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Abstract

The improvement of the urban sound environment requires a good understanding of
the acoustic propagation in urban areas. Available commercial softwares give the possi-
bility to simulate urban acoustic fields at relatively low computational costs. However,
these tools are mainly based on energy methods that do not contain information on the
phase. Therefore, these tools are unable to capture interference effects (e.g., resonances),
providing a limited physical description of the acoustic field. Conversely, classical wave
methods such as FEM, BEM or FDTD give the possibility to model interference effects,
but their use is often restricted to very low frequencies due to discretisation and the
huge extension of the propagation domain.

The main goal of this thesis is to develop efficient wave methods for the acoustic
propagation modelling in extended urban areas, both in the frequency and time domain.
The proposed approach is based on a coupled modal–finite elements formulation. The
key idea is to consider the urban canyon as an open waveguide with a modal basis com-
posed of leaky modes, i.e., modes that radiate part of their energy into the atmosphere
as they propagate. The approach combines a multimodal description of the acoustic
field in the longitudinal direction and a finite elements computation of the transverse
eigenmodes. This coupled approach, which has been successfully implemented at the
scale of a single street, is extended in the present manuscript at a larger scale (the
neighbourhood scale), in order to model problems arising in propagation domains con-
taining many interconnected streets. A time domain version of the method, containing
only the least damped mode, is also proposed.

Using these methods, we investigate wave phenomena arising in specific urban con-
figurations, as forbidden frequency bands in periodic networks of interconnected streets,
and resonances in inner yards. It is found that, despite the presence of significant radia-
tive losses in the propagation medium, strong interference effects are still observed. Not
only this result highlights the relevance of a wave approach to describe accurately urban
acoustic fields at low frequencies, but it suggest the potential use of these phenomena
to control the acoustic propagation in urban environments.

The last part of this dissertation presents a preliminary study on the use of meta-
surfaces (surfaces decorated with an array of resonators) to improve the performance



of noise barriers. It is shown that, exciting resonances in these structures, it is possible
to achieve some unconventional behaviours, including negative angles of reflection and
low frequency sound absorption.



Résumé

Afin de réduire le bruit dans les villes, il est nécessaire d’avoir une bonne com-
préhension de la propagation acoustique en milieu urbain. Il existe aujourd’hui des
logiciels commerciaux qui permettent de modéliser des champs acoustiques urbains à
des coûts de calcul raisonnables. Toutefois, ces outils sont basés principalement sur
des approches énergétiques qui ne contiennent pas d’informations sur la phase. Pour
cette raison, elles ne permettent pas la prise en compte d’effets d’interférence (par ex-
emple, des résonances), nous offrant ainsi une description physique limitée du champ
acoustique. Inversement, des méthodes ondulatoires classiques (FEM, BEM, FDTD)
permettent de prendre en compte ces effets. Or, en raison de la discrétisation et de la
grande extension du domaine de propagation, leur utilisation est généralement limitée
aux très basses fréquences.

L’objectif principal de cette thèse est de développer des méthodes ondulatoires per-
formants, dans le domaine fréquentiel et temporel, nous permettant de modéliser la
propagation acoustique dans des zones urbaines étendues. L’approche proposée est
basée sur une formulation mixte modale–éléments finis. L’idée clé de cette méthode est
de considérer la rue comme un guide d’ondes ouvert, dont la base modale est composée
de modes de fuite (modes qui rayonnent une partie de leur énergie en se propageant).
Cette approche combine une description multimodale du champ acoustique dans la
direction longitudinale et un calcul par éléments finis des modes propres transverses.
L’approche a été mise en œuvre précédemment à l’échelle d’une seule rue. Dans cette
thèse, nous nous intéressons à l’extension de la méthode à l’échelle du quartier, afin de
modéliser la propagation dans des milieux contenant un grand nombre de rues inter-
connectées. Une version simplifiée dans le domaine temporel, contenant uniquement le
mode de propagatif le moins fuyant, est également développée.

En nous basant sur ces approches, nous étudions des phénomènes ondulatoires qui
peuvent apparaître dans des configurations urbaines particulières. Plus précisément,
nous nous intéressons à l’interaction des modes de la rue avec des résonances dans une
cour intérieure adjacente, ainsi qu’à la formation de bandes de fréquences interdites
dans des réseaux périodiques de rues interconnectées. Le résultat principal de cette
étude est que, malgré la forte présence de pertes par radiation dans le milieu, des effets
de résonance importants peuvent encore se produire. Les résultats presentés dans ce
manuscrit mettent en évidence l’importance d’une approche ondulatoire pour décrire
correctement des champs acoustiques aux basses fréquences, et ils suggèrent l’usage
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potentiel de ces phénomènes afin de contrôler la propagation acoustique dans le milieu.

Enfin, nous présentons une étude sur l’utilisation de métasurfaces (surfaces con-
tenant un réseau de résonateurs) pour améliorer la performance des murs antibruit.
Nous démontrons que, grâce à l’excitation des résonances locales sur la métasurface,
il est possible d’obtenir des propriétés non conventionnelles, comme par exemple des
angles de réflexion négatifs ou de l’absorption acoustique aux basses fréquences.
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Introduction

General context and motivation

As a result of the growing concentration of population in urban areas, environmental
noise is nowadays recognized as a public health problem. Accordingly to the World
Health Organization, environmental noise in Western European cities generates the
loss of, at least, 1 million years of healthy life per year [89]. Face to this problem, public
authorities are taking actions since the last two decades with the aim of improving the
sound environment in cities. In France, the law 92-1444 of 31 December 1992 gives
a legal framework to the prevention and reduction of noise annoyance. At European
level, the European Commission adopted the Directive 2002/49/EC that foresees the
realisation of noise maps in the major Western European cities. Accordingly to this
Directive, cities with more than 250000 inhabitants had to provide their noise maps in
2006, and cities with more than 100000 inhabitants are expected to do the same during
2012.

In this context, urban acoustics plays an essential role, as it provides scientific sup-
port to define strategies against noise annoyance. Studies in urban acoustics are divided
in three main topics: (i) noise sources, mainly due to human activity (transportation
means or heavy machinery, among others); (ii) the propagation of acoustic waves in the
environment; and (iii) the perception of noise and its effects on health. The present
thesis falls within the second topic.

Extensive researches over the past two decades have given rise to a variety of compu-
tational methods for the acoustic propagation modelling in urban environments (see the
reference books [6, 50] for a detailed review). They can be classified into energy methods
and wave methods. Energy methods are based on the estimation of quadratic quantities,
i.e., acoustic power or acoustic intensity. Examples are the ray tracing method [11],
the image source method [20, 44, 53, 88], statistical approaches of particle transport
[68, 69] and the radiosity method [9, 48, 49]. Due to their relatively low computational
costs, these methods are the basis of the engineering tools that are commonly used to
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2 Introduction

predict urban acoustic fields. However, since in general, these methods do not take into
account the phase information, they are usually limited to high frequencies. On the
other hand, wave methods are based on the estimation of the pressure and the particle
velocity through the resolution of the fundamental equations of acoustics. Examples of
wave methods are the finite elements method (FEM), the boundary elements method
(BEM), the finite difference time domain method (FDTD) [1, 2, 34, 71, 82], the equiva-
lent sources approach [37, 39, 59], methods based on the parabolic equation [22, 52, 72],
the transmission line matrix method (TLM) [33], the Fourier pseudospectral time do-
main method (PSTD) [37], and the multimodal method [13, 14, 19, 66, 67]. Although
these methods are valid for any frequency range, their use is usually restricted to low
frequencies due to discretisation.

The main goal of this thesis is to develop efficient frequency and time domain meth-
ods for the acoustic propagation modelling in extended urban areas. The starting point
of this thesis is an earlier work by A. Pelat [65] in the Urban Acoustics research group
at Laboratoire d’Acoustique de l’Universié du Maine. In his work, Pelat demonstrated
the suitability of a multimodal approach to model the acoustic propagation in urban
canyons. This approach, widely used in the study of wave propagation in waveguides
[5, 28, 64, 76], consists in developing the acoustic field on the basis of eigenmodes of the
transverse waveguide section. The key point when implementing this technique in the
context of urban acoustics is to consider the street canyon as an open waveguide where
waves are partly guided between buildings and partly radiated into the atmosphere. In
such a waveguide, the modal basis is composed of leaky modes [42], complex modes that
radiate energy to the surrounding media as they propagate. Since an analytical calcu-
lation of these modes is very difficult (if not impossible) in the general case, a coupled
modal–finite elements method (hereafter called the modal–FE method) was proposed.

The modal–FE approach combines a multimodal description of the acoustic field in
the longitudinal direction and a FE computation of the transverse waveguide modes.
Solving the transverse problem numerically enables us to model complicated geome-
tries and boundary conditions. On the other hand, since only the transverse section
is meshed, the computational costs remain relatively low compared to full numerical
methods. These features were exploited in [65] to investigate problems at the scale of a
single street, including acoustic scattering by irregular facades, the presence of materials
with different acoustic impedance or the effect of varying meteorological conditions on
acoustic propagation. The present thesis focuses on extending this multimodal approach
at the neighbourhood scale, in order to investigate problems arising in propagation do-
mains containing many interconnected streets.

Overview of the document

This dissertation is organised in six chapters. Chapter 1 introduces the principles
of the modal–FE method using two different formulations. The first one is the initial
value problem formulation proposed by Pelat [65], in which the source is modelled as
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known pressure field at the input cross-section of the street canyon. The second one is
a Green’s function formulation, in which the source is modelled as a point source. The
method is illustrated with several examples showing the acoustic propagation in street
canyons containing different types of right–angled intersections.

Chapter 2 investigates the interaction of leaky modes propagating on the street with
resonances in an adjacent courtyard. Chapter 4 presents a study of sound propagation
in regular urban areas, regarded as a periodic lattice of interconnected streets. The aim
of this Chapter is to investigate the formation of forbidden frequency bands in the urban
environment, paying a particular attention to the interplay between multiple scattering
and radiative losses, which are a distinctive feature of urban areas. Prior to this study,
Chapter 3 introduces the basic concepts of wave propagation in periodic media using
the classical multimodal method.

The results presented in Chapters 2 and 4 are confronted to a set of experiments per-
formed on a scale model of urban area. The experimental results are in good agreement
with the numerical predictions, which allows us to validate the proposed approach.

Chapter 5 presents a simplified time domain model of the acoustic propagation in
networks of interconnected streets. The method is based on a previous characterisa-
tion in the frequency domain of all the elements forming the urban area (streets and
intersections), which is performed using the modal–FE method. The data resulting
from this characterisation is traduced to the time domain using Fourier analysis, and
an algorithm is developed to compute the multiple wave scattering in the network.

Finally, Chapter 6 presents a study on the use of metasurfaces to improve the per-
formance of noise barriers. We demonstrate the possibility to achieve unconventional
by behaviour exploiting local resonances in these structures, such as negative angles of
reflection and low frequency sound absorption.





Chapter 1

The modal–FE method

This Chapter introduces the modal–FE method. For clarity, the method is first
presented in the case two-dimensional (2D) geometries in Sec. 1.1. Two formulations
are proposed: an initial value problem formulation, in which the source is modelled as a
pressure field imposed on the input cross–section; and a Green’s function formulation,
in which the source is modelled as a point source. The extension of the method to three-
dimensional (3D) geometries is presented in Sec. 1.2, together with several exemples of
acoustic fields in different types of right-angled intersections. Finally, Sec. 1.3 gives a
summary of the main features of the method.

1.1 Formulation of the modal–FE method in 2D

1.1.1 Governing equations

Throughout this manuscript, we considered the propagation of linear acoustic waves
in a non-dissipative inviscid fluid (air). Under these assumptions, the pressure p and
the particle velocity ~v satisfy the Euler equation,

ρ0
∂~v

∂t
+ ~∇p = 0, (1.1)

and the mass conservation law,

1

ρ0c20

∂p

∂t
+ ~∇ · ~v = 0, (1.2)

5



6 1 The modal–FE method

where ρ0 is the mass density and c0 is the sound speed in air. Combining equations
(1.1) and (1.2) leads to the acoustic wave equation,

(

∆− 1

c20

∂2

∂2t

)

p = 0, (1.3)

which, assuming the time convention exp(−ωt), turns into the Helmholtz equation in
the harmonic regime,

(
∆+ k2

)
p = 0, (1.4)

with k = ω/c0 the wavenumber in free space and ω the angular frequency.

1.1.2 From open geometries to closed waveguides

Consider the geometry in Fig. 1.1a, consisting of a grounded half–space with a per-
fectly reflecting boundary along z = −h. The acoustic field in this domain is the solution
of the following problem,

(
∂2

∂x2
+

∂2

∂z2
+ k2

)

p(x, z) = 0; ∀x, ∀z > −h, (1.5)

∂

∂z
p(x, z) = 0; ∀x, z = −h. (1.6)

������ ��������

hPML

0

−h

b)

≡
−h

z

a)

x

z

xPML

τ = 1

τ = τ00

PML

zn

ψn

zNz1
0 hPML−h

z

c)

Figure 1.1: a) Grounded half-space, delimited by a rigid boundary at z = −h. b) Equiv-
alent waveguide equivalent to the grounded half–space. c) FEM mesh of the transverse
coordinate.



1.1 Formulation of the modal–FE method in 2D 7

The original open geometry shown in Fig. 1.1a is replaced with an equivalent closed
waveguide represented in Fig. 1.1b. We accomplish this introducing a perfectly matched
layer (PML) in the upper part, which takes into account the radiation in the vertical
direction (see Appendix 1.A). The PML is characterised by the absorbing parameter
τ(z). This parameter is chosen as a piecewise constant function of z, defined as

τ(z) =

{
1, if z 6 0,
τ0, if z > 0,

(1.7)

with τ0 = A exp(β), and A and β real numbers fulfilling Aβ > 0. The problem to solve
in this equivalent waveguide is

(
∂2

∂x2
+

1

τ

∂

∂z

(
1

τ

∂

∂z

)

+ k2
)

p(x, z) = 0; ∀x, ∀z ∈ [−h, hPML], (1.8)

∂

∂z
p(x, z) = 0; ∀x, z = −h, hPML. (1.9)

Notice that the solution to Eqs. (1.8) and (1.9) in the physical domain, z 6 0, is identical
to that in the original problem [Eqs. (1.5) and (1.6)].

Since the coordinate system is orthogonal and the geometry and boundary conditions
are constant along the propagation direction x, the general solution to Eqs. (1.8) and
(1.9) is separable, and can be written in the form of a modal expansion,

p(x, z) =
∑

i

φi(z)
(
Aie

kx,ix +Bie
−kx,ix

)
, (1.10)

with i an integer, kx,i the longitudinal wavenumbers, fulfilling the dispersion relation
kx,i =

√

k2 − α2
i , αi the transverse wavenumbers, and φi(z) the transverse eigenfunc-

tions. The couples (φi, α2
i ) are the transverse eigenmodes of the guide, which elementary

solutions of the transverse eigenproblem,
(
1

τ

∂

∂z

(
1

τ

∂

∂z

)

+ α2

)

φ(z) = 0; ∀z ∈ [−h, hPML], (1.11)

∂

∂z
φ(z) = 0; z = −h, hPML. (1.12)

The transverse eigenproblem is solved numerically using the FE method. The coordinate
z is discretised on a N–nodes (see Fig. 1.1c) and φ(z) is developed on the basis of
interpolating functions ψn(z),

φ(z) =

N∑

n=1

Φnψn(z) =
t ~ψ(z)~Φ, (1.13)

The discrete form of the problem (1.11)-(1.12) takes the form

(
K− α2

M
)
~Φ = ~0, (1.14)
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or, equivalently,
M

−1
K~Φ = α2~Φ, (1.15)

where M is the mass matrix and K the stiffness matrix, which are respectively given
by

Mmn =

∫ hPML

−h

ψmψndz, (1.16)

and

Kmn =

∫ 0

−h

∂ψm

∂z

∂ψn

∂z
dz +

∫ hPML

0

1

τ20

∂ψm

∂z

∂ψn

∂z
dz. (1.17)

The numerical eigenmodes of the transverse section of the guide are given as the
eigenvectors ~Φn and eigenvalues α2

n, n = 1, 2, · · · , N of the matrix M
−1

K.

Now it is necessary to introduce the numerical eigenmodes in the formulation along
the x–direction. We accomplish this developing the field p(x, z) on the basis {ψn}:

p(x, z) =

N∑

n=1

Pn(x)ψn(z) =
t ~ψ ~P (x). (1.18)

Hence, the problem defined in Eqs. (1.8)–(1.9) turns into the following discrete form,

~P ′′(x) + (k2I−M
−1

K)~P (x) = ~0, (1.19)

where the symbol ′′ denotes the second derivative with respect to x, I is the identity
matrix and the element Pn(x) of vector ~P (x) is the pressure at the n–th mesh node, at
coordinate x: Pn(x) = p(x, zn). The general solution of Eq. (1.19) can be expressed as
a function of the transverse eigenmodes (Φn, αn) as

~P (x) = Φ

(

D(x) ~A+D(L− x) ~B
)

, (1.20)

Note that equation (1.20) is the discrete form of Eq. (1.10), with Φ the eigenvec-
tors matrix (Φ = [~Φ1, ~Φ2, · · · , ~ΦN ]) and D(x) a diagonal matrix such that Dnn(x) =

exp(kx,nx), kx,n = (k2 − α2
n)

1
2 . The unknown modal amplitudes of forward and back-

ward modes, respectively ~A and ~B, are obtained from the conditions at the waveguide
extremities. The input condition at x = 0 (see Fig. 1.2) is defined as a known pressure
field ~P (0). The output condition at x = L is given as a generalised admittance matrix
YL, fulfilling ~U(L) = YL

~P (L), where ~U(x) contains the components of ∂xp on the basis
{ψn},

~U(x) = ΦΓ

(

D(x) ~A−D(L− x) ~B
)

. (1.21)

with Γnn = kx,n a diagonal matrix. From the pressure ~P (x) and its x–derivative ~U(x)
at the extremities of the guide:

~P (0) = Φ

(

~A+D(L) ~B
)

, (1.22)
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~P0 YL

~B

~A

PML

z

x

x = Lx = 0

Figure 1.2: Geometry of the initial value problem formulation.

~U(0) = ΦΓ

(

~A−D(L) ~B
)

, (1.23)

~P (L) = Φ

(

D(L) ~A+ ~B
)

, (1.24)

~U(L) = ΦΓ

(

D(L) ~A− ~B
)

, (1.25)

and combining Eqs. (1.22)–(1.25) we can obtain the unknown amplitude coefficients as

~A = [Φ (I+D(L)TD(L))]
−1 ~P (0), (1.26)

~B = TD(L) ~A, (1.27)

with T = (YLΦ+ΦΓ)
−1

(ΦΓ−YLΦ). Additionally, it is possible to find the rela-
tionship between the input admittance matrix Y0 and the output admittance matrix
YL,

Y0 = ΓΦ (I−D(L)TD(L)) (I+D(L)TD(L))
−1
. (1.28)

1.1.3 Green’s function formulation

Consider now a point source situated at (0, zs) ( symbol "+" in Fig. 1.3). In this
case, the acoustic field is the solution to the Green’s problem

(
∂2

∂x2
+

1

τ

∂

∂z

(
1

τ

∂

∂z

)

+ k2
)

g(x, z) = −δ(x)δ(z − zs), (1.29)
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x

PML

z

x = La x = 0

(0, zs)~C

~B

x = Lb

YLa YLb

~C

~A

g+g−
S

Figure 1.3: Geometry of the Green’s function formulation.

with (xs, zs) the position of the point source and δ the Dirac delta function. The Green’s
function g(x, z) verifying the properties of continuity and derivative jump,

g+(0, z)− g−(0, z) = 0, (1.30)

∂xg
+(0, z)− ∂xg

−(0, z) = −δ(z − zs). (1.31)

In Eqs. (1.30) and (1.31), the values of g at x < 0 and x > 0 (see Fig. 1.3) are called,
respectively, g− and g+. As in the initial value problem case, the solution is developed
on the basis of interpolating functions {ψn}:

g−(x, z) =
N∑

n=1

G−

n (x)ψn(z) =
t ~ψ ~G−, (1.32)

g+(x, z) =

N∑

n=1

G+
n (x)ψn(z) =

t ~ψ ~G+, (1.33)

and the general form of the solution can be expressed as

~G−(x) = Φ

(

D(x− La) ~A+D(Lb − x) ~B +D(−x) ~C
)

, (1.34)

~G+(x) = Φ

(

D(x− La) ~A+D(Lb − x) ~B +D(x) ~C
)

. (1.35)

In previous Eqs. (1.34) and (1.35), terms D(x) ~C and D(−x) ~C take into account the
contribution of the direct field radiated by the point source, propagating away from the
source in the direction of increasing and decreasing x, respectively. Terms D(x−La) ~A

and D(Lb − x) ~B represent the contribution of modes reflected at the extremities of the
guide, having their phase origin at x = La and x = Lb, respectively.

Multiplying Eq. (1.31) by ψn and integrating over the section S, we obtain [given
Eqs. (1.34) and (1.35)]
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MΦΓ

(

~C + ~C
)

= −~ψ(zs), (1.36)

which leads to the expression for the coefficients ~C,

~C = −1

2
(MΦΓ)−1 ~ψ(zs). (1.37)

The remaining coefficients ~A and ~B are obtained from the output admittance matrices
YLa and YLb x = La and x = Lb,

~A = TaD(La) ~C, (1.38)

~B = TbD(Lb) ~C, (1.39)

with Ta = (YLaΦ+ΦΓ)
−1

(ΦΓ−YLaΦ) and Tb = (YLbΦ+ΦΓ)
−1

(ΦΓ−YLbΦ).

Validation in the case of an infinitely long waveguide

In the case of an infinitely long waveguide in the x–direction, the output admittance
conditions YLa and YLb are defined as the characteristic admittance matrix of the
guide, i.e., the matrix that vanishes the amplitude of the the modes reflected at the
extremities ( ~A = ~B = 0). From Eqs. (1.38) and (1.39), it follows YLa = YLb = ΦΓΦ

−1.
The solution of (1.29) is then given by

~G−(x) = ΦD(−x) ~C, (1.40)
~G+(x) = ΦD(x) ~C. (1.41)

On the other hand, the analytical Green’s function g0 of an infinite half–space is

g0(x, z) =


4

(
H1

0 (k|~r − ~rs|) +H1
0 (k|~r − ~r′s|)

)
(1.42)

with,H1
0 the zero–th order Hankel function of the first kind, |~r−~rs| =

√

(x− xs)2 + (z − zs)2

the source–receptor distance and |~r−~r′s| =
√

(x− xs)2 + (z − z′s)
2 the "image source"–

receptor distance.

Fig. 1.4a shows the real part of the analytical solution and Fig. 1.4b shows the real
part of the modal–FE method solution. The computational parameters are shown in
the Tab. 1.2. We observe very good agreement between both solutions. In order to
evaluate quantitatively the accuracy of the modal–FE solution, we calculate the relative
error ε as

ε =

(∫

D
‖gmodal−FE − g0‖2 dz
∫

D
‖g0‖2 dz

)1/2

, (1.43)
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Figure 1.4: Validation of the Green’s function formulation. (a) Real part of the ana-
lytical solution g0. (b) Real part of the modal–FE solution. (c) Relative error ε versus
the number of elements per wavelength.

with D the physical domain, z 6 0. Fig. (1.4)c shows ε as a function of the number of
nodes per wavelength. We observe that the error converges to zero as the number of
elements increases.

Geometry Source Transverse problem PML
h La/h Lb/h (xs, zs)/h λ/h number of elements/λ hPML A β

1 −0.5 2.5 (0,−0.9) 0.21 4− 21 λ
√
2 π/4

Table 1.1: Parameters for the validation of the Green’s function formulation.
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1.1.4 Study of discontinuities: the admittance matrix method

We consider now the propagation in a waveguide with sudden changes in the cross-
section, as shown the Fig. 1.5. The side opening are substituted with PML, in order
to obtaining an equivalent closed waveguide with piecewise constant cross–section. The
transverse eigenmodes of each cross-section are computed by FE and the field in each
straight segment takes the form of Eq. (1.20).

We use the impedance matrix method [64, 76] to find the relationship between the
modal expansions of each straight segment. At the discontinuities, the field must fulfil
the continuity equations for the pressure and its normal derivative,







p(u) = p(d) on S(u) ∩ S(d),
∂xp

(u) = ∂xp
(d) on S(u) ∩ S(d),

∂xp
(u) or (d) = 0 on S(u) \ S(d),

(1.44)

where superscripts (u) and (d) indicate quantities upstream and downstream from the
discontinuity (see Fig. 1.6). Developing Eqs. (1.44) on the basis {ψn} leads to the match-
ing relationships for pressure and admittance. For the sudden expansion, Fig. 1.6.a, the
continuity equations are

~P (d) =
(

Y
(d)
)−1

FY
(u) ~P (u), (1.45)

Y
(u) =

[

F

(

Y
(d)
)−1

t
F

]−1

, (1.46)

while for the sudden narrowing, Fig. 1.6.b, these equations are given by

~P (d) = F~P (u), (1.47)

Y
(u) = FY

(d)t
F. (1.48)

where F is called the matching matrix and t
F is its transposed. When identical meshes

and identical interpolating functions are generated on both sides of the discontinuity,

PML

PML

PML

PML PML

PML

∞

∞

∞

∞

∞∞

≡

Figure 1.5: Modelling of right angled intersections as piecewise constant waveguides.
The side openings towards the adjacent street are substituted with PML.
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p(d)p(u) p(u) p(d)

Y
(u)

Y
(d)

Y
(u)

Y
(d)

PML

a) b)

∂xp
(u) ∂xp

(d)

PML

∂xp
(u) ∂xp

(d)

S(u) S(u) S(d)S(d)

Figure 1.6: Possible types of discontinuities: a) suden Expansion and b) suden nar-
rowing.

the matching matrix is simply defined by [65]

Fmn =

{

1, if z(d)m = z
(u)
n

0, otherwise.
(1.49)

Then, given the admittance matrix at the output segment, the admittance can be
computed, step by step, from the output to the input waveguide section using alterna-
tively Eq. (1.28), in the straight segments and Eq. (1.46) or (1.48) at the discontinu-
ities. Finally, from the source condition at the input segment, the field can be computed
within the domain using Eqs. (1.20)–(1.27) in straight segments and Eq. (1.45) or (1.47)
at the discontinuities. In the Green’s function formulation is used, the field in the first
segment is computed as indicated in Sec. 1.1.3.

1.1.5 Examples in 2D

Consider the case of a L–intersection between two perpendicular streets illustrated
the Fig. 1.7. In the following, lengths are nondimensionalised using h as the charac-
teristic length. We also define the reduced wavenumber ka = kh/2π. The geometrical
parameters are L1/h = 5/3 and L2 = 1. The pressure is calculated using the initial
value formulation, with a source condition ~P (0) in the form of a gaussian beam, given
by the expression

Geometry Source Transverse problem PML
h La/h Lb/h (xs, zs)/h λ/h number of elements/λ hPML A β

1 −0.5 2.5 (0,−0.9) 0.21 4− 21 λ
√
2 π/4

Table 1.2: Parameters for the validation of the Green’s function formulation. Geo-
metrical parameters
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h

L1 L2

x0

YL
~P0

z

Figure 1.7: Geometry of the L–intersection.

P0n = e−
(zn−zs)2

2σ2 , (1.50)

where zs = −h/2 is the central point and σ = 0.4 the standard deviation, that deter-
mines the width of the beam. The rigid wall imposed an output admittance YL = [0].
The maximum mesh size mms is fixed to mms = λ/30, which generates 61 nodes in
the first section and 91 nodes in the second section. The inner boundary of the PML
is placed at z = 0, with parameters hPML = λ,A = 2 and β = π/5. The resulting
acoustic field is shown in Fig. 1.8a. The result is compared to a full–FE simulation
performed with the Matlab PDE Toolbox (Fig. 1.8b). The mesh size and the PML are
the same in both cases, but in the full-FE computation the PML is placed at z = 1.
Since the PML creates an anechoic termination, the result should be independent on
the PML position. Therefore, both results should be identical in the region z < 0. To
corroborate this, Fig. 1.8d superposes both solutions at z = −0.9. We observe a very
good agreement between with the full-FE simulation.

If desired, it is possible to compute the acoustic field on the side street along the
z–direction. For this, we expand the input pressure p(x, z = 0) on the basis of the
horizontal modes φm(x) transverse section of the side street,

φm(x) =

√

2− δm0

L2
cos

(
mπ

L2
(x− L1)

)

, (1.51)

with m ∈ N. The pressure in the side street reads

p(x, z > 0) =

∞∑

m=0

Amφm(x)ekz,mz, (1.52)

with kz,m =
√

k2 − (mπ/L2)2 and Am the coefficients of the modal expansion,

Am =

∫ L1+L2

L1

p(x, z = 0)φm(x)dx. (1.53)



16 1 The modal–FE method

The result shown in the Fig. 1.8c is the same as that in Fig. 1.8b, except that the field
along the adjacent street has been computed using Eq. (1.52). For this computation,
the series (1.52) was truncated to 30 modes, from which 4 modes are propagative. A
comparison with the reference solution at z = 0.5 (dashed arrows in Figs. 1.8b and 1.8c)
is shown in Fig. 1.8d. The agreement with the full-FE computation is excellent.

Three extra examples using the Green’s function formulation are shown in the
Figs. 1.9a–c. The frequency of the point source is ka = kh/2π = 4.8. The output
condition is YL = [0] Fig. 1.9a and YL = ΦΓΦ

−1 Fig. 1.9a and Fig. 1.9b. The max-
imum mesh size was fixed to mms = λ/21. Notice that the continuity of the pressure
field at the discontinuities is fulfilled perfectly.

p
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Figure 1.8: Modulus of the pressure in the L–shaped intersection. a) modal–FE result.
b) Full FEM result. c) modal–FE result computing the field in the adjacent street with
Eq (1.52) d) Pressure fields at z = −0.9. e) Pressure fields at z = 0.5.
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Figure 1.9: Real part of the pressure field in a),b) a T–shaped intersection and c) a
cross intersection. The source position is indicated the symbols "+".
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b)a) PML

x = L

z
x

y

z
x

yx = 0

~B

~A

Figure 1.10: a) Geometry of the street canyon. b) Waveguide equivalent to the street
canyon.

1.2 Extension to 3D geometries

1.2.1 The uniform street canyon

Consider the urban canyon with uniform cross–section illustrated in Fig. 1.10a. As
in the 2D geometry, PML’s are inserted to transform the original open domain into an
equivalent closed waveguide, see Fig. 1.10b. The PML is defined in this case by two
coefficients: τy for waves traveling in the y–direction, and τz for waves traveling in the
z–direction. These parameters are defined as piecewise constant functions of the space
coordinates (see Fig. 1.11). They are defined as,

τy(y) =

{
τ0, in lateral PML,
1, otherwise,

(1.54)

and

τz(z) =

{
τ0, in the top PML,
1, otherwise.

(1.55)

The problem to solve in the equivalent waveguide is
(
∂2

∂x2
+

1

τy

∂

∂y

(
1

τy

∂

∂y

)

+
1

τz

∂

∂z

(
1

τz

∂

∂z

)

+ k2
)

p(x, y, z) = 0, (1.56)

The domain is meshed in the transverse coordinates (y, z) using the FE method1 (see
Fig. 1.11b), and the field p(x, y, z) is developed on the basis of interpolating functions

1In this case, the computation of the transverse problem is performed with the Matlab PDE Toolbox,

using a Delunay triangular mesh with first order Legendre polynomials.
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ψn(y, z),

p(x, y, z) =

N∑

n

Px(x)ψn(y, z) =
t ~ψ ~P (x) (1.57)

with Pn(x) = p(x, yn, zn). Therefore, the problem (1.56) takes the discrete form

~P ′′(x) + (k2I−M
−1

K)~P (x) = ~0,

where the mass matrix M and the stiffness matrix K are given by

Mmn =

∫

Ω

ψmψndydz, (1.58)

with Ω = Ωp ∪ Ωy ∪ Ωz ∪ Ωy,z the whole cross-section (see Fig. 1.11), and

Kmn =

∫

Ωp

∂ψm

∂y

∂ψn

∂y
+
∂ψm

∂z

∂ψn

∂z
dydz +

∫

Ωy

1

τ20

∂ψm

∂y

∂ψn

∂y
+
∂ψm

∂z

∂ψn

∂z
dydz+

∫

Ωz

∂ψm

∂y

∂ψn

∂y
+

1

τ20

∂ψm

∂z

∂ψn

∂z
dydz +

∫

Ωy,z

1

τ20

∂ψm

∂y

∂ψn

∂y
+

1

τ20

∂ψm

∂z

∂ψn

∂z
dydz.

(1.59)

The solution takes the same form as in the 2D case [Eq. (1.20)], with ~Φn the eigenvectors
and α2

n the eigenvalues of the matrix M
−1

K.

Ωy,z Ωy,z

τy = τz = τ0

Ωy Ωy

Ωz

τy = τz = τ0

τy = τ0
τz = 1

τy = τ0
τz = 1

τy = 1

τz = τ0

τy = τz = 1

Ωp z

y

Figure 1.11: Definition of the PML inserted in transverse section of the street canyon.

1.2.2 Modelling of right–angled intersections

We illustrate the modal–FE method in 3D considering two configurations usually
found in urban areas. The first one represents a street canyon with several perpendicular
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intersecting streets, 1.12. The second one is a Π–intersection, consisting of two parallel
streets intersected by a perpendicular one, 1.13.

Figs. 1.14 and 1.15 show the real part of the pressure field obtained with the Green’s
function formulation. The point source position is indicated with symbols "+". The
output condition is the characteristic admittance YL = ΦΓΦ

−1. The computation
parameters are given in Tabs. 1.3 and 1.4. The figures show horizontal planes of the
acoustic field at different heights. Notice the wave guiding within the buildings and the
radiation into the atmosphere.
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Figure 1.12: Equivalent closed waveguide representing a street canyon with several
right–angled intersections. Figures on the right show the meshes of the four different
cross–sections, denoted by S(1), S(2), S(3) and S(4).
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Figure 1.13: Equivalent closed waveguide representing a Π-intersection. Figures on
the right show the meshes of the three different cross–sections, denoted by S(1), S(2) and
S(3).
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Right–angled intersections
Geometry Frequency Meshes PML
l h/l kl/2π S(1) S(2) S(3) S(4) depth A β

1 1.5 1.6 2403 3507 3513 4617 λ
√
2 π/4

Table 1.3: Computation parameters for the field shown in Fig. 1.14
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Figure 1.14: Real part of the pressure in a street with several right angled intersections.
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Π-intersection
Geometry Frequency Number of nodes PML

l1
l2
l1

la
l1

h
l1

L1

l1
L2

l1
k × l1/2π S(1) S(2) S(3) width A β

1 1 1 1 3.5 1.25 2.94 5103 3172 7361 λ
√
2 π/4

Table 1.4: Computation parameters for the field shown in Fig. 1.15. Distances are
normalised to l1
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Figure 1.15: Real part of the pressure trough the Π–shaped intersection
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1.3 Summary

This chapter has introduced the modal–FE method and its application to the mod-
eling of different kinds of right–angled intersections. Two formulations have been pro-
posed: an initial value formulation, where the source takes the form of a known pressure
field at the input waveguide section; and a Green’s function formulation, enabling us to
model point sources within the domain. The implementation of the method is divided
in three main steps:

• The original, open geometry is substituted with an equivalent, closed waveguide.

• The transverse eigenmodes of the resulting waveguide are computed with FE and
the general solution in each straight segment is expressed as a function of these
eigenmodes [Eq. (1.20)].

• The modal amplitudes are calculated from the conditions at the waveguide ex-
tremities using the impedance matrix method (Sec. 1.1.4).

The modal–FE method can be implemented in any geometry convertible into a
piecewise constant waveguide, regardless of the geometry and boundary conditions.
Moreover, this approach provides information on the propagation and coupling of the
different modes in the medium. This property is very useful in order to gain a fundamen-
tal understanding of the studied problems. In addition, since only the transverse section
is meshed, the computational costs remain low compared to full–numerical methods.
We will take advantage of these features to investigate wave propagation phenomena in
the following Chapters.
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Appendix 1.A. Perfectly matched layers

A PML is an artificial absorbing layer used in numerical simulations to truncate
an infinite propagation medium [8]. The feature that distinguish this layer from other
absorbing boundary conditions is that waves incident upon the interface, coming from
the physical domain, does not generate spurious reflections.

Consider a 1D Helmholtz problem defined in the spatial coordinate y,

∂2p

∂2y
+ k2p = 0. (1.60)

The region of interest is y 6 0, therefore a PML is introduced to truncate the domain,
as shown in the Fig. 1.16a. The PML is defined by a complex coordinate stretching of
the spatial coordinate y,

y → ỹ =

∫ y

0

τ(y′)dy′, (1.61)

where τ is a complex function such that

τ =

{
1, in the physical domain
τ0, in the PML ,

(1.62)

where τ0 verifies Re{τ0} × Im{τ0} > 0. In this work τ0 is chosen as constant in the
PML region. Therefeore, equation (1.60) becomes

∂2p̃

∂2ỹ
+ k2p̃ = 0 (1.63)

Then, given the coordinate stretching defined by Eq. 1.61, the operator ∂
∂ỹ

can be

substituted by 1
τ

∂
∂y

, and the equation to solve becomes

(
1

τ

∂

∂y

(
1

τ

∂

∂y

)

+ k2
)

p = 0. (1.64)

In the physical domain, the solution to this equation for a wave propagating towards
increasing y is p(y 6 0) = A exp(ky), which corresponds to the solution of the original
problem. In the PML domain, the solution is p(y > 0) = A exp(kỹ), which, given the
imaginary part of ỹ, corresponds to a wave with exponentially decreasing amplitude.
On the other hand, since both solutions verifies the matching conditions p(0−) = p(0+)
and ∂yp(0

−) = ∂yp(0
+), the incident wave is completely transmitted at the interface

and absorbed in the PML region.

Theoretically, the thickness of the PML and its absorption can be chosen arbitrarily
to vanish completely the incident field. In practice, due to discretisation, the continuity
at the interface is not fulfilled exactly, which creates spurious reflections. This drawback
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is minimised using a mesh sufficiently fine to describe correctly the exponential decay
inside the PML. In this work, we found a satisfactory absorption meshing the PML
with ten elements and imposing a PML thickness equal to one wavelength.

y

PML

y = 0

a) b)

PML

R
e{
ex
p
(
k
ỹ
)}

-1

0

1

y=0

Figure 1.16: a) y–coordinate truncated by a PML at y = 0. b) The field in the PML
is damped exponentially.





Chapter 2

Resonance phenomena in urban

courtyards

Courtyards are frequently found in the city centers of many French and European
cities (Fig. 2.1 shows some examples). From an acoustical point of view, these enclosed
spaces can be regarded as open cavities, which resonances can be excited by waves
generated in the urban environment. The goal of this Chapter is to investigate resonance
phenomena in these configurations.

This Chapter is based on an articile to be submitted to the Journal of the Acoustical
Society of America [57].

10m 20m20m

c©2012 Google, Tele Atlas c©2012 GeoEye, Google c©2012 AeroWest

Figure 2.1: Typical courtyards considered in this Chapter. Images from left to right
correspond to Boteros Street in Seville, Spain; Victor Bonhommet Street in Le Mans,
France; and Novalis Street in Berlin, Germany.
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2.1 Introduction

Quiet urban areas are often identified as areas that are not directly exposed to traffic
noise, as the inner yards found in the city centers [61]. However, studies have shown
that inner yards can present considerably high noise levels [40]. This unexpected high
levels of noise are partly generated by interior sources, but also by traffic noise reaching
the courtyard, either above buildings or through façade openings.

Over the last years, authors have studied this problem in several ways. Frequently,
the problem is simplified by a two-dimensional (2D) geometry, representing the trans-
verse cross-section of two parallel canyons. [38, 40, 60, 83, 84] In such geometry, the
source is placed in one of the canyons and the courtyard is represented by the other
canyon. Authors have investigated in detail the influence of several parameters in noise
shielding, as the roof shape, height-width ratio of the canyon, nature of façade sur-
faces [86], noise screens, source type or weather conditions. More recently, Hornikx and
Forssén [41] investigated the sound propagation in 3D urban courtyards. Apart from
the parameters mentioned above, this authors evaluated the effect of a façade opening,
representing the entrance that connects the courtyard to the adjacent canyon. It was
shown that the noise level inside the courtyard can be increased up to 10 dB(A) in
the frequency band up to 500 Hz with respect to a courtyard without façade openings.
Moreover, this work pointed out that a 3D model is necessary to predict correctly the
sound level inside the courtyard; differences up to 4.4 dB(A) were found in the noise
abatement estimation with respect to similar 2D configurations.

An additional factor that might increase the sound level inside the courtyard is the
excitation of its acoustic resonances, particularly at low frequency. Such low frequency
waves can be practically measured in urban environments as being produced by either
heavy industrial machineries, intense impulse noise, or, for a part, the traffic noise
[15, 62] and they may propagate on long distances, compared with higher frequency
waves.

This work aims at investigating resonance phenomena in inner yards, both exper-
imentally, using a scale model, and numerically, with the modal–FE method. From a
fundamental point of view, the problem is that of a waveguide (the street) connected
to a side resonator (the courtyard). This setup has been studied extensively in the
literature, due to the intriguing physical phenomena that it exhibits. Fano resonances
[35], localized modes [35, 81], negative bulk modulus [25] or nonlinear bandgap behavior
[73] have been reported in waveguides connected to side resonators. The present work
focuses on a distinctive characteristic of the 3D urban environment: the wave radiation
above buildings, which enables the interaction between the waveguide and the resonator
even when no direct connections exists between them. The scope of the present study is
limited to the study of two practical aspects regarding urban acoustics applications, the
amplification of the sound level inside the courtyard, and the attenuation of the acoustic
field transmitted on the street due to the excitation of the courtyard resonances.
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Figure 2.2: a) Geometry of the problem. b) Geometrical configurations. Config. A,
centered entrance; Config. B, decentered entrance and Config. C, closed entrance.

2.2 Geometry of the problem

Consider a courtyard adjacent to a urban canyon, as shown in Fig. 2.2(a). The
courtyard is represented by the cavity with dimensions (lc×wc×h). The street canyon
has a rectangular cross–section S = (ws × h) and it is considered as infinitely long in
the x−direction. The courtyard and the street canyon are connected with the entrance
defined by the small volume (le × we × he). The source is placed in the street at the
distance ls from the courtyard in the x–direction. The geometrical parameters are given
in Table. 6.1.

The three geometrical configurations investigated are illustrated in Fig. 2.2(b). Con-
figurations A and B correspond to a courtyard with centered entrance and decentered
entrance, respectively. The comparison between Configs. A and B allows us to study the
influence of the entrance position in the resonance phenomena. Config. C corresponds
to a courtyard with closed entrance. The interest of Config. C is twofold. First, the
comparison of Config. C with Configs. A and B allows us to evaluate the impact of the
façade opening in the resonance phenomena. Secondly, it is relevant to investigate the
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street canyon courtyard entrance

parameter ls ws h lc wc le we he
full scale (meters) 45 9 12 15 6 3 3 3

1:30 scale model (meters) 1.5 0.3 0.4 0.5 0.2 0.1 0.1 0.1

Table 2.1: Geometrical parameters.

behaviour of this geometry since the only possible interaction with the street is due to
waves radiated above the roof level.

2.3 Experimental setup

The experimental setup consists on a 1:30 scale model, as shown in Fig. 2.3.a. Exper-
iments are carried out in a semi-anechoic room with walls coated by a melamine foam
that effective from 1 kHz onwards. The ground is made of a plexiglass plate. Buildings
are made of plexiglass blocks with dimensions (0.5× 0.3× 0.4) m. The entrance to the
courtyard is built with 5 cm side varnished wooden cubes. An anechoic termination
made of melamine dihedrals in inserted at the output to simulate the infinite extension
of the canyon in the x−direction.

The sound source consists on a loudspeaker enclosed in a rigid box, connected to
the canyon by a flanged rectangular duct with cross-section Ss = (5× 5) cm, as shown
in Fig. 2.3.b. The transverse field inside the duct should be assumed as constant up to
3.4 kHz, the cutoff frequency of the first mode of the cross-section Ss. In this work the
frequency band is limited to 3 kHz, that corresponds to 100 Hz at full scale.

The acoustic pressure is measured using 1/4 in. microphones (B&K 4190), connected
to a preamplifier (B&K 2669) and a conditioning amplifier (B&K Nexus 2669). For the
measurements of insertion losses and transfer functions shown before in Sec. 2.5, the
microphone is placed manually and the acquisition is performed using a SRS analyser
model SR785. For the wave field maps, the microphone position is controlled by a 3D
robotic system. The spatial step is fixed to 20 points per wavelength. The acquisition
of the acoustic pressure is performed using an eInstrument-PC acquisition system from
Innovative Integration. The sampling frequency is fe = 20f (20 samples per period)
during a time length Te = Ne/fe, where Ne = 2000 (100 periods) is the number of
samples. The RMS value of acoustic pressure is estimated by a least mean square
method to determine the mean value, the amplitude and the phase of the signal.
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b)

buildings

buildings

courtyard

loudspeaker

a)

c)

(3)

(4)

(5)

Ss
anechoic
termination

(2)
(1)

Ss

Figure 2.3: a) Schematics of the experimental setup. b) The acoustic source is a
loudspeaker enclosed in a rigid box, which is connected to the canyon through a flanged
rectangular duct with cross-section Ss = (5×5) cm. c) (1) Ground made of a plexiglass
plate (2) Buildings made of 50cm × 30cm × 40cm plexiglass blocks. (3) Entrance to
the courtyard, built up using 5 cm side wooden cubes. (4) Anechoic termination. (5)
Microphones

2.4 Numerical model

The acoustic field in the equivalent waveguide represented in Fig. 2.4a is the solution
to the following problem:







[
∂2

∂x2
+

1

τ

(
∂

∂y

)
1

τy

(
∂

∂y

)

+
1

τz

(
∂

∂z

)
1

τz

(
∂

∂z

)

+ k2
]

p = 0, in Ω

∂np = 0, on ∂Ω

(2.1)

where Ω is the domain and ∂Ω its boundaries. The PML parameters τy and τz have been
defined in Sec. 1.2. The problem is meshed in the transverse coordinates y and z and
the eigenmodes of each transverse cross-section are calculated using the FE (Fig. 2.4.b
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a) b)

Ss

PML

Ω

∂Ω

x

z

y

z

y

Figure 2.4: a) Equivalent waveguide closed with PML. b) Exemples of FEM meshes
of the three different cross sections.

shows examples of meshes of the three different cross-sections of the guide). The so-
lution in each different straight segment takes general form given in Eq. (1.20). The
output condition is defined as a the characteristic admittance, YL = ΦΓΦ

−1, and the
admittance is calculated from the output section to the input the input cross-section
using the procedure described in Sec. 1.1.4. Then, we compute the acoustic field in the
domain from an input ~P0 following Eqs. (1.45)–(1.47).

In order to determine the input pressure field that corresponds to the experimental
source, we define first the input condition as a normal derivative source condition ~U0 =
∂x ~P0. From Fig. 2.3.b the components of ~U0 are,

U0,n =

{

1, if (yn, zn) ∈ Ss

0, elsewhere
(2.2)

with (yn, zn) the coordinates of the n−th node. The pressure source condition is the
product of ~U0 and the input impedance, ~P0 = Y

−1
0
~U0, where is the input Y0.
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2.5 Results and discussion

The following expression [Eq. (2.3)] gives the resonance frequencies of the courtyard
with a non-radiative condition p = 0 imposed on the upper part and ignoring the façade
opening:

f(µx,µy,µz) =
c0
2

√
(
µx

lc

)2

+

(
µy

wc

)2

+

(
2µz + 1

2h

)2

, (2.3)

where, (µx, µy, µz) ∈ N3 are the number of nodal planes perpendicular to directions x,
y and z, respectively. Table 2.2 gives the first ten frequencies obtained with Eq. (2.3).
They are approximated values of the actual resonance frequencies and will be used to
identify the resonance peaks observed in the following study.

The spectrum of the transverse eigenmodes obtained by FE is shown in Fig. 2.5.
The insets display the modulus of the pressure of some of the modes. The eigenmodes
are denoted by the couple (νh, νv), indicating the number of horizontal and vertical
nodal lines, respectively. Due to wave radiation, the modes are attenuated during their
propagation along the street and this attenuation is described by the imaginary part of

the propagation constants, Im{kx,(νh,νv)}, kx,(νh,νv) =
√

k2 − α2
(νh,νv)

. Like the classical

modes in usual waveguides, the leaky modes in the canyon can be considered as being
evanescent or propagating, depending on the frequency. We have checked that the
modes (0, 0), (0, 1), · · · , (0, 5), when propagating, are the least attenuated modes (see
Appendix 2.A). Therefore these modes are supposed to provide the highest amount of
energy. For this reason, and in order not to overload the discussion, the analysis will
be based only on these modes.

2.5.1 Modal scattering

The behavior of the courtyard can be characterized by means of the modal scattering
that it generates. Let ~CI and ~CR be the components of the incident and reflected fields,
respectively. Then, the reflection matrix R is given by ~CR = R ~CI . Fig. 2.6 shows the
modulus of the diagonal terms of R corresponding to the modes (0, 0) to (0, 5). The

(µx, µy, µz) f(µx,µy,µz)(Hz) (µx, µy, µz) f(µx,µy,µz)(Hz)

(0, 0, 0) 7.1 (0, 0, 1) 29.2
(0, 1, 0) 13.4 (1, 2, 0) 31.1
(1, 0, 0) 21.3 (0, 1, 1) 31.3
(0, 2, 0) 23.7 (0, 3, 0) 34.7
(1, 1, 0) 24.1 (2, 0, 0) 35.4

Table 2.2: First ten frequencies of resonance of the courtyard, estimated with Eq. (2.3).
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Figure 2.5: Spectrum of the complex eigenmodes of the transverse waveguide section.
The insets display the modulus of some of the corresponding eigenmodes, |~Φ(νy,νz)|.

vertical lines indicate the cutoff frequencies of these modes, given by Re{f(νy,νz)} (see
Fig. 2.6).

The graphs exhibit several resonance peaks due to the courtyard resonances. We
corroborate this comparing the position of the peaks with the values in Table 2.2. The
first peak at f = 6.3 Hz corresponds to the fundamental resonance of the courtyard
f(0,0,0) = 7.1 Hz. The second peak at f = 13 Hz corresponds to the first higher
order resonance f(0,1,0) = 13.4 Hz. Other resonances can also be identified in the band
20− 40 Hz as f(0,2,0) = 23.7 Hz, f(0,1,1) = 31.3 Hz and f(0,3,0) = 34.7 Hz. Note that the
frequencies observed in the graphs are slightly lower than those estimated by Eq. (2.3)
because of the radiation losses above the courtyard, which are neglected by Eq. (2.3).

The curves of Fig. 2.6 reveal several important characteristics. One is that the
courtyard is very sensitive to the presence of a façade opening. In Configs. A and B
(with façade opening) several peaks appear in the reflection coefficients of all modes.
The differences between Configs. A and B are explained by the proximity of the entrance
to a given nodal plane (this will be discussed in the following sections). In Config. C
(without façade opening) the courtyard has a significant effect only for the fundamental
mode (0, 0), and a very weak scattering is observed for higher order modes.

It is also remarkable that the first peak, corresponding to the fundamental resonance,
has a similar amplitude in all cases. This indicates that this resonance is mainly excited
by waves propagating above the roof level, being much less sensitive to the presence
of a façade opening. Another important feature is that, given an incident mode, the
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Figure 2.6: (color online) Modulus of the diagonal terms of the reflection matrix R

corresponding to modes (0, 0) to (0, 5), obtained in each geometrical configuration. The
vertical lines represent the cutoff frequencies of these modes.
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Figure 2.7: The insertion loss is computed as Ac = 10 log10 (W0/WT ), where WT

is the energy flux with the courtyard and W0 is the energy flux transmitted through a
uniform segment of urban canyon with length lc.

modal scattering mainly occurs at resonances close to the cutoff frequency of the mode.
Note that the reflection peaks with highest amplitude are comprised between the cutoff
of the mode and the cutoff of the next mode. This indicates that the behavior of the
courtyard is strongly linked to the modal content of the incident field.

2.5.2 Insertion Loss

In order to evaluate the attenuation of the acoustic field in the urban canyon due to
resonances we calculate the insertion loss, Ac. The energy flux is given by

W =
1

2S

∫ ∫

S

Im{p∗∂xp} dy dz, (2.4)

where “∗” denotes the conjugate. Since the street canyon also induces attenuation due
to radiative losses, the ratio of the incident flux WI to the transmitted flux WT is not
enough to determine the attenuation due to the courtyard resonances (see Fig. 2.7).
Indeed, the attenuation created by the courtyard alone is computed as

Ac = 10 log10

(
WI/WT

WI/W0

)

= 10 log10

(
W0

WT

)

, (2.5)

where W0 is the energy flux computed without the courtyard at a distance lc (see
Fig. 2.7). Details on the computation of WT and W0 are given in Appendix 2.B.



2.5 Results and discussion 37

✭✵✱✵✮ ✭✵✱✷✮ ✭✵✱✹✮

✭✵✱✵✮ ✭✵✱✷✮ ✭✵✱✹✮

❈♦♥✜❣✳ ❈

❈♦♥✜❣✳ ❇

❈♦♥✜❣✳ ❆

✲✵�✺

✵

✵�✺

✶

✶�✺

✷

✶✵ ✷✵ ✸✵ ✹✵ ✺✵ ✻✵ ✼✵ ✽✵ ✾✵ ✶✵✵

✵

✶

✷

✸

✹

✺

✶✵ ✷✵ ✸✵ ✹✵ ✺✵ ✻✵ ✼✵ ✽✵ ✾✵ ✶✵✵

✵

✶

✷

✸

✹

✺

✶✵ ✷✵ ✸✵ ✹✵ ✺✵ ✻✵ ✼✵ ✽✵ ✾✵ ✶✵✵

✁
❝
✂❞
✄
☎

✁
❝
✂❞
✄
☎

✁
❝
✂❞
✄
☎

❢ ✭❍③✮

Figure 2.8: Insertion loss considering a coherent incident field.

Coherent incident field

Let us consider first a coherent incident field generated by the source described in Secs.
III and IV. The corresponding attenuation curve is given in Fig. 2.8. In Configs. A and
B it can be observed that the attenuation peaks appear close to the cutoff frequencies of
modes (0, 0), (0, 2) and (0, 4), that are the only modes excited by the source in theory.
The attenuation is around 4 dB at the fundamental resonance and oscillate between
1 and 2 dB at the other ones. In Config. C a single attenuation peak with amplitude
1.5 dB is observed at the fundamental resonance.

Unfortunately it is difficult to obtain an experimental equivalent of Ac, since it would
require the measurement of the pressure field in the whole section S as a function
of frequency, which would require a lot of time. Instead, a measurement at a single
point can be sufficient to give an experimental evidence of the phenomena described
before. For this, the microphone is placed in the waveguide, downstream from the
courtyard position, near the ground. The measured attenuation Ameas is then given by
Ameas = 20 log10(|p0/pT |2), where p0 is the pressure without the courtyard and pT is
the pressure with the courtyard.

Fig. 2.10a shows A(meas) obtained in Config. A. The main attenuation peaks are
generated close to the cutoff frequencies of the transverse modes of the street, that
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is in good qualitative agreement with the numerical predictions (Fig. 2.8). In order
to visualize the effect of attenuation, the wave field at some relevant frequencies have
been measured and compared to the numerical fields. The left (resp. right) column of
Fig. 2.10b shows horizontal planes of the measured (resp. numerical) fields at f = 6.3 Hz
and f = 39.6 Hz, where a strong attenuation of the field is observed. The fields have
been obtained at height 1.5 m. The mitigation of the acoustic field along the canyon is
obvious. At f = 39.6 Hz an attenuation of about 15 dB is found in both the numerical
and the experimental fields. At f = 6.3 Hz, the attenuation is about 10 dB in the
experimental field and 15 dB in the numerical field. The cause of this discrepancy is
probably the limited absorption of the room and the anechoic termination at such low
frequencies (note that the frequency range corresponds to f < 1050 Hz at real scale).

Incoherent incident field

It is also interesting to study the attenuation due to the courtyard in the case of an
incident field. Such a field can be found in urban areas as generated by a big number
of uncorrelated sources. If ~PI = Φ ~CI is the incident field, and m and n indicates the
m−th and n−th node of the mesh in the transverse plane, the definition of an incoherent
incident field implies the following condition on ~PI :

< P ∗

I,m, PI,n >= δm,n, (2.6)

where δm,n is the Kronecker symbol, and a unitary amplitude has been assumed (|PI,n| =
1). Introducing Eq. (2.6) in the computation of the energy flux (see Appendix A) allows
us to compute the attenuation when a diffuse incident field is considered.

From the point of view of the modes propagating in the street, a diffuse field can
be defined as the superposition of a large number of incoming modes with the same
amplitude and random phase. Then, the attenuation in the incoherent case can be
regarded as the averaged attenuation obtained when a large number of realizations is
done, with a single incident mode in each realization. The results in this case should
differ noticeably from the case of the coherent incident field. In particular, the atten-
uation is expected to be lower and the concentration of attenuation peaks around the
cutoff frequencies should disappear.

The attenuation curves obtained in this case are shown in Fig. 2.9. As expected,
the modal behavior observed previously in the coherent case (Fig. 2.8) has disappeared
and the attenuation peaks are more uniformly distributed along the frequency range.
Also, the absorption peaks have a smaller amplitude. Only the first peak is similar to
that obtained with a coherent source The reason is that at such low frequencies, the
single propagative mode in the street canyon is the mode (0, 0). Therefore the concept
of incoherent incident field is meaningless. Indeed, whatever the modal content of the
incident field at these low frequencies, after a short propagation distance the transverse
field in the canyon will be dominated by the mode (0,0). Thus, the attenuation obtained
should depend weakly on the type of incident field.
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Figure 2.9: Insertion loss considering an incoherent incident field.

2.5.3 Amplification of the sound level inside the courtyard

Inspecting the pressure field at the courtyard resonances, it is observed that the sound
level inside the courtyard is similar or even higher than the sound level in the street
[Fig. 2.10(b)]. This is in contradiction with the noise shielding effect that is usually
expected in these configurations. To evaluate more precisely the sound amplification
inside the courtyard, the transfer function H = pc/ps between the pressure at a point
inside the courtyard pc and a point close to the source ps (cf. Fig. 2.3) has been
measured and compared with the numerical model. The point inside the courtyard is
appropriately chosen close to a corner, since it represents a maximum of pressure for
any of the courtyard resonances. Thus, an increase of the sound level generated by a
resonance should be detected by this measurement.

Fig. 2.11 shows the amplitude in dB of the measured and the predicted transfer
functions. Insets in Fig. 2.11 show the field inside the courtyard in the horizontal
plane at a given resonance, computed with the modal-FE method. At low frequencies
(f < 40 Hz) curves show well differentiated peaks with amplitudes around 10− 15 dB.
From 40 Hz onwards, it is difficult to identify other resonances because of the high
modal overlapping.

A good agreement is observed between experimental and numerical results. How-
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Figure 2.10: (a) Measured attenuation Ameas obtained in Config. A. (b) Amplitude
in dB of the pressure field in the horizontal plane at frequencies f = 6.3 Hz and f =
39.6 Hz, obtained in configuration A in source position I. Fields have been measured
at height 5 cm (1.5 m at full scale). Images on the left display measured fields, while
images on the right display fields calculated with the modal-FE method.
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Figure 2.11: Measured (solid lines) and predicted (dashed lines) amplitude of the
transfer functions in dB. The insets represent the pressure field inside the courtyard
at a given resonance.
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ever, the amplitude of the measured transfer functions are about 5 dB higher than the
predicted ones in the band f < 35 Hz. Again this discrepancy is certainly due to the
already mentioned difficulty of absorbing such low frequencies by the room and the ane-
choic termination. Also, it is observed that resonance peaks are more damped in the
experimental case (see, e.g., the first three modes mentioned by the arrows, at ∼ 6.3,
13 and 23.6 Hz: the peaks are larger in the experimental results). The reason is that
the only damping mechanism in the numerical model is the wave radiation above the
courtyard, while in the experimental device other inherent damping phenomena exist,
as viscous and thermal losses or a finite impedance of wood.

As it has been observed in the modal reflection coefficients (Fig. 2.6) the position
of the façade opening modifies the behavior of the courtyard. This is explained by the
proximity of the entrance to the nodal lines of a given resonance mode (see the insets in
Fig. 2.11). The most evident example is the peak at f = 23.6 Hz (mode (0, 2, 0)), which
amplitude is more than 5 dB higher in Config. A than in Config. B. The amplitude of
the second resonance peak at f = 13 Hz is slightly higher in Config. B than in Config. A
for a similar reasons.

Regarding the curve of Config. C, a relevant point is the strong excitation of the
first two resonant modes. Note that their amplitude is similar to configurations A or B
and indicate that the sound level inside the courtyard is only a few decibels lower than
the source level (0 dB), which is located 45m away. Note also that this confirms the
result predicted previously in Sec. 2.5.1: the excitation of the fundamental resonance
is done mainly by waves propagating above the buildings to reach the courtyard. With
increasing frequency the resonant behavior is much less pronounced and a decay of the
transfer function is observed. This agrees also with the corresponding curve of Fig. 2.6,
that shows a weak excitation of the courtyard resonances from 20 Hz onwards.

2.6 Conclusion

We have investigated numerically and experimentally acoustic resonances in urban
courtyards. Numerical and experimental results are in good agreement and show a
strong resonant behaviour of these configurations. As a result of the resonances, the
sound level inside the courtyard increases considerably, which generates in turn an
important reduction of the acoustic field on the street. Remarkably, the sound level
inside the courtyard at resonance is comparable to the sound level in the street. On the
other hand, the strong interaction between the courtyard resonances and the acoustic
field on the street suggests the use of these configurations to control the propagation
of low and very low frequency waves in urban environments, which are difficult to be
controlled otherwise.
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Appendix 2.A. The least damped modes of the street

In order to determine the least damped modes on the street we have computed
the imaginary part of the propagation constants as a function of frequency and aspect
ratio r = h/w, with h and w being the height and width of the street. Figure 2.12
show Im{kx,(νh,νv)} versus frequency for r = 1, r = 3, and r = 5. Regardless of the
aspect ratio, the least damped mode is the always the mode (0,0) for frequencies below
the cutoff frequencies of the family (0, νv). After their respective cutoff frequencies,
the family (0, νv) become the least damped modes. The family (1, νv) is always more
attenuated than the family (0, νv). Indeed, as a general rule, the attenuation of a given
mode (νh, νv) increases as νh increases. Physically, we explain this from the fact that
the mode becomes more and more directed in the vertical direction as νh increases,
which facilitates the energy radiation.

Appendix 2.B. Computation of the energy flux

In the modal–FE method, the pressure p and its x−derivative ∂xp are developed on
the basis of the interpolating polynomials ψn(y, z),

p =

N∑

m=1

Pmψm = t ~ψ ~P , (2.7)

∂xp =
N∑

n=1

Unψn = t ~ψ~U. (2.8)

For an incident field p = pI , the solution takes the form

~PI = Φ ~CI (2.9)

~UI = Yc
~PI (2.10)

with Yc = ΦΓΦ
−1 the characteristic impedance matrix of the guide, and Γ a diagonal

matrix such that Γnn = kx,n. On the other hand, the incident energy flux across the
section S1 of the guide is defined as

WI =
1

2S1

∫ ∫

S1

Im{p∗I∂xpI} dy dz. (2.11)
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Introducing Eqs. (2.9) and (2.10) into Eq. (2.11) one obtains

WI =
1

2S1

N∑

m

N∑

n

Im

{

P ∗

i,mUi,n

∫ ∫

S1

ψmψndydz

}

=
1

2S1
Im
{
t ~P ∗

I GYc
~PI

}

,

(2.12)

where G =
∫ ∫

S1
ψmψndydz. Similarly, if ~PT = Tn

~PI is the transmitted field, with Tn

the nodal transmission matrix, the transmitted energy flux is given by

WT =
1

2S1
Im
{
t ~P ∗

I
t
T

∗

nGYcTn
~PI

}

. (2.13)

The energy flux W0 in the absence of the courtyard has the same form, with Tn the
transmission matrix calculated in the absence of the courtyard (it thus simply describe
the damping of the leaky waveguide mode while propagating).

In the case of a diffuse incident field such that < P ∗

I,m, PI,n >= δm,n, one obtains
WT = Im {tr (tT∗

nGYcTn)}, where tr denotes the trace.

The energy flux across the section S of the street is obtained replacing S1 with S in
Eqs. (2.11)–(2.13) and reducing vectors and matrices to the that nodes located inside
the section S.





Chapter 3

Multimodal approach of the

acoustic propagation in periodic

media

3.1 Introduction

For decades, wave propagation in periodic media has fascinated scientists from differ-
ent fields and has motivated intensive research. In the late 80s, Yablanovitch and John
[46, 93] proved simultaneously that a transparent material with periodically modulated
dielectric properties could avoid the transmission of light at certain frequencies. Such
materials were called photonic band gap materials (or photonic crystals), in analogy to
the energy gaps firstly observed in crystalline atomic arrangements [12]. Several years
later, a similar phenomenon was observed for acoustic waves, giving rise to phononic
crystals (Martínez-Sala et al. [55]). Related to the periodicity, other unique phenomena
are also found in periodic media, as strong dispersion or negative refraction [45, 54].
Since their discovery, the interest in phononic crystals has increased enormously, due
to their fundamental interest and also to their application in many areas of science and
technology (as filtering, wave guiding or superlensing). For an overview of the historical
development and recent advances on this field, the reader can refer to [75].

In this dissertation, two Chapters are concerned with the wave propagation in peri-
odic media: Chapter 4, which investigates the formation of bandgaps in periodic urban
areas; and Chapter 6, which studies the unconventional acoustic response of metasur-
faces. Before addressing these challenging studies, the goal of the present Chapter is to
introduce the basic principles of wave propagation in periodic media.

47
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Figure 3.1: Geometries under consideration: a) system composed by a single periodic
row along y, b) system composed by a series of periodic rows along y, c) periodic system
along x and y.

We considered 2D systems composed of periodic arrangements of rectangular scat-
terers, Fig. 3.1. Since the modal basis of the transverse sections of these systems can
be obtained analytically, a classical multimodal formulation [64] is used.

3.2 System composed of a single row

Consider the geometry represented by the Fig 3.2. It consists on a single infinite
periodic row of rectangular rigid scatterers disposed along the y−direction. Lb and hb
denotes respectively the length and the height of the scatterers La is the length of the
periodic free space on both sides of the row, ha is the gap between two consecutive
scatterers, and Dy is the period.

When the system is excited with a harmonic plane, the Bloch–Floquet theorem [12]
imposes the following condition on the pressure field,

p(x, y + nDy) = enkyDyp(x, y), (3.1)

with n ∈ Z, ky = k sin(θ), and θ the incidence angle with respect to x. This condition
indicates that the acoustic field in the media is also periodic with period Dy, meaning
that the propagation domain can be entirely represented from a single unit cell (Fig. 3.2).

The unit cell is composed of two regions denoted with superscripts (I) and (II). In

the region (I), the pressure field is developed on the basis of plane waves φ(I)n (y) defined
by the Bloch–Floquet condition [Eq. (3.1)],

φ(I)n (y) =
1

√
Dy

eβny, (3.2)
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Figure 3.2: Left, a system composed by a single periodic row along y. Right, unit cell
of the row.

where βn are the Bloch wavenumbers in the y−direction,

βn = ky +
2πn

Dy
. (3.3)

The pressure field in region (I) takes then form

p(I)(x, y) =

∞∑

n=−∞

φ(I)n (y)
(

A(I)
n ek

(I)
n x +B(I)

n e−k(I)
n x
)

, (3.4)

with k(I)n =
√

k2 − β2
n the wavenumbers in the x−direction. In region (II), the pressure

field is developed on the basis of the transverse eigenfunctions (cosine functions in this
case):

p(II)(x, y) =

∞∑

m=0

(

A(II)
m ek

(II)
xm

x +Bme−k(II)
xm

x
)

φ(II)m (y), (3.5)

with

φ(II)m (y) =

√

1 + δm0

ha
cos

[
mπ

ha

(

y − ha
2

)]

,

where δ is the Kronecker symbol and k(I)x,m =

√

k2 − (mπ/ha)
2
.

At the matching sections between the regions, the field must satisfy the continuity
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conditions for pressure and normal velocity
{

p(I) = p(II) , |y| ≤ ha/2,

∂xp
(I) = ∂xp

(II) , |y| ≤ ha/2.
(3.6)

and the rigid boundary condition on the lateral walls

∂xp
(I) = 0, |y| > ha/2. (3.7)

The scattering matrix of the single row, Se, relates the incident and scattered waves
on each side of the unit cell. This matrix is defined as

(
~B0

~AL

)

= Se

(
~A0

~BL

)

, (3.8)

where ~A0, ~BL are the modal amplitudes of incident waves, and ~B0, ~AL are the modal
amplitudes of reflected waves (see Fig. 3.3a). Since the unit cell is symmetrical with
respect to x, the matrix Se is

Se =

[
Re Te

Te Re

]

, (3.9)

with Re and Te the reflection and transmission matrices, valid both for left– and
right–going incident waves. These matrices can be calculated using the operator "⋆",
defined in Appendix 3.A, which enables us to assemble consecutive scattering elements.
Accordingly to Fig. 3.3b, the scattering matrix Se can be expressed as

Se = S1 ⋆ S2 ⋆ S3 ⋆ S4 ⋆ S1, (3.10)

where S1, ...,S4 are the scattering matrices of each of the elements of the cell, considered
separately. Since elements 1 and 3 are straight segments, its reflection terms are zero

≡

~A0

~B0
~AL

~BL

b)a)

S3 S4 S1S1 S2Se

Figure 3.3: a) Incident and scattered waves on each side of the unit cell. Se indi-
cates the scattering matrix of the cell. b) Decomposition of the unit cell in elementary
scattering elements. S1 − S4 indicate the scattering matrices of each element.
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matrices [0] and the corresponding scattering matrices S1 and S3 are simply given by

S1 =

[
[0] D

(I)(L1)
D

(I)(L1) [0]

]

, (3.11)

S3 =

[
[0] D

(II)(L2)
D

(II)(L2) [0]

]

, (3.12)

with D
(i)(x) = diag{exp(k(i)xnx)}, i = I, II. Matrices S2 and S4 are obtained from

the modal expansions of the continuity equations (3.6) and (3.7). From the admittance
matrix technique presented in Sec. 1.1.4, these matrices are obtained as

S2 =

[
Rb Ta

Tb Ra

]

, (3.13)

S4 =

[
Ra Tb

Ta Rb

]

, (3.14)

with,

Ra =

[

I+ F

(

Γ
(I)
)−1 (

t
F

∗
Γ
(II)
)]−1 [

F

(

Γ
(I)
)−1 (

t
F

∗
Γ
(II)
)

− I

]

,

Ta =
(

Γ
(I)
)−1

t
F

∗
Γ
(II) (I−Ra) ,

Rb =
(

Γ
(1) + t

F
∗
Γ
(II)

F

)−1 (

Γ
(I) − t

F
∗
Γ
(II)

F

)

,

Tb = F (I+Rb) ,

where Γ
(i) = diag

{

k
(i)
xn

}

, i = I, II, I is the identity matrix, F is the matching matrix,

defined as,

Fmn =

∫ hb/2

−hb/2

φ(I)n φ(II)m dy, (3.15)

and t
F

∗ the conjugate transpose of F.

3.3 System composed of Nr rows

The scattering matrix, Sg, of a system composed of Nr periodic rows can be calculated
simply from the scattering matrices of each row, Sej , j = 1, 2, . . . , Nr (Fig. 3.4). The
matrix Sg is given by

Sg = Se1 ⋆ Se2 ⋆ ... ⋆ SeNr
. (3.16)
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...
~B0

Se1 Se2 SeNr

~A0
~BL

~AL

Figure 3.4: Scattering matrix of a system composed of Nr periodic rows.

3.4 Infinite periodic system

Consider now the case of an infinite periodic system along x and y. The goal is to
find the Bloch wavenumbers, kB , giving the dispersion relation of the system.

The application of the Bloch-Floquet theorem in both directions x and y enables us
to reduce the domain to its unit cell, shown in the Fig. 3.5. The amplitude coefficients
at each side of the cell satisfies the Bloch conditions

(
~AL

~BL

)

= µ

(
~A0

~B0

)

, (3.17)

with µ = exp(kBDx) the phase shift in the x−direction. Combining Eqs. (3.17) and
(3.8), leads to the following generalised eigenvalue problem [10, 23]:

[
Te Re

[0] I

](
~A0

~BL

)

= µ

[
I [0]
Re Te

](
~A0

~BL

)

. (3.18)

For a fixed frequency and angle of incidence, the eigenvalues of this problem, µ, give
the Floquet-Bloch wavenumbers kB through the relation

kB =
1

Dx
(argµ−  ln |µ|) (3.19)

and the associated eigenvectors
(

~A0, ~BL

)

contain the modal amplitudes allowing us to

compute the wave field associated to each Bloch mode. In the absence of losses (as
in the present case) we find two types of solutions: propagative modes (kb ∈ R) and
evanescent modes (kb ∈ I). Note that propagative modes are bounded in the interval
kB = [−π/Dx, π/Dx]. Frequency bands where no propagative modes exists are called
band gaps.
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Figure 3.5: Unit cell of the infinite lattice.

Direct lattice, reciprocal lattice and band structure

The physical lattice defined in the space (x, y) is called the direct lattice. To this
lattice, it is associated a reciprocal lattice in the space (kx, ky), which is also periodic
with periods 2π/Dx and 2π/Dy [see Eqs. (3.3) and (3.19)]. Thus, the reciprocal lattice
can also be reduced to a unit cell, where all possible wavenumbers are entirely repre-
sented. If, in addition, the geometry of the lattice is symmetric, this unit cell can be
reduced to an even smaller zone, called the first Brillouin zone. This zone is obtained
by folding the (kx, ky)–space following the symmetry axis.
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Figure 3.6: (kx, ky)–space for a) a square lattice with square scatterers and b) a square
lattice with rectangular scatterers. The shaded region represents the Brillouin zone. The
insets represent a single period of the corresponding direct lattices.



54 3 Multimodal approach of the acoustic propagation in periodic media

Fig. 3.6 shows the (kx, ky)–space, at a given frequency, for two types of lattice.
The first one, Fig. 3.6a, is a square lattice with square scatterers. Since, the lattice is
geometrical with respect to the x−axis, the y−axis and the axis defined by x = y, the
Brillouin zone is represented with a triangle. The second case, shown in Fig. 3.6b, is a
square lattice with rectangular scatterers. Since in this case the axis of symmetry are
the x−axis and y−axis, the Brillouin zone is represented with a square. Note that all
the possible solutions are represented inside the Brillouin zone, and the entire (kx, ky)–
space can be constructed by successively unfolding this zone. The band structure of the
lattice is obtained from the solutions located on the edge of the Brillouin zone.

3.5 Results

3.5.1 Transmission coefficient of a system composed of Nr rows

Consider a lattice composed of Nr periodic rows (see Fig. 3.4), excited at normal
incidence, θ = 0, with Dy = Dx = D, Lb = hb = D/2. The energy trasmission
coefficient of the lattice, T , is

T =
Wt

Wi
(3.20)

whereWt andWi are respectively the transmitted and incident energy flux, see Eq. (2.4).

From the orthogonality of functions φ(I)n (y), the energy flux is

Wi =
1

2k
Im
{
t ~A

(I)∗
0 Γ(I) ~A

(I)
0

}

, (3.21)

Wt =
1

2k
Im
{
t ~A

(I)∗
L Γ(I) ~A

(I)
L

}

. (3.22)

The modal expansions are truncated to 15 plane waves in region (I) and 8 modes in
region (II). Fig. 3.7a shows the transmission coefficient vs. the reduced wavenumber
kD/π. The curves shows the variation of T for Nr = 2, 4 and 6 rows. We observe the
formation of gaps in the transmission coefficient, which attenuation increases with the
number of rows.

The results are compared to the band structure of the corresponding infinite lattice
(see Fig. 3.7b). The dispersion relation exhibit three bandgaps coinciding with the dips
observed in the transmission coefficient.

3.5.2 Complete band structure of the infinite periodic lattice

Figure 3.8 shows the complete band structure of the system. The result is compared to
the band structure calculated using a plane wave expansion (PWE) code implemented
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Figure 3.7: a) Transmission coefficient at normal incidence of a lattice composed of 2
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parts of the dispersion relation.

in our research group (see [70] for details). Convergence of the multimodal result was
achieved taking 16 modes in region (I) and 8 modes in region (II), while 50 plane
waves were used in the PWE computation. Both results are in excellent agreement,
which allows us to validate the multimodal approach presented in this Chapter.
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Appendix 3.A. Assembling of scattering matrices

Consider two scattering objects I and II characterised by their respective scattering
matrices SI and SII, as indicated in the Fig. 3.9. These matrices are given by

(
A2

B1

)

= SI

(
A1

B2

)

, (3.23)

SI =

[
TI R′

I

RI T ′

I

]

, (3.24)

and (
A3

B2

)

= SII

(
A2

B3

)

, (3.25)

SII =

[
TII R′

II

RII T ′

II

]

. (3.26)

Combining the previous equations, it is possible to find the global scattering matrix
SI,II relating the quantities on both extremities [27]:

(
A3

B1

)

= SI,II

(
A1

B3

)

, (3.27)

SI,II =

[
TII(1−R′

IRII)
−1TI R′

II + TII(1−R′

IRII)
−1R′

IT
′

II

RI + T ′

I (1−RIIR
′

I)
−1RIIR

′

I T ′

I (1−RIIR
′

I)
−1T ′

II

]

. (3.28)

The previous matrix relation is denoted by de the symbol “⋆”, such that SI,II = SI ⋆SII .

B1 B3B2

A1 A3A2

SI SII

Object IIObject I

Figure 3.9: Assembling of two scattering objects.





Chapter 4

Sound propagation in periodic

urban areas

A regular urban area can be considered, as a first approximation, as a periodic lattice
of interconnected streets, see Fig. 4.1 below. Under this assumption specific properties
of wave propagation in periodic media can be investigated in a urban context. This
Chapter is concerned with the formation of forbidden frequency bands in periodic urban
areas. Particular attention is payed to the effect of radiative losses in the media, an
essential characteristic of the urban environment. The Chapter is adapted from of an
article published in the Journal of Applied Physics [56].

Figure 4.1: Aerial view of The Eixample district, Barcelona (Spain). Image: Xavier
Jubierre / El Periódico

59
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4.1 Introduction

In styling 3D extended distributions of buildings, the assumption of a periodic dis-
tribution is convenient to model the acoustic field, as it describes reasonably well some
real situations (see the works by Picaut [69] and Heimann [34]). Doing this, it is possi-
ble to investigate the propagation through a large built area, while taking into account
rigorously the three-dimensional characteristics of the problem, as the radiation above
the streets. Periodic media are known to exhibit peculiar properties (band gaps, strong
dispersion, anisotropy, negative refraction) and have attracted a great deal of interest
in electromagnetics and optics [45, 54] as, more recently, for acoustic and elastic waves
[23, 30, 85, 87, 90, 92]. By assuming a periodic distribution of buildings in modelling the
sound propagation in an urban environment, one may thus expect specific properties of
periodic media to occur. However, would these properties remain in the case (a lattice
of open urban Ions) where important radiative losses are generally observed? The aim
of this Chapter is to investigate the competitive effects of the periodicity and the wave
radiation.

In this work we investigate both experimentally and numerically the specific proper-
ties of open periodic lattices, in particular the presence of band gaps. The experimental
lattice is made of 9× 26 wooden cuboids, which represent the buildings. The numerical
characterisation of the lattice is based on the modal–FE formulation of the wave prop-
agation within open waveguiding structures, see Chapter 1. It basically consists in a
finite element (FE) discretisation of the problem in the transverse section of the waveg-
uide (the street) with the open side artificially closed by perfectly matched layers (PML
[8]), and a multimodal formulation of the propagation in the longitudinal direction.

The Chapter is organised as follows. Sec. 4.2 shows the experimental device used
in this work. Sec. 4.3 outlines the application of the modal–FE method to the study of
periodic lattices. Two kinds of problems are treated: an infinite periodic lattice along
one of the horizontal directions and an infinite periodic lattice along the two horizontal
directions. In this section, some common issues on leaky modes and PML modes are
discussed. Experimental and numerical results are presented in Sec. 4.4. The effect of
the opening is evaluated by comparing the open lattice with an identical one, closed
at the top with a rigid boundary. In the sequel, the open lattice is called OL and the
closed one is called CL.

4.2 Experimental setup

The experimental setup is shown in the Fig. 4.2. Experiments are carried out in
a semi-anechoic room. Walls are coated with a melamine foam, effective from 1 kHz
onwards. The studied lattice is composed of 9×26 rectangular wooden cuboids with
spatial periods Dx = Dy = 7.5 cm and obstacles dimensions lx × ly × h = 5 × 5 × 15
cm. Thus, the lattice has a total surface of 0.67 × 1.95 m2 and the filling fraction is
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Figure 4.2: Experimental setup. The image on the left shows a picture of the exper-
imental setup. Symbol (I) indicates the parametric antenna, (II) represents a screen
permitting to avoid direct sound transmission over the lattice, (III) indicates the cover-
ing used to obtain the CL. The figure on the right shows a schematic representation of
the experimental setup. The parametric antenna is placed perpendicular to the lattice
at the distance 1.75 m. Symbols ’×’ represent microphones positions. The input pres-
sure is measured at the position denoted by Min. The output pressure is taken at five
points behind the lattice, denoted by Mo1 to Mo5, respectively. Signals are amplified and
lowpass filtered to eliminate any remaining high frequency waves radiated by the source.

ff = 44%. A screen is placed above the first row to avoid direct sound propagation
from the source to the back of the lattice, which could distort the measurements. The
CL is obtained by covering the OL with a wooden board, as indicated by the dashed
rectangle in the Fig. 4.2.
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Figure 4.3: Acoustic field emitted by the parametric antenna in the (x, y)–plane.
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The lattice is excited using a parametric antenna model HSS (HyperSound Audio
System), product from the American Technology Corporation. From an input signal
at frequency fs, the source emits separately two high amplitude ultrasonic waves at
frequencies f1 and f2, related by f2 = f1 + fs, with f1 = 47 kHz. Then, due to non-
linear interactions, new spectral components appear, among which are f1−f2, 2f1, f1+
f2, 2f2. Because of the increase of attenuation with frequency, the difference frequency
component fs = f2−f1 is predominant far from the source, while keeping the ultrasound
properties. Thus, this device is able to deliver ultra-directive plane waves in the audible
frequency range.

Fig. 4.3 shows the radiated field, measured at fs = 1.6 kHz. The figure shows high
frequency components in the near field, that vanish approximately 1 m away from the
source. Beyond this distance, only the difference frequency fs remains, and it can be
observed that wavefronts become plane.

Experiments have been performed by placing the antenna at 1.75 m from the lattice
and the source signal is a sweep sine from 1 to 8.3 kHz. To fix ideas, this would
correspond to a few tens of a Hertz at "urban" scale. For instance, if the laboratory
experiment corresponds to 1:100 scale, the frequency range at full scale would be 10 to
83 Hz. Such low frequency waves can be practically measured in urban environments
as being produced by either heavy industrial machineries, intense impulse noise, or, for
a part, the traffic noise [16, 63], and they may propagate on long distances, compared
with higher frequency waves.

The acoustic pressure is measured using 1/2 in. microphones (B&K 4190), con-
nected to a preamplifier (B&K 2669) and a conditioning amplifier (B&K Nexus 2669).
Additionally, signals are lowpass filtered up to 20 kHz to eliminate any remaining high
frequency component emitted by the source.

With the aim of detecting the band gaps and passbands of the lattice, we measured
the transfer function between the input and output pressure field. The transfer function
was obtained as the averaged pressure value at 5 output points, designed by M01 to
M05 in Fig. 4.2. The input pressure is measured at the position denoted by Min in the
same figure. A single input point was found to be representative enough of the incident
field.

We also measured the pressure field on a horizontal plane above the lattice. This
measurement was performed using the same system as in Chapter 2
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4.3 Modelling of periodic lattices using the modal–FE
Method

4.3.1 The infinite periodic lattice along y

Consider the domain represented in Fig. 4.4.a. It consists in a finite series of periodic
rows of rectangular cuboids, disposed along the y−direction. All the rows have the
same spatial period Dy. The obstacles size and the distance between rows are arbitrary
along the x−direction. Ω represents the whole domain and Γ designs the boundaries
(obstacles and ground) which are assumed to be perfectly reflecting. To our purposes,
the domain is closed at the top with a PML. Next, assuming an harmonic plane wave
excitation, the Floquet-Bloch theorem imposes the following condition to the pressure
field p(x, y, z):

p(x, y +mDy, z) = exp (mk sin(θ)Dy) p(x, y, z), (4.1)

with m ∈ Z, k the wavenumber and θ the angle of incidence with respect to the x−axis.
From Eq. (4.1), Ω can be reduced to the equivalent domain Ωe, shown in the Fig. 4.4.b.
This domain can be regarded as a piecewise constant waveguide, delimited at both sides
by periodic boundaries ΓL and ΓR and at the top by the PML. This waveguide contains
Ns straight segments with lengths L(i), i = 1, ..., Ns, and two different cross–sections
S1 and S2.

The problem in Ωe is written as







(
∆τ + k2

)
p(x, y, z) = 0, ∀(x, y, z) ∈ Ωe,

∂np(x, y, z) = 0, ∀(x, y, z) ∈ Γ,

p(x, y ∈ ΓR, z) = µyp(x, y ∈ ΓL, z),

∂np(x, y ∈ ΓR, z) = −µy∂np(x, y ∈ ΓL, z),

(4.2)

where ∂n denotes the outward normal derivative with respect to the boundaries, µy =
exp(k sin(θ)Dy) is the phase-shift imposed by the Floquet-Bloch theorem and ∆τ ,
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Figure 4.4: a) Geometry of the periodic lattice along y. b) Unit cell of the lattice.
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defined as

∆τ =
∂2

∂x2
+

∂2

∂y2
+

1

τ

∂

∂z

(
1

τ

∂

∂z

)

, (4.3)

denotes the modified Laplacian operator which takes into account the PML. The coef-
ficient τ of the PML is given by

τ =

{

A exp(β), inside the PML,

1, elsewhere,
(4.4)

with A > 0 and 0 < β < π/2. The transverse problem is discretised using the FEM
and Eqs. (4.2) are transformed into the discrete form

~P ′′(x) +
(
k2I−M

−1
p Kp

)
~P (x) = ~0, (4.5)

where Kp,Mp are respectively the stiffness and mass matrices, resulting from the FEM
discretization of the transverse differential operators, and verifying the lateral Bloch
conditions (see Appendix 4.A).

In each straight segment, a general solution of (4.5) can be found as a function of
the eigenvalues α2

n and eigenvectors ~Φn of the matrix M
−1
p Kp

~P (i)(x) = Φ

(

D(x) ~C1 +D(L(i) − x) ~C2

)

, (4.6)

where Φ = [~Φ1, ~Φ2, ..., ~ΦN ] is the eigenvectors matrix, D(x) is a diagonal matrix such
that Dnn = exp(kxnx), with kxn = (k2 − α2

n)
1/2 the propagation constants, and

vectors ~C1, ~C2 contain the unknowns modal amplitudes for forward and backward
waves, respectively, which depend on the conditions at the extremities of the segments.
To find these coefficients, the mode-matching method is used. The continuity equations
for pressure and normal velocity are established at the waveguide discontinuities. Then,
an output condition is defined by an admittance matrix Y, fulfilling ~U = Y ~P , with ~U
the x−component of the particle velocity on the basis of the interpolating polynomials
used for the FEM computation. Later, using the continuity equations, the input and
output admittance matrices of each straight segment are computed, step-by-step, from
the output to the input segment. Finally, from a source condition, the wave field can be
obtained at any point within the domain [27, 28, 64]. The output condition corresponds
to the characteristic admittance of the medium.

4.3.2 The infinite periodic lattice along x and y

An infinite periodic lattice along x and y is now considered. A similar process as
described in Sec. 3.4 is used to find the Bloch wavenumers kB . The application of the



4.3 Modelling of periodic lattices using the modal–FE Method 65

Floquet-Bloch theorem in both directions allows to reduce the domain to its unit cell
represented in the Fig. 4.5. Then, using the mode-matching method, the scattering
matrix S of the unit cell, relating incident and scattered waves at the extremities, is
obtained as (

~Cb

~Cc

)

= S

(
~Ca

~Cd

)

, (4.7)

where S takes the form

S =

[
R T

T R

]

, (4.8)

T and R being the transmission and reflection matrices, respectively. Additionally,
the periodicity in the x−direction imposes the following condition to the amplitude
coefficients (

~Cc

~Cd

)

= µx

(
~Ca

~Cb

)

, (4.9)

with µx = exp(kBDx). Then, the combination of Eqs. (4.7) and (4.9), leads to the
generalised eigenproblem

[
T R

[0] I

](
~Ca

~Cd

)

= µx

[
I [0]
R T

](
~Ca

~Cd

)

, (4.10)

with [0] the zero matrix and I the identity matrix. Finally, the eigenvalues µx of
this problem give the Floquet-Bloch wavenumbers kB and the associated eigenvectors
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h
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~Cc ~Cd

~Cb

y

z x
... ...

Dy

Dx
PML

Figure 4.5: Unit cell of the periodic lattice along x and y. The spacial periods are Dx

and Dy. The obstacles length, width and height, are respectively denoted by lx, ly and
h.
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(

~Ca, ~Cd

)

contain the amplitude coefficients allowing to compute the wave field for each

mode.

4.3.3 Modelling of closed lattices

Using the techniques described in Secs. 4.3.1 and 4.3.2, the CL is modelled by re-
placing the PML termination at the top by a rigid boundary and considering τ = 1 in
the entire domain to obtain the classical Helmholtz equation.

4.3.4 On leaky modes and PML modes

When considering the CL, band gaps and propagative bands are represented by the
solutions µx such that Im{kB} 6= 0 and Im{kB} = 0, respectively. In contrast, for the
OL, all wavenumbers kB are complex because of the radiation losses above the lattice.
Such solutions represent the so-called leaky modes, modes that are partly propagated
through the lattice and partly radiated towards the upper part (the Fig. 4.6.b shows an
example). A criterion for discriminate between band gaps and propagative bands for
the leaky modes can be defined by a threshold value η0 of the loss factor

η =

∣
∣
∣
∣

Im{kB}
Re{kB}

∣
∣
∣
∣
, (4.11)

from which a given solution can be considered, either propagative η(kB) < η0, or
evanescent η(kB) > η0.

Additionally, with the introduction of PML, "PML" modes arises [74, 77]. These
modes, strongly localised in the artificial absorbing layer (Fig. 4.6.b), must be discarded
since they do not represent solutions of the original problem. Indeed, they are unphysical
solutions of the equivalent PML problem. A useful criterion to separate PML modes
and leaky modes was proposed by Shi et al. [77], based on the ratio E of the energy
stored inside the PML volume VPML to the energy stored in the total volume Vtot of
the unit cell:

E =

∫

VPML
|p|2dV

∫

Vtot
|p|2dV . (4.12)

From Figs. 4.6.a and 4.6.b, one should expect the ratio E to present values close to zero
for the leaky modes and much higher values for the undesired PML modes.

The main drawback of such criterion is that E must be computed for each solution of
Eq. (4.10), which considerably increases the computation time. However, a straightfor-
ward way to identify the PML modes comes from the fact that they mainly propagate
in the free space above the periodic domain Then, for a given angle of incidence θ,
the wavenumbers of PML modes lie close to the so-called sound line, k = kx/ cos(θ),
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Figure 4.6: a) leaky mode, b) PML mode, c) dispersion relation for the leaky (dots)
and PML modes (squares) in normal incidence. Note that PML solutions matches the
sound line k = kx (dashed line)

representing the dispersion relation of a plane wave propagating in the free space. This
is illustrated in Fig. 4.6.c, where an arbitrary example of the dispersion relation of
leaky and PML modes with normal incidence (θ = 0) is represented. It is observed that
the PML solutions match the sound line, while the leaky mode dispersion relation is
bended, influenced due to the scattering in the medium. Note that the sound line is
analogous to the light line for electromagnetic waves [77, 80]. This line can be regarded
as the transition between evanescent and propagative leaky modes: assuming normal
incidence (ky = 0) and considering only the real part of kB , the dispersion relation
is approximated by k2 = (Re{kB})2 + k2z . From this relation, we see that for modes
above the sound line (Re{kB} < k), the vertical wave vector component kz is real. In
other words, these modes are directed vertically, so radiated above the lattice. Modes
coinciding with the sound line (Re{kB} = k) represent waves propagating parallel to
the horizontal plane and travelling at the speed of sound in free space. Finally, modes
bellow the sound line (Re{kB} > k) become evanescent along z and propagate along
the x−direction with radiation losses defined by the imaginary part of kB .
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4.4 Results

4.4.1 Band gaps in the lattice

Figs. 4.7.b and 4.8.b show the band structure in normal incidence for the CL and
OL, respectively. For the later case, the threshold loss factor η0 is adjusted to η0 = 0.1
to filter the evanescent modes, and PML solutions has been eliminated.

In these figures, labels ’mode ν’ denote the number ν of horizontal nodal lines of the
mode: ’mode 0’ indicates 0 nodal lines; ’mode 1’, 1 nodal line, and so on. Figs. 4.7.c
and 4.8.c show the shape of modes 0, 1 and 2 at a given frequency for the CL and the
OL, respectively (note that the shape of this modes varies with frequency, although it
keeps the same number of horizontal nodal lines). For the CL, the cutoff frequencies of
these modes can be obtained by solving the 1D Helmholtz problem along z with rigid
boundary conditions. They are given by

f (CL)
ν =

νc0
2h

.

Considering the sound speed c0 = 340 m·s−1, the first three frequencies are f (CL)
0,1,2 = 0

Hz, 1133 Hz and 2267 Hz. They are represented by the dashed lines in Fig. 4.7.b.
For the OL, the cutoff frequencies of modes 0, 1, 2 are determined by the sound line,
represented by the oblique dashed line in Fig. 4.8.b.

Since, with the present configuration, the source impinges uniformly on the input
cross–section of the lattices, one should expect that only the mode 0 will be excited. For
this reason, the band gaps for this mode have been highlighted, denoted by the shaded
regions in Figs. 4.7.b and 4.8.b. Four band gaps are obtained in each case, defined in
[1.65− 2.39] kHz, [3.11− 4.18] kHz, [4.72− 5.36] kHz and [6.80− 7.70] kHz for the CL
and in [1.70−2.49] kHz, [3.09−4.23] kHz, [4.73−5.39] kHz and [6.80−7.91] kHz for the
OL. Note that the band gaps positions for the mode 0 are quite similar in both cases.

Simulated results are compared to the experimental transfer functions shown in the
Figs. 4.7.a and 4.8.a. The curves for the OL and CL are quite similar. They also
show four band gaps, which are in good agreement with the computed band structures.
Nevertheless, some differences in amplitude are visible. For instance, it can be observed
that the first 3 band gaps are more attenuated in the OL, while the fourth band gap
is more attenuated in the CL. This could be the result of a weak excitation of higher
order modes, which could vary from one lattice to another. Comparing theoretical and
experimental results, one observes that the measured band gaps are in general wider,
surely due to the inherent weak disorder and finite dimensions of the experimental
lattice. Other dissipative effects, as the absorption of wood, may also play a role.

Regarding only the first mode, it can be concluded that the main factor governing the
behaviour of this mode is the periodicity in the horizontal directions, while the condition
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at the top (closed or open) is not too relevant. In contrast, this does not happen with
the higher order modes. Taking them into account, the presence of propagative modes
is much more pronounced in the case of the CL. That seems logical since it is a lossless
medium. However, an unexpected behaviour appears in the frequency band 3.85−4 kHz.
The Fig. 4.9.b shows a zoom in this region of the band structure. It is observed that no
propagative modes exist in the CL, while the mode 2 arises in the OL. To observe this
phenomenon experimentally, we modify the lattice excitation. As mentioned before,
the present configuration excites only the plane mode. In order to excite higher order
modes, we place 5 cm height bar in front of the lattice (see Fig.4.9.a). With this
configuration, the excitation is not plane anymore in the vertical direction z, meaning
that higher order modes can be excited. The transfer functions are measured again in
the frequency band 3.7 − 4.3 kHz, as shown in the Fig. 4.9.c. The curve of the CL
shows a gap in the region 3.85 − 4 kHz, while the curve of the OL exhibits a slight
bump, which agrees with the theoretical results.

4.4.2 Pressure fields

The wave field in the horizontal plane 1 cm above the lattice, at 2 kHz, has been
measured (Fig. 4.10.a) and compared with the numerical field (Fig. 4.10.b), computed
with the technique explained in Sec. 4.3.1. The field is computed for a single period
Dy, then repeated 6 times to give an overall result. As the excitation frequency is
located in the first band gap, fields exhibit a decay along the x−direction. Differences
between the pressure fields are observed, that surely come from the non-uniformity of
the experimental input signal, unlike the numerical excitation that equally extends over
the y−direction. Also, the finite size and slight disorder of the experimental lattice may
play a role. Despite the differences, both results seems to describe a similar global decay
along x. To corroborate this, the mean value of pressure along the y−direction vs. x
has been computed. Results are compared in the Fig. 4.10.c. Globally, both curves
show a similar behaviour. Discrepancies are observed before the distance 0.3 m, where
the position of the theoretical lobes are shifted and their amplitude varies significantly
with respect to the experimental curve. The agreement is better from 0.3 m onwards.
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(continous line). Note that in the band 3.85− 4 kHz no propagative modes exists in the
CL, while the mode 2 emerges in the OL.
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Figure 4.10: a) and b) shows respectively the experimental and numerical horizontal
planes of the pressure field at 2 kHz, 1 cm above the lattice. c) averaged pressure in the
y−direction vs. x for the measured and the numerical fields.
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4.5 Conclusion

We have investigated the propagation of acoustic waves in regular urban areas. The
urban area was represented as a periodic lattice of open waveguides. By comparison of
this open lattice with a more classical, closed lattice, it has been shown that the band
structure for the first propagating mode remains qualitatively the same when opening
the upper part of the lattice. The measured transfer functions are also very similar
in both cases. Thus, for a study involving only the first mode, the problem could
be simplified to a 2D geometry by eliminating the vertical coordinate. In contrast,
significant differences between the closed and the open lattice appear when higher order
modes are included in the study. As it seems logical, the closed lattice exhibits a more
marked presence of propagative modes. However, results have shown that this behaviour
can be inverted at some frequencies. Unexpectedly, we found propagative bands in the
open lattice that become evanescent in the closed lattice.
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Appendix 4.A. FEM computation of the transverse pe-
riodic eigenmodes

The aim of this section is to find the eigenfunctions and eigenvalues of the different
cross–sections S1, ..., S4, shown in Fig. 4.11. For each section, the eigenproblem is
written as

(
∂2

∂y2
+

1

τ

∂

∂z

(
1

τ

∂

∂z

)

+ α2

)

φ(y, z) = 0, (4.13)

with the set of boundary conditions







∂nφ(y, z) = 0, ∀(y, z) ∈ Γ,

φ(y ∈ ΓR, z) = µyφ(y ∈ ΓL, z),

∂nφ(y ∈ ΓR, z) = −µy∂nφ(y ∈ ΓL, z),

(4.14)

where α,Γ,ΓL and ΓR represent, respectively, the in-plane wavenumber, perfectly re-
flecting boundaries, left and right periodic boundaries. For sections S1 or S2, the
parameter τ is defined by Eq. (4.4), while for sections S3 or S4, τ = 1 in the entire
cross–section. The problem is discretised using linear triangular elements. The mesh
generated satisfies two conditions: firstly, in order to fulfil the periodicity, nodes on ΓR

and ΓL must be symmetrical with respect to the vertical axis of symmetry. Secondly,
for simplicity, the modal–FE method requires an identical mesh in the matching section
S1 ∩ S2 for the OL, or S3 ∩ S4 for the CL [67].

Then, the field φ(y, z) is developed on the basis of the interpolating polynomials
ψn(y, z) as

φ(y, z) =

N∑

n=1

Φnψn = t ~ψ~Φ. (4.15)

and the discretised problem takes the form
(
K− α2

M
)
~Φ = ~u, (4.16)

where K and M are the stiffness and mass matrix, respectively defined by

Kmn =

∫

Sj

1

τ2

(
∂ψm

∂y

∂ψn

∂y
+
∂ψm

∂z

∂ψn

∂z

)

dydz, (4.17)

and

Mmn =

∫

Sj

ψmψndydz. (4.18)

The vector ~u is the contribution of the normal velocity at boundaries, which terms un
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Figure 4.11: Meshes examples of the transverse cross–sections. Sections S1 and S2

are the cross–section of the open lattice. Sections S3 and S4 are the cross–sections of
the closed one. Γ are perfectly reflecting boundaries, represented by continuous thick
lines. ΓL and ΓR denote the left and right periodic boundaries, represented by dashed
lines.

are given by

un =

∫

Γtot

∂nφψndΓtot, (4.19)

with Γtot = Γ ∪ ΓL ∪ ΓR. From (4.19), it is deduced that this terms are equal to zero
for all nodes except for those belonging to the periodic boundaries:

{
un 6= 0, over ΓL and ΓR

un = 0, elsewhere.

For the section S4, completely bounded by rigid walls, one has ~u = ~0 and the eigenmodes
are found as the eigenvalues and eigenvectors of the matrix M

−1
K (see Eq. (4.16)).

For the rest, a similar technique as Allard et al. [4] to satisfy the periodic boundary
conditions is used. To turn the notation on a more compact form, the matrix D =
K− α2

M is defined and Eq. (4.16) is rewritten as

D~φ = ~u. (4.20)

Following, the problem is arranged so that nodes belonging to ΓL (subscript L) appear
first, followed by the internal ones (resp. I), and finally by those belonging to ΓR (resp.
R). The reordered problem is written as:





DLL DLI DLR

DIL DII DIR

DRL DRI DRR









~ΦL

~ΦI

~ΦR



 =





~uL
~0
~uR



 . (4.21)

Also, from Eqs. (4.15) and (4.19), the two last boundary conditions of Eq. (4.14) can
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be traduced by the vectorial expressions

{
~ΦR = µy

~ΦL

~uR = −µy~uL.
(4.22)

Next, introducing Eqs. (4.22) into Eq. (4.21) and eliminating ~ΦR (or ~ΦL) leads to the
following eigenproblem for the remaining unknowns ~ΦL (or ~ΦR) and ~ΦI :

Dp

(
~ΦL

~ΦI

)

=

(
~0
~0

)

, (4.23)

with Dp = Kp − α2
Mp =

[
DLL + µyDLR + µ−1

y DRL +DRR DLI + µ−1
y DRI

DIL + µyDIR DII

]

The eigenmodes are given by the eigenvalues α2
n and eigenvectors (~ΦL, ~ΦI) of the

matrix M
−1
p Kp. Note that the eliminated unknowns ~ΦR can be straightforwardly ob-

tained from Eq. (4.22).







Chapter 5

A mono–mode, time domain model

for the acoustic propagation in

irregular urban areas

5.1 Introduction

We have considered until now the propagation of acoustic waves in the frequency
domain. However, the urban environment presents usually impulsive or non stationary
sources, which require a time domain description of the acoustic field. The goal of this
Chapter is to develop a new model for the time domain acoustic propagation in urban
areas, as shown in Fig. 5.1.

The time domain modelling of extended urban environments is a difficult task,
due in large measure to the huge extension of the propagation domain, making compu-
tationally intractable the implementation of conventional numerical methods. Perhaps,
this is the reason why the acoustic propagation in such media has been rarely addressed

Figure 5.1: Irregular urban area.
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in the literature. Albert et al. [1, 2] investigated source localisation problems in urban
environments using a FDTD approach, although limited to 2D geometries. In a recent
work, Hewett [36] used a ray based model to study the propagation of high frequency
waves in domains containing several interconnected streets. Due to the similarity with
the problem addressed here (a network of interconnected waveguides), one can also men-
tion the work by Depollier et al. [21] on a lattice of tubes connected with right–angled
junctions.

The new model proposed in this Chapter is based on a previous characterisation,
in the frequency domain, of each of the elements forming the network (waveguides and
junctions). This characterisation is performed using the modal–FE method and the
information obtained is traduced to the time domain using Fourier analysis. In the
time domain, spatial discretisation is not required and the problem to solve is one–
dimensional: the only unknown is the modal amplitude in the waveguide. Therefore,
the model is very efficient numerically. Moreover, the model enables us to take into
account the complexity of the medium, namely the modal attenuation and dispersion.

5.2 A mono–mode, time domain model

We want to model the acoustic propagation in an irregular urban area as the one
illustrated in Fig. 5.1. The proposed model is based on the following assumptions:

• all the streets have identical cross–section and therefore identical modal basis;

• only the mode (0,0) propagates (see Fig. 2.5)

• the interaction between streets due to wave radiation above the buildings can be
neglected

Under these assumption, the urban area can be regarded as a 2D network of inter-
connected waveguides in which only one mode propagates. The mode is characterised
by its eigenvector ~Φ(0,0) and its transverse wavenumber α(0,0), which are computed with
FE (Sec. 1.2.1).

5.2.1 Propagation in the frequency domain

In each of the waveguides forming the network we define a local longitudinal coordi-
nate, χ, as shown in the Fig. 5.2. Taking into account only the mode (0,0), the acoustic
field in the frequency domain is given by

~P (χ, f) = ~Φ(0,0)A(χ, f), (5.1)
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χ

A(χ, f)

Al(f)

l

A0(f)

L

AL(f)

Figure 5.2: Definition of the local coordinate χ in the waveguide.

where A(χ, f) is the amplitude of the mode as a function χ and frequency f . This
quantity is expressed as

A(χ, f) = A0(f)e
kχχ +AL(f)e

kχ(L−χ), (5.2)

with L the length of the street, kχ =
√

k2 − α2
(0,0) the propagation constant, A0(f) the

amplitude of the mode at the input section, and AL(f) the amplitude of the mode at the
output section. For street canyons oriented horizontally, A0 (respectively AL) indicates
the modal amplitude at the left extremity (respectively, the right extremity). For street
canyons oriented vertically, A0 (respectively AL) indicates the modal amplitude at the
bottom extremity (respectively, the top extremity).

When the mode arrives to a given intersection, its energy is redistributed towards
the segments connected to the junction. In the frequency domain, this process is de-
scribed by the scattering matrix S(f) of the junction junction. We consider two types
of junctions: a T–intersection, characterised by the matrix S⊥(f), and a +–junction
characterized by the matrix S+(f) (see Fig. 5.3). These matrices are defined as





Ao,L

Ao,U

Ao,R



 = S⊥





Ai,L

Ai,U

Ai,R



 , (5.3)

S⊥ =





R⊥1 T⊥3 T⊥1

T⊥2 R⊥2 T⊥2

T⊥1 T⊥3 R⊥1





and 





Ao,L

Ao,U

Ao,R

Ao,B







= S+







Ai,L

Ai,U

Ai,R

Ai,B






, (5.4)

S+ =







R+ T+1 T+2 T+1

T+1 R+ T+1 T+2

T+2 T+1 R+ T+1

T+1 T+2 T+1 R+






.
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Figure 5.3: a) Definition of the scattering matrix of the T–intersection, S⊥. b) Defi-
nition of the scattering matrix of the +–intersection, S+.

In previous equations (5.3) and (5.4), subscripts i and o indicate incident and outgoing
waves, respectively, and subscripts U,B,L and R indicate quantities on the upper,
bottom, left and right side from the of the intersection. Note that due to the symmetry
of the T–junction the scattering matrix S⊥ has only two different reflection terms R⊥1

and R⊥2, and three transmission terms T⊥1, T⊥2, and T⊥3. Similarly, due to the
symmetry of the +–junction the matrix S+ has only one reflection term R+1 and two
transmission terms T+1 and T+2. Note also that the notation in previous equations
corresponds to the one used in Fig. 5.3. Of course, although the T–junctions may
appear with different orientation, the corresponding scattering matrix would present a
similar form.

The terms of these matrices are calculated using the modal–FE method as explained
in Appendix 5.A. Fig. 5.4 show the modulus and phase of the terms of the scattering
matrix, corresponding to a street canyon with aspect ratio h/l = 3 (h and l denotes the
height and width of the street). The accident in the curves at kl/2π = 0.07 is due to
the cutoff frequency of the mode, Re{α(0,0)}.

5.2.2 Propagation in the time domain

The inverse Fourier transform (FT−1) of Eq. (5.2) gives the modal amplitude as a
function of time and χ. Given the time convention chosen in this document, exp(−ωt),
the FT−1 is defined as

g(t) = FT−1 {G(f)} =

∫
∞

−∞

G(f)e−2πftdf, (5.5)

where G(f) denotes any function of f . Hence, the FT−1 of Eq. (5.2) is

a(χ, t) = a0(t) ∗ d(χ) + aL(t) ∗ d(L− χ), (5.6)
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Figure 5.4: Terms of the scattering matrices S+ and S⊥ for a street canyon with height
to width ratio h/l = 3. a) and b) represent respectively the magnitude and phase of the
terms of S+. c) and d) represent respectively the magnitude and phase of the terms of
S⊥.
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where ’∗’ denotes the convolution product, a0(t) = FT−1 {A0(f)}, aL(t) = FT−1 {AL(f)}
and d(χ) = FT−1

{
ekχχ

}
. The quantities a0(t) and aL(t) are the modal amplitude at

the input and output of the street, as a function of time. The term d(χ) represents
the impulse response of the urban canyon, which takes into account the dispersion and
dissipation of the mode through the propagation constant kχ.

To fix ideas, let us consider the propagation of a non–dispersive, plane mode such
that kχ = ω/c0. For a right–going mode, one has

d(χ) = FT−1
{
ekχχ

}
= δ(T − χ/c0), (5.7)

which represents simply a time shift of the amplitude a0(t) on the left extremity. How-
ever, in the case of the fundamental mode of the urban canyon considered here, the

propagation constant is kχ =
√

k2 − α2
(0,0), with α(0,0) ∈ C, which represents a disper-

sive and dissipative mode (see Sec. 5.3 below).

The impulse response of the intersections, s⊥(t) and s+(t), are obtained as the
inverse Fourier transform of Eqs. (5.3) and (5.4),





ao,L
ao,U
ao,R



 = s⊥ ∗





ai,L
ai,U
ai,R



 , (5.8)

s⊥ =





r⊥1 τ⊥3 τ⊥1

τ⊥2 r⊥2 τ⊥2

τ⊥1 τ⊥3 r⊥1



 ,

and 





ao,L
ao,U
ao,R
ao,B







= s+ ∗







ai,L
ai,U
ai,R
ai,B






, (5.9)

s+ =







r+ τ+1 τ+2 τ+1

τ+1 r+ τ+1 τ+2

τ+2 τ+1 r+ τ+1

τ+1 τ+2 τ+1 r+






.

Now that we have characterised each of the elements separately, it is necessary to
perform an iterative process permitting to compute the multiple wave scattering in the
network. This process is sketched in Fig. 5.5. Step 1 consist in defining the source
conditions a(j)0 and a

(j)
L for each street, whith j = 1, 2, · · · , Ns, and Ns the number of

streets. Following, in step 2, the field along the streets is computed from using Eq. (5.6).
In step 3, the wave scattering at junctions is computed from the incident fields, using
Eqs. (5.8) and (5.9). Steps 2 and 3 are iterated as many times (Nt) as desired, using
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propagation along

the segments

sattering at juntionsde�nition of soures

NT times
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Figure 5.5: Iterative process to compute the pressure field.

the output modal amplitudes in Step 3 at iteration n as the source conditions in Step
2 at iteration n+ 1.

5.3 Examples

A single street
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Figure 5.6: A single street canyon with length L.

The simplest possible case consists in a domain composed of a single street, as shown
in the Fig. 5.6. The dimensions of the street are h = 15 m, l = 5 m and L = 350 m.
With this parameters, the cutoff frequency of the first mode is f(0,0) = 4.5 Hz. The
amplitude of this mode along the street is given by

a(χ, t) = a0(t) ∗ d(χ) + aL(t) ∗ d(L− χ). (5.10)

In step 1 (see Fig. 5.5) we define the source conditions a0(t) and aL(t). We consider
a source only on the left extremity (aL(t) = 0). The source emits a Gaussian wave
packet,

a0(t) = sin(2πfst) exp(−(T − t0)/σ), (5.11)
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with fs = 8 Hz the central frequency, t0 = 1 s and σ = 0.0025 s−1. Figures 5.7.a and
5.7.b show respectively the source condition a0(t) and its spectrum A0(f) = FT{a0(t)}.

In step 2 the modal amplitude amplitude in the canyon a(χ, t) is computed from
a0(t) as

a(χ, t) = a0(t) ∗ d(χ). (5.12)

The process can be stopped after this step, as there is no any scattering element in the
domain.

The Fig. 5.8 shows the modal amplitude in the canyon at instants t = 1.20 s, t = 1.58
s and t = 1.93 s. We observe the attenuation and dispersion of the wave packet the
propagation. As mentioned before, this phenomenon is described by the term dχ. The
modulus of the frequency response of ekχχ is superposed to the spectrum of the source
a0 in Fig. 5.7. The dashed lines indicate the frequency responses for χ = 5, 50 and
250 m. Notice that as the pulse propagates, the street behaves similarly to a high–pass
filter with cutoff frequency f(0,0)

t(s) f(Hz)

a) b)

a
0
(t
)

|T
F
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Figure 5.7: a) Gaussian wave packet used as a source condition, a0(t). b) Modulus
of the spectrum of the source condition A0(f) = FT{a0(t)} (solid line). The source
condition is filtered by the frequency response of the street, exp(kχχ). Dashed lines
represent the modulus of this response for χ = 5 m, χ = 50 m and χ = 250 m.

Scattering at a single intersection

Consider now a domain composed by three street canyons, connected with a T–
intersection, as shown in the Fig. 5.9. The dimensions of each street are identical to
the ones used in the previous example of Sec. 5.3. Following, the computation of the
modal amplitudes in each street is explained step by step, as indicated in Sec. 5.2.2.

Coming back to step 1, we consider again a single source on the left extremity of
the left inferior waveguide, a(1)0 = sin(2πfst) exp(−(T − t0)/σ), and a(1)L = a

(2)
0 = a

(2)
L =

a
(3)
0 = a

(3)
L = 0 for the rest of waveguides.
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Figure 5.8: Modal amplitude versus χ at different times.

In step 2, these source conditions are used to compute the modal amplitude along
each of the canyons. One has

a(1) = a
(1)
0 ∗ d(χ), (5.13)

a(2) = 0, (5.14)

a(3) = 0. (5.15)

In step 3, the scattering at the intersection is computed from the incident fields using
Eq. (5.8). Since in this case the only incident wave is the one arriving from the left
canyon, the scattered modal amplitudes are given by





ao,L
ao,U
ao,R



 = s⊥ ∗





ai,L
0
0



 , (5.16)

where the incident field is in this case ai,L = a
(1)
0 ∗d(L). Next, output fieldsao,L, ao,U , ao,R

are used as the source conditions a(1)
′

0 , a(2)
′

L and a(1)
′

0 for the next iteration,

a
(1)′

0 = ao,L = a
(1)
0 ∗ d(L) ∗ r⊥1,
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Figure 5.9: Domain consisting of 3 urban canyons connected with a T–intersection.

a
(2)′

L = ao,R = a
(1)
0 ∗ d(L) ∗ τ⊥1,

a
(1)′

0 = ao,U = a
(1)
0 ∗ d(L) ∗ τ⊥2.

In the next iteration the field is computed along the street canyons using the new
source conditions obtained previously,

a(1) = a
(1)′

0 ∗ d(χ), (5.17)

a(2) = a
(2)′

L ∗ d(L− χ), (5.18)

a(3) = a
(3)′

0 ∗ d(χ). (5.19)

The process can be stopped after this step, as there is no any scattering element in the
domain. The process explained above is illustrated in Fig. 5.10.

Multiple scattering in a domain containing 2 intersections

Consider a composed of 5 streets connected with two T–intersections, Fig. 5.11. The
only source is located on street 1. The process in this case gets more complex than
in previous cases, due to the higher number of canyons and to the multiple scattering
generated by the two intersections. For the sake of clarity, we describe only how to
calculate the modal amplitude at the input of the street 3, a(3)0 , as a function of the

source in street 1, a(1)0 .

Tracing the multiple paths that the wave emitted in street 1 must follow to reach
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t = 1.23 s t = 1.85 s

t = 2.5 s t = 3.09 s

Figure 5.10: Wave scattering at the T–intersection.

street 3 (see Fig. 5.11), enables us to write an expression of a(3)0 as

a
(3)
0 =

term 1
︷ ︸︸ ︷

a
(1)
0 ∗ dL ∗ τ⊥1 ∗ dL ∗ τ⊥1 +

term 2
︷ ︸︸ ︷

a
(1)
0 ∗ dL ∗ τ⊥1 ∗ dL ∗ r⊥1 ∗ dL ∗ r⊥1 ∗ dL ∗ τ⊥1 +

term 3
︷ ︸︸ ︷

a
(1)
0 ∗ dL ∗ τ⊥1 ∗ dL ∗ r⊥1 ∗ dL ∗ r⊥1 ∗ dL ∗ r⊥1 ∗ dL ∗ r⊥1 ∗ dL ∗ τ⊥1 + · · ·

(5.20)

Due to the radiative losses (Im{α(0,0)}) and the wave radiation towards the side
streets, the sum (5.20) converges after a finite number of iterations. Recalling that at
each iteration the propagation along a street and the scattering at junctions is computed
once (see Fig. 5.5), we see that the first term of the Eq. (5.20) is obtained after 2
iterations, the term 2 is obtained after 4 iterations, the term 3 after 6 iterations, and
so on.

In order to evaluate the convergence of Eq. (5.20), Fig. 5.12 shows a30 as a function
of the number of iterations. The influence of the second term is visible after t ≈ 1.5 s,
where the curve corresponding to 2 iterations differs from that corresponding to 4
iterations. Then, we observe that the results for 4 or 6 iterations are almost identical.
This means that the series in Eq. (5.20) can be truncated after the second term, as the
subsequent echoes arriving to street 3 have very weak amplitude.
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Figure 5.11: System containing 2 T–intersections. The arrows below indicate the paths
of the multiple reflections arriving to street 3.

2 iterations
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Figure 5.12: Transmitted modal amplitude, a
(3)
0 , as a function of the number of in-

terations: 2 iterations (dotted line), 4 iterations (dashed line), and 6 iterations (solid
line).

Urban area

A last example is shown to illustrate the acoustic propagation in the urban area
considered initially in Fig 5.1. The dimensions of the transverse sections of the canyons
are l = 10 m and h = 30 m. The length of the streets varies between 40 m, 80 m and
120 m. The total extension of the urban area in the horizontal plane is 390× 220 m2.
The source is located at the upper left street, and emits a Gaussian wave packet with
central frequency 6 Hz. Fig. 5.13 shows snapshots of the pressure field at t = 2 s,
t = 2.5 s, and t = 3 s. The result was obtained performing 20 iterations.
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Figure 5.13: Pressure field in the urban area at t = 2 s, t = 2.5 s, and t = 3 s.
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Appendix 5.A. Computation of the scattering matrices

The terms of the scattering matrix relating quantities in the axial direction (R⊥1,
R⊥2, T⊥1, R+, T+1) can be computed straightforwardly with the modal–FE method, see
Chapter 1. However, the terms relating the modal amplitudes in perpendicular streets
(T⊥2

, T⊥3
, T+2) cannot be calculated directly with this method, since the acoustic field

field in the perpendicular street is not expressed on the basis of its eigenmodes. In the
following we explain how to compute the term T⊥2

of matrix S⊥ (the terms T⊥3
and

T+2 can be obtained in a similar way).

input field in the adjacent street

Transmitted modal
amplitude, Ao,R

calculated on a rectangular grid

input field interpolated
in a triangular FEM mesh, ~Po,R

interpolation

Ai,U

projection on Φ

mode (0,0)

Figure 5.14: Computation of the term T⊥2
.

We use a similar technique to the one explained in the Sec. 1.1.5 for 2D intersections.
The pressure field is computed in the domain using mode (0,0) as incident field. The
incident modal amplitude is Ai,U (see Figs. 5.14 and 5.3). The resulting pressure field
at the input of the adjacent street (shaded area in Fig. 5.14) is interpolated in the
triangular FEM mesh. Hence, if the pressure in the FEM mesh is ~Po,R and the modal
basis of the transverse section is Φ, the amplitude of the transmitted modes ~Ao,R can
be computed as

~Ao,R = Φ
−1 ~Po,R. (5.21)

Doing this for all frequencies and keeping only the term Ao,R of ~Ao,R, corresponding to
the first mode, gives the transmission coefficient as T⊥2 = Ao,R/Ai,U .







Chapter 6

Controlling the absorption and

reflection of noise barriers using

metasurfaces

6.1 Introduction

The last decade has witnessed an increasing interest in the field of acoustic meta-
materials. These materials are defined as artificial structured materials in which the
presence of resonances leads to an unprecedented control on wave propagation [18].
The goal of this chapter is to investigate the use of metasurfaces (i.e. two-dimensional
versions of metamaterials) to design noise barriers with advanced acoustic properties.

Most developments on noise barriers have focused on the influence of the head piece
in the barrier performance [7, 43, 58], aiming to extend as much as possible the shadow
region behind de barrier; or in developing active control techniques [24]. Here we show
that the use of metasurfaces enables us to obtain some unconventional properties that
cannot be achieved with previous designs.

This study is inspired by recent developments in the field of electromagnetic meta-
surfaces [78–80]. These devices are composed of resonant RCL circuits and provide an
enhanced control on the directivity of emitting antennas. These properties arises from
the excitation of resonances in the RCL circuits, which creates a strong dispersion of
the surface waves propagating on the device. In the present work the RCL circuits are
replaced by C–resonators, Fig. 6.1. As we explain in the following, the presence of
local resonances in this structure modifies the dispersion characteristics of the acoustic
surface waves, giving us the possibility to control de direction of the reflected waves.
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Figure 6.1: Left, metasurface composed of an array of C–resonators. Right, the cor-
responding unit cell.

Moreover, it has been demonstrated that an absorbing material backed with an ir-
regular surface presents enhanced absorption properties compared to the same material
backed with a flat surface [26, 29, 31, 32]. In particular, through the excitation of
resonances on the backing surface it is possible to achieve perfect absorption peaks at
frequencies below the quarter–wavelength resonance of the absorbing layer, where the
single porous material fails [31, 32]. In this Chapter, we demonstrate this behaviour
combining local resonances on the metasurface and an absorbing layer.

6.2 Numerical modeling

The geometry of the problem is illustrated in the Fig. 6.1. It consists on a periodic
arrangement of C-resonators disposed over a flat surface. The resonators are covered
with a porous layer with thickness hp. The spatial period in the horizontal directions is
denoted by D. The geometry of the resonator is defined by its height h, length l, width
w, the neck width wn and the wall thickness d.

6.2.1 Porous material modeling

The porous material is modelled using the 5 parameters Johnson-Champoux-Allard
equivalent fluid model [3, 17, 47]. The equivalent speed of sound is defined as ceq =

(ρeqKeq)
−1/2 where ρeq and Keq are respectively the dynamic density and compress-

ibility,
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σ(N · s · m4) ϕ α∞ Λ(m−6) Λ′(m−6)
25000 0.98 1.02 90 180

Table 6.1: Parameters of the porous material.

1

Keq
=

γP0

ϕ

(

γ − (1− γ)
(

1 +  ωc

Prω
G(Prω)

)−1
) , (6.1)

ρeq =
ρ0α∞

ϕ

(

1 + 
ωc

ω
F (ω)

)

, (6.2)

with ωc = σϕ/α∞ρ0 the biot frequency, γ the specific heat ratio, P0 the atmospheric
pressure, Pr the Prandtl number, ϕ the porosity, α∞ the tortuosity and σ the flow
resistivity. The correction functions G(Prω) and F (ω) are given by

G(Prω) =

√

1− ηρ0Prω

(
2α∞

σϕΛ′

)2

, (6.3)

F (ω) =

√

1− ηρ0ω

(
2α∞

σϕΛ

)2

. (6.4)

In previous Eqs. (6.3) and (6.4), η is the viscosity of the fluid, Λ′ is the thermal char-
acteristic length and Λ is the viscous characteristic length. The material employed for
the study is a Fireflex foam, which parameters are given in Tab. 6.1.

6.2.2 Band structure and absorption coeffcient

The modal–FE method is used to model the wave propagation in the unit cell repre-
sented in the Fig. 6.1. Considering normal incidence, x3 is the longitudinal coordinate
and x1 and x2 are the transverse coordinates. The problem to solve is in this case,

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
+
(ω

c

)2
)

p(x1, x2, x3) = 0, (6.5)

where c is the sound speed in the unit cell, c = ceq in the porous layer and c = c0
elsewhere. Additionally, the field must fulfil rigid boundary conditions at walls, ∂np = 0,
and periodic boundary conditions on lateral boundaries, given by

p(x1, x2 +mD,x3) = emkx2Dp(x1, x2, x3), (6.6)

p(x1, x2, x3 + nD) = enkx3Dp(x1, x2, x3). (6.7)
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For the computation of the surface waves band structure, x1 is the longitudinal
coordinate and x2 and x3 are the transverse coordinates. In this case, we use a PML
accounting for the wave radiation in the x3 direction. The equation to solve is then
given by

(
∂2

∂x21
+

∂2

∂x22
+

1

τ

∂

∂x3

(
1

τ

∂

∂x3

)

+
(ω

c

)2
)

p(x1, x2, x3) = 0, (6.8)

where τ is the PML absorbing parameter.

6.3 Control of absorption

The aim of this section is to evaluate the absorption properties of the barrier as
a function of the height of the resonators, h. The rest of parameters are fixed to
D = 50 cm, w = 40 cm, l = 40 cm, wn = 4 cm, d = 4 cm and hp = 10 cm. An incident
plane wave traveling normal to the surface is considered. The absorption coefficient is
defined as A = 1− R, with R = Wr/Wi the energy reflection coefficient, calculated as
the ratio of the reflected intensity flux Wr to the incident intensity flux Wi.

The top panel in Fig. 6.2 shows the evolution of A forh = 10 cm, h = 20 cm and
h = 30 cm. For comparison, two reference solutions are also plotted (bottom graph
of Fig. 6.2). One is a porous layer of similar thickness hp backed with a rigid wall.
The other one is the same porous layer backed with an air layer of thickness h, and
backed by a rigid wall. We observe an absorption peak that reaches more that 80% at
frequencies well below the quarter wavelength resonance of the porous layer. The peak
frequency is shifted from 500 Hz (h = 10 cm) to 370 Hz (h = 30 cm).

6.4 Control of reflection

Figure 6.3 shows the band structure for waves traveling parallel to the (x1, x2)-plane
with an angle θ1 = 50◦ with respect to the x1-axis. Only the propagative components
of the Bloch wavenumber are represented, Re{kB}. The sound line, k = kB/ cos(θ1),
divides the dispersion relation in two parts. Modes bellow the sound line represent
acoustic surface waves, which are evanescent in the x3-direction, and are therefore
bounded to the surface. Modes above the sound line are propagative along the x3-
direction, and are therefore called radiative modes. The former of interest for us, as
they can couple to an incident plane wave impinging the metasurface perpendicularly.

The three curves in Fig. 6.3 correspond to h = 20 cm, h = 25 cm and h = 30 cm.
We observe that the dispersion relation of the radiative modes varies with h. In the
following we see how the excitation of the radiative modes modifies the waves reflected
on the metasurface.
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Figure 6.2: Top, absorption coefficient at normal incidence for h = 10 cm, h = 20 cm
and h = 30 cm. The inset show the acoustic field at resonance. Bottom, reference
solutions. The dashed line represents the absorption coefficient of the porous layer
backed with a rigid wall. The solid lines corresponds to the porous layer backed with an
air layer of thickness h = 10 cm, h = 20 cm and h = 30 cm, and backed with a rigid
wall.

The left, central, and right panel in Fig. 6.4 represent the acoustic fields for h =
20 cm, h = 25 cm and h = 30 cm, respectively. The impinging wave is a Gaussian
beam with incidence angle θ1 = 50◦ with respect to x1 and θ2 = 35◦ with respect to
axis x2. At the excitation frequency, f = 385 Hz, the metasurface presents radiative
modes for h = 20 cm and h = 25 cm (see Fig. 6.3). Hence, we observe the interaction of
the incident beam with these radiative modes in the corresponding acoustic fields. An
interesting aspect is that the wave vector of the radiative modes is directed towards the
negative x1 direction [78–80], meaning that the energy which is coupled to these modes
is reflected with a negative angle (i.e., in the same direction as the incident beam). The
interference patterns in the acoustic fields of the left and central panels demonstrate
this behaviour. For h = 30 cm (right panel in Fig. 6.4), no radiative modes exist at
the excitation frequency (see dashed line in Fig. 6.3), so that the beam is reflected in
the usual way. This result demonstrates that the excitation of radiative modes on the
metasurface can be used to control the wave reflection.
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Figure 6.3: Band structure of waves propagating parallel to the periodic plane with an
angle θ1 = 50◦ with respect to the x1-axis.
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Figure 6.4: From left to right, wave fields for h = 20 cm, h = 25 cm, and h = 30 cm.
The incidence angle is θ1 = 50◦ and θ2 = 35◦ at frequency f = 385 Hz.

6.5 Conclusion

This Chapter has presented a preliminary study on the use of metasurfaces to control
the reflection and absorption of waves by noise barriers. Combining local resonances
on the metasurface with an absorbing material, it is possible to achieve very high
absorption at frequencies below the quarter–wavelength resonance of the absorbing
material. Moreover the presence of local resonances creates radiative modes in the
surface waves dispersion relation, the excitation of which enables us to control the
waves reflected on the metasurface. Although this study is at an early stage, the results
exposed in this Chapter may provide ideas to design noise barriers with novel and
enhanced acoustic properties.







Conclusions and perspectives

We conclude this dissertation with a summary of the main results and ideas for future
work.

In Chapter 1, we have introduced the modal–FE method and its application to the
modelling of right–angled intersections. The implementation of the method is divided
in three main steps: (i) the original, open geometry is substituted with an equivalent,
closed waveguide; (ii) the transverse eigenmodes of the resulting waveguide are com-
puted with FE and introduced in a multimodal description of the acoustic propagation
in the longitudinal direction, (iii) The unknown modal amplitudes are calculated using
impedance matrix method. This method combines the versatility of the FEM, making
it possible to deal with complicated geometries and boundary conditions, and the abil-
ity of the multimodal method to provide a good physical understanding of the studied
problem.

Taking advantage of these features, we have investigated wave phenomena arising
in specific urban urban configurations. In Chapter 2, we have studied the interaction
between the leaky modes propagating on the street and resonances in an adjacent
inner yard. It has been demonstrated that inner yards, supposedly protected from the
urban noise, may present significantly high pressure levels due to the excitation of its
acoustic resonances. Moreover, the courtyard resonances attenuates significantly the
acoustic field propagating on the street. Remarkably, this phenomenon occurs even in
the absence of a façade opening connecting the courtyard to the street, although only
at the fundamental courtyard resonance.

After introducing the basic principles of wave propagation in periodic media in
Chapter 3, we have investigated the acoustic propagation in periodic urban areas in
Chapter 4. We accomplished this implementing periodic boundary conditions in the
modal–FE method and using a scattering matrix approach. The effects of radiative
losses, an essential characteristic of the urban environment, has been studied in detail
comparing the dispersion relation of the open lattice (representing the urban area) to
that of a closed lattice. It was found that the number of propagative modes is in general
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smaller in the open lattice, which is attributed to radiative losses. However, we have
seen that there exists evanescent bands in the closed lattice that become propagative
bands in the open lattice.

In Chapter 5 we have developed a monomode, time domain model for the acoustic
propagation modelling in an irregular urban area, regarded as a network of intercon-
nected waveguides. The model is based on a prior characterisation in the frequency
domain of each of the elements forming the network (waveguides and junctions). This
characterisation is performed using the modal–FE method and the information obtained
is traduced to the time domain using Fourier analysis. In the time domain, the method
does not require spatial discretisation and the problem reduces to obtaining the modal
amplitude within the urban canyons. Therefore, the model is very efficient numeri-
cally. Despite its relative simplicity and low computational costs, the model takes into
account the essential characteristics of the propagation media, as radiative losses and
wave dispersion.

The general conclusion coming out from this work is that, despite the presence
of important radiative losses in the propagation media, significant interference and
resonance effects are still observed. Not only this result highlights the importance of a
wave approach to describe accurately low frequency urban acoustic fields, but it suggest
the potential use of these phenomena for controlling the acoustic propagation in urban
environments.

The strong interference phenomena reported in this work may motivate the study
of additional wave phenomena in different urban configurations. For instance, it is
interesting to investigate the coupling between multiple resonant courtyards. Also,
adding heterogeneities in a regular urban area may induce localised modes of sound
[51, 91]. Understanding and exploiting these phenomena may provide ideas to improve
the sound environment at low frequencies.

The time domain model developed in Chapter 5 opens several perspectives for future
work. After incorporating higher order modes to the model, it would be interesting to
investigate the influence of distinct aspects of the urban morphology in the acoustic
propagation, as the building’s shape and size, the effect of disorder or the density of
buildings. Moreover, the model could be used to extract time indicators in order to
characterise acoustically the urban area, as the impulse response or the reverberation
time.

Finally, the preliminary results obtained in Chapter 6, together with the rapid devel-
opments in the field of acoustic metamaterials and metasurfaces, enables us to foresee
the design of noise barriers with new properties and enhanced performance.
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Sound propagation modelling in urban areas: from the street
scale to the neighbourhood scale

Miguel Ángel Molerón Bermúdez

The improvement of the urban sound environment requires a good understand-
ing of the acoustic propagation in urban areas. Available commercial softwares give
the possibility to simulate urban acoustic fields at relatively low computational costs.
However, these tools are mainly based on energy methods that do not contain infor-
mation on the phase. Therefore, these tools are unable to capture interference effects
(e.g., resonances), providing a limited physical description of the acoustic field. Con-
versely, classical wave methods such as FEM, BEM or FDTD give the possibility to
model interference effects, but their use is often restricted to very low frequencies due
to discretisation and the huge extension of the propagation domain.

The main goal of this thesis is to develop efficient wave methods for the acoustic
propagation modelling in extended urban areas, both in the frequency and time domain.
The proposed approach is based on a coupled modal–finite elements formulation. The
key idea is to consider the urban canyon as an open waveguide with a modal basis com-
posed of leaky modes, i.e., modes that radiate part of their energy into the atmosphere
as they propagate. The approach combines a multimodal description of the acoustic
field in the longitudinal direction and a finite elements computation of the transverse
eigenmodes. This coupled approach, which has been successfully implemented at the
scale of a single street, is extended in the present manuscript at a larger scale (the
neighbourhood scale), in order to model problems arising in propagation domains con-
taining many interconnected streets. A time domain version of the method, containing
only the least damped mode, is also proposed.

Using these methods, we investigate wave phenomena arising in specific urban con-
figurations, as forbidden frequency bands in periodic networks of interconnected streets,
and resonances in inner yards. It is found that, despite the presence of significant radia-
tive losses in the propagation medium, strong interference effects are still observed. Not
only this result highlights the relevance of a wave approach to describe accurately urban
acoustic fields at low frequencies, but it suggest the potential use of these phenomena
to control the acoustic propagation in urban environments.

The last part of this dissertation presents a preliminary study on the use of meta-
surfaces (surfaces decorated with an array of resonators) to improve the performance
of noise barriers. It is shown that, exciting resonances in these structures, it is possible
to achieve some unconventional behaviours, including negative angles of reflection and
low frequency sound absorption.
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