Résumé

La présente thèse a pour objectif d'analyser la lumière structurée non-classique et ses caractéristiques. L'optique quantique et la lumière structurée sont deux sujets qui font l'objet d'examens nombreux. Ils sont néanmoins rarement examinés en combinaison. Les propriétés quantiques de la lumière structurée sont moins bien étudiées qu'ils devraient l'être. Nous voulons lier ces deux sujets de l'optique quantique et la lumière structurée dans la présente thèse. Dans ce but, nous générons expérimentalement des champs lumineux structurés non-classiques et étudions théoriquement les propriétés spatiales de ces faisceaux, ainsi que leur bruit. Par la lumière structurée nous entendons les champs lumineux qui montrent une structure transverse complexe de l'intensité, la phase ou la polarisation. Cette thèse est composée de trois parties: la description de la génération expérimentale de faisceaux vectoriels avec une réduction du bruit quantique d'amplitude, une étude théorique de l'incertitude de la largeur d'un faisceau lumineux et l'analyse théorique de quelques schémas pratiques pour la vérification de nos résultats. D'abord, nous réalisons une expérience qui permet de générer des faisceaux vectoriels, c'est-à-dire des faisceaux lumineux dont l'état de polarisation présente une structure transverse complexe. Nous générons expérimentalement des faisceaux vectoriels qui sont basés sur des modes de Gauss-Laguerre et qui montrent une réduction du bruit quantique jusqu'à -0.9(1) dB. Pour obtenir la flexibilité souhaité, c'est-à-dire pour être capable de générer des faisceaux vectoriels à la demande, nous utilisons un modulateur spatial de lumière (anglais : spatial light modulator, abrégé : SLM). A l'instar de la phase, le degré de liberté de la polarisation doit également être modifié, si bien que deux réflexions sur le SLM sont nécessaires : une approche fondée sur le principe d'un interféromètre colinéaire est utilisée. Deux modes sont alors produits dans le même faisceau et, de cette façon, sont naturellement superposés. Avant la conversion de mode, la réduction du bruit quantique est effectuée en exploitant l'effet Kerr d'une fibre optique dans un interféromètre de Sagnac. La particularité de notre approche est le fait qu'elle évite les pertes systématiques afin de préserver la réduction du bruit quantique. Le champ lumineux résultant est analysé en détail et une bonne qualité de mode est obtenue. Nous discutons les imperfections et expliquons leurs origines. Un autre sujet de cette thèse est l'analyse de l'incertitude quantique dans la largeur d'un faisceau lumineux. La largeur est un paramètre fondamental d'un faisceau et, par conséquence, son incertitude est aussi d'un intérêt particulier. Le bruit quantique limite en général la précision de toutes les mesures physiques. En adaptant le champ lumineux, la précision d'une mesure peut être meilleur qu'en utilisant de la lumière classique. Nous nous intéressons en particulier aux réalisations de ce principe pour mesurer la largeur d'un faisceau. Nous développons un cadre pour la description des caractéristiques spatiales d'un faisceau lumineux que nous utilisons pour étudier l'incertitude de la largeur de faisceau. Il peut facilement être modifié pour l'employer pour d'autres paramètres spatiaux.

Nous définissons la largeur de faisceau comme la variance de la distribution transverse de l'intensité et associons un opérateur quantique. Nous découvrons des relations intéressantes qui ne sont pas évidentes en premier lieu. Nous constatons que le bruit dans la largeur du faisceau dépend à la fois du mode spatial et de l'état quantique du faisceau. De plus, nous trouvons que -au moins pour des états multimodes avec de petites fluctuations quantiques -le bruit dans la largeur du faisceau est influencé par le bruit dans l'amplitude d'un mode que nous appelons le mode de détection. Le mode de détection est spécifique au champ lumineux que nous étudions. La relation entre le mode de détection et le bruit dans la largeur du faisceau nous montre également un chemin pour minimiser l'incertitude quantique de la mesure en excitant le mode de détection à l'aide d'un état quantique avec un bruit d'amplitude comprimé.

Pour vérifier nos résultats théoriques, nous développons des schémas pratiques pour prouver des effets résultant de la théorie. La détection de la largeur de faisceau et son bruit peut être réalisé le plus directement en utilisant un détecteur mulitpixels.

Pour comprendre comment la discrétisation à cause des pixels et les imperfections du détecteur affectent les valeurs mesurées pour les paramètres spatiaux, nous développons une théorie complète qui décrit ce type de mesure. Une théorie analytique est dérivée et des simulations sont realisées qui permettent de prendre en compte d'autres éventuelles erreurs de mesure. Nous constatons que la détermination expérimentale du bruit de la largeur et de la position du faisceau peut être effectuée à l'aide d'un détecteur des plus récents. Par conséquent, nous prouvons la faisabilité de la vérification expérimentales de nos résultats.

Summary

This thesis aims at learning more about nonclassical structured light. Quantum optics and structured light are two topics that are subject to countless scientific examinations. However, they are very rarely combined and the quantum properties of structured light are not as thoroughly studied as they deserve. We want to link the topics of quantum optics and structured light in this thesis. For this purpose, we experimentally generate particular nonclassical structured light fields, and analyze spatial properties of light beams and their quantum noise theoretically. By structured light, we mean any light fields with complex transverse distributions of intensity, phase or polarization. The thesis consists of three parts: the description of an experimental generation of amplitude squeezed vector beams, a theoretical investigation of the uncertainty in the width of light beams and a theoretical analysis of practical schemes for the experimental verification of our findings. First, we construct an experimental setup that enables us, in principle, to produce arbitrary amplitude squeezed vector beams, i.e. light beams with a complex transverse structure of the state of polarization. As a proof-of-principle, we generate vector beams based on Laguerre-Gauss modes that exhibit a quantum noise reduction of up to -0.9(1) dB. To ensure the desired flexibility, i.e. to produce arbitrary vector beams by means of a single setup, we utilize a spatial light modulator (SLM). As not only the phase, but also the polarization degree of freedom has to be altered, we need to perform two reflections on the SLM: a collinear interferometric approach is used for which two modes are generated within one beam and naturally superimposed.

Prior to the mode conversion, the reduction of the quantum noise in the amplitude quadrature is performed by exploiting the Kerr effect of an optical fiber in a Sagnac loop. A particular feature of our setup is the fact that it avoids systematic losses, which is necessary to preserve the quantum noise reduction. The resulting light field is analyzed in detail, and a good mode quality is achieved. We discuss occurring imperfections and explain their origin. Another major topic in this thesis is the analysis of the quantum uncertainty in the width of a light beam. With the beam width being such a fundamental parameter, its uncertainty is also of interest for practical applications. Quantum noise in general limits the precision of any physical measurement. Tailoring the light field appropriately can enhance the measurement precision beyond what would be possible using classical light. Therefore, we are interested in finding out how this principle can be applied to the measurement of the beam width. We develop a framework for the quantum description of spatial characteristics of light beams that we use for the investigation of the beam width uncertainty. It can, however, easily be modified for the employment for other spatial parameters.

We define the beam width as the variance of the transverse intensity distribution and associate with it a quantum operator. We discover interesting relations that are not evident in the first place. We find that the beam width noise depends on the spatial mode, as well as on the quantum state of the light beam. Moreover, we realize -at least for multimode states with small quantum fluctuations -that the beam width noise is caused by the amplitude noise in the so-called detection mode that is defined through the field under investigation. This relation also shows how to minimize the quantum uncertainty in the beam width by introducing a quantum state with a reduced amplitude noise in the detection mode.

To verify our theoretical findings experimentally, we develop practical schemes for proving different effects resulting from the theory. The actual detection of the beam width and its noise can be performed most straightforwardly by means of a multipixel detector. To understand how the discretization due to the pixels and detector imperfections influence the value determined for spatial parameters, we develop a complete theory describing this type of measurement. An analytic theory is derived, and simulations are performed that take further relevant measurement imperfections into account. We find that an experimental determination of the noise in the beam width and position is possible by state-of-the-art detectors. We thus prove the feasibility of an experimental verification of our findings. 

Introduction

This work aims at linking two thematic domains that are quite well studied individually, but very rarely combined: structured light and quantum optics. Structured light -i.e. light with complex transverse distributions of intensity, phase and polarization -has been subject to detailed investigations recently. Mostly, their classical properties have been considered. The forms of structured light are manifold, and every structure exhibits a vast number of different properties and aspects that are worth being studied. One of the characteristics that receives a lot of attention is the orbital angular momentum (OAM) which results from a helical phase front [START_REF] Allen | Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[END_REF]. The capacity of applications in the context of communication tasks could, for example, be increased by means of this feature, as it represents an additional degree of freedom that can be manipulated [START_REF] Wang | Terabit free-space data transmission employing orbital angular momentum multiplexing[END_REF]. OAM occurs in Laguerre-Gauss (LG) modes, which are also being discussed in this thesis. However, OAM is not the aspect we want to direct our attention to, as structured light provides further features that deserve our interest too. Vector beams, i.e. light beams exhibiting sophisticated structures in the state of polarization, can show extraordinary features [START_REF] Quabis | Focusing light to a tighter spot[END_REF][START_REF] Dorn | Sharper focus for a radially polarized light beam[END_REF][START_REF] Banzer | Anregung einzelner Nanostrukturen mit hochfokussierten Vektorfeldern[END_REF][START_REF] Aiello | Quantumlike nonseparable structures in optical beams[END_REF][START_REF] Töppel | Classical entanglement in polarization metrology[END_REF][START_REF] Berg-Johansen | Classically entangled optical beams for high-speed kinematic sensing[END_REF][START_REF] Gabriel | Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes[END_REF][START_REF] Holleczek | Classical and quantum properties of cylindrically polarized states of light[END_REF][START_REF] Zhan | Cylindrical vector beams: from mathematical concepts to applications[END_REF][START_REF] Rigas | Compact generation of easy-to-access continuous-variable cluster states[END_REF][START_REF] Santos | Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum[END_REF][START_REF] Liu | Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator[END_REF][START_REF] Pereira | Quantum and classical separability of spin-orbit laser modes[END_REF]. They range from classical properties such as tighter focusing [START_REF] Quabis | Focusing light to a tighter spot[END_REF][START_REF] Dorn | Sharper focus for a radially polarized light beam[END_REF] and quantum-like nonseparability [START_REF] Aiello | Quantumlike nonseparable structures in optical beams[END_REF][START_REF] Töppel | Classical entanglement in polarization metrology[END_REF] to quantum features such as hybrid entanglement between different degrees of freedom [START_REF] Santos | Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum[END_REF][START_REF] Liu | Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator[END_REF][START_REF] Pereira | Quantum and classical separability of spin-orbit laser modes[END_REF]. Such properties can also be used for practical applications, as in [START_REF] Rigas | Compact generation of easy-to-access continuous-variable cluster states[END_REF] for the generation of cluster states, and in [START_REF] Berg-Johansen | Classically entangled optical beams for high-speed kinematic sensing[END_REF] for high-speed kinematic sensing. We will comment on some of these in detail within the course of this thesis. Prominent examples of vector beams are radially and azimuthally polarized modes. The experimental generation of vector beams can be performed by many different techniques that we comment on in Sec. 2.3.2. If vector beams of quantum light are to be produced, particular requirements need to be fulfilled. This thesis presents a setup meeting such requirements and allowing the generation of amplitude squeezed vector beams (see Sec. 3). The main focus of this work lies in analyzing generic structured light exhibiting quantum mechanical features, and investigating uncertainties in characteristic parameters. In the context of structured light, naturally, mainly spatial parameters and their quantum uncertainty deserve attention. In general, quantum noise sets limits to the precision of optical measurements [START_REF] Bachor | A Guide to Experiments in Quantum Optics[END_REF][START_REF] Gardiner | Quantum Noise[END_REF][START_REF] Henry | Quantum noise in photonics[END_REF]. Due to its fundamental nature, it cannot be entirely eliminated. However, by tailoring the quantum state of light appropriately, the quantum noise in a specific measurement can be reduced. If the precision of a measurement is increased further than it would be possible by means of classical light, we say that the standard quantum limit has been overcome. This is the case, for example, for absorption measurements in [START_REF] Davidovich | Sub-poissonian processes in quantum optics[END_REF][START_REF] Polzik | Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit[END_REF][START_REF] Marin | Demonstration of high sensitivity spectroscopy with squeezed semiconductor lasers[END_REF], where sub-Poissonian light has been used. Vacuum squeezed light does the same for interferometic measurements [START_REF] Xiao | Precision measurement beyond the shot-noise limit[END_REF][START_REF] Grangier | Squeezed-light ˘enhanced polarization interferometer[END_REF][START_REF] Collaboration | Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light[END_REF], and twin beams for differential measurements [START_REF] Gao | Generation and application of twin beams from an optical parametric oscillator including an α-cut KTP crystal[END_REF][START_REF] Ribeiro | Sub-shot-noise highsensitivity spectroscopy with optical parametric oscillator twin beams[END_REF].

Introduction

Also for measurements for biological applications, the utilization of non-classical light can be beneficial [START_REF] Taylor | Biological measurement beyond the quantum limit[END_REF].

We are curious about applying this principle to the measurement of spatial parameters and are interested in how to tailor the light beam to enhance the precision of this measurement. For this purpose, a fundamental understanding of the origin of the noise is required. The spatial behavior of quantum light has recently attracted increasing attention [START_REF] Gabriel | Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes[END_REF][START_REF] Kolobov | The spatial behavior of nonclassical light[END_REF], and various studies on different characteristics and aspects have been performed in this context. In [START_REF] Poizat | Spatial quantum noise of laser diodes[END_REF][START_REF] Hermier | Spatial quantum noise of semiconductor lasers[END_REF], the spatial distribution of intensity noise in the far field of semiconductor lasers is examined: a considerable part of the noise is actually contained in the nonlasing transverse modes. For parametric down conversion, the transverse distribution of quantum noise reduction is studied in [START_REF] Lugiato | Spatial structure of a squeezed vacuum[END_REF] for the near and far field. Ref. [START_REF] Franke-Arnold | Uncertainty principle for angular position and angular momentum[END_REF] verifies an uncertainty principle for angular position and angular momentum experimentally. Spatial uncertainty principles are of particular interest in this context as it is Heisenberg's uncertainty principle that shows the possibility to reduce the quantum noise in one variable while increasing it in the conjugate variable in return. Many works treat the subject of the measurement of spatial beam parameters with such a decreased quantum noise and the consequently increased precision. Some of the first parameters that have been studied are the beam center and the smallest possible deflection [START_REF] Shin | Quantum spatial superresolution by optical centroid measurements[END_REF][START_REF] Treps | Surpassing the standard quantum limit for optical imaging using nonclassical multimode light[END_REF]. By tailoring the quantum state, also the measurement sensitivity for a beam's pointing direction has been enhanced [START_REF] Treps | A quantum laser pointer[END_REF]. There are various articles treating the subject of measuring transverse displacements of light beams and how to minimize the noise in such measurements by introducing the right quantum state in particular spatial modes [START_REF] Fabre | Quantum limits in the measurement of very small displacements in optical images[END_REF][START_REF] Hsu | Optimal optical measurement of small displacements[END_REF][START_REF] Barnett | Ultimate quantum limits for resolution of beam displacements[END_REF]. In [START_REF] Delaubert | TEM 10 homodyne detection as an optimal small-displacement and tilt-measurement scheme[END_REF], the measurements of spatial displacements by means of two different techniques are compared: a homodyne detection with a local oscillator shaped with a TEM 10 mode and the direct detection using a split detector. In our work, we are mainly concerned with one particular spatial beam parameter, namely the width. We approach the question from a very fundamental point of view first (see Sec. 4), and then explore the possibilities for an experimental determination of the beam width noise (see Sec. 5.1). Our setup from Sec. 3 allowing for the generation of amplitude squeezed vector beams can be very helpful in this context: it provides a tool for the generation of nonclassical structured light the properties of which can then be investigated. We suggest a measurement of the beam width and its noise by means of a multipixel detector. The general principle of multipixel detection has been subject to various studies, as in [START_REF] Kolobov | The spatial behavior of nonclassical light[END_REF][START_REF] Fabre | Quantum limits in the measurement of very small displacements in optical images[END_REF][START_REF] Kolobov | Quantum Imaging[END_REF][START_REF] Kolobov | Quantum limits on optical resolution[END_REF]. We develop a very applied theory which allows for taking technical imperfections into account (Sec. 5.2). The investigation of quantum noise in spatial parameters is particularly important as it can be relevant for many applications, such as microscopy. For super-resolution microscopy, for instance, an accurate location of the optical point sources is required. The question about quantum limits in this context and how to enhance the precision using light with a reduced quantum noise is analyzed in [START_REF] Kolobov | Quantum limits on optical resolution[END_REF][START_REF] Tsang | Quantum limits to optical point-source localization[END_REF].

In the following, we want to investigate the aforementioned different aspects of nonclassical structured light. We start by giving an introduction to basic principles of classical and quantum optics.

Some fundamentals of classical and quantum optics

In the following, a short introduction into some aspects of classical and quantum optics is given. We do not mean to give an exhaustive description of the subject, and we content ourselves with presenting those concepts and relations that are utilized in this work. We start with the basic descriptions of light fields and discuss the field expansion in spatial modes. Furthermore, we elaborate on the polarization of light and its measurement. Afterwards, the transition from the classical to the quantum description of light is given and we present some quantum states and their properties. Finally, we comment on multimode light in classical and quantum optics.

Maxwell's equations and the wave equation

When studying electromagnetic waves, Maxwell's equations indisputably constitute the starting point. In vacuum, the relation between the electric field E and the magnetic field H is described by means of the coupled partial differential equations

∇ × H(r, t) = 0 ∂E(r, t) ∂t , (2.1) 
∇ × E(r, t) = -µ 0 ∂H(r, t) ∂t , (2.2) 
∇ • E(r, t) = 0, (2.3) ∇ • H(r, t) = 0, (2.4) 
where ∇ is defined as the vector differential operator ∇ = ( ∂ ∂x , ∂ ∂y , ∂ ∂z ), and 0 and µ 0 are, respectively, the electric permittivity and magnetic permeability in vacuum [START_REF] Saleh | Fundamentals of Photonics[END_REF]. We restrict ourselves to the consideration of the fields in vacuum as the interaction with matter is not being treated in the present work. From Maxwell's equations, one may also derive the so-called wave equation

∇ 2 E(r, t) - 1 c 2 ∂ 2 E(r, t) ∂t 2 = 0, (2.5) 
with c = 1/ √ 0 µ 0 being the speed of light. It is obtained from Maxwell's equations by applying ∇× to Eq. 2.2, using the general relation a × (b × c) = b(a.c) -c(a.b) and inserting Eq. 2.1 afterwards. The most fundamental example of a solution of the above wave equation are the so-called plane waves

E(r, t) = E 0 e i(k•r-ωt) , (2.6) 
with field amplitude E 0 , wave vector k = (k x , k y , k z ) and angular frequency ω = 2πc/λ, where λ is the wavelength. We go back to the general case, but assume a time-harmonic field for which the field can be split into a spatial part E(r) and a time-dependent factor e -iωt . Thus, we insert the field E(r)e -iωt into Eq. 2.5. The time-dependence can then be separated and eliminated, and we obtain the so-called Helmholtz equation

∇ 2 E(r) + k 2 E(r) = 0, (2.7) 
with the wave number k = ω/c. The wave number is related to the wave vector by

k = |k| = k 2 x + k 2 y + k 2 z .

Paraxial waves

We now want to derive a wave equation for paraxial fields. A wave is called paraxial if the vectors normal to the wavefront are tangent to paraxial rays, where the angle between the optical axis and a paraxial ray is small [START_REF] Saleh | Fundamentals of Photonics[END_REF]. For our further studies, we assume a wave propagating along the z-axis thus containing the propagation factor e ikz . For the most general case, the field has a complex amplitude A(r) that varies only slowly along the z-axis and can be written as:

E(r) = A(r)e ikz . (2.8) 
In order to preserve a behavior similar to the one of a plane wave, the variation of A(r) and its derivative ∂A(r)/∂z must be slow with respect to z within a distance of one wavelength. This means that the variation ∆A within the distance ∆z = λ is much smaller than A: ∆A A. The variation ∆A is expressed as

∆A = ∂A ∂z ∆z = ∂A ∂z λ, (2.9) 
such that

∂A ∂z = ∆A λ A λ ≈ Ak. (2.10)
For the second derivative, we get

∂ 2 A ∂z 2 k 2 A. (2.11)
By means of this relation, and by inserting Eq. 2.8 into the Helmholtz equation (Eq. 2.7), the paraxial Helmholtz equation is derived [START_REF] Saleh | Fundamentals of Photonics[END_REF]:

∂ 2 ∂x 2 + ∂ 2 ∂y 2 A + 2ik ∂A ∂z = 0. (2.
12)

The solutions of the above paraxial Helmholtz equation are commonly used to form mode bases for paraxial light beams. The next section comments on the expansion of light fields in terms of basis modes and the construction of mode bases.

Expansion of the light field in spatial modes

Solutions of Maxwell's equations (Eq. 2.1-2.4), or, equivalently, solutions of the waveequation, can be categorized in particular sets of modes. A set of modes is then referred to as a mode basis and should fulfill certain conditions. Any basis can be utilized to express a light field by expanding the field in terms of the modes of a selected basis. Consequently, we may write a light field E (+) (x, y, z) as a sum over the modes u i (x, y, z) with amplitudes A i [START_REF] Treps | Quantum noise in multipixel image processing[END_REF]:

E (+) (x, y, z) = i A i u i (x, y, z). (2.13) 
Please note that with E (+) (x, y, z), we restrict ourselves to positive frequencies, we comment on separating positive and negative frequencies of the light field in Sec. 2.4.1.

We mentioned above that the basis of modes should show some specific characteristics.

In particular, we want the modes u i (x, y, z) to form a complete orthonormal basis. Accordingly, to ensure their orthonormality, they have to fulfill the equation

u * i (x, y, z)u j (x, y, z)dxdy = δ ij . (2.14) 
Moreover, they are supposed to satisfy the completeness relation

i u * i (x, y, z)u i (x , y , z) = δ(x -x )δ(y -y ). (2.15)
Very common bases fulfilling these conditions are the Hermite-Gauss or the Laguerre-Gauss basis that are discussed in the next two sections.

2. Some fundamentals of classical and quantum optics

Hermite-Gauss modes

One of the most common mode bases that fulfill the paraxial Helmholtz equation (Eq. 2.7) is the Hermite-Gauss (HG) basis. The HG modes may be written as

u nm (x, y, z) = A nm w 0 w(z) H m √ 2x w(z) H n √ 2y w(z) exp - x 2 + y 2 w 2 (z) exp -ik x 2 + y 2 2R(z) + i(n + m + 1)ζ(z) , (2.16 
)

with ζ(z) = tan -1 z z 0 , the radius of curvature R(z) = z 1 + z 0 z 2 and the beam radius w(z) = w 0 1 + ( z z 0 ) 2 , where z 0 = πw 2 0
λ is the Rayleigh range and w 0 = λz 0 π is the waist radius [START_REF] Saleh | Fundamentals of Photonics[END_REF]. H m and H n are Hermite polynomials that are defined via the recurrence relation [START_REF] Saleh | Fundamentals of Photonics[END_REF]. The amplitude A nm is chosen according to the desired normalization, usually such that |u nm (x, y, z)| 2 dxdy = 1. In the following, we use the abbreviation HG mn for Hermite-Gauss modes with the index m being associated with the x-axis, and the index n with the y-axis. Exemplary intensity patterns of HG modes with indices m and n up to 2 are depicted in Fig. 2.1(a). 

H n+1 (v) = 2vH n (v) -2nH n-1 (v)

Laguerre-Gauss modes

The Laguerre-Gauss modes form another complete set of solutions of the paraxial Helmholtz equation (Eq. 2.7). Compared to the HG modes, they show a rotational symmetry and are of particular importance for that reason. We can write them as

u lp (ρ, φ, z) = A lp w 0 w(z) ρ w(z) l L l p 2ρ 2 w 2 (z) exp - ρ 2 w 2 (z) exp -ik ρ 2 2R(z) -ilφ + i(l + 2p + 1)ζ(z) , (2.17) 
where {ρ, φ, z} are cylindrical coordinates and L l p generalized Laguerre polynomial functions. They are defined by the Rodrigues' formula [START_REF] Saleh | Fundamentals of Photonics[END_REF]. In the following, we use the abbreviation LG lp for Laguerre-Gauss modes with azimuthal index l and radial index p. Fig. 2.1(b) illustrates the intensity patterns for modes with radial and azimuthal index up to 2.

L l p (v) = v -l e u p! d p dv p v l+p e -v

Polarization of light

Please note that we have been using scalar expressions for the light field above. This description is only suitable if the polarization is uniform. Otherwise, we need to turn the scalar quantity E (+) (x, y, z) into a vector E (+) (x, y, z) and consider its polarization. The polarization of light describes the oscillation direction of the electric field. Consequently, it indicates the time course of the electric field vector at a fixed position [START_REF] Saleh | Fundamentals of Photonics[END_REF]. In common media and for no strong focusing, the polarization vector lies in a plane orthogonal to the wave vector. We distinguish linear and circular polarization. In the case of linear polarization, the direction of the oscillation is constant. For circular polarization, the electric field vector rotates in a circle with constant angular velocity. If these two types of polarization are mixed, i.e. when the oscillation of the electric field vector can be described by an ellipse, the field is said to be elliptically polarized. In the following, we introduce the so-called Stokes parameters fully characterizing the state of polarization of a light field, and discuss their experimental determination. Finally, we present vector beams: a particular kind of structured light beams that exhibit various states of polarizations at different locations of their cross-sections.

Stokes parameters

There are many different representations that serve for the characterization of the polarization of light. For our purposes, the so-called Stokes parameters are most convenient. They give a complete description of the polarization, and can also describe unpolarized light. For discussing them in this section, we consider a monochromatic plane wave propa-2. Some fundamentals of classical and quantum optics gating along the z-axis

E(z, t) = E x e x + E y e y (2.18) with E x (z, t) = E 0x cos(ωt -kz + δ x ), (2.19) E y (z, t) = E 0y cos(ωt -kz + δ y ), (2.20) 
where E 0x and E 0y are the maximum amplitudes of the optical field, and δ x and δ y are phase constants [START_REF] Schaefer | Measuring the Stokes polarization parameters[END_REF].

The four Stokes parameters can then be written as

S 0 = I x + I y = E 2 0x + E 2 0y , (2.21 
)

S 1 = I x -I y = E 2 0x -E 2 0y , (2.22) S 2 = I 45 + I -45 = 2E 0x E 0y cos(δ), (2.23) S 3 = I RC -I LC = 2E 0x E 0y sin(δ), (2.24) 
with δ = δ y -δ x . The four Stokes parameters can be measured easily as they are defined via intensities: S 0 is the total intensity of the polarized part of the field. S 1 gives the degree of linear polarization along the horizontal and vertical axes x and y. The linear polarization along the ±45 • -direction is captured by S 2 . It is obvious that this assignment depends on the orientation of the measurement system and is interchangeable. The last Stokes parameter, S 3 , represents the circular polarization. Beside the experimental definition by means of the intensities in Eq. 2.21-2.24, we also give their representation in terms of the field from Eq. 2.18.

The Stokes parameters can also be used to describe partially polarized or unpolarized light. In that case, there is an additional contribution to S 0 , i.e. to the total intensity, but the residual parameters remain unchanged. Due to this possible contribution from unpolarized parts of a light field, the following relation holds in general:

S 2 0 ≥ S 2 1 + S 2 2 + S 2 3 .
(2.25)

In the next section, we discuss how Stokes parameters can be measured in an experiment.

Experimental polarization analysis by Stokes measurements

In Sec. 3, we will present the generation of amplitude squeezed vector beams. The analysis of the polarization distribution of these modes can be implemented by measuring the Stokes parameters, for example. Different techniques can be used for this purpose. The most straight-forward one is directly implied by the formulas in Eq. 2.21-2.24. For determining S 0 and S 1 , a rotatable polarizer is inserted in the beam path, and the intensity behind it is measured. I x and I y are determined by aligning the polarizer such that it transmits the x-and y-polarization, respectively, i.e. it is adjusted to 0 • and 90 In the measurement for S 3 , the QWP is set at 45 • . The technique described above requires only a small number of measurements. In the following, we describe a different technique using a higher number of measurements and leading to more precise results. We will only give the information necessary to reproduce the measurement, as this is what we utilize in Sec. [START_REF] Quabis | Focusing light to a tighter spot[END_REF]. More details and background information can be found in [START_REF] Schaefer | Measuring the Stokes polarization parameters[END_REF].

For this method, a rotatable QWP is followed by a fixed polarizer that is adjusted in the direction of the vertical x-axis (see Fig. 2.2). It can be shown that the output intensity measured by the detector is given by

I n = 1 2 (A + B sin 2θ n + C cos 4θ n + D sin 4θ n ) , (2.26) 
where θ n is the orientation angle of the QWP for an individual measurement n and

A = S 0 + S 1 2 , (2.27) 
B = S 3 , (2.28) 
C = S 1 2 , (2.29) 
D = S 2 2 .
(2.30)
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The parameters A, B, C and D can be determined from the measured I n for different θ n :

A = 2 N N n=1 I n , (2.31) 
B = 4 N N n=1 I n sin 2θ n , (2.32) 
C = 4 N N n=1 I n cos 4θ n , (2.33) 
D = 4 N N n=1 I n sin 4θ n ., (2.34) 
where N is the total number of measurements N . From Nyquist's sampling theorem, it follows that the minimum number of measurements that has to be performed is 8. The intervals between the measurements are supposed to be equal and can be written as θ n+1 -θ n = 180 • /N . By inverting Eq. 2.27-2.30, we obtain the expressions that allow us to finally determine the Stokes parameters from Eq. 2.31-2.34:

S 0 = A -C, (2.35) 
S 1 = 2C, (2.36) S 2 = 2D, (2.37) S 3 = B. (2.38) 
For the detection of the output intensity that is required for all the measurements described above, one can use a simple diode. If we are interested in the spatial distribution of the polarization as it is the case for the analysis of our vector beams in Sec. 3, we need a spatially resolved intensity measurement. This can be performed by means of a CCD camera for example. In this way, it is possible to measure the spatial distribution of the Stokes parameters within the beam's cross-section.

Vector beams

In Sec. 2.2, we illustrated examples of light beams that exhibit complex spatial patterns in their the phase and intensity distributions. In addition to these structures in intensity and phase, also the polarization of a beam can be structured: the state of polarization then depends on the spatial location within the beam's cross-section. Such beams are called vector beams. Particularly common are cylindrically polarized beams, such as azimuthally and radially polarized doughnut modes. Ref. [START_REF] Holleczek | Classical and quantum properties of cylindrically polarized states of light[END_REF] provides a quantum-mechanical description and we give a short introduction in Sec. 4.4.3.3.

Radially and azimuthally polarized modes are very often described as a superposition of HG 01 and HG 10 modes. To obtain an azimuthally polarized mode, HG 01 must be linearly polarized in the x-direction and HG 10 in the y-direction. To generate a radially polarized mode, the relation is reversed and HG 01 must be linearly polarized in y-direction and HG 10 in x-direction. Fig. 2.3 illustrates the respective superpositions generating radially and azimuthally polarized doughnut modes. An alternative description as a superposition of circularly polarized LG modes is shown in Fig. 3.3. We use it for the experimental generation of vector beams in Sec. 3. The experimental generation of vector beams can be performed in various different ways, each one having its advantages and drawbacks. For example, a linearly polarized zeroth-order Gaussian beam can be transformed into a radially or azimuthally polarized mode by means of a spatially-variable retardation plate [START_REF] Machavariani | Spatiallyvariable retardation plate for efficient generation of radially and azimuthallypolarized beams[END_REF]. Alternative devices for such mode conversions are liquid-crystal devices often referred to as Θ cells [START_REF] Stalder | Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[END_REF] and so-called q-plates [START_REF] Cardano | Polarization pattern of vector vortex beams generated by q-plates with different topological charges[END_REF]. These q-plates are liquid crystal plates that can have different patterns imprinted. In [START_REF] Cardano | Polarization pattern of vector vortex beams generated by q-plates with different topological charges[END_REF], in particular the generation of radially and azimuthally polarized doughnut modes has been shown. A nice feature is that they allow to switch between the two different polarization structures just by switching the linear input polarization from horizontal to vertical. Unfortunately, they do not offer any more flexibility as a different pattern needs to be imprinted for different types of modes. Consequently, it is not possible to produce arbitrary vector beams by means of one q-plate. In [START_REF] Maurer | Tailoring of arbitrary optical vector beams[END_REF], a spatial light modulator (SLM) is utilized that is split into two segments such that two modes can be shaped individually and superimposed afterwards. We utilize a similar approach with an SLM for our setup in Sec. 3, which distinguishes itself by the low system-inherent losses. Using an SLM has the advantage of giving a high flexibility: many different modes can be generated in one single setup.

Vector beams may exhibit interesting properties that can be useful for diverse applications [START_REF] Zhan | Cylindrical vector beams: from mathematical concepts to applications[END_REF]. For instance, they can exhibit non-trivial focusing properties: the aforementioned radially polarized doughnut modes, for example, can be focused down to a tighter spot than homogeneously polarized modes [START_REF] Quabis | Focusing light to a tighter spot[END_REF][START_REF] Dorn | Sharper focus for a radially polarized light beam[END_REF][START_REF] Youngworth | Focusing of high numerical aperture cylindrical-vector beams[END_REF]. Such radially polarized modes may also enhance the coupling efficiency of a light-atom interaction [START_REF] Sondermann | Design of a mode converter for efficient light-atom coupling in free space[END_REF]. In nano-optics and plasmonics, tightly focused light beams or modes with a suitably tailored state of polarization of other kinds, are also being utilized for the investigation of optical properties of individual nanostructures [START_REF] Müller | Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light[END_REF][START_REF] Züchner | A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy[END_REF][START_REF] Wozniak | Selective switching of individual multipole resonances in single dielectric nanoparticles[END_REF]. Vector beams may even exhibit structures that are non-separable and, thus, show properties similar to the ones of entangled quantum systems [START_REF] Aiello | Quantumlike nonseparable structures in optical beams[END_REF][START_REF] Töppel | Classical entanglement in polarization metrology[END_REF]. These can for instance be exploited for high-speed kinematic sensing [START_REF] Berg-Johansen | Classically entangled optical beams for high-speed kinematic sensing[END_REF]. Truly nonclassical vector beams open up new applications: for instance, it is possible to establish a hybrid quantum entanglement between the polarization and transverse spatial degrees of freedom for quadrature squeezed vector beams [START_REF] Gabriel | Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes[END_REF]. Also quantum computational tasks may be performed by means of higher-order vector beams. Cluster states -that may play essential roles in one-way quantum computation protocols -can be implemented using vector beams [START_REF] Rigas | Compact generation of easy-to-access continuous-variable cluster states[END_REF].

Quantum description of light

After having introduced the concepts of classical optics essential for this work in the previous sections, we here want to elaborate on the quantum mechanical description of light fields and present some specific quantum states of particular importance.

Field quantization

We start with a classical light field in free space expanded in terms of plane waves

E(r, t) = k λ
e kλ E k α kλ e -iω k t+ik•r + c.c., (2.39) where c.c. stands for complex conjugates, r = (x, y, z) and λ refers to the polarization. Any light field can be represented in this way as the summation is performed over an infinite set of mode indices k. e kλ denotes the unit polarization vector. α kλ is a dimensionless amplitude, whereas

E k = ω k 2 0 V 1/2
has the dimensions of an electric field, with V being the volume of the cavity that is assumed for the construction of the field. As we want to consider a field propagating in free space, we use this running-wave solution and impose periodic boundary conditions [START_REF] Scully | Quantum optics[END_REF]. Please note that the expansion cannot only be performed in terms of plane waves, but that any set of modes can be utilized. We will comment on this in detail in the course of this introductory chapter. In the next step, we quantize the field by identifying α kλ and α * kλ with the operators âkλ and â † kλ respectively. The two operators âkλ and â † kλ are called annihilation and creation operator, for a reason that will become clear in Sec. 2.4.2.2. The field is thus written as

Ê(r, t) = k λ e kλ E k âkλ e -iω k t+ik•r + H.c., (2.40) 
where H.c. stands for Hermitian conjugate [START_REF] Scully | Quantum optics[END_REF]. In most cases, the parts containing positive and negative frequencies are separated such that the following expressions are obtained:

E (+) (r, t) = k λ e kλ E k âkλ e -iω k t+ik•r , (2.41) 
E (-) (r, t) = k λ e kλ E k â † kλ e iω k t-ik•r . (2.42)
The total field is the sum

E(r, t) = E (+) (r, t) + E (-) (r, t). (2.43)
The Hamiltonian of the light field can be expressed in terms of these operators as [START_REF] Loudon | The Quantum Theory of Light[END_REF] Ĥ =

k λ ω k â † kλ âkλ + 1 2 , (2.44) 
with â † kλ âkλ being the number operator [START_REF] Loudon | The Quantum Theory of Light[END_REF] nkλ = â † kλ âkλ .

(2.45)

In the following, we simplify the notation by using a single index i or j for kλ. The annihilation and creation operator fulfill the commutation relations:

âi , â † j = δ ij , (2.46) 
[â i , âj ] = â † i , â † j = 0. (2.47)
Another, very useful construct are the so-called quadrature operators. They may be expressed in terms of the creation and annihilation operators as [START_REF] Bachor | A Guide to Experiments in Quantum Optics[END_REF] Xi 

= â † i + âi , (2.48) Pi = i(â † i -âi ). ( 2 

Quantum states

The annihilation and creation operators introduced in the previous section refer to the quantum properties of a light field. In particular, âi and â † i are associated with one particular mode i. This mode is characterized by its quantum state, and the classical spatial profile. We comment on this two-foldedness in Sec. 2.5. The spatial profile of classical modes is discussed in Sec. 2.2, where we also illustrate examples such as Hermite-Gauss modes. To complete the picture, we want to elaborate on quantum states in the present section.

Pure and mixed states

A general pure quantum state can be represented as a superposition of basis vectors |ψ from an arbitrary complete basis. In particular, the phase relations between the different single state vectors are specified. However, there are field excitations for which this description is not possible as only a set of probabilities P R for the field being in certain states |R can be found. In these cases, the field is in a statistical mixture [START_REF] Loudon | The Quantum Theory of Light[END_REF]. A practical representation of the information of the probabilities P R is the density operator

ρ = R P R |R R| .
(2.53)

The average value of an observable O represented by the quantum-mechanical operator Ô can be determined by means of ρ as

Ô = Tr[ρ Ô], (2.54) 
where Tr means the trace of the operator. It is independent of the basis that is used for the representation of the operator. By considering the special case where Ô is the identity operator, we obtain the normalization condition Tr[ρ] = 1.

A pure state can be regarded as a special case of a statistical mixture for which a basis can be found such that P R is nonzero only for one state |R and equals unity in that case, such that ρ = |R R|. A quantum state can be proven to be pure by showing that the relation ρ2 = ρ holds.

In the following, we present properties of the most important quantum states, namely number states, coherent states, squeezed states and thermal states. Please note that we describe single-mode excitations of the field in this section.

Number states

Fock or number states are characterized by the fact that their photon number is exact. Accordingly, they are eigenstates of the number operator

n |n = n |n . (2.55)
As there is no uncertainty in the photon number, its variance δn 2 is equal to 0 [START_REF] Loudon | The Quantum Theory of Light[END_REF]. Fock states form a complete set of states, and it is very common to expand other quantum states in terms of Fock states as they are easy to handle. This is also due to the straightforward effect of the annihilation and creation operators on the number states: the annihilation operator removes one photon from the state, the creation operator adds one photon. With the pre-factors that ensure Eq. 2.55, this reads as

â |n = √ n |n -1 , (2.56) 
â † |n = √ n + 1 |n + 1 . (2.57) 
The state with a photon number equal to 0 is called the vacuum state |0 .

Coherent states

The properties of coherent states approach best those of a classical electromagnetic wave, such that they are sometimes referred to as the 'most classical' states. For example, the output of a single-mode laser operating well above the threshold is a coherent state [START_REF] Loudon | The Quantum Theory of Light[END_REF][START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]. Coherent states have first been introduced by Glauber [START_REF] Glauber | Photon correlations[END_REF][START_REF] Glauber | The quantum theory of optical coherence[END_REF], and are formally generated by the displacement operator

D(α) = exp(αâ † -α * â), (2.58) 
where α = |α| exp(iθ). By applying the displacement operator to the vacuum state, we obtain a single-mode coherent state

|α = D(α) |0 . ( 2 

.59)

A practical feature of coherent states is the fact that they are eigenstates of the annihilation operator such that â |α = α |α .

(2.60)
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From this relation, the mean photon number can be found to be

n = |α| 2 , (2.61)
and the variance of the photon number is

δn 2 = |α| 2 . (2.62)
Mean value and variance are consequently equal. This is in accordance with the fact that the photon distribution for a coherent state is a Poisson distribution [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]:

P (n) = |α| 2n n! exp(-|α| 2 ) (2.63)
In terms of number states, the coherent state can be written as

|α = exp - 1 2 |α| 2 ∞ n=0 α n (n!) 1/2 |n .
(2.64)

Squeezed states

According to Heisenberg's uncertainty relation, the product of the variances of amplitude and phase has a lower bound. However, the noise in one of the parameters can be decreased while the other one is increased. The parameter with the noise that is lower than the coherent noise is called squeezed. The parameter with the increased noise is consistently sometimes called antisqueezed. The squeezing operator is defined as

Ŝ(ζ) = exp 1 2 ζ * â2 - 1 2 ζ(â † ) 2 , (2.65) 
where ζ = se iϑ is the complex squeezing parameter. If the squeezing operator is applied to a vacuum state

|0, ζ = Ŝ(ζ) |0 , (2.66) 
we obtain a vacuum squeezed state. To generate a bright state, the displacement operator can be applied afterwards such that we get a squeezed coherent state

|α, ζ = D(α) Ŝ(ζ) |0 . (2.67) Please note that D(α) Ŝ(ζ) |0 = Ŝ(ζ) D(α) |0 . The experimental generation of squeezed light is discussed in Sec. 3.2.1.
In the further course of this work, the mean value and the variance of the photon number for the squeezed vacuum state and the squeezed coherent state will become important such that we want to give the formulas here. For the mean photon number, one may determine

n = |α| 2 + sinh 2 (s), (2.68) 
where |α| 2 is the number of photons attributed to the displacement and sinh 2 (s) is the number of photons due the squeezing. The variance of the photon number is given by [56]

δn 2 = |α| 2 e 2s sin 2 θ - 1 2 σ + e -2s cos 2 θ - 1 2 σ +2 sinh 2 s sinh 2 s + 1 , (2.69) 
we see that the first term would become 0 for squeezed vacuum. This term also contains the angles θ and σ. σ characterizes the squeezed quadrature, θ gives the phase of the displacement α = |α| exp(iθ). We may visualize these parameters and the noise in different quantum states by a representation in phase space. The two axes of this phase space are associated with amplitude and phase quadrature. The different quantum states are represented by their uncertainty regions. Fig. 2.4 gives an example. The displaced squeezed state, which we just discussed, is depicted in blue. Furthermore, a vacuum state is shown in green, and a vacuum squeezed state is presented in yellow. While the vacuum state has a coherent uncertainty circle, the squeezed states are represented by ellipses, expressing the fact that the noise in one quadrature is reduced and the noise in another quadrature is increased in return. Consequently, it is the orientation of the ellipse that shows which quadrature is squeezed. The displacement from the origin refers to the field amplitude of the state. 2. Some fundamentals of classical and quantum optics 2.4.2.5. Thermal states Thermal states are an example for mixed states that were described in general in Sec. 2.4.2.1. These states occur very often in cases where there is a coupling between a system and the environment in a thermodynamic equilibrium [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]. The photon number probabilities are given by the so-called thermal or geometric distribution:

P (n) = n n (1 + n) 1+n , (2.70) 
where n = [exp(β ω) -1] -1 and β = (k B T ) -1 , with k B being Boltzmann's constant and T the absolute temperature [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]. The density matrix describing the state can be written in terms of this distribution in the number state basis as

ρ = n P (n) |n n| . (2.71)
Very helpful quantities for further calculations are the first two moments of the distribution. The expectation value of the number operator n is equivalent to the aforementioned mean value of the photon number n. The variance of the photon number is found to be

δn 2 = n(n + 1).
(2.72)

Multimode light

In previous sections, we have seen that the transverse light field generally can be described as a superposition of spatial modes. One, of course, usually uses the basis that fits best to the light field, i.e. allows to describe the field by means of the smallest number of modes. Furthermore, there are common bases such as the Hermite-Gauss or Laguerre-Gauss basis that are popular also because their modes occur naturally in many resonators. However, we may in principle define any basis we like that fulfills the conditions in Sec. 2.2. For classical light fields (and if we assume coherent superpositions of modes and not statistical mixtures), we are always able to find a basis such that the field is completely contained in one mode. This is because we can always define a new basis such that the field is proportional to only one mode v 0 . This mode can be written as [START_REF] Treps | Quantum noise in multipixel image processing[END_REF] v 0 = 1

i |A i | 2 i A i u i . (2.73)
The field is thus single mode. So even if, at first glance, a light field seems to be multimode in one basis, we can always define a new basis in which the first mode v 0 is the superposition of all the modes of the initial basis {u i } that make a contribution to the light field. For these coherent superpositions of modes, there is thus no intrinsic definition of a multimode beam.

For quantum light, however, there are cases for which the field is intrinsically multimode. To pursue this idea further, we first apply the field quantization introduced in Sec. 2.4.1 on the expansion in spatial modes in Eq. 2.13. We write the light field as a superposition of modes u i the excitation of which is characterized by the annihilation operators âi . This means that a mode i is described by the combination of a classical mode profile u i and the annihilation operator âi referring to the quantum excitation. The classical amplitude A i as in the above Eq. 2.73 is omitted since this constant factor does not have any further effects in our case. In analogy to Eq. 2.13, we write the light field as

Ê(+) (x, y, z) = i âi (z)u i (x, y, z). (2.74)
One can tell from this formula that spatial mode and quantum excitation of the light field are independent of each other, at least in the sense that one can excite every spatial mode in any desired quantum state. The description is complete and captures also effects such as entanglement [START_REF] Grynberg | Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[END_REF]. We claimed above that not for all quantum states an appropriate basis exists for which it can be expressed in terms of one mode. To understand this, we firstly give an accurate definition of a single mode state: A state is single mode if it is possible to find a mode basis {v i } such that

|ψ = |ψ 0 ⊗ |0, 0, ... , (2.75) 
where ψ 0 is the state of the field in the first transverse mode [START_REF] Treps | Quantum noise in multipixel image processing[END_REF]. A state is thus single mode if one can find a basis in which only one of the modes in this factorized expression of the light field is not filled with a vacuum state.

To achieve a better understanding of the nature of single mode and multimode states, we want to learn more about their properties [START_REF] Treps | Quantum noise in multipixel image processing[END_REF]. For this purpose, we assume a state |ψ that is single mode with respect to a basis {u i , âi } such that (2.78)

âi |ψ = δ i0 |ψ 0 . ( 2 
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All actions of annihilation operators on the field are thus proportional. As we started with a general single mode state, this means that if a quantum state is single mode, the actions of all the annihilation operators of a given basis give collinear vectors. So the natural question that arises is if the inverted relation is also true. This is particularly interesting, as it would give a helpful method to show that a field is single mode. Thus, we now start by assuming a state |ψ for which

âi |ψ = α i |ψ 0 . (2.79)
In a next step, we define a new basis

{v i , bi } such that b0 = i α * i âi (2.80)
and

v 0 = i α * i u i . (2.81)
The basis is completed by bi = j c ij âj with c 0j = α * j and j c ij c * kj = δ ik . Now we may study the effect of the annihilation operators bi of that basis on the field under investigation:

bi |ψ = j c ij âj |ψ = j c ij α j |ψ 0 = j c ij c * 0j |ψ 0 = δ i0 |ψ 0 . (2.82) 
The action of the annihilation operator on |ψ is consequently nonzero only for i = 0. For i = 0, the output is the single mode |ψ 0 . We can thus conclude: A quantum state of the field is single mode if and only if the actions on it of all the annihilation operators of a given basis give collinear vectors [START_REF] Treps | Quantum noise in multipixel image processing[END_REF]. This also means that by showing that all projections of a field on the annihilation operators of one particular basis are proportional, one can prove that this field is single mode. For example, we may consider a general state

|ψ = |φ 1 ⊗ ... ⊗ |φ i ⊗ ... (2.83) 
and then let an annihilation operator âi act on it

âi |ψ = |φ 1 ⊗ ... ⊗ (â i |φ i ) ⊗ ... (2.84) 
By looking at this relation, we see that there are only two possibilities to obtain proportional states for all i: Either only one of the actions could give a nonzero result. In this case, the state would be already in the basis in which it is obvious that it is single mode. Or all the states |φ i could be coherent states |α i such that âi |ψ = |α 1 ⊗ .... ⊗ |α i ⊗ ... = α i |ψ and the resulting states are all proportional to the state itself. A superposition of transverse modes is thus multimode if at least one of the modes is noncoherent. The minimum number of modes that have to be nonvacuum modes to describe the field in a modal decomposition as in Eq. 2.83 gives the degree n of a multimode beam. A corresponding basis is called minimum basis for the light field under consideration. We discussed above that only for classical fields, there is always a basis such that the field amplitude is proportional to only one mode. For a multimode beam of degree n, one may only define a so-called mean field mode. This means that the electric field is nonzero only for this mode. However, there may still be energy in the other modes.

To describe this mathematically, we start by considering a minimum basis {u i , âi } of a light field |ψ of degree n. It is assumed to be ordered in such a way that the relevant modes are the first n modes. Then the mean field mode is given by

v 0 = 1 n-1 i=0 âi 2 n-1 i=0 âi u i . (2.85)
The first n modes are redefined such that v i = n-1 j=0 c ij u j for 0 < i < n, where pre-factors c ij are chosen such that an orthonormal basis is achieved. For i ≥ n, the modes remain unchanged (v i = u i ) and the new basis is thus also a minimum basis. For a discussion of further aspects of multimode light, please see [START_REF] Treps | Quantum noise in multipixel image processing[END_REF].

Experimental generation of amplitude squeezed vector beams

In the following, we discuss the implementation of an experimental technique for the generation of vector beams exhibiting a quantum noise reduction in the amplitude quadrature. We have presented this method and the achieved results in and the following section is based on that article.

• V.

Introduction

In Sec. 2.3.2, we elaborated on vector beams and their relevance for various applications. Considering the numerous applications in the quantum domain, one can say that the quantum features of vector beams are not as well studied as they would deserve it. Nonclassical vector beams constitute a worthwhile topic to explore, and new aspects of the various characteristics of their quantum nature are still being discovered.

We discussed in Sec. 2.3.2 that there are many different ways of generating vector beams experimentally and that all of them come with particular advantages and disadvantages. In our experiment, we intend to fulfill two tasks: the conversion of an ordinary fundamental Gaussian mode into a vector beam, and the reduction of the quantum noise in the light beam's amplitude quadrature. The order in which squeezing and mode conversion should be performed still needs to be discussed. We first have to consider how to execute the individual tasks. Let us start by discussing the mode conversion. If we strive for a highly flexible experiment providing the possibility of producing various different profiles within a single setup, we should use a spatial light modulator (SLM). In [START_REF] Semmler | Single-mode squeezing in arbitrary spatial modes[END_REF], we have shown a technique utilizing such a SLM for the generation of amplitude squeezed spatial modes. The generated modes exhibit a high mode quality and a significant amount of quantum noise reduction. Our present task, however, is still more challenging as we want to control one more degree of freedom: the polarization. In [START_REF] Maurer | Tailoring of arbitrary optical vector beams[END_REF] and [START_REF] Han | Vectorial optical field generator for the creation of arbitrarily complex fields[END_REF], vector beams of a very good quality are being produced. Unfortunately, in both setups the high mode quality comes at the price of high losses. Here, we want to comment on the very nice work in [START_REF] Maurer | Tailoring of arbitrary optical vector beams[END_REF] in particular and will also refer to it later in this section. It presents an interferometric approach, and even without taking technical losses on the SLM into account, 75 % of the input light are lost within the setup. These losses are of a systematic nature and cannot be avoided in the particular scheme. For it uses classical light, the occurring high losses do not pose a problem, but since we are intending to use squeezed light, the losses have to be kept as low as possible to preserve the squeezing. In addition, stability and simplicity of the setup can be enhanced by avoiding the interference of spatially separated beams. Not to reduce the amount of squeezing within the process of the mode conversion, one could also think about performing the conversion of the mode first, and squeezing the amplitude quadrature afterwards. This would require the possibility of squeezing such a particularly shaped mode. Such kind of nonlinear media does in fact exist. In [START_REF] Gabriel | Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes[END_REF], an appropriately designed crystal fiber is used for this purpose. A fiber can, however, only be tailored for specific beams so that it does not provide the flexibility we are seeking. We therefore decide to perform the mode conversion after the squeezing and accept the restriction of low losses. In [START_REF] Gabriel | Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes[END_REF], the amplitude squeezing is also performed before converting the mode. However, the available modes are only very limited due to the nature of the utilized mode converter. So far, no setup could generate a large number of different types of vector beams exhibiting amplitude squeezing. Now, we succeeded in building an experimental setup that meets the above mentioned requirements of preserving the squeezing during the mode conversion process and offering the flexibility to switch between different vector beams. We achieve this by performing the quantum noise reduction in the amplitude quadrature by means of a Sagnac interferometer exploiting the Kerr effect of an optical fiber, and by realizing the conversion to the vector beam by means of a collinear interferometric technique afterwards. Our experimental setup is depicted in Fig. 3.1. It consists of three main parts corresponding to the three main tasks: the squeezing of the amplitude quadrature, the conversion of the spatial mode, and the analysis of the characteristics of the prepared light field. The mode preparation is performed by the amplitude squeezer and the mode conversion setup that is discussed in the following section. The analysis of the modes, i.e. the measurement of the spatial distribution of polarization and intensity is explained in Sec. 3.3.

Mode preparation

As discussed above, we start the mode preparation by the generation of amplitude squeezed light in a fundamental Gaussian mode, and perform the conversion to higherorder vector beams in a second step. The amplitude squeezer provides a fundamental Gaussian mode with a reduced quantum noise in the amplitude quadrature. In a next step, the mode conversion setup turns this fundamental Gaussian mode into the desired vector beam. The exemplarily depicted phase masks would generate LG 01 modes: the continuous phase gradient from 0 to 2π along the azimuthal direction is generated by the gray gradient. Please note that black and white represent 0 and 2π such that no phase jump is caused at the point where black and white adjoin each other. And finally, the mode analysis is performed. Instead of the squeezed light beam, a coherent beam can be coupled into the setup that serves as a reference for the determination of the quantum noise reduction. In Appendix A, labeled photographs of the experimental setup can be found.

Squeezing the amplitude quadrature

We start with a fundamental Gaussian mode in a coherent state from an ultrashort pulsed laser (Origami Onefive) that produces 220 fs pulses with a central wavelength of 1560 nm. To reduce the noise in the amplitude quadrature of this mode, we exploit the optical Kerr effect in a polarization-maintaining single-mode fiber (FS PM 7811 by 3M).

Kerr squeezing

The Kerr effect is a phenomenon occurring in nonlinear media: the refractive index is intensity dependent. It is divided into a constant part and a part that scales with intensity [START_REF] Bachor | A Guide to Experiments in Quantum Optics[END_REF]:

n(I) = n 0 + n 2 I. (3.1)
Consequently, a light beam propagating through such a medium will experience a phase shift that is bigger the higher the intensity. In Fig. 3.2, we see the coherent input state on the right-hand side. According to quantum mechanics and the unavoidable quantum uncertainty, it consists of a circle instead of an infinitely small point. As a consequence, there are parts that effectively have a higher intensity than others. Due to the Kerr effect and the aforementioned dependence of the refractive index on the intensity, the different parts of the uncertainty circle experience different phase shifts during the propagation. As a result, the circle gets distorted and becomes an ellipse. This distortion is being enhanced during propagation, and the quantum noise now varies with respect to the different quadrature angles. Some quadratures show a higher uncertainty, some a lower uncertainty than before [START_REF] White | Kerr noise reduction and squeezing[END_REF]. The angle θ sq characterizes the quadrature Xθsq exhibiting the minimum noise.

Since the Kerr nonlinearity is a relatively weak effect, pulsed light is utilized to obtain a high intensity and, thus, get a more pronounced response. Furthermore, the interaction with the nonlinear medium can be extended by using a longer fiber.

Figure 3.2.: The initially coherent state is being quadrature squeezed while propagating through the fiber. This is due to the Kerr effect in the nonlinear medium: the parts of the state with a higher intensity experience a larger phase shift. As a result, the uncertainty circle representing the state in phase space is turned into an ellipse.

For our experiment, we want to achieve squeezing in the amplitude quadrature. To tilt the squeezing ellipse appropriately, the ellipse is translated in phase space by introducing a counter-propagating weak pulse in the fiber [START_REF] Schmitt | Photonnumber squeezed solitons from an asymmetric fiber-optic Sagnac interferometer[END_REF]. If the intensities of the strong quadrature squeezed pulse and the weak counter-propagating pulse are balanced appropriately, this leads to amplitude squeezing in the strong pulse. In our experiment, we use the coherent pulse from the laser, divide it by means of a 90:10 beam splitter and couple the strong and the weak pulse into the opposite ends of the fiber (see Fig. 3.1). The output of this so-called Sagnac-loop exhibits amplitude squeezing of up to -3.4 dB ± 0.1 dB that we measured by direct detection at a radio frequency sideband at 10 MHz (resolution bandwidth: 300 kHz, video bandwidth: 3 kHz) by means of a spectrum analyzer. The 461 data points of one trace measured by the spectrum analyzer have been divided in chunks of 15 data points, and any residual data points are neglected. The error given for the squeezing is the standard deviation of the squeezing determined for these individual blocks. For the coherent reference, a light beam coming directly from the laser source is used. To measure the remaining amplitude squeezing after the mode conversion, the coherent light beam is coupled into the setup and experiences the same two reflections on the SLM as the squeezed beam. In Fig. 3.5, a typical measurement is depicted.

Mode conversion by means of a spatial light modulator

After having prepared a fundamental Gaussian mode in the desired quantum state, we now aim at reshaping the spatial mode. However, we want to produce a complex structure not only in intensity and phase of the light beam, but also in the polarization. This requires a thoughtful construction of the setup for the mode conversion. Moreover, a particular challenge is to keep the losses low which is necessary to maintain the squeezing. This is particularly critical as squeezing declines nonlinearly with attenuation. We use a reflective, phase-only liquid-crystal-based spatial light modulator (SLM, Pluto HOLOEYE, LCOS, 1920x1080 pixel) to shape the transverse phase structure of the ligth beam. Liquid crystals are birefringent molecules that have an elongated shape. Due to this property and the alignment of the molecules in the cell, the vertically polarized part of the light remains unaffected during the reflection. It is only the horizontally polarized part that experiences a phase shift. This phase shift depends on the voltages applied to the liquid crystal: the molecules change their orientation according to the generated electric field. Due to the birefringence of the liquid crystal, this results in a change of the refractive index the impinging light experiences and thus leads to a phase shift. It depends on the voltage level, how large the change of orientation of the molecules, and, thus, how large the introduced phase shift is. It is therefore possible to generate phase shifts between 0 and 2π. As the voltage is adjustable in each pixel individually, we are able to tailor the phase in different positions of the light beam's cross-section and generate a sophisticated phase structure. Any desired phase pattern can be generated: the SLM is established as an additional display of a computer and any gray-scale picture can be displayed. Depending on the shade of gray, a phase shift between 0 and 2π is introduced. Please note that black and white denote the same resulting phase: as they are associated with phase shifts of 0 and 2π respectively, the phase remains unaffected. In Fig. 3.2, a phase mask for the generation of a Laguerre-Gauss mode LG 01 is depicted. According to the nomenclature we are using, an LG lp mode is a Laguerre-Gauss mode with an azimuthal index l and a radial index p. The aforementioned LG 01 consequently has an azimuthal index equal to 0, and a radial index equal to 1.

A single reflection of the light beam on the SLM leads to a modulation of the phase of the horizontally polarized part of the light. As mentioned above, we do not only want to tailor the phase, but also the polarization. To achieve this, we divide the SLM display into two segments and apply different phase patterns to these. The polarization of the input light is aligned to be linear in the 45 • direction with respect to the SLM. In this way, the horizontally polarized half of the light is modulated in the first reflection. Prior to the second reflection, the polarization is turned by means of a half-wave plate such that the originally vertical polarization now becomes horizontal. As a result, the second reflection on the other part of the SLM display generates a phase modulation in the so far unmodulated part of the light (see Fig. 3.1 for a depiction of the beam path). In our setup, two orthogonally polarized modes are generated within one beam that are then naturally superimposed. Thanks to this collinear interferometric technique, a complicated phase locking is avoided. To finalize the mode preparation, we put a quarter-wave plate in the beam path that converts the linear polarizations into left and right circular polarization states. The superposition of these two modes can exhibit sophisticated polarization patterns if the phase patterns are tailored appropriately. The desired vector beam can in fact be constructed from different basis modes. Commonly used options are Hermite-Gauss or Laguerre-Gauss modes with tailored states of polarizations. (The utilization of a superposition of the HG modes would actually require linear polarizations and consequently the removal of the last QWP, see Fig. 2.3 for an illustration.) For our setup, we found that by using Laguerre-Gauss modes, we can achieve a better mode quality while applying simpler phase masks to the SLM. By means of the double reflection on the SLM and the subsequent quarter-wave plate, we generate two LG modes with opposite azimuthal indices and opposite handedness of the circular polarization. Fig. 3.3 shows two examples with LG 01 modes the superposition of which leads to azimuthally and radially polarized doughnut modes. The same approach is used in [START_REF] Maurer | Tailoring of arbitrary optical vector beams[END_REF]. By applying more complicated phase patterns to the SLM, we also generate more sophisticated vector beams. These will be discussed in Sec. 3.4. To enhance the mode quality, we furthermore add a kinoform lens [START_REF] Lesem | The kinoform: a new wavefront reconstruction device[END_REF] to the pattern generating the basis mode. A kinoform lens is a phase hologram producing a phase modulation as it would be caused by a real lens. Please note that the two modes generated by the different segments of the SLM are generated at different points of the beam path and can exhibit different propagation properties, the matching of which can be improved by the introduced kinoform. The combinations of such kinoforms with phase patterns for the generation of an LG 01 mode are shown in Fig. 3.1. As we want to preserve the squeezing generated prior to the mode conversion, the occurring losses have to be limited to a minimum. As mentioned above, other methods give very good results but come with the disadvantage of systematic losses. In our setup, only technical losses such as the one from the reflection on the SLM occur. As 3. Experimental generation of amplitude squeezed vector beams these losses are unfortunately relatively high, the overall losses in the setup amount to 64 %. We preserve an average squeezing of -0.9 dB ± 0.1 dB at the output. No additional noise is added by the SLM at the sideband frequency where we perform the measurement (see also [START_REF] Semmler | Single-mode squeezing in arbitrary spatial modes[END_REF]). Apart from the unavoidable losses, the SLM shows another unwanted effect: the mode conversion efficiency is not perfect such that a certain part of the light remains in the fundamental Gaussian mode. As we will see in Sec. 3.4, this causes a reduction of the mode quality. Other schemes for the generation of spatial modes or vector beams use blazed gratings to separate the modulated part from the unmodulated part (for example [START_REF] Maurer | Tailoring of arbitrary optical vector beams[END_REF][START_REF] Semmler | Single-mode squeezing in arbitrary spatial modes[END_REF]). But in our approach, the presence of the unmodulated part of the light with the orthogonal polarization is crucial, as explained above. For this reason, we cannot use the method with blazed gratings. Both issues, the reduced conversion efficiency and the occurring losses, could be overcome in future by technical improvements of spatial light modulators. Therefore, even if the quality of the modes we are presenting in Sec. 3.4 is not as good as we would like it to be, our approach is an important proof-of-principle experiment.

Mode analysis

Our analysis of the generated light field is twofold: the classical mode structure and the quantum noise in the amplitude quadrature are investigated. The measurement of the quantum noise reduction in the amplitude has already been discussed in Sec. 3.2.1. Here, we just want to point out that the setup contains two detectors for the direct detection of the amplitude noise: one right after the Sagnac squeezer to analyze the input squeezing, and one in the mode analysis part after the SLM. For the sake of clarity, they have not been included in the sketch of the setup in Fig. 3.1. However, the beam path of the coherent reference that can be coupled into the setup is indicated by a dashed mirror. While the intensity distribution of the generated beam's cross-section can be examined simply with the help of a CCD camera, it requires a more sophisticated setup to investigate the spatial distribution of the polarization. The simplest option only needs a rotatable polarizer in front of the CCD camera (as depicted in Fig. 3.1). This allows for a quick, but quite precise analysis of the polarization: images are taken for different orientations of the polarizer (see Fig. 3.7 for the results). This method is an intuitive and straightforward examination of the polarization structure. It is also important as a plausibility check for the more complex analysis by Stokes measurements that we perform in addition. Determining the spatial distribution of the Stokes parameters gives a more detailed and complete description of the polarization. This procedure is discussed in Sec. 2.3.1.1. For the implementation of this technique, an additional quarter-wave plate (QWP) is inserted in front of the polarizer. The polarizer is now fixed, while the QWP is rotated and images are taken for different orientations. The results of this procedure are shown in Fig. 3.6. Fig. 3.4 shows the outcome from both methods for the example of a radially polarized LG 01 mode. The experimental findings are discussed in the following section.

Experimental results and discussion

Herein, we present examples of amplitude squeezed vector beams that are generated in the setup shown in Fig. 3.3. We perform the various analyses presented in the above section: the measurement of the quantum noise reduction in the amplitude quadrature, the basic examination of the polarization structure by a combination of a polarizer and a CCD camera, and the determination of the spatial distribution of the Stokes parameters. Fig. 3.4 shows the results of these examinations for a radially polarized mode with the spatial structure of an LG 01 mode. We achieve an amplitude squeezing of -0.9 dB±0.1 dB. The noise level of the coherent reference and the amplitude squeezed vector beam are depicted in Fig. 3.5. The first image in (a) is the total intensity profile. The subsequent pictures are taken behind a polarizer the transmission axis of which is indicated by the white arrow. The measured Stokes parameters are presented in (b), and can be compared to the theoretical values shown in (c). In particular, we encounter a nonzero S 3 parameter that is supposed to be zero. It presumably remains because of an imbalance between the two interfering modes. Moreover, the lobes of S 1 are slightly imbalanced. All in all, we see only small imperfections however. Fig. 3.6 gives a summary of the analysis of the Stokes parameters and the quantum noise reduction for modes with a spatial structure of LG 02 , LG 03 , LG 11 , LG 12 and LG 13 modes and complex polarization patterns. Their examination by means of a single polarizer in front of the CCD camera can be found in Fig. 3.7. For all of them, the quantum noise reduction is significant, and the mode quality high. We thus show that our setup is flexible and allows to generate different amplitude squeezed higherorder Laguerre-Gauss modes of good quality. However, some imperfections can be observed. In particular in the depiction of the Stokes parameters, we see spiral structures that become more pronounced for higher orders of the modes. For the modes with two rings, i.e. the modes LG 11 , LG 12 and LG 13 , the two rings are slightly twisted with respect to each other. To understand this effect, we want to discuss the difficulties and challenges in the process of the generation of the vector beams. As explained above, the mode is constructed from two orthogonally polarized modes. These two modes are produced by the interaction with the phase patterns displayed on the two different segments of the SLM. This means that the modes are generated at different planes in the beam path. The phase patterns are carefully designed to partially compensate for this and ensure that the orthogonally polarized beams have a comparable width and divergence (see Sec. 3.2.2). Different propagation properties of the two components require a careful alignment and optimization of the mode quality. This becomes more difficult the higher the order of the generated modes due to the simple fact that the higher-order modes exhibit more complicated radial structures that have to overlap neatly. The generation of the two components within one beam has the advantage that a complex locking technique for the phase between the components can be avoided. However, the disadvantage is that the inefficient mode conversion of the SLM leads to a reduction of the mode quality as the unmodulated component can not be separated (see Sec. 3.2.2 for a detailed analysis). As a result, a part of the fundamental Gaussian mode is still present in the output beam. When inserting a polarizer for the mode analysis, only one particular linear polarization is transmitted. Consequently, one particular higher-order mode and the equally polarized fundamental Gaussian mode is selected. The interference of this higher-order mode and the residual zeroth-order mode cause the spiral structures mentioned above. As discussed before, the unmodulated part of the light cannot be separated in our low-loss setup, and, thus, the appearance of the spiral patterns cannot be avoided either. In [START_REF] Maurer | Tailoring of arbitrary optical vector beams[END_REF] and [START_REF] Semmler | Single-mode squeezing in arbitrary spatial modes[END_REF], the mode quality is enhanced by separating the residual zeroth-order components. It may be interesting to note that there are applications for which such an interference is provoked intentionally: it can be used to analyze the phase structure of higher-order modes under investigation [START_REF] Wang | Terabit free-space data transmission employing orbital angular momentum multiplexing[END_REF][START_REF] Xum | Conversion of orbital angular momentum of light in chiral fiber gratings[END_REF]. When having a close look at Fig. 3.7, one can encounter another effect that unfortunately reduces the mode quality: for the modes with higher topological charges, the dark spot in the middle is in fact split into several individual ones. This is particularly visible in Fig. 3.7(e), i.e. for LG [START_REF] Santos | Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum[END_REF] , where one can see three dark spots. This observation suggests that the vortex is split into several singularities. The instability of higher-order vortices is a known problem and has been examined already, for example in [START_REF] Ricci | Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer[END_REF][START_REF] Basistiy | Optics of light beams with screw dislocations[END_REF][START_REF] Neo | Correcting vortex splitting in higher order vortex beams[END_REF]. It has been shown in the early 90s already by Basistiy et al. [START_REF] Basistiy | Optics of light beams with screw dislocations[END_REF] that the presence of a coherent background can create such a splitting of the vortices. Consequently, it seems like the unmodulated part of the light is again the cause for that undesired effect. We have already discussed above that we cannot separate this part of the light, such that also this effect cannot be completely avoided. However, in the future, a minimization of the unmodulated background could be achieved by technical improvements of the SLM concerning the diffraction efficiency. One may also think about the possibility of implementing filter techniques. 

Conclusion and outlook

We have presented a setup that allows for the flexible generation of higher-order vector beams with a reduced quantum noise in the amplitude quadrature. By means of a single setup, arbitrary vector beams can be produced. As a proof-of-principle, we generated six different Laguerre-Gauss modes with radial indices 0 or 1 and aziumthal indices up to 3 and a quantum noise reduction up to -0.9 dB±0.1 dB. The amplitude squeezing stemming from a Sagnac interferometer is initially higher, but is reduced during the mode conversion due to technical losses, in particular on the SLM. The high mode quality is demonstrated in a detailed analysis of the polarization structure by measuring the spatial distribution of the Stokes parameters.

With the help of technical improvements of spatial light modulators, our two main issues, the reduced conversion efficiency and losses, could -and most likely willbe overcome in future. Furthermore, the mode quality could possibly be improved further by utilizing optimized phase patterns on the SLM [START_REF] Bolduc | Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram[END_REF][START_REF] Clark | Comparison of beam generation techniques using a phase only spatial light modulator[END_REF].

Quantum uncertainty in the beam width of spatial optical modes

In this work, we are interested in quantum properties and effects in the context of structured light and their spatial parameters. In the following section, we want to investigate the quantum uncertainty in a fundamental beam parameter: the width. Large parts of this study have been published in 

• V.

Introduction

The size of the beam width is of importance, in particular for applications in which the resolution depends on the size of a focal spot. Examples are optical trapping [START_REF] Bowman | Optical trapping and binding[END_REF], lithography [START_REF] Brueck | Interferometric lithography -from periodic arrays to arbitrary patterns[END_REF], confocal microscopy or optical data storage. The spot size itself can be reduced by tailoring the classical characteristics of the light beam, for example by choosing particular spatial and vectorial features for the light beam [START_REF] Quabis | Focusing light to a tighter spot[END_REF]. If the spot size matters for an application, also the accuracy of the spot size should be relevant. Furthermore, the noise in the beam width has an influence on a method for the simultaneous measurement of aziumthal and radial index of Laguerre-Gauss modes: in [START_REF] Mazilu | Determination of the azimuthal and radial mode indices for light fields possessing orbital angular momentum[END_REF], the influence of the beam width noise is investigated explicitly and it is pointed out that its control is important for the procedure. We want to understand how to minimize the uncertainty in the beam width. To the best of our knowledge, we are the first to address the question about the quantum uncertainty in the beam width in [START_REF] Chille | Quantum uncertainty in the beam width of spatial optical modes[END_REF]. We pointed out that most applications for which the beam size is very important use focused light. To start with, we want to derive a theoretical framework for the description of the beam width and its noise.

We then apply it to paraxial light fields. We will comment on the determination of the beam width noise for focused light fields in Sec. 4.7.

In the following, we develop a quantum theory describing the beam width and its noise. It unveils the underlying effects and shows how to control and adapt the uncertainty in the beam width.

Definition of the beam width

The first question that arises when we want to investigate the noise in the beam width, is how to actually define the width of a light beam. The width of an optical beam can indeed be defined in many different ways, and one usually simply chooses the definition that is most appropriate for one's specific problem [START_REF] Siegman | How to (maybe) measure laser beam quality[END_REF]. For example, a very common choice is to define the beam width as the distance between the two points, at which the intensity is 1/e 2 or 1/2 (FWHM = full width at half maximum) of the maximum value. For high power lasers, a well-suited measure is the amount of power that illuminates a particular surface. In our case, however, we are seeking for a definition that allows further analytical calculations. Therefore, we utilize the spatial variance of the intensity distribution. Despite the fact that it has the dimensions of an area, it is related to the beam size in an obvious way and may thus be used as a measure for the width of a light beam. By taking the square root of the variance, we get the standard deviation of the distribution which has the dimension of a length and is a very common measure for the beam width. Our definition is thus closely related to a standard definition of the beam width [START_REF] Alda | Laser and Gaussian beam propagation and transformation[END_REF].

Experimentally, the beam width is derived from a direct measurement of the transverse spatial intensity distribution of the light beam using a CCD camera or a photodiode or single photon counting array. By means of repeated measurements, the variance, i.e. the noise, is determined. As we are interested in the quantum uncertainty of the beam width, we want to utilize quantum mechanical expressions for the calculations. Consequently, we define a quantum operator measuring the beam width. We formulate it in terms of operators as the variance of the intensity distribution.

For now, we consider beams with a uniform polarization and represent the electric field operator as a scalar quantum field. Furthermore, we assume propagation along the z-axis. (A study of specific examples of beams with nonuniform polarization patterns can be found in Sec. 4.4.3.3.) We expand the light field Ê(+) (x, y, z) in terms of the mode basis {u i (x, y, z)} that is an arbitrarily chosen complete and orthonormal basis formed by solutions of the paraxial wave equation. We investigate the crosssection of the light beam in a fixed plane z = const. As a matter of convenience, we choose z = 0, such that we can omit the propagation factor and use the transverse part of the light field Ê(+) (x, y), and the transverse mode basis {u i (x, y)}. A set of creation and annihilation operators âi and â † i is associated with each mode. We thus write the transverse light field operator as Ê(+) (x, y) = i u i (x, y)â i [START_REF] Kolobov | The spatial behavior of nonclassical light[END_REF]. We define the quantum operator measuring the beam width by means of this light field operator as

Ŵ = 1 Ê(-) (x, y) Ê(+) (x, y)dxdy (x 2 + y 2 ) Ê(-) (x, y) Ê(+) (x, y)dxdy = 1 N all i,j D ij â † i âj , (4.1) 
with

D ij = (x 2 + y 2 )u * i (x, y)u j (x, y)dxdy. (4.2)
The operator is normalized by the total intensity that can be rewritten as the total number of photons:

N all = Ê(-) (x, y) Ê(+) (x, y)dxdy = i,j u * i (x, y)u j (x, y)dxdy â † i âj = i â † i âi = i N i , (4.3) 
where we used the assumption that the basis modes are orthogonal with respect to the scalar product

u * i (x, y)u j (x, y)dxdy = δ ij . (4.4) 
In Fig. 4.1, the physical meaning of the mean value Ŵ is visualized for the example of a fundamental Gaussian beam. In Eq. 4.1, an averaging over the transverse directions x and y occurs. Our definition of the beam width is thus most appropriate for stigmatic modes that are symmetric in x and y. For studying astigmatic modes, it would be more meaningful to determine the width and its noise along the different cross-sectional axes individually.

Noise in the beam width

The noise in the beam width can be quantified by calculating the variance of the operator Ŵ defined above. We want to determine δ Ŵ 2 and start by calculating

δ Ŵ = Ŵ -Ŵ = 1 N all ij D ij (â † i âj -â † i âj ). (4.5) 
For the variance δ Ŵ 2 , we determine the mean value of the squared expression for δ Ŵ : where we used the commutator [â j , â † k ] = δ jk in the second step. We may simplify the equation further by taking advantage of the Kronecker delta δ jk in one of the terms:

δ Ŵ 2 = 1 N 2 all ijkl D ij D kl (â † i âj -â † i âj )(â † k âl -â † k âl ) = 1 N 2 all ijkl D ij D kl ( â † i â † k âj âl + â † i âl δ jk -â † i âj â † k âl ), (4.6) 
ijkl D ij D kl â † i âl δ jk = = il â † i âl k (x 2 + y 2 )u * i (x, y)u k (x, y)dxdy (x 2 + y 2 )u * k (x , y )u l (x , y )dx dy = il â † i âl (x 2 + y 2 )(x 2 + y 2 )u * i (x, y) k u k (x, y)u * k (x , y )u l (x , y )dxdydx dy = il â † i âl (x 2 + y 2 ) 2 u * i (x, y)u l (x, y)dxdy = il â † i âl F il , (4.7) 
where we used the completeness relation

k u k (x, y)u * k (x , y ) = δ(x -x )δ(y -y ) (4.8)
in the third step and defined

F il = (x 2 + y 2 ) 2 u * i (x, y)u l (x, y)dxdy. (4.9)
By inserting Eq. 4.8 in Eq. 4.7, we obtain

δ Ŵ 2 = 1 N 2 all ijkl D ij D kl â † i â † k âj âl -â † i âj â † k âl + il F il â † i âl . (4.10)
We have thus identified the quantum uncertainty in the beam width. As a consequence, fluctuations manifest themselves in the measurement results. Experimentally, one would perform repeated direct measurements of the beam width and calculate the variance of the values determined for the beam width. In practice, experimental restrictions have to be taken into account, such as the discretization of the measurement of the intensity distribution due to the fact that the detector is composed of pixels. In Sec. 5.2, the measurement of the noise for spatial beam parameters by means of realistic multipixel detectors is discussed. Here, we continue to investigate the fundamental beam width noise independently of the measurement system. Analyzing Eq. 4.10, we see that the noise in the beam width depends on the spatial mode, via the parameters D ij and F il , and on the quantum excitation, via the expectation values of the different products of the annihilation and creation operators associated with the modes of the basis. We intend to study both dependencies and investigate different cases and specific examples. In particular, we mostly perform our examinations on paraxial light beams. In Sec. 4.7, we comment shortly on the determination of the noise in a focal spot size.

Beam width noise in paraxial light fields

For paraxial light fields, we study the beam width noise for the two major cases of single mode and multimode states. Moreover, we determine the uncertainty in the beam width for further explicit examples, including light fields with nonuniform polarization patterns.

Single mode states

Single mode states are very common in various contexts and are thus very relevant examples. Assuming single mode states also simplifies the calculations significantly. In Eq. 4.10, the annihilation and creation operators are normal ordered. Hence, if we assume a single mode state, the sums over all basis modes reduce to the one index i = k = j = l = 0. We are thus left with only one term and get

δ Ŵ 2 = 1 n0 D 2 00 δn 2 0 n0 -1 + F 00 , (4.11) 
where the factor δn 2 0 n0 -1 corresponds to Mandel's Q parameter [START_REF] Mandel | Sub-poissonian photon statistics in resonance fluorescence[END_REF]. δ Ŵ 2 here depends on the spatial mode u 0 contained in D 00 and F 00 , the mean photon number n0 and the variance of the photon number δn 2 0 . The quantum excitation thus influences the noise in the beam width in an obvious way via the noise in the photon number. In the following, we study different explicit examples for various spatial modes and quantum states. To enhance the comparability, we should put the noise δ Ŵ 2 in relation to a common quantity, i.e. find a convenient normalization. In quantum optics, it is a standard procedure to use the coherent state and its characteristics for comparison. For instance, for quadrature squeezing it is customary to use the coherent noise as a reference. We follow the same approach here and normalize with the beam width noise for a coherent state with the same mean photon number in the same spatial mode. In this way, we may conveniently compare the effect of different quantum states on the uncertainty in the beam width. However, if we are interested in the dependence on the spatial mode, this normalization is less reasonable. If we use the aforementioned normalization and determine the value for different spatial modes, it tells us how the spatial mode dependence for the quantum state under investigation differs from the one of the coherent state. If we are just interested in the effect of different spatial modes on the beam width noise for one particular quantum state, we should choose a different normalization. In that case, we use the mean value of the beam width Ŵ = D 00 , which does not depend on the quantum state but on the spatial mode. This enables us to see the full dependence on the spatial mode. Thus, we use δ Ŵ 2 Coh as a normalization if we want to investigate different quantum states, and Ŵ 2 if we intend to study the effect of different spatial modes. The square ensures the matching of the dimensions. The normalization factor δ Ŵ 2

Coh is found to be δ Ŵ 2 Coh = F 00 n0 , with n0 = |α| 2 and |α| being the amplitude of the coherent state. In the following, we derive explicit expressions for some common examples of quantum states, the results are visualized in Fig. 4.2(a): the relative noise in the beam width of a fundamental Gaussian mode is plotted against the mean photon number for the discussed quantum states. The coherent state serves as a reference and is consequently set to 1.

For a Fock state, the variance of the photon number is equal to zero and from Eq. 4.11, we derive

δ Ŵ 2 Fock δ Ŵ 2 Coh = 1 - D 2 00 F 00 . (4.12)
In this case, the relative noise is independent of the mean photon number. Fig. 4.2(a)

shows that for the fundamental Gaussian beam, the Fock state gives a lower noise than any of our other examples. with n0 = sinh 2 (s), where s is the squeezing parameter [START_REF] Loudon | The Quantum Theory of Light[END_REF]. One can see, that s only determines the mean photon number here. This is the only influence it has on the uncertainty. As the state is located at the phase space origin, the phase is not distinct and the noise stemming from the antisqueezed parameter results in a relatively high noise. An increase of the squeezing will cause only higher noise. This is different for a displaced amplitude squeezed state, where the squeezing parameter s plays a more elaborate role:

δ Ŵ 2 DisplSq δ Ŵ 2 Coh = -sinh 2 (s)e -2s + 2 sinh 2 (s)(sinh 2 (s) + 1) D 2 00 F 00 n0 + 1 + D 2 00 F 00 (e -2s -1) , (4.14) 
with n0 = sinh 2 (s) + |α| 2 , where |α| is the displacement [START_REF] Loudon | The Quantum Theory of Light[END_REF]. In Fig. 4.2(a), we see that for an amplitude squeezed state, we may achieve a beam width noise that is smaller than for the coherent state. In fact, for a given total photon number, one may optimize squeezing and displacement such that this is the case. If the displacement is too small, the state is similar to squeezed vacuum and the noise is very high. If the displacement is too big, the squeezing is minimized and the case of a coherent state is approached. This means that the right trade-off between displacement, i.e., the right distance from the origin in phase space, and amplitude squeezing has to be found. Further, we examine the beam width noise for a thermal state and calculate

δ Ŵ 2 Thermal δ Ŵ 2 Coh = D 2 00 F 00 n0 + 1. (4.15)
The mean photon number is given by n0 = [e β ω -1] -1 , with β = (k B T ) -1 , k B being Boltzmann's constant and T the absolute temperature [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]. The noise increases linearly with the photon number. However, the noise is still smaller than for the squeezed vacuum, but significantly bigger than for a coherent state. For a displaced thermal state, we obtain

δ Ŵ 2 DisplThermal δ Ŵ 2 Coh = D 2 00 F 00 2 - nth n0 nth + 1, (4.16) 
with n0 = nth + |α 0 | 2 , where |α 0 | is the displacement [START_REF] Vogel | Quantum Optics[END_REF]. In Fig. 4.2(a), the noise for a thermal state and a displaced thermal state with two thermal photons are depicted. These two cases naturally coincide for a photon number of 2. When more photons are added to the displaced thermal state, they are chosen to only contribute to the displacement.

After having discussed the influence of the quantum excitation on the beam width noise, we would now like to analyze the effect of the beam's purely spatial properties. In Fig. 4.2(b), the beam width noise of a coherent state in a Laguerre-Gauss mode LG lp is plotted for the radial index p = 0 and different azimuthal indices l. As discussed above, we now use the squared mean value of the beam width for normalization. For the sake of simplicity, we choose n0 = 1. In the plot, we see that the beam width noise decreases with increasing l, i.e. with increasing size of the beam's cross-section. It seems plausible that the influence of quantum noise is becoming less significant for a larger beam size. Since we are investigating the noise in the beam width, it would be interesting to investigate a spatial mode that has sharp edges. An example for such a mode is the flattened Gaussian beam [START_REF] Gori | Flattened Gaussian beams[END_REF]. It is described by

U N (x, y) = A exp -N (x 2 + y 2 ) w 2 0 N m=0 1 2 m m n=0 (-1) n m n L n 2N (x 2 + y 2 ) w 2 0 , (4.17) 
where L n are the Laguerre polynomials [START_REF] Gori | Flattened Gaussian beams[END_REF]. w 0 is a characteristic beam parameter related to its width. The spatial distribution looks similar to a top hat function, an example is shown in Fig. 4.3(b) in blue color. For that example, we choose the truncation index N to be equal to 30. For such a flattened Gaussian beam, we determine δ Ŵ 2 Flat δ Ŵ 2 Coh = 0.27 and δ Ŵ 2 Flat Ŵ 2 Flat = 0.36 for a Fock state. Compared to a fundamental Gaussian beam, the values are significantly smaller. They are in a similar range as the ones for higher-order LG-modes however. Our examples for LG and Flattened Gaussian modes indicate that the beam width noise also depends on the classical spatial mode. In this section, we have shown that the quantum noise in the beam width can be reduced by appropriate choices of spatial mode and quantum excitation. We did not show an example for which the noise has been minimized to zero however. In fact, it is not possible to reduce the noise to zero just by altering the mode containing the mean field. This is because we are facing a multimode problem, and the beam width noise also depends on the quantum properties of the residual modes of the basis. In the following section, we treat the case of a multimode state and also clarify this matter of fact.

Multimode states

The case of multimode states is more complicated to handle than the single mode case as the sums in the expression for the beam width noise δ Ŵ 2 (see Eq. 4.10) are still present. For simplification purposes we assume small quantum fluctuations. In this way, we may use the standard linearization method and split the annihilation operator in the sum of its mean value âi and its quantum fluctuations δâ i such that âi = âi + δâ i [START_REF] Bachor | A Guide to Experiments in Quantum Optics[END_REF][START_REF] Grynberg | Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[END_REF]. The fluctuations are assumed to be much smaller than the mean value âi and quadratic and higher orders of δâ i are neglected in the following calculations. Utilizing the linearization implies displaced quantum states (with respect to the vacuum state) the amplitude of which is much larger than the fluctuations. The following concept can accordingly not be applied for Fock states for example. For the deviation of Ŵ from the mean value, we determine

δ Ŵ = 1 N all ij D ij ( â † i δâ j + δâ † i âj ), (4.18) 
by means of Eq. 4.1. For the sake of convenience, we use a mode basis for which the mean value of the electric field is nonzero only in the first mode u 0 [START_REF] Treps | Quantum noise in multipixel image processing[END_REF], which is called mean field mode. We can write this relation as âi = â0 δ i0 , and by choosing the phase appropriately we can say further â0 = â † 0 . Taking these relations into account, we obtain

δ Ŵ 2 = â0 2 F 00 N 2 all (δ Â + δ Â † ) 2 , (4.19) 
where

 = 1 √ F 00 i D 0i âi (4.20) and  † = 1 √ F 00 i D i0 â † i (4.21)
can be regarded as the annihilation and creation operators of a new mode. We show that they fulfill the commutation relation:

[ Â, Â † ] = 1 F 00 ij D 0i D j0 [â i , â † j ] = 1 F 00 ij D 0i D j0 δ ij = 1, (4.22) 
where in the last step, the same procedure as in Eq. 4.7 has been performed. In the following, we call the mode associated with this pair of annihilation and creation operators  and  † detection mode v 0 . Its spatial shape is discussed in Sec. 4.4.2.1.

But first, we want to understand the significance of this detection mode. Looking at Eq. 4.19, we perceive that it contains  and  † such that they form the amplitude quadrature  † +  = X(+) v 0 and rewrite Eq. 4.19 as

δ Ŵ 2 = â0 2 F 00 N 2 all δ 2 X(+) v 0 . (4.23) 
We thus see that the noise in the beam width can be completely attributed to the amplitude noise in the detection mode v 0 . This also means that the noise can be reduced by introducing amplitude squeezing in this mode. As -in theory -infinite amplitude squeezing is possible, also the noise in the beam width can -at least theoretically -be reduced to zero. The beam width noise scales directly with the amplitude squeezing in the detection mode. The name 'detection'mode is used as detecting the amplitude noise in this mode gives the beam width noise.

The detection mode

The next logical step after identifying the amplitude noise in the detection mode with the beam width noise, is to find out what the detection mode looks like, i.e. to detetermine its spatial shape. The detection mode is defined by the annihilation operator Â. In [START_REF] Grynberg | Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[END_REF], we find these relations:

b † m = l U l m â † l , (4.24) 
v m (x, y) = l U l m u l (x, y). (4.25)
So if there is a creation operator b † m that can be written as a superposition of the creation operators â † l of a different basis by means of the factors U l m (Eq. 4.24), the same factors are also used for the superposition describing the spatial mode: the mode v m (x, y) associated with b † m is written as a superposition of the modes u l (x, y) (Eq. 4.25) by means of the same U l m . In Eq. 4.21, we have the expansion of  † in terms of the mode basis defined by the fact that the first mode u 0 that contains the mean field. From this, we may determine the detection mode associated with  † according to Eq. 4.25:

v 0 (x, y) = 1 √ F 00 i D i0 u i (x, y) = 1 √ F 00 (x 2 + y 2 ) i u * i (x , y )u i (x, y)u 0 (x , y )dx dy = 1 √ F 00 (x 2 + y 2 )δ(x -x )δ(y -y )u 0 (x , y )dx dy = 1 √ F 00 (x 2 + y 2 )u 0 (x, y). (4.26)
The completeness relation (Eq. 4.8) has been used in the second step. Please note that the detection mode v 0 is something like a 'beam variance' mode and its mean is precisely the spatial variance of the light beam. From the obtained expression for the detection mode, we can tell that it is not orthogonal to the mean field mode u 0 . We found in the previous section, that the amplitude noise in the detection mode is responsible for the beam width noise in the mean field mode. The insight that mean field mode and detection mode are not orthogonal makes us understand why the amplitude noise in the mean field mode also contributes to the beam width noise. However, detection mode and mean field mode do not coincide, so we are not able to minimize the beam width noise to zero by solely altering the quantum excitation of the mean field mode. This fits the examples shown in Sec. 4.4.1.

For the sake of completeness, we may construct an orthonormal basis such that the first mode is the detection mode v 0 . The mean field is partly contained in this detection mode, and we want to construct the basis such that the second basis mode v 1 contains the residual part. So we have two requirements for v 1 : it should lie in the subspace spanned by mean field mode u 0 and detection mode v 0 and it has to be orthonormal to v 0 . This can be expressed through the following equations: From these relations, we determine the representation of the mean field mode u 0 as a superposition of v 0 and v 1 :

u 0 (x, y) = αv 0 (x, y) + βv 1 (x, y), ( 4 
u 0 (x, y) = D 00 √ F 00 v 0 (x, y) + 1 - D 2 00 F 00 v 1 (x, y). (4.30)
The second mode v 1 of the detection mode basis can accordingly be given in terms of u 0 and v 0 .

To make the idea of the detection mode more tangible, we now study explicit examples. For instance, we may assume that the mean field mode is a fundamental Gaussian mode. In that case, we can write the associated detection mode as a linear combination of Hermite-Gauss modes of the zeroth order u HG 00 and of the second order u HG 20 :

v 0 (x, y) = 1 3 u HG 00 (x, y) + 2 3 u HG 20 (x, y). (4.31)
The detection mode and the fundamental Gaussian mode are illustrated in Fig. 4.3(a). The detection mode consists of two peaks at the position where the edges of the fundamental HG-mode are located. If intensity is added at the edges of the beam, i.e. exactly where the peaks of the detection mode are located, the light beam's width will increase. The width will decrease if the photons are removed. This line of thoughts gives an intuitive explanation for the specific shape of the detection mode: its amplitude noise causes the noise in the beam width.

Another example that we want to investigate is a beam that exhibits sharp edges: we use a flattened Gaussian beam as described in Eq. 4.17 with the truncation index N = 30. Fig. 4.3(b) shows this flattened Gaussian beam and its detection mode. We see that the edges of the flattend Gaussian beam are sharper than those of the fundamental HG-mode, and consequently also the peaks of its detection mode are significantly narrower. The horizontal axis gives the transverse length x in terms of the standard deviation w 0 of the fundamental Gaussian beam and the equivalent parameter for the flattened Gaussian beam (see main text). The vertical axis is scaled such that the maximum of the respective mean field mode is 1.

Additional examples

In this section, we present some specific examples for the beam width noise in different quantum states and spatial modes, namely Laguerre-Gauss modes, Hermite-Gauss modes and vector beams.

Beam width noise in Laguerre-Gauss modes

In Fig. 4.2 and the corresponding section, we showed how the noise in the beam width for LG modes with a radial index p = 0 depends on the azimuthal index l. There, we have seen that the beam width noise is reduced with increasing azimuthal index. For this behavior, an intuitive explanation can be given: quantum noise becomes relevant in particular for small quantities. The mode size grows with increasing l (see Fig. 2.1(b)), such that it seems reasonable that the quantum noise becomes less important. Fig. 4.4 illustrates the dependence on both parameters l and p. For l = 0, the noise is lowered with increasing p. For l = 1, the noise remains constant and does not depend on p. For l ≥ 2, however, the beam width noise grows with increasing p, although the beam size increases also in that case. The decrease with increasing azimuthal index l is still more pronounced. Increasing azimuthal and radial indices entail different changes in the mode profile: while with the azimuthal index only the size of the ring and the zero point in its middle grows, an increasing radial parameter also adds rings to the mode profile. An exact explanation for the different dependence on azimuthal and radial index is, however, still pending. The beam width noise for LG lp modes is depicted in dependence of its azimuthal index l and radial index p. We observe a considerable decrease of the noise with increasing l. For low values l = 0, the noise is reduced with growing radial index p. However, from l = 2 on, we see that the beam width noise grows with increasing p.

Beam width noise in TEM modes

The most common mode basis in optics are the transverse electromagnetic (TEM) modes or Hermite-Gauss modes that are expressed in terms of Hermite polynomials as

E mn (x, y) = 1 πm!n!2 m+n-1 1 w H m √ 2x w H n √ 2y w exp - x 2 + y 2 w 2 , (4.32) 
with H n and H m being the Hermite polynomials of nth and mth order, respectively (see [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF] or Sec. 2.2.1). In the present section, we want to derive explicit expressions for the beam width noise in dependence of the indices m and n. We assume a single mode state in the TEM mn mode. In a first step, we calculate the integral expression for D 00 from Eq. 4.2. Please note that the index 0 refers to the zeroth mode of the basis. This mode may still be any TEM mn mode and we determine

D 00 = w 2 2 (m + n + 1). (4.33)
We have been taking advantage of the general relations [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] +∞

-∞ exp(-x 2 )H k (x)H m (x)H n (x)dx = 2 m+n+k 2 √ πk!m!n! (s -k)!(s -m)!(s -n)! , ( 4.34) 
where 2s = m

+ n + k, k + m + n is even, +∞ -∞ H m (x)H n (x) exp(-x 2 )dx = √ π2 n n!δ mn , (4.35) 
to derive the helpful integrals

+∞ -∞ u 2 H 2 m (u) exp(-u 2 )du = 1 4 2 m+1 √ πm!(2m + 1), (4.36) +∞ -∞ u 4 H 2 m (u) exp(-u 2 )du = 3 4 2 m √ πm!(2m 2 + 2m + 1). (4.37)
By means of these relations, we perform the calculation for Eq. 4.33 and the determination of the normalization of Eq. 4.32. Furthermore, we may use them to calculate the integral expression for F 00 from Eq. 4.9 and get

F 00 = w 4 16 [6(m 2 + n 2 ) + 10(m + n) + 8mn + 8]. (4.38) 
By means of Eq. 4.33 and Eq. 4.38, the noise in the beam width of a TEM mn mode can be determined, for example for Fock and coherent states: Accordingly, most attention should be paid to the diagonal elements of Fig. 4.5 that turn out to give the lowest noise. The general decrease of the noise with increasing m and n can be attributed to the increase of the beam size that makes the quantum noise less significant. 

δ Ŵ 2 Fock Ŵ 2 Fock = F 00 D 2 00 -1 1 n 0 (4.39) TEMmn = 3(m 2 + n 2 ) + 5(m + n) + 4mn + 4 2(m + n + 1) 2 -1 1 n 0 (4.40) TEM 00 = 1 n 0 , (4.41) δ Ŵ 2 Coherent Ŵ 2 Coherent = F 00 D 2 00 1 |α 0 | 2 (4.42) TEMmn = 3(m 2 + n 2 ) + 5(m + n) + 4mn + 4 2(m + n + 1) 2 1 |α 0 | 2 (4.43) TEM 00 = 2 |α 0 | , ( 4 

Nonuniform polarization patterns: radially and azimuthally polarized modes

The examples treated up to now have been restricted to single mode states with uniform polarization distributions. We now want to examine light beams that exhibit a complex transverse polarization structure. We study cylindrically polarized doughnut modes that require a treatment as two mode states. We start by giving an introduction into the theoretical representation of such modes and present the beam width noise for specific examples in the following.

Theoretical description of cylindrically polarized modes

A detailed theoretical description of cylindrically polarized beams can be found in [START_REF] Holleczek | Classical and quantum properties of cylindrically polarized states of light[END_REF].

Here, we present only the very basics that we need for our further studies. We express the electric field as an expansion of TEM mn modes with arbitrary polarizations as

Ê = ∞ i=1 ν i âi , (4.48) 
with (4.53) For the calculation of the beam width noise, as in the examples of the previous section, we start by determining the integrals D ij and F il that depend on the spatial modes. Please note that, so far, we have been assuming scalar light fields. Now, we expand the theory to vector fields. This can be done very easily, in particular as the integral expressions D ij and F i j contain expressions of products of field operators. As a result, D ij and F il are scalar expressions again. In the present case, the integrals D 12 , D 21 , F 12 and F 21 give 0, as they contain products of modes with orthogonal polarization. For 2 . These values are the same for the radially and the azimuthally polarized mode. We remind ourselves that only two modes are not filled with vacuum states. Thus, the sum in Eq. 4.10 goes only over these two modes. We insert the above relations and obtain

ν i = êλ ψ nm exp(-iχ). ( 4 
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δ Ŵ 2 = = 1 N 2 all w 4 0 ( n2 1 -n1 2 + n2 2 -n2 2 + 2 n1 n2 -2 n1 n2 ) + 1 2 w 4 0 ( n1 + n2 ) = 1 N 2 all w 4 0 (Var(n 1 ) + Var(n 2 ) + 2Cov(n 1 , n2 )) + 1 2 w 4 0 ( n1 + n2 ) = 1 N 2 all w 4 0 Var(n 1 + n2 ) + 1 2 w 4 0 ( n1 + n2 ) , (4.54) 
where we used [â i , â † j ] = δ ij and n = â † â in the first step, and Var(X) + Var(Y ) + 2Cov(X, Y ) = Var(X + Y ) in the last step. Eq. 4.54 gives the noise in the beam width for an azimuthally or radially polarized mode. Due to the variance of the sum of the photon numbers in the two modes, it depends on the quantum state. In the following, we investigate the examples of a coherent, Fock and squeezed state.

Coherent state

We start by assuming a coherent state

|α 1 , α 2 = DR (α) |0 = D1 (α/ √ 2) D2 (α/ √ 2) |0 (4.55)
where D(α) = exp(αâ † + α * â) and âR = â1 +â 2 √ 2 . We determine the mean values necessary for the calculation of Eq. 4.54 for this quantum state as

α 1 , α 2 | n1 |α 1 , α 2 = α 1 , α 2 | n2 |α 1 , α 2 = |α| 2 2 , (4.56) α 1 , α 2 | n2 1 |α 1 , α 2 = α 1 , α 2 | n2 2 |α 1 , α 2 = |α| 2 2 1 + |α| 2 2 , (4.57) α 1 , α 2 | n1 n2 |α 1 , α 2 = |α| 4 4 . (4.58)
For the normalization of the beam width noise, we additionally calculate Ŵ = w 2 0 .

By inserting the values from Eq. 4.56-4.58 into Eq. 4.54, we get

δ Ŵ 2 Coh Ŵ 2 Coh = 3 2n , (4.59) 
with n = |α| 2 . We may compare this result to the noise derived for a fundamental Gaussian mode in Eq. 4.44. The noise for the cylindrically polarized mode is 3 4 of the one for the fundamental mode.

Fock state

We write a two-mode Fock state in the following way:

|ψ = 1 √ n! (a † R ) n |0 = 1 2 n/2 √ n! (â † 1 + â † 2 ) n |0 = 1 2 n/2 n k=0 n! k!(n -k)! |n -k 1 |k 2 , (4.60) 
where we used

(â † ) n |0 = √ n! |n , (4.61) 
(a + b) n = n k=0 n k a n-k b k , (4.62 
) By means of these expressions, we get

n k = n! k!(n -k)! . ( 4 
δ Ŵ 2 Ŵ 2 = 1 2n , (4.67) δ Ŵ 2 Fock δ Ŵ 2 Coh = 1 3 . (4.68)
We may again compare this result to the noise derived for a fundamental Gaussian mode in Eq. 4.41. The noise for the cylindrically polarized mode is 1 2 of the one for the fundamental mode. Thus, for both, the coherent and the Fock state, the noise is reduced for the cylindrically polarized mode.

Squeezed state

We express the amplitude squeezed state by means of the squeezing operator. The operator is defined via the operator for the radially polarized mode âR = 1

√ 2 (â 1 + â2 ) as ŜR (ζ) = exp 1 2 ζ * â2 R - 1 2 ζ(â † R ) 2 = Ŝ1 (ζ/2) Ŝ2 (ζ/2) Ŝ12 (ζ/2), (4.69) 
where

ζ = se iφ and Ŝ12 (ζ/2) = exp 1 2 ζ * â1 â2 -1 2 ζâ † 1 â † 2 .
The calculation of the beam width noise is performed in a straight forward way with the help of the relations

Ŝ(-ζ)â Ŝ(ζ) = â cosh(s) -â † e iϕ sinh(s), (4.70) Ŝ(-ζ)â † Ŝ(ζ) = â † cosh(s) -âe -iϕ sinh(s), (4.71) Ŝ12 (-ζ)â 1 Ŝ12 (ζ) = â1 cosh(s) -â † 2 e iϕ sinh(s), (4.72) Ŝ12 (-ζ)â † 1 Ŝ12 (ζ) = â † 1 cosh(s) -â2 e -iϕ sinh(s) (4.73)
that can be found in [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]. We derive

δ Ŵ 2 Sq Ŵ 2 Sq = 2 + 5 2n , (4.74) 
δ Ŵ 2 SqVac δ Ŵ 2 Coh = 4n + 5 3 , (4.75) 
where n = sinh 2 (s).

Single Mode State, ψ 10 or ψ 01 Before, we compared the noise for the cylindrically polarized modes to the noise for the fundamental Gaussian mode. To understand the influence of the polarization structure, we also derive the beam width noise for ψ 10 and ψ 01 :

δ Ŵ 2 Coh Ŵ 2 Coh = F 00 D 2 00 1 n0 = 3 2 1 n0 (4.76) δ Ŵ 2 Fock δ Ŵ 2 Coh = 1 - D 2 00 F 00 = 1 3 (4.77) δ Ŵ 2 Fock Ŵ 2 Fock = F 00 D 2 00 -1 1 n0 = 1 2 1 n0 (4.78) δ Ŵ 2 SqVac δ Ŵ 2 Coh = D 2 00 F 00 (2n 0 + 1) + 1 = 4n 0 + 5 3 (4.79) δ Ŵ 2 SqVac Ŵ 2 SqVac = (2n 0 + 1) + F 00 D 2 00 1 n0 = 2 + 5 2 1 n0 (4.80) 
We see that the beam width noise for ψ 10 and ψ 01 coincides with the noise in the cylindrically polarized mode for the respective quantum states. This means that the polarization structure here has no influence on the uncertainty in the beam width. Fig. 4.7 visualizes the results. As in Fig. 4.2(a), the lowest noise is obtained for the Fock state, the coherent state gives a medium noise and the vacuum squeezed state has the highest noise among these three. 

The eigenmode of the beam width operator

We have shown above that the quantum state of the light field can be tailored such that the noise in the beam width is reduced. In Sec. 4.4.2.1, we have seen that having infinite squeezing in the amplitude quadrature of the detection mode would minimize the beam width noise to zero. Here, we want to search for a spatial mode reducing the beam width noise in a similar way. We therefore search for the eigenmode of the beam width operator.

For this purpose, we first choose to write the modes in terms of HG modes as

u n (x) = 1 π 1 4 √ 2 n n! H n (x)e -x 2 2 . (4.81)
For the sake of simplicity, we use only one dimension x here. For these basis modes, we determine the characteristic parameter D ij used many times above already:

D mn = +∞ -∞ x 2 u * m (x)u n (x)dx (4.82) = 1 2 n(n -1)δ m,n-2 + (2n + 1)δ m,n + (n + 1)(n + 2)δ m,n+2 (4.83) 
using a general integral relation for Hermite polynomials given in [START_REF] Research | Hermite Polynomial[END_REF].

One may encounter that the same expression can be found in a different context: for a particular quantum operator

D = 1 2 b + b † 2 , (4.84) 
m| D |n = D mn is equal to the Eq. 4.83. This relation can be shown in a straightforward calculation using Eq. 2.56-2.57. The eigenstate of the operator ( b + b † ) is an infinitely squeezed state [START_REF] Loudon | The Quantum Theory of Light[END_REF][START_REF] Henry | A squeezed-state primer[END_REF][START_REF] Sukumar | Eigenstates of linear combinations of phase operators[END_REF]]

|ξ = lim s→∞ 1 √ cosh s ∞ n=0 (2n)! n! - 1 2 tanh s n |2n . (4.85) 
Through conclusion of analogy, we assume that if the infinitely squeezed state is an eigenstate of the operator D, the eigenmode related to the integral D is the corresponding mode:

ξ(x) = lim s→∞ 1 √ cosh s ∞ n=0 (2n)! n! - 1 2 tanh(s) n u 2n (x). (4.86) 
We may now insert Eq. 4.81 and determine further

ξ(x) = lim s→∞ e -x 2 2 1 π 1 4 √ cosh s ∞ n=0 1 √ 2 2n - 1 2 tanh(s) n H 2n (x) (4.87) = lim s→∞ e -x 2 2 1 π 1 4 √ cosh s ∞ n=0 [tanh(s)] n L (-1/2) n (x 2 ) (4.88) = lim s→∞ e -x 2 2 1 π 1 4 √ cosh s 1 (1 -tanh(s))
1 2

e -tanh(s)x 2

1-tanh(s)

(4.89) = 1 π 1 4 lim s→∞ e s 2 e -x 2 2 e 2s , (4.90) 
where we used the following general relations [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]:

H 2n (x) = (-4) n n!L (-1/2) n (x 2 ) (4.91) ∞ n=0 t n L (α) n (x) = 1 (1 -t) α+1 e -tx 1-t , (4.92) 
cosh(s) = 1 2 e s + e -s , (4.93) sinh(s) 
= 1 2 e s -e -s , (4.94) tanh(s) = sinh(s) cosh(s) . (4.95) 
Looking at Eq. 4.90, one may remember the following similar expression for a delta distribution [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF] δ

(x) = lim m→∞ m π e -mx 2 . (4.96)
The eigenmode of the beam width operator

ξ(x) = lim s→∞ e s 2 π 1 4 e -x 2 2 e 2s (4.97) 
is thus a kind of delta distribution (Eq. 4.96 and Eq. 4.97 differ only in some numerical factors). This seems plausible as the delta distribution has an infinitely small expansion in x-direction, i.e. an infinitely small width. The beam width is defined precisely in this case.

The conjugate counterpart of the beam width

After investigating the beam width in detail, we want to tackle a question that naturally arises: the one of a conjugate variable. Following the physical principle of diffraction, we choose the conjugate operator Θ. The waist of a beam and its angular divergence are inversely proportional according to this principle. A common example is the fundamental Gaussian beam of waist w 0 for which the angular divergence is expressed by the well-known formula θ 0 = 2 kw 0 . For the linearized approach, a canonical conjugate can be found via the detection mode v 0 . In that case, the conjugate variable is associated with iv 0 that is detected by homodyne detection using a local oscillator dephased by π/2 from the previous one. However, its physical interpretation is not obvious. Whereas the angular spread, which is defined from classical relations [START_REF] Meron | Geometrical and wave optics of paraxial beams[END_REF], is a physically meaningful "conjugate" parameter. The beam width is defined as the variance in the spatial domain, i.e.

u * i (x, y)(x 2 + y 2 )u j (x, y)dxdy. The angular spread has the same form in Fourier space

u * i (x, y)(p 2 x + p 2 y )u j (x, y)dxdy. (4.98) 
Beam width and angular spread satisfy the Fourier-Heisenberg inequality w 0 θ 0 ≥ 1 2 . By inserting p x ↔ 1 ik ∂ x and p y ↔ 1 ik ∂ y in Eq. 4.98, we obtain the operator Θ:

Θ = 1 N all ij Dij â † i âj , (4.99) 
with

Dij = - 1 k 2 u * i (x, y)(∂ 2 x + ∂ 2 y )u j (x, y)dxdy. (4.100) 
The further calculations for Θ are performed in complete analogy to those presented in Sec. 4.3 for Ŵ . The difference lies only in the integral expressions Dij and Fil = 1

k 4 u * i (x, y)(∂ 2 x + ∂ 2 y ) 2 u l (x, y)dxdy.
For the multimode states, we look into the case of small quantum fluctuations again and use the linearization of the annihilation and creation operators. The detection mode for the angular spread is found to be

m 0 (x, y) = - 1 k 2 F00 (∂ 2 x + ∂ 2 y )u 0 (x, y). (4.101) 
Figure 4.8.: We look again at the example where the mean field mode is a fundamental Gaussian mode (blue). The detection mode for the angular spread is depicted in green. In red, the detection mode for the beam width is illustrated again as in Fig. 4.3(a). As one can see, the interpretation of the detection mode for the angular spread in the xy-space is not obvious. In Fourier-space, however, it looks like the detection mode for the beam width in xy-space, and the interpretation is equivalent to the one presented in Sec. 4.4.2.1.

Assuming a fundamental Gaussian mode as the mean field mode, the detection mode can again be expressed as a superposition of the fundamental and the second order HG modes:

m 0 (x, y) = 1 3 u HG 00 (x, y) - 2 3 u HG 20 (x, y). (4.102) 
A visualization is shown in Fig. 4.8. This detection mode is the Fourier-space analogous of v 0 (x, y) in Eq. 4.31. v 0 (x, y) and m 0 (x, y) have a different functional form in xy-space. However, from Eq. 4.26 and Eq. 4.101, one can tell that they are completely equivalent when compared in their "own" spaces.

Focused light fields and the beam width uncertainty

In the previous section, we have studied the beam width noise for paraxial light beams. However, the underlying theory described in Sec. 4.2-4.3, can easily be adapted such that it is valid also for focused light fields. Please note that, up to now, we have treated scalar light fields, only in Sec. 4.4.3.3, we applied the theory on vector fields. By using scalar light fields, we make a hidden assumption that the field is paraxial. This is because only for paraxial light fields the polarization vector is constant and can therefore be factored out. But if vector fields are utilized, as in Sec. 4.4.3.3, our theory on the beam width noise is valid for focused light fields as well. The challenge then lies in finding an appropriate quantum mechanical representation of the focused light field. We present different approaches in the following section. One issue that can come up is a focal intensity distribution that exhibits structures with side lobes similar to the ones in Bessel beams. The determination of the variance of such a distribution poses a problem that is examined in Sec. 4.7.2. In Sec. 4.7.3, we hint at the method we would recommend for a convenient description of the focused light field that is useful for practical purposes.

Approaches for the theoretical description of focused light fields

For focused light beams, the paraxial wave equation does not hold any more. Depending on how strongly the field is focused, different approaches can be chosen, taking those effects into account that come into play for the respective amount of focusing characterized by the numerical aperture (NA). The NA is defined as

NA = n sin θ 0 , (4.103) 
where n is the refractive index of the focusing device and θ 0 is defined as half of the opening angle of the light cone propagating towards the focal point [START_REF] Born | Principles of optics[END_REF].

A vast number of works exists for the extreme case of strong focusing (for example NA = 0.9). Unfortunately, there is no approach for a purely analytic theory giving an exact description [START_REF] Banzer | Anregung einzelner Nanostrukturen mit hochfokussierten Vektorfeldern[END_REF].

One of the most original and commonly used concepts is the one presented by Richards and Wolf in [START_REF] Wolf | Electromagnetic diffraction in optical systems, i. an integral representation of the image field[END_REF][START_REF] Richards | Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system[END_REF]. They expand the field impinging on a lens in terms of plane waves that are transformed into spherical waves by the interaction with the lens. The field distribution in the focus is expressed as an integral over these spherical waves, the so-called Richards-Wolf-integrals, that are usually solved numerically [START_REF] Banzer | Anregung einzelner Nanostrukturen mit hochfokussierten Vektorfeldern[END_REF].

Other techniques search for approximate analytic expressions. Lax et al. use a perturbation theory based on the paraxial light field and determine expressions up to the third-order correction [START_REF] Lax | From Maxwell to paraxial wave optics[END_REF]. It depends on how strongly the field is focused, how many correction orders are required for an appropriate description. Couture and Belanger show that the light field corrected in this way corresponds to the so-called complex-source-point spherical wave [START_REF] Couture | From Gaussian beam to complex-source-point spherical wave[END_REF]. The complex-source beam model is also studied and developed further by Cullen et al. and Sheppard et al. in [START_REF] Cullen | Complex source-point theory of the electromagnetic open resonator[END_REF][START_REF] Sheppard | Electromagnetic gaussian beams beyond the paraxial approximation[END_REF]. Orlov et al. use the complex source model approach for the description of highly focused vector beams and determine analytic expressions that are good approximations of the realistic focal distributions [START_REF] Orlov | Complex source beam: A tool to describe highly focused vector beams analytically[END_REF][START_REF] Orlov | Vectorial complex-source vortex beams[END_REF]. In the following, we want to give a quick introduction into the basic idea behind the complex source beam (CSB) model as it constitutes a promising candidate for providing the analytic expressions for focused light fields we are looking for. The starting point is a collimated light beam. We consider a beam propagating in zdirection and find an exact solution of the Helmholtz equation in spherical coordinates (R, θ, φ) given by

u(r) = U 0 g n (kR)P m n (cos θ) exp(imφ), (4.104) 
with g n being either a regular, nonsingular, spherical Bessel function of the first kind or an irregular singular Hankel function of the third kind [START_REF] Orlov | Complex source beam: A tool to describe highly focused vector beams analytically[END_REF], and U 0 is the amplitude of the field. P m n are the associated Legendre polynomials, with m and n being integer numbers. For the construction of complex source beams, the real-valued distance R is replaced by the complex distance

s(r) = x 2 + y 2 + (z -iz 0 ) 2 , (4.105) 
where z 0 is the Rayleigh range of the beam. Inserting Eq.4.105 rewritten in terms of spherical coordinates into Eq. 4.104 gives a scalar field that can be turned into different vector fields as described in [START_REF] Orlov | Vectorial complex-source vortex beams[END_REF]. Expressions can be obtained that correspond to those of realistic focal field distributions for vector beams such as radially or azimuthally polarized modes. The complex displacement, however, creates singularities in the focal plane. A possible workaround is the introduction of virtual sinks. The construction of the complex source beams is, at first sight, not directly linked to a physical consideration. However, it gives results that can be very helpful for physical investigations. We will further only present those outcomes needed for the determination of the focused fields of azimuthally and radially polarized modes, as we want to investigate these cases. We use the lowest order of Eq. 4.104, namely n = m = 0, which reads as

u(r) = U 0 sin(ks(r)) ks(r) . (4.106) 
We construct U L = ∇u(r) and determine

U M = U L × e z = -e φ ∂u(r) ∂ρ , (4.107) 
U N = 1 k ∇ × U M = e ρ 1 k ∂ 2 u(r) ∂z∂ρ -e z 1 kρ ∂ ∂ρ ρ ∂u(r) ∂ρ , (4.108) 
where U M can be associated with the electric field of an azimuthally polarized highly focused CSB, and U N represents the electric field of a radially polarized highly focused CSB. Reversely, the magnetic field of the azimuthally polarized mode is then given by H 0 U N , and the magnetic field of the radially polarized mode is described by H 0 U M . Fig. 4.9 shows the intensity distribution in the focus for an azimuthally and a radially polarized doughnut mode. One can see side-lobes of declining height which do not become zero at any point and thus continue until infinity. This Bessel beam-like behavior poses a problem when defining a beam width. (The same issue occurs for non-focused Bessel beams.) Criteria such as the FWHM for example, are of course still applicable. But for all criteria and procedures based on the total intensity, these side-lobes are an issue since they make the total intensity diverging. Therefore, the variance (x 2 + y 2 )|u(x, y)| 2 dxdy used for our above criterion cannot be calculated. This is a problem stemming from the classical aspect of the theory. We show in Sec. 4.7.2 how it can be overcome. A second problem originates from the quantum mechanical description of focused light. In practice, one would most likely know about the quantum properties of the paraxial light beam impinging on the lens. Consequently, we would need to know how the paraxial field transforms to the focused field. Only in this way, we can learn about the quantum properties at the focus. The complex source beam theory does not provide the information about such a transition as it only aims at constructing a field resembling the realistic field distribution at the focus, not at describing the action of the lens on a paraxial light beam. We therefore want to find a different theory approach that is better suited for this purpose. We will continue this discussion in Sec. 4.7.3. First, we are curious how to solve the classical problem posed by the determination of the variance of the transverse intensity distribution in Sec. 4.7.2.

How to measure the beam width of a Bessel beam-like structured light beam

As discussed in the previous section, the variance of the beam profile cannot be straightforwardly determined for some light beams, in particular the highly focused CSBs depicted in Fig. 4.9. We present an alternative definition of the beam width via a "running" variance. We defined the beam width above via the variance of the transverse intensity distribution. For the sake of simplicity, we assume a one-dimensional case for now and may write accordingly

W = ∞ -∞ x 2 I(x)dx ∞ -∞ I(x)dx , (4.109) 
where I(x) is the spatially variable intensity. For certain beam profiles, the integrals become infinite. Examples are the cross-section of a Bessel beam or the focal distribution obtained for a highly focused CSB as in Fig. 4.9. We thus need a different definition for the beam width. As the concept of utilizing the variance is very practical and renders the calculations in Sec. 4.2-4.3 feasible, we are interested in finding a comparable approach. We therefore define a "running" variance

V (X) = X -X x 2 I(x)dx X -X I(x)dx , (4.110) 
where X ≥ 0 represents the limit of the integration [99]. The arising question is for which X = X 0 we want to define V (X 0 ) as the beam width W . We decide to do this by means of the derivatives of V (X) and search for the point X 0 where a plateau occurs in V (X). Consequently, X 0 is defined as the point for which

V (X 0 ) = 0 (4.111)
and

V (X 0 ) > 0. (4.112) 
For simple examples, the determination of V (X), namely the integrations, can be performed analytically. For more sophisticated cases, it has to be performed numerically however. For the CSBs as depicted in Fig. 4.9, for example, a numerical solution is required. With the help of Mathematica, we numerically determine second and third derivative of V (X) pointwise. Afterwards, a polynomial of an appropriately chosen order is fitted to these points as shown in Fig. 4.10(b) for a radially polarized CSB. By means of the determined polynomial expressions, we determine X 0 by searching for the smallest positive X for which Eq. 4.111 and Eq. 4.112 are fulfilled. Fig. 4.10 illustrates the outcome of the technique described above for a radially polarized highly focused CSB. In Fig. 4.10(a), the intensity distribution I(x) under investigation is depicted, as well as the running variance V (X). Fig. 4.10(b) illustrates the numerically determined second and third derivative of V (X) and the polynomial fits. The determined limit X 0 is marked by a red vertical line at X ≈ 2.750. The running variance with this limit is then found to be V (X 0 ) ≈ 0.997. Looking at the blue curve in Fig. 4.10(a), i.e. at the curve indicating the intensity distribution, we see that the value 2.750 for X 0 is approximately reached at the first minimum. This seems a reasonable point to truncate the integration as the main lobe is much higher than even the first side lobe. The beam width defined via the running variance is indicated by the solid lines. The limit of the integration X 0 is given by the dashed lines.

Towards a determination of the beam width noise in the focal spot size

The CSB concept gives a quite precise description of the focused field distribution. However, as suggested in Sec. 4.7.1, we would actually prefer to have a theory specifying the transition process from the paraxial light field to the focused field. We think that it is realistic that one would rather know about the quantum properties of the incoming paraxial light beam than of the resulting focused light field. Therefore, we think that a theory capturing the process of focusing and how the quantum properties evolve during this process is more helpful and practical.

For this purpose, we suggest to use an approach that starts with solutions of the paraxial wave equation and then transforms the ingoing field imitating the effect of the lens by bending the beam, and by propagating the field to the focal point afterwards. Scalar and vectorial effects would be taken into account. Similar approaches are presented in [START_REF] Van Enk | Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields[END_REF][START_REF] Van Enk | Strongly focused light beams interacting with single atoms in free space[END_REF][START_REF] Tey | Interfacing light and single atoms with a lens[END_REF][START_REF] Teo | Lenses as an atom-photon interface: A semiclassical model[END_REF].

The determination of the noise in the beam width could be performed utilizing such an approach for the description of the light field and the relations presented in Sec. 4.3.

We are currently investigating the implementation of this procedure.

5. Towards an experimental investigation of the beam width noise: ideas, schemes and simulations

In the previous section, we analyzed and discussed the behavior and properties of the noise in the beam width for different types of light fields. Naturally, we would like to verify our findings experimentally. In this section, we elaborate on different schemes that could be used to show various aspects of our theory on the uncertainty in the beam width. Afterwards, the actual measurement of the beam width and its noise by means of a CCD camera or multipixel detector is examined: an analytic theory is derived, and simulations taking experimental imperfections into account are performed.

Experimental schemes

In Sec. 4.4, the beam width noise is studied for two cases in particular: for single mode states and multimode states with small quantum fluctuations. For the latter, we found that the noise in the beam width can be completely attributed to the noise in the amplitude quadrature of the so-called detection mode that depends solely on the mean field mode under investigation. We mentioned already in Sec. 4.4.2 that the beam width noise can thus be reduced by squeezing the amplitude quadrature of the detection mode. We elaborate on a possible experimental implementation in Sec. 5.1.1. An experimental investigation of the relations derived for the single mode states in Sec. 4.4.1 could be implemented by a direct detection of the beam width noise for different spatial modes and various quantum states. We discuss this possibility in Sec. 5.1.2.

And finally, we need to investigate how the measurement of the spatial beam parameters and their noise is affected by the properties and imperfections of the detector. We perform a detailed analysis and develop a complete theory for measurements by multipixel detectors for this purpose in Sec. 5.2.

5. Towards an experimental investigation of the beam width noise: ideas, schemes and simulations

Minimizing the beam width noise with the help of the detection mode

As discussed in Sec. 4.4.2, the noise in the beam width of the light beam under investigation can be lowered by reducing the noise in the amplitude quadrature of the so-called detection mode. For the theoretical limit of infinite squeezing, the beam width noise could even be minimized to zero. The amplitude quadrature squeezing translates directly to a beam width squeezing as shown in Eq. 4.23. The experimental verification of the functioning of this technique is fundamentally interesting, and could, furthermore, be of practical importance as it represents a way of minimizing the beam width noise without directly tailoring the mean field mode. Two main issues have to be solved in this context: the generation of the squeezed detection mode, and the mixing of detection mode and mean field mode under investigation.

The preparation of the squeezed detection mode consists of the generation of the squeezing and the mode conversion. Most likely, a laser source would provide a coherent fundamental Gaussian beam, so the spatial mode needs to be converted to the desired detection mode, and the quantum state needs to be adapted. If the detection mode that we want to mix with the mean field mode had an amplitude, it would change the effective mean field mode and thus the required detection mode. We consequently want to use vacuum squeezing, or at least a very dim state. One possibility of producing such a state would be to drive an optical parametric oscillator (OPO) below threshold [START_REF] Wu | Squeezed states of light from an optical parametric oscillator[END_REF]. The process is based on degenerate parametric downconversion. A crystal exhibiting a χ (2) nonlinearity is placed into a cavity that is resonant for both fundamental and subharmonic frequencies. (The cavity leads to better results compared to a single-pass setup that would be referred to as an optical parametric amplifier (OPA).) The nonlinear crystal is pumped with a light beam of the frequency 2ω such that the signal and idler beams of the same frequency ω are produced. Due to the degeneracy, signal and idler are in the same mode, and exhibit squeezing. If the OPO is driven below threshold, a squeezed-vacuum state can be obtained.

The mode conversion from the fundamental Gaussian mode to the complex detection mode could for example be performed by using a spatial light modulator. The light beam would have to reflect from the surface of the SLM with the appropriate phase pattern displayed on it. As discussed in Sec. 3, SLMs exhibit relatively large losses, which pose a real problem when we want to convert a vacuum squeezed state. At the same time, however, we wish for a good flexibility for the mode conversion such that we can produce different detection modes for different mean fields. The usage of an SLM would thus be very convenient in this context. A solution that should be considered is to invert the order of quantum noise reduction and mode conversion. If we performed the mode conversion before the squeezing, we would not be sensitive to losses. In that case, the previously converted mode could possibly be squeezed by means of a multimode OPA [START_REF] Kolobov | The spatial behavior of nonclassical light[END_REF][START_REF] Kolobov | Spatial behavior of squeezed states of light and quantum noise in optical images[END_REF][START_REF] Treps | Nano-displacement measurements using spatially multimode squeezed light[END_REF]. Finally, the question remains how to overlap the squeezed detection mode with the mean field mode the beam width noise of which we intend to minimize. The mixing by means of an impedance matched cavity as in [START_REF] Treps | Nano-displacement measurements using spatially multimode squeezed light[END_REF] is only applicable for orthogonal modes, which is not the case for our experiment. A simple alternative is the utilization of a highly asymmetric beam splitter (BS). Using a BS as in [START_REF] Treps | Surpassing the standard quantum limit for optical imaging using nonclassical multimode light[END_REF], for example, 92 % of the squeezed detection mode would be reflected, and 8 % of the coherent mean field mode would be transmitted. The coherent state noise is not sensitive to the losses, and the squeezing is only slightly affected due to the high reflectivity.

In summary, we have seen that an experimental implementation of the beam width noise reduction by minimizing the uncertainty in the amplitude quadrature in the detection mode requires a cautious design of the setup. Unfortunately, many techniques cannot be applied due to the non-orthogonality of detection mode and mean field mode. However, we have shown that there are options that would allow for a realization of the experiment when implemented thoughtfully.

Measuring the beam width noise for single mode states

In Sec. 4.4.1, we have shown for single mode states that the noise in the beam width depends on the spatial mode as well as on the quantum state. The latter may seem surprising and is, therefore, particularly interesting for an experimental verification. But also the dependence on the spatial mode could be a fruitful subject for examinations as the usage in practical applications are conceivable. For an experimental verification, we would prepare a variety of quantum states in different spatial modes. The spatial modes could, for example, be prepared by means of a spatial light modulator. This would offer the flexibility to generate arbitrary modes with the help of a single device. Interesting states would be for example coherent states, squeezed states, Fock states, and thermal states. Coherent states are easily accessible as they are provided by any shot noise limited laser. Squeezed states could for example be implemented as amplitude squeezed states such as the ones generated by the Sagnac interferometer presented in Sec. 3.2.1. In fact, we have shown the experimental generation of amplitude squeezed spatial modes by means of a Sagnac interferometer and a spatial light modulator in [START_REF] Semmler | Single-mode squeezing in arbitrary spatial modes[END_REF] already. A thermal state can be generated from a laser beam by illuminating a rotating ground glass disk [START_REF] Arecchi | Measurment of the statistical distribution of Gaussian and laser sources[END_REF]. The speckle pattern alters with the movement of the disk as the scattering centers are changing. A random spatial distribution of speckles is formed, and it can be shown that this statistical distribution of the field has the same characteristics as a thermal state. It has to be kept in mind that the rotation has to be faster than the measurement process. This procedure is a very quick and simple way of generating a thermal state. Depending on practical aspects and the conditions in the laboratory also one of the output beams of a parametric down conversion (PDC) source could be used as a thermal state when the second output beam is dumped. In Fig. 4.2, we saw that the lowest beam width noise is expected for Fock states. Therefore, they might be of particular interest. The generation is carried out by means of standard single photon sources that can be based on a PDC process for example. However, a spatially resolved detector for number states is not a very com-mon device. The sensitivity required for the measurement of such states is difficult to achieve. Nevertheless, such detectors exist for example in the form of superconducting nanowire detector arrays [START_REF] Marsili | Detecting single infrared photons with 93 % system efficiency[END_REF]. We thus see that the experimental verification of the theory on the beam width noise for single mode states could be implemented for various different examples in a convenient way.

Detecting the quantum noise of spatial beam parameters

In the previous two sections, we have been reflecting on different options for experiments verifying our theoretical findings about the noise in the beam width. All of these options naturally have one thing in common: the beam width and its noise have to be measured. The most natural and intuitive way of performing this measurement is by using a spatially resolved detector, i.e. a multipixel detector or CCD camera. Apart from technical imperfections, there is one fundamental aspect that is unavoidable for such a practical implementation: the multipixel detector has a finite number of pixels which means that the measured intensity distribution is discretized. It is expectable that this affects the measurement outcome. To design a suitable detector, we must thus take this aspect into account. We therefore develop a theory for the discretized measurement by means of a multipixel detector and perform simulations that take also technical imperfections into account. Please note that the theoretical description is valid for all bosonic particles. The quantum theory and its predictions for specific examples presented in this section, can mostly also be found in We now start our considerations by giving a short introduction and putting our work in the context of other treatises on photodetection.

Introduction

Spatially resolved multipixel photodetection is a very special case of photodetection. More common is the utilization of a photodetector with a single photosensitive area. The standard theory treating this quantum photodetection describes the photon counts in the time domain: it predicts the probability distribution for measuring N photons in a given time interval t to t + T [START_REF] Loudon | The Quantum Theory of Light[END_REF][START_REF] Mandel | Optical coherence and quantum optics[END_REF]. Multipixel detection, conversely, is characterized by the probability distribution of counting N photons in a specific area, such as a pixel.

If N photons were impinging on an array of M pixels, and we assumed a uniform illumination of the detector for the moment, we would be facing a very basic statistical problem. The probability distribution would be given by a multinomial distribution. We will perform the exact calculation in the following sections and find that it gives the same result as the aforementioned simple considerations. However, in practice, the illumination would certainly not be uniform, and the spatial mode profile turns out to come into play too. All this holds true for single mode states, whereas we expect the situation to be more complicated for multimode states, and in particular also for entangled states [START_REF] Chille | Detecting the spatial quantum uncertainty of bosonic systems[END_REF]. Spatially resolved photodetection is analyzed in a very fundamental way in [START_REF] Treps | Quantum noise in multipixel image processing[END_REF]. It investigates the detection of spatial parameters of a light beam and comments on the origin of quantum noise for different measurements that are implemented by taking different linear combinations of the pixel counts. Our present approach is treating the problem in a more applied way. Consequently, experimental imperfections and technical conditions can be considered. We use the newly developed theory to verify the feasibility of the experimental determination of spatial beam parameters and their uncertainty. Namely, we examine the width and the position of a light beam and the respective quantum noise. We start by presenting the most convenient way of describing the light field in this context, and derive the probability distribution for the photons on the multipixel array in a next step. We derive an analytic theory from these results and perform simulations.

Convenient description of the light field

As discussed in Sec. 2.2, we usually expand the light field in terms of modes of a particular basis. In principle, we may use any basis for the theoretical description.

In practice, of course, one chooses the one that fits best to the light field under investigation, i.e. that allows a description by means of a small number of basis modes. Common bases are discussed in Sec. 2.2. We write the light field in terms of a set of solutions of Maxwell's equations {Φ K (x, z)} as

E(x, z) = K E K Φ K (x, z), (5.1) 
where x = (x, y) are the transverse coordinates. The mode basis {Φ K (x, z)} is chosen to be orthonormal and complete. K is the mode index, which can also denote a pair of independent indices, such as for Hermite-Gauss modes, for which it stands for (n, m) with n, m ∈ {0, 1, 2, ...}.

In the following, we measure the transverse distribution of the fields in the z-position where the CCD camera is placed and thus we consider only its transverse variation in the (x, y) plane. We can therefore mostly omit the z-dependence of the quantities that are introduced in the following. As discussed in Sec. 2.4, an annihilation operator âK is associated with each mode {Φ K (x, z)}. It can be determined by integrating the By definition, the local annihilation operator fulfills â(x), â † (x ) = δ(x -x ). From this, it also follows that âK , â † K = δ KK . Using the completeness relation from Eq. 2.15, we can invert the above relation and get an expansion of â(x) in terms of the modes K:

â(x) = K âK Φ K (x, z).
(5.3)

So far, we have assumed that we choose a mode basis that fits well to the light field under investigation. However, we may as well adapt the description to the system the light is interacting with. As we intend to perform measurements with a CCD camera with discrete pixels, we define operators âij that are associated with the pixels. Fig. 5.1 visualizes the pixel array of the CCD camera and the nomenclature.

As an example, an impinging fundamental Gaussian beam is indicated in addition. We assume the pixels to be squares of width d, and a total pixel number N = 4M 2 . The camera has a total width of 2L, with L = M d with d being the pixel width. Each pixel is characterized by a pair of indices (i, j) that defines the pixel's center via the coordinates

x i = -L + i - 1 2 d, (5.4 
)

y j = -L -j - 1 2 d. (5.5) 
To define an operator âij associated with the pixel (i, j), we integrate â(x, z) over the surface of the pixel, and follow an approach that looks similar to the one used in Eq. 5.2:

âij (z) = 1 d d 2 xΘ ij (x)â(x, z), (5.6) 
with the two-dimensional step-function Θ

ij (x) = Θ(d -2|x -x i |)Θ(d -2|y -y i |)
ensuring the integration over the pixel surface. The pair of coordinates (i, j) characterizes the position of the individual pixel centered at x ij = {x i , y j }. The factor 1 d normalizes the operator. A straightforward calculation gives the commutation relation âij , â † kl = δ ik δ jl . While Eq. 5.2 and Eq. 5.6 seem formally similar, their physical content is actually different. While the modes Φ K (x, z) form a complete, orthonormal mode basis, this is not the case for the "pixel mode functions" (1/d)Θ ij (x) that serve for the definition of âij (z) in Eq. 5.6. The presented construction of the pixel mode functions follows the concept of Weyl's eigendifferentials. These are particular vector states exhibiting only a finite extension in space (in the R 2 domain). A detailed description of this method can be found in [START_REF] Greiner | Quantum Mechanics[END_REF][START_REF] Halcomb | One-dimensional quantum scattering in an eigendifferential basis[END_REF][START_REF] Messiah | Quantum Mechanics[END_REF]. The resolution of the measurement by a multipixel detector is limited due to the fact that the signal is integrated over the pixel surface. The Shannon-Nyquist sampling theorem [START_REF] Shannon | Communication in the presence of noise[END_REF] gives the upper limit of 1/2d for the measurable spatial frequency components. A multipixel detector is necessarily composed of individual pixels and thus this limit cannot be overcome as it is inherent in the system. The definition of âij is very practical, as it allows us to express the quantum state for which a particular pixel (i, j) measures n pixels in a simple way. We can write

|n; ij = 1 √ n! â † ij n |0 . (5.7) 
This quantum state can be shown to be an eigenstate of the pixel photon number operator n ij (z). In analogy to the procedure in Eq. 5.6 already discussed above, we define n ij (z) as

nij (z) = d 2 xâ † (x, z)â(x, z)Θ ij (x). (5.8)
position and width. The information we obtain from a measurement with a multipixel array is the number of photons impinging on each pixel, i.e. their spreading over the surface of the detector. If we want to describe the measurement of a multipixel detector theoretically, we thus need to describe the distribution of the photons, i.e. the probability of finding n 1 photons in pixel (i 1 , j 1 ), n 2 photons in pixel (i 2 , j 2 ), ... and n N photons in pixel (i N , j N ). This probability distribution can be expressed in terms of the overlap between a quantum state with n i photons in the ith pixel |n 1 , n 2 , ..., n N and the quantum state |ψ impinging on the camera:

P (n 1 , n 2 , ..., n N |ψ) = | n 1 , n 2 , ..., n N |ψ | 2 .
(5.17)

For the sake of a simpler notation, we write |n ν for |n ν ; i ν j ν and âν = âiνjν . Furthermore, we replace (i, j) by a cumulative index ν = ν(i, j) ≡ 2M (i -1) + j.

For the impinging beam being in a statistical mixture, the probability distribution is given by P

(n 1 , ..., n N |ψ) = n 1 , ..., n N | ρ |n 1 , ..., n N .
For now, we assume that the impinging state is single-mode and can hence be written as

|ψ = m ψ m |m = m ψ m √ m! â † K m |0 . 
(5.18)

K is the index indicating the mode and is fixed. We perform the following calculations for a single mode state, as the equations become very tough to handle for a multimode state.

To determine the photon probability distribution, we need to determine n|ψ , where |n is short for |n 1 , ..., n N . We may rewrite |n in terms of the creation operators as in Eq. 5.7. |ψ is expanded in terms of Fock states as in Eq. 5.18. We obtain

n|ψ = 1 √ n 1 !...n N ! 0| ân 1 1 ...â n N N |ψ = 0| N ν=1 (â ν ) nν √ n ν ! |ψ = m ψ m √ m! N ν=1 1 √ n ν ! 0| (â ν ) nν (â † K ) m |0 . (5.19) 
To proceed with the calculation, we want to exchange the positions of (â ν ) nν and (â † K ) m , to take advantage of âν |0 = 0. We will have to do this stepwise and bring one âν to the other side first. If we want to do so, we get an additional term: .20) By means of Eq. 5.6 and Eq. 5.2 and the distributive law of the commutator [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF] [

âν (â † K ) m = (â † K ) m âν + [â ν , (â † K ) m ]. ( 5 
x, A 1 A 2 ...A N ] = [x, A 1 ] A 2 ...A N + ... + A 1 ...A N -1 [x, A N ] , (5.21) 
distribution. Eq. 5.34 shows that the probability distribution is a multinomial-like distribution. This fact allows us to make use of known properties and simplifies the simulation (see Sec. 5.2.6).

Photon probability distribution for imperfect photodetection

In the previous section, we assumed that all photons impinging on the pixels of the camera are detected. However, in practice, this will not be the case: the detection efficiency is always lower than 100%, and we need to take this reduced detection efficiency into account to obtain realistic predictions for measurements. If less photons are impinging than being measured, this means that a certain percentage of the photons is lost. This process can be modeled by a beam splitter with appropriate transmittivity and reflectivity, where the output of one port is measured, while the output of the other port represents the losses. Vacuum fluctuations enter the system by the unused port of the beamsplitter. For a multipixel detector, losses occur in each pixel individually. This is modeled by a beam splitter in front of each individual pixel. Fig. 5.2 shows one of these beamsplitters exemplarily. The input operator âν 

Beam width noise

We assume an ideal detector such that the recorded counts are equal to the number of impinging photons. The beam width in run r of the experiment is determined from the number of photon counts n νr in the set of pixels:

W r = 1 C N ν=1 |x ν | 2 n νr , (5.55) 
where C = 1/R R r=1 C r is the average number of counts during the entire experiment, with C r = N ν=1 n νr being the counts in one run of the experiment. Normalizing by the average number of counts during the entire experiment might seem unusual: the standard procedure would be the normalization by the number of counts in the run r of the experiment, i.e. the normalization factor 1 Cr . To understand the motivation for our approach better, we may assume we were using 1 Cr for a moment:

W r = 1 C r N ν=1 |x ν | 2 n νr .
(5.56)

For the average beam width, we would determine accordingly

W = 1 R R r=1 W r = N ν=1 |x ν | 2 1 R R r=1 n νr C r . ( 5 

.57)

Now we see that the calculation of the average expression between parentheses is not simple. Therefore, we use the alternative definition for W r introduced in Eq. 5.55.

The average beam width for a total number of runs R of the experiment is then given by

W = 1 R N r=1 W r (5.58) = N ν=1 |x ν | 2 n ν N ν=1 n ν , (5.59) 
with n ν being the average number of photons impinging on pixel ν. For calculating the variance Var[W ] = W 2 -W 2 of the beam width, we still need to determine the expression for the average value of the squared beam width. We insert Eq. 5.55 and 5. Towards an experimental investigation of the beam width noise: ideas, schemes and simulations a definition for the beam position: we define it as the centroid of the transverse intensity distribution. It is characterized by two coordinates x c and y c . We are mostly investigating cases of symmetric modes such that studying one of the coordinates is sufficient. For asymmetric modes, however, it is conceivable that the noise is not equal in both directions. In the following, we discuss the x-coordinate, but the analysis of the y-coordinates could be performed analogously of course. The x-coordinate of the centroid in one run of the experiment is described by

P r = 1 C N ν=1
x ν n νr .

(5.68)

From this point on, the same calculations as for the beam width noise in Sec. 5.2.5.1 are performed. These will therefore not be discussed in detail again, and we only give the results. We obtain

Var[P ] = D x -G 2 x 1 n + Var[n] n 2 G 2 x , (5.69) 
where D x ≡ N ν=1 x 2 ν p ν and G x ≡ N ν=1 x ν p ν . As in the previous section, we would like to compare this result to the expression obtained from the continuous theory. In Sec. 4, only the beam width uncertainty has been treated. However, the procedure is analogous to the one for the beam width. We determine

δ P 2 = D 00x -G 2 00x 1 n + δn 2 n 2 G 2 00x , (5.70) 
with D 00x = x 2 |u 0 (x, y)| 2 dxdy and G 00x = x|u 0 (x, y)| 2 dxdy. u 0 (x, y) is the amplitude of the light beam. Again, the expressions for continuous and discrete theory coincide for an infinite number of infinitely small pixels. If the beam is centered at the origin of the coordinate system, G x equals 0. As it is always possible to choose the coordinate system in this way, we use this assumption to rewrite Eq. 5.69 as

Var[P ] = D x n . (5.71) 
We see that the variance of the beam position depends on the spatial mode (contained in D x ) and the mean photon number. The variance of the photon number does not come into play any more, the noise in the beam position is thus independent of the quantum state. This statement is in agreement with the findings in [START_REF] Treps | A quantum laser pointer[END_REF][START_REF] Treps | Quantum noise in multipixel image processing[END_REF]. Please note that it applies only for single mode states.

Experimental measurement procedure and simulations

The purpose of creating a theory describing spatial measurements performed by a multipixel array is to make predictions for realistic experimental measurements: not only the discretization of the data due to the finite number of pixels is taken into account, but also detection inefficiencies, as described in Sec. 5.2.4. Beside the reduced efficiency, dark counts are another unwanted imperfection of the camera that should be considered. These are simulated by adding an additional Poissonian distribution.

We are thus able to take the occurring experimental imperfections into account such that we can learn from the simulations how to design an experimental setup. This concerns questions about the necessary number of pixels, as well as the required detection efficiency, and acceptable number of dark counts. Additional characteristics such as the fill factor could be clarified by extending the simulations. The fill factor is the ratio between photo sensitive area and total detector surface. (In practice, the usage of micro-lens arrays can increase the effective fill factor such that it should not constitute a major problem.) For the simulation of the measurements, we generate data as one would receive it from repeated measurements of the beam's cross-section. We then determine beam width and position for the individual camera frames and calculate the variance for these quantities. We start with the probability distribution presented in Eq. 5. (5.72)

The implementation of the simulation is simplified due to the fact that this photon probability distribution is similar to a multinomial distribution, as mathematica provides a built-in function for multinomial distributions that we can use. Please note that the probabilities in Eq. 5.35 are only normalized for the limit of d → 0, i.e. for an infinite number of pixels. If the probabilities were properly normalized, their sum N ν=1 p ν should give 1. We insert Eq. 5.16 and calculate which solves the normalization issue. However, for the multinomial distribution to be valid, at least one photon has to impinge on the camera. For N = 0, a discrete uniform distribution in the interval {0, 0} is used. We combine these two distributions and write the total probability distribution as

P tot (n|ψ) = ∞ N =0
w N g(n; N , p), (5.76) with g(n; N , p) = unif{0, 0}, forN = 0, f (n; N , p), forN ≥ 1.

(5.77)

The distribution can be handled in Mathematica by using the built-in function 'Mix-tureDistribution'. The total photon number N is fixed for a Fock state, whereas for a coherent state, it is unbounded. For the latter, N = 4 n has turned out to be a sufficiently large value to be used in the simulations. We found this heuristically. Fig. 5.3 shows an example for a camera frame: the classical mode shape of a fundamental Gaussian beam is captured by an array of 10 × 10 pixels. In an experiment, one would try to achieve the following alignment: the beam profile is in a centered position, fully covers the surface and uses the available pixels to full capacity. At the same time, the beam is dimensioned such that it is not too large for the camera surface and the beam characteristics can be determined correctly. We use the above probability distribution to simulate camera frames as they would be produced by light fields with the spatial profile as in Fig. 5.3 that are in different quantum states. In particular, coherent, Fock and thermal states are considered. We calculate beam width and position for each of the camera pictures. Having performed a sufficiently large number of experiment runs, for example 10 3 , we calculate the variance of beam width and position, as well as their mean values. This procedure is performed for different mean photon numbers n of the quantum state. ation of these simulations. An example for one of these simulations (performing 10 3 runs of the experiment) is depicted as red dots. This data exhibits fluctuations of a few percent. An even higher number of runs of the experiment would diminish them further. Due to their small amplitude, they also do not pose a problem at this point.

The same applies to Fig. 5.4(b), in which the mean values of the beam width are shown. For the results from continuous and discrete theory, however, we see that there is a difference this time. Due to the limited number of pixels, a slightly different value is determined for the beam width. The difference amounts only to about 0.5 %. By increasing the number of pixels, and thus decreasing the pixel size, this difference can be eliminated. But as we want to simulate a realistic multipixel detector and because we are interested in exactly these effects due to the discretization, we keep the number of pixels as it is.

In the next step, we may finally examine the quantum noise in position and width for the uncertainty in the beam width, for a Fock state, a coherent and a thermal state. In all of the plots, the black dashed line indicates the results of the continuous theory, and the green line the results from the discrete theory. We see that the two curves always coincide, which means that the discretization of the pixels does not affect the measured beam position noise in any of the plots presented. The numerical result for an ideal detector with perfect detection efficiency η = 1 shows the same.

For the curves associated with an imperfect detector, we assume 10 dark counts per s. We assume a measurement time per image of 300 ns, such that we take 30 • 10 -9 dark counts per image into account. For the blue triangular data points, we used a detection efficiency of η = 0.9. These values characterizing the detector performance have been achieved for superconducting nanowire single photon detector arrays already [START_REF] Marsili | Detecting single infrared photons with 93 % system efficiency[END_REF]. The results for a detector with these imperfections are still so close to the ones for the ideal detector that they can hardly be distinguished. To show the effect of a lower detection efficiency, we also simulated data for η = 0.5. In that case we see that the noise is on a higher level. The relative behavior, i.e. dependence on the mean value n remains the same, however. In Fig. 5.5(a), it is a 1/n decline as We choose to normalize the beam width noise by the mean value of the beam width, the above formulas differ from those presented in Sec. 4.4.1 in that sense. As one can tell from the equations and maybe guess from the plots, for the limit of an infinite number of photons, the beam width noise approaches 0 for the coherent and the Fock state, and 1 for the thermal state. The general noise level is lowest for the Fock state, and significantly higher for the thermal state. This observation is in agreement with 

Conclusion

In the above section, we present a tool for the description of spatial measurements performed by multipixel detectors. The derived relations are used to determine the quantum noise in the measurement of a light beam's width and position. By deriv-ing the probability distribution of photon counts for single mode states, we are able to both perform simulations, and develop an analytic theory that considers the discretization of the measured intensity distribution due to the finite number of pixels. We use the analytic theory in particular to determine expressions for the uncertainty of beam width and position. We compare these with the expressions derived from the continuous theory presented in Sec. [START_REF] Dorn | Sharper focus for a radially polarized light beam[END_REF], and we see that the results coincide for the limit of an infinite number of pixels on the given camera surface.

In the performed simulations, we take experimental imperfections into account, such as a reduced detection efficiency and dark counts. This allows us to make predictions for measurements under realistic conditions. We verify that the dependence of the beam width noise on the quantum state can be measured by state-of-the-art detectors.

Conclusion and outlook

We presented experimental and theoretical investigations of quantum properties of structured light. A quantum theory for the description of spatial characteristics and their quantum noise has been developed (Sec. 4). Namely, it has been applied for studying the quantum uncertainty in the width of light beams and for determining its origin. It may, however, be modified to perform examinations on other parameters too. We presented a general tool that can serve for the investigation of different spatial properties. It is a fundamental approach for the description of spatial characteristics and their quantum uncertainty.

For the beam width and its noise that we have been focussing on, we made interesting discoveries that did not seem obvious in the first point. We found that the uncertainty in the beam width depends on both the quantum state and the spatial mode of the light beam. This is remarkable, as it means that the noise in a geometric parameter depends on quantum characteristics of the light field. We also found that, at least for multimode states with small quantum fluctuations, the beam width noise stems entirely from the quantum uncertainty of the amplitude quadrature of one particular mode that we chose to call detection mode. The detection mode is uniquely defined by the light field under investigation. This discovery opens up another approach for minimizing the beam width noise. We suggested schemes for experimental implementations of such ideas that would provide an experimental verification of our theoretical findings (Sec. 5.1). To learn about the required characteristics of a multipixel detector that could measure the noise in spatial parameters, we developed a complete theory describing such measurements (Sec. 5.2). We obtained an analytic theory for the beam width and position noise in a multipixel measurement. In addition, simulations have been performed that take additional imperfections into account. The outcome of these studies is that the noise measurement for such spatial parameters is possible by state-of-the-art detectors. We have thus shown the experimental feasibility of a verification of our theoretical findings and elaborated on the concrete implementation. In future, we would like to carry out the suggested experiments and prove our theory on the beam width uncertainty. In this thesis, we have already presented the experimental implementation of a scheme for the generation of structured light exhibiting quantum features. In particular, we produced amplitude squeezed vector beams (Sec. 3). Our approach is particularly interesting as it offers a great flexibility of generating different types of modes. In this way, it opens up the possibility of studying a great number of different vector beams within a single setup. It may constitute a first step for experimental investigations of the quantum properties of spatial beam parameters that we found in our theoretical studies.

Conclusion and outlook

Our theory on the beam width uncertainty is very fundamental and can thus not only be applied on paraxial light fields, but also be utilized for the investigation of focused light beams. However, the quantum mechanical description of focused structed light fields has not been thoroughly performed so far in a way that seems practical to us, such that we would like to tackle this issue in future. We already hint at how to approach this problem in Sec. 4.7.3. We thus intend to complete our theoretical studies by investigating the beam width noise for focused light fields.

A. Photographs of the setup for the generation of amplitude squeezed vectorial modes • C. Croal, Ch. Peuntinger, V. Chille, Ch. Marquardt, G. Leuchs, N. Korolkova, and L. Mišta, "Entangling the whole by beam splitting a part," Phys. Rev. Lett. 15, 190501 (2015).

The first article shows the occurrence of quantum properties in states that are usually regarded as completely classical, as they are classified as such according to a common criterion using the Glauber P function. The input state is prepared by adding Gaussian-distributed random displacements to a coherent or squeezed optical mode. This noise ensures the classicality of the state. The light beam is then split by a beam splitter. One of the output modes experiences intentionally introduced losses before the correlations between the two beams are analyzed by measuring the covariance matrix. In particular, the Gaussian quantum discord is determined, and its rise with increasing losses are observed. The discord growth can be made plausible by means of the Koashi-Winter inequality linking marginal entropy, entanglement and classical correlations for different partitions of the system. Please see the publication for details. Furthermore, it is possible to recover entanglement between the two output modes by interfering one of them with a so-called environmental mode on which appropriately tailored noise has been imprinted. We performed this experimentally by mixing the mode with vacuum and adding the noise computationally after the measurement. Consequently, it is thus possible to establish entanglement in the twomode state by only altering one of the modes. This shows that there must be some underlying quantum features, namely these can be characterized by quantum discord. The latter article demonstrates how a beam splitter can generate entanglement from two modes being correlated, but not entangled with, a third mode. Specifically, we prepared three modes that experience displacements in a way comparable to the ones in the scheme described above. Two of these modes (A and C) are mixed on a beam splitter afterwards. By measuring the three-mode covariance matrix, it can be shown that entanglement has been established with respect to the A|BC and C|AB splittings, while the state is separable with respect to the B|AC splitting. The initially fully separable Gaussian state thus becomes three-mode entangled by the action of a beam splitter.
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 21 Figure 2.1.: (a) Hermite-Gauss (HG) modes of different orders m and n (b) Laguerre-Gauss (LG) modes with different radial indices p and azimuthal indices l

Figure 2 . 2 .

 22 Figure 2.2.: The Stokes parameters can be measured by means of a rotatable quarterwave plate and a fixed polarizer.

Figure 2 . 3 .

 23 Figure 2.3.: Azimuthally and radially polarized doughnut modes can be generated by superimposing HG 01 and HG 10 modes with orthogonal linear polarizations.

Figure 2 . 4 .

 24 Figure 2.4.: Examples for a vacuum state (green), a vacuum squeezed state (yellow)and a displaced squeezed state (blue) in phase space: representation of the quadrature operator means and variances[START_REF] Loudon | The Quantum Theory of Light[END_REF].
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 76 Now we investigate the effect of any linear combination b = i c i âi (2.77) on the state, where âi are the annihilation operators of the given basis. The normalization condition i |c i | 2 = 1 ensures the standard commutation relation [ b, b † ] = 1. We determine b |ψ = i c i âi |ψ = c 0 |ψ 0 .

Figure 3 .

 3 Figure 3.1.: The setup for the experimental generation of amplitude squeezed vector beams [64] consists of three main parts:The amplitude squeezer provides a fundamental Gaussian mode with a reduced quantum noise in the amplitude quadrature. In a next step, the mode conversion setup turns this fundamental Gaussian mode into the desired vector beam. The exemplarily depicted phase masks would generate LG 01 modes: the continuous phase gradient from 0 to 2π along the azimuthal direction is generated by the gray gradient. Please note that black and white represent 0 and 2π such that no phase jump is caused at the point where black and white adjoin each other. And finally, the mode analysis is performed. Instead of the squeezed light beam, a coherent beam can be coupled into the setup that serves as a reference for the determination of the quantum noise reduction. In Appendix A, labeled photographs of the experimental setup can be found.

Figure 3 .

 3 Figure 3.3.: The superposition of left and right circularly polarized LG 01 modes with appropriate phase relations generates radially and azimuthally polarized doughnut modes.

Figure 3 .

 3 Figure 3.4.: Analysis of a radially polarized doughnut mode with -0.9 dB ± 0.1 dB of amplitude squeezing, based on the spatial distribution of an LG 01 mode, that we generated experimentally by means of the setup depicted in Fig. 3.3. (a) The images taken by a CCD camera show the intensity distribution behind a polarizer the transmission axis of which is aligned along the direction indicated by the white arrows. The first image shows the doughnut shaped total intensity. (b) The Stokes measurements give a more precise analysis of the distribution of the polarization within the beam's cross-section. (c) The depiction of the theoretical values allow an easy comparison of the measurement results from (b) with the expectations. This comparison unveils minor imperfections in (b) such as the presence of a circular polarization component.
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 35 Figure 3.5.: The noise levels of the coherent reference (blue) and the amplitude squeezed radially polarized doughnut mode (red) are depicted. The spatial distribution of the vector beam's polarization is shown in Fig. 3.4.

Figure 3 . 6 .

 36 Figure 3.6.: The spatial distribution of the Stokes parameters is analyzed for the experimentally generated vector beams. The quantum noise reduction in the amplitude quadrature is indicated for each mode. The error given for the amplitude squeezing is the statistical error, a detailed description of the error determination can be found in the main text. The present amplitude squeezing is significant, and the measured Stokes parameters demonstrate that a good mode quality is achieved.

Figure 3 . 7 .

 37 Figure 3.7.: The images show the total intensity distribution and the intensity measured behind polarizers with the transmission axis orientated along the indicated white arrow. The small images present the theoretical expectations for the total intensity profile. The residual zeroth order mode causes minor imperfections and the characteristic spiral structures stemming from the interference with the modulated modes.
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 41 Figure 4.1.: The transverse spatial intensity distribution of a fundamental Gaussian beam is depicted [77]. As discussed in the main text, Ŵ does not have the dimension of an area. Thus, in this figure, its square root, the standard deviation Ŵ is indicated. We want to investigate the noise in the beam width quantified by δ Ŵ 2 (see Eq. (4.10)). In order to depict a quantity with the appropriate dimension, we indicate 4 δ Ŵ 2 in the figure.
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 422 Figure 4.2.: (a) Noise in the beam width of a fundamental Gaussian beam for different single mode quantum states, normalized by the noise of a coherent state. The uncertainty in in the beam width is plotted against the mean photon number. Depending on the quantum state, we see a dependence on the photon number in some cases. The beam width noise depends significantly on the quantum state. (b) Noise in the beam width of a single mode coherent state in a Laguerre-Gauss mode LG lp with p = 0 and different values for the azimuthal values of l, normalized by the squared mean value of the beam width. For larger beam sizes, i.e. for higher numbers of l, the relative quantum noise is decreasing.
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 4 Quantum uncertainty in the beam width of spatial optical modes

Figure 4 . 3 .

 43 Figure 4.3.: Two mean field modes and their respective detection mode evaluated at y = 0 are depicted: (a) The mean field mode (blue) is a fundamental Gaussian mode and its detection mode (red) consists of two peaks that can be expressed as a superposition of Hermite-Gauss modes of the zeroth and the second order. (b) The two peaks that form the detection mode (red) of a flattened Gaussian beam (blue) are narrower as the edges of the mean field are sharper.The horizontal axis gives the transverse length x in terms of the standard deviation w 0 of the fundamental Gaussian beam and the equivalent parameter for the flattened Gaussian beam (see main text). The vertical axis is scaled such that the maximum of the respective mean field mode is 1.

Figure 4 .

 4 Figure 4.4.:The beam width noise for LG lp modes is depicted in dependence of its azimuthal index l and radial index p. We observe a considerable decrease of the noise with increasing l. For low values l = 0, the noise is reduced with growing radial index p. However, from l = 2 on, we see that the beam width noise grows with increasing p.
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 45 Figure 4.5.: Quantum noise in the beam width of a coherent state in TEM mn modes.The noise decreases with increasing indices m and n, i.e. with increasing beam size. The diagonal elements of the plot are most meaningful, as discussed in the main text.
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 4922 In terms of the TEM mode basis, cylindrically polarized modes are a superposition of ψ 10 = 2 2 of orthogonal linear polarization (see Fig.4.6). We use a slightly different normalization compared to[START_REF] Holleczek | Classical and quantum properties of cylindrically polarized states of light[END_REF] in order to ensure ∞ -∞ |u(x, y)| 2 dxdy = 1. To simplify the nomenclature, we name the relevant annihilation operators:

Figure 4 . 6 .:

 46 Figure 4.6.: Intensity distribution of (a) |ψ 10 | 2 , (b) |ψ 01 | 2 and (c) |ψ 10 | 2 + |ψ 01 | 2 . As ψ 10 and ψ 01 are orthogonally polarized, they do not interfere and the intensities are just summed up.

  D 11 and D 22 , we determine D 11 = D 22 = w 2 0 . For F 11 and F 22 , we get F 11 = F 22 = 3w 4 0

Figure 4 . 7 .

 47 Figure 4.7.: Beam width noise for a cylindrically polarized mode in a Fock, vacuum squeezed and coherent state, (a) normalized with respect to the noise for a coherent state, (b) normalized with respect to the mean value of the beam width

Figure 4 . 9 .

 49 Figure 4.9.: Focal intensity distribution I for (a) a radially and (b) an azimuthally polarized doughnut mode. Here w 0 denotes the waist of the beam.

Figure 4 .

 4 Figure 4.11.: (a) The intensity distribution I(x) of an azimuthally polarized highlyfocused CSB is plotted against the spatial variable x. The "running" variance V (X) is indicated in dependence of the integration limit X.(b) We illustrate second and third derivative of the running variance and indicate the smallest X for which the conditions in Eq. 4.111 and Eq. 4.112 are satisfied in red.

Figure 4 .

 4 Figure 4.12.: Intensity distribution of (a) radially and (b) azimuthally polarized CSBs.The beam width defined via the running variance is indicated by the solid lines. The limit of the integration X 0 is given by the dashed lines.
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  V. Chille, N. Treps, C. Fabre, G. Leuchs, Ch. Marquardt, and A. Aiello, "Detecting the spatial quantum uncertainty of bosonic systems," New J. Phys. 18, 093004 (2016).
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 5 Towards an experimental investigation of the beam width noise: ideas, schemes and simulations local annihilation operator â(x) over the mode Φ K (x) in the CCD camera plane: âK = d 2 xΦ * K (x)â(x).(5.2)
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 51 Figure 5.1.: The transverse intensity distribution of a fundamental Gaussian beam is measured by the pixel array of a multipixel detector [110].

Figure 5 . 2 .

 52 Figure 5.2.: We model the reduced efficiency of the detector by a beamsplitter in front of each pixel[START_REF] Chille | Detecting the spatial quantum uncertainty of bosonic systems[END_REF]. The input signal âν mixes with vacuum fν . The output mode of Âν is measured by the pixel of the detector. As the losses cannot be measured in practice, the mode associated with Fν cannot be investigated.

  34 and divide it in the weight factor w N = |ψ N | 2 and the multinomial distribution f (n; N , p) in the N variables n = n 1 , ..., n N , with parameters p = p 1 , ..., p N : P (n|ψ) = w N f (n; N , p).

pp ν = d 2 x d 2 5 . 2 = 2 Nν=1 |U Kν | 2 ,

 25222 ν = d 2 x d 2 x Φ * K (x)Φ K (x ) N ν=1 Θ ν (x)Θ ν (x ) x Φ * K (x)Φ K (x ) limTowards an experimental investigation of the beam width noise: ideas, schemes and simulations where we used lim d→0 N ν=1 Θν (x)Θν (x ) d δ(x -x ) and Eq. 2.14. For the simulation we redefine the probabilities p ν → pν ≡ |U Kν |
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 553 Figure 5.3.: Beam profile for a fundamental Gaussian mode captured by a 10 × 10 multipixel array [110].
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 54 Figure 5.4.: Mean values of (a) beam position and (b) beam width for a coherent state as a function of the photon number [110].
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 55 Figure 5.5.: Numerical results for different detection efficiency η are depicted, as well as the values determined from continuous and discrete theory for (a) position uncertainty (for a Fock state) and (b) width uncertainty for a Fock state as a function of the photon number [110].
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 56 Figure 5.6.: Numerical results for different detection efficiency η are depicted, as well as the values determined from continuous and discrete theory for (a) position uncertainty for a coherent state and (b) width uncertainty for a thermal state as a function of the photon number [110].
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 4 2 in Sec. 4.4.1.
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  Figure A.1.: (a) Display of the spatial light modulator. (b) Setup for the double reflection on the SLM with the half-wave plate for the roation of the state of polarization. In this figure and Fig. A.2-A.3, the following abbreviations are utilized: HWP: half-wave plate, QWP: quarter-wave plate, BS: beam splitter, PBS: polarizing beam splitter, SLM: spatial light modulator

  

  

  Die vorliegende Arbeit hat es zum Ziel nichtklassisches strukturiertes Licht und seine Eigenschaften zu erforschen. Quantenoptik und strukturiertes Licht sind Thema zahlloser wissenschaftlicher Untersuchungen. Diese beiden Gebiete werden jedoch selten gemeinsam betrachtet, so dass quantenmechanische Eigenschaften von strukturiertem Licht nicht so gut erforscht sind, wie sie es sein sollten. In dieser Arbeit möchten wir die Themen Quantenoptik und strukturiertes Licht zusammenbringen. Zu diesem Zweck erzeugen wir nichtklassische strukturierte Lichtfelder experimentell und analysieren räumliche Eigenschaften von Lichtstrahlen und ihr Quantenrauschen theoretisch. Unter strukturiertem Licht verstehen wir allgemein Lichtfelder mit komplexen transversalen Verteilungen in Intensität, Phase oder Polarisation. Diese Arbeit besteht aus drei Teilen: der Beschreibung einer experimentellen Erzeugung von amplitudengequetschten Vektorstrahlen, der theoretischen Untersuchung der Quantenunschärfe der Strahlbreite und einer theoretischen Analyse von praktischen Schemata für die experimentelle Überprüfung unserer Ergebnisse. Zunächst konstruieren wir einen experimentellen Aufbau, der es uns erlaubt beliebige amplitu-Wir diskutieren die auftretenden Abweichungen von den theoretischen Werten und erklären ihren Ursprung. Ein weiteres Thema dieser Arbeit ist die Analyse der Quantenunschärfe in der Breite eines Lichtstrahls. Die Strahlbreite ist ein fundamentaler Strahlparameter, so dass ihre Unschärfe auch für praktische Anwendungen von besonderem Interesse ist. Quantenrauschen limitiert im Allgemeinen die Präzision aller physikalischer Messungen. Indem das Lichtfeld entsprechend angepasst wird, kann jedoch die Messgenauigkeit bestimmter Messungen über das Maß hinaus gesteigert werden, das mit klassischem Licht erreichbar wäre. Wir interessieren uns dafür, wie sich dieses Prinzip auf die Messung der Strahlbreite anwenden lässt. Wir entwickeln eine Rahmenstruktur für die quantenmechanische Beschreibung der räumlichen Merkmale von Lichtstrahlen, die wir auf die Untersuchung der Quantenunschärfe der Strahlbreite anwenden. Diese Struktur lässt sich jedoch auch einfach für die Anwendung auf andere räumliche Parameter anpassen. Wir definieren die Strahlbreite als Varianz der transversalen Intensitätsverteilung und assozieren einen Quantenoperator. Es zeigen sich interessante Zusammenhänge, die nicht von Anfang an offenkundig sind. Beispielsweise stellen wir fest, dass das Rauschen in der Strahlbreite von der räumlichen Mode, genauso wie vom Quantenzustand des Lichtstrahls abhängt. Darüberhinaus entdecken wir, dass -zumindest für Multimodenzustände mit kleinen Quantenfluktuationen -das Rauschen in der Strahlbreite durch das Amplitudenrauschen der sogenannten Detektionsmode bewirkt wird. Die Detektionsmode wird allein durch das betrachtete Lichtfeld festgelegt. Der Zusammenhang zwischen Detektionsmode und Rauschen in der Strahlbreite zeigt auch einen Weg auf, wie die Quantenunschärfe in der Strahlbreite reduziert werden kann, indem die Detektionsmode in einem Quantenzustand mit reduziertem Amplitudenrauschen angeregt wird. Um unsere theoretischen Erkenntnisse experimentell zu verifizieren, entwickeln wir Vorschläge für praktische Ansätze zur Überprüfung verschiedener Effekte, die sich aus unserer Theorie ergeben. Die eigentliche Messung der Strahlbreite und des darin enthaltenen Rauschens kann am direktesten mithilfe eines Multipixeldetektors durchgeführt werden. Um zu verstehen, wie sich die Diskretisierung durch die Pixel und die
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dengequetschte Vektorstrahlen, d.h. Lichtstrahlen mit einer komplexen transversalen Struktur des Polarisationszustandes, zu erzeugen. Exemplarisch generieren wir Vektorstrahlen, die auf Laguerre-Gauß Moden basieren und eine Reduktion im Quantenrauschen von bis zu -0.9(1) dB aufweisen. Um die gewünschte Flexibilität zu erreichen, d.h. um beliebige Vektorstrahlen erzeugen zu können, verwenden wir einen räumlichen Lichtmodulator (englisch: spatial light modulator, kurz: SLM). Da nicht nur die Phase, sondern auch der Polarisationsfreiheitsgrad modifiziert werden muss, sind zwei Reflektionen am SLM erforderlich: ein kollinearer interferometrischer Ansatz wird verwendet, für den zwei Moden innerhalb eines Strahls erzeugt und somit natürlicherweise überlagert werden. Vor der Modenkonversion wird die Reduktion des Quantenrauschens in der Amplitudenquadratur durchgeführt, indem der Kerr-Effekt einer optischen Faser in einem Sagnac-Interferometer ausgenutzt wird. Eine Besonderheit unseres Ansatzes ist die Tatsache, dass er systematische Verluste vermeidet. Dies ist notwendig, um die Rauschreduktion zu bewahren. Das erzeugte Lichtfeld wird im Detail analysiert und eine gute Modenqualität wird erzielt. Unvollkommenheit des Detektors auf die für die räumlichen Parameter bestimmten Werte auswirken, entwickeln wir eine vollständige Theorie, die diese Art von Messsung beschreibt. Eine analytische Theorie wird abgeleitet und Simulationen werden durchgeführt, die es uns erlauben weitere Messfehler zu berücksichtigen. Wir stellen fest, dass die experimentelle Bestimmung des Rauschens in Strahlbreite und -position mithilfe von Detektoren, die dem neuesten Stand der Technik entsprechen, möglich ist. Wir zeigen damit die Machbarkeit einer experimentellen Überprüfung unserer theoretischen Erkenntnisse.

  • . Also for measuring S 2 , a single polarizer is sufficient. It is adjusted to +45 • and -45 • . For S 3 , we need to use a quarter-wave plate (QWP) in addition: it is aligned such that it transforms circular polarization into linear polarization. The orientation of the linear polarization, i.e. if it is +45 •or -45 • -polarized, depends on the light having a left or right circular polarization initially. We may analyze this by means of the aforementioned rotatable polarizer.

  Chille, P. Banzer, A. Aiello, G. Leuchs, Ch. Marquardt, N. Treps, and C. Fabre, "Quantum uncertainty in the beam width of spatial optical modes," Opt. Express 23, 32777-32787 (2015) and Sec. 4.1-4.4.2 and 4.6 are mostly based on that article.

  .44) Fig.4.5 visualizes the noise for a coherent state. One can see that the noise decreases with increasing indices m and n. In agreement with Fig.4.2(b) for Laguerre-Gauss modes, the fundamental mode gives the highest noise. Please note that TEM mn modes are astigmatic for m = n. Our measure for the beam width, however, is most appropriate for stigmatic modes, as discussed in the last paragraph of Sec. 4.2.

	54	4. Quantum uncertainty in the beam width of spatial optical modes
		δ Ŵ 2 δ Ŵ 2 Coherent Fock	= 1 -	D 2 00 F 00	(4.45)
			TEMmn = 1 -	2(m + n + 1) 2 3(m 2 + n 2 ) + 5(m + n) + 4mn + 4	(4.46)
			TEM 00 =	1 2	.	(4.47)
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Experimental generation of amplitude squeezed vector beams

Quantum uncertainty in the beam width of spatial optical modes

Towards an experimental investigation of the beam width noise: ideas, schemes and simulations

4. Quantum uncertainty in the beam width of spatial optical modes The intensity distribution I(x) of a radially polarized highly focused CSB is plotted against the spatial variable x. In the same plot, we show the "running" variance V (X) as defined in Eq. 4.110 in terms of the integration limit X.

(b) Second and third derivative of the running variance are depicted. The smallest X for which the conditions in Eq. 4.111 and Eq. 4.112 are fulfilled is marked by the vertical red line.

Fig. 4.11 is analogous to Fig. 4.10 and depicts the same quantities, this time for azimuthal polarization. The most striking difference between the two figures consists in the fact that for the azimuthal polarization, two main lobes from the input mode are preserved, whereas for the radial polarization, the focal spot has one central main lobe. We determine X 0 ≈ 4.603 and V (X 0 ) ≈ 5.375. Fig. 4.12 summarizes and illustrates our results. The transverse intensity distributions for radially and azimuthally polarized CSBs are depicted in (a) and (b) respectively. In addition, the solid lines indicate the beam width determined via the running variance. The dashed vertical lines mark the truncation point of the integration X 0 .

In conclusion, we developed a new measure for the beam width noise that is utilizable for the highly focused CSBs and other Bessel beam-like cross-sections. The beam width noise can then also be calculated in a way analogous to the one presented in Sec. Please note that the common relation nij = â † ij (z)â ij (z) is not valid in this case. This is due to the particularity of the definition of the operators as eigendifferentials already discussed. However, nij counts the photon number measured by the pixel (i, j) and is thus well-suited for our purposes. Furthermore, the following equal-z canonical commutation relations are fulfilled:

(

We now want to investigate the effect of an impinging light field, best described in terms of the set of modes associated with âK , on the multipixel camera, conveniently represented by the operators âij . Therefore, we are interested in the relation between the two descriptions. We start with Eq. 5.6 for âij and express it by means of âK .

For this purpose, we insert Eq. 5.3 into Eq. 5.6 and get

with

(5.16)

Probability distribution for the photons measured by an ideal photodetector

An ideal multipixel detector counts all of the photons impinging on the individual pixels. From the measurement data, one may determine spatial parameters of the impinging beam's cross-section, such as its width or position. Moreover, besides the parameters themselves, we may also infer the noise in these parameters from repeated measurements. This is what we are particularly interested in: the noise in beam 5. Towards an experimental investigation of the beam width noise: ideas, schemes and simulations we determine

Looking at the rightmost part of Eq. 5.19, and taking Eq. 5.22, Eq. 5.20 and âν |0 = 0 into account, we determine

We need to repeat this for the residual ânν-1 ν . At step s of this procedure, we have

We see that the chain stops when s = m if m < n ν . In that case (â † K ) m-s becomes 1, and âν acts directly on |0 such that it becomes 0. If m ≥ n ν , the chain stops for s = n ν and we obtain m! (m-nν )!

To write this in a compact way, we use the discrete step function Θ D (m -n ν ). It gives 1 for m -n ν ≥ 0 and 0 otherwise. Consequently, we may write

We need to perform the above procedure for all âν with ν = 1, 2, ...N in Eq. 5.19.

Please note that two simplifications can be used in each step:

Using these, we perform the first two steps:

We may continue like this until we obtain

with N = n 1 + n 2 + n 3 + ... + n N . By inserting Eq. 5.29 in Eq. 5.31, we obtain

(5.32)

We may now finally return to Eq. 5.19 and insert Eq. 5.32:

(5.33)

We use Eq. 5.17 to determine the photon probability distribution as

with the probabilities

(5.35)

ψ N depends on the quantum state of the impinging light field. Please note that it stems from Eq. 5.18 and is thus related to the expansion for the quantum state in terms of the Fock basis. For the most common quantum states, it takes the following values:

for a coherent state |α ,

for a squeezed vacuum |ζ ,

for a thermal state.

(5.36)

For the squeezed vacuum state, ζ = s exp(iϑ) is the squeezing parameter, and N /2 is an integer value. The mean photon number of the thermal state is given by

The measurements of the multipixel detector are fully described by the probability with τ being the transmittance and ρ the reflectance of the beamsplitter. The operators fulfill the canonical commutations relations: Similar to the previous section, we now want to determine the probability distribution of the photons that are measured by the detector or lost due to the inefficiency. We are thus interested in the probability of measuring n 1 photons in pixel (i 1 , j 1 ) and missing m 1 , measuring n 2 photons in pixel (i 2 , j 2 ) and missing m 2 , ... and measuring n N photons in pixel (i N , j N ) and missing m N . We can write this state by means of the creation operators for the output modes (Eq. 5.37) as

where Âν acts on |0 , and Fν on |Ω .

In analogy to the previous section, the overlap of this state with the input state has to be determined. The input state is now a product state consisting of two states: the state under investigation and the vacuum state. The state under investigation is written by means of the creation operators âK as

(5.44)

The vacuum state entering the unused ports of the beam splitters is given by

where |Ω ν is the vacuum state at the input port of the beamsplitter in front of pixel ν. For calculating the photon probability distribution

we rewrite Eq. 5.43 by expressing the output operators  † ν and F † ν as a superposition of the input operators â † ν and f † ν as in Eq. 5.37 and by using the binomial theorem [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF],

5. Towards an experimental investigation of the beam width noise: ideas, schemes and simulations we get

(5.47)

|Ω ν is nonzero only for k ν = l ν = 0 for all ν = 1, 2, ...N such that, in fact, we may write:

(5.48)

Inserting this relation into Eq. 5.47 gives

with

and by using Eq. 5.32, we obtain

with D = N + M. The expression is simplified further my introducing

We determine

As the information about the photons that are not counted by the detector is not available, we trace out the unobserved ports of the beamsplitters. We calculate the probability of detecting the state |n :

(5.54)

We have thus derived an expression for the probability distribution of the photons counted by the pixels of an inefficient detector. It is a multi-pixel generalization of the Kelley-Kleiner formula [START_REF] Kelley | Theory of electromagnetic field measurement and photoelectron counting[END_REF]. The simulations presented in Sec. 5.2.6 are based on this equation, where it is used to study the uncertainty in beam width and position.

Discrete theory for the uncertainty in width and position of the light beam

In Sec. 4, we present a theory that analyzes the uncertainty in the beam width of an optical beam. The fundamental properties of the light beam are studied, whereas the detection system is not taken into account. In Sec. 5.2.3, the measurement process of a multipixel detector is studied such that we may now determine the noise in the beam width when the light beam's cross-section is measured by a multipixel array. The difference between the two theories stems from the discretization of the transverse intensity distribution due to the finite numbers of detector pixels. We use the insights gained in Sec. 5.2.3 to develop a discrete version of the theory on the beam width noise. In particular, the properties of the multinomial-like distribution of the photon probabilities are exploited. We, furthermore, also use it to study the noise in the beam's position, and, for the sake of completeness, present the expression for the beam width noise according to the continuous theory. As discussed before, the development of the discrete theory aims at making predictions for realistic measurements. We therefore think about what a measurement would look like in practice. In general, the variance of a quantity is determined from an experiment by performing repeated measurements and calculating the variance of the results of these measurements. The number of measurements has to be chosen appropriately large such that good statistics are attained. We now apply this method to determine analytic expressions for the variance of beam width and position.

get

For Eq. 5.59 and Eq. 5.61, we still need to determine n ν and n ν n µ . As we know that the probability distribution for the photons is a multinomial distribution [START_REF] Beyer | RC Standard Mathematical Tables[END_REF], we can exploit the knowledge about its properties and determine

)

with n = ∞ N =0 w N N . E[x] denotes the expectation value of the random variable x. Inserting the above relations into Eq. 5.59 and Eq. 5.61, we obtain 

(5.67)

Mandel's Q parameter [START_REF] Mandel | Sub-poissonian photon statistics in resonance fluorescence[END_REF] is introduced in the second step. For the limit of an infinite number of pixels, the above relation coincides with Eq. 4.11 derived for the continuous theory.

Beam position noise

We now want to perform the calculations analogous to the ones above for the position of the light beam and the noise in this quantity. First of all, we need to choose

A. Photographs of the setup for the generation of amplitude squeezed vectorial modes The division by an operator is a mathematical operation that is not well defined. If two operators  and B do not commute, i.e. Â, B = 0,  B can be interpreted in two different ways, B-1  or  B-1 , that are not equivalent. In particular, 1 B may be calculated to be equal to

where we used || δ B B || < 1 and the relation 
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