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Résumé en Français

Il est devenu courant de faire confiance à des logiciels dans nos sociétés. De nombreuses
personnes possèdent au moins un appareil — souvent un téléphone portable — contenant
des informations privées, comme leurs contacts ou leurs courriels. Ces appareils sont sou-
vent équipées de microphones et de divers moyens de connaître leur position. De manière
similaire, de nombreuses personnes donnent des informations privées à des sites web ; la
popularité actuelle des réseaux sociaux en est l’exemple le plus marquant. Nous faisons
confiance aux logiciels sous-jacents. En particulier, nous considérons que ces logiciels
ne nous espionnent pas, ou qu’ils ne donnent pas d’information privée à n’importe qui.
Pourtant, la question se pose : ⌜les programmes présents dans les téléphones ou les pages
web modernes⌝ sont très complexes. Ils sont souvent composés de plusieurs composants
provenant de différentes sources, toutes n’étant pas de confiance.

Ces programmes sont souvent écrits dans un language de programmation très dynamique :
JavaScript. Le but initial de JavaScript était de rendre les pages web interactives. Il a
été conçu pour aider le prototypage logiciel (la création rapide de prototypes logiciels).
La sécurité n’était alors pas une préoccupation importante des concepteurs du langage
de programmation. Entre-temps, JavaScript a gagné en popularité tant et si bien qu’on
l’utilise maintenant pour concevoir des logiciels manipulant des données sensibles.

Il est important de pouvoir répondre à cet usage en proposant diverses manières de pou-
voir évaluer la confiance de logiciels. La méthode la plus utilisée est le test : le logiciel,
ainsi que tous ses composants, sont exécutés sur de nombreux cas particuliers ; leur com-
portement est alors comparé avec le comportement attendu. Tester un programme per-
met de repérer des bogues (des comportements inattendus), ou des failles de sécurité,
mais ne permet pas de prouver leur absence. Certains bogues ont été découverts bien
après que le logiciel en faute soit largement utilisée. Un exemple impressionnant est celui
d’Heartbleed [Dur+14] : bien que le logiciel OpenSSL soit très utilisé et que son code
source soit disponible à tous, cette faille de sécurité a été découverte plus de deux ans après
son introduction. Ceci est d’autant plus impressionnant qu’OpenSSL est utilisé dans des
contextes où la sécurité est très importante et est donc très testé. Le test a donc de grandes
limitations dans sa capacité à repérer des bogues et des failles de sécurité.
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Lesméthodes formelles visent à fournir une preuvemathématique du bon fonctionnement
d’un programme. Ceci a l’avantage de considérer tous les cas : contrairement au test, il
n’est pas possible de se retrouver lors d’une exécution dans une situation non prévue par
la preuve. En contrepartie, la construction d’une preuve de programme est très souvent
complexe, longue et fastidieuse — en particulier pour des langages tels que JavaScript.
Pour pouvoir faire confiance à de telles preuves, nous utilisons des assistants de preuves
tels que Coq [C+84]. Ces outils ont été conçu avec soin, de telle sorte que l’on puisse faire
confiance aux preuves qu’ils acceptent. Ils peuvent être aussi très « sceptiques », rendant
la construction de preuve assez complexe (voir un exemple en partie 5.3). Ces outils sont
la plupart du temps basés sur un langage de tactiques permettant d’automatiser une partie
de la construction des preuves : ces tactiques construisent des termes de preuves vérifiés
après construction par l’assistant de preuve.

Pour pouvoir ne serait-ce qu’énoncer dans un assistant de preuve qu’⌜un programme s’exé-
cute toujours correctement quels que soient ses entrées et son environment d’exécution⌝
nous avons besoin de définir la sémantique du programme, ou plus généralement la sé-
mantique de son langage de programmation. Il existe plusieurs façons de spécifier la sé-
mantique d’un langage de programmation. Nous utilisons ici une approche dite en grand
pas : nous définissons un prédicat ⇓ décrivant l’exécution d’un programme. Le triplet sé-
mantique σ, p ⇓ r exprime que⌜le programme p s’exécutant dans le context σ⌝peut donner
le résultat r. Ce prédicat est défini par induction à partir de règles d’inférences. Le théo-
rème de correction du programme p est de la forme suivante : pour tout triplet séman-
tique σ, p ⇓ r le résultat r est un résultat attendu du programme p. Une étape importante
de cette thèse a consisté à exprimer la sémantique de JavaScript sous cette forme.

Le projet JSCert vise à précisément spécifier JavaScript dans l’assistant de preuve Coq.
Le projet a impliqué 8 personnes pendant un an. La sémantique complète de JSCert
contient plus de 900 règles d’inférences. Devant une telle complexité, de nombreuxmoyens
ont été mis en œuvre afin de pouvoir faire confiance en la sémantique de JSCert. D’une
part, JSCert s’appuie sur la spécification officielle de JavaScript: ECMAScript. Les struc-
tures de données manipulées par les deux sémantiques sont identiques, et JSCert utilise
les mêmes étapes de calcul qu’ECMAScript. Toute ligne de la spécification correspond
à une règle d’inférence de JSCert. Ceci donne un avantage intéressant à JSCert: il est
possible de facilement le mettre à jour pour s’adapter à des changements d’ECMAScript
en modifiant de manière similaire JSCert. Plus de détail est donné sur le rapprochement
entre JSCert et ECMAScript en partie 2.7.2. D’autre part, JSCert est muni d’un inter-
préteur, JSRef. Ce dernier est certifié correct vis-à-vis de JSCert: si l’interpréteur renvoie
un résultat, ce dernier est en accord avec la sémantique de JSCert. Nous avons pu exé-
cuter JSRef sur des suites de tests de JavaScript, et vérifier la conformité des résultats.
Cette double vérification de JSCert avec JavaScript, tant au niveau de sa spécification
officielle ECMAScript, que des suites de tests, en fait la sémantique formelle la plus fiable
de JavaScript à l’heure actuelle. Cette sémantique permet la certification de divers outils
formels basés sur JavaScript, en particulier la preuve de programmes JavaScript.
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La preuve de programme est longue et fastidieuse, surtout pour des sémantiques de cette
taille. Plutôt que de prouver des programmes à la main, nous avons choisi de construire un
analyseur que nous prouverons correct. Cette approche permet l’analyse systématique de
programme, quelle que soit leur taille. Pour cela, nous nous appuyons sur le formalisme
de l’interprétation abstraite [CC77a]. Ce formalisme propose d’exécuter des programmes
en remplaçant les valeurs concrètes précises par des valeurs abstraites moins précises. Par
exemple, ou peut abstraire les valeurs concrètes 18 et 42 par la valeur abstraite +, et la va-
leur −1 par −: cette abstraction approxime chaque valeur concrète par son signe. Le choix
du domaine abstrait détermine les propriétés que l’on souhaite détecter dans le compor-
tement d’un programme. Abstraire les valeurs par leur signe est rarement suffisant ; les
octogones [Min06b] fournissent un exemple plus complexe de domaine abstrait.

L’interprétation abstraite se divise en deux étapes. D’abord, une sémantique abstraite est
définie et prouvée correcte. Cette sémantique abstraite est la plupart du temps non déter-
ministe — elle autorise par exemple de perdre en précision le long de la dérivation. Ensuite,
un analyseur est défini et prouvé correct vis à vis de cette sémantique abstraite. Cet ana-
lyseur utilise le non-déterminisme de la sémantique abstraite pour mettre en œuvre des
heuristiques. Il pourra par exemple choisir de simplifier une valeur abstraite v♯1 au cours du
calcul par une valeur abstraite v♯2 moins précise. Ce choix peut être pertinent par exemple
lorsque la valeur abstraite v♯1 prend trop de place en mémoire. Ces deux étapes (construc-
tion de la sémantique abstraite, puis d’un analyseur) sont souvent confondues pour des
raisons pratiques. Par exemple, il arrive que la sémantique abstraite utilise des heuris-
tiques — typiquement des techniques d’accélération de convergence par opérateur d’élar-
gissement (dits dewidening). Une telle sémantique abstraite est déterministe, et n’est donc
compatible qu’avec l’analyseur pour lequel elle a été définie. Dans le cas de JavaScript,
la sémantique considérée est immense : plus de 900 règles de réduction, sans compter la
bibliothèque par défaut. À titre de comparaison, le langage de programmation analysé par
l’analyseur certifié Verasco [Jou+15], le C♯minor, contient moins de 50 règles de réduc-
tion. Dans le cas de JavaScript, il n’est donc pas réaliste de fusionner les deux étapes que
sont la construction et la preuve d’une sémantique abstraite et celles d’un analyseur.

Une contribution importante de cette thèse a consisté à formaliser en Coq le processus de
construction d’une sémantique abstraite — qui était jusqu’alors appliqué au cas par cas.
Nous avons proposé un procédé permettant d’abstraire de manière systématique chaque
règle de réduction, sans avoir à comprendre comment les règles concrètes interagissent
entre elles. Nous nous basons sur les travaux de Schmidt (voir partie 3.3). Ce procédé
consiste à abstraire indépendamment chaque règle concrète pour former une règle abs-
traite — ce qui requérait de comprendre comment la sémantique fonctionne. En particu-
lier, les règles concrètes ne sont pas fusionnées pour prendre en compte leurs interactions.
Ce dernier point contribue grandement à systématiser l’abstraction d’une sémantique.
Chaque règle abstraite ainsi construite partage avec sa règle concrète les même carac-
téristiques syntaxique : sa structure, les termes auxquels elle fait référence, ainsi que son
nom de règle. Seuls sont modifiés les fonctions de transfert et ses conditions d’application.
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Nous avons précisément défini chacun des éléments constitutifs d’une règle de dérivation
(sa structure, ses fonctions de transfert, etc.). Nous nous sommes fortement appuyés sur les
restrictions structurelles de JSCert dites en sémantique à bond (ou en pretty-big-step).

À partir de ces règles abstraites, nous pouvons construire de manière générique une sé-
mantique abstraite. La manière de construire cette sémantique abstraite diffère en trois
points de la sémantique concrète. D’abord, au lieu de n’appliquer qu’une seule règle à
chaque étape de calcul, nous devons considérer toutes les règles qui s’appliquent : les dé-
rivations se divisent pour explorer chaque cas indépendamment. Ensuite, les dérivations
abstraites peuvent être infinies, ce qui donne une sémantique aux boucles par point fixe
(voir partie 4.4.2.2) — cette technique est fréquemment utilisée pour l’analyse de boucle en
interprétation abstraite. Enfin, des règles intermédiaires, dites non-structurelles, sont appli-
quées à chaque étape. Ces règles permettent d’appliquer divers types de raisonnement qui
ne rentrent pas tel quel dans notre formalisme. Nous avons prouvé en Coq qu’étant donné
un certain nombre de contraintes locales sur les règles de réduction abstraites, ainsi que
sur les règles non structurelles, la sémantique abstraite (globale) est correcte : pour tout
triplets sémantiques concret σ, p ⇓ r et abstrait σ♯, p ⇓♯ r♯ tels que les entrées ⌜concrète σ
et abstraite σ♯⌝ correspondent, les résultats r et r♯ correspondent aussi.

Nous avons construit un domaine abstrait pour un langage similaire à JavaScript dans
ce formalisme. Ce domaine est basé sur la logique de séparation [IO01 ; ORY01 ; Rey02 ;
Rey08]. Cette logique est connue pour ne pas bien interagir avec l’interprétation abstraite :
nous l’avons choisi pour évaluer la généralité de notre formalisme. La règle de contexte
— une règle centrale en logique de séparation — s’inscrit naturellement dans le cadre des
règles non-structurelles. Cette règle permet de focaliser une dérivation sur les ressources
manipulées par le programme analysé ; typiquement en ignorant des ressources inutiles.
Cette règle permet entre autres de rendre l’analyse de programme modulaire. Nous avons
pu identifier très précisément pourquoi la logique de séparation et l’interprétation abs-
traite interagissent de manière inattendue : l’interprétation abstraite permet de renommer
les identifiants utilisés dans les formules logiques tant que cela ne change pas leur concré-
tisation. Ceci entre en conflit avec la règle de contexte, qui nécessite que les identifiants
soient cohérents tout au long d’une dérivation. Nous avons introduit la notion de mem-
brane pour propager ces renomages le long des dérivations. La formalisation en Coq de
ce domaine est encore en cours (voir partie 6.4.5), mais il offre déjà une solution promet-
teuse pour construire dans notre formalisme un domain mêlant interprétation abstraite
et logique de séparation.

Les contributions de cette thèse sont donc triples. Le projet JSCert a permi de construire
une sémantique formelle de confiance pour le langage JavaScript. Nous avons fourni un
formalisme générique pour construire des sémantiques abstraites à partir de sémantiques
concrètes telle que JSCert. Enfin, nous avons construit un domaine non trivial pour ce for-
malisme. Il est maintenant possible d’instancier ce domaine à JSCert, ce qui produira une
sémantique abstraite certifiée de JavaScript, permettant la certification d’analyseurs.
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Introduction

Le but de cette thèse est de munir son auteur du titre de Docteur.

Michèle Audin [Aud97]

Software is everywhere, from the servers influencing our economy to the microcontrolers
of our vehicles. Some devices, such as smartphones, follow most of our moves and have
access to private information such as emails or meetings. Software can be unnoticed, but
it raises an important security issue. Security flaws are regularly discovered in software,
Heartbleed [Dur+14] being one of the most impressive example. In this dissertation we
are interested in particular to the JavaScript language. This language is used in a variety
of places, fromwebpages to smartphones applications, and is a good target for analyses.

⌜Guaranteeing some security properties⌝ is a difficult task. Formal methods offer an elegant
solution to this problem: they have proven their abilities to find various types of bugs
without having to run any JavaScript programs [Pol+11a; MT09a; MMT10]. Unfortu-
nately, JavaScript is a particularly complex programming language, and ⌜building formal
tools for JavaScript⌝ requires a significant effort. To trust the results of an analyser, it
needs to have passed some form of certification. But JavaScript certification is hindered
by the numerous corner cases of JavaScript’s semantics. ⌜Building analysers for Java-
Script⌝ is already a difficult task, building trustable ones is even more difficult.

This thesis aims at reducing the gap between formal methods and JavaScript. In par-
ticular, it aims at building techniques to create and prove analysers for the JavaScript
programming language. This thesis has led—with the help of the other members of the
JSCert project—to the construction of the JSCert formal specification of JavaScript. Al-
though recent, the applications of this formalisation are already very promising.

This dissertation is divided into three parts: the JSCert formalisation of JavaScript, the
presentation of techniques to build certified JavaScript analysers from this formalisation,
and the abstraction of JavaScript memory model.

JavaScript formalisation

Abstract domains
Abstract framework and analysers
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Chapter 1 presents the JavaScript language; including Sections 1.2.4 and 1.2.5 which
present the parts hindering analyses.This chapter also presents JavaScriptmemorymodel
in Section 1.2.3, which will be useful to understand Chapters 2 and 6.The first contribution
appears in Chapter 2, which focusses on the JSCert specification of JavaScript. This spe-
cification has been defined to be trusted, and thus to serve as a basis for the construction
of trusted analysers, such as the ones built as part of this thesis. The JSCert specification
has been built as a joint work with the other members of the JSCert project.

The large size of JSCert raises the question of how practical are formal methods on such a
large semantics. Chapter 3 introduces the framework of abstract interpretation [CC77a] in
the context of the Coq proof assistant [C+84]. Chapter 3 does not present any new contri-
bution, but presents important notions to understand the following chapters. Chapters 4
and 5 present how to build certified analysers for large semantics, such as JSCert. The
presented method is a novel way to build analysers sound by construction: their proof
of soundness have been designed to be scalable and adaptable to the changes of JSCert.
Chapter 4 exploits this basic idea and presents its Coq formalisation. Chapter 5 extends
this formalisation to structural rules, a key point to built practical analysers.

The analysers of Chapters 4 and 5 are parametrised by an abstraction of the memory
model (and by abstract domains in general). Chapter 6 presents an instantiation of this
framework to the memory model of JavaScript. This chapter uses separation logic [IO01;
ORY01; Rey02; Rey08] as a basic starting point, as it has already proved to be suitable for
JavaScript’s memory model [GMS12]. Separation logic and abstract interpretation have
slightly different hypotheses on the way domains should be defined, and it is interesting
to see how they interact in this framework.⌜Chapters 4, 5, and 6⌝ focus on small languages
and not on JSCert: they only aim at showing the developed techniques, and how scalable
they are. The application of these techniques to JSCert is left as a further work.

This thesis is accompanied by a webpage [Bod16] containing links to the programs presen-
ted in this dissertation, in particular, runnable versions of the different analysers built dur-
ing this thesis. I strongly encourage the reader to try running the presented JavaScript
programs in various environments, as well as testing the presented analysers.

Finally, a note on the presence of the symbols ‘⌜’ and ‘⌝’ in this dissertation. These sym-
bols are directly inspired from a proposition by Madore [Mad15] to disambiguate English
text. They should be considered as grouping symbols, for instance helping to make the
difference between “dynamic⌜program analysis⌝” and “⌜dynamic program⌝analysis”—a com-
mon ambiguity in ⌜research paper⌝ titles. These symbols considerably help my parsing of
English sentences, but I understand that some people find them distracting. I have thus
tried to make these symbols as discrete as possible.
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1The JavaScript Language

La ord’ en la vortaro plaĉas al mi.
La sistematiko plenigas min per ĝuo.
Tamen el la vortoj kiujn mi trovis en ĝi,
la plej bela estas “tohuvabohuo”.

Nanne Kalma [Kal13]

This chapter aims at presenting the JavaScript programming language. Section 1.1.1
provides a quick introduction to how JavaScript has evolved, then Sections 1.1.2 and 1.1.3
present some uses of JavaScript, some of which being critical applications. Section 1.2
aims at giving some insights about JavaScript’s semantics, in particular its ⌜memory
model⌝ in Section 1.2.3.⌜Thegoal of Sections 1.2.4, 1.2.5, and 1.2.7⌝ is to show some difficulties
associated with the language’s semantics, in particular when building analysers.

1.1 Presentation of JavaScript
⌜Knowing the context in which JavaScript was created⌝ helps understanding some of its
peculiarities—in particular, its usages shifted along the years. We start with a short intro-
duction on how JavaScript has been created as well as some of its current applications.

1.1.1 A Quick History of the Language

JavaScript began in 1995, when Brendan Eich was asked to build a scripting language for
Netscape. The idea was to build a language looking like Java whilst being light enough
to appeal to non-professional programmers. The target usage of this language was to
enhance webpages by adding interactivity through client-side scripts: Figure 1.1 shows
examples of various websites using JavaScript to provide client-side interactivity. To in-
terest the broadest number of potential programmers,⌜features from various programming
languages⌝were added: the language mixes features from functional and object oriented
programming languages; as well as some features of Perl. Due to very short release dates,
the initial version was written in ten days.

In the following years, JavaScript was adopted by other web browsers, each adding or
adapting some of its features. ECMAScript then took care of the standardisation effort,
and released the first specification of JavaScript in 1997.The third version of the specific-
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(a) Duolingo (http://www.duolingo.com)

(b) Google (http://www.google.com)

(c) The companion website of this thesis [Bod16]

Figure 1.1: Examples of webpages enhanced by JavaScript

ation, ECMAScript 3, was considered to be the main version of JavaScript for approx-
imatively ten years, before the recent new 5th and 6th versions came to life. JavaScript
now continues to receive updates as new versions of ECMAScript are coming out.

The standard(s) of JavaScript is a defining feature of the language. Technically, the lan-
guage defined by the ECMAScript standard is “ECMAScript”, but as in practise the lan-
guage is known by the whole community as JavaScript, I shall consider that ECMA-
Script refers to the language specification. The main goal of the ECMAScript specific-
ation is to provide interoperability, in particular to avoid each actor of the JavaScript
community to have slightly different notions of how JavaScript behaves: the ECMA-
Script standard does not focus on defining a principled language (see Section 1.2.1), but
on creating a consensus on what JavaScript is.

1.1.2 Where is JavaScript Used?

Although JavaScript started as ⌜a small scripting language only aimed to be used in
browsers for non-critical software⌝, it is now used in a variety of places, some of which far
from the original target of the language. Figure 1.2 shows some examples of JavaScript
consoles—respectively in Mozilla Firefox, Chromium, and Node.js. Mozilla Firefox
uses the JavaScript engine SpiderMonkey, and the other two consoles use V8. We can
already see with the example of Node.js that JavaScript escaped from its original envir-
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(a) In Mozilla Firefox

(b) In Chromium

(c) In Node.js

Figure 1.2: Different JavaScript consoles

onment: Node.js executes JavaScript programs in a Unix environment; it is used in some
websites to run JavaScript in the server-side, for instance to help code factorisation in
the server and client sides.

JavaScript has imposed itself as being the (as opposed to one) programming language of
the Internet. A lot of devices (such as phones or e-book readers) nowadays can access the
Internet, and are able to execute JavaScript. One example of this is the recent introduc-
tion of Chromebooks, whose (almost) only feature is to browse the Internet. JavaScript
being executable in almost every device, it has become a programming language simple
to manage: as it can be executed everywhere, few costs are needed to adapt it to another
architecture, device, or environment. This has led to consider JavaScript as a target lan-
guage for development, but also for compilation. There now exist compilers from various
languages to JavaScript, such as Js_of_ocaml [VB14] compiling OCaml programs, and
Emscripten [Zak11], compiling LLVM programs into JavaScript.

Compiling a program into JavaScript is interesting for manageability, but the perform-
ance of an interpreted program is usually bad compared to a compiled one.This statement
tends to fade with the current advances of just-in-time compilation. Recent JavaScript
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interpreters no longer interpret, but compile programs with static or dynamic optimisa-
tions. Initiatives such as asm.js [HWZ13] also helped increasing the speed of JavaScript
programs. Nowadays, most JavaScript programs run without slowness.

⌜Compilers to JavaScript⌝ enable developers to write programs in other programming lan-
guages (usually statically typed) whilst executing them in a browser or other JavaScript
environments. This approach has also been used in industry to provide more guarantees
to JavaScript programs; for instance Typescript [BAT14] is a variant of JavaScript with
partial typing. Some of these compilers may assume that the program is the only program
in the environment; this is usually not the case, in particular in mash-ups.

1.1.3 Mash-ups

Mash-ups refer to webpages built on top of ⌜several external resources, which interacts
with each other⌝. For instance, let us imagine a webpage looking for hotels in a given area;
such a webpage could include a lot of external resources:

• a search engine, to search for hotels in the area,
• a map, to display where all these hotels are located,
• a calendar, to display when rooms are available,
• some ⌜social network⌝ plug-ins,
• a ⌜machine translation⌝ plug-in, for users who do not know the local language(s),
• some advertisements.

All these ⌜third party⌝ programs are JavaScript programs loaded from different sources.
Some of these manipulate sensitive information (such as the user’s travel dates), whilst
some are not trusted (at least the advertisements should be in this category).

To have an idea about what kind of programs can be in a mash-up, I recommend to check
the list [Goo02] of API provided by Google: it gives an idea of ⌜the variety of programs⌝
which developers can import from a third party. JavaScript mash-ups are easy to create:
one just has to include these ⌜third party⌝ scripts. Such included scripts are also usually
written to have very general applications, including ones which developers did not ne-
cessarily think about. This imaginary ⌜hotel searching⌝ webpage may be usable without
trouble in a smartphone, even if the developers did not thought about this. For a personal
example, the JavaScript variable navigator.language of my browser is set to ”eo”; as a
consequence various websites—including some probably written by English-speaker-only
people—display a login page (partially) in Esperanto.

The problem with this practise is security: when JavaScript programs are imported from
various sources in the same webpage, these programs are executed in the same environ-
ment. As a consequence, the isolation of sensitive data is not an easy task. There exist
libraries, such as ADSafe [Cro08], restricting programs to some boundaries; these librar-
ies sometimes rely on JavaScript analysers. However these libraries have not yet been
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formally proven to be safe, and bugs or other weaknesses can be found [Pol+11a; MT09a;
MMT10]. We are thus in the need of certifying some JavaScript analysers. This thesis
aims at applying standard ⌜formal method⌝ techniques to produce certified analysers.

1.2 Presentation of the Language Semantics
In contrary to many other scripting languages, JavaScript is defined by a precise specific-
ation, the ECMAScript standard [ECM99; ECM11]. This standard exists in several ver-
sions, and not every browser is up-to-date concerning new features. The current version
is the 6th, which added many features from the 5th version. In practise, most web browsers
implement every features of ECMAScript 5 as well as some of ECMAScript 6. Some also
provide non-standardised features, such as some special behaviours of the __proto__ field
(see Section 1.2.3). I will mainly focus about ECMAScript 5 in this document. More about
the style of the ECMAScript specification can be found in Section 2.4.

I do not intend to give a full specification of JavaScript semantics in this document, but I
will try to explain ⌜everything needed to understand the issues with JavaScript analyses⌝.
The two main difficulties of JavaScript come from the scoping of ⌜variables and fields⌝,
and from the size of its specification. I am thus going to focus mainly on the object model
(which defines how variables and fields are scoped) and type conversions (which form a
large part of the specification). However, before starting to present the semantics, I will
recall a basic human principle—which I often forgot—when dealing with JavaScript.

1.2.1 Please, Do Not Criticise JavaScript Eagerly

At a look of JavaScript’s semantics, it is easy to say that the language is not suitable for
most applications. Many people from our research community (includingme)—alongwith
other communities [LLT10]—have been eager to state that JavaScript is a bad language.
After working with JavaScript for more than three years, I sure can state that JavaScript
is unprincipled. I would however like to emphasize that⌜saying that JavaScript is bad⌝may
be offensive to the ECMAScript community.

JavaScript has many ⌜unexpected exceptions and pitfalls⌝. Mosts come from retrocom-
patibilities of the language: the Internet is not a unified place and ⌜breaking the web by
changing the behaviour of a widely used construct⌝ is not an option. Most of the people
working with JavaScript do not really have the choice of their language. As research-
ers, we often create prototypes from scratch, allowing us to use any language, such as
OCaml or Haskell (which can also have some surprising behaviours [JL14]). In industry,
⌜updating huge amount of code⌝ costs a lot of money, and inertia can be a valid choice.

I like to compare JavaScript with the usage of English in scientific works. English can be
a beautiful language to write poetry, but⌜its difficulty to read, pronounce, learn, as well as
its frequent ambiguities [Mad15]⌝makes it a pessimal choice for scientific communications.
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There are some proposed solutions, like Esperanto [PGG; Cor12; Max88] (to reduce the
difficulty to read and learn) or Lojban [Cow97] (to reduce language ambiguities). ⌜In both
the JavaScript and English cases⌝we are fighting against inertia. As this illustration is not
always taken seriously and because I am biased on thismatter, let us use anothermetaphor:
⌜cigarette lighter⌝multipliers, which provide several plugs from a single ⌜cigarette lighter⌝
plug. They are surprisingly easy to find in highway shops. Of course, their existence is
not due their literal usage (lighting several cigarettes in a row), but merely that ⌜cigarette
lighter⌝ plugs became a standard and escaped from its original usage.

JavaScript became a widespread language for a variety of usages ⌜for which it has never
been designed⌝. Once it became a language runnable by any computer and device, industry
quickly adapted and switched to this language. In this way, industry is no longer forced
to deal with several versions of their programs, one for each operating system and en-
vironment. The success of JavaScript solved the problem of interoperability, but added
the problem of the JavaScript language itself. There is however an increasing awareness
on this matter, and many people are now looking for solutions to improve the language
safety. For instance, the strict mode of JavaScript solved the problem of lexical scoping
(see Section 1.2.8), and new features of JavaScript are examined through a scrutiny pro-
cess before acceptance [ECM15]. ⌜Features which are fixable and not used a lot⌝ are fixed;
for instance⌜the semantic of loops in ECMAScript 5⌝was incompatible with loop unrolling
because of some corner cases, but (almost) no JavaScript program relied these on corner
cases: this feature has thus been fixed as soon as it was noticed [Thea]. To conclude, I
would thus like to present JavaScript as it is now, as a fact, and not as a way to criticise
people and historical accidents which have made JavaScript as it currently is.

1.2.2 Basics

Thegrammar of JavaScript is divided into threemain categories: expressions, statements,
and programs. A JavaScript program consists of a list of statements; programs can be
found at top level, but also as a function body. Similarly, the argument of the eval func-
tion, once parsed, is a JavaScript program. Apart from some corner cases (such as those
presented in Section 1.2.7), JavaScript’s syntax should be straightforward for people fa-
miliar with other C-like programming languages.

There are six distinct types of values in JavaScript, in ECMAScript 5:

• locations, which are described in detail in the next section. They can be seen as
pointers pointing to JavaScript’s objects.

• Numbers, which follow the IEEE 754 ⌜double-precision float⌝ specification [Ste81;
Ste+85]. This includes the particular numbers NaN, +Infinity, and -Infinity.

• Unicode strings, encoded in UTF-16 [Con16].
• the two booleans true and false.
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• The value null. Note that it is not a location, but a stand-alone value; in particular,
comparing it to the value 0 (through the expression null === 0) returns false.

• the value undefined.This is a defined value: notice the typographic and grammatical
differences between the value undefined and an undefined value.

There are no integers: (floating-point) numbers are used instead. ⌜Values other than loc-
ations⌝make sense independently of the heap: they are called primitive values. Variables
are not typed: the keyword to introduce a variable is var (without type annotation), and
a given variable can receive any kind of value. This yields complex ⌜type conversions⌝ de-
scribed in Section 1.2.4. But let us first focus on the memory model.

1.2.3 Object Model
This section describes how JavaScript’s memory model works. Section 1.2.3.1 describes
how variables and object’s fields are looked up and Section 1.2.3.2 describes how they are
manipulated during execution. The manipulations shown here do not always preserve
scopes, which can be counter-intuitive for a programming language. There is however a
built-in sublanguage of JavaScript designed to preserve them (see Section 1.2.8).

1.2.3.1 ⌜Field and Variable⌝ Look-up

JavaScript programs manipulate a heap. Objects in the heap are indexed by locations.
Intuitively, locations can be seen as pointers. In contrary to C, there is no pointer arith-
metic in JavaScript:⌜the only thingswe can dowith locations⌝ is to compare them (through
equality) or to access their object. There is no way to dispose of (or deallocate) objects in
JavaScript. By this way, the language is guaranteed to never fault because of dangling
pointers. Naturally, real-world JavaScript interpreters perform garbage collection, but it
should never interfere with the semantics.

Objects are maps from ⌜fields (named properties in the ECMAScript standard)⌝ to values.
Fields can be added or deleted at will1 during execution. Every object has an implicit pro-
totype in the form of a special field which we call@proto; its value is either null or a loca-
tion. Although this is not standardised in ECMAScript 5 (but is in ECMAScript 6 through
the Object.setPrototypeOf function), most JavaScript interpreters enable programs to
access implicit prototypes through the __proto__ field. Unless a prototype is null, its
pointed object also has an implicit prototype, and so on, forming a prototype chain. The
semantics of JavaScript guarantees that no loop can form in a prototype chain.

Intuitively, the field@proto of a location l points to a location representing the class from
which l inherits: each time a field f of a location l is looked up, l is checked to effect-
ively have this field; if not, the prototype chain is followed until such an f is found. ⌜The

1 There are ways to prevent some fields to be changed—for instance Object.seal, prevents⌜further dele-
tion or addition of fields⌝ for the given object—but we shall not focus on these techniques.
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Figure 1.3: Illustration of a prototype chain

lexical environment
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x : 4

l2
x : 2
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y : 1

●

●

Figure 1.4: A JavaScript lexical environment

fields present in a prototype chain⌝ are thus common to all the objects with this proto-
type chain, as would the methods of a class in an object-oriented programming language.
When evaluating an expression of the form e.f, the expression e is evaluated and should
result as a location l; then f is looked up. In case no value is found, the value undefined

is returned. Figure 1.3 represents such a prototype chain, plain arrows depicting implicit
prototypes; the access to the field f returns 3 at locations l1, l2, and l4, but 4 at location l3,
and undefined at location lop . Some fields are also defined by getters and setters—which
are functions called when accessing them—but we shall not detail them.

The execution context of a JavaScript program comprises a lexical environment (called
scope chain in ECMAScript 3). It intuitively corresponds to a call stack. The lexical envir-
onment is a stack of environment records. Environment records can be either declarative
or object environment records. The former is typically created when calling a function; it
is a mapping from identifiers to values.The latter may be surprising: it is a location (called
scope when in this position). All the fields of the associated object are then considered as
being directly in the context as variables.

The top of the lexical environment stack is an object environment record with ⌜a special
location lg referring to the global object⌝: global variables reside in this object. When look-
ing up the value of a variable x, it is searched in the lexical environment. More precisely,
the value of x will be found in ⌜the first environment record in the lexical environment
where it is defined⌝. This behaviour is similar to the one of a lexical scope (local variables
having priority over global variables of the same name). However, as object environment
records are usual objects, they can be dynamically modified. Moreover, we see below that
scopes can be manually added to the chain using the with-construct. Variable look-up is
also determined by the prototypes of the objects under consideration.
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Figure 1.5: Lexical environment manipulation

We now describe how this mechanism interacts with the lexical environment. Figure 1.4
shows an example of a JavaScript lexical environment, the ⌜lexical environment⌝ order
being represented by vertical arrows. To access variable x in the current scope l0, it is first
searched in l0 itself and its prototype chain. As x is not found, the lexical environment
is followed and the variable is looked up in the declarative environment record above.
Only y is defined here and the search continues in l1 and its prototype chain. This time,
x is found in location l2, thus the value returned is 2. Note that the value 1 of x present
in lg is shadowed by more local bindings, as well as the value 3 present in l3.

Some special objects have a particular use. We have already encountered the global object,
located at lg . This object is where global variables are stored. As most objects, the special
location lop is present in its prototype chain2, which we describe below.The global object is
always at the top of the lexical environment. A second special object is the prototype of all
objects, Object.prototype, located at lop. Every newly created object has ⌜a field @proto

bound to either lop or an already declared object⌝. It has some functions which thus can be
called on every object (but they can be hidden by local declarations) such as toString or
valueOf (see Section 1.2.4). Finally, the prototype lfp of all functions, Function.prototype,
is a special object equipped with function-specific methods.

Finally, the JavaScript execution context carries a special location, which can be accessed
through the keyword this. We name it the this-location. It is generally bound either to lg ,
or to ⌜a specific object from which the current function has been called⌝. For instance, if a
function f is called as a method of an object o, as in o.f (), then the this location will be
bound to o during the execution of f. However, if we call it through a local variable, as in
the following code, then this will be bound to lg .

1 var x = o.f ;

2 x ()

2 This is actually implementation dependent, but let us state⌜that is it the case⌝ for the sake of readability.
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1.2.3.2 Manipulating Lexical Environments

We have seen how accesses are performed in a heap. Let us see how the lexical environ-
ment is changed over the execution of a program, and in particular over the execution of
a function call, a with statement, a new expression, or an assignment. A graphical repres-
entation of those changes is summed up in Figure 1.5. In this figure, the orange blocks
represent newly allocated ⌜locations or declarative environment records⌝.

As usual in functional programming languages, the current lexical environment is saved
when defining functions. When calling a function, the saved lexical environment is re-
stored, adding a new scope at the front of the chain to hold local variables and the ar-
guments of the call. The special location this can also be updated. The “with (o){...}”
statement puts the object o in front of the current lexical environment to run the asso-
ciated block. In the “new f (...)” case, the function f is called with the this assigned
to a new object. The implicit prototype @proto of this new object is copied from the
prototype field of f. This is how prototype chains are usually created. The newly created
object, which may have been modified during the call to f by “this.x = ...” statements,
is then returned. There are some corner cases with different behaviours, but we do not
detail them.

Example. ⌜A heap modified by a new operator at Line 7 of the program of Figure 1.6a⌝ is
shown in Figure 1.6c. Upon executing the new instruction, the function f is called with
this pointing to a new object l3. The function body is executed, adding an x field to this.
This object located at l3 is then returned, setting its implicit prototype@proto to the value
of ⌜the field prototype of f⌝.

Targeted assignment, of the form e.x = 4, are straightforward: the expression e is com-
puted and should return a location l (technically, it is converted into a location, see Sec-
tion 1.2.4 for more information). Then the field x is written with value 3 in the object at
location l. For untargeted assignments, such as x = 4, things are more complex. The first
scope⌜for which the searched field is defined⌝ is selected in the current lexical environment,
following the same variable look-up rules as above. The variable is then written in this
scope. If no such scope is found, then a new variable is created in the global scope.

Figure 1.7 describes the effect of the assignment x = 4. Location l1 is the first to define x

in its prototype chain (in l2). The new value of x is then written in l1. Note that it is not
written in l2, allowing other objects⌜which have l2 in their prototype chain⌝ to retain their
old value for x. Nevertheless, if one accesses x in the current lexical environment, the new
value 4 is returned.This approach may lead to surprising behaviours, as we now illustrate.
Note that in a JavaScript programwhich does not use the with-construct, the only object
environment record of the lexical environment is lg ; this greatly simplifies the situation,
getting back to the usual scoping of variables.
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1 var f = function (a){
2 this.x = a
3 }
4

5 f.prototype = {y : 1} ;
6

7 var o = new f (42)
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(c) Heap’s state at the end of Line 7

Figure 1.6: Effect of the new-construct
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Figure 1.7: Effect of an assignment
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Example. Consider Program 1.1. If it is executed in an empty heap, it returns 42. Indeed,
when defining f, no such function already exists, and f is thus stored in the global scope.
When f accesses a upon its call, the object o is in the lexical environment (as the call is
executed in the lexical environment of the definition of f), thus the result is 42. Now, con-
sider the same program in a slightly different scope, where Object.prototype.f has been
set to a function (say f ′ = function (){ return 18 }). The code var o = {a : 42} is al-
most equivalent to var o = new Object () ; o.a = 42, the object o (at location lo) has
thus an implicit prototype set to Object.prototype (which is lop by definition). Figure 1.8
shows a representation of the heap at Line 3. As there is a variable f defined in the lexical
environment at position lo (because of its prototype chain to lop ), the assignment is local
to lo and not global. At Line 5, the variable look-up for f returns the function f ′, which is
found in the prototype of the global object lg (at this point the lexical environment only
contains lg), and not the function f defined in the with block. Thus the call executes the
function f ′, which returns 18.

There are many other subtleties in JavaScript’s semantics which can be used to execute
arbitrary code. Getters, setters, as well as field attributes (which can disable some actions
to be performed on fields—for instance preventing their removal) also feature a lot of
semantic peculiarities. For the context of this thesis, however, I consider implicit type
conversions to be a better example of JavaScript’s unexpected complexity.

1.2.4 Implicit Type Conversions

As said in Section 1.2.2, there are only six types of values in JavaScript. ⌜Arrays, func-
tions and other high level constructs⌝ are considered to be special kinds of objects; they
each have a specific prototype corresponding to their kind, which provides them with
some default attributes and methods. Some of these special objects differ in some aspects
from user-defined objects, usually by having ⌜special internal fields which are not always
limited to hold JavaScript values⌝. For instance, functions have some internal fields stor-
ing their inner program as well as their definition scope. The specification also makes
some exceptions about the behaviour of some fields of these special kinds of objects. For
instance, the field length of arrays is automatically updated if we write a new field in the
array, even if we did not use a special setter for this.

To illustrate how ⌜type conversion⌝works, I will use the surprising result [Kle13] that, in
the default environment, every JavaScript string can be computed by an expression only
composed of the six characters (, ), [, ], +, and !. For instance, Program 1.2 is an encoding
of my last name “Bodin” in JavaScript. Indentation has been added for readability. This
section is meant to be a gentle introduction on how complex the JavaScript semantics
can be, and in particular how the execution of a seemingly benign program can yield the
execution of various unexpected parts of the ECMAScript standard.
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1 var o = { a : 42 } ;
2 with (o) {
3 f = function (){ return a }
4 } ;
5 f ()

Program 1.1: One of the pitfalls of the with-construct
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lg
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●

(a) At the beginning of Line 3

lexical
environment

lo
a : 42
f : …

lg
o : lo

lop
f : f ′

●

●

(b) At the end of Line 3

Figure 1.8: Heap state of Program 1.1

Let us consider Program 1.2 step by step. The simplest type conversion is from a value
to a boolean. It typically happens when a value stands as the condition of an if con-
struct, a loop, or before calling some boolean operators such as the boolean negation !.
The conversion to boolean, called ToBoolean in the ECMAScript specification, returns
true, except for the values NaN, 0, the empty string “”, false, null, and undefined. The op-
eration ToBoolean is called an abstract operation in the specification: it is used to define
the semantics of JavaScript but can not be directly accessed or changed in a JavaScript
heap. This allows us to define the two booleans in our character restriction. A new empty
array can be created using⌜[], which is almost equivalent to new Array ()⌝. It is an object,
and thus coerces to the boolean true. We build false using ![] and true using !![].

The ToPrimitive abstract operation is much more dangerous: it converts its argument
to a primitive value—often a number or a string. If the argument is an object, then two
of its methods may be called: toString and valueof. This is dangerous as these can then
execute arbitrary code: implicitly converting an object to a primitive value in an unknown
environment can thus yield arbitrary side-effects. Also note that toString is just a Java-
Script function—there is no guarantee that it will actually return a string.

The conversion to a number, triggered by the unary operator +, calls the abstract operation
ToPrimitive . If it terminates, an operation is performed on the result: string are parsed
(returning NaN if the string does not parse as a number), true is converted to 1, ⌜null and
false⌝ to 0, and undefined to NaN. We can thus build 0 with +![] and 1 with +!![].
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1 ((+![]+(![])[
2 ([][ ([]+![])[+[]]
3 +([![]]+[][[]])[+!![]+[+[]]]
4 +([]+![])[!![]+!![]]
5 +([]+!![])[+[]]
6 +([]+!![])[!![]+!![]+!![]]
7 +([]+!![])[+!![]]
8 ]+[])[!![]+!![]+!![]]
9 +(!![]+[][ ([]+![])[+[]]

10 +([![]]+[][[]])[+!![]+[+[]]]
11 +([]+![])[!![]+!![]]
12 +([]+!![])[+[]]
13 +([]+!![])[!![]+!![]+!![]]
14 +([]+!![])[+!![]]
15 ])[+!![]+[+[]]]
16 +([]+[][[]])[+!![]]
17 +([]+![])[!![]+!![]+!![]]
18 +([]+!![])[+[]]
19 +([]+!![])[+!![]]
20 +([]+[][[]])[+[]]
21 +([][ ([]+![])[+[]]
22 +([![]]+[][[]])[+!![]+[+[]]]
23 +([]+![])[!![]+!![]]
24 +([]+!![])[+[]]
25 +([]+!![])[!![]+!![]+!![]]
26 +([]+!![])[+!![]]
27 ]+[])[!![]+!![]+!![]]
28 +([]+!![])[+[]]
29 +(!![]+[][ ([]+![])[+[]]
30 +([![]]+[][[]])[+!![]+[+[]]]
31 +([]+![])[!![]+!![]]
32 +([]+!![])[+[]]
33 +([]+!![])[!![]+!![]+!![]]
34 +([]+!![])[+!![]]
35 ])[+!![]+[+[]]]
36 +([]+!![])[+!![]]
37 ])[+!![]+[+[]]]
38 +(!![]+[][ ([]+![])[+[]]
39 +([![]]+[][[]])[+!![]+[+[]]]
40 +([]+![])[!![]+!![]]
41 +([]+!![])[+[]]
42 +([]+!![])[!![]+!![]+!![]]
43 +([]+!![])[+!![]]
44 ])[+!![]+[+[]]]
45 +([]+[][[]])[!![]+!![]]
46 +([![]]+[][[]])[+!![]+[+[]]]
47 +([]+[][[]])[+!![]])

Program 1.2: A program equivalent to ”Bodin” in the default environment
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1 counter = 0 ;
2

3 console.log (+[18]) ; // Prints 18.
4

5 Array.prototype.toString = function (){
6 counter++; // Performs a side-effect.
7 return 42
8 } ;
9

10 console.log (counter) ; // Prints 0.
11 console.log (+[18]) ; // Prints 42.
12 console.log (counter) // Prints 1.

Program 1.3: A program with ⌜potentially unexpected⌝ implicit type conversions

The abstract operation ToString performs a similar operation to convert a value into
a string: it calls ToPrimitive , then converts the result (true returns the string “true”,
etc.). Surprisingly, callingToString on false returns the string “false”, whose conversion
to a boolean, through ToBoolean , is true. The object Array.prototype has a method
toString predefined in the default environment: it calls the ToString abstract operation
on all the values in the indexes of the array, then concatenates their results separated
by the character , (this is a simplification of what really happens, but it is enough to
understand what follows). For instance, +[18], converts [18] to a primitive, resulting in
the string “18”; this string will then be converted to a number, resulting in the numeric
value 18. This is only the result we would get in the default environment: if we change
the conversion function for arrays as in Program 1.3, the result may be different.

Addition in JavaScript can be used for both string concatenation and numerical addition.
The + operator is treated in two steps: first, ToPrimitive is applied on both its arguments.
If one of them results in a string, then the other is converted into a string and the string
concatenation is performed. Otherwise, both are converted into numbers and the numer-
ical addition is performed. This double meaning of the JavaScript binary operator + can
lead to surprising behaviours. In our example, as the empty array [] converts (in the de-
fault environment) to the empty string, ⌜adding the empty array⌝ to a value converts this
value to a string. Thus [] + ![] results in the string “false”. We can also build numbers
by adding booleans (which will be converted to numbers): !![] + !![] results in 2.

The conversion of a value to an object may allocate a new object, but shall not result in
other side effects. It is usually performed when accessing a field of a non-object value. For
instance ”str”.length first converts ”str” into an object: it is almost equivalent to (new

String (”str”)).length. The difference between the former and the latter program is
that ⌜the latter will first perform a variable look-up on the global variable String, which
can be redefined⌝, whilst the former will always choose ⌜the same object, referenced as
String in the initial heap⌝. The resulting object has for instance a field length set to 3, as
well as three fields 0, 1, and 2, respectively set to the strings “s”, “t”, and “r”.
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To build our first letters, we have to understand the construct e1[e2]. This construct eval-
uates the two expressions e1 and e2 to the values v1 and v2. It then converts v1 onto an
object l, and v2 onto a string str . Finally it performs a field look up in the prototype chain
of l, looking for the field str . If the field is not found in the prototype chain, then the
value undefined is returned. ⌜The expression e.f presented in the previous section⌝ is just
a syntactic sugar for e[”f”].

Now, consider how the letter n in Program 1.2 is built, on line 47: ([] + [][[]]) [+!![]].
To evaluate [][[]], we build an empty array and try to access one of its fields. The name
of this field is given by ⌜the conversion to a string⌝ of [], which is the empty string. As
there is no field indexed by the empty string in the prototype chain of the empty array,
the value undefined is returned. This value is then added to the empty array, converting
it to the string “undefined”. We then access its field indexed by ⌜+!![], which results in 1⌝.
We thus convert the string “undefined” to an object and access its field 1. This returns the
string “n”. The letters d and i are build similarly.

The letter o is a little more complex as it comes from ⌜the conversion into a string of a
function⌝, which should be parsable as a function (but no guarantee is given on the be-
haviour of this printed function), thus starting by “function”. We thus have to get any
function and add it to the empty array. In this case, the chosen function is [].filter:
the empty array has a prototype pointing the Array object, which contains a variety of
fields—including filter. This method is accessed from Line 38 to 43, then Line 44 extracts
the letter o out of this string.The letter B is built from false.constructor, which is a func-
tion named “Boolean”. ⌜Converting it into a string⌝ returns a string starting by “function
Boolean” from which we can extract B. We assumes here that the interpreter puts exactly
one space between “function” and “Boolean”. This is not guaranteed by the specification,
but most interpreters do it like this3. The word “constructor” is built from Line 2 to 36.

The complete program builds the string “Bodin”. This however requires the program to be
executed in the default environment: if we change some important conversion functions
before running the program, we can get totally different results. For instance, if we first
run Program 1.3, then run Program 1.2 in the new environment, we will get NaN as a result
instead. We will also have the variable counter set to 86 at the end of the execution.

The purpose of this section was not to teach how to obfuscate JavaScript programs, but
to show that type conversions can appear in many places if we are not paying attention
to them. Notice how these type conversions are arbitrary: they do not follow from the
memory model, for instance. This will have some consequences on the size of the formal-
isation of Chapter 2 and on⌜howwe choose to tackle the problem of analysing JavaScript⌝
in Chapter 4. We conclude this section by explaining the two equalities operators in Java-
Script. The double-equal comparison == performs⌜an algorithms which will convert both
its arguments in order to compare them⌝. For instance, comparing true == ”1” converts

3 Purists might prefer to call Object.prototype.toString on a boolean, as the position of the B is here
specified. Unfortunately,⌜reaching this function⌝ requires much more space and is not shown here.
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both arguments into numbers and thus yields true (but true == ”true” yields false). In
particular, == can lead to arbitrary side effects. To avoid surprises, it is thus good practise
to use the triple-equal comparison ===, which can not yield side effect; it also behaves as
can be expected, without performing any type conversion. In a more general comment,
any implicit type conversion in a program can already be a source of security breach: an
analyser focussing on these constructs is thus already interesting.

1.2.5 The eval Construction
JavaScript’s most fearful feature is the eval construct. It behaves as a function which
takes a string as a parameter, then runs this string as if being a JavaScript program.
This dynamic features is how JavaScript implements reflection. Other constructs show
similar reflectiveness—this includes the function Function, which is used in most Java-
Script programs. The reflectiveness of JavaScript can be frightening, but consider that
in the context of a browser, reflection is unavoidable: a JavaScript program can add a
new script node to the current webpage through its Document Object Model (DOM),
the browser will then execute the corresponding JavaScript code anyway.

There are cases where ⌜the usage of eval⌝ is useful—typically for code loading. Adding a
new script node into the current DOMwould work, but there are no4way to know⌜when
the new script is executed, or what is the current stage of download⌝. Instead, a small Ja-
vaScript program can be used to load a set of JavaScript files, possibly to decompress
them. When ready, this program can then evaluate each of the loaded files.

These reflective constructs are very complex for program analyses: analyses fail when
encountering an eval whose string is unknown. There have been some studies [Ric+10;
Ric+11] about how eval is used in practise: it is used to load libraries, but not only. Most
of these uses can however be rewritten to an eval-free program. One common usage of
eval happens when exchanging information with servers. Instead of writing a parser,⌜the
information transfer between the servers and the program⌝ can be performed under Java-
Script’s object syntax; it can then be evaluated directly using eval to get the correspond-
ing object, which is directly usable. An alternative is to use JSon, a parser for this syntax
available in JavaScript’s default environment. Richards et al. [Ric+11] state that ⌜83% of
the uses of eval in real-world programs⌝ can be replaced by an eval-free program.

1.2.6 Standard Libraries
ECMAScript defines an initial environment where the global object already contains a
lot of predefined objects and functions, such as Array or parseInt. They behave as if part
of ⌜a default library loaded at the beginning of each execution⌝. Among these objects and
functions, some could be programmed directly in JavaScript alone, and some contain
additional special features.

4 As far as I know, there is currently no standard documenting such a feature.
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1. Let O be the result of calling ToObject passing the this value as the argument.
2. Let lenVal be the result of calling the Get internal method of O with argument

“length”.
3. Let n be ToUint32 (lenVal).
4. Let items be an internal List whose elements are, in left to right order, the arguments

that were passed to this function invocation.
5. Repeat, while items is not empty

a) Remove the first element from items and let E be the value of the element.
b) Call the Put internal method ofO with arguments ToString (n), E, and true.
c) Increase n by 1.

6. Call the Put internal method of O with arguments “length”, n, and true.
7. Return n.

Program 1.4: The specification of Array.prototype.push

1 Array.prototype.push = function (){
2 var O = new Object (this) ;
3 var lenVal = O.length ;
4 var n = lenVal >>> 0 ;
5 for (var i = 0; i < arguments.length; i++){
6 var E = arguments[i] ;
7 O[n] = E ;
8 n++
9 }

10 O.length = n ;
11 return n
12 }

Program 1.5: A possible implementation of Array.prototype.push

Most of ⌜the behaviours of the special fields of Array⌝ can be expressed only using the part
of JavaScript presented above. There thus exists ⌜a minimal subset of JavaScript fea-
tures⌝which is enough to define the complete initial environment. Such a subset is usually
named core-JavaScript. However, in this dissertation, I will name⌜the core of JavaScript⌝
the part about ⌜very basic features, such as functions, arrays, object look-up, and impli-
cit conversions, but without most of their initially defined attributes⌝; this corresponds to
Chapters 1 to 14 of the ECMAScript 5 specification. Chapter 15 of ECMAScript describes
the initial environment; it can be seen as the standard library of JavaScript, with many
features to manipulate arrays, strings, and other constructs. Section 2.4.2 provides more
details about how the ECMAScript is organised.

For instance, the function Array.prototype.pushwrites its argument in a new field of the
this-location, whose name depends on the field already defined in this object. Program 1.4
shows its specification in ECMAScript 5 and Program 1.5 a possible implementation5: it
is implementable in JavaScript. On the other hand, the field length of an array in Java-

5 All the constructs of this program have already been detailed in this chapter expect the >>> construct:
it is an unsigned shift, here used to convert the length attribute to a number representing an integer.
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Script is difficult to define using only the core: it is a numerical value greater than ⌜any
number n such that the field ToString (n) of the accessed array is defined and deletable⌝.
It is technically definable using getters and setters as there are only a finite number of
possible array indexes, but it would not be practical for an interpreter (even a toy one) to
enumerate 232 fields at each access. The length field of arrays depends on the structure
of its argument as a whole, and we consider it to be a special feature.

1.2.7 Parsing

Usually, parsing is not a very difficult part when interpreting a programming language. It
also is not a problem for analysers in general, as they can reuse ⌜the same parsers used by
real interpreters⌝. But in order to analyse ⌜constructs such as eval⌝when the input string is
only partially known, analysers have to precisely catch the syntax of some constructs. In
the case of JavaScript, this is particularly challenging. To illustrate this, let me reuse an
example from wtfjs [LLT10]. The two JavaScript Programs 1.6a and 1.6b only differ by
one semicolon, and yet are parsed very differently, as indicated by the syntax highlighting.
Semicolons in JavaScript are not mandatory, as stated by the introduction of ⌜Section 7.9
of the ECMAScript specification⌝ about automatic semicolon insertion:

Certain ECMAScript statements (empty statement, […], return statement,
and throw statement) must be terminated with semicolons. Such semicolons
may always appear explicitly in the source text. For convenience, however,
such semicolons may be omitted from the source text in certain situations.
These situations are described by saying that semicolons are automatically
inserted into the source code token stream in those situations.
[…] When, as the program is parsed from left to right, a token (called the
offending token) is encountered that is not allowed by any production of the
grammar, then a semicolon is automatically inserted before the offending
token if [the offending token stands on a new line].

In other words, semicolons are added at the beginning of every line which did not parse
correctly.The elided parts of this quotation describe some exceptions; such as⌜Program 1.7a
which is parsed as Program 1.7b and throws the value undefined⌝, although throw a + b

is a valid JavaScript program.

Let us focus back on the example of Programs 1.6a and 1.6b. In the casewith semicolon, the
first line is an assignment.The second line is then parsed as⌜a regular expression matching
a sequence of 1s followed by the string “”//”⌝. We then confront it to the string “1”//” (see
Section 1.2.4 for more details), which matches. The second expression thus returns true.
Program 1.6c rewrites this program in a readable form. Let us now focus on Program 1.6b.
The automatic semicolon insertion does not fire as the code makes sense: the character /
is interpreted as a division symbol. We thus get one divided by one multiplied by a string,
which returns NaN. The last two / characters are interpreted as the beginning of a ⌜single
line⌝ comment: we get a program equivalent to Program 1.6d.
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1 n = 1 ;
2 /1*”\/\//.test (n + ’”//’)

(a) With semicolon

 

 

1 n = 1
2 /1*”\/\//.test (n + ’”//’)

(b) Without semicolon

1 n = 1 ;
2 (new RegExp (’1*”//’)).test (n + ’”//’)

(c) How Program 1.6a is parsed

1 n = 1 / 1 * ”///.test (n + ’”

(d) How Program 1.6b is parsed

Program 1.6: ⌜Two variants of a program⌝which yield different results

1 throw
2 a + b

(a) The source code of a program

1 throw
2 ; a + b

(b) How it is parsed

Program 1.7: A common parsing pitfall

⌜Removing one ; character (which is usually automatically inserted)⌝ changed the inter-
pretation of all the following characters of the source code. In particular, it is not possible
to know whether a given part of a program is commented without knowing the whole
context. In practise, this does not hinder the construction of analysers if we are ready to
use an external parser from widely used JavaScript engines. It can hinder the analysis
of a program using eval; but ⌜being imprecise on such programs⌝ is acceptable, as their
behaviours are already very complex. I will avoid to play with JavaScript’s syntax in this
dissertation to keep things readable.

1.2.8 Strict Mode

The strict mode is themost important feature added from version 3 to 5 of ECMAScript. It
is an official variant of the JavaScript language designed to have lexical scoping, among
other nice properties.This variant of the language is switched on by the flag ”use strict”

at the beginning of a program or a function’s code. In practise,⌜the semantics changes⌝ are
indicated along the specification by steps such as the following one.

1. If code is strict mode code, then let strict be true else let strict be false.

Program 1.8 shows an example of a program without lexical scoping (in non-strict mode).
The variable x of Line 5 can reference three different xs: the field x of the object of Line 4,
the argument x of ⌜the function f declared Line 3 and called Line 10⌝, and the global vari-
able x declared Line 1. Because of the with construct, it initially refers to the field x of
Line 4: Figure 1.9 shows the program’s state when Line 5 is executed for the first time.
The heap is modified along the execution by the construct delete of Line 6: it deletes
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the first appearance of the variable x in the environment, following the look-up rules
presented in Section 1.2.3.1, returning true if the field was successfully deleted and false

otherwise. The global variable x of Line 1 is in this case not deletable: calling f prints with
and argument. The variable x of Line 5 thus refers to three different places of the heap.

Strict mode aims at preventing such difficulties. Running Program 1.8 in strict modewould
be rejected as⌜the two constructs with and delete x⌝break scopes: the strict mode defens-
ively rejects any construct preventing to statically determine where variables stand in
the heap. Strict mode also prevents the this construct to accidentally take the value of
the global object. These restrictions help increasing both the efficiency of JavaScript in-
terpreters and the security of JavaScript programs, as much more information can be
statically extracted from a given program.

1.3 Implementation Dependent Features

The specified JavaScript does not provide any way of interacting with the external envir-
onment, called host environment in ECMAScript. The reason is that JavaScript can ap-
pear in several places, which are not all browsers. For instance, Node.js runs in terminals
and can not interact with any webpage: specifying⌜webpage interactions⌝ in ECMAScript
would thus be meaningless for Node.js. To this end, the specification allows implementa-
tions to add some features in the initial JavaScript global object. These features can have
any effect, on the JavaScript heap or the host environment, as explained by the following
extract of the ECMAScript specification.

[It] is expected that the computational environment of an ECMAScript pro-
gram will provide not only the objects and other facilities described in this
specification but also certain environment-specific host objects, whose de-
scription and behaviour are beyond the scope of this specification except to
indicate that they may provide certain properties that can be accessed and
certain functions that can be called from an ECMAScript program.

Examples of ⌜implementation dependent⌝ features include interactions with webpages (by
changing their DOM), servers, files, or with the user. It can also be features of future
versions of JavaScript which are already available in the interpreter; such as the un-
standardised or experimental features in Mozilla Firefox [05].

These additional features are important for analysers: by accessing an unspecified field of
an initially-defined object, we can not be sure that it is not present. Consider for instance
Program 1.1, which relies on the fact that lop does not have a field named f: it is not a
safe program as it assumes that the initial state does not contain some fields—which is
nevertheless accepted by ECMAScript. In the analyses defined during this thesis, I thus
chose domains such as the one presented in Figure 4.3: such domains are able to⌜state that
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1 var x = ”out” ;
2

3 function f(x){
4 with ({ x : ”with” }){
5 do console.log (x)
6 while (delete x)
7 }
8 }
9

10 f (”argument”) // prints ”with”, then ”argument”

Program 1.8: A JavaScript program without lexical scoping

lexical environment

l0
x : ”with”

lg
x : ”out”

lop

●

x : ”argument”

●

Figure 1.9: State of Program 1.8 at the first execution of Line 5

we do not know whether a given variable is defined or not⌝. In particular, in order to safely
analyse a JavaScript program, every unspecified field of an object should be initially set
to express this absence of knowledge.

1.4 Conclusion
We have seen in this section that JavaScript is a successful programming language. In
particular, its success has led to the emergence of JavaScript programs manipulating
sensitive data. We have also seen that JavaScript have been designed to be flexible, en-
abling to easily mix ⌜different JavaScript programs from various sources⌝ in the same en-
vironment. Analysing JavaScript programs is thus important for security reasons.

We have also seen how complex JavaScript is. The language can be extremely versatile,
yielding side effects where they are the least expected.The language is complex enough⌜to
make the results of an analyser be considered dubious if this analyser is not accompanied
by some sort of certification⌝. There are many ways to certify programs; common instances
include testing, or making an expert of JavaScript closely rereading the source code of
the analyser.This thesis focusses on formal methods, and in particular on formally proven
techniques: analysers are accompanied by a mathematical proof of their soundness. In
particular, the next chapter aims at providing a formal model of JavaScript.

24 Chapter 1 The JavaScript Language

http://people.irisa.fr/Martin.Bodin/doktorigxo/scopeEscape.js


2Formalising JavaScript

Bah, je sais pas, on a des boulots super, tout ça… mais parfois je
me sens comment dire… un peu détaché du monde réel, tu vois ?

Yörgl, by Gilles Roussel (⌜pen named⌝Boulet) [Rou09]

Because they can interfere with sensitive data, there are cases in which JavaScript pro-
grams need to be analysed. But for a language such as JavaScript, trusting analysers can
be difficult. Intensive testing can help increase the trust, but semantic exceptions can be
difficult to catch. This happened for instance for ADSafe [Cro08]—a program checking
language restrictions to ensure the sandboxing of external JavaScript programs—which
was shown flawed [Pol+11b] at the time (the flaw is now fixed).

⌜Proof assistants such as Coq [C+84] or Isabelle/Hol [NPW02]⌝ have proved to be very
powerful tools to trust programs. The CompCert project [Ler+08] has for instance been
able to build and certify an optimising compiler for C. This compiler is proven to be free
of compilation bugs, leading to safer programs in critical software.

We would thus like to certify ⌜a JavaScript analyser⌝ to be correct. But correct with re-
spect to what? On one hand, the official ECMAScript semantics is written in prose and
not directly usable for our means. On the other hand, JavaScript interpreters are far too
complex to be basis of correctness proofs. We are thus in the need of a JavaScript formal
specification. This led to the JSCert [Bod+12] project, whose primary goal is to provide
a formal semantics for JavaScript in Coq. It involved 8 persons for a year. During this
project, we produced⌜from the 200 pages of the ECMAScript standard⌝about 20,000 lines
of Coq code, including 4,000 for the JSCert specification (see Section 2.5), 3,000 for ⌜a
reference interpreter named JSRef⌝ (see Section 2.6), and 4,000 for the proof of its correct-
ness (see Section 2.7). This chapter is mostly based on the JSCert formalisation [Bod+14].
It aims at showing how JSCert has been defined, and why it can be trusted.

2.1 Language Specifications
A language specification is a way to precisely describe⌜what are the programs considered
correct⌝ and ⌜how a given program executes⌝. It can come in various forms:

• an implementation of a compiler or an interpreter (as for PHP),
• a document in prose with varying degrees of rigour (for instance, the C stand-
ard [Gro11] and ECMAScript 5 are fairly precise and complete),
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eval-func
e1 → e′1

@ e1 e2 → @ e′1 e2

eval-arg
e2 → e′2

@ v1 e2 → @ v1 e
′
2

app

@ (λx. e1) v2 → e1 [x/v2]

(a) In small-step

exec-val

v ⇓ v

exec-app
e1 ⇓ λx. e3 e2 ⇓ v2 e3 [x/v2] ⇓ v3

@ e1 e2 ⇓ v3

(b) In big-step

Val

v ⇓ v

app-func
e1 ⇓ v1 @1 v1 e2 ⇓ v3

@ e1 e2 ⇓ v3

app-arg
e2 ⇓ v2 @2 v1 v2 ⇓ v3

@1 v1 e2 ⇓ v3

app-beta
e1 [x/v2] ⇓ v3

@2 (λx. e1) v2 ⇓ v3

(c) In pretty-big-step

Figure 2.1: The rules of the λ-calculus in different semantics styles

• a formal specification (as for Standard ML [MTM97]), which can be paper-based
or mechanised (that is, computer-based, using proof assistants).

Programmers usually use unspecified features and thus rely on implementations—this
however varies along language communities. On the other hand, ⌜compilers, interpreters,
and analysers⌝usually rely on prose documents or on formal specifications. There are thus
several specifications for a given programming language, each usage associated to one
of them. These different definitions do not necessarily agree with each other. Each form
of specification comes with advantages and drawbacks. ⌜The main advantage of having a
reference interpreter⌝ is the interaction with the language community. It can however lead
to overspecifications, which can be controlled in formal frameworks.

Through its history (see Section 1.1.1), JavaScript started to be specified by implementa-
tions, then to have a prose specification: ECMAScript 1. Formal specifications—including
JSCert— then appeared (although they are not official). JavaScript is also equipped with
some test suites [ECM10; Moz13] but they do not cover the full language yet. It is import-
ant to keep this diversity in mind: ⌜an interpreter or an analyser specified by one specific-
ation of JavaScript⌝ is not automatically correct with respect to another.

2.1.1 Formal Specifications
Formal specifications are mathematical objects describing the behaviours of programs.
They take several forms, for instance denotational or axiomatic semantics. We shall fo-
cus on operational semantics, which are defined by a transition system. They define a
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predicate ⇓ relating a program p and its input σ (or semantic context) to a result r. The
input can be program inputs, but also the initial environment. Similarly, the result can be
just a value or a whole environment. Returning an environment is a way to describe side-
effects. The behaviours of a semantics are the triples σ, p ⇓ r recognised by the semantics.
If a semantics displays more (respectively less) behaviours than another—for the inclusion
order—, then it is complete (respectively correct) with respect to this other semantics.

Operational semantics can take several forms. Figure 2.1 shows the rules of the λ-calculus
(in call-by-value) in several kinds of semantics, presented below. The predicate ⇓ is in-
stantiated as follows: there is no semantic context σ in pure λ-calculus, e stands for ex-
pressions, and v for values. The set of values only consists of λ-expressions, which are
considered modulo α-conversion. We write e [x/v] for the capture-avoiding substitution
of all free occurrences of x in e to v. The application is written @.

A small-step semantics [PK87], or rewriting semantics, is a semantics focussing on trans-
itions. Such semantics introduce intermediary terms in which the computation has been
partially performed. For instance, Rule eval-func of Figure 2.1a performs an internal com-
putation in a term e1; the resulting terms @ e′1 e2 is not fully computed. Furthermore, the
computation of e1 may have resulted in an error: in this regard, the term @ e′1 e2 is a spe-
cial term—an intermediary term.⌜Focussing on transitions⌝enables us to define interleaved
programs: if two programs are executed in parallel, each of them can make a step without
altering the other thread. This has been useful for reasoning about parallel computations
and is one of the reasons why small-step semantics are common nowadays.

A big-step semantics [Kah87], or natural semantics, focusses on the results of programs. It is
natural⌜to reason about a program specified in big-step style⌝by reasoning directly over the
structure of program derivations. Intermediary terms are no longer needed, hidden in the
structure of derivations. However, some behaviours are difficult to fit in this formalism.

There exist variants of these two main types of semantics. In this dissertation, we will
be interested in pretty-big-step [Cha13], a restriction of big-step semantics to the follow-
ing constraints. First, rules can not refer to inductive premises (that is, to ⇓) more than
twice. Second rules can not refer to future computations: for instance Rule exec-app of
Figure 2.1b (in big-step) does not respect this constraint, as it requires the term e1 to evalu-
ate to a λ-abstraction λx. e. This constraint forces rules to be local. The only way to know
whether Rule exec-app applies is to evaluate e1 and check that the result has the reques-
ted form. The evaluation of e1 can be arbitrarily complex, or may not terminate: it is im-
possible to locally know whether the rule applies. In pretty-big-step (see Figure 2.1c), we
first evaluate e1 in a separate rule, and only then⌜we have to decide whether the next rule
applies⌝: only local knowledge is required to know whether a rule applies. To this respect,
pretty-big-step is closer to small-step than big-step. Section 4.3 provides more detailed in-
formation about pretty-big-step and its formalisations. The restrictions of pretty-big-step
fits the description of ⌜languages with flow-breaking instructions⌝, in particular, it avoids
rule-duplication. Section 2.5.2.1 elaborates more on this subject.
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These semantic styles can be translated from one to the other. Pretty-big-step semantics
are already a subset of big-step semantics. Ciobâcă [Cio13] proposed a compilation from
small-step semantics to big-step semantics, later refined to a compilation from small-step
to pretty-big-step [PM14].

2.1.2 Specifications using Coq
Coq is a proof assistant based on the calculus of inductive constructions [CH88]. It can be
seen as a purely functional language with rich types. It includes syntactic restrictions on
⌜how fixed points can be defined⌝ to ensure that every function terminates.This makes Coq
functions similar to mathematical functions. Defining partial functions is still possible by
defining an inductive type option A parametrised by the type A, as shown below1.

1 Inductive option (A : Type) : Type :=

2 | Some : A → option A

3 | None : option A.

More generally, Coq implements generalised data structures (GADT) [XCC03]. This en-
ables ⌜to define derivation trees directly as a Coq data structure⌝. Program 2.1 shows such
a derivation definition on the rules of Figure 2.1b. The type var is the set of program
variables and is left as a parameter. The substitution is defined as a fixed point. It termin-
ates because the inductive type expr only contains finite structures. The ifb construct is
described in Section 3.4.1: it is used to test whether the two variables x and x’ of Pro-
gram 2.1b are identical. For the sake of simplicity, we do not consider the case where ex

has x’ as a free variable in Line 7 of Program 2.1b. Instead, we refer the interested reader
to other Coq formalisations of the λ-calculus [Ter95]. The derivation is described in Pro-
gram 2.1c as a tree structure of type expr → expr → Prop. The Prop type is a special
construct denoting propositions; We shall not extend on this subject here: the reader can
consider that ⌜defining an element of type derivation e v⌝ amounts to prove that e ⇓ v.

The type derivation e v depends on the terms e and v, Coq allows types to depend on
terms—in other words, Coq is dependently typed. This enables us to express very precise
properties about programs. The Coq framework also enables to define fixed points⌜whose
return value lives in Prop⌝. This amounts to prove properties by induction over some term
or derivation. This parallel between terms and proofs is called the Curry-Howard iso-
morphism [CF58; How80]. ⌜Defining proofs terms⌝ is a complex task. Proofs are usually
defined using tactics, that is, programs which help building ⌜proof terms⌝. The unproven
premises of tactic proofs are sent back to the user, making ⌜proof assistants⌝ interactive.
A detailed presentation of a proof using tactics is shown in Sections 2.7.3 and 5.3. Apart
from these particular proofs, proofs are not detailed in this dissertation.

1 This type is actually already included in the standard Coq library.
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1 Variable var : Type.
2

3 Inductive expr : Type :=
4 | variable : var → expr
5 | lambda : var → expr → expr
6 | app : expr → expr → expr.

(a) Syntax

1 Fixpoint substitute e x ex :=
2 match e with
3 | variable x’ =>
4 ifb x = x’ then ex else e
5 | lambda x’ e’ =>
6 ifb x = x’ then e
7 else lambda x’ (substitute e’ x ex)
8 | app e1 e2 =>
9 app (substitute e1 x ex) (substitute e2 x ex)

10 end.

(b) Variable substitution

1 Inductive derivation : expr → expr → Prop :=
2 | exec_val : forall x e,
3 derivation (lambda x e) (lambda x e)
4 | exec_app : forall e1 e2 x e3 v2 v3,
5 derivation e1 (lambda x e3) →
6 derivation e2 v2 →
7 derivation (substitute e3 x v2) v3 →
8 derivation (app e1 e2) v3.

(c) Semantics

Program 2.1: Specifying the semantics of Figure 2.1b in Coq

Symmetrically to inductive definitions, Coq also accepts coinductive definitions [RL09].
Whilst inductive definitions are structurally finite (at least for the intuition: carried func-
tions can make things complex), coinductive structures can be infinite. These constructs
can be seen as lazy: they are only computed when being⌜pattern matched⌝, and the compu-
tation will stop when enough information has been computed for the ⌜pattern matching⌝.
Section 4.4.2 uses coinduction to define potentially infinite derivation trees.

2.2 ⌜Large Scale⌝ Formalisations
The JSCert project was not the first to provide a formal semantics of a complex pro-
gramming language. This section presents some related works in the domain of formal
specification of programming languages in general and JavaScript in particular. JSCert
shares many of the challenges faced by these works.
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2.2.1 For Languages Other Than JavaScript

One of ⌜the most prominent, fully formalised, presentations of a programming language⌝
is Standard ML [MTM97]. A mechanised specification [LCH07] was later given in the
Twelf theorem prover [PS99]. Unlike Standard ML, few programming languages are
designedwith formalism inmind.This raises a considerable challenge tomechanisation.

There have been a lot of efforts on mechanised language specifications in Isabelle/Hol.
For instance Norrish [Nor98] specified a small-step semantics of C and used it to prove
simple programs. He also proved some invariants of the semantics, for instance that un-
defined behaviours get propagated. However, his semantics has not been related to im-
plementations. Another example is about transmission control protocols (TCP) [Bis+06],
in which the authors specified TCP from several implementations. The specification was
validated by several thousand test traces captured from implementations.

In the context of the CompCert project [Ler+08], Blazy and Leroy [BL09] built a verified
optimising compiler for⌜CompCert C⌝—a subset of C—as well as a Coq proof that the gen-
erated code behaves as one of the possible behaviours of the source program. The Comp-
Cert project initiated⌜major technological breakthroughs⌝ in Coq mechanisation, some of
which has been used in JSCert.⌜Thesemantics of C chosen for the CompCert compiler⌝has
been related to the specification of C in prose. Several projects are based on CompCert.
CompCertTSO [Šev+11] adapts CompCert for the x86 weak memory model [Alg+10].
Besson et al. [BBW15] extends CompCert to give a semantics to more programs. The
language specification of CompCert has then been used as a basis of certified analys-
ers [App11; Jou+15]: these analysers have been defined and certified in Coq.

Proof assistants require some effort to get used to. Researchers are beginning to explore
how to make mechanised specification easier. The K framework is designed specifically
for writing and analysing language definitions using small-step [ER12]. In particular, Roşu
and Şerbănuţă [RŞ10] define⌜an executable formal semantics of C⌝ inK. This formalisation
has been tested against the GCC test suite [Fre10]. Besides being executable, the semantics
also comes with an explicit-state model checker. In contrary to CompCert, this semantics
is related to the C compilers through tests.The relatively recentK framework has received
considerable interest from various other authors. An instance is a formalisation of PHP
inK by Filaretti and Maffeis [FM14]. Similarly toK, Ott [Sew+10] is another framework
designed to specify semantics; it provides a domain-specific tool to define programming
languages. The Ott framework is able to automatically translate to Isabelle/Hol and
Coq. Owens [Owe08] defines a mechanised semantics of Caml Light using Ott.

There are many more examples of mechanised specifications of programming languages.
For instance, the work of Syme [Sym99] for an Isabelle/Hol version of the formal Java
semantics of Drossopoulou and Eisenbach [DE97], Gurevich’s work [Gur94] for an execut-
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able formalisation of the C# standard, and Farzan et al.’s work [Far+04] for an executable
formal semantics of the version 1.4 of Java in small-step. The formal semantics [Bat+11;
BDG13] of the concurrency of C++,which has a real impact on the C11 standard [Gro11].

2.2.2 Formal JavaScript Specifications

JSCert is not the first formalisation of JavaScript. Notably, ECMAScript 1, the first
standard of JavaScript, was based on several implementations (mainly Netscape’s and
Microsoft’s). This section aims at presenting the most important formalisations.

The firsts to propose a formal type system for a subset of JavaScript were Anderson
et al. [AGD05] and Thiemann [Thi05] in 2005. To prove type-soundness, they formalised
idealised cores of the language which abstracted away ⌜features not crucial for their type
analyses⌝. Since then, researchers have studied various typed JavaScript subsets and static
analyses [PSC09; GL09; JC09; CHJ12; JMT09; Chu+09; HS12; PLR11; Gua+11; PLR12]. For
example, Thiemann [JMT09] used abstract interpretation to develop a tool inferring ab-
stract types for the full language, although the formal theory only works for a subset.
Others have studied information flow [Chu+09], with some [HS12] proving their results
in Coq. All these techniques have been helpful for addressing specific safety problems.
None provide general-purpose analyses, most do not work with the full language and
⌜those who prove soundness⌝ do so with respect to their abstract models rather than the
ECMAScript semantics or an actual concrete implementation. ⌜The security issues identi-
fied in some works [MT09b; MMT09; MMT10]⌝ demonstrate that ⌜the semantic subtleties
of corner cases of the language⌝ crucially matter. Moreover, empirical analysis [Ric+11]
confirms that some of⌜the language features which are usually ignored by researchers⌝are
important for actual web programmers.

The first formal semantics of JavaScript to be executable was the one of Herman and
Flanagan [HF07]. The authors presented ⌜an interpreter of a non-trivial subset of ECMA-
Script 4⌝written in Standard ML, which is in turn formalised [Mil+97]. ⌜Having an ex-
ecutable semantics⌝ enables testing. It also has the advantage of being easily read by func-
tional programmers.The drawbacks are⌜a loose correspondence with the specification⌝and
⌜implementation details which sometimes obscure the semantics of the language features⌝.
Because of JavaScript’s non-local features, they had to use Standard ML’s exceptions—
these features are directly modelled using pretty-big-step in JSCert.

The first full semantics for ECMAScript 3 was defined by Maffeis et al. [MMT08]. It
covers the whole language—apart from a few corner cases, such as regular expressions,
dates, and machine arithmetic. The (large) formalisation has been done in ⌜small-step
style⌝and proves some theorems about determinacy and well-definedness of the language.
This work has been useful to prove the soundness of ⌜security-related JavaScript sub-
sets [MT09b; MMT09; MMT10]⌝, and influenced the definition of further JavaScript form-
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Figure 2.2: How JSCert is related to JavaScript

alisations, such as Secure ECMAScript [Tal+11], and the big-step semantics of core Java-
Script [GMS12; BDM13]. However, this work was not mechanised, which makes⌜building
further works on top of it⌝ or ⌜proving language properties⌝ difficult.

Guha et al. [GSK10] proposed a different approach to develop language semantics. They
provide a translation (named desugaring) from JavaScript to ⌜an executable language
called λJS, based on a λ-calculus with references⌝. Their aimwas to develop provably sound
type systems to reason about the safety of client-side web applications. They targeted the
implementation of ECMAScript 3 in Mozilla Firefox. The semantics was validated by
testing it against JavaScript test suites [ECM10; Moz13]. The λJS semantics has then
been extended to the strict mode of ECMAScript 5 [Pol+12a] under the name S5. An un-
published, small-scale Coq formalisation of λJS has been announced on the Brown PLT
blog [Pol+12b]. It features a Coq model of λJS, as well as some properties about the λJS

language, such as progress and some invariants.

The work on λJS has been influential in proving properties of ⌜well-behaved JavaScript
typed subsets, where programmers accept restrictions on full JavaScript in exchange for
safety guarantees⌝. For example, Politz et al. [Pol+11a] present a type system for λJS which
captures the informal restrictions enforced by ADSafe. Fournet et al. [Fou+13] define a
translation between F⋆—a subset of Microsoft F# with refinement types—and λJS. The
authors show that their encoding is fully abstract, implying that ⌜the safety properties re-
spected by a source F⋆ program⌝ are preserved when translated to JavaScript and run
on a trusted web page. The λJS formalisation has since been related to JSCert by Ma-
terzok [Mat16], who provides a Coq formalisation of λJS—both in the form of an opera-
tional semantics and an interpreter, both representations being proved correct and com-
plete with respect to each other. Materzok then proved that the desugaring of λJS is correct
with respect to JSCert, effectively relating both formalisations.

Since JSCert came out, a new formal specification of JavaScript has been published:
KJS [PSR15] is a K specification if JavaScript. It has the advantage of being runnable,
whilst being rule-based (in small-step). Section 2.10 discusses more about it.

To conclude these sections of related work, there are two main ways to relate a formal se-
mantics to a language: one can test that the semantics agrees on the result of tests suites, or
one can relate the semantics to the official specification of the language. In other words, a
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formal semantics can be trusted either because it produces the same results than interpret-
ers, or because it is close to its prose specification. JavaScript has the chance of having
both: the main specification is written in prose, but a lot of test suites exist—in particular
those used to relate λJS to JavaScript. To get the full trust of a formal specification of such
a subtle language as JavaScript, we need both ways. The JSCert project is thus split into
two parts: a specification—named JSCert—, and an interpreter—named JSRef.

2.3 Methodology
Given the size of JavaScript’s semantics, a formal semantics of JavaScript is likely to
have bugs. As this semantics is meant to be the basis of further works, it has to be trusted.
But how to trust such a semantics? There are two ways on which a semantics can be
related to JavaScript: by relating it to JavaScript’s prose specification, or by relating it
to test suites. The idea behind JSCert is that, to trust a formal specification, it has to be
certified by both certification methods: to the prose specification and to the test suites.

To be the closest possible to ECMAScript, JSCert has to use the same data structures,
even if it means losing efficiency or readability. This closeness enables us to point where
each part of ECMAScript is represented in JSCert and conversely. If someone disagrees
on an interpretation of the prose specification, it is easy to locate which part of JSCert
should be changed—this also applies if someone wants to formalise a variant of Java-
Script, such as the one executed in a real-world interpreter. On the other hand, to be able
to run JSCert on test suites, it is accompanied by ⌜a JavaScript interpreter named JSRef⌝.
JSRef is proven correct with respect to JSCert. Figure 2.2 sums up the relations between
JSCert and JavaScript. Section 2.7 explains how the trust is established.

JSCert is not the first formal or executable semantics of JavaScript, but it is the first
⌜semantics for the entire core language, closely reflecting the official standard, both ex-
ecutable and formalised in a proof assistant⌝. ⌜Reflecting the structure of the specification⌝
has several advantages over a translational approach (such as λJS): the JavaScript pro-
grammer intuition is better reflected, and the semantics is robust to local changes2.

2.4 The ECMAScript Standard
ECMAScript 5 has not been defined with formal specification in mind. It has not been
optimised for conciseness, reuse, or readability. It also contains a lot of copy/pasted parts.
A semantics of this size has to be read with doubt, which is why JSCert was being needed.
We already encountered an extract of the ECMAScript standard in Program 1.4: it is
presented as an algorithm written in pseudo-code, each step being executed in order3; it
uses structures useful for interpreters, but not necessarily for reasoning.

2 Unfortunately, the changes between ECMAScript 5 and ECMAScript 6 are not local. This makes
JSCert stuck for now in ECMAScript 5. But there are some promising workaround presented in Section 2.8.

3 This is the reason why this dissertation categorises⌜extracts of ECMAScript⌝ as programs.
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Interestingly, the ECMAScript standard is precise and non-ambiguous, with two notable
exceptions. We have already discussed one in Section 1.3: the standard allows the inter-
preter to add objects in the initial environment, whose behaviours are completely free.
Second, ⌜the specification of the for-in construct⌝ defines very loosely the enumeration
order of field names; this is discussed in more details in Section 2.9.

Completion triples are a good example of the non-⌜proof-friendly⌝ structures of ECMA-
Script; they are ⌜the result of the evaluation of an expression, a statement, or a program⌝.
Completion triples carry information about executed ⌜flow-breaking instructions⌝, such as
throw. They are composed of a type, an optional value, and an optional label. The given
type is one of Normal, Return, Break, Continue, or Throw: Normal indicates that the result
comes from a non-⌜flow-breaking⌝ instruction. Any completion whose type is not Normal
is called an abrupt completion. The optional value describes the result of an expression or
a statement (if the type is Normal), the value carried by a return statement (if the type is
Return), or the object describing the exception being thrown (if the type is Throw). When
this value is absent, we shall speak of an empty or an undefined value (not the value
undefined). The optional label is only used ⌜for the Break and Continue types⌝, it is used to
divert the execution flow to specific target labels.

As functional programmers, we (the JSCert team) started JSCert by defining completion
triples as in Program 2.2a, assuming that some invariants hold in the specification—for
instance that a completion triple with type Break would not carry a value, as break state-
ments do not return such completion triples. However, there are places in the specification
breaking this assumption, starting with the sequence of statements whose specification
is shown in Program 2.3. As can be seen Step 6,⌜the resulting completions triple s defined
Step 3⌝has been updated into a completion triple with a new valueV , defined Step 5. As a
consequence, the statement break l returns the completion triple (Break, empty , l), but
the sequence 1 ; break l returns (Break,1, l). The assumed invariants thus do not hold.
This made us change the definition of completion triples to be closer to ECMAScript, by
removing our initial constraints. The new definition is shown in Program 2.2b.

Given the complexity of JavaScript’s semantics, changing definitions can yield a lot of
effort to rewrite the rules. It is thus important to use the same structures as the specific-
ation, even where the specification definitions do not fit intuition or hinder readability.
The intuition of researchers can be different from the one of the ECMAScript committee.
For instance, the ⌜loop unrolling⌝ property does not hold in ECMAScript 5—that is while
(e) s is not equivalent to if (e){s ; while(e) s}—the while-construct mixing comple-
tion triples differently than the sequence [Thea] (see next section). This has been fixed
in ECMAScript 6, though. ⌜A structure based on the assumption that some invariants
always hold⌝may broke in future versions of ECMAScript. As ECMAScript nowadays
changes quickly, ⌜being the closest possible to the original specification⌝ is critical to keep
up the pace. In addition, using the same structure is a good way to increase the trust of
correspondence between the two specifications, as discussed in details in Section 2.7.
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1 Inductive res :=
2 | res_normal : option value → res
3 | res_break : option label → res
4 | res_continue : option label → res
5 | res_return : value → res
6 | res_throw : value → res.

(a) Completion triples as they were defined in an early version of JSCert

 

 

1 Inductive restype := (* result type *)
2 | restype_normal
3 | restype_break
4 | restype_continue
5 | restype_return
6 | restype_throw.
7

8 Inductive resvalue := (* result value *)
9 | resvalue_empty : resvalue

10 | resvalue_value : value → resvalue
11 | resvalue_ref : ref → resvalue.
12

13 Inductive reslabel := (* result label *)
14 | reslabel_empty : reslabel
15 | reslabel_string : string → reslabel.
16

17 Record res := { (* completion triple *)
18 res_type : restype ;
19 res_value : resvalue ;
20 res_label : reslabel }.

(b) Current JSCert completion triples

Program 2.2: JSCert completion triples

“s1 ; s2” is evaluated as follows.
1. Let sl be the result of evaluating s1.
2. If sl is an abrupt completion, return sl .
3. Let s be the result of evaluating s2.
4. If an exception was thrown, return (Throw,V , empty) where V is the exception.

(Execution now proceeds as if no exception were thrown.)
5. If s.value is empty, let V = sl .value , otherwise let V = s.value .
6. Return (s.type,V , s.target).

Program 2.3: Semantics of the sequence of statements in ECMAScript 5
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2.4.1 Running Example: the while Statement

We have seen many interesting features in the semantics of JavaScript in Chapter 1,
including prototype-based inheritance in Section 1.2.3 and implicit type conversions (with
potential side effects) in Section 1.2.4. All of these features are properly described by the
JSCert semantics. We focus here on the while statement, as it is simple enough to show
how JSCert has been built, whilst showing interesting aspects of the formalisation.

Program 2.5 shows the prose specification of ⌜the while construct⌝ as it appears in the
ECMAScript 5 standard. Its specification is relatively short in comparison to other con-
structs such as switch, whose specification spreads on more than one page. The pseudo-
code of ECMAScript is similar to usual imperative programming language—in particu-
lar, it leaves completely implicit two major aspects of its semantics. The first aspect is the
threading of the mutable state: ECMAScript 5 assumes that there is one global heap stor-
ing objects, and that the instructions in the pseudo-code can modify this heap.The second
aspect is the propagation of aborting states through expressions: ⌜aborting states (such as
exceptions) occurring in statements⌝are explicitly propagated (as in Step 4 of Program 2.3)
but this is not the case in expressions, where propagation is left implicit. ⌜The reason of
this difference of treatment⌝may be that, in contrary to expressions, statements usually
update the value of returned completion triples, such as in Steps 4 and 6 of Program 2.3.
This issue being a potential source of ambiguities, it has been solved in ECMAScript 6,
in which the propagation of aborting states is always explicitly specified.

Let us describe the pseudo-code of Program 2.5 in details. The basic structure is stand-
ard: repeat the loop body until the loop condition evaluates to false, or until the body
of the loop produces ⌜an abrupt completion, such as a break, a return, or an exception⌝.
Consider Step 2b: the result of the expression e is not necessarily ready to be used, as it
can be a reference to an object field. The internal GetValue function is used to dereference
it. In addition, JavaScript uses ⌜the internal function ToBoolean⌝ to implicitly coerce the
loop guard to a boolean before attempting to test it (see Section 1.2.4 for more details).
⌜Internal functions such as GetValue and ToBoolean⌝ can not abort, which justifies the us-
age of the functional notation ToBoolean (GetValue (exprRef )). Now, consider Step 2e.
JavaScript enables labelled ⌜break and continue⌝ statements to refer to an outer loop: the
“current label set” refers to the set of labels which are associated with the current loop (a
loop may be associated to several labels). For instance, in the program outer: while (1){

inner: while (1){ break outer } }, the result of the break statement gets propagated
through the inner loop as if it were an exception.

Note that while loops have a return value V . The returned value of statements can be
accessed using the eval construct. As detailed in Step 5 of Program 2.3,⌜the output value of
a sequence of statements⌝ is the last value produced by a statement in their body.This leads
to the results shown in Program 2.4: there is no inner computation Line 1, and the valueV
is empty all along, resulting in the value undefined. In Line 4, the inner loop computes
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1 eval (”out: while (true){ while (true){ break out }}”) ;
2 // Returns undefined.
3

4 eval (”out: while (true){ while (true){ ’in’ ; break out }}”) ;
5 // Returns ”in”.
6

7 eval (”out: while (true){ ’middle’ ; while (true){ ’in’ ; break out }}”) ;
8 // Returns ”in”.
9

10 eval (”out: while (true){ ’middle’ ; while (true){ break out }}”) ;
11 // Returns ”middle”.
12

13 eval (”out: while (true){ ’middle’ ; while (true){ undefined ; break out } }”)
14 // Returns undefined.

Program 2.4: ⌜Return values⌝of various while statements

“while (e) s” is evaluated as follows.
1. Let V = empty .
2. Repeat

a) Let exprRef be the result of evaluating e.
b) If ToBoolean (GetValue (exprRef )) is false, return (Normal,V , empty).
c) Let stmt be the result of evaluating s.
d) If stmt .value is not empty, let V = stmt .value .
e) If stmt .type is not Continue or stmt .target is not in the current label set, then

i. If stmt .type is Break and stmt .target is in the current label set, then
A. Return (Normal,V , empty).

ii. If stmt is an abrupt completion, return stmt .

Program 2.5: Semantics of the while construct in ECMAScript 5

the inner value ”in”, which is propagated. In Line 7, both the inner and outer loop creates
a result, the last result being propagated. Line 13 shows that the value undefined behaves
exactly the same as any other value, overwriting the previous result ”middle”.

2.4.2 What JSCert does Not Specify

The ECMAScript 5 standard is a document of 16 chapters, with more than 200 pages;
it largely consists of pseudo-code in the style of Programs 2.3 and 2.5, with some prose
clarifications. The standard is separated into the following chapters:

• Chapters 1 to 4, as well as Chapter 16, (9 pages in total) describe how the standard
itself should be read.

• Chapters 5 to 7 (21 pages) describe how ⌜JavaScript programs⌝ should be parsed.
⌜The grammar of each construct⌝ is given in the next chapters simultaneously to their
specifications: these three chapters explain specifically how to use the grammar to
build an abstract ⌜syntax tree⌝ (AST).
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• Chapters 8 and 9 (23 pages) describe⌜the values manipulated in JavaScript⌝, as well
as some internal functions to manipulate them, such as ToBoolean .

• Chapter 10 (12 pages) describes the context in which a JavaScript program is ex-
ecuted (see Sections 1.2.3 and 2.5.1.2 for more details).

• Chapters 11 to 14 (40 pages) describe how each construct should be executed (ex-
pressions, statements, and programs). Programs 2.3 and 2.5 come from this part.

• Chapter 15 (104 pages) covers the native library: JavaScript comes with a build-in
library to manipulate ⌜its structures, such as arrays and strings⌝ (see Section 1.2.6).
This chapter also includes the definition of objects such as Math and Date.

JSCert provides a specification of the main part of the language: the syntax (as an AST);
the semantics of expressions, statements and programs; and most native library functions
exposing internal features of JavaScript—in particular the methods of the objects⌜Object,
Function, and Error⌝. However, most of Chapter 15 have not been formalised. The objects
Array, String, and Date involve hundreds of methods. Furthermore, most of these con-
structs do not interact with any internal feature of JavaScript. As seen in Section 1.2.6,
these functions could be implemented as plain JavaScript code: see Section 2.8 for a
discussion about it. The for-in construct has not been formalised because the standard
defines it very loosely; this is discussed in more details in Section 2.9.

JSCert does not specify the parsing of JavaScript programs. This is notable as Java-
Script enables reflection (see Section 1.2.5). Furthermore, as seen in Section 1.2.7, parsing
JavaScript is unusually complex: building a certified parser of JavaScript is a difficult
task. JSRef uses the Esprima parser [Hid12], a heavily tested JavaScript parser.

To conclude, JSCert provides a specification of ⌜Chapters 8 to 14 of the ECMAScript
specification⌝. The rest can either be completed using an external parser, or using features
directly implemented in JavaScript’s core language (as discussed in Section 2.8).

2.5 JSCert: JavaScript Specification in Coq

The formal development in Coq of JSCert [Bod16] consists of five main parts, shown in
Figure 2.3 with the Coq files implementing each part and their dependencies. The first
part describes the syntax and data structures—such as heaps and scopes—which are used
to describe the state of a JavaScript programs; both JSCert and JSRef share these defin-
itions. The second part contains a collection of auxiliary definitions, such as functions
used to convert primitive values to booleans or strings. These first two parts are described
in Section 2.5.1. The next two parts correspond to JSCert (Section 2.5.2) and JSRef (Sec-
tion 2.6). The last part consists of the correctness proof, proving that any result computed
by JSRef is correct with respect to the semantics from JSCert (Section 2.7).
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JavaScript
syntax

JsSyntax.v

Auxiliary
Definitions

JsPreliminary.v
JsCommon.v
JsInit.v

JSCert

JsPrettyInterm.v
JsPrettyRules.v

JSRef

JsInterpreterMonads.v
JsInterpreter.v

Proof of
correctness

JsCorrectness.v

Figure 2.3: General structure of JSCert and JSRef, with the corresponding Coq files

2.5.1 Syntax and Auxiliary Definitions

JSCert and JSRef share the same data structures, from the grammar of JavaScript to the
representation of the memory. This section describes these structures.

2.5.1.1 Abstract Syntax Tree

Parsing is not modelled in JSCert, which directly manipulates an AST. In the JSRef inter-
preter, the AST is obtained by running ⌜Esprima extended with some interface code⌝.

The grammar of JavaScript expressions and statements is shown (in part) in Program 2.6.
Compared to the JSCert specification, this inductive is very short. Indeed, the complex-
ity of JavaScript resides its corner cases, not in its constructs. A JavaScript program
consists of a list of ⌜function definitions and statements⌝, as well as a strictness flag (see
Section 1.2.8). The body of a function definition is itself a JavaScript program. The argu-
ment of a call to eval, once parsed, is also a JavaScript program.

2.5.1.2 Execution State

As explained in Section 1.2.3, a JavaScript program is always executed in a given state
and in a given execution context. The state is a structure used to make side-effects global: it
is propagated over every side-effect construct. The execution context is used to associate
variables to their values. The state consists of two heaps: the object heap (which we will
often simply call “the heap”) and the heap of environment records. The object heap is
represented as a finite map from locations to objects. We have seen in Section 1.2.3 that
objects have some special fields in JavaScript, such as their prototype. In total, the record
representing objects contains 25 components; this includes the field map—which maps
every normal fields to their values—, as well as some optional fields, such as the body and
scope for functions. These special fields enable to tag objects with different behaviours;
for instance, arrays have a special Delete internal method. Not all of these special fields
carry a normal value; for instance, the body of a function carries a program.
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1 Inductive expr := (* expressions *)
2 | expr_this : expr
3 | expr_identifier : string → expr
4 | expr_literal : literal → expr
5 | expr_object : list (propname * propbody) → expr
6 | expr_function : option string → list string → prog → expr
7 | expr_access : expr → expr → expr
8 | expr_call : expr → list expr → expr
9 | expr_binary_op : expr → binary_op → expr → expr

10 | expr_assign : expr → option binary_op → expr → expr
11 (* ... *)
12

13 with stat := (* statements *)
14 | stat_expr : expr → stat
15 | stat_block : list stat → stat
16 | stat_var_decl : list (string * option expr) → stat
17 | stat_if : expr → stat → option stat → stat
18 | stat_while : label_set → expr → stat → stat
19 | stat_with : expr → stat → stat
20 | stat_throw : expr → stat
21 | stat_return : option expr → stat
22 (* ... *)
23

24 with prog := (* programs *)
25 | prog_intro : strictness_flag → list element → prog
26

27 with element := (* program elements *)
28 | element_stat : stat → element
29 | element_func_decl : string → list string → prog → element.
30

31 with propbody := (* items in object initializers *)
32 | propbody_val : expr → propbody
33 | propbody_get : prog → propbody
34 | propbody_set : list string → prog → propbody
35

36 (* ... *).

Program 2.6: A snippet of JSCert AST
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Thefieldmap binds field names to field attributes, rather than directly to values. Indeed, Ja-
vaScript enables to tag some fieldswith special properties such aswritable or enumerable.
These tags are then used in the semantics to associated them with special actions. There
are two kinds of ⌜field attributes⌝, corresponding to the two ways an ⌜object field⌝ can be
defined. ⌜Data field⌝ attributes store a value and whether the value is writable, enumerable,
or configurable. ⌜Data accessor⌝ attributes store two values (a getter and a setter) as well as
two tags, enumerable and configurable.

ECMAScript 5 suggests that ⌜field attributes⌝ should be represented as a record with six
optional fields. In particular, the specification of the function DefineOwnProperty involves
the construction of a ⌜field attribute⌝which explicitly manipulates records using arbitrary
subsets of the six optional fields. However, in many other places, the standard uses exactly
four fields, implicitly making the assumption that the considered field attribute is either
a ⌜data field⌝ attribute or a ⌜data accessor⌝ attribute, depending from the context. In order to
strictly follow the standard, JSCert provides two distinct representations of data fields:
the first consists of a record with six optional fields; whilst the second consists of an
inductive type with two cases, one for ⌜data field⌝ attributes and one for ⌜data accessor⌝
attributes, both represented as records with exactly four mandatory fields. The overhead
of defining conversion functions between the two forms was negligible compared to the
benefits of avoiding the pollution of many rules with accesses to optional fields.

In addition to the object heap, a state also contains a heap of environment records. As
described in Section 1.2.3.1, there are two kinds of environment records: declarative en-
vironment records provide the local scoping of function calls, and object environment
records point to an object in the object heap. Environment records are stored in a data
structure similar to the object heap. The outermost environment of a lexical environment
is always ⌜an object environment record pointing to the global object⌝. Function objects
store a lexical environment in one of their internal fields (called @scope in Figure 1.6).

2.5.1.3 Execution context

The execution context indicates how to interpret JavaScript programs. It contains ⌜a flag
indicating whether the current execution is in strict mode (see Section 1.2.8)⌝. It also stores
the this value and the lexical environment (see Section 1.2.3.1).

2.5.2 JSCert

The semantics of JavaScript statements is given in JSCert by a judgement of the form
S,C, t ⇓s o, where t denotes a statement, S denotes the state (see Section 2.5.1.2), C de-
notes the execution context (see Section 2.5.1.3), and o denotes the output.There are similar
judgements ⇓e, ⇓i, and ⇓p for expressions, internal reductions, and programs. The output
is a pair of ⌜the final state and the completion triple produced by the evaluation (see Sec-
tion 2.4)⌝; it is represented by the Coq type out. The judgement ⇓i for internal reductions
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has a⌜return type⌝different from the three others, as it can result in many different types—
for instance, some return ⌜field descriptors⌝, which can not be represented in the type out.
They are thus associated with a more general ⌜return type⌝, named specret T for “special
return”, which is parametrised by the type T of returned values. To add further complexity,
internal reductions may call ⌜arbitrary user code which may terminate with an abrupt ter-
mination, such as throwing an exception⌝; their return type is thus not uniform: it returns
a modified state and a term of type T when the computation is successful, but returns a
term of type out otherwise. This behaviour is captured by⌜the specret type shown below⌝;
it features two constructors: specret_val for when the requested type T is successfully
built, and specret_out for when an exception is thrown.

 

 

1 Inductive specret T :=

2 | specret_val : state → T → specret T

3 | specret_out : out → specret T.

2.5.2.1 Pretty-big-step Semantics Style in JSCert

TheECMAScript standard uses a very specific pseudo-code, as we can see in Program 2.5:
it is basically a sequence of⌜steps of the form “Let r be the result of evaluating t”⌝, with some
additional branching constructs, such as “If” and “Repeat”. Such let-steps directly relate a
term t to its result r, as in ⌜big-step semantics style⌝. However, each step of ECMAScript
can abort, breaking the control flow. In big-step style, this would duplicate rules, resulting
in a semantics difficult to match with the standard. We translate below Program 2.5 in big-
step style, from Step 2a to Step 2c. The first rule considers ⌜the case in which e aborts in
Step 2a⌝, the second when it evaluates to a value converted into the boolean false, and the
third when it evaluates to a value converted into true, but the statement s aborts. Previous
computations are repeated in each latter rule. If a construct is described by n steps in
the standard, it would be translated in big-step into approximately n rules with up to
n premises. The ⌜big-step style⌝ thus does not scale to the complexity of JavaScript.

S,C, e ⇓e o abort o

S,C,V , while (e) s ⇓s o

S,C, e ⇓e vret S′ v S′,C,ToBoolean (GetValue (v)) ⇓i false

S,C,V , while (e) s ⇓s vret S′ V

S,C, e ⇓e vret S′ v
S′,C,ToBoolean (GetValue (v)) ⇓i true S,C, s ⇓s o abort o

S,C,V , while (e) s ⇓s vret S′ V
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Big-step semantics are not very common nowadays because of concurrency, which is
better expressed in small-step style. This issue is not a problem for JavaScript, as no con-
currency is defined in the standard: a JavaScript program blocks its host. In particular, ⌜a
looping JavaScript program in a webpage⌝ freezes its browser (or browser-tab). This be-
haviour enables us to consider other types of ⌜semantics styles⌝, such as pretty-big-step.

The pretty-big-step semantics style [Cha13] discussed in Section 2.1.1 appeared to be a
good match for JSCert: similar to big-step, it directly relates terms with results, but it also
avoids rule duplication. In this set-up, each step of the standard is associated to⌜an interme-
diary term performing one local computation⌝; after this local computation is performed,
the computation either goes to the next step (represented by an intermediary term), or
stops in case of abortion. This allows JSCert and ECMAScript to be close to each other,
thus increasing⌜the trust expected from JSCert⌝. Figure 2.4 shows the JSCert rules corres-
ponding to Program 2.5 describing⌜the while construct⌝; it is written stat_while L e t in
Coq, where e is the guard, t the body, and L is a set of labels (used to manage break and
continue statements), as shown in Program 2.6. We now show the close correspondence
between the steps of Program 2.5 and the JSCert rules.

Step 1 of the ECMAScript specification says “Let V = empty”; in JSCert, Rule red-
stat-while redirects the computation of stat_while L e t into ⌜the intermediary term
stat_while_1 L e t resvalue_empty⌝. This intermediary term carries all the information
of the original while construct, with ⌜the additional information that the value of V is
resvalue_empty, which is the representation in JSCert of an empty value⌝. Step 2 consists
of the loop; in JSCert, we may loop back to this point at any time using the stat_while_1
intermediary term, as if it were the label of a Goto instruction.

Now consider Steps 2a and 2b; these steps represent a common pattern in ECMAScript:
first, we evaluate some sub-expression, then we perform ⌜a GetValue and a type conver-
sion (here as a boolean)⌝ on the result. Note how much is left implicit in ECMAScript:
the expression evaluation and the type conversion could diverge or abort4; and both the
expression evaluation and the type conversion could have side effects on the program
state. This pattern occurs so frequently that we introduced ⌜a special intermediate form
to handle it⌝, while making ⌜these side effects, divergence, and abortion propagation⌝ clear:
in Rule red-stat-while-1, the intermediate form spec_expr_get_value_conv takes care
of the evaluation of e, its GetValue , and its type conversion. We specify ⌜which type to
convert to⌝using the term spec_to_boolean.

The remaining work of Step 2b is performed by Rule red-stat-while-2-false. As the type
conversion may have side effects, Rule red-stat-while-2-false takes its initial state S

from the result of the type conversion as given by the intermediary term, ignoring the
other one given (written _ in Figure 2.4). The new state can not be sent directly to this
rule as it would require to match in Rule red-stat-while-1 over the output y of the type

4This is actually not the case for boolean conversions, but it may happen in⌜string or number⌝conversions.
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red-stat-while
S,C, stat_while_1 L e t resvalue_empty ⇓s o

S,C, stat_while L e t ⇓s o

red-stat-while-1
S,C, spec_expr_get_value_conv spec_to_boolean e ⇓i y

S,C, stat_while_2 L e t rv y ⇓s o
S,C, stat_while_1 L e t rv ⇓s o

red-stat-while-2-false

_,C, stat_while_2 L e t rv (vret S false) ⇓s out_ter S rv

red-stat-while-2-true
S,C, t ⇓s o1 S,C, stat_while_3 L e t rv o1 ⇓s o
_,C, stat_while_2 L e t rv (vret S true) ⇓s o

red-stat-while-3

rv′ =
⎧⎪⎪⎨⎪⎪⎩

res_value R if res_value R ≠ resvalue_empty,
rv otherwise

S,C, stat_while_4 L e t rv’ R ⇓s o
_,C, stat_while_3 L e t rv (out_ter S R) ⇓s o

red-stat-while-4-continue
res_type R = restype_continue ∧ res_label_in R L

S,C, stat_while_1 L e t rv ⇓s o
S,C, stat_while_4 L e t rv R ⇓s o

red-stat-while-4-not-continue
¬ (res_type R = restype_continue ∧ res_label_in R L)

S,C, stat_while_5 L e t rv R ⇓s o
S,C, stat_while_4 L e t rv R ⇓s o

red-stat-while-5-break
res_type R = restype_break ∧ res_label_in R L

S,C, stat_while_5 L e t rv R ⇓s out_ter S rv

red-stat-while-5-not-break
¬ (res_type R = restype_break ∧ res_label_in R L)

S,C, stat_while_6 L e t rv R ⇓s o
S,C, stat_while_5 L e t rv R ⇓s o

red-stat-while-6-normal
res_type R ≠ restype_normal

S,C, stat_while_6 L e t rv R ⇓s out_ter S R

red-stat-while-6-abort
res_type R = restype_normal S,C, stat_while_1 L e t rv ⇓s o

S,C, stat_while_6 L e t rv R ⇓s o

Figure 2.4: JSCert semantics of while loops
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red-expr-abort
out_of_ext_expr e = Some o abort o ¬abort_intercepted_expr e

S,C, e ⇓e o

red-stat-abort
out_of_ext_stat t = Some o abort o ¬abort_intercepted_stat t

S,C, t ⇓s o

Figure 2.5: Propagation of aborting states in JSCert

conversion, which is forbidden in pretty-big-step style. If y is not a normal result, then
Rule red-stat-while-2-false does not apply—vret is a shortcut for an output terminat-
ing on a Normal-typed completion triple—; instead, the abortion is propagated using the
rules of Figure 2.5 (there are similar rules for programs and internal reductions). The func-
tion out_of_ext_stat extracts an eventual output from an intermediary term—in our case,
stat_while_2 carries the result of the type conversion—; if this output is not normal, it is
propagated. There are however some rules catching aborting states and we need a way to
locally disable the rules of Figure 2.5: the predicate abort_intercepted_stat recognises
these constructs. For instance, in the case of the while construct, ⌜Break and Continue⌝-
typed completion triples are handled by⌜stat_while_4 and stat_while_5, which are thus
recognised by abort_intercepted_stat⌝.

Rule red-stat-while-2-false is an axiom rule, since ⌜the corresponding ECMAScript
step⌝ requires to “return (Normal,V , empty)”. VariableV of ECMAScript corresponds to
Variable rv of JSCert; it is not a completion triple, and is converted into the expected one
using ⌜the type coercion⌝ below. A type coercion from a type A to a type B is an implicit
function called wherever the type B was expected but the type A is given. Used properly,
type coercions can sensibly increase the readability of proofs.

 

 

1 Coercion res_normal rv := {|

2 res_type := restype_normal ;

3 res_value := rv ;

4 res_label := label_empty |}.

Step 2c (corresponding to Rule red-stat-while-2-true) follows the pattern of pretty-big-
step: evaluate a statement (in this case t, or s in Program 2.5), and store its result. Each new
pseudo-code variable becomes a parameter of a new intermediary term—in this case the
parameter o1 of stat_while_3. As for stat_while_2, the output o1 can abort and can be
propagated by Rule red-stat-abort. If no abortion happened, the computation proceeds
to ⌜Step 2d, which is another conditional assignment⌝; it is translated into a condition in
Rule red-stat-while-3. It would have been possible to split Rule red-stat-while-3 into
two rules, one in the case where res_value R = resvalue_empty, and one for the other
case: pretty-big-step enables to break at various steps, and choices have thus to bemade.
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1 Inductive ext_stat :=
2 | stat_basic : stat → ext_stat
3 | stat_while_1 : label_set → expr → stat → resvalue → ext_stat
4 | stat_while_2 :
5 label_set → expr → stat → resvalue → specret value → ext_stat
6 | stat_while_3 : label_set → expr → stat → resvalue → out → ext_stat
7 | stat_while_4 : label_set → expr → stat → resvalue → res → ext_stat
8 | stat_while_5 : label_set → expr → stat → resvalue → res → ext_stat
9 | stat_while_6 : label_set → expr → stat → resvalue → res → ext_stat

10 (* ... *).

Program 2.7: Definition of some intermediary terms in JSCert

 

 

1 Inductive red_javascript : prog → out → Prop :=
2

3 | red_javascript_intro : forall S C p p’ o o1,
4 S = state_initial →
5 p’ = add_infos_prog strictness_false p →
6 C = execution_ctx_initial (prog_intro_strictness p’) →
7 red_expr S C (spec_binding_inst codetype_global None p’ nil) o1 →
8 red_prog S C (javascript_1 o1 p’) o →
9 red_javascript p o

10

11 with red_stat : state → execution_ctx → ext_stat → out → Prop :=
12

13 | red_stat_exception : forall S C extt o,
14 out_of_ext_stat extt = Some o →
15 abort o →
16 ~ abort_intercepted_stat extt →
17 red_stat S C extt o
18

19 (* ... *)
20

21 | red_while_2e_ii_false : forall S C labs e1 t2 rv R o,
22 res_type R = restype_normal →
23 red_stat S C (stat_while_1 labs e1 t2 rv) o →
24 red_stat S C (stat_while_6 labs e1 t2 rv R) o
25

26 with red_expr : state → execution_ctx → ext_expr → out → Prop :=
27 (* ... *)
28

29 with red_prog : state → execution_ctx → ext_prog → out → Prop :=
30 (* ... *).

Program 2.8: Rules red-stat-abort and red-stat-while-6-abort in JSCert
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Step 2e is a conditional expression. The “false” case of Rule red-stat-while-4-continue
is simple: it loops back to Step 2, that is, to the intermediary term stat_while_1. An
intermediary term stat_while_5 is introduced in Rule red-stat-while-4-not-continue
for the other case. Step 2(e)iA breaks the loop, stopping the computation; this is translated
by an axiom, Rule red-stat-while-5-break. The other steps proceed as expected.

The Coq versions of the rules of Figure 2.4 are not different. The intermediary terms has
to be defined first, as shown in Program 2.7. Then the rules are defined as constructors of
a large inductive, as shown in Program 2.8; this program also shows the Coq version of
Rules red-stat-abort and red-stat-while-6-abort. ⌜The definition of the predicate ⇓s
for statement⌝ is separated from expressions and programs—as for ⇓i, ⇓e, and ⇓p—; they are
defined by mutually recursive inductives, as indicated by the with-construct of Lines 26
and 29. Note that in such a form, Coq would accept any big-step definition: JSCert has
been written in pretty-big-step style, but there is no constraint given by Coq to check it.
Chapter 4 provides a way to enforce the constraints of pretty-big-step to apply in Coq.

Program 2.8 also shows one additional inductive definition, with only one constructor:
red_javascript with its introduction rule red_javascript_intro Line 3. Indeed, the Ja-
vaScript semantics describes both the transition system of JavaScript, but also the initial
state. In JSCert, the initial state in defined in File JsInit.v. This file is shown in Figure 2.3
as a common resource of both JSCert and JSRef, but it morally should be considered as a
part of JSRef as ⌜the standard is very loose about the initial environment (see Section 1.3)⌝.
Program 2.9 shows an extract of JsInit.v: Lines 1 to 7 describe⌜the properties of the global
object⌝ defined in ECMAScript, Lines 9 to 13 define its prototype and class—every object
defined in the ECMAScript specification have such associated definition. Then Lines 15
to 19 wraps⌜all of these objects⌝ into the initial heap. Rule red_javascript_intro is the rule
which sets up the initial state and execution context. Note that it performs computations
⌜before running the program p’⌝Line 7: this computation—performed by the intermediary
term spec_binding_inst—is also performed at function calls; it initialises the variables
declared by the keyword var in the program p’. The predicate red_javascript enables to
directly run a program in the initial state of JSRef.

2.6 JSRef: a Reference Interpreter for JavaScript

JSCert is accompanied by a reference interpreter named JSRef. As shown in Figure 2.2,
JSRef provides another way of checking JSCert with respect to JavaScript, and thus
consists in another source of trust. This interpreter has to be executable, as well as proven
correct with respect to ECMAScript 5, but it does not need to run fast. To ease the proof
effort, JSRef has been written directly in Coq. As a consequence, every function defined
in JSRef has to be total and purely functional. In particular, the propagation of the state
of ⌜the interpreted JavaScript program⌝ is explicit.

2.6 JSRef: a Reference Interpreter for JavaScript 47



 

 

1 Definition object_prealloc_global_properties :=
2 let P := Heap.empty in
3 let P := write_native P ”eval” prealloc_global_eval in
4 let P := write_native P ”parseInt” prealloc_global_parse_int in
5 let P := write_native P ”Object” prealloc_object in
6 (* ... *)
7 P.
8

9 Definition object_prealloc_global :=
10 object_create_builtin
11 object_prealloc_global_proto
12 object_prealloc_global_class
13 object_prealloc_global_properties.
14

15 Definition object_heap_initial :=
16 let h : Heap.heap object_loc object := Heap.empty in
17 let h := Heap.write h prealloc_global object_prealloc_global in
18 (* ... *)
19 object_heap_initial_function_objects h.

Program 2.9: Definition of the initial heap in JsInit.v

2.6.1 Structure of JSRef
An evaluation using a function from JSRef returns a result, which is either a completed
computation, or a special tokenwhich states⌜that the interpreter has reached an impossible
state or that the computation did not terminate in the allocated time⌝. As with JSCert, the
type of⌜internal reductions⌝ results depends on what is being evaluated.The type resultof
is thus parametrised by the returned type T as follows.

 

 

1 Inductive resultof T :=

2 | result_some : T → resultof T

3 | result_impossible : resultof T

4 | result_bottom : state → resultof T.

The special result result_impossible is returned by the interpreter if an invariant of
JavaScript is violated—for instance if the internal method GetOwnProperty is called
on a primitive value. It has been proven [Lal14] that, from a well-formed initial state, the
interpreter will never return result_impossible. The proof relies on two main invariants:
first, states and results should be well-formed (locations always point to defined objects,
some global objects are defined, etc.); second, new states extend old states (in particular,
old locations stay valid). This second invariant is necessary to prove the first invariant, as
it implies that ⌜whatever shall happen⌝, well-formed values stay well-formed.

⌜Coq programs⌝ have to terminate; this is problematical as ⌜JavaScript programs may not⌝.
This problem is solved by adding a “fuel” argument, a standard technique in Coq. At each
step, this argument is decremented; the execution stops when it hits zero, returning the
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1 Record runs_type : Type := runs_type_intro {
2 runs_type_expr : state → execution_ctx → expr → result ;
3 runs_type_stat : state → execution_ctx → stat → result ;
4 runs_type_prog : state → execution_ctx → prog → result ;
5 runs_type_stat_while :
6 state → execution_ctx → resvalue → label_set → expr → stat → result ;
7 (* ... *) }.

(a) The definition of runs_type

 

 

1 Fixpoint runs max_step : runs_type :=
2 match max_step with
3 | O =>
4 { runs_type_expr := fun state _ _ => result_bottom state ;
5 runs_type_stat := fun state _ _ => result_bottom state ;
6 runs_type_prog := fun state _ _ => result_bottom state ;
7 runs_type_stat_while := fun S _ _ _ _ _ => result_bottom S ;
8 (* ... *) }
9 | S max_step’ => (* max_step = 1 + max_step’ *)

10 { runs_type_expr := fun state => run_expr (runs max_step’) state ;
11 runs_type_stat := fun state => run_stat (runs max_step’) state ;
12 runs_type_prog := fun state => run_prog (runs max_step’) state ;
13 runs_type_stat_while := fun state => run_stat_while (runs max_step’) state ;
14 (* ... *) }
15 end.

(b) The definition of runs

Program 2.10: Definition in JSRef of the ⌜potentially looping⌝ features of JavaScript

special result result_bottom. As several features of JavaScript can loop, ⌜more than one
JSRef function⌝need fuel. To ease the definition of JSRef, all these⌜potentially looping⌝func-
tions have been gathered in a record, whose type runs_type is shown in program 2.10a.
Each JSRef function has been implemented with an additional argument of this type. For
instance the function run_expr has type runs_type → state → execution_ctx → expr

→ result. This enables us to define the runs record as a fixed point⌜taking an integer (the
fuel) as an argument and returning a record of functions⌝, as shown in Program 2.10b. In
this definition, every function takes an instantiation of the record runs (with less fuel) as
its first parameter. Every recursive calls are then routed through this same record: each
of these functions are intuitively mutually recursive. This record hides the fuel parameter,
as well as the usage of result_bottom, avoiding to pollute JSRef. In practice, it is rare to
observe result_bottom as the number of step can be chosen arbitrarily large (max_int in
the case of JSRef): it never happened during the execution of all the tests of test262.

Internal reductions have results of type resultof (specret T) where T depends on the
internal reduction (for instance ToPropertyDescriptor—spec_to_descriptor in JSCert—
returns field descriptors).⌜Statements and programs⌝build outputs of type out, as in JSCert
(see Section 2.5.2), and could thus return results of type resultof out. However the con-
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1 Definition if_result_some (A B : Type)
2 (W : resultof A) (K : A → resultof B) : resultof B :=
3 match W with
4 | result_some a => K a
5 | result_impossible S => result_impossible S
6 | result_bottom S => result_bottom S
7 end.
8

9 Definition if_spec (A B : Type)
10 (W : specres A) (K : state → A → specres B) : specres B :=
11 if_result_some W (fun sp =>
12 match sp with
13 | specret_val S0 a => K S0 a
14 | specret_out o =>
15 if_abort o (fun _ => result_some (specret_out o))
16 end).

Program 2.11: Two monadic operators of JSRef

structor specret_out of the type specret already carries an output; for factorisation pur-
poses, it has been decided to reuse it.The other constructor specret_val can be prevented
from being built by associating it with an empty type T. This results in the following result
type for statements and programs, which is isomorphic to resultof out. This approach
enforces every result type to be of the form specres T = resultof (specret T), which
simplifies the definition of monadic operators, which we now detail.

1 Inductive nothing : Type :=. (* uninhabited *)

2 Definition result := resultof (specret nothing).

2.6.2 Monadic-style Programming in JSRef

JSRef has been programmed in a monadic style [Wad92]. For example, to evaluate while

(e1) t2, we first evaluate e1; if this evaluates to ⌜a Normal completion triple⌝, we need
the value produced by e1 to continue the computation. However, if e1 evaluates ⌜either to
result_bottom, result_impossible, or to an aborting state⌝, it has to propagate without
executing the rest of ⌜the code processing while (e1) t2⌝.

In JSRef, this pattern is given by the if_specmonadic operator. Program 2.12 shows how
the while loop is implemented in JSRef. Consider Line 2: the first argument of is_spec is
⌜the computation of e1 by run_expr_get_value⌝. The second argument is the continuation,
which takes as argument the new state S1 of the program, as well as the value v1 produced
by e1. Program 2.11 shows the definition of if_spec; it uses if_result_some which first
filters out the cases where ⌜the computation failed because of lack of fuel or because of an
impossible state⌝. If it finds any value, if_spec passes to the continuation K; otherwise it
propagates aborting states.
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1 Definition run_stat_while runs S C rv labs e1 t2 : result :=
2 if_spec (run_expr_get_value runs S C e1) (fun S1 v1 =>
3 if convert_value_to_boolean v1 then
4 if_ter (runs_type_stat runs S1 C t2) (fun S2 R =>
5 let rv’ := ifb res_value R ≠ resvalue_empty
6 then res_value R else rv in
7 let loop _ := runs_type_stat_while runs S2 C rv’ labs e1 t2 in
8 ifb res_type R ≠ restype_continue
9 ∨ ~ res_label_in R labs

10 then (ifb res_type R = restype_break
11 ∧ res_label_in R labs
12 then res_ter S2 rv’
13 else (ifb res_type R ≠ restype_normal
14 then res_ter S2 R else loop tt))
15 else loop tt)
16 else res_ter S1 rv).
17

18 Definition run_stat runs S C t : result :=
19 match t with
20 | stat_while ls e1 t2 =>
21 runs_type_stat_while runs S C ls e1 t2 resvalue_empty
22 (* ... *)
23 end.

Program 2.12: JSRef semantics of while-loops

Let us explain in more details Program 2.12. Argument runs has been explained in Sec-
tion 2.6.1. Arguments S and C respectively represent the state and the execution context as
explained in Section 2.5.1.2. Arguments e1 and t2 are the respective condition and body
of the while loop. Argument labs is a set of labels annotating the loop (to deal with break

and continue statements). Finally, rv is the last computed value, which will be returned
in the final completion triple when the loop stops; it corresponds to the V defined Line 1
of Program 2.5. Intuitively, calling this function amounts to execute the JavaScript state-
ment labs: while (e1) t2 starting from heap S and execution context C. As this function
is reused for the next step of the loop, the last computed value rv is also needed. rv is ini-
tially set to the empty value when called from run_stat, Line 21.

The body of the function works as follows. First, the condition e1 is evaluated, and its
result is captured by the continuation of Line 2. Note that this continuation only runs if
the result is successful and not an abrupt termination. Following Step 2b of Program 2.5,
the value v1 is then converted to a boolean. If it is false, the else branch of Line 16 is
taken, and the current state is returned with the last computed value rv (coerced to the
completion triple (normal, rv, empty)). Otherwise, the statement t2 is evaluated Line 4
using the monadic operator if_ter. This operator is similar to if_spec, except that it
applies the continuation even if the result is an abrupt termination. This enables to check
for ⌜a Break or Continue result⌝. Lines 5 and 6 update rv if the result value of the statement
was not empty. To proceed, the type of the completion triple is inspected. Line 15 is taken

2.6 JSRef: a Reference Interpreter for JavaScript 51

https://github.com/jscert/jscert/blob/4aab3191be47026543e08ff6b8501fae5b26a4b6/coq/JsInterpreter.v#L2156


if it is of type Continue with its label in labs. Otherwise, if the result is of type Break with
its label in labs, then the computation terminates as a normal result (Line 12). If the type
of the result is not Normal (such as a Return or ⌜a Break with a label not in labs⌝) then it is
returned as such, otherwise the next iteration of the while loop is run (Line 14).

The description of the while loop in JSRef is more concise than JSCert’s (shown in Fig-
ure 2.4). This observation applies to most of the constructs. Overall, the definition of JS-
Cert is around 4,000 lines of Coq, whereas JSRef is approximately 3,000 lines.

2.6.3 Running the interpreter

As for JSCert, JsInterpreter.v concludes with the definition of run_javascript, taking
a program p as argument and executing it in the initial state. Note the similarity between
this following definition and Rule red_javascript_intro of Program 2.8. The function
run_javascript is a computable function of a JavaScript interpreter in Coq; but to be
easily interfaced with test suites, OCaml is more suitable than Coq.

 

 

1 Definition run_javascript runs p : result :=

2 let S := state_initial in

3 let p’ := add_infos_prog strictness_false p in

4 let C := execution_ctx_initial (prog_intro_strictness p’) in

5 if_void (execution_ctx_binding_inst runs S C

6 codetype_global None p’ nil) (fun S’ =>

7 runs_type_prog runs S’ C p’).

Coq provides an extraction mechanism to OCaml: it is thus possible to extract JSRef
and run it against existing test suites. This mechanism is relatively simple, and can lead
to very slow programs: for instance—by default—the extraction mechanism does not use
OCaml’s integers, but a construction of Peano arithmetic (as in Coq). Fortunately, Coq
provides the ability to override the default extraction of some values and types. Of course,
this feature should be used sparingly, as it comes at the expense of some trust.

JavaScript uses IEEE 754 floating-point numbers. JSCert uses the Flocq library [Mel12]
to model precisely these numbers and their operations. Since the OCaml type float ex-
actly corresponds to these numbers, it is safe to extract JavaScript numbers directly to
OCaml float. Operations on numbers, such as conversion to and from Int32 types, are
also provided by direct OCaml implementations.

Additionally, JSRef relies on an external parser: the development assumes the existence
of a parser returning an AST or a parse error. This is expressed in Coq by the follow-
ing axiom: Axiom run_parse : string → option prog. In order to run tests and execute
the eval operator, run_parse is extracted into an OCaml function which ⌜calls an exist-
ing JavaScript parser [Hid12], then translates the output to the OCaml representation
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of JSCert’s AST⌝. JSCert does not use run_parse, but a predicate given by the follow-
ing axiom: Axiom parse : string → bool → prog → Prop. The function run_parse is
supposed to be coherent with the parse predicate.

2.7 Establishing Trust

The goal of JSCert is to serve as a basis for further work on JavaScript in Coq such
as those presented later in this thesis, but also certified interpreters, analysers, or secure
subsets. This section aims at detailing the claims of Section 2.3. JSCert’s trust methodo-
logy, summarised in Figure 2.6, involves four components: the prose specification ECMA-
Script 5, the ECMAScript test suite Test 262, the mechanised specification JSCert, and
the certified interpreter JSRef.The JSCert team established connections between ECMA-
Script 5, JSCert, JSRef, and Test 262 to justify that⌜JSCert and JSRef have been designed
in such a way that they can be evaluated and trusted⌝.

JSCert has been defined as close as possible to ECMAScript 5. JSRef have been proven
correct with respect to JSCert. Independently, Test 262 has been developed to cover as
many aspects of ECMAScript 5 as possible, and JSRef behaves as expected on all the
appropriate tests—given its coverage of ECMAScript. JSCert and JSRef can therefore
be challenged through two distinct paths: through the similarity of JSCert with ECMA-
Script 5; and through the execution of tests by JSRef. Having these two independent paths
significantly decreases the likelihood of bugs remaining in JSCert.

2.7.1 Trusted Base

Before explaining why one can trust JSCert, it is important to recall the implicit trusted
base of JSCert. By design, the correctness of the JSCert project relies on the formal tools,
libraries, parsers, as well as the translation mechanisms involved in the tool chain. JSCert
is written in the Coq proof assistant using the libraries TLC [Cha10] and Flocq [Mel12];
⌜the Coq extraction mechanism, the OCaml compiler, as well as Esprima⌝ are used to run
JSRef. Also recall the code mentioned in Section 2.6.3 to bind integers and floating-point
to their implementation in OCaml.

The TLC library uses ⌜some additional axioms which are not natively included in Coq⌝. In
the previous paragraph, “trusting Coq” should be understood twofold as trusting the logic
behind Coq—the calculus of construction [CH88]—, and as trusting⌜the implementation of
this logic, which is Coq⌝. Adding axioms tamperswith Coq’s logic.These additional axioms
can unexpectedly interact with the JSCert formalisation in two aspects: in ⌜proofs built
on top of JSCert⌝ and in the extraction mechanism. We now detail these two aspects.

In the case of TLC, the added axioms are the usual axioms of classical higher order logic:
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• the axiom of functional extensibility: for all function f , we have f = λx. f x. Adding
functional extensibility means that η-conversion now applies on Coq’s term; note
that it also applies on dependently typed functions, as well as on predicates.

• the axiom of propositional extensibility; it states that equivalent propositions can be
considered equals. The meaning of equality may challenge intuition in the presence
of such axioms; it should be understood that if two terms are equals, then they can
safely be replaced one with each other whatever the context.

• the axiom of indefinite description, which enables us to extract an element x of a
proof of the form ∃x. P x, even if this proof is not constructive.

In particular, the propositional extensibility implies proof irrelevance:

 

 

1 Lemma proof_irrelevance : forall (P : Prop) (p q : P), p = q.

This property states that two proofs of the same theorem can be considered equal. This
can be harmful to JSCert as the inductive of JSCert is of type prog → out → Prop and
proof irrelevance can apply. When inverting a derivation of red_javascript, ⌜the path
taken by the derivation⌝matters, but this property states that it does not! The JSCert does
not contain proofs using proof irrelevance before inverting a derivation, but the reader
should be aware of the presence of this axiom in the Coq development.

The axiom of indefinite description conveniently provides a mechanism to perform ⌜case
analysis⌝without having to prove the decidability of each case. However, special care is
required to prevent the use of the additional axioms in the computational part of the devel-
opment. Coq will not warn the user when defining a term using the excluded middle—it
will produce a warning during the extraction, though. Here follows an example of ex-
tracted program using TLC’s classical logic. In TLC, isTrue is a function converting a
proposition in Prop into a boolean—which is convenient for proofs. In this example, it has
been used to produce a term which has then been extracted. During the extraction, the
argument of type Prop has been removed, leading to an unexecutable OCaml program.
Section 3.4.1 provides more details on how to solve this issue.

1 (** val isTrue : bool **)

2 let isTrue = failwith ”AXIOM TO BE REALIZED”

2.7.2 Closeness to ECMAScript
As discussed in Section 2.5, JSCert has been designed to be as close as possible to ECMA-
Script 5: JSCert’s data structures are the same as ECMAScript’s, and every line of
pseudo-code in ECMAScript corresponds to one or two rules in JSCert.⌜Anyone with ba-
sic training in reading Coq specifications⌝ should be able to check the similarity between
the prose of ECMAScript and the JSCert definitions. Section 2.5.2.1 shows how ⌜the spe-
cification of the while construct in Program 2.5⌝has been translated into JSCert.The other
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constructs are translated in the sameway.This closeness does not mean that ECMAScript
and JSCert look alike, but that they are close enough to relate each step to a corresponding
rule, and conversely. As a consequence of its monadic style, the interpreter JSRef closely
follows JSCert and thus ECMAScript (see next section).The ECMAScript community is
more familiar with interpreters than formal specifications:⌜the similarity between JSCert
and ECMAScript⌝ can thus also be checked through JSRef.

JSCert intentionally differs from the prose specification at a few places. For instance, JS-
Cert makes explicit ⌜several constructs left implicit in ECMAScript⌝, in particular every
imperative features. The state, aborting states, as well as the evaluation context and strict-
ness flag are explicitlymentioned—whereas ECMAScript onlymentions themwhere they
are modified. Moreover, JSCert does not use “repeat” statements (as in Step 2 of Pro-
gram 2.5) but rely instead on an explicit control-flow jump. It would be possible to use
intermediary terms to exactly capture the “repeat” construct in JSCert’s rules, but this
obfuscated the inductive definition in practise. The definition of JSCert is close enough
to ECMAScript 5 to be compared step by rule—this is called the “eyeball” closeness in
the original paper [Bod+14]—, and thus trusted by relating it to the prose specification.

2.7.3 Correctness

TheCoq development contains a proof of⌜the correctness of JSRef with respect to JSCert⌝.
More precisely, if the JSRef interpreter evaluates a program p to an output o, then the
program p is related to the output o by JSCert. ⌜The evaluation of a program in JSRef
by run_javascript⌝ is parametrised by runs fuel, (shown in Program 2.10b), that is, by
the maximum number fuel of execution steps. In cases where JSRef is stuck on a given
program, the theorem does not apply. The Coq theorem is shown below.

 

 

1 Theorem run_javascript_correct : forall (n : nat) (p : prog) (o : out),

2 run_javascript (runs n) p = result_some (specret_out o) →
3 red_javascript p o.

The proof of this theorem follows the structure of ⌜the interpreter, which mainly follows
the structure of JSCert⌝; it consists of approximately 4,000 lines of Coq. Each construct is
parametrised by a runs parameter: its correctness has thus to be passed along the proof.
Program 2.13 shows the definition of this invariant. Note that ⌜none of these lemmata nor
the main theorem above⌝ require the current state to be well-formed. Indeed, the inter-
preter always checks at run-time that the needed hypotheses are verified during.

The proof follows the structure of JSRef, construct by construct. Let us take the example
of the while construct; Program 2.14 shows its correctness lemma. It takes as hypothesis
Line 2 the correctness of its runs argument—in other words, the correctness of recursive
calls. It then relates the function run_stat_while of JSRef with ⌜the intermediary term
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1 Record runs_type_correct runs :=
2 make_runs_type_correct {
3 runs_type_correct_expr : forall S C e o,
4 runs_type_expr runs S C e = o →
5 red_expr S C (expr_basic e) o ;
6 runs_type_correct_stat : forall S C t o,
7 runs_type_stat runs S C t = o →
8 red_stat S C (stat_basic t) o ;
9 runs_type_correct_prog : forall S C p o,

10 runs_type_prog runs S C p = o →
11 red_prog S C (prog_basic p) o ;
12 runs_type_correct_stat_while : forall S C rv ls e t o,
13 runs_type_stat_while runs S C rv ls e t = o →
14 red_stat S C (stat_while_1 ls e t rv) o ;
15 (* ... *) }.

Program 2.13: Lemmata for each component of the runs parameter (see Program 2.10)

stat_while_1⌝ of JSCert Line 4. It is not directly related to stat_while as Rule red-
stat-while (or Step 1 of Program 2.5) performs very few computation (setting rv to
resvalue_empty) and could thus been inlined. Furthermore, as explained in Section 2.5.2.1,
the looping aspect of while-constructs is based on stat_while_1, not on stat_while. Once
each construct of runs has been related to JSCert, the correctness of runs is proven by
induction over ⌜the maximum number of steps fuel⌝:

1 Theorem runs_correct : forall fuel,

2 runs_type_correct (runs fuel).

⌜The proof of each construct⌝makes use of JSRef’s monadic style, as well as its relation
with the pretty-big-step style of JSCert shown in Section 2.6.2. Several Coq tactics have
been developed to this end, in particular the run tactic; it appears for instance Line 10 of
Program 2.14. This tactic is defined in Program 2.15c; it essentially consists in three steps:
first, find the current JSRef monad and invert it; second, apply the given reduction rule;
third, clean up the resulting context. This tactic automates the reasoning on abrupt ter-
mination cases and monad unfoldings. Thanks to the run tactic, the proof script basically
consists of case analyses and the application of the right evaluation rules of JSCert.

Let us see how the run tactic works in an example. The run tactic is given Rule red-
stat-while-2-true as an argument Line 10 of Program 2.14. This part of the proof corres-
ponds to Line 4 of Program 2.12: we are in the true branch of the if -condition of Line 3;
and Rule red-stat-while-2-true indeed applies. This rule requires to execute the term t

(named t2 in Program 2.12), then proceed to the intermediary term stat_while_3. In JS-
Ref, ⌜results passed to an intermediary term⌝ are translated to monads—in this case, the
if_ter monad of Line 4 of Program 2.12. To step through the proof, we need a lemma
about the behaviour of if_ter, shown in Program 2.16: there are two possibilities, either
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1 Lemma run_stat_while_correct : forall runs S C rv ls e t o,
2 runs_type_correct runs →
3 run_stat_while runs S C rv ls e t = o →
4 red_stat S C (stat_while_1 ls e t rv) o.
5 Proof.
6 intros runs IH ls e t S C rv o R. unfolds in R.
7 run_pre. lets (y1&R2&K): if_spec_post_to_bool (rm R1) (rm R).
8 applys~ red_stat_while_1 (rm R2). run_post_if_spec_ter_post_bool K.
9 case_if.

10 run red_stat_while_2_true.
11 let_name. let_simpl. applys red_stat_while_3 rv’. case_if; case_if*.
12 case_if in K.
13 applys red_stat_while_4_not_continue. rew_logic*. case_if in K.
14 run_inv. applys* red_stat_while_5_break.
15 applys* red_stat_while_5_not_break. case_if in K; run_inv.
16 applys* red_stat_while_6_abort.
17 applys* red_stat_while_6_normal. run_hyp*.
18 rew_logic in *. applys* red_stat_while_4_continue. run_hyp*.
19 run_inv. applys red_stat_while_2_false.
20 Qed.

Program 2.14: Proof of correctness for the while construct

 

 

1 Ltac run_select_ifres H :=
2 match type of H with ?T = _ => match T with
3 | @if_ter nothing _ _ => constr:(if_ter_out)
4 (* ... *)
5 end end.

(a) Getting the right behaviour lemma

 

 

1 Ltac run_pre_ifres H o1 R1 K :=
2 let L := run_select_ifres H in
3 lets (o1&R1&K): L (rm H).

(b) Extracting the needed information

 

 

1 Ltac run Red :=
2 let o1 := fresh ”o1” in let R1 := fresh ”R1” in
3 run_pre as o1 R1;
4 match Red with ltac_wild => idtac | _ =>
5 let o := run_get_current_out tt in
6 run_apply Red o1 R1;
7 try (run_check_current_out o; run_post; run_inv; try assumption)
8 end.

(c) Applying the given reduction rule

Program 2.15: How the run tactic is defined
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1 Definition isout W (Pred : out → Prop) :=
2 exists o1, W = res_out o1 ∧ Pred o1.

(a) Stating a general property about out

 

 

1 Definition if_ter_post (K : _ → _ → result) o o1 :=
2 (o1 = out_div ∧ o = o1)
3 ∨ (exists S R, o1 = out_ter S R ∧ K S R = o).
4

5 Lemma if_ter_out : forall W K o,
6 if_ter W K = res_out o →
7 isout W (if_ter_post K o).
8 Proof.
9 introv H. destruct W as [[|o1]| | | ]; simpls; tryfalse_nothing.

10 exists o1. splits~. unfolds. destruct o1 as [|S R].
11 inverts* H.
12 jauto.
13 Qed.

(b) The lemma specifying the behaviour of if_ter

Program 2.16: Lemmata specifying monad behaviours

the argument of if_ter succeeds in building a result—there is then a result (Line 3 of
Program 2.16b)—; or it fails, and the failure is propagated (Line 2 of Program 2.16b). Each
monadic operator of JSRef has been associated⌜a similar lemma specifying its behaviour⌝;
the tactic function run_select_ifres of Program 2.15a selects the needed lemma from
the context. This behaviour lemma is then applied by run_pre (based on run_pre_ifres

shown Program 2.15b), followed by a case analysis. Finally, the left cases are checked for
aborting cases thanks to the tactic run_post (not shown). As a result, the monad if_ter

has been removed from the context, and we are left with two goals: we have to prove
that the argument of if_ter is correct5, as well as the continuation. The case in which the
argument of if_ter aborts has been handled by the run tactic.

By proving the correctness of JSRef with respect to JSCert, many typos, as well as some
serious misinterpretations of ECMAScript 5, were detected and corrected. JSCert and
JSRef were intentionally developed by different researchers. Despice close interaction
between people, each researcher differently interpreted ECMAScript; these differences
were caught during the proof and lead to discussion about how to interpret the standard.
Such discussions can only increase the trust given to JSCert.The correctness proof is also
a crucial part of JSCert as it enables the validation of JSCert through tests.

5 In this particular case, it is trivial as the interpreter calls runs_type_stat, which is correct by the
induction hypothesis. This additional goal is here automatically dealt by the tactic and does not appear.
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2

 

 

1 function $ERROR (str){
2 try {
3 __$ERROR__ = __$ERROR__ + ” | ” + str
4 } catch (_){
5 __$ERROR__ = str
6 }
7 }

Program 2.17: Snippet of the JavaScript prelude of the testing architecture

 

 

1 while (1 === 1){
2 __before = ”reached” ;
3 break ;
4 __after = ”dead code”
5 }
6

7 if (__before !== ”reached”)
8 $ERROR (”#1: __before === ’reached’. Actual: __before === ” + __before) ;
9 if (typeof __after !== ”undefined”)

10 $ERROR (”#2: typeof __after === ’undefined’. Actual: typeof __after === ”
11 + typeof __after)

Program 2.18: Example of test in test262

2.7.4 Testing
JSRef has been run against the ECMAScript conformance test suite, test262 [ECM10].
This test suite requires additional functions to be defined in the initial heap. To this end,
⌜a JavaScript prelude initialising the heap with these additional functions⌝ is run prior
to each test. Program 2.17 shows part of this prelude: it declares a function $ERROR con-
catenating its string argument into the global variable __$ERROR__; if this variable is not
declared, then Line 3 throws an error, which is caught Line 4, and Line 5 properly declares
this variable. It can then be checked in OCaml whether⌜this global variable is defined after
an execution⌝: this is how we detect test failures. Program 2.18 shows a test of test262.

As said in Section 2.4.2, not all of JavaScript is covered in the JSCert project yet. In
test262, there are 11,746 tests, organised by chapters. There is no test for Chapters 1
to 5; Chapters 6 and 7 relate to the parser rather than the language; and Chapter 15 cor-
responds to native libraries: all these tests are not expected to pass on JSRef. There are
2,782 tests associated with Chapters 8 to 14; out of these, JSRef passes 2,440. These
numbers changed a lot since the original JSCert paper [Bod+14] to the recent updates
presented in Section 2.8; the numbers presented here are from the latter. The remaining
tests mainly fail because they use for-in or unimplemented features of Chapter 15. More
details are given in the work about the extension of JSCert [Gar+15]. Overall, JSRef
successfully executed ⌜all the tests which it was expected to pass, given its coverage of
ECMAScript⌝. Section 2.8 discusses how to increase this coverage.
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Figure 2.6: How the relation between JSCert and JavaScript is checked

Running JSRef over thousands of tests has been very useful, as it enabled to detect and
fix several bugs in JSRef and JSCert. Most of these bugs were simple typos, but a few
of them were more serious—such as converting a ⌜field attribute⌝ record to a ⌜data field⌝
attribute instead of a ⌜data accessor⌝ attribute (see Section 2.5.1.2). Testing helped finding
⌜bugs which the proof of correctness could not catch⌝, such as bugs in the common files
of JSCert and JSRef (see Figure 2.3). For instance, ⌜the function generating new location
identifiers⌝was found to be constant due to a small typo. As a result, creating new objects
erased previously created ones, which was obviously wrong.These mistakes were quickly
detected and corrected thanks to the testing architecture.

During the work on understanding ECMAScript, bugs have been found in major inter-
preters. For instance, all major interpreters give ⌜(different) incorrect completion values⌝
for try-catch-finally [Var12a; Var12c; Var12b]. The case of V8 was unexpected as ⌜dead
code placed after a try-catch-finally construct⌝ may incorrectly change the returned
value [Var12b]. This may be caused by an incorrect optimisation triggered when the pro-
gram respects specific subsets of JavaScript. ⌜By altering dead code⌝ it can fall in these
subsets, thus triggering the incorrect optimisation. Such bugs can be expected, as the cov-
erage of test262 is not yet complete [Fug11]—interestingly, JSRef can help there.

2.7.5 Towards More Trust

There are twomain ways to increase⌜the trust which one can have in JSCert⌝: by establish-
ing the completeness of JSRef with respect to JSCert, and by evaluating the coverage of
the existing test suites to complete them.These two ways correspond to the dotted arrows
in Figure 2.6—arrows are drawn from⌜trust sources⌝: for instance, if one trusts JSCert, then
the proof of correctness of JSRef can help this person to also trust JSRef.

JSRef is not proven complete (only correct) with respect to JSCert: all the behaviours
of JSRef can be found in JSCert, but the converse is not proven. This means that there
might be rules in JSCert enabling ⌜unnoticed behaviours, not enabled by ECMAScript⌝.
Of course, JSRef can always return result_bottom if it is not given enough fuel: the
completeness would state that, from a starting state (possibly required to respect some
invariants, such as the ones of Lallemand’s proof [Lal14]), if JSCert produces a result,
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1 var object_has_prop = function (l, x){
2 var%some b = run_object_method (object_has_prop_, l) ;
3 switch (b){
4 case Coq_builtin_has_prop_default:
5 var%run d = run_object_get_prop (l, x) ;
6 return !full_descriptor_compare (d, Full_descriptor_undef) ;
7 }
8 } ;

(a) In pseudo-JavaScript

1 let rec object_has_prop s c l x =
2 let%some b = run_object_method object_has_prop_ s l in
3 match b with
4 Coq_builtin_has_prop_default ->
5 let%run (s1, d) = run_object_get_prop s c l x in
6 res_ter s1 (res_val (Coq_value_prim (Coq_prim_bool
7 (not (full_descriptor_compare d Coq_full_descriptor_undef)))))

(b) In OCaml

1 Definition object_has_prop runs S C l x : result :=
2 if_some (run_object_method object_has_prop_ S l) (fun B =>
3 match B with
4 | builtin_has_prop_default =>
5 if_spec (runs_type_object_get_prop runs S C l x) (fun S1 D =>
6 res_ter S1 (decide (D <> full_descriptor_undef)))
7 end).

(c) In Coq

Program 2.19: A function written in the different programming languages of JSExplain

then so would JSRef, given enough fuel. This would ensure that ⌜the trust link between
JSCert and JSRef⌝ is bidirectional. Such a theorem would however only be provable if
JavaScript were deterministic: JSRef is a Coq function and can only return one result.
Yet, it turns out that, with the exception of the loosely specified for-in construct, as well
as some implementation dependent constructs, the standard only describes deterministic
behaviours. The proof of JSCert’s determinism would be an interesting way to increase
the trust link between JSCert and JSRef. Alternatively, Section 4.6.3 provides directions
on how to build a complete-by-construction interpreter of JSCert.

The ECMAScript community acknowledges that JavaScript’s test suites are not com-
plete with respect to ECMAScript. JSRef provides an interesting solution to this problem
as it is related (through JSCert) to the ECMAScript specification. Using tool coverage
programs, such as Bisect [Cle12] for OCaml, the coverage of test suites has been pre-
cisely evaluated directly on the standard [The13]. Such an analysis can also serve as a
basis to generate tests, by focussing uncovered lines of JSRef. The results of these new
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tests could then be compared to other JavaScript interpreters. Note that ⌜the lines of JS-
Ref producing result_impossible⌝ are meant to be uncovered. This alternative approach
to create tests would increase the trust in JSRef by showing that it behaves like existing
JavaScript implementations on tests covering its whole source code.

2.8 Extending JSCert
The methodology of JSCert could be extended to the whole JavaScript (putting the for-
in construct aside, as explained in the next section): adding the rules of missing para-
graphs of ECMAScript to JSCert, augmenting JSRef to implement these features, and
update the proof of correctness. This would however be a significant amount of work—
at least as significant as JSCert itself. Furthermore, this effort would only be worth if it
could compete with the current pace of JavaScript specification: since ECMAScript 6,
new versions of the standard are planned to be released every year. In addition to con-
vince the ECMAScript community to switch to a JSCert-like specification, new ways to
implement the missing features of JavaScript are being needed.

JSExplain [CSW16] is a promising path. The main goal of the JSExplain project is to
provide a way ⌜for people out of the ECMAScript community⌝ to understand ⌜why a given
JavaScript program acts the way it does⌝. To do so, the project is based on a small imperat-
ive language.This imperative language shows some basic functional features, as well as all
the monad-constructs of JSRef (see Section 2.6.2); these constructs would not be presen-
ted as monads, but as side-effect features. It is then possible to extract various represent-
ations of JavaScript (such as JSCert and JSRef) from a small imperative language. For
instance, program 2.19a shows a snippet of this small imperative language, program 2.19b
shows how it can be compiled into ⌜OCaml augmented with syntax extensions (ppx)⌝, and
program 2.19c shows the equivalent definition in Coq. The Coq monads if_some and
if_spec have been replaced by special constructs var%some and var%run which treat the
program states (S and S1 in Coq) implicitly.These three representations all carry the same
amount of information, but in different ways, enabling different kinds of person to read
and understand them.

When fully ready, JSExplain could export an equivalent of JSCert, JSRef, as well as a
proof of their correctness. It could also be possible to extract it in other formats, such as the
one described in Section 4.3. Hypothetically, it could also extract an ECMAScript-style
prose specification from JSExplain: this could be a key to make the ECMAScript com-
munity adopt a JSCert-style formalisation as an official specification of JavaScript.

Waiting for JSExplain to be ready, there are others ways in which JSCert can be com-
pleted to full JavaScript. We have seen in Section 1.2.6 that most of the features of Ja-
vaScript can be implemented in a small subset of JavaScript. Mozilla Firefox and V8
have taken this into profit by implementing some of JavaScript’s standard library in Ja-
vaScript [Sch12]:⌜the parts not covered by their engine⌝are executed by these libraries. A
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“is: for (lhse in e) s” is evaluated as follows.
1. Let exprRef be the result of evaluating e.
2. Let exprValue be GetValue (exprRef ).
3. If exprValue is null or undefined, return (normal , empty , empty).
4. Let obj be ToObject (exprValue).
5. Let V = empty .
6. Repeat

a) Let P be the name of the next property of obj whose Enumerable attribute is
true. If there is no such property, return (normal ,V , empty).

b) Let lhsRef be the result of evaluating the lhse (it may be evaluated re-
peatedly).

c) Call PutValue (lhsRef , P ).
d) Let stmt be the result of evaluating s.
e) If stmt .value is not empty, let V = stmt .value .
f) If stmt .type is break and stmt .target is in the current label set, return
(normal ,V , empty).

g) If stmt .type is not continue or stmt .target is not in the current label set, then
i. If stmt is an abrupt completion, return stmt .

The mechanics and order of enumerating the properties (Step 6a) is not specified. Proper-
ties of the object being enumerated may be deleted during enumeration, [they will then]
not be visited. If new properties are added to the object being enumerated during enumer-
ation, [they] are not guaranteed to be visited in the active enumeration. A property name
must not be visited more than once in any enumeration. Enumerating the properties of
an object includes enumerating properties of its prototype.

Program 2.20: Specification of the for-in construct in ECMAScript 5

part of the JSCert team has followed this path [Gar+15] by adding to JSCert the features
needed to run V8’s ⌜JavaScript library for arrays⌝. ⌜The new coverage of JSRef to the offi-
cial test suites⌝ now includes every array tests but those using the for-in construct. The
JSCert project thus keeps updating to match the real-world JavaScript.

2.9 The for-in Construct
The for-in construct is the major underspecified part of ECMAScript 5 [Theb]. Its spe-
cification in ECMAScript 5 is shown in Program 2.20; Steps 1 to 4 describe how the
expression e should be executed to provide⌜the object obj , on which the for-in construct
will iterate⌝. The interesting step is Step 6a, in which the interpreter should pick ⌜an enu-
merable field P of obj⌝: it should be the next field—but next for which order? As indicated
by the paragraph below the pseudo-code, it is not specified. But not only the order is not
specified: the iterated fields are also underspecified.

The evaluation of lhse and s can have side effects on the iterated object; in particular, fields
can be removed and added. The specification is very permissive about fields which have
not yet been enumerated, but have been deleted then redefined: they can, but have not
to, be enumerated. Prototype chains yield another issue: as indicated in the specification,
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the next field can be hidden in the prototype chain of the iterated object. But what should
happen if the prototype chain is modified during the iteration? Can the fields of the old
prototype chain still be iterated on? Do the fields of the new prototype chain have to be
iterated on? The for-in construct does not specify what should happen in such cases.

The for-in construct—and in particular its Step 6a—comes with complex formalisation
issues, as it is not specified by an operational semantics (using ECMAScript’s pseudo-
code), but by an axiomatic semantics. Furthermore, this axiomatic semantics specifies
properties about the trace of the execution: it explicitly requires ⌜each given field name⌝
to be iterated at most once. Specifying the for-in construct would thus require to trace
the set of already visited field names, as well as the history of the prototype chain of the
iterated object: JSCert would lose ⌜the similarity discussed in Section 2.7.2⌝. There have
been some bugs [Var12c] found inmajor interpreters about for-in during the construction
of JSCert. The for-in construct is thus a loosely defined construct with a large scale of
different possible interpretations of its specification:⌜stating that the for-in construct has
been specified in a formal semantics⌝ is not a statement which can be taken lightly.

2.10 JSCert, JSRef, λJS, and KJS: which one to use?

In this chapter, we have described several specifications of JavaScript, with different
ways to certify them. This section aims at explaining the differences between these spe-
cifications, starting by the recent KJS specification.

KJS is runnable and rule-based; it thus possesses both advantages of JSCert, with the
further advantage of being simpler to manipulate. K is a very powerful tool to build se-
mantics; it is furthermore accompanied by tools able to extract a Coq specification from
aK specification—these tools are however currently experimental and do not provide the
same amount of trust than writing everything directly into Coq. As JSCert, the rules of
KJS closely match the ECMAScript specification, and the semantic coverage can be meas-
ured similarly to JSRef. It seems to be an excellent starting point for a formal work.

The authors of KJS claimed to have specified the for-in construct: given what is said
in Section 2.9, closer inspection is needed. Program 2.21 is the part of KJS dealing with
the for-in construct. Let us compare this part with the specification of for-in in ECMA-
Script 5 (Program 2.20). First, the beginning of this specification (Lines 6 to 10) closely
matches the beginning of the standard (Steps 1 to 4); this closeness is comparable to JS-
Cert’s. As for JSCert, some intermediary forms have been introduced, like @ForInAux

which represents the loop of Step 6. However, note a critical change: the list of iterated
fields is computed before the loop, in Line 11 instead of during the loop (Step 6a); fur-
thermore, ⌜the function @EnumerateAllProperties computing this list⌝ is deterministic, in
contrary to for-in’s specification. K is not incompatible with non-determinism—the Map
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1 syntax KResult ::= ”@m” ”(” Map ”)”
2

3 syntax Stmt ::= ”@ForIn” ”(” Exp ”,” Exp ”,” Stmt ”)”
4 rule @ForIn(L:Exp, E:Exp, S:Stmt)
5 => BEGIN
6 Let $e = E;
7 If @OrBool(@EqVal($e, @NullVal), @EqVal($e, Undefined)) = true then {
8 Return @Normal;
9 } else {

10 Let $o = ToObject($e);
11 Let $props = @EnumerateAllProperties($o, .Map, .Set);
12 Do @ForInAux(L, $o, $props, S);
13 }
14 END
15

16 syntax Stmt ::= ”@ForInAux” ”(” Exp ”,” K /* Oid */ ”,” K ”,” Stmt ”)”
17 syntax Id ::= ”$owner”
18 rule @ForInAux(_:Exp, _:Oid, @m(.Map), _:Stmt) => @Normal
19 rule @ForInAux(L:Exp, O:Oid, @m(P:Var |-> OP:Oid Ps:Map), S:Stmt)
20 => BEGIN
21 Let $desc = GetProperty(O, P);
22 If $desc = Undefined then {
23 Do @ForInAux(L, O, @m(Ps), S);
24 } else {
25 Let $owner = GetPropertyOwner(O, P);
26 If $owner = OP then {
27 Do %seq(%exp(%bop(%assign, L, %con(P:>String))),
28 %seq(S, @ForInAux(L, O, @m(Ps), S)));
29 } else {
30 Do @unspecified;
31 }
32 }
33 END
34

35 syntax KItem ::= ”@EnumerateAllProperties” ”(” K ”,” Map ”,” Set ”)”
36 rule @EnumerateAllProperties(@NullOid, TM:Map, _:Set) => @m(TM)
37 rule <k> @EnumerateAllProperties(O:Oid, TM:Map, KS:Set)
38 => @EnumerateAllProperties(Proto,
39 #@AddProp(O, Prop, TM, KS), keys(Prop) KS) ... </k>
40 <obj>
41 <oid> O </oid>
42 <properties> Prop:Map </properties>
43 <internalProperties>
44 ”Prototype” |-> Proto:Oid _:Map
45 </internalProperties>
46 </obj>
47 when O =/=K @NullOid

Program 2.21: The for-in construct in KJS
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construct includes an arbitrary choice function—, but the authors chose to build a determ-
inistic definition, correct with respect to ECMAScript, but not complete: all expressed
behaviour are valid according to ECMAScript, but some behaviours may be missing.

The goal of KJS is different from JSCert’s: KJS aims at having only one object represent-
ing both the rules and an analyser, without having two definitions related by a proof of
correctness. In this respect, KJS can be easily extended to support new features, including
by people not familiar with proof assistants. On the other hand, JSCert aims at having a
Coq-based semantics of JavaScript, which we can blindly use as the basis of any further
works. For this purpose, adding ⌜the constraint of having a directly executable semantics⌝
hinders the specification of under-specified constructs (such as for-in), for which an ax-
iomatic definition is much better suited. This is one of the reasons why JSRef has not yet
been proven complete with respect to the JSCert specification, only correct.

The other specification λJS suffers from the same problem: it is correct with respect to the
ECMAScript specification, but not complete. However, the variant S5 of λJS for ECMA-
Script 5 has now been formalised in Coq and related to the JSCert specification [Mat16].
This makes S5 a similar object than JSRef: an interpreter for JavaScript, proven correct
with respect to JSCert, but not complete. They however use very different paths. JSRef is
close to the JSCert specification; this makes it a potential alternative for ⌜people wanting
to understand JSCert⌝. The closeness of JSRef to the ECMAScript specification has been
used to build JSExplain. λJS/S5 is composed of two parts: a compiler from JavaScript to
a much simpler programming language, and an interpreter of this simpler programming
language. λJS is thus a good intermediate goal to build an analyser of JavaScript, as it
provides a simple programming language to analyse, to which JavaScript compiles.

⌜The different goals of JSCert, JSRef, λJS, and KJS⌝are thus very different, both in methodo-
logies and in the provided guarantees. In particular, it would not be appropriate⌜to choose
one of these formalisations on the basis of the used technology alone⌝: the authors of future
works based on these formalisations should be aware of the exact provided guarantees.

2.11 Conclusion
The JSCert project has been a success in showing that modern techniques of mechanised
specification can handle the complexity of JavaScript. The challenges were various: the
size of the ECMAScript specification of course—JSCert contains more than 900 rules—;
but also some ambiguous parts in the semantics. The paradigm change also yielded some
difficulties: the contexts (the strict mode flag, evaluation context, and the state) have to
be explicitly propagated, internal methods (which can return values not returnable by
usual methods) did not directly fit the formalism, etc. A lot of effort has been made for
JSCert to be trustable, so that certified analysers can be built on top of it. In the rest of
this dissertation, we shall consider that the JSCert specification is mature enough to be
used as a basis to build a certified analyser.
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3Basics of Abstract Interpretation

Myth: Computers suck because they don’t do what you say.
— No! I don’t download that file! It’s a virus! No! Nooo!
Reality: Computers suck because they do exactly what you say.
— Ooh… sexyladies.exe… This looks promising.

Zachary Weinersmith [Wei10]

This chapter presents the framework of abstract interpretation [CC77a] as it is usually
defined. It does not completely describe the framework, but provides the background re-
quired to understand the contributions of this thesis. A more detailed description of ab-
stract interpretation can be found in Cousot’s [Cou99] or Pichardie’s [Pic05] works. This
thesis redefines several parts of the abstract interpretation framework, in particular how
derivations are built; these changes will be discussed in Chapter 4: this chapter only aims
at providing⌜some bases about abstract interpretation, which will be needed to understand
the following chapters⌝. The current chapter also presents how ⌜the important parts of the
abstract interpretation framework⌝ can be implemented in Coq.

3.1 Abstract Interpretation: the Big Picture
Analysing a program consists in determining some properties about its result or⌜its poten-
tial actions, like outputs or non-terminating behaviours⌝. Analysers can be used to detect
potential security leaks, bugs, but also to help ⌜program development⌝. Programs may be
non-deterministic, or take unknown inputs: in order to determine that something can
never happen, executing the program is often not enough. Furthermore, by Rice’s the-
orem [Ric53], ⌜most properties about programs⌝ are in general not decidable; it is thus per-
fectly acceptable for an analyser to abandon its analysis for some programs. There exists
various methods to analyse programs, but we shall focus on abstract interpretation.

Figure 3.1 pictures how abstract interpretation works. ⌜The considered properties of the
source program⌝ are semantic: they are properties about the reduction of the program in
the language semantics, called the concrete semantics. The concrete semantics is not neces-
sarily deterministic: there may be more than one reduction associated to a given program.
⌜The usual property aimed at by analysers⌝ is that the executed program can not reach
some unsafe states—such states can be states in which invariants are broken, or any other
error state. By Rice’s theorem, ⌜determining whether the set of reachable states does not
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Figure 3.1: Abstract Interpretation in a Nutshell

intersect the unsafe states⌝ is an undecidable problem in general. Abstract interpretation
proceeds by approximation, computing the clouds shown in Figure 3.1. These approxim-
ations must contain the reachable states of the original program: abstract interpretation
aims at computing over-approximations.

Approximations may intersect the set of unsafe states, but this does not mean that the
program can reach them. Figure 3.2 shows the different scenarios which can happen. First,
if the approximation does not intersect the set of unsafe states, then we know—as the
reachable states are included in the approximation—that the unsafe states are unreachable.
Second, if the approximation does intersect the unsafe states, there are then two subcases
illustrated by Figures 3.2b and 3.2c. The interesting case is the false positive, in which the
approximation intersects the unsafe states, but the reachable states does not: the analysis
failed to predict that the unsafe states can not happen. Abstract interpretation thus focuses
in computing states whichmay happen. It is nevertheless possible to prove that something
must happen by showing that its negation may not happen.

Let us switch back to Figure 3.1 to discuss about how these approximations are defined.
Abstract interpretation proceeds by defining an abstract semantics; this new semantics is
similar to the concrete semantics, but uses different domains:⌜the precise values used in the
concrete semantics⌝have been replaced by “blurry” ones. For instance, integers can be re-
placed by⌜an abstraction representing their signs⌝: 1 is replaced by⌜the abstract value +⌝and
−1 by −. The abstract semantics is usually non-deterministic, leaving room for heuristics—
for instance in the places where values should lose precision.Themost important instance
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Figure 3.2: Different scenarios for approximations

of these heuristics consists of widening and narrowing operators [CC77a]. Sections 4.4.3
and 5.1.1 give examples of non-determinism in abstract semantics. The role of an analyser
is to provide a computable version of this abstract semantics.

Abstract interpretation can be applied in various contexts. As we have seen in Section 2.1,
there are various ways to specify languages. Similarly, abstract semantics can come in
different forms. In this thesis, I focus on rule-based definitions: both the concrete and the
abstract semantics are supposed to be made of inference rules, which are simply called
rules in this document. ⌜Concrete and abstract⌝ rules may however be very different.

Because of the abstraction, approximations occur: there are places in which one can no
longer be sure which concrete rule apply. This is a consequence of the undecidability of
the analyses. Let us consider for instance that the semantics of the analysed program
states that ⌜if the variable x is 1, then the inference rule r1 applies1, but if the variable x

is not 1, then the inference rule r2 applies⌝. In the abstract derivation, one might have to
analyse ⌜a situation in which the value of x is abstracted by +⌝: it is not possible to know
⌜which of rule r1 or rule r2⌝ applies. Applying only one of these two rules would break the
over-approximation, as all the behaviours generated by the other rule would be missed.
The abstract semantics has thus to differ from the concrete semantics to be sound.

3.2 Domain Structure
Abstract interpretation relies on a hypothesis: the semantics of programs can be expressed
as a transition system on a given domain. This semantics is called the concrete semantics—
as opposed to the abstract semantics used by analysers. Let us see how it is structured.

1 The rule name r stands for “rule”. We shall here use fraktur to denote structural characteristics of rules.
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3.2.1 Concrete States

We consider a simple concrete semantics as a running example for this chapter: its syntax
is shown in Figure 3.3. It features ⌜simple arithmetic expressions, an environment, and if -
conditions⌝. An if -condition tests whether an expression returns a positive value. There is
no boolean in this toy language—in particular, the syntax “> 0” is part of if -conditions.

The semantics of the considered language is shown in Figure 3.4. We shall here only fo-
cus on a specific type of semantics, namely pretty-big-step—we already referred to it in
Section 2.1.1, and next chapter formalises it in details—, but abstract interpretation is not
limited to this semantics style. Note the change from Figure 2.4 about side-conditions: in
order to smoothly introduce the next chapter, I adapted the rules from JSCert’s pretty-big-
step to another variant of pretty-big-step. The main difference is that every premise not
referring to⌜the inductive predicate ⇓which is being defined⌝ is written as a side-condition,
as in Rules red-if-1-pos and red-if-1-neg. Also note the presence of extended terms ee
and se (defined in Figure 3.3), representing intermediary steps in the evaluation.

In this language, errors err are generated in Rule red-var-undef when undefined vari-
ables are accessed. The aborting rules of Figure 3.4c propagates errors in the same way
than the JSCert rules of Figure 2.5: if the aborting result err is found in the semantic con-
text, it is immediately propagated. Rule red-error-expr applies on both expressions e
and extended expressions ee, which we write e for simplicity. Similarly, Rule red-error-
stat applies on both statements s and extended statements se. All the rules of Figures 3.4a
and 3.4b request ⌜the results computed by previous rules and embedded into the current
semantic context⌝ to evaluate to a non-aborting result, such as a value v or an environ-
ment E. For instance, Rule red-seq-1 applies during the execution of a sequence s1; s2,
after the execution of s1; the role of Rule red-seq-1 is to check that s1 indeed returned
an environment and not an error. The predicate abort looks for the aborting result err
in the semantic context: the notation C [err] represents any semantic context carrying
the error err . This language is meant to be updated along this dissertation, and this will
change the possible semantic contexts—for instance, Figure 4.2 will add semantic contexts
for loops—: the aborting rules will be assumed to be updated accordingly.

Concrete domains are formed by the set of states transferred along the derivation trees. In
this case, expressions return ⌜either values in Val = Z or the error err⌝ and takes environ-
ments in Env = Var ⇀fin Val (finite maps from variables to values) as semantic context.
Statements take environments and return either an environment or the error err .

Definition 3.1 (Concrete Domains). We define the following sets.

• Val = Z;
• error = {err};
• Env = Var ⇀fin Val , the finite maps from Var to Val ;
• Oute = Val + error , the expression outputs;
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e ∶∶= c ∈ Z
∣ x ∈ Var
∣ e1 + e2

s ∶∶= skip
∣ s1; s2
∣ x ∶= e
∣ if (e > 0) s1 s2

ee ∶∶= ⋅ +1 e
∣ ⋅ +2 ⋅

se ∶∶= x ∶=1 ⋅
∣ ⋅ ;1 s2
∣ if 1 s1 s2

Figure 3.3: A simple language featuring variables and arithmetic expressions

red-const

E, c ⇓ c

red-var

E, x ⇓ E [x]
x ∈ dom (E)

red-var-undef

E, x ⇓ err
x /∈ dom (E)

red-add
E, e1 ⇓ r E, r, ⋅ +1 e2 ⇓ r′

E, e1 + e2 ⇓ r′

red-add-1
E, e2 ⇓ r E, v1, r, ⋅ +2 ⋅ ⇓ r′

E,v1, ⋅ +1 e2 ⇓ r′
red-add-2

E,v1, v2, ⋅ +2 ⋅ ⇓ v1 + v2

(a) Expressions

red-skip

E, skip ⇓ E

red-seq
E, s1 ⇓ r r, ⋅ ;1 s2 ⇓ r′

E, s1; s2 ⇓ r′

red-seq-1
E, s2 ⇓ r

E, ⋅ ;1 s2 ⇓ r

red-asn
E, e ⇓ r E, r, x ∶=1 ⋅ ⇓ r′

E, x ∶= e ⇓ r′

red-asn-1

E,v, x ∶=1 ⋅ ⇓ E [x← v]

red-if
E, e ⇓ r E, r, if 1 s1 s2 ⇓ r′

E, if (e > 0) s1 s2 ⇓ r′

red-if-1-pos
E, s1 ⇓ r

E, v, if 1 s1 s2 ⇓ r
v > 0

red-if-1-neg
E, s2 ⇓ r

E, v, if 1 s1 s2 ⇓ r
v ⩽ 0

(b) Statements

red-error-expr

σ, e ⇓ err
abortσ

red-error-stat

σ, s ⇓ err
abortσ

σ = C [err]
abortσ

(c) Aborting rules

Figure 3.4: A simple semantics featuring variables and arithmetic expressions
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• Outs = Env + error , the statement outputs.

Extended terms are also associated semantic contexts and results—for instance, the exten-
ded term if 1 s1 s2 takes as inputs⌜an environment and an expression output⌝. As for JSCert
(see Figure 2.5), errors are propagated by Rules red-error-stat and red-error-stat.

In this dissertation, we use the following notations for environments—and more gener-
ally for each map. Given an environment E and a variable x, we write E [x] ⌜the value
of x in the environment E⌝. Given an additional value v, we write E [x← v] for a new
environment E′ such that E′ [x] = v, dom (E′) = dom (E) ∪ {x}, and E′ [y] = E [y] for
all y ∈ dom (E) ∖ {x}. In particular, E [x← v] does not change E, but produces a new
environment. We write E ∖ x for an environment equal to E except that it has no binding
for x. Given two environments E1 and E2 with disjoint domain, the notation E1 ⊎ E2

stands for the environment E such that dom (E) = dom (E1) ⊎ dom (E2) and for all x,
E [x] is either E1 [x] or E2 [x], depending which is defined. The empty environment is
written ϵ, and an environment mapping x to v1 and y to v2 is written {x↦ v1, y↦ v2}.

3.2.2 Abstract Lattice

Abstract interpretation is based on abstract domains related to these concrete domains—
for instance values Val can be abstracted by ⌜Val ♯ = Sign = {�,−,0,+,−0,±,+0,⊺Z},
which tracks value signs⌝. There exist more useful and precise domains (such as inter-
vals [CC77b]) but to avoid dispersion we shall consider the sign domain when possible.
⌜The techniques presented in this dissertation⌝work with any other abstract domain.

We can lift ⌜the domain Val ♯ abstracting basic values⌝ to abstract other concrete domains.
For instance, the domain of expressions outputs Oute can be abstracted asOut ♯e = Val ♯ ×
error ♯, where error ♯ = {err ♯, err ♯}: the abstract output (v♯, err ♯) represents a non-error
output represented by v♯, whilst (v♯, err ♯) represents either err or a value abstracted
by v♯ (see Section 3.5.1 for more details). Abstract values are usually annotated by the
symbol ♯, but ♯ is not a function: v♯ is not built from an hypothetical concrete value v. Each
state σ of the concrete domain can be abstracted following this process into an abstract
state σ♯. There also exist more elaborate abstractions storing relations between values.
Such domains are called relational—the octagon domain [Min06b] is a famous instance.

The advantage of manipulating abstract domains is the ability to perform approximations:
some elements in the lattice represent more concrete elements than others. To this end
domains are usually supposed to be equipped with a (decidable) structure of lattice:

• They are equipped with a decidable structure of partially ordered set (poset)—in
other words, with a partial order ⊑ and its decision procedure. Intuitively, if v♯1 ⊑ v♯2,
then v♯2 represents more concrete elements than ⌜v♯1, which is thus more precise⌝.
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• They are equipped with ⌜a binary least upper bound ⊔, pronounced “join”⌝, and ⌜a
binary greatest lower bound ⊓, pronounced “meet”⌝. These operations must respect
the following properties.

∀x, y. x ⊑ x ⊔ y (3.1)

∀x, y. y ⊑ x ⊔ y (3.2)

∀x, y, z. x ⊑ z → y ⊑ z → x ⊔ y ⊑ z (3.3)

∀x, y. x ⊓ y ⊑ x (3.4)

∀x, y. x ⊓ y ⊑ y (3.5)

∀x, y, z. z ⊑ x→ z ⊑ y → z ⊑ x ⊓ y (3.6)

Given any set A, its powerset P (A) can be ordered as a lattice: the order relation is
the set inclusion ⊆, the join operator is the set union ∪, and the meet operator the set
intersection ∩. Such a lattice is the most precise abstract domain which can be built: a
set S ∈ P (A) represents exactly its elements. It is usually not a good abstract representa-
tion, as some sets are not finitely representable. Domains such as Sign are more concise
(although less precise), leading to a decidable structure; such structure can even be effi-
cient in association with techniques such as widening and narrowing. Choosing the right
domains is often a trade-off between preciseness and efficiency.

Lattices can be represented through Hasse diagrams. Figure 3.5a represents the Hasse
diagrams of Val ♯ = Sign . ⌜Each link between two abstract values v♯1 and v♯2—v♯2 being
upper than v♯1— in such a diagram⌝ expresses that v♯1 ⊑ v♯2. The order ⊑ of the lattice can be
inferred from such diagram by taking the transitive closer of each of these steps.

The sign domains is a complete lattice: each of its subset S has a least upper bound ⊔S.
A complete lattice also comes with a greatest lower bound ⊓, defined as follows.

⊓S =⊔{x ∣ ∀y ∈ S,x ⊑ y}

Every finite lattice is also a complete lattice. Indeed, the properties 3.1, 3.2, and 3.3 imply
that ⊔ is commutative and associative; it is thus possible to fold ⊔ on any subset from
an initial value. From these foldings, it is possible to define ⊔ given ⌜a particular element
named � and pronounced “bottom”⌝; this particular element is the smallest of the lattice
and is neutral for ⊔ and thus for ⊔: its presence or absence in the considered subset does
not change the result. Such an element necessarily exists in a finite lattice.

This proof sketch introduces two interesting elements of a complete lattice: the upper
bound of all elements, named ⊺ and pronounced “top”, as well as the lower bound of all
elements, named � and pronounced “bottom”. When the context is not clear, the top and
bottom elements of a lattice L can be annotated as ⊺L and �L. As ⊺ is greater than every
abstract elements, it represents all the concrete elements: if an analysis states that ⌜the
output of a program can be abstracted by ⊺⌝, it provides no information about what can
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⊺Z

± +0−0

0 +−

�

(a) The Sign domain

err ♯

err ♯

(b) The error domain

Figure 3.5: Some Hasse diagrams

γ (⊺Z) = Z γ (±) = Z⋆ γ (+0) = Z+ γ (+) = Z⋆+
γ (−0) = Z− γ (−) = Z⋆− γ (0) = {0} γ (�) = ∅

Figure 3.6: Definition of the concretisation function for the sign domain

happen in the program. On the contrary, � usually2 represents no concrete state: if an
analysis states that⌜the output of a program is abstracted by �⌝, we know that the program
never outputs—either because it loops or because no concrete derivation exist. This leads
us to consider what are ⌜the concrete objects represented by a given abstract element⌝.

3.2.3 Concretisation Functions
We have assumed that abstract values were representations of concrete values. In practise,
we relate each abstract value v♯ to a set of concrete values γ (v♯). More precisely, the lattice
of the abstract domain is related to the lattice of the powerset of the concrete domain by a
Galois connection (γ,α). This means that given any set of concrete values S and abstract
value v♯, we have the following equivalence:

α (S) ⊑ v♯ ⇐⇒ S ⊆ γ (v♯)

Intuitively, γ (v♯) is the set of ⌜concrete values v represented by v♯⌝. Figure 3.6 shows ⌜the
definition of the concretisation function γ for the sign domain Val ♯⌝. Conversely, given
a set S of concrete values, α (S) is the most precise abstract value representing them. I
did not define what are the exact types of γ and α. The reason is that this dissertation
describes a lot of abstract domains, associated with their corresponding concretisation
functions. I similarly use ⊑ for each lattice order, without specifying which lattice I am
considering: it would make notations heavier without adding any useful clarification.

2 It is not required by the correctness of concretisation functions—as it is not required for the soundness—
, but it is very common in practise. It is also a good intuition of what � represent. All the domains built during
this thesis have⌜a bottom element with empty concretisation⌝.
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The concretisation function γ is used to express the soundness of an analysis (see Sec-
tion 4.4.3): an analysis returning the result r♯ is sound if ⌜every concrete result returned
by the analysed program⌝ is in γ (r♯). Symmetrically, the abstraction function α is used
to express the preciseness of an analysis: if R is the set of possible results of a program,
then α (R) is ⌜the most precise abstract value which a sound analyser can return on it⌝.

I shall not extend what are the full consequences of the Galois connection of (γ,α), as
they have not been fully used in this dissertation. Precision is indeed not a goal of this
thesis—or more precisely, my results can sometimes be precise, but they are never proven
to be precise. Focusing on soundness allows us to remove some hypotheses of the manip-
ulated structures, and thus diminish the proof effort. Similarly to α, the hypotheses 3.3
and 3.6 of the lattice structure concerns preciseness and can be removed.⌜Removing these
hypotheses⌝ does not mean that they will be violated in ⌜the abstract domains built in this
dissertation⌝, only that they will not (have to) be proven.

3.2.4 Restriction of the Axioms of Abstract Interpretation

Here follow⌜the properties about abstract domains with respect to their concrete domains⌝
requested in this dissertation:

• Abstract domains are equipped with a poset structure. This structure should be par-
tially decidable: there exists a partial boolean function such that for each v♯1 and v♯2,
if this function is defined and its result is true then v♯1 ⊑ v♯2.

• Abstract domains are equipped with ⌜two computable partial operators ⊔ and ⊓ re-
specting the properties 3.1, 3.2, 3.4, and 3.5 where they are defined⌝.

∀x, y. x ⊔ y defined Ô⇒ x ⊑ x ⊔ y (3.1 revisited)

∀x, y. x ⊔ y defined Ô⇒ y ⊑ x ⊔ y (3.2 revisited)

∀x, y. x ⊓ y defined Ô⇒ x ⊓ y ⊑ x (3.4 revisited)

∀x, y. x ⊓ y defined Ô⇒ x ⊓ y ⊑ y (3.5 revisited)

• Abstract domains are equipped with ⌜a concretisation function γ from the abstract
domain to the powerset of the concrete domain⌝ compatible with the poset order of
the abstract domain:

∀v♯1, v♯2. v♯1 ⊑ v♯2 Ô⇒ γ (v♯1) ⊆ γ (v♯2) (3.7)

Note that the two operators ⊔ and ⊓ are supposed to be partial operators: they are allowed
to fail merging two results. In such failing cases, the construction of an abstract derivation
also fails, preventing any unsound derivation to be constructed. Of course, such a failure
wouldmean that an analyser aborts a program analysis, which is usually not a good action
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v♯1

v♯3

v♯2

Set of all concrete values

γ

Figure 3.7: Concretisation relation between an abstract and a concrete domain

from an analyser. This issue can be compensated by constructing a symbolic completion
of the original domain (see Section 3.5.2). The point is not to build aborting analyses, but
to avoid having to prove that analyses never abort.

Figure 3.7 pictures ⌜the constraint on the concretisation function⌝: the poset structure is at
left and the concrete domain is at right. The poset structure is ordered in this figure as in
a Hasse diagram; however the concrete domain at the right is not ordered: the different
regions include concrete elements. Regions are ordered with the inclusion relation ⊆. In
this case, the abstract domain contains a ⊺ and a � value, but this is not mandatory.

3.3 Abstract Interpretation of Big-step Semantics
Abstract interpretation provides a systematic way of building abstract semantics from a
concrete semantics and an abstract domain. It consists of the following steps:

• choose an abstract domain;
• define an abstract semantics over this abstract domain;
• show that its abstract executions are sound with respect to the concrete executions;
• program an analyser building an abstract execution among the possible ones. This
analyser is sound by construction. Its precision depends on the chosen execution.

Some analysers do not build abstract executions, but are related to the abstract semantics
by a soundness proof. This soundness proof is technically an analyser sound by construc-
tion: from any execution of the associated analyser, it builds an abstract execution.

This is how Cousot [Cou99] and ⌜Midtgaard and Jensen [MJ08]⌝ systematically build ab-
stract semantics from transition systems. Some [Cac+05; Jou+15] even defined an abstract
semantics in Coq for a non-trivial language (the C♯minor language in this example).These
abstractions usually separate⌜side-effects-free programs (usually named expressions)⌝ from
⌜programs with potential side-effects (usually named statements)⌝. It is possible to make use

76 Chapter 3 Basics of Abstract Interpretation



3

...

E♯, e ⇓ +

...

E♯, s1 ⇓ r♯1
E♯,+, if 1 s1 s2 ⇓ r♯1

E♯, if (e > 0) s1 s2 ⇓ r♯1 ⊑

...

E♯, e ⇓ ⊺Z

...

E♯, s1 ⇓ r♯1

...

E♯, s2 ⇓ r♯2
E♯,⊺Z, if 1 s1 s2 ⇓ r♯1 ⊔ r♯2

E♯, if (e > 0) s1 s2 ⇓ r♯1 ⊔ r♯2

Figure 3.8: An approximation of an abstract derivation tree

of the particularities of these two kinds of programs (expressions and statements). The se-
mantics of expressions is usually straightforward, and their semantics is usually defined
in a style following the derivation structure, such as big-step style (see Section 2.1.1).
Conversely, because statements do not always terminates, they are usually specified in
small-step style. This separation is problematic for JavaScript in which every program
has potential side-effects: usual approaches would choose the small-step style for Java-
Script, but JSCert is written in (pretty-)big-step.

The principles behind abstract interpretation of big-step semantics have been studied
by Schmidt [Sch95]; they form the basis of the formalisation of Chapter 4. The idea be-
hind these principles is to lift ⌜the connection between the concrete and abstract worlds
(usually a Galois connection)⌝ to derivations trees. Given the restrictions of Section 3.2.4,
this amounts to define ⌜a poset and a concretisation function for abstract derivation trees⌝.
Schmidt introduced a precise definition of ⌜what a semantic derivation tree is⌝: it is a de-
rivation tree obtained from applying the inference rules of a big-step semantics to a term.
Semantic derivation trees result in concrete judgements of the form σ, t ⇓ r, where σ is a
semantic context, t a term, and r a result. An abstract semantic tree (also called abstract de-
rivation) is then defined to be a semantic derivation tree where the values at the nodes are
in the abstract domain. Schmidt then defined how derivations can be approximated. A de-
rivation can be approximated either by approximating one of its judgements or by adding
branches to it.⌜Approximating a judgement of a derivation⌝ implicitly implies to propagate
the effects: to be a valid derivation tree, the new tree has to follow the inference rules.
Figure 3.8 shows an instance of this order: the abstract value + has been approximated
into ⊺Z. Because of this approximation, a new branch had ⌜to be added in the abstract de-
rivation tree⌝ to cover the new non-positive case. Schmidt showed that the complete lattice
of semantic contexts and results can be lifted to abstract derivations3: abstract derivations
form a complete lattice when equipped with the above order ⊑. ⌜Relating concrete and ab-
stract derivations in such a way⌝ provides strong principles on how abstract derivation
should be defined and proven sound.

3 Schmidt manipulated derivations augmented with a top and a bottom element—respectively written∆
andΩ—which could appear as subtrees of derivations. Such derivations enable to define greatest fixed points
without using coinduction. These formalisation choices are not crucial to understand this dissertation.
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From the concretisation function of ⌜abstract input states σ♯⌝ and ⌜abstract results r♯⌝, it is
possible to define the concretisation of ⌜an abstract judgement σ♯, t ⇓ r♯⌝. ⌜The concret-
isation relation between abstract and concrete derivation trees⌝ is defined as follows. A
concrete and an abstract derivations π and π♯ are related if the conclusion statement of π
is in the concretisation of the conclusion of π♯, and for each sub-derivation of π, there ex-
ists a corresponding abstract sub-derivation of π♯ which covers it. Intuitively, an abstract
derivation covers a concrete derivation if the latter can be “recognised” in the former.

There are several ways in which the coverage of abstract derivations can be be ensured.
One way is to add a number of ad-hoc rules. For example, it is common for inference-
based analyses to include a rule such as Rule if-abs below, which covers the execution of
both branches of an if -construct. Section 3.6 explains the problem with such rules, and
Section 4.4.1 proposes an alternative.

if-abs
E♯, s1 ⇓ r♯1 E♯, s2 ⇓ r♯2
E♯, if (e > 0) s1 s2 ⇓ r♯1 ⊔ r♯2

Some programs can loop a non-deterministic number of step: there may be no bound on
the maximum size of a concrete derivation for a given program. As an abstract deriva-
tion has to include all of the corresponding concrete derivations, abstract derivation trees
may have to be infinite. An analyser can still terminate by identifying an invariant in the
derivation tree. Whatever the invariant used by the analysis, it is sound if the returned
derivation belongs to the set of abstract derivations trees. It is important for Chapter 4 to
understand that each of these abstract derivation trees is sound. When Schmidt defined
his abstract interpreter, he considered all the abstract derivation trees whose conclusion
was in the form σ♯, t ⇓ r♯ for a given σ♯ and t, then took the smallest derivation tree (which
is possible because derivation trees form a complete lattice). The smallest derivation tree
is guaranteed to build the most precise result r♯0, but ⌜any other result r♯ produced by an-
other derivation tree⌝would still be sound, as by construction we have r♯0 ⊑ r♯, and thus
γ (r♯0) ⊆ γ (r♯). A less precise result r♯ might however be much simpler to find than the
most precise result r♯0: we shall not limit ourselves in this dissertation to the most precise
result, but will accept any sound result.

Chapter 4 describes how ⌜this way of building abstract semantics⌝ has been extended to
ease the proof of soundness of the abstract semantics. This proof has been defined in the
Coq proof assistant. We now present how the different mathematical notions seen in this
chapter are expressed in the Coq files accompanying this dissertation [Bod16].
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3.4 Practical Abstract Interpretation in Coq
Thegoal of Coq is to build very rigorous proofs.This can sensibly hinder the proof effort as
each fact—however “trivial” or evident theymay be—has to be proven. Type classes [SO08]
provide a practical solution to this problem: Coq is equipped with a mechanism looking
for some specific instances as need. Such instances can be defined by the user to adapt the
needs of a particular development. Instances are a way to handle implicit proof in Coq.
Let us see how they work on some examples.

3.4.1 Decidable Instances
The Coq development described in this dissertation is based on the TLC library [Cha10].
As we have seen in Section 2.7.1, this library is based on classical logic. In particular, TLC
provides the following reflection mechanism: the function isTrue : Prop → bool takes
a property and returns the true boolean if and only if the given property is true. Of course,
this function is not extractable, as not all properties are decidable.

When we need to extract such a test, we have to show that a given property P is decidable.
This amounts to define a decision procedure4for this property P.⌜Defining such a procedure
(and proving it)⌝ can be cumbersome in a lot of cases, in particular when they stack on top
of each other. For instance, to look up a value into an associative list, we have to loop
through the list looking for a given key: keys have to be proven comparable, or in other
words, the equality of keys has to be proven decidable. These procedures are not difficult
to define or prove, but when in the middle of a big definition such as JSRef, they can stop
ourselves from the formalisation effort.

In order to bypass this problem, we use ⌜the following type class specifying a decidable
predicate⌝. This class is composed of two elements: Line 2 contains a boolean decide, and
Line 3 specifies how this boolean behaves. In this case, the boolean decide should be
equivalent to isTrue, but in a computable way. This approach can be considered as a
small-scale reflection, packing together a predicate and a boolean function.

1 Class Decidable (P : Prop) := make_Decidable {

2 decide : bool ;

3 decide_spec : decide = isTrue P }.

Once the decidability of the property has been defined, type classes enable to only refer to
the tested property, and to forget about the precise instantiation needed to prove it. The
unextractable expression If x = y then e1 else e2 can now be written if decide (x

= y) then e1 else e2, shortened into ifb x = y then e1 else e2. At each occurrence
of decide, Coq will look for known instances of the Decidable class. If found, Coq will
transparently accept this definition: the only change from the user’s perspective is to

4 Note that this property can be parametrised by some values: the intuition is that P is a predicate.
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replace If by ifb. Internally, Coq builds a boolean which can be extracted. Extraction
then builds a term of the form if comparable_instance x y then e1 else e2, where
comparable_instance is the instance built by the type class mechanism. We have already
transparently encountered the ifb-construct—for instance Line 4 of Program 2.1b.

This simplifies the definition of terms and removes the need to prove their correctness. For
instance, the comparison of references (see Section 2.4.1) has been implemented in JSRef
as below. This definition is readable because of type classes. Furthermore, we can directly
infer from this definition that it returns true if and only if all these equalities hold.

 

 

1 Definition ref_compare r1 r2 : bool :=

2 decide (ref_base r1 = ref_base r2 ∧
3 ref_name r1 = ref_name r2 ∧
4 ref_strict r1 = ref_strict r2).

Once extracted, we can see that Coq reused several type class instances⌜which have been
defined in TLC and in the JSCert development⌝, such as string_comparable.

1 let ref_compare r1 r2 =

2 and_decidable (ref_base_type_comparable r1.ref_base r2.ref_base)

3 (and_decidable (string_comparable r1.ref_name r2.ref_name)

4 (bool_comparable r1.ref_strict r2.ref_strict))

⌜Another class frequently used in the development⌝ is the PartiallyDecidable class of
Program 3.1a. It is very similar to the Decidable class, with one difference: instead of the
try_to_decide to be equivalent to the trueness of the given property P, it only implies it.
If try_to_decide is false, then it provides no information about the property P; if it is
true, the property P has to be true. The PartiallyDecidable class is useful to build sound
analysers without having to prove that they are precise. For instance, an analyser could
choose to be precise if a given property is true, and fall back to a less precise way if it is not:
the other way is sound in both cases, just less precise. Invoking try_to_decide instead
of decide can be a way to be precise when needed, but not when the proof effort is huge.
Program 3.1b is an example of⌜type class⌝ instance which can be used by Coq to infer new
instances. In this case, the instance states that a decidable property is partially decidable.
The proof uses the precise decide P for the value of try_to_decide: this instance is as
precise as the previous one, we only lost the proof of its precision in the process.

⌜Instances such as the one shown in Program 3.1b⌝ extend the type classes inferred by
Coq. This is especially useful when defining mathematical structures, as they are often
composed of substructures. For instance, a poset provides a ⊑ operator, which is by hy-
pothesis decidable: Coq will automatically use this hypothesis wherever it is needed to
transparently define new ⌜type class⌝ instances.
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1 Class PartiallyDecidable (P : Prop) : Type := PartiallyDecidable_make {
2 try_to_decide : bool ;
3 try_to_decide_spec : try_to_decide → P }.

(a) Class definition

1 Global Instance Decidable_PartiallyDecidable : forall P,
2 Decidable P →
3 PartiallyDecidable P.
4 introv D. applys PartiallyDecidable_make (decide P). rew_refl~.
5 Defined.

(b) Relation to the Decidable class

Program 3.1: The PartiallyDecidable class

3.4.2 The Poset Class
Posets are often built by composing several smaller posets; this can make the definition
of their operations complex and difficult to read. Cachera and Pichardie [Pic08; CP10]
provide⌜some useful instances which have been used all along this thesis’s development⌝.

⌜The data structures used to represent elements⌝ are usually richer than the represented
mathematical object: sets can for instance be represented by lists or trees, but⌜the order on
such lists⌝ is not relevant to the represented set.Quotients are thus frequent when building
these structures; this makes ⌜Coq’s minimal equivalence relation =⌝ of limited use. To ease
the development, it is thus preferable to be parametrised by a (decidable) equivalence
relation. ⌜The type class EquivDec.t A of Program 3.2a⌝ equips its ⌜argument type⌝ A by an
equivalence relation noted =♯. This relation is supposed to be decidable.

The class PosetDec.t A of Program 3.2b defines the structure of decidable poset over the
type A; it provides an instance of EquivDec.t A (and thus a =♯ operator), as well as a
(decidable) order relation ⊑♯. When writing a property involving ⊑♯, Coq shall look for
corresponding instances. This greatly simplifies notations and reasoning.

Program 3.3 shows how⌜the fact that a domain has a ⊺ and a � elements⌝ can be expressed
as a⌜type class⌝. These two structures take as a parameter their corresponding poset, in con-
trary to PosetDec.twhich provides its equivalence relation.This parametrisation enables
the usage of these classes separately: not all structures have both ⌜a ⊺ and a �⌝ elements;
and these elements are only needed in specific situations. These choices are more driven
by usability rather than by an intrinsic mathematical property.

For each of these structures, we have assumed that the operations =♯ and ⊑♯ are decidable.
For some structures—in particular the ones described in Chapter 6—, this can hinder the
definition of an abstract domain. We shall thus sometimes use the alternative definition of
posets below. It features the same properties, except its decidability, and is noted ⊑. Some
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1 Module EquivDec.
2 Class t (A:Type) : Type := Make {
3 eq : A → A → Prop ;
4 refl : forall x, eq x x ;
5 sym : forall x y, eq x y → eq y x ;
6 trans : forall x y z, eq x y → eq y z → eq x z ;
7 dec : forall x y, Decidable (eq x y) }.
8 End EquivDec.
9 Notation ”x =♯ y” := (EquivDec.eq x y) (at level 40).

(a) Equivalence relation

1 Module PosetDec.
2 Class t A : Type := Make {
3 eq :> EquivDec.t A ;
4 order : A → A → Prop ;
5 refl : forall x y, x =♯ y → order x y ;
6 antisym : forall x y, order x y → order y x → x =♯ y ;
7 trans : forall x y z, order x y → order y z → order x z ;
8 dec : forall x y, Decidable (order x y) }.
9 End PosetDec.

10 Notation ”x ⊑♯ y” := (PosetDec.order x y) (at level 40).

(b) Poset structure

Program 3.2: ⌜Coq definition⌝of the decidable poset structure

1 Module TopDec.
2 Class t A ‘{PosetDec.t A} : Type := Make {
3 elem : A ;
4 prop : forall x : A, x ⊑♯ elem }.
5 End TopDec.
6 Notation ”⊺♯” := (TopDec.elem) (at level 40).

(a) Top element

1 Module BotDec.
2 Class t A ‘{PosetDec.t A} : Type := Make {
3 elem : A ;
4 prop : forall x : A, elem ⊑♯ x }.
5 End BotDec.
6 Notation ”�♯” := (BotDec.elem) (at level 40).

(b) Bottom element

Program 3.3: ⌜Coq definition⌝of the classes for ⊺ and �
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parts of the Coq development use the compromise of assuming that the order relation ⊑ is
partially decidable: forall x y, PartiallyDecidable (x ⊑ y). Thanks to the⌜type class⌝
mechanism, Coq is able to find such an instance from the PosetDec.t class.

1 Module Poset.

2 Class t A : Type := Make {

3 eq :> Equiv.t A ;

4 order : A → A → Prop ;

5 refl : ∀ x y, x == y → order x y ;

6 antisym : ∀ x y, order x y → order y x → x == y ;

7 trans : ∀ x y z, order x y → order y z → order x z }.

8 End Poset.

9 Notation ”x ⊑ y” := (Poset.order x y) (at level 40).

These structures provide all what is needed to understand the Coq definition of a correct
concretisation. Type A is the abstract domain and Type C is the concrete one.The property
gamma_monotone is the Coq translation of Equation 3.7. Line 3 features the abstract order
and Line 4 features the powerset order on concrete sets; this last order is not decidable
and thus only uses the ⊑ operator from Poset.t. Both orders are inferred by Coq through
the ⌜type class⌝ instances provided in the context.

1 Variable gamma : A → C → Prop.

2 Hypothesis gamma_monotone : forall a1 a2,

3 a1 ⊑♯ a2 →
4 gamma a1 ⊑ gamma a2.

Interestingly, ⌜the type given to the concretisation function gamma in Coq⌝ is the one of a
relation between A and C. Sets in Coq are indeed represented as predicates: a subset of C
is of type C → Prop.⌜The expected type A → (C → Prop) of a function from A to a subset
of C⌝ is then exactly the same than this of a relation between A and C. ⌜This representation
of concretisation functions as relations⌝ is frequent in abstract interpretation when Galois
connections are not needed. We shall thus freely consider concretisation functions in this
dissertation to be relations when it better suits the intuition.

3.5 Examples of Poset

This section provides some simple examples of generic posets used in this thesis. These
posets are used to combine different posets. They are particularly useful to abstract the
inputs of extended terms, as these are usually combinations of basic values. Each of these
posets has been formalised in Coq.

3.5 Examples of Poset 83



⊺

⊺P

P ♯

�P

(a) Adding ⊺ to a poset P ♯

⊺

⊺A ⊺B

A♯ B♯

�A �B
�

(b) A simple way to abstract the sum of two posets

Figure 3.9: Picturisation of the Hasse diagrams of simple posets

3.5.1 Poset Product

We assume two disjoint concrete sets A and B, abstracted by two posets A♯ and B♯: they
are related by the γA and γB functions. We assume ⌜that each has a greatest element ⊺A
and ⊺B , and a smallest element �A and �B⌝, that γA (�A) = ∅, and that γB (�B) = ∅.
The hypotheses about the greatest and smallest elements are optional, but they can help
the intuition. Let us abstract A +B. Note that in contrary to Coq, I consider that A is a
subtype of A +B: I mainly ignore the constructors inr and inl in this dissertation.

The intuitive abstraction is to abstract A + B with (A♯ +B♯)⊺/�A = �B; it is the sum A♯ +
B♯ to which we have added a global ⊺ element, and in which we have merged the two
elements �A and �B using a quotient. Adding a global ⊺ element to a poset P is a common
operation; we note it P ⊺; Figure 3.9a pictures how we can complete the Hasse diagram
ofP to build it. For the smallest value, it would not make sense to add a new � smaller than
any other value: the concretisations of �A and �B are already empty. It is not a problem for
soundness to have several incomparable abstract values with the same concretisation, but
it is an issue for preciseness (and for clarity): it is preferable to join both �A and �B into
a single value �. In Coq, this quotient is performed by defining an equivalence relation
(instance of EquivDec.t) such that �A and �B are equivalent. Figure 3.9b pictures the
domain (A♯ +B♯)⊺/�A = �B .

If the posetsA♯ andB♯ are also lattices, this abstract domain also is: the ⊔ and⊓ operations
naturally follow.The concretisation function of this abstract domain is defined as expected:
given a♯ ∈ A♯ and b♯ ∈ B♯, the concretisation γ is defined as follows.

γ (⊺) = A +B γ (a♯) = γA (a♯) γ (b♯) = γB (b♯)

This abstraction works well as long as program variables rarely mix types: ⌜a variable
which contains elements of A⌝ rarely gets elements of B and so on. But ⌜if by chance a
variable x is analysed in both branches of an if -condition, such that it is abstracted by a♯ ∈
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A♯∖{�A} in one branch, and by b♯ ∈ B♯∖{�B} in the other⌝, then we will only get ⊺ as an
abstraction for the value of x when exiting the if -construct: it is the only abstract value
of this domain greater than both a♯ and b♯. Note that this happens independently of the
precision of the domains A♯ and B♯.

To avoid this, we have to carry both components in parallel: in the previous case, we
would carry both values a♯ and b♯ in the pair (a♯, b♯). The intuitive meaning of this pair
is that if the value of x is in A, then it must be in γA (a♯); if it is in B, then it must
be in γB (b♯). This is exactly what has been done in Section 3.2.2 to abstract ⌜expression
outputs⌝: concrete ⌜expression outputs⌝ can either be values or errors. Abstract ⌜expression
outputs⌝are thus⌜pairs of abstract values and abstract errors⌝ in Val ♯ × error ♯. The abstract
values of Jensen et al. [JMT09] are an instance of such a domain.

Definition 3.2 (Product poset). We define (A +B)♯ = A♯ × B♯. We equip it with the
following poset structure and concretisation function:

(a♯1, b♯1) ⊑ (a♯2, b♯2) ⇐⇒ a♯1 ⊑ a♯2 ∧ b♯1 ⊑ b♯2
γ ((a♯, b♯)) = γA (a♯) ⊎ γB (b♯)

This structure is more precise than the one pictured in Figure 3.9b. Indeed, ⊺ is repres-
ented by (⊺A,⊺B), which is the greatest element of (A +B)♯, and has the same concret-
isation A +B. Furthermore, any a♯ ∈ A♯ can be represented without loss of information
(that is, without altering the concretisation function) as (a♯,�B); the case is similar for
any b♯ ∈ B♯. For readability purposes, (a♯,�B) is usually simply written a♯, and similarly
(�A, b♯) is usually simply written b♯. ⌜This notation simplification⌝ is also present in Coq
thanks to the coercion mechanism (already encountered in Section 2.5.2.1): we shall use
this notation in this dissertation whenever it can simplify the understanding. Continuing
on this notation, we shall write (a♯, b♯) as a♯ ⊔ b♯, which is much simpler to read.

3.5.2 Symbolic Completion of Domains

Abstract interpretation traditionally uses a lot more ⌜hypotheses about structures⌝ than
presented in Section 3.2.4. Our restrictions can lead to frustrating examples in which there
is no better element in the abstract structure to abstract a value. For instance, Figure 3.10a
represents the Hasse diagram of a subposet of the sign domain (see Figure 3.5a). This
specific domain has three abstract values representing the concrete value 0: −0, +0, and ⊺.
Among these three abstract values, there is no smallest: −0 is not comparable with +0.
This can lead an abstract interpreter to non-deterministic choices when abstracting the
concrete value 0: the two choices of −0 and +0 lead to a sound result, but there is no way
of knowing in advance which provides the most precise result.
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⊺Z

−0 +0

�

(a) No better abstraction for 0

⊺Z

⩽1⩾0

10

�

(b) No smallest greater bound

Figure 3.10: Examples of undesirable posets for abstract interpretation

The abstract domain of Figure 3.10b causes a similar problem. It features the elements �, 0,
1, ⩾0, ⩽1, and ⊺Z, where⌜0 and 1 exactly represent the concrete values 0 and 1⌝, ⩾0 represents
the values greater or equals to 0, and ⩽1 the values lesser or equals to 1. Imagine an if -
condition assigning to a variable x the value 0 in one branch and 1 in the other. To abstract
the value of x after the conditional, ⌜a value greater than both 0 and 1⌝ has to be chosen.
There are three such values (⩾0, ⩽1, and ⊺Z), but no smallest one. ⌜Artificially adding a
precise ⊔ operator⌝ can avoid making such choices.

Definition 3.3. Formally, we start from a posetP and define the symbolic completion C (P )
of P as below. We use the symbols ∨ and ∧ to define the extended elements. A similar
poset can be defined without⌜the ∧ symbol, which is not always needed⌝. Similarly, we can
define a similar poset without the ∨ symbol. We do not detail these simpler posets.

c ∈ C (P ) ∶∶= c ∨ c ∣ c ∧ c ∣ e ∈ P

We extend the order of P into C (P ) as follows. If P has a greatest element ⊺, then ⊺ is
still the greatest element of C (P ); similarly for a smallest element �.

(c1 ∨ c2) ⊑ c3 ⇐⇒ c1 ⊑ c3 ∧ c2 ⊑ c3
(c1 ∧ c2) ⊑ c3 ⇐⇒ c1 ⊑ c3 ∨ c2 ⊑ c3
e ⊑ (c1 ∨ c2) ⇐⇒ e ⊑ c1 ∨ e ⊑ c2
e ⊑ (c1 ∧ c2) ⇐⇒ e ⊑ c1 ∧ e ⊑ c2

Note that this order is not antisymmetric: we have ⊺∨ e ⊑ ⊺ ⊑ ⊺∨ e, where ⊺ is (assuming
that it exists) the greatest element of P , and e is an element of P . The equivalence relation
provided by EquivDec.t (see Section 3.4.2) can now be used to quotient C (P ) over the
following equivalence relation ∼. This operation makes ⊑ antisymmetric.

c1 ∼ c2 ⇐⇒ c1 ⊑ c2 ∧ c2 ⊑ c1
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The order ⊑ has been defined such that the symbols ∨ and ∧ define a proper smallest
greater bound ⊔ and greatest lower bound ⊓ of the symbolic completion: C (P ) forms a
lattice. In Coq however, the ⊔ and ⊓ operations have been partially optimised to avoid
carrying useless terms; for instance, if c1 ⊑ c2, then c1 ⊔ c2 = c2. The operations ⊔ and ∨
are nevertheless equivalent with respect to the quotient relation ∼.

We now extend the concretisation function γ of P into C (P ). The following definition is
compatible with the above order: it respects Equation 3.7.

γ (c1 ∨ c2) = γ (c1) ∪ γ (c2)

γ (c1 ∧ c2) = γ (c1) ∩ γ (c2)

Thesymbolic completion domain provides an example of the usage of PartiallyDecidable
described in Section 3.4.1. We can indeed propagate the partial decidability of the or-
der of P into C (P ). Suppose that c1 ⊑ c2, but that the try_to_decide nevertheless an-
swers false to this inequality: the partial decidability procedure failed to prove the or-
der. In such case, we would get c1 ⊔ c2 = (c1 ∨ c2): it is still sound, but not as simple
as just c2 (although equivalent with respect to ∼). In this case, the lack of precision of
PartiallyDecidable only hinders the memory usage of the analysis, not its soundness.

This domain can be used to make domains more precise when needed. In particular,
note how ⌜given two abstract domains A♯ and B♯⌝ the abstract domains C (A♯ +B♯) and
(A +B)♯ (see Definition 3.2) have the same precision, as they express the same concrete
sets. ⌜The ability to symbolically complete domains⌝makes ⌜the usage of posets instead of
lattices⌝ less problematic for precision, as it is always possible to complete a domain to be
more precise when needed.

3.6 Building an Abstract Semantics
In this chapter, we have mostly covered abstract domains: we discussed their associated
hypotheses, and we showed the definition of some of them. Abstract domains are used
to abstract ⌜the values and memory model⌝ of the concrete semantics. They are crucial to
define an abstract semantics; but we have not yet described how to define an abstract
semantics, and more importantly, how to prove it sound. The fact is that it is usually done
⌜in an ad-hoc manner⌝ or ⌜driven by intuition⌝: the abstract semantics is built after deeply
understanding ⌜the concrete semantics and its invariants⌝.

Concrete domains do not necessarily provide useful invariants. For instance, JavaScript’s
memory model can be abstracted as a heap from locations to objects, objects being ⌜maps
from fields to values⌝. As-is, there is no invariant claiming that ⌜the locations stored in an
object of the heap⌝are associatedwith an object in the same heap. And yet, it is an invariant
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of JavaScript’s semantics. Proving it requires a lot of effort [Lal14]. Furthermore, this
invariant has to catch the evolutions of JavaScript’s semantics, as it depends on the entire
semantics of JavaScript. In a way, ⌜proving such invariants⌝ amounts to understanding
the language semantics. JavaScript’s memory model (see Section 1.2.3) is much simpler
than JavaScript’s whole semantics: Section 1.2.4 presents an example of JavaScript’s
⌜unnecessary complex⌝ semantics.

Here follows a typical rule from the literature. Rule if-abs abstracts⌜several rules involved
in the if -construct⌝ at once—the three rules red-if, red-if-1-pos, and red-if-1-neg. The
idea of Rule if-abs is to ignore the condition of the if -construct, then analyse each branch
of the construct, and finally merge the results—supposing that there is a ⊔ operator in the
poset of abstract results. It may not be a very precise rule, but we now ignore this matter
for the sake of the example.

if-abs
E♯, s1 ⇓ r♯1 E♯, s2 ⇓ r♯2
E♯, if (e > 0) s1 s2 ⇓ r♯1 ⊔ r♯2

The soundness of an abstract semantics is proven globally: once all abstract rules have
been defined, we consider the built abstract semantics and prove that it is sound with
respect to the concrete semantics. This induction can be huge, and it may require some
work to find a bug in the abstract semantics during the process. Intuition is often not
enough in such contexts: however natural Rule if-abs may appear, it is not sound. In-
deed, there is a concrete rule ⌜which can apply at an if -construct⌝, but which is not taken
into account in this abstract rule: Rule red-error-stat, which is triggered when the eval-
uation of the expression e returns an error. The concrete derivation below is missed by
the abstract rule if-abs: the abstract semantics may state that no error can happen and
miss the result err . The abstract rule if-abs is thus not sound.

red-var-undef
ϵ, x ⇓ err ϵ, err , if 1 skip skip ⇓ err

red-error-stat

ϵ, if (x > 0) skip skip ⇓ err
red-if

This mistake was easy to catch in the small language which we considered, given its
small number of rules, but what about JavaScript? JavaScript can be quite complex,
and ⌜having a correct intuition about how it works and how to abstract the 900 rules of
JSCert⌝ is challenging. We approach this issue by proposing a new method of abstracting
semantics. This method is a continuation of Schmidt’s work about the abstraction of big-
step semantics (see Section 3.3). The overall semantics of JavaScript is complex, but each
rule of JSCert is simple. The method presented in Chapter 4 aims at independently ab-
stract each concrete rule. There is thus no need to understand how the semantic behaves
in a global scale, but only to understand how the memory model works. In this setting, a
rule such as Rule if-abs is no longer needed.
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4Principles for Building Analysers of
Large Semantics

Or would Professor McGonagall have given it to him anyway, only
later in the day, whenever he got around to asking about his sleep
disorder or telling her about the Sorting Hat’s message? Andwould
he, at that time, have wanted to pull a prank on himself which
would have led to him getting the Time-Turner earlier? So that
the only self-consistent possibility was the one in which the Prank
started before he even woke up in the morning…?

Eliezer Yudkowsky [Yud15]

We have seen in Chapter 1 how complex the JavaScript language is. ⌜Building certified
analyses for the full language⌝ thus appears to be a difficult task. At first sight, we would
like to avoid supporting JavaScript’s full semantics and to restrict ourselves to a safe
sublanguage.This is at what⌜libraries such as ADSafe [Cro08]⌝aim. But how can we prove
that these libraries safely restrict to a sublanguagewhen eval-like features hide within the
constructor of functions (see Section 1.2.5)? Dually, programmers usually use a large part
of the language peculiarities: ⌜choosing what should be considered a programming error
and what should not⌝ is a difficult task by itself. An alternative to these libraries would
consist in building a certified JavaScript analyser for the full JavaScript language.

⌜The proof effort needed by the framework of abstract interpretation⌝grows with the size of
definitions: in the case of JavaScript, the proof effort is overwhelming.TheK framework
is able to generate analysers⌜from a concrete semantics and some abstract domains⌝—there
are no formally proven guarantees on these analysers, though. ⌜This idea of generating
analysers from a concrete semantics⌝ appears to be a good solution to ease the Coq de-
velopment. This chapter presents some techniques to extend ⌜the abstract interpretation
framework briefly presented in Chapter 3⌝ to large semantics. To generate an abstract se-
mantics from a concrete one, we need to have a definition of what a semantics is—in other
words, we need semantics to be first-class citizens of Coq. This chapter presents how to
define and prove sound such an abstract semantics. Notably, this chapter does not focus
on proving abstract interpreters sound (although Section 4.6 briefly mentions how to cer-
tify some of them), but on proving abstract semantics sound. The work presented in this
chapter resulted in a publication [BJS15b] as well as a Coq development [BJS15a].
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e ∶∶= c ∈ Z
∣ x ∈ Var
∣ e1 + e2

ee ∶∶= ⋅ +1 e
∣ ⋅ +2 ⋅

s ∶∶= skip
∣ s1; s2
∣ x ∶= e
∣ if (e > 0) s1 s2
∣ while (e > 0) s

se ∶∶= x ∶=1 ⋅
∣ ⋅ ;1 s2
∣ if 1 s1 s2
∣ while1 (e > 0) s
∣ while2 (e > 0) s

Figure 4.1: Updating the language of Figure 3.3

red-while
E, e ⇓ r E, r,while1 (e > 0) s ⇓ r′

E,while (e > 0) s ⇓ r′
red-while-1-neg

E,v,while1 (e > 0) s ⇓ E
v ⩽ 0

red-while-1-pos
E, s ⇓ r r,while2 (e > 0) s ⇓ r′

E,v,while1 (e > 0) s ⇓ r′
v > 0

red-while-2
E,while (e > 0) s ⇓ r
E,while2 (e > 0) s ⇓ r

Figure 4.2: Rules for the while-construct

Section 4.2 presents traditional abstract rules found in the literature. These rules are very
different from the corresponding concrete rules, making their soundness difficult to prove.
The pretty-big-step format proved to be a good basis to build and define abstract semantics.
Section 4.3 presents a formalisation of this semantic style. Section 4.4 then presents how
abstract semantics can be defined and proven in this setting. Section 4.6 presents how
generic abstract interpreters can be developed.

4.1 Language and Domain

We use in this chapter the same language as the one presented in Figures 3.3 and 3.4, but
with an additional looping construct: while (e > 0) s. As for the if -construct, the “> 0” is
part of the syntax of the while-construct.⌜The rules associated with this new construct⌝are
shown in Figure 4.2. Rule red-while computes the expression, then Rules red-while-1-
pos and red-while-1-neg check the result of this computation; in the positive case, the
statement s is executed and Rule red-while-2 checks that its result does not abort. This
language is not a particularly large semantics: this chapter presents a technique which
scales with the size of the semantics, using this language as an example. Section 4.7.1
then extends this language and evaluates how scalable this technique is. This technique
aims to be applied to the JSCert formalisation on further works.

The techniques presented in this chapter, as well as the Coq formalisation, are paramet-
rised by domains: they can be applied to any concrete domain, abstract poset, and concret-
isation function γ. The examples of this chapter use a simple abstract domain, following
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Figure 4.3: The Hasse diagram of the Store♯ poset

what has been defined in Section 3.2.2. The goal of the example analyses shall be to check
whether a program can result in err at the end of its execution. The concrete semantics
of Figure 3.4 is made so that this happens when an undefined variable is read.

We first abstract each construct of Definition 3.1. The domain of integers is abstracted by
the abstract domain of signs.The singleton domain of errors is abstracted by the two-point
domain {err ♯, err ♯}, ordered such that err ♯ ⊑ err ♯. The absence of errors is represented
by err ♯, and the possible presence of an error by err ♯. The result of an expression is
⌜either a value or an error⌝ in Oute; we abstract this sum domain by the poset product of
Definition 3.2. A result known to be an error is thus abstracted by (�, err ♯) ∈ Out ♯e. As
explained in Section 3.5.1, we will simply write this abstract output err ♯. Similarly, we
consider that abstract values can be coerced into abstract expression outputs.

Environments are more complex as their domains change during execution time. We con-
sider them as total functions from variables to special abstract values in Store♯; these spe-
cial values represent either values or undefined variables. We could use the poset product
to represent this sum type, but we shall ⌜keep these values simple for now⌝ and use a sum
type in the abstract domain. Figure 4.3 shows the Hasse diagram of the Store♯ poset. If
a variable x is mapped by an abstract environment E♯ to the top element ⊺Env ♯ of the
Store♯ poset, then E♯ provides no information about whether x is defined. Environments
are ordered point-wise; ⌜their greatest element ⊺Env ♯ and their smallest element �Env ♯⌝ re-
spectively maps every variable into ⊺Store♯ and �Store♯ . From environment, we can define
statement outputs as the poset product of environments and errors.

The full abstract domains are shown below. They mirror the concrete domains of Defin-
ition 3.1. These domains—as well as the rest of this chapter—have been implemented in
Coq [BJS15a]: the Coq name of these construct have also been indicated. Incidentally, the
poset of the abstract domains are also complete lattices. This last property is not required
by the framework presented in this chapter, but it can help generate more precise results.
It is good practise to choose complete lattices as abstract domains when possible.

• Val ♯ = Sign = {�,−,0,+,−0,±,+0,⊺Z}, named aVal in the Coq files;
• error ♯ = {err ♯, err ♯}, aErr in Coq;
• Store♯ = (Val ♯ + undef ♯)⊺;
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1 Inductive ares : Type :=
2 | ares_expr : aOute → ares
3 | ares_prog : aOuts → ares
4 | ares_top : ares
5 | ares_bot : ares.

(a) Abstract results

1 Inductive ast : Type :=
2 | ast_expr : aEnv → ast
3 | ast_stat : aEnv → ast
4

5 | ast_add_1 : aEnv → sign_ares → ast
6 | ast_add_2 : aVal → sign_ares → ast
7

8 | ast_asgn_1 : aEnv → sign_ares → ast
9 | ast_seq_1 : sign_ares → ast

10 | ast_if_1 : aEnv → sign_ares → ast
11 | ast_while_1 : aEnv → sign_ares → ast
12 | ast_while_2 : sign_ares → ast
13

14 | ast_top : ast
15 | ast_bot : ast.

(b) Abstract semantic contexts

Program 4.1: Coq definition of the abstract results and semantic contexts

• Env ♯ = Var → Store♯, aEnv in Coq;
• Out ♯e = Val ♯ × error ♯, aOute in Coq;
• Out ♯s = Env ♯ × error ♯, aOuts in Coq.

There are places in this chapter in which ⌜the two kinds of outputs Out ♯e and Out ♯s⌝ have
to be merged. These results are implemented as a sum augmented with a top element
(Out♯e +Out♯s)

⊺/�Out♯e
= �Out♯s

. The new top element indicates a type error due to a confusion
of expressions and statements during the analysis. The two abstract values with empty
concretisations, �Out♯e

= (�Sign , err ♯) and �Out♯s
= (�Env ♯ , err

♯), have been merged into
a single � element. Program 4.1a shows the Coq definition of the⌜abstract result⌝ type res♯.
Similarly to results, semantic contexts are abstracted as a sum st ♯. In contrary to the rules
of Figures 3.4 and 4.2, we chose here to distinguish the different semantic contexts for each
extended terms. This is more a design choice than a real constraint, but it helps catching
early errors when defining semantics. Program 4.1b shows their Coq definition1.

When building abstract semantics, we sometimes have to check whether an abstract result
contains the concrete value err in its concretisation. We can take advantage of the order
of the product poset: given r♯ ∈ Out ♯e, having err ∈ γ (r♯) implies that (�Val♯ , err

♯) ⊑ r♯.

1 Due to an unfortunate name conflict, the Coq type ast spells like the type of abstract syntax tree (AST).
It however represents an abstract semantic context, whose concrete version is written st in Coq.
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Using the coercions of the product poset, this last ordering is written err ♯ ⊑ r♯. The other
way—that err ♯ ⊑ r♯ implies err ∈ γ (r♯)—is also true, but not needed for the soundness of
our analyses. It is needed to prove completeness, though, but we are not considering this
case. Similarly, given r♯ ∈ Out ♯s, having err ∈ γ (r♯) implies err ♯ ⊑ r♯ (the converse be-
ing true but not needed). We are here abusing notations, considering err ♯ to be in error ,
Out ♯e, or Out ♯s depending on the context. Overall, given a result r♯ ∈ (Out ♯e +Out ♯s)

⊺
�,

having err ∈ γ (r♯) implies ⌜(�Val♯ , err ♯) ⊑ r♯ or (�Env ♯ , err ♯) ⊑ r♯⌝, which we will simply
write err ♯ ⊑ r♯ by abuse of notations. Again, the converse is true but not needed for
soundness. We can now define the error projection r♯∣

error
of the abstract result r♯ ∈

(Out ♯e +Out ♯s)
⊺
�: if err

♯ ⊑ r♯ (and thus err ∈ γ (r♯)), then r♯∣
error

= err ♯, otherwise
r♯∣

error
= �. Similarly, it is sometimes needed to get the projection of a result into a value

(for Oute) or an environment (for Outs). Given r♯ = (v♯, er) ∈ Oute, we write r♯∣
Val♯

the
value part v♯ of this result. We extend this notation into r♯ ∈ (Out ♯e +Out ♯s)

⊺
� by defin-

ing ⊺∣
Val♯
= ⊺Z and r♯∣

Val♯
= � for r♯ = � or r♯ ∈ Outs. We define similarly r♯∣

Env ♯
as being

the abstract environment of a result r♯ ∈ Outs, generalised into r♯ ∈ (Out ♯e +Out ♯s)
⊺
� with

⊺∣
Env ♯
= ⊺Env ♯ and r♯∣

Env ♯
= � for other kinds of results (� or r♯ ∈ Oute).

4.2 Traditional Abstract Rules

In Section 3.3, we have seen how Schmidt formalised ⌜concrete and abstract derivations,
as well as their relation⌝. The approach of this chapter is similar: concrete and abstract
executions are assemblages of rules. We concluded the previous chapter by stating that
most abstract semantics were built in ad-hoc ways. The goal of this chapter is to provide
principles to derive these abstract rules whilst limiting the associated proof effort. This
section presents some traditional abstract rules and shows how different they are from the
concrete semantics of Figures 3.4 and 4.2. In order tominimise the proof effort, this chapter
proposes to build the abstract semantics as close as possible to the concrete semantics.

Figure 4.4 shows some examples of abstract rules found in the literature. Rule if-abs-
corrected is a corrected version of the unsound Rule if-abs of Section 3.6. As � is neutral
for ⊔, Rule if-abs-corrected propagates the potential aborting result of ⌜the expression
evaluation⌝. Rule if-abs-refined represents ⌜a more precise version of this rule⌝ found in
some analysers [Jou+15]: each branch is restricted to the semantic contexts which can
trigger this branch. The notation E♯∣

e>0 aims at giving an intuition of what is happening,
but is not meant to be formal. Such refining operations depend on the chosen domains
and are common in symbolic analyses [Min06a].

Rule while-abs-fixed-point only applies if the expression only returns non-aborting res-
ults. The condition E♯, e ⇓ v♯ could be rewritten E♯, e ⇓ r♯ ∧ err ♯ /⊑ r♯. This rule requires
to find an error-free fixed point E♯ of the analysed loop. This rule is sound: it requires
⌜that no error occur during the execution⌝, which ensures that only the rules of Figure 4.2
apply. Then, as by hypothesis the statement s leaves ⌜the abstract state E♯⌝unchanged, E♯
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if-abs-corrected
E♯, e ⇓ r♯0 E♯, s1 ⇓ r♯1 E♯, s2 ⇓ r♯2
E♯, if (e > 0) s1 s2 ⇓ r♯0∣error ⊔ r♯1 ⊔ r♯2

if-abs-refined
E♯, e ⇓ r♯0 E♯∣

e>0, s1 ⇓ r
♯
1 E♯∣

e⩽0, s2 ⇓ r
♯
2

E♯, if (e > 0) s1 s2 ⇓ r♯0∣error ⊔ r♯1 ⊔ r♯2

while-abs-fixed-point
E♯, e ⇓ v♯ E♯, s ⇓ E♯

E♯,while (e > 0) s ⇓ E♯

while-abs-precise-fixed-point
E♯, e ⇓ v♯ E♯∣

e>0, s ⇓ E
♯

E♯,while (e > 0) s ⇓ E♯∣
e⩽0

abs-top

σ♯, t ⇓ ⊺

abs-weaken
σ♯1 ⊑ σ♯2 σ♯2, t ⇓ r♯2 r♯2 ⊑ r♯1

σ♯1, t ⇓ r♯1

Figure 4.4: Examples of abstract rules used in abstract semantics

is indeed an invariant of the loop. Similarly to Rule if-abs-refined, the environment E♯

can be refined when executing the statement and leaving the loop, as in Rule while-abs-
precise-fixed-point. These two rules about the while-construct only consider terminat-
ing results: if the program terminates, then its result will be abstracted by E♯ (or E♯∣

e⩽0),
but no guarantee is given that the program will terminate. We shall not consider non-
terminating behaviours in this dissertation. ⌜Focussing only on terminating behaviours⌝
enables us to define Rule abs-top, which returns ⊺ on every terms and semantic contexts
(supposing that there exists a greatest abstract result ⊺): any concrete result is supposed
to be in the concretisation of the ⊺ result, thus if a concrete derivation terminates on a
term, then the result can be abstracted by ⊺. Rule abs-top, but also the two rules about
the while-construct, reduce whole derivations of unknown size into a single rule.

Rule while-abs-fixed-point is difficult to use: in most cases,⌜running a statement s on an
abstract state σ♯⌝ returns a different abstract state. To apply Rule while-abs-fixed-point,
another abstract rule is needed to be able to “tie the knot”. To this end, Rule abs-weaken
enables us to loose precision on the resulting abstract state. Inferring a loop invariant from
a given while-construct is a complex but orthogonal task [CC92]: we are only interested
in proving ⌜that such an invariant is correct⌝ once computed by another method.

Most of the rules of Figure 4.4 abstract several rules at once, making the proof of their
soundness—or to even self convince that they are sound—difficult tasks. Rules abs-top
and while-abs-fixed-point push this concept further by abstracting whole derivations.
⌜The abstract and the concrete⌝ semantics have thus little in common, and the proof of
soundness of the abstract semantics has to be done on a case-by-case basis. We propose⌜a
different approach based on the pretty-big-step format⌝ to build abstract semantics.

4.3 Formalising the Pretty-big-step Format

In Section 2.5.2.1, the pretty-big-step style was used because it fits ⌜the writing style of
ECMAScript⌝. This chapter shows another interesting property of pretty-big-step: its con-
straints greatly facilitate its formalisation. Big-step operational semantics are inductively
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defined with rules (or, more precisely, rule schemes) of the following form, describing
how a term t evaluates in a semantic context σ of type st to a result r of type res .

Name
σ1, t1 ⇓ r1 σ2, t2 ⇓ r2 . . .

σ, t ⇓ r
side-conditions

There are⌜several implicit relations between the elements of such rule schemes⌝which need
to be made explicit in order to provide a functional representation of derivation rules. The
pretty-big-step format helps making these implicit relations explicit.

4.3.1 Definition of Rules

Pretty-big-step adds constraints on rule shapes. In particular, it makes explicit the com-
ponents of rules: rule names, side-conditions, rule structure, and transfer functions. We
now describe each of these components.

First, the name of a rule should completely identify it. The rules of Figures 3.4 and 4.2 are
actually rule schemes and do not respect this constraint. In particular, ⌜the term on which
a rule applies⌝ should be inferable from its name (also called identifier). To this end, we
complete the rule names with the needed information. For instance, the rule accessing the
variable x is named by red-var(x). Some examples of updated rules are shown below.The
full updated semantics can be found in the webpage accompanying this thesis [Bod16].

red-var(x)

E, x ⇓ E [x]
x ∈ dom (E)

red-add(e1, e2)
E, e1 ⇓ r E, r, ⋅ +1 e2 ⇓ r′

E, e1 + e2 ⇓ r′

red-add-1(e2)
E, e2 ⇓ r E, v1, r, ⋅ +2 ⋅ ⇓ r′

E,v1, ⋅ +1 e2 ⇓ r′

red-add-2

E,v1, v2, ⋅ +2 ⋅ ⇓ v1 + v2

Formally, a pretty-big-step semantics carries a set N of rule names and a function rule ∶
N → Rule mapping rule names to actual rules (the type Rule is described below). They
also provide a function l ∶ N → term (standing for “left”) mapping rule names to the term
to which the rule applies. For instance, for Rule red-var(x), we have lred-var(x) = x.

Second, rules have side-conditions. We impose a clear separation between these conditions
and the continuation of the derivation above the inference line.The conditions involve the
rule name r and the semantic context σ; they are expressed as a predicate cond ∶ N →
st → Prop which states whether Rule r applies in the given context σ. For instance, two
rules can apply to the term x (a variable), depending on whether this variable is defined
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in the given environment E: it is either the look-up rule red-var(x) or the error rule
red-var-undef(x). This gives the following cond predicates.

condred-var(x) (E) = x ∈ dom (E)

condred-var-undef(x) (E) = x /∈ dom (E)

Third, in contrary to big-step which accepts any number of premises above the infer-
ence line, the pretty-big-step format restricts this number to at most two. There are thus
three possible rule formats in pretty-big-step: axioms (with no premise), rules with one
inductive premise, and rules with two, respectively written Ax , R1, and R2. The function
kind ∶ N → {Ax ,R1,R2} returns the format (axiom, rule 1, or rule 2) of a rule.

The rule itself is described by the Rule type. This type contains two kinds of information:
⌜the syntactic and the semantic⌝ aspects of the rule. Indeed, to evaluate a rule, one needs
to specify which terms to inductively consider (syntactic aspects) and how the semantic
contexts and results are propagated (semantic aspects). We first describe the former.

Axioms have no inductive premises, thus carrying no additional terms. In format 1 rules
(rules with one hypothesis), the current computation is redirected to the computation of
the semantics of another term (often a sub-term). Rule red-if-1-pos(s1, s2) is a typical
instance: it redirects the computation to the term s1. The syntactic aspect of format 1
rules contains a term u1 (standing for “up”). Similarly, format 2 rules have two inductive
premises, and thus carry two terms u2 and n2 (standing for “next”). These syntactical
information are implemented in Coq with the type Rule_struct defined below.

1 Inductive Rule_struct (term : Type) : Type :=

2 | Rule_struct_Ax : Rule_struct term

3 | Rule_struct_R1 : term → Rule_struct term

4 | Rule_struct_R2 : term → term → Rule_struct term.

⌜The functions kind , l, as well as the syntactic aspects of rules u1, u2, and n2⌝ describe the
structure of a rule. It is defined in Coq as follows (l is named left in the development).

1 Record structure := {

2 term : Type ;

3 name : Type ;

4 left : name → term ;

5 rule_struct : name → Rule_struct term }.

96 Chapter 4 Principles for Building Analysers of Large Semantics



4

The structure of a rule provides a lot of information about how this rule can be assembled
with other rules. It does not provide any information about how the rule manipulates
semantic contexts and results. This computation is done in the transfer functions, also
contained in the constructions of typeRule . Transfer functions also depend on the format
of their rule. They can be summed up in the following informal scheme, detailed below.

σ1 , t1 ⇓ r2

σ4 , t4 ⇓ r5

σ3 , t3 ⇓ r5

σ0 , t0 ⇓ r5

ax

ax

up

up
next

Axioms directly return a result. They carry one (partial) transfer function ax ∶ st ⇀ res .
Every context does not trigger the rule because of the cond predicate. The transfer func-
tion might make no sense in other contexts: what Rule red-var(x) is supposed to return
if x is not in the domain of the current environment?This is the reason why transfer func-
tions are partial functions. However, if the rule r is an axiomwith the transfer function ax

and σ a semantic context such that cond r (σ), then ax (σ) should intuitively be defined.
This property is called the exhaustivity of a rule, and is discussed in Section 4.4.4.

Format 1 rules have to compute a new semantic context, which will be passed to their
premise. They are thus associated with a transfer function up ∶ st ⇀ st . As for axioms,
the up function is partial. Once the premise finishes its computation to a result r, this
result is directly propagated (see Figure 4.5). The result of the premise can not be changed
by the format 1 rule: there is no down transfer function. This constraint can be put in
parallel to the monadic style of JSRef (see Section 2.6.2): once the local computation has
been performed, the computation is entirely transferred to the continuation. Thanks to
this constraint, a rule can not “refuse” a result given by an inductive premise by having
an undefined down function on this result, as the big-step Rule exec-app of Figure 2.1b
which forces the expression e1 to result in a λ-abstraction.This constraint guarantees that
the applicability of a rule only depends on ⌜local conditions specified by l and cond⌝.

Format 2 rules start similarly than format 1, with a transfer function up ∶ st ⇀ res . The
computation is then transferred to the first premise. The result of this first branch is then
passed to a transfer function next ∶ st ⇀ res → st along with the initial semantic con-
text. This second transfer function merges the two states. Rule red-add(e1, e2) illustrate
this process: once the expression e1 computed a result (hopefully a value v), this result is
packaged with the environment E for the continuation so that the expression e2 can also
evaluate. The computation then proceeds to the second premise, whose result is propag-
ates as-is (see Figure 4.5). Importantly, the next transfer function is partial for the semantic
context σ (for the same reasons than up), but total for the result r: the next transfer func-
tion can not refuse a result once computed, as for format 1 rules. This constraint is the
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r

σ, lr ⇓ ax (σ)
cond r (σ)

r
up (σ) ,u1,r ⇓ r

σ, lr ⇓ r
cond r (σ)

r
up (σ) ,u2,r ⇓ r next (σ, r) ,n2,r ⇓ r′

σ, lr ⇓ r′
cond r (σ)

Figure 4.5: Rule formats

reason why Program 4.1b contains ⌜semantic contexts such as ast_add_1 carrying results
of type sign_ares⌝: as the computation of an expression can only return a result of type
aOute, we can be tempted to define ast_add_1 as carrying an aOute and not a general
result; but the next transfer functions have to consider all possible results, forcing the
semantic contexts to be more general.

Figure 4.5 summarizes the three kinds of rule formats of pretty-big-step. Note that transfer
functions only depend on the intermediary semantic states, as well as indirectly on the
rule name (which is the only argument of the function rule , which provides the transfer
functions). In particular, transfer functions do not depend on the currently evaluated term:
the ax transfer function of Rule red-asn-1(x) “knows” that the variable to be assigned
is x because x is present in the rule name. This is the reason why we requested rule names
to be precise: working with rules is easier than working with rule schemes.

⌜The cond predicate and the transfer functions⌝form the semantic aspect of rules.We define
them in Coq as follows. The types st and res are also included into this structure.

1 Record semantics := make_semantics {

2 st : Type ;

3 res : Type ;

4 cond : name → st → Prop ;

5 rule : name → Rule st res }.

The Coq type Rule (parametrised by the types of ⌜semantic contexts⌝ and results) contains
the transfer functions of the rule; it is defined as below. As explained in Section 2.1.2,
every Coq function is total: partial functions are implemented with the option type. They
return None if the rule does not apply, either because the semantic context does not have
the correct shape, or if the condition to apply the rule is not satisfied. The next trans-
fer function has been given the type st → res → option st instead of the expected st

→ option (res → st). This formalisation choice was made to ease the definition of se-
mantics; Section 4.4.4 explains why this formalisation choice does not cause any issue.
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1 Inductive Rule st res :=

2 | Rule_Ax : (st → option res) → Rule st res

3 | Rule_R1 : (st → option st) → Rule st res

4 | Rule_R2 : (st → option st) → (st → res → option st) → Rule st res.

It may seem that we compute the same thing twice: cond r (σ) states that Rule r applies
to σ, whilst ax (or the corresponding transfer function) should also return None if the
rule can not be applied. This second requirement is relaxed to enable simpler definitions:
transfer functions may return a result even if they do not apply. For instance, the ax

transfer function of Rule red-var-undef(x) always returns Some (err); but it may only be
applied if the variable x is not in the environment.⌜This separation between side-conditions
and transfer functions⌝is a separation between the control flow and the actual computation.
In the Coq development, the first one is implemented using predicates, and the second
using computable functions.

All the functions described above, both syntactical and semantic, can be inferred from the
rules of Figures 3.4 and 4.2, and conversely. Consider for instance Rule red-add-1(e2).

red-add-1(e2)
E, e2 ⇓ r E, v1, r, ⋅ +2 ⋅ ⇓ r′

E,v1, ⋅ +1 e2 ⇓ r′

This rule is a format 2 rule applying on term lred-add-1(e2) = ⋅ +1 e2. Its structure is defined
by the two terms u2,red-add-1(e2) = e2 and n2,red-add-1(e2) = ⋅+2 ⋅. Its cond predicate is impli-
citly given by notations: it only accepts semantic contexts of the form (E,v), where E is
an environment and v a value. In particular, if the term e1 results in an error in Rule red-
add(e1, e2), then Rule red-add-1(e2) will not apply (but Rule red-error-expr(⋅ +1 e2)
will). We thus have condred-add-1(e2) (σ) = ∃E ∈ Env , v ∈ Val . σ = (E,v). Its up trans-
fer function removes the v1 part of the semantic context, and its next transfer function
combines the newly computed result r with the old semantic context:

rule (red-add-1 (e2)) = R2 (λ (E, _) . E, λ (E,v) r. (E,v, r))

By decomposing each rule into several functional components, we have defined a data
structure for pretty-big-step semantics. Importantly, this structure is divided into two as-
pects: the syntactic aspects (the rule names and⌜the various terms which they carry⌝), and
the semantic aspects (side-conditions and transfer functions). We now describe how to
assemble rules to build a concrete derivation.
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4.3.2 Concrete Semantics

The concrete semantics is given in the form of an evaluation relation (or equivalently, a set
of semantic triples) ⇓ ∈ P (st × term × res). Semantic triples relate semantic contexts σ
and terms t to their result(s) r, they are naturally written σ, t ⇓ r.The predicate ⇓ is defined
as a fixed point of the immediate consequence operator F , which we now detail.

F ∶ P (st × term × res)→ P (st × term × res)

Let ⇓0 ∈ P (st × term × res) be an evaluation relation. The immediate consequence F
proceeds in two steps: it selects a rule which applies, then applies it. We first describe the
second step: the rule application.⌜Theapplication relation for the rule r, written apply r (⇓0) ∶
P (st × term × res)⌝ proceeds as follows. It accepts a semantic triple (σ, t, r) if it can be
computed with the rule r using ⌜the premises given by ⇓0⌝. This function is thus based on
the transfer functions of the rule r, as shown below. Note how the relation ⇓0 is ignored
when the rule r is an axiom.

apply r (⇓0) ∶=
match rule (r) with
∣ Ax (ax) ⇒ {(σ, lr, r) ∣ ax (σ) = Some (r)}

∣ R1 (up) ⇒
⎧⎪⎪⎨⎪⎪⎩
(σ, lr, r)

RRRRRRRRRRR

up (σ) = Some (σ′)
∧ σ′,u1,r ⇓0 r

⎫⎪⎪⎬⎪⎪⎭

∣ R2 (up,next)⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(σ, lr, r)

RRRRRRRRRRRRRRRRRRRRRRR

up (σ) = Some (σ′)
∧ σ′,u2,r ⇓0 r1
∧ next (σ, r1) = Some (σ′′)
∧ σ′′,n2,r ⇓0 Some (r)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

The final evaluation relation is then computed step by step using the immediate con-
sequence F . It extends the evaluation relation ⇓0 to the new relation F (⇓0) below. A
semantic triple is accepted if at least one rule r generates it through apply r (⇓0).

F (⇓0) = {(σ, t, r) ∣ ∃r, cond r (σ) ∧ (σ, t, r) ∈ apply r (⇓0)}

Each application of F extends the relation ⇓0 with an extra step in derivations: F (∅) is
the set of all semantic triples (σ, t, r) generated by axioms, and Fn (∅) is the set of ⌜all
semantic triples (σ, t, r) built by derivations whose depth is less or equal than n⌝.

We can equip the set of evaluation relationsP (st × term × res)with the set inclusion lat-
tice structure (see Section 3.2.2). In this lattice, the functions apply r and F are monotonic:
we can thus consider the fixed points of F . There are several interesting fixed points. The
least fixed point ⇓lfp contains the semantic triples which can be derived from a finite deriv-
ation; the greatest fixed point ⇓gfp contains the semantic triples which can be derived from
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1 Inductive eval : st → term → res → Type :=
2 | eval_cons : forall sigma t r n,
3 t = left n →
4 cond n sigma →
5 apply n sigma r →
6 eval sigma t r
7 with apply : name → st → res → Type :=
8 | apply_Ax : forall n ax sigma r,
9 rule_struct n = Rule_struct_Ax _ →

10 rule n = Rule_Ax ax →
11 ax sigma = Some r →
12 apply n sigma r
13 | apply_R1 : forall n t up sigma sigma’ r,
14 rule_struct n = Rule_struct_R1 t →
15 rule n = Rule_R1 _ up →
16 up sigma = Some sigma’ →
17 eval t sigma’ r →
18 apply n sigma r
19 | apply_R2 : forall n t1 t2 up next
20 sigma sigma1 sigma2 r r’,
21 rule_struct n = Rule_struct_R2 t1 t2 →
22 rule n = Rule_R2 up next →
23 up sigma = Some sigma1 →
24 eval t1 sigma1 r →
25 next sigma r = Some sigma2 →
26 eval t2 sigma2 r’ →
27 apply n sigma r’.

Program 4.2: Coq definition of the concrete semantics ⇓

finite and infinite derivations. As said above, we are not interested in non-terminating be-
haviours of programs in this dissertation: the concrete semantics is defined as the least
fixed point ⇓lfp , which corresponds to an inductive interpretation of the rules. We write
it ⇓. No semantics is given to non-terminating programs.

The Coq implementation of ⇓ is shown in Program 4.2. It directly builds the fixed point
as an inductive definition. The Coq function rule fetches the transfer functions whilst
rule_struct fetches ⌜the syntactic aspects of the semantics, such as the different terms
u1, u2, and n2⌝. The predicates eval and apply are defined as mutually recursive inductive
definitions, indicated by the with construct.

4.4 Abstract Semantics

The purpose of mechanising the pretty-big-step semantics is to facilitate ⌜the soundness
proof of static analysers with respect to a concrete semantics⌝. We thus provide a mechan-
ised way to define an abstract semantics and prove it sound with respect to the concrete
one. ⌜Its usage to build and prove static analysers⌝ is described in Section 4.6.
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As stated in Section 3.3, the starting point for our development is the abstract interpret-
ation of big-step semantics laid out by Schmidt [Sch95]. In this section, we describe how
an adapted version of Schmidt’s framework can be implemented using the Coq proof
assistant. There are several steps in such a formalisation:

• define ⌜the connection relating concrete and abstract domains of semantic contexts
and results⌝. Abstract interpretation is usually based on Galois connections, but as
explained in Section 3.2.4, we have lightened this connection to decidable posets
related by a concretisation function.

• based on the connection between concrete and abstract domains, prove the local
soundness: ⌜the side-conditions and transfer functions of each concrete rule⌝ are
soundly abstracted by their abstract counterpart.

• given the local soundness, prove the global soundness: the abstract semantics ⇓♯ is
a sound approximation of the concrete semantics ⇓.

The concretisation functions γ relate the concrete and abstract semantic triples (σ, t, r)
and (σ♯, t, r♯). They let us state and prove the property relating the concrete and the
abstract semantics: let t ∈ term , σ ∈ st , σ♯ ∈ st ♯, r ∈ res and r♯ ∈ res♯,

if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ ∈ γ (σ♯)
σ, t ⇓ r
σ♯, t ⇓♯ r♯

then r ∈ γ (r♯).

We illustrate the development using the language and domains presented in Section 4.1.
However, we emphasize that the approach is generic: once an abstract domain is given,
and abstract transfer functions are shown to be sound, then the full abstract semantics is
sound by construction. We do not detail how to define and prove sound abstract transfer
functions, as it is usually not perceived as a difficult task once the domains have been
defined. In the case of a large semantics such as JSCert, however, ⌜any automation tech-
nique which could help this task⌝would be highly valuable. We do believe that such an
automation technique can be adapted to our framework, given for instance the work of
Van Horn and Might [VM11a] and of Midtgaard and Jensen [MJ08] on this subject.

4.4.1 Rule Abstraction

The game-changing aspect of this formalisation is that each abstract rule is directly built
from its corresponding concrete rule. Instead of building ad-hoc abstract rules such as the
ones shown in Section 4.2, each concrete rule is abstracted separately, replacing the se-
mantic domains by their abstract counterparts but leaving the structure unchanged. This
formalisation choice not only guides the definition of the abstract semantics, it also makes
the ⌜abstract and concrete⌝ semantics much closer to each other. This stronger correspond-
ance contributes in making the soundness proof generic.

102 Chapter 4 Principles for Building Analysers of Large Semantics



4

+♯ � − 0 + −0 ± +0 ⊺Z
� � � � � � � � �
− � − − ⊺Z − ⊺Z ⊺Z ⊺Z
0 � − 0 + −0 ± +0 ⊺Z
+ � ⊺Z + + ⊺Z ⊺Z + ⊺Z
−0 � − −0 ⊺Z −0 ⊺Z ⊺Z ⊺Z
± � ⊺Z ± ⊺Z ⊺Z ⊺Z ⊺Z ⊺Z
+0 � ⊺Z +0 + ⊺Z ⊺Z +0 ⊺Z
⊺Z � ⊺Z ⊺Z ⊺Z ⊺Z ⊺Z ⊺Z ⊺Z

Figure 4.6: Table of the +♯ abstract operation on the Sign domain

4.4.1.1 Abstract Rules

Here follows the concrete and abstract versions of Rule red-asn(x, e). Note that although
the second rule is abstract, we still note ⇓ the derivation relation in the rule. This is due to
the notation of rules as data structures: ⌜the symbol ⇓ present in the rules⌝ is meant to be
seen as a notational convention and to be differentiated from the predicates ⇓ and ⇓♯.

red-asn(x, e)
E, e ⇓ r E, r, x ∶=1 ⋅ ⇓ r′

E, x ∶= e ⇓ r′

red-asn(x, e)
E♯, e ⇓ r♯ E♯, r♯, x ∶=1 ⋅ ⇓ r′ ♯

E♯, x ∶= e ⇓ r′ ♯

⌜The concrete and abstract rules red-asn(x, e)⌝ are very similar with each other, thanks to
the local abstraction. This way of locally abstracting rules is novel. It seems to correspond
to⌜the minimal amount of effort needed to abstract a semantic in general⌝: we only request
to abstract the side-conditions and the transfer functions, that is, the operations on the
domains. In particular, the rule names, the rule structure, and the syntactic terms are left
unchanged.The Coq development has been designed so that⌜the concrete and the abstract
rules⌝ share the most definitions possible. This is why the types st and res are parts of the
semantics Coq definition (see Section 4.3.1): both the concrete and abstract version are
based on the same structure record, but they come with their own semantics record.

For the specific rule red-asn(x, e), there is not really any operation to be abstracted: the
cond predicate is trivial, as well as the transfer functions. Let us thus consider instead
Rule red-asn-1(x). This rule receives in the concrete world a couple of an environment
and a result r ∈ Oute (computed from the expression e), and only applies if this result is
a value. In the abstract world, however, an abstract value can represent both a value and
an error (consider for instance the abstract result (±, err ♯)). This is solved by defining
an abstract rule accepting any result, but filtering the ⌜value part⌝ of this result. The local
soundness of this abstract rule is proven later: ⌜what is important to note here⌝ is that the
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1 Definition left_term n : terms :=
2 match n with
3 | name_add e1 e2 => expr_add e1 e2
4 | name_add_1 e2 => expr_add_1 e2
5 | name_add_2 => expr_add_2
6 | name_if e s1 s2 => stat_if e s1 s2
7 | name_if_1_pos s1 s2 => stat_if_1 s1 s2
8 | name_if_1_neg s1 s2 => stat_if_1 s1 s2
9 (* ... *)

10 end.

(a) The Coq implementation of the l function

1 Definition struct_rule n : Rule_struct terms :=
2 match n with
3 | name_add e1 e2 => Rule_struct_R2 (term := terms) e1 (expr_add_1 e2)
4 | name_add_1 e2 => Rule_struct_R2 (term := terms) e2 expr_add_2
5 | name_add_2 => Rule_struct_Ax _
6 | name_if e s1 s2 => Rule_struct_R2 (term := terms) e (stat_if_1 s1 s2)
7 | name_if_1_pos s1 s2 => Rule_struct_R1 (term := terms) s1
8 | name_if_1_neg s1 s2 => Rule_struct_R1 (term := terms) s2
9 (* ... *)

10 end.

(b) The Coq implementation of the terms u1, u2, and n2

Program 4.3: Snippet of the syntactic components

abstraction of Rule red-asn-1(x) is defined and proven sound independently of the whole
semantics (which is why we qualify ⌜the local soundness⌝ as local).

red-asn-1(x)

E,v, x ∶=1 ⋅ ⇓ E [x← v]

red-asn-1(x)

E♯, r♯, x ∶=1 ⋅ ⇓ E♯ [x← r♯∣
Val♯
]

Some abstract rules need to abstract concrete operations. For instance, Rule red-add-2
below is abstracted by a rule using⌜an abstract operator +♯ instead of the concrete addition
of integers⌝. The table of the +♯ operator is given in Figure 4.6. As for Rule red-asn-1(x),
abstract Rule red-add-2 considers a general result r♯2 and filter its value part.

red-add-2

E,v1, v2, ⋅ +2 ⋅ ⇓ v1 + v2

red-add-2

E♯, v♯1, r
♯
2, ⋅ +2 ⋅ ⇓ v♯1 +♯ r♯2∣Val♯

Wenowpresent how these rules are implemented in Coq. Program 4.3 shows the syntactic
component of various rules of Figure 3.4. It is shared between the concrete and the abstract
semantics. Program 4.4 shows the definition of the concrete transfer functions of the rules
for the addition. Some monads have been inlined, but this does not change the message.
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1 Definition concrete_rule n : Rule st res :=
2 match n with
3 | name_add e1 e2 =>
4 let up :=
5 if_st_expr (fun E =>
6 Some (st_expr E)) in
7 let next sigma r :=
8 if_st_expr (fun E =>
9 Some (st_add_1 E r)) sigma in

10 Rule_R2 up next
11 | name_add_1 e2 =>
12 let up sigma :=
13 match sigma with
14 | st_add_1 E r => Some (st_expr E)
15 | _ => None
16 end in
17 let next sigma r :=
18 match sigma with
19 | st_add_1 E (oute_val v) => Some (st_add_2 v r)
20 | _ => None
21 end in
22 Rule_R2 up next
23 | name_add_2 =>
24 let ax sigma :=
25 match sigma with
26 | st_add_2 v1 (oute_val v2) => Some (oute_val (v1 + v2) : res)
27 | _ => None
28 end in
29 Rule_Ax ax
30 (* ... *)
31 end.

Program 4.4: Snippet of the concrete rule function

1 Definition acond n asigma : Prop :=
2 match n, asigma with
3 | _, sign_ast_top =>
4 True
5 | name_if e s1 s2, ast_stat aE =>
6 True
7 | name_if_1_pos s1 s2, ast_if_1 aE ar =>
8 ares_expr (Sign.pos, �♯) ⊑ ar
9 | name_if_1_neg s1 s2, ast_if_1 aE ar =>

10 ares_expr (Sign.zero, �♯) ⊑ ar ∨ ares_expr (Sign.neg, �♯) ⊑ ar
11 (* ... *)
12 end.

Program 4.5: Snippet of the cond ♯ predicate
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Program 4.5 is a snippet from theCoq formalisation showing some abstract side-conditions.
They correspond in a one-to-one fashion to the rules of the concrete semantics defining
the cond predicate. For instance, Line 8 states that the abstract Rule red-if-1-pos(s1, s2)
applies when + ⊑ r♯, where r♯ is the result computed from the if condition.This is a sound
definition as for all v ∈ γ (v♯) such that v > 0, we have + ⊑ v♯: the abstract Rule red-if-1-
pos(s1, s2) applies when the concrete Rule red-if-1-pos(s1, s2) does. The coercion on +
has been removed in the Coq snippet: the symbol �♯ of Line 8 represents the error com-
ponent err ♯ of abstract expression outputs.

The Coq snippet of Program 4.6 shows the encoding of the abstract rules for the addition—
Rules red-add(e1, e2), red-add-1(e2), and red-add-2. Note how Line 21 filters out the
error component, as in the abstract rule red-add-2 above. As for JSRef (see Section 2.6.2),
monads are used to checkwhether the semantic context is in the expected form, extracting
the relevant information. Some of these monads are shown in Program 4.7. Because the
concrete and the abstract semantics share a lot, the definition of the abstract semantics is
guided by the concrete semantics. For instance, note how close Programs 4.4 and 4.6 are.
This considerably helps both the definition of rules and their soundness proofs.

⌜Abstracting the rules of a semantics by only changing their semantic parts, leaving their
syntactic part unchanged⌝, is appealing. But it does not seem sound as-is. For instance, ab-
stract Rule red-asn-1(x) above only considers non-error results and seems to suffer from
the same issue than Rule if-abs of Section 3.6. As explained in Section 3.3, the sound-
ness of an abstract semantics in intimately linked to how it covers the concrete semantics.
There are several ways in which coverage can be ensured. One way is to add a number
of ad-hoc rules, such as the rules seen in Section 4.2. Instead, we follow here an approach
where we obtain coverage in a systematic fashion, by changing how abstract rules are
combined to form the abstract semantics. This is described in Section 4.4.2 below.

4.4.1.2 Local Soundness

The advantage of our method does not limit to guiding the definition of abstract rules,
but also guiding their proof. In particular, abstract rules are requested to be related to the
concrete rule of the same name, without considering any other rule. Let us now see what
are the conditions we impose on abstract rules. As the only changing part between the
abstract and the concrete rules consists of the semantic parts, there are two conditions:
one for side-conditions, and one for transfer functions.

Side-conditions describe when a given rule applies. As we have seen in Section 3.3, the
soundness of the abstract semantics is provided by the coverage of the abstract semantics
with respect to the concrete semantics. The requested property about side-conditions is
thus that whenever there is ⌜a state in the concretisation of an abstract state σ♯ which
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1 Definition arule n : Rule ast ares :=
2 match n with
3 | name_add e1 e2 =>
4 let up :=
5 if_ast_expr (fun E =>
6 Some (ast_expr E)) in
7 let next asigma o :=
8 if_ast_expr (fun E =>
9 Some (ast_add_1 E o)) asigma in

10 Rule_R2 up next
11 | name_add_1 e2 =>
12 let up :=
13 if_ast_add_1 (fun E av =>
14 Some (ast_expr E)) in
15 let next asigma1 ar2 :=
16 if_ast_add_1 (fun E (av1, err) =>
17 Some (ast_add_2 av1 ar2)) asigma in
18 Rule_R2 up next
19 | name_add_2 =>
20 let ax :=
21 if_ast_add_2 (fun av1 (av2, err) =>
22 Some (ares_expr (Sign.sem_add av1 av2, �♯))) in
23 Rule_Ax ax
24 (* ... *)
25 end.

Program 4.6: Snippet of the abstract rule function

1 Definition if_ast_expr A (f : aEnv → option A) (asigma : ast) :=
2 match asigma return option A with
3 | ast_expr E => f E
4 | ast_top => f (⊺♯)
5 | _ => None
6 end.
7

8 Definition if_ast_add_1 A (f : aEnv → aVal → option A) (asigma : ast) :=
9 match asigma return option A with

10 | ast_add_1 E ar => if_ares_expr (f E) ar
11 | ast_top => f (⊺♯) (⊺♯)
12 | _ => None
13 end.
14

15 Definition if_ast_add_2 A (f : aVal → aVal → option A) (asigma : ast) :=
16 match asigma return option A with
17 | ast_add_2 av1 ar => if_ares_expr (f av1) ar
18 | ast_top => f (⊺♯) (⊺♯)
19 | _ => None
20 end.

Program 4.7: Definition of the monads used in Program 4.6
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1 Inductive propagates : (ast → Prop) → (st → Prop) → aRule → Rule → Prop :=
2 | propagates_Ax : forall cond acond ax aax,
3 (forall sigma asigma r ar,
4 cond sigma → acond asigma →
5 gst asigma sigma →
6 ax sigma = Some r →
7 aax asigma = Some ar →
8 gres ar r) →
9 propagates acond cond (Rule_Ax aax) (Rule_Ax ax)

10 | propagates_R1 : forall cond acond up aup,
11 (forall sigma asigma sigma’ asigma’,
12 cond sigma → acond asigma →
13 gst asigma sigma →
14 up sigma = Some sigma’ →
15 aup asigma = Some asigma’ →
16 gst asigma’ sigma’) →
17 propagates acond cond (Rule_R1 _ aup) (Rule_R1 _ up)
18 | propagates_R2 : forall cond acond up aup next anext,
19 (forall sigma asigma sigma’ asigma’,
20 cond sigma → acond asigma →
21 gst asigma sigma →
22 up sigma = Some sigma’ →
23 aup asigma = Some asigma’ →
24 gst asigma’ sigma’) →
25 (forall sigma asigma r ar sigma’ asigma’,
26 cond sigma → acond asigma →
27 gst asigma sigma → gres ar r →
28 next sigma r = Some sigma’ →
29 anext asigma ar = Some asigma’ →
30 gst asigma’ sigma’) →
31 propagates acond cond (Rule_R2 aup anext) (Rule_R2 up next).

Program 4.8: Propagation of abstraction through transfer functions

would trigger a concrete rule⌝, the corresponding abstract rule is also triggered by σ♯. The
soundness criterion for the side-condition of Rule r follows.

∀σ,σ♯. σ ∈ γ(σ♯)→ cond r (σ)→ cond ♯r (σ♯) (4.2)

This criterion is expressed in Coq as follows. The predicate gst is the concretisation func-
tion (expressed as a predicate) for semantic contexts.

1 Hypothesis acond_sound : forall n asigma sigma,

2 gst asigma sigma → cond n sigma → acond n asigma.

The criteria for transfer functions state that the abstraction is propagated along transfer
functions—in particular, no concrete state can be missed by moving along transfer func-
tions: this is exactly what the coverage notion of Schmidt imposes in this setting. These
criteria are defined as⌜a relation ∼ between rules (called propagates in the Coq files), made
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precise below⌝. For example, concrete and abstract axioms ax and ax ♯ are both functions
from semantic contexts to results, one in the concrete domain and the other in the abstract
domain. They intuitively satisfy the following criterion.

∀σ,σ♯. σ ∈ γ (σ♯)→ ax (σ) ∈ γ (ax ♯ (σ♯)) (4.3)

Criterion 4.3 is very strong. In the soundness proof of Section 4.4.3, we only apply this cri-
terion when the side-condition applies and when both concrete and abstract transfer func-
tions are defined.We thus lighten this constraint to Criterion 4.4 below. Program 4.8 shows
the definition of the propagates predicate which enforces the criteria 4.4, 4.5, and 4.6 over
transfer functions. The predicates gst and gres are the concretisation functions for se-
mantic contexts and results. Note that Line 4 requires that both cond and cond ♯ accept
the rule, but cond ♯ follows by criterion 4.2. It is nonetheless added for clarity.

The relation ∼ relates concrete and abstract rules. It is defined as follows.

• A concrete and an abstract axioms ax ∶ st → res and ax ♯ ∶ st ♯ → res♯ are related if
and only if for all σ and σ♯ onwhich both functions ax and ax ♯ are defined, such that
the concrete rule applies on σ, and such that σ ∈ γ (σ♯), then ax (σ) ∈ γ (ax ♯ (σ♯)).

∀σ♯, σ ∈ γ (σ♯) . cond r (σ)→

ax (σ) and ax ♯ (σ♯) defined→ ax (σ) ∈ γ (ax ♯ (σ♯)) (4.4)

• A concrete and an abstract format 1 rules up ∶ st → st and up♯ ∶ st ♯ → st ♯ are related
if and only if for all σ and σ♯ on which both functions up and up♯ are defined, if the
concrete rule applies on σ and σ ∈ γ (σ♯), then up (σ) ∈ γ (up♯ (σ)).

∀σ♯, σ ∈ γ (σ♯) . cond r (σ)→

up (σ) and up♯ (σ♯) defined→ up (σ) ∈ γ (up♯ (σ♯)) (4.5)

• For format 2 rules, we impose the same condition on the up and up♯ transfer func-
tions than above, and we add the additional condition over the transfer functions
next ∶ st → res → st and next ♯ ∶ st ♯ → res♯ → st ♯: for all σ, σ♯, r, and r♯ on which
both functions next and next ♯ are defined, such that the concrete rule applies on σ,
and such that σ ∈ γ (σ♯) and r ∈ γ (r♯), then next (σ, r) ∈ γ (next ♯ (σ♯, r♯)).

∀σ♯, σ ∈ γ (σ♯) , r♯, r ∈ γ (r♯) . cond r (σ)→

next (σ, r) and next ♯ (σ♯, r♯) defined→ next (σ, r) ∈ γ (next ♯ (σ♯) , r♯) (4.6)

Let us now consider how these criteria manifest in the context of Rule red-asn-1(x) of
Section 4.4.1.1.The oddity of this rule is that the given result r♯ can represent both an error
and a value, as in (±, err ♯). We can see that the value 42 ∈ γ ((±, err ♯)) triggers the side-
condition condred-asn-1(x) (42): by criteria 4.2, the abstract side-condition is thus forced
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1 Lemma if_st_expr_out : forall A (f : env → option A) sigma r,
2 if_st_expr f sigma = Some r →
3 exists E, sigma = st_expr E ∧ f E = Some r.
4

5 Lemma if_ast_expr_out : forall A (f : aEnv → option A) sigma r,
6 if_ast_expr f sigma = Some r →
7 (sigma = ast_top ∧ f (⊺♯) = Some r) ∨
8 exists E, sigma = ast_expr E ∧ f E = Some r.

Program 4.9: Lemmata about monadic constructors

to apply to (±, err ♯). The second surprising effect of the abstract rule is that it filters the
given result r♯ to only get the non-error ones r♯∣

Val♯
. This would break Criterion 4.3, as

err ∈ γ ((±, err ♯)). But Criterion 4.3 has been refined to Criterion 4.4, which requires
the semantic contexts σ to trigger the rule. As err does not trigger Rule red-asn-1(x),
filtering out errors is not a problem for Criterion 4.4.

The structure of⌜the soundness proof of abstract rules with respect to concrete rules⌝ is sim-
ilar to the correctness proof of JSRef with respect to JSCert. Each monadic construct is
associatedwith a behaviour lemma, as for JSRef in Program 2.16. For instance, Program 4.9
shows the behaviour lemmata of⌜the concrete if_st_expr and abstract if_ast_expr⌝mon-
ads. There is one significant difference with JSCert: the concrete and the abstract rules
share the same data structure.This considerably eases the proof of the abstract rules. Prov-
ing the local soundness of rules is a relatively easy task (although it highly depends on the
chosen domain). We now show how we can build a semantics from such abstract rules.

4.4.2 Inference Trees

Concrete and abstract inference rules share by design the same structure. However, the
semantics given to a set of abstract rules differs from the concrete semantics defined in
Section 4.3.2. This difference manifests itself in the way that rules are assembled. In a
nutshell, the abstract semantics ⇓♯ applies every applicable rules instead of just one.

4.4.2.1 Abstract Immediate Consequence

As in Section 4.3.2, we define an operator F ♯, the abstract immediate consequence, which
infers new derivations from a set of already established derivations.

F ♯ ∶ P (st ♯ × term × res♯)→ P (st ♯ × term × res♯)

The apply function can still be used to apply a rule: it has been defined independently of
the domain and canmanipulate abstract values. It now implicitly uses the abstract transfer
functions instead of the concrete ones. The definition of the function F ♯ differs in one

110 Chapter 4 Principles for Building Analysers of Large Semantics



4

σ1,
t1 ⇓

r1σ2,
t2 ⇓

r2
σ3,

t3 ⇓
r3

σ4,
t4 ⇓

r4
σ
′
1
, t
′
1
⇓ r
′
1σ

′
2
, t
′
2
⇓ r
′
2

σ
′
3
, t
′
3
⇓ r
′
3

σ
′
4
, t
′
4
⇓ r
′
4

σ
′′
2
, t
′′
2
⇓ r
′′
2

σ
′′
3
, t
′′
3
⇓ r
′′
3

σ
′′
4
, t
′′
4
⇓ r
′′
4

σ
′′
5
, t
′′
5
⇓ r
′′
5

(a) ⌜Three dimensional⌝ representation

σ1, t1 ⇓ r1

σ2, t2 ⇓ r2

σ3, t3 ⇓ r3 σ4, t4 ⇓ r4

σ′1, t
′
1 ⇓ r′1

σ′1, t
′
1 ⇓ r′1

σ′2, t
′
2 ⇓ r′2

σ′3, t
′
3 ⇓ r′3 σ′4, t

′
4 ⇓ r′4

σ′1, t
′
1 ⇓ r′1

σ′′2 , t
′′
2 ⇓ r′′2

σ′′3 , t
′′
3 ⇓ r′′3

σ′′4 , t
′′
4 ⇓ r′′4

σ′′5 , t
′′
5 ⇓ r′′5

(b) Flat representation

Figure 4.7: Intuition behind abstract derivations

important aspect from its concrete counterpart: in order to obtain coverage of concrete
rules, F ♯ must apply all the applicable rules.

F ♯ (⇓♯0) =
⎧⎪⎪⎨⎪⎪⎩
(σ♯, t, r♯)

RRRRRRRRRRR

∀r. t = lr → cond ♯r (σ)→
(σ♯, t, r♯) ∈ apply r (⇓♯0)

⎫⎪⎪⎬⎪⎪⎭

In other words, the operator F ♯ extends its relation argument ⇓♯0 by adding the triples
(σ♯, t, r♯) such that the result r♯ is valid for all applicable rules. By defining F ♯ in this
way, we avoid having to add ad-hoc rules such as Rule if-abs-corrected from Section 4.2:
a correct result is one which includes the computation from both branches. ⌜One way of
picturing this⌝ is by imagining a ⌜three dimensional⌝ derivation as in Figure 4.7a: the con-
struction of the derivation forks into two separate branches, and⌜each branch has to accept
the current triple⌝ for it to be correct. Representing derivations in three dimensions hinders
readability: we shall use the arrow notation of Figure 4.7b to represent such forks.

We now consider an example. The program if (x > 0) (r ∶= x) (r ∶= 18) always sets r to
a positive value if x is defined, but our framework only partially gets this result. Let us
analyse it in an environment E♯1 ∈ Env ♯ where x is + ∈ Sign , and in an environment
E♯2 ∈ Env ♯ where x is ⊺Z, that is, x is defined but we know nothing about its value. Both
derivations are shown in Figure 4.8. In either case, it expands to if 1 (r ∶= x) (r ∶= 18), and
carries an information about the computed expression xwhich is either + or ⊺Z. In the first
case we know that this expression is positive, and only Rule red-if-1-pos(r ∶= x, r ∶= 18)
applies: we evaluate r ∶= x to the environment E♯1

′ in which r is positive. However in the
second case, we do not know which branch will be executed and thus execute both: we
also apply Rule red-if-1-neg(r ∶= x, r ∶= 18), which executes r ∶= 18 and sets r to +. In

4.4 Abstract Semantics 111



red-var(x)
E♯1, x ⇓ +

red-var(x)
E♯1, x ⇓ + E♯1,+, r ∶=1 ⋅ ⇓ E♯1

′ red-asn-1(r)

E♯1, r ∶= x ⇓ E♯1
′ red-asn(r, x)

E♯1,+, if 1 (r ∶= x) (r ∶= 18) ⇓ E♯1
′ red-if-1-pos(r ∶= x, r ∶= 18)

E♯1, if (x > 0) (r ∶= x) (r ∶= 18) ⇓ E♯1
′ red-if(x, r ∶= x, r ∶= 18)

(a) In an abstract environment E♯1 where x is +

red-var(x)
E♯2, x ⇓ ⊺Z E♯2,⊺Z, if 1 (r ∶= x) (r ∶= 18) ⇓ E♯2

′

E♯2, if (x > 0) (r ∶= x) (r ∶= 18) ⇓ E♯2
′ red-if(x, r ∶= x, r ∶= 18)

red-if-1-pos(r ∶= x, r ∶= 18)

red-asn(r, x)

red-var(x)
E♯2, x ⇓ ⊺Z E♯2,⊺Z, r ∶=1 ⋅ ⇓ E♯2

′ red-asn-1(r)

E♯2, r ∶= x ⇓ E♯2
′

E♯2,⊺Z, if 1 (r ∶= x) (r ∶= 18) ⇓ E♯2
′

red-const(18)
E♯2,18 ⇓ +

E♯2,⊺Z, r ∶=1 ⋅ ⇓ E♯2
′ red-asn-1(r)

E♯2,+, r ∶=1 ⋅ ⇓ E♯2
′ glue-weaken

E♯2, r ∶= 18 ⇓ E♯2
′ red-asn(r,18)

E♯2,⊺Z, if 1 (r ∶= x) (r ∶= 18) ⇓ E♯2
′ red-if-1-neg(r ∶= x, r ∶= 18)

(b) In an abstract environment E♯2 where x is ⊺Z

Figure 4.8: Two derivations starting from the program if (x > 0) (r ∶= x) (r ∶= 18)

the first branch, however, we execute r ∶= x in E♯2 and sets r to ⊺Z to get E♯2
′. The result is

different for both branches, and we need a construct to build this derivation: Figure 4.8b
uses Rule glue-weaken of Section 5.1.1 in the branch of Rule red-if-1-neg(r ∶= x, r ∶= 18)
to complete this gap.

Although Figure 4.8b is not precise enough to ensure that the variable r is positive at the
end of the execution, it is precise enough to ensure that no error is thrown: we can prove
that Rule red-error-stat(if 1 (r ∶= x) (r ∶= 18)) never triggers. This example illustrates
a shortcoming of our approach: even though we know that the tested value has to be
positive in the positive branch, there is no information about how this valuewas computed
(evaluating x in this example). ⌜The non-local information which would have allowed to
deduce that x is positive in the environment⌝ is not available in this framework as-is. This
will be fixed by rules such as Rule glue-trace-partitioning of Chapter 5.
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The goal of this example was to show the locality of the approach: it provides a simple way
of building large abstract semantics⌜sound by construction⌝, but some work is left to make
it catch some non-local behaviours. Chapter 5 aims at catching some of these non-local
behaviours. For instance, Figure 5.3 is a precise version of Figure 4.8b. This formalisation
is however already able to provide⌜the equivalent of rules such as Rule while-abs-fixed-
point of Section 4.2⌝, as we now explore.

4.4.2.2 Finite and Infinite Derivation Trees

The function F ♯ is a monotone function on the powerset lattice P (st ♯ × term × res♯).
The least fixed point of F ♯ (with respect to the inclusion order ⊆) corresponds to all
triples which can be inferred using finite abstract derivation trees. These triples repres-
ent valid properties of the program, but the restriction to finite derivations means that
certain properties can not be inferred. In particular, a finite abstract derivation is a proof
that the program always terminates. Requiring such a proof can be very limiting.

Consider the programwhile (x > 0) (x ∶= x + (−1)) evaluated on an abstract contextwhere
x is +. Its concrete derivation clearly terminates, but there is no finite abstract derivation
in the sign abstraction to witness it. Indeed, initially x is bound to +; after the first iteration
it is bound to +0; after the second iteration, it is bound to ⊺Z (for the same reason that the
derivation of Figure 4.8b); then its value becomes stable at ⊺Z. Every subsequent iteration
has thus to consider the case where x is ⊺Z—and in particular strictly positive—and has to
compute an additional iteration. Hence, there is no finite abstract derivation: the abstract
domain is not precise enough. Another way to understand this result is that an abstract
derivation tree has to cover every concrete derivation tree: since there is no bound on⌜the
number of execution steps of the concrete derivation (which depends on the initial value
of x, the loop being unfolded this many times)⌝, abstract derivations have to be infinite.

Figure 4.9 depicts the abstract derivation tree built by recursively applyingF ♯ from an en-
vironment inwhich x is ⊺Z: we know that x is defined, butwe knownothing about its value.
Both rules red-while-1-pos(x, x ∶= x + (−1)) and red-while-1-neg(x, x ∶= x + (−1)) are
executed, and their result {x↦ ⊺Z} is propagated.This follows the definition ofF ♯, which
applies every rule which can be applied. Note that the derivation of Figure 4.9 is left un-
finished with the same triple to prove than the one it started with: we can copy/paste this
derivation infinitely many times, making it infinite. This way of reasoning is called coin-
duction (we have already discussed about it in Section 2.1.2), and is accepted by Coq.

We thus need to allow infinite abstract derivations. To this end, the abstract evaluation
relation—written ⇓♯—is obtained as the greatest fixed point of F ♯. The soundness of this
extension has been proven in Coq. More importantly, a coinductive approach allows ana-
lysers to use more techniques, such as invariants, to infer their conclusions. The snippet
of Program 4.10 shows the definition of ⇓♯ in Coq. Note the symmetry between this defin-
ition and the concrete definition of ⇓ in Program 4.2; the only notable difference being in
the constructor aeval_cons: ⇓♯ applies all the rules which apply, and not just one.

4.4 Abstract Semantics 113



red-var(x)
{x↦ ⊺Z} , x ⇓ ⊺Z⋅⋅⋅⋅ {x↦ ⊺Z} ,⊺Z,while1 (x > 0) (x ∶= x + (−1)) ⇓ {x↦ ⊺Z}

{x↦ ⊺Z} ,while (x > 0) (x ∶= x + (−1)) ⇓ {x↦ ⊺Z}
red-while(x, x ∶= x + (−1))

red-asn(x, x + (−1))

red-var(x)
{x↦ ⊺Z} , x ⇓ ⊺Z

red-const(−1)
{x↦ ⊺Z} ,−1 ⇓ − ⊺Z,−, ⋅ +2 ⋅ ⇓ ⊺Z

red-add-2

{x↦ ⊺Z} ,⊺Z, ⋅ +1 (−1) ⇓ ⊺Z
red-add-1(−1)

{x↦ ⊺Z} , x + (−1) ⇓ ⊺Z
red-add(x,−1)

⋅⋅⋅⋅⋅⋅⋅
red-asn-1(x)

{x↦ ⊺Z} ,⊺Z, x + (−1) ⇓ {x↦ ⊺Z}
{x↦ ⊺Z} , x ∶= x + (−1) ⇓ {x↦ ⊺Z}

{x↦ ⊺Z} ,while (x > 0) (x ∶= x + (−1)) ⇓ {x↦ ⊺Z}

{x↦ ⊺Z} ,while2 (x > 0) (x ∶= x + (−1)) ⇓ {x↦ ⊺Z}
red-while-2(x, x ∶= x + (−1))

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
{x↦ ⊺Z} ,⊺Z,while1 (x > 0) (x ∶= x + (−1)) ⇓ {x↦ ⊺Z}

red-while-1-pos(x, x ∶= x + (−1))

red-while-1-neg(x, x ∶= x + (−1))
{x↦ ⊺Z} ,⊺Z,while1 (x > 0) (x ∶= x + (−1)) ⇓ {x↦ ⊺Z}

Figure 4.9: An infinite abstract derivation related to finite concrete derivations

1 CoInductive aeval : ast → term → ares → Prop :=
2 | aeval_cons : forall sigma t r,
3 (forall n,
4 t = left n →
5 acond n sigma →
6 aapply n sigma r) →
7 aeval sigma t r
8 with aapply : name → ast → ares → Prop :=
9 | aapply_Ax : forall n ax sigma r,

10 rule_struct n = Rule_struct_Ax _ →
11 arule n = Rule_Ax ax →
12 ax sigma = Some r →
13 aapply n sigma r
14 | aapply_R1 : forall n t up sigma sigma’ r,
15 rule_struct n = Rule_struct_R1 t →
16 arule n = Rule_R1 _ up →
17 up sigma = Some sigma’ →
18 aeval t sigma’ r →
19 aapply n sigma r
20 | aapply_R2 : forall n t1 t2 up next
21 sigma sigma1 sigma2 r r’,
22 rule_struct n = Rule_struct_R2 t1 t2 →
23 arule n = Rule_R2 up next →
24 up sigma = Some sigma1 →
25 aeval t1 sigma1 r →
26 next sigma r = Some sigma2 →
27 aeval t2 sigma2 r’ →
28 aapply n sigma r’.

Program 4.10: Coq definition of the abstract semantics ⇓♯
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4.4.3 Soundness of the Abstract Semantics

We have defined in Section 4.4.1.2 the local soundness as the conjunction of⌜the soundness
of the side-condition predicate cond ♯ with respect to cond⌝ and the soundness ∼ of the
transfer functions. We proved in Coq that under the local soundness, the ⌜concrete and
abstract⌝ evaluation relations, ⇓ = lfp (F) and ⇓♯ = gfp (F ♯), are related as follows.

Theorem 4.1 (Soundness). Let t ∈ term , σ ∈ st , σ♯ ∈ st ♯, r ∈ res and r♯ ∈ res♯.

If

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ ∈ γ (σ♯)
σ, t ⇓ r
σ♯, t ⇓♯ r♯

then r ∈ γ (r♯).

This theorem states that an abstract semantics can not miss any concrete (terminating)
behaviours: once an abstract triple σ♯, t ⇓♯ r♯ has been derived in the abstract semantics,
then ⌜any concrete triple σ, t ⇓ r starting from the same term t and a related semantic
context σ (that is, σ ∈ γ (σ♯))⌝has a result corresponding to the abstract result: r ∈ γ (r♯).

The Coq proof is detailed in its general case in Section 5.3. It proceeds by induction over
the concrete derivation, recognising it step by step in the abstract derivation. The invari-
ants are locally preserved by local soundness. This is exactly how Schmidt proves sound-
ness: by defining abstract derivations so that they cover the concrete derivations. More
precisely, Schmidt defines an inclusion relation between derivations and proves concrete
derivations to be included in the corresponding abstract derivations (see Section 3.3).

We now present a sketch of the proof. As in the Coq proof, we proceed by induction
over the concrete derivation. Let r be the rule taken by the concrete derivation. By defin-
ition, the concrete side-condition cond r (σ) applies. By the soundness of side-conditions
(Criterion 4.2), so does the abstract side-condition cond ♯r (σ♯). Rule r thus also applies in
the abstract derivation: we are left to prove that r ∈ γ (r♯) when σ ∈ γ (σ♯), (σ, t, r) ∈
apply r (⇓), and (σ♯, t, r♯) ∈ apply r (⇓♯). For instance, we consider the case in which Rule r
is of format 1. By Definition 4.1 of apply , we have ⌜the two equalities up (σ) = Some (σ′)
and up♯ (σ♯) = Some (σ′ ♯)⌝, as well as ⌜two reductions σ′,u1,r ⇓ r and σ′ ♯,u1,r ⇓ r♯⌝. By the
soundness of transfer functions (Criterion 4.5), we get σ′ ∈ γ (σ′ ♯). We conclude r ∈ γ (r♯)
by the induction hypothesis applied on σ′,u1,r ⇓ r and σ′ ♯,u1,r ⇓ r♯. The other cases (ax-
ioms and format 2 rules) are similar.

This theorem only provides guarantees for terminating results. For instance, there is no
concrete derivation for the looping program while (42 > 0) skip. As abstract derivations
are defined coinductively, and thus infinite derivations are accepted, it is possible to define
an abstract semantics for this program. Figure 4.10a shows how we can infer � as a result;
this derivation is infinite: the unfinished part loops back to the beginning of the derivation
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red-const(42)
42, x ⇓ +

red-skip
{x↦ −} , skip ⇓ {x↦ −}

⋅⋅⋅⋅⋅⋅⋅⋅

{x↦ −} ,while (42 > 0) skip ⇓ �

{x↦ −} ,while2 (42 > 0) skip ⇓ �
red-while-2(42, skip)

{x↦ −} ,+,while1 (42 > 0) skip ⇓ �
red-while-1-pos(42, skip)

{x↦ −} ,while (42 > 0) skip ⇓ �
red-while(42, skip)

(a) With � as a result

red-const(42)
42, x ⇓ +

⋅⋅⋅⋅⋅

red-skip
{x↦ −} , skip ⇓ {x↦ −}

⋅⋅⋅⋅⋅⋅⋅⋅⋅

{x↦ −} ,while (42 > 0) skip ⇓ {x↦ +, y↦ 0}

{x↦ −} ,while2 (42 > 0) skip ⇓ {x↦ +, y↦ 0}
red-while-2(42, skip)

{x↦ −} ,+,while1 (42 > 0) skip ⇓ {x↦ +, y↦ 0}
red-while-1-pos(42, skip)

{x↦ −} ,while (42 > 0) skip ⇓ {x↦ +, y↦ 0}
red-while(42, skip)

(b) With unexpected result

Figure 4.10: Infinite abstract derivations for a looping program

over and over again. The result � is the most precise result (the smallest in the considered
poset) which can be expected: as γ (�) = ∅, we know by Theorem 4.1 that no concrete
derivation can be built from this term and a corresponding semantic context.

Figure 4.10a is not the only abstract derivation which can be built from these term and se-
mantic context: Figure 4.10b shows another derivation. We have mentioned in Section 3.1
that abstract semantics can be non-deterministic: one source of non-determinism is that
several invariants can be found and proven for a given loop. In the case of Figure 4.10b,
we have produced the alternative result {x↦ +, y↦ 0}. This result can be surprising, as
none of the variables x and y are touched by the considered program. The theorem 4.1 is
however not broken, as it is not possible to build any concrete derivation. It is thus im-
portant to have in mind ⌜the fact that only terminating behaviours are taken into account⌝
when interpreting the results of analyses defined in this dissertation.

Infinite loops are not the only ways to stop the construction of a concrete derivation: an
execution may end being stuck.This can happen whenmistakes are made in the definition
of the concrete semantics—for instance if Rule red-if-1-pos(s1, s2) would have been re-
placed by Rule broken-if-1-pos(s1, s2) below. Its expected semantic context (E,v) does
not match the statement s1, and no rule apply on the triple E,v, s1 ⇓ r. It has already
occurred during this thesis to ⌜get � as the result of an analysis⌝where it should not; after
careful analysis, it appeared that the error was actually in the concrete semantics: the
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theorem held, but the analyser was analysing a broken concrete semantics. Section 4.5
proposes a way to avoid such issues when defining semantics.

broken-if-1-pos(s1, s2)
E,v, s1 ⇓ r

E, v, if 1 s1 s2 ⇓ r
v > 0

Here follows the Coq version ofTheorem 4.1. It has been proven in a completely paramet-
rised way with respect to the concrete and abstract domains, as well as the rules: it can
be instantiated for any (pretty-big-step) semantics.

1 Theorem soundness : forall t asigma ar,

2 aeval _ _ _ t asigma ar →
3 forall sigma r,

4 gst asigma sigma → eval _ t sigma r → gres ar r.

The predicates aeval and eval respectively represent ⇓♯ and ⇓ (see programs 4.2 and 4.10),
and ⌜gst and gres are the respective concretisation functions for semantic contexts and
results⌝. ⌜The hypothesis which was expected to appear in Theorem 4.1 but did not⌝ is the
exhaustivity of the semantics; we now discuss this hypothesis.

4.4.4 Exhaustivity
As stated in Section 4.3.1, the exhaustivity (also called fullness) of a semantics corresponds
to the fact that all transfer functions are defined given ⌜a semantic context which satisfies
the side-condition cond ♯⌝. This is defined in Coq in Program 4.11. The predicate applies

states whether a given semantic context σ applies on a given rule; that is, if the transfer
functions are defined for this semantic context. Note how the definition of the next trans-
fer function is stated Line 10: once the semantic context σ is chosen, any result has to
be accepted. Intuitively, although the type of the next transfer function is st → res →
option st, it should really be understood as st → option (res → st).

This hypothesis is not needed to prove the soundness of the abstract semantics (The-
orem 4.1).⌜One way of understanding why⌝ is by examining closely the definition of apply ,
typically in Programs 4.2 (Line 11 for instance) and 4.10 (Line 12): in order to build a
derivation—either a concrete or an abstract—the transfer functions have to be defined
on the considered semantic contexts. If either the concrete or the abstract derivation can
not be defined, then Theorem 4.1 does not apply. This section discusses the issues of inex-
haustivity. In particular, it shows that inexhaustive abstract semantics are not problematic,
but inexhaustive concrete semantics usually are.

In the abstract world, inexhaustive semantics are not an issue. Indeed, if a transfer func-
tion of an abstract rule fails but the side-condition states that the rule applies, then the
construction of the abstract derivation fails. For instance, if we change the side-condition
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1 Inductive applies : Rule → st → Prop :=
2 | applies_Ax : forall sigma ax,
3 (exists r, ax sigma = Some r) →
4 applies (Rule_Ax ax) sigma
5 | applies_R1 : forall sigma up,
6 (exists sigma’, up sigma = Some sigma’) →
7 applies (Rule_R1 _ up) sigma
8 | applies_R2 : forall sigma up next,
9 (exists sigma’, up sigma = Some sigma’) →

10 (forall r, exists sigma’, next sigma r = Some sigma’) →
11 applies (Rule_R2 up next) sigma.
12

13 Definition semantics_exhaustive := forall n sigma,
14 cond n sigma →
15 applies (rule n) sigma.

Program 4.11: Definition of the exhaustivity in Coq

of Rule red-var(x) to always apply, even when the semantic context is not even in the ex-
pected form, this side-condition trivially respects Criterion 4.2. Such a rule would however
not be practical as its abstract transfer function is not always defined. As a consequence,
it will not be possible to build most triples from the abstract immediate consequence F ♯

as this abstract rule would always fire. However, all the semantic triples successfully built
from such a semantics would be sound. If the abstract semantic is not exhaustive, but that
the construction of an abstract derivation does not fail, this means that the incomplete
abstract transfer functions were not needed out of their domain. Theorem 4.1 applies on
such a derivation. This is very practical for development, as it means that an abstract se-
mantic with⌜transfer functions left to be defined⌝ is still valid. In particular, we can run the
certified analysers of Section 4.6 even if some transfer functions are not yet implemented,
as soon as they are not needed for the considered derivation. If the remaining parts are
needed to build a derivation, analyses will fail without claiming wrong statements.

We now consider inexhaustivity in concrete semantics. Imagine that, because of a mistake,
the Coq implementation of Rule red-var(x) only works when the value of x is positive
in the given environment. Such an implementation is not exhaustive: the side-condition
of Rule red-var(x) checks whether the semantic context is an environment, and whether
it defines x, not whether it defines x to a positive value. From such a concrete semantic,
the abstract transfer function ax ♯ constant to +0 respects Criterion 4.4 about axiom trans-
fer function: whenever the concrete function transfer is defined (that is in this example,
when x is positive), it returns a positive value. The theorem only applies on the concrete
and abstract derivations which can be built. If the inexhaustivity of the concrete rule was
a programming error, then the abstract semantics built from this inexhaustive concrete se-
mantics may miss concrete results. A similar issue happens when the concrete semantics
can be stuck, for instance because of Rule broken-if-1-pos(s1, s2) of previous section. As
can be seen in these examples, inexhaustive concrete semantics are prone to mistakes.
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st (e) = Env
st (s) = Env

st (⋅ +1 e2) = Env ×Oute

st (⋅ +2 ⋅) = Val ×Oute

st (x ∶=1 ⋅) = Env ×Oute

st (⋅ ;1 s2) = Outs

st (if 1 s1 s2) = Env ×Oute

st (while1 e s) = Outs

st (while2 e s) = Env ×Oute

(a) Semantic contexts

res (ex) = Oute

res (sx) = Outs

res (e) = Oute

res (s) = Outs

(b) Results

Figure 4.11: Definition of the (dependent) types for semantic contexts and results

To summarize, inexhaustive concrete semantics are to be avoided as they prevent concrete
derivations to be built, as well as Theorem 4.1 to apply on these missing derivations. In-
exhaustive abstract semantics are however nevertheless sound. Their inexhaustivity may
still prevent some abstract derivation to be built: the best possible result might not be de-
rivable in inexhaustive abstract semantics. In particular, they might not be able to provide
a result in some cases. But their results will always be sound.

4.5 Dependently Typed Pretty-big-step

⌜Rule broken-if-1-pos(s1, s2) defined in Section 4.4.3⌝ shows how untyped our formal-
isation is. The type of the semantic context should depend on the term being evaluated.
This remark is the starting point of the alternative specification presented in this section.
Although more principled, it was not implemented in Coq because of difficulties with
Coq’s dependent types. This section presents this formalisation alternative, but none of
⌜the (re)definition made in this section⌝will apply to the rest of the dissertation.

In this setting, ⌜the types of semantic contexts and results⌝ depends on the current term t.
For instance expressions return expression results. Figure 4.11 presents the concrete defin-
ition of these types; they are compatible with the rules of Figures 3.4 and 4.2, but not
with Rule broken-if-1-pos(s1, s2). The syntactic part is left unchanged: semantics carry
a setN of rule names, each rule r carries a term lr, a rule format kind (r), as well as some
additional terms u1, u2, and n2 depending on their format. The only difference on the syn-
tactic part is that the additional terms carry proofs that their corresponding rule is on the
right format, as shown below. This enforces for instance that n2 can only be applied on a
format 2 rule. These terms influence the different types of the semantic aspects of rules.

u1 ∶ (r ∈ N )→ (kind (r) = R1)→ term

u2 ∶ (r ∈ N )→ (kind (r) = R2)→ term

n2 ∶ (r ∈ N )→ (kind (r) = R2)→ term
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The predicate cond takes a semantic context whose type depends on⌜the term onwhich its
rule applies⌝. In particular, the side-condition no longer has to check whether the semantic
context is in the expected form: the side-condition of Rule red-const(c) can simply be
True , the condition on the semantic context being enforced by its type.

cond ∶ (r ∈ N )→ st (lr)→ Prop

Transfer functions are now dependently typed. As a consequence, the type Rule is now
parametrised by the name of the rule. The rule function has thus the following type.

rule ∶ (r ∈ N )→ Ruler

Dependent types are expressive enough to enable transfer functions to only be applied
when their corresponding side-condition applies. This removes the need for transfer func-
tions to be partial. As a consequence, semantics are exhaustive by definition in this setting:
the transfer functions are ⌜enforced to be defined⌝ by their type.

• An axiom rule r has a transfer function ax of the following type. It is a total function,
but requires a proof that the rule applies as a parameter.

ax ∶ (σ ∈ st (lr))→ cond i (σ)→ res (lr)

Some rules—Rule red-const(c) for instance—will ignore the proof argument, but
its presence still guarantees the transfer function to only be applied when the rule
applies. Other rules, such as Rule red-var(x), will use this proof to access a partic-
ular part of the semantic context: the proof of x ∈ dom (E) can be used to access
the environment E—as required by some Coq libraries, including TLC [Cha10].

• Format 1 rules are similar to axioms, with a transfer function of the following type.

up ∶ (σ ∈ st (lr))→ cond r (σ)→ st (u1,r)

Format 1 rules also come with an additional constraint: the result of the premise
of format 1 rules is propagated as-is (see Figure 4.5). These two results are thus
required to have the same type.

kind (r) = R1 → res (u1,r) = res (lr) (4.7)

• Format 2 rules start similarly to format 1 rules. The next transfer function is no
longer partial thanks to the proof of the rule application given as argument.

up ∶ (σ ∈ st (lr))→ cond r (σ)→ st (u2,r)

next ∶ (σ ∈ st (lr))→ cond r (σ)→ res (u2,r)→ st (n2,r)
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Format 2 rules are also associated a constraint about result types being equal, their
last result being propagated in similar fashion than format 1 rules.

kind (r) = R2 → res (n2,r) = res (lr) (4.8)

The rest of the formalisation naturally follows from these changes. The resulting form-
alisation is very elegant, but its implementation in Coq proved to be quite challenging.
⌜The typical difficulty with these dependent types⌝ follows from the constraints 4.7 and 4.8.
These constraints force ⌜result types⌝ to be the same; however, as usually with dependent
types, a lot of predicates require these terms to have a specific (syntactical) type. For in-
stance, ⌜Coq will defensively reject the result given to a next transfer function⌝ if the type
of this result is not syntactically res (u2,r). ⌜Rewriting under such results⌝ requires the us-
age of heterogeneous, or “John Major’s”, equality [McB02]; which can be really painful to
use when such syntactic constraints apply on types.

The dependently typed formalisation was thus simplified for the sake of the Coq formal-
isation: the type of semantic contexts st (respectively results res) is the union of every
⌜semantic context⌝types (respectively every results types). Zooming out onwhat Section 3.1
explained, we have described how we can define and prove sound an abstract semantics;
the next step consists in building analysers based on this abstract semantics.

4.6 Building Certified Analysers

Now that abstract semantics are defined as functional data structures, it is possible to
build some automatic definitions on top of them. We shall focus in this section on how
to build generic analysers from abstract semantics. The abstract semantics ⇓♯ is the set
of all triples provable using abstract inference rules. From a program t and an abstract
semantic context σ♯, the smallest r♯ such that σ♯, t ⇓♯ r♯ (when it exists—the restrictions
of Section 3.2.4 no longer enforcing its existence) corresponds to the most precise result
returned by an analysis; it is, however, rarely computable. Designing a certified analysis
amounts to write a program which returns a result accepted by the abstract semantics.

There are several ways to define such analysers and prove them sound. A sound-by-
construction analyser would be an analyser returning an abstract derivation as a res-
ult, but defining such an analyser would be unpractical. Another way is to separately
define and prove analysers. To this end, we heavily rely on the coinductive definition
of ⇓♯ to prove the soundness of static analysers. In order to prove that a given analyser
A ∶ st ♯ → term → res♯ is sound with respect to ⇓♯—and thus with respect to the con-
crete semantics by Theorem 4.1—, it is sufficient to define for every term t and semantic
context σ♯ ⌜a set R ∈ P (st ♯ × term × res♯) such that (σ♯, t,A (σ♯, t)) ∈ R⌝ and prove it
coherent, that is R ⊆ F ♯ (R). This is called Park’s principle [Par69], and is a general way
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1 Inductive aeval_f : ast → term → ares → Prop :=
2 | aeval_f_cons : forall (R : ast → term → ares → Prop) sigma t r,
3 (forall sigma t r,
4 R sigma t r →
5 aeval_check R sigma t r) →
6 R sigma t r →
7 aeval_f sigma t r.

Program 4.12: Alternative Coq definition of ⇓♯

of proving coinductive constructions such as ⇓♯. This approach is sound as ⇓♯ is defined as
the greatest fixed point of F ♯ (see Section 4.4.2.2): by Tarski’s theorem, the greatest fixed
point is the union of all set R such that R ⊆ F ♯ (R) [Tar55].

We instantiate this principle in Coq in Program 4.12 through the alternative definition
aeval_f of ⇓♯. The parametrised predicate aeval_check applies one step of the reduction:
it exactly corresponds toF ♯ and is defined in Coq similarly to aeval (Program 4.10). More
precisely, aeval is the coinductive closure of aeval_check—we could not define it dir-
ectly as-is because Coq’s coinduction relies on some syntactic productivity checks, which
would not be fulfilled by a direct definition. We thus require an intermediary set R and a
proof of its coherence with respect to aeval_check. The following equivalence theorem
enables us to use Park’s principle.

1 Theorem aevals_equiv : forall t sigma r,

2 aeval t sigma r ↔ aeval_f t sigma r.

Using this principle, we have built and proved the soundness of several different analysers;
they are available in the Coq files accompanying this dissertation [Bod16]. Most of these
analysers are generic and can be reused as-is with any abstract semantics built using our
framework. We now describe three of such analysers:

• Admitting Rule abs-top as a trivial analyser which always returns ⊺ independently
of the given term and semantic context.

• Building a certified ⌜program verifier⌝ able to check ⌜loop invariants given by an (un-
verified) oracle⌝ and to use them to make abstract interpretations of programs.

• Building flat analysers from a concrete semantics.

4.6.1 Trivial Analyser

We have mentioned that Rule abs-top of Section 4.2 is a useful rule often taken for gran-
ted: it enables an analyser to abort the analysis of a part of a derivation and to continue the
analysis on the rest of the derivation. For instance, this rule is applied in many JavaScript
analysers when encountering a eval-construct: potentially anything can happen, but the
rest of the programmay catch pathological behaviours.This rule is not part of the abstract
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semantic presented in Section 4.4, but it follows from the rest of the semantics. To prove
this rule sound, we need three hypotheses. First, the abstract poset of results obviously
needs a greatest element ⊺res♯ . Second, the abstract semantics has to be exhaustive—this
property is not always fulfilled, but is common (see Section 4.4.4). Third, we need a weak-
ening rule such as Rule glue-weaken of Section 5.1.1—we temporary admit it.

glue-weaken
σ♯ ⊑ σ♯′ σ♯

′
, t ⇓ r′ ♯ r′ ♯ ⊑ r♯

σ♯, t ⇓ r♯

Admitting Rule abs-top exactly amounts to prove that the corresponding trivial analyser
is sound. We define the set ⇓♯⊺ = st ♯ × term × {⊺res♯} and prove it coherent. We have
to prove that every semantic triple (σ♯, t,⊺res♯) is also part of F ♯ (⇓♯⊺): for every rule r

which applies—that is, cond ♯r (σ♯)—then (σ♯, t,⊺res♯) ∈ apply r (⇓♯⊺). As ⊺res♯ is greater
than any other result, we just have to prove that there exists at least one result r♯ such that
(σ♯, t, r♯) ∈ apply r (⇓♯⊺): Rule glue-weaken can then weaken r♯ into ⊺res♯ . The existence
of such an r♯ is provided by the exhaustivity of the abstract semantics.

The trivial analyser shows that it is possible to prove ad-hoc rules using Park’s prin-
ciple. ⌜An example in which proving such specialised analysers can be useful⌝ is the rule
scheme Random(c) (defined for all c ∈ N) below, applying to a term random . We can sim-
ilarly prove that the abstract Rule Abs-Random is a valid abstraction. It will furthermore
be much easier to prove as this rule is not recursive.

Random(c)

E, random ⇓ c

Abs-Random

E, random ⇓ ⊺Z

4.6.2 Certified Program Verifier

To enable the usage of external heuristics to provide potential program properties, and
thus relax proof obligations, we have also proved a verifier: it takes a set of triples O ∈
P (st ♯ × term × res♯)—which we call an oracle—and accepts or rejects it. An acceptance
implies the soundness of every triple of O (but the converse does not hold). The verifier
proceeds as follows. For every triple o = (σ♯, t, r♯) ∈ O, the verifier checks that it can be
deduced from finite derivations; these derivations are allowed to stop the computation
when reaching an element of O. In other words, the verifier checks that O ⊆ F ♯+ (O).

In practice, derivations are built backwards: the verifier computes ⌜hypotheses implying
the considered triple o⌝—a subset S of F ♯−1 (o) such that o ∈ F ♯+ (S). It then recursively
iterates on S until it reaches only elements ofO, or until it gives up. During this iteration,
axioms may be encountered: axioms have no premises and thus reduce the size of the
considered S. This is illustrated in Figure 4.12. We proved the following theorem.
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Figure 4.12: An illustration of the action of the verifier

Theorem 4.2 (Soundness of the verifier). If the verifier accepts the oracle O, then O is
coherent: O ⊆ F ♯+ (O). This implies O ⊆ ⇓♯.

For this verifier to be extractable, we need to provide a key ingredient: a function comput-
ing the list of⌜rules which apply to a given semantic context σ♯ and term t⌝.The verifier then
forks between all applicable rules. There are several ways to compute such a list. One is to
provide a computable version of l−1—for each term t, give the rules which may apply—and
prove the decidability of side-conditions. The verifier then filters from l−1 (t) all the rules
which apply. There are cases in which an infinite number of rules apply. For instance ⌜all
concrete rules Random(c) of the previous section⌝ apply on the term random . In such
cases, it is not always possible to provide a (finite) list of applicable rules: the provided l−1

is left partial and special analysers have to tackle the analysis of such terms.

As for JSRef (see Section 2.6.1), it is difficult to prove in Coq that the verification terminates—
it often does not. To this end, the verifier is parametrised by a fuel and a decidable predicate
is_looping_branch which indicates which terms may indefinitely loop (in this example,
terms of the form while1 s1 s2): each time the verifier encounters such a potentially loop-
ing term, the fuel is decremented. When the fuel reaches zero, the analysis aborts.

This program verifier has a very distinct structure than these of⌜previously defined abstract
interpreters written in Coq [CP10; Ber09]⌝. The verifier is here written in its generality: it
takes any abstract semantics as an argument, whereas traditional abstract interpreters
are defined for a particular abstract semantics. It is also proven sound for all abstract se-
mantics. Furthermore, this verifier does not solve any fixed points: it takes as an argument
an oracle O, which will be used as a basis for the analysis. In particular, the oracle O can
be computed using techniques such as widening and narrowing [CC77a]: ⌜heuristics to
compute this invariant⌝are not considered here to be part of the program verifier. The pro-
gram verifier proposed here is actually closer to the abstract analysers generated by the
K framework in its structure than to ⌜traditional abstract interpreters written in Coq⌝—it
however provides more guarantees, as it is proven sound in Coq.
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Figure 4.13: Hasse diagram of a flat domain

We extracted the verifier into OCaml and ran it on simple examples [Bod16]. Note that it
can be given any oracle, possibly unsound. In the given examples, oracles were construc-
ted by following abstract derivation trees up to a given number of loop unfoldings and
ignoring deeper branches. Other oracles could have been used without trouble.

As an example, consider the following programwhich computes 6×7 using awhile loop.

a ∶= 6; b ∶= 7; r ∶= 0; n ∶= a;while (n > 0) (r ∶= r + b; n ∶= n + (−1))

From the empty abstract environment, our analyser returns the following result.

({r↦ +, b↦ +, a↦ +, n↦ ⊺Z} , err ♯)

The err ♯ means that we successfully proved that the program does not abort (it does not
access any undefined variable). We also deduce from this result that the returned value is
strictly positive: the loop is executed at least once. Note that this is the best result we can
get on this example given the abstract domains of Section 4.1 and the constraints on the
abstract semantics. In particular, remark that the sign domain can not count how many
times the loop needs to be unfolded, hence the abstract derivation is infinite. Nevertheless,
the analysis deduces significant information. It is possible to get more precise results, in
particular showing that n ends up being zero. Chapter 5 introduces Rule glue-trace-
partitioning, which enables such precise results.

4.6.3 Flat Analysers

Wenow consider flat domains instead of the domain of Section 4.1. A flat domain is exactly
the concrete domain with two additional constructs ⊺ and �. Figure 4.13 shows its Hasse
diagram: the order ⊑ is the minimal relation such that ⊺ is greater than all elements and �
smaller than all elements.The generic analysers of the previous section still apply—in fact,
it is easy to define the abstract transfer functions on this domain in a generic way.

The resulting analyser is a flat analyser. It behaves like⌜a concrete interpreter with two ad-
ditional results⌝: it may return � on some looping programs, and returns ⊺whenmore than
two rules apply. There is thus no need of defining an interpreter for a concrete semantics
in this formalism, as it is given for free: the side-conditions have to be proven decidable,
and a computable function l−1 is required, but these are the only requirements.
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e ∶∶= c ∈ Z
∣ x ∈ Var
∣ e1 + e2

∣ λx.s
∣ e1 (e2)

ee ∶∶= ⋅ +1 e
∣ ⋅ +2 ⋅
∣ @1 (e2)
∣ @2

∣ @3

s ∈ stat ∶∶= skip
∣ s1; s2
∣ x ∶= e
∣ if (e > 0) s1 s2
∣ while (e > 0) s
∣ return e

se ∶∶= x ∶=1 ⋅
∣ ⋅ ;1 s2
∣ if 1 s1 s2
∣ while1 (e > 0) s
∣ while2 (e > 0) s
∣ return1⋅

Figure 4.14: Updating the language of Figure 4.1

Theorem 4.1 still applies. Interestingly, it translates in this setting to a proof that the given
concrete interpreter is complete: no result is missed by such an analyser. Such an analyser
for the JSCert semantics could thus be a solution to establish the completeness discussed
in Section 2.7.5. Instead of the flat domain, othermore precise variants can be use, such as a
powerset lattice.⌜Applying this method with a powerset lattice⌝would build an interpreter
computing what is called the collecting semantics. It is the most precise analysis which
can be performed on a program, but it requires so much resources (there can be a huge
number of program states) that it is of little practical use in this setting.

4.7 Evaluation
We have defined a framework which lets us define in Coq pretty-big-step concrete se-
mantics and abstract them in a guided way. The framework then provides ⌜a way to prove
the abstract semantics sound by only proving local properties⌝, considerably reducing the
amount of proof to be done. The framework also provides some generic analysers, which
can be extracted in OCaml and run. We now examine⌜how this framework behaves when
the concrete semantics changes⌝, in particular about the associated proof effort. We con-
clude by considering which abstract rules of Section 4.2 are captured by the framework.

4.7.1 Extending a Semantics

To check whether our requirements are indeed local, we update the concrete semantics
to add first-class functions in our language. We now consider how much work is needed
to update the certified analysers of section 4.6. The new syntax of the language is defined
in Figure 4.14. The expression λx.s defines a function (for simplicity, we only consider
functions with one argument). As for JavaScript, a function executes a statement, whose
execution should end with a return e statement; the expression e1 (e2) represents a func-
tion call. These new terms come with their own intermediary terms.

When calling a function, a local environment called contextC ∈ Env is created to carry the
value of the function argument. When creating a closure with the expression λx.s, the cur-
rent context is stored. To implement these environments, we use a structure close to Java-
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Script’s declarative environments records (see Section 1.2.3.1): environments are stored
in a global heapHe of environments.The heapHe maps environment locations ℓe, ℓc ∈ Le
to environments E ∈ Env = Var ⇀fin Val . The function fresh takes a heap He as an ar-
gument and returns a fresh location ℓe /∈ dom (He).

The concrete domains have been updated from Definition 3.1. Program states are now
composed of three different components:

• The global heap He ∶ Le ⇀fin Env .
• An environment location ℓe pointing to the global environment E.
• An environment location ℓc pointing to a context C ∈ Env . This context carries the
local scope of the current function call.

The setVal of values now includes both basic values inZ and closures (ℓc, λx.s).There are
now three kinds of result which a statement can return: a normal result (a state), an error,
or a return result, which is⌜a triple of an environment heapHe, the location of the current
global environment ℓe, and a value v⌝. We write the latter ret (He, ℓe, v). Expressions can
now also alter the current environment heap through function calls: expressions now
return either an error or ⌜a triple of an environment heap He, a location to the global
environment ℓe, and a value⌝. To simplify notations, we consider that each environment
location ℓe associated with an environment heap He is in the domain of this heap. This
invariant is conserved by the semantics: environment locations are never removed from
the environment heap He. We could add a side-condition ℓc ∈ dom (He) in rules such as
Rule red-var-local to make this constraint explicit.

Updating program states does not invalidate the Coq definition of most transfer functions:
the inferred type of some monads changed, but most definitions are left unchanged. The
abort predicate has to be changed to catch results of the form ret (He, ℓe, v). Further-
more, the new Rule red-app-3-ret catches these results: the aborting Rule red-error-
expr(e) now features an intercept predicate defined in Figure 4.16. This is similar to
Rule red-expr-abort of JSCert (see Figure 2.5).

⌜Rules red-var(x), red-var-undef(x), and red-asn-1(x), which access environments⌝
have to be updated. Furthermore, ⌜the rules manipulating expression results⌝ also have to
be updated, as the type of these results changed. For most of these rules, the changes are
minor, but the effort could probably be further reduced by applying to this formalism
some meta-theory frameworks [DSS13]. There are now three rules to access variables:
the variable can be in the local environment, the global environment, or could be un-
defined. Figure 4.15 shows the rules which have been updated, and Figure 4.17 shows the
additional rules which have been added to manipulate functions. Note the behaviour of
contexts when being updated by Rule red-var-local(x): the changes are only visible in
the scope of the current function, but not propagated to the scope of eventual enclosing
functions.This choice has been made to keep the semantics simple.⌜Both the syntactic (the
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set of rule names, the function kind , and the terms l, u1, u2, and n2) and semantic (side-
conditions and transfer functions) aspects⌝of the added rules have to be created, but apart
from the expected rules of Figure 4.15, no rules have to be changed from the previous
semantics. Note how Rule red-app-2(s) takes the statement s as a parameter in its name:
syntactic aspects of rule should not depend on the semantic domain; this is a problem for
function calls, but we solve this by adding the missing information in the rule name.

The abstract semantics have to be updated, but only ⌜the parts which have been changed
in the concrete semantics⌝ suffer changes in the abstract semantics: only ⌜the newly added
rules and the rules which changed in the concrete semantics⌝are changed.There is no stack
in the concrete semantics. Indeed, the stack is hidden in the derivation structure: when
a function call ends, the global environment is returned, but the computation continues
in the local environment from where it called the function. This makes the abstraction
quite straightforward. The new abstraction for values is shown below. Environments loc-
ations ℓe ∈ Le are abstracted by abstract environment locations η ∈ L♯e. The environment
heap He is abstracted by an abstract heap H♯e ∶ L♯e → Env ♯. Section 6.3.2 provide more
details on how environments are abstracted.

Val ♯ = Sign♯ × C♯

Store♯ = (Val ♯ + undef ♯)⊺

C♯ = P (Var × Stat ×L♯e)

Env ♯ = Var → Store♯

As expected, ⌜the proof of local soundness needed for Theorem 4.1⌝ has to be updated; but
the local proofs of soundness of the unchanged rules is still accepted by Coq: only the
newly added rules have to be proven locally sound. This justifies the adjective “local” for
the local soundness, as ⌜local changes in the semantics⌝ only yield local changes in the
soundness proof, and in the expected places.

At this stage, we already have an abstract semantics proven sound, but we may want to
also update the analysers, such as the one defined in Section 4.6.2. To this end, we have
to update the function l−1 providing the set of potentially applicable rules: the term x re-
turns the additional rule red-var-local(x) in its associated list, and the new terms of
Figure 4.14 return their associated list. Interestingly, it not possible to return any list for
the term @3: to return the rule name red-app-2(s), we need to know the statement s,
which is in the environment Ef ; this problem is fixed by defining ⌜a more general version
of the l−1 function taking the semantic context⌝. Interestingly, the proof of decidability
of side-conditions has not to be updated, as it is entirely taken care by type classes (see
Section 3.4.1), leaving no effort from the user. The term @3 is added to the terms recog-
nised by is_looping_branch, as a potentially looping term (because of mutually recursive
functions). These changes are actually enough to extract and run an analyser. Let us for
instance consider the following program computing 6 × 7 using a function; to make the
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red-const(c)

He, ℓe, ℓc, c ⇓He, ℓe, c

red-var-local(x)

He, ℓe, ℓc, x ⇓He, ℓe, ℓc [x]
x ∈ dom (He [ℓc])

red-var-global(x)

He, ℓe, ℓc, x ⇓He, ℓe,E [x]
x ∈ dom (He [ℓe]) ∧ x /∈ dom (He [ℓc])

red-var-undef(x)

He, ℓe, ℓc, x ⇓ err
x /∈ dom (He [ℓe]) ∧ x /∈ dom (He [ℓc])

red-add(e1, e2)
He, ℓe, ℓc, e1 ⇓ r ℓc, r, ⋅ +1 e2 ⇓ r′

He, ℓe, ℓc, e1 + e2 ⇓ r′

red-add-1(e2)
He, ℓe, ℓc, e2 ⇓ r v1, r, ⋅ +2 ⋅ ⇓ r′

ℓc, (He, ℓe, v1) , ⋅ +1 e2 ⇓ r′
red-add-2

v1, (He, ℓe, v2) , ⋅ +2 ⋅ ⇓He, ℓe, v1 + v2

red-asn(x, e)
He, ℓe, ℓc, e ⇓ r ℓc, r, x ∶=1 ⋅ ⇓ r′

He, ℓe, ℓc, x ∶= e ⇓ r′

red-asn-1(x)
ℓ′e = fresh (He) E =He [ℓe]

ℓc, (He, ℓe, v) , x ∶=1 ⋅ ⇓He [ℓ′e ← E [x← v]] , ℓ′e, ℓc
x /∈ dom (He [ℓc])

red-asn-1-local(x)
ℓ′c = fresh (He) C =He [ℓc]

ℓc, (He, ℓe, v) , x ∶=1 ⋅ ⇓He [ℓ′c ← C [x← v]] , ℓe, ℓ′c
x ∈ dom (C)

red-if(e, s1, s2)
He, ℓe, ℓc, e ⇓ r ℓc, r, if 1 s1 s2 ⇓ r′

He, ℓe, ℓc, if (e > 0) s1 s2 ⇓ r′

red-if-1-pos(s1, s2)
He, ℓe, ℓc, s1 ⇓ r

ℓc, (He, ℓe, v) , if 1 s1 s2 ⇓ r
v > 0

red-if-1-neg(s1, s2)
He, ℓe, ℓc, s2 ⇓ r

ℓc, (He, ℓe, v) , if 1 s1 s2 ⇓ r
v ⩽ 0

red-while(e, s)
He, ℓe, ℓc, e ⇓ r ℓc, r,while1 (e > 0) s ⇓ r′

He, ℓe, ℓc,while (e > 0) s ⇓ r′
red-while-1-neg(e, s)

ℓc, (He, ℓe, v) ,while1 (e > 0) s ⇓He, ℓe, ℓc
v ⩽ 0

red-while-1-pos(e, s)
He, ℓe, ℓc,C, s ⇓ r r,while2 (e > 0) s ⇓ r′

ℓc, (He, ℓe, v) ,while1 (e > 0) s ⇓ r′
v > 0

red-error-expr(e)

σ, e ⇓ err
abortσ ∧ ¬intercepte σ

Figure 4.15: Rules updated to account for the semantic changes

intercept@3
ret (He, ℓe, v)

Figure 4.16: The intercept predicate
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red-lambda(x, s)

He, ℓe, ℓc, λx.s ⇓He, ℓe, (ℓc, λx.s)

red-app(e1, e2)
He, ℓe, ℓc, e1 ⇓ r ℓc, r,@1 (e2) ⇓ r′

He, ℓe, ℓc, e1 (e2) ⇓ r′

red-app-1(e2)
He, ℓe, ℓc, e2 ⇓ r ℓ′c, x, s, r,@2 ⇓ r′

ℓc, (He, ℓe, (ℓ′c, λx.s)) ,@1 (e2) ⇓ r′

red-app-2(s)
ℓ′c = fresh (He) C =He [ℓc]

He [ℓ′c ← C [x← v]] , ℓe, ℓ′c, s ⇓ r r,@3 ⇓ r′

ℓc, x, s, (He, ℓe, v) ,@2 ⇓ r′

red-app-3-ret

ret (He, ℓe, v) ,@3 ⇓He, ℓe, v

red-app-3-no-ret

He, ℓe, ℓc,@3 ⇓ err

red-return(e)
He, ℓe, ℓc, e ⇓ r r, return1⋅ ⇓ r′

He, ℓe, ℓc, return e ⇓ r′

red-return-1

(He, ℓe, v) , return1⋅ ⇓ ret (He, ℓe, v)

Figure 4.17: Rules added to manipulate functions

analysis more complex, this program does not return the result of the computation (it
always returns the value 0) but stores it in a global variable r.

prod ∶= (λn.if (n > 0) (prod (n + (−1)) ; r ∶= r + b) (r ∶= 0) ; return 0) ;

a ∶= 6; b ∶= 7; z ∶= prod (a)

⌜Running the freshly extracted analyser using the new abstract domain in an empty initial
environment⌝ provides the following result, written in a readable form.

({r↦ +, b↦ +, a↦ +, z↦ 0} , err ♯)

This result is similar to what we have found in Section 4.6.2. The analyser detected again
that no error can be returned by this program, and that the result if strictly positive. Notice
that this is not trivial for a human in this new setting given how the analysed program
has been written: at each step, we read the variable r, which is only initialised when n ⩽ 0
by r ∶= 0. For this program to be valid, it is thus important to execute the recursive call
before accessing r. Overall, very little changes were made to the definition and proofs to
get a working certified analyser: the approach is indeed scalable—hopefully to JSCert.

4.7.2 Conclusion

This chapter described a framework to minimise the proof effort required to build ab-
stract semantics and certified analyses. This framework is parametric in several aspects.
First, it is parametric in the analysed language, which must be defined as a pretty-big-step
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semantics based on transfer functions (see Section 4.3). Second, it is parametric in the
abstract domains, which must be defined, along with the corresponding abstract trans-
fer functions. Once these functions are shown to soundly abstract the concrete trans-
fer functions (at a local scope), a sound-by-construction abstract semantics is automat-
ically defined. From this abstract semantics, an analysis can be developed. The framework
provides several generic analysers which do not need to be adapted and can be run on
any semantics, but ad-hoc analysers can also be defined for specific situations to which
these generic analysers are not adapted. As we have seen in the previous section, this
framework enables quick extensions of the semantics with little effort.

⌜Thepretty-big-step semantics built in this framework⌝hasmore constraints than the pretty-
big-step style presented in Section 2.5.2.1: the syntactic and the semantic aspect of rules
have to be clearly separated, the transfer functions have to explicitly appear, as well as the
side-conditions. Another difference is that this framework is less typed that JSCert: apart
from the presentation of Section 4.5, ⌜the types of semantic contexts and results⌝ are inde-
pendent from the evaluated term; whilst JSCert separates the expression reduction ⇓e
from the statement reduction ⇓s by given them separate types. In this respect, the presen-
ted framework is similar to the reduction predicate ⇓i of JSCert. Updating the JSCert
specification to this framework should probably be long, but straightforward.

As a conclusion, we now consider⌜which abstract rules presented in Section 4.2⌝ can be ex-
pressed in this framework. Rule if-abs-corrected applies both premises of an if -construct
in parallel; as we have seen in Figure 4.8b, this kind of rule derives automatically from the
definition of the abstract immediate consequence F ♯. Rule while-abs-fixed-point en-
ables to analyse while-constructs from an invariant of the state. In this framework, this
is caught by the coinductive nature of the abstract derivations presented Section 4.4.2.2,
or by Park’s principle as presented in Section 4.6. Figure 4.9 shows such an infinite de-
rivation defined using an invariant. Note that coinduction enables much more complex
abstract derivations in which the abstract state is changed at each step—in other words,
⌜the Park set proven to be coherent⌝ can be infinite—: this framework does not explicitly
require an invariant to hold, coinduction being much more permissive. We have seen in
Section 4.6.1 that to accept Rule abs-top, we need a rule similar to Rule abs-weaken.
This last rule belongs to another kinds of rules called structural rules, treated in the next
chapter. Structural rules also include Rule glue-trace-partitioning, which enables to
derive equivalents of Rules if-abs-refined and while-abs-precise-fixed-point.
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5Structural Rules

Tu vas te faire mal inutilement… avec cette colle-là, il n’y a qu’un
système : l’eau bouillante !

Gaston Lagaffe, by André Franquin [FD70]

Chapter 4 presented a basic framework to build certified abstract semantics without hav-
ing to deal with complex proofs. We have seen in Section 4.7.1 how this framework can
be extended to consider new rules, without having to prove any complex new invariant.
But this last chapter concluded in Section 4.7.2 that this framework is incomplete as-is.

This chapter explains how we can add structural rules—also called glue rules—into this
formalism, in particular both Rules glue-weaken and glue-trace-partitioning which
we needed in the previous chapter. We first explain why structural rules are different⌜from
the other rules—which we call computational⌝—, then extend the formalism to catch these
additional rules. Section 5.3 details the Coq proof of soundness in this extended formalism.
This chapter uses the language defined in Figures 3.4 and 4.2 for most of its examples.

5.1 Examples of Structural Rules
As recalled at the end of Section 3.3, the goal of an abstract semantics is not to be precise,
but to specify what are acceptable semantic triples. In other words, an abstract semantics
specifies which abstract results can be considered correct. In a second step, once the ab-
stract semantics is defined, we can define analysers, whose goal is to be computable, and
if possible, precise. In most cases, a precise abstract semantics (in the sense that it only
accepts precise results) is useless, as it does not relate to any not-so-precise analyser. In
order for an abstract semantics to accept as many results as possible, we need somespe-
cial rules not related to any concrete rule. We call these rules structural rules. This section
presents two of such rules and how they can be used in practical analyses.

5.1.1 Approximations

Analysers make compromises about preciseness to ensure computability. Typically, when
analysing a loop such as while1 (x > 0) (x ∶= x + (−1)) (as in Figure 4.9), analysers use
techniques such as widening and narrowing [CC77a] to find loop invariants faster. To en-
able the use of such techniques in certified analysers, we need Rule glue-weaken defined
in Figure 5.1a. This rule states that to prove an abstract semantic triple σ♯, t ⇓ r♯, the
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glue-weaken
σ♯ ⊑ σ′ ♯ σ′ ♯, t ⇓ r′ ♯ r′ ♯ ⊑ r♯

σ♯, t ⇓ r♯

(a) Definition

...

σ♯, t ⇓ r♯
glue-weaken

σ♯, t ⇓ r♯
glue-weaken

σ♯, t ⇓ r♯
glue-weaken

(b) Unsound infinite derivation

Figure 5.1: Rule glue-weaken

semantic context σ♯ can be replaced by a greater one σ′ ♯ in the abstract poset. This is
sound as the soundness (as stated byTheorem 4.1) is about not missing any concrete beha-
viours, and the constraints of Section 3.2.4 enforce the concretisation function γ (and thus,
the represented concrete behaviours) to be compatible with the order: γ (σ♯) ⊆ γ (σ′ ♯).
Rule glue-weaken then continues the computation up to a result r′ ♯, which can also be
replaced by a greater element r♯. This rule does not correspond to any concrete rule—its
soundness is based on how derivations are built—and thus constitutes a structural rule.

Rule glue-weaken is thus locally sound. It is also non-deterministic: there may be several
instances of σ′ ♯ greater than σ♯ in the abstract poset. As mentioned in Section 3.1, the non-
determinism of the abstract semantics is not an issue—on the contrary: it enables analysers
to be flexible about the semantic triples accepted by the abstract semantics. In particular,
an analyser can use any heuristic to chose which abstract rule to apply.

Rule glue-weaken updates the result given by its subderivation. It thus does not follow
the pretty-big-step style (see Section 4.3.1). Also, Rule glue-weaken does not correspond
to any concrete rule. This makes Rule glue-weaken a rule of a different kind than the ab-
stract rules presented in Section 4.4.1.1. In particular the soundness theorem (Theorem 4.1)
does not apply. Consider Figure 5.1b, which continuously applies Rule glue-weaken start-
ing from any semantic triple (σ♯, t, r♯). As the poset order ⊑ is reflexive, changing neither
the semantic context nor the result is a valid choice for Rule glue-weaken. The resulting
derivation is infinite, and thus coinductively defined—although the semantic triple is not
constrained. This derivation thus accepts invalid semantic triples: it is unsound. We need
a new mechanism to deal with this new kind of rule.

5.1.2 Trace Partitioning

Figure 4.8 shows two derivations of the program if (x > 0) (r ∶= x) (r ∶= 18), one where x
has the abstract value + in the abstract environment, and one in which it has the abstract
value ⊺Z. One would expect x to be positive in the “positive” branch, but this is not what
happens in practise, as Rule red-if-1-pos(r ∶= x, r ∶= 18) has been abstracted in ⌜a very
simple way which does not filter the semantic context to fit the side-condition⌝. A more
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complex way would be to make use of the cond r (σ) premise of Criterion 4.5, repeated
below: this criterion enables to only abstract the semantic contexts which fire the concrete
side-condition—in this case, to select and only abstract positive values of x.

∀σ♯, σ ∈ γ (σ♯) . cond r (σ)→

up (σ) and up♯ (σ♯) defined→ up (σ) ∈ γ (up♯ (σ♯)) (4.5 repeated)

To update the semantic context in Rule red-if-1-pos(s1, s2), we need to add informa-
tion in the abstract domain. First, we need to know the if -condition after entering a
branch: this condition has been removed at this stage of the computation (see Rule red-
if(e, s1, s2) of Figure 3.4b). This is due to the way computations are performed in pretty-
big-step (see Section 2.5.2.1), but the problem would also arise in other semantic styles
withmore complex examples.⌜Theabstract Rules red-if(e, s1, s2) and red-if-1-pos(s1, s2)
below⌝ show how we can transport the if -condition e into the abstract domain.

red-if(e, s1, s2)
E♯, e ⇓ r♯ e,E♯, r♯, if 1 s1 s2 ⇓ r′ ♯

E♯, if (e > 0) s1 s2 ⇓ r′ ♯

red-if-1-pos(s1, s2)
updatee (E♯) , s1 ⇓ r♯

e,E♯, v, if 1 s1 s2 ⇓ r♯
v > 0

Thecarried expression e is ignoredwhen defining the concretisation: we have γ ((e,E♯)) =
γ (E♯). This expression carries non-local information about the derivation, but does not
influence the represented abstract semantic contexts. The expression e is thus transferred
to Rule red-if-1-pos(s1, s2), and enables us to define a function updatee as follows:

updatee (E♯) = E♯ [x← E♯ [x] ⊓ +] if e = x

updatee (E♯) = E♯ otherwise

The function updatee corresponds to what is called a backward analysis of expression in
abstract interpretation [Jou16, Chapter 6]. Not all expressions can be easily covered: if
instead of considering the rules of Figures 3.4 and 4.2, we consider those of Figures 4.15
and 4.17, which include⌜function calls potentially updating the environment⌝, then defining
such a backward inference is as difficult as analysing a program. As a consequence, we
only define an action for the function update on trivial expressions: when a variable x

is given, we select the positive part of its value (we know that it can not be negative or
undefined in this branch).⌜Continuing into this direction⌝ leads to much more precise rules
similar to Rules if-abs-refined and while-abs-precise-fixed-point of Figure 4.4.

Figure 4.8a shows that the formalism is able to deal with precise semantic contexts. Trace
partitioning [MR05; RM07] presents an alternative: instead of defining complex abstract
rules, we can separately consider precise values. For instance if a variable is associated the
value ⊺ ∈ Store♯, we can separate the cases where its abstract value is −0, +, and undef ♯.
More generally, the semantic context σ♯ of a semantic triple can be split into the con-
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texts σ♯1, …, σ♯n if γ (σ♯) ⊆ γ (σ♯1)∪ . . .∪ γ (σ♯n)—in other words, if no concrete behaviour
is missed. In practise, we try to minimise γ (σ♯1) ∪ . . . ∪ γ (σ♯n)—ideally making it equal
to γ (σ♯)—to avoid introducing new concrete states. Figure 5.2 pictures this constraint.
Rule glue-trace-partitioning is shown below. It can have more than two premises: as
for Rule glue-weaken, it does not respect the pretty-big-step format.

glue-trace-partitioning
σ♯1, t ⇓ r♯ . . . σ♯n, t ⇓ r♯

σ♯, t ⇓ r♯
γ (σ♯) ⊆ γ (σ♯1) ∪ . . . ∪ γ (σ♯n)

We can now analyse the program if (x > 0) (r ∶= x) (r ∶= 18). Figure 5.3 shows a de-
rivation based on Rule glue-trace-partitioning. It starts by splitting the abstract en-
vironment {x↦ ⊺Z} in the two environments {x↦ +} and {x↦ −0}. We indeed have
γ ({x↦ ⊺Z}) = γ ({x↦ +})∪γ ({x↦ −0}). In both cases, Rule red-var(x) now provides
precise results in accordance to their respective heap: the result of the if -condition is now
related with the value of x in the heap. This enables us to precisely continue the construc-
tion of the derivation and to get the precise expected result {x↦ +} in both cases.

⌜How and where to efficiently split⌝ depend on ⌜the expression from which we want to
extract information⌝, as well as on the domains used in the analysis. This can involve ar-
bitrarily complex heuristics in analysers. In general, it is a good practise to split the state
before branching rules such as Rules red-if(e, s1, s2) and red-while(e, s). In this disser-
tation, we do not consider how these rules can be applied. We showed that structural rules
are necessary to build some derivations: both Figures 4.8b and 5.3 use structural rules. We
do not provide any methods about where and how to use such rules. This thesis indeed
focusses on building certified abstract semantics for large semantics (and JavaScript in
particular), but not on how to implement analysers from these semantics.

5.2 The Immediate Consequence Operator
In the previous section, we have seen some examples of structural rules. We have also
seen that these rules do not follow the restrictions of pretty-big-step, and in particular
that Theorem 4.1 does not apply on them. This section explains how we can nevertheless
update the formalism to take such rules into account.

5.2.1 Ensuring Productivity of Computational Rules

As mentioned in Sections 3.3 and 4.4.3, the soundness of our formalism is based on the
coverage of concrete derivations by abstract derivations starting from related semantic
contexts and terms. Structural rules have by definition no counterpart in concrete deriv-
ations. The problem with the derivations of Figure 5.1b is that these structural rules are
applied infinitely, without any computational rule in between.
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Initial concretisation of the abstract state

Partition

σ♯

σ♯2σ♯1 σ♯3

γ

Figure 5.2: A picturisation of a trace partitioning

red-var(x)
{x↦ +} , x ⇓ +

red-asn(r, x)
red-var(x)

{x↦ +} , x ⇓ ⊺Z {x↦ +} ,+, r ∶=1 ⋅ ⇓ {x↦ +}
red-asn-1(r)

{x↦ +} , r ∶= x ⇓ {x↦ +}
{x↦ +} ,+, if 1 (r ∶= x) (r ∶= 18) ⇓ {x↦ +}

red-if-1-pos(r ∶= x, r ∶= 18)

⋅⋅⋅⋅
{x↦ +} , if (x > 0) (r ∶= x) (r ∶= 18) ⇓ {x↦ +}

red-if(x, r ∶= x, r ∶= 18)

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

red-var(x)
{x↦ −0} , x ⇓ −0

red-const(18)
{x↦ −0} ,18 ⇓ + {x↦ −, _↦0} ,+, r ∶=1 ⋅ ⇓ {x↦ +}

red-asn-1(r)

{x↦ −0} , r ∶= 18 ⇓ {x↦ +}
red-asn(r,18)

{x↦ −0} ,⊺Z, if 1 (r ∶= x) (r ∶= 18) ⇓ {x↦ +}
red-if-1-neg(r ∶= x, r ∶= 18)

⋅⋅⋅⋅⋅⋅⋅⋅
{x↦ −0} , if (x > 0) (r ∶= x) (r ∶= 18) ⇓ {x↦ +}

red-if(x, r ∶= x, r ∶= 18)

{x↦ ⊺Z} , if (x > 0) (r ∶= x) (r ∶= 18) ⇓ {x↦ +}
glue-trace-partitioning

Figure 5.3: A derivation using trace partitioning

σ♯n, t ⇓ r♯n
...

gluen

σ♯1, t ⇓ r♯1
glue1

σ♯, t ⇓ r♯
r

. . .
...

σ♯n, t ⇓ r♯n
r1

...

σ♯n, t ⇓ r♯n
rn

Finite number of glue rule
applications

⌜Possibly infinite⌝ derivations

Figure 5.4: Illustration of an infinite abstract derivation with glue
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Structural and computational rules have to be dealt differently in the immediate con-
sequenceF ♯ operation. In particular, we have to make sure that the computational part of
an abstract derivation is productive, that is, we can infer which are the next applied com-
putational rules at each step of a derivation. In the case of the derivation of Figure 5.1b, it
is not, as there is no computational rule in this derivation. To this end, we force structural
rules to be only applied a finite amount of time (that is, inductively) between each com-
putational rule, as shown in Figure 5.4. Structural rules are alternatively named glue rules
because they apply between abstract rules without changing the derivation structure.

In our formalisation, structural rules are applied after the rule separation described in
Section 4.4.2.1. These rules are given in the form of a predicate glue ∶ P (st × res)→ st →
res → Prop. The predicate glue ((σ♯i , r♯i) , σ♯, r♯) represents the following glue rule.

∀i, (σ♯i , t ⇓ r♯i)

σ♯, t ⇓ r♯

For instance, Rules glue-weaken and glue-trace-partitioning are respectively associ-
ated with⌜the predicates glueWeaken, and gluetrace-partitiong defined below⌝.⌜Defining rules
with predicates⌝is generic and suitsmany formalisms. For instance,⌜the form of Rules glue-
frame-⋆ and glue-frame-○ of Figure 6.9⌝ is not common in abstract interpretation.

glueweaken ({σ′ ♯, r′ ♯} , σ♯, r♯) ⇐⇒ σ♯ ⊑ σ′ ♯ ∧ r′ ♯ ⊑ r♯ (5.1)

gluetrace-partitiong ({σ♯i , r♯} , σ♯, r♯) ⇐⇒ γ (σ♯) ⊆⋃
i

γ (σ♯i) (5.2)

We now update the definition of the immediate consequence F ♯ from Section 4.4.2.1 as
follows. It now consists of three steps (instead of two). First the rules are filtered to get
those which applies. Second, the glue is applied. Third, transfer functions are computed.
As for the old abstract immediate consequence F ♯, the abstract semantics can now be
defined by iterating F ♯ from an empty seed.

F ♯ (⇓0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(σ♯, t, r♯)

RRRRRRRRRRRRRRRRR

∀r. t = lr → cond ♯r (σ♯)
→ ∃ (σ♯)

i
, (r♯)

i
. glue ({(σ♯i , r♯i)} , σ♯, r♯)

∧∀i. (σ♯i , t, r♯i) ∈ apply r (⇓0)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Up to now, we have assumed a predicate glue , giving some instances. We now provide the
constraint which we impose on such predicate to provide a sound abstract semantics.

5.2.2 Correctness Criterion

As we have seen in Section 5.1, the glue rules are meant to catch global invariants—or
at least, not as local as what transfer functions catch. ⌜The criterion which we require
on the glue rules⌝ is based on their ability to rewrite concrete derivations to make them
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match its results.⌜The soundness of the examples presented in Section 5.1⌝ relies on the fact
that concrete derivations can only be in some specific forms, which these rules take into
account. We thus need a more complex example to show these rewritings in action.

Section 6.4.1 introduces the glue Rules glue-frame-○ and glue-frame-⋆ , whose sound-
ness crucially depends on such rewritings. We now present the essence of these rules.
Consider the language defined in Section 4.7.1. This language features functions calls, and
in particular, a heap of allocated environments.The rules of this language (see Figure 4.17)
have been carefully defined so that environments in the environment heap He are never
modified: every time we need to write in an environment, we allocate a new updated
environment in the environment heap. Two of such concrete rules are shown below.

red-asn-1(x)
ℓ′e = fresh (He) E =He [ℓe]

ℓc, (He, ℓe, v) , x ∶=1 ⋅ ⇓He [ℓ′e ← E [x← v]] , ℓ′e, ℓc
x /∈ dom (He [ℓc])

red-asn-1-local(x)
ℓ′c = fresh (He) C =He [ℓc]

ℓc, (He, ℓe, v) , x ∶=1 ⋅ ⇓He [ℓ′c ← C [x← v]] , ℓe, ℓ′c
x ∈ dom (C)

In this setting, the environment heap He keeps increasing during the execution of a pro-
gram. ⌜Reusing previously computed semantic triples as in Section 4.6.2⌝ appears to be a
complex task, as the environment heap never matches. To this end, we introduce a par-
tial operation ⋆∪ defined over semantic contexts and results. For each abstract environ-
ment heap H♯e , this operation completes the environment heap of ⌜the given semantic
context σ♯ or result r♯⌝ with the environments of H♯e . For instance1, if σ♯ = (H♯e, ηe, ηc),
then σ♯ ⋆∪H ′

♯
e = (H♯e ⊎H ′

♯
e, ηe, ηc). We do not detail how the operation ⋆∪ is defined. Sec-

tion 6.4.1 provides a similar operation. Consider now the glue Rule frame-env below.

frame-env
σ♯, t ⇓ r♯

σ♯ ⋆∪H♯e, t ⇓ r♯ ⋆∪H♯e

This rule is sound in the sense that the statement of the soundness theorem 4.1 holds in
the presence of this glue. Indeed, if we have produced an abstract semantic triple σ♯ ⋆∪
H♯e, t ⇓♯ r♯ ⋆∪H♯e using Rule frame-env, then we have by hypothesis succeedingly built a
sound abstract derivation for the abstract semantic triple σ♯, t ⇓♯ r♯. We now consider a
concrete derivation of conclusion σ, t ⇓ r with σ ∈ γ (σ♯ ⋆∪H♯e). We can prove that we can
decompose the concrete semantic context σ in a semantic context σ0 and a contextual
environment heap He,0 such that σ = σ0 ● He,0, where ● is the concrete equivalent of
the ⋆∪ operator. The ● operator is defined similarly to the ⋆∪ operator: if σ = (He, ℓe, ℓc),
then σ ●H ′e = (He ⊎H ′e, ℓe, ℓc).

1 We are here using the abstract domains of Section 4.7.1, but the precise details about these domains are
not needed to understand how Rule frame-env works.
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σ0 ●He,0, t ⇓ r0 ●He,0 σ0, t ⇓ r0

Translation

r0 ∈ γ (r♯0)

Inductive Hypothesis

r0 ●He,0 ∈ γ (r♯ ⋆∪H♯e,0)

Figure 5.5: Structure of the proof that Rule frame-env is sound

1 Definition correct_up_to_depth k asigma ar :=
2 forall n sigma r (A : apply n sigma r),
3 gst asigma sigma →
4 cond n sigma →
5 apply_depth A < k →
6 gres ar r.
7

8 Definition glue_correct := forall P asigma ar k,
9 glue P asigma ar →

10 (forall asigma’ ar’,
11 P asigma’ ar’ →
12 correct_up_to_depth k asigma’ ar’) →
13 correct_up_to_depth k asigma ar.

Program 5.1: Coq definition of the correctness of glue rules

All the rules of our concrete language have been defined such that ⌜adding concrete (un-
reachable) environments to the environment heap He⌝ does not change neither the ap-
plicable rules, nor the results—apart from the fact that the added environments are con-
served in the result. Similarly, removing environments from the environment heap He

will either have no effect on a derivation, or will prevent the derivation to be built if we
needed the removed environments: previously applicable rules will no longer apply and
the derivation will be stuck. In particular, the result r of ⌜the above concrete derivation of
conclusion σ, t ⇓ r with σ = σ0 ● He,0⌝ is of the form r = r0 ● He,0. We now rewrite this
concrete derivation to remove the environments from the context He,0 in all its interme-
diate states. This process may fail somewhere in the derivation because a rule needs the
environments present inHe,0 and no longer applies. This case is however not possible be-
cause we have successfully derived an abstract version of this derivation: in this abstract
domain, abstract environments are particularly close to concrete environments. In partic-
ular, abstract derivations would fail if a concrete derivation does. This statement relies
on the fact that different abstract locations η represent different concrete locations ℓe—
Section 6.4.5 elaborates on this matter. We thus get a derivation of the form σ0, t ⇓ r0.
The structure of this derivation—that is, all the applied rules—is identical to the original
derivation. By recursion2, we get r0 ∈ γ (r♯0). Given the way the operators ⋆∪ and ● have
been defined, this yields r0 ●He,0 ∈ γ (r♯0 ⋆∪H♯e,0). Figure 5.5 sums up this proof.

2 This paragraph only aims at giving an intuition of why Rule frame-env is sound. In particular, we do
not detail this recursion here, which is in fact not so trivial. See Section 5.3 for a detailed proof.
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1 Inductive glue_iter : name → (ast → ares → Prop) → ast → ares → Prop :=
2 | glue_iter_refl : forall n (P : ast → ares → Prop) asigma ar,
3 P asigma ar → glue_iter n P asigma ar
4 | glue_iter_cons : forall n (P P’ : ast → ares → Prop) asigma3 ar3,
5 (forall asigma2 ar2, P’ asigma2 ar2 → glue_iter n P asigma2 ar2) →
6 glue n P’ asigma3 ar3 →
7 glue_iter n P asigma3 ar3.

Program 5.2: Coq definition of the iterating glue predicate

σ♯1, t ⇓ r♯1 . . . σ♯n, t ⇓ r♯n
σ♯, t ⇓ r♯

glue

glue⋆ glue⋆

P1 Pn

P
⊆ ⊇

Figure 5.6: Intuition behind the definition of the iterating glue predicate glue⋆

The important aspect of these ⌜concrete derivation⌝ rewritings is that they do not change
the depth of concrete derivations. To this end, we introduce ⌜an intermediary definition
for the correctness of glue rules⌝, associated with the depth k of the rewritten derivations.
We define the k correctness as follows. A semantic triple σ♯, t ⇓♯ r♯ is k correct, k being
a number, if for any concrete derivation of depth less than k with conclusion σ, t ⇓ r,
then σ ∈ γ (σ♯) implies r ∈ γ (r♯). We can now state the criterion for glue rules. The glue
predicate glue is correct if for each of its instances and for all k, the k correctness of its
premises implies the k correctness of its conclusion:

∀ (σ♯i) , (r♯i) . glue ({(σ♯i , r♯i)} , σ♯, r♯) Ô⇒

(∀i. σ♯i , t ⇓♯ r♯i is k correct) Ô⇒ σ♯, t ⇓♯ r♯ is k correct (5.3)

Lines 1 to 6 of Program 5.1 shows the Coq definition of k correctness. In Coq, there are
several predicates to define derivations, as shown in Program 4.2: eval corresponds to ⇓,
and apply corresponds to ⌜the step in which we already chose the applied rule⌝. ⌜The type
apply n—n being a rule name⌝—represents a concrete derivation whose root rule is n. The
predicates gst and gres correspond to the concretisation functions of the abstract domain.
The Coq equivalent of Criterion 5.3 is shown Lines 8 to 13 of Program 5.1.

Note that in the definition of the immediate consequence F ♯, we force the glue to be
applied at each step. We furthermore suppose to only have one glue predicate glue . The
next section explores how to circumvent this constraints.
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5.2.3 Lifting to Several Rules
We have claimed in Figure 5.4 that we inductively (as opposed to coinductively) apply glue
rules at each step of an abstract derivation, but Section 5.2.1 updated the immediate con-
sequence to consider exactly one glue rule at each step. This section introduces two glue
rules: one to mix several glue predicates and one to iterate on a glue predicate. Once these
two rules are defined, we can⌜consider a finite number3of glue predicates (glue)i⌝and build
the glue (glue1 + . . . + gluen)

⋆—notations being as can be expected. This is equivalent to
considering a finite number of glue rules and applying them inductively.

We start by the sum glue. We assume two glue predicates glue1 and glue2, both respecting
Criterion 5.3. The sum glue glue1 + glue2 is defined as the set union of both glues:

(glue1 + glue2) (P,σ♯, r♯) ⇐⇒ glue1 (P,σ♯, r♯) ∨ glue2 (P,σ♯, r♯)

To use this glue, we have to prove it correct—that is, it respects Criterion 5.3—assuming
both initial glue predicates glue1 and glue2 are correct. We introduce the first hypothesis
of Criterion 5.3: there exists a set P (standing for “premises”), an abstract semantic con-
text σ♯, and an abstract result r♯ such that (glue1 + glue2) (P,σ♯, r♯). By definition of the
sum glue, we have either glue1 (P,σ♯, r♯) or glue2 (P,σ♯, r♯). We conclude by applying
the correctness of the corresponding initial glue.

We now define the iterating glue from a glue predicate glue respecting Criterion 5.3. The
predicate glue⋆ is defined as the smallest predicate respecting the following conditions.

∀P, (σ♯, r♯) ∈ P. glue⋆ (P,σ♯, r♯) (5.4)

∀P,P ′, σ♯, r♯. glue (P ′, σ♯, r♯) Ô⇒

(∀ (σ′ ♯, r′ ♯) ∈ P ′. glue⋆ (P,σ′ ♯, r′ ♯)) Ô⇒ glue⋆ (P,σ♯, r♯) (5.5)

This translates into Coq as an inductive definition, as shown in Program 5.2. Sets of pairs
are represented in Coq by predicates with two arguments. Intuitively Condition 5.5 states
that the predicate glue⋆ can run glue once, then iterate on its premises. The newly con-
structed premises can then all be merged into the set P using Condition 5.4. Figure 5.6
pictures this intuition. The definition of glue⋆ differs from this intuition in one major
aspect: it assumes that each set P1 to Pn is equal to P .

To enable each set of premises Pi to be equal to P , we need the predicate glue to ac-
cept weakenings on its premises, accepting more hypotheses. Given a glue predicate glue
respecting Criterion 5.3, we define the closure predicate gluec as follows.

gluec (P,σ♯, r♯) ⇐⇒ ∃P0 ⊆ P. glue (P0, σ
♯, r♯)

3 The sum glue only mixes two glue predicates, but it could easily be extended to an infinite number. We
only consider a finite number of glue predicates (which are really rule schemes) for readability purposes. The
only important matter is to apply⌜a finite amount of glue rules⌝between any two computational rules.
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We thus accept more sets P , as soon as they include the original set of premises P0. This
glue predicate clearly respects Criterion 5.3, as it restricts its application to ⌜cases where
more k correct derivations are given⌝. The glue predicate gluec can be understood as the
fact that ⌜if a rule is sound, so does any similar rule with additional premises⌝.

It is thus possible, given any number of correct glue predicates (glue)i, to assemble them
into a single glue predicate: by summing all them into a single predicate glue and taking
its closure gluec (or the converse: these two operations commute), then iterating it. We
have seen that these operations conserve the correctness of glue predicates. The resulting
predicate (gluec1 + . . . + gluecn)

⋆ enables to (finitely) apply each predicate gluei as many
times as wanted between any two computational rules. This property justifies the rule
notation of the glue. We now present the proof of soundness in this new setting.

5.3 Proof of Soundness
We update the soundness theorem (Theorem 4.1) to take into account the glue. In essence,
its statement does not change: abstract derivations capture every concrete derivations.
This is the soundness statement of Schmidt, as we have seen in Section 3.3.The translation
of this theorem in Coq is shown in Program 5.3, in Lines 7 to 11.

Theorem 5.1 (Soundness). Given the (local) soundness of each abstract rule and the cor-
rectness of the glue, if we have σ ∈ γ (σ♯) as well as concrete and abstract derivations of
respective conclusions σ, t ⇓ r and σ♯, t ⇓♯ r♯, then r ∈ γ (r♯).

We have sketched in Section 4.4.3 a proof of Theorem 4.1 in the case without glue. The
proof has been performed by induction over the concrete derivation of conclusion σ, t ⇓ r.
Induction in Coq is limited to ensure termination: the inductive hypothesis should only
be applied on strictly smaller derivations. This is unfortunately no longer the case here,
as the correctness of the glue rules is based on rewriting the concrete derivation. But as
we said in Section 5.2.2, glue rules preserve the depth of the rewritten derivations. The
decreasing argument of this induction is thus chosen to be the depth k of the concrete
derivation. Apart from this change, the proof follows the proof sketch of Section 4.4.3.

Program 5.3 presents the Coq proof of Theorem 5.1. Line 13 introduces two derivations:
the concrete derivation D, and the abstract derivation aD. The term G is a proof that σ ∈
γ (σ♯). The semantic context σ♯ is written asigma in Coq (and parts of the abstract world
are generally prefixed by the letter a). Line 14 starts the induction on the depth k of the
derivation. The gen tactic enables to generalise some variables on which the induction
should not depend. The inductive hypothesis follows.

Hypothesis 5.2. Given a number d, then for all term t, for all related ⌜concrete and abstract⌝
semantic context σ and σ♯, for all concrete and abstract results r and r♯, for all concrete
derivation of depth d with σ, t ⇓ r as a conclusion, and for all abstract derivation with
σ♯, t ⇓ r♯ as a conclusion, the concrete and abstract results r and r♯ are related.
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1 Hypothesis transfer_functions_sound : forall n,
2 propagates (acond n) (cond n) (arule n) (rule n).
3 Hypothesis acond_sound : forall n asigma sigma,
4 gst asigma sigma → cond n sigma → acond n asigma.
5 Hypothesis glue_is_correct : glue_correct glue.
6

7 Theorem soundness : forall t asigma ar,
8 aeval asem glue t asigma ar →
9 forall sigma r, gst asigma sigma →

10 eval sem t sigma r →
11 gres ar r.
12 Proof.
13 introv aD G D.
14 gen t asigma sigma r ar. induction (eval_depth D) as [|k].
15 math.
16 introv G I aD. destruct D as [E C A] eqn: ED. inverts aD as allBranches.
17 forwards~ aA: allBranches E.
18 apply* acond_sound.
19 clear E. inverts aA as Gl aA. forwards~: glue_is_correct Gl A I.
20 introv OK G0 C0 I0. forwards aA’: aA OK.
21 forwards TrCn: transfer_functions_sound n.
22 destruct A0 as
23 [ E ax sigma0 r0
24 | E t0 up sigma0 sigma1 r1 D0
25 | E t1 t2 up next sigma0 sigma1 sigma2 r1 r2 D1 E4 D2];
26 destruct aA’ as
27 [ aE aax asigma0 ar0
28 | aE at0 aup asigma0 asigma1 ar1 aD0
29 | aE at1 at2 aup anext asigma0 asigma1 asigma2 ar1 ar2 aD1 aE4 aD2];
30 inverts TrCn as TrC1 TrC2; rewrite aE in E; inverts E.
31 (** Axiom **)
32 apply* TrC1.
33 (** Format 1 Rule **)
34 applys~ IHk D0 aD0; [| math ]. apply* TrC1.
35 (** Format 2 Rule **)
36 applys~ IHk D2 aD2; [| math ].
37 apply* TrC2.
38 applys~ IHk D1 aD1; [| math ]. apply* TrC1.
39 Qed.

Program 5.3: Coq proof of Theorem 5.1
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The depth function eval_depth has been defined to be non-zero on a derivation (an axiom
application is considered to have the depth 1). This choice was made to avoid separating
the axiom case from the other two cases. As a consequence, the base step of the induction
is trivial, treated by the math tactic Line 15. Line 16 destructs the concrete and abstract
derivations: the concrete derivation reveals a rule name r such that lr = t (whose proof
certificate is named E in Coq), that its side-condition applies (named C), as well as the
derivation continuation A. The abstract derivation produces aA, a universally quantified
derivation for all rules which apply. We instantiate it Line 17 to Rule r. The proof then di-
vides in two goals: the abstract side-condition should apply (as the concrete does), and the
continuation of the derivation is sound. The first goal is directly solved by Criterion 4.2.

Line 19 uses Criterion 5.3 to get a new concrete derivation. This new derivation is not a
subterm of the initial concrete derivation, but it has at most the same depth: Coq accepts
the use of the induction hypothesis 5.2 on this new concrete derivation. Lines 22 to 30
destructs the concrete and the abstract derivation; each is destructed into three goals (cor-
responding to⌜the three kinds of rules in pretty-big-step, shown in Figure 4.5⌝).The formats
of the concrete and abstract rule applications should correspond: Line 30 removes the con-
flicting combinations to leave three goals in total out of the nine generated.

The three cases are then straightforward: the local soundness assures local propagation,
and the premises are dealt by the inductive hypothesis. For instance, Line 34 solves the
requirements for format 1 rules. We apply here the inductive hypothesis IHk with the
concrete and abstract subderivations D0 and aD0. These subderivations come from the
destruction of Lines 22 to 30. Coq leaves two goals.Thefirst goal is a proof that the depth of
the new concrete derivation is indeed smaller than the current. This goal is automatically
handled by the math tactic. The second goal is a proof that the premise of the inductive
hypothesis holds: we have to show that up (σ) ∈ γ (up♯ (σ♯)). This is exactly given by
⌜the local soundness TrCn of the transfer function constructed Line 21⌝. Overall, the Coq
proof is very similar to the proof presented in Section 4.4.3.

5.4 Conclusion
In this chapter, we have extended the formalism of Chapter 4 by introducing structural
rules, or glue rules. We have proven in Coq that the main theorem of the formalism—
Theorem 5.1—still holds if Criterion 5.3 applies on the glue. These rules can be added to
express new ways of reasoning, in particular non-local ones. The next chapter evaluates
this formalism by introducing a rule from separation logic: the frame rule. This rule is
indeed based on different⌜assumptions and ways of reasoning⌝ than abstract interpretation,
which tends to make ⌜mixing separation logic and abstract interpretation⌝ difficult.
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6
Separation Logic and JavaScript

We recognize the fact that if different robots are subject to narrow
definitions of one sort or another, there can only be measureless
destruction.

Daneel Olivaw, by Isaac Asimov [Asi85]

In the previous chapters, we have presented methods to deal with JavaScript’s complex-
ity. Chapter 2 presented how to build a trustable concrete semantics of JavaScript, and
Chapter 4 proposed to use this concrete semantics to guide the construction of sound-by-
construction ⌜abstract semantics and analysers⌝. The proposed abstract semantics is para-
metrised by its abstract domains. Up to now, we have only proposed very simple abstract
domains, such as those of Section 4.1. This chapter aims at building abstract domains for
the memory model of JavaScript, as presented in Section 1.2.3. The results presented in
this chapter are not yet published at the time of this writing.

Separation logic [IO01; ORY01; Rey02; Rey08] aims at abstracting the heap. It has proven
its abilities to provide strong and precise guarantees for JavaScript [GMS12]. Separation
logic comes with ⌜a special structural rule called the frame rule, similar to Rule frame-
env of Section 5.2.2⌝. This is an opportunity to evaluate the formalism of Chapter 5. We
use a simple variant of separation logic based on shape analysis [SRW98]. This variant
aims at presenting different aspects of separation logic whilst being generic enough to be
used in the analysis of interesting programs. This chapter is accompanied by a Coq form-
alisation [Bod16], whose structure is shown in Figure 6.1. It is divided into four steps:
the pretty-big-step formalism (corresponding to Chapters 4 and 5), a concrete semantics,
the definition of abstract domains, and ⌜the definition and local soundness proof⌝ of the
abstract semantics. Each of these parts only depends on the previous parts. In particular,
the formalism of Chapters 4 and 5 has not been changed to account for separation lo-
gic. This formalisation proved to be more ambitious than expected, and is unfortunately
not yet finished. We do not consider this as a major issue: the goal of this chapter is to
provide directions on how to apply the formalism of Chapters 4 and 5 in a more general
setting. Separation logic is known to difficultly mix with abstract interpretation, and our
formalisation provides a surprisingly deep insight on how to mix these two formalisms.
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Formalisation of
Chapters 4 and 5
of this dissertation

PrettyBigStep.v

Concrete
semantics

ConcreteOWhile.v

Abstract
domains and their
concretisations

DefinitionsSep.v
FormulaeSep.v
MembranesSep.v
FrameSep.v

ConcretisationSep.v

Abstract
semantics

FormulaExtensionsSep.v
ASemSep.v

Figure 6.1: General structure of the Coq formalisation

Section 6.1 starts by extending the language of Chapter 4 to include ⌜a heap inspired from
JavaScript’s⌝. Separation logic is introduced in Section 6.2. Section 6.3 presents how sep-
aration logic can be used in the context of⌜the framework presented Chapter 4⌝. The frame
rule is put aside and treated in details in Section 6.4. Section 6.5 then extends this basic
framework to include approximations.

We now introduce a notation used thorough this chapter. Given two setsA,B, and a func-
tion f ∶ A→ P (B), we define the function ḟ ∶ P (A)→ P (A) as ḟ (C) = ⋃

c∈C
f (c).

6.1 Language Extension: Adding a Heap

The heap is a critical part of JavaScript’s semantics. ⌜The language which we consider
is this chapter⌝ is an extension of the language defined in Section 4.7.1, a simple imper-
ative language with functions as first class citizens. We extend its syntax and semantics
to manipulate JavaScript-like dynamic objects. Objects o are represented as finite maps
from fields f ∈ Field to values. The set Field is supposed to be infinite. We use a Java-
Script-like notation for objects: the empty object is written {}, and an object mapping f

to v1 and g to v2 is written {f ∶ v1, g ∶ v2}. Values can be either basic values b♯ in Z, clos-
ures (ℓc, λx.s), or locations ℓ ∈ L. New objects are allocated with the alloc expression, and
the values of fields are obtained with the expression e.f. The language includes constructs
for writing to a field (e1.f ∶= e2), for deleting a field from an object (delete e.f), and for
testing the presence of a field (f in e). As usual, each of these new constructs comes with
their extended terms. The syntax of our language is presented in Figure 6.2.

The program state is updated to carry an object heap H in addition to the environment
heap He and the ⌜global and context⌝ environment locations ℓe and ℓc. Object heaps are
finite maps from object locations ℓ ∈ L to objects o ∶ Field ⇀fin Val . We do not define
any nil or null additional value: in the examples of this chapter, linked lists will be ended
by the 0 value. Expression results are either errors or ⌜a triple of an object heap H , an
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e ∶∶= c ∈ Z
∣ x ∈ Var
∣ e1 + e2

∣ λx.s
∣ e1 (e2)
∣ alloc
∣ e.f
∣ f in e

ee ∶∶= ⋅ +1 e
∣ ⋅ +2 ⋅
∣ @1 (e2)
∣ @2

∣ @3

∣ .f
∣ f in1⋅

s ∈ stat ∶∶= skip
∣ s1; s2
∣ x ∶= e
∣ if (e > 0) s1 s2
∣ while (e > 0) s
∣ return e

∣ e1.f ∶= e2
∣ delete e.f

se ∶∶= x ∶=1 ⋅
∣ ⋅ ;1 s2
∣ if 1 s1 s2
∣ while1 (e > 0) s
∣ while2 (e > 0) s
∣ return1⋅
∣ .f ∶=1 e2
∣ .f ∶=2 ⋅
∣ delete1 .f

Figure 6.2: Updating the language of Figure 4.14

environment heap He, an environment location ℓe, and a value⌝. The semantic is defined
such that⌜each location present in an environment or returned by a value⌝is a valid location,
that is, the heap associates each referenced location to an object.

The additional concrete rules are presented in Figure 6.3. The full semantics is available
in the companion website [Bod16]. ⌜Rules red-field-1(f), red-in-1-true(f), and red-
in-1-false(f)⌝ check whether an object is present in the heap H at a given location ℓ,
and whether this object possesses a field f—we write this ℓ.f ∈ dom2 (H). We allow
to split heaps at the level of fields, ⌜writing H1

f∪ H2 (pronounced “field-union”) when
dom2 (H1)∩dom2 (H2) = ∅⌝for the heapmapping each location ℓ ∈ dom (H1)∪dom (H2)
to the object o1 ⊎ o2 (see the notations for maps at the end of Section 3.2.1) in which the
objects o1 and o2 are respectively either H1 [ℓ] and H2 [ℓ], or the empty object when
undefined. Note how Rules red-field-asn-2(f) and red-delete-1(f) test whether ℓ is
in the current heap. ⌜The invariant that referred locations are associated to an object⌝ is
not ensured by types, and ⌜rules whose transfer functions need H [ℓ] to be defined⌝ check
whether ℓ is indeed present in the heap H . If it is not the case (the pointer being invalid),
the construction of a concrete derivation gets stuck.

This language—which we call O’While—is simple compared to JavaScript, with only
41 semantic rules.There are no special fields in objects—in particular no implicit prototype
(see Section 1.2.3)—, nor special values with implicit type conversions (see Section 1.2.4).
The memory model of JavaScript is close, though. In particular, we believe that ⌜every
analyses targeting this language (and based on the techniques presented in Chapter 4)⌝
can be translated to an analysis targetting JavaScript. Indeed, the rules of the O’While
language have been chosen to expose difficult aspects of the rules of JSCert. Most of
the rules of JSCert are relatively simple: the difficulty associated with JSCert is its size,
no its inherent complexity. ⌜Building an abstract version of each rule of JSCert⌝ will be
significantly long, but we do not expect any major difficulty. Alternatively, the O’While
language has also been designed to be very close to the pseudo-JavaScript of JSExplain
(see Section 2.8). As a consequence, it is (at least in theory) possible to analyse a Java-
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red-new-obj
ℓ = fresh (H)

H,He, ℓe, ℓc,alloc ⇓H [ℓ← {}] ,He, ℓe, ℓ

red-field(e, f)
H,He, ℓe, ℓc, e ⇓ r r, .f ⇓ r′

H,He, ℓe, ℓc, e.f ⇓ r′

red-field-1(f)

(H,He, ℓe, ℓ) , .f ⇓H,He, ℓe,H [ℓ] [f]
ℓ.f ∈ dom2 (H)

red-in(f, e)
H,He, ℓe, ℓc, e ⇓ r r, f in1⋅ ⇓ r′

H,He, ℓe, ℓc, f in e ⇓ r′

red-in-1-true(f)

(H,He, ℓe, ℓ) , f in1⋅ ⇓H,He, ℓe,1
ℓ.f ∈ dom2 (H)

red-in-1-false(f)

(H,He, ℓe, ℓ) , f in1⋅ ⇓H,He, ℓe,0
ℓ.f ∉ dom2 (H)

red-field-asn(e1, f, e2)
H,He, ℓe, ℓc, e1 ⇓ r ℓc, r, .f ∶=1 e2 ⇓ r′

H,He, ℓe, ℓc, e1.f ∶= e2 ⇓ r′

red-field-asn-1(f, e2)
H,He, ℓe, ℓc, e2 ⇓ r ℓc, ℓ, r, .f ∶=2 ⋅ ⇓ r′

ℓc, (H,He, ℓe, ℓ) , .f ∶=1 e2 ⇓ r′

red-field-asn-2(f)
o =H [ℓ] H ′ =H [ℓ← o [f← v]]

ℓc, ℓ, (H,He, ℓe, v) , .f ∶=2 ⋅ ⇓H ′,He, ℓe, ℓc
ℓ ∈ dom (H)

red-delete(e, f)
H,He, ℓe, ℓc, e ⇓ r ℓc, r,delete1 .f ⇓ r′

H,He, ℓe, ℓc,delete e.f ⇓ r′

red-delete-1(f)
o =H [ℓ] H ′ =H [ℓ← o ∖ f]

ℓc, (H,He, ℓe, ℓ) ,delete1 .f ⇓H ′,He, ℓe, ℓc
ℓ ∈ dom (H)

Figure 6.3: Rules added to manipulate the heap

Script program by analysing⌜the JSExplain interpreter on this JavaScript program⌝. This
is similar to approaches using λJS as an intermediate language to analyse JavaScript
programs [VM11b]. Because of the several layers of abstraction, results might not be as
precise as a direct approach, but domains can be adapted to this end. This language is
thus a good target towards a certified analysis of the full JavaScript language. We now
consider how separation logic works in this setting.

6.2 About Separation Logic

Separation logic [IO01; ORY01; Rey02; Rey08] aims at precisely abstracting the heap. It
was original designed to model the sharing of resources in a parallel setting, making
sure that no two threads can write in the same memory cell at the same time. Separa-
tion logic lead to the construction of successful tools able to analyse complex heap struc-
tures [BCO05; Cal+09]. Fortunately for us, there is no threads in JavaScript (or at least
in ECMAScript 6). We are here using separation logic as a powerful tool to ⌜abstract the
heap and perform modular analyses⌝.
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To use separation logic, we need the concrete domain to be equipped with a structure of
separation algebra [DHA09], defined by the four criteria below. In our case, this struc-
ture is given by f∪. This operator is partial (it only applies when the domains dom2 of its
arguments are disjoint), cancellative (see Criterion 6.1 below), and forms a commutative
monoid with the empty heap ϵ as neutral element (see Criteria 6.2 to 6.4).

∀H1,H2,H. H1
f∪H =H2

f∪H Ô⇒ H1 =H2 (6.1)

∀H. H f∪ ϵ = ϵ f∪H =H (6.2)

∀H1,H2,H3. (H1
f∪H2) f∪H3 =H1

f∪ (H2
f∪H3) (6.3)

∀H1,H2. H1
f∪H2 =H2

f∪H1 (6.4)

Separation logic abstracts heaps by formulae. Examples of such formulae include emp,
and ∃ℓ. ℓ

f[Ð→ v. The former represents an empty concrete heap, and the latter a heap
with exactly one defined location ℓ, this location being associated to exactly one field f

with value v. The abstract equivalent of f∪ is written ⋆ (pronounced “star” or “separating
conjunction”). Given two formulae ϕ1 and ϕ2, the formula ϕ1 ⋆ ϕ2 represents ⌜a heap H

which can be disjointly separated into two subheaps H1 and H2, each being represented
by the corresponding subformula ϕi⌝. In particular the formula ℓ

f[Ð→ v1 ⋆ ℓ
f[Ð→ v2 does

not represent any concrete heap—even when v1 = v2—as both sides of the star have non-
disjoint domains. This disjointness of the star can be used to infer that some locations are
different—for instance the formula ℓ1

f[Ð→ v1 ⋆ ℓ2
f[Ð→ v2 implies that ℓ1 ≠ ℓ2.

The grammar of formulae in a simple separation logic is shown below.

ϕ ∶∶= ϕ1 ⋆ ϕ2 ∣ ∃ℓ. ϕ ∣ emp ∣ ℓ
f[Ð→ v

Formulae are related to concrete heaps by the following concretisation function γ.

γ (ϕ1 ⋆ ϕ2) = {H1
f∪H2 ∣H1 ∈ γ (ϕ1) ,H2 ∈ γ (ϕ1)}

γ (∃ℓ. ϕ) = ⋃
ℓ′∈L

γ (ϕ [ℓ′/ℓ])

γ (emp) = {ϵ}

γ (ℓ
f[Ð→ v) = {{ℓ↦ {f ∶ v}}}

The concretisation of formula is invariant by ⌜commutativity and associativity⌝ of the sep-
arating conjunction ⋆, as well as the neutrality of emp. Separation formulae are thus con-
sidered modulo these properties by the equivalence relation ⋆=. Separation logic is based
on Hoare logic [Hoa69; Flo67]. As such, separation logic statements consist of semantic
triples of the form ϕ, t ⇓ ϕ′, specifying the pre-condition ϕ and post-condition ϕ′ on the
state of the heap during the evaluation of the term t.
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To be able to analyse programs, various approximations are usually added to the grammar
above. These approximations can be simple and general [BCI11] or specific to ⌜the kind of
structures used by the analysed programs⌝ [GMS12]. A usual approximation is the list
predicate. Consider for instance the following augmented grammar of formulae.

ϕ ∶∶= . . . ∣ ϕ1 ∨ ϕ2 ∣ list (ℓ)

We define the concretisation of these new formulae as follows. The concretisation of
list (ℓ) is the set of all ⌜heaps only containing a linked list starting from the location ℓ⌝.

γ (ϕ1 ∨ ϕ2) = γ (ϕ1) ∪ γ (ϕ2)

γ (list (ℓ)) = {{ℓ↦ {next ∶ ℓ1} , ℓ1 ↦ {next ∶ ℓ2} , . . . , ℓn ↦ {next ∶ 0}} ∣ ℓ1, . . . , ℓn ∈ L}

The ∨-construct is simple in its definition, but is difficult to manipulate. In particular, a for-
mula such as emp∨ ℓ

f[Ð→ v can not be associated with any notion of domains, as the field f

of location ℓmight or might not be specified by this formula. The concretisation of the list

predicate is defined such that list (ℓ) is equivalent to ℓ
next[ÐÐÐ→ 0 ∨ ∃ℓ′. ℓ

next[ÐÐÐ→ ℓ′ ⋆ list (ℓ′).
More general structure can be defined. For instance, Brotherston and Gorogiannis [BG14]
proposed a method to handle arbitrary inductively defined constructs in separation logic.
These additional constructs can make separation logic difficult to manipulate [BCO04], in
particular about when approximation should occur.⌜The fragment of the logic used in ana-
lysers [BCO05; CDV09]⌝ is usually relatively simple—typically limited to lists or trees.

⌜What makes the modularity of separation logic⌝ is the frame rule, shown below. It states
that when analysing the actions of a term on the heap, we can focus on some parts of
the current formula. In other words, if enough information is present in the formula ϕ to
build a derivation for a term t, then adding a context ϕc will not change the actions of t.

frame
ϕ, t ⇓ ϕ′

ϕ ⋆ ϕc, t ⇓ ϕ′ ⋆ ϕc

We have already encountered the similar rule frame-env in Section 5.2.2. The frame rule
enables abstract rules to only focus on local actions [COY07]. For instance, we can specify
the abstract version of Rule red-skip to only apply on the emp formula. From this simple
abstract rule—which is simple to prove sound—, we can build a derivation from any other
formula using the frame rule, as shown below.

emp, skip ⇓ ϕ′
red-skip

emp ⋆ ϕ, skip ⇓ emp ⋆ ϕ
frame
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The frame rule is usually annotated with a side-condition about the variables modified
during the execution of the term t. Formulae can indeed serve to also abstract the envir-
onment, which is usually considered to be of a different kind of object than the heap. Such
formalisations differentiate spatial formulae, which are about the heap, and pure formulae,
which states properties about the environment. In this work, we chose to consider vari-
ables as spatial resources [PBC06], which enables us to remove this additional condition.
Section 6.3.2 shows how environments are abstracted in this setting.

This chapter presents how separation logic can be used in our framework to analyse pro-
grams of the O’While language. We start by defining some abstract domains.

6.3 Abstract Domains

Separation logic manipulates statements of the form ϕ, t ⇓ ϕ′. These Hoare triples seem
to fit the basic restrictions of our pretty-big-step formalism.This section presents how the
different semantic elements of the concrete domains can be translated into formulae.

6.3.1 Abstract Formulae

We introduced a new kind of concrete value in Section 6.1: locations ℓ ∈ L. To abstract
them, we could use existentials as in the previous section, but they can be difficult to use.
We restrict formulae such that existential quantifiers stand outmost of formulae: formulae
are of the form ∃ℓ1, . . . , ℓn. ϕ, where ϕ does not contain any existential quantifier. Even
in this form, some properties can be difficult to catch. Consider for instance the formula
∃ℓ1, ℓ2. ℓ1

f[Ð→ ℓ2. There are two kinds of heap in its concretisation: heaps with a location ℓ1

pointing through the field f to another location ℓ2 (to which is not associated any object),
and heaps with a location ℓ pointing to itself. It can be difficult to know which operations
are safe on this formula. To simplify the definition and proof of transfer functions, we
further restrict formulae to the form below, in which ϕ is an existential-free formula.

∃ℓ1, . . . , ℓn. (☀
i≠j

ℓi ≠ ℓj) ⋆ ϕ

This form makes explicit that the locations ℓi used in the formula are all different. For the
sake of readability, we use instead an alternative but equivalent definition. We consider
abstract locations l ∈ L—note the typographical differences with concrete locations ℓ ∈ L.
Formulae are defined by the grammar below (without any constraints): abstract locations
are implicitly considered existentially quantified outmost of their formula.

ϕ ∶∶= ϕ1 ⋆ ϕ2 ∣ emp ∣ l
f[Ð→ v

6.3 Abstract Domains 153



We define the concretisation of these formulae in two steps. We first chose⌜which concrete
location ℓ each abstract location l represents⌝, second the entailment predicate ⊧ proceeds
inductively on the structure of the formula. The choice of the concrete value of abstract
locations is given by a valuation ρ ∶ L ⇀ L. This valuation is partial, only defined on the
abstract locations used by the formula—if not, the entailment predicate will fail to produce
a concretisation.The rules of the entailment are shown below.The concretisation function
is defined as γ (ϕ) = {(E,H) ∣ ∃ρ. (E,H) ⊧ρ ϕ}.

(ϵ, ϵ) ⊧ρ emp (ϵ,{ρ (l)↦ {f ∶ v}}) ⊧ρ l
f[Ð→ v

(E1,H1) ⊧ρ ϕ1 (E2,H2) ⊧ρ ϕ2

(E1 ⊎E2,H1
f∪H2) ⊧ρ ϕ1 ⋆ ϕ2

Section 6.3.4 provides a more precise abstraction of formulae based on abstract values. We
first consider how to abstract values, environments, and objects.

6.3.2 Abstract Values and Environments

Instead of tracking precise values as shown above, we can introduce abstract domains to
the formalism of separation logic. We reuse the abstract values defined in Section 4.7.1,
and add abstract locations to the poset of abstract values, as shown below. We update
the definition of Store♯ to make it more precise: each store value u♯ is represented as a
pair of a value v♯ and ⌜a flag indicating whether it is defined ◻ or may be undefined ⊠⌝.
The store value (v♯,◻) represents a defined store value whose value is abstracted by v♯,
whilst (v♯,⊠) represents a potentially undefined store value ⌜whose value is abstracted
by v♯ if defined⌝. This is exactly the product poset (Definition 3.2) betweenVal ♯ and {◻,⊠},
where ◻ ⊑ ⊠. Indeed, ⊠ does not mean that the property is undefined, but that the con-
sidered field may be undefined, and thus describes more behaviours than ◻.

v♯ ∈ Val ♯ = Sign♯ ×P (L) × C♯

u♯ ∈ Store♯ = Val ♯ × {◻,⊠}

clo ∈ C♯ = P (Var × Stat ×L♯e)

E♯ ∈ Env ♯ = Var → Store♯

As indicated in Section 3.5.1, we use coercions to shorten notations. Each basic value b♯ ∈
Sign is coerced to the abstract value (b♯,∅,∅) ∈ Val ♯, each abstract location l ∈ L to
(�,{l} ,∅) ∈ Val ♯, and each closure (η, λx.s) to (�,∅,{(η, λx.s)}) ∈ Val ♯. Similarly,
each abstract value v♯ ∈ Val ♯ are coerced to the store value (v♯,◻) ∈ Store♯, and ⊠ is
coerced to (�,⊠) ∈ Store♯. As an example, the store value u♯ = + ⊔ l1 ⊔ l2 ⊔ ⊠ is equal to
((+,{l1, l2} ,∅) ,⊠)} ∈ Store♯ and represents a potentially undefined store value whose
value may be a positive number, or the location represented by either l1 or l2.
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Abstract closures carry environment locations η ∈ L♯e to represent environment locations,
as in Section 4.7.1. Closures could have been abstracted to carry environments, but Coq im-
poses some restrictions on⌜the way terms should be defined⌝ to prevent terms from looping.
This restriction makes such a direct approach difficult: we would have to enforce the num-
ber of defined variable to decrease along the environment structure, which is possible but
difficult to enforce [AR99]. We use an indirection through environments locations: each
abstract environment is identified by an environment identifier η ∈ L♯e. Environments
are specified in formulae using predicates such as η ↦ {x↦ v♯}. The closure (η, λx.s)
points to the environment referred by η, in which the statement s will be executed. The
global environment and the context environment (see Section 4.7.1) are represented by
two abstract environment locations η carried by the formula.

As in Definition 3.2 of the product poset, the concretisation of values and store values are
the union of the concretisations of their components. Because of abstract locations, The
concretisation of a value depends on a valuation ρL ∶ L ⇀ P (L). The codomain of this
valuation is the powerset of concrete locations, but we enforce ρL (l) to be a singleton for
all location l. This formalisation choice simplifies notations, in particular in Section 6.5
in which this constraint is weakened. Similarly, because of closures, we need a valu-
ation ρE ∶ L♯e → P (Le). We thus consider a valuation ρ ∶ (L⇀ P (L)) ⊎ (L♯e → P (Le)).
The concretisation γρ of the abstract value v♯ = (b♯,Λ, clo) is defined below. We recall
that ρ̇ (Λ) = ⋃

l∈Λ
ρ (l), following the notation defined in Section 6.1.

γρ ((b♯,Λ, clo)) = γ (b♯) ⊎ ρ̇ (Λ) ⊎ {(ℓc, λx.s) ∣ ℓc ∈ ρ (η) , (η, λx.s) ∈ clo}

The concretisations of store values are subset of Val ⊎ {undef }. The special value undef
denotes that the considered store value may be undefined. This concretisation is defined
as the concretisation of the product poset (see Section 3.5.1), where γρ (⊠) = {undef }
and γρ (◻) = ∅. The concretisation of abstract environments follows. Note how concrete
environments are finite maps to Val (see Definition 3.1), but abstract environments are
complete maps to ⌜Store♯, which represents both Val and the special value undef⌝.

E ∈ γρ (E♯) ⇐⇒ ∀x.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ∈ dom (E) Ô⇒ E [x] ∈ γρ (E♯ [x])

x /∈ dom (E) Ô⇒ undef ∈ γρ (E♯ [x])

As said in the previous section, our formalisation relies on the hypothesis that in a given
formula two locations with different names represent different concrete locations. The
traditional separation logic formula ∃ℓ2. ℓ1 ↦ {f ∶ ℓ2} expressed that the field f of the
location ℓ1 points to either ℓ1 or to another location. In our formalism, we would write
such a formula in the form l1 ↦ {f ∶ l1 ⊔ l2} where l2 is another location to which we
suspect the field f to point—the abstract value l1 ⊔ l2 being equal to (�,{l1, l2} ,∅). The
uncertainty has been shifted from the location level to the value level: it is now clear that
the two locations l1 and l2 are distinct, but we allow values to be imprecise.
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6.3.3 Abstract Objects

As for JavaScript objects, the objects of ⌜the O’While language of Section 6.1⌝ are extens-
ible. In particular, there are cases in which it is important to precisely know whether a
given field f is present in an object—typically in the presence of the f in e operator. It is
thus natural to use abstract store values u♯ ∈ Store♯ to account for the values of object
fields, using the construct l

f[Ð→ u♯. However, this construct only accounts for one field. To
precisely abstract a newly allocated object—whose fields are all undefined—the size of a
formula would have to be infinite. We are thus in the need of an abstraction of objects.

Conceptually, abstract objects o♯ are partial maps from fields to abstract store values
Field ⇀ Store♯. The domain of an object is the specified domain of this object. For in-
stance, ⌜a partial map o♯ undefined on all fields except f, which is mapped to u♯⌝, does not
specify the field g—in particular, the frame rule can add a specified field g in such an object.
On the contrary, ⌜the map mapping f to u♯ and every other fields to ⊠⌝ specifies that the
field g of this object is undefined: the frame rule can not add this field.

Partial maps from fields to store valuesField ⇀ Store♯ are too precise, but follow the intu-
ition behind the abstraction of objects. We instead consider two kinds of abstract objects:
finite and cofinite objects. Finite objects are objects specified on a finite domain. As for con-
crete objects, we use a JavaScript-like notation: an abstract object mapping f to u♯1 and g

to u♯2 is written {f ∶ u♯1, g ∶ u♯2}. Cofinite objects represent partial functions defined for all
but a finite set F of fields, that is, their domain is a cofinite set in Field . In the simplest
case, a cofinite object assigns one abstract value u♯ for all fields F specified by the object.
We write such an object {F ∶ u♯}. We write explicitly the set of fields F ⊆ Field on which
the object is not specified. More generally, cofinite objects have the form below, where
{f1, . . . , fn} ⊆ F . This last constraint helps preventing conflicts between field values—it
could be removed by stating that the left-most field declaration have priority.

{f1 ∶ u♯1, . . . , fn ∶ u♯n, F ∶ u♯}

In this form, we list specific abstract values for a finite set of fields. For example, the ab-
stract object {f ∶ ⊠, g ∶ u♯, {f, g} ∶ ⊺} describes the set of objects whose field f is absent,
field g can be abstracted by u♯, and any other fields can be anything (including undefined).
As a convenient shorthand, fully specified objects arewritten {f1 ∶ u♯1, . . . , fn ∶ u♯n, _ ∶ u♯},
the symbol _ standing for {f1, . . . , fn}. The frame rule can not complete a fully specified
object. The abstract object {_ ∶ ⊠} thus describes the fully specified empty object, for in-
stance returned by the instruction alloc.

We write spec (o♯) for the set of fields which the abstract object o♯ specifies.

spec ({f1 ∶ u♯1, . . . , fn ∶ u♯n}) = {f1, . . . , fn}

spec ({f1 ∶ u♯1, . . . , fn ∶ u♯n, F ∶ u♯}) = {f1, . . . , fn} ⊎ (Field ∖ F )
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We write o♯ [f] for f ∈ spec (o♯) the abstract value associated with f in the abstract ob-
ject o♯, and o♯ [f← u♯] an object similar to o♯ expect that f is mapped to u♯ ∈ Store♯.

We extend the partial order to abstract objects as the point-wise order on the underlying
partial functions, with the added constraint that the two objects must specify the same
fields. There is thus no abstract object greater than any other abstract object. If we restrict
ourself to a given specification domain F , though, the restriction of the object poset forms
a complete lattice whose greatest element is the object mapping every field f ∈ F to ⊺.

o♯1 ⊑ o♯2 ⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

spec (o♯1) = spec (o♯2)

∀f ∈ spec (o♯1) . o♯1 [f] ⊑ o♯2 [f]

The concretisation of objects is defined similarly to the concretisation of environments,
except that abstract objects are partial whilst abstract environments are total. In particular,
this concretisation is meant to be expandable, as expressed by Proposition 6.1 below.

o ∈ γρ (o♯) ⇐⇒ ∀f.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f ∈ dom (o) Ô⇒ f ∈ spec (o♯) ∧ o [f] ∈ γρ (o♯ [f])

f /∈ dom (o) Ô⇒ f ∈ spec (o♯) ∨ undef ∈ γρ (o♯ [f])

Proposition 6.1 states that the concretisation of abstract objects is compatible with their
domain. It will be used to cut objects in formulae, by stating that a formula of the form
l ↦ o♯1 ⊎ o♯2 is equivalent to l ↦ o♯1 ⋆ l ↦ o♯2, the two objects specifying different fields.

Proposition 6.1. The concretisation of abstract objects is such that for all o1 ∈ γρ (o♯1)
and o2 ∈ γρ (o♯2) such that spec (o♯1) ∩ spec (o♯2) = ∅, we have o1 ⊎ o2 ∈ γρ (o♯1 ⊎ o♯2).

6.3.4 Abstract State Formulae

Now that⌜the abstractions of values, environments, and objects⌝have been defined, we can
formally define the grammar of formulae as below.

ϕ ∶∶= emp ∣ ϕ1 ⋆ ϕ2 ∣ η ↦ E♯ ∣ l ↦ o♯

o♯ ∶∶= {f1 ∶ u♯1, . . . , fn ∶ u♯n} ∣ {f1 ∶ u♯1, . . . , fn ∶ u♯n, F ∶ u♯}

To further simplify definitions, wewrite p for pointers (l or η), andœ♯ for pointees (o♯ orE♯).
We write p↦ œ♯ ∈ ϕ if p ↦ œ♯ occurs in ϕ. The set P (ϕ) is defined as {p ∣ p↦ œ♯ ∈ ϕ},
and the set Œ (ϕ) is defined as {œ♯ ∣ p↦ œ♯ ∈ ϕ}.

We define an equivalence relation ⋆= on formulae as the smallest relation such that ⋆ is
associative, commutative, has emp as neutral element, and respects object splitting—that
is, if spec (o♯1)∩spec (o♯2) = ∅, then l ↦ o♯1⋆l ↦ o♯2

⋆= l ↦ o♯1⊎o♯2. Environments are always
fully specified and can not be split: for any environmentE♯, we define spec (E♯) = Var .
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(ϵ,∅, ϵ) ⊧ρ emp

(He,1,D1,H1) ⊧ρ ϕ1 (He,2,D2,H2) ⊧ρ ϕ2

(He,1 ⊎He,2,D1 ⊎D2,H1 ⊎H2) ⊧ρ ϕ1 ⋆ ϕ2

ρ (l) = {ℓ} o ∈ γρ (o♯)
(ϵ,{ℓ} × spec (o♯) , ℓ↦ o) ⊧ρ l ↦ o♯

ℓe ∈ ρ (η) E ∈ γρ (E♯)
({ℓe ↦ E} ,∅, ϵ) ⊧ρ η ↦ E♯

Figure 6.4: Definition of the entailment predicate ⊧ρ

The concretisation of formulae depends on the entailment defined in Figure 6.4. The en-
tailment ⊧ρ states when a concrete state (He,D,H) is abstracted by a formula ϕ. To
account for the partiality of objects (see previous section), the entailment uses a specifica-
tion domain D ⊆ L×Field . For instance, the specification domain of l ↦ {f ∶ ⊠} is {ℓ, f}
when ρ (l) = {ℓ}: any pair of location and field inD∖dom2 (H) is specified but undefined.
This enforces the formula l ↦ {f ∶ ⊠}⋆l ↦ {f ∶ ⊠} to have an empty concretisation, as the
two definition domains of the concretisations of the two subformulae intersect. The spe-
cification domain follows the invariant dom2 (H) ⊆D. As for values, environments, and
objects, the entailment is parametrised by a valuation ρ ∶ (L⇀ P (L)) ⊎ (L♯e ⇀ P (Le)).
The concretisation of formulae is then defined as below.

γ (ϕ) = {(He,H) ∣ ∃ρ,D. (He,D,H) ⊧ρ ϕ}

The entailment has been defined to be compatible with the ⋆= relation.

Proposition 6.2. For all two formulae ϕ1 and ϕ2 such that ϕ1
⋆= ϕ2, we have the equivalence

(He,D,H) ⊧ρ ϕ1 ⇐⇒ (He,D,H) ⊧ρ ϕ2. In particular, we have γ (ϕ1) = γ (ϕ2).

The frame rule enables formulae to be extended. But there are some properties which we
want to check before extending formulae. In particular, we have seen that the formula
l ↦ {f ∶ ⊠} ⋆ l ↦ {f ∶ ⊠} has an empty concretisation because of conflicting domains.
Formula domains are subsets of L × Field ⊎L♯e ×Var . The interface itf (ϕ) ∈ L ⊎L♯e of a
formula ϕ is the set of abstract locations l and environment locations η appearing in ϕ.

Definition 6.1. The domain and interface of formulae are defined as follows.

dom (ϕ1 ⋆ ϕ2) = dom (ϕ1) ∪ dom (ϕ2) dom (emp) = ∅ dom (p↦ œ♯) = {p} × spec (œ♯)

itf (ϕ1 ⋆ ϕ2) = itf (ϕ1) ∪ itf (ϕ2) itf (emp) = ∅ itf (p↦ œ♯) = {p} ∪ itf (œ♯)

The interface itf ∈ L ⊎ L♯e of ⌜an object o♯, an abstract environment E♯, an abstract
value v♯ = (b♯,Λ, clo), and an abstract store value u♯ = (v♯, d)⌝ (with d ∈ {◻,⊠}) is the set
of abstract locations l and environment identifiers η appearing in them.
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Definition 6.2. ⌜The interface of abstract objects, abstract environments, abstract values,
and abstract store values⌝ are defined as follows.

itf (o♯) = ⋃
f∈spec(o♯)

itf (o♯ [f]) itf (E♯) = ⋃
x∈Var

itf (E♯ [x])

itf (b♯,Λ, clo) = Λ ⊎ {η ∣ ∃x, s. (η, λx.s) ∈ clo} itf ((v♯, d)) = itf (v♯)

We have defined formulae precisely modelling the heap and the environments. But states
in an abstract derivation may carry other kinds of values. The next section presents how
formulae can be extended to take these values into account.

6.3.5 Extended Formulae

Thepretty-big-step format introduces intermediary semantic contextsσ (see Section 2.1.1).
For instance, the intermediary term stat_while_1 L e t rv of Section 2.5.2.1 carries
a value rv. This is especially visible in the dependent version of pretty-big-step of Sec-
tion 4.5, in which the intermediary term ⋅ +1 e2 expects a semantic context in Env ×Oute

(see Figure 4.11a). These extended semantic contexts are abstracted by extended formu-
lae, which are pairs of a formula ϕ and ⌜a carried extension x♯, whose type depends on
the associated intermediary term⌝. Importantly, the locations of the extension are linked
with the locations of the formula. Consider for instance that the carried extension x♯ is an
abstract location, then the extended formula (l1 ↦ {f ∶ l1} , l1) has a different concretisa-
tion than (l1 ↦ {f ∶ l1} , l2). We translates this by making the entailment of the formula
share the valuation ρ with the concretisation of the extension, as shown below.

γ ((ϕ,x♯)) = {(He,H,x) ∣ ∃ρ,D. (He,D,H) ⊧ρ ϕ ∧ x ∈ γρ (x♯)}

In the context of our O’While language, semantic contexts for expressions and statements
already carry additional information (see Figure 6.3). The concrete semantic contexts of
these terms are in the formH,He, ℓe, ℓc. The two heapsH andHe translate into a formula.
The two environment locations ℓe and ℓc translates into environment locations η. A basic
example of abstract semantic context is thus (η ↦ ϵ, η, η), the extension being a pair of
abstract environment locations. Each extension x♯ has an interface, written itf (x♯).

The frame rule can be extended to apply on extended formulae. To this end, we extend
the ⋆ operator to account for extended terms, as shown below.We suppose that at least one
of the context formula ϕc or the main formula ϕ is a simple formula, without extension.

(ϕ,x♯) ⋆ ϕc = (ϕ ⋆ ϕc, x
♯) ϕ ⋆ (ϕc, x

♯) = (ϕ ⋆ ϕc, x
♯)
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6.4 The Frame Rule and Membranes
As we have seen in Section 6.2, the frame rule is a defining feature of separation logic.
This rule enables modular reasoning. For instance, we can specify what is the behaviour
of a function (given by a specific closure) by ⌜small semantic triples featuring only what
the function manipulates⌝, then reuse these triples in larger environments using the frame
rule. The frame rule can also be used to remove an unwanted context from the current
state formula, thus simplifying the analysis. The frame rule does not correspond to any
concrete rule. As such, it is a structural rule (see Chapter 5). However, this rule comes
with some issues, which we first address.

The frame rule requires extra care because of the potential collision between location
names in the local state ϕ and the context ϕc. This may happen when abstract locations
are renamed or allocated. Consider for instance the two formulaeϕ1 = η ↦ ϵ⋆l1 ↦ {f ∶ l1}
and ϕ2 = η ↦ ϵ⋆l2 ↦ {f ∶ l2}. We have γ (ϕ1) = γ (ϕ2): if a valuation ρ1 makes a concrete
state (H,He) entail ϕ1, we can easily build another valuation ρ2 making it entail ϕ2, by
exchanging the concrete locations associated with l1 and l2. It is thus sound to weaken ϕ1

to ϕ2 using Rule glue-weaken. However, when this weakening is combined with the
frame rule, this may lead to an unsound result. Figure 6.5 illustrates such an interference.
Its final result has an empty concretisation although we can build concrete derivations
from several elements of the concretisation of the initial semantic context.

Similarly, newly allocated abstract locationsmust be fresh, but the frame rule can interfere
with their freshness. Figure 6.6 shows a derivation in which the frame rule removes a
location l from the context, leaving it empty. The abstract rule red-new-obj then picks a
fresh location from this empty abstract state. The abstract location l is fresh in the current
formula, but the frame rule frames l again in the conclusion.The result also ends up having
an empty concretisation, although concrete derivations can be built from several elements
of the concretisation of the initial semantic context. Theorem 5.1 does not apply with the
frame rule. We thus need to protect location names from the frame rule.

We introduce the notion of membranes as an explicit but light-weight formalism for man-
aging these names in abstract derivations. Membranes are relations on names. For in-
stance the membrane (lo → li) relates an outer (“global”) name lo to the inner (“local”)
name li of a formula. Membraned formulae are pairs of a membrane and a formula, for
instance (l0 → l1 ∣ l1 ↦ {f ∶ l1}) describes the object pointed by the outer location l0.

6.4.1 Membranes

We equip formulae with membranes specifying how ⌜locations from the potential context
of the frame rule (“outside the membrane”)⌝ are mapped to the locations of the formula
(“inside the membrane”). Membranes are needed in our formalism to make the frame rule
soundly interact with Rule glue-weaken. This section formally defines membranes.
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l1 ↦ {f ∶ l1} , η, η, skip ⇓ l1 ↦ {f ∶ l1} , η, η
red-skip

l1 ↦ {f ∶ l1} , η, η, skip ⇓ l2 ↦ {f ∶ l2} , η, η
glue-weaken

η ↦ ϵ ⋆ l2 ↦ {f ∶ l1} ⋆ l1 ↦ {f ∶ l1} , η, η, skip ⇓ η ↦ ϵ ⋆ l2 ↦ {f ∶ l1} ⋆ l2 ↦ {f ∶ l2} , η, η
frame

Figure 6.5: Unsound interaction between Rules glue-weaken and frame

emp, η, η,alloc ⇓ l ↦ {_ ∶ ⊠} , η, l
red-new-obj

η ↦ ϵ ⋆ l ↦ {_ ∶ ⊠} , η, η,alloc ⇓ η ↦ ϵ ⋆ l ↦ {_ ∶ ⊠} ⋆ l ↦ {_ ∶ ⊠} , η, l
frame

Figure 6.6: Unsound interaction between Rules frame and red-new-obj

As hinted by the two Figures 6.5 and 6.6, there are two separate issues with the frame
rule. First, ⌜the renamings performed in a formula⌝ should be kept along the computation
to avoid names to be caught by the context of the frame rule. Second, newly created
names have to be marked to avoid the context to inadvertently refer to them. The two
derivations of Figures 6.5 and 6.6 shows the problem for abstract locations l ∈ L, but
abstract environment locations η ∈ L♯e suffer from the same problem.

Definition 6.3. Membranes M are finite relations, defined as follows.

M ∈ Pfin ((L ⊎ {●}) ×L) ⊎Pfin ((L♯e ⊎ {●}) ×L♯e)

The special element ● is an allocator: if a membrane M states that M (●, l), then l is a
location allocated during the execution (through Rule red-new-obj). Similarly, if a mem-
brane M states that M (●, η), then η is a new environment location created during the
execution (through a function call, in Rule red-app-2(s)). In the following we write p● for
an element ofL⊎L♯e⊎{●}, l● for an element ofL⊎{●}, and η● for an element ofL♯e⊎{●}.

We define the inner and outer interfaces In and Out of a membrane M as follows.

In (M) = codom (M) = {pi ∣ ∃p●o. M (p●o, pi)}

Out (M) = dom (M) ∖ {●} = {po ∣ ∃pi. M (po, pi)}

For readability, we write membranes as lists of atomic relations of the form p●o → pi. We
define M (p●o) = {pi ∣M (p●o, pi)} and M−1 (pi) = {p●o ∣M (p●o, pi)}. In this section, we
consider that membranes are functional and injective, except on ●. That is, for each po

and pi, M (po) and M−1 (pi) are singletons. No restriction is imposed on M (●).
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Membraned formulae Φ are pairs of a membrane and a formula. We add the constraint that
the inner formula should only use local locations defined in the membrane. Membraned
formulae can also carry an additional information x♯ (see Section 6.3.5).

Φ ∶∶= (M ∣ ϕ,x♯) itf (ϕ) ∪ itf (x♯) ⊆ In (M)

We define the interface and the domain of a membraned formula as follows. The symbol y
denotes both fields f and variables x.

itf ((M ∣ ϕ,x♯)) = Out (M)

dom ((M ∣ ϕ,x♯)) = {(p, y) ∣ ∃p′. M (p, p′) ∧ (p′, y) ∈ dom2 (ϕ)}

We extend the equivalence relation ⋆= on membraned formulae. Two membraned formu-
lae Φ1 = (M1 ∣ ϕ1) and Φ2 = (M2 ∣ ϕ2) are equivalent if their inner formulae are equival-
ent ϕ1

⋆= ϕ2 and they have the same membranes M1 =M2. Membranes are compared as
relations and do not depend on the order fromwhich the rewritings p●o → pi are written.

The concretisation of membraned formulae Φ = (M ∣ ϕ) is the set of all heaps entailing
the formula for a valuation. The considered valuations ρi have to be defined on the inner
interface of the membrane M . These valuations ρi ∶ In (M) ⇀inj P (L) ⊎ P (Le) must
be injective: ∀p1, p2. ρi (p1) ∩ ρi (p2) ≠ ∅ Ô⇒ p1 = p2. In other words, different ab-
stract valuations have to represent different concrete locations. Of course, these valuations
should map abstract object locations l ∈ L to concrete ℓ ∈ L and abstract environment loc-
ations η ∈ L♯e to concrete ℓe ∈ Le. Furthermore, as membranes relate the outer and the
inner scope, we have to check whether these relations are compatible. For instance, the
membrane (l1 → l2, l1 → l3) is not satisfiable as both l2 and l3 are supposed defined and
different, whilst both coming from one location l1. We thus require the existence of an
outer valuation ρo ∶ Out (M) ⇀inj P (L) ⊎ P (Le) related to the inner valuation ρi. A
set of allocated locations ν is also chosen. We write ρνo ∶ Out (M) ⊎ {●} →inj P (L) for
the function equal to ρo in the domain Out (M) and such that ρνo (●) = ν. The relation
between these valuations and this set, written (ρo, ν, ρi) ∈ γ (M), is defined as follows.

ρ̇o (Out (M)) ∩ ν = ∅ (6.5)

∀p●o ∈ Out (M) ⊎ {●} . ρνo (p●o) ⊆ ρ̇i (M (p●o)) (6.6)

∀pi ∈ In (M) . ρi (pi) ⊆ ρ̇νo (M−1 (pi)) (6.7)

Intuitively, no concrete location is forgotten by going through the membrane, and the
only new locations are the ones allocated by the membrane. For instance, there is no
pair of valuations satisfying the membrane (l1 → l2, l1 → l3) since we must have ρi (l2) =
ρo (l1) = ρi (l3), as both valuations map abstract locations to singleton sets: the valu-
ation ρi can not be injective. We finally define the concretisation of membraned formulae
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as follows. The extension x♯ does not add any complexity, except that it has to use ⌜the
same valuation ρi than the state⌝ for its concretisation.

(He,H,x) ∈ γ ((M ∣ ϕ,x♯)) ⇐⇒

∃ρi, ρo, ν. (ρo, ν, ρi) ∈ γ (M) ∧ (He,H) ⊧ρi ϕ ∧ x ∈ γρi (x
♯) (6.8)

6.4.2 Framing Operators

We define two basic operations on membranes: membrane composition ⨾ and membrane
crossing ⊳. The composition of two membranes M and M ′ is only defined when the do-
mains of the membranes match, that is when Out (M ′) ⊆ In (M): the outer names of
the inner membrane should be inner names of the outer membrane. It is then defined as
below. It intuitively corresponds to a composition of all the rewritings p●o → pi present in
both membranes. The allocated locations of the composition is the union of the allocated
locations in both membranes, the outer locations being renamed. For instance, we have
(l1 → l2, ●→ l3) ⨾ (l3 → l4, ●→ l5) = (l1 → l2, ●→ l4, ●→ l5).

M ⨾ M ′ = {p● → p′ ∣ ∃p′′. M (p●, p′′) ∧M ′ (p′′, p′)} ∪ {●→ p′ ∣M ′ (●, p′)}

Themembrane crossing ⊳ intuitively updates all the locations in a formula using the mem-
brane as a substitution. This operator is partial: ϕ ⊳M is only defined when the interface
of ϕ matches the outer domain of the membrane, that is, when itf (ϕ) ⊆ Out (M). Each
value of the external formula ϕ also has to pass the membrane, and we define a sim-
ilar operation ⊳ for values. Figure 6.7 shows the rules for membrane crossing. We advise
the reader to temporary ignore the complex fourth rule, which is explained in details in
Section 6.5.1. Intuitively, we have (p↦ œ♯ ⊳M) = M (p) ↦ (œ♯ ⊳M). The membrane
crossing of abstract objects o♯ ⊳ M and environments E♯ ⊳ M applies the membrane
crossing on each of their values: for all y, we have (œ♯ ⊳M) [y] = œ♯ [y] ⊳M . Membrane
crossing behaves as expected with respect to membrane composition, as shown below.

Lemma 6.3. For any membrane M and M ′, and any formula ϕ, if either (ϕ ⊳ (M ⨾ M ′))
or ((ϕ ⊳M) ⊳M ′) is defined, then the other is also defined and they are equal by ⋆=.

We define two partial operators ⋆ and ○ on membraned formulae. They are both pro-
nounced similarly to their corresponding symbol ⋆ and ○. Figure 6.8 shows their defin-
itions. The operator ⋆ imports a context (unmembraned) formula ϕ into a membraned
formula Φ. It is based on the ⊳ operator, and thus requires the interface of the formula ϕ
to match the interface of the membraned formula Φ. The operator ○ composes a mem-
braned formulaΦwith an external membraneM . It changes the interface of the resulting
membrane: the interface of M ○ Φ (when it is defined) is Out (M). These operators are
used to define our equivalent of the frame rule. The frame rule is split into two structural
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emp ⊳M = emp

ϕ
⋆= ϕ′ ϕ′ ⊳M = ϕr

ϕ ⊳M = ϕr

ϕ1 ⊳M = ϕ′1 ϕ2 ⊳M = ϕ′2
ϕ1 ⋆ ϕ2 ⊳M = ϕ′1 ⋆ ϕ′2

˙M−1 (Ṁ (P (ϕ))) = P (ϕ) ∀œ♯i,œ′
♯
i ∈ Œ (ϕ) . spec (œ♯i) = spec (œ′

♯
i)

ϕ ⊳M = ☀
pj∈Ṁ(P (ϕ))

pj ↦ ⊔
pi∈M−1(pj)
pi↦œ♯i∈ϕ

(œ♯i ⊳M)

Λ ∈ P (L)
Λ ⊳M = Ṁ (Λ) clo ⊳M = {(η, λx.s) ∣ (η′, λx.s) ∈ clo, η ∈M (η′)}

(b♯,Λ, clo)♯ ⊳M = (b♯,Λ ⊳M, clo ⊳M)♯ (v♯, d) ⊳M = (v♯ ⊳M,d)

Figure 6.7: Rules for crossing membranes

itf (ϕ′) ⊆ Out (M)
ϕ′ ⋆ (M ∣ ϕ) = (M ∣ (ϕ′ ⊳M) ⋆ ϕ)

Out (M) ⊆ In (M ′)
M ′ ○ (M ∣ ϕ) = (M ′ ⨾ M ∣ ϕ)

Figure 6.8: The operators ⋆ and ○

glue-frame-⋆
Φ, t ⇓ Φ′

ϕ ⋆ Φ, t ⇓ ϕ ⋆ Φ′
itf (Φ) = itf (Φ′)

glue-frame-○
Φ, t ⇓ Φ′

M ○ Φ, t ⇓M ○ Φ′
itf (Φ) = itf (Φ′)

Figure 6.9: The two framing rules

rules glue-frame-⋆ and glue-frame-○ , shown in Figure 6.9.These rules enforce the con-
sidered formulae to have the same interface. This is an invariant of all rules and is not a
problematical constraint, although it can interfere with potential glue rules, as discussed
in Section 6.4.5. They also enforce the two operators ⋆ and ○ to be defined.

Consider the unsound abstract derivation of Figure 6.5. Figure 6.10 shows the correspond-
ing derivation with membraned formulae. Membrane formulae are equipped with a re-
naming process: Rule glue-weaken-≼ enables to replace an abstract location l1 into an
abstract location l2, updating the membrane accordingly. This process is detailed in the
next section. Because the membrane is also updated, the locations of ⌜the context formula
added by the frame rule⌝are also updated⌜when getting in themembraned formula through
the ⋆ operator⌝. In a way, the rewriting of l1 to l2 has been stored in the membrane and
propagated when Rule glue-frame-⋆ was applied.
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(ηo → ηi, l0 → l1 ∣ l1 ↦ {f ∶ l1} , ηi, ηi) , skip ⇓ (ηo → ηi, l0 → l1 ∣ l1 ↦ {f ∶ l1} , ηi, ηi)
red-skip

(ηo → ηi, l0 → l1 ∣ l1 ↦ {f ∶ l1} , ηi, ηi) , skip ⇓ (ηo → ηi, l0 → l2 ∣ l2 ↦ {f ∶ l2} , ηi, ηi)
glue-weaken-≼

l0 ↦ {g ∶ l0} ⋆ (ηo → ηi, l0 → l1 ∣ l1 ↦ {f ∶ l1} , ηi, ηi), skip ⇓ l0 ↦ {g ∶ l0} ⋆ (ηo → ηi, l0 → l2 ∣ l2 ↦ {f ∶ l2} , ηi, ηi)
glue-frame-⋆

(ηo → ηi, l0 → l1 ∣ l1 ↦ {g ∶ l1, f ∶ l1} , ηi, ηi), skip ⇓ (ηo → ηi, l0 → l2 ∣ l2 ↦ {g ∶ l2, f ∶ l2} , ηi, ηi)

⋆= ⋆=

Figure 6.10: A derivation showing how membranes protect renamed locations

(η → ηi ∣ emp, ηi, ηi) ,alloc ⇓ (η → ηi, ●→ l ∣ l ↦ {_ ∶ ⊠} , ηi, l)
red-new-obj

(l → l′, ηo → η) ○ (η → ηi ∣ emp, ηi, ηi),alloc ⇓ (l → l′, ηo → η) ○ (η → ηi, ●→ l ∣ l ↦ {_ ∶ ⊠} , ηi, l)
glue-frame-○

(l → l′, ηo → ηi ∣ emp, ηi, ηi),alloc ⇓ (l → l′, ηo → ηi, ●→ l ∣ l ↦ {_ ∶ ⊠} , ηi, l)

l ↦ {f ∶ l} ⋆ (l → l′, ηo → ηi ∣ emp, ηi, ηi),alloc ⇓ l ↦ {f ∶ l} ⋆ (l → l′, ηo → ηi, ●→ l ∣ l ↦ {_ ∶ ⊠} , ηi, l)
glue-frame-⋆

(l → l′, ηo → ηi ∣ l′ ↦ {f ∶ l′} , ηi, ηi),alloc ⇓ (l → l′, ηo → ηi, ●→ l ∣ l′ ↦ {f ∶ l′} ⋆ l ↦ {_ ∶ ⊠} , ηi, l)

= =

= =

Figure 6.11: A derivation showing how membranes protect allocated locations

≼-refl

Φ ≼ Φ

≼-trans
Φ1 ≼ Φ2 Φ2 ≼ Φ3

Φ1 ≼ Φ3

≼-⋆
Φ ≼ Φ′

ϕ ⋆ Φ ≼ ϕ ⋆ Φ′

≼-○
Φ ≼ Φ′

M ○ Φ ≼M ○ Φ′

≼-rename-obj

(l●0 → l1 ∣ emp) ≼ (l●0 → l2 ∣ emp)

≼-rename-env

(η●0 → η1 ∣ emp) ≼ (η●0 → η2 ∣ emp)

≼-weaken-obj
u♯1 ⊑ u♯2

(M ∣ l ↦ {f ∶ u♯1}) ≼ (M ∣ l ↦ {f ∶ u♯2})

≼-weaken-obj-cofinite
u♯1 ⊑ u♯2

(M ∣ l ↦ {F ∶ u♯1}) ≼ (M ∣ l ↦ {F ∶ u♯2})

≼-weaken-env
u♯1 ⊑ u♯2

(M ∣ η ↦ {x↦ u♯1}) ≼ (M ∣ η ↦ {x↦ u♯2})

≼-weaken-ext
x♯1 ⊑ x♯2

(M ∣ emp, x♯1) ≼ (M ∣ emp, x♯2)

Figure 6.12: Rewriting rules defining the operator ≼
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(l0 → l1 ∣ emp) ≼ (l0 → l2 ∣ emp)
≼-rename-obj

l0 ↦ {f ∶ l0} ⋆ (l0 → l1 ∣ emp) ≼ l0 ↦ {f ∶ l0} ⋆ (l0 → l2 ∣ emp)
≼-⋆

(l0 → l1 ∣ l1 ↦ {f ∶ l1}) ≼ (l0 → l2 ∣ l2 ↦ {f ∶ l2})

⋆= ⋆=

Figure 6.13: Renaming a location using the rules of Figure 6.12

Wenow consider the issue of allocated locations presented in Figure 6.6. Figure 6.11 shows
how membraned formulae protect such locations. Allocations introduce the use of ● in
membranes. In the derivation of Figure 6.11, Rule red-new-obj picks a new abstract loc-
ation l and states that it is newly allocated (and thus associated with ●) in the membrane.
Let us try to frame the result with the formula ϕ = l ↦ {f ∶ l}, which uses the name l

to represent a different location. It is not possible to frame it directly as itf (ϕ) = {l},
but Out (ηo → ηi, ●→ l) = {ηo}: the operator ⋆ is not defined and Rule glue-frame-
⋆ does not apply. To frame ϕ, we first have to extend the membrane ⌜so that l appears
in its outer interface⌝ using Rule glue-frame-○ . As for the previous example, the mem-
brane made sure that the inner l and the outer l never mix. The intermediary membrane
M = (l → l′, ηo → ηi, ●→ l) may be counter-intuitive as In (M) ∩ Out (M) = {l} ≠ ∅,
but l represents different locations inside and outside the membrane. To avoid the confu-
sion between the two abstract locations named l, it is possible to rename the inner l using
Rule glue-weaken-≼ as before, and only then apply the frame rule.

6.4.3 Rewriting Under Membraned Formulae

As we have seen in the previous section, membranes now scope ⌜locations, which can
safely be renamed⌝. We introduce a relation ≼ over membraned formulae to perform these
rewritings. It will be extended in Section 6.5.3 to enable approximating formulae. We in-
corporate ≼ into our framework by the following glue rule.

glue-weaken-≼
Φ1 ≼ Φ2 Φ2, t ⇓ Φ3 Φ3 ≼ Φ4

Φ1, t ⇓ Φ4

The relation ≼ is defined as the relation induced by the rules of Figure 6.12. The relation ≼
is transitive and reflexive. Its rules introduce rewritings, then propagate them along the
given formula. For instance Rule ≼-rename-obj renames a location in a simple membrane,
but does not perform any renaming on the attached formula, which is supposed to be
emp. The renaming is propagated into the whole formula using Rule ≼-○ to extend the
interface of the formula, then Rule ≼-⋆ to let a formula ϕ pass through the membrane,
thereby performing its renaming. The relation ≼ also enables to weaken abstract values
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red-lambda(x, s)

(— ∣ emp, ηe, ηc) , λx.s ⇓ (— ∣ emp, ηe, (ηc, λx.s))

red-app-2(s)
η′c fresh (—, ●→ η′c ∣ η′c ↦ E♯ [x← v♯] ⋆ η ↦ E♯ ⋆ ϕ, ηe, η′c) , s ⇓ Φ Φ,@3 ⇓ Φ′

(— ∣ η ↦ E♯ ⋆ ϕ, ηe, ηc, x, s, v♯) ,@2 ⇓ Φ′

red-new-obj

(— ∣ emp, ηe, ηc) ,alloc ⇓ (—, ●→ l ∣ l ↦ {_ ∶ ⊠}, ηe, l)

red-field-asn-2(f)

(— ∣ l ↦ {f ∶ u♯} , ηe, ηc, l, v♯) , .f ∶=2 ⋅ ⇓ (— ∣ l ↦ {f ∶ v♯} , ηe, ηc)

red-delete-1(f)

(— ∣ l ↦ {f ∶ u♯} , ηc, ηe, l) ,delete1 .f ⇓ (— ∣ l ↦ {f ∶ ⊠} , ηc, ηe)

Figure 6.14: A selection of abstract rules

through Rules ≼-weaken-obj, ≼-weaken-env, and ≼-weaken-obj-cofinite, as well as
the potential extension of formulae through Rule ≼-weaken-ext. Figure 6.13 shows how
to deriveΦ1 ≼ Φ2, whereΦ1 andΦ2 are the two formulae of the example of Figure 6.10.

We now present the main property of the ≼ operator. This theorem states that when re-
writing a membraned formula Φ1 into a membraned formula Φ2 using the ≼ operator,
then both the interface and the concretisation of the two formula are left unchanged. This
property is also conserved when ≼ is extended in Section 6.5.3.

Theorem 6.4. For all Φ1 and Φ2 such that Φ1 ≼ Φ2, we have itf (Φ1) = itf (Φ2). Further-
more, for all ρ, He, D, and H such that (He,D,H) ⊧ρ Φ1, then (He,D,H) ⊧ρ Φ2.

6.4.4 Abstract Rules

The frame rule enables to only partly specify abstract rules. In particular, abstract rules
can be defined on the resources which they need, without additional noise. For instance
it is not an issue to only define Rule red-new-obj on an empty formula, as we can extend
the context using frame rules, as in Figure 6.11. This is a common practise in separation
logic. For instance, ⌜the inference rule for variable in the work of Gardner, Maffeis, and
Smith [GMS12]⌝ considers that the heap only contains a prototype chain to the looked-
up variable. Such restrained abstract rules are simpler to define and to prove sound, thus
reducing the effort needed to prove the soundness of the abstract semantics in Coq.
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red-lambda(x, s)

H,He, ℓe, ℓc, λx.s ⇓H,He, ℓe, (ℓc, λx.s)

red-app-2(s)
ℓ′c = fresh (He) C =He [ℓc]

H,He [ℓ′c ← C [x← v]] , ℓe, ℓ′c, s ⇓ r r,@3 ⇓ r′

ℓc, x, s, (H,He, ℓe, v) ,@2 ⇓ r′

red-new-obj
ℓ = fresh (H)

H,He, ℓe, ℓc,alloc ⇓H [ℓ← {}] ,He, ℓe, ℓ

red-field-asn-2(f)
o =H [ℓ] H ′ =H [ℓ← o [f← v]]

ℓc, ℓ, (H,He, ℓe, v) , .f ∶=2 ⋅ ⇓H ′,He, ℓe, ℓc
ℓ ∈ dom (H)

red-delete-1(f)
o =H [ℓ] H ′ =H [ℓ← o ∖ f]

ℓc, (H,He, ℓe, ℓ) ,delete1 .f ⇓H ′,He, ℓe, ℓc
ℓ ∈ dom (H)

Figure 6.15: The concrete rules corresponding to the abstract rules of Figure 6.14

As presented in the last two chapters, we abstract each rule independently, without con-
sidering the interaction between different rules. Figure 6.14 shows some abstract rules for
our O’While language. The corresponding concrete rules are shown in Figure 6.15. The
other abstract rules can be found in the companion website [Bod16]. This section aims at
showing that ⌜abstracting the concrete rules⌝ is a relatively straightforward process.

Consider the concrete Rule red-lambda(x, s) (repeated in Figure 6.15). Its semantic con-
text (H,He, ℓe, ℓc) features ⌜the heap, the environment heap, and the two environment
locations for the global and local environments⌝ (see Section 4.7.1). One may expect the se-
mantic context of the corresponding abstract rule to be of the general form (M ∣ ϕ, ηe, ηc).
However, the concrete rule does not change or read the heaps H and He: they are not
needed as resources for the rule and can be omitted in the abstract rule.The glue rules glue-
frame-⋆ and glue-frame-○ can be used at each application to remove the superfluous
context, similarly to what is shown in Figure 6.11.Themembrane of the abstract Rule red-
lambda(x, s) is forced to be trivial: it is either of the form (ηe → ηe, ηc → ηc) or (η → η),
depending on whether the abstract environment locations ηe and ηc are identical. Indeed,
the glue Rule glue-frame-○ can adapt such a trivial membrane to any other membrane
performing complex rewritings. To simplify notations, we write trivial membranes, which
are membranes only containing rewritings of the form p→ p, as —.

We have already described Rule red-new-obj in Section 6.4.2. Rule red-field-asn-2(s) is
similar in the sense that it allocates a new environment identifier η′c, thus changing both
the membrane and the formula.The action performed by the concrete rule is conveniently
abstracted by separation logic: it only adds a new term in the state formula. Contrary to
Rule red-new-obj, Rule red-field-asn-2(s) is a format 2 rule (see Section 4.3.1). In our
formalism, the glue Rule glue-frame-⋆ can only be used to extend already computed
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triples, but not derivations: it applies horizontally, but not vertically. To build a derivation
from Rule red-field-asn-2(s), we thus have to provide its premises with their needed
resources. As a consequence, we need to carry a formula ϕ in the semantic context.

Rule red-field-asn-2(f) writes the value v♯ in the heap formula at computed location l.
As it is an axiom, it only features the resources needed to apply the rule, which is the
field f pointed by l. The rest of the object pointed by l can then be added by Rule glue-
frame-⋆ . This rule assumes that it is provided exactly one abstract location l. This may
not be the case: for instance, the abstract Rule red-field-asn-1(f, e2) may result in a
value of the form l1 ⊔ l2 ⊔ b♯. This situation is covered by Rule glue-trace-partitioning
of Section 5.1.2: this rule enables to cut such values and consider each case independently.
Finally, the abstract Rule red-delete-1(f) behaves exactly the same than the abstract
Rule red-field-asn-2(f): the only difference is that⌜it sets the abstract field f to ⊠ instead
of a computed abstract value v♯⌝.

6.4.5 Correctness of the Frame Rules

We have shown the definitions of the two frame Rules glue-frame-⋆ and glue-frame-⋆
in Figure 6.9. To use these rules, we have to prove them correct. We have tried to prove
the correctness of these rules with respect to Criterion 5.3 of Section 5.2.2. This criterion
is based on⌜concrete derivation⌝ rewritings. Derivation rewritings fit by design the require-
ments of separation logic, as illustrated in Figure 5.5. Despite our efforts, it proved to be
more challenging than expected and is currently admitted in our Coq development.

In a nutshell, the issue with Criterion 5.3 is that it crucially depends on the concretisa-
tion γ. In particular, it enables glue rules such as Rule glue-weaken to changemembranes—
and thus changing the global meaning of locations—as long as the concretisation does not
change. More precisely, we proved that Criterion 5.3 does not hold as-is for the two frame
Rules glue-frame-⋆ and glue-frame-⋆ . A detailed proof is given in the website accom-
panying this dissertation [Bod16]. This does not mean that these two rules are unsound,
only that our correctness criterion is not enough to prove their soundness.

To prove the soundness of these glue rules, we need to update Criterion 5.3 to prevent
Rule glue-weaken from modifying membranes carelessly. In particular, we would like
to force this rule to consider ⌜some global invariants used by separation logic⌝. The issue
is that the current concretisation function for formulae (repeated below without formula
extension for simplicity—see Equation 6.8 for the full definition) does not make explicit
⌜the choice of the valuation ρo⌝ from the outside: if we know that (He,H) ∈ γ (Φ), we have
no idea which valuation ρo has been used to instantiate the concretisation relation.

(He,H) ∈ γ ((M ∣ ϕ)) ⇐⇒ ∃ρi, ρo, ν. (ρo, ν, ρi) ∈ γ (M) ∧ (He,H) ⊧ρi ϕ
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To make this valuation choice explicit, we propose an alternative parametrised definition
for the concretisation of membraned formulae γρo , shown below.

(He,H) ∈ γρo ((M ∣ ϕ)) ⇐⇒ ∃ρi, ν. (ρo, ν, ρi) ∈ γ (M) ∧ (He,H) ⊧ρi ϕ

This new definition makes explicit which valuation ρo has been used in the concretisation
function. We can now update the definition of the k correctness used in Criterion 5.3 as
follows: a semantic triple σ♯, t ⇓♯ r♯ is k correct, if for any concrete derivation of depth
less than k with conclusion σ, t ⇓ r, and any valuation ρ, then σ ∈ γρ (σ♯) implies r ∈
γρ (r♯). This new definition of the k correctness forces⌜the invariant needed by separation
logic—that locations do not change their concrete representation along derivations⌝—to be
propagated. In particular, Rule glue-weaken is no longer allowed to carelessly modify
membranes: it can still modify the inner interface In (M) of a membrane M , but not its
outer interfaceOut (M) as this would invalidate the outer valuation ρo. It is still possible
for Rule glue-weaken to weaken an abstract value, which is compatible with Rules glue-
frame-⋆ and glue-frame-⋆ .⌜The behaviours of Rule glue-weaken likely to be use in an
abstract derivation⌝ are in fact those of the ≼ operator, shown in Figure 6.12.

As this is on-going work, we do not change the presentation of the formalism in the rest
of this dissertation. Although incomplete, we have good hope in proving ⌜that our logic is
sound⌝ in our Coq formalisation.

6.5 Shapes and Summary Nodes

As-is, our domains are not adequate for ⌜recursive data structures, whose size may vary⌝.
To address this issue, we extend our certified abstract semantics with abstractions coming
from shape analysis [SRW98], in particular the notion of summary nodes. The amount of
effort needed to extend our formalism revealed itself to be surprisingly small. Membranes
indeed naturally express the summary operations of shape analyses. We start by showing
that⌜membranes as they currently are⌝already enable to introduce some approximations.

6.5.1 Abstracting Using Membranes

Membranes prevent identifier collisions when using the frame rules, but they can also
be used to express approximations. This is hinted by the fact that⌜the relation ≼ renaming
identifiers⌝ is a preorder relation and not an equivalence relation (it is not antisymmetrical):
somemembranes are more precise than others. We now explore this aspect of membranes.
We now allow membranes to be non-functional and non-injective: we now write them as
a list of relations of the form p● → p1+ . . .+pn, collecting all the locations pi related to p●.
In particular, an outer location can be related to several inner locations—it then intuitively
corresponds to one of these inner locations.
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Consider the membrane Mr = (l1 → l′1 + l′2, l2 → l′1 + l′2). Each of the outer locations l1
and l2 may be mapped into one of the inner locations l′1 and l′2, and, conversely, each of l′1
and l′2 may be the image of l1 or l2. The membrane Mr has lost some information: we
know that the set of outer locations {l1, l2} represents the same concrete locations than
the set of inner locations {l′1, l′2}, but we have lost the exact relation between locations.

In order to be well formed, membraned formulae (M ∣ ϕ) must satisfy an additional re-
quirement: related inner locations in dom (ϕ) must map to objects or environments œ
with the same specified domain spec. For instance, we impose spec (o♯2) = spec (o♯3) on
the membraned formula (l1 → l2 + l3 ∣ l2 ↦ o♯2 ⋆ l3 ↦ o♯3). We impose this restriction to
be able to define the specified domain of outer locations: every object or environment
associated to an outer location musts specify the same domain. Note that this is trivial for
environments as their specified domain spec is always Var .

∀po, pi, p′i. M (po, pi) ∧M (po, p′i) Ô⇒ ⋃
pi→œ♯i∈ϕ

spec (œ♯i) =⋃
p′i→œ′♯i∈ϕ

spec (œ′♯i)

As a consequence, ⌜the operator ⊳ for object crossing membrane⌝ has to check that all the
needed information is given. For instance, consider the membraneMr defined above. The
formula l1 ↦ o♯1 ⊳Mr is undefined as the corresponding information about l2 is missing.
Once this information given, we can write (l1 ↦ o♯1 ⋆ l2 ↦ o♯2 ⊳Mr) = l′1 ↦ o′ ♯ ⋆ l′2 ↦ o′ ♯,
where o′ ♯ = (o♯1 ⊳Mr)⊔ (o♯2 ⊳Mr), if spec (o♯1) = spec (o♯2). We recall from Section 6.3.3
that objects with the same specified domain form a lattice, hence the ⊔ operator. This
process is generalised by the complex fourth rule of Figure 6.7. This rule ensures that all
objects with common dependencies cross the membrane at the same time. The condition
˙M−1 (Ṁ (Λ)) = Λ ensures that Λ does not miss any needed inner location.

6.5.2 Summary Nodes and Membranes

So far, concrete locations ℓ have been abstracted by abstract locations l ∈ L, each of them
representing exactly one concrete location. We now introduce summary nodes k ∈ K ,
which can abstract any set of concrete locations. We update abstract values to include
summary nodes: we now have v♯ ∈ Val ♯ = Sign♯ × P (L ⊎K) × C♯. The definition of
formulae is adapted accordingly.Wewrite h ∈ L⊎K for an abstract location—which can be
either a simple abstract location l or a summary node k—, andΛ for a subset of L⊎K .⌜The
interface itf (ϕ) ⊆ L⊎K⊎L♯e and the domain dom (ϕ) ⊆ ((L ⊎K) × Field)⊎(L♯e ×Var)
of a formula ϕ⌝ is updated as expected.

ϕ ∶∶= emp ∣ ϕ1 ⋆ ϕ2 ∣ η ↦ env ♯ ∣ h↦ o h ∶∶= l ∣ k

The purpose of summary nodes is to enable the merging of locations. For instance several
abstract locations l1, …, ln can be merged into a single summary node k to simplify the for-
mula. Such an approximation changes the interface of formulae and can be reflected in a
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dom (H) = ρ (h) ∀ℓ ∈ ρ (h) . H [ℓ] ∈ γρ (o♯)
(ϵ,dom (H) × spec (o♯) ,H) ⊧ρ h↦ o♯

dom (E) = ρ (η) ∀ℓe ∈ ρ (η) . dom (E [ℓe]) = dom (E♯)
∀ℓe ∈ ρ (η) , x ∈ dom (E♯) . E [ℓe] [x] ∈ γρ (E♯ [x])

(E,∅, ϵ) ⊧ρ η ↦ E♯

Figure 6.16: Updating the last two rules of Figure 6.4 for the entailment

●l

o♯

k

o♯

↝

(a) Summarising a location

k1 k2

o♯1 o♯2

k

o♯1 ⊔ o♯2

↝

(b) Summarising two summary nodes

k

●l

o♯
f

k′

●l

o♯
f↝ ●l

′

(c) Materialisation

Figure 6.17: Visualisation of membrane operations

membrane. For instance,⌜merging l1 and l2 into k⌝results in themembrane (l1 → k, l2 → k).
For simplicity, environment identifiers η are considered as summary nodes (their concret-
isation is a set of environment locations). We could have introduced the same granularity
for environment identifiers, but it is not needed to demonstrate the approach. To accom-
modate summary nodes, we redefine membranes as

M ∈ Pfin ((L ⊎K ⊎ {●}) × (L ⊎K)) ⊎Pfin ((L♯e ⊎ {●}) ×L♯e)

⌜The definitions of inner and outer interfaces, membraned formulae, membrane compos-
ition ⨾, and membrane crossing ⊳⌝ remain unchanged. Valuations ρ map l to singleton
sets {ℓ}, k to sets of locations, and η to sets of environment locations. The entailment
predicate (see Figure 6.4) is modified as shown in Figure 6.16.

6.5.3 Approximation Rules With Summary Nodes

Wenowhave the tools to define rules for approximatingmembraned formulae.The presen-
ted approximations are informally depicted in Figure 6.17; these approximations are usual
in shape analysis. We complete the order ≼ (see Figure 6.12) by the rules of Figure 6.18. As
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≼-loc

(lo → li ∣ emp) ≼ (lo → ki ∣ emp)

≼-merge

(ho → hi, h
′
o → h′i ∣ emp) ≼ (ho → ki, h

′
o → ki ∣ emp)

≼-void

(ϵ ∣ emp) ≼ (●→ k ∣ k ↦ o♯)

≼-materialise

(lo → li, ko → ki ∣ li → {f ∶ ki}) ≼ (lo → li, ko → k′i + l′i ∣ li → {f ∶ l′i})

≼-materialise-membrane

(l → k ∣ emp) ≼ (l → l′ ∣ emp)

≼-materialise-ext

(ko → ki ∣ emp, ki) ≼ (ko → li ∣ emp, li)

≼-extend
h ∈ In (M)

(M,h0 → h1 + . . . + hn ∣ emp) ≼ (M,h0 → h + h1 + . . . + hn ∣ emp)

≼-merge-env

(ηo → ηi, η
′
o → η′i ∣ emp) ≼ (ηo → η′′i , η

′
o → η′′i ∣ emp)

≼-void-env

(ϵ ∣ emp) ≼ (●→ η ∣ η ↦ E♯)

≼-extend-env
η ∈ In (M)

(M,η0 → η1 + . . . + ηn ∣ emp) ≼ (M,η + η0 → η1 + . . . + ηn ∣ emp)

Figure 6.18: Rules for introducing approximations

(— ∣ l′i ↦ {f ∶ u♯} , l′i, v♯, ηe, ηc) , .f ∶=2 ⋅ ⇓ (— ∣ l′i ↦ {f ∶ v♯} , ηe)
red-field-asn-2(f)

(— ∣ l′i ↦ {f ∶ u♯} ⋆ k′i ↦ {f ∶ u♯} , l′i, v♯, ηe, ηc) , .f ∶=2 ⋅ ⇓ (— ∣ l′i ↦ {f ∶ v♯} ⋆ k′i ↦ {f ∶ u♯} , ηe)
glue-frame-○

(—, ko → l′i + k′i ∣ l′i ↦ {f ∶ u♯} ⋆ k′i ↦ {f ∶ u♯} , l′i, v♯, ηe, ηc) , .f ∶=2 ⋅ ⇓ (—, ko → l′i + k′i ∣ l′i ↦ {f ∶ v♯} ⋆ k′i ↦ {f ∶ u♯} , ηe)
glue-frame-○

(—, ko → ki ∣ ki ↦ {f ∶ u♯} , k, v♯, ηe, ηc) , .f ∶=2 ⋅ ⇓ (—, ko → ki ∣ k ↦ {f ∶ u♯ ⊔ v♯} , ηe)
glue-weaken-≼

Figure 6.19: A weak update derived from a strong update

in Section 6.4.3, the rules only introduce membranes on simple formulae, then Rules ≼-
○ and ≼-⋆ complete the missing context. Rule ≼-loc is the basic approximation rule for
replacing an inner location li with a summary node ki in a membrane, changing a mem-
brane of the form (lo → li) to the membrane (lo → ki). Rules ≼-merge and ≼-merge-env
describe how two summary nodes can be merged into one, as pictured in Figure 6.17b.

Rule ≼-void describes how a summary node can be introduced from no location. There is
indeed no constraint enforcing the valuation of a summary node to result in a non-empty
set. We can thus make summary nodes appear out of thin air: the associated valuation ρ

associates an empty set to such a summary node. We can state any kind of properties for
such void summary nodes. Rule ≼-materialise formalises the principle of materialisa-
tion, extracting a location from a summary node. It requires an entry point to a summary
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node k, that is, an object field whose value is exactly k, and whose host object o is refer-
enced by a precise abstract location l. Such an entry point ensures that the valuation ρ (k)
of the summary node k is not empty. We can thus divide the concrete set ρ (k) of loca-
tion in two: the entry point location l′ and the rest k′ of the summary node. The next
section provides an example of how this rule can be used. Rule ≼-materialise-ext is a
similar rule, but accepts as entry point a formula extension: we know that in the concrete
derivation, there will be a location ℓ at this place, and we can thus consider it.

Rule ≼-extend adds inner locations associated to an outer location. For instance, this rule
rewrites the precise membrane (l1 → l′1, l2 → l′2) into the less precise membrane Mr =
(l1 → l′1 + l′2, l2 → l′1 + l′2) encountered above. Figure 6.18 shows similar rules for envir-
onment locations η, which behave like summary nodes. Each of these rules are defined
such that if (M1 ∣ ϕ1, x

♯) ≼ (M2 ∣ ϕ2, x
♯
2), then for ⌜all concretisation (ρo, ν, ρi) ∈ γ (M1),

(He,H) ⊧ρi ϕ1, and x ∈ γρi (x♯1)⌝, then there exists an inner valuation ρ′i such that
(ρo, ν, ρ′i) ∈ γ (M2), (He,H) ⊧ρ′i ϕ2, and x ∈ γρ′i (x

♯
2): these rules are simple enough that

only the inner valuation ρi needs to change when the membraned formula (M1 ∣ Φ1, x
♯
1)

is rewritten to (M2 ∣ Φ2, x
♯
2). In particular, the equations 6.5 to 6.7 of Section 6.4.1 still

apply. This makes the proof of soundness of the rules of Figure 6.18 simple to do.

Shape analyses usually differentiate between strong updates and weak updates. We have
only specified strong updates through the abstract Rule red-field-asn-2(f) of Figure 6.14:
⌜the value u♯ stored in the object before the assignment⌝has been completely removed and
replaced by the new value v♯. For summary nodes k, it is not sound to replace the old
value as ⌜only one concrete location ℓ of the valuation ρ (k) of the summary node⌝ has
been updated: the old value may still be present in other locations.We thus usually use the
following rule performing a weak update: it merges the new value with the old value.

red-field-asn-2(f)

(— ∣ k ↦ {f ∶ u♯} , ηe, ηc, k, v♯) , .f ∶=2 ⋅ ⇓ (— ∣ k ↦ {f ∶ u♯ ⊔ v♯} , ηe, ηc)

This rule is not in our abstract semantics as it is deductible from materialisations: Fig-
ure 6.19 shows such an derivation. The derivation proceeds in four steps, to be read clock-
wise from the initial semantic context below left to the final conclusion below right. First
Rule glue-weaken-≼ performs a materialisation using Rule ≼-materialise-ext to split
the summary node ki into l′i and k′i. To simplify, we consider that the abstract values u♯

and v♯ are not affected by this membrane transformation. Second, the context is framed
to only focus on the location l′i on which the strong update will be performed. In particu-
lar, the summary node k′i has been removed from the formula. Third, the strong update is
performed: the value u♯ is replaced by v♯. But the summary node k′i has not been updated
and its value is still u♯. Fourth, the abstract locations l′i and k′i are merged back again in
Rule glue-weaken-≼ using Rule ≼-merge. Note that although syntactically similar, the
two weakenings performed by this rule are not using the same rules from Figure 6.18.
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...

(M0 ∣ ϕ0, η0, ηc) , x ∶= alloc ⇓ (M1 ∣ ϕ1, η1, ηc)

red-var-global(l)
(Mi ∣ ϕi, ηi, ηc) , l ⇓ (Mi ∣ ϕi, ηi,⊺Z) (Mi ∣ ϕi, ηi, ηc,⊺Z) ,while1 (l > 0) s ⇓ Φ

(Mi ∣ ϕi, ηi, ηc) ,while (l > 0) s ⇓ Φ
red-while(l, s)

(M1 ∣ ϕ1, η1, ηc) ,while (l > 0) s ⇓ Φ
glue-weaken-≼

(M1 ∣ ϕ1, η1, ηc) , ⋅ ;1while (l > 0) s ⇓ Φ
red-seq-1(while (l > 0) s)

(M0 ∣ ϕ0, η0, ηc) , x ∶= alloc;while (l > 0) s ⇓ Φ
red-seq(x ∶= alloc,while (l > 0) s)

(Mi ∣ ϕi, ηi, ηc,⊺Z) ,while1 (l > 0) s ⇓ (Mi ∣ ϕi, ηi)
red-while-1-neg(l, s)

(Mi ∣ ϕi, ηi, ηc,⊺Z) ,while1 (l > 0) s ⇓ Φ
glue-weaken-≼

...

(Mi ∣ ϕi, ηi, ηc,⊺Z) , s ⇓ (M ′
i ∣ ϕ′i, η′i, ηc)

(Mi ∣ ϕi, ηi, ηc) ,while (l > 0) s ⇓ Φ

(M ′
i ∣ ϕ′i, η′i, ηc) ,while (l > 0) s ⇓ Φ

glue-weaken-≼

(M ′
i ∣ ϕ′i, η′i, ηc) ,while2 (l > 0) s ⇓ Φ

red-while-1-pos(l, s)

(Mi, ●→ l1 ∣ ϕ1, η, ηc,⊺Z, ) ,while1 (l > 0) s ⇓ Φ
red-while-1-pos(l, s)

M0 = (η → η0, η
′ → ηc) ϕ0 = η0 ↦ {l↦ ⊺Z} ⋆ ηc ↦ {_↦ ⊠} M1 = (ηo → η0, η

′ → ηc, ●→ l1 + η1)

ϕ1 = ϕ0 ⋆ η1 ↦ {l↦ ⊺Z, x↦ l0} ⋆ l0 ↦ {_ ∶ ⊠} Mi = (ηo → ηg, η
′ → ηc, ●→ k + ηi + ηg)

ϕi = ηg ↦ {l↦ ⊺, x↦ ⊺, t↦ ⊺} ⋆ ηc ↦ {_↦ ⊠} ⋆ ηi ↦ {l↦ ⊺, x↦ k} ⋆ k ↦ {next ∶ k ⊔ ⊠, _ ∶ ⊠}

M ′
i = (ηo → ηg, η

′ → ηc, ●→ k + η′i + ηg + l + ηf) ϕ′i = ηg ↦ {l↦ ⊺, x↦ ⊺, t↦ ⊺} ⋆ ηc ↦ {_↦ ⊠} ⋆ η′i ↦

{l↦ ⊺, x↦ l} ⋆ ηf ↦ {t↦ l} ⋆ k ↦ {next ∶ k ⊔ ⊠, _ ∶ ⊠} ⋆ l ↦ {next ∶ k, _ ∶ ⊠}

Figure 6.20: Beginning of the abstract derivation of the example program

6.5.4 Example

Separation logic is often extended with precise structures depending on the analysed
programs—usually inductive structures [BG14]. Our framework does not forbid the use
of these structures, but we chose a less precise abstraction. Summary nodes, on the other
hand, are a generic abstraction and do not depend on the precise structure used in the
analysed programs. We illustrate our analysis through an example manipulating lists.

Consider the following program creating a linked list of size given by⌜the variable l, whose
precise value we do not know and abstract by ⊺Z⌝. We use a non-pure function to modify
a local object t. This example is interesting as it makes use of the two rules allocating
locations: Rules red-new-obj and red-app-2(s).

x ∶= alloc;while (l > 0) x ∶= (λt.t.next ∶= x; l ∶= l + (−1) ; return t) (alloc)
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Let s be the loop body x ∶= (λt.t.n ∶= x; l ∶= l + (−1) ; return t) (alloc). Figure 6.20 shows
the beginning of the abstract derivation, on the semantic context (M0 ∣ ϕ0, η0) = (ηo →
η0, η

′ → ηc ∣ η0 ↦ {l↦ ⊺Z}⋆ηc ↦ {_↦ ⊠} , η0, ηc). The resulting membraned formula Φ
is still to be found. This example does not use the local context ηc, which is mapped to an
empty environment. The derivation starts by evaluating the assignment x ∶= alloc. This
allocates two new locations: a location l1 for the new object, but also a location η1 for the
new environment allocated to store x.The createdmembraneM1 thus contains a rewriting
●→ l1 + η1 allocating these two locations (see Figure 6.20).

As for the example of Section 4.4.2.2, it is not possible to determine in advance⌜the number
of steps in the execution of this program⌝. The abstract derivation is thus infinite. We build
this infinite derivation by exhibiting an invariant. Because of the allocations, membranes
and formulae increase over the abstract derivation. To find an invariant, we have merged
the allocated locations into a summary node k. In the example, all locations are merged
into one, but smarter mergings could be performed if needed. We only need one environ-
ment at a time in this example, other environments being old versions of the current envir-
onment. There is however no way to garbage collect [MS06; Jag+98] environments in our
semantics, both concrete and abstract. We thus merge all previously used environments
into a garbage summary node ηg , whose associated environment associates all variables
to ⊺. Note that the external initial environment location ηo has also been merged into this
summary node: we can not remove it (as it would change the interface of the membraned
formula), and it has to be linked with the associated inner location. The introduction of
the invariant is performed by Rule glue-weaken-≼.

When reaching the term while1 (l > 0) s, both Rules red-while-1-neg(l, s) and red-
while-1-pos(l, s) apply. Both rules are thus considered in parallel, as explained in Sec-
tion 4.4.2.1. The application of Rule red-while-1-neg(l, s) stops the evaluation in the
membraned formula (Mi ∣ ϕi, ηi). To relax the constraints on the final result Φ, we first
apply Rule glue-weaken-≼: we have the constraint (Mi ∣ ϕi, ηi) ≼ Φ about the yet un-
known Φ. During the execution of the loop body, several locations are created: a new
location l is allocated for the object creation, an environment location ηf for the function
call, as well as a new environment location η′i for the update of the global environment,
whose details we hide. The body results in the membraned formula (M ′

i ∣ ϕ′i, η′i). This is
not exactly our invariant, but Rule glue-weaken-≼ is applied again to approximate it
to our resulting invariant. We could also have applied Rules glue-frame-⋆ and glue-
frame-○ to remove the allocated environment locations. The top of the derivation ends
with the already seen semantic triple (Mi ∣ ϕi, ηi) ,while (l > 0) s ⇓ Φ: it has thus been
proven to be an invariant, and the infinite derivation loops back to the first occurrence of
this semantic triple, just above the first application of Rule glue-weaken-≼

Overall,⌜the only constraint collected on the membraned formula Φ⌝was (Mi ∣ ϕi, ηi) ≼ Φ.
We thus define Φ to be exactly (Mi ∣ ϕi, ηi). The final result states that the variable x

points to a set of concrete locations ρ (k), each with exactly ⌜the field next, whose value
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is either a location to the same set ρ (k), or is undefined⌝. This is not exactly a descrip-
tion of a list: it may be a looping list, or there could be several lists in the set ρ (k). It is
however an interesting result. This example shows how our glue rules—and in particular
Rule glue-weaken-≼—can be used to build derivations. We believe that this formalism
provides a useful framework for proving analysers sound. We have used summary nodes
to abstract lists, but the summary node abstraction can be used for various data structures.
In particular, any points-to analysis [JC09] could be expressed in this framework.

6.6 Related Work and Conclusion

Our formalisation shares some interesting traits with analyses targeting JavaScript. In
particular ⌜the TAJS analyser of Jensen, Møller, and Thiemann [JMT09]⌝ and ⌜the work of
Cox, Chang, and Rival [CCR14]⌝. Both of these works aim at building real-world analysers
for JavaScript.Theseworks are not yet related to JSCert or λJS and could be a good target
to apply our formalism in further work: our formalism aims at building certified abstract
semantics, which can then be related to concrete analysers (see Section 3.1). This would
probably require a significant amount of work, as there are non-negligible differences
between these two projects and our formalism. For instance, the TAJS project relies on
a bytecode for JavaScript and thus uses a very different structure than the pretty-big-
step of JSCert. We now consider how they abstract the memory model of JavaScript to
evaluate ⌜how practical our formalism would be on these two projects⌝.

In both cases, objects are abstracted as finite maps from fields to abstract values with a de-
fault value—very similarly to our cofinite objects (see Section 6.3.3)—, but both formalisms
come with their specificities. TAJS specifies two default values: one for array indexes and
one for other fields. Array indexes are fields whose name is parsable as a positive integer.
Program 1.4 of Section 1.2.6 provides an example of a situation in which such a separation
can be crucial. Their abstract values are much more precise than the one presented in this
chapter, but they fit the constraints which we imposed on basic values b♯: they provide a
complete lattice, and thus a poset. An interesting common point is the way store values
are defined in TAJS, rewritten below with our notations.

u♯ ∈ Store♯ = Val ♯ × {◻,⊠} × flag ×modified

In particular, they also use the product poset of Definition 3.2. The set flag represents
JavaScript flags such as writable or enumerable (see Section 2.5.1.2). The set modified is
discussed in the next paragraph. The second formalism (of Cox et al.) features only one
such default field, named noti in their formalisation. However, their formalism enables
to perform summarisation of fields. This is an interesting feature: in our formalism, we
only summarise locations—never the fields of an object (apart from the default value of
cofinite objects). This feature has been introduced to deal with for-in constructs. Their
formalism enables to consider a (symbolic) set F of fields, to constrain this set using pure
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formulae of separation logic, then specify that all the fields of F associated to a given
object are abstracted by a given abstract value u♯. The drawback of this formalisation
choice is that formulae are much more complex, carrying constraints such as F1 ∩F2 = ∅
or F1 ⊆ F2. Abstract operations have to check whether they are sound with respect to all
these constraints. Our formalism is not yet ready to deal with such complex constructs.

Our formalism features an interesting aspect: objects can be partial. For instance a func-
tion which only needs the fields f and g of a object—for example to read the value of f and
update the value of g—may be specified by a partial specification. An example of such a
partial specification could take as argument ⌜an abstract object of the form {f ∶ +, g ∶ ⊺}⌝
and return an abstract object of the form {f ∶ +, g ∶ +}. When given a fully specified ob-
ject, it will be split into the needed part and the untouched parts. For instance the object
{f ∶ +, g ∶ ⊠, h ∶ +, _ ∶ ⊠} will be split into {f ∶ +, g ∶ ⊠} and {h ∶ +, _ ∶ ⊠}; the function
will then be applied, and Rule glue-frame-⋆ will reinsert the missing part, resulting in
the object {f ∶ +, g ∶ +, h ∶ +, _ ∶ ⊠}. To get a similar precise result, TAJS needs to specify
that some fields are unchanged by the function using themodified component of abstract
store values. We believe our approach to be simpler in this aspect.

Both TAJS and the formalisation of Cox et al. use summary nodes. For instance, TAJS
provides two abstract locations for each allocation site: a singleton location l and a sum-
mary node k. The singleton location tracks the last object allocated from this site, and the
summary node tracks all the other. Our approach enables this choice, but is more generic:
we enable the use of heuristics which are not based on the allocation site. We also en-
able to track several singleton locations, and to summarize locations using any heuristic.
In particular, the heuristic of TAJS can be expressed in our framework. We thus believe
our approach to be very general and to be able in the long run to relate already existing
analysers to JSCert or other pretty-big-step semantics.

In this chapter, we have presented a formalisation of separation logic based on⌜the pretty-
big-step formalism, which has been introduced in the previous two chapters⌝. Separation
logic does not interact well with abstract interpretation, but we have identified an interest-
ing problem in the interactions between the frame rule and the weakening rule of abstract
interpretation. We claim that membranes can solve this problem by precisely storing ⌜the
rewritings performed by the frame rules⌝. There is still room for improvement, notably in
the proof of soundness of our approach. To the extend of our knowledge, the notion of
membrane is a novel approach. We have seen that they are expressive enough to express
shape properties and we think that they are worth further investigation.

We think that ⌜the formalism of Chapters 4 and 5⌝ enables the definition and the proof of
abstract semantics in a guided and principled way. We have shown that it enables to ex-
press various kinds of abstract analyses, including abstract domains from separation logic.
We also think that this approach helps to formally relate analysers to certified abstract se-
mantics, and that it is a significant step towards the certification of real-world analysers
for JavaScript.
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Conclusion

In this dissertation, we have seen how complex JavaScript is. The complexity of Java-
Script does not come from its memory model, but from all the exceptions introduced
by the JavaScript language itself. This is interesting as it is a completely different kind
of complexity than this of languages like C♯minor, notably analysed by the Verasco
certified analyser [Jou+15]. The complexity of C♯minor resides in its memory model, in
particular, its pointer arithmetic. The memory model of JavaScript is comparably simple
(see Section 1.2.3).⌜What makes the difficulty of JavaScript⌝ is the size of its semantics. For
comparison, the Cminor semantics [Ler06] contains about the same number of derivation
rules than our O’While language (see Figures 4.15, 4.17, and 6.3). JavaScript is much
bigger: JSCert contains almost a thousand semantic rules and does not yet cover the full
JavaScript semantics (see Section 2.4.2).

Such sizes raise several issues. One of these issues is that it is difficult to trust any pro-
gram analyser for JavaScript, as it is highly probable that one of these corner cases has
been missed by programmers. We built JSCert with the explicit goal to serve as a basis
for the Coq certification of ⌜analyses on the JavaScript language⌝. We invested a large
amount of effort to make JSCert as trustable as it could be. The JSCert project relies
on two main trust sources: the JSCert specification has been written to closely corres-
pond to the official specification, and JSCert comes with the JSRef interpreter, which
has been run against JavaScript test suites. These two certification techniques make JS-
Cert a highly trustable semantics. In particular, JSCert can now be used as a new trust
source for analyses and other tools. The JSCert project is still an ongoing project—as
Section 2.7.5 shows—and we expect it to evolve with the updates of JavaScript.

JSCert is a large semantics. In particular, ⌜the amount of work to apply a traditional ap-
proach for building abstract interpreters⌝appears to be overwhelming. We have thus intro-
duced a new way of building abstract analysers. We completed the approach of Schmidt
(see Section 3.3) tomake it fit the framework of JSCert, namely the pretty-big-step format.
Our approach aims at reducing the cost of defining an abstract semantics, as well as prov-
ing it sound. To this end, we built a Coq framework to define certified abstract semantics.
In our framework, each rules is independently abstracted. In particular, abstract rules do
not have to consider how different concrete rules can interact with each other. Our frame-
work is then able to build an abstract semantics from these rules, as explained in Sec-
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tion 4.4.2. The soundness proof is similar: each pair of ⌜abstract and concrete rules⌝ are
locally proven sound, and our framework ensures that the whole abstract semantics is
sound (see Theorem 5.1 of Section 5.3). Note that we only focus on abstract semantics
and not abstract interpreters. Indeed, given the size of the JSCert semantics, we consider
that proving an abstract semantics sound is already a huge work. We consider that build-
ing abstract interpreters is a second step in our project. Such interpreters have to use
heuristics to efficiently find invariants. ⌜Building efficient real-world interpreters⌝ is a very
different task than building abstract semantics, both being especially difficult in the case
of JavaScript given the size of its semantics.

We have instantiated our framework with a memory domain to analyse our O’While lan-
guage. This memory model is based on separation logic, which we believe is a powerful
framework to ensure the modularity of an analysis. Separation logic is based on a spe-
cial rule, called the frame rule (see Section 6.2). This rule is known to have some issues
when interactingwith abstract interpretation, in particular in the way inwhich separation
logic treats identifiers in formulae. We proposed a novel approach to protect these identi-
fiers, and more generally to enable global reasoning in our framework based on local ac-
tions.This approach is based on the notion of membranes. Membranes have been designed
to propagate the local renamings performed on formulae. This work led us to precisely
identify the interaction between the frame rule of separation logic and the weakening rule
of abstract interpretation, as well as proposing a solution to mix these two rules.

This thesis has resulted in several Coq developments [Bod16]. In particular the JSCert
specification and the JSRef interpreter, as well as its proof of correctness. We also provide
a precise formalisation of the pretty-big-step format. This led us to formalise the notions
of concrete and abstract semantics in their general case. This formalisation has been in-
stantiated into several languages, and has been used to certify abstract analysers. These
analysers have been extracted and can thus be run (for instance online [Bod16]). These
abstract interpreters were able to produce non-trivial results. We have also formalised a
large part of the domains of separation logic presented in Chapter 6.

Perspectives
This thesis opens various paths for further works. Of course, the unfinished development
of Chapter 6 has to be continued. In particular, we would like to explore more flexible
interactions between the weakening rule and the frame rule (see Section 6.4.5).

This would offer opportunities to further mix abstract interpretation with separation logic.
In particular, we believe that membranes can be extended to holdmore kinds of rewritings,
or could be used in combination with other structures of separation logic. An interesting
directionwould be to build a vertical frame rule, which rewrites entire abstract derivations.
As mentioned in Section 6.4.4, format 1 and 2 rules have not been minimally specified in
our O’While language. This is due to the way which the frame rule applies: from an
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6

already built semantic triple Φ, t ⇓♯ Φ′, we can infer ϕc ⋆ Φ, t ⇓♯ ϕc ⋆ Φ′. This rewriting
is made after the initial semantic triple has been defined. The idea of a vertical frame
rule would be to enable the rewriting of abstract derivations during their construction.
For instance, we would like to be able to derive the second derivation below from the first.
We could then minimal specify the format 1 Rule red-while-2(e, s)—for instance only on
the membraned formula (— ∣ emp, ηe, ηc)—and apply this vertical frame rule to complete
the needed resources for the above derivation.The current formalism does not enable this,
and it would be an interesting extension.

...

(— ∣ emp, ηe, ηc) ,while (e > 0) s ⇓ Φ

(— ∣ emp, ηe, ηc) ,while2 (e > 0) s ⇓ Φ
red-while-2(e, s)

...

ϕ ⋆ (— ∣ emp, ηe, ηc) ,while (e > 0) s ⇓ Φ

ϕ ⋆ (— ∣ emp, ηe, ηc) ,while2 (e > 0) s ⇓ Φ
red-while-2(e, s)

This thesis provides two formalisms which are not yet connected. On one hand, we have
indeed formalised a pretty-big-step semantics of JavaScript, namely JSCert. On the
other hand, we have formalised how to build and prove sound an abstract semantics
from a pretty-big-step semantics. A natural step would thus be to apply the formalism
of Chapters 4 and 5 to JSCert. Such a task would be an interesting exercise, but it would
be long—even in the systematic, almost mechanical approach developed in this thesis.
Indeed, the pretty-big-step style of JSCert is slightly different from our pretty-big-step
formalisation. In particular JSCert does not specifies what has to be considered as a syn-
tax element, and what has to be considered as a semantic element. For instance, we show
below an extract of JSCert from Program 2.8. This rule is to be compared to Rule red-
while-2(e, s) (see Figure 4.2) also shown below. In this last rule, the terms e and s are
identified as syntactic elements as they appear in the rule name. Similarly, the elementsH ,
He, ℓe, and ℓc are semantic elements. In the Coq rule red_while_2e_ii_false, no separa-
tion is made between syntactic elements like e1 and t2 and semantic elements like S and C.
The translation from JSCert to the formalism of Chapter 4 is thus not trivial.

1 | red_while_2e_ii_false : forall S C labs e1 t2 rv R o,

2 res_type R = restype_normal →
3 red_stat S C (stat_while_1 labs e1 t2 rv) o →
4 red_stat S C (stat_while_6 labs e1 t2 rv R) o
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red-while-2(e, s)
H,He, ℓe, ℓc,while (e > 0) s ⇓ r

H,He, ℓe, ℓc,while2 (e > 0) s ⇓ r

Additionally, JSCert does not contain any transfer functions: the JSCert specification is
defined by a predicate. We do not foresee any major difficulties in a translation of JSCert
to our pretty-big-step formalism. It would however take a large effort, and other possib-
ilities could be envisaged. For instance, we could make use of the JSExplain project (see
Section 2.8).This project aims at providing a specification of JSCert and JSRef in a unique
format, translatable to a Coq specification and an OCaml program.The JSExplain project
is on-going work, and we expect it to eventually fit in the present framework.

From such a version of JSCert, we could then define abstract domains to analyse Java-
Script. Such domains can be extensions of the domains defined in Chapter 6, but can also
be completely different. The longer part of this step will be to abstract and prove each ab-
stract transfer function for each rule in the chosen domains. We have however made sure
to make this step as simple as possible (as it does not require to consider the interactions
between concrete rules) and we expect this step to be partially automatable. Once an ab-
stract semantics has been defined, a challenging step would be to certify already existing
JavaScript analysers, such as TAJS [JMT09]. We expect the proof of the soundness of
such analyser to require less effort by our means than by a direct approach.

Alternatively, our approach could be applied by providing more precise domains for the
O’While language, then use the formalism of λJS or JSExplain to analyse a JavaScript
program. Indeed, each of these two projects translates a JavaScript program into a sim-
pler intermediary language. Such a language appears to be close to O’While and we do
not expect ⌜the formalisation of such a language in our framework⌝ to be difficult. This
would provide a formally verified analyser for this small language. To analyse a Java-
Script program, we would then translate it into this language to analyse the resulting
program.

In this dissertation, we have focussed on JavaScript. But the approach of Chapters 4, 5,
and 6 could be applied to any semantics expressed in pretty-big-step. It can thus serve as
a basis to analyse other kinds of languages. The pretty-big-step format is currently not
spread among language semantics. It is has however been shown that big-step semantics
can be represented as ⌜small-step semantics manipulating continuations [AB07]⌝. We thus
expect that our formalism can be adapted to small-step semantics, which would provide
a large scale of semantics to be analysed.
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