introduction

≪ haut niveau ≫ dédiés à la réalisation de tâches complexes proches de la vision
humaine (telles que la reconnaissance de visages, la détection et le suivi d’ob-
jets, le dénombrement d’individus dans une foule, etc.), ou les traitements dits
de ≪ bas niveau ≫ qui se focalisent sur des ≪ briques ≫ de traitement apparais-
sant de manière plus systématique en traitement d’image (comme par exemple la
suppression de bruit, la détection de formes, de contours, etc.) et pouvant être
combinées pour effectuer des traitement plus complexes. L’intérêt de l’approche
bas niveau est que les phénomènes mis en jeu sont plus simples à modéliser du
point de vue physique et mathématique, ouvrant la voie à leur étude rigoureuse et
poussée. Les travaux présentés dans cette thèse se situent plutôt du côté ≪ bas ni-
veau ≫, son objectif étant le développement de modèles mathématiques ainsi que le
développement d’algorithmes efficaces dédiés au traitement d’images numériques.

Note concernant les licences des images utilisées dans ce document

Sauf mention explicite, les expériences menées dans cette thèse ont été ef-
fectuées à partir d’images sous licence libre ≪ Creative Commons Zéro ≫ (CC0
Public Domain) provenant de la bibliothèque Pixabay (https://pixabay.com/).

1.1 Qu’est ce qu’une image numérique ?

Les images numériques sont les images dont l’acquisition est faite à l’aide
d’un capteur numérique (comme par exemple un scanner, un appareil photo ou
caméscope numérique, une carte d’acquisition vidéo, . . .), ou encore les images
synthétisées directement à l’aide de programmes informatiques (images de
synthèse). Les images numériques sont en général stockées sous forme binaire
sur un support informatique (carte SD, clé USB, disque dur) et représentées par
des tableaux à plusieurs dimensions, ces dernières pouvant être de nature spatiale
(longueur, largeur, profondeur pour les images 2D, 3D), mais aussi temporelle
(on parle de signaux 2D+t ou 3D+t, où t désigne le temps, pour désigner un
flux d’images 2D ou 3D), ou autres (par exemple des longueurs d’ondes dans le
cas des images dites hyperspectrales). Nous nous restreindrons au cas des images
à deux dimensions spatiales (longueur, largeur), représentées par des tableaux à
deux dimensions. Dans ces tableaux, chaque case est appelée pixel de l’image et
contient une information traduisant l’intensité lumineuse de la scène à une posi-
tion spatiale donnée. Mathématiquement, on les représente comme des fonctions

https://pixabay.com/
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à deux variables du type

u :

(
Ω ⊂ Z2 → Rd

(x, y) 7→ u(x, y)

)
(1.1)

où Ω = {0, . . . ,M − 1} × {0, . . . , N − 1} est un rectangle de Z2 de dimensions
M×N appelé domaine de l’image et d désigne la dimension de l’espace utilisé pour
représenter les intensités lumineuses. En général, on prend d = 1 pour représenter
les images en niveaux de gris (un exemple est proposé en Figure 1.1) et d = 3
pour les images couleurs (nous nous restreindrons cependant dans cette thèse au
cas des images en niveaux de gris).

Si le processus de numérisation par le biais d’un système d’acquisition (appareil
photo numérique, scanner, etc.) permet le stockage et la manipulation des images,
il introduit également un certain nombre d’erreurs pouvant conduire à une image
numérique ne rendant pas fidèlement compte de la scène réellement observée. Ces
erreurs peuvent être modélisées mathématiquement d’autant plus précisément que
notre connaissance du système d’acquisition, mais aussi de la scène observée, est
grande. Illustrons brièvement comment l’on peut modéliser l’acquisition d’une
image numérique en niveaux de gris issue d’un appareil photo numérique classique.
Cette description est très simplifiée et n’a pour objectif que de familiariser le
lecteur avec le formalisme mathématique qui suivra. Soit Ωc un ouvert de R2 et
soit U∗ : Ωc → R telle que pour tout (x, y) ∈ Ωc, U∗(x, y) représente l’intensité
lumineuse de la scène au point (x, y). Nous parlerons d’image continue pour parler
de U∗ (par opposition à l’image discrète qui représentera l’image numérique issue
de U∗).

Remarque. Le choix de modéliser la scène par une fonction U∗ définie sur R2

et non R3 peut sembler surprenant puisque la scène observée est a priori une
scène en trois dimensions (longueur, largeur, profondeur). On peut en pratique
voir U∗ comme la projection dans un plan (typiquement le plan focal du capteur)
d’une scène V∗ à trois dimensions. Comme nous ne chercherons pas à recons-
truire d’image en trois dimensions, nous ne nous intéresserons pas à ce type de
modélisation.

Supposons donc que l’on fasse l’acquisition de l’image U∗ en une image numérique
de taille M × N , que l’on représente par un signal u0 : Ω → R. On peut alors
modéliser l’étape d’acquisition en considérant que u0 satisfait

∀(k, l) ∈ Ω, u0(k, l) = KU∗(k, l) + ε(k, l) , (1.2)
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Figure 1.1: Représentation sous forme d’un tableau d’une image en niveaux de gris.
Nous affichons dans la partie gauche de cette Figure une image en niveaux de gris. Cette image
de largeur M et de hauteur N peut être représentée par un signal u : Ω → R (c’est-à-dire du
type (1.1) pour d = 1), où Ω désigne un rectangle discret de taille M × N . Par convention, le
pixel de coordonnées (0, 0) correspond au coin supérieur gauche de l’image, tandis que le pixel
de coordonnées (M − 1, N − 1) correspond au coin inférieur droit de l’image. Dans le cas des
images acquises avec un appareil photo standard, les niveaux de gris (u(k, l))(k,l)∈Ω sont souvent
représentés par des entiers positifs codés sur 8-bits, ce qui signifie que les valeurs u(k, l) sont
des entiers compris entre 0 et 255 (0 représentant le noir et 255 le blanc). Dans la partie droite
de cette Figure, nous indiquons les niveaux de gris de u sur un sous-ensemble de Ω représenté
par le rectangle rouge dans l’image.

où ε : Ω → R représente un bruit de mesure (voir Figure 1.2) et K est un
opérateur modélisant des phénomènes de distorsions (souvent propres à la phy-
sique du capteur) qui surviennent pendant le processus d’acquisition. Souvent,
on considère que les (ε(k, l))(k,l)∈Ω sont des variables aléatoires indépendantes et
identiquement distribuées selon une loi gaussienne. Ce choix nous amène dans
un cadre mathématique standard, mais constitue en pratique une approxima-
tion discutable. Dans le cas des images numériques acquises à l’aide de cap-
teurs standards (type CMOS ≪Complementary Metal-Oxide-Semiconductors ≫ ou
CCD ≪ Charge-Coupled Devices ≫), une étude plus précise du bruit ainsi que
des phénomènes physiques liés au capteur conduit à des modèles très différents
(voir par exemple [Aguerrebere et al. 2012]). Par ailleurs, on peut décomposer
l’opérateur K de manière simplifiée en

K = Kquantif. ◦Kéchant. ◦Kdist. ◦Kdiffrac. (1.3)

où

• Kdiffrac. : R
Ωc → RΩc modélise le phénomène physique de diffraction de la

lumière qui se produit lorsque les rayons lumineux atteignent le diaphragme
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Figure 1.2: Bruit de mesure des niveaux de gris d’une image. En regardant de près
l’image de gauche (on affiche à droite un grossissement de pixels contenus dans le rectangle rouge
de l’image de gauche), il semble que les niveaux de gris mesurés ne traduisent pas exactement la
réalité de la scène dont ils sont issus (on observe en effet des variations significatives de niveaux
de gris dans des régions manifestement uniformes où l’on s’attend à observer des variations
plus régulières des niveaux de gris). En pratique le processus d’acquisition introduit du bruit de
mesure qui se traduit par des perturbations aléatoires sur les niveaux de gris mesurés.

de l’appareil photo (ce dernier constitue un obstacle aux rayons lumineux,
n’en laissant passer qu’une partie). Du fait de ce phénomène de diffraction,
un point lumineux sera vu comme une tâche (appelée tâche de diffraction)
par le capteur. Ce terme introduit donc un effet de flou dans l’image acquise
par le système. Ce flou est inévitable et constitue une limitation intrinsèque
du système optique.
• Kdist. : R

Ωc → RΩc modélise les phénomènes de distorsions géométriques
principalement introduits lors du passage des rayons lumineux dans les
lentilles du système optique (aberrations chromatiques, vignettage, etc.)
• Kéchant. : R

Ωc → RΩ modélise le processus d’échantillonnage de l’image U∗
en un nombre fini d’échantillons. Cet opérateur transforme le signal U∗ à
support continu Ωc en un signal à support discret Ω. Par exemple dans le
cas d’un appareil photo muni d’un capteur à transfert de charge (CCD),
chaque valeur du signal Kéchant.U∗ : Ω → R représente la valeur moyenne
du signal U∗ sur le support d’une cellule photosensible.
• Kquantif. : R

Ω → XΩ où X = {x0, . . . , xn} ⊂ R désigne un ensemble fini
de réels. Cet opérateur modélise l’étape de quantification effectuée lors du
codage de l’image en données binaires (seuls un nombre fini de réels peuvent
être représentés sur machine).
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On peut de plus ajouter d’autres opérateurs, en amont ou en aval de la
châıne (1.3), pour modéliser d’autres phénomènes, comme par exemple un flou
de bougé permettant de modéliser un mouvement du capteur lors de l’acquisi-
tion, mais aussi bien d’autres types de distorsions. Le principal problème qui nous
intéressera sera la reconstruction (ou l’estimation) de U∗ (ou plus précisément
d’une représentation discrète de U∗) à partir de u0 en considérant des modèles
semblables à (1.2), ce type de problème étant qualifié de ≪ problème inverse ≫ (voir
Figure 1.3).

Figure 1.3: Quelques exemples de problèmes inverses. Nous illustrons ici quelques
exemples d’images synthétisées à l’aide du modèle (1.2) à partir d’une image de bonne qualité.
Les dégradations modélisées ici sont les suivantes. L’image de gauche souffre principalement de
la présence d’un fort bruit de mesure. L’image du milieu d’un flou de bougé qui modélise un
mouvement de la caméra pendant l’acquisition de l’image. L’image de droite souffre de sous-
échantillonnage, ce qui modélise un nombre trop faibles de capteurs photosensibles par rapport
au niveau de détails de la scène.

1.2 La variation totale

La variation totale a été utilisée en traitement d’image pour la première fois
par Rudin, Osher, et Fatemi [1992]. Dans cet article, le problème considéré est
formulé dans un cadre continu (les images U sont définies sur un ouvert Ωc de R

2),
et la variation totale (TV) est introduite sous sa forme forte, c’est-à-dire définie
par

∀U ∈ E, TV(U) =

∫

Ωc

√
(∂1U(x, y))

2 + (∂2U(x, y))
2dx dy , (1.4)

où E désigne l’espace vectoriel composé des images U : Ωc → R admettant des
dérivées partielles ∂1U et ∂2U sommables sur Ωc (c’est-à-dire ∂1U, ∂2U ∈ L1(Ωc)).
Nous verrons au Chapitre 2 que cette définition peut-être étendue sur un espace
beaucoup plus grand (et moins régulier) que l’espace E, appelé espace des fonc-
tions à variations bornées (et noté BV(Ωc)). On considère que l’on dispose d’une
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version imparfaite U0 : Ωc → R d’une image parfaite U∗ : Ωc → R satisfaisant

∀(x, y) ∈ Ωc, U0(x, y) = U∗(x, y) + ε(x, y) , (1.5)

où ε = U0 − U∗ représente un bruit additif (en fait un champ aléatoire gaussien),
tel que

∫
Ωc
ε(x, y)2 dx dy = σ2. Nous cherchons à reconstruire (ou estimer) U∗

à partir de U0. L’approche adoptée par Rudin, Osher, et Fatemi [1992] consiste

à rechercher une image Ũ : Ωc → R de variation totale minimale parmi celles
appartenant à l’ensemble C0 défini par

C0 =

{
U ∈ BV(Ωc),

∫

Ωc

U(x, y)− U0(x, y) dx dy = 0 ,

et

∫

Ωc

(U(x, y)− U0(x, y))
2 dx dy = σ2

}
.

Plus formellement, cela revient à chercher Ũ ∈ C0 telle que (en admettant qu’une
telle image existe)

TV(Ũ) = inf
U∈C0

TV(U) . (1.6)

Commençons par analyser le problème ainsi formulé. En considérant (1.6), nous
cherchons à satisfaire deux critères :

(i) un critère de ≪ fidélité aux données ≫ : en se restreignant à l’ensemble

C0, on impose une certaine ressemblance entre Ũ et U0. Plus précisément, on
ne considère que des images U de même moyenne que U0, et dont le carré de
la distance à U0 (en norme L2) est égale à σ2. On impose ainsi aux images de
C0 de ressembler à U0, en tenant compte du niveau de bruit présent dans U0

(quand σ est petit, le bruit qui entache U0 est faible, et donc U0 est proche de
l’image parfaite U∗, mais quand σ augmente, le bruit qui dégrade U0 devient
important, la distance entre U0 et U augmente) ;

(ii) un critère de ≪ régularité ≫ : parmi les éléments de C0, nous recherchons
une image qui admette une petite variation totale, ce qui permet de discrimi-
ner les éléments de C0 selon leur régularité. Nous expliquerons au chapitre 2
l’intérêt de ce choix, contentons nous à ce stade de remarquer que (1.4) pro-
meut les images U à faible gradient ∇U := (∂1U, ∂2U) puisque (1.4) n’est
autre que l’intégrale sur Ωc de la fonction (x, y) 7→ ‖∇U(x, y)‖2 (en no-
tant ‖ · ‖2 la norme euclidienne dans R2). Ainsi, une image très oscillante
(typiquement, une image bruitée) présentera une grande variation totale,
alors qu’une image à faible gradients (typiquement une image constante par
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morceaux, à condition tout de même d’étendre la définition (1.4) à l’espace
BV(Ωc)) aura une variation totale faible.

Ainsi, dans le problème (1.6), le critère (i) permet de tenir compte de la connais-
sance que l’on a sur les données (en particulier, la connaissance du niveau de
bruit qui dégrade l’image U0), tandis que le critère (ii) permet d’introduire un
≪ a priori ≫ sur l’image à reconstruire (ici, on recherche une image avec faible
variation totale). Une manière plus moderne de tenir compte de ces deux critères
consiste à considérer le problème de minimisation

min
U∈E

Jλ(U) :=
‖U − U0‖22

2σ2
+ λTV(U) (1.7)

où ‖U − U0‖22 désigne le carré de la distance L2 entre U et U0, et λ un réel
positif. La recherche d’un minimiseur de Jλ peut également être interprétée comme
la recherche d’un compromis entre fidélité aux données (le terme de distance
pénalise les images trop éloignées de U0) et régularité (le terme de variation totale
pénalise les images trop irrégulières). Le paramètre λ permet de régler le poids
relatif entre les deux termes mis en jeu dans cette énergie. Une des raisons du
succès du modèle (1.7) est qu’il peut être interprété de manière élégante comme
un problème de Maximum A Posteriori (MAP) en adoptant un point de vue
bayesien, comme nous le verrons au Chapitre 2. Notons qu’il est de plus possible
de montrer qu’il existe une valeur de λ telle que les problèmes (1.6) et (1.7)
soient équivalents (ce qui signifie qu’ils admettent les mêmes solutions), mais en
pratique le réglage du paramètre λ dans le modèle (1.7) est laissé à l’appréciation
de l’utilisateur, conduisant à une version relaxée du problème (1.6) au sens où la
solution obtenue par minimisation de Jλ n’appartient pas forcément à l’ensemble
des contraintes C0.

Revenons au problème (1.6) et remarquons qu’il est formulé dans un cadre
continu alors que les images traitées sont en pratique discrètes. La principale rai-
son justifiant ce choix est qu’il nous ramène dans un cadre mathématique usuel,
dans lequel nous disposons d’outils permettant la résolution de (1.6). En par-
ticulier, la méthode proposée dans [Rudin et al. 1992] consiste à résoudre une
équation aux dérivées partielles modélisant l’évolution temporelle d’une copie de
l’image initiale U0 vers une solution de (1.6). Cette équation aux dérivées par-
tielles est alors discrétisée à l’aide de schémas numériques classiques (de type
Euler-explicite), en particulier, tous les opérateurs de dérivées partielles ainsi mis
en jeu sont remplacés par des schémas aux différences finies. Outre les difficultés
inhérentes à l’étape de discrétisation des équations, il est important de souligner
que cette approche n’est en pratique pas rigoureusement exacte puisqu’elle débute
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dans [Rudin et al. 1992] par l’écriture d’une équation d’Euler-Lagrange associée
au problème de minimisation sous contraintes (1.6) qui suppose que la variation
totale est une fonctionnelle différentiable, ce qui n’est pas le cas (on peut voir
TV(U) comme une norme L1 du gradient de U , or la norme L1 présente une
singularité en 0). Néanmoins, ce modèle de minimisation de la variation totale a
connu un franc succès dans le domaine de la restauration d’images, en particulier
du fait de la capacité de cette fonctionnelle à pénaliser les irrégularités (donc le
bruit) tout en préservant les contours de l’image, comme nous l’expliquerons au
Chapitre 2.

Depuis Rudin, Osher, et Fatemi [1992], l’utilisation de la variation totale
en traitement d’image s’est développée bien au-delà du seul cadre initial de la
restauration d’images, elle est désormais couramment utilisée pour effectuer des
tâches de restauration diverses, telles que le déflouage [Vogel et Oman 1998], la
désocclusion (ou ≪ inpainting ≫) [Chan et al. 2005], l’interpolation [Guichard et
Malgouyres 1998], l’extrapolation de spectre [Rougé et Seghier 1995], la décompo-
sition d’images [Aujol et al. 2005], la décompression [Alter et al. 2005],
l’échantillonnage irrégulier [Almansa et al. 2006], la super-résolution [Babacan
et al. 2008], la stéréovision [Miled et al. 2009], ou même pour définir un indice de
qualité image [Blanchet et Moisan 2012, Leclaire et Moisan 2015]. Par ailleurs,
la découverte ces dernières années de nouveaux schémas performants [Chambolle
2004, Beck et Teboulle 2009a, Weiss et al. 2009, Chambolle et Pock 2011], repo-
sant sur des méthodes duales [Rockafellar et Wets 1998, Ekeland et Témam 1999,
Boyd et Vandenberghe 2004] et permettant une prise en compte rigoureuse de
la non-différentiabilité de la variation totale ainsi que de la nature discrète des
données, a considérablement enrichi le domaine et ouvert la voie à des applications
où, comme dans [Fadili et Peyré 2011], la projection sur les fonctions à variation
totale bornée n’est plus qu’une étape d’un algorithme itératif plus complexe.

Le Chapitre 2 de cette thèse constitue un travail de synthèse quant à l’uti-
lisation de la variation totale en traitement d’image. Nous y expliquerons com-
ment des problèmes de restauration (débruitage, déflouage, désocclusion, zoom,
etc.) peuvent être formulés grâce au formalisme bayesien comme des problèmes
de minimisations d’énergies impliquant la variation totale (similaires à (1.7))
et nous illustrerons la capacité de la fonctionnelle TV à préserver les contours
dans les images. Nous détaillerons quelques outils d’analyse convexe basés sur
la dualité de Legendre-Fenchel qui permettent la minimisation de fonctionnelles
convexes non-différentiables, comme celles impliquant la variation totale. Nous
présenterons entre autres les notions de transformées de Legendre-Fenchel, de
sous-différentielle, ainsi que les opérateurs proximaux [Moreau 1965, Rockafellar
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1976], enveloppes de Moreau-Yosida [Moreau 1963, Yosida 1980] et leurs prin-
cipales propriétés. Ces opérateurs sont à la base des schémas modernes d’opti-
misation convexe non-différentiable, dont nous présenterons l’un des plus connus,
l’algorithme de Chambolle et Pock [2011]. Nous utiliserons ensuite ces outils d’ana-
lyse convexe pour effectuer différentes tâches de restauration d’images (débruitage,
déflouage, désocclusion, zoom), impliquant la minimisation de la variation to-
tale ou l’une de ses variante (la variation totale d’Huber). Nous montrons com-
ment tous ces problèmes peuvent être reformulés sous la forme d’un problème
de recherche de point selle (dit problème ≪ primal-dual ≫), pouvant être efficace-
ment traité en utilisant l’algorithme de Chambolle et Pock [2011]. Nous explique-
rons aussi comment formuler le dual d’un problème d’optimisation quelconque, et
détaillons le lien existant entre les solutions du problème de départ (le problème
primal), avec celles du problème dual ainsi formulé.

1.3 La variation totale ≪ Shannon ≫

Si depuis Rudin et al. [1992], les méthodes mathématiques ainsi que les al-
gorithmes permettant la minimisation des problèmes du types (1.6) et (1.7) ont
connu de remarquables progrès, la manière de discrétiser la variation totale reste
encore essentiellement basée sur des schémas aux différences finies. C’est-à-dire
qu’étant donnée une image u ∈ RΩ définie sur un domaine discret Ω ⊂ Z2, on
considère généralement un schéma du type

∀(k, l) ∈ Ω,

{
∂1u(k, l) = u(k + 1, l)− u(k, l)
∂2u(k, l) = u(k, l + 1)− u(k, l) (1.8)

en se donnant une convention au niveau des bords de l’image (par exemple u(k+
1, l) = u(k, l) si (k+1, l) 6∈ Ω, et u(k, l+1) = u(k, l) si (k, l+1) 6∈ Ω, mais d’autres
choix sont possibles). Une fois le schéma aux différences finies choisi, on définit,
par analogie avec (1.4), la variation total de l’image discrète u par

TV
d(u) =

∑

(k,l)∈Ω

√
(∂1u(k, l))

2 + (∂2u(k, l))
2 , (1.9)

ou encore (en remplaçant la norme ℓ2 du gradient discret (∂1u, ∂2u) par une
norme ℓ1),

TV
d
1(u) =

∑

(k,l)∈Ω
|∂1u(k, l)|+ |∂2u(k, l)| , (1.10)
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comme c’est le cas dans [Chambolle 2005, Darbon et Sigelle 2006] où les problèmes
d’optimisation impliquantTV

d
1 sont traités entre autres avec des méthodes de type

≪ graph-cuts ≫, ou encore dans [Louchet et Moisan 2014, Abergel et al. 2015] pour
définir un nouveau modèle de restauration appelé TV-ICE (Iterated Conditional
Expectation) qui sera développé à la section 1.4 de cette introduction, ainsi qu’au
Chapitre 4 de cette thèse. On qualifie souvent le modèle (1.10) d’≪ anisotrope ≫ du
fait de l’utilisation de la norme ℓ1 du gradient, par opposition au modèle (1.9) qui
utilise la norme ℓ2 (plus isotrope). Il est pourtant amusant de voir qu’aucun de
ces deux modèles n’est isotrope dès lors qu’ils sont combinés avec le schéma aux
différences finies (1.8), au sens où pour une image quelconque u ∈ RΩ, on a en
général

TV
d(u) 6= TV

d(Ru) , (1.11)

en notant R un opérateur de rotation d’angle π/2. Par conséquent, la restaura-
tion d’une image u0 par minimisation d’énergie basée sur TV

d sera en générale
différente de celle obtenue en traitant de la même manière l’image Ru0 puis en
appliquant la rotation inverse au résultat. Ce manque d’isotropie est identifié
dans [Lai et al. 2009, Wang et Lucier 2011, Chambolle et al. 2011, Condat 2016],
où de nouveaux schémas d’approximation du gradient sont proposés.

L’anisotropie introduite par l’utilisation par TV
d de schémas aux différences

finies n’est pas le seul défaut que l’on peut opposer à ce mode de discrétisation
de la variation totale. En effet, le principal défaut des méthodes aux différences
finies réside dans le fait qu’elles opèrent à l’échelle du pixel : si l’on considère
notre image discrète u : Ω ⊂ Z2 → R comme la restriction d’une image continue
U : R2 → R au domaine discret Ω, alors les dérivées partielles de U (en supposant
qu’elles existent) satisfont

∀(x, y) ∈ R2,





∂1U(x, y) = lim
h→0

U(x+ h, y)− U(x, y)
h

∂2U(x, y) = lim
h→0

U(x, y + h)− U(x, y)
h

et peuvent être effectivement approchées par le schéma

∀(x, y) ∈ R2, ∀h > 0,





∂h1U(x, y) ≈
U(x+ h, y)− U(x, y)

h

∂h2U(x, y) ≈
U(x, y + h)− U(x, y)

h

qui devient précis dès lors que h est assez petit. Malheureusement en image le
pas de discrétisation h des données n’est en général pas contrôlé, on ne peut donc
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pas faire tendre h vers 0 et le schéma (1.8) (qui correspond au choix h = 1) n’est
pas assez précis. Plus grave encore, l’utilisation du schéma (1.8) pour estimer
la norme du gradient d’une image introduit des phénomènes de repliement de
spectre, comme illustré à la Figure 1.4.

(a) image originale ( c© CNES) (b) ‖∇u‖, différences finies (c) ‖∇u‖, calcul sous-pixellique
Figure 1.4: Repliement de spectre pour l’estimation de la norme du gradient par
différences finies. Note : l’image de gauche utilisée pour cette expérience appartient au Centre
National d’Étude Spatiales (CNES). On dispose d’une image (a) dont on cherche à estimer en
chaque pixel (k, l) la norme ℓ2 du gradient ‖∇u(k, l)‖. Cette norme est estimée en (b) à l’aide
du schéma aux différences finies (1.8), et en (c) en utilisant le même schéma mais en remplaçant
l’image u par une version sur-échantillonnée d’un facteur 2 (zoom par zero-padding). Pour les
images (b) et (c), le code couleur va du blanc (faibles valeurs) au noir (valeurs élevées). Les
régions de forts gradients étant censées correspondre à des contours de l’image, on s’attend à
trouver les contours de l’image u dans l’image ‖∇u‖, on observe cependant que les contours
correspondant aux rayures du toit du bâtiment dans l’image (a) ne correspondent pas avec
ceux observés dans l’image (b), mais correspondent bien à ceux de l’image (c). Cet exemple
surprenant s’explique par un phénomène de repliement de spectre dans l’image (b). Il illustre
l’incompatibilité entre la théorie de l’échantillonnage de Shannon avec l’estimation de ‖∇u‖ par
le schéma (1.8) (sans sur-échantillonnage), ainsi que la nécessité de manipuler les images à une
échelle sous-pixellique afin d’estimer correctement cette quantité.

Comment peut-on manipuler une image discrète à l’échelle sous-pixellique ? La
manière usuelle consiste à utiliser une interpolation, c’est à dire qu’à partir des
échantillons (k, l) ∈ Ω 7→ u(k, l), on reconstruit une image continue Uϕ : R2 7→ R

définie le plus souvent à l’aide d’un noyau d’interpolation ϕ : R→ R par

∀(x, y) ∈ R2, Uϕ(x, y) =
∑

(k,l)∈Ω
u(k, l)ϕ(x− k)ϕ(y − l) . (1.12)

Plusieurs noyaux d’interpolations sont explicités dans la littérature (voir par
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exemple [Unser 2000, Thévenaz et al. 2000]), menant chacun à une méthode d’in-
terpolation. Parmi les méthodes d’interpolations les plus connues, on compte l’in-
terpolation par plus proche voisin, l’interpolation bilinéaire, l’interpolation par
≪ bicubic Keys ≫, les interpolations par splines, et l’interpolation par sinus cardi-
nal discret (ou interpolation de Shannon), cette dernière étant héritée de la théorie
d’échantillonnage de Shannon (nous la présenterons en détail au Chapitre 3).

Du point de vue du traitement des images numériques, on peut facilement
mettre en évidence le fait qu’une image restaurée par minimisation d’énergie impli-
quant TV

d est difficile à interpoler, ou formulé différemment, mal échantillonnée
du point de vue de la théorie de Shannon. Une illustration de ce phénomène est
proposée à la Figure 1.5, où l’on met en évidence le fait qu’une image débruitée
à l’aide de la variation totale discrète ne peut pas être correctement manipulée à
l’échelle sous-pixellique au sens où l’interpolation (ici par splines) de cette image
ne constitue pas une estimation plausible de l’image à l’échelle sous-pixellique.
Ceci limite donc fortement la possibilité d’utiliser les modèles TV

d (par exemple le
débruitage) comme étape intermédiaire d’une châıne de traitement plus complexe,
impliquant des manipulations sous-pixelliques de l’image telles que des transfor-
mations géométriques (translations, rotations, agrandissement), du recalage, de
la reconnaissance de formes, etc.

Le Chapitre 3 de cette thèse est consacré à l’étude d’un autre modèle de
discrétisation de la variation totale, différent de (1.9). Cette variante, que nous
appelons la ≪ variation totale Shannon ≫ (ou STV, pour ≪ Shannon Total Varia-
tion ≫), apparut pour la première fois dans [Malgouyres et Guichard 2001] avant
d’être explicitement considérée dans [Moisan 2007] puis utilisée dans [Facciolo
et al. 2009, Preciozzi et al. 2014] sous le nom de ≪ Spectral Total Variation ≫ (nous
ne retiendrons néanmoins pas ce nom pour éviter les confusions avec les travaux
de Gilboa [2013]). Elle consiste en l’estimation par une somme de Riemann de
la variation totale exacte (c’est à dire l’intégrale de la norme du gradient) de
l’interpolée de Shannon de l’image discrète. Nous montrerons en particulier que
l’utilisation de cette variante à la place de TV

d permet de produire des images
pouvant être interpolées (que se soit à l’aide de splines ou par le sinus cardinal
discret) de manière satisfaisante, c’est-à-dire sans artefacts, tout en assurant un
niveau de restauration similaire à ceux obtenus avec TV

d. En ce sens, le modèle
STV ainsi proposé permet de réconcilier la minimisation de la variation totale
avec la théorie d’échantillonnage de Shannon. Nous proposerons aussi de nou-
veaux modèles de restauration d’images utilisant STV et permettant de générer
à partir d’une image mal échantillonnée, une image visuellement très proche mais
mieux échantillonnée et donc plus facilement interpolable. En ce sens, le modèle
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STV rend également possible l’interpolation de Shannon qui est souvent délaissée
au profit des splines malgré ses propriétés intéressantes.

(a) image initiale zoom (splines bicubiques) module du spectre

(b) image débruitée zoom (splines bicubiques) module du spectre

Figure 1.5: La variation totale discrète TVd génère du repliement de spectre. Une
image (a) est débruitée en utilisant la variation totale discrète TV

d définie par (1.9), l’image
ainsi produite est affichée en (b). Pour chacune de ces images, on affiche en seconde colonne un
agrandissement (interpolation par splines bicubiques) d’une sous partie de l’image (délimitée
par le rectangle rouge). On voit que l’agrandissement effectué sur l’image (b) met en évidence
la présence d’oscillations parasites, ce qui n’est pas le cas pour l’image (a). Ceci s’explique en
regardant la dernière colonne, dans laquelle on affiche le module du spectre (plus précisément,
on affiche log (1 + |û|), en notant |û| le module de la transformée de Fourier discrète de l’image
u) des image (a) et (b). On observe en effet la présence de repliement fréquentiel (indiqué
par une flèche rouge) dans le spectre de l’image (b) mais pas dans celui de l’image (a). Ce
repliement fréquentiel a donc été introduit pendant l’étape de débruitage, il s’avère être en
pratique responsable des oscillations sous-pixelliques observées dans le domaine spatial. Cette
expérience illustre la difficulté rencontrée lorsque l’on souhaite manipuler une image à l’échelle
sous-pixellique après un traitement impliquant TV

d.
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1.4 Restauration en présence de bruit de Pois-

son

Le bruit de Poisson modélise le phénomène de comptage aléatoire des photons
qui frappent le capteur pendant le processus d’acquisition, on parle aussi de ≪ bruit
de photon ≫. Contrairement aux autres sources de bruits évoquées à la section 1.1,
ou décrites de manière plus complète dans [Aguerrebere et al. 2012], le bruit de
photon est inhérent à la nature quantique de la lumière, et ne peut-être atténué par
des améliorations technologiques au niveau du capteur. Étant donné un domaine
fini Ω ⊂ Z2, et une image u : Ω → R+ (non directement observable) décrivant
l’intensité lumineuse de la scène, on considère que l’on observe une image u0 :
Ω→ N de probabilité

p(u0|u) =
∏

(x,y)∈Ω

u(x, y)u0(x,y)

u0(x, y)!
e−u(x,y) ∝ exp (−〈u− u0 log u,1Ω〉) (1.13)

où u0 log u désigne l’image obtenue en multipliant terme à terme u0 avec log u, en
adoptant la convention u0(x, y) log u(x, y) = 0 dès lors que u0(x, y) = 0, 1Ω désigne
l’image constante prenant la valeur 1 sur Ω, et 〈·, ·〉 désigne le produit scalaire
euclidien dans RΩ. La notation ∝ indique une relation de proportionnalité (une
égalité à une constante multiplicative près, pouvant dépendre de u0 mais pas de u).
Le modèle (1.13) consiste simplement à considérer que u0 est la réalisation d’une
image aléatoire u0 dont les niveaux de gris {u0(x,y)}(x,y)∈Ω sont indépendants, et
telle que pour tout pixel (x, y) ∈ Ω, u0(x, y) suit une loi de Poisson de paramètre
u(x, y). Ce modèle est particulièrement adapté lorsque l’acquisition des images est
faite en basse lumière (ce qui signifie qu’une faible quantité de photons est captée
par le dispositif d’imagerie), comme c’est par exemple souvent le cas en astronomie
ou microscopie. Si la plupart des modèles mathématiques de restauration d’images
sont d’abord développés dans le cadre plus usuel du bruit additif blanc gaussien,
ils sont presque systématiquement adaptés au cadre du bruit de Poisson (voir
par exemple [Setzer et al. 2010, Deledalle et al. 2010, Figueiredo et Bioucas-Dias
2010]) de par le caractère inévitable de ce bruit de photon. Dans le cas d’un bruit
de Poisson, nous verrons que le MAP correspond à la recherche de (l’unique)
minimiseur de l’énergie J ′

λ définie par

∀u ∈ RΩ, J ′
λ(u) := 〈u− u0 log u,1Ω〉+ λTV

d(u) , (1.14)
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qui n’est autre que l’image ûmap qui maximise la densité a posteriori π définie (à
un facteur multiplicatif près) par

∀u ∈ RΩ, π(u) ∝ p(u0|u) p(u) , (1.15)

dès lors que l’on considère p(u) ∝ e−λTV
d(u) comme a priori sur les images natu-

relles (un tel choix revient à considérer comme plus vraisemblables les images u
ayant une faible variation totale TV

d(u)). Cependant, comme dans le cas du bruit
gaussien, le principal défaut de cette approche est que la minimisation de J ′

λ (ou
de manière équivalente, la maximisation de la densité à posteriori π) a tendance à
conduire à des images constantes par morceaux (ce phénomène, appelé ≪ stairca-
sing ≫, est illustré à la Figure 1.6 et est formellement mis en évidence par Nikolova
[2000] qui démontre que ce phénomène est dû à la non-différentiabilité en 0 de
l’énergie que l’on minimise).

(a) image bruitée u0 (b) débruitage MAP ûmap (c) référence u

Figure 1.6: Débruitage TV-MAP d’une image dégradée par un bruit de Poisson. On
affiche en (a) une observation bruitée (selon le modèle (1.13)) de l’image de référence (c) sup-
posée sans défauts. On affiche en (b) l’image obtenue par calcul du MAP, c’est à dire l’image qui
minimise l’énergie (1.14) (en réglant le paramètre λ de telle sorte à minimiser la I-divergence de
Csiszar [1991], assurant ainsi un bon niveau de débruitage par rapport aux métriques usuelles).
On observe que l’image (b) présente de large régions constantes et un faible niveau de détails par
rapport à (a) et (c). Ce phénomène est caractéristique des approches TV-MAP impliquant la
minimisation d’énergies basées sur la variation totale, on parle de ≪ staircasing ≫ (ou effet d’es-
calier). Note : l’image de référence (c) utilisée dans cette expérience est issue de la bibliothèque
wikimedia.org (image NGC 1672 spiral galaxy).

Dans le cas d’un bruit gaussien, une alternative au modèle TV-MAP, appelée
TV-LSE (Least Square Error), a été proposée par [Louchet et Moisan 2008]. Elle
consiste à calculer au lieu du MAP, l’image qui minimise l’erreur quadratique

wikimedia.org
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moyenne

EQM(û) = Eu∼π

(
‖û− u‖22

)
:=

∫

RΩ

‖û− u‖22 π(u) du .

Cette image n’est autre que l’espérance a posteriori, c’est à dire l’image ûlse définie
par

ûlse = Eu∼π(u) :=

∫

RΩ

u π(u) du , (1.16)

qui peut être vue comme l’image moyenne suivant π parmi toutes les images de
RΩ. Malgré la dimension élevée de cet espace (si Ω est de taille 1000 × 1000, la
dimension de l’espace RΩ est 106), il est possible d’estimer ûlse numériquement
à l’aide d’un schéma de Monte-Carlo par châınes de Markov (MCMC) de type
Metropolis-Hasting. Il est mis en évidence dans [Louchet et Moisan 2008] puis
formellement démontré dans [Louchet et Moisan 2013] que les images générées
par le modèle TV-LSE ne présentent pas d’effet de staircasing. On observe de
plus que ce modèle mène a des images bien plus naturelles et riches en détails
que le modèle TV-MAP. Si le modèle TV-LSE pourrait être facilement adapté
au cas du bruit de Poisson, son principal point faible est que l’on ne dispose pas
d’algorithme rapide pour estimer ûlse (le schéma de Metropolis-Hasting présente
un taux de convergence en O(1/

√
N) où N désigne le nombre d’itérations), ce

qui peut être problématique pour les applications où le nombre d’images à traiter
est important ou lorsque le temps de calcul alloué au traitement des images est
limité.

Afin de surmonter cette difficulté computationnelle, Louchet et Moisan [2014]
proposèrent une nouvelle variante (toujours dans le cas d’un bruit gaussien), basée
sur l’itération d’espérances conditionnelles a posteriori. L’estimateur ûice est défini
comme la limite du schéma itératif

∀(x, y) ∈ Ω, un+1(x, y) = Eu∼π(u(x, y) | u((x, y)c) = un((x, y)c)) , (1.17)

où (x, y)c = Ω \ (x, y) et u((x, y)c) désigne la restriction de l’image u à l’en-
semble (x, y)c. Cette fois, l’espérance mise en jeu dans (1.17) est celle d’une va-
riable aléatoire réelle et n’implique donc qu’une intégrale sur la droite réelle (au
lieu de l’intégrale sur RΩ du modèle (1.16)). Il est alors mis en évidence que
l’itération (1.17) peut-être calculée sous forme explicite dès lors que l’on remplace
TV

d par sa version anisotrope TV
d
1 définie par (1.10). Il est démontré dans [Lou-

chet et Moisan 2014] que le schéma (1.17) revient à construire un+1 en appliquant
à un une application F contractante, telle qu’il existe un compact Ku0 stable par
F qui contienne u0. Par conséquent, la convergence des itérés (un)n≥0 vers l’image
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ûice est linéaire dès lors que l’on choisit u0 ∈ Ku0 (par exemple en choisissant
u0 = u0). Le modèle TV-ICE possède la remarquable propriété de ne n’introduire
aucun paramètre algorithmique (en particulier il n’introduit aucun pas de temps
contrairement aux algorithmes primaux-duaux classiques utilisés pour le calcul du
MAP), et génère des images visuellement proches de celles délivrées par le modèle
TV-LSE.

Au Chapitre 4, nous proposons d’adapter le modèle TV-ICE au cas du bruit
de Poisson. Nous y démontrerons que, comme dans le cas gaussien, le schéma TV-
ICE Poisson converge linéairement vers une image ûice qui ne présente pas d’effet
de staircasing. Nous montrerons que l’opérateur de récursion du modèle TV-ICE
Poisson consiste à poser u0 = 0 (c’est-à-dire u0(x, y) = 0 pour tout (x, y) ∈ Ω)
puis à itérer pour n ≥ 0 le schéma

∀(x, y) ∈ Ω, un+1(x, y) =

∑
1≤k≤5 ck I

µk,u0(x,y)+2
ak−1,ak∑

1≤k≤5 ck I
µk,u0(x,y)+1
ak−1,ak

(1.18)

où les coefficients ak, ck, µk dépendent explicitement de la restriction de l’image
courante un au 4-voisinage {(x± 1, y), (x, y± 1)}, ainsi que de λ et où l’on a posé

Iµ,pa,b =

∫ b

a

sp−1 e−µs ds , 0 ≤ a ≤ b ≤ +∞, µ ∈ R∗, p ∈ N∗ , (1.19)

que nous appellerons fonction gamma incomplète généralisée (noter que le cas
b = +∞ n’est autorisé que lorsque µ > 0, l’intégrale n’étant pas définie sinon).
Nous expliquerons pourquoi le calcul du ratio de sommes de fonctions gamma
incomplètes généralisées impliqué en chaque pixel de l’image par le schéma (1.18)
est en pratique délicat à implémenter et détaillerons comment les erreurs peuvent
être contrôlées en mettant les termes Iµ,pa,b sous une forme mantisse-exposant du
type ρ·eσ, l’estimation précise et rapide des intégrales Iµ,pa,b sous cette représentation
faisant l’objet du Chapitre 5.

1.5 L’importance des algorithmes rapides

Si l’approche du mathématicien face à un problème conduit souvent à la for-
mulation puis l’étude théorique de nouveaux modèles mathématiques, les algo-
rithmes développés pour résoudre ces problèmes de manière rigoureuse peuvent
parfois s’avérer peu efficaces et dissuader de leur utilisation sur de vraies données.
C’est typiquement le cas de l’approche TV-LSE présentée à la section 1.4 qui
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constitue du point de vue mathématique une alternative originale et élégante au
modèle MAP pour la restauration d’images conduisant à des résultats théoriques
(comme par exemple l’absence formelle de ≪ staircasing ≫ dans l’image débruitée
avec TV-LSE) qui traduisent une compréhension avancée des images produites
avec ce modèle, mais dont le calcul pratique s’avère peu efficace du fait de la
faible vitesse de convergence de la méthode MCMC mise en jeu. Dans le cas
du modèle TV-LSE, nous avons vu qu’il était possible de repartir du problème
mathématique pour en formuler une nouvelle variante, TV-ICE, menant à un algo-
rithme beaucoup plus rapide (avec une vitesse de convergence linéaire par rapport
au nombre d’itérations), tout en conservant des résultats théoriques du modèle
TV-LSE (comme l’absence de staircasing).

Un autre exemple où un modèle mathématique mène à un algorithme
intéressant mais peu efficace du point de vue computationnel est le modèle de
détection de trajectoires régulières à partir d’une séquence de nuages de points,
proposé par Primet [2011] durant sa thèse (voir aussi [Primet et Moisan 2012]),
sous le nom de astre (pour ≪ A-contrario Smooth TRajectory Extraction ≫).
Cet algorithme est basé sur la méthodologie ≪ a contrario ≫ développée par De-
solneux, Moisan, et Morel [2008] (les concepts ont été introduits pour la première
fois dans [Desolneux et al. 2000], voir aussi [Desolneux et al. 2003]), qui est basée
sur la formulation mathématiques de grands principes de perception visuelle, dont
le plus connu est le ≪ principe de Helmoltz ≫ (voir [Lowe 1985]). De manière in-
formelle, ce principe stipule que le système perceptuel humain ne détecte que les
structures (ou plus précisément les ≪ gestalt ≫, en référence aux travaux effectués
par les ≪ gestaltistes ≫, du début du xxième siècle tels que [Wertheimer 1923,
Metzger 1975]) qui n’auraient pu apparâıtre par hasard dans un bruit blanc. Une
illustration de ce principe est proposée en Figure 1.7. Basée sur le principe de
Helmoltz, la méthodologie a contrario consiste à détecter des structures par rejet
d’un modèle de hasard (ou modèle näıf) noté H0, autrement dit, on cherche a
détecter les structures trop rares pour apparâıtre par chance dans H0.

Pour construire un détecteur a contrario, il faut dans un premier temps définir
un modèle H0 décrivant ce que pourraient être des données tirées au hasard.
Par exemple, si l’on considère le problème de détection d’alignements de points
évoqué à la Figure 1.7, les données consistent en une seule image de domaine
Ω contenant N points. On peut alors formuler le modèle H0 suivant : ≪ les N
points de l’image ont été tirés indépendamment selon une loi uniforme sur Ω ≫.
Dans un second temps, on doit construire une fonction de mesure permettant de
faire ressortir les structures rares dans H0. Toujours dans le cas du problème de
détection des alignements de points, il est proposé dans [Desolneux et al. 2008] de
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Figure 1.7: Illustration du principe de Hemholtz (cette Figure est partiellement tirée
de [Primet 2011]). Pourquoi un alignement de points dans l’image de gauche nous saute-t-il
aux yeux ? D’après le principe de Helmoltz, notre système perceptuel détecte cette structure
car un tel alignement aurait peu de chances de se produire par hasard si les positions des
points avaient été tirées ≪ au hasard ≫ dans cette image. Des alignements de points peuvent être
trouvés dans l’image du milieu mais ils ne sautent pas aux yeux, car ils ne constituent pas des
évènements rares dans du bruit. L’image de droite illustre l’approche décrite dans [Desolneux
et al. 2008] pour formaliser en termes mathématiques l’effet de surprise associée à l’observation
d’une structure donnée. En supposant que les positions des 13 points de cette image ont été tirées
indépendamment et uniformément sur le domaine rectangulaire (ceci constitue notre modèle
H0), on s’étonne de trouver 6 points dans une bande (délimitée par des pointillés rouges) de
faible épaisseur. Ce niveau de surprise peut-être mesuré en calculant la probabilité qu’un tel
évènement se produise dans H0.

découper l’image en bandes B de faible épaisseur (on discrétise les orientations
des bandes et on note BΩ l’ensemble de toutes les bandes ainsi définies). On
compte alors dans chaque bande B le nombre de points n(B) contenus dans B.
Plus n(B) est grand, plus on peut considérer comme rare dans H0 la structure
correspondant au groupe de points contenu dans B. Si n(B) constitue une mesure
intéressante sur les données, il serait néanmoins délicat d’essayer de la seuiller
pour décider si les points contenus dans B doivent être détectés ou non comme
des points alignés dans l’image. En effet, le choix d’un tel seuil promet d’être
difficile car la quantité de surprise liée à l’observation d’un nombre de points
n(B) dans B reste très dépendante aux paramètres du problèmes (le nombre
total de points N , la surface de la bande B et la surface du domaine de l’image
Ω). Au lieu d’exploiter directement cette mesure, on l’utilise pour définir une
famille de fonctions {NFAB}B∈BΩ

appelée Nombre de Fausses Alarmes (NFA)
pour la mesure n. Celle-ci est définie par

∀B ∈ BΩ, ∀k ∈ [0, N ], NFAB(k) = #BΩ · PH0(n(B) = k) , (1.20)

où #BΩ désigne le cardinal de l’ensemble BΩ, c’est-à-dire le nombre total de
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bandes dans l’image. Ce Nombre de Fausses Alarmes satisfait la propriété suivante

EH0(# {B ∈ BΩ, NFAB(n(B)) ≤ ε}) ≤ ε , (1.21)

qui stipule que dans H0, on trouve en moyenne moins de ε bandes B satisfaisant
NFAB(n(B)) ≤ ε. On décide de détecter les alignement par seuillage du NFA

avec un seuil ε > 0, c’est-à-dire que l’on considère comme alignés les points conte-
nus dans une bande B dès lors que NFAB(n(B)) ≤ ε, on dit alors que la bande
B (ou le groupe de points qu’elle contient) est ε-significative. La propriété (1.21)
stipule alors qu’en moyenne, moins de ε détections sont faites dansH0. Cela donne
un sens concret au seuil ε, ce dernier représente un majorant du nombre moyen
de détections autorisées dans du pur bruit H0, c’est-à-dire du nombre moyen
de fausses détections. Pour construire à partir de (1.20) et (1.21) un algorithme
concret de détection d’alignements de points, on adopte une démarche ≪ glou-
tonne ≫, qui consiste à retirer itérativement des données le groupe de points qui
présente le NFA le plus faible (si ce dernier est inférieur à ε) et à recommencer
jusqu’à ce qu’il ne reste plus de groupes de points de NFA inférieur à ε dans la
séquence.

Depuis [Desolneux et al. 2000], des détecteurs a contrario ont été développés
pour une grande quantité d’applications, telles que la détection de contours [De-
solneux et al. 2001]), de segments [Von Gioi et al. 2008a,b], de jonctions [Xia
et al. 2014], de spots (ou tâches) sur fond texturé [Grosjean et Moisan 2009], de
changement sous-pixelliques dans des images radars [Robin et al. 2009, 2010], et
bien d’autres encore [Rabin et al. 2009, Akinlar et Topal 2013]. Parmi les princi-
paux atouts de ces détecteurs, on met souvent en avant leur robustesse au bruit,
ainsi que le fait qu’ils ne nécessitent le réglage que d’un seul paramètre ε et ce
réglage est particulièrement simple à la lumière de la propriété (1.21) puisque le
paramètre ε représente un majorant du nombre de fausses détections autorisées.
Un autre intérêt majeur de ce modèle est que la formule du NFA qu’il produit
(par exemple (1.20) dans notre exemple de détection d’alignements) peut être
utilisée pour filtrer les structures détectées à l’aide d’un autre détecteur, afin d’en
éliminer les fausses détections. De manière plus générale, le NFA peut être uti-
lisé pour quantifier la détectabilité d’une structure, au sens où, pour un seuil de
détection ε donné (par exemple ε = 1 pour fixer les idées), toute structure ayant
un NFA supérieur à 1 apparâıtra en moyenne environ 1 fois dans des données
aléatoires H0, on peut alors dire qu’elle n’est pas détectable (au niveau de seuil
ε = 1). L’étude du NFA conduit alors à des résultats très intéressants concernant
la détectabilité des structures, on peut par exemple dans le cas des alignements
de points s’intéresser au nombre minimal de points que doit contenir une bande
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donnée B pour devenir détectable, on peut également étudier comment évolue
ce nombre minimal de points en fonction du nombre total de points présents
dans les données N , de l’épaisseur des bandes, de la taille du domaine Ω, etc.
La méthodologie a contrario fait encore l’objet de recherches passionnantes, voir
par exemple [Desolneux 2016, Desolneux et Doré 2016] où l’on s’intéresse à des
modèles H0 plus riches que les modèles classiques, dans lesquelles on est capable
d’assurer qu’une structure donnée n’est pas significative (cette problématique est
également adressée dans la thèse de Doré [2014]).

Revenons à présent au problème de détection de trajectoires considéré par Pri-
met [2011]. Dans ce travail, on considère comme point de départ la donnée d’une
séquence de points préalablement détectés dans une séquence d’images. On
considère donc un ensemble {f1, . . . , fK} contenant K frames (le terme de frame
désigne ici un ensemble de points issus de la détection effectuée sur une image
de domaine Ω), tel que chaque frame fk contienne Nk points (un point étant
représenté par ses coordonnées dans Ω). Les points traduisent la présence d’ob-
jets dans la séquence d’image, néanmoins l’étape de détection de ces points étant
imparfaite, il faut garder à l’esprit que ces données sont entachées d’erreurs : cer-
tains points de la séquence correspondent à de fausses détections, on parle de
points aberrants, d’autres sont au contraire manquants, c’est à dire qu’ils n’ont
pas été détectés dans certaines frames. On s’intéresse au problème de détection
de trajectoires régulières (ou lisses) dans de telles données. Des problématiques
similaires sont couramment considérées (incluant ou non l’étape de pré-détection
des points) dans la littérature [Reid 1979, Bar-Shalom et al. 1983, Rangarajan
et Shah 1991, Chetverikov et Verestoy 1999, Veenman et al. 2001, 2003, Bar-
Shalom 2006, Fleuret et al. 2008, Berclaz et al. 2011]. De manière générale, ces
méthodes sont souvent conçues dans un cadre assez restreint et nécessitent des
modifications ad hoc successives pour traiter le cas général (présence de points
aberrants, ou points manquants) que l’on considère ici. L’approche a contrario
astre proposée dans Primet [2011] se révèle extrêmement efficace pour traiter ce
problème, mais conduit néanmoins à un algorithme dont la complexité en O(K2)
s’avère rédhibitoire pour traiter de longues séquences (typiquement dès lors que
K ≥ 1000 frames). Dans le Chapitre 6 de cette thèse, nous nous intéressons à
une variante de astre qui consiste à découper la séquence {f1, . . . , fK} en sous-
séquences de taille plus petites (avec recouvrement), et à traiter séquentiellement
ces sous-séquences en définissant une stratégie de prolongement des trajectoires
dans les zones de recouvrements entre les frames. Cette variante, appelée cu-

tastre, conduit à un algorithme de complexité O(K), tout en conservant la
propriété de NFA qui permet de contrôler le nombre de fausses détections. Cette
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variante est d’ores et déjà utilisée par Dimiccoli et al. [2016] pour effectuer le suivi
de particules fluorescentes dans de longues séquences d’images.

1.6 Organisation de la thèse

Nous proposons ci-dessous une synthèse de chaque chapitre composant cette
thèse.

Chapitre 2

Ce chapitre constitue à la fois une introduction concernant l’utilisation de la
variation totale en traitement d’image et un travail de synthèse de la littérature
concernant les outils d’analyse convexe, en particulier de la dualité de Legendre-
Fenchel, sur lesquels se basent les algorithmes modernes permettant la minimisa-
tion des fonctionnelles convexes non-différentiables qui mettent en jeu la variation
totale. Après avoir détaillé ces différentes notions, nous les appliquons à divers
problèmes classiques de traitement d’images.

Chapitre 3

Dans ce chapitre, nous étudions un modèle de discrétisation de la variation
totale appelé variation totale Shannon (STV). Contrairement aux modèles de
discrétisation classiques faisant appel à des schémas aux différences finies (TV

d),
la variation totale Shannon consiste en l’estimation par une somme de Riem-
man de la variation totale continue de l’interpolée de Shannon de l’image discrète
de départ. Nous montrons comment, comme dans le cas de TV

d, les méthodes
duales modernes peuvent être utilisées pour minimiser les énergies convexes non-
différentiables impliquant STV. Nous illustrons sur de nombreux exemples com-
ment ce modèle, grâce à la pénalisation des oscillations à l’échelle sous-pixelliques
qu’il impose, permet de réconcilier la minimisation de la variation totale avec
la théorie de l’échantillonnage de Shannon, au sens où les images obtenues avec
ce modèle peuvent être interpolées sans artefacts. Nous montrons également que
STV permet un gain considérable en terme d’isotropie par rapport au modèle
TV

d. Nous proposons enfin un nouveau modèle de restauration d’image dans le-
quel l’utilisation de STV permet de construire à partir d’une image u0 donnée, une
image u visuellement très proche de u0 mais pouvant être interpolée (en utilisant
l’interpolée de Shannon) de manière beaucoup plus satisfaisante que u0. On pro-
fite ainsi d’une collaboration réussie entre théorie de Shannon et variation totale,
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puisque la théorie de Shannon nous permet d’améliorer l’estimation de la variation
totale et la variation totale nous permet d’améliorer la qualité de l’interpolation
de Shannon sur les images numériques.

Chapitre 4

Dans ce chapitre, nous adaptons un nouveau modèle de restauration d’images
appelé TV-ICE (pour Iterated Conditional Expectations) au cas où les images sont
dégradées par un bruit de Poisson, menant ainsi au modèle TV-ICE Poisson. Nous
montrons que, comme avec TV-ICE, le modèle TV-ICE Poisson consiste en la re-
cherche d’un point fixe d’une application contractante, conduisant à un schéma
numérique dont le taux de convergence est linéaire. Nous montrons également
d’un point de vue formel que les images générées par ce modèle ne présentent
pas l’effet dit de staircasing (qui correspond à la création dans l’image de régions
constantes par morceaux délimitées par des contours artificiels) dont souffrent ha-
bituellement les images obtenues en utilisant l’approche classique du maximum a
posteriori (TV-MAP). Enfin, nous nous concentrons sur la formulation explicite
des itérations du schéma associé au modèle TV-ICE Poisson. Si l’établissement
de cette formulation explicite ne pose aucune difficulté du point vue théorique,
nous remarquons qu’il conduit à un problème numérique difficile, impliquant
l’évaluation d’un ratio de différences de fonctions gamma incomplètes généralisées,
nécessitant un contrôle précis des erreurs inhérentes au calcul par ordinateur en
précision finie. Nous proposons alors une méthode numériques (qui fait l’objet
d’une étude détaillée au Chapitre 5) permettant d’effectuer rapidement et avec
une bonne précision les calculs mis en jeux à chaque itération du schéma. En-
fin, nous validons expérimentalement les propriétés théorique du modèle TV-ICE
Poisson (c’est-à-dire la convergence linéaire du schéma et l’absence de staircasing),
et nous comparons les images ainsi obtenues avec celles issue du modèle TV-MAP.

Chapitre 5

Dans ce chapitre, nous détaillons une procédure numérique dédiée à l’évaluation
de la fonction gamma incomplète généralisée

∫ y

x
sp−1 e−µs ds où 0 ≤ x < y ≤ +∞,

µ désigne un réel non nul et p un entier strictement positif. Notre approche consiste
à sélectionner, parmi différentes méthodes d’estimations (impliquant entre autres
des développements en séries entières ou en fractions continues, des formules
récurrentes d’intégration par parties, ou encore d’approximations par la méthode
des trapèzes), celle qui réalise l’estimation la plus rapide et la plus précise en fonc-
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tion de la valeur des paramètres x, y, µ, p. Tous les algorithmes mis en jeu dans
ce chapitre sont décrits en pseudo-code et nous en proposons une implémentation
en langage C. Nous montrons que la précision obtenue avec cet algorithme est
quasi-optimale pour une grande gamme de paramètres.

Chapitre 6

Dans ce dernier chapitre, nous nous intéressons au problème de détection de
trajectoires régulières à partir d’une séquence (bruitée) de nuage de points. Si cette
détection peut-être réalisée de manière optimale, au sens d’un critère a contra-
rio, en utilisant l’algorithme astre (A-contrario Smooth TRajectory Extraction),
sa complexité quadratique (en temps et en mémoire) par rapport au nombre de
frames contenues dans la séquences le rend en pratique inutilisable pour la plupart
des applications. Nous proposons donc une variante de cet algorithme, appelée cu-
tastre, qui consiste à découper la séquence en sous-séquences plus petites (avec
recouvrement entre les frames qui composent ces sous-séquences) et à traiter ces
sous-séquences séquentiellement (mais non-indépendamment), ce qui mène à un
algorithme de complexité linaire par rapport au nombre total de frames composant
la séquence. Nous décrivons l’algorithme cutastre à l’aide d’un pseudo-code et
nous en proposons également une implémentation en langage C. Nous expliquons
comment les deux nouveaux paramètres introduits par cutastre (le nombre de
frames contenues dans une sous-séquence ainsi que dans la zone de recouvrement
entre deux sous-séquences) peuvent être réglés de manière satisfaisante. Nous com-
parerons les performances des deux algorithmes en terme de qualité de détection
et temps d’exécution, à la fois sur des données synthétiques et réelles. De manière
assez surprenante, en plus de l’amélioration drastique de la complexité de cu-

tastre par rapport à celle de astre, les performances en terme de qualité de
détection atteintes par cutastre sont en général légèrement meilleures que celles
atteintes avec l’algorithme astre initial.

1.7 Liste des publications

Travaux publiés

Une partie du Chapitre 4 a fait l’objet d’une publication dans l’acte de la conférence
SSVM (Scale Space and Variational Methods in Computer Vision) en 2015.
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Total Variation Restoration of Images Corrupted by Poisson
Noise with Iterated Conditional Expectations (Rémy Abergel,
Cécile Louchet, Lionel Moisan, Tieyong Zeng), proceedings of the 5th In-
ternational Conference on Scale Space and Variational Methods in Com-
puter Vision, 2015.

Une partie du Chapitre 6 a fait l’objet d’une publication dans l’acte de la conférence
EUSIPCO (European Signal Processing Conference) en 2014. Une implémentation
en langage C de l’algorithme que nous proposons est disponible à l’adresse
http://www.math-info.univ-paris5.fr/~rabergel/cutastre.html.

Accelerated A-contrario Detection of Smooth Trajectories (Rémy
Abergel, Lionel Moisan), proceedings of the 22nd European Signal Proces-
sing Conference (EUSIPCO), 2014.

Travaux soumis

Le contenu du Chapitre 3 a fait l’objet d’une soumission dans la revue Journal of
Mathematical Imaging and Vision (JMIV).

The Shannon Total Variation (Rémy Abergel, Lionel Moisan), sub-
mitted to Journal of Mathematical Imaging and Vision (JMIV), July
2016.

Le contenu du Chapitre 5 ainsi qu’une implémentation en langage C de l’algo-
rithme que nous proposons ont fait l’objet d’une soumission dans la revue ACM
Transactions on Mathematical Software (ACM-TOMS).

Fast and accurate evaluation of a generalized incomplete
gamma function (Rémy Abergel, Lionel Moisan), submitted to ACM
Transactions on Mathematical Software (ACM-TOMS), June 2016.
Code available at http://www.math-info.univ-paris5.fr/~rabergel/
softwares/deltagammainc.zip

Autres contributions

Des tutoriaux concernant principalement les modèles de restauration d’images
par minimisation de la variation totale, avec implémentation des algorithmes en
langage Scilab, sont disponibles sur ma page personnelle, dont l’adresse actuelle
est : http://www.math-info.univ-paris5.fr/~rabergel/.
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The use of the Total Variation in
Image Processing
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In this chapter, we will focus on the total variation and its use in image
processing applications. Some definitions and properties, in both the continuous
and the discrete setting, will be given in Section 2.1. Some convex analysis tools,
based on Legendre-Fenchel duality, and helpful to perform the minimization of
convex functionals involving the total variation, will be presented in Section 2.2.
Those tools will be used to handle various type of image processing tasks in
Section 2.3. In Section 2.4, we will present some more advanced duality results,
that are useful to handle with another approach, and sometimes more efficiently,
the optimization problems considered in Section 2.3. This chapter results from a
study of the literature. Although it is far from giving a complete overview about
total variation, convex optimization, and duality, it contains all the information
necessary to properly manipulate the total variation in a variational context.
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2.1 The total variation

2.1.1 Definitions

We will first consider the continuous setting, where the images are represented
as real-valued functions

U =

(
Ωc → R

(x, y) 7→ u(x, y)

)
,

defined on an open subset Ωc of R
2 (for instance Ωc = (0, 1)× (0, 1)). When the

image U admits some partial derivatives ∂1U and ∂2U in the two directions of the
canonical base of R2, and when those partial derivatives are integrable on Ωc (i.e.
∂1U and ∂2U ∈ L1(Ωc)), we call ∇U := (∂1U, ∂2U) ∈ RΩc ×RΩc the gradient of U
and the total variation of U is defined by

TV(U) =

∫

Ωc

|∇U(x, y)|2 dx dy , (2.1)

noting | · |2 the ℓ2 Euclidean norm in R2. This definition can be naturally extended
when U belongs to the Sobolev space W 1,1(Ωc) defined as

W 1,1(Ωc) =
{
U ∈ L1(Ωc), ∀i ∈ {1, 2}, ∂iU ∈ L1(Ωc)

}
,

where ∂1U and ∂2U now denote the weak partial derivatives of U in the two direc-
tions of the canonical base of R2 (see for instance [Ziemer 2012]). Unfortunately
the elements of W 1,1(Ωc) are too regular to efficiently represent images since we
can show that they cannot contain any discontinuity across a line (such as the
edges or boundaries of objects in an image), or any hypersurface in general (see
[Chambolle et al. 2010]). Fortunately, the definition of the total variation of an
image can again be extended to the space of functions with bounded variation
(which this time allows discontinuities for the images), where the total variation
can be written in a weaker form.

Definition 1 (weak formulation of the total variation). For any image
U ∈ L1

loc(Ωc), the total variation of U is defined by

TV(U) = sup
φ∈C∞c (Ωc)

∀(x,y)∈Ω, |φ(x,y)|2≤1

−
∫

Ωc

U(x, y)divφ(x, y) dx dy ,

where C∞c (Ωc) denotes the set of indefinitely differentiable test functions with com-
pact support contained in Ωc, and divφ = ∂1φ+ ∂2φ denotes the divergence of the
two dimensional vector field φ.
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Definition 2 (functions with bounded variation). We say that the image U
has bounded variation whenever it has finite total variation, and we note BV(Ωc)
the set of all images with domain Ωc and bounded variation,

BV(Ωc) =
{
U ∈ L1

loc(Ωc), TV(U) < +∞
}
.

Remark 1. If ∇U exists and is an element of L1(RΩ × RΩ), noting 〈·, ·〉 the
Euclidean inner product in R2, we have

−
∫

Ωc

U(x, y) divφ(x, y) dx =

∫

Ωc

〈∇U(x, y), φ(x, y)〉 dx dy , (2.2)

since the divergence operator is the opposite of the adjoint of ∇. This gives an
intuitive reason why taking the supremum of (2.2) over all functions φ ∈ C∞c (Ωc)
such as |φ(x, y)|2 ≤ 1 for all (x, y) ∈ Ωc leads back to (2.1).

We now focus on the discrete setting where the considered images are real
valued functions u : Ω 7→ R but now Ω is a rectangle of Z2, for instance,

Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}, with M,N ∈ N .

The classical way to compute the total variation of the discrete image u is to
replace in (2.1) the gradient operator ∇ by a finite differences scheme ∇d, and
the integral by a discrete sum. Usually, we set ∇d = (∇d

1,∇d
2) with

∀(x, y) ∈ Ω,

{
∇d

1u(x, y) = u(x+ 1, y)− u(x, y)
∇d

2u(x, y) = u(x, y + 1)− u(x, y) (2.3)

using the convention that u(M, y) = u(M − 1, y) and u(x,N) = u(x,N − 1) for
all (x, y) ∈ Ω. By analogy with the continuous setting, we note divd the opposite
of the adjoint of ∇d, that is, divd = −(∇d)∗. One can easily check that the finite
difference scheme (2.3) yields

∀p = (p1, p2) ∈ RΩ × RΩ, divd(p) = divd1(p1) + divd2(p2) , (2.4)

where, for any (x, y) ∈ Ω,

divd1(p1)(x, y) =





p1(x, y) if x = 0
p1(x, y)− p1(x− 1, y) if 1 < x < M − 1
−p1(x− 1, y) if x =M − 1,

divd2(p2)(x, y) =





p2(x, y) if y = 0
p2(x, y)− p2(x, y − 1) if 1 < y < N − 1
−p2(x, y − 1) if y = N − 1.
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Definition 3 (discrete total variation). Let u : Ω 7→ R be a discrete image
with domain Ω. We call discrete total variation of u the quantity

TV
d(u) =

∑

(x,y)∈Ω
|∇du(x, y)|2 ,

where, unless explicitly stated, ∇d denotes the finite differences scheme defined in
(2.3).

Notice that even if (2.3) is the most frequently used finite difference scheme for
the discrete total variation, many others can be used. Actually the scheme (2.3) is
far from optimal, for instance we can see that with such a choice of discretization,
TV

d suffers from a strong lack of isotropy, in the sense that, in general we have

TV
d(u) 6= TV

d(Ru) ,

where R denotes the π/2 rotation operator defined by

∀(x, y) ∈ Ω, (Ru)(x, y) = u(y,M − x− 1) .

The consequence is that when we consider some TV
d-based imaging problems,

the resulting image is in general not the same if a rotation of π/2 is applied before
or after the process. Some more isotropic schemes exist but they show other
drawbacks [Lai et al. 2009, Wang and Lucier 2011, Chambolle et al. 2011, Condat
2016].

2.1.2 The Maximum A Posteriori approach to image re-
construction

Let u ∈ RΩ (that is, u : Ω → R) be an (unobserved) intensity image defined
on the discrete domain Ω = {0, . . . ,MΩ−1}×{0, . . . , NΩ−1} with sizeMΩ×NΩ.
Instead of u, assume that we are only able to observe a noisy version of Au,
where A : RΩ 7→ Rω denotes a linear operator, which may model for instance
the convolution with the point spread function of an acquisition sensor (but also
some other linear observation mechanisms such as tomography, downsampling,
etc.), and ω = {0, . . . ,Mω} × {0, . . . , Nω} denotes another discrete domain with
size Mω ×Nω (possibly ω = Ω). Noting u0 ∈ Rω the observed image, we consider
that

∀(x, y) ∈ Ω, u0(x, y) = Au(x, y) + n(x, y) , (2.5)
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where the n(x, y) are realizations of independent Gaussian random variables with
zero-mean and variance σ2. The images u0 and n considered above are realizations
of random variables noted u0 and n. The probability density function (p.d.f)
corresponding to the observation model (2.5) is therefore given by

p(u | u0) =
(

1

σ
√
2π

)|ω|
exp

(
−‖Au− u0‖

2
2

2σ2

)
, (2.6)

noting |ω| =Mω ×Nω the cardinality of ω, and ‖ · ‖2 the ℓ2 Euclidean norm over
the finite dimensional vector space Rω.

Remark 2. Equation (2.6) is straightforward to derive since we have

p(u0 | u) =
∏

(x,y)∈ω

1

σ
√
2π

exp

(
−(Au(x, y)− u0(x, y))2

2σ2

)
,

thanks to the independence of the random family {n(x, y)}(x,y)∈ω.

The function L = u 7→ p(u | u0) is known as the likelihood associated to the
observation model (2.5). The Maximum Likelihood Estimator (MLE) consists in
computing a maximizer of the likelihood function L, or equivalently to compute
a minimizer of u 7→ ‖Au− u0‖22, leading to the well known least squares problem
related to the inversion of the linear operator A.

We now move a step forward and try to take benefit from prior knowledge
about the unobserved image itself (and not only about the observation model for
u0). This knowledge is here modeled (although many other choices are possible) by

the improper TV
d prior p(u) ∝ e−βTV

d(u) (here, β denotes a positive parameter,
the notation ∝ indicates an equality up to a global multiplicative constant, and
the term improper indicates that the integral of p over RΩ is infinite), so that
the unobserved image is now seen as the realization of a random variable u with
(improper) probability density function u 7→ p(u) which promotes images u having
a low discrete total variation TV

d(u). Thanks to the Bayes rule, we get the
(improper) posterior density

π(u) := p(u | u0) ∝ p(u0 | u) p(u) ∝ exp

(
−‖Au− u0‖

2
2

2σ2
− βTV

d(u)

)
. (2.7)

The Maximum A Posteriori (MAP) methodology consists in computing a maxi-
mizer umap ∈ RΩ of the (improper) posterior density π, or equivalently a minimizer
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of the convex energy u 7→ − log π(u). Finally, the MAP approach boils down to
the variational problem

min
u∈RΩ

‖Au− u0‖22 + λTV
d(u) , (2.8)

where the parameter λ = 2βσ2, named regularity parameter, controls the trade-
off between the so-called data-fidelity (the quadratic term) and regularity (the
total variation term) in the minimization process. A variational problem of the
kind (2.8) is called an inverse problem, since it consists in recovering u from a
noisy version of Au (thus in a sense to invert the operator A). When A is the
identity operator in RΩ, the inverse problem (2.8) boils down to a pure image
denoising application, which was first introduced by Rudin, Osher and Fatemi
(ROF) in [Rudin et al. 1992].

Remark 3 (other observation models, the example of Poisson noise).
The presence of the quadratic term in (2.8) is due to the Gaussian nature of the
noise which corrupts the observed image u0. Of course other models of noise are
possible (an interesting study about the difference sources of noise occurring during
the image acquisition process with a digital camera can be found in [Aguerrebere
et al. 2012]), typically in a low light context, that is, when only a low amounts
of photons reach the sensor during the acquisition process, a more realistic ob-
servation model consists in considering u0 as a photon-count observation of Au
(note that, in that case, Au must be nonnegatively valued), which means that we
consider u0 as an integer-valued random image (u0 ∈ Nω) following the Poisson
probability density function,

p(u0 | u) =
∏

(x,y)∈ω

Au(x, y)u0(x,y)

u0(x, y)!
e−Au(x,y) .

The MAP approach can be used to derive other optimization problems (with data-
fidelity term different from the quadratic term ‖Au − u0‖22), more adapted to the
intended image restoration application.

The mathematical analysis tools necessary to handle problems of the kind (2.8),
and more generally many problems involving the total variation, will be presented
in section 2.2.
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2.1.3 The LSE approach to total variation denoising

The Bayesian point of view behind the MAP approach is an elegant mean to
design (or motivate the use of) some TV-regularized optimization problems dedi-
cated to image reconstruction tasks, however, it also presents several weaknesses:

(i) The first one is obviously the imperfect choice of the prior p(u) as a model
for natural images (see [Gousseau and Morel 2001]). Since the choice p(u) ∝
e−βTV

d(u) favors the images with low total variation (that are typically piece-
wise constant images, also called cartoon images), looking for a maximizer
umap of the posterior density makes the process very sensitive with respect
to the prior model (or from the optimization point of view, very sensitive to
the designed energy u 7→ − log π(u)), whose imperfections inevitably yield
undesirable artifacts in the computed image. The typical drawback of the
total variation based MAP models is the creation in umap of constant areas
with artificial boundaries, the so-called staircasing effect.

(ii) The second weakness is related to the founding idea of the MAP. As remarked
in [Chambolle et al. 2010], even if the prior model were perfectly built (i.e.
if the ideal unobserved image u were effectively the realization of a random
variable with probability density π), from a Bayesian point of view, there
would be no reason for a maximizer umap of π to be close to u, since umap
might be “very rare” under π. A hand-designed posterior density function
that illustrates this situation is proposed in [Chambolle et al. 2010, Fig. 1],
a similar example is reproduced in Figure 2.1. We also refer to [Nikolova
2007], where it is pointed out that the umap solution substantially deviates
from both the data acquisition model, and the underlying prior model.

From a statistical point of view, the MAP estimator is the one that minimizes
the hit-or-miss risk function, that is, a Dirac localized on the true solution. In
the case of the pure image denoising (ROF) problem (replace A by the identity
operator in (2.7) and (2.8)), it was suggested by Louchet and Moisan [2008] (see
also [Louchet and Moisan 2013]) to consider, instead of the MAP, the posterior
mean

ulse = Eu∼π(u | u0) =
∫

RΩ

u π(u) du , (2.9)

which is the image that achieves the Least-Square-Error (LSE) under π, leading
to a new estimate called TV-LSE. Note that this kind of approach is often called
MMSE (Minimizer of the Mean Square Error) or CM (Conditional Mean) in the
statistical literature. The properties of the image denoising TV-LSE estimator
were analyzed in [Louchet and Moisan 2008, 2013], in particular it was proven
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Figure 2.1: Hand designed posterior density. We here display the graph of the one
dimensional density π(u) = 0.1/(σ1
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), where

µ1 = 25, σ1 = 1, µ2 = 45 and σ2 = 10. This posterior density reaches its maximum at the point
umap = 25, while the posterior mean under π is ulse = 43. We can see that umap is quite rare

under π (the probability of the realization u, sampled under π, to satisfy u ≤ umap + 3 is less
than 5%), while the density π shows more energy in the vicinity of ulse.

that TV-LSE avoids the constant regions of the staircasing effect while allowing
the restoration of sharp edges, leading to more natural images than the MAP
estimate. Surprisingly enough, in spite of the high dimension of the space RΩ (for
instance the dimension of RΩ is 106 when we consider images of size 1000×1000),
the integral (2.9) can be numerically computed using a Monte Carlo Markov
Chains (MCMC) Metropolis Hasting algorithm (see Algorithm 1 in [Louchet and
Moisan 2008]). Besides (this is rare enough to be remarked) an upper bound of the
square Euclidean distance between the iterates un and the true LSE image uLSE
is available at each iteration n of the algorithm. Unfortunately, this algorithm
exhibits a slow convergence rate (O(n−1/2) for n iterations), which can be a major
inconvenience for many applications. To overcome this computational limitation,
a new variant named TV-ICE (Iterated Conditional Expectations) and based on
the iteration of conditional marginal posterior means, was proposed in [Louchet
and Moisan 2014]. This variant yields a numerical scheme which exhibits a linear
convergence, and produces images that are visually very close to those obtained
using the TV-LSE estimator. The TV-ICE model will be presented and adapted
to the Poisson case in chapter 4.
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2.1.4 One and two dimensional examples

As discussed in Section 2.1.1, the elements of BV(Ω) can assume some discon-
tinuities, making possible the representation of sharp edges into this space. The
ability of the total variation regularizer to preserve those discontinuities (in con-
trast to the classicalH1 models, corresponding to a choice of regularizer of the type
J(u) = ‖∇du‖22, which tends to promote oversmoothed images, see e.g. [Nikolova
2000]), is usually highlighted in the image processing literature, and some careful
studies about the edge-preserving properties of TV can be found in [Chambolle
et al. 2010, Caselles et al. 2015]. We will try to here give a simple intuition about
this interesting property, by focusing on the one dimensional case.

Let s : {0, . . . ,M − 1} → R be a one dimensional discrete signal of size M , we
naturally adapt Definition 3 into

TV
d(s) =

N−2∑

k=0

|s(k + 1)− s(k)| .

Assuming now that {s(k)}0≤k<M is a monotone (that is, nonincreasing or nonde-
creasing) sequence, we easily prove that

TV
d(s) = |s(M − 1)− s(0)| ,

so that any other monotone signal s̃ : {0, . . . ,M − 1} → R satisfying s̃(0) = s(0)
and s̃(M−1) = s(M−1) has the same total variation as s (this result can be proven
in a more general setting, in particular in the continuous setting, as it is done for
instance in [Kannan and Krueger 2012]). Consequently, the total variation will
not favor any monotone function among those satisfying this constraint, which,
in a sense, places the smooth and nonsmooth signals on equal footing, and makes
possible the selection of sharp edges (such as a step signal, as in Figure 2.2-left) in
the reconstructed signal, when dealing with TV-based models of the type (2.8).

In contrast to the well appreciated allowance of discontinuities provided by the
total variation regularizer, this approach also presents some drawbacks and prop-
erties with debatable consequences (e.g. the penalization of oscillations discussed
below). First, the TV regularizers tends to favor signals signals whose gradient
is sparse (that is, often takes the value 0), so that TV based models usually pro-
duce signals showing some undesirable staircase effects, where one would have
expected smooth variations (see Figure 2.2-right). Back to the world of the two
dimensional images, the total variation is responsible for the creation of constant
areas with artificial edges, as illustrated in Figure 2.3. This undesirable effect
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Figure 2.2: Left-side, several signals showing the same total variation. The signals
here displayed show different regularity ((a) and (b) present some discontinuities, the others are
smooth), but all have the same total variation. Thus, no one is being promoted in terms of TV

score in a variational context. This is not the case when we consider the classical H1 regularizer
J = s 7→ ‖∇ds‖22, for which all signals yield a different score, the smallest being realized by (e).
Right-side, one dimensional signal reconstruction in presence of noise using ROF. A
reference signal (a) is corrupted by an additive white Gaussian noise (b), then processed using
the ROF model (that is, model (2.8) with A = I), with λ = 200, yielding the restored signal (c).
The discontinuities of (a) are present in (c), however, the promotion of sparse gradient involved
a staircase effect, where we expected a smooth variation.

is known as staircasing effect (or staircasing artifact). It was first theoretically
studied in [Nikolova 2000], and more recently in [Chambolle et al. 2016]. Second,
as a consequence of the promotion of sparse gradients, the TV regularizer penal-
izes oscillations. On the one hand, oscillating patterns are typically the kind of
structures one wants to avoid when dealing with inverse problems, in the sense
that, the penalization of those structures is valuable. On the other hand, some
oscillatory patterns may correspond to textures that one would like to preserve.
Interestingly, some works try to take advantage of this above mentioned behaviour
of the total variation (generally presented as a shortcoming), by using the TV

term to perform image decomposition into three components, a first one contain-
ing the geometrical structure of the image, a second one the texture of the image,
and a third one the noise [Vese and Osher 2004, Aujol and Chambolle 2005].

2.1.5 Several well known variants of TV

Isotropic and Anisotropic total variation.

A first variant of the total variation is obtained by replacing the Euclidean
ℓ2 norm of the gradient in Definition 3 by a ℓp norm (we will note ℓa instead
of ℓp to avoid confusions when we will introduce, in the next sections, a dual
variable traditionally noted p). We define accordingly theTV

d
a (for a ≥ 1, possibly
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(a) reference (b) noisy (c) TV restored

details of (a) details of (c) level lines of (c)
Figure 2.3: The staircasing effect of TV. A noisy version (undergoing additive white
Gaussian noise with zero mean and standard deviation σ = 20), displayed in (b), of the reference
image (a), was denoised using the ROF model (that is, model (2.8), taking A = I), with the
setting λ = 40. On the second row, we display some close-up views of (a) and (c), which
reveal the presence in (c) of constant areas with artificial boundaries, that were not present
into the reference image. This so-called staircasing effect is due to the promotion by the TV

term of piecewise constant images. (or cartoon images). This effect clearly appears on the level
lines of (c), here computed using a bilinear interpolation, which tends to concentrate along the
spurious edges of the staircased regions. We also observe that some textures (in particular the
microtextures) of (a) are not present in (c), due to the penalization of the oscillations operated
by the total variation, showing its inability to deliver well-textured images.

a = +∞) variant of TV
d,

∀a ∈ [1,+∞], ∀u ∈ RΩ, TV
d
a(u) =

∑

(x,y)∈Ω
|∇du(x, y)|a , (2.10)

where | · |a denotes the ℓa norm over the R2 space, defined by

∀(z1, z2) ∈ R2, |(z1, z2)|a =
{

(|z1|a + |z2|a)1/a if a < +∞
max (|z1|, |z2|) if a = +∞ .

Since the total variation operator in (2.10) is written as a sum of ℓa norms, we
naturally introduce the norm ‖·‖1,a over RΩ×RΩ, which is a combination between
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ℓ1 and ℓa norms, defined by

∀(g1, g2) ∈ RΩ × RΩ, ‖(g1, g2)‖1,a =
∑

(x,y)∈Ω
|(g1(x, y), g2(x, y))|a ,

so that the total variation operator can be seen as the composition between the
norm ‖ · ‖1,a and the linear finite difference operator ∇d,

∀a ≥ 1, ∀u ∈ RΩ, TV
d
a(u) = ‖∇du‖1,a , (2.11)

and this viewpoint will be used in Section 2.3.1 to derive a dual formulation of
TV

d
a. Of course (2.11) is a straightforward generalization of TV

d, since the two
definitions coincide when a = 2. In practice we are principally interested in the
settings a = 1 or a = 2.

Definition 4 (isotropic and anisotropic discrete total variation). TV
d
1

and TV
d
2 are respectively called anisotropic and isotropic discrete total variation.

We will see that from the optimization point of view, the use of TV
d
a in-

stead of TV
d introduces no theoretical nor numerical difficulty. The case a = 1

(corresponding to the anisotropic total variation) is sometimes addressed in the
literature, mainly because it leads to optimization problems that can be solved by
graph-flow techniques (see [Darbon and Sigelle 2006, Chambolle 2005], and ref-
erences therein). Besides, the anisotropic total variation was also used to derive
some numerical algorithms dedicated to the computation of the TV-ICE variants
of the TV-LSE model, in the cases of image denoising in presence of Gaussian
noise [Louchet and Moisan 2014] or Poisson noise (see Chapter 4, or [Abergel et al.
2015]).

The Huber approximation.

The use of the discrete total variation as a regularizer for image processing ap-
plications generates images with piecewise constant regions and artificial bound-
aries, this is the staircasing effect already evoked above. This undesirable effect
has been rigorously identified and studied in [Nikolova 2000, Ring 2000], in par-
ticular it is proven (in a more general setting than total variation regularization)
in [Nikolova 2000] that the non-differentiability at zero of the total variation (or
more generally of the cost function to minimize) is responsible for the staircasing
artifact. In order to get rid of this artifact, we can replace the ℓ2 norm of the
gradient by a smooth approximation, for instance the so-called Huber-function.
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Definition 5 (Huber function). Let α be a positive parameter, we note Hα the
Huber function with parameter α, defined by

∀z ∈ R2, Hα(z) =

{ |z|22
2α

if |z|2 ≤ α ,
|z|2 − α

2
otherwise .

From its definition, we can see that the Huber function consists in replacing
the (non-differentiable at zero) ℓ2 norm by a (differentiable at zero) square ℓ2

norm over the ℓ2 closed ball with center 0 and radius α. Outside of the ball, Hα

is simply the ℓ2 norm translated by the quantity α/2, so that Hα is a continuous
and differentiable function of R2 (some one dimensional plots of Hα, for several
values of α, are displayed in Figure 2.4).
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Figure 2.4: One dimensional comparison between | · |2 and Hα. We here display a one
dimensional representation of the ℓ2-norm, and, for several values of α, the graph of the corre-
sponding Huber approximation Hα, which basically consists in replacing the non differentiable
term |x|2 by a smooth quadratic term when x ∈ [−α, α]. Otherwise, when x 6∈ [−α, α], an
appropriate offset is used, which makes the Hα function differentiable.

Definition 6 (Huber total variation). Given a positive real parameter α, we
call Huber total variation with parameter α the operator HTV

d
α defined by

∀u ∈ RΩ, HTV
d
α(u) =

∑

(x,y)∈Ω
Hα(∇du(x, y)) .

We will experimentally check that replacing the TV
d regularizer by HTV

d
α in

optimization problems of the kind (2.8) leads to images without staircasing arti-
fact, but the removal of artifact is done at the expense of losing the nice theoretical
properties of the total variation, such as the formal allowance of discontinuities
(and thus sharp edges) into the restored image.
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Other variants.

Many variants of TV have been proposed to avoid the staircasing effect, and
preserve textures. Some of them consist in smoothing the discontinuity of the TV

functional, as it is the case with the Huber variant. Some other consist in adding
some higher derivative order terms to the TV functional [Chan et al. 2000], or
even in changing the order of the derivative into the TV term itself, yielding a
generalized definition of this functional called Total Generalized Variation [Bredies
et al. 2010].

2.2 Basis of non-smooth convex analysis and op-

timization

In this section, we will recall some fundamental results of convex analysis, most
of them taken from [Ekeland and Témam 1999]. The aim of this presentation of
some already well known results, is to give a minimal, but complete, set of tools
that are now widely used to handle convex and non smooth optimization problems,
which are particularly efficient to perform total variation based minimization.
We refer to [Ekeland and Témam 1999, Rockafellar and Wets 1998, Boyd and
Vandenberghe 2004] for much more complete information.

2.2.1 Main definitions and properties

Let us consider a finite-dimensional real vector space E, and let E⋆ denote its
dual space, which is made of all continuous linear mappings from E to R. Let R
denote the set R∪{−∞,+∞} and 〈·, ·〉 denote the bilinear mapping from E⋆×E
to R defined by 〈ϕ, u〉 = ϕ(u) for any ϕ ∈ E⋆ and u ∈ E. We first recall the
definitions of convex sets and convex functions.

Definition 7 (convex sets and convex functions). A subset C of E is convex
if and only if for any pair of elements (u, v) of C , the line-segment [u, v] with
endpoints u and v,

[u, v] = {λu+ (1− λ)v, 0 ≤ λ ≤ 1} ,

is a subset of C . Now given a convex subset C of E, a mapping F from C to R

is convex if and only if it satisfies

∀u, v ∈ C , ∀λ ∈ [0, 1], F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v) ,



2.2. Basis of non-smooth convex analysis and optimization 53

whenever the right-hand term is defined, i.e. whenever the pair (F (u), F (v)) is
different from (+∞,−∞) and (−∞,+∞). If moreover the inequality is strict for
any u 6= v and any λ ∈ (0, 1), the function is called strictly convex.

Notice that allowing the functions to assume the value +∞ will be of great
importance, since in convex optimization we often need to consider the indicator
function of a domain D ⊂ E, defined by

∀u ∈ E, δD(u) =

{
0 if u ∈ D

+∞ otherwise,
(2.12)

which is a convex function if and only if D is a convex subset of E. Convex
functions that assume the value −∞ are however very special since those functions
are infinite everywhere except possibly at a single point where it may take any
value (see [Ekeland and Témam 1999, Chap. I, Sec. 2.1]). The underlying reason
why we keep the value −∞ (however much we wish to remove it) is that the
constants ±∞ are in a certain sense placed in duality (see [Ekeland and Témam
1999, Chap. I, Def. 4.2]). For instance, we will later consider the Legendre-Fenchel
transform which changes the constant function F = +∞ of E into the constant
function F ⋆ = −∞ of the dual space E⋆.

In the following we will denote by domF the effective domain of F , that is the
set of vectors u ∈ E such as F (u) < +∞,

domF = {u ∈ E, F (u) < +∞} .

The effective domain of F is nonempty as soon as F is not identically equal to
+∞. In order to get rid of very particular cases, we will say that the function
F is proper if it never assumes the value −∞ and is different from the constant
+∞.

Before focusing on the non-smooth setting, which will retain all our attention
later, we briefly recall the notion of Gâteaux-differentiability.

Definition 8 (Gâteaux-differentiability). Let F be a function of E into R,
let u and v be two points of E. If the limit as λ→ 0+ of

F (u+ λv)− F (u)
λ

(2.13)

exists, it is called the directional derivative in direction v of F at point u and
denoted DvF (u). If furthermore there exists an element ϕu ∈ E⋆ such that

∀v ∈ E, DvF (u) = 〈ϕu, u〉 ,
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we say that F is Gâteaux-differentiable at the point u, we call ϕu the Gâteaux-
differential of F at the point u, and we note ϕu = DF (u). When moreover E is a
Hilbert space, the Riesz representation Theorem states that there exists a unique
element of E noted ∇F (u) such that 〈DF (u), u〉 is equal to the inner product
between ∇F (u) and u. In that case ∇F (u) is called gradient of F a the point u.

Of course a function which is differentiable at point u in the classical sense
(that is in the sense of Fréchet) is also Gâteaux-differentiable at u and the two
notions of differentials coincide, but the reciprocal is false. The notion of Gâteaux-
differentiability is particularly suited to the convex setting since for any convex
function F , the expression (2.13) always possesses a limit as λ → 0+, this limit
may however be infinite.

We will now focus on the non Gâteaux-differentiable setting (named here the
non-smooth setting), and we will show how the notion of Gâteaux-differential
shall be generalized for non-smooth convex functions. We start with the notion
of lower semi-continuity.

Definition 9 (lower semi-continuity). A function F from E to R is lower
semi-continuous (l.s.c) on E if and only if for any u0 ∈ E and for any ε > 0,
there exists a neighborhood Vε

0 of u0 such as

∀u ∈ Vε
0 , F (u) ≥ F (u0)− ε ,

or equivalently when

∀u0 ∈ E, lim inf
u→u0

F (u) ≥ F (u0) ,

noting lim inf
u→u0

F (u) the limit inferior of F at point u0.

Remark 4. A useful way to prove the lower semi-continuity (respectively its con-
vexity) of a function F : E → R consists in considering its epigraph, which is the
set epiF = {(u, λ) ∈ E × R, F (u) ≤ λ}. Indeed F is l.s.c on E if and only if
epiF is closed in E ×R, and F is convex on E if and only if epiF is convex (see
[Ekeland and Témam 1999, Chap. I, Prop. 2.1 and 2.3]). In particular, thanks
to this topological characterization, we see that the indicator function δD defined
in (2.12), is l.s.c and convex on E if and only if the set D is a closed and convex
subset of E, since in that case, we have epiF = D × R+.

Now, we recall the notion of affine continuous function, which is at the same
time a very simple and, as we will see in the following, an extremely useful object
to efficiently represent convex and lower semi-continuous functions.
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Definition 10 (affine continuous fonctions on E). An affine continuous func-
tion on E is a function A : E → R of type A : u 7→ ϕ(u) +α, where ϕ is a linear
continuous function from E to R (i.e. an element of the dual space E⋆) and α
is a real number. We will call ϕ the slope and α the constant term of such a
function. We note A (E) the set of all affine continuous functions on E.

We follow up with the definition of the the spaces Γ(E) and Γ0(E).

Definition 11 (the spaces Γ(E) and Γ0(E)). We denote by Γ(E) the set of
functions F : E → R which are the superior envelope (or pointwise supremum) of
a family of continuous affine functions on E. We denote by Γ0(E) the subset of
Γ(E) composed of the functions other than the constants +∞ and −∞.

We see immediately from the definition that any element of Γ(E) is necessarily
convex and lower semi-continuous, since those two properties are stable by passage
to the supremum, and are satisfied by any affine continuous function. The next
proposition gives a precise characterization of the spaces Γ(E) and Γ0(E).

Proposition 1 (characterization of Γ(E) and Γ0(E)). A function F : E → R

is an element of Γ(E) if and only if F is a convex lower semi-continuous function
on E which may assume the value −∞ but in that case F is identically equal
to −∞. Consequently the set Γ0(E) is composed of all proper elements of Γ(E).

Let us take a function F in Γ(E), by definition, there exists a (possibly empty)
subset S of A (E) such that

∀u ∈ E, F (u) = sup
A∈S
A(u) ,

and consequently all the affine continuous functions A ∈ S are necessarily less
than F everywhere on E,

∀A ∈ S , ∀u ∈ E, A(u) ≤ F (u) .

This raises an interesting question: “What do we get when we consider the su-
perior envelope of all the affine continuous functions lower-bounding F?” This
question is answered by the following proposition that leads us to the notion of
Γ-regularization.

Proposition 2 (Γ-regularization). Let F and G be two functions from E into
R, the following properties are equivalent to each other:
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(i) G is the pointwise supremum function of the set of all continuous affine
functions that lower bound F ;

(ii) G is the largest element of Γ(E) that lower bounds F .

When (i) or (ii) is satisfied, the function G is then called the Γ-regularization of
function F .

Proof (adapted from [Ekeland and Témam 1999, Chap. I, Sec. 3.2]). Let us note
G1 the function satisfying (i) and G2 the function satisfying (ii). We note A1

(respectively A2) the set of all the affine continuous affine functions (respectively
all the elements of Γ(E)) which lower bound F . Since A1 ⊂ A2 we have G1 ≤ G2.
Now since each element H ∈ A2 is in Γ(E), it can be seen as the pointwise
supremum of a family AH of affine continuous functions, and necessarily the
elements of AH lower bound F (since H lower bounds F ). Thus, we get that for
any H ∈ A2 we have AH ⊂ A1, and we derive the converse inequality G2 ≤ G1.

2.2.2 Legendre-Fenchel transform

Given a function F : E → R, let us explore further the set of affine continuous
functions which lower bound F . We prove below that a continuous affine function
A : E → R with slope ϕ ∈ E⋆ and constant term α ∈ R (that is, A = u 7→
〈ϕ, u〉+ α) lower bounds F if and only if α ≤ −F ⋆(ϕ), where

F ⋆(ϕ) = sup
u∈domF

〈ϕ, u〉 − F (u) . (2.14)

Notice that when F assumes the value −∞, formula (2.14) yields F ⋆(ϕ) = +∞,
and when F is the constant +∞ (i.e. when F has empty domain), it yields
F ⋆(ϕ) = −∞.

Proof. A remains below F everywhere on E if and only if for any u ∈ E we have
〈ϕ, u〉+ α ≤ F (u), that is, when supu∈E〈ϕ, u〉 − F (u) ≤ −α. The supremum can
be restricted to the effective domain of F , since the function u 7→ 〈ϕ, u〉 − F (u)
is identically equal to −∞ outside of domF .

This leads us to the Legendre-Fenchel transformation.

Definition 12 (Legendre-Fenchel transform). If F : E → R, then formula
(2.14) defines a function F ⋆ from E⋆ into R called the Legendre-Fenchel transform
of F (also known as the polar or conjugate function of F ).
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From its definition, one directly sees that the Legendre-Fenchel transform F ⋆

of F is an element of Γ(E⋆) (in particular it is convex and l.s.c), since it can be seen
as the pointwise supremum of the family of continuous affine functions (Au)u∈domF

over the dual space E⋆, defined by

∀u ∈ domF, Au : ϕ 7→ 〈ϕ, u〉 − F (u) .

Assuming from now that E is a reflexive space (for instance a Hilbert space),
writing the Legendre-Fenchel transform of the function F ⋆ leads to

F ⋆⋆ : u 7→ sup
ϕ∈domF ⋆

〈ϕ, u〉 − F ⋆(ϕ) ,

which is an element of Γ(E⋆⋆), and thus an element of Γ(E). Since F and F ⋆⋆ are
defined on the same space, they can be compared to each other, we obtain the
following result:

Proposition 3 (bi-Legendre-Fenchel transform). The bi-Legendre-
Fenchel transform F ⋆⋆ of any function F : E → R is none other than the Γ-
regularization of F . In particular F ⋆⋆ ≤ F on E, and we have the equality F ⋆⋆ = F
if and only if F ∈ Γ(E).

Proof (adapted from [Ekeland and Témam 1999, Chap. I, Prop. 4.1]). The
Γ-regularization of F is the pointwise supremum of the set of all affine contin-
uous functions which lower bound F . This supremum can be restricted to the
lower bounding affine continuous functions having maximal constant term, that
is, the functions Aϕ : E → R of the type

∀ϕ ∈ E⋆, Aϕ = u 7→ 〈ϕ, u〉 − F ⋆(ϕ) .

Since the pointwise supremum of the family (Aϕ)ϕ∈E⋆ is exactly the function F ⋆⋆,
we get the announced result.

In practice Proposition 3 is of great use to derive a primal-dual reformulation
of an optimization problem when the cost function decomposes as the sum of
terms where at least one lies in Γ(E). For instance, if F : E → R is an element
of Γ(E), we have

∀u ∈ E, F (u) = F ⋆⋆(u) = sup
ϕ∈domF ⋆

〈ϕ, u〉 − F ⋆(ϕ) ,
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so that for any function G : E → R, the problem infu∈E F (u)+G(u) is equivalent
to the primal-dual problem

inf
u∈E

sup
ϕ∈domF ⋆

G(u) + 〈ϕ, u〉 − F ⋆(ϕ) , (2.15)

which may be easier to handle (and we will see later that it is typically the case
when we set F = TV

d).
A last important remark is that when E is a Hilbert space, the dual space E⋆

identifies to the primal space E, which means that for any element ϕ ∈ E⋆, the
terms 〈ϕ, u〉 in (2.14) or (2.15) can be replaced by the inner product between u
and an element vϕ ∈ E, thanks again to the Riesz representation Theorem. In
that case F ⋆ can be seen as a function of the primal space E (instead of E⋆),
which is very useful in practical computations.

2.2.3 Subdifferentiability

Now, let us show how the affine continuous functions can be used to recover a
notion a differentiability for non-smooth functions. Let F be a function from E
to R, and A : E → R be an affine continuous function. We say that A is exact at
point u ∈ E if and only if A(u) = F (u). When A is furthermore lower bounding
F , we recover a notion of slope (that is called subgradient) for F at the point u.

Definition 13 (subdifferentiability, subdifferential, subgradients). A func-
tion F : E → R is said subdifferentiable at point u ∈ E if and only if there exists
an affine continuous function A with slope ϕ ∈ E⋆ which is exact at point u and
which lower bounds F on E. In that case the slope ϕ is called a subgradient of F
at point u. The set of all subgradients of F at point u is named the subdifferential
of F at point u and noted ∂F (u). By convention we set ∂F (u) = ∅ when F is not
subdifferentiable at point u.

Notice that if the affine continuous function A with slope ϕ ∈ E⋆ is exact at
the point u, F (u) is necessarily finite and we have

A = v 7→ 〈ϕ, v − u〉+ F (u) . (2.16)

In that case A lower bounds F (that is, by definition, ϕ ∈ ∂F (u)) if and only if

∀v ∈ E, 〈ϕ, v − u〉+ F (u) ≤ F (v) .
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Another point of view is that, as soon as the affine continuous function A with
slope ϕ is exact at point u, it lower bounds F if and only if it has maximal constant
term α, that is (recall how was built the Legendre-Fenchel transform in Section
2.2.2), when α = −F ⋆(ϕ). Therefore identifying the constant term of (2.16) to
the quantity −F ⋆(ϕ), yields

F (u) + F ⋆(ϕ) = 〈ϕ, u〉 .

These considerations give two characterizations of the subgradients of F at point u.

Proposition 4 (characterizations of the subgradients). Let F : E → R be
a function, u a point of E, and ϕ an element of the dual space E⋆. The following
properties are equivalent to each other:

(i) ϕ ∈ ∂F (u), i.e. ϕ is a subgradient of F at point u;

(ii) F (u) is finite and we have 〈ϕ, v − u〉+ F (u) ≤ F (v) for any v ∈ E ;

(iii) F (u) + F ⋆(ϕ) = 〈ϕ, u〉 .

Proof. We already proved (i) ⇒ (ii). Assuming now that (ii) is satisfied, we
get supv∈E〈ϕ, v〉 − F (v) ≤ 〈ϕ, u〉 − F (u), we recognize in the left-hand term
the Legendre-Fenchel transform of F at ϕ, and the corresponding supremum
is attained at v = u, thus we get F ⋆(ϕ) = 〈ϕ, u〉 − F (u), which equivalent
to (iii), so that (ii) ⇒ (iii). Last when (iii) is satisfied, the terms F ⋆(ϕ) and
F (u) are necessarily both finite since 〈ϕ, u〉 is finite, therefore the application
A : v 7→ 〈ϕ, v−u〉−F (u) is affine continuous on E, and since (iii) is satisfied, the
supremum F ⋆(ϕ) = supv∈E〈ϕ, v〉−F (v) is attained at point u. Therefore we have
〈ϕ, v〉−F (v) ≤ 〈ϕ, u〉−F (u) for any v ∈ E, thus, A lower bounds F on E. Thus
(i) is satisfied, so that we proved (iii) ⇒ (i).

We immediately derive a fundamental result in optimization.

Corollary 1. A function F ∈ Γ0(E) admits a minimum at point u ∈ E if and
only if the set of its subgradients at point u contains 0,

F (u) = min
v∈E

F (v)⇔ 0 ∈ ∂F (u) . (2.17)

Proof. Using the equivalence (i) ⇔ (ii) of Proposition 4, we see that

0 ∈ ∂F (u)⇔ F (u) is finite and ∀v ∈ E, F (u) ≤ F (v) .
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We obtain the same result using the geometrical intuition: the function F is
minimal at point u if and only if the continuous affine function having null slope
and being exact at point u (that is the constant A : v 7→ F (u)) is less than F
everywhere on E.

The next Proposition shows that the subdifferentiability generalizes the notion
of Gâteaux-differential for convex functions (see the proof in [Ekeland and Témam
1999, Chap. I, Prop. 5.3]).

Proposition 5 (relation with Gâteaux-differentiability). If F : E → R

is a convex function which is Gâteaux-differentiable at a point u ∈ E, it is sub-
differentiable at the point u, and DF (u) is its only subgradient at point u, i.e.
∂F (u) = {DF (u)}.

Notice that the result announced in Proposition 5 does not remain true if we
remove the convexity assumption. A trivial counter example is obtained when
we consider the function F = x 7→ x3 from R into R, which is differentiable
anywhere, but subdifferentiable nowhere on R, since it cannot be lower-bounded
by any affine continuous function of R.

We will finish this section with two important results about subdifferential
calculus in Γ(E), which will be largely used in the next sections. Proposition 6
focuses on the subdifferential of a sum F + G of two elements of Γ(E), and
Proposition 7 on a link existing between ∂F and ∂F ⋆.

Proposition 6 (subdifferential of a sum of functions). If F and G are two
elements of Γ(E), and if there exists a point v ∈ domF ∩ domG where F (or G)
is continuous, then we have

∀u ∈ E, ∂(F +G)(u) = ∂F (u) + ∂G(u) ,

where the sum of the two (possibly empty) sets ∂F (u) and ∂G(u) must be under-
stood as the Minkowsky sum between those two sets.

If the inclusion ∂F (u) + ∂G(u) ⊂ ∂(F + G)(u) is easy to prove using the re-
lation (ii) of Proposition 4, the converse inclusion is much more difficult to show.
A proof of Proposition 6 is available in [Ekeland and Témam 1999, Chap. I,
Prop. 5.6], and makes use of the Hahn-Banach separation Theorem. In the fol-
lowing, we will use Proposition 6 in the case where F is Gâteaux-differentiable at
u, so that ∂(F +G)(u) = {DF (u)}+ ∂G(u).
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Proposition 7. For every function F : E → R, we have

ϕ ∈ ∂F (u)⇒ u ∈ ∂F ⋆(ϕ) .

Besides, when F ∈ Γ(E), we have ϕ ∈ ∂F (u)⇔ u ∈ ∂F ⋆(ϕ) .

Proof (adapted from [Ekeland and Témam 1999, Chap. I, Cor. 5.2]). This prop-
erty is a direct consequence of Proposition 4, indeed when ϕ ∈ ∂F (u), we have
F (u)+F ⋆(ϕ) = 〈ϕ, u〉, and necessary F (u) and F ⋆(ϕ) are both finite (in particular
ϕ ∈ domF ⋆). Since F ⋆⋆ ≤ F (see Proposition 3) we have F ⋆⋆(u)+F ⋆(ϕ) ≤ 〈ϕ, u〉.
Besides, by definition of the Legendre-Fenchel transform of F ⋆ at point u, we have
F ⋆⋆(u) = supϕ̃∈domF ⋆〈ϕ̃, u〉−F ⋆(ϕ̃), thus the inverse inequality F ⋆⋆(u)+F ⋆(ϕ) ≥
〈ϕ, u〉 is also satisfied. Finally we have F ⋆⋆(u) +F ⋆(ϕ) = 〈ϕ, u〉 , which is equiva-
lent to u ∈ ∂F ⋆(ϕ), thanks again to proposition 4. Finally we proved the impli-
cation ϕ ∈ ∂F (u) ⇒ u ∈ ∂F ⋆(ϕ). If furthermore F ∈ Γ(E), we have F ⋆⋆ = F ,
therefore, u ∈ ∂F ⋆(ϕ) ⇒ F ⋆(ϕ) + F ⋆⋆(u) = 〈ϕ, u〉 ⇔ F ⋆(ϕ) + F (u) = 〈ϕ, u〉 ⇒
ϕ ∈ ∂F (u), which proves the converse implication.

2.2.4 Framework of non-smooth optimization

From now, E denotes a finite dimensional Hilbert space, endowed with an
inner product 〈·, ·〉, and the corresponding norm ‖ · ‖ =

√
〈·, ·〉. We are interested

in the minimization of convex functions, i.e. to problems of type

inf
u∈E

F (u) , (2.18)

where, unless explicitly mentioned, F : E → R denotes a proper, convex and
lower semi-continuous function, called the objective function, or the cost function.
When the infimum (2.18) is attained somewhere on E, the infimum is a minimum.
In that case, any point u∗ which realizes this minimum is named a solution of
problem (2.18), or a minimizer of F , and we note

u∗ ∈ argmin
u∈E

F (u) .

If moreover the minimum is uniquely attained, we may note

u∗ = argmin
u∈E

F (u) .

Remark that given a non-empty closed and convex subset C of E, a constrained
minimization problem of type

inf
u∈C

G(u) ,
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with proper, convex and lower semi-continuous objective function G : E → R is
identical to (2.18) when we consider F = G + δC (which is also proper, convex
and lower semi-continuous on E, since δC ∈ Γ(E) thanks to Remark 4, and δC is
proper since C 6= ∅), indeed it is obvious that, in that case, the infimum is the
same for both problems, as well as the set of solutions.

Proposition 8 (criterion of existence or uniqueness of solution). If one
of the two following properties is satisfied, the problem (2.18) has at least one
solution.

(i) the set domF is bounded,

(ii) or the function F is coercive over E, i.e. lim
‖u‖→+∞

F (u) = +∞.

If (i) or (ii) is satisfied, and if furthermore the function F is strictly convex on
C , then the problem (2.18) has exactly one solution.

We will define below the notion of strong convexity that will be useful in the
following. It is straightforward to check that this notion extends the notion of
strict convexity, in the sense that any strong convex function is necessarily strictly
convex.

Definition 14 (strongly convex functions). A function F : E → R is called
strongly convex with constant η if and only if the function

u 7→ F (u)− η
2
‖u‖2

is convex on E. We say that F is strongly convex when there exists a constant
η > 0 such that F is strongly convex with constant η.

The following Proposition is due to Rockafellar and Wets [1998, Prop. 12.60]
and it links the strong convexity of a function to the regularity of its Legendre-
Fenchel conjugate.

Proposition 9 (dualization of strong convexity). If F : E → R is an ele-
ment of Γ0(E) and η > 0, the following properties are equivalent to each other:

(i) F ⋆ is strongly convex with constant η ;

(ii) F is Fréchet differentiable on E, and ∇F is Lipschitz continuous with con-
stant 1/η.
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Remark 5. As direct consequence of this proposition, we can see that the Legendre-
Fenchel transform G⋆ of a η-strongly convex function G ∈ Γ0(E) is Fréchet dif-
ferentiable on E, and ∇G⋆ is Lipschitz continuous with constant 1/η. Indeed, we
easily obtain this result by applying Proposition 9 to F = G⋆ and using G = G⋆⋆.

2.2.5 Proximity operator and Moreau envelope

We will now present two fundamental and closely related operators: the
Moreau envelope and the proximity operator, which were introduced by Moreau
[1965], initially for the purpose of generalizing the operators of ℓ2 square distance
and ℓ2 projection over a convex set. It turned out that they play a great role in
convex optimization.

Proposition 10 (proximity operator and Moreau envelope with param-
eter σ). We recall that F : E → R is a proper, convex and lower semi-continuous
function. Given any point v ∈ E and a real parameter σ > 0, the function

u 7→ 1
2σ
‖u− v‖2 + F (u)

is proper, lower semi-continuous, strongly convex with constant 1
σ
and coercive

on E. Consequently, the problem

inf
u∈E

1
2σ
‖u− v‖2 + F (u) , (2.19)

has a unique solution on E. We define accordingly the proximity operator ProxσF :
E → E and the Moreau envelope MσF : E → R of F with parameter σ by





ProxσF (v) = argmin
u∈E

1
2σ
‖u− v‖2 + F (u)

MσF (v) = min
u∈E

1
2σ
‖u− v‖2 + F (u)

(2.20a)

(2.20b)

for any v ∈ E. Note that MσF is also called the Moreau-Yosida regularization of
F with parameter σ [Yosida 1980].

Proof. For any v ∈ E, and any σ > 0, we see that the function
G : u 7→ 1

2σ
‖u − v‖2 + F (u) is an element of Γ0(E), since both functions F

and u 7→ 1
σ
‖u−v‖2 are in Γ0(E). Also, it is easy to check that u 7→ G(u)− 1

2σ
‖u‖2

is convex (since u 7→ F (u)− 1
σ
〈u, v〉 is convex), therefore G is strongly convex with

constant 1/σ. It remains to show that G is coercive on E. Since F ∈ Γ0(E), F is
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the pointwise supremum of the set of its lower bounding affine continuous func-
tions, which is not empty (otherwise, F would be the constant −∞, which does
not belong to Γ0(E)). Therefore, their exists at least one affine continuous func-
tion A such as F ≥ A, so that for any u ∈ E, we have G(u) ≥ 1

2σ
‖u−v‖2+A(u).

Since the right-hand term u 7→ ‖u − v‖2 + A(u) of this inequality is coercive
(noting ϕ and α the slope and constant terms of A, we have 1

2σ
‖u− v‖2+A(u) =

1
2σ
‖u− v‖2 + 〈ϕ, u〉+ α = 1

2σ
‖u− v + σϕ‖2 − σ

2
‖ϕ‖2 + 〈ϕ, v〉+ α, whose limit as

‖u‖ → +∞, is +∞), it follows that G(u)→ +∞ when ‖u‖ → +∞.

Remark 6. When F is the indicator function of a non-empty, closed and convex
set C , i.e. F = δC , ProxσF is exactly the projection on C , noted πC , and MσF

is proportional to the square distance between the point v and the set C , noted
d(v,C )2,

∀v ∈ E, ∀σ > 0, ProxσδC
(v) = πC (v) and MσδC

(v) = 1
2σ
d(v,C )2 .

Now, let us focus on the proximity operators, and show how they can be used
to handle problem (2.18). The following results are direct consequences of the
definition of ProxσF .

Proposition 11. For any point v ∈ E, for any parameter σ > 0, we have the
equivalence

v∗ = ProxσF ⇔ v ∈ v∗ + σ∂F (v∗) .

The right-hand term can be noted v ∈ (I + σ∂F ) (v∗), where I denotes the identity
operator, and v∗ 7→ (I + σ∂F )(v∗) is a multivalued operator. For that reason,
another common notation for the proximity operator ProxσF is

ProxσF (v) = (I + σ∂F )−1(v) ,

and (I + σ∂F )−1 is single valued, since ProxσF (v) is uniquely defined (Proposi-
tion 10) for any v.

Proof. Let v ∈ E, σ > 0, and G ∈ Γ0(E), defined by G = u 7→ 1
2σ
‖u− v‖2. Since

G is differentiable (and thus Gâteaux-differentiable) everywhere on E, it is also
subdifferentiable on E, and since E is a Hilbert space, we can identify E⋆ to E
and write

∀u ∈ E, ∂G(u) = {DG(u)} = {∇G(u)} = {(u− v)/σ} ,
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where the identification DG(u) = ∇G(u) must be of course understood as DG(u) =
v 7→ 〈∇G(u), v〉. Using Corollary 1, and Proposition 6, we get

v∗ = ProxσF (v)⇔ 0 ∈ ∂G(v∗) + ∂F (v∗)⇔ 0 ∈ v
∗ − v
σ

+ ∂F (v∗) ,

which, after basic manipulations performed on the right-hand term, is equivalent
to v ∈ v∗ + σ∂F (v∗).

Proposition 12. The solutions of (2.18) are the fixed points of ProxσF , i.e.

∀σ > 0, u∗ ∈ argmin
u∈E

F (u)⇔ u∗ = ProxσF (u
∗) .

Proof. We have u∗ ∈ argminu∈E F (u)⇔ 0 ∈ ∂F (u∗)⇔ u∗ ∈ u∗+σ∂F (u∗), which
is equivalent to u∗ = (I + σ∂F )−1(u∗), thanks to Proposition 11.

Another fundamental property of the proximity operator, due to Moreau [1965]
(in the case σ = 1), and that was generalized by Rockafellar [1976] (for any σ > 0),
is now well known as the Moreau’s identity.

Proposition 13 (Moreau’s identity). Let F ∈ Γ0(E) and σ > 0, we have

∀v ∈ E, v = (I + σ∂F )−1(v) + σ
(
I + 1

σ
∂F ⋆

)−1 ( v
σ

)
.

Proof. For any F ∈ Γ0(E), v ∈ E, and σ > 0, we have (Proposition 11)

v∗ = (I + σ∂F )−1(v)⇔ v ∈ v∗ + σ∂F (v∗)⇔ v−v∗

σ
∈ ∂F (v∗) ,

and using Proposition 7, we get v−v∗

σ
∈ ∂F (v∗) ⇔ v∗ ∈ ∂F ⋆

(
v−v∗

σ

)
. Besides, we

have

v∗ ∈ ∂F ⋆
(
v−v∗

σ

)
⇔ v

σ
∈ v−v∗

σ
+ 1

σ
∂F ⋆

(
v−v∗

σ

)
⇔ v−v∗

σ
=
(
I + 1

σ
∂F ⋆

)−1 ( v
σ

)
.

Finally, replacing v∗ by (I + σ∂F )−1(v) in the right-hand term yields the an-
nounced result.

Now, let us comment those results. First, the characterization of the solutions
of (2.18) as the fixed points of ProxσF naturally encourage to consider the follow-
ing numerical scheme, in order to compute a fixed point of ProxσF (and thus a
minimizer of F ), {

choose σ > 0 and u0 ∈ E ,
∀k ≥ 0, uk+1 = ProxσF (u

k) .
(2.21)
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It turns out from Proposition 12 that if ProxσF were a contraction (i.e. Lips-
chitz continuous with constant less than 1), the numerical scheme (2.21) would
converge to a fixed point of ProxσF . In general the ProxσF operator is not a
contraction (unless F is strongly convex), but it satisfies a different property
called firm non-expansiveness which is sufficient to ensure the convergence of the
scheme (2.21) toward a fixed point of ProxσF , provided that such a fixed point ex-
ists, i.e. provided that the set of the minimizers of F is non-empty (see more expla-
nations in [Rockafellar 1976, Parikh and Boyd 2013]). Besides, from the iteration
uk+1 = ProxσF (u

k), and thanks to Proposition 11, we get uk ∈ uk+1+σ∂F (uk+1),
thus

∀k ≥ 0, uk+1 ∈ uk − σ∂F (uk+1) ,

which can be interpreted as a semi-implicit subgradient descent scheme with step
σ. Remark that this scheme may be used even in the smooth setting (i.e. when
F is Gâteaux-differentiable), in that case its semi-implicitness provides some bet-
ter conditioning and stability properties than the usual gradient descent scheme
(the classical convergence Theorems associated to the steepest gradient descent
schemes can be found for instance in [Luenberger and Ye 1984, Weiss 2008]), in
particular, and as we already stated before, the convergence of the scheme (2.21)
is ensured whatever the choice of σ (as soon as F has minimizers). The obvious
limitation of the proximal fixed point scheme, is that each iteration k of (2.21)
requires the minimization of the function

u 7→ 1
2σ
‖u− uk‖2 + F (u) ,

which is usually easier than the direct minimization of F (thanks to the regularity
provided by the smooth and strictly convex quadratic term), but may remain non-
trivial depending on the nature of F . Besides, Moreau’s identity states that the
computation of ProxσF can be done through the computation of ProxµF ⋆ (taking
µ = 1

σ
), opening other possibilities to perform the iterations of the proximal fixed

point scheme (2.21).

Remark 7 (Proximal Forward Backward Splitting Algorithm). An in-
teresting variant of (2.21) is obtained, under the assumption that the function F
may be composed as the sum F = F1 + F2 of two elements of Γ0(E), and F2 is
differentiable. In that case, any minimizer u∗ of F satisfies (use Proposition 6
and Corollary 1)

0 ∈ ∂(F1 + F2)(u
∗) = ∂F1(u

∗) + {∇F2(u
∗)}
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and thus, for any σ > 0, we have u∗ − σ∇F2(x̄) ∈ u∗ + σ∂F1(u
∗), yielding

u∗ = (I + σ∂F1)
−1 (u∗ − σ∇F2(u

∗)) ,

so that u∗ is a fixed-point of u 7→ (I + σ∂F1)
−1 (u− σ∇F2(u)). The Proximal

Forward Backward Splitting algorithm simply consists in the numerical scheme

{
choose σ > 0 and u0 ∈ E,
∀k ≥ 0, uk+1 = ProxσF1

(
uk − σ∇F2(u

k)
)
,

the forward term refers to the explicit descent step uk+1/2 = uk−σF2(u
k), while the

backward term refers to the semi-implicit descent step uk+1 = ProxσF1(u
k+1/2). A

recent mathematical study of this algorithm can be found in [Combettes and Wajs
2005], with a nice proof of convergence provided that F2 has a Lipschitz continuous
gradient (see also [Weiss 2008]).

Now we focus on the Moreau envelope, we describe below a set of properties
that are helpful to understand the key role it plays in non-smooth convex opti-
mization. In particular, we will explain why MσF is essentially a smoothed (or
regularized) version of F , which is differentiable, even when F is not.

Proposition 14 (Some properties of the Moreau envelope). For any ele-
ment F ∈ Γ0(E), and any parameter σ > 0, the following properties are satisfied.

(i) (MσF )
⋆ = F ⋆ + σ

2
‖ · ‖2 ;

(ii) MσF ∈ Γ(E) and MσF = (MσF )
⋆⋆ =

(
F ⋆ + σ

2
‖ · ‖2

)⋆
;

(iii) MσF is Fréchet-differentiable on E, and

∀v ∈ E, ∇MσF (v) =
1
σ
(v − ProxσF (v)) ,

besides it has same set of minimizer than F ,

u∗ ∈ argmin
u∈E

F (u)⇔ u∗ ∈ argmin
u∈E

MσF (u) ;

Proof. Those properties will be only partially proved here, but we will at least
comment each one of them at the end of this section.

(i) To prove this property, we use the infimal convolution operation that was
introduced by Moreau [1963]. Given two functions f and g in Γ0(E), the
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infimal convolution between f and g is the function (f � g) : E → R defined
by

∀v ∈ E, (f � g)(v) = inf
u∈E

f(u) + g(u− v) .

The infimal convolution is said dual to the sum because it satisfies (see
[Rockafellar 1970])

∀f, g ∈ Γ0(E), (f � g)⋆ = f ⋆ + g⋆ and (f + g)⋆ = (f ⋆
� g⋆) .

Now, from its definition, we see that the Moreau envelope MσF is the infimal
convolution between F and G : u 7→ 1

2σ
‖u‖2. Since we can easily show that

G⋆ = ϕ 7→ σ
2
‖ϕ‖2 (the square norm of ϕ must be understood as the square

norm in E of the unique element vϕ ∈ E to which ϕ identifies), we get the
announced result.

(ii) This property is a direct consequence of (i). Indeed, we have seen that
MσF = (F � G), where both F and G are elements of Γ0(E), therefore we
have (MσF )

⋆⋆ = (F ⋆⋆
� G⋆⋆) = (F � G) = MσF , consequently MσF ∈ Γ(E).

Thus, using (MσF )
⋆ = F ⋆+ σ

2
‖·‖2, we get MσF = (MσF )

⋆⋆ =
(
F ⋆ + σ

2
‖ · ‖2

)⋆
.

(iii) The Fréchet-differentiability of MσF is a direct consequence of Proposition 9
(simply remark that (MσF

⋆ = F ⋆ + σ
2
‖ · ‖2 is a strongly convex function),

however the computation of its differential is nontrivial and will be admitted
here (see the proof in Moreau [1965], in the case σ = 1, or in [Rockafellar
and Wets 1998, Thm. 2.26], for any σ > 0). Now, remark that thanks to
Proposition 12, and using ∇MσF = v 7→ 1

σ
(v − ProxσF (v)), we have the

equivalence

u∗ ∈ argmin
u∈E

F (u)⇔ u∗ = ProxσF (u
∗)⇔ ∇MσF (u

∗) = 0 ,

and the relation ∇MσF (u
∗) = 0 is a well known necessary and sufficient

condition to optimality, for the convex and differentiable function MσF .

We close this section with comments about each property announced in Propo-
sition 14. Thanks to properties (i) and (ii), we see that MσF is obtained by
taking the Legendre-Fenchel transform F ⋆ of the objective function F , adding a
quadratic regularization, and then taking again the Legendre-Fenchel transform.
As pointed out by Parikh and Boyd [2013], without adding the regularization,
this would simply give back the initial function F , but thanks to the addition of
the quadratic regularization, we obtain MσF , which can be viewed as a smooth
approximation of F , differentiable everywhere on E (thanks to Proposition 9 and
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Remark 5), since MσF is the Legendre-Fenchel transform of the strongly convex
function (MσF )

⋆ = F ⋆ + σ
2
‖ · ‖2 ∈ Γ0(E). Last, the property (iii) confirms that

MσF is differentiable on E, and states that the set of minimizers of F is the same
as the set of the minimizers of its Moreau envelope. From the expression of its
gradient ∇MσF (v) =

1
σ
(v − ProxσF (v)) we get

∀v ∈ E, ProxσF (v) = v − σ∇MσF (v) .

Consequently, the proximal fixed point scheme (2.21) can be interpreted as a
gradient descent scheme (with step σ) for the minimization of MσF . Of course the
Moreau envelope MσF suffers from the same limitation as the proximity operator
ProxσF , in the sense that minimizing MσF may be as difficult as minimizing F
directly, the essential difference being that the strong convexity added by the
quadratic regularizer can significantly improve the regularity of the problem.

2.3 Application to total variation based image

processing

In this section, we will use the duality tools presented in Section 2.2 to perform
several image processing tasks based on total variation minimization. We place
ourselves in the discrete setting, let Ω be a bounded subset of Z2, and RΩ the space
of the real valued images with domain Ω, which, endowed with the Euclidean inner
product, defined by

∀u ∈ RΩ, ∀v ∈ RΩ, 〈u, v〉RΩ =
∑

(x,y)∈Ω
u(x, y) v(x, y) ,

is a finite dimensional Hilbert space. We denote by ∇d the finite difference
scheme (2.3), and by divd, the corresponding discrete divergence, given in (2.4),
which satisfies (∇d)∗ = −divd. Since for any u ∈ RΩ, we note ∇du = (∇d

1u,∇d
2u),

where ∇d
1u and ∇d

2u are two elements of RΩ representing the discrete derivatives
of u in the horizontal and vertical directions, we will naturally consider the space
RΩ×RΩ, which is also a finite dimensional Hilbert space, once it is endowed with
the inner product defined by

〈(p1, p2), (q1, q2)〉RΩ×RΩ = 〈p1, q1〉RΩ + 〈p2, q2〉RΩ ,

for any p1, p2, q1, q2 ∈ RΩ. More generally, given any finite dimensional Hilbert
space E, we will note 〈·, ·〉E the Euclidean inner product on E, however, for
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commodity, and when no ambiguity is possible, we may drop the index E and
simply note 〈·, ·〉. Last, since a Hilbert space E identifies to its dual space E⋆,
from now, any element ϕ in E⋆, will be replaced by the unique element pϕ ∈ E
satisfying ϕ(q) = 〈pϕ, q〉E for any q ∈ E. In particular, the Legendre-Fenchel
transform of any function defined on E will be viewed as a function of E instead
of a function of E⋆.

2.3.1 Dual formulation of the total variation and its vari-
ants

Isotropic and anisotropic total variation

We recall the definition of TV
d
a using the norm ‖ ·‖1,a over the space RΩ×RΩ,

∀u ∈ RΩ, TV
d
a(u) = ‖∇du‖1,a =

∑

(x,y)∈Ω
|∇du(x, y)|a , (2.22)

where | · |a denotes the ℓa norm over R2 defined by

∀(z1, z2) ∈ R2, |(z1, z2)|a =
{

(|z1|a + |z2|a)1/a if 1 ≤ a < +∞
max (|z1|, |z2|) if a = +∞ .

The isotropic and anisotropic discrete total variation correspond to the choices
a = 2 and a = 1 respectively. However, within all this section, we will consider
a more general setting, where a denotes a (possibly infinite) number higher than
one (1 ≤ a ≤ +∞), since this generalization will not complicate the proofs. We
denote by a′ the conjugate of a which is the unique number satisfying 1

a
+ 1

a′
= 1

(taking as convention that 1 and +∞ are conjugate to each other).

Proposition 15 (dual formulation of TVd
a). For any image u ∈ RΩ, one has

TV
d
a(u) = max

p∈RΩ×RΩ
〈∇du, p〉RΩ×RΩ − δ‖·‖

∞,a′≤1(p) ,

where δ‖·‖
∞,a′≤1 denotes the indicator function of the closed unit ball for the norm

‖ · ‖∞,a′ : p 7→ max(x,y)∈Ω |p(x, y)|a′, which means

∀p ∈ RΩ × RΩ, δ‖·‖
∞,a′≤1(p) =

{
0 if ‖p‖∞,a′ ≤ 1,

+∞ otherwise.

To prove Proposition 15, we need some intermediate Lemmas.
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Lemma 1 (The Legendre-Fenchel transform of a norm). Let ‖ · ‖ be a
norm on a finite dimensional real Hilbert space E endowed with the Euclidean
inner product 〈·, ·〉E. Let ‖ · ‖∗ be the dual norm of ‖ · ‖, which is defined by

∀v ∈ E, ‖v‖∗ = sup
u∈E, ‖u‖≤1

〈v, u〉E .

Then, the Legendre-Fenchel transform of the ‖ · ‖, abusively noted ‖ · ‖⋆, is the
indicator function of the closed unit ball for the dual norm ‖ · ‖∗, defined by

∀v ∈ E, δ‖·‖∗≤1(v) =

{
0 if ‖v‖∗ ≤ 1

+∞ otherwise.

In particular, since the two norms | · |a and | · |a′ defined on E = R2 are dual to
each other, we have | · |⋆a = δ|·|a′≤1.

Proof. Let us compute the Legendre-Fenchel transform of δ‖·‖∗≤1. For any u ∈ E,
we have

δ⋆‖·‖∗≤1(u) = sup
v∈E
〈u, v〉E − δ‖·‖∗≤1(v) = sup

v∈E, ‖v‖∗≤1

〈u, v〉E = ‖u‖ ,

since the dual norm of ‖ · ‖∗ is the norm ‖ · ‖, because of the reflexivity of E.
Besides, since δ‖·‖∗≤1 ∈ Γ(E) (thanks to Remark 4), we have δ‖·‖∗≤1 = δ⋆⋆‖·‖∗≤1

(using Proposition 3). Thus, for any v ∈ E, we have ‖v‖⋆ = δ⋆⋆‖·‖∗≤1(v) = δ‖·‖∗≤1(v).

Remark 8. Another proof of Lemma 1, based on a direct computation of the
Legendre-Fenchel transform of ‖ · ‖, can be found in [Boyd and Vandenberghe
2004, Example 2.26].

Lemma 2 (Legendre-Fenchel transform of the norm ‖·‖1,a). The Legendre-
Fenchel transform of the norm ‖ · ‖1,a defined in (2.22) is the indicator function
of the closed unit ball for the norm ‖ · ‖∞,a′ defined in Proposition 15.

Proof. Let p ∈ RΩ × RΩ, by definition, the Legendre-Fenchel transform of ‖ · ‖1,a
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at p, noted ‖p‖⋆1,a, writes

‖p‖⋆1,a = sup
g∈RΩ×RΩ

〈p, g〉RΩ×RΩ − ‖g‖1,a
= sup

g∈RΩ×RΩ

∑
(x,y)∈Ω

〈p(x, y), g(x, y)〉R2 − |g(x, y)|a
=

∑
(x,y)∈Ω

sup
g(x,y)∈R2

〈p(x, y), g(x, y)〉R2 − |g(x, y)|a
=

∑
(x,y)∈Ω

|p(x, y)|⋆a
=

∑
(x,y)∈Ω

δ|·|a′≤1(p(x, y))

since | · |⋆a = δ|·|a′≤1 thanks to Lemma 1. It follows that ‖p‖⋆1,a = 0 when
max(x,y)∈Ω |p(x, y)|a′ ≤ 1, and ‖p‖⋆1,a = +∞ otherwise, i.e., ‖p‖⋆1,a = δ‖·‖

∞,a′≤1(p) .

Remark 9. Another way to prove Lemma 2 consists in showing that the two
norms ‖ · ‖1,a and ‖ · ‖∞,a′ are dual to each other, and then, to use Lemma 1 to
get ‖ · ‖⋆1,a = δ‖·‖

∞,a′≤1.

Proof of Proposition 15. Since ‖ · ‖1,a is convex and l.s.c. over RΩ × RΩ, it is an
element of Γ(RΩ×RΩ), thereby ‖ · ‖1,a = ‖ · ‖⋆⋆1,a thanks to Proposition 3. Besides

given an image u ∈ RΩ, one as TV
d
a(u) = ‖∇du‖1,a, therefore

TV
d
a(u) =

∥∥∇du
∥∥⋆⋆
1,a

= sup
p∈RΩ×RΩ

〈∇du, p〉RΩ×RΩ − ‖p‖⋆1,a ,

and ‖p‖⋆1,a is exactly δ‖·‖
∞,a′≤1(p) thanks to Lemma 2. Last, one sees that the

supremum is attained, since it is nothing but the maximum of the inner product
term over the closed unit ball for the dual norm ‖ · ‖∞,a′ .

The Huber total variation

Let α > 0, we recall below the definition of the Huber total variation with
parameter α and define at the same time the function Hα : RΩ × RΩ 7→ R,

∀u ∈ RΩ, HTV
d
α(u) = Hα(∇du) :=

∑

(x,y)∈Ω
Hα(∇du(x, y)) .

We recall also the definition of Hα, the Huber function with parameter α,

∀z ∈ R2, Hα(z) =

{ |z|22
2α

if |z|2 ≤ α ,
|z|2 − α

2
otherwise .
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The dual formulation of the discrete total variation described in Proposition 15
can be easily adapted to its Huber variant.

Proposition 16 (dual formulation of HTVd
α). For any α > 0, and for any

image u ∈ RΩ, one has

HTV
d
α(u) = max

p∈RΩ×RΩ
〈∇du, p〉RΩ×RΩ − δ‖·‖∞,2≤1(p)− α

2
‖p‖22 .

In order to prove this Proposition, we need an intermediate Lemma.

Lemma 3. Hα is the Moreau envelope with parameter α of the ℓ2 norm | · |2, it is
therefore an element of Γ(R2). Besides, its Legendre-Fenchel transform satisfies

∀p ∈ R2, H⋆
α(p) =

{
α
2
|p|22 if |p|2 ≤ 1 ,
+∞ otherwise,

or equivalently, H⋆
α(p) = δ|·|2≤1(p) +

α
2
|p|22, for any p ∈ R2.

Proof. Let us show that the Moreau envelope with parameter α of the ℓ2 norm,
noted Mα|·|2 , is equal to Hα. Let z ∈ R2, by definition of the Moreau envelope
(given in Proposition 10), we have

Mα|·|2(z) = min
y∈R2

1
2α
|y − z|22 + |y|2 ,

and this minimum is reached at point ỹ = Proxα|·|2(z). Thanks to Moreau’s
identity (Proposition 13) we have

ỹ = z − α · Prox 1
α
|·|⋆2
(z/α) , (2.23)

and since | · |⋆2 = δ|·|2≤1 (Lemma 1), Prox 1
α
|·|⋆2
(z/α) is simply the ℓ2 projection of

the quantity z/α on the closed unit ball for the ℓ2 norm, which is given by

Prox 1
α
|·|⋆2
(z/α) =

{
z/α if |z|2 ≤ α
z/|z|2 otherwise.

Now we can compute ỹ using (2.23) and derive the value of Mα|·|2(z) using
Mα|·|2(z) =

1
2α
|ỹ−z|22+ |ỹ|2. Indeed, when |z|2 ≤ α, we have ỹ = 0 and Mα|·|2(z) =

|z|22
2α

. Otherwise, |z|2 > α, and we have ỹ = λz where λ = (1 − α
|z|2 ) ∈ (0, 1),
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leading to Mα|·|2(z) = |z|2− α
2
. Finally, we proved that Mα|·|2(z) = Hα(z). Conse-

quently, Hα ∈ Γ(R2), and H⋆
α is equal to the sum between the Legendre-Fenchel

transform of α| · |2 (which is δ|·|2≤1 using Lemma 1) and the quadratic term α
2
| · |22,

thanks to Proposition 14. More precisely, we have H⋆
α(p) = δ|·|2≤1(p) +

α
2
|p|22, for

any p ∈ R2.

Proof of Proposition 16. Since Hα ∈ Γ(R2), we have Hα ∈ Γ(RΩ ×RΩ), therefore
HTV

d
α(u) = Hα(∇du) = H⋆⋆

α (∇du) thanks to Proposition 3. We derive that

HTV
d
α(u) = H⋆⋆

α (∇du) = sup
p∈RΩ×RΩ

〈∇du, p〉RΩ×RΩ − H⋆
α(p) .

Besides, we have H⋆
α(p) =

∑
(x,y)∈ΩH⋆

α(p(x, y)) = δ‖·‖∞,2≤1(p) +
α
2
‖p‖22 (using

Lemma 3). Again, the supremum is a maximum for the same reason as in the
proof of Proposition 15, which yields the announced result.

2.3.2 A first order primal-dual resolvant algorithm

Consider X and Y two finite-dimensional real vector spaces, an inner product
〈·, ·〉Y over Y , and the generic saddle-point problem

min
x∈X

max
y∈Y

G(x) + 〈Kx, y〉Y − F ⋆(y) , (2.24)

where F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X 7→ Y denotes a continuous linear
operator. We set H : (x, y) → G(x) + 〈Kx, y〉Y − F ⋆(y) and we assume that
problem (2.24) has at least a solution (x∗, y∗) ∈ X × Y (i.e. a saddle point of H).

Remark 10 (reformulation of (2.24)). Using again Proposition 3, for any
x ∈ X, we have F (Kx) = F ⋆⋆(Kx) = supy∈Y 〈Kx, y〉Y − F ⋆(y), therefore, one
can interpret Equation (2.24) as a primal-dual formulation of the primal problem

argmin
x∈X

G(x) + F (Kx) , (2.25)

as soon as supy∈Y 〈Kx, y〉Y −F ⋆(y) is indeed a maximum (which will be the case in
practice), and in that case, if (x∗, y∗) is a solution of (2.24), x∗ is automatically
a solution of the primal problem (2.25).

We present in Algorithm 1 the numerical scheme proposed by Chambolle and
Pock [2011] for solving the generic primal-dual saddle point problem (2.24).
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Algorithm 1: Chambolle-Pock resolvant algorithm for problem (2.24)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X × Y and set
x0 = x0 (the convergence of this algorithm toward a solution of the
primal-dual problem (2.24) was proven in Chambolle and Pock [2011] for
θ = 1 when τσ|||K|||2 < 1).

Iterations (k ≥ 0): update xk, yk and xk as follows:





yk+1 = (I + σ∂F ⋆)−1(yk + σKxk)

xk+1 = (I + τ∂G)−1(xk − τK∗yk+1)

xk+1 = xk+1 + θ
(
xk+1 − xk

)

(2.26a)

(2.26b)

(2.26c)

We will now give some explanations about its spirit, and briefly summarize
some theoretical results about its convergence (Propositions 17 and 18).

Let us first consider the setting θ = 0, in that case we have x̄k = xk at each
iteration k of Algorithm 1. For any y ∈ Y let us set Py : x 7→ H(x, y), which
is an element of Γ0(X), and Dx : y 7→ −H(x, y), which is an element of Γ0(Y ).
We show below that the updates (2.26a) and (2.26b) boil down to the proximal
scheme {

yk+1 = (I + σ∂Dxk)−1(yk)

xk+1 =
(
I + τ∂Pyk+1

)−1
(xk)

(2.27)

so that one iteration of Algorithm 1 can be interpreted as a semi-implicit ascent
step of y 7→ H(xk, y) followed by semi-implicit descent step of x 7→ H(x, yk+1),
since we showed in Section 2.2.5 how the proximal iterations could be viewed as
semi-implicit subgradient descent steps. Thereby, in the case θ = 0, Algorithm 1
can be viewed as a semi-implicit variant of the classical Arrow-Hurwicz algorithm
[Arrow et al. 1958].

Proof. We prove the result only for the dual update (2.26a), the primal update
(2.26b) can be treated with similar arguments. Thanks to Proposition 11, we have

yk + σKxk ∈ yk+1 + σ∂F ⋆(yk+1) .

using Propositions 5 and 6, we have −Kxk + ∂F ⋆(yk+1) = ∂Dxk(yk+1), therefore,
we have yk ∈ yk+1+∂Dxk(yk+1), which is equivalent to yk+1 = (I + σ∂Dxk)−1(yk)
using again Proposition 11.
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Now, remark how much it would be attractive to replace Dxk by Dxk+1

into (2.27), since this would make the scheme fully implicit. Unfortunately, this
would also complicate too much the problem (in general, this would make the
practical computation of (2.27) as complicate as the initial problem). By intro-
ducing the θ parameter into their algorithm, Chambolle and Pock simply replace
Dxk by Dx̄k into (2.27), where x̄k = xk + θ

(
xk − xk−1

)
represents a linear ap-

proximation of the next iterate xk+1, based on the current and previous iterates
xk and xk−1 (also referred as extrapolation, or over-relaxation). Therefore, this
operation can be viewed as a way to add more implicitness into (2.27), without
complicating the practical computation of the iterates. In particular, in the case
θ = 1, Chambolle and Pock prove the convergence of their algorithm and gave an
estimate of its convergence rate.

Proposition 17 (convergence of Algorithm 1). Chambolle and Pock [2011]
prove the following results.

(i) When θ = 1 and τσ < |||K|||2, the sequence (xk, yk)k≥0 generated by Al-
gorithm 1 converges toward a solution (x∗, y∗) of (2.24), in particular the
sequence (xk)k≥0 converges toward a solution x∗ of the primal problem (2.25).

(ii) The convergence rate is O(1/N) for N iterations, however this rate does not
apply directly to the iterates (xk, yk)k≥0 but to the decrease toward zero of
the duality gap (see [Chambolle and Pock 2011] for more details) between
the Cesàro means xN = 1

N

∑N
k=1 x

k and yN = 1
N

∑N
k=1 y

k.

We must emphasize that the convergence results summarized in Proposition 17
are derived under very few assumptions, since we only assumed that F and G
were elements of Γ0(X) and Γ0(Y ) and that problem (2.24) had solutions. Some
accelerated variants of Algorithm 1 were also proposed by the same authors, which
under additional regularity assumptions on F and G, achieve better convergence
rates.

Proposition 18 (accelerated variants of Algorithm 1). Provided supple-
mentary regularity assumptions about F and G, Algorithm 1 can be accelerated
(see Algorithms 2 and 3 in [Chambolle and Pock 2011]) as described below.

(i) If G is uniformly convex with parameter γ > 0 (i.e. if G⋆ is differentiable
and ∇G⋆ is 1/γ Lipschitz-continuous, this is for instance the case when G
is strongly convex with parameter γ), one can set

θ = 1/
√
1 + 2γτ , τ = τ θ, σ = σ/θ ,
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at each iteration between the updates (2.26b) and (2.26c) (i.e. between the
updates of variables xk and x̄k), in order to achieve a O(1/N2) convergence
rate (this time the convergence rate applies to the convergence of the Cesàro
mean xN = 1

N

∑N
k=1 x

k toward a solution of (2.25)).

(ii) A similar acceleration is available when F ⋆ (instead of G) is uniformly con-
vex.

(iii) If G and F ⋆ are both uniformly convex with parameters γ and η, choosing
constant steps with the setting

θ ∈
[

1
1+µ

, 1
]
, τ =

µ

2γ
, σ =

µ

2η
, with µ ≤ 2

√
γη

|||λ∇d||| ,

yields a linear convergence rate, that is, O
(
e−N

)
, of the Cesàro means xN =

1
N

∑N
k=1 x

k and yN = 1
N

∑N
k=1 y

k toward the (here unique) solution of (2.24).

The convergence rate in O(1/N) is shown to be optimal for a general class
of convex optimization problems [Nesterov 2005], as well as the rates O(1/N2)
(see [Nesterov 1983, 2005, Beck and Teboulle 2009b]) and O(e−N) (see [Nesterov
2004]), provided the additional regularity assumptions on G and F ⋆ evoked above.

Many algorithms, based on the Legendre-Fenchel duality and which have
shown their efficiency in many imaging problems, can be found in the literature,
as for instance, the closely related algorithms named Douglas-Rachford Splitting
(originally proposed in [Douglas and Rachford 1956], see also [Eckstein and Bert-
sekas 1992, Combettes 2009] for further developments), and Alternating Direction
Method of Multipliers (ADMM) [Gabay and Mercier 1976, Glowinski and Le Tal-
lec 1989]. A nice review about the modern proximal algorithms, and the relations
existing among each other, can be found in [Combettes and Pesquet 2011]. We
would like to mention in particular the celebrated Proximal Forward Backward
Splitting (PFBS) algorithm, already evoked in Section 2.2.5 (Remark 7), for which
a convergence Theorem is derived in [Combettes and Wajs 2005]. A convergence
rate in O(1/N) for the PFBS algorithm, thus identical to that stated in Proposi-
tion 17, was established in [Weiss 2008], where an acceleration in O(1/N2) of the
convergence rate is also proposed, at the cost of introducing additional proximal
computation at each iteration of the scheme. Note also the Iterative Shrinkage
Thresholding Algorithm (ISTA), which can be viewed as a Proximal Forward
Backward Splitting algorithm applied to a particular class of inverse problems
(that is, linear inverse problems with quadratic data-fidelity and ℓ1 regulariza-
tion, see for instance [Daubechies et al. 2004]), and its famous FISTA (Fast ISTA)
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variant [Beck and Teboulle 2009b], which basically combines a Nesterov acceler-
ation (which consists in a particular update of the descent step parameter), and
an extrapolation (similar to the step (2.26c) of Algorithm 1), in order to reach
the optimal O(1/N2) convergence rate, without introducing an additional com-
putational cost to the scheme (the same acceleration is in practice also applied to
the more general PFBS algorithm). However, only the convergence in O(1/N2)
of the sequence C(xk) (noting C the cost function to minimize, and {xk}k∈N the
sequence generated by FISTA), has been established so far. A convergence The-
orem for the iterates of FISTA was recently proposed in [Chambolle and Dossal
2015], but no convergence rate is provided.

For all algorithms evoked above (including the Chambolle-Pock algorithm),
the improvement of the convergence rate in O(1/N2) is always done at the cost
of introducing some additional regularity assumptions about the cost function to
minimize (otherwise the rate O(1/N) is optimal). However, in the case where
those regularity assumption are not satisfied, the formal convergence Theorem
provided by Chambolle and Pock, relying on very low assumptions (in particular,
no differentiability assumption for F and G is necessary), confers to their algo-
rithm a valuable advantage. Besides, an important limitation of ISTA, FISTA
and the PFBS algorithm, when used for solving TV regularized inverse problems,
is that it involves the computation of proximal operator (more precisely, ProxσTV)
for which no closed form is available, so that practical implementations require
the use of an additional nested optimization algorithm dedicated to the compu-
tation of the proximal term (which usually cannot be done exactly in finite time,
introducing errors into the scheme), while this limitation can be easily bypassed
using the Chambolle-Pock algorithm, by increasing the number of dual variables
(as it will be done in Section 2.3.4). See also [Aujol and Dossal 2015], where some
convergence theorems are recovered for FISTA and PFBS algorithm, in the case
when proximal maps are inexactly computed, provided that the corresponding
errors can be controlled (which is unfortunately difficult for many applications).

A main limitation of the Chambolle-Pock algorithm, is that it involves the
setting of two descent step parameters τ and σ, instead of only one for ISTA,
FISTA and the PFBS algorithm (and its accelerated variants). Although the
setting of τ and σ in Algorithm 1 is guided by the constraint τ σ < |||K|||2 of
Proposition 17, the setting of these parameters can be difficult for applications
where the operator K has a complicated structure, or, when |||K||| is large, since
it forces their setting to low values, which significantly slows down the algorithm.
In order to overcome those shortcomings, Chambolle and Pock proposed a pre-
conditioned version of their algorithm [Pock and Chambolle 2011], with the claim
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that this variant significantly accelerates the convergence on problems with ir-
regular K while leaving the computational complexity of the iterations basically
unchanged. The Chambolle-Pock algorithm has been preferred in the following,
for its simplicity, the nice theoretical convergence results evoked above, and its
remarkable ability to address various image processing tasks.

2.3.3 Total variation based image denoising

In this section we focus on the pure image denoising problem, introduced
by Rudin, Osher and Fatemi (ROF) in [Rudin et al. 1992]. Initially formulated
as a constrained minimization of the total variation functional, it boils down to
compute, for a given regularity parameter λ ≥ 0, the image

urof = argmin
u∈RΩ

‖u− u0‖22 + λTV
d(u) , (2.28)

from the noisy observation u0 ∈ RΩ (or equivalently, to compute urof =
Prox2λTV

d(u0), so that we automatically get the existence and uniqueness of so-
lution for the problem (2.28)). Recall that the same problem as (2.28) can be
formulated using the Maximum A Posteriori methodology, as it was done in Sec-
tion 2.1.2 (notice that here, the linear operator of the observation model (2.5) is
simply the identity operator), assuming that the observed image u0 was undergo-
ing additive Gaussian noise with zero mean and (non-necessary known) variance
σ2. This yielded λ = 2βσ, so that we see why in practice, the choice of the regu-
larity parameter must be adapted to the level of noise σ in u0. In this section will
be also considered the anisotropic and Huber variants of the ROF problem, which
are obtained by replacing in (2.28) the classical discrete total variation term TV

d

by TV
d
1 or HTV

d
α (for a given parameter α > 0).

Using Proposition 15, we immediately get a primal-dual reformulation of prob-
lem (2.28),

urof = argmin
u∈RΩ

max
p∈RΩ×RΩ

‖u− u0‖22 + 〈λ∇du, p〉RΩ×RΩ − δ‖·‖∞,2≤1(p) , (2.29)

which has exactly the form of problem (2.24) when we replace (x, y) by (u, p),
and when we take K = λ∇d (with adjoint K∗ = −λdivd), G(u) = ‖u − u0‖22
and F ⋆(p) = δ‖·‖∞,2≤1(p). If we consider the anisotropic or Huber variants of
ROF, we must modify accordingly the primal-dual problem (2.29) using the dual
formulation of TV

d
1 (Proposition 15) or HTV

d
α ( Proposition 16). More precisely,

we must replace the term F ⋆(p) = δ‖·‖∞,2≤1(p) by F ⋆(p) = δ‖·‖∞,∞≤1(p) when
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considering the anisotropic TV
d
1 variant of TV

d, and by F ⋆(p) = δ‖·‖∞,2≤1(p) +
λα
2
‖p‖22 when considering the Huber-variant HTV

d
α of TV

d. Consequently, the
solution of the ROF problem and its two variants can be numerically approached
using the Chambolle and Pock algorithm, leading to Algorithm 2. Some numerical
experiments are proposed in Figures 2.5, 2.6, and 2.7.

Remark 11 (induced ℓ2 norm of K = λ∇d). The classical discretization
scheme (2.3) for ∇d yields the upper bound |||λ∇d||| ≤ L :=

√
8λ (see for in-

stance [Chambolle 2004]). This bound is useful to set the time step τ and σ of the
Chambolle-Pock algorithm. In practice, we will set τ = σ = 0.99/L so that the
condition τσ|||K|||2 < 1 is satisfied.

Algorithm 2: resolvant algorithm for problem (2.28) and its variants.

Initialization: Set L such as |||λ∇d||| ≤ L (for instance L = λ
√
8), set

θ = 1, and choose τ, σ > 0 such as στL2 < 1 (for instance
τ = σ = 0.99/L). Choose u0 ∈ RΩ, p0 ∈ RΩ × RΩ and set u0 = u0.

Choice of the regularizer (TVd, TVd
1 or HTVd

α): For solving the
classical TV

d regularized problem (2.28), set a′ = 2 and ν = 1. For solving
the anisotropic TV

d
1 variant, set a′ = +∞ and ν = 1. Otherwise, for

solving the HTV
d
α variant, set a′ = 2 and ν = 1 + σλα.

Internal definition(s): Let π∞,a′ : R
Ω × RΩ → RΩ × RΩ be the ℓ2

projection over the closed unit ball for the norm ‖ · ‖∞,a′, i.e., for any
p = (p1, p2) ∈ RΩ × RΩ and any (x, y) ∈ Ω,

π∞,a′(p)(x, y) =

{ p(x,y)
max (1,|p(x,y)|2) if a′ = 2(

p1(x,y)
max (1,|p1(x,y)|) ,

p2(x,y)
max (1,|p2(x,y)|)

)
if a′ = +∞.

Iterations: For k ≥ 0, update uk, pk and uk as follows,

pk+1 = π∞,a′

(
pk+σλ∇duk

ν

)

uk+1 = uk+τλdivdpk+1+2τu0

1+2τ

uk+1 = uk+1 + θ
(
uk+1 − uk

)
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Remark 12 (acceleration for the Huber model). In the case of the Huber
model, the function G : u 7→ ‖u − u0‖22 is strongly convex with parameter γ = 2,
and the function F ⋆ : p 7→ δ‖·‖∞,2≤1(p) +

λα
2
‖p‖22 is strongly convex with parameter

η = λα, therefore Algorithm 2 can be accelerated using the setting (iii) of Propo-
sition 18, in order to reach a linear convergence rate, as illustrated in Figure 2.6.

2.3.4 Total variation based inverse problems with square
ℓ2 data-fidelity

Let us now focus on the more general linear inverse problem with quadratic
data-fidelity formulated in Section 2.1.2 using the Maximum A Posteriori method-
ology,

umap ∈ argmin
u∈RΩ

‖Au− u0‖22 + λTV
d(u) . (2.30)

Recall that Ω and ω denote two bounded rectangular subsets of Z2, λ denotes a
positive regularity parameter, u0 ∈ Rω denotes the observed image, and A : RΩ 7→
Rω denotes the linear operator to be inverted (we will illustrate several classical
imaging applications by selecting different choices for A). Notice that the existence
of a minimizer of problem (2.30) is guaranteed (the objective function is convex
and coercive) but we have not necessarily uniqueness, depending on the choice
of A. From the practical viewpoint, the inverse problem (2.30) can be used to
perform many image processing tasks, we will detail some of them, but let us
first explain how the general problem can be handled using the Chambolle-Pock
algorithm.

Proposition 19 (primal-dual saddle-point formulation of (2.30)). Any so-
lution umap of problem (2.30) satisfies

umap ∈ argmin
u∈RΩ

max
(p,q)∈(RΩ×RΩ)×Rω

G(u) + 〈Ku, (p, q)〉 − F ⋆(p, q) , (2.31)

where G : u → 0 is the null function, F ⋆ : (p, q) → δ‖·‖∞,2≤1(p) + ‖ q2 + u0‖22 and
K : RΩ →

(
RΩ × RΩ

)
× Rω is the linear operator defined by

∀u ∈ RΩ, Ku =
(
λ∇du,Au

)
.
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(a) reference (b) noisy

Figure 2.5: Reference image, and its noisy version. We display here a reference image (a),
and its noisy version (b), that were used in the next numerical experiments. The dynamic of (a)
is [0, 255], and the noisy image (b) is undergoing additive white Gaussian noise with zero mean
and standard deviation σ = 20. Some denoised versions of (b), computed using Algorithm 2,
are displayed in Figure 2.7, while the numerical convergence is controlled in Figure 2.6.
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Figure 2.6: Numerical convergence achieved by Algorithm 2. The noisy image of
Figure 2.5 was processed with the ROF model (2.28), using alternatively J = TV

d (isotropic
TV), J = TV

d
1 (anisotropic TV), or J = HTV

d
α (Huber-TV), as regularizer. The resulting

images, as well as the precise setting of the model parameters (λ and α), are available in
Figure 2.7. The numerical computation was done using Algorithm 2, using the setting τ = σ =
0.99/(λ

√
8), or, in the case of the accelerated Huber TV, using the setting (iii) of Proposition 18

(see also Remark 12, where the strongly convexity constants are explicited). We display in (a)
the evolution of the energy E(un) := ‖un − u0‖22 + λJ(un), computed at each iteration n of the
algorithm. Although no theoretical result ensures the decrease of E(un) with respect with n, this
decrease is experimentally observed here. We display in (b), the evolution of log10 (‖un − u∞‖2),
along the iterations of the algorithm (u∞ denotes the image obtained after 105 iterations). We
see that a better convergence rate is reached using TV

d
1 and HTV

d
α, in comparison with that

reached using TV
d. Besides, in the case of the accelerated Huber variant, we observe a linear

convergence rate, as predicted in Proposition 18.
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(a) isotropic TV (b) anisotropic TV (c) Huber TV (α = 6)

details of (a) details of (b) details of (c)

Figure 2.7: Image denoising using ROF model. The noisy image of Figure 2.5 was
processed with the ROF model (2.28), using alternatively as a regularizer, the isotropic TV

d,
or Huber (HTV

d
α) variants. For each simulation, the regularity parameter was set in order to

deliver images showing the samemethod noise (if we note ū the restored image, the corresponding
method noise is the quantity ‖ū − u0‖22, which represents the amounts of noise removed from
u0), so that the images can be fairly compared. More precisely, we used respectively λ = 42,
λ = 26 and λ = 42, for the TV

d, TV
d
1 and HTV

d
α models, the resulting images are respectively

displayed in (a), (b), and (c). Some close-up views of the restored images are displayed in
the last row, we see that both anisotropic and isotropic TV models yields images suffering
of the staircasing effect (somehow more anisotropic in (b), where we observe many horizontal
and vertical spurious edges), while this effect is removed when using the Huber variant, which
however delivers an images with smoothed edges.
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Proof. Writing f(v) = ‖v − u0‖22, one easily gets the expression the Legendre-
Fenchel transform f ⋆(q) = ‖ q

2
+ u0‖22 − ‖u0‖22, now since f ∈ Γ0(R

ω) we have

‖Au− u0‖22 = f(Au) = f ⋆⋆(Au) = sup
q∈Rω

〈Au, q〉 − ‖ q
2
+ u0‖22 + ‖u0‖22 ,

and the supremum is attained since the cost functional is concave (that is, its
opposite is convex), differentiable, and its gradient vanishes at the point q =
2(Au−u0). Replacing accordingly this term in (2.30), and removing the constant
term ‖u0‖22 (which does not change the set of minimizers), last replacing as well the
TV

d term by its dual formulation using Proposition 15, exactly yields (2.31).

Remark 13 (anisotropic, or Huber variants of (2.30)). Again, we can for-
mulate the anisotropic or Huber variants of the inverse problem by replacing the
TV

d term by TV
d
1 or HTV

d
α into (2.30). Proposition 19 and its proof are straight-

forward to adapt, leading to slightly different primal-dual problems for each consid-
ered variant. More precisely by changing F ⋆ into F ⋆(p, q) = δ‖·‖∞,∞≤1(p)+‖ q2+u0‖22
we get the anisotropic variant of (2.31), and by changing F ⋆ into F ⋆(p, q) =
δ‖·‖∞,2≤1(p) +

αλ
2
‖p‖22 + ‖ q2 + u0‖22 we get the Huber variant of (2.31).

Since the primal-dual problem (2.31) has exactly the form of the generic saddle-
point problem (2.24) considered by Chambolle and Pock, it can be numerically
solved using Algorithm 1. It is important to remark that the update of the dual
variable (here the tuple y = (p, q)) in Algorithm 1 could be here split into two
independent updates (one for p and one for q) thanks to the additive separability
with respect to p and q of (p, q) → 〈Ku, (p, q)〉 − F ⋆(p, q). Finally all the up-
dates have closed-form expressions, and the Chambolle-Pock algorithm applied
to (2.30), as well as its anisotropic or Huber variants, boils down to Algorithm 3.
This algorithm can be easily implemented as soon as a closed-form for A, its
adjoint A∗, and an (as precise as possible) upper bound of |||A||| are available.

Application to (non-blind) image deconvolution

In the case of image deconvolution, the linear operator A in (2.30) is the
convolution with a point spread function (modeling for instance some blurring
phenomena such as diffraction, defocus, or motion). Notice that a convolution can
only model uniform phenomena, while in practice optical devices suffer from more
complicated distortions, such as chromatic aberrations, stigmatism and coma,
vignetting, etc. The correction of such non-uniform distortions is therefore out of
the scope of the restoration application that we detail here.
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Algorithm 3: resolvant algorithm for problem (2.30) and its variants.

Initialization: Set L such as |||K||| ≤ L (for instance

L2 ≤ |||λ∇d|||2 + |||A|||2), set θ = 1, and choose τ, σ > 0 such as στL2 < 1
(for instance τ = σ = 0.99/L). Choose u0 ∈ RΩ, p0 ∈ RΩ × RΩ, q0 ∈ Rω,
and set u0 = u0.

Choice of the regularizer (TVd, TVd
1 or HTVd

α): For solving the
classical TV

d regularized inverse problem (2.30), set a′ = 2 and ν = 1. For
solving the anisotropic TV

d
1 variant, set a′ = +∞ and ν = 1. Otherwise,

for solving the HTV
d
α variant, set a′ = 2 and ν = 1 + σλα.

Requirement(s): Denote by π∞,a′ the ℓ
2 projection over the closed unit

ball for the norm ‖ · ‖∞,a′. The explicit expression of π∞,a′ is given in
Algorithm 2.

Iterations: For k ≥ 0, update uk, pk, qk and uk as follows,

pk+1 = π∞,a′

(
pk+σλ∇duk

ν

)

qk+1 =
2 qk+2σ(Aūk−u0)

2+σ

uk+1 = uk + τλdivdpk+1 − τA∗qk+1

uk+1 = uk+1 + θ
(
uk+1 − uk

)

Let us consider a discrete convolution kernel kA ∈ RωA with finite domain
ωA ⊂ Z2. We define the associated operator A : RΩ 7→ Rω by

∀(x, y) ∈ ω, Au(x, y) =
∑

(a,b)∈ωA

kA(a, b) u(x− a, y − b) , (2.32)

where ω denotes the subset of Ω made of all the pixels (x, y) ∈ Ω such as
(x, y) − ωA ⊂ Ω (in the following, we assume that ω is nonempty). Remark
that it is also possible to define the convolution with kernel kA as an operator
A : RΩ 7→ RΩ at the cost of an extension of u outside of Ω, usually a periodic or
mirroring condition, or a zero-extension of the image u is considered, which is of
course nonrealistic in most situations.
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Remark 14 (adjoint of A defined in (2.32)). The adjoint of the operator A
defined in (2.32) is the operator A∗ : Rω 7→ RΩ defined by

∀v ∈ Rω, ∀(x, y) ∈ Ω, A∗v(x, y) =
∑

(a,b)∈ωA

kA(a, b) v(x+ a, y + b) ,

with the convention that v(x+ a, y + b) = 0 when (x+ a, y + b) 6∈ ω.

Remark 15 (induced ℓ2 norm of A defined in (2.32)). Let us show that
|||A||| ≤ ||kA||1. Indeed for any image u ∈ RΩ, using (twice) the dual formulation
of the ℓ2 norm over Rω, we get

‖Au‖2 = max
v∈Rω , ‖v‖2≤1

〈v, Au〉

= max
v∈Rω , ‖v‖2≤1

∑

(x,y)∈ω

∑

(a,b)∈ωA

v(x, y) kA(a, b) u(x− a, y − b)

≤
∑

(a,b)∈ωA

max
v∈Rω , ‖v‖2≤1

∑

(x,y)∈ω
v(x, y) kA(a, b) u(x− a, y − b)

=
∑

(a,b)∈ωA

max
v∈Rω , ‖v‖2≤1

〈v, kA(a, b) u(· − a, · − b)〉

=
∑

(a,b)∈ωA

|kA(a, b)| · ‖u(· − a, · − b)‖2 ,

with the obvious notation u(· − a, · − b) = ((x, y) ∈ ω 7→ u(x− a, y − b)). As for
any (a, b) ∈ ωA we have ‖u(· − a, · − b)‖2 ≤ ‖u‖2 (in this inequality, the left-hand
norm is the ℓ2 norm over Rω and the right-hand one is the ℓ2 norm over RΩ), we
get the upper bound ‖Au‖2 ≤ ‖kA‖1 · ‖u‖2 and thus |||A||| ≤ ‖kA‖1.

Thanks to Remarks 14 and 15, we now have all the information necessary to use
Algorithm 3 and approximate some solutions of the inverse problem (2.30). Some
results are displayed in Figures 2.8 and 2.9 (motion and out-of-focus deblurring).
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(a) blurry & noisy (b) reference

(c) isotropic TV (d) Huber TV details of (a)

details of (c) details of (d)

Figure 2.8: Motion deblurring using isotropic or Huber discrete total variation. A
degraded (blurry and noisy) image (a) is computed by convolving the reference image (b) with
a motion blur kernel kA before adding a white Gaussian noise, with zero-mean and standard
deviation equal to 2. The degraded image (a) is then processed by solving the corresponding
TV

d and HTV
d
α (α = 10) regularized inverse problems (2.30). Again the setting of λ was done

at fixed method noise (here the quantity ‖Aū−u0‖22, for each restored image ū), yielding λ = 0.3
for the TV

d model, and λ = 0.345 for the HTV
d
α one. The resulting images, computed using

Algorithm 3 (setting τ = σ = 0.99/L, and L2 = 8λ2 + ‖kA‖21), are displayed in (c) and (d).
Looking at the details of (c) and (d), we check again that the TV

d model yields an image with
sharp edges, but suffering from staircasing, while this artifact is removed when using the Huber
variant which delivers an image that looks more natural, although a bit less sharp.
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(a) blurry & noisy (b) reference

(c) isotropic TV (d) anisotropic TV details of (a)

details of (c) details of (d)

Figure 2.9: Out-of-focus deblurring using isotropic or anisotropic discrete to-
tal variation. We performed a similar experiment as in Figure 2.8, over a fluorescence
microscopy biological image of actin filaments and microtubules in interphase cells (source
http://cellimagelibrary.org/images/240, first channel), using as a blur kernel, the indi-
cator of a disk with radius 7 pixels (which models an out-of-focus phenomenon). The blurry
and noisy (σ = 2) image (a) was processed with model (2.30), using the isotropic (TV

d) or
anisotropic (TV

d
1) discrete total variation as regularizer. We have respectively set λ = 0.2,

or λ = 0.098, so that the restored images, displayed in (c) and (d), show the same method
noise. Both models deliver images showing improved sharpness, in comparison to the initial
blurry image (a). However, we observe into these two images, the presence of staircasing effect,
that is the presence of constant regions delimited by spurious edges. In particular, image (d)
suffers from a strong blocky effect (the constant regions are rectangular), which must obviously
be related to the use of the ℓ1 norm in definition 2.10.

http://cellimagelibrary.org/images/240
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Application to image zooming

The inverse problem (2.30) can also be used to perform image zooming (see
for instance [Malgouyres and Guichard 2001]). For such application, the operator
A is often assumed to be a blurring kernel followed by a subsampling procedure.
Many definitions of A are possible, we will here consider A : RΩ → Rω, where
ω = [0,M) × [0, N) ∩ Z2 denotes a small (more precisely subsampled) discrete
domain, and Ω = [0, δM) × [0, δN) ∩ Z2 a bigger (or resampled) one, δ being a
positive integer (which represents the zoom factor). We define A by,

∀u ∈ RΩ, ∀(x, y) ∈ ω, Au(x, y) = 1

δ2

∑

(a,b)∈[0,δ)2∩Z2

u(δx+ a, δy + b) , (2.33)

so that Au is exactly the zero order unzoom with factor δ of the image u. We can
easily show that the corresponding adjoint A∗ : Rω → RΩ, is given by

∀v ∈ Rω, ∀(x, y) ∈ Ω, A∗v(x, y) =
1

δ2
v
(
⌊x
δ
⌋, ⌊y

δ
⌋
)
, (2.34)

and the induced ℓ2 norm of A is |||A||| = 1
δ
.

Remark 16. The operator A defined in (2.33) can also be seen as a discrete
approximation of a captor integration procedure, which models the photon count
averaging process that is done over the (in reality continuous) square domain
[0, δ] × [0, δ] of each captor covering the focal plane of the image acquisition sys-
tem (this is for instance the case for usual cameras equipped with CCD or CMOS
sensors).

2.3.5 Minimizing the total variation under affine constraints

Let us now consider some constrained minimization problems of the kind

uconstr ∈ argmin
u∈RΩ

TV
d(u) subject to Au = u0 , (2.35)

where u0 denotes the observed image with discrete domain ω, uconstr denotes
the reconstructed image with discrete domain Ω, and A denotes again a linear
operator from RΩ to Rω. In other words, we are interested in the computation of
an image uconstr having the smallest discrete total variation among those satisfying
the constraint Au = u0. Remark that the inverse problem (2.30) is none other
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(a) reference / (b) u0 (c) details of u0 (d) zoomed image

Figure 2.10: Image zooming using the isotropic discrete total variation. The 380×280
sized reference image (a) was downsampled by a factor δ = 4 (using the operator A given
in (2.33)) and corrupted with an additive white Gaussian noise with zero mean and standard
deviation σ = 2, yielding image u0 displayed in (b). We display in (c) the image obtained by
rezooming the image u0 to its initial resolution, using a zero-order (nearest neighbour) zoom
with factor δ, and we display in (d) the image delivered by model (2.30), setting λ = 0.2. The
regularization operated by the TV model yields a more natural image than (c), with attenuated
blocky effect. However, the image (d) delivered by this model is far from being perfect, it is in
particular very poorly textured in comparison to (a), and as usual, suffers from staircasing.

than a relaxed version of (2.35). Of course, in presence of noise the constraint
must be relaxed and one should consider model (2.30) instead of (2.35), however
the constrained model may be interesting when the level of noise in u0 is low,
especially because it does not need the setting of any regularity parameter λ.

Using one more time the Proposition 15, we get a primal-dual reformulation
of (2.35),

uconstr ∈ argmin
u∈RΩ

max
p∈RΩ×RΩ

δA−1u0
(u) + 〈∇du, p〉 − δ‖·‖∞,2≤1(p) , (2.36)

where δA−1u0
denotes the indicator function of the inverse image of u0 by the

operator A, that is the (closed and convex) set A−1u0 :=
{
u ∈ RΩ, Au = u0

}

that we assume to be nonempty. A solution of problem (2.36) can be numerically
computed using the Chambolle-Pock algorithm, taking G = δA−1u0

, F ⋆ = δ‖·‖∞,2≤1

and K = ∇d (with adjoint K∗ = −divd and induced ℓ2 norm satisfying |||K||| ≤√
8), it boils down to Algorithm 4.

Remark 17. The primal update in Algorithm 4 involves the computation of a
projection onto the set A−1u0, which may be nontrivial according to the choice of
A. When necessary, one can avoid this computation, at the cost of introducing
another dual variable q ∈ Rω related to the constraint Au = u0, using the relation
δA−1u0(u) = δ{u0}(Au) = δ⋆⋆{u0}(Au), where δ{u0} denotes the indicator function of

the singleton {u0}.



2.3. Application to total variation based image processing 91

Algorithm 4: resolvant algorithm for problem (2.35) and its variants.

Initialization: Set L such as |||K||| ≤ L (for instance L =
√
8), set

θ = 1, and choose τ, σ > 0 such as στL2 < 1 (for instance
τ = σ = 0.99/L). Choose u0 ∈ RΩ, p0 ∈ RΩ × RΩ, and set u0 = u0.

Choice of the regularizer (TVd, TVd
1 or HTVd

α): For using the TV
d

regularizer, as formulated in (2.35), set a′ = 2 and ν = 1. For solving the
anisotropic TV

d
1 variant, set a′ = +∞ and ν = 1. Otherwise, for solving

the HTV
d
α variant, set a′ = 2 and ν = 1 + σλα.

Requirement(s): Denote by π0 the ℓ2 projection over the set
A−1u0 = {u ∈ RΩ, Au = u0}. Denote by π∞,a′ the ℓ

2 projection over the
closed unit ball for the norm ‖ · ‖∞,a′ (see the explicit expression of π∞,a′ in
Algorithm 2).

Iterations: For k ≥ 0, update uk, pk and uk as follows,

pk+1 = π∞,a′

(
pk+σ∇duk

ν

)

uk+1 = π0
(
uk + τdivdpk+1

)

uk+1 = uk+1 + θ
(
uk+1 − uk

)

Application to image zooming

Let us consider again the zero order unzoom (or captor integration) operator
A : RΩ → Rω with integer factor δ ≥ 1, defined in (2.33). One can show that in
that case, the ℓ2 projection π0 over A−1u0 is given by

∀v ∈ RΩ, π0(v) = v − δ2A∗Av + δ2A∗u0 , (2.37)

where A∗ denotes the adjoint of A, given in (2.34). The result (2.37) can be proven
by a direct computation of

π0(v) = argmin
u∈RΩ

1
2
‖u− v‖22 subject to Au = u0 , (2.38)

or, more elegantly, using some advanced duality results that we will present later,
in Section 2.4. Alternatively, we can use the celebrated Lagrangian formalism
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and check that π0(v) is the solution of the constrained convex and differentiable
problem (2.38), since the tuple (ū := π0(v), p̄ := δ2Av−δ2u0) satisfies the Karush-
Kuhn-Tucker conditions associated to (2.38), which amounts to check that Aū =
u0 and ∇uL(ū, p̄) = 0, noting L = (u, p) 7→ 1

2
‖Au − v‖22 + 〈Au − u0, p〉, and

∇uL(ū, p̄) the gradient of u 7→ L(u, p̄) at the point ū (see [Boyd and Vandenberghe
2004], and references therein). However, we must emphasize that this value of p̄
was here derived using the dual methodology of Section 2.4, we will therefore
come back later on this point.

Thanks to (2.37), we are now able to use Algorithm 4 to compute a solution
of (2.35), in the case of image zooming. This model does not involve the setting of
a regularity parameter λ and delivers images that are very similar to that obtained
using the relaxed problem (2.30) with a small λ.

Image reconstruction from partial measurements

The constrained problem (2.35) can also be used to perform other image pro-
cessing tasks, we briefly address here the problem of image reconstruction from
partial measurements. Consider that the gray levels of a reference image uref ∈ RΩ

are only observed on a subdomain ω0 ⊂ Ω, and we try to recover the missing mea-
surements. This problem is now usually called image inpainting, but was in fact
introduced by Masnou and Morel [1998] as image disocclusion problem. There
exists many approaches to image inpainting (we refer to the nice work [Newson
et al. 2014], and references therein, for recent advances in this domain), a very
simple one consists in looking for the image showing the smallest total variation
among those which coincide with the observed measurements, that is over ω0 (see
for instance [Chan et al. 2005], which uses a similar approach to perform at the
same time inpainting and deconvolution). This can be modeled as a problem of
kind (2.35), when seeing A : RΩ → RΩ as a masking operator,

∀u ∈ RΩ, ∀(x, y) ∈ Ω, Au(x, y) =

{
u(x, y) if (x, y) ∈ ω0

0 otherwise,

and u0 = Auref, the (incomplete) observation uref. In that case, the ℓ2 projection
π0 on the constraint set A−1u0 is simply given by

∀u ∈ RΩ, ∀(x, y) ∈ Ω, π0(u)(x, y) =

{
u0(x, y) if (x, y) ∈ ω0

u(x, y) otherwise.

Therefore, Algorithm 4 can be implemented with no difficulty, and used to ap-
proximate a solution of (2.35), as done in Figure 2.11.
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(a) reference (b) observed image (c) restored image

Figure 2.11: Image inpainting. Some pixels of the reference image (a) were masked to model
an observation (b) with incomplete measurements (masked pixels are represented in black). The
domain of the unmasked pixels, noted ω0, represents 40% of the full domain Ω of the reference
image. The image (b) is then processed using model (2.35), in order to extrapolate the gray
levels from ω0 to the full domain Ω, yielding image (c). This total variation based variational
approach is rather simple, and far better results may be obtained using modern (in particular
patch-based) approaches. In particular, in the example considered here, the position of the
masked pixels were randomly chosen (the pixels of the binary mask were generated according to
a Bernoulli law with parameter p = 40%). Actually the problem becomes far more complicated
in more realistic situation, where the masking operator contains more structure.

The problem of image reconstruction from partial measurements can also be
considered when the available measurements are done in the frequency domain,
which typically happens in the case of MRI (Magnetic Resonance Imaging) or
tomography reconstruction. This example, termed as spectrum extrapolation,
can also be formulated as a problem of the type (2.35), it will be presented in
more details in Chapter 3.

2.4 The dual point of view

We will end-up this chapter with the presentation of a general framework de-
voted to the dualization of optimization problems. In contrast to the methodology
used in Section 2.3, which consisted in changing the initial (primal) minimization
problem

(P) inf
x∈X

C(x) , (2.39)

into a primal-dual saddle-point problem, we will now entirely leave the primal
space (here noted X), and show how we can associate to (P) a dual problem
(P⋆), defined as a supremum over a dual space (that will be noted Y ). We will
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explain the relationships linking the infimum (P) with the supremum (P⋆), as
well as those linking the solutions of (P) to that of (P⋆). We will then apply
this methodology to several image processing problems. This presentation will
be restricted to the case where X and Y are finite dimensional Hilbert spaces
(in particular X and Y will identify to X⋆ and Y ⋆, which greatly simplifies the
studies and the notations), we refer to [Ekeland and Témam 1999, Chap. III] for
more general results.

2.4.1 Generic dual of an optimization problem

Let X and Y denote two finite dimensional Hilbert spaces, endowed with the
inner products 〈·, ·〉X and 〈·, ·〉Y . Let us associate to the primal problem (P) with
cost C, defined in (2.39), what we call a perturbation function Φ : X × Y → R,
which is a function satisfying

∀x ∈ X, Φ(x, 0) = C(x) . (2.40)

For the moment no more assumption is done for Φ. The dual problem of (P)
with respect to the perturbation Φ, is defined by

(P⋆) sup
y∈Y
−Φ⋆(0, y) , (2.41)

where Φ⋆ denotes the Legendre-Fenchel transform of Φ (notice again that the
interpretation of Φ⋆ as a function of X × Y instead of X⋆ × Y ⋆ was possible
thanks to the identification of X⋆ × Y ⋆ to X × Y ). Many relationships between
(P) and (P⋆) are derived in [Ekeland and Témam 1999, Chap. III], we will only
state here the main ones.

Proposition 20 (extremality relation). Under the following assumptions,

(i) Φ ∈ Γ0(X × Y );

(ii) the primal problem (P) admits at least one solution x̄;

(iii) there exists a point x0 ∈ X, such as y 7→ Φ(x0, y) is finite and continuous
at the point y = 0;

the dual problem (P⋆) admits at least one solution ȳ ∈ Y . Besides, the solutions
of (P) and (P⋆) are characterized by the relation

Φ(x̄, 0) + Φ⋆(0, ȳ) = 0⇔
{
x̄ is a solution of (P)
ȳ is a solution of (P⋆),



2.4. The dual point of view 95

and this relation is named extremality relation. In particular, Φ(x̄, 0) = −Φ⋆(0, ȳ)
so that the value of the infimum of (P) equals that of the supremum (P⋆).

Remark 18 (bidual problem). The dual problem (P⋆) can be viewed as an
infimum, (indeed, supy∈Y −Φ⋆(0, y) and − infy∈Y Φ⋆(0, y) are the same problems),
and we can easily reiterate the dualization process. Considering the dual of (P⋆)

with respect to the perturbation Φ̃ = (x, y) 7→ Φ⋆(x, y), yields the bidual prob-
lem (P⋆⋆),

− sup
x∈X
−Φ̃⋆(x, 0) or equivalently, inf

x∈X
Φ⋆⋆(x, 0) ,

which is equivalent to the primal problem (P) when Φ ∈ Γ0(X×Y ), since in that
case Φ⋆⋆ = Φ. We intuitively understand here the importance of hypothesis (i) in
Proposition 20, which maintains a kind of equivalence between the problems (P)
and (P⋆).

In all the following, we assume satisfied the hypotheses of Proposition 20, in
particular the infimum (P) and the supremum (P⋆) are attained, and will be
replaced by the argmin and argmax operators, since we focus now on the solutions
of these problems.

2.4.2 Interesting particular cases

First, consider the case where the cost function C of problem (P) is of type

∀x ∈ X, C(x) = J(x,Kx)

where J ∈ Γ0(X × Y ), and K : X → Y denotes a linear operator. Let us
associate to (P) the perturbation function Φ = (x, y) 7→ J(x,Kx − y) (which
satisfies (2.40), i.e., Φ(x, 0) = C(x)). This choice yields, for any (x̃, ỹ) ∈ X × Y ,

Φ⋆(x̃, ỹ) = sup
(x,y)∈X×Y

〈(x̃, ỹ), (x, y)〉X×Y − J(x,Kx− y)

= sup
(x,y)∈X×Y

〈(x̃+K∗ỹ,−ỹ), (x, y)〉X×Y − J(x, y) ,

using the change of variable y 7→ Kx− y (and noting, for any a, c in X, and any
b, d in Y , 〈(a, b), (c, d)〉X×Y = 〈a, c〉X + 〈b, d〉Y ). Finally, we recognize Φ⋆(x̃, ỹ) =
J⋆(x̃+K∗ỹ,−ỹ), so that the dual of (P) with respect to Φ, is given by

(P⋆) argmax
y∈Y

−J⋆(K∗y,−y) . (2.42)
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Besides, using the extremality relation of Proposition 20, we see that x̄ and ȳ are
respectively solutions of (P) and (P⋆) if and only if

J(x̄, Kx̄) + J⋆(K∗ȳ,−ȳ) = 0 ,

and since we have 0 = 〈x̄, K∗ȳ〉X − 〈Kx̄, ȳ〉Y = 〈(x̄, Kx̄), (K∗ȳ,−ȳ)〉X×Y , we get
J(x̄, Kx̄) + J⋆(K∗ȳ,−ȳ) = 〈(x̄, Kx̄), (K∗ȳ,−ȳ)〉X×Y . Therefore, using Proposi-
tion 4, we get the characterization

(K∗ȳ,−ȳ) ∈ ∂J(x̄, Kx̄)⇔
{
x̄ is a solution of (P)
ȳ is a solution of (P⋆).

(2.43)

Now, let us come back to the primal version (2.25) of the generic primal-dual
problem (2.24) addressed by Chambolle and Pock. In that case, the cost function
to minimize is given by

∀x ∈ X, C(x) = J(x,Kx) := G(x) + F (Kx) , (2.44)

so that the function J considered before is now additively separable with respect
to (x,Kx). Thanks to this additional property, we can easily show that J⋆ =
(x̃, ỹ) 7→ G⋆(x̃) + F ⋆(ỹ), and the dual problem (P⋆) derived in (2.42) becomes

(P⋆) argmax
y∈Y

−G⋆(K∗y)− F ⋆(−y) . (2.45)

The extremality relation (2.43) also benefits from the separability of J , however,
rather than adapting (2.43) (which involves the knowledge of additional rules
about subdifferential calculus), it is simpler to reuse Proposition 20. The points x̄
and ȳ are respectively solutions of (P) and (P⋆) if and only if Φ(x̄, 0)+Φ⋆(0, ȳ) =
0, that is, if and only if

G(x̄) + F (Kx̄) +G⋆(K∗ȳ) + F ⋆(−ȳ) = 0 ,

which we can transform into
[
G(x̄) +G⋆(K∗ȳ)− 〈x̄, K∗ȳ〉X

]
+

[
F (Kx̄) + F ⋆(−ȳ)− 〈Kx̄,−ȳ〉Y

]
= 0 .

Remark now that the two terms between brackets are both nonnegative (this can
be easily checked by replacing the Legendre-Fenchel transforms by suprema using
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Definition 12), it follows that both are null. Thus, thanks to Proposition 4, we get
K∗ȳ ∈ ∂G(x̄) and −ȳ ∈ ∂F (Kx̄), and finally, the extremality relation becomes

{
K∗ȳ ∈ ∂G(x̄)
−ȳ ∈ ∂F (Kx̄) ⇔

{
x̄ is a solution of (P)
ȳ is a solution of (P⋆).

(2.46)

In several cases, the dual problem (P⋆) is easier to solve than (P), and some-
times (unfortunately not always) the extremality relation (2.46) can be used to
retrieve a solution x̄ of the primal problem (P) from a solution ȳ of the dual
problem (P⋆). In the next section, we will show how this methodology can be
used to recover Moreau’s identity, which is a perfect example where the extremal-
ity condition makes possible the explicit computation of a solution of the primal
problem (P) given a solution of the dual problem (P⋆). We will then study some
previously considered problems in the light of this dual methodology, such as the
ROF denoising problem (2.28), and the inverse problem (2.30). We will also point
out some limits of this approach, since in the case of the inverse problem (2.30),
we will see that the link between primal and dual problems becomes implicit.
But first of all, let us come back on the projection problem (2.37) considered in
Section 2.3.5.

2.4.3 Back to several optimization problems

Dual of the projection problem (2.37)

In section 2.3.5, we needed to compute the ℓ2 projection π0(v) of an element
v ∈ RΩ over the constraint set A−1u0 = {u ∈ RΩ, Au = u0}, where A : RΩ → Rω

denoted the zero order unzoom operator with integer factor δ, that we defined
in (2.33). Computing π0(v) amounts to compute a solution ū of the primal problem

(P) argmin
u∈RΩ

G(u) + F (Au) ,

noting G(u) = 1
2
‖u − v‖22, and F = δ{u0}, the indicator function of the single-

ton {u0}. This problem has the generic form (2.44), when setting X = RΩ, and
Y = Rω. Since for any p ∈ Rω we have G⋆(A∗p) = 1

2
‖A∗p + v‖22 − 1

2
‖v‖22 and

δ⋆{u0}(−p) = −〈p, u0〉, we associate to (P) a dual problem, which, after basic ma-

nipulations (change the argmax into argmin, remove constant terms, ...), yields

(P⋆) argmin
p∈Rω

1
2
‖A∗p+ v‖22 − 〈p, u0〉 .
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Wee see that (P⋆) is a convex and differentiable problem, the gradient of its cost
function is p 7→ A(A∗p + v) − u0, and thanks to the relation AA∗p = p

δ2
(which

is easy to prove using (2.33) and (2.34)), we see that this gradient vanishes at
the point p̄ = δ2u0 − δ2Av, which is the solution of (P⋆). Therefore, using the
extremality relation (2.46), we get A∗p̄ ∈ ∂G(ū), that is, A∗p̄ = ū − v (since
∂G(ū) = {∇Gū} = {ū− u0}), and thus, ū = v− δ2A∗Av+ δ2A∗u0, as announced
in Section 2.3.5.

Recovering Moreau’s identity

Let us set X = Y , K = I (the identity operator over the space X), and
G = x 7→ 1

2σ
‖x− x0‖22 (for a given parameter σ > 0, and a given x0 ∈ X), so that

the primal problem (P) boils down to the computation of x̄ = (I + σ∂F )−1(x0).
We can easily show that G⋆ = y 7→ σ

2
‖y + x0

σ
‖22 − 1

2σ
‖x0‖22, so that (2.45) yields

the dual problem

(P⋆) argmax
y∈Y

−σ
2
‖y + x0

σ
‖22 + 1

2σ
‖x0‖22 − F ⋆(−y) .

By removing the constant term 1
2σ
‖x0‖22 (which does not change the set of maxi-

mizers of (P⋆)), changing the argmax into the argmin of the opposite cost func-
tion, and changing y into −y (beware this also changes the sign of the argmin),
we get

(P⋆) − argmin
y∈Y

σ
2
‖y − x0

σ
‖22 + F ⋆(y) .

which exactly boils down to the computation of ȳ = −
(
I + 1

σ
∂F ⋆

)−1 (x0

σ

)
. Besides,

the extremality relation (2.46) states that the solutions x̄ and ȳ of (P) and (P⋆)
are necessarily linked by the relation ȳ ∈ ∂G(Kx̄). Since the only subgradient of
G at the point Kx̄ = x̄ (recall that K = I) is its gradient ∇G(x̄) = x̄−x0

σ
, we get

ȳ = x̄−x0

σ
, yielding x0 = x̄− σ ȳ. Finally, we recover Moreau’s identity,

x0 = (I + σ∂F )−1(x0) + σ
(
I + 1

σ
∂F ⋆

)−1 (x0

σ

)
,

that was derived in Proposition 13.

A dual formulation of the ROF problem

The ROF image denoising problem (2.28) corresponds to the choice of the cost
function

C = u 7→ J(u,Ku) := G(u) + F (Ku) ,
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where G(u) = ‖u−u0‖22, Ku = λ∇du (with adjoint K∗ = −λdivd), and F (Ku) =
‖λ∇du‖1,2 = λTV

d(u) (notice we changed the variables (x, y) into (u, p), and
we set X = RΩ, Y = RΩ × RΩ). The Legendre-Fenchel transforms of F and G
are given by F ⋆ = δ‖·‖∞,2≤1 (Proposition 2) and G⋆ = v 7→ 1

4
‖v + 2 u0‖22 − ‖u0‖22.

Therefore, using (2.45), we get a dual formulation of the ROF problem (2.28),
which, after basic manipulations, yields

(P⋆) argmin
p∈RΩ×RΩ

‖λ
2
divdp− u0‖22 subject to ‖p‖∞,2 ≤ 1 ,

Besides, using the extremality relation (2.46), we see that the solutions ū, p̄ of
(P) and (P⋆) must satisfy −λdivdp̄ = 2(ū−u0), in particular, we recover ū from
p̄ using

ū = u0 −
λ

2
divdp̄ .

The dual problem (P⋆) is far easier to handle than the primal problem (P), in
particular the dual problem is convex and differentiable, which is not the case for
the primal problem. For instance, (P⋆) can be reformulated as the ℓ2 projection
of the quantity 2

λ
u0 over the convex set

D = divdC , where C = {p ∈ RΩ × RΩ, ‖p‖∞,2 ≤ 1} ,

and a semi-implicit scheme dedicated to this projection was proposed in [Cham-
bolle 2004]. However, problem (P⋆) is also easy to handle using a simple pro-
jected gradient method, as done in [Chambolle 2005], since the projection over
C , i.e. the unit ball for the norm ‖ · ‖∞,2, is straightforward to compute (see
its closed-form expression π∞,2 in Algorithm 2). In both cases, the numerical
algorithms dedicated to the computation of the solution of (P⋆) involve the set-
ting of only one time step parameter, instead of two when using the primal-dual
algorithm of Chambolle and Pock. Besides, thanks to the regularity of the dual
problem (the cost function is strongly convex with Lipschitz continuous gradient),
some efficient convergence rates can be reached using some Nesterov acceleration
strategies proposed in [Nesterov 1983, 2005], as it is done in [Weiss et al. 2009].

A dual formulation of the TV regularized inverse problem

We now focus on the inverse problem (2.30), related to the inversion of the
operator A : RΩ → Rω. This problem corresponds again to the choice of a cost
function of the type

C = u 7→ J(u,Ku) := G(u) + F (Ku) ,
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where G(u) = 0, Ku = (λ∇du,Au), and F (Ku) = F1(λ∇du) + F2(Au), setting
F1(λ∇du) = ‖λ∇du‖1,2 = λTV

d(u) and F2(Au) = ‖Au − u0‖22. Remark that
we have set here X = RΩ, and Y =

(
RΩ × RΩ

)
× Rω. Since we have G⋆ = δ{0}

(the indicator function of the singleton {0}, noting 0 the zero of RΩ), and F ⋆ =
(p, q) 7→ δ‖·‖∞,2≤1(p)+

1
4
‖q+2u0‖22−‖u0‖22, using (2.45), we get a dual formulation

of the inverse problem (2.30), which, after basic manipulations, yields

(P⋆) argmin
(p,q)∈(RΩ×RΩ)×Rω

‖q − 2 u0‖22 subject to

{
−λdivd(p) + A∗q = 0

‖p‖∞,2 ≤ 1

which can be again interpreted as a projection in the dual space, over the inter-
section between the kernel of the linear operator (p, q) 7→ −λdivdp+A∗q and the
closed unit ball of the norm ‖ · ‖∞,2. Let ū and (p̄, q̄) denote some solutions of
the primal and dual problems, a straightforward adaptation of the extremality
relation (2.46) taking into account the additive separability of F with respect to
(p, q) yields the relation




−λdivdp̄+ A∗q̄ = 0
−p̄ ∈ ∂F1(λ∇dū)
−q̄ ∈ ∂F2(Aū) = {2(Aū− u0)}

which unfortunately does not give an explicit way to compute ū from p̄, so that
even if we were able to easily compute p̄, this would not help to easily solve the
primal problem. However, notice that such kind of dual study for inverse problems
is very useful to prove the equivalence between two famous numerical schemes (the
Alternating Direction Method of Multipliers (ADMM) and the Douglas-Rachford
Splitting (DRS) algorithms), in the sense that the iterates of ADMM applied to
a primal problem (P) are identical to that of DRS applied to a dual problem
(P⋆), as nicely proven in [Chambolle and Pock 2011].
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Abstract

Discretization schemes commonly used for total variation regularization lead
to images that are difficult to interpolate, which is a real issue for applications
requiring subpixel accuracy and aliasing control. In this chapter, we reconciliate
total variation with Shannon interpolation and study a Fourier-based estimate
that behaves much better in terms of grid invariance, isotropy, artifact removal,
and sub-pixel accuracy. We show that this new variant (called Shannon total vari-
ation) can be easily handled with classical primal-dual formulations, and illustrate
its efficiency on several image processing tasks, including deblurring, spectrum ex-
trapolation, and a new aliasing reduction algorithm.

3.1 Introduction

Since total variation (TV) regularization was proposed by Rudin, Osher and
Fatemi for image denoising [Rudin et al. 1992], it has proven extremely use-
ful for many applications (and beyond image data, for that matter) like im-
age deblurring [Vogel and Oman 1998, Chan and Wong 1998], inpainting [Chan
et al. 2005], interpolation [Guichard and Malgouyres 1998], spectral extrapolation
[Rougé and Seghier 1995], image decomposition [Vese and Osher 2003], super-
resolution [Babacan et al. 2008], stereovision [Miled et al. 2009], and much more
(see [Chambolle et al. 2010] and references therein for more examples). In the last
decade, the development of dual and primal-dual formulations [Chambolle 2004,
Beck and Teboulle 2009a, Weiss et al. 2009, Fadili and Peyré 2011, Chambolle
and Pock 2011] and graph-cuts methods [Darbon and Sigelle 2006] has provided
efficient algorithms for TV-based minimization problems, thus increasing even
further the popularity of TV regularization.

A modern way to explain the efficiency of TV is to see it as a sparsity-
promoting model: being defined by a L1 norm (of the gradient), TV minimization
tends to favor solutions whose gradient is sparse (that is, often takes the value
0), which corresponds to the so-called cartoon images. Of course, real-life pho-
tographs are not cartoons, but outside textured regions (which can be ignored in
many image analysis tasks) they are close to that. Another explanation of the
usefulness of TV is its ability to penalize oscillations (which is typically the kind
of structures one wants to avoid when solving an ill-posed inverse problem) while
allowing discontinuities at the same time.

When it comes to implementing an optimization problem involving a TV reg-
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ularization term, like, e.g., TV denoising of an image u0 by

argmin
u
‖u− u0‖2 + λTV(u), (3.1)

(where λ > 0 is a positive parameter selecting the desired amount of regulariza-
tion), the issue of TV discretization arises. Most algorithms choose to approxi-
mate the continuous TV by a sum (over all pixels) of the ℓ2 norm of a discrete
finite-difference estimate of the image gradient, that is,

TV
d(u) =

∑

(k,l)∈Ω

√
(∂1u(k, l))2 + (∂2u(k, l))2 (3.2)

where

{
∂1u(k, l) = u(k + 1, l)− u(k, l),
∂2u(k, l) = u(k, l + 1)− u(k, l),

(3.3)

and u : Ω → R is a discrete gray-level image defined on the finite domain Ω ⊂
Z2 (we purposely ignore boundary issues here, as they are not related to our
discussion). In the following, we shall refer to (3.2) as the discrete TV. In some
situations, an anisotropic scheme (ℓ1 norm) may be used [Chambolle 2005, Louchet
and Moisan 2014, Abergel et al. 2015], leading to the anisotropic discrete TV

TV
d
ani(u) =

∑

(k,l)∈Ω
|∂1u(k, l)|+ |∂2u(k, l)|.

Curiously enough, as popular as they are, these numerical schemes present strong
drawbacks in terms of image quality at pixel and subpixel scales. Indeed, an
image obtained by minimizing TV

d-based energies is very difficult to interpolate,
or, said differently, badly sampled according to Shannon theory. In practice, this
means that trying to interpolate such an image will result in the appearance
of undesired artifacts (see Figure 3.1), generally a mix between blockiness and
ringing depending on the interpolation method. This strongly limits the possibility
of exploiting an image delivered by a TV

d-based scheme, as usual operations
like geometric transformations, registration, sub-pixel shape matching, derivative
estimates (not to mention others) require well-interpolable images. New discrete
schemes have been recently proposed [Chambolle et al. 2011, Condat 2016] to
improve the isotropy of the discrete TV, but they do not solve (nor address) the
interpolability issue we consider here.

In this chapter, we study a new formulation of the discrete TV, which recon-
ciliates TV minimization and Shannon theory. This variant, which we shall name
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(a) TV-restored (b) resampling of (a) (c) spectrum of (a) (d) original, resampled

Figure 3.1: Discrete TV produces aliasing. An image denoised with a classical discrete
implementation of TV denoising (a) is improperly sampled, as attested by the aliasing arti-
fact appearing in its Fourier spectrum ((c), red arrow), which is responsible for the undesired
oscillating patterns that appear when magnifying the image using Shannon interpolation ((b),
red arrows). Note that this artifact is not present on the original image (d). This experiment
illustrates the difficulty of manipulating images at a subpixel scale after a processing involving
the discrete TV.

Shannon Total Variation (STV), first appeared in [Malgouyres and Guichard
2001], and was later explicitly considered in [Moisan 2007] and then used in [Fac-
ciolo et al. 2009, Preciozzi et al. 2014] under the name Spectral Total Variation
(but we shall not keep this name since it would introduce a confusion with [Gilboa
2013]). The STV variant consists in estimating the true total variation of the exact
(continuous) total variation of the Shannon interpolate of u by using a Riemann
sum approximation of the associated integral. We show that STV successfully ad-
dresses the above-mentioned issues and delivers images on which the discrete sinc
and spline interpolations behave nicely, while preserving the desired properties of
TV regularization. The lack of isotropy observed with classical finite difference
schemes is also naturally avoided with STV. This comes at the expense of a few
Fourier Transforms at each iteration of the optimization process, which is, in most
applications, an affordable cost considering the strong benefits in terms of image
quality.

The chapter is organized as follows. In Section 3.2, we present the discrete sinc
interpolation as a consequence of Shannon sampling Theorem, and discuss in par-
ticular the (generally overlooked) difficulties encountered with Nyquist frequencies
in the case of even image dimensions. We also give an independent justification of
discrete sinc interpolation as the unique linear interpolation that defines invert-
ible subpixellic translations, and discuss the link with B-spline interpolation. In
Section 3.3, we define STV and discuss the choice of the upsampling factor used
to discretize the continuous TV integral into a Riemann sum. We then show in
Section 3.4 that STV-based algorithms can be efficiently implemented by deriving
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a dual formulation which can be used in the powerful Chambolle-Pock optimiza-
tion procedure. In Section 3.5, we illustrate the use of STV regularization in the
case of several classical applications (denoising and more general inverse problems
like deblurring, image magnification with spectrum extrapolation, tomography).
We then present a new STV-based image restoration model involving a weight
function in Fourier domain, which leads to interesting applications in terms of
de-aliasing and can be viewed as an “image Shannonizer” as it provides a way
to approximate a given image by a well-sampled one according to Shannon in-
terpolation (Section 3.6). We finally conclude in Section 3.7 and present some
perspectives.

3.2 Shannon interpolation

3.2.1 Shannon Sampling Theorem

A classical way to understand the relation between a (d-dimensional) contin-
uous signal and its sampled version is Shannon Sampling Theorem, which can
be considered in some way as the foundation of the digital era. In the following,
we write 〈x,y〉 = ∑d

i=1 xiyi the canonical Euclidean inner product between two
vectors x = (xi) and y = (yi) of R

d.

Theorem 1 (Shannon-Whittaker). Consider a positive real number δ and an
absolutely integrable function f : Rd → R whose Fourier Transform

f̂(ξ) =

∫

Rd

f(x) e−i〈x,ξ〉 dx (3.4)

satisfies ∀ξ 6∈
[
−π
δ
,
π

δ

]d
, f̂(ξ) = 0. (3.5)

Then, f is continuous and uniquely determined by its values on δZd, as for any
x ∈ Rd,

f(x) =
∑

k∈Zd

f(δ k)sinc
(x
δ
− k

)
(3.6)

where the cardinal sine function is defined on Rd by

sinc(x) =
d∏

i=1

sin(πxi)

πxi
(3.7)

with the continuity-preserving convention sin(0)
0

= 1.
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In this chapter, we will focus on one-dimensional signals (d = 1) and two-
dimensional images (d = 2), but the extension to higher dimensions is straight-
forward. Apart from establishing a clear correspondence between the support of
the Fourier spectrum of the bandlimited function f and the critical sampling step
δ permitting its exact reconstruction from discrete samples, Shannon Sampling
Theorem provides with Equation 3.6 (for δ = 1) an interpolation formula that
extends to Rd a discrete signal initially defined on Zd. However, this formula
cannot be used as such in practice since it involves an infinite number of samples.
We first discuss that issue in the simpler case d = 1.

3.2.2 Discrete Shannon interpolation of 1-D signals

Let us consider a discrete signal s : IM → R where M ∈ N∗ and IM =
{0, 1, . . .M − 1}. In order to define the Shannon interpolate S : R→ R of s using
(3.6), we first need to extend s into an infinite signal s̃ : Z→ R, so that

S(x) =
∑

k∈Z
s̃(k) sinc(x− k). (3.8)

Extending s with 0 in Z \ IM would be a poor solution, as it would interpolate a
constant discrete signal s by an oscillating function. Instead, the classical solution
consists in extending s as a M -periodic function s̃(k) = s(k mod M). Using
such a periodic extension is not completely straightforward as it does not fit the
hypotheses of Shannon Sampling Theorem (a M -periodic s̃ : Z → R cannot be
the sampled version of an absolutely integrable bandlimited function), but we can
formally write

S(x) =
∑

k∈Z
s̃(k) sinc(x− k)

=
∑

p∈Z

∑

k∈IM

s(k) sinc(x− k − pM)

=
∑

k∈IM

s(k)

(∑

p∈Z
sinc(x− k − pM)

)
,

and the factor of s(k) can be explicitly computed with

Proposition 21 (discrete cardinal sine). Define the discrete cardinal sine of
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order M as the M-periodization of the cardinal sine function, that is,

sincdM(x) := lim
n→+∞

n∑

p=−n

sinc(x− pM). (3.9)

Then, one has

sincdM(x) =





sin(πx)

M sin
(
πx
M

) if M is odd,

sin(πx)

M tan
(
πx
M

) if M is even,

(3.10)

where the indeterminate forms 0/0 are solved by continuity, that is, sincdM(x) = 1
for any x ∈MZ.

The proof is given in Appendix 3.8.A. In view of Proposition 21, we can rewrite
the interpolation of s as

S(x) =
∑

k∈IM

s(k) sincdM(x− k). (3.11)

Note that for small values of |x| (more precisely, when |x| ≪ M), we have
M sin πx

M
≃ M tan πx

M
≃ πx, so that sincdM(x) ≃ sinc(x), which formally shows

the asymptotic equivalence between sinc and sincdM interpolation as M → +∞.
In practice, (3.11) is barely used, since there is an equivalent (but numeri-

cally more efficient) formulation due to the fact that sincdM is a trigonometric
polynomial.

Proposition 22. The function sincdM is a trigonometric polynomial, which can
be written

sincdM(x) = Re


 1

M

∑

α∈ÎM

e2iπ
αx
M


 (3.12)

where ÎM =
[
−M

2
, M

2

)
∩Z and the real part in (3.12) is required only if M is even.

Proof. The set ÎM is made of M consecutive integer values, and can thus be
written

ÎM = {a, a+ 1, . . . a+M − 1},
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where a = −⌊M
2
⌋ denotes the (lower) integer part of M

2
. Thus, if x 6∈MZ we have

∑

α∈ÎM

e2iπ
αx
M =

a+M−1∑

α=a

(
e2iπ

x
M

)α
= e2iπ

ax
M · 1− e

2iπx

1− e2iπ x
M

= eiπx
2a+M−1

M · sin(πx)
sin π x

M

.

If M is odd, 2a+M − 1 = 0 and we get

1

M

∑

α∈ÎM

e2iπ
αx
M =

sin(πx)

M sin π x
M

= sincdM(x)

as expected. If M is even, 2a+M − 1 = −1 and we now obtain

Re


 1

M

∑

α∈ÎM

e2iπ
αx
M


 =

sin(πx)

M sin π x
M

· Re(e−iπx
M ) =

sin(πx)

M tan π x
M

= sincdM(x)

as well.

A consequence of Proposition 22 is that the Shannon interpolation formula
(3.11) can be rewritten using the Discrete Fourier Transform recalled below.

Definition 15. The discrete Fourier Transform (DFT) of a signal s : IM → R

is the M-periodic complex-valued signal ŝ defined by

∀α ∈ Z, ŝ(α) =
∑

k∈IM

s(k)e−2iπ αk
M .

Proposition 23. The discrete Shannon interpolation of a signal s : IM → R can
be written

S(x) = Re


 1

M

∑

α∈ÎM

ŝ(α) e2iπ
αx
M


 , (3.13)

and the real part is required only if M is even.

Proof. Thanks to Proposition 22, the Shannon interpolate of s defined by (3.11)
can be rewritten

S(x) =
∑

k∈IM

s(k) Re


 1

M

∑

α∈ÎM

e2iπ
α(x−k)

M




= Re


 1

M

∑

α∈ÎM

(∑

k∈IM

s(k)e−2iπ αk
M

)
e2iπ

αx
M
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from which (3.13) directly follows.

Note that if x ∈ IM , the function α 7→ ŝ(α) e2iπ
αx
M is M -periodic, and since ÎM

is an interval of M consecutive values, we have

1

M

∑

α∈ÎM

ŝ(α) e2iπ
αx
M =

1

M

∑

α∈IM

ŝ(α) e2iπ
αx
M = s(x)

as we recognize the inverse DFT of ŝ. As expected, the Shannon interpolation
defined by (3.13) is exact (that is, the restriction of S to IM is exactly s).

Also remark that when M is even, we need a real part to cancel the imaginary
part of the term α = −M

2
in the sum (3.13) since the conjugate term (which would

correspond to α = M
2
) is not present in the sum. The real part can be avoided

when ŝ(−M
2
) = 0, or by considering instead a sum with M + 1 terms, as stated

by

Proposition 24. Define, for integer M ,

εM(α) =

{
1/2 if |α| = M

2
,

1 otherwise.
(3.14)

The discrete Shannon interpolate of a signal s : IM → R can be written

S(x) =
1

M

∑

−M
2
≤α≤M

2

εM(α) · ŝ(α) e2iπ αx
M . (3.15)

Note that if M is odd, εM is identically equal to 1. This asymmetry between
the case M odd and M even can be simply explained. Let us define as TM the
real vector space of real-valued trigonometric polynomials that can be written as
complex linear combinations of (x 7→ e2iπ

αx
M )−M

2
≤α≤M

2
. If M is odd, dimTM =M

and there is a unique element S of TM that exactly interpolates s, and it is given
by (3.13). If M is even, dimTM = M + 1 and any element of TM that exactly
interpolates s can be written under the form S(x)+λ sin(πx) with λ ∈ R, and the
interpolation formula (3.13) corresponds to the implicit (minimal norm) choice
λ = 0.
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3.2.3 Shannon interpolation of 2-D images

Let u : IM × IN → R be a discrete M × N image. Its 2-dimensional DFT
û : Z2 → C is defined by

û(α, β) =
∑

k∈IM
l∈IN

u(k, l)e−2iπ(αk
M

+βl
N ), (3.16)

and the natural extension of (3.11) is

Definition 16. The discrete Shannon interpolate of an image u : IM × IN → R

is U : R2 → R defined by

U(x, y) =
∑

k∈IM
l∈IN

u(k, l) sincdM(x− k) sincdN(y − l) . (3.17)

As in the 1-D case, Definition 16 can be reformulated in the Fourier domain.

Proposition 25. The discrete Shannon interpolate of an image u : IM ×IN → R

can be written

U(x, y) =
1

MN

∑

−M
2
≤α≤M

2

−N
2
≤β≤N

2

εM(α)εN(β) · û(α, β)e2iπ(
αx
M

+βy
N ), (3.18)

where εM and εN are defined in (3.14).

Proof. Simply remark that (3.12) can be rewritten

sincdM(x) =
1

M

∑

−M
2
≤α≤M

2

εM(α)e2iπ
αx
N (3.19)

and (3.18) follows quite directly from (3.16) and (3.17).

Note that if both M and N are odd, (3.18) boils down to

U(x, y) =
1

MN

∑

α∈ÎM
β∈ÎN

û(α, β)e2iπ(
αx
M

+βy
N ), (3.20)
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which is exactly the definition of the inverse DFT of û for integer values of x and
y. Thus, one could wonder whether in the general case (M , N even or odd) the
generalization of (3.13), that is,

U ′(x, y) = Re




1

MN

∑

α∈ÎM
β∈ÎN

û(α, β) e2iπ(
αx
M

+βy
N )


 , (3.21)

would be an equivalent definition of U as in the 1-D case. In fact, (3.17) and
(3.21) both define bivariate trigonometric polynomials of TM ⊗ TN that exactly
interpolate u in IM × IN , but they differ when both M and N are even. In that
case, U ′(x, y) can still be rewritten in a form similar to (3.18), but we have to
change the coefficient εM(α)εN(β) into

ε′M,N(α, β) =





1
2

if (α, β) = ±(M
2
, N

2
),

0 if (α, β) = ±(−M
2
, N

2
),

1 otherwise.

(3.22)

Thus, one easily shows that

U ′(x, y) = U(x, y)− û
(
M

2
,
N

2

)
sin(πx) sin(πy). (3.23)

Even if this difference is expected to be small for natural images (the Fourier
coefficients of a natural image decrease rather quickly as the frequency increases),
the true interpolate U is to be preferred to U ′ as it is separable and more invariant;
in particular, the transform u 7→ U ′ does not commute with the plane transforms
(x, y) 7→ (−x, y) and (x, y) 7→ (x,−y).

In the literature, most papers involving 2-D discrete Shannon interpolation
either do not mention this issue [Getreuer 2011, Malgouyres and Guichard 2001],
or restrict their study to odd dimensions [Simon and Morel 2016], or use the
(slightly incorrect) variant U ′ [Briand and Vacher 2015] (probably because taking
the real part is the most simple way to get rid of the imaginary part that naturally
appears when Nyquist frequencies are not carefully handled).

3.2.4 Dealing with periodization artifacts

Using discrete Shannon interpolation requires a careful handling of edge effects,
as the implicit periodization of the image may produce interpolation artifacts (that
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is, undesired oscillations) near the boundary of the image domain if the intensity
values on the opposite edges of the image domain do not match well. This issue
is discussed in detail in [Moisan 2011], and an efficient solution is proposed that
consists in decomposing the original image into the sum of a periodic image and
a smooth image. Other solutions exist like symmetrization or apodization using
an appropriate weight function (e.g., a Hamming window), but they appear to be
less efficient in general. In all the experiments presented throughout this chapter
(and in particular in Section 3.5 and 3.6), the periodic plus smooth decomposition
of [Moisan 2011] will systematically be used.

3.2.5 Shannon interpolation and reversible transforms

As we saw earlier, Shannon Sampling Theorem provides a nice theoretical
framework that establishes a one-to-one correspondence between continuous ban-
dlimited and discrete images, which naturally leads to the discrete Shannon inter-
polation we just presented. Interestingly, there is another justification for Shan-
non interpolation, that does not explicitly refer to Shannon Sampling Theorem:
basically, it is the only linear interpolation that defines invertible subpixellic trans-
lations (in a periodic setting). In the following, we assume for simplicity that M
is an odd integer, and write S the space of M -periodic signals s : Z→ R.

Theorem 2. There exists a unique family of linear operators (Tz)z∈R on S such
that :

(i) z 7→ Tz is continuous,

(ii) ∀k, z ∈ Z, Tzs(k) = s(k − z),
(iii) ∀w, z ∈ R, Tw+z = Tw ◦ Tz,
(iv) lim

z→0
|z|−1‖Tz − id‖2 is minimal.

It is defined by

Tzs(k) = S(k − z), (3.24)

where S is the discrete Shannon interpolate of s defined in (3.11) or equivalently
in (3.13).

The Proof is given in Appendix 3.8.B. Theorem 2 remains true for M even,
provided that we define S in this case by

S =

{
s : IM → R,

∑

k∈IM

(−1)ks(k) = 0

}
. (3.25)
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(Note that it is equivalent to assume ŝ(M/2) = 0). This restriction is needed
to exclude from S the alternated signal k 7→ (−1)k, which clearly cannot be
translated in a way compatible with Hypotheses (ii) and (iii).

Theorem 2 shows that the only minimal continuous semi-group extending the
integer (periodic) translations is given by Shannon interpolation. This result is in-
teresting in the sense that it brings another justification to Shannon interpolation
without referring to Shannon Sampling Theorem (or to the Fourier Transform, for
that matter): among linear interpolation methods, only Shannon interpolation is
able to translate images without information loss.

From Equation (3.74), we can see that a subpixellic translation with Shannon
interpolation can be implemented with two DFTs, as

T̂zs(α) = e−2iπαz/M ŝ(α) . (3.26)

Moreover, Tz is a linear isometry (‖Tzs‖2 = ‖s‖2), which is another way to explain
that no information loss occurs.

Signal and image magnification is also very easy to perform with discrete Shan-
non interpolation, as it essentially boils down to a zero-padding in the Fourier
domain (for even dimensions, it is also necessary to split the coefficients corre-
sponding to Nyquist frequencies α = ±M

2
or β = ±N

2
). More surprisingly, im-

age rotation can also be implemented efficiently with the DFT (see [Yaroslavsky
1996]), thanks to the following factorization of a rotation matrix into a product
of shear matrices:

(
cos θ − sin θ
sin θ cos θ

)
=

(
1 −t
0 1

)(
1 0

sin θ 1

)(
1 −t
0 1

)
(3.27)

with t = tan θ
2
. As a shear transform like

v(x, y) = u(x− ty, y) (3.28)

consists in applying 1-D translations to each line of u, a 2-D rotation can be de-
composed as a combination of 1-D translations, which can be implemented in the
Fourier domain. For that reason, image rotation with discrete Shannon interpo-
lation is a linear isometry, and can thus be considered as a lossless transform.

3.2.6 Link with spline interpolation

A popular alternative to Shannon interpolation is spline interpolation. With-
out going too much into details (see [Unser et al. 1991, Unser 2000] and the
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references therein), it is worth mentioning the relation between spline and Shan-
non interpolation, and to understand how they can be combined to yield what
is probably the most accurate and efficient linear interpolation of bandlimited
signals.

The spline interpolation of order n (n ∈ N) of a signal s ∈ ℓ2(Z) can be written

Sn(x) =
∑

k∈Z
c(k) βn(x− k), (3.29)

where βn : R→ R is the spline of order n defined by induction by β0 = 1[− 1
2
, 1
2
) and

βk+1 = βk ∗β0 for all k ∈ N. It can be shown that the signal c : Z→ R is uniquely
defined by the interpolation constraint Sn(k) = s(k), k ∈ Z. When n ∈ {0, 1},
one has c = s and spline interpolation corresponds to piecewise constant (n = 0)
or piecewise affine (n = 1) interpolation. When n > 1, c depends linearly on
s and can be efficiently computed using recursive filtering [Unser et al. 1991].
As remarked in [Unser 1997], spline interpolation achieves an optimal trade-off
between complexity (the support of βn is an interval with length n + 1) and
asymptotic accuracy (rate of convergence towards the unsampled signal as the
sampling step tends to 0). How does spline interpolation compare with Shannon
interpolation? Indeed, (3.29) can be rewritten as

Sn(x) =
∑

k∈Z
s(k) βn

card(x− k), (3.30)

where βn
card : R→ R is the cardinal spline of order n defined in the Fourier domain

by

β̂n
card(ξ) =

(
sinc ξ

2π

)n+1

∑
k∈Z β

n(k)e−ikξ
. (3.31)

This provides a nice interpretation of spline interpolation in the Fourier domain,
as the Fourier transform of (3.30) yields

Ŝn(α) = ŝ(α)β̂n
card(α), (3.32)

where ŝ(α) =
∑

k∈Z s(k)e
−ikα is the Fourier Transform of the discrete signal s.

Thus, if S is a bandlimited signal (supp Ŝ ⊂ [−π, π]) and s(k) = S(k) for all

k ∈ Z, the Fourier transform of Sn is deduced from Ŝ by periodization and
multiplication by β̂n

card. This is to be compared to Shannon interpolation, that
recovers the exact signal S since

Ŝ(α) = ŝ(α)1[−π,π]. (3.33)
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In fact, β̂n
card → 1[−π,π] as n→ +∞ [Aldroubi et al. 1992] (or, equivalently, βn

card →
sinc), which means that spline interpolation can be viewed as an approximation
of Shannon interpolation (the equivalence being asymptotically obtained for n =
+∞). For finite n however, the effect of spline interpolation in the Fourier domain
is questionable: it creates high frequencies aliases (by spectrum periodization),
and then attenuates the whole spectrum (the known part [−π, π] included) by an
apodization function that is a smooth approximation of 1[−π,π]. This apodization

function (that is, β̂n
card) is represented in Figure 3.2 for various values of n.
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Figure 3.2: Cardinal splines in the Fourier domain. The Fourier transform of the
interpolation kernels βn

card are represented for n = 1, 3, 9. As n increases, they get closer to the
ideal low-pass filter obtained with the sinc kernel. The approximation is responsible for blur
(attenuation of known frequencies) and aliasing (creation of high frequencies duplicated from
existing low frequencies) on spline-interpolated images.

On the one hand, spline interpolation is computationally efficient, and also
versatile: it can be used to magnify an image by an arbitrary factor, or to apply
an homography or a non-rigid transform to an image. On the other hand, Shannon
interpolation is very accurate, as it does not attenuate known Fourier coefficients
or create high-frequency aliases. Getting the best of the two worlds (that is, the
accuracy of exact Shannon interpolation and the efficiency of spline interpolation)
is easy: magnify the original image by a small factor (e.g. 2), and then use spline
interpolation on the magnified image. Figure 3.3 illustrates the interest of such a
combination in the case of a homographic transform.

In this section, we gave a precise definition of Shannon interpolation (with a
careful treatment of Nyquist frequencies in the case of even dimensions), and saw
how it provides a nice framework for interpolating bandlimited images with a high
degree of accuracy. It is particularly useful for imaging sciences that require an
accurate treatment of subpixel scales and a strict control of artifacts (in particular,
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(a) original image (b) order 3 spline (c) order 9 spline (d) Shannon +
(copyright CNES) order 3 spline

Figure 3.3: High quality homographic transforms using a combination of Shannon
and spline interpolations. Applying an homographic transform to an image (a) requires
the use of an interpolation scheme. Spline kernels are interesting but may produce undesired
artifacts (the slight superimposed line hatch patterns in b,c) due to the creation of spurious
high frequencies. Applying the same transform with Shannon interpolation alone would be
computationally very expensive, but a simple ×2 magnification with Shannon interpolation
followed by an homographic transform implemented by a spline of order 3 produces an artifact-
free image for a computational cost equivalent to spline interpolation.

satellite imaging). As we shall see in the next sections, Shannon interpolation can
be made compatible with total variation regularization, provided that we use what
we shall call the Shannon total variation.

3.3 The Shannon total variation

3.3.1 Definition

Let | · | denotes the ℓ2 norm over R2, let Ω = IM × IN denote a 2-D discrete
domain of size M × N and u ∈ RΩ a discrete gray-level image with domain Ω.
We define the Shannon total variation of u by

STV∞(u) =

∫

[0,M ]×[0,N ]

|∇U(x, y)| dxdy , (3.34)

where U is the Shannon interpolation of u defined in (3.17), and ∇U : R2 → R2

denotes the gradient of the trigonometric polynomial U . No closed-form formula
exist for (3.34), but we can approximate this continuous integral with the Riemann
sum

STVn(u) =
1

n2

∑

(k,l)∈Ωn

|∇nu(k, l)| , (3.35)
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where n ∈ N∗, Ωn = InM × InN and

∀(k, l) ∈ Ωn, ∇nu(k, l) = ∇U
(
k
n
, l
n

)
.

In order to compute STVn(u), we need to focus on the practical computation
of ∇nu. By differentiating (3.18), we get the gradient of U , that is, ∀(x, y) ∈ R2,

∇U(x, y) = 1

MN

∑

−M
2
≤α≤M

2

−N
2
≤β≤N

2

e
2iπ

(
αx
M

+
βy
N

)

gû(α, β) , (3.36)

where

gû(α, β) = 2iπ εM(α)εN(β) û(α, β)

(
α/M
β/N

)
. (3.37)

Therefore, ∇nu can be efficiently computed in the Fourier domain for n ≥ 2 with
the following

Proposition 26. For any n ≥ 2 and any (α, β) ∈ Ω̂n := ÎnN × ÎnM , we have

∇̂nu(α, β) =

{
n2gû(α, β) if |α| ≤ M

2
, |β| ≤ N

2
,

0 otherwise,
(3.38)

where gû is given by (3.37).

Proof. The result comes directly when writing (3.36) with (x, y) =
(
k
n
, l
n

)
, and

extending the sum to the frequency domain Ω̂n by adding zero terms. Note that
Ω̂n contains all the frequencies (α, β) such that −M

2
≤ α ≤ M

2
and −N

2
≤ β ≤ N

2

involved in (3.36) since n > 1.

The next Proposition establishes an upper-bound for the induced ℓ2 norm
(noted ||| · |||) of the ∇n operator, which will be useful later.

Proposition 27. For any n ≥ 2, we have

|||∇n||| ≤ nπ
√
2 . (3.39)

Proof. Let u ∈ RΩ, from (3.38) we deduce

‖∇̂nu‖2 =
∥∥n2gû

∥∥2 ≤ 4π2n4 ‖û‖2
(
1

4
+

1

4

)
, (3.40)
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since for any (α, β) such as |α| ≤ M
2
and |β| ≤ N

2
, we have |εM(α)εN(β)

α
M
|2 ≤ 1

4

and |εM(α)εN(β)
β
N
|2 ≤ 1

4
. Then, using the Parseval identity in (3.40), that is,

‖∇nu‖2 =
1

n2MN
‖∇̂nu‖2 and

1

MN
‖û‖2 = ‖u‖2 ,

yields ‖∇nu‖2 ≤ 2π2n2‖u‖2 and consequently (3.39).

Similarly to Proposition 26, we can compute the adjoint of ∇n in the Fourier
domain (the proof is detailed in Appendix 3.8.C).

Proposition 28. Let divn = −∇∗
n, then for any n ≥ 2, p = (px, py) ∈ RΩn×RΩn,

and (α, β) ∈ Ω̂ := ÎM × ÎN , we have

d̂ivn(p)(α, β) = 2iπ

(
α

M
hp̂x(α, β) +

β

N
hp̂y(α, β)

)
,

with

hp̂x(α, β) =





p̂x(α, β) if |α| < M
2
, |β| < N

2
1
2
(p̂x(α, β)− p̂x(−α, β)) if α = −M

2
, |β| < N

2
1
2
(p̂x(α, β) + p̂x(α,−β)) if |α| < M

2
, β = −N

2

1
4

∑

s1=±1
s2=±1

s1 p̂x(s1α, s2β) if (α, β) = (−M
2
,−N

2
) ,

and

hp̂y(α, β) =





p̂y (α, β) if |α| < M
2
, |β| < N

2
1
2
( p̂y (α, β) + p̂y (−α, β)) if α = −M

2
, |β| < N

2
1
2
( p̂y (α, β)− p̂y (α,−β)) if |α| < M

2
, β = −N

2

1
4

∑

s1=±1
s2=±1

s2 p̂y (s1α, s2β) if (α, β) = (−M
2
,−N

2
) .

Notice that Propositions 26 to 28 can be easily adapted to the case n = 1.
However, we shall not need to consider this case as STV1 happens to be a poor
approximation of STV∞ (see next section). Note also that similar definitions and
propositions could be established for the U ′ variant of Shannon interpolation men-
tioned in (3.21). This variant yields somewhat simpler formulas (no weights are
required to handle Nyquist frequencies in the case of even dimensions) since all



3.3. The Shannon total variation 119

operators can be obtained by taking the real part of complex-valued images. How-
ever, in addition to being less invariant (as discussed in the end of Section 3.2.3),
U ′ is also computationally less efficient as it requires the computation of DFTs of
complex-valued images.

3.3.2 Choice of the oversampling factor n

When estimating STV∞(u) with STVn(u), which value of the oversampling
factor n should we choose? We experimentally observed on many images that
the convergence with respect to n is extremely fast, so that in practice choosing
n = 2 or n = 3 is enough. Note that an estimate of STV∞(u) could also be
obtained by using a finite difference scheme on the image magnified with Shannon
interpolation, that is, n−1TV

d(Znu) with

∀(k, l) ∈ Ωn, Znu(k, l) = U

(
k

n
,
l

n

)
.

Both estimate are consistent in the sense that

lim
n→+∞

STVn(u) = lim
n→+∞

n−1
TV

d(Znu) = STV∞(u) .

However, the convergence speed is much worse for the latter, which comforts us
in the choice of STVn (see Table 3.1).

n n−1TV
d(Znu) STVn(u)

1 1.6 · 10−1 1.8 · 10−2

2 4.2 · 10−2 1.3 · 10−3

3 2.1 · 10−2 1.7 · 10−4

5 8.6 · 10−3 7.3 · 10−5

10 2.8 · 10−3 3.4 · 10−6

Table 3.1: Relative errors of two STV∞ estimates. We compare two estimates of STV∞(u)
when u is the classical “Lena” image. As we can observe, the relative errors are much smaller
with STVn(u) (third column) than with n−1TV

d(Znu) (second column), and the convergence
with respect to n is faster. Even for n = 2, the STV2 estimate is very accurate with a relative
error of 0.1% or so. This experiment has been repeated on many other images, including pure
noise images, and yielded similar conclusions for all of them.

As concerns the idea of estimating STV∞(u) with STV1(u), the following
result shows that it could lead to incorrect results, as controlling STV1(u) is not
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sufficient to control STV∞(u). We believe that, on the contrary, such a control is
ensured as soon as n ≥ 2, even though we have no proof of this affirmation yet.

Theorem 3. There exists no constant C such that

STV∞(u) ≤ C · STV1(u)

for any positive integer M and any discrete image u of size M ×M .

The proof is given in Appendix 3.8.D. It consists in building a sequence of
discrete images uM with sizeM×M such that STV1(uM) is fixed but STV∞(uM)
increases to +∞ with M .

In all the experiments reported in this chapter, we used STVn with n = 3,
but we observed only very slight improvements (and sometimes none) compared
to the case n = 2, which should probably be preferred when computational issues
are important. Note also that one could choose non-integer values of n (only nM
and nN have to be integers), which could also be interesting for computational
issues.

3.4 Duality tools for handling the STV regular-

izer in a variational framework

3.4.1 Recall of convex analysis

We here briefly recall some classical convex analysis results needed for non-
smooth convex optimization. We refer to [Ekeland and Témam 1999] for a more
detailed presentation.

Consider a finite-dimensional real vector space E and let E⋆ denotes its dual
space, that is, the set of linear mappings from E to R. Let R denotes the set
R ∪ {−∞,+∞} and 〈·, ·〉 : E⋆ × E → R the bilinear mapping defined by

∀ϕ ∈ E⋆, ∀u ∈ E, 〈ϕ, u〉 = ϕ(u) .

An affine function on E is a function A : u 7→ 〈ϕ, u〉+ α, where ϕ ∈ E⋆ is called
the slope of A and α ∈ R the constant term. We denote by Γ(E) the set of
functions F : E → R which are the pointwise supremum of a family of affine
functions over E. One can show that F is an element of Γ(E) if and only if it is
convex and lower semi-continuous (l.s.c.) and does not take the value −∞ unless
it is constant. In order to dismiss singular cases, we say that F is proper if it
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never assumes the value −∞ and is different from the constant +∞. We denote
by Γ0(E) the set of proper elements of Γ(E).

Given a function F : E → R, the Γ-regularization of F is the largest element
of Γ(E) which lower bounds F , or, equivalently, the pointwise supremum of all
affine functions that lower bound F . Note that an affine function A with slope
ϕ ∈ E⋆ and constant term α ∈ R satisfies A ≤ F if and only if α ≤ −F ⋆(ϕ),
where

F ⋆(ϕ) = sup
u∈domF

〈ϕ, u〉 − F (u) , (3.41)

and domF = {u ∈ E, F (u) < +∞}. The function F ⋆ : E⋆ → R is called the
Legendre-Fenchel transform of F (or the polar, or the conjugate of F ). It is an
element of Γ(E⋆), as it can be seen as the pointwise supremum over the dual space
E⋆ of all affine functions {Au}u∈domF defined by

∀u ∈ domF, Au : ϕ 7→ 〈ϕ, u〉 − F (u) .

Since here E has finite dimension, it is a reflexive space and the Legendre-Fenchel
transform of F ⋆ (noted F ⋆⋆) is an element of Γ(E⋆⋆) (and thus an element of Γ(E)),
which happens to be exactly the Γ-regularization of F . In particular F ⋆⋆ ≤ F
and we have the characterization

F ∈ Γ(E)⇔ F ⋆⋆ = F , (3.42)

which is very useful to derive a primal-dual reformulation of an optimization
problem when the cost function decomposes as a sum with at least one term in
Γ(E). Besides, since E (endowed with the Euclidean inner product) is a Hilbert
space, it is self-dual in the sense that any element of E⋆ can be represented as the
inner product with an element of E, which is very useful in practical computations.

3.4.2 Chambolle-Pock Algorithm

The recent use in imaging of those powerful convex analysis tools based on
duality allowed to properly handle total variation-based variational problems (see
e.g. [Chambolle 2004, Zhu and Chan 2008]). This initiated some flourishing
theoretical research (see e.g. [Aujol and Chambolle 2005, Fadili and Peyré 2011])
as well as the development of efficient numerical schemes [Chambolle and Pock
2011, Combettes and Wajs 2005, Beck and Teboulle 2009a, Weiss et al. 2009,
Ochs et al. 2014, Drori et al. 2015, Raguet et al. 2013] dedicated to nonsmooth
optimization. We will here briefly recall the formulation of the celebrated first
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order primal-dual algorithm of Chambolle and Pock [Chambolle and Pock 2011],
which can be used to address various total variation based image processing tasks
and comes with nice convergence theorems.

Consider X and Y two finite-dimensional real vector spaces, an inner prod-
uct 〈·, ·〉 over Y and the generic saddle-point problem

min
x∈X

max
y∈Y

G(x) + 〈Kx, y〉 − F ⋆(y) , (3.43)

where F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y denotes a linear operator. We set
H : (x, y) 7→ G(x) + 〈Kx, y〉 − F ⋆(y) and we assume that problem (3.43) has at
least one solution (i.e. a saddle-point of H). Recall that thanks to (3.42), for any
x ∈ X we have

F (Kx) = F ⋆⋆(Kx) = sup
y∈Y
〈Kx, y〉 − F ⋆(y) , (3.44)

therefore one can interpret Equation (3.43) as a primal-dual formulation of the
primal problem

min
x∈X

G(x) + F (Kx) (3.45)

as soon as the supy∈Y is indeed a maximum (which will be the case in practice).
The proximal splitting algorithm proposed by Chambolle and Pock in [Chambolle
and Pock 2011] (see also [Moreau 1965, Rockafellar 1970], or more recently [Parikh
and Boyd 2013, Combettes and Pesquet 2011] for more details about proximity
operators and proximal algorithms) for solving problem (3.43) is described in
Algorithm 5 below.

In the case θ = 0, one iteration k of Algorithm 5 consists in a proximal ascent
of y 7→ H(xk, y) followed by a proximal descent of x 7→ H(x, yk+1), yielding
a semi-implicit variant of the classical Arrow-Hurwicz algorithm [Arrow et al.
1958]. In the case θ > 0, the iterate xk+1 = xk+1 + θ

(
xk+1 − xk

)
represents

a linear approximation (or extrapolation) of the next iterate xk+2 based on the
current and the previous iterates xk+1 and xk; it is used to make the scheme
more implicit and prove the convergence (in the case θ = 1 and τσ|||K|||2 < 1)
of the sequence (xk, yk)k≥0 towards a saddle-point of H, with an estimate of the
convergence rate in O(1/N) after N iterations (see Theorem 1 in [Chambolle and
Pock 2011]). Notice that some accelerated variants of this algorithm were also
proposed by the same authors, which under regularity assumptions on F ⋆ and G
achieve better convergence rates, thanks to Nesterov-like acceleration strategies
[Nesterov 1983] (see Algorithms 2 and 3 in [Chambolle and Pock 2011]).
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Algorithm 5: Chambolle-Pock resolvant algorithm for problem (3.43)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], x0 ∈ X, y0 ∈ Y , and set x0 = x0

(note: for θ = 1, convergence towards a solution of (3.43) was proven in
[Chambolle and Pock 2011] when τσ|||K|||2 < 1).

Iterations: For k ≥ 0, update xk, yk and xk as follows,

yk+1 = argmin
y∈Y

1
2σ

∥∥y − (yk + σKxk)
∥∥2
2
+ F ⋆(y)

xk+1 = argmin
x∈X

1
2τ

∥∥x−
(
xk − τK∗yk+1

)∥∥2
2
+G(x)

xk+1 = xk+1 + θ
(
xk+1 − xk

)

3.4.3 Dual formulation of the Shannon total variation

The STVn operator defined in (3.35) can be rewritten under the form STVn(u) =
1
n2‖∇nu‖1,2, noting ‖ · ‖1,2 the norm over the space RΩn × RΩn defined by

∀g ∈ RΩn × RΩn , ‖g‖1,2 =
∑

(x,y)∈Ωn

|g(x, y)| .

One easily checks that the dual norm of ‖ · ‖1,2 is the norm ‖ · ‖∞,2 defined by

∀p ∈ RΩn × RΩn , ‖p‖∞,2 = max
(x,y)∈Ωn

|p(x, y)| .

Consequently (see e.g. [Boyd and Vandenberghe 2004]), the Legendre-Fenchel
transform of ‖ · ‖1,2 , noted ‖ · ‖⋆1,2 , is the indicator function of the closed unit ball
for the norm ‖ · ‖∞,2 , defined by

∀p ∈ RΩn × RΩn , δ‖·‖∞,2≤1(p) =

{
0 if ‖p‖∞,2 ≤ 1 ,

+∞ otherwise.

We will now use the duality tools described in Section 3.4.1 to derive a dual
formulation of the STVn operator.

Proposition 29 (dual formulation of STVn). For any integer n ≥ 1 and for
any image u ∈ RΩ,

STVn(u) = max
p∈RΩn×RΩn

〈 1
n2∇nu, p〉 − δ‖·‖∞,2≤1(p) .
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Proof. Since ‖ · ‖1,2 is convex and l.s.c. over RΩn × RΩn , it is an element of
Γ(RΩn×RΩn), thereby ‖ · ‖1,2 = ‖ · ‖⋆⋆1,2 thanks to (3.42). Besides, given any image
u ∈ RΩ, one has STVn(u) =

1
n2‖∇nu‖1,2 = ‖ 1

n2∇nu‖1,2 . Therefore, STVn(u) =∥∥ 1
n2∇nu

∥∥⋆⋆
1,2
, i.e.

STVn(u) = sup
p∈RΩn×RΩn

〈 1
n2∇nu, p〉RΩn×RΩn − ‖p‖⋆1,2 ,

and ‖p‖⋆1,2 is exactly δ‖·‖∞,2≤1(p). Last, one can see that the supremum is attained,
since it is nothing but the maximum of the inner product term over the closed
unit ball for the dual norm ‖ · ‖∞,2.

3.4.4 The Huber STV

The use of TV
d as a regularizer for image processing applications has a well-

known drawback, the so-called staircasing effect, which is the creation of piecewise
constant regions with artificial boundaries where one would have expected smooth
intensity variations (see for instance [Nikolova 2000, Chan et al. 2000, Ring 2000]
for theoretical results about the staircasing). Several variants of TV

d have been
proposed in order to avoid this undesirable effect (see for instance [Bredies et al.
2010, Louchet and Moisan 2013, 2014]). In the numerical experiments that will
be presented in Section 3.5, we observed that although this staircasing effect is
significantly attenuated when using the STVn variant of TV

d, it remains present
(at least visually) in the processed images.

In the case of TV
d, a classical way to get rid of the staircasing effect consists in

replacing the ℓ2 norm |·| of the gradient in the definition of the TV operator by its
smooth Huber approximation with parameter α > 0 (coming from the statistical
literature [Huber 1964, 1973], and used for instance in [Weiss and Blanc-Féraud
2009, Werlberger et al. 2009, Chambolle and Pock 2011]). It is defined by

∀y ∈ R2, Hα(y) =

{ |y|2
2α

if |y| ≤ α ,
|y| − α

2
otherwise .

(3.47)

The same adaptation can be easily done in the case of STV by replacing the ℓ2

norm by the Huber-function Hα in Equations (3.34) and (3.35), which in the case
of the Riemann approximation leads to

HSTVα,n(u) =
1

n2

∑

(x,y)∈Ωn

Hα (∇nu(x, y)) , (3.48)

for any image u ∈ RΩ. Next Proposition establishes a dual reformulation of (3.48).
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Proposition 30 (dual formulation of HSTVα,n). Let α > 0 and n ≥ 1. For
any image u ∈ RΩ, one has

HSTVα,n(u) = max
p∈RΩn×RΩn

〈 1
n2∇nu, p〉 − δ‖·‖∞,2≤1(p)− α

2n2‖p‖22 .

The Proof is given in Appendix 3.8.E. In the following, we shall use the dual
formulations of STVn and HSTVα,n provided by Propositions 29 and 30 in or-
der to reformulate many optimization problems frequently considered in image
restoration in their primal-dual form (3.43).

3.5 Image processing applications

In this section, we illustrate the interest of STV in the case of several TV-based
image processing applications. As we shall see, replacing the classical discrete TV
by STV does not raise any theoretical nor numerical difficulty, and brings clear
improvements regarding subpixellic scales.

3.5.1 Image denoising

The STV variant of the denoising model (3.1) proposed by Rudin, Osher and
Fatemi (ROF) in [Rudin et al. 1992] writes

argmin
u∈RΩ

‖u− u0‖22 + λ STVn(u) , (3.49)

where u0 ∈ RΩ denotes the observed image with (discrete) domain Ω, and λ ≥ 0
is the so-called regularity parameter that controls the trade-off between the data-
fidelity term (the square ℓ2 distance to u0) and the regularity term STVn(u) in the
minimization process. Using Proposition 29, we immediately get a primal-dual
reformulation of (3.49),

argmin
u∈RΩ

max
p∈RΩn×RΩn

‖u− u0‖22 + 〈 λ
n2∇nu, p〉 − δ‖·‖∞,2≤1(p) , (3.50)

which has exactly the form of (3.43) with (x, y) = (u, p), G(u) = ‖u − u0‖22,
K = λ

n2∇n (with adjoint K∗ = − λ
n2divn), and F

⋆(p) = δ‖·‖∞,2≤1(p).
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Notice that replacing STVn(u) by HSTVα,n(u) into (3.49) leads to the Hu-
ber STVn variant of ROF. In view of Proposition 30, it amounts to replace the
term F ⋆(p) = δ‖·‖∞,2≤1(p) by F

⋆(p) = δ‖·‖∞,2≤1(p) +
λα
2n2‖p‖22 into the primal-dual

problem (3.50).

For both STVn and HSTVα,n regularizers, the corresponding primal-dual prob-
lem can be numerically solved by specializing Algorithm 5, which yields Algo-
rithm 6 below. Notice that (3.39) yields the upper bound |||K||| ≤ λπ

√
2

n
, which

is useful to set the parameters τ and σ of the algorithm. The images resulting
from the different (discrete or Shannon, Huber or usual) TV-based image de-
noising models are compared in Figure 3.4 and 3.5: we illustrate in Figure 3.4
the improved behavior of STV over the classical discrete TV regarding posterior
interpolation, and do the same in Figure 3.5 for the Huber variant.

Algorithm 6: Chambolle-Pock resolvant Algorithm for Problem (3.49)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ, p0 ∈ RΩn × RΩn, set
u0 = u0 and set ν = 1 when using the STVn regularizer and ν = 1 + σαλ

n2

when using the HSTVα,n regularizer. Denote by π∞,2 the ℓ2 projection on
the closed unit ball for the norm ‖ · ‖∞,2 in RΩn × RΩn, which is defined by

∀(x, y) ∈ Ωn, π∞,2(p)(x, y) =
p(x, y)

max (1, |p(x, y)|) ,

for any p ∈ RΩn × RΩn.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2

((
pk + σλ

n2∇nu
k
)
/ν
)

uk+1 =
uk + τλ

n2divnp
k+1 + 2τu0

1 + 2τ

uk+1 = uk+1 + θ
(
uk+1 − uk

)

(3.51a)

(3.51b)

(3.51c)
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noisy image (b) TV
d (discrete TV) (c) STV (Shannon TV,n=3)

TV
d: details TV

d: bicubic interpolation TV
d: Shannon interpolation

STV: details STV: bicubic interpolation STV: Shannon interpolation

Figure 3.4: Comparison of discrete TV and Shannon TV for image denoising. A
noisy image (top, left) undergoing additive white Gaussian noise with zero mean and standard
deviation σ = 20 (see also the reference image in Figure 3.5) was processed with the ROF model
using the TV

d (top, center) and STV3 (top, right) discretizations. The regularity parameter
λ was set in order to get the same norm of the estimated noise (the difference between the
noisy and the restored image) in each simulation. In the second row we display a cropping of
the TV

d-restored image oversampled with factor 3 using different interpolation methods (from
left to right: nearest neighbor, bicubic spline and Shannon interpolation). In the third row,
the same operation is realized on the STV-restored image. We can see that images TV

d and
STV images look globally similar. The details on the left of rows 2 and 3 reveal the presence of
staircasing in both cases, but this artifact is significantly attenuated in the case of STV. Looking
at the second row, we see that the TV

d image cannot be interpolated in a satisfying way, since
both bicubic and Shannon interpolation methods yield images with undesirables oscillations
(ringing) localized near objects contours. This is not the case with the STV image, that can be
interpolated without creating artifacts with both bicubic and Shannon interpolations (row 3).
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reference image Huber TV
d Huber STV (n = 3)

TV
d: details Huber TV

d: details Huber TV
d: bicubic interp.

STV: details Huber STV: details Huber STV: bicubic interp.

Figure 3.5: Image denoising with Huber-TV and Huber-STV. This experiment is
similar to Figure 3.4, except that we here consider the Huber variant (with α = 5) of ROF
denoising, both for the TV

d and STV discretizations. As expected, the Huber variant avoids
the staircasing effect for both discretizations (TV

d and STV). However, it does not solve the
interpolability issue for TV

d: the bicubic interpolation (interp.) of Huber TV
d presents several

ringing artifacts (like the non-Huber TV
d displayed in Figure 3.4), and these artifacts are again

completely avoided by considering the STV discretization.
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3.5.2 Inverse problems

Let us now consider the more general case of a linear inverse problem addressed
with quadratic data fidelity and STV regularization. It writes

ũ ∈ argmin
u∈RΩ

‖Au− u0‖22 + λ STVn(u) , (3.52)

where u0 ∈ Rω denotes the observed image (ω being a finite subset of Z2, possibly
ω = Ω) and A : RΩ → Rω is a linear operator which may model the convolution
with the impulse response of an acquisition device (defocus or motion blur for
instance) or other linear observation mechanisms such as tomography, downsam-
pling, loss of image regions, etc.

Proposition 31 (primal-dual formulation of (3.52)). Any solution ũ of Prob-
lem (3.52) satisfies

ũ ∈ argmin
u∈RΩ

max
p∈RΩn×RΩn

q∈Rω

G(u) + 〈Ku, (p, q)〉 − F ⋆(p, q) ,

where G(u) = 0, F ⋆(p, q) = δ‖·‖∞,2≤1(p)+‖ q2 +u0‖22 and K : RΩ →
(
RΩn × RΩn

)
×

Rω is the linear operator defined by Ku =
(

λ
n2∇nu,Au

)
for any u ∈ RΩ .

Proof. Writing f(v) = ‖v − u0‖22, one easily gets the expression of the Legendre-
Fenchel transform of f , that is f ⋆(q) = ‖ q

2
+ u0‖22 − ‖u0‖22. Besides, since f ∈

Γ0(R
ω), we have

‖Au− u0‖22 = f(Au) = f ⋆⋆(Au)

= sup
q∈Rω

〈Au, q〉 − ‖ q
2
+ u0‖22 + ‖u0‖22 , (3.53)

and the supremum is attained since the cost functional is concave, differentiable,
and its gradient vanishes at the point q = 2(Au − u0). Replacing the quadratic
term accordingly into (3.52), removing the constant ‖u0‖22 (which does not change
the set of minimizers), and replacing as well the STVn term by its dual formulation
using Proposition 29, we obtain the desired result.

Again, the Huber version of (3.52) is obtained by replacing the STVn(u) term
by HSTVα,n(u), which simply changes F ⋆(p, q) = δ‖·‖∞,2≤1(p) + ‖ q2 + u0‖22 into
F ⋆(p, q) = δ‖·‖∞,2≤1(p) +

αλ
2n2‖p‖22 + ‖ q2 + u0‖22.
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Note that the adjoint ofK (defined in Proposition 31) isK∗(p, q) = − λ
n2divnp+

A∗q, and its induced ℓ2 norm satisfies

|||K|||2 ≤ ||| λ
n2∇n|||2 + |||A|||2 ≤ 2

(
πλ
n

)2
+ |||A|||2 .

Thus, Chambolle-Pock Algorithm can be rewritten in the present case as Al-
gorithm 7 below. The update of the dual variable (here the tuple (p, q)) in the
generic Algorithm 5 was split into two independent updates thanks to the additive
separability with respect to p and q of the function (p, q) 7→ 〈Ku, (p, q)〉−F ⋆(p, q).

Algorithm 7: Chambolle-Pock resolvant Algorithm for Problem (3.52)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ, p0 ∈ RΩn × RΩn,
q0 ∈ Rω, set u0 = u0 and set ν as in Algorithm 6.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2

((
pk + σλ

n2∇nu
k
)
/ν
)

qk+1 =
2 qk + 2σ

(
Auk − u0

)

2 + σ

uk+1 = uk + τλ
n2divnp

k+1 − τA∗qk+1

uk+1 = uk+1 + θ
(
uk+1 − uk

)

Application to image deconvolution

In the case of image deconvolution, the linear operator A in (3.52) is the
convolution with a point spread function kA (modeling for instance some blurring
phenomenon such as diffraction, defocus, motion blur, . . . ). Let us consider such
a discrete convolution kernel kA ∈ RωA with finite domain ωA ⊂ Z2, and define
the associated operator A : RΩ → Rω by

Au(x, y) =
∑

(a,b)∈ωA

kA(a, b) u(x− a, y − b) , (3.55)

where ω denotes the subset of Ω made of all the pixels (x, y) ∈ Ω such as (x, y)−
ωA ⊂ Ω. In order to use Algorithm 7, we need the explicit expression of A∗ :
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Rω → RΩ, which writes

A∗v(x, y) =
∑

(a,b)∈ωA

kA(a, b) v(x+ a, y + b) , (3.56)

for v ∈ Rω and (x, y) ∈ Ω, with the convention that v(x + a, y + b) = 0 when
(x+ a, y + b) 6∈ ω. One easily checks that |||A||| ≤ ||kA||1 as well.

Most authors define the convolution with kernel kA as an operator A : RΩ →
RΩ at the cost of an extension of u outside of Ω, usually a periodic or a mirroring
condition, or a zero-extension. Such a convention simplifies the analysis (and
the computations, especially in the periodic case where the convolution can be
implemented with the DFT), but we shall not use it here as it is unrealistic and
thus of little help to process real data. Experiments illustrating STV deblurring
are displayed in Figure 3.6 (motion blur) and 3.7 (out of focus).

Application to image zooming and inpainting

The variational formulation (3.52) can be used to perform many other image
processing tasks: as soon as we can derive a closed-form expression for A, its
adjoint A∗, and estimate an upper bound for |||A|||, Algorithm (7) can be imple-
mented without difficulty. We here mention two more examples of applications
(zoom and inpainting), each corresponding to a particular choice of A. We ex-
perimentally checked that, in both cases, the use of STVn instead of TV yields
nicely interpolable images.

In the case of image zooming, the operator A is often assumed to be a blur-
ring kernel followed by a subsampling procedure (see [Malgouyres and Guichard
2001, Chambolle and Pock 2011]). A simple particular case is the discrete captor
integration model A : RΩ → Rω defined by

Au(x, y) =
1

δ2

∑

(a,b)∈I2
δ

u(δx+ a, δy + b) , (3.57)

where ω = IM × IN denotes a small discrete domain and Ω = IδM × IδN a bigger
one, δ (the magnification factor) being an integer at least equal to 2. In that case,
we easily obtain the relation |||A||| = 1

δ
and the expression of the adjoint operator

A∗ : Rω → RΩ as

A∗v(x, y) =
1

δ2
v
(
⌊x
δ
⌋, ⌊y

δ
⌋
)
. (3.58)
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(a) blurry & noisy (b) reference

(c) TV
d-restored (d) STV-restored (e) blurry & noisy: details

(f) TV
d-restored: Shannon interpolation (g) STV-restored: Shannon interpolation

Figure 3.6: Motion deblurring with discrete TV and Shannon TV. A degraded (blurry
and noisy) image (a) is synthesized by convolving the reference image (b) with a real-data motion
blur kernel and then adding a white Gaussian noise with zero-mean and standard deviation
σ = 2. The degraded image (a) is then processed by solving the corresponding TV

d and
STV3 regularized inverse problems (Equation (3.52)). As in Figure 3.4, the regularization
parameter λ is set in such a way that the amount of estimated noise (here the quantity ‖Aũ−
u0‖2, where ũ is the restored image) is the same for both methods. The resulting images (c)
and (d) are quite similar, but the magnified views (f) and (g) (magnification of factor 4 with
Shannon interpolation) clearly shows that they strongly differ in terms of interpolability: as in
the denoising case, the interpolated TV

d image exhibits strong ringing artifacts, whereas the
interpolated STV image does not.
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(a) blurry & noisy (b) reference

(c) Huber TV (d) Huber STV (e) blurry & noisy: details

(f) Huber TV: bicubic interpolation (g) Huber STV: bicubic interpolation

Figure 3.7: Out-of-focus deblurring using Huber TV and Huber STV. This experiment
is similar to Figure 3.6, except that we used a fluorescence microscopy image of actin filaments
and microtubules in interphase cells (source cellimagelibrary.org, cil number 240, first channel),
a synthetic out-of-focus blur kernel defined by the indicator of a disk with radius 7 pixels, and
we replaced the TV

d and STV3 regularizers by their Huber versions (α = 5). The conclusions
are identical.
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Another example is image inpainting, which aims at estimating plausible im-
age intensities in a (nonempty) subpart ω0 of the image domain Ω where the
information is missing. In that case, ω = Ω, the operator A : RΩ → RΩ is defined
by

Au(x, y) = 1ω0(x, y) · u(x, y) ,
and one easily checks that A∗ = A (A is a diagonal operator) and |||A||| = 1.

3.5.3 Constrained minimization

In some situations, it is desirable to consider constrained minimization prob-
lems of the type

ũ ∈ argmin
u∈RΩ

STVn(u) subject to Au = u0 , (3.59)

where u0 denotes the observed image with discrete domain ω, ũ denotes the re-
constructed image with discrete domain Ω, and A denotes again a linear operator
from RΩ to Rω. In other words, we are interested in the computation of an image ũ
having the smallest Shannon TV among those satisfying the constraint Au = u0.
Remark that the inverse problem (3.52) is none other than a relaxed version of
(3.59). In the presence of noise, it is better to use the relaxed formulation, but
the constrained model (3.59) may be interesting when the level of noise in u0
is low, especially because it does not require the setting of any regularization
parameter λ.

Using Proposition 29, we obtain a primal-dual reformulation of (3.59),

ũ ∈ argmin
u∈RΩ

max
p∈RΩn×RΩn

δA−1(u0)(u) + 〈 1
n2∇nu, p〉 − δ‖·‖∞,2≤1(p) , (3.60)

where the (closed and convex) set

A−1(u0) :=
{
u ∈ RΩ, Au = u0

}

is assumed to be nonempty, and δP denotes the indicator function of a set P
(that is, δP(p) = 0 if p ∈ P , +∞ otherwise). A solution of Problem (3.60) can be
numerically computed using Algorithm 8, taking G = δA−1(u0), F

⋆ = δ‖·‖∞,2≤1 and
K = 1

n2∇n in Chambolle-Pock Algorithm.
To illustrate the general framework above, we will consider in the next section

the problem of reconstructing an image from partial measurements in the Fourier
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Algorithm 8: Chambolle-Pock resolvant Algorithm for Problem (3.60)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ, p0 ∈ RΩn × RΩn, set
u0 = u0 and define ν and π∞,2 as in Algorithm 6. Denote by π0 the ℓ2

projection from RΩ onto the (closed and convex) set
A−1(u0) =

{
u ∈ RΩ, Au = u0

}
.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2

((
pk + σ

n2∇nu
k
)
/ν
)

uk+1 = π0
(
uk + τ

n2divnp
k+1
)

uk+1 = uk+1 + θ
(
uk+1 − uk

)

domain. A particular case is image magnification (assuming that the original low-
resolution image does not suffer from aliasing), which corresponds to the recovery
of high-frequency components only, but other situations (like tomography) require
spectrum interpolation in a more complicated domain. Note also that many other
applications, such as image inpainting or image zooming presented in Section 3.5.2,
can be easily handled as well with the constrained formulation (3.59).

Application to spectrum extrapolation

Given an image u0 ∈ RΩ whose spectrum û0 is known on a certain (symmetric)

subdomain ω̂0 of Ω̂, how to extend this spectrum to the whole spectral domain
Ω̂? The trivial zero-padding approach, which amounts to extending the spectrum
with the constant zero, yields a very oscillatory image in general, in reason of
the irregularity (missing Fourier coeffients) of the extrapolated spectrum. A more
satisfying reconstruction can be obtained with a variational approach: among
all possible spectrum extensions, choose the one that minimizes a given energy.
This kind of approach was used by Rougé and Seghier [Rougé and Seghier 1995],
who considered the Burg entropy, and by Guichard and Malgouyres [Guichard
and Malgouyres 1998, Malgouyres and Guichard 2001], who used the discrete TV
(but in a slightly different framework, since they take as input a subsampled image
which suffers from aliasing). We here consider the energy STVn; in a constrained
formulation, this is a particular case of (3.59), since the frequency constraint
(û and û0 are equal on ω̂0) can be enforced under the form Au = u0 where
A = F−1 ◦Mω̂0 ◦ F (F and F−1 denote the direct and inverse discrete Fourier
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transforms respectively, the operator Mω̂0 denotes the pointwise multiplication of

a element of CΩ̂ with 1ω̂0 , and û0 is implicitly set to zero outside ω̂0). Note that
the ℓ2 projection π0 onto the set A−1(u0) is simply obtained in the Fourier domain
with

∀u ∈ RΩ, ∀(α, β) ∈ Ω̂, π̂0(u)(α, β) =

{
û0(α, β) if (α, β) ∈ ω̂0

û(α, β) otherwise .

Some examples of spectrum extrapolations are proposed in Figure 3.8 and 3.9.

input image (u0) TV
d STV (n = 3) reference

u0: spectrum TV
d: spectrum STV: spectrum reference: spectrum

Figure 3.8: Image zooming with spectrum extrapolation. An input image (1st column)
is synthesized by setting to 0 the high frequency components (that is, outside a square ω̂0) of a
reference image (4th column). Spectrum extrapolation is then realized using either the discrete
TV (2nd colum) or the STV (3rd column). For each image of the first row, the spectrum (Fourier
modulus, in log scale) is displayed below on the second row. As we can observe, the constrained
TV minimization framework (3.59) is efficient for spectrum extrapolation: both discretizations
manage to reconstruct part of the missing high frequencies and remove the ringing patterns
observed in the input image. However, STV is to be prefered to discrete TV as it manages to
avoid the aliasing artifacts of the latter (red arrows), and delivers nicely interpolable images.
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reference u0 (zero padding) STV

reference: spectrum u0: spectrum STV: spectrum

Figure 3.9: Image reconstruction from partial measurements in the Fourier domain.
We here reproduce a simplified tomography inversion experiment: a reference image (1st column)
is sampled in the Fourier domain along several discrete rays (covering around 35% of the whole
frequency domain), and two image reconstruction methods are compared. The first one consists
in setting the missing Fourier coefficients to 0 (2nd column), which produces severe ringing
artifacts. Extrapolating the missing Fourier coefficients with the constrained STV minimization
framework (3.59) yields a much nicer image (3rd column) which can be easily interpolated. As
in Figure 3.8, the spectrum of each image of the first row is displayed on the second row.

3.6 Regularization with weighted frequencies

Using STV as a regularizer leads to iterative algorithms that operate in the
Fourier domain. This has a non-negligible computational cost, even though this
kind of algorithms is common nowadays and there exist very efficient implemen-
tations of the Fourier Transform, like FFTW [Frigo and Johnson 2005]. We now
consider an image restoration model that benefits from the availability of the
Fourier transform of the current image at each iteration.

3.6.1 Model

Given an input image u0 : Ω → R (with Ω = IM × IN) and a symmetric

non-negative map γ : Ω̂→ R+, we consider the minimization problem

argmin
u∈RΩ

‖û− û0‖2γ + λ STVn(u) , (3.62)
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where λ > 0 is a regularization parameter and

‖û− û0‖2γ =
1

|Ω|
∑

(α,β)∈Ω̂

γ(α, β) · |û(α, β)− û0(α, β)|2

is a weighted squared distance between u and u0 (strictly speaking, it defines a
distance only if γ does not vanish). Model (3.62) generalizes two other models
considered above. Indeed, STV image denoising (3.49) is obtained with γ ≡ 1,
while the choice γ = 1ω̂0 leads to a relaxed version of spectrum extrapolation
considered in Section 3.5.3. Choosing a more general (non-binary) weight map
γ provides a way to selectively regularize the Fourier coefficients of the input
image u0: when γ(α, β) is large, one expects to obtain û(α, β) ≈ û0(α, β); on the
contrary, the coefficients û(α, β) corresponding to small (or zero) values of γ(α, β)
are essentially driven by STV regularization.

3.6.2 Algorithm

Replacing the STVn term by its dual formulation (Proposition 29) into (3.62)
yields the primal-dual problem

argmin
u∈RΩ

max
p∈RΩn×RΩn

‖û− û0‖2γ + 〈 λ
n2∇nu, p〉 − δ‖·‖∞,2≤1(p) . (3.63)

In order to apply Algorithm 5 to (3.63), one needs to perform at each iteration k
the primal update

uk+1 = argmin
u∈RΩ

1
2τ

∥∥u− uk+1/2
∥∥2
2
+ ‖û− û0‖2γ , (3.64)

where uk+1/2 = uk+ τλ
n2divnp

k+1. Thanks to Parseval Identity, this can be rewritten

ûk+1 = argmin
u∈RΩ

1
2τ |Ω|

∥∥∥û− ûk+1/2

∥∥∥
2

2
+ ‖û− û0‖2γ , (3.65)

from which we easily obtain the explicit formula for the update given in Algo-
rithm 9.

3.6.3 Image Shannonization

One interesting application of Model (3.62) is its ability to (partly or fully)
remove aliasing from a given image, thus providing what we could call an “Image
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Algorithm 9: Chambolle-Pock resolvant algorithm for problem (3.62)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ, p0 ∈ RΩn × RΩn, set
u0 = u0 and define ν and π∞,2 as in Algorithm 6.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2

((
pk + σλ

n2∇nu
k
)
/ν
)

uk+1/2 = uk + τλ
n2divnp

k+1

uk+1 = F−1

(
ûk+1/2 + 2τγ · û0

1 + 2τγ

)

uk+1 = uk+1 + θ
(
uk+1 − uk

)

Shannonizer”. We did not thoroughly investigate this phenomenon yet but the
first results we obtained using the simple Gaussian weight function

γ(α, β) = e
−2π2σ2

(
α2

M2+
β2

N2

)

(3.66)

seem interesting enough to be mentioned here.

Aliasing arises when a continuous image is not sampled in accordance with
Shannon Theorem, that is, when the sampling step is too large compared to the
highest frequency component that the image contains. In that case, the sampled
image will be aliased, which means that its discrete Fourier coefficients will be
the sum of one correct value and several incorrect values arising from higher
frequencies that cannot be represented in the available discrete Fourier domain. In
practice, since the power spectrum of natural images tends to exhibit a power-law
decrease (see [Ruderman 1994]), aliasing mostly impacts the highest frequencies
of the discrete image in general; it is thus logical to choose for γ a decreasing
function of the distance to the origin. The isotropic map (3.66) is a possibility,
but it would certainly be worth exploring other choices.

The Shannon interpolate of an aliased image is very oscillatory in general,
because the aliased component define a trigonometric polynomial with improper
aliased frequencies. Therefore, we can expect Model (3.62) to show interesting
aliasing removal performances, as STV is strongly affected by oscillations. Indeed,
we can observe in Figure 3.10 and 3.11 that the aliasing of the input image u0
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input image Shannonization frequency attenuation

input image: details Shannonization: details freq. attenuation: details

input image: spectrum Shannonization: spectrum freq. attenuation: spectrum

Figure 3.10: Image “Shannonization”. The input image (left column) is slightly aliased,
as indicated by the periodic continuation patterns (see red arrows) that appear in its Fourier
spectrum (3rd row). Processing this image with the “Image Shannonizer” (3.62) results in a
visually similar image (middle column) that seems aliasing-free (the patterns are not visible any
more on the 3rd row). In comparison, a generic frequency attenuation process (on the right
column, with a Gaussian attenuation map) produces a large amount of blur while being less
efficient in terms of aliasing removal.



3.6. Regularization with weighted frequencies 141

input image Shannonization frequency attenuation

Figure 3.11: Details of Figure 3.10 with Shannon resampling. Different Parts of the
three images of the first row of Figure 3.10 are shown after Shannon interpolation. As expected,
the output of the “Image Shannonizer” (middle) is well interpolable, contrary to the input image
(left) on which oscillations appear. A simple frequency attenutation (right) is not efficient, since
it introduces a large amount of undesired blur.
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(which is clearly visible on its spectrum) is completely removed after processing
through the Image Shannonizer, without introducing noticeable blur on the image.

3.7 Conclusion

In this chapter we showed that images delivered by variational TV-based mod-
els could not be easily interpolated when the TV is discretized with a classical
finite difference scheme. However, we demonstrated on several examples that a
variant called STV (for Shannon TV) successfully addresses this issue, and can
be efficiently handled using Legendre-Fenchel duality and Chambolle-Pock Algo-
rithm. We easily adapted the STV variant to Huber-TV regularization, which let
us believe that STV could be easily applied to other variants of the discrete TV
as well; for example, the Total Generalized Variation (TGV) proposed in [Bredies
et al. 2010] involves higher order derivatives that could be computed exactly as
in the STV approach.

The choice of the upsampling factor n used to estimate STV with a Riemann
sum was discussed and it was shown that n = 1 was inadequate. However, it
would be interesting to further investigate this issue and prove that n = 2 (or
intermediate values between 1 and 2) guarantees a close correspondence between
the true STV and its estimate STVn.

We also presented a new STV-based restoration model relying on a weight
map in the Fourier domain, and showed that in certain cases it could be used as
an “Image Shannonizer”, which transforms an image into a very similar one that
can be easily interpolated (with Shannon interpolation or spline interpolation for
example). This seems particularly interesting, as most images are not perfectly
sampled (and hence difficult to interpolate) and would hence benefit a lot from
this process. This opens new perspectives on aliasing removal (and thus super-
resolution from a single image), but several questions are still to be answered, in
particular concerning the choice of the weight map.
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3.8 Appendix

3.8.A Proof of Proposition 21

Let us consider, for x ∈ R \ Z,

Sn(x) =
n∑

p=−n

sinc(x− pN)

= sinc(x) +
n∑

p=1

sinc(x− pN) + sinc(x+ pN)

=
sin πx

πx
+

n∑

p=1

(−1)pN
(

sin πx

π(x− pN)
+

sin πx

π(x+ pN)

)
.

Writing x = Nt
π
, we obtain

Sn(x) =
sinNt

N

(
1

t
+

n∑

p=1

(−1)pN
(

1

t− pπ +
1

t+ pπ

))

and the limit sincdN(x) = limn→∞ Sn(x) can be computed explicitly using classical
series expansions (due to Euler):

∀t ∈ R \ πZ, 1

tan t
=

1

t
+

∞∑

p=1

1

t− pπ +
1

t+ pπ
,

1

sin t
=

1

t
+

∞∑

p=1

(−1)p
(

1

t− pπ +
1

t+ pπ

)
.

If N is odd, (−1)pN = (−1)p and we obtain

sincdN(x) =
sinNt

N sin t
=

sin πx

N sin πx
N

,

and if N is even, (−1)pN = 1 and the other series yields

sincdN(x) =
sinNt

N tan t
=

sin πx

N tan πx
N

as announced.
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3.8.B Proof of Theorem 2

Since each operator Tz is linear and translation-invariant (Hypothesis (ii)), it
can be written as a convolution, that is,

Tzs(k) = (ψz ⋆ s)(k) :=
∑

l∈IM

ψz(k − l)s(l), (3.67)

where ψz is an element of S . Taking the DFT of (3.67), we obtain

∀α ∈ Z, T̂zs(α) = ψ̂z(α)ŝ(α). (3.68)

Now, from Hypothesis (iii) we immediately get

∀z, w ∈ R, ∀α ∈ Z, ψ̂z+w(α) = ψ̂z(α)ψ̂w(α), (3.69)

and by continuity of z 7→ ψ̂z(α) (deduced from Hypothesis (i)) we obtain

∀α ∈ Z, ψ̂z(α) = eγ(α)z (3.70)

for some γ(α) ∈ C. Since ψ̂1(α) = e
−2iπα

M , we have

γ(α) = −2iπ
( α
M

+ p(α)
)
, (3.71)

where p(α) ∈ Z and p(−α) = −p(α) (the fact that Tzu is real-valued implies that

ψ̂z(−α) = ψ̂z(α)
∗).

Last, we compute

‖Tz − id‖22 = sup
‖s‖2=1

‖Tzs− s‖22

=
1

M
sup

‖s‖2=1

‖T̂zs− ŝ‖22

=
1

M
sup

‖ŝ‖22=M

∑

α∈ÎM

|e−2iπ( α
M

+p(α))z − 1|2 · |ŝ(α)|2

= 4max
α∈ÎM

sin2
(
π
( α
M

+ p(α)
)
z
)

= 4π2z2 max
α∈ÎM

( α
M

+ p(α)
)2

+ o
z→0

(z2).
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Hence,

lim
z→0
|z|−1‖Tz − id‖2 = 2π max

α∈ÎM

∣∣∣ α
M

+ p(α)
∣∣∣ (3.72)

and since α
M
∈ (−1

2
, 1
2
) and p(α) ∈ Z for any α ∈ ÎM , the right-hand term of (3.72)

is minimal if and only if p(α) = 0 for all α ∈ ÎM . We conclude from (3.71)
and (3.70) that

∀α ∈ ÎM , ψ̂z(α) = e−2iπαz/M , (3.73)

and thus (3.68) can be rewritten as

Tzs(k) =
1

M

∑

α∈ÎM

ŝ(α)e−2iπαz/Me−2iπαk/M , (3.74)

which is exactly S(k− z) thanks to (3.13) (recall that the real part is not needed
because M is odd). Therefore, (3.24) is a necessary form for a set of operators
(Tz) satisfying Hypotheses (i) to (iv).

Conversely, one easily checks that the operators (Tz) defined by (3.24) satisfy
the Hypotheses (i) to (iv).

3.8.C Proof of Proposition 28

Let us denote by ∇n,xu and ∇n,yu the two elements of RΩn such that ∇nu =
(∇n,xu,∇n,yu). In the following, the notation 〈·, ·〉X stands for the usual Eu-
clidean (respectively Hermitian) inner product over the real (respectively com-
plex) Hilbert space X. We have

〈∇nu, p〉RΩn×RΩn = 〈∇n,xu, px〉RΩn + 〈∇n,yu, py〉RΩn .

Recall that we defined divn = −∇∗
n, the opposite of the adjoint of ∇n. Noting

divn,x = −∇∗
n,x and divn,y = −∇∗

n,y, we have

〈∇nu, p〉RΩn×RΩn = 〈u,−divn,x(px)− divn,y(py)〉RΩ .

so that we identify divn(p) = divn,x(px) + divn,y(py). Let us focus on the compu-

tation of divn,x(px). Let Ω̂1, Ω̂2, Ω̂3, Ω̂4 be the sets defined by

Ω̂1 =
{
(α, β) ∈ R2, |α| < M

2
, |β| < N

2

}
∩ Z2

Ω̂2 =
{(
±M

2
, β
)
∈ R2, |β| < N

2

}
∩ Z2

Ω̂3 =
{(
α,±N

2

)
∈ R2, |α| < M

2

}
∩ Z2

Ω̂4 =
{(
±M

2
,±N

2

)}
∩ Z2 .
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Notice that some sets among Ω̂2, Ω̂3 and Ω̂4 may be empty according to the parity
of M and N . Now, let hp̂x be the function defined in Proposition 28 and let us
show that

∀(α, β) ∈ Ω̂, ̂divn,x(px)(α, β) = 2iπ
α

M
hp̂x(α, β). (3.75)

Given z ∈ C, we denote as usual by z∗ the conjugate of z. Thanks to Parseval
identity, and using Proposition 26 (because we assumed n ≥ 2), we have

〈∇n,xu, px〉RΩn =
1

n2MN
〈∇̂n,xu, p̂x〉CΩn

=
1

n2MN

∑

(α,β)∈Ω̂n

∇̂n,xu(α, β) (p̂x(α, β))
∗

=
1

MN

∑

−M
2
≤α≤M

2

−N
2
≤β≤N

2

− û(α, β)
(
2iπεM(α)εN(β)

α

M
p̂x(α, β)

)∗
.

It follows that
〈∇n,xu, px〉RΩn = S1 + S2 + S3 + S4 ,

where for all k ∈ {1, 2, 3, 4}, we have set

Sk =
1

MN

∑

(α,β)∈Ω̂k

− û(α, β)
(
2iπεM(α)εN(β)

α

M
p̂x(α, β)

)∗
.

Consider S1 first. Since we have εM(α) = εN(β) = 1 and hp̂x(α, β) = p̂x(α, β)

for all (α, β) ∈ Ω̂1, we recognize

S1 =
1

MN

∑

|α|<M
2
, |β|<N

2

− û(α, β)
(
2iπ

α

M
hp̂x(α, β)

)∗
.

Now consider S2. If M is odd, Ω̂2 is empty and S2 = 0. Otherwise, since
εM(α)εN(β) = 1/2 for all (α, β) ∈ Ω̂2, by grouping together the terms

(
−M

2
, β
)

and
(
M
2
, β
)
, we get

S2 =
1

MN

∑

α=−M
2
,|β|<N

2

− û(α, β)
(
2iπ

1

2

α

M
p̂x(α, β)− 2iπ

1

2

α

M
p̂x(−α, β)

)∗

=
1

MN

∑

α=−M
2
,|β|<N

2

− û(α, β)
(
2iπ

α

M
hp̂x(α, β)

)∗
,
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since we have set hp̂x(−M
2
, β) = 1

2

(
p̂x(−M

2
, β)− p̂x(M2 , β)

)
for |β| < N/2.

Similarly for the term S3. When N is odd, Ω̂3 = ∅ and S3 = 0. Otherwise,
when N is even, we have εM(α)εN(β) = 1/2 for all (α, β) ∈ Ω̂3, thus, by grouping
together the terms

(
α,−N

2

)
and

(
α, N

2

)
, we get

S3 =
1

MN

∑

|α|<M
2
,β=−N

2

− û(α, β)
(
2iπ

1

2

α

M
p̂x(α, β) + 2iπ

1

2

α

M
p̂x(α,−β)

)∗

=
1

MN

∑

|α|<M
2
,β=−N

2

− û(α, β)
(
2iπ

α

M
hp̂x(α, β)

)∗
,

since we have set hp̂x(α,−N
2
) = 1

2

(
p̂x(α,−N

2
) + p̂x(α,

N
2
)
)
for |α| < M/2.

Lastly, let us consider S4. When M and N are both even (otherwise Ω̂4 = ∅
and S4 = 0), set α = −M

2
and β = −N

2
, we immediately get

S4 = −û(α, β)
( ∑

s1=±1,s2=±1

2iπ
1

4
s1
α

M
p̂x(s1α, s2β)

)∗

= −û(α, β)
(
2iπ

α

M
hp̂x(α, β)

)∗
,

since for all (α, β) ∈ Ω̂4, we have εM(α)εN(β) = 1/4 and we have set hp̂x(α, β) =
1
4

∑
s1=±1,s2=±1 s1p̂x(s1α, s2β) when α = −M

2
and β = −N

2
.

Finally, we can write S1 + S2 + S3 + S4 as a sum over Ω̂, indeed,

〈∇n,xu, px〉RΩ = S1 + S2 + S3 + S4

=
1

MN

∑

(α,β)∈Ω̂

−û(α, β)
(
2iπ

α

M
hp̂x(α, β)

)∗
,

and using again the Parseval identity, we get (3.75). With a similar approach,
one can check that

∀(α, β) ∈ Ω̂, ̂divn,y(py)(α, β) = 2iπ
β

N
hp̂y(α, β) ,

where hp̂y is defined in Proposition 28. Consequently, for any (α, β) ∈ Ω̂, we have

d̂ivn(p)(α, β) = 2iπ

(
α

M
hp̂x(α, β) +

β

N
hp̂y(α, β)

)
,

which ends the proof of Proposition 28.
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3.8.D Proof of Theorem 3

Recall that for any integer M , we denote by TM the real vector space of
real-valued trigonometric polynomials that can be written as complex linear com-
bination of the family (x 7→ e2iπ

αx
M )−M

2
≤α≤M

2
. In order to prove Theorem 3 we

need the following Lemma.

Lemma 4. Let M = 2m + 1 be an odd positive integer. The functions F and G
defined by,

∀x ∈ R, F (x) =
1

M

m∑

α=−m

e
2iπαx

M , G(x) = F (x)− F (x− 1) ,

are both in TM and G satisfies

M−1∑

k=0

|G(k)| = 2 ,

∫ M

1

|G(x)| dx ≥ 8

π2
log

(
2M

π

)
− 2 .

Proof. F is in TM by construction, and so is G as the difference of two elements
of TM . Writing ω = π

M
, we can notice that F (0) = 1 and

∀x ∈ (0,M), F (x) =
e2iω(−m)x

M
· 1− e

2iπx

1− e2iωx =
sin (πx)

M sin (ωx)
,

so that F (k) = 0 for all integers k ∈ [1,M − 1]. Consequently, G(0) = 1,
G(1) = −1 and G(k) = 0 for all integers k ∈ [2,M − 1], thus

M−1∑

k=0

|G(k)| = |G(0)|+ |G(1)| = 2 ,

yielding the first announced result of the Lemma. Now, remark that the sign
changes of G in (0, 2m+ 1) occur at integer points 2, 3, . . . 2m and in 1

2
(by sym-

metry). Thus, we have

J :=

∫ M

1

|G(x)| dx =
2m∑

k=1

(−1)k
∫ k+1

k

G(x) dx = 2
2m−1∑

k=0

(−1)k
∫ k+1

k

F (x) dx ,

since for all x ∈ [0,M ], we have G(x) = F (x)−F (x− 1) and (because M is odd)
F (x) = F (M − x). It follows that

J ≥ 2

(
2m∑

k=0

(−1)k
∫ k+1

k

F (x) dx

)
− 2 ,
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since |F | ≤ 1 everywhere.
Consequently, by isolating the index α = 0 in the definition of F , we get

J ≥ 2
(
J ′ + 1

M

)
− 2, with

J ′ =
2m∑

k=0

(−1)k
M

∑

−m≤α≤m
α 6=0

∫ k+1

k

e2iωαx dx .

By exchanging the sums and grouping identical terms, we obtain

J ′ =
1

M

∑

−m≤α≤m
α 6=0

2m∑

k=0

(−1)k · e
2iωα(k+1) − e2iωαk

2iωα

=
∑

−m≤α≤m
α 6=0

−1
iπα

2m∑

k=1

(
−e2iωα

)k
.

(3.76)

After summation of the geometric progression

2m∑

k=1

(
−e2iωα

)k
= −e2iωα · 1− e

2iωα(2m)

1 + e2iωα
= eiπα

i sin(2ωmα)

cos(ωα)
=
i sin(2ωmα− πα)

cos(ωα)

= −i tan(ωα) ,
Equation (3.76) finally leads to

J ′ =
∑

−m≤α≤m
α 6=0

1

πα
· tan(ωα) = 2

M

m∑

α=1

g(ωα)

where g = t 7→ tan t
t
. Now since g is positive and increasing on (0, π

2
), we have

m∑

α=1

g(ωα) ≥
∫ m

0

g(ωx) dx =
1

ω

∫ ωm

0

g(t) dt .

Using the lower bound g(t) ≥ 2
π
tan t for t ∈ (0, π

2
), we finally get

J ′ ≥ 4

π2

∫ ωm

0

tan t dt = − 4

π2
log cos(ωm) = − 4

π2
log sin

(ω
2

)

and thus J ′ ≥ 4

π2
log

(
2

ω

)
, from which the inequality announced in Lemma 4

follows.
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Now, let us prove the Theorem 3 by building a discrete image u such that
STV1(u) is fixed but STV∞(u) increases with the image size. We consider the
function H defined by

∀x ∈ R, H(x) =

∫ x

0

G(t) dt ,

where G ∈ TM is the real-valued M -periodic trigonometric polynomial defined
in Lemma 4 (M = 2m + 1). Since the integral of G over one period is zero

(
∫M

0
G(t) dt = 0), H is also an element of TM . Consequently, the bivariate trigono-

metric polynomial defined by

∀(x, y) ∈ R2, U(x, y) =
1

M
H(x) ,

beongs to TM ⊗ TM , and since M is odd it is exactly the Shannon interpolate of
the discrete image defined by

∀(k, l) ∈ IM × IM , u(k, l) = U(k, l). (3.77)

In particular, by definition of STV1 and STV∞, we have

STV1(u) =
∑

(k,l)∈Ω
|∇U(k, l)| , and STV∞(u) =

∫

[0,M ]2
|∇U(x, y)| dxdy .

From Lemma 4, we have on the one hand,

STV1(u) =
∑

(k,l)∈Ω
|∇U(k, l)| =

2m∑

k=0

|H ′(k)| =
2m∑

k=0

|G(k)| = 2 ,

and on the other hand,

STV∞(u) =

∫

[0,M ]2
|∇U(x, y)| dxdy =

∫ M

0

|H ′(x)| dx

=

∫ M

0

|G(x)| dx ≥ 8

π2
log

(
2M

π

)
− 2 .

which cannot be bounded from above by a constant independent of M .
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3.8.E Proof of Proposition 30

Let u ∈ RΩ, n ∈ N and α ∈ R such that n ≥ 1 and α > 0. One can rewrite
HSTVα,n(u) =

1
n2Hα(∇nu), where

∀g ∈ RΩn × RΩn , Hα(g) =
∑

(x,y)∈Ωn

Hα(g(x, y)) .

Let us show that the Legendre-Fenchel transform of Hα is

H⋆
α(p) = ı‖·‖∞,2≤1(p) +

α
2
‖p‖22 .

One easily checks that Hα ∈ Γ(R2), and it follows that Hα ∈ Γ(RΩn × RΩn).
Thus, for any image u ∈ RΩ, we have Hα(∇nu) = H⋆⋆

α (∇nu) and

H⋆⋆
α (∇nu) = sup

p∈RΩn×RΩn

〈∇nu, p〉 −H⋆
α(p) . (3.78)

Besides, we have H⋆
α(p) =

∑
(x,y)∈Ωn

H⋆
α(p(x, y)), and the Legendre-Fenchel trans-

form of Hα is the function H⋆
α(z) = ı|·|≤1(z) +

α
2
|z|2, where ı|·|≤1 denotes the

indicator function of the unit ball for the ℓ2 norm in R2. Indeed, it is proven
in [Parikh and Boyd 2013] that Hα is the Moreau envelope (or Moreau-Yosida
regularization) [Moreau 1965, Yosida 1980] with parameter α of the ℓ2 norm | · |,
or equivalently the infimal convolution (see [Rockafellar 1970]) between the two
proper, convex and l.s.c functions f1(x) = |x| and f2(x) = 1

2α
|x|2, that is

∀y ∈ R2, Hα(y) = (f1�f2) (y) := inf
x∈R2

f1(x) + f2(y − x) .

Thus, we have H⋆
α = (f1�f2)

⋆ = f ⋆
1 + f ⋆

2 (see [Rockafellar 1970, Parikh and Boyd
2013]), leading exactly to H⋆

α(z) = ı|·|≤1(z) +
α
2
|z|2 for any z ∈ R2, since we have

f ⋆
1 = z 7→ ı|·|≤1(z) and f

⋆
2 = z 7→ α

2
|z|2. It follows that for any p ∈ RΩn ×RΩn , we

have

H⋆
α(p) =

∑

(x,y)∈Ωn

H⋆
α(p(x, y)) = ı‖·‖∞,2≤1(p) +

α
2
‖p‖22 , (3.79)

and the supremum (3.78) is a maximum for the same reason as in the proof
of Proposition 29. Finally, writing HSTVα,n(u) = 1

n2Hα(∇nu) = 1
n2H

⋆⋆
α (∇nu)

using (3.78) and (3.79) leads to the announced result.
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3.8.F Preliminary results about isotropy

In addition to the difficulties encountered when trying to manipulate at sub-
pixellic scales some images that were processed using the discrete total variation,
its discretization by means of a finite differences scheme is also responsible for
the introduction of anisotropy in those images. For instance, with the choice of
discretization done in (3.2)-(3.3), we have in general

TV(u) 6= TV(Ru) ,

where Ru denotes the π/2 rotation operator defined by Ru(x, y) = u(y,M−x−1)
for any (x, y) ∈ Ω and any u ∈ RΩ. Consequently, the image produced by means
of discrete TV minimization in classical imaging problems is in general not the
same if a rotation of π/2 is applied before or after the process. We could recently
observe in the literature many attempts to define a more isotropic discrete total
variation, such as the upwind-TV defined in [Chambolle et al. 2011], which makes
use of a more isotropic finite differences scheme than (3.3). Note also the modified
discrete TV regularizer very recently proposed by Condat [2016], which is defined
by duality and makes use of dual variables oversampled with factor two using
bilinear interpolation. This latter variant of TV is claimed to outperform the
upwind TV in terms of isotropy, which is confirmed by many experiments.

We show in Figure 3.12 that the use of STVn instead of the discrete total
variation in the ROF model (3.49) yields an improved level of isotropy in the
produced image. This improvement is a direct consequence of the use by STVn

of the exact gradient of U , instead of a finite differences scheme (which inevitably
suffers from the lack of isotropy of the sampling grid Ω). However, a more careful
study of the isotropy of the denoised images, presented in Figure 3.13, shows that
even if the use of the STVn regularizer improves the isotropy, the STV-denoised
version of a synthetic rotationally invariant image is not completely isotropic. The
reason of this loss of isotropy is that the frequency domain Ω̂ of those images is
rectangular and not circular, thus all frequencies lying outside of

DΩ̂ =

{
(α, β) ∈ Ω̂,

(
α

M/2

)2

+

(
β

N/2

)2

≤ 1

}
,

are not equally represented in all directions. The setting of (in general nonzero)
frequencies outside of DΩ̂ performed by the minimization of (3.49) is responsible
for the introduction of anisotropy into the restoration process.

We can easily avoid the creation of nonzero frequencies outside of DΩ̂ by adding
the constraint for the produced image to have its frequency support included
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smoothsharp

sharpsmooth

(a) reference u0 (b) discrete TV (c) Shannon TV

Figure 3.12: Denoising an isotropic disk. Image (a) represents an isotropic smoothed disk,
noted u0, whose gray levels are given by u0(x, y) = R0.01(0.015 ·

√
(x− 50)2 + (y − 50)2) for

(x, y) ∈ I101×I101, where the radial profile Rσ(ρ) :=
∫ 0.5

−0.5
1

σ
√
2π

e−(t−ρ)2/2σ2

dt is the convolution

at the point ρ between a Gaussian signal and the characteristic function of the set [−0.5, 0.5].
The image (a) is then processed using the TV

d and STV3 regularized ROF problem (with
λ = 100), leading to images (b) and (c). We see that in the case of the image (b) the rotational
symmetry of the original image is broken: diagonal edges oriented upright are kept sharp, but
diagonal edges oriented upleft become blurry. In the case of image (b), the rotational symmetry
is better preserved, although we show in Figure 3.13 that the isotropy can be even further
improved by constraining the spectrum support to be included into a disk.

into DΩ̂. The addition of such a constraint formally consists in forcing u to lie
into the vector space C defined by

C =
{
u ∈ RΩ, (α, β) 6∈ DΩ̂ ⇒ û(α, β) = 0

}
,

in the minimization (3.49). This leads to the following constrained problem

argmin
u∈C

‖u− u0‖22 + λ STVn(u) , (3.80)

for which a numerical solution can be computed using Algorithm 6 provided that
we change the primal update step (3.51b) into

uk+1 = πC

(
uk + τλ

n2divnp
k+1 + 2τu0

1 + 2τ

)
,

noting πC (u) the projection of u over the constraint set C , which simply consists
in setting to zero all frequencies of û outside of DΩ̂. More precisely, this projection
is explicitly given in the Fourier domain by

∀u ∈ RΩ, π̂C (u)(α, β) =

{
û(α, β) if (α, β) ∈ DΩ̂ ,

0 otherwise.
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In Figure 3.13, we show that denoising a rotationally invariant image using (3.80)
yields an almost perfectly rotationally invariant image, which is not the case when
we use the unconstrained model (3.49). We also observed on this experiment that
the level of isotropy reached by model (3.80) is even better than that reached when
using the modified TV regularizer proposed by Condat, which, as a preliminary
result, offers interesting perspectives for future works.
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Figure 3.13: Comparison of different image denoising models in terms of isotropy.
The rotationally invariant reference image of Figure 3.12-(a) was denoised using the discrete
TV, its modified version proposed by Condat [2016], and the Shannon total variation (with
or without the constraint of circular frequency domain as indicated using the keywords “with
disk” or “no disk”) as a regularizer. For each considered image, we display the evolution of
its intensity according to the distance from the image center (that is, given the image u ∈ RΩ

and for all (x, y) ∈ Ω, we draw in a graph a point at the coordinate (ρ(x, y), u(x, y)), noting
ρ(x, y) the distance between the pixel (x, y) and the center of the image). In the case of the
perfectly rotationally invariant image, we observe a monotone curve. The strong irregularity of
the signal corresponding to the TV

d-processed image (left graph) indicates that this image is far
from being rotationally invariant (two pixels located at the same distance from the center can
have very different gray levels). We can see (middle and right graphs) that the use of Condat’s
TV model or STV3 (no disk) significantly improves the level of isotropy, although some small
irregularities remain. By adding the frequency constraint to the STV3 regularized model, we
obtain an almost perfectly monotonous curve.
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Abstract

Interpreting the celebrated Rudin-Osher-Fatemi (ROF) model in a Bayesian
framework has led to interesting new variants for Total Variation image denoising
in the last decade. The Posterior Mean variant avoids the so-called staircasing
artifact of the ROF model but is computationally very expensive. Another re-
cent variant, called TV-ICE (for Iterated Conditional Expectation), delivers very
similar images but uses a much faster fixed-point algorithm. In this chapter, we
consider the TV-ICE approach in the case of a Poisson noise model. We derive
an explicit form of the recursion operator, and show linear convergence of the
algorithm, as well as the absence of staircasing effect. We also provide a numeri-
cal algorithm that carefully handles precision and numerical overflow issues, and
show experiments that illustrate the interest of this Poisson TV-ICE variant.

4.1 Introduction

Since the seminal paper of Rudin, Osher and Fatemi [Rudin et al. 1992], total
variation (TV) regularization has been used in numerous image processing appli-
cations (see, e.g., [Caselles et al. 2015] and references therein). Reasons for this
popularity are multiple. First, TV regularization allows discontinuities (contrary
to the L2 norm of the gradient), which is essential in the world of natural images,
dominated by occlusions. Second, its continuous counterpart is part of a fruitful
mathematical theory (the space of functions with bounded variation) which results
in strong possibilities of theoretical interpretations [Chambolle et al. 2010]. Third,
in the last decade several very efficient algorithms have been designed to handle
the non-smooth convex optimization problems occurring with TV regularization
(e.g., [Darbon and Sigelle 2006, Chambolle and Pock 2011]). In terms of pure
denoising performances, TV denoising is less efficient than modern patch-based
approaches like NL-means [Buades et al. 2005] or BM3D [Dabov et al. 2007] for
example, but remains useful as the simplest possible framework for the study of
TV regularization. Understanding the strengths and weaknesses of TV denoising
(and variants) certainly helps a lot apprehending more complex inverse problems
involving TV regularization.

One weakness of TV regularization is the so-called staircasing effect: where
one would have expected a smoothly varying image, the L1 norm promotes a
sparse gradient that results in piecewise constant zones with artificial boundaries.
This undesirable effect can be avoided by using a smoother functional, but at
the expense of loosing the nice theoretical properties of TV. Other solutions have
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been proposed that keep the true definition of TV but change the minimization
framework. Indeed, when considering the TV as the Gibbs energy of an image
prior in a Bayesian framework, the ROF model can be reinterpreted as finding the
image that maximizes the associated posterior density. Replacing this maximum
a posteriori (MAP) estimate with the posterior mean leads to a variant of the
ROF model, called TV-LSE, that delivers images without staircasing artifacts
[Louchet and Moisan 2008, 2013]. More recently, a new variant called TV-ICE
[Louchet and Moisan 2014] was proposed to overcome the slow convergence rate
of the TV-LSE Monte-Carlo algorithm. It is based on the repeated estimation of
conditional marginal posterior means, which boils down to iterating an explicit
local operator. In practice, TV-ICE produces images very similar to TV-LSE
results, but at a much smaller computational expense.

In the present chapter, we propose to adapt to the case of Poisson noise this
TV-ICE method, derived in [Louchet and Moisan 2014] in the case of Gaussian
noise. Contrary to most noise sources (electronic noise, dark current, thermal
noise) whose effects can be reduced by the improvement of captors, Poisson noise is
inherent to the quantum nature of light and thus unavoidable for images acquired
in low-light conditions, which is very common in astronomy or in microscopy for
example. Even if image restoration models are generally first designed in the
simpler case of a white Gaussian additive noise, they need to be adapted to the
specific case of Poisson noise. Due to the importance and the inevitability of
Poisson noise, this adaptation is almost systematic, as shows for example the
case of TV-based image deblurring [Setzer et al. 2010] or NL-means denoising
[Deledalle et al. 2010].

In the case of the TV prior, the posterior distribution obtained with Poisson
noise strongly differs from the Gaussian case, but the conditional marginal pos-
terior means can be explicitly computed using the incomplete Gamma function.
In Section 4.2, we show that the associated iterative algorithm converges linearly
and that no staircasing occurs, thanks in particular to the log-concavity of the
Poisson distribution. We then give the explicit form of the recursion operator
defining our Poisson-TV-ICE model (Section 4.3) and discuss numerical issues, in
particular the handling of machine over/under-flow and the efficient computation
of the (slightly generalized) incomplete Gamma function. We then numerically
check the theoretical properties of the method (convergence rate, absence of stair-
casing) in Section 4.4, and compare the obtained results with the Poisson noise
variant of the ROF model, before we conclude in Section 4.5.
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4.2 The Poisson TV-ICE model

4.2.1 Definition

Let u : Ω → R+ be an (unobserved) intensity image defined on a discrete
domain Ω (a rectangular subset of Z2). A photon-count observation of the ideal
image u is an integer valued random image v : Ω → N following the Poisson
probability density function (p.d.f.)

p(v | u) =
∏

x∈Ω

u(x)v(x)

v(x)!
e−u(x) ∝ exp (−〈u− v log u , 1Ω〉) , (4.1)

where 1Ω denotes the constant image equal to 1 on Ω and 〈·, ·〉 is the usual
Euclidean inner product on RΩ. The notation ∝ here indicates an equality up to a
global multiplicative constant (which depends on v). Note that we have to take the
convention that v(x) log u(x) = 0 as soon as v(x) = 0 in (4.1). We consider here
the discrete anisotropic total variation of u, defined in Chapter 2 (Definition 4),
that we reformulate in

TV
d
1(u) =

1

2

∑

x∈Ω

∑

y∈Nx

|u(y)− u(x)| , (4.2)

where Nx denotes the 4-neighborhood of a pixel x, with a mirror boundary con-
dition. Using the improper TV

d
1 prior p(u) ∝ e−λTV

d
1(u) (where λ is a positive

regularization parameter) and Equation (4.1), we get, thanks to the Bayes rule,
the posterior density

π(u) = p(u | v) = p(v | u) p(u)∫
RΩ
+
p(v |w) p(w) dw =

e−〈u−v log u ,1Ω〉−λTV
d
1(u)

∫
RΩ
+
e−〈w−v logw ,1Ω〉−λTV

d
1(w) dw

. (4.3)

As discussed in Chapter 2 (Remark 3), the equivalent of the classical model
of Rudin et al. [1992] in the case of a Poisson noise model corresponds to the
unique maximizer ûmap of π, or equivalently the minimizer of the convex energy
E = u 7→ 〈u − v log u , 1Ω〉 + λTV

d
1(u). We explained in Section 2.3 how this

minimizer can be efficiently computed using the primal-dual algorithm recently
proposed in [Chambolle and Pock 2011]. As mentioned in Introduction, and
observed in many numerical examples of Section 2.3, a main drawback of this
approach is that ûmap generally suffers from the staircasing effect, which results
in the appearance of flat regions separated by artificial boundaries, and which is
particularly strong in the case of the anisotropic total variation.
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In the case of a Gaussian noise model with isotropic discrete TV (that is,

when π(u) ∝ e−‖u−v‖22/(2σ2)−λTV
d(u)), this can be avoided by considering, instead

of ûmap, the posterior mean

ûlse = Eu∼π(u) =

∫

RΩ

u π(u) du , (4.4)

which is the image that reaches the Least Square Error under π (see [Louchet and
Moisan 2008, 2013]). The numerical computation of ûlse proposed in [Louchet
and Moisan 2008] is based on a Markov Chain Monte Carlo Metropolis-Hastings
algorithm, which exhibits a slow convergence rate (O(n−1/2) for n iterations). To
overcome this computational limitation, it was proposed in [Louchet and Moisan
2014] a new variant based on the iteration of conditional marginal posterior means.
More precisely, the estimate ûice is defined as the limit (for an appropriate initial-
ization) of the iterative scheme

un+1(x) = Eu∼π

(
u(x)

∣∣∣ u(xc) = un(xc)
)
=

∫

R

un(x) π(un) dun(x) , (4.5)

where u(xc) denotes the restriction of u to Ω \ {x}. In the case of the Poisson
noise model (4.3), we obtain the following:

Definition 17 (Poisson TV-ICE). The Poisson TV-ICE recursion is

∀n ∈ N, ∀x ∈ Ω, un+1(x) =

∫
R+
sv(x)+1e−(s+λ

∑
y∈Nx |un(y)−s|)ds

∫
R+
sv(x)e−(s+λ

∑
y∈Nx |un(y)−s|)ds

. (4.6)

4.2.2 Convergence

Theorem 4. Given an image v : Ω→ N, the sequence of images (un)n≥0 defined
by u0 = 0 and the recursion (4.6) converges linearly to an image ûice.

In the following, we denote by Pp(s) the pointwise Poisson noise p.d.f. with
integer parameter p ≥ 0, that is,

∀s ∈ R, Pp(s) =
sp e−s

p!
1R+(s) , where 1R+(s) =

{
1 if s ≥ 0
0 otherwise.

If a = (ai)1≤i≤4 denotes a 4-uple, we write

fp(a) =

∫ +∞
−∞ s Pp(s) e

−λ
∑4

i=1 |s−ai| ds
∫ +∞
−∞ Pp(s) e−λ

∑4
i=1 |s−ai| ds

=

∫ +∞
0

sp+1 e−s e−λ
∑4

i=1 |s−ai| ds∫ +∞
0

sp e−s e−λ
∑4

i=1 |s−ai| ds
, (4.7)
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and F : u 7→
(
x 7→ fv(x)(u(Nx))

)
, (4.8)

so that the recursion (4.6) can be simply rewritten un+1 = F (un).
To prove Theorem 4, we need some intermediate Lemmas.

Lemma 5 (Schmidt [2003]). Assume that X, a random variable defined on RΩ,
has a finite second order moment. Then the inequality

cov(X, g(X)) ≥ 0

holds for every nondecreasing function g : RΩ → R for which g(X) has a fi-
nite second order moment. If, moreover, X is not deterministic and g is strictly
increasing, then cov(X, g(X)) > 0.

Proof. The proof for the first part is already given in [Schmidt 2003], but we
reproduce it here for its shortness, and because the second part of the Lemma
derives from it.

cov(X, g(X)) = E[(X − E[X])(g(X)− E[g(X)])]

= E[(X − E[X])(g(X)− g(E[X]))] .

The assertion follows because g is increasing. If X is not deterministic, then
there exists a Borel set A such that P (X ∈ A) > 0 with E[X] /∈ A. Hence the
covariance is a sum of nonnegative terms, some of which (those for X ∈ A) are
positive. Finally cov(X, g(X)) is positive.

Lemma 6. F is monotone: for all images u0 and u1,

u0 ≤ u1 ⇒ F (u0) ≤ F (u1).

Proof. Using Lebesgue dominated convergence theorem, one can prove the differ-
entiability of fp with respect to each ai and obtain

∂fp
∂ai

(a) =

∫ +∞
−∞ λ sign(s− ai) s Pp(s) e

−λ
∑4

j=1 |s−aj | ds
∫ +∞
−∞ Pp(s) e

−λ
∑4

j=1 |s−aj | ds

−
∫ +∞
−∞ s Pp(s) e

−λ
∑4

j=1 |s−aj | ds
∫ +∞
−∞ Pp(s) e

−λ
∑4

j=1 |s−aj | ds
·
∫ +∞
−∞ λ sign(s− ai)Pp(s) e

−λ
∑4

j=1 |s−aj | ds
∫ +∞
−∞ Pp(s) e

−λ
∑4

j=1 |s−aj | ds
.

Hence ∂fp
∂ai

(a) can be seen as the covariance of S and λ sign(S − ai), where S is a

random variable with p.d.f. s 7→ 1
Z
Pp(s) e

−λ
∑4

j=1 |s−aj | (Z denotes a normalization
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constant), which has a finite second order moment. Using Lemma 5, the quantity
∂fp
∂ai

(a), as the covariance of S with a nondecreasing function of S, is nonnegative.

Now if u0 ≤ u1, then as fp is C1 we can write

(F (u1)− F (u0))(x) =
∫ 1

0

∇fv(x)(ut(Nx)) · (u1(Nx)− u0(Nx)) dt,

where ut(Nx) = (1 − t) u0(Nx) + t u1(Nx). Since for any y ∈ Nx,
∂fv(x)
∂u(y)

and

u1(y)− u0(y) are both nonnegative, so is (F (u1)− F (u0))(x) as the integral of a
nonnegative function.

Lemma 7. F is strictly nonexpansive for the ℓ∞ norm: for any images u 6= u′,

‖F (u′)− F (u)‖∞ < ‖u′ − u‖∞.

Proof. For fixed values of p and a = (ai)1≤i≤4, let us define the real mapping

g : c 7→ fp(a+ c)− c ,

where a+ c is a shorthand for (ai+ c)1≤i≤4. We first prove that the strict decrease
of g on R for all p and a implies the strict nonexpansiveness of F . We must
prove that F (u′) < F (u) + c and that F (u′) > F (u) − c for c = ‖u′ − u‖∞. As
u′ ≤ u+ c and as F is monotone, we have F (u′) ≤ F (u+ c). It remains to prove
that F (u+ c) < F (u) + c, i.e. that

∀p ∈ N, ∀a ∈ R4, ∀c > 0, fp(a+ c) < fp(a) + c,

which is true as soon as g is strictly decreasing on R+. For the other inequality,
we have F (u′) ≥ F (u− c), so that it remains to prove that F (u− c) > F (u)− c,
i.e. that

∀p ∈ N, ∀a ∈ R4, ∀c > 0, fp(a− c) > fp(a)− c,
which is true as soon as g is strictly decreasing on R−.

Second, we prove that g is strictly decreasing. One can prove that

g′(c) = cov

(
S,
P ′
p(S + c)

Pp(S + c)

)
= cov(S, (logPp)

′(S + c)),

where S follows a distribution with p.d.f. s 7→ 1
Z
Pp(s+ c)e

−λ
∑4

i=1 |s−ai| ds Now, Pp

is positive and differentiable and (logPp)
′(s) = p/s− 1, so for all c, the mapping

s 7→ (logPp)
′(s+c) is strictly decreasing on (−c,+∞). Again thanks to Lemma 5,

as the distribution on S is not deterministic, we get that g′(c) is negative. Hence
g is strictly decreasing and the proof is complete.
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Lemma 8. There exists a subset K of RΩ containing 0 such that F (K) ⊂ K.

Proof. We set G(p, c) = fp(c1N )− c and proceed in 4 steps:

(i) For every p ∈ N, the function c 7→ G(p, c) is continuous and decreasing.
Indeed, G(p, c) is exactly g(c), defined in the proof of Lemma 7, with a = 0.
So it is differentiable and decreasing.

(ii) For each p ∈ N, the limit of G(p, c), when c goes to +∞, is negative. Indeed,
we have

G(p, c) =

∫ +∞
−c

s (s+ c)p e−s e−nλ|s| ds
∫ +∞
−c

(s+ c)p e−s e−nλ|s| ds
=

∫ +∞
−c

s (1 + s
c
)p e−(s+nλ|s|) ds

∫ +∞
−c

(1 + s
c
)p e−(s+nλ|s|) ds

.

We can apply the dominated convergence theorem on both integrals: for
g = s 7→ s, or g = s 7→ 1, we have

g(s)
(
1 +

s

c

)p
e−(s+nλ|s|)

1(−c,∞) −−−→
c→∞

g(s) e−(s+nλ|s|) almost everywhere

and

|g(s)
(
1 +

s

c

)p
e−(s+nλ|s|)

1(−c,∞)| ≤ |g(s)| e−nλ|s| when c > p

because log
(
1 + s

c

)
≤ ps

c
≤ s when c > p, and is integrable because nλ > 0.

Hence,

G(p, c) −−−→
c→∞

∫
R
s e−(s+nλ|s|) ds∫

R
e−(s+nλ|s|) ds

whose right-hand side is negative because its numerator equals
∫ +∞

0

s (e−(1+nλ)s − e−(nλ−1)s) ds

and the function inside the integral is negative on (0,∞).

(iii) We deduce from (i) and (ii) that

∀p ∈ N, ∃ c(p) ∈ R, c ≥ c(p)⇒ G(p, c) ≤ 0.

(iv) With the latter definition for p 7→ c(p), we define c = maxx∈Ω c(v(x)) and
K = [0, c]Ω. If u ∈ K, then u ≤ c, and as F is monotone, F (u) ≤ F (c1Ω).
Now, as c ≥ c(v(x)), by definition of c, fv(x)(c) ≤ c holds for each x ∈
Ω, which exactly means that F (u) ≤ F (c1Ω) ≤ c. Secondly, as F (u)(x)
is a ratio of nonnegative quantities, it is nonnegative and F (u) ≥ 0. In
conclusion, F (u) ∈ K.



4.2. The Poisson TV-ICE model 163

Proof of Theorem 4. Since the map F is strictly non-expansive (Lemma 7) and
continuous on the compact set K, there exists a real number α ∈ (0, 1) such that
‖F (w1) − F (w2)‖∞ ≤ α‖w1 − w2‖∞ for all images w1, w2 ∈ K. Moreover, K
is stable by F (Lemma 8), so the Banach fixed-point theorem applies and the
sequence (un) defined in Theorem 4 converges to a fixed point of F , which is
unique. The convergence is linear as ‖un+1− ûice‖∞ ≤ α‖un− ûice‖∞, or in other
terms, ‖un − ûice‖∞ = O(αn) as n→∞.

4.2.3 No staircasing for Poisson TV-ICE

We here prove that Poisson TV-ICE cannot produce large constant regions
that were not at least partially present in the initial data.

Theorem 5. Let v : Ω → N be a noisy image, and ûice its denoised version.
Let x and y be two pixels in Ω. Then if ûice is constant on Nx ∪ Ny ∪ {x, y},
necessarily v(x) = v(y).

To establish the proof, we need the following:

Lemma 9. For any constant c, the mapping p 7→ fp(c1N ) is strictly increasing.

Proof. The mapping p 7→ fp(c1N ) can be naturally extended to real positive
values of p using the right-hand part of Equation (4.7). Using the dominated
convergence theorem, we can assess the differentiability of p 7→ fp(c1N ) and
obtain

∂fp
∂p

(c1N ) = cov
(
S, log S

)
,

where S is a random variable with p.d.f. s 7→ 1
Z
Pp(s) e

−4λ|s−c|. But as the log

function is strictly increasing, using Lemma 5, we have that ∂fp
∂p

(c1N ) is positive.
Considering only integer values of p, we obtain the desired result.

Proof of Theorem 5. Assume that ûice takes a constant value c ∈ R for every
pixel of the set Nx ∪Ny ∪ {x, y}. Then taking the limit in (4.6) tells us that c =
ûice(x) = fv(x)(ûice(Nx)) = fv(x)(c1N ), and similarly c = ûice(y) = fv(y)(c1N ).
But using Lemma 9, p 7→ fp(c1N ) is strictly increasing, so there exists at most
one value p such that fp(c1N ) = c. We conclude that necessarily v(x) = p = v(y),
which finishes the proof.
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4.3 Numerical computation of Poisson TV-ICE

4.3.1 Explicit form of the Poisson TV-ICE recursion op-
erator

Proposition 32. The Poisson TV-ICE recursion un+1(x) = fv(x)(u
n(Nx)) can

be written

un+1(x) =

∑
1≤k≤5 ck I

µk,v(x)+2
ak−1,ak∑

1≤k≤5 ck I
µk,v(x)+1
ak−1,ak

, (4.9)

where a1, a2, a3, a4 are the values of un(Nx) sorted in nondecreasing order (that
is, 0 = a0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 < a5 = +∞), and

∀k ∈ {1, . . . , 5}, µk = 1− (6− 2k)λ, log ck = λ

(
k−1∑

j=1

aj −
4∑

j=k

aj

)
, (4.10)

and, Iµ,px,y =

∫ y

x

sp−1 e−µs ds , for 0 ≤ x ≤ y ≤ +∞ , µ ∈ R , p ≥ 1 . (4.11)

Proof. This result is directly obtained after breaking the integration domain in
Equation (4.6) so as to get rid of all absolute values.

4.3.2 Numerical issues

In this section, we will discuss the difficulties raised by the practical evaluation
of the integrals Iµ,px,y involved in (4.9), as well as that raised by the evaluation of the
Poisson TV-ICE recursion (4.9) itself. We will then detail how these numerical
obstacles can be overcome, yielding a practical Poisson TV-ICE algorithm. The
Poisson TV-ICE recursion (4.9) consists in computing the ratio of sums of integrals
Iµ,px,y . Those integrals can be viewed as differences of the following generalized lower
(γµ) or upper (Γµ) incomplete gamma functions,

γµ(p, x) =

∫ x

0

sp−1e−µsds , Γµ(p, x) =

∫ +∞

x

sp−1e−µsds , (4.12)

so that Iµ,px,y = γµ(p, y)− γµ(p, x) , (4.13)

and, for µ > 0,

Iµ,px,y = Γµ(p, x)− Γµ(p, y) =
(p− 1)!

µp
− γµ(p, x)− Γµ(p, y) . (4.14)
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The computation of those quantities is far from being trivial from the practical
viewpoint, as illustrated in Figure 4.1, where we show how some careless imple-
mentations of 4.9 yield numerical instabilities in the delivered image.

(a) input image (b) naive 1 (c) naive 2 (d) our algorithm

Figure 4.1: Numerical instabilities caused by some naive implementations of the
recursion (4.9). The photon-count observation (a) of a synthetic image was processed using
the Poisson TV-ICE scheme (with λ = 0.2), that is by setting u0 = 0 and iterating several
times the recursion (4.9), which was implemented in three different ways. We display in (b) the
image obtained using a straightforward numerical implementation of (4.9): each integral Iµ,px,y

is computed as the difference γµ(p, x) − γµ(p, y), where each term γµ(p, z) = µ−pγ1(p, µz) is
computed using the algorithm proposed in the Numerical Recipes [Press et al. 1992]. Then, we
compute the numerator and the denominator of (4.9), before taking the ratio. This approach is
rather simple but unfortunately very unstable, since it generates some infinite (overflow) values
in the image (the gray levels were saturated for the display). The image (c) was obtained
with a similar approach, with a slightly improved implementation that consisted in computing
all terms γµ(p, x), γµ(p, y), I

µ,p
x,y with a mantissa-exponent representation, we will explain later

how such a representation is useful to get rid of the underflow and overflow errors. The image
obtained with this implementation exhibits a checkerboard effect, which is due to cancellation
errors occurring in the computation of the terms Iµ,px,y . We display in (d) the image delivered by
the algorithm that we propose for the evaluation of (4.9), which carefully handles the different
kind of numerical errors presented above.

In order to understand the numerical difficulties inherent to the computation
of Iµ,px,y , we first focus on the particular case µ = 0. This case looks rather simple,
since for µ = 0 we have a closed-form

I0,px,y =

∫ y

x

sp−1 ds =
yp − xp

p
. (4.15)

However, the practical computation of (4.15) raises two main difficulties:

(i) For some values of x, y, p, the quantity I0,px,y cannot be represented in the
computer floating-point arithmetic, for instance, when it is out of the range
defined by the smallest and largest representable floating-point numbers,
yielding the so-called underflow and overflow numerical errors. This lim-
itation complicates the evaluation of the ratio (4.9) which can exhibit a
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non-representable numerator and denominator, although the actual ratio is
representable in the floating-point arithmetic.

(ii) The numerical computation of the difference yp − xp, involved in (4.15),
becomes very inaccurate when x and y are too close to each other, especially
when p is high. Indeed, as two positive numbers get close to each other,
the number of identical significant digits they have in common increases, so
that the subtraction of one number to the other results in a loss of accuracy,
called loss of significance, or cancellation error.

Instead of computing I0,px,y using (4.15), we can use the identity

yp − xp = yp−1(y − x)
p−1∑

k=0

(
x

y

)k

,

which yields a mantissa-exponent representation

I0,px,y = ρ · eσ , where ρ =
(y − x)

p

p−1∑

k=0

(
x

y

)k

, σ = (p− 1) log y . (4.16)

First, remark that ρ and σ in (4.16) can be both computed in double floating-
point precision, which greatly extends the range of values for which the quantity
I0,px,y can be represented. Besides, we will explain later (Proposition 33) how such
a mantissa-exponent representation for each term Iµ,px,y involved in the Poisson
TV-ICE recursion (4.9) can be used to avoid underflow and overflow in the com-
putation of the image un+1, under a very low assumption (more precisely, under
the assumption that un+1 has its gray levels between 5 · FPmin and 1

5
· FPmax,

noting FPmin and FPmax the smallest and largest floating-point numbers).
Second, we remark that the computation of ρ is free of cancellation errors, since

1
p

∑p−1
k=0(x/y)

k is a sum of positive terms, and the error related to the evaluation
of the difference y − x is the machine precision as soon as we assume that x
and y are exactly representable with the available floating-point precision (of
course, we cannot avoid this assumption, since any algorithm taking x and y as
input parameters in order to compute I0,px,y will in practice replace x and y by the
nearest representable numbers x̃ and ỹ, so that we are in practice interested in the
accurate computation of I0,px̃,ỹ , where x̃ and ỹ are exactly representable numbers).

Finally, we explained how the numerical difficulties (i) and (ii) could be over-
come in the case µ = 0. We will now focus on the more complicated case µ 6= 0,
however, since Chapter 5 will be entirely dedicated to the numerical evaluation
of the quantities γµ(p, x), Γµ(p, y), and Iµ,px,y given (µ, p, x, y), we will here only
briefly detail the main ideas of the methodology that we propose.



4.3. Numerical computation of Poisson TV-ICE 167

Numerical computation of γµ(p, x) and Γµ(p, x) with a mantissa-exponent
representation

We reviewed the literature to find the available methods for the computation
of γµ(p, x) and Γµ(p, x), and found that for the explored domain |µx| ≤ 1000,
1 ≤ p ≤ 1000 (and even far beyond in fact), the selection of the three following
algorithms was satisfactory:

(i) A continued fraction for the computation of

γµ(p, x) = γcfracµ (p, x) := mcfrac(µx, p) · e−µx+p log x ,

where

mcfrac(µx, p) =
a1

b1 +
a2

b2 +
a3

b3 + . . .

,

denotes a continued fraction that will be explicited in Chapter 5.

(ii) A simple recursive integration by parts formula, only valid when µ < 0,
yielding

γµ(p, x) = γibpµ (p, x) := mibp(µx, p) · e−µx+p log x ,

where

mibp(µx, p) =
1

µx

(
(p−1)! eµx

(µx)p−1 −
p−1∑

k=0

(−1)k (p−1)! |µx|−k

(p−1−k)!

)
.

(iii) A continued fraction for the computation of

Γµ(p, x) = Γcfrac
µ (p, x) :=M cfrac(µx, p) · e−µx+p log x ,

whereM cfrac(µx, p) denotes another continued fraction, that will be given in
Chapter 5.

By measuring the computation time for each method for a large range of
parameters µ, x, p, and thanks to a precise estimation of the relative error pro-
vided by MapleTM, we derived a partition of the plan (µx, p) into three domains,
which makes possible the selection of at least one quantity between γµ(p, x) and
Γµ(p, x), being at the same time rapidly and accurately computable using one of
the formulas displayed above. This partition is displayed in Figure 4.2, and can
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Figure 4.2: Partition of the domain (µx, p) for the evaluation of the generalized
incomplete gamma function. The rectangular domain of the plane (µx, p) above is cut into
three regions delimited by the red curves. On each region, one of the three selected algorithm
is used to compute numerically either γµ(p, x) or Γµ(p, x), using the continued fraction γcfrac

µ ,

the recursive integration by parts γibp
µ , or the other continued fraction Γcfrac

µ . The numerical
experiments used to derive this partition will be presented in detail in Chapter 5.

be summarized as follow: compute γcfracµ (p, x) when p ≥ plim(µx), otherwise, com-
pute Γcfrac

µ (p, x) when µ > 0, or compute γibpµ (p, x) when µ < 0. The parametric
equation of the frontier z 7→ plim(z) being given by

∀z ∈ R ∪ {+∞}, plim(z) =





5
√
|z| − 5 if z < −9
0 if − 9 ≤ z ≤ 0
z otherwise.

Of course, once one of the two quantities γµ(p, x) or Γµ(p, x) is computed, if
necessary, one can recover the value of the other using

Γµ(p, x) + γµ(p, x) =
(p−1)!
µp ,

which is valid as soon as µ > 0 (otherwise the integral Γµ(p, x) is indefinite). We
will explain in Chapter 5 how we can recover a mantissa-exponent representation
of γµ(p, x) from a mantissa-exponent representation of Γµ(p, x) (and vice-versa).

Numerical computation of Iµ,px,y with a mantissa-exponent representation

As stated before, the integral Iµ,px,y can be computed as a difference

Iµ,px,y = Idiff := A− B ,
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using (4.13) or (4.14). Thanks to the partition derived in Figure 4.2, we are now
able to select which one should be computed according to the value of (x, y, µ, p).
This choice, as well as the corresponding mantissa-exponent representation of
the selected difference A − B, will be explicited in Chapter 5. However, as also
remarked before, even when A and B are accurately evaluated, the numerical
computation of Idiff may suffer from cancellation errors if A and B are too close
to each others, which in practice happens when x and y are too close to each
other. In that case, we propose to approximate Iµ,px,y using a trapezoidal rule, and
we will in Chapter 5 derive a good criterion to decide when this approximation
should be used.

Numerical computation of the TV-ICE Poisson recursion (4.9)

We briefly explained above the numerical approach we propose to compute the
integrals Iµ,px,y involved in (4.9) using a mantissa-exponent representation Iµ,px,y ≈
ρ · eσ. We refer again to Chapter 5 for the details and the numerical validation of
the effective algorithm that we proposed.

We now consider that we can use this algorithm to compute a mantissa-
exponent representation (ρ+k , σ

+
k ) for each integral I

µk,v(x)+2
ak−1,ak

involved in the numer-

ator of the TV-ICE recursion (4.9), and similarly, compute a mantissa-exponent

representation (ρk, σk) for each integral I
µk,v(x)+1
ak−1,ak

involved in its denominator,
yielding

∀k ∈ {1, . . . , 5}, I
µk,v(x)+2
ak−1,ak

= ρ+k · exp (σ+
k ) , I

µk,v(x)+1
ak−1,ak

= ρk · exp (σk) ,

and thus,

∀k ∈ {1, . . . , 5},
{
ck I

µk,v(x)+2
ak−1,ak

= exp (log (ck ρ
+
k ) + σ+

k ) ,

ck I
µk,v(x)+1
ak−1,ak

= exp (log (ck ρk) + σk) ,

where the quantities µk and log ck are those given in closed-form in (4.10). Then,
the recursion (4.9) can be computed using

un+1(x) =

∑
1≤k≤5 exp (log (ck ρ

+
k ) + σ+

k −M)∑
1≤k≤5 exp (log (ck ρk) + σk −N)

· exp (M −N) , (4.17)

where

M = max
1≤k≤5

(
log (ckρ

+
k ) + σ+

k

)
, N = max

1≤k≤5
(log (ckρk) + σk) .
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The advantage of (4.17) (compared to the sequential computation of the numer-
ator A and the denominator B of (4.9), followed by the computation of the ratio
un+1(x) = A/B), is its robustness to numerical underflow and overflow.

Proposition 33 (robustness of (4.17) regarding numerical underflow and
overflow errors). The numerical computation of (4.17) is free of numerical un-
derflow and overflow errors, as soon as the effective value of un+1(x) satisfies

5 · FPmin < un+1(x) <
1

5
· FPmax , (4.18)

where FPmin and FPmax denote respectively the smallest and highest double floating-
point numbers.

Proof. Noting

S1 =
∑

1≤k≤5

exp
(
σ+
k + log (ck ρ

+
k )−M

)
, S2 =

∑

1≤k≤5

exp (σk + log (ck ρk)−N) ,

we have, by construction, 1 < S1 < 5, and 1 < S2 < 5. Therefore, noting
S = S1/S2, we have

1

5
< S < 5 ,

so that the numerical computation of S is free of underflow and overflow errors.
Besides, using the assumption (4.18), we have

FPmin <
un+1(x)

S
< FPmax ,

and since exp (M −N) = un+1(x)/S, the computation of exp (M −N) is also free
of underflow and overflow errors. Finally, both quantities S and exp (M −N) are
representable with the floating-point arithmetic, so as the product S ·exp (M −N)
which equals un+1(x), and thus automatically satisfies (4.18).
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4.4 Experiments

We first checked the convergence of the proposed Poisson TV-ICE algorithm
obtained by iterating the recursion (4.9) (numerically computed using (4.17))
using the initialization u0 = 0. As can be seen in Figure 4.3, numerical convergence
is attained for Poisson TV-ICE after a few hundred iterations, and the convergence
rate is linear, as announced in Theorem 4.
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Figure 4.3: Convergence rates for TV-MAP and TV-ICE. We display in logarithmic
scale the convergence rates obtained for the proposed implementation of the Poisson TV-ICE
algorithm (green plain curve), and for the Chambolle-Pock implementation of the Poisson TV-
MAP (using the anisotropic or isotropic discrete total variation regularizer, TV

d
1 or TV

d
2) al-

gorithms (blue/red dashed curves). As announced in Theorem 4, the Poisson TV-ICE scheme
achieves a linear convergence rate.

We then chose three images taken from areas concerned with Poisson noise
(two from microscopy, and one from astronomy), and simulated a low-light obser-
vation (that is, a Poisson noise process) for each of them. Then, we restored the
noisy images with both the Poisson TV-MAP and the proposed Poisson TV-ICE
methods (see Figure 4.4). As predicted by the theory (Theorem 5), TV-ICE re-
sults do not exhibit staircasing effects, contrary to TV-MAP images which provide
less details, in particular in the areas where the staircasing artifact causes an im-
portant loss of contrast (see, for instance, the bottom-right part of the images of
the first row of Figure 4.4). This visual effect was confirmed by the systematically
smaller I-divergence values obtained with TV-ICE.
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anisotropic TV-MAP Poisson TV-ICE reference \ noisy

Figure 4.4: Comparison of Poisson TV-MAP and Poisson TV-ICE. Three images
(first row: actin filaments and microtubules in interphase cells, second row: mouse dorsal root
ganglion, third row: NGC 1672 spiral galaxy) were corrupted with Poisson noise, then denoised
with the Poisson TV-MAP algorithm (left column) and the proposed Poisson TV-ICE method
(middle column). For each algorithm, we selected the value of the λ parameter that achieved the
smallest Csiszar I-divergence [Csiszar 1991] (a measure of distance adapted to the case of Poisson
noise) between the reference image uref (bottom-left part of the images in the right column) and
the denoised image û, which is defined by I-div(uref , û) = 〈uref log(uref/û) − (uref − û) , 1Ω〉 .
One can clearly see that TV-MAP results exhibit staircasing effects and an associated loss of
details in the corresponding flat regions; on the contrary, the TV-ICE images are more natural
and more faithful to the fine details of the reference, especially in the regions where TV-MAP
produces staircasing. Note that in order to increase the readability of the figure, the dynamic
of the images has been linearly amplified, causing some (limited) saturation in dark and white
areas. Image sources: www.cellimagelibrary.org and www.wikimedia.org.

www.cellimagelibrary.org
www.wikimedia.org
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4.5 Conclusion and perspectives

We proposed a variant of the recent TV-ICE denoising method adapted to the
special case of Poisson noise. The absence of staircasing and the better-quality
restored images attested by experiments make Poisson TV-ICE a good alternative
to Poisson TV-MAP, and suggests that it could be interesting to derive Poisson
TV-ICE variants for more complex inverse problems involving TV terms.

The linear convergence rate of the method is appealing but is not sufficient to
compensate for the heavy computations required by the form of the recursion op-
erator (several evaluations of the exponential and logarithm functions are required
for each pixel). In our current (non-optimized) implementation, one iteration of
TV-ICE is approximately 100 times slower than one iteration of TV-MAP. How-
ever, further work could focus on the fast approximation of TV-ICE, and the
precise implementation we here proposed would be useful in that context to check
the quality of the approximation.

As in the Gaussian case, the generalization of the proposed algorithm to three-
dimensional images (or more), or to larger neighborhood systems, is straightfor-
ward. However, the comparison with the Poisson TV-LSE variant is, both from
a theoretical or practical point of view, still open.
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Abstract

We propose a computational procedure to evaluate the generalized incomplete
gamma function

∫ y

x
sp−1 e−µs ds for 0 ≤ x < y ≤ +∞, a real number µ 6= 0 and

a positive integer p. Our approach consists in selecting, according to the value
of the parameters x, y, µ, p, the fastest and most accurate estimate among series
expansions, continued fractions, recursive integration by parts, or, when x ≈ y, a
first order trapezoidal rule. We show that the accuracy reached by our algorithm
is nearly optimal for a large range of parameters.

5.1 Introduction

In this chapter, we focus on the computation of a generalized incomplete
gamma function that will be defined below. Let us first recall the definition
of the gamma function,

∀a > 0, Γ(a) =

∫ +∞

0

sa−1 e−s ds . (5.1)

The lower and upper incomplete gamma functions are respectively obtained by
allowing the integration domain to vary in (5.1),

∀a > 0, ∀x ≥ 0, γ(a, x) =

∫ x

0

sa−1 e−s ds and Γ(a, x) =

∫ +∞

x

sa−1 e−s ds .

(5.2)

The gamma function is usually viewed as an extension of the factorial function
since it satisfies Γ(a) = (a− 1)! for any positive integer a. Note that the gamma
function can also be defined for all complex numbers a with positive real part,
using the same convergent improper integral as in (5.1), and can even be extended
by analytic continuation to all complex numbers except the nonpositive integers,
that is, to a ∈ C \ {0,−1,−2,−3, . . .}. Some similar extensions are also available
for their incomplete variants γµ(a, x) and Γµ(a, x). These special functions arise
in many areas, such as astronomy and astrophysics [Cannon and Vardavas 1974,
Hills 1975], Rayleigh scattering [Kissel et al. 1980], quantum gravity [Bleicher
and Nicolini 2010], networks [Moreno et al. 2002], financial mathematics [Linet-
sky 2006], image analysis [Robin et al. 2010], etc. (see [Chaudhry and Zubair
2001] for more examples). From the mathematical viewpoint, the computation
of incomplete gamma functions is typically required in applications involving the
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evaluation of χ2 distribution functions, exponential integrals, error functions (erf),
cumulative Poisson or Erlang distributions, etc. Their practical numerical evalu-
ation is still subject to some flourishing research in the modern litterature. The
first practical algorithm dedicated to the numerical evaluation of the incomplete
gamma functions was, to the best of our knowledge, proposed in [Bhattacharjee
1970]. It consists in evaluating the ratio γ(a, x)/Γ(a) using a series expansion
when 0 < a ≤ x < 1 or 0 ≤ x < a, or the ratio Γ(a, x)/Γ(a) using a continued
fraction in the remaining part of the domain {x ≥ 0, a > 0}. The same strategy is
also used in [Press et al. 1992]. Gautschi [1979] proposed another computational
procedure, based on Taylor’s series and continued fractions, to evaluate those two
functions in the region {x ≥ 0, a ∈ R} (in fact, for a ≤ 0, Tricomi’s version
[Tricomi 1950, Gautschi 1998] of the lower incomplete gamma function, which
remains real for any real numbers x, a, is considered). The criterion proposed in
[Bhattacharjee 1970] to decide which one of the two integrals should be computed
according to the value of (x, a) is refined, and a more suitable normalization is
employed, which extends the range over which those two functions can be rep-
resented within standard double precision arithmetics. More recently, Winitzki
[2003] focused on the computation of the upper incomplete gamma function and
used some series expansions, a continued fraction (due to Legendre), some recur-
rence relations, or, for large values of x, an asymptotic series. The precision of
the approximation is controlled by estimating the number of terms required to
reach a given absolute precision according to the values of x and a. However,
the study is not considered from the practical point of view, and no algorithm
or experimental validation are provided to assess the numerical stability of the
proposed method. In [Guseinov and Mamedov 2004], the lower and upper in-
complete gamma functions are computed using backward and forward recurrence
relations. The experimental validation is done for the range 0.001 ≤ x ≤ 100 and
0 < a ≤ 100, which is relatively large in comparison to the numerical validations
usually proposed in the litterature. We will also use, for a particular region of the
quarter plane {(a, x), a > 0, x < 0}, a recurrence relation to compute the lower
incomplete gamma function. However, we shall see that in the region x > 0, we
experimentally achieve a faster convergence by using some continued fractions.

In the present chapter, we consider the more general case of the generalized
incomplete gamma function, defined by

Iµ,px,y =

∫ y

x

sp−1 e−µs ds, for 0 ≤ x < y ≤ +∞, p > 0, µ ∈ R \ {0} , (5.3)

and we restrict the study to integer values of p (even though all the algorithms we
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propose also work for non-integer values of p when µx > 0). Notice that y = +∞
is only allowed when µ > 0, otherwise the integral is equal to +∞. Note also that
thanks to the rescaling relation

Iµ,px,y = |µ|−p Iε,p|µ|x,|µ|y, where ε =
µ

|µ| , (5.4)

we could restrict the study, without any loss of generality, to µ ∈ {−1, 1}. We
will however not adopt this restriction since it does not simplify the study, even
though the numerical evaluations that we propose are limited to µ = ±1, which
simplifies the experimental validation. The computation of Iµ,px,y will be closely
related to that of the generalized lower (γµ) and upper (Γµ) incomplete gamma
functions, which we naturally define by

∀µ ∈ R, γµ(p, x) =

∫ x

0

sp−1 e−µs ds ,

and ∀µ > 0, Γµ(p, x) =

∫ +∞

x

sp−1 e−µs ds . (5.5)

Note that when µ > 0 in (5.3) or (5.5), the change of variable t = µs would lead
us back to the standard definitions of the incomplete gamma functions (up to the
multiplicative factor µ−p), but this is not the case when µ < 0. The possibility to
evaluate the lower incomplete gamma function γ(p, x) with a negative argument
x (which amounts to compute γµ(p, |x|) with µ = −1) is explored in [Thompson
2013], but in another situation than ours, since he focused on the case p = n +
1
2
, n ∈ Z.
The generalized incomplete gamma function (5.5) was actually previously in-

troduced in [Fullerton 1972], under the slightly different form

Ja
x1,x2

= ex1

∫ x2

x1

|s|a−1 e−s ds , for any (x1, x2) ∈ R2, and a > 0 . (5.6)

The integrals I and J are closely related since one easily checks that

∀x, y, 0 < x < y, ∀p > 0, Iµ,px,y =

{
µ−p e−µxJp

µx,µy if µ > 0 ,

|µ|−p e−µyJp
µy,µx if µ < 0 .

(5.7)

Our parametrization of the integral I using the scale parameter µ will be helpful
to avoid the absolute values in the integral, which would inevitably have involved
the distinction of the cases x1 > x2 and x1 ≤ x2 in our study. The numerical
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evaluation of the generalized incomplete gamma function Iµ,px,y has found some
applications in the field of astronomy, for instance in [Hills 1975], where its com-
putation was needed to model the dynamical evolution of stellar clusters. It was
more recently needed in the field of image processing, in [Abergel et al. 2015],
where the accurate computation of Iµ,px,y for a large range of parameters was at
the heart of a denoising algorithm for the restoration of images corrupted with
Poisson noise. Unfortunately, Fullerton’s algorithm, which was not validated for a
large range of parameters, presents several weaknesses. As pointed out in [Schoene
1978], for some values of the parameters, the algorithm suffers from numerical in-
stabilities, yielding for instance, a computed integral with incorrect sign, or zero
digit of precision. We also observed some overflow issues when we tested the al-
gorithm on a higher range of parameters (typically when p ≈ 102 or higher, but
also for many other parameter settings).

Note also that a numerical procedure specific to the evaluation of Iµ,px,y is avail-
able into the scientific computing software Mathematica (see [Wolfram Research
Inc 1988], but also [Wolfram Research Inc 1998] for the online evaluation of Iµ,px,y ).
Unfortunately, Mathematica’s algorithms are not currently disclosed to the public.

Let us now consider the numerical evaluation of Iµ,px,y . This integral can be
computed as a difference of generalized lower (γµ) and upper (Γµ) incomplete
gamma functions, since for any µ ∈ R, we have

Iµ,px,y = γµ(p, y)− γµ(p, x) , (5.8)

and for µ > 0, we have

Iµ,px,y = Γµ(p, x)− Γµ(p, y) =
Γ(p)

µp
− γµ(p, x)− Γµ(p, y) . (5.9)

The effective computation of Iµ,px,y using (5.8) or (5.9) raises several numerical
issues:

1. For some values of the parameters, the generalized incomplete gamma func-
tions γµ and Γµ cannot be represented in the computer floating point arith-
metic (for example when they exceed 1.9 ·10308, the largest double precision
number). To solve that issue, we will represent all integrals in (5.5) un-
der the form ρ · eσ, where ρ and σ are floating point numbers with double
precision;
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2. The possibility to efficiently compute γµ(p, x) and Γµ(p, x) depends on the
values of the parameters µ, p, x, or more precisely of µx and p because of the
scaling relation (5.4). We derived a division of the plane (µx, p) allowing an
efficient computation of these two functions for each parameter set (µ, p, x);

3. When Iµ,px,y is computed as the difference A−B, the result may be inaccurate
if A and B are close to each other (the well-known cancellation effect in
floating-point arithmetic), which typically happens in (5.8)-(5.9) when x
and y are very close to each other. In that case, the integral Iµ,px,y is well
approximated by a first order approximation of the integral. We found a
good criterion, to decide when this approximation should be used.

In particular, the issue (1) detailed above is of great importance when some in-
tegrals of the kind Iµ,px,y appear into more complicated mathematical expressions,
such as in [Abergel et al. 2015], where the computation of a ratio of sums of gener-
alized incomplete gamma functions is involved, with a numerator and a denomina-
tor that may both exceed the highest representable double floating point number,
although the ratio itself is representable in the standard computer floating-point
arithmetic.

This chapter is organized as follows. In Section 5.2, we recall some mathemat-
ical methods based on series expansion, fraction continuation, or recursive inte-
gration by parts, that can be used for the numerical evaluation with a mantissa-
exponent representation of the generalized lower (Section 5.2.1) and upper (Sec-
tion 5.2.2) incomplete gamma functions γµ and Γµ. In Section 5.2.3, we derive
theoritical accuracy bounds achievable with such a mantissa-exponent representa-
tion, and check experimentally in Section 5.2.4 that we can achieve these bounds
by selecting the appropriate method (continued fraction or integration by parts)
depending on the values of the parameters µ, p, x. In Section 5.3, we focus on the
practical evaluation of the generalized incomplete gamma function Iµ,px,y (that is,
with arbitrary finite values of x and y). The numerical evaluation of this integral
is done by means of a difference (5.8)-(5.9), or, when x ≈ y, using the first or-
der trapezoidal rule. In Section 5.5, our algorithm is compared with the one of
Fullerton, and is shown to exhibit a much greater accuracy for a large range of
parameters. We finally conclude in Section 5.6 and discuss some perspectives.
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5.2 Numerical computation of the generalized

lower and upper incomplete gamma func-

tions

5.2.1 Evaluation of the generalized lower incomplete gamma
function

Given p ≥ 1, x > 0 and µ 6= 0, we detail below how the generalized lower
incomplete gamma γµ(p, x) can be evaluated with a mantissa-exponent represen-
tation of the kind

γµ(p, x) = m(µx, p) · en(µ,x,p), where n(µ, x, p) = −µx+ p log x . (5.10)

The mantissa m(µx, p) will be determined using either a series expansion, or a
continued fraction, or, in the case µ < 0, a recursive integration by parts. This
yields three different computational methods for the evaluation of γµ(p, x). Notice
that in the following, we will need to extend the representation (5.10) to the
particular cases x = 0 and (only when µ > 0) x = +∞. For that purpose we set
m(0, p) = 0, n(µ, 0, p) = −∞ (taking the obvious convention that 0 · e−∞ = 0),
and in the case µ > 0, we set m(+∞, p) = 1 and n(µ,+∞, p) = log Γ(p)− p log µ.
The practical computation of log Γ(p) will be discussed in Section 5.4.

Series expansion

Writing the Taylor series expansion with order p − 1 and integral remainder
of the exponential function near zero we get

eµx =

p−1∑

k=0

(µx)k

k!
+

∫ µx

0

(µx− t)p−1

(p− 1)!
et dt

=
s=x−t/µ

eµx −
+∞∑

k=p

(µx)k

k!
+

µp eµx

(p− 1)!

∫ x

0

sp−1 e−µs ds .

This yields a series expansion of the generalized lower incomplete gamma function
under the form γµ(p, x) = γserµ (p, x) where

γserµ (p, x) = mser(µx, p) · e−µx+p log x ,

and mser(µx, p) =
+∞∑

k=0

(p− 1)!

(k + p)!
(µx)k . (5.11)
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Although the power series mser(µx, p) defined above has an infinite radius of con-
vergence, its convergence can be quite slow and numerically unstable according
to the values of p and µx. It is suggested in [Press et al. 1992] to evaluate γµ(p, x)

using (5.11) as soon as |µx|
p+1

< 1; however, according to our experiments, a bet-
ter convergence rate can be obtained by using a continued fraction development.
Thus, we shall not use (5.11) in the algorithm we propose.

Continued fraction

Let us consider the confluent hypergeometric function M , defined by

M(a, b, z) =
+∞∑

n=0

a(n)

b(n)
zn

n!
, where ∀α, α(0) = 1 and α(n) = α(α+1) · · · (α+n−1) .

Since for any (b, z) we have M(0, b, z) = 1, Equation (5.11) rewrites as

γµ(p, x) =
M(1, p+ 1, µx)

p ·M(0, p, µx)
· e−µx+p log x . (5.12)

As detailed in [Olver et al. 2010, DLMF, Cuyt et al. 2008, Jones and Thron 1980],

the ratio M(a,b,z)
M(a+1,b+1,z)

can be continued for any z ∈ C, as soon as a 6∈ Z \ N and

a − b 6∈ N. Under this assumption (which will be satisfied here, since we will
consider the setting a = 0, b = p), and using the usual notation for continued
fractions,

α1

β1+

α2

β2+

α3

β3+
· · · = α1

β1 +
α2

β2+
α3

β3+...

,

we get
M(a, b, z)

M(a+ 1, b+ 1, z)
= 1 +

u1
1+

u2
1+

u3
1+

. . . ,

where ∀n ≥ 0, u2n+1 = (a−b−n)z
(b+2n)(b+2n+1)

, u2n = (a+n)z
(b+2n−1)(b+2n)

. Writing the inverse

ratio (with a = 0 and b = p), and after basic manipulations of the continued
fraction, we obtain

M(1, p+ 1, µx)

p ·M(0, p, µx)
=

a1
b1+

a2
b2+

a3
b3+

. . . ,

where a1 = 1 and ∀n ≥ 1, a2n = −(p−1+n) ·µx, a2n+1 = n ·µx and bn = p−1+n.
Therefore, Equation (5.12) rewrites as γµ(p, x) = γcfracµ (p, x), where

γcfracµ (p, x) = mcfrac(µx, p) · e−µx+p log x ,

and mcfrac(µx, p) =
a1
b1+

a2
b2+

a3
b3+

. . . (5.13)
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The above defined continued fraction mcfrac(µx, p) can be evaluated thanks to the
modified Lentz’s method [Lentz 1976, Thompson and Barnett 1986] which is also
described in [Press et al. 1992] and that we recall in Algorithm 10 for the reader’s
convenience, with however a slight adaptation of the initialization process since
we observed some instabilities when using that described in [Press et al. 1992] (see
comment in Algorithm 10). This continued fraction converges for any value of µx
and the convergence is fast as it requires in general less than 20 approximants to
converge, except when µ > 0 and µx ≈ p (where it takes around p approximants)
or when µ < 0 and p is small (several hundred of approximants needed for p ≤ 20
and |µx| ≤ 1000). Note that mcfrac(µ, px) becomes huge when µx is chosen too
large compared to p, and numerical instabilities can appear. For that reason, we
will restrict the use of (5.13) to a subdomain of the plane (µx, p), as discussed in
Section 5.3.

Algorithm 10: Modified Lentz’s method for continued fractions evaluation.

Input: Two real-valued sequences {an}n≥1 and {bn}n≥1, with b1 6= 0.

Output: Accurate estimate f of the continued fraction a1
b1+

a2
b2+

a3
b3+
· · ·

Initialization:
dm ← 10−300 // Number near the minimal floating-point value

f ← a1
b1
; C ← a1

dm
; D ← 1

b1
; n← 2 // see the algorithm footnote

repeat
D ← D · an + bn
if D = 0 then D ← dm C ← bn +

an
C

if C = 0 then C ← dmD ← 1
D

∆← C ·D
f ← f ·∆
n← n+ 1

until |∆− 1| < εmachine

return f

In the initialization step, we manually performed the first pass n = 1 of the modified Lentz’s
algorithm, since we observed some instabilities with the initialization f = C = dm, D = 0,
presented in [Press et al. 1992]. Indeed, the setting C = dm may yield C = +∞ after the pass
n = 1 (when a1/dm exceed the highest representable number), and then ∆ = f = +∞, which
propagates through the next iterations. By computing manually the first pass, even when the
initialization C = a1/dm yields C = +∞, the pass n = 2 yields C = b2 + a2/C = b2, which has
a finite value.
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Integration by parts

Since we only consider integer values of the parameter p, the generalized lower
incomplete gamma function γµ(p, x) can be written as a closed-form formula using
a recursive integration by parts. Considering the case µ < 0, one gets

γµ(p, x) = γibpµ (p, x) := mibp(µx, p) · e−µx+p log x ,

where mibp(µx, p) =
1

µx

(
(p−1)! eµx

(µx)p−1 −
p−1∑

k=0

(p−1)!(µx)−k

(p−1−k)!

)
. (5.14)

Although the computation of γibpµ (p, x) is not efficient in general, it happens to be
faster than γcfracµ (p, x) for small values of p. We must however be carefull when
computing the alternating sum mibp(µx, p) since, as usual with alternating sums,
it may suffer from dramatic cancellation errors.

Let t = |µx| > 0, we rewrite (5.14) into

mibp(−t, p) = 1

t

(
(−1)p(p−1)! e−t

tp−1 + s(t)
)
,

where s(t) =

p−1∑

k=0

(−1)k (p− 1)! t−k

(p− 1− k)! . (5.15)

By grouping by two the consecutive terms with indexes k = 2l and k = 2l + 1 of
the alternating sum s(t), we get

s(t) = s̃(t) :=

⌊p−2
2

⌋∑

l=0

(p− 1)! t−(2l+1)

(p− 1− 2l)!
(t− (p− 1− 2l)) + εp(t) , (5.16)

where ⌊z⌋ denotes the integer part of z, and the residual term εp(t) is defined by

εp(t) =

{
(p− 1)! t−(p−1) if p is odd

0 otherwise.

Let us now assume that t ≥ max (1, p− 1). First, using t ≥ p − 1, we see that
all terms in the sum s̃(t) are nonnegative, so that we can evaluate s̃(t), which has
exactly the same value as the alternating sum s(t), without any cancellation error
using (5.16). It follows that, when p is even, we have

mibp(−t, p) = 1

t

(
(p− 1)!e−t

tp−1
+ s̃(t)

)
,
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which is a sum of positive terms, so that it does not suffer from cancellation error.
When p is odd, (5.15) yields

mibp(−t, p) = 1

t

(
−(p− 1)!e−t

tp−1
+ s̃(t)

)
. (5.17)

Noting α(t) = (p−1)!e−t

tp−1 and using the fact that t ≥ 1, we get

s̃(t)

α(t)
≥ εp(t)

α(t)
= exp (t) ≥ exp (1) ,

which ensures that no cancellation error occurs when computing the difference
between s̃(t) and α(t), involved in (5.17). Finally, we are able to evaluate (5.14)
without cancellation in the region t ≥ max (1, p− 1).

Last, from t > p− 1, we infer that the sequence {ak(t)}k≥0 defined by

∀k ≥ 0, ak(t) =

{
(p−1)! t−k

(p−1−k)!
if k ≤ p− 1

0 otherwise,

is nonincreasing, with limit 0. It follows that the remainder rn(t) =
∑+∞

k=n+1(−1)kak(t)
of the alternating series s(t) =

∑+∞
k=0(−1)kak(t) satisfies |rn(t)| ≤ an+1(t), so that

we can numerically estimate s(t) with the partial sum sn(t) =
∑n

k=0(−1)kak(t) as
soon as

an+1(t) ≤ |sn(t)| · εmachine ,

which may occur for n < p− 1, making possible in that case to save some compu-
tation time. In practice, we compute s(t) = s̃(t) with (5.16) instead of (5.15), but
this stopping criterion can be easily evaluated at each iteration of the summation
procedure. Indeed, remarking that the sequence {a2l(t) − a2l+1(t)}l≥0 is positive
and nonincreasing (because t > p− 1), we get

∀l ∈ N, a2l+2(t) ≤ a2l(t)− a2l+1(t) + a2l+3(t) ≤ a2l(t)− a2l+1(t) ,

so that
∀l ∈ N, |r2l+1(t)| ≤ a2l+2(t) ≤ |a2l(t)− a2l+1(t)| .

This yields Algorithm 11.
There is a more elegant way to avoid the cancellation errors in the computation

of s(t), inspired from Horner’s algorithm for polynomial evaluation. It consists in
computing

s(t) = 1− p− 1

t
·
(
1− p− 2

t
·
(
1− p− 3

t
·
(
. . .

(
1− 1

t

)))
. . .

)
,
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Algorithm 11: Compute mibp(µx, p) = 1
µx

(
(p−1)! eµx

(µx)p−1 −
∑p−1

k=0
(p−1)!(µx)−k

(p−1−k)!

)
.

Input: Two real numbers x ∈ R+, µ < 0, and a positive integer p,
satisfying |µx| > max (1, p− 1).

Output: An accurate estimate of mibp(µx, p).

Initialization: t← |µx|; c← 1
t
; d← p− 1; s← c · (t− d); l ← 1;

stop← false

repeat

c← d(d−1)
t2

d← d− 2
∆← c(t− d) // Now ∆ = a2l(t)− a2l+1(t)

s← s+∆ // Now s = s2l+1(t) =
∑2l+1

k=0 (−1)kak(t)
if ∆ < s · εmachine then stop← true l ← l + 1

until l > ⌊p−2
2
⌋ or stop

if (not stop) and (p is odd) then s← s+ d c
t

// add the term

εp(t) = (p− 1)! t−(p−1)

return 1
t

(
(−1)p · e−t+log (p−1)!−(p−1) log(t) + s

)

or more precisely, s(t) = vp−1(t), where {vn(t)}n≥1 is the sequence defined recur-
sively by

∀n ≥ 1, vn(t) =

{
1− 1

t
if n = 1 ,

1− n
t
· vn−1(t) if n ≥ 2 .

Assuming t ≥ 2p, one can show that the terms of {vn}1≤n≤p−1 remain in (1
2
, 1),

so that they can be evaluated without cancellation errors. However, a drawback
of this approach is the absence of a simple stopping criterion making possible to
end up the computation of s(t) before computing all the first p − 1 terms of the
sequence {vn}n≥1.

Algorithm for the evaluation of the generalized lower incomplete gamma
function

The evaluation of γµ(x, p) using one of the computation methods presented
above can be done using Algorithm 12. This algorithm returns a mantissa-
exponent representation (m,n) of γµ(x, p), such as γµ(x, p) = m · en, and returns
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m = 0, n = −∞, when γµ(x, p) = 0 (this will be more generally the case for the
mantissa-exponent representations returned by all algorithms we propose).

Algorithm 12: Evaluation of γµ(x, p) =
∫ x

0
sp−1 e−µs ds using a series ex-

pansion, a continued fraction, or a recursive integration by parts.

Input: Two numbers x ∈ R+ ∪ {+∞}, µ ∈ R \ {0}, and a positive integer
p. Notice that the value x = +∞ is allowed only when µ > 0.

Output: Two numbers m ∈ R and n ∈ R ∪ {−∞} such as
γµ(p, x) = m · en.

if x = 0 then (m,n)← (0,−∞) else if x = +∞ and µ > 0 then
(m,n)← (1, log Γ(p)− p log µ) else

switch choice of the evaluation method for the mantissa do
case series expansion

m← mser(µx, p) ; // using Equation (5.11)

case continued fraction
m← mcfrac(µx, p) ; // using Equation (5.13) and Algorithm 10

case recursive integration by parts (only when µ < 0 and
|µx| > max (1, p− 1))

m← mibp(µx, p) ; // using Equation (5.14)

n← −µx+ p log x

return (m,n)

5.2.2 Evaluation of the generalized upper incomplete gamma
function

Let p ≥ 1, x > 0 and µ > 0. The evaluation of Γµ(p, x) can be done thanks to
another fraction continuation as detailed in [Abramowitz and Stegun 1964, Press
et al. 1992]. We accordingly set Γµ(p, x) = Γcfrac

µ (p, x), where

Γcfrac
µ (p, x) =M cfrac(µx, p) · e−µx+p log x ,

and M cfrac(µx, p) =
α1

β1+

α2

β2+

α3

β3+
· · · , (5.18)

with α1 = 1, αn = −(n− 1) · (n− p− 1) for any n > 1, and βn = µx+ 2n− 1− p
for any n ≥ 1. The continued fraction M cfrac(µx, p) can be numerically evaluated
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using again Algorithm 10, except when β1 = 1 (i.e. when µx = p − 1), in which
case we must use

M cfrac(µx, p) =
α1

M
, where M =

α2

β2+

α3

β3+

α2

β2+
· · · and β2 6= 0 . (5.19)

We extend the computation of Γµ(p, x) to the cases x = 0 and x = +∞ using a
similar approach as for γµ(p, x). This yields Algorithm 13.

Algorithm 13: Evaluation of Γµ(x, p) =
∫ +∞
x

sp−1 e−µs ds using a continued
fraction.

Input: Two numbers x ∈ R+ ∪ {+∞}, µ > 0, and a positive integer p.

Output: Two numbers M ∈ R and N ∈ R ∪ {−∞} such that
Γµ(p, x) =M · eN .

if x = 0 then (M,N)← (1, log Γ(p)− p log µ) else if x = +∞ then
(M,N)← (0,−∞) else

if µx 6= p− 1 then
M ←M cfrac(µx, p) ; // using Equation (5.18) and Algorithm 10

else
M ←M cfrac(µx, p) ; // using Equation (5.19) and Algorithm 10

N ← −µx+ p log x

return (M,N)

5.2.3 Accuracy of the mantissa-exponent representation
and its conversion into scientific notation

Thanks to Algorithms 12 and 13, we are now able to evaluate the integrals
γµ(p, x) and Γµ(p, x) with a mantissa-exponent representation of type ρ·eσ, where,
in absence of additional multiprecision library, the quantities ρ and σ are eval-
uated in standard double floating-point precision. Alhough this representation
considerably extends the range over which the integrals γµ(p, x) and Γµ(p, x) can
be represented (in comparison with a direct evaluation of those integrals in double
precision), the evaluation of the term ρ·eσ may suffer from important loss of preci-
sion, according to the values of ρ and σ. Indeed, using a first order approximation
of the relative error associated to the term ρ · eσ, we get
∣∣∣∣
∆(ρ · eσ)
ρ · eσ

∣∣∣∣ ≈
∣∣∣∣
∆ρ

ρ

∣∣∣∣+
∣∣∣∣
∆(eσ)

eσ

∣∣∣∣ =
∣∣∣∣
∆ρ

ρ

∣∣∣∣+ |∆σ| =
∣∣∣∣
∆ρ

ρ

∣∣∣∣+ |σ| ·
∣∣∣∣
∆σ

σ

∣∣∣∣ := E (5.20)
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where |∆X| and |∆X/X| respectively denote the absolute and relative errors
between the actual value of X and its computed value. Unfortunately, we see
that E gets large as |σ| increases, and since the quantity ρ and σ are in the best
case estimated at the machine precision (i.e. |∆ρ/ρ| = |∆σ/σ| = εmachine), we
have the lower bound

E ≥ Emin := 1 + |σ| · εmachine . (5.21)

For instance, when σ ≈ 4503.5, the best relative accuracy that can be expected is
Emin ≈ 4504.5 × 2.22 · 10−16 ≈ 10−12 using the IEEE 754 Standard for Floating-
Point Arithmetic on a 64-bits computer (which yields εmachine = 2.22 · 10−16).
Since in Algorithms 12 and 13, the exponent σ associated to the computation
of γµ(p, x) or Γµ(p, x) is given by σ = −µx + p log x, we can already establish
some theoritical bounds for the relative error E reachable by these algorithms
with respect to µ, p, x. This is done in Figure 5.1, and our numerical experiments
performed in Section 5.2.4 (Figures 5.2 and 5.3) will show that this theoritical
bound is in practice attained by our algorithms.

Unsurprisingly, the same limitation arises when we format the quantity ρ · eσ
in scientific notation (that is ρ · eσ = a · 10b, where a ∈ [1, 10) and b ∈ Z). This
operation can be done using

a = ρ · ec−⌊c⌋ , b = ⌊c⌋ , where c =
σ

log (10)
+ log10 (ρ) . (5.22)

This time, the evaluation of a suffers from the loss of precision occuring in the
evalution of c − ⌊c⌋, the fractional part of c, simply because all digits used to
represent the integer part of c are as many digits which are lost in the evaluation
of its fractional part. Assuming that ∆b = 0 (i.e. that the quantity c is estimated
with at least one digit of precision), we get

∣∣∣∣
∆(a · 10b)
a · 10b

∣∣∣∣ =
∣∣∣∣
∆a

a

∣∣∣∣ ≈
∣∣∣∣
∆ρ

ρ

∣∣∣∣+ |∆c| ≤ (1 + |c|) · εmachine , (5.23)

which is similar to (5.21). Although some numerical strategies to retrieve several
significant digits may be developed, the most straightforward way to compensate
the loss of precision of those two representations would be to evaluate σ and ρ
with a more generous floating point precision, which can be easily done using the
x86 Extended Precision Format (which corresponds to the long double datatype
in C langage, and yields εmachine = 1.08 · 10−19), or using some multiprecision
library (such as the GNU MPFR C-library, which provides an exact control of the
number of significant number of bits used for each variable).
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Figure 5.1: Isovalues of the exponent σ = (µ, x, p) 7→ −µx + p log x (µ = −1, left)
and (µ = 1, right). In this figure, we display some isovalues of the exponent part of γµ and
Γµ computed with Algorithm 12 and 13, and whose parametric equation is recalled above. As
discussed in Section 5.2.3, the relative precision related to the evaluation of γµ and Γµ using
a mantissa-exponent representation ρ · eσ deteriorates as σ increases. Indeed, even when ρ
and σ are estimated with the best available precision (∆ρ/ρ = ∆σ/σ = εmachine), the best
relative precision that we can expect for the evaluation of ρ · eσ is Emin = (1 + |σ|) · εmachine,
as stated in (5.21). The standard precision (on a 64-bits computer) is εmachine = 2.22 · 10−16,
so that Emin ≥ 10−12 as soon as σ ≥ 4503.5. Interestingly enough, the curve corresponding
to the isovalue σ(µ, x, p) = 4503.5 fits particularly well with the frontier of the domain where
Algorithm 12 and 13 yield a relative accuracy more than 10−12 (see Figure 5.2). When using
the extended double floating-point precision (corresponding to the long double datatype in C
langage), we have εmachine = 1.08·10−19, so that we get 1·10−16 ≤ Emin ≤ 2·10−16, in the region
1000 ≤ σ(µ, x, p) ≤ 2000 (delimited by the two other isovalues represented above). Again, these
two frontiers were experimentally observed in Figure 5.3, where we measure the relative error
reached by our algorithms using extended double precision.

5.2.4 Selection of a fast and accurate computational method
according to the parameters

We detailed in (5.11), (5.13), (5.14), (5.18), several methods for the numerical
evaluation of γµ and Γµ, with a mantissa-exponent representation. Let us now
focus on the accuracy and the computation time of these methods, according to
the value of the parameters µ, p, x. For that purpose, we evaluated γserµ (x, p),
γcfracµ (x, p), γibpµ (x, p) and Γcfrac

µ (x, p) for a large range of parameters:

µ = ±1, x ∈ [0, 1000] ∩ N, p ∈ [1, 1000] ∩ N ,
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more precisely, γcfracµ (x, p) and γserµ (x, p) were computed for all theses values of
(µx, p), but γibpµ (x, p) was computed only in the case µ < 0, |µx| > max (1, p− 1),
in accordance to the discussion made in Section 5.2.1, and Γcfrac

µ (x, p) was com-
puted only in the case µx ≥ 0.

For each tested value of (µ, x, p) and each evaluation method, we compared
the computed values of γµ(p, x) and Γµ(p, x) (formatted in scientific notation
using (5.22)) to those computed with MapleTM (version 17), with 30 significant
decimal digits (which requires large amounts of memory and a long computation
time), using the instructions

evalf(Int(s^(p-1)*exp(-mu*s),s=0..x,digits=30));

evalf(Int(s^(p-1)*exp(-mu*s),s=x..infinity,digits=30));

The values of the integrals estimated with Maple were used as references to evalu-
ate the relative accuracy reached for each method, and each tested value of µ, x, p.
The results are displayed in Figure 5.2 and 5.3. We observed from these exper-
iments that for each µ, x, p, at least one computation method yields a relative
error less than 2 · 10−12 when using the standard double floating-point precision
in C langage, and only this many in the region (µ, x, p) where the exponent part
is above 4503.5 (this region is represented in Figure 5.1). Outside of this region,
at least one method yields a relative error less than 10−12 (more precisely close to
10−13). Interestingly enough, the observed relative errors perfectly match with the
bound (5.21) predicted in Section 5.2.3, showing that, in practice, the accuracy
of Algorithms 12 and 13 is only limited by the mantissa-exponent representa-
tion. When using the extended double precision (see Figure 5.3), we improve
the precision of three orders of magnitude, and again, the selection of the most
accurate method yields a relative error which is very close to that predicted in
Section 5.2.3, so that we could expect even more accuracy with higher precision
computer arithmetics.

By measuring the computation time for each method and each value of (µ, x, p),
and thanks to the control of the relative error presented in Figure 5.2, we derived
a partition into three domains of the plan (µx, p) which makes possible the fast
and accurate computation of at least one quantity between γµ(p, x) and Γµ(p, x).
We accordingly propose a parametric equation for the boundary of those three
domains, given by

∀µx ∈ R ∪ {+∞}, plim(µx) =





5
√
|µx| − 5 if µx < −9 ,
0 if − 9 ≤ µx ≤ 0 ,
µx otherwise.

(5.24)
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This equation can be used in the following way:
— when p ≥ plim(µx): compute γcfracµ (p, x);
— otherwise: compute γibpµ (p, x) when µ < 0, or Γcfrac

µ (p, x) when µ > 0;
as illustrated in Figure 5.4.

5.3 Evaluation of the generalized incomplete

gamma function

As stated before, the accurate evaluation of Iµ,px,y raises two different issues.
First, this integral can be approximated as the difference A−B between two terms
A ≥ B ≥ 0 involving the evaluation of the generalized upper and lower incomplete
gamma functions γµ and Γµ, thanks to the relations (5.8)-(5.9). Therefore, we
must select which difference can be accurately and efficiently computed according
to the parameters µ, x, y, p; this selection is discussed in Section 5.3.1. Second,
we must be careful that the accurate evaluation of A and B is not sufficient to
garantee an accurate evalutation of the difference A − B, because cancellation
errors arise when A and B are too close to each other, which happens in practice
when x ≈ y. In that case, we propose to approximate the integral Iµ,px,y using a
first order trapezoidal approximation, as discussed in Section 5.3.2. In order to
decide which approximation must be used (between the computation by means of
a difference A−B, or a first order approximation), we propose in Section 5.3.3 a
simple criterion based on the absolute errors. This study results in Algorithm 15
for the evaluation of Iµ,px,y .

5.3.1 Computing Iµ,px,y as a difference of generalized incom-
plete gamma functions

According to the numerical experiments presented in Figures 5.2-5.4, we are
now able to decide which integral between γµ(p, x) and Γµ(p, x) can be computed
and how it must be evaluated, according to the value of (µ, p, x), to reach at the
same time a good accuracy and a small computation time. We used these results
to derive which difference Idiff = A − B should be considered to approximate
Iµ,px,y , according to x, y, µ, p. The results are gathered in Table 5.1. A mantissa-
exponent representation of Idiff is obtained from the mantissa-exponent represen-
tations (mA, nA) and (mB, nB) of A and B (returned by Algorithm 12 or 13):

Idiff = ρdiff · eσdiff , where ρdiff = mA −mB e
nB−nA , σdiff = nA . (5.25)



5.3. Evaluation of the generalized incomplete gamma function 193

1000

900

800

700

600

500

400

300

200

-900 -800 -700 -600 -500 -400 -300 -200 -100 1000900800700600500400300200100

100

-1000

1

(a) relative error for γcfrac
µ .

-900 -800 -700 -600 -500 -400 -300 -200 -100 800700600500400300200100

1000

900

800

700

600

500

400

300

200

100

-1000

1

1000900

(b) relative error for γibp
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Figure 5.2: Control of the relative error associated to the computation of γµ(p, x)
and Γµ(p, x) using different methods. We used Algorithms 12 and 13 (implemented in C
langage, using the standard double datatype on a 64-bits computer) to compute γcfrac

µ (p, x),

γibp
µ (p, x), Γcfrac

µ (p, x) for µ = ±1, x integer in [0, 103], and p integer in [1, 103]. Using Maple, we

measured the relative errors reached by each method. The error reached by γcfrac
µ is displayed

in (a), the error reached by γibp
µ (computed only for µ < 0 and |µx| ≥ max (1, p− 1)) is displayed

in the left-side of (b), and the error reached by Γcfrac
µ (computed only for µ > 0) is displayed in

the right-side of (b). The dashed curve (see its parametric equation in (5.24)) splits the plan
(µx, p) into three domains, each one is associated to one of the three computation methods
(γibp

µ : left, γcfrac
µ : middle, Γcfrac

µ : right), and corresponds to the region where the method is at
the same time fast and accurate, compared to the others (see also Figure 5.4). We can see that
inside each one of the three domains, the corresponding computation method reaches a relative
error always less than 10−11 (the actual maximal observed error is in fact close to 2 · 10−12),
and most of the time less than 10−12 (in practice close to 10−13). We also observe that the
boundary of the region where the relative error (of the selected algorithm) is greater than 10−12

coincides almost perfectly with the isovalue σ = 4503.5 displayed in Figure 5.1, showing that the
relative error is in practice only limited by the mantissa-exponent representation (see discussion
in Section 5.2.3). This limitation can be compensated by using a more precise floating-point
representation, as shown in Figure 5.3.
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Figure 5.3: Improving the accuracy of γµ(p, x) and Γµ(p, x) using extended double
precision. We performed here the same experiment as in Figure 5.2, using a C implementation
of Algorithms 12 and 13 with extended double precision (corresponding to the long double
datatype in C langage, with machine epsilon εmachine = 1.08 · 10−19, which is around three
orders of magnitude better than the standard double precision). We see that our algorithm
fully benefits from this additional precision, since the observed relative error is decreased of
around three magnitude orders as well. Besides, we observe again that the main limitation to
the precision remains that involved by the mantissa-exponent representation, since, within each
domain, the level lines of the relative error of the selected algorithm match very well to the
isovalues of σ, and the value of the relative error is in practice very similar to that predicted
in (5.21). This suggests that the error bounds we obtain could be reduced even further by simply
using a more precise floating-point arithmetic (for instance the GNU MPFR C library).
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Figure 5.4: Numerical evaluation of the generalized lower or upper incomplete
gamma functions. In this figure, we display the graph (red curve) of the frontier plim defined
in (5.24). This curve delimits the plan (µx, p) into three regions, each corresponding to the
region where one of the three computation methods γcfrac

µ , γibp
µ and Γcfrac

µ is optimal (in the
sense that its computation is fast and reaches a good relative error). According to our partition,
and as indicated on the figure, γibp

µ must be computed in the bottom-left region, γcfrac
µ in

the middle region, and Γcfrac
µ in the bottom-right region. More precisely, we select γµ(p, x) as

soon as p ≥ plim(µx), otherwise we select γibp
µ (p, x) when µ < 0, or Γcfrac

µ (p, x) when µ > 0.

A close-up view near µx = 0 shows that γcfrac
µ is automatically selected near µx = 0 since

p ≥ 1 ≥ plim(µx) = 0 when −9 ≤ µx ≤ 0 (this avoids the computation of γibp
µ (p, x) for

|µx| < max (1, p− 1), which is not allowed according to the discussion of Section 5.2.1).

If Idiff was computed directely as the difference A−B (which is in practice difficult
because A and B may not be representable in the floating-point arithmetic), the
absolute error |∆Idiff| = |Iµ,px,y − Idiff| would satisfy |∆Idiff| ≈ Aεmachine (since A ≥
B ≥ 0), but this is not the case here, due to the mantissa-exponent representation
used for A, B, and Idiff. A more precise estimation of |∆Idiff| is obtained by using
a first order approximation

|∆Idiff| ≈ (|∆ρdiff|+ |ρdiff ∆σdiff|) eσdiff .

Besides, as discussed in Figures 5.2 and 5.3, we can reasonably consider that the
relative precision reached for the quantities mA, nA, mB and nB is close to the
machine epsilon (which is of course not the case for mA · enA and mB · enB , as
discussed in Section 5.2.3). It follows that the quantity σdiff is also evaluated at
the machine precision, and thus, the corresponding absolute error is |∆σdiff| =
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Computation of Iµ,px,y : µ < 0 µ > 0

p < plim(µx) γibpµ (p, y)− γibpµ (p, x) Γcfrac
µ (p, x)− Γcfrac

µ (p, y)

plim(µx) ≤ p < plim(µy) γibpµ (p, y)− γcfracµ (p, x) Γ(p)
µp −

(
γcfracµ (p, x) + Γcfrac

µ (p, y)
)

plim(µy) ≤ p γcfracµ (p, y)− γcfracµ (p, x) γcfracµ (p, y)− γcfracµ (p, x)

Table 5.1: Computing Iµ,px,y as a difference of generalized incomplete gamma func-
tions. We propose here a practical computational method for the evaluation of Iµ,px,y by means
of a difference of type Iµ,px,y = A − B, where A = γµ(p, y), B = γµ(p, x), or, when µ > 0,
A = Γµ(p, x), B = Γµ(p, y), or A = Γ(p)/µp, B = γµ(p, x) + Γµ(p, y). Thanks to Figure 5.4,
we derive which difference A − B, and which numerical method must be used for the efficient
evaluation of A and B, according to the value of x, y, µ, p. It is important to notice that the
evaluation of Iµ,px,y by means of difference A − B is inaccurate when A ≈ B, which happens
when x ≈ y. In that case, the integral Iµ,px,y must be approximated differently, as discussed in
Section 5.3.2.

|σdiff| · εmachine. The same kind of equality does not holds for the mantissa ρdiff,
whose numerical evaluation suffers from an additional loss of precision due to
the exponential term. Indeed, using again a first order approximation, we get
|∆ρdiff| ≈ |∆mA|+ (|∆mB|+ |mB ∆(nB − nA)|) enB−nA , therefore

|∆ρdiff| ≈
(
|mA|+ |mB| · (1 + |nB|+ |nA|) enB−nA

)
εmachine ,

and we can drop the absolute values around mA, mB and ρdiff (which are nonneg-
ative) to get the approximation

|∆Idiff| ≈ |∆̂Idiff| :=
(
mA +mB · (1 + |nB|+ |nA|) enB−nA + ρdiff |σdiff|

)
εmachine e

σdiff .

We will use |∆̂Idiff| as an estimate of the actual absolute error |∆Idiff|.

5.3.2 Computing Iµ,px,y using a trapezoidal rule

A simple first order trapezoidal approximation of Iµ,px,y yields

Iµ,px,y ≈ Itrapezoid := (y − x) fµ,p(x) + fµ,p(y)

2
, (5.26)

where fµ,p(s) = sp−1 e−µs. For the practical implementation, we will compute
Itrapezoid using the mantissa-exponent representation Itrapezoid = ρtrapezoid ·eσtrapezoid ,
where

σtrapezoid = max (nx, ny), ρtrapezoid =
y − x
2 x

enx−σtrapezoid +
y − x
2 y

eny−σtrapezoid ,
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noting nx = −µx+p log x and ny = −µy+p log y. The following proposition gives
an upper bound of the absolute error |∆Itrapezoid| = |Iµ,px,y − Itrapezoid| associated
to the approximation of Iµ,px,y by Itrapezoid. Remark that this upper bound is not
interesting for all values of µ, x, y, p, but it gets precise as the distance betwen x
and y gets small.

Proposition 34. For any µ ∈ R \ {0}, for any positive integer p, and any non-
negative real numbers x, y, such as x ≤ y, we have the upper bound

|∆Itrapezoid| ≤ |∆̂Itrapezoid| :=
(y − x)3

12
Dµ,p

x,y y
max (0,p−3) emax (−µx,−µy) ,

where

Dµ,p
x,y =





µ2 if p = 1 ,
max (|µ2x− 2µ|, |µ2y − 2µ|) if p = 2 ,

Cµ,p
x,y if p ≥ 3 ,

and

Cµ,p
x,y =





|Pµ(y)| if µ < 0 ,
max (|Pµ(x)|, p− 1, |Pµ(y)|) if µ > 0 and x ≤ p−1

µ
≤ y ,

max (|Pµ(x)|, |Pµ(y)|) otherwise,

with Pµ(s) = (µs)2 − 2(p− 1)µs+ (p− 1)(p− 2).

Proof (abridged). The first order trapezoidal rule yields the upper bound

|∆Itrapezoid| ≤
(y − x)3

12
sup

s∈[x,y]
|f ′′

µ,p(s)| . (5.27)

In the case p ≥ 3, for any s ∈ [x, y], we have f ′′
µ,p(s) = Pµ(s) s

p−3 e−µs, and a
straightforward study of the second degree polynomial Pµ yields Cµ,p

x,y =
sups∈[x,y] |Pµ(s)|. It follows that

sup
s∈[x,y]

|f ′′
µ(s)| ≤ Cµ,p

x,y y
p−3 emax (−µx,−µy) .

In the cases p = 1 and p = 2, a similar study can be led without difficulty. Finally,
for any p ≥ 1, we get

sup
s∈[x,y]

|f ′′
µ(s)| ≤ Dµ,p

x,y y
p−3 emax (−µx,−µy) ,

which, combined to (5.27), yields the announced result.
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5.3.3 Criterion for the selection of the approximation by
trapezoidal rule or differences

In order to choose between the two approximation methods (trapezoidal or
difference), we propose to select the one yielding the smallest absolute error. To

this aim, we consider the ratio between |∆̂Idiff| and |∆̂Itrapezoid|, i.e.,

∀x 6= y, Rµ,p
x,y =

|∆̂Idiff|
|∆̂Itrapezoid|

,

which is an approximation of the ratio between the effective relative errors ∆Idiff
and ∆Itrapezoid. Then, we will approximate Iµ,px,y by Itrapezoid when Rµ,p

x,y > 1, or by
Idiff otherwise. Notice that for the practical evaluation of Rµ,p

x,y , we will use again
a mantissa-exponent representation Rµ,p

x,y = ρr · eσr , where

ρr =
12 · (mA +mB · (1 + |nB|+ |nA|) enB−nA + ρdiff |σdiff|) εmachine

Dµ,p
x,y

,

and σr = σdiff − σt ,

noting (mA, nA) and (mB, nB) the mantissa-exponent representations of the quan-
tities A and B, returned by Algorithms 12 and 13, noting ρdiff = mA−mB ·enB−nA,
σdiff = nA, and σt = 3 log (y − x) + max (0, p− 3) · log y + max (−µx,−µy). We
validate the ability of this criterion to automatically select the most accurate
approximation in Figure 5.5.

5.4 Discussion on the evaluation of the complete

gamma function

The computation of the complete gamma function Γ(p) for p ∈ N, R or C

is itself a wide subject of research. The object of this section is to compare
several methods from the litterature and end up with a practical efficient algorithm
for computing the quantity Γ(p), which is needed to compute Iµ,px,y as right-hand
difference (5.9), i.e.

Iµ,px,y =
Γ(p)

µp
− γµ(p, x)− Γµ(p, y) .

Since Γ(p) gets huge as p increases, in practice we approximate its logarithm
log Γ(p). Note that when p is a positive integer, as it is the case in this chapter,
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Figure 5.5: Control of maximum and mean relative errors associated to the com-
putation of Iµ,px,y using differences or a first order trapezoidal rule. In Section 5.3.2,
we proposed to approximate the integral Iµ,px,y by a difference of generalized incomplete gamma
functions, Iµ,px,y ≈ Idiff = A − B (see Table 5.1 to derive the values of A and B according to
x, y, µ, p), or using a trapezoidal rule, Iµ,px,y ≈ Itrapezoid. We proposed in Section 5.3.3 an explicit
criterion, based on the computation of a ratio of (some estimates of) the absolute errors |∆Idiff|
and |∆Itrapezoid| associated to those two approximations, which can be used to automatically
select which approximation should be used. For several values of δr = (y − x)/y, we computed
Iµ,px,y for a large range of parameters (µ = ±1, p integer in [1, 1000], y integer in [1, 1000], and
x being the floating-point number closest to y (1 − δr)). We display here the evolution, as a
function of log10(δr), of the maximal (left-side) and mean (right-side) relative error observed
when using the approximation by differences Idiff (dashed red curve, standard double precision
implementation), or when using the approximation by trapezoidal rule Itrapezoid (dashed green
curve, standard double precision implementation), or when automatically selecting the compu-
tation method (plain blue curve for the standard double precision implementation, dotted purple
curve for the extended double precision implementation), thanks to the criterion proposed in
Section 5.3.3. We see that the plain blue curve lies almost everywhere below the dashed curves,
showing that the criterion efficiently selects the best accurate approximation. We can see also
that the error can be improved by three orders of magnitude using extended double precision,
except when δr ≈ 10−8 (in that case, the precision is limited by the fact that we only use one
term in the trapezoidal rule).

we have Γ(p) = (p− 1)! so that log Γ(p) can be easily computed using

log (p− 1)! =

p−1∑

k=1

log k .

However, the numerical computation of this sum becomes rapidely inaccurate
when p is large, because of the cumulation of small numerical errors made at
each step of the summation. Besides, in order to facilitate the adaptation of this
chapter to noninteger values of p, we prefer to focus on more general methods.

The first evaluation method that we will consider was proposed in [Lanczos
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1964], and uses a Stirling formula-like approximation:

∀p > 1, Γ(p) =
√
2π
(
p+ γ − 1

2

)p− 1
2 e−(p+γ− 1

2
) (Aγ(p− 1) + εγ) , (5.28)

where γ > 0 is a numerical parameter (different from the Euler-Mascheroni con-
stant), Aγ(p − 1) is a truncated rational fraction of type Aγ(p − 1) = c0(γ) +∑Nγ

k=1
ck(γ)
p−1+k

, and Nγ and the coefficients {ck(γ)}0≤k≤Nγ
depend on the value of γ.

In the case γ = 5, Lanczos claims that the relative error |ε5| associated to (5.28)
satisfies |ε5| < 2 · 10−10, and this claim was confirmed by our numerical exper-
iments. In the case γ = 5, we have Nγ = 6 and the numerical values of the
coefficients {ck(γ)}0≤k≤Nγ

are available in [Lanczos 1964]. These values are re-
fined to double floating-point precision in [Press et al. 1992], so we used them in
our implementation of (5.28).

A more recent computation method (see [Char 1980, Olver et al. 2010, Cuyt
et al. 2008] and references therein), also based on a Stirling approximation, consists
in computing

∀p > 1, Γ(p) =
√
2π e−p pp−

1
2 eJ(p), where J(p) =

a0
p+

a1
p+

a2
p+
· · · , (5.29)

where some numerical approximations, with 40 decimal digits of precision, of the
coefficients {ak}0≤k≤40 of the continued fraction J(p) can be found in [Char 1980].

The last approximation that we present, and that we will select in practice
as the most simple an accurate method, is a refinement of the Lanczos formula,
proposed in [Pugh 2004]. In his work, Pugh adapted (5.28) into

∀p > 1, Γ(p) ≈ 2

√
e

π

(
p+ r − 1

2

e

)p−1
2
[
d0 +

Nr∑

k=1

dk
p− 1 + k

]
, (5.30)

where r is again a numerical parameter (which replaces the parameter γ of (5.28),
to avoid confusion with the Euler-Mascheroni constant). Pugh studied the ac-
curacy of the approximation (5.30) for differents settings r. In the case r =
10.900511, he sets Nr = 11, and gives the numerical values of the coefficients
{dk}0≤k≤10 with 20 significant decimal digits (see Table 5.2). According to Pugh,
this setting yields a relative error less than 10−19, which is effectively what we
observed when computing (5.30) with Maple for 1 ≤ p ≤ 104 in multiprecision
(30 digits).

In order to select which method will be used in our algorithms, we used the
three approximations (5.28), (5.29), and (5.30) to compute log Γ(p) for 1 ≤ p ≤ 104.
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k d2k d2k+1

0 2.48574089138753565546E-5 1.05142378581721974210E+0

1 -3.45687097222016235469E+0 4.51227709466894823700E+0

2 -2.98285225323576655721E+0 1.05639711577126713077E+0

3 -1.95428773191645869583E-1 1.70970543404441224307E-2

4 -5.71926117404305781283E-4 4.63399473359905636708E-6

5 -2.71994908488607703910E-9

Table 5.2: coefficients {dk}0≤k≤10 of Equation (5.30) with 20 significant decimal digits [Pugh
2004].

Algorithm 14: Accurate computation of log Γ(p) using Pugh’s method .

Input: A real number p ≥ 1.

Output: An accurate estimation of log Γ(p).

Require: Coefficients {dk}0≤k≤10 defined in Table 5.2.

return
log
(
2
√

e
π

[
d0 +

∑10
k=0

dk
p−1+k

])
−
(
p− 1

2

)
+
(
p− 1

2

)
log
(
p+ 10.900511− 1

2

)

The values of Γ(p) = elog Γ(p) were converted into scientific notation using (5.22), in
order to avoid the overflow issues that fatally occur when computing Γ(p) directly.
The accuracy was evaluated using Maple, the results (restricted to 1 ≤ p ≤ 5000)
are displayed in Figure 5.6. It follows from our experiments that the approxima-
tions (5.29) and (5.30) are the most accurate, except for small values of p where
the continued fraction is inacurrate (certainly because more than 40 approximants
are needed for those values of p). Besides, both methods suffer from the loss of
accuracy involved by the conversion of Γ(p) into scientific notation from the value
of its logarithm log Γ(p), as discussed in Section 5.2.3. Again, this loss of preci-
sion can be compensated by improving the floating-point accuracy, as illustrated
in Figure 5.6. The Lanczos method yields a relative error close to 2 · 10−10, and
in this case, the loss of accuracy is due to the approximation itself. Finally we
decided to use Pugh’s method, for its simplicity and the nice theoretical study
provided in [Pugh 2004]. Our implementation is described in Algorithm 14.
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Figure 5.6: Comparison of three algorithms estimating the Γ function. In this exper-
iment, we used (5.28), (5.29) and (5.30) to compute log Γ(p) for 1 ≤ p ≤ 5000, and estimated
the relative error using Maple. We here display the graphs of the relative errors related to each
approximation, as a function of the parameter p (the curves were smoothed by replacing the
relative error associated to Γ(p) by its maximum value over the range [p− 20, p+ 20], in order
to improve the readability). The three top curves were obtained using a C-implementation in
standard double precision of the three approximation methods. We observe that the continued
fraction approximation (5.29) is inacurrate for small values of p. However, we see that the pre-
cision reached by the Pugh’s approximation (5.30) (and also the continued fraction, excepting
for small values of p) is only limited by the loss of precision occuring when formatting Γ(p) in
scientific notation from its mantissa-exponent representation Γ(p) = ρ · eσ (where ρ = 1 and
σ = log Γ(p)), since the bound predicted in (5.23) is attained (for instance, we check that for
p = 800 (respectively p = 5000), we have σ = log Γ(p) ≈ 4545 (respectively σ = 37582), so
that the optimal relative error predicted in (5.23) is close to 10−12 (respectively 10−11), which
is more or less the value attained by the two algorithms). This is not the case for the Lanczos
approximation (5.28), whose precision is limited by the approximation itself. The last curve
(bottom) corresponds to the implementation of Pugh’s method in C langage using extended
double precision (long double datatype); the loss of precision resulting from the formatting of
Γ(p) in scientific notation is significantly reduced.

5.5 Comparison with Fullerton’s Algorithm

In this section, we compare our algorithm with Algorithm 435, proposed in
[Fullerton 1972], for the evaluation of the generalized incomplete gamma function
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Iµ,px,y . Remind that, in his work, Fullerton focused on a slightly different integral
than us, since he proposed an algorithm for the evaluation of the integral Jp

x,y

defined in (5.6), however the computation of Iµ,px,y using Jp
x,y, or conversely of Jp

x,y

using Iµ,px,y , is immediate, as we already explained in Section 5.1. Similarily, the
function

γ′(p, x) =

∫ x

0

|s|p−1 e−s ds, −∞ < x ≤ +∞ ,

he introduced is also closely related to our lower generalized incomplete gamma
function γµ, since for any x ≥ 0, and any p > 0, we have γµ(p, x) = µ−p γ′(p, x)
when µ > 0, and γµ(p, x) = −|µ|−p γ′(p, x) when µ < 0. Fullerton poposed
an algorithm for the numerical evaluation of γ′, then suggested to evaluate the
integral Jp

x,y using the difference

Jp
x,y = ex

∫ y

x

|s|p−1 e−s ds = ex (γ′(a, y)− γ′(a, x))

when 1 ≤ p ≤ 2, and using a forward (when p > 2) or backward (when p < 1)
recurrence relation, leading back to the computation of a quantity Jq

x,y, with
1 ≤ q ≤ 2. In the case 1 ≤ p ≤ 2, the evaluation of γ′(p, x) relies on dif-
ferent approximation methods (such as continued fractions, approximation using
Chebyshev polynomials, or asymptotic expansions), according to the value of x.

As already pointed in [Schoene 1978], Algorithm 435 suffers from several nu-
merical instabilities, arising when p > 2. We indeed observed in our own numerical
experiments, presented in Tables 5.3, 5.4 and 5.5, some computed values with very
low accuracy, or incorrect sign, typically when p ≥ 10, or when x ≤ p ≤ y. We
also also observed some overflow issues, for instance when working with p ≥ 100.

In the experiments of Tables 5.3-5.5, we evaluated the integral Iµ,px,y , for sev-
eral sets of parameters x, y, µ, p, using both Fullerton’s Algorithm 435 and Algo-
rithm 15. The accuracy of the returned result was controlled with the software
MapleTM, using the instruction

evalf(Int(s^(p-1)*exp(-mu*s),s=x..y,digits=30));

to approximate the integral with 30 digits of precision, and the software
MathematicaTM in [Wolfram Research Inc 1998] for the online evaluation of Iµ,px,y .

5.6 Conclusion and perspectives

In this chapter, we proposed an algorithm for the accurate evaluation of the
generalized incomplete gamma function Iµ,px,y . According to our experiments, the



204 Chapter 5. Generalized incomplete gamma function

implementation of this algorithm with a standard double floating-point precision
yields a relative error less than 10−10 (in the worst case scenario), and in general
less than 10−13 for a large range of parameters, which is a drastic gain of accuracy
in comparison to that obtained using the algorithm proposed in [Fullerton 1972].
Besides, our algorithm delivers the estimated value of the integral Iµ,px,y under a
mantissa-exponent representation Iµ,px,y = ρ · eσ, which greatly extends the range
over which it can be computed (which proved useful in [Abergel et al. 2015], where
the computation of sums and ratios of generalized incomplete gamma functions
Iµ,px,y was required).

Note also that the general accuracy of the algorithm we propose could certainly
be improved further using a floating-point arithmetic with more digits and a
higher order generalization of the trapezoidal rule that we use for nearly identical
integral bounds. Another interesting perspective would be to extend our approach
to the computation of complex values for the integral Iµ,px,y (for instance, when p
is noninteger and µ < 0, or when x or y takes a nonreal value). The continued
fractions we used remain valid for complex values of x and noninteger values of
p (except when Iµ,px,y is indefinite), but as the recursive integration by part (5.14)
cannot be used any more when p is noninteger and µ < 0, another strategy would
be needed to cover the corresponding parameters region.
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Algorithm 15: Accurate computation of Iµ,px,y =
∫ y

x
sp−1 e−µs ds .

Input: Three numbers µ ∈ R \ {0}, x ∈ R+, y ∈ R+ ∪ {+∞} such as y ≥ x, and a
positive integer p ≥ 1. Notice that the value y = +∞ is allowed only when µ > 0.

Output: Two numbers ρ ∈ R and σ ∈ R ∪ {−∞} such as Iµ,px,y ≈ ρ× eσ.

Requirements: Functions γibp
µ (Algo. 12: select recursive integration by parts), γcfrac

µ

(Algo. 12: select continued fraction), Γcfrac
µ (Algo. 13), log Γ (Algo. 14),

and function plim (Eq. (5.24)).

if x = y at machine precision then (ρ, σ)← (0,−∞) else
// Evaluate (mA, nA), (mB , nB) and (ρdiff, σdiff), some mantissa-exponent

// representations of A, B and Idiff, such as A = mA enA, B = mB enB,

// Idiff = ρdiff e
σdiff = A−B, and Iµ,px,y ≈ Idiff .

if µ < 0 then
if p < plim(µy) then (mA, nA)← γibp

µ (p, y)

else (mA, nA)← γcfrac
µ (p, y)

if p < plim(µx) then (mB , nB)← γibp
µ (p, x)

else (mB , nB)← γcfrac
µ (p, x)

else if µ > 0 then
if p < plim(µx) then

(mA, nA)← Γcfrac
µ (p, x)

(mB , nB)← Γcfrac
µ (p, y)

else if plim(µx) ≤ p < plim(µy) then
(mA, nA)← (1, log Γ(p)− p logµ)
(mx, nx)← γcfrac

µ (p, x)

(my, ny)← Γcfrac
µ (p, y)

nB ← max (nx, ny)
if nB = −∞ then nB ← 0 // may happen when x = 0 and y = +∞
mB ← mx e

nx−nB +my e
ny−nB

else
(mA, nA)← γcfrac

µ (p, y)

(mB , nB)← γcfrac
µ (p, x)

(ρdiff, σdiff)← (mA −mB · enB−nA , nA)

// Compute the ratio Rµ,p
x,y = ∆̂Idiff/∆̂Itrapezoid with a mantissa-exponent

// representation (ρr, σr), as described in Section 5.3.3.

D ← Dµ,p
x,y // explicit expression in Proposition 34

ρr ← 12 · mA+mB ·(1+|nB |+|nA|)enB−nA+ρdiff|σdiff|
D · εmachine

σr ← σdiff − 3 log (y − x)−max (0, p− 3) log y −max (−µx,−µy)
if mR enR > 1 then

nx ← −µx+ p log x
ny ← −µy + p log y
σ ← max (nx, ny)
ρ← y−x

2x enx−σ + y−x
2y eny−σ

else (ρ, σ)← (ρdiff, σdiff)

return (ρ, σ)



Parameters setting (µ = −1) Algorithm 435 Relative
Algorithm 15

Relative

in [Fullerton 1972] error error

µ = 1, x = 9, y = 11, p = 1 1.067081029759719 · 10−4 3 · 10−9 1.0670810329643395 · 10−4 6 · 10−16

µ = 1, x = 9, y = 11, p = 5 9.567113518714904 · 10−1 1 · 10−4 9.5661698023023700 · 10−1 1 · 10−15

µ = 1, x = 9, y = 11, p = 10 1.085447578125000 · 105 2 · 10−1 8.9594201765236983 · 104 1 · 10−14

µ = 1, x = 9, y = 11, p = 12 1.632943040000000 · 108 17 8.9310494815538749 · 106 3 · 10−15

µ = 1, x = 9, y = 11, p = 14 −2.977905664000000 · 1010 34 9.0203414117080807 · 108 2 · 10−15

µ = 1, x = 9, y = 11, p = 100 −NaN N/A 2.5825265278752760 · 1097 2 · 10−14

µ = 1, x = 9, y = 11, p = 300 −NaN N/A 1.5122076179085018 · 10305 3 · 10−14

µ = 1, x = 9, y = 11, p = 1000 −NaN N/A 4.1710431880333560 · 101033 3 · 10−13

µ = 1, x = 100, y = 120, p = 1 3.783505853677006 · 10−44 2 · 10−2 3.7200759683531697 · 10−44 5 · 10−15

µ = 1, x = 100, y = 120, p = 5 3.873433252162870 · 10−36 3 · 10−9 3.8734332644314730 · 10−36 4 · 10−15

µ = 1, x = 100, y = 120, p = 10 4.083660502797843 · 10−26 2 · 10−8 4.0836605881700520 · 10−26 8 · 10−15

µ = 1, x = 100, y = 120, p = 20 4.579807864502072 · 10−6 9 · 10−8 4.5798082802928473 · 10−6 2 · 10−14

µ = 1, x = 100, y = 120, p = 21 +∞ N/A 4.6360373381202165 · 10−4 1 · 10−14

µ = 1, x = 100, y = 120, p = 100 −NaN N/A 4.2821563816534019 · 10155 1 · 10−13

µ = 1, x = 100, y = 120, p = 170 −NaN N/A 4.2461593130874860 · 10299 3 · 10−14

µ = 1, x = 100, y = 120, p = 1000 −NaN N/A 1.3223863318125477 · 102024 1 · 10−12

Table 5.3: Comparison between Algorithm 435 proposed in [Fullerton 1972] and Algorithm 15, for the com-
putation of Iµ,px,y with µ = 1. In this series of experiments, we focus on the case µ = 1. We tested, for (x, y) = (9, 11),
and (x, y) = (100, 120), different integer values of p between 1 and 1000. In the second column, we display the values of Iµ,px,y

returned by Fullerton’s Algorithm (that we slightly adapted to compute Iµ,px,y instead of Jµ,p
x,y ). The corresponding relative errors,

evaluated using Mathematica or Maple softwares (both softwares yield the same relative error), are displayed on the third and
fourth columns. We see that some numerical instabilities arise when x ≤ p, and we observe some overflow issues, as p gets high.
Some inacurrate results are also observed for low values of p, when x = 100, y = 120, p = 1 (but also for many other values of
(x, y, p), not represented here). Note also the settings x = 100, y = 120, p ∈ {20, 21}, for which the value returned by the algo-
rithm shifts from 10−6 to +∞. In the fourth column, we display the values returned by Algorithm 15 (using a C implementation
with standard double precision), followed by the corresponding relative errors. The relative errors reached by Algorithm 15 are
nearly optimal, since they are mostly due to the loss of precision involved by the mantissa-exponent representation (see the
optimality bounds predicted in (5.21) and (5.23)), showing that both mantissa and exponents are in practice computed with a
relative precision close to the machine precision.



Parameters setting (µ = −1) Algorithm 435 Relative
Algorithm 15

Relative

in [Fullerton 1972] error error

µ = −1, x = 5, y = 10, p = 1 2.187916015625000 · 104 5 · 10−5 2.1878052635704163 · 104 1 · 10−15

µ = −1, x = 5, y = 10, p = 3 1.803647750000000 · 106 3 · 10−7 1.8036471714694066 · 106 1 · 10−16

µ = −1, x = 5, y = 10, p = 10 1.129511596851200 · 1013 4 · 10−8 1.1295115549498505 · 1013 4 · 10−15

µ = −1, x = 5, y = 10, p = 60 +∞ N/A 3.1530071119035434 · 1062 2 · 10−14

µ = −1, x = 5, y = 10, p = 100 −NaN N/A 2.0040499509396790 · 10102 1 · 10−14

µ = −1, x = 5, y = 10, p = 300 −NaN N/A 7.1060487642415961 · 10301 9 · 10−14

µ = −1, x = 5, y = 10, p = 1000 −NaN N/A 2.1808595556561760 · 101001 3 · 10−13

µ = −1, x = 20, y = 25, p = 1 7.151973171200000 · 1010 3 · 10−8 7.1519734141975967 · 1010 2 · 10−15

µ = −1, x = 20, y = 25, p = 10 2.068890077987267 · 1023 3 · 10−2 2.0016822370845540 · 1023 9 · 10−16

µ = −1, x = 20, y = 25, p = 20 1.821993954177914 · 1037 2 · 10−1 1.4733948083664500 · 1037 1 · 10−15

µ = −1, x = 20, y = 25, p = 30 +∞ N/A 1.1449672725827719 · 1051 3 · 10−15

µ = −1, x = 20, y = 25, p = 210 −NaN N/A 1.1321187815658028 · 10302 2 · 10−14

µ = −1, x = 20, y = 25, p = 1000 −NaN N/A 6.1186720860190186 · 101405 2 · 10−13

Table 5.4: Same as Table 5.3, but for µ = −1. We performed here a similar experiment as in Table 5.3, but in the case
µ < 0. We tested, for (x, y) = (5, 10) and (x, y) = (20, 25), different values of p between 1 and 1000. As we can see, Fullerton’s
algorithm is unbable to provide accurate estimates as p increases. In contrast, the relative errors reached by Algorithm 15 remain
nearly optimal, mostly limited by the mantissa-exponent representation according to the optimality bounds derived in (5.21)
and (5.23).



Parameters setting
Algorithm 435 Relative

Algorithm 15
Selected Relative

in [Fullerton 1972] error approx. error

µ = 1, x = d(5− 100), y = 5, p = 10 8.598737304687500 · 103 2 · 10−8 8.5987371691242424 · 103 difference 7 · 10−17

µ = 1, x = d(5− 10−1), y = 5, p = 10 1.263989379882812 · 103 8 · 10−7 1.2639903706449711 · 103 difference 1 · 10−15

µ = 1, x = d(5− 10−3), y = 5, p = 10 1.315382766723632 · 101 7 · 10−5 1.3154789325748350 · 101 difference 1 · 10−13

µ = 1, x = d(5− 10−4), y = 5, p = 10 1.317400574684143 · 100 1 · 10−3 1.3159526336877760 · 100 difference 2 · 10−11

µ = 1, x = d(5− 10−5), y = 5, p = 10 1.322335302829742 · 10−1 5 · 10−3 1.3160000091971793 · 10−1 trap. rule 2 · 10−12

µ = 1, x = d(5− 10−6), y = 5, p = 10 1.179141830652952 · 10−2 1 · 10−1 1.3160047470408107 · 10−2 trap. rule 2 · 10−14

µ = 1, x = d(5− 10−7), y = 5, p = 10 0 1 1.3160052243091611 · 10−3 trap. rule 4 · 10−16

µ = 1, x = d(17− 100), y = 17, p = 17 3.725839564800000 · 1012 8 · 10−1 2.0551230250736027 · 1012 difference 3 · 10−14

µ = 1, x = d(17− 10−1), y = 17, p = 17 2.998156984320000 · 1011 5 · 10−1 2.0202925544709274 · 1011 difference 2 · 10−13

µ = 1, x = d(17− 10−3), y = 17, p = 17 2.941651456000000 · 109 5 · 10−1 2.0146022707357914 · 109 difference 1 · 10−11

µ = 1, x = d(17− 10−4), y = 17, p = 17 2.928078720000000 · 108 5 · 10−1 2.0145489617316359 · 108 trap. rule 4 · 10−11

µ = 1, x = d(17− 10−6), y = 17, p = 17 6.554762500000000 · 106 2 · 100 2.0145430981932636 · 106 trap. rule 2 · 10−15

µ = 1, x = d(17− 10−9), y = 17, p = 17 0 1 2.0145432036144500 · 103 trap. rule 2 · 10−15

µ = −1, x = d(21− 100), y = 21, p = 10 5.859836137154984 · 1020 5 · 10−2 5.5623377927217197 · 1020 difference 4 · 10−15

µ = −1, x = d(21− 10−1), y = 21, p = 10 1.025911814748488 · 1020 5 · 10−2 9.7609411144076116 · 1019 difference 7 · 10−15

µ = −1, x = d(21− 10−3), y = 21, p = 10 1.099215584270221 · 1018 5 · 10−2 1.0467611548908131 · 1018 difference 6 · 10−12

µ = −1, x = d(21− 10−5), y = 21, p = 10 1.045801880623513 · 1016 2 · 10−3 1.0475015408230294 · 1016 trap. rule 2 · 10−11

µ = −1, x = d(21− 10−7), y = 21, p = 10 0 1 1.0475089604363028 · 1014 trap. rule 2 · 10−15

µ = −1, x = d(21− 10−9), y = 21, p = 10 0 1 1.0475091089401447 · 1012 trap. rule 3 · 10−15

Table 5.5: Comparison between Fullerton’s algorithm and Algorithm 15, for the computation of Iµ,px,y when x ≈ y.
In this last experiment, we compute Iµ,px,y in the case x ≈ y (the notation d(s) used in the left column denotes the double-precision
floating-point number that is closest to s). We see that the relative error reached by Algorithm 435 deteriorates as x and y
get close to each other, and as already remarked before, Algorithm 435 is very inacurrate when µx < p < µy. In contrast,
the relative errors observed with Algorithm 15 never exceed 10−10, thanks to the first order estimate (keyword “trap. rule” in
column 5) that takes over to avoid cancellation errors when x and y are very close to each other.
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Abstract

The detection of smooth trajectories in a (noisy) point set sequence can be
realized optimally with the astre (A-contrario Smooth TRajectory Extraction)
algorithm, but the quadratic time and memory complexity of this algorithm with
respect to the number of frames is prohibitive for many practical applications.
We here propose a variant that cuts the input sequence into overlapping temporal
chunks that are processed in a sequential (but non-independent) way, which results
in a linear complexity with respect to the number of frames. Surprisingly, the
performances are not affected by this acceleration strategy, and are in general
even slightly above those of the original astre algorithm.

6.1 Introduction

Many image processing tasks that concern video or image sequences are related
to various forms of motion analysis like optical flow, object tracking, trajectory
detection, motion compensation, etc. In this chapter, we consider the fundamental
problem of finding reliable trajectories in a point set sequence that has been
previously extracted from an image sequence, without any attribute attached to
each point. This task, which has been considered several times in the literature
[Veenman et al. 2001, Shafique and Shah 2003, Khan et al. 2005, Berclaz et al.
2011, Collins 2012], is the core of various applications including, e.g., particle
velocimetry in fluid mechanics, dynamic analysis of fluorescent probes in biology,
study of ant or termite behavior, pedestrian and car tracking, etc. For the case
where smooth trajectories (more precisely, trajectories having a small maximum
acceleration) are to be detected among a potentially high number of incoherent
noise points, an algorithm with optimality guarantees, called astre [Primet and
Moisan 2012], has been recently built, but it turns out that it is nearly impossible
to use it on long image sequences (say K ≥ 1000 frames) because its time and
memory complexity is quadratic with respect to K. We here propose to break
this complexity limitation and describe a new algorithm for which the complexity
is linear with respect to K, which substantially increases the possibilities of real-
world applications.

In Section 6.2, we describe the original astre algorithm, and show that the
introduction of a maximum speed threshold may bring an important speed-up,
but does not break the O(K2) complexity. This is why in Section 6.3 we present
a new algorithm named cutastre, which cuts the original image sequence into
overlapping small temporal chunks and processes these chunks sequentially with
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the astre algorithm, using an incremental strategy to detect long trajectories.
This O(K) algorithm, though theoretically sub-optimal in terms of detection per-
formances, still offers (like astre) a rigorous control of false detections in pure
noise data. The principle of cutastre is presented in Section 6.3.1, and a pseu-
docode description of the algorithm is proposed in 6.3.2. The new parameters
(chunk size and overlapping ratio) are analyzed in Section 6.3.3, and appear to be
rather easy to set. Moreover, numerical experiments on both synthetic and nat-
ural point set sequences reveal that the detection performances of cutastre are
very similar to those of astre, which, considering the dramatic speed-up offered
by cutastre, opens very interesting perspectives.

6.2 The ASTRE Algorithm

6.2.1 Principle

Based on the a-contrario methodology [Desolneux et al. 2008], the astre

algorithm is designed to perform trajectory detection over a sequence of K frames
f1, f2, . . . , fK with domain Ω, such as each frame fk contains Nk points. We will
first recall the principles of astre in the continuous setting, when Ω is the square
[0, 1] × [0, 1], and when the number of points per frame is constant (for any k,
Nk = N). Then we will explain how the model can be modified to handle data-
quantization (that is, discrete Ω) and variable number of points over the frame
sequence.

The continuous framework with constant number of points

General a-contrario algorithms are based on two main ingredients: a naive
model (called H0) describing what could be pure noise data, and a measurement
function that characterizes the kind of structures looked for (that is here, smooth
trajectories). The basic idea of the a-contrario methodology (which is motivated
by the Helmoltz principle) is to detect the structures according to a principle
of rejection of H0. More precisely we are interested in the detection (and the
extraction) of the structures which are too rare to happen by chance in H0. In
the case of astre, the naive model H0 is a uniform draw of N points in each of
the K frames, and the measurement function associated to a random trajectory
T = (Xk0

i1
, Xk0+1

i2
, . . . , Xk0+ℓ−1

iℓ
) with length ℓ ≥ 3 (we do not consider trajectories
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with less than 3 points) is its acceleration

a(T ) = max
p=3,...,ℓ

∥∥∥Xk0+p−1
ip

− 2Xk0+p−2
ip−1

+Xk0+p−3
ip−2

∥∥∥ ,

where Xk
i is the i-th (random) point of frame fk. We shall denote the random

trajectory T by
T = Xk0

i1
→ Xk0+1

i2
→ · · · → Xk0+ℓ−1

iℓ
,

and a link between two successive points Xk
i and Xk+1

j by Xk
i → Xk+1

j . Similarly,
the local discrete acceleration will be written

a(u→ v → w) = ‖w − 2v + u‖ .

The amount of surprise when observing an actual trajectory t with length ℓ and
acceleration a(t) can be estimated by using a simple (but precise) upper bound
of the probability of observing a trajectory with acceleration smaller than a(t) in
H0 (see Proposition 2 in [Primet and Moisan 2012]),

PH0(a(T ) ≤ a(t)) ≤
(
πa(t)2

)ℓ−2
. (6.1)

It turns out that the smaller is the quantity (πa(t)2)
ℓ−2

, the smoother is trajec-
tory t and the less it is likely to have been generated by the naive model H0.
Therefore, we might be tempted to use s(t) := (πa(t)2)ℓ−2 as an inverted score
for the trajectory t (inverted because we want this score as small as possible),
and to use a threshold on this score in order to decide if trajectory t should be
extracted or not. However, this score does not take into account all the parame-
ters of the model (in particular the number of points per frame N , and the total
number of frames K of the sequence). For instance, as K and N get large, the
probability of observing by chance a trajectory with small acceleration in a ran-
dom sequence following H0 increases, thus, the amounts of surprise related to the
observation of a trajectory t with acceleration a(t) should decrease as K and N
increase. Consequently, the threshold used for the score s should depend on the
model parameters K and N . Finally, the weakness of this approach is that the
choice of the threshold would require a double expertise from the user, who must
be not only familiar with its data, but also with the mathematical content of the
algorithm.

Using the a-contrario methodology (see Proposition 2 in [Grosjean and Moisan
2009], we will also give more details below), we go a step further and design below
a Number of False Alarms (NFA) for the measurement a(t). Let Tℓ denote the



6.2. The ASTRE Algorithm 213

set of all trajectories of length ℓ (for ℓ ∈ N) in the considered point set sequence.
We set

∀ℓ ≥ 3, ∀t ∈ Tℓ, NFAℓ(a(t)) = K(K − ℓ+ 1)N ℓ
(
πa(t)2

)ℓ−2
. (6.2)

First, we see that this formula merges the model parameters (K,N, ℓ), with the
score s(t) = (πa(t)2)ℓ−2, and more precisely, it weights the score s(t) with a
quantity depending on the model parameters. Second, and before giving more
details about how was built the NFA formula (6.2), let us announce the so-called
NFA-property which is one of the most fundamental result inherited from the
a-contrario methodology. Let T =

⋃K
ℓ=3 Tℓ denote the set of all trajectories with

length ℓ ∈ [3, K] that can be found in the point set sequence, we have

∀ε > 0, EH0

[
#
{
T ∈ T

∣∣ NFAℓ(T )(a(T )) ≤ ε
}]
≤ ε , (6.3)

where, as usual, the notation #S stands for the cardinality of the set S, and
ℓ(T ) denotes the length of the trajectory T . Formulated differently, the NFA-
property (6.3) states that in pure noise sequences (i.e. the random sequences
following H0), the average number of trajectories with NFA less than ε is less
than ε. In practice, we will use the NFA (6.2) as a score for each trajectory, so
that we will manage to extract all trajectories having a NFA less than a given
threshold ε > 0. In the following, we will say that a trajectory is ε-meaningful (or
detected at level ε) when it has a NFA smaller than ε. Of course, we immediately
remark that

∀ℓ ≥ 3, ∀t ∈ Tℓ, NFAℓ(a(t)) ≤ ε⇔ (πa(t)2)ℓ−2 ≤ ε

K(K − ℓ+ 1)N ℓ
,

so that thresholding NFAℓ(a(t)) using the threshold ε amounts to threshold the
previously considered score s(t) = (πa(t)2)ℓ−2 using an adaptive threshold (which
explicitly depends on K, N , and ℓ). Besides, the NFA-property (6.3) gives a
practical and very intuitive interpretation for the threshold parameter ε, which is
the unique parameter involved in the astre model. Indeed, ε is simply an upper
bound of the number of detections (in fact, false detections) allowed in a pure
noise sequence. Usually one sets ε = 1, so that the NFA-property ensures that in
average, less than one detection is done in H0.

Finally, the NFA-score proposed in (6.2) smartly combines all the parameters
of the model (the number of frames K of the sequence, the number of points per
frame N , the length ℓ of each tested trajectory) with the measurements that we
designed (here, the acceleration of each tested trajectory) to produce a formula
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easy to threshold, in the sense that the threshold parameter ε comes with a
concrete, simple and intuitive interpretation for the user, but also with a strong
guarantee provided by (6.3), about the number of false detections expected in pure
noise data sequences. The practical algorithm proposed in [Primet and Moisan
2012] for the extraction of the ε-meaningful trajectories is greedy, it looks for a
trajectory t with minimal NFA-score m and, when m ≤ ε, the trajectory t is
detected at level ε, its points are removed from the sequence, and the process
is repeated until no more trajectory with NFA less than ε can be found in the
sequence. The algorithm will be detailed in Section 6.2.2.

Details about the NFA construction

The remarkable NFA-property (6.3) gives a tangible meaning to the threshold
parameter ε. Let us recall how the NFA formula (6.2) was built by directly apply-
ing the generic method proposed in [Grosjean and Moisan 2009] which explains
how to design NFA formulas that automatically satisfy the NFA-property. This
generic method consists in grouping the structure of interest (here the trajecto-
ries) using a particular real-valued weighting family {wt}t∈T which must satisfy∑

t∈T
1
wt
≤ 1. In the case of astre, the structures are grouped according to their

length, we set

∀t ∈ T, wt = wℓ(t) := K ·#Tℓ(t) = K(K − ℓ(t) + 1)N ℓ(t) , (6.4)

which indeed satisfies

∑

t∈T

1

wt

=
K∑

ℓ=3

∑

t∈Tℓ

1

K ·#Tℓ

=
K∑

ℓ=3

1

K
≤ 1 .

Then, we will show that one defines a NFA for the measurement δ = a(T ) by
setting

∀T ∈ T, ∀δ ∈ R, NFAℓ(T )(δ) = wℓ(T ) · F (δ) , (6.5)

where F = δ 7→ PH0(a(T ) ≤ δ) is the cumulative function of the random mea-
surement a(T ). Before showing that (6.5) does satisfy the NFA-property, remark
that

NFAℓ(T )(δ) ≤ ε⇔ F (δ) ≤ ε
wℓ(T )

,

therefore, we see that the weighting family {wT}T∈T gives in practice a way to
adjust the detection thresholds for each structure T (the particular choice done
here of grouping the trajectories according to their length, by giving the same
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weight to trajectories having the same length, is discussed in [Primet and Moisan
2012]).

Now, let 1NFAℓ(T )(a(T ))≤ε be the random variable taking the value 1 in the case
NFAℓ(T )(a(T )) ≤ ε, and the value 0 otherwise. We have

EH0

[
#
{
T ∈ T

∣∣ NFAℓ(T )(a(T )) ≤ ε
}]

=
∑

T∈T
EH0

[
1NFAℓ(T )(a(T ))≤ε

]

=
∑

T∈T
PH0

(
F (a(T )) ≤ ε

wℓ(T )

)
.

Besides, using a p-value property (see Lemma 1 in [Grosjean and Moisan 2009]),
we get

∀T ∈ T, ∀s ∈ R+, PH0(F (a(T )) ≤ s) ≤ s ,

so that we have

EH0

[
#
{
T ∈ T

∣∣ NFAℓ(T )(a(T )) ≤ ε
}]
≤
∑

T∈T

ε

wℓ(T )

≤ ε ,

which means that (6.5) satisfies the NFA-property (6.3). Last, remark that when
the cumulative function F involved in (6.5) is not easy to compute, it can be
replaced by any function G satisfying F ≤ G, since in that case, the choice
NFAℓ(T )(δ) = wℓ(T ) ·G(δ) yields

EH0

[
#
{
T ∈ T

∣∣ NFAℓ(T )(a(T )) ≤ ε
}]

=
∑

T∈T
PH0

(
G(a(T )) ≤ ε

wℓ(T )

)

≤
∑

T∈T
PH0

(
F (a(T )) ≤ ε

wℓ(T )

)
≤ ε .

In the case of astre, the exact computation of the cumulative function F is
difficult (some local accelerations of the 3-uple are less represented near the edges
of Ω), this is the reason why the (tight) bound (6.1) was needed to build the
NFA (6.2).

Variable number of points

For the practical application of astre to real datasets, it is important to
address the case where the number of points of the sequence is non-constant,
that is, when each frame fi contains Ni points (with potentially Ni 6= Nj for two
given frames fi, fj of the sequence). As remarked in [Primet and Moisan 2012],
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since the NFA is an upper bound on the average number of false detections made
in H0, we can simply take N = max1≤k≤K Nk in (6.2). However, this choice is
imprecise in the sense that the actual expected number of detections at level ε
in H0 may be much less than the ε, especially when the sequence {Nk}1≤k≤K

exhibits many values Nk being far from the maximum N . In order to obtain more
accurate results, we can refine the NFA definition by grouping the trajectories
according to their length ℓ and their starting frame k0 in (6.4). Given (ℓ, k0) such
as 3 ≤ ℓ ≤ K and 1 ≤ k0 ≤ K − ℓ+ 1, and noting Tℓ,k0 the set of all trajectories
with length ℓ starting at frame k0, we set

∀t ∈ Tℓ,k0 , wt = wk0,ℓ := K(K − ℓ+ 1) ·#Tℓ,k0 = K(K − ℓ+ 1)

k0+ℓ−1∏

k=k0

Nk .

By construction, we have

∑

t∈T

1

wt

=
K∑

ℓ=3

K−ℓ+1∑

k0=1

∑

t∈Tℓ,k0

1

K(K − ℓ+ 1)#Tℓ,k0

≤ 1 ,

thus, applying again the generic methodology presented above, we obtain a NFA

for the measurement a(t) by setting

∀t ∈ Tℓ,k0 , NFAℓ,k0(a(t)) = K(K − ℓ+ 1)

(
k0+ℓ−1∏

k=k0

Nk

)
·
(
πa(t)2

)ℓ−2
, (6.6)

for any (ℓ, k0) such as 3 ≤ ℓ ≤ K and 1 ≤ k0 ≤ K − ℓ+ 1.

The Discrete framework

Another important point to take into account is the data quantization, since
in most applications, the point detection is realized on a discrete grid of integer
pixel coordinates. Consequently, it may happen that three consecutive points (or
more) in the sequence have null acceleration, which is a strong contradiction with
the (continuous) H0 model (in which the points are uniformly sampled over the
continuous domain Ω = [0, 1]× [0, 1]), since such an event arises with null proba-
bility in H0. Besides when a trajectory t with null acceleration is observed, (6.2)
(or (6.6)) yields a null NFA-score, which is the smallest NFA-score observable in
the sequence. Therefore, any trajectory t′ containing the points of t, but such as
a(t′) 6= 0, will present a NFA higher than t, so that the greedy astre algorithm
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will first cut the longer trajectory t′ into chunks to isolate the (optimal) null-NFA
subtrajectory t.

This undesirable behaviour can be avoided by using a quantized H0 model
that we note Hd

0 , in which the points of the sequence are uniformly sampled on
a bounded discrete domain Ω of Z2. A probability bound similar to (6.1) can be
computed in Hd

0 , one can show that

∀ℓ ≥ 3, ∀t ∈ Tℓ, PHd
0
(a(T ) ≤ a(t)) ≤

(
ad(t)

)ℓ−2
, (6.7)

where

ad(t) =
# (Z2 ∩B(0, a(t)))

#Ω
, (6.8)

noting B(0, δ) the continuous closed ball with center 0 and radius δ. The quantity
ad(t) defined in (6.8) is called the discrete acceleration of trajectory t, it measures
the ratio between the number of pixels enclosed in the discrete disc Z2∩B(0, a(t))
with that enclosed in Ω, and it can be viewed as a discrete equivalent of the con-
tinuous acceleration area πa(t)2 involved in (6.1). As we did with the continuous
acceleration in the continuous framework, the discrete acceleration will be used
as a measurement of the amounts of surprise of observing a given trajectory in
Hd

0 . In particular, the observation of a trajectory t ∈ Tℓ with null (continuous)
acceleration in Hd

0 yields the probability bound (ad(t))ℓ−2 = (1/#Ω)ℓ−2, which
is nonzero anymore. Thanks to (6.7) and applying one more time the above
presented generic methodology, we obtain a NFA for the measurement ad(t) by
setting

∀ℓ ≥ 3, ∀t ∈ Tℓ, NFAℓ,k0(a
d(t)) = K(K − ℓ+ 1)N ℓ

(
ad(t)

)ℓ−2
, (6.9)

in the case of a constant number N of points per frame, or, by setting

∀t ∈ Tℓ,k0 , NFAℓ,k0(a
d(t)) = K(K − ℓ+ 1)

(
k0+ℓ−1∏

k=k0

Nk

)
(
ad(t)

)ℓ−2
, (6.10)

for any ℓ ∈ [3, K] and k0 ∈ [1, K − ℓ + 1], in the case of a variable number of
points.

6.2.2 The proposed greedy algorithm

To compute the smallest NFA among all possible trajectories, a dynamic
programming strategy (see [Bellman 1954]) is used. The idea is that, if two
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trajectories t1, t2 have same length ℓ but different discrete accelerations (say
ad(t1) < ad(t2)), then we automatically have NFAℓ(a

d(t1)) < NFAℓ(a
d(t2)), thus

t1 realizes a better NFA-score than t2. Consequently, we can avoid the prohibitive
systematic computation of the NFA of all the trajectories of the sequence in the
following way: given a frame index k ∈ [3, K], a pair of points (xk, yk−1) ∈
fk × fk−1, and a trajectory length ℓ ∈ [3, k], let us call G (xk, yk−1, ℓ) the smallest
discrete acceleration of a trajectory t ∈ Tℓ ending with link yk−1 → xk (we note
t = · · · → yk−1 → xk), that is

G (xk, yk−1, ℓ) = min
t∈Tℓ

ad(t) subject to t = · · · → yk−1 → xk .

The quantity G can be recursively computed in O(N3K2) operations (N =
max1≤k≤K Nk denotes the maximal number of points observed in a frame of the
sequence) using the dynamic programming Algorithm 16, thanks to the Bellman
Equation

G (xk, yk−1, ℓ) =





1
#Ω

if ℓ = 2 ,

min
zk−2∈fk−2

G (xk, yk−1, zk−2, ℓ) otherwise,
(6.11)

where

G (xk, yk−1, zk−2, ℓ) = max
(
ad(zk−2 → yk−1 → xk),G (yk−1, zk, ℓ− 1)

)
.

Then, the smallest NFA over all trajectories of the input sequence is equal to
NFA

d
ℓm(G (xkm , ykm−1, ℓm)), where

(km, xm, ym, ℓm) ∈ argmin
k∈[3,K], ℓ∈[3,k],

(yk−1,xk)∈fk−1×fk

NFA
d
ℓ (G (xk, yk−1, ℓ)), (6.12)

and this minimal NFA is realized by a (non necessarily unique) trajectory with
length ℓm and ending at frame km with the link ym → xm (that is, of the type
tm = · · · → ym → xm ∈ Tℓm). The minimal NFA over the sequence, as well as a
4-uple (km, xm, ym, ℓm) realizing the argmin (6.12) can be computed in O(N2K2)
operations using Algorithm 17. Last, one can extract a trajectory tm having min-
imal NFA using an iterative backtracking strategy on Equation (6.11). Indeed, a
predecessor zm (non necessarily unique) of ym can be obtained by computing

zm ∈ argmin
z∈fkm−2

max
(
ad(z → ym → xm),G (ym, z, ℓm − 1)

)
,

and we can reiterate this backtracking process by changing (xm, ym, ℓm) into
(ym, zm, ℓm − 1) to find a predecessor of zm, etc. Finally, a trajectory having
minimal NFA can be extracted in O(NK) operations, using Algorithm 18.
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Algorithm 16: compute G , dynamic programming computation of G .

Input: The set of frames, F = {f1, . . . , fK}, containing the points of the
sequence.

Output: G , such as for any k ∈ [1, K], for any pair of points
(x, y) ∈ fk × fk−1, and for any ℓ ∈ [3, k], the quantity G (x, y, ℓ)
equals the smallest acceleration of a trajectory with length ℓ
ending with link y → x.

Requirements: The discrete acceleration t 7→ ad(t) defined in (6.8).

for 2 ≤ k ≤ K do
for x ∈ fk do

for y ∈ fk−1 do
G (x, y, 2)← 1

#Ω
// the smallest discrete acceleration

for 3 ≤ ℓ ≤ k do
G (x, y, ℓ)← +∞
for z ∈ fk−2 do

a← max
(
ad(z → y → x),G (y, z, ℓ− 1)

)

G (x, y, ℓ)← min (a,G (x, y, ℓ))

return G



220 Chapter 6. A-contrario approaches to motion correspondence

Algorithm 17: minimal NFA, compute the minimal NFA in the sequence.

Input: The point set sequence F = {f1, . . . , fK}.
Output: NFAmin, the minimal NFA among all trajectories in F , and

(km, xm, ym, ℓm) such as (ym, xm) ∈ fkm−1 × fkm , and a trajectory
with length ℓm ending with link ym → xm having NFA equal to
NFAmin can be found in F .

Requirements: The NFAℓ,k0 formula defined in (6.10).

G ← compute G (F )
NFAmin ← +∞
for 2 ≤ k ≤ K do

for x ∈ fk do
for y ∈ fk−1 do

for 3 ≤ ℓ ≤ k do
k0 ← k − ℓ+ 1
if NFAℓ,k0(G (x, y, ℓ) < NFAmin then

NFAmin ← NFAℓ,k0(G (x, y, ℓ))
(km, xm, ym, ℓm)← (k, x, y, ℓ)

return (NFAmin, km, xm, ym, ℓm)

Algorithm 18: backtrack trajectory, perform trajectory backtracking.

Input: The point set sequence F = {f1, . . . , fK}, a frame index
km ∈ [3, K], a pair of points (ym, xm) ∈ fkm−1 × fkm , and a
trajectory length ℓm ∈ [3, km].

Output: A trajectory tm having the smallest NFA among those of the
type t = · · · → ym → xm ∈ Tℓm .

set tm = ym → xm // initalization of tm with ym → xm ∈ T2

while ℓm > 2 do
find zm ∈ argmin

z∈fkm−2

max
(
ad(z → ym → xm),G (ym, z, ℓm − 1)

)

set tm = zm → tm // link zm to the starting point of tm

(km, xm, ym, ℓm)← (km − 1, ym, zm, ℓm − 1)

return tm
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The final extraction scheme in [Primet and Moisan 2012] is greedy: if m, the
minimal NFA among all possible trajectories is less than ε, a trajectory hav-
ing NFA equal to m is extracted, its points are removed from the sequence and
the process is repeated until no trajectory with NFA less than ε can be found
any more. Besides, it is often possible to save computation time by extracting
several trajectories at once without recomputing the function G each time, be-
cause removing points from the current data set cannot decrease any value of
G . Therefore, if two trajectories realize the two smallest NFA of the sequence
without sharing any point, those two trajectories can be extracted at the same
time, without recomputation of G . This yields Algorithm 19.

Algorithm 19: ASTRE, greedy trajectories extraction according to their
NFA.

Input: The set of frames, F = {f1, . . . , fK}, containing the points of the
sequence, and ε, the maximal NFA of a trajectory to be extracted.

Output: T = {t1, . . . , tM}, the set of the extracted trajectories.

T ← ∅
F ′ ← F

repeat
G ← compute G (F ′)
(NFAmin, km, xm, ym, ℓm)← minimal NFA(F ′)
stop← false

while m ≤ ε and stop = false do
tm ← backtrack trajectory(F , km, xm, ym, ℓm)
if tm shares some points with a trajectory t ∈ T then

/* a recomputation of G is needed */

F ← F ′

stop← true
else /* the detection of tm is accepted */

T ← T ∪ {tm}
remove all the points of tm from F ′

(NFAmin, km, xm, ym, ℓm)← minimal NFA(F ′)

until m > ε or there are no more points in the sequence F

return T
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6.2.3 Improvement of the execution time

The main weakness of astre is its quadratic time and memory complexity
with respect to K, due to the extensive computation of G . A very simple way to
reduce the execution time of this algorithm is to introduce a threshold Sthre on
the speed of the trajectories: as soon as the distance between two points x and y
of two consecutive frames is higher than Sthre, we consider that link y → x cannot
exist. Hence we can avoid the computation of G (x, y, ℓ) for those pairs of points.

A speed threshold is a physical parameter that can be easily adjusted in many
applications. The use of this additional knowledge restricts the number of linking
possibilities among the sequence, and reduces very significantly the execution time
in general. However the complexity remains O(K2) and astre is still inapplicable
to long data sequences, as can be seen in the astre columns of Table 6.1.

6.3 An accelerated variant with linear complex-

ity

6.3.1 Principle of the CUTASTRE Algorithm

Our approach consists in grouping consecutive frames of the full sequence
F = {f1, . . . , fK} into overlapping chunks B1, . . . ,Bn (an example of grouping
is proposed in Figure 6.1, and the practical cutting procedure is detailed below).
Trajectories will be detected within each chunk (starting from chunk Bn) with an
algorithm similar to astre, which will be adapted to extend trajectories extracted
from a chunk Bk when processing its predecessor Bk−1. The function G will be
computed only within a single chunk, allowing a drastic reduction of the time and
memory complexity.

The cutting procedure.

Let c and o be two positive integers such as c ≤ K and 2 ≤ o < c. We
will now regroup the frames f1, . . . , fK into overlapping chunks B1, . . . ,Bn of the
type Bi = {fkistart , . . . , fkiend}, such as, as far as possible, each chunk Bi contains
c frames, and each overlapping area Ri↔i+1 := Bi ∩Bi+1 contains o frames. This
condition will be in practice satisfied exactly in all the chunks B1, · · · ,Bn−1, but
might be unsatisfied for the last chunk Bn, because of an inappropriate total
number of frames K. To properly deal with this eventual edge effect, we impose
to the last chunk Bn to contain at least c frames. It follows that n, the total
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Figure 6.1: Example of grouping for a twenty-two frames sequence (vertical segments)
containing five points each (black disks). Here frames are grouped into three chunks of ten
frames each, with four frames overlap.

number of chunks is the highest integer i satisfying kistart + c− 1 ≤ K, and since
we can easily check that kistart = 1 + (i− 1) · (c− o), we finally get

n = 1 +

⌊
K − c
c− o

⌋
. (6.13)

Finally, the cutting procedure that we propose consists in setting

∀i ∈ [1, n], kistart = 1 + i · (c− o), kiend =

{
kistart + c− 1 if i < n ,

K if i = n .
(6.14)

In the following we will denote by Ki the number of frames contained in the chunk
Bi, that is Ki = kiend − kistart + 1.

The sequential processing of the chunks.

The first chunk to be processed is Bn. For this very first chunk we simply
replace K by Kn in the NFA formula (6.2), and we apply the astre algorithm to
extract all the (ε/n)-meaningful trajectories from the corresponding subsequence
of frames (we will explain later this choice of thresholding). When astre termi-
nates, we put back in the sequence all points that have been removed from the
overlapping block of frames Rn−1↔n. We remove the corresponding links from
the detected trajectories, except those linking points of the two last frames of
Rn−1↔n. Finally, when a trajectory is entirely included into Rn−1↔n, all its links
are removed (this is the case of trajectory (4) in Figure 6.2-(a)). This ends the
process for the chunk Bn.

Let us now describe the process for the other chunks (Bi)1≤i<n. We say that
a trajectory t is extendable to Bi if t has been extracted while processing chunk
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Bi+1 (not Bi) and reaches the two last frames (that we denote F i
0 and F i

1) of
Ri↔i+1 (see Figure 6.2-(a), trajectories (1) and (2) are extendable to B2, as both
reach frames F 2

0 = f15 and F 2
1 = f16). To process these chunks, we need to

adapt the computation of G (x, y, ℓ) and NFAℓ(G (x, y, ℓ)) when x or y belongs to
an extendable trajectory. Let us say we focus on chunk Bi, three cases must be
distinguished:

(i) neither x nor y belongs to a trajectory extendable to Bi,

(ii) x ∈ F i
1 and x belongs to a trajectory t extendable to Bi that also contains

y (necessarily y ∈ F i
0),

(iii) any other case.

In case (i), K is replaced by Ki in (6.2), and NFAℓ(G (x, y, ℓ)) is computed exactly
as in [Primet and Moisan 2012]. In case (ii), by construction, t starts with the link
y → x (that is, t = y → x→ · · · ), because all links before y → x were suppressed
the trajectory t was extracted from the chunk Bi+1. Therefore, any trajectory t′

of Bi having length ℓ and ending with link y → x (that is, t′ = · · · → y → x, and
ℓ(t′) = ℓ) is an extension of t. Let t0 be the sub-trajectory of t that is obtained by
removing from t all points that do not belong to chunk Bi+1 (or said differently,
t0 is the restriction of t to the chunk Bi+1). We propose to take into account
the trajectory extension by replacing, the quantities G (x, y, ℓ), ℓ and K as follows
when computing NFAℓ(G (x, y, ℓ):

(a) replace G (x, y, ℓ) by max(G (x, y, ℓ), ad(t0)), which represents the smallest ac-
celeration of an extension of t0 by a trajectory t′ ∈ Tℓ of Bi of the type
t′ = · · · → y → x;

(b) replace ℓ by ℓ + ℓ(t0) − 2, which represents the length of the extension of t0
by t′;

(c) replace K by the number of frames contained in the union of the two consec-
utive chunks Bi and Bi+1, noted Bi ∪Bi+1.

Last, in case (iii) we simply set G (x, y, ℓ) = +∞ and NFAℓ(G (x, y, ℓ)) = +∞ in
order to avoid the detection of a trajectory ending with link y → x (or equiva-
lently, we just do not compute G (x, y, ℓ) for such pairs of points). The strategy
concerning trajectories extraction is exactly the same as in [Primet and Moisan
2012]; when all (ε/n)-meaningful trajectories are extracted, we set back again to
the sequence all points belonging to Ri−1↔i and unless Bi is chunk B1, we repeat
the link suppression process (see Figure 6.2, (b) and (c)).



6.3. An accelerated variant with linear complexity 225

•••••

•• •••••

• •••••

•••••

•••••

••••
•••

•••••

• •••••

••••

•••••

•••••

•••••

•••••

•••••

•••••

•••••

•••••••

••••••

••••

•••••
•••

(a) processing the chunk B3

•••••

•• •••••

• •••••

•••••

•••••

••••
•••

•••••

•••••

•••••

•••••

•••••

•••••••

••••••

••••

•••••
•••

•••••

•••••

•••••

•••••

•••••
(b) processing the chunk B2
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(c) processing the chunk B1

Figure 6.2: Illustration of the trajectory extraction process operated by CUTAS-
TRE. (a) Trajectories are being detected at level ε/n using astre, taking K3 = 10 instead
of K = 22 for the NFA computation. Each time a trajectory is extracted, all its points are
removed from the sequence. Once all trajectories are extracted, we set back to the sequence all
points of overlapping frames (frames f13 to f16). The corresponding links are removed (dotted
links) excepting those linking a point of frame f15 with a point of frame f16. Trajectory (4) being
entirely included into R2↔3, all its links are removed. (b) extraction of the (ε/n)-meaningful
trajectories within chunk B2 with several links suppression within R1↔2. Trajectories (1) and
(2) have been extended, trajectory (4) is detected again but in a slightly different way (the
link between frames f13 and f14 has changed), and is now longer. (c) extraction of the (ε/n)-
meaningful trajectories within chunk B1, trajectories (1), (2) and (4) have been extended, no
link suppression must be done in B1, since the trajectories will not be extended anymore.

The choice of locality.

The cutting strategy of the whole frame sequence into chunks B1, . . . ,Bn

adopted by cutastre breaks the quadratic complexity of astre, yielding a
O(K) complexity (the time and memory necessary to process the whole sequence
is roughly the time and memory necessary to process a chunk, which is O(1), mul-
tiplied by the number of chunks n which is O(K)). This drastic reduction of the
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complexity will be illustrated with some practical experiments in Section 6.3.3.
We would like to emphasize that, beyond this improvement of the algorithmic

complexity, the cutting strategy of cutastre is also a way to introduce some
locality (in time) to the underlying motion correspondence problem. Indeed, with
astre the trajectory extraction is based on a ranking of the trajectories according
their globalNFA, which takes into account the points of the whole sequence. With
cutastre we adopt a sliding window strategy, as the trajectories are first detected
(in part) in a single chunk (according to their localNFA, computed within a single
chunk) and can progressively extend from one chunk to another. When being
extended, a trajectory is always seen as a structure of a two-consecutive-chunks
sized sequence (thanks to the restriction of the considered extensions to the union
Bi ∪Bi+1 arising in the case (ii) described above), and never more.

The role of the overlap areas.

The locality provided by cutastre also introduced some difficulties. Since in
practice a trajectory may start at any frame of the sequence, the limited temporal
scope involved by the cutting of the whole sequence into smaller chunks can be
problematic for a trajectory starting near the edge of a chunk, where some wrong
linking can be decided due to a lack of information. These edge effects could have
been in practice limited using overlapping chunks. Indeed, thanks to the link
suppression process operated in the overlap areas, the cutastre algorithm does
not necessarily redraw removed links when a trajectory extension is done (look
carefully at trajectory (4) in Figure 6.2). Therefore, these overlap areas can be
seen as decision areas and removed links as hypotheses that can be validated or not
when trajectories are being extended. We will show in Section 6.3.3 that, provided
a good setting of the chunk and overlap size parameters, the cutastre algorithm
achieve better detection performances, both on synthetic and real datasets.

Preservation of the NFA property.

A natural question arises: do we still control the number of false detections
by (6.3) like the astre algorithm? The answer is yes, and it simply comes from
the fact that, in Hd

0 , the average number of new trajectories extracted in a given
chunk is less than ε/n, so that the average total number of extracted trajectories in
the whole sequence is less than ε. Although the preservation of thisNFA-property
remains interesting for applications where the number of false detections must be
precisely controlled, this result is in fact rather poor. Indeed, once we impose to
trajectories to be detected at level ε/n in a single chunk, whatever the trajectory
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extension strategy adopted, the NFA-property will be satisfied. For instance,
we can decide to extend all trajectories detected at level ε/n in the chunk Bn

by randomly selecting their links in the chunks {Bj}1≤j<n, which would produce
very unrealistic trajectories although the NFA-property would remain true.

6.3.2 A pseudocode description of CUTASTRE

The implementation of cutastre is quite similar to that of astre, in particu-
lar, our implementation of cutastre uses the algorithms 16 and 18 (compute G ,
backtrack trajectory), which are kept unchanged, and are simply applied to
the chunks {Bi}1≤i≤n instead of the full sequence F . The principal modification
involved by cutastre appears when we look for the minimal NFA in given a
chunk, since we must take into account some eventual trajectory extensions. This
can be done using Algorithm 20.

A simplified implementation of cutastre is proposed in Algorithm 21, which
is rather easy to read but suboptimal in term of computation time (it computes G

before each trajectory detection). An accelerated implementation of cutastre
is finally proposed in Algorithm 22, which avoids this systematic computation
of G , using the same strategy as in Algorithm 19. Notice that the outputs of
these implementations of cutastre are a bit different from that of the astre

Algorithm 19, since instead of returning a set of trajectories, cutastre adds
some links between the points of the sequence F , and returns a sequence of
linked points Flinked.
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Algorithm 20: minimal NFA chunk, compute the min. NFA within a
chunk.

Input: Two consecutive chunks Bi and Bi+1 (with Bi+1 = ∅ when i = n).

Output: NFAmin, the minimal NFA computed within chunk Bi (taking
into account some eventual trajectory extensions), and
(km, xm, ym, ℓm), such as there exists a trajectory t of the type

t = tm → t′ := · · · → ym → xm︸ ︷︷ ︸
tm∈Tℓm and

tm is included in Bi

→ · · · · · ·︸ ︷︷ ︸
t′ 6∈Bi

(if t′ is nonempty, then tm extends t′ to the chunk Bi, and
ym ∈ F i

0, xm ∈ F i
1) having NFA equal to NFAmin.

Requirements: The function f(ℓ, k0) =
∏k0+ℓ−1

k=k0
Nk, where Nk denotes

the number of points contained in the frame fk.

G ← compute G (Bi)
NFAmin ← +∞
Ki ← kiend − kistart + 1 // number of frames in Bi

for kistart ≤ k ≤ kiend do
for x ∈ fk do

if x ∈ F i
1 and x belongs to a trajectory t extendable to Bi then

y ← predecessor of x in t // y ∈ fk−1(= F i
0)

t0 ← restriction of t to the chunk Bi+1 // t0 = y → x→ · · ·
for 3 ≤ ℓ ≤ Ki do // a potential extension of t is being

tested. Compute the actual acceleration, length, and number of

frames, that will be took into account to compute the NFA.

a⋆ ← max
(
ad(t0),G (x, y, ℓ)

)

ℓ⋆ ← ℓ+ ℓ(t0)− 2
K⋆ ← number of frames in Bi ∪Bi+1

m← K⋆(K⋆ − ℓ⋆ + 1)f(ℓ⋆, k − ℓ+ 1)(a⋆)ℓ
⋆−2 // computed NFA

if m < NFAmin then
(NFAmin, km, xm, ym, ℓm)← (m, k, x, y, ℓ)

else
/* the tested trajectory does not extend any other one */

for y ∈ fk−1 such as y does not belong to any previously detected
trajectory do

for 3 ≤ ℓ ≤ Ki do
m← K⋆(Ki − ℓ+ 1)f(ℓ, k − ℓ+ 1)(G (x, y, ℓ))ℓ−2

if m < NFAmin then
(NFAmin, km, xm, ym, ℓm)← (m, k, x, y, ℓ)

return (NFAmin, km, xm, ym, ℓm)
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Algorithm 21: CUTASTRE, simplified but suboptimal version (G is system-
atically recomputed after each trajectory extraction).

Input: The set of frames, F = {f1, . . . , fK}, containing the points of the
sequence, ε, the maximal NFA of a trajectory to be extracted, c
and o, the chunk and overlap sizes used for cutting the sequence.

Output: Flinked, the same sequence as F where points may be linked
together.

Initialization: Cut the full sequence F into n overlapping chunks
B1, . . . ,Bn, with overlapping areas Ri↔i+1 = Bi ∩Bi+1

using (6.13) and (6.14). By convention, we set Bn+1 = ∅
and R0↔1 = ∅.

/* Process the chunks sequentially, from Bn to B1. */

i← n
while i ≥ 1 do

repeat
G ← compute G (Bi)
(NFAmin, km, xm, ym, ℓm)← minimal NFA chunk(Bi,Bi+1)
/* start the link supression process in Ri−1↔i. */

if tm is fully included in Ri−1↔i then
// the points of tm will have again a chance to be linked

together when processing the chunk Bi−1.

tm ← ∅
else if i > 1 and tm has a point in frame fki−1

end
−1 then

// tm is extendable from Bi to Bi−1. Remove from tm all the

points in the overlapping area Ri−1↔i excepts those in frames

F
i−1
0 (= fki−1

end −1) and F
i−1
1 (= fki−1

end
).

tm ← restriction of tm to {fk}k≥ki−1
end−1

reproduce each link of tm in Flinked and remove all the points of tm
from Bi

until m > ε/n or there are no more points in the chunk Bi

put back all removed points in Bi

i← i− 1

return Flinked
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Algorithm 22: CUTASTRE, accelerated version (avoids the systematic re-
computation of G ).

Input: The set of frames, F = {f1, . . . , fK}, containing the points of the
sequence, ε, the maximal NFA of a trajectory to be extracted, c
and o, the chunk and overlap sizes used for cutting the sequence.

Output: Flinked, the same sequence as F where points may be linked
together.

Initialization: Cut the full sequence F into n overlapping chunks
B1, . . . ,Bn, with overlapping areas Ri↔i+1 = Bi ∩Bi+1

using (6.13) and (6.14). By convention, we set Bn+1 = ∅
and R0↔1 = ∅.

/* Process the chunks sequentially, from Bn to B1. */

i← n
while i ≥ 1 do

B′
i ← Bi

repeat
G ← compute G (Bi)
(NFAmin, km, xm, ym, ℓm)← minimal NFA chunk(Bi,Bi+1)
stop← false

while m ≤ ε/n and stop = false do
tm ← backtrack trajectory(Bi, km, xm, ym, ℓm)
tm1 ← restriction of tm to Bi \ {fkiend−1, fkiend}
if a link of tm1 already exists in Flinked then

/* a recomputation of G is needed */

Bi ← B′
i

stop← true
else

/* start the link supression process in Ri−1↔i. */

if tm is fully included in Ri−1↔i then
tm ← ∅

else if i > 1 and tm has a point in frame fki−1
end

−1 then

tm ← restriction of tm to {fk}k≥ki−1
end−1

reproduce each link of tm in Flinked

remove the points of tm from B′
i

(NFAmin, km, xm, ym, ℓm)← minimal NFA chunk(B′
i,Bi+1)

until m > ε/n or there are no more points in the chunk Bi

put back all removed points in Bi

i← i− 1

return Flinked
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6.3.3 Experiments

We first compare the astre and cutastre algorithms on synthetic sequences
produced by the Point-Set Motion Generation (psmg) algorithm described in
[Verestóy and Chetverikov 2000] (see also [Primet and Moisan 2012], Section 4.2):

— The initial position of a trajectory is chosen uniformly on the (continuous)
image domain Ω;

— The initial velocity magnitude is ν0 = α|Z|, where Z ∼ N (µ = 5, σ = 0.5)
is a Gaussian random variable with mean µ and variance σ2, and α is a
scale factor whose setting will be detailed later. The initial velocity angle
βo is uniformly chosen on [0, 2π].

— The velocity magnitude and angle are updated in each frame using

{
νk+1 = |Z|, where Z ∼ N (νk, α · σν)
βk+1 ∼ N (βk, σβ).

— The generation ends when the trajectory reaches the last time index or
when it goes outside Ω. Once the trajectory is generated, its points are
quantized on a discrete grid.

In all our experiments we set σβ = 0.2, σν = 0.2 or 0.5, and the frame domain Ω is
quantized in 1000×1000 pixels. The setting of the other parameters (length K of
the sequence, length ℓ of the trajectories) will be signaled in each experiment. The
scale factor α is equal to (#Ω/(100×100))1/2 (that is, α = 10 in our experiments),
it can be use to change the domain quantization while maintaining the acceleration
and speed characteristics of the trajectories. Last, when a trajectory does not
cover the whole sequence (that is ℓ < K), its starting frame index is chosen
uniformly among {1, . . . , K − ℓ+ 1}.

The detection performances are evaluated using the F1-score criterion defined
by

F1-score = 2 · recall · precision
recall + precision

,

where 1 − precision measures the proportion of false positive links among found
links, and 1− recall measures the proportion of false negative links among actual
links, that is,

precision =
# correct links found

# links found
, recall =

# correct links found

# actual links
.

Unless explicitly signaled, we systematically take ε = 1 for both algorithms.
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Setting the chunk-size and overlap-size parameters

The astre algorithm has the NFA threshold ε as unique parameter, which is
remarkably easy to set (ε is a simple bound on the average number of detections
that would be done in pure noise data, usually one chooses ε = 1). The cutastre
algorithm introduces two new parameters, which are the chunk and overlap sizes.
Fortunately, the setting of these parameters appears to be quite simple, according
to the experiments performed on synthetic and real-life data (see Fig. 6.3 and
6.5-left). Indeed, a standard setup like c = 30 (or more) and o = c/2 seems to
lead to near-optimal performances in most situations.

Performances ASTRE versus CUTASTRE

We evaluated both algorithms on synthetic data sequences (with different char-
acteristics, see Figure 6.4) but also on a real one (see Figure 6.5). It turns out
from our experiments that astre and cutastre lead to similar performances
when dealing with highly accelerated trajectories (σν = 0.5) and a high level of
noise. Conversely, cutastre achieved better detection on the smooth synthetic
data set (σν = 0.2) and the snow sequence (when ε = 1).

Time and space complexity

The introduction of a speed threshold discussed in Section 6.2.3 can be applied
to both algorithms; it decreases the execution time, but does not change the
time and memory complexities, which are respectively O(N3K2) and O(N2K2)
for astre, and respectively O(N3K) and O(N2K) for cutastre. Examples of
practical execution time are given in Table 6.1.

Tuning the threshold parameter ε

In general, the numbers of false alarms of a-contrario algorithms are built using
a probability upper bound (like (6.1)) that is not necessarily sharp. Furthermore,
in the case of astre, trajectories are greedily extracted, thus the number of
trajectories extracted at level ε in any data sequence is always less than the number
of ε-meaningful trajectories. As a consequence, ε is in practice a pessimistic
estimation of the number of detections that really occur in pure noise data, and the
user can usually obtain better detection results by increasing the NFA-threshold
parameter ε, as illustrated in Figure 6.5 and 6.6.
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K Nnoise
no speed threshold use Sthre = 150
astre cutastre astre cutastre

200 10 30 1.4 1.2 0.09
500 10 270 3.6 11 0.26
1000 10 2160 7.6 80 0.51
3000 10 N/A 24.8 1230 1.64
5000 10 N/A 29.7 N/A 2.76

200 50 718 27 18 0.91
500 50 104 88 226 2.88
1000 50 N/A 158 1686 5.13
3000 50 N/A 444 N/A 15.20
5000 50 N/A 743 N/A 24.87

Table 6.1: Comparison of typical execution times on synthetic sequences (σν = 0.2)
with various values of the number of frames K. Each sequence contains K/10 trajectories with
length ℓ ∈ [100, 200] and Nnoise ∈ {10, 50} spurious points per frame. We compare the execution
time (in seconds) of astre and cutastre algorithms, with and without speed threshold (we
took Sthre = 150, which was three times the typical maximal speed that we could observe in
the data). This experiment shows that the use of a speed threshold (even pessimistic) reduces
significantly the execution time (for both algorithms), but does not break the O(K2) complexity
of astre, which is prohibitive for long data sequences. With cutastre, the execution time
increases linearly with the number of frames.
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Figure 6.3: Setting chunk size (c) and overlap size (o). We compute (over 50 realizations)
the average F1-score obtained with cutastre on synthetic sequences (σν = 0.2 or 0.5) ofK = 90
frames, each containing 20 trajectories with length ℓ ≥ 45 and Nnoise ∈ {50, 250} spurious points
(uniformly drawn) per frame. Several chunk sizes (c) are tested for all possible overlap sizes
(2 ≤ o ≤ c − 1). We display the F1-score as a function of the ratio o/c. As could be expected,
the optimal chunk size copt increases with σν and Nnoise (the algorithm needs bigger chunks to
catch the temporal coherence of the motion), but surprisingly enough it remains quite small
compared to K. The performance is stable according to the choice of c as soon as c is not
chosen too small. Conversely, once c is set, taking o = c

2 seems to be the optimal (or at least a
reasonable) choice for the overlap size.
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Figure 6.4: Comparison of astre and cutastre F1-scores (same data sequences as in
Fig. 6.3). cutastre is tested for several (near optimal) chunk sizes and the overlap size is
set to c/2 (integer part). We observe that better performances can be reached with cutastre

especially for data sequences with σν = 0.2 (smooth trajectories). When working with σν = 0.5
(trajectories with high accelerations), cutastre remains slightly better but performances are
very close.
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Figure 6.5: Performances evaluation on a real sequence. We evaluated the algo-
rithms on the snow sequence described in [Primet and Moisan 2012] (available online at
http://www.mi.parisdescartes.fr/~moisan/astre/). On the left, we reproduce the param-
eter exploration of Figure 6.3. We find copt = 8 and the performance is stable for c ≥ copt.
Also, the setting o = c/2 remains a good choice (often the best) once the parameter c is set.
On the right, we display the evolution of the F1-score with respect to log10(ε). We can see, as
in Fig. 6.4, that the two algorithms achieve similar performances (actually slightly better for
cutastre when the parameters c and o are optimally set).

http://www.mi.parisdescartes.fr/~moisan/astre/
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Figure 6.6: Influence of the threshold parameter ε (same data sequences as in Figure 6.3-
6.4). We display the (average) F1-score as a function of ε. Algorithm cutastre is used with
a near-optimal setting of parameters c and o (which revealed to be robust to ε changes). For
both algorithms, the F1-score increases with ε up to a global maximum, then it falls down. We
observe as in Figure 6.4 that the performances of cutastre are similar to those of astre (and
even slightly better for low accelerations and low noise levels).



Chapter 7

Conclusion

In this thesis, we managed to design (or make use of already known) efficient
algorithms in order to provide, in a reasonable computation time, a correct ap-
proximation of the output data defined by the considered mathematical models
(in most cases the output was an image, excepting in Chapters 5 and 6). In
particular, we explained how the STV based optimization problems could be effi-
ciently handled using the celebrated Chambolle-Pock algorithm [Chambolle and
Pock 2011] combined with the Fast Fourier Transform algorithms [Cooley and
Tukey 1965, Frigo and Johnson 2005]. We adapted to the case of Poisson noise
the TV-ICE model proposed in [Louchet and Moisan 2014] that can be viewed as
a fast variant of the TV-LSE model proposed in [Louchet and Moisan 2008, 2013],
yielding a fixed-point numerical scheme which exhibits a linear convergence rate.
We developed a fast algorithm dedicated to the accurate evaluation of a general-
ized incomplete gamma function. Last, we proposed cutastre as a fast variant
of the astre algorithm of Primet [2011], which allowed a drastic reducing of the
time and memory complexity, and which is already being used in [Dimiccoli et al.
2016] in a more complex fluorescent particle tracking algorithm. In this last chap-
ter, we give a summary of the main contributions of this thesis and propose some
perspectives for future works.

7.1 The Shannon total variation

In Chapter 3, we remarked that the use of TV
d (that is, the discretization

of the TV functional using a finite differences scheme) as a regularizer for image
processing problems generally leads to images that are aliased, and thus difficult to
interpolate. We focused then on the Shannon total variation (STV) variant which

237
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is inspired from the Shannon sampling theory and consists in approximating the
continuous total variation of the Shannon interpolation of the discrete image using
a Riemann sum. We derived some preliminary theoretical properties regarding the
choice of the sampling step of this Riemann sum, however, it would be interesting
as a future work to get more precise results about this choice, and more generally,
to derive more mathematical properties about STV, for instance by addressing
the following questions: Does STV2 controls STV∞? What are the differences
between STVn and n−1 TV

d ◦ Zn? In particular, can we provide a mathematical
study of the convergence speed with respect to n of those two estimates of STV∞,
at least on a simple class of signals?

If the mathematical study of STV is still largely open, we provided many
practical and useful results about its use as a regularizer. We showed how the
STV based energies could be efficiently handled with modern dual algorithms, and
that replacing TV

d by STV in the classical optimization problems does not raise
any theoretical or numerical difficulties. We illustrated through many examples
(denoising, deblurring, spectrum extrapolation) the improved quality in terms of
sub-pixel accuracy of the images produced using this STV model. In particular,
we showed that those images can be nicely interpolated (that is, without artifact)
using the discrete Shannon interpolation, and are therefore well sampled according
to the Shannon sampling theory.

The same approach was used to define the Huber Shannon total variation
(HSTV), which can be viewed as the Huber variant of STV (in analogy with
the Huber variant HTV

d of TV
d presented in Chapter 2). We showed that the

HSTV regularizer could be handled using dual algorithms, and we experimentally
checked that, even if both HTV

d and HSTV models produce images without
staircasing artifact, only those produced using HSTV could be nicely interpolated.
The ease with which we could adapt the classical duality tools in order to handle
the minimization of STV or HSTV based energies leads us to believe that this
approach could be generalized to many other variants of TV

d, such as for instance
the Total Generalized Variation (TGV) introduced by Bredies, Kunisch, and Pock
[2010], which involves high order derivatives (that is, derivatives with order higher
than one) of the image. The STV approach could be particularly relevant to
improve the TGV model since the partial derivatives of the Shannon interpolation
of a discrete image can be easily and exactly computed.

Then, we moved a bit from the classical restoration models by proposing a new
one which involves a data-fidelity term formulated in the frequency domain. This
model makes use of a frequency weight mapping γ which can be used to control the
relative importance in the minimization process of the data-fidelity term and the
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regularity term with respect to the frequency position. Different choices of γ yield
different applications, in particular we showed how γ could be easily set to remove
the aliasing from an image, or given an image which is difficult to interpolate,
could produce a visually similar image being easily interpolable. An interesting
perspective would be to focus more carefully on the choice of γ according to the
targeted application. For instance in the case of aliases removal, the design of
the frequency mapping could be driven using an aliasing detector such as that
proposed in [Coulange and Moisan 2010], in order to focus the processing on the
aliased frequencies. We could also combine the aliasing removal with a spectrum
extrapolation step in order to perform dealiasing, that is, in order to but back the
aliases to their correct position in the spectrum of the image.

Besides, a nice improvement we could try to achieve for this weighted frequen-
cies based model would be to figure out a way to reduce the loss of contrast in
the produced image. In classical applications, the data-fidelity term is formulated
in the spatial domain and mathematical studies (see for instance [Meyer 2001,
Strong and Chan 2003]) point out that an important loss of contrast occurs when
the data-fidelity term is taken equal to the ℓ2 square distance to the initial im-
age. A better contrast preservation can be achieved by replacing the ℓ2 distance
by a ℓ1 one (see [Chan and Esedoglu 2005] and references therein). In the case
of the weighted frequencies based model, the data-fidelity term, formulated as a
(weighted) ℓ2 square distance in the Fourier domain, is also responsible for loss of
contrast in the produced image. Can a better contrast preservation be achieved
by replacing again the ℓ2 distance in the frequency domain by a ℓ1 one as well? If
numerical experiments could be easily done to empirically observe how much the
contrast can be preserved using a ℓ1 distance, providing some theoretical justifi-
cations could be challenging.

Last, we presented some preliminary results which indicate an excellent level of
isotropy provided by the STV model. This should obviously be explored further
and carefully compared to the recent advances on this subject, such as those
proposed in [Chambolle et al. 2011, Condat 2016].

7.2 The Poisson TV-ICE model

In Chapter 4, we proposed a variant of the recent TV-ICE denoising model
of Louchet and Moisan [2014] that we adapted for the processing of images cor-
rupted with a Poisson noise. We provided a theoretical study of this new denoising
Poisson TV-ICE model. In particular, we proved the absence of staircasing ar-
tifact for the images generated by this model, and we proved that the iterative
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scheme associated to the Poisson TV-ICE model exhibits a linear convergence
rate. The practical computation of the Poisson TV-ICE recursion involved some
important numerical issues such as underflow or overflow errors, integral approx-
imation, cancellation errors, etc. We explained how those numerical issues could
be handled and we proposed a practical algorithm for computing the Poisson
TV-ICE iterations. Then, we confirmed the two main theoretical results (the ab-
sence of staircasing for the processed images and the linear convergence rate of
the numerical scheme) with some numerical experiments. Besides, the absence of
staircasing and the better-quality restored images attested by experiments make
Poisson TV-ICE a good alternative to Poisson TV-MAP.

Remark that the comparison between the Poisson TV-ICE and Poisson TV-
LSE (the variant of the TV-LSE approach [Louchet and Moisan 2008, 2013] de-
signed in the Gaussian case), both from a theoretical or practical viewpoint is still
open: can we give statistical interpretations of the image produced by the Poisson
TV-ICE model? Does it lie in the vicinity of that produced by the Poisson variant
of the TV-LSE model? We have for the moment no answer to give to these ques-
tions. Another direction for future works would be to adapt this Poisson TV-ICE
approach in order to handle more complex inverse problems (such as those con-
sidered in [Figueiredo and Bioucas-Dias 2010]), which would considerably enlarge
the interest of this model for real applications.

From the practical viewpoint, a challenging but relevant perspective for this
work would be to improve further the computation speed of the algorithm, since
at the moment, one iteration of the Poisson TV-ICE scheme is about a 100 times
slower than one iteration of TV-MAP implemented with the Chambolle-Pock al-
gorithm. This is mainly due to the fact that at each iteration of the process,
the update of each gray levels of the image involves the numerical computation
of several integrals followed by several evaluations of logarithms and exponentials
(since the evaluation of each integral is done with a mantissa-exponent representa-
tion). Instead of focusing on the speed of the algorithm dedicated to the accurate
computation of those integrals (which is developed in details in Chapter 5 and
that we believe to be quite fast considered the obtained level of accuracy), we can
imagine some strategies consisting in implementing some less accurate but faster
and still robust estimations method to perform the Poisson TV-ICE iterations
(for instance which approximates directly the ratio of sums of integrals involved
by this scheme). In that case, the accurate implementation that we proposed in
Chapter 5 would be useful to control quality of the approximation.
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7.3 Fast and accurate evaluation of the general-

ized incomplete gamma function

In Chapter 5, we focused on the evaluation of the generalized incomplete
gamma function Iµ,px,y (which was needed in Chapter 4 to perform the Poisson
TV-ICE iterations), and proposed a numerical procedure for its fast and accurate
evaluation. We performed a careful numerical validation of this procedure for a
large range of parameters, and showed that the double floating-point implementa-
tion of this procedure achieves a relative error less than 10−10 (in the worst case),
and in general less than 10−13, which is, compared to the accuracy obtained using
the method of Fullerton [1972], a significant improvement. Besides, by computing
the integral Iµ,px,y with a mantissa-exponent representation Iµ,px,y = ρ · eσ (with ρ and
σ evaluated in double floating-point precision), this procedure greatly extends
the range over which the integral can be represented, and this mantissa-exponent
representation of the estimated integral was particularly useful to avoid under-
flow and overflow errors when computing some ratios of sums of integrals Iµ,px,y in
Chapter 4. This work boils down to a C-language software which is available at
www.math-info.univ-paris5.fr/~rabergel/softwares/deltagammainc.zip.

As future research directions, we already evoked the possibility to improve fur-
ther the accuracy of this algorithm, and its extension to handle the computation
of complex values of the integral. Besides, while performing our numerical experi-
ments, we remarked that the method proposed by Pugh [2004] (that we presented
in Section 5.4, and used in the algorithm we proposed) to evaluate the complete
gamma function, involves a numerical parameter (r = 10.900511) which is not
representable using standard double floating-point precision numbers (because
this number has an infinite development in base 2). Consequently, although the
theoretical study provided by Pugh predicts a relative accuracy less than 10−19,
which was confirmed by numerical experiments done in Maple (which allows com-
putation with arbitrary precision), it happens that changing r = 10.900511 into
its closest double floating-point number (r ≈ 10.9005109999999998) involves a
significant deterioration of the relative accuracy. Since the accurate evaluation
of the gamma function is involved in many applications, it would be relevant to
reconsider this choice to improve the accuracy achieved when the implementation
is done in double floating-point precision, which is the commonly used precision
in most programs.

www.math-info.univ-paris5.fr/~rabergel/softwares/deltagammainc.zip
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7.4 The CUTASTRE Algorithm

In Chapter 6, we focused on the generic problem of the detection of smooth
trajectories from a noisy point set sequence. This detection can be done opti-
mally (according to an a contrario criterion) using the astre algorithm proposed
by Primet [2011]. However the astre algorithm exhibits a quadratic time and
space complexity with respect to the number of frame of the given input se-
quence (noted K), which is prohibitive for most applications. We proposed a new
variant of astre, called cutastre, which consists in cutting the sequence into
overlapping chunks of frames, and processing those chunks sequentially with an
algorithm similar to astre and a strategy of trajectory extension between two
consecutive chunks. This variant exhibits a linear time and memory complex-
ity (that is, O(K)), and thus breaks the O(K2) time and memory complexity of
astre, while showing at the same time a similar (or even slightly higher) de-
tection performance, according to the numerical experiments that we performed
on real or synthetic data. Some standalone implementations of astre and cu-

tastre in C-language are available at http://www.math-info.univ-paris5.fr/

~rabergel/cutastre.html.
A practical improvement that could be easily done would be to reconsider the

choice made in [Primet 2011] which consists in processing the frame sequence in
reverse order (that is from its last frame to its first frame) in the proposed dynamic
programming algorithm. Because of this choice (that we did not changed here in
order to focus more on the cutting strategy of cutastre), the full sequence must
be entirely loaded before astre or cutastre can be run. In fact, rewriting
both algorithms to process the sequence in the right order (that is, starting from
the first frame of the sequence) is straightforward and opens the possibility of
processing the chunks of frames on the fly with cutastre.

In terms of future works, this variant could be extended to handle missing
points (trajectories “with holes”), as this functionality is already available with
astre but is still too computationally expensive for many applications, because
of the O(K5) complexity it exhibits. Besides, according to the nature of the
data, it could be interesting to introduce some new features, for instance adding
an orientation to the points of the input sequence would be very convenient for
applications involving microtubules or small insects. A more challenging per-
spective would be to enclose the feature (position, orientation, or more generic
features . . . ) detection step to the whole process, leading to a generic tracking
algorithm that could be used to detect and track objects directly from an input
sequence of images.

http://www.math-info.univ-paris5.fr/~rabergel/cutastre.html
http://www.math-info.univ-paris5.fr/~rabergel/cutastre.html
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struction d’images et à la détection de changements. PhD thesis, Université
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