
HAL Id: tel-01479043
https://theses.hal.science/tel-01479043

Submitted on 16 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple Operator Metaheuristics for Graph
Partitioning Problems

Fuda Ma

To cite this version:
Fuda Ma. Multiple Operator Metaheuristics for Graph Partitioning Problems. Computational Com-
plexity [cs.CC]. Université d’Angers, 2016. English. �NNT : 2016ANGE0010�. �tel-01479043�

https://theses.hal.science/tel-01479043
https://hal.archives-ouvertes.fr


  
 

Thèse soutenue le 28/06/2016 



Thèse de Doctorat

Fuda MA
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université d’Angers

Label européen
sous le sceau de l’Université Bretagne Loire

École doctorale : 503 (STIM)

Discipline : Informatique, section CNU 27
Unité de recherche : Laboratoire d’Études et de Recherches en Informatique d’Angers (LERIA)

Soutenue le June 2016
Thèse n° : 1

Multiple Operator Metaheuristics for Graph
Partitioning Problems

JURY

Rapporteurs : M. Chu-Min LI, Professeur, Université de Picardie Jules Verne
M. Michel VASQUEZ, Professeur, Ecole des Mines d’Alès

Examinateurs : M. Matthieu BASSEUR, Maître de Conférence HDR, Université d’Angers
M. Nicolas DURAND, Professeur, Ecole Nationale d’Aviation Civile Toulouse

Directeur de thèse : M. Jin-Kao HAO, Professeur, Université d’Angers





Contents

General Introduction 1

1 Introduction 5
1.1 Max-k-cut problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Exact approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Heuristic and metaheuristic approaches . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Multilevel graph partitioning approaches . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Max-cut problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Approximation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Exact approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Heuristic and metaheuristic approaches . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Max-bisection problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Approximation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Exact approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Heuristic and metaheuristic approaches . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Vertex separator problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Approximation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Exact approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Heuristic and metaheuristic approaches . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 A multiple search operator heuristic for the max-k-cut problem 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Multiple search operator heuristic for max-k-cut . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 General working scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Search space and evaluation solution . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Move operations and search operators . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Bucket sorting for fast move gain evaluation and updating . . . . . . . . . . . . . 22
2.2.6 Descent-based improvement phase for intensified search . . . . . . . . . . . . . . 24
2.2.7 Diversified improvement phase for discovering promising region . . . . . . . . . . 25
2.2.8 Perturbation phase for strong diversification . . . . . . . . . . . . . . . . . . . . . 25

2.3 Experimental results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



4 CONTENTS

2.3.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Comparison with state-of-the-art max-k-cut algorithms . . . . . . . . . . . . . . . 27
2.3.5 Comparison with state-of-the-art max-cut algorithms . . . . . . . . . . . . . . . . 28

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Impact of the bucket sorting technique . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Impact of the descent improvement search operators . . . . . . . . . . . . . . . . 38
2.4.3 Impact of the diversified improvement search operators . . . . . . . . . . . . . . . 40

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 An effective iterated tabu search for the max-bisection problem 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Iterated tabu search for max-bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 General working scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Search space and evaluation solution . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Move operators and neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 Bucket sorting for fast move gain evaluation and updating . . . . . . . . . . . . . 48
3.2.5 Selection of the best vertex with a tie breaking scheme . . . . . . . . . . . . . . . 49
3.2.6 Descent local search phase to locate local optima . . . . . . . . . . . . . . . . . . 51
3.2.7 Diversifying improvement phase to discover promising region . . . . . . . . . . . 51
3.2.8 Perturbation phase for strong diversification . . . . . . . . . . . . . . . . . . . . . 52

3.3 Experimental results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Comparison with the current best-known solutions . . . . . . . . . . . . . . . . . 53
3.3.5 Comparison with state-of-the-art max-bisection algorithms . . . . . . . . . . . . . 55
3.3.6 Comparison with a recent state-of-the-art exact algorithm for the minimum bisec-

tion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Impact of the bucket-sorting based tie breaking strategies . . . . . . . . . . . . . . 58
3.4.2 Impact of the combined use of 1-move and c-swap operators . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 An effective path relinking algorithm for the vertex separator problem 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 The proposed path relinking algorithm for VSP . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Main scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 RefSet and PairSet initialization and updating . . . . . . . . . . . . . . . . . . . . 66
4.2.4 The solution improvement method - iterated tabu search . . . . . . . . . . . . . . 66
4.2.5 The path relinking method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.6 The solution selection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Experimental protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Reference algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Computational results and comparisons . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS 5

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

General Conclusion 81

List of Figures 85

List of Tables 88

List of Publications 89

References 91





General Introduction

Context

Graph partitioning problems are a class of well-known NP-hard combinatorial optimization problems,
which require to partition a graph into k ≥ 2 disjoint subsets so as to optimize a given objective subject to
certain constraints. Graph partitioning problems are extensively studied not only for its theoretical impor-
tance, but also for its applicability to many domains, such as VLSI layout design, statistical physics, sports
team scheduling, data clustering, image segmentation, and protein conformation for instances.

Approaches for solving graph partitioning problems can be classified as approximation algorithms, ex-
act algorithms and heuristic algorithms. Approximation algorithms can provide an approximate solution
guaranteed to be within an approximation ratio to its optimal value, but the solution quality reached usu-
ally present a large gap to that of the optimal solution. Exact algorithms, building upon the theoretical
knowledge of the investigated problem, can obtain optimal solutions in an acceptable computing time for
either small graphs of limited size or larger graphs of special structures. For solving large and challeng-
ing problem instances, heuristic and metaheuristic algorithms are commonly used to find “good-enough”
sub-optimal solutions.

Local search is an effective heuristic/metaheuristic approach that usually performs neighborhood ex-
ploration by a search operator that looks for a better solution in the neighborhood of the current solution.
Different search operators have their advantages and drawbacks; no global optimal one exists. Hence, it
would be beneficial to design a local search approach that collectively employs different search operators
organized in an effective pattern. Motivated by this idea, the first key research work will design multiple
operator local search for handling hard graph partitioning problems.

Furthermore, population based metaheuristic approaches are capable of attaining a good balance be-
tween intensification and diversification during the search, which often include a local search component
for solution refinement to achieve search intensification. Therefore, the second work of this thesis will
design a powerful population based path relinking approach, in which the multiple operator local search is
used for search intensification while the other components of path relinking play the role of search diversi-
fication.

In short, this thesis is dedicated to developing effective multiple operator based heuristic and meta-
heuristic approaches for solving several representative graph partitioning problems, including the max-k-cut
problem, the max-bisection problem and the vertex separator problem.

Objectives

This thesis aims to study effective multiple search operators based heuristic and metaheuristic ap-
proaches for solving three well-known graph partitioning problem, the max-k-cut problem, the max-bisection
problem and the vertex separator problem. The main objectives of this thesis include:

– propose high performance heuristic and metaheuristic approaches for each of these problems to en-
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hance the state of art in the literature.
– develop effective local search approaches based on combination of multiple search operators and

demonstrate advantages of using multiple search operators over a single search operator to the perfor-
mance of the developed approaches. Using graph partitioning problems as case study, we investigate
different search operators with complementary properties and design effective patterns to combine
them.

– design a powerful population based metaheuristic approach with multiple operator local search in-
corporated for solution refinement. For this purpose, we employ the path relinking search framework
that has empirically demonstrated to attain a good balance between search intensification and diver-
sification for many combinatorial optimization problems. In this respect, the multiple operator local
search is used for search intensification while the other components in path relinking play the role of
search diversification.

Contributions

The main contributions of this thesis are the following:

– We present a new and effective multiple operator heuristic (MOH) for the general max-k-cut problem.
The main originality of the proposed algorithm is its multi-phased multi-strategy approach which re-
lies on five distinct local search operators (O1 - O5) for solution transformations. These operators are
organized into three different search phases (descent-based improvement, diversified improvement,
perturbation) to ensure an effective examination of the search space. Specifically, the operator O2

employs constrained double-transfer moves to greatly reduce the size of the transfer moves and pre-
vents from expensive computational efforts. The decent improvement phase compares three different
ways of combining the operators O1 and O2 and experimentally determines the best combination.
The diversified improvement procedure collectively uses the operators O3 and O4, the selection of
which is based on a probabilistic mechanism. The perturbation phase applies a random search oper-
ator O5 to definitively lead the search to a distant region when the search is trapped in a deep local
optimum. The use of the bucket sorting structure to accelerate the identification of the best move
is another important ingredient of the MOH algorithm. Experiments on two sets of 91 well-known
benchmark instances show that the proposed algorithm is highly effective on the max-k-cut problem
and improves the current best known results (lower bounds) of most of the tested instances. For the
popular special case k = 2 (i.e., the max-cut problem), MOH also performs remarkably well by dis-
covering 4 improved best known results. We provide additional studies to shed light on the alternative
combinations of the employed search operators.

– We presented an effective iterated tabu search (ITS) for the max-bisection problem based on the
iterated local search (ILS) framework, which includes the following original features. First, ITS
relies on a joint use of two complementary search operators to conduct an extensive exploitation of
the search space. The 1-move operator is used to quickly discover a local optimal solution from which
improved solutions are sought by employing the more advanced c-swap operator. Second, in addition
to an improvement phase and a perturbation phase used in conventional ILS algorithms, the proposed
ITS algorithm additionally includes a fast descent procedure to quickly attain a promising search area
which is deeply examined with the powerful tabu search procedure. This combination prevents the
search procedure from running the more expensive tabu search procedure in an unpromising area
and thus helps to increase the search efficiency of the algorithm. We assess the performance of the
proposed algorithm on 71 well-known benchmark graphs in the literature which were commonly used
to test new max-cut and max-bisection algorithms. Computational results show that ITS competes
favorably with respect to the existing best performing max-bisection heuristics, by improving the
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current best-known results (new lower bounds) on 10 instances.
– We proposed the first path relinking algorithm (PR-VSP) for solving the vertex separator problem

(VSP) , which is composed of a reference set initialization and updating method, a solution improve-
ment method, a path generation method and a solution selection method. The method to initialize and
update a reference set is capable of maintaining a set of elite solutions with high quality and good
diversity. The solution improvement method follows the framework of iterated tabu search, which
alternates between a dedicated tabu search phase and a random perturbation phase. The tabu search
procedure employs two complementary search operators (1-move and swap-move) to collectively per-
form neighborhood exploration, where the innovative swap-move operator is applied to solve VSP for
the first time. The path generation method builds a solution path from an initiating solution to a guid-
ing solution, on which a sequence of intermediate solutions are created by performing local moves
based on a greedy selection mechanism. The solution selection method picks one or multiple solu-
tions on the path which are submitted to the solution improvement method for quality optimization.
Experimental assessment on four sets of benchmarks with a total of 355 instances discloses that our
PR-VSP algorithm finds new best solutions (updated upper bounds) for 67 instances and matches
previously best solutions for all except one instance.

Organization

The manuscript is organized in the following way:

– In the first chapter, we introduce the max-k-cut problem, the max-bisection problem and the vertex
separator problem, and then provide an overview of three classes of approaches for solving them,
including approximation algorithms, exact algorithms and heuristic/metaheuristic algorithms reported
in the literature.

– In the second chapter, we first present the proposed multiple operator heuristic (MOH) for solving
the max-k-cut problem, in which the five different search operators, the bucket sorting technique for
fast move gain evaluation and updating, and the designed three search phases in MOH (descent-based
improvement phase for intensified search, diversified improvement phase for discovering promising
region, and perturbation phase for strong diversification) are described in detail. Then, we provide
computational results and comparisons with state-of-the-art algorithms in the literature. Finally, we
analyze the role of several important ingredients of the proposed algorithm.

– In the third chapter, we first present the general working scheme of the iterated tabu search (ITS)
algorithm for the max-bisection problem. Then we detail the 1-move and c-swap move operators and
explain the three search phases to employ them, including the descent local search phase to locate
local optima, the diversifying improvement phase to discover promising region, as well as the per-
turbation phase for strong diversification. In the following, we provide experimental results of our
proposed algorithm and comparisons with other best performing algorithms in the literature. Mean-
while, we analyze the bucket-sorting based tie breaking strategies and the impact of the combined use
of 1-move and c-swap operators.

– In the fourth chapter, we present the proposed path relinking algorithm (PR-VSP) for solving the
vertex separator problem. First, we expose the main scheme of the proposed algorithm and explain
each of its internal components. Then we show our computational results and comparisons with
state-of-the-art algorithms in the literature. Finally, we analyze the effectiveness of the designed new
local search operator and the dedicated path-relinking procedure to the performance of the PR-VSP
algorithm.

– In the last chapter, we give a general conclusion of this thesis and propose some perspectives.
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Introduction

Graph partitioning problems are a class of well-known NP-hard combinatorial optimization problems
with a wide range of applications. In this chapter, we introduce the three graph partitioning problems which
are studied in the work: the max-k-cut, max-bisection and vertex separator problems and review state-of-
the-art approaches for solving these problems in the literature.
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1.1 Max-k-cut problem

1.1.1 Problem introduction

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge set E ⊂ V × V ,
each edge (i, j) ∈ E being associated with a weight wij ∈ Z. Given k ∈ [2, n], the max-k-cut problem

is to partition the vertex set V into k (k is given) disjoint subsets {S1, S2, . . . , Sk}, (i.e.,
k
∪
i=1

Si = V, Si 6=
∅, Si ∩ Sj = ∅,∀i 6= j), such that the sum of weights of the edges from E whose endpoints belong to
different subsets is maximized, i.e.,

max
∑

1≤p<q≤k

∑
i∈Sp,j∈Sq

wij. (1.1)

The max-k-cut is equivalent to the minimum k-partition (MkP) problem which aims to partition the
vertex set of a graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices
in the same partition [Ghaddar et al., 2011]. The k-way equipartition problem is a MkP with the restriction
that the subsets in the partition are of equal size. The minimized version of max-k-cut is known as the
k-way partitioning problem or graph k-partitioning problem [Karypis and Kumar, 1999]. If an additional
constraint is added to the k-way partitioning problem requiring the difference of the cardinalities between
the largest subset and the smallest subset is at most one, the problem is called balanced k-way partitioning.

The max-k-cut problem is a classical NP-hard problem in combinatorial optimization and can not be
solved exactly in polynomial time unless P = NP [Boros and Hammer, 1991; Kann et al., 1997]. More-
over, when k = 2, the max-cut problem is one of the Karp’s 21 NP-complete problems [Karp, 1972]
which has been the subject of many studies in the literature. The max-k-cut and relevant graph partitioning
problems have attracted increasing attention for its applicability to numerous important applications in the
area of data mining [Ding et al., 2001], VLSI layout design [Barahona et al., 1988; Chang and Du, 1987;
Chen et al., 1983; Cho et al., 1998; Pinter, 1984], frequency planning [Eisenblätter, 2002], sports team
scheduling [Mitchell, 2003], and statistical physics [Liers et al., 2004] among others.

Given the theoretical significance and large application potential, a number of solution procedures have
been reported in the literature. In [Ghaddar et al., 2011], the authors provide a review of several exact algo-
rithms which are based on branch-and-cut and semidefinite programming approaches. But due to the high
computational complexity of the problem, only instances of reduced size (i.e., |V | < 100) can be solved
by these exact methods in a reasonable computing time. [Zhu et al., 2013] proposed a discrete dynamic
convexized (DC) method for solving the max-k-cut problem, which is characterized of the following two
distinct features. Firstly, it formulates the max-k-cut problem into a nonlinear integer programming model
for conveniently adapting the local search procedure proposed in [Fiduccia and Mattheyses, 1982]. Sec-
ondly, it employs an auxiliary function dependent on the similarity degree to help search escape from local
optimum and direct search into promising search area. The drawback of the proposed DC method lies in
expensive computational consumption as k increases.
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After investigating the literature of graph partitioning problems, we find that very limited research di-
rectly aims at solving the max-k-cut problem (k > 2). However, there have been many researches for the
related graph k-way partitioning problems. Hence, we review classic algorithms for the k-way partitioning
problems in the following parts in hope of acquiring useful experiences for designing effective max-k-cut
algorithms.

1.1.2 Exact approaches

[Ferreira et al., 1996; Ferreira et al., 1998] studied valid inequalities and designed a branch-and-cut
algorithm for the problem where G is partitioned into at most k subsets and each subset has a capacity
restriction on the sum of the nodes weights. [Mitchell, 2001; Mitchell, 2003] described an application of
the k-way equipartition problem to the National Football League (NFL) and proposed a branch-and-cut
algorithm.

1.1.3 Heuristic and metaheuristic approaches

[Kernighan and Lin, 1970] considered the graph partitioning problem where a given graph is partitioned
into at most k subsets and each subset has at most p nodes. The basic idea of finding a near optimal k-
way partition is to start from a feasible k-partition and continuously apply a 2-way partitioning procedure
to pairs of subsets to make the partition near pairwise optimal. The designed 2-way partitioning heuristic
repeats performing such pass that performs a varying length k of swap moves to produce a solution that
maximally decreases the cut size of the given graph, until the best cut size can not be decreased. Experience
shows that the proposed heuristic converges quickly.

[Fiduccia and Mattheyses, 1982] adapted the Kernighan-Lin heuristic for the 2-way partitioning problem
in two aspects. The first is to move a vertex for each iteration instead of swapping a couple of vertices. The
second is to use a bucket sorting technique to reduce the complexity of identifying the best move and of
updating the move gains of vertices affected by each move. Experimental evaluation on several random-
logic polycell designs indicates the effectiveness of the proposed algorithm.

[Fan and Pardalos, 2010] formulated the general graph partitioning problem as a zero-one quadratic
programming model and studied equivalent zero-one linear integer programming formulations. Problem
instances from various graphs and networks are represented by different formulations, which are then solved
by the CPLEX optimization software. Computational comparisons reveal that all the formulations reach
the same solution quality and the discrete quadratic formulation performs best in terms of computational
time. In addition, bipartite graphs are also investigated and different quadratic and linear formulations are
proposed. Experimental results show that the linear formulation with the fewest variables is most efficient.

[Rahimian et al., 2015] proposed a distributed algorithm JA-BE-JA which employs local search for dis-
covering high-quality solutions and simulated annealing for escaping from local optimum. The proposed
algorithm is inherently parallel, which only needs to know local information of a graph instead of global
knowledge of the entire graph as in most centralized algorithms. For a specific vertex, JA-BE-JA utilizes
a hybrid sampling component to select its direct neighbors vertices or a randomized subset of vertices as
candidates for swap moves. This is followed by a swapping component to choose another vertex for swap-
ping that leads to the best utility function value. Extensive experiments disclose that JA-BE-JA outperforms
well-known centralized algorithms METIS [Karypis and Kumar, 1998] on real-world graphs from social
networks.
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1.1.4 Multilevel graph partitioning approaches

When the size of graphs becomes very large (with up to millions of vertices), a research line advocates
the use of multilevel algorithms for solving the graph k-partitioning problem, which approximates the initial
problem by solving successively smaller (and easier) problems. The general multilevel scheme consists of
a coarsening phase to produce a sequential level of smaller and coarser graphs, an initial partitioning phase
to create an initial partition for the coarsest graph, as well as an uncoarsening phase to project the solution
of the lower-level graph solved by a refinement procedure to its upper level graph. We introduce several
representative multilevel graph partitioning algorithms and a detailed survey can be found in [Benlic and
Hao, 2013c].

[Monien et al., 2000] presented new theoretical based coarsening and local improvement methods for
a multilevel graph partitioning paradigm. The proposed coarsening method utilizes a maximum weighted
matching scheme in edge weighted graphs, which reaches a time complexity of O(E) to calculate a match-
ing with edge weight of at least 1/2 of that of the maximum weighted matching. The local search improve-
ment uses a Helpful-Set strategy that reaches a theoretical upper bound of ((k−1)/2)|V |+1 for partitioning
graphs with maximum degree of 2k into two parts. Computational experience indicates that neither the pro-
posed algorithm nor any state-of-the-art solver performs best in terms of all the measurements.

[Soper et al., 2004] proposed a hybrid metaheuristic that combines an evolutionary search algorithm
with a multilevel graph partitioner. The coarsening phase continuously contracts the series of graphs by
heuristically constructing a maximal independent subset of edges until the number of vertices in the coarsest
graph equals the number of the subsets k. At each graph level a multi-way variant of the Kernighan-Lin
2-way partitioning heuristic is used to find a refined partition, in which small non-integer biases are added to
the edge weights to influence the partition. Crossover and mutation operators in the evolutionary algorithm
utilize a multilevel graph partitioning heuristic to produce offspring solutions. The proposed algorithm
is able to attain much better solution quality than state-of-the-art graph partitioning packages but needs
significantly long running time.

[Benlic and Hao, 2011a] developed a multilevel tabu search algorithm for solving the balanced graph
k-partitioning. The coarsening phase employs heavy-edge matching to produce a series of coarser graphs.
The main originality of the proposed algorithm lies in a perturbation-based tabu search algorithm for par-
tition refinement, which integrates a neighborhood combination to conduct neighborhood exploration, an
adaptation of bucket sorting for quickly calculating objective gains of performing a move, a frequency
memory to guide selection strategies for vertex migration, as well as a dynamic tabu tenure technique. Ex-
tensive testings on benchmark graphs from the graph partitioning archive, with the number of subsets k set
as 2, 4, 8, 16, 32 and 64, indicate that the proposed algorithm outperforms the two state-of-the-art solvers
METIS [Karypis and Kumar, 1998] and CHACO [Hendrickson and Leland, 1995] no matter in short or
long running time.

[Benlic and Hao, 2011b] investigated a multilevel memetic algorithm that uses the same multilevel
framework as the previous multilevel tabu search algorithm and differs in the partition refinement. The
memetic algorithm combines a backbone guided multiparent crossover operator to enhance search diver-
sification with a perturbation-based tabu search to ensure search intensification. Extensive experiments
indicate that the proposed algorithm outperforms any existing algorithms in terms of solution quality. In
addition, the roles of the backbone guided crossover operator and several other key issues are analyzed to
show their merits to the performance of the proposed algorithm.
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1.1.5 Summary

The max-k-cut problem has important theoretical significance and large application potential. Although
heuristic and metaheuristic approaches for solving several other graph partitioning problems have been
widely studied and demonstrated to be highly effective for finding near optimal solutions for large bench-
mark graphs, so far only one heuristic algorithm has been presented for the max-k-cut problem. Hence, the
first work of this thesis is dedicated to developing an effective heuristic for handling the max-k-cut prob-
lem. For this purpose, we design a multiple operator heuristic (MOH), which employs five distinct search
operators organized into three search phases to effectively explore the search space.

1.2 Max-cut problem

1.2.1 Problem introduction

Max-cut is a special case of the max-k-cut problem with k = 2. Given that max-cut has been among
the widely studied NP-hard combinatorial optimization problems, we take the review of the max-cut refer-
ences as an independent part. Theoretical results for the max-cut problem include the followings. [Orlova
and Dorfman, 1972] established a polynomial time method for finding a maximum cut in a planar graph.
[Bodlaender and Jansen, 2000] proved that max-cut is NP-hard for chordal, split, and 3-colorable graphs.
[Scott and Sorkin, 2004] proved that a maximum cut of a sparse random graph can be solved in polynomial
expected time.

1.2.2 Approximation approaches

There exist many approximation algorithms in the literature that provide an approximate solution guar-
anteed to be within an approximation ratio to its optimal value. [Sahni and Gonzalez, 1976] proposed an
approximation algorithm with a 0.5 performance guarantee for the max-cut. [Goemans and Williamson,
1995] devised semidefinite relaxation to improve the approximation ratio to 0.878. [Homer and Peinado,
1997] developed parallel approximation algorithms for solving large graphs up to 13000 vertices. By cou-
pling a projected gradient method for the max-cut semidefinite relaxation with a randomized method, [Burer
and Monteiro, 2001] presented an effective approximation algorithm for the max-cut problem. Due to an
order of magnitude increase of problem variables, the semidefinite relaxation method encounters difficulty
in solving large scale problem instances. [Burer et al., 2002] proposed a rank-two heuristic that considers
tradeoff between computational efficiency and a theoretical guarantee. [Kahruman et al., 2007] presented
the first greedy worst-out construction heuristic to establish an approximation ratio of at least 1/3.

1.2.3 Exact approaches

[Mohar and Poljak, 1990] presented an upper bound for max-cut based on the maximum eigenvalue of
an associated matrix and identified different classes of graphs where the obtained upper bound is satisfac-
tory or poor. [Croce et al., 2007] studied an exact algorithm, which enumerates cuts for a subgraph of the
original graph G and then extends them to find optimal cuts in G, for computing a maximum cut in graphs
with bounded maximum degree and in general graphs. [Rendl et al., 2007] devised a branch-and-bound al-
gorithm for max-cut based on semidefinite relaxation tightened by triangle inequalities, where the resulting
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relaxation is solved by an interior-point method combined with a bundle method. [Rendl et al., 2010] ex-
tended the previous branch-and-bound algorithm by using a dynamic version of the bundle method to solve
the semidefinite relaxation for max-cut together with triangle inequalities. The proposed branch-and-bound
algorithm is able to prove optimality for graphs with |V | = 100 nodes and for sparse graphs with |V | = 300
nodes. [Krislock et al., 2014] presented an branch-and-bound algorithm for finding exact solutions, which
improves standard semidefinite relaxation bounds by adding a quadratic regularization term to semidefinite
relaxation and employing a quasi-Newton method to compute the bounds. Due to high computational com-
plexity, graphs with n ≥ 500 is beyond the reach of these exact methods. Hence, heuristic and metaheuristic
methods are commonly used for approximating large graphs.

1.2.4 Heuristic and metaheuristic approaches

[Festa et al., 2002] investigated pure and hybrid metaheuristics among greedy randomized adaptive
search procedure (GRASP), variable neighborhood search (VNS) and path relinking (PR) for handling the
max-cut problem. Computational experience discloses that the use of VNS in the local search phase of
GRASP and path relinking in VNS for search intensification is capable of obtaining solution improvement
with a little additional time. Among the proposed metaheuristic algorithms, GRASP with PR is the fastest
to converge to a near optimal solution and the VNS with PR finds best quality solutions at the expense of
longest running time.

[Palubeckis, 2004] designed two multi-start tabu search implementations, which differ in the strategies
to produce initial solutions. The first one called MST produces initial solutions by using a variable fixing
procedure and a steepest ascent procedure to the reformulated problem obtained by removing the fixed
variables. The second one called RRT is a traditional random restart strategy that generates initial solutions
in a random way. Computational comparisons indicate that MST performs better than RRT in particular to
the best solution quality.

[Marti et al., 2009] presented a scatter search algorithm with the following new elements 1) the solution
of the maximum diversity problem is used to increase diversity in the reference set; 2) the length of the
ejection chain for the compound moves is adjusted dynamically; 3) a probabilistic-based mechanism is
incorporated to select a solution combination method. Experimental study is conducted to compare scatter
search with state-of-the-art algorithms in the literature and discloses the effectiveness of the proposed new
elements.

[Arráiz and Olivo, 2009] investigated tabu search and simulated annealing algorithms for solving the
max-cut problem. Computational experience indicates that tabu search is suitable for finding high quality
solutions in small computational time while simulated annealing is suggested when top quality is required
within medium computational efforts.

[Shylo and Shylo, 2010; Shylo et al., 2012] developed global equilibrium search algorithms for the max-
cut problem, which borrows the idea of annealing curve to determine initial solutions and uses tabu search
for solution improvement. Based on the linear temperature function µk+1 = αµk, the initial temperature
is determined according to the rule that the probability vector obtained by the last temperature produces
an initial solution which is approximately equal to the best found solution during the search process. The
method to calculate the probability of assigning a vertex to each partition relies both on the current temper-
ature value and a subset of the previously visited high-quality solutions. Experimental results show that the
proposed algorithm performs quite well in terms of both solution quality and computational efficiency.

[Lin and Zhu, 2012] takes a simple modification of the Fiduccia-Mattheyses heuristic as local search
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to maximize such an auxiliary function that has the same global maximizer as the max-cut problem. By
increasing the value of the parameter in the auxiliary function, the algorithm enables search escape from
local maximizers. Experimental results reveal the effectiveness of the proposed algorithm.

[Wang et al., 2012; Kochenberger et al., 2013] reformulated the max-cut problem into unconstrained
binary quadratic programming (UBQP) and applied a general UBQP algorithm for solving the reformulated
problem. Computational testing shows that the general UBQP approach is able to produce high quality
solutions for large scale problem instances and outperform several specially tailored max-cut algorithms.

[Wu and Hao, 2012] devised a memetic algorithm that integrates a grouping based multi-parent crossover
operator to maximally preserve the common solution components among parents and an iterated tabu search
procedure based on a random perturbation mechanism to conduct neighborhood exploration. Evaluated on
graphs with up to 10000 vertices, the proposed algorithm is demonstrated to be highly effective in discov-
ering high quality solutions. Additional analysis shows the importance of the devised crossover operator to
the success of the proposed algorithm.

[Benlic and Hao, 2013a] presented a breakout local search, which jointly uses local search to discover
an attractor and an adaptive perturbation strategy to escape from the basin of attraction. The local search
procedure uses steepest ascent to reach local optimum, where each iteration displaces such a vertex from
its current subset into the other subset that produces the best objective gain. The perturbation strategy col-
lectively utilizes directed perturbation and random perturbation operators to increase search intensification
and diversification. Extensive testings show that the break local search outperforms other state-of-the-art
algorithms in the literature.

1.2.5 Summary

The max-cut problem is the most widely studied case of the max-k-cut problem and various approaches
have been reported in the literature. Exact algorithms can only solve small benchmark graphs with no more
than 100 vertices in a reasonable computing time. For handling large benchmark graphs, many heuristic and
metaheuristic algorithms are accordingly proposed. Given that the max-cut problem can be directly solved
by the max-k-cut algorithm, an important part of the first work in this thesis is to verify the performance of
our proposed max-k-cut algorithm by comparing with best performing max-cut algorithms.

1.3 Max-bisection problem

1.3.1 Problem introduction

Given an undirected graph G = (V,E) with vertex set V = {1, . . . , n}, edge set E ⊂ V × V and a set
of edge weights {wij ∈ Z : (i, j) ∈ E} (wij = 0 if (i, j) /∈ E). The maximum bisection problem (max-
bisection for short) is to partition the vertex set V into two disjoint subsets S1 and S2 of equal cardinality
(i.e., S1 ∪S2 = V, S1 ∩S2 = ∅, |S1| = |S2|), such that the weight sum of the edges whose endpoints belong
to different subsets is maximized, i.e.,

max
∑

i∈S1,j∈S2

wij. (1.2)
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If this objective function is to be minimized, the problem is known as minimum equicut, graph bisection,
min-bisection or balanced graph bipartitioning. Max-bisection is a cardinality constrained max-cut problem
with the restriction that the two subsets in the partition are of equal size.

Max-bisection is a fundamental graph partitioning problem and cannot be solved exactly in polynomial
time unless P = NP [Murty and Kabadi, 1987]. It has attracted increasing attention in recent decades due
to its relevance to numerous applications like VLSI layout design [Barahona et al., 1988; Chang and Du,
1987; Cho et al., 1998], data clustering [Ding et al., 2001] and sports team scheduling [Elf et al., 2003]
among others.

1.3.2 Approximation approaches

[Frieze and Jerrum, 1995] extended the approach in [Goemans and Williamson, 1995] to max-bisection
and obtained a randomized 0.651-approximation algorithm. By combining this method with rotation argu-
ment applied to the optimal solution of the semidefinite relaxation of max-bisection, [Ye, 2001] improved
the performance ratio to 0.699. [Halperin and Zwick, 2002] further improved the approximation ratio to
0.7016 by adding triangle inequalities to the max-bisection formulation.

1.3.3 Exact approaches

[Conforti et al., 1990a; Conforti et al., 1990b] studied the facial structure of equicut and s-t equicut
polytopes, and several classes of facet-inducing inequalities. Building upon these theoretical knowledge, an
integer programming based branch-and-cut approach for the equicut problem was implemented in [Brunetta
et al., 1997]. A branch-and-cut algorithm based on semidefinite programming and polyhedral relaxation
for the graph bisection problem with each subset of prespecified size was described and is shown to be
particularly effective for special classes of graphs such as planar and grid graphs [Karisch et al., 2000].
A computational comparison within a branch-and-cut framework to evaluate relative strength between in-
teger programming and semidefinite programming formulations is presented in [Armbruster et al., 2008;
Armbruster et al., 2012]. [Anjos et al., 2013] compared basic linear and semidefinite relaxations for calcu-
lating bounds of the equicut problem and presented an improved version of the branch-and-cut algorithm
proposed in [Brunetta et al., 1997]. [Delling et al., 2015] presented a novel exact algorithm within a
branch-and-cut framework, which introduces packing trees based lower bounds and a new decomposition
technique. This algorithm works particularly well on graphs with relatively small minimum bisections and
it remarkably solves several large real-world instances with up to millions of vertices to optimality.

1.3.4 Heuristic and metaheuristic approaches

[Battiti and Bertossi, 1999] presented a reactive randomized tabu search algorithm for the min-bisection
problem, which integrates a min-max greedy construction with an adaptive choice of tabu tenure. Each
iteration in the min-max greedy construction adds such a vertex to a subset that minimizes the cut, and
meantime maximizes the number of edges with the other vertices in the subset for breaking ties. Extensive
testings indicate that the proposed algorithm performs better than previous state-of-the-art algorithms and
obtains significantly better results than multilevel algorithms for large “real world” graphs at the cost of a
much large computational time.

[Inayoshi and Manderick, 1994; Bui and Moon, 1996; Steenbeek et al., 1998; Merz and Freisleben,
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2000] presented hybrid evolutionary algorithms (memetic algorithms) for solving min-bisection, which
differ in strategies of solution representation, mating selection, genetic and mutation crossovers, as well
as local search. Computational comparisons indicate that the memetic algorithm proposed in [Merz and
Freisleben, 2000] outperforms all the other algorithms.

[Chardaire et al., 2007] presented a population reinforced optimization based exploration (PROBE)
heuristic for min-bisection, which uses a population to determine search subspaces of optimal solutions.
The method of generating initial solutions is to first construct a partial bisection by fixing vertices shared
by two parent solutions and then use a differential-greedy heuristic, in which each iteration selects such
a vertex to join the subset that maximizes the difference of the internal degree and the external degree
proposed in [Battiti and Bertossi, 1997], to form a bisection of the full graph. The local search designed
in [Bui and Moon, 1996] is utilized for bisection refinement. Experimental results indicate that PROBE
compares favorably with other population based solution methods, randomized reactive tabu search, and
more specialized multilevel partitioning techniques.

[Dang et al., 2002] formulated the max-bisection problem into a linearly constrained continuous opti-
mization problem and developed a deterministic annealing algorithm based on a square-root barrier function
and a feasible descent direction. The convergence of the proposed algorithm is proved. Numerical results
indicate that the proposed algorithm is faster than the .699 approximation algorithm, while attaining more
or less the same solution quality.

[Kohmoto et al., 2003] presented a genetic algorithm with a local search incorporated for solving the
min-bisection problem. Experiments on well-known benchmark graphs disclose that the proposed algo-
rithm performs better than multi-start local search and simulated annealing algorithms.

[Ling et al., 2008] reformulated max-bisection into max-cut by combing the cardinality constraint with
the objective function, which is solved by the VNS algorithm for the max-cut problem proposed in [Festa
et al., 2002]. Numerical comparisons with .699 approximation algorithm indicate that VNS performs better
in terms of both solution quality and computational time for most test problems.

[Xu et al., 2011] proposed a Lagrangian net algorithm, which uses a penalty function method to relax
the constraint and a discrete Hopfield neural network to find near optimal bisections. During the search,
the penalty factor is adjusted to help search escape from local attractors. The convergence analysis of the
proposed algorithm is provided. Computational experience shows that the proposed algorithm performs
much better than other relaxation methods.

[Wu and Hao, 2013] presented a memetic algorithm for the max-bisection problem, which is charac-
terized of a diversification-guided grouping crossover operator, a tabu search optimization procedure and a
quality-and-diversity based population updating strategy. Experimental comparisons disclose that the pro-
posed memetic algorithm performs better than the Lagrangian net algorithm. Furthermore, although the
max-bisection problem includes the balance constraint which is not required in the max-cut problem, com-
putational comparisons with excellent max-cut algorithms show that the proposed max-bisection algorithm
is able to obtain solution improvement for many problem instances. Finally, additional experiments on the
structure similarity analysis between high quality solutions, the dynamic tabu tenure management and the
pool updating strategy are performed to shed light on the merit of these key ingredients to the performance
of the proposed memetic algorithm.

[Lin and Zhu, 2014] proposed a memetic algorithm, which integrates a Fiduccia-Mattheyses heuristic to
refine solutions, a crossover operator to produce offspring solutions, and a distance-quality based population
updating strategy. Evaluated on a number of benchmarks, the proposed memetic algorithm performs better
than CirCut and Lagrangian net algorithm in terms of both solution quality and computational efforts.
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1.3.5 Summary

Max-bisection is a cardinality constrained max-cut problem and is also a computationally challenging
problem. It has attracted increasing attention in recent decades due to its relevance to numerous applica-
tions. To solve this problem, many solution procedures have been reported in the literature. Given that the
proposed multiple operator based heuristic performs quite effectively for the max-k-cut problem, it is wor-
thy of investigating its performance to the interesting max-bisection problem. Hence, the second work of
this thesis is to design an iterated tabu search algorithm to solve max-bisection, which collectively employs
two distinct search operators organized into three search phases to explore the search space in an efficient
way.

1.4 Vertex separator problem

1.4.1 Problem introduction

Given an undirected graph G (which may be disconnected) with an vertex set V = {v1, . . . , vn} where
each vertex vi is associated with a non-negative weight wi and an unweighted edge set E, the vertex sepa-
rator problem (VSP) is to partition V into three non-empty disjoint subsets A, B and C such that the total
weight of vertices in C is minimized subject to two constraints: (i) there is no edge between A and B and
(ii) the cardinality of A and B does not exceed a given positive integer b. Set C is called the separator of G
while A and B are called the shores of the separator. Formally, VSP is formulated as follows:

min
∑
i∈C

wi (1.3)

subject to C = V \ (A ∪B), (A×B) ∩ E = ∅, A ∩B = ∅ (1.4)
max{|A|, |B|} ≤ b (1.5)
A,B,C ⊂ V (1.6)

where constraint (2) ensures that no edge exists for any pair of vertices between shores A and B and
constraint (3) requires both A and B contain no more than b vertices. A separator C is considered as
balanced if max{|A|, |B|} ≤ 2|V |/3.

This VSP problem was first introduced in the domain of Very Large Scale Integration (VLSI) design
[Leighton and Rao, 1999]. Additional applications of VSP include, for instance, detection of brittle nodes
in telecommunication networks [Biha and Meurs, 2011], identification of the minimal separator in the
divide-and-conquer based graph algorithms [Evrendilek, 2008; Lipton and Tarjan, 1979] as well as finding
protein conformation in bioinformatics [Fu and Chen, 2006]. From the point view of computational com-
plexity, VSP is known to be NP-hard for general graphs [Bui and Jones, 1992] and even for planar graphs
[Fukuyama, 2006].

1.4.2 Approximation approaches

[Leighton, 1983] presented an approximation algorithm based on a linear relaxation technique and
achieved an approximation ratio of O(log n). [Feige et al., 2005] improved this result to O(

√
log n) by
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utilizing a semidefinite relaxation method.

1.4.3 Exact approaches

There are also several exact algorithms able to solve medium scale VSP instances. [de Souza and
Balas, 2005] designed a branch-and-cut algorithm which explored valid polyhedral inequalities obtained in
[Balas and de Souza, 2005] and conducted extensive computational experiments. [de Souza and Cavalcante,
2011] proposed a hybrid algorithm that combines Lagrangian relaxation with cutting plane techniques.
Computational results showed that the hybrid algorithm outperforms the best exact algorithm available.
[Biha and Meurs, 2011] presented an exact approach based on a new class of valid inequalities and provided
experimental comparisons with the algorithm in [de Souza and Balas, 2005].

1.4.4 Heuristic and metaheuristic approaches

In addition to the above approximation and exact approaches, heuristic and metaheuristic algorithms
have been devised to obtain good approximate solutions for large VSP instances in reasonable computing
time. We provide in the following a description of state-of-the-art heuristic and metaheuristic algorithms
from the literature.

[Benlic and Hao, 2013b] presented a breakout local search (BLS) algorithm for VSP which combines
a local search procedure with an adaptive perturbation procedure. The local search procedure is based on
a dedicated move operator which transforms the incumbent solution to a neighbor solution by displacing a
vertex v from the separator C to the shore subset A or B, followed by displacing all the adjacent vertices
of v from the opposite shore subset to the separator C. Each iteration performs such a move that leads
to a neighbor solution with the largest objective improvement. The perturbation procedure employs an
adaptive selection mechanism to apply either a directed perturbation or a random perturbation to escape
locally optimal solutions and direct the search toward unexplored areas. Experimental results on benchmark
instances with up to 3000 vertices demonstrate the efficacy of the BLS method.

[Sánchez-Oro et al., 2014] introduced several variable neighborhood search (VNS) algorithms for solv-
ing the VSP, which alternates between a local search phase and a shaking phase. Two initial solution
constructive procedures (random and greedy) are proposed to generate seeding solutions. The local search
phase relys on three types of basic moves and two delicate combined moves to attain a local optimum. A
variable neighborhood descent procedure is then used to further improve the quality of a locally optimal
solution by an alternating use of two combined neighborhoods. The shaking phase carries out random per-
turbations to produce new solutions without violating the feasibility conditions. Extensive experiments on
benchmark instances with up to 1000 vertices disclose the effectiveness of the proposed VNS algorithms.

[Hager and Hungerford, 2015] proposed a continuous optimization approach. The problem is formu-
lated as a continuous bilinear quadratic program, which is solved by a multilevel algorithm. Following
the general multilevel graph approach, the proposed algorithm is composed of three phases including 1) a
coarsening phase that hierarchically coarsens a graph into a sequence of coarser (smaller) graphs; 2) a re-
finement phase that solves the graph in the coarsest level to obtain a separator; 3) an uncoarsening phase that
propagates the separator back to the hierarchy to obtain the solution for the original graph. Both mountain
climbing and Fiduccia–Mattheyses heuristics are investigated for solving each hierarchy of graphs. Ex-
perimental results show that the proposed continuous program based heuristics in a multilevel framework
outperform METIS in terms of solution quality for a large test set of graphs with between 1000 and 5000
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vertices. However, the proposed continuous optimization approach is outperformed by the state-of-the-art
BLS metaheuristic.

1.4.5 Summary

The vertex separator problem is another intriguing graph partitioning problem and has received more
attention in recent years. Population based approaches are capable of attaining a good balance between
intensification and diversification during the search and have shown highly effective for solving large scale
hard combinatorial optimization problems. The third work of this thesis is to devise an effective algorithm
within a population based search framework for challenging vertex separator problem instances. For this
purpose, we follow the path relinking framework to design the first path relinking algorithm, in which
specific path relinking components targeted to the vertex separator problem are developed. In particular,
the solution improvement component is designed along the previous successful research line of the multiple
operator based heuristic for detecting high quality solutions.



2
A multiple search operator heuristic for the
max-k-cut problem

In this chapter, we present a multiple operator heuristic (MOH) for the general max-k-cut problem.
MOH employs five distinct search operators organized into three search phases to effectively explore the
search space. Experiments on two sets of 91 well-known benchmark instances show that the proposed
algorithm is highly effective on the max-k-cut problem and improves the current best known results (lower
bounds) of most of the tested instances for k ∈ [3, 5]. For the popular special case k = 2 (i.e., the max-cut
problem), MOH also performs remarkably well by discovering 4 improved best known results. We provide
additional studies to shed light on the key ingredients of the algorithm. The content of this chapter is based
on an article submitted to Annals of Operations Research which was revised in March 2016.
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2.1 Introduction

This chapter is dedicated to the max-k-cut problem which was introduced in Chapter 1. Recall that
max-k-cut is to partition the vertices of an edge-weighted graph G = (V,E) into k ≥ 2 disjoint subsets
such that the weight sum of the edges crossing the different subsets is maximized. We propose a new
and effective multiple operator heuristic for the general max-k-cut problem. The main originality of the
proposed algorithm is its multi-phased multi-strategy approach which relies on five distinct local search
operators for solution transformations. These operators are organized into three different search phases
(descent-based improvement, diversified improvement, perturbation) to ensure an effective examination of
the search space. The basic idea of our approach is as follows. The descent-based improvement procedure
aims to locate a good local optimum from an initiating solution. This is achieved with two dedicated
intensification operators. Then the diversified improvement phase discovers promising areas around the
obtained local optimum by applying two additional operators. Once an improved solution is found, the
search switches back to the descent-based improvement phase to make an intensive exploitation of the
regional area. If the search is trapped in a deep local optimum, the perturbation phase applies a random
search operator to definitively lead the search to a distant region from which a new round of the three-
phased search procedure starts. This process is repeated until a stop condition is met.

We assess the performance of the proposed algorithm on two sets of well-known benchmarks with a
total of 91 instances which are commonly used to test max-k-cut and max-cut algorithms in the literature.
Computational results show that the proposed algorithm competes very favorably with respect to the ex-
isting max-k-cut heuristics, by improving the current best known results on most instances for k ∈ [3, 5].
Moreover, for the very popular max-cut problem (k = 2), the results yielded by our algorithm remain highly
competitive compared with the most effective and dedicated max-cut algorithms. In particular, our algo-
rithm manages to improve the current best known solutions for 4 (large) instances, which were previously
reported by specific max-cut algorithms of the literature.

This chapter is organized as follows. Section 2.2 describes the general scheme and the components of
our proposed multiple search operator heuristic for max-k-cut. Detailed computational results and com-
parisons with state-of-the-art algorithms are presented in Section 2.3. Before concluding, Section 2.4 is
dedicated to an analysis of several essential parts of the proposed algorithm.

2.2 Multiple search operator heuristic for max-k-cut

2.2.1 General working scheme

The proposed multiple operator heuristic algorithm (MOH) for the general max-k-cut problem is de-
scribed in Algorithm 1 whose components are explained in the following subsections. The algorithm ex-
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Algorithm 1 General procedure for the max-k-cut problem
1: Input: Graph G = (V,E), number of partitions k, max number ω of diversified moves, max number ξ of consecutive non-improvement rounds

of the descent improvement and diversified improvement phases before the perturbation phase, probability ρ for applying operator O3, γ the
perturbation strength.

2: Output: the best solution Ibest found so far
3: I ← Generate_initial_solution(V, k) . I is a partition of V into k subsets
4: Ibest ← I . Ibest Records the best solution found so far
5: flo ← f(I) . flo Records the objective value of the latest local optimum reached by O1 ∪O2

6: fbest ← f(I) . fbest Records the best objective value found so far
7: cnon_impv ← 0 . Counter of consecutive non-improvement rounds of descent and diversified search
8: while stopping condition not satisfied do
9: /* lines 10 to 19: Descent-based improvement phase by applying O1 and O2, see Section 2.2.4*/
10: repeat
11: while f(I ⊕O1) > f(I) do . Descent Phase by applying operator O1

12: I ← I ⊕O1 . Perform the move defined by O1

13: Update ∆ . ∆ is the bucket structure recording move gains for vertices, see Section 2.2.5
14: end while
15: if f(I ⊕O2) > f(I) then . Descent Phase by applying operator O2

16: I ← I ⊕O2

17: Update ∆
18: end if
19: until I can not be improved by operator O1 and O2

20: flo ← f(I)
21: if f(I) > fbest then
22: fbest ← f(I); Ibest ← I . Update the best solution found so far
23: cnon_impv ← 0 . Reset counter cnon_impv

24: else
25: cnon_impv ← cnon_impv + 1

26: end if
27: /* lines 28 to 38: Diversified improv. phase by applying O3 and O4 at most ω times, see Section 2.2.4 */
28: cdiv ← 0 . Counter cdiv records number of diversified moves
29: repeat
30: if Random(0, 1) < ρ then . Random(0,1) returns a random real number between 0 to 1
31: I ← I ⊕O3

32: else
33: I ← I ⊕O4

34: end if
35: Update H (H,λ) . Update tabu list H where λ is the tabu tenure, see Section 2.2.4
36: Update ∆
37: cdiv ← cdiv + 1
38: until cdiv > ω or f(I) > flo
39: /* Perturbation phase by applying O5 if fbest not improved for ξ rounds of phases 1-2, see Sect. 2.2.8 */
40: if cnon_impv > ξ then
41: I ← I ⊕O5 . Apply random perturbation γ times, see Section 2.2.8
42: cnon_impv ← 0

43: end if
44: end while

plores the search space (Section 2.2.2) by alternately applying five distinct search operators (O1 to O5) to
make transitions from the current solution to a neighbor solution (Section 2.2.4). Basically, from an ini-
tial solution, the descent-based improvement phase aims, with two operators (O1 and O2), to reach a local
optimum I (Alg. 1, lines 10 − 19, descent-based improvement phase, Section 2.2.6). Then the algorithm
continues to the diversified improvement phase (Alg. 1, lines 28 − 38, Section 2.2.7) which applies two
other operators (O3 andO4) to locate new promising regions around the local optimum I . This second phase
ends once a better solution than the current local optimum I is discovered or when a maximum number of
diversified moves ω is reached. In both cases, the search returns to the descent-based improvement phase
with the best solution found as its new starting point. If no improvement can be obtained after ξ descent-
based improvement and diversified improvement phases, the search is judged to be trapped in a deep local
optimum. To escape the trap and jump to an unexplored region, the search turns into a perturbation-based
diversification phase (Alg. 1, lines 40 − 43), which uses a random operator (O5) to strongly transform
the current solution (Section 2.2.8). The perturbed solution serves then as the new starting solution of the
next round of the descent-based improvement phase. This process is iterated until the stopping criterion
(typically a cutoff time limit) is met.
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2.2.2 Search space and evaluation solution

Recall that the goal of max-k-cut is to partition the vertex set V into k subsets such that the sum of
weights of the edges between the different subsets is maximized. As such, we define the search space Ω ex-
plored by our algorithm as the set of all possible partitions of V into k disjoint subsets, Ω = {{S1, S2, . . . , Sk} :
k
∪
i=1

Si = V, Si ∩ Sj = ∅, Si ⊂ V, ∀i 6= j}, where each candidate solution is called a k-cut.

For a given partition or k-cut I = {S1, S2, . . . , Sk} ∈ Ω, its objective value f(I) is the sum of weights
of the edges connecting two different subsets:

f(I) =
∑

1≤p<q≤k

∑
i∈Sp,j∈Sq

wij. (2.1)

Then, for two candidate solutions I ′ ∈ Ω and I ′′ ∈ Ω, I ′ is better than I ′′ if and only if f(I ′) > f(I ′′).
The goal of our algorithm is to find a solution Ibest ∈ Ω with f(Ibest) as large as possible.

2.2.3 Initial solution

The MOH algorithm needs an initial solution to start its search. Generally, the initial solution can be
provided by any eligible means. In our case, we adopt a randomized two step procedure. First, from k empty
subsets Si = ∅,∀i ∈ {1, . . . , k}, we assign each vertex v ∈ V to a random subset Si ∈ {S1, S2, . . . , Sk}.
Then if some subsets are still empty, we repetitively move a vertex from its current subset to an empty
subset until no empty subset exists.

2.2.4 Move operations and search operators

Our MOH algorithm iteratively transforms the incumbent solution to a neighbor solution by applying
some move operations. Typically, a move operation (or simply a move) changes slightly the solution, e.g.,
by transferring a vertex to a new subset. Formally, let I be the incumbent solution and let mv be a move,
we use I ′ ← I ⊕mv to denote the neighbor solution I ′ obtained by applying mv to I .

Associated to a move operation mv, we define the notion of move gain ∆mv, which indicates the ob-
jective change between the incumbent solution I and the neighbor solution I ′ obtained after applying the
move, i.e.,

∆mv = f(I ′)− f(I) (2.2)

where f is the optimization objective (see Formula (2.1)).

In order to efficiently evaluate the move gain of a move, we develop dedicated techniques which are
described in Section 2.2.5. In this work, we employ two basic move operations: the ‘single-transfer move’
and the ‘double-transfer move’. These two move operations form the basis of our five search operators.

– Single-transfer move (st): Given a k-cut I = {S1, S2, . . . , Sk}, a vertex v ∈ Sp and a target subset
Sq with p, q ∈ {1, . . . , k}, p 6= q, the ‘single-transfer move’ displaces vertex v ∈ Sp from its current
subset Sp to the target subset Sq 6= Sp. We denote this move by st(v, Sp, Sq) or v → Sq.
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– Double-transfer move (dt): Given a k-cut I = {S1, S2, . . . , Sk}, the ‘double-transfer move’ displaces
vertex u from its subset Scu to a target subset Stu 6= Scu, and displaces vertex v from its current subset
Scv to a target subset Stv 6= Scv. We denote this move by dt(u, Scu, Stu; v, Scv, Stv) or dt(u, v), or still
dt.

From these two basic move operations, we define five distinct search operators O1−O5 which indicate
precisely how these two basic move operations are applied to transform an incumbent solution to a new
solution. After an application of any of these search operators, the move gains of the impacted moves are
updated according to the dedicated techniques explained in Section 2.2.5.

– The O1 search operator applies the single-transfer move operation. Precisely, O1 selects among
the (k − 1)n single-transfer moves a best move v → Sq such that the induced move gain ∆(v→Sq)

is maximum. If there are more than one such moves, one of them is selected at random. Since
there are (k − 1)n candidate single-transfer moves from a given solution, the time complexity of
O1 is bounded by O(kn). The proposed MOH algorithm employs this search operator as its main
intensification operator which is complemented by theO2 search operator to locate good local optima
(see Alg. 1, lines 10− 19 and Section 2.2.6).

– The O2 search operator is based on the double-transfer move operation and selects a best dt move
with the largest move gain ∆dt. If there are more than one such moves, one of them is selected at
random.
Let dt(u, Scu, Stu; v, Scv, Stv) (Scu 6= Stu, Scv 6= Stv) be a double-transfer move, then the move gain
∆dt of this double transfer move can be calculated by a combination of the move gains of its two
underlying single-transfer moves (∆u→Stu and ∆v→Stv ) as follows:

∆dt(u,v) = ∆u→Stu + ∆v→Stv + ψωuv (2.3)

where ωuv is the weight of edge e(u, v) ∈ E and ψ is a coefficient which is determined as follows:

ψ =



−2, if Scu = Scv, Stu = Stv

2, if Stu = Scv, Scu = Stv

−1, if Scu = Scv, Stu 6= Stv

1, if Scu = Stv, Stu 6= Scv

−1, if Scu 6= Scv, Stu = Stv

1, if Scu 6= Stv, Stu = Scv

0, if Scu 6= Scv, Stu 6= Scv, Scu 6= Stv, Stu 6= Stv

(2.4)

The operator O2 is used when O1 exhausts its improving moves and provides a first means to help the
descent-based improvement phase to escape the current local optimum and discover solutions of in-
creasing quality. Given an incumbent solution, there are a total number of (k−1)2n(n−1) candidate
double-transfer moves denoted as set DT . Seeking directly the best move with the maximum ∆dt

among all these possible moves would just be too computationally expensive. In order to mitigate
this problem, we devise a strategy to accelerate the move evaluation process.

From Formula (2.3), one observes that among all the vertices in V , only the vertices verifying the
condition ωuv 6= 0 and ∆dt(u,v) > 0 are of interest for the double-transfer moves. Note that without
the condition ωuv 6= 0, performing a double-transfer move would actually equal to two consecutive
single-transfer moves, which on the one hand makes the operator O2 meaningless and on the other
hand fails to get an increased objective gain. Thus, by examining only the endpoint vertices of edges
in E, we shrink the move combinations by building a reduced subset: DTR = {dt(u, v) : dt(u, v) ∈
DT, ωuv 6= 0,∆dt(u,v) > 0}. Based onDTR, the complexity of examining all possible double-transfer
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moves drops to O(|E|), which is not related to k. In practice, one can examine φ|E| endpoint ver-
tices in case |E| is too large. We empirically set φ = 0.1/d, where d is the highest degree of the graph.

To summarize, the O2 search operator selects two st moves u → Stu and v → Stv from the reduced
set DTR, such that the combined move gain ∆dt(u,v) according to Formula (2.3) is maximum.

– The O3 search operator, like O1, selects a best single-transfer move (i.e., with the largest move
gain) while considering a tabu list H [Glover and Laguna, 1999]. The tabu list is a memory which is
used to keep track of the performed stmoves to avoid revisiting previously encountered solutions. As
such, each time a best st move is performed to displace a vertex v from its original subset to a target
subset, v becomes tabu and is forbidden to move back to its original subset for the next λ iterations
(called tabu tenure). In our case, the tabu tenure is dynamically determined as follows.

λ = rand(3, n/10) (2.5)

where rand(3, n/10) denotes a random integer between 3 and n/10.

Based on the tabu list, O3 considers all possible single-transfer moves except those forbidden by the
tabu list H and selects the best st move with the largest move gain ∆st. Note that a forbidden move
is always selected if the move leads to a solution better than the best solution found so far. This is
called aspiration in tabu search terminology [Glover and Laguna, 1999].

Although both O3 and O1 use the single-transfer move, they are two different search operators and
play different roles within the MOH algorithm. On the one hand, as a pure descent operator, O1 is
a faster operator compared to O3 and is designed to be an intensification operator. Since O1 alone
has no any diversification capacity and always ends with the local optimum encountered, it is jointly
used with O2 to visit different local optima. On the other hand, due to the use of the tabu list, O3 can
accept moves with a negative move gain (leading to a worsening solution). As such, unlike O1, O3

has some diversification capacity, and when jointly used with O4, helps the search to examine nearby
regions around the input local optimum to find better solutions (see Alg. 1, lines 28− 38 and Section
2.2.7).

– The O4 search operator, like O2, is based on the double-transfer operation. However, O4 strongly
constraints the considered candidate dt moves with respect to two target subsets which are randomly
selected. Specifically, O4 operates as follows. Select two target subsets Sp and Sq at random, and
then select two single-transfer moves u→ Sp and v → Sq such that the combined move gain ∆dt(u,v)

according to Formula (2.3) is maximum.
Operator O4 is jointly used with operator O3 to ensure the diversified improvement search phase.

– The O5 search operator is based on a randomized single-transfer move operation. O5 first selects a
random vertex v ∈ V and a random target subset Sp, where v 6∈ Sp and then moves v from its current
subset to Sp. This operator is used to change randomly the incumbent solution for the purpose of
(strong) diversification when the search is considered to be trapped in a deep local optimum (see
Section 2.2.8).

Among the five search operators, four of them (O1 − O4) need to find a single-transfer move with the
maximum move gain. To ensure a high computational efficiency of these operators, we develop below a
streamlining technique for fast move gain evaluation and move gain updates.

2.2.5 Bucket sorting for fast move gain evaluation and updating

The algorithm needs to rapidly evaluate a number of candidate moves at each iteration. Since all the
search operators basically rely on the single-transfer move operation, we developed a fast incremental
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evaluation technique based on a bucket data structure to keep and update the move gains after each move
application [Cormen et al., 2001]. Our streamlining technique can be described as follows: let v → Sx be
the move of transferring vertex v from its current subset Scv to any other subset Sx, x ∈ {1, . . . , k}, x 6= cv.
Then initially, each move gain is determined as follows:

∆v→Sx =
∑

i∈Scv ,i 6=v
ωvi −

∑
j∈Sx

ωvj , x ∈ {1, . . . , k}, x 6= cv (2.6)

where ωvi and ωvj are respectively the weights of edges e(v, i) and e(v, j).

Suppose the move v → Stv, i.e., displacing v from Scv to Stv, is performed, the move gains can be
updated by performing the following calculations:

1. for each Sx 6= Scv, Sx 6= Stv,
∆v→Sx = ∆v→Sx −∆v→Stv

2. ∆v→Scv = −∆v→Stv

3. ∆v→Stv = 0

4. for each u ∈ V − {v}, moving u ∈ Scu to each other subset Sy ∈ S − {Scu},

∆u→Sy =



∆u→Sy − 2ωuv, if Scu = Scv, Sy = Stv

∆u→Sy + 2ωuv, if Scu = Stv, Sy = Scv

∆u→Sy − ωuv, if Scu = Scv, Sy 6= Stv

∆u→Sy + ωuv, if Scu = Stv, Sy 6= Scv

∆u→Sy − ωuv, if Scu 6= Scv, Sy = Stv

∆u→Sy + ωuv, if Scu 6= Stv, Sy = Scv

∆u→Sy , if Scu 6= Scv, Scu 6= Stv, Sy 6= Scv, Sy 6= Stv

(2.7)

For low-density graphs, ωuv = 0 stands for most cases. Hence, we only update the move gains of
vertices affected by this move (i.e., the displaced vertex and its adjacent vertices), which reduces the com-
putation time significantly.

The move gains can be stored in an vector, with which the time for finding the best move grows linearly
with the number of vertices and partitions (O(kn)). For large problem instances, the required time to search
the best move can still be quite high, which is particular true when k is large. To further reduce the com-
puting time, we adapted the bucket sorting technique of Fiduccia and Mattheyes [Fiduccia and Mattheyses,
1982] initially proposed for the two-way network partitioning problem to the max-k-cut problem. The idea
is to keep the vertices ordered by the move gains in decreasing order in k arrays of buckets, one for each
subset Si ∈ {S1, S2, . . . , Sk}. In each bucket array i, the jth entry stores in a doubly linked list the vertices
with the move gain ∆v→Si

currently equaling j. To ensure a direct access to each vertex in the doubly linked
lists, we maintain another array for all vertices, where each element points to its corresponding vertex in
the doubly linked lists.

Fig. 2.1 shows an example of the bucket structure for k = 3 and n = 8. The 8 vertices of the graph (Fig.
2.1, left) are divided to 3 subsets S1, S2 and S3. The associated bucket structure (Fig. 2.1, right) shows that
the move gains of moving vertices e, g, h to subset S1 equal −1, then they are stored in the entry of B1 with
index of−1 and are managed as a doubly linked list. The array AI shown at the bottom of Fig. 2.1 manages
position indexes of all vertices.
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Figure 2.1: An example of bucket structure for max-3-cut

For each array of buckets, finding the best vertex with maximum move gain is equivalent to finding
the first non-empty bucket from top of the array and then selecting a vertex in its doubly linked list. If
there are more than one vertices in the doubly linked list, a random vertex in this list is selected. To
further reduce the searching time, the algorithm memorizes the position of the first non-empty bucket (e.g.,
gmax1, gmax2, gmax3 in Fig. 2.1). After each move, the bucket structure is updated by recomputing the
move gains (see Formula (2.7)) of the affected vertices which include the moved vertex and its adjacent
vertices, and shifting them to appropriate buckets. For instance, the steps of performing an O1 move based
on Fig. 2.1 are shown as follows: First, obtain the index of maximum move gain in the bucket arrays by
calculating max(gmax1, gmax2, gmax3), which equals gmax3 in this case. Second, select randomly a
vertex indexed by gmax3, vertex b in this case. At last, update the positions of the affected vertices a, b, d.

The complexity of each move consists in 1) searching for the vertex with maximum move gain in O(l)
(l being the current length of the doubly link list with the maximum gain, typically much smaller than n),
2) recomputing the move gains for the affected vertices in O(kdmax) (dmax being the maximum degree of
the graph), and 3) updating the bucket structure in O(kdmax).

2.2.6 Descent-based improvement phase for intensified search

The descent-based local search is used to obtain a local optimum from a given starting solution. As
described in Algorithm 1 (lines 10 - 19), we alternatively uses two search operators O1 and O2 defined in
Section 2.2.4 to improve a solution until reaching a local optimum. Starting from the given initial solution,
the procedure first applies O1 to improve the incumbent solution. According to the definition of O1 in
Section 2.2.4, at each step, the procedure examines all possible single-transfer moves and selects a move
v → Sq with the largest move gain ∆v→Sq subject to ∆v→Sq > 0, and then performs that move. After the
move, the algorithm updates the bucket structure of move gains according to the technique described in
Section 2.2.5.
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When the incumbent solution can not be improved by O1 (i.e., ∀v ∈ V, ∀Sq,∆v→Sq ≤ 0), the procedure
turns to O2 which makes one best double-transfer move. If an improved solution is discovered with respect
to the local optimum reached by O1, we are in a new promising area. We switch back to operator O1 to
resume an intensified search to attain a new local optimum. The descent-based improvement phase stops
when no better solution can be found with O1 and O2. The last solution is a local optimum Ilo with respect
to the single-transfer and double-transfer moves and serves as the input solution of the second search phase
which is explained in the next section.

2.2.7 Diversified improvement phase for discovering promising region

The descent-based local phase described in Section 2.2.6 alone can not go beyond the best local optimum
Ilo it encounters. The diversified improvement search phase is used 1) to jump out of this local optimum and
2) to intensify the search around this local optimum with the hope of discovering other improved solutions
better than the input local optimum Ilo. The diversified improvement search procedure alternatively uses
two search operators O3 and O4 defined in Section 2.2.4 to perform moves until a prescribed condition is
met (see below and Alg. 1, line 38). The application of O3 or O4 is determined probabilistically: with
probability ρ, O3 is applied; with 1− ρ, O4 is applied.

When O3 is selected, the algorithm searches for a best single transfer move v → Sq with maximum
move gain ∆v→Sq which is not forbidden by the tabu list or verifies the aspiration criterion. Each performed
move is then recorded in the tabu list H and is classified tabu for the next λ (calculated by Formula (2.5))
iterations. The bucket structure is updated to actualize the impacted move gains accordingly. Note that the
algorithm only keeps and updates the tabu list during the diversified improvement search phase. Once this
second search phase terminates, the tabu list is cleared up.

Similarly, when O4 is selected, two subsets are selected at random and a best double-transfer dt move
with maximum move gain ∆dt is determined from the bucket structure (break ties at random). After the
move, the bucket structure is updated to actualize the impacted move gains.

The diversified improvement search procedure terminates once a solution better than the input local
optimum Ilo is found, or a maximum number ω of diversified moves (O3 or O4) is reached. Then the
algorithm returns to the descent-based search procedure and use the current solution I as a new starting
point for the descent-based search. If the best solution founded so far (fbest) can not be improved over
a maximum allowed number ξ of consecutive rounds of the descent-based improvement and diversified
improvement phases, the search is probably trapped in a deep local optima. Consequently, the algorithm
switches to the perturbation phase (Section 2.2.8) to displace the search to a distant region.

2.2.8 Perturbation phase for strong diversification

The diversified improvement phase makes it possible for the search to escape some local optima. How-
ever, the algorithm may still get deeply stuck in a non-promising regional search area. This is the case when
the best-found solution fbest can not be improved after ξ consecutive rounds of descent and diversified
improvement phases. Thus the random perturbation is applied to strongly change the incumbent solution.

The basic idea of the perturbation consists in applying the O5 operator γ times. In other words, this
perturbation phase moves γ randomly selected vertices from their original subset to a new and randomly
selected subset. Here, γ is used to control the perturbation strength; a large (resp. small) γ value changes
strongly (resp. weakly) the incumbent solution. In our case, we adopt γ = 0.1|V |, i.e., as a percent of
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the number of vertices. After the perturbation phase, the search returns to the descent-based improvement
phase with the perturbed solution as its new starting solution.

2.3 Experimental results and comparisons

2.3.1 Benchmark instances

To evaluate the performance of the proposed MOH approach, we carried out computational experiments
on two sets of well-known benchmarks with a total of 91 large instances of the literature 1. The first set (G-
set) is composed of 71 graphs with 800 to 20000 vertices and an edge density from 0.02% to 6%. These
instances were previously generated by a machine-independent graph generator including toroidal, planar
and random weighted graphs. These instances are available from: http://www.stanford.edu/yyye/yyye/Gset.
The second set comes form [Burer et al., 2002], arising from 30 cubic lattices with randomly generated
interaction magnitudes. Since the 10 small instances (with less than 1000 vertices) of the second set are very
easy for our algorithm, only the results of the 20 larger instances with 1000 to 2744 vertices are reported.
These well-known benchmarks were frequently used to evaluate the performance of max-bisection, max-cut
and max-k-cut algorithms [Benlic and Hao, 2013a; Festa et al., 2002; Shylo et al., 2012; Shylo et al., 2015;
Wang et al., 2013; Wu and Hao, 2012; Wu and Hao, 2013; Wu et al., 2015; Zhu et al., 2013].

2.3.2 Experimental protocol

The proposed MOH algorithm was programmed in C++ and compiled with GNU g++ (optimization flag
“-O2"). Our computer is equipped with a Xeon E5440/2.83GHz CPU with 2GB RAM. When testing the
DIMACS machine benchmark 2, our machine requires 0.43, 2.62 and 9.85 CPU time in seconds respectively
for graphs r300.5, r400.5, and r500.5 compiled with g++ -O2.

2.3.3 Parameters

The MOH algorithm requires five parameters: tabu tenure λ, maximum number ω of diversified moves,
maximum number ξ of consecutive non-improving rounds of the descent and diversified improvement
phases before the perturbation phase, probability ρ for applying the operator O3, and perturbation strength
γ. For the tabu tenure λ, we adopted the recommended setting of the Breakout Local Search [Benlic and
Hao, 2013a], which performs quite well for the benchmark graphs. For each of the other parameters,
we first identified a collection of varying values and then determined the best setting by testing the can-
didate values of the parameter while fixing the other parameters to their default values. This parameter
study was based on a selection of 10 representative and challenging G-set instances (G22, G23, G25, G29,
G33, G35, G36, G37, G38 and G40). For each parameter setting, 10 independent runs of the algorithm
were conducted for each instance and the average objective values over the 10 runs were recorded. If a
large parameter value presents a better result, we gradually increase its value; otherwise, we gradually
decrease its value. By repeating the above procedure, we determined the following parameter settings:

1. Our best results are available at: http://www.info.univ-angers.fr/pub/hao/maxkcut/MOHResults.
zip.

2. dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/

http://www.info.univ-angers.fr/pub/hao/maxkcut/MOHResults.zip
http://www.info.univ-angers.fr/pub/hao/maxkcut/MOHResults.zip
ftp://dimacs.rutgers.edu/pub/dsj/clique/
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λ = rand(3, |V |/10), ω = 500, ξ = 1000, ρ = 0.5, and γ = 0.1|V |, which were used in our experiments to
report computational results.

Considering the stochastic nature of our MOH algorithm, each instance was independently solved 20
times. For the purpose of fair comparisons reported in Sections 2.3.4 and 2.3.5, we followed most reference
algorithms and used a timeout limit as the stopping criterion of the MOH algorithm. The timeout limit was
set to be 30 minutes for graphs with |V | < 5000, 120 minutes for graphs with 10000 ≥ |V | ≥ 5000, 240
minutes for graphs with |V | ≥ 10000.

To fully assess the performance of the MOH algorithm, we performed two comparisons with the state-
of-the-art algorithms. First, we focused on the max-k-cut problem (k = 2, 3, 4, 5), where we thoroughly
compared our algorithm with the recent discrete dynamic convexized algorithm [Zhu et al., 2013] which
provides the most competitive results for the general max-k-cut problem in the literature. Secondly, for
the special max-cut case (k = 2), we compared our algorithm with seven most recent max-cut algorithms
[Benlic and Hao, 2013a; Kochenberger et al., 2013; Shylo et al., 2012; Wang et al., 2013; Wu and Hao,
2012; Wu and Hao, 2013]. It should be noted that those state-of-the-art max-cut algorithms were specifically
designed for the particular max-cut problem while our algorithm was developed for the general max-k-cut
problem. Naturally, the dedicated algorithms are advantaged since they can better explore the particular
features of the max-cut problem.

2.3.4 Comparison with state-of-the-art max-k-cut algorithms

In this section, we present the results attained by the MOH algorithm for the max-k-cut problem. As
mentioned above, we compare the proposed algorithm with the discrete dynamic convexized algorithm
(DC) [Zhu et al., 2013], which was published very recently. DC was tested on a computer with a 2.11
GHz AMD processor and 1 GB of RAM. According to the Standard Performance Evaluation Cooperation
(SPEC) (www.spec.org), this computer is 1.4 times slower than the computer we used for our experiments.
Note that DC is the only heuristic algorithm available in the literature, which published computational
results for the general max-k-cut problem.

Tables 2.1 to 2.4 respectively show the computational results of the MOH algorithm (k = 2, 3, 4, 5)
on the 2 sets of benchmarks in comparison with those of the DC algorithm. The first two columns of
the tables indicate the name and the number of vertices of the graphs. Columns 3 to 6 present the results
attained by our algorithm, where fbest and favg show the best objective value and the average objective
value over 20 runs, std gives the standard deviation and time(s) indicates the average CPU time in seconds
required by our algorithm to reach the best objective value fbest. Columns 7 to 10 present the statistics of
the DC algorithm, including the best objective value fbest, average objective value favg, the time required to
terminate the run tt(s) and the time bt(s) to reach the fbest value. Considering the difference between our
computer and the computer used by DC, we normalize the time of DC by dividing them by 1.4 according to
the SPEC mentioned above. The entries marked as “-" in the tables indicate that the corresponding results
are not available. The entries in bold indicate that those results are better than the results provided by
the reference DC algorithm. The last column (gap) indicates the gap of the best objective value for each
instance between our algorithm and DC. A positive gap implies an improved result.

From Table 2.1 on max-2-cut, one observes that our algorithm achieves a better fbest (best objective
value) for 50 out of 74 instances reported by DC, while a better favg (average objective value) for 71 out
of 74 instances. Our algorithm matches the results on other instances and there is no result worse than
that obtained by DC. The average standard deviation for all 91 instances is only 2.82, which shows our
algorithm is stable and robust.
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From Table 2.2, 2.3, and 2.4, which respectively show the comparative results on max-3-cut, max-4-cut
and max-5-cut. One observes that our algorithm achieves much higher solution quality on more than 90
percent of 44 instances reported by DC while getting 0 worse result. Moreover, even our average results
(favg) are better than the best results reported by DC.

Note that the DC algorithm used a stopping condition of 500 generations (instead of a cutoff time
limit) to report its computational results. Among the two timing statistics (tt(s) and bt(s)), bt(s) roughly
corresponds to column time of the MOH algorithm. Still given that the two algorithms attain solutions of
quite different quality, it is meaningless to directly compare the corresponding time values listed in Tables
2.1–2.4. To fairly compare the computational efficiency of MOH and DC, we reran the MOH algorithm
with the best objective value of the DC algorithm as our stopping condition and reported our timing statistics
in Table 2.5. One observes that our algorithm needs at most 16 seconds (less than 1 second for most cases)
to attain the best objective value reported by the DC algorithm, while the DC algorithm requires at least 44
seconds and up to more than 2000 seconds for several instances. More generally, as shown in Table 2.1–2.4,
except the last 17 instances of the very competitive max-2-cut problem for which the results of DC are not
available, the MOH algorithm requires rarely more than 1000 seconds to attain solutions of much better
quality.

We conclude that the proposed algorithm for the general max-k-cut problem dominates the state-of-the-
art reference DC algorithm both in terms of solution quality and computing time.

2.3.5 Comparison with state-of-the-art max-cut algorithms

Our algorithm was designed for the general max-k-cut problem for k ≥ 2. The assessment of the last
section focused on the general case. In this section, we further evaluate the performance of the proposed
algorithm for the special max-cut problem (k = 2).

Recall that max-cut has been largely studied in the literature for a long time and there are many pow-
erful heuristics which are specifically designed for the problem. These state-of-the-art max-cut algorithms
constitute thus relevant references for our comparative study. In particular, we adopt the following 7 best
performing sequential algorithms published since 2012.

1. Global equilibrium search (GES) (2012) [Shylo et al., 2012] - an algorithm sharing ideas similar to
simulated annealing and utilizing accumulated information of search space to generate new solutions
for the subsequent stages. The reported results of GES were obtained on a PC with a 2.83GHz Intel
Core QUAD Q9550 CPU and 8.0GB RAM.

2. Breakout local search (BLS) (2013) [Benlic and Hao, 2013a] - a heuristic algorithm integrating a
local search and adaptive perturbation strategies. The reported results of BLS were obtained on a PC
with 2.83GHz Intel Xeon E5440 CPU and 2GB RAM.

3. Two memetic algorithms respective for the max-cut problem (MACUT) (2012) [Wu and Hao, 2012]
and the max-bisection problem (MAMBP) (2013) [Wu and Hao, 2013] - integrating a grouping
crossover operator and a tabu search procedure. The results reported in the two papers were obtained
on a PC with a 2.83GHz Intel Xeon E5440 CPU and 2GB RAM.

4. GRASP-Tabu search algorithm (2013) [Wang et al., 2013] - a method converting the max-cut problem
to the UBQP problem and solving it by integrating GRASP and tabu search. The reported results were
obtained on a PC with a 2.83GHz Intel Xeon E5440 CPU and 2GB RAM.
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5. Tabu search (TS-UBQP) (2013) [Kochenberger et al., 2013] - a tabu search algorithm designed for
UBQP. The evaluation of TS-UBQP were performed on a PC with a 2.83GHz Intel Xeon E5440 CPU
and 2GB RAM.

6. Tabu search based hybrid evolutionary algorithm (TSHEA) (2016) [Wu et al., 2015] - a very recent
hybrid algorithm integrating a distance-and-quality guided solution combination operator and a tabu
search procedure based on neighborhood combination of one-flip and constrained exchange moves.
The results were obtained on a PC with 2.83GHz Intel Xeon E5440 CPU and 8GB RAM.

One notices that except GES, the other five reference algorithms were run on the same computing
platform. Nevertheless, it is still difficult to make a fully fair comparison of the computing time, due to the
differences on programming language, compiling options, and termination conditions, etc. Our comparison
thus focuses on the best solution achieved by each algorithm. Recall that for our algorithm, the timeout limit
was set to be 30 minutes for graphs with |V | < 5000, 120 minutes for graphs with 5000 ≤ |V | < 10000,
240 minutes for graphs with |V | ≥ 10000. Our algorithm employed thus the same timeout limits as [Wu
and Hao, 2012] on the graphs |V | < 10000, but for the graphs |V | ≥ 10000, we used 240 minutes to
compare with BLS [Benlic and Hao, 2013a].

Table 2.6 gives the comparative results on the 91 instances of the two benchmarks. Columns 1 and 2
respectively indicate the instance name and the number of vertices of the graphs. Columns 3 shows the
current best known objective value fpre reported by any existing max-cut algorithm in the literature includ-
ing the latest parallel GES algorithm [Shylo et al., 2015]. Columns 4 to 10 give the best objective value
obtained by the reference algorithms: GES [Shylo et al., 2012], BLS [Benlic and Hao, 2013a], MACUT
[Wu and Hao, 2012], TS-UBQP [Kochenberger et al., 2013], GRASP-TS/PM [Wang et al., 2013], MAMBP
[Wu and Hao, 2013] and TSHEA [Wu et al., 2015]. Note that MAMBP is designed for the max-bisection
problem (i.e., balanced max-cut), however it achieves some previous best known max-cut results. The last
column ‘MOH’ recalls the best results of our algorithm from Table 2.1. The rows denoted by ‘Better’,
‘Equal’ and ‘Worse’ respectively indicate the number of instances for which our algorithm obtains a result
of better, equal and worse quality relative to each reference algorithm. The entries are reported in the form
of x/y/z, where z denotes the total number of the instances tested by our algorithm, y is the number of
the instances tested by a reference algorithm and x indicates the number of instances where our algorithm
achieved ‘Better’, ‘Equal’ or ‘Worse’ results. The results in bold mean that our algorithm has improved the
best known results. The entries marked as “-" in the table indicate that the results are not available.

From Table 2.6, one observes that the MOH algorithm is able to improve the current best known re-
sults in the literature for 4 instances, and match the best known results for 74 instances. For 13 cases (in
italic), even if our results are worse than the current best known results achieved by the latest parallel GES
algorithm [Shylo et al., 2015], they are still better than the results of other existing algorithms, except for
4 instances if we refer to the most recent TSHEA algorithm [Wu et al., 2015]. Note that the results of the
parallel GES algorithm were achieved on a more powerful computing platform (Intel CoreTM i7-3770 CPU
@3.40GHz and 8GB RAM) and with longer time limits (4 parallel processes at the same time and 1 hour
for each process).

Such a performance is remarkable given that we are comparing our more general algorithm designed for
max-k-cut with the best performing specific max-cut algorithms. The experimental evaluations presented in
this section and last section demonstrate that our algorithm not only performs well on the general max-k-cut
problem, but also remains highly competitive for the special case of the popular max-cut problem.
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Table 2.1: Comparative results for max-2-cut between the proposed MOH algorithm and DC

Instance |V | MOH DC gap

fbest favg std time(s) fbest favg tt(s) bt(s)

G1 800 11624 11624.00 0.00 1.46 11624 11617.20 131.73 90.98 0
G2 800 11620 11620.00 0.00 4.61 11620 11610.00 131.38 79.96 0
G3 800 11622 11622.00 0.00 1.25 11622 11612.20 130.78 64.22 0
G4 800 11646 11646.00 0.00 5.23 11646 11633.90 133.78 48.17 0
G5 800 11631 11631.00 0.00 0.99 11631 11623.20 131.71 36.46 0
G6 800 2178 2178.00 0.00 3.03 2178 2175.90 132.08 83.88 0
G7 800 2006 2006.00 0.00 2.98 2006 1997.70 137.61 59.61 0
G8 800 2005 2005.00 0.00 5.72 2005 2000.00 139.17 31.28 0
G9 800 2054 2054.00 0.00 3.21 2049 2043.50 134.94 40.03 5
G10 800 2000 2000.00 0.00 68.09 1999 1998.40 133.26 18.34 1
G11 800 564 564.00 0.00 0.22 564 563.80 58.84 7.78 0
G12 800 556 556.00 0.00 3.52 556 555.40 58.73 17.09 0
G13 800 582 582.00 0.00 0.85 582 580.00 60.95 43.21 0
G14 800 3064 3064.00 0.00 251.27 3057 3054.30 82.68 56.77 7
G15 800 3050 3050.00 0.00 52.19 3044 3038.00 82.43 27.69 6
G16 800 3052 3052.00 0.00 93.68 3052 3039.60 81.12 15.19 0
G17 800 3047 3047.00 0.00 129.53 3043 3037.80 81.61 15.05 4
G18 800 992 992.00 0.00 112.65 989 984.00 89.05 3.73 3
G19 800 906 906.00 0.00 266.92 906 899.90 84.43 24.96 0
G20 800 941 941.00 0.00 43.71 941 938.20 86.28 15.17 0
G21 800 931 931.00 0.00 155.34 931 926.00 86.24 12.44 0
G22 2000 13359 13357.00 1.91 352.37 13339 13315.90 683.67 108.56 20
G23 2000 13344 13344.00 0.00 433.79 13323 13298.90 705.23 433.48 21
G24 2000 13337 13336.70 0.46 777.86 13314 13286.00 692.07 237.38 23
G25 2000 13340 13335.50 2.40 442.45 13324 13293.70 694.73 667.19 16
G26 2000 13328 13325.50 2.31 535.14 13313 13282.20 689.61 251.36 15
G27 2000 3341 3341.00 0.00 42.25 3326 3285.40 677.86 464.32 15
G28 2000 3298 3298.00 0.00 707.18 3292 3272.00 680.47 594.81 6
G29 2000 3405 3397.85 5.31 555.23 3390 3357.20 693.45 375.90 15
G30 2000 3413 3412.15 0.36 330.46 3398 3369.50 676.54 587.80 15
G31 2000 3310 3307.85 0.91 592.56 3295 3273.90 696.42 212.48 15
G32 2000 1410 1410.00 0.00 65.75 1408 1402.70 514.87 115.58 2
G33 2000 1382 1381.60 0.80 504.10 1378 1373.70 508.85 271.75 4
G34 2000 1384 1384.00 0.00 84.23 1378 1376.70 531.51 97.37 6
G35 2000 7686 7681.65 1.59 796.70 7647 7632.20 614.51 391.36 39
G36 2000 7680 7673.60 1.62 664.48 7625 7618.50 613.15 594.82 55
G37 2000 7691 7685.75 2.26 652.78 7640 7627.70 623.72 609.25 51
G38 2000 7688 7683.60 2.27 779.69 7641 7614.40 632.95 587.98 47
G39 2000 2408 2405.35 1.85 787.69 2375 2352.50 659.34 281.45 33
G40 2000 2400 2397.35 2.43 472.50 2384 2371.70 656.75 425.90 16
G41 2000 2405 2405.00 0.00 377.35 2377 2357.40 666.79 244.21 28
G42 2000 2481 2476.35 2.01 777.42 2469 2441.30 657.13 374.11 12
G43 1000 6660 6660.00 0.00 1.15 6657 6648.90 156.66 29.04 3
G44 1000 6650 6650.00 0.00 5.28 6650 6643.70 155.84 24.82 0
G45 1000 6654 6654.00 0.00 6.87 6647 6640.70 155.28 95.98 7
G46 1000 6649 6648.90 0.30 67.27 6647 6637.90 157.02 61.02 2
G47 1000 6657 6657.00 0.00 43.25 6657 6648.50 157.81 144.33 0
G48 3000 6000 6000.00 0.00 0.02 6000 6000.00 420.15 0.26 0
G49 3000 6000 6000.00 0.00 0.03 6000 6000.00 440.26 0.36 0
G50 3000 5880 5879.70 0.71 532.13 5880 5880.00 552.51 0.59 0
G51 1000 3848 3848.00 0.00 189.20 3842 3831.50 137.56 122.03 6
G52 1000 3851 3851.00 0.00 209.69 3840 3830.50 132.69 119.09 11
G53 1000 3850 3849.95 0.22 299.28 3844 3835.00 136.25 62.86 6
G54 1000 3852 3851.10 0.30 190.38 3831 3824.40 136.04 60.29 21
G55 5000 10299 10283.40 7.13 1230.40 - - - - -
G56 5000 4016 4007.47 6.49 990.40 - - - - -
G57 5000 3494 3486.80 2.45 1528.34 - - - - -
G58 5000 19288 19275.40 4.58 1522.29 - - - - -
G59 5000 6087 6077.19 7.90 2498.80 - - - - -
G60 7000 14190 14173.00 6.98 2945.40 - - - - -
G61 7000 5798 5782.67 5.72 6603.34 - - - - -
G62 7000 4868 4851.73 7.10 5568.63 - - - - -
G63 7000 27033 27019.20 6.23 6492.11 - - - - -
G64 7000 8747 8700.87 19.28 4011.10 - - - - -
G65 8000 5560 5531.93 6.43 4709.53 - - - - -
G66 9000 6360 6323.53 6.34 6061.92 - - - - -
G67 10000 6942 6903.93 8.91 4214.28 - - - - -
G70 10000 9544 9527.80 9.32 8732.40 - - - - -
G72 10000 6998 6957.80 7.36 6586.64 - - - - -
G77 14000 9928 9920.00 3.08 9863.56 - - - - -
G81 20000 14036 14020.30 8.50 20422.00 - - - - -
3dl101000 1000 896 896.00 0.00 8.35 896 888.70 113.30 48.64 0
3dl102000 1000 900 900.00 0.00 9.50 900 898.50 111.50 2.56 0
3dl103000 1000 892 892.00 0.00 148.25 888 884.70 112.96 23.59 4
3dl104000 1000 898 898.00 0.00 4.20 898 895.00 112.19 30.17 0
3dl105000 1000 886 886.00 0.00 17.00 884 882.80 115.04 14.16 2
3dl106000 1000 888 888.00 0.00 5.55 888 883.70 114.72 32.87 0
3dl107000 1000 900 899.60 0.80 61.10 898 892.40 114.06 39.41 2
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Table 2.1 – continued from previous page
Instance |V | MOH DC gap

fbest favg std time(s) fbest favg tt(s) bt(s)

3dl108000 1000 882 882.00 0.00 76.95 880 877.70 120.03 15.83 2
3dl109000 1000 902 902.00 0.00 21.55 902 894.40 113.64 9.72 0
3dl1010000 1000 894 894.00 0.00 12.15 894 893.40 110.87 21.37 0
3dl141000 2744 2446 2445.00 1.61 552.20 2434 2416.40 1039.73 694.21 12
3dl142000 2744 2458 2457.70 1.31 479.15 2444 2431.00 1016.16 496.31 14
3dl143000 2744 2444 2439.60 2.33 58.75 2426 2415.00 1012.31 121.79 18
3dl144000 2744 2450 2448.10 2.23 220.55 2440 2425.30 997.51 587.98 10
3dl145000 2744 2446 2444.90 2.23 372.35 2432 2422.40 999.31 277.75 14
3dl146000 2744 2452 2449.60 2.06 227.80 2438 2430.00 1035.41 930.23 14
3dl147000 2744 2444 2442.70 1.31 239.05 2428 2413.40 1022.70 556.16 16
3dl148000 2744 2448 2446.40 1.50 405.35 2432 2424.40 1030.67 954.38 16
3dl149000 2744 2428 2424.70 2.12 112.05 2418 2403.70 1020.11 832.95 10
3dl1410000 2744 2458 2455.70 2.63 286.35 2438 2429.30 1018.15 466.77 20
Better 50/74/91 71/74/91
Equal 24/74/91 3/74/91
Worse 0/74/91 0/74/91

Table 2.2: Comparative results for max-3-cut between the proposed MOH algorithm and DC

Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G1 800 15165 15164.90 0.36 557.25 15127 508.34 339.41 38
G2 800 15172 15171.20 0.99 333.25 15159 497.49 228.37 13
G3 800 15173 15173.00 0.00 269.60 15149 506.45 205.06 24
G4 800 15184 15181.40 2.46 300.55 - - - -
G5 800 15193 15193.00 0.00 98.15 - - - -
G6 800 2632 2631.95 0.22 307.30 - - - -
G7 800 2409 2408.40 1.07 381.00 - - - -
G8 800 2428 2427.55 0.67 456.50 - - - -
G9 800 2478 2475.85 2.52 282.00 - - - -
G10 800 2407 2406.40 0.86 569.30 - - - -
G11 800 669 667.80 0.75 143.80 660 240.99 132.51 9
G12 800 660 658.95 0.50 100.70 655 212.56 59.09 5
G13 800 686 685.40 0.58 459.35 679 230.20 111.53 7
G14 800 4012 4009.45 1.88 88.20 3984 271.47 190.40 28
G15 800 3984 3982.40 0.58 80.30 3960 271.88 183.92 24
G16 800 3991 3986.30 1.87 1.30 3958 272.44 75.02 33
G17 800 3983 3981.00 1.05 7.80 - - - -
G18 800 1207 1205.60 1.56 0.30 - - - -
G19 800 1081 1078.05 2.38 0.20 - - - -
G20 800 1122 1115.00 4.05 13.25 - - - -
G21 800 1109 1106.75 2.30 55.75 - - - -
G22 2000 17167 17157.80 7.62 28.45 17008 2121.42 986.19 159
G23 2000 17168 17156.70 6.40 45.05 17021 2190.36 1208.18 147
G24 2000 17162 17152.10 4.98 16.30 17037 2230.09 1385.32 125
G25 2000 17163 17155.20 3.44 64.75 - - - -
G26 2000 17154 17146.30 4.61 44.80 - - - -
G27 2000 4020 4013.80 3.33 53.15 - - - -
G28 2000 3973 3966.45 5.10 38.85 - - - -
G29 2000 4106 4097.30 5.40 68.15 - - - -
G30 2000 4119 4109.90 5.34 150.40 - - - -
G31 2000 4003 3999.20 6.69 124.70 - - - -
G32 2000 1653 1651.85 0.73 160.05 1635 1274.91 905.73 18
G33 2000 1625 1622.30 0.95 62.55 1603 1215.13 664.57 22
G34 2000 1607 1604.00 1.00 88.85 1589 1303.88 827.79 18
G35 2000 10046 10039.90 2.59 66.15 9965 1793.30 1048.97 81
G36 2000 10039 10034.40 3.81 74.25 9945 1822.04 1196.02 94
G37 2000 10052 10047.80 1.96 3.35 9952 1845.20 1288.13 100
G38 2000 10040 10035.50 3.26 116.60 - - - -
G39 2000 2903 2890.05 6.75 8.95 - - - -
G40 2000 2870 2850.65 8.08 82.80 - - - -
G41 2000 2887 2862.90 9.77 87.70 - - - -
G42 2000 2980 2964.30 5.99 2.45 - - - -
G43 1000 8573 8573.00 0.00 380.30 8510 512.48 112.20 63
G44 1000 8571 8569.60 2.35 616.80 8526 491.34 47.87 45
G45 1000 8566 8564.85 1.11 186.20 8515 504.19 44.00 51
G46 1000 8568 8564.60 2.01 215.30 - - - -
G47 1000 8572 8568.70 2.72 239.35 - - - -
G48 3000 6000 6000.00 0.00 0.40 5998 2591.27 293.30 2
G49 3000 6000 6000.00 0.00 0.90 6000 2653.42 1587.05 0
G50 3000 6000 6000.00 0.00 119.15 5998 2547.78 279.78 2
G51 1000 5037 5031.35 1.90 47.90 - - - -
G52 1000 5040 5037.50 0.81 0.65 - - - -
G53 1000 5039 5038.00 1.05 223.85 - - - -
G54 1000 5036 5033.55 2.29 133.95 - - - -
G55 5000 12429 12423.70 2.61 383.10 - - - -
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Table 2.2 – continued from previous page
Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G56 5000 4752 4741.90 7.84 569.20 - - - -
G57 5000 4083 4079.00 1.55 535.60 - - - -
G58 5000 25195 25182.10 8.89 576.00 - - - -
G59 5000 7262 7246.70 9.20 27.50 - - - -
G60 7000 17076 17067.00 4.40 683.00 - - - -
G61 7000 6853 6842.10 5.26 503.10 - - - -
G62 7000 5685 5681.50 1.43 242.40 - - - -
G63 7000 35322 35301.60 10.35 658.50 - - - -
G64 7000 10443 10408.80 25.23 186.90 - - - -
G65 8000 6490 6485.80 2.04 324.70 - - - -
G66 9000 7416 7411.50 2.42 542.50 - - - -
G67 10000 8086 8083.50 2.29 756.70 - - - -
G70 10000 9999 9999.00 0.00 7.80 - - - -
G72 10000 8192 8186.70 3.35 271.20 - - - -
G77 14000 11578 11568.90 4.01 154.90 - - - -
G81 20000 16321 16313.00 4.05 331.20 - - - -
3dl101000 1000 1067 1066.10 0.54 150.40 1043 333.45 179.20 24
3dl102000 1000 1072 1071.95 0.22 669.50 1044 339.38 188.68 28
3dl103000 1000 1065 1063.60 0.66 142.85 1042 326.69 114.20 23
3dl104000 1000 1071 1070.30 0.46 160.20 1045 341.58 109.75 26
3dl105000 1000 1064 1061.90 0.77 4.40 1039 320.88 178.88 25
3dl106000 1000 1063 1061.80 0.60 120.00 1032 353.75 23.96 31
3dl107000 1000 1075 1074.40 0.58 414.05 1053 335.95 157.18 22
3dl108000 1000 1071 1069.95 0.38 78.55 1049 325.50 209.77 22
3dl109000 1000 1079 1078.20 0.81 208.85 1052 328.38 232.87 27
3dl1010000 1000 1070 1069.50 0.50 478.65 1044 346.13 184.91 26
3dl141000 2744 2924 2919.75 2.45 25.00 2845 2527.70 1496.07 79
3dl142000 2744 2935 2929.25 2.53 55.95 2856 2556.83 1408.24 79
3dl143000 2744 2912 2909.50 1.40 110.25 2829 2658.27 1659.44 83
3dl144000 2744 2924 2919.90 2.41 81.15 2861 2490.92 1759.67 63
3dl145000 2744 2914 2911.25 1.92 67.50 2839 2515.36 1764.88 75
3dl146000 2744 2913 2909.00 2.00 22.05 2834 2541.43 1529.38 79
3dl147000 2744 2913 2909.30 1.73 70.05 2834 2554.19 1748.39 79
3dl148000 2744 2925 2919.40 4.05 73.95 2845 2495.00 1440.25 80
3dl149000 2744 2906 2901.50 2.62 6.35 2823 2476.52 1699.97 83
3dl1410000 2744 2933 2927.65 2.22 29.90 2851 2519.16 1476.52 82
Better 43/44/91
Equal 1/44/91
Worse 0/44/91

Table 2.3: Comparative results for max-4-cut between the proposed MOH algorithm and DC

Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G1 800 16803 16801 0.86 26.45 16740 450.16 290.51 63
G2 800 16809 16808 1.12 268.55 16735 455.81 388.76 74
G3 800 16806 16804.7 0.78 138.25 16752 431.86 245.50 54
G4 800 16814 16811.2 1.49 146.65 - - - -
G5 800 16816 16815.8 0.36 577.45 - - - -
G6 800 2751 2748.45 1.07 89.95 - - - -
G7 800 2515 2513.75 0.54 57.15 - - - -
G8 800 2525 2523.35 0.65 78.6 - - - -
G9 800 2585 2583.35 0.96 16.45 - - - -
G10 800 2510 2507.6 1.24 79.85 - - - -
G11 800 677 676 0.32 20.3 675 171.27 152.04 2
G12 800 664 662.25 0.54 41.25 660 179.99 117.52 4
G13 800 690 689.1 0.44 198.7 685 187.54 127.56 5
G14 800 4440 4435.35 1.93 55.95 4402 243.08 159.14 38
G15 800 4406 4403.4 0.8 89.55 4373 249.66 129.21 33
G16 800 4415 4414.05 1.02 392.45 4378 246.11 75.89 37
G17 800 4411 4406.45 2.27 0.2 - - - -
G18 800 1261 1253.9 3.06 0.3 - - - -
G19 800 1121 1115.35 3.69 1.2 - - - -
G20 800 1168 1160.95 3.12 0.4 - - - -
G21 800 1155 1148.25 3.74 54.7 - - - -
G22 2000 18776 18765.7 5.67 107.25 18615 1988.31 1314.45 161
G23 2000 18777 18765.8 5.71 73.7 18612 1941.85 1775.80 165
G24 2000 18769 18763.6 3.75 26.4 18620 1822.82 407.66 149
G25 2000 18775 18767.6 4.36 75.65 - - - -
G26 2000 18767 18761.2 4.49 96.55 - - - -
G27 2000 4201 4188.5 4.6 45.35 - - - -
G28 2000 4150 4138.85 5.91 24.95 - - - -
G29 2000 4293 4281.65 5.68 87.4 - - - -
G30 2000 4305 4296.4 4.12 33.5 - - - -
G31 2000 4171 4164.4 6.46 107.8 - - - -
G32 2000 1669 1667.85 1.01 120.9 1659 1140.66 736.15 10
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Table 2.3 – continued from previous page
Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G33 2000 1638 1634.65 1.15 0 1629 1052.38 870.96 9
G34 2000 1616 1611.7 1.65 0.05 1604 1105.02 1016.31 12
G35 2000 11111 11106.2 2.14 17.2 11007 1890.32 1764.52 104
G36 2000 11108 11101.4 2.9 17.25 10993 1738.64 1634.13 115
G37 2000 11117 11112.5 2.33 36.05 11023 1754.17 115.08 94
G38 2000 11108 11101.1 3.16 48.4 - - - -
G39 2000 3006 2998.7 3.91 1.15 - - - -
G40 2000 2976 2955.65 8.99 48.7 - - - -
G41 2000 2983 2970.3 6.91 1.8 - - - -
G42 2000 3092 3084.05 4.8 16.9 - - - -
G43 1000 9376 9373.95 1.2 84.15 9306 422.97 62.38 70
G44 1000 9379 9373.55 2.52 67.9 9315 430.52 43.88 64
G45 1000 9376 9375.1 0.94 249.5 9312 463.45 319.58 64
G46 1000 9378 9375.35 1.96 139.75 - - - -
G47 1000 9381 9377.05 2.04 60.5 - - - -
G48 3000 6000 6000 0 0 6000 1673.79 0.48 0
G49 3000 6000 6000 0 0 6000 1675.56 0.49 0
G50 3000 6000 6000 0 0 6000 1678.91 0.50 0
G51 1000 5571 5567.65 1.93 14.6 - - - -
G52 1000 5584 5581.15 1.74 20.9 - - - -
G53 1000 5574 5571.85 1.19 6.85 - - - -
G54 1000 5579 5576.25 1.58 0.7 - - - -
G55 5000 12498 12498 0 0.9 - - - -
G56 5000 4931 4917.1 6.49 424.6 - - - -
G57 5000 4112 4110.5 1.12 298.1 - - - -
G58 5000 27885 27870.9 8.68 435.4 - - - -
G59 5000 7539 7515.1 15.09 969.3 - - - -
G60 7000 17148 17148 0 2.3 - - - -
G61 7000 7110 7104.6 5.08 1305.2 - - - -
G62 7000 5743 5738.7 2.69 385.5 - - - -
G63 7000 39083 39063.5 9.18 660.2 - - - -
G64 7000 10814 10797.4 13.28 910.5 - - - -
G65 8000 6534 6525.4 4.48 1.5 - - - -
G66 9000 7474 7467.8 4.24 2.2 - - - -
G67 10000 8155 8142.5 5.57 3 - - - -
G70 10000 9999 9999 0 0.5 - - - -
G72 10000 8264 8254.6 7.36 3.1 - - - -
G77 14000 11674 11658.9 10.08 6.4 - - - -
G81 20000 16470 16454.3 8.5 27.9 - - - -
3dl101000 1000 1103 1100.6 0.86 64.5 1073 304.44 187.92 30
3dl102000 1000 1102 1100 0.95 1.5 1070 351.27 301.64 32
3dl103000 1000 1108 1106.4 0.86 22.8 1072 340.99 249.06 36
3dl104000 1000 1103 1101.65 0.65 87.7 1076 323.51 276.29 27
3dl105000 1000 1098 1096.3 0.78 58.6 1074 334.38 294.70 24
3dl106000 1000 1097 1095.15 0.91 94.05 1063 358.27 307.91 34
3dl107000 1000 1114 1112.2 1.08 108.3 1093 308.31 101.66 21
3dl108000 1000 1105 1103 0.77 28.9 1079 276.09 260.12 26
3dl109000 1000 1115 1113.45 0.8 108.35 1086 271.29 60.70 29
3dl1010000 1000 1109 1106.1 0.89 54.9 1088 277.18 257.21 21
3dl141000 2744 3016 3012.05 1.91 57.05 2893 1990.54 1511.84 123
3dl142000 2744 3026 3019.8 2.04 18.45 2893 2007.26 464.84 133
3dl143000 2744 3006 3001.7 2.88 37.2 2892 1956.09 1339.53 114
3dl144000 2744 3012 3007.85 1.85 47.8 2897 1980.32 1923.14 115
3dl145000 2744 3006 3001.2 2.16 58.1 2882 1972.18 1866.67 124
3dl146000 2744 3005 3001.35 1.46 14 2888 1948.91 1892.88 117
3dl147000 2744 3007 3001.95 2.31 30.5 2879 1995.73 1983.25 128
3dl148000 2744 3018 3014.5 1.96 165.45 2883 1982.66 1914.45 135
3dl149000 2744 2999 2993.95 2.62 20 2877 2024.45 1769.77 122
3dl1410000 2744 3023 3021.15 1.68 389.4 2904 2007.36 2003.40 119
Better 41/44/91
Equal 3/44/91
Worse 0/44/91

Table 2.4: Comparative results for max-5-cut between the proposed MOH algorithm and DC

Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G1 800 17703 17700.80 1.18 76.40 17627 532.14 376.14 76
G2 800 17706 17702.50 1.63 122.20 17636 537.26 288.13 70
G3 800 17701 17699.20 1.47 210.20 17623 525.92 357.24 78
G4 800 17709 17706.50 1.75 141.20 - - - -
G5 800 17710 17708.60 1.66 269.70 - - - -
G6 800 2781 2776.00 2.26 146.20 - - - -
G7 800 2533 2530.75 2.00 56.50 - - - -
G8 800 2535 2532.75 1.13 105.00 - - - -
G9 800 2601 2598.65 1.28 6.55 - - - -
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Table 2.4 – continued from previous page
Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G10 800 2526 2520.00 4.18 143.70 - - - -
G11 800 677 675.40 0.58 0.00 670 239.03 147.55 7
G12 800 662 661.40 0.49 153.10 660 240.87 191.89 2
G13 800 689 688.40 0.49 317.15 687 222.88 177.50 2
G14 800 4639 4634.60 1.83 37.65 4597 297.49 63.30 42
G15 800 4606 4599.90 1.79 80.05 4571 293.47 99.68 35
G16 800 4613 4610.30 1.31 94.60 4579 291.25 243.93 34
G17 800 4603 4600.85 1.01 96.50 - - - -
G18 800 1268 1261.85 3.48 0.05 - - - -
G19 800 1132 1122.45 7.08 0.10 - - - -
G20 800 1172 1163.90 4.73 0.35 - - - -
G21 800 1162 1153.50 5.34 0.05 - - - -
G22 2000 19553 19547.00 3.64 42.40 19413 2429.87 1685.57 140
G23 2000 19558 19549.20 4.04 85.40 19413 2422.00 2248.13 145
G24 2000 19555 19547.20 2.93 88.55 19423 2255.39 1668.64 132
G25 2000 19554 19547.80 3.18 140.35 - - - -
G26 2000 19552 19545.00 2.80 85.00 - - - -
G27 2000 4236 4224.30 6.23 143.10 - - - -
G28 2000 4182 4171.45 6.84 65.10 - - - -
G29 2000 4327 4317.50 4.25 72.85 - - - -
G30 2000 4340 4329.75 4.44 50.45 - - - -
G31 2000 4211 4196.40 7.89 37.40 - - - -
G32 2000 1670 1666.45 1.94 0.75 1647 1304.51 1272.00 23
G33 2000 1638 1635.05 1.20 0.20 1615 1194.92 678.48 23
G34 2000 1615 1610.20 2.84 0.40 1594 1232.62 629.56 21
G35 2000 11605 11595.20 4.15 68.80 11521 2030.16 961.14 84
G36 2000 11601 11593.80 3.03 12.25 11516 2074.70 510.45 85
G37 2000 11603 11599.40 2.46 70.15 11532 2026.00 1661.50 71
G38 2000 11601 11596.20 3.19 163.65 - - - -
G39 2000 3022 3014.35 5.32 70.15 - - - -
G40 2000 2986 2967.20 9.45 0.50 - - - -
G41 2000 2986 2972.85 7.84 20.05 - - - -
G42 2000 3109 3099.15 5.29 0.60 - - - -
G43 1000 9770 9767.30 1.38 56.50 9700 583.20 76.61 70
G44 1000 9772 9768.05 1.60 16.85 9702 518.05 482.50 70
G45 1000 9771 9768.10 1.30 25.60 9708 502.37 470.51 63
G46 1000 9774 9769.55 1.66 47.80 - - - -
G47 1000 9775 9770.05 1.86 60.70 - - - -
G48 3000 6000 6000.00 0.00 0.00 6000 1871.21 0.50 0
G49 3000 6000 6000.00 0.00 0.00 6000 1864.70 0.48 0
G50 3000 6000 6000.00 0.00 0.00 6000 1887.36 0.50 0
G51 1000 5826 5822.30 2.05 0.75 - - - -
G52 1000 5837 5832.35 1.68 4.90 - - - -
G53 1000 5829 5825.90 1.09 55.75 - - - -
G54 1000 5830 5826.70 1.42 28.40 - - - -
G55 5000 12498 12498.00 0.00 0.00 - - - -
G56 5000 4971 4957.90 8.75 243.70 - - - -
G57 5000 4111 4108.70 1.19 293.50 - - - -
G58 5000 29105 29090.70 9.28 272.10 - - - -
G59 5000 7566 7541.20 19.22 120.40 - - - -
G60 7000 17148 17148.00 0.00 0.00 - - - -
G61 7000 7188 7174.50 7.74 437.60 - - - -
G62 7000 5744 5736.90 2.88 4.20 - - - -
G63 7000 40786 40767.50 10.50 420.80 - - - -
G64 7000 10896 10851.50 23.04 48.60 - - - -
G65 8000 6540 6528.90 4.93 8.50 - - - -
G66 9000 7476 7470.60 4.74 10.90 - - - -
G67 10000 8165 8151.60 7.32 8.20 - - - -
G70 10000 9999 9999.00 0.00 0.10 - - - -
G72 10000 8266 8256.00 6.74 8.60 - - - -
G77 14000 11687 11672.10 11.41 21.10 - - - -
G81 20000 16501 16480.20 10.06 271.50 - - - -
3dl101000 1000 1106 1102.95 1.50 38.00 1073 321.44 79.97 33
3dl102000 1000 1106 1103.50 1.12 51.95 1067 358.55 78.05 39
3dl103000 1000 1111 1106.95 1.86 74.10 1072 343.13 106.00 39
3dl104000 1000 1108 1105.65 0.91 44.00 1076 330.08 223.84 32
3dl105000 1000 1098 1096.15 1.01 76.90 1074 327.13 197.17 24
3dl106000 1000 1099 1097.55 0.92 48.25 1071 329.38 304.61 28
3dl107000 1000 1119 1115.85 1.62 48.80 1084 321.82 230.50 35
3dl108000 1000 1113 1110.70 1.27 126.30 1077 333.74 147.03 36
3dl109000 1000 1119 1117.30 0.84 17.85 1089 327.09 186.92 30
3dl1010000 1000 1115 1114.10 0.83 336.95 1081 330.26 301.70 34
3dl141000 2744 3029 3022.00 3.51 4.15 2912 2416.83 1114.20 117
3dl142000 2744 3033 3025.75 3.73 58.40 2916 2665.55 1512.49 117
3dl143000 2744 3015 3007.75 5.23 100.10 2891 2568.33 706.35 124
3dl144000 2744 3021 3015.95 2.65 30.85 2914 2658.98 2066.46 107
3dl145000 2744 3014 3005.25 2.90 7.45 2897 2405.89 2252.09 117
3dl146000 2744 3013 3010.05 2.22 102.50 2906 2363.11 2227.79 107
3dl147000 2744 3016 3009.55 4.17 85.60 2900 2536.90 257.75 116
3dl148000 2744 3027 3022.70 2.12 12.85 2920 2376.40 2127.40 107
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Table 2.4 – continued from previous page
Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

3dl149000 2744 3005 2994.15 4.15 0.25 2901 2711.61 2687.12 104
3dl1410000 2744 3033 3023.25 3.78 17.75 2917 2432.17 1767.87 116
Better 41/44/91
Equal 3/44/91
Worse 0/44/91

Table 2.5: Average computing time needed by the MOH algorithm (MOH(tavg)) to attain the best objective
value of the DC algorithm. The time required by DC (DC(t)) to reach the same objective value is also
included.

Instance max-3-cut max-4-cut max-5-cut

DC(t) MOH(tavg) DC(t) MOH(tavg) DC(t) MOH(tavg)

G1 339.41 0.16 290.51 0.18 376.14 0.01
G2 228.37 2.05 388.76 0.12 288.13 0.01
G3 205.06 0.35 245.50 0.24 357.24 0.01
G11 132.51 0.11 152.04 6.67 147.55 8.39
G12 59.09 2.11 117.52 6.65 191.89 16.02
G13 111.53 0.29 127.56 0.68 177.50 0.29
G14 190.40 0.09 159.14 0.13 63.30 0.01
G15 183.92 0.12 129.21 0.16 99.68 0.00
G16 75.02 0.08 75.89 0.09 243.93 0.01
G22 986.19 0.06 1314.45 0.09 1685.57 0.01
G23 1208.18 0.05 1775.80 0.08 2248.13 0.01
G24 1385.32 0.10 407.66 0.10 1668.64 0.01
G32 905.73 0.37 736.15 0.36 1272.00 2.00
G33 664.57 0.27 870.96 1.50 678.48 5.16
G34 827.79 0.31 1016.31 1.64 629.56 1.58
G35 1048.97 0.24 1764.52 0.10 961.14 0.00
G36 1196.02 0.13 1634.13 0.09 510.45 0.00
G37 1288.13 0.09 115.08 0.13 1661.50 0.00
G43 112.20 0.06 62.38 0.05 76.61 0.01
G44 47.87 0.09 43.88 0.08 482.50 0.01
G45 44.00 0.07 319.58 0.07 470.51 0.01
G48 293.30 0.52 0.48 0.01 0.50 0.00
G49 1587.05 0.53 0.49 0.01 0.48 0.00
G50 279.78 4.36 0.50 0.01 0.50 0.00
sg3dl101000 179.20 0.06 187.92 0.06 79.97 0.05
sg3dl102000 188.68 0.05 301.64 0.05 78.05 0.03
sg3dl103000 114.20 0.09 249.06 0.05 106.00 0.03
sg3dl104000 109.75 0.07 276.29 0.05 223.84 0.05
sg3dl105000 178.88 0.07 294.70 0.10 197.17 0.06
sg3dl106000 23.96 0.03 307.91 0.04 304.61 0.05
sg3dl107000 157.18 0.08 101.66 0.17 230.50 0.05
sg3dl108000 209.77 0.06 260.12 0.10 147.03 0.05
sg3dl109000 232.87 0.07 60.70 0.07 186.92 0.06
sg3dl1010000 184.91 0.05 257.21 0.14 301.70 0.04
sg3dl141000 1496.07 0.14 1511.84 0.05 1114.20 0.07
sg3dl142000 1408.24 0.14 464.84 0.04 1512.49 0.07
sg3dl143000 1659.44 0.11 1339.53 0.07 706.35 0.06
sg3dl144000 1759.67 0.25 1923.14 0.05 2066.46 0.09
sg3dl145000 1764.88 0.15 1866.67 0.05 2252.09 0.08
sg3dl146000 1529.38 0.12 1892.88 0.05 2227.79 0.07
sg3dl147000 1748.39 0.12 1983.25 0.05 257.75 0.07
sg3dl148000 1440.25 0.13 1914.45 0.05 2127.40 0.10
sg3dl149000 1699.97 0.14 1769.77 0.06 2687.12 0.11
sg3dl1410000 1476.52 0.11 2003.40 0.06 1767.87 0.07

Table 2.6: Comparative results of the proposed MOH algorithm with 7 state-of-the-art max-cut algorithms

Instance |V | fpre GES BLS MACUT TS-UBQP TS/PM MAMBP TSHEA MOH

G1 800 11624 11624 11624 11624 11624 11624 11624 11624 11624
G2 800 11620 11620 11620 11620 11620 11620 11617 11620 11620
G3 800 11622 11622 11622 11622 11620 11620 11621 11622 11622
G4 800 11646 11646 11646 - 11646 11646 11646 11646 11646
G5 800 11631 11631 11631 - 11631 11631 11631 11631 11631
G6 800 2178 2178 2178 - 2178 2178 2177 2178 2178
G7 800 2006 2006 2006 - 2006 2006 2002 2006 2006
G8 800 2005 2005 2005 - 2005 2005 2004 2005 2005
G9 800 2054 2054 2054 - 2054 2054 2052 2054 2054
G10 800 2000 2000 2000 - 2000 2000 1998 2000 2000
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Table 2.6 – continued from previous page
Instance |V | fpre GES BLS MACUT TS-UBQP TS/PM MAMBP TSHEA MOH

G11 800 564 564 564 564 564 564 564 564 564
G12 800 556 556 556 556 556 556 556 556 556
G13 800 582 582 582 582 580 582 582 582 582
G14 800 3064 3064 3064 3064 3061 3063 3062 3064 3064
G15 800 3050 3050 3050 3050 3050 3050 3050 3050 3050
G16 800 3052 3052 3052 3052 3052 3052 3052 3052 3052
G17 800 3047 3047 3047 - 3046 3047 3047 3047 3047
G18 800 992 992 992 - 991 992 992 992 992
G19 800 906 906 906 - 904 906 905 906 906
G20 800 941 941 941 - 941 941 941 941 941
G21 800 931 931 931 - 930 931 930 931 931
G22 2000 13359 13359 13359 13359 13359 13349 13359 13359 13359
G23 2000 13344 13342 13344 13344 13342 13332 13344 13344 13344
G24 2000 13337 13337 13337 13337 13337 13324 13336 13337 13337
G25 2000 13340 13340 13340 - 13332 13326 13340 13340 13340
G26 2000 13328 13328 13328 - 13328 13313 13328 13328 13328
G27 2000 3341 3341 3341 - 3336 3325 3341 3341 3341
G28 2000 3298 3298 3298 - 3295 3287 3298 3298 3298
G29 2000 3405 3405 3405 - 3391 3394 3403 3405 3405
G30 2000 3413 3413 3412 - 3403 3402 3412 3413 3413
G31 2000 3310 3310 3309 - 3288 3299 3309 3310 3310
G32 2000 1410 1410 1410 1410 1406 1406 1410 1410 1410
G33 2000 1382 1382 1382 1382 1378 1374 1382 1382 1382
G34 2000 1384 1384 1384 1384 1378 1376 1384 1384 1384
G35 2000 7687 7686 7684 7686 7678 7661 7686 7687 7687
G36 2000 7680 7680 7678 7679 7670 7660 7678 7680 7680
G37 2000 7691 7691 7689 7690 7682 7670 7689 7691 7691
G38 2000 7688 7687 7687 - 7683 7670 7688 7688 7688
G39 2000 2408 2408 2408 - 2397 2397 2408 2408 2408
G40 2000 2400 2400 2400 - 2390 2392 2400 2400 2400
G41 2000 2405 2405 2405 - 2400 2398 2405 2405 2405
G42 2000 2481 2481 2481 - 2469 2474 2481 2481 2481
G43 1000 6660 6660 6660 6660 6660 6660 6659 6660 6660
G44 1000 6650 6650 6650 6650 6639 6649 6650 6650 6650
G45 1000 6654 6654 6654 6654 6652 6654 6654 6654 6654
G46 1000 6649 6649 6649 - 6649 6649 6649 6649 6649
G47 1000 6657 6657 6657 - 6656 6656 6657 6657 6657
G48 3000 6000 6000 6000 6000 6000 6000 6000 6000 6000
G49 3000 6000 6000 6000 6000 6000 6000 6000 6000 6000
G50 3000 5880 5880 5880 5800 5880 5880 5880 5880 5880
G51 1000 3848 3848 3848 - 3847 3847 3847 3848 3848
G52 1000 3851 3851 3851 - 3849 3850 3851 3851 3851
G53 1000 3850 3850 3850 - 3848 3848 3850 3850 3850
G54 1000 3852 3852 3852 - 3851 3850 3851 3852 3852
G55 5000 10299 - 10294 10299 10236 - 10299 10299 10299
G56 5000 4017 - 4012 4016 3934 - 4016 4017 4016
G57 5000 3494 - 3492 - 3460 - 3488 3494 3494
G58 5000 19293 - 19263 - 19248 - 19276 19276 19288
G59 5000 6086 - 6078 - 6019 - 6085 6085 6087
G60 7000 14188 - 14176 14186 14057 - 14186 14186 14190
G61 7000 5796 - 5789 - 5680 - 5796 5796 5798
G62 7000 4870 - 4868 - 4822 - 4866 4866 4868
G63 7000 27045 - 26997 - 26963 - 26754 27018 27033
G64 7000 8751 - 8735 - 8610 - 8731 8735 8747
G65 8000 5562 - 5558 5550 5518 - 5556 5560 5560
G66 9000 6364 - 6360 6352 6304 - 6352 6364 6360
G67 10000 6950 - 6940 6934 6894 - 6934 6944 6942
G70 10000 9591 - 9541 - 9458 - 9580 9548 9544
G72 10000 7006 - 6998 - 6922 - 6990 6990 6998
G77 14000 9938 - 9926 - - - 9900 9902 9928
G81 20000 14048 - 14030 - - - 13978 14010 14036
3dl101000 1000 896 896 - - - - - 896 896
3dl102000 1000 900 900 - - - - - 900 900
3dl103000 1000 892 892 - - - - - 892 892
3dl104000 1000 898 898 - - - - - 898 898
3dl105000 1000 886 886 - - - - - 886 886
3dl106000 1000 888 888 - - - - - 888 888
3dl107000 1000 900 900 - - - - - 900 900
3dl108000 1000 882 882 - - - - - 882 882
3dl109000 1000 902 902 - - - - - 902 902
3dl1010000 1000 894 894 - - - - - 894 894
3dl141000 2744 2446 2446 - - - - - 2446 2446
3dl142000 2744 2458 2458 - - - - - 2458 2458
3dl143000 2744 2442 2442 - - - - - 2442 2444
3dl144000 2744 2450 2450 - - - - - 2450 2450
3dl145000 2744 2446 2446 - - - - - 2446 2446
3dl146000 2744 2452 2452 - - - - - 2452 2452
3dl147000 2744 2444 2444 - - - - - 2444 2444
3dl148000 2744 2448 2448 - - - - - 2448 2448
3dl149000 2744 2428 2426 - - - - - 2428 2428
3dl1410000 2744 2460 2458 - - - - - 2460 2458
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Table 2.6 – continued from previous page
Instance |V | fpre GES BLS MACUT TS-UBQP TS/PM MAMBP TSHEA MOH

Better 4/91/91 4/74/91 20/71/91 7/30/91 47/69/91 29/54/91 33/71/91 11/91/91
Equal 74/91/91 70/74/91 51/71/91 23/30/91 22/69/91 25/54/91 37/71/91 75/91/91
Worse 13/91/91 0/74/91 0/71/91 0/30/91 0/69/91 0/54/91 1/71/90 5/91/91

2.4 Discussion

In this section, we investigate the role of several important ingredients of the proposed algorithm, in-
cluding the bucket sorting data structure, the descent improvement search operators O1 and O2 and the
diversified improvement search operators O3 and O4.

2.4.1 Impact of the bucket sorting technique

As described in Section 2.2.5, the bucket sorting technique is utilized in the MOH algorithm for the
purpose of quickly identifying a suitable move with the best objective gain. To verify its effectiveness,
we implemented another MOH version where we replaced the bucket sorting data structure with a simple
vector and conducted an experimental comparison on the max-3-cut problem. For this experiment, we used
20 representative Gxx instances and ran 20 times both MOH versions to solve each chosen instance with a
time limit of 300 seconds.

Table 2.7 reports the average of the best objective values and the total number of iterations of each MOH
version for each instance. From Table 2.7, we observe that the MOH algorithm using the bucket sorting
structure conducted 3.3 times more iterations on average than using the vector structure within the given
time span. Moreover, the former is able to find better results for 16 instances and only one worse result. In
conclusion, this experiment confirms that using the devised bucket sorting technique is able to considerably
improve the computational efficiency and search capacity of the MOH algorithm.

Table 2.7: Computational assessment of bucket sorting compared to an implementation using a vector
applied to the max-3-cut problem

Instance bucket sorting structure vector structure differences

fbss iterbss fvs itervs fbss − fvs iterbss/itervs

G22 17135.65 87,068,095.55 17132.7 55,940,769.45 2.95 1.56
G26 17128.1 89,044,944.75 17121.65 50,698,801.15 6.45 1.76
G28 3943.4 81,621,472.45 3942.9 49,226,453.00 0.5 1.66
G30 4091.95 89,369,709.35 4095.85 52,714,888.95 -3.9 1.70
G32 1654.85 212,255,042.05 1652.75 59,712,070.05 2.1 3.55
G34 1605.4 216,409,597.50 1604.2 51,582,268.90 1.2 4.20
G36 10024.1 136,113,904.60 10015 48,257,118.45 9.1 2.82
G38 10027.1 147,998,869.05 10021.5 53,182,934.85 5.6 2.78
G40 2841.85 137,242,801.85 2831.75 53,555,508.15 10.1 2.56
G44 8556.75 99,472,399.80 8557.1 102,758,227.95 -0.35 0.97
G46 8555.1 100,453,139.40 8555.35 100,251,434.60 -0.25 1.00
G54 5028.65 170,660,709.15 5026.9 98,723,794.70 1.75 1.73
G56 4709.05 105,834,778.80 4662.45 14,561,723.95 46.6 7.27
G58 25144.4 88,340,858.10 25092.5 14,574,161.75 51.9 6.06
G60 17019.6 37,339,981.15 16963.55 8,873,616.55 56.05 4.21
G62 5685.7 101,427,430.65 5656.7 9,955,135.45 29 10.19
G64 10318.1 68,975,406.10 10175.75 8,846,430.90 142.35 7.80
G66 7417.3 92,758,417.20 7353.45 7,508,205.95 63.85 12.35
G70 9999 4,336,200.40 9999 4,046,618.05 0 1.07
G72 8189.35 77,034,721.40 8109.9 6,998,747.65 79.45 11.01
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Table 2.8: Comparative results for max-cut with varying combination strategies of O1 and O2

Instance O1 O1 ∪O2

fbest favg time(s) fbest favg time(s)

G22 13359 13357.6 381.6 13359 13355.8 357.3
G23 13344 13343.6 473.4 13344 13344 550.9
G25 13338 13334 442.8 13339 13335.8 690.4
G29 3405 3398.22 211.1 3405 3396.4 254.2
G33 1382 1381.4 553.5 1382 1382 716.5
G35 7686 7681.3 755.4 7684 7679.1 449.6
G36 7680 7672 1367.1 7677 7672.5 408.1
G37 7690 7685.5 1039.2 7689 7683.4 1099.0
G38 7688 7684 135.2 7688 7681.2 177.8
G40 2400 2384.7 453.5 2396 2381.6 427.2

Instance rand(O1, O2) O1 +O2

fbest favg time(s) fbest favg time(s)

G22 13359 13356 365.3 13359 13357 438.2
G23 13344 13343.9 584.9 13344 13344 302.1
G25 13340 13336.4 408.8 13340 13335.5 451.5
G29 3405 3398.4 403.9 3405 3398.1 569.9
G33 1382 1381.8 585.2 1382 1381.4 667.4
G35 7686 7683.1 628.0 7687 7684.3 968.3
G36 7680 7672 944.8 7680 7675.3 1075.6
G37 7688 7681.7 1078.3 7691 7687.5 1133.2
G38 7688 7680.8 153.6 7688 7685.7 333.0
G40 2395 2388.8 412.4 2400 2385.2 467.1

2.4.2 Impact of the descent improvement search operators

As described in Section 2.2.6, the proposed algorithm employs operators O1 and O2 for its descent
improvement phase to obtain local optima. To analyze the impact of these two operators, we implement
three variants of our algorithm, the first one using the operator O1 alone, the second one using the union
O1 ∪ O2 such that the descent search procedure always chooses the best move among the O1 and O2

moves [Lü et al., 2011a], the third one using operator rand(O1, O2) where the descent procedure applies
randomly and with equal probability O1 or O2, while keeping all the other ingredients and parameters fixed
as described in Section 2.3.3. The strategy used by our original algorithm, detailed in Section 2.2.6, is
denoted as O1 +O2.

This study was based on the max-cut problem and the same 10 challenging instances used for parameter
tuning of Section 2.3.3 . Each selected instance was solved 10 times by each of these variants and our
original algorithm. The stopping criterion was a timeout limit of 30 minutes. The obtained results are
presented in Table 2.8, including the best objective value fbest, the average objective value favg over the
10 independent runs, as well as the CPU times in seconds to reach fbest. To evaluate the performance, we
display in Fig. 2.2(a) the gaps between the best objective values obtained by different strategies and the best
objective values by our original algorithm. We also show in Fig. 2.2(b) the box and whisker plots which
indicate, for different O1 and O2 combination strategies, the distribution and the ranges of the obtained
results for the 10 tested instances. The results are expressed as the additive inverse of percent deviation of
the averages results from the best known objective values obtained by our original algorithm.

From Fig. 2.2(a), one observes that for the tested instances, other combination strategies obtain fewer
best known results compared to the strategy O1 + O2, and produce large gaps to the best known results
on some instances. From Fig. 2.2(b), we observe a clear difference in the distribution of the results with
different strategies. For the results with the strategies of O1 + O2, the plot indicates a smaller mean value
and significantly smaller variation compared to the results obtained by other strategies. We thus conclude
that the strategy used by our algorithm (O1 +O2) performs better than other strategies.
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Table 2.9: Comparative results for max-cut with varying parameter ρ

Instance ρ = 1 ρ = 0 ρ = 0.5

fbest favg time(s) fbest favg time(s) fbest favg time(s)

G22 13359 13350.1 352.7 13356 13355.2 440.6 13359 13357 438.2
G23 13344 13344 441.4 13338 13335.6 340.1 13344 13344 302.1
G25 13339 13335.1 426.1 13337 13333.5 412.9 13340 13335.5 451.5
G29 3405 3395.2 614.5 3402 3399.8 593.5 3405 3398.1 569.9
G33 1376 1373.6 519.9 1382 1382 609.2 1382 1381.4 667.7
G35 7686 7680.7 832.1 7680 7678.2 850.8 7687 7684.3 968.3
G36 7676 7669.2 1540.8 7671 7667.6 1304.8 7680 7675.3 1075.6
G37 7690 7681.2 1167.8 7685 7679.6 1053.8 7691 7687.5 1133.2
G38 7688 7681.4 275.1 7685 7679 257.3 7688 7685.7 333.0
G40 2394 2375.3 453.0 2399 2390.5 529.8 2400 2385.2 467.1

2.4.3 Impact of the diversified improvement search operators

As described in Section 2.2.7, the proposed algorithm employs two diversified operator O3 and O4

to enhance the search power of the algorithm and make it possible for the search to visit new promising
regions. The diversified improvement procedure uses probability ρ to select O3 or O4. To analyze the
impact of operators O3 and O4, we tested our algorithm with ρ = 1 (using the operator O3 alone), ρ = 0.5
(equal application of O3 and O4 used in our original MOH algorithm), ρ = 0 (using the operator O4 alone),
while keeping all the other ingredients and parameters fixed as described before. The stopping criterion
was a timeout limit of 30 minutes. We then independently solved each selected instance 10 times with
those different values of ρ. The obtained results on the max-cut problem for the 10 challenging instances
used for parameter tuning of Section 2.3.3 are presented in Table 2.9, including the best objective value
fbest, the average objective value favg over the 10 independent runs, as well as the CPU times in seconds
to reach fbest. To evaluate the performance, we again calculate the gaps between different best objective
values shown in Fig. 2.3(a) and average objective values shown in Fig. 2.3(b), where the set of values fbest,
favg, when ρ = 0.5, are set as the reference values.

As in Section 2.4.2, to evaluate the performance, we show in Fig. 2.3(a) the gaps between the best
objective values obtained with different values of ρ and the best objective values by our original MOH
algorithm (ρ = 0.5). We also show in Fig. 2.3(b) the box and whisker plots which indicates, for different
values of ρ, the distribution and the ranges of the obtained results for the 10 tested instances. The results are
expressed as the additive inverse of percent deviation of the averages results from the best known objective
values obtained by our original algorithm.

Fig. 2.3(a) discloses that using O3 or O4 alone obtains fewer best known results than using them jointly
and achieves significantly worse results on some particular instances. From Fig. 2.3(b), we observe a visible
difference in the distribution of the results with different strategies. For the results with the parameter
ρ = 0.5, the plot indicates a smaller mean value and significantly smaller variation compared to the results
obtained by other strategies. We thus conclude that jointly using O3 and O4 with ρ = 0.5 is the best choice
since it produces better results in terms of both best and average results.

2.5 Conclusion

This chapter proposed an effective multiple operator heuristic (MOH) for approximating the general
max-k-cut problem, which coordinates five distinct search operators to be organized in three search phases.
Computational study on the two sets of well-known benchmarks composed of 91 instances demonstrates
that the proposed MOH algorithm not only performs well on the general max-k-cut problem, but also
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remains highly competitive for the special case of the popular max-cut problem. In addition, we investigated
the importance of the bucket sorting technique as well as alternative strategies for combing search operators
and justified the combinations adopted in the proposed MOH algorithm.

In the next chapter, we will consider the max-bisection problem, which is a cardinality constrained max-
cut problem. To solve this problem, we go along the line of multiple search operators based local search
to conduct extensive exploitation of the search space and develop an effective iterated tabu search for the
max-bisection problem.



3
An effective iterated tabu search for the
max-bisection problem

In this chapter, we present an Iterated Tabu Search (ITS) algorithm to solve the max-bisection prob-
lem. ITS employs two distinct search operators organized into three search phases to effectively explore
the search space. Bucket sorting is used to ensure a high computational efficiency of the ITS algorithm.
Experiments on 71 well-known benchmark instances of the literature demonstrate that the proposed algo-
rithm is highly competitive compared to the state-of-the-art approaches and discovers improved best-known
results (new lower bounds) for 10 benchmark instances. The content of this chapter is based on an article
submitted to Computers & Operations Research which was revised in Feb. 2016.
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3.1 Introduction

In this chapter, we present an effective heuristic algorithm for the max-bisection problem based on
the iterated local search (ILS) framework [Lourenço et al., 2010], which has been applied with success
to a number of combinatorial optimization problems (for some recent application examples, see [Benlic
and Hao, 2013a; Cordeau and Maischberger, 2012; Palubeckis et al., 2014; Qin et al., 2015; Silva et al.,
2015]). The proposed iterated tabu search algorithm relies on two distinct local search operators for solution
transformations. The algorithm is composed of three different search phases (descent-based improvement,
diversifying improvement and perturbation) to ensure an effective examination of the search space. The
basic idea of our approach can be summarized as follows. The descent-based improvement procedure aims
to locate a local optimum from an initiating solution (Section 3.2.6). This is achieved by a fast descent
procedure with the conventional 1-move operator (Sections 3.2.3). Then the diversifying improvement
phase applies a tabu search procedure (with the 1-move and constrained swap operators) to examine nearby
search areas around the obtained local optimum with the purpose of discovering improved solutions (Section
3.2.7). Each time an improved solution is found, the search switches back to the descent-based improvement
phase to make an intensive exploitation of the area. If the search is trapped in a deep local optimum, the
perturbation phase applies a random search operator to definitively lead the search process to a distant
region from which a new round of the search procedure starts. This process is iterated until a stopping
condition is met. To ensure the computational efficiency of the search operators, we employ streamlining
techniques based on dedicated and efficient data structures.

The proposed ITS algorithm includes the following original features. First, ITS relies on a joint use
of two complementary search operators to conduct an extensive exploitation of the search space. The
1-move operator is used to quickly discover a local optimal solution from which improved solutions are
sought by employing the more advanced c-swap operator. Second, in addition to an improvement phase
and a perturbation phase used in conventional ILS algorithms, the proposed ITS algorithm additionally
includes a fast descent procedure to quickly attain a promising search area which is deeply examined with
the powerful tabu search procedure. This combination prevents the search procedure from running the more
expensive tabu search procedure in an unpromising area and thus helps to increase the search efficiency of
the algorithm.

We assess the performance of the proposed algorithm on 71 well-known benchmark graphs in the litera-
ture which were commonly used to test new max-cut and max-bisection algorithms. Computational results
show that ITS competes favorably with respect to the existing best performing max-bisection heuristics, by
improving the current best-known results (new lower bounds) on 10 instances.

This chapter is organized as follows. In Section 3.2, we present the general scheme and main compo-
nents of the designed ITS algorithm (search space, move operators, descent procedure, tabu search proce-
dure and perturbation procedure). Section 3.3 provides computational results and comparisons with other
state-of-the-art algorithms in the literature. Section 3.4 is dedicated to an analysis of essential parts of the
proposed algorithm. Concluding remarks are given in Section 3.5.
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3.2 Iterated tabu search for max-bisection

3.2.1 General working scheme

The general working procedure of the proposed ITS algorithm for the max-bisection problem is de-
scribed in Algorithm 2 whose components are explained in the following subsections. The algorithm ex-
plores the search space of bisections (Section 3.2.2) by alternately applying two distinct and complementary
move operators (1-move and constrained_swap) to make transitions from the current solution to a neighbor-
ing solution (Section 3.2.3). Basically, from an initial solution (i.e., a bisection) which is randomly sampled
from the search space, the algorithm first applies, with operator 1-move, a descent local search to attain a
local optimum I (Alg. 2, lines 8 - 20, descent-based improvement phase, Section 3.2.6). Since the returned
solution I makes an additional 1-move operation with respect to the local optimal solution I∗, a roll back
scheme that makes a reverse 1-move operation is used to get back to the search status when I∗ is reached.
Another alternative operation to achieve the same purpose is to make a copy of I∗ to I and initialize the
bucket data structure for the diversifying improvement phase, but this method is considered as more ex-
pensive than the roll back scheme. Given that each roll back actually performs two consecutive 1-move
operations, the iteration counter is thus increased by 2. Then the algorithm continues to the diversifying
improvement phase (Alg. 2, lines 25 - 44, Section 3.2.7) which uses a tabu-based procedure to explore
new solutions around the local optimum I . This search phase relies on both 1-move and constrained_swap
which are applied in a probabilistic way. The second search phase ends when a maximum number ω of
consecutive iterations is reached without improving the best solution found. In this case, the search is
judged to be trapped in a deep local optimum. To escape this deep local optimum, the search turns into a
perturbation phase (Alg. 2, line 46), which strongly transforms the current solution by randomly swapping
γ vertices (Section 3.2.8). The perturbed solution serves then as a new starting solution of the next round of
the descent-based improvement phase. This process is iterated until a stopping criterion (e.g., a given cutoff
time) is met and the best solution found during the search is returned as the outcome of the algorithm.

3.2.2 Search space and evaluation solution

Given the purpose of max-bisection (i.e., to partition the vertex set V into two equal-sized subsets such
that the weight sum of the edges crossing the two subsets is maximized), we define the search space Ω to
be composed of all possible bisections (i.e., balanced two-way partitions) {S1, S2} of vertex set V :

Ω = {{S1, S2} : S1, S2 ⊂ V, S1 ∪S2 = V, S1 ∩ S2 = ∅, |S1| = |S2|}. (3.1)

For a given bisection I = {S1, S2} ∈ Ω, its objective value f(I) is the weight sum of the crossing edges
which connect S1 and S2:

f(I) =
∑

i∈S1,j∈S2

wij. (3.2)

Then, for two candidate bisections I ′ ∈ Ω and I ′′ ∈ Ω, I ′ is better than I ′′ if and only if f(I ′) > f(I ′′).
The goal of our algorithm is to find a solution Ibest ∈ Ω with f(Ibest) as large as possible. Our algorithm
only samples feasible solutions within the above search space.
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Algorithm 2 General procedure for the max-bisection problem.
1: Require: Graph G = (V,E), max number ω of consecutive non-improvement iterations in diversified phase, probability ρ for selecting 1-move

and c− swap().
2: Ensure: the best solution Ibest found
3: I ← Random_Initial_solution() . A random bisection from the search space Ω, see Section 3.2.2
4: Ibest ← I . Ibest records the best solution found so far
5: iter ← 0 . Iteration counter
6: while stopping condition not satisfied do
7: /* lines 8 to 20: Descent local search phase, see Section 3.2.6 */
8: repeat
9: I∗ ← I
10: I ← I ⊕ 1-move(u, S1) . Select a vertex with the best move gain and perform the 1-move
11: Update move gains . Move gains recorded in a bucket data structure, see Section 3.2.4
12: iter ← iter + 1
13: I ← I ⊕ 1-move(v, S2)
14: Update move gains; iter ← iter + 1
15: until f(I) < f(I∗)
16: /* lines 17 to 20: Roll back to recover the search status when the local optimum I∗ is reached */
17: I ← I ⊕ 1-move(v, S1)
18: Update move gains; iter ← iter + 1
19: I ← I ⊕ 1-move(u, S2)
20: Update move gains; iter ← iter + 1
21: if f(I∗) > f(Ibest) then
22: Ibest ← I∗ . Update the best solution found so far
23: end if
24: /* lines 25 to 44: Diversifying improvement phase, see Section 3.2.7 */
25: c← 0 . Counter of non-improvement iterations
26: while c < ω do
27: if Random(0, 1) < ρ then . Random(0, 1) returns a random real number between 0 to 1
28: I ← I⊕ c-swap(u, v) . Perform the best c-swap considering tabu status
29: Add {u, v} to tabu list
30: Update move gains; iter ← iter + 1
31: else
32: I ← I ⊕ 1-move(u, S1) . Perform the best 1-move considering tabu status
33: Add u to tabu list
34: Update move gains; iter ← iter + 1
35: I ← I ⊕ 1-move(v, S2)
36: Add v to tabu list
37: Update move gains; iter ← iter + 1
38: end if
39: if f(I) > f(Ibest) then
40: Ibest ← I; c← 0 . Update the best solution found so far
41: else
42: c← c+ 1
43: end if
44: end while
45: /* Perturbation phase, see Section 3.2.8 */
46: I ← Perturb(I)
47: end while
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3.2.3 Move operators and neighborhood

From the incumbent solution which is necessarily a feasible solution (i.e., a bisection), the proposed
algorithm explores its neighboring solutions by applying two different move operators. Formally, let I =
{S1, S2} be the incumbent solution and let mv be a move operator, we use I ′ ← I ⊕ mv to denote the
neighboring solution I ′ obtained by applying mv to I .

For a given move operator mv, we define the notion of move gain ∆mv, which indicates the variation in
the objective value when the incumbent solution I is transformed to a neighboring solution I ′ by applying
the move operator, i.e.,

∆mv = f(I ′)− f(I) (3.3)

where f is the optimization objective defined in Eq. (3.2).

Our algorithm employs two move operators: 1-move and constrained_swap (c-swap for short) which
are defined as follows.

– 1-move: Given a bisection I = {S1, S2}, 1-move(v, Si) displaces a vertex v from its current subset Si
(i = 1, 2) to the other subset S3−i. Note that one application of 1-move always leads to an unbalanced
partition (thus an infeasible bisection). To maintain the balance of the partition, two consecutive
applications of 1-move are always jointly performed by moving first a vertex u from subset S1 to
S2 (denoted by 1-move(u, S1)), accompanied by moving another vertex v from S2 to S1 (denoted by
1-move(v, S2)). Such a combined application of 1-move ensures a balanced partition (thus a feasible
bisection).

– c-swap: Given a bisection I = {S1, S2}, c-swap(v1, v2) exchanges two vertices v1 ∈ S1 and v2 ∈ S2

belonging to two subsets subject to the constraint that v1 and v2 is linked by an edge (v1, v2) ∈ E.
In other words, our c-swap operator only considers pairs of vertices such that they not only belong to
the two subsets of the bisection, but also are linked by an edge crossing the subsets.

Based on these two move operators (1-move and c-swap), two neighborhoods N1 and N2 are defined
as follows:

N1 = {I ⊕ 1-move(v, Si) : v ∈ Si}

N2 = {I ⊕ c-swap(v1, v2) : v1 ∈ S1, v2 ∈ S2, {v1, v2} ∈ E}

Clearly, N1 and N2 are bounded in size by O(|V |) and O(|E|) respectively.

As stated above, since the neighboring solutions of I in N1 are infeasible, two consecutive applications
of 1-move are performed to maintain the feasibility of the new neighboring solution. We also note that the
1-move operator was commonly used in the literature [Fiduccia and Mattheyses, 1982; Lin and Zhu, 2014;
Wu and Hao, 2013].

On the contrary, few studies investigate the swap operator. When it was employed, it was usually
applied in an unconstrained way in the sense that each possible pair of vertices (v1, v2) such that v1 ∈ S1

and v2 ∈ S2 was considered [Kernighan and Lin, 1970]. Note that the unconstrained swap operator will
lead to a neighborhood of size O(|V |2) which is typically much larger than our N2 neighborhood (bounded
by O(|E|) in size) induced by the constrained c-swap operator. This is particularly true for sparse graphs.

After an application of either of the two move operators, the move gains of the impacted solutions are
updated according to the dedicated streamlining techniques explained below.
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3.2.4 Bucket sorting for fast move gain evaluation and updating

As we show in Sections 3.2.6 and 3.2.7, our algorithm iteratively makes transitions from the incumbent
solution to a particular neighboring solution by applying a selected move operation. Typically, to make the
right choice, the algorithm needs to identify the most favorable move operation with an increased move
gain among many candidates. To ensure a high search efficiency, it is crucial for the algorithm to be able to
rapidly evaluate all the candidate moves at each iteration of its search process. In this section, we describe
fast incremental evaluation techniques based on bucket data structures to streamline the calculations. These
specific techniques allow the algorithm to efficiently keep and update the move gains after each move
application.

1-move: For each 1-move(v,S) application, let ∆v be the move gain of moving vertex v ∈ S to the other
subset V \S (We use the notation ∆v→S if the destination subset S needs to be emphasized). Then initially,
each move gain can be determined by the following Formula:

∆v =
∑

i∈S,i6=v
ωvi −

∑
j∈V \S

ωvj (3.4)

where ωvi and ωvj are respectively the weights of edges {v, i} and {v, j}.

Then, once a 1-move(v,S) is performed, the move gain of each vertex can be updated by performing the
following calculation:

1. ∆v = −∆v

2. for each u ∈ V \ {v},

∆u =

{
∆u − 2ωuv, if u ∈ S
∆u + 2ωuv, if u ∈ V \ S

(3.5)

Now we explain how the factor 2 in Eq. (3.5) comes. Let us first consider the objective gain of moving
a vertex u ∈ S (u 6= v), which is ∆u =

∑
i∈S,i6=u

wui −
∑

j∈V \S
wuj according to the definition of the objective

function. After the vertex v is moved from S to V \S, the objective gain of moving vertex u is updated as
∆u =

∑
i∈S\{v},i 6=u

wui −
∑

j∈V \S∪{v}
wuj = ∆u − wuv − (wuv) = ∆u − 2wuv. Similarly, the objective gain of

moving a vertex u ∈ V \S (u 6= v) is given by ∆u =
∑

j∈V \S,j 6=u
wuj −

∑
i∈S

wui. After the vertex v is moved

from S to V \S, the objective gain of moving u ∈ V \S is updated as ∆u =
∑

j∈V \S∪{v},j 6=u
wuj−

∑
i∈S\{v}

wui =

∆u + wuv − (−wuv) = ∆u + 2wuv.

Notice that if there is no edge between the vertices u and v, the edge weight ωuv equals 0, in which case
the associated ∆u value will not change. One observes that only the move gains of vertices affected by this
move (i.e., the displaced vertex and its adjacent vertices) will be updated, which reduces the computation
time significantly.

Usually the move gains can be stored in an array, with which the time for finding the best move with
maximum move gain grows linearly with the number of vertices (O(n)). For large problem instances (very
large n), the required time can still be quite high. To avoid unnecessary searching for the best move, we
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Figure 3.1: An example of bucket structure for max-bisection

adopt a bucket structure which is inspired by the bucket sorting proposed by [Fiduccia and Mattheyses,
1982] for graph partition. With this technique, we always keep the vertices ordered by their move gains in
decreasing order, so that the most favorable one can be identified quickly as we explain below.

Our bucket sorting for 1-move relies on two arrays of buckets, one for each partition subset Si ∈
{S1, S2}. In each bucket array i, i ∈ {1, 2}, the jth entry stores the vertices with the move gain ∆v→Si

currently equaling to j, where the vertices are maintained by a circular double linked list. To ensure a direct
access to the vertex in the circular double linked lists, as suggested in [Fiduccia and Mattheyses, 1982],
the algorithm also maintains another array for all vertices, where each element points to its corresponding
vertex in the circular double linked list. The use of a circular doubly linked list instead of a doubly linked
list like in [Fiduccia and Mattheyses, 1982] aims to ease the implementation of our tie-breaking scheme
which is needed to select the vertex when several candidates exist (see Section 3.2.5 for more details on this
issue).

Fig. 3.1 shows an illustrative example of the bucket structure for max-bisection. The graph (Fig. 3.1,
left) has 8 vertices belonging to the two subsets S1 and S2 (edge weights are supposed to be equal to 1).
The bucket structure for this graph is shown in Fig. 3.1 (right). One observes that the gain of moving vertex
c or h to subset S1 equals 0, then those two vertices are stored in the entry of B1 with index 0. Notice that
vertices c and h are managed as a circular double linked list. The array AI shown at the bottom of Fig. 3.1
manages position indexes for all vertices. For simplicity, we do not show all the links in the figure.

After each 1-move, the bucket structure is updated by recomputing the move gains (see Formula (3.5))
of the affected vertices which include the moved vertex and its adjacent vertices, and shifting them to
appropriate buckets.

3.2.5 Selection of the best vertex with a tie breaking scheme

For each array of buckets, finding the best vertex with maximum move gain is equivalent to finding the
first non-empty bucket from the top of the array and then selecting a vertex in its circular double linked
list. If there are more than one vertex with maximum move gain in the circular double linked list (see Fig.
3.1), a tie occurs. In particular, we observed experimentally that many ties may occur during the runs of our
ITS algorithm, which reveals the importance of a suitable tie-breaking scheme. Three tie-breaking schemes
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(random selection, FIFO (first-in-first-out) selection and LIFO (last-in-first-out) selection) are often used
to break ties. The work of [Hagen and Kahng, 1997] showed that the LIFO selection of gain buckets was
superior to the FIFO selection and random selection. A possible explanation given by the authors was that
clustered vertices tend to move together.

In our algorithm, we use the LIFO selection scheme to break ties. However, given that our algorithm
employs a tabu mechanism to forbid a vertex to move back to its original subset (see Section 3.2.7), it
is inappropriate to insert the forbidden vertices at the head of the list, since doing this will cause useless
computations when seeking a proper vertex for a move operation. To adapt the LIFO selection scheme to
tabu search, we make the following improvements.

To update the move gain of an impacted vertex after a move, ITS first checks the tabu status of the
vertex. If the vertex is in the tabu list, ITS inserts the vertex to the tail of the corresponding gain bucket,
otherwise, ITS inserts the vertex to the head of the gain bucket. To decide the vertex for a 1-move operation,
ITS always selects the first vertex which is not in the tabu list from the head of the gain bucket. This strategy
reduces the computing time for checking those forbidden vertices, as we show in Section 3.4.1.

c-swap: For each c − swap(u, v) operation, let ∆u,v be the move gain of exchanging vertices u and v
between the two subsets of the bisection. Then ∆u,v can be calculated by a combination of the move gains
of its two underlying 1-move (∆u and ∆v) as follows:

∆u,v = ∆u + ∆v + 2ωuv (3.6)

According to the definition of the neighborhood N2, N2 only considers the endpoints (vertices) of the
edges crossing two subsets S1 and S2. Then it is clear that for a given incumbent solution, there are at most
|E| candidate c-swap moves to evaluate. Seeking directly the move with the maximum move gain among
all these possible moves would be too computationally expensive. In order to mitigate this problem, we
maintain another bucket structure for c-swap moves to accelerate the move evaluation process. The bucket
structure for c-swap is similar to that for 1-move. This is achieved by keeping an array of buckets and in
each bucket, the ith entry stores the edge {u, v} with the move gain ∆u,v currently being equal to i, where
the edges are maintained by a circular double linked list. To ensure a direct access to the edges in the
circular double linked lists, as described above, the algorithm also maintains another array for all edges,
where each entry points to its corresponding edge in the circular double linked lists.

Similarly, after each move, the bucket structure is updated by recomputing the move gains (see Formula
(3.5)) of the affected vertices (i.e., each swapped vertex and its adjacent vertices), and shifting them to
appropriate buckets.

Complexity: The complexity of each move comes from searching for the vertex or a pair of vertices
with maximum move gain, recomputing the move gain for the affected vertices and updating the bucket
structure. The vertex with maximum move gain can be simply obtained in constant time (O(1)). Recom-
puting move gain is in linear time relative to the number of affected vertices (O(n)). The time of updating
the bucket structure is also only related to the number of affected vertices bounded by (O(dmax)) where
dmax is the maximum degree of the graph.
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3.2.6 Descent local search phase to locate local optima

The descent local search (DLS) phase is used to obtain a local optimum from a given starting solution
(see Algorithm 2, lines 10 - 19). For this, DLS employs the 1-move operator defined in Section 3.2.3
to iteratively improve the incumbent solution until a local optimum is reached. At each iteration of the
descent procedure, a best 1-move (i.e., with the maximum move gain) is selected by using the bucket
structures explained in Section 3.2.4 and displaced from its current subset to the other subset. As explained
in Section 3.2.3, to maintain the balance of the two subsets of the bisection, DLS always jointly performs
two consecutive 1-move operations.

First, DLS selects a vertex u with the largest move gain (i.e., ∆v is maximum), displaces u from its
subset (say S1) to the other subset and updates the bucket structure of move gains according to the technique
described in Section 3.2.4. Then, DLS selects another vertex v in the other subset (say S2) with the largest
move gain, transfers v from S2 to S1 and updates the bucket structure again. In the case where two or more
vertices have the same largest move gain, the LIFO tie-breaking strategy described in Section 3.2.4 is used
to choose the applied vertex.

After each combined application of two consecutive 1-move operations, if the new objective value is
better (larger) than the objective value of the former incumbent solution, the current descent iteration is
achieved and DLS continues its descent process with the newly attained solution as its new current solution.
Otherwise, DLS stops after rolling back to the previous solution prior to the last two-consecutive 1-move
operations (see Algorithm 2, lines 17 - 20). This solution corresponds to a local optimum with respect to
the N1 neighborhood and serves as the input solution of the diversifying improvement search phase which
is explained in the next section.

3.2.7 Diversifying improvement phase to discover promising region

The descent local phase described in Section 3.2.6 alone cannot go beyond the first local optimum it
encounters. The diversifying improvement search phase, which is based on the tabu search method [Glover
and Laguna, 1999], 1) to jump out of this local optimum and 2) to intensify the search around this local
optimum with the purpose of discovering solutions better than the input local optimum.

The diversifying improvement search procedure jointly uses the 1-move and c-swap operators defined
in Section 3.2.3. To apply these two operators, we employ a probabilistic combination technique which
extends the existing combination schemes described in [Lü et al., 2011b]. The application of 1-move or
c-swap is determined probabilistically at each iteration: with probability ρ (a parameter), c-swap is applied;
with probability 1− ρ, 1-move is applied (see Algorithm 2, lines 28 - 38).

When 1-move is selected, the algorithm performs the combined 1-move operations in a way similar to
that described in Section 3.2.6 except that here a tabu list H is considered [Glover and Laguna, 1999]. The
tabu list is a memory which keeps track of displaced vertices to prevent them from being moved back to
their initial subsets. Precisely, the algorithm first selects an eligible vertex (see below) with the maximum
move gain and transfers it from its current subset (say S1) to the other subset, then it updates the bucket
structure of move gains according to the technique described in Section 3.2.4. After that, it selects another
eligible vertex in the other subset (say S2) with the best move gain and moves it from S2 to S1. The bucket
structure is updated to actualize the impacted move gains accordingly.

After the transfer of a vertex v, the vertex is added to the tabu list H and forbidden to join again its
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original subset for the next Hv iterations. Hv (called the tabu tenure) is determined dynamically as follows:

Hv = 3 + rand(|V |/10) (3.7)

where rand(k) is a random number from 0 to k.

Note that a move leading to a solution better than all solutions ever found is always performed even if
the underlying vertex is forbidden by the tabu list (This is called the aspiration criterion in the terminology
of tabu search). A vertex is said to be eligible if it is not forbidden by the tabu list or if the aspiration
criterion is satisfied.

Similarly, when c-swap is selected, two vertices v1 ∈ S1 and v2 ∈ S2 with maximum move gain are
selected subject to {v1, v2} ∈ E. Another tabu list Hc is maintained for c-swap. After each c-swap move,
the edge {v1, v2} is added to the tabu list Hc and it is forbidden to swap v1 and v2 back to their original
subsets for the next Hc iterations, which, like for the 1-move, is dynamically determined by formula (3.7).
The same aspiration criterion as that used by 1-move is also applied. After each c-swap move, the bucket
structure is updated to actualize the impacted move gains. Note that when multiple best c-swap moves are
available, the LIFO selection strategy is used to choose the applied c-swap move (see Section 3.2.4).

The tabu search procedure iteratively applies 1-move and c-swap to improve the incumbent solution.
If the best solution found so far (fbest) cannot be improved during a maximum number ω of consecutive
iterations, the search is judged to be trapped in a deep local optimum. In this case, the perturbation phase
(Section 3.2.8) is invoked to move the search to a distant region.

3.2.8 Perturbation phase for strong diversification

The diversifying improvement phase allows the search to escape some local optima. However, the
algorithm may still get stuck in a non-promising search zone. This is the case when the best-found solution
fbest cannot be improved after ω consecutive iterations. To help the search to escape from such deep local
optima, we apply a simple perturbation mechanism to the current solution to diversify the search. The
perturbation swaps a number of pairs of vertices in the following way. For each swap, we randomly choose
one vertex v from S1 and another vertex u from S2, and then swap v and u. This process is repeated γ
times where γ is a parameter which indicates the strength of the perturbation. After the perturbation phase,
the search returns to the descent-based improvement phase with the perturbed solution as its new starting
solution.

3.3 Experimental results and comparisons

3.3.1 Benchmark instances

To assess the performance of the proposed ITS approach, we carried out intensive computational ex-
periments on the set of 71 well-known benchmark graphs in the literature. These graphs have 800 to
20000 vertices and an edge density from 0.02% to 6%. They were generated by a machine-independent
graph generator including toroidal, planar and random weighted graphs. These instances are available
from: http://www.stanford.edu/yyye/yyye/Gset or from the authors of this paper. These

http://www.stanford.edu/yyye/yyye/Gset
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well-known benchmark graphs were frequently used to evaluate the performances of max-bisection and
max-cut algorithms [Benlic and Hao, 2013a; Festa et al., 2002; Lin and Zhu, 2014; Shylo et al., 2012;
Shylo et al., 2015; Wang et al., 2013; Wu and Hao, 2012; Wu and Hao, 2013; Xu et al., 2011].

3.3.2 Experimental protocol

Our ITS algorithm was programmed in C++ and compiled with GNU g++ (optimization flag "-O2").
Our computer is equipped with a Xeon E5440 (2.83GHz, 2GB RAM). When running the DIMACS machine
benchmark 1, our machine requires 0.43, 2.62 and 9.85 CPU time in seconds respectively for graphs r300.5,
r400.5, and r500.5 compiled with g++ -O2.

3.3.3 Parameters

The proposed algorithm requires three parameters: maximum allowed number ω of non-improvement
iterations, probability ρ for move operator selection, and number γ of perturbation moves. To achieve a
reasonable tuning of the parameters, we adopted the irace package [López-Ibánez et al., 2011] which im-
plements the Iterated F-race (IFR) method [Bartz-Beielstein et al., 2010] and allows an automatic parameter
configuration. We used the following parameter value ranges for this tuning: ω = {1500, 2500, 3500, 4500, 5500},
ρ = [0.1, 0.5], γ = {50, 200, 400, 600}. We performed the parameter tuning experiment on a selection of 5
representative and challenging instances from the 71 benchmark graphs: G22, G23, G37, G55, G62. This
calibration experiment led to the following parameter values: (ω = 3500, ρ = 0.3, γ = 200), which were
used in all our experiments throughout the paper.

Considering the stochastic nature of our ITS algorithm, each of the 71 benchmark instance was inde-
pendently solved 20 times with different random seeds. For the purpose of fair comparisons reported in
Sections 3.3.4 and 3.3.5, we followed the reference algorithms and used a timeout limit as the stopping
criterion of our ITS algorithm. The timeout limit was set to be 30 minutes for graphs with |V | < 5000 and
120 minutes for graphs with |V | ≥ 5000.

To fully evaluate the performance of the proposed algorithm, we performed a comparison with the three
most recent and best performing state-of-the-art max-bisection algorithms [Lin and Zhu, 2014; Wu and
Hao, 2013; Xu et al., 2011]. The current best results of the literature were reported in [Lin and Zhu, 2014;
Wu and Hao, 2013] recently in 2013 and 2014.

3.3.4 Comparison with the current best-known solutions

Table 3.1 shows the computational results of our ITS algorithm on the 71 benchmark graphs 2 in com-
parison with the previous best-known results fpre, which are taken from the two most recent studies [Lin
and Zhu, 2014; Wu and Hao, 2013]. The first two columns of the table indicate the name and the number
of vertices of the graphs. Columns 4 to 7 present the computational statistics attained by our algorithm,
where fbest and favg show the best objective value and the average objective value over 20 runs, std gives
the standard deviation and time(s) indicates the average CPU time in seconds to reach fbest.

1. dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/
2. Our best results are available at: http://www.info.univ-angers.fr/pub/hao/maxbisection/

ITSresults.zip.

ftp://dimacs.rutgers.edu/pub/dsj/clique/
http://www.info.univ-angers.fr/pub/hao/maxbisection/ITSresults.zip
http://www.info.univ-angers.fr/pub/hao/maxbisection/ITSresults.zip
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From Table 3.1, we observe that our ITS algorithm, evaluated under the same cutoff time limit as the
best performing reference algorithm MA-WH, is able to improve the previous best-known results for 10
large benchmark graphs (indicated in bold) and match the best-known results for all the other graphs. This
performance is remarkable given that the current best results were reported recently. Moreover, the results of
the proposed algorithm show small standard deviations across different runs and different graphs, indicating
a good robustness of the algorithm.

Table 3.1: Computational results of the proposed ITS algorithm on the set of 71 benchmark graphs in
comparison with the current best results ever reported in the literature.

Instance |V | fpre fbest favg std time(s)

G1 800 11624 11624 11624.00 0.00 1.50
G2 800 11617 11617 11617.00 0.00 3.24
G3 800 11621 11621 11621.00 0.00 1.02
G4 800 11646 11646 11646.00 0.00 1.77
G5 800 11631 11631 11631.00 0.00 0.76
G6 800 2177 2177 2177.00 0.00 1.50
G7 800 2002 2002 2002.00 0.00 0.53
G8 800 2004 2004 2004.00 0.00 3.50
G9 800 2052 2052 2052.00 0.00 1.88
G10 800 1998 1998 1998.00 0.00 4.99
G11 800 564 564 564.00 0.00 0.12
G12 800 556 556 556.00 0.00 0.56
G13 800 582 582 582.00 0.00 4.52
G14 800 3062 3062 3062.00 0.00 90.68
G15 800 3050 3050 3050.00 0.00 55.84
G16 800 3052 3052 3052.00 0.00 32.82
G17 800 3047 3047 3047.00 0.00 200.67
G18 800 992 992 992.00 0.00 14.50
G19 800 905 905 905.00 0.00 3.51
G20 800 941 941 941.00 0.00 1.52
G21 800 930 930 930.00 0.00 50.41
G22 2000 13359 13359 13355.52 5.47 432.10
G23 2000 13344 13344 13342.10 2.09 168.24
G24 2000 13336 13336 13335.02 1.67 300.75
G25 2000 13340 13340 13338.20 1.98 149.21
G26 2000 13328 13328 13327.41 1.54 433.68
G27 2000 3341 3341 3340.65 1.75 140.64
G28 2000 3298 3298 3298.00 0.00 198.23
G29 2000 3403 3403 3403.00 0.00 3.26
G30 2000 3412 3412 3412.00 0.00 54.22
G31 2000 3309 3309 3309.00 0.00 242.19
G32 2000 1410 1410 1410.00 0.00 425.70
G33 2000 1382 1382 1382.00 0.00 485.83
G34 2000 1384 1384 1384.00 0.00 189.27
G35 2000 7686 7686 7684.10 2.04 448.35
G36 2000 7678 7678 7676.45 2.16 634.11
G37 2000 7689 7689 7687.74 2.09 627.86
G38 2000 7688 7688 7686.56 3.04 688.32
G39 2000 2408 2408 2406.87 2.56 242.60
G40 2000 2400 2400 2398.82 3.02 354.50
G41 2000 2405 2405 2404.21 0.99 82.55
G42 2000 2481 2481 2476.86 5.85 286.18
G43 1000 6659 6659 6659.00 0.00 5.25
G44 1000 6650 6650 6650.00 0.00 2.09
G45 1000 6654 6654 6654.00 0.00 3.99
G46 1000 6649 6649 6649.00 0.00 30.12
G47 1000 6657 6657 6657.00 0.00 4.88
G48 3000 6000 6000 6000.00 0.00 0.97
G49 3000 6000 6000 6000.00 0.00 1.57
G50 3000 5880 5880 5880.00 0.00 50.64
G51 1000 3847 3847 3847.00 0.00 101.43
G52 1000 3851 3851 3851.00 0.00 98.43
G53 1000 3850 3850 3850.00 0.00 109.50
G54 1000 3851 3851 3851.00 0.00 177.89
G55 5000 10299 10299 10290.83 4.54 2596.84
G56 5000 4016 4016 4013.13 2.28 1926.45
G57 5000 3488 3490 3487.76 1.88 610.16
G58 5000 19276 19276 19265.90 3.18 5102.34
G59 5000 6085 6085 6074.34 2.35 4902.13
G60 7000 14186 14187 14176.54 4.01 5678.63
G61 7000 5796 5796 5780.18 5.08 4072.54
G62 7000 4866 4866 4860.12 2.69 1472.10
G63 7000 26754 26988 26985.32 1.18 2256.66
G64 7000 8731 8737 8712.10 6.28 6032.55
G65 8000 5556 5556 5550.87 2.42 2350.98
G66 9000 6352 6356 6352.01 1.93 1323.15
G67 10000 6934 6938 6935.46 1.34 1023.40
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Table 3.1 – continued from previous page
Instance |V | fpre fbest favg std time(s)

G70 10000 9580 9581 9576.32 0.98 1154.32
G72 10000 6990 6994 6992.50 0.84 1201.97
G77 14000 9900 9918 9915.14 1.02 2013.44
G81 20000 13978 14030 14025.45 1.36 1953.23

3.3.5 Comparison with state-of-the-art max-bisection algorithms

In this section, we further evaluate the performance of the proposed algorithm by comparing it with
three best performing algorithms of the literature that achieved state-of-art performances:

1. A Lagrangian net algorithm (LNA) [Xu et al., 2011] integrating the discrete Hopfield neural network
and the penalty function method (relaxing the bisection constraints in the objective function). The re-
ported results of LNA were obtained on a PC with a 2.36GHz CPU and 1.96GB RAM. The algorithm
was programmed in Matlab 7.4.

2. A memetic algorithm for the max-bisection problem (MA-WH) [Wu and Hao, 2013] integrating a
grouping crossover operator and a tabu search procedure. The results reported in the paper were
obtained on a PC with a 2.83GHz Intel Xeon E5440 CPU and 2.0GB RAM (the same platform was
used in our study). The program was coded in C.

3. Another memetic algorithm for the max-bisection problem (MA-LZ) [Lin and Zhu, 2014] integrating
a grouping crossover operator and an improved FM [Fiduccia and Mattheyses, 1982] based local
search procedure. The reported results of MA-LZ were obtained on a PC with a 2.11GHz AMD CPU
and 1.0GB RAM. The algorithm was programmed in C++.

Both the MA-WH algorithm and our ITS algorithm used the same computing platform while LNA and
MA-LZ were run on different computing platforms. In order to make a fair comparison of the computing
time, we measured the differences among the three computing platforms according to the Standard Per-
formance Evaluation Cooperation (SPEC) (www.spec.org), which indicated that the computers used by
LNA and MA-LZ are respectively 1.2 and 1.4 times slower than the computer we used for our experiments.

Table 3.2 shows the comparative results of our ITS algorithm on the whole set of 71 benchmark graphs
with respect to the three reference algorithms LNA, MA-WH and MA-LZ. For each reference algorithm,
we report the best objective values (fbest), the consumed CPU times (time) in seconds to attain the best
objective values (fbest), and the differences (gap) between each reference algorithm and our ITS algorithm.
As mentioned above, to harmonize the computing times, we divided the times of LNA and MA-LZ by the
factor provided by SPEC, i.e., 1.2 and 1.4 respectively. The last two columns reporting the results of our
ITS algorithm are extracted from Table 3.1. The entries marked as "-" in the table indicate that the results
are not available in the literature.

From Table 3.2, we first observe that our proposed ITS algorithm performs the best in terms of the best
objective values among all the compared algorithms. Specifically, ITS dominates LNA for all the tested
instances. MA-LZ matches the results of ITS for 10 instances and obtains inferior results than ITS for all
the other reported instances. ITS reaches larger fbest objective values than MA-WH for 10 instances and
equal objective values for the other 61 instances. In terms of the computational time, it is not obvious to
make a fair comparison given that the competing algorithms lead to solutions of quite different quality. This
is particularly the case for LNA and MA-LZ which performs the worst and the second worst in terms of
solution quality. Compared to the most powerful existing MA-WH algorithm, we observe that ITS has a

www.spec.org
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similar computing performance to attain solutions of equal or better quality for large instances. Moreover,
in Table 3.3 we show the time information of ITS to attain solutions of the same quality as MA-WH for the
12 largest instances with 7000 to 20000 vertices. The table discloses that our ITS algorithm is much faster
than MA-WH for these large instances (except G61). For 6 instances, ITS is even 10 to 20 times faster. To
conclude, the comparisons with the current state-of-the-art algorithms demonstrate that our proposed ITS
algorithm is highly effective in terms of both solution quality and computing time, in particular on large
instances for which ITS scales well.

Table 3.2: Comparative results of ITS with three state of the art and best performing algorithms: LNA,
MA-LZ and MA-WH.

Instance |V | LNA MA-LZ MA-WH ITS

fbest time(s) gap fbest time(s) gap fbest time(s) gap fbest time(s)

G1 800 11490 22.22 -134 11624 13.38 0 11624 2.40 0 11624 1.50
G2 800 11505 21.95 -112 11617 11.66 0 11617 5.20 0 11617 3.24
G3 800 11511 21.95 -110 11621 14.77 0 11621 1.32 0 11621 1.02
G4 800 11554 22.04 -92 11641 16.29 -5 11646 1.77 0 11646 1.77
G5 800 11521 21.80 -110 11630 14.30 -1 11631 0.88 0 11631 0.76
G6 800 2037 22.08 -140 2177 10.35 0 2177 1.16 0 2177 1.50
G7 800 1889 22.00 -113 2000 14.72 -2 2002 0.82 0 2002 0.53
G8 800 1873 21.94 -131 2001 16.66 -3 2004 4.26 0 2004 3.50
G9 800 1907 21.86 -145 2046 11.94 -6 2052 1.19 0 2052 1.88
G10 800 1875 21.96 -123 1998 14.99 0 1998 5.59 0 1998 4.99
G11 800 560 3.18 -4 564 11.67 0 564 12.10 0 564 0.12
G12 800 546 3.17 -10 554 11.29 -2 556 11.54 0 556 0.56
G13 800 572 3.17 -10 578 11.12 -4 582 32.52 0 582 4.52
G14 800 3023 7.02 -39 3058 17.76 -4 3062 799.00 0 3062 90.68
G15 800 2996 7.01 -54 3049 15.20 -1 3050 692.96 0 3050 55.84
G16 800 2994 7.02 -58 3047 15.83 -5 3052 82.82 0 3052 32.82
G17 800 2997 6.99 -50 3043 17.16 -4 3047 778.67 0 3047 200.67
G18 800 909 7.03 -83 991 10.82 -1 992 16.36 0 992 14.50
G19 800 823 7.00 -82 905 8.59 0 905 40.31 0 905 3.51
G20 800 865 6.98 -76 941 6.09 0 941 2.48 0 941 1.52
G21 800 849 6.98 -81 930 9.97 0 930 34.71 0 930 50.41
G22 2000 13105 57.48 -254 13346 25.97 -13 13359 303.20 0 13359 432.10
G23 2000 13120 57.36 -224 13319 27.67 -25 13344 132.13 0 13344 168.24
G24 2000 13115 57.34 -221 13322 25.87 -14 13336 102.75 0 13336 300.75
G25 2000 13125 57.41 -215 13314 26.36 -26 13340 308.51 0 13340 149.21
G26 2000 13160 57.25 -168 13300 27.64 -28 13328 366.09 0 13328 433.68
G27 2000 3109 57.16 -232 3317 26.74 -24 3341 109.49 0 3341 140.64
G28 2000 3063 58.13 -235 3289 26.96 -9 3298 217.84 0 3298 198.23
G29 2000 3179 58.06 -224 3376 26.54 -27 3403 1.36 0 3403 3.26
G30 2000 3139 58.18 -273 3397 26.11 -15 3412 44.82 0 3412 54.22
G31 2000 3092 58.13 -217 3296 25.43 -13 3309 263.21 0 3309 242.19
G32 2000 1382 16.88 -28 1410 61.07 0 1410 887.50 0 1410 425.70
G33 2000 1344 17.01 -38 1378 59.80 -4 1382 856.80 0 1382 485.83
G34 2000 1350 16.88 -34 1382 52.09 -2 1384 536.12 0 1384 189.27
G35 2000 7548 39.22 -138 7659 34.26 -27 7686 1312.42 0 7686 448.35
G36 2000 7530 39.08 -148 7655 33.79 -23 7678 1259.10 0 7678 634.11
G37 2000 7541 39.21 -148 7669 33.86 -20 7689 1543.36 0 7689 627.86
G38 2000 7537 39.23 -151 7662 34.63 -26 7688 922.66 0 7688 688.32
G39 2000 2255 40.11 -153 2382 23.11 -26 2408 976.95 0 2408 242.60
G40 2000 2189 40.00 -211 2386 24.82 -14 2400 1198.28 0 2400 354.50
G41 2000 2234 40.03 -171 2383 25.78 -22 2405 546.57 0 2405 82.55
G42 2000 2290 40.11 -191 2456 26.74 -25 2481 1513.96 0 2481 286.18
G43 1000 6580 15.34 -79 - - - 6659 1.25 0 6659 5.25
G44 1000 6548 15.33 -102 - - - 6650 1.18 0 6650 2.09
G45 1000 6513 15.33 -141 - - - 6654 4.23 0 6654 3.99
G46 1000 6538 15.33 -111 - - - 6649 10.48 0 6649 30.12
G47 1000 6529 15.34 -128 - - - 6657 5.97 0 6657 4.88
G48 3000 - - - - - - 6000 1.42 0 6000 0.97
G49 3000 - - - - - - 6000 1.28 0 6000 1.57
G50 3000 - - - - - - 5880 33.89 0 5880 50.64
G51 1000 3773 10.58 -74 - - - 3847 292.60 0 3847 101.43
G52 1000 3788 10.61 -63 - - - 3851 814.96 0 3851 98.43
G53 1000 3784 10.60 -66 - - - 3850 516.28 0 3850 109.50
G54 1000 3789 10.63 -62 - - - 3851 551.51 0 3851 177.89
G55 5000 - - - - - - 10299 2396.84 0 10299 2596.84
G56 5000 - - - - - - 4016 1886.98 0 4016 1926.45
G57 5000 - - - - - - 3488 4883.34 -2 3490 610.16
G58 5000 18931 268.71 -345 19213 120.67 -63 19276 4276.67 0 19276 5102.34
G59 5000 5578 260.91 -507 5978 88.69 -107 6085 4446.16 0 6085 4902.13
G60 7000 - - - - - - 14186 5508.45 0 14187 5678.63
G61 7000 - - - - - - 5796 3755.71 0 5796 4072.54
G62 7000 - - - - - - 4866 4652.00 0 4866 1472.10
G63 7000 - - - - - - 26754 5670.30 -234 26988 2256.66
G64 7000 - - - - - - 8731 5793.56 -6 8737 6032.55
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Table 3.2 – continued from previous page
Instance |V | LNA MA-LZ MA-WH ITS

fbest time(s) gap fbest time(s) gap fbest time(s) gap fbest time(s)

G65 8000 5418 290.72 -138 5534 463.44 -22 5556 5385.86 0 5556 2350.98
G66 9000 6194 391.03 -162 6324 850.69 -32 6352 6267.15 -4 6356 1323.15
G67 10000 6782 512.62 -156 6912 797.09 -26 6934 6203.44 -4 6938 1023.40
G70 10000 - - - - - - 9580 7032.70 -1 9581 1154.32
G72 10000 - - - - - - 6990 7046.03 -4 6994 1201.97
G77 14000 - - - - - - 9900 6752.26 -18 9918 2013.44
G81 20000 - - - - - - 13978 7023.49 -52 14030 1953.23

Table 3.3: ITS needs much less time to attain the best objectives of the current best performing MA-WH
algorithm on the 12 largest instances with 7000 to 20000 vertices.

Instance MA-WH ITS

fbest time(s) time(s)

G60 14186 5508.45 5678.63
G61 5796 3755.71 4072.54
G62 4866 4652.00 1472.1
G63 26754 5670.30 238.16
G64 8731 5793.56 5532.55
G65 5556 5385.86 2350.98
G66 6352 6267.15 930.15
G67 6934 6203.44 1223.4
G70 9580 7032.70 1154.32
G72 6990 7046.03 970.92
G77 9900 6752.26 530.71
G81 13978 7023.49 486.70237

3.3.6 Comparison with a recent state-of-the-art exact algorithm for the minimum
bisection problem

A bisection of an unweighted graph G = (V,E) (|V | even) is a pair of disjoint subsets S1 ⊂ V , S2 ⊂ V
of equal cardinality. The cost of a bisection is the number of cutting edges {u, v} ∈ E such that u ∈ S1 and
v ∈ S2. The minimum bisection problem (or graph bisection) is to determine a bisection of minimum cost.
The minimum bisection problem can be considered as a special case of the maximum bisection problem
studied in this paper. In fact, for the given unweighted graph G = (V,E), create a weighted graph where
each edge has a weight value of -1 (call this weighted graph G′), then the objective value of the maximum
bisection problem of G′ multiplied by -1 corresponds to the objective value of the minimum bisection
problem of G. Consequently, to solve the minimum bisection, we can run our ITS algorithm on the graph
where each edge is given the weight -1 and return the resulting objective value multiplied by −1.

To test the performance of our ITS algorithm on the minimum bisection problem, we carried out a
comparative study with a very recent and powerful exact algorithm specifically designed for the minimum
bisection problem [Delling et al., 2015]. This study was based on 3 sets of benchmarks with a total of 20
graphs used in the reference paper, including cgmesh graphs (meshes representing various objects), steinlib
graphs (sparse benchmark instances for the Steiner problem in graphs) and walshaw graphs (mostly finite-
element meshes). Notice that we did not test all the graphs used in [Delling et al., 2015] given that the
current implementation of the ITS algorithm does not allow us to solve very large graphs with more than
70,000 vertices.

We carry out 10 independent runs of our ITS algorithm for each tested instance within a cutoff time
limit of 3600 seconds and terminate each run once the best known result is found. The parameter settings
for the instances in this experiment are the same as used for the maximum bisection benchmark instances.
Without bothering to show a detailed tabulation of computational results, we summarize the main findings
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obtained from this experiment as follows. Our ITS algorithm is able to attain the optimal solutions for
the walshaw and cgmesh graphs. In particular, for the cgmesh graphs, ITS reaches the optimal solutions
with a computing time ranging from 5 to 10 times shorter than the time needed by the exact algorithm to
complete its search. On the other hand, ITS fails to reach the optimal solutions for large steinlib graphs. An
interesting observation is that ITS works well for graphs with a large minimum bisection value while the
exact algorithm performs well for graphs with a small minimum bisection value (the latter is confirmed in
[Delling et al., 2015]). In this sense, we can consider that both algorithms complement each other, suitable
to solve graphs of different characteristics. The inferiority of ITS for solving graphs with small minimum
bisection values is partly attributed to the ineffectiveness of the c-swap operator for this type of special
graphs. Essentially, the c-swap operator only concentrates on swapping cutting edges, which proved to
be effective for the graphs used to benchmark max-bisection algorithms, but becomes inefficient when the
cutting edges are very limited as it is the case for the steinlib graphs.

3.4 Discussion

In this section, we investigate the roles of the Last In First Out (LIFO) tie breaking strategy based on
bucket sorting and the combined neighborhood in the proposed ITS algorithm. The experiments of this
section were based on a selection of 17 challenging instances while the tested ITS variants used the same
stopping conditions as in the previous experiments.

3.4.1 Impact of the bucket-sorting based tie breaking strategies

The adopted bucket sorting is a crucial data structure to the effectiveness of the proposed algorithm, in
particular to the LIFO tie breaking strategy. Recall that each bucket in the bucket array generally includes
multiple vertices (organized into a circular doubly link list) from which moving any vertex will lead to the
same objective gain. Apparently, no difference occurs among vertices in the same bucket. However, we
assume that potential connections among vertices exist and the order of vertices being inserted into a bucket
is worthy of a careful consideration. Based on this assumption, we proposed an improved LIFO insertion
strategy (see Section 3.2.4), where a vertex is inserted at the head of the circular doubly link list whenever
its move gain is changed (i.e., its inserted position in the bucket array is changed accordingly), to ensure
that this vertex will be first selected when a tie break happens. The reason lies in the fact that if the move
gain of a vertex u is changed because of moving a vertex v, then u has a higher opportunity to be moved
during the following iterations. An exception is to insert tabu vertices at the tail of the circular doubly link
lists in order to penalize the recently moved vertices.

To verify the role of the bucket sorting structure to the performance of the ITS algorithm, we tested
an ITS variant which disables the bucket sorting structure and only keeps a vector to record objective
gains resulted from performing each 1-move. In this case, the identification of a vertex with the maximum
objective gain in the ITS variant has to scan the whole vector instead of looking at the top of the bucket
array. When the maximum objective gain is held by more than one vertex, ties are broken randomly.
Table 3.4 (upper part) compares the standard ITS algorithm (with the bucket sorting structure and the LIFO
tie breaking strategy, named ITSLIFO) and the ITS variant which excludes the bucket sorting structure
(named ITSNo−bucket). From the results, we observe that removing the bucket sorting structure degrades
considerably the performance of the ITS algorithm both in terms of the best and average solutions, which
is confirmed by a small p-value of 3.738e-05 from the Friedman test for both cases. Moreover, compared
to ITSLIFO, ITSNo−bucket generally requires more computing time to reach its best results (which are worse
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than those of ITSLIFO). In conclusion, the experiment demonstrates the usefulness of the bucket sorting
structure technique in the proposed ITS algorithm.

To further verify the adopted LIFO tie breaking strategy, we compared LIFO with the Random Strategy
(Random) and the First In First Out strategy (FIFO). The random strategy scans vertices of the same bucket
according to a random order, no matter if a new vertex is inserted at the head or the tail of a circular doubly
link list. The FIFO strategy uses a queue structure, with the vertices in a bucket being scanned from the
head to the tail like the LIFO strategy but with any vertex being inserted at the tail of the circular doubly
link list. For this experiment, we kept all the other components of the proposed ITS algorithm unchanged
except the tie breaking strategy.

Table 3.4 (lower part) reports the best objective value fbest and average objective value favg over 20
runs as well as the average time time to reach fbest. From this table, we observe that the LIFO tie breaking
strategy dominates the Random and FIFO strategies both in terms of solution quality and computing time.
In order to clearly observe the superiority of the LIFO strategy, we plot in Figure 3.2(a) and 3.2(b) the
deviation of the best and average objective values obtained by Random and FIFO from that of LIFO for
each tested instance. Notice that if the absolute value of the deviation is smaller, then the corresponding
objective value is better. From Figures 3.2(a) and 3.2(b), we clearly observe that deviation values are all
negative, meaning both Random and FIFO are inferior to LIFO in terms of the best and average objective
values. In conclusion, this experiment demonstrates the interest of the adopted LIFO tie breaking strategy.

Table 3.4: Assessment of the bucket sorting structure and comparisons among the different tie-breaking
strategies

Instance ITSLIFO ITSNo−bucket

fbest favg time(s) fbest favg time(s)

G55 10299 10290.83 2596.84 10296 10285.18 3755.78
G56 4016 4013.13 1926.45 4012 4007.97 4237.44
G57 3490 3487.76 610.16 3488 3478.17 5451.93
G58 19276 19265.9 5102.34 19272 19264.14 4759.58
G59 6085 6074.34 4902.13 6078 6063.64 4192.53
G60 14186 14176.54 5678.63 14170 14162.91 6012.47
G61 5796 5780.18 4072.54 5786 5770.43 3699.49
G62 4866 4860.12 1472.1 4860 4848.72 4275.62
G63 26988 26985.32 2256.66 26976 26967.02 5071.38
G64 8737 8712.1 6032.55 8725 8707.16 3975.71
G65 5556 5550.87 2350.98 5542 5535.63 4217.56
G66 6356 6352.01 1323.15 6345 6334.45 5274.54
G67 6938 6935.46 1023.4 6927 6920.46 4057.85
G70 9581 9576.32 1154.32 9564 9540.34 4538.75
G72 6994 6992.5 1201.97 6980 6975.2 5638.47
G77 9918 9915.14 2013.44 9890 9880.14 6972.68
G81 14030 14025.45 1953.23 13978 13950.45 7001.35
Instance ITSFIFO ITSRandom

fbest favg time(s) fbest favg time(s)

G55 10264 10255.62 5389.34 10294 10284.13 5560.1
G56 3989 3981.85 6883.49 4013 4009.57 5895.28
G57 3480 3473.17 5573.11 3488 3483.54 4560.34
G58 19243 19240.30 5991.60 19272 19261.88 6832.53
G59 6046 6041.78 7137.13 6080 6064.19 6102.8
G60 14166 14155.48 5365.37 14178 14170.41 6016.74
G61 5771 5758.29 5966.63 5789 5768.18 5319.93
G62 4852 4845.82 6084.48 4860 4857.52 6087.27
G63 26933 26914.02 5274.82 26973 26960.2 5752.03
G64 8707 8697.68 6462.01 8720 8711.54 5143.31
G65 5527 5520.40 6587.86 5544 5541.89 6136.65
G66 6341 6336.77 6728.68 6349 6340.91 7056.77
G67 6920 6914.62 5612.06 6930 6925.16 6835.17
G70 9540 9532.55 6177.37 9571 9561.09 6326.62
G72 6946 6941.74 6567.88 6985 6981.35 6964.13
G77 9876 9867.64 7139.18 9896 9888.72 6587.06
G81 13968 13955.49 5581.10 13987 13980.98 7019.52
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Figure 3.2: Analysis of the tie breaking strategies
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3.4.2 Impact of the combined use of 1-move and c-swap operators

Our proposed ITS algorithm employs both the 1-move and c-swap operators, which are combined in a
probabilistic way as described in Section 3.2.3. To verify the effectiveness of the combined use of these op-
erators, we developed two algorithmic variants. The first ITS variant disables c-swap and uses 1-move (i.e.,
by removing lines 27-31 in Algorithm 1). The second ITS variant just replaces c-swap by the conventional
swap operator (denoted as s-swap, see Section 3.2.3). In both variants, we keep the other ITS components
unchanged. We run ITS (denoted by 1-move + c-swap) as well as these two variants (denoted by 1-move
and 1-move + s-swap) under the same experimental conditions as before to solve the 17 selected instances
and report the results in terms of fbest, favg and time in Table 3.5.

From Table 3.5, we observe that the ITS algorithm with 1-move + c-swap obtains better fbest and favg
values for each tested instance. In addition, the joint use of 1-move and c-swap takes the shortest time while
obtaining results of much better quality. We also observe that the variant using 1-move alone performs better
than the variant jointly using 1-move + s-swap. This indicates that contrary to our fast c-swap operator, the
expensive s-swap operator is not suitable here due to the high time complexity needed to explore the induced
huge neighborhood of quadratic size O(|V |2). Furthermore, Figures 3.3(a) and 3.3(b) plot respectively the
best and average deviation with 1-move from the corresponding objective values with 1-move + c-swap,
which clearly discloses the merit of the joint use of the 1-move and c-swap operators. Even if we do not
provide additional figures for the 1-move + s-swap variant, we understand that the observations made for the
1-move variant hold as well. Moreover, Friedman statistical tests confirm that ITS algorithm with 1-move
+ c-swap performs significantly better than the other two ITS variants in terms of both best and average
solution values. This experiment demonstrates thus the contribution of the constrained c-swap operator to
the performance of the proposed ITS algorithm.

Table 3.5: Computational comparisons of the ITS algorithm using the 1-move operator and the constrained
swap operator (c-swap) with an ITS variant using 1-move alone and another ITS variant using 1-move and
the conventional swap operator (s-swap)

Instance 1-move + c-swap 1-move 1-move + s-swap

fbest favg time(s) fbest favg time(s) fbest favg time(s)

G55 10299 10290.83 2596.84 10292 10283.53 6192.26 10254 10231.45 6587.15
G56 4016 4013.13 1926.45 4012 4007.43 5595.33 4008 3988.9 5697.57
G57 3490 3487.76 610.16 3485 3481.50 5013.16 3466 3460.4 4989.16
G58 19276 19265.9 5102.34 19262 19255.25 6382.23 19190 19175.55 7014.74
G59 6085 6074.34 4902.13 6076 6069.13 4637.32 6043 6030.7 6910.92
G60 14186 14176.54 5678.63 14170 14162.97 5435.35 14101 14079.3 6514.35
G61 5796 5780.18 4072.54 5778 5767.28 6816.18 5709 5684.35 5638.13
G62 4866 4860.12 1472.1 4861 4853.31 4267.49 4821 4810.1 4968.75
G63 26988 26985.32 2256.66 26979 26965.14 4758.43 26910 26803.35 5017.68
G64 8737 8712.1 6032.55 8723 8710.75 6026.28 8705 8692.1 6987.14
G65 5556 5550.87 2350.98 5550 5543.21 5472.34 5318 5301.8 6541.25
G66 6356 6352.01 1323.15 6349 6339.09 5262.37 6036 6012.2 5746.28
G67 6938 6935.46 1023.4 6933 6924.01 6465.22 6714 6683.4 6357.17
G70 9581 9576.32 1154.32 9541 9534.64 4785.42 9013 8981.3 7104.38
G72 6994 6992.5 1201.97 6979 6972.36 6679.44 6034 5986.45 6879.32
G77 9918 9915.14 2013.44 9900 9889.59 6944.30 9062 9013.4 6245.84
G81 14030 14025.45 1953.23 14003 13985.48 7004.45 12002 11946.45 7008.46

3.5 Conclusion

In this chapter, we developed an iterated tabu search algorithm for the maximum bisection problem,
which achieved a high level performance by including two distinct search operators applied into three
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Figure 3.3: Analysis of the combined use of the 1-move operator and the constrained swap (c-swap) operator

search phases. The descent-based improvement phase uses the vertex move operator (1-move) to discover
a first local optimum from a starting solution. The diversifying improvement phase jointly employs the 1-
move operator and a constrained swap operator in a probabilistic way (under the tabu search framework) to
discover better solutions. The perturbation phase is applied as a means of strong diversification to get out of
deep local optimum traps. To obtain an efficient implementation of the proposed algorithm, we developed
streamlining techniques and a LIFO tie-breaking strategy based on dedicated bucket structures.

Experimental assessments on the 71 well-known benchmark instances with up to 20000 vertices indi-
cated that the proposed ITS algorithm was able to obtain improved best results (new lower bounds) for 10
large instances and match the best-known results for all the other instances. Comparisons with state-of-
the-art algorithms showed that the ITS algorithm was superior to the reference algorithms both in terms of
solution quality and computational efficacy. Furthermore, the main ingredients of the ITS algorithm were
analyzed to shed lights on their influences over the performance of the algorithm.

In the next chapter, we will consider the vertex separator problem, which receives more attention in
recent several years. To solve this problem, we resort to the powerful path relinking search metaheuristic
approach that builds a good balance between search intensification and diversification.



4
An effective path relinking algorithm for the
vertex separator problem

This chapter presents the first path relinking algorithm for solving the NP-hard vertex separator prob-
lem in graphs. The proposed algorithm employs iterated tabu search for solution improvement, in which the
typical 1-move operator and a complementary new swap-move operator are jointly used to conduct neigh-
borhood exploration. The dedicated path generation method creates a path starting from an initiating solu-
tion, on which a sequence of intermediate solutions gradually approach the guiding solution by performing
moves based on a greedy selection criterion. Extensive experiments are conducted on four benchmark sets
of 365 instances with up to 20000 vertices. Computational comparisons with state-of-the-art algorithms
reveal that our algorithm, within a highly competitive computational time, is capable of discovering new
best solutions (improved upper bounds) for 67 instances and matching the previous best solutions for all
but one instance. The content of this chapter is based on an article submitted to Knowledge-Based Systems
in April 2016.
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4.1 Introduction

Path relinking is a population-based general framework which was originally proposed for enhancing
the tabu search method [Glover et al., 2000; Glover et al., 2003; Glover et al., 2004]. PR has recently shown
outstanding performances in solving a number of challenging combinatorial optimization problems [Chen
and Glover, 2016; Lacomme et al., 2015; Lai and Hao, 2015; Peng et al., 2015; Wang et al., 2012]. A path
relinking algorithm generally includes the following components: a reference set initialization and updating
method, a path generation method, a path solution selection method and a solution improvement method,
where the common purpose of path generation and solution selection methods lies in producing potential
solutions with good quality and diversity.

Consider that no study has been reported on applying path relinking to VSP, this chapter presents the
first path relinking algorithm for VSP (named PR-VSP), which is composed of a reference set initialization
and updating method, a solution improvement method, a path generation method and a solution selection
method. The method to initialize and update a reference set is capable of maintaining a set of elite solutions
with high quality and good diversity. The solution improvement method follows the framework of iterated
tabu search, which alternates between a dedicated tabu search phase and a random perturbation phase. The
tabu search procedure employs two complementary search operators (1-move and swap-move) to collec-
tively perform neighborhood exploration, where the innovative swap-move operator is applied to solve VSP
for the first time. The path generation method builds a solution path from an initiating solution to a guiding
solution, on which a sequence of intermediate solutions are created by performing local moves based on
a greedy selection mechanism. The solution selection method picks one or multiple solutions on the path
which are submitted to the solution improvement method for quality optimization.

Experimental assessments on four sets of benchmarks with a total of 365 instances disclose that our
PR-VSP algorithm is able to find new best solutions (updated upper bounds) for 67 instances and matches
previous best solutions for all but one instance.

The rest of the chapter is organized as follows. Section 4.2 presents the general scheme and each
component of the proposed PR-VSP. Section 4.3 is dedicated to experimental results and comparisons with
state-of-the-art algorithms in the literature. Concluding remarks are given in Section 4.4.

4.2 The proposed path relinking algorithm for VSP

4.2.1 Main scheme

Algorithm 3 shows the general scheme of the PR-VSP algorithm. It first creates a reference set RefSet
consisting of a set of elite (feasible) solutions {S1, S2, . . . , Sp} (p = |RefSet|) and constructs a set PairSet
composed of indexes of all pairwise solutions in RefSet. Then, for each pair of solutions (Si and Sj), a
path generation method is utilized to build a solution path (i.e., a sequence of intermediate solutions) that
connects the initiating solution where the path starts from (say Si) and the guiding solution where the path
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Algorithm 3 Outline of the path relinking algorithm
1: Input: G = (V,E): an undirected graph, c: a vector of weights for each vertex in V , b: an upper limit for

the size of each shore subset
2: Output: the best solution S∗ found and its objective value f(S∗)
3: repeat
4: Initialize RefSet and PairSet (see Section 4.2.3)
5: Record the best solution S∗ in RefSet and the objective value f(S∗)
6: while (PairSet 6= ∅) do
7: Pick an index pair (i, j) ∈ PairSet to get a pair of solutions (Si, Sj) from RefSet
8: Apply the Path Relinking Method to build a path from Si to Sj and another path from Sj to Si

(see Section 4.2.5)
9: Apply the Solution Selection Method to select solutions on each path (see Section 4.2.6)

10: Apply the Solution Improvement Method to selected solutions (see Section 4.2.4)
11: Update the best solution S∗ and its objective value f(S)∗

12: Update RefSet and PairSet (see Section 4.2.3)
13: end while
14: until the elapsed time surpasses a given time limit

ends (say Sj). By interchanging the initiating and guiding solutions, another path is built in the same way.
A solution selection method is then applied to pick one or multiple solutions from the path for further
improvement. Each time a new solution is found, the RefSet update method is triggered and the set
PairSet is accordingly updated. When Pairset becomes empty, the algorithm re-initializes RefSet and
then repeats the above-mentioned procedure until a stopping condition (e.g., a cutoff time limit) is reached.

4.2.2 Search space

Given G = (V,E), a candidate solution to the VPS problem is any partition of the vertex set V into a
separator C and two shores A and B satisfying constraints (2) and (3) defined in the introduction. Thus, we
define the search space Ω explored by the PR-VSP algorithm to be the set of all such possible three-way
partitions {A,B,C} of vertex set V , i.e.,

Ω = {{A,B,C} : A,B ⊂ V,C = V \ (A ∪B), (A×B) ∩ E = ∅, A ∩B = ∅,max{|A|, |B|} ≤ b}.

(4.1)

For a given candidate solution S = {A,B,C} ∈ Ω, its quality is directly given by its objective value,
i.e., the weight sum of the vertices in the separator C, f(S) =

∑
i∈C wi. For two given candidate solutions

S ′ and S ′′ in the search space, S ′ is better than S ′′ if and only if f(S ′) < f(S ′′).

Notice that for a graph of reasonable size (say several hundreds of vertices), the number of possible
solutions in Ω can be already quite large. Moreover, the search space Ω will increase very rapidly with the
increase of the number of vertices of the graph. The purpose of the proposed PR-VSP algorithm is to locate
a solution as good as possible in this highly combinatorial search space within a given computing effort by
sampling some promising candidate solutions as effectively as possible. To reach this goal, PR-VSP calls
for a number of dedicated search operators and strategies that are explained below.
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4.2.3 RefSet and PairSet initialization and updating

The reference set RefSet contains the working solutions of the PR-VSP algorithm and is composed of
a set (or population) of elite solutions with high quality and good diversity (See Alg. 1, line 4). RefSet is
created by employing a randomized initialization procedure to acquire diverse solutions and a tabu search
based solution improvement method to assure high quality of the acquired solutions. Each initial solution
is generated by the procedure presented in [Benlic and Hao, 2013b], which applies the following steps.
The first step is to randomly assign all the vertices into the shore subsets A and B. For each cutting edge
(vi, vj) ∈ E (vi ∈ A, vj ∈ B), the second step displaces randomly vi or vj to the separator C. The last step
randomly displaces vertices in the shore subset whose size surpasses the upper limit b into the separator C
to satisfy constraint (3). Once a new solution is generated, it is immediately improved by the tabu search
procedure of Section 4.2.4. We repeat the above procedure to produce 2p improved solutions, from which
p non-identical solutions with the best objective values are chosen to form RefSet. Two comments are
in order. First, one notes that the worst-case complexity of producing an initial solution is O(2|V | + |E|).
Second, this initialization procedure might produce an empty shore subset and thus an infeasible solution.
If this happens, the feasibility will be ensured by the tabu search method which follows.

The RefSet updating procedure decides the way of inserting a newly generated solution in RefSet
and removing an existing solution from RefSet (See Alg. 1, line 12). To maintain a healthy RefSet, the
updating mechanism requires that the new solution Sn considered for insertion satisfies both a specified
distance threshold τ and a solution quality criterion [Lai and Hao, 2015]. Specifically, we first determine a
solution Sc in RefSet such that Sc has the minimum distance dmin to the solution Sn, the distance between
Sc and Sn being the number of vertices not shared in the two separators. If dmin ≤ τ , then Sn replaces the
solution Sc if Sc is no better than Sn; otherwise Sn is directly discarded. If dmin > τ , then Sn replaces the
worst solution Sw in RefSet if Sn is no worse than Sw or is discarded otherwise. The complexity of each
RefSet updating operation is O(p · |C|).

PairSet is used to mark each pairwise solutions which will experience a path relinking procedure (See
Alg. 1, lines 4 and 7). It is initialized as the index pair of each pair of solutions in RefSet. Each time
an index pair experiences a path relinking, it is removed from PairSet. Moreover, if a newly produced
solution replaces a solution in RefSet, all the index pairs related to this replaced solution are removed
from PairSet and new index pairs composed of the new solution and each other solution in RefSet are
added into PairSet. When RefSet is not updated for a certain consecutive number of times, all the index
pairs are removed and PairSet becomes empty.

4.2.4 The solution improvement method - iterated tabu search

Moves and calculation of move gain

As explained in Section 4.2.2, a solution of VSP is represented by a partition S = {A,B,C} satisfying
the two problem constraints (A×B)∩E = ∅ and max{|A|, |B|} ≤ b. To generate neighbor solutions from
the current solution, the following two move operators are employed.

The first move operator (called 1-move) displaces a vertex vi in the separator C to either the shore
subset A or B, without violating the constraint max{|A|, |B|} ≤ b. To enable the resulting neighbor
solution further satisfy the constraint (A × B) ∩ E = ∅, a repair operation is followed to displace to the
separator C all the vertices in the opposite shore which are adjacent to vi. This 1-move operator is shown to
be effective in state-of-the-art algorithms [Benlic and Hao, 2013b; Sánchez-Oro et al., 2014]. The objective
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Figure 4.1: Two examples showing the benefit of the swap-move operator

gain of performing a 1-move operation (i.e., the objective variation between its neighbor solution and the
current solution S, also called move gain) is calculated as:

mg1(vi, S) =

{
−wi +

∑
vj∈B,(vi,vj)∈E wj if vi ∈ C moves to A

−wi +
∑

vj∈A,(vi,vj)∈E wj if vi ∈ C moves to B
(4.2)

The second move operator (called swap-move) is a new operator introduced in this work which is tar-
geted to the case where the size of a shore subset reaches the upper limit b (i.e., |A| = b or |B| = b). The
swap-move operator displaces a vertex vi from the separator C to the shore subset whose size is equal to
the upper limit b (thus momentarily violating the constraint max{|A|, |B|} ≤ b) and then displaces another
vertex wmin with the minimum weight from this shore subset to the separator C (satisfying the constraint
max{|A|, |B|} ≤ b). To satisfy the constraint (A×B) ∩E = ∅, the same repair operation as for 1-move is
employed to produce a feasible neighbor solution. The objective gain of performing a swap-move operation
is calculated according to Eq. 4.3.

mg2(vi, S) =

{
−wi + wAmin +

∑
vj∈B,(vi,vj)∈E wj if |A| = b and vi ∈ C moves to A

−wi + wBmin +
∑

vj∈A,(vi,vj)∈E wj if |B| = b and vi ∈ C moves to B
(4.3)

To show the interest of the newly introduced swap-move operator with respect to the conventional 1-
move operator, let us consider two illustrative examples (Fig. 4.1).

The left graph in Fig. 4.1 (|V | = 8 and b = 4) shows a candidate solution S = {A = {a, b, c, d}, B =
{g, h}, C = {e, f}} with an objective value of 4 (f(S) = 4). If we use 1-move to displace vertex e ∈ C,
then e must be displaced from C to B since the number of vertices in A has already reached the given upper
limit b. Once e is displaced in B, the repair operation displaces its adjacent vertices c and d from A to C.
Therefore, the move gain obtained by this 1-move operation is −we + wc + wd = −3 + 2 + 3 = 2 (i.e.,
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the objective function value of the resulting solution S ′ is f(S ′) = f(S) + 2 = 6). However, if we apply
swap-move to exchange vertex e from separator C against a from shore A, the resulting solution S ′′ has an
objective gain of −we + wa = −2, with leading to a better objective value of f(S ′′) = f(S)− 2 = 2).

The right graph in Fig. 4.1 (|V | = 12 and b = 6) shows a candidate solution S = {A = {a, b, c, d, i, j}, B =
{g, h, l, k}, C = {e, f}} which includes 4 isolated vertices I = {i, j, k, l}. If we use 1-move to displace
e from C to B, the resulting solution S ′ gets an objective increase of 2. Note that there is no chance for
the vertices in I to be moved into the separator C by using the 1-move operator since these vertices are not
connected to any other vertex (including those of C). On the other hand, displacing the isolated vertices
can reduce the size of the shore subsets, which enables vertices moving out of the separator to produce an
improved solution. Here we can use swap-move to exchange e against any of the four vertices in I to obtain
an improved solution S ′′ with an objective increase of 2.

It is noted that using swap-move is particularly useful when the graph contains isolated vertices or
vertices with low degrees.

Bucket sorting

To quickly calculate the move gain for 1-move or swap-move, we use an n-dimensional vector ∆A,
where each entry ∆A

i records the total weight of all vertices of the shore subset A which are adjacent
to a vertex vi (i.e., ∆A

i =
∑

vj∈A,(vi,vj)∈E wj). With ∆A
i preliminarily computed, the objective gains of

performing both 1-move and swap-move shown in Eq. (4.2) and (4.3) can be instantly obtained in constant
time. Similarly, another vector ∆B is employed in the same way for the shore subsetB. By simply replacing
all the occurrences of A by B, we obtain the updating equations of ∆B.

In addition, a bucket sorting technique is utilized to quickly identify the best move in O(1) time instead
of scanning all the move gains of vertices in the separator C. Specifically, we use two arrays of buckets
BktA and BktB to record the objective gain of displacing any vertex from the separator C to each shore
subset A or B. Notice that when the condition for performing a swap-move is satisfied, the corresponding
entry in the bucket actually represents the objective gain of swap-move. In each bucket array, the jth entry
stores all the vertices with the objective gain currently equaling to j, which are managed by a doubly linked
list. To ensure a direct access to the vertex in the doubly linked list, another index array is also employed,
in which each entry stores the address that points to its vertex in the doubly linked list. For each array of
buckets, identifying the best vertex with the maximum objective gain equals to the identification of the first
non-empty bucket from the top of the bucket array, from which a vertex is randomly chosen from the doubly
linked list.

Fig. 4.2 shows an illustrative example of the bucket structure for VSP. The graph (Fig. 4.2, left)
has 11 vertices, where all the vertices have a weight of 1 for simplicity. Given the solution S = {A =
{a, b, c, d}, B = {i, j, k}, C = {e, f, g, h}}, the bucket sorting structure is shown in Fig. 4.2 (right). To
see how the vertices are arranged in the structure, we consider vertex e as an example. The move gain of
displacing e from C to A is calculated as −we + ∆B

e = 0, so e is stored in the position j = 0 of the bucket
arrayBktA. In the same token, the vertex index e is stored in the position j = −1 of the bucket array BktB.
For each vertex in the separator C, we store it in the right entries of the buckets BktA and BktB in the same
way. In addition, each entry of the index array of vertices shown at the bottom of Fig. 4.2 points to the
position of this vertex in the buckets BktA and BktB. From the top of buckets, we see that displacing f to
A, h to B, g to A and g to B leads to the same maximum gain of -1, from which one move will be chosen
at random.

To perform a 1-move or swap-move operation, the following three steps are concerned: 1) a vertex is
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Figure 4.2: An example of the bucket structure for the vertex separator problem

displaced from the separator to either shore subset; 2) the adjacent vertices in the opposite shore subset
of the displaced vertex are displaced to the separator; 3) a vertex is displaced from a shore subset to the
separator. Now, let us take the shore subset A as an example to illustrate how to quickly update the ∆A

vector.

– If a vertex vi is displaced from C to A, the ∆A vector is updated as
∆A
j = ∆A

j + wi, for all vj ∈ V where (vi, vj) ∈ E
– If all the adjacent vertices of a vertex vi ∈ B (denoting the set of these vertices as SubA) are displaced

from A to C, ∆A is updated as
∆A
j = ∆A

j −
∑

vk∈SubA,(vk,vj)∈E wk, for all vj ∈ V where vk ∈ SubA, (vk, vj) ∈ E
– If a vertex vi is displaced from A to C, ∆A is updated as

∆A
j = ∆A

j − wi, for all vj ∈ V where (vi, vj) ∈ E

The method to update ∆B for the operations on the shore subset B is obtained by replacing all the
appearances of A by B and B by A.

The operations on the bucket structure with regard to the above mentioned move operations are as
follows.

– Delete: delete a vertex from BktA and BktB if it is displaced from C to A
– Add: add a vertex into BktA and BktB if it is displaced from A to C
– Shift: shift a vertex to the correct entry in each bucket array according to its updated objective gains

Since the bucket size is given by the number of possible objective gains, the bucket sorting technique
is limited to problem instances with integral objective gains. Moreover, a large varying range for objective
gains may be out of memory, which is another potential limitation. Despite these potential limitations,
our experimental results on the well-known benchmark instances indicate that the devised bucket sorting
technique considerably improves the computational efficiency, thus the performance of our path relinking
algorithm.
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Iterated tabu search

Within the proposed PR-VSP algorithm, we use an iterated tabu search (ITS) procedure as the solution
improvement method. Basically, this ITS procedure alternates between a tabu search phase [Glover and
Laguna, 1999] and a perturbation phase. Each tabu search phase continues until the best solution cannot
be improved for a consecutive number of iterations (called iteration cutoff, set as β ∗ |C| where β is a
parameter). At this moment, the perturbation phase is triggered to generate a perturbed solution which
serves as the starting solution of the next ITS run.

The tabu search phase uses both the 1-move and swap-move operators to exploit the search space. At
each iteration, TS performs a best move among the set of eligible moves. A move is eligible if it is not
forbidden by the tabu list (see below), or if it leads to a solution better than any solution visited so far.
Precisely, if the size of each shore subset is less than the upper limit b, then only the 1-move operator is
used during the search. Otherwise, both 1-move and swap-move have a chance to be applied. Specifically,
if the objective gain of performing a swap-move is better than that of performing a 1-move, then each type
of move will be selected with an equal probability of 50%. This rule is overridden if performing a swap-
move leads to a solution better than the best solution found so far. For this case, the swap-move is always
performed. The idea to take a worse 1-move into consideration is to reduce the shore subset whose size
reaches b, which to some extent enhances the search diversification. Note that if a shore subset becomes
empty during a certain tabu search iterations, the next iteration will force a vertex to be displaced to this
empty subset. In this way, we assure that the tabu search focuses its exploration on the feasible search area.

Tabu search uses a short memory called tabu list to prohibit recently performed moves from being
performed for the next tt iterations (called tabu tenure) [Glover and Laguna, 1999]. The tabu tenure
is adaptively tuned according to the search status. Specifically, let |C| denote the size of the separa-
tor and dmax denote the average value of the highest 5% vertex degrees, then the tabu tenure is set as
tt = min(dmax, |C|/2) + min(Rand(α × dmax), |C|/2), where Rand(α × dmax) returns a random
integer no greater than α× dmax and α is a parameter. For a 1-move which displaces a vertex vi from C to
A, given that vi may go back to C due to the change of vertices in B, we prohibit vi from joining A for the
next tt iterations. For a swap-move which exchanges a vertex vi of C against a vertex vj of A, we prohibit
both vi and vj from moving to A for the next tt iterations. The other vertices involved in a move are not
concerned by the tabu list.

The perturbation phase performs a consecutive number of 1-move operations (called perturbation strength)
on the local optimum from the last tabu search phase. Specifically, each perturbation step randomly dis-
places a vertex from the separator C to either shore subset with equal probability, followed by a repair
operation to make the resulting solution feasible. A strong perturbation deteriorates a large part of the input
solution. On the other hand, a weak perturbation fails to allow the search to jump out of the attractor around
the local optimum. In our experiment, the perturbation strength is set as ρ ∗ |C|, where ρ is a parameter.

4.2.5 The path relinking method

The path relinking method constructs a path connecting an initiating solution and a guiding solution
(both fromRefSet), where each intermediate solution on the path gradually incorporates attributes from the
guiding solution and finally matches the guiding solution [Glover et al., 2000]. According to this scheme,
the path relinking method first calculates the distance between the initiating solution and the guiding solu-
tion. For two solutions S1 = (A1, B1, C1) and S2 = (A2, B2, C2), let Cnd1 = C1 \ C2, Cnd2 = C2 \ C1

and Cnd = Cnd1 ∪ Cnd2. Then, the distance d between S1 and S2 is defined as the size of the set Cnd,
i.e. d = |Cnd|, which corresponds to the number of vertices not shared by C1 and C2.
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Figure 4.3: An illustrative example of the path relinking procedure

To produce a sequence of intermediate solutions S(1), S(2), . . . , S(d) on the path where S(1) is the
initiating solution and S(d) is the guiding solution, the following mechanism is employed. For vertices
in Cnd1, the operation OP1 is to displace a vertex from the separator C1 to the shore subset O it lies in
the solution S2. For vertices in Cnd2, the operation OP2 is to displace a vertex from the shore subset it
lies in the solution S1 to the separator C2. Consider that applying the operation OP1 generally leads to
an infeasible path solution S(t), a repair operation that displaces all the adjacent vertices in the opposite
shore subset of the displaced vertex vi to the separator C1 is followed. To repair the next solution S(t + 1)
on the path, we can directly utilize its precedent solution Ŝ(t) by a repair operation to get Ŝ(t + 1) rather
than directly repairing S(t+ 1). The repair operation has a complexity of O(|V | · c) where c represents the
density of the graph G(V,E). On the other hand, an operation OP2 always produces a feasible solution and
thus no repair operation is needed.

Each step t = {1, 2, . . . , d} for building the path selects a vertex from Cnd such that it results in a
feasible solution with the best objective value after performing OP1 and OP2 operations. This can be
achieved in O(|Cnd| · |V | · c). Each time a vertex in Cnd is displaced, it is removed from Cnd and the
distance between the resulting path solution and the guiding solution is decreased by 1. The next solution
S(t+ 1) is obtained by performing a OP1 or OP2 operation on the solution S(t). After d steps, the set Cnd
becomes empty and the path generation method arrives at the guiding solution and thus terminates.

Fig. 4.3 provides an example to illustrate the path generation procedure. Two solutions Si = {Ai =
{a, e, g, i}, Bi = {b, f}, Ci = {c, d, h}} and Sg = {Ag = {a, e, g, h}, Bg = {d, f}, Cg = {b, c, i}}
are given. To build a path starting from the solution Si (initiating solution) and ending at the solution Sg
(guiding solution), we first identify the set of uncommon vertices in the separators Ci and Cg, denoted as
Cnd = {b, d, h, i}. Then for each step in the path generation procedure, a vertex from Cnd goes through
a OP1 or OP2 operation. Hence, four vertices can be chosen in the first path generation step, by displacing
the vertex b from Bi to Ci, d from Ci to Bi, h from Ci to Ai or i from Ai to Ci, and produces four candidate
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path solutions. Among them the solution S(1) = {Ai = {a, e, g, i}, Bi = {b, d, f}, Ci = {c, h}} is chosen
as the path solution because it leads to a feasible solution with the best objective value. Then starting
from S(1), three vertices can be chosen in the second path generation step and creates three candidate path
solutions, from which the solution S(2) = {Ai = {a, e, g}, Bi = {b, d, f}, Ci = {c, h, i}} is chosen to be
on the path. After a total of four steps, the path generation procedure arrives at the guiding solution Sg and
stops.

4.2.6 The solution selection method

The solution selection method aims to identify solutions from the sequence of intermediate solutions
produced by the path generation method for further improvement by iterative tabu search. In general, several
solutions can be selected for improvement. Considering that the solutions on the path are quite close to each
other, running ITS on multiple solutions would lead to the same locally optimal solution. Therefore, we
just select one solution from the path with the best objective value.

4.3 Experimental results

This section is dedicated to a large experimental assessment of the proposed PR-VSP algorithm. For
this purpose, we present computational results on four sets of benchmark instances and compare our results
with those reported by the state-of-the-art algorithms in the literature.

4.3.1 Experimental protocols

We use the following four sets of benchmarks with a total of 365 instances which are commonly tested
in the literature.

– Traditional benchmarks: This set 1 contains 104 small instances with 11 ≤ |V | ≤ 191 and 20 ≤
|E| ≤ 13992 with known optimal solutions. This set of instances was first introduced and studied in
[de Souza and Balas, 2005] and tested in [Benlic and Hao, 2013b; Biha and Meurs, 2011].

– Hermberg and Rendl benchmarks: This set 2 is composed of 71 structured and random instances
with |V | ranging from 800 to 20000 and graph density ranging from 0.000131 to 0.06. Note that the
last 17 large graphs are investigated for the first time in this work. This set of instances was first tested
in [Benlic and Hao, 2013b].

– Barabasi-Albert benchmarks: This set 3 includes 95 instances with 100 ≤ |V | ≤ 1000 and node
degree randomly selected from [1, |V |]. Graphs of this type are widely observed in the Internet, the
World Wide Web, citation networks and some social networks. This set of instances was tested in
[Sánchez-Oro et al., 2014].

– Erdos-Renyi benchmarks: This set 4 contains 95 random instances with 100 ≤ |V | ≤ 1000 and
each pair of vertices connected with a probability randomly chosen from [0.2, 1.0]. This set of in-
stances was tested in [Sánchez-Oro et al., 2014].

1. http://www.ic.unicamp.br/ cid/Problem-instances/VSP.html#VSP
2. http://www.optsicom.es/maxcut/#instances
3. http://www.optsicom.es/vs
4. http://www.optsicom.es/vs
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Table 4.1: Parameter setting of the PR-VSP algorithm

Parameters Section Description Value

p 4.2.3 RefSet size 20
α 4.2.4 coefficient used in the tabu tenure 1.6
β 4.2.4 coefficient used in the iteration cutoff 2.4
ρ 4.2.4 coefficient used in the perturbation strength rand(0.05,0.25)
τ 4.2.3 coefficient used in the distance threshold 0.3

Table 4.2: Post-hoc statistical tests for the parameter α

α 0.4 0.8 1.2 1.6

0.8 0.8853
1.2 0.0474 0.1612
1.6 0.0015 0.0019 0.3327
2.0 0.0231 0.1291 0.5298 0.6241

Our PR-VSP algorithm was programmed in C++ and compiled using GNU g++ on a Xeon E5440 (2.83
GHz CPU and 8 GB of RAM). The following time limits were used as stopping conditions of our exper-
iments: 1 second for the traditional benchmarks, 3600 seconds for the Hermberg and Rendl benchmarks
and 10 seconds for both the Barabasi-Albert and Erdos-Renyi benchmarks. Given the stochastic nature of
the PR-VSP algorithm, we run PR-VSP to solve each problem instance 100 times independently and report
computational statistics based on the outcomes of the 100 runs.

4.3.2 Parameter setting

Table 4.1 shows the parameter setting of the PR-VSP algorithm used for our experiments. To identify
the adopted parameter values, we conducted a parameter sensitivity analysis on a set of 20 representative in-
stances by comparing different values for each parameter: p ∈ {10, 15, 20, 25, 30}, α ∈ {0.4, 0.8, 1.2, 1.6, 2.0},
β ∈ {1.0, 1.5, 2.0, 2.5, 3.0}, ρ ∈ {rand(0.05, 0.20), rand(0.05, 0.25), rand(0.10, 0.25),
rand(0.15, 0.25), rand(0.15, 0.30)} and γ ∈ {0.2, 0.25, 0.3, 0.35, 0.4}. By varying the values of one pa-
rameter and keeping the values of the other parameters unchanged, we ran the PR-VSP algorithm 20 times
to solve each chosen instance and recorded the average solution values. Hence, we obtained a table for
each parameter where the columns represent different values for this parameter and the rows represent the
average solution values for each instance. Furthermore, we employed Friedman statistical tests to verify if
different values for a specific parameter present statistical differences.

Experimental results indicated that varying values of the parameters p, β, ρ and γ present no significant
differences with p-values of 0.7925, 0.5374, 0.4147 and 0.8769, respectively. This means that the algorithm
is not sensitive to these four parameters. However, the p-value of 0.0007 for the parameter α indicates
that the algorithm is sensitive to the tabu tenure. Furthermore, we conducted a post-hoc analysis to check
statistical differences between each pair of α values and showed the results in Table 4.2. As it can be seen
in Table 4.2, four pairs of values present significant differences with a p-value < 0.05, among which two
pairs are related to the setting α = 1.6. In order to choose the best parameter setting, we also evaluated
the number of best solutions achieved by each setting as a secondary criterion. The results showed that the
setting α = 1.6 obtains the best solution for 18 out of the 20 tested instances and performed the best among
all the settings. In conclusion, this experiment reveals the rationality of the chosen parameter setting of
Table 4.1.
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4.3.3 Reference algorithms

For the purpose of our comparative study, we use the following state-of-the-art algorithms as our refer-
ences.

– Breakout local search (BLS) [Benlic and Hao, 2013b] is a heuristic algorithm which reported results
on the 104 traditional benchmarks as well as the 71 Hermberg and Rendl benchmarks. Like our PR-
VSP algorithm, BLS was written in C++ and compiled with GNU g++ under GNU/Linux running on
an Intel Xeon E5440 (2.83 GHz and 2 GB of RAM). The stopping condition was a maximum running
time of 10 seconds for the 104 traditional benchmarks and 3600 seconds for the 71 Hermberg and
Rendl benchmarks.

– General variable neighborhood search (GVNS) [Sánchez-Oro et al., 2014] is a heuristic algorithm
which reports results on the 104 traditional benchmarks, the 95 Barabasi-Albert benchmarks and the
95 Erdos-Renyi benchmarks. GVNS was implemented in Java SE7 and the results were obtained on
a computer with an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB of RAM. The stopping condition
used was a maximum running time of 5 seconds for the 104 traditional benchmarks and 1800 seconds
for the other benchmarks.

– B-S [de Souza and Balas, 2005] is a branch-and-cut exact algorithm based on the results of an in-
depth polyhedral study. Computational reports were reported on the 104 traditional benchmarks on a
Pentium 4 computer (2.5 GHz and 2 GB of RAM) with a time limit of 1800 minutes.

– B-M [Biha and Meurs, 2011] is another exact approach which applies the general CPLEX 9.0 solver
to a mixed-integer program. The results on the 104 traditional benchmarks were obtained on a Pen-
tium M740 computer with 1.73 GHz and 1 GB of RAM. The stopping condition was not explicitly
indicated in [Biha and Meurs, 2011].

Given that the compared algorithms (except BLS) were run on computing platforms which are different
from our computer, it is difficult to make a fair comparison of the computing times. For this reason, we
focused our comparisons on the solution quality criterion while providing the timing information only for
indicative purposes. To make the time comparison meaningful, we used the CPU performance measure-
ment suits from the well-known SPEC (https://www.spec.org/benchmarks.html) to normalize the computing
times of the compared algorithms with our machine as the reference. As such, we multiplied the computing
times reported by GVNS, B-S and B-M by 1.2, 0.8 and 0.6 respectively.

4.3.4 Computational results and comparisons

Table 4.3 shows the computational results on the 104 transitional instances obtained by our PR-VSP
algorithm along with the results of four reference algorithms: breakout local search (BLS) [Benlic and
Hao, 2013b], general variable neighborhood search (GVNS) [Sánchez-Oro et al., 2014] and the two exact
algorithms presented in [de Souza and Balas, 2005; Biha and Meurs, 2011]. Since this set of benchmark
instances have known optimal solutions, we report the number of instances for which the optimal solutions
are obtained by each algorithm and the computational time. For the two heuristics (PR-VSP and BLS),
we indicate the best time, the average time and the worst time in seconds. From Table 4.3, we find that
our algorithm is able to reach the optimal solutions for all the 104 instances, with a worst time of 0.82
seconds and an average time of 0.03 seconds, which is the shortest among all the compared algorithms.
By considering the results of all the algorithms, we conclude that these 104 transitional instances can be
considered to be trivial for the state-of-the-art methods.

Table 4.4 is dedicated to the set of 71 Hermberg and Rendl benchmark instances and presents the
comparative results between the PR-VSP algorithm and the state-of-the-art BLS algorithm. The second
column (fprev) indicates the current best known results ever reported in the literature. The results of PR
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Table 4.3: Computational results of the PR-VSP algorithm on the set of 104 small traditional instances in
comparison with three reference algorithms

Algorithms tavg tbest tworst #solved instances

PR-VSP 0.03 0.00 0.82 104/104
BLS[Benlic and Hao, 2013b] 0.08 0.00 3.06 104/104
GVNS[Sánchez-Oro et al., 2014] 4.81 0.55 10.81 104/104
B-S[de Souza and Balas, 2005] 62.18 - 1131.60 97/104
B-M[Biha and Meurs, 2011] 140.28 - 9783.08 104/104

and BLS are respectively shown in column 3-5 and columns 6-8 in terms of the best solution value Best,
the average solution values Avg and the average time Time to reach Best. To make a fair comparison,
we reran BLS on our computer under the same time limit as our PR-VSP algorithm. From Table 4.4, we
observe that PR-VSP is able to find new best solutions (displayed in bold) for 22 out of 71 instances and
fails to reach the best known results for only one instance (G46). Moreover, PR obtains better, equal and
worse average solution values relative to the top BLS algorithm for 45, 14 and 12 instances, respectively,
demonstrating its competitiveness compared to BLS in terms of solution quality. Finally, the computational
time taken by PR-VSP to reach better solutions is competitive with the time taken by BLS.

Table 4.5 and 4.6 compare the PR-VSP and GVNS algorithms on 90 Barabasi-Albert instances and 90
Erdos-Renyi instances, respectively. For the PR algorithm, we report the best solution value Best, average
solution value Avg and the computational time Time to reach Best obtained for each instance. The results
of the GVNS algorithm are taken directly from [Sánchez-Oro et al., 2014]. As shown in Tables 4.5 and 4.6,
our PR algorithm robustly attains better solutions (displayed in bold) than GVNS for 26 Barabasi-Albert
instances and 20 Erdos-Renyi instances, respectively. For the other instances, our PR algorithm matches
the best solution values found by the GVNS algorithm. In particular, the computational time of PR is 50
times shorter than that of GVNS on average, revealing the efficacy of our PR algorithm.

Table 4.4: Computational results of the PR-VSP algorithm on the set of 71 Hermberg and Rendl instances
in comparison with the state-of-the-art BLS algorithm

Instances fprev
PR-VSP BLS

Best Avg Time Best Avg Time

G1 257 257 257 0.84 257 257 8.23
G2 257 257 257 0.38 257 257 7.49
G3 257 257 257 1.43 257 257.05 76.35
G4 363 363 363 11.54 363 363.5 1735.65
G5 257 257 257 5.18 257 257 180.59
G6 257 257 257 0.41 257 257 7
G7 257 257 257 0.63 257 257 5.78
G8 257 257 257 1.92 257 257 153.27
G9 257 257 257 1.37 257 257 29.89
G10 257 257 257 3.56 257 257 220.92
G11 16 16 16 0.15 16 16 0.14
G12 32 32 32 0.08 32 32 0.05
G13 45 45 46.8 69.75 45 45 5.02
G14 146 146 146.3 386.15 146 146 1009.69
G15 144 144 144 12.98 144 144 13.83
G16 144 144 144 11.29 144 144 8.38
G17 144 144 144 55.89 144 144 54.88
G18 146 146 146.1 184.52 146 146 632.42
G19 144 144 144 8.97 144 144 19.47
G20 144 144 144 14.73 144 144 16.24
G21 144 144 144.1 67.01 144 144 16.08
G22 588 587 587 826.47 588 588.4 1023.94
G23 590 590 590 10.06 590 590.4 1342.36
G24 589 587 587.9 1228.16 589 589.5 1384.47
G25 589 588 588.3 1515.4 589 589.2 841.67
G26 587 587 587 671.46 588 588.15 1005.26
G27 820 818 818.7 815.85 820 820.05 798.99
G28 822 821 821.7 996.89 822 822.95 163.71
G29 820 819 819 1246.36 820 820.75 1922.14
G30 821 820 820.6 1716.18 821 821.75 1041.71
G31 819 819 819 976.61 819 819.65 1771.11
G32 40 40 40 0.44 40 40 0.66
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Table 4.4 – continued from previous page

Instances fprev
PR-VSP BLS

Best Avg Time Best Avg Time

G33 50 50 50 0.26 50 50 0.2
G34 80 80 82 0.21 80 82 0.14
G35 436 435 435.2 2025.4 436 436.35 1696.19
G36 441 440 440.4 1105.17 441 442.05 1302.49
G37 435 434 434.7 2307.84 435 438.2 2211.1
G38 439 439 439 1010.22 439 440.3 2156.96
G39 436 435 435.3 1415.07 436 437.8 1843.45
G40 440 440 440.4 1129.67 440 442.1 2365.89
G41 435 434 434.5 1160.87 435 437.05 1400.01
G42 439 438 438.8 650 439 440.8 2080.13
G43 411 411 411 5.28 411 411 11.52
G44 411 411 411 1.86 411 411 247.13
G45 410 410 410 4.04 410 410 53.78
G46 411 412 412 0.96 412 412 3.92
G47 411 411 411 17.88 411 411.95 0.62
G48 100 100 104 0.49 100 102 0.82
G49 60 60 60 1.25 60 60 0.52
G50 50 50 50 1.02 50 50 0.99
G51 224 224 224 38.18 224 224 59.11
G52 223 223 223.4 383.27 223 223.25 1140.31
G53 221 221 221.2 187.11 221 221.35 626.08
G54 219 219 219 18.14 219 219 32.88
G55 995 979 987 2752.88 997 1006.95 3170.29
G56 999 972 987.7 3345.15 999 1010.4 2357.58
G57 100 100 110 8.11 100 100 1.25
G58 1109 1085 1101 3352.99 1109 1133.35 3433.27
G59 1105 1088 1102.2 776.48 1105 1127.1 3396
G60 1376 1354 1372 3375.54 1386 1397.15 3343.69
G61 1385 1350 1368.2 3561.93 1385 1397.8 2653.87
G62 140 140 146 1.67 140 149 43.09
G63 1575 1546 1560.4 3321.63 1575 1596.85 2139.52
G64 1582 1549 1566.6 3363.47 1582 1602.6 3205.26
G65 160 160 164 7.72 160 160 34.39
G66 180 180 184 39.73 180 181 35.56
G67 194 194 197 782.94 194 196.7 411.21
G70 605 320 328.1 2977.13 609 633.25 2503.34
G72 194 194 197.5 487.76 194 195.5 643.86
G77 200 200 219.6 136.63 200 206.2 632.68
G81 200 200 220 4.58 200 213.85 39.27
Better 22
Equal 48
Worse 1

Table 4.5: Computational results of the PR-VSP on the set of 95 Barabasi-Albert instances in comparison
with the state-of-the-art GVNS algorithm

Instances PR-VSP GVNS

Best Avg Time Best Time

barabasi_albert_1(100,65) 43 43 0.02 43 5.13
barabasi_albert_1(1000,878) 564 564 3.24 564 93.57
barabasi_albert_1(150,137) 86 86 0.04 86 7.64
barabasi_albert_1(200,175) 112 112 0.06 112 10.11
barabasi_albert_1(250,146) 99 99 0.26 99 13.01
barabasi_albert_1(300,255) 160 160 0.19 160 16.01
barabasi_albert_1(350,320) 198 198 0.23 198 17.98
barabasi_albert_1(400,376) 234 234 0.24 234 20.86
barabasi_albert_1(450,326) 218 218 0.55 218 23.45
barabasi_albert_1(500,277) 204 204 0.51 204 25.16
barabasi_albert_1(550,499) 314 314 1 314 33.41
barabasi_albert_1(600,541) 348 348 1.1 349 32.74
barabasi_albert_1(650,465) 320 320 0.71 320 45.84
barabasi_albert_1(700,649) 409 409 1.54 415 40.76
barabasi_albert_1(750,422) 303 303 1.11 303 59.74
barabasi_albert_1(800,627) 418 418 1.37 418 59.07
barabasi_albert_1(850,619) 418 418 2.86 418 76.26
barabasi_albert_1(900,817) 522 522 4.63 527 59.72
barabasi_albert_1(950,626) 442 442 2 444 57.83
barabasi_albert_2(100,69) 45 45 0.02 45 5.05
barabasi_albert_2(1000,856) 556 556 4.64 556 100.28
barabasi_albert_2(150,94) 65 65 0.04 65 7.66
barabasi_albert_2(200,161) 105 105 0.09 105 10.17
barabasi_albert_2(250,235) 147 147 0.12 147 12.5
barabasi_albert_2(300,220) 147 147 0.17 148 15.11
barabasi_albert_2(350,182) 129 129 0.16 129 21.29
barabasi_albert_2(400,227) 164 164 0.32 165 23.78
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Table 4.5 – continued from previous page

Instances PR-VSP GVNS

Best Avg Time Best Time

barabasi_albert_2(450,392) 252 252 0.78 252 25.52
barabasi_albert_2(500,288) 205 205 0.46 205 36.97
barabasi_albert_2(550,355) 242 242 0.74 247 31.19
barabasi_albert_2(600,520) 335 335 0.7 335 35.86
barabasi_albert_2(650,485) 327 327 1.02 327 41.45
barabasi_albert_2(700,545) 368 368 1.85 368 47.1
barabasi_albert_2(750,395) 285 285 0.66 293 61.85
barabasi_albert_2(800,617) 416 416 1.14 419 54.16
barabasi_albert_2(850,739) 478 478 4.07 478 53.72
barabasi_albert_2(900,576) 404 404 1.04 411 49.2
barabasi_albert_2(950,744) 501 501 4.72 505 91.86
barabasi_albert_3(100,64) 43 43 0.02 43 5.1
barabasi_albert_3(1000,601) 430 430 2.34 430 72.14
barabasi_albert_3(150,129) 83 83 0.04 83 7.62
barabasi_albert_3(200,111) 81 81 0.07 81 10.66
barabasi_albert_3(250,191) 124 124 0.15 124 13.26
barabasi_albert_3(300,260) 159 159 0.11 159 15.56
barabasi_albert_3(350,251) 166 166 0.3 166 17.98
barabasi_albert_3(400,284) 191 191 0.21 193 22.92
barabasi_albert_3(450,243) 177 177 0.25 179 24.86
barabasi_albert_3(500,273) 200 200 0.47 200 25.12
barabasi_albert_3(550,294) 217 217 0.29 217 35.87
barabasi_albert_3(600,435) 293 293 0.82 293 35.01
barabasi_albert_3(650,642) 387 387 0.76 387 41.02
barabasi_albert_3(700,678) 417 417 0.83 418 37.65
barabasi_albert_3(750,643) 416 416 0.74 416 38.4
barabasi_albert_3(800,595) 399 399 5.16 409 59.2
barabasi_albert_3(850,693) 453 453 2.3 458 65.65
barabasi_albert_3(900,851) 535 535 1.81 535 54.22
barabasi_albert_3(950,553) 398 398 1.48 401 62.09
barabasi_albert_4(100,87) 51 51 0.02 51 5.1
barabasi_albert_4(1000,509) 381 381 3.31 391 78.21
barabasi_albert_4(150,111) 71 71 0.05 71 7.55
barabasi_albert_4(200,197) 127 127 0.07 127 10.11
barabasi_albert_4(250,133) 98 98 0.16 98 13.23
barabasi_albert_4(300,205) 139 139 0.23 139 17.08
barabasi_albert_4(350,294) 188 188 0.27 188 17.53
barabasi_albert_4(400,350) 225 225 0.22 225 22.92
barabasi_albert_4(450,229) 165 165 0.19 165 26.05
barabasi_albert_4(500,496) 305 305 0.3 305 26.78
barabasi_albert_4(550,347) 245 245 0.46 245 31.13
barabasi_albert_4(600,305) 226 226 0.43 226 31.05
barabasi_albert_4(650,535) 347 347 0.59 347 36.09
barabasi_albert_4(700,621) 395 395 1.18 395 45.1
barabasi_albert_4(750,722) 447 447 1 453 42.79
barabasi_albert_4(800,750) 477 477 1.08 477 59.9
barabasi_albert_4(850,646) 434 434 1.44 434 72.54
barabasi_albert_4(900,768) 504 504 3.97 510 68.77
barabasi_albert_4(950,758) 507 507 0.99 507 89.51
barabasi_albert_5(100,89) 55 55 0.02 55 5.05
barabasi_albert_5(1000,578) 413 413 1.19 413 74.64
barabasi_albert_5(150,103) 67 67 0.05 67 7.64
barabasi_albert_5(200,199) 132 132 0.05 132 10.15
barabasi_albert_5(250,132) 94 94 0.18 94 13.07
barabasi_albert_5(300,211) 139 139 0.13 139 16.11
barabasi_albert_5(350,249) 164 164 0.16 168 18.01
barabasi_albert_5(400,233) 162 162 0.35 162 23.82
barabasi_albert_5(450,424) 269 269 0.38 270 25.17
barabasi_albert_5(500,408) 270 270 1.48 270 27.48
barabasi_albert_5(550,495) 317 317 0.48 317 31.76
barabasi_albert_5(600,475) 316 316 0.73 316 30.97
barabasi_albert_5(650,434) 298 298 0.68 304 47.87
barabasi_albert_5(700,501) 341 341 0.67 346 35.7
barabasi_albert_5(750,744) 453 453 1.71 453 43.28
barabasi_albert_5(800,663) 432 432 0.75 432 49.66
barabasi_albert_5(850,635) 430 430 3.16 433 71.7
barabasi_albert_5(900,662) 446 446 1.27 452 88.55
barabasi_albert_5(950,818) 534 534 2.48 534 83.49
Better 25
Equal 70
Worse 0
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Table 4.6: Computational results the PR-VSP on the set of 95 Erdos-Renyi instances in comparison with
the state-of-the-art GVNS algorithm

Instances PR-VSP GVNS

Best Avg Time Best Time

erdos_renyi_1(100,0.89) 82 82 0.02 82 5.004
erdos_renyi_1(1000,0.27) 333 333 0.4 333 66.929
erdos_renyi_1(150,0.86) 118 118 0.06 118 7.531
erdos_renyi_1(200,0.82) 147 147 0.07 147 10.202
erdos_renyi_1(250,0.89) 205 205 0.1 205 12.583
erdos_renyi_1(300,0.34) 99 99 0.06 99 16.779
erdos_renyi_1(350,0.32) 116 116 0.07 116 20.186
erdos_renyi_1(400,0.79) 290 290 0.34 290 20.517
erdos_renyi_1(450,0.25) 149 149 0.09 149 22.897
erdos_renyi_1(500,0.95) 454 454 0.47 454 25.097
erdos_renyi_1(550,0.64) 316 316 0.45 316 36.505
erdos_renyi_1(600,0.59) 316 316 0.56 318 39.628
erdos_renyi_1(650,0.24) 216 216 0.17 216 38.103
erdos_renyi_1(700,0.41) 243 243 0.46 254 57.626
erdos_renyi_1(750,0.57) 394 394 1.05 401 54.65
erdos_renyi_1(800,0.31) 266 266 0.3 266 76.686
erdos_renyi_1(850,0.91) 746 746 1.77 746 44.4
erdos_renyi_1(900,0.37) 299 299 0.43 299 55.387
erdos_renyi_1(950,0.81) 733 733 2.39 733 54.825
erdos_renyi_2(100,0.12) 28 28 0.01 28 5.095
erdos_renyi_2(1000,0.30) 333 333 0.41 333 69.413
erdos_renyi_2(150,0.51) 60 60 0.03 60 7.87
erdos_renyi_2(200,0.23) 65 65 0.38 65 10.825
erdos_renyi_2(250,0.81) 183 183 0.1 183 12.812
erdos_renyi_2(300,0.52) 132 132 0.09 132 15.142
erdos_renyi_2(350,0.19) 115 115 0.05 115 20.724
erdos_renyi_2(400,0.40) 133 133 0.13 133 25.606
erdos_renyi_2(450,0.10) 144 144 1.04 145 29.39
erdos_renyi_2(500,0.05) 153 153 4.03 155 34.925
erdos_renyi_2(550,0.33) 183 183 0.15 183 36.158
erdos_renyi_2(600,0.21) 198 198.1 0.19 199 44.549
erdos_renyi_2(650,0.36) 216 216 0.24 216 46.489
erdos_renyi_2(700,0.49) 300 300 0.45 300 52.715
erdos_renyi_2(750,0.94) 678 678 0.95 678 38.341
erdos_renyi_2(800,0.36) 266 266 0.36 266 41.346
erdos_renyi_2(850,0.64) 506 506 3.06 511 61.056
erdos_renyi_2(900,0.61) 507 507 0.92 511 79.593
erdos_renyi_2(950,0.83) 754 754 1.62 755 50.552
erdos_renyi_3(100,0.78) 61 61 0.02 61 5.009
erdos_renyi_3(1000,0.92) 891 891 6.2 891 52.155
erdos_renyi_3(150,0.38) 49 49 0.03 49 7.88
erdos_renyi_3(200,0.35) 66 66 0.03 66 10.753
erdos_renyi_3(250,0.37) 83 83 0.05 83 14.101
erdos_renyi_3(300,0.25) 99 99 0.05 99 15.334
erdos_renyi_3(350,0.55) 161 161 0.14 161 18.249
erdos_renyi_3(400,0.11) 129 129 2.46 130 22.915
erdos_renyi_3(450,0.75) 309 309 0.41 309 22.976
erdos_renyi_3(500,0.50) 211 211 0.27 223 36.001
erdos_renyi_3(550,0.87) 452 452 0.57 452 27.84
erdos_renyi_3(600,0.25) 199 199 0.14 199 30.911
erdos_renyi_3(650,0.45) 246 246 0.28 246 46.143
erdos_renyi_3(700,0.44) 265 265 0.39 278 55.913
erdos_renyi_3(750,0.94) 676 676 0.86 676 38.087
erdos_renyi_3(800,0.61) 437 437 1.07 437 65.796
erdos_renyi_3(850,0.27) 283 283 0.29 283 84.293
erdos_renyi_3(900,0.81) 686 686 1.77 686 47.637
erdos_renyi_3(950,0.80) 726 726 1.53 726 55.15
erdos_renyi_4(100,0.32) 33 33 0.02 33 5.01
erdos_renyi_4(1000,0.55) 507 507 1.59 512 67.073
erdos_renyi_4(150,0.69) 89 89 0.05 89 7.6
erdos_renyi_4(200,0.61) 102 102 0.06 102 10.423
erdos_renyi_4(250,0.69) 153 153 0.1 153 12.757
erdos_renyi_4(300,0.35) 99 99 0.06 99 16.594
erdos_renyi_4(350,0.22) 115 115.4 0.06 116 18.767
erdos_renyi_4(400,0.86) 307 307 0.23 307 20.179
erdos_renyi_4(450,0.94) 407 407 0.38 407 22.679
erdos_renyi_4(500,0.75) 343 343 0.65 344 27.087
erdos_renyi_4(550,0.83) 432 432 0.51 432 29.448
erdos_renyi_4(600,0.76) 425 425 0.74 425 35.145
erdos_renyi_4(650,0.59) 347 347 1.13 348 33.057
erdos_renyi_4(700,0.62) 390 390 0.71 397 39.808
erdos_renyi_4(750,0.57) 380 380 1.1 380 55.152
erdos_renyi_4(800,0.98) 765 765 1.14 765 40.252
erdos_renyi_4(850,0.74) 582 582 3.57 592 52.937
erdos_renyi_4(900,0.35) 299 299 0.4 299 57.307
erdos_renyi_4(950,0.45) 371 371 0.67 371 67.883
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Table 4.6 – continued from previous page

Instances PR-VSP GVNS

Best Avg Time Best Time

erdos_renyi_5(100,0.71) 58 58 0.02 58 5.004
erdos_renyi_5(1000,0.86) 821 821 2.7 821 57.026
erdos_renyi_5(150,0.07) 40 40 0.02 42 8.252
erdos_renyi_5(200,0.44) 69 69 0.04 69 10.815
erdos_renyi_5(250,0.68) 149 149 0.09 149 12.991
erdos_renyi_5(300,0.36) 99 99 0.07 99 16.772
erdos_renyi_5(350,0.55) 170 170 0.14 172 20.441
erdos_renyi_5(400,0.38) 133 133 0.12 133 25.181
erdos_renyi_5(450,0.25) 149 149 0.09 149 22.936
erdos_renyi_5(500,0.21) 165 165.1 0.34 165 30.532
erdos_renyi_5(550,0.60) 290 290 0.44 290 31.482
erdos_renyi_5(600,0.24) 199 199 0.15 199 30.702
erdos_renyi_5(650,0.65) 386 386 1.09 390 41.257
erdos_renyi_5(700,0.94) 633 633 1.01 633 35.291
erdos_renyi_5(750,0.70) 473 473 0.98 473 52.227
erdos_renyi_5(800,0.38) 266 266 0.72 266 42.812
erdos_renyi_5(850,0.33) 283 283 0.33 283 44.077
erdos_renyi_5(900,0.22) 299 299 0.29 299 47.898
erdos_renyi_5(950,0.29) 316 316 0.36 316 59.508
Better 20
Equal 75
Worse 0

4.3.5 Analysis

To complement the computational results presented in the last section, we now provide an analysis of
some key ingredients of the proposed PR-VSP algorithm to shed light on their impact over the performance
of the algorithm. As explained in Section 4.2, relative to the existing leading heuristics like [Benlic and Hao,
2013c; Sánchez-Oro et al., 2014], PR-VSP includes two distinguishing features: a new local search oper-
ator (i.e., swap-move) and a dedicated path relinking procedure. In order to assess their contributions, we
create two PR-VSP variants by disabling the swap-move operator (denoted by PR_non-swap) and the path
relinking procedure (denoted by ITS). We compare PR-VSP with these two variants based on a selection of
31 representative instances.

For this experiment, we ran the two PR variants under the same condition as the PR-VSP algorithm. The
results are summarized in Table 4.7 where we indicate the best solution values Best, the average solution
values Avg and the average time Time to reach Best obtained by PR-VSP, PR_non-swap and ITS for each
tested instance. Note that the results of PR-VSP are directly extracted from Table 4.4. As shown in Table
4.7, PR-VSP performs better than PR_non-swap and ITS by reaching betterBest values for 18 and 20 more
instances. Moreover, PR-VSP also performs better in terms of the average solution values, with an average
of 680.4 against 691.76 for PR_non-swap and 685.82 for ITS. In addition, the computing time of PR-VSP
is quite competitive with those of PR_non-swap and ITS, while attaining better solution quality.

In conclusion, this experiment demonstrates the effectiveness of the designed new local search operator
and the dedicated path relinking procedure to the performance of the PR-VSP algorithm.

4.4 Conclusion

In this chapter, we presented an effective path relinking algorithm for solving the vertex separator prob-
lem. The proposed PR-VSP algorithm integrates a reference set initialization and updating method, a
solution improvement method, a path generation method as well as a solution selection method. The it-
erated tabu search based solution improvement method applies complementary 1-move and swap-move
operators to cooperatively explore the search space, where the benefit of the innovative swap-move operator
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Table 4.7: Comparative results on 31 instances between PR-VSP and two variants

Instances PR-VSP PR_non-swap ITS

Best Avg T ime Best Avg T ime Best Avg T ime

G1 257 257 0.84 257 257 0.25 257 257 0.34
G10 257 257 3.56 257 257 1.21 257 257 5.16
G14 146 146.3 386.15 146 146.65 502.14 147 147 280.09
G21 144 144.1 67.01 144 144.2 115.4 144 144.95 619.74
G22 587 587 826.47 588 588.65 1520.39 588 589.66 1745.23
G23 590 590 10.06 590 590 50.57 590 590.95 315.59
G24 587 587.9 1228.16 588 588.35 1821.29 589 590.64 1564.18
G25 588 588.3 1515.4 589 589.5 1747.17 589 589.65 1573.66
G26 587 587 671.46 587 588.3 837.26 587 588.57 2552.6
G27 818 818.7 815.85 819 819.95 967.38 820 820.75 2136.41
G28 821 821.7 996.89 822 822.4 1372.29 822 822.95 1947.28
G29 819 819 1246.36 820 820.3 724.32 819 820.3 2841.23
G30 820 820.6 1716.18 820 820.6 1936.48 820 820.8 1901.36
G35 435 435.2 2025.4 435 435.65 2825.71 435 436.65 1576.71
G36 440 440.4 1105.17 440 440.95 1247.53 441 441.6 1647.73
G37 434 434.7 2307.84 435 436.7 539.92 435 436.7 1969.17
G38 439 439 1010.22 439 441.1 1828.57 440 441.5 1975.54
G39 435 435.3 1415.07 436 438.37 1521.74 437 438.95 1724.79
G40 440 440.4 1129.67 440 441.95 1019.46 440 441.95 2104.56
G41 434 434.5 1160.87 435 438.39 1437.12 435 441.15 2017.85
G47 411 411 17.88 411 411.3 135.58 411 412.3 887.64
G51 224 224 38.18 224 224.4 121.52 224 225.8 472.4
G55 979 987 2752.88 989 992.8 3301.25 984 990.45 3017.85
G56 972 987.7 3345.15 989 997.05 3470.67 976 998.12 3214.04
G58 1085 1101 3352.99 1092 1105.78 3102.21 1090 1103.72 2974.58
G59 1088 1102.2 776.48 1090 1109.13 1034.11 1094 1101.45 2457.45
G60 1354 1372 3375.54 1369 1385.8 1509.75 1359 1375.8 2434.87
G61 1350 1368.2 3561.93 1380 1398.12 2087.28 1356 1368.3 2641.79
G63 1546 1560.4 3321.63 1552 1565.4 2935.84 1563 1575.55 3017.75
G64 1549 1566.6 3363.47 1553 1564.36 3157.48 1559 1579.65 2974.47
G70 320 328.1 2977.13 505 584.26 3015.65 401 410.6 2748.64
AVG 676.00 680.4 1500.71 685.19 691.76 1480.24 680.94 685.82 1849.7
best/total 31/31 13/31 11/31

is demonstrated both qualitatively and experimentally. The path generation method employs a dedicated
strategy based on a greedy selection criterion to build path solutions.

The proposed algorithm was assessed on four sets of 365 instances with up to 20000 vertices. Compar-
isons with the best performing algorithms in the literature disclosed that our algorithm finds improved best
solutions for 67 large instances and matches previously best known results for all but one instance, while
attaining this remarkable performance within competitive or an order of magnitude shorter time.

Several interesting perspectives can be considered for future studies. First, the quality of the results
attained by the proposed algorithm depends on the adopted setting of its parameters. Though a fine-tuning
of the parameters is possible, it is interesting to investigate automatic tuning techniques. Second, design-
ing new search operators and operator cooperation strategies would be another interesting work in future.
Finally, the path relinking framework integrated with well designed multiple complementary local search
operators could be adapted to design effective heuristics for other graph partitioning problems like those
studied in [Benlic and Hao, 2011b; Zadegan et al., 2013; Zhou et al., 2015].
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Conclusions

This thesis focuses on designing effective approaches for solving several NP-hard graph partitioning
problems, i.e., the max-k-cut problem, the max-bisection problem and the vertex separator problem. Due
to high computational complexity and widespread applications of these problems, we adopted heuristic and
metaheuristic methods to find “good-enough” sub-optimal solutions for large scale problem instances in
acceptable computing time. Particularly, our algorithms employ multiple search operators to collaboratively
perform space exploration, which present a good search balance between intensification and diversification.
Assessed on multiple sets of well-known benchmarks, the proposed algorithms are shown to be highly
competitive with respect to the best performing algorithms in the literature.

The multiple search operator algorithm (MOH) for the general max-k-cut problem achieved a high
level performance by including five distinct search operators which are applied in three search phases. The
descent-based improvement phase aims to discover local optima of increasing quality with two intensification-
oriented operators. The diversified improvement phase combines two other operators to escape local optima
and discover promising new search regions. The perturbation phase is applied as a means of strong diver-
sification to get out of deep local optimum traps. To obtain an efficient implementation of the proposed
algorithm, we developed streamlining techniques based on bucket sorting. We demonstrated the effective-
ness of the MOH algorithm both in terms of solution quality and computational efficiency on the two sets
of well-known benchmarks composed of 91 instances. For the general max-k-cut problem, the proposed
algorithm is able to improve 90 percent of the current best known results available in the literature. More-
over, for the very popular special case with k = 2, i.e., the max-cut problem, MOH also performs well by
discovering 4 improved best results which were never reported by any max-cut algorithm of the literature.
We also investigated the importance of the bucket sorting technique as well as alternative strategies for
combing search operators and justified the combinations adopted in the proposed MOH algorithm.

The iterated tabu search (ITS) algorithm for the maximum bisection problem achieved a high level
performance by including two distinct search operators which are applied in three search phases. The
descent-based improvement phase uses the vertex move operator (1-move) to discover a first local optimum
from a starting solution. The diversifying improvement phase jointly employs the 1-move operator and
a constrained swap operator in a probabilistic way (under the tabu search framework) to discover better
solutions. The perturbation phase is applied as a means of strong diversification to get out of deep local
optimum traps. To obtain an efficient implementation of the proposed algorithm, we developed stream-
lining techniques and a LIFO tie-breaking strategy based on dedicated bucket structures. Experimental
assessments on the 71 well-known benchmark instances with up to 20000 vertices indicated that the pro-
posed ITS algorithm was able to obtain improved best results (new lower bounds) for 10 large instances
and match the best-known results for all the other instances. Comparisons with state-of-the-art algorithms
showed that the ITS algorithm was superior to the reference algorithms both in terms of solution quality
and computational efficacy. Furthermore, the main ingredients of the ITS algorithm were analyzed to shed
lights on their impacts over the performance of the algorithm.

Finally, we presented an effective path relinking algorithm for solving the vertex separator problem,
which integrates a reference set initialization and updating method, a solution improvement method, a
path generation method as well as a solution selection method. The iterated tabu search based solution
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improvement method applies complementary 1-move and swap-move operators to cooperatively exploit
search space, where the benefit of the innovative swap-move operator is demonstrated both qualitatively
and experimentally. The path generation method employs a dedicated strategy based on a greedy selection
criterion to build path solutions. The proposed algorithm is benchmarked on four sets consisting of a total of
355 instances. Comparisons with the best performing algorithms in the literature disclose that our algorithm
finds improved solutions for 67 large instances and matches previously best known results for all but one
instance, while attaining this remarkable performance within competitive or an order of magnitude shorter
time.

Perspectives

From the work presented in this thesis, several interesting perspectives can be contemplated for future
studies to reinforce the performance of the proposed algorithms.

The multilevel graph partitioning framework, which approximates the initial problem by solving a se-
ries of smaller (and easier) problems, is shown to be dramatically effective for finding near optimal k-way
partition on large graphs. In addition to the coarsening phase used for producing a series of coarser graphs,
another key ingredient in the multilevel framework is the refinement phase for acquiring improved parti-
tions. Furthermore, no previous study has developed heuristic or metaheuristic algorithms within a mul-
tilevel framework for coping with max-k-cut, max-bisection and vertex separator problems. As such, it
would be interesting to integrate algorithms proposed in this thesis as the refinement phase into a multilevel
framework and assess its performance.

For the purpose of achieving search diversification, the core element of producing initial solutions in our
proposed algorithms is randomness. Despite its effectiveness, this rudimentary strategy has the drawback
of being not able to promptly and precisely migrate search into more promising area. Hence, it’s worthy
of investigating more advanced initial solution generation methods to discover best solutions in reduced
computational efforts. A possible advancement is to make use of auxiliary memories that collect history
information to guide the search, including an elite set of high quality solutions, a memory to summarize
frequency of each vertex lying in the same subset in the elite set, as well as long-term and short-term
memories to record occurrence of each vertex lying in each subset, etc. Dependent on a collection of
memories, a probability model is built to determine initial solutions for instance.

Mathematical programming approaches are able to provide robust solutions while metaheuristic ap-
proaches are capable of returning sub-optimal solutions with time effectiveness. Hence, developing a
matheuristic approach that exploits mathematical programming techniques in a metaheuristic framework
is another promising search direction. For example, we can use metaheuristic methods to produce a set of
sub-optimal solutions, based on which variable fixing techniques operate to reduce the original problem to
the size exact methods are able to effectively tackle with. Alternatively, high quality lower bounds can be
computed by use of metaheuristic approaches, with which exact methods can better prune its search tree to
enhance search efficacy.

The high and robust performance of the proposed algorithms depend critically on a set of good param-
eters, whose optimal settings are usually instance independent. However, parameter tuning is normally a
hard task, especially when a number of sensitive parameters exist. Hence, developing an automatic parame-
ter tuning method based on the characteristics of the current instance to be solved could be a very favorable
research for our future work.

Our proposed multiple operator heuristic establishes an original framework and presents attractive per-
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formance. We hope to adapt this search scheme to other combinatorial problems so as to evaluate its
usefulness.
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[Croce et al., 2007] F. Della Croce, M.J. Kamiński, and V.Th. Paschos. An exact algorithm for max-cut in
sparse graphs. Operations Research Letters, 35:403–408, 2007. 9

[Dang et al., 2002] C. Dang, L. He, and I.K. Hui. A deterministic annealing algorithm for approximating
a solution of the max-bisection problem. Neural Networks, 15:441–458, 2002. 13

[de Souza and Balas, 2005] C.C. de Souza and E. Balas. The vertex separator problem: algorithms and
computations. Mathematical Programming, 3:609–631, 2005. 15, 72, 74, 75

[de Souza and Cavalcante, 2011] C.C. de Souza and V.F. Cavalcante. Exact algorithms for the vertex sep-
arator problem in graphs. Networks, 57:212–230, 2011. 15

[Delling et al., 2015] D. Delling, D. Fleischman, A.V. Goldberg, I. Razenshteyn, and R.F. Werneck. An
exact combinatorial algorithm for minimum graph bisection. Mathematical Programming, 153:417–458,
2015. 12, 57, 58



REFERENCES 93

[Ding et al., 2001] C.H. Ding, X. He, H. Zha, M. Gu, and H.D. Simon. A min-max cut algorithm for
graph partitioning and data clustering. Data Mining, 2001. ICDM 2001, Proceedings IEEE International
Conference on, pages 107–114, 2001. 6, 12

[Eisenblätter, 2002] A. Eisenblätter. The semidefinite relaxation of the k-partition polytope is strong. Inte-
ger Programming and Combinatorial Optimization, 25:273–290, 2002. 6

[Elf et al., 2003] M. Elf, M. Jünger, and G. Rinaldi. Minimizing breaks by maximizing cuts. Operations
Research Letters, 31:343–349, 2003. 12

[Evrendilek, 2008] C. Evrendilek. Vertex separator for partitioning a graph. Sensors, 8:635–657, 2008. 14
[Falkner et al., 1994] J. Falkner, F. Rendl, and H. Wolkowicz. A computational study of graph partitioning.

Mathematical Programming, 66:211–239, 1994.
[Fan and Pardalos, 2010] N. Fan and Panos M. Pardalos. Linear and quadratic programming approaches

for the general graph partitioning problem. Journal of Global Optimization, 48:57–71, 2010. 7
[Feige et al., 2005] U. Feige, M. Hajiaghayi, and J.R. Lee. Improved approximation algorithms for mini-

mum weight vertex separators. In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 563–572, 2005. 14

[Ferreira et al., 1996] C.E. Ferreira, A. Martin, C.C. deSouza, R. Weismantel, and L.A. Wolsey. The node
capacitated graph partitioning problem: formulations and valid inequalities. Mathematical Program-
ming, 74:247–266, 1996. 7

[Ferreira et al., 1998] C.E. Ferreira, A. Martin, C.C. deSouza, R. Weismantel, and L.A. Wolsey. The node
capacitated graph partitioning problem: a computational study. Mathematical Programming, 81:229–
256, 1998. 7

[Festa et al., 2002] P. Festa, P. M. Pardalos, M. G. C. Resende, and C. C. Ribeiro. Randomized heuristics
for the max-cut problem. Optimization Methods and Software, 7:1033–1058, 2002. 10, 13, 26, 53

[Fiduccia and Mattheyses, 1982] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improv-
ing network partitions. Design Automation, 1982. 19th Conference on, pages 175–181, 1982. 6, 7, 23,
47, 49, 55

[Frieze and Jerrum, 1995] A. Frieze and M. Jerrum. Improved approximation algorithms for max-k-cut
and max bisection. Proceedings of the Fourth IPCO Conference, pages 1–13, 1995. 12

[Fu and Chen, 2006] B. Fu and Z. Chen. Sublinear time width-bounded separators and their application to
the protein sidechain packing problem. In Algorithmic Aspects in Information and Management, LNCS,
volume 4041, pages 149–160. 2006. 14

[Fukuyama, 2006] J. Fukuyama. NP-completeness of the planar separator problems. Journal of Graph
Algorithms and Applications, 10:317–328, 2006. 14

[Ghaddar et al., 2011] B. Ghaddar, M.F. Anjos, and F. Liers. A branch-and-cut algorithm based on
semidefinite programming for the minimum k-partition problem. Annals of Operations Research,
188:155–174, 2011. 6

[Glover and Laguna, 1999] F. Glover and M. Laguna. Tabu search. Springer, 1999. 22, 51, 70
[Glover et al., 2000] F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter search and path-

relinking. Control and Cybernetics, 39:654–684, 2000. 64, 70
[Glover et al., 2003] F. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: advances and

applications. Handbook of Metaheuristics, 57:1–35, 2003. 64
[Glover et al., 2004] F. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: foundations

and advanced designs. New Optimization Technologies in Engineering, 141:87–100, 2004. 64
[Goemans and Williamson, 1995] M. X. Goemans and D.P. Williamson. Improved approximation algo-

rithms for max-cut and satisfiability problems using semidefinite programming. Journal of the Acm,
42:1115–1145, 1995. 9, 12



94 REFERENCES

[Hagen and Kahng, 1997] L. W. Hagen and A. B. Kahng. On implementation choices for iterative im-
provement partitioning algorithms. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 16:1199–1205, 1997. 50

[Hager and Hungerford, 2015] W.W. Hager and J.T. Hungerford. Continuous quadratic programming for-
mulations of optimization problems on graphs. European Journal of Operational Research, 240:328–
337, 2015. 15

[Halperin and Zwick, 2002] E. Halperin and U. Zwick. A unified framework for obtaining improved
approximation algorithms for maximum graph bisection problem. Random Structures & Algorithms,
20:382–402, 2002. 12

[Hendrickson and Leland, 1995] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the 1995 ACM/IEEE conference on super-computing (CDROM), 1995. 8

[Homer and Peinado, 1997] S. Homer and M. Peinado. Design and performance of parallel and distributed
approximation algorithms for maxcut. Journal of Parallel and Distributed Computing, 46:48–61, 1997.
9

[Inayoshi and Manderick, 1994] H. Inayoshi and B. Manderick. The weighted graph bi-partitioning prob-
lem: A look at GA performance. In Parallel Problem Solving From Nature – PPSN III, Lecture Notes in
Computer Science, volume 866, pages 617–625, 1994. 13

[Kahruman et al., 2007] S. Kahruman, E. Kolotoglu, S. Butenko, and I.V. Hicks. On greedy construction
heuristics for the max-cut problem. International Journal of Computational Science and Engineering,
3:211–218, 2007. 9

[Kann et al., 1997] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of approximating
max k-cut and its dual. Chicago Journal of Theoretical Computer Science, 2:151–180, 1997. 6

[Karisch et al., 2000] S.E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems with
semidefinite programming. Informs Journal on Computing, 12:177–191, 2000. 12

[Karp, 1972] R.M. Karp. Reducibility among combinatorial problems. Springer, 1972. 6
[Karypis and Kumar, 1998] G. Karypis and V. Kumar. Metis 4.0: unstructured graphs partitioning and

sparse matrix ordering system. Technical report, Department of Computer Science, University of Min-
nesota, 1998. 7, 8

[Karypis and Kumar, 1999] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for
irregular graphs. SIAM Review, 41:278–300, 1999. 6

[Karypis and Kumar, 2000] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI
Design, 11:285–300, 2000.

[Kernighan and Lin, 1970] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 49:291–308, 1970. 7, 47

[Kochenberger et al., 2013] G. Kochenberger, J.K. Hao, Z. Lü, H. Wang, and F. Glover. Solving large scale
max cut problems via tabu search. Journal of Heuristics, 19:565–571, 2013. 11, 27, 29

[Kohmoto et al., 2003] K. Kohmoto, K. Katayama, and H. Narihisa. Performance of a genetic algorithm
for the graph partitioning problem. Mathematical and Computer Modelling, 38:1325–1332, 2003. 13

[Krislock et al., 2014] N. Krislock, J. Malick, and F. Roupin. Improved semidefinite bounding procedure
for solving max-cut problems to optimality. Mathematical Programming, 143:61–86, 2014. 10

[Lacomme et al., 2015] P. Lacomme, C. Prins, C. Prodhon, and L. Ren. A multi-start split based path
relinking MSSPR approach for the vehicle routing problem with route balancing. Engineering Applica-
tions of Artificial Intelligence, 38:237–251, 2015. 64

[Lai and Hao, 2015] X. Lai and J.K. Hao. Path relinking for the fixed spectrum frequency assignment
problem. Expert Systems with Applications, 42:4755–4767, 2015. 64, 66



REFERENCES 95

[Leighton and Rao, 1999] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46:787–832, 1999. 14

[Leighton, 1983] F.T. Leighton. Complexity issues in VLSI: optimal layout for the shuffle-exchange graph
and other networks. MIT Press, Cambridge, 1983. 14

[Liers et al., 2004] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi. Computing exact ground states of hard
ising spin glass problems by branch-and-cut. New Optimization Algorithms in Physics, 50:47–68, 2004.
6

[Lin and Zhu, 2012] G. Lin and W. Zhu. A discrete dynamic convexized method for the max-cut problem.
Annals of Operations Research, 196:371–390, 2012. 10

[Lin and Zhu, 2014] G. Lin and W. Zhu. An efficient memetic algorithm for the max-bisection problem.
Computers, IEEE Transactions on, 63:1365–1376, 2014. 13, 47, 53, 55

[Ling et al., 2008] A. Ling, C. Xu, and L. Tang. A modified VNS metaheuristic for max-bisection prob-
lems. Journal of Computational and Applied Mathematics, 220:413–421, 2008. 13

[Lipton and Tarjan, 1979] R.J. Lipton and R.E Tarjan. a separator theorem for planar graphs. SIAM Journal
on Numerical Analysis, 36:177–189, 1979. 14

[Lisser and Rendl, 2003] A. Lisser and F. Rendl. Telecommunication clusterig using linear and semidefi-
nite programming. Mathematical Programming, 95:91–101, 2003.

[López-Ibánez et al., 2011] M. López-Ibánez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace
package, iterated race for automatic algorithm configuration. Technical report, 2011. 53

[Lourenço et al., 2010] H.R. Lourenço, O. Martin, and T. & Stützle. Iterated local search: framework and
applications. International Series in Operations Research & Management Science, 146:363–397, 2010.
44

[Lü et al., 2011a] Z. Lü, F. Glover, and J.K. Hao. Neighborhood combination for unconstrained binary
quadratic problems. In MIC Post-Conference Book, pages 49–61. 2011. 38

[Lü et al., 2011b] Z.P. Lü, J.K. Hao, and F. Glover. Neighborhood analysis: a case study on curriculum-
based course timetabling. Journal of Heuristics, 17:97–118, 2011. 51

[Marti et al., 2009] R. Marti, A. Duarte, and M. Laguna. Advanced scatter search for the max-cut problem.
INFORMS Journal on Computing, 21:26–38, 2009. 10

[Merz and Freisleben, 2000] P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning. Evolutionary Computation, 8:61–91, 2000. 13

[Mitchell, 2001] J.E. Mitchell. Branch-and-cut for the k-way equipartition problem. Technical report,
Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, 2001. 7

[Mitchell, 2003] J.E. Mitchell. Realignment in the national football league: Did they do it right? Naval
Research Logistics (NRL), 50:683–701, 2003. 6, 7

[Mohar and Poljak, 1990] B. Mohar and S. Poljak. Eigenvalues and the max-cut problem. Czechoslovak
Mathematical Journal, 40:343–353, 1990. 9

[Monien et al., 2000] B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement for
multilevel graph-partitioning. Parallel Computing, 26:1609–1634, 2000. 8

[Murty and Kabadi, 1987] K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic and
nonlinear programming. Mathematical programming, 39:117–129, 1987. 12

[Orlova and Dorfman, 1972] G.I. Orlova and Y.G. Dorfman. Finding the maximum cut in a graph. Engi-
neering Cybernetics, 10:502–506, 1972. 9

[Palubeckis et al., 2014] G. Palubeckis, A. Ostreika, and D. Rubliauskas. Maximally diverse grouping: an
iterated tabu search approach. Journal of the Operational Research Society, 66:579–592, 2014. 44



96 REFERENCES

[Palubeckis, 2004] G. Palubeckis. Application of multistart tabu search to the maxcut problem. Information
Technology and Control, 2:29–35, 2004. 10

[Peng et al., 2015] B. Peng, Z. Lü, and T. Cheng. A tabu search/path relinking algorithm to solve the job
shop scheduling problem. Computers & Operations Research, 53:154–164, 2015. 64

[Pinter, 1984] R.Y. Pinter. Optimal layer assignment for interconnect. Journal of VLSI and Computer
Systems, 1:123–137, 1984. 6

[Qin et al., 2015] T. Qin, B. Peng, U. Benlic, T.C.E. Cheng, Y. Wang, and Z.P. Lü. Iterated local search
based on multi-type perturbation for single-machine earliness/tardiness scheduling. Computers & Oper-
ations Research, 61:81–88, 2015. 44

[Rahimian et al., 2015] F. Rahimian, A.H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. A dis-
tributed algorithm for large-scale graph partitioning. ACM Transactions on Automatic and Adaptive
Systems, 10:12:1–12:24, 2015. 7

[Rendl et al., 2007] F. Rendl, G. Rinaldi, and A. Wiegele. A branch and bound algorithm for max-cut
based on combining semidefinite and polyhedral relaxations. In International Conference on Integer
Programming and Combinatorial Optimization, volume 4513, pages 295–309, 2007. 9

[Rendl et al., 2010] F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by intersecting
semidefinite and polyhedral relaxations. Mathematical Programming, 121:307–335, 2010. 10

[Sahni and Gonzalez, 1976] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of
the Acm, 23:555–565, 1976. 9

[Sánchez-Oro et al., 2014] J. Sánchez-Oro, N. Mladenović, and A. Duarte. General variable neighborhood
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Heuristiques à opérateurs multiples pour des problèmes de partitionnement de
graphe

Multiple Operator Metaheuristics for Graph Partitioning Problems

Résumé
Les problèmes de partitionnement de graphe sont une
classe bien connue des problèmes d’optimisation
combinatoire NP-difficiles avec un large éventail
d’applications, telles que la conception de circuits
intégrés, la physique statistique, la planification d’équipe
sportive, la segmentation d’images et la structuration de
protéines. En raison de la grande complexité de ces
problèmes, les approches heuristiques et
métaheuristiques sont couramment utilisées pour trouver
des solutions approchées. Cette thèse considère trois
problèmes représentatifs de cette famille, incluant le
problème "max-k-cut", le problème "max-bisection" et le
problème de séparation de sommets (VSP). Elle vise à
élaborrer des algorithmes heuristiques efficaces basés
sur une ensemble d’opérateurs de recherche
complémentaires. Plus précisément, nous développons
une heuristique à opérateurs multiples (MOH) pour
"max-k-cut", un algorithme de recherche Tabu itérée
(ITS) pour "max-bisection" et un algorithme "path
relinking" (PR-VSP) pour VSP. Des résultats
exprimentaux sur des jeux de test standard démontrent
que les algorithmes proposés rivalisent favorablement
avec les approches existantes de la littérature.
L’utilisation combinée de plusieurs opérateurs de
recherche est analysée afin de mettre en évidence
l’influence de ces opérateurs sur la performance des
algorithmes.

Abstract
Graph partitioning problems are a class of well-known
NP-hard combinatorial optimization problems with a wide
range of applications, such as VLSI layout design,
statistical physics, sports team scheduling, image
segmentation, and protein conformation for instances.
This thesis considers three representative problems in
this family, including the max-k-cut problem, the
max-bisection problem and the vertex separator problem
(VSP). Due to high computational complexity, heuristic
and metaheuristic approaches are commonly used for
approximating the challenging problems. This thesis is
devoted to developing efficient metaheuristic algorithms
based on a collection of complementary search
operators. Specifically, we develop a multiple operator
heuristic (MOH) for max-k-cut, an iterated tabu search
(ITS) algorithm for max-bisection and a path relinking
(PR-VSP) algorithm for VSP. Extensive computational
experiments and comparisons demonstrate that the
proposed algorithms compete favorably with
state-of-the-art approaches in the literature. The
combined use of multiple search operators is analyzed to
shed lights on the influence over the performance of the
algorithms.

Mots clés
Optimisation combinatoire, Problèmes de
partitionnement de graphe, Stratégies recherche à
opérateur multiple, Heuristiques et métaheuristiques.

Key Words
Combinatorial optimization, Graph partitioning problems,
Multiple search strategies, Heuristics and metaheuristics.
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