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Preliminary remarks

The first chapter of this thesis – Chapter 1 – is a summary, we assume that the
reader is familiar with quantum conductors and in particular with quantum point
contacts (QPCs); otherwise, an introduction to the quantum transport of electricity
is provided in Appendix A.

We use the acronyms defined in Table 1 and the symbol ‘,’ for the definition
physical or mathematical quantities and functions. The definition of some Greek
symbols may change1, nevertheless the right definition to use is generally obvious.

acronym definition
N-CK N-channel Kondo (with N = 1, 2...)
2DEG two-dimensional electron gas
CFT conformal field theory
DCB dynamical Coulomb blockade
FL Fermi liquid

FQHE fractional quantum Hall effect
MBE molecular beam epitaxy
NFL non-Fermi liquid
NRG numerical renormalization group
QCP quantum critical point
QHE quantum Hall effect
QPC quantum point contact
QPT quantum phase transition
SET single electron transistor
STM scanning tunneling microscope

Table 1: Definition of the acronyms

1For example, γ is generally γ , expC, with C ≈ 0.5772 the Euler’s constant. But sometimes
γ refers to a generic critical exponent.
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Chapter 1

Summary

This thesis reports electrical transport measurements of a tunable and characteri-
zable nano-device (shown in Fig. 1.1). Owing to its hybrid metal-semiconductor
structure and to multiple gates, this device provides a quantitative testbed to
strongly correlated and critical physics. It can be tuned to a regime where a few
independent electronic channels are strongly interacting with the ‘charge’ macro-
scopic quantum degrees of freedom of the metallic node (in purple in Fig. 1.1)
of the circuit. We used this sample to probe and to control the degree of charge
quantization on a metallic node, depending on its connection to other conductors.
The device can also be tuned to implement the multi-channel Kondo model and
perform reliable quantum simulations of this quantum many-body model. As
such, it provides an experimental testbed for some of the most powerful quantum
many-body techniques (the numerical renormalization group [131, 20, 113], Bethe
ansatz [117, 13], conformal field theory [116, 3, 4] or bosonization [39, 78, 43]).

We have observed good agreements between our experimental data and the
predicted universal power laws both near the strong coupling limit in the problem
of the charge quantization and in the vicinity of the quantum critical points of
the multi-channel Kondo effect. The crossover from these critical points reveals
intriguing physics, in particular at intermediate temperature. The approach de-
veloped in this thesis paves the way to further study of the tantalizing non-Fermi
liquids physics underlying the field of strongly correlated materials.

The remainder of this introductory chapter gives a quick preview of the results
reported in this thesis, with each section corresponding to a chapter. We start with a
description of our single-electron device and answer a long standing question on the
criterion of how the charge quantization is destroyed by the quantum fluctuations in
such a device. In the next section, we will see that this system can be mapped onto
the Kondo model using the ‘charge’ degrees of freedom of the circuit. Under the
renormalization process, its conductance is predicted to flow towards non-trivial
Kondo fixed points at low temperature. In the next and last section, we focus on the

1
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B 1 µm

QPC2

QPC3

QPC1

Vsw2

SW2

SW1

Figure 1.1: Coloredmicrograph of the sample withmeasurement schematics.
This figure shows the central ohmic contact (in purple) that redistributes the current
injected by the a.c. voltage sources (out of the image) into the chiral edge states
of the IQHE (red lines) through larger ohmic contacts (white circles) not shown
in the picture. The low frequency signals are measured using Lock-in amplifiers
(triangles). This sample includes three QPCs (in cyan) and two switch gates (in
orange) used for characterization. The value of the transmission of the QPC and the
state of the switch is controlled by the voltage sources that connect (black circles)
theses surface gates.

quantum critical scalings that occur when we purposely introduce perturbations
that are ‘relevant’ in the renormalization group sense.

1.1 Control of the charge quantization

A single-electron transistor in the strong coupling limit

The central piece of metal shown in purple in Fig. 1.1 is the main character of this
thesis. It will be called the island, since it is connected to the circuit by only a few
electronic channels. The geometry of the sample sets the typical charging energy
EC , e2/(2C) (with e the elementary charge and C the geometrical capacitance
of the island) required to add/remove an electron to/from the island. Single-
electron effects are thus important at temperatures and energies below this scale:
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kBT, eV � EC ≈ 25 µeV ≈ kB × 300mK.
The connection between the island and the electronic circuit (constituted of

large electronic reservoirs) can be adjusted through tunable QPCs (in cyan). Here
we consider only two QPCs (see Fig. 1.2a). When the transmissions of both left
and right QPCs are set to the tunnel regime τL,R � 1, the island is only weakly
connected to the surroundings and its charge is quantized in units of e. In this
limit, the device implements the well-known single-electron transistor (SET). The
number of charges on the island can be tuned separately by sweeping the voltage
Vg of a lateral gate (e.g. a characterization gate, in orange in Fig. 1.1).

τL

Vg

Q
τR

+V/2 -V/2

a Q

e

1 Ng

b

τ=0

=1τ

τ≪1
τ≪11-

Figure 1.2: Charge quantization in a single-electron device. a, Schematics
of the sample. The differential conductance GSET is measured by applying an a.c.
voltage bias to the device. In presence of charge quantization, this conductance
will show Coulomb oscillations with respect to a capacitively coupled gate Vg .
b, (adapted from [78]) The average charge Q on the island is plotted at zero-
temperature versus Ng , Vg/∆Vg (where ∆Vg is the period of the Coulomb
oscillations) for different connection strength τ (the transmission probability τ ,
τR , with τL = 0). The charge quantization completely disappears as soon as there
is one ballistic electronic channel connected to the island (τ = 1).

One would then observe Coulomb blockade oscillations of the conductance of
the device GSET(Vg) as current is allowed only when two successive charge states
of the island are degenerate in energy (up to thermal fluctuations, otherwise the
charge state is frozen and the current is blocked). The number of electrons on
the island is thus incremented by one after each peak of conductance shown in
Fig. 1.3a. In this figure, we see that the oscillations progressively vanish as the
transmission of a QPC tends to unity τ −→ 1. A more systematic study consists in
plotting the visibility of the oscillations ∆Q , (Gmax

SET −Gmin
SET)/(Gmax

SET +Gmin
SET) as a

function of τR. All of the traces obtained for different values of a fixed τL collapse
when the transmission becomes ballistic at τ = 1, and no Coulomb oscillation is
observed above this limit (see Fig. 1.3b).

It is known theoretically that quantum fluctuations of the charge smear the
charge quantization (even at zero temperature) [48]. In 1995, Matveev showed
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T
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∆
Q

0.0 0.5 1.0 1.5 2.0

Figure 1.3: Charge quantization versus connection strength at T ' 17 mK.
a, Conductance sweeps GSET(δVg) with a fixed τL = 0.24, and τR = 0.1, 0.6,
0.88, 0.98 and 1.5, from left to right respectively. b, Visibility of GSET oscillations
versus τR , with each set of symbols corresponding to a different QPCL set-point.

that quantization is completely destroyed in the ballistic limit when considering
an island with a continuous density of states (see Fig. 1.2b) [78]. In 1993, a
controversy arose regarding this criterion for the destruction of charge quantization,
as some experimentalists validated it [119] whereas others observed Coulomb
oscillations above the ballistic limit [100]. But these early experiments were
based on non-metallic islands with discrete density of states, and where the phase
coherence of the electrons could give rise to subtle mesoscopic effects [5]. The
design and the materials we used to fabricate our sample avoid any such coherent
effects, since when an electron enters the island, it stays there for much longer than
its quantum phase coherence time.
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Quantitative comparison with theory
Assuming a continuous density of state in the island and spinless1 electrons,
quantitative predictions can be established for this system in several limits. At
low temperature kBT � EC , we can compare the visibility ∆Q of the conductance
oscillations when approaching the ballistic limit τR −→ 1 with the quantitative
theory in two limits (strong coupling 1−τL � 1 [43] and asymmetric τL � 1 [80]).
We are able to characterize all the parameters (τL, τR, EC and T) independently,
and the quantitative agreement found in the strong coupling limit is therefore
established without any fitting parameters (see Fig. 1.4a).

b

0 50 100 150

0.1

1

10

T (mK)

(1
-

)-1
/2

τ L
∆
Q

(1
-

)-1
/2

τ R

:τ
L

(T≤47 mK)0.975

0.75

0.49

0.24

0.075

0.01 0.1 1

0.1

1

:

0.075
0.24
0.49
0.75
0.975
0.983

1-

∆
Q τL

τR

a

Figure 1.4: Charge quantization scaling near the ballistic point and its ex-
ponential suppression with temperature. a, The visibility ∆Q of the Coulomb
oscillations at T ≈ 17mK is displayed versus 1 − τR in a log-log scale, with dis-
tinct sets of symbols for the different QPCL set-points. Solid lines are quantitative
predictions (no fit parameters) derived assuming kBT � EC , 1 − τR � 1 and
either τL � 1 (top straight line) or 1 − τL � 1 (three bottom continuous lines).
The power law ∆Q ∝

√
1 − τR (straight dashed lines) is systematically observed for

1 − τR . 0.02, also at intermediate τL . b, Symbols display versus T , in semilog
scale, the rescaled data ∆Q/

√
(1 − τR)(1 − τL ), extracted in the regime of small

enough 1 − τR such that ∆Q ∝
√
1 − τR . Solid lines correspond to the quantitative

predictions in the quantum regime kBT � EC shown in a. The straight dashed
line displays an exponential decay close to predictions in the presence of strong
thermal fluctuations.

In the two limits, the theory predicts a
√
1 − τR dependence for the visibility

of the Coulomb oscillations. This power law behavior has been observed also for
intermediate transmissions of τL ∈ [0, 1]. At higher temperatures, this dependence
becomes completely universal on the full range τR,L ∈ [0, 1] (as indicated by the
collapse of all the τL data points in Fig. 1.4b). Moreover, in Fig. 1.4b, we note

1The spin degeneracy is lifted with a strong magnetic field.
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that the charge quantization (measured by ∆Q) is also exponentially suppressed
with the temperature T , as expected by the theory in presence of strong thermal
fluctuations kBT � EC/π

2 ([55] and references therein).

1.2 Observation of the multi-channel Kondo effect

The original Kondo model and some of its variations
In 1964, Kondo computed the contribution to the resistivity of the scattering of
conduction electrons by magnetic impurities in dilute alloys [62]. However, his
perturbative approach fails at low temperatures compared to the so-called Kondo
temperatureTK . This is a typical problem suited for the renormalization group the-
ory. Its first exact solution was found by Wilson using numerical renormalization
group [131].

0 x

Figure 1.5: Diagram explaining the Kondo model. The impurity S = 1/2 is
represented by a red arrow. The conduction electrons (blue arrows) are distributed
on a lattice. To simplify, the lattice is 1D. The antiferromagnetic interaction is
drawn as a squiggly green arrow on the impurity site.

The original Kondo model is illustrated in Fig. 1.5. It describes a magnetic
impurity (modeled by a spin #»

S , S = 1/2 throughout this thesis) that interacts
with a single band of conduction electrons (shown as a 1D lattice) through an
on-site local antiferromagnetic coupling J. At low temperature J is effectively
renormalized to J −→ ∞ [131]. In this limit, the impurity forms a singlet with an
electron, and this complete screening yields a simple Fermi liquid description [94].
Nozières and Blandin proposed a generalization of the model with N independent
electronic channels [93], which leads to non-Fermi liquid ground state at low tem-
perature in the overscreened case N > 2S. In the renormalization group picture,
the couplings Ji between the quantum impurity and each electronic channel are
effectively renormalized as the temperature is lowered [10]. At zero-temperature,
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they eventually reach a universal Kondo fixed point, which depends on the number
of channels N [93].

In our device, two successive charge states can be tuned (using Vg) to have the
same energy. The number of electrons on the island n or n + 1 can then play the
role of a quantum two-level system, or, in other words, of a pseudo-spin S = 1/2.
In 1991, Matveev demonstrated, in the weak coupling limit, the exact mapping
between the original ‘spin’ Kondo model and the Coulomb blockade that models
our system [79]. This mapping, which is also valid beyond the tunnel limit [78, 72],
involves the coupling between the Kondo ‘charge’ pseudo-spin and a localization
pseudo-spin of the electrons (either in or out of the island).

Observation of multi-channel Kondo effects and universal be-
haviors

The conductance Gi of each QPCwill be renormalized towards the ‘charge’ Kondo
fixed points at low temperature. In Fig. 1.6, when we tune all the transmissions to
be in use equal (τ , τ1 = τ3 and τ2 = 0 for two-channel (2CK); τ , τ1 = τ2 = τ3
for three-channel (3CK)) and the gate voltage to charge degeneracy (δVg = 0),
we observe that the conductance flows to the predicted ‘charge’ Kondo fixed
point (which is extremal G∗2CK = e2/h for two-channel and intermediate G∗3CK =

2 sin2(π/5)e2/h ≈ 0.691e2/h for three-channel) [135]. Note that these fixed points
are universal, i.e. they do not depend on anymicroscopic parameters (transmission
τ, charging energy EC , etc.).

The scaling and universal properties are inherent to renormalization [131].
In the Kondo model, the temperature evolution of any observable is a universal
function of the rescaled temperature T/TK , provided the temperature has been
lowered enough so that the renormalization has suppressed the influence of the
‘irrelevant’ perturbations [92]. Mitchell and co-workers have computed the full
universal curve of conductance G(T/TK ) (from G(T/TK � 1) ≈ 0 to G(T/TK �

1) ≈ G∗) for both the two- and three-channel ‘charge’ Kondo models [85, 51]. We
compare our experimental data to their exact numerical calculations in Fig. 1.7. Our
procedure is to rescale the temperature to match the point at base temperature with
the theoretical curve. We note that at least the three lowest temperature points are
in the universal regime as they follow the theoretical curve. This procedure works
on many orders of magnitude in T/TK , highlighting the outstanding tunability
of our sample. At higher temperatures, non-universal effects appear. In fact, this
crossover to a non-universal regime is fully explained by numerical renormalization
group calculations taking into account the finite charging energy EC . From this
rescaling inT/TK , one can also extract the relation between the Kondo temperature
TK and the unrenormalized coupling strength τ. In the insets of Fig. 1.7, we
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Figure 1.6: Renormalization towards the two- and three-channel ‘charge’
Kondo fixed point. For the same set of transmissions τ, the individual conduc-
tances at degeneracy δVg = 0 are plotted versus the temperature T ≈ {7.9, 9.5, 12,
18, 29, 40, 55, 75}mK in log-scale. a,When lowering the temperature, the conduc-
tance flows towards the 2CK fixed point (red thick line) for all the transmissions in
the case of two symmetric channels (τ1 ≈ τ3). b, With three symmetric channels,
it flows to G∗3CK (green thick line).

compare TK to the theories near the fixed points and in the tunnel regime.

1.3 Quantumphase transition inmulti-channelKondo
systems

Quantum criticality
The work on quantum phase transitions has been mainly motivated by one of the
most important unsolved problem in condensedmatter physics, which concerns the
complicated phase diagram of some strongly correlated materials. In particular,
the ‘strange metal’ phase from which the superconductivity of high-TC supercon-
ductors emerges at low temperature has attracted a lot of theoretical effort but
remains poorly understood (see [59] for a recent review and Fig. 1.8a). This phase
displays signatures of quantum criticality such as a non-Fermi liquid power law
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Figure 1.7: Comparison of the experimental data to the universal curves of
the conductance for the two- and two-channel ‘charge’ Kondo model. Here,
experimental data are displayed up toT = 29mKand some additional transmissions
are shown as compared to Fig. 1.6. Each set point at τ fixed is shifted horizontally
in the semi-log representation so that the lowest temperature point matches the
theoretical curve (solid black line). This defines a scaling temperatures TK (τ)
that are plotted in the insets for both the 2CK (a) and 3CK (b) configurations and
compared to theoretical predictions (colored lines). The blue lines in the tunnel
regime correspond to a perturbative theory [10, 43]. The colored dashed lines are
the predicted power laws for the conductance near the Kondo fixed points [43, 51].

of the resistivity versus temperature and a widening of the critical interval with
temperature.

In contrast to classical critical phenomena that occur at the critical temperature
TC of a second-order phase transition, quantum criticality originates from quantum
fluctuations that exist even at zero temperature at a quantum critical point. A
physical system is driven to quantum criticality thanks to a non-thermal parameter
g (e.g. the doping as in Fig. 1.8a, the pressure, or a gate voltage). It will exhibit
quantum criticality for a range of parameter that starts from g = gc at zero-
temperature, and which widens as a power law Tco ∝ (g − gc)γ, where γ is called
‘critical exponent’ and Tco is the crossover temperature below which the system
escapes quantum criticality (see Fig. 1.8b) [107, 125].

Despite the opportunity offered by tunable nano-devices for comparisons with
theory, the realizations of quantum criticality in such systems are rare [81, 82,
60]. Exact predictions exist for the overscreened Kondo fixed points, which
are known for their non-trivial critical exponents on various physical quantities
([3, 4] and references therein). In our ‘charge’ implementation, we can observe a
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Figure 1.8: Typical phase diagrams. a, (reproduced and simplified from [59])
Typical phase diagram of a copper oxide plotted versus hole doping. At low
temperature, depending on the hole doping, these systems display either an anti-
ferromagnetic order (AF, in blue), a spin order (green strips), a charge order (red
strips) or a d-wave superconducting order (d-SC, in green). A Fermi liquid is
obtained in the overdoped regime at low temperature. b, Typical phase diagram
displaying quantum criticality when the non-thermal parameter g is tuned around
the quantum critical point (QCP) at low temperature.

crossover from quantum criticality by either introducing a channel asymmetry on
the transmissions τ or by detuning from charge degeneracy δVg = 0.

Development of a quantum phase transition
In Fig. 1.9, we set δVg = 0, and we plot the conductance G versus temperature.
Each arrow points towards low temperatures and corresponds to a given configura-
tion (τ2; τ1 = τ3). This graph therefore provides a visualization of the three-channel
Kondo renormalization flow (with two channels set symmetric τ1 = τ3). Depend-
ing on the number of symmetric channels that share the largest bare connection τ
with the island, the individual conductances G flow towards one of the one- (blue
disk), two- (red disk) or three-channel (green disk) Kondo fixed points.

For symmetric transmission configurations τ1 = τ2 = τ3, along the diagonal,
the individual conductances G remain symmetric at all temperatures. However,
this setting is visibly critical since any initial asymmetry grows as the temperature
is lowered. This graph therefore provides a direct view on the development of a
quantum phase transition.

In the weak coupling regime τ1,2,3 � 1, where all the channels can be treated
independently and with a perturbative theory[10], an increase of the conductances
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Figure 1.9: Observation of the 3CK renormalization flow diagram. The
averaged conductance of G1 and G3 is plotted versus G2 at temperatures T ≈ {7.9,
9.5, 12, 18, 29, 40, 55}mK. The color of the arrows maps their orientation. The
uncertainty on the open symbols and dashed lines is smaller than 0.1 e2/h whereas
it is smaller than 0.05 e2/h for the solid symbols and lines. The Kondo fixed points
are indicated with colored dots (1CK in cyan, 2CK in red and 3CK in green).

is predicted [43]. The position of the one-channel fixed point at J∗1CK −→ ∞ in the
‘spin’ Kondo effect corresponds unexpectedly to G∗1CK = 0 for our device. This
yields the non-monotonic behaviors and the arrow crossings visible in the upper
part of the diagram (τ2 > τ1,3).

A remarkable overstepping of the quantum of conductance by the individ-
ual conductance of a single channel is also observed in the flow towards the
one-channel fixed point. This observation has been corroborated by the recent
numerical renormalization group calculations of A.K.Mitchell. Another impor-
tant feature of this diagram is the visualization of the crossover from the 3CK
non-Fermi liquid fixed point to the 2CK non-Fermi liquid fixed point.
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Crossing over from quantum criticality using an effective mag-
netic field
In this section, we set symmetric transmissions (either τ , τ1 = τ3 and τ2 = 0 or
τ , τ1 = τ2 = τ3). The fragile non-Fermi liquid quantum critical state obtained
at low temperature T � TK, EC is destroyed by detuning the device from charge
degeneracy. A non-zero δVg would favor one state of the charge pseudo-spin and
destroy the Kondo effect as an effective magnetic field [79]. This would drive the
system to a Fermi liquid state with a typical energy scale given by the crossover
temperature Tco (see Fig. 1.8b). This quantity is predicted to depend on δVg as a
power law Tco ∝ δV β(N )

g with a critical exponent β(N ) = (2 + N )/N [29].
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Figure 1.10: Crossover from quantum criticality when detuning from charge
degeneracy. A peak of conductance is shown at T ≈ {7.9, 9.5, 12, 18, 29, 40,
55}mK for a selected transmission τ close to the 2CK (in a) and the 3CK (in
b) fixed points. The solid lines are experimental data. For each graph a and
b, two scales are used: the raw plunger gate voltage δVg (left) and a rescaled
axis sin(π∆E/(2EC ))/(T/Tbase)1/β , with Tbase = 7.9mK (right). The conductance
adopts a universal behavior in the rescaled axis (except for the highest two temper-
atures). The Gthy gray dashed line in a shows the zero temperature prediction for
τ = 0.95.

Moreover, in the vicinity of the quantum critical point, Tco is the only energy
scale to consider, and the conductance is expected to follow a universal function of
T/Tco [102, 85]. The quantitative expression of Tco(∆E) with respect to the level
splitting2 ∆E have been computed by Furusaki and Matveev for the ‘charge’ 2CK
model for arbitrary ∆E (beyond the power law at ∆E � EC) [43]. In Fig. 1.10a,

2As explained above, δVg acts as a magnetic field. We define ∆E , 2ECδVg/∆Vg , where
EC/kB ≈ 300mK is the charging energy and ∆Vg ≈ 0.70mV is the period of the Coulomb
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we use this expression to rescale δVg and we observe that the conductance peaks
for different temperatures all collapse on the same universal curve. Knowing the
critical exponent β(N ), we have proposed a naive generalization of this rescaling
that yields a collapse of our 3CK conductance peaks (see Fig. 1.7b). We therefore
verify the predicted universal power law for the crossover temperature Tco at
small δVg and we demonstrate a quantitative agreement with the full theoretical
prediction of Furusaki and Matveev (dashed line in Fig. 1.10a) [43].

blockade oscillations (these two numerical values are determined by the geometry of the sample
and are independent of T or τ).
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Chapter 2

Charge quantization

In this chapter, we address the very basic problem of how the quantization of the
charge as a multiple of the elementary electron charge1 e evolves when an isolated
conductor called island is progressively connected to an electron reservoir.

In our experiment, the island consists of amicron-size piece ofmetal. When the
island is weakly connected to an electronic reservoir (e.g. by a tunnel junction), the
electrons wave functions remain localized on the island and the charge quantization
is preserved. As the connection to the reservoir is increased, due to quantum
fluctuations, the wave functions spread out of the island and the charge quantization
on the island is progressively reduced. Eventually, when the island is perfectly
connected to a reservoir the number of charge localized on the island can no longer
be defined: charge quantization is destroyed. Thus, having tunable and well-
characterized contacts to the island provides a knob to control the degree of charge
quantization. In practice this is achieved by using single electronic channels made
in a semiconductor.

In the first section of this chapter we will present previous experimental and
theoretical investigations on charge quantization. In particular, we will discuss
conflicting experiments regarding the criterion to destroy completely charge quan-
tization. The second section is devoted to the quantitative theoretical predictions
on the degree of charge quantization versus the connection strength and the temper-
ature. In the last section, wewill reprint our latest article on the charge quantization
issue.

1The value given by the NIST (http://physics.nist.gov/cgi-bin/cuu/Value?e) for this constant is:
e = −(1.602 176 620 8 ± 0.000 000 009 8) × 10−19 C.
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2.1 Previous investigations on charge quantization
The quantization of the charge on an isolated system is quite an old topic. After
the seminal experiment of Millikan in 1909, nanofabrication has allowed to build
the first single-electron practical devices in the eighties. Relying on charge quanti-
zation, these single-electronics devices have applications in metrology, for charge
detection or temperature measurement.

This section mixes the presentation of early experimental investigations and
theoretical explanation of these observations. It is divided in two subsection: first,
we discuss almost isolated systems; and second, we consider islands that are almost
perfectly connected to an electrical circuit.

2.1.1 Quantization of the charge in (almost) isolated systems
We quickly present Millikan’s experiment of isolated oil drops. Then we turn to
nano-devices embedding almost isolated parts called island and explain the criteria
to have a well quantized charge on the island.

Millikan’s oil drop experiment

The most famous experiment on charge quantization is probably the seminal work
of Millikan [84] led in 1909 where he measured speed of oil drops subject to
a constant electric field #»

E created between two electrodes. The electrostatic
force q

#»
E directly depends on the excess charge q of the oil drop (which can be

ionized with X-rays). It has been observed that the excess charge q is a multiple
of a fundamental constant e which can be estimated from the knowledge of the
viscosity of air and other parameters. In this experiment, the drops are isolated
systems that can carry only an integer number of excess charge (see Fig. 2.1).

Conditions for a well-quantized charge state in nanostructures

Single-electron effects can be observed in nanofabricated devices that contain
weakly connected parts called islands. The geometrical shape of an island de-
termines its capacitance C. The smaller the island, the harder it is to add (or
remove) an extra electron. Such an operation typically costs the charging energy
EC , e2/(2C). Charging effects are best visible when the thermal energy kBT
and the voltage bias Vdc are negligible compared to the charging energy EC:

kBT, eVdc � EC (2.1)

In principle, charging effects remain measurable up to the charging energy
EC . A simple criterion on the weakness of the connection to ensure that charge
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electrodes

oil drop

air high voltage

z

Figure 2.1: A charged oil drop falling between two electrodes. An oil drop (in
yellow) with five charges in excess (minus signs) is falling (see the vertical z-axis).
The observation of its motion between two electrodes (in gray) can give access to
the elementary charge e. This oil drop is an isolated system: its charge can only
vary by amounts e.

is quantized is found in the following lines. The connection strength can be
evaluated by the conductance G of the junction that connects the island to an
electron reservoir. The typical time to discharge the capacitance C through this
junction is tRC = (1/G)C. If the associated energy uncertainty ∆E ∼ h/tRC
becomes comparable to EC (the typical energy cost to increment the charge on the
island by one), then the charge state energy is ill-defined. For a well-defined island
charge, one needs ∆E ∼ h/tRC � EC = e2/(2C), where the capacitance C can be
simplified, and it comes:

G � GK , e2/h (2.2)

Charge quantization is therefore destroyed by two types of fluctuations: (i)
thermal fluctuation and (ii) quantum fluctuations.

Single electron transistor (SET)

The SET is a simple single-electron nano-device that consists of an island weakly
connected to a circuit through two tunnel junctions (see Fig. 2.2a). As in a usual
transistor, the conductance GSET through the device can be modulated thanks to a
voltage gate Vg. It has been extensively studied since its first realization in 1987
by Fulton and Dolan [42]. All the experiments we discuss in this section are based
on a SET-like geometry.
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Figure 2.2: Single electron transistor and Coulomb blockade oscillations. a,
Schematics of a SET. The device is d.c. biased with a voltage V . The excess charge
Q on the island (in red) is quantized at low energy for weak transmissions τL,R � 1
of the electronic channel (dotted red lines). The charge state of the island can be
tuned thanks to the voltage Vg applied on a gate coupled capacitively (Cg). b,
Theory predicts e-periodic oscillations of the conductance versus CgVg . This plot
is made in the linear regime of small voltage bias, T = 10mK, and EC = 300mK
(for details, see Fig. C.3). The number N of excess electrons on the island changes
by one at each peak. Instead ofVg , we will rather use Ng , CgVg/e, the continuous
control variable that tune the average number N of electron on the island (N is an
integer when τL,R � 1).

Appendix C explains the physics of the SET. In particular, a quantitative
description will be given, based on the perturbation theory (also known as the
‘orthodox theory’) that holds for G � GK . This theory predicts ‘Coulomb
blockade oscillations’ (see Fig. 2.2b) of the conductance versus a plunger gate
voltage Vg that are characteristic of charge quantization (the number of electron
localized on the island is incremented by one after each conductance peak).

The charge state of the island in SET can therefore be controlled at the single
electron level. This offers possibilities for practical applications. For instance
SETs can be used as sensitive electrometers (see [38, 8] where a SET is used to
probe the charge on a nearby island). Coulomb blockade in single-electron devices
can also be used to perform primary thermometry (see [19] or Appendix D)
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One should increase the conductance G of the connection between the island
and the circuit to observe a destruction of charge quantization of the island of a
SET. The intrinsic conductance of a junction can be increased by roughly two
means: either one increases the conductance of a single electronic channel or one
uses a wider tunnel junction (many tunnel channels in parallel, but none close
to perfect transmission). Joyez and co-workers [56] have explored the second
method with a metallic2 island. They observed that the charge on the island can be
quantized even when the conductance of many tunnel channels in parallel exceeds
the quantum of conductance GK . In this thesis, we focus on the first method, as
we will see that even a single channel at perfect transmission completely destroys
the charge quantization of a metallic island.

2.1.2 Coulomb blockade at almost perfect transmission

The question of Coulomb blockade close to perfect transmission has been ad-
dressed in some of the first implementations of SETs in the early nineties. How-
ever the criterion to completely destroy the quantization has been established in
1995 [78]. This subsection is divided into three parts: (i) we will discuss two
experiments with contradictory conclusions on the complete destruction of charge
quantization in the limit of a ballistic connection between the island and the cir-
cuit; (ii) we will present the theory that explain the two conclusions depending on
whether coherent effects are considered or not (iii) we will show a recent experi-
ment in presence of coherent effects where mesoscopic conductance oscillations
are clearly observed beyond the ballistic limit.

Controversy on the absence of charge quantization in the limit of a ballistic
connection between the island and the circuit

First of all, let me clarify that an electronic channel reaches the ‘ballistic’ limit
as soon as there is no backscattering of electrons. In general, the conductance
of such a channel is G = GK , the quantum of conductance. At zero magnetic
field, the conductance is quantized in units of 2×GK : because of spin degeneracy,
pairs of two identical channels participate to transport. In presence of fractional
quantum Hall effect, the ballistic limit is reached for a conductance G = νGK ,
where the filling factor e.g. ν = 1/3 can be lower than one. In other words, the
criterion is not about the conductance itself, but rather about the transmission τ of
the electronic channel defined as τ , G/Gballistic whereGballistic is the conductance
in the ballistic limit.

2The metallic character of the island is of great importance as it will be explained below.
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Kouwenhoven and co-workers studied charge quantization for different mag-
netic field when approaching the ballistic connection limit [66, 119]. Their sample
can be represented by the SET shown in Fig. 2.2a, but with a non-metallic island.
They have observed that Coulomb oscillations disappear as soon as the transmis-
sion of a channel becomes ballistic in the three regimes (at zero magnetic field,
under a strong magnetic field to lift the spin degeneracy and with very strong
magnetic field to reach FQHE with ν = 1/3). They have also observed that the
periodicity of the oscillations is independent of the magnetic field over the full
range (10% of variation over 12 T). This period is directly related to the geomet-
rical capacitance Cg (which does not change despite the compressible regions that
appear due to the QHE [25]).

In contrast, Pasquier and co-workers have measured the same kind of sample,
but they have observed Coulomb oscillations at zero magnetic field even beyond
the ballistic limit (up to τL + τR ≈ 3 × (2 × GK )/(2GK ), where τL and τR are the
transmission through the left and right QPC respectively) [100].

The reason why these two experiment have contradictory conclusions might
be explained by the theory of mesoscopic Coulomb blockade [5].

Coulomb blockade theory at the ballistic limit in presence or in absence of
mesoscopic coherent effects

Matveev has proposed a theory [78] in order to explain the destruction of charge
quantization observed in [119] when the transmission τ of a single channel through
the QPC becomes perfect τ −→ 1. He modeled the channel as a 1D conductor
and used the bosonization technique to demonstrate that the Hamiltonian does not
depend on the voltage gate Vg in the τ = 1 ballistic limit. Note that, at this point,
the Coulomb blockade problem is nonperturbative in the charging energy EC and
an exact treatment is needed [5]. At zero temperature, quantum fluctuations of
the charge are known to appear when progressively connecting the island to a
circuit [48] (see the dashed line in Fig. 2.3). Near the ballistic limit, Matveev
has computed the charge Q on the island averaged on the quantum fluctuations
(neglecting the thermal fluctuation) [78]:

〈Q〉 = eNg − γe/π × |r | sin 2πNg (2.3)

in the presence of a single (spinless) channel of small reflection coefficient
amplitude r ,

√
1 − τ � 1, and where the rescaled gate voltage Ng was defined

in Fig. 2.2b. This expression shows quantitatively how the degree of charge
quantization progressively reduces as r −→ 0 (see Fig. 2.3 for an illustration).

In his derivation, Matveev assumed that the mean energy level spacing δE in
the island was negligible (compared to kBT). In other words, he assumed that
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Figure 2.3: Destruction of charge quantization by quantum fluctuations at
zero temperature (reproduced from [78]). The average chargeQ is plotted versus
the gate voltage Ng , CgVg/e at zero temperature for several reflection amplitudes
r ,
√
1 − τ. At τ≪ 1, the island is almost isolated and Q is fully quantized (solid

thick line). With a small finite transmission τ � 1, quantum fluctuation smear the
steps (dashed line). The weak backscattering regime

√
1 − τ � 1 is described by

Eq. (2.3) (dash-dotted line). At perfect transmission τ = 1, no modulation persists
(thin line).

the density of state in the island was continuous. However, this is not exactly the
case in the two experiments we mentioned above. A comparison of several sample
characteristics is given in Table 2.1.

Aleiner and Glazman [5] have considered a finite level spacing δE and they
have found that coherence effects lead to a persistence of charge quantization even
in the ballistic limit τ = 1! Indeed, thewalls of the dot can reflect back the electrons
into the channel (see Fig. 2.4). This elastic process depends on the path of the
electron in dot. As for weak localization, interferences of electrons can modulate
conductance through the dot [8]. This coherent effect leads to oscillations of
the differential capacitance Cdiff , d 〈Q〉 /dVg that have the same period as the
‘usual’ Coulomb oscillations and an amplitude of

√
δE/EC for spinless electrons

and (δE/EC) ln2(δE/EC) for spin-half electrons.
These oscillations that may occur in quantum dots (islands with a discrete

density of state) even when they are open (connected to a lead with a channel of
ballistic transmission τ = 1) are called ‘mesoscopic Coulomb blockade’ oscilla-
tions. As they require phase coherence, they highly depend on temperature and
magnetic field.
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First author Tbase δE/kB EC/kB reference
Kouwenhoven 10mK 120mK 7.0K [66]

Pasquier 60mK 85mK 2.2K [100]
Crouch 75mK 400mK 2.7K [35]

Cronenwett 100mK 163mK 3.3K [34]
Amasha 13mK 31mK 1.3K [8]
Jezouin 17mK 0.2 µK 0.3K [55]

Table 2.1: Comparison of several experiment characteristics. Our experiment
(last line) based on a metallic island with a negligible δE is given for comparison.
Mesoscopic Coulomb blockade have been observed in all the listed experiments
except in Kouwenhoven’s one and in ours.

A

B

Figure 2.4: Mesoscopic effect in a quantum dot (reproduced from [5]). In
some experiments (not in ours), electrons can be coherently reflected back to
the electronic reservoir (on the left) leading to a modulation of the differential
capacitance that depends on the trajectory (e.g. A or B).

Mesoscopic Coulomb blockade observations

In principle, mesoscopic Coulomb blockade should have been observed in the
experiment of Kouwenhoven and co-workers [66]. Indeed, in the SET regime, they
have observed that the conductance through the two tunnel junctions (τ1, τ2 � 1)
in series was much larger (GSET ≈ 0.8GK ) than the classical serial conductance.
At low temperature T compared to the level spacing kBT � δE, the system enters
the quantum regime [65] where coherent effects are relevant. According to Aleiner
and Glazman [5], a possible reason why Kouwenhoven and co-workers have not
observed mesoscopic Coulomb blockade is that the shape of their quantum dot
might not be suitable to host the chaotic paths required by the theory.

After the experiment of Pasquier and co-workers [100], other teams have
observed a persistence of quantization in the limit of a ballistic channel connection
[35, 34, 8]. They have measured a temperature dependence on these Coulomb
oscillations. In [34] and [8], a strong dependence on the magnetic field have been
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Figure 2.5: Mesoscopic Coulomb blockade observation by Amasha and co-
workers [8]. For several magnetic field B, the conductance Gdot is plotted versus a
voltage gate Vn that controls the opening of the dot. In region A, the dot is partially
connected to the circuit; whereas is region B, the dot is open (an electronic channel
is fully transmitted). Conductance oscillations are observed in region B, they are
strongly affected by a finite magnetic field (in contrast to the ‘usual’ Coulomb
blockade oscillations observed in region A).

observed (see Fig. 2.5). These two dependences are characteristic of mesoscopic
phenomena as they involve the quantum phase of the electrons.

In our implementation, we use a metallic island where δE is six orders of
magnitude smaller than EC and thus avoid any mesoscopic Coulomb blockade.
That is why our sample specifically probes (usual) Coulomb blockade without
any coherent effect ‘artifact’. Theoretical predictions on how charge quantization
vanishes in this case is presented in the following section.

2.2 Theoretical predictions on the charge quantiza-
tion of a metallic island without coherent effect

In addition to avoid mesoscopic Coulomb blockade, considering a metallic island
without coherent effect has the advantage to simplify the problem for the theorists.
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In this section we will give some quantitative prediction on the conductance GSET
at zero voltage bias V = 0 (see Fig. 2.2a) in the quantum regime (low temperature
kBT � EC) in two limit cases: the asymmetric case τL � 1, 1 − τR � 1 and the
symmetric case 1 − τL,R � 1.

We will first explain how both the conductance GSET and the differential
capacitance Cdiff characterize the charge quantization. Then we will present the
predictions in the two limit cases (asymmetric and symmetric). For each case,
we will separate the low temperature quantum regime and the high temperature
regime. The latter regime where many charge states are thermally activated has
been treated by our collaborators I.P. Levkivskyi, E. Idrisov, E.V. Sukhorukov and
L.I. Glazman to explain our experimental data (shown in the next section). We
will see that all the predictions scales with reflection coefficient amplitude

√
1 − τ.

2.2.1 Transport versus thermodynamic properties

The quantized aspect of the charge on the island can be probed either through
transport or thermodynamic properties. The former consists in the measurement
of the conductance GSET of the elements QPCL-island-QPCR in series. The latter
is based on the differential capacitance Cdiff to the island.

We have not access to the differential capacitanceCdiff with our sample because
it requires an additional electrometer (for example, see [8] where two quantum dots
have been used: a big one as an island, and a small one as an electrometer). This
quantity Cdiff , d 〈Q〉 /dVg is directly related to the average charge 〈Q〉 on the
island. Note that a single lead can be used when studying Cdiff since the current
through the device is not considered when dealing with thermodynamic properties.

The e-periodic oscillations of the conductance GSET versus the plunger gate
Vg that we measured are also a clear signature of charge quantization. However, in
contrast withCdiff , the measure of GSET does not give a direct access to the average
excess charge Q on the island. Nonetheless, we will show that both GSET and Cdiff
have similar dependences on the relevant parameters. Moreover, the conductance
is important in the applications of single-electronics [37].

2.2.2 Asymmetric case τL � 1, 1 − τR � 1

Low temperatures kBT � EC

The asymmetric limit has been studied by Matveev when he showed that charge
quantization vanishes when an electronic channel connects ballistically the island
[79]. We can find the visibility of the oscillations of the differential capacitance
Cdiff from his expression of the average charge given in Eq. (2.3):
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∆Cdiff (τL � 1, 1 − τR � 1) ,
Cmax
diff − Cmin

diff
Cmax
diff + Cmin

diff
= 2γ

√
1 − τR (2.4)

where γ ≈ exp(0.5772) is the exponential of Euler’s constant. The quantitative
prediction for the serial conductance through the two asymmetric junctions is given
by (Equation 34 in [80]):

GSET(τL � 1, 1 − τR � 1, Ng) = τLGK ×
2π4T2

3γ2E2
C

[
1 − 2γξ

√
1 − τR cos(2πNg)

]

(2.5)
where ξ ≈ 1.59 is a numerical coefficient. This expression is valid only for

1 − τR � 1 (as one can see that the minimal value of the conductance in Eq. (2.5)
is strikingly incorrect, negative, already for τR ≤ 1 − 1/(2γξ)2 ≈ 0.97). The
visibility of the Coulomb blockade oscillations of the conductance comes directly
from the quantitative expression of GSET:

∆Q(τL � 1, 1 − τR � 1) ,
Gmax

SET − Gmin
SET

Gmax
SET + Gmin

SET
= 2γξ

√
1 − τR (2.6)

We see that in the case of asymmetric junctions, at low temperature T � EC ,
the visibility on the oscillations of the differential capacitance Cdiff is proportional
to the visibility on the conductance oscillations GSET: ∆Q = ξ∆Cdiff , as explicitly
pointed out by Yi and Kane in [134].

High temperature limit kBT � EC/π
2

At high temperatures kBT � EC , several charge states are populated. This
situation has not been considered by Matveev in [78]. However, his reasoning can
be extended to this case by averaging over theGibbs distribution of fluctuations (see
the Methods section of our article [55]). Our collaborators have then derived the
expression of the differential capacitance at high temperature, in the asymmetric
limit:

Cdiff (τL = 0, 1−τR � 1, Ng) ≈
e
∆Vg
−4

e
∆Vg

π2kBT
EC

exp
(
−
π2kBT

EC

) √
1 − τR cos(2πNg)

This expression has been derived using also [90], which is a general theory
not assuming 1 − τR � 1 at large temperatures kBT � EC/π

2. This expression
matches the prediction for an almost isolated island (τL,R � 1), just by taking the
limit

√
1 − τR −→ 1. The visibility on these Cdiff oscillations is
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∆Cdiff (τL = 0, 1 − τR � 1) ≈ 4
π2kBT

EC
exp

(
−
π2kBT

EC

) √
1 − τR, (2.7)

it is exponentially reduced at high temperatures and it depends as
√
1 − τR

with the transmission. The conductance in the asymmetric and high temperature
regime can be obtained starting from Eq. (2.5) in [43] or by using a specific method
(see the Methods section of our article [55] and the unpublished ref. [73] of our
collaborators). We get a visibility on GSET oscillations as:

∆Q(τL � 1, 1 − τR � 1) ≈ exp
(
−
π2kBT

EC

) √
1 − τR (2.8)

The same dependence on the transmission τR is predicted for the visibility
of both the Cdiff and GSET oscillations. And an exponential reduction with the
temperature is also expected at high temperature for the conductance oscillations.

2.2.3 Symmetric limit 1 − τL,R � 1
Low temperatures kBT � EC

The conductance in the strong coupling limit 1−τL,R � 1with two channels almost
perfectly transmitted has been studied by Furusaki and Matveev [43]. They have
derived the quantitative expression for the serial conductance (see Equation 38
obtained in [43] and Equation A9 for the T-linear term which is the leading-order
correction in kBT/EC):

GSET(1 − τL � 1,1 − τR � 1, Ng) = GK/2 ×
[
1−

γECΓ+(τL, τR, Ng)
π3kBT

ψ′
(
1/2 +

γECΓ+(τL, τR, Ng)
π3kBT

)
−
π3γkBT
16EC

× Γ−(τL, τR, Ng)
]

(2.9)

where we have replaced the original integral by the digamma function3 and
where

3We have verified numerically that
1
4T

∫ ∞

−∞

dE
1

cosh2(E/(2kBT ))

Γ2+(τL, τR, Ng )

E2 + Γ2+(τL, τR, Ng )
=

Γ+(τL, τR, Ng )
2πkBT

ψ ′
(
1/2 +

Γ+(τL, τR, Ng )
2πkBT

)
.
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Γ±(τL, τR, Ng) = (1 − τL) + (1 − τR) ± 2
√

(1 − τL)(1 − τR) cos(2πNg) (2.10)

The visibility of theCoulombblockade oscillations at low temperature kBT/EC �

1 and in the strong coupling reads:

∆Q(1 − τL,R � kBT/EC � 1) =
γEC

πkBT

√
(1 − τL)(1 − τR) (2.11)

The differential capacitance has been evaluated at low temperature in the strong
couping regime when first τL −→ 1 and then τR −→ 1 (Equation 41 in [71]):

Cdiff (1−τL � 1−τR � 1, Ng) =
e
∆Vg
−4γ

e
∆Vg

ln(1−τL)
√

(1 − τL)(1 − τR) cos(2πNg)

(2.12)
It yields a visibility on Cdiff oscillations as:

∆Cdiff (1 − τL � 1 − τR � 1) = 4γ ln(1 − τL)
√

(1 − τL)(1 − τR) (2.13)

In this regime also, a dependence in
√

(1 − τL)(1 − τR) is found for the visibility
on both theGSET andCdiff oscillations. However, a ‘log’ appears in the expressions
of ∆Cdiff .

Note that for exactly symmetric transmissions τ , τL = τR, the differential
capacitance diverges at the degeneracy point Ng = 0 (Equation 49 in [78] or
Equation 32 in [71]):

Cdiff (1 − τ � 1, Ng) =
e
∆Vg
− 4γ

e
∆Vg

ln
(
(1 − τ) sin(πNg)

)
× (1 − τ) cos(2πNg)

This divergence is due to the two-channel Kondo effect, which will be the topic
of Chapter 3. It disappears as soon as an asymmetry τL , τR is introduced [71].
This critical phenomenon will be discussed in Chapter 4.

High temperature regime kBT � EC/π
2

As for the asymmetric case, our collaborators have computed the conductance in
the high temperature regime. They have found an expression that gives a visibility
of:

∆Q(1 − τL,R � 1) ≈ exp
(
−
π2kBT

EC

) √
1 − τL

√
1 − τR (2.14)
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In this strong coupling regime also, we see that Coulomb blockade oscillations
on the conductance are exponentially reduced at high temperatures. The same
behavior is expected for the visibility of the differential capacitance oscillation (this
quantity has not been computed by our collaborators, but no interplay between the
channels will occur out of the quantum regime kBT � EC).

2.2.4 Universality in the high temperature regime
The predictions beyond the tunnel regime require advanced theoretical methods.
In particular, as we will see in Chapter 3, a reason is that the Coulomb blockade
with a metallic island and a few electronic channels can exhibit Kondo effect at
low temperature, depending on the gate voltage Vg.

The predictions we have presented above are based on the bosonization tech-
nique. Another method consists in using the instanton solution of Korshunov [63].
These instantons have been used in [110] to predict an exponential suppression
of the charge quantization with the temperature. This technique has been used
also by Nazarov to propose a general solution of the Coulomb blockade problem
beyond the tunnel limit [90].

His solution is presented for thermodynamic quantities (such as Cdiff) only.
The charging energy EC is shown to have effective modulations due to the gate
voltage Vg that scale as ẼC ∝ EC

∏
j
√
1 − τj , where the product is done on the

electronic channel index j. This expressions suggests that the suppression of the
charge quantization becomes universal when rescaled with respect to

√
1 − τ.

This prediction is not valid at low temperature4 as it does not predict the
log divergence on Cdiff for symmetric transmissions near the ballistic limit (see
Eq. (2.12) and Section 2.2.3).

2.3 Controlling charge quantization with quantum
fluctuations

We have just published our experimental data on the charge quantization of a
metallic island on August 4th 2016 in Nature journal (doi:10.1038/nature19072).
The text of the article is reprinted in this section. An additional figure (Fig. 2.6)
is given (as in the online version of the paper), where we show a quantitative
comparison of our experimental data with the predictions Eqs. (2.5) and (2.9).

The sample we use is described and characterized in details in Appendix B.

4Probably because of the large fluctuations of the phase at low temperature and
√
1 − τ � 1

that makes the instanton technique less accurate (private discussion with our collaborators).

https://doi.org/10.1038/nature19072
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Controlling charge quantization with quantum 
fluctuations
S. Jezouin1*, Z. Iftikhar1*, A. Anthore1, F. D. Parmentier1, U. Gennser1, A. Cavanna1, A. Ouerghi1, I. P. Levkivskyi2, E. Idrisov3, 
E. V. Sukhorukov3, L. I. Glazman4 & F. Pierre1

In 1909, Millikan showed that the charge of electrically isolated 
systems is quantized in units of the elementary electron charge e.  
Today, the persistence of charge quantization in small, weakly 
connected conductors allows for circuits in which single electrons 
are manipulated, with applications in, for example, metrology, 
detectors and thermometry1–5. However, as the connection 
strength is increased, the discreteness of charge is progressively 
reduced by quantum fluctuations. Here we report the full quantum 
control and characterization of charge quantization. By using 
semiconductor-based tunable elemental conduction channels to 
connect a micrometre-scale metallic island to a circuit, we explore 
the complete evolution of charge quantization while scanning the 
entire range of connection strengths, from a very weak (tunnel) 
to a perfect (ballistic) contact. We observe, when approaching the 
ballistic limit, that charge quantization is destroyed by quantum 
fluctuations, and scales as the square root of the residual probability 
for an electron to be reflected across the quantum channel; this 
scaling also applies beyond the different regimes of connection 
strength currently accessible to theory6–8. At increased temperatures, 
the thermal fluctuations result in an exponential suppression of 
charge quantization and in a universal square-root scaling, valid 
for all connection strengths, in agreement with expectations8. 
Besides being pertinent for the improvement of single-electron 
circuits and their applications, and for the metal–semiconductor 
hybrids relevant to topological quantum computing9, knowledge 
of the quantum laws of electricity will be essential for the quantum 
engineering of future nanoelectronic devices.

Some of the most fundamental theoretical predictions have so far 
eluded experimental confirmation. Charging effects are generally found 
to diminish as the conductances of the contacts are increased10–18; 
 however, although some measurements support the  fundamental 
prediction6–8 that charge quantization vanishes in the presence 
of one ballistic channel10–12,17, others conclude the opposite18–23. 
Unsurprisingly, the scaling behaviour predicted for the reduction of 
charge quantization6–8 has also remained elusive, until now, despite 
several attempts16,17.

A plausible explanation of the varying results regarding the charge 
quantization criteria is that, in the previously investigated devices, the 
quantum channels and the conductor were not completely distinct 
circuit elements. With a small island, in which the density of states is 
discrete, the non-local electronic wave functions merge the  connected 
channels and the island into a complex quantum conductor, where 
Coulomb interactions may play a non-trivial role. As a result,  charging 
effects can develop even if one of the conduction channels taken 
 separately is perfectly ballistic. This phenomenon is called mesoscopic 
Coulomb blockade18,22,24.

Investigating charge quantization at the most elemental single- 
channel level therefore requires tunable conduction channels linked 

to a conductor with a negligible electronic level spacing. Although this 
can be realized by making the island larger, its size must remain small 
enough to preserve charge quantization. Indeed, thermal fluctuations 
average out charge quantization unless the charging energy associated 
with the addition of one electron in the island—EC =  e2/2C, where the 
geometrical capacitance of the island C increases with size—is larger 
than the thermal energy kBT, with kB the Boltzmann constant and  
T the temperature1,2.

We have solved these conflicting requirements with the hybrid 
metal–semiconductor single-electron transistor (SET) shown in  
Fig. 1a, implementing the schematic circuit of Fig. 1b: a central  metallic 
island with a continuous density of states (coloured red in Fig. 1a, b) is 
connected to large electrodes (represented by white disks) through two 
Ga(Al)As quantum point contacts (QPCL,R) that emulate single- channel 
quantum conductors over the entire range of coupling strengths.

The metallic island, which is made of a metallic AuGeNi alloy, has 
a negligible electronic level spacing δ ≈  kB ×  0.2 μ K, five orders of 
 magnitude smaller than the base electronic temperature T ≈  17 mK. 
It is galvanically connected, by thermal annealing, to a 105-nm-deep, 
Ga(Al)As, high-mobility two-dimensional electron gas (2DEG; darker 
grey areas delimited by bright lines in Fig. 1a). Achieving an almost 
perfectly transparent metal–2DEG electrical contact is crucial to reach 
the ballistic channel limit. Remarkably, the reflection probability of 
electrons at the interface is below 0.05%.

The QPCs are located in the 2DEG and tuned by field effect with the 
voltage applied to capacitively coupled metallic split gates (coloured 
green in Fig. 1a; the top-right split gates that are coloured yellow are 
negatively biased to remove the 2DEG underneath). Besides tuning, 
the precise characterization of each QPC, independently, is necessary 
for the quantitative exploration of charge quantization versus 
 connection strength. However, in the SET configuration, the QPC 
 conductances are interconnected and renormalized by Coulomb 
 blockade. Moreover, only their series combination is accessible. To 
completely characterize QPCL,R, we implemented with adjacent gates 
(coloured blue in Fig. 1a) the on-chip switches shown in Fig. 1b. The 
measured quantities τ ≡ /G h eL,R L,R

qpc 2  (with h the Planck constant and 
GL,R

qpc the conductances of QPCL,R when switches are closed (inset of  
Fig. 1c)) directly give the ‘intrinsic’ (not renormalized by Coulomb 
blockade) electron transmission probabilities of the constitutive 
 quantum channels, which fully characterize the connection strength to 
the metallic island. As illustrated in Fig. 1c, τL(R) ≤  1 corresponds to a 
single (spin-polarized, see below) channel of transmission probability 
τL(R) across QPCL(R). For 1 <  τR ≤  2, there are two channels across 
QPCR—one fully ballistic and the other with transmission probability 
τR −  1. With this approach, we achieve an accuracy down to 0.1% near 
the ballistic limit.

The sample is immersed into a perpendicular magnetic field 
B ≈  4 T, which corresponds to the integer quantum Hall effect at filling 

1Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris Sud–Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité, 91120 Palaiseau, France. 2Institute for 
Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland. 3Département de Physique Théorique, Université de Genève, CH-1211 Genève, Switzerland. 4Department of Physics, Yale University, 
New Haven, Connecticut 06520, USA.
* These authors contributed equally to this work.
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factor ν =  2. In this regime, the electrical current propagates along two  
edge channels (shown as a single red line in Fig. 1a) in the direction 
indicated by arrows, which does not influence charge quantization (for 
a  specific discussion see Methods section ‘Conductance in the near-bal-
listic regime with strong thermal fluctuations’). The large Zeeman split-
ting results in the full separation between the successive openings of 
the two spin-polarized quantum channels across the QPCs (Fig. 1c).

Charge quantization in the central island is unequivocally evidenced 
by periodic oscillations of the SET differential conductance GSET (across 
QPCL–island–QPCR) when sweeping a capacitively coupled gate 
 voltage, which develop into Coulomb diamonds with d.c. bias voltage 
Vdc (Fig. 1d). With both QPCs in the tunnel regime, τL,R � 1, the span 
of the diamonds in Vdc gives the charging energy EC ≈  kB ×  0.3 K 
(C ≈  3.1 fF).

We first probe the evolution of charge quantization with  transmission 
probability directly from GSET raw periodic modulations. Figure 2a 

displays GSET measured at T ≈  17 mK and Vdc =  0 while sweeping 
the capacitively coupled gate voltage Vg (Fig. 1a), for QPCL fixed to 
τL =  0.24 and with each panel corresponding to a different QPCR  tuning 
(τR =  0.1, 0.6, 0.88, 0.98 and 1.5, from left to right). These raw data 
reveal the remarkable robustness of charge quantization to connec-
tion strength. At τR =  0.1 and τR =  0.6, the presence of sharp periodic 
peaks separated by intervals in which GSET ≈  0 signals an essentially 
unaltered charge quantization over the greater part of transmission 
probabilities. Although GSET(δ Vg) progressively evolves with increas-
ing τR <  1 into a sinusoid with non-zero minima, relatively important 
modulations of fixed (τR-independent) period persist very close to the 
ballistic limit, at τR =  0.98. In stark contrast, GSET is independent of 
Vg at τR =  1.5, confirming the predicted complete collapse of charge 
quantization in the presence of a fully ballistic channel. Note that GSET 
remains reduced by Coulomb interactions, even at τR =  1.5, as evi-
denced by the pronounced conductance dip at low Vdc (inset of Fig. 2b).  

Figure 1 | Tunable quantum connection to a metallic island. a, Coloured 
sample micrograph. A micrometre-scale metallic island (red) is connected 
to large electrodes (white circles) through two quantum point contacts 
(QPCs, green split gates) formed in a buried two-dimensional electron gas 
(2DEG; darker grey delimited by bright lines). The lateral gates (blue) 
implement short-circuit switches as shown in b. The yellow gates, tuned  
at Vg negative enough to deplete the 2DEG underneath, are capacitively 
coupled to the island and used to evidence charge quantization. In the 
applied field B ≈  4 T, the current propagates along two edge channels  
(red lines) in the direction indicated by arrows. b, Sample schematic; 
colours as in a; Q represents the excess charge that can accumulate on the 

metallic island. c, The ‘intrinsic’ (switch closed; see inset schematic) 
conductance GL,R

qpc  across QPCL,R (shown top-right and bottom left, 
respectively, in a) is shown versus split gate voltage V L,R

qpc  as black (L) and 
red (R) lines. Symbols indicate the set-points of QPCL used thereafter.  
The number and transmission probabilities of electronic channels through 
the QPC (pair of green triangles) are schematized for τR <  1and τR >  1:  
a dashed (solid) red line represents a partially (perfectly) transmitted 
channel. d, Coulomb diamond patterns in the device conductance GSET 
(larger shown brighter, from 0 in dark blue up to 0.13e2/h in white) 
measured versus gate (Vsw) and bias (Vdc) voltages for tunnel contacts 
τL,R � 1.
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Indeed, the so-called dynamical Coulomb blockade does not rely on 
a quantized island charge, but results from the discreteness of charge 
transfers across non-ballistic channels1,2.

The degree of charge quantization versus connection strength is 
characterized, separately from the dynamical Coulomb blockade renor-
malization of the channels, by focusing on the visibility of the periodic 
modulations Δ ≡( − )/( + )Q G G G GSET

max
SET
min

SET
max

SET
min , with ( )GSET

max min  the 
maximum (minimum) SET conductance over one gate-voltage period 
and, from now on, Vdc =  0. A visibility Δ Q =  1 (Δ Q =  0) signals a full 
(an absence of) charge quantization. Moreover, the visibility Δ Q is 
directly proportional to the charge oscillations of the island with gate 
voltage (that is, charge quantization) when one channel approaches the 
ballistic limit (for example, τR →  1)7,25–27. As put forward in ref. 26, this 
proportionality coefficient reduces to the numerical factor e/(2π  ×  1.59) 
for τL � 1 and kBT � EC.

Figure 2b shows Δ Q versus τR at T ≈  17 mK, with each set of symbols 
corresponding to a different tuning of the second QPC (τL ∈  {0.075, 
0.24, 0.49, 0.75, 0.975, 0.983}). The robustness of charge quantiza-
tion with the connection strength of one channel (τR) is established 
 independently of the second channel (τL), from the nearly constant  
Δ Q for τR  0.6. When further increasing τR, Δ Q noticeably 
 diminishes and systematically collapses to zero precisely at the ballistic 
critical point τR =  1. For τR ≥  1, in the presence of one ballistic channel,  
Δ Q remains perfectly null at experimental accuracy (see Methods for 
additional tests).

Power laws characterizing the scaling of charge quantization as 
τR →  1 are best revealed by plotting Δ Q versus the ‘distance’ from the 
ballistic critical point 1 −  τR >  0 on a log–log scale. As shown in  
Fig. 3, the T =  17 mK data (symbols) systematically vanish as τ−1 R  
(straight lines) for 1 −  τR  0.02.
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Figure 2 | Charge quantization versus connection strength at 
T ≈ 17 mK. a, Conductance sweeps GSET(δVg) with fixed τL =  0.24 and 
varying τR =  0.1, 0.6, 0.88, 0.98 and 1.5, from left to right, as indicated.  
b, Visibility of GSET oscillations Δ ≡ ( − )/( + )Q G G G GSET

max
SET
min

SET
max

SET
min  versus 

τR, with each set of symbols corresponding to a different QPCL set-point 
τL, as indicated, corresponding to those indicated by the matching symbols 

in Fig. 1c. Inset, dynamical Coulomb blockade renormalization of GSET 
versus d.c. voltage Vdc in the absence of charge quantization, at τL =  0.24 
and τR =  1.5. The error bars are the standard error on the mean value of  
Δ Q, obtained from the statistical uncertainty of about ten measurements 
of GSET (see Methods).
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Figure 3 | Charge quantization scaling near the ballistic critical point. 
The Δ Q data at T ≈  17 mK are displayed versus 1 −  τR on a log–log scale, 
with different symbols for the different QPCL set-points, as in Fig. 2. Solid 
lines are quantitative predictions (no fit parameters) derived assuming 
kBT � EC, 1 −  τR � 1 and either τL � 1 (top (black) line) or 1 −  τL � 1 
(bottom three (purple, green and orange) lines). The power law 

τΔ ∝ −Q 1 R  (straight, dashed lines) is systematically observed for 
1 −  τR  0.02 and at intermediate τL. The horizontal error bars arise from 
the dispersion of at least 40 transmission settings; the vertical error bars 
are calculated from the statistical uncertainty of about 10 measurements  
of one period of GSET (see Methods).
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The Coulomb blockade theory of electronic transport in the presence  
of a nearly ballistic channel (1 −  τR � 1) relies on the bosonization 
approach that was initially developed to address correlated electrons 
in one dimension. Quantitative predictions were obtained for kBT � EC 
and for a second channel in either the tunnel (τL � 1) or almost-bal-
listic (1 −  τL � 1) regime25,28. In both cases, Δ Q is expected to vanish as  

τ−1 R :

τ τ τΔ ( − )≈ . − ( )� � �Q k T E1 1; 1, 5 7 1 1R L B C R

τ τ τΔ




−





≈ . − −� �Q k T

E
E

k T
1 1 0 57 (1 )(1 ) (2)L,R

B

C

C

B
L R

Such a scaling, initially proposed in ref. 6, was also predicted for 
the gate-voltage modulation of thermodynamic quantities for 
multi- channel junctions using an extension8 of the instanton  
technique1,29.

The data establishes the τ−1 R  scaling for arbitrary τL ∈  [0, 1], 
beyond the tunnel and ballistic limits currently accessible to transport 
theory. The dashed lines in Fig. 3 display the asymptotic 
( τ− /� k T E1 L,R B C ), quantitative predictions of equation (2) for our 
completely characterized device at T =  17 mK, without fitting 
 parameters. The non-asymptotic Δ Q predictions (equation (1) for 
τL � 1; see Methods for 1 −  τL � 1) are shown versus 1 −  τR <  0.25 as 
solid lines. Data and quantitative predictions are indistinguishable  
for 1 −  τR  0.1 for τL =  0.983, τL =  0.975 and, more surprisingly, 
τL =  0.75. The  equation (1) prediction (black line in Fig. 3) remains 
noticeably (about 25%) above the τL =  0.075 data for 1 −  τR � 1. This 
numerical difference could result from the finite experimental T, 
because equation (1) is exact only at T =  0.

We now investigate the ways in which the combination of thermal 
and quantum fluctuations impacts the quantization of charge. As 
 temperature rises, the population of additional charge states is expected 
to average out charge quantization1,2. Figure 4a displays the measured 
Δ Q (symbols) versus 1 −  τR at different temperatures, from T =  17 mK 
(darker filling) to T =  166 mK (brighter filling), for the representative 
QPCL setting τL =  0.75. As naively expected, ΔQ decreases as  
T increases. In line with thermodynamic expectations8 (Methods), the 

τΔ ∝ −Q 1 R  scaling (straight lines) that originates from quantum 

fluctuations not only persists for increasing T, but extends over a 
 widening range of τR, up to the full-scale τR ∈  [0, 1].

The crossover towards this universal behaviour is established by 
comparing the rescaled visibility τΔ / −Q 1 L  for different τL settings 
with 1 −  τR. The symbols in Fig. 4b represent the rescaled data at 
T =  17 mK, T =  47 mK and T =  82 mK, with brighter filling at higher 
temperatures. As T increases, the scatter associated with the various τL 
values narrows. For T ≥  82 mK, the rescaled data collapse onto a single,  
universal (for all τL), straight line τ τΔ ∝ − −Q (1 )(1 )L R  over the  
full range τL,R ∈  [0, 1].

The temperature dependence is further characterized by plotting 
τ τΔ / − −Q (1 )(1 )L R  (determined at low enough 1 −  τR such that 
τΔ ∝ −Q 1 R ) versus temperature on a semi-log scale (Fig. 4c, 

 symbols). The kBT � EC prediction of equation (1) (equation (2)) is 
displayed as a black (green) solid line for T <  75 mK (T <  115 mK). We 
find for T ≥  82 mK (up to 166 mK, 2.8 ≤  π 2kBT/EC ≤  5.6) that the 
 different τL data points collapse onto the same exponential decay 
(dashed line in Fig. 4c): τ τΔ ≈ − − − . π /Q k T E(1 )(1 ) exp( 0 8 )L R

2
B C   .  

We have extended the Coulomb blockade theory for the conductance 
to include thermal fluctuations in the limits of tunnel or nearly ballistic 
channels (Methods). In the regime of strong thermal averaging,  
we predict τ τΔ ∝ − − −π /Q k T E(1 )(1 ) exp( )L R

2
B C (neglecting  

fac tors not exponential in T)—a dependence that is also expected for 
 thermodynamic properties8 (Methods)—in close agreement with the 
experimental findings regarding the effect of τL,R and T.

Although theoretical predictions for low-temperature  transport 
 currently apply to only the nearly ballistic and tunnel limits, we  anticipate 
that recent advances, including those in numerical  renormalization 
group methods30, will open up access to the full range of connection 
strengths. Our results may therefore provide a test-bed for strongly 
correlated electron-theoretical methods, for which non- perturbative 
techniques are ubiquitous. The understanding and on-demand control 
of charge quantization in mesoscopic circuits might lead to applica-
tions beyond the field of single electronics. The central role of charge 
quantization in the different quantum laws of electricity with  coherent 
conductors indicates that direct quantum engineering could have impli-
cations for future nanoelectronics, such as  semiconductor–metal hybrid 
devices that are crucial for  developing topologically  protected  quantum 
bits9. The hybrid implementation we have presented also  enables  further 
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Figure 4 | Crossover to a universal charge quantization scaling as 
temperature is increased. a, Symbols display Δ Q versus 1 −  τR at 
τL =  0.75 and for T ≈  17 mK, 32 mK, 47 mK, 82 mK, 119 mK and 166 mK, 
from top to bottom. The τR range over which τΔ ∝ −Q 1 R  (straight, 
dashed lines) extends up to the full interval τR ∈  [0, 1] when increasing T. 
b, The rescaled τΔ / −Q 1 L  is shown versus 1 −  τR, with a different set of 
symbols corresponding to different QPCL set-points as in c. Solid lines 
separate the data at T ≈  17 mK (top, darker filling), T ≈  47 mK (middle) 
and T ≈  82 mK (bottom, brighter filling). At T =  82 mK, all the data 
collapse onto a single universal curve τ τΔ ∝ − −Q (1 )(1 )L R . c, Symbols 

display the fully rescaled data τ τΔ / ( − )( − )Q 1 1L R  versus T on semi-log 
scale, extracted in the regime in which 1 −  τR is small enough that 

τΔ ∝ −Q 1 R ; data for τL =  0.975 are plotted only for T ≤  47 mK. 
Horizontal error bars represent the experimental temperature uncertainty 
at T =  17 ±  4 mK and T =  32 ±  1 mK. Solid lines are the quantitative 
predictions in the quantum regime kBT � EC, given by equation (1) (black, 
horizontal) and equation (2) (green, curved). The straight dashed line 
displays an exponential decay close to predictions in the presence of strong 
thermal fluctuations (see text).
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fundamental exploration,  including of charge  quantization with corre-
lated electrons such as in the  multi-channel Kondo regime and/or with 
fractionally charged anyonic quasiparticles.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 2.6: Conductance measurements versus quantitative predictions Di-
rect GSET(δVg ) comparison at T = 17mK between data (symbols) and predictions
(solid lines, gray areas correspond to the temperature uncertainty of ±4mK) in the
two limits addressed by theory (Eq. (2.5) for τL ≈ 0 (top panels), Eq. (2.9) for
τL ≈ 1 (bottom panels)).

2.4 Conclusion
The use of a hybrid metal-semiconductor device allowed us to probe and control
the degree of charge quantization in the metallic nodes of mesoscopic circuits with
an unprecedented accuracy. We first verified that charge quantization is completely
destroyed as soon as a ballistic channel connects the metallic island/node to the
circuit.

At low temperature we compared our experimental data to the quantitative
theory in the two known limits (τL � 1 and 1 − τR � 1 called ‘asymmetric’;
1−τL,R � 1 called ‘symmetric’) and we observed a quantitative agreement, within
the error bars in the symmetric strong coupling limit. In these two known limits, the
visibility on the Coulomb oscillations of the conductance was predicted to scale as
√
1 − τR, we actually observed such a scaling for all intermediate transmissions 0 <

τL < 1 in the low temperature quantum regime. This
√
1 − τ scaling is expected

by the theory at high temperatures kBT � EC/π
2 as well as the exponential

suppression of quantization with temperature that we observed. Moreover, at high
temperature, as expected by theory, the degree of charge quantization adopts a fully
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universal behavior whatever 0 < τL,R < 1, when rescaled with
√
1 − τL

√
1 − τR.
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Chapter 3

Observation of the multi-channel
‘charge’ Kondo effect

This chapter is divided in three sections. The first one gives an introduction to
the multi-channel Kondo effect, which occurs when a local spin is antiferromag-
netically coupled with multiple electron continua. It has become central to study
non-Fermi liquid physics, but its experimental observations remained mostly elu-
sive. A powerful implementation called ‘charge’ Kondo effect will be explained
in the second section. The charge model involves ‘charge’ degrees of freedom
instead of ‘spin’. The community was doubtful about an experimental realization
of this model since it requires apparently contradicting design specifications. This
was resolved by implementing the ‘charge’ Kondo model with a hybrid metal-
semiconductor device, and gave us access to the rich multi-channel Kondo physics
that will be presented in the last section.

3.1 TheKondomodel: a testbed for correlatedphysics
The simple Kondo model has attracted a lot of interest because of the associated
rich correlated physics. In its original (one-channel) version, it involves a single
bath of conduction electrons that tries to screen a magnetic impurity. This model
has developed into a testbed for the many-body theoretical methods, in particular
the renormalization group. In this picture, as the temperature is lowered, the
parameters of the model effectively renormalize to eventually reach universal fixed
points, which do not depend on microscopic details.

This renormalization flow takes place on a characteristic temperature called
the Kondo temperature TK . Although at T ∼ TK the one-channel Kondo model
involving conduction electrons interacting with a spin-half impurity constitute a
many-body problem, at lower temperatures T � TK , the system behave as a Fermi
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liquid because the impurity is screened.
In an attempt to describe real metals, Nozières and Blandin proposed a variant

of the original model where the conduction electrons carry multiple ‘flavors’ that
account for additional degrees of freedom. When the number of flavors is larger
than twice the spin of the impurity, the impurity is overscreened. This situation
results in an antiferromagnetically coupled residual spin on the impurity site; and
hence, in a “residual” Kondo effect. As the Kondo impurity is never fully screened,
whatever the temperature, a Fermi liquid behavior is never recovered. Themultiple
channel/flavor Kondo model therefore gives rise to non-Fermi liquid behaviors.

The first part of this section deals with the original Kondo model (where
only a single channel is considered) whereas the second part will be about the
multi-channel Kondo model.

3.1.1 The original Kondo model
This part starts with a description of the model. Then several solutions will be
given, following the historical theoretical developments, in order to eventually get
a good understanding of the model. We will finally present some experimental
realizations in the realm of nano-devices.

The Kondo model and its solution in the perturbative regime

The original model was used by Kondo in 1964 [62] to explain a minimum in the
‘resistivity versus temperature’ curve of some dilute magnetic alloys (for instance
AuFe: gold metal with small amounts of iron impurities). In normal metals, the
main contribution to the resistivity is the electron-phonon scattering, a contribution
that decreases with the temperature. At zero temperature, the phonon population is
zero and the finite residual resistivity is explained by the scattering with the defects
of the metal. In contrast, the Kondo model reproduces the actual experimental
observations1 of a logarithmic increase of the resistivity at low temperature due to
the scattering by magnetic impurities.

The Hamiltonian of the model is [62]:

HK =
∑
#»
k ,σ

ε #»
k

c†#»
k ,σ

c #»
k ,σ
+ J

#»
S ·

∑
#»
k ,

#»

k ′,σ,σ′

c†#»
k ,σ

(
#»0 ) #»s σσ′ c #»

k ′,σ′
(

#»0 ) (3.1)

The first term corresponds to the kinetic energy of the conduction electrons
while the second one describes the scattering with a magnetic impurity of spin #»

S
localized at the origin ( #»0 ). The strength of the interaction between the impurity #»

S

1The first observations were made in the 30’s, for a review see [118].
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and the conduction electrons is set by the exchange coupling J. The c #»
k ,σ

(c†#»
k ,σ

)

are operators that annihilate (create) a conduction electron with momentum #»

k and
spin σ, and #»s is a vector of the Pauli matrices.

0 x

Figure 3.1: Diagram explaining the Kondo model. The impurity S = 1/2 is
represented by a red arrow. The conduction electrons (blue arrows) are distributed
on a lattice. To simplify, the lattice is 1D. The antiferromagnetic interaction is
drawn as a squiggly green arrow located on the impurity site.

In the Kondo Hamiltonian, the coupling term acts only on the site of the
impurity (located by convention at the origin #»0 , see Fig. 3.1). This coupling is
called ‘ferromagnetic’ when J < 0, in which case the energy HK is lower when
the spin of the electron on the impurity site is parallel to #»

S . We will rather be
interested in the opposite case, J > 0, of an ‘antiferromagnetic’ coupling. In this
thesis we will only consider the case of a spin-half impurity, S = 1/2. Moreover,
while the Eq. (3.1) describes an ‘isotropic’ Kondo effect, we will also discuss the
‘anisotropic’ case where the coupling along an axis (say Jz) is different from the
other ones (J⊥ , Jx = Jy).

Note also that the impurity states #»
S are degenerate; breaking the degeneracy

by applying a magnetic field h (say along the z-axis) will generate a term in hSz
in HK because one of the two projections of #»

S will be favored. However, having
a degenerate impurity is essential to obtain a fully developed Kondo effect.

Assuming J is small, Kondo used a perturbation theory to calculate the resis-
tivity due to the scattering with the impurity #»

S [62]. Extending the calculation to
the third order in perturbation led him to the following expression:

R(T ) = R0

[
1 − 2J ρ log

(
kBT
D

)]
(3.2)

where R0 is a constant, ρ is the density of states and D is a high energy
cutoff. This expression was supposed to remain small (as it has been derived using
a perturbation theory), but it diverges at T ∼ 0. Moreover, such a divergence
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has not been observed experimentally. Actually, Kondo himself was aware that
this expression is not valid at low temperature compared to the so-called Kondo
temperature: kBTK ∼ D exp(−1/J ρ).

Although TK has been initially introduced to delimit the validity of the per-
turbation theory, it will play an important role in this chapter. Indeed it contains
all the microscopic details of the model, which is fully determined by this unique
parameter. Results expressed in T/TK will be universal in the sense that any ob-
servable from any experiment should behave identically when plotted with this
rescaled temperature.

Poor man’s scaling

Actually, Kondo succeeded to explain the intriguing feature of the ‘resistivity
vs temperature’ curves observed in the 30’s... but that is just the beginning of
the story! Indeed, the complete understanding of the model and, in particular, the
problem ofwhat happens around and belowTK has fascinated theorists (even "more
than is justified by its experimental significance" according to Wilson [131]).

The key idea is renormalization. If we incorporate the log term into J in
Eq. (3.2), we could say that the exchange coupling is effectively renormalized2 to
bigger values as the temperature decreases. This concept is actually even more
general. Anderson has proposed a poor man’s scaling consisting in a renormaliza-
tion of the Hamiltonian to take into account a reduction of the energy bandwidth
of the problem [10]. This derivation also is not rigorous, but it allowed Anderson
to claim that the coupling J flows towards infinitely large values J −→ ∞ in the
antiferromagnetic3 case.

The fact that J actually flows to infinity or converges to an intermediate fixed
point is not obvious. Going to the next order in Anderson’s derivation gives an
intermediate fixed point, but this is an artifact [46]. The reliable proof that J flows
to infinity has been given by Wilson’s numerical calculations [131].

The complete solutions

The log divergence in the expression of the resistivity computed by Kondo is a
signature of a lack of characteristic energy (Kondo had to sum the contribution of
the possible processes on the full range of energies with the same weight). This is
typical of some problems of quantum field theory or (classical) critical phenomena
where renormalization group theory is of great help.

2Everything happens as if the value of J was changing; but note that the true value of the
exchange coupling never changes, it is only effectively renormalized. We will then distinguish the
‘bare’ value J∞ from ‘renormalized’ value J (both are equal before renormalization).

3It flows to zero in the ferromagnetic case, this case can be solved easily [10, 46].
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Wilson has implemented an efficient numerical version of the renormalization
and solved the Kondo problem [131]. The key idea of his iterative algorithm is to
use a logarithmic discretization to capture all the physics of the problem. Note that
this not a perturbative method: the result will be exact provided the discretization
step is fine enough and the algorithm has converged.

Using this numerical technique, Wilson was able to compute the impurity
magnetic susceptibility and its specific heat. But his major result was the demon-
stration that there is a unique stable fixed point in the one-channel Kondo model:
J −→ ∞.

Other exact solutions have been found for the Kondo model by the Bethe-
ansatz technique [12, 123]. A partial solution consists in a mapping of the Kondo
model on the resonant-level model; at a particular value the anisotropic coupling
Jz known as the Toulouse point [115], the interaction term of the resonant-level
model vanishes and the problem becomes trivial [9] (see also [46]).

A "Fermi-liquid" description at low temperature

Based on the fact that the antiferromagnetic coupling J to the impurity #»
S flows to

infinity, Nozières proposed a basic explanation of the physics at low temperature
[94]. At zero temperature, the ground state of HK is simply formedwith an electron
trapped by the impurity, because the coupling with the impurity is infinite. The
remaining electrons are free to visit the other sites of the lattice (except the one of
the impurity which remains occupied by a trapped electron).

The impurity and its trapped electron form a rigid singlet complex S′ = 0. The
second term of HK vanishes when one considers the effective spinless impurity.
One eventually gets a Fermi liquid and can, for instance, determine the resistivity
or the impurity magnetic susceptibility at low temperature [94].

We have a complete understanding of the one-channel Kondo problem on the
theoretical point of view: at low temperatures it is described by the Fermi liquid the-
ory and at high temperatures the perturbation theory holds. The crossover between
these two regimes appears around the Kondo temperature T ∼ TK . At these inter-
mediate temperatures, the situation is complicated; however, more sophisticated
techniques exist (in particular numerical renormalization). Let us now briefly
discuss experimental investigations of the Kondo effect at the nano/micrometer
scale.

Observation of Kondo effect due to a single localized magnetic impurity

There has been a revival of Kondo effect studies [64] as a result of the development
of new experimental techniques. In practice, we are now able to explore the Kondo



42 CHAPTER 3. MULTI-CHANNEL KONDO EFFECT

effect due to a well-characterized single impurity, allowing for stringent tests of
the theoretical many-body methods.

The most direct example is probably the measurement of a localized magnetic
impurity with an STM [76, 74]. In reference [76], some cobalt atoms have been
deposited on the surface of a clean crystalline gold (111). Since cobalt is magnetic
and gold is not, CoAu alloys were known to exhibit Kondo effect. Here the
magnetic impurities are at the surface. They are probed with the aid of the STM
tip. The microscope is first used to get the topography of the sample and localize
the cobalt atoms. When the tip is put close to an impurity, a peak4 is observed
in the differential conductance versus voltage bias. This signature of the Kondo
effect appears only in the vicinity of the impurity and at temperature below TK . In
ref. [76], the Kondo temperature is deduced from a fit of the conductance peak to
a model.

Madhavan and co-workers [76] have obtained a Kondo temperature (TK ≈

70K) much lower than the one measured in bulk CoAu alloys (TK > 300K).
Indeed, the coupling of the impurity to the conduction electrons is weaker in their
sample with impurities on the surface. This experiment is a direct observation of
the Kondo effect, but one might be frustrated because this is just ‘a single picture’
as the coupling is fixed. To further understand this effect, one wants ‘a movie’ of
how the Kondo effect develops depending on the coupling strength. For such a
program, one needs tunable devices.

Kondo effect in tunable nano-devices

Quantum dots can be fabricated by confining a 2DEG in a small region. Such a
0D structure has discrete levels, and one can populate each level with electrons.
A quantum dot can therefore be seen as an artificial atom. The idea in references
[49, 33] is to use the two degenerate spin states of a quantum dot (when it contains
an odd number of electron) to observe Kondo effect.

In these experiments, a quantum dot connects two leads (like in a Single
electron transistor) and the conductance is measured through the dot (see Fig. 3.2).
In contrast to the usual Kondo effect (where it is the resistivity which increases
at low temperature), here, the conductance increases at lower temperature [64].
This inverted behavior for the quantum dot comes from the fact that, in general,
conduction is not allowed through the dot at low temperature because of Coulomb
blockade (when no level of the dot is tuned to the Fermi energy). However, in the
presence of the Kondo effect, the electrons in the two leads jointly try to make
a singlet with the spin of the dot, thus coupling the two leads and increasing the
conductance across the quantum dot [49, 33].

4The shape of the peak is modified by a Coulomb interaction, but this is well understood [76].
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Figure 3.2: Diagram of a quantum dot connected to two leads. A quantum dot
formed in a 2DEG (in gray) is connected to two leads through QPCs. The energy
in the discrete levels of the dot can be tuned thanks to the gate Vg .

The demonstration that this increase in the conductance as the temperature is
lowered is indeed due to a Kondo effect is that it happens only when the number of
electrons in the dot is an odd number. When there is an even number of electrons
on the dot, the total quantum dot spin of the ground state is zero, whereas in the
odd case it is S = ±1/2.

Figure 3.3: Scaling of the conductance G in T/TK (reproduced from [120,
121]). A, Traces of the conductance G versus the lateral gate voltage Vgl for
temperatures ranging from T = 15mK (in black) to 900mK (in red). B, The
conductance is plotted versus temperature for selected values of Vgl (the symbols
correspond to A). Red lines are fits to empirical law. In the inset, the temperature
is rescaled and a universal behavior is observed.

Two years after these pioneer works, in 2000, van der Wiel and co-workers
[121] reported an important result (see Fig. 3.3). They measured the conductance
versus temperatureGε0 (T ) for several settings of ε0, the energy of the last occupied
level in the quantum dot with respect to the Fermi energy (ε0 can be tuned thanks to
the lateral gate Vgl). They then fitted these data to an empirical expression (in red)
involving a characteristic temperature called TK . When plotting these curves using
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a rescaled temperature T/TK (ε0), they observed that some of the curves collapsed
onto a single curve. Thanks to a tunable device, van der Wiel and co-workers
were therefore been able to check a major feature of the Kondo effect: its universal
behavior.

3.1.2 The multi-channel Kondo model
The original Kondo model shows interesting features, such as renormalization and
(consequently) universal behaviors. However, the impurity is perfectly screened at
low temperature leading to a trivial situation. But if one considers more electronic
channels (or flavors), the impurity may be overscreened giving rise to non-Fermi
behaviors.

In this subsection, we will start with the definition of the multi-channel Kondo
model. Then we will explain the existence of a fixed point at finite coupling J
when the number of channels N is larger than twice the spin of the impurity:
N > 2S. This fixed point exhibits fascinating non-Fermi liquid behaviors. This
will be followed by a short discussion on strongly correlated materials. And we
will finally present the first experimental observations of the multi-channel Kondo
effect.

The multi-channel model

In order to described the Kondo effect in real metals, Nozières and Blandin have
proposed a generalization of the original model called the ‘multi-channel Kondo
model’ [93]. This model involves N channels of conduction, whereas the original
model was only considering a single channel. Each channel of conduction is
independent, just as if the electrons were carrying a flavor (e.g. the orbital degree
of freedom). An electron of each flavor can visit each site of the lattice. In
particular the impurity site can be occupied by N electrons. As we will soon see,
this leads to a completely different qualitative description of the ground state at low
temperature. Let me first introduce the Hamiltonian of the multi-channel Kondo
model [93]:

HN−CK =
N∑

a=1




∑
#»
k ,σ

ε #»
k

c†#»
k aσ

c #»
k aσ
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#»
S ·

∑
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#»

k ′,σ,σ′

c†#»
k aσ

(
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k ′aσ′
(

#»0 )


(3.3)

The two models are identical except for the channel index a, in this model. In
particular, the original model is obtained if N = 1. We can refer to it as ‘1CK’,
while ‘NCK’ will refer to the N-channel Kondo. Notice that each channel is
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coupled to the impurity S and the channels are not coupled one to another. The
coupling of each channel Ja may be different.

Intermediate fixed point

In the 1CK antiferromagnetic model, even the smallest bare value of J∞ , 0 will
eventually be renormalized to infinity. It means that J −→ ∞ is a stable fixed point
while J = 0 is unstable.

The position of the fixed points in the multi-channel Kondo model strongly
depends on the number of channels. Nozières and Blandin [93] have predicted
the existence of a fixed point at finite coupling when the number of channels is
larger than twice the value of the spin: N > 2S. To illustrate their argument, let
us consider our spin-half impurity S = 1/2 in the two-channel Kondo model.

First, when J1,2 are small, a perturbative approach holds since T � TK . The
2CKeffect essentially corresponds to twice the 1CKeffect. Indeed, as each channel
weakly screens the Kondo impurity, both J1 and J2 are renormalized independently
to larger values.

Second, let us consider the situation where J1 = J2 , J2CK are infinitely
large. In this limit, the impurity traps as many electrons as possible (i.e. the
number of trapped electrons equals the number of channels N = 2, see Fig. 3.4).
The total spin on the impurity site S′ = S − N/2 is not a singlet in the 2CK
case: the impurity is overscreened. This situation can be modeled with a new
antiferromagnetic Kondo effect between S′ and the conduction electrons with a
weak effective coupling J′2CK. We know that such a fixed point is unstable5 (just
as J = 0 was unstable in the 1CK model).

In the 2CK model, both J2CK −→ ∞ and J2CK = 0 are therefore unstable.
Hence, there should be an intermediate fixed point towards which the symmetric
couplings J1 = J2 are renormalized as the temperature is lowered. This is in
contrast with the 1CK model, where the unique stable fixed point is J1CK −→ ∞.

Non-Fermi liquid ground state

The ground state of the 2CK intermediate fixed point is qualitatively different
from the 1CK fixed point. In the latter case the impurity is completely screened,
this yields a non-magnetic impurity which interacts weakly with the conduction
electron at T � TK . On the other hand, for the 2CK, the impurity is overscreened:
The net spin on the impurity site never vanishes, and at low temperature, there

5In the underscreened case N < 2S, the residual effective weak coupling to S′ is ferromagnetic,
the fixed point Junderscreened −→ ∞ is therefore stable. This case has been realized in recent
experiments [106, 98], however it is not supposed to lead to a non-Fermi liquid ground state (but
rather to a ‘singular’ Fermi liquid one [83]).
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0 x

Figure 3.4: Overscreened impurity in the 2CK model. The impurity traps 2
electrons, one of each channel (blue and orange). This complex (encircled with
a black line) has a residual spin, in contrast to the 1CK model. The impurity is
overscreened, and this situation is unstable.

are still virtual hoppings of electrons of each channel that compete to screen the
effective impurity. This nontrivial ground state has some exotic properties; for
instance, the impurity has a finite entropy at zero temperature that is equal to
ln(2)/2 ([39] and references therein).

The properties of this fixed point have been evaluated using several methods
(renormalization group [93, 30] or more recently [86, 20], Bethe-ansatz [13, 117]
and CFT [116, 3, 4]). As for the original Kondo model, the key quantities to
determine are the resistivity, the magnetic susceptibility and the specific heat of
the impurity. The exotic properties appear when the number of channel is bigger
than twice the impurity spin: N > 2S. The 2CK is the simplest model that
realizes an overscreened impurity, and hence, it has become a prototype to study
non-Fermi liquid behaviors. Indeed both the spin susceptibility of the impurity χ
and its specific heat coefficient Cimp/T diverge logarithmically (see Bethe-ansatz
and conformal field theory techniques references above and also [39, 111]).

Affleck and Ludwig have used CFT techniques to compute the zero-energy
amplitude of the single-particle scattering off the impurity [4]. Their expression
takes the spin S of the impurity and the number of channels N as parameters. For
S = 1/2, this amplitude is equal to 1 for N = 1, which means that the scattering
of a single particle on the Kondo impurity in the T −→ 0 limit simply amounts
to a phase shift [18]. In contrast, this amplitude is smaller than 1 for N > 1,
which means that many body collisions remain important even as T −→ 0 in stark
contrast to a Fermi liquid description of free quasiparticles [4, 29, 18].

Emergence of exotic quasiparticles

Majorana fermions are hypothetical spin-half particles predicted by Ettore Majo-
rana to be their own antiparticles. The investigations onMajorana fermions concern
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fundamental research in both particle physics and condensed matter physics [130].
The motivation in the latter field comes from the proposal [105, 61] that, in some
particular geometries, the exchange of Majorana fermions involves topological
non-commutative properties that could be used to build a fault-tolerant quantum
computer [89, 1].

The low-energy collective excitations at the 2CK quantum critical point can be
theoretically modeled with Majoranas. Indeed, using the same idea as Toulouse
[115], Emery and Kivelson have shown that at the 2CK fixed point the real part of
the electronic excitations decouples, leading to a freeMajorana fermion [39, 46, 82]
(see also [29, 27, 26]). One can heremention that the 3CKfixed pointmight involve
Fibonacci anyons rather than Majorana fermions6.

Let me emphasize that the conditions for these exotic quasiparticles to emerge
in the present multi-channel Kondo effect practical implementations require fine-
tuning (low temperature T � TK , fully degenerate quantum impurity and no
channel symmetry perturbation) in contrast to the robust topological properties
required for fault-tolerant quantum computation. These emerging particles can
probably not be used for quantum computation.

Kondo effect in some strongly correlated materials

The ongoing research on some strongly correlated materials and in particular high
critical temperature (TC) superconductor is quite intense. The standard BCS theory
sets an upper limit forTC around 30K. This limit has been exceeded first in 1986 in
a material based on copper oxide [15]. To date, the record is TC = 135K in normal
conditions. The experimental progress raises the hope of practical realization at
room temperature. For a recent review on the high-temperature superconductivity
in copper oxides, see [59].

Another member in the family of strongly correlated materials are the heavy
fermion compounds. In these materials, localized magnetic moments are forming
a ‘Kondo-lattice’. Heavy fermion compounds can also show non-Fermi liquid
physics and superconductivity (up to TC ≈ 20K). The physics in the Kondo-
lattices involves a subtle interplay between, on the one hand the Kondo interaction
of the conduction electrons with the localized moments, and on the other hand an
RKKY interaction between these moments (for a recent review on heavy fermion
compounds, see [44]).

Quantum phase transition

What we have discussed so far when dealing with the 2CK overscreened model
was the case of two symmetric couplings J1 = J2. Let us now consider a channel

6Private discussion with A.K.Mitchell; the proposal is from L. Fritz.
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asymmetry.
When we introduce an asymmetry between the bare exchange couplings, say

J1∞ > J2∞, the strongest coupled channel (here channel #1) will screen the im-
purity at low temperature [40] (see Fig. 3.5). The ground state will be similar to
the 1CK model: a singlet is formed between an electron of channel #1 and the
impurity, and all the other conduction electrons are free. It means that a channel
asymmetry in the 2CK model will lead to a Fermi liquid ground state, while it was
non-Fermi liquid in the symmetric case.

J1

J2
∞

0 ∞

LM

2CK

1CK

1CK

Figure 3.5: Flow diagram of the 2CK model (reproduced from [126]). The
arrows are pointing towards low temperatures. This diagram shows the renormal-
ization of the exchange coupling Ji of each channel. One can see the finite coupling
2CK fixed point and the 1CK fixed points (at infinity). ‘LM’ is the local-moment
fixed point of an uncoupled impurity (J1 = J2 = 0).

Any finite initial difference between the bare couplings will diverge under
the renormalization process [2, 40]. This critical behavior is a quantum phase
transition.

The importance of the 2CK model is partly due to the non-Fermi liquid behav-
iors and their link with strongly correlated materials and partly due to the richness
of the physics of quantum phase transitions. The latter point will be the topic of
Chapter 4.

First observation of the two-channel Kondo effect

Despite the fact that the multi-channel Kondo model was originally elaborated
to describe the Kondo effect in real metals (with orbital degrees of freedom),
no clear evidence of non-Fermi liquid behaviors have been observed in dilute
magnetic alloys [40]. The reason for this is probably that there is nothing in these
basic systems that forbids a channel asymmetry. A practical application of the
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multi-channel Kondo model came to the fore in the mid-nineties, with a two-level
tunneling system [103].

In this experiment the conductance of a point contact between two pieces of
metal have been measured. The point contact acts as a two-level system. The
tunneling of electrons through this kind of system have been predicted to show
Kondo effect, indeed the spin of the impurity can be mapped onto the two-level
system [124].

This implementation can succeed in preserving the channel symmetry, and a
non-Fermi liquid power law has been observed for the conductance versus temper-
ature or voltage bias, G(T,V ). Moreover, a rescaling of the data shows a universal
behavior that was predicted by the theory.

However, the device is not tunable since one can neither change the size of the
constriction of the point contact nor the symmetry between the channels. The latter
point is important in order to observe a crossover from the non-Fermi liquid to the
Fermi liquid physics (quantum phase transition). Moreover, the 2CK interpretation
of these results is controversial since the authors of ref. [133] propose another
interpretation [104]. For a recent clarification, based on a 2CK model, see [14].

Multi-channel Kondo effect in tunable nano-devices

Wehave seen that quantum dots are good systemswithwhich to control the original
Kondo effect. To implement themultichannel version, one needs independent baths
of electron interacting with the quantum dot. This is very challenging, not on a
nano-fabrication point of view but rather on the sample design.

1 µm

Large dot

Left
Lead

Right
Lead

quantum
dot

Figure 3.6: Micrograph of the sample used by Potok and co-workers [101].
The ‘Left’ and the ’Right’ leads (in blue) constitute one channel. The large quantum
dot (in red) is another independent channel. The quantum dot is at their meeting
point (indicated with a green arrow).

In the previous design, two leads were connecting a quantum dot. Each lead
is connected to a voltage source and therefore constitutes a bath of electrons.
However, since electrons are passing quantum coherently through the dot, there
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is a connection between the two baths. This does not implement the 2CK but
the 1CK model because the two baths of electrons are not independent. Oreg and
Goldhaber-Gordon have proposed to add a large quantum dot in the original design
[96]. The two first leads will constitute the first bath while the large dot will be the
second one (see Fig. 3.6). Side gates are tuned in order to forbid charge transfer
to the large dot thanks to Coulomb blockade. The two baths are thus independent
and this system can be tuned to non-Fermi liquid.

This design has been implemented by the team of D.Goldhaber-Gordon to
observe 2CK effect [101, 60]. In the first article, they havemeasured the non-Fermi
liquid power law expected [96, 102]. In the second article they have studied the
crossover from non-Fermi to Fermi liquid (when breaking the symmetry between
the two channels). Their results are in good agreement with the joined NRG
calculations. However, the non-metallic character of the large dot introduces a
cutoff for the Kondo scaling physics because of the energy level spacing in this dot
(which is finite in practice, but should be negligible in theory). The other main
limitation of this observation is the absence of quantitative characterization of the
Kondo parameters. In this chapter we demonstrate the two- and three-channel
Kondo effect based on an idea proposed by Matveev and Glazman in the early
nineties and which allows for the perfect knowledge of the Kondo parameters
[48, 79].

3.2 The ‘charge’ implementation of theKondomodel

The Kondo model has different implementations. Indeed, one basically needs a
two-level system degenerate in energy, in interaction with N continua. But neither
the two-level system need necessarily to be based on spin degrees of freedom, nor
the continua need to be of fermionic nature! It then exists a plethora of Kondo
effects: even a qubit in interaction with a dissipative environment is a Kondo-type
system [125, 70].

In this section, we will consider the ‘charge’ Kondo model, where the degrees
of freedom are the charge states of a metallic island weakly coupled to N electrodes
with single-mode junctions. Our sample is exactly described by this model which
exactly maps onto the multi-channel Kondo model.

We will first explain the analogy between the ‘spin’ and the ‘charge’ Kondo
implementation, and then we will give some theoretical predictions for the latter
model. At the end of this section, we will discuss the practical implementation of
the model.
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3.2.1 Mapping of the Coulomb blockade Hamiltonian onto the
Kondo model

In 1991, Matveev [79] drew an analogy between the problem of a metallic island
weakly connected to a massive electrode and the multi-channel Kondo model.
An exact correspondence between the Hamiltonian of these two problems was
established, provided the validity of a few underlying hypotheses.

In this subsection, we will present the ingredients needed to map the two
problems by first considering a single channel. Then we will show that it can be
naturally extended to the multi-channel model. We will draw the correspondence
between the parameters of each model and give a simple picture that explains the
analogy. We will finally show that this mapping goes beyond the tunnel limit
condition that was used in its derivation.

A piece of metal close to degenerate charge states

Let us first consider a metallic island connected to a massive electrode through
a single electronic channel only (see Fig. 3.7). The number of electrons on the
island can be changed thanks to a lateral gateVg (like in a single electron transistor).
Close to the degeneracy point δVg = 0 between two charge states of the island7
Q = 0 and Q = e, the Hamiltonian takes the following form [79]:

H =
∑
k,α

εkc†kαckα (P̂0 + P̂1) + e δVg P̂1 + t
∑
k,k ′

(c†k1ck ′0P̂0 + c†k ′0ck1P̂1) (3.4)

where t is the tunneling probability, α gives the position of the created /
annihilated electron: α = +1/2 means on the island and α = −1/2 means in the
electrode. The operators P̂β are projectors on the eigensubspace of the charge
operator Q̂, which can take two eigenvalues βe with β = 0 or 1 (see below).

In this Hamiltonian, the first term is the sum of the kinetic energies of the
electrons on the island and on the electrode, but limited to the states with Q = 0
or Q = 1, because we have assumed that we are close to degeneracy eδVg � EC
(other charges states are thus not populated). The second term is the work done by
the lateral gate. The last term stands for the tunneling processes: the first term of
the parenthesis acts only if Q = 0, in which case it annihilates an electron of the
electrode and creates one in the island; similarly, the second term transfers a charge
e from the island to the electrode. One can easily generalize this Hamiltonian to
a version with two electrodes, which will accurately describe a SET close to
degeneracy.

7Matveev considers a metallic island, which therefore contains a macroscopic number of
electrons. The charge Q we are considering is the charge in excess.
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Figure 3.7: Quantum fluctuation of the charge of a metallic island. Amassive
electrode (in violet) can exchange single electrons with metallic island (in pink)
through a single electronic channel made in a 2DEG with a QPC (in the IQHE
regime). The plunger gateVg can be tuned to bring the state with n or n+1 electrons
on the island to the same energy (the island is then at ‘charge degeneracy’).

Mapping onto the Kondo model

One can note the similarity of the Coulomb blockade Hamiltonian and the one of
the Kondo effect Eq. (3.1). Matveev transformed this Hamiltonian and used Pauli
matrices to rewrite it in the form of the anisotropic (Jz , Jx = Jy , J⊥) Kondo
model:

H =
∑
k,α

εkc†kαckα − 2hSz +
∑

k,k ′,α,α′
J⊥(σx Sx + σySy)αα′ck ′α′ckα (3.5)

where h is a magnetic field along the z-axis. Let us emphasize here that the
‘spin’ α involved in this mapping is not the true spin σ discussed in the previous
Kondo models (the original and the multi-channel). We call this a ‘pseudo-spin’:
it can take only two values as it refers to the position of the electron (either on
the island or outside). The impurity #»

S and location #»α pseudo-spins are thus
necessarily equal to ±1/2.

A simple picture based on pseudo-spins explains this mapping. Indeed, an
electron that enters the island flips both the location pseudo-spin α = ±1/2 and
the impurity pseudo-spin S = ±1/2. This implements the Kondo process quite
naively, with an exchange coupling J directly related to the tunneling amplitude t
of the Coulomb blockade model.

This implementation of the Kondo effect will be called the ‘charge’ Kondo
model, in contrast to the original (which we be referred as the ‘spin’ Kondo
model). The degrees of freedom involved in each model are of different nature
(charge and spin), but both describe the same Kondo effect. The major advantage
of this implementation is the natural access it gives to the multi-channel Kondo
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model as explained below.

A natural implementation of the multi-channel Kondo model

So far we have considered a single-mode junction between the electrode and the
island. However, several electronic channels could participate. There are basically
three ways to increase the number of channels: (i) to consider the true spin of the
electron and say that two identical channels are connecting the island, (ii) to use
a wider junction that allows more transverse modes, (iii) to add more electrodes
with single-mode junctions.

All these options are modeled identically because electronic channels are as-
sumed independent in the Landauer-Büttiker formalism. One has just to sum over
the number N of channels to get the Coulomb blockade or the ‘charge’ Kondo
Hamiltonian:

H =

N∑
a=1

∑
k,α

εkac†kaαckaα (P̂0 + P̂1) + e δVg P̂1 + ta

∑
k,k ′

(c†ka1ck ′a0P̂0 + c†k ′a0cka1P̂1)

H =

N∑
a=1

∑
k,α

εkac†kaαckaα − 2hSz +
∑

k,k ′,α,α′
Ja⊥(σx Sx + σySy)αα′ck ′aα′ckaα

Thus, there is a correspondence between the parameters of each model. This
is summarized in Table 3.1.

‘spin’ Kondo model ‘charge’ Kondo model
impurity spin S = ±1/2 charge state Q = 0 or e
electrons spin σ = {↑, ↓} electron position {in, out of} the island
Kondo channel a = 1, ..., N electronic channel 1, ..., N

exchange coupling J tunneling probability t
magnetic field h gate voltage δVg

Table 3.1: Correspondence between the ‘spin’ and the ‘charge’ Kondo models

The channel symmetry is an important issue in themulti-channel Kondomodel.
One needs tomaster the connection of each individual channel to be able to observe
the non-Fermi liquid behaviors associated with an overscreened impurity. The
option (ii) is thus not suitable. In the option (i) the two (true) spins are identically
connected to the island (t↑ = t↓), and the symmetry of the two Kondo channels is
thus guaranteed by construction.

However, the option (iii) is more generic. If one can tune manually each
electronic channel to get them symmetric, one will naturally access to the N-
channelKondo effect. Moreover, one can break the symmetry between the channels
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and may observe signatures of the expected quantum phase transition. This is
actually the option we have used in our experiments.

General validity of the ‘charge’ Kondo model

One may have noticed two disadvantages of the ‘charge’ Kondo implementation
compared to its original version: (i) the mapping has been made for low tunneling
amplitudes t only and (ii) the equivalent exchange coupling is anisotropic by
construction (Jz = 0 in the ‘charge’ Kondo Hamiltonian of Eq. (3.5)).

Firstly, the validity of the mapping goes beyond the tunnel limit8 τ � 1, as
shown in ref. [78]. In this article, Matveev studied the same problem of the
charge quantum fluctuations on a piece of metal coupled to large electrode, but in
the opposite limit of an almost perfectly transmitted channel (weak backscattering
1 − τ � 1). He found a logarithmic divergence of the differential capacitance of
the island when approaching the degeneracy δVg = 0. Note that the differential
capacitance, Cdiff = ∂Q/∂Vg, in the ‘charge’ Kondo model corresponds to the
magnetic susceptibility, χ = ∂M/∂h, of the impurity in the ‘spin’ Kondo model.
His calculations do not require the analogy with the Kondo model, they are rather
based on the bosonization technique, and the same logarithmic divergence is
found in the tunnel case. This result motivated Matveev [78] to claim that the
mapping between the two models is not only valid in the tunnel limit but on the
full transmission range τ ∈ [0, 1].

This prediction has been demonstrated numerically by Lebanon and co-workers
[72]. They have implemented the Coulomb blockade Hamiltonian with a true spin
(that plays the role of two symmetric channels) and they have observed a 2CK
effect on the capacitance at degeneracy for different values of tρ (where ρ is a
constant density of state) over the full transmission range.

Secondly, the anisotropy of the exchange coupling in the Kondo model is
known to be ‘irrelevant’ for S = 1/2 [2]. In the renormalization group language
[58, 132, 131], an ‘irrelevant’ observable is an observable which flows to weaker
values under the renormalization process. This means that the results found using
an anisotropic model are not less general since this perturbation will reduce under
renormalization.

General requirements to implement the ‘charge’ Kondo model

In the scope of a practical implementation, let me list the requirements to observe
the ‘charge’ Kondo effect:

8With our practical implementation in the QHE regime, a single channel is transmitted through
the junction below τ = 1. In the tunnel regime, one can identify the transmission with the tunneling
probability in this problem τ = t2 � 1.
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(i) continuous density of states in the island (negligible level spacing δE �
kBT), which is necessary to map the electrons localization onto a pseudo-
spin;

(ii) low temperature and voltage bias compared to the charging energy:
kBT, eV � EC , necessary to reduce the charge state to a pseudo-spin;

(iii) negligible energy dependence of the transmission τ(E) on the range ex-
plored experimentally |E | < EC , to avoid additional complications (this can
effectively lower the energy bandwidth).

3.2.2 Theoretical predictions for the ‘charge’ Kondo model
We are interested in theoretical predictions to compare with our experimental
observations. The main quantity we will deal with is the conductance G per
electronic channel connecting the metallic island9. As we have already discussed
in Chapter 2, there is a quantitative prediction in the case of two channels almost
perfectly connected. This case corresponds to the strong coupling limit of the
‘charge’ 2CK model.

We need predictions for the two- and three-channel ‘charge’ Kondo model.
The conductance G∗ of each of the symmetric channels at the fixed point has been
derived in the general N-CK ‘charge’ Kondo model, with N > 2. As far as I know,
there is no prediction for the 1CK, but we will propose a naive guess based on a
relation between the exchange coupling J and the transmission τ.

Afterwards we will focus on the power law of the conductance versus tempera-
ture near the fixed point, |G−G∗ |(T ) ∝ (T/TK )γ for the 2- and 3-CK. This scaling
depends on the transmission τ of the (symmetric) channels, with TK ∼ EC/δτ

1/γ,
where δτ = |τ − τC | and τC is the bare transmission that corresponds to the fixed
point G∗.

The channel conductance and fixed points in the ‘charge’ Kondo effect

As explained when discussing the multi-channel Kondo model: knowing the
position of the fixed point is a crucial and difficult issue. However, Yi and Kane
found an expression that gives the conductance G∗ at the fixed point of the N-
channel ‘charge’ Kondo model, for all N > 2 [135]!

G∗N−CK/GK = 2 sin2
π

2 + N
(3.6)

9In this chapter, we will consider the individual conductance G of each QPC and not the serial
conductance GSET through the whole device as in Chapter 2. For instance, with two symmetric
channels G , G1 = G2, the serial conductance is GSET = G1G2/(G1 + G2) = G/2.
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This formula agrees with the cases N = 2 and N = 4 that had already been
treated in ref. [43]. Table 3.2 summarizes the position of the fixed point for the
first values of the ‘charge’ N-channel Kondo model.

N G∗
NCK/GK Reference

1 0 ?
2 1 [43, 135]
3 2 sin2(π/5) ≈ 0.691 [135]
4 1/2 [43, 135]

Table 3.2: Fixed point of the N-channel ‘charge’ Kondo model

The prediction for the 1CK case is not certain, it is based on a argument
explained just below.

A naive reasoning to get G∗1CK using a J (τ) relation

In the mapping of Matveev [79], the exchange coupling J of the Kondo model is
associated with the tunneling matrix element t of the Coulomb blockade model
by J = t. But the link between the tunneling element t and the transmission τ of
a single channel10 is not monotonous. Hence, the relation between the exchange
coupling J and the transmission τ of a channel is non-trivial.

In the absence of charging effect (EC = 0), the transmission τ is a non-
monotonous function of ρt (where ρ is the averaged density of charge in the island
and in the lead) [72]:

τ = 4
(πtρ)2[

1 + (πtρ)2
]2 for EC = 0 (3.7)

A naive reasoning to obtain G∗1CK is to substitute t by J in this expression, and
evaluate it at the ‘spin’ 1CK fixed point J −→ ∞. The fixed point for the ‘charge’
1CK model derived from this naive reasoning is thus G∗1CK = 0.

Prediction for the conductance in the tunnel limit τ1,2 � 1 in the 2CK model

Furusaki and Matveev have studied analytically the 2CK model. We focus on
their prediction for symmetric coupling of the two channels (since the asymmetry
between the channels is a relevant perturbation that will drive the system away
from the 2CK fixed point [93, 2]).

The two limits treated analytically are those for τ1 = τ2 , τ � 1 and 1−τ � 1.
The first one is the tunnel case; the second is the strong coupling case.

10In practice realized with a QPC in the QHE regime.



3.2. THE ‘CHARGE’ IMPLEMENTATION OF THE KONDO MODEL 57

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

πtρ

τ

Figure 3.8: Plot of Eq. (3.7). The transmission τ tends to zero at large t. The
maximum τ = 1 is reached at t = 1/(πρ).

In the tunnel case, both channels are first renormalized independently because
the couplings are initially weak. The conductance of each channel thus initially
increases logarithmically as in the 1CK [43]:

Gτ�1 =
1
2

π2

ln2(T/TK )
GK (3.8)

with the scaling Kondo temperature:

T τ�1
K '

EC

kB
exp

(
−π2

2 τ

)
(3.9)

Power law of the conductance versus temperature near the 2CK fixed point

In the strong coupling regime, the quantitative expression of the conductance has
been calculated [43]. We already used this expression for the charge quantization
in Chapter 2. Here we just focus on the correction proportional to T that vanishes
at low temperature at degeneracy (when approaching the 2CK fixed point):

Gδτ�1
2CK = GK × *

,
1 −

T
2T δτ�1

K2CK
(τ)

+
-

(3.10)

where we have put all the parameters and constants in a coefficient that defines
a scaling Kondo temperature in the strong coupling regime δτ , |1 − τ | � 1:

kBT δτ�1
K2CK

(τ) =
2EC

π3γδτ
(3.11)

All the expressions of scaling temperatures we have given for the 2CK model
increase with τ. Indeed, a higher τ set the initial value closer to the fixed point
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(which is reached at the strong coupling limit τ = 1), the effective temperature
T/TK (τ) should then be lower.

The strong coupling expression T δτ�1
K2CK

diverges at τ ∼ 1. Setting τ close to
this critical value gives access to Kondo temperatures that are even higher than our
cutoff energy EC! Note that the Kondo model applies even if TK > EC , since the
only practical requirement is T � EC .

Power law of the conductance versus temperature near the 3CK fixed point

Using a perturbation theory and a dimensional analysis, Simon and Mora have
evaluated the deviation from the fixed point ∆G , |G − G∗ | for N > 2 number
of channels11 at degeneracy δVg = 0 with symmetric couplings τ and at low
temperature [112]:

∆G = ct *
,

T
T δτ�1

K

+
-

∆

(3.12)

where ct is a constant of order of 1 and ∆ , 2
2+N is related to the dimension

dO1 = 1 + ∆ of the leading irrelevant operator O1.
Assuming T δτ�1

K diverges at a critical value τC , our collaborators have been
able to evaluate TK (τ) near τC . They have found that the conductance should
follow a scaling law as [3, 88]: G((T/TK )∆) = G(Aδτ(kBT/EC)∆) where A is
numerical factor of order 1. Hence the scaling Kondo temperature near the fixed
point (for all N > 2) is:

kBT δτ�1
K '

EC

δτ1/∆
(3.13)

where δτ , |τ − τC |. We summarize the theoretical laws that we will use in
Table 3.3.

N ∆G kBT δτ�1
K Reference

2 ∝ T/T δτ�1
K2CK

∼ EC/δτ [43]

3 ∝
(
T/T δτ�1

K3CK

)2/5
∼ EC/δτ

5/2 [112]

Table 3.3: Power laws for the conductance near the N-channel ‘charge’ Kondo
fixed point

11The case N = 2 is special because the fixed point is reached at an extremal value of τ(ρJ) = 1
(see Fig. 3.8).
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Universal scaling

One of the most important features of the original Kondo model is that a unique
parameter TK contains all the microscopic details of the system (energy cutoff D,
charging energy EC , transmission τ). It means that the temperature can be rescaled
in T/TK for any observable to obtain a universal curve. Different experiments
realized under different conditions should all collapse on this universal curve after
rescaling (whatever the microscopic details).

However, a given observable should renormalize enough to escape a transitory
non-universal regime before reaching the universal one (T � EC, D). Actually,
if one wants to get the full universal curve, one should start with a very low TK
(compared to the cutoff energy TK � D) [92, 85]. Note that it does not mean that
one cannot reach the universal limit starting with a large TK . The universal limit
is actually reached as soon as T � D irrespectively of the value of TK . The only
disadvantage of starting with a large TK > D is that only a fraction of the universal
curve (T � D < TK , close to the fixed point) will be accessible. For instance, if
TK ∼ D: the upper half of the curve T/TK � 1 will be universal because T � D;
whereas the the lower half T/TK � 1 will be sensitive to the cutoff D and thus
non-universal.
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Figure 3.9: Universal curves of the conductance for the two- and three-
channel ‘charge’ Kondo model [85, 51]. The conductance is plotted versus T/TK

in a log scale. The conductance of the fixed points at indicated with colored solid
lines (red for 2CK and green for 3CK). The Kondo temperature TK is defined such
that G(T = TK ) = G∗/2 (see grey dashed lines). The colored dashed lines are the
analytical prediction in the tunnel regime (blue) and close to the 2CK (red dashed)
and 3CK (green dashed) fixed point. These lines are horizontally shifted (γ is a
numerical factor) to fit to the universal curve.



60 CHAPTER 3. MULTI-CHANNEL KONDO EFFECT

Following our publication of a non-universal experimental curve of the con-
ductance for the ‘charge’ 2CK model [52], Mitchell and co-workers have modified
their powerful interleaved NRG code [86, 113] to implement the ‘charge’ Kondo
model. They have been able to start with a smallTK (that corresponds to the tunnel
limit, far from the fixed point) and decrease the temperature over many orders
of magnitude to get numerically the full universal curve of the conductance [85].
This curve is reproduced in Fig. 3.9a. Mitchell has also calculated the universal
conductance curve for the 3CKmodel, but only when approaching the intermediate
fixed point from below, see Fig. 3.9b [51].

This universal conductance curve can be compared to the analytical predictions
close to the fixed point T � TK (Table 3.3) and also in the tunnel regime T � TK
Eq. (3.8) (where the channels are renormalized independently).

3.2.3 Experimental implementation

One may wonder: “But why such hopeful proposal established in the early 90’s
has never been implemented in practice?”. In this subsection, we will see why it
is not obvious to design a sample that realizes this model. Then we will explain
how we managed to solve this problem.

Contradicting requirements

On page 55, we have listed three necessary hypotheses needed to implement the
‘charge’ Kondo model. In 2000, Zarárand and co-workers have used a renormal-
ization group approach to evaluate the possibility to observe 2CK behaviors in a
SET [136]. In their conclusion, the authors explore two scenarios of experimental
implementations to observe 2CK in practice: (i) a metallic island (ii) a 2D island
made in a semiconductor.

In the scenario (ii), a good control of the number of channels is possible. One
should try to make the smallest possible island to increase EC because the Kondo
mapping only applies at kBT � EC . However, the mean level spacing δE in the 2D
island will then not be negligible compared to kBT . But having δE � kBT � EC
is mandatory to observe the 2CK effect: in the scenario (ii) 2CK will not develop
because of the 2D geometry of the island and the small effective mass of the
electrons in the 2DEG (for numbers, see Appendix B.2.1).

The scenario (i) does not have any problem concerning density of state require-
ment since the island is 3D and metallic. Moreover large EC are available, and
one can easily fulfill δE � kBT � EC . The problem in this case is to connect
the island with a few symmetric conduction channels. The authors of ref. [136]
suggest to use an atomic contact between a metallic droplet and the tip of an
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STM. However this implementation might not be stable enough to observe 2CK
behaviors with a good precision.

The solution: a hybrid metal-semiconductor nanostructure

We have been able to conciliate both the requirement of a negligible level spacing
and the one of a good control of the number of channel thanks to a hybrid nanos-
tructure. The island of our sample is metallic while the junctions are made in a
semiconductor (with QPCs). This nanofabricated structure has all the advantages,
and it is therefore the ideal sample to explore multi-channel Kondo physics. An
important point when fabricating this hybrid nanostructure is to make a perfect
connection between the metallic and the semiconducting part, since otherwise the
description of the sample would have to take into account a residual reflection.
How well this is achieved and other details about the metallic island are given in
Appendix B.2.

Our sample is used in theQHE regime (that breaks the spin degeneracy). It con-
tains three QPCs facing the metallic island; we can then access the two- and three-
channel Kondo regimes and observe them through conductance measurements.

3.3 Observation of themulti-channel ‘charge’Kondo
effect

We will now present our experimental observation of the multi-channel Kondo
effect using the ‘charge’ implementation. In particular the experimental data will
be compared to the predictions given previously.

This section is divided in two parts, the first one shows the flow of the conduc-
tance of the device towards the predicted 2- and 3-CK fixed points (depending on
the configuration of the QPCs). The second part focuses on scaling and universal-
ity.

The Appendix E explains the experimental procedures to get the data shown
in this section while avoiding experimental artifacts. Its reading is not required to
understand this section.

3.3.1 Kondo fixed points
We will start this subsection by showing Coulomb blockade peaks renormalized
by Kondo effect. We will see that the value at the charge degeneracy δVg = 0 will
tend to the predicted fixed point. These first data already demonstrate that our
sample realizes the multi-channel ‘charge’ Kondo model. Then we will focus on
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δVg = 0 to observe the flow of the conductance towards the fixed point as we lower
the temperature.

Coulomb peak renormalization by Kondo effect

The Coulomb blockade oscillations of the conductance observed in our sample
are renormalized due the ‘charge’ Kondo effect. The gate voltage Vg acts as an
effective magnetic field that destroys the effect, which is thus maximal at charge
degeneracy δVg = 0 (zero effective magnetic field). Figure 3.10 shows Coulomb
peaks in the 2CK and 3CK regimes for two temperatures and two transmissions.
As predicted by theory, we observe a renormalization towards the predicted fixed
points as the temperature is lowered.
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Figure 3.10: Renormalization of Coulomb blockade conductance peaks by
the 2- and 3-channel ‘charge’ Kondo effect. Coulomb peaks of conductance
are plotted as a function of the plunger gate voltage Vg for different temperatures
(T ≈ 7.9mK for the open symbols and 29mK for the filled ones) and 2 different
symmetric transmissions configurations (τ ≈ 0.68 for the triangles and τ ≈ 0.90 for
the squares) in the 2CK (a) and 3CK (b) regimes. a, The conductance G1,3(δVg =

0) flows towards the ‘charge’ 2CK fixed point G∗2CK = GK when lowering the
temperature. The red line is the quantitative theoretical prediction of the ‘charge’
2CK model plotted for the independently measured parameters. b, In the 3CK
case, the individual symmetric conductances at degeneracy G1,2,3(δVg = 0) flows
to the 3CK fixed point G∗3CK ≈ 0.691GK .

In the 2CK case the conductance at degeneracy increases with the temperature
for both transmissions. Away from degeneracy δVg , 0, we observe however an
opposite behavior. This decrease is simply explained by the fact that the Kondo
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effect is destroyed in this region. The conductance is then described by DCBwhich
blocks the current at low energies (low temperature here). This explains that for
a given transmission, the curves at two different temperatures are crossing each
other.

The situation is different in the 3CK case where the fixed point is at an inter-
mediate value between 0 and GK . At δVg = 0, when we lower the temperature
(passing from filled symbols to open ones), the conductance either increases (tri-
angles) or decreases (squares) depending on the initial position with respect to
G∗3CK (green disk). This signal is quite strong: Below this fixed point (triangle
symbols) the traces at two different temperatures are crossing, but above the fixed
point (square symbols) they are not.

From a very qualitative point of view, this figure provides a first indication of
multi-channel Kondo effect. Moreover, the red line in the 2CK figure shows a
plot of the theoretical prediction Eq. (2.9) without any12 fitting parameter. The
transmissions τ1 ≈ 0.891 and τ3 ≈ 0.901 (see Fig. B.6, for the characterization of
these values), the temperatureT = (7.90 ± 0.06) mKand the charging energy EC =

(25.8 ± 0.5) µeV have all been measured independently to get this quantitative
comparison.

Renormalization of the conductance in the 2CK tunnel regime τ � 1

Although in the tunnel regime τ � 1, the Kondo temperature is very small
T � TK , the Coulomb peak is subject to a small renormalization that slowly
(logarithmically) vanishes at large temperatures (see Eq. (3.8)). We have observed
[52] that a tunnel peak can be well fitted with the ‘orthodox’ Coulomb blockade
theory (Eq. (C.13)) with a free amplitude which is in agreement with Eq. (3.8).

The full Kondo renormalization holds only close enough to the degeneracy
∆E 6 kBT [43], where ∆E , 2ECδVg/∆Vg (∆Vg is the period of the Coulomb
blockade oscillations) measures the level splitting between the two charge states of
the island (which are degenerate at ∆E = 0). Consequently, a Kondo renormalized
tunnel Coulomb peak should be slightly narrower than a usual tunnel Coulomb
peak.

This has been verified by the NRG calculation of Mitchell and co-workers.
In their figure (reproduced in Fig. 3.11), they have compared their calculations
(blue line) to our data (symbols). They have also plotted an ‘orthodox’ peak
renormalized to have the same height (and which is thus broader). We see a slight
difference comparable to experimental accuracy.

12We have only adjusted the position of the maximum of the peak at δVg = 0.
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Figure 3.11: Renormalization of a 2CK tunnel Coulomb blockade conduc-
tance peak [85]. Our 2CK experimental data (symbols) [52] are compared to NRG
calculations (blue solid line). The standard ‘orthodox’ theory (red dashed line) is
vertically rescaled to have the right height.

2- and 3-CK ‘charge’ Kondo fixed point

Let us now focus on the points where the Kondo effect is not destroyed by energy
level splitting: δVg = 0. To observe the renormalization towards the fixed points,
we will look at the temperature dependence of the symmetric individual conduc-
tances. This convergence at low temperature is shown in Fig. 3.12 for both 2CK
and 3CK.

In the 3CK regime, the conductance flows to a non-trivial universal value
G∗3CK/GK = 2 sin2(π/5) = (3−ϕ)/2 ≈ 0.691, where ϕ = (1+

√
5)/2 is the golden

ratio. The accuracy of this observation is visible in the Fig. 3.13 discussed below.
This is the first experimental demonstration of a Kondo coupling strength reaching
a universal intermediate fixed point.

3.3.2 Kondo scaling
The experimental data shown in Fig. 3.12 can be compared to two theoretical
predictions. The first part of this subsection focuses on the convergence towards
the fixed points and checks a scaling to fit to the theoretically predicted power
laws. The second one compares the experimental data to the full universal curve
of conductance obtained by NRG.

Power law and scaling in the vicinity of the fixed points

In the vicinity of the Kondo fixed points, the conductance is predicted to scale as a
power law ∆G ∝ (T/T δτ�1

K )γ, where ∆G is the distance between the conductance
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Figure 3.12: Renormalization towards the two- and three-channel ‘charge’
Kondo fixed point. For the same set of transmissions τ, the individual conduc-
tances at degeneracy δVg = 0 are plotted versus the temperature T ≈ {7.9, 9.5,
12, 18, 29, 40, 55, 75}mK in log-scale. a, The conductance flows towards the 2CK
fixed point (red thick line) for all the transmissions in the case of two symmetric
channels (τ1 ≈ τ3). b,With three symmetric channels, it flows to G∗3CK (green thick
line) when lowering the temperature.

G and the predicted fixed point G∗, and γ is also given by the theory (γ2CK = 1
and γ3CK = 2/5). Note that, the scaling Kondo temperature is defined up to a fixed
factor (see Table 3.3).

In order to explore this scaling, we plot in Fig. 3.13 the expected power law
(solid straight lines), and choose T δτ�1

K so that the experimental point at the lowest
temperature (T ≈ 7.9mK) matches the theoretical power law. We observe consis-
tency between experimental data and theoretical power laws. We also observe that
the data closely approach the predicted fixed point (∆G < 0.01e2/h for both 2CK
and 3CK).

The corresponding Kondo temperatures T δτ�1
K (τ) are shown as symbols in

the insets of Fig. 3.13 and compared with the appropriate theoretical predictions
(which are vertically shifted since the T δτ�1

K are defined up to a prefactor). We
observe that TK diverges near a critical value of transmission τC . Indeed, one can
get arbitrary large scaling Kondo temperatures TK by setting the transmission such
that after an initial Coulomb renormalization, the conductances are closer to the
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Figure 3.13: Scaling of the conductance near the 2- and 3-CK fixed points.
The distance ∆G , |G − G∗ | of the conductance from the fixed point is plotted
versus a rescaled temperature. Each transmission corresponds to a symbol (solid
for 3CK and open for 2CK). By construction, the lowest temperature point of each
set of symbol is on the theoretical law (solid lines). The Tδτ�1

K (τ) used for this
scaling are given in the insets and compared with the theory (solid lines).

fixed point. For the 2CK case, the predicted critical transmission is τC2CK = 1
(there is no Coulomb renormalization for this integer value). In the 3CK case, we
find it close to τC3CK ≈ 0.8 (which is different from G∗3CK/GK ≈ 0.691 because
of the Coulomb interaction13). We see that both ∆G and T δτ�1

K (τ) are in a good
agreement with the non-Fermi liquid power laws of the two- and three-channel
‘charge’ Kondo effect.

Comparison with a universal scaling

The power law of the conductance versus temperature and its scaling in the vicinity
of the fixed point are actually contained in the full universal scaling curves displayed
in Fig. 3.9. We can directly compare our last experimental data to these exact NRG
calculations. In Fig. 3.14, we rescale the temperature in T/TK (τ). Each set of data
for a fixed τ is adjusted to match the point at the lowest temperature T ≈ 7.9mK
with the theoretical universal curve. The first remark is that the remaining points
(T > 7.9mK) are following the universal prediction well. We notice deviations
at large temperature, but this is due to the finite EC of our sample. We find that

13This initial renormalization occurs at energies of order of EC .
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for 2CK, the three lowest temperatures (T < 12.0mK) are in the universal regime
(for all τ). The 3CK universal curve is smoother than the 2CK (compare both
T/TK ranges), this may explain why the four lowest temperature data matches the
universal 3CK scaling curve.
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Figure 3.14: Comparison of the experimental data to the universal curves
of the conductance for the 2- and 3-channel ‘charge’ Kondo model. Here,
experimental data are displayed up toT = 29mKand some additional transmissions
are shown compared to Fig. 3.12. Each set point at τ fixed is shifted in the semi-log
representation so that the lowest temperature point matches the theoretical curve
(solid black line). This defines a scaling temperatures TK (τ) that are plotted in the
insets for both the 2CK (a) and 3CK (b) configurations. The lines in each graph are
the theoretical prediction shown in Fig. 3.9. In the insets: the blue lines correspond
to the theoretical prediction in the tunnel regime; the red and green lines are the
predictions for Tδτ�1

K close to the 2CK and 3CK fixed points respectively.

We note that the deviations that develop at larger temperatures are all in the
same direction. These are not experimental artifacts in the sense that our data
are still modeled by the ‘charge’ Kondo Hamiltonian, but we are sensitive to the
finite EC . Mitchell and co-workers [85] have reproduced our experimental data
with their numerical calculations by taking into account the effect of the cutoff
energy. This shows that our device fully implement the ‘charge’ Kondo model,
also beyond the universal regime where all the microscopic parameters (τ, EC , D)
can be encapsulated in TK .

The scaling Kondo temperature we have used to match the first point on the
universal curve also contains information: we can compare it to the theoretical
expressions of TK (τ). This is shown in the insets of the figure where one can see
that the data near the critical transmission (τC2CK = 1 and τC3CK ≈ 0.8) and the
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scaling behavior predicted for T δτ�1
K (τ) (red line for the 3CK and green line for

the 3CK) are in good agreement. The theoretical lines have been vertically shifted
to fit to the data at δτ � 1 to account for the ill-defined prefactor of TK . We have
also plotted T τ�1

K (in blue solid), to compare with the data close to the tunnel limit
τ � 1.

3.4 Conclusion
The first unambiguous observation of the two-channel Kondo effect has been done
in 2007 by Potok and co-workers [101]. Here we have reported an observation
of both two- and three-channel Kondo effect using the ‘charge’ implementation
proposed by Matveev in 1991 [79, 48].

In this implementation, the ‘charge’ degrees of freedom of a metallic island
play the role of a pseudo-spin. We have conciliated the conflicting requirements on
the size of the island and its density of state by using a hybrid metal-semiconductor
design. Remarkably, the degenerate quantum impurity used in the present Kondo
effect study is constituted of large number of electrons: it involves macroscopic
quantum charge states!

This realization of the ‘charge’ Kondo effect accurately implements the model
[85]. We have observed a quantitative agreement between the measured conduc-
tance and the theoretical prediction without any fitting parameter. We have also
compared our experimental data to the universal curve of conductance for both
the two- and three-channel Kondo effect. At least our three lowest temperature
data, for T ≤ 12mK, lie in the universal regime; whereas non-universal behaviors
appear at larger T due to the finite charging energy EC . Hence, when lowering the
temperature, we observe a crossover from a non-universal to the universal regime.

The observed non-Fermi liquid power laws for the conductance versus tem-
perature are consistent with the predicted theoretical laws for both 2- and 3-CK.
Note that it is believed that a localized Majorana fermion emerges at the 2CK fixed
point. In this chapter, non-Fermi liquid scalings have been explored by tuning the
sample right to the quantum critical points. However, a rich physics is contained
in the crossover from criticality (either by breaking the channel symmetry ∆τ , 0
or detuning from the charge degeneracy δVg , 0), and this will be the topic of the
next chapter.



Chapter 4

Quantum phase transition in
multi-channel Kondo systems

Quantum criticality accounts for the unconventional physics that develops in the
vicinity of the critical point of a second-order quantum phase transition [107].
It is characterized by the power law divergence of the correlation length ξ as a
non-thermal parameter g approaches a critical value gc: ξ ∝ |g − gc |

−ν, where ν is
called a critical exponent. The concept of quantum criticality provides a powerful
universal framework to describe some of the most fascinating strongly correlated
electrons phenomena, including heavy fermions [44] or high-TC superconductivity
[59].

Although tunable nanostructures would provide ideal systems for the quanti-
tative experimental exploration of quantum criticality, only few examples exhibit
clear signatures of second-order QPTs [81, 82, 60]. In this chapter, we will show
that the ‘charge’ implementation of the multi-channel Kondo model provides an
outstanding testbed for the quantum critical physics.

We will begin with an introduction to quantum criticality. Then we present the
theoretical predictions specific to the multi-channel Kondo effect. And finally we
show our experimental observation of quantum criticality in our device using in
turn the two relevant perturbations we have at our disposal (the gate voltage and
the channel asymmetry).

4.1 Quantum phase transition
The physics associated with the transition between stable phases of matter has
been extensively studied both theoretically and experimentally. The description
of second-order phase transitions require powerful many-body techniques among
which the renormalization group has a central place. Rather than being a pure
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mathematical trick, this technique has a profound physical consequence, namely
universality. This field of research concerns systems as various as black holes and
strongly correlated materials [107].

In this section, we will first explain what a quantum phase transition is. Then
we will focus on the second-order quantum phase transition and address the notion
of quantum criticality. We will discuss an observation of quantum criticality in a
tunable device based on a carbon nanotube connected to dissipative leads [81, 82].

4.1.1 What is a quantum phase transition
Definition and classification

In contrast to classical phase transitions that occur at finite temperature, and where
only thermal fluctuations have to be considered; quantum phase transitions are
driven by a non-thermal parameter g and they occur at zero-temperature T = 0
where only quantum fluctuations exist.

A quantum1 phase transition is characterized by the dependence on g of various
quantities, such as the correlation length ξ (g), the magnetic susceptibility χ(g),
the specific heat C(g), or even dynamical quantities as the equilibration time τ(g).

For a first-order phase transition, some of these quantities are discontinuous.
At finite temperature, there will be no critical phenomena, and the system will
simply consist of a thermodynamical mixture of phases [126].

A second-order (continuous) quantum phase transition occurs at a quantum
critical point g = gc. In the vicinity of this point, the correlation length diverges
as a power law: ξ ∝ |g − gc |

−ν, where ν is called a critical exponent [125]. Note
that for a special type of continuous transition called infinite-order transitions, the
dependence on g is exponential. This is the case for instance of Kosterlitz-Thouless
transitions.

In this thesis, we will only discuss the quantum phase transition that present
quantum criticality at finite temperature, and those are the second-order quantum
phase transitions. Because of the divergence of the correlation length at the
critical point, the system becomes scale-invariant. The quantum critical point is
thus suitable for some theoretical approaches such as the renormalization group or
the conformal field theory [24].

Renormalization group theory, universality and relevant perturbations

At the critical point, fluctuations of all wavelength have to be considered with the
same weight [131]. The renormalization group theory provides a mathematical

1The classification that follows is the same for classical phase transitions, one just has to replace
the non-thermal parameter g by T .
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tool to treat the critical phenomena that occur in the vicinity of continuous phase
transitions. This theory solves the problem iteratively. At each step, the couplings
{K } are rescaled through a transformation R [24]:

{K′} = R ({K }) (4.1)

In the space of all couplings’ configurations, it may exist a fixed point {K∗}
such that {K∗} = R ({K∗}). This fixed point is not necessarily a quantum critical
point2. Actually, the renormalization group tells nothing about the nature of the
phases. Yet it describes accurately the physics near the fixed points of critical
phenomena.

The same universal power laws in tγ (with t , |T −TC |/TC for classical transi-
tion and t , |g−gc |/gc for quantum phase transitions) can be observed for various
systems [125]. Different observables (specific heat C, magnetic susceptibility χ,
relaxation time τ etc.) lead to different universal critical exponents α, γ, z etc.
But few of these critical exponents are actually independent since they can be
related using scaling relations that can be derived from the renormalization group
[24, 125].

The fact that the same power law dependence were found for very different
systems is actually well explained by the renormalization group theory. When
approaching the critical point, the ‘irrelevant’ perturbations that depend on the
microscopic details of the system vanish and the behavior becomes universal
[131]. Hence many systems can be classified in a given class of universality that
will be described with the same laws whatever their exact chemical composition.
A class of universality can actually be defined as the basin of attraction of a
fixed-point Hamiltonian [138].

4.1.2 Quantum criticality
As mentioned above, a second-order quantum phase transition occurs at zero
temperature precisely at the quantum critical point. In practice it is unreal to
reach T = 0K and observe a true quantum phase transition. However, quantum
criticality extends on a range of parameter that widens with temperature, up to a
high temperature cutoff that depends on the underlying microscopic mechanisms.

In this subsection, we will illustrate in a phase diagram the typical parameter
growing range of quantum criticality with temperature. Then we will compare
this diagram with an experimental observation in a strongly correlated material.
Afterwards, we will distinguish between bulk and impurity phase transitions. We
will finally depict an observation of a continuous impurity quantumphase transition
studied in a tunable device.

2For instance, the J −→ ∞ fixed point in the 1CK model is not a quantum critical point.
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Typical phase diagram of a second-order quantum phase transition

Let us call g the non-thermal parameter that drives a continuous quantum phase
transition. This transition occurs at the quantum critical point g = gc, at zero
temperature. In the vicinity of gc and at low temperature, the small thermal
fluctuations blur the small difference between g < gc and g > gc. The system
then behaves as if g = gc and exhibits quantum criticality on a finite range of g
[107]. Moreover, the undetermined region widens as the temperature increases!
This broadening is shown in Fig. 4.1a. In general, as for usual quantum effects,
the quantum critical behaviors vanish at high temperature3.

a

ordered
phase

Quantum
criticality

0

(QCP)

T

ggC

disordered
phase

b

Figure 4.1: Quantum criticality a, Phase diagram near a quantum critical point
g = gc . The parameter space for quantum criticality (in orange) widens with
temperature. b, Quantum critical behavior driven by a magnetic field B observed
in a heavy-fermion compound (reproduced from [36]). The critical exponent ε of
the resistivity versus temperature is non-Fermi liquid (ε , 2) in the critical region
(in orange).

Quantum critical state

The state of matter in the quantum critical region is very different from the two
stable phases of the system. Above, we mentioned that the correlation length ξ was
diverging at the critical point of a classical phase transition, and the system was
then subject to fluctuations of all wavelengths. In the quantum critical state, the
system is subject to both quantum and thermal fluctuations. In electronic systems,

3Some strongly correlated materials have displayed a signature of quantum criticality up to
700K [77].
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when these fluctuations diverge, they can give rise to a new type of electronic fluid
of strongly correlated electrons with unconventional, non-Fermi liquid behaviors
[125].

This singular state of matter is of great interest for the physicists of different
fields. There is indeed a link between the conformal field theory used to describe
some critical points and string theory ([59, 107] and references therein). For
instance, the border of a critical region can be seen as the horizon of a black
hole ([107, 28] and references therein). Quantum criticality is an active field
of research, motivated in particular by the extensive work on strongly correlated
materials.

Quantum criticality in strongly correlated materials

Perturbative approaches starting from free electrons fail to account for strongly
correlated materials. Generally, strong correlations e.g. in the context of quantum
criticality result in a breakdown of the standard Fermi liquid theory description of
electronic systems.

This breakdown can be observed as non-Fermi liquid power laws for instance
in the resistivity versus temperature. In standard metals, the Fermi liquid theory
predicts a T2 dependence on resistivity ρ. One can plot the critical exponent
ε = d ln ρ/d lnT versus the non-thermal parameter g to observe a pattern that
widens with temperature as shown in Fig. 4.1b. Signatures of quantum criticality
have been observed in heavy-fermion [75] and also in other strongly correlated
materials (see [107] for examples).

In particular, a T-linear power law of the resistivity versus temperature is
observed in the ‘strange metal’ phase of high-TC superconductors based on copper
oxide [59]. Intriguingly, this critical behavior that originates from a putative
quantum critical point located in the superconducting phase can span to the highest
attainable temperatures [77]. To date, the theoretical description of this ‘strange
metal’ phase is still essentially incomplete [59].

However, reaching a quantitative microscopic understanding of the supercon-
ductivity that emerges from this ‘strange metal’ phase at low temperature has great
practical interest because of its possible technological applications. A first step is
to look for systems that exhibit quantum criticality and that are easier to model and
to study than the complex, real-world strongly correlated materials. A possibility
is to use quantum simulators such as cold atoms in optical lattices [17] or super-
conducting qubits [50] to emulate bulk quantum phase transitions. An alternative
route is to study ‘impurity’ quantum phase transitions.
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‘Impurity’ quantum phase transition

One can design nano-devices where some local quantum states (the quantum
impurity), such as the electronic levels in quantum dots or the charge states of our
metallic island, are coupled with thermodynamic baths. When a quantum phase
transition occurs in such systems, the only observable that display quantum critical
behaviors are those involving the quantum impurity [126].

These systems are easier to model and to treat than ‘bulk’ systems because
of their lower dimensionality. In addition to possibly contributing to a deeper
understanding of quantum criticality, ‘impurity’ problems can also bemapped onto
higher dimensionality lattice problems. This technique is used in the dynamical
mean-field theory which can treat exactly strongly correlated systems, but only in
the infinite dimension limit [45].

Crossover from criticality

There are basically two ways to explore a quantum critical point. The first one has
been the subject of Chapter 3, it to set g = gc and to lower the temperature T . The
second one is to explore the crossover from the critical state to a stable phase (see
Fig. 4.2). The power laws associated with these two experiments are sometimes
related [125].
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(QCP)
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Chapter 4}Tco∝|g-gc|α

Figure 4.2: Crossover from quantum criticality. In Chapter 3, we have set the
non-thermal perturbations g = gc and lowered the temperature to observe the power
laws when flowing into quantum criticality. In the present chapter, we consider the
crossover from the non-Fermi liquid (NFL) quantum critical region (in orange) to
Fermi liquid. This crossover occurs on a temperature scale Tco ∝ |g − gc |α .
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Continuous quantum phase transitions in tunable devices

As for the Kondo effect, tunable nano-devices could provide powerful tools for
the experimental investigations of quantum criticality. However, observations of
quantum criticality in tunable devices are rare. Apart from the implementation of
the 2CKmodel using quantum dot that we have already discussed [60] in Chapter 3,
we can mention a realization by Mebrahtu and co-workers [81, 82].

They have studied the development of a second-order quantum phase transition
using a carbon nanotube which acts as a quantum dot. The carbon nanotube was
connected to two dissipative leads through tunnel junctions. At low temperature,
the conductance drops because of dynamical Coulomb blockade, except at the
QCP corresponding to symmetric contacts, where the conductance tends to the
unitary limit GK = e2/h. With this device, a non-Fermi liquid power law has been
observed on the conductance versus temperature when approaching the quantum
critical point, and the broadening of the quantum critical area with temperature
has also been studied (see Fig. 4.3).
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Figure 4.3: Quantum criticality observed by Mebrahtu and co-workers [82].
a, A power law |1 − G | ∝ T1.2 is observed when approaching the quantum critical
point. b, Crossover from criticality when breaking the symmetry using ∆Vgate: the
larger the temperature, the wider the range where the conductance G saturates close
to the unitary limit.
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4.2 Quantum phase transitions in the multi-channel
Kondo model

A flow towards a non-Fermi liquid fixed point is predicted in the overscreened
multi-channel Kondo effect. However, any finite magnetic field or an asymmetry
on the channels’ bare couplings lead to a different fixed point at low temperature.
As detailed below, this quantum phase transition is of second-order and displays
non-Fermi liquid quantum critical physics.

In this section we will first consider the general multi-channel Kondo model,
discuss quantum criticality and define the crossover temperature. We will also
present the crossover from criticality observed by Keller and co-workers in their
‘spin’ 2CK implementation. Then we will focus on the ‘charge’ implementation
and present the predictions for the two possible relevant perturbations (channel or
pseudo-spin asymmetry).

4.2.1 Description of the quantum phase transition

The 2CK model has been extensively studied theoretically and exact results have
been obtained. The ground state of this model involves non-Fermi liquid physics.
However, the tiniest (non-zero) channel asymmetry will drive the system towards a
Fermi liquid. The crossover from the strongly correlated physics to the free fermion
description occurs below a characteristic crossover temperature Tco (provided the
system was initially in the quantum critical regime Tco < T � TK ). At the end of
this subsection, we will present the results of Keller and co-workers who observed
this crossover when breaking the channel symmetry [60].

Quantum critical point

The non-Fermi liquid quantum critical physics of the overscreened Kondo impu-
rity is well-established theoretically. Critical exponents of this quantum critical
point have been first derived via the Bethe ansatz method [13, 117]. The CFT can
be applied to the conformally invariant critical points of the multi-channel Kondo
model to get exact results for the power law of the magnetic susceptibility χ(T ),
specific heat C(T ) or resistivity ρ(T ) versus temperature [3, 4]. Of course, numer-
ical renormalization group can also be used to study the fixed points [20]. Because
of its relative simplicity, the 2CK model has become a paradigmatic example for
the non-Fermi liquid physics.
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Crossover from criticality

The asymmetry between the antiferromagnetic couplings (e.g. J1 , J2) is a
‘relevant’ perturbation in the renormalization group sense (i.e. it grows under
renormalization). This is illustrated in Fig. 4.4, which shows that the 2CK inter-
mediate fixed point is unstable under a channel perturbation. This perturbation
will drive the system towards a Fermi liquid at low temperature. The smaller the
asymmetry ∆J, the lower the crossover temperature to Fermi liquid will be.

J1

J2
∞

0 ∞

LM

2CK

1CK

1CK

Figure 4.4: Renormalization flow diagram of the 2CK model (reproduced
from [126]). The arrows are pointing towards low temperatures. This diagram
shows the renormalization of the exchange coupling Ji of each channel. One can
see the finite coupling 2CK fixed point and the 1CK fixed points (at infinity). ‘LM’
is the local-moment fixed point of an uncoupled impurity (J1 = J2 = 0).

Moreover, one can destroy the Kondo effect by applying a magnetic field that
will favor one of the two position of the spin #»

S of the impurity. This will drive
the system towards a Fermi liquid phase (even for symmetric channels). In the
‘charge’ implementation, a detuning of the voltage gate δVg corresponds to an
effective magnetic field. In this chapter, we will use the energy level splitting
∆E , 2ECδVg/∆Vg rather than δVg.

Note that in the 3CK model, a channel anisotropy J1 = J2 > J3 drives the
system from the 3CK NFL fixed point to the 2CK NFL fixed point. Therefore, a
channel anisotropy does not necessarily generate a crossover towards a FL ground
state. This is in contrast with an energy level splitting ∆E. We will experimentally
explore both of these type of crossovers (using ∆J and ∆E separately).

Crossover temperature Tco

As shown in Fig. 4.2, a power law Tco ∝ |g − gc |
α delimits the quantum critical

region from the Fermi liquid phase. In the multi-channel Kondo effect, the non-
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thermal parameter g can be either the channel asymmetry ∆J or the effective
magnetic field ∆E (or a combination).

Cox and Zawadowski give the general expression of Tco for a channel or
magnetic field perturbation (see Section 5.1.4. in their extensive review [29]). We
will only consider their result on the effective magnetic field∆E, for the N-channel
Kondo model (with N > 1):

Tco ∝ ∆E β with β =
2 + N

N
(4.2)

For a channel symmetry perturbation, the crossover temperature is given by

Tco ∝ ∆Jη with η =
2 + N
2

,

Note that the two exponents β and η are equal only for N = 2.

Crossover from criticality in tunable devices

In 2015, Keller and co-workers have observed the ∆J driven crossover from
quantum criticality in a 2CK experiment [60]. In their ‘spin’ implementation, a
true magnetic field, a channel asymmetry or coherent charge transfers between the
reservoirs are relevant perturbations. They have used a lateral gate voltage (named
VBWT) to break the symmetry of the channel couplings to their quantum dot. In
Fig. 4.5a, traces of the conductance versus voltage bias (VSD) are plotted. The
VBWT value used (vertical dashed line in Fig. 4.5b) is slightly away from the QCP.
Therefore, Tco > 0 and the system is experiencing quantum criticality only at high
temperatures T > Tco. The deviation between the low temperature traces and the
universal 2CK predicted behavior (solid black line) signal T . Tco.

A crossover temperature scale Tco can be extracted from the fit of the conduc-
tance traces with a 2CK prediction. This temperature scale is shown in Fig. 4.5b
with respect to VBWT. In the 2CK model, we know from the previous paragraph
that Tco ∝ ∆J2. The red lines of this figure are thus fits to piecewise4 parabolas
that delimit the quantum criticality area (above the parabolas).

One may notice that the power law used in Fig. 4.5a to rescale the experi-
mental data is ∝

√
T rather than the T-linear power law we have observed in our

‘charge’ 2CK measurement. This predicted difference can be intuitively under-
stood from the fact that the conductance G of the 2CK fixed point in the ‘charge’
implementation is reached at the extremal value G(J∗2CK) , G∗2CK = e2/h. Con-
sequently, from a second-order development dG

dJ (J = J∗2CK) = 0 and one naively

4It is argued in [60] that in general, the prefactor of a critical power law as Tco ∝ ∆J2 can be
different on each side of a quantum critical point. The reason for such an anisotropy is unclear to
us.
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Figure 4.5: Crossover from quantum criticality observed in the 2CK exper-
iment of Keller and co-workers [60]. a, The rescaled conductance is plotted
versus the rescaled voltage bias. The high temperatures traces follow the universal
behavior (black line) whereas at low temperature deviations are observed. b, A
crossover temperature Tco can be extracted from a fit of the conductance shown in
a to a 2CK prediction. This Tco is then fitted with half parabolas (that are periodic
just as the Coulomb oscillations). The vertical dashed line indicates the voltage
gate VBWT used in a.

expects G(J (T � TK )) ≈ G(J∗2CK +α
√

T ) ≈ G∗2CK + 1/2
d2G
dJ2 (J∗2CK)(α

√
T )2. Thus

|G(T � TK ) − G∗2CK | ∝ T . Note that for N > 3, the same standard power law
versus the temperature is expected for the conductance in both the ‘spin’ and the
‘charge’ implementations.

4.2.2 Theoretical predictions for the ‘charge’ Kondo model

Universality in the vicinity of the 2CK fixed point

Considering the 2CK model is very informative since the full quantitative predic-
tion of the 2CK conductance has been computed byMatveev and Furusaki near the
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2CK fixed point. They have found the following expression for the conductance
along the crossover from a fully developed quantum criticality (T � TK ) :

G̃T�TK

2CK (T,∆τ,∆E) = GK

[
1 −

Tco(∆τ,∆E)
2πT

ψ′
(
1/2 +

Tco(∆τ,∆E)
2πT

)]
(4.3)

where ψ is the digamma function. Quite generally, in the vicinity of a Kondo
quantum critical point (i.e. once T � TK ), the only energy scale to consider is Tco
and observables can be expressed as universal functions of T/Tco [102, 87, 85].
This expression has been derived with another analytical method by Mitchell
and co-workers, starting from the opposite limit τ � 1, and for both magnetic
field and channel asymmetry perturbations [85]. For N = 2 channels, the critical
exponents associated to the two relevant perturbations are the same: Tco ∝ ∆τ2 and
Tco ∝ ∆E2; and they have the following expression for the crossover temperature
[85]:

Tco = c1TK∆τ
2 + c2∆E2/TK (4.4)

where c1 and c2 are non-universal parameters (Tco itself is defined up to an
arbitrary prefactor). Furusaki andMatveev have derived the quantitative prediction
for Tco(∆τ,∆E) from the Hamiltonian parameters τ, ∆E, EC . Expending their
expression to second order in ∆τ � 1 − τ � 1 and ∆E � EC , one finds [43]:

Tco ∼
πγ2

4
TK∆τ

2 +
4
π3

(∆E/kB)2/TK (4.5)

where kBTK , 2EC/(π3γ(1 − τ)) is defined as in Eq. (3.11). In the next
paragraph, we set ∆E = 0 and explore ∆τ on the full range τ ∈ [0, 1]. The
crossover temperature and the universal behaviors in T/Tco will be discussed
afterwards.

Channel asymmetry perturbation ∆τ , 0

Furusaki and Matveev have proposed a renormalization flow diagram for the con-
ductances in the ‘charge’ 2CKmodel and the 2CKmodelwith true spin (a particular
case of 4CK model) [43]: the channel with the lowest initial bare transmission
will end to zero conductance whereas the best initially coupled channel will flow
to the (N/2)-CK fixed point (see Fig. 4.6).

Note that the lines of the diagrams are hand sketches between the fixed points
(they are not exact calculations). Note also that the 1CK fixed point has not been
calculated in [43], and its position at GK is only postulated by the authors of
Fig. 4.6. According to our naive reasoning, the 1CK fixed would rather be at
G∗1CK = 0 (see Fig. 3.8).



4.2. QUANTUM PHASE TRANSITIONS IN THE KONDO MODEL 81

G1↑,1↓(e
2/h)

G
2↑
,2
↓(
e2
/h
)

G
2(
e2
/h
)

G1(e
2/h)

a b

0 1

1

0 1

1
2CK 2CK

4CK

2CK

Figure 4.6: Renormalization flow diagram for the 2- and 4-channel ‘charge’
Kondo effect (reproduced from [43]). The renormalization flow towards the fixed
points when lowering the temperature is indicated by the black arrows. The 4CK
model (b) corresponds to a 2CK model (a) with electrons carrying a true spin. The
red and purple dots locate the 2CK, G∗2CK = GK , and the 4CK, G∗4CK = 1/2GK ,
fixed points respectively. In the 2CK diagram (a), the position of the 1CK fixed
point G∗1CK is not certain (see text).

Theoretical prediction for an effective magnetic field perturbation ∆E , 0

Finite ∆E are observed when measuring Coulomb blockade peaks (conductance
versus the gate voltage Vg). The shape and the height of the peak depend on the
temperature T and the transmissions τi of each channel. In Chapter 3 we focused
on the height only (the conductance at charge degeneracy δVg = 0); here we will
consider the full peak, with symmetric transmissions τ , τ1 = τ2.

As explained above, the conductance near the Kondo fixed point T � TK is a
universal function of T/Tco and its expression GT�TK

2CK is given by Eq. (4.3). The
full expression of Tco (beyond the limit ∆E � EC given in Eq. (4.5)), has been
computed by Furusaki and Matveev for 1 − τ � 1 [43]:

kBTco =
8γEC

π2
(1 − τ) sin(π∆Ng) (4.6)

where we use ∆Ng , δVg/∆Vg = ∆E/2EC to simplify. The conductance
GT�TK

2CK is plotted in Fig. 4.7a at τ = 0.9 and for different temperatures. Figure 4.7c
includes the predictedT-linear deviation from a fully developed quantum criticality
(see Eq. (2.9)).

In general, the larger the temperature, the broader the conductance peak. How-
ever, in contrast with a standard thermal broadening, here the range of ∆Ng where
the conductance is close to G∗2CK widens with temperature according to a well
defined critical exponent. A dashed line is plotted at the crossover conductance
Gco , 0.5GK used to characterize this effect. This broadening of the quantum crit-
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Figure 4.7: Rescaling of a 2CK Coulomb peak. a, Plot of the conductance
G̃T�TK

2CK over one period in ∆Ng for T = {5, 10, 20, 40}mK (from bottom to top)
with EC/kB = 300mK. The black dashed line indicates Gco = 0.5GK . The typical
width of the quantum critical area is given by the intersection of the conductance G
with Gco, it is shown by the vertical colored short dashed lines. b, Same as a, but
the T-linear term is taken into account. c, The conductance traces shown in a are
rescaled (see the x-axis). d, Same as c, but the T-linear term is taken into account.

ical area with the temperature should agree with the general expression Eq. (4.2)
given by Cox and Zawadowski. For N = 2 channels, the crossover should occur
on a temperature scale Tco ∝ ∆N2

g for ∆Ng � 1.
Let us go further and look for a method to check whether the conductance

measured experimentally follows a universal function G(T/Tco). For ∆Ng � 1,
Tco ∝ ∆N2

g is a power law; therefore, a method would be to plot G(T/∆N2
g ), or

equivalently G(∆Ng/T1/2). As we know the general expression of Tco, we can use
a rescaling that is valid even beyond the limit ∆Ng � 1 where Tco was a simple
power law. We therefore rescale the axis ∆Ng 7→ sin(πNg)/

√
T/T0, with T0 a

temperature of reference. This rescaling has been applied in Fig. 4.7, where one
can observe that the curves of Fig. 4.7a for different temperatures exactly collapse
on a single rescaled curve in Fig. 4.7c on the full range of ∆Ng.

The same rescaling is tested in Fig. 4.7d on the full expression GT�TK

2CK includ-
ing the T-linear term describing the deviation from a fully developed quantum
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criticality. This term vanishes at ∆Ng = 1/2, hence this rescaling works well on
the ‘tails’ of the conductance peaks. A naive generalization of the scaling to the
N-channel ‘charge’ Kondo is:

∆Ng 7→
sin(π∆Ng)
(T/T0)1/β

with β =
2 + N

N
(4.7)

where T0 is just a temperature scale (in practice we will use the base tempera-
ture).

4.3 Experimental observation of the multi-channel
quantum phase transitions

Wewill now present our experimental results when we introduce a relevant pertur-
bation in the two- and three-channel ‘charge’ Kondo effect. This section is divided
as follows: (i) first the channel asymmetry ∆τ perturbation is discussed, (ii) then a
subsection is dedicated to the unexpected phenomena that appear when exploring
the channel asymmetry (iii) and finally we consider an effective magnetic field δVg

perturbation.

4.3.1 Development of the Kondo QPT versus channel asymme-
try ∆τ

We have observed a flow towards the predicted fixed points of the two- and three-
channel ‘charge’ Kondo model in Fig. 3.12 of Chapter 3. In that chapter, the
transmission had been adjusted to get symmetric channels (τ1 = τ3 and τ2 = 0 to
reach the 2CK fixed point and τ1 = τ2 = τ3 for the 3CK). Here we purposely set
an asymmetry ∆τ between the channel to observe the full renormalization flow of
the in-situ conductances of each Kondo channel.

Kondo renormalization flow diagrams

For the 2CK diagram shown in Fig. 4.8, one needs to open three QPCs to extract the
individual conductances of each channel, as explained in Appendix E.1. Indeed,
with only two non-zero transmissions (τ1,2 > 0), one has only access to the serial
conductance through the two junctions (G1G2/(G1 + G2)). In this case, we have
weakly coupled a third QPC to be able to probe the individual conductances
G1 and G2. In order to minimize the perturbations on the 2CK physics, we set
τ3 � τ1,2. Note that the axes do not start at zero because the tunnel configurations
τ3 � min(τ1, τ2) � 1 are hard to access experimentally. In this entire diagram, the
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in situ conductance of the probe channel QPC3 obeys 1/150 < G3/min(G1,G2) <
1/6. The error bars are based on the statistics from successive Coulomb peaks.
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Figure 4.8: Observation of the 2CK renormalization flow diagram. The in-
situ conductancesG1 andG2 aremeasured for temperaturesT ≈ {14, 22, 38, 80}mK
(using G3 � G1,2 as a probe). Each arrow corresponds to a fixed configuration
(τ1, τ2, τ3). The arrows point towards the lowest temperature; their color shows the
asymmetry (∆τ ≈ 0 purple, ∆τ ≈ 0.57 red). Errors bars come from statistics on
successive Coulomb peaks. The dashed lines represent a poor man’s scaling. The
light gray area delimits the region where the weakest transmitted channel decouples
(its conductance decrease). The red disk indicates the location of the 2CK fixed
point.

For the 3CK diagram shown in Fig. 4.9, no probe is required since three
channels are involved. In principle, a 3CK flow diagram should be represented
in a 3D plot. But this will be too long to acquire, very redundant and hardly
readable. Hence we decide to set two channels symmetric τ1 = τ3 and plot the
data in a 2D graph G2 versus G1,3 (where we have averaged5 G1 and G3). Most
of the data in this graph have an uncertainty on both G2 and G1,3 smaller than
0.05GK , except the data points connected from high temperatures with a dashed

5This is possible since they remain approximately equal. The typical difference between G1
and G3 can be observed on the diagonal of the diagram, from the similar difference between G2
and G1,3.
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line (whose uncertainty is between 0.05GK and 0.1GK , these points are harder to
acquire because G1,3 is low whereas G2 is high).

G1,3 (e
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Figure 4.9: Observation of the 3CK renormalization flow diagram. The
averaged conductance of G1 and G3 is plotted versus G2 at temperatures T ≈ {7.9,
9.5, 12, 18, 29, 40, 55}mK. Here, the color of the arrows maps their orientation.
The uncertainty on the open symbols and dashed lines is smaller than 0.1GK

whereas it is smaller than 0.05GK for the solid symbols and lines. The fixed points
are indicated with colored dots (1CK in cyan, 2CK in red and 3CK in green).

Tunnel case τ � 1

In themulti-channel Kondomodel, channels weakly coupled to the impurity (when
T � TK ) are renormalized independently. This is shown in the 2CKdiagramwhere
the dashed lines correspond to the poor man’s scaling defined6 by Eq. (3.8). Each
line is associated to the arrow it is touching (and which is of the same color). One

6To be precise, we plotGT�TK

2 (T/TK (τ2)) versusGT�TK

1 (T/TK (τ1)), whereGT�TK (T/TK ) =
19.24GK ln−2(T/0.0037TK ) is the tunnel regime of the universal curve (see Fig. 3.14a), and where
TK (τ1) and TK (τ2) correspond to the TK (τ) in the inset of the same figure.
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can see that this approximate scaling works quite well although the transmission
are not really tunnel-like.

Symmetric coupling ∆τ = 0

This case was the topic of Chapter 3 where the flow towards the two- and three-
channel Kondo fixed point was studied quantitatively. Here we directly show
that symmetric channels remain symmetric under the renormalization flow. Note
that the symmetry was fine tuned to symmetric couplings at low temperature
T ≈ 18mK. The procedure is explained in Appendix E.2.

Development of a quantum phase transition when ∆τ , 0

At zero temperature, the conductances should reach one of the three fixed points
depending on the initial setting on the transmissions. Figures 4.8 and 4.9 show the
development of a quantum phase transition near the ∆τ = 0 line as the temperature
is reduced. In the 2CK diagram, the dark gray area contains the points which
show an increase of both G1 and G2, whereas in the light gray area one of the
conductances is decreasing.

In the 3CK diagram, the influence of the different fixed point (marked with
colored dots) is even more obvious. Moreover it displays two quantum critical
points (the 2CK and the 3CK fixed points). One can then observe a remarkable
crossover from a NFL fixed point (the 3CK) to another NFL fixed point (the 2CK).

4.3.2 Unanticipated features of the flow diagrams
The renormalization flow diagrams shown in Figs. 4.8 and 4.9 display some
previously unanticipated features: Whereas the flow to the two- and three-channel
Kondo fixed points appears regular, the flow towards the one-channel Kondo state
shows an overshoot of the in situ conductance above the free electron quantum
limit and an unanticipated conductance at the 1CK fixed point G∗1CK = 0. We right
away point out that these striking features are now corroborated by novel NRG
calculations.

The ‘charge’ 1CK fixed point G∗1CK = 0

In the previous chapter, we discussed a naive reasoning to get G∗1CK = 0 from a
non-monotonous relation between J and τ (see Fig. 3.8 on page 57). This position
of the 1CK fixed point contradicts the diagram sketched by Furusaki and Matveev
(see Fig. 4.6a).
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The 1CK limit is not visible in the 2CK diagram because we need G3 �
min(G1,G2) (in order to consider QPC3 as non-invading probe). However, the
signal-to-noise ratio is good enough in the 3CK diagram in the limit τ1,3 � τ2.
We observe that the arrows in this limit (the ones starting from the top of the
diagram) are pointing towards zero-conductance at low temperature. Moreover,
some arrows in the region G1,3 ≈ 0.2 show a non-monotonous behavior of G2 (at
large G2).

These two observations are in agreement with the naive picture we propose.
They are now also supported by NRG calculations7.

Renormalization flow diagram with τ2 = 1

The limit τ2 = 1 can be reached by setting the QPC2 in the middle of the first
IQHE plateau. The transmission in this case is perfectly equal to one within our
measurement accuracy (see the discussion on the reflectivity at the 2DEG-metallic
island interface in Appendix B.2). In this case, the transmission of the channel is
said ballistic, and one naively expects a conductance G2 equal to the quantum of
conductance GK whatever the environment of QPC2 (i.e. whatever τ1, τ3 and EC)
and whatever the temperature8 (below a reasonable limit).

In Fig. 4.10 we present the flow diagram for τ2 = 1 (with τ1 = τ3). As we have
demonstrated in Chapter 2, there is no more charge quantization at τ2 = 1. Hence
the charge degeneracy δVg = 0 has no more meaning. What is plotted in this
diagram is the conductance averaged while sweeping Vg (to increase the signal-to-
noise ratio). We observe a clear drop of the conductance G2 when lowering the
temperature!

In the same Figure 4.10, the circle and square symbols correspond to the
‘reciprocal’ situation where τ1,3 = 1 (with 0 < τ2 < 1) at the base temperature
only. In this case we observe that both G1 and G3 remain close to GK (at our
experimental accuracy).

The drop in the in-situ conductance G2 is quite surprising since one would
naively expect that a quantum conductor at unitary transmission τ = 1 behaves as
a classical resistor with a resistance R = RK . In particular, the quantum shot noise
is known to vanish at this value of the transmission as for a classical resistance.
We see that this picture matches the data when two channels are set to τ = 1 but
not with a single channel.

We have tried to substitute the role of QPC2 by QPC1 or QPC3 (see the ‘cross’,
‘plus’ and ‘star’ symbols in Fig. 4.10). We made the measurement only at base

7A.K.Mitchell, private communication.
8For example, see the Figure 3 of [99], where the conductance of a QPC in series with an ohmic

resistor of resistance R ≈ 26 kΩ ≈ RK does not drop at low temperature in the limit of ballistic
transmission τ∞ −→ 1.
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Figure 4.10: Renormalization flow of the in-situ conductances when some
transmissions are set at τ = 1. Each point is an average over δVg (see text). The
arrows show the in-situ conductances G2 versus G1,3 at τ2 = 1 for T ≈ {8.9, 9.5,
12, 18, 29, 40}mK. For comparison, the role of QPC2 has been replaced by QPC1
(cross), QPC2 (plus) and QPC3 (star) at T ≈ 8.0mK. The squares and the circles
are measured at T ≈ 8.0mK only, at τ1 = τ3 = 1 for different values of τ2. The
squares correspond to G1 and the circles to G3.

temperature and we have observed that the conductance of the channel which is set
to τ = 1 does not depend on the QPC. This observation shows that the conductance
drop cannot be explained with a residual reflection due to a τ strictly lower that
one. Indeed, the residual reflection would not be exactly the same for the three
QPCs.

Arrow crossings and universality

In the 3CK renormalization flow diagram, we observe many arrow crossings (in
the upper part τ2 > τ1,3). These crossings also exist in the 2CK diagram, but
are less spectacular, barely above noise. They are in an apparent contradiction
with the universal behavior expected at low temperature kBT � EC . Indeed, if
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(G2;G1,3) fully parametrize the universal flow, the trajectories cannot cross.
However, these crossings do not necessarily imply a non-universal behavior if

G do not completely characterize the renormalization flow. We expect it to be the
case as the relation between J and G is non-monotonous in absence of interaction
(see Fig. 3.8 on 57). Therefore, a universal flow diagram with the parameter J
would contain crossings when plotted versus G.

In the lower part (τ2 < τ1,3) of the diagram, the arrows do not cross each other,
at the measurement accuracy (in agreement with the monotonous relation between
G and J expected along the flow to the 2CK fixed point, which is located at the
maximum of the function G(J)).

Overstepping the quantum of conductance

The observation of an in situ conductance of a single channel larger than the
quantum of conductance e2/h is a striking property of both the 2- and 3-CK flow
diagrams. It is especially clear in the 3CK measurement where the signal-to-noise
ratio is better. This observation relies on fine calibrations of the offset and the gain
of the conductance measurement (see Appendix E.1.2). This allowed us to plot
data with accuracy better than 0.05GK (plain arrows) and avoid any doubt about
the actual overstepping of GK .

One should also notice that the overstepping of G2 above GK increases as τ2 is
lowered. Note that there is no overstep in the opposite limit τ2 = 1 (see Fig. 4.10).

From a general point of view, it is certain that no more than a single quantum
Hall edge channel is involved at each QPC since the voltages applied on these
split gates completely reflect the other channels. The way we extract the in
situ conductances from the classical conductance composition laws is explained
in Appendix E.1. Note that the measured conductance (per channel) through
the whole device does not overstep the quantum limit GK because of the low
conductance of QPC1 and QPC3.

Some preliminary NRG calculations of A.K.Mitchell corroborate these obser-
vations. It means that this effect is included in the Kondo model. However, to
date, we have no simple picture to explain this property.

4.3.3 Crossover from criticality versus detuning from charge
degeneracy δVg

We now set ∆τ = 0 and explore the perturbation due to an effective magnetic field
δVg. In practice, this consists in measuring the conductance per channel G versus
the plunger gate Vg over one period ∆Vg ≈ 0.70mV.
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Quantum criticality in the Kondo renormalized conductance peaks

Let us start with checking that the parameter space of quantum criticality grows
with the temperature, according to the predicted power law. A conductance peak
in the 2CK regime at τ ≈ 0.90 is plotted for different temperatures in Fig. 4.11.
This figure has to be compared to Fig. 4.7a and b.
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Figure 4.11: Quantum criticality in a 2CK conductance peak. Coulomb peaks
are displayed on a full period ∆Vg = 0.70mV for different temperatures (each
symbol corresponds here to a temperature, see the legend) in the 2CK regime.
The red lines are the prediction Eq. (4.3) plotted for the independently measured
parameters. The horizontal black line is placed at Gco , 0.5GK . The intersection
of G1,3 with this line gives the Tco(∆E) shown in the inset as symbols. The red
straight line corresponds to the 2CK power law Tco ∝ ∆E2, it is adjusted to match
the lowest temperature (square) symbol.

Fig. 4.11 contains a double x-axis: one can read both (i) the δVg applied in
practice (bottom) and (ii) the corresponding splitting in energy level when breaking
the charge degeneracy ∆E , 2ECδVg/∆Vg (top).

This peak broadening reflects the widening range of ∆E for quantum criticality
as the temperature is increased. It can be characterized by the intersection of the
conductancewithGco (black horizontal line): this crossing occurs by ‘definition’ at
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T = Tco(∆E). In the inset of Fig. 4.11, we have plotted this crossover temperature
Tco (up to 29mK) versus ∆E and compared it to the power law Tco ∝ ∆E2 expected
for the 2CK effect.

Observation of a power law on the crossover temperature Tco

In Fig. 4.12 we have generalized the procedure shown in Fig. 4.11 to other trans-
missions and also to the 3CK measurement. We observe deviations from the
predicted power laws at high temperatures. We know from Chapter 3 that non-
universal behaviors occur at temperatures higher than T ≈ 12mK (see Fig. 3.14).
Therefore, we have distinguished the three lowest temperatures in this figure (solid
versus open symbols). The inset shows an extraction of the critical exponent β
based on a fit of the data at T ≤ 12mK to a power law ∆E β. When we average
over all the transmissions, we find β = 1.94 ± 0.04 in the 2CK regime (the red line
is at the value β = 2 predicted for 2CK) and β = 1.70 ± 0.07 in the 3CK regime
(the green line is at β = 5/3 ≈ 1.667, as predicted for 3CK). Although these two
power laws are relatively close, we are clearly able to discriminate between the
2CK and 3CK predictions.

Universality of the conductance expressed in T/Tco

We can go further and verify that once the temperature has been lowered enough
to reach the non-Fermi liquid regime (T � TK ), the only energy scale to consider
is the crossover temperature Tco (provided kBT � EC).

As it has been explained in Section 4.2.2, we have a method to check whether
the conductance follows a universal function ofT/Tco on a full range of∆E. The ad
hoc function to use is ∆E 7→ sin(π∆E/(2EC))/(T/Tbase)1/β where Tbase = 7.9mK
is the base temperature of the experiment (see Eq. (4.7)). Using this rescaling, we
observe in Fig. 4.13 that the conductance peaks at all temperatures collapse on a
single curve (which is given by Eq. (4.3) for the 2CK, see Fig. 4.7).

The conductance peak displayed for the 3CK rescaling is the closest to the 3CK
fixed point (τ ≈ 0.83). Therefore, its height does not depend on the temperature
(except for the red and the orange traces that deviate from the universal regime
defined by T � EC).

With the scalings showed in Fig. 4.13, we verified that in the vicinity of the
two- and three-channel Kondo quantum critical points, the conductance follows a
universal function of T/Tco on the full range of ∆E.
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4.4 Conclusion
In this chapter, we have studied the finite temperature signatures of the second-
order quantum phase transition that occurs at the overscreened multi-channel
Kondo fixed points. We have used in turn a channel asymmetry and an effective
magnetic field as a relevant perturbation.

On the one hand, breaking the channel symmetry allowed us to observe the
full renormalization flow diagrams of the conductance. These diagrams illustrate
the development of a quantum phase transition as the temperature is lowered. The
convergence towards the 1CK fixed point displays a remarkable overstepping of
the quantum of conductance e2/h by the in situ conductance of a single electronic
channel (now corroborated by preliminary NRG calculations). We have also
observed that the in situ conductance of an electronic channel accurately set at
transmission τ = 1 can be reduced towards zero under the renormalization process.

On the other hand, considering the voltage gateVg used tomeasure conductance
peaks as an effective magnetic field, a crossover from quantum criticality (δVg = 0
at T � TK ) can be studied. The broadening of these conductance peaks is
in agreement with a temperature scale that follows a universal prediction Tco ∝
δV (2+N )/N

g valid whatever the nature of the degrees of freedom used to implement
the N-channel Kondo model. More generally, beyond the limit of small δVg, we
have observed that both 2CK and 3CK Coulomb peaks for different temperatures
T collapse onto a single curve when plotted versus a rescaled expression of δVg 7→

sin(πδVg/∆Vg)/(T/Tbase)1/β(N ). The ad hoc sine term used in this expression
generalizes Furusaki andMatveev’s derivation of the zero temperature conductance
in the strong coupling limit of the ‘charge’ 2CK model.
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Figure 4.12: Power law on the crossover temperature Tco versus ∆E. Tco
is plotted versus ∆E for different transmissions (see legend in a) in the 2CK (a)
and 3CK (b) regime. The predicted power law (red for 2CK, green for 3CK) is
adjusted to match the lowest temperature Tbase = 7.9mK. In the inset of each
graph, we show a fit of the critical exponent β for each transmission τ for the three
lowest temperatures (shown as solid symbols in the main graphs). The predicted
exponents (β = 2 in red for the 2CK and β = 5/3 in green for the 3CK) are plotted
for comparison with the mean value obtained over all the transmissions τ.
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Figure 4.13: Rescaling of a conductance peak. A conductance peak is shown at
T ≈ {7.9, 9.5, 12, 18, 29, 40, 55}mK for a selected transmission τ close to the 2CK
(in a) and the 3CK (in b) fixed points. The solid lines are experimental data. For
each graph a and b, two scales are used: the raw plunger gate voltage δVg (left) and
a rescaled axis sin(π∆E/(2EC ))/(T/Tbase)1/β (right). The conductance adopts a
universal behavior in the rescaled axis (except for the highest two temperatures).
The gray dashed line in a shows the zero temperature prediction for τ = 0.95.



Chapter 5

Outlook

This concluding chapter is written as a list of possible further research directions.

Charge quantization and multi-channel Kondo effect in the frac-
tional quantum Hall effect regime
As shown in Fig. A.4, the 2DEG we use displays a quantum Hall plateau at the
fractional filling factor ν = 2/3. The behaviors of the QPCs and the connection
of the electronic channels to the central micron-size ohmic contact are probably
different at this filling factor. However, it would be very interesting to measure
the destruction of the charge quantization and the renormalization flow of the
conductance towards the multi-channel Kondo fixed point in the FQHE regime.

Noisemeasurement near the quantum criticalKondo fixed points
Measuring the noise on the current can give access to the statistics of the charge
carriers [108]. The non-Fermi liquid physics near the quantum critical points of
the overscreened Kondo fixed point could lead to a fractionalization of the charge.
Probing this exotic effect should be possible effect with shot noise measurements.
This noise vanishes in principle near the 2CK fixed point (which is located at
ballistic transmission). However the 3CK fixed point should be accessible.

Two-impurity sample
The sample studied in this thesis counts a single pseudo-spin Kondo impurity.
Nanofabricating a new sample with two metallic islands separated by a QPC
may implement the two-impurity and the multi-channel two-impurity ‘charge’
Kondo model. The two-impurity model is important as it includes both an RKKY
interaction between the impurity spins and the usual Kondo interaction between

95



96 CHAPTER 5. OUTLOOK

each impurity spin and the conduction electrons [54]. This is a simplified version
of the Kondo lattice which is central for heavy fermions [44].



Appendix A

Pre-requisites on the quantum
transport of electricity

This chapter will introduce the reader to some basic ideas on the quantum transport
of electricity. At first, it would appear as an impossible task to describe the
fundamental properties of the transport of electrons in condensed matter. Indeed,
since electrons are charged particles, they can interact with the medium and with
the other electrons. Moreover, if we consider the ‘quantum’ problem then it is
hopeless to look for a solution by solving the Schrödinger equation of this many
body problem [69].

Despite the apparent complexity of the problem, it appears that the solution is
sometimes very simple. For instance, the conductance of a 2D electronic system
measured at low temperature and under a strong magnetic field is νe2/h where ν
is an integer called filling factor, e is the elementary charge and h is the Planck’s
constant. This phenomenon called ‘integer quantum Hall effect’ was discovered in
1980 [127]. The fact that this conductance only depends on an integer ν and some
fundamental constants is absolutely remarkable! This is the kind of experiments
discussed in this thesis: the experimental observation of simple1 results emerging
from a problem which is a priori non-trivial.

This appendix is organized in two sections the first one aims to understand the
notions of electronic channel and its maximal conductance (for free electrons): the
quantum of conductance GK , e2/h. The second part is dedicated to the study of
some important quantum transport phenomena (quantum Hall effect, dynamical
Coulomb blockade and the quantum shot noise).

1A more physical word would be ‘universal’, meaning independent of the microscopic details
of the sample we consider.
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A.1 Quantum conductors
Quantum mechanics gives to the electrons a wave-particle duality. In clean sam-
ples and at low temperatures, inelastic scattering with impurities and vibrational
phonons are rare, the electron phase is thus conserved over long distances. Trans-
port properties will change due to this phase coherence giving rise to observable
quantum phenomena.

In this section we focus on quantum conductors and QPC in particular. Indeed,
this is the basic building block of our circuits. We are able to put such a conductor
inside a circuit just as a usual electrical dipole. However, its behavior is quite
singular. First, its conductance (the invert of the electrical resistance) shows steps
quantized in units of the quantum of conductance GK , e2/h, when plotted versus
a voltage gate that control the size of the QPC. Second, its conductance between
two steps depends on the other elements of the circuit (e.g. classical resistors or
other quantum conductors).

The first part introduces the quantum of conductance and the notion of elec-
tronic channels. The second one presents our experimental realization of quantum
conductors.

A.1.1 Quantum of conductance

Apracticalway to describe the transport of electrons in a samplewithwell localized
scatterers has been first proposed by Landauer [67]. It has been refined [23, 21],
in particular after experimental observations [128, 122, 129] to eventually give the
Landauer-Büttiker formalism.

In the first paragraph, we consider an ideal one-dimensional conductor connect-
ing two electronic reservoirs at thermodynamic equilibrium. In the second para-
graph, we consider a more practical situation and discuss the Landauer-Büttiker
formalism.

Dimensionality

Let us consider two reservoirs (the left and the right) connected by a pure ideal 1D
conductor. The electrical current through the conductor is given by the elementary
charge e of an electron times the number of electrons that crosses a section of
this conductor per unit of time: I = e ×

∫
dk
2π 3(k) f (k), where k is the (scalar)

wave vector associated to an electron, 3(k) is the velocity of an electron carrying
a momentum k and f (k) counts the number electrons that carry a momentum k
[91]. Assuming free propagation, the energy E reduces to the kinetic energy, thus
∂E/∂k = ~3; then the velocity simplifies and it comes:
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IL =
e
h

∫
dE fL (E) (A.1)

where IL is the current injected by the left reservoir. For an electronic reservoir
at equilibrium (at a temperatureT and a chemical potential µL), fL (E) , {exp((E−
µL)/kBT ) + 1}−1 is given by the Fermi-Dirac distribution. A net current I will
flow when one sets a voltage bias V between the left and the right reservoirs
(eV = µL − µR). Whatever the temperature, the conductance G = I/V in the limit
V −→ 0 takes the value of the quantum of conductance:

GK =
e2

h
(A.2)

This is the electric conductance of an ideal single-mode conductor. It is
limited to the universal value GK ≈ 1/25.8 kΩ by the fermionic nature of the
charge carriers. In practice, one may consider non-ideal conductors (embedding
scatterers or with a finite width that allow several electronic modes to pass). These
situations are discussed in the next paragraph.

Landauer-Büttiker formalism

When quantum conductor contains defects or irregularities, an incoming electron
wavefunction can be either transmitted through the conductor or reflected back to
the emitting reservoir. This scattering process is elastic since it is associated to a
time-independent potential.

We consider a quantum conductor with a finite width that allows several trans-
verse modes (also called electronic channels). One can build the scattering2matrix
S that describes the scattering of the incoming waves (from the left and from the
right) into the outgoing waves (to the left and to the right reservoirs) [23]. The
conductance is then given by the two-terminal Landauer-Büttiker formula at zero
temperature:

G =
e2

h

∑
n

τn (A.3)

where the energy dependence of the transmission probabilities τn of the elec-
tronic channels is assumed to be negligible. Each channel contribute at most to
one quantum of conductance e2/h.

Many channels can be transmitted simultaneously and give rise to a larger
conductance. However, as it will be explained later, in our case, the opening of the
channels occurs one-by-one (for an illustration, see Fig. A.3). In the experiments

2In our experiments, we consider a scattering by a smooth potential (a saddle-point constriction).
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reported in this thesis, we have generally τ1 6 1, therefore the τn>1 ≪ 1 are
negligible.

According to Eq. (A.3), the average current across a quantum conductors is
fully characterized by the transmissions τn of its electronic channels. Let us see
how to build a quantum conductor in practice, and how to control the transmission
probabilities τn.

A.1.2 Quantum coherent conductors

Quantum coherent conductors can be fabricated using various methods. Our way
is to take a 2D conductor and then to make a constriction of this 2D conductor into
a local 1D conductor. That kind of small 1D conductor made in a semiconductor
is called a quantum point contact (QPC), we will describe its principle in this
subsection.

2D electron gas (2DEG)

The most direct example of 2D electron gas (2DEG) is probably a mono-layer
of carbon (graphene). However, the graphene technology is not yet mature to
implement QPCs (despite promising solutions [137]).

The 2DEG we have used is made in GaAs using MBE techniques at C2N/LPN
by Ulf Gennser, Antonella Cavanna and Abdelkarim Ouerghi. This technique
consists in evaporating gallium, arsenic and some amount of aluminum on an
initial substrate of GaAs. The crystalline growth is controlled with an accuracy
which is better than a single layer deposition. This process is done in an ultra high
vacuum chamber to reduce pollution.

One can engineer the conduction band of a stack of GaAs/AlGaAs called
hetero-structure by modulating the aluminum proportion [11, 114]. The silicon
impurities introduced in the AlGaAs region (see Fig. A.1) ionize. The generated
free electrons find the minimum of energy E(zmin) and eventually stay there and
form the 2DEG.

Since they are trapped in z direction, their motion will be quantized along this
axis. When the temperature is lower than the energy spacing between the modes,
only the fundamental level is populated (in black in Fig. A.1a). They are free to
move in the other directions (x, y), but their position in z is locked3.

3The ground state wavefunction shown in Fig. A.1a gives the average position, z, of the electron
in the quantum well. This position can fluctuate, according to QuantumMechanics, but the motion
remains fundamentally two-dimensional, as the average position cannot change.
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Figure A.1: 2DEG formed in a GaAs/AlGaAs heterostructure. The z axis
shows the direction of the MBE growth. a, (reproduced from [114]) The electrons
given by the silicon impurities (+) fall in the triangular well. The ground and
first excited states wavefunctions are represented. At low temperature, only the
quantum ground state is populated. The position of these electrons is locked in
an (x, y) plane close to the interface GaAs/AlGaAs. b, Schematic view of our
heterostructure. A GaAs cap is used to avoid oxidation. The 2DEG is typically
100 nm below the surface.

Quantum point contact (QPC)

What we actually need is a 1D conductor. The idea is then to polarize split gates
deposited on the top of the (Al)GaAs heterostructure to build a constriction of
the 2DEG and eventually get a 1D conductor. This 1D component is called a
QPC. The typical gap between the split gates is given by the Fermi wavelength
λF =

√
2π/n ≈ 50 nm, where n ≈ 2.5 × 1011 cm−2 is the density of our 2DEG.

The quantum point contact [122, 129] is the basic building block of our meso-
scopic circuits. We have three QPCs in our device (see Fig. 1.1). Their working
principle is shown in Fig. A.2. The conductance of a QPC depends on the voltage
applied on its two gates. The negatively higher the gate voltage, the narrower the
constriction (and thus, the lower the conductance of the QPC). A measurement of
the conductance of a QPC with respect to its two gates is shown in Fig. A.3.

This figure shows pronounced steps at multiples of GK , e2/h. At each step,
one more electronic channel is transmitted through the QPC. The large plateaus at
each step are actually due to the strong perpendicular magnetic field (B ≈ 2.7 T)
[22]. In this regime, the channels pass one-by-one. Hence, one can generalize
the transmission τ to values larger than a unitary transmission when considering
several channels (e.g. τ = 3.14 means that three channels are fully transmitted
and a fourth has the intermediate transmission probability of 0.14.)
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Vqpc

i

Vdc

Ground

Figure A.2: Diagram of a Quantum point contact. The transparent cuboid
represents the (Al)GaAs heterostructure. A voltage Vqpc applied on the QPC gates
generates an electric field between the metallic gates (in grey) and the ground (in
gold). This field depletes the 2DEG under the gates. The constriction in the 2DEG
is the QPC. The conductance G = i/Vdc of the QPC is measured using electrodes
called ‘ohmic contacts’ (gold cylinders) that connect the 2DEG.

This conductance has been measured when the QPC was directly connected
to a voltage source as drawn in Figs. A.2 and A.3. We will call this the intrinsic
conductance4 of the QPC.

Note that the quantum of conductance GK = e2/h ≈ 1/25.8 kΩ is a universal
value. The practical way to build the quantum conductor does not matter: its
chemical composition, the density of the 2DEG, the geometry of the split gates,
the voltage applied on the QPC gates, etc. Other examples of quantum coherent
conductors include e.g. atomic-size contacts [109] or carbon nanotubes [41].

A.2 Quantum transport of electricity
In this section, we introduce some useful concepts on the quantum transport of
electricity. We will discuss successively quantum Hall effect, dynamical Coulomb
blockade and quantum shot noise. The theory will be described briefly and will
be illustrated with measurements. The experimental data shown in the two last
sections have been used to establish primary thermometers at T ≈ 6mK (see
Appendix D, which reproduces an article where we have measured the lowest

4In presence of other components, the conductance of a coherent conductor is modified by the
interactions with the environment.
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Figure A.3: Measurement of the conductance of a Quantum point contact.
The intrinsic conductance of a QPC is measured with respect to the voltage applied
on its two gates (left and right), in presence of a strong magnetic field (see text). a,
The conductance of a QPC is measured as a function of the right gate, the left gate
is fixed (to VqpcL = −0.55V for this trace). b, Both gates are swept separately. A
smooth step from 0 (in violet) to GK (in red) is observed.

electronic temperature in the world for a mesoscopic device of micrometer or
nanometer scale with three different techniques).

A.2.1 Quantum Hall effect
The quantum Hall effect occurs when a 2DEG is subject to a strong perpendicular
magnetic field [127]. The conductance of such a system acquires a universal value
given by quantum of conductance GK , e2/h times a filling factor ν that is either
an integer or a fraction: G = νGK . As explained by Laughlin in [68], this effect
is an emergent phenomenon which cannot be deduced from first principles. In
particular, despite a clean sample is required, the defects play a crucial since a
sample which is invariant by translation cannot display quantum Hall effect [68].
The ground state of a fractional quantum Hall effect cannot be derived from a
non-interacting electrons approach. This can lead to very complicated physics,
for instance, the origin of the even-denominator filling factor ν = 5/2 remains an
open question ([97] and references therein). In this thesis we consider only integer
filling factors.

Edge states and filling factor

For the integer quantum Hall effect (IQHE), a semi-classical approach is relevant
(for a derivation, see [47]). The energy of the electrons is quantized in Landau
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levels EL = (n + 1/2)~ωC , where ωC = eB/m is the cyclotron frequency (with
m the mass of the electron and B the magnetic field). At a given Fermi energy
EF , only the levels with EL (n, B) ≤ EF will be filled and will participate to
the electrical transport. This yields the quantum Hall plateaus of conductance
versus the magnetic field shown in Fig. A.4a. Each mode will carry a quantum of
conductance GK and will be located at the edge of the sample (see Fig. A.4b).
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Figure A.4: Quantum Hall effect. a, The Hall resistivity is plotted versus
the perpendicular magnetic field for several 2DEGs (three colors). The horizontal
straight lines indicate the resistivity RHall = ν e2/h expected for some filling factors.
The mismatch comes from the resistance of the probes (a four-point probe method
would be more accurate). The 2DEG used in this thesis is the ‘08JN13’ (red trace).
b, Representation of the chiral edge states for a ν = 3 integer filling factor.

Percolation

The “bulk” of the 2DEG is insulating, the current flows only along the chiral
edge states. The width and the distance to edge of these edge states depend on
the magnetic field [25]. When passing from a filling factor to the lower one, the
innermost channel percolates as illustrated in Fig. A.5. This figure also shows that
the screening of defects is better at higher filling factor, and, for a given filling
factor, at the beginning of the quantum Hall plateau (low magnetic field). This can
be observed when plotting the conductance of a QPC versus the voltage applied
on its gates (as in Fig. A.3) for different magnetic fields. In practice, we determine
the best operating conditions to perform our measurements with canonical QPCs.
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Figure A.5: Quantum Hall plateau. a, (adapted from [7]) The filling factor
can be changed by tuning the magnetic field B. The edge states percolate in the
intermediate region. b, The intrinsic conductance of QPC1 (first row) and QPC2
(second row) is plotted versus their two gate voltage VqpcR,L for several magnetic
field (see bottom line) but at the constant filling factor ν = 3. We use the same
color code as in Fig. A.3b and the same range VqpcR,L ∈ [−0.7V, 0V] for all the
graphs. The QPCs present a much more canonical shape in the beginning of the
quantum Hall plateau (probably because the nearby defects are better screened by
innermost channel).

A.2.2 Dynamical coulomb blockade (DCB)

Dynamical coulomb blockade modifies the conductance of a quantum conductor
at low energy when it is embedded in a true circuit (and not directly connected to a
voltage source, as in Fig. A.3). In general, the in situ conductance G of a quantum
conductor will be reduced compared to its intrinsic value G∞ = τGK > G
because the electrons that go through the conductor will dissipate some energy
into the circuit [53]. This phenomenon is closely linked to the granularity of the
charge that tunnels through the quantum conductor, and it will disappear at integer
transmissions τ = 1, 2 . . . [6].
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Figure A.6: A quantum coherent conductor in a circuit. a, The general
problem of a coherent conductor (C.C.) in series with a impedance Z (ω). b, The
theory is well-established in the case of low transmissions τ � 1. Indeed the
conductor can be separated in a pure tunnel element (of resistance RT ) in parallel
with a capacitorC. We consider the case of a purely resistive impedance Z (ω) = R.

The problem can be solved in the case of a short tunnel junction in series
with any impedance Z (ω) (see the same review [53]). In practice, a short tunnel
junction is always a parallel combination of a capacitor and pure tunnel element,
as sketched in Fig. A.6. The geometry of the sample will set the capacitance C
and thus the charging energy EC = e2/(2C).

When dealing with resistive environments Z (ω) = R, a charge that crosses the
coherent conductor interacts with the electromagnetic modes of the environment.
This interaction costs an energy that will change the transport properties of the
coherent conductor at small voltage bias Vdc and low temperature. Indeed, in these
conditions, the charge cannot pay the energy required to pass, it is then ‘Coulomb
blocked’ and the differential conductance of the coherent conductor shows a dip
when plotted versus the voltage bias Vdc (see Fig. A.7c).

Theoretical predictions for a tunnel junction in series with a resistor

At zero temperature, a perturbative theory gives the flowing expression for the
conductance of a small and opaque tunnel junction in series with an arbitrary
resistor R at zero-temperature and with e|V | � EC (equation 113 in [53]):

G(V ) =
G∞(π/γ)2R/RK (1 + 2R/RK )

Γ(2 + 2R/RK )

(
R/RK

e|V |
EC

)2R/RK

(A.4)

whereG∞ , 1/RT is the intrinsic conductance (as expected, we obtainG = G∞
for R = 0), Γ is the gamma function, γ ≈ exp(0.5772) is the exponential of the
Euler’s constant.

There is also an expression of the conductance of the junction at zero bias and
low temperature kBT � EC [95]:
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G(T ) =
G∞π(1/2+3R/RK )Γ(1 + R/RK )

2Γ(3/2 + R/RK )

(
R/RK

kBT
EC

)2R/RK

(A.5)

The resistance R always appears in a ratio R/RK . The strength of DCB depends
on this ratio: (i) when R � RK , G(V ) ∼ G∞, there is no Coulomb blockade (ii)
when R � RK , we are in the static Coulomb blockade regime5, the current is
completely blocked unless the electrons have the charging energy e|V | > EC (iii)
the ideal case to observe a fully developed DCB is when R ∼ RK .

From the two previous expressions, we can extract the experimental (absolute)
temperature of a DCB measurement in the tunnel regime in the case (iii) with
R = RK/2. This measurement can be used to perform a primary6 thermometry.

Experimental DCB measurement

We repeat the measurement twice, once with QPC1 and once with QPC2. To
implement the circuit shown in Fig. A.6b, we use QPCi as a tunnel junction, and
we set the opposite characterization gate to τsw j = 2. This switch will behave as a
classical resistor7 with a resistance R = RK/2.

At low temperature, we measure the conductance versus the voltage bias Vdc.
The conductance shows a dip at zero bias (see Fig. A.7). The deeper the dip, the
lower the temperature. At R = RK/2, the expressions Eqs. (A.4) and (A.5) of the
conductance are linear both in V (see the red dashed lines in Fig. A.7c) and T :




G(V ) = α G∞
EC/kB

× V
G(T ) = β G∞

EC/kB
× T

(A.6)

where α = πe
2γ/kB ≈ 10.23 × 103 and β = π5/2

8 ≈ 2.18 are constants. To
be more accurate8, we can extract EC ≈ 25 µeV ≈ 290mK from the height
of the Coulomb diamonds shown in Fig. A.7. The explanations on Coulomb
diamonds will be given in Appendix C.2. From this numerical value of EC , we
can confirm that these DCB experiments were actually done in the tunnel regime:
G1∞ ≈ 0.12GK and G2∞ ≈ 0.13GK � GK . Then we use a finite temperature
theory of the tunnel regime proposed by [57]. Their calculations have been
plotted (as red solid lines) in Fig. A.7abc, where we have used EC = 25 µeV and

5An implementation of this limit will be discussed in Appendix C, where we consider the single
electron transistor (SET).

6Such a thermometer does not require any calibration with a reference thermometer.
7An experiment reported in this thesis (in Fig. 4.10) shows that this is not true on the first

plateau R = RK .
8The temperature extracted will remain a primary thermometry.
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Figure A.7: Dynamical coulomb blockade measurement. This measurement
is done at T ≈ 6mK in the tunnel regime, with a resistive environment R = RK/2.
a and b, With a resistor in series, the conductance GDCB of a QPC is reduced at
zero bias Vdc. The red line corresponds to the finite temperature theory for a tunnel
junction at TDCB1 = (6.0 ± 1.0) mK for QPC1 and TDCB2 = (6.5 ± 1.0) mK for
QPC2 (the grey shade shows the uncertainty ±1mK) c, Same as a, but displayed
on a wider range in Vdc. d, Coulomb diamond, its height gives the charging energy
EC ≈ 25 µV (explanations given later, in Appendix C.2).

TDCB1 = (6.0 ± 1.0) mK for QPC1 or TDCB2 = (6.5 ± 1.0) mK for QPC2 to fit the
data using G∞ as a fitting parameter, the gray shade shows the uncertainty ±1mK.

We have seen that we are able to measure the temperature of a dynamical
Coulomb blockade measurement in the tunnel regime with an environment R =
RK/2. This phenomenon is due to the granularity of the charge that flows through
the tunnel junction made by a QPC. This granularity can be measured in the
fluctuations of the current across the QPC. We will discuss this point in the next
section.

Here we have discussed DCB in the tunnel regime using QPCs. This effect
can also be explored in the strong coupling regime [99] or using atomic junction
has shown by the Quantronics group (see [31], or the thesis of R. Cron [32]).
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A.2.3 Quantum shot noise

So far, we have only discussed the average current. But, additional informations are
contained in the fluctuations of current. We are going to measure these fluctuations
to get a temperature measurement. In practice, we are able to measure the power
spectrum of the current fluctuations SI at zero frequency. This quantity can be
computed using a scattering approach for a short coherent conductor connecting
two terminals with a transmission τ (equation 62 in [16]):

SI =
e2

h

[
4kBTτ2 + 2eVdcτ(1 − τ) × coth

(
eVdc
2kBT

)]
(A.7)

in this expression, the transmission τ(E) ≈ τ is assumed independent of the
energy for E . e|Vdc |, kBT . The noise is maximal when τ = 1/2. At small
voltage bias eVdc � kBT , the noise corresponds to the thermal (Nyquist-Johnson)
noise for a classical resistor SI = 4kBTG∞ where G∞ , τ e2/h is the intrinsic9
conductance of the quantum conductor. This is also the case when τ = 1, since
the second term vanishes and G∞ = e2/h.
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Figure A.8: Primary thermometry using quantum shot noise. a, Power
spectral density of current fluctuations in excess ∆SI , SI − SI (Vdc = 0) versus
voltage biasVdc, for a quantum conductor at τ ≈ 0.55 directly connected to a voltage
source (see the inset), and averaged on 131 sweeps. Solid red line shows a fit of
the averaged data. We obtain T = (6.0 ± 0.1) mK. The dashed lines correspond to
zero temperature. b, Temperature obtained to fit the data of each successive sweep
of Vdc.

9In this experiment, the quantum conductor is directly connected to a voltage source (see the
inset of Fig. A.8a).
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In Fig. A.8, we set τ ≈ 0.5 and we use Eq. (A.7) to extract the temperature T .
This is a primary thermometry as we are able to characterize the other parameters
(Vdc, τ). The temperature T = (6.0 ± 0.1) mK is essentially given by the curvature
of the excess noise ∆SI at low voltage bias. The accuracy on the measurement can
be significantly enhanced by statistically averaging the measure on many sweeps
(or, in principle equivalently, by increasing the integration time). The precision
is then limited by the stability of the experimental setup on long time scales (the
Fig. A.8a requires ∼ 45 h of acquisition).



Appendix B

Sample description and
characterization

Figure B.1 shows a colored micrograph of the sample with the name of each
element. The elements outside the image are of macroscopic size. There are two
types of connections to the outside world: (i) the white circles (ii) the black circle.
The black circle is a usual connection: a conductive wire touches the element on
the surface. The white circles are ohmic contacts: an alloy of Au-Ni-Ge is diffused
to connect the underlying 2DEG by a thermal annealing. The white circles are
thus used for injecting or measuring current while the black circles are used to
shape the circuit.

The sample is subjected to a strong magnetic field giving rise to IQHE. In
this regime, the current is flowing along chiral edge states. In Fig. B.1, only the
outermost channel is shown, and not everywhere in order to lighten the figure.
Due to the chiral edge states of the quantum Hall effect, the injection and the
measurement points are not shot-circuited and one can for instance measure the
signal reflected back from a QPC.

This chapter is divided into a section about the gates on the surface (QPCs
and SWs gates) and a section dealing with the central micron-sized ohmic contact.
The first section explains how we can implement the different circuits studied
in this thesis and it shows our mastery of the quantum conductor embedded in
these circuits. The second section shows the good quality of the central ohmic
contact which ensures the circuit we implement in practice to be a ‘perfect quantum
simulation’ [85] of the explored phenomena.

111
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B 1 µm

QPC2
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QPC1
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FigureB.1: Coloredmicrograph of the samplewithmeasurement schematics.
This figures shows the central ohmic contact (in purple) that redistributes the current
injected by the a.c. voltage sources (out of the image) into the chiral edge states of
the IQHE (red lines) through larger ohmic contacts (white circles) not shown in the
picture. The low frequency signal is measured using Lock-in amplifiers (triangles).
This sample includes three QPCs (in cyan) and two switch gates (in orange) used
for characterization. The value of the transmission of the QPC and the state of the
switch is controlled by the voltage sources that connect (black circles) theses gates
placed on the surface.

B.1 Surface gates

The principle of field effects to change the conductance of the constriction of the
2DEG below surface gates has been explained in Fig. A.2 for a QPC. This principle
works as well for the switch gates (SWs) used for characterization.

B.1.1 Switch gates and environment

The switch gates are not used at intermediate transmission because the region right
under the gate is generally not clean (one can see the sharp resonances in the gray
shaded areas of Fig. B.2). Their geometry is optimized to change the transmission
(integer) values quickly, without applying large voltages Vsw.

The main purpose of these switch gates is the characterization of the intrinsic
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Figure B.2: A switch gate at work. This figure shows the successive opening
of electronic channels by a switch when we sweep the voltage Vsw . The insets
show the back-scattering of the channels in (the gray shaded areas) and the ballis-
tically transmitted channels (areas without background). The central inset shows
two additional information: the switch ‘injects’ grounded channels and there is a
(negligible) capacitive coupling between the edge states.

conductance of the QPCs1. The switches have an injection port, but it is not used
to inject current, the edge states lines comes from the ground. When the switch
let the current pass, it short-circuits its QPC to the ground. The equivalent circuit
is given in Fig. B.3a.

Being in the IQHE regime is not mandatory for the switch gates to work.
Indeed, the environment of the QPC will be short-circuited once its lateral switch
gate is fully transmitting all the electronic channels. In the IQHE regime, one will
measure the intrinsic transmission2 τ 6 nchannels of a QPC (where nchannels is the
maximum number of channels opened by the QPC for a given characterization) if
its lateral switch let pass at least nchannels 6 ν.

There might be an interaction (sketched with distributed capacitors in the
central inset of Fig. B.2) between the edge states that put some signal in the strict
case nchannels < ν, but this is completely negligible on the small distance between
a switch and its QPC. In practice all our experiments are done with τ 6 1, and we
open at least the switches on nchannels = 2.

1There is no switch gate for the third QPC.
2As explained when discussing Fig. A.3, in the IQHE regime, we can define transmissions

larger than τ = 1 when considering the transmission of more than a single edge channel.
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B.1.2 Characterization and measurement circuitry

We have seen that we are able to change the environment of a QPC by changing
the state of the switches. Changing the voltage on the switches gate also have an
electrostatic influence on the size of the constrictions of the QPCs. This point will
be discussed in the next subsection. Here we discuss different configurations of
the switches and the QPCs.

Vdc

VqpcL

VqpcR

τ

τsw=2

Vsw

Vdc

τi τsw-j=2

τsw-i=0

ba

Figure B.3: Circuits used for characterization. The shape of the 2DEG (in
gray) can be modified thanks to the surface gates (in cyan and orange). Theses
gates are connected (black circles) to voltage sources. The connection of the 2DEG
with the circuit is achieved with ohmic contacts (white circles). a, Circuit for the
measurement of the intrinsic conductance G∞ = τGK . The switch let pass two
channels and τ 6 1. The switch is in its closed state, it can be replaced by black
classical wire (as in the inset of Fig. A.3a). b, In series with an element, the
conductance of the QPCi will be modified Gi , τiGK . Here the environment of
QPCi is a resistor R = RK/2 (made with the switch SW j of transmission τsw j = 2).
The branch containing SWi can be erased as it is placed in its open state. This is a
typical circuit for Dynamical coulomb blockade.

The switch gates are used to implement two characterization circuits. We
can use them to short-circuit the environment (Fig. B.3a) or to make a well-
controlled resistive environment (Fig. B.3b). The first circuit measures the intrinsic
transmission τ of a QPC while the second one probes the conductance in presence
of DCB.

The circuit actually studied to get the main results reported in this thesis is
given in Fig. B.4. The switches were used for characterization only, they are set to
τsw1 = τsw2 = 0 during the experiments. However we use Vsw2 as a plunger gate.
This gate is swept on a very small range (generally in [−0.395V,−0.405V]), and
with a good margin to keep τsw2 = 0 (see Fig. B.2).
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τsw1=0
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τsw2=0

τ2
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Figure B.4: Circuit that produced the results reported in this thesis. The
branches containing the switches can be erased as both are in opened position. In
the charge quantization experiment τ3 = 0, its branch can be suppressed too. We
always have τ1, τ2, τ3 6 1. When τ1, τ2, τ3 � 1, the charge on the island (in purple)
is quantized because it is almost isolated from the circuit. This charge state can be
tuned using the voltage Vg applied on a surface gate (e.g. Vsw2) of an element at
τ = 0 (not to modify its transmission).

B.1.3 Quantum point contacts transmission and characteriza-
tion

Let us discuss how we implement a QPC with a well characterized transmission
τ. First, this transmission has an energy dependence and its variation ∆τ on the
range of explored temperatures has to be minimized to guaranty that we were
dealing with the same object at the different temperatures. Second, we will play
with several QPCs; changing the voltages on the gate of a QPC influences the
size of the constriction of the other QPCs and therefore their transmission: these
crosstalks should be fully characterized. Third, we use the switches to measure the
intrinsic transmissions, but we switch their state to perform the real experiment, the
crosstalk between a QPC and its lateral switch gate should also be characterized.
These two corrections will be discussed in the next subsection.

Quantum point contacts (QPCs) give us access to the full range of transmission
τ ∈ [0, 1]. For the purpose of our experiments, we will pick up a dozen of values
in this range. We can check the energy dependence of these selected values of
transmission by applying a voltage bias. Figure B.5 shows the transmission of a
QPC and the values picked up for the two-channel Kondo experiment (published
[52], but not shown in this thesis). The inset shows the energy dependence
∆τ/τ for three of these values versus the voltage bias (the highest temperature
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in this experiment was Tmax ≈ 151mK ≈ 13 µeV/kB and the voltage range is
[−50,+50] µV).
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Figure B.5: Energy dependence of the intrinsic transmission τ. The trans-
mission τ1 of QPC1 is measured as a function of the voltage Vqpc1 . The step from
τ1 = 0 to 1 is marked by a broad resonance around Vqpc1 = −0.4V, but we pick up
our points (symbols) away from it. The energy dependence is shown in the inset for
three selected transmissions, where the difference relatively to Vdc = 0 is plotted
(with an offset for clarity).

Let us verify that our QPCs are generic and interchangeable. A single-channel
quantum conductor (as our QPCs in the IQHE regime) is fully characterized by
its transmission τ. In Fig. B.6, we have set the three QPCs in turn in the same
DCB configuration (T = 18mK and a resistive environment of RK/2 as shown in
Fig. B.6a). We have tuned each QPC to a given conductance at zero voltage bias,
and we observe in Fig. B.6b that all the DCB curves develop equally (up to some
energy dependence) for all the QPCs.

The value of the transmission we have used in Chapters 3 and 4 are obtained
from the conductance in this DCB configuration, at large voltage bias (in the gray
shaded areas of Fig. B.6b). The conductance is not the same for positive and
negative large bias because of the energy dependence of the QPCs. This limits the
accuracy for the determination of a single transmission. The ∆τ associated to each
transmission τ in the table of Fig. B.6c takes into account both the positive/negative
bias andQPC1,2,3 scatter (six values for each τ), to get an estimation of the accuracy
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on τ.
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Figure B.6: Equivalence of QPC in presence of DCB and accuracy on the
transmission τ. a, Schematic circuit used to characterize the transmission proba-
bilities of the QPCs. A lateral characterization gate is used to implement a serial
resistance of R = RK/2. b, The conductance GDCB

1,2,3 of QPC1, QPC2 and QPC3
is measured (one after another) in presence of DCB at T = 18mK with the same
electromagnetic environment (R = RK/2 and EC ≈ 25 µeV). We see that the
three QPCs are interchangeable up to e|Vdc | ≈ EC . The intrinsic conductance can
be extracted from the conductance at large d.c. voltage bias (in the ±[45, 51] µV
gray shaded areas) to obtain the transmission τ1,2,3 = GDCB

1,2,3(e|Vdc | � EC )/GK .
c, These individual transmission probabilities τ1,2,3 are averaged (from six values
corresponding to positive/negative bias and QPC1,2,3) to give τ with a standard
error on the mean value ∆τ.

B.1.4 Capacitive crosstalk corrections

Changing the voltage on a surface gate has an electrostatic capacitive influence
on all the constrictions (QPCs) of the sample. This electrostatic effect depends
basically on the distance between the two objects we consider. It can be charac-
terized and corrected by applying a correction to each QPCs gates to compensate
the change on a given surface gate.

These corrections are relatively small but they can have a certain impact on the
sensitive measurement reported in this thesis. We first discuss the case of distant
gates and then treat the crosstalk of a switch gate on its lateral QPC.
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Influence on a distant gate

The influence on the change on the voltage gates of a QPCi onto the transmission of
a QPC j is maximal when τj ∼ 0.5 because the slope ∂τ/∂Vqpc is maximal around
this value. To be more accurate, we characterize the crosstalk QPCi  QPC j
in two steps. First, we try to adjust the coefficient α such that the variation,
δτj , induced on the transmission of QPC j by a step δVqpci is compensated by
δVqpc j = αδVqpci so that we can sweep Vqpci (on the range τi : 0 → 1) and keep
τj constant. Second, we determine the absolute shift ∆Vqpc j measured on τj when
we pass from τi = 0 to τi = τrefi (where τref is a picked up value close to half
transmission for the QPCs and τrefsw = 2 when calibrating the influence of a SW
gate onto a QPC).

These calibrations of the crosstalks between the surface gates are done using
different configuration of the switch gates. A full set of calibration with their
corresponding configuration of all the surface gates is given in Table B.1. There are
several remarks to do here: (i) the crosstalks QPCi  QPC j and QPCi f QPC j
are not equal (despite the electrostatic origin of this effect) in particular because the
compensation δVqpc j = αδVqpci depends on ∂τj/∂Vqpc j , (ii) QPC3 has no switch
and (iii) these effects are small and only the first order is considered (crosstalks
of crosstalks are neglected). The point (ii) is not a problem in principle since
calibrating a crosstalk QPCi  QPC3 is possible even if the QPC3 is not in an
‘intrinsic configuration’. Indeed, its environment will be fixed to RK/2 thanks to
τswi = 2 (whatever τi 6 2). In practice we have noticed an effect of τi : 0 → 1
when we try to adjust this correction, but we can compare with QPC1 and QPC2
(which show the similar slight change of environment when they are in ‘DCB
configuration’).

Influence of a switch gate on its lateral QPC

This characterization has been used to extract the transmission τi of a QPCi (with
i = L or R) in the charge quantization experiment. It consists in taking a trace
of QPCi for the two configurations of SWi: ‘open’ and ‘closed’ (see Fig. B.7b).
In the open position, the QPCi is sensitive to its electronic environment and one
should apply a large d.c. voltage bias (eV � EC , to avoid any renormalization
of the conductance due to dynamical Coulomb blockade). Note that the voltage
drop across the QPCi in the red inset of Fig. B.7b depends on its transmission as
τL/(τL + τR)V , one should then focus on τR � 1 (to be in the same conditions as
in the blue inset where the environment is short-circuited).

The spacing ∆V ct
R between the two traces in Fig. B.7b is directly the correction

to apply on the right QPC voltage gate VqpcR when switching the state of its lateral
switch. This spacing ∆V ct

R is evaluated by focusing on small GqpcR in order to
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Figure B.7: Crosstalk characterization. a, Intrinsic conductance GswR across
the right switch gate versus the voltage applied on this gate VswR . The red and
blue arrows on the x-axis indicates the voltages that define respectively the ‘open’
and ‘closed’ positions of the switch, see the inset of b (a zero-conductance in red
is an open circuit). b, Intrinsic conductance GqpcR across the QPCR versus its
voltage gate VqpcR . The red and blue traces correspond respectively to the ‘open’
and ‘closed’ positions of the right switch. The capacitive influence is measured
by the spacing ∆V ct

R between the two traces (focussing on small conductances, see
text). c, The spacing ∆V ct

R between a reference trace of GqpcR measured for a
VswR = −0.5V and another one is displayed versus VswR . The vertical dashed lines
delimit the GswR = 0 and 2GK quantum Hall plateaus.

minimize the difference between the voltage bias of QPCR in both configurations.
We have measured the dependence of this spacing for other positions of the

switch than the two we have chosen for its ‘open’ and ‘closed’ configurations
(VswR = −0.35V and 0.1V respectively). We see in Fig. B.7c that this dependence
is relatively simple (as we might expect for an electrostatic effect in this geometry);
it is piecewise linear.

B.2 Ohmic contact
The presence of the central ohmic contact (in purple in Fig. B.1) and its good
quality are essential for the experiments reported in this thesis. It has two important
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features: (i) the coherence of electron is lost when they cross it because the energy
level spacing in this metal is completely negligible and (ii) its connection to the
2DEG is perfect at our accuracy.

B.2.1 Mean energy level spacing in the island

The energy level spacing depends on the dimension of the conductor. It is given
by the following formulas (first equations in [65]):

δE2D = (1/π)
~2π2

mL2

δE3D = 1/(3π2Nat)1/3
~2π2

mL2

(B.1)

where Nat is the number of atoms, m = me = 9.1 × 10−31 kg is the mass of the
electrons and L ∼ 1.5 µm is the typical length of the material. We estimate Nat ∼
(L/a)3 with a ∼ 0.1 or 1 nm as a typical interatomic distance. These numbers
give δE3D/kB ≈ 0.1 or 1 µK. This is far below our lowest base temperature of
6mK. At this temperature, too many discrete energy levels will be activated to
still consider the density of state as discrete.

The presence of this metallic ohmic contact is crucial, because δE2D ≈ 18mK
(here we should consider the effective mass m∗ = 0.067me of the electrons in
GaAs). This level spacing (for the 2DEG without ohmic contact) would be larger
than our base temperature.

We distinguish our metallic island (that has a continuous density of state) from
the quantum dots (that have a discrete one) used in other similar experiments
as [66, 8]. Having discrete levels would have dramatically changed the physics
involved in our device where coherent transport through the island connected by
few electronic channels is fully negligible.

B.2.2 Connection of the micron-sized ohmic contact to the
2DEG

At our experimental accuracy, we have not measured any reflection at the interface
between the ohmic contact and the 2DEG for the first electronic channel transmitted
through each QPC. The measurement protocol is explained here, it is similar to the
way we calibrate the gain of the measurement lines in Appendix E.1.2. However,
this measurement is independent of any gain calibration. Measurement artifacts
could only come from offsets (which are smaller than experimental noise for this
characterization).
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We measure the signal reflected back Vi,i on each QPC when all the QPCs are
at τ = 0 and then when they all are at τ = 1. The ratio of the two measurements
will be linked to the transmissions by:

ν

(
1 −

Vi,i (τ = 1)
Vi,i (τ = 0)

)
=

(
1
τi
+

1
τj + τk

)−1
(B.2)

where ν is the filling factor of the IQHE. Let us define the normalized signals
3i,i , ν

(
1 − Vi, i (τ=1)

Vi, i (τ=0)

)
. We have 3 equations and 3 unknowns, solving the system

of equations yields the expression of τi:

τi =
32i,i + (3 j, j − 3k,k )2 − 2 3i,i (3 j, j + 3k,k )

2(3i,i − 3 j, j − 3k,k )
(B.3)

The measurements and the deduced transmissions are given in Table B.2.

QPCi Vi, i (τ = 0) (µV) Vi, i (τ = 1) (µV) τi

QPC1 3.826 06 ± 0.000 02 2.975 98 ± 0.000 02 0.999 67 ± 0.000 06
QPC2 3.796 25 ± 0.000 02 2.952 69 ± 0.000 02 0.999 91 ± 0.000 06
QPC3 3.808 58 ± 0.000 02 2.962 12 ± 0.000 02 1.000 31 ± 0.000 06

Table B.2: Transmission of the outermost channel to themicron-sized central
ohmic contact. These data are taken at the filling factor ν = 3. Each configuration
(τ = 0 or τ = 1) have been acquired during ∼ 20 minutes. The errors bars are
standard error on the mean value.

Let us recall that this measurement is free of any gain calibration as we divide
two measurements made with the same amplification line. The offsets in the
voltage measurement are typically of −7 × 10−11V. Such an offset will change the
transmission measured of ∆τ = 2 × 10−5, which is smaller than the measurement
error bars. That is why we can claim that the connection between the micron-sized
ohmic contact and the 2DEG is perfect within our accuracy.

This connection is weaker for inner channels. It remains good at 10−3 for the
second channel at ν = 3. The last channel is not transmitted to the central ohmic
contact on the sides of QPC1 and QPC3, the transmission remains at 2 while it
reaches τ2 = 3.002 21 for QPC2. Despite the imperfection of the connection of
the ohmic contact to the 2DEG for these inner channels (probably because of its
small size), we are satisfied since we are not using these inner channels in our
experiments.



Appendix C

Single electron transistor

This appendix is a pedestrian derivation of the conductance of the SET based
on the perturbative approach for the tunneling through the junctions explained in
[91, 53]. This theory (usually called the ‘orthodox theory’) is well established.
Here we aim to present the origin of quantities we will use all along this thesis (the
charging energy EC , the conductance of the device, etc.). Note that this theory
is semi-classical (the only ‘quantum’ ingredient is the amplitude of the tunneling
probability).

C.1 Charging Energy
Let us consider the electrical circuit sketched in Fig. C.1. The central node is
surrounded by capacitors. The border of the so-called ‘island’ is delimited by a
dashed pink line. The total charge Q in the island is an integer multiple of the
elementary charge Q = Ne.

The electrostatic energy of the island is given by the sum of the energy stored in
the capacitors C1,C2,Cg and the potential electrostatic energy given by the voltage
sources V1,V2,Vg to bring by the charges q1, q2, qg onto the island:

Eel =
1
2

*
,

q2
1

C1
+

q2
2

C2
+

q2
g

Cg

+
-
+ q1V1 + q2V2 + qgVg (C.1)

We can simplify this expression using Kirchoff laws and the definition of the
charge state N , (q1 + q2 + qg)/e :




U1 −Ug = Vg − V1
U2 −Ug = Vg − V2

q1 + q2 + qg = eN
(C.2)

123
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Vg

V1 V2

C1 C2
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-q1 +q1 +q2 -q2

+qg

-qg

U1 U2

Ug

Figure C.1: Single electron transistor (SET) circuit. Each branch surrounding
the central node is labeled with an index i = 1, 2, g. Ui indicates the voltage
drop across the capacitor i, and ±qi is the charge accumulated on each side of the
capacitor i.

where Ui = qi/Ci is the voltage drop across the capacitor i = {1, 2, g}. If we
substitute the solution of this system of equation in the Eq. (C.1), we get

Eel =
1

2(C1 + C2 + Cg)

[
e2N2+

−C1(C2(V1 − V2)2 + Cg (V1 − Vg)2) − C2Cg (V2 − Vg)2

+2eN (C1V1 + C2V2 + CgVg)
]

(C.3)

We are interested in knowing which N will minimize the electrostatic energy
Eel for a given configuration of voltages Vi. This is why we can add or remove
terms that does not depend on N . Let us define

q , −(C1V1 + C2V2 + CgVg) (C.4)

By removing the terms independent of N , and adding q2/(2(C1 +C2 +Cg)), it
comes:

Eel = EC (N − q/e)2 (C.5)

where we have used the charging energy EC defined by: EC , e2/2CΣ, with
CΣ , C1 + C2 + Cg.

Unlike q1, q2 or qg, the variable q has the unit of a charge, but it is continuous.
The electrostatic energy only depends on this variable, it is then easy to minimize:
when −1/2 6 q/e 6 1/2, N = 0, when 1/2 6 q/e 6 3/2, N = 1, and so on.
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The minimal electrostatic energy is e-periodic, and at each half-integer values
of q/e there are two adjacent values of N that minimize Eel . It means one can
tune q to put the system in a degenerate state. Dealing with this degenerate state
would be central in this thesis.

C.2 Coulomb diamonds
So far we have studied a static situation. Let us now define the processes that
could change the number of electrons N on the island. We distinguish between
the capacitors C1 and C2 that could leak electrons by a tunnel process (that will
be discussed in the Appendix C.3) and the capacitor Cg that will remain a perfect
capacitor.

There are four possible processes: an increment of N by a charge (i) coming
from the reservoir of the voltage source V1 or (ii) coming from V2, or a decrement
of N by a charge (iii) going to the voltage source V1 or (iv) going to the voltage
source V2. The electrostatic energy before and after these process is not the same.

For instance, let us consider the process (i). Replacing q1 � (q1 + 1) and
N � (N + 1) in the same calculations as in the previous section leads to Eafter

el =

EC ((N + 1) − q/e)2. Here we also have to take into account the work done by
the voltage source V1 to bring a new charge e onto the island. For this process
(i), the difference of energy after (i) and before (i) is given by ∆E+1 = Eel (N +
1) − Eel (N ) + eV1, where the superscript ‘+’ symbolize the incrementation of the
number of electrons on the island and the subscript ‘1’ indicates the voltage source
that moves the electron.

In general, ∆Eη
i = Eel (N + η) − Eel (N ) + ηeVi with η = ±1, we can simplify

this in:

∆Eη
i = 2EC (ηN + 1/2 − ηq/e) + ηeVi (C.6)

Let us consider the case where N = 0, with an anti-symmetric biasing V/2 ,
V1 = −V2 , εiVi. And let us also define Ng , CgVg/e, so that q = −((C1 −
C2)V/2 + eNg). The processes (i-iv) can occur only if ∆Eη

i > 0:

2EC

[
1/2 + η

(
(C1 − C2)V

2e
+ Ng

)]
+ ηεieV/2 > 0 (C.7)

As one can see in Fig. C.2 that the region of the (Ng, eV ) plane where the four
processes (i-iv) are forbidden is an horizontally stretched diamond delimited1 by
the following equations:

1One can neglect the term 2EC
C1−C2

e2
=

C1−C2
CΣ

, and the sign of the inequalities are given by the
sign of ηεi .
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eV =
4ηEC (1/2 + 2ηNg)

2EC
C1−C2

e2 + εi
(C.8)

If C1 = C2, the diamond is symmetric for Ng positive or negative. Otherwise,
the slopes of the diamond give access to the asymmetry between the capacitances
C1 and C2. But whatever the asymmetry, the total height of the diamond is given
by 4EC .

- 0.6 - 0.4 - 0.2 0.2 0.4 0.6

- 2

- 1

1

2

Ng

eV/EC

Figure C.2: Coulomb diamond. The four lines of the diamond are defined by
Eq. (C.8). No tunneling process can occur above (below) the red (blue) lines. The
conductance of the SET is zero inside the diamond. The total height of the diamond
is 4EC . In this plot: e = 1, C1 = 1.0 and C2 = 0.9.

Experimentally, the fact that all the processes are forbidden means that the
charge state N of the island is frozen. No current can flow through it, this
phenomenon is called ‘(static) Coulomb blockade’. This diamond pattern repeats
itself at each integer value of Ng, just as Eel is e-periodic. On the y-axis, we see
that when eV & EC , one leaves the diamond, the blockade regime.

In practice, the experiment will be run at finite temperature. This will smear
the diamonds and allow a current to flow in the vicinity of the lines defined by
Eq. (C.8). To be more quantitative, we should introduce the master equation that
rules the statistic thermal population of each charge state.

C.3 Master equation
The processes that change the charge state of the island are due to tunneling of
electrons. These events happen randomly when the energy is available2. Given

2We do not consider co-tunneling: the tunneling of an electron to a virtual state (which is higher
in energy) and then, from this virtual state to a real state.
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Nstates possible charge states, we want to know which charge state is populated in
given operating conditions.

The evolution of the probability pN (t) for the island to have N electrons at
time t is ruled by the following master equation:

d
dt

pN (t) = −
(
Γ+(N ) + Γ−(N )

)
pN (t)

+ Γ−(N + 1)pN+1(t) + Γ+(N − 1)pN−1(t)
(C.9)

where the Γ are tunneling rates. These tunneling rates depend on the working
conditions, for instance, if the island is in charge state N and it is easy to go to
charge state N+1, the rate Γ+(N ) will be high. 1/Γ is the typical time for a process
to occur.

In the Eq. (C.9), the two first terms with sign ‘−’ stands for the processes that
depopulates the charge state N , while the two last terms stands for the processes
that populates this state. Each rate Γ of Eq. (C.9) contains both the contributions
for tunneling process from/to the reservoir of the voltage sources V1 and V2 :
Γη = Γ

η
1 + Γ

η
2 .

The current leaking through the capacitor C1, or in more accurate words, the
current flowing through the tunnel junction #1 is e times the net number of charges
that go through the junction per unit of time:

I1 = e
∑
Nstates

(
Γ
+
1 (N ) − Γ−1 (N )

)
pN (C.10)

We assume the stationary hypothesis: d
dt pN (t) = 0. In this case, there is no

charge temporary stored in the island, and the current I , I1 = I2 through the two
junctions is the same. This hypothesis is valid since the tunneling rates Γ are very
fast compared to any change in the working conditions. Indeed, the tunneling rates
are given by:

Γ =
G∞
e2

∆E
exp(∆E/kBT ) − 1

(C.11)

where G∞ = τe2/h and τ is the intrinsic transmission of the junction. At small
bias V , and close to the charge degeneracy Ng ∼ 1/2, Γ ∼ τkBT/h. With a typical
value of τ = 0.10 and a temperature of T = 6mK, 1/Γ ∼ 10−7 sec. This time is
much smaller than the frequencies we use in our measurement which are in the
kHz range or even lower.
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C.4 Coulomb blockade oscillations
Nowwe have all the ingredients to trace the electrical conductance of the device as
a function of Ng (which is proportional to the gate voltage Vg, Ng , CgVg/e). The
conductance will show e-periodic oscillations with maxima placed at the charge
degeneracy points.

Let us consider only two charge states N = 0 or 1. One can solve the master
equation Eq. (C.9) and use p0 + p1 = 1 to get p0 and p1. Using Eq. (C.10), it
comes:

I/e =
Γ+1 (0)Γ−2 (1) − Γ−1 (1)Γ+2 (0)

Γ+(0) + Γ−(1)
(C.12)

And using Eqs. (C.6) and (C.11), we get the explicit expression of I (G1∞,G2∞,
T,V1,V2, q(V1,V2,Vg)). If we assume a symmetric small biasing V/2 , V1 = −V2,
the first term in the series development of the conductance G = I/V is:

G =
G∞
2

∆E/(kBT )
sinh∆E/(kBT )

(C.13)

where G∞ ,
G1∞G2∞

G1∞ + G2∞
is the intrinsic serial conductance and ∆E ,

2EC (1/2 − Ng) is related to the gate voltage Vg (and which will be called the
‘splitting in energy’ in Chapter 4, because it favors either the N = 0 or the N = 1
state, while at w = 0 these two states are degenerate in energy).

Actually, we should consider more charge states to obtain e-periodic peaks.
Figure C.3 shows the normalized conductance G/G∞ as a function of q/e ∝ Ng

for a small biasing and for two temperatures. In this figure, we see that at higher
temperatures, one has to consider many charge states in the calculations, because
the thermal distribution populates several charge states. At very high temperatures,
the oscillations vanishes: the charging effects are no longer visible, as the electrons
are too energetic to be Coulomb blocked.

These Coulomb oscillations are a clear signature of the quantization of the
charge on the island. Indeed, the e-periodic dependence of the conductance of the
device on the gate voltage Vg shows a precise control of the number of electrons
localized on the island.
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Figure C.3: Coulomb blockade oscillations of conductance. The conductance
of the SET as a function of the plunger gate Ng is plotted for two models (solid
and dotted lines) and for two temperatures (blue-cyan at 10mK and red-violet at
100mK) with EC = 300mK. The dotted lines are plotted taking into account only
two charge states, while the solid ones take Nstates = 7. The solid lines model is
not given by an accumulation of independent dotted lines. However, the higher the
temperature, the higher the conductance.
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A
dvances towards lower temperatures are instrumental in
the fundamental exploration of quantum phenomena.
In the context of quantum electronics, typical examples

are the exploration of the correlated fractional quantum Hall
physics1–5, of the quantum criticality, for example, with
multichannel Kondo nanostructures6–8, or of the quantum
aspects of heat9–12. Although commercial dilution refrigerators
readily achieve temperatures in the 5–10 mK range at the
mixing chamber, the pertinent value is the temperature of
the electrons within the cooled quantum circuits. Owing to
microwave heating, insufficient thermal contacts and electrical
noise transmitted through the measurement lines, this
electronic temperature is usually well above the refrigerator
base temperature. Consequently, only rare examples demonstrate
electronic temperatures significantly below 10 mK in quantum
circuits. Moreover, the concept of temperature pervades the
laws of physics, and its accurate knowledge is generally
imperative whenever comparing experimental measurements
with theoretical predictions; however, establishing the
validity of the thermometry is particularly challenging
already below 50 mK. Because of the thermal decoupling
between electrons and substrate, it requires a comparison of the
electronic temperature determined in situ, in the same device, by
different methods.

The lowest electronic temperatures in solid-state quantum
circuits were obtained in large, millimetre-scale, devices that are
thereby weakly sensitive to heating through the measurement
lines. The lowest reported value of 3.7 mK, to our knowledge, was
obtained in a large array of 600 metallic islands, each B100 mm
wide and interconnected by tunnel junctions13. Comparably
low temperatures, of possibly B4 mK, were inferred in two-
dimensional (2D) electron gas (2DEG) chips in the quantum
Hall regime by two different teams2,14,15. For the more
broadly pertinent micrometre-scale mesoscopic circuits, the
reported electronic temperatures are significantly higher. We
note the remarkably low value of 9 mK determined with current
fluctuation measurements across a quantum point contact (QPC)
in a 2DEG16. Although single-electron devices are particularly
challenging, because of their high charge sensitivity, comparably
low electronic temperatures, down to B10 mK, were recently
demonstrated in 2DEG quantum dots6,8,17.

Here we investigate three primary electronic thermometers,
and demonstrate quantum electronic transport at 6 mK in
micrometre-scale mesoscopic circuits. For this purpose, the
experiment is performed on a highly tunable 2DEG nano-
structure, that can be set by field effect to different circuit
configurations. The complementary underlying physics of
the thermometry methods give us access to different facets
of the electronic temperature, and cover a broad spectrum of
mesoscopic quantum phenomena. Whereas quantum shot noise
thermometry measures the temperature of the electronic Fermi
quasiparticles, through their energy distribution18, the quantum
back action of a resistive circuit also probes the temperature of
the electromagnetic environment19. In contrast, the temperature
inferred from the conductance oscillations of a single-electron
transistor (SET) is very sensitive to charge fluctuations induced
by non-thermal high-energy photons20. At the applied magnetic
field B¼ 1.4 T, we find with the quantum shot noise
measured across a voltage-biased QPC TNC6.0±0.1 mK. From
the conductance peaks across the device set to a SET
configuration, we obtain TCBC6.3±0.3 mK. From the
dynamical Coulomb blockade conductance dip across two
separate realizations of a QPC in series with a resistance, we
find TDCBLC6±1 mK and TDCBRC6.5±1 mK. The observed
agreement between the three primary thermometers establishes
their validity on an extended temperature range.

Results
Cooled tunable mesoscopic circuit. A colourized electron
micrograph of the measured device is shown in Fig. 1a, with
the corresponding circuit schematic displayed Fig. 1b. A
high-mobility 2DEG is located 105 nm below the surface of a
Ga(Al)As heterojunction. It is confined by etching within the
darker grey areas delimited by bright lines, and can be tuned
in situ, by field effect, with the bias voltages applied to metallic
gates deposited at the surface and capacitively coupled to the
2DEG (colourized green, yellow and blue in Fig. 1a). The metallic
split gates at the top-left (QPCL) and bottom-right (QPCR) of
Fig. 1a (colourized green) are used to form QPCs in the 2DEG.
Note that the split gates at the top-right of Fig. 1a (colourized
yellow) is here set to fully deplete the 2DEG underneath, thereby
closing the gate, and can be ignored. The buried 2DEG is
galvanically connected, with a negligible interface resistance, to
the central micrometre-sized metallic island (colourized red). For
this purpose, the metallic island was diffused into the Ga(Al)As
heterojunction by thermal annealing. The lateral continuous gates
at the surface (colourized blue) implement the equivalent of
short-circuit switches in parallel with the island (blue switches in
Fig. 1b). The experiments are performed with a magnetic field
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Figure 1 | Cooled electrical nanostructure. (a) Coloured micrograph of the

measured device. Top-right scale bar length, 1mm. The micrometre-scale

metallic island (red) is connected to 200mm wide electrodes (represented as

white circles) through two QPCs (green split gates) formed in a buried

2DEG(darker grey). The lateral gates (blue) implement the switches shown

in b by field effect. The sample is immersed in a magnetic field B

corresponding to the integer quantum Hall regime, with the current

propagating along the edge (red lines) in the direction indicated by arrows.

(b) Schematic electrical circuit. Using the switches, the same device can be

tuned in situ into a voltage-biased QPC, a SET or a QPC embedded into a

resistive circuit. (c) Charging energy characterization, for Coulomb blockade

phenomena. With the device tuned into a SET, EC¼ 25±1meV is obtained

from the height of the diamond patterns in the SET conductance (larger

values shown brighter) measured versus gate (Vg) and bias (Vdc) voltages.
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B applied perpendicular to the 2DEG, which corresponds to the
quantum Hall regime at integer filling factors n¼ 6, 3 and 2 for
B¼ 1.4, 2.7 and 3.8 T, respectively. In this regime the
current flows along n chiral edge channels, represented as a single
red line with the propagation direction indicated by arrows in
Fig. 1a. Note that the quantum Hall effect is not necessary for
the investigated primary thermometers (although it allows
eliminating possible heating artefacts in the quantum shot noise
thermometry, see Discussion). An important device parameter is
the single-electron charging energy EC�e2/2C of the central
metallic island, with C its overall geometrical capacitance and
e the elementary electron charge. In particular, EC sets the
temperature scale extracted from Coulomb blockade thermo-
metry. The charging energy is most straightforwardly determined
by setting the device in the SET configuration, with the short-
circuit switches open (as shown in Fig. 1a,b) and QPCL,R tuned to
tunnel contacts. The SET conductance is plotted in Fig. 1c (higher
values shown brighter) versus the capacitively coupled gate
voltage Vg and the applied drain-source dc voltage Vdc. The
charging energy is directly related to the periodic ‘Coulomb
diamond’ patterns in Fig. 1c: EC ¼ jeVmax

dc j=2 ’ 25 � 1 meV,
with Vmax

dc the diamonds’ maximum dc voltage.

Electronic current fluctuations. The current across a
voltage-biased quantum coherent conductor fluctuates because
of the thermal agitation (the Johnson-Nyquist noise) and the
granularity of charge transfers (the shot noise)18. These
fluctuations give information on the charge of the carriers,
for example, in the fractional quantum Hall regimes3,16,21,22, as
well as on the statistics of the charge transfers23–25, and also
provide a very robust primary thermometer for the electronic
temperature26.

We have measured the current fluctuations across the device
tuned into a voltage-biased QPC (schematic shown in top panel
of Fig. 2a, see Supplementary Note 2 for details on the current
fluctuations measurement set-up). For this purpose, the right
short-circuit switch in Fig. 1b was effectively closed, by applying
Vg¼ 0 to the continuous gate adjacent to QPCR. Thereby, the
2DEG is not depleted and the edge current flows underneath the
gate without back-scattering, implementing an ideal closed switch
(see Supplementary Fig. 1).

The dependence with bias voltage Vdc of the current
fluctuations’ spectral density, SI(Vdc), is directly related to the
electrons’ energy distribution (including in out-of-equilibrium
situations27,28). For a short quantum conductor, the excess
spectral density DSI(Vdc)�SI(Vdc)� SI(0) can be calculated in the
standard framework of the scattering approach29–31. It reads18:

DSI ¼
2e2

h

X
n

tn 1� tnð Þ� eVdc coth
eVdc

2kBT

� �
� 2kBT

� �
; ð1Þ

where the quantum conductor is described as a set of
independent conduction channels, indexed by the label n, each
characterized by a transmission probability tn, and with kB (h) the
Boltzmann (Planck) constant. Note that the noise added by the
amplification chain is cancelled out by considering the excess
spectral density DSI. Importantly, the product between the gain of
the amplification chain and

P
tn(1� tn) is given by the

temperature-independent linear slope predicted at |eVdc|ckBT.
Fitting the raw spectral density data based on equation 1 therefore
allows a self-calibrated determination of the electronic
temperature, without requiring the knowledge of {tn} or of the
amplification gain (see Supplementary Note 2 for further details).

The symbols in the top panel of Fig. 2a display the excess
current spectral density measured at B¼ 1.4 T versus the dc bias
voltage applied across the QPC, which is tuned into the

advantageous configuration of a single half-transmitted
conduction channel (tC0.55). Note that in order to display the
current fluctuations data in A2/Hz, and, although it is not
necessary for extracting the electronic temperature, the effective
amplification chain gain is calibrated by matching the linear bias
voltage increase in the raw spectral density at large |eVdc|ckBT
with the prediction of equation 1 for the measured t¼ 0.55. The
continuous (dashed) line shows DSI calculated using equation 1
with t¼ 0.55 and T¼ 6.0 mK (T¼ 0, with a negative vertical
offset to match the T¼ 6.0 mK calculation at |eVdc|ckBT).
Experimentally, the main difficulty is to reach a sufficient
resolution to accurately extract the electronic temperature. To
this aim, we developed a fully homemade cryogenic noise
amplification scheme, based on high electron mobility transistors
grown and nanostructured in the laboratory32,33. Despite the
unfavourable current–voltage conversion at n¼ 6 because of the
low quantum Hall resistance h/6e2C4.3 kO, we resolve DSI with
an extremely high statistical precision of ±9� 10� 32A2 Hz� 1,
slightly smaller than the symbols’ size.

Most directly, we have determined the electronic temperature
and experimental uncertainty TN¼ 6.0±0.1 mK from the mean
value (red horizontal line in bottom panel of Fig. 2a) and
statistical uncertainty of an ensemble of 131 values (symbols in
bottom panel of Fig. 2a) independently obtained by separately
fitting successive noise measurement sweeps DSI(Vdc). Note that
the DSI data shown in the top panel of Fig. 2a was obtained by
averaging these successive sweeps (each resolved with an
individual noise precision of ±10� 30 A2 Hz� 1).

Coulomb blockade oscillations. At low temperatures, T5EC/kB,
the charge of a mesoscopic island connected through tunnel
contacts is quantized in units of the elementary electron charge e.
This allows for the manipulation of single electrons in circuits,
which has led to the field of ‘single electronics’19. Setting the
device in the SET configuration (see schematic in bottom panel of
Fig. 2b), charge quantization results in periodic peaks of the SET
conductance GSET when sweeping the capacitively coupled gate
voltage Vg. In the presence of dc bias voltage, the peaks develop
into periodic ‘Coulomb diamond’ patterns as shown in Fig. 1c.
The width of these conductance peaks at zero dc bias voltage
constitutes a well-known primary thermometer, frequently used
in the context of mesoscopic physics. For a metallic island, with a
continuous density of states and connected through tunnel
contact, the SET conductance reads34:

GSET ¼
G1

2
2EC dVg=D
� �

=kBT
sinh 2EC dVg=D

� �
=kBT

� � ; ð2Þ

with GN the classical (high temperature) conductance of the SET,
DC712±2mV the gate voltage period and dVg the gate voltage
difference to charge degeneracy. Note that the Coulomb blockade
thermometry is possible only with tunnel contacts. In the presence
of connected conduction channels with large transmission
probabilities, the quantum fluctuations of the island’s charge
would average out Coulomb oscillations and thereby impede the
Coulomb blockade thermometry (see ref. 35 for a characterization
of charge quantization versus transmission probability on the
same device).

The symbols in the top panel of Fig. 2b represent GSET

measured at B¼ 1.4 T versus dVg. The continuous line shows the
SET conductance calculated using equation 2 with T¼ 6.3 mK,
GN¼ 0.088e2/h, D¼ 711 mV and EC¼ 25meV.

Similarly to quantum shot noise thermometry, we
determined the electronic temperature and statistical precision
TCB¼ 6.3±0.05 mK from an ensemble of 222 values (symbols in
the bottom panel of Fig. 2b) obtained by separately fitting
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individual sweeps of GSET(dVg). The 222 sweeps are distributed
among 14 adjacent Coulomb peaks, spreading over 10 mV in gate
voltage. We find the same electronic temperature, at experimental
accuracy, for the different Coulomb peaks and also for the 15 or 16
measurements of each peak. Note that our experimental accuracy
TCBC6.3±0.3 mK is limited by our resolution of the charging
energy, ECC25±1meV. The uncertainty is consequently much
larger than the statistical precision. Note also that, despite a
relatively low ac voltage of 0.35mVrms applied to probe GSET, we
estimate (using the master equation generalizing equation 2 to
finite voltages19) that it is responsible for an effective increase of
0.1 mK in TCB (we have not corrected for this small effect). Finally,
we point out that the GSET data shown in the top panel of Fig. 2b
were obtained by averaging the 222 individual sweeps.

Dynamical Coulomb blockade conductance renormalization.
The conductance of a quantum coherent conductor is
progressively reduced upon cooling by the quantum back action
of the circuit in which it is embedded19. This phenomenon, called
dynamical Coulomb blockade, results from the granularity of
charge transfers combined with Coulomb interactions. It has been
extensively studied, and the theory is now well established in the
simplest limit of a small tunnel conductor inserted into a linear

circuit (see ref. 19 and references therein; for recent developments
beyond the tunnel limit see refs 36–39).

We consider here the case of a tunnel contact in series with a
linear resistance R, as shown in the schematics of Fig. 2c. In
this configuration, the conductance at zero-bias voltage (zero
temperature) vanishes with temperature T (bias voltage Vdc)
as T2Re2=h (as V2Re2=h

dc ). Similarly to quantum shot noise
thermometry, the equilibrium (Vdc5kBT/e) to non-equilibrium
(VdcckBT/e) crossover provides a primary electron thermo-
meter. In general, the electronic temperature can be extracted by
fitting the conductance versus dc voltage with the full quantitative
numerical prediction of the dynamical Coulomb blockade theory
(see ref. 40 for a formulation involving a single numerical
integration). Note that the extracted electronic temperature
reflects equally the thermal energy distributions of the Fermi
electron quasiparticules, and of the bosonic electromagnetic
modes of the quantum circuit. The dynamical Coulomb blockade
was previously used to probe the non-Fermi energy distribution
of electrons driven out-of-equilibrium in the presence of a
thermalized RC circuit41.

In the low-temperature and low-bias voltage regime
(kBT, e|Vdc|5EC), the primary dynamical Coulomb blockade
thermometry reduces to the simple procedure described below.
The QPC conductance at low temperature (T5EC/kB) and at
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Figure 2 | Primary electronic thermometry. (a) Quantum shot noise. Symbols in the top panel represent the measured excess spectral density of the current

fluctuations across a QPC biased with the dc voltage Vdc (see configuration schematic). The red continuous (dashed) line is the calculated excess current

fluctuations for TN¼6.0 mK (TN¼0, with a matching negative offset). In the bottom panel, the different electronic temperatures TN shown as symbols are

each obtained by fitting a different (successive) voltage bias sweep of the quantum shot noise. From the statistical averaging of 131 values, we find

TNC6.0±0.1 mK (horizontal red line) with an accuracy comparable to the provisional low-temperature-scale standard (PLTS-2000). (b) Coulomb blockade.

Symbols in the top panel represent the measured conductance GSET across the device tuned into a SET (see schematic in bottom panel) versus the gate

voltage difference dVg. The continuous line is the calculated conductance for TCB¼ 6.3 mK. The different electronic temperatures TCB represented by symbols

in the bottom panel are each obtained from a different gate voltage sweep GSET(dVg). From the averaging of 222 values, we find TCBC6.3±0.05 mK

(horizontal red line). Note that the accuracy on TCB is limited to ±0.3 mK by our uncertainty on the charging energy, EC¼ 25±1meV. (c) Dynamical Coulomb

blockade. The electronic temperature TDCB is obtained by fitting the conductance GQPCL,R of QPCL,R (symbols) versus voltage bias with the dynamical Coulomb

blockade theory in the presence of a known series resistance R¼ h/2e2 (see configuration schematic). The dashed lines display the predicted suppression of

the conductance at T¼0 and eVdcooEC, here linear in Vdc. We find TDCBC6±1mK (6.5±1 mK) for QPCL (QPCR) from the fit shown as a continuous line in

the top (bottom) panel. The estimated uncertainty of ±1 mK is displayed as a grey background.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12908

4 NATURE COMMUNICATIONS | 7:12908 | DOI: 10.1038/ncomms12908 | www.nature.com/naturecommunications



zero-bias voltage Vdc¼ 0 reads42:

GQPCðTÞ ¼
G1p

3Re2
h þ 1

2G 1þ Re2

h

� �
2G 1:5þ Re2

h

� � Re2

h
kBT
EC

� �2Re2
h

; ð3Þ

where GN is the tunnel conductance in the absence of dynamical
Coulomb blockade renormalization and G(x) is the gamma
function. Extracting the temperature from the zero-bias
conductance apparently requires a precise knowledge of both
GN and the circuit parameters (R, C). However, the necessary
information is provided by the bias voltage dependence. In the
non-equilibrium regime kBTooe|Vdc| and at low energy
compared with the single-electron charging energy e|Vdc|ooEC,
the QPC conductance reads19:

GQPC Vdcð Þ ¼
G1 p

g

� 	2Re2
h 2Re2

h þ 1
� �

G 2þ 2Re2

h

� � Re2

h
e Vdcj j

EC

� �2Re2
h

; ð4Þ

with gCexp(0.5772). Consequently, the bias voltage exponent
gives the series resistance R, and one can rewrite the zero-bias
voltage conductance as:

GQPCðTÞ ¼
AðRÞ

BðG1;R; ECÞ
kBTð Þ

2Re2
h ; ð5Þ

with BðG1;R; ECÞ � GQPC Vdcð Þ= eVdcj j2Re2=h calibrated from the
conductance measured in the low-energy non-equilibrium
regime, where equation 4 applies, and A(R) a known function,
straightforwardly obtained from equations 3 and 4.

Here we determined the electronic temperature by setting one
QPC in the tunnel regime (GNB0.1e2/h), while the other QPC
was tuned to fully transmit two electronic channels, thereby
implementing a linear series resistance R¼ h/2e2 (which is
not renormalized by dynamical Coulomb blockade37–39,43;
obtained from a very broad and flat conductance plateau owing
to the quantum Hall effect11,39). Symbols in the top (bottom)
panels of Fig. 2c represent the conductance measured with the
left (right) QPC in the tunnel regime, versus dc bias voltage,
at B¼ 1.4 T. The continuous lines display the quantitative
numerical calculations of the dynamical Coulomb blockade
prediction using the separately characterized EC¼ 25 meV and
R¼ h/2e2 (also corresponding to the linear bias voltage
dependence), and with GN¼ 0.123e2/h, T¼ 6 mK for the top
panel (GN¼ 0.139e2/h, T¼ 6.5 mK for the bottom panel).
The grey areas represent a temperature uncertainty of ±1 mK.
The dashed lines are the T¼ 0 predictions of equation 4 for
the same device parameters. Note that for the present circuit
implementation A(R¼ h/2e2)C0.40 and the non-equilibrium
conductance increases linearly with bias voltage, as can be
directly verified on the conductance data. See Supplementary
Fig. 2 for a comparison between the numerically calculated
dynamical Coulomb blockade predictions and the data up to
larger bias voltages.

Electronic temperature versus experimental conditions.
Information on the limiting factors towards lower electronic
temperatures T in our cryogen-free dilution refrigerator is
obtained by measuring T for different magnetic fields B and
for different additional Joule powers PJ dissipated directly on
the mixing chamber plate. Note that T is here obtained from
quantum shot noise thermometry up to 35 mK, and from the
identical but faster readings of our standard RuO2 thermometer
at higher temperatures. Each set of symbols in Fig. 3 corresponds
to a different applied BA{1.41,2.74,3.76} T. For PJ\5 mW, we
observe the usual quadratic dependence with temperature
(T2

pPJ), independently of the applied B. However, we find that
the electronic temperature at zero Joule power is higher for larger

magnetic fields (top left inset). Assuming that the observed
relationship T ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ=1 W

p
K (straight black line in the main

panel) holds at all temperatures when substituting the additional
Joule power by the full dissipated power P¼ P0þPJ, we extract
the refrigerator-dissipated power P0 versus magnetic field. The
corresponding P0 values are shown as symbols in the bottom
right inset. We find that the increase of P0 with B is compatible
with a quadratic magnetic field dependence (continuous black
line: P0¼ 0.5þ 0.1(B/1 T)2 mW), which is a typical signature of
eddy current dissipation.

Discussion
A 6 mK electronic temperature was obtained in micrometre-scale
quantum circuits using a medium-sized cryogen-free dilution
refrigerator (Oxford instruments Triton, with 200 mW of cooling
power at 100 mK), with the sample in vacuum and in the
presence of a 1.4 T magnetic field. At larger magnetic fields B, we
observe a temperature increase that corresponds to an additional
dissipated power quadratic in B, as typically expected for eddy
currents. In our cryogen-free refrigerator, the underlying
vibrations originate from the pulse tube.

The sample environment and wiring shown Fig. 4 offers a
proven guideline to ultra-low electronic temperatures with an
all-purpose set-up, including 35 measurement lines and a
top-loaded sample holder. Although additional details are
provided in the Supplementary Note 1, we here briefly point
out several key ingredients. The sample is strongly protected
from spurious high-energy photons, by two shields at base
temperature. The most important thermal anchoring of the
measurement lines at base temperature is performed by dipping
insulated copper wires into silver epoxy very close to the sample,
inside the inner stainless steel shield. The measurement lines
are all individually shielded in a coaxial cable geometry
(except for the above-mentioned copper wires and for a short
distance inside the shielded sample holder, between the input
connector and the RC filters). The high-frequency filtering and
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initial thermalization to the mixing chamber plate of the electrical
lines are performed with homemade resistive microcoaxes
(mCoax NiCr in Fig. 4a)20. Because the electrical noise integrated
over the full bandwidth needs to be smaller than a fraction of mV,
we only keep the bandwidth used for the measurements with
personalized RC filters directly located inside the sample holder.
This is most particularly important with a cryogen-free dilution
refrigerator in the presence of a magnetic field because of the
electrical noise induced by vibrations. We now compare the three
investigated primary electronic thermometers.

Quantum shot noise thermometry stands out as the most
robust and straightforward approach. It is based on simple
physics, directly probes the temperature of the electrons through
their energy distribution18 and does not require a separate
calibration of the noise measurement set-up. The main possible
artefact is local heating induced by the dissipated Joule power at
finite dc bias. Such a heating typically scales linearly with Vdc

(refs 44,45). It is therefore difficult to distinguish from a slight
increase in the shot noise24,25. The present implementation in the
quantum Hall regime, however, provides a strong protection
against heating artefacts, owing to the spatial separation between
incoming and outgoing currents. Although it is not necessary to
determine the factor

P
tn(1� tn) for the voltage-biased quantum

conductor, it is important to make sure that it does not depend on
Vdc. For a single-channel quantum conductor, the dependence of
t(1� t) with voltage bias is minimized at tB0.5, and t(Vdc)
can be monitored simultaneously with the noise measurements.
The main challenge with quantum shot noise thermometry is in
the sensitivity of the noise measurement set-up; however, the
associated temperature uncertainty can be statistically quantified.
Note that the achieved resolution of 6.0±0.1 mK is comparable
to the accuracy of the provisional low-temperature-scale standard
(PLTS-2000)46.

Coulomb blockade thermometry is also very straightforward
and has the advantage of being less demanding on the
measurement sensitivity. It is consequently widespread in
the field of mesoscopic physics. However, the extracted
temperature is easily/often artificially increased by charge
fluctuations in the device vicinity, or by the electrical noise on
the capacitively coupled gates. Such an artefact could be detected

as a gate voltage-dependent increase in the noise level,
proportional to qGSET/qVg, provided that a significant part of
the charge fluctuations is within the measurement bandwidth.
In general, the corresponding temperature increase is difficult
to establish, except by comparing with another electronic
thermometer. Here the agreement obtained with both the
quantum shot noise and dynamical Coulomb blockade
thermometers demonstrates a negligible artificial increase in the
electronic temperature.

Dynamical Coulomb blockade thermometry can be difficult to
use in general, if the surrounding circuit is not known a priori at
relevant GHz frequencies. As in the case of quantum shot noise, a
possible artefact is heating at a finite dc bias. This can be
minimized by using a tunnel contact of very large impedance
compared with the circuit. In contrast to quantum shot noise, the
quantum Hall regime does not provide a protection against
heating (in the central metallic island, for the dynamical Coulomb
blockade experimental configurations). However, the very
large renormalized tunnel resistance, 100 larger than the
series resistance, ascertains negligible heating effects. Moreover,
the dynamical Coulomb blockade thermometry is here
particularly straightforward to implement because of the precise
knowledge of the circuit.

With the consistent temperatures obtained by three primary
thermometers, each relying on different physical mechanisms, we
firmly established electronic thermometry standards in the regime
of ultra-low temperatures. The achievement of 6 mK electronic
temperature, with the mesoscopic circuit in vacuum and using a
medium-sized dilution refrigerator, provides a platform for further
reduction of the temperature, using additional thermalization and
cooling techniques15,47,48 towards the sub-millikelvin range.

Methods
Sample. The sample was nanostructured by standard e-beam lithography in a
Ga(Al)As 2DEG of density 2.5� 1011 cm� 2 and mobility 106 cm2 V� 1 s� 1.
The AuGeNi metallic island was diffused by thermal annealing into the
semiconductor heterojunction to make an electrical contact of negligible resistance
with the 2DEG (see Methods in ref. 8 for the electrical characterization of the
contact in the same sample).

Measurement techniques. The differential conductance measurements were
performed using standard lock-in techniques at frequencies below 200 Hz and
using rms ac excitation voltages smaller than kBT/e. The sample was current-biased
by a voltage source in series with a 100 MO polarization resistance at room
temperature. The applied current was converted on-chip into a voltage
independent of the device configuration by taking advantage of the well-defined
quantum Hall resistance to an adjacent grounded electrode (h/ne2 at filling
factor n). Similarly, the current transmitted across (reflected from) the device was
converted into a voltage with the h/ne2 quantum Hall resistance. The noise
measurement set-up includes a homemade cryogenic pre-amplifier and an L–C
tank circuit of resonant frequency 0.84 MHz; see the online Supplementary
Information and also the Supplementary Material of ref. 11 for a more detailed
description.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Appendix E

Experimental procedures

In the first section of this appendix, we explain the method we used to extract
the conductance of the whole device from voltage measurements. The in situ
conductance of a single QPC can also be extracted when none of the three QPCs
is completely pinched off.

The second section discusses the tuning of the device to observe ‘charge’
Kondo effect and the methods used to extract the conductance at energy level
degeneracy. In the last section we explain the systematic treatment of large sets of
measurements and we discuss some experimental artifacts to handle.

E.1 Extraction of in situ conductances
Irrespectively of the configuration of the QPCs and other surface gates, the resis-
tance of the sample1 is fixed by IQHE to 1/(νGK ). We use lock-in amplifiers to
measure the voltages defined in Fig. E.1. At first, we will assume that the voltage
are measured without any calibration offset and that all the measurement lines are
equivalent (same gain). In the second subsection, we will explain how to calibrate
the gain and the offsets.

E.1.1 Conductance formulae

We assume that the electronic channels are completely reflected on the character-
ization gates (τsw1 = τsw2 = 0, uncolored in Fig. E.1) and that only the outermost
channels have partial transmission τi ≤ 1 (otherwise the formulae would be differ-

1One should distinguish the conductance of the sample, which means ‘between a given input
port of the circuit and the ground’, from the conductance of the device, which means ‘between an
input port and an output port’. The latter depends on the configuration of the surface gates.
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Figure E.1: Measurement schematics. We use three low frequency a.c. voltage
sources (labeled Vj ) to inject the signal in the IQHE edge channels (in red). Lock-
in amplifiers are used to measure simultaneously nine voltages a.c. signals. The
voltage measured at the point i in response to the voltage Vj injected “at frequency
j” is labeled Vi@f j .

ent). As the current is conserved, the injected voltage Vj is the sum of the voltages
measured “at frequency j”:

Vj =

3∑
i=1

Vi@f j

There are basically two useful formulas. Either one considers the current
transmitted through the island (voltages as Vi@f j , with i , j) or the current
reflected at QPCi (the voltage Vi@f i).

Applying the Kirchoff’s current law successively on contact i and on the central
ohmic contact Ω yields:

νGKVi@f j = GiVΩ@f j =
GiG j

G1 + G2 + G3
Vj (E.1)

where VΩ@f j is the voltage on the central ohmic contact measured at the
frequency of the source Vj . To get the formula for the current in reflection, we just
add the contribution of the inner quantum Hall channels:
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νGKVi@f i = GiVΩ@f i + (νGK − Gi)Vi =

(
νGK − Gi

(
1 −

Gi

G1 + G2 + G3

))
Vi

(E.2)
We can therefore extract the in situ conductances Gi of each QPC from the

voltage measurements. Measurements of reflected and transmitted signals are
redundant, because of current conservation. Thuswedefine the following “rescaled
voltages” Gii (that have the dimension of a conductance) and that allow for a direct
averaging of the reflected and transmitted signals:

Gii , νGK

(
1 −

Vi@f i

Vi

)
= νGK

∑
j,i Vj@f i

Vi

This measured conductance Gii depends on the in situ conductances as:

Gii =

∑
j,i G jGi

G1 + G2 + G3
(E.3)

Once we have measured the Gii for all i = {1, 2, 3}, we can invert the system
and find the in situ conductances G1, G2 and G3. The single assumption required
to extract the in situ conductances is the validity of the Kirchoff’s law on each
contact of the nanofabricated sample.

Note that if one of the three QPCs is completely pinched off (say Gk = 0), we
can only access to the serial conductance GiG j/(Gi + G j ) and cannot extract the
individual conductances Gi and G j .

E.1.2 Calibration of the gain and the offset
We use the same kind of voltage sources, pre-amplifiers and lock-in amplifiers in
all the measurement setup. However, in practice, the gain on each measurement
line may slightly differ and a systematic offset can exist.

Offset

In order to calibrate the offset, one just needs to measure all the voltagesVi@f j for a
plugged and unplugged voltage source. This is done with all the QPCs completely
pinched off, therefore, by this most accurate procedure, we cannot calibrate the
offset on the Vi@f i measurements (in reflection). We found the same typical offset
of ∼ −7 × 10−11V on all the voltages Vi@f j (with i , j).

For comparison, the voltage applied on the sample at base temperature T ≈
7.9mK is Va.c. ≈ 4.8 × 10−7V (which is of the order of the thermal energy that
corresponds to a voltage of kBT/e ≈ 6.8 × 10−7V). This offset becomes important
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when measuring weak signals, when one of the conductances is very small (see
Fig. 4.10 on page 88).

Gain

In Table B.2we have shown that, on the first quantumHall plateau, the transmission
of the outermost channel to the central ohmic contact is perfect within our accuracy.
That measurement was independent of any gain calibration because we used ratio
of voltages from the same measurement line (in reflection Vi@f i).

In order to calibrate the gain of the measurement lines, we set all the QPCs
to transmission τ1 = τ2 = τ3 = 1. We assume these transmissions to be exactly
equal to one as previously checked. Note that for this calibration, although the
calibrated offsets can be taken into account, they are negligible since the signals
are relatively large. In this configuration, the ratio of measured voltages (e.g.
V1@f 3/V2@f 3) directly give ratio of gains (e.g. γ1/γ2 at “frequency 3”, where γi is
the gain on the i-th measurement line).

We noticed that, the gains γ1/γ2 = 1.0018 and γ3/γ2 = 1.0095 (with γ2 = 1
taken as reference) yield the same Gii for both the measurements in reflection
and in transmission: (1 − Vi@f j/Vi)/((Vj@f i + Vk@f i)/Vi) = 1±5 × 10−5. When
considering our three frequencies f1 = 145Hz, f1 = 163Hz and f1 = 185Hz,
the typical variation of a gain ratio with frequency (∼ 4 × 10−3) is within the
uncertainty bar of the gain calibration.

E.2 Device tuning tomeasure themulti-channel ‘charge’
Kondo effect

In order to observe the flow of the conductance towards the N-channel ‘charge’
Kondo fixed point, one needs to set symmetric transmission τ1 = τ2 = ... = τN of
N electronic channels and also to tune the voltage gate Vg at charge degeneracy
δVg = 0.

E.2.1 Symmetric coupling
Our goal is to know the voltage to apply on eachQPC to have the same transmission
τ , τ1 = τ2 = τ3, and we want a dozen of values picked in the range τ ∈ [0, 1].

Approximate tuning

The first step is to use the characterization gates to measure the intrinsic transmis-
sion (in DCB regime at large voltage bias). Then we get the voltage Vqpci,k to apply
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on QPCi to get τi,k (where τi,k refers to the k-th picked up value on QPCi).
We know the correction to apply on Vqpci to go from the DCB regime to the

configuration where all the switches are at τsw = 0 (see Appendix B.1.4). We have
determined each Vqpci,k while the other QPCs were in a reference configuration
(τj,i = 0), but we also know the correction to apply on Vqpci when we change the
voltage on the other QPCs.

It means that we are able to measure Coulomb oscillations with all the QPCs
having the same transmission: τ1 = τ2 = τ3.

Fine tuning

When none of the three QPCs is completely pinched off (τ1,2,3 , 0), we are able
to find the three individual conductances Gi. We want to verify whether the in
situ conductances are symmetric G1 = G2 = G3 for the multi-channel Kondo
experiment. In this case, there are Coulomb oscillations and we focus on maxima
of the conductances Gi (δVg ≈ 0) where the signal is maximal.

The procedure explained in the previous subsection relied on several capac-
itive crosstalk calibrations which limits our accuracy. We therefore perform an
additional fine adjustment of the QPC symmetry.

For this fine symmetry tuning, we use QPC2 as a reference at the temperature
T ≈ 18mK, and we adjusted the two others to have all the in-situ conductances
exactly symmetric. After this fine tuning we have noticed that the values of Vqpci,k
have been shifted by ∼ 0.2mV for QPC1 and by ∼ 0.4mV for QPC3. These shifts
are compatible with the uncertainty intervals on the crosstalk calibrations.

Approximate transmission symmetry requirement

The effect of an asymmetry between the transmissions is visible on the renor-
malization flow diagram shown in Fig. 4.9 where we used the transmissions τ
characterized in Fig. B.6. The difference between two successive transmissions
ranges from 0.1 down to 0.03 in the vicinity of the 3CK fixed point where the step
is finer. Even such a small difference has a dramatic effect on the conductance
renormalization flow (see the criticality of the symmetry on the first off-diagonal
arrows of Fig. 4.9). The requirement on the transmission symmetry to flow towards
the right fixed point is therefore more restrictive than δτ < 0.03.

E.2.2 Transmissions in practice
Dependence in energy τ(E)

We tried to minimize this dependence by choosing the best operating points for the
QPCs (e.g. see Fig. A.5). The relative deviation ∆τ/τ between the transmission
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at equilibrium and the transmission at large voltage bias is typically of ≈ 10%, it
is maximal in the tunnel case τ � 1 (see Fig. B.5).

Stability of the QPCs

The data acquisition of the multi-channel Kondo effect measurement took several
months (because of many tests, calibrations, temperature measurements and other
time consuming activities). We are able to correct for rare and small shifts of the
QPCs. Before all our Kondo effect measurements (that take typically a night or
a weekend), we perform a fine measurement of the intrinsic transmission τ(Vqpc)
of each QPC and adjust for a possible small Vqpc shift with respect to a reference
measurement. And after the measurement, we redo a fine measurement of the
transmissions to check if the QPCs were stable during the acquisition (if they were
not, we redo the measurement).

E.2.3 Tuning to charge degeneracy δVg = 0
In order to increase our precision on the conductance at charge degeneracyG(δVg =

0), we fit the conductance peak to a model. However, there is no prediction for the
general shape of the conductance peak at arbitrary transmissions τi and temperature
T .

For instance, in the two-channel case, theory predict a shape as f (Vg) ∝
(αVg/kBT )/ sinh(αVg/kBT ) in the tunnel regime τ � 1 and a sinusoidal shape
in the strong coupling regime 1 − τ � 1. Therefore, we use a general model
and extract G(δVg = 0) in several steps to avoid any systematic error due to the
specificity of the fitting function. Here follows the procedure used for the 3CK
measurements.

Raw data and approximate tuning

In the 3CK measurement, we have three conductances to extract (whereas in 2CK
we have only one). We apply no voltage biasVdc, the maximum of the conductance
appears therefore at the same gate voltage δVg = 0 for all the signals. Thus we
start with averaging the three signals Gavg , (G11 + G22 + G33)/3, an example is
shown in Fig. E.2. The peaks are periodic and we can extract the highest value of
each period. We use these maxima as a starting position for the fits.

Large, intermediate and fine fit of the averaged data

In this subsection, we are only interested on the position of the maxima of the
conductance. This procedure is applied to each peak of Gavg individually. We
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Figure E.2: Raw experimental data. The conductance Gii are plotted versus
the gate voltage Vg at T ≈ 7.9mK for τ1 ≈ τ3 ≈ 0.1 and τ2 ≈ 0.79. Because of
the symmetry τ1 ≈ τ3, the signals G11 and G33 are superimposed. The black trace
Gavg correspond to the average of the three signals. The red dots show the local
maxima of Gavg.

will determine the value of the conductance maxima Gii (δVg = 0) in the next
subsection.

We use the following model based on the Airy function and that have four
parameters (an offset m, an amplitude ∆, a finesse F and an origin x0):

m2 + ∆2
(
1 −

(1 + F2) sin2(k (x − x0))
1 + F2 sin2(k (x − x0))

)
(E.4)

where x is the variable and k is replaced by π/∆x, where ∆x is the average
distance between the peaks (which is proportional to 1/Cg the capacitance of the
plunger gate, in practice ∆Vg = 0.70mV). The parameter F gives the finesse of
the peak (the model is sinusoidal when F = 0 and sharp when F is large).

We will fit the experimental data in three steps. A ‘large fit’ is used to get an
estimation of the parameters. A ‘intermediate fit’ will be performed on a smaller
interval near the maximum to find its position (δVg = 0). And finally, we use a
‘fine fit’ on a tiny region with only ∆ as parameter. This last fit gives the value of
the conductance at degeneracy independently of the model (since it has been done
on a tiny region near the maximum, see Fig. E.3).
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Figure E.3: Fit of experimental data in three steps. We focus on the third peak
(from the right) of Fig. E.2. The three successive fits are performed on different
ranges (colored traces).

The offset m is no longer a parameter in the second fit (called ‘intermediate’).
Indeed, as the fit is done on a narrower range, the minimum of the oscillations
could not be fitted. We set it to the mean value of the set of m found at first fit.

Similarly, the finesse F is not fitted in the ‘fine fit’ because letting F free when
fitting on a tiny region is not a good idea since the global curvature of the peak is
not obvious. In this case, we use the median value rather than the mean to avoid
wrong values that may happen sometimes because of experimental artifacts (see
Fig. E.6 in Appendix E.3).

Conductances at δVg = 0

The last fit (the ‘fine’ one) yields the value of the conductance at degeneracy. We
are not interested in this value for Gavg. However, we know the position of the
degeneracy point δVg = 0 (which is given by the parameter x0) for each peak.

To get the individual conductances, we fit again each individual signalGii using
only the ‘large’ and the ‘fine’ fits because we just need m and ∆ (see Fig. E.4).
Indeed, F is essentially the same for the three signals and the ‘fine’ fit is made on a
narrow δVg interval such that the result does not depend on this fitting parameter.
Finally we deduce the in situ conductances Gi at degeneracy from the value of Gii
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Figure E.4: Fine fit of a weak signal. The ‘fine fit’ of the weakest signal of
Fig. E.2 (G22, in orange) is shown with the corresponding experimental data.

using Eq. (E.3).

Precision and accuracy

The precision on the determination of Gii (δVg = 0) depends on the range over
which the fit is performed. This precision increases as

√
Npoints, where Npoints is

the number of points in the ‘fine fit’ range. We choose a range that is a function of
the finesse F (the wider the peak, the larger the fit range). This has been adjusted
to have ‘fine fit’ ranges small enough, not to be sensitive to the fitting function
Eq. (E.4).

In order to increase the accuracy on Gii (δVg = 0), one has to acquire more
peaks of a given configuration of transmissions and temperature (e.g. by averaging
on all the peaksmeasured in Fig. E.3). However, one should be careful with respect
to some experimental artifacts, as we will see in the next section.

E.3 Experimental artifacts

E.3.1 Systematic peak selection
A typical example

Our SET-like device is sensitive to the charge of the environment. We have
noticed that some irregular pattern can appear on the Coulomb oscillations. When
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the transmissions and the temperature are fixed, sweeping the plunger gate Vg

should give periodic oscillations with a constant amplitude. In Fig. E.5, we show
a typical artifact: a dip in the amplitude of the conductance peak around a specific
gate voltage Vg ≈ −0.398V.

Vg (V)

G
 (
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2 /h
)
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0.00

0.01

0.02

0.03

0.04

0.05

0.06

G11

G22

G33

threshold

Figure E.5: Experiment artifact. The conductance at degeneracy Gii (δVg = 0)
is plotted as a function ofVg atT ≈ 12mK and for a symmetric tunnel configuration
τ1 = τ2 = τ3 ≈ 0.1. Note that each sweep contains about 40 peak, only the con-
ductance at degeneracy is plotted. The conditions were the same for all the curves,
indeed the measurement program has just looped back to the first configuration
between the evening (solid lines) and the morning (dashed lines). A systematic
method excludes the points below the threshold given by the red line (see text in
Appendix E.3.1 for the dotted line, and Appendix E.3.2 for the solid line).

The known mechanisms (e.g. charge fluctuations) for such artifact can only
reduce the conductance. Therefore, we performed a statistical study and exclude
the peaks that are anomalously low (this is also true for the 3CK measurements
above the 3CK fixed point).

Systematic exclusion

The procedure to exclude the pathological peaks has been automatized because of
the large quantity of data (and also to avoid a bias due to human intervention).

At a given temperature, the injected a.c. signal to measure the conductances
is fixed, thus the noise σG on the normalized measured voltage Gii is also fixed
(whatever the configuration of the QPCs or the plunger gate Vg)

For each sweep of Vg (at τ fixed) we have a set of conductances at degeneracy
that has a typical noise of σG. In each set, we exclude the points that are n × σG
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below the maximal value (see the red dotted line in Fig. E.5, which is plotted with
n = 6). Assuming a gaussian distribution of the points, this procedure with n = 6
excludes less than 1% of normally distributed points (i.e. it essentially excludes
only anomalous data). Note that the threshold n × σG should be weighted with√

Npoints, the number of points used in the fit of a peak.
About 6 000 peaks have been analyzed to display the data shown in Chap-

ter 3 (symmetric couplings ∆τ = 0), which means 27 peaks in average for each
configuration (of transmission and temperature).

E.3.2 Crosstalk of the plunger gate
In the 2CK and 3CK measurements, we have used Vsw2 as plunger gate. This
voltage was swept around a value where we are sure that τsw2 = 0 on a typical span
of Vsw2 ∈ [−0.405V,−0.395V].

Although this span is very small, we can correct the influence of this sweep
on the transmission τi of the QPCs during oscillation measurement. If Vsw2 is
crescent (going to positive values), the transmissions will be slightly higher at the
end of sweep than at its beginning. This is visible on the conductances shown in
Fig. E.5.

We have observed and calibrated this effect at high temperatures (at low tem-
perature, as in Fig. E.5, the signal-to-noise ratio is not high enough to precisely
calibrate such a small influence). We have averaged the slopes measured at
T ≈ 55, 80 and 100mK and used the averaged slope to correct the data measured
at all the temperature. One can compare the red solid line threshold in Fig. E.5 that
takes into account the crosstalk correction (which is calibrated at Vg0 = −0.4V)
with the red dotted line which is plotted without correction.

E.3.3 Averaging the selected peaks
In Chapter 4, we study the conductance out of degeneracy δVg , 0. The peaks
we presented are averaged only on the data selected by the systematic procedure
described above, in Appendix E.3.1.

Sometimes, when sweeping the plunger gate Vg, there is a jump in the conduc-
tance Coulomb oscillations (see figure Fig. E.6). We eliminate manually the rare
affected peaks.
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Figure E.6: Instability of the charge on the island. This instability has been
measured on the fourth peak (from the left) displayed in Fig. E.2.



Appendix F

Résumé en français

Cette thèse traite de mesures de transport électrique effectuées sur un nano-
dispositif caractérisable et modifiable in situ (montré en Fig. F.1). Grâce à sa
structure hybridemétal-semiconducteur, ce dispositif fournit un banc d’essai quan-
titatif pour la physique des électrons fortement corrélés et celle des phénomènes
critiques. Il peut être placé dans un régime où peu de canaux électroniques indépen-
dants sont en forte interaction avec les degrés de liberté quantiquesmacroscopiques
de la ‘charge’ du nœud métallique (en violet sur la Fig. F.1) du circuit. Nous util-
isons cet échantillon pour sonder et contrôler le degré de quantification d’un nœud
métallique en fonction de sa connexion à d’autres conducteurs. Ce dispositif peut
aussi être ajusté pour implémenter le modèle Kondo multi-canaux et réaliser des
simulations quantiques fiables de ce modèle quantique à N corps. Ainsi, il fournit
un banc d’essai à certaines des plus puissantes méthodes de physique quantique
à N corps (le group de renormalisation numérique [131, 20, 113], l’ansatz de
Bethe [117, 13], la théorie des champs conformes [116, 3, 4] ou la bosonisation
[39, 78, 43]).

Nous avons observé de bons accords entre nos données expérimentales et les
lois de puissance universelles prédites à la fois proche de la limite de couplage
fort dans le problème de la quantification de la charge et au voisinage des points
critiques quantiques de l’effet Kondomulti-canaux. La transition depuis ces points
critiques révèle une physique intrigante, en particulier à température intermédiaire.
L’approche que nous développons dans cette thèse ouvre la voie à des études plus
approfondies de la fascinante physique non-Fermi liquide qui est sous-jacente au
domaine des matériaux fortement corrélés.

Le reste de ce chapitre donne un aperçu rapide des résultats obtenus au cours
de cette thèse, chaque section correspondant à un chapitre du manuscrit. Nous
commençons par une description de notre dispositif “à un électron” et nous répon-
dons à une question relativement ancienne concernant le critère de destruction de la
quantification de la charge par les fluctuations quantiques dans ce genre de disposi-
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Figure F.1: Image de l’échantillon en fausses couleurs prise au microscope
électronique à balayage. Cette figure montre le contact ohmic central (en violet)
qui redistribue le courant AC injecté par des sources de tension (en dehors de
l’image) dans les canaux chiraux de l’effet Hall quantique entier (lignes rouges) par
l’intermédiaire de larges contacts ohmiques (cercles blancs) qui ne sont pasmontrés
dans l’image. Le signal basse fréquence est mesuré par des Lock-in (triangles). Cet
échantillon compte trois contacts ponctuels quantiques ( QPCs, en cyan) et deux
interrupteurs (en orange) utilisés pour la caractérisation. La valeur de transmission
des QPCs et l’état des interrupteurs sont contrôlés par les sources de tension qui
connectent (disque noir) ces grilles de surface.

tif. Dans la section suivante, nous verrons qu’une correspondance peut être établie
entre ce système et le modèle Kondo en utilisant les degrés de liberté de ‘charge’
du circuit. Sous le processus de renormalisation, la conductance va converger,
s’écouler1 vers des points fixes Kondo non-triviaux à basse température. Dans la
dernière section, nous nous concentrons sur la physique critique quantique et les
comportements d’échelle qui apparaissent lorsqu’on introduit intentionnellement
des perturbations dite ‘pertinentes’ au sens du groupe de renormalisation.

1De l’anglais to flow, terme utilisé dans le contexte de la renormalisation.
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F.1 Contrôle de la quantification de la charge

Transistor “à un électron” proche de la limite de couplage fort
La pièce métallique coloriée en violet dans la Fig. F.1 joue un rôle principal dans
cette thèse. Elle sera appelée l’îlot, puisqu’elle est connectée au circuit par peu
de canaux électroniques. La géométrie de l’échantillon règle l’énergie de charge
EC , e2/(2C) (avec e, la charge élémentaire et C, la capacitance géométrique
de l’îlot) typiquement requise pour ajouter/enlever un électron à l’îlot. Les effets
“à un électron” sont donc importants aux température et énergies plus petites que
cette échelle: kBT, eV � EC ≈ 25 µeV ≈ kB × 300mK.

La connexion entre l’îlot et le circuit électrique (constitué de grands réservoirs
électroniques) peut être ajusté par l’intermédiaire de QPCs réglables (en cyan).
Dans cette section, nous considérons uniquement deux QPCs (voir Fig. F.2a).
Lorsque les transmissions de chacun des deux QPCs (de droite et de gauche) sont
réglés pour être dans le régime tunnel τL,R � 1, l’îlot n’est que faiblement connecté
aux conducteurs environnants et sa charge est alors quantifiée en unité de e. Dans
cette limite, le dispositif implémente le bien connu “transistor à un électron” (SET).
Le nombre de charge sur l’îlot peut être ajusté en balayant la tension Vg appliquée
sur une grille latérale (par exemple, sur une grille de caractérisation, en orange sur
Fig. F.1).

τL

Vg

Q
τR

+V/2 -V/2

a Q

e

1 Ng

b

τ=0

=1τ

τ≪1
τ≪11-

Figure F.2: Quantification de la charge dans un dispositif “à un électron”.
a, Schéma de l’échantillon. La conductance différentielle GSET est mesurée en
appliquant une tension de biais AC au dispositif. En présence de quantification de
la charge, cette conductance montre des oscillations de Coulomb en fonction de la
tension Vg appliquée sur un grille couplée capacitivement. b, (adapté de [78]) La
chargemoyenneQ est tracée à température nulle en fonction Ng , Vg/∆Vg (où∆Vg

est la période des oscillations de Coulomb) pour différentes valeurs de connexion
τ (la probabilité de transmission τ , τR , avec τL = 0). La quantification de la
charge disparait complètement dès qu’un canal balistique connecte l’îlot (τ = 1).

On peut alors observer des oscillations de Coulomb de la conductance du
dispositif GSET(Vg), car le courant ne peut circuler que lorsque deux états de
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charge successif de l’îlot sont dégénérés en énergie (les fluctuations thermiques
autorisent une certaine plage autour de ces points de dégénérescence; ailleurs, la
charge est gelée et le courant est bloqué). Le nombre d’électrons sur l’îlot est donc
incrémenté d’une unité après chaque pic de conductance montré sur la Fig. F.3a.
Dans cette figure, nous voyons que les oscillations disparaissent progressivement
lorsque la transmission des canaux électroniques à travers un QPC tend vers la
limite τ −→ 1. Pour une étude plus systématique, nous traçons la visibilité des
oscillations ∆Q , (Gmax

SET − Gmin
SET)/(Gmax

SET + Gmin
SET) en fonction de τR. Toutes les

courbes obtenues pour différentes valeurs fixées de τL tombent à zéro dès que
la transmission devient balistique τ = 1, et aucune oscillation de Coulomb n’est
observée au-delà de cette limite (voir Fig. F.3b).
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Figure F.3: Quantification de la charge en fonction de la connexion au circuit
à T ' 17 mK. a, Balayages de la conductance GSET(δVg) pour des connexions
ajustées à τL = 0.24, et τR = 0.1, 0.6, 0.88, 0.98 et 1.5, respectivement, de gauche
à droite. b, Visibilité des oscillations de GSET en fonction de τR . Chaque ensemble
de points (différents symboles) correspond à point de fonctionnement de QPCL .

Il est connu, d’après la théorie, que les fluctuations quantiques de la charge
brouillent la quantification de la charge (même à température nulle) [48]. En 1995,
Matveev amontré que la quantification de la charge est complètement détruite dans
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la limite balistique, lorsqu’on considère une densité d’états continue dans l’îlot
(voir Fig. F.2b) [78]. En 1993, une controverse est née à propos de ce critère de
la destruction de la quantification de la charge puisque certaines expériences l’ont
validé [119] alors que d’autres ont montrées des signatures de quantification au-
delà de la limite balistique [100]. Mais ces expériences pionnières étaient basées
sur des îlots non-métalliques avec des densités d’états discrètes, et où la cohérence
de phase des électrons peut donner lieu à de subtiles effets mésoscopiques [5]. La
géométrie et les matériaux que nous avons utilisés pour fabriquer notre échantillon
empêchent tout effet cohérent puisqu’un électron qui entre dans notre îlot y passe
temps beaucoup plus long que son temps de cohérence de phase quantique.

Comparaison quantitative à la théorie
En supposant une densité d’états continue sur l’îlot et des électrons sans spin2,
des prédictions quantitatives peuvent être établies pour ce système dans plusieurs
cas limites. À basse température kBT � EC , nous comparons la visibilité ∆Q
des oscillations de conductance au voisinage de la limite balistique τR −→ 1
avec la théorie quantitative dans deux cas limites (couplage fort 1 − τL � 1 [43]
et asymétrique τL � 1 [80]). Nous sommes capables de caractériser tous les
paramètres (τL, τR, EC et T) de façon indépendante, et l’accord quantitatif obtenu
dans la limite de couplage fort est donc établi sans aucun paramètre ajustable (voir
Fig. F.4a).

Dans les deux limites, la théorie prédit une dépendance en
√
1 − τR pour la

visibilité des oscillations de Coulomb. Ce comportement en loi de puissance a
aussi été observé pour les transmissions intermédiaires de τL ∈ [0, 1]. Aux hautes
températures, cette dépendance devient totalement universelle sur toute la gamme
τR,L ∈ [0, 1] (comme le montre la convergence de tous les symboles correspondant
à différents τL dans la Fig. F.4b). De plus, on note aussi sur cette figure que la
quantification de la charge (mesurée par ∆Q) est supprimée exponentiellement par
la température T , comme prévu par la théorie en présence de fortes fluctuations
thermiques kBT � EC/π

2 ([55] et références citées dedans).

F.2 Observation de l’effet Kondo multi-canaux

Le modèle Kondo original et quelques variantes
En 1964, Kondo a calculé la contribution à la résistivité de la diffusion des électrons
de conduction par des impuretés magnétiques dans des alliages métalliques [62].
Cependant, son approche perturbative n’est pas valide aux basses températures

2La dégénérescence de spin est levée en pratique en appliquant un fort champ magnétique.
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Figure F.4: Lois d’échelles de la quantification de la charge au voisinage
du point balistique et suppression exponentielle avec la température. a, La
visibilité ∆Q des oscillations de Coulomb à T ≈ 17mK est tracée en fonction
de 1 − τR dans une échelle log-log, avec des ensembles de symboles différents
pour chaque point de fonctionnement de QPCL . Les lignes continues sont les
prédictions quantitative (sans paramètres ajustable) calculées en supposant kBT �
EC , 1 − τR � 1 et τL � 1 (ligne droite toute en haut) ou 1 − τL � 1 (trois lignes
continues du bas). La loi de puissance ∆Q ∝

√
1 − τR (lignes droites tiretées) est

observée systématiquement pour 1− τR . 0.02, même pour des τL intermédiaires.
b, Les symboles en fonction de T , dans une échelle semi-log, montrent la visibilité
réduite ∆Q/

√
(1 − τR)(1 − τL ), extraite du régime où 1− τR est suffisamment petit

pour que ∆Q ∝
√
1 − τR . Les lignes continues sont les prédictions quantitatives

dans le régime quantique kBT � EC montrées en a. La ligne droite tiretée
correspond à une décroissance exponentielle proche de la prédiction théorique en
présence de fortes fluctuations thermiques.

comparées ce qui appelé la température Kondo TK . Ce problème à N corps est par-
ticulièrement bien adapté à la théorie de groupe de renormalisation. La première
solution exacte a été trouvée par Wilson en utilisant le groupe de renormalisation
numérique [131].

Le modèle de Kondo original est illustré en Fig. F.5. Il décrit une impureté
magnétique (modélisée par un spin #»

S , tout au long de cette thèse, S = 1/2) qui
interagit avec une unique bande de conduction électronique (représentée par une
réseau uni-dimensionnel) à travers un couplage anti-ferromagnétique J localisé
sur le site de l’impureté. À basse température, J va prendre de nouvelles valeurs
effectives, il est renormalisé vers J −→ ∞ [131]. Dans cette limite, l’impureté
forme un singulet avec un électron, et cet écrantage parfait abouti à une description
simple, en termes de liquide de Fermi [94]. Nozières et Blandin ont proposé une
généralisation du modèle avec N canaux de conductions indépendants [93], ce qui
mène à un état fondamental qui n’est pas un liquide de Fermi à basse température
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0 x

Figure F.5: Schéma expliquant le modèle Kondo. L’impureté S = 1/2 est
représentée par une flèche rouge. Les électrons de conductions (flèches blues)
sont distribués sur un réseau. Pour simplifier, ce réseau est uni-dimensionnel.
L’interaction anti-ferromagnétique est symbolisée par une flèche zigzag verte, sur
le site de l’impureté.

dans le cas surécranté N > 2S. Selon la théorie du groupe de renormalisation, les
couplages Ji entre l’impureté quantique et chacun des canaux électronique sont
renormalisés de façon effective lorsque la température baisse [10]. À température
nulle, ils atteignent finalement un point fixe universel, qui ne dépend du nombre
de canaux N [93].

Dans notre dispositif, deux états de charge successifs peuvent être ajustés (en
utilisant Vg) pour avoir la même énergie. Le nombre d’électrons sur l’îlot n ou
n + 1 peut alors jouer le rôle d’un système quantique à deux niveaux, autrement
dit, d’un pseudo-spin S = 1/2. En 1991, Matveev a démontré, dans la limite de
couplage faible, la correspondance exacte entre le modèle Kondo original (avec
de vrais spins) et le blocage de Coulomb qui décrit notre système [79]. Cette
correspondance, qui est valide au-delà de la limite tunnel [78, 72], met en jeu le
couplage entre le pseudo-spin Kondo de ‘charge’ et un pseudo-spin de localisation
des électrons (soit sur l’îlot, soit dehors).

Observation d’effets Kondo multi-canaux et de comportements
universels
La conductanceGi de chaque QPC va être renormalisée vers les points fixes Kondo
de ‘charge’ à basse température. Dans la Fig. F.6, lorsqu’on ajuste les transmissions
en jeu pour qu’elles soient égales (τ , τ1 = τ3 et τ2 = 0 pour l’effet Kondo à deux
canaux (2CK); τ , τ1 = τ2 = τ3 pour trois canaux (3CK)) et la tension de grille
au point de dégénérescence de charge (δVg = 0), on observe que la conductance
converge vers les points fixes Kondo prédits (qui est extrémal G∗2CK = e2/h dans
le cas à deux canaux et intermédiaire G∗3CK = 2 sin2(π/5)e2/h ≈ 0.691 e2/h dans
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le cas à trois canaux) [135]. Notez que ces points fixes sont universels, c’est-à-dire
qu’ils ne dépendent d’aucun paramètre microscopique (transmissions τ, énergie
de charge EC , etc.).
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Figure F.6: Renormalisation vers les points fixes Kondo de ‘charge’ à deux et
trois canaux. Pour le même jeu de transmissions τ, les conductances individuelles
au point de dégénérescence δVg = 0 sont tracées en fonction de la température
T ≈ {7.9, 9.5, 12, 18, 29, 40, 55, 75}mK en échelle log. a, Lorsque la température
baisse, la conductance converge vers le point fixe 2CK (ligne rouge) quelque soit la
transmission dans le cas à deux canaux symétriques (τ1 ≈ τ3). b,Avec trois canaux
symétriques, elle converge vers G∗3CK (ligne verte).

Les propriétés d’échelle et d’universalité sont inhérentes au groupe de renor-
malisation [131]. Dans le modèle Kondo, l’évolution en température de n’importe
quelle observable est une fonction universelle de la température réduite T/TK , à
condition que la température ait été suffisamment réduite pour que la renormali-
sation ait supprimé l’influence des perturbations non-pertinentes3 [92]. Mitchell
et al. ont calculé la courbe universelle de conductance G(T/TK ) complète (de
G(T/TK � 1) ≈ 0 à G(T/TK � 1) ≈ G∗) pour les modèles Kondo de ‘charge’ à
deux et trois canaux [85, 51]. Nous comparons nos mesures expérimentales à leurs
calculs numériques exacts dans la Fig. F.7. Notre procédure consiste à remettre la

3Dans le jargon de la renormalisation, l’effet d’une perturbation non-pertinente (irrelevant en
anglais) diminue à basse énergie.
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température à l’échelle en faisant correspondre le point de plus basse température
avec la courbe théorique. On note qu’au moins les trois points de plus basse
température sont dans le régime universel puisque leur évolution suit la courbe
théorique. Cette procédure fonctionne sur plusieurs ordres de grandeurs en T/TK ,
soulignant la grande plage sur laquelle notre dispositif est ajustable. Aux hautes
températures, des effets non-universels apparaissent. En fait, cette transition vers
un régime non-universel est complètement expliqué par les calculs du groupe de
renormalisation numérique, en prenant en compte une énergie de charge finie. À
partir de ce scaling en T/TK , on peut extraire une relation entre la température
Kondo TK et la force de couplage non-renormalisée τ. Dans les encarts de la
Fig. F.7, nous comparons TK à la théorie au voisinage des points fixes et dans le
régime tunnel.
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Figure F.7: Comparaison des mesures expérimentales aux courbes uni-
verselles de conductance du modèle Kondo de ‘charge’ à deux et trois canaux.
Ici, les points expérimentaux sont tracés jusqu’à T = 29mK et quelques transmis-
sions additionnelles sont montrées comparé à la Fig. F.6. Dans cette représentation
semi-log, chaque ensemble de point à τ fixé est déplacé horizontalement de sorte
que le point de plus basse température s’ajuste sur la courbe théorique (ligne
noire continue). Cette procédure définie des températures d’échelle TK (τ) qui
sont tracées dans les encarts pour les configuration 2CK (a) et 3CK (b), et com-
parées aux prédictions théoriques (lignes colorés). Les lignes bleues correpondent
au régime tunnel décrit par la théorie perturbative [10, 43]. Les lignes colorées
tiretées sont les lois de puissance prédites pour la conductance au voisinage des
points fixes Kondo [43, 51].
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F.3 Transition de phase quantique dans les système
Kondo multi-canaux

Criticalité quantique
Le travail sur les transitions de phase quantiques a été principalement motivé par
l’un des plus important problème non-résolu en physique de la matière condensée,
qui concerne le diagramme de phase compliqué de certains matériaux fortement
corrélés. En particulier, la phase ‘métal étrange’ de laquelle émerge la supra-
conductivité des supraconducteurs à haute température critique a attiré beaucoup
d’efforts théorique mais demeure encore mal comprise (voir [59] pour une revue
récente et Fig. F.8a). Cette phase montre des signatures de criticalité quantique
comme une loi de puissance non-liquide de Fermi pour la résistivité en fonc-
tion de la température, ainsi qu’un élargissement de l’intervalle critique avec la
température.
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Figure F.8: Diagrammes de phase typiques. a, (reproduit et simplifié à partir
de [59]) Diagramme de phase typique d’un oxyde de cuivre tracé en fonction du
dopage en trous, ces matériaux peuvent présenter un ordre anti-ferromagnétique
(AF, en bleu), un ordre de spin (hachures vertes), un ordre de charge (hachures
rouges), un ordre supraconducteur d-wave (d-SC, en vert). Un liquide de Fermi est
obtenu dans le régime à fort dopage (à basse température). b, Diagramme de phase
typique montrant de la criticalité quantique lorsque le paramètre non-thermique g
est ajusté au voisinage du point critique quantique (QCP) à basse température.

Contrairement aux phénomènes critiques classiques qui se déroulent à la tem-
pérature critique TC d’une transition de phase du second ordre, la criticalité quan-
tique tire son origine des fluctuations quantiques qui existent même à température
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nulle, à un point critique quantique. Un système physique est amené à la criti-
calité quantique à l’aide d’un paramètre non-thermique g (par exemple le dopage
comme dans la Fig. F.8a, la pression, ou une tension de grille). Il va présenter
de la criticalité quantique sur un intervalle de paramètre qui commence du point
critique g = gc à température nulle, et qui s’élargit selon une loi de puissance
Tco ∝ (g − gc)γ, où γ est appelé ‘exposant critique’ et Tco est la température de
crossover en dessous de laquelle le système échappe à la criticalité quantique (voir
Fig. F.8b) [107, 125].

Malgré les possibilités offertes par les nano-dispositifs ajustables pour com-
parer les mesures avec la théorie, les réalisations de criticalité quantique dans
ce type de systèmes sont rares [81, 82, 60]. Des prédictions existent pour les
points fixes Kondo sur-écrantés, qui sont connus pour le caractère non-trivial des
exposants critiques de divers propriétés physiques ([3, 4] et références incluses).
Dans notre implémentation de ‘charge’, nous pouvons observer un crossover de la
criticalité quantique soit en introduisant une asymétrie dans la transmission τ des
canaux, soit en levant la dégénérescence de charge δVg = 0.

Développement d’une transition de phase quantique
Dans la Fig. F.9, on règle δVg = 0, et on trace la conductance G en fonction de
la température. Chaque flèche pointe vers les basses températures et correspond à
une configuration donnée (τ2; τ1 = τ3). Ce graphe fournit donc une visualisation
du flot de renormalisation de l’effet Kondo à trois canaux (avec deux canaux réglés
symétriques τ1 = τ3). Suivant le nombre de nombre de canaux symétriques qui
partagent la meilleure connexion intrinsèque τ à l’îlot, les conductances individu-
elles G vont converger vers le point fixe Kondo à un (disque bleu), deux (disque
rouge) ou trois (disque vert) canaux.

Pour des transmissions symétriques τ1 = τ2 = τ3, le long de la diagonale,
les conductances individuelles G restent symétriques quelque soit la température.
Cependant, ce réglage est assez critique puisqu’une asymétrie, aussi petite soit-
elle, augmente lorsque la température baisse. Ce graphe nous donne donc une vue
directe sur le développement d’une transition de phase quantique.

Dans le régime de couplage fiable τ1,2,3 � 1, où les canaux peuvent être
traités indépendamment et avec une théorie perturbative [10], une augmentation
des conductances est prédite [43]. La position du point fixe J∗1CK −→ ∞ de l’effet
Kondo de ‘spin’ à un canal correspond, de façon inattendue, àG∗1CK = 0 pour notre
dispositif. De ceci résulte les comportement non-monotone de la conductance et
les nombreux croisements de flèches dans la partie supérieure du diagramme
(τ2 > τ1,3).

Un remarquable dépassement du quantum de conductance e2/h par la conduc-
tance individuelle d’un unique canal est observé dans le flot vers le point fixe à
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Figure F.9: Observation du flot de renormalisation 3CK. La moyenne des
conductances G1 et G3 est tracée en fonction de G2 au températures T ≈ {7.9,
9.5, 12, 18, 29, 40, 55}mK. La couleur des flèches correspond à leur orientation.
L’incertitude des symboles ouverts et des lignes tiretées est inférieure à 0.1 e2/h
tandis qu’elle est inférieure à 0.05 e2/h pour les symboles pleins et les lignes
continues. Les points fixes Kondo sont indiqués par des disques colorés (1CK en
cyan, 2CK en rouge et 3CK en vert).

un canal. Cette observation a été corroborée par les récents calculs de renormal-
isation numériques effectués par A.K.Mitchell. Un autre aspect essentiel de ce
diagramme est la visualisation d’un crossover entre deux points fixes non-liquide
de Fermi (du point fixe 3CK au point fixe 2CK).

Crossover de la criticalité quantique en utilisant un champ mag-
nétique effectif
Dans cette section, on règle les transmissions symétriques (soit τ , τ1 = τ3 et
τ2 = 0, soit τ , τ1 = τ2 = τ3). L’état critique quantique obtenu à basse température
T � TK, EC et son caractère distinct d’un liquide de Fermi sont fragiles. Ils sont
détruits par une levée de la dégénérescence de charge. Un δVg non-nul favorise l’un
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des deux états du pseudo-spin de charge et détruit l’effet Kondo en agissant comme
un champ magnétique effectif [79]. Ceci va mener le système vers un liquide de
Fermi avec une échelle d’énergie typique donnée par la température de crossover
Tco (voir Fig. F.8b). Cette quantité est prédite pour dépendre de δVg selon une loi
de puissance Tco ∝ δV β(N )

g avec un exposant critique β(N ) = (2 + N )/N [29].
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Figure F.10: Crossover de la criticalité quantique en levant la dégénérescence
de charge. Un pic de conductance est montré àT ≈ {7.9, 9.5, 12, 18, 29, 40, 55}mK
pour une transmission τ sélectionnée au voisinage du point fixe 2CK (dans a)
et 3CK (dans b). Les lignes continues sont les mesures expérimentales. Pour
chaque graphe a et b, deux échelles sont utilisées en abscisse: la tension de grille
brute δVg (à gauche) et une remise à l’échelle sin(π∆E/(2EC ))/(T/Tbase)1/β , avec
Tbase = 7.9mK (à droite). La conductance adopte un comportement universel après
la mise à l’échelle de l’abscisse (sauf pour les deux températures les plus élevées).
La ligne tiretée grise Gthy dans a montre la prédiction à température nulle pour
τ = 0.95.

De plus, au voisinage du point critique quantique, Tco est la seule échelle
d’énergie à considérer, et la conductance doit être une fonction universelle de
T/Tco [102, 85]. L’expression quantitative de Tco(∆E) en fonction d’écart à la
dégénérescence4 L’expression de ∆E a été calculée par Fursaki et Matveev pour
le modèle 2CK de ‘charge’, pour des ∆E arbitraires (au-delà de la loi de puissance
∆E � EC) [43]. Dans la Fig. 1.10a, nous utilisons cette expression pour mettre à
l’échelle δVg et nous observons que les pics de conductances mesurés à différentes
températures retombent tous sur une même courbe universelle. À partir de notre

4Comme expliqué plus haut, δVg agit comme un champ magnétique. On définit ∆E ,
2ECδVg/∆Vg , où EC/kB ≈ 300mK est l’énergie de charge et ∆Vg ≈ 0.70mV est la période
des oscillations de Coulomb (ces deux valeurs numériques sont déterminées par la géométrie de
l’échantillon, et elles sont indépendantes de T ou τ).
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connaissance de l’exposant critique β(N ), nous avons proposé une généralisation
naive de ce scaling qui correspond bien à nos pics de conductance 3CK (voir
Fig. 1.7b). Nous vérifions ainsi les lois de puissance universelles prédites pour la
température de crossover Tco à petit δVg et nous démontrons un accord quantitatif
avec la prédiction théorique complète de Furusaki et Matveev (ligne tiretée dans
la Fig. F.10a) [43].
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Résumé : Cette thèse explore plusieurs sujets 
fondamentaux pour les circuits mésoscopiques 
qui incorporent un faible nombre de canaux de 
conduction électroniques. 
Les premières expériences concernent le 
caractère quantifié (discret) de la charge dans 
les circuits. Nous démontrons le critère de 
quantification de la charge, nous observons la 
loi d’échelle prédite pour cette quantification 
ainsi qu’une transition vers un comportement 
universel à mesure que la température 
augmente. 
Le second ensemble d’expériences concerne la 
physique critique quantique non- 
conventionnelle qui émerge du modèle Kondo 
multi-canaux. Par l’implémentation d’une 

impureté Kondo avec un pseudo-spin de valeur 
½ constitué de deux états de charge dégénérés 
d’un circuit, nous explorons la physique Kondo 
à deux- et trois-canaux. Au point critique 
quantique symétrique, nous observons les points 
fixes Kondo universels prédits, des exposants 
universels de lois d’échelle et nous validons les 
courbes complètes obtenues par le groupe de 
renormalisation numérique. En s’écartant du 
point critique quantique, nous explorons la 
transition depuis la zone critique quantique : par 
une visualisation directe du développement 
d’une transition de phase quantique, par 
l’espace des paramètres de la zone critique 
quantique ainsi que par les comportements 
d’universalité et d’échelle. 

 

 

Title : Charge quantization and Kondo quantum criticality in few-channel mesoscopic circuits 
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Abstract : This thesis explores several 
fundamental topics in mesoscopic circuitries 
that incorporates few electronic conduction 
channels. 
The first experiments address the quantized 
character (the discreteness) of charge in 
circuits. We demonstrate the charge 
quantization criterion, observe the predicted 
charge quantization scaling and demonstrate a 
crossover toward a universal behavior as 
temperature is increased. 
The second set of experiments addresses the 
unconventional quantum critical physics that 
arises in the multichannel Kondo model. By 
implementing a Kondo impurity with a pseudo- 

spin of ½ constituted by two degenerate charge 
states of a circuit, we explore the two- and 
three-channel Kondo physics. At the symmetric 
quantum critical point, we observe the 
predicted universal Kondo fixed points, scaling 
exponents and validate the full numerical 
renormalization group scaling curves. Away 
from the quantum critical point, we explore the 
crossover from quantum criticality: direct 
visualization of the development of a quantum 
phase transition, the parameter space for 
quantum criticality, as well as universality and 
scaling behaviors. 
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