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Abstract

Distributed adaptive estimation over multitask networks

D
istributed adaptive learning allows for a collection of interconnected agents to perform pa-
rameter estimation tasks from streaming data by relying solely on local computations and

interactions with immediate neighbors. Most prior literature on distributed inference is con-
cerned with single-task problems, where agents with separable objective functions need to agree
on a common parameter vector. However, several network applications require more complex
models and flexible algorithms than single-task implementations since their agents have to es-
timate and track multiple objectives simultaneously. Networks of this kind are referred to as
multitask networks. Although agents may generally have distinct though related tasks to per-
form, they may still be able to capitalize on inductive transfer between them to improve the
estimation accuracy. This thesis aims to bring advances on distributed inference over multitask
networks. First, the unsupervised scenario is considered. The well-known diffusion LMS strategy
to solve single-task estimation problems is presented and its performance in multitask environ-
ments is studied in the presence of noisy communication links. In order to improve the estimation
accuracy, an adaptive strategy allowing the agents to limit their cooperation to neighbors with
similar objective is presented. Next, we consider the multitask diffusion LMS strategy which
has been proposed to solve multitask estimation problems where the network is decomposed into
clusters of agents seeking different, but close (in the squared Euclidean norm) parameter vectors.
For rigor, a realistic scenario is assumed whereby the synchronous assumption is violated. The
performance of the multitask strategy over asynchronous networks is assessed. Noteworthy, we
find that the multitask strategy is robust to the various sources of uncertainties occurring in
the asynchronous network. In the third part, we consider multitask estimation problems over
clustered networks where the parameter vectors at neighboring clusters have a large number of
similar entries and a relatively small number of distinct entries. Based on the proximal gradient
method, a proximal multitask LMS strategy is derived to solve the problem and its stability
is studied using the energy conservation framework. Finally, we consider multitask estimation
problems where each agent is interested in estimating its own parameter vector and where the
parameter vectors at neighboring agents are related linearly according to a set of constraints. A
projection based LMS approach is derived and studied in detail. Several numerical examples and
motivating applications are considered throughout the thesis to validate the theoretical models
and to show the benefits of learning multiple tasks simultaneously.

Keywords: Distributed estimation, multitask networks, adaptive algorithms, cooperation, asyn-
chronous networks, imperfect information exchange, diffusion strategies, regularizer, smooth-
ness condition, sparsity-inducing coregularizer, forward-backward splitting, gradient projection
method, clustering, energy conservation framework.
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Résumé

Estimation distribuée adaptative sur les réseaux multitâches

L
’apprentissage adaptatif distribué sur les réseaux permet à un ensemble d’agents de résoudre
des problèmes d’estimation de paramètres en ligne en se basant simplement sur des calculs

locaux et sur des échanges locaux avec les voisins immédiats. La littérature sur l’estimation dis-
tribuée considère essentiellement les problèmes à simple tâche, où les agents disposant de fonctions
objectives séparables doivent converger vers un vecteur de paramètres commun. Cependant, dans
de nombreuses applications nécessitant des modèles plus complexes et des algorithmes plus flexi-
bles, les agents ont besoin d’estimer et de suivre plusieurs vecteurs de paramètres simultanément.
Nous appelons ce type de réseau, où les agents doivent estimer plusieurs vecteurs de paramètres,
réseau multitâche. Bien que les agents puissent avoir différentes tâches à résoudre, ils peuvent
capitaliser sur le transfert inductif entre eux afin d’améliorer les performances de leurs estimés.
Le but de cette thèse est de proposer et d’étudier de nouveaux algorithmes d’estimation distribuée
sur les réseaux multitâches. Dans un premier temps, nous présentons l’algorithme diffusion LMS
qui est une stratégie efficace pour résoudre les problèmes d’estimation à simple-tâche et nous
étudions théoriquement ses performances lorsqu’il est mis en œuvre dans un environnement mul-
titâche et que les communications entre les nœuds sont bruitées. Ensuite, nous présentons une
stratégie de clustering non-supervisé permettant de regrouper les nœuds réalisant une même
tâche en clusters, et de restreindre les échanges d’information aux seuls nœuds d’un même clus-
ter. Dans un second temps, nous considérons l’algorithme multitask diffusion LMS qui a été
proposé pour résoudre des problèmes d’estimation multitâches où le réseau est décomposé en
clusters de nœuds, et où différents clusters cherchent à estimer différents vecteurs de paramètres
qui sont proches en norme Euclidienne. Nous considérons le scénario asynchrone et nous étudions
les performances de l’algorithme. Nous constatons que la stratégie multitâche est robuste aux
événements asynchrones se produisant dans le réseau. Dans la troisième partie, nous considérons
les problèmes d’estimation multitâches où les agents sont groupés en clusters, et où les vecteurs
de paramètres des clusters voisins ont un grand nombre de composantes similaires et un petit
nombre de composantes différentes. En se basant sur la méthode proximale, nous proposons
l’algorithme proximal multitask diffusion LMS pour résoudre le problème et nous étudions la
stabilité de l’algorithme. Finalement, nous considérons les problèmes d’estimation où chaque
agent dans le réseau cherche à estimer son propre vecteur de paramètres et où les tâches aux
nœuds voisins sont liées linéairement par des contraintes d’égalité. En se basant sur les méth-
odes de projection, nous proposons un algorithme pour résoudre le problème et nous étudions
ses performances. Les simulations numériques montrent la validité des modèles théoriques et les
bénéfices de la coopération sur les réseaux multitâches.

Mots-Clés : Estimation distribuée, réseaux multitâches, algorithmes adaptatifs, coopération,
réseaux asynchrones, échange d’informations bruitées, stratégies de diffusion, régularisation, con-
dition de régularité, parcimonie, méthode proximale, méthode de projection, clustering, conser-
vation d’énergie.
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Introduction

I
n this chapter, we review the concept of distributed processing over networks by focusing first

on the single-task scenario where all agents are seeking a common objective. In particular,

we recall state-of-the-art distributed techniques to solve general single-task estimation problems

in a distributed manner by focusing on diffusion type strategies. Next, we introduce multitask

networks considered in this work and we provide a literature review describing relevant works in

the field of distributed processing over this kind of networks. Finally, we provide an overview of

the problems addressed in this dissertation and a brief chapter-by-chapter description.

1.1 Distributed processing over networks

With the rapid development of computer, network, and communication technologies, distributed

data processing techniques have received a lot of attention in many areas of engineering, bio-

logical, and social sciences. A wide range of problems are network structured [Jackson, 2008,

Newman, 2010, Lewis, 2011, Sayed, 2014a]. Sensor networks, power grids, communication net-

works, biological colonies, economic networks, and internet are some typical examples. Such

networked systems consist of a collection of autonomous agents (sensors, processors, actuators,

etc.) distributed over some geographic area and connected through a network topology. In a

distributed or decentralized mode of operation, the agents that are connected by a topology are

allowed to exchange information (raw data, processed data, etc.) only with their intermediate

neighbors and to perform local computations in order to achieve some network global task. Na-

ture exhibits many motivating examples where a complex pattern of behavior arises from limited

and localized interactions among the individual agents of the network. While each individual

agent is not capable of complex behavior, it is the interaction among agents and the distributed

processing of dispersed data that enable the agents to solve sophisticated tasks. For example,
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in fish schools [Partridge, 1982], fishes are able to swim in the same direction in a coordinated

manner. The individual agents tend to have similar speeds, to move in alignment, and to react

instantly when predators appear by reconfiguring their topology to evade the predator and then

regrouping to continue.

Studying and developing strategies for distributed optimization, inference, and parameter

estimation over networks become an important step to handle inference problems in several

domains, including signal processing, sensor networks, machine learning, optimization, biology,

and control. The objective of the network is to estimate some parameters or phenomena of

interest from streaming data collected by the agents, e.g., the position of some targets or the

power system state in power grids. Since the parameters of interest may change over time, the

algorithm must be able to track these changes. Furthermore, in real applications, the network

system is not very reliable and the estimation algorithm must be able to cope with several sources

of uncertainties such as changing topologies, packet losses, agents turning on and off, random link

failures, quantization errors, and additive noise over the communication links. Cooperation, real-

time adaptation, self-healing, and self-organization are particular features possessed by biological

systems to be inherited by networked systems tasked with distributed parameters estimation.

1.1.1 Centralized vs. distributed solutions

There are two main strategies for the estimation of parameters or phenomena from noisy stream-

ing measurements collected by a set of spatially distributed agents, namely, centralized solutions

and distributed solutions. In a centralized mode of operation, agents send their data to a fusion

center for processing. The fusion center performs all the computations required for the estima-

tion and sends the results back to the agents. While centralized solutions may strongly benefit

from collecting the data from across the network at the fusion center, there are several reasons

for which one may desire distributed or decentralized implementations relying only on in-network

processing and local exchange of information. In addition to the fact that the datasets in many

modern problems are already distributed over geographically distinct sources, the centralized

solution suffers from some limitations related to [Sayed, 2014a]:

• Communication ressources: In a centralized solution, exchanging the data back and

forth between the agents and the fusion center results in a waste of communication ressources

and power;

• Robustness: In a centralized solution, any malfunction in the fusion center can lead to a

network breakdown;

• Privacy concerns: In some cases, there are some privacy issues in sharing data with

fusion center. In distributed implementations, agents are allowed to share locally some

processed version of the data so that their privacy is preserved.
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1.1.2 Distributed adaptive estimation over single-task networks

Distributed adaptive processing allows for a collection of agents to solve optimization problems

and parameter estimation problems from streaming data. It is particularly attractive in applica-

tions where the underlying signal statistics are unknown or time varying. Adaptation helps the

network to track variations in the parameters of interest as new measurements become available.

The continuous learning and diffusion of information across the network enable the agents to

respond, not only to drifts in the data, but also to changes in the network topology. Distributed

adaptive algorithms have also been used to model several biological networks encountered in

nature, such as fish schooling, bird flight formations, and bacteria motility [Sayed et al., 2013].

The literature on distributed estimation theory is large. However, we limit the discussion to

the class of single-time scale distributed adaptive algorithms based on stochastic (sub-)gradient

techniques that is directly related to the contents of this thesis. A comprehensive overview of

other classes of distributed algorithms, including ADMM based methods and two-time scales

implementations, is provided in [Sayed, 2014a]. Stochastic approximation techniques allow to

iteratively solve convex optimization problems based on noisy (sub-)gradient observations.

Depending on the cooperation protocol allowed among the agents, we distinguish between

two main classes of distributed algorithms, namely, incremental type algorithms and diffusion

type algorithms. As shown in Figure 1.1 (left), in an incremental mode of cooperation [Bertsekas,

1997, Nedic and Bertsekas, 2001, Rabbat and Nowak, 2005, Lopes and Sayed, 2007, Blatt et al.,

2007], each node communicates with only one neighbor, and the information flows on a cyclic

path that runs across all agents. Although incremental cooperation tends to require the least

amount of communications, it suffers from some limitations including the definition of a cyclic

path, which is an NP-hard problem, and sensitivity to links and agents failures. On the other

hand, in a diffusion mode of cooperation [Nedic and Ozdaglar, 2009, Dimakis et al., 2010, Kar and

Moura, 2011, Lopes and Sayed, 2008, Cattivelli and Sayed, 2010, Chen and Sayed, 2012], agents

communicate with their immediate neighbors as dictated by the network topology. Figure 1.1

(right) illustrates such diffusion mode. Although diffusion mode of cooperation requires more

communications than the incremental mode, it relaxes the requirement of setting a cyclic path

and improves the robustness to links and agents failures. For these reasons, diffusion mode of

cooperation is considered throughout this thesis.

The existing literature on distributed estimation over networks is mostly concerned with con-

sensus problems where a collection of agents with separable objective functions need to converge

asymptotically toward a common parameter vector. This kind of problem, where all agents in

the network are seeking the same objective, is referred to as single-task distributed estimation

problem. In general, single-task estimation over networks can be expressed as the problem of

minimizing the aggregate sum of cost functions, each available at an agent, subject to convex
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Figure 1.1: Two modes of cooperation. (Left) Incremental mode of cooperation. (Right) Diffusion
mode of cooperation.

constraints that are also distributed across the agents:

minimize
w

Jglob(w) ,
N∑
k=1

Jk(w),

subject to w ∈ W1 ∩ · · · ∩ WN ,

(1.1)

where w is the global optimization variable, N is the number of agents in the network, Jk(·) is

the cost function at agent k, and Wk is the constraint set at agent k (see Figure 1.2 for an illus-

tration). Each agent seeks to estimate the minimizer of (1.1) through local computations and

communications among neighboring agents without the need to know any of the constraints or

costs besides their own. Within the class of single-time scale stochastic gradient algorithms using

diffusion implementation, two main strategies have been proposed for solving single-task estima-

tion problems in a fully distributed manner, namely, consensus strategies [Nedic and Ozdaglar,

2009, Dimakis et al., 2010, Kar and Moura, 2011] and diffusion strategies [Lopes and Sayed,

2008, Cattivelli and Sayed, 2010, Chen and Sayed, 2012, Sayed et al., 2013, Chen and Sayed,

2013, Sayed, 2014a,b,c, Towfic and Sayed, 2014]. As shown in [Tu and Sayed, 2012], consensus

strategies can lead to unstable network behavior when constant step-sizes enabling adaptation

are used. In this dissertation, we shall focus instead on diffusion strategies that are particularly

attractive since they are scalable, robust, enable continuous learning and adaptation in response

to data drifts, and lead to stable behaviors when constant step-sizes are used.

In a nutshell, diffusion strategies are single-time scale distributed adaptive algorithms that

are able to respond to streaming data. Since their introduction, they have been adopted to solve

distributed estimation and optimization problems subject to a wide range of conditions [Srivas-

tava and Nedic, 2011, Lorenzo et al., 2012, Liu et al., 2012, Chouvardas et al., 2012, Lorenzo and

Sayed, 2013, Chen and Sayed, 2013, Wee and Yamada, 2013, Chouvardas et al., 2013, Sayed,

2014a, Towfic and Sayed, 2014, Vlaski and Sayed, 2015, Xia et al., 2011, Kanna and Mandic,

2016, Bianchi et al., 2011]. They have also been used to model various forms of complex behav-
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Figure 1.2: Single-task estimation over networks. All agents are seeking the solution of (1.1).

iors encountered in nature [Chen et al., 2010, Cattivelli and Sayed, 2011, Tu and Sayed, 2011b,

Sayed et al., 2013].

1.2 Distributed estimation over multitask networks

Recently, we have witnessed a growing interest in distributed inference over multitask networks

where several parameter vectors, also called tasks, need to be estimated simultaneously over a

network of agents. When the tasks are related, exploiting the dependencies and the similarities

between tasks is often the key to obtain better performance results. Prior to distributed estima-

tion over networks, the problem of estimating simultaneously several related tasks has received

considerable attention in several domains, specifically, in the machine learning. Within this com-

munity, this problem is the well known multitask learning problem or learning to learn problem.

Depending on the relationships between tasks, several centralized multitask approaches have

been derived and studied in the machine learning literature, under the assumption that all data

are available at the starting point at the fusion center. Although this dissertation is concerned

with distributed adaptive estimation over multitask networks, we devote the next paragraph to

briefly describe and review multitask learning in the machine learning community for motivation

purposes.

1.2.1 Insights from machine learning

Prior to the machine learning domain, the simultaneous estimation of several statistical models

was considered within the econometrics and statistics literature [Greene, 2003, Zellner, 1962,

Brown and Zidek, 1980, Breiman and Friedman, 1997]. Within the machine learning community,

learning multiple related tasks simultaneously has been shown to improve performance relative to

the traditional approach of learning each task independently [Caruana, 1997, Thrun and Pratt,
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1998, Baxter, 2000, Bakker and Heskes, 2003, Evgeniou and Pontil, 2004, Evgeniou et al., 2005,

Argyriou et al., 2007, Jacob et al., 2009]. Multitask learning is a machine learning approach to

inductive transfer (using what is learned for one problem to help another problem) that improves

generalization performances by using the domain information contained in the training signals

of related tasks as an inductive bias. Multitask learning has been applied to several important

problems such as, predicting the values of possibly related indicators in finance [Greene, 2003],

solving the problem of data sparsity encountered in bioinformatics applications [Xu and Yang,

2011], classifying the web-pages into possibly related categories [Chen et al., 2009a]. Depending

on the application, several task relatedness models have been considered. For example, in [Ev-

geniou et al., 2005, Jacob et al., 2009], it is assumed that the functions to be learned are close to

each other in some Hilbert spaces. However, in [Caruana, 1997, Baxter, 2000], it is assumed that

the tasks share a common underlying representation. Learning a low-dimensional representation

shared across multiple related tasks is considered in the work [Argyriou et al., 2007]. Based on

the prior information about how tasks are related, multitask learning algorithms were derived

by translating this prior information into constraints on the parameter vectors or functions to be

learned. A commonly used approach for designing multitask learning algorithms is to formulate

a global regularized optimization problem by adding a regularization term encoding the relation-

ships between tasks to the empirical loss function (squared loss, hinge loss, etc.) that penalizes

the error on the training data. A survey of task regularization methods for multitask learning in

machine learning is provided in [Xu and Yang, 2011]. Besides the regularization based methods,

Bayesian based approaches have also been used for multitask learning, where a probability model

capturing the relations between tasks is estimated simultaneously with functions corresponding

to each task [Bakker and Heskes, 2003].

1.2.2 Distributed adaptive estimation over multitask networks

There are many multitask oriented network applications where agents are observing distinct

phenomena and are sensing data arising from different models. For example, in monitoring

applications, different clusters of agents within a network may have to track multiple targets

moving along correlated trajectories. Although clusters have distinct though related tasks to

perform (e.g., estimating the coordinates of their targets), the agents may still be able to capi-

talize on inductive transfer between clusters to enhance their estimation accuracy. In distributed

power system monitoring, the local state vectors to be estimated at neighboring control centers

may overlap partially since the areas in a power system are interconnected [Kekatos and Gian-

nakis, 2013, Abboud et al., 2016]. Likewise, in wireless acoustic sensor networks dealing with

distributed active noise control (ANC), agents need to estimate different but overlapping ANC

filters [Plata-Chaves et al., 2016b]. In another example, sensor networks deployed to estimate a

spatially-varying temperature profile need to exploit more directly the spatio-temporal correla-

tions that exist between measurements at neighboring nodes [Abdolee et al., 2014]. In Big Data
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scenarios, learning a dictionary model over a network of agents, where each agent is in charge

of a part of the dictionary elements, is often required. This is because large dictionary models

may already be available at different locations and it is not feasible to aggregate all dictionar-

ies at one location due to communication and privacy considerations [Chen et al., 2015b]. In

cognitive radio networks, secondary users need to estimate the power spectrum transmitted by

all primary users, as well as local interference sources. The resulting multitask problem requires

cooperation between secondary users in order to alleviate the effect of signal path loss or local

shadowing [Bogdanović et al., 2014].

In all the previous examples, it is assumed that agents have some prior knowledge about how

tasks are related and about the cluster they belong to. Nevertheless, distributed estimation over

multitask networks has also been addressed in an unsupervised way, where it is assumed that

there is no prior information about the tasks or clusters. In the following, we provide a literature

review describing relevant works in the context of distributed estimation over multitask networks

in both supervised and unsupervised scenarios.

1.2.2.1 Unsupervised scenario

In this scenario, no prior information on possible relationships between tasks is assumed and

agents do not know which other agents share the same task. In this case, all agents cooperate with

each other as dictated by the network topology. Several research efforts have focused on analyzing

the performance of diffusion strategies when they are run, intentionally or unintentionally, in a

multitask environment.

It is shown in [Chen and Sayed, 2013] that the diffusion iterates converge toward Pareto

optimal solution when the optimization problem consists of a sum of individual costs with possibly

different minimizers. A detailed convergence analysis is provided in [Sayed, 2014a], where it is

shown that the value of the Pareto optimal point is influenced by many factors, including the

topology, the combination policies, and the step-sizes. It is further shown in [Chen et al., 2015a]

that, when the tasks are sufficiently similar to each other, the single-task diffusion least-mean-

squares (LMS) algorithm can still perform better than non-cooperative strategies despite the

bias induced by cooperating agents with different objectives.

If, on the other hand, the only available information is that clusters may exist in the network

(but their structures are not known), then extended diffusion strategies are proposed in [Zhao

and Sayed, 2012, Chen et al., 2015a, Zhao and Sayed, 2015d, Khawatmi et al., 2015, Nassif et al.,

2016a] for setting the combination weights in an online manner in order to enable automatic

network clustering and, subsequently, to enable agents to identify which neighbors belong to the

same cluster and which neighbors should be ignored during cooperation. Such diffusion strategies

have been used in [Monajemi et al., 2016] to model the brain connectivity, which is an important

task in the neuroscience community. By considering the brain as a multitask network (where

each agent consists of an EEG electrode attached to the scalp), it is shown how the adaptive

7
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combination weights can be used to model the relation between tremor intensity of Parkinson’s

disease patients and the brain connectivity.

1.2.2.2 Supervised scenario

In this scenario, it is assumed that the agents know which cluster they belong to. In this case,

existing distributed strategies to address multitask problems mostly depend on how the tasks

are related to each other and on exploiting some prior information.

To the best of our knowledge, the works [Bertrand and Moonen, 2010, 2011] were the first to

consider explicitly a multitask setting where different but related estimation tasks exist. Specif-

ically, distributed multitask algorithms over fully connected and tree networks were derived to

estimate node-specific signals sharing a common latent signal subspace. These properties are

exploited to compress information and reduce communication costs. A recent related work deal-

ing with heterogeneous and mixed topology has appeared in [Szurley et al., 2015]. It should be

noted that, in this dissertation, we are focusing on parameter estimation tasks rather than signal

estimation tasks. As explained in [Bertrand, 2011], these problems are different and need to be

tackled in very different ways.

There have been several useful works dealing with distributed parameter estimation problems

over multitask networks. In [Abdolee et al., 2014], a multitask model is obtained by discretizing

a second-order partial differential equation (PDE) representing dynamic systems with spatially

varying parameters. The multitask problem is transformed into a single-task problem by repre-

senting the space-varying parameters of the underlying phenomena as the product of an agent

specific matrix of basis functions Bk and a space-invariant parameter vector uo (see Table 1.1

further ahead). Knowing the matrix Bk at each agent k, the network problem reduces to the

estimation of the global parameter vector uo, which can be solved by means of diffusion LMS

strategies.

An alternative way to exploit and model relationships among tasks is to formulate optimiza-

tion problems with appropriate co-regularizers between agents. In this context, it is assumed

that different clusters within the network are interested in estimating their own models, and

there are some correlations among the models of adjacent clusters. As it is common in the ma-

chine learning, one way to capture these correlations is to use appropriate regularization terms.

For example, a diffusion based LMS strategy is proposed in [Chen et al., 2014b,c] by adding

squared ℓ2-norm co-regularizers to the MSE criterion in order to promote smoothness of the

graph signal. Its convergence behavior is studied over asynchronous networks in [Nassif et al.,

2014, 2016c]. Useful extensions of the strategy proposed in [Chen et al., 2014c] dealing with

adaptive regularization parameters rather than fixed parameters, partial diffusion rather than

standard diffusion, and affine projection algorithm (APA) rather than LMS algorithm appeared

recently in [Monajemi et al., 2015, Gogineni and Chakraborty, 2015a,b]. On the other hand, non-

smooth co-regularizers (ℓ1-norm and reweighted ℓ1-norm) were considered in the works [Nassif

8
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et al., 2015, 2016d] in order to solve multitask problems where the optimal models of adjacent

clusters have a large number of similar entries.

In [Bogdanović et al., 2014], a diffusion strategy of the LMS type is developed to address

multitask estimation problems where agents are interested in estimating parameters of local

interest and parameters of global interest. Particularly, the proposed method consists of running

a local LMS at each agent in order to estimate the parameters of local interest and applying a

diffusion LMS at all agents in order to estimate the parameters of global interest. An extended

strategy allowing the agents to estimate parameters of common interest to a subset of agents

simultaneously with parameters of local and global interest is provided in [Plata-Chaves et al.,

2015]. Related unsupervised strategies dealing with group of variables rather than variables

have been proposed in [Chen et al., 2016, Plata-Chaves et al., 2016a]. In another work [Chen

et al., 2014a], a distributed diffusion strategy of the LMS type is developed in order to solve

multitask estimation problems where the parameter space is assumed to be decomposed into two

orthogonal subspaces, with one of the subspaces being common to all agents.

Multitask estimation problems with linearly related tasks are considered in [Nassif et al.,

2016b]. It is assumed that each agent possesses its cost function of its own parameter vector and

a set of linear equality constraints involving its parameter vector and the parameter vectors of

its neighboring agents. A distributed projection based method is proposed in order to minimize

the individual costs subject to all constraints in the network.

Note that, each task relatedness model requires the formulation of an appropriate global

optimization problem that is solved in a distributed adaptive manner. In the following, we

outline these optimization problems by considering first a general problem. Then we show how

this general formulation encompasses the various multitask problems described so far. Let us

consider the following problem:

minimize
u,{wk,ǫk}Nk=1

Jglob
(
u, {wk, ǫk}Nk=1

)
,

N∑

k=1

Jk (wk) + η
N∑

k=1

Rk

(
wk, {wℓ}ℓ∈Ik⊆N−

k

)
,

subject to wk =Xku+ Y kǫk, k = 1, . . . , N

hk

(
wk, {wℓ}ℓ∈Jk⊆N−

k

)
= 0, k = 1, . . . , N.

(1.2)

where wk is the parameter vector to be estimated by agent k, η is a parameter controlling the im-

portance of the regularization, Rk is a regularization function at agent k promoting relationships

between its task and the tasks of its neighbors, Xk,Y k are some known matrices representing

the parameter space at agent k, and hk encodes constraints between the task at agent k and the

tasks of its neighbors (see Figure 1.3 for an illustration). The notation N−
k refers to the neighbor-

hood of agent k, excluding k. Even though the cost
∑N

k=1 Jk(wk) is separable, the cooperation

between the agents is necessary due to the coupling between the tasks through the regularizers

and the constraints. We show in Table 1.1 how the proper selection of the quantities Xk, Y k,
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Figure 1.3: Multitask estimation over networks. The quantitiesXk, Y k, Rk(·), and hk(·) relating
the tasks in problem (1.2) are collected in Pk. Each agent is seeking the sub-vector wk in (1.2).

Rk, and hk in problem (1.2) allows us to recover the various supervised multitask estimation

problems described so far.

1.3 Objectives and Contributions

Distributed parameter estimation over multitask networks has recently become an active field of

research. The objective of this dissertation is to contribute to the development and the investiga-

tion of distributed inference algorithms for multitask networks. At the end of this research work,

we will be able to answer questions regarding the feasibility of distributed strategies that are

able to exploit several forms of dependencies between tasks, and comment on their behavior and

steady-state performance under several practical conditions and scenarios. The research work

in this dissertation consists of four main parts, as described below. Except for the first part,

this dissertation focuses on supervised scenarios where it is assumed that there are some prior

knowledge that can be exploited to derive multitask strategies. Throughout this thesis, several

multitask network applications (e.g., circular arcs localization, spectrum sensing in cognitive ra-

dio networks, and network flows estimation) will be considered to demonstrate the effectiveness

of the proposed multitask strategies.

In the first part, we consider the unsupervised scenario. We assume that the single-task

diffusion LMS algorithm (which is obtained by applying diffusion strategies to mean-square-

error costs) is run, intentionally or unintentionally, in a multitask environment. Furthermore, we

consider the realistic case where the data transmitted between agents is corrupted by noises. We

conduct a mean and mean-square analysis in order to examine the consequences of violating the

single-task hypothesis and the perfect information exchange assumption. The results show that

the noises corrupting the regressors reduce the dynamic range of the step-sizes and induce a bias

10
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CHAPTER 1. INTRODUCTION

in the mean. Furthermore, cooperating agents with distinct objectives will also induce a bias. In

order to remove the effect of these nuisance factors and to make the algorithm more robust, we

propose to adapt the combination coefficients by minimizing the instantaneous mean-square-error

at each agent.

In the second part, we examine the behavior of the multitask diffusion LMS strategy proposed

in [Chen et al., 2014b,c] under asynchronous conditions where networks are subject to various

sources of uncertainties, including changing topology, random link failures, and agents turning

on and off randomly for energy conservation. Under these conditions, the adaptive algorithm

must be able to work. In order to examine these self-healing and self-organization properties,

we first introduce a fairly general model for asynchronous behavior. Under this model, agents

may stop updating their solutions, or may stop sending or receiving information in a random

manner. Then, we carry out a detailed mean and mean-square-error analysis to examine how the

asynchronous events interfere with the learning performance. More precisely, we derive closed

form expressions to characterize the convergence behavior and steady-state performance of the

agents acting asynchronously. The results show that sufficiently small step-sizes can still ensure

both stability and performance.

In the third part, we propose a fully-distributed approach for multitask estimation based on

sparsity promoting regularizers. This part addresses multitask learning problems where clusters

of agents are interested in estimating their own parameter vector. It is assumed that the optimal

models of adjacent clusters have a large number of identical components and a relatively small

number of distinct components. Our approach relies on minimizing a global mean-square-error

criterion regularized by non-differentiable terms to promote cooperation among neighboring clus-

ters. Building on the proximal gradient methods, a general forward-backward splitting strategy

of the LMS type is introduced. Then, it is specialized to the case of sparsity promoting regu-

larizers. In order to achieve higher efficiency, we derive closed-form expression for the proximal

operator of a weighted sum of ℓ1-norms. We also provide conditions on the step-sizes that ensure

the convergence of the algorithm in the mean and mean-square error sense. Finally, in order to

guarantee an appropriate cooperation between clusters in a changing environment, we introduce

a rule to adapt the regularization factors based on local instantaneous estimates.

In the fourth part, we consider multitask estimation problems with linearly related tasks.

Each agent in the network is interested in estimating its own parameter vector. It is assumed

that the models of neighboring agents are related according to a set of linear equality constraints.

Each agent possesses its own MSE cost and the set of constraints involving its parameter vector

and the parameter vectors of its neighboring agents. Based on the gradient projection method

and diffusion strategies, we propose an adaptive multitask estimation algorithm of the LMS type

in order to allow the network to optimize the individual costs subject to all constraints. Although

the derivation is carried out for linear equality constraints, the technique can be applied to other

forms of convex constraints. We derive conditions on the step-sizes ensuring the stability of the
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algorithm and we provide closed form expressions to predict its learning behavior in the mean

and mean-square-error sense. We show that for sufficiently small constant step-size, the expected

distance between the estimates at each agent and the optimal value can be made arbitrarily small.

1.4 Thesis contents and Publications overview

This thesis is composed of six chapters as shown in Figure 1.4.

We begin the second chapter by reviewing the well-known diffusion LMS strategies for solving

distributed single-task estimation problems over MSE networks. We then carry out a mean-

square analysis of these strategies when they are run in multitask environment in the presence

of noisy communication links. Next, we present a clustering technique that allows the agents to

select the neighbors with which they can collaborate to estimate the same objective. Finally, we

present simulation results to support the theoretical findings and to test the clustering technique

in the presence of noisy links.

The main results presented in this chapter were published in:

• R. Nassif, C. Richard, and A. Ferrari. Estimation distribuée sur les réseaux multitâches

en présence d’échanges d’informations bruitées. In Actes du 25e colloque GRETSI sur le

traitement du Signal et Images, Lyon, France, September 2015.

• R. Nassif, C. Richard, J. Chen, A. Ferrari, and A. H. Sayed. Diffusion LMS over multitask

networks with noisy links. In Proc. IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 4583–4587, Shanghai, China, March 2016.

We begin the third chapter by recalling the synchronous diffusion adaptation strategy de-

veloped in [Chen et al., 2014b,c] for performing distributed estimation over multitask networks.

Then, we introduce a general model for asynchronous behavior with random step-sizes, combi-

nation coefficients, and regularization factors. Next, we carry out a convergence analysis of the

asynchronous multitask algorithm in the mean and mean-square-error sense, and we derive con-

ditions for convergence. Finally, simulation results are presented to verify the theoretical findings

and the framework is applied to network applications involving circular arcs localization.

The work presented in this chapter was published in:

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Performance analysis of multitask dif-

fusion adaptation over asynchronous networks. In Proc. Asilomar Conference on Signals,

Systems and Computers, pages 788–792, Pacific Grove, CA, November 2014.

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Multitask diffusion adaptation over

asynchronous networks. IEEE Transactions on Signal Processing, 64(11):2835–2850, June

2016.
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In the fourth chapter, we consider multitask estimation problems where the optimum param-

eter vectors to be estimated by neighboring clusters have a large number of similar components

and a relatively small number of distinct entries. We formulate a global optimization problem and

we then propose a diffusion forward-backward splitting approach with ℓ1-norm and reweighted

ℓ1-norm co-regularizers to address it in a distributed manner. A closed-form expression for the

proximal operator is then derived. We analyze the behavior of the proposed strategy and we

propose an adaptive rule to guarantee an appropriate cooperation between clusters. Finally, we

present simulation results to show the benefit of cooperation and the effectiveness of the proposed

adaptive rule. We apply this strategy to cognitive radio networks involving spectrum estimation

problems.

The work presented in this chapter was published in:

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Multitask diffusion LMS with sparsity-

based regularization. In Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3516–3520, Brisbane, Australia, April 2015.

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Proximal multitask learning over

networks with sparsity inducing coregularization. IEEE Transactions on Signal Processing,

64(23):6329–6344, December 2016.

In the fifth chapter, we consider multitask estimation problems where the optimum parameter

vectors to be estimated by neighboring agents are related according to a set of linear constraints.

We first formulate the optimization problem and derive an adaptive centralized solution. Then,

we reformulate the problem in order to obtain a structure amenable to distributed implemen-

tations and we derive an adaptive solution based on gradient projection principle and diffusion.

Next, we conduct a mean and mean-square analysis. We present simulation results to validate

the theoretical findings and show that sufficiently small step-sizes ensure convergence to the op-

timal solution. Finally, the algorithm is applied to solve network flows estimation problems and

space varying field reconstruction problems.

The work presented in this chapter appears in:

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Diffusion LMS for multitask prob-

lems with local linear equality constraints. Submitted to IEEE Transactions on Signal

Processing. Also available as arXiv:1610.02943, October 2016.

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Distributed learning over multitask

networks with linearly related tasks. In Proc. Asilomar Conference on Signals, Systems

and Computers, Pacific Grove, CA, November 2016.

Finally, in the sixth chapter we conclude the thesis by summarizing the main contributions

and suggest some future research directions.
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2
Diffusion LMS over multitask networks with noisy links

T
he diffusion LMS is an efficient strategy for solving distributed estimation problems over

single-task networks with agents observing data arising from the same optimum model. How-

ever, in some applications, the optimum parameter vectors may not be the same for all agents.

Moreover, the data exchanged between agents can be subject to quantization errors and additive

noise over the communication links. In this chapter, we first present an overview on diffusion

LMS strategies over single-task MSE networks. Later, we assume that the single-task hypothesis

is violated. We conduct a mean and mean-square analysis in order to quantify the performance

of the single-task diffusion LMS when it is run, intentionally or unintentionally, in a multitask

environment in the presence of noisy communication links. To reduce the impact of the nuisance

factors, namely, the cooperation between agents with distinct objectives and the noisy links,

we introduce an improved strategy that allows the agents to promote or reduce exchanges of

information with their neighbors.

The main results established in this chapter were published in:

• R. Nassif, C. Richard, and A. Ferrari. Estimation distribuée sur les réseaux multitâches

en présence d’échanges d’informations bruitées. In Actes du 25e colloque GRETSI sur

le traitement du Signal et Images, Lyon, France, September 2015. (Also available at

http://www.cedric-richard.fr/Articles/nassif2015estimation.pdf)

• R. Nassif, C. Richard, J. Chen, A. Ferrari, and A. H. Sayed. Diffusion LMS over multitask

networks with noisy links. In Proc. IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 4583–4587, Shanghai, China, March 2016. (Also

available at http://www.cedric-richard.fr/Articles/nassif2016diffusion.pdf)
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CHAPTER 2. DIFFUSION LMS OVER MULTITASK NETWORKS WITH NOISY LINKS

2.1 Introduction

Most of the existing literature on distributed estimation over networks focuses on consensus prob-

lems where a collection of agents need to converge asymptotically toward a common parameter

vector. In some cases (e.g., single-task MSE networks described in Section 2.2), the objective at

each agent can be estimated by relying solely on local computations without cooperation with

neighboring agents. In such non-cooperative strategies, it is well known that the quality of the

estimates will depend on the quality of the data at the agents, i.e., agents with noisier data will

perform worse than agents with cleaner data. Distributed estimation strategies are attractive in

this case since they allow the agents to exchange information with their neighbors in an appropri-

ate manner to improve their own estimates. Among the existing cooperation rules for single-task

problems, we are interested in diffusion strategies [Lopes and Sayed, 2008, Cattivelli and Sayed,

2010, Sayed et al., 2013, Sayed, 2014a,b,c] since they are scalable, robust, and enable continuous

learning. These strategies estimate a common parameter vector by minimizing, in a distributed

manner, a global cost function that aggregates the individual costs. The resulting network is fully

distributed and adaptive in the sense that agents perform local computation tasks, exchange in-

formation with their neighbors, and are able to adapt continuously in response to concept drifts.

The performance of the resulting adaptive network has been studied extensively in the literature

(see e.g. [Sayed, 2014a,b,c] and the references therein). In the current chapter, we first recall

the diffusion LMS strategies [Lopes and Sayed, 2008, Cattivelli and Sayed, 2010, Sayed et al.,

2013, Sayed, 2014c] resulting from applying the diffusion strategies to mean-square-error costs,

which are of paramount importance in the context of estimation, adaptation, and learning over

networks [Sayed et al., 2013]. Then, we study the behavior of these single-task algorithms in a

multitask environment in the presence of noisy communication links.

In multitask networks, agents are sensing data arising from different models, and hence, are

interested in estimating several parameter vectors. Several research efforts have been focused

on analyzing the performance of diffusion strategies when they are run, intentionally or unin-

tentionally, in a multitask environment. It is shown in [Chen and Sayed, 2013], for example,

that the diffusion iterates converge to a Pareto optimal solution when the optimization prob-

lem consists of a sum of individual costs with possibly different minimizers. It is further shown

in [Chen et al., 2015a] that, when the tasks are sufficiently similar to each other, the single-task

diffusion LMS can still perform better (in the mean-square-error sense) than non-cooperative

strategies, despite the bias resulting from cooperating agents with different objectives. To avoid

poor results resulting from cooperation between neighbors with sufficiently different objectives,

extended diffusion strategies with a clustering step are proposed in [Zhao and Sayed, 2012, 2015d,

Chen et al., 2015a, Khawatmi et al., 2015] to enable agents to identify which neighbors belong

to the same cluster and which neighbors should be ignored.

Usually, the exchange of raw data and local estimates between agents may be corrupted by
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2.2. DIFFUSION LMS OVER SINGLE-TASK NETWORKS

Table 2.1: List of the main symbols and notations used in Chapter 2.

M Length of the parameter vectors

N Number of agents in the network

Nk Neighborhood of agent k, i.e., the set of agents that are connected
to k by edges, including k

N−
k Neighborhood of agent k, excluding k

wk Parameter vector at agent k

wo
k Optimum parameter vector at agent k

wb Network block parameter vector

wo
b Network block optimum parameter vector

noises over the communication links. Useful results dealing with the consequences of noisy com-

munications on the diffusion LMS behavior are presented in [Abdolee and Champagne, 2011,

Khalili et al., 2012, Tu and Sayed, 2011a, Zhao et al., 2012] for single-task environments. In this

chapter, we extend these works by considering the more general case of multitask environments.

We conduct a mean and mean-square-error analysis in order to reveal the degradation in the

performance resulting from running the single-task diffusion LMS algorithm in multitask envi-

ronments in the presence of noisy communication links. The resulting analytical expressions allow

us to identify the influence of each nuisance factor on the dynamics of the network, on the biases

in the weight estimates, and on the mean-square-error performance. Since the mean-square-error

performance depends on the combination coefficients, we also show how these coefficients can

be adjusted efficiently during the learning process in order to enable agents to cooperate only

with neighbors sharing the same objective, and to simultaneously reduce the effect of exchanging

information through noisy links.

Before starting, we list in Table 2.1 some of the main symbols and notations used in this

chapter. Other symbols will be defined in the context where they are used.

2.2 Diffusion LMS over single-task networks

Consider a strongly connected network1 consisting of N agents, labeled k = 1, 2, . . . , N . At each

time instant i, each agent in the network collects a zero-mean scalar measurement dk(i) and a

zero-mean M × 1 regression vector xk(i) with positive covariance matrix Rx,k = Exk(i)x
⊤
k (i) >

0. The data {dk(i),xk(i)} are assumed to satisfy the linear regression model:

dk(i) = x
⊤
k (i)w

o + zk(i), i ≥ 0, k = 1, . . . , N, (2.1)

1A network is said to be strongly connected if it is connected, i.e., there exists a path between any pair of
vertices, and contains at least one self-loop.
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Figure 2.1: Illustration of a single-task MSE network.

for some unknown M ×1 parameter vector wo that the agents wish to estimate, and where zk(i)

is a measurement noise with zero-mean and variance σ2
z,k, independent of xℓ(j) for all ℓ and j,

and independent of zℓ(j) for ℓ 6= k or i 6= j. The mean-square-error cost is associated with each

agent k, namely,

Jk(w) , E (dk(i)− x⊤
k (i)w)2. (2.2)

Strongly-connected networks with agents receiving streaming data according to (2.1) and seeking

to estimate a common parameter vector wo by adopting mean-square-error costs Jk(w) defined

by (2.2), are referred to as single-task mean-square-error (MSE) networks [Sayed, 2014a]. An

illustrative example is provided in Figure 2.1.

Although this dissertation focuses on mean-square-error costs, most of the arguments and

derivations presented here can be extended to more general cost functions. Linear data models

and quadratic costs of the form (2.1) and (2.2) are common and useful in many applications,

such as target localization and spectral sensing (see e.g. [Sayed, 2014c, Section 2] for further

applications).

Since the individual cost Jk(w) in (2.2) is strongly convex, it has a unique global minimum

wo
k given by:

wo
k = R

−1
x,krdx,k, (2.3)

where rdx,k , E dk(i)xk(i). If we multiply both sides of (2.1) by xk(i), and take expectations, we

find that the unknown parameter vector wo in (2.1) satisfies the same expression as wo
k in (2.3),

so that we must have:

wo
k = w

o, k = 1, . . . , N. (2.4)

20



2.2. DIFFUSION LMS OVER SINGLE-TASK NETWORKS

As a consequence, under linear regression models of the form (2.1), the individual MSE cost

in (2.2) allows agent k to recover wo exactly.

2.2.1 Non-cooperative adaptive solution

In a non-cooperative mode of operation, each agent operates individually to estimate wo. Instead

of applying (2.3), iterative algorithms can be applied to recover the same solution wo. Let wk(i)

denote the estimate of wo at agent k at time instant i. Starting with any initial condition wk(0),

the gradient descent recursion takes the following form (by omitting the factor of two in the

gradient):

wk(i+ 1) = wk(i) + µk(rdx,k −Rx,kwk(i)), i ≥ 0, (2.5)

where µk is a constant step-size parameter chosen within the interval (0, 2/λmax(Rx,k)) in order

to guarantee convergence [Sayed, 2008].

The closed form expression (2.3) and the recursion (2.5) for determiningwo require knowledge

of the second-order moments {rdx,k,Rx,k}. This information is rarely available beforehand;

instead agent k senses realizations {dk(i),xk(i)} of random processes with moments rdx,k and

Rx,k. To address this lack of information, it is necessary to derive a scheme that allows each agent

to use these realizations to approximate the unavailable moments {rdx,k,Rx,k}. In this case, an

adaptive solution is possible since the approximations are based on realizations, and any changes

in the underlying statistical moments end up being reflected in the data. Several constructions

for approximating the statistical moments are possible, with different constructions leading to

different adaptive algorithms [Sayed, 2008], such as LMS algorithm, normalized least-mean-

squares (NLMS) algorithm, and recursive-least-squares (RLS) algorithm. One of the simplest

choices is to drop the expectations from the definitions of {rdx,k,Rx,k} and to use the following

instantaneous approximations:

Rx,k ≈ xk(i)x⊤
k (i), rdx,k ≈ xk(i)dk(i), (2.6)

and the corresponding gradient descent recursion (2.5) becomes:

wk(i+ 1) = wk(i) + µkxk(i)(dk(i)− x⊤
k (i)wk(i)), i ≥ 0. (2.7)

The stochastic-gradient algorithm obtained in (2.7) is the well-known least-mean-squares (LMS)

adaptive algorithm.

It is known that the estimates generated at agent k by the stand-alone filter (2.7) will converge

to wo in the mean if the step-size µk is chosen within the interval (0, 2/λmax(Rx,k)). Moreover,

for sufficiently small step-sizes (ensuring mean-square stability), it holds that the filter mean-

square-deviation (MSD), which measures how far wk(i) is from wo in the mean-square sense at

steady-state, can be approximated as [Sayed, 2008]:

MSDk , lim
i→∞

E ‖wo −wk(i)‖2

≈ µkσ
2
v,kM/2.

(2.8)
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When the step-sizes are equal, i.e., µk = µ for all k, it can be observed from (2.8) that the quality

of the estimators at the agents depends on the quality of their data; agents with noisier data

(larger σ2
z,k) will perform worse than agents with cleaner data. However, since all agents are

observing data arising from the same underlying model wo, it is expected that an appropriate

cooperation among agents can help enhance their individual performance.

One way to achieve such cooperation is to develop adaptive algorithms that enable the agents

to solve, in a distributed manner, the global optimization problem:

minimize
w

Jglob(w) ,

N∑

k=1

Jk(w) =

N∑

k=1

E (dk(i)− x⊤
k (i)w)2, (2.9)

for whichwo is a unique global solution. As we mentioned in the previous chapter, there are three

well known strategy families to solve this problem: incremental strategies, consensus strategies,

and diffusion strategies. In the sequel, we review diffusion strategies.

2.2.2 Cooperative adaptive diffusion strategy

There are several variations of the adaptive diffusion strategy. Let Nk denote the neighborhood

of agent k, i.e., the set of agents that are connected to agent k through an edge, including k.

For general optimization problems involving individual costs {Jk(w)} that are not necessarily

quadratic, the adaptive adapt-then-combine (ATC) diffusion strategy for solving

minimize
w

Jglob(w) ,

N∑

k=1

Jk(w) (2.10)

takes the following form at each agent k [Chen and Sayed, 2012, Sayed, 2014a]:

(general ATC)

ψk(i+ 1) = wk(i)− µk
∑
ℓ∈Nk

cℓk∇̂wJℓ(wk(i))

wk(i+ 1) =
∑
ℓ∈Nk

aℓkψℓ(i+ 1)
(2.11)

where ∇̂wJℓ(·) is an approximation of the true gradient vector ∇wJℓ(·), µk is a small constant

step-size parameter, and {aℓk, cℓk} are non-negative coefficients chosen by the designer to satisfy

the following conditions:

aℓk ≥ 0,
N∑

ℓ=1

aℓk = 1, and aℓk = 0 if ℓ /∈ Nk, (2.12)

cℓk ≥ 0,
N∑

k=1

cℓk = 1, and cℓk = 0 if ℓ /∈ Nk. (2.13)

According to the above conditions, if we collect the coefficients {aℓk, cℓk} into N × N matrices

A , [aℓk] and C , [cℓk], we obtain a left-stochastic2 matrix and a right-stochastic3 matrix,

2A matrix A with non-negative entries is said to be left-stochastic if it satisfies A
⊤
1 = 1.

3A matrix C with non-negative entries is said to be right-stochastic if it satisfies C1 = 1.
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respectively. There are several rules to select these coefficients, such as the averaging rule whereby

nodes simply average data from their neighbors:

aℓk =

{
1/card{Nk}, if ℓ ∈ Nk

0, otherwise
(2.14)

and the Metropolis rule given by:

aℓk =





1/max {card{Nk}, card{Nℓ}} , if ℓ ∈ N−
k

1−∑ℓ∈N−

k
aℓk if ℓ = k

0, otherwise.

(2.15)

See [Sayed, 2014c, Table 7] for a listing of further common rules. Note that the right-stochastic

matrix C can be obtained by transposing the left-stochastic matrix A. Note further that, instead

of using constant weights, one may add a third step to the diffusion strategy (2.11) in order to

set the combination coefficients in an online manner and to enable agents to assign more or

less importance to the estimates arriving from their neighbors according to the quality of their

data [Sayed, 2014c].

Starting from any initial conditionwk(0), at every time instant i ≥ 0, the ATC strategy (2.11)

performs two steps. In the first step, also called adaptation step, agent k receives from its

neighbors their gradient vector approximations, combines this information, and uses it to update

its estimate wk(i) to an intermediate value ψk(i + 1). All other agents in the network are

performing simultaneously a similar information exchange step. The second step is a combination

step where agent k combines the intermediate iterates ψℓ(i+1) of its neighbors to obtainwk(i+1).

Again, all other agents are performing simultaneously a similar combination step.

A similar implementation can be obtained by switching the order of the adaptation and

combination step in (2.11). In the combine-then-adapt (CTA) implementation, agent k first

combines the previous estimates of its neighbors to obtain the intermediate estimate ψk(i), and

then updates this intermediate estimate with a stochastic gradient step:

(general CTA)

ψk(i) =
∑
ℓ∈Nk

aℓkwℓ(i)

wk(i+ 1) = ψk(i)− µk
∑
ℓ∈Nk

cℓk∇̂wJℓ(ψk(i)).
(2.16)

Other forms of diffusion strategies are also possible by restricting the exchange of information to

the combination step; this is the special case when C = IN . The non-cooperative strategy can

be also obtained by setting C = A = IN .

Returning to the MSE costs (2.2) and using the simple instantaneous approximations (2.6)

for the second-order moments, we obtain an approximate for the gradient vector at agent ℓ:

∇̂wJℓ(w) = −2xℓ(i)(dℓ(i)− x⊤
ℓ (i)w). (2.17)

Substituting into the ATC and CTA strategies (2.11) and (2.16), we arrive at the diffusion

LMS strategies. Table 2.2 lists several forms of these strategies [Lopes and Sayed, 2008, Cat-

tivelli and Sayed, 2010, Sayed et al., 2013, Sayed, 2014c]. It is known that the iterates {wk(i)}
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Table 2.2: Variations of diffusion LMS strategies.

ATC strategy

ψk(i+ 1) = wk(i) + µk

∑

ℓ∈Nk

cℓkxℓ(i)
(
dℓ(i)− x⊤

ℓ (i)wk(i)
)

wk(i+ 1) =
∑

ℓ∈Nk

aℓkψℓ(i+ 1)
(2.18)

ATC strategy
(no information exchange)

ψk(i+ 1) = wk(i) + µkxk(i)
(
dk(i)− x⊤

k (i)wk(i)
)

wk(i+ 1) =
∑

ℓ∈Nk

aℓkψℓ(i+ 1)
(2.19)

CTA strategy

ψk(i) =
∑

ℓ∈Nk

aℓkwℓ(i)

wk(i+ 1) = ψk(i) + µk

∑

ℓ∈Nk

cℓkxℓ(i)
(
dℓ(i)− x⊤

ℓ (i)ψk(i)
) (2.20)

CTA strategy
(no information exchange)

ψk(i) =
∑

ℓ∈Nk

aℓkwℓ(i)

wk(i+ 1) = ψk(i) + µkxk(i)
(
dk(i)− x⊤

k (i)ψk(i)
)

(2.21)

converge in the mean to the solution wo if the step-sizes {µk} are chosen within the interval(
0, 2/λmax

(∑
ℓ∈Nk

cℓkRx,ℓ

))
and that the network MSD defined as MSDnet = 1

N

∑N
k=1 MSDk

improves by N -fold compared to the non-cooperative case. Note that in [Sayed, 2014c, Section

7.1], it is shown that the ATC implementation performs better than the CTA implementation.

For this reason, we shall consider in the sequel the ATC implementations.

In Appendix B.1, we present the theoretical foundations of the diffusion LMS strategies

listed in Table 2.2. In particular, we show how these strategies can be derived by minimizing

the cost function (2.9) based on a completion-of-squares argument, followed by a stochastic

approximation step, and an incremental approximation step [Cattivelli and Sayed, 2010, Sayed,

2014c]. The material presented in this Appendix serves for better understanding the context

and development in the subsequent chapters. In Appendix B.2, we briefly review the mean and

mean-square convergence analysis of the ATC diffusion LMS strategy. The material presented in

this Appendix serves as a benchmark allowing the reader to identify the influence of the various

models considered throughout the thesis. We refer to [Sayed et al., 2013, Sayed, 2014c] for a

detailed discussion on the properties of the diffusion LMS algorithm, its theoretical foundations,

its performance, and its applications.

2.3 Diffusion LMS over multitask networks with noisy links

Again, we consider a connected network of N agents, where at each time instant i, each agent k

collects a zero-mean scalar measurement dk(i) and a zero-mean M×1 regression vector xk(i) with
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Figure 2.2: Illustration of a multitask MSE network.

positive covariance matrix Rx,k. In a multitask environment, the data at agent k are assumed

to be related to an M × 1 unknown parameter vector wo
k via the linear data model:

dk(i) = x
⊤
k (i)w

o
k + zk(i), i ≥ 0, (2.22)

where zk(i) is a zero-mean measurement noise of variance σ2
z,k. The noise process is assumed to

be temporally white and spatially independent. The problem is to estimate wo
k at each agent k.

To solve this problem, we associate with each agent k a mean-square-error cost of the form (2.2).

We refer to networks with agents receiving streaming data related according to (2.22) and seeking

to estimate {wo
k} by adopting the mean-square-error costs Jk(w) defined by (2.2) as multitask

MSE networks. We provide an illustrative example in Figure 2.2.

The single-task environment described in Section 2.2 can be viewed as a particular case of the

multitask environment where the optimum parameter vectors are the same across the network,

namely, wo
k = wo for all k. In this case, it was shown that the use of a diffusion LMS strategy

that minimizes, in a fully-distributed manner, the aggregate cost (2.9) allows to recover wo

(without biases) and improves the estimation accuracy relative to the non-cooperative solution

by improving the mean-square-error performance of the network [Sayed, 2014c]. In a multitask

environment, it happens that the local MSE costs Jk(w) are not minimized at the same location

and the diffusion iterates lead to a Pareto optimum solution for (2.9) [Chen and Sayed, 2013].

The work [Chen et al., 2015a] assesses the performance limits of diffusion strategies (2.18)–(2.21)

when they are run, intentionally or unintentionally, in a multitask environment, and analyzes

the critical role of the distance between the tasks {wo
k}. Indeed, in some situations, due to

inaccurate models, or minor differences between tasks that are neglected intentionally, one may

apply the diffusion LMS to a multitask environment. It is shown that, in these situations,
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the estimates generated by the algorithm are biased and that the biased solutions may still be

beneficial compared to non-cooperative strategies, provided that the tasks are sufficiently close

to each other.

In real environment, the data exchanged between agents can be subject to quantization

errors and additive noise over the communication links. It becomes necessary to incorporate

these aspects in the performance analysis and to make the estimation algorithm more robust to

the perturbations. Thus, in the following, we shall study the performance degradation resulting

from applying the ATC diffusion LMS (2.18)–(2.19) to multitask environments in the presence of

noisy communication links and show how the combination weights can be set in order to reduce

the effect of the nuisance factors.

Each step of the ATC algorithm (2.18) involves the transmission of information from node ℓ ∈
Nk to node k. In the presence of noisy communication links, the ATC diffusion algorithm (2.18)

becomes:

ψk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk

cℓkxℓk(i)
(
dℓk(i)− x⊤

ℓk(i)wk(i)
)
,

wk(i+ 1) =
∑

ℓ∈Nk

aℓkψℓk(i+ 1),
(2.23)

where xℓk(i), dℓk(i), and ψℓk(i + 1) are the noisy data received by node k from its neighbor ℓ.

For modeling noisy communication links, we adopt the model proposed in [Sayed, 2014c, Zhao

et al., 2012]:

dℓk(i) = dℓ(i) + zd,ℓk(i), (2.24)

xℓk(i) = xℓ(i) + zx,ℓk(i), (2.25)

ψℓk(i) = ψℓ(i) + zψ,ℓk(i), (2.26)

where zd,ℓk(i) is a scalar noise signal, zx,ℓk(i) and zψ,ℓk(i) are noise vectors of dimension M ×
1. Note that this model is more general than the one adopted in [Abdolee and Champagne,

2011, Khalili et al., 2012] where the diffusion LMS algorithm without exchange of gradient

information (2.19) is considered, and which can be obtained from (2.18) by setting C = IN .

2.4 Stochastic performance analysis

Throughout this dissertation, we shall study the performance in the mean and mean-square-error

sense of several adaptive distributed algorithms. Studying the performance of such algorithms is

a challenging task since the systems are stochastic, nonlinear, and the agents influence each other

behavior. In order to make the analysis more tractable, several reasonable and commonly used

assumptions need to be introduced whenever necessary. The analysis in the mean-square-error

sense relies on the energy conservation framework [Al-Naffouri and Sayed, 2003, Sayed, 2008],

which allows us to derive expressions for the MSD by analyzing how the energy (measured in

26



2.4. STOCHASTIC PERFORMANCE ANALYSIS

terms of error variances) flows across the network. In several cases, we end up with closed form

expressions allowing us to predict the behavior of the distributed adaptive algorithms. Further-

more, step-size conditions ensuring stability of the algorithms will also be established. Although

the energy conservation framework is adopted throughout this dissertation, the assumptions and

the technical arguments used in each chapter depend on the optimization approach and the

context. For example, the proofs for proximal based approaches differ from the proofs for gra-

dient approaches and the arguments used for asynchronous networks differ from the ones in the

synchronous case. Thus, a detailed analysis is provided in each chapter.

Under some reasonable assumptions on the measurement data and noise signals, we assess

in the current section the performance of the distributed single-task diffusion LMS algorithm

under several conditions, including multitask environments and noisy communication links. In

particular, the following assumptions are introduced.

Assumption 2.1. (Independent regressors) The regressors xk(i) arise from a zero-mean random

process that is temporally white and spatially independent.

Assumption 2.2. (Properties of the link noises) The noises zd,ℓk(i), zx,ℓk(i), and zψ,ℓk(i) are

temporally white and spatially independent zero-mean random variables.

We denote by σ2
zd,ℓk, Rzx,ℓk, and Rzψ,ℓk their variances and covariance matrices, respectively.

These moments are zero if ℓ /∈ Nk or ℓ = k.

Assumption 2.3. (Mutually independent variables) The link noises {zd,mn(i1)}, {zx,pq(i2)},
and {zψ,st(i3)}, the regression data {xk(i4)}, and the measurement noise {zℓ(i5)} are mutually

independent for all {k, ℓ,m, n, p, q, s, t} and {i1, i2, i3, i4, i5}.

Let w̃k(i) denote the weight error vector at node k and iteration i, namely,

w̃k(i) , w
o
k −wk(i), (2.27)

and let w̃b(i) denote the network block weight error vector at iteration i, of size N × 1 with

blocks of size M × 1, namely,

w̃b(i) , col {w̃1(i), . . . , w̃N (i)} , (2.28)

where col{·} stacks the column vector entries on top of each other. In the following, we derive

a recursion characterizing the evolution of (2.28). This recursion is the launching point for the

analysis in the mean and mean-square-error sense.

2.4.1 Weight error vector recursion

Using data model (2.22), the noisy data {dℓk(i),xℓk(i)} in (2.24)–(2.25) at node k can be related

to the unknown vector wo
ℓ at node ℓ via the relation:

dℓk(i) = x
⊤
ℓk(i)w

o
ℓ + zℓk(i), (2.29)
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where we introduced the scalar zero-mean noise signal:

zℓk(i) , zℓ(i) + zd,ℓk(i)− z⊤x,ℓk(i)wo
ℓ , ℓ ∈ N−

k (2.30)

with variance:

σ2
z,ℓk = σ2

z,ℓ + σ2
zd,ℓk + (wo

ℓ)
⊤Rzx,ℓkw

o
ℓ . (2.31)

To unify the notation, we define zkk(i) = zk(i). Using (2.29), the estimation error that appears

in the adaptation step of (2.23) can be written as:

dℓk(i)− x⊤
ℓk(i)wk(i) = x

⊤
ℓk(i)w̃k(i) + x

⊤
ℓk(i)u

o
ℓk + zℓk(i), (2.32)

where

uoℓk , w
o
ℓ −wo

k. (2.33)

Subtracting wo
k from both sides of the adaptation step in (2.23) and using relation (2.32), we

can write:

wo
k −ψk(i+ 1) =


IM − µk

∑

ℓ∈Nk

cℓkxℓk(i)x
⊤
ℓk(i)


w̃k(i)− µk

∑

ℓ∈Nk

cℓkxℓk(i)x
⊤
ℓk(i)u

o
ℓk

− µk
∑

ℓ∈Nk

cℓkxℓk(i)zℓk(i).

(2.34)

Subtracting wo
k from both sides of the combination step in (2.23) and using (2.26), we obtain:

w̃k(i+ 1) =
∑

ℓ∈Nk

aℓk (w
o
ℓ −ψℓ(i+ 1)) +


wo

k −
∑

ℓ∈Nk

aℓkw
o
ℓ


−

∑

ℓ∈Nk

aℓkzψ,ℓk(i+ 1) (2.35)

Relations (2.34)–(2.35) can be described more compactly by collecting the information from

across the network into block vectors and matrices. Let w̃b(i) and wo
b denote the block weight

error vector and the block optimum weight vector, all of size N × 1 with blocks of size M × 1,

namely,

w̃b(i) , col {w̃1(i), . . . w̃N (i)} , (2.36)

wo
b , col {wo

1, . . . ,w
o
N} . (2.37)

Collecting the weight error vectors {w̃k(i + 1)} given in (2.35) into w̃b(i + 1) in (2.36) and

using (2.34), we find that the network error vector recursion for the diffusion strategy (2.23) can

be written as:

w̃b(i+ 1) = A⊤(IMN −MRx(i)) w̃b(i)−A⊤Mpxz(i)−

A⊤Mpxu(i) +
(
IMN −A⊤

)
wo
b − zψ(i+ 1),

(2.38)
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where A, M, and Rx(i) are N × N block matrices, with individual blocks of size M × M ,

defined as:

M , diag {µ1IM , . . . , µNIM} , (2.39)

A , A⊗ IM , (2.40)

Rx(i) , diag




∑

ℓ∈N1

cℓ1xℓ1(i)x
⊤
ℓ1(i), . . . ,

∑

ℓ∈NN

cℓNxℓN (i)x
⊤
ℓN (i)



 , (2.41)

and pxz(i), pxu(i), and zψ(i+ 1) are N × 1 block column vectors, with individual entries of size

M × 1, given by:

pxz(i) , col




∑

ℓ∈N1

cℓ1xℓ1(i)zℓ1(i), . . . ,
∑

ℓ∈NN

cℓNxℓN (i)zℓN (i)



 , (2.42)

pxu(i) , col




∑

ℓ∈N1

cℓ1xℓ1(i)x
⊤
ℓ1(i)u

o
ℓ1, . . . ,

∑

ℓ∈NN

cℓNxℓN (i)x
⊤
ℓN (i)u

o
ℓN



 , (2.43)

zψ(i+ 1) , col





∑

ℓ∈N−

1

aℓ1zψ,ℓ1(i+ 1), . . . ,
∑

ℓ∈N−

N

aℓNzψ,ℓN (i+ 1)





. (2.44)

For compactness of notations, we introduce the symbols:

B(i) , A⊤(IMN −MRx(i)), (2.45)

g(i) , A⊤Mpxz(i), (2.46)

r(i) , A⊤Mpxu(i)−
(
IMN −A⊤

)
wo
b , (2.47)

so that the stochastic recursion (2.38) can be written as:

w̃b(i+ 1) = B(i) w̃b(i)− g(i)− r(i)− zψ(i+ 1), (2.48)

Compared to recursion (B.26), observe that the term r(i) arises from the multitask environ-

ment and the terms g(i) and zψ(i+1) are inherited from the noises introduced at the adaptation

step and the combination step, respectively.

For ease of reference, we list in Table 4.2 the symbols that have been defined in subsec-

tion 2.4.1, and others that will be defined in subsections 2.4.2 and 2.4.3.

2.4.2 Mean-error analysis

Note that the evolution of the weight-error vector in (2.48) involves block quantities inherited

from the distributed processing. To study the stability of recursions involving block quantities,

the block maximum norm, defined in Appendix A.3, should be used [Sayed, 2014c].

Taking expectations of both sides of recursion (2.48), we get:

E w̃b(i+ 1) = E {B(i) w̃b(i)} − E g(i)− E r(i)− E zψ(i+ 1), (2.49)
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Table 2.3: List of symbols defined throughout the performance analysis in Chapter 2.

Symbol Equation

uoℓk = w
o
ℓ −wo

k (2.33)

wo
b = col {wo

1, . . . ,w
o
N} (2.37)

M = diag {µ1IM , . . . , µNIM} (2.39)

A = A⊗ IM (2.40)

C = C ⊗ IM (2.81)

Rx = diag

{
∑
ℓ∈N1

cℓ1(Rx,ℓ +Rzx,ℓ1), . . . ,
∑

ℓ∈NN

cℓN (Rx,ℓ +Rzx,ℓN )

}
(2.55)

pxz = −Rzxw
o
b with Rzx = [ckℓRzx,kℓ] (2.56)

pxu = col

{
∑
ℓ∈N1

cℓ1(Rx,ℓ +Rzx,ℓ1)u
o
ℓ1, . . . ,

∑
ℓ∈NN

cℓN (Rx,ℓ +Rzx,ℓN )u
o
ℓN

}
(2.57)

B = A⊤(IMN −MRx) (2.52)

g = A⊤Mpxz (2.53)

r = A⊤Mpxu −
(
IMN −A⊤)wo

b (2.54)

Dk =
∑
ℓ∈Nk

c2ℓk

((
σ2
zd,ℓk + ‖wo

ℓ‖2Rzx,ℓk

)
Rx,ℓ +

(
σ2
zd,ℓk + σ2

z,ℓ

)
Rzx,ℓk

)
(2.82)

Hk =
∑
ℓ∈Nk

c2ℓk

(
Rx,ℓu

o
ℓk(u

o
ℓk)

⊤Rzx,ℓk + (uoℓk)
⊤Rzx,ℓku

o
ℓkRx,ℓ+ (2.88)

(uoℓk)
⊤Rx,ℓu

o
ℓkRzx,ℓk +Rzx,ℓku

o
ℓk(u

o
ℓk)

⊤Rx,ℓ

)

Jk =
∑
ℓ∈Nk

c2ℓk
(
Rx,ℓu

o
ℓk(w

o
ℓ)

⊤Rzx,ℓk + (wo
ℓ)

⊤Rzx,ℓku
o
ℓkRx,ℓ

)
(2.91)

S ≈ C⊤diag
{
σ2
z,1Rx,1, . . . , σ

2
z,N Rx,N

}
C + pxzp

⊤
xz + diag {D1, . . . ,DN} (2.80)

G = A⊤MSMA (2.76)

Rr ≈ rr⊤ +A⊤M diag {H1, . . . ,HN} MA (2.87)

Gr ≈ gr⊤ −A⊤M diag {J1, . . . ,JN} MA (2.90)

Rzψ = diag




∑

ℓ∈N−

1

a2ℓ1Rzψ,ℓ1, . . . ,
∑

ℓ∈N−

N

a2ℓN Rzψ,ℓN



 (2.93)

F ≈ B⊤ ⊗B⊤ (2.72)

T = G +Rr + 2G⊤
r +Rzψ (2.96)

y(i) = vec(T )− 2BE w̃b(i)⊗ (g + r) (2.95)
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Under Assumption 2.1 on the regression data, it turns out that xk(i) is independent of w̃ℓ(j)

for all ℓ and j ≤ i. This assumption is commonly used to analyze adaptive constructions since it

allows to simplify the derivations without constraining the conclusions. There are several results

in the adaptation literature that show that performance results that are obtained under this

independence assumption match well the actual performance of the algorithms when the step-

sizes are sufficiently small (see, e.g., [Sayed, 2008, App. 24.A] and the many references therein).

From (2.25), (2.30) and under Assumptions 2.2, 2.3, we obtain the following expectations:

E {xℓk(i)x⊤
ℓk(i)} = Rx,ℓ +Rzx,ℓk, and E {xℓk(i)z⊤ℓk(i)} = −Rzx,ℓkw

o
ℓ . (2.50)

Thus, under Assumptions 2.1–2.3, we obtain the following recursion for the network mean error

vector:

E w̃b(i+ 1) = BE w̃b(i)− g − r, (2.51)

where

B , EB(i) = A⊤(IMN −MRx), (2.52)

g , E g(i) = A⊤Mpxz, (2.53)

r , E r(i) = A⊤Mpxu −
(
IMN −A⊤

)
wo
b , (2.54)

with Rx, pxz, and pxu defined as:

Rx , ERx(i) = diag




∑

ℓ∈N1

cℓ1(Rx,ℓ +Rzx,ℓ1), . . . ,
∑

ℓ∈NN

cℓN (Rx,ℓ +Rzx,ℓN )



 , (2.55)

pxz , Epxz(i) = −Rzxw
o
b , (2.56)

pxu , Epxu(i)

= col




∑

ℓ∈N1

cℓ1(Rx,ℓ +Rzx,ℓ1)u
o
ℓ1, . . . ,

∑

ℓ∈NN

cℓN (Rx,ℓ +Rzx,ℓN )u
o
ℓN



 . (2.57)

The matrix Rzx is an N ×N block matrix with (ℓ, k)-th block given by ckℓRzx,kℓ.

Theorem 2.1. (Mean Stability) Assume that the data model in (2.22) and Assumptions 2.1–

2.3 hold. Then, for any initial condition, the diffusion LMS algorithm in (2.23) converges in the

mean, i.e., recursion (2.51) converges as i → ∞, if the step-sizes µk satisfy:

0 < µk <
2

λmax

(∑
ℓ∈Nk

cℓk(Rx,ℓ +Rzx,ℓk)
) , k = 1, . . . , N, (2.58)

with the asymptotic mean bias is given by:

lim
i→∞

E w̃b(i) = −(IMN −B)−1(g + r). (2.59)
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Proof. The convergence of (2.51) is guaranteed if the coefficient matrix B is contractive, i.e., all

its eigenvalues lie inside the unit disc or equivalently ρ(B) < 1. Since any induced matrix norm

is lower bounded by its spectral radius, we can write in terms of the block maximum norm (see

Appendix A.3):

ρ
(
A⊤(IMN −MRx)

)
≤ ‖A⊤(IMN −MRx)‖b,∞
≤ ‖A⊤‖b,∞ · ‖IMN −MRx‖b,∞
= ‖IMN −MRx‖b,∞, (2.60)

where we used the submultiplicative property of the block maximum norm and property (A.23)

for the block left-stochastic matrix A. The matrix IMN−MRx is block diagonal with individual

entries of the form

IM − µk
∑

ℓ∈Nk

cℓk(Rx,ℓ +Rzx,ℓk).

From property (A.22) we have:

‖IMN −MRx‖b,∞ = max
1≤k≤N

ρ


IM − µk

∑

ℓ∈Nk

cℓk(Rx,ℓ +Rzx,ℓk)


 . (2.61)

Finally, it can be verified that if the step-sizes are chosen according to (2.58), the block maximum

norm of the matrix IMN −MRx will be less than one, and hence, ρ(B) < 1.

Theorem 2.1 allows us to conclude the following.

Observe that the stability condition (2.58) is the same as the condition obtained in a single-

task environment [Zhao et al., 2012], which implies that the dynamic range of the step-sizes is not

affected by the multitask environment. The noise corrupting the communication of regressors

affects the stability condition through the covariance matrices Rzx,ℓk. For example, if we assume

that C is doubly-stochastic, i.e., C1 = C⊤
1 = 1, and we use the fact that the 2-induced norm

of a positive definite matrix is equal to its largest eigenvalue, we obtain by Jensen’s inequality4:

λmax


∑

ℓ∈Nk

cℓk(Rx,ℓ +Rzx,ℓk)


 ≤ max

ℓ∈Nk

λmax(Rx,ℓ +Rzx,ℓk). (2.62)

Hence, for a doubly-stochastic matrix C, the sufficient condition to ensure stability is:

0 < µk <
2

maxℓ∈Nk
λmax(Rx,ℓ +Rzx,ℓk)

, k = 1, . . . , N. (2.63)

Under perfect communication links, condition (2.63) reduces to:

0 < µk <
2

maxℓ∈Nk
λmax(Rx,ℓ)

, k = 1, . . . , N. (2.64)

4For any convex function f , symmetric matrices Xi, and non-negative scalars αi that add up to one, we have
f(

∑
i αiXi) ≤

∑
i αif(Xi).
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Then, we conclude that the noise corrupting the regressors reduces the dynamic range of the

step-sizes. Note that the stability is not affected by the noise corrupting the communication of

estimates. Furthermore, the stability condition does not depend on the combination matrix A.

The bias (2.59) results from two factors, namely, running the single-task algorithm in a mul-

titask environment and exchanging regressors over noisy communication links. If the regressors

are not corrupted by noise during their transmission, the vector g in (2.53) is zero. Moreover,

if the algorithm is applied in a single-task environment or if there is no cooperation between

neighbors with different objectives, the vector r in (2.54) is zero. The magnitude of the bias can

be large if the distance between the objectives at cooperating agents is large. Observe that the

noise over links transmitting the estimates does not induce a bias in the mean.

Finally, note that the mean behavior of the diffusion LMS algorithm in a single-task environ-

ment under perfect information exchange (which is considered in Appendix B.2), in a single-task

environment under imperfect exchange, and in a multitask environment under perfect commu-

nications can be obtained from Theorem 2.1 by setting {g, r,Rzx,ℓk} equal to 0, r = 0, and

{g,Rzx,ℓk} equal to 0, respectively.

2.4.3 Mean-square-error analysis

Even if, under condition (2.58), the error vectors w̃k(i) are converging on average, they may have

large fluctuations around the steady-state values due to the effect of measurement noises and

noises corrupting the links. Therefore, a mean-square analysis is required in order to evaluate

how the variances E ‖w̃k(i)‖2 evolve with time.

Let ‖x‖2
Σ

denote the weighted square quantity x⊤
Σx, for any vector x and matrix Σ. By

evaluating the means of weighted square quantities of the form E ‖w̃b(i)‖2Σ for any positive

semi-definite matrix Σ that we are free to choose, we are able to evaluate the evolution of

several mean-square-error quantities. For example, the excess-mean-square-error (EMSE) and

the mean-square-deviation (MSD) at agent k, defined as [Sayed, 2008]:

EMSEk(i) , E (x⊤
k (i)w̃k(i))

2, MSDk(i) , E ‖w̃k(i)‖2. (2.65)

can be obtained from E ‖w̃b(i)‖2Σ by selecting Σ as:

diagk {0, . . . ,0, IM ,0, . . . ,0} and diagk{0, . . . ,0,Rx,k,0, . . . ,0},

respectively, where the notation diagk {0, . . . ,0,X,0, . . . ,0} refers to a block diagonal matrix

with all blocks zero except the k-th block whose value is X. Indeed, under Assumption 2.1, the

EMSE at agent k can be written as:

EMSEk(i) = E ‖w̃k(i)‖2Rx,k
. (2.66)

Observe that, from the linear data model (2.22), it can be verified that:

MSEk(i) , Jk(wk(i)) = E (x⊤
k (i)w̃k(i))

2

︸ ︷︷ ︸
EMSEk(i)

+ σ2
z,k︸︷︷︸

Jk(w
o
k
)

, (2.67)
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Table 2.4: Mean-square-error performance measures and their corresponding matrix Σ.

Performance measure Definition Matrix Σ

MSD at agent k MSDk(i) , E ‖w̃k(i)‖2 diagk {0, . . . ,0, IM ,0, . . . ,0}

EMSE at agent k EMSEk(i) , E ‖w̃k(i)‖2Rx,k
diagk{0, . . . ,0,Rx,k,0, . . . ,0}

Network MSD MSDnet(i) ,
1
N

∑N
k=1 E ‖w̃k(i)‖2 1

N
IMN

Network EMSE EMSEnet(i) ,
1
N

∑N
k=1 E ‖w̃k(i)‖2Rx,k

1
N

diag{Rx,1, . . . ,Rx,N}

which implies that the EMSE quantifies the size of the offset in the MSE performance of the

adaptive filter. The MSD of each agent k measures how far wk(i) is from wo
k in the mean-square-

error sense. In the following, we shall analyze the performance in the mean-square by considering

the mean-square-error quantity E ‖w̃b(i)‖2Σ. As shown in Table 2.4, the freedom in selecting the

positive semi-definite matrix Σ allows us to extract several information about the performance

of the network and the agents.

Under Assumptions 2.1–2.3, equating weighted square measures ‖ · ‖2
Σ

on both sides of re-

cursion (2.48), expanding the RHS, and taking expectations, we find that:

E ‖w̃b(i+ 1)‖2Σ =E ‖w̃b(i)‖2Σ′ − 2E {g⊤(i)ΣB(i)w̃b(i)} − 2E {r⊤(i)ΣB(i)w̃b(i)}+
E ‖g(i)‖2Σ + E ‖r(i)‖2Σ + 2E {r⊤(i)Σg(i)}+ E ‖zψ(i+ 1)‖2Σ,

(2.68)

where Σ
′ , E {B⊤(i)ΣB(i)}. Now, we proceed to evaluate each of the expectations on the RHS

of the above equation.

Let σ denote the vectorized version of Σ obtained by stacking the columns of σ on top of each

other, i.e., σ , vec(Σ) (Appendix A.1 provides some useful properties on the vec(·) operator

and on the Kronecker product ⊗ operator). Let σ′ , vec(Σ′). Using property (A.6), σ′ can be

related linearly to σ according to:

σ′ = Fσ, (2.69)

where F is an (MN)2 × (MN)2 matrix given by:

F , E {B⊤(i)⊗B⊤(i)}. (2.70)

From properties (A.3) and (A.4), we obtain:

F =
(
I(MN)2 − IMN ⊗RxM−RxM⊗ IMN + E {Rx(i)M⊗Rx(i)M}

)
(A⊗A). (2.71)

Evaluating the expectation term in the above expression requires the knowledge of higher or-

der moments of the regression data and link noises, which are not available under the current

assumptions. To proceed, we introduce the small step-sizes condition, namely, we assume that

the step-sizes µk are sufficiently small such that terms depending on higher order powers of

34



2.4. STOCHASTIC PERFORMANCE ANALYSIS

the step-sizes can be ignored. This condition is prevalent in the stochastic gradient approxi-

mation literature and diffusion strategies [Sayed, 2008, Benveniste et al., 1987, Haykin, 2002,

Cattivelli and Sayed, 2010, Sayed, 2014c, Abdolee et al., 2014, Lorenzo, 2014, Chen et al., 2015a,

Plata-Chaves et al., 2015, Zhao et al., 2012]. Under this condition, we can either ignore terms

depending on higher order power of the step-sizes or call upon a separation principle to approx-

imate these terms (see [Sayed, 2014c, Section 6.5]). The last term on the RHS of (2.71) is one

such term and for small step-sizes, we approximate the expectation of the product by the product

of expectations. Therefore, we continue our discussion by approximating F as:

F ≈ B⊤ ⊗B⊤, (small step-sizes). (2.72)

Note that throughout the mean-square-error analyzes, the notation X ≈ Y is used when X is

equal to Y +O(M2) where O(M2) is a factor depending on the square of the step-sizes, whose

influence can be neglected for small step-sizes.

By Assumption 2.1, the error vector w̃b(i) is independent of B(i) and g(i). Thus, the

expectation in the second term on the RHS of (2.68) can be expressed as:

E {g⊤(i)ΣB(i)w̃b(i)} = E {p⊤xz(i)MAΣA⊤(IMN −MRx(i))}E w̃b(i)

≈ g⊤ΣBE w̃b(i)

= vec(g⊤ΣBE w̃b(i))
(A.6),(A.7)

= (BE w̃b(i)⊗ g)⊤ σ, (2.73)

where the approximation follows from the small step-sizes condition. Likewise, the expectation

in the third term on the RHS of (2.68) can be approximated as:

E {r⊤(i)ΣB(i)w̃b(i)} ≈ (BE w̃b(i)⊗ r)⊤ σ, (small step-sizes). (2.74)

The fourth term on the RHS of (2.68) can be written as:

E ‖g(i)‖2Σ = E

{
Tr(g⊤(i)Σg(i))

}
= Tr(ΣG)

(A.5)
= [vec (G)]⊤ σ, (2.75)

where we introduced the MN ×MN matrix G defined as:

G , E {g(i)g⊤(i)} = A⊤MSMA, (2.76)

with S an N ×N block matrix given by:

S , E {pxz(i)p⊤xz(i)}, (2.77)

for which the (ℓ, k)-th block is of size M ×M and is equal to:

∑

m∈Nℓ

∑

n∈Nk

cmℓcnkE {xmℓ(i)zmℓ(i)znk(i)x⊤
nk(i)}. (2.78)
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Note that the term G in (2.76) requiring the evaluation of fourth order moments of the form (2.78)

involves higher order powers of the step-sizes. Under Assumptions 2.2, 2.3, using the defini-

tions (2.25), (2.30), and approximating the unknown 4-th order moments by products of 2-nd

order moments for small step-sizes, we obtain the following approximation for the expectation

appearing in the above expression:

E {xmℓ(i)zmℓ(i)znk(i)x⊤
nk(i)} ≈ Rzx,mℓw

o
m(w

o
n)

⊤Rzx,nk + δmnσ
2
z,mRx,m+

δmnδℓk

[(
σ2
zd,mℓ + (wo

m)
⊤
Rzx,mℓw

o
m

)
Rx,m +

(
σ2
z,m + σ2

zd,mℓ

)
Rzx,mℓ

]
,

(2.79)

where δij refers to the Kronecker delta function of i and j. Thus, the matrix S in (2.77) can be

approximated as:

S ≈ pxzp
⊤
xz + C⊤diag

{
σ2
z,1Rx,1, . . . , σ

2
z,NRx,N

}
C + diag {D1, . . . ,DN} , (small step-sizes)

(2.80)

with

C , C ⊗ IM , (2.81)

Dk ,
∑

ℓ∈Nk

c2ℓk

((
σ2
zd,ℓk + ‖wo

ℓ‖2Rzx,ℓk

)
Rx,ℓ +

(
σ2
z,ℓ + σ2

zd,ℓk

)
Rzx,ℓk

)
. (2.82)

Likewise, the fifth term on the RHS of (2.68) can be written as:

E ‖r(i)‖2Σ = [vec (Rr)]
⊤
σ, (2.83)

where we introduced the MN ×MN matrix Rr defined as:

Rr , E {r(i)r⊤(i)}. (2.84)

The evaluation of Rr in (2.84) requires the evaluation of E {pxu(i)p⊤xu(i)}, which is an N × N

block matrix with (ℓ, k)-th block given by:

∑

m∈Nℓ

∑

n∈Nk

cmℓcnkE {xmℓ(i)x⊤
mℓ(i)u

o
mℓ(u

o
nk)

⊤xnk(i)x
⊤
nk(i)}. (2.85)

Under Assumptions 2.2, 2.3, using (2.25), and approximating 4-th order moments by products of

2-nd order moments under the small step-sizes condition, we obtain the following approximation:

E {xmℓ(i)x⊤
mℓ(i)u

o
mℓ(u

o
nk)

⊤xnk(i)x
⊤
nk(i)}

≈ (Rx,m +Rzx,mℓ)u
o
mℓ(u

o
nk)

⊤ (Rx,n +Rzx,nk) + δmnδℓk

(
Rx,mu

o
mℓ(u

o
mℓ)

⊤Rzx,mℓ

+ (uomℓ)
⊤Rzx,mℓu

o
mℓRx,m + (uomℓ)

⊤Rx,mu
o
mℓRzx,mℓ +Rzx,mℓu

o
mℓ(u

o
mℓ)

⊤Rx,m

)
.

(2.86)

Thus, the matrix Rr in (2.84) can be approximated as:

Rr ≈ rr⊤ +A⊤M diag {H1, . . . ,HN}MA, (small step-sizes) (2.87)
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where Hk is an M ×M matrix given by:

Hk ,
∑

ℓ∈Nk

c2ℓk

(
Rx,ℓu

o
ℓk(u

o
ℓk)

⊤Rzx,ℓk + (uoℓk)
⊤Rzx,ℓku

o
ℓkRx,ℓ+

(uoℓk)
⊤Rx,ℓu

o
ℓkRzx,ℓk +Rzx,ℓku

o
ℓk(u

o
ℓk)

⊤Rx,ℓ

)
.

(2.88)

Identically, the evaluation of the expectation appearing in the sixth term on the RHS of (2.68)

leads to the following expression:

E {r⊤(i)Σg(i)} =
[
vec
(
G⊤
r

)]⊤
σ. (2.89)

where Gr is defined as:

Gr , E {g(i)r⊤(i)}
≈ gr⊤ −A⊤M diag{J1, . . . ,JN}MA, (small step-sizes)

(2.90)

with Jk an M ×M matrix given by:

Jk ,
∑

ℓ∈Nk

c2ℓk

(
Rx,ℓu

o
ℓk(w

o
ℓ)

⊤Rzx,ℓk + (wo
ℓ)

⊤Rzx,ℓku
o
ℓkRx,ℓ

)
. (2.91)

Finally, the last term on the RHS of (2.68) can be expressed as:

E ‖zψ(i+ 1)‖2Σ = [vec(Rzψ)]
⊤
σ, (2.92)

where

Rzψ , E {zψ(i+ 1)z⊤ψ (i+ 1)} = diag





∑

ℓ∈N−

1

a2ℓ1Rzψ,ℓ1, . . . ,
∑

ℓ∈N−

N

a2ℓN Rzψ,ℓN





. (2.93)

Replacing the expectations appearing on the RHS of (2.68) by (2.73), (2.74), (2.75), (2.83), (2.89),

and (2.92), we find that relation (2.68) becomes:

E ‖w̃b(i+ 1)‖2Σ = E ‖w̃b(i)‖2Σ′ + y⊤(i)σ, (2.94)

where y(i) is a short-hand representation for:

y(i) , vec(T )− 2BE w̃b(i)⊗ (g + r) (2.95)

and

T , G +Rr + 2G⊤
r +Rzψ. (2.96)

It is convenient to introduce the alternative notation ‖x‖2σ to refer to the weighted square

quantity ‖x‖2
Σ

, where σ = vec(Σ). These two notations will be used interchangeably. The vector

notation allows us to exploit the linear relation (2.69) between σ and σ′ and to rewrite (2.94)

as:

E ‖w̃b(i+ 1)‖2σ =E ‖w̃b(i)‖2Fσ + y⊤(i)σ, (2.97)
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with the same vector σ appearing on both sides. Relation (2.97) shall be used to characterize the

transient and steady-state behavior of the diffusion LMS over multitask networks in the presence

of noisy communication links.

Theorem 2.2. (Mean-square stability) Assume that the data model in (2.22) and Assump-

tions 2.1–2.3 hold. Then, for any initial conditions, the diffusion LMS algorithm in (2.23)

is stable in the mean-square-error sense, i.e., the quadratic quantity E ‖w̃b(i)‖2Σ converges as

i → ∞ for any positive semi-definite matrix Σ, if the algorithm is mean stable and if the ma-

trix F in (2.71) is contractive. Sufficiently small step-sizes that satisfy (2.58) will also ensure

mean-square stability.

Proof. Provided that F is contractive (i.e., all its eigenvalues lie inside the unit disc), recur-

sion (2.97) is stable if the second term on its RHS is bounded. Since T , B, g, r, and σ are

finite and constant terms, the boundedness of y⊤(i)σ depends on E w̃b(i) being bounded. From

Theorem 2.1 and recursion (2.51), we know that E w̃b(i) is uniformly bounded since (2.51) is a

bounded input bounded output (BIBO) stable recursion with a bounded driving term −(g+r). It

follows that the second term on the RHS of (2.97) is uniformly bounded. As a result, E ‖w̃b(i)‖2σ
converges to a bounded value as i → ∞, and the algorithm is mean-square stable.

For small step-sizes, from property (A.8) and approximation (2.72), we have ρ(F) ≈ ρ2(B).

Hence, the matrix F is contractive if the matrix B is contractive. Therefore, sufficiently small

step-sizes which ensure stability in the mean will also ensure stability in the mean-square.

Observe that the mean-square-error stability is affected by the noises corrupting the regressors

communications and that the multitask environment and the noises {zk(i), zℓk(i)} do not affect

the condition on the step-sizes.

Theorem 2.3. (Transient performance) Assume the same settings as in Theorem 2.2. Then,

the learning curve defined by ζ(i) , E ‖w̃b(i)‖2σ evolves according to the following recursion:

ζ(i+ 1) = ζ(i) + ‖w̃b(0)‖2(
F−I(MN)2

)

F
iσ

+
(
y⊤(i) +Υ(i)

)
σ, (2.98)

with w̃b(0) the initial condition and Υ(i) a row vector updated according to the following recur-

sion:

Υ(i+ 1) = Υ(i)F + y⊤(i)(F − I(MN)2), (2.99)

with Υ(0) = 01×(MN)2 .

Proof. Iterating (2.97) starting from i = 0, we find:

E ‖w̃b(i+ 1)‖2σ = E ‖w̃b(0)‖2F i+1σ
+

i∑

j=0

y⊤(i− j)F jσ. (2.100)
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Comparing (2.100) at time instant i and i+ 1, we obtain (2.98) with:

Υ(i) =
i∑

j=1

y⊤(i− j)F j −
i−1∑

j=0

y⊤(i− 1− j)F j . (2.101)

Evaluating (2.101) at time instant i+ 1, we obtain:

Υ(i+ 1) =

i+1∑

j=1

y⊤(i+ 1− j)F j −
i∑

j=0

y⊤(i− j)F j

=

i∑

j=0

y⊤(i− j)F j+1 −
i−1∑

j=−1

y⊤(i− 1− j)F j+1

= y⊤(i)F +

i∑

j=1

y⊤(i− j)F j+1 − y⊤(i)−
i−1∑

j=0

y⊤(i− 1− j)F j+1, (2.102)

and we recover recursion (2.99).

Theorem 2.4. (Steady-state performance) Consider the same settings as in Theorem 2.2

and assume mean and mean-square-error stability. Then, the steady-state performance of the

diffusion LMS algorithm in (2.23) defined as ζ⋆ , limi→∞ E ‖w̃b(i)‖2σ is given by:

ζ⋆ = y⊤(∞)
(
I(MN)2 −F

)−1
σ. (2.103)

where y(∞) is given by:

y(∞) , vec(T )− 2

(
B lim
i→∞

E w̃b(i)

)
⊗ (g + r), (2.104)

and where limi→∞ E w̃b(i) is the asymptotic mean bias obtained from (2.59).

Proof. Consider sufficiently small step-sizes which ensure mean and mean-square stability, and

take the limit of (2.97) as i → ∞ and groupe the terms, we obtain:

lim
i→∞

E ‖w̃b(i)‖2(I(MN)2−F)σ = y⊤(∞)σ (2.105)

In order to recover ζ⋆ = limi→∞ E ‖w̃b(i)‖2σ, the vector σ in (2.105) should be replaced by
(
I(MN)2 −F

)−1
σ.

Theorem 2.4 allows us to obtain several useful performance metrics. For example, the steady-

state network MSD that averages the MSDs of the agents, is obtained by replacing σ in (2.103)

by 1
N

vec (IMN ):

MSDnet =
1

N
lim
i→∞

E ‖w̃b(i)‖2 =
1

N
y⊤(∞)

(
I(MN)2 −F

)−1
vec(IMN ). (2.106)

We observe that, at steady-state, the mean-square-error performance is affected by the noises

corrupting the communication links transmitting the regressors and the estimates, and by the

multitask environment. Theorems 2.2, 2.3, and 2.4 allow us to recover the performances of the

diffusion LMS algorithm under several scenarios (e.g., single-task environment, perfect informa-

tion exchange) by canceling some terms, such as, uoℓk, Rzx,ℓk, Rzψ,ℓk, etc.
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2.5 Optimizing the combination weights

In order to suppress the negative effects of running (2.23) in a multitask environment in the

presence of noisy links, we suggest to follow the strategy used in [Zhao et al., 2012, Zhao and

Sayed, 2012, Chen et al., 2015a]. It consists of adjusting the combination weights {aℓk} by

minimizing the instantaneous MSD at each node k:

MSDk(i+ 1) = E ‖w̃k(i+ 1)‖2 = E

∥∥∥wo
k −

∑

ℓ∈Nk

aℓkψℓk(i+ 1)
∥∥∥
2
. (2.107)

Using the fact that A is left-stochastic and relaxing the problem in (2.107) by omitting the

expectation operator and the cross terms, we arrive at:

aℓkamk(w
o
k −ψℓk(i+ 1))⊤(wo

k −ψmk(i+ 1)), for ℓ 6= m.

As suggested in [Zhao et al., 2012, Zhao and Sayed, 2012], we then obtain the following opti-

mization problem at agent k:

minimize
{aℓk}

N∑

ℓ=1

a2ℓk‖ŵo
k −ψℓk(i+ 1)‖2,

subject to

N∑

ℓ=1

aℓk = 1, aℓk ≥ 0, and aℓk = 0 if ℓ /∈ Nk,

(2.108)

where ŵo
k is some approximation for wo

k since, in general, wo
k is unknown. One useful approxi-

mation is the local one-step approximation used in [Chen et al., 2015a]:

ŵo
k(i+ 1) = ψk(i+ 1) + µk

qk(i)

‖qk(i)‖+ ǫ
, (2.109)

where qk(i) is an approximation of the opposite of the true gradient vector of the cost Jk(w) at

the estimate ψk(i+ 1) given by:

qk(i) , −∇̂wJk(ψk(i+ 1)) = xk(i)
(
dk(i)− x⊤

k (i)ψk(i+ 1)
)
, (2.110)

and ǫ is a small positive value which is added to obtain qk(i)
‖qk(i)‖+ǫ = 0 when qk(i) is zero.

Introducing the notation γ2ℓk(i+ 1) , ‖ŵo
k(i+ 1)−ψℓk(i+ 1)‖2, the solution of problem (2.108)

is given by:

aℓk(i+ 1) =
γ−2
ℓk (i+ 1)

∑
n∈Nk

γ−2
nk (i+ 1)

, ℓ ∈ Nk. (2.111)

This rule for adjusting the combination coefficients takes into account the closeness of the

local estimate ψk(i) to the noisy neighboring estimate ψℓk(i) for ℓ ∈ Nk, and the local slope of

the cost function Jk(·) [Chen et al., 2015a]. In particular, agent k tends to decrease the weight

aℓk(i+1) if the distance ‖ψk(i+1)−ψℓk(i+1)‖2 is large and if Jk(ψℓk(i+1)) > Jk(ψk(i+1)).
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This observation follows from the following expansion of the inverse of the numerator in (2.111):

‖ŵo
k(i+ 1)−ψℓk(i+ 1)‖2

=

∥∥∥∥ψk(i+ 1) + µk
qk(i)

‖qk(i)‖+ ǫ
−ψℓk(i+ 1)

∥∥∥∥
2

= ‖ψk(i+ 1)−ψℓk(i+ 1)‖2 + µ2
k

∥∥∥∥
qk(i)

‖qk(i)‖+ ǫ

∥∥∥∥
2

− 2µk
‖qk(i)‖+ ǫ

(ψℓk(i+ 1)−ψk(i+ 1))⊤ qk(i)

(2.112)

The first term on the RHS of the previous relation is equal to the distance between the local

estimate at node k and the estimate arriving from neighboring node ℓ. The second term on the

RHS is the same for all ℓ ∈ Nk. The third term is proportional to Jk(ψℓk(i+1))−Jk(ψk(i+1))

since the first order Taylor expansion of Jk(w) at the estimate ψk(i+ 1) gives:

Jk(w) ≈ Jk(ψk(i+ 1))− (w −ψk(i+ 1))⊤qk(i). (2.113)

Thus, this rule leads to a network clustering by assigning large weights to agents sharing the

same objective and negligible weights to agents with distinct objectives.

It is noticed in [Khawatmi et al., 2015] that the clustering strategy (2.111) (under perfect

information exchange conditions) may suffer from a larger probability of false alarm, that is, aℓk

may tend to zero even in situations where nodes k and ℓ share the same task. To overcome this

problem, we propose to smooth γ2ℓk(i+ 1) as follows:

γ2ℓk(i+ 1) = (1− νk)γ
2
ℓk(i) + νk‖ŵo

k(i+ 1)−ψℓk(i+ 1)‖2 (2.114)

where νk ∈ [0, 1] is a forgetting factor.

The protocol for adjusting the combination weights in [Zhao and Sayed, 2012, Zhao et al.,

2012] differs from (2.111) and (2.114) by using the estimate wk(i) as an approximation for wo
k

in (2.109). Moreover, the clustering strategy proposed in [Chen et al., 2015a] does not include the

smoothing step (2.114). As shown by simulations, this step reduces the probability of erroneous

clustering especially in the presence of noisy links.

2.6 Simulation results

Consider a connected network the topology of which is shown in Figure 2.3 (left plot), consisting

of 20 agents grouped into 4 clusters: C1 = {1, . . . , 6}, C2 = {7, . . . , 12}, C3 = {13, . . . , 16},
and C4 = {17, . . . , 20}. We assume that agents belonging to the same cluster are interested in

estimating the same parameter vector, i.e., wo
k = w

o
Cq if k ∈ Cq, with wo

Cq denoting the optimum

parameter vector at cluster Cq. Regressors are 2 × 1 zero-mean Gaussian random vectors with

covariance matrices Rx,k = σ2
x,kI2. Noises zk(i) are zero-mean i.i.d. Gaussian with variance

σ2
z,k. Variances σ2

x,k and σ2
z,k are shown in Figure 2.3 (right plot). Noises over links zd,ℓk(i),

zx,ℓk(i), and zψ,ℓk(i) are also zero-mean i.i.d. Gaussian of variances σ2
z and covariances σ2

zI2 for
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Figure 2.3: Experimental setup. (Left) Network topology. (Right) Regression and noise variances.

all ℓ ∈ N−
k . The optimum parameter vectors are uniformly distributed on a circle of radius r

centered at wo = [0.5,−0.5]⊤, namely,

wo
Cq = wo + r




cos

(
2π(q − 1)

4
+

π

10

)

sin

(
2π(q − 1)

4
+

π

10

)


 , q = 1, . . . , 4. (2.115)

We use a constant step-size µk = 0.01 for all k. The results are averaged over 100 runs. Let

A0 and C0 be uniform combination matrices (2.14), namely, aℓk = 1/card{Nk} for ℓ ∈ Nk and

cℓk = 1/card{Nℓ} for k ∈ Nℓ, respectively.

First, we considered the case where the tasks are close to each other by setting r = 0.02.

We run the ATC algorithm (2.23) with C0 and A0 for 4 levels of noise over links: L0 : σ2
z = 0,

L1 : σ2
z = 10−4, L2 : σ2

z = 10−3, and L3 : σ2
z = 10−2. The non-cooperative LMS (2.7) is also

considered by settingA = C = IN . The network MSD learning curves are reported in Figure 2.4.

The theoretical transient MSD is obtained from Theorem 2.3 by setting σ = 1
N

vec (IMN ) and

the theoretical steady-state MSD is given in (2.106). It can be observed that the theoretical

findings match well the simulated curves. Furthermore, for a certain degree of similarity between

tasks, diffusion LMS with perfect information exchange can still deliver superior performance

compared to non-cooperative strategies despite the bias introduced by the multitask scenario.

The performance decreases when the level of noise over links increases.

In the following, we use A(0) = A0 and C(0) = C0. The coefficients cℓk(i) were set such that

C(i + 1) = A⊤(i). Three different protocols for adjusting the combination coefficients aℓk are

considered: the rule (2.109)–(2.114) with νk = 0.05 and ǫ = 0.01, the rule in [Chen et al., 2015a]

with ǫ = 0.01, and the rule in [Zhao et al., 2012, Zhao and Sayed, 2012] with νk = 0.05. We

run algorithm (2.23) for r = 0.02 and σ2
z = 10−2 with the adaptive combination rules mentioned
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Figure 2.4: Network MSD behavior of the ATC diffusion algorithm (2.23) for different levels of
noise over the communication links. Non-cooperative LMS is given in (2.7).
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Figure 2.5: Network MSD of the ATC diffusion algorithm (2.23) for different combination rules
(close tasks). Combination rule 1 refers to the rule (2.109)–(2.114). Combination rule 2 refers
to the rule in [Chen et al., 2015a]. Combination rule 3 refers to the rule in [Zhao et al., 2012,
Zhao and Sayed, 2012].

earlier. Figure 2.5 illustrates the network MSD behavior for these algorithms. It appears that

all these rules allow us to reduce the negative effects of noise over communication links. Our

rule (2.109)–(2.114) achieves the best performance.

To test the clustering ability of the ATC algorithm (2.23) with adaptive combiners in the

presence of noisy links, we increased the distance between tasks by setting r = 1. In Figure 2.6,
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Figure 2.6: Network MSD of the ATC diffusion algorithm (2.23) for different combination rules
(distant tasks) with perfect (left) and imperfect (right) information exchange. Combination rule
1 refers to the rule (2.109)–(2.114). Combination rule 2 refers to the rule in [Chen et al., 2015a].
Combination rule 3 refers to the rule in [Zhao et al., 2012, Zhao and Sayed, 2012].

we compare the network MSD of the algorithm under perfect (left plot) and imperfect (right plot)

information exchange, by setting σ2
z = 0 and σ2

z = 10−4, respectively. In each case, we considered

fixed combiners {aℓk, cℓk} and adaptive combiners using the 3 different protocols mentioned

earlier. As shown by the experiments, the use of adaptive combiners is necessary when the

tasks are not close enough. Furthermore, our rule (2.109)-(2.114) provides the best performance

especially in the presence of noisy information exchange. To better analyze this behavior, we

report in Figure 2.7 the probabilities of erroneous clustering decisions of types I (left plot) and

II (right plot). Consider the link Lℓ,k connecting k to its neighbor ℓ. The probability of type I

for node k is the probability that Lℓ,k is erroneously dropped while wo
k = wo

ℓ . The probability

of type II is the probability that Lℓ,k is erroneously connected while wo
k 6= wo

ℓ . We considered

that the link is dropped off if aℓk(i) < 0.05. The experiments show that the rule in [Zhao et al.,

2012, Zhao and Sayed, 2012] suffers when the distance between tasks is large. The rule in [Chen

et al., 2015a] tends to drop off links between agents of the same clusters, notably in the presence

of noisy links. Our rule (2.109)-(2.114) is able to perform a perfect clustering in the presence

and absence of noisy links since both types of probabilities are decaying to zero.

2.7 Conclusion

In this chapter, we have reviewed the diffusion LMS strategies over single-task MSE networks.

Although other forms of adaptive implementations, such as RLS and NLMS, have also been

considered in the context of diffusion strategies, we shall focus on LMS implementations because

of their simplicity. Next, we have considered a scenario where the diffusion LMS algorithm is

applied to multitask networks in the presence of noisy links and have studied its performance in
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Figure 2.7: Erroneous clustering decisions of type I (left) and II (right) with perfect (solid) and
imperfect (dashed) information exchange. Combination rule 1 refers to the rule (2.109)–(2.114).
Combination rule 2 refers to the rule in [Chen et al., 2015a]. Combination rule 3 refers to the
rule in [Zhao et al., 2012, Zhao and Sayed, 2012].

the mean and mean-square error sense. An online strategy for adapting the combination coeffi-

cients has been provided to reduce the impact of communicating agents with distinct objectives

in the presence of noisy links. Finally, simulation results have validated the theoretical findings

and have tested the efficiency of the clustering strategy. We observed that by smoothing γ2ℓk(i)

through a first order filter, the clustering decision at agent k is more robust.

In the following chapters, we consider strategies that generalize the consensus requirement

to settings where different related models need to be estimated simultaneously by the agents

collecting noisy measurements. It is assumed that agents have some prior knowledge about the

clustering and the relationships between the models. The objective is then to derive and study

distributed strategies that exploit the dependencies between the tasks in an appropriate manner

in order to improve the estimation performances.

For compactness and concision purposes, in chapters 3, 4, and 5, we focus on analyzing

multitask networks where the exchange of information between agents is not corrupted by noise.

However, note that, most of the analyzes in these chapters can be extended to handle the more

general scenario of noisy links using a similar additive noise model as in Section 2.3.
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3
Multitask diffusion LMS over asynchronous networks

T
he multitask diffusion LMS proposed in [Chen et al., 2014b,c] is a distributed strategy to

simultaneously infer, in a collaborative manner, multiple models that are close to each other

in the Euclidean norm sense. However, this work assumes that all agents can process data

synchronously. In several applications, agents may not be able to act synchronously because

networks can be subject to several sources of uncertainties such as changing topology, random

link failures, or agents turning on and off for energy conservation. In this chapter, we describe

a multitask model over asynchronous networks and examine its performance by carrying out a

detailed mean and mean-square error analysis. The analysis reveals how the asynchronous events

interfere with the learning behavior of the multitask algorithm.

The work presented in this chapter was published in:

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Performance analysis of multitask

diffusion adaptation over asynchronous networks. In Proc. Asilomar Conference on Sig-

nals, Systems and Computers, pages 788–792, Pacific Grove, CA, November 2014. (Also

available at http://www.cedric-richard.fr/Articles/nassif2014performance.pdf)

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Multitask diffusion adaptation over

asynchronous networks. IEEE Transactions on Signal Processing, 64(11):2835–2850, June

2016. (Also available at http://arxiv.org/abs/1412.1798)

3.1 Introduction

Most of the prior literature on distributed adaptive processing focuses primarily on single-task

estimation problems where agents estimate a single parameter vector collaboratively. As de-

scribed in Section 1.2, some applications need more complex models and flexible algorithms than
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single-task implementations since their agents may need to estimate and track multiple targets

simultaneously. For instance, sensor networks deployed to estimate a spatially-varying temper-

ature profile need to exploit more directly the spatio-temporal correlations that exist between

measurements at neighboring nodes [Abdolee et al., 2014]. Likewise, monitoring applications

where agents need to track the movement of multiple correlated targets need to exploit the

correlation profile in the data for enhanced accuracy. In this chapter, we consider multitask

estimation problems where agents need to infer simultaneously multiple parameter vectors from

noisy measurements.

Existing strategies to address multitask problems mostly depend on how the tasks relate

to each other and on exploiting some prior information. There have been some useful works

dealing with such problems over distributed networks. For example, in [Plata-Chaves et al.,

2015], it is assumed that there are three types of parameters: parameters of global interest to

the whole network, parameters of common interest to a subset of agents, and a collection of

parameters of local interest. A diffusion strategy of the LMS type was developed to perform

estimation under these conditions. In comparison, the parameter space is decomposed into

two orthogonal subspaces in [Chen et al., 2014a], with one of the subspaces being common

to all agents. Multitask estimation algorithms over fully connected networks [Bertrand and

Moonen, 2010], tree networks [Bertrand and Moonen, 2011], and combinations thereof [Szurley

et al., 2015] are also considered. These works assume that the node-specific signals lie in a

common latent signal subspace and exploit this property to compress information and to reduce

communication costs. An alternative way to exploit and model relationships among tasks is to

formulate optimization problems with appropriate co-regularizers between agents [Chen et al.,

2014a,c, Nassif et al., 2015, 2016d]. The multitask diffusion LMS algorithm derived in [Chen

et al., 2014b,c] relies on this principle, and we build on this construction in this chapter. In

this context, the network is not assumed to be fully connected and agents do not need to be

interested in some common parameters. It is sufficient to assume that different clusters within

the network are interested in estimating their own models, and that there are some correlations

among the models of adjacent clusters. These correlations are captured by means of regularization

parameters.

The aforementioned works on multitask problems assume that all agents respond to data

synchronously. In several applications, agents may not be able to act synchronously because

networks can be subject to several sources of uncertainties such as changing topology, random link

failures, or agents turning on and off randomly for energy conservation. There exist several useful

studies in the literature on the performance of consensus and gossip strategies in the presence of

asynchronous events [Kar and Moura, 2009, Srivastava and Nedic, 2011, Tsitsiklis et al., 1986,

Boyd et al., 2006] or changing topologies [Kar and Moura, 2008, 2009, 2010, 2011, Boyd et al.,

2006, Srivastava and Nedic, 2011, Aysal et al., 2009, Jakovetic et al., 2010, 2011]. In most parts,

these works investigate pure averaging algorithms that cannot process streaming data, or assume
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noise-free data, or make use of decreasing step-size sequences. There are also studies in the

context of diffusion strategies. In particular, the works [Zhao and Sayed, 2015a,b,c] introduced a

rather general framework for asynchronous networks that includes many prior models as special

cases. These works examined how asynchronous events interfere with the behavior of adaptive

networks in the presence of streaming noisy data and under constant step-size adaptation. Several

interesting conclusions are reported in [Zhao and Sayed, 2015c] where comparisons are carried

out between synchronous and asynchronous behavior, as well as with centralized solutions. In

this thesis, we would like to examine similar effects to [Zhao and Sayed, 2015a,b] albeit in the

context of multitask networks as opposed to single-task networks. In this case, a new dimension

arises in that asynchronous events can interfere with the exchange of information among clusters.

We examine in some details the mean and mean-square stability of the multitask network and

show that sufficiently small step-sizes can still ensure convergence and performance. Various

simulation results illustrate the theoretical findings and the benefit from learning multiple tasks

simultaneously. The framework is applied to a particular application involving the localization

and the tracking of circular targets.

Before starting our presentation, we list in Table 3.1 some of the main symbols and notations

used in this chapter. Other symbols will be defined in the context where they are used.

3.2 Multitask diffusion LMS over asynchronous networks

We now briefly recall the synchronous diffusion adaptation strategy developed in [Chen et al.,

2014c] for solving distributed estimation problems over multitask networks.

3.2.1 Synchronous multitask diffusion adaptation

We consider a connected network consisting of N nodes grouped into Q clusters, as illustrated

in Figure 3.1. The problem is to estimate an M × 1 unknown parameter vector wo
k at each node

k from observed data. Node k has access to temporal measurement sequences {dk(i),xk(i)},
where dk(i) is a scalar zero-mean reference signal, and xk(i) is an M ×1 regression vector with a

positive-definite covariance matrix Rx,k = E {xk(i)x⊤
k (i)} > 0. The data at node k are assumed

to be related via the linear regression model:

dk(i) = x
⊤
k (i)w

o
k + zk(i), i ≥ 0 (3.1)

where zk(i) is a zero-mean i.i.d. noise of variance σ2
z,k that is independent of any other signal

in the network. We assume that nodes belonging to the same cluster have the same parameter

vector to estimate, namely,

wo
k = w

o
Cq , whenever k ∈ Cq. (3.2)

We say that two clusters are connected if there exists at least one edge linking a node from

one cluster to a node in the other cluster. We also assume that relationships between connected
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Table 3.1: List of the main symbols and notations used in Chapter 3.

M Length of the parameter vectors

N Number of agents in the network

Q Number of clusters in the network

Nk Neighborhood of agent k, i.e., the set of agents that are connected
to k by edges

N−
k Neighborhood of agent k, excluding k

Cq Cluster q, i.e., the set of agents in the q-th cluster

C(k) The cluster of agents to which agent k belongs, including k

C(k)− The cluster of agents to which agent k belongs, excluding k

Nk ∩ C(k) Neighbors of agent k that are inside its cluster

Nk \ C(k) Neighbors of agent k that are outside its cluster

J(·), J(·) Cost function without/ with regularization

wk Parameter vector at agent k

wo
k, w

o
Cq , w

o
C(k) Optimum parameter vectors at agent k, at cluster Cq, and at cluster C(k)

wb Network block parameter vector, also called graph signal

wo
b Network block optimum parameter vector

M , A, P ρ Means of the random processes M(i), A(i), and P ρ(i)

CM , CA, CP Kronecker covariance matrices of the random processes
M(i), A(i), and P ρ(i)

clusters exist so that cooperation among adjacent clusters is beneficial. In particular, we suppose

that the parameter vectors corresponding to two connected clusters Cp and Cq satisfy certain

properties, such as being close to each other [Chen et al., 2014c]. Cooperation across these

clusters can therefore be beneficial to infer wo
Cp and wo

Cq .

Consider the cluster C(k) to which node k belongs. A local cost function, Jk(wC(k)), is as-

sociated with node k. It is assumed to be strongly convex and second-order differentiable. An

example of which is the mean-square-error (MSE) criterion considered throughout this disserta-

tion and defined by:

Jk
(
wC(k)

)
= E

(
dk(i)− x⊤

k (i)wC(k)
)2
. (3.3)

Depending on the application, there may be certain properties among the optimal vectors

{wo
C1 , . . . ,w

o
CQ} that deserve to be promoted in order to enhance estimation accuracy. Among

other possible options, a smoothness condition was enforced in [Chen et al., 2014c]. Specifically,

the local variation of the graph signal (which refers to the N × 1 block vector wb for which the

k-th block is the parameter vector at node k) at node k was defined as the squared ℓ2-norm of
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Figure 3.1: Clustered multitask network consisting of 3 clusters. Two clusters are connected if
they share at least one edge.

the graph gradient at this node [Grady and Polimeni, 2010], namely,

‖∇kwb‖2 =
∑

ℓ∈Nk\C(k)
ρkℓ‖wk −wℓ‖2 (3.4)

where ρkℓ is a nonnegative weight assigned to the edge between nodes k and ℓ. As an alternative

to (3.4) and in order to promote piecewise constant transitions in the entries of the parameter

vectors, the use of the ℓ1-norm of the graph gradient at each node is proposed and studied in

the next chapter. In this chapter, we will focus on (3.4).

To estimate the unknown parameter vectorswo
C1 , . . . ,w

o
CQ , it was shown in [Chen et al., 2014c]

that the local cost (3.3) and the regularizer (3.4) can be combined at the level of each cluster.

This formulation led to the following estimation problem defined in terms of Q Nash equilibrium

problems [Basar and Olsder, 1995], where each cluster Cq estimates wo
Cq by minimizing the

regularized cost function JCq(wCq ,w−Cq):





minimize
wCq

JCq(wCq ,w−Cq)

with JCq(wCq ,w−Cq) ,
∑

k∈Cq
E
(
dk(i)− x⊤

k (i)wC(k)
)2

+ η
∑

k∈Cq

∑

ℓ∈Nk\Cq
ρkℓ ‖wC(k) −wC(ℓ)‖2,

(3.5)

for q = 1, . . . , Q. Note that we have kept the notation wC(k) in (3.5) to make the role of the

regularization term clearer, even though we have wC(k) = wCq for all k in Cq. The notation w−Cq
denotes the collection of weight vectors estimated by the other clusters, that is, w−Cq = {wCp :

p = 1, . . . , Q} \ {wCq}. The first term on the RHS of expression (3.5) penalizes the error on

the streaming data. However, the second term enforces the prior information on the smoothness
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of the graph signal {wC1 , . . . ,wCQ}, with strength parameter η ≥ 0. In [Chen et al., 2014c],

the coefficients {ρkℓ} used to adjust the regularization strength among neighbors were chosen to

satisfy the conditions:

∑

ℓ∈Nk\C(k)−
ρkℓ = 1, and





ρkℓ > 0, if ℓ ∈ Nk \ C(k),
ρkk ≥ 0,

ρkℓ = 0, otherwise.

(3.6)

In this way, it is clear that η controls the regularization strength while ρkℓ adjusts the regular-

ization strength between the neighbors. We impose ρkℓ = 0 for all ℓ /∈ Nk \ C(k)− since nodes

belonging to the same cluster estimate the same parameter vector. Observe from (3.5) that

the regularization strength between two clusters is directly related to the number of edges that

connect them.

Following the same line of reasoning from [Cattivelli and Sayed, 2010, Sayed, 2014c] in

the single-task case, and extending the argument to problem (3.5) by using Nash-equilibrium

properties [Basar and Olsder, 1995, Rosen, 1965], the following diffusion strategy of the adapt-

then-combine (ATC) form was derived in [Chen et al., 2014c] for solving the multitask learning

problem (3.5) in a fully distributed manner:




ψk(i+ 1) = wk(i) + µk xk(i)
(
dk(i)− x⊤

k (i)wk(i)
)
+ η µk


 ∑

ℓ∈Nk\C(k)
ρkℓ(wℓ(i)−wk(i))


 ,

wk(i+ 1) =
∑

ℓ∈Nk∩C(k)
aℓk ψℓ(i+ 1).

(3.7)

where wk(i) denotes the estimate of the unknown parameter vector wo
k at node k and iteration

i, and µk is a positive step-size parameter. The combination coefficients {aℓk} are nonnegative

scalars that are chosen to satisfy the conditions:

∑

ℓ∈Nk∩C(k)
aℓk = 1, and

{
aℓk > 0, if ℓ ∈ Nk ∩ C(k),
aℓk = 0, otherwise.

(3.8)

As explained in Section 2.2, there are several ways to select these coefficients such as using the

averaging rule or the Metropolis rule.

Starting from an initial condition wk(0), at every time instant i ≥ 0, the ATC strategy (3.7)

performs two steps. In the first step, also called adaptation step, agent k receives from its

neighbors that are outside its cluster their estimates wℓ(i) and uses these information, along with

its instantaneous noisy data, to update the estimate wk(i) to an intermediate value ψk(i + 1).

This step involves a regularization term promoting relations between neighboring clusters. All

other agents in the network are performing simultaneously a similar adaptation step. The second

step is a combination step where agent k combines the intermediate iterates ψℓ(i+1) of its cluster

neighbors to obtain wk(i + 1). Again, all other agents are performing simultaneously a similar

combination step.
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Observe that, if η is set to 0, algorithm (3.7) degenerates into the ATC diffusion LMS algo-

rithm within each cluster and without information exchange between the clusters. The larger

this factor is, the more the signal over the graph is smooth.

3.2.2 Asynchronous multitask diffusion adaptation

To model the asynchronous behavior over networks, we follow the same procedure developed

in [Zhao and Sayed, 2015a] since the model presented in that work allows us to cover many situ-

ations of practical interest. Specifically, we replace each deterministic step-size µk by a random

process µk(i), and model uncertainties in the links by using random combination coefficients

{aℓk(i)} and random regularization factors {ρkℓ(i)}. In other words, we modify the multitask

diffusion strategy (3.7) to the following form:





ψk(i+ 1) = wk(i) + µk(i)xk(i)
(
dk(i)− x⊤

k (i)wk(i)
)

+ η µk(i)


 ∑

ℓ∈Nk(i)\C(k)
ρkℓ(i)(wℓ(i)−wk(i))


 ,

wk(i+ 1) =
∑

ℓ∈Nk(i)∩C(k)
aℓk(i)ψℓ(i+ 1)

(3.9)

where Nk(i) is also now random and denotes the random neighborhood of agent k at time

instant i. The composition of each cluster is assumed to be known a priori and does not change

over time. When dealing with multitask networks, compared to single-task networks [Zhao

and Sayed, 2015a], a second source of uncertainty comes from links transmitting data between

clusters. Indeed, data transmitted over intra-cluster links are used to reach a consensus while

data transmitted over inter-cluster links are used to promote relationships between tasks.

The asynchronous network model is assumed to satisfy the following conditions:

• Conditions on the step-size parameters: At each time instant i, the step-size at node k is

a bounded nonnegative random variable µk(i) ∈ [0, µmax,k]. These step-sizes are collected

into the random matrix M(i) , diag{µ1(i), . . . , µN (i)}. We assume that {M(i), i ≥ 0} is

a weakly stationary random process with mean M and Kronecker-covariance matrix CM

of size N2 ×N2 defined as

CM , E
{
(M(i)−M)⊗ (M(i)−M)

}
. (3.10)

• Conditions on the combination coefficients: The random coefficients {aℓk(i)} used to scale

the estimates {ψℓ(i + 1)} that are being received by node k from its cluster neighbors

ℓ ∈ Nk(i) ∩ C(k) satisfy the following constraints at each iteration i:

∑

ℓ∈Nk(i)∩C(k)
aℓk(i) = 1, and

{
aℓk(i) > 0, if ℓ ∈ Nk(i) ∩ C(k),
aℓk(i) = 0, otherwise.

(3.11)
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We collect these coefficients into the random N ×N left-stochastic matrix A(i). We again

assume that {A(i), i ≥ 0} is a weakly stationary random process. Let A be its mean and

CA its Kronecker-covariance matrix of size N2 ×N2 defined as

CA , E
{
(A(i)−A)⊗ (A(i)−A)

}
. (3.12)

• Conditions on the regularization factors: The random factors {ρkℓ(i)}, which adjust the

regularization strength between the parameter vectors at neighboring nodes of distinct

clusters, satisfy the following constraints at each iteration i:

∑

ℓ∈Nk(i)\C(k)−
ρkℓ(i) = 1, and





ρkℓ(i) > 0, if ℓ ∈ Nk(i) \ C(k),
ρkk(i) ≥ 0,

ρkℓ(i) = 0, otherwise.

(3.13)

We collect these coefficients into the random N ×N right-stochastic matrix P ρ(i). We

assume that {P ρ(i), i ≥ 0} is a weakly stationary random process with mean P ρ and

Kronecker-covariance matrix CP of size N2 ×N2 defined as

CP , E
{
(P ρ(i)− P ρ)⊗ (P ρ(i)− P ρ)

}
. (3.14)

• Independence assumptions: To enable tractable analysis, we shall assume that the random

matrices M(i), A(i), and P ρ(i) at iteration i are mutually-independent and independent

of any other random variables. These matrices are related to node, intra-cluster, and

inter-cluster link failures, respectively.

• Mean graph: The mean matrices A and P ρ define the intra-cluster and inter-cluster neigh-

borhoods, namely, Nk ∩ C(k) and Nk \ C(k) for all k, respectively. We refer to the neigh-

borhoods Nk =
(
Nk ∩ C(k)

)
∪
(
Nk \ C(k)

)
for all k, defined by A and P ρ, as the mean

graph.

In view of the above conditions, the mean combination coefficients āℓk , E aℓk(i) and

regularization factors ρ̄kℓ , E ρkℓ(i) are nonnegative and satisfy the following constraints.

∑

ℓ∈Nk∩C(k)
āℓk = 1, and

{
āℓk > 0, if ℓ ∈ Nk ∩ C(k),
āℓk = 0, otherwise,

(3.15)

∑

ℓ∈Nk\C(k)−
ρ̄kℓ = 1, and





ρ̄kℓ > 0, if ℓ ∈ Nk \ C(k),
ρ̄kk ≥ 0,

ρ̄kℓ = 0, otherwise.

(3.16)

At each time instant i, the matrix P ρ(i)⊗P ρ(i) has nonnegative entries since P ρ(i) has nonneg-

ative entries. It follows that P ρ and E {P ρ(i)⊗P ρ(i)}
(3.14)
= P ρ⊗P ρ+CP have also nonnegative

entries, and are right-stochastic since

P ρ 1N = EP ρ(i)1N = 1N , (3.17)
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and

(P ρ ⊗ P ρ +CP )1N2 = E {(P ρ(i)⊗ P ρ(i))(1N ⊗ 1N )} = E {(P ρ(i)1N )⊗ (P ρ(i)1N )} = 1N2 .

(3.18)

In the same token, the matrices A and A⊗A+CA are left-stochastic. Thus, we can state the

following properties for the asynchronous model (3.9):

Property 3.1. The N ×N matrix A and the N2 ×N2 matrix A⊗A+CA are left-stochastic

matrices.

Property 3.2. The N×N matrix P ρ and the N2×N2 matrix P ρ⊗P ρ+CP are right-stochastic

matrices.

Property 3.3. For every node k, the neighborhood Nk that is defined by the mean graph of

the asynchronous model (3.9) is equal to the union of all possible realizations for the random

neighborhood Nk(i) =
(
Nk(i) ∩ C(k)

)
∪
(
Nk(i) \ C(k)

)
.

Property 3.3 is established in Appendix C.1. We provide in Appendix C.2 one example for

a common asynchronous network referred to as the Bernoulli network. The Bernoulli model

proposed in [Zhao and Sayed, 2015a] is more general than the one used for modeling random link

failures in consensus networks [Kar and Moura, 2008, 2009] since it also allows to consider random

“on-off" behavior for agents. When dealing with multitask problems over asynchronous network,

additional sources of uncertainties must be considered. The network provided in Appendix C.2

allows us to jointly model intra-cluster link failures, inter-cluster link failures, and random “on-

off" behaviors for agents.

3.3 Stochastic performance analysis

The performance of the multitask diffusion algorithm (3.9) is affected by various random pertur-

bations due to the asynchronous events. We now examine the stochastic behavior of this strategy

in the mean and mean-square error sense by relying on the energy conservation framework.

3.3.1 Weight error vector recursion

For each agent k, we introduce the weight error vectors:

w̃k(i) , w
o
k −wk(i), ψ̃k(i) , w

o
k −ψk(i) (3.19)

where wo
k is the optimum parameter vector at node k. We denote by w̃b(i), ψ̃b(i), and wo

b the

block weight error vector, the block intermediate weight error vector, and the block optimum
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weight vector, all of size N × 1 with blocks of size M × 1, namely,

w̃b(i) , col{w̃1(i), . . . , w̃N (i)}, (3.20)

ψ̃b(i) , col{ψ̃1(i), . . . , ψ̃N (i)}, (3.21)

wo
b , col{wo

1, . . . ,w
o
N}. (3.22)

We also introduce the following N ×N block matrices with individual entries of size M ×M :

M(i) , M(i)⊗ IM , (3.23)

A(i) , A(i)⊗ IM , (3.24)

Pρ(i) , P ρ(i)⊗ IM . (3.25)

To perform the theoretical analysis, we introduce the following independence assumption.

Assumption 3.1. (Independent regressors) The regression vectors xk(i) arise from stationary

random processes that are temporally stationary, temporally white, and independent over space

with Rx,k = E {xk(i)x⊤
k (i)} > 0.

A direct consequence is that xk(i) is independent of w̃ℓ(j) for all ℓ and j ≤ i. As explained

in Chapter 2, this assumption is commonly used in adaptive filtering and helps to simplify the

analysis. Furthermore, for sufficiently small step-sizes, performance results obtained under this

assumption match well the actual performance of stand alone filters [Sayed, 2008, App. 24.A].

The estimation error in the first step of the asynchronous strategy (3.9) can be rewritten as:

dk(i)− x⊤
k (i)wk(i) = x

⊤
k (i)w̃k(i) + zk(i). (3.26)

Subtracting wo
k from both sides of the adaptation step in (3.9) and using the above relation, we

can express the update equation for ψ̃b(i+ 1) as:

ψ̃b(i+ 1) =
[
IMN −M(i)(Rx(i) + ηQ(i))

]
w̃b(i)−M(i)pxz(i) + ηM(i)Q(i)wo

b (3.27)

where

Q(i) , IMN −Pρ(i), (3.28)

while Rx(i) is an N ×N block matrix with individual entries of size M ×M given by:

Rx(i) , diag
{
x1(i)x

⊤
1 (i), . . . ,xN (i)x

⊤
N (i)

}
, (3.29)

and pxz(i) is the N × 1 block column vector with blocks of size M × 1 defined as:

pxz(i) , col
{
x1(i)z1(i), . . . ,xN (i)zN (i)

}
. (3.30)

Upon subtracting wo
k from both sides of the combination step in (3.9), we obtain the block

weight error vector:

w̃b(i+ 1) = A⊤(i) ψ̃b(i+ 1). (3.31)
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Substituting (3.27) into (3.31), we find that the error dynamics of the asynchronous multitask

diffusion strategy (3.9) evolves according to the following recursion:

w̃b(i+ 1) = A⊤(i)
[
IMN −M(i)(Rx(i) + ηQ(i))

]
w̃b(i)−

A⊤(i)M(i)pxz(i) + ηA⊤(i)M(i)Q(i)wo
b .

(3.32)

For compactness of notation, we introduce the symbols:

B(i) , A⊤(i)
[
IMN −M(i)(Rx(i) + ηQ(i))

]
, (3.33)

g(i) , A⊤(i)M(i)pxz(i), (3.34)

r(i) , A⊤(i)M(i)Q(i)wo
b , (3.35)

so that (3.32) can be written as

w̃b(i+ 1) = B(i) w̃b(i)− g(i) + η r(i). (3.36)

For ease of reference, we list in Table 3.2 the various symbols that will be defined throughout

the analysis.

3.3.2 Mean-error analysis

Upon taking the expectation of both sides of the above recursion, and using Assumption 3.1,

and the independence of A(i), M(i), and P ρ(i), the evolution of the mean error vector of the

network is governed by the following dynamics:

E w̃b(i+ 1) = BE w̃b(i) + η r (3.37)

with

B , EB(i) = A⊤[IMN −M(Rx + ηQ)
]

(3.38)

r , E r(i) = A⊤MQwo
b , (3.39)

where A, M, Rx, and Q denote the expectations of A(i), M(i), Rx(i), and Q(i), respectively,

and are given by:

A , EA(i) = A⊗ IM , (3.40)

M , EM(i) =M ⊗ IM , (3.41)

Pρ , EPρ(i) = P ρ ⊗ IM , (3.42)

Rx , ERx(i) = diag{Rx,1, . . . ,Rx,N} (3.43)

Q , EQ(i) = IMN − EPρ(i) = IMN −Pρ. (3.44)

Note that E g(i) = 0 since zk(i) is zero-mean and independent of any other signal.
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Table 3.2: List of symbols defined throughout the performance analysis in Chapter 3.

Symbol Equation

wo
b = col {wo

1, . . . ,w
o
N} (3.22)

A = A⊗ IM (3.40)

M =M ⊗ IM (3.41)

Pρ = P ρ ⊗ IM (3.42)

Q = IMN −Pρ (3.44)

Rx = diag {Rx,1, . . . ,Rx,N} (3.43)

S = diag
{
σ2
z,1Rx,1, . . . , σ

2
z,NRx,N

}
(3.65)

B = A⊤[IMN −M(Rx + ηQ)
]

(3.38)

r = A⊤MQwo
b (3.39)

M I =
(
M ⊗M +CM

)
⊗ IM2 (3.54)

A I =
(
A⊗A+CA

)
⊗ IM2 (3.55)

P I =
(
P ρ ⊗ P ρ +CP

)
⊗ IM2 (3.56)

Q I =
(
IN2 − IN ⊗ P ρ − P ρ ⊗ IN + P ρ ⊗ P ρ +CP

)
⊗ IM2 (3.57)

gb = A⊤
I M I bvec(S) (3.64)

rb = A⊤
I M IQ I bvec

(
wo
b(w

o
b)

⊤) (3.67)

K = A⊤
I

[(
IMN ⊗b MQwo

b

)
−M I

(
(Rx ⊗b Qw

o
b) + ηQ I(IMN ⊗b w

o
b)
)]

(3.71)

F ≈ A⊤
I

[
I(MN)2 − IMN ⊗b M(Rx + ηQ)−M(Rx + ηQ)⊗b IMN

]
(3.62)

yb(i) = gb + η2 rb + 2 ηKE w̃b(i) (3.73)
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Theorem 3.1. (Stability in the mean) Assume that the data model in (3.1) and Assump-

tion 3.1 hold. Then, for any initial condition, the multitask diffusion LMS strategy in (3.9) applied

to asynchronous networks converges asymptotically in the mean if, and only if, the step-sizes in

M satisfy:

ρ
(
A⊤[IMN −M(Rx + ηQ)

])
< 1. (3.45)

In that case, the asymptotic mean bias is given by:

lim
i→∞

E w̃b(i) = η (IMN −B)−1r. (3.46)

Assume that the expected values for all step-sizes are equal, namely, Eµk(i) = µ̄ for all k. Then,

a sufficient condition for (3.45) to hold is

0 < µ̄ <
2

max
1≤k≤N

λmax(Rx,k) + 2η
. (3.47)

Proof. Convergence in the mean requires the matrix B in (3.37) to be contractive, i.e., ρ(B) < 1.

Since any induced matrix norm is lower bounded by its spectral radius, we can write:

ρ
(
A⊤[IMN −M(Rx + ηQ)]

)
≤ ‖A⊤[IMN −M(Rx + ηQ)]‖b,∞
≤ ‖A⊤‖b,∞ · ‖IMN −M(Rx + ηQ)‖b,∞, (3.48)

where we used the submultiplicative property of the block maximum norm. Using property (A.23)

and the triangle inequality property, we obtain:

ρ
(
A⊤[IMN −M(Rx + ηQ)]

)
≤ ‖IMN −M(Rx + ηQ)‖b,∞
= ‖IMN −M(Rx + η(IMN −Pρ))‖b,∞
≤ ‖IMN −MRx − ηM‖b,∞ + η‖MPρ‖b,∞. (3.49)

Consider the first term on the RHS of (3.49). Since the matrices M and Rx are block diagonal,

it holds from property (A.22) that:

‖IMN −MRx − ηM‖b,∞ = max
1≤k≤N

ρ
(
(1− η µ̄k)IM − µ̄kRx,k

)

= max
1≤k≤N

max
1≤m≤M

|(1− η µ̄k)− µ̄kλm(Rx,k)| (3.50)

where µ̄k , Eµk(i), and λm(·) denotes the m-th eigenvalue of its matrix argument. Consider

now the second term on the RHS of (3.49). Using the submultiplicative property of the block

maximum norm, and property (A.24) for the block right-stochastic matrix Pρ, we get:

η‖MPρ‖b,∞ ≤ η‖M‖b,∞. (3.51)

Because M is a block diagonal matrix, we further have that

‖M‖b,∞ = max
1≤k≤N

µ̄k. (3.52)
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Combining (3.50) and (3.52), we conclude that the algorithm is stable in the mean if

max
1≤k≤N

max
1≤m≤M

|1− η µ̄k − µ̄kλm(Rx,k)|+ η max
1≤k≤N

µ̄k < 1. (3.53)

In order to simplify this condition, assume that µ̄k = µ̄ for all k. Condition (3.53) then reduces

to (3.47).

Note that the randomness in the topology does not affect the condition for stability in the

mean of the algorithm. Furthermore, observe that the mean recursion of the synchronous mul-

titask algorithm over the mean-graph topology has the same form as the mean recursion (3.37)

with the same coefficient matrix B in (3.38) and the same vector r in (3.39). Hence, we conclude

that the mean behavior of the multitask algorithm (3.9) is immune to the effect of asynchronous

events.

3.3.3 Mean-square-error analysis

To perform the mean-square-error analysis over asynchronous networks, compared to synchronous

networks [Chen et al., 2014c], new operators with additional properties must be introduced. We

shall use the block Kronecker product operator ⊗b instead of the Kronecker product ⊗, and the

block vectorization operator bvec(·) instead of the vectorization operator vec(·). This is because,

as explained in [Zhao and Sayed, 2015b, Sayed, 2014a], these block operators preserve the local-

ity of the blocks in the original matrix arguments. Overviews on the block Kronecker product

operator is provided in Appendix A.2. Recall that if X is an N ×N block matrix with blocks of

size M ×M , bvec(X ) vectorizes each block of X and stacks the vectors on top of each other.

We now use the properties (A.13)–(A.19) to evaluate the expectation of some block Kronecker

matrix products that will be useful in the sequel:

M I , E {M(i)⊗b M(i)} = E
{
(M(i)⊗ IM )⊗b (M(i)⊗ IM )

}

(A.15)
= E

{
(M(i)⊗M(i))⊗ (IM ⊗ IM )

}

(3.10)
= (M ⊗M +CM )⊗ IM2 . (3.54)

In the same way, we get the following expectations:

A I , E {A(i)⊗b A(i)} = (A⊗A+CA)⊗ IM2 , (3.55)

P I , E {Pρ(i)⊗b Pρ(i)} = (P ρ ⊗ P ρ +CP )⊗ IM2 . (3.56)

Since Q(i) = IMN −Pρ(i), we also obtain:

Q I , E {Q(i)⊗b Q(i)} =
(
IN2 − IN ⊗ P ρ − P ρ ⊗ IN + P ρ ⊗ P ρ +CP

)
⊗ IM2 . (3.57)

To analyze the convergence in mean-square-error sense of the multitask diffusion LMS al-

gorithm (3.9) over asynchronous networks, we consider the variance of the weight error vector
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w̃b(i) weighted by any positive semi-definite matrix Σ, that is, E ‖w̃b(i)‖2Σ, where ‖w̃b(i)‖2Σ ,

w̃⊤
b (i)Σ w̃b(i). As explained in Section 2.4, the freedom in selecting Σ will allow us to ex-

tract various types of information about the network and the nodes. By Assumption 3.1 and

using (3.36), we get:

E ‖w̃b(i+ 1)‖2Σ = E ‖w̃b(i)‖2Σ′ + E ‖g(i)‖2Σ + η2E ‖r(i)‖2Σ + 2ηE
{
r⊤(i)ΣB(i)w̃b(i)

}
, (3.58)

where Σ
′ = E {B⊤(i)ΣB(i)}. Let σ denotes the (MN)2 × 1 vector representation of Σ that is

obtained by the block vectorization operator, namely, σ , bvec(Σ). In the sequel, it will be more

convenient to work with σ than with Σ itself and we shall use the alternative notation ‖x‖2σ to

refer to the weighted square quantity ‖x‖2
Σ
= x⊤

Σx. Let σ′ , bvec(Σ′). Using property (A.17),

we can verify that:

σ′ = F⊤σ (3.59)

where F is the (MN)2 × (MN)2 matrix given by:

F , E {B(i)⊗b B(i)}
(A.14)
= E {A⊤(i)⊗b A

⊤(i)}
E
{
[IMN −M(i)(Rx(i) + ηQ(i))]⊗b [IMN −M(i)(Rx(i) + ηQ(i))]

}

(3.55),(A.13)
= A⊤

I

[
I(MN)2 − IMN ⊗b M(Rx + ηQ)−M(Rx + ηQ)⊗b IMN +

E
{
M(i)(Rx(i) + ηQ(i))⊗b M(i)(Rx(i) + ηQ(i))

}]
(3.60)

where using property (A.14) and the definition of MI in (3.54), we have

E
{
M(i)(Rx(i)+ηQ(i))⊗bM(i)(Rx(i)+ηQ(i))

}
= M I E

{
(Rx(i)+ηQ(i))⊗b(Rx(i)+ηQ(i))

}
.

(3.61)

The term on the RHS of equation (3.61) is proportional to M I = E {M(i) ⊗M(i)} ⊗ IM2 ,

where E {M(i)⊗M(i)} is an N ×N block diagonal matrix for which the k-th block is an N ×N

diagonal matrix with ℓ-th entry given by E {µk(i)µℓ(i)}. It is sufficient for the exposition in

this work to focus on the case of sufficiently small step-sizes (sufficiently small upper bounds

µmax,k) so that terms that depend on higher order powers of the step-sizes can be ignored.

Such approximations are common when analyzing stochastic gradient algorithms and diffusion

strategies in the mean-square-error sense (see Subsection 2.4.3 and [Sayed, 2014c, Section 6.5]).

Accordingly, the last term in (3.60) can be neglected and we continue our discussion by letting:

F ≈ A⊤
I

[
I(MN)2 − IMN ⊗b M(Rx + ηQ)−M(Rx + ηQ)⊗b IMN

]
, (small step-sizes).

(3.62)

Consider next the second term on the RHS of (3.58). We can write:

E ‖g(i)‖2Σ = Tr
(
E {g⊤(i)Σg(i)}

)
= Tr

(
ΣE {g(i) g⊤(i)}

) (A.16)
= g⊤b σ, (3.63)
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where we used the fact that Tr(XY ) = Tr(Y X) for any two matrices X and Y of compatible

dimensions and where gb , bvec
(
E {g(i) g⊤(i)}

)
. Using expression (3.34) and the definitions of

M I and A I in (3.54) and (3.55), we have

gb = bvec
(
E
{
A⊤(i)M(i)pxz(i)p

⊤
xz(i)M(i)A(i)

})

(A.17)
= E

{(
A⊤(i)⊗b A

⊤(i)
)
bvec

(
M(i)pxz(i)p

⊤
xz(i)M(i)

)}

(A.17),(A.18)
= A⊤

I E

{(
M(i)⊗b M(i)

)
bvec

(
pxz(i)p

⊤
xz(i)

)}

= A⊤
I M I bvec(S), (3.64)

where

S , E {pxz(i)p⊤xz(i)} = diag
{
σ2
z,1Rx,1, . . . , σ

2
z,NRx,N

}
. (3.65)

Let us examine now the third term on the RHS of (3.58):

E ‖r(i)‖2Σ = Tr
(
ΣE {r(i) r⊤(i)}

) (A.16)
= r⊤b σ (3.66)

where rb , bvec
(
E {r(i) r⊤(i)}

)
. Using expression (3.35), property (A.17), and the definitions

of M I , A I, and Q I in (3.54), (3.55), and (3.57), and proceeding as in (3.64), we obtain the

following expression:

rb = A⊤
I M IQ I bvec

(
wo
b(w

o
b)

⊤). (3.67)

Consider now the fourth term E
{
r⊤(i)ΣB(i)w̃b(i)

}
. We have:

E
{
r⊤(i)ΣB(i)w̃b(i)

}
= E

{
bvec

(
r⊤(i)ΣB(i)w̃b(i)

)}

(A.17)
= E

{(
B(i)w̃b(i)

)⊤ ⊗b r
⊤(i)

}
σ

(A.18)
= E

{
B(i)w̃b(i)⊗b r(i)

}⊤
σ

(A.14)
= E

{
w̃b(i)⊗b 1

}⊤
E
{
B(i)⊗b r(i)

}⊤
σ

=
(
E w̃b(i)

)⊤
E
{
B(i)⊗b r(i)

}⊤
σ (3.68)

with

E {B(i)⊗b r(i)} = E

{
A⊤(i)

[
IMN −M(i)(Rx(i) + ηQ(i))

]
⊗b A

⊤(i)M(i)Q(i)wo
b

}

(A.14)
= A⊤

I E

{[
IMN −M(i)(Rx(i) + ηQ(i))

]
⊗b M(i)Q(i)wo

b

}

(A.13)
= A⊤

I

[(
IMN ⊗b MQwo

b

)
−

E
{
M(i)(Rx(i) + ηQ(i))⊗b M(i)Q(i)wo

b

}]
, (3.69)
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where

E
{
M(i)(Rx(i) + ηQ(i))⊗b M(i)Q(i)wo

b

}

(A.14)
= M I E

{
(Rx(i) + ηQ(i))⊗b Q(i)wo

b

}

(A.13)
= M I ((Rx ⊗b Qwo

b) + η EQ(i)⊗b Q(i)wo
b)

(A.14)
= M I

(
(Rx ⊗b Qwo

b) + ηQ I(IMN ⊗b w
o
b)
)
. (3.70)

Finally, combining (3.69) and (3.70) and introducing the notation K, we get:

K , E {B(i)⊗br(i)} = A⊤
I

[(
IMN⊗bMQwo

b

)
−M I

(
(Rx⊗bQw

o
b)+ηQ I(IMN⊗bw

o
b)
)]
. (3.71)

Relation (3.58) can be written in a more compact form as:

E ‖w̃b(i+ 1)‖2σ = E ‖w̃b(i)‖2F⊤σ
+ y⊤b (i)σ, (3.72)

where yb(i) is the (MN)2 × 1 vector given by:

yb(i) , gb + η2 rb + 2 ηKE w̃b(i). (3.73)

Theorem 3.2. (Mean-square stability) Assume data model (3.1) and Assumption 3.1 hold.

Then, the asynchronous diffusion multitask algorithm (3.9) is mean-square stable if the algorithm

is mean stable and if the matrix F defined by (3.60) is contractive.

Proof. Provided that F is contractive, recursion (3.72) is stable if y⊤b (i)σ is bounded. Since

η, gb, rb,K, and σ are finite and constant terms, the boundedness of y⊤b (i)σ depends on E w̃b(i)

being bounded. We know from (3.37) that E w̃b(i) is uniformly bounded because (3.37) is a

BIBO stable recursion with a bounded driving term ηA⊤MQwo
b . Then, y⊤b (i)σ is uniformly

bounded, and E {‖w̃b(i+ 1)‖2σ} converges to a bounded value as i → ∞.

Assume sufficiently small step-sizes where the approximation (3.62) is justified by ignoring

higher-order powers of the step-sizes. The condition ensuring that the matrix in (3.62) is con-

tractive is derived in Appendix C.3. It is worth noting that, due to the Kronecker covariance

matrix CA (arising from the asynchronous events), the matrix F cannot be approximated by

B ⊗ B as in the previous chapter or as in the synchronous case [Chen et al., 2014c]. Moreover,

deriving a condition that ensures that F is contractive in a multitask setting is more challenging

than in the single-task setting [Zhao and Sayed, 2015b] due to the presence of the non-block

diagonal matrix Q (arising from the cooperation between clusters) on the RHS of (3.62).

Theorem 3.3. (Transient performance) Assume the same settings as Theorem 3.2. The

variance curve defined by ζ(i) , E ‖w̃b(i)‖2σ evolves according to the following recursion for

i ≥ 0:

ζ(i+ 1) = ζ(i) + ‖w̃(0)‖2
(F⊤−I(MN)2 )(F

⊤)iσ
+
(
y⊤b (i) +Υ(i)

)
σ (3.74)

63



CHAPTER 3. MULTITASK DIFFUSION LMS OVER ASYNCHRONOUS NETWORKS

where Υ(i+ 1) is updated as follows:

Υ(i+ 1) = Υ(i)F⊤ + y⊤b (i)(F
⊤ − I(MN)2), (3.75)

with the initial conditions ζ(0) = ‖w̃(0)‖2σ and Υ(0) = 01×(MN)2 .

Proof. Iterating (3.72) starting from i = 0, we find:

E ‖w̃b(i+ 1)‖2σ = E ‖w̃b(0)‖2(F⊤)i+1σ
+

i∑

j=0

y⊤b (i− j)(F⊤)jσ. (3.76)

Comparing the above recursion at instants i and i+ 1, we obtain recursion (3.74) with

Υ(i) =

i−1∑

j=1

y⊤b (i− j)(F⊤)j −
i−1∑

j=0

y⊤b (i− 1− j)(F⊤)j (3.77)

which verifies recursion (3.75).

Theorem 3.3 allows us to derive several performance metrics through the proper selection of

Σ. For instance, the network mean-square-deviation (MSD) value at time instant i, defined by

MSDnet(i) ,
1

N

N∑

k=1

E ‖w̃k(i)‖2 =
1

N
E ‖w̃b(i)‖2, (3.78)

is obtained for Σ = 1
N
IMN . The MSD of cluster Cq at time instant i is defined as:

MSDCq(i) ,
1

card{Cq}
∑

k∈Cq
E ‖w̃k(i)‖2. (3.79)

This quantity can be obtained by computing E ‖w̃b(i)‖2ΣCq
with a block diagonal weighting matrix

ΣCq that has the block 1
card{Cq}IM as k-th entry, for all k ∈ Cq, and zeros elsewhere.

Theorem 3.4. (Steady-state performance) Assume the same settings as Theorem 3.2. As-

sume mean and mean-square stability. Then, the steady-state performance ζ⋆ defined as ζ⋆ ,

limi→∞ E ‖w̃b(i)‖2σ for the multitask diffusion LMS (3.9) applied to asynchronous network is

given by:

ζ⋆ =
(
gb + η2 rb + 2ηKE w̃(∞)

)⊤(
I(MN)2 −F⊤

)−1
σ. (3.80)

where E {w̃(∞)} is given by (3.46).

Proof. From the recursive expression (3.72), we obtain as i → ∞:

lim
i→∞

E ‖w̃b(i)‖2(I(MN)2−F
⊤)σ

=
(
gb + η2 rb + 2ηKE w̃(∞)

)⊤
σ. (3.81)

To obtain ζ⋆, we replace σ in (3.81) by
(
I(MN)2 −F⊤)−1

σ.

The steady-state network MSD is obtained from Theorem 3.4 by setting σ = bvec(Σ) with

Σ = 1
N
IMN and the steady-state MSD of cluster Cq is obtained by setting σ = bvec(ΣCq).

Before moving on to the presentation of experimental results, note that the performance of

the synchronous multitask algorithm over the mean-graph topology can be obtained by setting

CA, CM , and CP to zero in (3.54)–(3.56).
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Figure 3.2: Experimental setup. (Left) Network topology. (Right) Regression and noise variances.

3.4 Simulation results

3.4.1 Illustrative example

We adopt the same clustered multitask network as [Chen et al., 2014c] in our simulations. As

shown in Figure 3.2, the network consists of 10 nodes divided into 4 clusters: C1 = {1, 2, 3},
C2 = {4, 5, 6}, C3 = {7, 8}, and C4 = {9, 10}. The unknown parameter vector wo

Cq of each

cluster is of size 2 × 1, and has the following form: wo
Cq = w0 + δwCq with w0 = [0.5,−0.4]⊤,

δwC1 = [0.0287,−0.005]⊤, δwC2 = [0.0234, 0.005]⊤, δwC3 = [−0.0335, 0.0029]⊤, and δwC4 =

[0.0224, 0.00347]⊤. The input and output data at each node k are related via the linear regression

model: dk(i) = x
⊤
k (i)w

o
k + zk(i) where wo

k = w
o
C(k). The regressors are zero-mean 2× 1 random

vectors governed by a Gaussian distribution with covariance matrices Rx,k = σ2
x,kIM . The

variances σ2
x,k are shown in Figure 3.2. The background noises zk(i) are i.i.d. zero-mean Gaussian

random variables, independent of any other signals. The corresponding variances are given in

Figure 3.2.

We considered the Bernoulli asynchronous model described in Appendix C.2. We set the

coefficient aℓk in (C.6) such that aℓk = 1/card{Nk ∩ C(k)} for all ℓ ∈ (Nk ∩ C(k)). Then

we set the regularization factors ρkℓ in (C.10) as follows. If Nk \ C(k) 6= ∅, ρkℓ was set to

ρkℓ = 1/card{Nk \ C(k)} for all ℓ ∈ Nk \ C(k), and to ρkℓ = 0 for any other ℓ. If Nk \ C(k) = ∅,

these factors were set to ρkk = 1 and to ρkℓ = 0 for all ℓ 6= k. This usually leads to asymmetrical

regularization factors. The parameters of the Bernoulli distribution governing the step-sizes µk(i)

were the same over the network, that is, we set µk in (C.4) to 0.03 for all k. The regularization

strength η was set to 1. The MSD learning curves were averaged over 100 Monte-Carlo runs. The

transient MSD curves were obtained with Theorem 3.3, and the steady-state MSD was estimated

with Theorem 3.4.

In Figure 3.3 (left), we report the network MSD learning curves for 3 different cases:
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Figure 3.3: (Left) Comparison of asynchronous network MSD under 50% idle, 30% idle, and
0% idle. (Right) Network MSD comparison of synchronous network under 30% idle and the
corresponding synchronous network.

Case 1: 50% idle: pµ,k = pa,ℓk = pρ,kℓ = 0.5;

Case 2: 30% idle: pµ,k = pa,ℓk = pρ,kℓ = 0.7;

Case 3: 0% idle: pµ,k = pa,ℓk = pρ,kℓ = 1.

We observe that the simulation results match well the theoretical results. Furthermore, the

performance of the network is influenced by the probability of occurrence of random events.

In Figure 3.3 (right), the asynchronous algorithm in Case 2 is compared with its synchronous

version obtained from (3.7) by setting µk, aℓk, and ρkℓ to the expected values µ̄k = Eµk(i),

āℓk = E aℓk(i), and ρ̄kℓ = E ρkℓ(i), respectively. Although both algorithms show the same

convergence rate, the asynchronous algorithm suffers from degradation in its MSD performance

caused by the additional randomness throughout the adaptation process.

3.4.2 Multitask learning benefit

In this section, we provide an example to show the benefit of multitask learning. We consider a

network consisting of N = 100 nodes grouped into Q = 3 clusters such that C1 = {1, . . . , 70}, C2 =
{71, . . . , 90}, and C3 = {91, . . . , 100}. The physical connections are defined by the connectivity

matrix represented in Figure 3.4. The inputs xk(i) were zero-mean 21 × 1 random vectors

governed by a Gaussian distribution with covariance matrix Rx,k = σ2
x,kI21, where σ2

x,k were

randomly chosen in the interval [1, 1.4]. The noises zk(i) were i.i.d. zero-mean Gaussian random

variables, independent of any other signal with variances σ2
z,k randomly chosen in the interval

[0.1, 0.15]. The 21 × 1 unknown parameter vectors were chosen as: wo
C1 = w0 = [11×3,01×3, 2 ·

11×3,01×3,−11×3,01×3,−2 · 11×3]
⊤, wo

C2 = w0 + δw, wo
C3 = w0 − δw where δw was randomly

generated such that ‖δw‖∞ = maxm |[δw]m| = 0.03.
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Figure 3.4: Connectivity matrix of the network. The orange, blue, and red elements correspond
to links within C1, C2, and C3, respectively. The cyan elements correspond to links between C1
and C2 and the magenta elements correspond to links between C1 and C3. No links between C2
and C3.

We considered the Bernoulli asynchronous model. The coefficients {aℓk} and {ρkℓ} in (C.6)

and (C.10), respectively, were generated in the same manner as in 3.4.1. Parameters µk and pµ,k

in (C.4) were set to µk = 1/30, pµ,k = 0.8 for nodes in the first cluster, µk = 2/45, pµ,k = 0.6

for nodes in the second cluster, and µk = 1/15, pµ,k = 0.4 for nodes in the third cluster. The

probabilities {pa,ℓk} in (C.6) were pa,ℓk = 0.8 for links in the first cluster, pa,ℓk = 0.6 for links

in the second cluster, and pa,ℓk = 0.4 for links in the third cluster. The probability that a link

connecting two nodes belonging to neighboring clusters drops was 1−pρ,kℓ = 0.25. The simulated

curves were obtained by averaging over 150 Monte-Carlo runs.

In Figure 3.5 (left), we compare two algorithms: the asynchronous diffusion strategy without

regularization (obtained from (3.9) by setting η = 0) and its synchronous counterpart (obtained

from (3.9) by setting η = 0 and replacing µk(i), aℓk(i) by µ̄k, āℓk). As shown in this figure,

the performance is highly deteriorated in the third cluster and slightly deteriorated in the first

cluster because C3 is more susceptible to random events. In Figure 3.5 (right), we compare

two algorithms: the asynchronous diffusion strategy with regularization (obtained from (3.9) by

setting η = 2) and the same synchronous algorithm as in the left plot. As shown in this figure,

the cooperation between clusters improves the performance of each cluster so that gaps appearing

in the left plot are reduced. In other words, C2 and C3 benefit from the high performance levels

achieved by C1. This can be justified by two arguments: a large number of nodes is employed to

collectively estimate wo
C1 and the probabilities associated with random events in C1 are small. As

a conclusion, when tasks between neighboring clusters are similar, cooperation among clusters
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Figure 3.5: Cluster learning curves. (Left) Comparison of the asynchronous multitask diffusion
LMS (3.9) without inter-cluster cooperation (η = 0) and its synchronous counterpart. (Right)
Comparison of the asynchronous multitask diffusion LMS (3.9) with inter-cluster cooperation
(η 6= 0) and the multitask diffusion LMS (3.9) without inter-cluster cooperation (η = 0).

improves the learning especially for clusters where asynchronous events occur frequently.

3.4.3 Circular arcs localization

In this section, we consider the problem of adaptive surface localization over asynchronous net-

works. When dealing with a smooth target surface, we can expect that promoting the smoothness

of the graph signal will improve the performance of the network [Chen et al., 2014c]. Note that

most of the existing works on diffusion strategies over adaptive (or biological) networks focus

on localizing and tracking a point target (e.g., a projectile, predator, etc.) by the whole net-

work [Sayed, 2014c, Tu and Sayed, 2011b, Cattivelli and Sayed, 2011]. In this section, we consider

the case where the target cannot be reduced to a point [Chen et al., 2014c, Section VI-B]. Par-

ticularly, we consider an arc localization application where the radius of the arc is changing over

time, and we illustrate the influence of the random events on the learning behavior and tracking

ability of the network.

Let us denote by L = [θ0, θ1] an arc of circle with radius R and subtending an angle θ = θ1−θ0

with the circle center wo. Let us decompose L into Q sub-arcs Lq with radius R and subtending

an angle δ ≪ θ with wo. In order to estimate the location of L, and for sufficiently small δ,

it is sufficient to estimate the location of each of these Q sub-arcs by solving a point target

localization problem. This can be done by employing a network of N nodes, composed of Q

clusters, where nodes of each cluster Cq are interested in locating Lq by estimating a parameter
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vector wo
Cq , which can be expressed as:

wo
Cq = wo +R




cos
(
θ0 +

θ

Q

(
q − 1

2

))

sin
(
θ0 +

θ

Q

(
q − 1

2

))


 , ∀q = 1, . . . , Q, (3.82)

where θ = θ1−θ0. Let us consider node k belonging to cluster Cq. At each time instant i, node k

gets noisy measurements {dk(i),xk(i)} that are related via the linear data model [Sayed, 2014c]:

dk(i) = x
⊤
k (i)w

o
Cq + zk(i), (3.83)

where zk(i) is a zero-mean temporally and spatially independent Gaussian noise with variance

σ2
z,k, xk(i) is a noisy measurement of the unit-norm direction vector of xk pointing from agent

k to the target wo
Cq given by:

xk(i) = xk + αk(i)x
⊥
k + βk(i)xk, (3.84)

with xk given by xk = (wo
Cq − nk)/‖wo

Cq − nk‖ where nk is the location vector of node k, x⊥
k

denoting a unit norm vector that lies in the same space as xk and whose direction is perpendicular

to xk. The variables αk(i) and βk(i) are zero-mean independent Gaussian random variables of

variances σ2
α,k and σ2

β,k, respectively. The amount of perturbation along the parallel direction is

assumed to be small compared to the amount of perturbation along the perpendicular direction,

that is, σ2
β,k ≪ σ2

α,k.

To show the effects of randomness at the level of nodes and links, we considered a network

of 100 nodes grouped into Q = 10 clusters, located over arcs of radiuses uniformly distributed

between 3R0 and 5R0 given R0. Angular parameters θ0 and θ1 were set to 13π/8 and 15π/8,

respectively. The network topology is shown in Figure 3.6. The noise variances were set to

σ2
z,k = 0.2, σ2

α,k = 0.05, and σ2
β,k = 0.005, for all k. We considered a Bernoulli asynchronous

model. The coefficients aℓk in (C.6) were set to 1/card{Nk ∩C(k)} for intra-cluster links, and to

zero for inter-cluster links. The regularization factors ρkℓ in (C.10) were set to 1/card{Nk\C(k)}.
The probabilities of success pµ,k, pa,ℓk, and pρ,kℓ were identically set to 0.5.

The MSD learning curves were averaged over 200 Monte-Carlo runs. We ran the synchronous

and asynchronous multitask algorithms in two different situations. For the first one, we set the

regularization strength η to zero, that is, we did not allow any cooperation between neighboring

clusters. In the second one, we set the regularization strength η to 0.5. For comparison purposes,

we also ran the non-cooperative LMS given by:

wk(i+ 1) = wk(i) + µk(i)xk(i)
(
dk(i)− x⊤

k (i)wk(i)
)
, k = 1, . . . , N, (3.85)

which was obtained from (3.9) by setting A(i) = P ρ(i) = IN for all i, and the standard single-

task ATC diffusion LMS:



ψk(i+ 1) = wk(i) + µk(i)xk(i)
(
dk(i)− x⊤

k (i)wk(i)
)

wk(i+ 1) =
∑

ℓ∈Nk(i)

aℓk(i)ψℓ(i+ 1)
(3.86)
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Figure 3.6: Network topology consisting of 10 clusters: circles for nodes, solid lines for links, and
dashed lines for cluster boundaries.

which was obtained by setting aℓk in (C.6) to 1/card{Nk} for all ℓ ∈ Nk and ρkℓ = 0. In

both cases, synchronous and asynchronous algorithms were also considered. Each synchronous

algorithm was derived from its asynchronous counterpart by making µk(i), aℓk(i), and ρkℓ(i)

deterministic quantities equal to µ̄k, āℓk, and ρ̄kℓ, respectively. In order to illustrate the tracking

ability of the algorithms, we modified the radius R of L every 500 iterations such that: for

i ∈ [0, 500], R = 0.5R0, for i ∈]500, 1000], R = R0, for i ∈]1000, 1500], R = 1.5R0, and for

i ∈]1500, 2000], R = 2R0. Note that varying R has an effect on the level of similarity between

neighboring tasks when characterized by ‖wo
Cp −wo

Cq‖2, where Cp and Cq denote two neighboring

clusters. Indeed, with the topology shown in Figure 3.6, we obtain from (3.82):

‖wo
Cp −wo

Cq‖2 = R2
(
2− 2 cos(θ/Q)

)
. (3.87)

Figure 3.7 shows that cooperation among clusters improved the network MSD performance

and endowed the network with robustness towards asynchronous events. We also observe that

the performance of the standard diffusion LMS algorithm deteriorates when the level of sim-

ilarity between tasks decreases. Figure 3.8 depicts the estimated arc when R = R0 for the

following algorithms in an asynchronous setting: non-cooperative LMS (3.85), standard diffusion

LMS (3.86), and multitask diffusion LMS (3.9). In each case, the results were averaged over

150 Monte-Carlo runs and over 50 samples after convergence. The multitask diffusion algorithm

outperformed the non-cooperative LMS and the standard diffusion. The standard diffusion was

not able to estimate the location of the target since it is a single-task algorithm. It is shown

in [Chen and Sayed, 2013] that standard diffusion LMS converges to a Pareto optimal solution

when it is applied to multitask problems.

Finally, in order to show the effects of the number of clusters (or tasks) on the performance

of the network, we considered 2 additional experimental setups. In the first one represented
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Figure 3.7: Network topology consisting of 10 clusters. Network MSD learning curves in a non-
stationary environment: comparison of the multitask diffusion LMS with (namely, η > 0) and
without (namely, η = 0) inter-cluster cooperation, the standard diffusion LMS (3.86) and the
non-cooperative LMS (3.85). The dotted lines are for synchronous networks and the solid lines
are for asynchronous networks.

x
0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

Figure 3.8: Target estimation results (R = R0 = 2) over asynchronous network: black cross sign
for multitask diffusion (3.9), red asterisk sign for non-cooperative (3.85), and blue circle sign for
standard diffusion (3.86).
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Figure 3.9: Network topology: circles for nodes, solid lines for links, and dashed lines for cluster
boundaries. (Left) Network consisting of 5 clusters. (Right) Network consisting of 15 clusters.

in Figure 3.9 (left), the number of tasks was set to 5, that is, the arc L was decomposed into

5 sub-arcs. In the second one depicted in Figure 3.9 (right), the number of clusters was set to

15. Except for these changes, we considered the same experimental setup as before. Every 500

time steps, the radius R of the arc was modified as before in order to decrease the similarity

level between tasks. The learning curves of the algorithms considered in Figure 3.7 are reported

in Figure 3.10. As expected, it can be observed that the larger the number of clusters is, the more

efficient the collaboration between clusters becomes. The benefits of inter-cluster cooperation

decreases when the number of clusters becomes small.

3.5 Conclusion

In this chapter, we examined the behavior of the multitask diffusion LMS algorithm over asyn-

chronous networks. This algorithm was originally proposed to solve multitask estimation prob-

lems by adding squared ℓ2-norm co-regularizers to the MSE criterion in order to promote smooth-

ness of the graph signal. We introduced a general model for asynchronous behavior with random

step-sizes, combination coefficients, and co-regularization factors. We then carried out a conver-

gence analysis of the asynchronous multitask algorithm in the mean and mean-square-error sense,

and we derived conditions for convergence. Closed form expressions quantifying the transient

and steady-state performances were also derived. Finally, we presented simulation results to

show the effectiveness of the multitask strategy over asynchronous networks. We found that the

mean behavior of the algorithm is immune to the effect of asynchronous events and we observed

through simulations that the mean-square convergence rate in the asynchronous case is the same

as in the synchronous case and that the steady-state MSD is affected by the asynchronous events.
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Figure 3.10: Network MSD learning curves in a non-stationary environment: comparison of the
same algorithms considered in Figure 3.7. The dotted lines are for synchronous networks and the
solid lines are for asynchronous networks. Top: network consisting of 5 clusters. Down: Network
consisting of 15 clusters.
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Several open problems still have to be solved for specific applications. For instance, it would

be advantageous to consider alternative co-regularizers in order to promote other properties

such as piecewise constant transitions in the entries of the parameter vectors, and to analyze the

convergence of the resulting algorithms. This problem is addressed in the next chapter. Although

the arguments and derivations in the next chapter can be carried out for asynchronous networks,

we focus on the synchronous behavior for the sake of simplicity and in order to highlight the new

contributions.
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4
Proximal multitask diffusion LMS over networks

A
s in the previous chapter, we consider multitask learning problems where clusters of agents

are interested in estimating their own parameter vector. Cooperation among clusters is

beneficial when the optimal models of adjacent clusters have a large number of similar entries

and a relatively small number of distinct components. We propose a fully distributed algorithm

for solving this problem. The approach relies on minimizing a global mean-square-error criterion

regularized by non-differentiable terms to promote cooperation among neighboring clusters. A

general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the

case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a

weighted sum of ℓ1-norms is derived to achieve higher efficiency. We also provide conditions on

the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense.

Finally, we propose a rule to adapt the regularization factors based on instantaneous estimates

in order to guarantee an appropriate cooperation between clusters.

The work presented in this chapter was published in:

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Multitask diffusion LMS with sparsity-

based regularization. In Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3516–3520, Brisbane, Australia, April 2015. (Also

available at http://www.cedric-richard.fr/Articles/nassif2015multitask.pdf)

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Proximal multitask learning over

networks with sparsity inducing coregularization. IEEE Transactions on Signal Processing,

64(23):6329–6344, December 2016. (Also available at https://arxiv.org/abs/1509.01360)
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CHAPTER 4. PROXIMAL MULTITASK DIFFUSION LMS OVER NETWORKS

4.1 Introduction

This chapter considers the problem of distributed adaptive estimation over multitask networks

where agents are grouped into clusters, and each cluster is interested in estimating its own

parameter vector (i.e., each cluster has its own task). Although clusters may generally have

distinct though related tasks to perform, the agents may still be able to capitalize on inductive

transfer between clusters to improve their estimation accuracy. Such situations occur when the

tasks of nearby clusters are correlated, which happens, for instance, in monitoring applications

where agents in a network need to track multiple targets moving along correlated trajectories.

A supervised scenario is considered where it is assumed that agents know which clusters

they belong to. In this case, multitask diffusion strategies can be derived by exploiting this

information on the relationships between tasks. As already stated in Subsection 1.2.2, several

recent works have addressed variations of this scenario. For example, in [Abdolee et al., 2014], a

diffusion LMS strategy estimates spatially-varying parameters by exploiting the spatio-temporal

correlations of the measurements at neighboring nodes. In [Plata-Chaves et al., 2015], a diffusion

LMS strategy was developed to perform estimation under the assumption that there are three

types of parameters: parameters of global interest, parameters of common interest to a subset

of agents, and parameters of local interest. In another work [Chen et al., 2014a], the parameter

space is decomposed into two orthogonal subspaces, with one of the subspaces being common to

all agents. Another useful way to exploit and model relationships among tasks is to formulate

optimization problems with appropriate co-regularizers between agents. The strategy developed

in [Chen et al., 2014c], whose convergence behavior over asynchronous networks was studied in

the previous chapter, adds squared ℓ2-norm co-regularizers to the mean-square-error criterion in

order to promote smoothness of the graph signal.

In some applications, however, such as cognitive radio [Plata-Chaves et al., 2015] (considered

in Subsection 4.4.2) and remote sensing [Chen et al., 2014a, Section VI-C], it may happen that

the optimum parameter vectors of neighboring clusters have a large number of similar entries and

a relatively small number of distinct components. It is then advantageous to develop distributed

strategies that involve cooperation among adjacent clusters in order to promote and exploit such

similarity. Although the current problem seems to be related to the problem studied in [Chen

et al., 2014c], it should be noted that the squared ℓ2-norm regularizers used in [Chen et al., 2014c]

are not effective when sparsity promoting regularization is required. Moreover, when neighboring

agents belonging to different clusters are aware of the indices of common and distinct entries,

and when these indices are fixed over time, one may appeal to the multitask diffusion strategy

developed in [Plata-Chaves et al., 2015, Chen et al., 2014a]. However, in the current chapter, we

are interested in solutions that are able to handle situations where the only available information

is that the optimum parameter vectors of neighboring clusters have a large number of similar

entries and a relatively small number of distinct components. A multitask diffusion algorithm
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with ℓ1-norm co-regularizers is proposed in [Nassif et al., 2015] to address this problem leading to

a subgradient descent method distributed among the agents. In this chapter, we present a more

general approach for solving such convex but non-differentiable problems by employing instead a

diffusion forward-backward splitting strategy based on the proximal projection operator. Before

proceeding, we recall the forward-backward splitting approach in a single-agent deterministic

environment [Combettes and Pesquet, 2011, Combettes et al., 2011, Parikh and Boyd, 2013].

Consider the problem

minimize
w∈RM

f(w) + g(w) (4.1)

with f a real-valued differentiable convex function with β-Lipschitz continuous gradient, and g

a real-valued convex function. The proximal gradient method or the forward-backward splitting

approach for solving (4.1) is given by the iteration:

w(i+ 1) = proxµg
(
w(i)− µ∇f(w(i))

)
, (4.2)

where µ is a constant step-size chosen such that µ ∈ (0, 2β−1] to ensure convergence to the

minimizer of (4.1). The gradient-descent step is the forward step (explicit step) and the proximal

step is the backward step (implicit step). The proximal operator of µg(w) at a given point

wo ∈ RM is a real-valued map given by [Parikh and Boyd, 2013]:

proxµg(wo) = argmin
w∈RM

g(w) +
1

2µ
‖w −wo‖2. (4.3)

Since the proximal operator needs to be calculated at each iteration in (4.2), it is important

to have a closed form expression for evaluating it. In this chapter, we derive a multitask diffusion

adaptation strategy where each agent employs this approach for minimizing a cost function with

sparsity based co-regularizers. Instead of using iterative algorithms for evaluating the proximal

operator of a weighted sum of ℓ1-norms at each iteration [Combettes et al., 2011], we shall

instead derive a closed form expression that allows us to compute it exactly. We shall also

examine under which conditions on the step-sizes the proposed multitask diffusion strategy is

mean and mean-square stable. An adaptive rule for setting the regularization weights is also

introduced to guarantee an appropriate cooperation between clusters. Finally, simulations are

conducted to show the effectiveness of the proposed strategies. The algorithm is applied to a

particular application involving spectrum sensing in cognitive radio networks.

Before starting, we list in Table 4.1 some of the main symbols and notations used in this

chapter. Other symbols will be defined in the context where they are used.

4.2 Multitask diffusion LMS with Forward-Backward splitting

4.2.1 Network model and problem formulation

We consider a network of N nodes grouped into Q connected clusters in a predefined topology, as

illustrated in Figure 4.1. Clusters are assumed to be connected, i.e., there exists a path between
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Table 4.1: List of the main symbols and notations used in Chapter 4.

M Length of the parameter vectors

N Number of agents in the network

Q Number of clusters in the network

Nk Neighborhood of agent k, i.e., the set of agents that are connected
to k by edges

N−
k Neighborhood of agent k, excluding k

Cq Cluster q, i.e., the set of agents in the q-th cluster

C(k) The cluster of agents to which agent k belongs

Nk ∩ C(k) Neighbors of agent k that are inside its cluster

Nk \ C(k) Neighbors of agent k that are outside its cluster

J(·), J(·) Cost function without/ with regularization

wk,wCq ,wC(k) Parameter vectors at agent k, at cluster Cq, and at cluster C(k)
wo
k,w

o
Cq ,w

o
C(k) Optimum parameter vectors at agent k, at cluster Cq, and at cluster C(k)

wb Network block parameter vector

wo
b Network block optimum parameter vector

δk,ℓ Difference vector wC(k) −wC(ℓ)

any pair of nodes in the cluster. At every time instant i, every node k has access to a zero-mean

measurement dk(i) and a zero-mean M×1 regression vector xk(i) with positive covariance matrix

Rx,k = E {xk(i)x⊤
k (i)} > 0. We assume the data to be related via the linear regression model:

dk(i) = x
⊤
k (i)w

o
k + zk(i), i ≥ 0, (4.4)

where wo
k is the M × 1 unknown parameter vector, also called task, we wish to estimate at node

k, and zk(i) is a zero-mean measurement noise of variance σ2
z,k, independent of xℓ(j) for all ℓ

and j, and independent of zℓ(j) for ℓ 6= k or i 6= j. We assume that all nodes in a cluster are

interested in estimating the same parameter vector, namely, wo
k = wo

Cq whenever k belongs to

cluster Cq. However, if cluster Cp is connected to cluster Cq, that is, there exists at least one link

connecting a node from Cp to a node from Cq, vectors wo
Cp and wo

Cq are assumed to have a large

number of similar entries and only a relatively small number of distinct entries. Cooperation

across these clusters can therefore be beneficial to infer wo
Cp and wo

Cq .

Considerable interest has been shown in the literature about estimating an optimum pa-

rameter vector wo subject to the property of being sparse. Motivated by the well-known least

absolute shrinkage and selection operator (LASSO) problem [Tibshirani, 1996] and compressed

sensing framework [Baraniuk, 2007], different techniques for sparse adaptation have been pro-

posed. For example, the authors in [Chen et al., 2009b, Gu et al., 2009] promote sparsity within

an LMS framework by considering regularizers based on the ℓ1-norm, reweighed ℓ1-norm, and
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Figure 4.1: Multitask clustered network consisting of 3 clusters. Two clusters are connected if
they share at least one edge.

convex approximation of ℓ0-norm. In [Kopsinis et al., 2011], projections of streaming data onto

hyperslabs and weighted ℓ1-balls are used instead of minimizing regularized costs recursively.

Proximal forward-backward splitting is considered in an adaptive scenario in [Murakami et al.,

2010]. In the context of distributed learning over single-task networks, diffusion LMS methods

promoting sparsity have been proposed. Sparse diffusion LMS strategies using subgradient meth-

ods are proposed in [Lorenzo et al., 2012, Lorenzo and Sayed, 2013, Liu et al., 2012] and using

proximal methods are proposed in [Wee and Yamada, 2013, Lorenzo, 2014, Vlaski and Sayed,

2015]. In [Chouvardas et al., 2012], the authors employ projection-based techniques [Kopsinis

et al., 2011] to derive distributed diffusion algorithms promoting sparsity, and in [Chouvardas

et al., 2013] a diffusion LMS algorithm for estimating an s-sparse vector is proposed based on

adaptive greedy techniques similar to [Mileounis et al., 2010]. These techniques estimate the

positions of non-zero entries in the target vector, and then perform computations on this sub-

set. More generally, diffusion strategies based on proximal gradient for minimizing general costs

(not necessarily mean-square error costs) and subject to a broader class of constraints on the

parameter vector to be estimated (including sparsity) are derived in [Vlaski and Sayed, 2015].

Our purpose in this chapter is to derive an adaptive learning algorithm over multitask net-

works where optimum parameter vectors of neighboring clusters share a large number of similar

entries and a relatively small number of distinct entries. Consider nodes k and ℓ of neighboring

clusters C(k) and C(ℓ), and let δk,ℓ denote the vector difference wC(k) − wC(ℓ). Promoting the

sparsity of δk,ℓ can be performed by considering the pseudo ℓ0-norm of δk,ℓ as it denotes the

number of nonzero entries. Nevertheless, ‖δk,ℓ‖0 is a non-convex co-regularizer that leads to

computational challenges. A common alternative is to use the ℓ1-norm regularization function
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defined as

f1(δk,ℓ) = ‖δk,ℓ‖1 =
M∑

m=1

∣∣[δk,ℓ]m
∣∣. (4.5)

Since the ℓ1-norm uniformly shrinks all the components of a vector and does not distinguish

between zero and non-zero entries [Candes et al., 2008], it is common in the sparse adaptive

filtering framework [Chen et al., 2009b, Kopsinis et al., 2011, Murakami et al., 2010, Lorenzo

et al., 2012, Lorenzo and Sayed, 2013, Wee and Yamada, 2013, Lorenzo, 2014, Chouvardas et al.,

2012, Gao et al., 2013] to consider a weighted formulation of the ℓ1-norm. Weighted ℓ1-norm was

designed to reduce the bias induced by the ℓ1-norm and enhance the penalization of the non-zero

entries of a vector [Candes et al., 2008, Kopsinis et al., 2011, Zou, 2006]. Given the weight vector

αkℓ = [α1
kℓ, . . . , α

M
kℓ ]

⊤, with αmkℓ > 0 for all m, the weighted ℓ1-norm is defined as:

f2(δk,ℓ) =
M∑

m=1

αmkℓ
∣∣[δk,ℓ]m

∣∣. (4.6)

The weights are usually chosen as:

αmkℓ =
1

ǫ+
∣∣[δok,ℓ]m

∣∣ , m = 1, . . . ,M, (4.7)

where δok,ℓ , w
o
k−wo

ℓ and where ǫ is a small constant to prevent the denominator from vanishing.

Since the optimum parameter vectors are not available beforehand, we set

αmkℓ(i) =
1

ǫ+
∣∣[δk,ℓ(i− 1)]m

∣∣ , m = 1, . . . ,M, (4.8)

at each iteration i, where δk,ℓ(i) is the estimate of δok,ℓ at nodes k and ℓ and iteration i. This

technique, also known as reweighted ℓ1 minimization [Candes et al., 2008], is performed at each

iteration of the stochastic optimization process. It has been shown in [Candes et al., 2008]

that, by minimizing (4.6) with the weights (4.8), one minimizes the log-sum penalty function,
∑M

m=1 log
(
ǫ+
∣∣[δk,ℓ]m

∣∣), which acts like the ℓ0 pseudo norm by allowing a relatively large penalty

to be placed on small nonzero coefficients and more strongly encourages them to be set to zero.

In the sequel, we shall use f
(
wC(k) − wC(ℓ)

)
to refer to the unweighted or reweighted ℓ1-norm

promoting the sparsity of wC(k) −wC(ℓ).

Although most of the derivations presented in this chapter can be extended to more general

cost functions, we shall focuses on the mean-square-error criterion. That is, we shall assume that

the local cost function Jk(wC(k)) at node k is given by:

Jk(wC(k)) = E
(
dk(i)− x⊤

k (i)wC(k)
)2
. (4.9)

Combining local mean-square-error cost functions and regularization functions, the cooperative

multitask estimation problem is formulated as the problem of seeking a fully distributed solution

for solving:

minimize
wC1

,...,wCQ

J
glob(

wC1 , . . . ,wCQ
)
,

N∑

k=1

Jk
(
wC(k)

)
+ η

N∑

k=1

∑

ℓ∈Nk\C(k)
ρkℓ f

(
wC(k) −wC(ℓ)

)
, (4.10)
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where η > 0 is the regularization strength used to enforce sparsity. It ensures a trade-off between

fidelity to the measurements and prior information on the relationships between tasks. The

weights ρkℓ ≥ 0 aim at locally adjusting the regularization strength. We recall that the notation

Nk \ C(k) denotes the set of neighboring nodes of k that are outside its cluster.

Note that the regularization terms (4.5) and (4.6) are symmetric with respect to the weight

vectors wC(k) and wC(ℓ), that is, f
(
wC(k) −wC(ℓ)

)
= f

(
wC(ℓ) −wC(k)

)
. Due to the summation

over the N nodes, each term f
(
wC(k) −wC(ℓ)

)
can be viewed as weighted by (ρkℓ+ρℓk)

2 in (4.10).

Problem (4.10) can therefore be written in an alternative way as:

minimize
wC1

,...,wCQ

J
glob(

wC1 , . . . ,wCQ
)
=

N∑

k=1

Jk(wC(k)) + η

N∑

k=1

∑

ℓ∈Nk\C(k)
pkℓf(wC(k) −wC(ℓ)) (4.11)

where the factors {pkℓ} are symmetric, i.e., pkℓ = pℓk, and are given by:

pkℓ ,
(ρkℓ + ρℓk)

2
. (4.12)

One way to avoid symmetrical regularization is to consider an alternative problem formulation

defined in terms of Q Nash equilibrium problems as done in [Chen et al., 2014c] with ℓ2-norm

co-regularizers (considered in the previous chapter). In this chapter, we shall focus on prob-

lem (4.10).

Let us consider the variable wCq of the q-th cluster. Given wC(ℓ) with ℓ ∈ Nk \Cq and k ∈ Cq,
the subdifferential of J

glob(
wC1 , . . . ,wCQ

)
in (4.11) with respect to wCq is given by:

∂wCq
J

glob(
wC1 , . . . ,wCQ

)
=
∑

k∈Cq
∇wCq

Jk(wCq)+

η
∑

k∈Cq

∑

ℓ∈Nk\Cq

[
pkℓ∂wCq

f
(
wCq −wC(ℓ)

)
+ pℓk∂wCq

f
(
wC(ℓ) −wCq

)]

=
∑

k∈Cq
∇wCq

Jk(wCq) + 2 η
∑

k∈Cj

∑

ℓ∈Nk\Cq
pkℓ∂wCq

f
(
wCq −wC(ℓ)

)
, (4.13)

where we used the fact that the regularization terms (4.5), (4.6), and the regularization factors

{pkℓ} are symmetric. Since we are interested in a distributed strategy for solving (4.10) that

relies only on in-network processing, we associate the following regularized problem with each

cluster Cq:

minimize
wCq

JCq(wCq) ,
∑

k∈Cq
E
(
dk(i)− x⊤

k (i)wCq
)2

+ 2 η
∑

k∈Cq

∑

ℓ∈Nk\Cq
pkℓf

(
wCq −wC(ℓ)

)
. (4.14)

Given wC(ℓ) with ℓ ∈ Nk \ Cq, note that the costs in problems (4.10) and (4.14) have the same

subdifferential relative to wCq . In order that each node can solve the problem in an autonomous

and adaptive manner using only local interactions, we shall derive a distributed iterative al-

gorithm for solving (4.10) by considering (4.14) since both costs have the same subdifferential

information.
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4.2.2 Problem relaxation

We shall now extend the derivations in [Cattivelli and Sayed, 2010, Sayed, 2014c, Chen et al.,

2014b] to handle multitask estimation problems with nondifferentiable functions. In the sequel,

we write wk instead of wC(k) for simplicity of notation. First, we associate with each node k an

unregularized local cost function J loc
k (·) and a regularized local cost function J

loc
k (·) of the form:

J loc
k (wk) ,

∑

ℓ∈Nk∩C(k)
cℓkE

(
dℓ(i)− x⊤

ℓ (i)wk

)2
, (4.15)

J
loc
k (wk) ,

∑

ℓ∈Nk∩C(k)
cℓkE

(
dℓ(i)− x⊤

ℓ (i)wk

)2
+ 2 η

∑

ℓ∈Nk\C(k)
pkℓf

(
wk −wℓ

)
, (4.16)

where the set of nodes in the neighborhood of node k that belongs to its cluster is denoted by

Nk ∩ C(k), and {cℓk} are non-negative weights satisfying

N∑

k=1

cℓk = 1, and cℓk = 0 if k /∈ Nℓ ∩ C(ℓ). (4.17)

Note thatwk = wℓ whenever ℓ ∈ Nk∩C(k). Both costs (4.15) and (4.16) consist of a combination

of mean-square error costs in the neighborhood of node k but limited to its cluster. In addition,

expression (4.16) takes interactions among neighboring clusters into account. Let us consider

node k belonging to cluster Cq, i.e., Cq = C(k). It can be checked that JCq(wCq) in (4.14) can be

written as:

JCq(wCq) =
∑

ℓ∈Cq
J

loc
ℓ (wℓ) = J

loc
k (wk) +

∑

ℓ∈Cq\{k}
J

loc
ℓ (wℓ), (4.18)

The term
∑

ℓ∈Cq\{k} J
loc
ℓ (wℓ) contains terms promoting relationships between nodes ℓ ∈ Cq \ {k}

and their neighbors that are outside Cq but not necessarily in the neighborhood of node k. To

limit these inter-cluster information exchanges to node k and its extra-cluster neighbors, we

relax
∑

ℓ∈Cq\{k} J
loc
ℓ (wℓ) to

∑
ℓ∈Cq\{k} J

loc
ℓ (wℓ). Since (4.15) is second-order differentiable, a

completion-of-squares argument, or equivalently, a second order Taylor expansion, shows that

each J loc
ℓ (wℓ) can be expressed as [Sayed, 2014c]:

J loc
ℓ (wℓ) = J loc

ℓ

(
wloc
ℓ

)
+ ‖wℓ −wloc

ℓ ‖2Rℓ
, (4.19)

where the notation ‖x‖2
Σ

denotes x⊤
Σx for any nonnegative definite matrix Σ, wloc

ℓ is the

minimizer of J loc
ℓ (wℓ) (which coincides with wo

ℓ), and Rℓ is given by:

Rℓ =
∑

k∈Nℓ∩C(ℓ)
ckℓRx,k. (4.20)

Thus, using (4.16), (4.18), and (4.19) and dropping the constant term J loc
ℓ

(
wloc
ℓ

)
, we can replace

the original cluster cost (4.14) by the following cost function for cluster C(k) at node k:

J
′
C(k)(wk) =

∑

ℓ∈Nk∩C(k)
cℓkE

(
dℓ(i)−x⊤

ℓ (i)wk

)2
+ 2 η

∑

ℓ∈Nk\C(k)
pkℓf(wk −wℓ)

+
∑

ℓ∈C(k)\{k}
‖wℓ −wloc

ℓ ‖2Rℓ
.

(4.21)
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Equation (4.21) is an approximation relating the local cost function J
loc
k (wk) at node k to the

global cost function (4.14) associated with the cluster C(k). Node k cannot minimize (4.21)

directly since this cost still requires global information that may not be available in its neigh-

borhood. To avoid access to information via multihop, we relax J
′
C(k)(wk) by limiting the sum

in the third term on the RHS of (4.21) over the neighbors of node k. In addition, since the

covariance matrices Rx,ℓ may not be known beforehand within the context of online learning, a

useful strategy proposed in [Sayed, 2014c] is to substitute the covariance matrices Rℓ by diagonal

matrices of the form bℓkIM
1, where bℓk are nonnegative coefficients that allow to assign different

weights to different neighbors. Later, these coefficients will be incorporated into a left-stochastic

matrix and the designer does not need to worry about their selection. Based on the arguments

presented so far, the cluster cost function at each node k can be relaxed as follows:

J
′′
C(k)(wk) =

∑

ℓ∈Nk∩C(k)
cℓkE

(
dℓ(i)−x⊤

ℓ (i)wk

)2
+ 2η

∑

ℓ∈Nk\C(k)
pkℓf(wk −wℓ)

+
∑

ℓ∈N−

k
∩C(k)

bℓk‖wk −wloc
ℓ ‖2.

(4.22)

Since this cost function only relies on data available in the neighborhood of each node k, we can

now proceed to derive distributed strategies.

The first and third terms on the RHS of (4.22) are second-order differentiable and strictly

convex. The second term is convex but not continuously differentiable. Among other possible

techniques [Nassif et al., 2015], we illustrate in this chapter how to obtain a multitask adapt-then-

combine (ATC) algorithm for solving the convex minimization problem (4.22) using a forward-

backward splitting approach.

4.2.3 Multitask diffusion with forward-backward splitting approach

Let wk(i) denote the estimate of wo
k at node k and iteration i. Considering a forward-backward

splitting strategy for solving (4.22), we have:

wk(i+ 1) = prox2ηνk g̃k,i

(
wk(i)− νk∇wk

J ′′
C(k)
(
wk(i)

))
, (4.23)

with νk a positive step-size parameter,

g̃k,i(wk) ,
∑

ℓ∈Nk\C(k)
pkℓf

(
wk −wℓ(i)

)
, (4.24)

and J ′′
C(k)(wk) denoting the unregularized part of J

′′
C(k)(wk) limited to the first and third terms

on the RHS of (4.22). Let

φk(i+ 1) , wk(i)− νk∇wk
J ′′
C(k)(wk(i)). (4.25)

1The approximation follows from the Rayleigh-Ritz characterization of eigenvalues where, using the fact that
the matrices Rℓ are positive definite, we obtain λmin(Rℓ)IM ≤ ‖wℓ −w

loc

ℓ ‖2Rℓ
≤ λmax(Rℓ)IM .
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Using (4.22), we arrive at:

φk(i+ 1) = wk(i) + 2 νk


 ∑

ℓ∈Nk∩C(k)
(rdx,ℓ −Rx,ℓwk(i))


+ 2 νk

∑

ℓ∈N−

k
∩C(k)

bℓk
(
wloc
ℓ −wk(i)

)
.

(4.26)

where rdx,k , E {dk(i)xk(i)}. The update in the previous equation can be implemented in two

successive steps as follows [Sayed, 2014c]:

ψk(i+ 1) = wk(i) + 2 νk


 ∑

ℓ∈Nk∩C(k)
(rdx,ℓ −Rx,ℓwk(i))




φk(i+ 1) = ψk(i+ 1) + 2 νk
∑

ℓ∈N−

k
∩C(k)

bℓk
(
wloc
ℓ −wk(i)

)
.

(4.27)

Since wloc
ℓ , or equivalently wo

ℓ , is not available at node ℓ and node ℓ is trying to estimate it, we

replace it by the available approximation at node ℓ, which is the intermediate estimate ψℓ(i+1).

Furthermore, since ψk(i+1) at node k is a better estimate for wo
k than wk(i), we replace wk(i)

by ψk(i + 1) in the second step of (4.27). With these substitutions, the second step in (4.27)

can be written as:

φk(i+ 1) =
∑

ℓ∈Nk∩C(k)
aℓkψℓ(i+ 1), (4.28)

where we introduced the coefficients {aℓk} given by:

akk , 1− 2 νk
∑

ℓ∈N−

k
∩C(k)

bℓk, aℓk , 2 νkbℓk, if ℓ ∈ N−
k ∩ C(k), aℓk , 0, if ℓ /∈ Nk ∩ C(k).

(4.29)

For sufficiently small step-sizes, these coefficients are non-negative and satisfy:

N∑

ℓ=1

aℓk = 1, and aℓk = 0 if ℓ /∈ Nk ∩ C(k). (4.30)

Since the moments {rdx,k,Rx,k} are rarely available beforehand, we use the following instanta-

neous approximations:

Rx,k ≈ xk(i)x⊤
k (i), rdx,k ≈ dk(i)xk(i). (4.31)

Thus, we arrive at the following adapt-then-combine (ATC) diffusion strategy with forward-

backward splitting for solving problem (4.10) in a fully distributed adaptive manner:





ψk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk∩C(k)
cℓk xℓ(i)

[
dℓ(i)− x⊤

ℓ (i)wk(i)
]
,

φk(i+ 1) =
∑

ℓ∈Nk∩C(k)
aℓkψℓ(i+ 1),

wk(i+ 1) = proxηµkgk,i+1
(φk(i+ 1)),

(4.32)
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where µk = 2νk is introduced to avoid an extra factor of 2 multiplying νk and coming from

evaluating the gradient of squared quantities in J ′′
C(k)(wk) and

gk,i+1(wk) ,
∑

ℓ∈Nk\C(k)
pkℓf

(
wk − φℓ(i+ 1)

)
. (4.33)

Functions g̃k,i(·) in (4.24) and gk,i+1(·) in (4.33) are iteration dependent through wℓ(i) and

φℓ(i + 1). Note that we have substituted wℓ(i) in (4.24) by φℓ(i + 1) in (4.33) since φℓ(i + 1)

is an updated estimate of wℓ(i) at node ℓ. The proximal operator of ηµkgk,i+1(·) in the third

step of (4.32) needs to be evaluated at each iteration i + 1 and for all nodes k in the network.

A closed-form expression is recommended to achieve higher computational efficiency. We shall

derive such closed-form expression when f in (4.33) is selected either as the ℓ1-norm or the

reweighted ℓ1-norm — see Section 4.2.4 for details.

The multitask diffusion LMS (4.32) with forward-backward splitting starts with an initial

estimate wk(0) for all k, and repeats (4.32) at each instant i ≥ 0 and for all k. In the first

step of (4.32), which corresponds to the adaptation step, node k receives from its intra-cluster

neighbors their raw data {dℓ(i),xℓ(i)}, combines this information through the coefficients {cℓk},
and uses it to update its estimate wk(i) to an intermediate estimate ψk(i+1). The second step

in (4.32) is a combination step where node k receives the intermediate estimates {ψℓ(i + 1)}
from its intra-cluster neighbors and combines them through the coefficients {aℓk} to obtain the

intermediate value φk(i+1). Finally, in the third step in (4.32), node k receives the intermediate

estimates {φℓ(i+ 1)} from its neighbors that are outside its cluster and evaluates the proximal

operator of the function in (4.33) at φk(i+ 1) to obtain wk(i+ 1).

To run the algorithm, each node k only needs to know the step-size µk, the regularization

strength η, the regularization weights {pkℓ}ℓ∈Nk\C(k), and the coefficients {aℓk, cℓk}ℓ∈Nk∩C(k) sat-

isfying conditions (4.17) and (4.30). The scalars {aℓk, cℓk} and {ρkℓ} correspond to weighting

coefficients over the edges linking node k to its neighbors ℓ according to whether these neigh-

bors lie inside or outside its cluster. There are several ways to select these coefficients [Sayed,

2014a,b,c, Chen et al., 2014c]. In Section 4.4, we propose an adaptive rule for selecting each

regularization weight pkℓ based on a measure of the sparsity level of wo
k−wo

ℓ at node k. Finally,

note that alternative implementations of (4.32) may be considered. In particular, the adapta-

tion step can be followed by the proximal step, before or after aggregation as in the possible

Adapt-then-Combine and Combine-then-Adapt diffusion strategies.

Algorithm (4.32) may be applied to multitask problems involving any type of coregularizers

f(·) provided that the proximal operator of a weighted sum of these regularizers can be assessed

in closed form. In the next section, we shall focus on the particular case of sparsity promoting

regularizers.
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4.2.4 Proximal operator of weighted sum of ℓ1-norms

We shall now derive a closed form expression for the proximal operator of the convex function

gk,i+1(wk) in (4.33). Considering both regularizations addressed in this work, that is, the ℓ1-

norm (4.5) and the reweighted ℓ1-norm (4.6), we write:

gk,i+1(wk) =
∑

ℓ∈Nk\C(k)
pkℓ

M∑

m=1

αmkℓ(i)
∣∣[wk]m − [φℓ(i+ 1)]m

∣∣

=

M∑

m=1

Φk,m,i+1

(
[wk]m

)
, (4.34)

where Φk,m,i+1([wk]m) is the iteration-dependent function given by:

Φk,m,i+1

(
[wk]m

)
,

∑

ℓ∈Nk\C(k)
pkℓ α

m
kℓ(i)

∣∣[wk]m − [φℓ(i+ 1)]m
∣∣. (4.35)

Since gk,i+1(wk) is fully separable, its proximal operator can be evaluated component-wise [Parikh

and Boyd, 2013]:

[
proxηµkgk,i+1

(
φk(i+ 1)

)]
m

= proxηµkΦk,m,i+1

([
φk(i+ 1)

]
m

)
, ∀m = 1, . . . ,M. (4.36)

For clarity of presentation, we shall now derive the proximal operator of a function h(·) simi-

lar to Φk,m,i+1(·). Next, we shall establish the closed-form expression for proxηµkΦk,m,i+1
(·) by

identification.

Let h : R → R be a combination of absolute value functions defined as:

h(x) ,

J∑

j=1

cj hj(x) =

J∑

j=1

cj |x− bj |, (4.37)

with cj > 0 for all j and b1 < b2 < . . . < bJ . Note that this ordering is assumed for convenience

of derivation and does not affect the final result. Iterative algorithms have been proposed in the

literature for evaluating the proximal operator of sums of composite functions [Combettes and

Pesquet, 2011, Combettes et al., 2011]. We are, however, able to derive a closed-form expression

for (4.37) as detailed in the sequel. From the optimality condition for (4.3), namely that zero

belongs to the subgradient set at the minimizer proxλh(v), we have,

0 ∈ ∂h
(
proxλh(v)

)
+

1

λ

(
proxλh(v)− v

)
⇒ v − proxλh(v) ∈ λ∂h

(
proxλh(v)

)
. (4.38)

Since x ∈ R and cj are non-negative, we have [Polyak, 1987, Chapter 5: Lemma 10]:

∂




J∑

j=1

cjhj(x)


 =

J∑

j=1

cj∂hj(x) =

J∑

j=1

cj∂|x− bj |. (4.39)
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Hence, the subdifferential of the real valued convex function h(x) in (4.37) is:

∂h(x) =





−
J∑

j=1

cj , if x < b1,

c1 · [−1, 1]−
J∑

j=2

cj , if x = b1,

c1 −
J∑

j=2

cj , if b1 < x < b2,

...

J−1∑

j=1

cj + cJ · [−1, 1], if x = bJ ,

J∑

j=1

cj , if x > bJ .

(4.40)

From (4.38) and (4.40), extensive but routine calculations lead to the following implementation

for evaluating the proximal operator of h in (4.37). Let us decompose R into J +1 intervals such

that R =
J⋃
n=0

In where, as illustrated in Figure 4.2:

I0 ,


−∞ , b1 − λ

J∑

j=1

cj


 , (4.41)

In , In,1 ∪ In,2, n = 1, . . . , J, (4.42)

with

In,1 ,


bn − λ




J∑

j=n

cj −
n−1∑

j=1

cj


 , bn − λ




J∑

j=n+1

cj −
n∑

j=1

cj




 , n = 1, . . . , J, (4.43)

In,2 ,


bn − λ




J∑

j=n+1

cj −
n∑

j=1

cj


 , bn+1 − λ




J∑

j=n+1

cj −
n∑

j=1

cj




 , n = 1, . . . , J − 1,

(4.44)

IJ,2 ,


bJ + λ

J∑

j=1

cj , +∞


 . (4.45)

Depending on the interval to which v belongs, we evaluate the proximal operator according

to:

proxλh(v) =





v + λ
J∑
j=1

cj , if v ∈ I0

bn, if v ∈ In,1

v + λ

(
J∑

j=n+1
cj −

n∑
j=1

cj

)
, if v ∈ In,2.

(4.46)
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b1−λ
J∑
j=1

cj b1−λ

(
J∑
j=2

cj−c1

)
b2−λ

(
J∑
j=2

cj−c1

)
bJ−λ

(
cJ−

J−1∑
j=1

cj

)
bJ + λ

J∑
j=1

cj

I0 I1
I1,1 I1,2

. . .

IJ,1 IJ,2

IJ

Figure 4.2: Decomposition of R into J + 1 intervals given by (4.41)–(4.45). The width of the
intervals depends on the weights {cj}Jj=1 and on the coefficients {bj}Jj=1.

In order to make clearer how the operator in (4.46) works, we plot proxh(v) for three expressions

of h in Figure 4.3.
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Figure 4.3: Proximal operator proxλh(v) versus v ∈ R with λ = 1 and h : R → R, h(x) =
J∑
j=1

cj |x− bj |.

It can be checked that the proximal operator in (4.46) can be written more compactly as:

proxλh(v) = v − λΓ(v), (4.47)

where

Γ(v) =
1

2

J∑

n=1





∣∣∣∣∣∣
v − bn

λ
−
n−1∑

j=1

cj +
J∑

j=n

cj

∣∣∣∣∣∣
−

∣∣∣∣∣∣
v − bn

λ
−

n∑

j=1

cj +
J∑

j=n+1

cj

∣∣∣∣∣∣



 . (4.48)

Comparing (4.38) and (4.47), we remark that Γ(v) is a subgradient of h at proxλh(v). Based on

equation (4.46), Γ(v) is bounded as follows:

|Γ(v)| ≤
J∑

j=1

cj (4.49)
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for all v. In fact, equality holds when v belongs to I0 in (4.41) or IJ,2 in (4.45). When v belongs

to an interval of the form of In,1 in (4.43), we have:

Γ(v) =
v − bn

λ
∈



n−1∑

j=1

cj −
J∑

j=n

cj ,
n∑

j=1

cj −
J∑

j=n+1

cj


 ⊂


−

J∑

j=1

cj ,
J∑

j=1

cj


 , (4.50)

and when it belongs to an interval of the form of In,2 in (4.44), we have:

Γ(v) =

n∑

j=1

cj −
J∑

j=n+1

cj ∈


−

J∑

j=1

cj ,

J∑

j=1

cj


 . (4.51)

We note that the upper bound in (4.49) is independent of λ.

Using (4.47), the m-th entry of proxηµkgk,i+1

(
φk(i+ 1)

)
in (4.36) can be written as:

[
proxηµkgk,i+1

(φk(i+ 1))
]
m

= [φk(i+ 1)]m − η µkΓk,m,i+1 ([φk(i+ 1)]m) . (4.52)

Note that Γk,m,i+1

([
φk(i + 1)

]
m

)
is a function of the form (4.48) where, based on (4.35), the

coefficients bj and cj are given by
[
φℓ(i + 1)

]
m

and pkℓ α
m
kℓ(i), respectively, and the scalar v

corresponds to the m-th component of the vector φk(i+ 1).

Using the boundedness of Γk,m,i+1(·) in (4.49), we obtain:

|Γk,m,i+1([φk(i+ 1)]m)| ≤
∑

ℓ∈Nk\C(k)
pkℓ α

m
kℓ(i) , smk (i) (4.53)

for all [φk(i+ 1)]m. For the ℓ1-norm (4.5), we have:

smk (i) = sk ,
∑

ℓ∈Nk\C(k)
pkℓ, (4.54)

for all i and m = 1, . . . ,M . For the reweighted ℓ1-norm (4.6), we have:

smk (i) =
∑

ℓ∈Nk\C(k)

pkℓ
ǫ+ |[δk,ℓ(i− 1)]m|

=
1

ǫ

∑

ℓ∈Nk\C(k)

pkℓ

1 +
|[δk,ℓ(i−1)]m|

ǫ

≤ sk
ǫ

(4.55)

for all i and m = 1, . . . ,M . Using (4.52), the proximal operator of ηµkgk,i+1 can be written as:

proxηµkgk,i+1
(φk(i+ 1)) = φk(i+ 1)− ηµkΓk,i+1(φk(i+ 1)), (4.56)

where Γk,i+1(φk(i+ 1)) is the M × 1 vector given by:

Γk,i+1(φk(i+ 1)) = col
{
Γk,1,i+1([φk(i+ 1)]1, . . . ,Γk,M,i+1([φk(i+ 1)]M )

}
. (4.57)

As a consequence, the ℓ2-norm of the vector Γk,i+1(·) can be bounded as:

‖Γk,i+1(·)‖2 ≤ sk
√
M, for the ℓ1-norm, (4.58)

‖Γk,i+1(·)‖2 ≤ sk
√
M

ǫ
, for the reweighted ℓ1-norm. (4.59)
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4.3 Stability analysis

4.3.1 Weight error vector recursion

We shall now analyze the stability of the multitask diffusion algorithm (4.32) in the mean and

mean-square-error sense. We first define at node k and iteration i the weight error vector w̃k(i) ,

wo
k −wk(i) and the intermediate error vector φ̃k(i) , wo

k − φk(i). Furthermore, we introduce

the network block vectors:

w̃b(i) , col {w̃1(i), . . . , w̃N (i)} (4.60)

φb(i) , col {φ1(i), . . . ,φN (i)} (4.61)

φ̃b(i) , col
{
φ̃1(i), . . . , φ̃N (i)

}
. (4.62)

Let M and Rx(i) be the N ×N block diagonal matrices defined as:

M , diag {µ1IM , . . . , µNIM} , (4.63)

Rx(i) , diag





∑

ℓ∈N1∩C(1)
cℓ1 xℓ(i)x

⊤
ℓ (i), . . . ,

∑

ℓ∈NN∩C(N)

cℓN xℓ(i)x
⊤
ℓ (i)



 , (4.64)

where each block is of dimension M ×M and pxz(i) be the N × 1 block vector defined as:

pxz(i) , C⊤col {x1(i) z1(i), . . . ,xN (i) zN (i)} , (4.65)

where

C , C ⊗ IM , (4.66)

with C an N ×N right-stochastic matrix with ℓk-th entry cℓk, namely, C , [cℓk]. Let

A , A⊗ IM (4.67)

where A is the N×N left-stochastic matrix with ℓk-th entry aℓk, namely, A , [aℓk]. Subtracting

wo
k from both sides of the first and second step in (4.32), and using the linear data model (4.4),

we obtain:

φ̃b(i+ 1) = A⊤ [IMN −MRx(i)] w̃b(i)−A⊤Mpxz(i). (4.68)

Subtracting wo
k from both sides of the third step in (4.32), and using result (4.56), we get:

w̃k(i+ 1) = φ̃k(i+ 1) + ηµk Γk,i+1(φk(i+ 1)). (4.69)

Hence, the network error vector for the diffusion strategy (4.32) evolves according to the following

recursion:

w̃b(i+ 1) = A⊤ [IMN −MRx(i)] w̃b(i)−A⊤Mpxz(i) + ηMΓb,i+1 (φb(i+ 1)) , (4.70)

where Γb,i+1 (φb(i+ 1)) is the N × 1 block vector with k-th block given by (4.57), namely,

Γb,i+1 (φb(i+ 1)) , col {Γ1,i+1 (φ1(i+ 1)) , . . . ,ΓN,i+1 (φN (i+ 1))} . (4.71)
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Table 4.2: List of symbols defined throughout the performance analysis in Chapter 4

Symbol Equation

M = diag {µ1IM , . . . , µNIM} (4.63)

C = C ⊗ IM (4.66)

A = A⊗ IM (4.67)

Rx = diag
{∑

ℓ∈N1∩C(1) cℓ1Rx,ℓ, . . . ,
∑

ℓ∈NN∩C(N) cℓNRx,ℓ

}
(4.78)

B = A⊤ [IMN −MRx] (4.77)

G = A⊤MC⊤diag
{
Rx,1σ

2
z,1, . . . ,Rx,Nσ

2
z,N

}
CMA (4.99)

F ≈ B⊤ ⊗B⊤ (4.98)

In order to make the presentation clearer, we shall use the following notation for terms in recur-

sion (4.70):

B(i) , A⊤ [IMN −MRx(i)] , (4.72)

g(i) , A⊤Mpxz(i), (4.73)

r(i+ 1) , MΓb,i+1 (φb(i+ 1)) . (4.74)

Hence, recursion (4.70) can be rewritten as follows:

w̃b(i+ 1) = B(i)w̃b(i)− g(i) + η r(i+ 1). (4.75)

Before proceeding, let us introduce the following assumptions on the regression data and

step-sizes.

Assumption 4.1. (Independent regressors) The regression vectors xk(i) arise from a zero-mean

random process that is temporally white and spatially independent.

It follows that xk(i) is independent of wℓ(j) for i ≥ j and for all ℓ.

For ease of reference, we list in Table 4.2 the symbols that have been defined in subsec-

tion 4.3.1, and others that will be defined in subsections 4.3.2 and 4.3.3.

4.3.2 Mean-error analysis

Taking the expectation of both sides of (4.75), using Assumption 4.1, and Epxz(i) = 0, we

obtain that the mean error vector evolves according to the following recursion:

E w̃b(i+ 1) = BE w̃b(i) + η E r(i+ 1), (4.76)
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where

B , A⊤ [IMN −MRx] , (4.77)

Rx , ERx(i) = diag





∑

ℓ∈N1∩C(1)
cℓ1Rx,ℓ, . . . ,

∑

ℓ∈NN∩C(N)

cℓNRx,ℓ



 , (4.78)

E r(i+ 1) , ME {Γb,i+1 (φb(i+ 1))} . (4.79)

The following theorem guarantees the mean stability of the multitask diffusion LMS (4.32) with

forward-backward splitting.

Recall from Appendix A.3 that the block maximum norm of an N × 1 block vector x =

col {x1, . . . ,xN} and the induced block maximum norm of an N ×N block matrix X are defined

as:

‖x‖b,∞ = max
1≤k≤N

‖xk‖,

‖X‖b,∞ = max
x 6=0

‖Xx‖b,∞
‖x‖b,∞

,
(4.80)

Theorem 4.1. (Stability in the mean) Assume the data model in (4.4) and Assumption 4.1

hold. Then, for any initial conditions, the multitask diffusion strategy (4.32) converges in the

mean to a small bounded region of the order of µmax, i.e., limi→∞ E {‖w̃b(i)‖b,∞} = O(µmax), if

the step-sizes are chosen such that:

0 < µk <
2

λmax

(∑
ℓ∈Nk∩C(k) cℓkRx,ℓ

) , k = 1, . . . , N, (4.81)

where µmax , max1≤k≤N µk. The block maximum norm of the bias can be upper bounded as:

lim
i→∞

‖E w̃b(i)‖b,∞ ≤ η µmax smax

√
M

1− ‖B‖b,∞
, (4.82)

lim
i→∞

‖E w̃b(i)‖b,∞ ≤ 1

ǫ
· η µmax smax

√
M

1− ‖B‖b,∞
, (4.83)

for the ℓ1-norm and the reweighted ℓ1-norm, respectively.

Proof. Iterating (4.76) starting from i = 0, we arrive to the following expression:

E w̃b(i+ 1) = Bi+1
E w̃b(0) + η

i∑

j=0

Bj
E r(i+ 1− j), (4.84)

where E w̃b(0) is the initial condition. E w̃b(i + 1) converges when i → ∞ if, and only if, both

terms on the RHS of (4.84) converges to finite values.

The first term converges to zero as i → ∞ if the matrix B is contractive, that is, ρ(B) < 1.

Since any induced matrix norm is lower bounded by its spectral radius, we can write in terms of

the block maximum norm:

ρ
(
A⊤ [IMN −MRx]

)
≤ ‖A⊤ [IMN −MRx] ‖b,∞. (4.85)
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Using the submultiplicative property of the block maximum norm, property (A.23), and prop-

erty (A.22), we find that condition (4.81) is a sufficient condition to ensure a contractive matrix

B.

We shall now prove the convergence of the second term on the RHS of (4.84). To prove

the convergence of the series
∑+∞

j=0 B
j
E r(i + 1 − j), it is sufficient to prove that the se-

ries
∑+∞

j=0

[
Bj

E r(i+ 1− j)
]
m

converges for m = 1, . . . ,MN . According to the comparison

test [Whittaker and Watson, 1996], a series is absolutely convergent if each term of the series

can be bounded by a term of an absolutely convergent series. Since the block maximum norm

of a block vector is greater than or equal to the largest absolute value of its entries, each term
∣∣[Bj

E r(i+ 1− j)
]
m

∣∣ can be bounded as:

∣∣[Bj
E r(i+ 1− j)

]
m

∣∣ ≤ ‖B‖jb,∞ · ‖E r(i+ 1− j)‖b,∞
≤ ‖B‖jb,∞rmax. (4.86)

The quantity ‖E r(i+ 1− j)‖b,∞ is finite for all i and j and bounded by some constant rmax =

O(µmax). In fact, from (4.79), we have:

‖E r(i+ 1)‖b,∞ ≤ µmax ‖E {Γb,i+1 (φb(i+ 1))}‖
b,∞ (4.87)

since ‖M‖b,∞ = µmax. Using (4.58)–(4.59), the block maximum norm of Γb,i+1(φb(i + 1))

in (4.71) can be bounded as:

‖Γb,i+1(φb(i+ 1))‖b,∞ ≤ smax

√
M, (ℓ1-norm) (4.88)

‖Γb,i+1(φb(i+ 1))‖b,∞ ≤ smax

√
M

ǫ
, (rew. ℓ1-norm) (4.89)

for all i, where smax = max
1≤k≤N

sk. If the step-sizes are chosen according to (4.81), the series
∑+∞

j=0 ‖B‖jb,∞rmax is absolutely convergent. Therefore, the series
∑+∞

j=0

[
Bj

E r(i+ 1− j)
]
m

is

an absolutely convergent series.

Note that when i → ∞, the block maximum norm of the bias can be bounded as

lim
i→∞

‖E w̃b(i)‖b,∞ = lim
i→∞

∥∥∥η
i∑

j=0

Bj
E r(i+ 1− j)

∥∥∥
b,∞

≤ lim
i→∞

η

∞∑

j=0

∥∥Bj
E r(i+ 1− j)

∥∥
b,∞

≤ lim
i→∞

η

∞∑

j=0

‖B‖jb,∞ rmax =
η rmax

1− ‖B‖b,∞
. (4.90)

Observe that the mean stability (4.81) does not depend on the combination coefficients aℓk

and the regularization factors ρkℓ. Only the matrix C influences the condition on the step-sizes.
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When C = IN , i.e., the agents do not share the raw data {dℓ(i),xℓ(i)}, condition (4.81) becomes:

0 < µk <
2

λmax (Rx,k)
, k = 1, . . . , N, (4.91)

which is the same as the condition obtained in the non-cooperative solution. For uniform step-

sizes, i.e., µk = µ for all k, and doubly stochastic matrix C, using similar arguments as in (2.63),

condition (4.81) on the step-sizes becomes:

0 < µ < min
1≤k≤N

{
2

λmax (Rx,k)

}
. (4.92)

4.3.3 Mean-square-error stability

We examine the mean-square-error stability by studying the convergence of the weighted square

value E ‖w̃b(i)‖2Σ, where Σ is a positive semi-definite matrix that we are free to choose. Evalu-

ating the variance, we obtain:

E ‖w̃b(i+ 1)‖2Σ = E ‖w̃b(i)‖2Σ′ + E ‖g(i)‖2Σ + ϕ(r(i+ 1),Σ,B(i), w̃b(i), g(i)), (4.93)

where Σ
′ , E

{
B⊤(i)ΣB(i)

}
and

ϕ (r(i+ 1),Σ,B(i), w̃b(i), g(i)) =η2E ‖r(i+ 1)‖2Σ + 2 η E {r⊤(i+ 1)ΣB(i)w̃b(i)}
− 2 η E {r⊤(i+ 1)Σg(i)}

(4.94)

is a term coming from promoting relationships between clusters. The last two terms on the RHS

of (4.94) contain higher-order powers of the step-sizes. For sufficiently small step-sizes, using a

separation principle (see Subsection 2.4.3), we get the following approximation:

ϕ(r(i+1),Σ, w̃b(i)) ≈ η2E ‖r(i+1)‖2Σ+2 η E {r⊤(i+1)ΣBw̃b(i)}, (small step-sizes). (4.95)

Let σ , vec(Σ) and σ′ , vec(Σ′) where the vec(·) operator stacks the columns of a matrix on

top of each other. We will use the notation ‖w̃b(i)‖2σ and ‖w̃b(i)‖2Σ interchangeably to denote

the same quantity w̃b(i)
⊤
Σw̃b(i). Using property (A.6), the relation between σ′ and σ can be

expressed in the following form:

σ′ = Fσ, (4.96)

where F is the (MN)2 × (MN)2 matrix given by:

F , E {B⊤(i)⊗B⊤(i)} (4.97)

≈ B⊤ ⊗B⊤, (small step-sizes). (4.98)

The approximation in (4.98) is reasonable under the small step-sizes condition, where the effect

of terms involving higher order powers of step-sizes is ignored. Introducing the matrix G:

G , E {g(i)g⊤(i)} = A⊤MC⊤diag
{
Rx,1σ

2
z,1, . . . ,Rx,Nσ

2
z,N

}
CMA, (4.99)
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and using property (A.5), the second term on the RHS of (4.93) can be written as:

E ‖g(i)‖2
Σ
=
[
vec(G⊤)

]⊤
σ. (4.100)

Hence, the variance recursion (4.93) can be expressed as

E ‖w̃b(i+ 1)‖2σ = E ‖w̃b(i)‖2Fσ +
[
vec(G⊤)

]⊤
σ + ϕ(r(i+ 1),σ, w̃b(i)). (4.101)

Theorem 4.2. (Mean-square-error stability) Assume the data model in (4.4) and Assump-

tions 4.1 hold. Assume further that the step-sizes are sufficiently small. Then, for any initial con-

ditions, the multitask diffusion strategy (4.32) is mean-square stable if the error recursion (4.70)

is mean stable and the matrix F in (4.97) is contractive. Using the approximation (4.98) and

property (A.8), we find that small step-sizes satisfying (4.81) will also ensure mean-square sta-

bility.

Proof. Since Σ is a positive semi-definite matrix and the vector r(i + 1) is uniformly bounded

for all i, E ‖r(i+ 1)‖2
Σ

can be bounded as

0 ≤ η2E ‖r(i+ 1)‖2Σ ≤ κ1 (4.102)

for all i, where κ1 is a positive constant. Since r(i+1) is uniformly bounded for all i, the vector

2 η r⊤(i + 1)ΣB is also bounded for all i. Let γmax be a bound on the largest component of

2 η r⊤(i+ 1)ΣB in absolute value for all i. We obtain

2 η
∣∣∣E
{
r⊤(i+ 1)ΣBw̃b(i)

}∣∣∣ ≤ γmax

MN∑

m=1

| [E w̃b(i)]m |

= γmax · ‖E w̃b(i)‖1 . (4.103)

Under condition (4.81) on the step-sizes, the mean error vector E w̃b(i) converges to a small

bounded region as i → ∞. Hence, ‖E w̃b(i)‖1 can be upper bounded by some positive constant

scalar κ2 for all i, and using the approximation (4.95), |ϕ(r(i+ 1),σ, w̃b(i))| satisfies:

|ϕ(r(i+ 1),σ, w̃b(i))| ≤ κ1 + γmaxκ2 (4.104)

for all i. The positive constant κ3 , κ1 + γmaxκ2 can be written as a scaled multiple of the

positive quantity
[
vec(G⊤)

]⊤
σ as κ3 = t

[
vec(G⊤)

]⊤
σ where t ≥ 0 [Lorenzo and Sayed, 2013].

We arrive at the following inequality for (4.101):

E ‖w̃b(i+ 1)‖2σ ≤ E ‖w̃b(i)‖2Fσ + (1 + t) ·
[
vec(G⊤)

]⊤
σ. (4.105)

Iterating (4.105) starting from i = 0, we obtain

E ‖w̃b(i+ 1)‖2σ ≤ E
{
‖w̃b(0)‖2F i+1σ

}
+ (1 + t)

[
vec(G⊤)

]⊤ i∑

j=0

F jσ, (4.106)
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where E ‖w̃b(0)‖2 is the initial condition. If we show that the RHS of (4.106) converges, then

E ‖w̃b(i+ 1)‖2σ is stable. The first term on the RHS of (4.106) vanishes as i → ∞ if the matrix

F is contractive. Consider now the second term on the RHS of (4.106). The series
∑∞

j=0F
jσ

converges if
∑∞

j=0

[
F jσ

]
m

converges for m = 1, . . . , (MN)2. Each term of the series can be

bounded as: [
F jσ

]
m

≤
∣∣[F jσ

]
m

∣∣ ≤
∥∥F jσ

∥∥
b,∞ ≤

∥∥F j
∥∥
b,∞ · ‖σ‖b,∞ . (4.107)

Since F is contractive, there exists a submultiplicative norm2 ‖ · ‖ρ such that ‖F‖ρ = υ < 1. All

norms are equivalent in finite dimensional vector spaces. Thus, we have:

‖F j‖b,∞ ≤ τ‖F j‖ρ ≤ τ‖F‖jρ = τυj , (4.108)

for some positive constant τ . Considering this bound with (4.107) yields:

∞∑

j=0

∣∣[F jσ]m
∣∣ ≤

∞∑

j=0

‖F j‖b,∞ · ‖σ‖b,∞ ≤ τ
∞∑

j=0

υj‖σ‖b,∞ =
τ · ‖σ‖b,∞

1− υ
. (4.109)

As a consequence, since the second term on the RHS of (4.106) converges to a bounded region

when F is contractive, E ‖w̃b(i+ 1)‖2σ also converges.

4.4 Simulation results

Before proceeding, we present a new rule for selecting the regularization weight pkℓ based on

a measure of sparsity of the vector wo
k − wo

ℓ . The intuition behind this rule is to employ a

large weight pkℓ when the objectives at nodes k and ℓ have few distinct entries, i.e., wo
k −wo

ℓ is

sparse, and a small weight pkℓ when the objectives have few similar entries, i.e., wo
k −wo

ℓ is not

sparse. Among other possible choices for the sparsity measure, we select a popular one based on

a relationship between the ℓ1-norm and ℓ2-norm [Hoyer, 2004]:

ξ (wo
k −wo

ℓ) =
M

M −
√
M

(
1− ‖wo

k −wo
ℓ‖1√

M · ‖wo
k −wo

ℓ‖

)
∈ [0, 1]. (4.110)

The quantity ξ(wo
k −wo

ℓ) is equal to one when only a single component of wo
k −wo

ℓ is non-zero,

and zero when all elements of wo
k − wo

ℓ are relatively large [Hoyer, 2004]. Since the nodes do

not know the true objectives wo
k and wo

ℓ , we propose to replace these quantities by the available

estimates at each time instant i and allow the regularization factors to vary with time according

to:

pkℓ(i) ∝





M

M−
√
M

(
1− ‖φk(i+1)−φℓ(i+1)‖1√

M ·‖φk(i+1)−φℓ(i+1)‖

)
, if ℓ ∈ Nk \ C(k)

0, otherwise
(4.111)

where the symbol ∝ denotes proportionality. As we shall see in the simulations, this rule improves

the performance of the algorithm and allows agent k to adapt the regularization strength pkℓ

with respect to the sparsity level of the vector wo
k −wo

ℓ at time instant i.
2 The norm ‖ · ‖ρ is called submultiplicative if for any square matrices X and Y of compatible dimensions we

have: ‖XY ‖ρ ≤ ‖X‖ρ · ‖Y ‖ρ.
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Figure 4.4: Experimental setup. (Left) Network topology. (Right) Regression and noise variances.

4.4.1 Illustrative example

We consider a clustered network with the topology shown in Figure 4.4 (left), consisting of

20 nodes divided into 3 clusters: C1 = {1, . . . , 10}, C2 = {11, . . . , 15}, and C3 = {16, . . . , 20}.
The regression vectors xk(i) are 18× 1 zero-mean Gaussian distributed vectors with covariance

matrices Rx,k = σ2
x,kI18. The variances σ2

x,k are shown in Figure 4.4 (right). The noises zk(i) are

zero-mean i.i.d. Gaussian random variables, independent of any other signal, with variances σ2
z,k

shown in Figure 4.4 (right). We run the diffusion algorithm (4.32) by setting cℓk =
1

card{Nℓ∩C(ℓ)}
for k ∈ Nℓ ∩ C(ℓ) and aℓk = 1

card{Nk∩C(k)} for ℓ ∈ Nk ∩ C(k). The regularization weights are set

to ρkℓ =
1

card{Nk\C(k)} for ℓ ∈ Nk \ C(k). We use a constant step-size µ = 0.02 for all nodes, a

sparsity strength η = 0.06 for the ℓ1-norm regularizer, and η = 0.04 for the reweighted ℓ1-norm

regularizer with ǫ = 0.1 . The results are averaged over 200 Monte-Carlo runs.

The optimum vectors are set to wo
Cq = w0 + δwCq at each cluster with w0 an 18 × 1

vector whose entries are generated from the Gaussian distribution N (0, 1). First, we set δwC1
to 0

⊤
1×18, δwC2 to [−1 01×17]

⊤, and δwC3 to [01×6 − 1 01×11]
⊤. Observe that at most two

entries differ between clusters. After 500 iterations, we set δwC2 to [−11×3 1 01×14]
⊤ and δwC3

to [01×12 − 11×3 01×3]
⊤. In this way, at most 7 entries differ between clusters. After 1000

iterations, we set δwC2 to [−11×3 11×3 − 11×3 01×9]
⊤ and δwC3 to [01×9 11×3 − 11×3 11×3]

⊤.

Thus, at most 18 entries now differ between clusters.

In Figure 4.5, we compare 6 algorithms: the non-cooperative LMS (algorithm (4.32) with

A = C = IN and η = 0):

wk(i+ 1) = wk(i) + µkxk(i)
(
dk(i)− x⊤

k (i)wk(i)
)
, (4.112)
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Figure 4.5: Network MSD comparison for 6 different strategies: non-cooperative LMS (4.112),
spatially regularized LMS (4.113) with ℓ1-norm and reweighted ℓ1-norm, standard diffusion with-
out cooperation between clusters (4.114), and our proximal diffusion (4.32) with ℓ1-norm and
reweighted ℓ1-norm.

the regularized LMS (algorithm (4.32) with A = C = IN ) with ℓ1-norm and reweighted ℓ1-norm:
{
ψk(i+ 1) = wk(i) + µkxk(i)

(
dk(i)− x⊤

k (i)wk(i)
)
,

wk(i+ 1) = proxηµkgk,i+1
(ψk(i+ 1)),

(4.113)

the multitask diffusion LMS without regularization (algorithm (4.32) with η = 0):




ψk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk∩C(k)
cℓk xℓ(i)

[
dℓ(i)− x⊤

ℓ (i)wk(i)
]
,

wk(i+ 1) =
∑

ℓ∈Nk∩C(k)
aℓkψℓ(i+ 1),

(4.114)

and the multitask diffusion LMS (4.32) with ℓ1-norm and reweighted ℓ1-norm regularization. As

observed in this figure, when the tasks share a sufficient number of components, cooperation

between clusters enhances the network MSD performance given in (3.78). When the number of

common entries decreases, the cooperation between clusters becomes less effective. The use of

the ℓ1-norm can lead to a degradation of the network MSD relative to the absence of cooperation

among clusters. However, the use of the reweighted ℓ1-norm allows to improve the performance.

In order to better understand the behavior of the algorithm (4.32) in the clusters, we report

in Figure 4.6 the learning curves for i ∈ [0, 1000] of the common and distinct entries among

clusters given by

1

card{Cq}
∑

k∈Cq
E




∑

m∈E(i)
([wo

k(i)−wk(i)]m)
2



 , (4.115)

for q = 1, 3, where E(i) is the set of identical (or distinct) components among all clusters at

iteration i and wo
k(i) is the optimum parameter vector at node k and iteration i. For example,
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(a) Cluster 1 MSD over identical entries.
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(b) Cluster 3 MSD over identical entries.
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(c) Cluster 1 MSD over distinct entries.
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(d) Cluster 3 MSD over distinct entries.

Figure 4.6: Clusters MSD over identical and distinct components. Comparison for the same 6
different strategies considered in Figure 4.5.

for i ∈ [0, 500], the set of distinct components is {1, 7}. As shown in this figure, cluster C3
benefits considerably from cooperation with other clusters in the estimation of the common

entries. Nevertheless, cluster C1 benefits slightly from cooperation. This is due to the fact that

the performance of C3 is low relatively to that of C1 since the signal-to-noise ratio (SNR) in C3 is

small and the number of nodes employed in this cluster is 5.

We shall now illustrate the effect of the regularization strength η over the performance of

the algorithm for different numbers of common entries between the optimum vectors {wo
k}. We

consider the same settings as above, which means that the number of common entries among

clusters is successively set to 16, 11, and 0 over 18. Parameter η is uniformly sampled over

[0, 0.14]. Figure 4.7 shows the gain in steady-state MSD versus the unregularized algorithm

obtained for η = 0, as a function of η. For each η, the results are averaged over 50 Monte-

Carlo runs and over 50 samples after convergence of the algorithm. It can be observed in

Figure 4.7 that the interval for η over which the network benefits from cooperation between

clusters becomes smaller as the number of common entries decreases. In addition, the reweighted
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Figure 4.7: Differential network MSD (MSD(η)− MSD(η = 0)) in dB with respect to the regu-
larization strength η for the multitask diffusion LMS (4.32) with ℓ1-norm (left) and reweighted
ℓ1-norm (right) for 3 different degrees of similarity between tasks. Experiment 1: at most 2 en-
tries differ between clusters. Experiment 2: at most 7 entries differ between clusters. Experiment
3: at most 18 entries differ between clusters.

ℓ1-norm regularizer provides better performance than the ℓ1-norm regularizer.

In order to guarantee a correct cooperation among clusters, we repeat the same experiment

as Figure 4.5 using the adaptive rule in (4.111) for adjusting the regularization factors pkℓ. The

proportionality coefficient in (4.111) is set equal to one. As shown in Figure 4.8, when the

number of distinct components is small, both ℓ1 and reweighted ℓ1-norms yield better perfor-

mance than the diffusion LMS with η = 0. When the number of distinct components increases

(i ∈ (1000, 1500]), the performance of strategy (4.32) with ℓ1-norm gets closer to diffusion LMS

with η = 0, while the reweighted ℓ1-norm still guarantees a gain. Thus, the mechanism proposed

in (4.111) for the selection of the regularization factors improves the cooperation between nodes

belonging to distinct clusters.

Finally, we compare the current multitask diffusion strategy (4.32) with two other useful

strategies existing in the literature [Plata-Chaves et al., 2015, Chen et al., 2014c]. We consider a

stationary environment where the optimum parameter vectors {wo
Cq}3q=1 consist of a sub-vector

ξo of 16 parameters of global interest to the whole network and a 2 × 1 sub-vector {ςoCq} of

common interest to nodes belonging to cluster Cq, namely, wo
Cq = col{ξo, ςoCq}. The entries of ξo,

ςoC1 , ς
o
C2 , and ςoC3 are uniformly sampled from a uniform distribution U(−3, 3). Except for these

changes, we consider the same experimental setup described in the first paragraph of the current

section. When applying the strategy developed in [Plata-Chaves et al., 2015], we assume that

node k belonging to cluster Cq is aware that the first 16 parameters of wo
Cq are of global interest to

the whole network while the remaining parameters are of common interest to nodes in cluster Cq.
However, the current method (4.32) and the algorithm in [Chen et al., 2014c] do not require such
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Figure 4.8: Network MSD comparison for the same 6 different strategies considered in Figure 4.5
using adaptive regularization factors pkℓ(i).

assumption. We run the ATC diffusion node specific parameter estimation (D-NSPE) strategy

developed in [Plata-Chaves et al., 2015], and which is given by:





ψk(i+ 1) = wk(i) + µxk(i)(dk(i)− x⊤
k (i)wk(i)),

ξk(i+ 1) =
∑
ℓ∈Nk

aξℓkψ
ξ
k(i+ 1),

ςk(i+ 1) =
∑

ℓ∈Nk∩C(k)
a
ςC(k)
ℓk ψςk(i+ 1),

(4.116)

where ψk(i+1) = col{ψξk(i+1),ψςk(i+1)}, and ξk(i+1), ςk(i+1) are the estimates of ξo and

ςoC(k) at node k, respectively. We use uniform combination weights aξℓk = 1/card{Nk} for ℓ ∈ Nk

and a
ςC(k)
ℓk = 1/card{Nk ∩ C(k)} for ℓ ∈ Nk ∩ C(k), and uniform step-sizes µk = 0.02 ∀k. We run

the multitask diffusion strategy developed in [Chen et al., 2014c] which is given by:





ψk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk∩C(k)
cℓkxℓ(i)

(
dℓ(i)− x⊤

ℓ (i)wk(i)
)

+ η µk


 ∑

ℓ∈Nk\C(k)
ρkℓ(wℓ(i)−wk(i))


 ,

wk(i+ 1) =
∑

ℓ∈Nk∩C(k)
aℓk ψℓ(i+ 1).

(4.117)

by setting {cℓk, aℓk, ρkℓ} in the same manner described in the first paragraph of the current

section, µk = 0.02 ∀k, and η = 0.06. The learning curves of the algorithms are reported in

Figure 4.9. As expected, it can be observed that the cooperation between clusters based on the

ℓ2-norm [Chen et al., 2014c] degrades the performance relative to the case of non-cooperative

clusters, i.e., η = 0. Indeed, the multitask diffusion strategy (4.117) considers squared ℓ2-norm

co-regularizers to promote the smoothness of the graph signal, whereas, in the current simulation
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Figure 4.9: Network MSD comparison for 5 different strategies: standard diffusion without
cooperation between clusters (4.114), our proximal diffusion (4.32) with ℓ1-norm and reweighted
ℓ1-norm, the ATC D-NSPE algorithm (4.116), and the multitask diffusion strategy with squared
ℓ2-norm coregularizers (4.117).

we need to promote the sparsity of the vector wo
k −wo

ℓ . Furthermore, when the reweighted ℓ1-

norm is used, our method is able to perform well compared to the strategy (4.116) that requires

the knowledge of the indices of common and distinct entries in the parameter vectors. We note

that recent unsupervised strategies [Chen et al., 2016, Plata-Chaves et al., 2016a] dealing with

group of variables rather than variables propose to add a step in order to adapt the cooperation

between neighboring nodes based on the group at hand. However, it is shown in [Chen et al.,

2016] that the performance depends heavily on the group decomposition of the parameter vectors

considered at the origin.

4.4.2 Distributed spectrum sensing

Consider a cognitive radio network composed of NP primary users (PU) and NS secondary users

(SU). To avoid causing harmful interference to the primary users, each secondary user has to

detect the frequency bands used by all primary users, even under low SNR conditions [Lorenzo

et al., 2013, Sayed, 2014c, Plata-Chaves et al., 2015]. We assume that the secondary users are

grouped into Q clusters and that there exists within each cluster a low power interference source

(IS). The goal of each secondary user is to estimate the aggregated spectrum transmitted by all

active primary users, as well as the spectrum of the interference source present in its cluster.

In order to facilitate the estimation task of the secondary users, we assume that the power

spectrum of the signal transmitted by the primary user p and the interference source q can be
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represented by a linear combination of NB basis functions φm(f):

Sp(f) =

NB∑

m=1

αpmφm(f), p = 1, . . . , NP , (4.118)

Sq(f) =

NB∑

m=1

βqmφm(f), q = 1, . . . , Q, (4.119)

where αpm, βqm are the combination weights, and f is the normalized frequency. Each secondary

user k ∈ Cq has to estimate the NB × (NP + 1) vector wo
k = col{αo1, . . . ,αoNP

,βoq} where αop =

[αp1, . . . , αpNB
]⊤ and βoq = [βq1, . . . , βqNB

]⊤. Let ℓp,k(i) denote the path loss factor between the

primary user p and the secondary user k at time i. Let also ℓ′q,k(i) denote the path loss factor

between the interference source q and the secondary user k at time i. Then, the power spectrum

sensed by node k ∈ Cq at time i and frequency fj can be expressed as follows:

rk,j(i) =

NP∑

p=1

ℓp,k(i)Sp(fj) + ℓ′q,k(i)Sq(fj) + zk,j(i), (4.120)

where zk,j(i) is the sampling noise at the j-th frequency assumed to be zero-mean Gaussian with

variance σ2
zk,j

. At each time instant i, node k observes the power spectrum over NF frequency

samples. Let rk(i) and zk(i) be the NF × 1 vectors with j-th entries equal to rk,j(i) and zk,j(i),

respectively. Using (4.120), we can establish the following linear data model for node k ∈ Cq:

rk(i) = Φk(i)w
o
k + zk(i), (4.121)

where Φk(i) , [ℓ1,k(i), . . . , ℓNP ,k(i), ℓ
′
q,k(i)] ⊗ Φ with Φ the NF × NB matrix whose j-th row

contains the magnitudes of the NB basis functions at the frequency sample fj .

To show the effect of multitask learning with sparsity-based regularization, we consider a

cognitive radio network consisting of NP = 2 primary users and NS = 13 secondary users

decomposed into 4 clusters as shown in Figure 4.10. The power spectrum is represented by a

combination of NB = 20 Gaussian basis functions centered at the normalized frequency fm with

variance σ2
m = 0.001 for all m:

φm(f) = exp
− (f−fm)2

2σ2
m , (4.122)

where the central frequencies fm are uniformly distributed. The combination vectors are set to:

wo
C1 = [01×4 1 1 01×14, 01×14 1 1 01×4, 0 0.3 0.3 01×17]

⊤

wo
C2 = [01×4 1 1 01×14, 01×14 1 1 01×4, 01×20]

⊤

wo
C3 = [01×4 1 1 01×14, 01×14 1 1 01×4, 0 0.3 01×16 0.3 0]⊤

wo
C4 = [01×4 1 1 01×14, 01×14 1 1 01×4, 01×17 0.3 0.3 0]⊤.

(4.123)

We consider NF = 80 frequency samples. Based on the free propagation theory, we set the

deterministic path loss factor ℓp,k to the inverse of the squared distance between the transmitter
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Figure 4.10: A cognitive radio network consisting of 2 primary users and 13 secondary users
grouped into 4 clusters containing each an interference source IS.

p and the receiver k. At time instant i, we set ℓp,k(i) = ℓp,k + δℓp,k(i) with δℓp,k(i) a zero-mean

random Gaussian variable with standard deviation 0.1ℓp,k. The secondary user k estimates ℓp,k(i)

according to the following model:

ℓ̂p,k(i) =

{
ℓp,k, if ℓp,k(i) > ℓ0,

0, otherwise
(4.124)

with ℓ0 a threshold value. The same rule is used to set the path loss factor between the inter-

ference sources and the secondary users. We run the ATC diffusion algorithm (4.32) with the

following adaptation step:

ψk(i+ 1) = wk(i) + µkΦ̂
⊤
k (i)[rk(i)− Φ̂k(i)wk(i)]. (4.125)

The sampling noise zkℓ,j(i) is assumed to be a zero-mean random Gaussian variable with standard

deviation 0.01. The combination coefficients {aℓk} and regularization factors {ρkℓ} are set in the

same way as in the previous experimentation. The MSD learning curves are averaged over 50

Monte-Carlo runs.

We run the multitask diffusion LMS (4.32) in two different situations. In the first scenario,

we do not allow any cooperation between clusters by setting η = 0. In the second scenario, we set

the regularization strength η to 0.01 and we use the ℓ1-norm as co-regularizing function. As it can

be seen in Figure 4.11, the network MSD performance is significantly improved by cooperation
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Figure 4.11: Network MSD comparison for 4 different algorithms: standard diffusion LMS with-
out cooperation between clusters (4.114), our proximal diffusion (4.32) with ℓ1-norm regularizer,
the ATC D-NSPE algorithm (4.116), and the multitask diffusion strategy (4.117).

among clusters. For comparison purposes, we also run the ATC D-NSPE strategy (4.116) and

the multitask diffusion strategy with ℓ2-norm given by (4.117). For the ATC D-NSPE strategy

we assume that nodes are aware that the first NP × NB components of the vector wo
k are of

global interest to the whole network and that the remaining components are of common interest

to the cluster C(k). The link weights {aℓk, cℓk, ρkℓ, aξℓk, a
ςC(k)
ℓk } are set in the same manner as

the experiment in Figure 4.9. It can be observed from Figure 4.11 that our strategy performs

well without the need to know the parameters of global interest and the parameters of common

interest during the learning process.

Figure 4.12 shows the estimated power spectrum density (PSD) for nodes 2, 4, 7, and 13

when running the multitask diffusion strategy (4.32) with η = 0 (left) and η = 0.01 (right). In

the left plot, we observe that the clusters are able to estimate their interference source. However,

depending on the distance to the primary users, the secondary users do not always succeed in

estimating the power spectrum transmitted by all active primary users. For example, clusters 1

and 2 are not able to estimate the power spectrum transmitted by PU2. As shown in the right

plot, regardless of the distance between primary and secondary users, each secondary user is able

to estimate the aggregated power spectrum transmitted by all the primary users and its own

interference source by cooperating with nodes belonging to neighboring clusters.

4.5 Conclusion

In this chapter, we considered multitask learning problems over networks where the optimum

parameter vectors to be estimated by neighboring clusters have a large number of similar entries

and a relatively small number of distinct entries. It then becomes advantageous to develop
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Figure 4.12: PSD estimation for nodes 2 (C1), 4 (C2), 7 (C3), and 13 (C4). (Left) Noncooperating
clusters (4.114). (Right) Cooperating clusters (4.32).

distributed strategies that involve cooperation among adjacent clusters in order to exploit these

similarities. A diffusion forward-backward splitting algorithm with ℓ1-norm and reweighed ℓ1-

norm co-regularizers was proposed to address this problem. A closed-form expression for the

proximal operator was derived to achieve higher efficiency. Conditions on the step-sizes to ensure

convergence of the algorithm in the mean and mean-square sense were derived. Finally, simulation

results were presented to illustrate the benefit of cooperating to promote similarities between

estimates and an adaptive rule was established to ensure appropriate cooperation among clusters.

In Chapters 3 and 4, we considered multitask estimation problems where the agents are

grouped into clusters and, within each cluster, the agents are seeking the same optimum model.

We assumed that the optimum models to be estimated by neighboring clusters are close to each

others in the sense of some norm. The next chapter deals with multitask estimation problems

where agents are interested in estimating different but linearly related models.
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Distributed constrained LMS for multitask problems

T
his chapter considers distributed multitask learning problems over a network of agents where

each agent is interested in estimating its own parameter vector, also called task, and where the

tasks are related locally according to a set of linear equality constraints. Each agent possesses its

own convex cost function of its parameter vector, and a set of linear equality constraints relating

its own parameter vector to the parameter vectors of its neighboring agents. We propose an

adaptive stochastic algorithm based on the projection gradient method and diffusion strategies

in order to allow the network to optimize the individual costs subject to all constraints. Although

the derivation is carried out for linear equality constraints, the technique can be applied to other

forms of convex constraints. A detailed mean-square-error analysis of the proposed algorithm is

conducted and closed-form expressions to predict its learning behavior are derived. Simulations

are provided to illustrate the theoretical findings. Finally, the algorithm is employed to solve two

problems in a distributed manner: a minimum-cost flow problem over a network and a space-time

varying field reconstruction problem.

The work presented in this chapter appears in:

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Diffusion LMS for multitask prob-

lems with local linear equality constraints. Submitted to IEEE Transactions on Signal

Processing, October 2016. (Also available at https://arxiv.org/abs/1610.02943)

• R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed. Distributed learning over multitask

networks with linearly related tasks. In Proc. Asilomar Conference on Signals, Systems

and Computers, Pacific Grove, CA, November 2016.
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CHAPTER 5. DISTRIBUTED CONSTRAINED LMS FOR MULTITASK PROBLEMS

5.1 Introduction

As it became clear, there exists two main types of distributed estimation algorithms, namely,

single-task algorithms and multitask algorithms. Single-task distributed estimation over net-

works allows to minimize the aggregate sum of convex cost functions, each available at an agent,

subject to convex constraints that are also distributed across the agents. Each learner seeks

to estimate the minimizer through local computations and communications among neighboring

agents without the need to know any of the constraints or costs besides their own [Bertsekas,

1997, Lopes and Sayed, 2008, Chen and Sayed, 2012, Ram et al., 2010, Mota et al., 2013, Sri-

vastava and Nedic, 2011, Lee and Nedić, 2013, Towfic and Sayed, 2014]. Multitask distributed

estimation over networks is particularly well-suited for applications where several parameter vec-

tors need to be estimated simultaneously from successive noisy measurements using in-network

processing [Kekatos and Giannakis, 2013, Abdolee et al., 2014, Chen et al., 2015b, Bertrand and

Moonen, 2012, Plata-Chaves et al., 2015, 2016b, Chen et al., 2014c, Nassif et al., 2016c,d, Chen

et al., 2014a]. In important applications, such as network flow problems [Ahuja et al., 1993] and

monitoring applications [Bertsekas and Tsitsiklis, 1989, Kekatos and Giannakis, 2013], it happens

that the optimum parameter vectors to be estimated at neighboring agents are related accord-

ing to a set of constraints. This observation motivates us to consider in this chapter multitask

estimation problems subject to linear equality constraints of the form:

minimize
w1,...,wN

Jglob(w1, . . . ,wN ) ,
N∑

k=1

Jk(wk), (5.1a)

subject to
∑

ℓ∈Ip
Dpℓwℓ + bp = 0, p = 1, . . . , P. (5.1b)

Each agent k in the network seeks to estimate its own Mk × 1 parameter vector wk, and has

knowledge of its cost function Jk(·) and the set of linear equality constraints that agent k is

involved in. Each constraint is indexed by p, and defined by the Lp × Mℓ matrices Dpℓ, the

Lp × 1 vector bp, and the set Ip of agent indices involved in this constraint. It is assumed

that each agent k in Ip can collect estimates from all agents in Ip in order to satisfy the p-

th constraint, i.e., Ip ⊆ Nk if k ∈ Ip where Nk denotes the neighborhood of agent k. This

assumption is reasonable in many applications, for instance, in remote monitoring of physical

phenomena involving discretization of spatial differential equations [Bertsekas and Tsitsiklis,

1989], and in network monitoring involving conservation laws at each junction [Ahuja et al.,

1993].

For illustration purposes, consider a minimum-cost flow problem over the network shown in

Figure 5.1. This network consists of 10 nodes, 1 destination sink D, and 15 communication links.

With each link j, we associate a directed arc and we let fj denote the flow or traffic on this link,

with fj > 0 meaning that the flow is in the direction of the arc, and fj < 0 otherwise. At

each node k, an external source flow sk enters and flows through the network to the destination
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Figure 5.1: Flow network topology with 10 nodes, 1 destination sink D, and 15 communication
links.

sink. The flow must satisfy a conservation equation, which states that at each node k, the sum

of flows entering the node, plus the external source sk, is equal to the sum of flows leaving

node k. Given the external sources sk and the network topology, a number of studies have

been devoted to finding the optimal flows f⋆j that minimize a total flow transmission cost and

satisfy the conservation equations [Ahuja et al., 1993, Boyd and Vandenberghe, 2004, Ventura,

1991]. Problems of this type arise in applications such as electrical networks, telecommunication

networks, pipeline networks [Ahuja et al., 1993]. In some of these applications, it happens

that node k has only access to noisy measurements sk(i) of the external source at each time

instant i. Denoting by wk the Mk×1 vector containing the flows fj entering and leaving node k,

we are interested in distributed online learning settings where each node k seeks to estimate

wk from noisy measurements sk(i) by relying only on local computations and communications

with its neighbors. This problem can be recast in the form (5.1a)–(5.1b) and addressed with

the multitask strategy proposed in this paper. This example will be considered further in the

numerical experiments section.

We shall propose a primal technique (based on propagating and estimating the primal vari-

able) for solving such distributed multitask estimation problems. The technique relies on com-

bining diffusion adaptation with a stochastic gradient projection step, and on the use of constant

step-sizes to enable continuous adaptation and learning from streaming data. Since we are

learning from streaming data, the dual function cannot be computed exactly and the use of

primal-dual methods may result in some cases in stability problems as already shown in [Towfic

and Sayed, 2015]. For this reason, we shall focus on primal techniques. Our current work is able
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Table 5.1: List of the main symbols and notations used in Chapter 5.

Mk Length of the parameter vector at agent k

Mb,Me Length of the network block parameter vector without/with auxiliary variables

N Number of agents in the network

Ne Number of sub-nodes in the network

P Number of constraints in the network

Lp Number of linear equalities in the p-th constraint

Nk Neighborhood of agent k, i.e., the set of agents that are connected
to k by edges

Ip, Ie,p Set of agents/sub-nodes involved in the p-th constraint

wk Parameter vector at agent k

wkm Parameter vector at sub-node km

wo
k,w

⋆
k Optimum parameter vectors at agent k without/with constraints

wb,we Network block parameter vectors without/with auxiliary variables

wo
b ,w

o
e Network block optimum parameter vectors without constraints

and without/with auxiliary variables

w⋆
b ,w

⋆
e Network block optimum parameter vectors with constraints

and without/with auxiliary variables

to cope with the following two scenarios: 1) multitask problems with prior information on linear

relationships between tasks, and 2) constrained multitask problems with distributed information

access. We analyze the behavior of our algorithm in the mean and mean-square-error sense

(w.r.t. the minimizers of the local costs and w.r.t. the solution of the constrained multitask

problem) and we derive expressions to predict its transient and steady-state behavior. We show

that for small constant step-sizes, the expected distance between the estimates at each agent and

the optimal value can be made arbitrarily small.

Before starting our presentation, we list in Table 5.1 some of the main symbols and notations

used in this chapter. Other symbols will be defined in the context where they are used.

5.2 Problem formulation and centralized solution

5.2.1 Problem formulation and assumptions

Consider a network of N agents, labeled k = 1, . . . , N . At each time instant i, each agent k

has access to a zero-mean real-valued observation dk(i), and a zero-mean real-valued Mk × 1

regression vector xk(i), with positive covariance matrix Rx,k = E {xk(i)x⊤
k (i)} > 0. We assume

110



5.2. PROBLEM FORMULATION AND CENTRALIZED SOLUTION

the data to be related via the linear data model:

dk(i) = x
⊤
k (i)w

o
k + zk(i), i ≥ 0, (5.2)

where wo
k is an Mk × 1 unknown parameter vector, and zk(i) is a zero-mean measurement noise

of variance σ2
z,k, independent of xℓ(j) for all ℓ and j, and independent of zℓ(j) for ℓ 6= k or i 6= j.

We let rdx,k , E {dk(i)xk(i)} and σ2
d,k , E (dk(i))

2.

Let wk denote some generic Mk × 1 vector that is associated with agent k. The objective of

agent k is to find an estimate for wo
k, and we associate with this agent the mean-square-error

criterion:

Jk(wk) = E

(
dk(i)− x⊤

k (i)wk

)2
, (5.3)

which is strongly convex, second-order differentiable, and minimized at wo
k. In addition, P linear

equality constraints of the form (5.1b) are imposed on the parameter vectors {wk} at each time

instant i. Let us collect the parameter vectors {wk} and {wo
k} from across the network into

N × 1 block column vectors wb and wo
b , respectively:

wb , col{w1, . . . ,wN}, wo
b , col{wo

1, . . . ,w
o
N}, (5.4)

and let us write the P linear equality constraints in (5.1b) more compactly as:

Dwb + b = 0, (5.5)

where D is a P ×N block matrix, with each block Dpℓ having dimensions Lp ×Mℓ, and b is a

P×1 block column vector where each block bp has dimensions Lp×1. Combining (5.5) and (5.3),

the network optimization problem becomes:

minimize
wb

N∑

k=1

E

(
dk(i)− x⊤

k (i)wk

)2
,

subject to Dwb + b = 0,

(5.6)

where each agent k is in charge of estimating the k-th sub-vector wk of wb. Since the mean-

square-error criterion in (5.6) is separable, we shall assume without loss of generality that each

parameter vector wk is involved in at least one constraint so that cooperation is justified. We

shall also assume that D is full row-rank to ensure that equation Dwb + b = 0 has at least one

solution. We also introduce an assumption on the availability of the constraints. Let Ip be the

set of agent indices involved in the p-th constraint. We shall assume that every agent k in Ip is

aware of the p-th constraint, and that the network topology permits this agent to collect estimates

from all agents in Ip, that is, Ip ⊆ Nk, so it can apply this constraint to its own estimate. This

assumption is reasonable in many applications, for instance, in remote monitoring of physical

phenomena [Bertsekas and Tsitsiklis, 1989], and in network distribution system monitoring (as

described in the introduction). These examples will be considered in numerical experiments

section.
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Before proceeding, note that problem (5.6) can be recast as a quadratic program (QP) [Boyd

and Vandenberghe, 2004], and any algorithm that solves QPs can solve it. We are interested

instead in distributed adaptive solutions that can operate in real-time on streaming data. As

we will see later, the traditional constrained LMS algorithm [Frost III, 1972] can solve (5.6) in a

centralized manner. In this centralized solution, each agent at each iteration sends its data to a

fusion center, which in turn processes the data and sends the estimates back to the agents. The

entire matrix D and the entire vector b then need to be available at the fusion center. While

centralized solutions can be powerful, decentralized solutions are more attractive since they are

more robust, require less communication costs, and respect the privacy policy of each agent.

5.2.2 Centralized solution

Let us first describe the centralized solution. We assume that the agents transmit the collected

data {dk(i),xk(i)} to a fusion center for processing. Problem (5.6) can be written equivalently

as:

minimize
wb

w⊤
b Rxwb − 2r⊤dxwb + r

⊤
d 1,

subject to Dwb + b = 0,
(5.7)

where the N ×N block diagonal matrix Rx, the N × 1 block column vector rdx, and the N × 1

column vector rd are given by:

Rx , diag {Rx,1, . . . ,Rx,N} , (5.8)

rdx , col {rdx,1, . . . , rdx,N} , (5.9)

rd , col
{
σ2
d,1, . . . , σ

2
d,N

}
. (5.10)

Since Rx is positive definite, problem (5.7) is a positive definite quadratic program with equality

constraints. It has a unique global minimum given by:

w⋆
b = w

o
b −R−1

x D⊤(DR−1
x D⊤)−1

(Dwo
b + b) . (5.11)

Let Ω denote the linear manifold:

Ω , {wb : Dwb + b = 0}. (5.12)

If wo
b ∈ Ω, the optimum w⋆

b coincides with wo
b . In this case, the constrained optimization prob-

lem (5.6) can be thought as estimating the unknown parameter vectors wo
k given prior informa-

tion about relationships between tasks of the form (5.1b). Exploiting such prior information may

improve the estimation as we will see in the experiments. Let Mb denote the dimension of the

network block parameter vector wb, i.e., Mb =
∑N

k=1Mk. The projection of any vector z ∈ RMb

onto Ω is given by:

PΩ(z) = Pz − f , (5.13)
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where

P , IMb
−D†D, f , D†b, (5.14)

with D† denoting the pseudo-inverse of the matrix D given by D⊤ (DD⊤)−1
. Let wb(i) denotes

the estimate of w⋆
b at iteration i. In order to solve (5.7) iteratively, the gradient projection

method [Bertsekas, 1999] can be applied on top of a gradient-descent iteration:

wb(i+ 1) = PΩ (wb(i) + µ (rdx −Rxwb(i))) . (5.15)

In order to run recursion (5.15), we need to have access to the second-order moments {Rx,k, rdx,k}.
Since these moments are rarely available beforehand, the agents use their instantaneous data

{dk(i),xk(i)} to approximate these moments, namely, Rx,k ≈ xk(i)x⊤
k (i) and rdx,k ≈ dk(i)xk(i).

Doing so and replacing PΩ(·) by (5.13), we obtain the following stochastic-gradient algorithm in

lieu of (5.15):

wb(i+ 1) = P · col
{
wk(i) + µxk(i)

(
dk(i)− x⊤

k (i)wk(i)
)}N

k=1
− f , (5.16)

where col{ak}Nk=1 refers to the block column vector col{a1, . . . ,aN}. Collecting the regression

vectors into the Mb × N matrix X(i) , diag{x1(i), . . . ,xN (i)} and the observations into the

N × 1 vector d(i) , col{d1(i), . . . , dN (i)}, algorithm (5.16) becomes the constrained least-mean-

squares (CLMS) algorithm:

wb(i+ 1) = P
(
wb(i) + µX(i)

(
d(i)−X⊤(i)wb(i)

))
− f . (5.17)

This procedure was originally proposed in [Frost III, 1972] as an online linearly constrained mini-

mum variance (LCMV) filter for solving mean-square-error estimation problems subject to linear

constraints; the motivation there was not concerned with multi-task problems. In this section,

we showed that the centralized multi-task constrained problem reduces to a similar problem, for

which algorithm (5.17) can be applied. The performance of such stand-alone centralized solutions

was studied in [Frost III, 1972, Sayed, 2008].

5.3 Problem reformulation and Distributed solution

5.3.1 Problem reformulation

We move on to develop a distributed solution with a continuous adaptation mechanism. First,

note that several works for solving problems of the form (5.6) with possible distributed informa-

tion access already exist in the literature [Ram et al., 2010, Mota et al., 2012, 2013, Chen et al.,

2015b, Towfic and Sayed, 2014, Lee and Nedić, 2013, Yuan et al., 2016]. However, except for the

work dealing with distributed dictionary learning [Chen et al., 2015b], these other works solve

single-task estimation problems where the entire network is employed to estimate the minimizer

of (5.6). Furthermore, in comparison to [Mota et al., 2012, 2013, Chen et al., 2015b, Yuan et al.,

2016], we shall assume stochastic errors in the evaluation of the gradients of local cost functions.
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To proceed with the analysis, one of the challenges we now face is that any given agent k

may be involved in several constraints. Our strategy is to transform (5.6) into an equivalent

optimization problem exhibiting structure amenable to distributed optimization with separable

constraints. Let jk denote the number of constraints that agent k is involved in. We expand each

node k into a cluster Ck of jk virtual sub-nodes, namely, Ck , {km}jkm=1. Each one of these sub-

nodes is involved in a single constraint. Let wkm denote the Mk × 1 auxiliary vector associated

with sub-node km. In order to ensure that agent k satisfies simultaneously all the constraints at

convergence, we will allow all sub-nodes at agent k to run diffusion learning to reach agreement

on their estimates {wkm} asymptotically. We denote by Ie,p the set of sub-nodes which are

involved in the p-th constraint.

In order to clarify the presentation, an illustrative example is provided in Figure 5.2. On the

left of this panel is the original network topology with N = 6 agents and P = 3 constraints. On

the right is the network topology model with clusters of sub-nodes shown in grey color. Observe

that I2 = {1, 3, k} and I3 = {4, k, ℓ}, which means that agent k is involved in constraints 2

and 3. Agent k is thus expanded into a cluster Ck = {k1, k2} of 2 sub-nodes. Sub-nodes k1

and k2 are assigned to constraints 2 and 3, respectively. Each other agent, say ℓ, involved in a

single constraint is renamed ℓ1 and assigned to a single-node cluster Cℓ = {ℓ1} for consistency of

notation. This leads to the sets Ie,2 = {12, 31, k1} and Ie,3 = {41, ℓ1, k2} where all sub-nodes are

involved in a single constraint. Finally, as handled by the algorithm introduced in the sequel,

note that in the network topology model, only sub-nodes involved in a common constraint will

share data (see the communication link connecting agents 2 and k). However, all sub-nodes km

in a cluster Ck are not affected by this rule, i.e., they can share data, since they refer to the same

agent k.

Accordingly, we can now reformulate problem (5.6). We start by collecting the vectors wkm

into the Ne × 1 network block column vector:

we , col
{

col {wkm}jkm=1

}N
k=1

, (5.18)

where Ne ,
N∑
k=1

jk. We introduce for each agent k a set of jk coefficients {ckm} that satisfy two

conditions:

ckm > 0, for m = 1, . . . , jk, and

jk∑

m=1

ckm = 1. (5.19)

The coefficients {ckm} are free parameters that are chosen by the user. A natural choice is

ckm = 1
jk

for all m. The global cost in (5.1a) can be written as:

Jglob(w1, . . . ,wN ) ,
N∑

k=1

Jk(wk) =
N∑

k=1

jk∑

m=1

ckmJk(wk). (5.20)
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Figure 5.2: (Left) Network topology with constraints identified by the subsets of nodes I1, I2,
and I3. (Right) Network topology model with clusters shown in grey color and constraints now
identified by the subsets of sub-nodes Ie,1, Ie,2, and Ie,3. All sub-nodes in this model are involved
in a single constraint. Diffusion learning is run in clusters with more than one sub-node to reach
agreement on local estimates while satisfying their respective constraints.

We reformulate problem (5.1) in the following equivalent form by introducing the auxiliary

variables {wkm}:

minimize
we

N∑

k=1

jk∑

m=1

ckmJk(wkm) (5.21a)

subject to
∑

ℓn∈Ie,p
Dpℓnwℓn + bp = 0, p = 1, . . . , P, (5.21b)

wk1 = . . . = wkjk
, k = 1 . . . , N. (5.21c)

In the following, we shall address the equality constraints (5.21c) with a diffusion algorithm

within each cluster of sub-nodes with the objective of reaching an agreement within each cluster

(all sub-nodes converge to the same estimate). Since the diffusion strategy in a single-task

network allows the agents to converge to the same limit point asymptotically for sufficiently

small constant step-sizes when the network is strongly connected [Sayed, 2014b], we allow the

sub-nodes in cluster Ck to be connected such that the resultant cluster Ck is strongly connected.

This does not lead to a change in the network topology since each sub-node in a cluster refers

to the same agent. We refer to the virtual set of neighboring sub-nodes of km in Ck by Nkm∩ Ck.
The cost function in (5.21a) can be written as:

N∑

k=1

jk∑

m=1

ckmJk(wkm) = w
⊤
e Rx,ewe − 2r⊤dx,ewe + r

⊤
d,e1, (5.22)

where the Ne × Ne block diagonal matrix Rx,e, the Ne × 1 block column vector rdx,e, and the
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Ne × 1 column vector rd,e are given by:

Rx,e , diag {C1 ⊗Rx,1, . . . ,CN ⊗Rx,N} , (5.23)

rdx,e , col {c1 ⊗ rdx,1, . . . , cN ⊗ rdx,N} , (5.24)

rd,e , col
{
σ2
d,1c1, . . . , σ

2
d,NcN

}
, (5.25)

with

Ck , diag
{
ck1 , . . . , ckjk

}
and ck , col

{
ck1 , . . . , ckjk

}
. (5.26)

The equality constraints in (5.21b)–(5.21c) can be written more compactly as:

D′
ewe + b

′ = 0 (5.27)

with

D′
e =

[
De

H

]
, b′ =

[
b

0

]
, (5.28)

where De is a P × Ne block matrix constructed according to (5.21b) which can be viewed as

an expanded form of the P × N block matrix D, and H is a
∑N

k=1(jk − 1) × Ne block matrix

constructed according to (5.21c).

Using similar arguments as in Subsection 5.2.2, we find that the solution of (5.21) is given

by:

w⋆
e = w

o
e −R−1

x,eD
′⊤
e (D′

eR
−1
x,eD

′⊤
e )−1(D′

ew
o
e + b

′), (5.29)

where the Ne × 1 block column vector wo
e is given by:

wo
e , col {1j1×1 ⊗wo

1 , . . . ,1jN×1 ⊗wo
N} . (5.30)

Letw⋆
k denote the k-th block ofw⋆

b in (5.11). The optimum vectorw⋆
e can be written alternatively

as:

w⋆
e = col {1j1×1 ⊗w⋆

1 , . . . ,1jN×1 ⊗w⋆
N} . (5.31)

5.3.2 Distributed solution

To solve problem (5.21) with distributed information access, we propose an iterative algorithm

based on diffusion strategies and gradient-projection principle. First, we present the algorithm

when the second order moments of the observations are assumed to be known by each sub-node.

Although cluster Ck and agent k refer to the same entity, we shall use the notion of cluster and

sub-nodes in order to simplify the presentation.

Let we,p denote the ip × 1 block column vector given by we,p = col{wℓn}ℓn∈Ie,p where ip

is the number of nodes involved in the p-th constraint. Also, note that ip is the cardinality of

Ip and Ie,p. Let Ωp denote the linear manifold corresponding to the p-th constraint in (5.21b),

namely, Ωp , {Dpwe,p + bp = 0} where Dp is a 1× ip block matrix.
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Let wkm(i) be the estimate of w⋆
k at sub-node km and time instant i. We assume that

km ∈ Ie,p. Based on the gradient projection algorithm, following the same line of reasoning

as [Sayed, 2014c] in the single-task case, and extending the argument to our multitask problem

as in the previous chapter, we arrive at the following diffusion algorithm consisting of three steps:

ψkm(i+ 1) = wkm(i) + µ ckm (rdx,k −Rx,kwkm(i)) (5.32a)

φkm(i+ 1) =
∑

kn∈Nkm∩Ck
akn,kmψkn(i+ 1) (5.32b)

wkm(i+ 1) =
[
PΩp

(
col
{
φℓn(i+ 1)

}
ℓn∈Ie,p

)]
km

(5.32c)

where µ > 0 is a constant step-size parameter, [x]km is the block of x corresponding to sub-node

km, and wkm(0) = wk(0) for all m. In the first step (5.32a), also called adaptation step, each

sub-node km in the network adapts its estimate wkm(i) via gradient descent on ckmJk(·). This

step results in the intermediate estimate ψkm(i+ 1).

In the combination step (5.32b), each sub-node km combines its estimate ψkm(i+1) with the

estimates ψkn(i+1) of its intra-cluster neighbors Nkm∩Ck. This step results in the intermediate

estimate φkm(i + 1). The nonnegative coefficients {akn,km} are chosen to satisfy the following

conditions:

akn,km ≥ 0,
∑

km∈Nkn∩Ck
akn,km = 1,

∑

kn∈Nkm∩Ck
akn,km = 1, and akn,km = 0 if kn /∈ Nkm∩ Ck.

(5.33)

Collecting these coefficients into a jk × jk matrix Ak for each cluster Ck, it follows that Ak is

doubly stochastic.

Let Mp denote the dimension of the vector we,p, i.e., Mp =
∑

ℓn∈Ie,p Mℓ. Before describing

the third step, we recall that the projection of any point z onto Ωp has the form:

PΩp (z) = Pp z − fp, (5.34)

where

Pp , IMp −D†
pDp and fp , D†

pbp. (5.35)

To evaluate the block
[
PΩp(z)

]
km

, even if sub-node km is only in charge of estimating wkm , it

needs the entire vector z, the Mk ×Mp matrix [Pp]km,•, and the Mk × 1 vector [fp]km . In the

projection step (5.32c), each sub-node km ∈ Ie,p collects the intermediate estimates φℓn(i + 1)

from all sub-nodes ℓn ∈ Ie,p and combines them according to (5.32c). This step results in the

estimate wkm(i+ 1) of w⋆
k at sub-node km and iteration i+ 1.

The adaptation step (5.32a) requires knowledge of the second-order moments of data. Pro-

ceeding as in the centralized case, and replacing the moments by instantaneous approximations,

we obtain algorithm (5.36) for solving problem (5.21) in a distributed manner.
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ψkm(i+ 1) = wkm(i) + µ ckmxk(i)
(
dk(i)− x⊤

k (i)wkm(i)
)

(5.36a)

φkm(i+ 1) = [Pp]km,• · col
{
ψℓn(i+ 1)

}
ℓn∈Ie,p − [fp]km (5.36b)

wkm(i+ 1) =
∑

kn∈Nkm∩Ck
akn,kmφkn(i+ 1) (5.36c)

Compared to (5.32), observe in algorithm (5.36) that each sub-node km projects its intermediate

estimate before combining it. We recommend this permutation since it allows, with the appro-

priate parameter settings described below, to reduce the algorithm computational complexity

without compromising its convergence, as confirmed in the sequel. Consider any agent k. By

setting factors ckm to 1
jk

for all m = 1, . . . , jk, and combining the intermediate estimate φkm(i+1)

at each sub-node km with the estimates of all other sub-nodes available at node k using uniform

combination coefficients, i.e., Nkm ∩ Ck = Ck and akn,km = 1
jk

for n = 1, . . . , jk, steps (5.36a)

and (5.36c) reduce to:

ψkm(i+ 1) = ψk(i+ 1), for m = 1, . . . , jk, (5.37)

wkm(i+ 1) = wk(i+ 1), for m = 1, . . . , jk, (5.38)

where ψk(i+ 1) and wk(i+ 1) are given by:

ψk(i+ 1) = wk(i) +
µ

jk
xk(i)

(
dk(i)− x⊤

k (i)wk(i)
)
, (5.39)

wk(i+ 1) =
1

jk

jk∑

n=1

φkn(i+ 1). (5.40)

5.4 Stochastic performance analysis

5.4.1 Weight error vector recursion

We shall study the stochastic behavior of algorithm (5.36) with respect to the optimal parameter

vectorwo
e and with respect to the solutionw⋆

e of the optimization problem with constraints (5.21).

To this end, we introduce for each sub-node km the weight error vectors:

w̃km(i) , w
o
k −wkm(i), w̃′

km(i) , w
⋆
k −wkm(i), (5.41)

and the intermediate error vectors:

ψ̃km(i) , w
o
k −ψkm(i), φ̃km(i) , w

o
k − φkm(i). (5.42)

We further introduce the Ne × 1 block network error vectors:

w̃e(i) , col
{

col
{
w̃km(i)

}jk
m=1

}N
k=1

, (5.43)

w̃′
e(i) , col

{
col
{
w̃′
km(i)

}jk
m=1

}N
k=1

. (5.44)
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Note that the behavior of algorithm (5.36) with respect to w⋆
e can be deduced from its behavior

with respect to wo
e using the following relation:

w̃′
e(i+ 1) = w̃e(i+ 1)−wδ

e, (5.45)

where

wδ
e , w

o
e −w⋆

e. (5.46)

Thus, in the sequel, we first study the behavior of algorithm (5.36) with respect to wo
e and, next,

we characterize its behavior with respect to w⋆
e using relation (5.45).

Let Me denote the length of the network error vector w̃e(i), that is, Me ,
∑N

k=1 jkMk. Using

the linear model (5.2), the estimation error in the adaptation step (5.36a) can be written as:

dk(i)− x⊤
k (i)wkm(i) = x

⊤
k (i)w̃km(i) + zk(i). (5.47)

Subtracting wo
k from both sides of the adaptation step (5.36a), using (5.47), and collecting the

error vectors ψ̃km(i) into the Ne × 1 block vector ψ̃e(i) , col
{

col
{
ψ̃km(i)

}jk
m=1

}N
k=1

, we obtain:

ψ̃e(i+ 1) = [IMe − µRx,e(i)] w̃e(i)− µpxz,e(i), (5.48)

where

Rx,e(i) , diag
{
C1 ⊗ x1(i)x

⊤
1 (i), . . . ,CN ⊗ xN (i)x⊤

N (i)
}
, (5.49)

pxz,e(i) , col {c1 ⊗ x1(i)z1(i), . . . , cN ⊗ xN (i)zN (i)} . (5.50)

Projecting ψe(i+ 1) onto the sets Ωp in (5.34), we obtain from (5.36b):

φe(i+ 1) = Peψe(i+ 1)− f e, (5.51)

where

ψe(i) , col
{

col
{
ψkm(i)

}jk
m=1

}N
k=1

, φe(i) , col
{

col
{
φkm(i)

}jk
m=1

}N
k=1

, (5.52)

Pe is an Me × Me orthogonal projection matrix, and f e is an Me × 1 vector given by (see

Appendix D.1):

Pe , IMe −D†
eDe = IMe −D⊤

e (DeD
⊤
e )

−1De, (5.53)

f e , D†
eb = D⊤

e (DeD
⊤
e )

−1b. (5.54)

Subtracting wo
e in (5.30) from both sides of recursion (5.51), we obtain:

φ̃e(i+ 1) , col

{
col
{
φ̃km(i+ 1)

}jk
m=1

}N

k=1

= Peψ̃e(i+ 1) + (IMe −Pe)w
o
e + f e. (5.55)
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Subtracting wo
k from both sides of the combination step (5.36c) and using (5.33), we obtain

that the network error vector w̃e(i+1) for the diffusion strategy (5.36) evolves according to the

following recursion:

w̃e(i+ 1) = A⊤Pe [IMe − µRx,e(i)] w̃e(i)− µA⊤Pe pxz,e(i) +A⊤ (IMe −Pe)w
o
e +A⊤f e,

(5.56)

where

A , diag {A1 ⊗ IM1 , . . . ,AN ⊗ IMN
} . (5.57)

Using (5.45) with (5.56), the fact that w⋆
e verifies the constraints {Dewe + b = 0}, namely,

Pew
⋆
e − f e = w⋆

e, (5.58)

and the fact that A⊤
1 = 1, we obtain that w̃′

e(i+1) evolves according to the following recursion:

w̃′
e(i+ 1) = A⊤Pe [IMe − µRx,e(i)] w̃

′
e(i)− µA⊤Pe pxz,e(i)− µA⊤PeRx,e(i)w

δ
e. (5.59)

Recursions (5.56) and (5.59) can be rewritten in a more compact form:

w̃e(i+ 1) = B(i)w̃e(i)− µg(i) + r, (5.60)

w̃′
e(i+ 1) = B(i)w̃′

e(i)− µg(i)− µr′(i), (5.61)

where we introduced the following notations:

B(i) , A⊤Pe [IMe − µRx,e(i)] , (5.62)

g(i) , A⊤Pe pxz,e(i), (5.63)

r , A⊤ (IMe −Pe)w
o
e +A⊤f e, (5.64)

r′(i) , A⊤PeRx,e(i)w
δ
e. (5.65)

For ease of reference, we list in Table 5.2 the various analysis symbols that have been defined

so far and others that will be defined in the sequel. Before proceeding, let us introduce the

following assumption on the regression data.

Assumption 5.1. (Independent regressors) The regression vectors xk(i) arise from a zero-mean

random process that is temporally white and spatially independent.

As already explained in the previous chapters, this assumption is commonly used in the

adaptive filtering literature. Under this assumption, xk(i) is independent of wℓm(j) for i ≥ j

and for all ℓm.
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Table 5.2: List of symbols defined throughout the performance analysis in Chapter 5

Symbol Equation

Ck = diag
{
ck1 , . . . , ckjk

}
(5.26)

ck = col
{
ck1 , . . . , ckjk

}
(5.26)

wo
e = col {1j1×1 ⊗wo

1 , . . . ,1jN×1 ⊗wo
N} (5.30)

w⋆
e = col {1j1×1 ⊗w⋆

1 , . . . ,1jN×1 ⊗w⋆
N} (5.31)

wδ
e = w

o
e −w⋆

e (5.46)

A = diag {A1 ⊗ IM1 , . . . ,AN ⊗ IMN
} (5.57)

Pe = IMe −D†
eDe (5.53)

f e = D†
eb (5.54)

Rx,e = diag {C1 ⊗Rx,1, . . . ,CN ⊗Rx,N} (5.23)

r = A⊤ (IMe −Pe)w
o
e +A⊤f e (5.64)

r′ = A⊤PeRx,ew
δ
e (5.69)

B(i) = A⊤Pe [IMe − µRx,e(i)] (5.62)

B = A⊤Pe (IMe − µRx,e) (5.67)

G = A⊤Pe diag
{
c1c

⊤
1 ⊗ σ2

z,1Rx,1, . . . , cNc
⊤
N ⊗ σ2

z,NRx,N

}
PeA (5.81)

F = E {B(i)⊗b B(i)} (5.79), (D.16)

Y(i) = µ2G⊤ + rr⊤ + 2rE {w̃⊤
e (i)}B⊤ (5.84)

5.4.2 Mean behavior analysis

Taking the expectation of both sides of recursion (5.60), using Assumption 5.1, and E g(i) = 0,

we find that the mean error vector E w̃e(i+ 1) evolves according to the recursion:

E w̃e(i+ 1) = BE w̃e(i) + r, (5.66)

where

B , EB(i) = A⊤Pe (IMe − µRx,e) . (5.67)

Likewise, taking the expectation of both sides of recursion (5.61), using Assumption 5.1, and

Epxz,e(i) = 0, we find that the mean error vector E w̃′
e(i+ 1) evolves according to:

E w̃′
e(i+ 1) = BE w̃′

e(i)− µr′, (5.68)

121



CHAPTER 5. DISTRIBUTED CONSTRAINED LMS FOR MULTITASK PROBLEMS

where B is given by (5.67) and

r′ , E r′(i) = A⊤PeRx,ew
δ
e. (5.69)

Theorem 5.1. (Stability in the mean) Assume the data model in (5.2) and Assumption 5.1

hold. Then, for any initial condition, the multitask diffusion LMS (5.36) converges in the mean,

i.e., recursions (5.66) and (5.68) converge as i → ∞, if the step-size µ is chosen such that the

matrix B is contractive. A sufficient condition is:

0 < µ <
2

ck,maxλmax(Rx,k)
, ∀k = 1, . . . , N, (5.70)

where ck,max , max
1≤m≤jk

ckm . In this case, the asymptotic mean biases are given by:

lim
i→∞

E w̃e(i) = (IMe −B)−1
r, (5.71)

lim
i→∞

E w̃′
e(i) = −µ (IMe −B)−1

r′. (5.72)

Proof. The convergence of recursions (5.66) and (5.68) is guaranteed if the matrix B is contrac-

tive, i.e., ρ(B) < 1. Since any induced matrix norm is lower bounded by spectral radius, we can

write in terms of the 2-induced matrix norm:

ρ(A⊤Pe(IMe − µRx,e)) ≤ ‖A⊤Pe

(
IMe − µRx,e

)
‖2,

≤ ‖A⊤‖2 · ‖Pe‖2 · ‖IMe − µRx,e‖2.
(5.73)

Since Pe is an orthogonal projection matrix, its 2-induced matrix norm agrees with its spectral

radius which is equal to one. The 2-induced norm of the doubly-stochastic matrix A⊤ is equal

to one. Since the matrix IMe − µRx,e is a symmetric block diagonal matrix, its 2-induced norm

agrees with its spectral radius:

‖IMe − µRx,e‖2 = ρ(IMe − µRx,e) = max
1≤k≤N

ρ(Ijk·Mk
− µCk ⊗Rx,k)

= max
1≤k≤N

max
1≤m≤jk

ρ(IMk
− µ ckmRx,k)

(5.74)

In order to ensure that ρ(B) < 1, it is sufficient to choose the step-size µ such that:

0 < µ <
2

ckm · λmax(Rx,k)
, for all km ∈ Ck and k = 1, . . . , N. (5.75)

or alternatively as in (5.70).

If we let i → ∞ on both sides of recursions (5.66) and (5.68), we find the asymptotic mean

biases (5.71) and (5.72).

We observe that when w⋆
e = wo

e, i.e., perfect model scenario where wo satisfies the linear

equality constraints, the bias with respect to wo
e in (5.71) reduces to zero.

Consider now the bias with respect to w⋆
e in (5.72). Note that this bias depends on the

step-size µ and the vector wδ
e = w

o
e−w⋆

e. In the next section, we shall illustrate with simulation
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results that limi→∞ ‖E w̃′
e(i)‖2 is on the order of µ2. The bias (5.72) is zero in two cases: 1) in

the perfect model scenario where wo
k satisfy the constraints (wδ

e = 0); 2) if each agent is involved

in at most one constraint (De = D′
e = D). In this second case, consider (5.69) and observe that

A = IMe . Replacing wδ
e by its expression obtained from (5.29), and Pe by (5.53), yields r′ = 0.

5.4.3 Mean-square-error analysis

To perform the mean-square-error analysis, we shall use the block Kronecker product opera-

tor [Koning et al., 1991] instead of the Kronecker product, and the block vectorization operator

bvec(·) instead of the vectorization operator vec(·). As explained in [Sayed, 2014a], these block

operators preserve the locality of the blocks in the original matrix arguments. These operators

will allow us to evaluate the exact expressions of quantities involving fourth-order moments of the

regression data (see Appendix D.2). To analyze the convergence in mean-square-error sense, we

consider the variance of the weight error vector w̃e(i), weighted by any positive-definite matrix

Σ, that is, E ‖w̃e(i)‖2Σ, where ‖w̃e(i)‖2Σ , w̃⊤
e (i)Σw̃e(i). The freedom in selecting Σ allows us

to extract various types of information about the network and the sub-nodes.

From (5.60) and Assumption 5.1, we obtain:

E ‖w̃e(i+ 1)‖2Σ = E ‖w̃e(i)‖2Σ′ + µ2
E ‖g(i)‖2Σ + ‖r‖2Σ + 2r⊤ΣBE w̃e(i), (5.76)

where matrix Σ
′ is given by:

Σ
′ = E {B⊤(i)ΣB(i)}. (5.77)

Let σ denotes the M2
e×1 vector representation of Σ that is obtained by the block vectorization

operator, namely, σ , bvec(Σ). In the sequel, it will be more convenient to work with σ than

with Σ itself. We will use the notations ‖x‖2
Σ

and ‖x‖2σ to denote the same quantity x⊤
Σx.

Let σ′ = bvec(Σ′). Using property (A.17), the vector σ′ can be related to σ:

σ′ = Fσ, (5.78)

where F is an M2
e ×M2

e matrix given by:

F , E {B⊤(i)⊗b B
⊤(i)}. (5.79)

The evaluation of the matrix F requires knowledge of the fourth-order moments of the regression

vectors. In Appendix D.2, we provide a closed form expression for the matrix F in the case where

the regressors are real-valued zero-mean Gaussian random vectors. A common alternative is to

use the approximation F ≈ B⊤ ⊗b B
⊤ for sufficiently small step-sizes (see Chapters 2 and 4

for more details). Under this approximation, and using property (A.19), the matrix F will be

contractive if the step-size is chosen according to condition (5.70).

The second term on the RHS of relation (5.76) can be written as:

µ2
E ‖g(i)‖2Σ = µ2

E {g⊤(i)Σg(i)} = µ2Tr (ΣG)
(A.16)
= µ2

[
bvec

(
G⊤
)]⊤

σ, (5.80)
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where G is the Me ×Me matrix given by:

G , E {g(i)g⊤(i)} = A⊤Pe diag
{
c1c

⊤
1 ⊗ σ2

z,1Rx,1, . . . , cNc
⊤
N ⊗ σ2

z,NRx,N

}
PeA. (5.81)

Similarly, the third term on the RHS of relation (5.76) can be written as:

‖r‖2Σ =
[
bvec

(
rr⊤

)]⊤
σ, (5.82)

and the fourth term can be written as:

2r⊤ΣBE w̃e(i) = 2Tr
(
r⊤ΣBE w̃e(i)

)
= 2

[
bvec

(
rE {w̃⊤

e (i)}B⊤
)]⊤

σ (5.83)

Let us define the Me ×Me time dependent matrix Y(i) given by:

Y(i) , µ2G⊤ + rr⊤ + 2rE {w̃⊤
e (i)}B⊤. (5.84)

Then, the variance relation (5.76) can be expressed as:

E ‖w̃e(i+ 1)‖2σ = E ‖w̃e(i)‖2Fσ + [bvec(Y(i))]⊤ σ. (5.85)

Using relation (5.45), the convergence behavior of algorithm (5.36) toward w⋆
e in the mean-

square sense can be obtained from E ‖w̃e(i+ 1)‖2
Σ

and E w̃e(i+ 1) according to:

E ‖w̃′
e(i+ 1)‖2Σ = E ‖w̃e(i+ 1)‖2Σ − 2E {w̃⊤

e (i+ 1)}Σwδ
e + ‖wδ

e‖2Σ. (5.86)

Theorem 5.2. (Mean-square stability) Assume the data model in (5.2) and Assumption 5.1

hold. Then, for any initial condition, the multitask diffusion LMS (5.36) converges w.r.t. wo
e in

the mean-square-error sense, i.e., the quadratic quantity E ‖w̃e(i)‖2Σ converges as i → ∞ for any

positive semi-definite matrix Σ, if the algorithm is mean stable w.r.t. wo
e and if the matrix F

in (5.79) is contractive.

Proof. Provided that F is contractive, recursion (5.85) is stable if [bvec(Y(i))]⊤ σ is bounded.

Since G, r, B, σ, and µ are constant and finite terms, the boundedness of [bvec(Y(i))]⊤ σ

depends on E w̃e(i) being bounded. We know from (5.66) that E w̃e(i) is bounded because (5.66)

is a BIBO stable recursion with a bounded driving term r. It follows that [bvec(Y(i))]⊤ σ is

uniformly bounded. As a result, E ‖w̃e(i + 1)‖2σ converges to a bounded value as i → ∞, and

the algorithm is mean-square-error stable.

Following similar arguments as in Theorems 3.3 and 2.3 and doing the required adjustments,

we arrive at the following theorem characterizing the transient behavior of the weighted variance

E ‖w̃e(i+ 1)‖2σ.

Theorem 5.3. (Transient performance) Assume the same settings as Theorem 5.2. The

learning curve defined by ζ(i) , E ‖w̃e(i)‖2σ ends up evolving according to the following recursion:

ζ(i+ 1) = ζ(i) + ‖w̃e(0)‖2(
F−I

M2
e

)

F
iσ

+
(
[bvec(Y(i))]⊤ +Υ(i)

)
σ, (5.87)
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where w̃e(0) is the initial condition and Υ(i+ 1) is a 1×M2
e vector that can be evaluated from

Υ(i) according to:

Υ(i+ 1) = Υ(i)F + [bvec(Y(i))]⊤
(
F − IM2

e

)
, (5.88)

with Υ(0) = 0.

Proof. The argument is similar to the one used in Theorem 3.3.

Theorem 5.4. (Steady-state performance) Consider the same settings as Theorem 5.2.

Assume mean and mean-square stability. Then, the steady-state performance defined as ζ⋆ ,

limi→∞ E ‖w̃e(i)‖2σss
is given by:

ζ⋆ = [bvec(Y(∞))]⊤ (IM2
e
−F)−1σ, (5.89)

where

Y(∞) , µ2G⊤ + rr⊤ + 2r lim
i→∞

E {w̃⊤
e (i)}B⊤. (5.90)

Proof. The argument is similar to the one used in Theorem 3.4.

The theoretical findings (5.66), (5.71), (5.87), and (5.89) allow us to predict the behavior

in the mean and in the mean-square-error sense of the stochastic algorithm (5.36) w.r.t. the

parameter vector wo
e. The transient and steady-state behaviors of E ‖w̃′

e(i)‖2Σ can be derived

from the models derived for w̃e(i) in the mean and mean-square sense according to relation (5.86).

We shall show with simulation results that the steady-state limi→∞ E ‖w̃′
e(i)‖2 is on the order

of µ. We observed experimentally that modeling the behavior of E ‖w̃′
e(i)‖2Σ accurately needs

the exact expression of F . In Appendix D.2, we determine F in the case of Gaussian zero-mean

real-valued regressors.

The network MSD w.r.t. wo
e defined as:

MSDnet(i) ,
1

N

N∑

k=1

MSDk(i) =
1

N

N∑

k=1

(
1

jk

jk∑

m=1

E ‖w̃km(i)‖2
)
, (5.91)

can be obtained from E ‖w̃e(i)‖2Σ by setting Σ as:

Σ =
1

N
diag

{
1

j1
Ij1·M1 , . . . ,

1

jN
IjN ·MN

}
. (5.92)

Similarly, the network MSD w.r.t. w⋆
e can be obtained from E ‖w̃′

e(i)‖2Σ by setting Σ as in (5.92).

5.5 Simulation results

Throughout this section, the factors ckm are set equal to 1
jk

and the sets Nkm ∩ Ck = Ck for m =

1, . . . , jk. We run algorithm (5.36) with akn,km = 1/jk for n = 1, . . . , jk. In the following, we shall

compare our algorithm (5.36) with the non-cooperative LMS algorithm (obtained from (5.17)
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Figure 5.3: Experimental setup. (Left) Network topology with constraints. (Right) Regression
and noise variances.

by setting P = IMb
and f = 0), the centralized CLMS algorithm (5.17), and the following

algorithm: 



ψkm(i+ 1) = wkm(i) + µ ckmxk(i)
(
dk(i)− x⊤

k (i)wkm(i)
)

φkm(i+ 1) =
∑

kn∈Nkm∩Ck akn,kmψkn(i+ 1)

wkm(i+ 1) = [Pp]km,• · col
{
φℓn(i+ 1)

}
ℓn∈Ie,p − [fp]km

(5.93)

where the sub-nodes “combine-then-project” instead of “project-then-combine”. In Appendix D.3

we show how the theoretical learning curves of these algorithms can be obtained from the analysis

in Section 5.4.

5.5.1 Theoretical model validation

We shall now provide an example to illustrate the behavior of algorithm (5.36). We considered

a network consisting of 15 agents with the topology shown in Figure 5.3. The regression vectors

xk(i) were 2 × 1 zero-mean Gaussian distributed with covariance matrices Rx,k = σ2
x,kI2. The

noises zk(i) were zero-mean i.i.d. Gaussian random variables, independent of any other signal

with variances σ2
z,k. The variances σ2

x,k and σ2
z,k are shown in Figure 5.3. We randomly sampled

9 linear equality constraints of the form:

∑

ℓ∈Ip
dpℓwℓ = bp · 12×1, (5.94)

where the scalars dpℓ and bp were randomly chosen from the set {−3,−2,−1, 1, 2, 3}. We used

a constant step-size µ = 0.025 for all agents. The results were averaged over 200 Monte-Carlo

runs.

First, we considered the case of a perfect model scenario where the observation parameter

vector wo
b satisfies the equality constraints, i.e., w⋆

b = wo
b . In Figure 5.4, we compare three
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Figure 5.4: Network MSD comparison of the non-cooperative LMS, the centralized CLMS (5.17),
and our multitask algorithm (5.36) for the perfect model scenario.

algorithms: the non-cooperative LMS algorithm, the centralized CLMS algorithm (5.17) which

assumes that the constraints are available at the fusion center, and our algorithm (5.36). For each

algorithm, we report the theoretical transient network MSD, the theoretical steady-state network

MSD, and the simulated network MSD. We observe that the simulation results match well the

actual performance. Furthermore, the network MSD is improved by promoting relationships

between tasks. Finally, our algorithm performs well compared to the centralized solution.

Next, we perturbed the optimum parameter vector wo
b as follows:

wo
pert = w

o
b + u

o, (5.95)

so wo
pert does not satisfy the constraints (5.94). The entries of uo were sampled from Gaussian

distribution N (0, σ2). We evaluated our algorithm on 6 different setups characterized by σ ∈
{0, 0.01, 0.05, 0.1, 0.2, 0.5, 1}. The theoretical and simulated learning curves with respect to wo

e

and w⋆
e are reported in Figure 5.5. Observe that the performance with respect to wo

e highly

deteriorates when σ increases. However, even for the largest values of σ = 1, our algorithm still

perform well with respect to the solution w⋆
e of the optimization problem with constraints.

For comparison purposes, we illustrate in Figure 5.6 the theoretical and simulated learn-

ing curves with respect to w⋆
b for the settings where σ = 0.5 (left) and σ = 1 (right) of the

centralized CLMS algorithm (5.17), the proposed algorithm (5.36) where the sub-nodes “project-

then-combine”, and algorithm (5.93) where the sub-nodes “combine-then-project”. Observe that

both algorithms (5.36) and (5.93) have approximately the same performance. However, with the

settings considered in this section, algorithm (5.36) is less complex than algorithm (5.93) as ex-

plained in subsection 5.3.2. Furthermore, we observe that the larger the vector wδ
e is, the larger

the performance gap between the centralized solution and the distributed solutions is. This is
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Figure 5.5: Learning curves of our algorithm (5.36) with respect to wo
e (left) and w⋆

e (right) for
6 different values of σ.
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⋆
e of the centralized CLMS (5.17),

algorithm (5.36), and algorithm (5.93) for σ = 0.5 (left) and σ = 1 (right).

due to the bias (5.72) induced in the distributed solution which does not exist in the centralized

CLMS algorithm.

In order to characterize the influence of the step-size µ on the performance of our algorithm,

Figure 5.7 (left) reports the theoretical steady-state MSD with respect to w⋆
e for different values

of µ (when σ = 0.5). We observe that the network MSD increases 10 dB per decade (when the

step-size goes from µ1 to 10µ1). This means that the steady-state MSD is on the order of µ.

Figure 5.7 (right) reports the squared norm of the bias (5.72) for different values of µ. We note

that it increases approximately 20 dB per decade. This shows that, as expected, this quantity is

on the order of µ2.
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Figure 5.7: Influence of the step-size µ on the performance of the algorithm. (Left) Network
steady-state MSD for different values of µ. (Right) Squared norm of the bias, i.e, lim

i→∞
‖E w̃′

e(i)‖2,
for different values of µ.

Next, we considered the case of non-diagonal matrices Dpℓ defined as:

Dpℓ = dpℓI2 +∆pℓ. (5.96)

Parameters dpℓ were randomly selected as in (5.94). The entries of the 2 × 2 matrix ∆pℓ were

sampled from Gaussian distribution N (0, σ2
D). As shown in Figure 5.8, the variance σ2

D was

set to 0.01 (left) and 1 (right). To test the tracking ability of our algorithm, we also perturbed

the parameter vector wo
b as in (5.95) by increasing σ2 every 500 iterations. In both cases, i.e.,

σ2
D = 0.01 and σ2

D = 1, wo
b in (5.95) was set to satisfy the equality constraints defined by

Dpℓ. We observe that the theoretical models match well the actual performance whatever the

constraints are. Furthermore, our algorithm adapts its response to drifts in the location of w⋆
b

when wo
b changes over time.

5.5.2 Optimal network flow

As briefly discussed in Section 5.1, we shall now consider the minimum-cost flow problem over

the network with topology shown in Figure 5.1. We are interested in online distributed learning

where each node k seeks to estimate the entering and leaving flows fj from noisy measurement

sk(i) of the external source, by relying only on local computations and communications with its

neighbors.

Let Mk be the number of flows to be estimated at node k. We denote by wk the Mk × 1

parameter vector containing the flows fj entering and leaving node k, negatively and positively

signed, respectively. For instance, for nodes 1 and 2, we have:

w1 , [f1 f2]
⊤ w2 , [−f1 f3 f4 f5]

⊤. (5.97)
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Figure 5.8: Tracking ability of the algorithm for two sets of linear equality constraints. (Left)
σ2
D = 0.01. (Right) σ2

D = 1.

From the flow conservation principle, the noisy measurement sk(i) can be related to wk(i) as

follows:

sk(i) = 1
⊤
Mk×1wk + zk(i), (5.98)

with zk(i) a zero-mean measurement noise, and 1Mk×1 an Mk × 1 vector of ones. We consider

the bi-objective problem consisting of minimizing E |zk(i)|2 and the cost network flow. We shall

assume that the cost for flow through an arc is quadratic in the flow, as in applications such as

electrical network monitoring and urban traffic control [Ahuja et al., 1993, Ventura, 1991]. We

formulate the estimation problem as follows:

minimize
w1,...,wN

Jglob(w1, . . . ,wN ) ,
N∑

k=1

(
E |sk(i)− 1

⊤
Mk×1wk|2 +

η

2
‖wk‖2

)
, (5.99a)

subject to [wk]f(k,ℓ) + [wℓ]f(ℓ,k) = 0, ℓ ∈ Nk, k = 1, . . . , N (5.99b)

where [wp]f(p,q) returns the flow entry in wp that node p has in common with node q, and η is

a tuning parameter to trade off between both objectives.

For each agent k, the external flow sk and the variance σ2
z,k of the Gaussian noise zk(i) were

randomly generated from the uniform distributions U(0, 3) and U(0.1, 0.14), respectively. In order

to solve the multitask problem (5.99) in a fully distributed manner, we applied algorithm (5.36)

by modifying the adaptation step according to:

ψkm(i+ 1) = wkm(i) + µ ckm1Mk×1

(
sk(i)− 1

⊤
Mk×1wkm(i)

)
− µ

2
ckmηwkm(i), (5.100)

and setting µ = 0.2 and η = 0.002. In order to test the tracking ability of the algorithm, the

external flow sk at each node k was re-generated from U(0, 3) after 45000 iterations. The MSD

learning curve with respect to the solution of problem (5.99) is reported in Figure 5.9. This

result was obtained by averaging over 150 Monte-Carlo runs. This figure shows that our strategy
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Figure 5.9: MSD performance and tracking ability of our algorithm for the minimum cost network
flow problem.

was able to solve the minimum-cost flow problem in a fully distributed manner. The estimated

flows over the network for both settings considered in the tracking experiment are showed in

Figure 5.10 (a)–(b). Note that the direction of the estimated flow between nodes 3 and 4 is

reversed. The true and estimated flows are reported in Figure 5.10 (c) for both settings.

5.5.3 Numerical solution of a two-dimensional process

Consider now the problem of estimating a two-dimensional process driven by a partial differential

equation (PDE) with a sensor network. To see how our distributed algorithm can be tuned to

address this issue, we shall focus on the Poisson’s PDE defined by:

∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2
= g(x, y), (x, y) ∈ [0, 1]2, (5.101)

with g : [0, 1]2 → R an input function, and on a two dimensional network of (n − 2)2 sensor

nodes and 4(n − 1) boundary points equally spaced over the unit square (x, y) ∈ [0, 1]2 with

∆x = ∆y = ∆ = 1
n−1 , as illustrated in Figure 5.11 (a).

We introduce the grid point (xk, yℓ) , (k∆, ℓ∆) and the sampled values at this point

fk,ℓ , f(k∆, ℓ∆) and gk,ℓ , g(k∆, ℓ∆) with 0 ≤ k, ℓ ≤ n − 1. We use the central difference

approximation for the second derivative [Bertsekas and Tsitsiklis, 1989]:

∂2f(k∆, ℓ∆)

∂x2
≈ 1

∆2
(fk+1,ℓ − 2fk,ℓ + fk−1,ℓ) (5.102)

∂2f(k∆, ℓ∆)

∂y2
≈ 1

∆2
(fk,ℓ+1 − 2fk,ℓ + fk,ℓ−1) (5.103)

which leads to:
1

∆2
(−4fk,ℓ + fk−1,ℓ + fk,ℓ−1 + fk,ℓ+1 + fk+1,ℓ) = gk,ℓ. (5.104)
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Figure 5.10: Estimated network flows. A rounding to 2 decimal places is adopted when visualizing
the estimated flows.

In this experiment, we shall consider the unknown physical process f and the input function g

given by:

f(x, y) = (1− x2)(2y3 − 3y2 + 1), (x, y) ∈ [0, 1]2, (5.105)

g(x, y) = −2(2y3 − 3y2 + 1) + 6(1− x2)(2y − 1), (x, y) ∈ [0, 1]2, (5.106)

with boundary conditions f(0, y) = 2y3 − 3y2 + 1, f(x, 0) = 1 − x2, and f(1, y) = f(x, 1) = 0.

These functions are illustrated in Figures 5.11 (b), (c).

The objective is to estimate f(x, y) at the interior grid points (xk, yℓ) with 0 < k, ℓ < n− 1,

given noisy measurements gkℓ(i) = gkℓ+zkℓ(i) of g(x, y) collected by the sensors located at these

interior grid points. The noise process zkℓ(i) is assumed to be zero mean, temporally white, and

spatially independent. The values of f(x, y) at the boundary points are known a priori as they
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Table 5.3: Parameter vector wkℓ (first row of each cell), regression vector ∆2xkℓ (second row of
each cell), and scalar value ∆2vokℓ (last row of each cell) at each node (k, ℓ).

ℓ

k
1 2, . . . , n− 3 n− 2

1

[fk,ℓ, fk,ℓ+1, fk+1,ℓ]
⊤

[fk,ℓ, fk−1,ℓ, fk,ℓ+1, fk+1,ℓ]
⊤

[fk,ℓ, fk−1,ℓ, fk,ℓ+1]
⊤

[−4, 1, 1]
⊤

[−4, 1, 1, 1]
⊤

[−4, 1, 1]
⊤

fo
1,0 + fo

0,1 fo
k,0 fo

n−2,0 + fo
n−1,1

2 [fk,ℓ, fk,ℓ−1, fk,ℓ+1, fk+1,ℓ]
⊤

[fk,ℓ, fk−1,ℓ, fk,ℓ−1, fk,ℓ+1, fk+1,ℓ]
⊤

[fk,ℓ, fk−1,ℓ, fk,ℓ−1, fk,ℓ+1]
⊤

... [−4, 1, 1, 1]
⊤

[−4, 1, 1, 1, 1]
⊤

[−4, 1, 1, 1]
⊤

n− 3 fo
0,ℓ 0 fo

n−1,ℓ

n− 2

[fk,ℓ, fk,ℓ−1, fk+1,ℓ]
⊤

[fk,ℓ, fk−1,ℓ, fk,ℓ−1, fk+1,ℓ]
⊤

[fk,ℓ, fk−1,ℓ, fk,ℓ−1]
⊤

[−4, 1, 1]
⊤

[−4, 1, 1, 1]
⊤

[−4, 1, 1]
⊤

fo
0,n−2 + fo

1,n−1 fo
k,n−1

fo
n−2,n−1 + fo

n−1,n−2

correspond to boundary conditions. We denote by fokℓ the value at (xk, yℓ) of the function f(x, y)

that satisfies (5.101), and by fkℓ the estimated value of fokℓ. To each node (k, ℓ) we associate an

Mkℓ × 1 parameter vector wkℓ to estimate, an Mkℓ × 1 regression vector xkℓ and a scalar vokℓ,

defined in Table 5.3 depending on the node location on the grid.

According to (5.104), the linear regression model can be written as follows:

gkℓ(i) = x
⊤
kℓwkℓ + vokℓ + zkℓ(i). (5.107)

As can be seen in Table 5.3, equality constraints of the form (5.1b) need to be imposed on

the parameter vectors of neighboring sensor nodes in order to achieve equality between common

entries. For instance, let us consider neighboring nodes (k, ℓ) and (k + 1, ℓ) with 2 ≤ k ≤ n− 4

and 2 ≤ ℓ ≤ n−3. Since these nodes are jointly estimating fk,ℓ and fk+1,ℓ, the following equality

constraint is required:
[

1 0 0 0 0

0 0 0 0 1

]
wkℓ +

[
0 −1 0 0 0

−1 0 0 0 0

]
w(k+1)ℓ =

[
0

0

]
. (5.108)

Algorithm (5.36) can be used to address this problem by replacing the adaptation step (5.36a)

by:

ψkℓm(i+ 1) = wkℓm(i) + µ ckℓmxkℓ

(
gkℓ(i)− x⊤

kℓwkℓm(i)− vokℓ

)
, (5.109)

where wkℓm(i) denotes the estimate of wkℓ at the m-th sub-node of (k, ℓ). The noises zk,ℓ(i) were

zero-mean i.i.d. Gaussian distributed with variances σ2
z,kℓ randomly generated from the uniform

distribution U(0.1, 0.14). We used a constant step-size µ = 7 · 10−5 for all nodes. Figure 5.12

shows the network MSD learning curves for n = 9. The simulated curves were obtained by

averaging over 100 independent runs. Figure 5.13 shows the true (left) and estimated (right)

process after convergence of our algorithm.
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(a) An n× n grid network for the solution of Pois-
son’s equation

(b) f(x, y) = (1− x2)(2y3 − 3y2 + 1)

(c) g(x, y) = −2(2y3 − 3y2 + 1) + 6(1− x2)(2y − 1)

Figure 5.11: Network topology, function f(x, y) to estimate over the interior grid points, and
input function g(x, y).
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Figure 5.12: Network MSD performance for n = 9.
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Figure 5.13: Poisson process f(x, y) over the network grid. (Left) True process. (Right) Estimated
process.

5.6 Conclusion

In this chapter, we proposed a multitask LMS algorithm for solving problems that require the

simultaneous estimation of multiple parameter vectors that are related locally via linear equality

constraints. Our primal technique was based on the stochastic gradient projection algorithm with

constant step-sizes. The behavior of the algorithm in the mean and mean-square-error sense was

studied. We showed how the agents are able to reach the optimal solution with arbitrarily good

precision.

In the next chapter, which is the last, we close this dissertation by summarizing the main

contributions and presenting several research directions that can be pursued in the field of dis-

tributed adaptive estimation over multitask networks.
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6
Conclusion and Future works

M
otivated by the ubiquity of networked systems and distributed data acquisition nowadays,

we focused in this thesis on distributed processing over adaptive networks where agents

process streaming data. In particular, we were concerned with multitask problems involving the

estimation of several parameter vectors simultaneously. This is in contrast to the traditional

single-task situation where all agents are seeking the same objective, or are sensing data arising

from the same model. The main motivation behind formulating multitask estimation problems is

that there exists a wide range of applications where it cannot be assumed that there is only one

phenomenon influencing the whole network. Throughout the dissertation, several task relatedness

models were considered, including, smooth graph signal, piecewise-constant transitions, and

linear relationships. Newly distributed multitask algorithms were derived and their performances

were studied using the energy conservation framework. Furthermore, we considered practical

conditions such as exchanging information over noisy communication links, agents turning on and

off randomly for energy conservation, and random links failures. Since these conditions directly

influence the behavior of the algorithms and play critical role in the convergence, we showed

how the adaptive strategies can be modified in order to enhance the real-time adaptation, self-

healing, and self-organization features. In the following, we summarize the main contributions

of this thesis and discuss the presented results. Then, we present several future works that may

be conducted following the studies of this dissertation and others research directions that can be

pursued in the field.

6.1 Summary of main results

Both chapters 2 and 3 were related to analyzing the performance of distributed adaptive strategies

under limiting aspects and practical conditions, including, imperfect information exchange and
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asynchronous events. In chapter 2, the well-known single-task diffusion strategies over MSE

networks were reviewed and applied to multitask scenarios where the agents are sensing data

arising from different models. We assumed that the regressors and the estimates are corrupted

by additive noise during their transmission. Under these conditions, we first showed that if the

single-task algorithm is implemented to estimate the underlying systems parameters without

considering the multitask environment and the noise corrupting the regressors, the estimates at

each agent will be biased. We then showed how this bias can be eliminated by minimizing the

instantaneous mean-square error at each agent w.r.t. the combination coefficients and how a

clustered network with zero probability of erroneous clustering can be obtained. Interestingly,

the results revealed that the measurement noise and the noise corrupting the estimates affect the

MSD performance without inducing a bias, and that the dynamic range of the step-sizes is only

affected by the noise corrupting the regressors. Chapter 3 reviewed the useful multitask diffusion

LMS approach proposed in the literature for solving multitask estimation problems over clustered

networks where it is assumed that the optimal models of adjacent clusters are close to each others

in the sense of ℓ2-norm. We considered the practical scenario where synchronization is a very

restrictive assumption to impose and hard to satisfy. Indeed, in addition to the fact that the

synchronization of clocks is difficult in distributed implementations, the networks can be subject

to several sources of uncertainty, including random links, agents failures, and packet losses. We

explored the asynchronous implementation of the multitask algorithm which allows the agents

to handle several asynchronous events. We studied its performance and convergence properties

as a function of the random events occurring in the clustered asynchronous network. We checked

the theoretical findings and the robustness of the multitask strategy with simulation results,

and showed how the asynchronous network could benefit from the cooperation between clusters.

Finally, the asynchronous algorithm was applied to the problem of circular arcs localization

involving a smoothness condition.

Chapter 4 was dedicated to multitask estimation problems over clustered networks where the

optimum parameter vectors at neighboring clusters have a large number of similar components

and a relatively small number of distinct components. Based on the proximal gradient method

and diffusion strategies, we proposed a distributed adaptive algorithm consisting of three steps:

an adaptation step (involving intra-cluster cooperation), a combination step (involving intra-

cluster cooperation), and a proximal step (involving inter-cluster cooperation). Instead of ap-

plying iterative algorithms to evaluate the proximal operator of a weighted sum of ℓ1-norms at

each iteration, a closed form expression was derived. We theoretically analyzed the convergence

of the algorithm in the mean and mean-square error sense and we provided conditions on the

step-sizes ensuring stability. Interestingly, we found that the stability condition is not affected by

the combination coefficients and the regularization factors. In order to guarantee an appropriate

cooperation between clusters, especially in non-stationary environments, we proposed a rule to

adapt the regularization factors based on a well-known measure of sparsity. The performance
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of the algorithm and the adaptive regularizers were evaluated through numerical simulations,

showing comparisons w.r.t. other state-of-the art techniques. Finally, the algorithm was applied

to the problem of cooperative spectrum sensing in cognitive radio networks.

In Chapter 5 we were concerned with multitask estimation problems where each agent is

interested in estimating its own parameter vector, and where the parameter vectors of neighboring

agents are related according to a set of linear equality constraints. Since each agent can be

involved in several constraints, we proposed to associate with each agent a cluster of virtual sub-

nodes, each one being responsible of one constraint. Based on the gradient projection method and

diffusion strategies, we devised a new adaptive algorithm consisting of three steps: an adaptation

step, a projection step, and a local combination step. Detailed theoretical analyses in the mean

and mean-square sense were carried out. The theoretical results were validated through numerical

simulations, showing that for small step-sizes, the expected distance between the estimates and

the optimal solution can be made arbitrarily small. The algorithm was applied to two multitask

applications: the cooperative estimation of network flows and the field reconstruction problems

over sensor networks.

6.2 Discussion and Future directions

In Chapter 2, it is assumed that the regression vectors and the estimates exchanged between

neighbors are corrupted by communication noise, and that the regression data at the agents

themselves are noise-free. In practical conditions, the regression data collected at agents are

corrupted by noise. It is well known that this noise will induce a bias in the estimates and

that a bias-elimination technique (different from that considered in the chapter) is required at

each agent [Abdolee and Champagne, 2016, Bertrand, 2011]. Studying the performance of the

diffusion LMS in multitask environment and deriving clustering techniques in the presence of

noisy regressors at the agents themselves is an interesting research path.

In this thesis, it is assumed that there is some prior knowledge on the relationships between

tasks. Regularization terms were used to promote these relationships. Within the machine

learning context, Bayesian based approaches allowing to estimate a probability distribution cap-

turing the relations between tasks simultaneously with the tasks have been introduced in the

literature [Bakker and Heskes, 2003]. It would be interesting to extend Bayesian modeling to

multitask adaptive networks, especially because, in the recent years, there has been growing

interest in introducing Bayesian techniques to adaptive filtering. These extensions could help,

for example, in the determination of the combination weights and the regularization factors.

In Chapter 3 and 4, it is assumed that the tasks are close to each others in the sense of

squared ℓ2-norm and ℓ1-norm, respectively. In some applications, e.g., state estimation in power

grids [Kekatos and Giannakis, 2013], the parameter vectors at neighboring agents partially over-

lap. Then, we have to consider group of variables instead of variables individually. In this case,
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group-sparsity inducing regularizers, such as Group Lasso based penalty (ℓ2,1-norm), should

be used instead of the Lasso based penalty (ℓ1-norm) or the Tikhonov based penalty (squared

ℓ2-norm). Thus, it would be advantageous to consider alternative co-regularizers in order to

promote other properties such as block sparsity, and to analyze the convergence behavior of the

resulting algorithms.

In Chapter 4, we used the ℓ1-norm and reweighted ℓ1-norm to promote sparsity in the multi-

task setting. In the single-task scenario, other thresholding operators, e.g., Garotte and approx-

imate ℓ0-norm, are typically used to promote the sparsity of the parameter vector, and can lead

to better performance when compared to the ℓ1-norm and reweighted ℓ1-norm [Lorenzo, 2014].

Using the Garotte and the approximate ℓ0-norm in our multitask setting would be interesting but

also challenging since the proximal operators corresponding to weighted sums of these functions

must be elaborated. Future work in this direction could be beneficial.

In Chapter 5, we assumed linear equality constraints relating the parameter vectors of neigh-

boring clusters. In principle, the extension of our strategy to other forms of constraints, whose

projection operators can be evaluated in closed form, is straightforward. However, for more gen-

eral convex constraints, whose projection operators cannot be evaluated analytically, our strategy

cannot be applied. In the single-task scenario (recall problem (1.1) in the introduction), the au-

thors in [Towfic and Sayed, 2014] proposed to use appropriate penalty functions and replaced

the projection steps by stochastic approximation updates that run concurrently with the opti-

mization step. A future research direction can be defined as deriving and studying penalty based

adaptive algorithms for solving multitask estimation problems where the parameter vectors at

neighboring agents are related according to a set of convex constraints.

Throughout the thesis, we considered linear regression models where each agent is collecting

linearly related measurements. However, there exist several phenomena of interest that cannot

be modeled by linear functions. Therefore, generalization of the multitask strategies considered

in this thesis to estimate parameters of non-linear regression models or combinations of linear

and nonlinear models [Ammanouil et al., 2016] is important. Note that, recently, there has been

a growing interest in deriving and studying distributed kernel-based algorithms for non-linear

adaptive filtering over single-task networks where all agents are observing data arising from

the same non-linear model [Gao et al., 2015, Chouvardas and Draief, 2016]. The extension to

multitask networks can be considered a significant contribution in the field.

Most of the existing tools for the analysis of static signals over graphs focus on centralized im-

plementations and, in many modern applications, the data are already distributed over a network

of agents [Shuman et al., 2013, Lorenzo et al., 2016]. Furthermore, the agents may be subject to

streaming data. Hence, it would be advantageous to process the information in a distributed and

adaptive manner and, as explained in [Lorenzo et al., 2016], the development of distributed adap-

tive processing tools for signals defined over graphs would benefit from the field of distributed

estimation over networks. For example, in [Lorenzo et al., 2016], the development of distributed
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sampling theories for the distributed adaptive reconstruction of signals defined over graphs has

been considered. Another perspective would be to study the performance of diffusion learning

over dynamic networks or random graphs (e.g., stochastic block models used in [Tiomoko Ali and

Couillet, 2016]), which are useful to model many real-time applications [Jackson, 2008, Zhang

et al., 2016].

Therefore, future works should consider the points raised above as well as other new appli-

cations involving multitask learning with various forms of relationships.
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Matrix properties

In this appendix, we recall several matrix properties that are used in the text.

A.1 Kronecker product

Let X = [xij ] and Y = [yij ] be two matrices of dimensions N × N and M × M , respectively.

Their Kronecker product is denoted by X ⊗ Y and is defined as the MN ×MN matrix given

by [Bernstein, 2005]:

X ⊗ Y =




x11Y x12Y . . . x1NY

x21Y x22Y . . . x2NY
...

...
...

...

xN1Y xN2Y . . . xNNY




(A.1)

For any two vectors {x,y}, we have:

vec(xy⊤) = y ⊗ x, (A.2)

where vec(·) operator trasforms a matrix into a vector by stacking the columns of the matrix on

top of each other. For any matrices {X,Y ,Z,W }, we have:

(X + Y )⊗ (Z +W ) =X ⊗Z +X ⊗W + Y ⊗Z + Y ⊗W , (A.3)

(XZ)⊗ (YW ) = (X ⊗ Y )(Z ⊗W ), (A.4)

Tr(XY ) = [ vec(Y ⊤)]⊤vec(X), (A.5)

vec(XY Z) = (Z⊤ ⊗X) vec(Y ), (A.6)

(X ⊗ Y )⊤ =X⊤ ⊗ Y ⊤, (A.7)

{λ(X ⊗ Y )} =
{
λi(X)λj(Y )

}N,M
i=1,j=1

. (A.8)
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A.2 Block Kronecker product

Let X denote an N ×N block matrix with blocks {Xij} of size M ×M . Likewise, let Y denote

a second N ′×N ′ block matrix with each block Y ij of size M×M . The block Kronecker product

of these two matrices is denoted by X ⊗b Y and is defined as the NN ′M2 × NN ′M2 matrix

Z [Koning et al., 1991, Sayed, 2014a]:

Z , X ⊗b Y =




Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

...
...

ZN1 ZN2 . . . ZNN




(A.9)

where each block Zij is of dimensions N ′M2 ×N ′M2 given by:

Zij =




Xij ⊗ Y 11 Xij ⊗ Y 12 . . . Xij ⊗ Y 1N ′

Xij ⊗ Y 21 Xij ⊗ Y 22 . . . Xij ⊗ Y 2N ′

...
...

...
...

Xij ⊗ Y N ′1 Xij ⊗ Y N ′2 . . . Xij ⊗ Y N ′N ′




(A.10)

For any two block vectors {x,y} we have:

bvec(xy⊤) = y ⊗b x. (A.11)

where the bvec(·) operator vectorizes each block of the matrix and then stacks the resulting

columns on top of each other, i.e.,

bvec(X ) , col
{
vec(X11), vec(X21), . . . , vec(XN1), vec(X12), . . .

}
. (A.12)

For any block-matrices {X ,Y ,Z,W} with blocks of size M ×M , we have:

(X +Y)⊗b (Z +W) = X ⊗b Z +X ⊗b W +Y ⊗b Z +Y ⊗b W , (A.13)

(XZ)⊗b (YW) = (X ⊗b Y)(Z ⊗b W), (A.14)

(X ⊗ Y )⊗b (Z ⊗W ) = (X ⊗Z)⊗ (Y ⊗W ), (A.15)

Tr(XY) = [ bvec(Y⊤)]⊤bvec(X ), (A.16)

bvec(XYZ) = (Z⊤ ⊗b X ) bvec(Y), (A.17)

(X ⊗b Y)⊤ = X⊤ ⊗b Y
⊤, (A.18)

{λ(X ⊗b Y)} =
{
λi(X )λj(Y)

}MN,MN ′

i=1,j=1
. (A.19)

A.3 Block maximum norm

Let x = col{x1, . . . ,xN} denote an N × 1 block column vector with each block xk of size M × 1.

The block maximum norm of x is denoted by ‖x‖b,∞ and is defined as [Sayed, 2014c]:

‖x‖b,∞ , max
1≤k≤N

‖xk‖, (A.20)

144



A.3. BLOCK MAXIMUM NORM

where ‖xk‖ is the Euclidean norm of xk. This vector norm induces a block maximum matrix

norm. Let X denote an N ×N block matrix with individual blocks of size M ×M . The block

maximum norm of X is defined as:

‖X‖b,∞ , max
x 6=0

‖Xx‖b,∞
‖x‖b,∞

. (A.21)

Let Y = diag{Y 1, . . . ,Y N} denote an N × N block diagonal matrix where each block Y k is

M ×M symmetric. Then, we have [Sayed, 2014c]:

‖Y‖b,∞ = ρ(Y) = max
1≤k≤N

ρ(Y k). (A.22)

Let X be an N × N left-stochastic matrix and Y be an N × N right-stochastic matrix. Let

X ,X ⊗ IM and Y , Y ⊗ IM . It holds that [Sayed, 2014c]:

‖X⊤‖b,∞ = 1, (A.23)

‖Y‖b,∞ = 1. (A.24)
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B
Background study: Distributed diffusion LMS strategies

In this appendix, we review the well-studied diffusion LMS strategies over a single-task MSE

network by demonstrating first how diffusion algorithms can be derived by minimizing a mean-

square error function and then briefly review the mean and mean-square convergence. A useful

overview of diffusion LMS strategies appears in [Sayed, 2014c].

B.1 Diffusion LMS strategies over single-task MSE network

Consider the single-task MSE network described in Section 2.2 and illustrated in Figure 2.1.

In this section, we review the derivation of the distributed diffusion strategies for estimating

wo at each agent k by seeking to minimize the global cost function (2.9). The derivation is

based on a completion-of-squares argument, followed by a stochastic approximation step, and an

incremental approximation step [Cattivelli and Sayed, 2010].

In the following, we first show how the global cost (2.9) can be approximated by an alternative

local cost that is amenable to distributed optimization. Then, each agent will optimize the

alternative cost via a stochastic gradient method. We start by introducing a set of non-negative

coefficients {cℓk} that satisfy the following conditions:

N∑

k=1

cℓk = 1, and cℓk = 0 if k /∈ Nℓ. (B.1)

These coefficients are free parameters that are chosen by the designer and if we collect these co-

efficients into a matrix C = [cℓk], we obtain a right-stochastic matrix C. Using these coefficients,

we associate with each agent k, a local cost function of the following form:

J loc
k (w) ,

∑

ℓ∈Nk

cℓkJℓ(w). (B.2)
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This cost consists of a weighted combination of the individual costs at the neighbors of agent k.

Since the {cℓk} are nonnegative and Jℓ(w) are strictly convex, then J loc
k (w) is strictly convex

and minimized at wo. Note that each individual cost Jk(w) in (2.2) can be factored via a

completion-of-squares argument and written as [Sayed, 2014c]:

Jk(w) = Jk(w
o) + ‖w −wo‖2Rx,k

. (B.3)

Using the alternative representation (B.3), we can re-express the local cost J loc
k (w) as:

J loc
k (w) = J loc

k,min + ‖w −wo‖2Rk
, (B.4)

where

J loc
k,min =

∑

ℓ∈Nk

cℓkJℓ(w
o), (B.5)

Rk =
∑

ℓ∈Nk

cℓkRx,ℓ. (B.6)

The global cost (2.9) can be expressed as follows:

Jglob(w) =
N∑

ℓ=1

Jℓ(w) =
N∑

ℓ=1

(
N∑

k=1

cℓk

)
Jℓ(w) =

N∑

k=1

(
N∑

ℓ=1

cℓkJℓ(w)

)
=

N∑

k=1

J loc
k (w), (B.7)

or equivalently as:

Jglob(w) = J loc
k (w) +

∑

ℓ6=k
J loc
ℓ (w). (B.8)

Using the alternative representation (B.4), we can write:

Jglob(w) = J loc
k (w) +

∑

ℓ 6=k
‖w −wo‖2Rℓ

+
∑

ℓ6=k
J loc
ℓ,min. (B.9)

Since the last term in the above equation is independent of w, minimizing Jglob(w) over w is

equivalent to minimizing the following alternative global cost:

Jglob′

(w) = J loc
k (w) +

∑

ℓ 6=k
‖w −wo‖2Rℓ

. (B.10)

The second term on the RHS of the above equation implies that how by incorporating the

quadratic parts, the newly-introduced local cost function J loc
k (w) can be corrected to the global

cost Jglob(w). However, the minimizer wo appearing in the quadratic part is unknown since the

agents wish to determine its value. Likewise, not all the weighting matrices Rℓ are available to

agent k; only those from its neighbors can be assumed available. Expression (B.10) motivates

us to introduce a newly localized cost function at agent k that is close enough to the desired

Jglob(w) and which can be minimized through local cooperation. We denote this localized cost

by Jdist
k (w); it is obtained by limiting the summation on the RHS of (B.10) to the neighbors of

agent k, namely,

Jdist
k (w) = J loc

k (w) +
∑

ℓ∈Nk\{k}
‖w −wo‖2Rℓ

. (B.11)
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The cost functions J loc
k (w) and Jdist

k (w) are both associated with agent k; the difference between

them is that expression for the latter is closer to the global cost (B.10) that we want to optimize.

The weighting matrices Rℓ in (B.14) may not be available in practice. Usually, agents can

only observe realizations xℓ(i) of regressors arising from distributions whose covariances are Rx,ℓ.

One way to address this issue is to replace each of the weighted norms ‖w −wo‖2Rℓ
by a scaled

multiple of the unweighted norm:

‖w −wo‖2Rℓ
≈ bℓk‖w −wo‖2, (B.12)

where bℓk is some nonnegative coefficient. This substitution amounts to having each agent k

approximates the {Rℓ} from its neighbors by multiples of the identity matrix, i.e., Rℓ ≈ bℓkIM .

This approximation is reasonable because using the Rayleigh-Ritz characterization of eigenvalues,

it holds that [Sayed, 2014c]:

λmin(Rℓ) · ‖w −wo‖2 ≤ ‖w −wo‖2Rℓ
≤ λmax(Rℓ) · ‖w −wo‖2. (B.13)

As the derivations will show, the scalars bℓk will end up being embedded into another set of

coefficients aℓk that will be selected by the designer. Thus, we replace (B.14) by:

Jdist′

k (w) = J loc
k (w) +

∑

ℓ∈Nk\{k}
bℓk‖w −wo‖2. (B.14)

With the exception of the minimizer wo, this alternative cost at agent relies solely on information

that is available to agent k from its neighborhood. Now, agent k can apply a steepest-descent

iteration to minimize its localized cost Jdist′

k (w). The iteration would take the following form:

wk(i+ 1) = wk(i)− µk∇wJ
dist′

k (wk(i))

= wk(i) + µk
∑

ℓ∈Nk

cℓk(rdx,ℓ −Rx,ℓwk(i)) + µk
∑

ℓ∈Nk\{k}
bℓk(w

o −wk(i)).
(B.15)

The step-size µk can be constant or time variant. Constant step-sizes allow the resulting strategies

to learn and adapt continuously, while time variant step-sizes that decay to zero turn off the

learning abilities of the algorithm. An adaptive implementation of (B.15) can be obtained by

replacing the moments {rdx,ℓ,Rx,ℓ} by the instantaneous approximations (2.6). Doing so leads

to the following recursion:

wk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk

cℓkxℓ(i)(dℓ(i)− x⊤
ℓ (i)wk(i)) + µk

∑

ℓ∈Nk\{k}
bℓk(w

o −wk(i)). (B.16)

According to (B.16), the update from wk(i) to wk(i+1) involves two correction terms. However,

the last correction term still depends on the unknown minimizerwo. We can now use incremental-

type arguments to replace wo in (B.16) by suitable approximations for it.

Thus, note first that there are two correction terms on the RHS of (B.16) and these terms

can be added one at a time. For example, we can achieve (B.16) by splitting the update into the
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following two steps involving an intermediate estimate ψk(i+ 1):

ψk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk

cℓkxℓ(i)(dℓ(i)− x⊤
ℓ (i)wk(i))

wk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk\{k}
bℓk(w

o −wk(i)).
(B.17)

Since each agent ℓ has a readily available approximation for wo, which is its local intermediate

estimate ψℓ(i + 1), we replace wo in the second step of (B.17) by ψℓ(i + 1). Second, since

ψk(i+ 1) at agent k is generally a better estimate for wo than wk(i), we further replace wk(i)

in the second step of (B.17) by ψk(i + 1). With these replacements, the second step of (B.17)

becomes:

wk(i+ 1) = ψk(i+ 1)− µk
∑

ℓ∈Nk\{k}
bℓk(ψk(i+ 1)−ψℓ(i+ 1)). (B.18)

We can rewrite the previous step in a more compact and revealing form by introducing the

following coefficients:

aℓk =





1− µk
∑

ℓ∈Nk\{k} bℓk, if ℓ = k

µkbℓk, if ℓ ∈ Nk \ {k}
0, otherwise

(B.19)

Observe that, for sufficiently small step-sizes, these coefficients are non negative and satisfy the

following conditions:

aℓk ≥ 0,
N∑

ℓ=1

aℓk = 1, and aℓk = 0 if ℓ /∈ Nk. (B.20)

If we collect the combination coefficients aℓk into an N × N matrix A , [aℓk], which we call

the network combination matrix, then it follows from (B.20) that this matrix is a left-stochastic

matrix. Using the coefficients {aℓk} so defined, we arrive at the following alternative compact

form for (B.17), known as the adapt-then-combine (ATC) diffusion LMS strategy:

ψk(i+ 1) = wk(i) + µk
∑

ℓ∈Nk

cℓkxℓ(i)(dℓ(i)− x⊤
ℓ (i)wk(i))

wk(i+ 1) =
∑

ℓ∈Nk

aℓkψℓ(i+ 1).
(B.21)

The ATC diffusion consists of two steps. The first step is an adaptation step where agent k uses its

own data and the data received from its neighbors to update its weight wk(i) to an intermediate

value ψk(i+1). The second step is a combination step where the intermediate estimate {ψℓ(i)}
from the neighborhood of agent k are combined through the combination coefficients {aℓk} to

obtain the updated weight estimate wk(i+ 1).

If we return back to (B.16) and add the second correction term first, and following a similar

procedure as in the ATC diffusion, we arrive at the other variant of diffusion algorithm, known
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as combine-then-adapt (CTA) diffusion LMS strategy:

ψk(i) =
∑

ℓ∈Nk

aℓkwℓ(i)

wk(i+ 1) = ψk(i) + µk
∑

ℓ∈Nk

cℓkxℓ(i)(dℓ(i)− x⊤
ℓ (i)ψk(i)).

(B.22)

By comparing the ATC and CTA strategy, we note that the order of the combination and

adaptation steps is reversed.

B.2 Performance analysis

The mean and mean-square performance of the diffusion algorithms over single-task MSE net-

works have been studied in details in [Cattivelli and Sayed, 2010, Sayed, 2014c]. In this section,

we briefly review the performance analysis of the ATC diffusion LMS strategies.

B.2.1 Weight error vector recursion

We define the local weight error vector as:

w̃k(i) , w
o −wk(i). (B.23)

We collect all error vectors and step-sizes across the network into a block vector and block

diagonal matrix:

w̃b(i) , col{w̃1(i), . . . , w̃N (i)}, (B.24)

M , diag{µ1IM , . . . , µNIM}. (B.25)

We further introduce the extended combination matrix A , A ⊗ IM . Starting from (B.21),

using the model (2.1), the network weight error vector w̃(i+1) can be found to evolve according

to the following recursion:

w̃b(i+ 1) = A⊤(IMN −MRx(i))w̃b(i)−A⊤Mpxz(i), (B.26)

where Rx(i) is a block diagonal matrix and pxz(i) is a block column vector:

Rx(i) , diag




∑

ℓ∈N1

cℓ1xℓ(i)x
⊤
ℓ (i), . . . ,

∑

ℓ∈NN

cℓNxℓ(i)x
⊤
ℓ (i)



 (B.27)

pxz(i) , col




∑

ℓ∈N1

cℓ1xℓ(i)zℓ(i), . . . ,
∑

ℓ∈NN

cℓNxℓ(i)zℓ(i)



 . (B.28)

Recursion (B.26) can be described by a more compact recursion of the form:

w̃b(i+ 1) = B(i)w̃b(i)− g(i), (B.29)
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where

B(i) , A⊤(IMN −MRx(i)) (B.30)

g(i) , A⊤Mpxz(i). (B.31)

The matrix B(i) controls the evolution dynamics of the network error vector w̃b(i).

B.2.2 Mean error behavior

Taking the expectation of both sides of recursion (B.29) and using Assumption 2.1, we find:

E w̃b(i+ 1) = BE w̃b(i), (B.32)

where

B , A⊤(IMN −MRx), (B.33)

with

Rx , diag




∑

ℓ∈N1

cℓ1Rx,ℓ, . . . ,
∑

ℓ∈NN

cℓNRx,ℓ



 . (B.34)

The necessary and sufficient condition to ensure limi→∞ E w̃b(i) = 0 is therefore to select the

step-sizes {µk} that ensure that the matrix B is contractive, i.e., ρ(B) < 1. From (A.22)

and (A.23), it follows that choosing the step-sizes according to:

0 < µk <
2

λmax

(∑
ℓ∈Nk

cℓkRx,ℓ

) , k = 1, . . . , N, (B.35)

will guarantee ρ(B) < 1. An interesting observation that follows from (B.35) is that the stability

range of diffusion does not depend on the matrix A.

B.2.3 Mean-square-error behavior

From (B.29) and under Assumption 2.1, we obtain the following variance relation:

E ‖w̃b(i+ 1)‖2Σ = E ‖w̃b(i)‖2Σ′ + E ‖g(i)‖2Σ, (B.36)

where Σ ≥ 0 is a weighting matrix that we are free to choose, and

Σ
′ , E {B⊤(i)ΣB(i)}. (B.37)

The second term on the RHS of (B.36) can be evaluated as follows:

E ‖g(i)‖2Σ = Tr(ΣG), (B.38)

where G is given by:

G , E {g(i)g⊤(i)} = A⊤MC⊤diag{σ2
z,1Rx,1, . . . , σ

2
z,NRx,N}CMA. (B.39)
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Introducing σ , vec(Σ) and σ′ , vec(Σ′), and using property (A.6), we can write:

σ′ = Fσ, (B.40)

where

F , E {B⊤(i)⊗B⊤(i)}. (B.41)

Using property (A.5), the variance relation (B.36) can be written more compactly as:

E ‖w̃b(i+ 1)‖2σ = E ‖w̃b(i)‖2Fσ + y⊤σ, (B.42)

where we used the notation ‖x‖2σ as a short form for ‖x‖2
Σ

and where

y , vec(G). (B.43)

A necessary and sufficient condition for mean-square stability of the network1 is to select the

step-sizes {µk} such that the matrix F is contractive. A simpler condition for mean-square

stability can be obtained by assuming sufficiently small step-sizes where the matrix F in (B.41)

can be approximated as follows [Sayed, 2014c]:

F ≈ B⊤ ⊗B⊤, (small step-sizes). (B.44)

Hence, sufficiently small step-sizes that satisfy (B.35) will also ensure mean-square stability.

Assume that the step-sizes are sufficiently small so that condition (B.35) holds and the

network is stable in the mean and mean-square sense. Under this condition, the network achieves

its steady-state operation. The convergence rate of the network determines the rate at which the

quantity E ‖w̃(i)‖2
Σ

converges towards its steady state value. This convergence rate is determined

by the spectral radius of the matrix F , i.e., ρ(F), or approximately, [ρ(B)]2 for sufficiently small

step-sizes. The smaller the spectral radius is, the faster the convergence is. Under certain

simplifying assumptions, it can be shown that the spectral radius of the matrix B in diffusion is

smaller than the non-cooperative one (the matrix B in the non-cooperative case is obtained by

setting A = C = IN ) (see [Sayed, 2014c, Sections 5.3 and 6.4]).

To obtain the steady-state mean-square error ζ⋆ , limi→∞ E ‖w̃(i)‖2σss
, we let i → ∞ and

use expression (B.42) to write:

lim
i→∞

E ‖w̃b(i)‖2(I−F)σ = y⊤σ. (B.45)

In order to recover ζ⋆, it is sufficient to replace σ in the above expression by (I −F)−1σss.

1An adaptive algorithm is mean-square stable if limi→∞ E ‖w̃b(i)‖
2
σ → ao, where ao is a positive real number.
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Bernoulli model and derivations in Chapter 3

C.1 Proof of Property 3.3

Consider node k and its fixed cluster C(k). Let Ωs denote the sample spaces of the intra-cluster

neighborhood Nk(i) ∩ C(k). In the following, we prove that the intra-cluster neighborhood

Nk ∩ C(k) defined by the mean matrix A is equal to the union of all possible realizations of the

random neighborhood Nk(i) ∩ C(k), namely,

Nk ∩ C(k) =
⋃

ω∈Ωs

Nk(i,ω) ∩ C(k). (C.1)

First we establish that: (
⋃

ω∈Ω
Nk(i, ω) ∩ C(k)

)
⊆ Nk ∩ C(k). (C.2)

For all ℓ ∈
( ⋃
ω∈Ω

Nk(i, ω) ∩ C(k)
)

, by condition (3.11), we have aℓk(i) > 0. If the probability

of the event aℓk(i) > 0 is non-zero, then aℓk > 0. This implies that ℓ ∈ Nk ∩ C(k) for all ℓ,

and Nk(i) ∩ C(k) ⊆ Nk ∩ C(k). This relation holds for any realization of Nk(i) ∩ C(k), so we

have (C.2).

Now we have to establish that:

Nk ∩ C(k) ⊆
(
⋃

ω∈Ω
Nk(i, ω) ∩ C(k)

)
(C.3)

For any ℓ ∈ Nk ∩C(k), we have aℓk > 0. This assertion is true if, and only if, there exists at least

one realization Nk(i, ω)∩C(k) where aℓk(i) > 0, that is, ℓ ∈ Nk(i, ω)∩C(k). This leads to (C.3).

In a similar manner, we establish that the inter-cluster neighborhood Nk \ C(k) defined by

the mean matrix P ρ is equal to the union of all possible realizations of the random neighborhood

Nk(i) \ C(k).
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C.2 The Bernoulli model

In this model, the step-sizes {µk(i)} are distributed as follows:

µk(i) =

{
µk, with probability pµ,k

0, with probability 1− pµ,k
(C.4)

where µk is a fixed value. This probability distribution allows us to model random “on-off”

behavior by each agent k due to power saving strategies or random agent failures. We assume

that the step-sizes µk(i) are spatially uncorrelated for different k. At each iteration i, the mean

of the step-size µk(i) is µ̄k = µkpµ,k, and the covariance between µk(i) and µℓ(i) is:

cµ,k,ℓ , E{(µk(i)− µ̄k)(µℓ(i)− µ̄ℓ)} =

{
µ2
kpµ,k(1− pµ,k), if ℓ = k

0, otherwise.
(C.5)

Furthermore, combination weights {aℓk(i)} are distributed as follows:

aℓk(i) =

{
aℓk, with probability pa,ℓk

0, with probability 1− pa,ℓk
(C.6)

for any ℓ ∈ N−
k (i) ∩ C(k), where 0 < aℓk < 1 is a fixed coefficient. The coefficients {aℓk(i)} are

spatially uncorrelated for different ℓ and k. Node k adjusts its own combination coefficient to

ensure that the sum of its neighboring coefficients is equal to one as follows:

akk(i) = 1−
∑

ℓ∈N−

k
(i)∩C(k)

aℓk(i) ≥ 0. (C.7)

The probability distribution (C.6) allows us to model a random “on-off" status for links within

clusters at time i due to communication cost saving strategies or random link failures. With this

model, we are giving the opportunity to each agent k to randomly choose a subset of neighbors

that belong to its cluster to perform the combination step. At each iteration i, the mean of the

coefficient aℓk(i) is given by:

āℓk =





aℓkpa,ℓk, if ℓ ∈ N−
k ∩ C(k)

1− ∑
ℓ∈N−

k
∩C(k)

aℓkpa,ℓk, if ℓ = k

0, otherwise.

(C.8)

and the covariance between aℓk(i) and anm(i) equals:

ca,ℓk,nm = E{(aℓk(i)− aℓk)(anm(i)− anm)}

=





ca,ℓk,ℓk, if k = m, ℓ = n, ℓ ∈ N−
k ∩ C(k)

−ca,ℓk,ℓk, if k = m = n, ℓ ∈ N−
k ∩ C(k)

−ca,nk,nk, if k = m = ℓ, n ∈ N−
k ∩ C(k)

∑
j∈N−

k
∩C(k)

ca,jk,jk, if k = m = ℓ = n

0, otherwise.

(C.9)
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where ca,ℓk,ℓk = a2ℓkpa,ℓk(1− pa,ℓk).

Finally, the regularization factors {ρkℓ(i)} are distributed as follows:

ρkℓ(i) =

{
ρkℓ, with probability pρ,kℓ

0, with probability 1− pρ,kℓ
(C.10)

for any ℓ ∈ Nk(i) \ C(k), where 0 < ρkℓ < 1 is a fixed regularization factor. The factors {ρkℓ(i)}
are spatially uncorrelated for k 6= ℓ. At each iteration i, in order to get a right stochastic matrix

P ρ(i), node k adjusts its regularization factor as follows:

ρkk(i) = 1−
∑

ℓ∈Nk(i)\C(k)
ρkℓ(i) ≥ 0. (C.11)

The probability distribution (C.10) allows each agent k to randomly select a subset of neighbors

that do not belong to its cluster and introduce co-regularization in the estimation process. This

behavior can also be interpreted as resulting from link random failures between neighboring

clusters: at every time instant i, the communication link from agent ℓ to agent k drops with

probability 1− pρ,kℓ. The mean of ρkℓ(i) is given by:

ρkℓ =





ρkℓpρ,kℓ, if ℓ ∈ Nk \ C(k)
1− ∑

ℓ∈Nk\C(k)
ρkℓpρ,kℓ, if ℓ = k

0, otherwise,

(C.12)

and the covariance between ρkℓ(i) and ρmn(i) is:

cρ,kℓ,mn = E{(ρkℓ(i)− ρkℓ)(ρmn(i)− ρmn)}

=





cρ,kℓ,kℓ, if k = m, ℓ = n, ℓ ∈ Nk \ C(k)
−cρ,kℓ,kℓ, if k = m = n, ℓ ∈ Nk \ C(k)
−cρ,kn,kn, if k = m = ℓ, n ∈ Nk \ C(k)∑
j∈Nk\C(k)

cρ,kj,kj , if k = m = ℓ = n

0, otherwise

(C.13)

where cρ,kℓ,kℓ = ρ2kℓpρ,kℓ(1− pρ,kℓ).

C.3 Stability of the matrix F

Recall from (3.62) that

F ≈ A⊤
I

[
I(MN)2 − IMN ⊗b M(Rx + ηQ)−M(Rx + ηQ)⊗b IMN

]
. (C.14)

We now upper-bound the spectral radius of F in order to derive a sufficient condition for mean-

square stability of the algorithm. Since any induced matrix norm is lower bounded by its spectral

radius, we can write in terms of the block maximum norm defined in Appendix A.3:

ρ(F) ≤ ‖A⊤
I ‖b,∞ · ‖I(MN)2 − IMN ⊗b M(Rx + ηQ)−M(Rx + ηQ)⊗b IMN‖b,∞. (C.15)
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Since the matrix A I is a block left-stochastic matrix, we know from (A.23) that ‖A⊤
I ‖b,∞ = 1.

Using (3.44) and the triangular inequality, we have:

ρ(F) ≤ ‖I(MN)2 − IMN ⊗b M(Rx + ηIMN )−M(Rx + ηIMN )⊗b IMN‖b,∞ +

η‖IMN ⊗b MPρ‖b,∞ + η‖MPρ ⊗b IMN‖b,∞. (C.16)

Consider the second term on the RHS of (C.16). We know that

IMN ⊗b MPρ
(A.14)
= (IMN ⊗b M)(IMN ⊗b Pρ)

(A.15)
=

(
(IN ⊗M)⊗ IM2

)(
(IN ⊗ P ρ)⊗ IM2

)
. (C.17)

Since
(
(IN ⊗ P ρ) ⊗ IM2

)
is a block right-stochastic matrix and

(
(IN ⊗ M) ⊗ IM2

)
is an

N2 × N2 block diagonal matrix with each block of the form µ̄kIM2 (k = 1, . . . , N), we obtain

from relations (A.24) and (A.22):

‖IMN ⊗b MPρ‖b,∞ ≤ ‖(IN ⊗M)⊗ IM2‖b,∞ · ‖(IN ⊗ P ρ)⊗ IM2‖b,∞
= max

1≤k≤N
µk (C.18)

Following the same steps for the third term on the RHS of (C.16), we have:

‖MPρ ⊗b IMN‖b,∞ ≤ max
1≤k≤N

µk. (C.19)

The matrix
[
I(MN)2 −IMN ⊗bM(Rx+ηIMN )−M(Rx+ηIMN )⊗b IMN

]
in the first term on

the RHS of (C.16) is an N2×N2 block diagonal matrix. The m-th block on the diagonal (where

m = (ℓ−1)N +k for k, ℓ = 1, . . . , N) is of size M2×M2, symmetric, and has the following form:

IM2 − IM ⊗ µ̄k(Rx,k + ηIM )− µ̄ℓ(Rx,ℓ + ηIM )⊗ IM
= (−µ̄ℓRx,ℓ − ηµ̄ℓIM )⊗ IM + IM ⊗ (IM − µ̄kRx,k − ηµ̄kIM ) (C.20)

Before proceeding, let us recall the Kronecker sum operator, denoted by ⊕. If X and Y are two

matrices of dimension M ×M each, then

X ⊕ Y ,X ⊗ IM + IM ⊗ Y . (C.21)

Let λk(·) denote the k-th eigenvalue of its matrix argument. Then, the eigenvalues of X ⊕ Y
are of the form λi(X) + λj(Y ) for i, j = 1, . . . ,M [Bernstein, 2005]. Note that the RHS of

equation (C.20) can be written as:

(−µ̄ℓRx,ℓ − ηµ̄ℓIM )⊕ (IM − µ̄kRx,k − ηµ̄kIM ) (C.22)

and its eigenvalues are therefore of the form:

1− ηµ̄k − µ̄kλj(Rx,k)− ηµ̄ℓ − µ̄ℓλi(Rx,ℓ) (C.23)
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for i, j = 1, . . . ,M and k, ℓ = 1, . . . , N . In order to simplify the mean-square stability condition,

we assume that the first order moment of the step-sizes is the same for all nodes. Using the

fact that the block maximum norm of a block diagonal symmetric matrix is equal to the largest

spectral radius of its block entries, namely, relation (A.22), we get:

‖I(MN)2 − IMN ⊗b M(Rx + ηIMN )−M(Rx + ηIMN )⊗b IMN‖b,∞
= max

1≤k,ℓ≤N

(
max

1≤i,j≤M
|1− 2ηµ̄− µ̄(λj(Rx,k) + λi(Rx,ℓ))|

)

= max
1≤k,ℓ≤N

(
max

1≤i,j≤M

{
1− 2ηµ̄− µ̄(λj(Rx,k) + λi(Rx,ℓ)) ,−1 + 2ηµ̄+ µ̄(λj(Rx,k) + λi(Rx,ℓ))

})

= max
{
1− 2ηµ̄− µ̄min

k,ℓ
(λmin(Rx,k) + λmin(Rx,ℓ)) ,

− 1 + 2ηµ̄+ µ̄max
k,ℓ

(λmax(Rx,k) + λmax(Rx,ℓ))
}
. (C.24)

The minimum (identically the maximum) on k and ℓ that appears in the last equality of (C.24)

is reached for k = ℓ. Thus, a sufficient condition for mean-square stability is given by:

max
1≤k≤N

(
max

1≤i≤M
|1− 2ηµ̄− 2µ̄λi(Rx,k)|+ 2ηµ̄

)
< 1, (C.25)

which is verified if the first order moment of the step-sizes satisfies:

0 < µ̄ <
1

max
1≤k≤N

λmax(Rx,k) + 2η
. (C.26)
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D
Derivations in Chapter 5

D.1 Projection matrix structure

We denote by De,p the p-th block row in De and by [De]p,km the Lp × Mk block of De,p cor-

responding to the km-th sub-node. First, we show that the Mk × Mℓ (km, ℓn)-th block of the

Ne ×Ne block matrix Pe in (5.53) is equal to:

[Pe]km,ℓn =





IMk
− [De]

⊤
p,km

(
De,pD

⊤
e,p

)−1
[De]p,km , if km = ℓn and km ∈ Ie,p,

−[De]
⊤
p,km

(
De,pD

⊤
e,p

)−1
[De]p,ℓn , if km 6= ℓn and km, ℓn ∈ Ie,p,

0, otherwise.

(D.1)

Furthermore, we show that the km-th block of the Ne × 1 block column vector f e in (5.54) is

equal to:

[f e]km =

{
[De]

⊤
p,km

(
De,pD

⊤
e,p

)−1
bp, if km ∈ Ie,p,

0, otherwise.
(D.2)

It can be verified that DeD
⊤
e is a P×P block diagonal matrix with (p, p)-th block of dimension

Lp × Lp and given by:

[DeD
⊤
e ]p,p = De,pD

⊤
e,p = DpD

⊤
p . (D.3)

The inverse of the block diagonal matrix DeD
⊤
e is:

(
DeD

⊤
e

)−1
= diag

{(
De,1D

⊤
e,1

)−1
, . . . ,

(
De,PD

⊤
e,P

)−1
}
. (D.4)

By multiplying the matrix (DeD
⊤
e )

−1 from the left by D⊤
e we obtain an Ne × P block matrix

with (km, p)-th block of dimension Mk × Lp given by:

[
D⊤
e

(
DeD

⊤
e

)−1
]

km,p

=

{
[De]

⊤
p,km

(
De,pD

⊤
e,p

)−1
, if km ∈ Ie,p

0, otherwise.
(D.5)
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When we multiply the matrix D⊤
e

(
DeD

⊤
e

)−1
from the right by De, we obtain an Ne×Ne block

matrix with (km, ℓn)-th block corresponding to sub-nodes km, ℓn of dimension Mk × Mℓ and

given by:

[
D⊤
e

(
DeD

⊤
e

)−1
De

]

km,ℓn

=

{
[De]

⊤
p,km

(
De,pD

⊤
e,p

)−1
[De]p,ℓn , if km, ℓn ∈ Ie,p,

0, otherwise.
(D.6)

From (5.54) and (D.5), we obtain (D.2).

D.2 Evaluation of matrix F for zero-mean real Gaussian

regressors

Without loss of generality, we assume in the following that Mk is uniform across the network,

i.e., Mk = M0 for all k. We note that for any symmetric matrix U , we have [Isserlis, 1918]:

E {xk(i)x⊤
k (i)Uxℓ(i)x

⊤
ℓ (i)} = Rx,kURx,ℓ + δk,ℓ

(
Rx,kURx,k +Rx,kTr(Rx,kU)

)
. (D.7)

From (5.62) and (5.77), we obtain:

Σ
′ = PeAΣA⊤Pe − µPeAΣA⊤PeRx,e − µRx,ePeAΣA⊤Pe+

µ2
E

{
Rx,e(i)PeAΣA⊤PeRx,e(i)

}
.

(D.8)

In order to evaluate Σ
′ we need to evaluate the fourth term on the RHS of the above equation.

Let:

V , E

{
Rx,e(i)PeAΣA⊤PeRx,e(i)

}
, (D.9)

U , PeAΣA⊤Pe. (D.10)

It can be verified that the (km, ℓn)-th block of the matrix V corresponding to the (km, ℓn)-th

sub-node is given by:

[V ]km,ℓn = ckmcℓnE
{
xk(i)x

⊤
k (i)[U ]km,ℓnxℓ(i)x

⊤
ℓ (i)

}

= ckmcℓnRx,k[U ]km,ℓnRx,ℓ + δk,ℓckmcℓn (Rx,k[U ]km,ℓnRx,k +Rx,kTr(Rx,k[U ]km,ℓn)) ,

(D.11)

where the M0 × M0 matrix [U ]km,ℓn is the (km, ℓn)-th block of the matrix U . The matrix V

in (D.9) can be written as:

V = Rx,eURx,e +

N∑

k=1

(Sk(INe ⊗Rx,k)U(INe ⊗Rx,k)Sk + Sk(INe ⊗Rx,k)ZkSk) , (D.12)

where Sk is the N ×N block diagonal matrix with (k, k)-th block equal to Ck ⊗ IM0 , and Zk

is the Ne ×Ne block matrix with (km, ℓn)-th block given by:

[Zk]hm,ℓn = IM0 [vec(Rx,k)]
⊤vec ([U ]km,ℓn) . (D.13)
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Applying the block-vectorization operator to V and using property (A.17), we obtain:

bvec(V) = (Rx,e ⊗b Rx,e)bvec(U) +

N∑

k=1

(
S⊤
k (INe ⊗Rx,k)⊗b Sk(INe ⊗Rx,k)

)
bvec(U)+

N∑

k=1

(
S⊤
k ⊗b (Sk[INe ⊗Rx,k])

)
bvec(Zk),

(D.14)

where bvec(Zk) can be expressed as:

bvec(Zk) =
(
IN2

e
⊗ vec(IM0)⊗ [vec(Rx,k)]

⊤
)

bvec(U), (D.15)

where bvec(U) = (PeA ⊗b PeA)σ. Finally, we conclude that the matrix F in (5.79) can be

written as:

F = B⊤ ⊗b B
⊤ + µ2

N∑

k=1

(
S⊤
k (INe ⊗Rx,k)⊗b Sk(INe ⊗Rx,k)

)
(PeA⊗b PeA)+

µ2
N∑

k=1

(
S⊤
k ⊗b (Sk(INe ⊗Rx,k))

)(
IN2

e
⊗ vec(IM0)⊗ [vec(Rx,k)]

⊤
)
(PeA⊗b PeA) .

(D.16)

D.3 Performance of competing algorithms

For compactness purposes, we explain in the following how the theoretical curves of the cen-

tralized CLMS algorithm (5.17) and the distributed algorithm (5.93) can be obtained from the

analysis in Section 5.4 without showing the final theoretical expressions.

Consider the centralized CLMS algorithm (5.17). Let w̃b(i) and w̃′
b(i) denote the N×1 block

error vectors at the fusion center given by:

w̃b(i) , w
o
b −wb(i), (D.17)

w̃′
b(i) , w

⋆
b −wb(i). (D.18)

Note that the evolution of w̃′
b(i) can be deduced from the evolution of w̃b(i) using the following

relation:

w̃′
b(i) = w̃b(i)−wδ

b , (D.19)

where wδ
b = wo

b −w⋆
b . Subtracting wo

b from both sides of recursion (5.17) and using the linear

data model (5.2), we arrive at the following recursion for the error vector w̃b(i):

w̃b(i+ 1) = P (IMb
− µRx(i)) w̃b(i)− µPpxz(i) + (IMb

−P)wo
b + f , (D.20)

where Rx(i) and pxz(i) are given by:

Rx(i) , diag
{
x1(i)x

⊤
1 (i), . . . ,xN (i)x

⊤
N (i)

}
, (D.21)

pxz(i) , col {d1(i)x1(i), . . . , dN (i)xN (i)} , (D.22)
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Using (D.19) with (D.20) and the fact that w⋆
b satisfies Pw⋆

b −f = w⋆
b , we obtain that w̃′

b(i+1)

evolves according to the following recursion:

w̃′
b(i+ 1) = P (IMb

− µRx(i)) w̃
′
b(i)− µPpxz(i)− µPRx(i)w

δ
b . (D.23)

Comparing recursions (D.20) and (D.23) with recursions (5.56) and (5.59), we observe that the

learning curves of the centralized solution (5.17) can be deduced from the theoretical curves

of the decentralized solution (5.36) by properly modifying the coefficient matrices and vectors.

Note that, unlike the decentralized algorithm (5.17), the centralized solution is unbiased with

respect to w⋆
b since µPERx(i)w

δ
b = 0.

Next, consider the distributed solution (5.93). Following the same line of reasoning as in

Subsection 5.4.1, we obtain the following recursions for the network block error vectors w̃e(i)

in (5.43) and w̃′
e(i) in (5.44):

w̃e(i+ 1) = PeA
⊤ [IMe − µRx,e(i)] w̃e(i)− µPeA

⊤pxz,e(i) + (IMe −Pe)w
o
e + f e, (D.24)

w̃′
e(i+ 1) = PeA

⊤ [IMe − µRx,e(i)] w̃
′
e(i)− µPeA

⊤pxz,e(i)− µPeA
⊤Rx,e(i)w

δ
e. (D.25)

Comparing recursions (D.24) and (D.25) with recursions (5.56) and (5.59), we observe that the

learning curves of the distributed solution (5.93) can be deduced from the theoretical curves

of the decentralized solution (5.36) by properly replacing the product A⊤Pe in the analysis of

Section 5.4 by the product PeA
⊤ and the definition of vector r in (5.64) by r , (IMe −Pe)w

o
e+

f e.
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