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Chapter 1

Introduction

This chapter provides a general introduction to this Ph.D. thesis. It is divided

into three main sections. First, we present the background and the motivations

of our work. Second, we highlight our objective and contributions. Finally, we

describe the structure of the manuscript.
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CHAPTER 1. INTRODUCTION

1.1. Background & motivation

Many of our daily activities depend on services and service providers, from the e-mail

we check in the early morning to the public transportation service we take to our work-

ing place, from the restaurant we eat in at noon to the package we receive during the day.

Services are everywhere in our life, including finance (banking, stocks), health (person-

al physician, hospital), communication (e-mail, 4G network), public services (electricity,

police), etc. [Daskin, 2010]

In past twenty years, the service sector has emerged as the primary sector in the

world economy (Figure 1.1), especially in developed countries. Based on the report

from the office of the United States Trade Representative, for instance, four out of five

jobs in the U.S. are provided by service industry [USTR, 2014]. Furthermore, service

sector accounted for 78.76% gross domestic product (GDP) in France 2015 according to

statistical data from the World Bank group.

Figure 1.1: Growth of the service sector in world GDP

In the context of economic globalization, competition and cooperation in service

industries have become more and more popular: price competition among fast food
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1.1. BACKGROUND & MOTIVATION

restaurant chains, combination operation of telecommunication companies, collabora-

tive after-sales and maintenance services in electronic manufacturing industry, just to

name a few. In this thesis, we study collaborative strategies in homogeneous service

systems. We focus in particular on resource pooling strategies. Our approach consists

of using queueing modeling for service systems and game theory for the analysis of

interactions between service providers. In what follows, we briefly discuss collaboration

strategies and resource pooling.

Collaboration strategies in services

In order to improve the system performance or reduce expenses, there are several ba-

sic cooperative methods: queueing cooperation, e.g., scheduling among simultaneous

arrival agencies or rerouting among different servers [Katta and Sethuraman, 2006, Kay-

i and Ramaekers, 2010]; service pooling, e.g., service rate pooling or staffing alloca-

tion [Guo et al., 2013]; cross-training [Tekin et al., 2014]; collaboration with third-party

service providers, e.g., service outsourcing [Aksin et al., 2008], etc. It is sometimes useful

to combine these methods to form a more profitable collaborative structure [Anily and

Haviv, 2014].

Cooperation methods can be classified broadly into three typical forms (Figure 1.2):

vertical form, the collaboration between customers and servers, e.g. phone packages

signed with telecommunication companies, fitness cards brought from gyms; horizontal

form, the collaboration among homogeneous servers, e.g. after-sale services of electronic

products of different brands; and external form, the collaboration with another party out

of the service systems, e.g., customer services outsourcing abroad.

Among majority efficiencies brought by service collaborations, cost reduction is the

most marked driver for service providers. The service capacity cost and the waiting

cost in the queue/system are widely used in the literature [Anily and Haviv, 2010, Özen

et al., 2011, Karsten et al., 2015b, Yu et al., 2015].

7



CHAPTER 1. INTRODUCTION

Figure 1.2: Service cooperation classification

Resource pooling

From first study in [Stidham, 1970], pooling for queueing systems has been widely in-

vestigated in the literature on the design of service systems. It is well known that the

service capacity pooling naturally leads to economies of scale in stochastic flows in op-

eration management studies [Smith and Whitt, 1981, Bell and Williams, 2005]. This

operational efficiency improvement occurs in the disappearance of idle service resources

in the presence of congestion in queues. It is both valid within some departments of

an economic entity, e.g., reservation pooling in a restaurant [Thompson and Kwortnik,

2008], or among multiple independent entities [González and Herrero, 2004, Garcia-Sanz

et al., 2008, Anily and Haviv, 2010, Kayi and Ramaekers, 2010, Tekin et al., 2014, Anily

and Haviv, 2014].

Applications in practice for service pooling among homogeneous service providers

are numerous. For instance, different departments in a hospital could share a common

operating theatre and afford the joint expenses. Different hospital departments could

also share a joint service capacity in terms of beds in a common ward, which would

alleviate congestion. Another example is in the context of after-sales for new categories

of electronic products. Such products are likely to have low after-sales demand rates for

each retailer individually. The retailers could therefore provide together a joint after-

sales service to reduce service start-up costs and also improve service quality. For avi-

ation services, the joint check-in service for different airline companies is an additional

8



1.2. OBJECTIVE & CONTRIBUTIONS

example for service pooling applications.

Prior to services, resource pooling in supply chains has already attracted a lot of at-

tention. The first contribution to gains splitting is considered in a multistore economic

order quantity with safety stock in [Gerchak and Gupta, 1991]. Later, [Hartman and

Dror, 1996] and [Özen et al., 2008] extend this problem in a cooperative game environ-

ment. The cooperation costs sharing issue in the multi-retailer newsvendor problem is

first considered by [Hartman et al., 2000] and [Müller et al., 2002]. Relative problem are

also fruitfully studied in the joint replenishment problem [Meca et al., 2004, Anily and

Haviv, 2007, Zhang, 2009, Elomri et al., 2012] and the economic lot-sizing model [Van den

Heuvel et al., 2007, Guardiola et al., 2009].

There are similarities between service and manufacturing operations, which are both

concerned with the efficiency, effectiveness, quality problems, and motivated by the

cost reduction. In contrast to the research in the manufacturing industry, the relative

research in service industry could not meet requirements of its enormous economic

share. Services are mainly characterized by complex operations and a high impact of

human factors. In this thesis, we account for these two aspects through the analysis of

the impact of service duration variability and customer abandonment, respectively. We

study the problem where independent service providers could be subject to cooperate

with each other. We consider the resource pooling strategy in different service systems

and provide corresponding pooling strategies using cooperative game theory.

1.2. Objective & contributions

The objective of this thesis is to study the impact of the features of service variability

and customer abandonment on collaboration strategies. Motivated by cost reduction,

we tackle the resource pooling problem between independent service providers. We use

a queueing approach for the modeling of these features. More concretely, we address

the two following questions: 1) which coalition strategy should be used? and 2) which

allocation rule should be selected in order to maintain the stability of the coalition? We
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CHAPTER 1. INTRODUCTION

use cooperative game theory, which provides interesting concepts to analyze profitable

coalition structures and solve the cost-sharing problem among the participants.

The main contributions of this thesis can be summarized as follows.

First, we study the cost-sharing problem among independent service providers in a

service capacity pooling system with general service times. The effective improvemen-

t is achieved by reducing the resource idleness in case of congestion. We model both

the service provider and the cooperative coalition as single server queues with general

service times. For the two situations of pooling with a fixed service capacity and pool-

ing with the optimized service capacity, we define the corresponding cooperative games

and analyze the core allocations. For the fixed capacity case, we prove that the core is

non-empty. The characteristic function is neither concave nor monotone in the afore-

mentioned game. However, we prove that the service pooling game with the optimized

service capacity is concave. For this concave game, we find two stable allocation rules

and illustrate a combined cost allocation strategy.

Second, we consider a group of homogeneous and independent single server service

providers with impatience, where a customer quits the system without service whenev-

er her waiting time in the queue exceeds his patience time threshold. The advantage of

collaboration in the service systems accounting customer abandonment, is not only the

sharing of instant idle resources but also the reducing of abandoned customers. Under

Markovian assumptions for inter-arrival, service and patience times, we define a coop-

erative game with transferable utility and a fixed service capacity for each coalition. We

prove that the grand coalition is the most profitable coalition and that the game has a

non-empty core. We then examine the impact of abandonment on the stability of Shapley

value. Furthermore, we prove the concavity of the waiting queue length with respect to

the abandonment rate, and give a condition under which the Shapley value is situated in

the core. We also study the cost-sharing problem of the relative cooperative game with

the optimized service capacity, and prove that the proportional allocation rule based on

customer arrival rates gives a dynamic stable allocation to all relative sub-games.

In the previous studies, we use the ’super-server’ assumptions. The main reason
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1.3. THESIS STRUCTURE

for this assumption is that dealing with multi-server queues with general service times

and customer abandonment is very hard. To assess the quality of this assumptions, we

address the service pooling problem in the multi-server pooling setting. Although it is

intuitive to expect efficiency improvements in the pooled multi-server system, it is not

obvious to conclude that all members will benefit from pooling as it is the case for the

’super-server’. We compare between two pooling settings from a coalition perspective.

We numerically evaluate the effects of service variability and customer abandonment on

the two corresponding games.

1.3. Thesis structure

The remaining part of this Ph.D dissertation contains four chapters.

In Chapter 2, we study the cost-sharing problem in service systems with general

service times. The paper version of this chapter is under the second round review in

Naval Research Logistics [Peng et al., a]. Secondly, we analyze cooperative strategies in

the presence of customer abandonment in Chapter 3. The paper version of this chapter

is submitted to IIE Transactions [Peng et al., b]. In Chapter 4, we compare between

’super-server’ and multi-server modeling in terms of stability and cost allocations. The

paper version of this chapter is a working paper to be submitted for publication. Finally,

Chapter 5 is devoted to general conclusions and perspectives. Figure 1.3 provides a

general overview of the dissertation content.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Dissertation structure
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Chapter 2

Cooperation in Service Systems with Gen-

eral Service Times

In this chapter, we study the cost-sharing problem among independent service

providers in a service capacity pooling system with general service times. The

effective improvement is achieved by reducing the resource idleness in case of

congestion. We model both the service provider and the cooperative coalition

as single server queues with general service times, and attempt to answer the

following questions: 1) which coalition strategy should be used; and 2) which

allocation rule should be selected in order to maintain the stability of the coali-

tion?

For both situations, (a) pooling with a fixed service capacity and (b) pooling with

the optimized service capacity, we define the corresponding cooperative game

and analyze the core allocations. For the fixed capacity case, we prove that the

core is non-empty. The characteristic function is not concave and monotone in
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CHAPTER 2. COOPERATION WITH GENERAL SERVICE TIMES

the aforementioned game. However, we prove that the service pooling game

with the optimized service capacity is concave. For this concave game, as it is

widely admitted, the Shapley value provides a core allocation rule. We prove

that the proportional allocation rule based on the individual customer arrival

rates, is also located in the core. Moreover, we show that the allocation scheme

evolved is a Population Monotonic Allocation Scheme (PMAS) for this game.

We finally analytically compare between the performance of the Shapley value

and the proportional rule in terms of the individual profits from the cooperation,

and illustrate a combined allocation strategy.

14



2.1. INTRODUCTION

2.1. Introduction

The obvious profit of service pooling is the congestion mitigation in the whole system,

owing to the reduction of idleness with the presence of waiting customers. The pooling

advantage for the entire alliance is apparent, but the collective interests cannot be the

incentive for each individual service provider to join the coalition. It is therefore impor-

tant to address the following questions: which service providers should cooperate; and

how to share the pooling cost among the participants to keep each individual and subset

staying in the coalition?

Motivated by real-life applications, we consider in this chapter a set of independent s-

ingle server service providers, each of which faces its own incoming stream of customers.

Customer inter-arrival and service times are assumed to be random and independently

distributed. We suppose that every incoming stream is strictly unrelated to those of oth-

er providers. This means that there is no competition in the set. Service providers could

then join a profitable coalition by operating their service capacities in common. Alterna-

tively, each provider makes his own decision independently to either join any coalition

or not, based on his individual benefit. Once the coalition is formed, the most interesting

problem for every unit in the entire coalition becomes a cost-sharing problem.

Cooperative game theory provides interesting concepts to look for profitable coali-

tion structures and solve the cost-sharing problem among the participants. We assume

here that the total cost is a transferable utility, e.g., money in the general case. The

corresponding cooperative game with transferable utility (TU-game) is defined among

a set of independent service providers, and has a characteristic function defined by the

operating coalition costs. We prove that the service pooling game with fixed service

capacity sharing always has a stable cost-sharing solution for the grand coalition. Stable

cost-sharing means that all subsets pay less in the grand coalition than in each individual

setting. We also observe that the higher is the variability of service times, the larger is

the relative revenue to the cooperative coalition. Under optimized service capacity con-

ditions, we prove that the corresponding service pooling game is concave. We consider

15



CHAPTER 2. COOPERATION WITH GENERAL SERVICE TIMES

two stable cost allocation rules for this game: the proportional allocation rule depending

on customer arrival rates and the Shapley value, and discuss their fairness using the

benefit ordering property.

The rest of this chapter is structured as follows. We briefly review the relevant lit-

erature in the next section. In Section 2.3, we present the individual and collaborative

modeling of service systems. In Section 2.4, we define and analyze the service pooling

problem with a fixed service capacity as a TU-game. Then, we consider the optimal

service rate and analyze the corresponding service pooling game in Section 2.5. We con-

sider two stable allocation rules for this game and provide some analytical discussions

of the results.

2.2. Literature review

Our work is related to the stream of literature dealing with the study of the benefits

of resource pooling. In the early research [Stidham, 1970], the optimal design of single

server systems is studied for different service cost functions. Moreover, the resource

pooling as a parallel-server system is applied in the heavy transportation case in [Har-

rison and López, 1999]. In [Wallace and Whitt, 2004], the authors consider both the

resource pooling and staffing in a particular call center application. While focusing on

the profitability, [Dijk and Sluis, 2008, Jouini et al., 2008] discuss the benefit of pooled

and unpooled scenarios in call centers. For an inventory application, the sensitivity of

the inventory pooling benefit is investigated and evaluated by comparing several forms

of capacity pooling in [Benjaafar et al., 2005].

This work is also related to the large body of literature focusing on the cooperative

behavior among independent participants using cooperative game theory. [González and

Herrero, 2004] is the earliest research that deals with the cost-sharing problem for an op-

erating theatre in medical service. The authors separate the operating theatre costs as

variable and fixed costs, and focus on the Shapley value of two sub-games. In [Garcia-

Sanz et al., 2008], the authors extend the work in [González and Herrero, 2004] by con-
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2.2. LITERATURE REVIEW

sidering preemptive priority for the customers from different individual servers, which

allows to provide a more profitable pooling system. Our work is clearly related to two

recent papers [Yu et al., 2015, Anily and Haviv, 2010] that consider M/M/1 modeling

to study the service capacity pooling problem using cooperative game theory. [Yu et al.,

2015] uses the optimal service rate that minimizes the system operating costs, and an

incomplete information problem is also treated. In [Anily and Haviv, 2010], the authors

choose a service rate varying with the customer incoming rate. In [Karsten et al., 2015b]

and [Karsten et al., 2011], the service collaboration problems in [Yu et al., 2015] and [Ani-

ly and Haviv, 2010] are extended to multi-server settings using Erlang-C and Erlang-B

queueing models, respectively. Similar to [Karsten et al., 2015b, Karsten et al., 2011], we

consider here a single server modeling. Yet, the cost structure is different since we focus

on the cost of the waiting time in the queue instead of that in the system. This makes the

results different. For instance, the concavity of the auxiliary game provided in [Anily

and Haviv, 2010] is not compatible with our setting. More importantly, we allow service

time to be generally distributed. Despite its prevalence in practice, no existing studies

allow for non-Markovian service times.

The cost allocation problem of service capacity pooling is a challenging subject. The

objective is to find the stable cost allocations, which means that no coalition has an

incentive to split off. In cooperative games, the core defined in [Gillies, 1959], presents

the set of all stable cost allocations. For service pooling games, the Shapley value as

an accepted fair cost allocation rule is discussed in [González and Herrero, 2004, Anily

and Haviv, 2010]. Note also that the proportional allocation rule could be used as a

general cost-sharing rule for this kind of problems. It depends on the structure of the

game characteristic function [Garcia-Sanz et al., 2008, Yu et al., 2015, Karsten et al.,

2015b, Karsten et al., 2011]. In [Anily and Haviv, 2010], the authors divide all stable

allocations into two families: non-negative and negative ones, and propose an algorithm

to generate all stable allocations. A corrected proportional allocation rule is given in [Yu

et al., 2015] to handle the eventual incomplete information problem. For our game

with the optimized service capacity, we find two stable allocation rules. Considering the
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CHAPTER 2. COOPERATION WITH GENERAL SERVICE TIMES

complexity and the fairness of the two rules, we discuss their use under different setting.

There are also several papers focusing on other service collaboration issues using co-

operative game theory: [Katta and Sethuraman, 2006] considers a scheduling problem

in a service facility under a rush hour regime. They propose two solution concepts,

Random Priority and Constrained Random Priority cores, if monetary compensation

are allowed. For a similar scheduling problem, the only cost allocation rule satisfying

Pareto-efficiency, anonymity and strong strategy-proofness, is proved by [Kayi and Ra-

maekers, 2010]. In [Mishra and Rangarajan, 2007], the authors characterize the Shapley

value solution for a job scheduling problem. These kind of problems are referred to as

queueing problems in [Chun, 2006b, Chun, 2006a]. [Guo et al., 2013] studies the staffing

problem in call centers, where a square-root safety staffing rule is selected to define the

number of agents required for each coalition in the system. They show that the Shapley

value is a fair staff allocation rule in the core of the square-root safety staffing game.

In addition to services, cooperation in supply chains has been already a fruitful re-

search subject to make joint pricing and inventory decisions. In order to improve oper-

ations and reactivity to the market changes, working with outside partners is more and

more important for supply chain actors over the past decades [Zhang, 2009, Dror et al.,

2012, Elomri et al., 2012, Timmer et al., 2013]. There are numerous examples for cooper-

ation cases: collaborative forest transportation [Fiestras-Janeiro et al., 2013], cooperative

procurement [Drechsel and Kimms, 2010], shipping pooling of automobiles [Sherali and

Lunday, 2011], lateral transshipments pooling [Satir et al., 2012], just to name a few.

A interesting review of the application of both cooperative and non-cooperative game

theories in supply chain is provided by [Nagarajan and Sošić, 2008].

2.3. Service pooling modeling with general service times

We consider a set of n service providers, N = {1, . . . , n}. Each service provider i ∈ N

is modeled as a single server queue handling a single class of customers. We assume

that the waiting space is large enough, no customer would abandon after arriving at

18



2.3. SERVICE POOLING MODELING WITH GENERAL SERVICE TIMES

the system, and there is no failure in service processing, i.e., no retrial is considered

here. The incoming stream of customers to service provider i ∈ N follows a Poisson

process, and customers are served in the order of their arrivals, i.e., under the first come,

first served (FCFS) discipline of service. Service times for a given service provider are

assumed to be i.i.d. and allowed to follow a general distribution. Following the above

assumptions, the individual service process is modeled as an M/GI/1 queueing system.

For the total operating cost, we consider a traditional economic framework with two

types of costs [Guajardo and Rönnqvist, 2015]. The first type is a linear capacity cost

per unit time, which is proportional to system service capacity. This may capture the

equipment’s depreciation or maintenance fee, employee’s salary, etc. We also assume a

congestion cost incurred for each unit of time the customers spend in the queue. For

each service provider i, we define the following parameters:

• λi: Mean arrival rate of customers to provider i;

• Ti: A random variable describing the service time at server i, with mean 1/µi and

coefficient of variation cvi;

• ρi = λi/µi: Server utilization for provider i, with µi > λi;

• Wq,i: Customer expected waiting time in the queue for provider i;

• ch,i: Service capacity cost parameter per unit time per service capacity for provider

i;

• cw,i: Congestion cost parameter per unit time per customer waiting in the queue at

server i.

For service provider i, we denote the capacity, the congestion and the total operating

costs per unit time by Ch,i, Cw,i and Ci, respectively. Using the Pollaczek-Khinchine formula

in [Pollaczeck, 1930], we may write

Ci = Ch,i + Cw,i = ch,iµi + cw,iλiWq,i = ch,iµi + cw,iλi
λiE(T2

i )

2(1 − ρi)
. (2.1)

The service capacity pooling consists of two typical methods with pooling demand.

In the first one, the service providers form a common facility with parallel-servers and

one single queue, which will be considered in Chapter 4. In the second one, the servers
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share their service capacities together and work as a ’super-server’, i.e., a single serv-

er system with a high service capacity. As in [Yu et al., 2015] and [Anily and Haviv,

2010], we consider here the second configuration. We assume that u independent ser-

vice providers of any subset ∅ ⊂ U = {1, . . . , u} ⊆ N would decide to share their

capacities as a ’super-server’. Individual arrival processes are assumed to be indepen-

dent. Therefore, the combined arrival process, at a rate of λU = ∑U λi follows a Poisson

process. We assume that the pooling system provides same services in terms of speed

and quality (compared to the case of individual providers), and service times are also

i.i.d.. We denote the mean service capacity by µU for the pooling system U. Based on

these assumptions, the u providers act as an M/GI/1 ’super-server’ system (Figure 2.1).

Figure 2.1: Individual and coalition service systems

The service providers, which provide the same service and have similar scales, are

assumed to also have similar service capacity expenses. This could be justified by the use

of the same technology and the similarity of the staff salary expenses. We then assume

for simplicity that the service capacity cost parameters to be the same, ch,i = ch, and

the coefficients of variation of service times to be identical, cvU,i = cvU = cvN, for all

providers in the set N. We only consider a single class of customers in the pooling sys-

tem. The congestion parameters are assumed to be identical, cw,i = cw, for all customers

from all service servers. The service providers are also all assumed to be risk-neutral.

The total cost of the pooling system U ⊂ N, is the sum of service capacity cost and

system congestion cost. For a pooling system U, we define the parameters as follows:

• λU: Mean arrival rate of customers for the pooling system U;

• TU: A random variable, service time at the pooling server U, with mean 1/µU and
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coefficient of variation cvU;

• ρU = λU/µU: Server utilization for the pooling system U, with µU > λU;

• Wq,U: Customer expected waiting time in the queue for the pooling system U;

• ch: Service capacity cost parameter per unit time per service capacity for any subset

of N;

• cw: Congestion cost parameter per unit time per customer waiting in the queue for

any subset of N.

For a pooling system U, we denote the capacity, the congestion and the total operat-

ing costs per unit time by Ch,U, Cw,U and CU, respectively. The expected total cost per

unit time is given by

CU = Ch,U + Cw,U = chµU + cwλUWq,S = chµU + cwλU
λUE(T2

U)

2(1 − ρU)
. (2.2)

With the above notations and definitions, we propose both the individual service

model and the pooling service model using an M/GI/1 queueing modeling. Our objec-

tive is to investigate the profitability and stability of service capacity pooling. It consists

of two steps: (i) confirm that the service capacity pooling is profitable for the whole set

and for each provider; (ii) verify that the coalition structure could be stable under some

cost allocations. Cooperative game theory provides a framework to formulate, structure

and analyze the cooperative behavior of independent individuals in collaboration. In the

two following sections, we construct TU-games under two different conditions: (i) each

provider has a fixed individual service capacity and the capacities remain fixed in any

coalition; (ii) the service capacity for any individual/pooling server could be optimized.

2.4. Service pooling game with fixed service capacity

In this section, we assume that the service capacity of every individual service provider

is fixed. This corresponds to situations where the changing of equipments or the physical

location is too expensive or almost impossible. We thus consider the pooling capacity

µU of any subset U as the sum of the service capacities of its members. Let us denote by
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C f ix(·) the total cost function of a subset U ⊂ N. We have

C f ix(∅) = 0, C f ix(U) = CU(λU, µU = ∑
j∈U

µj), for any ∅ ⊆ U ⊆ N. (2.3)

Consider a finite set of independent service providers N = {1, . . . , n} (a set of play-

ers), which is known as the grand coalition in cooperative game. Let U be any subset

of N, which is called a coalition (a subset of players). In every coalition, the players

could reduce the total costs by service pooling. We assume that each service provider

could only join one coalition, and the pooling cost could be redistributed among the

providers with no limitation. Thus, a TU-game (N, C f ix) is completely specified by its

characteristic function C f ix : 2N → R defined for any sub-coalition of N.

To simplify the presentation of the game (N, C f ix), we define the quality f as cv2
N and

rewrite Equations (2.1) and (2.2). We thus obtain

CU = chµU + cwλU
λUE(T2

U)

2(1 − ρU)
= chµU +

cw(1 + f )
2

1
ρ−1

U (ρ−1
U − 1)

, for any ∅ ⊆ U ⊆ N.

(2.4)

2.4.1. Non-emptiness of the core

Note here that the service capacity cost and the system congestion cost are both single-

variable functions in either the service capacity or the server utilization. We denote the

expected queue length of coalition U by Lq,U. Proposition 2.1 states the improvement of

the service quality in terms of Lq,U in the pooling system.

Proposition 2.1. The expected queue length is strictly subadditive in the pooling system

with a fixed service capacity.

Proof. For any ∅ ⊆ U, T ⊆ N with U ∩ T = ∅, we suppose that ρU ≤ ρT. Then, the

utilization of the pooling server U ∪ T has the property: ρU ≤ ρU∪T ≤ ρT, and the queue

length Lq,U = (1 + f )/[2ρ−1
U (ρ−1

U − 1)] is an increasing function in 0 < ρU < 1. Thus,

Lq,U ≤ Lq,U∪T ≤ Lq,T. So, Lq,U∪T < Lq,U + Lq,T. The subadditivity of the expected queue

length has been proved.
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From Proposition 2.1, we state that the average number of waiting customers is al-

ways reduced in the pooling system. The proof above also shows that Lq,U is not mono-

tone. The joint queue length may be increased with the joining of new members, e.g.,

when a provider i /∈ U joins a coalition U with ρU < ρi. This result is similar to that in

the M/M/1 service pooling game in [Anily and Haviv, 2010]. We now present the two

main results for the game (N, C f ix) analysis in Theorems 2.1 and 2.2. We start with the

most profitable coalition structure.

Theorem 2.1. The service pooling game (N, C f ix) is a strictly subadditive game, and the

grand coalition is the most profitable coalition structure.

Proof. For the total cost function C f ix(U) = Ch,U + Cw,U, the first term Ch,U = chµU is

additive, and the second one Cw,U = cwLq,U is strictly subadditive, based on Proposition

2.1. It is then clear that C f ix is strictly subadditive, so (N, C f ix) is a strictly subadditive

game, and any splitting of the grand coalition implies an additional congestion cost for

the entire set N. Thus, the grand coalition N is the most profitable coalition structure for

the game (N, C f ix).

Subadditivity is a necessary condition required for the formation of the grand coali-

tion. It states that N is the most profitable coalition. Theorem 2.1 states that there is

always a benefit if service providers share their service capacities as a ’super-server’

with a fixed service capacity. In the context of resource pooling, each participant could

save money from the coalition congestion cost. Although the profitability is justified by

Theorem 2.1, the existence of stable cost allocations has not been confirmed yet. In order

to motivate every provider to join the grand coalition, our interest now is to find a stable

allocation rule to share the reduced congestion cost. One of the important properties for

the stable cost allocation analysis is the concavity as given in the following definition.

Definition 2.1. A TU-game (N, v) is concave if for any pair of subsets ∅ ⊆ U ⊂ T ⊂ N,

and any player l ∈ N\T, v(U ∪ {l})− v(U) ≥ v(T ∪ {l})− v(T).

The Shapley value, introduced by Shapley in 1952 [Shapley, 1952], is an important

allocation concept in cooperative game theory. It provides us with a well known fair
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allocation rule for TU-games, but it could not always stay in the core. For a TU-game

(N, v), the Shapley value is given by

shi = ∑
U⊆N\{i}

|U|!(|N| − |U| − 1)!
|N|! [v(U ∪ {i})− v(U)], i ∈ N, (2.5)

where v(U ∪ {i})− v(U) is the marginal cost of provider i as the last player joining the

coalition U. If (N, C f ix) is concave, the non-emptiness of the core and the stability of the

Shapley value would be ensured. Unfortunately, the following example illustrates the

non-concavity of the game (N, C f ix) and the instability of the Shapley value as well as

the classical proportional allocation rules.

Consider the case where ch = 0 (because of the additivity of capacity cost, this as-

sumption does not affect the results of cooperative games), cw = 1 and f = 0.2, a set

N = {1, 2, 3} of three service providers, and the remaining parameters as defined in

Table 2.1.

Players
Parameters

λi µi Ci

1 9 10 4.86
2 5 10 0.3
3 2 10 0.03

Table 2.1: 3 players pooling game

We use the same arrival and service rates of the example in [Yu et al., 2015]. There

are big differences among service utilizations of each player under this situation. By

choosing U = {1}, T = {1, 3} with l = 2, we obtain C f ix(U ∪ {l})− C f ix(U) = −3.88 <

C f ix(T ∪ {l})− C f ix(T) = −0.03, meaning that the game (N, C f ix) is not concave in this

setting.

For this example, we have sh f ix
1 = 1.88, sh f ix

2 = −0.54, sh f ix
3 = −0.97. We denote the

demand and the contribution by λi and µi − λi, respectively. The relative contribution

values are calculated as (µi − λi)/λi, which give (0.11, 1, 4) for N. The ordering of these

values is consistent with that of the profit rates, i.e., [C({i})− sh f ix
i ]/C({i}) calculated

24



2.4. SERVICE POOLING WITH A FIXED CAPACITY

by sh f ix. In Table 2.2, the total cost of every coalition and the corresponding cost of the

Shapley value allocation are both computed.

U C f ix(U) ∑i∈U sh f ix
i

{1,2,3} 0.37 0.37
{1,2} 0.98 1.34
{2,3} 0.11 −1.52
{1,3} 0.40 0.91

Table 2.2: Coalition cost and distributed cost by sh

We have C f ix({1, 2}) = 0.98 < sh f ix
1 + sh f ix

2 = 1.88+(−0.54) = 1.34, also, C f ix({1, 3}) =

0.4 < sh f ix
1 + sh f ix

3 = 1.88+ (−0.97) = 0.91. The Shapley value allocation is therefore not

stable in this case, although the allocation captures the contribution of each player. The

general proportional allocation rule φ
p
i = piC f ix(N)/ ∑j∈N pj, depending on the initial

individual service capacity (pi = µi) or the own customer arrival rate (pi = λi), also does

not guarantee the stability of N.

In order to keep all players staying in the coalition, we should find at least one stable

cost allocation if it exists. Unfortunately, it is very hard to give an explicit cost allocation

rule for the game (N, C f ix). However, we prove the existence of the stable cost allocation

rules. We employ the "Bondareva-Shapley Theorem" [Bondareva, 1963] (B-S Theorem),

which is known for the non-empty core proofs of TU-games: "A TU-game (N, v) has

a non-empty core if and only if it is balanced". The following definitions are relevant

notions of balancedness.

Definition 2.2. A collection B on N (B consists of sub-coalitions of N) is a balanced

collection, if there exist weights βU ∈ [0, 1] such that ∑U∈B βU1U = 1N. This equation is

equivalent to ∑U∋i βU = 1, for any i ∈ N.

Definition 2.3. A cost TU-game (N, v) is a balanced game, if for any balanced collection

B on N, we have v(N) ≤ ∑U∈B βUv(U) (v(N) ≥ ∑U∈B βUv(U) for profit games).

For the balancedness proof of the game (N, C f ix), we use the following proposition.
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Proposition 2.2. The expected waiting time Wq(λU, µU) in the queue is a decreasing and

convex function in µU with fixed λU, for µU > λU.

Proof. We have ∂Wq/∂µU = −λU(1+ f )(2µU −λU)/[2µ2
U(µU −λU)

2] < 0 and ∂2Wq/∂µ2
U =

λU(1 + f )[λ2
U + 3µU(µU − λU)]/[λ3

U(λU − λU)
3] > 0, for µU > λU. So, Wq(µU) is de-

creasing and convex in µU.

With Proposition 2.2, we are now prepared to prove the non-emptiness of the core

for the game (N, C f ix) as given in Theorem 2.2.

Theorem 2.2. The service pooling game (N, C f ix) has a non-empty core, and there are

infinitely many solutions in the core if n > 1.

Proof. The game (N, C f ix) could be divided into two games: the game (N, Ch) with

Ch(U) = chµU, which is a linear game resulting in a single core allocation for any i ∈ N,

φi = chµi, and the game (N, Cw) with Cw(U) = cwLq(λU, µU) = cwλUWq(λU, µU). It is

clear that the only core allocation of (N, C f ix) is the sum of the two games’. Now, we

will prove that the game (N, Cw) has a non-empty core using the B-S Theorem.

For any balanced collection B on N, we have

Cw(N) = dλNWq(λN, µN)

= cwλNWq(λN, ∑
U∈B

βUµU
λN

λU
· λU

λN
) (2.6)

≤ cwλN · ∑
U∈B

βU
λU

λN
Wq(λN, µU

λN

λU
) (2.7)

= ∑
U∈B

βUcwλUWq(λN, µU
λN

λU
)

= ∑
U∈B

βUcwλU[
1 + f

2
λ−1

N
1

ρ−1
U (ρ−1

U − 1)
]

< ∑
U∈B

βUcwλUWq(λU, µU) = ∑
U∈B

βUCw(U). (2.8)

From the definition of a balanced collection, there is ∑U∈B βUµU = µN to guarantee

the equality in (2.6). Meanwhile, the inequality in (2.7) holds by the convex property of
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Wq(µU) in Proposition 2.2 and ∑U∈B βUλU = λN from Definition 2.2. Since U is a subset

of N, with λ−1
N < λ−1

U , the inequality in (2.8) holds.

Thus, the game (N, Cw) is a balanced game. According to the B-S Theorem, the game

(N, Cw) has a non-empty core. Using Lemma A.2 of [Karsten et al., 2015b], we could

simply state that: if n > 1, the game (N, C f ix) has infinitely many core allocations. The

proof of the theorem is completed.

From Theorem 2.2, we could conclude that the game (N, C f ix) has always a core

allocation to maintain the stability of the grand coalition. For further results on cost-

sharing, an explicit numerical solution of the game (N, C f ix) could be computed through

mathematical programming, using for example, the Equal Profit Method in [Frisk et al.,

2010] or Nucleolus computing [Schmeidler, 1969]. However, this does not allow for an

explicit characterization of the allocations. In the next part, we treat this game with

several programming methods.

2.4.2. Cost allocation rules

When analyzing a TU-game, the challenging problem is to provide a mechanism to

motivate all players to join the profitable coalition. An allocation φ = {φi, i ∈ N} ∈ Rn

for (N, C) provides a way for sharing the cost over the players. If ∑i∈N φi = C(N), φ

is efficient. If φi ≤ C(i) for any i ∈ N, φ is individual rational. For any U ⊆ N, when

∑i∈U φN,i ≤ C(U), φ corresponds to the coalitional rationality. If φ is justified for all three

properties above, this allocation is stable for the game (N, C). Moreover, all the stable

allocations form the core of a TU-game.

Shapley-value

The Shapley-value, introduced by Shapley in 1952 [Shapley, 1952], is a popular allocation

concept in cooperative game theory. It provides us with a well-known fair allocation rule

for cooperative games, but there is no general property to keep the stability of the grand
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coalition. The Shapley-value is defined as the average marginal cost of each cooperative

subset for each participant, and it is given in Equation (2.5).

Shapley-value is the unique allocation rule satisfying the four desirable properties:

anonymity, efficiency, additivity and dummy player property. In order to verify the

Shapley-value is a core allocation for a cost cooperative game (N, v), it is sufficient to

test the concavity of the characteristic function v, which has been proved by [Shapley,

1971]. Unfortunately, the game (N, C f ix) defined here is non-concave and the Shapley-

value couldn’t guarantee the stability of grand coalition in general.

Tau-value

The set of cost allocations, defined by the lower bound Mi(N, C f ix) = CN − CN\{i} and

the upper bound mi(C f ix) = maxU:i∈U{CU − ∑j∈U\{i} Mj(N, C f ix)} of the shared cost,

includes all the core allocations. The τ-value, defined by Tijs in 1981 [Tijs, 1981], is a cost

allocation defined as

φτ
i = αmi(C f ix) + (1 − α)Mi(N, C f ix), (2.9)

with the unique α ∈ [0, 1] calculated by the efficiency of φτ. It is a special linear com-

bination of Mi(N, C f ix) and mi(C f ix). For two player games, the τ-value is equal to the

Shapley-value and it presents a stable cost allocation for all quasi-balanced two player

games. Although we could not give an explicit demonstration of its stability, the τ-value

proposes stable results in the following experiments.

Nucleolus

The excess of a cost allocation φ for a coalition U ⊆ N is defined as

eφ,U = CU − ∑i∈U φi, (2.10)

which is been used to measure unhappiness of the coalitions by the lexicographic ordering
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comparison for all possible allocations. When the coalition cost is allocated by φ, U

is more satisfied with a higher eφ,U. Based on the concept of minimized maximum un-

happiness, the Nucleolus was introduced by Schmeidler in [Schmeidler, 1969]. Although

Schmeidler didn’t define it explicitly, its uniqueness has been proved by Driessen in

1969 [Driessen, 1988]. It is a stable allocation rule for all TU-games with a non-empty

core, and coincides with dummy player property, zero independent and reduced-game

property.

Equal Profit Method

Another interesting definition of "fair" is the equal profit concept, which defined by Frisk

et al. in 2010 [Frisk et al., 2010]. They describe the cost TU-games as a linear program-

ming problem to minimize the gap of the relative savings ri = (Ci − φi)/Ci.

min f (φ)

s.t f (φ) ≥ max{ri − rj}, ∀i, j ∈ N

∑i∈U φi ≤ CU, ∀U ⊂ N

∑i∈N φi = CN,

(2.11)

where the results φEPM defined as the core allocation calculated by Equal Profit Method

(EPM). It seems to be a "fair" and stable allocation rule considering the most closed

relative savings for each individual, despite the different contribution of each participant

to the grand coalition N. This "fair" definition just considers the individual factor. In

some cases, the participant, which has a low individual payment, might do not want to

join the coalition in order to protect its individual information, although it could get a

same level relative saving with others.
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EPM based on Contribution Weights

Now, we define the relative contribution weights wi = λi/(µi − λi) for each participant in

our service pooling game. The customer arrival rate λi describes the individual require-

ment of each participant, and the system idle capacity µi − λi presents the individual

contribution to the collaboration. Then, we propose the new relative saving formula as

rwi = wi ∗
Ci − xi

Ci
=

λ(Ci − xi)

(µ − λ)Ci
. (2.12)

Thus, we get the EPM with Contribution Weights (EPMCW) as

min f (φ)

s.t f (φ) ≥ max{rwi − rwj}, ∀i, j ∈ N

∑i∈U φi ≤ CU, ∀U ⊂ N

∑i∈N φi = CN.

(2.13)

With the constraints defined in equation (2.13), EPMCW presents a stable allocation

rule by solving the linear programming problem above, if the core is not empty. The

contribution of each provider has been considered in the relative contribution weights

wi, and the results are easily controllable by wi with different definitions, e.g., w∗
i =

λ2
i /(µi − λi).

2.4.3. Numerical results and analysis

We illustrate the previous concepts in three typical service pooling cases of 6 service

companies, which have equal individual service capacities. To do so, we consider the

three following sets of data with ch ∈ {0, 1} and f ∈ {0, 1, 4} (the variation of the two

system parameters {ch, cw} have similar impacts on the results). The first case presents a

set of companies with low server utilizations. It means that all the companies in this set

are not very efficient. There are both the less efficient companies and the busy companies
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in the second case. And the third one only consists of the busy companies. The initial

parameters are listed in Table 2.3.

Initial data Customer arrival rates

µ ch cw f No. 1 2 3 4 5 6

10 {0, 1} 2 {0, 1, 4} 1 2 3 3 4 3.5 4

- 2 7 9 8 7 8.5 9.5

- 3 2 7 4 7.5 9 3

Table 2.3: Customer arrival rates and system parameters

Figure 2.2: Cost allocations of case 1 under ch = 0 by Shapley-value, Tau-value, Nucleolus, EPM, EPM-
CW1 and EPMCW2

Figures 2.2, 2.3 and 2.4 reveal the distributed costs, using different preceding concepts

mentioned in 2.4.2 of the three cases above with ch = 0, i.e., the quality driven case. We

use two different relative contribution rates for EPMCW calculation: wi for EPMCW1

and w∗
i for EPMCW2. From these figures, we find that the results given by the τ-value

and the nucleolus are very close, especially in the third case. The Shapley-value reflects

the contributions of each provider for all the possible coalitions. Unfortunately, the

corresponding allocations are not stable in all the three cases, e.g., sh1 + sh5 = 1.2811 ≥

C{1,5} = 0.8067 in the case 3.
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Figure 2.3: Cost allocations of case 2 under ch = 0 by Shapley-value, Tau-value, Nucleolus, EPM, EPM-
CW1 and EPMCW2

Figure 2.4: Cost allocations of case 3 under ch = 0 by Shapley-value, Tau-value, Nucleolus, EPM, EPM-
CW1 and EPMCW2

EPM provides a stable allocation rule, which is a little far from the others for several

companies, particularly for the company with relative large or small contribution to the

coalitions. The goal or the "fair" defined by EPM is to minimize the gap between the

relative earnings of players, and constraints of this programming consist of all stable re-
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quirements. Thus, the companies with a special contribution may not satisfy the similar

relative saving. For example, the first company in Figure 2.7, which has a low individual

operating cost, will pay nothing using EPM allocation, but it could earn money in other

allocations.

ch = 0 Shapley Tau-v Nucl. EPM E-CW1 E-CW2

Com 1 9.91% 7.36% 6.33% 4.85% 9.40% 9.40%
Com 2 13.64% 12.43% 12.37% 12.52% 15.43% 11.76%
Com 3 13.64% 12.43% 12.37% 12.52% 15.43% 11.76%
Com 4 22.72% 25.04% 25.53% 25.85% 20.82% 24.92%
Com 5 17.35% 17.70% 17.87% 18.38% 18.19% 17.26%
Com 6 22.72% 25.04% 25.53% 25.87% 20.74% 24.92%

dφ 4.27% 5.93% 6.31% 6.70% 3.25% 5.70%

Stability N Y Y Y Y Y

ch = 0.5 Shapley Tau-v Nucl. EPM E-CW1 E-CW2

Com 1 9.91% 7.37% 6.33% 9.40% 9.40% 9.40%
Com 2 13.64% 12.43% 12.37% 11.76% 11.76% 11.76%
Com 3 13.64% 12.43% 12.37% 11.76% 11.76% 11.76%
Com 4 22.73% 25.04% 25.53% 24.92% 24.92% 24.92%
Com 5 17.35% 17.70% 17.86% 17.25% 17.25% 17.25%
Com 6 22.73% 25.04% 25.53% 24.92% 24.92% 24.92%

dφ 4.27% 5.93% 6.31% 5.70% 5.70% 5.70%

Stability N Y Y Y Y Y

Table 2.4: Profit-sharing spi for case 1 with ch = {0, 1} and f = 4

EPMCW1 and EPMCW2 propose similar allocations in Figures 2.3 and 2.4, but they

propose different results in Figure 2.2. In these figures, we find that the results of

EPMCW1 and EPMCW2 are closer to the Shapley value than the others. For more

detailed comparison, we consider the profit distribution, which is defined as spφ,i =

(Ci − φi)/(∑i∈N Ci − CN)%. Considering the fairness issue, we denote the saving devia-

tion by dφ = ∑i∈N |spφ,i − 1/n|/n. Therefore, the less dφ presents the fairer in terms of

equal savings. Some data of the case 1 is listed in Table 2.4.

In Table 2.4, it is obvious that EPM and EPMCW are not additive allocation methods.
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When ch = 0, the allocation using EPMCW1 is the most fair allocation in terms of equal

savings. While the relative saving declines, ch = 0.5, the difference between EPM and

EPMCWs reduces. If the relative saving is small enough, e.g., ch = 1 with rN = 6.69%,

the two allocations given by EPMCW and the allocation of EPM are very similar.

2.5. Service pooling game with optimized service capacity

We consider here the case where the service capacity could be optimized in order to

minimize the total operating cost. This section is separated into four parts. First, it

discusses the properties of the optimal service rate in M/GI/1 service systems. Second,

it characterizes and investigates the service pooling game with the optimized service

capacity. The last two parts analyze and compare between two special stable allocation

rules for this game.

2.5.1. Optimal service rate in M/GI/1 systems

For certain situations, the service capacity sometimes could be adjusted as required. We

assume here that the service capacity of each individual provider or service coalition is

a continuous variable. The optimal service rate for an M/GI/1 service system with a

given customer arrival rate λ is defined as

µ∗ = argmin{chµ + cw
λ2(1 + f )
2µ(µ − λ)

|µ > λ}. (2.14)

It is however hard to obtain a closed-form expression of µ∗. We rewrite the mini-

mization problem above using the server utilization ρ∗ = λ/µ∗ as

ρ∗ = argmin{chλρ−1 +
cw(1 + f )

2
1

ρ−1(ρ−1 − 1)
|ρ ∈ (0, 1)}. (2.15)

For a given λ, it is clear that the total cost C is a single-variable function in ρ. We

state some useful properties in Lemma 2.1 related to the optimal service rate µ∗ and the

optimal server utilization ρ∗.

Lemma 2.1. The following holds.
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(i) There exists a unique optimal service rate µ∗, for a given λ;

(ii) The optimal server utilization ρ∗ is increasing in λ;

(iii) The optimal server utilization ρ∗ is decreasing in f .

Proof. The cost function C(·) defined by {ch, cw, f , λ} in Equation (2.4) consists of two

parts: the service capacity cost Ch = chλρ−1, with ∂Ch/∂ρ = −chλρ−2 ∈ (−∞,−chλ),

is a decreasing function in 0 < ρ < 1; and the system congestion cost Cw = [cw(1 +

f )]/[2ρ−1(ρ−1 − 1)], with ∂Cw/∂ρ = [cw(1 + f )(2ρ−1 − 1)]/[2(ρ−1 − 1)2] ∈ (0,+∞), is

an increasing function of ρ ∈ (0, 1). Meanwhile, −(∂2Ch)/∂ρ2 = −chλρ−3 < 0 and

∂2Cw/∂ρ2 = [cw(1 + f )ρ−3]/(ρ−1 − 1)2 > 0. Then, the two first-order differential equa-

tions, −∂Ch/∂ρ and ∂Cw/∂ρ, intersect only once on (0, 1). Thus, ρ∗ is the intersection

−∂Ch/∂ρ = ∂Cw/∂ρ, which is unique in the definition interval of ρ. It means that the

optimal service rate µ∗ exists and is unique in its definition interval (λ,+∞). This proves

the first part of Lemma 2.1.

If the customer arrival rate λ varies, the partial differential equation ∂Cw/∂ρ is de-

fined by {ch, cw, f }. Because of −(∂2Ch)/∂ρ2 = −chλρ−3 < 0, the slope of −∂Ch/∂ρ

decreases in λ. This is to say that the larger is λ, the slower is the decrease of −∂Ch/∂ρ.

Therefore, the intersection is obtained by a larger server utilization ρ∗ and (ii) of Lemma

2.1 is proved. The last part of Lemma 2.1 can be proved using a similar analysis, by

varying the variability of service time f for a fixed arrival rate λ. This finishes the proof

of the lemma.

The properties stated in Lemma 2.1 are illustrated in Figure 2.5. An intuitive expla-

nation for (ii) of Lemma 2.1 is as follow. The necessary service capacity for one unit

demand, which minimizes the system total cost, decreases with the increase of the ser-

vice size. Statement (iii) of Lemma 2.1 explains that an extra service capacity is required

to deal with the impact of service variability. If f = 0, the queueing model becomes an

M/D/1 queue, for which the minimum total cost is achieved with the fewest necessary

service capacity for one unit demand.

Given the monotonicity of ρ∗ in λ, it is interesting to study the monotonicity of µ∗

35



CHAPTER 2. COOPERATION WITH GENERAL SERVICE TIMES

(a) −∂Ch/∂ρ and ∂Cw/∂ρ with λ1 < λ2

(b) −∂Ch/∂ρ and ∂Cw/∂ρ with f = {1, 0.2, 0}

Figure 2.5: Slope of Ch and Cw with different λ and f

in λ. This is provided in (i) of Lemma 2.2. As we mentioned in the previous section,

the game (N, C f ix) is not monotone, i.e., Ds could be reduced or increased by a new

joining player. Let us denote by C∗ the total operating cost with the optimized service

capacity µ∗, which is a single-variable function of the customer arrival rate λ, and µ∗ is
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the argument resulting from Equation (2.14). We have

C∗(λ) = min{C|λ ∈ R+} = C(λ, µ∗(λ)). (2.16)

We show a monotonicity result of C∗ in (ii) of Lemma 2.2.

Lemma 2.2. The following holds.

(i) The optimal service rate µ∗ is increasing in λ;

(ii) The optimal cost C∗ is increasing in λ.

Proof. We have ∂Lq/∂µ < 0 and ∂(∂Lq/∂µ)/∂λ < 0 with λ < µ. It means that the

queue length is faster reduced in µ with a high λ, which corresponds to the advantage

of service pooling. For two systems with λ1 > λ2, we have
∂Lq(λ1)

∂µ
<

∂Lq(λ2)

∂µ
, and

∂Lq(λ1, µ∗
1)

∂µ
=

∂Lq(λ2, µ∗
2)

∂µ
=

−2ch
cw(1 + f )

.

So, µ∗
1 > µ∗

2 . The proof of the first part is finished. For the second part, we have

∂C∗

∂λ
= ch

∂µ∗

∂λ
+

cw(1 + f )
2

∗ λ(µ∗ − λ ∗ ∂µ∗/∂λ)(2µ∗ − λ)

µ∗2(µ∗ − λ)2

= ch
∂µ∗

∂λ
+

cw(1 + f )
2

∗ λ(2µ∗ − λ)

(µ∗ − λ)2 ∗ ∂ρ∗

∂λ
.

Using statement (ii) of Lemma 2.1 and the result of the first part, we have ∂C∗/∂λ > 0.

This completes the proof of the lemma.

From (i) of Lemma 2.2, we could conclude that µ∗ always increases with a new joining

player even though the service capacity cost is much more higher than the congestion

cost per unit time, i.e., ch >> cw. Furthermore, statement (ii) of Lemma 2.2 shows that

C∗ always increases due to the addition of new providers.

2.5.2. Service pooling game with optimized service capacity

Using Lemma 2.1, we can construct a service pooling TU-game with the optimized ser-

vice capacity for M/GI/1 service systems. Let Copt(·) : 2N → R be the total cost for each
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coalition S ⊆ N using µ∗
U defined with {ch, cw, f } and λU = ∑i∈U λi. We have

Copt(∅) = 0, Copt(U) = C∗(λU), for any ∅ ⊂ U ⊆ N. (2.17)

Similarly to the game (N, C f ix) in the previous section, the game (N, Copt) defined

with the optimized service capacity is also a TU-game. It is clear that this system has

less expenses than the previous situation. Furthermore, each service provider has only

one single individual parameter, i.e., the customer arrival rate λi. This makes the search

for a stable cost allocation rule easier than the case with a fixed µ.

Theorem 2.3. The service pooling game (N, Copt) is a strictly subadditive game, and the

grand coalition is the most profitable coalition structure.

Proof. With the subadditive property of the game (N, C f ix), for any pair of subset ∅ ⊂

U, T ⊂ N with U ∪ T = ∅, we may write

Copt(U ∪ T) = C∗(λU∪T) = min CU∪T(λU∪T)

≤ C f ix(λU∪T, µ∗
U + µ∗

T)

< C f ix(λU, µ∗
U) + C f ix(λT, µ∗

T)

= C∗(λU) + C∗(λT) = Copt(U) + Copt(T).

Thus, the game (N, Copt) is strictly subadditive and no other coalition structure is

more profitable than the grand coalition N.

In contrast to the game (N, C f ix), we prove that the game (N, Copt) is concave with

any set of {λ1, · · · , λn} in the following theorem.

Theorem 2.4. The service pooling game (N, Copt) is a concave game.

Proof. To prove the concavity of Copt(·), we use the inequality in Definition 2.1. Consider

a pair of coalitions ∅ ⊆ U ⊂ T ⊂ N and any l ∈ N \ T. It is then sufficient to show that

Copt(U ∪ {l})− Copt(U) ≥ Copt(T ∪ {l})− Copt(T). (2.18)
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Using Equations (2.16) and (2.17), Equation (2.18) is equivalent to

C∗(λU∪{l})− C∗(λU) ≥ C∗(λT∪{l})− C∗(λT). (2.19)

Since U ⊂ T and l ∈ N \ T, λU < λT and λU∪{l} = λU + λl ≤ λT∪{l} = λT + λl.

We assume that △λ is an infinitesimal of the customer arrival rate λ. Consider that

m△λ = λl, with m ∈ N+. Therefore, the right-hand side of Equation (2.19) can be

considered as the integral of the partial differential of the total cost function C∗ from

λU to λU∪{l}. This also holds for the left-hand side. Because the optimal service rate µ∗

varies with λ, we compare the differential in every infinitesimal interval of λl.

C∗(λU∪{l})− C∗(λU)

= ∑
i∈[i:m]

[C∗(λU + λl − (i − 1)△λ)− C∗(λU + λl − i△λ)]

= ∑
i∈[i:m]

[△λ

∂C(λU + λl − i△λ|ρ∗λU+λl−i△λ
)

∂λ
]

= ∑
i∈[i:m]

hρ∗−1
λU+λl−i△λ

△λ

≥ ∑
i∈[i:m]

hρ∗−1
λT+λl−i△λ

△λ (2.20)

=C∗(λT∪{l})− C∗(λT).

Because λU + λl − i△λ ≤ λT + λl − i△λ for any i in [1 : m] , the inequality in (2.20)

holds from the inequality ρ∗λU+λl−i△λ
≤ ρ∗λT+λl−i△λ

, which is based on the statement (ii)

of Lemma 2.1 about the optimal server utilization ρ∗. Thus, we obtain Equation (2.19)

by ρ∗−1
λU+λl−i△λ

≥ ρ∗−1
λT+λl−i△λ

, and the game (N, Copt) is concave. This finishes the proof

of the theorem.

As an immediate consequence of Theorem 2.4, the game (N, Copt) is totally balanced.

There are infinitely many solutions in the core if n > 1. Being a concave cost game,

the gains of joining a coalition for the same service provider decrease as the coalition

grows, and all the core allocations could be written as a convex combination of marginal
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contribution vectors (the corresponding convex value game has been perfectly explained

by Shapley at 1971 in [Shapley, 1971]).

2.5.3. Cost allocation rules for the service pooling game (N, Copt)

From the individual point of view, it is very important to design a pooling mechanism,

which motivates all service providers to join the grand coalition. A fair and efficient cost

allocation rule is necessary among players to avoid splitting incentives of sub-coalitions.

In what follows, we focus on the Shapley value and the proportional allocation rules.

Shapley-value

As mentioned for the game (N, C f ix), it is sufficient to verify the concavity of the char-

acteristic function v [Shapley, 1971]. Since the game (N, Copt) is proved as a concave cost

game in Theorem 2.4, the next result follows.

Proposition 2.3. The Shapley value sh provides a stable cost allocation rule for the service

pooling game (N, Copt).

shopt
i = ∑

U⊆N\{i}

|U|!(|N| − |U| − 1)!
|N|! [Copt(U ∪ {i})− Copt(U)]. (2.21)

Proportional allocation based on customer arrival rates

The higher is the number of service providers joining the pooling system, the more

complex is the computation of the Shapley value (e.g., if n = 20, than there are 2n − 1

possible coalitions in total, i.e., millions of optimal service rates should be worked out

in the preliminary computing). We therefore need to have another rule which can be

computed more easily for large sets. Next, we apply a commonly used concept of the

proportional allocation rule φp,λ, which depends on individual customer arrival rates λi
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for the game (N, Copt),

φ
p,λ
i =

λi

λN
Copt(N) =

hλiµ
∗
N

λN
+

dλiλN(1 + f )
2µ∗

N(µ
∗
N − λN)

. (2.22)

The φp,λ rule is reasonable and easy to understand: the coalition cost is paid per de-

mand, and the distributed cost for each provider according to its own customer amount

in the pooling system. One of the problems incurred by φp,λ, is that it may not justify

the self-interest of sub-coalitions. However, we prove that this cost allocation rule is

stable for the game (N, Copt). At the beginning of the proof, we exploit the relationship

between C∗ and λ. We denote the unit demand cost by Cd, for the total cost C(·) under

fixed service capacity situation. It represents the overall cost for one demand per unit

time,

Cd(λ, µ) =
C(λ, µ)

λ
= chρ−1 +

cw(1 + f )
2

1
ρ−1(ρ−1 − 1)

λ−1 = Cd(λ, ρ). (2.23)

Similarly, the corresponding unit demand cost with optimized service capacity is

C∗
d(λ) = C∗(λ)/λ = Cd(λ, µ∗). The following lemma shows the impact of λ on C∗

d .

Lemma 2.3. The unit demand cost C∗
d is decreasing in the customer arrival rate λ.

Proof. Because of Equation (2.23), it is obvious to state that Cd(λ, ρ) is decreasing in λ,

for a given ρ. Consider two service systems with λ1 ≥ λ2, and the optimal server utiliza-

tions ρ∗1 and ρ∗2 , respectively. We may write C∗
d(λ1) = C∗(λ1)/λ1 = min{ C(λ1)/λ1} =

C(λ1, ρ∗1)/λ1 ≤ C(λ2, ρ∗1)/λ2 ≤ C∗(λ2)/λ2 = C∗
d(λ2). The first inequality can be con-

cluded from the decreasing of Cd in λ, and the second one follows from the definition of

C∗(·). This finishes the proof of the lemma.

Consider now Definition 2.4 and 2.5 to define the collection PMAS (Population Mono-

tonic Allocation Scheme). It has been proposed by Sprumont in 1990 [Yves, 1990]. It is

the collection of the dynamic allocation rules for TU-games.

Definition 2.4. The population allocation scheme associated with an allocation rule φ de-

fined for a game (N, C), is a collection of the allocations φU defined by φ for all subgame

(U, C), ∅ ⊆ U ⊂ N.
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Definition 2.5. A population allocation scheme is a population monotonic allocation scheme (P-

MAS), if the allocation φi,U for any player i with any permutation of players is monotonous

in U.

Proposition 2.4. The proportional allocation φp,λ is a core allocation for the service pool-

ing game (N, Copt). Moreover, the relevant proportional allocation scheme φ
p,λ
U , for any

U ⊆ N, is a PMAS of the game (N, Copt).

Proof. For the core allocation proof, it is sufficient to prove the individual rationality,

the (Pareto-) efficiency and the collective rationality (stand-alone requirement) of φp,λ.

The efficient property has already been taken into account in the definition of φ
p,λ
i in

Equation (2.22). From Lemma 2.3, we could conclude that for any i ∈ N or U ⊆ N, we

have C∗
d(λN) ≤ C∗

d(λi) and C∗
d(λN) ≤ C∗

d(λU). From the definition in Equation (2.23), we

have φ
p,λ
i ≤ Copt({i}) and ∑i∈U φ

p,λ
i ≤ Copt(U). This means that the cost allocation φp,λ

satisfies the individual rationality and the collective rationality. Thus, φp,λ is in the core

of the game (N, Copt). Furthermore, it is straightforward to see from Lemma 2.3 that the

relevant allocation scheme φ
p,λ
U is a PMAS of the game (N, Copt). For any subset S ⊆ N

and any player j /∈ U, j ∈ N, we have φ
p,λ
i,U = λiCopt(U)/λU ≥ λiCopt(U ∪ {j})/λU∪{j} =

φ
p,λ
i,U∪{j}. This completes the proof of the proposition.

The proportional allocation method φp,λ provides therefore a dynamic stable solution

to the game (N, Copt) and all its sub-games (U, Copt). Each independent service provider

could reduce its expenses, when a new player joins the coalition. φp,λ assigns a positive

cost to each participant, and this is not always true for the Shapley value. In fact, players

also do care about others’ profits. In a cost game, the negative allocation means that

some players gain money from a paying activity. This may lead to few unhappy players.

Furthermore, only one system should be optimized here. Therefore, φp,λ is easier to

calculate and to understand than the Shapley value, especially for the case of large

number of participants. Without considering individual contributions, this method may

have a non-negligible trouble of unfairness. In order to choose an adequate cost-sharing

rule for the game (N, Copt), we next analytically compare between the two methods.
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2.5.4. Comparison between φp,λ and shopt

We compare the two allocation rules above for our game (N, Copt) using the four desir-

able properties of the Shapley value. It is obvious to see that the dummy player signifies

the player which has an empty arrival rate. φp,λ is calculated by the single variable λi

and the total cost Copt(N), i.e., λi is the unique parameter for all players. Thus, the

anonymity, efficiency and dummy player property are suitable for the allocation rule

φp,λ for the game (N, Copt). We may then conclude that φp,λ is fair for the dummy

players and the players with equal arrival rates as shopt.

Another fairness issue is related to the costs distributed for the players with different

arrival rates. The game (N, Copt) is a single-attribute game of λi. We assume that the

company size is directly related to λi. Consider next a situation with three companies,

{ch, cw, f } = {1, 3, 0.2} and the customer arrival rates are 1, 1 and 10. Under the φp,λ cost

allocation, the two small companies with a low arrival rate λi = 1 save much more than

the large company (1.21 > 0.55). The opposite is true for shopt with 0.90 < 1.18. If the

large company is not satisfied its saving and leaves the coalition, {1, 2} will save much

less (0.46 < 1.21). The Shapley value is therefore preferred for this small set. Therefore,

we look for a fairness condition for choosing between the two rules.

From Lemma 2.3, we conclude that the cost function Copt is elastic as defined in [Özen

et al., 2011]. Now, consider a fair property defined for the games with the elastic single-

attribute situation [Karsten et al., 2015a].

Definition 2.6. For an elastic single-attribute situation, (N, C, λ), an allocation rule φ

is considered to have the benefit ordering property (BO), if for all i, j ∈ N with λi ≤ λj,

C({i})− φi ≤ C({j})− φj.

This is to say that the saving of each player C({i}) − φi is non-decreasing in the

attribute λ. It means that the relative large company should save more than the small

one. Using Theorem 6.4 in [Karsten et al., 2015a], shopt follows BO for any concave game.

But BO is not always established for φp,λ. Thus, shopt provides a more fair allocation rule

than φp,λ for the players with different λi. We define the saving difference of two players
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by ∆ij = (C({i})− φi)− (C({j})− φj). We also define that an allocation φ is said to be

unfair for players i and j in the situation (N, C, λ), if ∆ij is positive for λi < λj. We prove

that this unfairness weakness of φp,λ would be reduced in the following situation.

Lemma 2.4. A saving difference using the allocation rule φp,λ in the game (N, Copt),

decreases in the number of service providers n.

Proof. We suppose ∆p,λ
12 > 0 for a pair of players {1, 2} = N0 with λ1 < λ2. We define

|Nk+1| = |Nk|+ 1, k ∈ N+ with λNk+1 by λk+1 = λk ∪ {λ|Nk+1|}. Now, let us judge the BO

property of φp,λ for our game (N, Copt) using Definition 2.6. From Lemma 2.3, we have

C∗
d(Nk+1) ≤ C∗

d(Nk). For the allocation rule φp,λ, we may write.

∆p,λ
12 (Nk) =(C∗(λ1)− C∗

d(Nk) ∗ λ1)− (C∗(λ2)− C∗
d(Nk) ∗ λ2)

=C∗
d(Nk) ∗ (λ2 − λ1) + (C∗(λ1)− C∗(λ2))

≥C∗
d(Nk+1) ∗ (λ2 − λ1) + (C∗(λ1)− C∗(λ2)) = ∆p,λ

12 (Nk+1).

Thus, ∆p,λ
ij is decreasing in n if λi < λj.

We could conclude that the unfairness ∆ij > 0 for λi < λj using φp,λ could be

reduced with new joining players. It is also easy to see that if ∆p,λ
12 < 0 for {1, 2} = N0

with λ1 ≤ λ2, BO for these two players is always ensured by φp,λ in the game (N, Copt)

with same parameters {ch, cw, f }. From (ii) in Lemma 2.2, we know that C∗(λj)− C∗(λi)

is always positive. We therefore may state the following result.

Lemma 2.5. For a service pooling game (N, Copt), φp,λ satisfies the benefit ordering

property if

C∗
d(λN) < min{

C∗(λj)− C∗(λi)

λj − λi
|i, j ∈ N with λi < λj}. (2.24)

As stated above, we could use Φij = [C∗(λj) − C∗(λi)]/(λj − λi) ≥ 0 to judge the

saving difference between players i and j. We now discuss about the impact of λj − λi in

the following lemmas.
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Lemma 2.6. For a service pooling game (N, Copt), let λmin = min{λi ∈ N} and λmax =

max{λj ∈ N}. Then

min{
C∗(λj)− C∗(λi)

λj − λi
|i, j ∈ N with λi < λj} =

C∗(λmax)− C∗(λmin)

λmax − λmin
. (2.25)

Proof. We use the monotonicity of Φij. First, we fix λi and change λj to λj + ∆λ, which is

an infinitesimal of λ. From the concavity of C∗ in λ (Theorem 2.4), we have ∂C∗(λi)/∂λ ≥

∂C∗(λj)/∂λ ≥ ∂C∗(λj + ∆λ)/∂λ. We have

∂C∗(λi)/∂λ ≥
C∗(λj)− C∗(λi)

λj − λi
≥ ∂C∗(λj)/∂λ.

Then, we may write

C∗(λj)− C∗(λi)

λj − λi
≥

C∗(λj + ∆λ)− C∗(λi)

λj + ∆λ − λi
≥ ∂C∗(λj + ∆λ)/∂λ,

which decreases in λj. Using symmetric arguments, we may prove that [C∗(λj) −

C∗(λi)]/(λj − λi) increases in λi. This finishes the proof of the lemma.

From Lemmas 2.5 and 2.6, we use that the maximum gap of individual arrival rates

determines the minimum Φij of a game (N, Copt). This leads to the result in the next

proposition.

Proposition 2.5. For a service pooling game (N, Copt), φp,λ meets the benefit ordering

property if

C∗
d(λN) <

C∗(λmax)− C∗(λmin)

λmax − λmin
. (2.26)

As stated in Lemma 2.4, ∆ij is decreasing in n, which implies that the left side of

Equation (2.26) decreases in n. From the proof of Lemma 2.5, the right side of Equation

(2.26) is decreasing in λmax and increasing in λmin. Therefore, we could state that φp,λ

satisfies BO for our game (N, Copt) with a sufficiently large N or similar company sizes,
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i.e., small value for λmax − λmin. A summary of the comparison between φp,λ and shopt

is given in Table 2.5.

Small set with large λmax − λmin Large set with small λmax − λmin

Stability Complexity Fairness Complexity Fairness

φp,λ + ++ - ++ +
shopt + + ++ - ++

Table 2.5: Comparison between φp,λ and shopt

Given the computing complexity of shopt, φp,λ is then considered as a suitable cost-

sharing method for the game (N, Copt), for a large enough set of companies with similar

sizes.

Impact of service time variability f . Unfortunately, it is difficult to analytically

evaluate the impact of f on the fairness of φp,λ for our game. Consider the unit demand

cost C∗
d in f with different λ in Figure 2.6.

Figure 2.6: C∗
d in f = (0, 4) with different λ = {2, 4, 6, 8}

It is shown that C∗
d is increasing in f and is more increased with a lower arrival rate

λ. For Equation (2.26), it left side is surely increased in f . But it is difficult to analyze its

right side. We therefore resort to numerical experiments to investigation this question.

We consider five cases of six independent service companies with ch = 3, cw = 2 and
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f = {0.2, 1}, and the customer arrival rate of each company is as shown in Table 2.6.

Further numerical examples are given in Appendix A.

Company No. 1 2 3 4 5 6

Case 1 2 3 4 11 7 10
Case 2 4 6 8 11 10 2
Case 3 7 5 11 2 9 3
Case 4 7 9 12 11 8.5 7
Case 5 2 3 2.5 4 3 2

Table 2.6: 5 cases of 6 companies pooling with ch = 3, cw = 2

Figure 2.7 illustrates the impact of f on the relative difference between shopt and

φp,λ for each company. The difference presented in this figure is defined as (φ
p,λ
i −

shopt
i )/φ

p,λ
i for a company i ∈ {1, . . . , 6}. We observe that small companies, which

have lower customer arrival rates than the average of the coalition, should pay more

in shopt than that in φp,λ. The opposite is true for large companies. Furthermore, the

two allocation rules lead to very near costs for medium companies with arrival rates

close to the average. This is because, in the cost allocation φp,λ, small companies obtain

more gains from the unit demand cost reduction than large companies do. Meanwhile,

the joining of a small company brings less reduction of C∗
d for the other companies in

the coalition, than the joining of a larger one. shopt accounts for this phenomenon by

definition, but not in φp,λ. Moreover, the system with a higher f obtains more relative

cost reduction by collaborating. Thus, the difference increases in f .

2.6. Conclusion

Using cooperative game theory, we have studied the cost-sharing problem among a set

of independent service providers in a complete service capacity pooling system. We

extended the existing results to the service pooling game for M/GI/1 service systems.

When the service capacities are fixed, the service pooling game would be a sum of two

games: an additive service capacity game and a subadditive service congestion game.
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Figure 2.7: Difference between the two allocations with f varying on [0, 1]

We proved that a stable cost allocation always exist. Thus, a stable cost-sharing solution

could be derived using a mathematical programming approach. When service capaci-
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ties are optimized to minimize the total operating cost, we have analyzed the properties

related to the optimal service rate. We presented two special stable allocation rules:

the well-known Shapley value, and the general proportional allocation rule depending

on the individual customer arrival rates. They are both stable solutions for our game

(N, Copt). Analytical evaluations show that the proportional allocation rule gives a sim-

ple cost allocation solution with a good fairness performance in the case of a large set

of companies with similar sizes. In the next chapter, we will consider the impact of

customer abandonment in service capacity pooling strategy.
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Chapter 3

Cooperation in Service Systems with Im-

patient Customers

In this chapter, we consider a group of homogeneous and independent single

server service providers with impatience customers, where a customer quits the

system without service whenever his waiting time in the queue exceeds his pa-

tience time threshold. We study collaboration strategies for the capacity pooling

between service providers. The advantage of collaboration in the service sys-

tems accounting customer abandonment, is not only the sharing of instant idle

resources but also the reducing of abandoned customers. We use the cooper-

ative game theory to analyze the profitable collaborative organization and the

cost-sharing method. Under Markovian assumptions for inter-arrival, service

and patience times, we define a cooperative game with transferable utility and a

fixed service capacity for each coalition. We prove that the grand coalition is the

most profitable coalition and that the game has a non-empty core. We then
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examine the impact of abandonment on the stability of Shapley value. Further-

more, we prove the concavity of the waiting queue length with respect to the

abandonment rate, and give a condition under which the Shapley value is situ-

ated in the core. We also study the cost-sharing problem of the relative cooper-

ative game with the optimized service capacity, and prove that the proportional

allocation rule based on customer arrival rates gives a dynamic stable allocation

to all relative sub-games.
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3.1. Introduction

In this chapter, we study service capacity pooling strategies under the context of cus-

tomer impatience (abandonment). A customer who abandons is a customer who de-

cides to leave and give up service if his waiting time in the queue exceeds some random

patience threshold. We use also the cooperative game theory to analyze beneficial strate-

gies, their stability issues and how these are affected by customer impatience.

Customer abandonment is an important feature for various practical situations of

service systems such as healthcare systems, call centers, telecommunication networks,

just to name a few [Jouini, 2012]. Patients waiting for organ transplantation may face

a risk of complication or death, which could be modeled as abandonment. A customer

who calls a call center is in general willing to wait only a limited amount of time for

service to begin. If service has not begun by this time, the customer abandons the queue

and is considered as lost [Mandelbaum and Zeltyn, 2009, Jouini et al., 2013, Wallace and

Whitt, 2005]. Further examples include visitors that may lose interest for the attractions

of a congested amusement park [Kostami and Ward, 2009], passengers who abandon

a given type of congested transportation [Shi and Lian, 2016], and post-triage patients

who leave without being seen by a physician in an emergency department [Batt and

Terwiesch, 2015].

Although its prevalence in practice, published papers related to the analysis of service

pooling games, in the presence of impatience, are scarce. Moreover, the queueing litera-

ture has shown the importance of incorporating abandonments in order to obtain accu-

rate results [Garnett et al., 2002, Whitt, 2006, Mandelbaum and Zeltyn, 2009]. Existing

queueing games mainly deal with models with infinitely patient customers [González

and Herrero, 2004, Anily and Haviv, 2010, Garcia-Sanz et al., 2008, Yu et al., 2015, Karsten

et al., 2015b]. It is therefore obvious that extending existing studies in the context of a-

bandonment is of value. Our focus here is on the horizontal form of cooperation, i.e.,

pooling strategies among homogeneous servers. Pooling allows to reduce the number

of abandonments through the sharing of idle resources. The pooling advantage for an
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alliance is then apparent, but the collective interests cannot be the incentive for each in-

dividual service provider to join the coalition. The following questions need then to be

addressed: 1) which coalition structure is the most profitable one for the whole group,

and 2) how to allocate the total cost among the participants [Cruijssen et al., 2007].

In this chapter, we consider a group of independent single server service providers.

Each provider faces its own incoming stream of impatient customers. We suppose that

each incoming customer stream is strictly oriented to the corresponding server. There-

fore, there is no need to consider competition in the group. A provider could join a prof-

itable coalition, by sharing its capacity, based only on its own benefit from the coalition.

To analyze individual and coalition service models, we use cooperative game theory. To

the best of our knowledge this is the first contribution to the cooperative literature that

accounts for customer impatience. We show that the service pooling strategy among

independent service systems, modeled as M/M/1 + M queues, is profitable. We prove

the non-emptiness of the core for the pooling game under the case of a fixed service

capacity. When participants have identical sever loads, we prove that the Shapley value

is situated in the core. To prove the result, we first show that the stationary expected

queue length and the expected number of customers in the system are both decreasing

and convex in the customer abandonment rate (if it is lower than the service rate). This

monotonicity result could be also useful for the optimization of queueing systems in

general. We then investigate the impact of abandonment on the cost allocation stability

of the Shapley value. In the case of optimized service capacities, we prove that the pro-

portional allocation rule, based on individual customer arrival rates, provides a dynamic

stable allocation rule to all relative sub-games.

The remainder of this chapter is divided into three sections. In Section 3.2, we de-

scribe the individual and collaborative queueing models. In Section 3.3, we define and

analyze the service pooling problem with a fixed service capacity. Then, we extend this

game to the optimized service capacity case and give a simple formatted core allocation

in Section 3.4.
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3.2. Modeling and observations

3.2.1. Service systems modeling with impatience

We consider a group of n ∈ N+ independent service providers, denoted by N =

{1, ..., n}. Each service provider has its own single server queue handling its own class of

customers in the same queue. For a provider i (system i, i ∈ N), we assume that customer

arrivals follow a Poisson process with mean rate λi, and service times are independent

exponentially distributed random variables with mean µ−1
i . Customer patience times,

i.e., the maximum waiting times of customers in the queue, are independent and expo-

nentially distributed with mean θ−1
i . The waiting space is assumed to be large enough

such that no customer leaves the system immediately upon arrival due to the waiting s-

pace limit. We denote, for system i, the expected stationary queue length by Lq(λi, µi, θi),

and the stationary abandonment probability by Pa(λi, µi, θi). For system i, customers are

served in the order of their arrivals, i.e., under the first come first serve (FCFS) discipline

of service. Following the above assumptions, an individual service provider can be seen

as an M/M/1+M queueing model as shown in Figure 3.1.

Figure 3.1: An individual service provider, an M/M/1+M queue

Following the classical assumption as in [González and Herrero, 2004, Anily and

Haviv, 2010, Yu et al., 2015], we assume that the service providers operate their service

capacities together and run as a ’super-server’, i.e., a single server with a high service

capacity. For a coalition U = {1, . . . , u} ⊆ N, the combined mean arrival rate is λU =

∑i∈U λi. Since individual arrival streams are independent and follow each a Poisson

process with mean rate λi, the resulting stream of arrivals follows also a Poisson process

55



CHAPTER 3. COLLABORATION WITH IMPATIENT CUSTOMERS

with mean rate λU. Patience times in a coalition are assumed to be statistically identical

to those in individual systems, i.e., exponentially distributed with rate θ. The service

times of the pooled system are also exponentially distributed with a mean rate denoted

by µU. Therefore, the u providers in the coalition U are combined into a new M/M/1+M

queueing system.

Figure 3.2: Markov chain for the M/M/1+M queue

Consider next an M/M/1+M queue with arrival rate λ, service rate µ, and abandon-

ment rate θ. Using the Markovian assumption of patience times, we have Pa = θLq/λ.

To compute Lq, we consider the stochastic process describing the number of customers

in system. It is a Markov chain as shown in Figure 3.2. Under the stationary regime, we

may write

Lq =
∞

∑
j=0

(j − 1)pj =
∞

∑
j=0

(j − 1)
aj

∑∞
l=0 al

, (3.1)

where

aj =
λj

∏
j−1
l=0(µ + lθ)

, for j ∈ N+, and a0 = 1, (3.2)

and pj are the stationary system state probabilities, with pj = aj p0 for j ∈ N+, p0 =

(∑∞
l=0 al)

−1. The effective improvement of the system performances by capacity pooling

is shown well in following example.

Example. Consider two counters {1, 2} in a fast food restaurant. Because the two service

employees are different skilled, the service rates µi and the customer arrival rates λi,

i = {1, 2} are different for the two counters. Assume that the mean service times µ−1
i

are 5 mins and 3 mins, perspectively. The second counter is much faster than the first

one, so that customers prefer the second queue. The mean times inter two continuous

arrivals of customer are λ−1
1 = 6 mins and λ−1

2 = 4.2 mins. If a customer waits more
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than 10 mins, he would leave without buying any food. When the two counters works

individually, we have Lq,1 = 0.4430 and Lq,2 = 0.4498. There are about 11 customers

leaving directly without service in two hours.

If the two employees work together for one counter, then it is reasonable to assume

that the mean service time is smaller than the faster counter. Assume that µ−1
{1,2} = 2

mins. For the super-counter {1, 2}, we have Lq,{1,2} = 0.7438 and about 9 lost customers

in two hours. There are less customers waiting in the queue and less customers losing

per hour before service.

To define the total system cost in this M/M/1+M coalition queue, we consider three

types of linear costs: the capacity holding cost Ch which may consist of equipment

maintenance fees and staff salary; the customer waiting cost in the queue Cw; and the

customer abandonment cost Ca. All cost components are defined per time unit and the

corresponding cost parameters are denoted ch, cw and ca, respectively. Thus, the total

system operating cost, say Ctotal, is

Ctotal(λ, µ, θ) = Ch + Cw + Ca

= chµ + cwLq + caλPa

= chµ + (cw + caθ)Lq.

(3.3)

3.2.2. Observation of queue length and abandonment probability

In queueing systems designing, it is interesting to determine whether an objective func-

tion or a performance measure is convex/concave or not. We observe here the convexity

and the monotonicity of Lq and Pa in µ and θ, which is illustrated in Figure 3.3 and 3.4.

From Figure 3.3(a), we find that the queue lengths Lq with different abandon rate

θ = {0, 0.1, 0.5, 1, 3, 5} close together with the augmentation of the service rate µ. This

is because that if the service rate µ is sufficient larger than the arrival rate λ and the

abandon rate θ, majority of waiting customers are serviced before their tolerant waiting

times, and the queue length Lq is reduced toward to 0. The analogous phenomenon
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(a) (b)

Figure 3.3: Queue length Lq in µ and θ

appears in the augmentation of θ with different µ = {6, 8, 10, 12, 14, 16} in Figure 3.3(b).

When θ >> µ, the overwhelming majority of the waiting customers abandons before

service begins and the service system is close to an M/M/1/1 system.

(a) (b)

Figure 3.4: Abandonment probability Pa in µ and θ

In Figure 3.4(a), we observe that the abandon probabilities Pa with different θ diverge

with the augmentation of µ at the beginning and converge at infinity (almost all cus-

tomers received services). In Figure 3.4(b), contrary to µ, we find that Pas are increasing

in θ and divergent at infinity.
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From Figures 3.3 and 3.4, it is shown that the service systems with a higher utilisation

ρ = λ/µ are more sensitive to the abandonment rate θ, and the service systems with a

high enough θ are less sensitive to the ρ. It is obvious that the overall cost defined in

Equation (3.3) is sensitive to θ. The relative costs of different systems are sensitive to θ

in the interval (0, a) with | Lq(λ, µ, a)− Lq,M\M\1\1(λ, µ) |≤ ϵ.

3.3. Collaboration under a fixed service capacity

In this section, we assume that the service capacity of the pooled server is the sum of

those of the individual servers, µU = ∑i∈U µi for a coalition U ⊆ N. This corresponds

to situations where changing the equipment or the physical location is too expensive or

almost impossible. Thus, we obtain the following total cost, for a coalition U ⊆ N,

C f ix(U) = Ctotal(λU, µU, θ) = ch · µU + (cw + caθ)Lq(λU, µU, θ),

with λU = ∑
i∈U

λi, and µU = ∑
i∈U

µi. (3.4)

For a nonempty finite set N = {1, ..., n}, we assume that every player could only par-

ticipate in one coalition U ⊆ N, and the total cost of the coalition could be shared among

its members with no constraint. Therefore, we can define a cost TU-game associated with

the characteristic function (c.f.) of the total cost for a set N of service providers. Recall

that the abandonment rate and the cost parameters are identical for all providers in the

group N. Since there are only two individual parameters λi and µi for each provider i,

it suffices to consider the simplified cost expression given by

C f ix(∅) = 0, C f ix(U) = (cw + caθ)Lq(λU, µU), for any U with U ⊆ N, (3.5)

as c.f. and the game as (N, C f ix). In what follows, the analysis of the game (N, C f ix) is

separated into two parts. First, we investigate the existence of stable cost allocations. We

then analyze the impact of abandonment on the stability of the Shapley value.
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3.3.1. Non-emptiness of the core of the game (N, C f ix)

We first show that resource pooling in the context of customer impatience always leads

to a total cost reduction for the coalition. Proposition 3.1 shows the advantage of pooling

on the service quality in terms of Lq.

Proposition 3.1. The expected queue length Lq of the pooled server with a fixed capacity

is subadditive.

Proof. Consider two M/M/1+M systems 1 and 2 with the parameters λ1, λ2, µ1, µ2 and

a same θ. We have λ1,2 = λ1 + λ2 and µ1,2 = µ1 + µ2 for the pooled system {1, 2}.

We denote the number of customers in the queue by the random variable Y(·). The

subadditive problem requires to prove that

Lq,{1,2} ≤ Lq,1 + Lq,2,

which is equivalent to

P(Y1,2 = k + 1)
P(Y1,2 = k)

≤ P(Y1 + Y2 = k + 1)
P(Y1 + Y2 = k)

, for k ∈ N,

see page 208 in [Ferguson, 2014]. We define pi,j as the probability of having j customers

waiting in the queue i, i ∈ {1, 2, {1, 2}}. We may write, for k ∈ N.

P(Y1 + Y2 = k + 1) = P(Y1 + Y2 = k)[P(Y1 + 1|Y1 + Y2 = k) + P(Y2 + 1|Y1 + Y2 = k)]

= P(Y1 = l + 1, Y2 = j|l + j = k) + P(Y1 = l, Y2 = j + 1|l + j = k)

= ∑
l+j=k

p1,l+2p2,j+1 + ∑
l+j=k

p1,l+1p2,j+2

= ∑
l+j=k

λ1

µ1 + (l + 2)θ
p1,l+1p2,j+1 + ∑

l+j=k

λ2

µ2 + (j + 2)θ
p1,l+1p2,j+1

>
λ1

µ1 + (k + 2)θ ∑
l+j=k

p1,l+1p2,j+1 +
λ2

µ2 + (k + 2)θ ∑
l+j=k

p1,l+1p2,j+1

>
λ1 + λ2

µ1 + µ2 + (k + 2)θ
P(Y1 + Y2 = k)
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=
P(Y1,2 = k + 1)

P(Y1,2 = k)
P(Y1 + Y2 = k).

Thus, the queue length Lq is subadditive with pooling. This finishes the proof of the

proposition.

From Proposition 3.1, one can see that the overall expected number of customers

waiting in the overall queue length would be minimized in the grand coalition N. From

Equation (3.5), the c.f. of our game is proportional to Lq. Therefore, (N, C f ix) is subad-

ditive and N is the most profitable coalition structure. We next focus on the stability of

the coalitions, that need to prove the existence of stable cost-sharing allocations for the

game. For the analytical tractability, we examine the cases with µ ≥ θ. This assumption

may be reasonable in practice. It is expected that customers would be willing to wait

longer than their service times in average [Mandelbaum and Zeltyn, 2009]. Before giving

one of the main results in Theorem 3.1, we provide some required monotonicity results

in Lemmas 3.1 and 3.2.

Lemma 3.1. The queue length Lq in an M/M/1+M queue is decreasing in µ ∈ R+; and

convex in µ for µ ≥ θ.

Proof. Consider two M/M/1+M systems, denoted by systems 1 and 2 with different

service rates µ1 ≤ µ2 and same λ and θ. Let Lq,1 and Lq,2 denote the waiting queue

lengths for systems 1 and 2, respectively. First, we prove that Lq decreases in µ. Let Y(·)

be the random variable measuring the number of waiting customers in the queue. We

have
λ

µ1 + (k + 1)θ
≥ λ

µ2 + (k + 1)θ
.

Then P(Y1 = k + 1)/P(Y1 = k) ≥ P(Y2 = k + 1)/P(Y2 = k), which implies {Y1(t)} =st

{Y2(t)}. This is equivalent to E(Y1) ≥ E(Y2), then Lq,1 ≥ Lq,2.

To prove the convexity result, we denote the numbers of customers in systems by a

sequence of random variables X(µ) = {X(m)|m ∈ N} in discrete time. Let X(µ)+ =

(X(µ)− 1)+ denote the number of customers in the queue, with f+ = x if f ≥ 0, and
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x+ = 0 otherwise. As shown in Theorem 3 by [Armony et al., 2009], X is stochastically

decreasing and convex in sample path sense (denoted by SDCX(sp)) in µ with µ ≥ θ.

Because f = (x − 1)+ is increasing and convex, it follows that X+ is also SDCX(sp) by

Proposition 3.2(b) in [Shaked and Shanthikumar, 1988]. From Theorem 3.6 in [Shaked

and Shanthikumar, 1988], Lq = E(X+) is therefore decreasing and convex in µ with

µ ≥ θ. The lemma result follows.

Note that the convexity result in Lemma 3.1 is also verified for 0 < µ < θ through an

extensive numerical study, although we could not prove it rigorously.

Lemma 3.2. The abandonment probability Pa is increasing in the customer abandonment

rate θ ∈ [0,+∞).

Proof. Let us denote the mean number of customers in service by Ls. Let us also denote

by λa and λs the flows of abandonment and served rates, respectively. In the single

server system Ls = 1 − p0. Also, Ls is equal to the server’s utilisation ρs = λs/µ using

Little’s Law in [Little, 1961]. Thus,

Ls =
λ − λa

µ
=

λ − θLq

µ
= 1 − p0

⇒ Pa =
θLq

λ
= 1 − µ

λ
(1 − p0),

where p0 = (∑∞
j=0 aj)

−1. It is obvious that aj as defined in Equation (3.2) is decreasing

in θ, for j ∈ N. Then, p0 is increasing in θ. The abandonment probability Pa is therefore

increasing in θ. The proof is completed.

Using Lemmas 3.1 and 3.2, we obtain the existence of stable cost allocations in Theo-

rem 3.1.

Theorem 3.1. The pooling game (N, C f ix) has a non-empty core for µ ≥ θ.

Proof. For any balanced collection B on N, we have

C f ix(N) = (cw + caθ)Lq(λN, µN)

62



3.3. COLLABORATION UNDER A FIXED SERVICE CAPACITY

= (cw + caθ)Lq(λN, ∑
U∈B

βUµU
λN

λU
· λU

λN
) (3.6)

≤ (cw + caθ) · ∑
U∈B

βU
λU

λN
Lq(λN, µU

λN

λU
) (3.7)

= (cw + caθ) · ∑
U∈B

βU
λU

λN
Lq(λN, µU

λN

λU
, θ)

= ∑
U∈B

βU(cw + caθ) · λU

λN
Lq(λU, µU, θ

λU

λN
)

≤ ∑
U∈B

βU(cw + caθ) · Lq(λU, µU, θ) (3.8)

= ∑
U∈B

βUC f ix(U).

From the definition of a balanced collection and the additivity of µ, it exists βU with

∑U∈B βUµU = µN to guarantee Equality (3.6). Inequality (3.7) holds by the convexity

property of Lq(µ) in Lemma 3.1 and βU with ∑U∈B βUλU = λN from the balanced

collection definition and the additivity of λ. Since Pa(θ
λU
λN

) ≤ Pa(θ) (proved in Lemma

3.2) with θ λU
λN

≤ θ and same λU, we have Lq(θ
λU
λN

) · θ λU
λN

≤ Lq(θ) · θ which leads to

the inequality in (3.8). Thus, the game (N, C f ix) is a balanced game. According to

"Bondareva-Shapley Theorem" in [Bondareva, 1963], the game (N, D f ix) has a non-empty

core, which completes the proof of the theorem.

3.3.2. Impact of abandonment on the stability of the Shapley value

From Theorem 3.1, we conclude that a core allocation always exists for the game (N, C f ix).

Thus, the explicit numerical solutions could be computed through a mathematical pro-

gramming method, such as the Nucleolus [Bondareva, 1963], the Equal Profit Method

[Frisk et al., 2010] or the EPM based on Contribution Weights [Peng et al., 2015]. To

the contrary to the case with no abandonments, we find that the presence of impatience

could impact the stability of the Shapley value for our game (N, C f ix). First of all, we

use an example of three players to illustrate this feature.

Example. As that shown in last chapter, the example of three players game among
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M/GI/1 service systems (relevant initial values in Table 3.1) is not concave and the

Shapley value could not provide a stable allocation.

Players
Parameters

λi µi Ci sh f ix
i

1 9 10 8.1 3.1329
2 5 10 0.5 −0.9089
3 2 10 0.05 −1.6145

Table 3.1: 3 players pooling game

Let us now investigate the impact of abandonment on the stability of the Shapley

value, which is symbolized by sh f ix in (N, C f ix). For simplification, we choose cw = ca =

1 which does not affect the stability of the Shapley value. By the increasing of θ, we

numerically observe that sh f ix provides a stable allocation for θ ≥ 0.42. We denote this

value as the lower bound of the interval which has sh f ix in the core by θlow. In Table 3.2,

we calculate coalition and sh f ix distributed costs in this case for θ = 0, θlow and 1000.

Coalitions
C f ix(U) ∑i∈U sh f ix

i C f ix(U) ∑i∈U sh f ix
i C f ix(U) ∑i∈U sh f ix

i
θ = 0 θ = 0.42 θ = 1000

{1,2,3} 0.6095 0.6095 0.7827 0.7827 5.4647 5.4647
{1,2} 1.6333 2.2240 1.7250 1.5205 5.7038 5.4766
{2,3} 0.1885 −2.5234 0.2490 −0.7716 1.7902 1.5626
{1,3} 0.6722 1.5184 0.8190 0.8165 3.8576 3.8902

Table 3.2: Coalition and distributed costs with θ = 0, 0.42 and 1000

The excess of a coalition U ⊆ N at x is defined as the quantity ex,U = C(U)− ∑i∈U xi,

i.e., the cost reduction of U by x, which is used to measure satisfaction of coalitions.

If ex,U ≤ 0, the coalition U would like to split off from N by using allocation x. From

the comparison between the first two columns in Table 3.2, we observe two unsatisfied

coalitions {1, 2} and {1, 3}, with esh f ix,{1,2} < 0 and esh f ix,{1,3} < 0 for θ = 0. It is to say

that 1 leaving N with 2 or 3 could form a more profitable smaller coalition. However, as
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θ increases, esh f ix,{1,2} and esh f ix,{1,3} increase and grow gradually toward positive values

as shown in Figure 3.5. It means that the presence of θ enforces the stability of sh f ix in

this range.

Figure 3.5: esh f ix ,{1,2}, esh f ix ,{1,3} in θ for the 3 players game

By increasing θ, we observe that the coalition {1, 3} is no longer satisfied by sh f ix

for θ ≥ 382.4, i.e., esh f ix,{1,3} < 0. In a similar way, we denote this point by θup as the

upper bound of the stable interval of sh f ix. This interval is denoted by Θ = [θlow, θup).

When θ is much larger than λ and µ (θ = 1000 as given in Table 3.2), the players act as

M/M/1/1 queueing systems (no queue). We see that the same coalition {1, 3} obstruct

the grand coalition under sh f ix. Moreover, as θ → +∞, the system abandonment rate

converges to Pa = λ/(λ + µ) and the expected queue length Lq converges to 0. The

total cost function could be then calculated as, C f ix = caλ2/(λ + µ). This also leads

to an unsatisfied coalition {1, 3} for θ = 1000. More detailed illustrations with higher

numbers of players are given in Appendix B.

We observe that the Shapley value may lie at the core with the presence of customer

abandonment. Furthermore, we prove that it is in the core, when all providers have

identical offered loads (sh f ix is stable). Before giving the proof, we first need to analyze

the convexity of Lq in θ.
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Theorem 3.2. The expected queue length Lq of an M/M/1+M system is decreasing in

θ ∈ R+; and convex in θ for θ ≤ µ.

The proof of Theorem 3.2 is given in Appendix C. In this proof, we use sample-path

arguments similarly to [Armony et al., 2009], where the authors show a similar result

for the relationship between Lsys (the expected number of customers in the system) and

µ or the number of servers in Erlang-A model. Note that this convexity property is also

useful for various optimization studies in M/M/1+M queueing systems. Now, we are

ready to prove the stability of the Shapley value under the offered load constraint.

Proposition 3.2. The Shapley value is a core allocation for the game (N, C f ix), if λi/µi =

ρ for all i ∈ N and θ ≤ µ.

Proof. To prove the stability of the Shapley value, it suffices to prove the concavity of the

operational cost C f ix(ρµ, µ, θ) in the service rate µ. Consider any pair of coalitions U and

T with ∅ ⊆ U ⊂ T ⊂ N and a service provider l ∈ N \ T. We define θ0 as θ/µ. Since

C f ix is twice differentiable in µ, we have

∂2C f ix(ρµ, µ, θ)

∂µ2 =
∂2C f ix(ρ, 1, θ/µ)

∂µ2

= (cw + caθ)
∂2Lq(ρ, 1, θ0)

∂µ2

= (cw + caθ)[(− θ

µ2 ) ·
∂2Lq
∂θ2

0
+

2θ

µ3 ·
∂Lq

∂θ0
] ≤ 0, (3.9)

where the inequality in (3.9) holds from ∂2Lq/∂θ2 ≥ 0 and ∂Lq/∂θ ≤ 0, which is based

on Theorem 3.2. Thus, C f ix is concave in µ if λi/µi = ρ. Furthermore, the Shapley value

stays in the core as shown in Theorem 7 in [Shapley, 1971]. This finishes the proof of the

proposition.

From Proposition 3.2, we then deduce that the Shapley value is a sufficient reasonable

cost allocation for a group of service providers with similar offered loads.
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3.4. Collaboration under the optimized service capacity

In certain cases, systems could be engineered. For example, the service capacity could be

increased according by training employees while may improve the service rate. Assum-

ing here that any individual or coalition chooses the service capacity which minimizes

the total system cost, this may lead to less costly coalitions. In this section, we consider

a TU-game under the setting with the optimized service capacity. We model the ser-

vice rate as a continuous variable for each individual or coalition. We denote by µ∗ the

optimized service capacity, which is defined by

µ∗(λ) = argmin{chµ + (cw + caθ)Lq(λ, µ, θ)|µ ≥ 0}. (3.10)

Figure 3.6: Total cost C in µ with different ch

Lemma 3.3. µ∗ exists and is unique in [θ,+∞).

Proof. C = chµ + (cw + caθ)Lq contains a linear function of µ and a term in Lq, which is

decreasing in µ and convex if µ ≥ θ (Lemma 3.1). Thus, C is positive and convex in µ if

µ ≥ θ. Therefore, µ∗ exists and is unique in [θ,+∞).

From Lemma 3.3, we obtain a unique optimized service capacity on its domain. Using
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(a) (b)

Figure 3.7: The optimized service capacity µ∗ in λ with different θ and ch

its definition in (3.10), it is obvious to see that µ∗ is decreasing in ch. An illustration is

given in Figure 3.6. For a coalition U = {1, ..., u} ∈ N, we also use the pooled arrival rate

λU = ∑i∈U λi and an identical abandonment rate θ as the defined game in Section 3.3.

Thus, we could define the optimized cost function using four parameters {θ, ch, ca, cw}

and a variable λi for i ∈ U as

Copt(λU) =ch · µ∗
U(λU) + (cw + caθ)Lq(λU, µ∗

U(λU)),

with λU = ∑
i∈U

λi, µ∗
U = argmin{Ctotal|µ ≥ θ}, for any U ⊂ N. (3.11)

The pooling game under the optimized service capacity could be then defined as (N, Copt).

In order to propose a simple stable allocation rule, we next analyze the relationship be-

tween the total cost for one demand and λ.

Lemma 3.4. The total cost per unit demand with optimized service capacities Copt/λ, is

decreasing in the customer arrival rate λ.

Proof. Consider two M/M/1+M queues, denoted by 1 and 2, with λ1 ≤ λ2, µ∗
1 , µ∗

2

(associated optimized service capacities) and a same θ. We have

Copt({1})
λ1

= ch
µ∗

1
λ1

+
(cw + caθ)

λ1
Lq(λ1, µ∗

1 , θ)
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= ch
µ∗

1
λ1

+
(cw + caθ)

λ1
Lq(λ2, µ∗

1 ·
λ2

λ1
, θ

λ2

λ1
)

≥ ch
µ∗

1
λ1

+
(cw + caθ)

λ1
· λ1

λ2
Lq(λ2, µ∗

1 ·
λ2

λ1
, θ) (3.12)

= chµ∗
1 ·

λ2

λ1
· 1

λ2
+

(cw + caθ)

λ2
Lq(λ2, µ∗

1 ·
λ2

λ1
, θ)

=
1

λ2
C(λ2, µ∗

1 ·
λ2

λ1
, θ) ≥

Copt({2})
λ2

,

where Inequality (3.12) holds by the monotonicity of Pa in θ in Lemma 3.2. Thus, Copt/λ

decreases in λ. This finishes the proof of the lemma.

From Lemma 3.4, we could conclude that the following allocation rule provides a

PMAS for the game (N, Copt):

φ
p
i =

λi

λN
Copt(N), ∀i ∈ N. (3.13)

Proposition 3.3. The propositional allocation φp defined in Equation (3.13) is a core

allocation for the game (N, Copt), and the associated allocation scheme φas,p gives a

PMAS for this game.

As proved in Section 2.5.2, the game with θ = 0 provides a concave TU-game. We

next consider the other limit for θ much higher than λ and µ, i.e., where a provider

approaches an M/M/1/1 queue. We rewrite the cost function as

Copt = chµ + ca
λ2

λ + µ
. (3.14)

With this cost function, we could obtain the optimized service rate as follows.

µ∗ =

 (
√

ca/ch − 1)λ, if ca > ch

0, otherwise.
(3.15)

When ca ≤ ch, we get µ∗ = 0. It means that the optimal choice of the server is not

working. In the remaining case, the total cost Copt is linear with λ and the game (N, Copt)

turns to a linear game.
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3.5. Conclusion

We considered the pooling problem for service systems while accounting for the im-

portant feature of customer abandonment. We investigated the cooperative strategy

among independent service providers with a complete service capacity pooling. When

the service providers directly combine their queues and service capacities, we proved

the non-emptiness of the core under the situation with a fixed service capacity. With

customer abandonment, the stability of the Shapley value could be affected. We studied

the convexity of the expected queue length in the abandonment rate. This result is also

helpful when addressing other design issues. Furthermore, we found that if all service

providers have an identical offered load, the Shapley value is absolutely stable for our

game. Under the optimized service capacity, we proved that a simple proportional allo-

cation rule provides a stable allocation for the relative game. This chapter and Chapter

2 are both assumed in the ’super-server’ pooling environment. We will consider the

multi-server pooling case in the next chapter.
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Chapter 4

Collaboration for Multi-server Service Sys-

tems

In Chapters 2 and 3, we analyzed resource pooling strategies under ’super-

server’ assumptions. In this chapter, we study the effect of resource pooling on

system performance and profit for multi-server service systems incorporating

customer abandonment, with the goal of evaluating whether the results under

the ’super-server’ assumption are still suitable in the multi-server case.

We consider two single-class queueing systems with different setting of pooling,

i.e., using the ’super-server’ assumptions and another using identical parallel

servers. The pooling strategy efficiency is estimated via the expected number of

customers in each system and the mean probability of customer abandonment.

Although it is intuitive to expect efficiency improvements in the pooled multi-

server system, it is no longer obvious to conclude that all members will benefit

from pooling as we proved in previous chapters. We compare between the two
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pooling settings from a coalition perspective. We numerically evaluate the ef-

fects of service duration variability and customer abandonment on the two cor-

responding games using the Shapley value and the nucleolus allocations. Fur-

thermore, we show that the service pooling in multi-class systems, is not always

profitable because of the additional variability among customer classes.
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4.1. Introduction

In this chapter, we address the service pooling problem for multi-server pooling system-

s. We allow that customers to be impatient in each individual or pooled service system.

They might decide to leave (abandon) before their services begin when their waiting

times are expired. We compare two corresponding TU-games of two typical pooling

settings and analyze dependent service pooling problems using cooperative game theo-

ry. In the rich literature on capacity pooling research, there are two typical settings for

the pooled systems: the ’super-server’ setting, i.e., all services resources are pooled in

one single server, and the multi-server setting, i.e., all servers work in parallel in a com-

mon service factory. Various examples of both setting are discussed in [Kleinrock, 1976].

The two pooling settings have been extensively used to evaluate the overall gains from

pooling by comparing the system performance of the pooled system and the individual

systems [Mandelbaum and Reiman, 1998, Iyer and Jain, 2004, Tekin et al., 2014, Kim and

Kim, 2015, Andradóttir et al., 2017]. The main reason for the ’super-server’ assump-

tion is that dealing with multi-server queues with general service times and customer

abandonment is very hard, even for a system with homogeneous servers. One known

approximation idea in homogeneous service cases that works quite well for the design of

services is the asymptotic equivalence in heavy traffic resource pooling cases [Harrison

and López, 1999].

The purpose of this chapter is to get a deeper understanding about whether pooling

strategies can be implemented to attain a higher service performance and a better col-

laboration income in real-life systems. In Chapters 2 and 3, we analyzed the cost-sharing

problem in service pooling collaboration with general service times and impatient cus-

tomers in the ’super-server’ pooling setting. This assumption is also accepted in many

other related service pooling studies [Anily and Haviv, 2010, Anily and Haviv, 2014, Yu

et al., 2015]. Motivated by applications to real-life systems, it is reasonable to extend

our previous research in multi-server systems [Özen et al., 2011, Karsten et al., 2015b],

especially in queueing systems accounting for customer abandonment from queue ow-
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ing to customer impatience. Such systems are widely used in service system design,

e.g., the many-server heavy-traffic queueing model in call center applications [Dai and

He, 2010, Jouini et al., 2013], the emergency hospital modeling problem [Gunal, 2012].

Therefore, we consider the stationary M/GI/S+M queuing model to describe the multi-

server service system. In order to evaluate the ’super-server’ assumptions, we use the

M/GI/1+M modeling for the individual and the ’super-server’ pooling system. Given

the complexity of the analysis of the M/GI/S+M queue, we conduct a simulation study

to compare between the two pooling situations.

The remainder of this chapter is structured as follows. We start in Section 4.2 by

defining all notations of our models and deriving some comparisons for the pooling

gains. Next, in Section 4.3, we provide a brief analysis of the relative service pooling

game in case of the markovian service process. In Section 4.4, we numerically analyze

the distributed costs with the impact of the variability of service times and the customer

arrival rates for the two games. In Section 4.5, we consider the impact of the customer

variability on service pooling gains. Finally, we give concluding comments.

4.2. Models and preliminary study

4.2.1. Service pooling modeling

We consider a set of N = {1, ..., n}, n ∈ N+ independent single-server service providers,

a provider is denoted by i ∈ N. We address here the individual setting (without pooling),

the ’super-server’ setting (a single-server with a high service rate) and the multi-server

setting (a pooled queue with parallel servers).

Individual service system i

In the individual setting, each provider is associated with its own Poisson customer ar-

rival stream of rate λi, which does not affect other providers. All customers in the set N

are assumed to be classified in a same class, i.e., same priority for service. The waiting
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space is assumed to be large enough such that no customer would be refused by the

server. We assume that all the servers are identical, and service times are assigned to

servers, which are i.i.d. and follow a general distribution with mean 1/µ and coefficient

of variation cv. The first come, first served (FCFS) discipline is used. Let customers be

impatient. Patience times are assumed to be i.i.d. and exponentially distributed with

mean 1/θ. If a customer has waited in the queue longer than his patience limit, he

quits the waiting queue without a service. We assume that θ ≤ µ to limit the aban-

donment rate. Following these arguments, each service provider can be modeled as an

M/GI/1+M queueing system (Figure 4.1), denoted by Sysi, i ∈ N.

Figure 4.1: An individual service provider i, an M/GI/1+M queue

’Super-server’ pooling coalition U

For a subset U = {1, ..., u} ⊆ N of u service providers, we assume that they could operate

their service capacities together to form a ’super-server’. The pooling system has a

Poisson customer arrival stream of rate λU = ∑i∈U λi. The waiting space is large enough,

and FCFS is employed. In the pooling set, we assume that the overall service capacity is

equivalent to the sum of the capacities of the u individual providers in U. Consequently,

service times are assigned to the pooled server, i.i.d. and generally distributed with mean

1/µU, µU = uµ and coefficient of variation cv. Patience times are assigned to customers,

i.i.d. and exponentially distributed with mean 1/θ. The u providers are combined into a

new M/GI/1+M queueing system (Figure 4.2), denoted by Syss
U, U ⊆ N. We have used

a similar definition to define resource pooling in Chapters 2 and 3 for any given µi for

server i.
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Figure 4.2: ’super-server’ pooling concept in U = {1, ...u}, an M/GI/1+M queue

Multi-server pooling coalition U

We consider a subset U = {1, ..., u} ⊆ N of u service providers, they could operate

their servers together to provide same services for all customers. We assume that all

the u servers are parallel and identical to all customers in U. Using similar assumptions

in ’super-server’ setting, the u providers are combined into an M/GI/S+M queueing

system. The customer arrival stream follows a Poisson process with rate λU = ∑i∈U λi,

and patience times are i.i.d. and exponentially distributed with mean 1/θ. Service times

are assigned to servers, i.i.d. and general distributed with mean 1/µ and coefficient of

variation cv. The multi-server pooling coalition U is shown in Figure 4.3, denoted by

Sysm
U, U ⊆ N.

Figure 4.3: Multi-server pooling concept in U = {1, ...u}, an M/GI/S+M queue
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Cost functions

We first denote by Lq(i), Ls
q(U), Lm

q (U) and Pa(i), Ps
a(U), Pm

a (U) the mean queue lengths

and the mean customer abandonment probabilities for the three above setting, respec-

tively. The total system cost of a service provider i in the individual setting should

consist of the server cost (resources cost measured by service capacity Ch(i) = chµ), the

queue cost (cost of customers waiting in the queue Cw = cwLq(i)) and the customer

lost cost (loss for abandoned customers Ca = caλiPa(i)). We give below the cost of an

individual provider i,

C(i) = Ch(i) + Cw(i) + Ca(i) = chµ + cwLq(i) + caλiPa(i). (4.1)

With similar definitions in the settings of Syss and Sysm, we define two relative costs of

a subset U,

Cs(U) = Cs
h(U) + Cs

w(U) + Cs
a(U) = chuµ + cwLs

q(U) + caλUPs
a(U),

Cm(U) = Cm
h (U) + Cm

w (U) + Cm
a (U) = chuµ + cwLm

q (U) + caλUPm
a (U).

(4.2)

Before discussing the results of pooling games, we first investigate in the next section,

the relationship between the two pooling situations: Syss and Sysm.

4.2.2. Performance comparison

For simplification, we assume in this section that service times are exponentially dis-

tributed. Therefore, we compare the M/M/1+M queuing model (λ, uµ, θ) with the

M/M/S+M queueing model (λ, µ, θ, u). Markov chains of the two compared models

are presented in Figures 4.4 and 4.5.

Lemma 4.1. The expected number of customers in a pooled system with the setting Syss

is smaller than that in Sysm.

Proof. Consider an M/M/1+M queuing model (λ, uµ, θ) and an M/M/S+M queueing
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Figure 4.4: The Markov process, an M/M/1+M queueing model

Figure 4.5: The Markov process, an M/M/S+M queueing model

model (λ, µ, θ, u). We denote the number of customers in the two systems by the random

variable Y(·). The problem is to prove that

Ls
s(U) = E(Ys) ≤ Lm

s (U) = E(Ym),

which is equivalent to

P(Ys = k + 1)
Ys = k

≤ P(Ym = k + 1)
Ym = k

, for k ∈ N,

see page 208 in [Ferguson, 2014]. From Markov chains in Figures 4.4 and 4.5, we have

P(Ys = k + 1)
Ys = k

=
λ

uµ + kθ
≤ λ

kµ
=

P(Ym = k + 1)
Ym = k

, for 0 ≤ k < µ;

P(Ys = k + 1)
Ys = k

=
λ

uµ + kθ
≤ λ

uµ + (k + 1 − u)θ
=

P(Ym = k + 1)
Ym = k

, for k ≥ µ.

Thus, the expected number of customers Ls in the M/M/1+M system is smaller, which

completes the proof of the proposition.

From Lemma 4.1, one can see that the overall expected number of customers in the

setting Syss is smaller than that in Sysm, without any limit for the system parameters
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{λ, µ, θ, u)}. The comparison of the queue length could be illustrated with a similar

reasoning. We denote the number of customers in the two systems by the random

variable Y−
(·). Thus, we have identical P(Y−

(·) = k + 1)/P(Y−
(·) = k) for all k ∈ N+. The

only difference is the value at k = 0. With a simple calculation, we can obtain Lemma

4.2

Lemma 4.2. The queue length in the setting Syss is larger than that in Sysm.

From the customer’s point of view, we see that customers spend less overall time in

Syss but wait more time in queue. This phenomenon is well known in queueing systems

without customer abandonment [Monahan, 2000]. When customers are impatient, Syss

loses more customers than Sysm dose. This reduces the difference between Ls
q and Lm

q .

4.3. Service pooling games

In order to analyze the pooling strategies, we construct two corresponding service pool-

ing games. We assume that every service provider i (player i) in the set N (the grand

coalition) is economically independent. Suppose that a subset U, ∅ ⊆ U ⊆ N, form-

s a coalition. In the coalition, providers operate their service resources together with

pooling strategies. In above section, we assume that the service capacity in the pooling

system is the sum of the individuals’. Thus, the server cost C(·)
h is additive, which is

meaningless in cooperative game study. The service pooling gain is only captured by

C(·)
w and C(·)

a . Consider that the abandonment process is Markovian. Therefore, for any

coalition U ⊆ N, we denote the cost functions by

Cs(∅) = 0, Cs(U) = Cs
w(U) + Cs

a(U) = (cw + caθ)Ls
q(U) ∈ R+;

Cm(∅) = 0, Cm(U) = Cm
w (U) + Cm

a (U) = (cw + caθ)Lm
q (U) ∈ R+,

(4.3)

under corresponding service pooling strategy, respectively. The pairs (N, Cs) and (N, Cm)

define two cooperative games with transferable utility (TU-game). In particular, Cs(·)

and Cm(·) are theirs characteristic functions (c.f.).
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4.3.1. Service pooling games with exponential services

Now, we assume that service times are i.i.d. and exponentially distributed, and denote

the relative games by (N, C(·)
M ). Consider the Markov chains as shown in Figures 4.4 and

4.5. The expected queue length of the two settings could be calculated as follow.

Ls
q =

∞

∑
j=0

(j − 1)
aj

∑∞
l=0 al

, a0 = 1, aj =
λj

∏
j−1
l=0(uµ + lθ)

, for j ∈ N+; (4.4)

Lm
q =

∞

∑
j=0

(j − 1)
bj

∑∞
l=0 al

, b0 = 1, bj =
λj

j!µj , if j ≤ u; (4.5)

bj =
λj

u!µu ∏
j−1
l=u+1(uµ + (l − u)θ)

, if j > u.

In Chapters 2 and 3, we has shown that the social gains of (N, Cs
M) is maximized when

the grand coalition is formed, and the core is not empty. From Equation (4.4), it is easy

to observe that the c.f. of (N, Cs
M) is continuous in all parameters, {λ, uµ, θ}. However,

as shown in Equation (4.5), it is not true for the multi-server setting, {λ, µ, u, θ}, i.e.,

u ∈ N+. This makes the theoretical analysis complicated. Next, we provide an example

to illustrate the similarity of the two games.

4.3.2. Comparison of costs in (N, Cs) and (N, Cm)

Example. Suppose that there are three players N = {1, 2, 3}, with µ = 10, cw = ca = 1,

and λ1 = 9, λ2 = 5, λ3 = 2. As shown in Chapter 3, this example of the ’super-server’

game (N, Cs
M) is not concave and the Shapley value, denoted by sh, is not situated in

the core. When θ increases, sh becomes stable in an interval and moves out of the

core again with a high abandonment. Reconsider it in the corresponding multi-server

game (N, Cm
M). The associated coalition costs and Shapley values of games (N, Cs

M) and

(N, Cm
M) are presented in Table 4.1.

When customers are patient (θ = 0), the two games are not stable with the Shapley

value and have the same two unsatisfied coalitions {1, 2} and {1, 3}, with esh(U) < 0 (by
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Coalitions
θ = 0 θ = 0.5

Cs
M(U) ∑i∈U shs

i Cm
M(U) ∑i∈U shm

i Cs
M(U) ∑i∈U shs

i Cm
M(U) ∑i∈U shm

i

{1, 2, 3} 0.6095 0.6095 0.3130 0.3130 0.8130 0.8130 0.4135 0.4135
{1, 2} 1.6333 2.2240 1.3451 1.9779 1.7520 1.5285 1.4185 1.2139
{2, 3} 0.1885 -2.5234 0.0977 -2.6700 0.2597 -0.7218 0.1342 -0.9326
{1, 3} 0.6722 1.5184 0.4771 1.3189 0.8447 0.5958 0.5940 0.5457

Table 4.1: Coalition and distributed costs with θ = {0, 0.5} for (N, Cs
M) and (N, Cm

M)

comparing data of Table 4.1). By increasing θ, we numerically observe that the Shapley

value is situated in the core for the two games. This phenomenon appears also with

another services and the cases with higher number of players. In the next section, we

give a systemic numerical comparison for three players games.

4.4. Numerical examples

We perform a simulation study in order to evaluate and compare the service pooling

cost-sharing problem of the two strategies. The main reason of the simulation lies in the

analytical complexity of the M/GI/S+M analysis and the intractable theoretical treat-

ment of the related pooling games. Simulation is done with Matlab. We simulate the two

pooling settings in three players set with deterministic, Erlang-2 (cv = 1/
√

2 = 0.707)

and hyperexponential (i.e., µh,1 = {0.5µ + 1.5µ}, p1 = {0.25, 0.75}, cv = 1.291 and

µh,2 = {0.2899µ + 2.5798µ}, p2 = {0.2, 0.8}, cv = 2) services and calculate the corre-

sponding exponential situation. From the identical servers assumption, i.e., same µ, the

individual utilization ρi = λi/µ of each server depends on own customer incoming rate.

Therefore, we initially consider the case µ = 10 and λ = {1, ...9}. We choose 20 cases

of triples λ = (λ1, λ2, λ3) to evaluate the cost allocations using the Shapley value sh and

the nucleolus φn. The overall cost of each individual player or coalition is calculated by

Equation (4.3) with cw = ca = 1. We choose this setting because the contrast between

different customer incoming rates is the biggest reason for cost distribution and three
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players game is a typical case for cost-sharing analysis. For evaluating the impact of cus-

tomer abandonment, we choose four values θ = {0, 0.5, 1, 3}. This gives us 80 different

configurations for each game for each service distribution.

In all numerical tests, we find that the nucleolus is always situated in the core. It

presents the non-emptiness of the core for all numerical examples. It means that the

grand coalition is the most profitable coalition structure, and the three service provider-

s would agree on pooling their service resources. Given the relationship shown for

Markovian systems, the overall costs of Syss are always larger than Sysm in all cases.

Considering this difference between the two pooling settings, we calculate the individ-

ual saving in overall pooling saving by percentage in the grand coalition N = {1, 2, 3},

sp(·)x,i = [C(·)({i})− x(·)i ]/[∑i∈N C(·)({i})− C(·)(N)]%, i.e., x = (x1, ..., xn) present a cost

allocation in N. Therefore, we give some cases in Tables 4.2. The first three cases are

the cases with heterogeneous λ, and homogeneous λ are selected in last three cases.

’Y’(Yes), ’N’(No),’N-Y’(No-Yes) indicate the stability of φ, and ’N-Y’ means that the sta-

bility changes with service times variability in these cases.

4.4.1. Impact of customer arrival rates λi

The λi is the only individual parameter for each service provider i. Thus, its heterogene-

ity leads to heterogeneity in allocated costs. From Table 4.2, it is shown that the saving

percentages using both the Shapley value or the Nucleolus allocations of Sysm and Syss

pooling systems are very closed in all the cases. The stabilities of the sh for the two

pooling concepts are also very similar in the majority of cases, which varies with the ser-

vice variability cv and the customer abandonment rate θ. The special situations appear

for the cases of (1, 1, 2), in which all the three players have low initial utilizations. It is

also shown that the sh is not stable for these cases with heterogeneous λi when θ = 0,

i.e., (1, 2, 9) with two small and one large λi, and (1, 5, 9) with three heterogeneous λi.

However, the sh is stable in the case (1, 8, 9), i.e., one small and two large λi.
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λi ∈ N cv θ = 0 θ = 0.5
sps

sh% spm
sh% sps

n% spm
n % sps

sh% spm
sh% sps

n% spm
n %

(1, 2, 9)

0
17.93% 17.88% 2.71% 2.54% 19.85% 19.37% 6.80% 6.05%
17.08% 17.11% 1.86% 1.77% 17.67% 18.14% 4.62% 4.82%
64.99% 65.00% 95.44% 95.68% 62.48% 62.49% 88.58% 89.14%

0.707
17.84% 17.81% 2.51% 2.39% 20.27% 19.79% 7.71% 6.89%
17.04% 17.11% 1.70% 1.69% 17.88% 18.40% 5.33% 5.50%
65.12% 65.09% 95.79% 95.91% 61.86% 61.82% 86.96% 87.60%

1
17.90% 17.81% 2.64% 2.44% 20.71% 20.32% 8.74% 7.90%
17.06% 17.16% 1.79% 1.79% 18.13% 18.47% 6.16% 6.04%
65.04% 65.03% 95.57% 95.76% 61.16% 61.21% 85.10% 86.06%

1.291
17.94% 17.93% 2.72% 2.64% 21.44% 20.78% 10.23% 8.88%
17.07% 17.14% 1.85% 1.85% 18.25% 18.70% 7.03% 6.79%
65.00% 64.93% 95.44% 95.52% 60.30% 60.52% 82.74% 84.33%

2
18.19% 17.71% 3.12% 2.33% 22.57% 21.08% 12.62% 9.69%
16.98% 17.28% 1.91% 1.89% 18.57% 19.32% 8.62% 7.93%
64.83% 65.02% 94.97% 95.78% 58.86% 59.60% 78.75% 82.38%

Stability N N Y Y N N Y Y

(1, 5, 9)

0
21.25% 21.04% 8.09% 7.92% 26.19% 25.41% 17.07% 16.23%
17.16% 17.61% 3.14% 3.53% 18.45% 19.64% 7.49% 8.45%
61.59% 61.35% 88.77% 88.55% 55.36% 54.95% 75.43% 75.31%

0.707
20.92% 20.90% 7.53% 7.67% 27.53% 26.45% 19.48% 18.24%
17.18% 17.57% 2.97% 3.40% 18.66% 20.12% 8.46% 9.57%
61.90% 61.53% 89.50% 88.92% 53.81% 53.43% 72.05% 72.19%

1
21.13% 20.83% 7.87% 7.60% 28.05% 26.87% 20.55% 19.13%
17.16% 17.71% 3.08% 3.56% 19.05% 20.53% 9.20% 10.30%
61.72% 61.45% 89.05% 88.84% 52.91% 52.59% 70.25% 70.57%

1.291
21.56% 21.22% 8.61% 8.29% 29.04% 28.01% 22.30% 21.14%
17.11% 17.71% 3.24% 3.75% 19.26% 20.74% 10.11% 11.26%
61.33% 61.06% 88.15% 87.96% 51.69% 51.24% 67.60% 67.60%

2
21.15% 20.73% 7.86% 7.44% 29.21% 28.01% 23.21% 21.85%
17.10% 17.79% 3.07% 3.61% 20.69% 22.49% 11.81% 13.33%
61.75% 61.48% 89.07% 88.95% 50.10% 49.49% 64.98% 64.82%

Stability N N Y Y N-Y N-Y Y Y

(1, 8, 9)

0
29.50% 28.94% 25.67% 24.54% 34.58% 33.64% 35.82% 33.94%
23.85% 24.40% 14.37% 15.47% 27.07% 27.85% 20.81% 22.37%
46.65% 46.66% 59.96% 59.98% 38.35% 38.51% 43.37% 43.69%

0.707
29.91% 28.92% 26.42% 24.51% 35.38% 33.68% 37.43% 34.02%
23.02% 23.85% 12.85% 14.36% 27.11% 28.38% 20.89% 23.42%
47.07% 47.23% 60.74% 61.12% 37.51% 37.95% 41.68% 42.56%

1
29.31% 28.71% 25.29% 24.10% 35.55% 34.07% 37.76% 34.82%
23.89% 24.52% 14.46% 15.71% 27.45% 28.51% 21.56% 23.69%
46.79% 46.77% 60.25% 60.20% 37.00% 37.41% 40.67% 41.49%

1.291
30.20% 28.89% 27.07% 24.46% 35.43% 35.15% 37.53% 36.96%
23.38% 24.48% 13.42% 15.63% 28.55% 28.86% 23.77% 24.38%
46.42% 46.62% 59.50% 59.91% 36.02% 36.00% 38.70% 38.66%

2
29.74% 27.49% 26.14% 21.65% 36.26% 33.57% 39.20% 33.81%
24.76% 26.24% 16.19% 19.15% 28.42% 29.96% 23.50% 26.59%
45.50% 46.27% 57.67% 59.20% 35.32% 36.47% 37.30% 39.60%

Stability Y Y Y Y Y Y Y Y

Table 4.2: (a). Heterogeneous λi three players games
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λi ∈ N cv θ = 1 θ = 3
sps

sh% spm
sh% sps

n% spm
n % sps

sh% spm
sh% sps

n% spm
n %

(1, 2, 9)

0
20.57% 20.36% 8.61% 8.01% 22.35% 21.64% 12.41% 10.95%
18.16% 18.42% 6.20% 6.07% 18.95% 19.51% 9.01% 8.83%
61.26% 61.22% 85.18% 85.92% 58.70% 58.84% 78.58% 80.22%

0.707
21.51% 20.79% 10.44% 8.99% 22.89% 22.24% 13.70% 12.21%
18.44% 18.87% 7.36% 7.06% 19.49% 20.05% 10.30% 10.01%
60.05% 60.34% 82.20% 83.95% 57.62% 57.71% 76.00% 77.77%

1
21.72% 21.21% 10.95% 9.85% 23.42% 22.68% 14.72% 13.15%
18.62% 19.06% 7.85% 7.71% 19.52% 20.26% 10.82% 10.73%
59.67% 59.73% 81.20% 82.44% 57.06% 57.06% 74.46% 76.12%

1.291
22.22% 21.35% 12.14% 10.30% 23.85% 23.10% 15.36% 14.04%
18.77% 19.38% 8.69% 8.33% 19.54% 20.53% 11.05% 11.48%
59.01% 59.27% 79.17% 81.37% 56.60% 56.36% 73.59% 74.48%

2
22.59% 22.06% 13.34% 11.85% 24.02% 23.18% 16.44% 14.64%
19.71% 20.09% 10.47% 9.88% 20.45% 21.46% 12.87% 12.92%
57.71% 57.85% 76.19% 78.28% 55.53% 55.36% 70.69% 72.44%

Stability N-Y N Y Y N-Y N-Y Y Y

(1, 5, 9)

0
27.90% 27.19% 20.32% 19.54% 30.32% 28.84% 25.08% 23.17%
19.16% 20.36% 9.30% 10.39% 20.60% 22.25% 12.29% 13.53%
52.93% 52.46% 70.39% 70.07% 49.08% 48.91% 62.63% 63.30%

0.707
28.99% 27.87% 22.48% 21.16% 31.32% 29.08% 27.04% 24.01%
19.92% 21.27% 10.83% 11.71% 21.24% 23.24% 13.69% 14.81%
51.09% 50.85% 66.69% 67.12% 47.43% 47.67% 59.27% 61.18%

1
29.58% 28.08% 23.54% 21.67% 31.64% 29.49% 27.66% 24.85%
19.91% 21.69% 11.09% 12.37% 21.32% 23.67% 13.90% 15.60%
50.50% 50.23% 65.38% 65.96% 47.03% 46.84% 58.44% 59.56%

1.291
30.29% 28.01% 24.88% 21.83% 32.66% 29.52% 29.49% 25.15%
20.27% 22.30% 11.93% 12.96% 21.15% 24.27% 13.97% 16.34%
49.44% 49.70% 63.19% 65.21% 46.19% 46.20% 56.54% 58.51%

2
31.28% 29.18% 26.99% 24.20% 32.17% 29.69% 28.99% 25.77%
20.83% 23.45% 12.79% 15.20% 22.29% 25.30% 15.29% 17.82%
47.89% 47.38% 60.22% 60.60% 45.54% 45.01% 55.72% 56.41%

Stability Y Y Y Y Y Y Y Y

(1, 8, 9)

0
35.89% 33.98% 38.44% 34.63% 35.90% 34.57% 38.48% 35.81%
27.18% 28.39% 21.03% 23.44% 28.47% 29.48% 23.61% 25.64%
36.93% 37.63% 40.53% 41.93% 35.62% 35.94% 37.92% 38.55%

0.707
36.01% 34.53% 38.69% 35.72% 36.69% 34.68% 40.04% 36.02%
28.02% 28.90% 22.70% 24.46% 28.51% 29.80% 23.68% 26.27%
35.97% 36.58% 38.61% 39.82% 34.80% 35.52% 36.27% 37.71%

1
36.16% 34.39% 38.99% 35.44% 36.88% 34.43% 40.42% 35.52%
27.94% 29.16% 22.55% 25.00% 28.51% 30.11% 23.69% 26.88%
35.90% 36.45% 38.47% 39.56% 34.61% 35.46% 35.89% 37.60%

1.291
35.99% 34.65% 38.65% 35.96% 37.27% 34.70% 41.21% 36.06%
27.84% 29.06% 22.34% 24.79% 28.61% 30.31% 23.89% 27.28%
36.17% 36.29% 39.01% 39.25% 34.12% 34.99% 34.90% 36.65%

2
37.82% 34.06% 42.31% 34.79% 38.55% 33.64% 43.77% 33.95%
28.30% 30.45% 23.26% 27.57% 28.23% 31.06% 23.13% 28.79%
33.88% 35.49% 34.43% 37.64% 33.22% 35.29% 33.10% 37.26%

Stability Y Y Y Y Y Y Y Y

Table 4.2: (b). Heterogeneous λi three players games

84



4.4. NUMERICAL EXAMPLES

λi ∈ N cv θ = 0 θ = 0.5
sps

sh% spm
sh% sps

n% spm
n % sps

sh% spm
sh% sps

n% spm
n %

(1, 1, 2)

0
25.94% 25.73% 18.60% 18.11% 25.45% 25.61% 17.56% 17.97%
25.94% 25.73% 18.60% 18.11% 25.45% 25.61% 17.56% 17.97%
48.20% 48.49% 62.90% 63.75% 49.12% 48.72% 65.19% 64.06%

0.707
25.55% 25.43% 17.78% 17.50% 26.54% 25.56% 19.79% 17.76%
25.55% 25.43% 17.78% 17.50% 26.54% 25.56% 19.79% 17.76%
48.92% 49.07% 64.47% 64.93% 46.99% 48.83% 60.49% 64.48%

1
25.74% 25.38% 18.20% 17.35% 26.07% 25.53% 18.71% 17.72%
25.74% 25.38% 18.20% 17.35% 26.07% 25.53% 18.71% 17.72%
48.54% 49.33% 63.62% 64.93% 48.06% 48.88% 62.80% 64.56%

1.291
26.02% 25.17% 18.81% 17.02% 26.79% 25.86% 20.25% 18.48%
26.02% 25.17% 18.81% 17.02% 26.79% 25.86% 20.25% 18.48%
47.99% 49.60% 62.54% 65.81% 46.42% 48.23% 59.64% 63.04%

2
26.08% 25.45% 18.91% 17.52% 27.22% 25.77% 21.13% 18.19%
26.08% 25.45% 18.91% 17.52% 27.22% 25.77% 21.13% 18.19%
47.75% 49.15% 62.23% 64.90% 45.56% 48.46% 57.73% 63.56%

Stability Y N Y Y Y N Y Y

(4, 5, 5)

0
28.94% 28.47% 24.54% 23.58% 29.73% 29.99% 26.11% 26.65%
35.52% 35.77% 37.72% 38.20% 35.14% 35.01% 36.94% 36.68%
35.52% 35.77% 37.72% 38.20% 35.14% 35.01% 36.94% 36.68%

0.707
29.30% 29.26% 25.26% 25.18% 29.53% 30.20% 25.75% 27.06%
35.34% 35.38% 37.37% 37.41% 35.23% 34.91% 37.13% 36.47%
35.34% 35.38% 37.37% 37.41% 35.23% 34.91% 37.13% 36.47%

1
29.39% 29.40% 25.45% 25.46% 30.17% 30.12% 27.00% 26.92%
35.30% 35.30% 37.28% 37.26% 34.92% 34.94% 36.49% 36.53%
35.30% 35.30% 37.28% 37.26% 34.92% 34.94% 36.49% 36.53%

1.291
28.99% 29.83% 24.64% 26.34% 31.83% 30.91% 30.32% 28.50%
35.51% 35.08% 37.68% 36.83% 34.09% 34.54% 34.84% 35.75%
35.51% 35.08% 37.68% 36.83% 34.09% 34.54% 34.84% 35.75%

2
29.97% 30.24% 26.62% 27.14% 30.69% 30.00% 28.04% 26.66%
35.01% 34.88% 36.69% 36.43% 34.66% 35.00% 35.98% 36.67%
35.01% 34.88% 36.69% 36.43% 34.66% 35.00% 35.98% 36.67%

Stability Y Y Y Y Y Y Y Y

(8, 9, 9)

0
28.19% 28.26% 23.05% 23.18% 32.03% 32.10% 30.74% 30.87%
28.19% 28.26% 23.05% 23.18% 32.03% 32.10% 30.74% 30.87%
43.62% 43.49% 53.91% 53.65% 35.93% 35.80% 38.52% 38.26%

0.707
28.07% 28.09% 22.82% 22.84% 32.13% 32.16% 30.92% 30.99%
28.07% 28.09% 22.82% 22.84% 32.13% 32.16% 30.92% 30.99%
43.85% 43.83% 54.37% 54.32% 35.75% 35.68% 38.16% 38.02%

1
28.04% 28.30% 22.74% 23.27% 32.16% 32.32% 30.98% 31.31%
28.04% 28.30% 22.74% 23.27% 32.16% 32.32% 30.98% 31.31%
43.92% 43.40% 54.52% 53.46% 35.68% 35.36% 38.04% 37.39%

1.291
28.36% 28.30% 23.39% 23.27% 32.35% 33.10% 31.36% 32.87%
28.36% 28.30% 23.39% 23.27% 32.35% 33.10% 31.36% 32.87%
43.28% 43.39% 53.22% 53.45% 35.30% 33.79% 37.27% 34.25%

2
28.83% 28.48% 24.32% 23.63% 32.57% 32.84% 31.82% 32.34%
28.83% 28.48% 24.32% 23.63% 32.57% 32.84% 31.82% 32.34%
42.34% 43.03% 51.35% 52.73% 34.85% 34.32% 36.37% 35.32%

Stability Y Y Y Y Y Y Y Y

Table 4.2: (c). Homogeneous λi three players games
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λi ∈ N cv θ = 1 θ = 3
sps

sh% spm
sh% sps

n% spm
n % sps

sh% spm
sh% sps

n% spm
n %

(1, 1, 2)

0
25.66% 25.67% 20.39% 18.01% 27.71% 26.48% 22.15% 26.48%
25.66% 25.67% 20.39% 18.01% 27.71% 26.48% 22.15% 26.48%
48.44% 48.63% 59.43% 63.98% 44.58% 47.02% 55.83% 47.02%

0.707
26.28% 26.04% 19.12% 18.73% 26.44% 25.78% 19.51% 25.78%
26.28% 26.04% 19.12% 18.73% 26.44% 25.78% 19.51% 25.78%
47.41% 47.94% 61.58% 62.54% 47.12% 48.44% 60.88% 48.52%

1
26.17% 25.63% 18.99% 18.05% 26.57% 26.07% 19.81% 26.07%
26.17% 25.63% 18.99% 18.05% 26.57% 26.07% 19.81% 26.07%
47.66% 48.66% 62.02% 63.90% 46.86% 47.91% 60.47% 47.91%

1.291
27.17% 25.61% 21.03% 17.93% 27.47% 26.83% 21.64% 26.83%
27.17% 25.61% 21.03% 17.93% 27.47% 26.83% 21.64% 26.83%
45.62% 48.80% 57.89% 64.14% 45.00% 46.37% 56.73% 46.37%

2
26.43% 25.87% 20.15% 18.39% 26.79% 26.13% 20.25% 26.13%
26.43% 25.87% 20.15% 18.39% 26.79% 26.13% 20.25% 26.13%
47.17% 48.28% 59.79% 63.22% 46.40% 47.78% 59.42% 47.78%

Stability Y N Y Y Y N-Y Y Y

(4, 5, 5)

0
30.37% 30.06% 27.41% 26.79% 30.70% 30.73% 28.06% 28.12%
34.80% 34.97% 36.29% 36.60% 34.65% 34.63% 35.98% 35.94%
34.80% 34.97% 36.29% 36.60% 34.65% 34.63% 35.98% 35.94%

0.707
30.47% 29.82% 27.61% 26.31% 31.10% 30.92% 28.88% 28.50%
34.76% 35.09% 36.20% 36.85% 34.44% 34.54% 35.57% 35.75%
34.76% 35.09% 36.20% 36.85% 34.44% 34.54% 35.57% 35.75%

1
30.53% 30.47% 27.72% 27.60% 31.11% 31.02% 28.89% 28.71%
34.74% 34.77% 36.14% 36.20% 34.45% 34.49% 35.55% 35.65%
34.74% 34.77% 36.14% 36.20% 34.45% 34.49% 35.55% 35.65%

1.291
30.86% 30.90% 28.39% 28.48% 30.59% 30.86% 27.84% 28.40%
34.57% 34.55% 35.81% 35.76% 34.71% 34.57% 36.07% 35.80%
34.57% 34.55% 35.81% 35.76% 34.71% 34.57% 36.07% 35.80%

2
30.79% 30.62% 28.25% 27.91% 32.17% 31.54% 31.01% 29.74%
34.61% 34.69% 35.88% 36.04% 33.92% 34.23% 34.50% 35.13%
34.61% 34.69% 35.88% 36.04% 33.92% 34.23% 34.50% 35.13%

Stability Y Y Y Y Y Y Y Y

(8, 9, 9)

0
32.14% 32.10% 30.95% 30.87% 32.41% 32.76% 31.49% 32.20%
32.14% 32.10% 30.95% 30.87% 32.41% 32.76% 31.49% 32.20%
35.71% 35.79% 38.09% 38.26% 35.18% 34.47% 37.02% 35.61%

0.707
32.54% 32.67% 31.75% 32.00% 32.82% 32.97% 32.30% 32.61%
32.54% 32.67% 31.75% 32.00% 32.82% 32.97% 32.30% 32.61%
34.91% 34.66% 36.49% 35.99% 34.37% 34.05% 35.40% 34.77%

1
32.45% 32.60% 31.56% 31.87% 32.71% 32.86% 32.09% 32.39%
32.45% 32.60% 31.56% 31.87% 32.71% 32.86% 32.09% 32.39%
35.10% 34.80% 36.87% 36.26% 34.57% 34.28% 35.82% 35.22%

1.291
32.03% 32.78% 30.73% 32.23% 32.93% 33.14% 32.52% 32.95%
32.03% 32.78% 30.73% 32.23% 32.93% 33.14% 32.52% 32.95%
35.93% 34.43% 38.54% 35.54% 34.15% 33.72% 34.96% 34.10%

2
33.62% 33.23% 33.90% 33.13% 33.41% 32.64% 33.49% 31.94%
33.62% 33.23% 33.90% 33.13% 33.41% 32.64% 33.49% 31.94%
32.77% 33.53% 32.20% 33.73% 33.18% 34.72% 33.03% 36.12%

Stability Y Y Y Y Y Y Y Y

Table 4.2: (d). Homogeneous λi three players games
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Considering the unsatisfied coalitions for the example in Section 4.3.2, the service

provider with a large λi pays too much in the sh, which leads to the instability of the

grand coalition. In (1, 8, 9), there are two providers with relative large λi sharing the

overmuch cost. Although stability of the sh could not be ensured, the sh is more fair

than the φn.

4.4.2. Impact of customer abandonment θ

Apparently, the service systems with a high utilization are more sensitive to θ than those

with a low utilization. In Table 4.2, it is shown that the difference between sps
(·) and spm

(·)

does not vary with θ. In the majority of cases (an example is shown in Figure 4.6) for the

two pooling settings, the data clearly show that the saving percentage of the player with

a small λi is increasing with θ in (0, 3), in contrast to the player with a large λi. This is

because the abandonment could reduce heterogeneity of the queue lengths among the

service providers with the same service capacity, i.e., equal u and µ. The special situation

(1, 1, 2) of three service providers with low utlizations, is the case which is less sensitive

to θ.

(a) spsh of the case λ = (1, 2, 9) in θ (b) spn of the case λ = (1, 2, 9) in θ

Figure 4.6: Relative savings of the case λ = (1, 2, 9) in θ
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4.4.3. Impact of service times variability cv

In all our cases, it is clear that all the costs for individual or pooling systems are increas-

ing with cv. The allocated costs using the two allocations are also increasing with cv.

From Table 4.2, it is shown that the saving percentage of the two allocations varies a little

bit with cv in both two pooling settings. The stability of sh varies with cv under certain

values of θ. We give a more detailed information about ’N-Y’ in Table 4.3.

λi ∈ N θ Sys(·)
cv

0 0.707 1 1.291 2

(1,2,9)

1 Syss N N N N Y
1 Sysm N N N N N
3 Syss Y Y Y Y Y
3 Sysm N Y Y Y Y

(1,5,9)
0.5 Syss N N Y Y Y
0.5 Sysm N N N Y Y

Table 4.3: Stability of the Shapley value in cv

From the Pollaczek-Khinchine formula, it is obvious that cv dose not impact the relative

costs of the individual and coalition systems under the two pooling settings. When θ

increases, all queue lengths increase in cv and the longer queues have more abandoned

customers. Therefore, increasing cv could enhance the impact of θ.

4.5. Pooling in multi-class service systems

We conduct a simulation study in order to analyze whether pooling heterogeneous ser-

vice times allows service providers to obtain a better performance and the impact of

customer patience. In this study, we consider two single-server service systems {1, 2}

with different customer classes and construct three sets of experiment to illustrate the

pooling gains. We assume that customer arrival process follows a Poisson process with

rate λi, i ∈ {1, 2}, respectively. Suppose that service times of one class are i.i.d. with
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mean µ−1
i , i ∈ {1, 2} and not change in the pooling system. In the pooling setting, the

two classes have the same priority and are served under FCFS discipline using two i-

dentical parallel servers. When customers are impatient, we assume that the two classes

have an identical abandonment rate θ = 1.

In each set, we consider three cases for the relationship between µ1 and µ2, i.e.,

µ2 = pmcµ1, pmc = {2, 5, 10}, which means that the first class generally gets a longer

service time than the second one. We choose the relative reduction of queue length for

each class and the overall service system to evaluate the pooling performance by using

the following expression,

RLq =


Lq,i−Lp

q,i
Lq,i

, for class i ∈ {1, 2}
∑ Lq,i−Lq

∑ Lq,i
, for pooling i ∈ {1, 2}

(4.6)

Firstly, we consider two classes of customers with same server utilization and without

customer abandonment. Our first set of experiments consists of twelve cases with four

values of server utilisation. We consider ρ1 = {0.2, 0.4, 0.6, 0.8} with θ = 0. The values

of pooling gains, noted by RLq, in these twelve cases are given in Table 4.4. We find that

customers of class 1 get more service quality improvement than those of class 2. When

the class heterogeneity pmc increases, the relative pooling performance RLq of class 2 and

overall system {1, 2} decrease. On the contrary, RLq of class 1 increases. This is because

as pmc increases, service times of class 2 are much shorter than those of class 1. Thus, the

congestion impact in the pooling system for each other is much important for class 2.

For a same pmc, RLq decreases with utilizations ρ1 = ρ2. It is also the effect of congestion.

Secondly, we consider different initial utilisations ρi = λi/µi with ρ2 = pduρ1, pdu =

{1/2, 3/2} in Table 4.4. Thus, there are also twelve cases with different server utilisations

considering two values of utilization in class 1, ρ1 = {0.2, 0.6}. Considering the relative

results in Table 4.4 , we could conclude that the relative gains of class 2 increases with

customer arrivals augmentation in this class. Simultaneously, the relative gains of class 1

reduces with additional incoming customers of class 2. It is because that the heavy load

89



CHAPTER 4. COLLABORATION FOR MULTI-SERVER SERVICE SYSTEMS

ρ1 pmc = 2 pmc = 5 pmc = 10
C-1 C-2 All C-1 C-2 All C-1 C-2 All

0.2 88.00% 77.40% 82.70% 91.20% 61.60% 76.40% 94.20% 37.40% 65.80%
0.4 78.10% 57.44% 67.77% 86.46% 32.20% 59.33% 84.40% −39.09% 22.66%
0.6 75.06% 46.92% 60.99% 80.00% 4.86% 42.43% 80.46% −92.24% −5.89%
0.8 70.74% 41.11% 55.93% 73.93% −28.98% 22.47% 76.40% −134.66% −29.13%

Table 4.4: Relative pooling performance of two classes of customers with same utilisation and θ = 0

impact on class 2 in individual setting is reduced with the joining of server {1}.

θ = 0 pmc = 2 pmc = 5 pmc = 10
ρ1 pdu C-1 C-2 All C-1 C-2 All C-1 C-2 All

0.2 1/2 95.80% 66.70% 90.51% 94.80% 50.50% 86.75% 96.00% −5.30% 77.58%
- 3/2 81.60% 79.47% 80.06% 86.40% 67.10% 72.50% 91.20% 46.33% 58.90%

0.6 1/2 84.12% −15.97% 71.61% 89.58% −85.97% 67.63% 90.94% −234.37% 50.28%
- 3/2 45.89% 81.60% 78.03% 57.02% 64.78% 64.01% 65.31% 41.29% 43.69%

Table 4.5: Relative pooling performance of two classes of customers with pdu = {1/2, 3/2} and θ = 0

Lastly, we consider the impact of customer impatience in Tables 4.6 and 4.7. The set

of experiments consists of twelve cases with abandonment rate θ = {0.5, 1} and identical

settings for other parameters. It is shown that the impact of customer heterogeneity pmc

still reduces the overall pooling gains and increases the difference of the relative gains

between classes. However, comparing the relative performance under different θ, we

find that the impact of θ weaken the impact of pmc. The negative individual RLq of class

2, caused by class heterogeneity, is reduced with the presence of θ.

Based on above discussions, we could conclude that the service pooling in multi-class

systems is not always profitable owing to the high heterogeneity of classes and the high

system utilization, which is also shown in real-life systems [Vanberkel et al., 2012].
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θ = 1 pmc = 2 pmc = 5 pmc = 10
ρ1 pdu C-1 C-2 All C-1 C-2 All C-1 C-2 All

0.2 1/2 89.44% 81.54% 87.35% 90.00% 38.96% 74.71% 92.78% 23.40% 68.98%
- 3/2 70.56% 71.85% 71.54% 82.22% 68.28% 70.63% 85.56% 57.03% 61.45%

0.6 1/2 70.49% 26.22% 57.78% 69.79% −11.59% 38.46% 71.62% −101.02% 1.04%
- 3/2 28.59% 41.01% 38.29% 39.58% 35.72% 36.21% 50.85% 26.51% 28.69%

Table 4.6: Relative pooling performance of two classes of customers with pdu = {1/2, 3/2} and θ = {1}

θ = 0.5 pmc = 2 pmc = 5 pmc = 10
ρ1 pdu C-1 C-2 All C-1 C-2 All C-1 C-2 All

0.7 1/2 65.55% 11.46% 50.99% 69.60% −56.03% 28.98% 73.76% −133.23% 1.22%
- 3/2 23.32% 38.78% 35.58% 40.72% 37.63% 38.01% 44.50% 25.41% 26.97%

0.9 1/2 65.46% −4.64% 47.63% 67.17% −71.98% 21.78% 67.99% −183.82% −22.83%
- 3/2 15.72% 31.38% 28.04% 24.48% 28.36% 27.92% 27.24% 24.76% 24.92%

θ = 1 C-1 C-2 All C-1 C-2 All C-1 C-2 All

0.7 1/2 62.41% 10.00% 47.12% 66.48% −32.26% 29.42% 70.96% −97.27% 0.24%
- 3/2 31.03% 41.07% 38.84% 40.59% 33.72% 34.61% 46.49% 26.23% 27.94%

0.9 1/2 57.99% 3.38% 41.45% 60.76% −44.51% 18.81% 63.41% −124.20% −21.62%
- 3/2 18.98% 30.97% 28.34% 25.34% 25.87% 25.80% 33.01% 24.75% 25.32%

Table 4.7: Relative pooling performance of two classes of customers with high utilisations ρ1 = {0.7, 0.9}

4.6. Conclusion

We considered the service resource pooling problem while accounting for the impor-

tant feature of customer abandonment, and investigated the cooperative strategy among

independent service providers in both the ’super-server’ pooling setting and the multi-

server pooling setting. We assumed that all individual servers are identical and ’super-

server’ is u (the number of servers in the coalition) times faster than the individual

one. With markovian service distributions, we provided a brief analysis for the expected

queue length (related to the abandonment probability) and the expected number of cus-
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tomers in the system. Numerical experiments showed the similar impacts of the service

variability and the customer abandonment on the cost allocations of the two games.

Under the multi-server assumptions, we numerically tested the resource pooling per-

formance in terms of the expected queue length in a 2-class service system. With system

congestion and heterogeneity of classes, the class with faster service is less qualified than

before. When customers are impatient, this individual quality reduction is weakened.
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Chapter 5

Conclusion and Perspectives

We formulated resource pooling games for three different service models and derived

structure properties under the point of view of cooperation. Using cooperative game

theory, we studied cooperative strategies among a set of independent service providers.

Our approach consists of addressing two consecutive questions: 1) which coalition strat-

egy should be used? and 2) which allocation rule should be selected in order to maintain

the stability of the coalition?

In Chapter 2, we investigated the service pooling game for M/GI/1 service systems.

When service capacities are fixed, we proved that the stable cost allocations always exist

for the grand coalition. When service capacities are optimized to minimize the total

operating costs, we analyzed the properties related to the optimal service rate. We

presented a combined allocation policy in this situation.

In Chapter 3, we extended the pooling problem for service systems while account-

ing for the important feature of customer abandonment. When the service providers

directly combine their queues and service capacities, we proved the existence of stable

allocations. We studied the convexity of the expected queue length in the abandonment

rate and found the special condition of the stability of the Shapley value.

In Chapter 4, we considered the multi-server pooling setting. We investigated nu-

merically the impact of service duration variability and customer abandonment on the

pooling game. We compared between cost-sharing results of the two resource pool-
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ing concepts, with or without the ’super-server’ assumptions. Finally, we analyzed the

pooling of two-class service systems.

The results obtained in this Ph.D. thesis provide avenues for futures research. We

next highlight some of them.

Concerning the work of Chapter 1, it would be interesting to extend the analysis to

the cases where the parameters ch, cw or/and f depends on the service provider. For

instance, consider the case of several hospital departments with a shared ward of beds.

The cost of providing medical services by these departments may vary in a great deal,

depending on the medical equipment as well as the medication. Furthermore, the cost

of waiting for a bed may also be significantly different for patients that visit different

departments. Our difficulty with different ch,i is how to define a reasonable pooling ch,S,

especially for the case of optimized service capacity. It is not appropriate to just use

the average of the individual costs ch,S = ∑S ch,iµi/ ∑S µi. We could also use different

cw to define multiple customer classes in the pooling system. The grand coalition may

not be the most profitable coalition under FCFS discipline, because of the increased

expected waiting time for some service providers. Thus, the coalition formation should

be investigated in the service pooling game.

As for the work of Chapter 2, co-opetition is one interesting extensible strategy. Cus-

tomers of a service provider would not be attracted by other providers which are mem-

bers in the coalition under the cooperative point of view. In a co-opetition setting, it is

reasonable to define the service arrival rate as a function of the service performance, i.e.,

the expected waiting time in the system. The co-opetitive strategies could be deduced

from two consecutive problems: 1) how to define the customer arrival rates in function

of system performances? and 2) the pooling strategy is profitable or not?

Concerning the work of Chapter 3, it would be interesting to develop structural re-

sults for the pooling game in order to develop further generic guidelines and insights.

It is important to further study the pooling strategy with multiple customer classes,

which may model for instance a situation with multiple hospital patient types. The ser-

vice times, which is presented as the treatment times, are different in different patient
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conditions. The characteristics of customer classes could also be described by different

patience times, abandonment costs or waiting costs.

In addition to complex operations and human factors, services are also characterised

by a high impact of advanced technologies. There are many interesting research ques-

tions related to the assessment of the impact of new technologies on customer behavior.

For instance, smart phone apps with delay information, multichannel communication

(email, chat...) with customers. It would be interesting to study the impact of these

features on collaboration strategies.
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Appendix

Appendix of Chapter 2

Appendix A

Further numerical examples for Section 2.5.4

Further cases related to Table 2.6 are considered here. We vary the number of service

companies from 6 to 15 by adding new service providers in the order of the company

numbers. We study the impact of coalition growing.

Figures F.1 and F.2 provide the cost allocations obtained by the two allocation rules.

We observe that the two allocation methods provide similar solutions. The proportional

allocation shares the pooling cost depending on λi, which is appropriate for an individ-

ual provider. Also, the C∗
d reduction depends on λi (Lemma 2.3). Since the Shapley value

is calculated as a function of the contributions of each company, this leads to a similarity

between the two allocations.

The impact of a new participant on this gap is illustrated in Figure F.3. The gap

(absolute difference) between the two allocations for the initial coalition is defined as

AD = ∑6
i=1 |φ

p,λ
i − shopt

i |, for all cases. We find that AD decreases when a new company

joins the coalition for the first three cases. The larger the size of the new company is, the

higher is the reduction of AD. Thus, shopt becomes more and more similar to φp,λ with

scale expansion of the coalition. For the last two cases, we select the initial coalition S6,

which consists of the relatively large or small companies in the set of N = {1, · · · , 15}.
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Figure F.1: Proportional allocation cost and Shapley value for the game (N, Copt) of 6 players with f = 0.2

We find that the joining of a small company increases AD for the coalition of relatively

large companies, and the opposite is also true. However, AD decreases or the increase
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Figure F.2: Proportional allocation cost and Shapley value for the game (N, Copt) of 6 players with f = 1

will reduce when enough companies join the coalition, and AD is relatively small for

the distributed operating costs of S6 (AD/ ∑i∈S6
φ

p,λ
i = 0.5 − 2.5% for all 5 cases).
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Figure F.3: Difference between the two allocations for coalition S6 = {1, 2 . . . 6} with f = 0.2

Note that the observations agree with the analytical comparison as given in Section

2.5.4.
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Appendix of Chapter 3

Appendix B

Numerical illustrations with impatience

For cases with more than 3 players, we consider three typical examples as in [Peng

et al., 2015], with low, high and very different offered loads. From Table F.1, we observe

that the interval Θ ̸= ∅ also exists. By comparing the offered loads ρ0(i) = λi/µi and Θ,

it can be seen that the two bounds of Θ are related to the coefficient of variation (c.v.) of

ρ0.

System data Customer arrival rates Offered load ρ0

µ θlow θup No. 1 2 3 4 5 6 mean c.v.

10 0.56 5769.86 1 2 3 3 4 3.5 4 0.3250 0.2333

- 0.04 32048.84 2 7 9 8 7 8.5 9.5 0.8167 0.1265

- 1.83 1584.23 3 2 7 4 7.5 9 3 0.5416 0.5170

Table F.1: System parameters and offered loads of 6 players games

For a more detailed analysis of Θ, we randomly choose the values of the two variables

λi and µi in (0, 10) (without the constraint of λi < µi) and search the stable interval of

sh f ix with n ∈ {3, ..., 10}. In the 3 players games as shown in Table F.2, it is interesting to

see that the interval width Θ is narrowed with the increase of the coefficient of variation

(c.v.) of ρ0 for the cases (fourth to tenth lines) in which sh f ix is not stable in θ = 0 and

θ → +∞ situations.

We test 1000 random cases of n players games for 10 times, respectively with n ∈

{3, ..., 10}. Again, we randomly choose the values of λi and µi in (0, 10) for each random

event. From the numerical results, we find out some cases with |Θ| = 0, i.e., there is no

θ ∈ R+ with sh f ix staying in the core. As shown in Fig. F.4, the probability of |Θ| = 0 in

1000 cases is negligible for n = 3 (it is 0.8 − 1.4%) and it increases in n. When n = 10,

this probability reaches 5.9 − 8.4%.

101



APPENDIX

Stable range Customer arrival rates Service rates Offered load

θ+ θ− No. 1 2 3 1 2 3 mean c.v.

0 +∞ 1 2.5108 6.1604 4.7329 3.5166 8.3083 5.8526 0.7547 0.0646

0.06 +∞ 2 5.4972 9.1719 2.8584 7.572 7.5373 3.8045 0.8981 0.3078

0.10 +∞ 3 6.7970 6.5510 1.6261 9.3745 5.1336 2.4090 0.8921 0.3739

0.33 13425.73 4 3.8156 7.6552 7.952 1.8687 4.8976 4.4559 1.7965 0.1334

0.16 6339.85 5 9.3399 6.7874 7.5774 7.4313 3.9223 6.5548 1.3811 0.2221

0.07 1806.43 6 6.4631 7.0936 7.5469 2.7603 6.797 6.551 1.5124 0.4761

0.66 560.05 7 2.2381 7.5127 2.551 5.0596 6.9908 8.9090 0.6011 0.6945

1.04 134.64 8 1.6261 1.19 4.9836 9.5974 3.4039 5.8527 0.4568 0.7737

0.01 112.96 9 2.5428 8.1428 2.4352 9.2926 3.4998 1.966 1.2796 0.8027

0.47 46.57 10 9.5929 5.4721 1.3862 1.4929 2.5750 8.4071 2.9052 1.1023

Table F.2: Shapley value’s stable range of θ for the system with 3 players games

Figure F.4: Number of the cases with |Θ| = 0 in 1000 stochastic cases for n = {3, ..., 10}

Appendix C

Proof of Theorem 3.2

This appendix is devoted to proving Theorem 3.2. Let us first give the following two

observations.
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Observation F.1. For ai, bi ∈ R+ (i ∈ {1, 2, 3, 4}), assume that a1 + a4 = a2 + a3 with

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4, and b1 + b4 ≤ b2 + b3 with b1 ≥ max{b2, b3, b4}. Then, a1b1 +

a4b4 ≤ a2b2 + a3b3.

Proof. We define b̃4 = b2 + b3 − b1, such that b1 + b4 ≤ b1 + b̃4 = b2 + b3. Thus, b̃4 ≥ b4.

This implies a1b1 + a4b4 ≤ a1b1 + a4b̃4 ≤ a2b1 + a3b̃4 ≤ a2b2 + a3b3, which finishes the

proof of the observation.

Observation F.2. For ai, bi ∈ R+ (i ∈ {1, 2, 3, 4}), assume that a1 + a4 = a2 + a3 with

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4, and b1 + b4 ≤ b2 + b3 with b1 ≥ max{b2, b3, b4}. If a1b1 ≥

max{a2b2, a3b3, a4b4}, then a4b4 ≤ min{a1b1, a2b2, a3b3} and vice versa.

Proof. We define b̃4 = b2 + b3 − b1 ≥ b4. We assume that a2 − a1 = a, a3 − a2 = △a and

b1 − max{b2, b3} = b, | b2 − b3 |= △b. If b2 ≥ b3, we have

a2b2 = a1b1 + A,

a3b3 = a1b1 + A + B,

a4b4 ≤ a4b̃4 = a1b1 + 2A + B − C,

with A = aa1 −△aa1 − ab, B = △a(a1 − a)−△b(b1 + b)−△a △ b and C = 2ab +△aa +

△bb. Since a1b1 ≥ max{a2b2, a3b3, a4b4}, we obtain A ≤ 0, A + B ≤ 0 and C ≥ 0.

Thus, a4b4 ≤ min{a1b1, a2b2, a3b3}. Similarly, we could prove the same result in the case

of b2 < b3. When a4b4 ≥ max{a1b1, a2b2, a3b3}, we define b̃1 = b2 + b3 − b4 such that

b̃1 ≥ b1. We then obtain a1b1 ≤ min{a2b2, a3b3, a4b4} from the symmetry of ai and bi,

which completes the proof of this observation.

We now proceed to the concavity proof of the queue length.

Proof. of Theorem 2. We define the same Y, X(θ) and X+(θ) as in the proof of Lemma

3.1. The decreasing property in θ ∈ (0,+ inf) is easy to get from the transition rate of Y,

λ/(µ + jθ), which is decreasing in θ. Following similar arguments as for Lemma 3.1, we

can prove this theorem by proving that X is SDCX(sp) in θ if θ ≤ µ. In this proof, we
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focus on the SDCX(sp) of X in θ, using a similar method used for that of X in µ in the

proof of Theorem 1 in [Armony et al., 2009].

We use the definition of sample path convexity as defined in [Shaked and Shanthiku-

mar, 1988]. For initialization, we choose four abandonment rates 0 ≤ θ1 ≤ θ2 ≤ θ3 ≤

θ4 ≤ µ with θ1 + θ4 = θ2 + θ3. All the other system parameters λ and µ are held constant.

If X is SDCX(sp), then Xi =st X(θi), i ∈ {1, 2, 3, 4}, defined on the same probability space

as the uniformized Markov process of Xi defined at time m, satisfies

Condition 1. X1(m) + X4(m) ≥ X2(m) + X3(m), a.s.

Condition 2. X1(m) ≥ max{X2(m), X3(m), X4(m)}, a.s., for all m ∈ N.

For uniformization, we define Kθi with K ∈ N+ as the upper limit of the abandon-

ment rate, which means that there are at maximum K customers that has the intention

to abandon the queue at a given time. The maximum transition rate of all Xi is upper

bounded by υ = λ + µ + Kθ4. Thus, we define XK
i as the uniformized version of Xi.

Now, we will show that for any K, Conditions 1 and 2 hold for any m ∈ N, then XK is

SDCX(sp). To simplify the presentation, we write XK
i as Xi in the following arguments.

The proof of the two conditions is done by induction on the discrete time m. Firstly,

we suppose that the equality of Condition 1, denoted by 1̃, and Condition 2 hold at time

m. We next build the transition probability to satisfy Conditions 1 and 2 at time m + 1.

With a probability of λ/υ, new customers arrive into all the four systems. The similar

transition definition is used for the service completion, services are completed simulta-

neously in all systems with a probability of µ/υ. Consider a special definition in case of

X4 = 0, which will be discussed later on.

For the abandonment process, there is a probability of min{(Xi − 1)+, K}θi/υ that one

customer abandons from system i, i ∈ {1, 2, 3, 4}. Define X(K)+
i = min{(Xi − 1)+, K}.

From the concavity of f = min{x, K}, we have X(K)+
1 + X(K)+

4 ≤ X(K)+
2 + X(K)+

3 for

the not empty queues (Xi ̸= 0 for all systems). To further specify the abandonment

transition probability for each system, we define four cases depending on the order of
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X(K)+
i θi denoted by ϑi. From Observation F.1, Conditions 1̃ and 2, it follows

ϑ1 + ϑ4 ≤ ϑ2 + ϑ3, (F.1)

at time m.

Consider the existence of empty queues (Xi = 0 for some systems). According to

Conditions 1̃ and 2, there are four possible situations: no customer in Systems {1, 2, 3, 4},

{2, 4}, {3, 4} or 4. When Systems {1, 2, 3, 4}, {2, 4} or {3, 4} are empty, Inequality (F.1)

still holds. The only exception happens when System 4 is the only empty system. In

this case, we have ϑ1 + µ ≤ (ϑ2 + µ) + (ϑ3 + µ) with θ4 ≤ µ. Here, we deal with the

service completion and the customer abandonment process together and choose ϑi equal

to ϑi + µ. Thus, Inequality (F.1) holds with ϑ4 = ϑ(4) = 0.

From Observation F.2, the four following cases meet Inequality (F.1). We define ϑ(i)

for i ∈ {1, 2, 3, 4}, such that 0 ≤ ϑ(4) ≤ ϑ(3) ≤ ϑ(2) ≤ ϑ(1). Let a random variable

pa ∼ Uni f orm(0, 1).

Case 1. If ϑ(1) + ϑ(4) ≤ ϑ(2) + ϑ(3). Let ϑ̃ = max{Kθ4, ϑ(2) + ϑ(3) − ϑ(4)}.

• I) If pa ≤ ϑ(4)/ϑ̃, there are customers abandoning from all systems;

• II) If ϑ(4)/ϑ̃ ≤ pa ≤ ϑ(3)/ϑ̃, there are customers abandoning from Systems {1, 3};

• III) If ϑ(3)/ϑ̃ ≤ pa ≤ ϑ(1)/ϑ̃, there are customers abandoning from Systems {1, 2};

• IV) If ϑ(1)/ϑ̃ ≤ pa ≤ (ϑ(2) + ϑ(3) − ϑ(4))/ϑ̃, there is one customer abandoning from

System 2.

Case 2. If ϑ(2) + ϑ(3) ≤ ϑ(1) + ϑ(4). Let ϑ̃ = max{Kθ4, ϑ(1)}.

• I) If pa ≤ ϑ(4)/ϑ̃, there are customers abandoning from all systems;

• II) If ϑ(4)/ϑ̃ ≤ pa ≤ ϑ(3)/ϑ̃, there are customers abandoning from Systems {1, 3};

• III) If ϑ(3)/ϑ̃ ≤ pa ≤ (ϑ(2) + ϑ(3) − ϑ(4))/ϑ̃, there are customers abandoning from

System {1, 2};

• IV) If (ϑ(2) + ϑ(3) − ϑ(4))/ϑ̃ ≤ pa ≤ ϑ(1)/ϑ̃, there is one customer abandoning from

System 1.

Case 3. If ϑ(2) + ϑ(4) ≤ ϑ(1) + ϑ(3). Let ϑ̃ = max{Kθ4, ϑ(1)}.
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• I) If pa ≤ ϑ(4)/ϑ̃, there are customers abandoning from all systems;

• II) If ϑ(4)/ϑ̃ ≤ pa ≤ ϑ(3)/ϑ̃, there are customers abandoning from Systems {1, 2, 3};

• III) If ϑ(3)/ϑ̃ ≤ pa ≤ ϑ(2)/ϑ̃, there are customers abandoning from Systems {1, 2};

• IV) If ϑ(2)/ϑ̃ ≤ pa ≤ ϑ(1)/ϑ̃, there is one customer abandoning from System 1;

Case 4. If ϑ(3) + ϑ(4) ≤ ϑ(1) + ϑ(2). Let ϑ̃ = max{Kθ4, ϑ(1) + ϑ(2) − ϑ(3)}.

• I) If pa ≤ ϑ(4)/ϑ̃, there are customers abandoning from all systems;

• II) If ϑ(4)/ϑ̃ ≤ pa ≤ ϑ(3)/ϑ̃, there are customers abandoning from Systems {1, 2, 3};

• III) If ϑ(3)/ϑ̃ ≤ pa ≤ ϑ(1)/ϑ̃, there is one customer abandoning from System 1;

• IV) If ϑ(1)/ϑ̃ ≤ pa ≤ (ϑ(1) + ϑ(2) − ϑ(3))/ϑ̃, there is one customer abandoning from

System 2;

We next show that if Conditions 1̃ and 2 hold at time m, then Conditions 1 and 2 hold

at time m + 1.

For the arrival process, it is obvious that Conditions 1 and 2 hold at m + 1. From

Condition 2, service completions from the left hand side of Condition 1 are not higher

than those from the other hand side, and X1 stays as the longest queue. This is because

service completions 1) happen in both systems if X2 = X1 or X3 = X1; 2) happen

in the three systems or all systems if X2 = X3 = X1; 3) happen in all systems if all

queue lengths are identical. For the abandonment process, it is clear that the number of

abandoned customers in Systems {1, 4} is not higher than that in Systems {2, 3} after

one step transition in the case of X(K)+
i > 0, i.e., Inequality (F.1) holds for all the four

cases. Now, we discuss special situations in the customer abandonment process.

• I) All the four queues X(K)+
i are empty, there is no abandonment in all systems;

• II) If two queues ({2, 4} or {3, 4}) are empty, we have ϑ(2) ≤ ϑ(1) corresponding to

Case 2. System 1 has an abandonment only if System 2 does;

• III) If X+
4 = 0, System 1 has an abandonment when at least one customer abandons

in the System 2 or 3 (in Case 1, 3 or 4);

Thus, Condition 1 holds in the abandonment process at time m + 1. For Condition 2, we

have
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• I) If X1(m) > max{X2(m), X3(m), X4(m)}, it is obvious that Condition 2 holds at

time m + 1;

• II) If ϑ1 = ϑ(4), a customer abandons from System 1 when customers have aban-

doned from all the other 3 systems;

• III) If ϑ1 = ϑ(3) with X1 = X2 > X4 (or X1 = X3 > X4) and X3 = X4 (or X2 = X4),

we have ϑ2 ≥ ϑ1 and ϑ4 ≥ ϑ3. Then, ϑ4 ̸= ϑ(4). The corresponding case is Case 2.

and we have ϑ2 = ϑ(1). Customers abandon from Systems {1, 2} together;

• IV) If ϑ1 = ϑ(2) with X1 = X2 > X4 (or X1 = X3 > X4), we have ϑ2 = ϑ(1) ≥ ϑ1 . In

the corresponding cases (Cases 2 and 3), a customer abandons from System 1 only

if a customer has abandoned from System 2;

• V) If X1(m) = X2(m) = X3(m) = X4(m), we have 0 ≤ ϑ1 ≤ ϑ2 ≤ ϑ3 ≤ ϑ4, which

coincides with Case 1 and X1 = ϑ(4).

As summary in the above paragraphs, it is shown that if Conditions 1̃ and 2 hold

at time m, Conditions 1 and 2 hold at time m + 1. If strict inequality of Condition 1

holds, we define X̃4(m) = max{0, X2(m) + X3(m) − X1(m)} ≤ X4(m) and X̃1(m) =

min{X2(m) + X3(m), X1(m)} ≤ X1(m). It means that if X2 + X3 − X1 ≥ 0, we decrease

X̃4 = X2 + X3 − X1 ≥ 0 and keep X̃1 = X1. We have X̃1 = X2 + X3 and X̃4 = 0 in the

opposite case. We have X̃1(m)+ X̃4(m) = X2(m)+X3(m). Then, Conditions 1 and 2 hold

for {X̃1, X2, X3, X̃4} at time m + 1. For each θi, we denote the complementary cumulative

distribution function (ccdf) by Fθi(y; x) = Pθi{X(m + 1) > y|X(m) = x} and its inverse

Fθi(v; x)−1 = in f {y : Fθi(y; x) ≤ v}, v ∈ [0, 1]. Define Xi(m + 1) = F−1
θi

(Fθi(X̃i(m +

1); X̃i(m)); Xi(m)) for i = {1, 4}. From the transition probabilities determined in the

previous paragraphs, it follows that Fθi(y; x) is non-decreasing in x. Thus, (Xi(m +

1) − Xi(m)) ≥ (X̃i(m + 1) − X̃i(m)) for i = {1, 4} and Conditions 1 and 2 hold for

{X1, X2, X3, X4} at time m + 1 with the corresponding transition probabilities. The proof

of Conditions 1 and 2 for XK is now completed. Therefore, E(XK) is decreasing and

convex in θ. Since XK(θ)
st−−−−→

K−→∞
X(θ) for each θ ∈ [0, µ], E(X) is decreasing and convex

in θ from Proposition 2.11 in [Shaked and Shanthikumar, 1988]. The proof of the theorem

is completed.
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Appendix D Résumé étendu

1. Introduction & motivation

Le secteur des services est devenu le secteur le plus important en nombre d’emplois

occupés dans l’économie mondiale (figure 1.1, page 6), en particulier dans les pays

développés, les services représentent jusqu’à 70% de la production nationale (PIB) et

sont devenus leur principal moteur de croissance économique. Par exemples, quatre sur

cinque emplois aux Etats-Unis sont fournis par le secteur de services ; le secteur tertiaire

français occupait 76,8% de la population active en 2015.

Beaucoup de nos activités quotidiennes dépendent des services et des fournisseurs

de services, de l’e-mail que nous vérifions le matin au service de transport public que

nous prenons pour aller à notre lieu de travail, du restaurant dans lequel nous déjeunons

à midi au colis que nous recevons pendant la journée. Les services sont partout dans

notre vie, y compris dans les domaines de la finance (banques, stocks), la santé (médecin

personnel, hôpital), la communication (courrier électronique, réseau 4G), les services

publics (électricité, police), etc. [Daskin, 2010]

Dans le contexte de la mondialisation économique, la concurrence et la coopération

dans les industries de services sont devenues de plus en plus communes: la concur-

rence des prix entre les chaînes de restauration rapide, le regroupement des entreprises

de télécommunication, les services collaboratifs d’après-vente et de maintenance dans

l’industrie électronique, pour n’en citer que quelques-uns. Dans cette thèse, nous étu-

dions des stratégies collaboratives dans les systèmes de service homogènes. Nous nous

concentrons en particulier sur les stratégies de pooling des ressources. Notre approche

consiste à utiliser la modélisation des systèmes de service par les files d’attents et la

théorie des jeux pour l’analyse des interactions entre les fournisseurs de services. Dans

ce qui suit, nous discutons brièvement les stratégies de collaboration et de pooling des

ressources.
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Stratégies collaboratives dans les services

Afin d’améliorer les performances du système ou de réduire les dépenses, il existe

plusieurs méthodes coopératives basiques: la coopération entre les files d’attente, par

exemple, la dispatching d’arrivée simultanées entre les agences ou le réacheminement

entre des serveurs différents [Katta and Sethuraman, 2006, Kayi and Ramaekers, 2010];

le pooling des services, p.ex., le pooling des capacités de service ou la répartition en

personnel [Guo et al., 2013]; le cross-training [Tekin et al., 2014]; la collaboration avec

des fournisseurs tiers, par exemple l’externalisation de services [Aksin et al., 2008], etc.

Il est parfois utile de combiner ces méthodes pour aboutir à une structure collaborative

plus rentable [Anily and Haviv, 2014].

Les méthodes de coopération pourrait être classées sous trois formes typiques (fig-

ure 1.2, page 8): la forme verticale, les collaborations entre les différents éléments du

système, par exemple, les forfaits de téléphone portable signé par les clients avec les

opérateurs télécoms, les cartes annuelles d’accès au club de sport; la forme horizon-

tale, la collaboration entre les serveurs homogènes, par ex., les services après-vente de

produits électroniques de différentes marques; et les externalisations, la collaboration

avec une partie tiers aux systèmes de service, par exemple, le service client sous-traité à

l’étranger.

Parmi la majorité des gains réalisée par les activités collaboratives, la réduction des

coûts est le facteur le plus important pour les fournisseurs de services. Le coût de la ca-

pacité de service et le coût d’attente des clients dans la file d’attente ou le système sont

largement utilisés dans la littérature [Anily and Haviv, 2010, Özen et al., 2011, Karsten

et al., 2015b, Yu et al., 2015].

Pooling des ressources

Depuis la première étude de [Stidham, 1970], le pooling des systèmes de file d’attente

a été largement étudié dans la littérature pour la conception des systèmes de service.
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Il est bien connu que le pooling de la capacité de service amène naturellement à des é-

conomies d’échelle dans les études de gestion opérationnelle [Smith and Whitt, 1981, Bell

and Williams, 2005]. Cette amélioration de l’efficacité opérationnelle est générée par la

disparition des ressources de service libres dans le système quand il est en présence de

congestion dans les files d’attente. Ceci est valide à la fois dans le cas de départements

d’une même entité économique, comme par exemple, le pooling des réservations dans

un restaurant [Thompson and Kwortnik, 2008], ou dans le cas de plusieurs entités in-

dépendantes [González and Herrero, 2004, Garcia-Sanz et al., 2008, Anily and Haviv,

2010, Kayi and Ramaekers, 2010, Tekin et al., 2014, Anily and Haviv, 2014].

Les applications en pratique pour le pooling des services parmi les fournisseurs de

services homogènes sont nombreuses. Par exemple, les différents départements d’un

hôpital peuvent partager une salle d’opération commune afin de réduire les dépens-

es. Ils pourraient également partager leur capacité en termes de lits dans les chambres

d’hôpital, ce qui permettrait de soulager la congestion. Un autre exemple est dans le

contexte de service après-vente pour certaines catégories de produits électroniques. Ces

produits sont susceptibles d’avoir un faible taux de demande après-vente pour chaque

détaillant individuellement. En conséquence, les détaillants pourraient fournir un ser-

vice après-vente conjoint pour réduire les coûts de démarrage du service et améliorer

la qualité du service. Pour les services d’aviation, le service d’enregistrement en com-

mun pour différentes compagnies aériennes est un exemple supplémentaire pour les

applications du pooling d’ensemble services.

Parmi les perspectives de recherche, on peut définir les stratégies de pooling des

ressources plus précisé. Selon les participants, on peut distinguer les cas des différentes

branches d’une même entité économique [Alptekinoğlu et al., 2013] ou de plusieurs en-

tités indépendantes [Anily and Haviv, 2014]; Selon les méthodes de pooling, on peut dis-

tinguer les cas avec pooling des ressources partiel [Chao et al., 2003] ou complète [Anily

and Haviv, 2010]; Selon la définition de la valeur des systèmes issue de la théorie des

jeux, on peut distinguer les cas avec la valeur transférable ou la valeur non-transférable,

par exemples, le coût, est une valeur transférable [Karsten et al., 2015b], et la réputation
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de fournisseur est non-transférable [Toivonen, 2014]. Dans cette thèse, nous travaillons

sur les stratégies du pooling des ressources complètes entre plusieurs entités indépen-

dantes, et la valeur des systèmes est mesurée par les coûts globaux.

Il existe des similitudes entre le management opérationnelle de service et de biens

manufacturés, tous les deux sont concernés par l’efficience, l’efficacité, les problèmes de

qualité et motivés par la réduction des coûts. Contrairement à l’existence de travaux de

recherche dans l’industrie manufacturière, les recherches relatifs à l’industrie de service

ne répendant pas aux exigences de son développement économique énorme.

Les services sont principalement caractérisés par des opérations complexes et un im-

pact élevé des facteurs humains. Dans cette thèse, nous tenons compte de ces deux

aspects par l’analyse de l’impact de la variabilité de la durée du service et de l’abandon

du client, respectivement. Nous étudions le problème dans lequel les fournisseurs de

service indépendants pourraient être amenés à coopérer entre eux. Nous considérons la

stratégie de pooling des ressources dans différents systèmes de services et fournissons

des stratégies de pooling correspondantes en utilisant la théorie des jeux coopératifs.

2. Objectif & contributions

L’objectif de cette thèse est d’étudier l’impact des caractéristiques de la variabilité des

services et de l’abandon des clients sur les stratégies de collaboration. Motivés par la

réduction des coûts, nous traitons le problème de pooling des ressources entre les four-

nisseurs de services indépendants. Nous utilisons la théorie des files d’attente pour la

modélisation de ces caractéristiques. Plus concrètement, nous posons les deux ques-

tions suivantes: 1) comment former les coalitions? Et 2) quelle règle d’allocation doit

être choisie pour garantir la stabilité de la coalition? Nous utilisons la théorie des jeux

coopératifs, qui fournit des concepts intéressants pour analyser les structures de coali-

tions profitables et résoudre le problème de partage des coûts entre les participants.

Les principales contributions de cette thèse peuvent être résumées comme suit.

Premièrement, nous étudions le problème du partage des coûts entre les fournisseurs
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de services indépendants dans le cadre d’un système de pooling des capacités de service

avec des temps de service distribués suivant une loi générale. L’amélioration effective est

obtenue en réduisant les ressources inutilisées en cas de congestion. Nous modélisons

à la fois le fournisseur de services et la coalition coopérative par des files d’attente

à un seul serveur avec des délais de service suivant une loi générale. Pour les deux

situations de pooling avec une capacité de service fixe et de pooling avec une capacité

de service optimisée, nous définissons les jeux coopératifs correspondants et analysons

les allocations du cœur du jeu. Pour le cas avec capacité fixe, nous prouvons que le

cœur est non vide. La fonction caractéristique n’est ni concave ni monotone dans le

jeu mentionné. Cependant, nous prouvons que le jeu de pooling de service avec la

capacité de service optimisée est concave. Pour ce jeu concave, nous trouvons deux

règles d’allocation stables et illustrons une stratégie combinée d’allocation des coûts.

Deuxièmement, nous considérons un groupe de fournisseurs de service homogènes

et indépendants, où un client quitte le système sans service chaque fois que son attente

dans la file d’attente dépasse son seuil de temps de patience. L’avantage de la collabo-

ration dans ces systèmes avec l’abandon des clients, n’est pas seulement le partage de

ressources instantanées disponibles, mais aussi la réduction des clients qui abandonnen-

t. Selon les hypothèses markoviennes sur les temps d’arrivée, de service et de patience,

nous définissons un jeu coopératif avec utilité transférable et une capacité de service fixe

pour chaque individu et chaque coalition. Nous prouvons que la grande coalition est la

coalition la plus profitable et que le jeu a un cœur non vide. Nous examinons ensuite

l’impact de l’abandon sur la stabilité de la valeur de Shapley. De plus, nous démontrons

la concavité de la longueur de la file d’attente en fonction du taux d’abandon et donnons

une condition selon laquelle la valeur Shapley est située dans le cœur. Nous étudions

également le problème de partage des coûts du jeu coopératif relatif avec la capacité de

service optimisée et prouvons que la règle d’allocation proportionnelle selon les taux

d’arrivée des clients donne une allocation stable dynamique à tous les sous-jeux relatifs.

Dans les études précédentes, nous utilisons les hypothèses de ≪ super-serveur ≫.

La raison principale de cette hypothèse est que traiter les systèmes des files d’attente
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multiserveurs avec les temps de service distribué selon une loi générale et avec abandon

des clients est très complexe. Pour évaluer la qualité de ces hypothèses, nous étudions

numériquement le problème des stratégies de pooling des services dans le cas multi-

serveurs. Bien qu’il soit intuitif de s’attendre à des améliorations d’efficacité dans les

systèmes de pooling multiserveurs, il n’est pas évident de conclure que tous les mem-

bres bénéficieront du pooling comme c’est le cas pour le ≪ super-serveur ≫. Nous

comparons les deux cadres de pooling et nous évaluons numériquement les effets de la

variabilité des services et de l’abandon des clients dans les deux jeux correspondants.
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