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Résumé

La description de l’évolution à long-terme des systèmes astrophysiques auto-gravitants tels que les dis-
ques stellaires, fait aujourd’hui l’objet d’un regain d’intérêt sous l’impulsion de deux développements
récents. Cela repose tout d’abord sur le succès de la théorie ΛCDM pour décrire la formation des
grandes structures. A l’échelle des galaxies, les interactions avec le milieu circum-galactique peuvent,
selon la nature du processus d’accrétion, être constructives (par exemple via l’accrétion adiabatique de
gaz) ou destructives (par exemple via l’interaction avec un satellite). Ce nouveau paradigme permet
ainsi de quantifier en détail l’impact statistique de ces perturbations cosmiques sur les systèmes auto-
gravitants. En outre, de récents développements théoriques permettent maintenant de décrire précisé-
ment l’amplification des perturbations extérieures ou internes (bruit de Poisson) et des effets qu’elles
peuvent avoir sur la structure orbitale d’un système sur les temps cosmiques, tout en considérant les
effets associés à l’auto-gravité. Ces nouvelles théories offrent de nouvelles clés pour comprendre les
processus dynamiques à l’œuvre dans ces systèmes auto-gravitants sur les temps séculaires.

Ces récents progrès complémentaires nous permettent d’aborder la question lancinante des rôles re-
spectifs de l’inné et de l’acquis sur les propriétés observées des systèmes auto-gravitants. De nombreuses
énigmes astrophysiques peuvent maintenant être reconsidérées dans de plus amples détails. Les exem-
ples nemanquent pas : l’évolution séculaire de la dispersion enmétallicité dans les disques stellaires, les
mécanismes d’épaississement des disques stellaires sous l’effet des nuages moléculaires ou des ondes
spirales, la dynamique séculaire des centres galactiques, etc. Caractériser l’évolution séculaire de tels
systèmes auto-gravitants est un exercice stimulant qui demande de subtils modèles théoriques, de com-
plexes expériences numériques, mais également une compréhension précise des processus physiques
impliqués.

Cette thèse est consacrée à la description de ces dynamiques séculaires, notamment dans les situ-
ations pour lesquelles l’auto-gravité joue un rôle important. Deux formalismes de diffusion, externe
et interne, seront présentés en détail. Ces deux approches seront appliquées à trois problèmes astro-
physiques, pour illustrer leur pertinence et abilité à décrire l’évolution à long-terme de systèmes auto-
gravitants. Dans un premier temps, nous nous pencherons sur le cas des disques stellaires discrets
infiniment fins, et retrouverons la formation d’étroites arêtes d’orbites résonantes en accord avec les
observations et les simulations numériques, par le biais de la première mise en œuvre de l’équation
de Balescu-Lenard. Nous considérerons ensuite dans ce même cadre le mécanisme d’épaississement
spontané des disques stellaires sous l’effet du bruit de Poisson. Ces différentes approches permettent
en particulier de décrire de manière cohérente la migration radiale des étoiles et l’épaississement des
disques galactiques. Enfin, nous illustrerons comment les mêmes formalismes permettent également de
décrire la dynamique des étoiles orbitant un trou noir supermassif dans les centres galactiques. D’autres
processus de restructuration orbitale seront discutés plus brièvement.

Mots-clés: Evolution des galaxies, Dynamique séculaire, Gravitation, Diffusion, Théorie cinétique.
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Abstract

Understanding the long-term evolution of self-gravitating astrophysical systems, such as for example
stellar discs, is now a subject of renewed interest, motivated by the combination of two factors. On
the one hand, we now have at our disposal the well established ΛCDM model for the formation of
structures. When considered on galactic scales, depending on the nature of the accretion processes,
interactions with the circum-galactic environment, may either be constructive (e.g., adiabatic gas ac-
cretion) or destructive (e.g., satellite infall). The statistical impacts of these cosmic perturbations on
self-gravitating systems are now being quantified in detail. On the other hand, recent theoretical works
now provide a precise description of the amplification of external disturbances and discreteness noise
as well as their effects on a system’s orbital structure over cosmic time, while properly accounting for
the effect of self-gravity. These theories offer new physical insights on the dynamical processes at play
in these self-gravitating systems on secular timescales.

These two complementary developments now allow us to address the pressing question of the re-
spective roles of nature vs. nurture in the establishment of the observed properties of self-gravitating
systems. Numerous dynamical challenges are therefore ready to be re-examined in much greater de-
tail than before. Examples include: the secular evolution of the metallicity dispersion relationship in
galactic discs, the mechanisms of disc thickening via giant molecular clouds or spiral waves, the stellar
dynamical evolution of galactic centres, etc. Characterising the secular evolution of such self-gravitating
systems is a stimulating task, as it requires intricate theoretical models, complex numerical experiments,
and an accurate understanding of the involved physical processes.

The purpose of the present thesis is to describe such secular dynamics in contexts where self-gravity
is deemed important. Two frameworks of diffusion, either external or internal, will be presented in
detail. These approaches will be applied to various astrophysical systems to illustrate the particular rel-
evance and ability of these approaches to describe the long-term evolution of self-gravitating systems.
This thesis will first investigate the secular evolution of discrete razor-thin stellar discs and recover the
formation of narrow ridges of resonant orbits in agreement with observations and numerical simula-
tions, thanks to the first implementation of the Balescu-Lenard equation. The spontaneous thickening
of stellar discs as a result of Poisson shot noise will also be investigated. These various approaches al-
low in particular for a self-consistent description of stellar migration and disc thickening. Finally, we
will illustrate how the same formalisms allow us to describe the dynamics of stars orbiting a central
super massive black hole in galactic centres. Other processes of secular orbital restructuration will be
discussed in less details.

Keywords: Evolution of galaxies, Secular dynamics, Gravitation, Diffusion, Kinetic theory.
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Chapter 1

Introduction

1.1 Context
The current paradigm for the formation of astrophysical structures is the Lambda Cold Dark Matter
(ΛCDM) model (Springel et al., 2006). Initial quantum density fluctuations (Bardeen et al., 1986) in the
non-baryonic dark matter appear right after the Big Bang and get stretched by the expansion of the
universe. On the other hand, gravity drives a hierarchical clustering which leads to a strong increase
of initial overdensities. These densities grow, separate, collapse and give birth to galaxy haloes. These
structures form on the large scale a "cosmic web" of nodes, filaments, walls and voids (see, e.g., Frenk &
White, 2012, for a review), as can be seen in the top row of figure 1.1.1. At a later stage in the evolution

Figure 1.1.1: Snapshot extracted from the Horizon-AGN cosmological hydrodynamical simulation (Dubois et al.,
2014). It illustrates the dark matter density (top row) and stellar density (bottom row) centred on a massive halo
at redshift z=1.2 for various scales. One notes the formation of large scale structures (the "cosmic web") via the
hierarchical clustering of primordial quantumfluctuations, stretched by the expansion of the universe and increased
in contrast by self-gravity.

of the universe, "dark energy", which now accounts for approximately 70% of the total energy content of
the universe (Planck Collaboration et al., 2014), comes into play to cause the originally slowing universal
expansion to reaccelerate (Riess et al., 1998; Perlmutter et al., 1999). This late reacceleration tends to
isolate even more the different regions of the clustering hierarchy, reducing the later merging rate of
haloes, leading to a more dynamically quiescent period.

Contrary to dark matter, baryonic matter, which only makes up approximately 15% of the matter
content of the universe, is not a collisionless fluid and therefore undergoes shocks as large scale struc-
tures develop. Indeed, baryons are accreted along the structures formed by the dark matter, cool within
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the haloes, and form stars (White & Rees, 1978). This essentially leads to the formation of gravitationally
bound objects, the galaxies. From such mechanisms, one expects principally two types of galaxies. Spi-
rals formwhen haloes accrete gas that dissipates and leads to the formation of discs. On the other hand,
ellipticals are mainly expected to form as results of collisions and mergers triggering AGN feedback
that prevents further gas accretion (Toomre & Toomre, 1972; Toomre, 1977a; Barnes & Hernquist, 1992;
Dubois et al., 2016). Figure 1.1.2 illustrates two examples of galactic morphologies observed in the local
universe. This general paradigm of formation is widely accepted as broadly correct, but some of its pre-

Figure 1.1.2: Two examples of galactic morpohologies located in the nearby Virgo Cluster. Left panel: Spiral
galaxy NGC 4321 (=M100) (credit: ESO). Spiral galaxies possess a disc shape and display spiral patterns. Right
panel: Giant elliptical galaxy NGC4486 (=M87) (credit: Australian Astronomical Observatory). Elliptical galaxies
possess very little substructures and have a roughly ellipsoidal shape.

dictions still appear as inconsistent with the observations (Silk & Mamon, 2012; Kroupa, 2012). See for
example Appendix 4.D for a description of one of these tensions through the so-called cusp-core prob-
lem. One important outcome of these developments is that galaxies are not isolated islands distributed
randomly in the universe, but rather follow and interact with the intricate cosmic web network (Bond
et al., 1996; Pichon et al., 2011).

Galaxies are therefore complex structures at the interface of two scales: the large scale structure (the
so-called intergalacticmedium) and the small scale of their internal constituents, the interstellarmedium
and the stars. Galaxies are also at the interface of both destructive and constructive processes. Indeed,
gas accretion onto a galaxy can either be smooth and constructive as with cold gas flows, or abrupt,
violent and destructive as with mergers or satellite infalls with inconsistent impact parameters. In the
former case, the very formation process sets the forming stars in a very specific configuration, with a
large reservoir of free energy. Later, galaxies are subject to both stabilising and destabilising influences.
The constant resupply of new stars from the quasi-circular gas orbits makes disc galaxies dynamically
colder and more responsive, while a wide variety of heating mechanisms tend to increase the velocity
dispersion of the stars, making galaxies dynamically hotter and less responsive. Finally, galaxies, be-
cause they were formed from cold gas, are originally created in a highly improbable state, i.e. a low
entropy state of low velocity dispersion. These (thermodynamically improbable) states are maintained
by symmetry, given that their initially axially symmetric distributions do not allow for efficient angular
momentum exchange. The dynamics of the system will aim at leaving these metastable states (quasi-
steady on short timescales) towards more probable states of higher entropy. Understanding the long-
term evolution of such self-gravitating systems requires to consider the joint contributions associated
with on the one hand external effects, the cosmic environment, and on the other hand associated with
internal effects, such as the system’s own graininess and internal structure (e.g., bars or giant molecular
clouds). Getting a better grasp at the secular dynamics of these systems involves therefore ranking the
strengths of each of these sources of evolution, i.e. quantifying the effects of nurture and nature on their
evolution, and weighing their respective efficiency.

The general purpose of the present thesis is to describe and understand the secular evolution of
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self-gravitating systems. See Kormendy (2013); Binney (2013b); Sellwood (2014) for detailed reviews
on recents developments in this respect. This thesis also aims at incrementing our theoretical knowl-
edge of the self-interaction of self-gravitating systems, while providing explicit solutions to the recently
published corresponding kinetic equations. Before entering the core of the thesis, let us first briefly de-
scribe the structure of disc galaxies and their associated dynamical components (section 1.2), as well as
the tools and mechanisms from Hamiltonian dynamics essential to characterise the evolution of such
systems (section 1.3).

1.2 Stellar discs
Following Binney & Tremaine (2008), let us now review the important orders of magnitude for a spiral
galaxy such as the Milky Way. As illustrated in figure 1.2.1, the Milky Way is comprised of various
components. First, the stellar component of the MilkyWay is made of about 1011 stars for a total mass of

Bulge

SMBH

Thin disc

Thick disc

Halo

Figure 1.2.1: Qualitative illustration of the main dynamical components of a spiral galaxy. Most of the galaxies
are expected to contain a central super massive black hole (see chapter 6 for a detailed discussion of the secular
dynamics of stars in the vicinity of such objects). The central region of the galaxy takes the form of a spherical
component, the bulge. At larger radii, the stellar disc is roughly made of two distinct components, namely a thin
disc of stars (see chapters 3 and 4 for a discussion of the secular dynamics of razor-thin stellar discs), and a thick
disc of stars (see chapter 5 for a discussion of the secular dynamics of thickened stellar discs). Finally, the disc is
embedded in a spheroidal dark matter halo (see Appendix 4.D for a brief illustration of how the dynamics of such
spherical systems may be described).

order 5×1010M�. Most of the stars belong to a disc of approximate radius 10 kpc. The Sun is located near
its midplane at a radius of 8 kpc. Observations have indicated that the stellar disc may be constituted
of two components, a thin and thick discs, of respective typical thickness 300 pc and 1 kpc. The thick
disc is made of older stars with different chemical compositions and its luminosity is about 7% that of
the thin disc. Stellar discs are said to be dynamically cold, as the random velocities of their constituents
are much smaller than the mean ordered velocity, i.e. the mean quasi-circular motion. Chapters 3 and 4
will especially consider the secular dynamics of razor-thin stellar discs, while chapter 5 will investigate
possible mechanisms of secular thickening of stellar discs. While this is not illustrated in figure 1.2.1, let
us also note that stellar discs also contain gas, atomic and molecular hydrogen and helium, forming the
interstellar medium (ISM). The ISM only makes up about 10% of the total stellar mass, and is therefore
of little importance for the dynamics of the Milky Way. However, the transient giant molecular clouds,
dense gas regions, remain important for the dynamics of a galaxy as they are the birth place of new
stars. They impose as well the chemistry of the newly formed stars. In the centre of the disc, one finds
an amorphous component, the bulge, of approximate mass 0.5×1010M�. Contrary to the disc, the bulge



16 CHAPTER 1. INTRODUCTION

is a dynamically hot region, where randomvelocities are larger than themean velocity. Let us finally note
that the Milky Way’s bulge, being triaxial, is sometimes called a bar. The secular effects associated with
bars will only be briefly discused in chapter 5. At the centre of these regions is located a super massive
black hole of approximate mass 4×106M�, called Sgr A∗. See chapter 6 for a description of the secular
dynamics of stars near super massive black holes. Finally, the most massive component of the Milky
Way is its surrounding dark matter halo, with an approximate radius of 200 kpc and approximate mass
of 1012M�. In the context of galactic dynamics, the halomainly only interacts with the stellar component
through the joint gravitational potential they define. See Appendix 4.D for a brief illustration of how to
describe the secular dynamics of dark matter haloes.

1.3 Hamiltonian Dynamics
Let us now present a short introduction to Hamiltonian dynamics, with a particular emphasis on the
tools and processes essential for the secular evolution of self-gravitating systems. We refer the reader
to Goldstein (1950); Arnold (1978); Binney& Tremaine (2008) for thorough presentations of Hamiltonian
dynamics.

A n−dimensional dynamical system can be described by its HamiltonianH expressed as a function
of the canonical coordinates (q,p). These coordinates follow Hamilton’s equations reading

dq

dt
=
∂H

∂p
;

dp

dt
= −∂H

∂q
. (1.1)

We define the configuration space of a system as the n−dimensional space with coordinates (q1, ..., qn),
and the associated momentum space (p1, ..., pn). More importantly, we define as phase space the
2n−dimensional space with coordinates (q1, ..., qn, p1, ..., pn)=(q,p)=w.

Let us consider two scalar functions F1(w) and F2(w) depending on the phase space coordinates.
We define their Poisson bracket as [

F1, F2

]
=
∂F1

∂q
· ∂F2

∂p
− ∂F1

∂p
· ∂F2

∂q
. (1.2)

Thanks to this notation, Hamilton’s equation can be written as

dw

dt
=
[
w, H

]
. (1.3)

In addition, the phase space coordinates satisfy the canonical commutation relations namely

[
wα, wβ

]
= Jαβ with J =

(
0 I
−I 0

)
, (1.4)

where we introduced the 2n×2n symplectic matrix J, and where 0 and I are respectively the n×n zero
and identity matrix.

Because Hamiltonian dynamics describes the system’s dynamics in phase space, it allows for gen-
eralised change of coordinates. Phase space coordinates W =(Q,P ) are said to be canonical if they
satisfy [

Wα,Wβ

]
= Jαβ . (1.5)

The essential property of canonical coordinates is that in any of these coordinates, Hamilton’s equations
conserve the same form. One has Ẇ =[W , H], where the Hamiltonian is expressed as a function of the
new coordinates and the Poisson bracket involves as well derivatives w.r.t. the new coordinates. Let
us also note that infinitesimal phase space volumes are conserved by canonical transformations so that
dW =dw. Poisson brackets are also conserved through canonical transformations.

We define an integral of motion I(w) to be any function of the phase space coordinates constant
along the orbits. It is said to be isolating if for any value in the image of I , the region of phase space
which reaches this value is a smooth manifold of dimension 2n−1. For example, for Hamiltonians inde-
pendent of time, the energy constitutes an isolating integral of motion. A system is said to be integrable
(in the Liouville sense) if it possesses n independent integrals of motions, i.e. whose differentials are
linearly independent in all points. For such integrable systems, one may then devise a set of canonical
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coordinates, the angle-action coordinates (θ,J), such that the actions J are independent isolating inte-
grals of motion. Within these coordinates, the HamiltonianH becomes independent of the angles θ, so
that H=H(J). Hamilton’s equations then read

dθ

dt
=
∂H

∂J
= Ω(J) ;

dJ

dt
= 0 , (1.6)

where we introduced as Ω(J)=∂H/∂J the intrinsic frequencies of motion. In these coordinates, the
motions are straight lines given by

θ = θ0+Ω(J) t ; J = cst. (1.7)

An additional property here is that the angles θ are assumed to be 2π−periodic, so that the actions J
describe a n−dimensional torus in phase space on which the orbit lies. This is the crucial strength of the
angle-action coordinates, which formally allows for a simple description of the complex trajectories in
the physical phase space (q,p) as straight lines motions in the angle-action space (θ,J). Unfortunately,
angle-action coordinates are not always guaranteed to exist. In addition, even for integrable systems,
simple analytical expressions for these coordinates are rarely available. In the upcoming chapters, we
will illustrate examples of angle-action coordinates for razor-thin and thickened axisymmetrics discs, 3D
spherical systems, and Keplerian systems. Figure 1.3.1 offers a visualisation of angle-action coordinates
for 1D harmonic oscillators. This is an important example when applying the epicyclic approximation
in chapters 3 and 5. As emphasised in equation (1.7), once the angle-action coordinates have been con-

x

v

θ

J

θ

J

0 2π

Figure 1.3.1: Illustration of the phase space diagram of a harmonic oscillator. Left panel: Illustration of the parti-
cles’ trajectories in the physical phase space (x, v). The trajectories take the form of concentric circles along which
particles move. Here, the action J should be seen as a label for the circle, while the angle θ should be seen as the
position along the circle. Right panel: Illustration of the trajectories in the angle-action space (θ, J). In these coor-
dinates, the motions are straight lines. The action J is conserved, while the angle θ evolves linearly with time with
the frequency Ω=∂H/∂J .

structed, individual motions then take the form of quasiperiodic motions along the tori defined by the
actions J . In figure 1.3.2, we illustrate two possible behaviours for the motion along this torus. These
are resonant periodic motions or non-resonant quasiperiodic motions, depending on the properties of
the intrinsic frequencies Ω.

Let us now assume that our system can be described statistically by a distribution function (DF)
F (w). Let us then present the differential equation satisfied by F as a consequence of the individual
evolutions imposed by Hamilton’s equation (1.3). As the DF evolves, probability must be conserved, so
that the DF satisfies a continuity equation in phase space given by

∂F

∂t
+

∂

∂w
·
[
F ẇ

]
= 0 . (1.8)
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Figure 1.3.2: Illustration of two integrable trajectories in angle space. An integrable trajectory is fully characterised
by its actions J , while the position of the particle along its orbit is described by the angles θ. Along the unperturbed
motion, the actions are conserved, while the angles evolve linearly with time with the frequency Ω. Left panel:
Illustration of a degenerate trajectory for which there exists n∈Z2 such that n·Ω=0, i.e. the frequencies are in a
rational ratio. The trajectory is closed, periodic, and does not fill the angle space (see chapter 6 for an illustration of
how to study the secular evolution of degenerate systems). Right-panel: Illustration of a non-degenerate trajectory,
for which the trajectory is quasiperiodic and densely covers the angle domain.

Using Hamilton’s equation (1.3), this can equivalently be rewritten as

0 =
∂F

∂t
+ ẇ· ∂F

∂w

=
∂F

∂t
+
[
F,H

]
=
∂F

∂t
+
∂F

∂q
· ∂H
∂p
− ∂F

∂p
· ∂H
∂q

=
dF

dt
, (1.9)

wherewe introduced as dF/dt the rate of change of the local probability density along themotion. Equa-
tion (1.9) has numerous names and depending on the context can be referred to as Liouville’s equation
(when considering the full N−body DF of a system of N particles), collisionless Boltzmann equation
(when restricted to a DF depending on only one particle coordinates), or Vlasov equation (when ac-
counting for the self-consistency of the system’s potential). See Hénon (1982) for a historical account
of these various names. Equation (1.9) essentially captures the conservation of the system’s probability
during its diffusion.

Equation (1.9) becomes particularly simple when the system admits angle-action coordinates. It then
reads

∂F

∂t
+Ω· ∂F

∂θ
= 0 . (1.10)

With such a rewriting, one can note that steady states of the collisionless Boltzmann equation are reached
by DFs such that F =F (J). This is Jeans theorem (Jeans, 1915).

These steady states are of particular importance for self-gravitating systems. Indeed, they are very
efficiently reached thanks to two complementary dynamical mechanims. The first mechanism is phase
mixing and is illustrated in figures 1.3.3 and 1.3.4 This mixing mechanism relies on the fact that any
dependence of the intrinsic frequencies Ω with the actions J introduces a shearing and dephasing in
the angle coordinates. This leads to the appearance of ever finer structures in the system’s DF, which,
when coarse grained, converges to a steady state F =F (J) independent of the angles. The secondmech-
anism is the one of violent relaxation (Lynden-Bell, 1967) illustrated in figure 1.3.5. This occurs for self-
gravitating systems initially far from equilibrium. Such systems undergo a phase of violent and abrupt
potential oscillations, during which the energy of individual particles is redistributed. This allows the
system to reach very efficiently a steady state on a few dynamical times. These two processes motivate
the use of the orbit-averaged approximation in chapter 2. Secular dynamics can then mostly be seen as
a slow evolution along quasi-stationary collisionless equilibria given by Jeans theorem.

Let us now discuss one final important physical process occurring in self-gravitating systems as a
result of their ability to amplify and respond to perturbations. This is the mechanism of dynamical fric-
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Figure 1.3.3: Inspired from figure 4.27 of Binney & Tremaine (2008). Illustration of phase mixing undergone by
a population of anharmonic oscillators (see left panel of figure 1.3.1). Each particle follows a circular trajectory in
phase space, but the intrinsic frequency of motion decreases with the size of the circles. Because of this shearing in
frequency, the particles dephase (left panel), leading to the appearance of ever finer structures in phase space (right
panel). This is phase mixing. When coarse grained, these fine structures are washed out and the systems reaches a
quasi-stationary mixed state.

tion, first introduced in the seminal work from Chandrasekhar (1943a). This is illustrated in figure 1.3.6.
See Nelson & Tremaine (1999) for a review. Let us consider a test mass travelling through of "sea" of
background particles assumed to be infinite and homogeneous. Because of their interaction with the
test mass, the background particles tend to accumulate behind the test mass, forming a gravitational
wake, the polarisation cloud. Because it is located behind the test mass, this wake induces a drag force
on the test mass. This is the dynamical friction. In addition, one can also note that along its motion, the
test mass appears as dressed by its polarisation cloud. Collective effects, i.e. the fact that the system is
self-gravitating, therefore lead to an increase of the effective mass of the test particle. A self-gravitating
system can therefore (strongly) amplify perturbations. Collisions between dressed particles can have
a qualitatively different outcome than collisions between bare ones (Weinberg, 1998). This dressing is
important in particular in cold dynamical systems such as stellar discs, see chapter 4.

After having briefly laid the required elements of Hamiltonian dynamics needed to address the sec-
ular dynamics of self-gravitating systems, chapter 2 will rely on these remarks to present the formalisms
appropriate to describe their long-term evolution.

1.4 Overview
This thesis discusses approaches to the long-term evolution of self-gravitating systems. It also illustrates
applications to various classes of astrophysical systems to recover some of the features they develop on
secular timescales. Two main types of secular evolution are considered depending on the sources of
perturbations and fluctuations in the system. This dichotomy, around which this thesis is organised, al-
lows for the detailed description of the secular dynamics of large classes of astrophysical systems. This
thesis is composed of five main chapters. First, chapter 2 presents the main theoretical tools required
for the description of such secular dynamics, and derives the associated diffusion equations. Chapter 3
focuses on the secular dynamics of razor-thin stellar discs, and emphasises how their secular dynamics
may be significantly simplified by relying on a tailored WKB approximation. Chapter 4 considers the
same razor-thin discs and emphasises how a proper accounting of the disc’s self-gravitating amplifica-
tion allows for a precise description of their diffusion features. Chapter 5 focuses on the dynamics of
thickened stellar discs, simplifies their dynamics via a new thickened WKB approximation, and inves-
tigates various possible sources of secular thickening. Chapter 6 focuses on quasi-Keplerian systems
(such as galactic centres) and details how their intrinsic dynamical degeneracies can be dealt with. Fi-
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Figure 1.3.4: Inspired from figure 2 of Lynden-Bell (1967). Illustration of phase mixing, similarly to figure 1.3.3,
in angle-action space, for various times. Here, within the angle-action coordinates, as a result of the conservation
of actions, trajectories are simple straight lines. Provided that the intrinsic frequenciesΩ=∂H/∂J change with the
actions, particles of different actions dephase. This phase mixing in the angles θ is one of the main justifications for
the consideration of orbit-averaged diffusion, i.e. the assumption that the system’s mean DF depends only on the
actions. This is at the heart of both diffusion equations presented in chapter 2.

Figure 1.3.5: Extracted from figure 4.28 of Binney & Tremaine (2008). Illustration of the mechanism of violent re-
laxation, during which an initially out-of-equilibrium self-gravitating system undergoes a phase of strong potential
fluctuations allowing the system to rapidly reach a collisionless quasi-stationary state.

nally, in chapter 7, we present the conclusions of the thesis and outline possible follow-up works. Let us
briefly sum up below the content of each chapter.
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Figure 1.3.6: Illustration of the homogeneous dynamical friction, as first introduced in Chandrasekhar (1943a). We
consider a test mass (illustrated with the red particle) moving to the right along a straight line, while embedded
in a homogeneous "sea" of background particles (illustrated with black dots). Along its motion, the test particle is
followed by a gravitational wake, also coined polarisation cloud, constituted of background stars. This polarisation
cloud has twomain effects. First, being located behind the test mass, it exerts a drag force on the test mass, hence the
name dynamical friction. It also illustrates the importance of collective effects in self-gravitating systems. Because
of these polarised background stars, the test mass is dressed. Its effective mass is increased, which hastens the
secular diffusion. (See chapter 4 for a detailed discussion on the importance of collective effects in cold dynamical
systems.) Let us finally note that in real self-gravitating systems, the situation ismore intricate if one accounts for the
complexity of the trajectories, i.e. the fact that the system is inhomogeneous (Heyvaerts et al., 2016). In particular,
there are situations where the polarisation can accelerate rather than drag.

In chapter 2, we present the main formalisms capturing the secular dynamics of self-gravitating sys-
tems. We successively consider two types of diffusion: collisionless and collisional. The first type of
collisionless diffusion corresponds to cases where the source of fluctuations is induced by an external
perturber. We investigate the interplay between the spectral properties of the external perturbations
and the internal orbital structure of the system. The second type of collisional diffusion is associated
with cases where the source of evolution is due to the system’s own intrinsic graininess. Self-gravitating
systems being inhomogeneous, we especially emphasise how this approach allows for the description
of distant resonant encounters. They are shown to be the drivers of the evolution in systems made of a
finite number of particles. Throughout these derivations, we also underline how these diffusion equa-
tions account for the system’s self-gravity, i.e. its ability to amplify perturbations. This proves essential
for cold dynamical systems such as stellar discs.

In chapter 3, we consider a first class of astrophysical systems, razor-thin stellar discs. The main aim
of this chapter is to illustrate the use of a tailored WKB approximation (i.e. limited to radially tightly
wound perturbations) to explicitly and straightforwardly compute the properties of the diffusion occur-
ring in such systems. When applied to isolated discrete stellar discs, we illustrate how the two diffusion
formalisms (collisionless and collisional) allow for the recovery of the shot-noise driven formation of
narrow ridges observed in numerical simulations. We also discuss one discrepancy obtained in the ap-
plications of these formalisms, namely the mismatch of the diffusion timescales. This is interpreted
as being due to the neglect of some contributions to the disc’s self-gravity (namely the loosely wound
contributions), which are accounted for in chapter 4.

The heart of chapter 4 is to illustrate, in the context of razor-thin discs, how one can fully account for
self-gravity through a proper numerical calculation. Relying on the collisional Balescu-Lenard equation,
we show how this formalsim recovers in detail the diffusion features observed in secular simulations of
stable self-gravitating razor-thin discs. We emphasise that collective effects cause cool discs to have
2−body relaxation time much shorter than naively expected. We also argue that this anomalous relax-
ation introduces small scale structures in the disc, which destabilise it at the collisionless level. Resorting
to our own simulations, we also investigate in detail some generic properties of such systems, such as
the scaling of the system’s diffusion with the number of particles, as well as the presence of unstable
secular dynamical phase transitions.
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In chapter 5, we extend the results of chapter 3 to thickened stellar discs. We illustrate how one may
devise a thickened WKB approximation offering straightforward estimations of the collisionless and
collisional diffusion fluxes. We show how these two formalisms allow for the qualitative recovery of the
diffusion features observed in numerical simulations of stable thickened stellar discs, with the caveat of
a diffusion timescale discrepancy due to the neglect of the contributions of loosely wound perturbations
to the disc’s self-gravity. We also investigate some other possible mechanisms of secular thickening such
as series of central decaying bars, or the joint evolution of giant molecular clouds. This illustrates how
different perturbation mechanisms can lead to different signatures in the disc’s diffusion.

Chapter 6 develops this diffusion formalism for quasi-Keplerian systems, such as galactic centres. Be-
cause these systems are dominated by one central object, their constituents approximately follow closed
Keplerian orbits. These systems are dynamically degenerate. We detail how such degeneracies can be
dealt with to derive the associated kinetic equation. We show how this new diffusion equation captures
the mechanism of resonant relaxation between Keplerian wires. We also emphasise how this approach
sheds new light on some important diffusion properties of these systems. We focus in particular on
understanding the Schwarzschild barrier, which strongly damps the rate with which stars can diffuse
towards the central black hole.



Chapter 2

Secular diffusion

The work presented in this chapter is based on Fouvry et al. (2015d,b, 2016a,b).

2.1 Introduction
The previous chapter described the typical fate of self-gravitating systems which can be briefly summed
up as follows. As a result of both phase mixing (see figure 1.3.4) and violent relaxation (see figure 1.3.5),
self-gravitating systems very efficiently reach quasi-stationary states for the collisionless mean field dy-
namics. The systems are virialised and the mean potentials do not strongly fluctuate anymore. Stars
follow their orbit set up by the mean field potential and are typically uniformly distributed in phase
along each of them. Yet, as gravity is a long-range interaction, self-gravitating systems have the ability
to amplify and dress perturbations (see, e.g., figure 1.3.6). These collective effects have two main con-
sequences. They may first lead to the spontaneous growth of dynamical instabilities if ever the system
was dynamically unstable. Moreover, even for genuinely stable systems, these effects can also lead to
polarisation, i.e. a dressing of perturbations and therefore a boost in amplitude of the fluctuations in
the system. This self-gravitating amplification is especially important for cold dynamical systems, i.e.
within which most of the gravitational support comes from centrifugal forces and for which the velocity
dispersion is low. This makes the system strongly responsive. This is for example important for stellar
discs, where new stars, born on the cold orbits of the gas, are constantly being supplied to the system.

Once the system has reached a quasi-stationary state through these various mixing processes, the
mean collisionless dynamics maintains stationarity and such a quiescent system can now only slowly
evolve on long timescales.1 This is the timescale for secular evolution, which will be our main interest
here. At this stage, only additional fluctuations can drive the system’s evolution. Such considerations
fall within the general framework of the fluctuation-dissipation theorem, for which fluctuations occur-
ring in the system lead to its dissipation and diffusion. Let us now introduce an important dichotomy on
which the two upcoming sections rely. There are two main channels to induce fluctuations in a system.
Fluctuations of the first type are induced by external stochastic perturbations, whose non-stationary con-
tributions will be felt by the system andwill lead therein to slow orbital distortions. As will be discussed
in detail in the next section, the efficiency of such secular dynamics is dictated in particular by the match
between the temporal frequencies of these perturbations and the system’s natural intrinsic frequencies.
We call this framework the collisionless framework. Another source of fluctuations is also present in
any system made of a finite number N of particles: these are finite−N effects, also called Poisson shot
noise. This graininess can not only be triggered by the finite number of constituents in the system, but
can also originate from the variety of its components, e.g., the existence of a mass spectrum of compo-
nents. As a direct consequence of the finite number of particles, the system’s self-induced potential is
not perfectly smooth, and therefore fluctuates around its mean quasi-stationary value. These unavoid-
able and non-vanishing fluctuations may then act as the source of a secular irreversible evolution. We
call this framework the collisional framework, in the sense that is relies on encounters between the finite
number of particles. Let us finally note that whatever the source of the perturbations, these fluctuations
are dressed by collective effects. A proper accounting of the importance of the gravitational polarisation
is at the heart of the upcoming derivations.

1Another possibility allowing self-gravitating systems to reach more probable and hotter configurations is for them to spon-
taneously develop an instability, such as a bar (Hohl, 1971), leading as well to an efficient rearrangement of the orbital structure.
Such outcomes are not investigated in the present thesis.

23
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This dichotomy is essential for all the upcoming sections. It allows us to distinguish secular evolution
induced by the system’s environment from secular evolution induced by the system’s internal proper-
ties. It is therefore an useful tool to disentangle the respective contributions from nurture and nature
in driving the evolution of a self-gravitating system. The aim of the present chapter is to detail the rel-
evant formalisms allowing for the description of long-term evolutions induced by (internal or external)
potential fluctuations. The following chapters will illustrate applications of this formalism to various
astrophysical systems. Let us first focus in section 2.2 on the collisionless framework, where the dynam-
ics is driven by external perturbations. Then, in section 2.3, we will consider the collisional framework
of diffusion, sourced by the discreteness of these self-gravitating systems.

2.2 Collisionless dynamics
Let us first describe the collisionless diffusion that external potential fluctuations may induce. Such
externally driven secular evolution can be addressed via the so-called dressed secular collisionless dif-
fusion equation, where the source of evolution is taken to be potential fluctuations from an external bath.
It has already been a theme of active research, as we now briefly review. Binney & Lacey (1988) com-
puted the first- and second-order diffusion coefficients in action space describing the orbital diffusion
occurring in a system because of fluctuations in the gravitational potential. This first approach however
did not account for collective effects, i.e. the ability of the system to dress and amplify perturbations.
Weinberg (1993) emphasised the importance of self-gravity for the non-local and collective relaxation
of stellar systems. Weinberg (2001a,b) considered similar secular evolutions while accounting for the
self-gravitating amplification of perturbations, and studied the impacts of the properties of the noise
processes. Ma & Bertschinger (2004) relied on a quasilinear approach to investigate the diffusion of
dark matter induced by cosmological fluctuations. Pichon & Aubert (2006) sketched a time-decoupling
approach to solve the collisionless Boltzmann equation in the presence of external perturbations and
applied it to a statistical study of the effect of dynamical flows through dark matter haloes on secu-
lar timescales. The approach developed therein is close to the one presented in Fouvry et al. (2015d).
Chavanis (2012a) considered the evolution of homogeneous collisionless systems when forced by an ex-
ternal perturbation, while Nardini et al. (2012) investigated similarly the effects of stochastic forces on
the long-term evolution of long-range interacting systems.

In the upcoming section, let us follow Fouvry et al. (2015d) and present a derivation of the appropri-
ate secular resonant collisionless dressed diffusion equation. This derivation is based on a quasilinear
timescale decoupling of the collisionless Boltzmann equation. This yields two evolution equations, one
for the fast dynamical evolution and amplification of perturbations within the system, and one for the
secular evolution of the system’s mean DF.

2.2.1 Evolution equations
Let us consider a collisionless self-gravitating quasi-stationary system undergoing external stochastic
perturbations. The mean system being quasi-stationary, we introduce its quasi-stationary Hamiltonian
H0, associatedwith themean potentialψ0. We assume that throughout its evolution, the system remains
integrable, so that one can always define an angle-action mapping (x,v) 7→(θ,J) appropriate for the
Hamiltonian H0. Thanks to Jeans theorem (Jeans, 1915), the mean DF of the system, F , depends only
on the actions, so that F =F (J , t). We suppose that an external source is perturbing the system, and we
expand the system’s total DF and Hamiltonian as{

F tot(J ,θ, t) = F (J , t)+δF (J ,θ, t) ,

Htot(J ,θ, t) = H0(J , t)+δψe(J ,θ, t)+δψs(J ,θ, t) .
(2.1)

In the decompositions from equation (2.1), one should pay attention to the presence of two types of
potential perturbations. Here, δψe corresponds to an external stochastic perturbation, while δψs corre-
sponds to the self-response of the system induced by its self-gravity (Weinberg, 2001a). This additional
perturbation is crucial to capture the system’s gravitational susceptibility, i.e. its ability to amplify per-
turbations. We place ourselves in the limit of small perturbations, so that δF�F , and δψe, δψs�ψ0.
Assuming that the system evolves in a collisionless fashion, its dynamics is fully described by the colli-
sionless Boltzmann equation (1.9) reading

∂F tot

∂t
+
[
F tot, Htot

]
= 0 , (2.2)
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where [ . , . ] stands for the Poisson bracket as defined in equation (1.2). Let us inject the decomposition
from equation (2.1) into equation (2.2), to get

∂F

∂t
+
∂δF

∂t
+
[
F,H0

]
+
[
F, δψe+δψs

]
+
[
δF,H0

]
+
[
δF, δψe+δψs

]
= 0 . (2.3)

Because we assumed the mean DF to be quasi-stationary, i.e. F =F (J , t), one has
[
F,H0

]
=0, since

H0 =H0(J). Let us now take an average of equation (2.3) w.r.t. the angles θ. In equation (2.3), all the
terms linear in the perturbations vanish, and we get a secular evolution equation for the mean DF F as

∂F

∂t
=

∂

∂J
·
[∫

dθ

(2π)d
δF

∂[δψe+δψs]

∂θ

]
, (2.4)

where d is the dimension of the physical space, e.g., d=2 for a razor-thin disc. At this stage, let us note
that ∂F/∂t can be considered as a second order term as it is the product of two fluctuations. Keeping
only first order terms in equation (2.3) (quasilinear approximation), one finally gets a second evolution
equation of the form

∂δF

∂t
+ Ω· ∂δF

∂θ
− ∂F

∂J
· ∂[δψe+δψs]

∂θ
= 0 , (2.5)

where we used the assumptions from equation (2.1) to rewrite the Poisson brackets. We also introduced
the mean orbital frequencies Ω=∂H0/∂J . The two evolution equations (2.4) and (2.5) are the two cou-
pled evolution equations from which one can obtain the secular collisionless diffusion equation. Equa-
tion (2.5) describes the evolution of the perturbation δF on dynamical timescales, while equation (2.4)
describes the long-term evolution of the quasi-stationary DF F . Let us now solve equation (2.5) to de-
scribe the dynamical amplification of perturbations. Its solution, when injected in equation (2.4), will
then allow for the description of the secular evolution of the system’s mean quasi-stationary DF.

As the angles θ are 2π−periodic, let us define the discrete Fourier transform w.r.t. these variables as

X(θ,J) =
∑
m∈Zd

Xm(J) eim·θ ; Xm(J) =

∫
dθ

(2π)d
X(θ,J) e−im·θ , (2.6)

so that equation (2.5) immediately becomes

∂δFm
∂t

+ im·Ω δFm − im· ∂F
∂J

[
δψe
m+δψs

m

]
= 0 . (2.7)

We now introduce the assumption of timescale decoupling, also coined Bogoliubov’s ansatz. Indeed, let
us assume that the fluctuations (i.e. δF , δψe, and δψs) evolve rapidly on dynamical timescales, while the
mean orbit-averaged quantities (such as F ) only evolve on secular timescales, i.e. over many dynamical
times. As a consequence, in equation (2.7), we may push the secular time to infinity, while assuming
in the meantime that ∂F/∂J=cst. Forgetting transient terms and bringing the initial time to −∞ to
consider only the forced regime of evolution, equation (2.7) can then be solved explicitly as

δFm(J , t) =

∫ t

−∞
dτ e−im·Ω(t−τ) im· ∂F

∂J

[
δψe
m+δψs

m

]
(J , τ) . (2.8)

We define the temporal Fourier transform with the convention

f̂(ω) =

∫ +∞

−∞
dt f(t) eiωt ; f(t) =

1

2π

∫ +∞

−∞
dω f̂(ω) e−iωt . (2.9)

Taking the temporal Fourier transform of equation (2.7), we immediately get

δF̂m(J , ω) = −m·∂F/∂J
ω−m·Ω

[
δψ̂e

m(J , ω) + δψ̂s
m(J , ω)

]
, (2.10)

so that we expressed the DF’s perturbations in terms of the potential fluctuations.
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2.2.2 Matrix method
The next step of the calculation is to account for the system’s self-gravity, i.e. the fact that the perturbing
DF δF should be consistent with the self-induced potential perturbation δψs and its associated density
δρs. One has

δρs(x)=

∫
dv δF (x,v) . (2.11)

In equation (2.11), the potential and density perturbations are connected through Poisson’s equation
∆δψs =4πGδρs. The method to deal with this self-consistency constraint is to follow Kalnajs matrix
method (Kalnajs, 1976). Let us introduce a representative biorthogonal basis of potential and densities
ψ(p) and ρ(p) satisfying

∆ψ(p) = 4πGρ(p) ;

∫
dxψ(p)∗(x) ρ(q)(x) = −δqp . (2.12)

We will then use these basis elements to represent any potential and density disturbances in the system.
The potential perturbations δψs and δψe may therefore be written

δψs(x, t) =
∑
p

ap(t)ψ
(p)(x) ; δψe(x, t) =

∑
p

bp(t)ψ
(p)(x) , (2.13)

and we introduce as cp=ap+bp the total potential perturbation. The linearity of Poisson’s equation im-
mediately ensures that one also has the decomposition δρs(x, t)=

∑
p ap(t) ρ

(p)(x). Multiplying equa-
tion (2.11) by ψ(p)∗(x) and integrating over dx, we get

ap(t) = −
∑
m

∫
dxdv δFm(J , t) eim·θ ψ(p)∗(J) . (2.14)

The transformation to angle-action coordinates (x,v) 7→(θ,J) is canonical so that it conserves infinites-
imal volumes, i.e. one has dxdv=dθdJ . Equation (2.14) can then be rewritten as

ap(t) = −(2π)d
∑
m

∫
dJ δFm(J , t)ψ(p)∗

m (J) , (2.15)

where ψ(p)
m (J) stands for the Fourier transformed basis elements in angles following equation (2.6).

Thanks to equation (2.10) and taking a temporal Fourier transform, we finally obtain

âp(ω) = (2π)d
∑
q

ĉq(ω)
∑
m

∫
dJ

m·∂F/∂J
ω−m·Ω ψ(p)∗

m (J)ψ(q)
m (J) . (2.16)

Let us finally introduce the system’s reponse matrix M̂ as

M̂pq(ω) = (2π)d
∑
m

∫
dJ

m·∂F/∂J
ω−m·Ω ψ(p)∗

m (J)ψ(q)
m (J) , (2.17)

so that equation (2.16) becomes
â(ω) = M̂(ω)·ĉ(ω) . (2.18)

One should note that the response matrix depends only on the mean state of the system, since ∂F/∂J
only evolves on secular timescales, the perturbing and self-gravitating potentials are absent, and the
basis elements ψ(p) from equation (2.12) are chosen once for all. Assuming that the mean system is
linearly stable, so that the eigenvalues of M̂(ω) are smaller than 1 for all values of ω, one can invert
equation (2.18) as

ĉ(ω) =
[
I−M̂(ω)

]−1·b̂(ω) , (2.19)

where I stands for the identity matrix. Equation (2.19) is a crucial relation, which allows us to express
the total perturbations as a function of the external perturbation only, whose statistical properties may
be characterised. Equation (2.19) describes the short timescale (dynamical) response of the system and
the associated self-gravitating amplification.
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2.2.3 Diffusion coefficients and statistical average
Let us now describe how these solutions may be used in equation (2.4) to describe the secular evolution
of the system. The l.h.s. of equation (2.4) requires us to evaluate an expression of the form

1

(2π)d

∫
dθ δF (J , θ, t)

∂[δψe+δψs]

∂θ
= −

∑
m

δFm im
[
δψe ∗
m+δψs ∗

m

]
, (2.20)

where we used the fact that δψ−m=δψ∗m. Thanks to the resolution from equation (2.8), we may now
rewrite equation (2.4) as

∂F

∂t
=

∂

∂J
·
[∑
m

mDm(J , t)m· ∂F
∂J

]
, (2.21)

where the diffusion coefficients Dm(J , t) are given by

Dm(J , t) =
∑
p,q

ψ(p)
m (J)ψ(q)∗

m (J) c∗q(t)

∫ t

−∞
dτ e−im·Ω(t−τ)cp(τ) . (2.22)

The amplification relation from equation (2.19) allows us to rewrite equation (2.22) as a function of the
external perturbation b̂ only, to get

Dm(J , t) =
1

(2π)2

∑
p,q

∑
p1,q1

ψ(p)
m (J)ψ(q)∗

m (J)

∫
dω eiωt

[
I−M̂(ω)

]−1∗
qq1

b̂∗q1(ω)

×
∫ t

−∞
dτ e−im·Ω(t−τ)

∫
dω′ e−iω′τ

[
I−M̂(ω′)

]−1

pp1
b̂p1

(ω′) . (2.23)

The final step of the derivation is to consider stastical averages over various pertubations realisations, i.e.
to consider only the mean response of the system. Let us denote as

〈
.
〉
the ensemble average operation

on such different realisations. When applying this average, we assume that the response matrix M̂, as
well as the DF F and its gradients ∂F/∂J , do not change significantly from one realisation to another.
Thanks to these assumptions, equation (2.21) becomes

∂F

∂t
=

∂

∂J
·
[∑
m

m
〈
Dm(J , t)

〉
m· ∂F

∂J

]
. (2.24)

Let us now suppose that the external perturbations are stationary in time, so that one can introduce the
corresponding temporal autocorrelation function C as

Ck`(t1−t2) =
〈
bk(t1) b∗` (t2)

〉
, (2.25)

where it is assumed that the exterior perturbation is of zero mean. When Fourier transformed, equa-
tion (2.25) becomes 〈

b̂k(ω) b̂∗` (ω
′)
〉

= 2πδD(ω−ω′) Ĉk`(ω) . (2.26)

One can now immediately rewrite the averaged diffusion coefficients from equation (2.24) as

〈
Dm(J , t)

〉
=

1

2π

∑
p,q

ψ(p)
m (J)ψ(q)∗

m (J)

∫
dω

∫ 0

−∞
dτ ′ e−i(ω−m·Ω)τ ′

[[
I−M̂

]−1·Ĉ·
[
I−M̂

]−1
]
pq

(ω) , (2.27)

where we relied on the hermiticity of the response matrix M̂∗=M̂t. One should note that after the en-
semble average, the diffusion coefficients become (explicitly) independent of t (while they still depend
on the secular timescale via the slow variations of F ). To shorten temporarily the notations, let us in-
troduce the notation L̂=

[
I−M̂

]−1·Ĉ·
[
I−M̂

]−1. In equation (2.27), one must then evaluate a double
integral of the form

1

2π

∫ +∞

−∞
dω L̂(ω)

∫ 0

−∞
dτ ′ e−i(ω−m·Ω)τ ′ =

i

2π

∫ +∞

−∞
dω

L̂(ω)

ω−m·Ω

=
i

2π
P
∫ +∞

−∞
dω

L̂(ω)

ω−m·Ω +
1

2
L̂(m·Ω) , (2.28)
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where to perform the integration over τ ′, we kept only the boundary term for τ ′=0, by adding a small
imaginary part to the frequency ω, so that ω=ω+i0+, which ensures the convergence for τ→−∞. To
evaluate the last integral over ω, we also relied on Plemelj formula

1

x±i0+
= P

(
1

x

)
∓ iπδD(x) , (2.29)

whereP stands for Cauchyprincipal value. The last step of the derivation is to note that the contributions
associated with the principal values in equation (2.28) have no impact on the secular diffusion equation.
Indeed, equation (2.22) gives us that the diffusion coefficients are such thatD−m(J)=D∗m(J). Since we
are summing on all vectorsm∈Zd, we may then rewrite equation (2.24) as

∂F

∂t
=

∂

∂J
·
[∑
m

m
〈
Re[Dm(J , t)]

〉
m· ∂F

∂J

]
. (2.30)

Equations (2.17) and (2.25) impose M̂∗=M̂t, and Ĉ∗=Ĉt, so that the matrix L̂ defined above equa-
tion (2.28) is also hermitian. We finally recover the collisionless secular dressed secular diffusion equa-
tion as

∂F

∂t
=

∂

∂J
·
[∑
m

mDm(J)m· ∂F
∂J

]
, (2.31)

where the anisotropic diffusion coefficients are given by

Dm(J) =
1

2

∑
p,q

ψ(p)
m (J)ψ(q)∗

m (J)

[[
I−M̂

]−1 ·Ĉ·
[
I−M̂

]−1
]
pq

(ω=m·Ω) . (2.32)

Let us finally introduce the total diffusion flux F tot as

F tot =
∑
m

mDm(J)m· ∂F
∂J

, (2.33)

so that equation (2.31) becomes
∂F

∂t
= div(F tot) . (2.34)

With this convention,−F tot corresponds to the direction alongwhich individual particles diffuse. Equa-
tion (2.31) is the main result of this section.

Let us now briefly discuss the physical content of equation (2.31). First, because it is written as the
divergence of a flux, the total number of stars is conserved during the diffusion. One can also note
that the diffusion coefficients Dm(J) from equation (2.32) capture the joint and coupled contributions
from the external perturbations (via the autocorrelation matrix Ĉ) and from the self-gravitating suscep-
tibility of the system (via the response matrix M̂). The total diffusion coefficients appear therefore as a
collaboration between the strength of the external pertubations and the local strength of the system’s
amplification. As equation (2.31) describes a resonant diffusion, the external perturbing power spec-
trum and the system’s susceptibility have to be evaluated at the local intrinsic frequency ω=m·Ω. In
this sense, this diffusion equation is appropriate to capture the nature of a collisionless system, via its
natural frequencies and susceptibility, as well as its nurture, via the structure of the power spectrum of
the external perturbations.

In addition, one can also note that the diffusion equation (2.31) takes the form of a strongly
anisotropic diffusion equation in action space. It is anisotropic not only because the diffusion coef-
ficients Dm(J) depend on the position in action space, but also because the diffusion associated with
one resonance vector m correponds to a diffusion in the preferential direction of the vector m. For
a given resonance m, the diffusion is maximum along m and vanishes in the orthogonal directions.
A qualitative illustration of the properties of equation (2.31) is given in figure 2.2.1. Finally, note that
equation (2.31) is indeed an illustration of the fluctuation-dissipation theorem. The autocorrelation of
the fluctuating potential drives the diffusion of the system’s orbital structure.

2.3 Self-induced collisional dynamics
In the previous section, we considered the collisionless case where a secular diffusion is induced by
external perturbations. However, a given self-gravitating system, evenwhen isolated, may also undergo
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(J)
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Figure 2.2.1: Illustration of the strong anisotropy of the diffusion in action space captured by equation (2.31). The
background grey domain illustrates the region where the system’s DF, F , is present. For a given resonance vector
m, one can compute the associated diffusion coefficientsDm(J), whose level contours are represented with dotted
colored lines. In the region where Dm(J) is maximum, following equation (2.31), one expects the associated flux
to be aligned with the direction ofm. As a consequence, depending on which resonance vector locally dominates
the diffusion, the DF’s diffusion can occur along significantly different directions.

a secular evolution as a result of its own intrisinc graininess. This is a collisional evolution sourced by
finite−N effects.

The dynamics and thermodynamics of systems with long-range interactions has recently been a
subject of active research (Campa et al., 2009; Campa et al., 2014), which led to a much better under-
standing of the equilibrium properties of these systems, their specificities such as negative specific
heats (Antonov, 1962; Lynden-Bell & Wood, 1968; Lynden-Bell, 1999), as well as various kinds of phase
transitions and ensemble inequivalences. However, the precise description of their dynamical evolution
remains to be improved to offer explicit predictions. We refer the reader to Chavanis (2010, 2013a,b) for
a historical account of the development of kinetic theories of plasmas, stellar systems, and other systems
with long-range interactions, but let us briefly recall here the main milestones.

The first kinetic theory focusing on the statistical description of the evolution of a large number of
particles was considered by Boltzmann in the case of dilute neutral gases (Boltzmann, 1872). For such
systems, particles do not interact except during strong local collisions. The gas is assumed to be spa-
tially homogeneous and Boltzmann equation describes the evolution of the system’s velocity distribu-
tion f(v, t) as a result of strong collisions. This kinetic equation satisfies a H-theorem, associated with
an increase of Boltzmann’s entropy.

Boltzmann’s approach was extended to charged gases (plasmas) by Landau (Landau, 1936). For
plasmas, particles interact via long-range Coulombian forces, but because of electroneutrality andDebye
shielding (Debye & Hückel, 1923a,b), these interactions are screened on a lengthscale of the order of
the Debye length, and collisions become essentially local. Neutral plasmas are spatially homogeneous,
so that the kinetic equation describes again the evolution of the velocity DF f(v, t), driven by close
electrostatic encounters. Because the encounters are weak, one can expand the Boltzmann equation
in the limit of small deflections and perform a linear trajectory approximation. In the weak coupling
approximation, this leads to the so-called Landau equation. The Landau equation exhibits two formal
divergences: one at small scales due to the neglect of strong collisions and one logarithmic divergence
at large scales due to the neglect of collective effects, i.e. the dressing of particles by their polarisation
cloud (a particle of a given charge has the tendency to be surrounded by a cloud of particles of opposite
charges). Landau regularised these divergences by introducing a lower cut-off at the impact parameter
producing a deflection of 90◦ (this is the Landau length) as well as an upper cut-off at the Debye length.

Collective effects were later rigourously taken into account in Balescu (1960) and Lenard (1960), lead-
ing to the Balescu-Lenard equation for plasmas. The Balescu-Lenard equation is similar to the Landau
equation, except that it includes the square of the dielectric function in the denominator of the potential
of interaction in Fourier space. This dieletric function first appeared as a probe of the dynamical stability
of plasmas based on the linearisedVlasov equation (Vlasov, 1938, 1945). In the Balescu-Lenard equation,
the dielectric function accounts for Debye shielding and removes the large scale logarithmic divergence
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present in the Landau equation. The Landau equation is recovered from the Balescu-Lenard equation
by replacing the dressed potential of interaction by its bare expression, i.e. by replacing the dielectric
function by unity. In addition, the Balescu-Lenard equation, as given originally by Balescu and Lenard,
exhibits a local resonance condition, encapsulated in a Dirac δD−function. For such systems, resonant
contributions are the drivers of the secular evolution. Integrating over this resonance condition leads to
the original form of the kinetic equation given by Lindau.

In parallel to the developments of kinetic equations for plasmas, the secular evolution of self-
gravitating systems was also investigated. Self-gravitating systems are spatially inhomogeneous, but
the first kinetic theories (Jeans, 1929; Chandrasekhar, 1942, 1943a,b) were all based on the assumption
that collisions (i.e. close encounters) between stars can be treated with a local approximation, as if the
system were infinite and homogeneous. Relying on the idea that a given star undergoes a large number
of weak deflections, Chandrasekhar (1949) developed an analogy with Brownian motion. He started
from a Fokker-Planck writing of the diffusion equation and computed the diffusion and friction coef-
ficients relying on a binary collision theory. This led to a kinetic equation, often called Fokker-Planck
equation in astrophysics, which is the gravitational equivalent of the Landau equation from plasmas.
This equation exhibits similarly two divergences: one at small scales due to the mishandling of strong
collisions, and one at large scales due to the local approximation, i.e. the assumption that the system is
infinite and homogeneous. In the treatment of Chandrasekhar, strong collisions are taken into account
without having to introduce a cut-off, so that the small scale divergence is regularised at the gravita-
tional Landau length. The large scale divergence is usually regularised by introducing a cut-off at the
Jeans length, which is the gravitational equivalent of the Debye length. This gravitational Landau equa-
tion is often considered to be relevant to describe the collisional dynamics of spherical systems such as
globular clusters. Let us however note that the associated treatment based on the local approximation
remains unsatisfactory, in particular because of the unavoidable appearance of a logarithmic divergence
at large scales. In addition, within this framework, one cannot account for collective effects, i.e. the
dressing of stars by their polarisation cloud, i.e. the fact that the gravitational force being attractive, a
given star has the tendency to be surrounded by a cloud of stars. This increases its effective gravitational
mass and reduces the collisional relaxation time.

In order to fully account for these properties, the kinetic theory of self-gravitating systems was re-
cently generalised to fully inhomogeneous systems, either when collective effects are neglected (Cha-
vanis, 2010, 2013b) leading to the inhomogeneous Landau equation, or when they are accounted for
leading to the inhomogeneous Balescu-Lenard equation (Heyvaerts, 2010; Chavanis, 2012b). These ki-
netic equations, presented and discussed in detail in the upcoming section, are valid at order 1/N , where
N is the number of stars in the system. Having accounted for the finite extension of the system, these
equations no longer present divergence at large scales. In order to deal with the system’s inhomogeneity,
they are written in angle-action coordinates (see section 1.3), which allow for the description of stars’ in-
tricate dynamics in spatially inhomogeneous and multi-periodic systems. These equations involve sim-
ilarly a resonance condition encapsulated in a Dirac δD−function (see figure 2.3.2), which generalises
the one present in the homogeneous Balescu-Lenard equation. Finally, in order to capture collective
effects, the inhomogeneous Balescu-Lenard equation also involves the system’s response matrix (see
equation (2.17)) expressed in angle-action variables. This generalises the dielectric function appearing
in the homogeneous Balescu-Lenard equation for plasmas. This dressing accounts for anti-shielding,
i.e. the fact that the gravitational mass of a star is enhanced by its polarisation, leading to a reduction of
the relaxation time. The upcoming chapters will emphasise how these powerful and predictive kinetic
equations may be used in the astrophysical context to probe complex secular regimes.

There are two standard methods to derive kinetic equations for a N−body system with long-range
pairwise interactions. The first approach is based on Liouville’s equation for the N−body distribu-
tion function of the system. One has to write the first two equations of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy. The hierarchy is then closed by considering only contributions of
order 1/N . One may then solve the second equation of the BBGKY hierarchy to express the 2−body cor-
relation function in terms of the system’s 1− body DF. One finally substitutes this expression in the first
equation of the BBGKY hierarchy to obtain the closed self-consistent kinetic equation satisfied by the
1−body DF. The same results can also be obtained thanks to projection operator techniques. The second
method relies on the Klimontovich equation (Klimontovich, 1967), which describes the dynamics of the
system’s DF written as a sum of δD functions. This exact DF is then decomposed in two parts, a smooth
component and fluctuations. One can then write two evolution equations, one for the smooth mean
component, and one for the fluctuations. This coupled system is then closed by neglecting non-linear
terms in the evolution of the fluctuations (quasilinear approximation). The final step in this approach
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is to solve the equation for the fluctuations to express their properties as a function of the underlying
smooth component. Injecting this result in the first evolution equation for the smooth part, one obtains
a self-consistent kinetic equation. These two methods are physically equivalent, while technically dif-
ferent. Finally, we recently presented in Fouvry et al. (2016a,b) a third approach based on a functional
rewriting of the evolution equations. This approach starts from the first two equations of the BBGKY
hierarchy truncated at order 1/N . Introducing auxiliary fields, the evolution of the two coupled dynam-
ical quantities, 1−bodyDF and 2−body autocorrelation, can then be rewritten as a traditional functional
integral. By functionally integrating over the 2−body autocorrelation, one obtains a new contraint con-
necting the 1−body DF and the auxiliary fields. When inverted, this constraint finally allows for the
derivation of the closed non-linear kinetic equation satisfied by the 1−body DF.

In the upcoming sections, we will follow Chavanis (2012b) and present a derivation of the inhomo-
geneous Balescu-Lenard equation based on the resolution of the Klimontovich equation. We decided to
present this derivation in the main text, in order to emphasise the various similarities it shares with the
previous collisionless diffusion equation. In Appendix 2.A, we present the derivation of the BBGKY hi-
erarchy. This allows us to revisit in Appendix 2.B the derivation of the inhomogeneous Balescu-Lenard
equation first presented by Heyvaerts (2010) and based on the direct resolution of the BBGKY hierarchy.
Finally, in Appendix 2.C, we consider the third approach to the derivation of kinetic equations based on
a functional integral rewriting.

2.3.1 Evolution equations
Let us consider an isolated system made of N particles of individual mass µ=Mtot/N , where Mtot is
the total active mass of the system, embedded in a physical space of dimension d. We note as (xi,vi)
the position and velocity of particle i in an inertial frame. The individual dynamics of these particles is
entirely described by Hamilton’s equations which read

µ
dxi
dt

=
∂H

∂vi
; µ

dvi
dt

= − ∂H
∂xi

, (2.35)

where the Hamiltonian of the system contains all the binary interactions between particles as

H =
µ

2

N∑
i=1

v2
i + µ2

N∑
i<j

U(|xi−xj |) . (2.36)

In equation (2.36), we introduced the binary potential of interactionU(|xi−xj |), given byU(|x|)=−G/|x|
in the gravitational context. While capturing the exact dynamics of the system, one major drawback of
equations (2.35) is that one has to deal with a set of N coupled differential equations. In Appendix 2.A,
we show how these equations may be rewritten as an ordered hierarchy of evolution equations, the
BBGKY hierarchy. Such a rewriting is at the heart of the derivation of the inhomogeneous Balescu-
Lenard equation proposed in Heyvaerts (2010) and revisited in Appendix 2.B. Here, we intend to follow
a different route, and rewrite Hamilton’s equations (2.35) as a single evolution equation in phase space.
To do so, let us introduce the discrete distribution function Fd(x,v, t) as

Fd(x,v, t) = µ

N∑
i=1

δD(x−xi(t)) δD(v−vi(t)) . (2.37)

Let us also introduce the associated self-consistent potential ψd as

ψd(x,v, t) =

∫
dx′dv′ U(|x−x′|)Fd(x′,v′, t) . (2.38)

One can show that Fd satisfies the Klimontovich equation (Klimontovich, 1967), given by

∂Fd

∂t
+
[
Fd, Hd

]
= 0 , (2.39)

where we introduced the HamiltonianHd as

Hd(x,v, t) =
1

2
v2 + ψd(x, t) . (2.40)
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At this stage, note that the Klimontovich equation (2.39) captures the exact same dynamics asHamilton’s
equations (2.35), while being defined on a phase space of dimension 2d. Let us assume that the system’s
DF and potential may be decomposed as the sum of a smooth component and a fluctuating one, so that{

Fd = F + δF ,

ψd = ψ0 + δψ .
(2.41)

Let us emphasise how similar the decompositions from equations (2.1) and (2.41) are. In addition to this
decomposition, we assume that the smooth component F only evolves on secular timescales, while the
fluctuating component δF evolves much faster on dynamical timescales. We also assume that the mean
potential is integrable, so that there exists angle-action coordinates (θ,J) appropriate for the smooth
quasi-stationary potential ψ0. Thanks to Jeans theorem, the system’s mean DF being quasi-stationary,
it can be written as F (x,v, t)=F (J , t). Performing the same timescale decoupling and quasilinear ap-
proximation as in equation (2.3), equation (2.39) gives two evolution equations. First a secular evolution
equation for F as

∂F

∂t
=

∂

∂J
·
[∫

dθ

(2π)d
δF

∂δψ

∂θ

]
, (2.42)

and an evolution equation for the perturbation δF as

∂δF

∂t
+ Ω· ∂δF

∂θ
− ∂F

∂J
· ∂δψ
∂θ

= 0 . (2.43)

These two evolution equations govern the evolution of the smooth DF F and the fluctuations δF at
order 1/N . They are the direct counterparts of equations (2.4) and (2.5). Here, the system’s potential
fluctuations are not due to an external forcing, but to the intrinsic finite−N Poisson shot noise. As
was assumed in equation (2.7), we place ourselves within the adiabatic approximation so that the time
variations of F may be neglected on the timescales for which the fluctuations δF and δψ evolve. In order
to be valid, such an approximation requires to have N�1. Finally, as in equation (2.19), we assume
that the DF F remains Vlasov stable throughout its evolution, so that its evolution is only governed by
correlations and not by dynamical instabilities.

2.3.2 Fast timescale amplification
The first step of our calculation is to study the short timescale evolution equation (2.43), during which
perturbations build up. As in equation (2.6), let us perform a Fourier transform w.r.t. to the angles θ.
Let us also define the Laplace transform of the fluctuations with the convention

f̃(ω) =

∫ +∞

0

dt f(t) eiωt ; f(t) =
1

2π

∫
B
dω f̃(ω) e−iωt , (2.44)

where the Bromwich contourB in the complex ω−plane should pass above all the poles of the integrand,
i.e. Im[ω] should be large enough. The Fourier-Laplace transform of the DF’s fluctuations δF is therefore
given by

δF̃m1
(J1, ω1) =

∫
dθ1

(2π)d

∫ +∞

0

dt e−i(m1·θ1−ω1t) δF (θ1,J1, t) . (2.45)

One can perform a similar transformation for the potential fluctuations δψ. Let us define the Fourier
transform of the initial value of the DF as

δF̂m1
(J1, 0) =

∫
dθ1

(2π)d
e−i(m1·θ1) δF (θ1,J1, 0) . (2.46)

Relying on Bogoliubov’s ansatz, F =cst., we multiply equation (2.43) by
∫
dθ1/(2π)d

∫
dt e−im1·θ1−ω1t to

get

δF̃m1
(J1, ω1) =

m1 ·∂F/∂J1

m1 ·Ω1−ω1
δψ̃m1

(J1, ω1)+
δF̂m1

(J1, 0)

i(m1 ·Ω1−ω1)
. (2.47)

Equation (2.47) relates the fluctuations in the potential δψ to the induced response δF in the system’s DF.
One now has to account for the fact that these perturbations are self-consistenly generated by the system
itself, i.e. δψ corresponds to potential fluctuations generated by the perturbing density δρ associated
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with the DF δF . To do so, we follow the matrix method introduced in section 2.2.2. Relying on basis
elements (ψ(p), ρ(p)) as introduced in equation (2.12), we follow equation (2.13) and decompose the self-
induced potential perturbations δψ as

δψ(θ1,J1, t) =
∑
p

ap(t)ψ
(p)(θ1,J1) ; δψ̃m1

(J1, ω1) =
∑
p

ãp(ω1)ψ(p)
m1

(J1) , (2.48)

where âp(ω) stands for the Laplace transform of the basis coefficients and ψ(p)
m1(J1) for the Fourier trans-

formed basis elements as introduced in equation (2.15). In order to capture this self-consistency, we
follow the same method as presented in equation (2.16). We start from δρ̃=

∫
dv δF̃ (x,v), multiply this

relation by ψ(p)∗(x), integrate it w.r.t. x, and rely on the fact that dxdv=dθdJ as the transformation
(x,v) 7→(θ,J) is canonical. Equation (2.47) finally gives

ãp(ω1) = −(2π)d
∑
q

[
I−M̂(ω1)

]−1

pq

∑
m2

∫
dJ2

δF̂m2
(J2, 0)

i(m2 ·Ω2−ω1)
ψ(q)∗
m2

(J2) . (2.49)

In equation (2.49), we recover the role played by the system’s susceptibility through the system’s re-
sponse matrix M̂ introduced in equation (2.17). Note as well that we assumed the system to be stable,
so that one could indeed compute the matrix

[
I−M̂(ω1)

]−1. Let us now introduce the system’s dressed
susceptibility coefficients 1/Dm1,m2

as

1

Dm1,m2
(J1,J2, ω)

=
∑
p,q

ψ(p)
m1

(J1)
[
I−M̂(ω)

]−1

pq
ψ(q)∗
m2

(J2) , (2.50)

so that equation (2.49) when multiplied by ψ(p)
m1(J1) and summed over "p" gives

δψ̃m1
(J1, ω1) = −(2π)d

∑
m2

∫
dJ2

1

Dm1,m2
(J1,J2, ω1)

δF̂m2
(J2, 0)

i(m2 ·Ω2−ω1)
. (2.51)

Equation (2.51) gives the Laplace transform of the response potential as a function of the initial condi-
tions in the DF’s fluctuations. It describes the dynamical amplification of the perturbations occurring in
the system.

2.3.3 Estimating the collision operator
Thanks to equation (2.51), one may now proceed to the evaluation of the collision operator in the r.h.s.
of equation (2.42). As was argued in equation (2.24), let us emphasise that here we are interested in the
system’s mean evolution averaged over various realisations. We may then take the ensemble average
of the evolution equation (2.42). When taking this average, we assume that the response matrix M̂ as
well as the DF F and its gradients ∂F/∂J do not change significantly from one realisation to another.
Equation (2.42) becomes

∂F

∂t
=

∂

∂J1
·
[
F tot(J1)

]
, (2.52)

where we introduced the total diffusion flux F tot as

F tot(J) =

∫
dθ

(2π)d

〈
δF

∂δψ

∂θ

〉
, (2.53)

where
〈
·
〉
stands for the ensemble average operation. Taking a Fourier transform w.r.t. the angles as

well as an inverse Laplace transform, equation (2.53) gives

F tot(J1) = −
∑
m1

∫
B1

dω1

2π

∫
B2

dω2

2π
im1 e−iω1t e−iω2t

〈
δF̃m1(J1, ω1) δψ̃−m1(J1, ω2)

〉
, (2.54)

where B1 (resp. B2) stands for the Bromwich contour associated with the inverse Laplace transform
w.r.t. ω1 (resp. ω2). Let us now rely on equations (2.47) and (2.51) to express equation (2.54) only as a
function of the fluctuations in the initial conditions captured by δF̂ . Equation (2.54) can be written as

F tot(J1) = F (I)
tot(J1)+F (II)

tot (J1) , (2.55)
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where the two components F (I)
tot(J1) and F (II)

tot (J1) are respectively given by

F (I)
tot(J1) = i

∑
m1

m1

∫
B1

dω1

2π
e−iω1t

∫
B2

dω2

2π
e−iω2t (2π)2dm1 ·∂F/∂J1

m1 ·Ω1−ω1

∑
m2,m3

∫
dJ2dJ3

{
1

m2 ·Ω2−ω1

× 1

Dm1,m2
(J1,J2, ω1)

1

D−m1,m3
(J1,J3, ω2)

1

m3 ·Ω3−ω2

〈
δF̂m2(J2, 0) δF̂m3(J3, 0)

〉}
,

F (II)
tot (J1) = − i

∑
m1

m1

∫
B1

dω1

2π
e−iω1t

∫
B2

dω2

2π
e−iω2t (2π)d

1

m1 ·Ω1−ω1

×
∑
m2

∫
dJ2

1

D−m1,m2
(J1,J2, ω2)

1

m2 ·Ω2−ω2

〈
δF̂m1

(J1, 0) δF̂m2
(J2, 0)

〉
. (2.56)

In order to evaluate the two expressions from equation (2.56), one needs to compute the statistical ex-
pectation of the product

〈
δF̂m1(J1, 0) δF̂m2(J2, 0)

〉
that we will now evaluate.

Let us recall here that the fluctuations δF introduced in equation (2.41) are given by δF =Fd−F , i.e.
stand for the difference between the actual discrete DF Fd and the smooth mean-field one F . Starting
from the expression (2.37) of the discrete distribution function Fd and temporarily dropping the time
dependence, t=0, to shorten the notations, one can write

〈
δF (θ1,J1) δF (θ2,J2)

〉
= µ2

N∑
i,j

〈
δD(θ−θi) δD(J1−Ji) δD(θ2−θj) δD(J2−Jj)

〉
−F (J1)F (J2) . (2.57)

Here we relied on the fact the fluctuations are of zero mean so that
〈
δF
〉

=0. Let us now evaluate the
first term from equation (2.57) which reads

µ2
N∑
i,j

〈
δD(θ−θi) δD(J1−Ji) δD(θ2−θj) δD(J2−Jj)

〉
= µ2

N∑
i

〈
δD(θ1−θi) δD(J1−Ji) δD(θ1−θ2) δD(J1−J2)

〉
+ µ2

N∑
i6=j

〈
δD(θ1−θi) δD(J1−Ji) δD(θ2−θj) δD(J2−Jj)

〉
= µF (J1) δD(θ1−θ2) δD(J1−J2) + F (J1)F (J2) , (2.58)

where, to get the last line, we assumed that the particles are initially uncorrelated and used the fact that〈
Fd

〉
=F . Injecting equation (2.58) into equation (2.57), we get the relation〈

δF (θ1,J1)F (θ2,J2)
〉

= µF (J1) δD(θ1−θ2) δD(J1−J2) . (2.59)

Finally, taking the Fourier transform of equation (2.59), one gets the needed correlations in the initial
conditions as 〈

δF̂m1
(J1, 0) δF̂m2

(J2, 0)
〉

=
µ

(2π)d
δ−m2
m1

δD(J1−J2)F (J1) . (2.60)

The two components of the diffusion flux from equation (2.56) then become

F (I)
tot(J1) = − iµ(2π)d

∑
m1

m1

∫
B1

dω1

2π
e−iω1t

∫
B2

dω2

2π
e−iω2t

m1 ·∂F/∂J1

m1 ·Ω1−ω1

×
∑
m2

∫
dJ2

1

m2 ·Ω2−ω1

1

Dm1,m2(J1,J2, ω1)

1

D−m1,−m2(J1,J2, ω2)

F (J2)

m2 ·Ω2+ω2
,

F (II)
tot (J1) = iµ

∑
m1

m1

∫
B1

dω1

2π
e−iω1t

∫
B2

dω2

2π
e−iω2t

1

m1 ·Ω1−ω1

× 1

D−m1,−m1
(J1,J1, ω2)

F (J1)

m1 ·Ω1+ω2
. (2.61)

Let us nowproceed to the successive evaluations of both terms in equation (2.61). Let us first evaluate the
termF (I)

tot(J1), which corresponds to the diffusion component of the kinetic equation. Here the difficulty
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is to deal with the resonant poles appearing in equation (2.61). We follow the argument presented in
equation (51.17) of Pitaevskii & Lifshitz (2012) and note that considering only contributions that do not
decay in time, one can perform the substitution

1

m2 ·Ω2−ω1

1

m2 ·Ω2+ω2
−→ (2π)2 δD(ω1+ω2) δD(m2 ·Ω2−ω1) . (2.62)

This substitution allows us to perform the integrations w.r.t. ω1 and ω2 in equation (2.61), so that F (I)
tot

becomes

F (I)
tot(J1) = iµ(2π)d

∑
m1

m1

∫
B1

dω1

∑
m2

∫
dJ2

δD(m2 ·Ω2−ω1)

ω1−m1 ·Ω1

m1 ·∂F/∂J1 F (J2)

|Dm1,m2(J1,J2,m1 ·Ω1−ω1)|2 , (2.63)

where we relied on the relation 1/D−m1,−m2(J1,J2,−ω)=1/D∗m1,m2
(J1,J2, ω) (see note [83] in Chava-

nis (2012b)). In equation (2.63), we may finally perform the integration w.r.t. ω1 by lowering the contour
B1 to the lower axis and using the Landau prescriptionm1 ·Ω1→m1 ·Ω1−i0+ associated with the fact
that the contour B1 has to pass above the pole. We finally rely on Plemelj formula from equation (2.29).
Because F (I)

tot is a real quantity, only the Dirac delta remains, and equation (2.63) finally becomes

F (I)
tot(J1) = µπ(2π)d

∑
m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2(J1,J2,m1 ·Ω1)|2 m1 ·
∂F

∂J1
F (J2) . (2.64)

Coming back to equation (2.61), let us now evaluate the second flux componentF (II)
tot (J1). This term

is associated with the drift component of the kinetic equation. To perform the integrations over ω1 and
ω2, we distort once again the Bromwich contours B1 and B2 towards negative imaginary parts, while still
remaining above all the singularities of the integrand. Whendeformed to large negative imaginary parts,
the exponential terms e−iω1t and e−iω2t tend to 0, so that one should only account for the contributions
from the poles. For B1, we note that there is only one pole in ω1 =m1 ·Ω1 and that this pole is located
along the real axis. One should also pay a careful attention to the direction of integration, so that here
one has

∫
dω1f(ω1)/(ω1−ω0) = −2iπf(ω0). For the integration w.r.t. ω2, one first notes an obvious pole

along the real axis in ω2 =−m1 ·Ω1. In addition, because the system is assumed to be stable, all the
singularities associated with the susceptibility coefficients ω2 7→1/D(ω2) are located below the real axis.
Such poles will then be multiplied by a decaying in time exponential. Considering only contributions
which do not decay in time, we restrict ourselves only to the real pole in ω2 =−m1 ·Ω1, and pay as well
a careful attention to the sign of the residues. Equation (2.61) gives

F (II)
tot (J1) = iµ

∑
m1

m1
1

D−m1,−m1(J1,J1,−m1 ·Ω1+i0+)
F (J1)

= µ
∑
m1

m1 Im
[

1

Dm1,m1
(J1,J1,m1 ·Ω1+i0+)

]
F (J1) , (2.65)

where one should pay attention to the small positive imaginary part i0+ which was added following
Landau prescription ω2→ω2+i0+. This emphasises the fact that the contour B2 has to pass above the
pole. In equation (2.65), we also note that the two time dependences introduced by the two inverse
Laplace transforms cancelled out, so that F (II)

tot does not explicitly depend on time. To get the second
relation in equation (2.65), we performed the change m1→−m1, and relied on the fact that F (II)

tot is
a real quantity, hence the imaginary part. The calculation of the imaginary part in equation (2.65) is
presented in Appendix 2.B in equation (2.155). We refer to this calculation, so that we can finally rewrite
equation (2.65) as

F (II)
tot (J1) = −µπ(2π)d

∑
m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2(J1,J2,m1 ·Ω1)|2 F (J1)m2 ·
∂F

∂J2
. (2.66)

We have now evaluated the two components of the diffusion flux F tot from equation (2.52). We have
therefore derived a closed kinetic equation, the inhomogeneous Balescu-Lenard equation, that will be
presented in detail in the upcoming section.
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2.3.4 The Balescu-Lenard equation
Combining equations (2.64) and (2.66), one can estimate the total diffusion flux F tot. Equation (2.52)
immediately gives the associated closed diffusion equation. This is the inhomogeneous Balescu-Lenard
equation which reads

∂F

∂t
= π(2π)dµ

∂

∂J1
·
[ ∑
m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m1 ·Ω1)

∣∣2
×
(
m1 ·

∂

∂J1
−m2 ·

∂

∂J2

)
F (J1, t)F (J2, t)

]
. (2.67)

Let us now detail the physical content of this diffusion equation. Let us first note that equation (2.67)
is written as the divergence of a flux, so that it conserves the total number of particles. The presence of
the prefactor µ=Mtot/N illustrates the fact that the Balescu-Lenard equation was obtained thanks to a
kinetic development at order 1/N . It captures first-order contributions associated with finite−N effects.
In equation (2.67), one should note in particular the presence of a resonance condition encapsulated
by the Dirac delta δD(m1 ·Ω1−m2 ·Ω2), where m1,m2∈Zd are resonance vectors. This is associated
with an integration over the dummy variable J2 scanning action space looking for locations where the
resonance condition is satisfied. Figure 2.3.1 illustrates the gist of these resonant encounters, when the
motion of the particles is directly considered in angle-action space. Similarly, figure 2.3.2 illustrates

θ

J

2π

Ω(J)

Figure 2.3.1: Illustration in angle-action space of the resonance condition δD(m1 ·Ω1−m2 ·Ω2) occurring in the
Balescu-Lenard equation (2.67). In angle-action space, the trajectories of the particles are straight lines, with an
intrinsic frequency Ω(J). This frequency depends only on the actions and is illustrated by the left-hand curve. Here
the frequency associated with the red particle is twice the one of the blue particle: the particles are in resonance.
These resonant encounters in angle-action space are the ones captured by the Balescu-Lenard equation (2.67).

qualitatively such a non-local resonance condition in the case of a razor-thin disc. One should note
that such resonant encounters are non-local in the sense that they do not require the resonating orbits
to be close in position nor in action space. Equation (2.67) finally involves the dressed susceptibility
coefficients 1/Dm1,m2(J1,J2, ω) introduced in equation (2.50). They encode the strength of the self-
gravitating amplification within the system. Let us finally note that equation (2.67) scales like 1/(ND2),
so that increasing N or increasing the heat content of the system have the same effect by slowing down
the diffusion.

Equation (2.67) can be rewritten as an anisotropic Fokker-Planck diffusion equation by introducing
the relevant drift and diffusion coefficients. It becomes

∂F

∂t
=

∂

∂J1
·
[∑
m1

m1

(
Am1(J1)F (J1)+Dm1(J1)m1 ·

∂F

∂J1

)]
, (2.68)

whereAm1(J1) andDm1(J1) are respectively the drift and diffusion coefficients associated with a given
resonance vectorm1. As the Balescu-Lenard equation describes the self-consistent evolution of the DF
F , the drift and diffusion coefficients depend secularly on F . This dependence was not written out
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Figure 2.3.2: Illustration of the resonance condition δD(m1 ·Ω1−m2 ·Ω2) of the Balescu-Lenard equation (2.67)
in the case of a razor-thin stellar disc. Top-left panel: A set of two resonant orbits in the inertial frame. Top-
right panel: The same two orbits in the rotating frame in which they are in resonance - here through an ILR-COR
coupling (see figure 3.7.4). Bottom panel: Fluctuations in action space of the system’s DF sourced by finite−N
effects, exhibiting overdensities for the blue and red orbits. The dashed lines correspond to 3 contour levels of the
intrinsic frequency respectively associated with the resonance vectorm1 (grey lines) andm2 (black lines). The two
sets of orbits satisfy the resonance conditionm1 ·Ω1−m2 ·Ω2 =0, and therefore lead to a secular diffusion of the
system’s orbital structure according to the Balescu-Lenard equation (2.67). Let us emphasise that resonant orbits
need not be caught in the same resonance (m1 6=m2), be close in position space nor in action space.

explicitly to simplify the notations. Following equation (2.67), the drift coefficients are given by

Am1(J1) = −π(2π)dµ
∑
m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m1 ·Ω1)

∣∣2 m2 ·
∂F

∂J2
, (2.69)

while the diffusion coefficients are given by

Dm1
(J1) = π(2π)dµ

∑
m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2(J1,J2,m1 ·Ω1)
∣∣2 F (J2) . (2.70)

Finally, let us introduce the total diffusion flux F tot(J) as

F tot(J) =
∑
m

m

(
Am(J)F (J)+Dm(J)m· ∂F

∂J

)
, (2.71)

so that the Balescu-Lenard equation becomes

∂F

∂t
= div(F tot) . (2.72)

Here, with this convention,−F tot corresponds to the direction along which individual particles diffuse.
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2.3.5 The bare case: the Landau equation
When collective effects are neglected, the Balescu-Lenard equation (2.67) becomes the Landau equa-
tion (Polyachenko & Shukhman, 1982; Chavanis, 2007, 2010, 2013b) reading

∂F

∂t
= π(2π)dµ

∂

∂J1
·
[ ∑
m1,m2

m1

∫
dJ2 δD(m1 ·Ω1−m2 ·Ω2)

∣∣Am1,m2(J1,J2)
∣∣2

×
(
m1 ·

∂

∂J1
−m2 ·

∂

∂J2

)
F (J1, t)F (J2, t)

]
. (2.73)

In equation (2.73), the dressed susceptibility coefficients 1/|Dm1,m2
(J1,J2, ω)|2 from equation (2.50) are

replaced by the bare ones |Am1,m2
(J1,J2)|2. These are defined as the Fourier transformof the interaction

potential U (Lynden-Bell, 1994; Pichon, 1994; Chavanis, 2013b), so that

Am1,m2
(J1,J2) =

1

(2π)2d

∫
dθ1dθ2 U(x(

∣∣θ1,J1)−x(θ2,J2)
∣∣) e−i(m1·θ1−m2·θ2) . (2.74)

In addition, these coefficients satisfy the symmetry relations

Am2,m1(J2,J1) = A−m1,−m2(J1,J2) = A∗m1,m2
(J1,J2) . (2.75)

Note that the kinetic equations (2.67) and (2.73) share the same overall structure.

2.3.6 The multi-component case
A crucial strength of the Balescu-Lenard formalism, already emphasised in Heyvaerts (2010) and Cha-
vanis (2013b), is that this formalism also allows for a self-consistent description of the simultaneous
evolution of multiple populations of various masses. Let us now detail the structure of such a multi-
component diffusion equation. (See Appendix 6.B for an illustration of how the multi-component
Balescu-Lenard equation may be derived in the specific context of quasi-Keplerian systems.) Here, we
consider a system made of multiple components, indexed by the letters "a" and "b". The particles of the
component "a" have an individual mass µa and follow the DF F a. Each DF F a is normalised such that∫
dxdv F a =Ma

tot, whereMa
tot is the total active mass of component "a". The evolution of each DF is then

given by

∂F a

∂t
= π(2π)d

∂

∂J1
·
[ ∑
m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m1 ·Ω1)

∣∣2
×
∑

b

{
µb F

b(J2)m1 ·
∂F a

∂J1
−µa F

a(J1)m2 ·
∂F b

∂J2

}]
. (2.76)

In the multi-component case, the susceptibility coefficients are still given by equation (2.50). However,
the response matrix now encompasses all the active components of the system, so that

M̂pq(ω) = (2π)d
∑
m

∫
dJ

m·∂(
∑

b F
b)/∂J

ω−m·Ω ψ(p)∗
m (J)ψ(q)

m (J) . (2.77)

Similarly to equation (2.68), the multi-component Balescu-Lenard equation may also be written as an
anisotropic diffusion equation, so that

∂F a

∂t
=

∂

∂J1
·
[∑
m1

m1

∑
b

{
µaA

b
m1

(J1)F a(J1) + µbD
b
m1

(J1)m1 ·
∂F a

∂J1

}]
. (2.78)

In equation (2.78), we introduced the multi-component drift and diffusion coefficients Ab
m1

(J1) and
Db
m1

(J1). They depend on the location J1 in action space, the considered resonancem1, and the com-
ponent "b", whose DF is the underlying DF used to estimate them. In analogy with equation (2.69), the
multi-component drift coefficients are given by

Ab
m1

(J1) = −π(2π)d
∑
m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m1 ·Ω1)

∣∣2 m2 ·
∂F b

∂J2
, (2.79)
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while the diffusion ones, similarly to equation (2.70), read

Db
m1

(J1) = π(2π)d
∑
m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)∣∣Dm1,m2
(J1,J2,m1 ·Ω1)

∣∣2 F b(J2) . (2.80)

One should pay attention to the fact that themulti-component drift and diffusion coefficients from equa-
tions (2.79) and (2.80) do not have the same dimension as the single component ones. In order to em-
phasise the process of mass segregation, let us finally rewrite equation (2.78) as

∂F a

∂t
=

∂

∂J1
·
[∑
m1

m1

{
µaA

tot
m1

(J1)F a(J1) +Dtot
m1

(J1)m1 ·
∂F a

∂J1

}]
, (2.81)

where we introduced the total drift and diffusion coefficients Atot
m1

(J1) and Dtot
m1

(J1) as

Atot
m1

(J1) =
∑

b

Ab
m1

(J1) ; Dtot
m1

(J1) =
∑

b

µbD
b
m1

(J1) . (2.82)

In equation (2.81), let us note that the only differences between the different components is the presence
of themass prefactorµa in front of the total drift coefficient. This leads to the process ofmass segregation,
when a spectrum of mass is involved.

2.3.7 H-theorem
Following closely Heyvaerts (2010), let us define the system’s entropy S(t) as

S(t) = −
∫

dJ1 s(F (J1)) , with s(x)=x log(x) , (2.83)

where s(x) corresponds to Boltzmann’s entropy function. Differentiating equation (2.83) once w.r.t. to
time yields

dS

dt
= −

∫
dJ1 s

′(F (J1))
∂F

∂t
. (2.84)

Let us follow the definition of the total diffusion flux F tot(J1) from equation (2.71) to rewrite F tot(J1)
as

F tot(J1) =
∑

m1,m2

m1

∫
dJ2 αm1,m2(J1,J2)

[
m1 ·

∂

∂J1
−m2 ·

∂

∂J2

]
F (J1)F (J2) , (2.85)

with αm1,m2(J1,J2) given by

αm1,m2
(J1,J2) = π(2π)dµ

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2
(J1,J2,m1 ·Ω1)|2 ≥ 0 . (2.86)

Integrating equation (2.84) by parts and ignoring boundary terms, one gets

dS

dt
=

∫
dJ1 s

′′(F (J1))
∂F

∂J1
·F tot(J1) . (2.87)

Thanks to the rewriting from equation (2.85), equation (2.87) becomes

dS

dt
=
∑

m1,m2

∫
dJ1dJ2 αm1,m2(J1,J2) s′′1 (m1 ·F ′1)

[
F2 (m1 ·F ′1)−F1 (m2 ·F ′2)

]
, (2.88)

where we used the shortened notations s′′i =s′′(F (Ji)), Fi=F (Ji), and F ′i =∂F/∂Ji. Equation (2.88)
can be symmetrised via the substitutionsm1↔m2 and J1↔J2. As αm2,m1

(J2,J1)=αm1,m2
(J1,J2),

equation (2.88) finally becomes

dS

dt
=

1

2

∑
m1,m2

∫
dJ1dJ2 αm1,m2

(J1,J2)

[
F2s
′′
1(m1·F ′1)2−(m1·F ′1)(m2·F ′2)(F1s

′′
1 +F2s

′′
2)+F1s

′′
2(m2·F ′2)2

]
.

(2.89)
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As Boltzmann’s entropy function2 satisfies s′′(x)=1/x, the square bracket in equation (2.89) may imme-
diately be factored as

1

F1F2

[
F2(m1 ·F ′1)−F1(m2 ·F ′2)

]2

≥ 0 , (2.90)

so that one finally gets dS/dτ≥0. The Balescu-Lenard equation (2.67) therefore satisfies Boltzmann’s
H-theorem. This entropy increase corresponds to heat generation as the orbital structure of the system
secularly rearranges itself driven by self-induced collisional effects. The previous demonstration nat-
urally extends both to the Landau equation (2.73), but also more interestingly to the multi-component
Balescu-Lenard equation (2.76). Indeed, defining the system’s total entropy Stot as

Stot(t) = −
∫

dJ1

∑
a

1

µa
s(F a(J1)) , (2.91)

and following the same approach, one can show that for s′′(x)=1/x, one has dStot/dt≥0. Let us finally
note that this does not necessarily imply that the entropy of each individual component increases.

2.4 Conclusion
In this chapter, we presented two important sources of diffusion to induce secular evolution in self-
gravitating systems. The first source, presented in section 2.2, considers the case of a collisionless sys-
tem undergoing external perturbations. The second source, presented in section 2.3, is captured by the
Balescu-Lenard equation, which describes the long-term effects of finite−N fluctuations on isolated dis-
crete self-gravitating systems. In our two derivations, we emphasised the strong similarities existing be-
tween the two approaches, as can be seen in particular in their similar decoupled evolution equations.
Let us finally underline that both equations (2.31) and (2.67) share the properties that they describe
strongly anisotropic diffusion in action space (see figure 2.2.1), account for the system’s internal sus-
ceptibility (via the response matrix from equation (2.17) and the associated gravitational polarisation,
see figure 1.3.6). Because they are sourced by different fluctuations, either external or internal, these
two orbital diffusion processes provide the ideal frameworks in which to study the secular evolution of
self-gravitating systems.

The rest of the thesis is focused on illustrating for various astrophysical systems how these for-
malisms allow for a detailed description of their secular dynamics. In chapter 3, we will consider the
case of razor-thin stellar discs. In order to obtain simple quadratures for the diffusion fluxes, we will
develop a razor-thin WKB formalism (i.e. restriction to radially tightly wound perturbations) provid-
ing a straightforward understanding of the regions of maximum amplification within the disc. We will
illustrate how the functional form of the diffusion coefficients explains the self-induced formation of
resonant ridges in the disc’s DF, as observed in numerical simulations. In chapter 4, we will resort to the
same razor-thin stellar discs, but will devote our efforts to correctly account for the disc’s self-gravity
and the associated strong amplification. This will be shown to significantly hasten the diffusion in the
disc. In addition, in Appendix 4.D, we will illustrate how the samemethodmay also be applied to study
the long-term dynamics of 3D spherical systems such as dark matter haloes. This framework provides a
promisingway to investigate the secular transformation of darkmatter haloes’ cusps into cores. In chap-
ter 5, we will extend our WKB approximation to apply it to thickened stellar discs. We will investigate
various possible mechanisms of thickening such as the disc’s internal Poisson shot noise, a series of cen-
tral decaying bars, or the joint evolution of giant molecular clouds within the disc. Finally, in chapter 6,
wewill consider the case of quasi-Keplerian systems, such as galactic centres, for which the presence of a
dominating central body imposes a degenerate Keplerian dynamics. Once tailored for such systems, we
will detail in particular how the Balescu-Lenard formalism recovers the process of "resonant relaxation"
specific to these systems.

2.4.1 Future works
The previous formalisms could be generalised in various ways.

In Appendix 2.C, we presented a new method based on a functional approach to derive the inho-
mogeneous Landau equation. Because of the simplicity of the required calculations, this throws new

2Any double primitive of 1/xwould work as well.
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light on the complex dynamical processes at play. One could hope to generalise this calculation to ac-
count for collective effects and recover the inhomogeneous Balescu-Lenard equation. Such a calculation
is expected to be more demanding, as it will involve a Fredholm type equation, such as equation (2.125).
Similarly, we showed in Fouvry et al. (2016b) how the same functional approach could also be transposed
to the kinetic theory of two-dimensional point vortices (Chavanis, 2012d,c). One should investigate other
physical systems for which this approach could also be successful. Finally, it would be of particular in-
terest to apply this method to derive a closed kinetic equation when higher order correlation terms are
accounted for. This could for example allow us to describe the dynamics of 1D homogeneous systems,
for which the 1/N Balescu-Lenard collision term vanishes by symmetry (Eldridge & Feix, 1963; Kadomt-
sev & Pogutse, 1970). This is also the case for the HamiltonianMean Fieldmodel (HMF) (Chavanis et al.,
2005; Bouchet & Dauxois, 2005).

Inspired by Pichon & Aubert (2006), the previous approaches could also be extended and developed
for open systems, by accounting for possible sources and sinks of particles. Similarly, it could also prove
interesting to investigate the Balescu-Lenard equation in a context where the system’s number of par-
ticles gets to evolve during the secular evolution, to describe for example the progessive dissolution of
overdensities, etc. Similarly, as can be seen in the proposed derivations, all these formalisms rely on the
fundamental assumption of integrability, i.e. on the existence of angle-action coordinates. It would be
of interest to investigate as well how such approaches could be tailored to deal with chaotic behaviours
and their associated diffusions. Finally, one could also investigate within these frameworks the role that
gas may play on the dynamical properties of the system. Indeed, one crucial property of gas is that it
cannot shell-cross, it shocks. This typically means that the gas component is dynamically much colder
than its stellar counterpart, which alters the system’s dynamical susceptibility.



Appendix

2.A Derivation of the BBGKY hierarchy
In this Appendix, let us briefly recover the fundamental equations of the BBGKY hierarchy. This decom-
position is at the heart of the derivation of the Balescu-Lenard equation presented in Heyvaerts (2010).
Such a derivation with similar notations is presented in Fouvry et al. (2016a). Let us consider an isolated
system made ofN identical particles of individual mass µ=Mtot/N , whereMtot is the total mass of the
system. The individual dynamics of these particles is exactly described by Hamilton’s equation which
read

µ
dxi
dt

=
∂H

∂vi
; µ

dvi
dt

= − ∂H
∂xi

, (2.92)

where (xi,vi) corresponds to the position and velocity of particle i. The total HamiltonianH appearing
in equation (2.92) encompasses all the binary interactions between particles, so that

H =
µ

2

N∑
i=1

v2
i + µ2

N∑
i<j

U(|xi−xj |) , (2.93)

where U(|x|) stands for the interaction potential, e.g., U(|x|)=−G/|x| in the gravitational context. As
will be underlined in chapter 6 when considering quasi-Keplerian systems, one can easily add an exter-
nal potential to this Hamiltonian, and the associated hierarchy equations are straightforward to deduce.
While equations (2.92) captures the individual dynamics of the system’s components, we are interested
in a statistical description of our system. As a consequence, let us introduce the system’sN−body prob-
ability distribution function (PDF)PN (x1,v1, ...,xN ,vN , t)which gives the probability of finding at time
t particle 1 at position x1 with velocity v1, particle 2 at position x2 with velocity v2, etc. We choose the
convention that ∫

dΓ1dΓ2...dΓN PN (Γ1, ...ΓN , t) = 1 , (2.94)

where we introduced the phase space coordinates Γi=(xi,vi), so that dΓi=dxidvi. The evolution of
PN is given by Liouville’s equation (see equation (1.9)) which reads

∂PN
∂t

+
N∑
i=1

[
vi ·

∂PN
∂xi

+µF tot
i ·

∂PN
∂vi

]
= 0 , (2.95)

where we introduced the total force, F tot
i , exerted on particle i as

F tot
i =

N∑
j 6=i

F ij = −
N∑
j 6=i

∂Uij
∂xi

. (2.96)

In equation (2.96),F ij stands for the force exerted by particle j on particle i. It satisfiesF ij=−∂Uij/∂xi,
where we wrote the interaction potential as Uij=U(|xi−xj |). At this stage, let us insist on the fact that
Liouville’s equation (2.95) is an exact equation, which encompasses the same information as Hamilton’s
equation (2.92). It is however defined on the (large) space of configurations (Γ1, ...,ΓN ). In order to re-
duce the dimension of the space where the evolution equations are defined, let us introduce the reduced
PDFs Pn for 1≤n≤N as

Pn(Γ1, ...,Γn, t) =

∫
dΓn+1...dΓN PN (Γ1, ...,ΓN , t) . (2.97)
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Relying on the symmetry of PN w.r.t. permutations of its arguments, we may integrate equation (2.95)
w.r.t. dΓn+1...dΓN to obtain the evolution equation satisfied by Pn. This gives the general equation of
the BBGKY hierarchy which reads

∂Pn
∂t

+
n∑
i=1

vi ·
∂Pn
∂xi

+
n∑
i=1

n∑
k=1,k 6=i

µF ik ·
∂Pn
∂vi

+ (N−n)
n∑
i=1

∫
dΓn+1...dΓN µF i,n+1 ·

∂Pn+1

∂vi
= 0 . (2.98)

One can note that equation (2.98) is defined on the smaller space (Γ1, ...,Γn). The three first terms only
involve the first n particles, while the last collision term involves the reduced Pn+1 of higher order, i.e.
the BBGKY hierarchy is not closed. In order to simplify the prefactors present in equation (2.98), let us
introduce the reduced distribution functions fn as

fn(Γ1, ...,Γn, t) = µn
N !

(N−n)!
Pn(Γ1, ...,Γn, t) . (2.99)

The hierarchy from equation (2.98) immediately becomes

∂fn
∂t

+
n∑
i=1

vi ·
∂fn
∂xi

+
n∑
i=1

n∑
k=1,k 6=i

µF ik ·
∂fn
∂vi

+
n∑
i=1

∫
dΓn+1 F i,n+1 ·

∂fn+1

∂vi
= 0 . (2.100)

Equation (2.100) corresponds to the traditional writing of the BBGKY hierarchy. In order to emphasise
the importance of the contributions arising from correlations between particles, let us introduce the
cluster representation of the reduced distribution functions. We therefore define the 2−body correlation
g2 as

f2(Γ1,Γ2) = f1(Γ1)f1(Γ2)+g2(Γ1,Γ2) , (2.101)
where the dependences w.r.t. t were not written out explicitly to simplify the notations. Similarly, we
introduce the 3−body autocorrelation g3, so that f3 reads

f3(Γ1,Γ2,Γ3)=f1(Γ1)f1(Γ2)f1(Γ3)+f1(Γ1)g2(Γ2,Γ3)+f1(Γ2)g2(Γ1,Γ3)+f1(Γ3)g2(Γ1,Γ2)+g3(Γ1,Γ2,Γ3).
(2.102)

Thanks to the convention from equation (2.94), it is straightforward to check that one has the normali-
sations∫

dΓ1 f1(Γ1) = µN ;

∫
dΓ1dΓ2 g2(Γ1,Γ2) = −µ2N ;

∫
dΓ1dΓ2dΓ3 g3(Γ1,Γ2,Γ3) = 2µ3N . (2.103)

As the mass of the individual particles is given by µ=Mtot/N , one immediately gets the scalings w.r.t.
the number of particles as

∣∣f1

∣∣∼1,
∣∣g2

∣∣∼1/N , and
∣∣g3

∣∣∼1/N2. Thanks to these decompositions, the two
first equations of the BBGKY hierarchy from equation (2.100) respectively become

∂f1

∂t
+v1 ·

∂f1

∂x1
+

[∫
dΓ2 F12f1(Γ2)

]
· ∂f1

∂v1
+

∫
dΓ2 F12 ·

∂g2(Γ1,Γ2)

∂v1
= 0 , (2.104)

and
1

2

∂g2

∂t
+v1 ·

∂g1

∂x1
+

[∫
dΓ3F13f1(Γ3)

]
· ∂g2

∂v1
+µF12 ·

∂f1

∂v1
f1(Γ2)+

[∫
dΓ3 F13g2(Γ2,Γ3)

]
· ∂f1

∂v1

+µF12 ·
∂g2

∂v1
+

[∫
dΓ3 F13

∂g3(Γ1,Γ2,Γ3)

∂v1

]
+(1↔2) = 0 , (2.105)

where (1↔2) stands for the permutation of indices 1 and 2, and applies to all preceding terms. When
considering the long-term evolution induced by discreteness effects, one may perform a truncation at
order 1/N of the two equations (2.104) and (2.105). This requires to rely on the scalings from equa-
tion (2.103), as well as on the fact that µ∼1/N and F ij∼1. In equation (2.104), all the terms are at least
of order 1/N , so that they should all be conserved. In equation (2.105), all the terms on the first line are
of order 1/N and have to be conserved, while all the terms on the second line are of order 1/N2 andmay
therefore be neglected.3 In addition to these truncations, and in order to consider quantities of order 1,
let us introduce the system’s 1−body DF F and the 2−body correlation function C as

F = f1 ; C =
g2

µ
. (2.106)

3There is a subtlety with the first term on the second line of equation (2.105). While being of order 1/N2, it can become
arbitrarily large when particle 2 approaches particle 1, due to the divergence of the interaction force at small separation. This term
describes strong collisions and is not accounted for in the present formalism of resonance-driven diffusion.
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It is straightforward to note that
∣∣F ∣∣∼1 and

∣∣C∣∣∼1. When truncated at order 1/N , the first two equa-
tions (2.104) and (2.105) finally take the form

∂F

∂t
+v1 ·

∂F

∂x1
+

[∫
dΓ2 F12F (Γ2)

]
· ∂F
∂v1

+µ

∫
dΓ2 F12 ·

∂C(Γ1,Γ2)

∂v1
= 0 , (2.107)

and
1

2

∂C
∂t

+v1 ·
∂C
∂x1

+

[∫
dΓ3 F13F (Γ3)

]
· ∂C
∂v1

+F12 ·
∂F

∂v1
F (Γ2)

+

[∫
dΓ3 F13C(Γ2,Γ3)

]
· ∂F
∂v1

+(1↔2) = 0 . (2.108)

These two coupled evolution equations (2.107) and (2.108) only involve the system’s 1−body DF F and
its 2−body autocorrelation function C. They are the two central equations, from which one may derive
the inhomogeneous Balescu-Lenard equation, as proposed in Heyvaerts (2010) and revisited in Ap-
pendix 2.B. The second and third terms in equation (2.107) correspond to the Vlasov advection term
associated with the mean self-consistent potential generated by the stars. The fourth term is a collisional
correction, as it scales like µ∝1/N , and captures the effects of 2−body correlations on the dynamics of
the 1−body DF. Similarly, in equation (2.108), the second and third terms are associated with the mean
Vlasov advection due to the system’s mean potential. The fourth term is a source term, which depends
only on the 1−body DF and sources the dynamics of the 2−body correlation. Finally, the last term in
equation (2.108) corresponds to the collective effects and is associated with the fact that the system can
amplify and dress perturbations.

2.B Derivation of the Balescu-Lenard equation via the BBGKY hier-
archy

In this Appendix, we revisit the derivation of the Balescu-Lenard equation (2.67) following the method
presented in Heyvaerts (2010). This method, based on the direct resolution of the BBGKY hierarchy
is complementary to the second approach subsequently proposed by Chavanis (2012b), based on the
Klimontovich equation and already presented in section 2.3.

As already shown in Appendix 2.A, at order 1/N , the dynamics of a self-gravitating systemmade of
N identical particles is fully characterised by its 1−body DF F and 2−body autocorrelation C. These two
dynamical quantities are coupled by the two first truncated equations of the BBGKY hierarchy, namely
equations (2.107) and (2.108). They can be rewritten as

∂F

∂t
+

[
v1 ·

∂

∂x1
+

[∫
dΓ2 F12F (Γ2)

]
· ∂
∂v1

]
F = −µ

∫
dΓ2 F12 ·

∂C(Γ1,Γ2)

∂v1
, (2.109)

and
∂C
∂t

+

[
v1 ·

∂

∂x1
+

[∫
dΓ3 F13F (Γ3)

]
· ∂
∂v1

]
C +

[
v2 ·

∂

∂x2
+

[∫
dΓ3 F23F (Γ3)

]
· ∂
∂v2

]
C

+

[∫
dΓ3 F13C(Γ2,Γ3)

]
· ∂F
∂v1

+

[∫
dΓ3 F23C(Γ1,Γ3)

]
· ∂F
∂v2

= −F12 ·
[
∂

∂v1
− ∂

∂v2

]
F (Γ1)F (Γ2) . (2.110)

2.B.1 Solving for the autocorrelation
The first step of the derivation is to solve equation (2.110) to obtain C=C[F ]. Injecting this solution in
the r.h.s. of equation (2.109), one finally obtains a closed kinetic equation involving F only.

First, one can note that equation (2.110) is linear in the correlation C, symmetric in 1 and 2, and its
r.h.s. is a source term S2(Γ1,Γ2, t) depending only the 1− body DF F . It reads

S2(Γ1,Γ2, t) = −F12 ·
[
∂

∂v1
− ∂

∂v2

]
F (Γ1)F (Γ2) . (2.111)

Equation (2.110) can be solved for C(Γ1,Γ2, t) by working out the Green’s function G(2)(Γ1,Γ2,Γ
′
1,Γ
′
2, τ)

of the linear differential operator in its l.h.s. Indeed, the solution for C(Γ1,Γ2, t) can be written as

C(Γ1,Γ2, t) =

∫ +∞

0

dτ

∫
dΓ′1dΓ′2 G(2)(Γ1,Γ2,Γ

′
1,Γ
′
2, τ)S2(Γ′1,Γ

′
2, t−τ) . (2.112)



2.B. DERIVATION OF THE BALESCU-LENARD EQUATION VIA THE BBGKY HIERARCHY 45

Injecting equation (2.112) into equation (2.110), one gets the propagation equation satisfied by G(2). It
reads

∂G(2)

∂τ
+

[
v1 ·

∂

∂x1
+

[∫
dΓ3 F13F (Γ3)

]
· ∂
∂v1

]
G(2) +

[
v2 ·

∂

∂x2
+

[∫
dΓ3 F23F (Γ3)

]
· ∂
∂v2

]
G(2)

+

[∫
dΓ3 F13G(2)(Γ3,Γ2,Γ

′
1,Γ
′
2, τ)

]
· ∂F
∂v1

+

[∫
dΓ3 F23G(2)(Γ1,Γ3,Γ

′
1,Γ
′
2, τ)

]
· ∂F
∂v2

= 0 , (2.113)

wherewe assumed that the source term S2(t)was effectively turned on only for t≥0, so that S2(t<0)=0.
Moreover, the Green’s function initially satisfies G(2)(Γ1,Γ2,Γ

′
1,Γ
′
2, 0)=δD(Γ1−Γ′1)δD(Γ2−Γ′2). Once the

autocorrelation has been expressed as a function of F , i.e. C=C[F ], one may finally proceed to the
evaluation of the collision operator C [F ] appearing in the r.h.s. of equation (2.109), which reads

C [F ] = −µ
∫

dΓ2 F12 ·
∂C[F ](Γ1,Γ2)

∂v1
. (2.114)

When considering equation (2.113), it is crucial to note that this propagation equation acts separately
on the variables (Γ1,Γ

′
1) and (Γ2,Γ

′
2). The initial condition of G(2) is also separable. Let us then solve

equation (2.113) by factoring the 2−body Green’s function G(2) as the product of two 1−body Green’s
function G(1), so that

G(2)(Γ1,Γ2,Γ
′
1,Γ
′
2, τ) = G(1)(Γ1,Γ

′
1, τ)G(1)(Γ2,Γ

′
2, τ) , (2.115)

where the 1−body Green’s function G(1) satisfies the linearised 1−body Vlasov equation, namely

∂G(1)(Γ1,Γ
′
1, τ)

∂τ
+

[
v1 ·

∂

∂x1
+

[∫
dΓ2 F12 F (Γ2)

]
· ∂
∂v1

]
G(1)(Γ1,Γ

′
1, τ)

+

[∫
dΓ2 G(1)(Γ2,Γ

′
1, τ)F12

]
· ∂F
∂v1

= 0 , (2.116)

with the initial condition G(1)(Γ1,Γ
′
1, 0)=δD(Γ1−Γ′1).4 Because of the causality requirement, one needs

to solve equation (2.116) only for τ≥0. To do so, we rely on Bogoliubov’s ansatz, which assumes that the
system’s 1−body DF F only evolves on a slow secular timescale, while the fluctuations and correlations
evolve on a fast dynamical timescale. As a consequence, in equation (2.116), which describes the evo-
lution of fluctuations, one may assume F to be frozen. Because of this decoupling, the correlations at a
given time t can be seen as functionals of F evaluated at the very same time. To solve equation (2.116),
let us perform a Laplace transform following the conventions from equation (2.44). One gets

− iωG̃(1)(Γ1,Γ
′
1, ω)+

[
v1 ·

∂

∂x1
+

[∫
dΓ2 F12 F (Γ2)

]
· ∂
∂v1

]
G̃(1)(Γ1,Γ

′
1, ω)

+

[∫
dΓ2 G̃(1)(Γ2,Γ

′
1, ω)F12

]
· ∂F
∂v1

= δD(Γ1−Γ′1) . (2.117)

2.B.2 Application to inhomogeneous systems
Let us now assume that the system’s mean potential is integrable, so that the physical phase space co-
ordinates (x,v) may be remapped to angle-action ones (θ,J). Such a mapping allows for a simple
description of the intricate trajectories of individual particles. This change of coordinates is canonical
and the infinitesimal volumes are conserved, i.e. dΓ=dxdv=dθdJ . Thanks to the adiabatic approx-
imation (Heyvaerts, 2010; Chavanis, 2012b, 2013b), let us also assume that the system’s 1−body DF is
a quasi-stationary solution of the collisionless dynamics, so that F (θ,J , t)=F (J , t). The angle-action
coordinates satisfy two important additional properties. First, the derivatives along the mean motion
take the simple form

v1 ·
∂

∂x1
+

[∫
dΓ2 F12 F (Γ2)

]
· ∂
∂v1

= Ω1 ·
∂

∂θ1
, (2.118)

4Heyvaerts (2010) very interestingly notes that, if one was to account for contributions associated with strong collisions, such
as in the first term of the second line of equation (2.105), the previous property of separability would not hold anymore.
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where Ω1 are the intrinsic frequencies of motion associated with the mean potential. Secondly, the
Poisson brackets are invariant under the change of coordinates (x,v) 7→(θ,J), so that for any functions
L1(x,v) and L2(x,v), one has

∂L1

∂x
· ∂L2

∂v
− ∂L1

∂v
· ∂L2

∂x
=
∂L1

∂θ
· ∂L2

∂J
− ∂L1

∂J
· ∂L2

∂θ
. (2.119)

With these transformations, equation (2.117) becomes

− iωG̃(1)(Γ1,Γ
′
1, ω)+Ω1 ·

∂G̃(1)(Γ1,Γ
′
1, ω)

∂θ1
−
∫

dΓ2 G̃(1)(Γ2,Γ
′
1, ω)

∂U12

∂θ1
· ∂F
∂J1

= δD(Γ1−Γ′1) . (2.120)

Following the convention from equation (2.6), let us multiply equation (2.117) by 1/(2π)de−im1·θ1 and
integrate it w.r.t. θ1 to get

− iω G̃(1)
m1

(J1,Γ
′
1, ω)+im1 ·Ω1G̃(1)

m1
(J1,Γ

′
1, ω)

−(2π)d im1 ·
∂F

∂J1

∑
m2

∫
dJ2 G̃(1)

m2
(J2,Γ

′
1, ω)Am1,m2

(J1,J2) =
e−im1·θ′1

(2π)d
δD(J1−J ′1) , (2.121)

where the bare susceptibility coefficients Am1,m2
(J1,J2) were introduced in equation (2.74). Equa-

tion (2.121) can easily be rewritten as

G̃(1)
m1

(J1,Γ
′
1, ω)+(2π)d

m1 ·∂F/∂J1

ω−m1 ·Ω1

∑
m2

∫
dJ2 G̃(1)

m2
(J2,Γ

′
1, ω)Am1,m2(J1,J2)

=
i

(2π)d
e−im1·θ′1

ω−m1 ·Ω1
δD(J1−J ′1) . (2.122)

At this stage, let us note that equation (2.122) takes the form of a Fredholm equation, as the Green’s
function appears twice on the l.h.s, in particular once as an integral term. The method to solve such
an equation is to rely on Kalnaj’s matrix method (Kalnajs, 1976). Let us therefore introduce a basis
of potential and densities (ψ(p), ρ(p)) as in equation (2.12), thanks to which the potential perturbations
may be decomposed. Let us first develop the interaction potential U on these elements. We consider
the function x1 7→U(|x1−x2|) and decompose it on the basis elements ψ(p)(x1). This takes the form
U(|x1−x2|)=

∑
pup(x2)ψ(p)(x1), where the coefficients up(x2) are given by

up(x2) = −
∫

dx1 U(|x1−x2|) ρ(p)∗(x1) = −ψ(p)∗(x2) . (2.123)

Because they were defined as the Fourier transform in angles of the interaction potential, the bare sus-
ceptibility coefficients from equation (2.74) can immediately be rewritten as

Am1,m2
(J1,J2) = −

∑
p

ψ(p)
m1

(J1)ψ(p)∗
m2

(J2) . (2.124)

In order to invert the l.h.s. of equation (2.122), let us perform on G̃(1)
m1 the same operations than the ones

operating on G̃(1)
m2 . This amounts to multiplying equation (2.122) by (2π)d

∑
m1

∫
dJ1 ψ

(q)∗
m1 (J1), so that it

becomes[
(2π)d

∑
m1

∫
dJ1 ψ

(q)∗
m1

(J1) G̃(1)
m1

(J1,Γ
′
1, ω)

]
−
∑
p

[
(2π)d

∑
m1

∫
dJ1

m1 ·∂F/∂J1

ω−m1 ·Ω1
ψ(p)
m1

(J1)ψ(q)∗
m1

(J1)

] [
(2π)d

∑
m2

∫
dJ2 G̃(1)

m2
(J2,Γ

′
1, ω)ψ(p)∗

m2
(J2)

]

=
∑
m1

i e−im1·θ′1

ω−m1 ·Ω′1
ψ(q)∗
m1

(J ′1) . (2.125)

In order to clarify equation (2.125), let us introduce the notations

Kp(Γ
′
1, ω) = (2π)d

∑
m

∫
dJ G̃(1)

m (J ,Γ′1, ω)ψ(p)∗
m (J) ; Lp(Γ

′
1, ω) =

∑
m

i e−im·θ′1

ω−m·Ω′1
ψ(p)∗
m (J ′1) . (2.126)
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Recalling also the expression of the response matrix from equation (2.17), we may finally rewrite equa-
tion (2.125) under the shortened form

Kp(Γ
′
1, ω)−

∑
q

M̂pq(ω)Kq(Γ
′
1, ω) = Lp(Γ

′
1, ω) . (2.127)

Assuming that the system considered is dynamically stable, so that [I−M̂(ω)] can be inverted, equa-
tion (2.127) finally leads to

Kp(Γ
′
1, ω) =

∑
q

[
I−M̂(ω)

]−1

pq
Lq(Γ

′
1, ω) . (2.128)

Thanks to equation (2.128), one can finally rewrite equation (2.122) as

G̃(1)
m1

(J1,Γ
′
1, ω)=

1

(2π)d
i e−im1·θ′1

ω−m1 ·Ω1
δD(J1−J ′1)+

m1 ·∂F/∂J1

ω−m1 ·Ω1

∑
m′1

1

Dm1,m′1
(J1,J ′1, ω)

i e−im′1·θ
′
1

ω−m′1 ·Ω′1
, (2.129)

where the dressed susceptibility coefficients, 1/Dm1,m′1
, have been introduced in equation (2.50).

Thanks to the inverse Fourier transform from equation (2.6), one can finally obtain the expression
of G̃(1)(Γ1,Γ

′
1, ω) as

G̃(1)(Γ1,Γ
′
1, ω) =

∑
m1,m′1

i ei(m1·θ1−m′1·θ
′
1)

ω−m1 ·Ω1

[
δ
m′1
m1

(2π)d
δD(J1−J ′1) +

m1 ·∂F/∂J1

(ω−m′1 ·Ω′1)Dm1,m′1
(J1,J ′1, ω)

]
=
∑

m1,m′1

G̃(1)
m1,m′1

(J1,J
′
1, ω) ei(m1·θ1−m′1·θ

′
1) . (2.130)

2.B.3 Rewriting the collision operator

Thanks to the explicit expression of the 1−body Green’s function from equation (2.130), one may now
proceed to the evaluation of the collision operator from equation (2.114). Let us first rely on Bogoliubov’s
ansatz, so that in equation (2.112), we may do the replacement S2(Γ′1,Γ

′
2, t−τ)→S2(Γ′1,Γ

′
2, t). Relying

on the factorisation of theGreen’s function from equation (2.115) and the inverse Laplace transform from
equation (2.44), the collision operator takes the form

C [F ] =

∫ +∞

0

dτ

∫
dΓ2dΓ′1dΓ′2

∫
B

dω

2π

∫
B′

dω′

2π
e−i(ω+ω′)τ

× µF12 ·
∂

∂v1

{
G̃(1)(Γ1,Γ

′
1, ω) G̃(1)(Γ2,Γ

′
2, ω
′)

[
F1′2′ ·

[
∂

∂v′1
− ∂

∂v′2

]
F (Γ′1)F (Γ′2)

]}
, (2.131)

where the Laplace transformed 1−body Green’s function was obtained in equation (2.130). The rest of
the calculations is now to rewrite equation (2.131) under a simpler form. Let us first rely on the properties
from equation (2.119) to rewrite the various terms appearing in equation (2.131) in angle-action space.
One has

F12 ·
∂G̃(1)(Γ1)

∂v1
= −∂U12

∂θ1
· ∂G̃

(1)(Γ1)

∂J1
+
∂U12

∂J1
· ∂G̃

(1)(Γ1)

∂θ1

= − ∂

∂J1
·
[∫

dθ1

(2π)d
∂U12

∂θ1
G̃(1)(Γ1)

]
, (2.132)

where we used the shortened notation G̃(1)(Γ1)= G̃(1)(Γ1,Γ
′
1, ω). To obtain the second line of equa-

tion (2.132), we relied on Schwarz’ theorem. We also relied on the fact that during the secular diffusion,
the 1−body DF is of the form F =F (J1, t), allowing us to perform an angle average w.r.t. θ1. Similarly,
one can write

F1′2′ ·
[
∂

v′1
− ∂

v′2

]
F (Γ′1)F (Γ′2) = −

[
∂U1′2′

∂θ′1
· ∂F
∂J ′1

F (J ′2)+
∂U2′1′

∂θ′2
· ∂F
∂J ′2

F (J ′1)

]
. (2.133)
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Let us now use the two previous rewritings, as well as equation (2.130), to rewrite the collision operator
from equation (2.131) in angle-action space. After integrating w.r.t. θ1, θ2, θ′1, and θ′2, it reads

C [F ] =

∫ +∞

0

dτ

∫
dJ2dJ ′1dJ ′2

∫
B

dω

2π

∫
B′

dω′

2π
e−i(ω+ω′)τµ(2π)3d

× ∂

∂J1
·
[ ∑
m1,m2

∑
m′1,m

′
2

G̃(1)
m1,m′1

(ω) G̃(1)
m2,m′2

(ω′)m1A−m1,m2

×
[
Am′1,−m′2 m

′
1 ·
∂F

∂J ′1
F (J ′2) +Am′2,−m′1 m

′
2 ·
∂F

∂J ′2
F (J ′1)

]]
, (2.134)

where we used the shortened notations G̃(1)
m1,m′1

(ω)= G̃(1)
m1,m′1

(J1,J
′
1, ω) and Am1,m2 =Am1,m2(J1,J2).

Let us now use the explicit expression of the Fourier coefficients of the 1−body Green’s function from
equation (2.130). Equation (2.134) becomes

C [F ] = −
∫ +∞

0

dτ

∫
dJ2dJ ′1dJ ′2

∫
B

dω

2π

∫
B′

dω′

2π
e−i(ω+ω′)τµ(2π)d

× ∂

∂J1
·
[ ∑
m1,m2

∑
m′1,m

′
2

1

ω−ω1

1

ω′−ω2
m1A−m1,m2

×
[
δ
m′1
m1 δD(J1−J ′1)+(2π)d

m1 ·∂F/∂J1

(ω−ω′1)Dm1,m′1
(ω)

][
δ
m′2
m2 δD(J2−J ′2)+(2π)d

m2 ·∂F/∂J2

(ω′−ω′2)Dm2,m′2
(ω′)

]
×
[
Am′1,−m′2 m

′
1 ·
∂F

∂J ′1
F (J ′2) +Am′2,−m′1 m

′
2 ·
∂F

∂J ′2
F (J ′1)

]]
, (2.135)

where we used the shortened notations 1/Dm1,m′1
(ω)=1/Dm1,m′1

(J1,J
′
1, ω), as well as ω1/2 =m1/2 ·Ω1/2

and ω′1/2 =m′1/2 ·Ω′1/2. The next step of the calculation is to deal with the integration and sum w.r.t. J2

andm2. One can write

∑
m2

∫
dJ2

A−m1,m2

ω′−ω2

[
δ
m′2
m2 δD(J2−J ′2)+(2π)d

m2 ·∂F/∂J2

(ω′−ω′2)Dm2,m′2
(ω′)

]
= − 1

ω′−ω′2
1

D−m1,m′2
(ω′)

, (2.136)

where we relied on the intrinsic definition of the dressed susceptibility coefficients 1/Dm1,m2
given by

1

Dm1,m2
(J1,J2, ω)

= −Am1,m2
(J1,J2)− (2π)d

∑
m3

∫
dJ3

m3 ·∂F/∂J3

ω−m3 ·Ω3

Am1,m3
(J1,J3)

Dm3,m2
(J3,J1, ω)

. (2.137)

Equation (2.137) is straightforward to obtain thanks to the basis decompositions of the susceptibility
coefficients from equations (2.50) and (2.124), and the definition of the response matrix from equa-
tion (2.17). Equation (2.135) becomes

C [F ] =

∫ +∞

0

dτ

∫
dJ ′1dJ ′2

∫
B

dω

2π

∫
B′

dω′

2π
e−i(ω+ω′)τµ(2π)d

× ∂

∂J1
·
[∑
m1

∑
m′1,m

′
2

1

ω−ω1

1

ω′−ω′2
m1

1

D−m1,m′2
(ω′)

×
[
δ
m′1
m1 δD(J1−J ′1)+(2π)d

m1 ·∂F/∂J1

(ω−ω′1)Dm1,m′1
(ω)

]
×
[
Am′1,−m′2 m

′
1 ·
∂F

∂J ′1
F (J ′2) +Am′2,−m′1 m

′
2 ·
∂F

∂J ′2
F (J ′1)

]]
. (2.138)

The next step of the calculation is to perform the integration and the sum w.r.t. J ′1 andm′1. These only
act on the two last lines of equation (2.138). As previously, to perform this calculation, we rely on the
intrinsic definition of the dressed susceptibility coefficients from equation (2.137). One has to deal with
two distinct contributions: the first one C1[F ] associated with the term in m′1 ·∂F/∂J ′1F (J2) and the
second one C2[F ] associated with the term inm′2 ·∂F/∂J ′2F (J ′1). The first contribution C1[F ] takes the
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form

C1[F ] =
∑
m′1

∫
dJ ′1

[
δ
m′1
m1 δD(J1−J ′1)+(2π)d

m1 ·∂F/∂J1

(ω−ω′1)Dm1,m′1
(ω)

]
Am′1,−m′2 m

′
1 ·
∂F

∂J ′1
F (J ′2)

= − 1

Dm1,−m′2(ω)
m1 ·

∂F

∂J1
F (J ′2) . (2.139)

The second contribution C2[F ] takes the form

C2[F ] =
∑
m′1

∫
dJ ′1

[
δ
m′1
m1 δD(J1−J ′1)+(2π)d

m1 ·∂F/∂J1

(ω−ω′1)Dm1,m′1
(ω)

]
Am′2,−m′1 m

′
2 ·
∂F

∂J ′2
F (J ′1)

= Am′2,−m1
m′2 ·

∂F

∂J ′2
F (J1) +m1 ·

∂F

∂J1
m′2 ·

∂F

∂J ′2
(2π)d

∑
m′1

∫
dJ ′1

F (J ′1)Am′2,−m′1
(ω−ω′1)Dm1,m′1

(ω)
. (2.140)

Let us now rewrite equation (2.138) by relying on the matrix method, i.e. by using the basis elements
ψ(p). The bare and dressed susceptibility coefficients take the form

Am1,m2(J1,J2) = −ψ(α)
m1

(J1)ψ(α)∗
m2

(J2) ;
1

Dm1,m2
(J1,J2, ω)

= ψ(α)
m1

(J1) ε−1
αβ(ω)ψ(β)∗

m2
(J2) , (2.141)

where we introduced the matrix ε(ω)=I−M̂(ω), with M̂ the response matrix from equation (2.17) and
I the identity matrix. In equation (2.141) and the following, all the sums over the greek indices are
implied. Let us finally define the matrix H(ω) as

Hαβ(ω) = (2π)d
∑
m

∫
dJ

F (J)

ω−m·Ω ψ(α)∗
m (J)ψ

(β)∗
−m (J) . (2.142)

Gathering the two contributions from equations (2.139) and (2.140), and after some straightforward cal-
culations, one can rewrite equation (2.138) as

C [F ] = −
∫ +∞

0

dτ

∫
B

dω

2π

∫
B′

dω′

2π
e−i(ω+ω′)τµ

∂

∂J1
·
[∑
m1

1

ω−ω1
m1

×
{
ψ

(α)
−m1

(J1) ε−1
αβ(ω′)Hβδ(ω

′) ε−1
γδ (ω)ψ(γ)

m1
(J1)m1 ·

∂F

∂J1

+ ψ
(α)
−m1

(J1)
[
ε−1
αγ (ω′)−δαγ

]
ψ

(γ)∗
−m1

(J1)F (J1)

+ ψ
(α)
−m1

(J1) ε−1
αγ (ω′) ε−1

δλ (ω)Hλγ(ω)ψ(δ)
m1

(J1)m1 ·
∂F

∂J1

− ψ(α)
−m1

(J1) ε−1
δλ (ω)Hλα(ω)ψ(δ)

m1
(J1)m1 ·

∂F

∂J1

}]
. (2.143)

At this stage, let us perform the integration w.r.t. τ and ω′ in equation (2.143). It generically takes the
form ∫ +∞

0

dτ

∫
B′

dω′

2π
e−i(ω+ω′)τ g(ω, ω′) . (2.144)

The integration over τ is straightforward provided thatω+ω′ has a negative imaginary part. Introducing
p>0, we perform the substitution ω+ω′→ω+ω′−ip, and evaluate the integration over τ as

(2.144) = lim
p→0

∫
B′

dω′

2π

−i

ω+ω′−ip
g(ω, ω′) . (2.145)

As the system is supposed to be stable, the poles of the function ω′ 7→g(ω, ω′) are all in the lower-half
complex plane, and the Bromwich contour B′ has to pass above all these singularities. The only pole in
ω′ which remains is then ω′=−ω+ip, which is in the upper plane. The integration on ω′ is then carried
out thanks to the residue theorem by closing the contour B′ in the upper half complex plane – this is
possible because the integrand decreases sufficiently fast at infinity like 1/|ω′|2. One gets

(2.144) = lim
p→0

g(ω,−ω+ip) . (2.146)
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Let us now consider the integration w.r.t. ω in equation (2.143). First, one can note that the fourth term
of equation (2.143) vanishes when integrated upon ω. Indeed, by construction, the Bromwich contour
B has to pass above all the singularities of the functions of +ω. The contour B can then be closed in the
upper half complex plane and, because it surrounds no singularities, gives a vanishing result for this
term. Equation (2.143), when rearranged, becomes

C [F ] = lim
p→0
−
∫
B

dω

2π
µ
∂

∂J1
·
[∑
m1

1

ω−ω1
m1

×
{
ψ

(α)
−m1

(J1)
[
ε−1
αγ (−ω+ip)−δαγ

]
ψ

(γ)∗
−m1

(J1)F (J1)

+ψ
(α)
−m1

(J1) ε−1
αβ(−ω+ip) ε−1

γδ (ω)ψ(γ)
m1

(J1)
[
Hβδ(−ω+ip)+Hδβ(ω)

]
m1 ·

∂F

∂J1

}
. (2.147)

Let us now evaluate the term within brackets in the second term of equation (2.147). It reads

[
Hβδ(−ω + ip)+Hδβ(ω)

]
= (2π)d

∑
m2

∫
dJ2 ψ

(δ)∗
m2

(J2)ψ
(β)∗
−m2

(J2)F (J2)

[
1

ω−ω2
− 1

ω−(ω2+ip)

]
, (2.148)

where we used the notation ω2 =m2 ·Ω(J2). As one takes the limit p→0, a naive reading of equa-
tion (2.148) would indicate that equation (2.148) vanishes. However, one should be careful with the
two poles ω=ω2 and ω=ω2+ip, as these two poles are on opposite sides of the prescribed integration
contour B. Indeed, when lowering the integration B to the real axis, the pole ω=ω2 remains below
the contour, while the one in ω=ω2+ip is above it. Relying on Plemelj formula from equation (2.29),
equation (2.148) becomes

[
Hβδ(−ω + ip)+Hδβ(ω)

]
= (2π)d

∑
m2

∫
dJ2 ψ

(δ)∗
m2

(J2)ψ
(β)∗
−m2

(J2)F (J2)

[
1

ω−ω2+i0
− 1

ω−ω2−i0

]
= −2πi(2π)d

∑
m2

∫
dJ2 ψ

(δ)∗
m2

(J2)ψ
(β)∗
−m2

(J2)F (J2) δD(ω−ω2) . (2.149)

When lowering the contour B to the real axis, one can also compute the integration w.r.t. ω for the first
term in equation (2.147). Because the system is stable, the poles of ε−1

αγ (−ω+ip) are all located in the
upper half plane and there remains only one pole on the real axis in ω=ω1. The Bromwich contour B is
then closed in the lower half plane and only encloses this second pole. Paying attention to the direction
of integration, the residue gives a factor −2iπ, and equation (2.147) becomes

C [F ] = iµ
∂

∂J1
·
[∑
m1

m1 ψ
(α)
−m1

(J1)
[
ε−1
αγ (−ω1+i0)− δαγ

]
ψ

(γ)∗
−m1

(J1)F (J1)

+ (2π)d
∑

m1,m2

m1

∫
dJ2

[
ψ

(α)
−m1

(J1) ε−1
αβ(−ω2)ψ

(β)∗
−m2

(J2)
]

×
[
ψ(γ)
m1

(J1) ε−1
γδ (ω2)ψ(δ)∗

m2
(J2)

]m1 ·∂F/∂J1 F (J2)

ω2−ω1+i0

]
, (2.150)

where one should pay attention to the small positive imaginary part in the pole 1/(ω2−ω1+i0) asso-
ciated with the fact that the contour B passes above the pole ω=ω1. Relying on the expression of the
susceptibility coefficients from equation (2.141), one can rewrite equation (2.150) as

C [F ] = iµ
∂

∂J1
·
[
−
∑
m1

m1

(
1

Dm1,m1
(J1,J1, ω1+i0)

+Am1,m1(J1,J1)

)
F (J1)

+ (2π)d
∑

m1,m2

m1

∫
dJ2

1

D−m1,−m2
(J1,J2,−ω2)

1

Dm1,m2
(J1,J2, ω2)

m1 ·∂F/∂J1 F (J2)

ω2−ω1+i0

]
,

(2.151)

where we performed the changem1→−m1 in the first term. Note that Am1,m1(J1,J1) is real, thanks
to equation (2.141). Let us now rely on the fact that the collision term C [F ] is real. As a consequence,
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because of the prefactor "i", in equation (2.150), we may restrict ourselves only to the imaginary part of
the terms within brackets. The first term requires us to study

Im
[

1

Dm1,m1
(J1,J1, ω1+i0)

]
=

1

2i
ψ(α)
m1

(J1)
[
ε−1
αβ(ω1+i0)−ε−1∗

βα (ω1+i0)
]
ψ(β)∗
m1

(J1) . (2.152)

In order to compute the term within brackets, we rely on the identity Heyvaerts (2010)

ε−1−(ε−1)† = ε−1(ε†−ε) (ε†)−1 . (2.153)

The term within parenthesis in equation (2.153) can be evaluated and reads

[
ε†−ε

]
γδ

(ω1+i0) = −(2π)d
∑
m2

∫
dJ2m2 ·

∂F

∂J2
ψ(γ)∗
m2

(J2)ψ(δ)
m2

(J2)

[(
1

ω1−ω2+i0

)∗
− 1

ω1−ω2+i0

]
= −2πi(2π)d

∑
m2

∫
dJ2 δD(ω1−ω2)m2 ·

∂F

∂J2
ψ(γ)∗
m2

(J2)ψ(δ)
m2

(J2) . (2.154)

Combining equations (2.152) and (2.154), one finally gets the relation

Im
[

1

Dm1,m1
(J1,J1, ω1+i0)

]
= −π(2π)d

∑
m2

∫
dJ2

δD(ω1−ω2)

|Dm1,m2
(J1,J2, ω1)|2 m2 ·

∂F

∂J2
. (2.155)

This contribution corresponds to the drift term in the Balescu-Lenard equation. To evaluate the second
term in equation (2.151), we rely on the relation 1/D−m1,−m2

(J1,J2,−ω)=1/D∗m1,m2
(J1,J2, ω) (see

note [83] in Chavanis (2012b)). Thanks to Plemelj formula, it immediately gives the contribution

Im
[
(2π)d

∑
m1,m2

m1

∫
dJ2

1

D−m1,−m2(J1,J2,−ω2)

1

Dm1,m2(J1,J2, ω2)

m1 ·∂F/∂J1 F (J2)

ω2−ω1+i0

]
= −π(2π)d

∑
m1,m2

m1

∫
dJ2

δD(ω1−ω2)

|Dm1,m2(J1,J2, ω1)|2 m1 ·
∂F

∂J1
F (J2) . (2.156)

This contribution corresponds to the diffusion term in the Balescu-Lenard equation. Gathering the two
contributions from equations (2.155) and (2.156) and paying a careful to the signs of the various terms,
one gets the final expression of the collision term C [F ] as

C [F ]=π(2π)dµ
∂

∂J1
·
[ ∑
m1,m2

m1
δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2
(J1,J2,m1 ·Ω1)|2

(
m1 ·

∂

∂J1
−m2 ·

∂

∂J2

)
F (J1)F (J2)

]
. (2.157)

This allows us to recover the inhomogeneous Balescu-Lenard equation (2.67).

2.C Functional approach to the Landau equation
The work presented in this Appendix is based on Fouvry et al. (2016a).

The previous sections presented two complementary derivations of the Balescu-Lenard equation,
respectively based on the Klimontovich equation and the BBGKY hierarchy. In this Appendix, let us
present an alternative approach based on a functional integral rewriting of the dynamics. In a little-
known seven-page paper, Jolicoeur & Le Guillou (1989) presented how the general functional integral
framework (Faddeev & Slavnov, 1993) was suited for the study of classical kinetic theory. Using this for-
malism and starting from Liouville’s equation, they recovered the BBGKY hierarchy. More importantly,
they illustrated how this approach allows for a simple derivation of the homogeneous Balescu-Lenard
equation (Balescu, 1960; Lenard, 1960) of plasma physics. In the context of inhomogeneous systems,
we presented in Fouvry et al. (2016a) how this same functional approach may be used to recover the
inhomogeneous Landau equation (2.73). Relying on the analogy between self-gravitating systems and
2D systems of point vortices (Chavanis, 2002), a similar derivation in the context of 2D hydrodynamics
was also presented in Fouvry et al. (2016b). In order to offer some new insights on the content of the col-
lisional kinetic equations (2.67) and (2.73), we will now present this alternative derivation in the context
of inhomogeneous systems.
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2.C.1 Functional integral formalism
As previously, let us consider a systemmade ofN identical particles. At order 1/N , its dynamics is fully
described by the two first truncated equations of the BBGKY hierarchy (2.107) and (2.108), which involve
the system’s 1−body DF F , and the 2−body autocorrelation C. The first step of the present derivation
is to rewrite these two coupled evolution equations under a functional form. As an illustration of this
method, let us consider a dynamical quantity f depending on time t and defined on a phase space Γ. We
assume that this quantity follows an evolution equation of the form [∂t+L]f=0, whereL is a differential
operator. Let us now introduce an auxiliary field λ defined on the same space than f , to rewrite the
evolution constraint of f as a functional integral of the form (see Jolicoeur & Le Guillou (1989); Fouvry
et al. (2016a) for more details)

1 =

∫
DfDλ exp

[
i

∫
dtdΓλ[∂t+L]f

]
. (2.158)

In equation (2.158), we define the action S[F, λ]=i
∫

dtdΓλ[∂t+L]f as the argument of the exponential.5
It is important to note that the evolution equation satisfied by f corresponds to the quantity by which
the auxiliary field λ is multiplied in the action.

When considering the two coupled evolution equations (2.107) and (2.108), one may proceed to a
similar transformation. Let us define the phase space coordinates as Γ=(x,v). By introducing two aux-
iliary fields λ1(t,Γ1) and λ2(t,Γ1,Γ2), respectively associatedwithF and C, equations (2.107) and (2.108)
can be rewritten under the compact functional form

1 =

∫
DFDCDλ1Dλ2 exp

{
i

∫
dtdΓ1 λ1(A1F+B1C) +

i

2

∫
dtdΓ1dΓ2 λ2(A2C+D2C+S2)

}
. (2.159)

In equation (2.159), we introduced the operators A1, B1, A2, D2, and S2 as

A1F =

[
∂

∂t
+v1 ·

∂

∂x1
+

[∫
dΓ2 F12F (Γ2)

]
· ∂
∂v1

]
,

B1C = µ

∫
dΓ2 F12 ·

∂C(Γ1,Γ2)

∂v1
,

A2C =

[
∂

∂t
+v1 ·

∂

∂x1
+v2 ·

∂

∂x2
+

∫
dΓ3 F (Γ3)

[
F13 ·

∂

∂v1
+F23 ·

∂

∂v2

]]
C(Γ1,Γ2) ,

D2C =

[∫
dΓ3 F13C(Γ2,Γ3)

]
· ∂F
∂v1

+ (1↔2) ,

S2 = F (Γ2)F12 ·
∂F

∂v1
+ (1↔2) . (2.160)

In equation (2.159), we did not write explicitly the dependence w.r.t. t to simplify the notations. In the
expression of B1C, let us emphasise the presence of the small factor µ=Mtot/N , which illustrates the
fact that we consider a kinetic development at order 1/N . Finally, the prefactor 1/2 in equation (2.159)
was only added for later convenience and does not play any role for the final expression of the evolution
equation, since it was added as a global prefactor. Let us recall here the physical content of the various
terms appearing in equation (2.159). Here, A1F corresponds to the 1−body Vlasov advection term, and
B1C to the 1/N sourcing of the evolution of 1−body DF under the effect of the 2−body autocorrelation.
Similarly,A2C encompasses the usual 2−bodyVlasov advection term,D2C corresponds to the dressing of
particles by collective effects, and S2 is a source term depending only on F , which sources the dynamics
of C.

Relying on basic manipulation, one can rewrite equation (2.159) as

1 =

∫
DFDCDλ1Dλ2 exp

{
i

∫
dtdΓ1 λ1(Γ1)A1F (Γ1) +

i

2

∫
dtdΓ1dΓ2 λ2(Γ1,Γ2)G(Γ1,Γ2)

− i

2

∫
dtdΓ1dΓ2 C(Γ1,Γ2)E(Γ1,Γ2)

}
, (2.161)

where it is crucial to note that all the dependences w.r.t. C were gathered in the prefactor of the second
line. In equation (2.161), we introduced the quantity G(Γ1,Γ2) as

G(Γ1,Γ2) = F12 ·
[
F (Γ2)

∂F

∂v1
−F (Γ1)

∂F

∂v2

]
, (2.162)

5This should not be mixed up with the angle-action coordinates (θ,J) from inhomogeneous dynamics.
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for which we used the relation F21 =−F12. In equation (2.161), we also introduced the quantity
E(Γ1,Γ2) as

E(Γ1,Γ2) = A2λ2(Γ1,Γ2)+

∫
dΓ3

[
F13λ2(Γ2,Γ3)+F23λ2(Γ1,Γ3)

]
· ∂F
∂v3

+µF12 ·
[
∂λ1

∂v1
− ∂λ1

∂v2

]
. (2.163)

Equation (2.163) was obtained thanks to an integration by parts. In order to invert the time derivative
∂C/∂t present in the term λ2A2C from equation (2.159), we assumed t∈ [0;T ], where T is an arbitrary
upper temporal bound, along with the boundary conditions C(t=0)=0 (the system is supposed to be
initially uncorrelated) and λ2(T )=0 (we are free to impose a condition on λ2). As presented in Fouvry
et al. (2016a), let us now neglect collective effects. This amounts to neglecting the contributions associ-
ated with the term D2C in equation (2.159), so that equation (2.163) becomes

E(Γ1,Γ2) = A2λ2(Γ1,Γ2)+µF12 ·
[
∂λ1

∂v1
− ∂λ1

∂v2

]
. (2.164)

In order to obtain a closed kinetic equation involving F only, the traditional approach would be to start
from equation (2.159) and proceed in the following way. By functionally integrating equation (2.159)
w.r.t. λ2, one gets a constraint of the form A2C+D2C+S2 =0, which couples F and C. This constraint
must then be inverted to give C=C[F ]. One then uses this substitution in equation (2.159), and func-
tionally integrates this equation w.r.t. λ1, to obtain a kinetic equation involving F only. This gives the
Balescu-Lenard equation (or the Landau equation when collective effects are not accounted for). This
approach is identical to the direct resolution of the BBGKY hierarchy presented in Appendix 2.B.

However, based on the rewriting from equation (2.161), Jolicoeur & Le Guillou (1989) suggested
a different strategy. One may indeed first integrate functionally equation (2.161) w.r.t. C, to obtain a
constraint of the form E[F, λ1, λ2]=0. Once inverted, this offers a relation of the form λ2 =λ2[F, λ1].
One may then substitute this relation in equation (2.161), to obtain a functional equation which only
involves F and λ1. The final step is then to functionally integrate this equation w.r.t. λ1, to obtain a
closed kinetic equation involving F only. Let us now show how this alternative approach allows for the
derivation of the inhomogeneous Landau equation.

2.C.2 Application to inhomogeneous systems
As in section 2.3, let us assume that the system’s mean potential is integrable, so that one may always
remap the physical phase space coordinates (x,v) to the angle-action ones (θ,J). Relying on the adi-
abatic approximation (Heyvaerts, 2010; Chavanis, 2012b, 2013b), we assume that the 1−body DF is a
quasi-stationary solution of the Vlasov equation, so that F (θ,J)=F (J), where the dependence w.r.t.
t has not been written out to shorten the notations. Since λ1 is the auxiliary field associated with F ,
one also has λ1(θ,J)=λ1(J), while the second auxiliary field λ2(θ1,J1,θ2,J2) still fully depends on all
angle-action coordinates. Let us note that for homogeneous systems, the system’s invariance by trans-
lation would impose λ2(x1,v1,x2,v2)=λ2(x1−x2,v1,v2). Relying on the angle-action properties from
equations (2.118) and (2.119), one may now rewrite the various operators appearing in equation (2.161).
Equation (2.160) gives

A1F =
∂F

∂t
. (2.165)

Similarly, equation (2.162) can be rewritten as

G(Γ1,Γ2) = −
[
F (J2)

∂U12

∂θ1
· ∂F
∂J1

+F (J1)
∂U21

∂θ2
· ∂F
∂J2

]
. (2.166)

Finally, the constraint E(Γ1,Γ2)=0 from equation (2.164) takes the form

∂λ2

∂t
+Ω1 ·

∂λ2

∂θ1
+Ω2 ·

∂λ2

∂θ2
−µ
[
∂U12

∂θ1
· ∂λ1

∂J1
+
∂U21

∂θ2
· ∂λ1

∂J2

]
= 0 . (2.167)

2.C.3 Inverting the constraint
In order to invert equation (2.167), we once again rely on Bogoliubov’s ansatz by assuming that the
fluctuations (such as C and λ2) evolve much faster than the mean dynamical orbit-averaged quantities
(such as F and λ1). As a consequence, on the timescale on which λ2 evolves, one can assume F and λ1 to
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be frozen, while on the timescale of secular evolution, one can assume λ2 to be equal to the asymptotic
value associatedwith the current value ofF and λ1. As defined in equation (2.6), let us perform a Fourier
transform w.r.t. the angles θ. We decompose the interaction potential U12 as

U12 = U(x(θ1,J1)−x(θ2,J2)) =
∑

m1,m2

Am1,m2
(J1,J2) ei(m1·θ1−m2·θ2) , (2.168)

where the bare susceptibility coefficients Am1,m2
(J1,J2) were already introduced in equation (2.74).

Multiplying equation (2.167) by 1/(2π)2dei(m1·θ1−m2·θ2) and integrating it w.r.t. θ1 and θ2, we obtain

∂λ−m1,m2

∂t
−i∆ωλ−m1,m2 = −iµA∗m1,m2

[
m1 ·

∂λ1

∂J1
−m2 ·

∂λ1

∂J2

]
, (2.169)

where we used the shortening notations λ−m1,m2
=λ−m1,m2

(J1,J2), Am1,m2
=Am1,m2

(J1,J2), and
∆ω=m1 ·Ω1−m2 ·Ω2. Thanks to the boundary condition λ2(T )=0 introduced in equation (2.163), and
relying on the adiabatic approximation that λ1 is frozen, one can straightforwardly solve the differential
equation (2.169) as

λ−m1,m2
(t) = µA∗m1,m2

[
m1 ·

∂λ1

∂J1
−m2 ·

∂λ1

∂J2

]
1−ei∆ω(t−T )

∆ω
. (2.170)

In order to consider only the forced regime of evolution, let us now assume that the arbitrary temporal
bound T is large compared to the considered time t. Therefore, we place ourselves in the limit T→+∞.
Let us finally recall the formula

lim
T→+∞

eiT∆ω−1

∆ω
= iπδD(∆ω) , (2.171)

so that equation (2.170) immediately gives

lim
T→+∞

λ−m1,m2
(t) = iπµA∗m1,m2

[
m1 ·

∂λ1

∂J1
−m2 ·

∂λ1

∂J2

]
δD(m1 ·Ω1−m2 ·Ω2) . (2.172)

Thanks to Bogoliubov’s ansatz, we therefore inverted the constraintE[F, λ1, λ2]=0 fromequation (2.167),
to obtain λ2 =λ2[F, λ1].

2.C.4 Recovering the Landau collision operator
Let us now substitute the inverted expression from equation (2.172) into the functional integral from
equation (2.161), which then only involves F and λ1. The remaining action term S[F, λ1] reads

S[F, λ1] = i

∫
dtdΓ1 λ1A1F +

i

2

∫
dtdΓ1dΓ2 λ2[F, λ1]G(Γ1,Γ2) . (2.173)

Thanks to the expressions ofA1 andG from equations (2.165) and (2.166), and using a Fourier transform
in angles as in equation (2.6), one can rewrite equation (2.173) as

S[F, λ1] = i

∫
dtdΓ1 λ1(Γ1)

∂F

∂t

+
i

2

∫
dtdΓ1dΓ2

∑
m1,m2

Im
[
Am1,m2λ−m1,m2

][
m1 ·

∂F

∂J1
F (J2)−m2 ·

∂F

∂J2
F (J1)

]
. (2.174)

Thanks to the inversion from equation (2.172), one immediately has

Im
[
Am1,m2

λ−m1,m2

]
= πµδD(m1 ·Ω1−m2 ·Ω2)

∣∣Am1,m2

∣∣2[m1 ·
∂λ1

∂J1
−m2 ·

∂λ1

∂J2

]
. (2.175)

Injecting this result in equation (2.174), one gets

S[F, λ1] = i

∫
dtdΓ1 λ1

∂F

∂t
+

i

2

∫
dtdΓ1dΓ2

∑
m1,m2

πµδD(m1 ·Ω1−m2 ·Ω2)
∣∣Am1,m2

∣∣2
×
[
m1 ·

∂λ1

∂J1
−m2 ·

∂λ1

∂J2

][
m1 ·

∂F

∂J1
F (J2)−m2 ·

∂F

∂J2
F (J1)

]
. (2.176)
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The final step of the calculation is to rewrite the second term of equation (2.176) under the form∫
dtdΓ1λ1(Γ1)... This is a straightforward calculation, which requires to use an integration by parts
and to permute accordingly the indices 1↔2. Equation (2.176) can finally be rewritten as

S[F, λ1] = i

∫
dtdΓ1 λ1(Γ1)

{
∂F

∂t
−π(2π)dµ

∂

∂J1
·
[ ∑
m1,m2

m1

∫
dJ2 δD(m1 ·Ω1−m2 ·Ω2)

∣∣Am1,m2

∣∣2
×
[
m1 ·

∂F

∂J1
F (J2)−m2 ·

∂F

∂J2
F (J1)

]]}
, (2.177)

where the additional prefactor (2π)d comes from the transformation
∫

dΓ2 f(J2)=(2π)d
∫

dJ2 f(J2). In-
tegrating functionally equation (2.177) w.r.t. λ1, one finally obtains a closed form expression for the
kinetic equation as

∂F

∂t
= π(2π)dµ

∂

∂J1
·
[ ∑
m1,m2

m1

∫
dJ2 δD(m1 ·Ω1−m2 ·Ω2)

∣∣Am1,m2
(J1,J2)

∣∣2
×
(
m1 ·

∂

∂J1
−m2 ·

∂

∂J2

)
F (J1, t)F (J2, t)

]
. (2.178)

As a conclusion, relying on a functional integral formalism, we were able to exactly recover the inho-
mogeneous Landau equation (2.73). Such a new calculation provides additional insights on the origin
of these diffusion equations. A natural next step would be to show how it may be used to account for
collective effects and recover the inhomogeneous Balescu-Lenard equation (2.67). Such a derivation is
expected to be more involved, as one will have to deal with a self-consistent Fredholm equation asso-
ciated with the polarisation dressing of the potential fluctuations (similar to the one obtained in equa-
tion (2.122)). As illustrated in the two derivations from section 2.3 andAppendix 2.B, this requires to rely
on Kalnajs matrix method (Kalnajs, 1976) and to introduce potential-density basis elements. Jolicoeur
& Le Guillou (1989) managed to develop such a self-consistent calculation in the homogeneous context
of plasma physics, where both the resonance condition and the Fredholm equation are simpler. The
generalisation of this method to inhomogeneous systems will be the subject of a future work. Finally,
because of its alternative point of view, this approach may also turn out fruitful to tackle the question of
obtaining closed kinetic equations when higher order correlation terms are taken into account.





Chapter 3

Razor-thin discs

The work presented in this chapter is based on Fouvry et al. (2015d); Fouvry & Pichon (2015); Fouvry
et al. (2015a,b).

3.1 Introduction
Most stars, perhaps all, are born in stellar discs. Major mergers destroyed some of these discs quite
early in the history of the universe, but some have survived up to the present day, including the Milky
Way. Understanding the secular dynamics of stellar discs appears therefore as an essential ingredi-
ent of cosmology, as the discs’ cosmological environments are now firmly established in the ΛCDM
paradigm (Planck Collaboration et al., 2014). Self-gravitating stellar discs are cold responsive dynamical
systems in which rotation provides an important reservoir of free energy and where orbital resonances
play a key role. The availability of free energy leads to some stimuli being strongly amplified, while
resonances tend to localise their dissipation, with the net result that even a very small perturbation can
lead to discs evolving to significantly distinct equilibria. Stellar discs are submitted to various sources of
gravitational noise, such as Poisson shot noise arising from the finite number of stars in the disc, or from
the finite number of giant molecular clouds in the interstellar medium or sub-haloes orbiting around the
galaxy. Spiral arms in the gas distribution also provide another source of fluctuations, while the central
bar of the disc offers another source of stimulus more systematic than noisy. The history of a stellar disc
likely comprises the joint responses to all these various stimuli.

One can find in the solar neighbourhood at least three illustrations of such effects. First, the random
velocity of each coveal cohort of stars increases with the cohort’s age (Wielen, 1977; Aumer & Binney,
2009). In addition, the velocity distribution around the Sun exhibits several "streams" of stars (Dehnen,
1998). Each of these streams contains stars of various ages and chemistries, which are all responding
to some stimulus in a similar fashion (Famaey et al., 2005). Finally, in the two-dimensional action space
(Jφ, Jr), where Jφ stands for the angular momentum and Jr for a measure of the star’s radial excursion
(see section 3.2), the distribution of stars shows elongated features. The density of stars is indeed de-
pressed near Jr=0, i.e. near circular orbits, but enhanced at larger Jr, such that the whole disturbed re-
gion forms a curve that is consistentwith being given by a resonant condition such as 2Ωφ−Ωr=cst. (Sell-
wood, 2010; McMillan, 2013). Such features are called resonant ridges and will play an important role
in our upcoming discussions of the secular dynamics of razor-thin stellar discs, as already argued for
example in Sellwood & Carlberg (2014).

Direct numerical simulations of razor-thin stellar discs are very challenging because their two-
dimensional geometry combined with their responsiveness causes discreteness noise to be important
unless a large number of particles is employed. It is only recently that it became possible to simulate
a disc with a sufficient number of particles for Poisson shot noise to be dynamically unimportant for
many orbital times, such as in the simulations presented in Sellwood (2012). In addition, it is all the
more difficult to simulate accurately a stellar disc that is embedded in a cosmological environment and
therefore exposed to cosmic noise. Such experiments are essential to understand how the orbital struc-
ture of a disc may restructure on secular times. However, the reliability of numerical simulations over
numerous dynamical times is an issue which calls for alternative probes, hence the need for analytical
frameworks such as the ones presented in chapter 2.

In the present chapter, we attempt to explain the origin of these resonant ridges in razor-thin discs
while relying on two competing processes of secular diffusion, either collisionless (section 2.2) for which
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the source of fluctuations is imposed by an external source, or collisional (section 2.3) for which the
source of fluctuations is self-induced and due to the system’s own discreteness. Two main difficulties
are encountered when implementing these diffusion equations. First, one has to explicitly construct the
mapping (x,v) 7→(θ,J), as the diffusion occurs in action space. In the context of galactic dynamics, these
coordinates are now being increasingly used to construct equilibriummodels of stellar systems (Binney,
2010; Piffl et al., 2014) or study the dynamics of stellar streams (Helmi & White, 1999; Sellwood, 2010;
Eyre & Binney, 2011; McMillan, 2013; Sanders & Binney, 2013). When considering a stellar disc, if one
assumes the disc to be sufficiently tepid (i.e. the stars’ orbits are not too eccentric), one can rely on the
epicyclic approximation to construct such a mapping, as presented in section 3.2.

The second difficulty arises when accounting for the system’s self-gravity. Indeed, this requires to
compute the system’s responsematrix M̂ from equation (2.17), which asks for the introduction of poten-
tial and density basis elements as in equation (2.12). In order to ease the analytical inversion of [I−M̂],
one may rely on the Wentzel-Kramers-Brillouin (WKB) approximation (Liouville, 1837; Toomre, 1964;
Kalnajs, 1965; Lin & Shu, 1966; Palmer et al., 1989; Binney & Tremaine, 2008), which amounts to consid-
ering only the diffusion sustained by radially tightly wound spirals. This transforms Poisson’s equation
into a local equation and leads to a diagonal response matrix. Such an application of the WKB formal-
ism in the context of the secular diffusion of razor-thin axisymmetric discs relies on the construction of
tailored WKB basis elements presented in section 3.3. As will be noted in section 3.6, this WKB approx-
imation also allows for an explicit calculation of the resonant condition δD(m1 ·Ω1−m2 ·Ω2) appearing
in the collisional Balescu-Lenard equation (2.67). Based on Fouvry et al. (2015a); Fouvry&Pichon (2015);
Fouvry et al. (2015b), section 3.7 finally computes via the WKB approximation the collisionless and col-
lisional diffusion fluxes to investigate radial diffusion in razor-thin axisymmetric discs, as observed in
the simulations from Sellwood (2012).

3.2 Angle-action coordinates and epicyclic approximation
In order to investigate secular evolutions, a first step is to build up an explicit mapping (x,v) 7→(θ,J)
to angle-action coordinates. To do so, we assume that the disc is sufficiently cold, i.e. that the radial
velocity dispersion is sufficiently small, and rely on the epicyclic approximation. Let us introduce the
polar coordinates (R,φ), as well as their associated momenta (pR, pφ). For a razor-thin axisymmetric
disc, the stationary Hamiltonian of the system takes the form

H0 =
1

2

[
p2
R+

p2
φ

R2

]
+ ψ0(R) , (3.1)

where ψ0 is the stationary axisymmetric background potential in the disc. The Hamiltonian being in-
dependent of φ, pφ is a conserved quantity. This is the azimuthal action of the system, the angular
momentum Jφ, which reads

Jφ =
1

2π

∮
dφ pφ = pφ = R2 φ̇ . (3.2)

For a given value of Jφ, the radius R of the particle evolves according to

R̈ = −∂ψeff

∂R
, (3.3)

where we introduced the effective potential ψeff(R)=ψ0(R)+J2
φ/(2R

2). Since we assume that the radial
excursions of the particles are small, wemay place ourselves in the vicinity of circular orbits. For a given
Jφ, we define the guiding radius Rg via the implicit relation

0 =
∂ψeff

∂R

∣∣∣∣
Rg

=
∂ψ0

∂R

∣∣∣∣
Rg

−
J2
φ

R3
g

. (3.4)

Here Rg(Jφ) corresponds to the radius of stars with an angular momentum equal to Jφ, which are on
exactly circular orbits. One should note that the mapping betweenRg and Jφ is bijective and unambigu-
ous (up to the sign of Jφ, i.e. whether stars are prograde or retrograde). In addition, this circular orbit
is described at the azimuthal frequency Ωφ given by

Ω2
φ(Rg) =

1

Rg

∂ψ0

∂R

∣∣∣∣
Rg

=
J2
φ

R4
g

. (3.5)
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In the vicinity of circular orbits, the Hamiltonian from equation (3.1) may be approximated as

H0 =
p2
R

2
+ψeff(Rg, 0)+

κ2

2
(R−Rg)2 , (3.6)

where we introduced the radial epicyclic frequency κ as

κ2(Rg) =
∂2ψeff

∂R2

∣∣∣∣
Rg

=
∂2ψ0

∂R2

∣∣∣∣
Rg

+ 3
J2
φ

R4
g

. (3.7)

In equation (3.6), the radial motion takes the form of a harmonic libration. Up to an initial phase, there
exists an amplitude AR such that R=Rg+AR cos(κt). The associated radial action Jr is then given by

Jr =
1

2π

∮
dRpR =

1

2
κA2

R . (3.8)

Here, Jr=0 corresponds to circular orbits, and the larger Jr, themore eccentric the orbit. Let us also em-
phasise that the two intrinsic frequencies of motion only depend on Jφ, so that Ω(J)=(Ωφ(Jφ), κ(Jφ)).
This will play an important role in the resonance condition appearing in the Balescu-Lenard equa-
tion (2.67). The epicyclic approximation is illustrated in figure 3.2.1. One can finally explicitly construct

R

ψeff

ψepi

E

Rp RaRg

Figure 3.2.1: Illustration of the epicyclic approximation in a razor-thin axisymmetric disc. The guiding radius Rg

corresponds to the location of the minimum of the effective potential ψeff . The epicylic approximation amounts to
approximatingψeff in the vicinity of its minimumby a harmonic potentialψepi. In this limit, the star then undergoes
radial harmonic librations between the pericentre Rp and apocentre Ra of its trajectory.

the mapping between (R,φ, pR, pφ) and (θR, θφ, Jr, Jφ) (Lynden-Bell & Kalnajs, 1972; Palmer, 1994; Bin-
ney & Tremaine, 2008). At first order in the radial amplitude, it reads

R = Rg +AR cos(θR) ; φ = θφ −
2Ωφ
κ

AR
Rg

sin(θR) . (3.9)

An illustration of an epicyclic orbit constructed with the mappings from equation (3.9) is given in fig-
ure 3.2.2. Let us note that numerous improvements of the epicyclic approximation have been proposed
in the literature (Kalnajs, 1979; Dehnen, 1999; Lynden-Bell, 2010).1 Finally, we assume that initially the
DF of the system takes the form of a quasi-isothermal DF (Binney & McMillan, 2011) of the form

F (Rg, Jr) =
Ωφ(Rg)Σ(Rg)

πκ(Rg)σ2
r(Rg)

exp

[
− κ(Rg)Jr

σ2
r(Rg)

]
, (3.10)

where Σ(Rg) is the surface density of the disc and σ2
r(Rg) represents the local radial velocity dispersion

of the stars at a given radius. Larger values of σ2
r correspond to hotter discs, which are therefore more

stable. Such a DF becomes the Schwarzschild DF in the epicycle limit (see equation (4.153) in Binney &
Tremaine (2008)).

1We refer the reader to Dehnen (1999) for a detailed discussion. It especially notices that the epicyclic frequencies
(Ωφ(Jφ), κ(Jφ)) from equations (3.5) and (3.7) do not satisfy the constraint from Schwarz’ theorem: ∂Ωφ/∂Jr=∂κ/∂Jφ, and
therefore suggests to replace Ωφ by Ωφ+(dκ/dJφ)Jr . We do not consider such improvements in the upcoming calculations.
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Rp Ra

∆φ

Figure 3.2.2: Illustration of an epicyclic orbit for a razor-thin Mestel disc (see section 3.7.1), following the angle-
action mapping from equation (3.9). Such an orbit is the combination of an azimuthal oscillation at the mean fre-
quency Ωφ, and a harmonic libration between the star’s pericentre Rp and apocentre Ra at the frequency κ. We
highlighted in bold the azimuthal increase ∆φ=2πΩφ/κ during one radial oscillation. For degenerate orbits, such
as the Keplerian ones (see chapter 6), ∆φ is a multiple of 2π, i.e. the frequencies Ωφ and κ are in a rational ratio,
which leads to a closed orbit (see figure 1.3.2).

3.3 The razor-thin WKB basis

As we are considering the 2D case of a razor-thin disc, the basis elements introduced in equation (2.12)
must be written as ψ(p)(R,φ) in polar coordinates, and are associated with the surface densities
Σ(p)(R,φ). Here, as we will show, relying on the WKB approximation amounts to building up local
basis elements thanks to which the response matrix M̂ from equation (2.17) becomes diagonal. Let us
introduce the basis elements

ψ[kφ,kr,R0](R,φ) = A ei(kφφ+krR) BR0
(R) , (3.11)

where the radial window function BR0
(R) reads

BR0(R) =
1

(πσ2)1/4
exp

[
− (R−R0)2

2σ2

]
. (3.12)

The basis elements from equation (3.11) depend on three indices: kφ is an azimuthal number which
characterises the angular dependence of the basis elements,R0 is the radius aroundwhich the Gaussian
window BR0

is centred, while kr gives the radial frequency of the basis elements. One should also
note the introduction of a scale-separation parameter σ, which will ensure the biorthogonality of the
basis elements as detailed later on. We also introduced an amplitude A which will be tuned later on
to correctly normalise the basis elements. The somewhat unsual normalisation of BR0 was chosen for
later convenience, to ensure that the amplitude A is independent of σ. Figure 3.3.1 illustrates the radial
dependence of these basis elements, while figure 3.3.2 illustrates them in the polar (R,φ)−plane.

The next step of the construction of these WKB basis elements is to compute the associated surface
density basis elements Σ[kφ,kr,R0]. To do so, we extend in the z−direction the WKB potential from equa-
tion (3.11) using the ansatz

ψ[kφ,kr,R0](R,φ, z) = A ei(kφφ+krR) BR0
(R)Z(z) . (3.13)
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R
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Rp
0

σ

1/kpr

Rq
0

σ

1/kqr

Figure 3.3.1: Illustration of the radial dependence of twoWKB basis elements from equation (3.11). Each Gaussian
is centred around a radius R0, with a typical extension given by the decoupling scale σ, and is modulated at the
radial frequency kr .

R
p
0

R
q
0

σ

σ

Figure 3.3.2: Illustration of two WKB basis elements in the polar (R,φ)−plane. Each basis element is located
around a central radiusR0, on a region of size σ. The winding of the spirals is governed by the radial frequency kr ,
while the number of azimuthal patterns is given by the index kφ, e.g., kφ=1 for the interior dark grey element, and
kφ=2 for the exterior light grey one.

Poisson’s equation in vacuum (i.e. Laplace’s equation) ∆ψ[kφ,kr,R0] =0 immediately leads to

Z ′′

Z
= k2

r

[
1− i

krR
+2i

R−R0

σ2

1

kr
+
R−R0

R

1

(σkr)2
+

1

(σkr)2
+

k2
φ

(krR)2
−
[
R−R0

σ2

1

kr

]2]
. (3.14)

At this stage, let us introduce explicitly our WKB assumption that all perturbations are radially tightly
wound. Defining the typical size of the system by Rsys, we assume that

krR� 1 ; krσ �
Rsys

σ
. (3.15)

For azimuthal wavenumbers kφ of order unity, equation (3.14) then becomes

Z ′′

Z
= k2

r . (3.16)
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As a conclusion, within the WKB limit, the extended potential from equation (3.13) takes the form

ψ[kφ,kr,R0](R,φ, z) = ψ[kφ,kr,R0](R,φ) e−kr|z| , (3.17)

where we ensured that for z→±∞, the potential tends to 0. Equation (3.17) introduces a discontinuity
for ∂ψ/∂z in z=0. Gauss’ theorem then gives the associated surface densities as

Σ(R,φ) =
1

4πG

[
lim
z→0+

∂ψ

∂z
− lim
z→0−

∂ψ

∂z

]
, (3.18)

so that
Σ[kφ,kr,R0](R,φ) = − |kr|

2πG
ψ[kφ,kr,R0](R,φ) . (3.19)

The next step of the construction of theWKB basis elements is to ensure that the potentials and densities
from equations (3.11) and (3.19) form a biorthogonal basis, i.e. that one has

δ
kqφ
kpφ
δ
kqr
kpr
δ
Rq0
Rp0

= −
∫

dRR dφψ[kpφ,k
p
r ,R

p
0 ](R,φ)

[
Σ[kqφ,k

q
r ,R

q
0](R,φ)

]∗
. (3.20)

One can rewrite the r.h.s. of equation (3.20) as

(3.20) =
|kqr |
2πG

ApAq√
πσ2

∫
dφ ei(kpφ−k

q
φ)φ

∫
dRR ei(kpr−k

q
r)R exp

[
− (R−Rp0)2

2σ2

]
exp

[
− (R−Rq0)2

2σ2

]
. (3.21)

The integration on φ is straightforward and gives 2πδ
kqφ
kpφ
. To perform the integration on R, we must now

introduce additional assumptions to ensure the biorthogonality of the basis. The peaks of the two Gaus-
sians in equation (3.21) may be assumed as separated if ∆R = Rp0−Rq0 satisfies the separation condition

∆R� σ if Rp0 6= Rq0 . (3.22)

The term from equation (3.21) can then be assumed to be non-zero only for Rp0 =Rq0. Equation (3.21)
becomes

δ
kqφ
kpφ
δ
Rq0
Rp0

|kqr |
G

ApAq√
πσ2

∫
dRR ei(kpr−k

q
r)R exp

[
− (R−Rp0)2

σ2

]
. (3.23)

The remaining integration on R now takes a form similar to the radial Fourier transform of a Gaussian
of spread σ at the frequency ∆kr=kpr−kqr , and is therefore proportional to exp[−(∆kr)

2/(4/σ2)]. As a
consequence, let us assume that the frequency spread ∆kr of the WKB basis satisfies

∆kr �
1

σ
if kpr 6= kqr . (3.24)

With this additional assumption, equation (3.23) is non-zero only for kpr =kqr . Therefore, as imposed by
equations (3.22) and (3.24), in order to have a biorthogonal basis, one has to consider a spread σ, central
radii R0, and radial frequencies kr such that

∆R0 � σ � 1

∆kr
. (3.25)

With these constraints, the r.h.s. of equation (3.20) is non-zero only for kpφ=kqφ, kpr =kqr , andR
p
0 =Rq0. The

last step of the calculation is to explicitly estimate the amplitude A in order to correctly normalise the
basis elements. Equation (3.20) imposes

|kr|
G

A2

√
πσ2

∫
dRR exp

[
− (R−R0)2

σ2

]
= 1 . (3.26)

Thanks to the WKB assumptions from equation (3.15), this integration is straightforward and gives

A =

√
G

|kr|R0
. (3.27)
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Once the basis elements from equation (3.11) have been fully specified, one may compute ψ(p)
m (J), their

Fourier transformw.r.t. the angles, as defined in equation (2.6). Thanks to the explicit epicyclic mapping
from equation (3.9), this takes the form

ψ
[kφ,kr,R0]
m (J) =

AeikrRg

(2π)2

∫
dθφdθR e−imφθφ e−imrθR eikφθφ

× e
i[krAR cos(θR)−kφ

2Ωφ
κ

AR
Rg

sin(θR)] BR0
(Rg+AR cos(θR)) . (3.28)

The integration on θφ is straightforward and gives 2πδ
kφ
mφ . Regarding the dependence on θR in the com-

plex exponential, we write

krAR cos(θR)−kφ
2Ωφ
κ

AR
Rg

sin(θR) = Hkφ(kr) sin(θR+θ0
R) , (3.29)

where we introduced the amplitudeHkφ(kr) and the phase shift θ0
R as

Hkφ(kr) = AR |kr|
√

1+

[
Ωφ
κ

2kφ
krRg

]2

; θ0
R = tan−1

[
− κ

Ωφ

krRg

2kφ

]
. (3.30)

For typical galactic discs, one has 1/2≤Ωφ≤κ (Binney & Tremaine, 2008). Assuming that kφ is of order
unity and relying on the WKB assumptions from equation (3.15), one can simplify equation (3.30) as

Hkφ(kr) ' AR |kr| ; θ0
R ' −

π

2
. (3.31)

As we assumed the disc to be tepid, the radial oscillations of the stars are small so that AR�Rg. In
equation (3.28), we may then get rid of the dependence on AR in BR0(Rg+AR cos(θR)) and replace
it with BR0(Rg). The only remaining dependence with AR in equation (3.28) is then in the complex
exponential, and we are now in a position to explicitly perform the last integration on θR. To do so, let
us recall the sum decomposition formula of the Bessel functions of the first kind J`, which reads

eiz sin(θ) =
∑
`∈Z
J`[z] ei`θ . (3.32)

The expression of the Fourier transformed WKB basis elements finally reads

ψ
[kφ,kr,R0]
m (J) = δ

kφ
mφ eikrRg eimrθ

0
R AJmr

[
Hmφ(kr)

]
BR0

(Rg) . (3.33)

3.4 WKB razor-thin amplification eigenvalues
After having explicitly constructed the WKB basis from equation (3.11), one may now compute the sys-
tem’s response matrix M̂ from equation (2.17). Thanks to the Fourier transformed WKB basis elements
from equation (3.33), one has to evaluate an expression of the form

M̂[kpφ,k
p
r ,R

p
0 ],[kqφ,k

q
r ,R

q
0](ω) = (2π)2

∑
m

∫
dJ

m·∂F/∂J
ω−m·Ω δ

kpφ
mφδ

kqφ
mφei(kqr−k

p
r )RgApAq

× Jmr
[√

2Jr
κ kpr

]
Jmr

[√
2Jr
κ kqr

]
BRp0 (Rg)BRq0(Rg) . (3.34)

Let us now illustrate how in the WKB limit, the response matrix becomes diagonal. One should first
note how equation (3.34) is very similar to equation (3.21) where we discussed the biorthogonality of
the WKB basis. In equation (3.34), the azimuthal Kronecker symbols impose kpφ=kqφ. Moreover, thanks
to our assumption from equation (3.25) on the step distances of the basis elements, the product of the
two Gaussian windows inRg imposesRp0 =Rq0 to have a non-negligible contribution. In order to shorten
temporarily the notations, let us introduce the function h(Rg) defined as

h(Rg) =

∣∣∣∣ dJφdRg

∣∣∣∣m·∂F/∂Jω−m·Ω ApAq Jmr
[√

2Jr
κ kpr

]
Jmr

[√
2Jr
κ kqr

]
, (3.35)
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which encompasses all the additional slow radial dependences from equation (3.34). When estimated
for Rp0 =Rq0, equation (3.34) becomes∫

dRg h(Rg) eiRg(kqr−k
p
r ) exp

[
− (Rg−Rp0)2

σ2

]
. (3.36)

This takes the form of a radial Fourier transform FR at the frequency ∆kr=kpr−kqr . When rewritten as
the convolution of two radial Fourier transforms, it becomes

(3.36) ∼
∫

dk′ FR[h](k′) exp

[
− (∆kr−k′)2

4/σ2

]
. (3.37)

Because of the WKB assumption from equation (3.25) and the Gaussian from equation (3.37), one can
note that if ∆kr 6=0, the contribution from FR[h](k′) will come from the region k′∼∆kr�1/σ. We as-
sume that the properties of the disc are slowly varying with the radius, so that the function h has a
radial Fourier transform limited to the frequency region |k′|.1/σ. Non-negligible contributions to the
response matrix can then only be obtained for ∆kr=kpr−kqr =0. As a conclusion, we have shown that
within the WKB framework, the response matrix from equation (2.17) can be assumed to be diagonal.
To shorten the notations, let us denote the matrix eigenvalues as

λ[kφ,kr,R0](ω) = M̂[kφ,kr,R0],[kφ,kr,R0](ω) . (3.38)

The last step of the present computation is to compute the integrals over Jφ and Jr in equation (3.34) to
obtain an explicit expression of the response matrix diagonal coefficients. First, the WKB scale decou-
pling assumption allows us to replace the Gaussian from equation (3.36) by a Dirac delta δD(Rg−Rp0)
(one should pay a careful attention to the correct normalisation of the Gaussian). Equation (3.34) then
becomes

λ[kφ,kr,R0](ω) = (2π)2A2

∣∣∣∣ dJφdRg

∣∣∣∣
R0

∑
m

δ
kφ
mφ

∫
dJr

m·∂F/∂J
ω−m·Ω J 2

mr

[√
2Jr
κ kr

]
. (3.39)

Here, the azimuthal Kronecker symbol allows us to execute the sum on mφ. In addition, the intrinsic
frequencies from equations (3.5) and (3.7) immediately give∣∣∣∣ dJφdRg

∣∣∣∣
R0

=
R0κ

2

2Ωφ
. (3.40)

As the disc is assumed to be tepid, we may assume that |∂F/∂Jφ|�|∂F/∂Jr|, so that only the DF’s gra-
dient w.r.t. the radial actionmay be kept in equation (3.39). Using the expression of the quasi-isothermal
DF from equation (3.10) and the basis amplitude from equation (3.27), equation (3.39) becomes

λ[kφ,kr,R0](ω) =
2πGΣ|kr|

κ2

κ4

k2
rσ

4
r

∑
mr

∫
dJr
−mr exp[−κJr/σ2

r ]

ω−kφΩφ−mrκ
J 2
mr

[√
2Jr
κ kr

]
. (3.41)

We now rely on the integration formula (see formula (6.615) in Gradshteyn & Ryzhik (2007))∫ +∞

0

dJr e−αJr J 2
mr

[
β
√
Jr

]
=

e−β
2/(2α)

α
Imr
[
β2

2α

]
, (3.42)

where α>0, β>0,mr∈Z, and Imr are modified Bessel functions of the first kind. We apply this formula
with α=κ/σ2

r and β=
√

2k2
r/κ. We also introduce the notation

χr =
σ2
rk

2
r

κ2
, (3.43)

so that equation (3.41) becomes

λ[kφ,kr,R0](ω) =
2πGΣ|kr|

κ2

κ

χr

∑
mr

−mre
−χrImr [χr]

ω−kφΩφ−mrκ
. (3.44)

Let us finally introduce the dimensionless shifted frequency s as

s =
ω−kφΩφ

κ
. (3.45)
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Using the property I−mr [χr]=Imr [χr], wemay finally rewrite equation (3.44) introducing the reduction
factor (Kalnajs, 1965; Lin & Shu, 1966)

F(s, χr) = 2(1−s2)
e−χr

χr

+∞∑
mr=1

Imr [χr]
1−[s/mr]2

. (3.46)

This allows for a final rewriting of the response matrix eigenvalues in the tightly wound limit as

M̂[kpφ,k
p
r ,R

p
0 ],[kqφ,k

q
r ,R

q
0](ω) = δ

kqφ
kpφ
δ
kqr
kpr
δ
Rq0
Rp0

2πGΣ|kr|
κ2(1−s2)

F(s, χr) . (3.47)

These eigenvalues are in full agreement with the seminal results from Kalnajs (1965) and Lin & Shu
(1966), which derived a WKB dispersion relation for razor-thin axisymmetric discs. In order to deal
with the singularity of the previous expression when evaluated for s=n∈Z, one should add a small
imaginary part to ω, so that s=n+iη. As long as η is small compared to the imaginary part of the least
damped mode of the disc, adding this complex part makes a negligible contribution to Re(λ). Equa-
tion (3.47) is an important result, as it allows us to estimate straightforwardly the strength of the tightly
wound self-gravitating amplification in the disc.

In order to illustrate the physical content of equation (3.47), let us now briefly describe how these
amplification eigenvalues allow for the recovery of Toomre’s stability parameterQ (Toomre, 1964). This
parameter characterises the local stability of an axisymmetric razor-thin stellar disc w.r.t. local tightly
wound axisymmetric perturbations. We are interested in the stability w.r.t. axisymmetric modes, so
that we impose kφ=0. We place ourselves at the stability limit given by ω=0, so that equation (3.47)
imposes s=0. We now seek a criterion on the disc’s parameters such that there exists no kr>0 for which
λ(kr)=1, i.e. so that the disc is stable. Thanks to equation (3.47), one has

λ(kr) =
2πGΣkr
κ2

F(0, χr) =
2πGΣ

κσr
K0(χr) , (3.48)

wherewe introduced the functionK0(χr)=
√
χr F(0, χr)=(1−e−χrI0[χr])/

√
χr. The shape of the func-

tion χr 7→K0(χr) is illustrated in figure 3.4.1. Fromfigure 3.4.1, one can note thatK0 reaches amaximum

Figure 3.4.1: Illustration of the behaviour of the function χr 7→K0(χr), for which one can identify the maximum
amplificationK0

max'0.534 reached for χ0
max'0.948. This maximum is directly related to Toomre’s Q parameter.

K0
max'0.534 for χ0

max'0.948. As a consequence, one always has λ(kr)≤(2πGΣK0
max)/(κσr). Noting

that 2πK0
max'3.36, we may finally introduce the local stability parameter Q as

Q(Jφ) =
σr(Jφ)κ(Jφ)

3.36GΣ(Jφ)
. (3.49)

Here Q corresponds to the local razor-thin Toomre’s parameter (Toomre, 1964), which for Q>1 en-
sures the local stability of a razor-thin stellar disc w.r.t. axisymmetric tightly wound perturbations.
The straightforward derivation of this stability parameter starting from the amplification eigenvalues
obtained in equation (3.47), illustrates how the razor-thin WKB basis introduced in equation (3.11) is in
full agreement with previous seminal results on the WKB linear theory of razor-thin discs.
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3.5 WKB limit for the collisionless diffusion
Let us now illustrate how the previous WKB calculations allow for the calculation of the secular colli-
sionless diffusion coefficients introduced in equation (2.31). In order to simplify the notations, the WKB
basis elements from equation (3.11) will be noted as

ψ(p) = ψ[kpφ,k
p
r ,R

p
0 ] . (3.50)

We have shown in equation (3.47) that within the WKB limit, the response matrix is diagonal. Introduc-
ing its eigenvalues as λp, one has M̂pq=λpδ

q
p. The matrix [I−M̂]−1 is then diagonal and the diffusion

coefficients from equation (2.32) take the form

Dm(J) =
1

2

∑
p,q

ψ(p)
m (J)ψ(q)∗

m (J)
1

1−λp
1

1−λq
Ĉpq(m·Ω) , (3.51)

where the sums on p and q run over the WKB basis elements. We recall that the basis elements ψ(p)
m

as well as the matrix eigenvalues λp do not change from one realisation to another, so that using the
definition of the perturbation autocorrelation from equation (2.26), we may rewrite equation (3.51) as

Dm(J) =

〈
1

2π

∫
dω′

1

2

∑
p,q

ψ(p)
m (J)ψ(q)∗

m (J)
1

1−λp
1

1−λq
b̂p(m·Ω) b̂∗q(ω

′)

〉
. (3.52)

In equation (3.52), note that the amplification eigenvalues λp, λq , and the basis coefficient b̂p are both
evaluated at the intrinsic frequencym·Ω, while b̂∗q is evaluated at the dummy frequency ω′. In order to
shorten the upcoming calculations, the frequencies of evaluation, when obvious, will not be explicitly
written out. Let us now rely on the explicit expression of the Fourier transformed WKB basis elements
from equation (3.33), so that equation (3.52) becomes

Dm(J) =

〈
1

2π

∫
dω′

∑
kpr ,k

q
r ,R

p
0 ,R

q
0

1

2

G√
Rp0R

q
0

1√
|kprkqr |

Jmr
[√

2Jr
κ kpr

]
Jmr

[√
2Jr
κ kqr

]
eiRg(kpr−k

q
r)

× 1

1−λp
1

1−λq
1√
πσ2

exp

[
− (Rg−Rp0)2

2σ2

]
exp

[
− (Rg−Rq0)2

2σ2

]
b̂pb̂
∗
q

〉
. (3.53)

Note that in equation (3.53), we got rid of the sum on kpφ and k
q
φ as equation (3.33) imposesmφ=kpφ=kqφ.

The next step of the calculation is to rewrite equation (3.53) so as to be independent from the exact choice
of the WKB basis, i.e. the precise value of σ. To do so, one should replace the basis coefficients b̂p by
expressions involving only the true external potential perturbation δψe. Relying on the biorthogonality
property of the basis elements imposed in equation (2.12), the basis coefficients b̂p are immediately given
by

b̂p(ω) = −
∫

dxΣ(p)∗(x) δψ̂e(x, ω) , (3.54)

where the .̂ corresponds to the temporal Fourier transform as defined in equation (2.9). Thanks to
the explicit expression of the WKB surface density elements obtained in equation (3.19), some simple
algebra (see Fouvry et al. (2015d) for details) easily leads to the relation

b̂p(ω) =

√
|kpr |Rp0
G

2π

(πσ2)1/4
e−iRp0k

p
r δψ̂e

mφ,k
p
r
[Rp0, ω] . (3.55)

In equation (3.55), the exterior potential δψ̂e has been transformed according to two transformations: (i)
an azimuthal Fourier transform of indice mφ, (ii) a local radial Fourier transform centred around Rp0 at
the frequency kpr . These two transformations are defined as

(i): fmφ =
1

2π

∫
dφ f [φ] e−imφφ ,

(ii): fkr [R0] =
1

2π

∫
dR e−ikr(R−R0) exp

[
− (R−R0)2

2σ2

]
f [R] . (3.56)
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Equation (3.55) therefore allowed us to express the basis coefficients b̂p as a function of the exterior
perturbing potential δψ̂e. Using this relation and disentangling the sums on (kpr , R

p
0) and (kqr , R

q
0), equa-

tion (3.53) can be rewritten as

Dm(J) =

〈
1

2π

∫
dω′ g(m·Ω) g∗(ω′)

〉
, (3.57)

where we defined the function g(ω) as

g(ω) = 2π
∑
kpr ,R

p
0

gs(k
p
r , R

p
0, ω) ei(Rg−Rp0)kpr Gr(Rg−Rp0) . (3.58)

In equation (3.58), Gr(R)=1/
√

2πσ2e−R
2/(2σ2) is a normalised Gaussian of width σ, and gs encompasses

all the slow dependences of the diffusion coefficients w.r.t. the radial position so that

gs(k
p
r , R

p
0, ω) = Jmr

[√
2Jr
κ kpr

]
1

1−λkpr
δψ̂e

mφ,k
p
r
[Rp0, ω] . (3.59)

Next, let us replace the sums on kpr and Rp0 appearing in equation (3.58) by continuous integrals. To
do so, we rely on Riemann sum formula

∑
f(x)∆x'

∫
dxf(x). One can note in the discrete sums from

equation (3.58) that the basis elements are separated by step distances ∆kr and ∆R0. We suppose that
generically kpr andR

p
0 are given by kpr =nk∆kr, andRp0 =Rg+nr∆R0, where nk is a strictly positive inte-

ger and nr is an integer that can be both positive or negative. In addition, one can note in equation (3.58)
the presence of a rapidly evolving complex exponential, which may cancel out the diffusion coefficients
if the basis step distances are not chosen carefully. When summed over the basis elements, this complex
exponential has the dependence

exp
[
i(Rg−(Rg+nr∆R0))nk∆kr

]
= exp

[
− inrnk∆R0∆kr

]
. (3.60)

As a consequence, since nrnk is an integer, in order not to have any contributions from the complex
exponential in equation (3.58), one should choose the step distances so that

∆R0 ∆kr = 2π . (3.61)

Such a choice corresponds to a critical sampling condition (Gabor, 1946; Daubechies, 1990). As illus-
trated in equation (3.60), this allows us to leave out the complex exponential from equation (3.58) when
performing the change to continuous expressions. This transformation is a subtle stage of the calcula-
tion, since the step distances should be simultaneously large to comply with the WKB constraints from
equation (3.25) and small to justify the use of Riemann sum formula. In this process, as the radial Gaus-
sian in equation (3.58) is sufficiently peaked and correctly normalised, it may be replaced δD(Rg−Rp0).
Equation (3.58) finally becomes

g(ω) =

∫
dkpr gs(k

p
r , Rg, ω) . (3.62)

Let us now define the autocorrelation Ĉδψe of the external perturbations as

Ĉδψe [mφ, ω,Rg, k
p
r , k

q
r ] =

1

2π

∫
dω′

〈
δψ̂e

mφ,k
p
r
[Rg, ω] δψ̂e

∗
mφ,k

q
r
[Rg, ω

′]
〉
. (3.63)

The expression (3.57) of the diffusion coefficients then takes the form

Dm(J) =

∫
dkpr Jmr

[√
2Jr
κ kpr

]
1

1−λkpr

∫
dkqr Jmr

[√
2Jr
κ kqr

]
1

1−λkqr
Ĉδψe [mφ,m·Ω, Rg, k

p
r , k

q
r ] , (3.64)

where the amplification eigenvalues, λkr , are given by equation (3.47) and read

λkr [Rg,m·Ω] =
2πGΣ|kr|
κ2(1−s2)

F(s, χ) . (3.65)

Let us now further simplify the diffusion coefficients from equation (3.64) by assuming some station-
arity properties on the stochasticity of the external perturbations δψe. We assume that these are spatially
quasi-stationary and satisfy〈

δψe
mφ

[R1, t1] δψe∗
mφ

[R2, t2]
〉

= C[mφ, t1−t2, (R1+R2)/2, R1−R2] , (3.66)
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where the dependence of the autocorrelation function Cw.r.t. (R1+R2)/2 is supposed to be slow. Thanks
to some simple algebra (see Appendix C of Fouvry et al. (2015d) for details), one can write〈

δψ̂e
mφ,k1

r
[Rg, ω1] δψ̂e

∗
mφ,k2

r
[Rg, ω2]

〉
= 2πδD(ω1−ω2) δD(k1

r−k2
r) Ĉ[mφ, ω1, Rg, k

1
r ] , (3.67)

where Ĉ[...] has been transformed twice, according to a temporal Fourier transform as defined in equa-
tion (2.9), and according to a local radial Fourier transform as in equation (3.56) of spread

√
2σ w.r.t.

R1−R2 in the neighbourhood of R1−R2 =0 and (R1+R2)/2=Rg. Here, note that in equation (3.67),
the autocorrelation was diagonalised w.r.t. ω and kr, as can be seen from the two Dirac deltas. The
diffusion coefficients from equation (3.64) then take the simple form

Dm(J) =

∫
dkr J 2

mr

[√
2Jr
κ kr

] [
1

1−λkr

]2

Ĉ[mφ,m·Ω, Rg, kr] . (3.68)

This explicit expression of the collisionless diffusion coefficients is the main result of this section. Equa-
tion (3.68) is indeed a simple quadrature involving the power spectrum of the external fluctuations at
the resonant frequencies boosted by the eigenvalues of the gravitational susceptibility squared.

In some situations, one may further simplify equation (3.68), thanks to the so-called approximation
of the small denominators, which amounts to focusing on the waves that yield the maximum amplifica-
tion. Indeed, let us assume that the function kr 7→λ(kr) is a sharp function reaching a maximum value
λmax(Rg, ω=m·Ω) for kr=kmax

r (Rg, ω). One can then introduce the two frequency bounds kinf
r and ksup

r ,
such that λ(k

inf/sup
r )=λmax/2. The characteristic spread of the region of maximum amplification is then

given by ∆kλ(Rg, ω)'ksup
r −kinf

r . Focusing only on this region, equation (3.68) can be approximated as

Dm(J) = ∆kλ J 2
mr

[√
2Jr
κ kmax

r

] [
1

1−λmax

]2

Ĉ[mφ,m·Ω, Rg, k
max
r ] . (3.69)

The previous approximation can also be improved by performing the integration for kr∈
[
kinf
r ; ksup

r

]
.

Such an approach is more numerically demanding but does not alter the conclusions drawn in the ap-
plications presented in section 3.7. In equation (3.69), one should note that the external perturbation
autocorrelation Ĉ, which sources the diffusion coefficients, depends on four different parameters: the
azimuthal wavenumber mφ, the local intrinsic frequency of the system m·Ω, the location in the disc
via Rg, and finally the radial frequency kmax

r of the most amplified tightly wound perturbation at this
location. As a conclusion, thanks to the explicit WKB basis introduced in equation (3.11), we obtained in
equations (3.68) and (3.69) explicit expressions for the system’s externally induced diffusion coefficients,
whose evaluations are now straightforward. In section 3.7, we illustrate how this formalism may be ap-
plied to recover the important features observed in numerical simulations of the long-term evolution of
stable quasi-stationary isolated and self-gravitating stellar discs.

3.6 WKB limit for the collisional diffusion
In this section, let us now emphasise how the previousWKB calculations also allow for the calculation of
the dressed susceptibility coefficients, as well as the collisional drift and diffusion coefficients, appearing
in the inhomogeneous Balescu-Lenard equation (2.67). Here, rather than considering a situation where
the disc evolves as a result of external stochastic perturbations, we consider the collisional case, where
the source of secular evolution is finite−N fluctuations. In this context, wewill especially emphasise how
the WKB approximation allows us to deal with the resonance condition present in the Balescu-Lenard
equation.

A crucial property of the WKB basis from equation (3.11) is that the response matrix, M̂, becomes
diagonal, as shown in equation (3.47). Using the same shortening notations as in equation (3.50), one
can rewrite the Balescu-Lenard susceptibility coefficients from equation (2.50) as

1

Dm1,m2
(J1,J2, ω)

=
∑
p

ψ(p)
m1

(J1)
1

1−λp(ω)
ψ(p)∗
m2

(J2) . (3.70)

Thanks to the expression of the Fourier transformed WKB basis elements from equation (3.33), this
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becomes
1

Dm1,m2(J1,J2, ω)
=

∑
kpφ,k

p
r ,R

p
0

δ
kpφ

mφ1
δ
kpφ

mφ2

G

kprR
p
0

1

1−λp
Jmr1

[√
2J1
r

κ1
kpr

]
Jmr2

[√
2J2
r

κ2
kpr

]
eikpr (R1−R2)eiθ0p

R (mr1−m
r
2)

× 1√
πσ2

exp

[
− (R1−Rp0)2

2σ2

]
exp

[
− (R2−Rp0)2

2σ2

]
, (3.71)

where we used the shortening notations κi=κ(Ji) and Ri=Rg(Ji). The azimuthal Kronecker symbols
immediately impose

mφ
1 = mφ

2 = kpφ , (3.72)

so that the sum on kpφ is limited to only one term. Before proceeding further with the evaluation of the
susceptibility coefficients, let us first emphasise an additional consequence of the WKB assumptions,
which is the restriction to local resonances.

Note that the Balescu-Lenard drift and diffusion coefficients from equations (2.69) and (2.70) in-
volve an integration over the dummy variable J2. For given values of J1, m1, and m2, this should
be seen as a scan of the entire action space, searching for resonant regions, where the resonance con-
straint m1 ·Ω1−m2 ·Ω2 =0 is satisfied (see figure 2.3.2). As we placed ourselves within the epicyclic
approximation, the intrinsic frequencies Ω=(Ωφ, κ) from equations (3.5) and (3.7) only depend on the
action Jφ. This significantly simplifies the resonance condition. For a given value of R1 =Rg(J1),m1,
andm2, one has to find the resonant radii Rr

2 such that the resonance condition f(Rr
2)=0 is satisfied,

where we defined the function f(Rr
2) as

f(Rr
2) = m1 ·Ω(R1)−m2 ·Ω(Rr

2) . (3.73)

After having identified the resonance radii Rr
2, one can then rely on the rule for the composition of a

Dirac delta and a smooth function, which reads

δD(f(x)) =
∑
y∈Zf

δD(x−y)

|f ′(y)| , (3.74)

where Zf ={y | f(y)=0} is the set of all the poles of f . Equation (3.74) also assumes that all the poles of
f are simple (i.e. non-degenerate), which in our context amounts to assuming that

d(m2 ·Ω)

dR

∣∣∣∣
Rr

2

6= 0 . (3.75)

As long as the rates of change of the two intrinsic frequencies are not in a rational ratio, resonance poles
will be simple. Note that the harmonic case, for which κ=2Ωφ, and the Keplerian case, for which κ=Ωφ,
are in this sense degenerate. Such dynamical degeneracies, which occur for example in the vicinitiy of
supermassive black holes or for protoplanetary discs, require amore involved evaluation of the Balescu-
Lenard collision operator, and will be considered in detail in chapter 6. As noted in equation (3.72),
in order to have non-zero susceptibility coefficients, one must have mφ

1 =mφ
2 . As a consequence, the

resonance requirement from equation (3.73) takes the form

mφ
1 Ωφ(R1) +mr

1κ(R1) = mφ
1 Ωφ(Rr

2) +mr
2κ(Rr

2) . (3.76)

Note in equation (3.71) the presence of narrow radial Gaussians in R1 and R2. As a consequence, the
relevant resonant radiiRr

2 must necessarily be close toR1, so that |∆R|= |Rr
2−R1|. (few)σ. In this limit,

one can rewrite equation (3.76) as[
mφ

2

dΩφ
dR

+mr
2

dκ

dR

]
∆R =

[
mr

1−mr
2

]
κ(R1) . (3.77)

On the one hand, in the l.h.s. of equation (3.77), the term within brackets is non-zero, because of our
assumption of non-degeneracy from equation (3.75). Moreover, because of the WKB scale decoupling
approach, the additional prefactor∆R is small. On the other hand, the r.h.s. of equation (3.77) is discrete:
it is either zero, or at least of the order of κ(R1). To be satisfied, equation (3.77) therefore imposes that
its two sides should be equal to 0. As a consequence, within the WKB limit, only local resonances are
allowed so that

Rr
2 = R1 ; mr

2 = mr
1 . (3.78)
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This is an important consequence of the WKB approximation. This forbids distant orbits to resonate,
and allows for an explicit calculation of the collision operator.

As a result of this restriction, let us proceed with the evaluation of the dressed susceptibility co-
efficients from equation (3.71), by restricting ourselves only to m2 =m1 and R2 =R1. Equation (3.71)
becomes

1

Dm1,m1

=
∑
kpr ,R

p
0

G

kprR
p
0

1

1−λp
Jmr1

[√
2J1
r

κ1
kpr

]
Jmr1

[√
2J2
r

κ1
kpr

]
1√
πσ2

exp

[
− (R1−Rp0)2

σ2

]
, (3.79)

where we introduced the shortening notation 1/Dm1,m1
=1/Dm1,m1

(R1, J
1
r , R1, J

2
r , ω). As in equa-

tion (3.62), the next step of our calculation is to replace the discrete sums on the indices kpr and Rp0 in
equation (3.79) by continuous integrals. As previously, we rely on Riemann sum formula, and assume
that the step distances of theWKB basis ∆R0 and ∆kr satisfy the critical sampling condition from equa-
tion (3.61), i.e. one has ∆R0∆kr=2π. We also note in equation (3.79) the presence of a narrow radial
Gaussian in (R1−Rp0). As it is correctly normalised, we may replace it with a Dirac delta δD(R1−Rp0).
Equation (3.79) becomes

1
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1

2π
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[√
2J1
r

κ1
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]
Jmr1

[√
2J2
r

κ1
kr

]
, (3.80)

where we introduced a cut-off at 1/σk for the integration on kr. This bound is justified by the WKB
constraint from equation (3.25), which imposes that the radial frequency kr is bounded from below and
avoids the divergence associated with the factor 1/kr. It is also important to recall that the susceptibil-
ity coefficients should only be evaluated at R2 =R1 andm2 =m1, as a result of the restriction to local
resonances obtained in equation (3.78). The explicit expression of the susceptibility coefficients from
equation (3.80) constitutes the main result of this section. Equation (3.80) also implies that only orbits
with similar J1

r and J2
r contribute significantly, i.e. the resonances are local.

Finally, following equation (3.69), one can further simplify equation (3.80) by relying on the approxi-
mation of the small denominators. This amounts to assuming that the biggest contribution to the suscep-
tibility coefficients comes from the tightly wound waves with the largest λkr . With the same notations
than equation (3.69), one can write

1
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=
1

2π

G

R1

∆kλ
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r
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[√
2J1
r

κ1
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r

]
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[√
2J2
r

κ1
kmax
r

]
. (3.81)

While still focusing on the most amplified waves, one can improve the approximation of equation (3.81).
Indeed, starting from equation (3.80), one can instead perform the kr−integration for kr∈ [kinf

r ; ksup
r ],

where the frequency bounds are defined by λ(k
inf/sup
r )=λmax/2. This approach is numerically more

demanding, but allows for a more precise determination of the secular diffusion flux properties.
Once the susceptibility coefficients have been estimated, onemay finally evaluate the Balescu-Lenard

drift and diffusion coefficients from equations (2.69) and (2.70). Thanks to the restriction to local reso-
nances obtained in equation (3.78), the sum onm2 in equations (2.69) and (2.70) is limited to the only
term m2 =m1. Relying on the formula from equation (3.74), one can immediately perform the inte-
gration w.r.t. J2

φ, which adds a prefactor of the form 1/|∂(m1 ·Ω1)/∂Jφ|. Let us finally introduce the
shortening notation

1

(m1 ·Ω1)′
=

1∣∣ ∂
∂Jφ

[m1 ·Ω1]
∣∣
J1
φ

, (3.82)

so that the drift coefficients from equation (2.69) become

Am1
(J1) = − 4π3µ
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while the diffusion coefficients from equation (2.70) become
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. (3.84)

In both equations (3.83) and (3.84), the susceptibility coefficients are given by equation (3.80), or by equa-
tion (3.81) within the approximation of the small denominators. These explicit expressions of the drift
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and diffusion coefficients constitute an important result of this section. Let us emphasise that this WKB
Balescu-Lenard formalism is self-contained and does not require any ad hoc fittings of the fluctuations
occurring in the system. Except for the explicit calculation of the amplification eigenvalues in equa-
tion (3.47), the previous calculations are not limited to the quasi-isothermal DF from equation (3.10).
Indeed, these drift and diffusion coefficients are valid for any tepid disc, provided one may rely on the
epicyclic angle-action mapping from equation (3.9).

3.7 Application to radial diffusion
Let us now apply the previous razor-thinWKB collisionless and collisional diffusion equations to investi-
gate how shot noise may induce radial diffusion in razor-thin axisymmetric stellar discs. In section 3.7.1,
we present a model of razor-thin disc model, while in section 3.7.2, we investigate how the previous dif-
fusion fluxes allow us to qualitatively understand the diffusion features observed in direct numerical
simulations.

3.7.1 A razor-thin disc model
Recently, Sellwood (2012) (hereafter S12) investigated the secular evolution of a razor-thin disc, via tai-
lored and careful numerical simulations. After letting this disc evolve for hundreds of dynamical times,
S12 observed an irreversible diffusion of the disc’s DF in action space along narrow resonant ridges (see
figure 3.7.5). This evolution was sustained by the spontaneous generation of transient spiral waves in
the disc, as we will later detail. The disc considered by S12 is a razor-thin Mestel disc (Mestel, 1963),
for which the circular speed v2

φ=R∂ψM/∂R=V 2
0 is independent of the radius, where ψM is initial total

potential in the system. One interest of such a simple analytical model is that it reproduces fairly well
the observed flat rotation curves of galaxies. The stationary background potential ψM and its associated
surface density ΣM are given by

ψM(R) = V 2
0 ln

[
R

Rmax

]
; ΣM(R) =

V 2
0

2πGR
, (3.85)

where Rmax is a scale parameter. Because ψM is scale invariant, the relationship from equation (3.4)
between the angular momentum Jφ and the guiding radius Rg takes the simple form

Jφ = RgV0 . (3.86)

Within the epicyclic approximation, it is also straightforward to obtain from equation (3.4) that the in-
trinsic frequencies of motion Ωepi

φ and κepi take the simple form

Ωepi
φ (Jφ) =

V 2
0

Jφ
; κepi(Jφ) =

√
2 Ωepi

φ (Jφ) . (3.87)

Note that the Mestel disc appears as an intermediate non-degenerate disc for which κepi/Ωepi
φ =

√
2,

between the Keplerian case (κ/Ωφ=1) and the harmonic one (κ/Ωφ=2). Following Toomre (1977b)
and Binney & Tremaine (2008), a self-consistent DF for such a Mestel disc is given by

FM(E, Jφ) = CM Jqφ exp[−E/σ2
r ] , (3.88)

where the exponent q and the normalisation prefactor CM are given by
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V 2

0

σ2
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−1 ; CM =
V 2

0

21+q/2π3/2Gσq+2
r Γ[ 1

2 + q
2 ]Rq+1

max

. (3.89)

In equations (3.88) and (3.89), we introduced σr as the constant radial velocity dispersion within the
disc. Relying on the epicyclic approximation, the DF from equation (3.88) may be approximated by a
quasi-isothermal DF as in equation (3.10), where the intrinsic frequencies are given by equation (3.87),
the velocity dispersion σr is constant throughout the disc, and the surface density is given by Σstar, the
active surface density of the disc. In order to deal with the central singularity of the Mestel disc and its
infinite extent, one introduces two tapering functions Tinner and Touter as

Tinner(Jφ) =
Jνt

φ

(RiV0)νt +Jνt

φ

; Touter(Jφ) =

[
1+

[
Jφ
RoV0

]µt
]−1

, (3.90)
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where the two power indices νt and µt control the sharpness of the two tapers, while the radiiRi andRo

are two scale parameters. These tapers intend to mimic the presence of a bulge and the outer truncation
of the stellar disc. In addition to these taperings, we also assume that only a fraction ξ (with 0≤ξ≤1)
of the disc is indeed active, i.e. self-gravitating, while the missing component will correspond to a static
contribution from the dark matter halo. As a consequence, the active DF Fstar is given by

Fstar(E, Jφ) = ξ FM(E, Jφ)Tinner(Jφ)Touter(Jφ) . (3.91)

One may also rewrite the active surface density Σstar of the disc as

Σstar(Jφ) = ξΣM(Jφ)Tinner(Jφ)Touter(Jφ) . (3.92)

We place ourselves in the same unit system as S12, so that V0 =G=Ri =1. The other numerical factors
are chosen as q=11.4, νt =4, µt =5, ξ=0.5, Ro =11.5, and Rmax =20. The total active mass of the disc is
then straightforward to estimate and reads Mtot =5.4. The shape of the active surface density Σstar is
illustrated in figure 3.7.1. The initial contours of the active DF Fstar are illustrated in figure 3.7.2. Because

Figure 3.7.1: Illustration of the active surface density Σstar of the taperedMestel disc from equation (3.92). Because
of the two tapers from equation (3.90), the self-gravity of the disc is turned off in its inner and outer regions.

Figure 3.7.2: Contours of the initial distribution function Fstar from equation (3.91) in action space (Jφ, Jr). Con-
tours are spaced linearly between 95% and 5% of the distribution function maximum.

this disc is scale invariant (except for the presence of the tapering functions from equation (3.90)), the
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local Toomre’s parameter Q (Toomre, 1964), rederived in equation (3.49), becomes almost independent
of the radius, especially in the intermediate regions of the disc far from the tapers. As illustrated in
figure 3.7.3, one has Q'1.5 between the tapers and it increases strongly in the tapered regions.

Figure 3.7.3: Dependence of the local Toomre’s parameter Q as a function of the angular momentum (i.e. the
position within the disc) for the tapered Mestel disc from equation (3.92). It is scale invariant except in the inner
and outer regions as a result of the presence of the tapering functions Tinner and Touter.

At this stage, let us emphasise that S12 restricted perturbations to the sole harmonic sector mφ=2
in order to clarify the dynamical mechanisms at play and avoid any decentring effects prohibitive for
its code based on a polar grid. We note that the expressions (2.33) and (2.71) of the collisionless and
collisional diffusion flux require us to sum on all the resonance vectorsm=(mφ,mr). Following S12’s
restriction, wemay therefore limit ourselves to the only casemφ=2. Throughout our calculations, in ad-
dition to this azimuthal restriction, we will more drastically restrict the resonance vectors to only three
different resonances, namely the inner Lindblad resonance (ILR),m=(2,−1), the corotation resonance
(COR),m=(2, 0), and finally the outer Lindbald resonance,m=(2, 1). Figure 3.7.4 illustrates how these
three resonances can be interpreted when considering stars’ individual orbits. All the calculations pre-
sented in the upcoming calculations were also performed while accounting for the contributions from
the resonancesmr=±2, which were checked to be subdominant.

When simulating the previous razor-thin Mestel disc, S12 invariably observed sequences of tran-
sient spirals, even if the disc was specifically tailored to be isolated, stable, and quasi-stationary. On
long timescales, this led to an irreversible diffusion in action space of the system’s DF as illustrated in
figure 3.7.5. Indeed, figure 3.7.5 illustrates the late time formation of a resonant ridge of particles of
larger radial actions in the inner regions of disc. This narrow ridge along a very specific resonant di-
rection is a signature of secular evolution occurring in the system. This caused a long-term aperiodic
evolution of the disc, during which small resonant and cumulative effects add up in a coherent way. It
generically encompasses both processes of churning and blurring (Schönrich & Binney, 2009a). We will
explain below in section 3.7.2 the formation of this feature thanks to the previously derived razor-thin
WKB diffusion coefficients. In chapter 4, we will revisit the exact same problemwhile properly account-
ing for the system’s self-gravitywhich can dress and strongly amplify the fluctuationswithin the system.
Because the simulated disc was isolated, the origin of these small effects, amplified via collective effects,
must come from finite−N effects, i.e. be induced by the system’s own discreteness.

Let us now illustrate in figure 3.7.6, the dependence of the system’s response with the number of
particles used to represent the disc. In figure 3.7.6, the disc’s evolution is characterised by the peak
overdensity δmax =δΣstar/Σstar, which offers an estimation of howmuch the disc has evolved compared
to its initial quasi-stationary state. Important remarks can be made from figure 3.7.6. First, because
of the unavoidable Poisson shot noise in the initial conditions, the larger the number of particles, the
smaller the initial value of δmax, with an expected scaling given by δmax∝1/

√
N . See the left panel of

figure 4.4.2 for a detailed confirmation of this prediction. One can also note an initial systematic steep
rise in δmax in the very first dynamical times. This corresponds to the initial swing amplification (see
figure 3.7.14) of the initial Poisson shot noise. The quieter the initial sampling (see Sellwood (1983) for
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Ωp

COR

ILR

OLR

Figure 3.7.4: Inspired from figure 1.10 of Kormendy (2013). Illustration of stellar orbits - within the epicyclic
approximation - and some associated resonances as seen in the rotating frame attached to amp =2 pattern rotating
anticlockwise at the pattern frequency Ωp (see top arrow). In this rotating frame, the pattern remains fixed, while,
because of differential shearing (i.e. the fact the orbital frequencies decay as stars move outwards), stars will drift
w.r.t. it. Inside the corotation, stars drift forward (anticlockwise) w.r.t. the pattern, i.e. they have an azimuthal
frequency larger than the one of the pattern. Outside the corotation, stars drift backwards (clockwise) w.r.t. the
pattern, as they have a smaller azimuthal frequency. In addition to their azimuthal oscillations at the frequency
Ωφ, stars also undergo a harmonic libration at the frequency κ. At corotation (COR, pink orbit), for which Ωp =Ωφ,
because of the radial motion, stars move clockwise along a closed ellipse. At the inner Lindblad resonance (ILR,
blue orbit), defined as Ωp =Ωφ−κ/2, the stellar epicyclic orbit in the rotating frame is a closed ellipse: the star
executes two radial oscillations for every forward (anticlockwise) azimuthal revolution around the centre. At the
outer Lindblad resonance (OLR, orange orbit), for which Ωp =Ωφ+κ/2, the orbit is also closed in the rotating frame:
the star executes two radial oscillations for every backwards (clockwise) azimuthal revolution around the centre.
For other guiding radii, illustrated with grey orbits, the stellar orbits are not closed: the stars are not at resonance
with the pattern.

a presentation of the quiet start sampling procedure used in S12), i.e. the closer the system is from
equilibrium, the weaker this initial phase. See section 4.4 and especially figure 4.4.2 for a more thorough
investigation of the dependence of the system’s response w.r.t. the number of particles. Right after
this initial amplification, the system undergoes two successive dynamical regimes. The first stage is a
stage of slow evolution, during which δmax slowly increases. Then, at a later stage, for δmax&0.02, the
growth of δmax becomes much steeper and eventually reaches a saturation. As discussed in detail in
section 4.4.4 and the associated figure 4.4.6, the first stage of slow evolution corresponds to a regime of
secular collisional dynamics during which the system evolves as a result of dressed finite−N effects. As
for the second regime of fast growth, it corresponds to unstable collisionless dynamics. This can hardly
be seen in figure 3.7.6, but one expects the growth rate of δmax in the first initial slow phase to decrease
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Figure 3.7.5: Extracted from Sellwood (2012). Ilustration of the evolution of the active stellar DF Fstar from equa-
tion (3.91) in action space (Jφ, Jr). Left panel: Initial contours of Fstar(Jφ, Jr) for t=0. Contours are spaced linearly
between 95% and 5% of the function maximum. One can note how the inner taper from equation (3.90) suppresses
the system’s density for low angular momentum. Right panel: Same as in the left panel but at a much later stage of
the evolution t=1400. In the inner regions of the disc, one can note the formation on secular timescales of a narrow
ridge of enhanced radial actions Jr . This is a signature of secular evolution.

Figure 3.7.6: Extracted from Sellwood (2012). Illustration in S12’s simulation of the dependence of the peak over-
density δmax =δΣstar/Σstar as a function of time and the number of particles in the simulation (represented by
different colors). Because of the initial Poisson shot noise in the sampling, the larger the number of particles, the
smaller the initial value of δmax, which decreases like 1/

√
N . The initial systematic steep rises in δmax in the very

first dynamical times correspond to the swing amplification of the system’s initial Poisson shot noise. Two phases
can then be identified in the growth of δmax. The first slow phase, up to δmax.0.02, corresponds to a slow col-
lisional dynamics driven by finite−N effects, which gets slower as the number of particles increases. The second
faster phase, for δmax&0.02, corresponds to an unstable collisionless evolution whose growth rate is independent
of the number of particles used. See section 4.4 for a detailed discussion on these various dependences.

as N gets larger, while the growth rate of δmax in the second faster regime is independent of the values
of N used in the simulation. All the various properties inferred from figure 3.7.6 will be discussed and
recovered in detail in section 4.4.

Having detailed the main results from S12’s long-term simulations of razor-thin stable discs, let us
now investigate in section 3.7.2 how the razor-thin WKB limits of the collisionless and collisional diffu-
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sion equations, obtained in sections 3.5 and 3.6, allow us to explain the formation of the narrow ridge of
resonant orbits observed in the direct N−body simulations from figure 3.7.5.

3.7.2 Shot noise driven radial diffusion
In order to compute the diffusion fluxes associated with the collisionless and collisional razor-thinWKB
diffusion equations, let us first investigate the disc’s self-gravitating amplification. This is captured by
the razor-thin WKB amplification eigenvalues λ(kr) obtained in equation (3.47). The behaviour of this
amplification is indeed essential to implement the approximation of the small denominators needed to
estimate the disc’s diffusion properties as in equations (3.69) and (3.81). For a given position Jφ and a
given resonancem, figure 3.7.7 illustrates the behaviour of the function kr 7→λ(kr). This figure allows

Figure 3.7.7: Variations of the response matrix amplification eigenvalues λ from equation (3.47) with the WKB
radial frequency kr , form=(mφ,mr)=(2, 0) and two different values of Jφ. The curve that peaks at large kr is for
the smaller value of Jφ. We illustrated as well the domain of maximum amplification given by kr∈ [kinf

r ; ksup
r ] for

which one has λmax/2≤λ(kr)≤λmax, where λmax =λ(kmax
r ). This domain corresponds to the regions over which

the integration for the approximation of the small denominators will be performed in equations (3.69) and (3.81).

us to determine what are the wave frequencies that yield locally the maximum amplification. Such
waves sustain the system’s WKB diffusion. Note that because equation (3.47) only depends on s2, the
ILR and OLR resonances will always have the same amplification eigenvalues. Thanks to figure 3.7.7,
one can determine the frequency of maximum amplification kmax

r such that λ(kmax
r )=λmax. We also

define the domain of maximum amplification kr∈ [kinf
r , ksup

r ], such that λmax/2≤λ(kr), over which the
integrations on kr may be performed in equations (3.69) and (3.81). Let us note that because of the
scale-invariance of the razor-thin Mestel disc, it is straightforward to show that kmax

r ∝ 1/Jφ, as well as
k

inf/sup
r ∝ 1/Jφ. Figure 3.7.8 illustrates the behaviour of the amplification factor 1 7→1/(1−λmax(m, Jφ))

for the different resonances m. We note that the COR resonance is always more amplified than the
ILR and OLR resonances (see figure 3.7.10 for a discussion of one consequence of such an ordering),
but the overall maximum WKB amplification (∼3 for the COR and ∼1.5 for the ILR and OLR) remains
sufficiently small, for the system’s diffusion not to be dictated only by the properties of the disc’s self-
gravity. Having estimated the system’s susceptibility, one can now estimate in turn the collisionless
diffusion flux (section 3.7.2.1) as well as the collisional one (section 3.7.2.2) to recover the formation of
the radial resonant ridge observed in figure 3.7.5.

3.7.2.1 Collisionless forced radial diffusion

The aim of this section is to understand the formation of the radial ridge observed in figure 3.7.5. A first
approach is to rely on the razor-thin WKB limit of the collisionless diffusion equation obtained in sec-
tion 3.5. Let us already emphasise that S12’s simulations modelled an isolated stellar disc in the absence
of any external perturbations. As a consequence, in order to rely on our collisionless formalism, one has
to assume some form for the perturbation power spectrum Ĉ[mφ, ω,Rg, kr] appearing in the diffusion
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Figure 3.7.8: Dependence of themaximum amplification factor 1/(1−λmax) for various resonances as a function of
the position Jφ within the disc. The amplification associated with the COR is always larger than the one associated
with the ILR or OLR. Self-gravity is turned off in the inner and outer regions as a result of the tapering functions
from equation (3.90).

coefficients from equation (3.68). Here we will assume that the "exterior" potential felt by the system
represents the inevitable source of noise caused by the finite number of stars in the disc. Of course, such
perturbations originate from the disc itself, but could also mimic the effects that massive compact gas
clouds have on the disc. Because of Poisson shot noise, potential fluctuations scale like δψe∝√Σstar,
so that we may say that, up to a normalisation, the system undergoes perturbations following a power
spectrum given by

Ĉ[mφ, ω,Rg, kr] = δ2
mφ

Σstar(Rg) . (3.93)
Such an approximation is relatively crude as we only accounted for the dependence of the noise with Jφ,
and neglected any dependencew.r.t. ω and kr. In equation (3.93), we also added an azimuthal Kronecker
symbol to account for the fact that the perturbing forces in the systemwere restricted to the sole harmonic
sector mφ=2. For a system perturbed by a more realistic exterior source, one expects the spectrum of
the external perturbations to be more coloured and to depend on the full statistical properties of the
perturbers. We also note that the absence of dependence w.r.t. ω in equation (3.93) implies that the three
resonances ILR, COR, and OLR will undergo the same perturbations when considered for the same
location in the disc, even if they are associated with different local frequencies m·Ω. Looking at the
shape of the active surface density Σstar in figure 3.7.1, one can note that the inner region of the disc
(Jφ'1.5) in the vicinity of the inner taper will be the most perturbed region. Let us also emphasise that
the disc’s self-induced shot noise fluctuations are not external perturbations, so that one should rely
on the Balescu-Lenard formalism from section 3.6 to account self-consistently for the system internal
graininess. This will be the focus of section 3.7.2.2.

Having estimated in figure 3.7.8 the characteristics of the disc’s WKB amplification eigenvalues, and
having specified in equation (3.93) our model to describe the spectral properties of the system’s internal
shot noise fluctuations, we may now compute the system’s razor-thin WKB collisionless diffusion coef-
ficients given by equation (3.69), and then the associated collisionless diffusion flux F tot. Figure 3.7.9
illustrates the initial behaviour of the diffusion flux norm |F tot|. In figure 3.7.9, the dark contours show
the magnitude of the collision diffusion fluxF tot generated by the contributions from the two Lindbald
resonances and the coration resonance. The grey arrow shows the direction of particles’ individual dif-
fusion at the location of the peak flux (the direction is similar at neighbouring points). In figure 3.7.9,
one can note the presence of only one maximum peak of diffusion located in (Jφ, Jr)'(1, 0.01). Note
that the position of the peak of diffusion is slightly offset from the one observed in S12’s simulations
illustrated with the background contours of figure 3.7.9. This difference is due both to the crude noise
model of equation (3.93), as well as to the intrinsic limitations of the explicit razor-thin WKB formalism
which prevents us from correctly describing the diffusion regime associated with loosely wound tran-
sient spirals. See section 4.3.3 for a full justification of why these contributions are indeed essential for
the secular formation of the resonant ridge. However, our analytical results remain in good qualitative
agreement with the numerical experiments from S12. We also note in figure 3.7.9 that the dominant net
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Figure 3.7.9: Illustration of the norm of the collisionless diffusion flux |F tot| summed over the three resonances
(ILR, COR and OLR) in bold lines. The contours are spaced linearly between 95% and 5% of the maximum norm.
The grey vector gives the direction of the particle’s diffusion vector associated with the norm maximum (arbitrary
length). The background thin lines correspond to the diffused distribution from S12, which exhibits a narrow res-
onant ridge of diffusion.

flux makes an angle of 111◦ with the Jφ−axis, while the diffusion associated with the ILR resonance
is inclined by 153◦ w.r.t the Jφ−axis. This corresponds to the direction associated with the resonance
vector m=(−2, 1). These two similar inclinations illustrate the dominant role played by waves at the
ILR resonance in the inner region of the disc, where the DF peaks. Finally, we note quite surprisingly
that despite having assumed in equation (3.93) that the driving fluctuations are white noise, we recov-
ered in figure 3.7.9 that the norm of the diffusion flux is sharply peaked in action space. This is a clear
illustration of the localisation of the disc’s inner taper (which can be seen in figure 3.7.1). Because of this
sharp tapering, one expects the DF’s gradients ∂F/∂J to be significant in these regions, which naturally
enhances the collisionless diffusion flux F tot from equation (2.33).

Following our characterisation of the collisionless diffusion sourced by the Poisson shot noise from
equation (3.93), let us now explore how the disc’s gravitational susceptibility may impact its secular
evolution. This is illustrated in figure 3.7.10, where we investigate the effect of changing the disc’s active
fraction ξ, as introduced in equation (3.91). In figure 3.7.10, one can note that as the disc’s active fraction
increases, the disc’s susceptibility gets larger, so that the diffusion gets hastened because perturbations
aremore amplified. In addtion to this acceleration, one can also note that the contours of the norm of the
collisionless diffusion flux also change qualitatively of behaviour. Indeed, as ξ increases, one observes a
transition between an ILR-dominated heating in the inner region of the disc (Jφ'1), to a regime a radial
migration of quasi-circular orbits in more intermediate regions of the disc (Jφ'2). Such a transition
can be understood from figure 3.7.8, where we note that the COR resonance is always more amplified
than the ILR and OLR resonances. As can be seen from equation (3.47), increasing the active fraction ξ
immediately leads to an increase of the amplification eigenvalues λ. As a consequence, as ξ increases,
both λILR

max and λCOR
max increase. However, since one has λILR

max<λ
COR
max <1, for λCOR

max close to 1, because the
effective amplification is given by the factor 1/(1−λmax), the COR resonance gets much more amplified
than the ILR and OLR resonances. This is the reason for the transition of diffusion regime observed
in figure 3.7.10. As ξ increases, the COR resonance ends up being dominant leading to the transition
observed in figure 3.7.10. With such higher active fractions of the disc, the system’s diffusion regime is
dictated by the higher intrinsic susceptibility of the disc, whose effect is indeed captured by the WKB
collisionless diffusion coefficients from equation (3.69).
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Figure 3.7.10: Illustration of the norm of the collisionless diffusion flux |F tot| summed over the three resonances
(ILR, COR andOLR), as one varies the disc’s active fraction ξ. From left to right: ξ=0.65, 0.68, 0.71. Such values of ξ
still complywith the stability constraintQ(Rg)>1 everywhere in the disc. The contours are spaced linearly between
95% and 5% of the norm maximum. As the active fraction ξ increases, the disc’s gravitational susceptibility gets
stronger. This leads to a transition in the diffusion regime of the disc from a regime of heating in the inner regions
through the ILR resonance for small values of ξ, to a regime of radial migration of quasi-circular orbits through the
corotation resonance in more external regions of the disc.

3.7.2.2 Collisional radial diffusion

In the previous section, we applied the razor-thin WKB collisionless formalism from section 3.5 to un-
derstand the spontaneous formation of the radial resonant ridge observed in figure 3.7.5. The main
assumption of the previous section was to treat the disc’s internal Poisson shot noise as an exterior per-
turbation and model it according to equation (3.93). The self-induced fluctuations associated with the
finite number of particles in the disc, because they are created by the disc itself, should ideally not be
treated as imposed by an external perturber, but should be accounted for self-consistently. This is the
main purpose of the Balescu-Lenard equation (2.67), whose razor-thin WKB limit was obtained in sec-
tion 3.6. Given the knowledge of the disc’s WKB amplification eigenvalues obtained in figure 3.7.8, one
can straightforwardly proceed to the evaluation of the razor-thin WKB susceptibility coefficients de-
rived in equation (3.81). The associated collisional drift and diffusion coefficients from equations (3.83)
and (3.84) may then be estimated. This allows us to estimate the system’s total collisional diffusion flux
F tot from equation (2.71) and its associated divergence div(F tot). As previously discussed, we restrict
here the sums on the resonance vectorsm only to the ILR, COR and OLR resonances. Since the Balescu-
Lenard formalism self-consistently accounts for the system’s internal graininess, these calculations do
not require any ad hoc fittings or assumptions on the spectral properties of the system’s internal fluc-
tuations. Because the individual mass of the particles scales like µ=Mtot/N , let us rather consider the
quantity Ndiv(F tot) which is independent of the number of particles. This allows for a quantitative
comparison with the results obtained in figure 3.7.5 via S12’s numerical simulations.

Figure 3.7.11 illustrates the initial contours of Ndiv(F tot) in action space as predicted by the razor-
thin WKB limit of the Balescu-Lenard equation. In figure 3.7.11, red contours are associated with re-
gions for whichNdiv(F tot)<0, so that following the convention from equation (2.72), they correspond
to regions where the razor-thin WKB Balescu-Lenard equation predicts a decrement of the disc’s DF.
In contrast, blue contours are associated with regions for which Ndiv(F tot)>0, i.e. regions where the
DF will increase. The overall diffusion obtained in figure 3.7.11 involves two simultaneous diffusions,
namely the beginning of the formation of a resonant ridge towards larger radial actions in the vicinity
of (Jφ, Jr)'(1.0, 0.1), and the formation of an overdensity along the Jφ−axis around (Jφ, Jr)'(1.8, 0).
This first diffusion feature is in fact consistent with S12’s early time measurements, as shown in fig-
ure 3.7.12, and with the similar late time ones, as shown in figure 3.7.13. The qualitative agreements
observed in figures 3.7.12 and 3.7.13 are in fact surprisingly good, given all the approximations needed
in the derivation of theWKB theory, and the fact that the collisional diffusion flux was only computed at
the initial time t=0+. Interestingly, note that the early time measurement reported in figure 3.7.12 also
displays the hint of the formation of an overdensity along the Jr=0 axis, in agreement with the second
diffusion process discussed previously. We note that the late time measurement from figure 3.7.13 sug-
gests that this overdensity has split, with the hint of the formation of a second ridge. The disappearance
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Figure 3.7.11: Map of Ndiv(F tot) where the total flux F tot has been summed over the three resonances (ILR,
COR and OLR). Red contours, for which Ndiv(F tot)<0, correspond to regions from which the orbits will be de-
pleted, while blue contours, for whichNdiv(F tot)>0, correspond to regions where the secular diffusion will tend
to increase the value of the DF. The net fluxes involve both heating near (Jφ, Jr)'(1, 0.1), and radial migration near
(Jφ, Jr)'(1.8, 0).

Figure 3.7.12: Overlay of the WKB predictions for the divergence of the diffusion flux Ndiv(F tot) and the differ-
ences between the initial and the evolvedDF in S12’s simulation. The opaque contours correspond to the differences
in action-space for the DF in S12 between the late time tS12 =1000 and the initial time tS12 =0 (see the upper panel
of S12’s figure 10). The red opaque contours correspond to negative differences, so that these regions are emptied
from their orbits, while blue opaque contours are associated with positive differences, i.e. regions where the value
of the DF has increased as a result of secular diffusion. The transparent contours correspond to the predicted values
of Ndiv(F tot) from the WKB limit of the Balescu-Lenard equation, using the same conventions as in figure 3.7.11.
One can note the overlap between the predicted transparent contours and the measured solid ones.

of this overdensity ismost likely to be explained by the integration forward in time of the Balescu-Lenard
equation, while here we limited ourselves to the sole computation of the diffusion flux at the initial time.

Thanks to the explicit computation of Ndiv(F tot) in figure 3.7.11, let us now study the typical
timescale of diffusion associated with the collisional diffusion predicted by the razor-thinWKB Balescu-
Lenard equation.
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Figure 3.7.13: Overlay of the WKB predictions for the divergence of the diffusion flux Ndiv(F tot) on top of the
contours of the DF in action space measured in S12’s simulation. The black background contours are the level
contours of the DF at time tS12 =1400 (see the lower panel of figure 7 of S12). These contours are spaced linearly
between 95% and 5% and clearly exhibit the appearance of a resonant ridge. The coloured transparent contours
correspond to the predicted values of Ndiv(F tot), within the WKB approximation, using the same conventions as
in figure 3.7.11. One can note that the late time developed ridge is consistent with the predicted depletion (red) and
enrichment (blue) of orbits.

3.7.3 Diffusion timescale
The previous estimation of the collisional diffusion flux Ndiv(F tot) allows us to compare explicitly the
timescale of appearance of finite−N effects captured by the Balescu-Lenard equation with the duration
of S12’s simulations. One can note that the Balescu-Lenard equation (2.67) depends on the total number
N of particles only through the particles’ individual mass µ=Mtot/N . As a consequence, let us rewrite
the Balescu-Lenard equation (2.67) as

∂F

∂t
=

1

N
CBL[F ] , (3.94)

where CBL[F ]=Ndiv(F tot) is the N−independent Balescu-Lenard collisional operator, i.e. the r.h.s.
of equation (2.67) multiplied by N=Mtot/µ. Of course, this rewriting immediately illustrates that the
larger the number of particles, the slower the secular evolution. One also recovers the fact that the
Balescu-Lenard equation was obtained thanks to a kinetic development at first order in the small pa-
rameter 1/N�1. Let us therefore introduce the rescaled time

τ =
t

N
, (3.95)

so that equation (3.94) becomes
∂F

∂τ
= CBL[F ] , (3.96)

so as to rewrite the Balescu-Lenard equation without any explicit appearance of N . This allows us to
quantitatively compare the time duringwhich S12’s simulationwas performed to the diffusion timescale
predicted by the Balescu-Lenard formalism.

The ridge observed in figure 3.7.5 was obtained after letting a disc made of N=50×106 particles
evolve for a time ∆tS12 =1400. Following equation (3.95), the ridge was therefore observed in S12’s
simulation after a rescaled time ∆τS12 =∆tS12/N'3×10−5. One may then compare this time with the
typical time required to form a resonant ridgewithin theWKB Balescu-Lenard formalism. Starting from
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the map ofNdiv(F tot) obtained in figure 3.7.11, one can estimate the typical time needed for such a flux
to lead to the features observed in S12’s simulations. The contours presented in figure 3.7.5 are separated
by a value 0.1×Fmax

0 , where Fmax
0 '0.12 corresponds to the maximum of the initial normalised DF from

equation (3.91). In order to observe the resonant ridge, the DF should therefore change by an amount of
the order of ∆F0'0.1×Fmax

0 . In figure 3.7.11, we obtained that the maximum of the norm of the diver-
gence of the collisional diffusion flux is given by |Ndiv(F tot)|max'0.4. Thanks to equation (3.96), one
can then write ∆F0'∆τWKB|Ndiv(F tot)|max, where ∆τWKB is the typical time during which the WKB
Balescu-Lenard should be considered in order to allow for the development of a ridge. With the previous
numerical values, we obtain ∆τWKB'3×10−2. Comparing the timescale ∆τS12 measured in N−body
simulations and the timescale ∆τWKB predicted by the razor-thin WKB Balescu-Lenard equation, one
gets

∆τS12

∆τWKB
' 10−3 . (3.97)

In equation (3.97), the direct application of the razor-thin WKB Balescu-Lenard equation does not allow
us to predict and recover the observed timescale of appearance of diffusion features in the numerical
simulations. Indeed, the timescale of collisional diffusion predicted by our present WKB formalism
appears as much larger than the time duringwhich the numerical simulation was effectively performed.
This discrepancy is also strengthened by the use of a softening length in the numerical simulations,
which induces an effective thickening of the disc and therefore a slowdown of the collisional relaxation.
Let us now discuss the origin of this discrepancy.

3.7.4 Interpretation
In order to interpret S12’s simulation in the light of a collisional diffusion equation such as the Balescu-
Lenard equation (2.67), let us first emphasise the undisputed presence of collisional effects in the simula-
tions. This is especially noticeable in figure 3.7.6, wherewe note that as the number of particles increases,
the growth of the density fluctuations is delayed. The larger the number of particles, the later the effects
of the secular evolution. Such a dependence indubitably underlines the role played by discreteness as
the seed for the appearance of the diffusion features obsersed in figure 3.7.5.

Sellwood & Kahn (1991) have argued that sequences of causally connected transient waves in the
disc could occur subject to a (possibly non-local) resonant condition between successive spirals. The
Balescu-Lenard equation captures precisely such sequences, in the sense that it integrates over dressed
correlated potential fluctuations subject to relative resonant conditions, but does not preserve causality
nor resolve correlations on dynamical timescales. As emphasised in the derivation of the Balescu-Lenard
equation, the system’s exact initial phases are not relevant in this formalism, which focuses on describing
the system’s mean orbit-averaged secular evolution. This independence of the intial phases was already
emphasised in figure 5 of S12, where it is shown that even after redistributing randomly the stars’ az-
imuthal phases at a given time of the simulation, the growth trends observed in figure 3.7.6 remain the
same, and the disc still develops the resonant ridge of figure 3.7.5. As a conclusion, the resonant secular
features observed in S12’s simulation corresponds to a process induced by the finite number of parti-
cles and independent of the disc’s particular initial phases. This corresponds exactly to the grounds
on which the Balescu-Lenard equation (2.67) was derived, so that it should be the master equation to
understand and capture the features observed in figure 3.7.5.

While we had qualitatively recovered in sections 3.7.2.1 and 3.7.2.2 the formation of the resonant
ridge, we noted in equation (3.97) a timescale discrepancy, whose origin remains to be understood. The
main assumption in the application of the Balescu-Lenard equation was the use of the razor-thin WKB
basis from equation (3.11). We therefore argue that the timescale discrepancy observed in equation (3.97)
is caused by the incompleteness of this basis. Indeed, the WKB basis elements, thanks to which the
dresed susceptibility coefficients were estimated in equation (3.81), do not form a complete set as they
can only represent correctly tightly wound spirals. As emphasised in equation (3.78), they also enforce
local resonances, so that they do not allow for remote orbits to resonate, or wave packets to propagate
between such non-local resonances. The seminal works from Goldreich & Lynden-Bell (1965); Julian &
Toomre (1966) showed that any leading spiral wave during its unwinding to a trailing wave undergoes a
significant amplification, coined swing amplification and illustrated in figure 3.7.14. Because it involves
open spirals, this linear amplifying mechanism is not captured by the WKB razor-thin formalism. This
important additional dressing is expected to increase the susceptibility of the disc and therefore acceler-
ate the system’s long-term diffusion, so that the timescale discrepancy from equation (3.97) should be-
come less restrictive. Following the notations from Toomre (1981), the razor-thin tapered disc presented
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Figure 3.7.14: From dust to ashes - extracted from figure 8 of Toomre (1981). Illustration of the swing amplification
process occurring in a razor-thin Mestel disc. Here, one observes the transient strong amplification of a leading
perturbation as it unwinds due to the disc’s differential shearing. Such a linear process involves loosely wound
perturbations and cannot therefore be captured by the WKB formalism from section 3.3.

in section 3.7.1 is such thatQ'1.5 andX'2, so that figure 7 from Toomre (1981) shows that significant
swing amplification of around a factor 10 ormore is to be expected. We note in the Balescu-Lenard equa-
tion (2.67) that the dressed susceptibility coefficients come squared, so that the amplification associated
with swing amplification will be even larger, hastening even more the disc’s secular evolution.

We showed in section 3.7.2.2 that the WKB Balescu-Lenard equation captures qualitatively the main
features of the disc’s diffusion process. In order to reconcile the timescale discrepancy from equa-
tion (3.97), one should get rid of the WKB approximation, and evaluate the Balescu-Lenard diffusion
flux while fully accounting for the disc’s susceptibility, to capture the missing mechanism of swing am-
plification. This is the purpose of the next chapter, where we show that the Balescu-Lenard equation as-
sociated with a complete evaluation of the disc’s self-gravity recovers the resonant ridge (section 4.3.1),
matches the diffusion timescale (section 4.3.2), and confirms that swing amplification is indeed themain
driver of the disc’s evolution (section 4.3.3).

3.8 Conclusion
In this chapter we implemented the collisionless and collisional diffusion equations in the context of
razor-thin stellar discs. In order to seek straightforward estimations of the diffusion fluxes, we relied on
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the epicyclic approximation to construct angle-action coordinates (section 3.2) and on a tailored WKB
basis to deal with the system’s self-gravity (sections 3.3 and 3.4). Following this approach, we obtained
simple quadratures for both the collisionless diffusion equation (section 3.5) and the collisional one (sec-
tion 3.6). In particular, these simple WKB expressions yield, to our knowledge, the first non-trivial ex-
plicit expressions of the Balescu-Lenard drift and diffusion coefficients in the astrophysical context. They
are therefore certainly useful to provide insight into the physical processes at play during the secular
diffusion of self-gravitating razor-thin stellar discs.

In section 3.7, we applied these two formalisms to describe the shot noise driven radial diffusion oc-
curring spontaneously in razor-thin stellar discs when considered on secular timescales. We illustrated
how the calculation in the WKB limit of the full diffusion flux recovered most of the secular features
observed in the direct simulations from Sellwood (2012), especially the hints for the formation of a res-
onant ridge, i.e. the depletion and enrichment of orbits along a narrow preferred direction in action.
We also noted that asQ→1, the corotation resonance of waves becomes more important, as self-gravity
amplifies perturbations at corotation very strongly. This leads to a transition between an ILR-dominated
diffusion to a regime of radial migration in more external regions of the disc (see figure 3.7.10). These
various qualitative agreements are impressive given the level of approximation involved in the WKB
limit.

The timescale comparison proposed in equation (3.97) highlighted however a significant quantita-
tive overestimation w.r.t. the numerical observations. In section 3.7.4, we interpreted this discrepancy
as being due to the intrinsic limitations of the WKB formalism, which cannot account for swing amplifi-
cation, during which unwinding transient spirals get strongly amplified. This additional amplification,
which involves non-local waves absorption and emission, appears therefore as the missing contribution
required to reconcile quantitatively our predictions and the numerical ones. One venue is to compute
numerically exactly the Balescu-Lenard equation (2.67) in action, without assuming tightly wound spi-
rals or epicylic orbits. This is the topic of the next chapter.

3.8.1 Future works
In the light of the upcoming GAIA data, our previous description of the secular dynamics of razor-
thin stellar discs could be significantly developed by extending for example the system’s DF with an
additional degree of freedom, namely the metallicity Z of the stars. The previous formalisms could
then straightforwardly be tailored to describe the diffusion of such extended DFs F (J , Z). In order to
account for the disc stellar history, onewould also add a source term in the diffusion equation associated
with the time dependent birth of new stars throughout the lifetime of the galaxy, while keeping track of
the time and radial evolution of the gas metallicity. Such extended DFs have recently been considered
in, e.g., Schönrich & Binney (2009a); Binney & Sanders (2014); Sanders & Binney (2015), in the context
of Galactic archeology (Binney, 2013a). Let us briefly detail here how one can proceed.

We introduce an extended DF FZ(Z,J , t), so that FZdZdJ is proportional to the mass of stars with a
metallicity in the range [Z,Z+dZ] and an actionJ in the volume dJ . Let us also introduce the traditional
reduced DF, F , as

F (J , t) =

∫
dZ FZ(Z,J , t) . (3.98)

We assume that at a given time t and position Rg =Rg(Jφ) in the disc, the metallicity of the interstellar
medium (ISM) is known and characterised by the function Zg(Jφ, t). See, e.g., Sanders & Binney (2015)
for an example of Zg for the Milky Way. We also assume that the star formation rate (SFR) is a known
function of position and timewritten as SFR(Jφ, t). When a new star is formed, it satisfies two conditions.
First, stars are like time capsules and preserve the state of the ISM at the remote epoch of their formation.
Moreover, stars are born on the cold orbits of the gas, so that they initially have Jr'0 (and Jz'0 in the
case of thickened discs, see chapter 5). Up to a normalisation, the source term describing the birth of
new stars, Fs, then reads

∂Fs(Z,J , t)

∂t
= SFR(Jφ, t) δD(Z−Zg(Jφ, t)) δD(Jr) . (3.99)

Here, ∂Fs/∂t quantifies the amount of new stars created per unit time. The collisionless and collisional
diffusion equations (2.31) and (2.67) describe the dynamics of the system’s reduced DF, F , and can be
written under the shortened form

∂F

∂t
= Diff

[
F, F

]
, (3.100)
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where we wrote the diffusion operator as Diff[F, F ], for both the collisionless and collisional diffusion
equation. In this operator, the first occurence of "F " stands for the bath DF, i.e. the DF which secularly
sources the drift and diffusion coefficients. The second occurence of "F " stands for the diffusing DF,
i.e. the DF whose time and action gradients appear in equation (3.100). See, e.g., Chavanis (2012b) for a
discussion on the distinction between these two DFs. Because the collisionless and collisional diffusion
equations are self-consistent, these two DFs are the same. Adding the source term from equation (3.99),
the generic diffusion equation (3.100) can be written as∫

dZ
∂FZ

∂t
= Diff

[
F,

∫
dZ FZ

]
+

∫
dZ

∂Fs

∂t
. (3.101)

In equation (3.101), one can then intervert the integration w.r.t. Z and the derivatives w.r.t. the actions
occurring in the diffusion operator. By considering each Z−slice independently, one can untangle this
equation to obtain a sourced diffusion equation for the extended DF FZ reading

∂FZ

∂t
= Diff[F, FZ] +

∂Fs

∂t
. (3.102)

Equation (3.102) describes the dynamics of each Z−slice of the extended DF with its specific source
term. Each Z−slice follows an independent diffusion equation, except for the fact that the drift and
diffusion coefficients appearing in Diff[F, .] are sourced by the same reduced DF, F , integrated over
all metallicities. The Z−slices therefore only see each other through these shared coefficients, i.e. the
diffusions are self-consistent and simultaneous.

These considerations allow us to describe more precisely how the radial migration of stars inter-
plays with the disc’s chemical structure and leads for example to the appearance of metallicity gradients
within the disc. One crucial strength of the previous formalisms is that they allow for detailed com-
parisons of the relative strengths of different diffusion mechanisms, i.e. different characteristics for the
diffusion operator Diff[F, .]. One can for example characterise the statistical properties of the dark mat-
ter overdensities (i.e. clumps) and investigate how the potential fluctuations they induce may lead to
a secular diffusion in the stellar disc. Figure 3.8.1 illustrates such clumps in the vicinity of a simulated
quiet dark matter halo, which did not undergo any recent major mergers. Once these fluctuations have

Figure 3.8.1: Illustration of the dark matter density in a zoomed dark matter only simulation run with the AMR
code Ramses (Teyssier, 2002). The two snapshots were taken at the same time and are centred on the same dark
matter halo. The left-hand panel corresponds to a cubic region of extension 500kpc, while the right-hand panel
only extends up to 100kpc. The halo was chosen to be quiet, i.e. did not undergo any recent major mergers. On
large scales, one can note the presence of various clumps in the dark matter density, which get much fainter as one
gets closer to the centre of the halo. Here, any infalling clump gets rapidly dissolved by dynamical friction (see
figure 1.3.6). On the scale of the inner galactic disc (approximately 10kpc), these clumps are therefore expected to
be screened by the dark matter halo, and the disc shielded from them. Such simulations seem to indicate that the
perturbations induced by the dark matter halo are weak and will not trigger a strong diffusion in the disc.

been characterised, the associated collisionless diffusion can be computed and so can its effects on the
disc’s orbital structure. Characterising the incoming cosmic flux of perturbations could therefore in turn
constrain the ΛCDM scenario on galactic scales.





Chapter 4

Razor-thin discs and swing
amplification

The work presented in this chapter is based on Fouvry et al. (2015c).

4.1 Introduction
In chapter 3, we investigated the formation of a narrow ridge of resonant orbits in action space appear-
ing spontaneously on secular timescales in razor-thin stable isolated self-gravitating stellar discs. These
ridges are the orbital counterparts of the processes of churning andblurring (Schönrich&Binney, 2009a),
when considered in idealisedN−body simulations. In order to understand the origin of this feature, we
considered two possible approaches, either based on the collisionless diffusion equation (introduced in
section 2.2) or the collisional Balescu-Lenard equation (introduced in section 2.3). In addition, in order
to obtain simple and tractable quadratures for the associated diffusion fluxes, we relied on the assump-
tions that the disc’s transient response could be described with tightly wound spirals via the WKB and
epicyclic approximations. These simple expressions provided insight into the physical processes at work
during the secular diffusion of self-gravitating discrete discs. We also reached a qualitative agreement
with the results from numerical simulations, recovering the presence of an enhanced diffusion in the
inner regions of the disc.

However, the WKB approximation is quantitatively questionable to capture the phase during which
transient spirals unwind and undergo a strong amplification. This discrepancy was quantified in equa-
tion (3.97) when comparing the timescale of diffusion predicted by the WKB Balescu-Lenard formalism
and the timescale inferred from numerical simulations. In section 3.7.4, we blamed it on the incom-
pleteness of the WKB basis, as it can only represent correctly tightly wound perturbations. The WKB
approximation also led us to consider only resonances between orbits that are close one to another in
radius. This prevented remote orbits to resonate, or wave packets to propagate between such non-local
resonances. As illustrated in figure 3.7.14, the seminal works from Goldreich & Lynden-Bell (1965); Ju-
lian & Toomre (1966); Toomre (1981) have shown that any leading spiral wave undergoes a significant
amplification as it unwinds to become a trailing wave, and this is not captured by the WKB approxima-
tion investigated in chapter 3.

In the present chapter, we avoid such approximations by relying on the matrix method (Kalnajs,
1976), in order to estimate the whole self-gravitating amplification of the disc as well as to account
for the roles possibly played by non-local resonances. Once the disc’s susceptibility is estimated, one
can compute numerically the drift and diffusion coefficients appearing in the collisional Balescu-Lenard
equation. The associated diffusion predictions can then be compared to crafted sets of numerical simula-
tions, allowing us to estimate ensemble averaged secular responses of a sizeable number of simulations,
from which we extract robust predictions on the scalings of the disc’s response w.r.t. the number of
particles or the disc to halo mass fraction.

In section 4.2, we detail one implementation of the matrix method to compute the Balescu-Lenard
diffusion flux in a razor-thin disc. In Appendix 4.D, we specify how this same approach may straight-
forwardly be generalised to 3D spherical systems, whose secular dynamics can also be probed in the
same manner. Section 4.3 computes numerically the collisional drift and diffusion coefficients in action
space for a razor-thin truncated Mestel disc, and compares the divergence of the corresponding flux to
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the results obtained in the direct N−body simulations from Sellwood (2012). It also illustrates how the
correct timescales of diffusion are recovered. In the same section, we also emphasise how the strong
self-gravitating amplification of loosely wound perturbations is indeed the main driver of the disc’s sec-
ular evolution. Section 4.4 presents ourN−body simulations of the same setting, compares the scalings
of the flux w.r.t. the number of particles and the active fraction of the disc, and illustrates the late-time
unstable phase transition induced in the disc as a result of the slow collisional evolution.

4.2 Calculating the Balescu-Lenard diffusion flux
In order to compute the Balescu-Lenard diffusion flux, three main difficulties have to be overcome. First,
one has to construct explicitly the mapping (x,v) 7→(θ,J), as the collisional drift and diffusion coeffi-
cients are associated with a diffusion in action space. Fortunately, for a razor-thin axisymmetric system,
the integrability of the potential is imposed by symmetry and angle-action coordinates can be deter-
mined as shown in section 4.2.1. The second difficulty arises from the non-locality of Poisson’s equation
and the associated complexity of the system’s response matrix M̂. As already noted in equation (2.12),
this requires the use of a biorthogonal basis of potentials ψ(p), which must then be integrated over the
whole action space along with functions possessing a pole 1/(ω−m·Ω) as in equation (2.17). This cum-
bersome evaluation has to be performed numerically, along with the inversion of [I−M̂] required to
estimate the collisional dressed susceptibility coefficients from equation (2.50). We will show in sec-
tions 4.2.2, 4.2.3 and 4.2.4 how these various numerical evaluations may be performed. Finally, a third
difficulty in the Balescu-Lenard equation comes from the resonance condition δD(m1 ·Ω1−m2 ·Ω2),
which requires to determine how orbits resonate onewith another. Once the intrinsic orbital frequencies
of the stars have been determined, we will show in section 4.2.5 how these resonances can be dealt with.

4.2.1 Calculating the actions
Razor-thin axisymmetric potentials are guaranteed by symmetry to be integrable. Following Lynden-
Bell & Kalnajs (1972); Tremaine &Weinberg (1984), the two natural actions J=(J1, J2) of the system are
given by

J1 = Jr =
1

π

∫ ra

rp

dr
√

2(E−ψ0(r))−L2/r2 ; J2 = Jφ = L , (4.1)

where we introduced as rp and ra the pericentre and apocentre of the trajectory, while E and L are the
energy and angular momentum of the considered star. Here, the action Jr encodes the amount of radial
energy of the star, so that Jr=0 corresponds to exactly circular orbits. The two intrinsic frequencies of
motion can then be introduced as Ω1 =κ associated with the radial libration, and Ω2 =Ωφ, associated
with the azimuthal rotation. The radial frequency Ω1 is given by

2π

Ω1
= 2

∫ ra

rp

dr√
2(E−ψ0(r))−J2

2/r
2
, (4.2)

while the azimuthal frequency Ω2 satisfies

Ω2

Ω1
=
J2

π

∫ ra

rp

dr

r2
√

2(E−ψ0(r))−J2
2/r

2
. (4.3)

At this stage, one can note that various coordinates may be used to represent the 2D action space.
Indeed, for a given background potential ψ0, any orbit can equivalently be represented by the pairs
(rp, ra)↔(E,L)↔(Jr, Jφ). However, determing the actions associatedwith one set (rp, ra) only requires
to compute an integral as in equation (4.1), while determining the pericentre and apocentre associated
with a set of actions (J1, J2) requires the inversion of the same non-trivial implicit relation. In addition,
as the peri/apocentres are the two roots of the equation 2(E−ψ0(r))−L2/r2 =0, one gets that for a given
value of rp and ra, the energy E and the angular momentum L are straightforwardly obtained as

E =
r2
aψa−r2

pψp

r2
a−r2

p

; L =

√
2(ψa−ψp)

r−2
p −r−2

a

, (4.4)

wherewe used the shortening notationsψp/a=ψ0(rp/a). As a consequence, in the upcoming applications,
we use (rp, ra) as the representatives variables of the 2D action space.
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4.2.2 The basis elements
We assume that the considered 2D basis elements depend on two indices spanning the two degrees of
freedom of a razor-thin disc. Let us therefore define

ψ(p)(R,φ) = ψ`n(R,φ) = ei`φ U`n(R) , (4.5)

where U`n is a real radial function and (R,φ) are the usual polar coordinates. Similarly, the associated
surface densities are of the form

Σ(p)(R,φ) = Σ`n(R,φ) = ei`φD`n(R) , (4.6)

where D`n is a real radial function. In equations (4.5) and (4.6), the basis elements depend on two in-
dices `≥0 and n≥0. In all the upcoming numerical calculations, we use the explicit radial functions
from Kalnajs (1976) presented in Appendix 4.A. Once the basis elements have been specified, one may
compute their Fourier transformw.r.t. the angles θ=(θ1, θ2). Indeed, the expression of the responsema-
trix from equation (2.17) requires the use of ψ(p)

m (J) computed for the resonance vectorm=(m1,m2).
Following the convention from equation (2.6), one has

ψ(p)
m (J) =

1

(2π)2

∫
dθ1dθ2 ψ

(p)(R,φ) e−im1θ1 e−im2θ2 . (4.7)

Lynden-Bell & Kalnajs (1972) gives us that the angles θ1 and θ2 associated with the actions from equa-
tion (4.1) read

θ1 = Ω1

∫
C1

dr
1√

2(E−ψ0(r))−J2
2/r

2
; θ2 = φ+

∫
C1

dr
Ω2−J2/r

2√
2(E−ψ0(r))−J2

2/r
2
, (4.8)

where C1 is a contour starting from the pericentre rp and going up to the current position r=r(θ1) along
the radial oscillation. Following the notations from Tremaine & Weinberg (1984), one can straightfor-
wardly show that equation (4.7) becomes

ψ(p)
m (J) = δ`

p

m2
Wm1

`pm2np
(J) , (4.9)

whereWm1

`pm2np
(J) is given by

Wm1

`pm2np
(J) =

1

π

∫ ra

rp

dr
dθ1

dr
U`pnp(r) cos

[
m1θ1[r]+m2(θ2−φ)[r]

]
. (4.10)

One should note that the integration boundaries in equation (4.10) are given by the peri/apocentre rp/a

associated with the actions J . Such a property illustrates once more why (rp, ra) appear as natural
coordinates to parametrise the 2D action space. Equation (4.10) was written as an integral over r, thanks
to the change of variables θ1 7→r, which satisfies

dθ1

dr
=

Ω1√
2(E−ψ0(r))−J2

2/r
2
. (4.11)

Finally, in equation (4.10), one should note that θ1[r] and (θ2−φ)[r] only depend on r, thanks to the
mappings from equation (4.8). If U`pnp is a real function, then the coefficients Wm1

`pm2np
are real as well.

Because these coefficients involve two intricate integrals, they are numerically expensive to compute.
However, they satisfy by parity the symmetry relationW(−m1)

`p(−m2)np =Wm1

`pm2np
, which offers a significant

reduction of the effective number of coefficients to compute.

4.2.3 Computing the response matrix
Thanks to the computation of the Fourier transformed basis elements in equation (4.9), one may now
evaluate the response matrix from equation (2.17). One should note that its definition involves an
integration over the dummy variable J , which as discussed previously, will be performed in the 2D
(rp, ra)−space. The first step is to perform the change of variables J=(J1, J2) 7→(E,L), whose Jacobian
is given by

∂(E,L)

∂(J1, J2)
=

∣∣∣∣∣∣∣∣
∂E

∂J1

∂E

∂J2

∂L

∂J1

∂L

∂J2

∣∣∣∣∣∣∣∣ =

∣∣∣∣Ω1 Ω2

0 1

∣∣∣∣ = Ω1 , (4.12)



90 CHAPTER 4. RAZOR-THIN DISCS AND SWING AMPLIFICATION

so that one has dJ1dJ2 =dEdL/Ω1. Thanks to the expression (4.9), the response matrix may then be
rewritten as

M̂pq(ω) = (2π)2δ`
q

`p

∑
m1

∫
dEdL

1

Ω1

(m1, `
p)·∂F/∂J

ω−(m1, `p)·Ω
Wm1

`p`pnp(J)Wm1

`p`pnq (J) , (4.13)

where the sum onm2 has been executed thanks to the Kronecker delta from equation (4.9). In addition,
we also dropped the conjugate on Wm1

`p`pnp as it is real. Performing an additional change of variables
(E,L) 7→(rp, ra), one can finally rewrite equation (4.13) as

M̂pq(ω) = δ`
q

`p

∑
m1

∫
drpdra

g`
pnpnq

m1
(rp, ra)

hωm1`p
(rp, ra)

, (4.14)

where the functions g`pnpnqm1
(rp, ra) and hωm1`p

(rp, ra) are defined as

g`
pnpnq

m1
(rp, ra) = (2π)2

∣∣∣∣∂(E,L)

∂(rp, ra)

∣∣∣∣ 1

Ω1

[
(m1, `

p)· ∂F
∂J

]
Wm1

`p`pnp(J)Wm1

`p`pnq (J) , (4.15)

and
hωm1`p(rp, ra) = ω−(m1, `

p)·Ω . (4.16)

The Jacobian ∂(E,L)/∂(rp, ra) of the transformation (E,L) 7→(rp, ra) appearing in equation (4.15) can
straightforwardly be computed from the expressions (4.4) of E(rp, ra) and L(rp, ra). Finally, if ever the
system’s DF was not defined as F =F (J), but rather as F =F (E,L), its gradients are immediately given
by

m· ∂F
∂J

= m1Ω1

(
∂F

∂E

)
L

+m2

[
Ω2

(
∂F

∂E

)
L

+

(
∂F

∂L

)
E

]
. (4.17)

4.2.4 Sub-region integration
The next step of the calculation is to perform the remaining integrations over (rp, ra) in equation (4.14).
However, because of the presence of the pole 1/hωm1`p

, such integrations have to be performed carefully.
To do so, we cut out the integration domain (rp, ra) in various subregions indexed by i. The ith region
is centred around the position (rip, r

i
a) and corresponds to the square domain rp∈ [rip−∆r/2; rip+∆r/2],

and ra∈ [ria−∆r/2; ria+∆r/2], where ∆r characterises the extension of the subregions. Such a trun-
cation is illustrated in figure 4.2.1. The smaller ∆r, the more accurate the estimation of the response

rp

ra

ri
p

ri
a

i

∆r

Figure 4.2.1: Illustration of truncation of the (rp, ra)−domain in small subregions to allow for the calculation of
the response matrix. Each region is centred on the position (rip, r

i
a) with an extension characterised by ∆r.
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matrix. Within the ith region, one may perform limited developments of the functions g and h from
equations (4.15) and (4.16) around the centre (rip, r

i
a), so as to write

g(rip+∆rp, r
i
a+∆ra) ' aig+big∆rp+cig∆ra ; h(rip+∆rp, r

i
a+∆ra) ' aih+bih∆rp+cih∆ra , (4.18)

where we dropped the indices dependences to simplify the notations. The coefficients aig , big and cig
(similarly for h) are given by

aig = g(rip, r
i
a) ; big =

∂g

∂rp

∣∣∣∣
(rip,r

i
a)

; cig =
∂g

∂ra

∣∣∣∣
(rip,r

i
a)

. (4.19)

In order to minimise the number of evaluations of g required in the numerical implementation, the
coefficients involving partial derivatives are estimated by finite differences, so that one has for instance

bg(r
i
p, r

i
a) =

g(rip+∆r, ria)−g(rip−∆r, ria)

2∆r
. (4.20)

One can now perform an approximated integration on each subregion. It takes the form∫∫
i

drpdra
g(rp, ra)

h(rp, ra)
'
∫ ∆r

2

−∆r
2

∫ ∆r
2

−∆r
2

dxpdxa

aig+bigxp+cigxa

aih+bihxp+cihxa+iη

= ℵ(aig, b
i
g, c

i
g, a

i
h, b

i
h, c

i
h, η,∆r) , (4.21)

where ℵ is an analytical function depending only on the coefficients obtained in the limited development
of equation (4.18). It is important to note here that in order to have a well-defined integral, we added an
imaginary part η>0 to the temporal frequency ω, so that ω=ω0+iη. When investigating unstablemodes
in discs, this imaginary part η corresponds to the growth rate of the unstable modes (see Appendix 4.C).
Finally, let us note that one always has aig, big, cig∈R, as well as aih, bih, cih∈R. The effective calculation of
the function ℵ is briefly presented in Appendix 4.B. Thanks to the approximation from equation (4.21),
the response matrix from equation (4.14) finally becomes

M̂pq(ω) = δ`
q

`p

∑
m1

∑
i

ℵ(aig, b
i
g, c

i
g, a

i
h, b

i
h, c

i
h, η,∆r) . (4.22)

To effectively compute equation (4.22), one has to introduce a boundmmax
1 , so that the sum onm1 is only

limited to |m1|≤mmax
1 . As it requires to truncate the action space in various subregions, the calculation of

the responsematrix remains a daunting task, in particular to ensure appropriate numerical convergence.
One natural way to validate this calculation is to recover known unstable modes of razor-thin disc. A
seminal example is given by truncatedMestel discs (Zang, 1976; Evans&Read, 1998b; Sellwood&Evans,
2001). An illustration of the validation of the present method of computation of the response matrix,
based on such discs, is presented in Appendix 4.C. Once the response matrix M̂ has been estimated, the
calculation of the dressed susceptibility coefficients 1/|D|2 from equation (2.50) is immediate and only
involves summations over the basis elements, whose Fourier transforms in angles have already been
computed.1

4.2.5 Critical resonant lines
Once the response matrix and the dressed susceptibility coefficients have been estimated, one may pro-
ceed to the evaluation of the collisional drift and diffusion coefficients from equations (2.69) and (2.70).
However, the resonance condition in the Dirac delta δD(m1 ·Ω1−m2 ·Ω2) generates an additional diffi-
culty. Let us recall the definition of the composition of a Dirac delta and a smooth function (Hörmander,
2003), which in a d−dimensional setup takes the form∫

Rd
dx f(x) δD(g(x)) =

∫
g−1(0)

dσ(x)
f(x)

|∇g(x)| . (4.23)

In equation (4.23), we introduced as g−1(0)={x | g(x)=0} the hyper-surface of (generically) dimension
(d−1) defined by the constraint g(x)=0, alongwith dσ(x) the surfacemeasure on g−1(0). The euclidean

1As the basis effectively used may be significantly truncated, one could need to regularise the inversion of [I−M̂] to avoid
Gibbs rigging. This was not needed in the numerical applications presented here.
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norm of the gradient of g is also naturally defined as |∇g(x)|=
√
|∂g/∂x1|2+...+|∂g/∂xd|2. Finally, we

also assume that the resonance condition associated with the function g(J2)=m1 ·Ω1−m2 ·Ω2 is non-
degenerate, so that ∀x∈g−1(0), |∇g(x)|>0. This also ensures that the dimension of the set g−1(0) is
(d−1). When one considers a degenerate potential such as the harmonic or Keplerian potentials, the
resonant domain fills space. Dealing with such a degeneracy requires a more involved evaluation of the
Balescu-Lenard collision operator, and will be the subject of chapter 6, where we investigate in detail
the secular evolution of quasi-Keplerian systems. Here, we consider the case of a razor-thin disc, so
that d=2. As a consequence, g−1(0) is of dimension 1 and takes the form a curve γ, called the critical
resonant line. Generically, γ can be represented as an application of the form

γ : u 7→ γ(u)=(γ1(u), γ2(u)) , (4.24)

so that the r.h.s. of equation (4.23) can be rewritten as∫
γ

dσ(x)
f(x)

|∇g(x)| =

∫
du

f(γ(u))

|∇(g)(γ(u))| |γ
′(u)| , (4.25)

where we naturally introduced |γ′(u)|=
√
|dγ1/du|2+|dγ2/du|2.

Using once again (rp, ra) as the representative variables of the action space, one can rewrite the drift
and diffusion coefficients from equations (2.69) and (2.70) as

Am1
(J1) =

∑
m2

∫
drpdra δD(m1 ·Ω1−m2 ·Ω2)GAm1,m2

(rp, ra) ,

Dm1
(J1) =

∑
m2

∫
drpdra δD(m1 ·Ω1−m2 ·Ω2)GDm1,m2

(rp, ra) . (4.26)

In equation (4.26), we respectively introduced the function GAm1,m2
(rp, ra) and GDm1,m2

(rp, ra) as

GAm1,m2
(rp, ra) = − 1

Ω1

∣∣∣∣∂(E,L)

∂(rp, ra)

∣∣∣∣ 4π3µm2 ·∂F/∂J2

|Dm1,m2
(J1,J2,m1 ·Ω1)|2 ,

GDm1,m2
(rp, ra) =

1

Ω1

∣∣∣∣∂(E,L)

∂(rp, ra)

∣∣∣∣ 4π3µF (J2)

|Dm1,m2
(J1,J2,m1 ·Ω1)|2 . (4.27)

For a given value of J1,m1, andm2, and defining ω1 =m1 ·Ω1, we introduce the critical curve γm2
(ω1)

as
γm2

(ω1) =

{
(rp, ra)

∣∣∣∣m2 ·Ω(rp, ra) = ω1

}
. (4.28)

Relying on the formula from equation (4.23), equation (4.26) becomes

Am1
(J1) =

∑
m2

∫
γm2 (ω1)

dσ
GAm1,m2

|∇(m2 ·Ω2)| ; Dm1(J1) =
∑
m2

∫
γm2

(ω1)

dσ
GDm1,m2

|∇(m2 ·Ω2)| , (4.29)

where the resonant contribution |∇(m2 ·Ω2)| is given by

|∇(m2 ·Ω2)| =
√[

m2 ·
∂Ω2

∂rp

]2

+

[
m2 ·

∂Ω2

∂ra

]2

. (4.30)

In equation (4.30), the derivatives of the intrinsic frequencies w.r.t. rp and ra should be computed using
finite differences, as was done in equation (4.20). Once the critical lines of resonance have been deter-
mined, the computation of the drift and diffusion coefficients from equation (4.29) is straightforward,
and the secular diffusion flux F tot from equation (2.71) follows immediately.

4.3 Application to self-induced radial diffusion
Let us now illustrate how the previous computations of the response matrix and the Balescu-Lenard
drift and diffusion coefficients may be used to interpret the diffusion features observed in the simulation
of Sellwood (2012) (hereafter S12), already presented in detail in section 3.7.1. Our aim here is to recover
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the formation of a narrow resonant ridge, as observed in figure 3.7.5. Our generalmotivation is churning
and blurring (Schönrich & Binney, 2009a), which are the astrophysically relevant underlying processes.
Following the WKB results from section 3.7, we also aim to resolve the diffusion timescale discrepancy
obtained in equation (3.97). Indeed, when considering the non-WKB Balescu-Lenard equation (2.67), we
expect that the use of a non-local basis such as in equation (4.5), as well as the numerical computation
of the response matrix will allow us to account for the contributions previously ignored in the WKB
approximation.

Let us consider the same razor-thin disc as considered in S12’s simulation and already presented in
section 3.7.1. Here, we recall that S12 restricted potential perturbations to the harmonic sectormφ=2, so
that we consider the same restriction on the azimuthal numbermφ. In the double sum on the resonance
vectors m1 and m2 present in the Balescu-Lenard equation (2.67), we also assume that m1 and m2

belong to the restricted set (mφ,mr)∈
{

(2,−1), (2, 0), (2, 1)
}
. As previously, (2,−1) corresponds to the

inner Lindblad resonance (ILR), (2, 0) to the cororation resonance (COR), and (2, 1) to the outer Lindblad
resonance (OLR). See figure 3.7.4 for an illustration of these resonances. All the upcoming calculations
were also performed while considering the contributions associated withmr=±2, which were checked
to be subdominant.

4.3.1 Initial diffusion flux
In the previous section, we detailed how one could compute both the system’s response matrix as well
as the Balescu-Lenard diffusion flux in razor-thin axisymmetric discs. The calculation of the response
matrix especially requires to build up a grid in the (rp, ra)−space. Here, we consider a grid such that
rmin
p =0.08, rmax

a =4.92, with a grid spacing given by ∆r=0.05. When computing the response matrix in
equation (4.22), the sum onm1 was reduced to |m1|≤mmax

1 =7. The basis elements were taken following
Kalnajs 2D basis, as presented in Appendix 4.A, with the parameters kKa =7 and a truncation radius
given by RKa =5. Let us note that even though the disc considered extends up to Rmax =20, one can
still safely consider a basis truncated at such a small radius to efficiently capture the system’s diffusion
properties. In addition, we restricted the basis elements to 0≤n≤8. As emphasised in equation (4.21),
in order to evaluate the response matrix, one has to add a small imaginary part η to the frequency to
regularise the resonant denominator. Throughout the upcoming calculations, we considered η=10−4

and checked that this choice had no impact on our results.
Here, the total potential ψM is known analytically from equation (3.85), so that, following sec-

tion 4.2.1, the mapping to the angle-action coordinates is straightforward to obtain. As given by equa-
tions (4.2) and (4.3), one can compute the disc’s intrinsic frequencies Ωφ and κ on the (rp, ra)−grid.
Once these frequencies known, one can determine the system’s critical resonant lines, introduced in
equation (4.28). It is along these curves that one has to perform the integrations present in the expres-
sion (4.29) of the Balescu-Lenard drift and diffusion coefficients. Figure 4.3.1 illustrates these critical
resonant lines. In this figure, one can note that by getting rid of the WKB approximation, we allow for
non-local resonances between distant orbits.

Following equation (4.29), one can then compute the disc’s drift and diffusion coefficients, and finally
the collisional diffusion flux F tot introduced in equation (2.71). As already made in section 3.7.2.2,
because the mass of the particles scales like µ=Mtot/N , it is natural to consider the quantity NF tot.
Following the convention from equation (2.72), the direction along which individual orbits diffuse is
given by the vector field −NF tot =−(NFφtot, NFrtot) defined over the action space (Jφ, Jr). Figure 4.3.2
illustrates this diffusion flux. In figure 4.3.2, one can already note how the diffusion vector field is con-
centrated in the inner region of the disc and aligned with a narrow resonant direction. Along this ridge
of diffusion, one typically has Fφtot =−2Frtot, so that the diffusion is aligned with the direction of the ILR
resonance vector given bymILR =(2,−1).

After having determined the collisional diffusion flux NF tot, one can compute its divergence, to
characterise the regions in action space, where the disc’s DF is expected to change as a result of diffusion.
This is illustrated in figure 4.3.3 which represents the initial contours of Ndiv(F tot). Figure 4.3.3 is
the main result of this section. In this figure, we see that the Balescu-Lenard formalism predicts the
formation of a narrow resonant ridge in the inner regions of the disc, aligned the direction of the ILR
resonance. One also recovers that the stars which will populate the ridge originate from the base of the
ridge and diffuse along the ILR direction. It is most likely that the slight shift in the position of the ridge
w.r.t. S12’s numerical measurement is due to the fact that the Balescu-Lenard diffusion flux was only
estimated for t=0+, while S12’s measurement wasmade at t=1400. Other possible origins for this small
difference could be the use of a softening length in the numerical simulations, which modifies the two-
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Figure 4.3.1: Illustration of four different resonant critical lines in the (rp, ra)−space. As introduced in equa-
tion (4.28), a critical line is characterised by two resonance vectorsm1, m2, and a location J1 =(r1

p, r
1
a) in action

space. Each of the four plotted critical lines is associated with the same location (r1
p, r

1
a) represented by the black

dot, but with a different choice for the resonance vectorsm1 andm2, among the three resonances ILR, COR and
OLR. One can note that form1 =m2, the critical line goes through the point (r1

p, r
1
a).

Figure 4.3.2: Map of the diffusion flux −NF tot computed for m1,m2∈
{
mILR,mCOR,mOLR

}
. As defined in

the rewriting from equation (2.72), −NF tot corresponds to the direction along which individual particles diffuse
in action space.

body interaction potential. This could as well be due to the difference between the ensemble averaged
evolution, predicted by the Balescu-Lenard formalism, and one specific realisation, as probed in S12.
Indeed, our own simulations (see section 4.4) suggest somevariations in the position of the ridge between
different runs. Having determined explicitly the value of Ndiv(F tot), let us now compare the typical
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Figure 4.3.3: Left panel: Extracted from Sellwood (2012), figure 7. Illustration of the contours of the changes in
the DF between the time tS12 =1400 and tS12 =0, for a run with N=50×106 particles. As in the right panel, red
contours correpond to negative differences, i.e. regions emptied from their orbits, while blue contours correspond
to positive differences, i.e. regions where the system’s DF increases during the diffusion. Right panel: Map of
Ndiv(F tot), where the total flux has been computed with m1,m2∈

{
mILR,mCOR,mOLR

}
. Red contours, for

which Ndiv(F tot)<0, correspond to regions from which the orbits will be depleted during the diffusion, while
blue contours, for which Ndiv(F tot)>0, are associated with regions for which the value of the DF will increase
as a result of diffusion. The contours are spaced linearly between the minimum and maximum of Ndiv(F tot).
The maximum value for the positive blue contours is given by Ndiv(F tot)'350, while the minimum value for
the negative red contours is Ndiv(F tot)'−250. The contours in both panels are aligned with the ILR direction
mILR =(2,−1) in the (Jφ, Jr)−plane, as illustrated with the cyan line.

timescale of diffusion predicted by the Balescu-Lenard equation to what was measured numerically in
S12’s simulation. This is the purpose of the next section. Finally, in order to get a better a grasp of the
driving mechanisms of this secular diffusion, we will investigate in section 4.3.3 the respective roles of
the self-gravitating amplification and the limitation to the tightly wound basis elements, to emphasise
the crucial role played by swing amplification (illustrated in figure 3.7.14).

4.3.2 Diffusion timescale
In section 3.7.3, when relying on theWKB approximation, the main disagreement was obtained in equa-
tion (3.97) when comparing the timescales of diffusion. We noted that the timescale of collisional diffu-
sion predicted by the WKB Balescu-Lenard equation was about a factor 103 too slow compared to what
was effectively measured in S12. This is because the WKB approximation cannot account for the swing
amplification of loosely wound perturbations, which significantly boosts and hastens the diffusion in
cold dynamical systems such as razor-thin stellar discs. Thanks to our explicit and quantitative estima-
tion of the collisional diffusion flux Ndiv(F tot), let us now perform the same analysis, by comparing
the rescaled times of diffusion ∆τ as defined in equation (3.95).

Section 3.7.3 showed that the time ∆τS12 required to observe the numerical ridge in S12’s numeri-
cal simulation was ∆τS12'3×10−5. In figure 3.7.11 obtained with the WKB approximation, we noted
that the maximum of the norm of the diffusion flux was given by |Ndiv(F tot)|max'0.4, which led to
a WKB rescaled time of diffusion given by ∆τWKB'3×10−2. When fully accounting for the system’s
self-gravity, we obtained in figure 4.3.3 that the maximum of the norm of the divergence of the diffusion
flux was given by |Ndiv(F tot)|max'350, which corresponds to an enhancing of the diffusion flux of a
factor 103 compared to the WKB case. Hence, one can write ∆τBL'∆τWKB/103'3×10−5, where ∆τBL

stands for the time duringwhich the Balescu-Lenard diffusion flux fromfigure 4.3.3 has to be considered
to allow for the formation of the resonant ridge. Comparing the numerically measured rescaled time
∆τS12 and the time ∆τBL predicted by the Balescu-Lenard equation, one gets

∆τS12

∆τBL
' 1 . (4.31)

As a consequence, the projection of the disc’s response over an unbiased basis led to over a hundredfold
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increase of the disc’s susceptibility and therefore to a very significant acceleration of the disc’s secu-
lar evolution. Thanks to this mechanism, we reached a very good agreement between the diffusion
timescale observed in numerical simulations and the prediction from the Balescu-Lenard formalism.
This quantitative match is rewarding, both from the point of view of the accuracy of the N−body inte-
grator (symplecticity, timestep size, softening, etc.) and from the point of view of the relevance of the
Balescu-Lenard formalism and the various approximations onwhich it relies (timescale decoupling, 1/N
truncation of the BBGKYhierarchy, neglect of the collision term, see, e.g., Appendix 2.B for a discussion).

In the next section, let us now show that the main source of secular collisional evolution in S12’s sim-
ulation is indeed the strong self-gravitating amplification of loosely wound perturbations, i.e. sequences
of uncorrelated swing amplified spirals sourced by finite−N effects.

4.3.3 Why swing amplification matters
Let us now briefly show the importance of both collective effects and the completeness of the basis to
capture accurately the swing amplification of loosely wound perturbations, and how it is indeed driving
the formation of the diffusion features recovered in figure 4.3.3.

4.3.3.1 Turning off collective effects

In order to assess the importance of self-gravity, one could proceed to the same evaluation of the diffu-
sion flux as in figure 4.3.3, while however neglecting collective effects. This amounts to assuming that
the system’s responsematrix becomes M̂=0. The Balescu-Lenard equation (2.67) then becomes the Lan-
dau equation (2.73), where the dressed susceptibility coefficients 1/|Dm1,m2

|2 from equation (2.50) are
replaced by their bare analogs |Am1,m2

|2 from equation (2.74). In this context, the computation of the
diffusion flux does not require the calculation of the response matrix. However, one must still perform
the integrations along the resonant lines, as presented in section 4.2.5. We finally rely on the same nu-
merical parameters as the ones detailed in section 4.3.1. This allows us to compute the associated bare
diffusion flux Ndiv(Fbare

tot ), whose initial contours are illustrated in figure 4.3.4. One should compare

Figure 4.3.4: Map of the Ndiv(Fbare
tot ) corresponding to the bare diffusion flux (i.e. without accounting for

collective effects), following the same conventions as in figure 4.3.3. The contours are spaced linearly between
the minimum and maximum of Ndiv(Fbare

tot ). The maximum value for the positive blue contours is given by
Ndiv(Fbare

tot )'0.30, while the minimum value for the negative red contours reads Ndiv(Fbare
tot )'−0.50. One

should note that turning off collective effects led to the disappearance of the strong narrow radial ridge obtained in
figure 4.3.3. This figure is qualitatively similar to the results presented in figure 3.7.11, obtained via the razor-thin
WKB limit of the Balescu-Lenard equation.

the maps of the dressed diffusion fluxNdiv(F tot) obtained in figure 4.3.3 to the present map of the bare
diffusion fluxNdiv(Fbare

tot ), thanks to which one may assess the importance and the strength of the sys-
tem’s self-gravitating amplification. As expected for dynamically cold systems such as razor-thin stellar
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discs, turning off self-gravity reduces significantly the system’s susceptibility and slows down its secular
evolution by a factor of about 1000. One can also note that while the secular appearance of the narrow
resonant ridge was obvious in the dressed diffusion from figure 4.3.3, this is much less clear in the bare
case from figure 4.3.4. Let us also note that the overall shape observed in figure 4.3.4 is somewhat similar
to what was obtained in figure 3.7.11, when relying on the razor-thin WKB limit of the Balescu-Lenard
equation. The amplitudes of the bare divergence contours are also similar to the WKB values obtained
in figure 3.7.11. As a conclusion, the comparison of figures 4.3.3 and 4.3.4 strongly emphasises how the
self-gravitating amplification of loosely wound perturbations is indeed responsible for the appearance
of a narrow ridge, while also drastically hastening the system’s diffusion to ensure a rapid appearance
of the ridge, as seen in the timescales comparisons from equation (4.31).

4.3.3.2 Turning off loosely wound contributions

In order to emphasise once again the role played by loosely wound perturbations, let us try to reproduce
the results presented in section 3.7.2.2, which relied on the razor-thin WKB limit of the Balescu-Lenard
equation. Indeed, using the generic numerical methods presented in section 4.2, one can mimic these
WKB results by carefully choosing the basis elements introduced in equation (4.5). Recall that the basis
elements depend on two indices: an azimuthal index ` and a radial one n. Because S12’s simulation
was restricted to the harmonic sectormφ=2, we only consider basis elements associated with `=2. Fig-
ure 4.3.5 illustrates the radial dependence of the basis elements as one changes the radial index n. One

Figure 4.3.5: Illustration of the radial dependence of Kalnajs basis elements for `=2 and kKa =7, as defined in
Appendix 4.A. These basis elements are the ones used to estimate the Balescu-Lenard diffusion flux in section 4.3.1.
One can note that as the radial index n increases, the basis elements get more and more radially wound.

can note from figure 4.3.5 that the larger n, the faster the radial variation of the basis elements, i.e. the
more tightly wound the basis elements. As a consequence, in order to get rid of the loosely wound
basis elements which can get swing amplified, let us perform a truncation on the radial indices consid-
ered. Let us define the diffusion flux Ndiv(FWKB

tot ) computed in the same manner as the total dressed
flux Ndiv(F tot), except that here we restrict ourselves to basis elements such that ncut≤n≤nmax, with
ncut =2 and nmax =8. By keeping only the sufficiently wound basis elements, our aim is to consider the
same contributions as the ones captured by the razor-thin WKB limit. Figure 4.3.6 illustrates the initial
contours of Ndiv(FWKB

tot ). One can first note that the amplitudes of the contours in figure 4.3.6 are of
the same order than the WKB contours from figure 3.7.11. The presence in figure 4.3.3 of positive blue
contours is also in qualitative agreement with a secular heating of the disc leading to an increase in the
radial action Jr. However, these contours do not exhibit the formation of a narrow resonant ridge as
was predicted in figure 4.3.3, when accounting as well for loosely wound contributions.

As a conclusion, figures 4.3.4 and 4.3.6 illustrate how the strong self-gravitating amplification of
loosely wound perturbations (i.e. swing amplification) is indeed responsible for both the appearance of
a narrow ridge of resonant orbits as well as for the associated rapid timescale of appearance. Having
emphasised the relevance of the Balescu-Lenard formalism to describe the secular dynamics of razor-
thin discs, let us investigate in the next section some additional properties of these long-term evolutions
(already advertised in figure 3.7.6), by relying on our own N−body simulations.
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Figure 4.3.6: Map of Ndiv(FWKB
tot ) corresponding to the dressed diffusion flux when loosely wound contribu-

tions are not accounted for, following the same conventions as in figure 4.3.3. In order to restrict ourselves only
to tightly wound contributions, we did not consider the contributions associated with the basis elements for the
radial index n=0, 1, as these elements are loosely wound (see figure 4.3.5). The contours are spaced linearly be-
tween the minimum and the maximum of Ndiv(FWKB

tot ). The maximum value for the positive blue contours is
given by Ndiv(FWKB

tot )'0.7, while the minimum value for the negative red contours reads Ndiv(FWKB
tot )'−4.5.

This figure should be compared to figure 3.7.11, which was obtained by relying on the razor-thin WKB limit of the
Balescu-Lenard equation.

4.4 Comparisons with N−body simulations
In order to investigate in detail the scalings of the system’s evolution w.r.t. the number of particles or the
active fraction of the disc, we now resort to our ownN−body simulations. We present in section 4.4.1 the
characteristics of the N−body code that was used, while sections 4.4.2 and 4.4.3 focus on the respective
dependences of the system’s response with the number of particles and its active fraction. Finally, in
section 4.4.4, we illustrate how the very late evolution of the system exhibits an out-of-equilibrium phase
transition.

4.4.1 A N−body implementation

When simulating the evolution of self-gravitating discs, one should pay a particular attention to the
sampling of the initial conditions in order to ensure that the disc is initially in a state of collisionless
equilibrium. In the present context, this requires to be able to sample particles’ positions and velocities
from the DF of equation (3.91). We do not repeat here the sampling strategy that was used here, whose
details can be found in Appendix E of Fouvry et al. (2015c). One should note that we relied on a random
sampling procedure of the DF. This does not correspond to a quiet start sampling (Sellwood, 1983),
which would have allowed for a reduction of the initial shot noise within the disc.

Once particles have been sampled, their positions and velocities are evolved using a straightforward
particle-mesh N−body code with a single-timestep leapfrog integrator (see Binney & Tremaine (2008),
§3.4.1.). As was done in S12, the potential in which particles evolve is decomposed in two components:
(i) an axisymmetric static contribution ψM(R) from the unperturbed Mestel disc, as introduced in equa-
tion (3.85), (ii) a non-axisymmetric contribution δψ(R,φ) which grows as perturbations develop in the
disc. Thanks to this splitting, we avoid difficulties associated with dealing with the rigid part of the
potential, which is not due to the DF, created by the tapering functions and the disc’s active fraction.
Here we calculate δψ using a cloud-in-cell interpolation (see Binney & Tremaine (2008), §2.9.3.) of the
particles’ masses onto a Nmesh×Nmesh mesh of square cells of size ∆xmesh. We then filter the resulting
density field ρ(x, y) to isolate the disc’s response, as discussed below. We then rely on the traditional
"doubling-up" procedure to determine the potential δψ at the cell vertices. The contribution of δψ to
each particles’ accelerations is finally obtained using the same cloud-in-cell interpolation scheme.



4.4. COMPARISONS WITH N−BODY SIMULATIONS 99

Similarly to S12’s restriction, when computing the density, we add a filtering scheme to account only
for themφ=2 response. This contribution is obtained by calculating

ρ2(r) =
1

2π

∫
dφ ρ(r cos(φ), r sin(φ)) e−2iφ . (4.32)

This calculation is performed at each timestep immediately after the cloud-in-cell assignment of mass
to the mesh. We then impose to the mesh the new mass distribution

ρ(xk, yk) = ρ2(rk) e2iφk , (4.33)

where (rk, φk) are given by (xk, yk)=(rk cos(φk), rk sin(φk)). To compute ρ2(r), we rely on a brute-force
computation of equation (4.32) on a series of Nring radial rings with a spacing ∆rring�∆xmesh, with
the trapezium rule with Nφ=720 points in φ for the angular dependence. While being very simple,
this N−body code aims at reproducing as closely as possible the details of S12’s implementation. One
should still underline two important differences: S12 relies on a polar mesh to compute δψ, while we
use here a cartesian mesh with amφ=2 filtering of the density field; S12 uses a block timestep scheme,
while we use here a simpler single-timestep scheme.

The results presented thereafter were obtained with a timestep ∆t=10−3Ri/V0 (where Ri and V0

were introduced in section 3.7.1), with a mesh that extends up to ±Rmax =20Ri and Nmesh =120 cells,
so that ∆xmesh =Ri/3. To filter the potential to the mφ=2 harmonic sector, we used Nring =1000 radial
rings and Nφ=720 points in the azimuthal direction, so that ∆rring =2Ri/100. The computation of the
potential from the density was performed via a Fourier transform on the mesh, with a softening length
ε=Ri/6, comparable to the Plummer softening ε=Ri/8 used in S12. We checked that the results are not
significantly changed when the timestep or the mesh size are divided by 2. We detail in Appendix 4.C,
how this N−body implementation was validated by recovering known unstable modes of truncated
Mestel discs (Zang, 1976; Evans & Read, 1998b; Sellwood & Evans, 2001).

4.4.2 Scaling with N
The Balescu-Lenard equation (2.67) predicts the system’smean secular collisional evolution, in the sense
of it being averaged over different realisations. Therefore, in order to investigate such dynamics via
N−body simulations, we run multiple simulations for the same number of particles, which only differ
initially by the sampling of the initial conditions. For a given number of particles, we then perform an
ensemble average of the different evolution realisations. Having estimated this mean evolution, we are
in a position to compare it with the Balescu-Lenard predictions.

In order to study the scalingw.r.t. the number of particles of these various numerical simulations, one
should define a function quantifying the "amount of diffusion" undergone by the system and compare
it with the predictions of the Balescu-Lenard formalism. An additional difficulty also comes from the
statistical nature of the initial sampling. Indeed, as only N stars are being sampled, the system’s initial
DF will necessarily fluctuate w.r.t. the smooth underlying DF as a result of the unavoidable Poisson shot
noise. Let us insist on the fact that these fluctuations directly originate from the initial sampling and are
not as such specific to the collisional diffusion process described by the Balescu-Lenard equation. It is
therefore important to disentangle these two effects. To do so, let us define the function h̃(t,N) as

h̃(t,N) =
〈
hi(t,N)

〉
, (4.34)

where we introduced the operator
〈
.
〉
as the ensemble average over different realisations for the same

number of particles indexed by i. In the upcoming applications, it is approximated as the arithmetic
average of p=32 different realisations, so that

〈
.
〉

=1/(p)
∑
i( . ). In equation (4.34), we introduced the

distance function hi(t,N) as

hi(t,N) =

∫
dJ
[
Fi(t,J , N)−

〈
F (t=0,J , N)

〉]2
. (4.35)

In equation (4.35), we noted asFi(t,J , N) the normalisedDF at time t of the ith simulationwith a number
N of particles, while

〈
F (t=0)

〉
stands for the averaged system’s DF at the initial time. Defined in such

a way, the function hi quantifies the "distance" between the inital mean DF
〈
F (t=0)

〉
and the evolved

DF Fi(t). When interested in the early time behaviour of the function h̃, one can perform a limited
development as

h̃(t,N) ' h̃0(N)+h̃1(N) t+h̃2(N)
t2

2
, (4.36)
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where the coefficients h̃0, h̃1 and h̃2 only depend on N . Starting from equation (4.35), these coefficients
can easily be estimated. One has

h̃0(N) =

∫
dJ

〈[
F−

〈
F0

〉]2〉
, (4.37)

whereweused the shortening notations
〈
F0

〉
=
〈
F (t=0,J , N)

〉
andF =F (t=0,J , N). One can note that

this coefficient only depends on the properties of the initial sampling of the DF, and not on its dynamics.
As discrete sampling obeys Poisson statistics, one can immediately rewrite equation (4.37) as

h̃0(N) =
α0

N
, (4.38)

where the constant α0 is independent of N . One can similarly compute the coefficient h̃1(N), which
reads

h̃1(N) = 2

∫
dJ
〈[
F−

〈
F0

〉]
F ′
〉
, (4.39)

where we used the notation F ′=
[
∂F/∂t

]
(t=0). The two terms appearing in the crossed term from

equation (4.39) have two different physical origins. The first one,
[
F−

〈
F0

〉]
, is associatedwith the initial

sampling of the DF, while the second, F ′, is driven by the system’s dynamics. Assuming that the sam-
pling and the system’s dynamics are uncorrelated, one canwrite

〈
[F−

〈
F0

〉
]F ′
〉

=
〈
F−

〈
F0

〉〉〈
F ′
〉

=0, i.e.
one has h̃1(N)=0. Finally, one can compute the coefficient h̃2(N) given by

h̃2(N) = 2

∫
dJ

〈[
F ′
]2

+
[
F−

〈
F0

〉]
F ′′
〉
, (4.40)

wherewe used the notationF ′′=
[
∂2F/∂t2

]
(t=0). Using the same argument of uncorrelation as in equa-

tion (4.39), one can get rid of the second term in the r.h.s. of equation (4.40). In addition, let us assume
that the variance of

[
F ′
]2 is small compared to its expectation, so that

〈[
F ′
]2〉

=
[〈
F ′
〉]2. Equation (4.40)

becomes
h̃2(N) = 2

∫
dJ
[〈
F ′
〉]2

. (4.41)

The dependence of the term
〈
F ′
〉
with N is directly given by the Balescu-Lenard equation (see equa-

tion (3.94)), which gives the scaling
h̃2(N) =

α2

N2
, (4.42)

where the amplitudeα2 is independent ofN . Let us insist on the fact that such a scaling is a prediction of
the Balescu-Lenard formalism. Should the secular evolution observed in S12 be a Vlasov-only evolution,
i.e. a collisionless evolution, one would not have such a scaling.

Let us now compare the scalings from equations (4.38) and (4.42) with the onesmeasured inN−body
simulations. We consider number of particles given by N ∈

{
8, 12, 16, 24, 32, 48, 64

}
×105, and for each

number of particles, we perform 32 different simulations with different initial conditions, with the
N−body implementation presented in section 4.4.1. For each value of N , one may first study the be-
haviour of the function t 7→ h̃(t,N), as illustrated in figure 4.4.1. Once these functions computed, one can
fit parabolas to them, following equation (4.36), to determine the behaviours of N 7→ h̃1(N), h̃2(N). The
dependence withN of these two coefficients is illustrated in figure 4.4.2. In the left panel of figure 4.4.2,
we recover the scaling h̃0(N)∝1/N obtained in equation (4.38). Such a dependence is fully due to the
initial Poisson shot noise in the initial conditions. From the right panel of figure 4.4.2, we obtain the
scaling h̃2(N)∝N−1.91. This has to be compared to the prediction h̃2(N)∝N−2 from equation (4.42) de-
rived from the Balescu-Lenard equation. Given the small number of realisations considered here and the
various uncertainties in the fits, the measurements and the predictions appear to be in good agreement.
Such a scaling of h̃2(N) with N therefore confirms the relevance of the Balescu-Lenard framework. It
demonstrates that the secular evolution of S12’s stable Mestel disc is the result of a collisional diffusion
seeded by the system’s discrete nature and the effects of amplified distant resonant encounters.

In order to investigate in more detail this collisional scaling, let us now describe another measure-
ment, which allows us to get rid of the pollution by the Poisson shot noise present in equation (4.38).
Indeed, one of the difficulty of the previous measurements was to disentangle the contributions from
the Poisson shot noise, as in h̃0(N) from equation (4.38), from the ones associated with the collisional
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Figure 4.4.1: Ilustration of the behaviour of the function t 7→ h̃(t,N) from equation (4.34), for an ac-
tive fraction ξ=0.5. The function is averaged over 32 different realisations with particle numbers
N ∈

{
8, 12, 16, 24, 32, 48, 64

}
×105. To compute h̃(t,N), the action space domain (Jφ, Jr)=

[
0; 2.5

]
×
[
0; 0.2

]
was

binned in 100×50 regions. The values of h̃(t,N) have also been uniformly renormalised to clarify this represen-
tation. Dots correspond to the snapshots of the simulations for which h̃(t,N) was effectively computed, while the
lines correspond to second-order fits, following equation (4.36). As expected, the larger the number of particles, the
less noisy the simulation and the smaller h̃(t,N).

Figure 4.4.2: Left panel: Illustration of the behaviour of the function log(N) 7→ log(h̃0(N)), whereN was rescaled
by a factor 10−5 to clarify the representation. Dots are associated with the values computed thanks to figure 4.4.1,
while the line corresponds to a linear fit reading log(h̃0(N))'11.75−1.02 log(N). The coefficients h̃0(N) have been
uniformly renomarlised to clarify the representation. Right panel: Same conventions as the left panel. Illustration of
the behaviour of the function log(N) 7→ log(h̃2(N)), whose linear fit takes the form log(h̃2(N))'12.36−1.91 log(N).

scaling of the Balescu-Lenard equation, as in h̃2(N) from equation (4.42). In order not to be sensitive
to fluctuations around the mean DF associated with Poisson shot noise, let us restrict ourselves only to
sufficiently large fluctuations, i.e. fluctuations effectively induced by the secular evolution rather than
by the inevitable Poisson shot noise. Let us therefore define the function Ṽ (t,N) as

Ṽ (t,N) =

∫
dJ χ

[〈
F (t,J , N)

〉
−
〈
F (t=0,J , N)

〉
<CṼ

]
, (4.43)

where we introduced a threshold CṼ <0, as well as χ
[
x<CṼ

]
a characteristic function equal to 1 if

x<CṼ and 0 otherwise. The function Ṽ (t,N) therefore measures the volume in action space of the
regions depleted from particles (asCṼ <0), for which the mean DF value has changed bymore thanCṼ .
Provided thatCṼ is chosen to be sufficiently large, such a definition allows us not to be polluted anymore
by the Poisson sampling shot noise. The scaling of Ṽ (t,N) for the initial times is straightforward to obtain
(see equation (3.94)) and reads

Ṽ (t,N) ' t

N
Ṽ0 , (4.44)
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where Ṽ0 is a constant independent of N . As a consequence, for a fixed value of N , one expects a linear
time dependence of the function t 7→ Ṽ (t,N), as illustrated in the left panel of figure 4.4.3. Finally, in

Figure 4.4.3: Left panel: Illustration of the behaviour of the function t 7→ Ṽ (t,N) defined in equation (4.43) when
averaged over 32 different realisations for particle numbers N ∈

{
8, 12, 16, 24, 32, 48, 64

}
×105, along with their as-

sociated linear fits. To effectively compute Ṽ (t,N), we used the same binning of action space as in figure 4.4.1. As
predicted in equation (4.44), one recovers that for a fixed value of N , the function t 7→ Ṽ (t,N) is linear. The hori-
zontal dashed line illustrates the threshold value Ṽthold which was used to determine the threshold time tthold as
defined in equation (4.45). Right panel: Illustration of the behaviour of the function N 7→ tthold(N) and its associ-
ated linear fit. As predicted by the Balescu-Lenard equation in equation (4.46), one recovers a linear dependence of
tthold(N) with N .

order to test the scaling w.r.t. N predicted by equation (4.44), one may introduce a threshold value
Ṽthold, and, for a given value of N , define the associated threshold time tthold(N) such that

Ṽ (tthold(N), N) = Ṽthold . (4.45)

Equation (4.44) immediately gives the scaling

tthold(N) ' N Ṽthold

Ṽ0

. (4.46)

This linear scaling of tthold(N) with N is a prediction from the Balescu-Lenard formalism and the asso-
ciated collisional dynamics, and is nicely recovered in the right panel of figure 4.4.3.

4.4.3 Scaling with ξ
Following the previous study of the scaling of the system’s response w.r.t. the number of particles, let
us now study the impact of the disc’s active fraction ξ on the properties of the diffusion. Indeed, one of
the strength of the Balescu-Lenard formalism is to capture the effect of gravitational polarisation via the
response matrix and the dressed susceptibility coefficients. Following S12, the simulations considered
in the previous sections were all performed with an active fraction ξ=0.5. Only one half of the total
potential was effectively generated self-consistently by the stars, while the rest was associated with the
contributions from a static and rigid halo. By increasing the disc’s active fraction, one can strengthen the
self-gravitating amplification, and therefore hasten the diffusion, while still remaining in a collisional
regime of evolution. If one keeps increasing evenmore ξ, the systemwill eventually becomedynamically
unstable and its dynamics will be driven by the collisionless Vlasov equation. See section 4.4.4 for a
detailed discussion on the transition between the two regimes of diffusion: slow collisional and unstable
collisionless. Provided that ξ is not too large, the dynamics of the the disc is still driven by the Balescu-
Lenard equation, and the scaling on h̃2 withN obtained in equation (4.42) remains the same. However,
because of the increased self-gravity, the prefactor α2(ξ) from equation (4.42) will increase as the system
becomes more responsive. Let us now investigate the dependence of α2 with ξ, which can be both
measured via direct N−body simulations following section 4.4.2, as well as predicted by the Balescu-
Lenard formalism, following section 4.3.1.

Let us consider the same set of simulations as previously, withN ∈
{

8, 12, 16, 24, 32, 48, 64
}
×105 and

32 different realisations for each value of N , while increasing the value of ξ to ξ=0.6. The equiva-
lents of figures 4.4.1 and 4.4.2 are illustrated for ξ=0.6 in figure 4.4.4. Even in this more susceptible
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Figure 4.4.4: Top panel: Illustration of the behaviour of the function t 7→ h̃(t,N) for an active fraction ξ=0.6,
following the same conventions as in figure 4.4.1. As expected, increasing the active fraction hastens the secular
diffusion and therefore hastens the growth of the function h̃(t,N). Bottom left panel: Behaviour of the func-
tion log(N) 7→ log(h̃0(N)) for an active fraction ξ=0.6, following the conventions from figure 4.4.2. The associ-
ated linear fit reads log(h̃0(N))'11.90−1.07 log(N). One recovers the expected scaling of the initial Poisson shot
noise sampling as obtained in equation (4.38). Bottom right panel: Illustration of the behaviour of the function
log(N) 7→ log(h̃2(N)) for an active fraction ξ=0.6, following the conventions from figure 4.4.2. The associated lin-
ear fit takes the form log(h̃2(N))'15.50−1.84 log(N). One recovers the expected Balescu-Lenard collisional scaling
obtained in equation (4.42).

regime, one recovers the fact that the function t 7→ h̃(t,N) behaves initially like a parabola as obtained
in equation (4.36). One also recovers the expected scalings of the functions N 7→ h̃0(N), h̃2(N), associ-
ated respectively with the initial Poisson shot noise and the collisional scaling of the Balescu-Lenard
equation. Thanks to these fits, let us now study the ratio α2(ξ=0.6)/α2(ξ=0.5) to estimate the am-
plitude of the associated polarisations. The fits N 7→ h̃2(N) from figures 4.4.2 and 4.4.4 allow us to
write log(h̃2(N))'6.40−1.91(log(N)−3.12) for ξ=0.5, and log(h̃2(N))'9.76−1.84(log(N)−3.12) for
ξ=0.6, where we shifted the intercept of the fits to correspond to the centre of the considered domain
log(N)∈

[
log(8); log(64)

]
. As a consequence, from the N−body realisations, one obtains the ratio

α2(0.6)

α2(0.5)

∣∣∣∣
NB

' exp
[
9.76−6.40

]
' 29 . (4.47)

Let us now compare this measurement from numerical simulations to the same measurement esti-
mated via the Balescu-Lenard formalism. Equation (4.41) immediately gives us this ratio as

α2(ξ1)

α2(ξ2)
=

∫
dJ
[
div(Fξ1

tot)
]2∫

dJ
[
div(Fξ2

tot)
]2 , (4.48)

where Fξ
tot stands for the initial Balescu-Lenard diffusion flux from equation (2.72) with an active frac-

tion ξ. The value of α2(ξ=0.5) can be determined from figure 4.3.3, while we illustrate in figure 4.4.5
the secular diffusion flux predicted for ξ=0.6. Comparing figures 4.3.3 and 4.4.5, we note that they
both exhibit similar diffusion features, but the one associated with the larger value of ξ predicts a faster
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Figure 4.4.5: Map of Ndiv(F tot) with an active fraction ξ=0.6, following the same conventions as in figure 4.3.3.
The contours are spaced linearly between the minimum and the maximum of Ndiv(F tot). The maximum value
for the positive blue contours corresponds to Ndiv(F tot)'4200, while the minimum value for the negative red
contours readsNdiv(F tot)'−3200. Increasing the active fraction of the disc increases its susceptibility, so that the
norm of Ndiv(F tot) gets larger and the secular diffusion is hastened.

diffusion. Thanks to the contours from both figures 4.3.3 and 4.4.5, we may estimate the ratio of the
coefficients α2. In order to focus on the regions associated with the resonant ridge, the integrals on J in
equation (4.48) are performed for Jφ∈

[
0.5; 1.2

]
and Jr∈

[
0.06; 0.15

]
. These Balescu-Lenard predictions

lead to the measurement
α2(0.6)

α2(0.5)

∣∣∣∣
BL

' 42 . (4.49)

Despite the noise associated with considering a much more sensitive disc with ξ=0.6, the ratios
of α2 measured either via direct N−body simulations as in equation (4.47) or via the Balescu-Lenard
formalism as in equation (4.49) are within the same order of magnitude. We recovered here a crucial
strength of the Balescu-Lenard formalism which, because it accounts for collective effects, captures the
relative effects of the disc’s susceptibility on the characteristics of the secular collisional diffusion. This
is essential for dynamically cold systems such as razor-thin discs.

4.4.4 Secular phase transitions
In section 4.3.1, we computed the Balescu-Lenard predictions for the initial diffusion flux F tot(t=0+).
The directN−body simulations presented in section 4.4.2 also allowed us to check the appropriate scal-
ing of the system’s diffusion w.r.t. the number of particles and its active fraction. In order to probe the
late secular evolution of the system via the Balescu-Lenard formalism, one has to integrate forward in
time the Balescu-Lenard equation. In order to account for the fact that this diffusion is self-induced, i.e.
the fact the drift and diffusion coefficients are self-consistent with the system’s DF, i.e. the fact that the
Balescu-Lenard equation is an integro-differential equation, this integration forward in time has to be
made iteratively by updating the drift and diffusion coefficients as the system’s DF changes. Such diffi-
cult iterations are beyond the scope of the present chapter, butwe refer toAppendix 6.C for an illustration
of how the Balescu-Lenard diffusion equation may be rewritten as a stochastic Langevin equation, for
which numerical integrations appear simpler. Now that they have been validated at t=0+, the direct
N−body simulations may used to investigate the late times evolution of the system.

The Balescu-Lenard equation (2.67) describes the long-term evolution of a discrete stable quasi-
stationary self-gravitating inhomogeneous system. As already underlined in the derivation of this ki-
netic equation (see, e.g., equation (2.128)), for such slow evolutions to occur, it is mandatory for the
system to be dynamically stable w.r.t. the collisionless Vlasov dynamics. This also has to remain valid
as the system diffuses through a series of quasi-stationary stable equilibria. The Balescu-Lenard equa-
tion being associated with a kinetic development at order 1/N , let us note that such an equation is valid
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for secular timescales of order NtD, where tD is the dynamical time.
When considering long-term evolutions, the Balescu-Lenard dynamics may lead to two distinct out-

comes. On the one hand, if the system remains dynamically stable during its entire evolution, the
Balescu-Lenard equation will drive the system towards a 1/N−stationary state.2 After having reached
such a stationary state, the 1/N effects vanish, and the system’s dynamics is then driven by 1/N2 effects,
which are not accounted for in the Balescu-Lenard equation. On the other hand, the Balescu-Lenard
equation may also lead on secular timescales to a dynamical destabilisation of the system. As a result
of the long-term resonant effects of the collisional diffusion, the irreversible changes in the system’s DF
may make the system unstable. After a slow, stable, and quasi-stationary evolution sourced by colli-
sional 1/N−effects, the system may at some point become dynamically unstable w.r.t. the collisionless
dynamics, which then becomes the main driver of the system’s later time evolution. This was already
suggested in Sellwood (2012), which observed an out-of-equilibrium phase transition between the 1/N
Balescu-Lenard collisional evolution and the collisionless Vlasov evolution.

Relying on the N−body simulations presented in section 4.4.2, let us now illustrate in detail this
phase transition. In order to capture the change of evolution regime within the disc (collisional vs.
collisionless), let us define for a given number N of particles the quantity Σ2(t,N) as

Σ2(t,N) =

〈∫ Rsup

Rinf

dRR dφΣstar(t,N,R, φ) e−i2φ

〉
=

〈
µ
∑
n

e−i2φn

〉
, (4.50)

where, similarly to equation (4.34),
〈
·
〉
stands for the ensemble average over the 32 different real-

isations with the same number of particles. The radii considered here are restricted to the range
R∈

[
Rinf ;Rsup

]
=
[
1.2; 5

]
, where the active surface density of the disc is only weakly affected by the

inner and outer tapers. Finally, to obtain the second equality in equation (4.50), we replaced the active
surface density, Σstar, by a discrete sum over all the particles of the system. Here, the sum on n is re-
stricted only to particles whose radius lies between Rinf and Rsup, and we noted their azimuthal phase
as φn. The function Σ2 aims at quantifying the strength of non-axisymmetric features within the disc
and should therefore be seen as a way to estimate how much the disc has evolved. During the initial
Balescu-Lenard collisional evolution of the system, one expects low values of Σ2, as such an evolution is
an orbit-averaged evolution, i.e. we assumed that F =F (J , t), so that the mean system’s DF should not
depend on the angles θ. During this first slow collisional phase, Σ2 still remains non-zero, because of
both unavoidable Poisson sampling shot noise and the fact that the disc sustains transient spiral waves
driving its secular evolution. One the long-term, this collisional evolution leads to a destabilisation
of the system. The dynamical drivers of the system’s evolution are no more discrete distant resonant
collisional encounters, but exponentially growing collisionless dynamical instabilities. Because of the
appearance of strong non-axisymmetric features, in this collisionless regime, one expects much larger
values of Σ2. Figure 4.4.6 illustrates this transition between the two regimes of diffusion, thanks to the
behaviour of the function t 7→

√
NΣ2(t,N).3

This phase transition can also easily be seen by directly looking at the disc’s active surface density
Σstar during these two regimes. This is illustrated in figure 4.4.7, where one notices that during the
late time collisionless evolution, the disc becomes strongly non-axisymmetric. In order to illustrate this
change of dynamical regime, Sellwood (2012) fitted unstable growing modes to the disc in this regime
to effectively recover the presence of a dynamical instability. Right after the instability settles in, S12
noted that the pattern speed of the spiral response is consistent with the ILR frequency associated with
the ridge. At this stage, one could also rely on the matrix method from Appendix 4.C, to show that
a perturbed DF with a sufficiently large ridge is indeed associated with an unstable configuration (De
Rijcke & Voulis, 2016). In conclusion, let us emphasise that an isolated stellar disc, fully stable in the
mean sense, will, given time, drive itself through two-point resonant correlations towards dynamical

2Boltzmann’s DFs of the form F (J)∝exp[−βH(J)], when physically reachable, are obvious stationary states of the Balescu-
Lenard equation. Let us emphasise that self-gravitating systems cannot in the strict sense reach statistical equilibrium, as entropy
is not bounded from above (Padmanabhan, 1990; Chavanis, 2006). Indeed, for a self-gravitating system, it only takes two particles
to satisfy the conservation of energy (by bringing them arbitrarily close to each other) and another two to satisfy the conservation
of angular momentum (by sending one of them arbitrarily far from the cluster). Lynden-Bell & Kalnajs (1972) have shown that,
when given the opportunity, waves within the system will reshuffle orbits so that mass flows inwards and angular momentum
outwards, which leads to an increase in entropy.

3Similar dynamical phase transitions have been observed in the long-range interacting HMF (Hamiltonian Mean Field) toy
model (Campa et al., 2008). During the slow collisional evolution, finite−N effects get the system’s DF to change. In some situa-
tions, the system may then become (dynamically) unstable and undergoes a rapid phase transition from a homogeneous phase to
an inhomogeneous one. This transition can be monitored by the magnetisation (see figure 1 in Campa et al. (2008)), which is an
order parameter playing a role similar to Σ2 here.
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Figure 4.4.6: Illustration of the behaviour of the function t 7→
√
NΣ2(t,N), as introduced in equation (4.50), as

one varies the number of particles. The prefactor
√
N was added to mask Poisson shot noise allowing for the

initial values of
√
NΣ2 to be independent ofN . This illustrates the out-of-equilibrium transition between the initial

Balescu-Lenard collisional evolution, forwhich lowvalues ofΣ2 are expected, and the collisionlessVlasov evolution,
for which the system loses its mean axisymmetry and larger values of Σ2 are reached. As expected, the larger the
number of particles, the later the transition.

Figure 4.4.7: Illustration the disc’s active surface density Σstar for aN−body run withN=8×105 particles and re-
stricted to the radial rangeR≤6. Left panel: At an early time t=60, for which the mean disc remains axisymmetric.
In this regime, the dynamics of the disc is collisional and governed by the Balescu-Lenard equation (2.67). Right
panel: At a much later time t=2400, for which the disc is strongly non-axisymmetric. In this regime, the dynamics
of the disc is collisionless and governed by Vlasov equation.

instability. This illustrates the extent to which cold quasi-stationary systems such as stellar discs are
truly secularly metastable.

4.5 Conclusion
Most astrophysical discs were formed through dissipative processes and typically evolved over many
dynamical times. When isolated, long-range gravitational interactions allow their components to inter-
act effectively through resonances, which may secularly drive discs towardmore likely equilibria. These
processes are captured by recent extensions of the kinetic theory of self-gravitating systems rewritten
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in angle-action variables and captured by the inhomogeneous Balescu-Lenard equation (2.67). Solving
these equations provides astronomerswith a new opportunity to quantify in detail the secular dynamics
of these systems. While numerically challenging, the computation of the diffusion fluxes predicted by
these kinetic equations is, as demonstrated in this chapter, within reach of an extension of the matrix
method (Kalnajs, 1976), allowing for an estimation of the strength of the self-gravitating orbital response.

In this chapter, we estimated the drift and diffusion coefficients of the inhomogeneous Balescu-
Lenard equation in the context of razor-thin stellar discs. The details of the disc’s self-gravity were
taken into account via the matrix method, as detailed in section 4.2.3. This method was validated on
unstable Mestel discs in Appendix 4.C. In section 4.3, we computed the divergence of the self-induced
diffusion flux in action space, Ndiv(F tot), and recovered in figure 4.3.3 the diffusion features observed
in the direct numerical simulations from Sellwood (2012). We recovered as well in equation (4.31) an
agreement of the diffusion timescale between the Balescu-Lenard prediction and the N−body mea-
surements, which, as shown in section 4.3.3, is permitted by the significant diffusion boost offered by
swing amplification. Let us emphasise that these computations are the first exact calculations of the
Balescu-Lenard drift and diffusion coefficients in the context of inhomogeneous multi-periodic systems.
These computations capture the essence of the self-induced evolution (nature), which should compete
with environmentally-induced evolution (nurture). They also demonstrate without ambiguity that the
Balescu-Lenard equation is the master equation capturing consistently the self-induced churning and
blurring (Schönrich & Binney, 2009a). In addition, the multi-component Balescu-Lenard equation (2.76)
can also account for the joint evolutions of multiple populations, e.g., stars and giant molecular clouds.
The presence of a spectrum of masses can have a significant effect on the system’s secular dynamics, as
detailed in section 5.7.6 for thickened discs.

In section 4.4, we compared these predictions to idealised numerical simulations of stable razor-thin
Mestel discs sampled by pointwise particles and evolved for hundreds of dynamical times. Relying on
ensemble averages of theseN−body runs, we identified a clear signature of the Balescu-Lenard process
in the scaling of the diffusion features with N and ξ, the active fraction of mass within the disc. We
also emphasised how, for late times, the collisional diffusion features slowly appearing in the disc’s DF
eventually lead to a destabilisation of the disc. As originally identified inGoldreich&Lynden-Bell (1965);
Julian & Toomre (1966) by studying their linear response, the susceptibility of cold self-gravitating discs
plays a crucial role in their secular evolution as it appears squared in the Balescu-Lenard equation, which
significantly boosts the effects induced by the system’s discreteness. In these early works, the relevance
of the susceptibility was shown via the study of discs’ linear reponse. Here, we have shown how central
this susceptibility is to discs’ secular response.

The various illustrations presented in this chapter offer us therefore a qualitative and quantitative
understanding of the secular diffusion processes induced by discreteness effects occurring in galactic
discs. Our qualitative agreement in both amplitude, position, width and scaling of the induced orbital
signatures suggests therefore that the secular evolution of such razor-thin stellar discs is indeed driven
by discrete resonances, as captured by the Balescu-Lenard equation. Let us finally emphasise that such
an evolution does not depend on the initial phases of the disc’s constituents, since thematching Balescu-
Lenard fluxes are phase averaged. The Balescu-Lenard collisional equation therefore reproduces the
initial orbital evolution of self-gravitating discs driven by discrete two-point correlations beyond the
mean field approximation.

4.5.1 Future works
We have seen in this chapter how the inhomogeneous Balescu-Lenard equation was indeed able to ac-
curately capture the diffusion features observed in direct N−body simulations of razor-thin discs, once
one accounts correctly for the system’s self-gravity. It appears as particularly important in this context,
as razor-thin stellar discs are cold dynamical systems, within which the swing amplification of loosely
wound fluctuations can be very large.

A first direct follow-up of this work would be to integrate forward in time the Balescu-Lenard equa-
tion, in order to estimate the system’s diffusion flux at some later time. Because of the self-consistency of
the Balescu-Lenard equation, such an integration remains technically difficult. One possible approach
would be to rely on its Langevin rewriting (see Appendix 6.C), which describes the diffusion of indi-
vidual particles rather than of the system’s DF as a whole. This integration would especially allow for a
more detailed investigation of the process of secular phase transition during which the system becomes
at some point unstable for the collisionless dynamics.

As was emphasised in Appendix 4.C,N−body simulations require the use of an additional parame-
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ter, the softening length ε, which leads to a modification of the pairwise interaction potential. As can be
seen in figure 1 of Sellwood & Evans (2001), this parameter has a strong impact on the characteristics of
the unstable modes recovered via N−body simulations. It would be of particular interest to investigate
in a systematic manner the various influences of this parameter. This would for example involve looking
at the effects of ε on unstable modes measurements in numerical simulations, update the linear theory
to account for a modified softened interaction potential, and investigate how such a softening may also
impact the Balescu-Lenard predictions for the secular diffusion features.

We described in Appendix 4.D a possible follow-up of this work which would be to consider the sec-
ular dynamics of 3D spherical systems, whose dynamics is very similar to that presented in this chapter.
Accounting for potential fluctuations induced by supernova feedback would allow us to investigate one
possible mechanism of softening of dark matter haloes’ profiles on cosmic times. By characterising from
hydrodynamical simulations the typical feedback-induced perturbations from a galactic disc onto its
dark matter halo, one should be in a position to quantitatively estimate the amplitude of the subsequent
secular diffusion in the halo. Such mechanisms are for now beyond the reach of current simulations, so
that such a precise theoretical framework appears as a necessary first step to probe these processes.

Similarly, the secular dynamics of 3D spherical globular clusters should also be re-investigatedwithin
the Balescu-Lenard formalism, following the approach presented inAppendix 4.D. Indeed, though it has
long been known that for such systems, their discreteness is the main driver of their secular evolution,
it has up to now only be described as local encounters (see Heggie & Hut (2003) for a review). The
Balescu-Lenard equation, complemented with the estimation of the system’s self-gravity from linear
theory, would allow us to account for non-local resonances, assess the importance of the cluster’s self-
gravity, and recover the observed dependence of the system’s response with the number of particles and
the fraction of radial orbits.



Appendix

4.A Kalnajs 2D basis

Let us detail the 2D basis introduced in Kalnajs (1976) and used in section 4.3 to compute the diffusion
flux. A similar rewriting of the basis normalisations can also be found in Earn & Sellwood (1995). This
basis depends on two parameters, namely kKa∈N and a scale radiusRKa>0. In order to shorten the no-
tations in the upcoming expressions, let us write r for the dimensionless quantity r/RKa. As introduced
in equations (4.5) and (4.6), the 2D basis elements depend on two indices: the azimuthal number `≥0
and the radial number n≥0. The radial component of the potential elements is given by

U`n(r)=−
√
G

R
1/2
Ka

P(kKa, `, n) r`
k∑
i=0

n∑
j=0

αKa(kKa, `, n, i, j) r
2i+2j , (4.51)

while the radial component of the density elements reads

D`n(r) =
(−1)n√
GR

3/2
Ka

S(kKa, `, n) (1−r2)kKa−1/2 r`
n∑
j=0

βKa(kKa, `, n, j) (1−r2)j . (4.52)

In equations (4.51) and (4.52), we introduced the coefficients P(k, `, n) and S(k, `, n) as

P(k, `, n) =

{
[2k+`+2n+(1/2)]Γ[2k+`+n+(1/2)]

Γ[2k+n+1] Γ2[`+1] Γ[n+1]
Γ[`+n+(1/2)]

}1/2

,

S(k, `, n) =
Γ[k+1]

π Γ[2k+1] Γ[k+(1/2)]

{
[2k+`+2n+(1/2)] Γ[2k+n+1] Γ[2k+`+n+(1/2)]

Γ[`+n+(1/2)] Γ[n+1]

}1/2

. (4.53)

In equations (4.51) and (4.52), we also introduced the coefficients αKa and βKa as

αKa(k, `, n, i, j) =
[−k]i [`+(1/2)]i [2k+`+n+(1/2)]j [i+`+(1/2)]j [−n]j

[`+1]i [1]i [`+i+1]j [`+(1/2)]j [1]j
,

βKa(k, `, n, j) =
[2k+`+n+(1/2)]j [k+1]j [−n]j

[2k+1]j [k+(1/2)]j [1]j
, (4.54)

where the two previous expressions relied on the rising Pochhammer symbol [a]i defined as

[a]i =

{
1 if i = 0 ,

a (a+1) ... (a+n−1) if i > 0 .
(4.55)

4.B Calculation of ℵ
In this Appendix, we briefly detail how the analytical function ℵ, introduced in equation (4.21) to com-
pute the response matrix, may be estimated. In order to ease the effective numerical implementation of
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this calculation, let us first rewrite ℵ in a dimensionless fashion so that

ℵ(ag, bg, cg, ah, bh, ch, η,∆r) =

∫ ∆r
2

−∆r
2

∫ ∆r
2

−∆r
2

dxpdxa
ag+bgxp+cgxa

ah+bhxp+chxa+iη

=
ag
ah

(∆r)2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

dxdy
1+

bg∆r
ag

x+
cg∆r
ag

y

1+ bh∆r
ah

x+ ch∆r
ah

y+i ηah

=
ag
ah

(∆r)2 ℵD

[
bg∆r

ag
,
cg∆r

ag
,
bh∆r

ah
,
ch∆r

ah
,
η

ah

]
, (4.56)

where we assumed that ag, ah 6=0 and used the change of variables x=xp/∆r and y=xa/∆r. Finally,
we introduced the dimensionless function ℵD as

ℵD(b, c, e, f, η) =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

dxdy
1+bx+cy

1+ex+fy+iη
. (4.57)

To effectively compute this integral, it only remains to exhibit a function G(x, y) so that

∂2G

∂x∂y
=

1+bx+cy

1+ex+fy+iη
. (4.58)

One possible choice for G is given by

G(x, y) =
1

4e2f2
log[e2x2+2e(fxy+x)+f2y2+2fy+η2+1]

×
{
bf(e2x2−(fy+iη+1)2)+2ef(ex+iη+1)−ce(ex+iη+1)2

}
+

i

2e2f2

{
π

2
−tan−1

[
ex+fy+1

η

]}{
bf(e2x2−(fy+iη+1)2)+2ef(ex+iη+1)−ce(ex+iη+1)2

}
+

y

4e2f

{
f(−4e+b(2ex+fy+2iη+2))+ce(2ex−fy+2iη+2)+2ef(cy+2) log[ex+fy+iη+1]

}
. (4.59)

In the previous expression, one should be careful with the presence of a complex logarithm and a tan−1.
Fortunately, because e, f, η∈R, and η 6=0, one can straightforwardly show that the arguments of both of
these functions never cross the usual branch-cut of these functions chosen to be

{
Im(z)=0 ; Re(z)≤0

}
.

Equation (4.57) can then be computed as

ℵD = G[ 1
2 ,

1
2 ]−G[ 1

2 ,− 1
2 ]−G[− 1

2 ,
1
2 ]+G[− 1

2 ,− 1
2 ] . (4.60)

4.C Recovering unstable modes
Let us detail how the matrix code presented in section 4.2.3 as well as the N−body code described
in section 4.4.1 can be validated by recovering known unstable modes of razor-thin discs. The direct
numerical calculation of modes in a galactic disc is a complex task, which has only beenmade for a small
number of discs models (Zang, 1976; Kalnajs, 1977; Vauterin & Dejonghe, 1996; Pichon & Cannon, 1997;
Evans & Read, 1998b; Jalali & Hunter, 2005; Polyachenko, 2005; Jalali, 2007, 2010; De Rijcke & Voulis,
2016). Here, we will recover the results of the pioneer work of Zang (1976), extended in Evans & Read
(1998a,b), and recovered numerically in Sellwood & Evans (2001). These three works were interested in
recovering the precession rate ω0 =mpΩp and growth rate η=s of the unstablemodes a truncatedMestel
disc very similar to the stable one presented in section 3.7.1. The unstable discs considered thereafter
are fully active discs, so that ξ=1, and their radial velocity dispersion is given by q=(V0/σr)

2−1=6.
Finally, we consider different models of disc by varying the power index νt of the inner taper function
as defined in equation (3.90). Here, we will look for mp =2 modes, and will consider three different
truncation indices given by νt =4, 6, 8. In section 4.C.1, we first recover the associated unstable modes by
computing the system’s response matrix, following section 4.2.3, while in section 4.C.2, we recover these
modes via direct N−body simulations using the N−body implementation presented in section 4.4.1.
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4.C.1 The response matrix validation
In order to compute the system’s response matrix, we follow the method presented in sections 4.2.3
and 4.2.4. In addition, we use the same numerical parameters as the ones used in section 4.3.1. The grid
in the (rp, ra)−space is characterised by rmin

p =0.08, rmax
a =4.92 and ∆r=0.05. The sum on the resonant

indexm1 is limited to |m1|≤mmax
1 =7. Finally, we consider basis elements given by Appendix 4.A, with

the parameters kKa =7 andRKa =5, with a restriction of the radial basis elements to 0≤n≤8. One should
note that despite having a disc that extends up toRmax =20, one can still safely consider a basis truncated
at such a small radius RKa, which allows us to efficiently capture the self-gravitating properties of the
disc in the inner regions.

In order to search for unstable modes in a disc, one has to look for complex frequencies ω=ω0+iη,
such that the complex response matrix M̂(ω0, η) from equation (4.13) possesses an eigenvalue equal to
1. This complex frequency is then associated with an unstable mode of pattern speed ω0 =mpΩp and
growth rate η. In order to effectively determine the characteristics of the unstable modes, we follow an
approach based onNyquist contours, as presented in Pichon&Cannon (1997). For a fixed value of η, one
studies the behaviour of the function ω0 7→det

[
I−M̂(ω0, η)

]
, which takes the form a continuous curve in

the complex plane, called a Nyquist contour. For η→+∞, one has M̂(ω, η)→0, so that the contour will
shrink around the point (1, 0). As a consequence, for a given value of η, the number of windings of the
Nyquist contour around the origin of the complex plane gives a lower bound of the number of unstable
modes with a growth rate superior to η. By varying the value of η, one can then determine the largest
value of η which admits an unstable mode, and this is the growth rate of the most unstable mode of
the disc. Figure 4.C.1 illustrates these Nyquist contours for an unstable Mestel disc with the truncation
index νt =6. We gathered in figure 4.C.5 the results of the measurements for the three discs considered.

Figure 4.C.1: Left panel: Zoomed-inNyquist contours in the complex plane of the functionω0 7→det
[
I−M̂(ω0, η)

]
for various fixed values of η illustrated with different colors. These contours were obtained via the matrix method
for a truncated Mestel disc with νt =6, q=6, and looking for mp =2 modes. One can note that for η=0.20, the
contour crosses the origin, which corresponds to the presence of an unstable mode. Right panel: Illustration of the
behaviour of the function ω0 7→ log |det

[
I·M̂(ω0, η)

]
|, when considering the same truncatedMestel disc as in the left

panel. Each colored curve corresponds to a different fixed value for η. This representation allows us to determine
the pattern speed ω0 =mpΩp'0.94 of the system’s unstable mode.

After having determined the characteristics (ω0, η) of the unstable modes, one can then study their
shapes in the physical space. To do so, one can compute M̂(ω0, η) and numerically diagonalise this
matrix of size nmax×nmax, where nmax is the number of basis elements considered. One of the matrix
eigenvalues is then almost equal to 1, and one can consider its associated eigenvectorXmode. The shape
of the mode is then given by

Σmode(R,φ) = Re
[∑

p

Xp
mode Σ(p)(R,φ)

]
, (4.61)

where we wrote as Σ(p) the considered surface density basis elements. Figure 4.C.2 illustrates the shape
of the recovered unstable mode for the truncated νt =4 Mestel disc.

4.C.2 The N−body code validation
Let us now investigate the same unstable modes via direct N−body simulations, in order to validate
the N−body implementation on which section 4.4 is based. We do not detail here the initial sampling
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Figure 4.C.2: Illustration of the dominant mp =2 unstable mode for a truncated νt =4 Mestel disc as recovered
via the matrix method presented in section 4.2.3. Only positive level contours are shown and they are spaced
linearly between 10% and 90% of the maximum norm. The three resonance radii, associated with the resonance
ILR, COR, and OLR have been represented, as defined by ω0 =mpΩp =m·Ω(Rm), where the intrinsic frequencies
Ω(R)=(Ωφ(R), κ(R)) are computed within the epicyclic approximation, as in equation (3.87). See figure 3.7.4 for
an illustration of the signification of these resonance radii.

of the particles required to setup the simulations, and details can be found in Appendix E of Fouvry
et al. (2015c). In order not to be significantly impacted by the initial Poisson shot noise and the lack
of a quiet start sampling (Sellwood, 1983), for each value of the truncation power νt, the simulations
were performed with N=20×106 particles. As can be observed in figure 1 of Sellwood & Evans (2001),
in order to recover correctly the characteristics of the disc’s unstable modes, an appropriate setting of
the N−body code parameters is crucial. Following the description from section 4.4.1, we consider a
cartesian grid made ofNmesh =120 grid cells, while using a softening length given by ε=Ri/60. We also
restrict the perturbing forces only to the harmonic sectormφ=2, thanks toNring =2400 radial rings with
Nφ=720 azimuthal points.

In order to extract the characteristics of the unstable modes from N−body realisations, one may
proceed as follows. For each snapshot of the simulation, one can estimate the disc’s surface density as

Σstar(x, t) = µ
N∑
i=1

δD(x−xi(t))

=
∑
p

bp(t) Σ(p)(x) , (4.62)

where the sum on i in the first line is made on all particles in the simulation, and xi(t) stands for the
position of the ith particle at time t. In the second line of equation (4.62), the sum on p is made on all the
basis elements considered. Here, we consider the same basis elements as the ones considered previously
in section 4.C.1. The basis coefficients bp(t) are straightforward to estimate thanks to the biorthogonality
property from equation (2.12). They read

bp(t) = −
∫

dxΣstar(x, t)ψ
(p)∗(x) = −µ

∑
i

ψ(p)(xi(t)) . (4.63)

Because we are looking for unstable modes, we expect the coefficients bp(t) to have a temporal depen-
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dence of the form bp(t)∝exp[−i(ω0+iη)t], where ω0 =mpΩp is the pattern speed of the mode and η its
growth rate. If an unstable mode is present in the disc, one therefore expects the relations

dRe
[
log(bp(t))

]
dt

= η ;
d Im

[
log(bp(t))

]
dt

= −ω0 , (4.64)

provided one pays a careful attention to the branch-cut of the complex logarithm. These linear time
dependences appear therefore as the appropriate measurements to estimate the growth rate and pattern
speed of unstable modes. Let us note that equation (4.64) does not hold anymore if more than one
unstable mode of similar strength are present in the disc. Figure 4.C.3 illustrates suchmeasurements for
different values of the truncation index νt.

Figure 4.C.3: Illustration of themeasurements of the growth rates η (left panel) and pattern speeds ω0 (right panel)
of themp =2 unstable modes of truncated Mestel discs, with a random radial velocity given by q=(V0/σr)

2−1=6,
and truncation indices given by νt =6, 8. The basis coefficient plotted corresponds to the indices (`, n)=(2, 0).

Following the determination of the basis coefficients bp(t), one can consequently study the shape of
the recovered unstable mode in the physical space. Indeed, similarly to equation (4.61), the shape of the
mode is given by

Σmode(R,φ, t) = Re
[∑
p

bp(t) Σ(p)(R,φ)

]
. (4.65)

Similarly to figure 4.C.2, figure 4.C.4 illustrates the unstable mode of the same truncated νt =4 Mestel
disc, as recovered from N−body simulations.

As a conclusion, we gathered in figure 4.C.5 the growth rates and pattern speeds obtained either via
the matrix method or via direct N−body simulations. As already noted in Sellwood & Evans (2001)
when considering truncated Mestel discs, the recovery of the characteristics of unstable modes from
direct N−body simulations remains a difficult task, for which the convergence to the values predicted
through linear theory can be delicate.

4.D The case of self-gravitating spheres

In this Appendix, let us show how the previous calculations of the system’s response matrix and the
associated diffusion flux presented for razor-thin discs, can straightforwardly be extended to 3D spher-
ical systems. Analytical studies of the linear collective response of spherical self-gravitating systems
have been considered by a number of authors (Tremaine & Weinberg, 1984; Weinberg, 1989; Seguin &
Dupraz, 1994; Murali & Tremaine, 1998; Murali, 1999; Weinberg, 2001a; Pichon & Aubert, 2006). Such
calculations are of interest, if one wants to describe the long-term evolution of spherical systems such as
dark matter haloes while accounting for self-gravity. In section 4.D.1, we show how the main text cal-
culations can straightforwardly be extended to such systems, while in section 4.D.2, we illustrate how
such a formalism may be applied to the study of the cusp-core problem in the context of the long-term
evolution of dark matter haloes.
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Figure 4.C.4: Illustration of the dominantmp =2 unstable mode for a truncated νt =4 Mestel disc as recovered via
directN−body simulations. Only positive level contours are shown and they are spaced linearly between 20% and
80% of the maximum norm. Similarly to figure 4.C.2, the radii associated with the resonances ILR, COR, and OLR
are represented.

Unstablemp =2 modes of truncated Mestel discs, q=6.
νt =4 νt =6 νt =8

Method ω0 η ω0 η ω0 η
Linear Theory 0.88 0.13 0.90 0.22 0.92 0.27
Matrix Method 0.93 0.11 0.94 0.20 0.95 0.24
N−body 0.99 0.13 0.79 0.19 0.89 0.26

Figure 4.C.5: Measurements of the pattern speed ω0 =mpΩp and growth rate η for unstable mp =2 modes in
truncated Mestel discs. The velocity dispersion is characterised by q=(V0/σr)

2−1 = 6, and the power indices of
the inner taper are given by νt =4, 6, 8. The theoretical values were obtained from a tailored linear theory in Evans
& Read (1998b). Our measurements were performed either via the response matrix as in section 4.C.1, or via direct
N−body simulations as in section 4.C.2.

4.D.1 The 3D calculation
As in the case of razor-thin axisymmetric potentials, 3D spherically symmetric potentials are also guar-
anteed by symmetry to be integrable. The three natural actions are given by

J1 = Jr =
1

π

∫ ra

rp

dr
√

2(E−ψ0(r))− L2/r2 ; J2 = L ; J3 = Lz , (4.66)

where the radial action Jr was already introduced in equation (4.1),L>0 stands for themagnitude of the
particle’s angularmomentum, andLz its projection along the z−axis. Here, as previously, the first action
Jr encodes the amount of radial energy of the star, L encodes the typical distance of the star to the centre,
while finally Lz characterises the vertical orientation of the orbital plane to which the particle motion
is restricted. The intrinsic frequencies of motion of the associated angles are given by Ω=(Ω1,Ω2,Ω3).
For spherical systems, one should see the third action J3 as a mute variable, so that Ω3 =0. Therefore,
one has an additional conserved quantity, namely θ3 =cst., which corresponds to the longitude of the
ascending node. As for razor-thin discs, the two additional frequencies of motion Ω1 =κ and Ω2 =Ωφ are
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given by equations (4.2) and (4.3). In this context, we may also use the pericentre and apocentre (rp, ra)
to represent the two actions (J1, J2).

Let us now introduce the 3D spherical coordinates (R, θ, φ). For 3D systems, the generic basis ele-
ment can be decomposed as

ψ(p)(R, θ, φ) = ψ`mn (R, θ, φ) = Y m` (θ, φ)U`n(R) , (4.67)

where Y m` are the usual spherical harmonics and Un` is a real radial function. Equation (4.67) is the direct
spherical equivalent of the 2D decomposition from equation (4.5), and allows us to separate the angular
dependences from the radial one. Similarly, the associated density elements are given by

ρ(p)(R, θ, φ) = ρ`mn (R, θ, φ) = Y m` (θ, φ)D`n(R) , (4.68)

whereD`n is a real radial function. Explicit 3D basis of potentials and densities elements can for example
be built from spherical Bessel functions (Fridman& Poliachenko, 1984;Weinberg, 1989; Rahmati & Jalali,
2009) or from ultraspherical polynomials (Hernquist & Ostriker, 1992). The spherical basis elements
suggested in Weinberg (1989) are illustrated in figure 4.D.1.

Figure 4.D.1: Left panel: Illustration of the spherical harmonics Y m` used to construct the 3D basis elements from
equation (4.67). From top to bottom, the lines are associated with `=0, 1, 2, and on a given line, the harmonics are
represented for −`≤m≤`. Right panel: Illustration of the radial dependence of the basis function U`=2

n , based on
spherical Bessel functions and introduced inWeinberg (1989), for various values of the radial index n≥1. Here, the
basis elements are defined on a finite radial range R≤Rsys.

In 3D, the Fourier transformed basis elements from equation (4.7) become

ψm(J) =
1

(2π)3

∫
dθ1dθ2dθ2 ψ

(p)(x(θ,J)) e−im·θ , (4.69)

while the anglemapping from equation (4.8) still holds. In order to describe the orientation of the orbital
plane, let us define the orbit’s inclination, β=β(J), as

J3 = J2 cos(β) with 0≤β≤π . (4.70)

Following Tremaine & Weinberg (1984); Weinberg (1989), the Fourier transform in angle of the basis
element ψ(p) =ψ`

pmp

np w.r.t. the resonance vectorm=(m1,m2,m3) takes the form

ψ(p)
m (J) = δm3

mp V`pm2mp(β)Wm1

`pm2np
(J) . (4.71)

In the previous equation, one should pay attention to the difference between the index mp, which is
the second index of the basis element from equation (4.67), andm=(m1,m2,m3) corresponding to the
three indices of the Fourier transform w.r.t. the angles. In equation (4.71), we introduced the coeffi-
cient Wm1

`pm2np
(J), whose expression was already obtained in equation (4.10). We also introduced the

coefficient V`p,m1,mp(β), specific to the 3D basis, which reads

V`pm2mp(β) = im
p−m2 Y m2

`p (π/2, 0)R`pm2mp(β) , (4.72)
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where we introduced the rotation matrix for spherical harmonics, given by

R`m2m(β) =
∑
t

(−1)t
√

(`+m2)! (`−m2)! (`+m)! (`−m)!

(`−m−t)! (`+m2−t)! t! (t+m−m2)!

× [cos(β/2)]
2`+m2−m−2t

[sin(β/2)]
2t+m−m2 . (4.73)

In equation (4.73), the sum is to be made on all the "t" such that the arguments of the factorials are either
zero of positive. It corresponds to tmin≤ t≤ tmax, with tmin = Max[0,m2−m] and tmax =Min[`+m, `+m2]

Having computed the Fourier transformed basis elements, one may then proceed to the evaluation
of the system’s response matrix. As already detailed in section 4.2.3, we perform the estimation of the
response matrix by using (rp, ra) as our variables. To do so, the first step of the calculation is to go from
J=(J1, J2, J3) to (E,L, cos(β)). Similarly to equation (4.12), the Jacobian of this transformation is given
by

∂(E,L, cos(β))

∂(J1, J2, J3)
=

∣∣∣∣∣∣
Ω1 Ω2 0
0 1 0
0 −Lz/L2 1/L

∣∣∣∣∣∣ =
Ω1

L
. (4.74)

One may now perform the integration w.r.t. the inclination β. To do so, we assume that the system’s DF
is such thatF =F (J1, J2)=F (E,L). In addition, we noted previously that the system’s intrinsic frequen-
cies Ω=(Ω1,Ω2,Ω3) are independent of J3, so that in the expression (2.17) of the response matrix, the
only remaining dependences w.r.t. β are in the Fourier transformed basis elements from equation (4.71)
through the rotation matrix from equation (4.73). Following Edmonds (1996), the rotation matrices sat-
isfy the orthogonality relation∫ 1

−1

d cos(β)R`pm2m3
(β)R`qm2m3

(β) = δ`
q

`p
2

2`p+1
. (4.75)

Equation (4.72) then gives ∫ 1

−1

d cos(β)V∗`pm2m3
(β)V`qm2m3

(β) = δ`
q

`p C`pm2
, (4.76)

where we introduced the coefficient C`pm2 as

C`pm2
=

2

2`p+1

∣∣Y m2

`p (π/2, 0)
∣∣2 . (4.77)

The expression (4.71) of the Fourier transformed basis elements allows us then to rewrite the response
matrix from equation (2.17) as

M̂pq(ω)=(2π)3δ`
q

`pδ
mq

mp

∑
m1

|m2|≤`p
(`p−m2) even

C`pm2

∫
dEdL

L

Ω1

m·∂F/∂J
ω−m·Ω W

m1

`pm2np
(J)Wm1

`pm2nq
(J) , (4.78)

where one may note that the sum on m3 was dropped thanks to the Kronecker symbol from equa-
tion (4.71). In addition, expression (4.77) also imposes the additional constraints |m2|≤`p and (`p−m2)
even, so that the sum on m2 may also be reduced. Finally, we also relied on the fact that the coefficient
Wm1

`pm2np
(J) from equation (4.10) is real, so that no conjugates are present in equation (4.78). Let us now

perform the change of variables (E,L) 7→(rp, ra) to rewrite equation (4.78) as

M̂pq(ω) = δ`
q

`pδ
mq

mp

∑
m1

|m2|≤`p
(`p−m2) even

∫
drpdra

g`
pnpnq

m1m2
(rp, ra)

hωm1m2
(rp, ra)

, (4.79)

where the functions g`pnpnqm1m2
(rp, ra) and hωm1m2

(rp, ra) are respectively given by

g`
pnpnq

m1m2
(rp, ra) = (2π)3 C`pm2

∣∣∣∣ ∂(E,L)

∂(rp, ra)

∣∣∣∣ L

Ω1

[
m· ∂F

∂J

]
Wm1

`pm2np
(J)Wm1

`pm2nq
(J) , (4.80)

and
hωm1m2

(rp, ra) = ω−(m1,m2)·(Ω1,Ω2) . (4.81)



4.D. THE CASE OF SELF-GRAVITATING SPHERES 117

In equation (4.80), if the system’s DF is such that F =F (E,L), the gradient m·∂F/∂J w.r.t. the ac-
tions may be computed following equation (4.17). Let us finally note the very strong analogies that
exist between equation (4.79) and equation (4.14) obtained for razor-thin discs. This allows us to apply
to equation (4.79) the exact same method as described in section 4.2.4 by truncating the (rp, ra)−space
in small regions on which linear approximations may be performed. We do not repeat here these cal-
culations. As the calculation of the response matrix can be a cumbersome numerical calculation, it is
important to validate its implementation by recovering known unstablemodes for 3D spherical systems,
e.g., in Polyachenko & Shukhman (1981); Saha (1991); Weinberg (1991). Following this approach, one is
therefore able to compute the response matrix of a 3D spherical system. In addition, the computation
of the Fourier transformed basis elements in equation (4.71) allows us to subsequently compute the as-
sociated collisionless and collisional fluxes. Let us now illustrate in the upcoming section one possible
application of such an approach to describe the secular evolution of dark matter haloes.

4.D.2 An exemple of application: the cusp-core problem
Dark matter (DM) only simulations favour the formation of a cusp in the inner region of dark matter
haloes (Dubinski & Carlberg, 1991; Navarro et al., 1997), following what appears to be an universal pro-
file, the NFW profile. However, observations tend to recover profiles more consistent with a shallower
core profile (Moore, 1994; de Blok & McGaugh, 1997; de Blok et al., 2001; de Blok & Bosma, 2002; Kuzio
de Naray et al., 2008). This discrepancy between the cuspy profile predicted by direct DM only simula-
tions and the core profile inferred from observations is one current important challenge in astrophysics,
coined the cusp-core problem.

Various solutions have been proposed to resolve this discrepancy. A first set of solutions relies on
modifiying the dynamical properties of the collisionless dark matter preventing it from indeed collaps-
ing into cuspy profile. Examples include the possibility ofwarmdarkmatter (Kuzio deNaray et al., 2010)
or of self-interacting darkmatter (Spergel & Steinhardt, 2000; Rocha et al., 2013). Another set of solutions
rely on the remark that accounting self-consistently for the baryonic physics and its back-reactions on
the DMmay also be at the origin of the discrepancy. These mechanisms can be divided into three broad
categories. The first one relies on dynamical friction from infalling baryonic clumps and disc instabil-
ities (El-Zant et al., 2001; Weinberg & Katz, 2002; Tonini et al., 2006; Romano-Díaz et al., 2008; Goerdt
et al., 2010; Cole et al., 2011; Del Popolo & Pace, 2016). A second possible mechanism is associated with
AGN-driven feedback (Peirani et al., 2008; Martizzi et al., 2012; Dubois et al., 2016). Finally, a third possi-
ble mechanism relies on the long-term effects associated with supernova-driven feedback (Binney et al.,
2001; Gnedin & Zhao, 2002; Read & Gilmore, 2005; Mashchenko et al., 2006, 2008; Governato et al., 2010;
Teyssier et al., 2013; Pontzen & Governato, 2012; El-Zant et al., 2016).

The collisionless diffusion equation (2.31), and its associated customisation to 3D systems presented
in this Appendix is the correct framework to investigate in detail the role that supernona feedback may
have on the secular evolution of DM haloes. Can the presence of an inner stellar disc, because of the
potential fluctuations it induces, lead to the secular diffusion of a cuspy DM halo to a core one?

The first step of such an analysis is to characterise these fluctuations. To do so, we rely on hydrody-
namical simulations. In order to decouple the source of perturbations, i.e. the disc, from the perturbed
system, i.e. the halo, these simulations are performed while using a static and inert halo. Therefore,
during the numerical simulations, feedback, while still present, cannot lead to a secular evolution of the
halo profile. Similarly, any back-reaction from the halo onto the disc cannot be accounted for. Such a
setup allows us to measure and characterise the statistical properties of the fluctuations induced by the
disc directly from simulations. Because the DM halo is analytical, this also prevents any shot noise asso-
ciatedwith the use of a finite number of DMparticles. Once these fluctuations have been estimated, their
effects on the DM halo may then be quantified using the secular collisionless diffusion equation (2.31).

In order to characterise these fluctuations, we consider an analytic NFW halo profile, and embed
within it a gaseous and stellar disc, paying careful attention to preparing the system in a quasi-stationary
state. In addition, we implement a supernova feedback recipe allowing for the release of energy from
the supernova into the interstellar medium. Figure 4.D.2 illustrates two successive snapshots of such
a hydrodynamical simulation. In figure 4.D.2, one can note that because of supernova feedback, the
gas density undergoes some fluctuations. These fluctuations in the potential due to the gas will be felt
by the DM halo and may therefore be the driver of a resonant forced secular diffusion in the DM halo.
Because we are interested in the ensemble average autocorrelation of the feedback fluctuations, various
realisations are run for the same physical setup.

Once these simulations are performed, we characterise their statistics by computing the autocorrela-
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Figure 4.D.2: Simulations run by Rebekka Bieri. Illustration of the gas density in a hydrodynamical simulation
performed with the AMR code Ramses (Teyssier, 2002). The stellar and gaseous discs are embedded in a static
NFW DM halo and are seen from the top (top panel) and the edge (bottom panel). A supernova feedback recipe
was implemented following Kimm et al. (2015). As can be seen in these two snapshots, this leads to fluctuations in
the gas density, which resonantly couple to the DM halo and induce therein a resonant diffusion.

tion matrix Ĉ introduced in equation (2.25). This first requires to compute the basis coefficients bp(t), so
that the perturbing potential δψe may be written as δψe(x, t)=

∑
p bp(t)ψ

(p)(x). Thanks to the biorthog-
onality property from equation (2.12), these basis coefficients are immediately given by

bp(t) = −
∫
dxψ(p)∗(x) δρe(x, t) , (4.82)

where δρe stands for the star and gas density fluctuations within the disc, as illustrated in figure 4.D.2.
In figure 4.D.3, we illustrate the behaviour of the function t �→bp(t) for three different basis elements and
ten different realisations. In figure 4.D.3, one can note, as expected, that the fluctuations history vary

Figure 4.D.3: Illustration of the behaviour of the basis coefficients t �→bp(t), for three different basis elements, i.e.
different values of the basis indices (�,m, n). Each color corresponds to a different realisation. One can note the
presence of potential fluctuations associated with supernova feedback. The autocorrelation of these fluctuations,
captured by the matrix Ĉ, is the driver of a feedback-induced secular diffusion in the DM halo.

from one realisation to another. Similarly, the typical frequencies of the fluctuations also depend on
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the considered basis elements. Once the perturbations history t 7→bp(t) is extracted from the numerical
simulations, one may follow equation (2.25) to compute their ensemble averaged autocorrelation matrix
Ĉpq(ω). This fully characterises the stochastic external source term, which sources the collisionless diffu-
sion coefficientsDm(J) from equation (2.32). When the characteristics of the initial DM halo (namely its
potential and associated self-consistentDF) have been specified, onemay follow section 4.D.1 to compute
the halo’s response matrix M̂. This allows finally for the calculation of the diffusion coefficientsDm(J),
and for the estimation of the collisionless diffusion flux F tot from equation (2.33). This diffusion flux
characterises the initial orbital restructuration undergone by the DM halo’s DF.

In this context, a final difficulty arises from the integration forward in time of the collisionless dif-
fusion equation (2.34). Indeed, because the diffusion is self-consistent, the diffusion coefficients are
slow functions of the halo’s DF. Similarly, the halo’s potential (initially cuspy) also secularly depends on
the halo’s DF. The integration of the diffusion equation therefore requires a self-consistent update of the
halo’s diffusion coefficients and the halo’s potential. One possible approach to solve this self-consistency
problem relies on an iterative approach (Prendergast & Tomer, 1970; Weinberg, 2001b) that we do not
detail further here.

The method described previously is expected to allow for a detailed description of the resonant col-
lisionless diffusion occurring in a DM halo as a result of stochastic external fluctuations induced by its
inner galactic disc. It will be the subject of a future work. The same approach could also allow us to
investigate how much this diffusion mechanism depends on the strength of the feedback mechanisms,
by for example changing the feedback recipes used in the hydrodynamical simulations. One could de-
termine the typical power spectrum of the perturbations induced by the feedback, or give quantitative
bounds on the feedback strengths required to induce a softening of the DM halo’s profile. Similarly, the
dependence of the diffusion efficiency w.r.t. the disc and halo masses could also be investigated. Finally,
the efficiency of AGN feedback to induce a secular diffusion in the DMhalo could also be studiedwithin
the same framework by characterising the associated potential fluctuations.





Chapter 5

Thickened discs

The work presented in this chapter is based on Fouvry et al. (2016c).

5.1 Introduction
The problem of explaining the origin of thick discs in our Galaxy has been around for some time (e.g.,
Gilmore & Reid, 1983; Freeman, 1987). The interest for this dynamical question has been particularly
revived recently in the light of the current APOGEE survey (Eisenstein et al., 2011) and the upcoming
data collected by the GAIA mission. Star formation within stellar discs typically occurs on the circular
orbits of the gas, so that young stars should form a very thin disc (Wielen, 1977). However, chemo-
kinematic observations of old stars within our Milky Way (Jurić et al., 2008; Ivezić et al., 2008; Bovy
et al., 2012), or in other galactic discs (Burstein, 1979;Mould, 2005; Yoachim&Dalcanton, 2006; Comerón
et al., 2011) have all shown that thick components are very common. Yet the formation and the origin
of thickened stellar discs remains a significant puzzle for galactic formation theory.

Various dynamical mechanisms, either internal or external, have been proposed to explain this ob-
served thickening, but their respective impacts and roles remain to be clarified. First, some violent major
events could be at the origin of the vertically extended distribution of stars in disc galaxies. These could
possibly be due to the accrection of galaxy satellites (Meza et al., 2005; Abadi et al., 2003), major mergers
of gas-rich systems (Brook et al., 2004), or even gravitational instabilities in gas-rich turbulent clumpy
discs (Noguchi, 1998; Bournaud et al., 2009). While such violent mergers definitely have a strong impact
on galactic structure, these extreme events may not be required to form a thickened stellar disc, which
could also originate from a slow, secular and continuous heating of a pre-existing thin disc.

Numerous smooth thickening mechanisms have been investigated in detail. Galactic discs could be
thickened as a result of galactic infall of cosmic origin leading to multiple minor mergers (Toth & Os-
triker, 1992; Quinn et al., 1993; Villalobos & Helmi, 2008; Di Matteo et al., 2011), and evidences for such
events have been found in the phase space structure of the Milky Way (e.g., Purcell et al., 2011). Spiral
densitywaves (Sellwood&Carlberg, 1984;Minchev&Quillen, 2006;Monari et al., 2016) are also possible
candidates to increase the velocity dispersion within the disc, which can in turn be converted into ver-
tical motion through deflections from giant molecular clouds (GMCs) (Spitzer & Schwarzschild, 1953;
Lacey, 1984; Hänninen & Flynn, 2002). In addition, radial migration (Lynden-Bell & Kalnajs, 1972; Sell-
wood& Binney, 2002), which describes the change of angular momentum of a star with no increase in its
radial energy, could also play an important role in the secular evolution of stellar discs. Radial migration
could be induced by spiral-bar coupling (Minchev & Famaey, 2010), transient spiral structures (Barba-
nis & Woltjer, 1967; Carlberg & Sellwood, 1985; Solway et al., 2012), or perturbations induced by minor
mergers (Quillen et al., 2009; Bird et al., 2012). An analytical model of radial migration was extensively
used in Schönrich & Binney (2009a,b) to investigate in detail its impact on vertical heating, and recovered
the main features of the Milky Way thin and thick discs. Recent N−body simulations also investigated
the role played by radial migration (Haywood, 2008; Loebman et al., 2011; Minchev et al., 2014), but the
efficiency of this mechanism was recently shown to be limited (Minchev et al., 2012). Finally, owing to
the increase of computing power, large numerical simulations are now in a position to investigate these
processes in a self-consistent cosmological setup (Minchev et al., 2015; Grand et al., 2016). The develop-
ments of these global approaches are expected to offer new clues on the effective interplay between these
various competing thickeningmechanisms. As discussed in chapter 1, recall that all these investigations
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can be broadly characterised as induced by an external (nurture) or internal (nature) source to trigger a
vertical orbital restructuration in the disc.

In the present chapter, we intend towrite down, in the context of tepid stellar discs of finite thickness,
the two equations corresponding to collisionless or collisional diffusion derived in chapter 2. As already
discussed, on the one hand, the first formalism, presented in section 2.2, assumes the systems to be
collisionless and considers the secular effects induced by external perturbations. The second collisional
formalism, presented in section 2.3, focuses on the role played by the system’s intrinsic graininess. Here,
both diffusion processes should be investigated, as it is not a priori knownwhichwill be themost efficient
at thickening discs.

Following chapter 3, implementing equations (2.31) and (2.67) raises two main difficulties. These are
respectively the explicit construction of the angle-actionmapping (x,v) 7→(θ,J) as well as the computa-
tion of the response matrix from equation (2.17), which requires the introduction of a basis of potentials
and densities. Both problems are significantly more challenging in the thickened regime. For thickened
discs, we will solve the first difficulty by introducing in section 5.2 the thickened epicyclic approxima-
tion offering in the limit of sufficiently cold discs explicit angle-action coordinates. We will deal with
the second difficulty in sections 5.3 and 5.4 by generalising the razor-thin WKB basis (see chapter 3) to
the thickened geometry, which will offer an analytical expression of the disc’s amplification eigenvalues
thanks to which wewill account for the disc’s gravitational susceptibility. Once these two difficulties are
addressed, we will show in section 5.5 (resp. section 5.6) how one can estimate the diffusion fluxes as-
sociated with the collisionless diffusion equation (2.31) (resp. the collisional diffusion equation (2.67)).
Finally, section 5.7 will be dedicated to applications of both formalisms to investigate the dynamical
mechanisms at play in the secular thickening of stellar discs. These applications will be compared in
particular to the numerical experiments from Solway et al. (2012).

5.2 Angle-action coordinates and epicyclic approximation
A first step towards the secular dynamics of inhomogeneous systems is to construct a set of angle-action
coordinates. Let us follow the same method as what was presented in section 3.2 in the razor-thin case.
Assuming that the disc is sufficiently cold, one can decouple the verticalmotion and treat it as a harmonic
libration. Let us introduce the cylindrical coordinates (R,φ, z) along with their associated momenta
(pR, pφ, pz). We also assume that the axisymmetric potential of the disc is symmetric w.r.t. the equatorial
plane z=0. In the vicinity of circular orbits, the stationaryHamiltonian fromequation (3.6) becomes here

H0 =
1

2

[
p2
R+p2

z

]
+ψeff(Rg, 0)+

κ2

2
(R−Rg)2+

ν2

2
z2 , (5.1)

where we introduced the vertical epicyclic frequency ν as

ν2(Rg) =
∂2ψeff

∂z2

∣∣∣∣
(Rg,0)

. (5.2)

Of course, for a thickened disc, the azimuthal and radial frequencies Ωφ and κ from equations (3.5)
and (3.7) should be computed in the equatorial plane z=0. We also note here that with the epicyclic
approximation, ν depends only on Jφ. In equation (5.1), the radial and vertical motions have been de-
coupled, and, up to initial phases, there exists then a vertical amplitude Az such that z=Az cos(νt).
Similarly to equation (3.8), the associated vertical action Jz is immediately given by

Jz =
1

2π

∮
dz pz =

1

2
νA2

z . (5.3)

In this context, (Jr, Jz)=(0, 0) corresponds to circular orbits. Increasing Jr (resp. Jz) amounts therefore
to increasing the amplitude of the radial (resp. vertical) oscillations of the stars, so that the orbits get
hotter. This is illustrated in figure 5.2.1. It is straightforward to complete equation (3.9) to obtain an
explicit relation between the physical phase space coordinates and the angle-action ones. Indeed, one
has

R = Rg +AR cos(θR) ; φ = θφ −
2Ωφ
κ

AR
Rg

sin(θR) ; z = Az cos(θz) . (5.4)

In figure 5.2.2, we illustrate epicyclic orbits described by this angle-action mapping. Finally, in the thick-
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Figure 5.2.1: Illustration of an epicyclic orbit (left panel) as one respectively increases its radial action Jr (middle
panel) or its vertical action Jz (right panel).

R

vr

z

vz

Figure 5.2.2: Illustration of the epicyclic approximation in a thickened disc. Left panel: Three different orbits
characterised by different sets of actions J=(Jφ, Jr, Jz). Middle panel: The same orbits represented in the plane
(R, vr) of radius and radial velocity. In this space, the epicyclic trajectories are closed. The centre of the ellipse
represents the guiding radius Rg of the orbit, i.e. the action Jφ. The size of the ellipse directly relates to the radial
action Jr : the wider the ellipse, the larger Jr . The frequency of motion along this ellipse is given by the radial
frequency κ(Jφ). Right panel: The same orbits in the plane (z, vz) of height and vertical velocity. In this space,
epicyclic trajectories are closed as well. The potential being symmetric w.r.t. the equatorial plane z=0, the closed
ellipses are always centred on the origin. The size of the ellipse directly relates to the vertical action Jz : the wider
the ellipse, the larger Jz . The frequency of motion along this ellipse is given by the vertical frequency ν(Jφ).

ened context, the razor-thin quasi-isothermal DF from equation (3.10) becomes

F (Rg, Jr, Jz) =
ΩφΣ

πκσ2
r

exp

[
− κJr

σ2
r

]
ν

2πσ2
z

exp

[
− νJz

σ2
z

]
, (5.5)

where Σ stands for the projected surface density of the disc, so that Σ(R)=
∫

dz ρ(R, z), where ρ is the
disc’s density. In equation (5.5), σz represents the vertical velocity dispersion of the stars at a given
radius, and only depends on the position in the disc.

5.3 The thickened WKB basis
In section 3.3, we presented in detail howone could construct a biorthonormal basis of tightlywound spi-
rals in the context of razor-thin axisymmetric discs. Let us now generalise this construction to thickened
stellar discs by specifying the vertical components of these basis elements. As the in-plane dependence
of our WKB basis elements will be the same than the one presented in section 3.3, we will here focus
on the additional degree of freedom associated with the vertical dimension. The cylindrical coordinates
are noted as (R,φ, z), and we introduce the 3DWKB basis elements as

ψ[kφ,kr,R0,n](R,φ, z) = Aψ[kφ,kr,R0]
r (R,φ)ψ[kr,n]

z (z) , (5.6)

where A is an amplitude, which will be tuned later on to ensure the correct normalisation of the basis
elements. We introduced as ψ[kφ,kr,R0]

r (R,φ) the same in-plane dependence as the razor-thinWKB basis
elements from equation (3.11), so that

ψ
[kφ,kr,R0]
r (R,φ) = ei(kφφ+krR) BR0

(R) , (5.7)

where the radial window function BR0
was introduced in equation (3.12). In equation (5.6), one can note

that the basis elements depend on 4 indices. Here, (kφ, kr, R0) are the same indices as in the razor-thin
case, so that kφ characterises the angular dependence of the basis elements, kr is the radial frequency of
the elements, andR0 the position in the disc aroundwhich the window BR0 is centred. Finally, we intro-
duced the indexn≥1, specific to the thick case, which numbers the considered vertical dependences. We
also recall that the window function from equation (3.12) involves a decoupling scale σ, which ensures
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the biorthogonality of the basis elements. The radial dependence of the basis elements is illustrated in
figure 3.3.1, while their dependence in the equatorial plane z=0 is given by figure 3.3.2. The thickened
basis elements from equation (5.6) are therefore constructed bymultiplying the in-plane razor-thinWKB
basis elements by a vertical component ψ[kr,n]

z (z), which we now specify.
The construction of the basis elements requires us to satisfy Poisson’s equation (2.12), which char-

acterises the associated density elements. Relying on the same tight winding assumptions as in equa-
tion (3.15), Poisson’s equation becomes

− k2
rAψrψz+Aψr

d2ψz
dz2

= 4πGρ , (5.8)

where we dropped the superscripts [kφ, kr, R0, n] to shorten the notations and introduced the associated
density ρ. At this stage, we now assume that the density elements satisfy an ansatz of separability of the
form

ρ(R,φ, z) =
λρ

4πG
Aψr(R,φ)ψz(z)w(z) , (5.9)

where λρ=λ
[kr,n]
ρ is a proportionality constant, while w(z) is a cavity function, which is chosen to be

independent of the basis’ indices. Equation (5.8) immediately becomes

d2ψz
dz2
−k2

rψz = λρ w(z)ψz . (5.10)

Equation (5.10) is a self-consistent relation that the vertical component ψz has to satisfy. It takes the form
of a Sturm-Liouville equation (Courant & Hilbert, 1953), which requires us to determine the eigenfunc-
tions ψ[kr,n]

z as well as the associated eigenvalues λ[kr,n]
ρ . Assuming a sufficient regularity for the func-

tions involved, the Sturm-Liouville theory ensures that there exists a discrete spectrum of real eigenval-
ues λ1<λ2<...<λn→+∞, with their associated eigenfunctions ψ1

z , ..., ψ
n
z . In addition, when correctly

normalised, these eigenfunctions form a biorthogonal basis so that
∫

dz w(z)ψpz(z)ψqz(z)=δqp.
By explicitly specifying the considered cavity functionw(z), one can get explicit expressions for these

eigenfunctions. We assume that the density elements vanish out of a sharp cavity, so that they are zero
for |z|>h. This corresponds to the choice

w(z) = Θ(z/h) , (5.11)

where Θ(x) is a door function, equal to 1 for x∈ [−1; 1] and 0 elsewhere. See Griv & Gedalin (2012) for
a similar vertical ansatz. Let us now specify what has to be chosen for the height parameter h. The
WKB basis being local, one may adapt h=h(R0) a function of the location within the disc, to allow for a
better representation of the disc’s mean vertical density profile. Equation (5.11) approximates the mean
physical profile of the disc by a sharp cavity. As illustrated in figure 5.3.1, we choose h to match the
volume of the physical and sharp cavities, i.e. we impose

∫
dz ρtot(R0, z)=2hρtot(R0, 0). If one assumes

z

ρ(z)

h

Figure 5.3.1: Illustration of the sharp cavity (solid lines), introduced in equation (5.11), consistent with the mean
underlying vertical density (dotted-dashed lines). The cavity is constructed to match the total volume of the vertical
density profile. In this figure, the mean density profile corresponds to a Spitzer profile as defined in equation (5.71).

that the vertical density profile of the disc takes the form of a Spitzer profile, see equation (5.71), h is
then given by h(R0)=2z0(R0). One should therefore consider the cavity scale h from equation (5.11) not
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as a free parameter of the formalism, but as imposed by the mean density profile of the considered disc.
Once the cavity function from equation (5.11) has been specified, one may explicitly solve Poisson’s
equation (5.10) to determine the density basis elements. It takes the form of a wave equation; let us
therefore assume that ψz follows the ansatz

ψz(z) =


A e−krz if z > h ,

B eikzz + C e−ikzz if |z| ≤ h ,
D ekrz if z < −h ,

(5.12)

where the frequency kz remains to be determined. The eigenvalue λρ immediately reads λρ=−(k2
r+k2

z).
In addition to the ansatz from equation (5.12), one also has to impose for ψz and dψz/dz to be continu-
ous at z=±h. Let us now restrict ourselves to symmetric perturbations, ψz(−z)=ψz(z), while the very
similar antisymmetric case will be presented in Appendix 5.A. Symmetric perturbations immediately
lead to A=D and B=C, while the continuity requirements impose{

A e−krh = 2B cos(kzh) ,

kr A e−krh = 2kzB sin(kzh) .
(5.13)

To be non-trivial, the vertical frequency kz must therefore satisfy the quantisation relation

tan(kzh) =
kr
kz
. (5.14)

Once kr and h have been specified, equation (5.14) restricts the allowed values of kz . Following the
definition of the basis elements from equation (5.6), let us introduce the index n≥1, such that knz is the
nth solution of equation (5.14), i.e. such that

k1
z<k

2
z<...<k

n
z <... and tan(knz h) =

kr
knz

. (5.15)

At this stage, we note that for a sufficiently thin disc such that k1
zh, krh . 1, the first quantised symmetric

frequency k1
z may be approximated as

k1
z '

√
kr
h
. (5.16)

In figure 5.3.2, we illustrate the quantisation relation from equation (5.14), as well as its antisymmetric
analog from equation (5.100). Two important properties should already be noted. First, the fundamen-
tal symmetric frequency k1

z is the only quantised frequency such that kzh<π/2. Following the approx-
imated expression from equation (5.16), in the limit of a razor-thin disc, for which h→0, this is the only
frequency for which k1

zh→0, while all the other quantised frequencies are such that kzh>π/2. This al-
ready emphasises why the fundamental symmetric frequency k1

z will play a crucial role in the razor-thin
limit. This will especially become clear in Appendix 5.C, where we recover the razor-thin limits of the
two diffusion equations. Moreover, the periodicity of the "tan" function ensures that in the limit of suffi-
ciently thick disc for which krh& π, one can assume that both symmetric and antisymmetric frequencies
satisfy

∆kz = kn+1
z −knz '

π

h
. (5.17)

Straightforward calculations finally lead to the complete expression of the symmetric potential elements
which read

ψ[kφ,kr,R0,n](R,φ, z) = Aψ[kφ,kr,R0]
r (R,φ)

{
cos(knz z) if |z|≤h ,
ekrh cos(knz h) e−kr|z| if |z|≥h ,

(5.18)

while the associated density elements read

ρ[kφ,kr,R0,n](R,φ, z) = −k
2
r+(knz )2

4πG
ψ[kφ,kr,R0,n](R,φ, z) Θ

[
z

h

]
. (5.19)

The equivalent expressions for the antisymmetric basis elements are given in equations (5.101) and (5.102).
The vertical components of these basis elements are illustrated in figure 5.3.3. As imposed by equa-



126 CHAPTER 5. THICKENED DISCS

x
xs1 xs2

xa1 xa2

tan(x)

x0/x

−x/x0

Figure 5.3.2: Illustration of the quantisation relations for the vertical frequency imposed by the sharp cavity from
equation (5.11). Dimensionless quantities are represented using the notations x=kzh and x0 =krh. The top dotted-
dashed curve is associatedwitht the symmetric quantisation relation from equation (5.14), which imposes the quan-
tised dimensionless frequencies xs

1, x
s
2, ... The bottom dashed line is associated with the antisymmetric quantisation

relation from equation (5.100) imposing the frequencies xa
1, x

a
2, ... One can already note the specific role played by

the fundamental symmetric frequency xs
1, which is the only dimensionless frequency inferior to π/2.

ψs
1

ψs
2

ψs
3

ψa
1

ψa
2

−h h

Figure 5.3.3: Illustration of the vertical dependence of the first WKB potential basis elements. Here, ψs stands
for the symmetric elements from equation (5.18), while ψa is associated with the antisymmetric ones from equa-
tion (5.101). The basis elements can also be ordered thanks to their number of nodes within the cavity, as expected
from the Sturm-Liouville theory.

tion (2.12), the final step of the construction of the thickened WKB basis elements is to ensure that the
basis is biorthogonal. We already showed in equation (3.20), when constructing the razor-thin WKB
basis elements, that for (kpφ, k

p
r , R

p
0) 6=(kqφ, k

q
r , R

q
0) the orthogonality was satisfied, provided that the de-

coupling assumptions from equation (3.25) were satisfied. Regarding the vertical component, we also
underlined in equation (5.10), that the Sturm-Liouville theory enforces the orthogonality w.r.t. the np
and nq indices, even when considering both symmetric and antisymmetric basis elements. As a conse-
quence, the basis elements from equations (5.18) and (5.19) form a biorthogonal basis. Our final step
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is to specify the amplitude A to ensure a correct normalisation. Following the razor-thin calculations
from equation (3.27), one straightforwardly gets

A =

√
G

R0h(k2
r+(knz )2)

αn , (5.20)

where we introduced the prefactor 1≤αn≤1.6 as

αn =

√
2

1+sin(2knz h)/(2knz h)
. (5.21)

The epicyclic angle-action mapping from equation (5.4) allows us to compute the Fourier transform
of the basis elements w.r.t. the angles, as defined in equation (2.6). Following the razor-thin calculations
from equation (3.33), one gets

ψ
[kφ,kr,R0,n]
m (J) = δ

kφ
mφ δ

even
mz A eikrRg imz−mr BR0

(Rg)Jmr
[√

2Jr
κ kr

]
Jmz

[√
2Jz
ν knz

]
, (5.22)

where the Bessel function of the first kind J` were introduced in equation (3.32). The antisymmet-
ric analog of equation (5.22) is given in equation (5.105). After having explicity defined our thickened
WKB basis elements, let us now illustrate how one may evaluate the disc’s response matrix from equa-
tion (2.17).

5.4 WKB thick amplification eigenvalues
Following the construction of our thickened WKB basis elements, let us evaluate the system’s response
matrix, as given by equation (2.17).

5.4.1 WKB response matrix
When considering thin discs, a key result of section 3.4 was to show that in the razor-thin limit, the
response matrix computed with WKB basis elements was diagonal. This was an essential result of the
derivation which allowed us to obtain in sections 3.5 and 3.6 explicit analytical expressions for the col-
lisionless and collisional diffusion fluxes. As illustrated in the previous section, the thick WKB basis
elements have the same in-plane dependence as the razor-thin ones. However, they may in principle
interact one with another via their vertical components. In Appendix 5.B, we show that even for a thick
disc, with our thick WKB basis elements, one may still assume that the response matrix is diagonal so
that

M̂[kpφ,k
p
r ,R

p
0 ,np],[kqφ,k

q
r ,R

q
0,nq ]

(ω) = δ
kqφ
kpφ
δ
kqr
kpr
δ
Rq0
Rp0
δnqnp λ[kpφ,k

p
r ,R

p
0 ,np](ω) . (5.23)

Such a property is a crucial step of the present derivation, which allows us to account analytically for
the system’s self-gravity.

Following the calculations presented in section 3.4, one can straightforwardly compute the diago-
nal elements of the response matrix, using the Fourier transformed WKB basis elements from equa-
tion (5.22). The additional integral w.r.t. Jz can also be computed using the integration formula from
equation (3.42). As in the razor-thin case, we assume the disc to be sufficiently cold, so that one may
neglect the contributions from ∂F/∂Jφ w.r.t. the ones associated with ∂F/∂Jr and ∂F/∂Jz . After some
simple algebra, the symmetric amplification eigenvalues read

λsym
[kφ,kr,R0,n](ω) =

2πGΣα2
n

hκ2(1 + (kz/kr)2)

∑
`zeven

e−χzI`z [χz]
(1−s2

`z
)

{
F(s`z , χr)−`z

ν

σ2
z

σ2
r

κ
G(s`z , χr)

}
. (5.24)

Similarly to equations (3.43) and (3.45), we introduced the dimensionless quantities χr and χz as

χr =
σ2
rk

2
r

κ2
; χz =

σ2
zk

2
z

ν2
, (5.25)

and the shifted dimensionless frequency s`z as

s`z =
ω−kφΩφ−`zν

κ
. (5.26)
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Finally, in equation (5.24), as already made in equation (3.46), we introduced the reduction functions F
and G as

F(s, χ) = 2(1−s2)
e−χ

χ

+∞∑
`=1

I`[χ]

1−(s/`)2
; G(s, χ) = 2(1−s2)

e−χ

χ

[
1

2

I0[χ]

s
+

1

s

+∞∑
`=1

I`[χ]

1−(`/s)2

]
. (5.27)

These two reduction functions are illustrated in figure 5.B.1. Relying on the antisymmetric basis ele-
ments from Appendix 5.A, one also obtains the associated antisymmetric amplification eigenvalues as

λanti
[kφ,kr,R0,n](ω) =

2πGΣβ2
n

hκ2(1+(kz/kr)2)

∑
`zodd

e−χzI`z [χz]
(1−s2

`z
)

{
F(s`z , χr)−`z

ν

σ2
z

σ2
r

κ
G(s`z , χr)

}
, (5.28)

where the prefactor βn was introduced in equation (5.104).
Equations (5.24) and (5.28) are important results as they allow us to easily estimate the strength of

the self-gravitating amplification in a thick disc. We will show in section 5.4.2 how these amplification
eigenvalues are in full agreement with the razor-thin ones obtained in section 3.4. We will emphasise in
particular how these amplification eigenvalues allow us to generalise the razor-thin Toomre’s parameter
Q from equation (3.49) to the thickened geometry.

When effectively computing the thick amplification eigenvalues from equations (5.24) and (5.28), one
has to enforce two additional restrictions. These amount to neglecting the contributions from the vertical
action gradients w.r.t. the radial ones, and restricting the sum on resonance vectors only to closed orbits
on resonance. Let us now motivate these two assumptions.

The general expression of the responsematrix from equation (2.17) involves the gradients, ∂F/∂J , of
the system’s DFw.r.t. all the actions coordinates. As in the razor-thin case, wemay assume the disc to be
sufficiently cold, so that one may neglect the contributions from ∂F/∂Jφ w.r.t. ∂F/∂Jr and ∂F/∂Jz . In
addition, let us now also neglect the contributions from the vertical gradients w.r.t. the radial ones, the
radial ones being the only gradients which remain in the razor-thin limit. In equations (5.24) and (5.28),
this amounts to neglecting the reduction function G and conserving only the contributions from the
reduction function F .

One should also note that in the diffusion equations, the response matrix eigenvalues always have
to be evaluated at resonance. As a consequence, for the collisionless diffusion coefficients Dm(J)
from equation (2.32) and the collisional drift and diffusion coefficients Am(J) and Dm(J) from equa-
tions (2.69) and (2.70), the amplification eigenvalues have to be evaluated at the resonant frequency
ω=m·Ω. Following equation (5.26), the shifted dimensionless frequency sm`z associated with a given
resonancem reads

sm`z = mr+(mz−`z)
ν

κ
+iη , (5.29)

where a small imaginary part η was added. The potential is assumed to be dynamically non-degenerate
(see equation (5.60)), so that ν/κ is not a rational number. Consequently, sm`z , when evaluated for a
resonancem, is an integer only formz=`z . Here, sm`z being an integer, means that there exists a rotating
frame in which the star’s orbit is closed, i.e. in which the considered star is exactly on resonance. In
the razor-thin case, this was always possible, but this is no more guaranteed in the thickened case. As
illustrated in figure 5.B.1, the reduction function F diverges in the neighbourhood of integers, but is
well defined when evaluated for exactly integer values, as long as one adds a small imaginary part η
as in equation (5.29). In order never to probe the diverging branches of this reduction function, one
should therefore always evaluate this function for exactly integer values of s. As sm`z is an integer only
for `z=mz , we may restrict the sum on `z to this only term in the generic expressions (5.24) and (5.28)
of the thickened amplification eigenvalues.

When accounting for the two previous approximations, the amplification eigenvalues from equa-
tions (5.24) and (5.28), when computed for a resonancem, take the form

λm(Jφ, kr, kz) =
2πGΣγ2

m

hκ2(1+(kz/kr)2)

e−χzImz [χz]
(1−m2

r)
F(mr, χr) , (5.30)

where we introduced the numerical prefactor γm as

γm(Jφ, kr, kz) =

{
α(Jφ, kr, kz) if mz even ,
β(Jφ, kr, kz) if mz odd .

(5.31)
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Equation (5.30), because of its generic writing, applies to both symmetric and antisymmetric vertical
resonances. Let us emphasise that these reduced expressions are fully compatible with the discussions
from Appendix 5.B showing that the thickened response matrix is diagonal. These expressions are also
consistent with the upcoming section, where we recover the razor-thin WKB amplification eigenvalues
and generalise Toomre’sQ parameter to thick discs. The applications of the WKB formalisms presented
in section 5.7 all rely on the simplified expression of the amplification eigenvalues obtained in equa-
tion (5.30).

5.4.2 A thickened Q factor
Following our calculation of the amplification eigenvalues, let us now show how these are in full agree-
ment with the razor-thin results obtained in section 3.4, and also offer a generalisation of Toomre’s Q
parameter to thick discs.

In the razor-thin limit, only resonances with mz=0 are allowed, so that only the symmetric basis
elements may play a role. Let us note that the symmetric quantisation relation from equation (5.14) is
such that except for the fundamental symmetric frequency k1

z,s, one always has knz,s>π/(2h). Because in
the razor-thin limit one hash→0, only the fundamental symmetricmode contributes to the amplification
eigenvalue in this limit. In the same infinitely thin limit, one can then get rid of the dependence of λw.r.t.
kz and evaluate the amplification eigenvalues in (kr, k

1
z(kr, h))=(kr,

√
kr/h), thanks to equation (5.16).

Equation (5.30) then becomes

λ(ω, kφ, kr, h) =
2πGα2

1Σkr
κ2(1+krh)

e−χzI0[χz]

(1−s2)
F(s, χr) , (5.32)

where the dimensionless frequency s was introduced in equation (3.45), while the prefactor α1 was
defined in equation (5.21) and is a function of k1

z,sh=
√
krh. One immediately has limthin α1 =1. Sim-

ilarly, χz , introduced in equation (5.25), should also be seen as a function of kr and h, and reads
χz=(σ2

zkr)/(ν
2h). When considering the razor-thin limit, one should keep in mind that the kinematic

height of the mean disc σz/ν and the size of the sharp WKB cavity h are directly related. Indeed, as
detailed in equation (5.74), Jeans equation imposes a relation of the form

σz
ν

= c2 h , (5.33)

where c2 is a dimensionless constant. For a Spitzer profile, as defined in equation (5.71), this constant
reads c2 =1/

√
2. One then immediately has χz=c22krh, so that limthin χz=0. As a consequence, in the

razor-thin limit, equation (5.32) gives

lim
thin

λsym =
2πGΣ|kr|
κ2(1−s2)

F(s, χr) , (5.34)

as already obtained in equation (3.47). This result underlines how the thick WKB basis elements con-
structed in section 5.3 are fully consistent with the razor-thin WKB results from section 3.3. Using the
thickened disc model considered in the applications of section 5.7, we illustrate in figure 5.4.1 how the
thickened WKB amplification eigenvalues tend to the razor-thin ones, as one reduces the thickness of
the disc.

Starting from the asymptotic expression (5.32) of the symmetric amplification eigenvalues in the limit
of a thinner disc, let us now study how it impacts the value of the razor-thin Toomre’s Q parameter
from equation (3.49), as one accounts for the disc finite thickness, i.e. for a non-zero value of h. We
are interested in the system’s stability w.r.t. to axisymmetric tightly wound perturbations, so that we
impose kφ=0. Placing ourselves at the stability limit ω=0 (so that s=0), we seek a criterion on the
disc’s parameters so that there exists no kr>0 for which λ(kr, h)=1, i.e. such that the disc is stable. Let
us then rewrite equation (5.32) as

λ(kr, h) =
2πGΣkr
κ2

F(0, χr)

{
α2

1

1+krh
e−χzI0[χz]

}
=

2πGΣkr
κ2

F(0, χr)

{
1−
[

2

3
+c22

]
krh

}
=

2πGΣ

κσr
K(χr, γ) , (5.35)
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Figure 5.4.1: Illustration of the effect of the disc thickness on the WKB amplification eigenvalues for the thickened
Mestel disc presented in section 5.7.1, at the location Jφ=2 and for the corotation resonancem=mCOR =(2, 0, 0).
The different curves are associated with different values of the disc scale height z0 from equation (5.71). For z0 6=0,
we computed λ(kr, k

min
z (kr)), following equation (5.30). For z0 =0, i.e. for the razor-thin case, we computed

λthin(kr) from equation (3.47). As expected, the thickening of the disc tends to reduce its gravitational suscepti-
bility.

where to obtain the second line of equation (5.35), we performed a limited development at first order in
krh of α1 and χz . In the third line, in order to shorten the notations, we introduced γ=

[
2
3 +c22

]
(h/κ)σr,

as well as the functionK(χr, γ) as

K(χr, γ) =
1√
χr

[
1−e−χrI0[χr]

][
1−γ√χr

]
. (5.36)

This function is the direct thickened analog of the razor-thin function K0(χr) introduced in equa-
tion (3.48) to derive the razor-thin Q parameter. Figure 5.4.2 illustrates the shape of the function
χr 7→K(χr, γ). In order to obtain a simple expression for the thickened stability parameter, our next

Figure 5.4.2: Illustration of the function χr 7→K(χr, γ), introduced in equation (5.36), for various values of γ. The
razor-thin case corresponds to γ=0 andwas already illustrated in figure 3.4.1. As expected, accounting for the finite
thickness of the disc reduces the amplification eigenvalues.

step is to study the behaviour of Kmax(γ), the maximum of the function χr 7→K(χr, γ), as one varies γ.
As already obtained in equation (3.48), for γ=0, one has K0

max'0.534 reached for χ0
max'0.948. A first
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order expansion in γ then allows us to write

Kmax(γ) ' K0
max

[
1−γ

√
χ0

max

]
' K0

maxe−γ
√
χ0

max = Kapprox.
max (γ) , (5.37)

where, in the second line, we replaced the linear approximation by an exponential, which offers a better
fit. The shapes of the function γ 7→ Kmax(γ),Kapprox.

max (γ) are illustrated in figure 5.4.3. Once one has esti-

Figure 5.4.3: Illustration of the behaviour of the function γ 7→Kmax(γ) along with its approximation Kapprox.
max (γ),

introduced in equation (5.37), as one varies the disc thickness characterised by γ.

mated the maximum Kapprox.
max (γ), equation (5.35) immediately gives us the expression of the thickened

Qthick factor which reads

Qthick = Qthin e−γ
√
χ0

max = Qthin exp

[
1.61

σz/ν

σr/κ

]
, (5.38)

where we used equation (5.33) to rewrite h as a function of σz/ν, given the value c2 =1/
√

2 for a Spitzer
profile. We also wrote Qthin for the razor-thin Toomre’s parameter from equation (3.49). One can note
that equation (5.38) was obtained through a rather general procedure allowing for the computation of
the response matrix eigenvalues using the thickened WKB basis elements. Let us emphasise that this
calculation is not specific to the Spitzer profile from equation (5.71). Should one consider a different
mean vertical density profile, one would only have to change accordingly the value of the constant c2
from equation (5.33), which relates the thickness of the mean density profile to the size of the sharp
cavity from equation (5.11). A follow-up work of the present derivation will be to investigate via numer-
ical simulations the relevance and quality of this new stability parameter to characterise instabilities in
thickened stellar discs.

Let us finally discuss how this new Qthick parameter compares to previous results. Vandervoort
(1970) tackled in particular a similar issue of characterising tightly wound density waves in thickened
stellar discs. See also Romeo (1992) for another generalisation of Q to the thickened geometry. The
approach of Vandervoort (1970) relied on the collisionless Boltzmann equation limited to even pertur-
bations. It also relied on the assumption of the existence of the adiabatic invariant Jz , thanks towhich the
vertical motion of the stars may be described. With our current notation, equation (77) of Vandervoort
(1970) gives amplification eigenvalues of the form

λV =
2πGΣ|kr|
κ2(1−s2)

F(s, χr)Q
−1
V (krh) , (5.39)

where we used equation (5.11) to relate h and z0. In equation (5.39), QV(krh) is a non-trivial function,
which can be computed via implicit variational principles. Similarly, in our present thickened WKB
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formalism, the analog of equation (5.39) is given by equation (5.32) and takes the form

λF =
2πGΣ|kr|
κ2(1−s2)

F(s, χr)Q
−1
F (krh) , (5.40)

where the function QF(krh) is an explicit function reading

QF (krh) =
1+krh

α2
1e−χzI0[χz]

. (5.41)

Thanks to Table 1 in Vandervoort (1970), which offers approximate values for the function x 7→QV(x), we
may compare the functions QV and QF, as illustrated in figure 5.4.4. We note that the behaviours of the

Figure 5.4.4: Comparisons of the correction functionsQV from equation (5.39) obtained in Vandervoort (1970)with
the explicit functionQF from equation (5.40) obtained thanks to the thickenedWKB appoximation. The behaviours
ofQV was obtained from Table 1 in Vandervoort (1970), which provides various approximations of increasing order
Q

(0)
V , Q(1)

V , and Q(2)
V . Despite being obtained from significantly different methods, these two approaches lead to

similar results.

two functions are very similar on the considered range 0≤krh≤5, even if they were obtained through
different approaches.

5.5 WKB limit for the collisionless diffusion
Having characterised the WKB self-gravitating amplification in thickened discs, let us now proceed to
the evaluation of the diffusion coefficients involved in the collisionless diffusion equation (2.31). We fol-
low an approach similar to section 3.5. Let us firstwrite the thickWKBbasis elements from equation (5.6)
as

ψ(p) = ψ[kpφ,k
p
r ,R

p
0 ,np] . (5.42)

Relying on equation (5.23) to write the response matrix as M̂pq=λpδ
q
p, the collisionless diffusion coeffi-

cients from equation (2.32) become

Dm(J) =
1

2

∑
p,q

ψ(p)
m (J)ψ(q)∗

m (J)
1

1−λp
1

1−λq
Ĉpq(m·Ω) , (5.43)

where Ĉpq was introduced in equation (2.26) and stands to the autocorrelation of the external pertur-
bations. At this stage, let us note that the Fourier transformed basis elements from equation (5.22)
(resp. (5.105)) involve a δeven

mz (resp. δodd
mz ) for the symmetric (resp. antisymmetric) elements. As a conse-

quence, in equation (5.43), as ψ(p)
m and ψ(q)

m are evaluated for the same resonance vectorm, the diffusion
coefficients do not couple symmetric and antisymmetric basis elements. Therefore, in order to estimate
Dm(J), depending on whether mz is even (resp. odd), one only has to consider the symmetric (resp.
antisymmetric) basis elements. As was done in section 5.3, we restrict ourselves to the symmetric case,
while the antisymmetric case will be straightforward to obtain by direct analogy.
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Following equation (3.55), let us first express the basis coefficients b̂p as a function of the external
perturbation δψe. After some calculation, one gets

b̂p(ω) =
(kpr )2+(kpz)2

4πG

ApRp0
(πσ)1/4

(2π)2 δψ̂e
mφ,k

p
r ,k

p
z
[Rp0, ω] , (5.44)

where we used the shortened notation kpz =k
np
z . Following equation (3.55), here in equation (5.44), δψ̂e

has undergone three transformations: (i) an azimuthal Fourier transform of indicemφ, (ii) a local radial
Fourier transform centred around Rp0 at the frequency kpr , and (iii) an even restricted vertical Fourier
transform on the scale h at the frequency kpz . These three transformations are defined as

(i): fmφ =
1

2π

∫
dφ f [φ] e−imφφ ,

(ii): fkr [R0] =
1

2π

∫
dR e−ikr(R−R0) exp

[
− (R−R0)2

2σ2

]
f [R] ,

(iii): fkz =

∫ +h

−h
dz cos(kzz) f [z] . (5.45)

Following again equation (3.57), one may now disentangle the sums on p and q in equation (5.43), so
that the collisionless diffusion coefficients become

Dsym
m (J) = δeven

mz

〈
1

2π

∫
dω′ g(m·Ω) g∗(ω′)

〉
, (5.46)

where we introduced the function g(ω) as

g(ω) =
2π

2h

∑
kpr ,R

p
0 ,np

gs(k
p
r , R

p
0, k

p
z , ω) eikpr (Rg−Rp0) Gr(Rg−Rp0) . (5.47)

In equation (5.47), we executed the sum on kpφ thanks to the azimuthal Kronecker delta from equa-
tion (5.22). Here, as in equation (3.58), we also introduced Gr(R)=1/

√
2πσ2e−R

2/(2σ2) a normalised
radial Gaussian, and gs encompasses all the slow dependences of the diffusion coefficients w.r.t. the
radial position so that

gs(k
p
r , R

p
0, k

p
z , ω) = Jmr

[√
2Jr
κ kpr

]
Jmz

[√
2Jz
ν kpz

]
α2
p

1−λp
δψ̂e

mφ,k
p
r ,k

p
z
[Rp0, ω] . (5.48)

Let us emphasise the strong similarities between equation (5.48) and its razor-thin analog from equa-
tion (3.59). Following the same method as in the razor-thin case, we rely on Riemann sum formula to
rewrite equation (5.47) with continuous integrals w.r.t. Rp0 and kpr using the critical step distances from
equation (3.61). Equation (5.47) becomes

g(ω) =
1

2h

∑
np

∫
dkpr gs(k

p
r , Rg, k

p
z , ω) , (5.49)

where one can note that there still remains a discrete sum on the index np. At this stage, to make further
progress in the calculations, two strategies are possible. On the one hand, one may assume that the disc
is sufficiently thick so that one can replace the sum on np in equation (5.49) by a continuous integral
over kz . On the other hand, in the limit of a thinner disc, as the quantised frequencies kz tend to be
further apart (see figure 5.3.2), one should keep the discrete sum from equation (5.49). In the upcoming
calculations, we stick to the first approach and aim for continuous expressions. In Appendix 5.C, wewill
follow the second approach, show that these two approaches are in full agreement and fully consistent
with the razor-thin results obtained in section 3.5.

As noted in equation (5.17), for a sufficiently thick disc, one can assume that the distance between
two successive quantised kz frequencies is of order ∆kz'π/h. Assuming that ∆kz is sufficiently small
compared to the scale of variation of the function kz 7→gs(kz), let us rely once again on Riemann sum
formula to rewrite equation (5.49) as

g(ω) =
1

2π

∫
dkprdkpz gs(k

p
r , Rg, k

p
z , ω) . (5.50)
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Following equation (3.63), we introduce Ĉδψe the autocorrelation of the external perturbations as

Ĉδψe [mφ, ω,Rg, k
p
r , k

q
r , k

p
z , k

q
z ] =

1

2π

∫
dω′

〈
δψ̂e

mφ,k
p
r ,k

p
z
[Rg, ω] δψ̂e

∗
mφ,k

q
r ,k

q
z
[Rg, ω

′]
〉
, (5.51)

so that the diffusion coefficients from equation (5.46) become

Dsym
m (J) = δeven

mz

1

(2π)2

∫
dkprdkpz Jmr

[√
2Jr
κ kpr

]
Jmz

[√
2Jz
ν kpz

]
α2
p

1−λp

×
∫

dkqrdk
q
z Jmr

[√
2Jr
κ kqr

]
Jmz

[√
2Jz
ν kqz

]
α2
q

1−λq
Ĉδψe [mφ,m·Ω, Rg, k

p
r , k

q
r , k

p
z , k

q
z ] . (5.52)

The antisymmetric equivalent of equation (5.52) is straightforward to obtain via the substitutions
δeven
mz →δodd

mz and αp/q→βp/q . In addition, one should also pay attention to the fact that the autocor-
relation Ĉδψe should be computed slightly differently in the antisymmetric context. Indeed, as the
antisymmetric basis elements from equation (5.105) possess an odd vertical dependence, the even re-
stricted Fourier transform from equation (5.45) should be replaced by an odd restricted vertical Fourier
transform defined as

(iii): fkz =

∫ +h

−h
dz sin(kzz) f [z] . (5.53)

Finally, in equation (5.52), notice that the integrations on kpz and kqz should only be performed for kz≥k1
z ,

i.e. for kz larger than the associated fundamental mode, as illustrated in figure 5.3.2.
Following equation (3.66), let us now further simplify equation (5.52) by assuming some additional

properties on the stochasticity of the external perturbations. In analogywith equation (3.66), we suppose
that the external perturbations, δψe, are spatially quasi-stationary so that〈

δψe
mφ

[R1, z1, t1] δψe∗
mφ

[R2, z2, t2]
〉

= C[mφ, t1−t2, (R1+R2)/2, R1−R2, z1+z2, z1−z2] , (5.54)

where the dependences w.r.t. (R1+R2)/2 and z1+z2 are supposed to be slow. Thanks to some simple
algebra (see Appendix G of Fouvry et al. (2016c)), one can show that〈
δψ̂e

mφ,k1
r ,k

1
z
[Rg, ω1] δψ̂e

∗
mφ,k2

r ,k
2
z
[Rg, ω2]

〉
= 2π2 δD(ω1−ω2) δD(k1

r−k2
r) δD(k1

z−k2
z) Ĉ[mφ, ω1, Rg, k

1
r , k

1
z ] ,

(5.55)
where in analogy with equation (3.67), Ĉ[...] has been transformed three times, according to a tempo-
ral Fourier transform as defined in equation (2.9), according to a local radial Fourier transform as in
equation (5.45) of spread

√
2σ w.r.t. R1−R2 in the neighbourhood of R1−R2 =0 and (R1+R2)/2=Rg,

and finally according to an even restricted vertical Fourier transform as in equation (5.45) w.r.t. z1−z2

in the neighbourhood of z1−z2 =0 and z1+z2 =0. In equation (5.55), the autocorrelation of the exter-
nal perturbation was therefore diagonalised w.r.t. ω, kr, and kz , so that the diffusion coefficients from
equation (5.52) become

Dsym
m (J) = δeven

mz

π

(2π)2

∫
dkprdkpz J 2

mr

[√
2Jr
κ kpr

]
J 2
mz

[√
2Jz
ν kpz

] [
α2
p

1−λp

]2

Ĉ[mφ,m·Ω, Rg, k
p
r , k

p
z ] . (5.56)

The antisymmetric analog of equation (5.56) is straightforward to obtain thanks to the substitutions
δeven
mz →δeven

mz and αp→βp. Finally, despite the fact that one is considering antisymmetric diffusion coef-
ficients, it is important to note that Ĉ still has to be transformed according to an even-restricted vertical
Fourier transform, see Appendix G of Fouvry et al. (2016c) for details. The explicit expression (5.56) of
the collisionless diffusion coefficients is the main result of this section. It presents close similarities with
equation (3.68) short of an extra integral along vertical kz modes modulated by an extra Bessel function.

As in equation (3.69), one may further simplify equation (5.56) by relying on the approximation of
the small denominators, for which one focuses on the tightly wound waves which yield the maximum
self-gravitating amplification. Let us therefore assume that the function (kr, kz) 7→λ(kr, kz) reaches in its
domain a well-defined maximum λmax(Rg, ω) for (kr, kz)=(kmax

r , kmax
z ). Let us then define the domain

of maximum amplification Vmax =
{

(kr, kz)
∣∣λ(kr, kz)≥λmax/2

}
and its associated area |Vmax|. Equa-

tion (5.56) can then be approximated as

Dsym
m (J) = δeven

mz

π|Vmax|
(2π)2

J 2
mr

[√
2Jr
κ kmax

r

]
J 2
mz

[√
2Jz
ν kmax

z

] [
α2

max

1−λmax

]2

Ĉ[mφ,m·Ω, Rg, k
max
r , kmax

z ] , (5.57)
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while the associated antisymmetric diffusion coefficients are straightforward to obtain by direct analogy.
One can also improve the previous approximation by performing the integrations from equation (5.56)
for (kr, kz)∈Vmax. Such a calculation ensures a better estimation of the diffusion flux while being more
numerically demanding. This does not alter the results obtained in the applications presented in sec-
tion 5.7.

5.6 WKB limit for the collisional diffusion
Relying on the thick WKB amplification eigenvalues obtained in equation (5.30) and following the same
approach as in the previous section, let us now evaluate the collisional drift and diffusion coefficients of
the Balescu-Lenard equation (2.67).

Following the notations from equation (5.42) and separating the contributions from the symmetric
and antisymmetric basis elements, the dressed susceptibility coefficients from equation (2.50) take the
form

1

Dm1,m2
(J1,J2, ω)

=
∑
p

[
ψ

s,(p)
m1 (J1)ψ

s,(p)∗
m2 (J2)

1−λs
p(ω)

+
ψ

a,(p)
m1 (J1)ψ

a,(p)∗
m2 (J2)

1−λa
p(ω)

]
, (5.58)

where the superscripts "s" and "a" respectively correspond to the symmetric and antisymmetric basis
elements. We showed in equation (5.22) (resp. (5.105)) that the Fourier transformedWKB basis elements
involve an azimuthal Kronecker symbol δk

p
φ
mφ , as well as a δeven

mz (resp. δodd
mz ) for the symmetric (resp.

antisymmetric) basis elements. As a consequence, in equation (5.58) in order to have non-vanishing
susceptibility coefficients, one must necessarily have

mφ
1 = mφ

2 = kφ and (mz
1−mz

2) even . (5.59)

Becausemz
1 andmz

2 must be of the same parity, one concludes that the susceptibility coefficients do not
mix up symmetric and antisymmetric basis elements. As a consequence, depending on the parity ofmz

1,
one can restrict oneself only to the symmetric elements or only to the antisymmetric ones.

Let us now focus on one crucial consequence of the WKB approximation, which is the restriction
to local resonances. As already noted in equation (3.73), one technical difficulty of the Balescu-Lenard
equation is to deal with the resonance conditionm1 ·Ω1−m2 ·Ω2 =0. For a given value of J1,m1, and
m2, one has to identify the resonant radii Rr

2 for which the resonance condition is satisfied. In our case,
one important simplification comes from the thickened epicyclic approximation, thanks to which the
orbital frequencies Ω=(Ωφ, κ, ν) depend only on Jφ. As in equation (3.75), we also assume here that the
disc’s mean potential is dynamically non-degenerate so that

d(m2 ·Ω)

dR

∣∣∣∣
Rr

2

6= 0 . (5.60)

Following the notations from equation (3.76), the resonance condition takes the form

mφ
1 Ω1

φ +mr
1κ

1 +mz
1ν

1 = mφ
1 Ωr

φ +mr
2κ

r +mz
2ν

r , (5.61)

where we used the notation Ω1
φ=Ω1

φ(R1) and Ωr
φ=Ωφ(Rr

2). We also relied on equation (5.59) to im-
pose mφ

1 =mφ
2 . Because the Fourier transformed basis elements from equations (5.22) and (5.105)

involve the narrow radial Gaussian BR0 , the resonant radii Rr
2 are necessarily close to R1 so that

|∆R|= |Rr
2−R1|. (few)σ. Similarly to equation (3.77), the resonance condition from equation (5.61)

may be rewritten as[
mφ

2

dΩφ
dR

+mr
2

dκ

dR
+mz

2

dν

dR

]
∆R =

[
mr

1−mr
2

]
κ1+

[
mz

1−mz
2

]
ν1 . (5.62)

In the l.h.s. of equation (5.62), the terms within brackets is non-zero as a result of our assumption from
equation (5.60) that the disc’s mean potential is dynamically non-degenerate, while ∆R is small because
of the scale decoupling approach used in the construction of the WKB basis elements. The r.h.s. of
equation (5.62) should be seen as discrete in the sense that is the sum of a multiple of κ and of ν. For a
disc not too thick, one expects to have ν�κ. In addition, we showed in equation (5.59), that (mz

1−mz
2)

has to be en even number. As a consequence, for (mz
1−mz

2) 6=0, one has∣∣(mz
1−mz

2) ν1
∣∣ ≥ ∣∣2ν1

∣∣� ∣∣mr
1−mr

2

∣∣κ1 , (5.63)
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provided that the resonance vectorsm1 andm2 are of small order. In this situation, the l.h.s. of equa-
tion (5.62) is therefore small, while its r.h.s. is of order ν1. Equation (5.62) therefore imposes mz

1 =mz
2.

Equation (5.62) then takes the exact same form as the razor-thin equation (3.77). We follow the same
argument and therefore conclude that the thick WKB basis elements impose that only local resonances
are allowed so that

Rr
2 = R1 ; mr

1 = mr
2 ; mz

1 = mz
2 . (5.64)

This an essential result of theWKB approximation, which enables us to pursue the analytical evaluation
of the dressed susceptibility coefficients.

Restricting ourselves to the cases R2 =R1 and m2 =m1, and using the expression of the Fourier
transformed basis elements from equation (5.22), the symmetric susceptibility coefficients from equa-
tion (5.58) now read

1

Dm1,m1

=
∑

kpr ,R
p
0 ,np

G

Rp0h

1

(kpr )2+(kpz)2

1√
πσ2

exp

[
− (R1−Rp0)2

σ2

]
α2
p

1−λp(ω)

× Jmr1
[√

2J1
r

κ1
kpr

]
Jmr1

[√
2J2
r

κ1
kpr

]
Jmz1

[√
2J1
z

ν1
kpz

]
Jmz1

[√
2J2
z

ν1
kpz

]
, (5.65)

where we introduced the shortening notations 1/Dm1,m1
=1/Dm1,m1

(R1,J
1
r ,J

1
z ,R1,J

2
r ,J

2
z , ω), as well as

κ1 =κ(R1), ν1 =ν(R1), and kpz =k
np
z . One should also note that the sum on kpφ was already executed

thanks to the constraint from equation (5.59). Following the same approach as in the collisionless case,
let us replace the sums on kpr and R

p
0 by continuous expressions. Equation (5.65) becomes
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In equation (5.66), there still remains a sum on the vertical index np. As already described in equa-
tion (5.49) for the collisionless case, one may follow two possible strategies to complete the evaluation
of the susceptibility coefficients. If the disc is sufficiently thick, one can replace the sum on np by a con-
tinuous integral over kz . In the limit of a thin disc, one should however keep the discrete sum in equa-
tion (5.66). In the next calculations, let us follow the first continuous approach. The second approach is
presented in Appendix 5.C, and we show once again that these two approaches are fully consistent one
with another, and that they also allow for the recovery of the razor-thin results from section 3.6.

Using the vertical step distance ∆kz'π/h from equation (5.17) and assuming that the function in the
r.h.s. of equation (5.66) vary on scales larger than ∆kz , one may use once again Riemann sum formula
to rewrite equation (5.66) as
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Such an explicit expression of the dressed susceptibility coefficients constitutes the main result of this
section. Equation (5.67) relates the gravitational susceptibility of the disc to known analytic functions
of its actions via simple regular quadratures. Following equation (5.57), one may further simplify equa-
tion (5.67) by relying on the approximation of the small denominators. It becomes
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This approximation can be improved by rather performing the integrations in equation (5.67) for
(kr, kz)∈Vmax. This approach allows for a more precise determination of the diffusion flux but is
more numerically demanding. Such an improved approximation does not alter the principal con-
clusions drawn in the upcoming applications. Finally, for mz

1 odd, the antisymmetric analogs of the
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previous expressions of the dressed susceptibility coefficients are straightforward to obtain thanks to
the substitution α→β.

As a final step, let us now compute the Balescu-Lenard drift and diffusion coefficients from equa-
tions (2.69) and (2.70). Restricting oneself only to local resonances and using the shortened notation
from equation (3.82), one can write the collisional drift coefficients as

Am1(J1) = − 8π4µ

(m1 ·Ω1)′

∫
dJ2

r dJ2
z

m1 ·∂F/∂J(J1
φ, J

2
r , J

2
z )

|Dm1,m1(J1,J2,m1 ·Ω1)|2 , (5.69)

while the diffusion coefficients are given by

Dm1
(J1) =

8π4µ

(m1 ·Ω1)′

∫
dJ2

r dJ2
z

F (J1
φ, J

2
r , J

2
z )

|Dm1,m1
(J1,J2,m1 ·Ω2)|2 . (5.70)

In equations (5.69) and (5.70), the susceptibility coefficients are given by equation (5.67), or even equa-
tion (5.68) when using the approximation of the small denominators. In particular, because of the re-
striction to local resonances, they always have to be evaluated for J2

φ=J1
φ. Note that in the casewhere the

DF is a quasi-isothermal DF as in equation (5.5), and where the susceptibility coefficients are computed
via the approximation of the small denominators from equation (5.68), the integrations w.r.t. J2

r and
J2
z in equations (5.69) and (5.70) may be computed explicitly (see Appendix C of Fouvry et al. (2015b)

for an illustration in the razor-thin limit). The simple and tractable expressions of the collisional drift
and diffusion coefficients obtained in equations (5.69) and (5.70) constitute an important result of this
section. Let us finally insist on the fact that the application of the thick WKB approximation to the
Balescu-Lenard equation is self-contained and that no ad hoc fittings were required. Except for the ex-
plicit calculation of the thickened amplification eigenvalues in equation (5.30), the previous calculations
are not limited to the quasi-isothermal DF from equation (5.5). The collisional drift and diffusion coef-
ficients from equations (5.69) and (5.70) are valid for any tepid disc’s DF, provided that one can rely on
the epicyclic angle-action mapping from equation (5.4).

5.7 Application to disc thickening
Let us now implement the previous thick WKB collisionless and collisional diffusion equations in or-
der to investigate the various resonant processes at play during the secular evolution of a thick stellar
disc. In section 5.7.1, we present the considered thick disc model. In section 5.7.2, we show how our
formalism allows us to recover qualitatively the secular formation of vertical resonant ridges observed
in the numerical experiments of Solway et al. (2012). Sections 5.7.3 and 5.7.4 respectively consider the
associated diffusion timescales as well as the secular in-plane diffusion. In section 5.7.5, we consider the
mechanism of disc thickening via the resonant diffusion induced by central decaying bars. Finally, in
section 5.7.6, we show how one can account for the joint evolution of giant molecular clouds (GMCs)
and how they hasten the secular diffusion. Let us first describe the considered disc model.

5.7.1 A thickened disc model
In order to setup a model of thickened stellar disc, we follow the model recently considered in Solway
et al. (2012) (hereafter So12). We follow specifically the numerical parameters from their simulation
UCB keeping only the most massive its two components. This simulation is particularly relevant in
the context of secular diffusion, as it dealt with an unperturbed isolated stable thick stellar disc. On
secular timescales, this thick disc developed spontaneously sequences of transient spirals and only on
the very long-term a central bar. This disc should be seen as a thickened version of the razor-thin Mestel
disc presented in section 3.7.1. Let us start from the razor-thin surface density of the Mestel disc ΣM

introduced in equation (3.85). Then, assuming a given vertical profile shape, one can thicken ΣM to
construct a density ρM. Indeed, let us define the 3D density ρM(R, z) as

ρM(R, z) = ΣM(R)
1

4z0(R)
sech2

[
z

2z0(R)

]
. (5.71)

Equation (5.71) corresponds to a Spitzer profile (Spitzer, 1942), where we introduced the local thick-
ness z0 of the disc. It satisfies

∫
dz ρM(R, z)=ΣM(R). This profile corresponds to an isothermal ver-

tical distribution, i.e. a vertical statistical and thermodynamical equilibrium. Let us note that at this
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stage, one could have used alternative vertical profiles, e.g., exponential. The results presented there-
after can straightforwardly be applied to other vertical profiles, provided one adapts accordingly the
relations between h, z0, and σz/ν obtained in equations (5.11) and (5.74). After having constructed the
system’s total density, one can numerically determine the associated thickened potential ψM given by
ψM(x)=−

∫
dx1GρM(x1)/|x−x1|. Thanks to the disc’s axisymmetry, this can be rewritten as

ψM(R, z) =

∫
dR1dz1

−4GR1ρM(R1, z1)√
(R−R1)2+(z−z1)2

Fell

[
π

2
,− 4RR1

(R−R1)2+(z−z1)2

]
, (5.72)

where Fell[φ,m]=
∫ φ

0
dφ′[1−m sin2(φ′)]−1/2 is the elliptic integral of the first kind. Thanks to the numer-

ical calculation of the thickened total potential ψM, one may then rely on the epicyclic approximation
from section 5.2 to construct the mapping Rg 7→Jφ, as well as the three intrinsic frequencies Ωφ, κ and
ν. These elements determined, the angle-action mapping from equation (5.4) is then fully characterised.
For a sufficiently thin disc, one expects thesemappings to be close to the ones obtained in equations (3.86)
and (3.87) for the razor-thin case.

Let us emphasise that the equilibrium value of the vertical velocity dispersion σz is directly con-
strained by the thickened mean density profile ρM. Indeed, the one-dimensional vertical Jeans equation
(see, e.g., equation (4.271) in Binney & Tremaine (2008)) imposes

∂(ρMσ
2
z)

∂z
= −ρM

∂ψM

∂z
, (5.73)

where we assume that σz only depends on R. Differentiating once this relation w.r.t. z and evaluating
it at z=0, one immediately gets for a Spitzer profile the relation

σz(R)

ν(R)
=
√

2 z0(R) . (5.74)

As a consequence, once the scale height of the disc z0 and the vertical frequency ν have been determined,
the value of the velocity dispersion σz immediately follows from the constraint of vertical equilibrium.
The previous determinations of the system’s intrinsic frequencies required the use of the system’s total
potential ψM. However, here we are interested in the dynamics of the active component of the disc,
the stars, whose surface density Σstar is only one component of the total surface density ΣM. As was
done in equations (3.90) and (3.91) in the razor-thin case, we introduce two taper functions Tinner and
Touter to deal with inner singularity and the infinite extent of the system, as well as an active fraction
ξ, so that Σstar is given by equation (3.92), and is illustrated in figure 5.7.1. Using the same units than

Figure 5.7.1: Illustration of the active surface density Σstar for the thickened disc presented in section 5.7.1. As a
result of the tapering functions, the disc’s self-gravity is turned off in its inner and outer regions.

So12’s UCB simulation, our numerical parameters are given by V0 =G=Ri =1, Ro =15, νt =4, µt =6,
Rmax =25, σr=0.227, and ξ=0.4. Finally, to mimic So12’s vertical profile, we use for the Spitzer profile
from equation (5.71) a constant scale height given by z0 =0.26. One can also straightforwardly estimate
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Figure 5.7.2: Left panel: Illustration of the contours of the initial quasi-isothermal DF from equation (5.5) in
the plane (Jφ, Jr, Jz=0). Contours are spaced linearly between 95% and 5% of the DF maximum. Right panel:
Contours of the quasi-isothermal DF in the plane (Jφ, Jr=0, Jz) following the same conventions as the left panel.

the total active mass of the system as Mtot =5.8. Using these numerical parameters, the shape of the
quasi-isothermal DF Fstar from equation (5.5) is illustrated in figure 5.7.2.

It is important to note that So12’s simulation was limited to the harmonic sector 0≤mφ≤8, except
mφ=1 to avoid decentring effects. In our analysis, in order to clarify and simplify the dynamical mech-
anisms at play, we impose an even more drastic limitation to the potential perturbations, and we re-
strict ourselves only tomφ=2. In addition to this azimuthal restriction, all our analyses are also limited
to only 9 different resonance vectors m=(mφ,mr,mz). Indeed, we assume mφ=2, mr∈

{
− 1, 0, 1

}
and mz∈

{
− 1, 0, 1

}
. Among these resonances, one can identify the corotation resonance (COR) as

m=(2, 0, 0), the radial (resp. vertical) inner Lindblad resonance (rILR) (resp. vILR) as m=(2,−1, 0)
(resp. m=(2, 0,−1)), and the radial (resp. vertical) outer Lindblad resonance (rOLR) (resp. vOLR) as
m=(2, 1, 0) (resp. m=(2, 0, 1)). Having computed the intrinsic frequencies Ω and specified the con-
sidered resonance vectors m, one can study the behaviour of the resonance frequencies ω=m·Ω as
a function of the position within the disc, as illustrated in figure 5.7.3. These frequencies correspond

Figure 5.7.3: Illustration of the behaviour of the intrinsic frequencies ω=m·Ω as a function of the position within
the disc (given by Rg) and the resonance vectorm=(mφ,mr,mz). The grey lines correspond to the pattern speed
mpΩp introduced in the bar perturbations from equation (5.87) and considered in figure 5.7.13.

to the frequencies for which the amplification eigenvalues and the perturbation autocorrelation from
equation (5.56) have to be evaluated.
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When simulating the previous quasi-stationary and stable thick disc on secular timescales, So12 (pri-
vate communication) observed sequences of transient spirals within the disc, which on the long-term
led to an irreversible diffusion in action space of the system’s DF, and especially to a thickening of the
stellar disc. In order to probe such diffusion features, one can consider the marginal distribution of ver-
tical action Jz as a function of the guiding radius Rg within the disc. To do so, let us define the function
FZ(Rg, Jz, t) as

FZ(Rg, Jz, t) =

∫
dθ′dJ ′ δD(Rg−R′g) δD(Jz−J ′z)F (J ′, t)

= (2π)3 dJφ
dRg

∫
dJ ′r F (Rg, J

′
r, Jz, t) . (5.75)

Following equations (2.34) and (2.72) and rewriting both collisionless and collisional diffusion equations
as ∂F/∂t=div(F tot), one can straightforwardly estimate the time variations of FZ as

∂FZ

∂t
= (2π)3 dJφ

dRg

∫
dJ ′r div(F tot)(Rg, J

′
r, Jz, t) . (5.76)

Equation (5.76) can be rewritten as the divergence of a fluxFZ =(FφZ ,FzZ) defined in the (Jφ, Jz)−plane,
so that

∂FZ(Jφ, Jz)
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=
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∂

∂Jφ
,
∂

∂Jz

)
·FZ =

∂FφZ
∂Jφ

+
∂FzZ
∂Jz

, (5.77)

where we introduced the flux components (FφZ ,FzZ) as

FφZ = (2π)3

∫
dJ ′r Fφtot(Jφ, J

′
r, Jz) ; FzZ = (2π)3

∫
dJ ′r Fztot(Jφ, J

′
r, Jz) . (5.78)

In equation (5.78), we introduced the components of the total diffusion fluxF tot in the (Jφ, Jr, Jz) space
as F tot =(Fφtot,Frtot,Fztot).

As observed in So12’s simulations, the initial contours of FZ are illustrated in the left panel of fig-
ure 5.7.4, while their long-term evolution is illustrated in the right panel of the same figure. Comparing

Figure 5.7.4: Illustration of the evolution of the function FZ from equation (5.75), as observed in the direct numer-
ical simulation UCB1 of So12. Left panel: Initial contours of FZ(Rg, Jz, t) for t=0. Such a representation illustrates
the distribution of vertical actions Jz as a function of the position within the disc given by the guiding radius Rg.
Contours are spaced linearly between 95% and 5% of the function maximum. The red curve gives the mean value
of Jz for a given Rg. Right panel: Same as in the left panel but at a much later stage of the evolution t=3500. In
the inner regions of the disc, one clearly notes the formation on secular timescales of a narrow ridge of enhanced
vertical actions Jz .
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the two panels of figure 5.7.4, one can indubitably note the spontaneous formation on secular times of a
narrow ridge of enhanced vertical actions in the inner regions of the disc, characterised by an increase
of the mean value of the vertical actions in these regions. Such a feature is the direct vertical equiva-
lent of what was observed in the radial direction in the razor-thin simulations presented in figure 3.7.5.
This ridge is a signature of the spontaneous thickening of the disc sourced by its intrinsic shot noise.
Let us now investigate in section 5.7.2 how the thickened WKB limits of the collisionless and collisional
diffusion equations obtained in sections 5.5 and 5.6 allow us to explain such a feature.

5.7.2 Shot noise driven resonant disc thickening

In order to compute the diffusion fluxes associated with the collisionless and collisional diffusion equa-
tions, the first step is to study the properties of the system’s self-gravity. To do, let us consider the
amplification eigenvalues λ(kr, kz) from equation (5.30), thanks to which one may perform the approxi-
mation of the small denominators. For a given position Jφ and a given resonance vectorm, we illustrate
in figure 5.7.5 the behaviour of the function (kr, kz) 7→λ(kr, kz). Such a behaviour allows us to identify

Figure 5.7.5: Illustration of the behaviour of the amplification function (kr, kz) 7→λ(kr, kz) as obtained in
equation (5.30), for m=mCOR and Jφ=1.5. We recall that the diffusion coefficients generically require to
compute the amplification eigenvalues at the local intrinsic frequency ω=m·Ω. Contours are spaced lin-
early between 90% and 10% of the function maximum λmax. The grey domain corresponds to the region
Vmax =

{
(kr, kr)

∣∣λ(kr, kz)≥λmax/2
}
. This is the region on which the integrations for the approximation of the

small denominators will be performed as in equations (5.57) and (5.68). One can finally note that here the maxi-
mum of amplification lies along the line kz=k1

z(kr), i.e. along the line of the minimum quantised frequency kz , see
figure 5.3.2.

a region Vmax(m, Jφ) of maximum amplification over which the integrations on kr and kz may be per-
formed in equations (5.56) and (5.67). Figure 5.7.6 illustrates the importance of the system’s self-gravity
by representing the behaviour of the function Jφ 7→1/(1−λmax(m, Jφ)) for different resonance vectors
m. Following our characterisation of the disc’s amplification, let us now compute in turn the induced
collisionless diffusion (section 5.7.2.1) as well as the collisional one (section 5.7.2.2), and investigate if
such approaches are able to recover the secular formation of vertical resonant ridges observed in fig-
ure 5.7.4 via direct N−body simulations.
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Figure 5.7.6: Illustration of the dependence of the amplification factor 1/(1−λmax(m, Jφ)), as given by equa-
tion (5.30), for various resonancesm as a function of the position within the disc given by Jφ. One can note that
the amplification associated with the corotation (COR) is always larger than the ones associated with the other res-
onances. As expected from the taper functions of equation (3.90), self-gravity is turned off in the inner and outer
regions of the disc.

5.7.2.1 Collisionless forced thickening

As a first to approach to understand the formation of the vertical ridge observed in figure 5.7.4, let us
rely on the WKB limit of the collisionless diffusion equation obtained in section 5.5. So12 considered
an isolated disc, so that in order to use our collisionless formalism, one should assume some form for
the perturbation power spectrum Ĉ[mφ, ω,Rg, kr, kz] that sources equation (5.56). Following the same
approximation than the one considered in the razor-thin equation (3.93), let us assume that the source of
perturbation comes from the system’s internal Poisson shot noise due to the finite number of stars. In the
galactic context, such perturbations could also mimic the perturbations by compact gas clouds within
the disc (see section 5.7.6). With such a Poisson shot noise, the intrinsic potential fluctuations vary like
δψe∝√Σstar. For simplicity, we only keep the dependence w.r.t. Rg and neglect any dependence w.r.t.
ω, kr and kz in the autocorrelation Ĉ from equation (5.56). Up to a normalisation, let us therefore assume
that the autocorrelation of the external perturbations takes the simple form

Ĉ[mφ, ω,Rg, kr, kz] = δ2
mφ

Σstar(Rg) . (5.79)

As discussed in the end of section 5.7.1, we restrict potential perturbations to the sole harmonic sector
mφ=2, and the same restriction applies to Ĉ, hence the Kronecker symbol δ2

mφ
. Of course, one should

keep in mind that Poisson shot noise is not per se an external perturbation, as it is induced by the disc’s
constituents themselves. In order to account in a more rigourous and self-consistent way for these in-
trinsic finite−N effects, one has to rely on the inhomogeneous Balescu-Lenard equation. This will be the
focus of section 5.7.2.2. In equation (5.79), having no dependence w.r.t. ω implies in particular that for a
given location in the disc, all resonances undergo the same perturbations, even if they are not associated
with the same local resonant frequencies ω=m·Ω.

Relying on the previous estimation of the disc’s amplification eigenvalues and on our assumption for
the perturbation power spectrum, one can compute the collisionless diffusion coefficients from equa-
tion (5.57) and the associated collisionless diffusion flux F tot from equation (2.34). The initial time
variations of FZ from equation (5.76) can then be estimated. The initial contours of ∂FZ/∂t

∣∣
t=0

are il-
lustrated in figure 5.7.7. In this figure, one qualitatively recovers the formation of a resonant ridge of
increased vertical actions in the inner region of the disc, as observed in So12. This illustrates how the
Poisson shot noise induced by the finite number of particles and approximated by equation (5.79), can
indeed be the source of a secular disc thickening. This qualitative agreement between the numerical
measurements from figure 5.7.4 and the collisionless WKB predictions from figure 5.7.7 is impressive
considering the various approximations required to obtain the thickened WKB limit of the collisionless
diffusion equation.

Relying on the same collisionless approach, let us briefly investigate how the disc’s gravitational
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Figure 5.7.7: Illustration of the initial contours of ∂FZ/∂t
∣∣
t=0

as predicted by the WKB collisionless diffusion
equation from section 5.5, when considering a secular forcing sourced by Poisson shot noise as in equation (5.79).
Red contours, for which ∂FZ/∂t

∣∣
t=0

<0, are associated with regions from which the particles will be depleted and
are spaced linearly between 90% and 10% of the function minimum. Blue contours, for which ∂FZ/∂t

∣∣
t=0

>0 are
associated with regions where the number of orbits will increase during the diffusion and are spaced linearly be-
tween 90% and 10% of the function maximum. The background contours illustrate the initial contours of FZ(t=0)
spaced linearly between 95% and 5% of the function maximum and computed for the quasi-isothermal DF from
equation (5.5).

susceptibility may impact its secular dynamics. To do so, let us consider the effect of varying the fraction
of mass in the disc, by changing the value of the active fraction ξ (see equation (3.91)). The dependence
of the system’s collisionless response with ξ is illustrated in figure 5.7.8. As expected, as one increases
the disc’s self-gravity, the dressing of the perturbations gets stronger which subsequently hastens the
orbital diffusion.

5.7.2.2 Collisional thickening

In the previous section, we investigated how the WKB collisionless diffusion equation could explain
the vertical ridge observed in figure 5.7.4. This essentially relied on treating the intrinsic Poisson shot
noise as an external perturbation, via equation (5.79). In order to account in a self-consistent manner
for these internal and self-induced perturbations, one should rely on theWKB Balescu-Lenard equation
derived in section 5.6. Thanks to the previous estimation of the disc’s amplification eigenvalues, one can
straightforwardly compute the disc’s dressed susceptibility coefficients given by equation (5.68). One
may then compute the collisional drift and diffusion coefficients from equations (5.69) and (5.70) and
the associated total collisional diffusion flux F tot. As the particles’ mass scales like µ=Mtot/N , let us
rather consider the quantity NF tot which is independent of N . As defined in equation (5.77), one can
then compute the collisional diffusion flux |NFZ| in the (Jφ, Jz)−plane. We illustrate in figure 5.7.9 the
initial contours of |NFZ|(t=0). In figure 5.7.9, one can note that the diffusion fluxNFZ is maximum in
the disc’s inner region. Let us note that both figures 5.7.7 and 5.7.9, which were obtained respectively
in a collisionless or collisional approach, are in qualitative agreement and both predict an increase of
the vertical actions in the inner regions as was observed in direct numerical simulations. The crude
assumption for the Poisson shot noise in equation (5.79) used with the collisionless diffusion equation
allowed us to mimic the results from the collisional Balescu-Lenard formalism, for which the spectral
properties of the internal Poisson shot noise are self-consistently accounted for.



144 CHAPTER 5. THICKENED DISCS

Figure 5.7.8: Illustration of the dependence of the system’s collisionless secular response to Poisson shot noise, as
one varies the disc’s active fraction ξ. The units for the vertical axis were rescaled to clarify the presentation. The
blue line corresponds to the maximum value of div(FZ), while the red line corresponds to the minimum value of
div(FZ). The larger the disc’s active fraction ξ, the stronger the disc’s gravitational susceptibility and therefore the
faster the diffusion. For ξ&0.8, the disc becomes dynamically unstable. See figure 2 inWeinberg (1993) for a similar
illustration of the crucial role of collective effects in accelerating orbital diffusion.

Figure 5.7.9: Illustration of the norm of the collisional diffusion flux |NFZ|(t=0) in the (Jφ, Jz)−plane, as pre-
dicted by the thickened WKB limit of the Balescu-Lenard equation. The blue contours are spaced linearly between
90% and 10% of the maximum norm. The background contours correspond to the initial contours of FZ(t=0)
spaced linearly between 95% and 5% of the function maximum and computed for the quasi-isothermal DF from
equation (5.5). One can clearly note the presence of an enhanced diffusion flux in the inner regions of the disc,
compatible with the localised increase in vertical actions observed in figure 5.7.4.

5.7.2.3 Vertical kinetic heating

In order to better assess the secular increase in vertical actions induced by finite−N effects, let us
now consider the associated increase in the disc’s vertical velocity dispersion. Indeed, from observa-
tions, disc thickening is best probed by considering the evolution of the vertical velocity dispersion
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ς2z (Rg, t)=
〈
v2
z

〉
(Rg, t), which can be computed as

ς2z (Rg, t) =

∫
dθ′dJ ′ δD(Rg−R′g)F (J ′, t) (v′z)

2∫
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dJ ′rdJ
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′
r, J
′
z, t)J

′
z∫

dJ ′rdJ
′
z F (Rg, J

′
r, J
′
z, t)

, (5.80)

where to obtain the second equality, we relied on the the epicyclic approximation from equation (5.4)
which gives v2

z =2Jzν sin2(θz). For t=0, the system’s DF is given by the quasi-isothermal DF from equa-
tion (5.5) and one recovers ς2z (Rg, t=0)=σ2

z(Rg). The initial time derivative of ς2z can also be computed.
It reads

∂ς2z
∂t

∣∣∣∣
t=0

= ν

∫
dJ ′rdJ

′
z J
′
z

∂F

∂t

∣∣∣∣
t=0

− σ2
z

ν

∫
dJ ′rdJ

′
z

∂F

∂t

∣∣∣∣
t=0∫

dJ ′rdJ
′
z F (t=0)

, (5.81)

where ∂F/∂t=div(F tot) is given by the diffusion equations (either collisionless or collisional). Finally,
as ∂ς2z/∂t=2ςz∂ςz/∂t, one can compute the expected increase in the vertical velocity dispersion ςz result-
ing from the disc’s intrinsic Poisson shot noise. This is illustrated in figure 5.7.10, where we represent
ςz(Rg, t)'σz(Rg)+t ∂ςz/∂t|t=0 as predicted by both collisionless and collisional formalisms. As was

Figure 5.7.10: Illustration of the increase in the vertical velocity dispersion ςz induced by the intrinsic Poisson shot
noise. Left panel: Prediction for the collisionless WKB diffusion equation from section 5.5, when approximating
Poisson shot noise with equation (5.79). For t=0, one has ςz(Rg, t=0)=σz(Rg), while for later times (here ∆T is an
arbitrary timestep), we relied on the approximation ςz(Rg, t)'σz(Rg)+t ∂ςz/∂t|t=0 and on equation (5.81). Right
panel: Same as the left panel but for the thickenedWKB limit of the collisional Balescu-Lenard equation derived in
section 5.6. Here ∆τWKB is a timescale introduced in section 5.7.3.

observed in figures 5.7.7 and 5.7.9, the vertical velocity dispersion also demonstrates that the most sig-
nificant increase in vertical velocity dispersion occurs in the inner regions of the disc. This illustrates
once again how the self-induced Poisson shot noise can indeed be the source of a disc thickening on sec-
ular timescales. Such a mechanism is qualitatively captured by both collisionless and collisional WKB
diffusion equations. These qualitative agreements are all the more impressive in view of the various as-
sumptions introduced throughout the derivations to obtain analytical and explicit expressions for both
collisionless and collisional diffusion fluxes. Recall finally that a crucial strength of the Balescu-Lenard
formalism is that it is self-contained and does not involve any ad hoc fittings of the system’s perturba-
tions. Following the calculation of the induced collisional increase in ςz presented in the right panel of
figure 5.7.10, one may now compare the typical timescale of collisional diffusion predicted by the thick
WKB Balescu-Lenard equation with the one observed in numerical simulations. This is the purpose of
the next section.

5.7.3 Diffusion timescale
Our previous estimations of the collisional diffusion fluxNFZ now allow us to compare the timescale of
appearance of the ridge predicted by the thickenedWKB Balescu-Lenard equation with the time during
which So12’s simulation was performed. Following section 3.7.3, let us therefore compare the rescaled
times of diffusion ∆τ , as defined in equation (3.95).
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The right panel of figure 5.7.4 was obtained in So12’s simulation after a time ∆tSo12 =3500 in a sim-
ulation with N=2×105 particles. As a consequence, the vertical ridge was observed in So12 after a
rescaled time ∆τSo12 =∆tSo12/N'2×10−2. When looking at the mean evolution of Jz in figure 5.7.4,
one can note that during the rescaled time ∆τSo12, the mean vertical action in the inner region of the
disc was approximately doubled. This time may then be compared with the typical time necessary to
lead to a similar increase via the Balescu-Lenard equation. The epicyclic approximation from section 5.2
immediately gives v2

z =2νJz sin2(θz), so that ς2z =ν
〈
Jz
〉
. Hence, doubling the mean vertical action

〈
Jz
〉

amounts to multiplying the vertical velocity dispersion ςz by
√

2. The right panel of figure 5.7.10 gives
us that such an increase of ςz is reached after a rescaled time ∆τWKB'103. Comparing the numerically
measured rescaled time ∆τSo12 to the thick WKB Balescu-Lenard predictions, one therefore gets

∆τSo12

∆τWKB
'2×10−5 . (5.82)

Note that the disagreement obtained here between the measured and the predicted timescales is even
larger than what was obtained in equation (3.97) in the razor-thin case, when considering radial diffu-
sion in razor-thin stellar discs. The initial timescale discrepancy from equation (3.97) was resolved in
equation (4.31) by resorting to a global evaluation of the Balescu-Lenard diffusion flux. We subsequently
showed in section 4.3.3 that this discrepancy was caused by the incompleteness of theWKB basis, which
cannot correctly capture swing amplification (illustrated in figure 3.7.14), the strong amplification of un-
winding perturbations. The present thickened WKB formalism suffers from the same flaws, as illus-
trated in the timescale mismatch from equation (5.82). Even if the lack of any loosely wound contribu-
tions to the disc’s susceptibility leads to such a significant mismatch, the diffusion features recovered in
figures 5.7.9 and 5.7.10 illustrate however how the thickenedWKB limit of the Balescu-Lenard equation
still allows for an explicit qualitative description of the long-term evolution of discrete self-gravitating
thick discs induced by their intrinsic Poisson shot noise.

5.7.4 Radial migration
Let us nowdetail how the previous results are also in agreementwithwhatwas presented in section 3.7.2
in the context of razor-thin discs. In order to study the diffusion in the (Rg, Jr)−plane, similarly to
equation (5.75), let us define the function FR(Rg, Jr, t) as

FR(Rg, Jz, t) =

∫
dθ′dJ ′ δD(Rg−R′g) δD(Jr−J ′r)F (J ′, t)

= (2π)3 dJφ
dRg

∫
dJ ′z F (Rg, Jr, J

′
z, t) . (5.83)

As in equation (5.76), the time derivative of FR reads

∂FR

∂t
= (2π)3 dJφ

dRg

∫
dJ ′z div(F tot)(Rg, Jr, J

′
z, t) . (5.84)

Similarly to equation (5.77), the associated diffusion in the (Jφ, Jr)−plane is straightforwardly captured
by the flux FR =(FφR,FrR) with

∂FR(Jφ, Jr)

∂t
=

(
∂

∂Jφ
,
∂

∂Jr

)
·FR =

∂FφR
∂Jφ

+
∂FrR
∂FrR

, (5.85)

where the flux components (FφR,FrR) read

FφR = (2π)3

∫
dJ ′z Fφtot(Jφ, Jr, J

′
z) ; FrR = (2π)3

∫
dJ ′z Frtot(Jφ, Jr, J

′
z) . (5.86)

As in equation (5.78), we introduced here the total diffusion flux F tot in the (Jφ, Jr, Jz)−plane as
F tot =(Fφtot,Frtot,Fztot). Because it is marginalised over J ′z , the function FR allows us to get rid of the
vertical dependence of the diffusion. It mimics the razor-thin measurements presented in section 3.7.2.

Relying on the shot noise perturbation from equation (5.79), figure 5.7.11 illustrates the initial con-
tours of ∂FR/∂t|t=0 predicted by the thickened WKB limit of the collisionless diffusion equation. In
figure 5.7.11, one predicts the formation in the (Rg, Jr)−plane of a narrow ridge of resonant orbits in
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Figure 5.7.11: Illustration of the initial contours of ∂FR/∂t|t=0 from equation (5.84), computed via the WKB col-
lisionless diffusion equation from section 5.5, when considering a secular forcing sourced by Poisson shot noise
approximated with equation (5.79). We use the same conventions as in figure 5.7.7. The background contours illus-
trate the initial contours of FR(t=0). They are spaced linearly between 95% and 5% of the function maximum and
are computed for the quasi-isothermal DF from equation (5.5). This figure should be compared to figure 3.7.9 cor-
responding to the razor-thin case, for which we also recovered the formation of a narrow ridge of increased radial
actions in the inner region of the disc along the direction of the rILR.

the inner regions of the disc along the direction of the rILR. One therefore recovers the same feature as
observed in the razor-thin figure 3.7.9.

Similarly, one can perform the same predictions by relying on the thickened WKB limit of the colli-
sional Balescu-Lenard equation. This is illustrated in figure 5.7.12wherewe represent the initial contours
of |NFR|(t=0). Even with the collisional approach, one also recovers the formation of an inner narrow
ridge of radial diffusion aligned with the rILR resonance. This is in qualitative agreement with what
was observed in the razor-thin figure 3.7.13. These results illustrate once again how the razor-thin and
thickened WKB formalims are indeed in agreement, as emphasised in Appendix 5.C.

5.7.5 Thickening induced by bars
In order to investigate other possible mechanisms of secular thickening, let us now consider a different
source of perturbations driving theWKB collisionless diffusion coefficients from equation (5.57). Rather
than focusing on the effect of Poisson shot noise, let us now study the secular effect of a stochastic series
of central bars on the disc thickness. We therefore assume that the autocorrelation Ĉ of the external
perturbations takes the form

Ĉ[mφ, ω,Rg, kr, kz] = δmp
mφ

Ab(Rg) exp

[
− (ω−mpΩp)2

2σ2
p

]
, (5.87)

wheremp =2 is the bar’s pattern number, Ωp its typical pattern speed, and σp∼1/Tb∼(1/Ωp)(∂Ωp/∂t),
with Tb the typical bar’s lifetime, characterises the typical decay time of the bar frequency. The slower
Ωp evolves, the smaller σp, and therefore the narrower the frequency window in equation (5.87). In
equation (5.87), we also introduced Ab(Rg) an amplitude factor varying with the position in the disc,
which aims at describing the radial profile and extension of the bar. Let us underline that equation (5.87)
is a rather crude description, as we neglected any dependence w.r.t. the frequencies kr and kz . We study
perturbations imposed by various series of bars characterised by Ωp∈

{
0.4, 0.25

}
and σp∈

{
0.03, 0.06

}
.
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Figure 5.7.12: Illustration of the norm of the collisional diffusion flux |NFR|(t=0) in the (Jφ, Jr)−plane, as pre-
dicted by the thickened WKB limit of the Balescu-Lenard equation derived in section 5.6. The blue contours are
spaced linearly between 90% and 10% of the maximum norm. The background contours correspond to the initial
contours of FR(t=0). They are spaced linearly between 95% and 5% of the function maximum and are computed
for the quasi-isothermal DF from equation (5.5). One clearly notes the presence of an enhanced diffusion flux in the
inner region of the disc towards larger radial actions. This figure should be compared to figure 3.7.13 corresponding
to the razor-thin case, which also predicted the formation of a narrow ridge of enhanced radial action in the inner
regions of the disc along the direction of the rILR.

Finally, in order to focus our interest on the intermediate regions of the disc, belonging neither to the
bulge nor the bar, we considerAb(Rg)=H[Rg−Rcut], withH[x] a Heaviside function, such thatH[x]=1
for x≥0 and 0 otherwise, andRcut =2.5 is a truncation radius belowwhich the bar is present. The initial
contours of ∂FZ/∂t|t=0 for these various choices of bar perturbations are illustrated in figure 5.7.13.

The various panels presented in figure 5.7.13 first allow us to note how the additional dependence on
ω present in equation (5.87) tends to localise the ridge of enhanced thickness. Let us also emphasise one
important property of the collisionless diffusion coefficients from equation (5.57), which is the fact that
the orbital diffusion is strongly affected by the the dynamical properties of the perturbing bars. Com-
paring the left-hand panels of figure 5.7.13 with the right-hand ones, one immediately recovers that the
slower the bars, the further out the diffusion. As Ωp decreases, the ridge move outwards, i.e. particles
resonatingwith slower bars are located further out in the disc. Comparing the top panels of figure 5.7.13
with the bottom ones, one recovers that themore long-lived the bars, the narrower the diffusion features.
As σp decreases, the different ridges get sharper and do not overlay anymore. If the pattern speeds of
the bars decrease rapidly, the associated perturbations swipe a broader temporal frequency range, and
therefore perturb a larger number of particles, hence the wider ridges. Finally, the position of the var-
ious ridges observed in figure 5.7.13 can be straightforwardly predicted thanks to figure 5.7.3, which
illustrates the dependence of the various resonance frequencies ω=m·Ω as a function of the position
in the disc. In order to allow for a resonant diffusion, one should match the frequency of the bars per-
turbation, mpΩp, with the local orbital frequency m·Ω. Different resonances, i.e. different resonance
vectorsm, are then associated with different locations in the disc, as can be seen in figure 5.7.3. Because
the previous shot noise perturbations from equation (5.79) and the bar ones from equation (5.87) do not
have the same spectral structure, the diffusion features predicted in figures 5.7.7 and 5.7.13 are signifi-
cantly different. This underlines the critical role played by the perturbations’ spectral characteristics in
shaping the collisionless diffusion coefficients.

As seen in figure 5.7.13, the process of secular thickening induced by bar-like perturbations can have
a very clear chemo-dynamical signature in the radial distribution of stars at a given age and velocity dis-
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Figure 5.7.13: Illustration of the initial contours of ∂FZ/∂t|t=0 using the same conventions as in figure 5.7.7. Here
we consider a secular collisionless forcing by a series of bars, whose perturbations are approximated by equa-
tion (5.87), for various precession rates Ωp and temporal decays σp. The diffusion in the disc’s inner regions has
been turned off by considering a perturbation amplitude Ab(Rg)=H[Rg−Rcut] with Rcut =2.5. One can predict
the positions of the various resonance radii thanks to the behaviours of the various intrinsic frequencies ω=m·Ω
illustrated in figure 5.7.3. Top-left panel: Ωp =0.4 and σp =0.03, i.e. long-lived fast bars. Top-right panel: Ωp =0.25
and σp =0.03, i.e. long-lived slow bars. Bottom-left panel: Ωp =0.4 and σp =0.06, i.e. short-lived fast bars. Bottom-
right panel: Ωp =0.25 and σp =0.06, i.e. short-lived slow bars.

persion. The structure of a disc’s stellar DF will be mainly shaped by two competing mechanisms: gas
inflow will continuously regenerate a cold component of stars within a razor-thin disc, while potential
fluctuations within the disc will trigger both radial and vertical migrations in regions which resonate
with the perturbations. As a consequence, the distributions of stellar ages, metallicities, radial and ver-
tical velocities will reflect the net effect of all these simultaneous processes. See the end of chapter 3
for a brief discussion on how chemistry can be incorporated in these formalisms. These will be affected
by the disc’s underlying orbital structure, the spectral properties of the perturbations, the rate of star
formation, the gas infall within the disc, etc.
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5.7.6 GMCs triggered thickening
In a realistic thick galactic disc, one does not expect the self-induced diffusion of stars alone to drive
the disc’s thickening within a Hubble time, the number of stars being too large to lead to an efficient
collisional heating. However, if one accounts for the joint evolution of the disc’s giant molecular clouds
(GMCs), one has to update the previous predictions for the collisional timescale of diffusion. Indeed,
this second population of less numerous but more massive particles can significantly hasten the secular
diffusion. So12 gives a possible scaling to physical units as

Ri = 0.75kpc ; τ0 =
Ri

V0
= 3.0Myr . (5.88)

For a typical Milky Way like galaxy, the number of stars scales like NMW'1011. As a consequence, the
rescaled time of collisional thickening ∆τSo12'2×10−2 measured in So12’s simulation becomes for a
Milky Way like galaxy

∆tMW ' 6×106 Gyr ' 6×105 tHub. , (5.89)
where we introduced the Hubble time tHub.'10Gyr. This estimate shows that the mechanism of self-
induced collisional thickening discussed in section 5.7.2.2 is not sufficiently efficient to be relevant per se
for a Milky Way like galaxy. However, it has long been speculated (e.g., Spitzer & Schwarzschild, 1953)
that in stellar discs, the joint evolution of the stars and a population of forming and dissolving GMCs
could be responsible for the disc’s thickening as a result of local deflections. As already emphasised
in equation (2.76), an important strength of the Balescu-Lenard formalism is that it also allows for the
simultaneous description of the dynamics of multiple components. This multi-component equation
accounts at the same time for transient spiral structures and non-local resonant encounters between
these various components. Let us now briefly discuss how the joint evolution of stars and GMCs could
enable a thickening of stellar discs on a much shorter timescale.

Let us follow the notations from section 2.3.6 when we presented the multi-component Balescu-
Lenard equation. Let us assume that the disc contains a total massM?

tot of N? stars of individual mass
µ? described by the DF F ?. In addition, we assume that the disc also contains a total massMG

tot of NG

GMCs of individual mass µG described by the DF FG. In order to simplify our presentation, we will
assume that the stars and the GMCs are distributed according to a similar distribution (in reality, the
GMCs are typically dynamically colder). Because of their respective normalisations, the DFs then satisfy

FG =
MG

tot

M?
tot

F ? . (5.90)

The total collisional drift and diffusion coefficients Atot
m1

and Dtot
m1

from equation (2.82) may then be
estimated as

Atot
m1

= (1+αA)A?m1
; Dtot

m1
= (1+αD)µ?D

?
m1

, (5.91)
where we introduced as A?m1

andD?
m1

the drift and diffusion coefficients of the stars’ population when
considered alone. In equation (5.91), we also introduced the dimensionless quantities αA and αD as

αA =
MG

tot

M?
tot

=
µG

µ?

NG

N?
; αD =

µGM
G
tot

µ?M?
tot

=

(
µG

µ?

)2
NG

N?
. (5.92)

When accounting simultaneously for the presence of stars and of GMCs, the multi-component Balescu-
Lenard equation (2.81) gives us the evolution of the stars’ DF F ? as

∂F ?

∂t
=

∂

∂J1
·
[
m1µ?

{
(1+αA)A?m1

F ? + (1+αD)D?
m1
m1 ·

∂F ?

∂J1

}]
, (5.93)

where we did not write the dependence w.r.t. J1 to simplify the notations. In equation (5.93), the case
without GMCs can be recovered by assuming αA=αD=0. Murray (2011) gives the typical current prop-
erties of the Milky Way’s GMCs as

µG'105M� ; NG'104 ; MG
tot'109M� . (5.94)

A more involved modelling of the GMC population should also account for the expected secular vari-
ability of this population, due to the exponential decay of the disc’s star formation and the rapid dis-
appearance of GMCs. For a Milky Way like galaxy with N?'1011 and µ?'1M�, equation (5.92) gives
us

αA ' 10−2 ; αD ' 103 , (5.95)
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so that relying on the fact that αA�1 and αD�1, equation (5.93) becomes

∂F ?

∂t
=

∂

∂J1
·
[
m1µ?

{
A?m1

F ?+αDD
?
m1
m1 ·

∂F ?

∂J1

}]
. (5.96)

As a consequence, the joint evolution of the GMCs tends to boost the diffusion coefficients both in ab-
solute terms as well as w.r.t. the drift ones. Because αD�1, the GMCs act as a catalyst and can sig-
nificantly hasten the diffusion of the stars and therefore the thickening of the stellar disc. Indeed, the
multi-component Balescu-Lenard equation captures the effects of multiple resonant deflections of stars
by GMCs, leading to a diffusion of the lighter stellar population towards larger Jz , while the GMCs sink
in. Let us assume that this selective boost of the diffusion component w.r.t. the drift directly translates
to the timescale of thickening. We therefore write

∆tG+? =
∆t?
αD

, (5.97)

where∆t? corresponds to the timescale of spontaneous thickeningwhen only stars are considered, while
∆tG+? corresponds to the case where the joint evolution of the GMCs is also accounted for. Applied to
equation (5.89), the diffusion boost from equation (5.97) leads to

∆tMW+G ' 6×102 tHub. , (5.98)

where ∆tMW+G corresponds to the timescale of thickening of a Milky Way like galaxy when the joint
evolution of the GMCs is also accounted for. In equation (5.98), let us underline how the joint presence
of the GMCs tends to significantly hasten the thickening of stellar discs induced by discrete resonant
encounters. However, we note that despite this boost, such a self-induced thickening remains too slow
to be significant during the lifetime of a Milky Way like galaxy. This analysis would therefore tend to
show that the self-induced mechanism of secular collisional thickening induced by finite−N fluctua-
tions, captured by the Balescu-Lenard equation and studied numerically in So12, even when boosted by
the presence of the more massive and less numerous GMCs, is not sufficiently rapid to lead to a signif-
icant thickening of a Milky Way like galaxy on a Hubble time. Aumer et al. (2016) recently reached a
similar conclusion by studying the quiescent growth of isolated discs in numerical simulations.

Inspired by this consideration on the role played by GMCs, let us now perform the same calculations
in the case of razor-thin discs and update the timescale of collisional radial diffusion presented in sec-
tion 3.7.3. Following the results from Sellwood (2012), we showed that the ridge in the (Jφ, Jr)−plane
observed in figure 3.7.5 appeared after a time ∆tradial

S12 =1500 for N=5×107 particles. The associated
rescaled time of diffusion is then given by ∆τ radial

S12 =3×10−5. Thanks to the physical units from equa-
tion (5.88), for a Milky Way like galaxy and accounting only for the stellar component, the radial ridge
would appear after a time ∆tradial

MW =103 tHub.. Accounting for the GMCs diffusion acceleration obtained
in equation (5.97) would hasten the radial diffusion so that in a Milky Way like galaxy, the radial ridge
would appear on a timescale of the order of ∆tradial

MW+G'∆tradial
MW /(103)' tHub. As a conclusion, while we

had showed in equation (5.98), that the simultaneous presence of the GMCs was still not sufficient to
allow for the appearance of a vertical ridge on the typical lifetime of a Milky Way like galaxy, such an
accelerated self-induced mechanism appears as fast enough to induce a radial ridge in a Milky Way like
galaxy’s DF on a Hubble time.

5.8 Conclusion
In this chapter, we presented applications of the two diffusion formalisms (collisionless and collisional)
in the context of thickened stellar discs. Relying on the epicyclic approximation (section 5.2) and the
construction of a thickened WKB basis (sections 5.3 and 5.4), we derived the thick WKB limit of these
two equations (section 5.5 and 5.6), by assuming that only radially tightly wound transient spiral per-
turbations are sustained by the disc. We introduced in particular an ad hoc vertical cavity in order to
solve Poisson’s equation in a closed form. This yielded simple double quadratures for the collision-
less diffusion coefficients in equation (5.56), as well for the collisional drift and diffusion coefficients in
equations (5.69) and (5.70). These simple expressions provided us a straightforward tool to estimate the
locations of maximum diffusion within a thick stellar disc. The use of an improved thick WKB approx-
imation also allowed us to derive in equation (5.38) a new scale-height dependent thickened Toomre’s
parameter.
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We applied in section 5.7 these two formalisms to a shot noise perturbed tepid stable thick disc.
The estimated diffusion fluxes predict the formation in the inner region of the disc of a vertical ridge of
resonant orbits towards larger actions, in qualitative agreement with the ridges observed in the direct
N−body simulations from Solway et al. (2012). Let us note that these diffusion frameworks extend the
findings of Binney & Lacey (1988) to the self-gravitating case, as here we treat in a coherent and self-
consistent manner the collective dressing of the perturbations, the associated spiral response and the
induced thickening. This is the appropriate approach to account self-consistently and simultaneously
for churning, blurring (Schönrich & Binney, 2009a), and thickening. We noted a discrepancy in the
diffusion timescale predicted by this formalism (equation (5.82)), which was interpreted as being due
to the WKB approximation that does not account for loosely wound perturbations and their associated
strong swing amplification.

These applications illustrated that potential fluctuationswithin the disc induce a vertical bending of a
subset of resonant orbits, leading to an increase in the vertical velocity dispersion. This generically offers
a mechanism allowing for stellar discs to thicken on secular timescales, driven by their own intrinsic
Poisson shot noise, or by a set of dynamically dragged central bars, or catalysed by the joint evolution
of GMCs. When considering the effects of GMCs (section 5.7.6), we showed that such a self-induced
thickening mechanism remains still too slow to lead to a significant secular thickening on cosmic times
of a Milky Way like galaxy (see D’Onghia et al. (2013) and references therein for a discussion on the
effects of GMCs on spiral activity). Determining which of these processes are the dominant ones in the
secular thickening of stellar discs depends directly on the relative amplitudes of the various external and
internal potential fluctuations which can source the diffusion. For example, the statistical properties of
external perturbations can be quantified beforehand in numerical simulations. All these mechanisms
should have clear signatures in the vertical metallicity gradients to be observed in detail by GAIA. This
offers a promising way of weighing the relative importance of these mechanisms.

Finally, we relied on various approximations, which we now recall. We enforced the epicyclic ap-
proximation as well as the plane parallel Schwarzschild approximation to build an integrable model of
thickened stellar disc. To solve Poisson’s equation vertically, the vertical edge of the disc was approxi-
mated with a sharp edge. The radial components were described within the WKB approximation, i.e.
assumed to be radially tightly wound. When computing the disc’s self-gravity, we neglected the ver-
tical action gradients of the DF w.r.t. the radial ones, and also assumed that the orbits were closed on
resonance. Finally, when implementing the dressed collisionless diffusion, we assumed some partially
ad hoc external source of perturbations to describe the disc’s internal shot noise or sequences of central
decaying bars.

5.8.1 Future works
Having exhibited in detail how one could compute the characteristics of the secular diffusion in thick-
ened axisymmetric discs, one could nowextend these approaches in variousways. One first side product
of the thickenedWKB approximation is the derivation in equation (5.38) of a new generalised thickened
Qparameter. In order to assess the quality of this stability parameter, it would be of interest to investigate
via numerical simulations, how accurately such a parameter can predict the presence of local axisym-
metric instabilities in thickened stellar discs. One difficulty with such a numerical investigation is the
preparation of the disc’s nitial conditions, thanks to which one aims at setting up a disc initially as close
as possible to an equilibrium.

A possible improvement of the present WKB approach would be to implement anharmonic correc-
tions in the vertical oscillations to better account for the stiffness of the vertical potential. This would
require to improve the thickened epicyclic approximation from section 5.2. As was emphasised by the
timescale comparison from equation (5.82), in order to correctly account for the system’s self-gravity,
one should eventually get rid of the WKB approximation, to capture the contributions associated with
strongly amplified loosely wound perturbations. This was already a challenge in the case of razor-thin
discs (see chapter 4), and its implementation for thick discs would be all the more difficult, as one does
not have explicit angle-action coordinates for thick discs beyond the epicyclic approximation. In order to
construct such coordinates, one can rely on the torus machine to build perturbatively a mapping of ac-
tion space from an integrable model to a non-integrable one via fits of generating functions (Kaasalainen
& Binney, 1994a,b; Binney &McMillan, 2016). Once these coordinates constructed, one would then have
to solve the exact fields equations, construct an appropriate basis of potentials, and deal with the full
response matrix. Should chaos become important in such systems, one could finally resort to the dual
stochastic Langevin rewriting (see Appendix 6.C) to account for the associated chaotic diffusion.
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One could finally revisit the bar-like perturbation crudely approximated in equation (5.87) to account
for more realistic perturbations. This would require to perform statistical measurements of bars forma-
tions and dissolutions in cosmological simulations. Similarly, one could investigate more generally the
statistical properties of cosmic noise, following the steps of Aubert & Pichon (2007), and infer how ef-
ficiently such externally-driven perturbations can thicken stellar discs. Finally, inspired by chapter 6,
one could also investigate the secular thickening of debris protoplanetary of galacto-centric discs in the
quasi-Keplerian regime.



Appendix

5.A Antisymmetric basis
In section 5.3, we restricted ourselves to the construction of the symmetric thick WKB basis elements.
One can proceed similarly for the antisymmetric ones. Assuming ψz(−z)=−ψz(z), the ansatz from
equation (5.12) immediately imposes D=−A and C=−B, while the continuity conditions from equa-
tion (5.13) become {

A e−krh = 2iB sin(kzh) ,

kr A e−krh = −2ikzB cos(kzh) .
(5.99)

Similarly to equation (5.14), we obtain the antisymmetric quantisation relation

tan(kzh) = −kz
kr
, (5.100)

which is illustrated in figure 5.3.2. One can also note that the antisymmetric elements also follow the
typical step distance ∆kz obtained in equation (5.17). Following equation (5.18), the full expression of
the antisymmetric elements is given by

ψ[kφ,kr,R0,n](R,φ, z) = Aψ[kφ,kr,R0]
r (R,φ)


sin(knz z) if |z|≤h ,
ekrh sin(knz h) e−kr|z| if z≥h ,
− ekrh sin(knz h) e−kr|z| if |z|≤h ,

(5.101)

and
ρ[kφ,kr,R0,n](R,φ, z) = −k

2
r+(knz )2

4πG
ψ[kφ,kr,R0,n](R,φ, z) Θ

[
z

h

]
. (5.102)

Similarly to equation (5.20), the amplitude of the antisymmetric elements is given by

A =

√
G

R0h(k2
r+(knz )2)

βn , (5.103)

where, in analogy with equation (5.21), βn is a numerical prefactor reading

βn =

√
2

1−sin(2knz h)/(2knz h)
. (5.104)

As illustrated in figure 5.3.2, let us note that the antisymmetric quantisation relation (5.100) imposes for
the antisymmetric vertical frequency to satisfy k1

z>π/(2h), and in this domain, one has 1.3≤βn≤1.5.
Similarly to equation (5.22), the Fourier transformed antisymmetric basis elements are given by

ψ
[kφ,kr,R0,n]
m (J) = δ

kφ
mφ δ

odd
mz A eikrRg imz−1−mrBR0(Rg)Jmr

[√
2Jr
κ kr

]
Jmz

[√
2Jz
ν knz

]
. (5.105)

5.B A diagonal response matrix
In this Appendix, let us detail why wemay assume, as in equation (5.23), that the disc’s response matrix
is diagonal in the thickened WKB limit. Let us first note that because the symmetric (resp. antisymmet-
ric) Fourier transformed basis elements from equation (5.22) (resp. (5.105)) involve a δeven

mz (resp. δodd
mz ),
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the response matrix coefficients from equation (2.17) are equal to zero as soon as the two considered ba-
sis elements do not share the same vertical symmetry. We may therefore treat separately the symmetric
and antisymmetric cases.

The thickenedWKBbasis elements introduced in equation (5.6) depend on four indices [kφ, kr, R0, n].
Following the same argument as in the razor-thin section 3.4, we may assume that the response matrix
is diagonal w.r.t. the indices [kφ, kr, R0]. As a consequence, it then only remains to check whether or
not for a given set [kφ, kr, R0], the response matrix is diagonal w.r.t. the index knz . The expression (5.24)
of the symmetric diagonal basis elements is straightforward to generalise to the non-diagonal ones and
gives

M̂pq =
2πGΣαpαq

hκ2
√

(1+(kpz/kr)2)(1+(kqz/kr)2)

∑
`zeven

exp

[
− (kpz)2+(kqz)

2

2ν2/σ2
z

]
I`z
[
kpzk

q
z

ν2/σ2
z

]

× 1

(1−s2
`z

)

{
F(s`z , χr)−`z

ν

σ2
z

σ2
r

κ
G(s`z , χr)

}
. (5.106)

As already underlined in equation (5.28), starting from equation (5.106), it is straightforward to obtain
the expression of the associated antisymmetric non-diagonal coefficients thanks to the substitutionα→β
and the restriction of the sum on `z to odd values. Because it is a symmetric matrix, showing that the
response matrix is diagonal amounts to proving that for p 6=q, one has M̂pq�M̂pp. In order to perform
such a comparison, let us focus in equation (5.106) on the quantities which depend on kpz and kqz . We
introduce the quantityK(`z)

pq as

K(`z)
pq =

1√
(1+(kpz/kr)2)(1+(kqz/kr)2)

exp

[
− (kpz)2+(kqz)

2

2ν2/σ2
z

]
I`z
[
kpzk

q
z

ν2/σ2
z

]
. (5.107)

One can note that the definition from equation (5.107) does not involve the prefactors αp and αq , as they
are always of order unity. In addition, equation (5.107) does not involve the terms F(s`z , χr), G(s`z , χr),
and 1/(1−s`z ) from equation (5.106), as they do not depend on the choices of kpz and kqz . Figure 5.B.1 il-
lustrates the behaviours of the reduction functions s`z 7→F(s`z , χr), G(s`z , χr) defined in equation (5.27).
We note in figure 5.B.1 that these functions are ill-defined when computed for integer values of s`z . In

Figure 5.B.1: Illustration for χ=1 of the behaviour of the reduction functions s 7→F(s, χ) (left panel) and
s 7→G(s, χ) (right panel) given by the black curves, along with their approximations from equation (5.108) given by
the grey lines. One should note the divergences of these functions in the neighbourhood of integers. However, these
functions are well defined when evaluated for integer values of s, provided one considers limη→0 Re[F(n+iη, χ)]
(similarly for G), as illustrated with the black dots.

order to regularise these diverging behaviours a small imaginary part is added to s`z . While this pro-
cedure works for exactly integer values, this does not however prevent the divergences of F and G in
the neighbourhood of integers. As illustrated in figure 5.B.1, in order to avoid these divergences, let us
assume that the functions F and G can be approximated by the smooth functions

F(s`z , χr) ' fr ; G(s`z , χr) ' −grs`z , (5.108)

where fr and gr do not depend on s`z . As already underlined in equation (5.29), when computing the
collisionless diffusion coefficients from equation (2.32) or the dressed susceptibility coefficients from
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equation (2.50), the frequency ω should be considered at resonance so that ω=m·Ω. Following equa-
tion (5.29), the value of s`z is either an integer (for `z=mz) or far from one provided that ν/κ is of high
rational order. This distance from the exact resonance justifies the approximations from equation (5.108).
Thanks to these approximations, the sum on `z in equation (5.106) may then be cut out according to the
resulting powers of `z . In order to prove that for p 6=q, one has M̂pq�M̂pp, one should therefore prove
that

Sγ(p, q) =
∑
`z

`γzK
(`z)
pq

1−s2
`z

� Sγ(p, p) , (5.109)

where the power index γ is such that γ∈{0, 1, 2}.
In order to further dedimensionalise the problem, let us introduce the typical dynamical height of

the disc, d=σz/ν, as well as the dimensionless quantities

`p = kpzd ; `q = kqzd ; `r = krd , (5.110)

which allow us to rewrite equation (5.107) as

K(`z)
pq =

I`z
[
`p`q

]
e−(`2p+`2q)/2√

(1+(`p/`r)2)(1+(`q/`r)2)
. (5.111)

As was already illustrated in figure 5.3.2, let us recall that the fundamental symmetric frequency is sig-
nificantly different from the other quantised frequencies (both symmetric and antisymmetric), as it is the
only frequency inferior to π/(2h). In order to emphasise this very specific property, in this Appendix
only, let us renumber the vertical indices p, such that p=0 corresponds to the quantised fundamental
symmetric mode, while p≥1 corresponds to the rest of the quantised frequencies, all superior to π/(2h).
With such a choice, the numbering of the antisymmetric elements only starts at p=1. Following fig-
ure 5.3.2, one has the inequalities

0 < `0 <
π

2
√

2
;

(p− 1
2 )π√
2

< `p <
(p+ 1

2 )π√
2

(for p≥1) , (5.112)

where, following equation (5.74) for the Spitzer profile, we relied on the relation h=2d, with h the height
of the WKB sharp cavity (see figure 5.3.1). Similarly, one has the relation `r=(krh)/

√
2.

Let us note that the expression (5.111) ofK(n)
pq involves a modified Bessel function In[`p`q] that needs

as well to be approximated carefully. Equivalents in 0 and +∞ of these Bessel functions are immediately
given by

In(x) ∼
0

1

n!

(
x

2

)n
; In(x) ∼

+∞

ex√
2πx

. (5.113)

As illustrated in figure 5.B.2, for a given value of n and x, one has to determine which approximation
(polynomial or exponential) is relevant for In(x). Let us therefore define for each n≥0, the quantity xn
such that for x≤xn (resp. x≥xn), one uses the asymptotic development from equation (5.113) in 0 (resp.
+∞). Because in the expression (5.111), the Bessel functions are only evaluated in `p`q , for p and q given,
there exists an integer npq such that

∀ `z < npq , I`z
[
`p`q

]
' e`p`q√

2π`p`q
; ∀ `z ≥ npq , I`z

[
`p`q

]
' 1

`z!

(
`p`q

2

)`z
. (5.114)

In figure 5.B.2, let us finally note that, except for `z=0, the exponential approximation of the Bessel
function is significantly bigger than the actual value of I`z . This does not impact the upcoming discus-
sion, as, when proving M̂pq�M̂pp, the exponential approximation is applied for M̂pq alone, or for M̂pq

and M̂pp simultaneously with similar errors, so that the comparisons between the approximations also
hold for the exact values. Following equation (5.109), a naive approach to compare the terms Sγ(p, q)

and Sγ(p, p) would be to compare the sum on `z term by term, i.e. to prove that K(`z)
pq �K

(`z)
pp for all

`z . However, this is not sufficient and one should therefore be more cautious. In equation (5.109), one
cuts out the sum on `z appearing in Sγ(p, q) between three different contributions, for which one can
straightforwardly show:

• For the first terms, with |`z|<npp and |`z|<npq :

K(`z)
pq � K(1)

pp .
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Figure 5.B.2: Illustration of the asymptotic behaviours of the modified Bessel function In as given by equa-
tion (5.113). The full lines are the four first Bessel functions, along with their polynomial approximations in zero
(dashed curves). The black dashed curve is their common exponential approximation. The transition between the
two approximations is given by the quantity xn.

• For the intermediate terms, with npp≤|`z|<npq :∑
npp≤|`z|<npq

`γzK
(`z)
pq

1−s2
`z

� K(1)
pp .

• For the last terms, with |`z|≥npq : ∑
|`z|≥npq

`γzK
(`z)
pq

1−s2
`z

� K(1)
pp .

This last relation holds whenever krh & 0.03, but gets violated for q=0 in the limit of a razor-thin disc.
The previous comparisons are straightforward to obtain thanks to the step distances between consecu-
tive basis elements from equation (5.112) and the use of the approximations of the Bessel functions from
equation (5.113). The combination of these relations shows that for krh&0.03, for all p and q, one has
M̂pq�M̂pp. The same conclusion also holds for krh.0.03, but only for q 6=0. We therefore reached the
following conclusions:

• The antisymmetric response matrix can always be assumed to be diagonal.

• For krh&0.03, the symmetric matrix response can be assumed to be diagonal

• For krh.0.03, i.e. in the limit of a razor-thin disc, the symmetric response matrix takes the form
of an arrowhead matrix.

As a last step of this Appendix, let us finally justify why for a sufficiently thin disc, for which the
symmetric response matrix takes the form of an arrowhead matrix, the diagonal response matrix can
still be assumed to be diagonal. In this limit, the symmetric response matrix takes the form

M̂ =


α z1 · · · zn
z1 d1

...
. . .

zn dn

 , (5.115)

where thanks to the previous calculations, one has the comparison relations α�zi and zi�di. Let us
assume that ∀i , zi 6=0 and that ∀i 6=j , di 6=dj . Following O’Leary & Stewart (1990), it can be shown that
the eigenvalues (λi)0≤i≤n of the arrowhead matrix from equation (5.115) are the (n+1) solutions of the
equation

f
M̂

(λ) = α− λ−
n∑
i=1

z2
i

di−λ
= 0 . (5.116)
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In addition, provided that the di are in descending order, these eigenvalues are interlaced so that

λ0 > d1 > λ1 > ... > dn > λn . (5.117)

Finally, the eigenvectors xi associated with the eigenvalue λi are proportional to

xi =

(
1 ;

z1

λi−d1
; ... ;

zj
λi−dj

; ... ;
zn

λi−dn

)
. (5.118)

Accounting for the comparison relations α�zi and zi�di, figure 5.B.3 illustrates the behaviour of the
function λ 7→f

M̂
(λ) from equation (5.116).

dn d3 d2 d1 α

α

λ0λ1λ2λn

Figure 5.B.3: Illustration of the behaviour of the function λ 7→fM̂(λ), whose roots are the eigenvalues of the ar-
rowhead response matrix from equation (5.115).

In order to justify why the arrowhead response matrix from equation (5.115) may be considered as
diagonal, one has to justify that, despite its first line and column, the matrix eigenvalues remain close to
the matrix coefficients, so that

λ0 ' α and λi ' di (for i≥1) . (5.119)
In addition, one must also ensure that the associated eigenvectors xi remain close to the natural basis
elements so that

xi ' (0 ; ... ; 1 ; 0 ; ...) , (5.120)
where the non-zero index is at the ith position. As illustrated in figure 5.B.3, the determination of the
eigenvalues λi requires to solve equation (5.116), which may be rewritten as

1− λi
α
−

n∑
i=1

(zi/α)2

(di/α)−(λi/α)
= 0 . (5.121)

Because we have (zi/α)�1, in order for equation (5.121) to be satisfied, one must necessarily either
have λi/α'1 or ((di/α)−(λi/α))�1. It then follows immediately that λ0'α and λi'di. Equa-
tion (5.119) therefore holds and thematrix eigenvalues λi remain close to thematrix diagonal coefficients
(α, d1, ..., dn). The eigenvectors xi from equation (5.118) may then be rewritten as

xi =

(
1 ;

(z1/α)2

(λi/α)−(d1/α)

1

(z1/α)
; ... ;

(zj/α)2

(λi/α)−(dj/α)

1

(zj/α)
; ...

)
. (5.122)

Let us consider the first eigenvector associated with i=0. Following equation (5.119), one has λ0'α, so
that, because dj�α, the generic term from equation (5.122) becomes

(zj/α)2

(λ0/α)−(dj/α)

1

(zj/α)
' (zj/α)

1
� 1 , (5.123)

where we relied on the fact that zj�α. As consequence, for i=0 in equation (5.122), all the terms except
the first one are negligible in front of 1, and one gets x0'(1; 0; ...; 0). Similarly, in equation (5.122), one
can consider the case i 6=0, for which the ith term of equation (5.122) takes the form

(zi/α)2

(λi/α)−(di/α)

1

(zi/α)
' 1

(zi/α)
� 1 , (5.124)
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where we relied on the same argument as in equation (5.121). It states that for i 6=0, there is only one
dominant term in the sum from equation (5.121), given by (zi/α)2

(di/α)−(λi/α)'1. As a consequence, for i 6=0,
the eigenvectorxi from equation (5.122) is dominated by its ith coefficient and the eigenvectormay there-
fore be assumed to be proportional to (0; ...; 1; 0; ...), where the non-zero index is at the ith position. We
may therefore assume that the response matrix eigenvectors remain close to the natural basis elements.
As a conclusion, even in the limit of a razor-thin disc, the symmetric arrowhead response matrix from
equation (5.115) may still be assumed to be diagonal. We therefore justified why one may limit oneself
to the diagonal coefficients of the response matrix, as in equation (5.23). The thickened WKB basis ele-
ments therefore allowed us to diagonalise the disc’s response matrix. This is a crucial step in the explicit
calculations of the collisionless and collisional diffusion fluxes as shown in sections 5.5 and 5.6.

5.C From thick to thin
In this Appendix, let us detail how one can, starting from the thickened WKB basis, recover all the
razor-thin expressions obtained in chapter 3.

5.C.1 The collisionless case
Let us first consider the case of the collisionless diffusion presented in section 5.5 and show one now
may compute the collisionless diffusion coefficients when the disc is too thin to rely on the continuous
expression from equation (5.50). We will show that this second approach is fully consistent with the one
used in equation (5.50). We will also show how one can recover the razor-thin expressions previously
obtained in section 3.5.

We noted in equation (5.49) that in order to use Riemann sum formula w.r.t. the index kpz , one should
ensure that the typical step distance∆kz'π/h from equation (5.17) remains sufficiently small compared
to the scale on which the function kz 7→gs(kz) varies. In the limit of a thinner disc, one has h→0, so that
∆kz→+∞. As a consequence, the continuous approximation cannot be used anymore, and one should
keep the discrete sum on the quantised kpz in equation (5.49). Of course, it is also within this limit of a
thinner disc, that one can recover the razor-thin results from section 3.5.

Starting from equation (5.49), the expression (5.52) of the symmetric collisionless diffusion coeffi-
cients becomes

Dsym
m (J) = δeven

mz

1

(2π)2

∑
np,nq

∫
dkpr Jmr

[√
2Jr
κ kpr

]
Jmz

[√
2Jz
ν knpz (kpr )

]
α2
p

1−λp

×
∫

dkqr Jmr
[√

2Jr
κ kqr

]
Jmz

[√
2Jz
ν knqz (kqr)

]
α2
q

1−λq
Ĉδψe [mφ,m·Ω, Rg, k

p
r , k

q
r , k

np
z (kpr ), knqz (kqr)] , (5.125)

where the perturbation autocorrelation, Ĉδψe , was introduced in equation (5.51). Let us recall that the
antisymmetric analog of equation (5.125) is straightforward to obtain thanks to the substitutions αp→βp
and δeven

mz →δodd
mz . For the antisymmetric case, as already noted in equation (5.53), one should pay atten-

tion to the fact that the perturbation autocorrelation involves the odd-restricted vertical Fourier trans-
form of the potential perturbations. As in equation (5.55), the next step of the calculation is to diag-
onalise the perturbation autocorrelation, where one should pay attention to the fact that kz=kz(kr, n)
is no longer a free variable but should be seen as a function of the considered kr and n. Following
Appendices F and G in Fouvry et al. (2016c), equation (5.55) becomes here〈

δψ̂e
mφ,k1

r ,k
n1
z

[Rg, ω1] δψ̂e
∗
mφ,k2

r ,k
n2
z

[Rg, ω2]
〉

= 2πhδD(ω1−ω2) δD(k1
r−k2

r) δn2
n1
Ĉ[mφ, ω1, Rg, k

1
r , k

n1
z ] ,
(5.126)

where the diagonalisation w.r.t. the vertical dependence is captured by the Kronecker symbol δn2
n1
. This

diagonalised autocorrelation allows us to rewrite the diffusion coefficients from equation (5.125) as

Dsym
m (J) = δeven

mz

1

4h

∑
np

∫
dkpr J 2

mr

[√
2Jr
κ kpr

]
J 2
mz

[√
2Jz
ν knpz (kpr )

] [
α2
p

1−λp

]2

Ĉ[mφ,m·Ω, Rg, k
p
r , k

np
z (kpr )] .

(5.127)
Equation (5.127) is the direct discrete equivalent of equation (5.56), and both expressions are in full
agreement. Indeed, starting from equation (5.127), the continuous expression w.r.t. kpz can immediately
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be recovered by using Riemann sum formula with the step distance ∆kz'π/h from equation (5.17).
Similarly to equation (5.57), one can also simplify equation (5.127) thanks to the approximation of the
small denominators, which gives here

Dsym
m (J) = δeven

mz

1

4h

∑
np

∆knpr J 2
mr

[√
2Jr
κ kmax

r,np

]
J 2
mz

[√
2Jz
ν kmax

z,np

] [
(αmax
np )2

1−λmax
np

]2

Ĉ[mφ,m·Ω, Rg, k
max
r,np , k

max
z,np ] .

(5.128)
In equation (5.128), for a given value of the index np, we consider the behaviour of the function
kpr 7→λ(kpr , k

np
z (kpr )), and assume that it reaches a maximum value λmax

np for kr=kmax
r,np on a domain of

typical extension ∆k
np
r . In equation (5.128), we also used the shortening notation kmax

z,np =k
np
z (kmax

r,np). The
antisymmetric analogs of equations (5.127) and (5.128) are straightforward to obtain by considering the
antisymmetric quantised frequencies kz from equation (5.100) and performing the substitution αp→βp.
As already emphasised in equation (5.56), one should pay attention to the fact that in these antisym-
metric analogs, Ĉ involves an even-restricted vertical Fourier transform of the autocorrelation, despite
the fact that one is interested in antisymmetric diffusion coefficients.

Starting from the discrete expression of the diffusion coefficients obtained in equation (5.127), let
us now illustrate how one can recover the razor-thin WKB diffusion coefficients from section 3.5 by
considering the limit of a thinner disc. As already noted in figure 5.3.2, let us recall that except for the
fundamental symmetric frequency k1

z,s, one always has knz >π/(2h). As a consequence, in the infinitely
thin limit, for which h→0, one has knz →+∞, except for k1

z,s. Let us also recall that in equation (5.127),
the dependence of Ĉ[kpz ] takes the form

Ĉ[kpz ] =

∫ 2h

−2h

dv Ĉ[v] cos[kpzv] . (5.129)

One therefore gets the majoration |Ĉ[kpz ]|≤4hĈmax, which, in the razor-thin limit, cancels out the prefac-
tor 1/(4h) present in equation (5.127). Because ∀n≥0 , limx→+∞ Jn(x)=0, it immediately follows from
equation (5.127) that

lim
thin

Danti
m (J) = 0 . (5.130)

In addition, equation (5.127) also implies that for symmetric diffusion coefficients, the sum on np may
be limited to the only fundamental term np=1. Equation (5.16) gives us that in the razor-thin limit,
one has k1

z,s'
√
kr/h. Equation (5.127) therefore also implies that for mz 6=0, one has limthinD

sym
m =0.

Therefore, in the infinitely thin limit, only the symmetric diffusion coefficients formz=0 will not vanish.
In addition, fromequation (5.127), it is also straighforward to obtain that in order to have a non-vanishing
symmetric diffusion coefficient, one should also restrict oneself to Jz=0. In the razor-thin limit formz=0
and Jz=0, one can therefore write

lim
thin

Dsym
m (J) = lim

thin

1

4h

∫
dkpr J 2

mr

[√
2Jr
κ kpr

] [
α2

1

1−λp

]2

Ĉ[mφ,m·Ω, Rg, k
p
r , k

1
z,s] . (5.131)

The definition of the prefactor αp in equation (5.21) immediately gives us limthin α1 =1. In addition, we
also obtained in equation (5.34) that limthin λp=λthin

p . The last step of the present calculation is to study,
in the razor-thin limit, the behaviour of the term Ĉ[k1

z,s] from equation (5.129). Equation (5.129) takes the
form of an integral of length 4h of a function oscillating at the frequency k1

z,s'
√
kr/h. In this interval,

the number of oscillations of the fluctuating term is of order k1
z,sh∼

√
krh, so that in the razor-thin limit

the number of oscillations of the function v 7→cos[k1
z,sv] tends to 0. In the razor-thin limit, equation (5.129)

then becomes limthin Ĉ[k1
z,s]=4hĈ[v=0]. Using this relation in equation (5.131), one finally gets

lim
thin

Dsym
m (J) =

∫
dkpr J 2

mr

[√
2Jr
κ kpr

] [
1

1−λthin

]2

Ĉthin[mφ,m·Ω, Rg, k
p
r ] , (5.132)

where Ĉthin[mφ,m·Ω, Rg, k
p
r ] stands for the local razor-thin power spectrum of the external perturba-

tions in the equatorial plane as defined in equation (3.67) in the razor-thin case. In equation (5.132), we
fully recovered the razor-thin result previously obtained in equation (3.68).
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5.C.2 The collisional case
Let us now follow the same approach for the collisional diffusion. We will especially show how one
should estimate the system’s susceptibility coefficients in the case where the disc is too thin to rely on
the continuous expression from equation (5.67), and that this approach allows for the recovery of the
razor-thin results previously obtained in section 3.6.

As already noted in the previous section, let us recall that in the razor-thin limit, for which h→0,
the quantised vertical frequencies knz are such that knz →+∞, except for the fundamental symmetric
frequency k1

z,s. In the expression (5.66) of the dressed susceptibility coefficients, let us also note the
presence of a prefactor 1/h, so that in the razor-thin limit, one has to study the behaviour of a term of
the form

1

h

1

k2
r+(k

np
z )2

−→
thin


1

kr
if knpz =k1

z,s ,

0 if knpz 6=k1
z,s .

(5.133)

In the razor-thin limit, because all the other terms appearing in equation (5.66) are bounded, one there-
fore gets

lim
thin

1

Danti
m1,m1

= 0 . (5.134)

In addition, in the razor-thin limit, the sum on np appearing in equation (5.66) may also be limited to
the only fundamental term np=1. Moreover, in order to have non-vanishing susceptibility coefficients,
as already justified in the collisionless case, only symmetric diffusion coefficients associated withmz

1 =0
and J1

z =0 will not vanish in the razor-thin limit. Finally, let us recall that in the razor-thin limit, one has
limthin λp=λthin and limthin α1 =1. Thanks to these restrictions, in the razor-thin limit, the symmetric
susceptibility coefficients from equation (5.66) become

lim
thin

1

Dsym
m1,m1

∼ 1

Dthin
m1,m1

J0

[√
2J2
z

ν1
k1
z,s

]
, (5.135)

where 1/Dthin
m1,m1

stands for the razor-thin WKB susceptibility coefficients obtained in equation (3.80).
In order to recover the razor-thin WKB Balescu-Lenard diffusion flux, let us now consider the ex-

pression (5.69) of the thickenedWKB drift coefficients and study their behaviour in the razor-thin limit.
Let us first rewrite the thick quasi-isothermal DF from equation (5.5) as

Fthick(J1
φ, J

1
r , J

1
z ) = Fthin(J1

φ, J
1
r )

ν1

2πσ2
z

exp

[
− ν1J

1
z

σ2
z

]
, (5.136)

where we wrote Fthin for the razor-thin quasi-isothermal DF from equation (3.10). In order to illustrate
the gist of this calculation, let us now focus only the remaining dependences w.r.t. J2

z in equation (5.69).
This corresponds to an expression of the form

ν1

2πσ2
z

∫
dJ2

z exp

[
− ν1J

2
z

σ2
z

]
J 2

0

[√
2J2
z

ν1
k1
z,s

]
=

1

2π
I0

[
(k1
z,s)

2

ν2
1/σ

2
z

]
exp

[
− (k1

z,s)
2

ν2
1/σ

2
z

]
−→
thin

1

2π
, (5.137)

where we relied on the formula from equation (3.42), as well as on the fact that in the razor-thin limit
(k1
z,s)

2/(ν2
1/σ

2
z)∼h→0. Using equation (5.137) into the general expression (5.69) of the drift coefficients,

one gets

lim
thin

Asym
m1

(J1) = − 4π3µ

(m1 ·Ω1)′

∫
dJ2

r

m1 ·∂Fthin/∂J(J1
φ, J

2
r )

|Dthin
m1,m1

(J1
φ, J

1
r , J

1
φ, J

2
r ,m1 ·Ω1)|2 , (5.138)

where one has to restrict oneself tomz
1 =0 and J1

z =0. Following the same approach, the razor-thin limit
of the collisional diffusion coefficients from equation (5.70) is straightforward to compute and reads

lim
thin

Dsym
m1

(J1) =
4π3µ

(m1 ·Ω1)′

∫
dJ2

r

Fthin(J1
φ, J

2
r )

|Dthin
m1,m1

(J1
φ, J

1
r , J

1
φ, J

2
r ,m1 ·Ω1)|2 . (5.139)

This concludes our calculations, as we note that the two razor-thin limits obtained in equations (5.138)
and (5.139) are in full agreement with the razor-thin results previously obtained in equations (3.83)
and (3.84).





Chapter 6

Quasi-Keplerian systems

The work presented in this chapter is based on Fouvry et al. (2016d).

6.1 Introduction
The previous chapters focused on the dynamics of stellar discs, either razor-thin or thickened. For
these systems, we explored two regimes of secular diffusion either collisionless or collisional, depend-
ing on whether fluctuations are external or internal. In this chapter, we focus on another family of self-
gravitating systems, for which a large set of particles orbits a dominantmassive object. This corresponds
for example to stars bound to a central super massive black hole in galactic nuclei, or to protoplanetary
debris discs encircling a central star. As will be emphasised in the upcoming discussions, such systems,
because they are dominated by one central object, have the peculiarity of being dynamically degener-
ate. This requires some adjustements to tailor the previous diffusion formalisms. Let us first discuss the
main properties of such systems.

Stars in a stellar cluster surrounding a dominant super massive black hole (BH) evolve in a quasi-
Keplerian potential. As a consequence, their orbits take the form of ellipses, which conserve their spatial
orientation for many orbital periods, as illustrated in figure 6.1.1. This is a signature of the dynamical
degeneracy of the Keplerian potential. The stellar cluster may then be represented as a system of mas-
sive Keplerian wires, for which the mass of each star is smeared out along the elliptic path followed
by its quasi-Keplerian orbit. Such ideas were first developed in Rauch & Tremaine (1996), which in-
troduced the concept of "resonant relaxation" by noting that wire-wire interactions greatly enhance the
relaxation of the stars’ angular momenta w.r.t. conventional estimates which do not account for the
coherence of stars’ orbits over many dynamical times and consider only uncorrelated two-body encoun-
ters. See Alexander (2005) for a review of the various stellar processes occurring in the vicinity of super
massive black holes.

Adetailed understanding of the relaxation processes occurring in galactic nuclei is important in order
to predict the rates of tidal disruptions of stars by BHs (e.g., Rauch & Tremaine, 1996; Rauch & Ingalls,
1998), the merging rates of binary super massive BHs (e.g., Yu, 2002), or the rate of gravitational wave
emissions from star-BH interactions (e.g., Hopman & Alexander, 2006; Merritt et al., 2011). Resonant
relaxation also appears as the appropriate framework to understand some of the features of young stellar
populations found in the centre of our own Galaxy (e.g., Kocsis & Tremaine, 2011).

As for stellar discs, a first way to study the secular dynamics of quasi-Keplerian stellar clusters is
to rely on direct N−body simulations. However, in this context, gaining physical insights from these
simulations is challenging, as various complex dynamical processes are intimately entangled there. In
addition, because of the significative breadth of timescales in these systems between the fast Keplerian
motion and cosmic times, the computational costs of these simulations are such that one can typically
only run a few realisations, limited to a relatively small number N of particles. Moreover, this cannot
be scaled up easily to astrophysical systems, as different dynamical mechanisms scale differently with
N (Heggie & Hut, 2003). When focusing on resonant relaxation, one can improve these simulations
by using N−wires code (e.g., Kocsis & Tremaine, 2015), in which stars are replaced by orbit-averaged
Keplerian wires.

A complementary approach to understand and describe the dynamics of such systems is to rely on
tools from kinetic theory. Especially, in order to account for effects induced by the system’s finite number
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Figure 6.1.1: Extracted fromfigure 16 of Gillessen et al. (2009). Observations of the individual trajectories of twenty
stars orbiting in the vicinity of Sgr A∗, the super massive black hole at the centre of the Milky Way. Because of the
dominant mass of the central BH, the stars follow quasi-Keplerian orbits.

of particles, the Balescu-Lenard formalism, presented in section 2.3, then appears as perfectlywell suited.
However, in the context of quasi-Keplerian systems, the application of the Balescu-Lenard formalism in
its original form raises two additional difficulties, which ask for a particular attention. The first difficulty
comes from the fact that one has to describe the dynamics of a system within a possibly non-inertial set
of coordinates. This requires to pay a careful attention to canonical changes of coordinates as will be
emphasised in section 6.2. The second difficulty arises from the intrinsic dynamical degeneracies of the
Keplerian problem, i.e. the fact that the Keplerian frequenciesΩKep satisfy commensurability conditions
of the form n·ΩKep'0, for some vectors of integers n=(n1, n2, n3), as will be discussed in section 6.3.
Indeed, the Balescu-Lenard formalism in its original form assumes that resonances are localised in action
space and are not degenerate. As a consequence, it must be re-examined before it can be applied to the
degeneracies inherent to quasi-Keplerian systems.

In the upcoming sections, we will show how one can account for these degeneracies in the case of
a cluster of N particles orbiting a massive, possibly relativistic, central body. This will require to first
average the equations of motion over the fast Keplerian angle associated with the orbital motion of stars
around the BH. Once such an averaging is carried out, we will emphasise how the generic Balescu-
Lenard formalism applies straightforwardly and yields the associated degenerate secular collisional
equation. As will be detailed in the upcoming sections, this equation captures the drift and diffusion
of particles’ actions induced by their mutual resonant interaction at the frequency shifts present in ad-
dition to the mean Keplerian dynamics, e.g., possibly induced by the cluster’s self-gravity or relativistic
effects. This new equation will be shown to be ideally suited to describe the secular evolution of a large
set of particles orbiting amassive central object, by capturing the secular effects of sequences of polarised
wire-wire interactions (associated with scalar or vector resonant relaxation) on the underlying cluster’s
orbital structure.

This chapter is organised as follows. Section 6.2 specifies the BBGKY hierarchy to systems with a
finite number of particles orbiting a central massive body, by using canonical coordinates to account
adequately for the motion due to the central body. Section 6.3 describes the angle-action coordinates
appropriate for such quasi-Keplerian systems and discusses how the dynamical degeneracies should be
dealt with. Section 6.4 averages the corresponding dynamical equations over the fast Keplerian angles
and discusses the newly obtained set of coupled evolution equations. Section 6.5 presents in detail the
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degenerate one andmulti-component Keplerian Balescu-Lenard equations, whose important properties
will be discussed. Finally, in section 6.6, we present some applications of this new degenerate collisional
formalism, respectively to razor-thin axisymmetric discs, 3D spherical clusters, and to understand the
suppression of resonant relaxation as stars move closer to the central BH, a phenomenon coined the
Schwarzschild barrier.

6.2 The associated BBGKY hierarchy
Let us consider a set of N stars of individual mass µ, orbiting a central BH of massM•. We assume the
system to be quasi-Keplerian so that defining the total stellar massM?=µN , one has

ε =
M?

M•
�1 . (6.1)

We place ourselves within an inertial frame and denote asX• the position of the BH andXi the position
of the ith star. The total Hamiltonian of the system reads

H =
P 2
•

2M•
+

N∑
i=1

P 2
i

2µ
+µM•

N∑
i=1

U(|Xi−X•|)+µ2
N∑
i<j

U(|Xi−Xj |)+µM?

N∑
i=1

Φrel(Xi−X•) , (6.2)

in which we introduced the canonical momenta as P•=M•Ẋ• and Pi=µẊi. We also introduced as
U(|X|) the binary interaction potential, i.e. U(|X|=−G/|X|) in the gravitational context. Let us now
detail the various interaction terms appearing in equation (6.2). The first two terms correspond to the
kinetic energy of the BH and the stars. The third term corresponds to the Keplerian potential of the
BH, while the fourth term captures the pairwise interactions among stars. Finally, the last term of equa-
tion (6.2) accounts for the relativistic correction forces occurring in the vicinity of the BH, such as the
Schwarzschild and Lense-Thirring precessions, as detailed in Appendix 6.A. Let us emphasise the nor-
malisation prefactor µM? of these relativistic corrections, which was introduced for later convenience.
One can note that equation (6.2) does not contain any additional external potential contributions. As
such contributions may offset the system and introduce non-trivial inertial effects, they were not ac-
counted for to clarify the presentation (see item III of section 6.4 for a discussion of how such external
contributions may also drive the system’s secular dynamics). The Hamiltonian from equation (6.2) is
therefore the direct equivalent, in the context of quasi-Keplerian systems, of theHamiltonian introduced
in equation (2.36) when deriving the non-degenerate inhomogeneous Balescu-Lenard equation.

Following the method from Appendix 2.A, our aim is now to derive an appropriate BBGKY hierar-
chy for the Hamiltonian from equation (6.2), to get a better grasp of how finite−N effects may source
the long-term evolution of quasi-Keplerian systems. To do so, let us first rewrite the Hamiltonian from
equation (6.2) as N decoupled Kepler Hamiltonians plus some perturbations. Such dynamical prob-
lems dominated by one central body are extensively studied in the context of planetary dynamics. We
follow Duncan et al. (1998) to perform a canonical change of coordinates to a new set of coordinates, the
democratic heliocentric coordinates. Let us define the new coordinates (x•,x1, ...,xN ) as

x• =
1

Mtot

[
M•X•+

N∑
i=1

µXi

]
; xi = Xi−X• . (6.3)

In equation (6.3), we introduced the total mass of the system Mtot =M•+M?, and one should pay at-
tention to the fact that this differs from the definition ofMtot used in the previous sections. These new
coordinates are such that x• corresponds to the position of the system’s centre of mass, while xi gives
the location of the ith star w.r.t. the BH. These relations can easily be inverted as

X• = x•−
1

Mtot

N∑
i=1

µxi ; Xi = x•+xi−
1

Mtot

N∑
j=1

µxj . (6.4)

Following Duncan et al. (1998), the associated canonical momenta (p•, p1, ..., pN ) are given by

p• = P•+

N∑
i=1

Pi ; pi = Pi−
µ

Mtot

[
P•+

N∑
j=1

Pj

]
. (6.5)
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These new canonical coordinates allow us to rewrite the Hamiltonian from equation (6.2) as

H =
N∑
i=1

[
p2
i

2µ
+µM•U(|xi|)+µM?Φrel(xi)

]
+ µ2

∑
i<j

U(|xi−xj |) +
p2
•

2Mtot
+

1

2M•

[ N∑
i=1

p2
i

]2

. (6.6)

In equation (6.6), let us note that the two first terms correspond to N coupled Kepler problems (with
relativistic corrections), completed with the presence of the two last additional kinetic terms. The co-
ordinates being canonical, the evolution of the total momentum p• is given by Hamilton’s equation
ṗ•=−∂H/∂x•=0. Without loss of generality, let us therefore assume that p•=0. The evolution of the
system’s barycentre is then given by ẋ•=∂H/∂p•=p•/Mtot =0, so that we may set as well x•=0. Let
us finally introduce the notation vn=pn/µ 6= ẋn, so that the Hamiltonian from equation (6.6) becomes

H =
N∑
i=1

[
µ

2
v2
i +µM•U(|xi|)+µM?Φrel(xi)

]
+ µ2

N∑
i<j

U(|xi−xj |)+
µ2

2M•

[ N∑
i=1

vi

]2

. (6.7)

Let us emphasise how the Hamiltonian from equation (6.7) is similar to the one considered in equa-
tion (2.36) to describe isolated long-range systems. In equation (6.7), one should also note the presence
of two additional potential contributions due to the central BH and the relativistic corrections. These
only affect each particle individually, which makes them easy to deal with. A second difference comes
from the additional kinetic terms in equation (6.7) associated with the change of coordinates from equa-
tion (6.3). As will be fully justified in section 6.4, we will be in a position to neglect these contributions
at the order considered in our kinetic developments.

Starting from the Hamiltonian from equation (6.7), let us now proceed as in section 2.A to derive
the associated BBGKY hierarchy. The upcoming calculations being very similar to the ones presented in
section 2.A, wemainly emphasise here the important changes in the quasi-Keplerian context. Following
the normalisation convention from equation (2.94), one can obtain a statistical description of the system
by considering itsN−body probability distribution function PN (Γ1, ...,ΓN , t), where we introduced the
phase coordinates Γ=(x,v). The dynamics of PN is fully given by Liouville’s equation (2.95), which
reads

∂PN
∂t

+
N∑
i=1

[
ẋi ·

∂PN
∂xi

+v̇i ·
∂PN
∂vi

]
= 0 . (6.8)

Here, the dynamics of individual particles is given by Hamilton’s equations µdxi/dt=∂H/∂vi and
µdvi/dt=−∂H/∂xi, for the total Hamiltonian H from equation (6.7). Following equation (2.97) and
the associated conventions, let us define the system’s reduced PDFs Pn, and susbsequently the reduced
DFs fn following equation (2.99) and its normalisations. The generic BBGKY equation (2.100) for fn
becomes here in the quasi-Keplerian context

∂fn
∂t

+
n∑
i=1

{[
vi+

ε

N

n∑
j=1

vj

]
· ∂fn
∂xi

+

[
M•F i0+µ

n∑
j=1,j 6=i

F ij+M?F ir

]
· ∂fn
∂vi

}

+
n∑
i=1

∫
dΓn+1

[
1

M•
vn+1 ·

∂fn+1

∂xi
+F i,n+1 ·

∂fn+1

∂vi

]
= 0 . (6.9)

In equation (6.9), we introduced the force exerted by particle j on particle i as µF ij=−µ∂Uij/∂xi, with
the shortening notation Uij=U(|xi−xj |). We also wrote the force exerted by the BH on particle i as
M•F i0 =−M•∂Ui0/∂xi, with Ui0 =U(|xi|). Finally, the force associated with the relativistic corrections
on particle i was written as M?F ir =−M?∂Φrel/∂xi. As expected from the presence of the additional
kinetic terms in equation (6.7), one can note that equation (6.9) differs in particular from equation (2.100)
via two additional kinetic contributions.

In the evolution equation (6.9), in order to isolate the contributions arising from correlations among
stars, let us follow equations (2.101) and (2.102), and introduce the cluster representation of the DFs.
Here, we are especially interested in the system’s 1−body DF as well as in its 2− and 3−body correla-
tion functions g2 and g3. Relying on the normalisations obtained in equation (2.103), and because the
individual mass of the stars scales like µ∼1/N , one immediately has |f1|∼1, |g2|∼1/N , and |g3|∼1/N2.
Thanks to this cluster decomposition, and starting from equation (6.9), one can write the two first equa-
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tions of the BBGKY hierarchy. The first equation (2.104) becomes here

∂f1

∂t
+

[
v1+

ε

N
v1

]
· ∂f1

∂x1
+

[
M•F10+M?F1r

]
· ∂f1

∂v1
+

[∫
dΓ2 F12f1(Γ2)

]
· ∂f1

∂v1
+

∫
dΓ2 F12 ·

∂g2(Γ1,Γ2)

∂v1

+
1

M•

∂f1

∂x1
·
∫

dΓ2 v2f1(Γ2)+
1

M•

∫
dΓ2 v2 ·

∂g2(Γ1,Γ2)

∂x1
= 0 . (6.10)

Similarly, the second equation (2.105) becomes

1

2

∂g2

∂t
+

[
v1+

ε

N
(v1+v2)

]
· ∂g2

∂x1
+
ε

N
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∂f1

∂x1
f1(Γ2)+

[
M•F10+M?F1r

]
· ∂g2

∂v1
+

[∫
dΓ3 F13f1(Γ3)

]
· ∂g2

∂v1

+ µF12 ·
∂f1

∂v1
f1(Γ2)+

[∫
dΓ3 F13g2(Γ2,Γ3)

]
· ∂f1

∂v1
+

1

M•

∂f1

∂x1
·
∫

dΓ3 v3g2(Γ2,Γ3)+
1

M•

∂g2

∂x1
·
∫

dΓ3 v3f1(Γ3)

+ µF12 ·
∂g2

∂v1
+

∫
dΓ3 F13 ·

∂g3(Γ1,Γ2,Γ3)

∂v1
+

1

M•

∫
dΓ3 v3 ·

∂g3(Γ1,Γ2,Γ3)

∂x1
+(1↔2) = 0 , (6.11)

where (1↔2) stands for the permutation of indices 1 and 2 and applies to all preceding terms.
Aswe are interested in first-order collisional effects, let us proceed as in equations (2.107) and (2.108),

and truncate equations (6.10) and (6.11) at order 1/N . At this stage, let us emphasise that such quasi-
Keplerian systems involve two small parameters, namely 1/N associated with the system’s discreteness,
and ε=M?/M• capturing the dominance of the BH on the stars’ individual dynamics. As the upcoming
calculations will emphasise, we will perform kinetic developments where we keep only small terms of
order ε and ε/N , while higher order corrections will be neglected. In equation (6.10), we note that all
the terms are at least of order 1/N and should therefore all be kept. In equation (6.11), the first two
lines are of order 1/N (except for the correction (ε/N)(v1+v2)·∂g2/∂x1 which may be neglected) and
should be kept, while all terms from the third line are of order 1/N2 and may therefore be neglected.
As already noted in equation (2.105), we note that the first term of the third line of equation (6.11),
while being of order 1/N2 can still get arbitrary large as particles 1 and 2 get closer. This term captures
strong collisions and is not accounted for in the present formalism. In addition to these truncations, and
in order to consider terms of order 1, let us finally define the system’s 1−body DF F and its 2−body
autocorrelation C as

F =
f1

M?
; C =

g2

µM?
. (6.12)

One should pay attention to the fact that these normalisations differ from the generic ones introduced in
equation (2.106). Finally, in order to highlight the different orders of magnitude of the various compo-
nents present in the problem, let us rescale as well some of the quantities appearing in equations (6.10)
and (6.11). We first rescale the binary interaction potential, U , by using the mass of the central BH, so
that

F ij = −∂Uij
∂xi

; Uij = − GM•
|xi−xj |

. (6.13)

In addition, the potential Φr =Φrel associated with the relativistic corrections is rescaled so that

F ir = −∂Φr

∂xi
; Φr →

Φr

M•
; F ir →

F ir

M•
. (6.14)

As a result of these various truncations and renormalisations, the first BBGKY equation (6.10) becomes

∂F

∂t
+

[
v1+

ε

N
v1

]
· ∂F
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+F10 ·
∂F
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+ε

[∫
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· ∂F
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+ ε
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·
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dΓ2 v2F (Γ2)+
ε

N

∫
dΓ2 v2 ·

∂C(Γ1,Γ2)

∂x1
= 0 . (6.15)

Similarly, the second BBGKY equation (6.11) becomes

1

2
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+v1 ·
∂C
∂x1

+F10 ·
∂C
∂x1

+ε

[∫
dΓ3 F13F (Γ3)

]
· ∂C
∂v1

+εF1r ·
∂C
∂v1

+ εF12 ·
∂F

∂v1
F (Γ2)+ε

[∫
dΓ3 F13C(Γ2,Γ3)

]
· ∂F
∂v1

+ εv2 ·
∂F

∂x1
F (Γ2)+ε

∂F

∂x1
·
∫

dΓ3 v3C(Γ2,Γ3)+ε
∂C
∂x1
·
∫

dΓ3 v3F (Γ3)+(1↔ 2) = 0 . (6.16)
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One should of course note how equations (6.15) and (6.16) are similar to the associated generic ones ob-
tained in equations (2.107) and (2.108). Differences arise from the contributions from the central BH and
the relativistic corrections as well as from the additional kinetic terms present in the Hamiltonian from
equation (6.7). As will be shown in section 6.4, once averaged over the BH-induced Keplerian motion,
these kinetic corrections will not come into play at the order considered in the kinetic developments.

The next step of the calculations is now to rewrite equations (6.15) and (6.16) within appropriate
angle-action coordinates to capture in a simple manner the dominant mean Keplerian motion induced
by the central BH. One subtlety with such Keplerian dynamics comes from the dynamical degeneracies
present in the associated Keplerian orbital frequencies. These degeneracies have to handled with care
as we will now detail.

6.3 Degenerate angle-action coordinates
In equations (6.15) and (6.16), one notes the presence of a dominant advection termv1 ·∂/∂x1+F10 ·∂/∂v1

associated with the Keplerian motion induced by the central BH. The next step of our derivation is now
to introduce the appropriate angle-action coordinates to capture this integrable Keplerian motion. Fol-
lowing section 1.3, let us remap the physical coordinates (x,v) to the Keplerian angle-action ones (θ,J).
The Keplerian orbital frequencies associated with these coordinates are then given by

θ̇ = ΩKep(J) =
∂HKep

∂J
, (6.17)

whereHKep stands for the Hamiltonian associated with the Keplerian motion due to the BH. Of course,
various choices of angle-action coordinates are possible. For 3D spherical potential, the usual angle-
action coordinates (Binney & Tremaine, 2008) are given by

(J ,θ) = (J1, J2, J3, θ1, θ2, θ3) = (Jr, L, Lz, θ1, θ2, θ3) , (6.18)

where Jr and L are respectively the radial action and the magnitude of the angular momentum, while
Lz is its projection along the z−axis (see Appendix 4.D). The Keplerian Hamiltonian then becomes
HKep =HKep(Jr+L). Another choice of 3D angle-action coordinates is given by the Delaunay vari-
ables (Sridhar & Touma, 1999; Binney & Tremaine, 2008) reading

(J ,θ) = (I, L, Lz, w, g, h) . (6.19)

In equation (6.19), we introduced as (I=Jr+L,L,Lz) the three actions of the system, while (w, g, h)
are the associated angles. Here, the angles have straightforward interpretation in terms of the orbital
elements of the Keplerian ellipses: w stands for the orbital phase or mean anomaly, g is the angle from
the ascending node to the periapse, while h is the longitude of the ascending node. Within these vari-
ables, the Keplerian Hamiltonian becomes HKep =HKep(I), so that the angles g and h become integrals
of motion, while the angle w advances at the frequency ẇ=ΩKep =∂HKep/∂I . Because of the existence
of these additional conserved quantities, the Keplerian potential is considered to be dynamically degen-
erate. This can have some crucial consequences on the long-term behaviour of the system, as we will
now detail.

To clarify the upcoming discussions, let us note as d the dimension of the considered physical space,
e.g., d=2 for a razor-thin disc. Within this space, we consider an integrable potential ψ0 and one associ-
ated angle-action mapping (x,v) 7→(θ,J). A potential is said to be degenerate if there existsn∈Zd such
that

∀J , n·Ω(J) = 0 , (6.20)

where it is important for the vector n to be independent of J , for the degeneracy to be global. See
figure 1.3.2 for an illustration of resonant orbits. Of course, a given potential may have more than one
such degeneracy, and we denote as k the degree of degeneracy of the potential, i.e. the number of
linearly independent vectors n satisfying equation (6.20). Let us consider for example the 3D angle-
action coordinates from equation (6.18). The associated frequencies and degeneracy vectors are given
by

Ω3D = (ΩKep,ΩKep, 0) ⇒ n1 =(1,−1, 0) and n2 =(0, 0, 1) , (6.21)

so that k=2. Similarly, for the 3D Delaunay angle-action variables from equation (6.19) one can write

ΩDel = (ΩKep, 0, 0) ⇒ n1 =(0, 1, 0) and n2 =(0, 0, 1) , (6.22)
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so that one gets as well k=2, i.e. the degree of degeneracy of the potential is independent of the chosen
angle-action coordinates. Because of their simpler degeneracy vectorsn1 andn2, the Delaunay variables
from equation (6.19) appear as a more appropriate choice than the usual ones from equation (6.18).

As a final remark, let us emphasise that for a given degenerate potential, one can always remap the
system’s angle-action coordinates to get simpler dynamical degeneracies. As an illustration, let us as-
sume that in our initial choice of angle-action coordinates (θ,J) , the system’s degeneracies are captured
by the k degeneracy vectorsn1, ..., nk. Thanks to a linear change of coordinates (θ,J) 7→(θ′,J ′), one can
always construct new angle-action coordinates within which the k degeneracy vectors take the simple
formn′i=ei, where ei are the natural basis elements of Zd. Indeed, followingMorbidelli (2002), because
the vectors ni are by definition linearly independent, we may complete this family with d−k vectors
nk+1, ..., nd∈Zd to construct a basis over Qd. Defining the transformation matrixA of determinant 1

A =
(
n1, ...,nd

)t
/|(n1, ...,nd)| , (6.23)

let us introduce new angle-action coordinates (θ′,J ′) as

θ′ = A·θ ; J ′ = (At)−1 ·J . (6.24)

It is straighforward to check that (θ′,J ′) are indeed new angle-action coordinates, for which J ′ are
conserved and θ′∈ [0, 2π]. In addition, within these new coordinates, the system’s denegeracies are
immediately characterised by the k vectors n′i=ei. The new intrinsic frequencies then satisfy Ω′i=0 for
1≤ i≤k, the degeneracies of the potential became simpler.

In all the upcoming calculations, we will always consider such simpler angle-action coordinates, for
which the additional conserved quantities are straightforward to obtain. Let us finally introduce the
notations

θs =(θ1, ..., θk) ; θf =(θk+1, ..., θd) ; J s =(J1, ..., Jk) ; J f =(Jk+1, ..., Jd) ; E=(J ,θs) . (6.25)

In equation (6.25), θs and J s correspond to the slow angles and actions, while θf and J f correspond
to the fast angles and actions. Finally, we introduced as E the vector of all the conserved quantities for
the underlying dynamics. In the case of a Keplerian potential, this corresponds to a Keplerian elliptical
wire. For a degenerate potential, the slow angles are the ones for which the intrinsic frequencies are
equal to 0, while these frequencies are non-zero for the fast angles. Let us finally define the degenerate
angle-average w.r.t. the fast angles as

F (J ,θs) =

∫
dθf

(2π)d−k
F (J ,θs,θf) . (6.26)

Let us nowuse these angle-action coordinates to rewrite the two evolution equations (6.15) and (6.16).
Because they were tailored for the Keplerian dynamics, these coordinates allow us to rewrite the Keple-
rian advection term as

v1 ·
∂

∂x1
+F10 ·

∂

∂v1
= ΩKep ·

∂

∂θ
. (6.27)

In addition, let us emphasise that the angle average from equation (6.26) is such that the advection term
from equation (6.27) immediately vanishes when averaged, so that

ΩKep ·
∂F

∂θ
=

∫
dθk+1

2π
...

dθd
2π

d∑
i=k+1

ΩiKep(J)
∂F

∂θi
= 0 . (6.28)

Finally, the coordinates mapping (x,v) 7→(θ,J) being canonical, infinitesimal volumes are conserved
so that dΓ=dxdv=dθdJ . Poisson brackets are also preserved, so that for any functions G1(x,v) and
G2(x,v) one has

[
G1, G2

]
=
∂G1

∂x
· ∂G2

∂v
− ∂G1

∂v
· ∂G2

∂x
=
∂G1

∂θ
· ∂G2

∂J
− ∂G1

∂J
· ∂G2

∂θ
. (6.29)

In order to shorten the notations, let us finally introduce the rescaled self-consistent potential of the stars
Φ as

Φ(x1) =

∫
dΓ2 U12 F (Γ2) ; − ∂Φ

∂x1
=

∫
dΓ2 F12 F (Γ2) . (6.30)
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One may now rewrite equation (6.15) within these new coordinates as

∂F

∂t
+Ω1

Kep ·
∂F

∂θ1
+ε
[
F,Φ+Φr

]
+
ε

N

∫
dΓ2

[
C(Γ1,Γ2), U12

]
(1)

+
ε

N

[
F,
v2

1

2

]
+ε

[
F,v1 ·

∫
dΓ2 v2F (Γ2)

]
+
ε

N

∫
dΓ2

[
C(Γ1,Γ2),v1 ·v2

]
(1)

= 0 , (6.31)

where we wrote Ω1
Kep =ΩKep(J1), and introduced the notation

[
G1(Γ1,Γ2), G2(Γ1,Γ2)

]
(1)

=
∂G1

∂θ1
· ∂G2

∂J1
− ∂G1

∂J1
· ∂G2

∂θ1
, (6.32)

corresponding to the Poisson bracket w.r.t. the variables 1. In equation (6.31), we gathered on the sec-
ond line all the terms associated with the additional kinetic terms present in the Hamiltonian from
equation (6.7). As shown in section 6.4, these terms once averaged over the fast Keplerian motion will
be negligible at the order considered here. Equation (6.16) can also straighforwardly be rewritten as

1

2

∂C
∂t

+Ω1
Kep ·

∂C
∂θ1

+ε
[
C(Γ1,Γ2),Φ+Φr

]
(1)

+ε
[
F (Γ1)F (Γ2), U12

]
(1)

+ε

∫
dΓ3 C(Γ2,Γ3)

[
F (Γ1), U13

]
(1)

+ ε
[
F (Γ1),v1 ·v2F (Γ2)

]
(1)

+ε

[
F (Γ1),v1 ·

∫
dΓ3 v3C(Γ2,Γ3)

]
(1)

+ε

[
C(Γ1,Γ2),v1 ·

∫
dΓ3 v3F (Γ3)

]
(1)

+(1↔2) = 0 , (6.33)

where the terms present in the second line are the ones associatedwith the additional kinetic terms from
equation (6.7).

The rewriting from equation (6.31) allows us to easily identify the various timescales of the prob-
lem. These are: (i) the Keplerian dynamical timescale TKep =1/ΩKep associated with the dominant BH-
inducedKeplerian dynamics and captured by the advection termΩ1

Kep ·∂F/∂θ1, (ii) the secular collision-
less timescale of evolution Tsec =ε−1TKep associated with the potential term ε

[
Φ+Φr

]
due to the stars’

self-consistent potential as well as the relativistic corrections, and finally (iii) the collisional timescale
of relaxation Trelax =NTsec associated with the last term of the first line of equation (6.31). Having ob-
tained equations (6.31) and (6.33) which describe the joint evolution of the system’s 1−body DF and
its 2−body autocorrelation, we will show in the next section how one may get rid of the BH-induced
Keplerian dynamics via an appropriate degenerate angle-average.

6.4 Averaging the evolution equations
As the Keplerian dynamics due to the BH is much faster than the one associated with all the other po-
tential contributions, rather than considering the stars as point particles, let us describe them as massive
elliptical wires, for which the mass of the star is smeared out along the elliptic path of its Keplerian
orbit. This is the exact purpose of the degenerate angle-average from equation (6.26). As noted in equa-
tion (6.28), such an average naturally cancels out any contributions associated with the BH Keplerian
advection term. Let us start from equation (6.31) and multiply it by

∫
dθf/(2π)d−k. In order to estimate

the average of the various terms that occur in equation (6.31), let us finally assume that the system’s DF,
F , can be decomposed as

F = F + εf with f ∼ O(1) and f = 0 , (6.34)

where ε�1 is an additional small parameter of order 1/N . The ansatz from equation (6.34) is the cru-
cial assumption of the present derivation. Indeed, contrary to whas was generically discussed in fig-
ures 1.3.4 and 1.3.5 w.r.t. the mechanisms of phase mixing or violent relaxation, the BH’s domination on
the dynamics strongly limits the efficiency of such mechanisms to allow for a rapid dissolution of any
θf−dependence. Here, we therefore assume that the ansatz from equation (6.34) was satisfied because
in its initial state the system was already phase mixed.

Relying on this ansatz, let us now discuss in turn how the various terms appearing in equation (6.31)
can be dealt with once averaged over the fast Keplerian angle. In the first Poisson bracket of equa-
tion (6.31), let us recall that the self-consistent potential Φ introduced in equation (6.30) should be seen
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as a functional of the system’s DF F . As a consequence, this term becomes

ε
[
F,Φ(F )+Φr

]
= ε

[
F+εf,Φ(F+εf)+Φr

]
= ε
[
F ,Φ(F )+Φr

]
+O(εε)

= (2π)d−kε
[
F ,Φ(F )+Φr

]
+O(εε) . (6.35)

In equation (6.35), we introduced the system’s averaged self-consistent potential Φ as

Φ(E1) =

∫
dE2 F (E2)U12(E1,E2) , (6.36)

where, for clarity, the notation for the self-consistent potential was shortened as Φ=Φ(F ). In equa-
tion (6.36), we also introduced the (doubly) averaged interaction potential U12 as

U12(E1,E2) =

∫
dθf

1

(2π)d−k
dθf

2

(2π)d−k
U12(Γ1,Γ2) . (6.37)

This potential describes the pairwise interaction potential between two Keplerian wires of coordinates
E1 and E2. Finally, we also defined the averaged potential Φr as

Φr(E) =
1

(2π)d−k

∫
dθf

(2π)d−k
Φr(Γ) , (6.38)

where we introduced the prefactor 1/(2π)d−k for convenience. See Appendix 6.A for the expression of
the relativistic precession frequencies. In equation (6.35), let us note that at first order in ε and zeroth
order in ε, the self-consistent potential of the system has to be computed while only considering the
averaged system’s DF F . In order to deal with the second Poisson bracket in equation (6.31), we perform
on the 2−body autocorrelation C the same double average than the one introduced in equation (6.37).
Similarly to equation (6.34), let us assume that the 2−body autocorrelation can be developed as

C = C + εc with c ∼ O(1) and c = 0 . (6.39)

At first order in ε and zeroth order in ε, the third term from equation (6.31) can be then be rewritten as

ε

N

∫
dΓ2

[
C(Γ1,Γ2), U12

]
(1)

=
ε (2π)d−k

N

∫
dE2

[
C(E1,E2), U12

]
(1)
. (6.40)

Finally, let us deal with all the additional kinetic terms present in the second line of equation (6.31).
Once averaged over the fast Keplerian angle, and considering only terms at first order in ε and zeroth
order in ε, these various terms involve the quantities∫

dθf
1 v1 = 0 ;

∫
dθf

1

v2
1

2
∝ HKep(J f

1) . (6.41)

In equation (6.41), the first identity comes the fact that Keplerian orbits are closed, so that the mean
displacement over one orbit is zero, while the second identity is a direct consequence of the virial theo-
rem. Because these terms either vanish or do not depend on the slow coordinates θs and J s, at the order
considered here, they will not contribute to the dynamics once averaged over the fast Keplerian angle.
As a conclusion, keeping only terms of order ε and ε/N , equation (6.31) becomes

∂F

∂t
+ε(2π)d−k

[
F ,Φ+Φr

]
+
ε(2π)d−k

N

∫
dE2

[
C(E1,E2), U12

]
(1)

= 0 . (6.42)

Because equation (6.42) was obtained via an average over the fast angles, one can note in this equation
that all the functions appearing in the Poisson brackets only depend on E1 =(J1,θ

s
1). As a consequence,

the Poisson bracket from equation (6.29) takes here the shortened form[
G1(E), G2(E)

]
=
∂G1

∂θs
· ∂G2

∂J s
− ∂G1

∂J s
· ∂G2

∂θs
, (6.43)

so that only derivatives w.r.t. the slow coordinates come into play. Let us now define the rescaled time
τ as

τ = (2π)d−k εt , (6.44)
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so that equation (6.42) finally becomes

∂F

∂τ
+
[
F ,Φ+Φr

]
+

1

N

∫
dE2

[
C(E1,E2), U12

]
(1)

= 0 . (6.45)

Let us follow a similar angle-averaging procedure to deal with the second equation (6.33) of the
BBGKY hierarchy. Let us therefore multiply equation (6.33) by

∫
dθf

1dθf
2/(2π)2(d−k) and rely on the as-

sumptions from equations (6.34) and (6.39). Keeping only terms of order ε, equation (6.33) finally be-
comes

1

2

∂C
∂τ

+
[
C(E1,E2),Φ(E1)+Φr(E1)

]
(1)

+

[
F (E1)F (E2), U12

]
(1)

(2π)d−k

+

∫
dE3 C(E2,E3)

[
F (E1), U13

]
(1)

+(1↔2) = 0 , (6.46)

where once again, one can note that all the additional kinetic terms present in the second line of equa-
tion (6.33) vanish at the order considered here. Equations (6.45) and (6.46) are the main results of this
section. They describe the coupled evolutions of the system’s averaged DF F and 2−body correlation C
driven by finite−N effects. Let us already underline the strong analogies between these two equations
and the non-degenerate equations (2.107) and (2.108). A rewriting of the degenerate equations (6.45)
and (6.46) was also recently obtained in Sridhar & Touma (2016a,b), following Gilbert’s method (Gilbert,
1968). Starting from equation (6.45), one can now investigate at least four different dynamical regimes
of evolution, as we now detail:

I Considering equation (6.45), the system of Keplerian wires could be initially far from a quasi-
stationary equilibrium, so that [F ,Φ+Φr] 6=0. It is then expected that the system will undergo
a first collisionless phase of violent relaxation (Lynden-Bell, 1967), allowing it to rapidly reach a
quasi-stationary equilibrium. See figure 1.3.5 and the associated discussion, for an illustration of
the classical violent relaxation in self-gravitating systems. We do not investigate this process fur-
ther here. However, we assume that this collisionless relaxation of Keplerian wires is sufficiently
efficient, so that the system rapidly reaches a quasi-stationary stable state. Following this initial
violent phase, the system’s dynamics is then driven by a much slower secular evolution, either
collisionless (item III) or collisional (item IV).

II For a given stationary DF of Keplerian wires, equation (6.45) also captures the system’s grav-
itational susceptibility, so that one could also investigate the possible existence of collisionless
dynamical instabilities through the equation ∂F/∂τ+[F ,Φ+Φr]=0. See Appendix 4.C for an
illustration of dynamical instabilities in non-degenerate stellar discs. We do not investigate such
instabilities further here. However, similarly towhatwas assumed for non-degenerate systems, we
suppose that, throughout its evolution, the system, while still being able to amplify and dress per-
turbations, always remains dynamically stablew.r.t. the collisionless dynamics. See, e.g., Tremaine
(2005); Polyachenko et al. (2007); Jalali & Tremaine (2012) for examples of stability investigations
in the quasi-Keplerian context.

III After the system has reached a quasi-stationary stable state, one may now study the system’s sec-
ular evolution along quasi-stationary stable equilibria. As was presented in detail in section 2.2,
a first way to induce a long-term evolution is via the presence of external stochastic fluctuations.
In order to describe such externally induced secular collisionless evolution, one would start from
equation (6.45), neglect the contributions associated with the collisional term in 1/N in equa-
tion (6.45), and look for the long-term effects of external perturbations. This would correspond
to the specification to degenerate quasi-Keplerian systems of the secular collisionless stochastic
forcing considered in section 2.2. In the case of quasi-Keplerian systems, one additional difficulty
comes from the canonical change of coordinates we had to perform in equation (6.4) to emphasise
the properties of the dominant BH-induced Keplerian dynamics. Adding external perturbations
may offset the system and introduce non-trivial inertial forces, which should be dealt with care-
fully. We do not present thereafter the specification of such externally forced secular dynamics to
the case of quasi-Keplerian systems.
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IV During its secular evolution along quasi-stationary equilibria, the dynamics of an isolated system
of Keplerian wires may also be driven by finite−N fluctuations. Such a self-induced collisional
dynamics, in the context of non-degenerate inhomogeneous systems, was presented in detail in
section 2.3. In the present quasi-Keplerian context, this amounts to neglecting any effects associ-
ated with external stochastic perturbations and consider the contributions coming from the 1/N
collisional term in equation (6.45). In order to characterise this collisional term, this requires to
consider as well equation (6.46), which describes the dynamics of the system’s fluctuations. In
section 6.5, we present in detail how this approach may be pursued for quasi-Keplerian systems.
We then derive the analog of the Balescu-Lenard equation (2.67) in the context of degenerate dy-
namical systems, such as galactic nuclei. As discussed in the next section, such a diffusion equation
sourced by finite−N fluctuations captures the known mechanism of resonant relaxation (Rauch
& Tremaine, 1996) of particular relevance for galactic nuclei. See Bar-Or & Alexander (2014) for a
similar study of the effect of finite−N stochastic internal forcings via the so-called η−formalism.

Let us finally note that one could also investigate the secular dynamics a quasi-stationary non-
axisymmetric set of eccentric orbtis orbiting a central black hole, as an unperturbed collisionless equi-
librium. This would correspond for example to the expected lopsided configuration of M31’s galactic
centre (Tremaine, 1995). In order to derive the Balescu-Lenard equation associated with such a configu-
ration, one would first have to find new angle-action variables for which item II would be satisfied, and
then proceed further with the formalism. We also emphasised in item II, the role played by the system’s
self-gravity, whose importance varies with the context. Indeed, depending on the mass of the stellar
cluster, one expects that there exists a regime for which the system’s self-induced orbital precession is
significant, but the wires’ self-gravity remains too weak to induce a collisionless instability. In such a
regime, accounting for the self-induced polarisation of the wires becomes important in item III and IV.
This motivates the upcoming derivation of the degenerate Balescu-Lenard equation.

6.5 The degenerate Balescu-Lenard equation
Assuming that the evolution of the system is driven by finite−N effects, let us now illustrate how one
may derive the inhomogeneous degenerate Balescu-Lenard equation. This equation captures the long-
term effects of the 1/N collisional contribution in equation (6.45). It is assumed that the system is iso-
lated and undergoes no external perturbations. In order to ease the derivation of the closed kinetic
equation satisfied by F , we rely on the strong analogies between the present quasi-Keplerian case and
the non-degenerate equations considered in Appendix 2.B. As already underlined in section 2.3.1 when
deriving the Balescu-Lenard equation, we rely on the adiabatic approximation that the system secularly
relaxes through a series of collisionless equilibria. In the present quasi-Keplerian context, these colli-
sionless equilibria correspond to stationary (and stable) steady states of the collisionless advection term[
F ,Φ+Φr

]
from equation (6.45). Let us therefore assume that throughout its evolution, the system’s DF

satisfies
∀τ ,

[
F (τ),Φ(τ)+Φr(τ)

]
= 0 . (6.47)

As already underlined in item I of the previous section, it is expected that such collisionless equilibria are
rapidly reached by the system (on a few Tsec) through an efficient out-of-equilibrium violent relaxation.
In addition, we also assume that the symmetry of the system is such that collisionless equilibria are of
the form

F (J ,θs, τ) = F (J , τ) , (6.48)
so that throughout its evolution, the system’s averaged DF F does not depend on the slow angles θs.
At this stage, let us note that in the present quasi-Keplerian context, for which additional conserved
quantities other than the actions J are available (namely the slow angles θs), the assumption from equa-
tion (6.48) limits the breadth of collisionless equilibria which can considered. For example, lopsided
collisionless equilibria, such as the one expected in M31, cannot be considered. Despite the assump-
tion from equation (6.48), let us emphasise however that the system’s averaged autocorrelation C, which
evolves according to equation (6.46), still depends on the two slow angles θs

1 and θs
2. Finally, let us

assume that the system’s symmetry also guarantees that

F =F (J) ⇒ Φ=Φ(J) and Φr =Φr(J) . (6.49)

One should note that the previous assumptions, while being restrictive, are still satisifed, among oth-
ers, for two important cases namely razor-thin axisymmetric discs (see section 6.6.1) and 3D spherical



174 CHAPTER 6. QUASI-KEPLERIAN SYSTEMS

systems (see section 6.6.2). When assuming equations (6.48) and (6.49), the equilibrium condition from
equation (6.47) is then immediately satisfied. Finally, let us introduce the total precession frequencies
Ωs as

Ωs(J) =
∂[Φ+Φr]

∂J s
. (6.50)

These frequencies capture the precession of the slow angles θs, i.e. the precession of the Keplerian
wires induced by the joint contributions from the system’s self-consistent potential Φ and the relativistic
corrections Φr. Let us note that these frequencies do not involve the Keplerian frequencies from equa-
tion (6.17), and are therefore a priori non-degenerate. The two evolution equations (6.45) and (6.46) can
then be rewritten as

∂F

∂τ
+

1

N

∫
dE2

[
C(E1,E2), U12

]
(1)

= 0 , (6.51)

and

1

2

∂C
∂t

+Ωs
1 ·
∂C(E1,E2)

∂θs
1

− 1

(2π)d−k
∂F

∂J s
1

· ∂U12

∂θs
1

−
∫

dE3 C(E2,E3)
∂F

∂J s
1

· ∂U13

∂θs
1

+(1↔2) = 0 . (6.52)

At this stage, let us emphasise how the two coupled evolution equations (6.51) and (6.52) are similar
to the non-degenerate equations (2.107) and (2.108). The only differences correspond to changes in the
prefactors, as well as to the fact that only derivatives w.r.t. the slow angles and actions θs and J s are
present in the quasi-Keplerian context. Relying on these strong similarities, we may follow the same
method as in Appendix 2.B to derive the kinetic equation satisfied by the averaged DF F . Because of
these analogies, we do not repeat here this derivation, but refer to Appendix B in Fouvry et al. (2016d)
for a detailed presentation of this derivation. As a brief summary, let us recall the main steps of this
calculation. The first step is to solve equation (6.52) to obtain the system autocorrelation C as a functional
of the system’s 1−bodyDF F . To do so, one relies on Bogoliubov’s ansatz, which assumes that F evolves
on timescales much larger than the one associated with C. Injecting this inverted expression of C in
equation (6.51), one finally obtains the closed kinetic equation satisfied by F only. This is the degenerate
inhomogeneous Balescu-Lenard equation, that we will now present in detail.

6.5.1 The one-component Balescu-Lenard equation
Once the two coupled equations (6.51) and (6.52) are solved, one gets the degenerate inhomogeneous
Balescu-Lenard equation reading

∂F

∂τ
=
π(2π)2k−d

N

∂

∂J s
1

·
[ ∑
ms

1,m
s
2

ms
1

∫
dJ2

δD(ms
1 ·Ωs
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|Dms
1,m
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(J1,J2,ms

1 ·Ωs
1)|2

×
(
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1 ·
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∂J s
1

−ms
2 ·

∂

∂J s
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)
F (J1, τ)F (J2, τ)

]
. (6.53)

Let us first strongly emphasise how this degenerate Balescu-Lenard equation ressembles the non-
degenerate one from equation (2.67). Let us recall now some important properties of this diffusion
equation. In equation (6.53), we noted as d the dimension of the physical space, k the number of dy-
namical degeneracies of the underlying zeroth-order potential (here the Keplerian potential induced by
the BH). The r.h.s. of equation (6.53) is the degenerate inhomogeneous Balescu-Lenard collision op-
erator. It captures the secular diffusion of Keplerian wires induced by finite−N fluctuations, i.e. it
describes the distortion of these wires as their actions diffuse through their self-interaction. Of course,
because it was obtained thanks to a kinetic development at order 1/N , the r.h.s. of equation (6.53) van-
ishes in the limit N→+∞. Equation (6.53) also encompasses a resonance condition via the Dirac delta
δD(ms

1 ·Ωs
1−ms

2 ·Ωs
2) (with the shortened notation Ωs

i=Ωs(Ji)), where ms
1, ms

2∈Zk are integer reso-
nance vectors. It is important to note here that this resonance condition only involves the precession
frequencies of the Keplerian wires. As already noted previously, for a given resonance vectorms

1, the
diffusion in action space will occur along the discrete direction given by this vector. One should finally
interpret the integration over the dummy variable J2 as a scan of action space looking for regions where
the resonance condition is satisfied. These resonant distant encounters between precessing Keplerian
wires are the drivers of the collisional evolution. In analogy with figure 2.3.2, we illustrate in figure 6.5.1
this resonance condition on precession frequencies. We also note that equation (6.53) involves the an-
tisymmetric operator, ms

1 ·∂/∂J s
1−ms

2 ·∂/∂J s
2, which when applied to the quadratic term F (J1)F (J2)
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Figure 6.5.1: Illustration of the resonance condition δD(ms
1 ·Ωs

1−ms
2 ·Ωs

2) appearing in the degenerate inhomoge-
neous Balescu-Lenard equation (6.53) in the case of a razor-thin axisymmetric disc. Top-left panel: A set of two
resonant Keplerian wires precessing at the same frequency ωs. Top-right panel: The same two wires in the rotating
frame at frequency ωs in which the two orbits are in resonance. Bottom panel: Fluctuations of the system’s DF
in action space caused by finite−N effects and showing overdensities for the blue and red wires. The dashed line
corresponds to the critical resonant line in action space along which the resonance condition Ωs =ωs is satisfied.
The two wires satisfy a resonance condition for their precession frequencies. Uncorrelated sequences of such res-
onant interactions will lead to a secular diffusion of the system’s orbital structure following equation (6.53). These
resonances are non-local in the sense that the two resonant orbits need not be close in position nor in action space.
As emphasised in section 6.6.1, in razor-thin axisymmetric discs, the system’s symmetry enforcesms

1 =ms
2, i.e. the

two orbits are caught in the same resonance.

"weighs" the relative number of pairwise resonant orbits caught in the resonant configuration. Because
it accounts for collective effects, i.e. the dressing of fluctuations by the system’s susceptibility, equa-
tion (6.53) involves the dressed susceptibility coefficients 1/Dms

1,m
s
2
(J1,J2, ω). In the quasi-Keplerian

context, the dressed susceptibility coefficients from equation (2.50) become

1

Dms
1,m

s
2
(J1,J2, ω)

=
∑
p,q

ψ
(p)

ms
1
(J1)

[
I−M̂(ω)

]−1

pq
ψ

(q)∗
ms

2
(J2) , (6.54)

where I stands for the identity matrix and M̂ is the system’s averaged response matrix. In the quasi-
Keplerian context, the response matrix from equation (2.17) becomes

M̂pq(ω) = (2π)k
∑
ms

∫
dJ

ms ·∂F/∂J s

ω−ms ·Ωs
ψ

(p)∗
ms (J)ψ

(q)

ms(J) . (6.55)

One can note that in equations (6.54) and (6.55), we had to rely on the matrix method (see section 2.2.2)
to relate the DF’s perturbations to the induced potential perturbations. In the non-degenerate case,
this requires the introduction of a biorthonormal basis of potentials and densities (ψ(p), ρ(p)) satisfying
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equation (2.12). In the degenerate quasi-Keplerian context, we rely on the same method and introduce
a basis of potentials and densities satisfying similarly

ψ(p)(x) =

∫
dx′ ρ(p)(x′)U(|x−x′|) ;

∫
dxψ(p)(x) ρ(q)∗(x) = −δqp . (6.56)

Equation (6.56) is identical to equation (2.12), except for the fact that equation (6.56) involves the rescaled
interaction potential,U , from equation (6.13). Once the basis elementsψ(p) specified, one can define their
average ψ(p) following equation (6.26). Finally, following the convention from equation (2.6), we define
their Fourier transform w.r.t. the slow angles θs as

ψ
(p)

(E) =
∑
ms

ψ
(p)

ms(J) eims·θs

; ψ
(p)

ms(J) =

∫
dθs

(2π)k
ψ

(p)
(E) e−ims·θs

. (6.57)

Inspired by the various rephrasings presented in section 2.3.4, it is straighforward to rewrite equa-
tion (6.53) as an anisotropic self-consistent non-linear diffusion equation, by introducing the associated
drift and diffusion coefficients. The non-degenerate equation (2.68) becomes for quasi-Keplerian sys-
tems
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∂τ
=

∂

∂J s
1

·
[∑
ms

1

ms
1

(
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(J1)F (J1) +Dms
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)]
, (6.58)

whereAms
1
(J1) andDms

1
(J1) stand respectively for the degenerate drift and diffusion coefficients associ-

atedwith a given resonancems
1. The Balescu-Lenard equation being a self-consistent integro-differential

equation, these drift and diffusion coefficients secularly depend on the system’s averaged DF, but this
was not written out explicitly to simplify the notations. Similarly to equations (2.69) and (2.70), the
degenerate drift and diffusion coefficients appearing in equation (6.58) are given by
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As presented in section 2.3.5, when neglecting collective effects (i.e. when neglecting the last term of
equation (6.52)), the degenerate inhomogeneous Balescu-Lenard equation (6.53) becomes the degenerate
inhomogeneous Landau equation reading
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where, as in equation (2.74), we introduced the averaged bare susceptibility coefficients Ams
1,m

s
2
(J1,J2)

as
Ams

1,m
s
2
(J1,J2) =

∫
dθs
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s
2) , (6.61)

where the averaged rescladed wire-wire interaction potential U12 was introduced in equation (6.37).
As a final remark, let us note that the degenerate Balescu-Lenard equation (6.53) (similarly for the

associated Landau equation (6.60)), while defined on the full action space J=(J s,J f), does not allow
for changes in the fast actions J f . Indeed, let us define the marginal DF, PF , as PF =

∫
dJ sF (J). Equa-

tion (6.53) then gives
∂PF
∂τ

= 0 . (6.62)

As a consequence, in the degenerate context, the collisional secular diffusion only occurs in the directions
J f =cst. Such a conservation of the individual fast actions of the particles is a direct consequence of the
adiabatic invariance of these actions, whose associated intrinsic frequencies are much faster than the
precession frequencies involved in the collisional diffusion.
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6.5.2 The multi-component Balescu-Lenard equation
Similarly to what was presented in section 2.3.6, one may also generalise the degenerate Balescu-Lenard
equation (6.53) to a system of multiple components. This is of particular relevance for quasi-Keplerian
systems such as galactic nuclei, for which one expects that the joint presence of multiple type of stars or
black holes orbiting a central super massive black hole could be of importance for the system’s fate, by
inducing for example relative segregation.

As in equation (2.76), let us assume that the considered system is made of various components in-
dexed by the letters "a" and "b". The particles of the component "a" have an individual mass µa and
follow the DF F a. As detailed in Appendix 6.B (which also details all the normalisations used), the
evolution of each DF is then given by the multi-component degenerate inhomogeneous Balescu-Lenard
equation reading

∂F a
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. (6.63)

In equation (6.63), we introduced the dimensionless relative mass ηa =µa/M?, whereM?=
∑

aM
a
? is the

total active mass of the system. Here, ηa, which scales like 1/Na with Na the number of particles of the
component "a", plays the role of a small parameter and replaces the prefactor 1/N present in the one-
component equation (6.53). In the multi-component case, the dressed susceptibility coefficients are still
given by equation (6.54). However, as already noted in equation (2.77), the system’s response matrix
now encompasses all the active components of the system, so that equation (6.55) becomes

M̂pq(ω) = (2π)k
∑
ms
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ms ·∂(
∑

b F
b)/∂J s
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ms(J) . (6.64)

In the limit where only one component is considered, one has ηa =1/Na, and equation (6.63) returns to
the single mass Balescu-Lenard equation (6.53). The multi-component Balescu-Lenard equation (6.63)
describes the evolution of the component "a". It differs from the one-component Balescu-Lenard equa-
tion (6.53) via the weight ηa, as well as via the sum over all the other components "b" weighted by the
factor ηb.

Similarly to the non-degenerate equation (2.78), one can rewrite equation (6.63) as an anisotropic
non-linear diffusion equation reading
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where we introduced the multi-component degenerate drift and diffusion coefficients Ab
ms

1
(J1) and

Db
ms

1
(J1), which depend in particular on the component "b" used as the underlying DF to estimate them.

Similarly to the non-degenerate drift anddiffusion coefficients from equations (2.79) and (2.80), they read
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Finally, following equation (2.81), a final enlightening rewriting of equation (6.65) is possible as
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where, similarly to equation (2.82), we introduced the total drift and diffusion coefficients Atot
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(J1) and
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(J1) as
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In equation (6.67), let us emphasise that the total drift coefficients are multiplied by the dimension-
less mass ηa of the considered component. This essentially captures the process of segregation, when
multiple masses are involved, as components with larger individual masses will secularly tend towards
narrower steady states. This can be seen for example in equation (6.67) by seeking asymptotic stationary
states to equation (6.67) by nulling the curly brace in its r.h.s.

As a final remark, let us note that the demonstration in section 2.3.7 that the non-degenerate Balescu-
Lenard equation (2.67) satisfies aH-theorem for Boltzmann’s entropy naturally extends to the degenerate
case. Therefore, the degenerate Balescu-Lenard equation (6.53) and Landau equation (6.60) satisfy a H-
theorem for the system’s entropy defined similarly to equation (2.83) as S(τ)=−

∫
dJ1s(F (J1)). Finally,

following equation (2.91), themulti-component degenerate Balescu-Lenard equation (6.63) satisfies sim-
ilarly a H-theorem for the system’s total entropy defined as Stot(τ)=−

∫
dJ1

∑
a(1/ηa)s(F a(J1)).

6.6 Applications
In the previous sections, we detailed how one could describe the secular dynamics of a system com-
posed of a finite number of particles orbiting a central massive object. In the derivation of the degen-
erate Balescu-Lenard equation (6.53), we especially assumed in equation (6.49), that the symmetry of
the considered system was such that DFs F depending only on the actions would lead to self-consistent
potentials Φ depending as well only on the actions. Let us now examine in turn some more specific
configurations for which the assumption from equation (6.49) is indeed satisfied, and discuss how the
previous results can be further extended for these specific geometries. This will allow us to underline
the wealth of possible physical implications one can draw from this general framework. Sections 6.6.1
and 6.6.2 will respectively consider the cases of razor-thin axisymmetric discs and 3D spherical systems,
while in section 6.6.3, we will detail how the present formalism allows us to recover the phenomenon of
relativistic Schwarzschild barrier (Merritt et al., 2011) recently discovered in N−body simulations.

6.6.1 Razor-thin axisymmetric discs
As a first case of interest, let us specialise the Balescu-Lenard equation (6.53) to razor-thin axisymmetric
discs. The dimension of the physical space is d=2, while the number of degeneracies of the Keplerian
dynamics is k=1. For such systems, the resonance condition from equation (6.53) becomes a simpler
1D resonance condition naively reading ms

1Ωs
1−ms

2Ωs
2 =0. Let us now detail how the Balescu-Lenard

equation (6.53) can be further simplified in the case of razor-thin discs, as a consequence of additional
symmetries of the pairwise interaction potential. For razor-thin discs, the Delaunay angle-action coor-
dinates from equation (6.19) become

(J ,θ) = (J1, J2, θ1, θ2) = (J s, J f , θ1, θ2) = (L, I, g, w) . (6.69)

Introducing the polar coordinates (R,φ), the rescaled interaction potential U12 from equation (6.13) can
be written as

U12 = − GM•
|x1−x2|

= − GM•√
R2

1+R2
1−2R1R2 cos(φ1−φ2)

. (6.70)

Following equations (5.20) and (5.22) of Merritt (2015), the mapping from the physical polar coordinates
to the 2D Delaunay angle-action coordinates reads

R = a(1−e cos(η)) ; φ = g+f , (6.71)

where we introduced the semi-major axis a, the eccentricity e, the true anomaly f , and the eccentric
anomaly η as

a =
I2

GM•
; e =

√
1−(L/I)2 ; f = tan−1

[√
1−e2 sin(η)

cos(η)−e

]
; w = η−e sin(η) . (6.72)

These mappings allow us to rewrite the interaction potential from equation (6.70) as

U12 = U(g1−g2, w1, w2,J1,J2) =⇒ U12 = U(g1−g2,J1,J2) . (6.73)

Because of this dependence, the bare susceptibility coefficients from equation (6.61) satisfy
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(J1,J2) . (6.74)
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Let us now show that a similar relation also holds for the dressed susceptibility coefficients from
equation (6.54). When computing the responsematrix for razor-thin stellar discs in chapter 4, we already
emphasised in equation (4.5) that the basis elements for a razor-thin disc may generically be written as

ψ(p)(R,φ) = ei`p U`pnp(R) , (6.75)

where `p and np are two integer indices, and U`n are radial functions (see figure 4.3.5 for an illustration
of possible radial functions). With the decomposition from equation (6.75), one can note that the az-
imuthal and radial dependences have been disentangled. In the mapping from equation (6.71), only the
azimuthal angle φ depends on the slow angle g, so that the Fourier transformed averaged basis elements
from equation (6.57) satisfy

ψ
(p)

ms(J) = δm
s

`p ψ
(p)

ms(J) . (6.76)

As a consequence, the system’s response matrix from equation (6.55) satisfies

M̂pq(ω) = δ`
q

`p M̂pq(ω) . (6.77)

The two properties from equations (6.76) and (6.77) finally allow us to rewrite the dressed susceptibility
coefficients from equation (6.54) as
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1
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, (6.78)

so that both the bare and dressed susceptibility coefficients satisfy similar relations.
The two additional symmetry properties from equations (6.74) and (6.78) allow us to simplify the

resonance condition of the Balescu-Lenard equation (6.53). For razor-thin discs, one can write
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where we introduced the system’s unique total dressed susceptibilty coefficient as

1
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If one neglects collective effects, equation (6.79) becomes the associated Landau equation, for which the
total dressed susceptibility coefficient 1/|Dtot(J1,J2)|2 should be replaced by the bare one |Atot(J1,J2)|2
reading

|Atot(J1,J2)|2 =
∑
ms

1

|ms
1| |Ams

1,m
s
1
(J1,J2)|2 . (6.81)

The Landau analog of equation (6.79) for razor-thin axisymmetric discs with the bare susceptibility coef-
ficients from equation (6.81) was also recently derived in Sridhar & Touma (2016c) via Gilbert’s equation.

Thanks to these additional symmetries, the degenerate Balescu-Lenard equation (6.79) for razor-thin
discs involves a simpler resonance condition, which constrains resonant encounters to occur only be-
tween Keplerian wires caught in the same resonance, as illustrated in figure 6.5.1. Finally, in order to
compute effectively the diffusion flux from equation (6.79), one can follow the exact same approach
as detailed in section 4.2.5 to deal with the resonance condition. We do not repeat here this method.
More details can be found in section 6.1 of Fouvry et al. (2016d). Thanks to equations (6.36) and (6.103),
one can compute the two quasi-stationary potentials Φ and Φr, which respectively capture the contri-
butions from the self-induced potential as well as the relativistic corrections. One can then estimate the
associated precession frequencies Ωs, thanks to which the critical resonant lines γ(ω)={J |Ωs(J)=ω}
can be determined. These curves characterise the set of all orbits which precess at the same frequency
ω. As already emphasised in equation (4.29), the calculation of the diffusion flux then only involves
a simple one-dimensional integral of a regular integrand along these resonant lines. In the context of
quasi-Keplerian systems, one expects two additional difficulties. The first one is associated with the
calculation of the wire-wire interaction potential U12 from equation (6.37), which exhibits a diverging
behaviour as one considers the interaction of nearbywires (see, e.g., Touma et al. (2009) andAppendix A
in Touma & Sridhar (2012)). The second difficulty arises from the calculation of the system’s response
matrix given by equation (6.55), which, as already emphasised in section 4.2.3, can be a cumbersome
and delicate task.
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6.6.2 Spherical clusters
Let us now specify the degenerate Balescu-Lenard equation (6.53) to 3D spherical systems. The dimen-
sion of the physical space is d=3, while the number of degeneracies of the Keplerian dynamics is k=2.
As a consequence, the resonance condition from equation (6.53) becomes two-dimensional. In the 3D
context, the Delaunay variables from equation (6.19) become

(J ,θ) = (J s
1, J

s
2, J

f
3, θ

s
1, θ

s
2, θ

f
3) = (L,Lz, I, g, h, w) , (6.82)

where, as previously, g stands for the angle from the ascending node to the periapse, h for the longitude
of the ascending node, and w for the mean anomaly, i.e. the Keplerian orbital phase. As in the previous
section, let us now detail how the 3D spherical geometry allows us to simplify the degenerate Balescu-
Lenard equation. Within the spherical coordinates (R, θ, φ), the rescaled interaction potential U from
equation (6.13) can be written as

U12 = − GM•
|x1−x2|

= −GM•
[
R2

1+R2
2−2R1R2

{
sin(θ1) sin(θ2) cos(φ1−φ2)+cos(θ1) cos(θ2)

}]−1/2

. (6.83)

Following equation (5.20) of Merritt (2015), the mapping from the physical spherical coordinates to the
Delaunay angle-action ones takes the form

R = a(1−e cos(η)) ; φ = h+tan−1
[

cos(i) tan(g+f)
]

; θ = cos−1
[

sin(i) sin(g+f)
]
, (6.84)

where a, e, f and ηwere previously introduced in equation (6.72). We also introduced the orbit’s inclina-
tion i as cos(i)=Lz/L. When used in equation (6.83), thesemappings immediately give the dependences

U12 = U(g1, g2, h1−h2, w1, w2,J1,J2) =⇒ U12 = U(g1, g2, h1−h2,J1,J2) . (6.85)

Computing the averaged bare susceptibility coefficients from equation (6.61), one immediately gets
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where we wrote the resonance vectors asms
1 =(ms

1,g,m
s
1,h), so that the coefficient ms

1,h is the one asso-
ciated with the slow angle h.

As in section 6.6.1, let us briefly emphasise how such a property also holds for the dressed suscep-
tibility coefficients from equation (6.54). For 3D systems, as already emphasised in equation (4.67), the
basis elements may generically be cast under the form

ψ(p)(R, θ, φ) = Y m
p

`p (θ, φ)U`pnp(R) , (6.87)

where `p,mp, and np are three integer indices, Y m` are the usual spherical harmonics, and U`n are radial
functions. We note in themappings from equation (6.84) that only the azimuthal angle φ depends on the
slow angle h. Because the spherical harmonics are of the form Y m` (θ, φ)∝Pm` (cos(θ)) eimφ, wherePm` are
Legendre polynoms, one immediately gets from equation (6.57) that the averaged Fourier transformed
basis elements satisfy

ψ
(p)

ms(J) = δ
ms
h

mp ψ
(p)

ms(J) . (6.88)

The expression (6.55) of the system’s response matrix then straightforwardly satisfies

M̂pq(ω) = δm
q

mp M̂pq(ω) . (6.89)

The combination of the two properties from equations (6.88) and (6.89) allow us to finally rewrite the
dressed susceptibility coefficients from equation (6.54) as

1

Dms
1,m

s
2
(J1,J2, ω)

= δ
ms

2,h

ms
1,h

1

Dms
1,m

s
2
(J1,J2, ω)

, (6.90)

so that they satisfy the same symmetry relation than the bare susceptibility coefficients.
Thanks to the two additional symmetries properties from equations (6.86) and (6.90), one may now

simplify the resonance condition from the Balescu-Lenard equation (6.53), so that in the context of 3D
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spherical systems it becomes
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)
F (J1)F (J2)

]
, (6.91)

where the resonance vectorswerewritten asms
1 =(ms

1,g,m
s
1,h). It is straightforward to obtain the Landau

equation associated with the Balescu-Lenard equation (6.91). This only amounts to neglecting collective
effects, and therefore perform the substitution 1/|D|2→|A|2. Let us note that in the 3D case, the 1.5PN
relativistic precession frequencies obtained in equation (6.104) depend on the action Lz , so that, at this
stage, further simplifications of equation (6.91) are not possible anymore. To effectively evaluate the
diffusion flux in equation (6.91), one may follow the method presented in section 4.2.5, by identifying
the system’s critical surfaces of resonance. We do not detail these calculations here.

6.6.3 Relativistic barrier crossing
As a final discussion of the physical content of the Balescu-Lenard equation (6.53), let us now illustrate
how this degenerate diffusion equation allows for a qualitative description of the Schwarzschild barrier
encountered by stars as they diffuse towards the central BH. This Schwarzschild barrier was discovered
in Merritt et al. (2011) via simulations of spherically symmetric clusters. Here, in order to clarify the
upcoming discussion, we will consider the case of a razor-thin axisymmetric disc of stars, whose secular
evolution is described by equation (6.79), but the same idea applies to the 3D case. In the resonance con-
dition from equation (6.79), let us recall that the precession frequency Ωs, as defined in equation (6.50),
is composed of two components. The first one comes from the system’s self-consistent potential (equa-
tion (6.36)) and reads

Ωs
self(L1, I1) =

∂

∂L1

[
Φ(L1, I1)

]
=

∂

∂L1

[∫
dE2 F (E2)U12

]
. (6.92)

The second contribution comes from the relativistic effects occurring in the vicinity of the BH. These
precession frequencies are briefly recovered in Appendix 6.A. For a razor-thin disc, they read

Ωs
rel(L, I) =

1

2π

M•
M?

(GM•)
4

c2

[
− 3

I3L2
+
GM•
c

6s

I3L3

]
. (6.93)

Let us now study how these precession frequencies depend on the distance to the central BH. Following
the timescale comparisons of Kocsis & Tremaine (2011), one expects the relativistic precession frequency
Ωs

rel to dominate close to the BH (and diverge as stars get closer to capture), while the self-consistent one,
Ωs

self , will be the largest in the vicinity of the considered disc. Figure 6.6.1 illustrates the typical behaviour
of these precession frequencies. In order to induce a diffusion, the Balescu-Lenard equation (6.79) re-
quires the resonance condition Ωs

tot(J1)−Ωs
tot(J2)=0 to be satisfied. In figure 6.6.1, we illustrate that

for a given value of the precession frequency ωs, one can identify the associated locations in the disc
where the resonance condition is satisfied. Let us also recall that equation (6.79) involves the quadratic
factor F (J1)F (J2), i.e. the product of the system’s DF in the two locations which are in resonance. As
a consequence, because the disc is only located in the outer regions of the BH, the resonant coupling
between two locations within the disc will be much stronger, than the resonant coupling involving one
resonant location in the very inner regions of the system close to the BH. In figure 6.6.1, this corre-
sponds to the fact that the resonant coupling between the two outer dots will be much larger than the
couplings involving the inner dot in the vicinity of the BH. As stars migrate even closer to the BH, the
situation gets even worse, because the required precession frequency to allow for a resonant coupling
then becomes too large to resonate with any part of the disc. For such a situation, no efficient resonant
couplings are possible and the diffusion is drastically suppressed. As a conclusion, the divergence of
the relativistic precession frequencies in the neighbourhood of the BH implies that stars whose orbits
diffuse inwards closer to the BH will experience a steep rise in their own precession frequency, which
prevents them from being able to resonate with the disc, leading to a strong suppression of any further
inward diffusion. This is the so-called Schwarzschild barrier.

Such an explanation of the Schwarzschild barrier via the notion of resonant coupling is directly re-
lated to the explanation proposed in Bar-Or & Alexander (2014) relying on the concept of adiabatic
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R

Ωs

ωs

Ωs
rel

Ωs
self

Ωs
tot

Disc

Figure 6.6.1: Illustration of the typical dependence of the precession frequencies Ωs
self and Ωs

rel (equations (6.92)
and (6.93)) as a function of the distance to the central BH. The relativistic precession frequencies Ωs

rel diverge as stars
get closer to the BH, while the self-consistent precession frequencies Ωs

self are typically the largest for stars in the
neighbourhood of the considered disc. The black dots give all the locations in the disc, whose precession frequency
is equal to ωs, as illustrated by the dotted horizontal line. Because these disc’s locations are in resonance they will
contribute to the Balescu-Lenard equation (6.53). Equation (6.53) involves the product of the system’s DF in the
two resonating locations. As a consequence, here the resonant coupling between the two outer points, which both
belong to the region where the disc dominates, will be much stronger, than the couplings involving the inner point,
which does not belong to the core of the disc. As stars move inward, because of the relativistic corrections, their
precession frequencies increase up to a point where it prevents any resonant coupling with the disc’s region. This
drastically suppresses the diffusion and induces a diffusion barrier.

invariance. In this picture, a test star may undergo resonant relaxation if the timescale of its relativistic
precession is longer than the coherence time of the perturbations induced by the field stars and felt by
this test star. As the typical coherence time of the perturbations scales like the inverse of the typical fre-
quency of the field stars (which lie within the cluster), the requirement for an efficient resonant diffusion
from the adiabatic invariance point of view is equivalent to the requirement from the point of view of
the resonance condition of the Balescu-Lenard equation.

Let us illustrate this diffusion barrier in the neighbourhood of the BH by considering the orbit-
averaged motion of individual Keplerian wires. The degenerate Balescu-Lenard equation (6.79) for
razor-thin discs, is a diffusion equation in action space, which describes self-consistently the evolu-
tion of the whole system’s DF. Instead of describing the dynamics of the system’s DF, one could also
be interested in describing the associated stochastic evolution of individual Keplerian wires. From the
ensemble average of these individual dynamics, one should recover the self-consistent DF’s diffusion
equation (6.79). Following Appendix 6.C, let us rewrite equation (6.79) as

∂F

∂τ
=

∂

∂L

[
A(J , τ)F (J , τ) +D(J , τ)

∂F

∂L

]
. (6.94)

Equation (6.94) is the self-consistent anisotropic Fokker-Planck equation which describes the evolution
of the disc’s DF as a whole. In Appendix 6.C, we show how one can obtain from equation (6.94) the
corresponding stochastic Langevin equation, which captures the secular dynamics of individual test
Keplerian wires. Let us therefore denote as J (τ)=(L(τ), I(τ)) the position at time τ of a test wire in
the 2D action space J=(L, I). Following equation (6.128), the dynamics of this test wire takes the form

dL
dτ

= h(J , τ) + g(J , τ) Γ(τ) ;
dI
dτ

= 0 . (6.95)

In equation (6.95), the 1D Langevin coefficients h and g describe the diffusion of the wire in the
L−direction. They follow from equation (6.130) and read

h = −A+
∂D

∂L
−
√
D
∂
√
D

∂L
; g =

√
D , (6.96)

while the stochastic Langevin force Γ(τ) follows the statistics from equation (6.129). In equation (6.95),
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as already underlined in equation (6.62), we recover the fact that the individual fast action J f =I is
conserved during the wire’s resonant relaxation.

Let us insist on the fact that equation (6.95) is a rewriting of the Balescu-Lenard equation (6.79) to
capture individual dynamics. The Langevin equation (6.95) therefore describes the diffusion of an in-
dividual test Keplerian wire embedded in the self-induced noisy environment described by the drift
and diffusion coefficients from the Balescu-Lenard equation (6.79). Let us note that because the rewrit-
ing from equation (6.95) is a self-consistent rewriting of the system’s dynamics, it could be used iter-
atively to integrate forward in time the Balescu-Lenard equation (6.79). Rather than having to inte-
grate forward in time the system’s DF as a whole, equation (6.95) only requires to integrate forward in
time first order stochastic differential equations. To do so, one would discretise equation (6.95) in time
as Li+1 =Li+(dL/dτ)i∆τ , while sampling initial L0s to match the system’s initial DF. Let us empha-
sise that the individual stochastic equations (6.95) share some striking similarities with the individual
Hamilton’s equations associated with the total Hamiltonian from equation (6.7). However, the gain of
the present Langevin rewriting is to allow for individual timesteps, ∆τ , orders of magnitude larger than
the original ones required to solve for the trajectories of individual stars. Indeed, the Langevin equation
focuses directly on the dynamics of Keplerian wires instead of stars themselves. The integration of the
fast Keplerian orbital motion does not need to be performed. In addition, it also deals seamlessly with
the relativistic corrections, which are already integrated upon the fast angles.

Let us finally illustrate qualitatively in figure 6.6.2 the dynamics of individual wires as given by equa-
tion (6.95). Figure 6.6.2 follows the representations from Bar-Or &Alexander (2016), by representing the

j

a

γωsSch.

Ωs

Figure 6.6.2: Qualitative illustration of the individual diffusion of Keplerian wires in the (j, a)=(L/I, I2/(GM•))
space, as given by the Langevin equation (6.95). The grey region corresponds to the capture region, within which
stars inevitably sink into the BH. Because the fast action I is conserved during the diffusion (see equation (6.95)),
wires’ diffusion is one-dimensional, conserves a, and occurs only in the j−direction. The background contours illus-
trate the contour lines of the precession frequency, i.e. of the function (j, a) 7→Ωs(j, a). As illustrated in figure 6.6.1,
the precession frequencies drastically increase as wires approach the central BH, because of the contributions from
the relativistic corrections. The blue and red wires precess at the same frequency ωs, as they belong to the same
critical line γωs . This allows them to resonate one with another. Because the precession frequencies diverge in the
vicinity of the BH, such resonant couplings are much less likely as wires get closer to the BH. This effectively creates
a diffusion barrier in action space, the so-called Schwarzschild barrier.

diffusion of wires in the (j, a)=(L/I, I2/(GM•)) space. As emphasised in equation (6.95), during the
diffusion, the fast action I of the stars is conserved, so that they diffuse only in the j−direction, along
a=cst. lines. Individual wires may resonate with other wires precessing at the same frequency, such
as the blue and red wires in figure 6.6.2. However, as already illustrated in figure 6.6.1, because of the
relativistic corrections, the precession frequencies diverge as stars get closer to the BH. This increase in
the precession frequencies forbids then any resonant coupling between a star in the inner fast precessing
region and stars belonging to the disc itself, where the precession frequencies are much smaller. Reso-
nances becoming impossible, the diffusion is suppressed and wires cannot keep diffusing closer to the
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central BH. This strong suppression of the diffusion is the Schwarzschild barrier. The present explica-
tion of the Schwarzschild barrier is essentially the same than the one proposed in Bar-Or & Alexander
(2014), which relied on the adiabatic invariance of the angularmomentum induced by the fast relativistic
precessions in the vicinity of the BH.

Our previous calculations explained the existence of a Schwarzschild barrier, which strongly sup-
presses the supply of tightly bound matter to the BH. As a final remark, let us note that the numerical
analysis of Merritt et al. (2011) suggested that, in practice, this suppression is most probably tempered
by simple two-body relaxation (not accounted for in the orbit-averaged approach followed in this sec-
tion). Two-body relaxation then provides an additional mechanism to transport stars even closer to the
BH, once resonant relaxation becomes inefficient. This was recently demonstrated in detail in Bar-Or
& Alexander (2016), which showed that adiabatic invariance (i.e. the damping of resonant relaxation)
limits the effects of resonant relaxation to a region well away of the loss lines. The dynamics of accretion
of stars by the BH is then only very moderately affected by such resonant diffusions.

6.7 Conclusion
Supermassive BHs absorb stars and debriswhose orbits reach the loss-cone (Frank&Rees, 1976; Vasiliev
& Merritt, 2013), the region of phase space associated with unstable orbits, which take them directly
into the BH or close enough to strongly interact with it. Such accretions affect the secular evolution
of the BH’s mass and spin, which is of particular interest to understand BH’s demographics and AGN
feedback (Volonteri et al., 2016). These accretion events also provide information on stars, debris and
gas blobs in the vicinity of the BH: for example, the continuous loss of stars can effectively reshape
the central stellar distribution of the cluster (e.g., Genzel et al., 2000). All these processes have specific
observable signatures, such as the binary capture and ejection of hyper-velocity stars (Hills, 1988), tidal
heating and disruption (Frank & Rees, 1976), and eventually gravitational waves emission produced by
inspiraling compact remnants (Abbott et al., 2016). These various mechanisms also offer the possibility
for indirect detections of BHs, and for tests of general relativity in the strong field limit (Blanchet, 2014).
A new generation of interferometers, such as Gravity (Jocou et al., 2014), now have for primary goal to
understand the dynamics of stars in the vicinity of super massive BHs.

In this chapter, we presented how the generic Balescu-Lenard formalism can be tailored to describe
the secular evolution of quasi-Keplerian systems, such as galactic nuclei, by appropriately dealing with
the dynamical degeneracy of the mean motion. We therefore derived the collisional degenerate kinetic
equation (6.53) describing the secular evolution of such systems at order 1/N . Because purely Keplerian
orbits do not precess, the dynamical evolution of degenerate systems may significantly differ from that
of fully self-gravitating systems, such as the stellar discs considered in the previous chapters. In the
quasi-Keplerian context, stars behave as if they were smeared out onto their orbit-averaged Keplerian
wires, and the secular collisional evolution of the system is then described by accounting for the dressed
interactions between such wires. These wires undergo a resonant relaxation, sourced by the system’s
intrinsic Poisson shot noise, leading to the appearance of sequences of uncorrelated polarised density
waves, whose net effect is to diffuse the system’s orbital structure on secular timescales. The degenerate
Balescu-Lenard equation (6.53) satisfies some essential properties. It is quadratic in the angle-averaged
system’s DF, accounts for the system’s self-gravity as well as possible post-Newtonian corrections. This
equation is sourced by the discreteness of the cluster and describes the resonant coupling between the
system’s wires. It can also account for a spectrum ofmasses via equation (6.63). The degenerate Balescu-
Lenard equation (6.53) is therefore the quasilinear self-consistentmaster equation quantifying the effects
of resonant relaxation. It provides a rich framework inwhich to describe the evolution of quasi-Keplerian
systems on cosmic times, such as galactic centres, or debris discs, which are an interesting venue in the
context of planet formation (Tremaine, 1998).

The principal ingredient used in the proposed derivation was the phase averaging of the two first
equations of the BBGKY hierarchy over the fast angle associated with the BH-induced dominant Ke-
plerian motion. Direct consequences of this phase average include that the associated fast actions are
adiabatically conserved. As such, this description of the dynamics of Keplerian wires does not allow
for the capture of the effects associated with mean motion resonances and direct 2−body relaxation.
However, this is usually appropriate because the derivation ignored terms of order O(1/N2), so that it
is valid for timescales of order NTsec. This timescale is expected to be much shorter than the 2−body
relaxation time. In sections 6.6.1 and 6.6.2, we specified the degenerate Balescu-Lenard equation to razor-
thin axisymmetric discs and spherical systems. Finally, in section 6.6.3, we investigated in particular the
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properties of resonant relaxation in the vicinity of super massive BHs. We showed that the degener-
ate Balescu-Lenard equation naturally captures the presence of Schwarzschild barrier (see figure 6.6.2),
where the efficiency of the resonant collisional diffusion is significantly suppressed.

Various recent papers have tackled as well the question of describing the long-term dynamics of
quasi-Keplerian systems. The closest to the present derivation is the recent sequence of papers Sridhar
& Touma (2016a,b), which obtained evolution equations equivalent to equations (6.45) and (6.46), by
following a different route based on the approach of Gilbert (1968), which itself extended the works
of Balescu (1960); Lenard (1960) from plasma physics. In Sridhar & Touma (2016c), they relied on the
"passive response approximation" when considering razor-thin axisymmetric discs, which only allowed
for the recovery of the 2D razor-thin bare susceptibility coefficients from equation (6.81) and the Landau
version of equation (6.79).

Another very efficient way of modelling such quasi-Keplerian systems is by relying on Monte Carlo
methods, forwhich the internal Poisson shot noise due to the finite number ofwires is treated as an exter-
nally imposed perturbation (e.g., Madigan et al., 2011; Bar-Or & Alexander, 2014). This is a very flexible
method, especially if one wants to account for additional perturbations external to the cluster, such as
those coming from the near neighbourhood of the BH. The η−formalism recently introduced in Bar-Or
& Alexander (2014) and implemented in detail in Bar-Or & Alexander (2016) is one such scheme. Af-
ter imposing plausible constraints on the power spectrum of the self-induced discreteness noise, they
recovered the location of the Schwarzcshild barrier (interpreted in terms of adiabatic avariance), and
investigated the role of 2−body relaxation in the loss-cone problem. They showed in particular that on
longer timescales, 2−body non-resonant relaxation erases the Schwarzschild barrier, and argued that
resonant relaxation is effective only in a restricted region of action space away from the loss lines, so that
its overall effect on plunge rates remains small.

These approaches suffer from two shortcomings, which are the need for ad hoc assumptions on the
statistical characteristics of the cluster’s shot noise, and the difficulty to account for the cluster’s self-
gravity. These two elements are self-consistently accounted for in the Balescu-Lenard equation. Finally,
at the heart of the η−formalism lies an important distinction between field and test stars. Indeed, the
dynamics of the test stars are followed as they undergo the stochastic perturbations generated by the
field stars. Such a split was also used in the recent restrictedN−body simulations presented in Hamers
et al. (2014). In these simulations, the motion of each field star is followed along its precessing Keplerian
orbit (with a precession induced by both relativistic effects and the cluster’s self-consistent potential), but
interactions among field stars are ignored. The test stars are then followed by direct integration of their
motion in the time-varying potential due to the field stars. Such a method is especially useful in order to
characterise the typical properties of the stochastic perturbations generated by the field stars. Similarly
to the η−formalism, this approach ignores interactions among field stars (and among test stars), and
there is no back-influence of the test stars on the field ones. Let us finally note that in the course of this
chapter, we also presented in Appendix 6.C a Langevin rewriting of the Balescu-Lenard equation. This
approach combines the flexibility of Monte Carlo realisations with the self-consistent treatment offered
by the Balescu-Lenard approach. A subsequent improvement of this stochastic rewriting lies in the
possibility of adding to the dominant resonant relaxation, the secondary effects of two-body relaxation
and gravitational waves losses.

6.7.1 Future works
The previous specialisation of the Balescu-Lenard formalism to quasi-Keplerian systems offers possi-
bilities for numerous follow-up works. Let us first note that here we mainly focused on the dynamics
of galactic centres, but such methods could also be applied to the secular dynamics of protoplanetary
systems and debris discs, which form another vast class of quasi-Keplerian systems.

In the presence of external perturbations, one should be in a position to generalise the collisionless
formalism from section 2.2 to account for the long-term effects of stochastic perturbations. The main
difficulty here is that because the dynamics was described w.r.t. the central BH (see section 6.2), such
external perturbations may decentre the system and introduce non-trivial fictive forces, whose effects
on secular timescales have to be carefully studied. Another generalisation of this formalismwould be to
consider the secular dynamics of quasi-stationary lopsided configurations. Because such configurations
precess as a whole, this would first involve identifying new angle-action variables within which the
system could be considered as quasi-stationary and then extend the formalism to such configurations.

In order to illustrate qualitatively the mechanisms described in this chapter, one would benefit from
implementing the inhomogeneous degenerate Landau equation (i.e. without collective effects) for razor-
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thin axisymmetric discs. Most of themethods required for such a computationwere alreadypresented in
chapter 4. Themost challenging part of such a computation is thewire-wire interaction potential (Touma
et al., 2009; Touma & Sridhar, 2012), thanks to which the self-consistent precession frequencies as well
as the bare susceptibility coefficients can be estimated.

We emphasised in section 6.6.3, that as stars diffuse closer to the central BH, their precession fre-
quencies increase up to a point where resonant relaxation becomes inefficient: this is the Schwarzschild
barrier. The dynamics of stars in such a configuration is then driven by 2−body relaxation effects, which
allow stars to diffuse even further in. Such effects are induced by direct star-star interactions and cannot
be accounted for in the present orbit-averaged approach which focuses only on wire-wire interactions.
In order to get a better estimate of the infalling rate onto the BH, the next step would therefore be to
improve the present formalism to also account for direct 2−body relaxation, which has proven essential
for the late stages of the diffusion.

In Appendix 6.C, we described how the self-consistent Balescu-Lenard could be rewritten as a
stochastic Langevin equation to describe the collisional evolution of individual Keplerian wires. Such
a rewriting offers a promising way to integrate forward in time the diffusion equation. As this directly
involves Keplerianwires, one does not need to integrate the fast Keplerianmotion induced by the central
BH. This offers a significant timescale speed up for such N−wires implementation. This integration
in time would also allow us to self-consistenly account for the growth rate and spin up of the central
BH, as stars get absorbed. In this context, one could also investigate multi-component situations, where
mass segregation is expected to play an important role.



Appendix

6.A Relativistic precessions
In this Appendix, let us briefly detail the content of the averaged relativistic corrections encompassed
by the potential Φr present in equations (6.45) and (6.46). As we aim for explicit expressions of these
corrections, let us use the 3D Delaunay variables from equation (6.19). In addition, we assume for sim-
plicity that the spin of the BH is aligned with the z−direction and introduce its spin parameter 0≤s≤1.
We follow Merritt (2015) in order to recover explicit expressions for these precession frequencies.

The first relativistic correction is associated with a 1PN effect (i.e. a correction of order 1/c2), called
the Schwarzschild precession. Equation (5.103) inMerritt (2015) gives us that during one Keplerian orbit
of duration TKep =2π/ΩKep =2πI3/(GM•)

2, the slow angle g is modified by an amount

∆g1PN
rel = g(TKep)−g(0) =

6πGM•
c2a(1−e2)

. (6.97)

This precession corresponds to a precession of the orbit’s pericentre, while the orbit remains in its orbital
plane. To the change from equation (6.97), one can straightforwardly associate an averaged precession
frequency ġ1PN

rel =∆g1PN
rel /TKep reading

ġ1PN
rel =

3(GM•)
4

c2I3L2
=
∂H1PN

rel

∂L
, (6.98)

where the semi-major axis a and the eccentricity e respectively satisfy a=I2/(GM•) and 1−e2 =(L/I)2.
We also introduced the Hamiltonian H1PN

rel as

H1PN
rel (I, L) = −3(GM•)

4

c2
1

I3L
. (6.99)

The next order relativistic corrections are associated with a 1.5PN effect (i.e. a correction of order
1/c3) called the Lense-Thirring precession. Following equation (5.118) of Merritt (2015), during one
Keplerian orbit this effect leads to a precession of the slow angle g given by

∆g1.5PN
rel = g(TKep)−g(0) = −12πs

c3

[
GM•

(1−e2)a

]3/2

cos(i) , (6.100)

where we recall that we assume that the BH’s spin is aligned with the z−direction. We also introduced
the orbit’s inclination i such that Lz=L cos(i). One can straightforwardly associate a precession fre-
quency ġ1.5PN

rel =∆g1.5PN
rel /TKep to this change, so that

ġ1.5PN
rel = −6s

c3
(GM•)

5Lz
I3L4

=
∂H1.5PN

rel

∂L
. (6.101)

In equation (6.101), we introduced the Hamiltonian H1.5PN
rel , which captures the corrections associated

with the BH’s spin as

H1.5PN
rel (I, L, Lz) =

2s(GM•)
5

c3
Lz
I3L3

. (6.102)

Such a Hamiltonian also induces relativistic precessions w.r.t. the second slow angle h associated with
the slow action Lz . We do not detail here how these precessions are indeed correctly described by the
Hamiltonian H1.5PN

rel .

187



188 CHAPTER 6. QUASI-KEPLERIAN SYSTEMS

Let us finallywrite the explicit expression of the averaged potential correctionsΦr appearing in equa-
tions (6.45) and (6.46). One has to pay a careful attention to the normalisation conventions introduced
in equations (6.2), (6.14), and (6.38). One gets

Φr(I, L, Lz) =
1

(2π)d−k
M•
M?

[
H1PN

rel (I, L)+H1.5PN
rel (I, L, Lz)

]
. (6.103)

Following equation (6.50), this relativistic potential correction immediately leads to the associated pre-
cession frequencies Ωs

rel w.r.t. the slow angles θs, which reads
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]
. (6.104)

Let us finally note that gravitational waves and the associated dissipations (Hopman&Alexander, 2006)
are not accounted for in equation (6.104), hence the possibility to obtain a Hamiltonian formulation for
these precessions.

6.B Multi-component BBGKY hierarchy

In this Appendix, let us detail how one can adapt the formalism presented in section 6.2 to the case
where the system is composed of multiple components. The different components are indexed by the
letters "a", "b", etc. We assume that the component "a" is made of Na particles of individual mass µa.
The total mass of the component "a" is written asMa

? . When accounting for multiple components and
placing ourselves within the democratic heliocentric coordinates from equation (6.3), the system’s total
Hamiltonian from equation (6.7) becomes

H =
∑

a

Na∑
i=1

µa

2
(va
i )2 +

∑
a

µaM•

Na∑
i=1

U(|xa
i |) +

∑
a

µaM?

Na∑
i=1

Φr(x
a
i )

+
∑

a

µ2
a

Na∑
i<j

U(|xa
i−xa

j |) +
∑
a<b

Na∑
i=1

Nb∑
j=1

µaµbU(|xa
i−xb

i |) +
1

2M•

[∑
a

µa

Na∑
i=1

va
i

]2

, (6.105)

where we noted as Γa
i =(xa

i ,v
a
i ) the position and velocity of the ith particle of the component "a". In

equation (6.105), the various terms are respectively the kinetic energy of the particles, the Keplerian
potential due to the central BH, the relativistic potential corrections Φr, the self-gravity among a given
component, the interactions between particles of different components, and finally the additional kinetic
terms introduced by the change of coordinates from equation (6.3). One should also pay attention to
the normalisation of the relativistic component Φr, as we wrote this potential as µaM?Φr, where we
introduced the system’s total active mass as M?=

∑
aM

a
? , to have a writing similar to equation (6.7).

Let us now introduce the system total PDF Ptot(Γ
a
1, ..,Γ

a
Na
,Γb

1 , ..,Γ
b
Nb
, ...) which gives the probability of

finding at time t, the particle 1 of the component "a" at position xa
1 and velocity va

1 , etc. We normalise
Ptot following the convention from equation (2.94). Similarly to equation (6.8), Ptot evolves according to
Liouville’s equation which reads

∂Ptot

∂t
+
∑

a

Na∑
i=1

[
ẋa
i ·
∂Ptot

∂xa
i

+v̇a
i ·
∂Ptot

∂va
i

]
= 0 . (6.106)

Following equation (2.97), we define the system’s reduced PDFs P a1,...,an
n by integrating Ptot over all

particles except n particles belonging respectively to the components a1, ..., an. Our aim is now to write
the two first equations of the associated BBGKY hierarchy. In order to clarify the upcoming calculations,
let us from now on neglect any contributions associatedwith the last kinetic terms from equation (6.105).
Indeed, in the single-component case, we justified in equation (6.41) that these terms, once averaged
over the fast Keplerian motion, do not contribute to the system’s dynamics at the order considered in
our kinetic developments. To get the evolution equation for P a

1 , one integrates equation (6.106) over all
phase space coordinates except Γa

1 and relies on the symmetry of Ptot w.r.t. interchanges of particles of
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the same component. One gets
∂P a

1

∂t
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1 ·
∂P a

1

∂xa
1

+

[
M•F1a0+M?F1ar

]
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a
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∫
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+
∑
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∫
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2 F1a2b · ∂P
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2

∂va
1

= 0 . (6.107)

In equation (6.107), we used the same notations as in equation (6.9), and introduced as F1a0 the force
exerted by the BH on particle 1a,F1ar as the force acting on particle 1a due to the relativistic corrections,
and finallyF ij as the force between two particles. In order to get the second equation of the BBGKYhier-
archy, one should proceed similarly and integrate equation (6.106) w.r.t. all particles except two. At this
stage, two different cases should be investigated, depending on whether one considers P aa

2 or P ab
2 (with

a 6=b). Let us first consider the diffusion equation satisfied by P aa
2 , which ensues from equation (6.106)

by integrating it w.r.t. all phase space coordinates except Γa
1 and Γa

2. It reads
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= 0 . (6.108)

When the two particles do not belong to the same component, the second equation of the hierarchy
becomes
∂P ab
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Let us now adapt the definition of the reduced DFs from equation (2.99) to the multi-component
case. We therefore introduce the system’s renormalised DFs fa

1 , fab
2 , and fabc

3 as

fa
1 =µaNaP

a
1 ;

faa
2 =µ2

aNa(Na−1)P aa
2 ; fab

2 =µaµbNaNbP
ab
2 ; (6.110)
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3 ; faab
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3 ; fabc

3 =µaµbµcNaNbNcP
abc
3 ,

where "a", "b", and "c" are associated with different components. These detailed normalisations allow
us to rewrite equation (6.107) under the general form
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= 0 , (6.111)

where one should note that the sum over "b" runs for all components. Similarly, equations (6.108)
and (6.109) can both be cast under the same generic form reading
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= 0 , (6.112)
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where we insist on the fact that equation (6.112) holds for both cases where "a" and "b" are equal or
different, and that the sum over "c" runs for all components. Equations (6.111) and (6.112) are the direct
multi-component analogs of the single-component BBGKY equation (6.9).

Following equations (2.101) and (2.102), one can now introduce the cluster representation of the DFs,
which in the multi-component context takes the form
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and
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As obtained in equation (2.103), let us assume that gab
2 scales like the inverse of the number of particles,

while gabc
3 scales like the square of the inverse of the number of particles. Relying on the decomposi-

tions from equations (6.113) and (6.114), and keeping only terms of order 1/Na (where "a" runs over all
components), one can rewrite the first equation (6.111) of the multi-component BBGKY hierarchy as
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while the second equation (6.112) becomes
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Similarly to equation (6.12), let us now introduce the system’s 1−body DF F a and 2−body autocorrela-
tion Cab as

F a =
fa

1

M?
; Cab =

gab
2

M2
?

. (6.117)

In equation (6.117), one should pay attention to the slight change in the normalisation of Cab. This en-
sures a symmetric rescaling w.r.t. "a" and "b". Let us now follow equations (6.13) and (6.14) to rescale
the pairwise interaction potential as well as the relativistic corrections. Following these various renorm-
lisations, equation (6.115) becomes
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where we introduced the small parameter ε=M?/M•=(
∑

aM
a
? )/M•. Similarly, equation (6.116) be-

comes
∂Cab

∂t
+ va

1 ·
∂Cab

∂xa
1

+ vb
2 ·
∂Cab

∂xb
2

+ F1a0 ·
∂Cab

∂va
1

+ F2b0 ·
∂Cab

∂vb
2

+ εF1ar ·
∂Cab

∂va
1

+ εF2br ·
∂Cab

∂vb
2

+ εηbF1a2b · ∂F
a

∂va
1

F b(Γb
2) + εηaF2b1a · ∂F

b

∂vb
2

F a(Γa
1)

+ ε

[∑
c

∫
dΓc

3F1a3cF c(Γc
3)

]
· ∂C

ab

∂va
1

+ ε

[∑
c

∫
dΓc

3F2b3cF c(Γc
3)

]
· ∂C

ab

∂vb
2

+ ε

[∑
c

∫
dΓc

3 F1a3cCbc(Γ2,Γ
c
3)

]
· ∂F

a

∂va
1

+ ε

[∑
c

∫
dΓc

3 F2b3cCac(Γa
1,Γ

c
3)

]
· ∂F

b

∂vb
2

= 0 , (6.119)
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wherewe introduced in the second line the small parameter ηa =µa/M? of order 1/Na. Equations (6.118)
and (6.119) are the direct multi-component equivalents of equations (6.15) and (6.16).

As presented in section 6.3, let us now rewrite the two previous BBGKY equations within the angle-
action coordinates appropriate for the Keplerian motion induced by the central BH. Let us consequently
perform the degenerate angle-average from equation (6.26) and assume that F a and Cab satisfy the cru-
cial assumptions from equations (6.34) and (6.39). One can then rewrite equation (6.118) as
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∂τ
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]
+
∑
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∫
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Cab(E1,E2), U12

]
(1)

= 0 , (6.120)

where we introduced the rescaled time τ=(2π)d−kεt from equation (6.44) with ε=M?/M•. Following
equation (6.36), we also introduced the total averaged self-consistent potential Φ as

Φ =
∑

a

Φa , (6.121)

where the averaged potential Φa due to the component "a" follows from equation (6.36) and reads

Φa(E1) =

∫
dE2 F a(E2)U12(E1,E2) . (6.122)

In equation (6.122), we relied on the averaged wire-wire interaction potential U12 from equation (6.37).
Following the same approach, equation (6.119) can be rewritten as
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}
= 0 . (6.123)

The two coupled evolution equations (6.120) and (6.123) are the direct multi-component equivalents of
equations (6.45) and (6.46). The main differences here are the changes in the mass prefactors in the last
term (the source term) of equation (6.123). Indeed, it mixes the two small parameters ηa =µa/M? and
ηb =µb/M?. This change is the one which allows for mass segregation in multi-component systems,
as briefly discussed in section 6.5.2. Starting from equations (6.120) and (6.123), one can then follow
the method presented in section 6.5 to derive the associated kinetic equation for F a. This is the multi-
component inhomogeneous degenerate Balescu-Lenard equation (6.63).

6.C From Fokker-Planck to Langevin
The degenerate inhomogeneous Balescu-Lenard equation (6.53) is a self-consistent integro-differential
equation describing the evolution of the system’s DF as a whole under the effect of its own graininess.
Instead of describing the statistical dynamics of the full system’s DF, one could be interested in charac-
terising the individual dynamics of one test particle in this system. Following Risken (1996), let us recall
how one may obtain the stochastic Langevin equation describing such an individual dynamics. Let us
start from the generic writing of the degenerate Balescu-Lenard equation (6.58) written as an anisotropic
Fokker-Planck equation. It reads

∂F

∂τ
=

∂

∂J s
·
[
A(J , τ)F (J , τ) +D(J , τ)· ∂F

∂J s

]
, (6.124)

where, following the notations fromequation (6.59), we introduced the system’s total drict vectorA(J , τ)
and diffusion tensorD(J , τ) as

A(J , τ) =
∑
ms

msAms(J , τ) ; D(J , τ) =
∑
ms

ms⊗msDms(J , τ) . (6.125)

Let us recall here that the Balescu-Lenard equation being self-consistent, the drift and diffusion coef-
ficients depend secularly on the system’s DF, F , but this was not written out explicitly to shorten the
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notations. Following the notations from equation (4.94a) in Risken (1996), let us rewrite equation (6.124)
as

∂F

∂τ
=

∂

∂J s
·
[
−D(1)(J , τ)F (J , τ) +

∂

∂J s
·
[
D(2)(J , τ)F (J , τ)

]]
, (6.126)

where we introduced the first- and second-order diffusion coefficients as

D(1)(J , τ) = −A(J , τ) +
∂

∂J s
·D(J , τ) ; D(2)(J , τ) = D(J , τ) . (6.127)

Here, let us emphasise that the diffusion of the Keplerian wires takes place in the full action domain
J , while equation (6.126) only involves gradients w.r.t. the slow actions J s. This leads, amongst others,
to the conservation of the fast actions J f during the resonant diffusion, as noted in equation (6.62). Of
course, by enlarging the diffusion coefficientsD(1) andD(2) with zero coefficients for all the adiabatically
conserved fast actions J f , it is straightforward to rewrite equation (6.126) as a diffusion equation in the
full action space involving derivatives w.r.t. all action coordinates J .

Let us now focus on the dynamics of a given test Keplerian wire. We denote as J (τ) its position
in action space a time τ . On secular timescales, this test particle undergoes an individual stochastic
diffusion consistent with the system’s averaged diffusion captured by the diffusion equation (6.126).
This diffusion follows a stochastic Langevin equation reading

dJ
dτ

= h(J , τ) + g(J , τ)·Γ(τ) , (6.128)

where we introduced the Langevin vector and tensor h and g, as well as the stochastic Langevin forces
Γ(τ), whose statistics are given by〈

Γ(τ)
〉

= 0 ;
〈
Γ(τ)⊗Γ(τ ′)

〉
= 2IδD(τ−τ ′) , (6.129)

with I the identity matrix. Following equation (3.124) of Risken (1996), let us finally express the
Langevin coefficients from equation (6.128) as a function of the drift and diffusion coefficients appear-
ing in equation (6.126). The second-order diffusion tensor D(2) is definite positive, so that we may
introduce as

√
D

(2) one of its square root. One then has the components relations

hi = D
(1)
i −

∑
j,k

(√
D

(2))
kj

∂
(√
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(2))
ij

∂xk
; gij =

(√
D

(2))
ij
. (6.130)

Thanks to equation (6.130), one can fully specify the detailed characteristics of the diffusion of an indi-
vidual orbit as described by the Langevin equation (6.128). The self-consistency of the diffusion imposes
to the diffusion coefficientsD(1) andD(2), and therefore to the Langevin coefficients h and g, to be up-
dated as the system’s DF F secularly changes. Let us finally emphasise that the previous presentation
of the associated Langevin equation was made for quasi-Keplerian systems governed by the degenerate
Balescu-Lenard equation (6.53). It is straightforward to follow the same approach to write the Langevin
equation associated with the non-degenerate Balescu-Lenard equation (2.67), which can indeed also be
cast as an anisotropic Fokker-Planck equation, as in equation (2.68).



Chapter 7

Conclusion

7.1 Overview
Since the seminal works of Einstein and Langevin, physicists understand how blue ink slowly diffuses in
a glass of water. The fluctuations of the stochastic forces acting on water molecules drive the diffusion
of the ink in the fluid. This is the archetype of the so-called fluctuation-dissipation theorem, which
relates the rate of diffusion to the autocorrelation of the fluctuating forces. For galaxies, a similar process
occurs but with two main differences related to the long-range nature of the gravitational force: (i) for
the diffusion to be effective, stars need to resonate, i.e. present commensurable frequencies, otherwise
they follow themean path imposed by themean field, (ii) the amplitude of the induced fluctuating forces
are significantly boosted by collective effects, i.e. the fact that, because of self-gravity, each star polarises
its neighbours. This thesis was concerned with studying the secular implications of this fluctuation-
dissipation theorem by considering either externally-driven or self-induced fluctuations.

Self-gravitating systems are highly complex objects which undergo a wide variety of dynamical pro-
cesses, depending on their internal "temperature", i.e. depending on whether they are pressure or cen-
trifugally supported. Astrophysics is now in a position to investigate the secular dynamics of these
systems. Of particular interests are cold systems which have the opportunity to reshuffle their orbital
structure towards more likely configurations. First, the success of the ΛCDM model now offers a con-
sistent paradigm in which to statistically characterise the cosmic environment. Self-gravitating systems
should be seen as embedded in a lively environment, with which they interact throughout their lifetime.
In addition, recent developments in kinetic theories now offer various self-consistent frameworks allow-
ing for the description of these systems’ secular dynamics. Whether they are external or internal, the
long-term resonant effects of perturbations can be accounted for in detail. Let us also emphasise that the
steady increase in computing power now allows for detailed simulations of ever greater resolution and
complexity. It not only allows for simulations of isolated and idealised setups, but also for cosmological
simulations, where environmental effects can play a role. Finally, upcoming observations, such as GAIA
for the Milky Way, or Gravity for the Galactic centre, will soon offer unprecedented detailed surveys of
the phase space structure of these systems.

These joint progresses in the characterisation of the cosmic environment, the diffusion theory, the
simulation power and the details of the observations offer the ideal context in which to study the secu-
lar dynamics of self-gravitating systems. While the seminal works of Goldreich, Lynden-Bell, Kalnajs,
Toomre had opened the way to deriving a self-consistent linear response theory for self-gravitating sys-
tems, it should be emphasised that thanks to the recent works of Binney & Lacey (1988), Weinberg
(2001a), Heyvaerts (2010), etc., galactic dynamics has now entered a phase of quantitative statistical pre-
dictability on secular timescales. This thesis has contributed to illustrating how this line of work could
be applied to varied challenges such as radial migration, disc thickening, or black hole feeding. Let us
now detail the main conclusions drawn from each chapter.

In chapter 2, we presented two complementary formalisms to describe the secular evolution of self-
gravitating systems. Because they are assumed to be quasi-stationary and stable, such systems can only
evolve driven by fluctuations. These may first originate from an external perturber, leading a collision-
less diffusion. Another source of fluctuations is associated with the system’s own discreteness. This
induces finite−N effects, whose contributions on secular timescales are described by the inhomoge-
neous Balescu-Lenard equation. To derive these equations, we relied on angle-action coordinates to
deal with the complexity of individual orbits. For both formalisms, we emphasised the importance of
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accounting for the system’s self-gravity. It dresses perturbations and can very significantly hasten the
system’s secular evolution. These polarisation effects are especially important in cold dynamical sys-
tems such as stellar discs. These two frameworks allow for quantitative comparisons of the respective
effects of nurture vs. nature, i.e. externally-induced vs. self-induced effects, on the long-term evolution
of self-gravitating systems.

In chapter 3, we considered the case of tepid razor-thin stellar discs. In order to overcome the two
principal hurdles associatedwith the diffusion formalisms, namely the need to consider angle-action co-
ordinates and the difficulty to estimate the system’s non-local gravitational susceptibility, we relied on
two additional assumptions. These were the epicyclic approximation, i.e. the restriction to cold quasi-
circular orbits, as well as a tailored WKB approximation, i.e. the restriction to radially tightly wound
perturbations. We illustrated how the WKB formalism offers simple quadratures for the diffusion flux
in both collisionless and collisonal frameworks. This provided us with a straightforward tool to esti-
mate the locii of maximum diffusion within the disc. When applied to a discrete stable self-gravitating
razor-thin stellar disc, we recovered qualitatively the formation of ridges of resonant orbits observed
in numerical simulations. One additional strength of the Balescu-Lenard formalim is to offer explicit
estimations of the collisional timescale of diffusion in the disc. We noted a discrepancy between the
prediction from the WKB kinetic theory and the much shorter timescale inferred from numerical sim-
ulations. This was interpreted as due to the incompleteness of the WKB basis, which cannot account
for the strong dressing of loosely wound perturbations, a well known linear mechanism coined swing
amplification.

In chapter 4, we returned to the case of discrete razor-thin stellar discs. In order to fully account
for the disc’s self-gravity, we implemented the matrix method. When combined with the collisional
Balescu-Lenard equation, our prediction for the initial diffusion flux recovered the formation of the reso-
nant ridge observed in numerical simulations. Because we had correctly taken into account self-gravity,
we also matched the timescales of diffusion. To fully emphasise the relevance of the Balescu-Lenard
formalism, we resorted to our own N−body simulations. We recovered the expected scalings of the
system’s response with the number of particles and the fraction of mass within the disc, as predicted by
the collisional theory. When considered on even longer timescales, we recovered the mechanism of dy-
namical phase transition identified in Sellwood (2012). Stable and quasi-stationary systems can become
dynamically unstable on the long-term, as the result of the slow, progressive, and irreversible build-up
of collisional effects. This is a striking outcome of the large dynamical freedom given by the interac-
tions captured by the second-order equation of the BBGKY hierarchy, which allows for spontaneous
reshufflings of orbital structures towards states of higher entropy.

In chapter 5, we investigated the secular dynamics of thickened stellar discs. Similarly to the razor-
thin case, we devised a new thickened WKB approximation offering explicit expressions for both col-
lisionless and collisional diffusion fluxes. As a side product, this formalism also offered a new thick-
ened Q stability parameter. Following these derivations, we considered various mechanisms of secular
thickening, such as internal Poisson shot noise, series of central bars, or even the diffusion acceleration
induced by giant molecular clouds. We emphasised how each of these mechanisms have differerent
signatures in the diffusion features appearing in the disc. As already noted in the razor-thin case, while
qualitatively correct, one limitation of the thickened WKB approximation is the underestimation of the
diffusion timescale, which can be significantly hastened by swing amplification in cold stellar discs.

In chapter 6, we focused on quasi-Keplerian systems, and in particular galactic centres. The partic-
ularity of such systems is that their dynamics is mostly dominated by one central massive object. This
makes the systemdynamically degenerate. Individual particles followKeplerianwires, which get slowly
distorted on secular timescales. By paying careful attention to this degeneracy, we detailed how one
could tailor the collisional formalism to describe the long-term evolution of such systems. We especially
emphasised how this new kinetic equation is the master equation to describe the resonant relaxation of
Keplerian wires. In the context of galactic centres, we illustrated how the divergence of the relativis-
tic precession frequencies as stars move closer to the central black hole, leads to a drastic reduction of
the diffusion efficiency. This is the phenomenon of "Schwarzschild barrier" first observed in numerical
simulations.

7.2 Outlook and future works
Throughout this thesis, we detailed at the end of each chapter some possible future works w.r.t. the
themes investigated there. As a closing section for this thesis, let us replace these various prospects in a
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broader context.
The aim of this thesis was to offer galactic dynamics an analytical framework in which to describe

evolutions on cosmic times. It appears now as a powerful approach because it allows for a tractable
capture of numerous complex non-linear processes. In the continuation of the initial seminal works
describing the linear response of self-gravitating systems, one now has at its disposal a self-consistent
formulation to understand analytically the non-linear and secular response of these systems. The recent
developments of kinetic theory offered us quite an unique opportunity: implementing for the first time
in astrophysics a new diffusion equation, the inhomogeneous Balescu-Lenard equation. In the course
of this manuscript, we emphasised how these approaches now provide us with the master equations to
describe simultaneously and self-consistently a vast class of astrophysical processes. These include the
mechanism of stellar migration (both churning and blurring) and disc thickening for stellar discs, but
also resonant relaxation and BH feeding in galactic centres. Analytic galactic dynamics has entered the
cosmic framework.

Such a formalism is rewarding both for its conceptual contributions but also for its practical useful-
ness. From the conceptual point of view, these approaches encompass all the wealth and complexity of
self-gravitating systems’ dynamics. The example of galactic centres illustrates it very clearly. This frame-
work captures the non-trivial effects that a system’s discreteness can have on the long-term, and provides
a fascinating illustration of the fluctuation-dissipation theorem. It may also be used to study and under-
stand entropy production. Secular dynamical phase transitions are as well an important prediction of
this formalism. It describes how the slow and irreversible build up of collisional effects inevitably leads,
on the long-term, to a destabilisation of secularly metastable states.

From the pratical point of view, this framework can account for polarisation which accelerates con-
siderably the diffusion in cold systems. It also naturally offers a new dressedmulti-component Langevin
rewriting, which allows for much larger timesteps. As an example, between two timesteps, a series of
swing amplifications can take place: there is no need anymore to resolve them individually. Finally, it
can be used to propagate statistics. From detailed measures of environmental perturbations, one can in-
fer the typical evolutions that will be undergone by the systems. One can now treat statistically a galaxy
on multiple orbital times, while accounting for the dynamical wealth associated with self-gravity.

When considering the long-termevolution of self-gravitating systems, an important dichotomyhas to
be drawn between self-induced and externally-induced secular dynamics. One should also pay attention
to the system’s initial reservoir of free energy, which differs greatly between, e.g., spirals and ellipticals.
These distinctions allow us to disentangle the respective roles of nature vs. nurture in sourcing secular
evolution, as one can quantify the diffusion signatures associated with different sources of fluctuations.
These may then be compared to observations. For example, for stellar discs, one could investigate the
expected diffusion associatedwith various sources of fluctuations: discreteness noise, clumpswithin the
halo, central bars, or tidally induced spirals. Once all these mechanisms are statistically characterised,
their predictions (e.g., for themetallicity-dispersion relation) could be compared to detailed observations
of the structure of the MilkyWay’s DF, e.g., soon provided by GAIA. This would allow us to disentangle
a posteriori the importance of these various mechanisms throughout the evolution of the Milky Way.
This framework is expected to be very powerful to provide explicit predictions in the context of Galactic
archeology (Binney, 2013a).

All the applications presented in this thesis were restricted to computing the initial diffusion flux
at t=0+. In order to probe later stages of the secular evolution, one would have to integrate forward
in time these diffusion equations. There are at least two anticipated difficulties. The first arises from
the self-consistency of the diffusion equations. The system’s drift and diffusion coefficients depend on
the current value of the system’s DF and have to be updated as the system evolves (Weinberg, 2001b).
The integration in time has to be made step by step, with successive updates of the system’s DF, po-
tential, and diffusion flux. Another difficulty is that these equations describe the diffusion of the sys-
tem’s DF as a whole. Integrating such a partial differential equation is a cumbersome numerical calcu-
lation, which most likely requires to rely on finite elements methods. An alternative approach, inspired
fromMonte Carlo simulations, follows from the Langevin rewriting of the diffusion equation presented
in section 6.C. One samples the system’s DF with individual particles, and integrates the first-order
stochastic ordinary differential equations describing the dynamics of test particles. With these equa-
tions, the involved timesteps are commensurable with a Hubble time. Such integrations of the diffusion
could be used as valuable probes to validate the accuracy and robustness of N−body codes on secu-
lar timescales. Indeed, one of the only theoretical predictions to which N−body implementations are
compared are derived from linear theory: one aims at recovering unstable modes in integrable systems
(see Appendix 4.C). These tests can then only check the relevance of numerical codes on a few dynam-
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ical times. The formalisms developed in this thesis provide new test cases to quantify the validity of
N−body implementations on secular timescales.

These various diffusion equationswould also benefit frombeing generalised to describewider classes
of dynamical processes. As already detailed, one can naturally extend these approaches to account for
multiple components and describe the corresponding expected mass segregation. See, e.g., section 5.7.6
for an illustration of the role played by giant molecular clouds. Similarly, the system’s DF can also be
extended with additional parameters, such as metallicity. This drives the interplay between dynamics
and chemistry. See section 3.8.1 for an illustration of how to construct such extendedDFs. In this regime,
one accounts for the birth (and possibly death) of stars, i.e. for the possibility of sources and sinks of
particles. Focusing on open systems is another promising regime for which these investigations should
be pursued. Similarly, this formalism could be generalised to systemswith a small or fluctuating number
of "effective" particles, for example as a result of the progressive dissolution of overdensities.

Note that we assumed here integrability, i.e. the existence of angle-action coordinates. It was either
guaranteed by the system’s symmetry or by additional assumptions, such as the epicyclic approxima-
tion. When this is not the case, the system’s dynamics may become chaotic and its secular evolution can
possibly be driven by chaotic diffusion. For example, in the context of stellar discs, these chaotic effects
are prone to play a role in the presence of a central bar. Indeed, the bar’s potential makes the system’s
dynamics chaotic in some regions. Such secular dynamics associated with the formation of strong non-
axisymmetric structures were not investigated in the present thesis. They definitely deserve a thorough
investigation on their own.

Finally, in some regimes, the resonant orbital diffusion described by the Balescu-Lenard equation
may vanish. This can for example occur in galactic centres, as illustrated by the Schwarzschild bar-
rier driven by the divergence of the relativistic precession frequencies as stars move closer to the BH.
This suppression can also be imposed by symmetry, e.g., the Balescu-Lenard collision operator van-
ishes for 1D homogeneous systems. Finally, it may occur on secular timescales if steady states for the
Balescu-Lenard equation exist and can be reached by the system (though this is not always possible
for self-gravitating systems). In such regimes, the dynamics is not described anymore by the Balescu-
Lenard equation, and additional effects have to be accounted for. For galactic centres, this can be direct
2−body effects, i.e. star-star interactions, which allow stars to diffuse even closer to the BH. In addi-
tion to strong collisions, resonant effects associated with 1/N2 correlations can also drive the dynamics.
This requires to consider the third equation of the BBGKY hierarchy and focus on slower effects asso-
ciated with 3−body correlations. Generalising the Balescu-Lenard formalism to account for these two
contributions is another interesting direction of improvement.
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