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Abstract

The purpose of my thesis is to study interactions between cognitive and emotional processes
through the lens of neuromimetic robotics. The proposed models are implemented on artificial
neural networks and embodied in robotic platforms – forming situated systems. In general, the
interest is twofold: 1) taking inspiration from biological solutions to design systems that better
interact with their physical and social environments, and 2) providing computational models as
a means to better understand biological cognition and emotion.

The first part of the dissertation addresses spatial navigation as a framework to study bio-
logical and artificial cognition. In Chapter 1, I present a brief overview of the literature on
biologically inspired navigation. Then, two issues are more specifically tackled. In Chapter 2,
visual place recognition is addressed in the case of outdoor navigation. In that matter, I pro-
pose a model based on the notions of visual context and global precedence combining local and
holistic visual information. Then, in Chapter 3, I consider the interactive learning of navigation
tasks through non-verbal human–robot communication based on low-level visuomotor signals.

The second part of the dissertation addresses the central question of emotion–cognition in-
teractions. In Chapter 4, I give an overview of the research on emotion as a cross-disciplinary
enterprise, including psychological theories, neuroscientific findings and computational mod-
els. In Chapter 5, I propose a conceptual model of emotion–cognition interactions. Then, var-
ious instantiations of this model are presented. In Chapter 6, I model the perception of the
peripersonal space when modulated by emotionally valenced sensory and physiological sig-
nals. Last, in Chapter 7, I introduce the concept of Emotional Metacontrol as an example of
emotion–cognition interaction. It consists in using emotional signals elicited by self-assessment
to modulate computational processes – such as attention and action selection – for the purpose
of behavior regulation.

In this thesis, a key idea is that, in autonomous systems, emotion and cognition cannot be
separated. Indeed, it is becoming well admitted that emotion is closely related to cognition, in
particular through the modulation of various computational processes taking place in the brain.
This raises the question of whether this modulation occurs at the level of sensory processing or
at the level of action selection. In this thesis, I will advocate the idea that artificial emotion must
be integrated in robotic architectures through bidirectional influences with sensory, attentional,
decisional and motor processes. This work attempts to highlight how this approach to internal
emotional processes can foster efficient interactions with the physical and social environment.
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Résumé

L’objectif de ma thèse est d’étudier les interactions entre processus cognitifs et émotionnels
à travers le prisme de la robotique neuromimétique. Les modèles proposés sont implémentés
sur des réseaux de neurones artificiels et encorporés dans des plateformes robotiques – formant
des systèmes situés. D’une manière générale, l’intérêt est double : 1) s’inspirer des solutions
biologiques pour concevoir des systèmes qui interagissent mieux avec leurs environnements
physiques et sociaux, et 2) mettre en place des modèles computationels comme moyen de mieux
comprendre la cognition et les émotions biologiques.

La première partie du manuscrit aborde la navigation comme cadre permettant d’étudier la
cognition biologique et artificielle. Dans le Chapitre 1, je commence par donner un aperçu de
la littérature en navigation bio-inspirée. Ensuite, deux problématiques sont traitées. Dans le
Chapitre 2, la reconnaissance visuelle de lieux en environnement extérieur est abordée. Dans ce
cadre, je propose un modèle basé sur les notions de contextes visuels et de précédence globale
et qui combine des informations locales et holistiques. Puis, dans le Chapitre 3, je considère
l’apprentissage interactif de tâches de navigation à travers une communication homme–robot
non-verbale basée sur des signaux visuomoteurs de bas niveau.

La deuxième partie du manuscrit s’attaque à la question centrale des interactions entre emo-
tion et cognition. Le Chapitre 4 introduit la recherche sur les émotions comme une entreprise
inter-disciplinaire, incluant des théories en psychologie, des découvertes en neurosciences et
des modèles computationnels. Dans le Chapitre 5, je propose un modèle conceptuel des in-
teractions emotion–cognition dont différentes instantiations sont ensuite présentées. Plus pré-
cisément, dans le Chapitre 6, je modélise la perception de l’espace péripersonnel quand elle
est modulée par des signaux sensoriels et physiologiques ayant une valence émotionnelle. En-
fin, dans le Chapitre 7, j’introduis le concept de métacontrôle émotionnel comme un exemple
d’interaction emotion–cognition. Cela consiste à utiliser des signaux émotionnels élicités par
une auto-évaluation pour moduler des processus computationnels – tels que l’attention ou la
sélection de l’action – dans le but de réguler le comportement.

Une idée clé dans cette thèse est que, dans les systèmes autonomes, emotion et cognition ne
peuvent pas être séparées. En effet, il est maintenant bien admis que les émotions sont très liées à
la cognition, en particulier à travers la modulation de différents processus computationnels dans
le cerveau. Cela pose la question de savoir si ces modulations se produisent au niveau du traite-
ment sensoriel ou celui de la sélection de l’action. Dans cette thèse, je préconise l’intégration
des émotions artificielles dans les architectures robotiques via des influences bidirectionnelles
avec les processus sensoriels, attentionnels, moteurs and décisionnels. Ce travail tente de mettre
en avant la manière dont cette approche des aspects internes des processus émotionnels peut
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favoriser des interactions efficaces avec l’environnement physique et social du système.
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Résumé étendu

L’objectif de ma thèse est d’étudier les interactions entre processus cognitifs et émotionnels à
travers le prisme de la robotique neurmimétique. Les modèles proposés sont implémentés sur
des réseaux de neurones artificiels et encorporés1 dans des plateformes robotiques – formant
des systèmes situés. D’une manière générale, l’intérêt est double : 1) s’inspirer des solutions
biologiques pour concevoir des systèmes qui interagissent mieux avec leurs environnements
physiques et sociaux, et 2) mettre en place des modèles computationels comme moyen de com-
prendre la cognition et les émotions biologiques.

La première partie du manuscrit aborde la navigation comme cadre permettant d’étudier la
cognition biologique et artificielle. A ce sujet, le Chapitre 1 commence par un récapitulatif
d’importants résultats de recherche en neuroscience qui impliquent la régiond hippocampique
dans un ensemble de fonctions liées à la navigation. Dans le cadre de ma thèse, un intérêt par-
ticulier est porté sur les cellules de lieu : un type particulier de neurones dont les activités sont
corrélées avec la localisation de l’agent dans un environnement familier. Un modèle biologique-
ment plausible de reconnaissance de lieux basé sur ce type ce cellules à été proposé dans de
précédents travaux effectués au sein du laboratoire.

Dans le Chapitre 2, je me suis intéressé de plus près à la reconnaissance visuelle de lieux
en extérieur. Ces environnements présentent un défi car ils sont beaucoup moins structurés et
controlés qu’en intérieur. En particulier, un problème particulier auquel fait face le modèle ex-
istant de cellules de lieu est celui de la robustesse de la reconnaissance sur de longues distances.
L’approche que j’ai suivi a été d’examiner le type d’entrées visuelles utilisées pour la locali-
sation. Dans la littérature, les méthodes utilisant des informations locales ont généralement de
meilleures performances. Cependant, l’information visuelle global est également informative et
peut nécessiter un coût computationnel plus faible. Pour confirmer cela, j’ai présenté une ex-
périence comparant sept descripteurs holistiques au descripteur local utilisé dans LPMP. Comme
prévu, ce dernier a globalement montré une meilleure performance. Toutefois, les résultats sug-
gèrent aussi que les caractéristiques globales contiennent assez d’information utile pour la nav-
igation. En accord avec ceci, il existe des travaux qui mettent en avant la capacité de l’Homme
à capturer l’essentiel d’une scène visuelle à partir de son aspect global et d’informations basse-
résolution. De plus, la notion de précédence globale indique que ces contextes visuels facilitent
une reconnaissance fine à partir de détails visuels plus locaux. Par conséquent, j’ai proposé
un modèle de reconnaissance de lieu basées sur le contexte. Cette solution augmente les perfor-
mance du modèle existante. Elle montrent aussi des résultats prometteurs en terme de navigation

1Terme proposé par Jean-Paul Laumond pour traduire le mot embodied dans le concept de l’intelligence incarnée
dans un corps [Pfeifer and Pitti, 2012].
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dans de grands environnements et sur de longues distances. Plus précisément, l’utilisant d’une
reconnaissance holistique rapide pour limiter l’espace de recherche lié à la vision locale a non
seulement permis daméliorer la capacité de localisation mais aussi de maintenir un coût compu-
tationnel quasi-constant.

Il a aussi été montré qu’une implémentation du modèle de cellules de lieux sur des robots (le
modèle LPMP) pouvait être utilisée pour leur apprendre à effectuer des trajectoires de navigation
basées sur un couplage sensorimoteur. Dans le Chapitre 3, je me suis intéressé à l’apprentissage
interactif de telles tâches via une communication homme–robot non-verbale qui repose sur des
signaux visuomoteurs de bas niveau. En particulier, j’ai travaillé sur un modèle qui vise à pren-
dre en compte la sensibilité aux interactions rythmiques dont fait preuve l’humain. Pour cela,
la détection de synchronie est utilisée comme moyen de sélectionner un partenaire. La recon-
naissance et le suivi visuels des partenaires humains ont été utilisés pour permettre au robot de
ré-engager et de maintenir les interactions lors des phases d’apprentissage. Les résultats présen-
tés montrent que cette architecture est capable d’apprendre et d’exécuter une tâche de navigation
sensorimotrice.

La deuxième partie du manuscrit s’attaque à la question centrale des interactions entre emo-
tion et cognition. Le Chapitre 4 introduit la recherche sur les émotions comme une entreprise
inter-disciplinaire. Une vue d’ensemble des principales écoles de pensée ainsi que quelques
exemples de théories influentes en psychologie sont donnés. Ensuite sont rapportés quelques
découvertes neuroscientifiques liées aux régions cérébrales et aux signaux neurochimiques im-
pliqués dans les émotions. Puis, quelques exemple de modèles computationnels implémentés sur
robots ou sur des agents conversationnels virtuels sont présentés. Pour un roboticien, une vision
functionnelle des émotion les rend intéressantes à modéliser pour deux raisons : améliorer les
interactions robot–robot et humain–robot and accroître l’autonomie et les capacités d’adaptation
des robots. D’un autre côté, les modèles computationnels permettre aux chercheurs de tester
des hypothèses. Aller de concepts théoriques à des implémentations concrètes révèle aussi les
ambiguïtés et pousse vers des définitions plus explicites.

Comme indiqué dans le Chapitre 5, différentes recherches convergent sur le fait que cogni-
tion et emotion ne peuvent pas être facilement séparées. Il s’avère en fait qu’elles s’influencent
continuellement. Des processus liés à la perception, l’attention, la mémoire et le raisonnement,
qui sont associés à la cognition, influencent les expériences émotionnelles. En retour, ils sont
aussi modulés par les signaux émotionnels. Biologiquement, ces interactions semblent être
représentés par une influence bi-directionnelle entre les activités neuronales et les modulations
neurochimiques. Computationnellement, la théorie des systèmes dynamique paraît être un bon
cadre pour étudier un tel couplage. Sur un plus haut niveau d’abstraction, j’ai proposé un mod-
èle conceptuel d’interaction emotion–cognition. Ce modèle offre une vision complémentaire à
celle d’une description sous forme de réseaux de neurones en représentant des connexions entre
processus – de manière similaire à un diagramme d’activité (workflow) par exemple. D’abord,
cela permet de facilement faire la correspondance avec des descriptions qui sont elles aussi
généralement orientées processus. De plus, le modèle fournit ainsi une vue générique du con-
cept indépendamment de l’implémentation et de l’application. Pour résumer, le modèle illustre
comment, de manière continue, le système:

(a) évalue des événement se produisant dans le corps ou dans l’environnement extérieur, avec
un intérêt particulier pour des stimuli émotionnellement significatifs, et

(b) traite des signaux émotionnellement modulés et les réintègre dans le flux de traitement
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d’information dans le but d’effectuer des traitements et des évaluations de plus haut niveau.
Dans le Chapitre 6, je présente la première instantiation de ce modèle abstrait. Je m’intéresse

ainsi à l’effet des émotions sur la perception de l’espace péripersonnel; l’espace où l’on peut
interagir confortablement et sans danger avec l’environnement physique et social. Pour les hu-
mains et les animaux, la capacité à construire une telle représentation est fondamentale, même
pour des comportements basiques d’approche et d’évitement. Par ailleurs, il a été montré que
les émotions ont une forte influence sur la perception l’espace environnant. Dans le modèle que
je propose, des signaux sensoriels et physiologiques ayant une valence émotionnelle modulent
le flux de traitement de l’information au niveaux sensoriel et moteur. Je présente différentes
expériences montrant que cette modulation émotionnelle l’espace péripersonnel peut servir de
paradigm pour un contrôle réactif du comportement du robot. Des résultats supplémentaires
suggères que le modèle peut rendre compte de l’impact de la désirabilité des objets dans la
perception de leur atteignabilité. En outre, dans un contexte social, les robots exhibent un com-
portement craintif ou agressif selon les interactions internes entre signaux émotionnels. Ceci
illustre comment l’aspect interne des processus émotionnels peut avoir un impact sur des as-
pects externes, plus liés aux interactions physiques et sociales.

Un autre exemple d’interaction emotion–cognition est donné dans le Chapitre 7. En ef-
fet, j’introduis ici le concept de Metacontrôle Emotionnel comme étant l’utilisation de signaux
émotionnels élicités par une auto-évaluation pour moduler différents processus computationnel
dans le but de réguler son comportement. L’auto-évaluation est la capacité à évaluer ses pro-
pres aptitudes et performances. Dans le modèle proposé, elle est effectuée à la volée, en se
basant sur l’évaluation de contingences sensorimotrices et la détection de situations nouvelles.
Dans la littérature, frustration et ennui caractérisent une incompatibilité entre les compétences
et les exigences de la tâche. Par conséquent, dans mon modèle, la frustration est élicitée dans
le cas où le robot régresse ou stagne avec une forte nouveauté. A l’opposé, l’ennui est généré
par l’absence de nouveauté et de progrès dans la tâche. Dans mon modèle, ces affects duaux
déclenchent tous les deux des méchanismes de modulation de haut-niveau qui régulent le com-
portement du robot. Dans la première expérience du chapitre, la frustration est utilisée pour
surveiller et pondérer les sous-comportements indépendants d’un robot mobile dans une tâche
de navigation. D’abord, je montre que le modèle fournit un moyen efficace de communiquer un
échec et le besoin d’une intervention à un partenaire/superviseur humain. De plus, je démontre
qu’il permet aussi la sélection de stratégie dans une tâche qui alterne suivi de route et l’exécution
d’une trajectoire sensorimotrice apprise. Par la suite, la seconde expérience s’intéresse à la re-
connaissance d’objets dans une tâche dont le but est de retrouver des objets cibles dans la scène
visuelle. Cette fois, la frustration et l’ennui sont utilisés pour biaiser l’attention. Ils permettent
de sortir de situations de bloquage qui sont due à un échec ou à une réussite persistante. Mes
résultats montrent que, par rapport à une architecture en boucle ouverte, le métacontrôle émo-
tionnel augmente les performances du système et favorise un comportement exploratoire dans
ce types de situations.
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Introduction

“I propose to consider the question, ‘Can machines think?”’
(Turing [1950])

Robots are fascinating. In addition to the technological advances they represent, they serve
as a great means to question our knowledge of ourselves (humans) through a process of under-
standing by design. But, far from the Promethean dream – the dream of creating a new form
of life – robot are progressively leaving the realm of science fiction. Indeed, as scientific and
technological progress is made, more and more intelligent machines are introduced in our facto-
ries, shops, hospitals, museums and homes. Much like personal computers, Internet and mobile
phones, robots are very likely to re-shape our daily life. One must admit that these are very
exciting times to be a roboticist.

The word “robot” was first used by Karel Čapek2 in his play R.U.R. (Rossum’s Universal
Robots) published in 1920. The Slavic word “robota” meaning labor, the play described artificial
people made by humans and intended to work for them. Then, the word “robotics” was coined3

by Isaac Asimov in the early 1940s is his short stories Liar! and Runaround as the science and
technology of robots.

As a scientific field, robotics encompasses aspects of mechanical, electrical and computer
science engineering. The latter part constitutes the intersection with another scientific commu-
nity, that of artificial intelligence (AI). This fields emerged when the philosophical and mathe-
matical foundations of formal reasoning could be tested on programmable machines. With the
invention of digital computers, it was finally possible to consider the idea of creating an artificial
brain. The 1940s were a pivotal period as converging seminal works in that matter appeared.
McCulloch and Pitts [1943] proposed the first computational model of neuron. Wiener [1948]
introduced cybernetics as the study of control and communication in animals and machines.
Shannon [1948] gave rise to the information theory laying the foundations of modern telecom-
munication. Turing [1950] formulated the Turing test, designed to assess whether a machine
exhibits intelligent behavior. A few years later, the field of artificial intelligence was founded
as an academic discipline in 1956, at a conference gathering pioneers like Marvin Minsky, John
McCarthy, Claude Shannon, Allen Newell and Herbert Simon. With the objective of allowing
machines to fulfill complex tasks only accessible to humans so far, the overlap with robotics is
obvious. Contemporaneously, Walter [1950] presented his Machina speculatrix, better known
as the “tortoise” robot. By creating animal-like machines, the purpose of Walter’s work was

2Karel Čapek asserts that his brother Josef Čapek is the actual originator of the word.
3Isaac Asimov thought the word already existed when he first used it.
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to demonstrate that complex behaviors, like those enabled by the brain, come from the rich
connectivity between small number of neurons.

In a broader view, robotics and artificial intelligence are part of the mutli-, cross-disciplinary
field of cognitive science. Cognitive scientists – also including philosophers, psychologists,
sociologists and neuroscientists among others – study the mental processes that are involved in
the intelligence and behavior of humans, animals and machines.

Different approaches to cognition

When defining intelligence, three schools of thoughts can be distinguished. The cognitivist
approach is based on the idea that thoughts are discrete representations (symbols) we manipulate
via a set of rules. This belief suffers from various weaknesses. The most famous is the symbol
grounding problem [Harnad, 1990]. Indeed, being able to manipulate symbols does not mean
that one understands their meanings and their relation with the real world. A good illustration
of this limit is given by a thought experiment proposed by Searle [1980]. In his argument,
he shows that he could easily be thought to understand Chinese without any knowledge of the
semantics of the language, provided he has access to a set of rules allowing him to correlate a set
of Chinese characters (question) with another (answer). Symbolic artificial intelligence, which
was the predominant approach in the early days of the field, has strong links with cognitivism.
Therefore, classical AI – or good old-fashioned AI – is subject to the issue highlighted above.
In more concrete terms, designing an “intelligent” behavior requires human expertise to provide
the set of rules that govern the application domain. Additionally, it seems very unlikely that one
can define all the potential outcomes of any possible situation in the real world. Therefore, such
expert systems are generally limited to very specific use cases; and any new application needs a
new knowledge base. So, although this approach can succeed in simulating intelligence, it fails
in providing a framework for the study of cognition.

In contrast, the connectionist approach describes cognition as emerging from networks of in-
terconnected units. Activities inside these networks depend on internal constraints determining
how connections are changed and how nodes are activated by their inputs. The global coherence
comes from these local properties. In this view, mental processes are dynamic patterns of activ-
ity rather than symbol manipulation. The main computational framework of this movement is
provided by artificial neural networks (ANN) – networks of elementary calculating units (neu-
rons) interconnected by weighted links (synapses). But since the first formal model of neuron
[McCulloch and Pitts, 1943], this community has had ups and downs. The analogy with bio-
logical learning in pioneering works like those of Hebb [1949] and Rosenblatt [1958] was very
promising. Then, the “dark ages” of ANN came when the limitation of existing models to lin-
early separable problems4 was mathematically proven [Minsky and Papert, 1969]. However, the
paradigm has regained popularity since the 1980s thanks to a large variety of models overcoming
this limitation [Kohonen, 1982; Hopfield, 1982; Rumelhart et al., 1985; Rumelhart and McClel-
land, 1986; Carpenter and Grossberg, 1988]. The connectionist approach avoids the symbol
grounding problem by allowing the system to self-organize and construct categories (classes) by

4To simplify, consider elements belonging to two classes are represented in a 2D space. If the two classes can be
separated by a single line, ensuring that all elements of a class are on the same side of the line, then it is a linearly
separable problem. This type of problem can be solved by a single-layer perceptron [Rosenblatt, 1958]. However,
non-linearly separable problems require more layers of neurons. See Appendix A for an illustration
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itself. But there still can be a few limitations related to this framework. First, if learning has to
be supervised, then again, we need an expert showing the correct output we expect for a given
input. Besides, the issue of application-specific and restricted knowledge can also be encoun-
tered with this paradigm. For instance, let us consider a system that has to learn what a “chair”
is. This problem can be addressed by showing various images of chairs and making the network
learn the corresponding category. Yet, designers constantly come up with new ideas, creating
objects that are aesthetically different but functionally similar to the chairs we knew before. A
system that does not have the capacity to interact with the objects it encounters – and sit on a
chair every now and then – will never capture this functional aspect.

This leads us to the enactivist approach. Introduced by Maturana and Varela [1980]; Varela
et al. [1992], enactivism emphasizes that intelligence needs a body. In this view, cognition
emerges from interactions with the environment. Thus, a program alone cannot understand the
world if it does not move in it, act on it and alter it. This is in line with the sensorimotor theories
of perception in psychology [Piaget, 1951; Gibson, 1979; O’Regan and Noë, 2001]. In this
framework, perception is an active process that allows the detection of sensorimotor invariants
from a flow of information (sensory input). According to the theory of affordances proposed by
Gibson [1979], humans extract meaning from “action possibilities” around them. By definition,
affordances depend on the physical capabilities of the agent. In the example I presented earlier,
the meaning that we implicitly expect the system to acquire about chairs is the one defined by
human morphology, not that of a platypus.

The enactivist approach intends to offer an alternative to the connectionist and cognitivist
views of intelligence. Because it suggests that cognition can only be embodied, it implies that
artificial intelligence requires robots. However, it does not presuppose a particular computa-
tional framework when it comes to the question of how to make machines think. My work lies
in the intersection between connectionism and enactivism. Indeed, I will be interested in the
phenomena that emerge from interactions between internal processes; as well as from physical
and social interactions with the environment.

Robotic approaches and paradigms

Neurorobotics consists in embodying neural systems in robotic platforms. There is also a
strong link with neuroscience through the design of brain-like architectures. Thus, these neu-
ral systems range from artificial neural networks to biological (cultured) neural tissues wired
to electronic devices. Some artificial models attempt to precisely mimic the behavior of bio-
logical neurons. For example, spiking neural networks model cells that only fire when the po-
tential – simulated electrical charge accumulated from synaptic inputs – reach a certain threshold
[Hodgkin and Huxley, 1952; Maass, 1997]. These models are particularly appropriate to study
the temporal aspect of the interactions between neurons. Otherwise, a simpler approach is to
consider mean firing rate models. As the name suggests, the activity of these artificial neurons
illustrate the average firing in a certain period of time rather than actual spikes. In my experi-
ments, I will implement this type of neurons. The inputs of the first layers are provided by the
sensors of the robotic platforms. The activities inside the network are updated at each time step,
resulting in motor orders controlling the platform actuators.
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Bio-inspired robotics encompasses various technologies that synthesize principles originally
observed and studied in biological organisms. The idea is to take advantage from natural solu-
tions developed ecologically throughout evolution [Braitenberg, 1984; Brooks, 1986; Gaussier
and Zrehen, 1995; Pfeifer and Scheier, 1995]. Defined as such, the domain covers a large spec-
trum of research and has notably expanded in the last decade [Pfeifer et al., 2007; Lepora et al.,
2013]. A significant portion regards the design of hardware solutions, including biosensors,
bioactuators and biomaterials. For examples, the relatively recent sub-field of soft robotics re-
lies on non-rigid (compliant) materials to model biomorphological features in order to facilitate
robots physical interactions with the environment. More related to artificial intelligence and thus
more relevant to my thesis is the sub-field of biologically inspired cognitive robotics; i.e. em-
bodied artificial systems that carry out tasks related to attention, learning, decision-making and
so on, in a way that mimics aspect of animal and human behaviors [Krichmar, 2012]. Besides,
Animats, which I will elaborate on below, intend to model animal behaviors and thereby also
belong to this family by definition.

Behavior-based robotics is an approach that arose in the 1980s as an alternative to the deliber-
ative paradigm commonly used in what is today called classical robotics. Rather than top-down
centralized decisions following a sense-plan-act sequence, these architectures rely on sensori-
motor coupling and the principle of embodied cognition [Gaussier and Zrehen, 1995; Pfeifer and
Scheier, 1995]. This research largely took inspiration from ethology. Converging efforts aiming
to reproduce biological behaviors in artificial systems gave rise to the animat approach. One of
the pioneers of this paradigm is Brooks [1986, 1991]. He proposed the subsumption architecture,
organizing the behavior into a hierarchy of layers (sub-behaviors), all running in parallel. The
key point lies in the decomposition of the overall behavior instead of decomposing the problem.
Another seminal work in that of Braitenberg [1984] showing how rich and seemingly complex
behaviors emerge from the interaction of very simple systems with their environment. In this
thesis, most of the tasks do not require planning. The sense-act coupling allows fast control
and reactivity by only figuring out what to do in the next step. Moreover, the architectures are
either implemented on physical robots that interact with the real world or run on simulations that
provide realistic physics or the type of feedback that is expected from a real environment in the
context of the specific task.

Developmental/Epigenetic robotics aims at understanding the mechanisms that allow life-
long learning and acquisition of increasingly complex cognitive structures through interactions
with the environment. In his plenary talk at the World Congress on Computational Intelligence
in 2016, Leslie Valiant suggested that the world could be viewed as a collection of organisms
that learn (and evolve) to adapt to their environment. Whereas evolutionary robotics studies the
emergence of new architectures across generations of a population of agents, epigenetic robotics
is interested in developmental processes at the scale of individuals. More specifically, the pur-
pose is to model the emergence of higher order cognitive functions through autonomous learning
that benefit from physical and social interactions [Asada et al., 2009]. In the context of my the-
sis, the tasks will not be pre-programmed but learned through actual or simulated interactions.
The approach is bottom-up and constructivist: the system is provided with minimalistic pre-
wired reflexes and learning capabilities (inspired by studies on biological cognition) in order to
observe potential emerging properties.
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Outline of the dissertation

The purpose of my thesis is to study the interactions between cognitive and emotional processes
through the prism of robotics. My work will be inspired by converging findings showing that,
in biological systems, emotion cannot be separated from cognition. Indeed, it is becoming well
admitted that emotion is closely related to cognition, in particular through the modulation of
various computational processes. This raises the question of whether this modulation occurs at
the level of sensory processing or at the level of action selection. In this thesis, I will advocate
the idea that artificial emotion must be integrated in robotic architectures through bidirectional
influences with sensory, attentional, decisional and motor processes. Such an approach to inter-
nal emotional processes is intended to foster efficient physical and social interactions between
the robot and its environment.

The programs that govern the robot behavior will be implemented on artificial neural net-
works (neurorobotics). They will be designed by taking inspiration from biological systems
(bio-inspired robotics) – i.e. what we know about humans and animals from studies in other
cognitive science disciplines. Sensorimotor architectures will be proposed, based on the idea
that complex, yet stable, behaviors can emerge from the sensation–action loop in an embodied
and situated agent (behavior-based robotics). Given the ability to learn and adapt, these robotic
system can benefit from a rich physical and social interaction with their environment (develop-
mental/epigenetic robotics).

The first part of the dissertation addresses spatial navigation as a framework to study bio-
logical and artificial cognition. In Chapter 1, I present a brief overview of the literature on
biologically inspired navigation. Then, two issues are more specifically tackled. In Chapter 2,
visual place recognition is addressed in the case of outdoor navigation. In that matter, I pro-
pose a model based on the notions of visual context and global precedence combining local and
holistic visual information. Then, in Chapter 3, I consider the interactive learning of navigation
tasks through non-verbal human–robot communication based on low-level visuomotor signals.

The second part of the dissertation addresses the central question of emotion–cognition in-
teractions. In Chapter 4, I give an overview of the research on emotion as a cross-disciplinary
enterprise, including psychological theories, neuroscientific findings and computational mod-
els. In Chapter 5, I propose a conceptual model of emotion–cognition interactions. Then, var-
ious instantiations of this model are presented. In Chapter 6, I model the perception of the
peripersonal space when modulated by emotionally valenced sensory and physiological sig-
nals. Last, in Chapter 7, I introduce the concept of Emotional Metacontrol as an example of
emotion–cognition interaction. It consists in using emotional signals elicited by self-assessment
to modulate computational processes – such as attention and action selection – for the purpose
of behavior regulation.
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Part I

Spatial navigation as a framework for
cognition
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CHAPTER 1

Neuromimetic approach to robotic
navigation

“[T]he only function of the brain from an evolutionary point of view is to control
movement and so interaction with the environment. That is why plants do not have
brains.”

(Wolpert [2002])

Navigation is the act of moving, or finding a way, from one place to another. It is a funda-
mental cognitive function that is crucial for survival and is common to most species. Navigation
provides an ideal framework to study biological and artificial cognition because of the variety
of computational processes that are involved [Wystrach and Graham, 2012]. Another interest is
the low dimensionality of the behavioral output – compared to object grasping for instance.

In the last decades, extensive research in ethology and neuroscience enabled a tremendous
progress in understanding how the brain solves navigation problems. In fact, the discovery of
place cells and grid cells – which are specific populations of neurons exhibiting firing activities
related to spatial localization – earned John O’Keefe, May-Britt Moser and Edvard Moser the
Nobel Prize in Physiology or Medicine in 2014. Nevertheless, there is a lot more we have not
learned yet about animal and human navigation.

In robotics, navigation is also a major research topic. Mobile robots, along with robotic arms,
are among the oldest systems that roboticists have dealt with. Still, being able to self-localize
and consistently move in unknown, dynamic environments raises numerous challenges in the
domain. A “classical” approach to these issues is known as the Simultaneous Localization and
Mapping (SLAM) problem [Smith and Cheeseman, 1986; Leonard and Durrant-Whyte, 1991].
This approach considers that the robot has to build an internal representation of the environment
in order to correctly navigate in it. In this view, the main challenge lies in the ability to construct
such a map while moving; much like a chicken-and-egg problem.

In this thesis, I will rather be interested in biomimetic approaches to navigation. Machina
speculatrix, better known as the “tortoise” robot, by Walter [1950] is probably the first of the
kind. This wheeled robot was able to avoid obstacles and autonomously find its way to a recharg-
ing station when required. By creating animal-like machines, the purpose of Walter’s work was
to demonstrate that complex behaviors like those enabled by the brain come from the rich con-
nectivity between small number of neurons. Later, the animat approach to robotics arose from
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1.1. NAVIGATION IN THE BRAIN

Figure 1.1: Increasingly complex local navigation behavior. From LEFT to RIGHT: random search,
direction-following, aiming, and guidance. The figure is borrowed from Franz and Mallot [2000].

converging efforts aiming to reproduce biological behaviors in artificial systems [Braitenberg,
1984; Brooks, 1991].

Franz and Mallot [2000] proposed a classification of navigation strategies that animals and
animats can use. First, a dichotomy is suggested between local and way-finding strategies. In
the former, the agent can perform: random search (in the absence of sensory cues), direction-
following (in the presence of a trail), aiming (when a salient cues signal the goal location), or
guidance (when the spatial relation between cues determines the goal location). The second
family of strategies consist in the deduction of a route from an internal representation of the
environment; and possibly the ability to adapt to changes and/or deduce new paths or shortcuts.
In my thesis, I will rather focus on the first class to study and implement local, unplanned
navigation behaviors (i.e. sensorimotor behavior).

1.1 Navigation in the brain

The hippocampus (HP) and neighbor areas are the cornerstone of spatial representations and
computations required in navigation. In vertebrates, HP is located in the medial temporal lobe,
underneath the cortical surface. The hippocampal system comprises the entorhinal cortex (EC),
perirhinal and postrhinal cortices, septum, and the hippocampal formation. The latter, repre-
sented in Figure 1.2, constitutes the hippocampus proper and includes the dental gyrus (DG),
subiculum and Cornu Ammonis divided into CA1, CA2 and CA3.

One of the major findings implicating HP in navigation is the discovery of place cells (PC)
in rats by O’Keefe and Dostrovsky [1971]. These neurons exhibit activities that are highly
localized in space. In other words, the generated firing patterns thus encode different locations,
in a sort of ‘cognitive map’ of a familiar environment. The spatial correlates of the neural firing,
called ‘place fields’, vary in size, depending on the size of the environment and also on their
location (e.g. smaller near the arena borders). Place cell activities appear seconds after a rat
enters the arena but may take weeks to stabilize [Wilson and Mcnaughton, 1993]. However,
once the activities converge, they persists for weeks [Thompson and Best, 1990].

Place cells were initially recorded in hippocampal CA1 and CA3. However, similar neural
activities are found in DG [Jung and McNaughton, 1993], EC [Quirk et al., 1992], and even the
retrosplenial cortex (RSC) [Smith et al., 2012]. Place fields are smaller in DG while wider and
noisier in EC and RSC. In addition, spatially localized firing in DG and RSC is also directionally
modulated. These findings suggest many levels of multimodal integration participating in spatial
localization.
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Figure 1.2: Sagittal section of the rat hippocampus. EC: entorhinal cortex. Sub: subiculum. DG: dental
gyrus. CA1/CA3: Cornu Ammonis 1 and 3. Connections between these structures are also illustrated.
The figure is borrowed from Hanoune [2015], readapted from the original figure by Cajal [1911].

One of the most important sensory modalities in place cell activities is vision [O’keefe and
Conway, 1978]. In particular, Cressant et al. [1997] provides evidence of the importance of
distant landmarks compared to objects in the arena. Besides, Muller and Kubie [1987] showed
that rotating a visual cue in a cylinder-shaped arena induced the same rotation on the place
fields. Also scaling up the cylinder made the field scale up likewise. However, the place cell
firing remains relatively stable if one of the visual cues is removed [Muller and Kubie, 1987].
Also, darkness does not affect them if it is preceded by a light period [Quirk et al., 1990]. This
proves that other modalities intervene in place cell encoding.

In addition to a variety of sensory cues like odors and sounds that may participate in spatial
localization, self-motion information is of particular importance. This idiothetic information
have diverse sources: vestibular, proprioceptive and, to a lesser extent, visual (optical flow). In
the vestibular system located in the inner ear, the semicircular canals and otoliths are respec-
tively sensitive to rotational and linear movements. Various experiments indicate the role of the
former in the perception of angular motion in rodents and humans [Mittelstaedt and Mittelstaedt,
1982; Etienne et al., 1988; Metcalfe and Gresty, 1992]. Vestibular information is complemented
by proprioceptive feedbacks, as it has been shown that actively walking provides more accuracy
to the perception of linear movements [Etienne et al., 1988]. Last, in the absence of the propri-
oceptive and vestibular information, optical flow can allow for estimating self-motion [Kearns
et al., 2002].

The capacities to perceive self-motion is essential for path integration (PI): the process of
deducing the way back to a starting point by integrating inertial signals. It is also called ‘dead
reckoning’, in reference to the deduced (‘ded’) reckoning historically used by sailors to navigate
across featureless open sea. PI is often observed in homing behaviors of a variety of species, from
ants and bees to rodents. For instance, desert ants are able to return to their nest after journeys
of hundreds of meters without any external cues [Wehner and Srinivasan, 1981]. Figure 1.3
illustrates the difference of PI accuracy across species of vertebrates and mammals, including
humans. The vestibular system turns out to be essential in this process, as impairment has been
shown in damaged rats [Stackman and Herbert, 2002] and humans Cohen [2000].
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Figure 1.3: Accuracy of path integration in spiders, ants, bees, hamsters, dogs and humans. The figure is
borrowed from Etienne and Jeffery [2004].

It is crucial to keep track of one’s orientation when navigating only based on self-motion. It
is also when using external cues, either to readjust dead reckoning or to perform landmark-based
localization. Head direction cells merge multimodal information and self-generated movements
to provide the neural equivalent for an internal compass [Taube, 2007]. In other words, the firing
of this type of neurons increases as the deviation of the current head direction from the preferred
direction of the cell decreases. These neurons were initially discovered by Ranck Jr [1984] in
the presubiculum and postsubiculum, which are part of the subicular complex along with the
hippocampal subiculum. But as stated earlier, directionally selective neurons are also found
in other regions like EC and RSC. Studies have implicated the thalamus in the head direction
system. For example, neurons in the anterior thalamus fail to fire in their preferred directions if
the animal is unable to move [Taube et al., 1996]

Another discovery confirming the central role of the hippocampal area in navigation are grid
cells in EC by Hafting et al. [2005]. When recorded in sufficiently large environments, these
cells present activities forming a regular triangular pattern in the shape of a grid – hence the
name. Thus, rather than a specific spatial firing field, a grid cell signals the distance and angle
to other firing locations. In rodents, grid cells depend on external landmarks. However, they
also persist in darkness with a decrease in the spatial correlation of the rate maps and a dispersal
of the grid vertices (Hafting et al., 2005). Moreover, EC hosts another type of neurons called
conjunctive cells [Sargolini et al., 2006]. These cells exhibit activities combining position and
direction information. An interesting property is that only encountered patterns are encoded –
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instead of all the possible combinations – thus providing compressed codes that can be used for
spatial localization.

1.2 Biologically inspired models for robotic navigation

A large variety of biologically inspired models exists in the literature of robotic navigation
[Gaussier and Zrehen, 1995; Burgess et al., 1994; Arleo and Gerstner, 2000; Milford et al.,
2004]. One of the first computational models of place cells was proposed by Burgess et al.
[1994]. This mathematical model was directly inspired by the finding of O’Keefe and colleagues
on biological place cells. Initially tested in a simulated environment, it was later implemented
on a real robot [Burgess et al., 1997]. Place cell activities are determined by the perception of
visual landmarks in the environment. Then, connections between concurrently active place cells
are learned in order to allow the robot to return to a goal location. Contemporaneously, Re-
dish and Touretzky [1997] worked on navigation-related processes in the hippocampus. In their
model, place cells are encoded by combining visual (local views) and vestibular (head direction)
inputs while path integration merge the latter with self-motion information. These spatial codes
formed in HP are provided to basal ganglia for the purpose of action selection. Similarly, Ar-
leo and colleagues proposed a collection of models combining allothetic (visual) and idiothetic
(self-motion) information allowing robots to encode places and perform path integration [Arleo
and Gerstner, 2000; Arleo et al., 2004; Arleo and Rondi-Reig, 2007].

‘RatSLAM’, proposed by Milford et al. [2004], is also a model taking inspiration from the rat
hippocampus for the purpose of robotic navigation. In comparison to the examples given above,
this solution aims less at the biological plausibility than the robustness and scalability from the
robotics perspective. This initial work was followed by numerous variants developing certain
aspects of the model and evaluating it in different contexts, including indoors and outdoors.
For instance, the system was able to build a map of the road in an area of about 0.3 Km by
1.6 Km using only a webcam for both visual recognition and odometry [Milford and Wyeth,
2008]. The upper part of the image was used to detect rotations and estimate the pose while the
lower part provided the speed estimation. The visual place recognition took as input a projection
of the subsampled image over the horizontal axis to obtain a vector representing the intensity
profile. Mounted on a car, this solution combined the pose and view information to passively
build the map of the visited area. More recently, features from RatSLAM were incorporated in
more plausible modeling of rodents environment mapping, and entorhinal grid cells in particular,
namely HiLAM. In this architecture proposed by Erdem et al. [2015], HiLAM builds multiple
scales of grid cells by extracting idiothetic information from recorded visual data. The motion
estimation is rectified using the loop-closure detection feature of RatSLAM (off-line). This
combination provides a scalable solution for goal-directed navigation using a hierarchical grid
cell and place cell mapping. However, the learning is performed on recorded datasets and no
experiments with an on-line interaction between RatSLAM and HiLAM is presented.

1.3 PerAc and the LPMP model for place cells-based navigation

Part of my thesis research relies on the works of Gaussier and colleagues from the Neurocyber-
netics team of ETIS laboratory and partner laboratories. Pioneering to this research is the Per-Ac
model proposed by Gaussier and Zrehen [1995]. This model advocates the idea that perception,
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as the ability to build and use representations based on sensory inputs, requires action. PerAc,
illustrated in Figure 1.4, thus proposes a generic solution to build sensorimotor associations from
the interactions of an agent with its environment. In the context of navigation, these associations
can consist in place–action coupling controlling the robot trajectory: go in direction D when in
location L. This model is complemented with a large body of research on biologically plausible
models of the hippocampal region and place cells, head direction cells, and grid cells, as well
as cognitive maps formation [Gaussier et al., 2002, 2007] implemented in simulations and real
robot experiments both indoors and outdoors [Gaussier et al., 1997, 2000; Giovannangeli et al.,
2006; Giovannangeli and Gaussier, 2008; Cuperlier et al., 2006, 2007; Jauffret et al., 2015].

Figure 1.4: PerAc model for sensation–action coupling. WTA: winner-takes-all, i.e. strict competition.
The unconditional pathway (bottom, unmodifiable link) triggers reflex behavior. The conditional pathway
(top, modifiable link) associates the most active category representing the sensory input with the reflex
action. After learning, the recognition of that sensory category with trigger the learned behavior. The
figure is borrowed from Jauffret [2014], readapted from the original figure by Gaussier and Zrehen [1995].

In particular, Gaussier and Zrehen [1995]; Gaussier et al. [2002] presented a model of places
cells based on visual inputs. In this model, the ventral stream provides the ‘what’ information –
i.e. the identification of objects in the visual scene – while the dorsal stream provides the ‘where’
information – i.e. the location of the objects. The ‘what’ and ‘where’ information, transmitted
through the perirhinal cortex and parahippocampal cortex respectively, can thus be merged to
encode places in EC or DG.

Here, I will detail a particular implementation of this model that I will refer to as the LPMP
(Log-Polar Max-Pi) model: encoding local visual descriptors using log-polar transformation
and merging what and where information by a max-pi operation (max of tensor product). In this
model, a saliency map is obtained by a method of corner detection in order to extract points of
interest. To do so, a Deriche [1987] filter is applied on the grey scale image. The so obtained
gradient image is convolved with a DoG (Difference of Gaussian) filter to extract corners. Then,
local views around these salient points are transformed using log-polar mapping. Such visual
descriptors representing regions of interests in the image are then encoded as signatures to pro-
vide the ‘what’ information; whereas their position along the horizontal axis (i.e. azimuths)
represents the ‘where’ information. The rest of the model is illustrated in Figure 1.5.

The activity of each neuron si representing visual signatures at time t is given by the follow-
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Visual
signatures
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(categorization)

What-Where map
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Learning signal
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Figure 1.5: The model used for place recognition. The W–W map allows for active vision in the case of
local descriptor. It is also used to virtual reconstruct a panorama from various images.

ing equations:

si(t) = 1− 1

ND

ND�

j=1

|wD
ij (t)− dj(t)| (1.1)

where dj is the jth element of the descriptor vector of size ND and wD
ij is the weight of the

synaptic link between si and dj . A binary vigilance signal triggers the recruitment of a new neu-
ron to encode a new category of local view. The learning rule of these neurons is the following:

dwD
ij

dt
= δRj |dgj (t)− wD

ij (t)| (1.2)

where R is the index of the newly recruited neuron and δba the Kronecker delta, equal to 1 if
a = b and 0 otherwise. With this type of neurons, the idea is to save the input pattern in the links
weights. Thus, the closer the input is to the learned pattern, the stronger the neurons activations.
This method has good generalization properties for robotic place recognition [Giovannangeli
et al., 2006].

In addition, the model relies on the ‘where’ information; that is to say the orientation in
which the visual feature is observed. The input is a vector in which each neuron has a preferred
direction around the yaw axis. The activities of the azimuth neurons αi are obtained after a
lateral diffusion around the neuron coding for the direction of the current visual input. In our
case, it corresponds to a gaussian bell with standard deviation σazim. It integrates information
about the orientation of the body (robot), head (camera) and fovea (center of the visual feature).
Using a magnetic compass is the easiest way to obtain the body/head direction but we could
also extract it from vision, odometry and other modalities [Giovannangeli and Gaussier, 2007;
Delarboulas et al., 2014].

The ‘what’ and ‘where’ 2D map (W–W map) is a second-order tensor M in which each
neuron codes for a signature-azimuth couple. The serial exploration of the visual scene requires
a short-term memory. Therefore, the W–W map stores previous activities while the visual scene
exploration is still in progress (i.e. before the end a panorama). In order to reduce the com-
putational cost, the 360o surrounding field is discretized in NA = 5 orientations before the
computation of the tensorial product. Then, the activity of the NM = NS ×NA W-W tensor is:

M(t) = max[(s⊗ a),M(t− dt).(1−R(t))] (1.3)
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where NS is the size of the signatures vector, s and a are the signatures and azimuths vectorial
representations, R a binary reset signal triggered at the end of a panorama and ⊗ is the tensorial
product operator.

Pattern of activities in the W–W map code for the current place. Such patterns can be cate-
gorized in a place vector, in which each neuron pi has the following activity at time t:

pi(t) = 1− 1

ρM .NM

ρM .NM�

j=1

max
i=1..NM

k |wM
ij (t)−mj(t)| (1.4)

where mj is the jth element of the tensor M, wM
ij is the weight of the synaptic link between pi

and mj , ρM is the proportion of W–W couples required for place recognition and max
i∈I

k is an

operator that gives the kth maximum in I . The learning rule is the same as the equation (2.3),
replacing wD

ij (t) by wM
ij (t).

Please note that, as compared to the equation (1), the factor ρM has been introduced for the
purpose of robustness to occlusions. This parameter also compensates the absence of activation
thresholds in the previous layers of the neural network. It represents an estimation of the ratio of
the W–W pattern used to code for a place that is necessary and sufficient in order to recognize it
[Giovannangeli et al., 2006].

For the purpose of fast learning of desired trajectories in robotic tasks, the category recruit-
ment (i.e. leaning signatures and places) is performed in a one-shot way. In other words, the
vigilance signal represented in Figure 1.5 is binary. Figure 1.6 illustrates the kind of place cell
activities the we obtain with this model. The firing rates are the highest at the center of the place
field – that is where learning occurred. This type of activities with important generalization
properties could correspond to entorhinal rather than hippocampal place cells.

Figure 1.6: Activities of 3 visual place cells recorded on a linear track in a real outdoor environment.
The highest activities correspond to the learned positions of the associated cells. The architecture exhibits
good generalization properties and neurons encode large place fields.
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1.4 General discussion

In this chapter, I presented a brief overview of the literature on biologically inspired navigation.
After a review of the main neuroscientific findings influencing robotic and computational mod-
els, I focused on place cells modeling and place recognition. Indeed, whereas some basic local
strategies like road-following can do without it, self-localization seems essentials whenever a
specific, more or less complex trajectory has to be adopted. According to Levitt and Lawton
[1990], “where am I?” is the first question that defines navigation – followed by “Where are
other places relative to me?” and “How do I get to other places from here?”.

In that matter, unlike current robots, mammals are able to recognize visited places and to
localize themselves in nearly any sort of environments. Therefore, taking inspiration from bio-
logical systems has often been a good way to build robust and adaptive systems that can also
be competitive with non-biologically inspired models in terms of performance [Giovannangeli
et al., 2006; Milford and Wyeth, 2008; Siagian and Itti, 2009; Jauffret et al., 2015; Erdem et al.,
2015]. Here, I detailed the PerAc and the LPMP models developed by Gaussier and colleagues
[Gaussier and Zrehen, 1995; Gaussier et al., 2002; Giovannangeli et al., 2006]. The next two
chapters will tackle the use and extension of the existing models in the case of outdoor navigation
and in the context of interactive learning of sensorimotor navigation behavior respectively.
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CHAPTER 2

Outdoor place recognition based on
visual contexts

As seen in the previous chapter, place recognition is one of the abilities that mobile robots
may need in order to navigate properly. Some approaches rely on range sensors (e.g. sonars
and ladars) or GPS, either exclusively or combined with other sensors. However, the former
generally shows little robustness to irregularities that are typical in outdoor environments and
the latter are useless indoors when satellite signals are shadowed. On the other hand, vision is an
essential modality that allows mammals to recognize visited places and to localize themselves
in nearly any sort of environments, also with the help of other types of sensory information (e.g.
olfactory, tactile, or proprioceptive).

Visual place recognition is still a hot topic in robotics [Lowry et al., 2016]. The most dif-
ficult challenges lie in outdoor navigation where the environment is much less structured and
controlled. Part of the research on the topic focuses on the condition-invariance problem, study-
ing the robustness to perceptual changes occurring when switching from day to night or from
sunny to rainy weather for example [Milford et al., 2014]. This issue will not be tackled in this
work. Moreover, there is a distinction between on-road and off-road navigation. In the first case,
the robot moves within a determined path or trail. From the visual place recognition perspec-
tive, it implies very few or no deviations at all from the initial trajectory; and thereby very few
variations in the visual scene. On the other hand, off-road navigation implies less constrained
trajectories and the need to recognize places from different points of view; which is known as the
pose-invariance problem. In the extreme case, the goal is to classify locations regardless to the
robot position and the camera orientation. In my work, I am more interested in obtaining gen-
eralization properties that provide robustness with regard to variations in the robot trajectories.
Another issue that is inherently (although not exclusively) linked to outdoor navigation is the
efficiency over long distances. The implication – in the sense of pattern recognition in general –
is the need to store and retrieve a much larger amount of information. In that matter, the goal of
this chapter is to introduce a context-based model intended to overcome the computational cost
of place recognition in wide environments.

Existing approaches in visual place recognition can be based on global or local descriptors:
some try to capture the global aspect of the scene by considering the image as a whole while
others extract and encode particular subparts of the image, called regions of interest. While
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the former methods are faster1, they have generally shown less effective than the latter [Van de
Sande et al., 2008; Siagian and Itti, 2009]. In the first part of this chapter, I will list some of
these descriptors and compare their performance in the specific context of neurorobotic outdoor
navigation.

There is also a notable number of works proposing the combination of local and global visual
information in an attempt to take advantage of the strengths of both type of methods [Lisin et al.,
2005; Siagian and Itti, 2009; Rostami et al., 2014; Milford et al., 2014]. In that matter, the
second part of this chapter will present a model for context-based place recognition, inspired by
the notions of visual contexts [Bar, 2004; Chun, 2000] in the case of global precedence [Navon,
1977; Oliva and Torralba, 2006].

2.1 Local and global visual descriptors

Scene recognition models can be classified based on whether they use local or global visual
descriptors. Global (holistic) vision methods consider the image as a whole and encode it as a
single vector. Because they are typically very compact, they allow fast computation.

Various models using this kind of descriptors can be found in the literature. For instance,
Milford et al. [2014] proposes to subsample the whole image and use it as a global signature.
In former work Milford and Wyeth [2008], the subsampled image is also projected over the
horizontal axis to obtain a vector representing the intensity profile. Global descriptors can be
encoded in histograms as well [Van de Sande et al., 2008; Rebai et al., 2014]. In addition, some
solutions construct signatures based on statistical moments (e.g. mean, variance or possibly
higher order moments) [Van de Sande et al., 2008; Siagian and Itti, 2009]. Three types of
information are commonly used to compute visual descriptors. First and foremost evident is
the luminance channel Milford and Wyeth [2008]; Milford et al. [2014]. Besides, chrominance
channels can also be informative [Van de Sande et al., 2008; Rebai et al., 2014]. Moreover,
orientations are very useful to describe textures both indoors (e.g. doors and computers screens)
and outdoors (e.g. trees, roads and distant buildings) [Riesenhuber and Poggio, 1999; Oliva
and Torralba, 2006]. Notably Siagian and Itti [2009] encode these three types of information
simultaneously.

On the other hand, local descriptors only carry information relative to certain regions of
interest in the image. State-of-the-art methods, like SIFT Lowe [2004] and SURF Bay et al.
[2008] typically implement this kind of solution. In addition, the LPMP model I presented in
the previous chapter also encodes local information. Place cells are thus obtained from patterns
of landmark–azimuth observed by the robot [Gaussier and Zrehen, 1995; Gaussier et al., 2002;
Giovannangeli et al., 2006]. As for the visual descriptor, it is a log-polar transformation of
the most salient regions of interests. The Table 2.1 summarizes the differences between this
technique (labeled rhotheta) and SIFT Lowe [2004] and SURF Bay et al. [2008].

Holistic methods have generally shown less effective than local features-based ones [Van de
Sande et al., 2008; Siagian and Itti, 2009]. Indeed, the latter use richer information: a certain
number of signatures per image (‘what’ information) and their corresponding positions (‘where’
information). However, they can be useful in situations where stability of points of interest
detection is difficult to ensure (e.g complex textures like tree leaves or condition variation). But

1While this is generally true, it obviously depends on a variety of factors: size of image, size of regions of interest,
number of regions extracted per image, encoding methods, etc.
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Table 2.1: Comparison between Local rhotheta, SIFT, SURF and GIST

rhotheta SIFT SURF GIST
Multiscale input No Yes Yes No
Saliency map DoG DoG DoB(Box) -

PoI extraction
Local Local Hessian -

extrema extrema matrix

Descriptor type
Log polar Orientation Orientation Orientation
mapping histogram histogram histogram

usually, visual descriptors are evaluated in the context of object recognition [Van de Sande et al.,
2008; Kihl et al., 2015], face recognition Yan et al. [2007], or video retrieval Van de Sande et al.
[2008]. Siagian and Itti [2009], who tackled robotic navigation, only included SIFT and GIST
descriptors.

So this first experiment will aim at identifying common properties, strengths and weaknesses
of a set of global descriptors as well as situations where they could outperform a local vision
method. Thus, I consider seven global descriptors. First, based on the above listed methods, I
select a subset of possible combinations between three visual channels (luminance, chrominance
and orientation/texture) and three encoding techniques (subsampling, histograms and statistical
moments). Subsampling is tested on the intensity and the chromatic channels (referred to as
proflum and profcol). Histograms are used to encode color and orientation information (histocol
and histogab). Statistical moments are calculated for orientations (momgab). This choice has
been made so that each type of channel and encoding technique is tested at least once. There
was also an attempt to avoid as much as possible using descriptors that are too poor or too
large (like a histogram of light intensity or a subsampling of the output of a large filter bank for
instance). Indeed, global descriptors are meant to be lightweight, as long as they contain enough
information. Two additional descriptors from the literature are added to the list: GIST descriptor
[Siagian and Itti, 2007] (referred to as gridgab) and Milford’s subsampling of the whole image
[Milford et al., 2014] (labeled subslum). More details on the implementation of these visual
descriptors will be given below.

These seven global descriptors are compared to the log-polar transformation of local views
(referred to as rhotheta) used in the LPMP model. This instance of local descriptors is biolog-
ically plausible [Schwartz, 1977], has relatively little computational cost, is invariant to small
rotations and scale variations, and gives good place recognition results in neurorobotic experi-
ments [Giovannangeli et al., 2006]. It is expected to outperform holistic descriptors.

2.1.1 Implementation details

rhotheta is used for local views encoding. First, a Deriche [1987] filter in applied on the grey
scale image. It consists in a derivative and a smoothing filter that allow edge detection. In this
method, the parameter α determines the gradient resolution.

Then, the output is convolved with a DoG filter consisting in two gaussians of standard
deviations σDoG1 and σDoG2 . The result is a saliency map providing points of interest. Local
views are extracted around the NPoI most salient points between two disks of radius rsmall and
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rbig. To avoid redundancies, two PoI cannot be closer that rbig/2. Then, local views are encoded
using a log-polar transformation. Thereby, a descriptor of size Nρθ is obtained.

proflum represents a scanline intensity profile, like in RatSLAM by Milford and Wyeth
[2008]. The grey scale image is subsampled at a factor of κl. Then, a 1D vector represents the
normalized sum of the pixels intensity in each column. Which means that a descriptor of size
(viewW /κl) is obtained.

profcol, likewise, represents a profile for each of the chromatic dimensions of an image rep-
resented in the Lab color space. In this representation, a and b are color-opponent dimensions,
respectively coding for the Red-Green and the Yellow-Blue axis. The Lab color space was de-
signed to approximate human vision. In this experiment, unlike the RGB space, it allows for
easily removing the lightness component of the image and only encode the chrominance. Also,
as compared to the HSV space used in similar work [Rebai et al., 2014; Van de Sande et al.,
2008], the two remaining color dimensions are homogeneous. Thus, two vectors represent the
normalized sum of the pixels intensity in each column of the a and b images subsampled at a
factor of κc. The descriptor size is thus (2.viewW /κc).

histocol associates a histogram of size NHcol
to each of the chromatic dimensions of an

image represented in the Lab color space. Thus, a descriptor of size (2.NHcol
) is obtained.

histogab associates a histogram of size NHgab
to each of the outputs of a Gabor filter bank.

Gabor filters are defined by a sinusoidal wave multiplied by a Gaussian function and allow
orientation detection. The complex representation for a 2D filter is the following:

g(x, y) = e
−x�2+γ2y�2

2σ2
g .ei(2π

x�
λ
+ψ) (2.1)

with x� = x cos θ + y sin θ and y� = y cos θ − x sin θ where γ is the spatial aspect ratio,
σg the standard deviation of the gaussian function, λ the sinusoidal factor wavelength, ψ the
phase offset and θ the preferred orientation of the filter. Here, the filter bank is used to detect 4
orientations (0, π/4, π/2 and 3π/4). In addition, I consider 3 spatial scales (represented by λ1
λ2 λ3) with the same filter size (represented by σg). Thus, the descriptor size is (12.NHgab

)

momgab captures the 1st- and 2nd-order statistical moments of the outputs of a Gabor filter
bank used to detect 4 orientations on 3 spatial scales (detailed above). Since only the mean and
the standard deviation are encoded, the descriptor size is equal to (24 = 2× 12).

gridgab is an implementation of GIST descriptor proposed by Siagian and Itti [2007, 2009].
The outputs of a Gabor filter bank used to detect 4 orientations on 3 spatial scales are divided
into 4-by-4 grid subregions. The descriptor is a (192 = (4 × 4) × 12 values vector containing
the mean of each subregion.

subslum is an implementation of the whole image descriptor as described by Milford et al.
[2014]. The luminance channel is subsampled at a factor of 100. The descriptor size is thus
(viewW ∗ viewH/100)

noise is a random descriptor of size Nnoise based on a uniform white noise, intended to serve
as a baseline.

All the parameters are listed in Table 2.5.
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2.2 Experiment 1: Comparison of local and global descriptors

This study is performed on three datasets2 recorded in the area around the university of Cergy-
Pontoise using the RobuROC platform. The images were captured by a fisheye camera and a
magnetic compass was used to acquire the orientation data. The datasets were recorded in a way
that is similar to how real robots navigate and localize themselves in our field experiments: 1) In
order to learn a new place, the robot camera captures 15 images over a 360 degrees panorama.
During this process, the robot stays still in order to avoid distortions in the representation of the
place. 2) When exploring the environment (i.e. the rest of the time), the robot only captures 7
images per panorama, for the purpose of faster place recognition.

The datasets consist in trajectories recorded in visually different environments (see Fig. 2.1).
Dataset C (23.1 meters long) simulates on-road navigation in a quite structured but highly dy-
namic environment (moving cars and pedestrians). Datasets A and B (20 meters long each)
simulate off-road navigation. These environments are less structured and buildings are more
distant. As illustrated in Figure 2.1, each dataset contains a set of exploration databases includ-
ing trajectory variations to address the pose-invariance problem.

New datasets were recorded instead of using existing datasets because one of the goals of the
experiment is to evaluate the generalization properties of the model within distances that require
the ground truth of the robot position at the scale of a meter. Also, variations in orientation of
the robot were made possible. For the sake of evaluation simplicity, all trajectories are linear on
x and y axis, although perturbations were induced by the rugged nature of the field. However,
the camera is stabilized using a Kalman filter to limit the pitch and roll as much as possible. The
robot speed is constant during exploration. Thereby, we calculate the ground truth by estimating
the robot position at every step, knowing that: 1) a place is learned every dlearn = 3.9 ± 0.1
meters in average; and 2) an exploration panorama is completed after traveling dexplo = 0.71±
0.01 meters. Despite the small distance, the interest of these datasets is the variety of trajectories.
The precise acquisition of the ground truth on which this evaluation is performed would be much
more difficult to do in very large scale and long term experiments.

In order to compare visual descriptor performances on these datasets, we feed them to the
neural network described in the LPMP model. Which means that like rhotheta, all the other
descriptors serve as inputs to the feature categorization layer which provides the ‘what’ infor-
mation. The latter is combined with the ‘where’ information (i.e. orientation of the center of the
image in case of a global descriptor) to obtain patterns of signature–azimuth which are catego-
rized to represent places.

This work aims at a rigorous evaluation of the above presented descriptors in order to char-
acterize their performances in the specific context of on-road and off-road robotic navigation.
In this context, two criteria are essential: generalization and recall-precision trade-off. Measur-
ing recall and precision aims to verify that the system capacity to return relevant answers does
not decrease dramatically when tuned to return as much elements as possible. It is an eval-
uation from the information retrieval perspective. The generalization criterion consists in the
system’s ability to return relevant elements in new situations by recognizing common charac-
teristics shared with learned patterns. In navigation, such property is crucial so that the robot
can correctly perform in the real world. In particular, topologically close locations should have
similar recognition levels. It also allows for using control mechanisms that generate smooth

2All datasets can be downloaded via this link: https://cloud.ensea.fr/index.php/s/lvJrBOPLTvLAkc8
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Figure 2.1: TOP: Samples from the 3 dataset (A: top-left, B: top-right, and C: center-left) and a map
representing locations where they were recorded. In order to reduce distortions introduced by the fisheye
lens and to remove the irrelevant bottom part, the image is cropped to consider only the highlighted
440 × 240 subimage. BOTTOM: The exploration trajectories recorded on each dataset. In addition to
“parallel” and “diagonal” trajectories, another exploration database is recoded on the learning trajectory
and is not represented for clarity purpose.

trajectories by averaging their responses when several situations are recognized well enough.
In this experiment, I propose three measures of performance:
3WD (3 winners distances): It measures the average distance (in meters) between the 3

best recognized places and the position where they were originally learned. It characterizes
the systems ability to generalize and not only recognize places at the precise location where
the corresponding visual features were learned. For the sake of uniformity among trajectories
evaluation, all exploration positions are projected on the learning trajectory and normalized as
explained in Figure 2.2. Thus, the results are greater or equal to 1; 1 being the best results.

MAP (mean average precision): It is a traditional compact representation of the recall-
precision curves. It is the mean of the average precision at every position. Indeed, the neural
network generates new place cells activities every time the W-W maps are updated by a new
visual panorama. This is analogous to a new query in classical information retrieval systems.
So we can calculate the system precision (i.e. well ranked place cells responses) depending how
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dlearn dC

PA PB PC

dlearn
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Figure 2.2: Examples of distances from place “centroid”. Four positions X (red crosses) are considered
on the segment [PA, PC ] of a trajectory where the closest learned places PA,PB and PC are the winners.
In these examples, the sum of distances between X and PA,PB and PC is 2.5 × dlearn, 3 × dlearn,
2 × dlearn, and 2.2 × dlearn respectively. This value is bounded by 2 × dlearn and 3 × dlearn which
respectively correspond to a retrieval on a learned spot in the middle of the trajectory and one on the
starting or ending points. The average value 2.5× dlearn is used to normalize the 3WD measure.

many place cells activity would be considered in the output. MAP scores are in [0, 1] and 1
corresponds to a perfect precision.

WNR (winners-to-noise ratio): Similarly to a classic signal-to-noise ratio, it compares the
level of the desired responses to the level of background noises. In this case, I consider that
the most relevant information consists in the average of the 3 winners levels while the noise is
the average of the remaining place recognition levels. This measure assesses whether a place
cell activity decreases when the robot is far from the initial learning location. Also, higher
WNR scores indicate there’s less sensitivity to noise and more robustness to small variations. In
other words, little risk that the fifth closest place cell be more active and win the competition
mistakenly. The WNR ratio is greater or equal to 1 and the greater the better.

3WD and MAP are based on the ground truth estimated from starting and ending positions
as well as elementary distances calculated on site in the pretest phase. The three measures evalu-
ate the system from different evaluation perspectives. The results should be taken together, with
particular focus on the application context of navigation and place recognition. Indeed, in prac-
tice, it does not make much sense to expect high precision for too many responses. Considering
the case of a linear navigation trajectory, the place learned at the beginning is very likely to be
badly recognized when close to the end of the trajectory. Three responses seem to represent a
satisfying threshold beyond which place discrimination is allowed to be noisy and less precise.
Put differently, at each point of the line, we can expect the system to i) localize itself at the clos-
est place “centroid”, and ii) to correctly determine if it is closer to the previous place or to the
next one. This leads to the intuition of considering 3 winners as a satisfying trade-off between
a strict recognition (1 winner) and the evaluation of all categories. Hence the consideration of 3
winners in 3WD and WNR. On the other hand, MAP assesses the response of places beyond that
threshold to extend the generalization capacity. Although I expect precision to decrease at some
point (depending on the trajectory and the visual variation), MAP is calculated for all places of
a learned trajectory in order to avoid the selection of another arbitrary threshold.

2.2.1 Results

Off-road datasets

On Datasets A and B, the local descriptor generally obtain the best MAP and WNR scores (See
Table 2.2 and 2.3). However, rhotheta is outperformed several times by the other descriptors in
the 3WD test. Among the global descriptors gridgab gets the best overall results. But almost all
the others also show better performances than rhotheta on distinct trajectories.
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Table 2.2: Dataset A

3WD MAP WNR

on
-t

ra
je

ct
or

y

rhotheta 1.203 0.538 1.106
histocol 1.084 0.498 1.097
histogab 1.359 0.453 1.030
momgab 1.400 0.416 1.023
profcol 1.176 0.334 1.005
proflum 1.228 0.428 1.080
subslum 1.203 0.497 1.074
gridgab 1.288 0.476 1.062
noise 2.357 0.066 –

pa
ra

lle
l

rhotheta 1.403 0.392 1.073
histocol 1.662 0.286 1.076
histogab 1.464 0.303 1.026
momgab 1.393 0.325 1.021
profcol 1.462 0.269 1.003
proflum 1.383 0.212 1.058
subslum 1.422 0.276 1.054
gridgab 1.302 0.298 1.045
noise 2.417 0.130 –

di
ag

on
al

1

rhotheta 1.126 0.555 1.088
histocol 1.710 0.330 1.070
histogab 1.512 0.422 1.023
momgab 1.414 0.353 1.018
profcol 2.021 0.186 1.003
proflum 1.638 0.254 1.052
subslum 1.484 0.295 1.047
gridgab 1.362 0.277 1.040
noise 2.266 0.082 –

di
ag

on
al

2

rhotheta 1.439 0.436 1.072
histocol 1.847 0.218 1.072
histogab 1.545 0.240 1.023
momgab 1.702 0.347 1.016
profcol 2.348 0.176 1.003
proflum 1.848 0.194 1.046
subslum 1.756 0.213 1.048
gridgab 1.794 0.237 1.036
noise 2.312 0.117 –

di
ag

on
al

3

rhotheta 1.797 0.323 1.109
histocol 1.359 0.288 1.096
histogab 1.921 0.221 1.037
momgab 1.605 0.239 1.026
profcol 1.548 0.299 1.006
proflum 1.503 0.277 1.089
subslum 1.533 0.294 1.086
gridgab 1.666 0.284 1.048
noise 2.193 0.126 –

Notes: 3WD: The closer to 1 the better;
MAP and WNR: The great the better

Table 2.3: Dataset B

3WD MAP WNR

on
-t

ra
je

ct
or

y

rhotheta 1.029 0.605 1.223
histocol 1.657 0.247 1.076
histogab 1.301 0.379 1.044
momgab 1.383 0.328 1.029
profcol 1.537 0.217 1.005
proflum 1.891 0.136 1.105
subslum 1.893 0.181 1.103
gridgab 1.090 0.456 1.083
noise 2.335 0.076 –

pa
ra

lle
l

rhotheta 1.333 0.464 1.208
histocol 1.839 0.215 1.070
histogab 1.185 0.399 1.050
momgab 1.370 0.386 1.025
profcol 1.527 0.306 1.005
proflum 1.635 0.205 1.098
subslum 1.651 0.284 1.091
gridgab 1.059 0.535 1.079
noise 2.466 0.127 –

di
ag

on
al

1

rhotheta 1.121 0.613 1.224
histocol 1.922 0.163 1.073
histogab 1.321 0.355 1.045
momgab 1.468 0.332 1.021
profcol 1.784 0.131 1.004
proflum 1.848 0.293 1.082
subslum 1.779 0.283 1.078
gridgab 1.109 0.493 1.072
noise 1.901 0.144 –

di
ag

on
al

2

rhotheta 1.213 0.416 1.159
histocol 1.907 0.240 1.069
histogab 1.875 0.218 1.034
momgab 1.719 0.266 1.021
profcol 1.687 0.218 1.006
proflum 2.155 0.240 1.101
subslum 2.092 0.235 1.106
gridgab 1.158 0.464 1.061
noise 2.241 0.100 –

Notes: 3WD: The closer to 1 the better;
MAP and WNR: The great the better
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On-road dataset

In general, rhotheta outperforms global descriptors as expected but it is second to gridgab once
(See Table 2.4). Among holistic descriptors, the best 3WD and MAP scores on dataset C are
obtained by gridgab then profcol and histogab. However, WNR scores are quite similar.

Table 2.4: Dataset C

3WD MAP WNR

on
-t

ra
je

ct
or

y

rhotheta 1.263 0.395 1.201
histocol 2.237 0.170 1.026
histogab 2.059 0.201 1.018
momgab 2.281 0.182 1.014
profcol 2.158 0.254 1.004
proflum 2.494 0.201 1.092
subslum 2.445 0.206 1.087
gridgab 1.828 0.263 1.048
noise 2.929 0.115 –

pa
ra

lle
l

rhotheta 1.452 0.236 1.159
histocol 2.749 0.096 1.024
histogab 2.583 0.119 1.019
momgab 2.943 0.093 1.016
profcol 2.448 0.170 1.003
proflum 2.679 0.161 1.077
subslum 2.539 0.197 1.076
gridgab 1.783 0.265 1.031
noise 2.595 0.094 –

Notes: 3WD: The closer to 1 the better;
MAP and WNR: The great the better

2.2.2 Discussion

Considering the existing literature [Van de Sande et al., 2008; Siagian and Itti, 2009], the local
descriptor rhotheta was expected to generally outperform global descriptors. All in all, this hy-
pothesis is confirmed by my results. More particularly, it shows the best overall performance on
diagonal trajectories which confirms that local descriptors are best suited for the pose invariance
problem. Moreover, its mean average precision (MAP) is higher in most of the experiments. So,
from the information retrieval perspective, local vision-based systems indeed do better.

Yet, in several situations, holistic descriptors interestingly obtain better 3WD scores. In fact,
all of the tested global descriptors perform better than rhotheta at least once. In robot naviga-
tion, visual place recognition is generally involved in action selection and robotic control. In this
context, we are more interested in the activity of the winners than in the overall responses pre-
cision. Also, getting better generalization between topologically close places is very important.
Thus, the results suggest that holistic descriptors can be efficient for robot navigation in some
situations.
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It is worth noting that gridgab – which is an implementation of GIST Siagian and Itti [2007]
– exhibits the best performances among global descriptors. It is based on the division of feature
maps into grid subregions. Thus, it encodes localized information although describing the whole
image. This might explain why its results are close to those of the local descriptor. Nevertheless,
each of the tested holistic descriptors shows effective in a different situation, making it hard to
eliminate any of them based on this study. In particular, they perform better on datasets A and
B. This can be due to the fact that the environment is more dynamic in C. It might also be
due to characteristics on the off-road context. Or a combination of both. Further investigation is
required in order to assess this.

2.3 Visual contexts and global precedence

Humans are able to coarsely recognize a scene at a glance. The gist3 of the scene is extracted
from its global aspect based on low-resolution visual information [Navon, 1977; Chun, 2000;
Bar, 2004; Oliva and Torralba, 2006]. Such visual context identification resolves ambiguities
and facilitates objects recognition – which is, in contrast, based on the processing of higher
resolution information [Bar, 2004]. For instance, contextual cueing has been shown to drive
spatial attention and increase performances in search tasks [Chun, 2000].

The notion of context is very related to spatial representation as it often refers to background
cues Smith [2008]. So context identification is essential for navigation. But, while place recog-
nition per se is mainly based on geometric visual information (distances and directions of the
landmarks in the environment), it is also influenced by additional sensory (e.g. colors, sounds,
odors, etc.) and behavioral cues Anderson and Jeffery [2003]. Thus, the term “context” can
carry diverse, more or less abstract meanings in the literature Smith [2008].

In pure localization tasks, context detection can refer to the recognition of a broad area
in which several locations (places) can be discriminated. For example, Cuperlier et al. [2008]
proposed a model in which a coarse place recognition modulates the responses of a more re-
fined recognition level. This initial work provides proof of the interest of contextualizing place
recognition in a simulated navigation task. Nevertheless, the two levels were based on the same
geometric cues. On the other hand, according to the global precedence concept, the global aspect
of the image can be used to drive the recognition of local details Navon [1977].

To verify whether holistic descriptors can successfully discriminate large regions of the en-
vironment, I concatenated the three datasets used in the previous experiment. All places of A,
B and C are learned then all on-trajectory exploration panoramas are run. This time, instead of
evaluating recognition place by place, I considered dataset as units. That is to say, larger places,
or visual contexts in a sense. Just like rhotheta, global descriptors successfully discriminate
each dataset. More precisely, places learned as part of a dataset are best recognized within that
dataset. Also, some of them generalize between A and B which present some visual similari-
ties. For the sake of conciseness, Figure 2.3 illustrate maximum activities among places learned
in each dataset. It is noteworthy that similar activity profiles are obtained with mean activities
within dataset. Put differently, places learned as part of a dataset have an average recognition
level that is higher that places learned from the other datasets. This suggests that they can be

3The term “gist” here is used in its general meaning – that is to say, the summary or the essential aspect of the
scene. I use “GIST” (capital letters) when referring the particular implementation in the form of a visual descriptor
proposed by Siagian and Itti [2007, 2009].
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used as a way to encode visual contexts. Due to their low computational cost, it can be interest-
ing to use them in an earlier recognition stage. Thus, they could drive the recognitions of smaller
places in order to reduces the search space of the local vision system Oliva and Torralba [2006].
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Figure 2.3: Maximum activities among places that were respectively learned in A, B and C are repre-
sented. The response of proflum, profcol and histogab descriptors are superimposed. Despite differences
in terms of response amplitude and WNR, holistic descriptors correctly discriminate the datasets.

2.4 Proposed model for context-based place recognition

Based on the ideas introduced above, I propose an extension of the LPMP model, illustrated
in Figure 2.4. In this model, two identical neural networks are respectively dedicated to global
low-resolution and local high-resolution visual processing. The former pathway modulates the
activity of the latter. As a result, a coarse localization (Context) and a refined one (Place) are
obtained. The processing chain is based on a biologically plausible model of place cells in the
hippocampal system Gaussier et al. [2002] but also integrates modifications that allow for better
results in the case of robotic implementations [Giovannangeli et al., 2006].

The place recognition level drives the learning process in a one-shot way. That is to say,
whenever none of the learned places activities is greater than a vigilance level v, new categories
(signatures, contexts and places) and associations are learned. This way, the system learns inde-
pendently without human supervision.

On both levels, a position in the environment is encoded as a constellation of neural activ-
ities merging ‘what’ and ‘where’ information – that is to say signature–azimuth couples. Gist
and Landmarks signatures encode global low-resolution and local high-resolution descriptors
respectively.

The activity of each neuron gi representing a gist signature at time t is given by the following
equations:

gi(t) = 1− 1

NGD

NGD�

j=1

|wGD
ij (t)− dgj (t)| (2.2)
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Figure 2.4: Context-based model for place recognition. Two parallel neural networks extract visual
features, merge them with azimuth information and categorize What-Where patterns to obtain two levels
of localization respectively based on global and local descriptors. The combination link serves for the
contextualization of information in the local vision pathway based on the global vision one. Learning
links are only shown for the gist signatures and contexts for the sake of readability; but all the plastic
links are modified based on the vigilance signal.

where dgj is the jth element of the global descriptor vector of size NGD and wGD
ij is the weight

of the synaptic link between gi and dgj . The vigilance signal triggers the recruitment of a new
neuron, such that the learning rule is the following:

dwGD
ij

dt
= δRj |dgj (t)− wGD

ij (t)| (2.3)

where R is the index of the newly recruited neuron and δba the Kronecker delta, equal to 1 if
a = b and 0 otherwise. Like in the LPMP model, with this type of neurons, the idea is to save
the input pattern in the links weights. Thus, the closer the input is to the learned pattern, the
stronger the neurons activations. Although far from modeling single neurons in a realistic way,
this method shows good generalization properties for robotic place recognition [Giovannangeli
et al., 2006].

Moreover, the recognition of a landmark signature li not only depends on the input descriptor
but also on the recognition of associated gist signatures. Thus, the activity of each neuron li at
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time t is given by the following equations:

li(t) =
1

Ncxt

Ncxt�

q=1

�
max

k=1..NG

q(wG
ik(t).gk(t))× (2.4)


1− 1

NLD

NLD�

j=1

|wLD
ij (t)− dlj(t)|

�


where dlj is the jth element of the local descriptor vector of size NLD; NG the size of the gist
signatures vector; wGD

ij and wG
ik are the weight of the synaptic links between li and dgj ; and gk

respectively and max
i∈I

q is an operator that gives the qth maximum in I .

A crucial feature of this model is that, when implementing this type of neurons, only the Ncxt

most recognized gist signatures are read. In other words, the activities of landmark neurons that
are not associated to them are not computed in order to reduce the computational cost. As I
will show in the experimental results, this feature allow the system to maintain a quasi-constant
execution time by only processing a limited amount of information at each time step.

The learning rule for wLD
ij is the same as wGD

ij in (2.3) (replacing g subscripts and super-
scripts by l). In contrast, the links between gist and landmarks signatures use a hebbian-like
learning rule. The purpose is to capture co-activations between contextual information (global
aspect of the image) and local visual input (regions of interest):

dwG
ik

dt
= li(t).gk(t) (2.5)

If the learning process were slow rather than one-shot, the equation could benefit from a decay
factor. That was the case in the initial work by Cuperlier et al. [2008]. The learning converged
to very few contextual associations performed after very long simulations.

In addition, the model relies on the ‘where’ information; that is to say the orientation in
which the visual feature is observed. The input is a vector in which each neuron has a preferred
direction around the yaw axis. The activities of the azimuth neurons αi are obtained after a
lateral diffusion around the neuron coding for the direction of the current visual input. Here, it
corresponds to a gaussian bell with standard deviation σazim. It integrates information about the
orientation of the body (robot), head (camera) and fovea (center of the visual feature).

The what–where maps (W–W maps) are second-order tensors MG and ML in which each
neuron codes for a signature-azimuth couple. A short term memory stores previous activities
while the visual scene exploration is still in progress (i.e. before the end a panorama). In order
to reduce the computational cost, the 360o surrounding field is discretized in NA orientations
before the computation of the tensorial product. Then, the activities of the NMG and NML

W-W tensors are:

MG(t) =max[(g ⊗ a),MG(t− dt).(1−R(t))] (2.6)

ML(t) =max[(l ⊗ a),ML(t− dt).(1−R(t))]

where NMG = NG × NA and NML = NL × NA; NG and NL are the size of the signatures
vector; g, l and a are the signatures and azimuths vectorial representations; R a binary reset
signal triggered at the end of a panorama; and ⊗ is the tensorial product operator.
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Patterns of activities in the W–W maps code for the current location. Such patterns are cate-
gorized in context and place vectors, in which ci and pi neurons respectively have the following
activities at time t:

ci(t) = 1− 1

ρMG.NMG

ρMG.NMG�

j=1

max
i=1..NMG

q |wMG
ij (t)−mg

j (t)| (2.7)

pi(t) =
1

Ncxt

Ncxt�

q=1

�
H

�
max

k=1..NC

q(wC
ik(t).ck(t))

�
× (2.8)

�
1− 1

ρML.NML

ρML.NML�

h=1

h
max

i=1..NML

|wML
ij (t)−ml

j(t)|
��

where mg
j is the jth element of the tensor MG; ml

j is the jth element of the tensor ML; wMG
ij

is the weight of the synaptic link between ci and mg
j ; wML

ij is the weight between pi and ml
j ;

ρM is the proportion of W–W couple required for context and place recognition; H(x) is the
heaviside function; and max

i∈I
q is an operator that gives the qth maximum in I .

Like the landmark layer, the activities of place neurons that are not associated with the Ncxt

best recognized contexts are not computed. Also, like in the LPMP model, the factors ρMG

and ρML were introduced for the purpose of robustness to occlusions. This parameter also
compensates the absence of activation functions in the previous layers of the neural network.

The purpose of binarizing the contextual term through the heaviside function is to ensure
that the dynamics of place neurons activities only depends on the input pathway (instead of
being reduced by the contextual factor which is < 1). This way, we do not alter the recruitment
mechanism and the same vigilance threshold can be used across all the methods considered in
the comparison.

2.4.1 Implementation details

In the following experiments, I will use subsampling-based descriptors as inputs for the global
vision pathway. Subsampling is a simple and biologically plausible process. Here, the scanline
profile technique [Milford and Wyeth, 2008] will be applied on the three visual channels. For lu-
minance and chrominance, proflum and profcol exhibited satisfying results in Experiment 1. The
profgab is obtained similarly from the output of a Gabor filter bank used to detect 4 orientations
(0, π/4, π/2 and 3π/4) on a single spatial scale represented by λ.

I refer to the combination of those three global descriptors as allprof. The complete holistic
descriptor size is (7.viewW /κ) where viewW is the views width. It gives a low-resolution
representation of the image.

2.5 Experiment 2.A: Different granularity using local and global
descriptors

In this experiment, the same datasets as those described earlier are used. However, unlike Ex-
periment 1 and as explained in the previous section, the system automatically chooses when to
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trigger learning depending on the vigilance parameter and the place recognition levels. So we
have to provide a larger number of learning panoramas.

The three A, B and C are concatenated. The so obtained dataset includes 74 = 23+25+26
learning panoramas (i.e. sets of 15 images captured while robot is stopped) and 92 = 29+29+34
exploration panoramas (i.e. sets of 7 images captured while moving). The closest distance
between two possible places is dlearn = 0.93± 0.03 meters in average; and as in Experiment 1,
an exploration panorama is completed after traveling dexplo = 0.71± 0.01 meters. We calculate
the ground truth by estimating the robot position at every step based on that.

Here, I consider only one pathway at a time in order to test rhotheta, proflum, profcol, prof-
gab and allprof separately. The objective is to compare the descriptors capacity to discriminate
places in terms of granularity. A new place is learned whenever none of recognition level of
the known places is higher than a vigilance threshold v. Consequently, the number of recruited
place cells is a good metric for our test: the more places are learned, the small the generalization.

I run several tests for v ∈ {0.6, 0.7, 0.8, 0.9, 0.98}. There are 74 learning panoramas that
we feed to the visual processing chain one by one. One can note that after a place is learned,
an intermediate panorama has to be used to test the recognition. Thus, the system can learn 34
place at the most on our dataset.

2.5.1 Results

As shown if Figure 2.5, global descriptors recruit less place cells than the local descriptor rho-
theta. Since allprof is simply a concatenation proflum, profcol and profgab without normaliza-
tion, its results not only depend of the variation observed on each individual descriptor but also
on their sizes. However, for v = 0.8, it exhibits an averaged response.

The difference in terms of discrimination granularity can be seen for almost all of the vig-
ilance values we considered. Here we are mainly interested in studying the learning process.
Yet, it is worth pointing out that limit v values do not allow for a satisfying recognition during
exploration.
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Figure 2.5: Experiment 2.A, Number of discriminated places by local and global descriptors for several
values of the vigilance threshold. In general, global descriptors recruit less place cells than rhotheta

2.5.2 Discussion

As expected, global descriptors inherently discriminate larger place fields than the local descrip-
tors since they are less sensitive to visual variations. Indeed, more place cells are learned using
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rhotheta than all the other descriptors. Holistic descriptors tend to capture more global informa-
tion; hence the coarse granularity. This also confirms the interpretation of the results presented
in Figure 2.3. Therefore, the proposed model for context-based place recognition should benefit
from the fast recognition of the spatial context to drive the finer localization.

2.6 Experiment 2.B: Visual context-based place recognition

The issue of combining local and global visual information has been addressed in related work.
The existing models can be classified in two families. On the one hand, the two levels of visual
descriptors are concatenated and fed simultaneously to the scene classifier [Lisin et al., 2005;
Rostami et al., 2014]. On the other hand, the global features are used for a first level of recog-
nition (i.e. bigger regions of the navigation environment), which is then refined by the local
information (i.e. more precise location) [Siagian and Itti, 2009; Milford et al., 2014]. Like Lisin
et al. [2005], I will refer to the first class as stacking methods and the second one as hierarchical
methods.

The model I propose in this chapter belongs to the second class. The purpose of this experi-
ment is to evaluate its performance and computational. In this model, the global vision pathway
modulates the activities in the local vision pathway at two levels: gist signatures serve as con-
texts for landmarks and coarse localization as contexts for places. In order to assess the role
of the contextualization in each of these layers, I also implemented two architectures where it
is only done at the landmarks level or at the places level. Those three versions will be labeled
Cxt_LP, Cxt_L and Cxt_P respectively. Cxt stands for context, L for landmarks and P for
Places.

Additionally, I compare the context-based models to the non-hierarchical, stacking method.
First, I test the case where all descriptors are concatenated as an input for the landmarks catego-
rization (labelled Stack_L). Second, I consider the case where the gist signatures are processed
separately (without modulation of the landmarks activities) but the two W-W maps are put to-
gether for place recognition (labelled Stack_P). In other words, the combination links in Fig. 2.4
are replaced by a simple concatenation operation and the contextualization terms in equations
(2.2) and (2.7) are omitted. Last, the LPMP model (using the local vision pathway only) is used
as a baseline.

Given the results obtained in the previous test, we set the vigilance threshold to v = 0.8.
The same measures as in Experiment 1 are used to evaluation the performance of the above

mentioned architectures (3WD, MAP and WNR). But the evaluation of the computational cost is
also necessary. Indeed, more visual input to process (global+local) could make the architecture
too slow to run on a real robot with real time constraints. Therefore, I also measure the framerate,
i.e. the number of images processed per second. These experiments are run on a 6-core 12-thread
3.33GHz CPU with 16 GB of RAM.

2.6.1 Results

The performance scores of the six tested models are presented in Figure 2.6. First, all models
combining local and global visual information outperform the LPMP model in the 3WD test.
The best results are obtained by Cxt_LP then Cxt_P. Besides, context-based model get higher
MAP score than stacking versions. We note that for this test, LPMP performs as well as context-

- 52 -



CHAPTER 2. OUTDOOR PLACE RECOGNITION BASED ON VISUAL CONTEXTS

based models. As for the WNR, we observe a real impact of the contextualization – Cxt_LP
obtaining the highest score.
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Figure 2.6: Experiment 2.B, Performance scores of all tested models. Our context-based model Cxt_LP
gets the best results in almost all the tests or is second to one of its variants Cxt_P. 3WD: The closer to 1
the better; MAP and WNR: The great the better.

On the other hand, adding the global vision pathway induces an additional computational
cost, as shown in Figure 2.7. Except for LPMP, the highest framerate is obtained with Stack_P.
However, beside the absolute value, we note that the framerate stays almost constant in the case
of Cxt_LP and Cxt_L while it decreases over time for all the other models.
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Figure 2.7: Experiment 2.B, Computational costs of all tested models, reflected by the framerate. For
the sake of readability, the y axis is represented in a logarithmic scale. Beside the absolute value, we note
that the framerates decrease over time for most of the models except Cxt_LP and Cxt_L which maintain
a rather constant computational cost.

2.6.2 Discussion

Stack_L and Stack_P were implemented in order to compare the context-based model to non-
hierarchical methods. Interestingly, as opposed to my results, Lisin et al. [2005] obtained better
performances with the stacking method than with the hierarchical one. However, their experi-
ments were based on images of multicellular organisms (planktons) on a uniform background.
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In contrast, we use images recorded in outdoor, dynamic environments. This highlights the
specificity of robotic navigation, as compared to other application domains of scene recognition
and computer vision.

The fact that all models using local and global visual input outperform the LPMP model in
the 3WD test confirms the interests of using global descriptors for place recognition in a robotic
system. Indeed, in this application domain, we want topologically close locations to have close
recognition levels. However, the stacking models get lower MAP scores than the others which
means that the place cells following the 3 winners often correspond to wrong recognition. Thus,
from the information retrieval point of view, these methods are less efficient than the hierarchical
ones. Additionally, as expected, the context-based method proposed in this paper considerably
increases the WNR by penalizing landmarks that are recognized independently from the global
scene to which they are associated as well as place cells that are active outside of their contexts.

Also expected was the computational cost induced by the additional processing pathway
dedicated to the global vision. Although the global descriptors are relatively compact and their
computation not costly, their processing across the categorization layers of the neural network
reduces the system framerate. Nevertheless, the results demonstrate this is not a critical draw-
back. A framerate of 2.5 images/sec means it takes 3 sec to capture a 7-image exploration
panorama and update the robot localization. Since the linear speed is generally set lower than
1 m/sec in field experiments, it is considered an acceptable framerate for a moving camera ded-
icated to place recognition. Additional faster sensors can be used for more critical functions
like obstacle avoidance. But more importantly, beside the absolute value, one can note that the
framerates decrease over time for most of the models. Indeed, given that there are NPoI × 15
landmarks recruited per place cell, the larger the environment (or dataset) the more information
has to be processed at the end of the experiment. However, the framerate stays almost constant
in the case of Cxt_LP and Cxt_L. This is due to an interesting feature of our model: in the
local vision pathway, only the activities of neurons associated to a limited set of well recognized
ones (Ncxt) from the global vision pathway are computed. This is not observed with Cxt_P
because there are not enough places learned in this experiment so that the sole contextualization
of places exhibits this effect. Nevertheless, we except that on longer trajectories, the benefit of
the context-based model persists while the framerate of other techniques keeps dropping up.

2.7 On the broader notion of context

While the concept of visual context exploited in my work mainly originates from research on
human vision, there is also significant evidence of the influence of contextual information on
place recognition in animals. For instance, like in my work, color stimuli modify the firing
patterns of place cells in rats [Bostock et al., 1991]. It is also worth noting that visual textures
– e.g. solid color vs. wire mesh design [Eacott and Norman, 2004] – have also been used to
manipulate context information.

But the notion of context encompasses various types of information including sensory, be-
havioral and interoceptive cues [Bouton et al., 2006; Smith, 2008]. Indeed, Anderson and Jeffery
[2003] showed that place cell activities are modulated by combinations of background colors and
odors (multisensory cues). Place cell firing may also vary depending on the starting point [Mizu-
mori et al., 2007] or the path [Wood et al., 2000] of the rat inside the maze. Moreover, it has
been suggested that ingested drugs might generate different interoceptive contexts [Bouton et al.,
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1990]. Interestingly, Hayman and Jeffery [2008] formulated the Contextual Gating Hypothesis
in which contextual information (non-geometric) modulates the input of place recognition simi-
larly. Although this idea was proposed to explain how similar grid cell activation patterns results
in distinct place recognition, it is consistent with the context-based model I propose.

Since “context” gathers such a variety of information, it is often associated with episodic
memory. Indeed, the memory of autobiographical events relies on both external and internal
cues. In that matter, two brain areas are implicated: the hippocampus (HPS) and retrosplenial
cortex (RSC) [Mizumori et al., 2007; Smith, 2008; Miller et al., 2014]. Interactions between
these two regions are very likely to be the key to the representation of episodic memory. In
particular, RSC is thought to support the integration of self-motion and visual information. For
instance, Alexander and Nitz [2015] show that it encodes conjunctions of left-right turning,
position in a route and position in the larger environment. Mizumori et al. [2007] indicate that
one the role of RSC might be to provide HPS with contextual, integrated sensory and movement-
related information.

In the processing of visual contexts, RSC activities are correlated with gist-based recognition
[Bar, 2004]. Besides, spatially localized firing is observed in this area, representing large and
noisy place fields [Smith et al., 2012]. Similar features are exhibited by the proposed model.
Yet, this model can still be extended to a broader view of contexts, as conjunctions of sensory,
behavior, and even emotional states.

2.8 General discussion

The context-based neuronal architecture appears promising both from the performance and com-
putational cost perspectives. But further evaluation is required in order to validate the interest of
the model in outdoor experiments. Indeed, the results I presented were based on off-line tests.
This made it possible to rigorously compare various architectures and provide performance mea-
sures. On the other hand, there are certain obvious shortcomings: i) the datasets covered rather
short distances, ii) all trajectories were linear, iii) there was no real interaction with the environ-
ment. Although the datasets were recorded in way that reproduced as much as possible on-line
visual exploration, this passive evaluation was only intended as a preliminary test. Experiments
on real robot should be performed in order to address the above mentioned weaknesses.

Additionally, as I pointed out, a broader notion of context encompasses a variety of informa-
tion; including behavioral cues. The model I proposed could be extended by combining visual
contexts with movement-related information for example. This might also be a step toward the
representation of memory episodes. Nevertheless, such a model can only be meaningful if the
system is situated and actually interacts with environment.

For future works, it also seems important to investigate the vigilance mechanisms handling
category recruitments in the local and global pathways. For the sake of simplicity, the same
vigilance threshold was used in these experiments. Yet, the results of Experiment 2.A raise
questions about this choice. Indeed, different descriptors have different variation intervals and
might benefit from an adapted recruitment mechanism. Additionally, to fully benefit from the
difference in terms of granularity of discrimination and generalization between local and global
features, it seems essential to handle recruitments independently between the two pathways.
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Personal publications

Belkaid, M., Cuperlier, N., and Gaussier, P. (2016a). Combining local and global visual infor-
mation in context-based neurorobotic navigation. In Proceedings of the IEEE International Joint
Conference on Neural Networks, pages 16622:1–16622:8.

Table 2.5: Experiment 1 and 2: Parameter values

Value Description
viewW 440 Width of the subimages (views)
viewH 240 Height of the subimages (views)
σazim 30 Std. dev. of azimuths diffusion (in degrees)
Na 5 Nb. of orientations in the W-W Map
ρMG 0.33 Ratio of required W-W couples (places)
ρML 0.33 Ratio of required W-W couples (contexts)

Local descriptor
α 0.4 Gradient resolution (edge detection)
σDoG1 8 Std. dev. of 1st DoG gaussian (in pixels)
σDoG2 2 Std. dev. of 2nd DoG gaussian (in pixels)
NPoI 5 Nb. of PoI extracted per image
rsmall 10 Small disk radius in local views (in pixels)
rbig 64 Big disk radius in local views (in pixels)
Nρθ 54 Size of the rhotheta descriptor

Global descriptor (Exp 1)
κl 4 Subsampling factor (grey scale image)
κc 4 Subsampling factor (a and b images)
NHcol

4 Nb. of bins in the color histogram
NHgab

4 Nb. of bins in the gabor histogram
γ 0.7 Spatial aspect ratio of the gabor
ψ 0 Phase offset of the gabor filter
σg 8 Std. dev. of the gabor gaussian (in pixels)
λ1,λ2,λ3 2, 8, 32 Wavelengths of gabor filters (in pixels)
Nnoise 64 White noise baseline vector size

Global descriptor (Exp 2)
κ 4 Subsampling factor (all global desc.)
γ 0.7 Spatial aspect ratio of the gabor
ψ 0 Phase offset of the gabor filter
σg 16 Std. dev. of the gabor gaussian (in pixels)
λ 32 Wavelength of gabor filters (in pixels)
Ncxt 7 Nb. of best recognized contexts
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CHAPTER 3

Sensorimotor navigation through
human–robot interactions

Future robots are supposed to become our partners and share the environments where we live in
our daily life. This is confirmed by several emerging applications for human–robot interactions
such as companion robots helping elders and impaired people, robots for pedagogical tools,
monitoring robots, and guiding robots (museums, hotels). In his plenary talk at the International
Conference on Intelligent Robots and Systems in 2015, Oussama Khatib organized the following
sub-fields in robotics as increasingly challenging: 1) industrial robotics, 2) mobile robotics, 3)
social robotics, and 4) cognitive robotics.

As robots become part of our daily life, their acceptability becomes a central issue [Goodrich
and Schultz, 2007]. One the major difficulty in this field of research is to make interactions with
robots as efficient as pleasant for the human user. Indeed, the design of social robots must take
into account the fact that these systems have to interact with “non-experts”. More specifically,
it has to allow the latter to efficiently and intuitively make robots learn the behavior they expect
from them. The two previous chapters introduced an architecture for place recognition which can
be used in sensorimotor navigation behaviors. Of particular interest in this chapter is the learning
of such behaviors through human–robot interactions. Thus, I will present an architecture aimed
at the interactive learning of navigation task. This work is inspired by findings on low-level
human interactions and dynamical motor control. More specifically, the focus will be put on
rhythmical interactions and interpersonal synchrony as catalysts for learning.

3.1 Interactive learning of navigation behaviors

Based on the PerAc principle, we can couple the codes representing place cells with directions of
movements. This place–action strategy provides the basis of sensorimotor navigation behaviors.
Indeed, as illustrated in Figure 3.1, three or more place–action associations that are directed
toward a goal location build an attraction basin guiding the robot. Likewise, the same principle
can be applied for trajectories like a round path.

These sensorimotor associations can be made during an autonomous exploration of the envi-
ronment and reinforced when they form a path to a goal [Cuperlier et al., 2007; Hanoune et al.,
2015]. The PerAc framework also allows for teaching navigation tasks via human–robot inter-
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Figure 3.1: Place–action strategy in homing and round path learning. TOP-LEFT: Four associations
directed toward the goal location guide the sensorimotor trajectory of a homing behavior. TOP-RIGHT:
A schematic illustration of the attraction basin built with the place–action couples. BOTTOM: A por-
tion of a round path trajectory learned by “converging” place–action associations. The figure is slightly
readapted from [Jauffret, 2014].

actions. In the literature, it is becoming more and more admitted that interactive learning helps
improve the system autonomy, performance and ability to evolve in a complex world [Goodrich
and Schultz, 2007]. Accordingly, there are several examples of the use of such techniques in the
literature, both in pure machine learning systems (e.g. [Fails and Olsen, 2003]) and in robotics
(e.g. [Nicolescu and Mataric, 2006; Saunders et al., 2006; Giovannangeli and Gaussier, 2010;
Knox et al., 2013]). Some of these works rely on the notions of teaching and imitating [Nico-
lescu and Mataric, 2006; Saunders et al., 2006; Giovannangeli and Gaussier, 2010].

Giovannangeli and Gaussier [2010] studied this in the context of an interactive learning of
round paths. Of particular interest in this work was the comparison between prescriptive and
proscriptive teaching. In the former, the human teaching attempts to show the perfect behavior
by guiding the robot along the desired trajectory. In the latter, he only corrects the robot by in-
dicating the direction toward the desired path when it gets too far from it. The authors advocate
a trade-off (or alternation) between these two strategies. By always showing the right path in a
prescriptive way, the teacher does not get any feedback on the quality of the learned trajectory.
Also, as shown in Figure 3.1, the attraction basin is more efficiently obtained with “converging”
place–action associations. On the other hand, the proscriptive teaching enables a non-verbal
communication mediated by each one’s actions: human guidance and robot behavior as a feed-
back on performance. Such interactions allow more efficient learning but the obtained attraction
basin may be too wide and lead to a significant variability in the robot trajectories. Hence, is it
argued that alternating between prescription and proscription provides the best results.

The work by Giovannangeli and Gaussier [2010] also highlights the importance of a situ-
ated, embodied interaction in this task learning. In their experiments, the robot is embedded
with a joystick representing an artificial neck. Similarly to a stereotypical human/dog training,
the teacher pulls a leash attached to the joystick in order to show the desired direction. As a
communication medium, the leash has two functions: 1) it draws the robot attention to initiate
a learning step, 2) it provides information on the desired behavior. In the rest of this chapter,
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I will show another type of human–robot interaction that can be used to teach navigation task
only based on visual communication.

3.2 Learning place–action navigation through synchrony-based part-
ner selection and visual tracking

The work I will present here is a collaboration with Caroline Lesueur-Grand, another doctoral
student in my laboratory who’s research focuses on intuitive human–robot interactions. In this
experiment, we take a radical simplification route taking advantages of recent discoveries in
low-level human interactions and dynamical motor control. Our objective is thus to propose a
bio-inspired model for human–robot interactions that takes into account the human sensitivity to
synchronous interactions. We believe that exploiting the natural stability and adaptability prop-
erties of rhythmic activities can solve several acceptability problems. Also, according to studies
on interpersonal coordination, bi-directionality is a fundamental factor in intuitive interactions.
Therefore, the robot must not only have abilities to adapt its dynamics to that of the human part-
ners, but also to “entrain” them unintentionally (i.e. without cognitive load) by giving a feedback
(stimuli) representing its own dynamics (head movement, arm movement, auditive stimuli etc.).
In the context of navigation task learning, we propose that adult–infant-like interaction allow a
mobile robot to 1) initiate an interaction with a human partner, 2) maintain the interaction by
learning to recognize the partner and to focus the visual attention on him, and 3) learn to navigate
in a “tolerated” area shown by the selected partner (through the interaction).

As robots become part of our daily life, the acceptability of human–robot interactions be-
comes a central issue [Goodrich and Schultz, 2007]. One of the major difficulty in this field of
research is to make these interactions as efficient as pleasant for the human user. Notably, most
of the existing approaches have neglected the importance of understanding the dynamics of the
interactions. In particular, studies on developmental psychology acknowledged synchrony as a
prime requirement for interaction between a mother and her infant. In fact, infants stop interact-
ing with their mother when she stops synchronizing with them Nadel et al. [1999]. Synchrony
detection mechanism in young infants plays a pervasive role in learning and cognitive develop-
ment (word learning, self-awareness and control, learning related to self etc.Gogate and Bahrick
[1998]Rochat and Striano [2000]). Moreover, it is worth noting that studies on interpersonal mo-
tor coordination point out unintentional synchronizations among people. Issartel et al. [2007]
studied interpersonal motor-coordination between two participants when they were instructed
not to coordinate their movements. The results showed that participants could not avoid un-
intentional coordination with each other. This reflects that when visual information is shared
between two people in an interpersonal situation, they coordinate (unintentionally) with each
other.

Synchrony in social interactions has also been studied and used in robotics. Prepin and
Gaussier [2010] and Andry et al. [2011] used synchrony as an internal reinforcement signal for
learning. Blanchard and Canamero [2005] proposed a velocity detection system to synchronize
the movements of two robots to improve the reactivity of agents to changes in their environment.
Moreover, Marin et al. [2009] showed that motor resonance between robots (humanoid) and hu-
mans could optimize the social competence of human-robot interactions. Additionally, Hasnain
et al. [2012] and Grand et al. [2014] proposed a synchrony-based neural network architecture
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capable of selecting a partner and locating its focus of attention in order to initiate and then to
sustain the interaction.

3.3 Experiment 1: Learning a navigation area

In this experiment, we use a customized mobile robot shown in Figure 3.2 based on the Rob-
ulab platform by Robosoft. This platform is embedded with a small added arm controlled by
an oscillator representing its interacting dynamic. Two panning cameras are also used in this
experiment. One for Landmarks recognition (simulating eye saccades during navigation) and
the other one for optical flow detection, partner recognition and visual tracking (simulating head
motion during interactions). They respectively have rotation fields of approximately 300 de-
grees (the whole panorama minus the pole position) and 200 degrees. The robot additionally has
a laser sensor for the detection of obstacles and human presence.

Figure 3.2: Experience 1, setup. LEFT: Robotic platform: Two panning cameras – respectively simu-
lating head motion during interactions (1) and eye saccades during navigation (2) –, an oscillating arm
(3) and a laser sensor (4). RIGHT: Experimental environment: in a 8 m long by 6.5 m wide lab room,
the tolerated navigation zone (stripes) is a 3.40 m diameter area around a safe zone (checkerboard) in the
center of the room.

The typical scenario of our application, summarized in Figure 3.3, is as follows :

• The robot moves autonomously according to its own dynamics (physically expressed by
the rhythmic oscillations of its arm) and visually scans the environment with its first pan-
ning camera,

• If a human stands in front of it and starts moving, the induced optical flow influences
the robot dynamics and consequently the arm oscillations; the human partner can thus
be rhythmically and (possibly) unintentionnally “entrained” while the robot arm tries to
synchronize with the perceived rhythm.

• If this mutual (bi-directional) influence converge to common motion dynamics, synchrony
is detected, the robot stops scanning the environment and focuses its visual attention on
synchronous regions permitting to learn the partner shape,

• When the selected partner starts moving, the robot’s tracks and follows the human using
the second camera; thereby the partner shows the desired direction for the current robot
location (place)
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• If the difference between the robot body and head orientations (resp. current and desired
orientations) is sufficient, a new place–action learning is triggered

• After the human intervention, whether a new place is learned or not, the robot starts scan-
ning the environment again to perform place–action navigation.

Figure 3.3: Synoptic schema illustrating the human/robot interaction dynamics. In order to learn a navi-
gation task, we establish a bidirectional action-based interaction. When the human imitates the robot arms
motion, synchrony detection allows for partner selection. Deviation detection according to the orientation
shown by the selected partner triggers the sensorimotor learning of associations between visual places and
directions (VPC). The robot interacts with the environment by performing place–action navigation.

We define a tolerated navigation zone with a diameter of 3.40 m in the center of the experi-
mental room shown in Figure 3.2. Taking into account the linear and rotational speed, the safe
zone where the robot can freely move is a 1.80 m diameter concentric area. The 0.80 m-wide
ring between these two circles determines the area where a human intervention is required in
order to correctly build the attraction basin inside the tolerated zone.

Interaction (re-)engagement

Interactions are initiated through synchrony-based partner selection. Initially, the robot arm os-
cillates at its own frequency and amplitude illustrating the robot internal dynamics. The neuronal
model is based on a pair of neurons o1 and o2 inducing the oscillations [Revel and Andry, 2009]:

o1(t+ 1) = o1(t)− βo2(t) + α1 (3.1)

o2(t+ 1) = o2(t)− βo1(t) + α2 (3.2)

where α1, α2 and β determine the oscillation frequency. When a person interacts with the robot
by moving her arm, the motion in the visual field is estimated by an optical flow algorithm. As
proposed by Hasnain et al. [2012] and Grand et al. [2014], the so-deduced motion energy is used
to entrain and adapt the robot’s arm oscillations to the human movement dynamics. Thus, the
equation (3.1) is replaced by the following:

o1(t+ 1) = o1(t)− βo2(t) + α1 + of (t) (3.3)
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where of is the energy induced by the optical flow.
Synchrony detection then consists in extracting the maxima from the human and the robot

oscillators and calculating their correlation so that synchronized interactants can be selected as
partners. Additionally, in order to facilitate future interaction initiations, the robot learns to
visually recognize those partners. To do so, we use a neural network similar to that of the LPMP
model I described earlier. First, points of interest are detected on the image and local views
around them are encoded by a log-polar transformation. In the dedicated neural network, a first
layer categorizes those local views. Then, a short term memory allows a second layer to captures
a set of local views in order to recognize a partner. Here, only the ‘what’ information (i.e. local
view identification) is used, not the ‘where’ information (i.e. local view azimuths).

Place–action learning

Teaching navigation behaviors using the place–action strategy consists in associating a direction
of movement to the current location. Therefore, attention is focused on recognized partners
through visual tracking so that they can show the correction orientation. Because points of
interest stability cannot be guaranteed when the partner starts moving, visual tracking relies on a
low-resolution shape recognition. More precisely, the original 320×240 image is subsampled at
a factor of 2 and the central 65×45 subimage is captured while facing the human partner. Then,
the tracking method consists in finding the maximum of correlation in a 11 pixels neighborhood
around the center of the image. We use a 1D correlation to reduce computational costAncona
and Poggio [1995].

At the beginning of the experiment, the robot is put inside the safe zone. Before any learning,
it navigates randomly due to noise activities in place cells. Whenever it gets close to the limits
of the area, the human experimenter intervenes to correct its trajectory. As explained earlier, if
the robot does not recognize the human as a partner, synchrony detection is necessary to engage
the interaction. In case of a known partner, the robot visually tracks the person in front of it.
If a sufficient deviation (20 degrees in this experiment) is detected between its current direction
and the one that is suggested by the partner, the robot visually triggers the place–action learning.
Place cells are learned using the LPMP model and sensorimotor coupling is made by means of
the Widrow and Hoff [1960] rule.

We note that the initial condition is not determining for the resulting behavior. If the robot
starts the experiment outside the tolerated zone, only a couple of additional place–action associ-
ations is required to guide it toward the safe zone.

3.3.1 Results

For illustration purpose, I shall first describe the human–robot interactions obtained with the
architecture I described above. Figure 3.4 shows images from phases of interaction engagement
by two partners and results regarding partner selection and visual tracking. Here, the robot is
static while three different people try to engage an interaction. Two of them had already syn-
chonized their arm movements with the robot but the third one did not. Consequently, the robot
only learned the shapes of two synchronized partners. Therefore, visual tracking is performed
only when one of them is recognized (recognition level has to be higher than a threshold).

As for navigation area learning, Figure 3.5 shows the results of an experiment that lasted 14
minutes. Some neural activities are represented more than once for clarity purpose. If so, they
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Figure 3.4: TOP: Interaction initiation with robot. Two partners move their arms in front of the camera.
BOTTOM: Sequence of human/robot interactions with three partners. Two selected partners are recog-
nized and visual tracking is launched after each of their interventions. However, a third person (unknown)
is not able to engage the interaction without the synchronization phase.

have the same color in (A), (B), (C), or (D).
(A) shows the evolution of synchrony detection during human intervention. When synchrony

detection signal is higher than a threshold (dotted black curve) and a human (or object) presence
is detected (based on laser sensor) the partner learning is launched (green curve). There is only
one exception after t = 500. Partner learning is not launched because no human (or object)
presence is detected.

(B) shows the partner recognition (blue curve) level during the experiment. When it is higher
than a recognition threshold, it allows for the partner tracking. The reader can see that when the
robot camera is moving (tracking), the recognition level decreases due to the sensitivity of points
of interest to small variations. This highlights the interest of a low-resolution shape tracking.

(C) shows the robot head orientation (black curve). In some cases, the partner verifies if the
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y

Time

Place

Action

Place/Action

x

3.4 m

Figure 3.5: Results of the experiment on interactive learning of place–action navigation. TOP: Neural
activities. The same signals have the same color in (A), (B), (C), and (D). (A) During human intervention,
synchrony detection activities higher than threshold phases trigger partner learning. (B) When the parter
is recognized the tracking phase is launched. (C) When the robot head orientation changes a deviation
is detected. (D) Tracking phase induces a change of orientation which triggers place/action learning.
BOTTOM: Robot trajectory and spots where place/action learning occurred. The gray gradient illustrates
the time course. The robot learned to stay inside the 170 cm radius tolerated zone.
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robot is really tracking him. This can be observed when the head is turned in the opposite direc-
tion at the beginning of some tracking phases. The deviation is calculated from the difference
between the orientation of the robot head and body.

(D) shows the place/action learning signals following each tracking phases that induce a
sufficient deviation from robot initial orientation.

Figure 3.5 also illustrates the robot trajectory and the spots where the learning occurred
(bottom part). Only a few place–action couples are required for this task.

3.3.2 Discussion

The overall obtained behavior is satisfying: after only a few human interventions, the robot was
able to learn the navigation area. However, one can notice that the last place–action associa-
tion is learned too far from the central zone. This causes the robot to navigate very close and
even beyond the limits of the desired area. Such a results highlights the drawbacks of a purely
proscriptive teaching strategy. Indeed, the experimenter waited until the robot clearly got away
from the navigation area before correcting it. The results is an attraction basin that is wider
than the optimal one. A more efficient teaching would have consisted in an earlier, prescriptive
intervention showing the way back to the navigation area.

3.4 General discussion

The proposed method advocates the consideration of the dynamics of interaction in the devel-
opment of companion robots that will share our environment. Indeed, synchrony and rhythmic
adaptation can serve as catalyst for sensorimotor learning. More specifically, an example of the
use of a previously developed partner selection model [Hasnain et al., 2012; Grand et al., 2014]
in the context of a navigation task is given. Combining synchrony-based partner selection and
visual tracking allowed us to extend previous works on interactive learning [Giovannangeli and
Gaussier, 2010] to purely visuomotor-based human–robot communication. A major advantage
of this approach is to allow non-experts to efficiently and intuitively make robots learn the be-
havior they expect from them. In fact, initiating, re-engaging and maintaining the interaction
using a simple low-level visuomotor mutual rhythmic adaptation (optical flow) can be achieved
by common and untrained people through different ways as arm movements, hand/head/object
shaking facilitating intuitive non-verbal communication without any additional costly or invasive
device requiring training.

Several examples of interactive learning architectures can be found in the literature. For
instance, Fails and Olsen [2003] and Knox et al. [2013] get interesting results in terms of learning
performance. But the interaction situatedness is questionable since the teacher does not directly
communicate with the system. In contrast, Saunders et al. [2006] rely on an ecological learning
inspired by studies about primates social behavior. Yet, this work separates the learning mode
from the execution one. On the other hand, Nicolescu and Mataric [2006] implement action-
based interactions between the human and the mobile robot and interesting results are shown
regarding the learning of complex high-level tasks. This work also highlights the importance of
situated interactions where task learning occurs during the execution. Thereby, the teacher can
directly observe the effect of his/her interventions and the robot can more easily communicate
its inners states and demonstrate the acquired competences.
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The work I presented in this chapter is rather exploratory and is intended to serve as a proof
of concept. Learning navigation areas can be useful in service robotics (e.g. cleaning, air purifi-
cation) or surveillance. But, as seen above, the place–action action strategy enables the learning
of specific trajectories like round paths for instance. In fact, part of Caroline’s research (with
whom I collaborating in this work) is to study dynamical gait synchronization. The robot should
be able to detect the human rhythm on his legs motion during locomotion. New learnings would
be possible without stopping the robot. For example, we could use this method to learn a round
navigation task. The partner could show the trajectory by walking side by side with the robot.

As far as my thesis is concerned, this work also raises important questions regarding the
robot’s evaluation of its own behavior and skills. For example, in this experiment, a basic
threshold prevents from learning place–action associations that do not have a strong impact
on the robot trajectory. This rudimentary novelty detector allows the robot to be slightly more
“selective” with regards to the human teaching. But it would be far more interesting to use
adaptive mechanisms that take the dynamics of the robot behavior into account. Self-assessment
could allow to determine situation where the robot competences do not match the task demand
and where learning is required. Thereby, the robot could communicate the need for human
intervention. These questions will be addressed in Chapter 7.
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CHAPTER 4

Biological and Artificial Emotions:
A cross-disciplinary research

“Over the past three decades, emotion, its neural substrates, activation, regulation,
and functions have become hot topics in many areas of psychology and related
disciplines. [...] Now we have a cornucopia of emotion books – amazon.com has
347,272 titles, and it is not unusual for a university library to have more than 400
scholarly books on the topic. Today there are at least five scientific journals with
“emotion” in their titles and there are many more that publish research on emotion,
resulting altogether in 2,732 articles in the past decade. There appears to be more
agreement on the significance of emotion and much greater acceptance of its place
in science than was evident 25 years ago.”

(Izard [2010])

The study of emotional phenomena goes back centuries. But most of the fundamental ideas
in modern emotion research can be found in relatively “recent” theories. In the 17th century,
Spinoza defines an emotion space in which all emotional experiences can be described according
to 3 dimensions (axes): Joy, Desire and Sadness. A contemporary theory is that of Descartes,
founded on the idea that emotions are a combination of emotional primitives. Despite the clear
distinction in their basic definitions, the major disagreement between the two theories lies in the
fact that Descartes makes a clear separation between the mind (cognition, the rational brain) and
the body (emotion, instincts) while Spinoza unifies them and sees emotions as the foundation
of mind. Later, in the 19th century, Darwin introduces the evolutionary theory. In his view,
emotions are innate, universal and part of a genetic heritage. He also links emotions to the
nervous system.

Another pioneer of modern emotion psychology is William James. His work is associated to
Carl Lange’s and referred to as the first “scientific” emotion theory. James and Lange separately
introduced the so-called peripherist view: emotional experiences are physiological patterns,
bodily changes induced by the autonomic nervous system due to certain stimuli or event. It is
worth noting that Lange’s position was more radical and that James himself did not agree with
some of his statements [James, 1890]. Opposed to the “revolutionary” James-Lange approach,
Walter Cannon and Philip Bard argue in favor of a centralist view: emotions are indeed triggered
by the central nervous system processing the causing stimuli. The Cannon-Bard theory thus
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goes back to the orginal view that physiological changes are consequences rather that causes of
emotional experiences.

Do we cry because we are sad? Or do we feel sad because we cry? Psychologist have
debated for decades, failing to agree on a clear definition of what is an emotion [Izard, 2010;
Lindquist et al., 2013]. Despite the lack of consensus, significant progress have been made in
understanding emotional processes[Izard, 2010]. Some of the concepts provided by Spinoza’s,
Descartes’s and Darwin’s seminal works are the bedrocks of more recent theories and models.
The James-Lange and Cannon-Bard theories, both based on a physiological approach, had a
strong influence on research of emotion (see [Coppin and Sander, 2012] for more details). Today,
it is a macrocosm including researchers from as numerous fields as philosophy, psychology,
sociology, ethology, neuroimaging, neurophysiology, psychiatry but also artificial intelligence
and robotics.

With the emergence of cognitive science as a conglomerate of scientific disciplines inves-
tigating cognition, there has been considerable effort to engage in cross-disciplinary research
on emotion. The International Society for Research on Emotions (ISRE) was founded in 1984
to provide a bridge between research areas studying emotional phenomena from different per-
spectives. Given their complex multi-faceted nature, emotions provide a perfect framework for
interdisciplinary discussions and collaborations [Cañamero, 2014].

Of particular interest in the context of this thesis are the collaborations between computa-
tional approaches and those investigating biological emotions. In other words, between roboti-
cists, cyberneticists and computer scientists on the one hand, and psychologists, neuroscientists
and philosophers on the other hand.

Why should a roboticists be interested in the research on emotions? Nature seem to have
provided emotion as a collection of problem-solving tools guiding more or less complex be-
haviors [Damasio, 2003; Rolls, 2005]. Indeed, many researchers highlighted the importance
of emotions from the functional perspective [Fellous, 2004; Rolls, 2005; Scherer, 2009; Izard,
2010]. Among other functions, assessing events, focusing attention, enhancing communication,
and motivating cognition and action are rather consensual [Izard, 2010]. Thus, for roboticists,
the interest of emotional mechanisms is twofold: enhancing robot–robot and human–robot in-
teractions, and increasing robot autonomy and adaptation capabilities [Arbib and Fellous, 2004;
Cañamero and Gaussier, 2005]. Modeling both external and internal aspects of emotion in arti-
ficial systems led to new paradigms of thinking in robotics and artificial intelligence [Breazeal
and Brooks, 2005; Nair et al., 2005; Hasson et al., 2011; Krichmar, 2013].

Why would a robotic/computational approach be beneficial to the research on emotions?
One way computational models of emotion can be interesting is by allowing researchers to
test hypotheses [Picard, 1997; Cañamero and Gaussier, 2005; Spackman, 2004]. Going from
theoretical concepts to concrete implementations reveals ambiguities and forces more explicit
definition [Marsella et al., 2010]. Thus, emotion theorists have incorporated computer science
vocabulary – e.g. “information processing”, “symbol” – in order to formalize their models
[Ortony et al., 1988; Scherer, 2009]. But, the use of robots as models of biological emotions
not only implies the realization and evaluation of existing theories but also the construction of
new ones [Cañamero and Gaussier, 2005; Marsella et al., 2010]. Advances in the research on
robot emotion should lead to new insights on the functions of emotions and suggest new avenue
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for research on their neural bases [Fellous, 2004]. Also, the study of artificial emotions as an
emergent property of a dynamical system sheds lights of the processes underlying this complex
machinery [Cañamero and Gaussier, 2005; Hasson et al., 2011]. Less relevant to my thesis but
still noteworthy is the way artificial systems led to new forms of human subject experimentation
[Marsella et al., 2010]. Because they can be programmed to interact in a systematic way, they
provide powerful tools for the design of psychological experiments [Boucenna et al., 2014, 2016;
Oker et al., 2015].

4.1 Theories of emotions

In psychology, three major classes of emotion theories can be identified [Scherer, 2009; Coppin
and Sander, 2012]:

• Basic emotions theories: Based on Darwin’s work on the expression of emotions, this
approach was further developed by Ekman and Izard among others. In this view, cer-
tain events or stimuli trigger certain expressions and physiological responses, which are
characteristic of the corresponding emotion.

• Constructivist emotion theories: Rooted in James’s idea that bodily changes are the basis
of emotions, the notion of core affects representing neurophysiological states and lead-
ing to emotional experiences have been more recently advocated by Russel (dimensional
theories) and Barret among others.

• Appraisal theories of emotions: Founded by Arnold and Lazarus, this school of thought
gave rise to many models like Scherer’s CPM (Component Process Model) or Ortony,
Clore and Collins’s OCC. Their aim is to describe the computational processing of infor-
mation that lead from an external event to a change in the behavior.

An additional class of models, called anatomical, can be distinguished as well [Marsella
et al., 2010]. This approach consists in proposing comprehensive theories built on neurobiologi-
cal findings. In this this section, I will provide examples of such models which provide a higher
level view of emotion. Then, the next section will focus more on the neural substrates implicated
in emotional phenomena.

Obviously, some theories and models do not exactly fit in this classification, or fall into
more than one category. Therefore, throughout the rest of the section, I shall detail some of
these influential works regardless to classes and labels. For the sake of conciseness though, I
will focus on those that seem relevant to computational implementations on artificial systems.

4.1.1 Ekman’s basic emotions

Ekman is probably one of the most important proponents of the discrete and basic emotions
approach [Ekman and Friesen, 1971; Ekman et al., 1983; Matsumoto and Ekman, 2004]. He
argues that emotions correspond to distinct patterns of activation in the autonomous nervous
system. Also, distinct emotions are governed by different neural circuitries that have evolved for
the purpose of survival functions. In his theory, Ekman distinguishes basic emotion from more
complex, moral and pro-social emotions [Matsumoto and Ekman, 2004]. The former, evolution-
arily acquired are universal, in the sense that they have common properties across species. In
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Ekman’s theory, there seven basic emotions: initially anger, fear, sadness, disgust, surprise and
joy [Ekman and Friesen, 1971], to which contempt was more recelty added [Matsumoto and Ek-
man, 2004]. To develop his theory of discrete emotions, he conducted numerous cross-cultural
studies on facial expression. According to him, the fact that individuals are able to recognize the
expressions of people from cultures they had little or no contact with (New-guinea with respect
to the Western culture) proves that emotions are innate and universal.

4.1.2 Russell and Barrett’s core affects

Like Spinoza’s emotional space, many theorists based their definition of emotion on the idea that
they are expressed by a certain number of dimensions. In their early work, Russell and Mehra-
bian [1977] proposed the three-dimension model PAD (Pleasure-Arousal-Dominance). Then,
Russell [1980] introduced the circumplex model, illustrated in Figure 4.1, in which emotions
are represented in a circular two dimensional space. Evidence from affective neuroscience in
line with the existence of two independent neurophysiological systems representing the valence
and arousal neural circuitries are presented to support this model [Posner et al., 2005]. Russell
and Barrett [1999] proposed the concept of core affect to refer to the “cognitive” interpretation
of the neurophysiological state; in other words, the conscious state induced by an emotion.

Figure 4.1: Russell’s circumplex model. The horizontal and vertical axes respectively represent the
valence and arousal dimensions. The figure is borrowed from Posner et al. [2005].

4.1.3 Ortony, Clore and Collins’s cognitive structures

According to Ortony et al. [1988], emotions are discrete and elicited from a cognitive appraisal of
events. The OCC theory distinguishes twenty-two types of emotions and proposes a semi-formal
description of their cognitive structure. For instance, fear and hope result from the reaction to
the prospect of negative and positive events. One of the interests of this model is to describe
more complex emotions like shame and gratitude. Additional details will be given in Chapter 5.
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4.1.4 Scherer’s Component Process Model

The Component Process Model (CPM) elaborated by Scherer [1984, 2001] is one of the most
influential model in the appraisal theories of emotion. It is based on the idea that the appraisal
process is a rapid succession of stimuli-processing stages called “stimulus evaluation checks”
(SEC). Scherer [2009] emphasizes the notion of synchronized changes in these subsystems and
the need to think about emotions as a dynamic interaction between all the components of emo-
tion. Scherer [2010] also argues that CPM provides a suitable blueprint for a comprehensive
computational models of emotion. This model will be described in more details in Chapter 5.

4.1.5 Rolls’s reward-based model

Rolls [1999, 2005] proposes to define emotions as states elicited by rewards (anything that is
desirable) and punishments (anything that should be avoided). This view is based on the notion
that it is more efficient to specify goals than particular behaviors. Thus, as illustrated in Figure
4.2, emotions depend on reinforcement contingencies: the presentation, omission or termination
of reinforcers. For example, happiness is produced by the presentation of a reward while sadness,
anger and frustration in contrast are caused by its omission (short period) or termination (end of
presentation). On the other hand, the absence of a punisher may elicit relief.

Figure 4.2: Rolls’s reward-based model. (S) represents the presentation of a reinforcer. (S) and (S!)
represent the omission and termination of a reinforcer. The figure is borrowed from Rolls [2005].

4.1.6 Damasio’s conceptual tree

Associated to the neo-Jamesian school of thoughts, Damasio [2003] views emotion as emerging
from basic physiological signals. This vertical relation is illustrated in the form of a conceptual
tree shown in Figure 4.3, rooted in homeostatic mechanisms responsible for survival-related ap-
proach and avoidance behaviors. The nesting principle of the tree metaphor accounts for the
universality of low level aspect of emotion across species. He also incorporates the notion of
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basic emotions (fear, anger, joy, etc.) as non-linear combinations of lower regulatory reactions.
On top of this nesting architecture and relying on basic emotions are more evolved capacities,
characteristic of human beings like social emotions and conscious emotional experiences (feel-
ings). Moreover, the appraisal of external stimuli and internal bodily signals drives the regulatory
mechanisms at all levels to generate more or less complex emotional behaviors.

Feelings

Drives and motivations

Pain and pleasure
Behaviors

Immune responses

Basic reflexes

Metabolic regulation

Social emotions
Primary emotions
Background emotions

Figure 4.3: Damasio’s conceptual tree. Nested homeostatic mechanisms build on simple reflexes to
obtain more and more complex emotional mechanisms. On top of this hierarchy, feelings represent
conscious experiences of emotion. The figure is a mix of two figures by Damasio [2003].

4.1.7 Discussion

Although the above listed views of emotions seem to have fundamental disagreements, they are
not necessarily mutually exclusive. They rather focus on different aspects of emotion. While the
basic approach studies what distinguishes an emotion from another (different patterns of neural
activations), the dimensional view tend to describe what they have in common (shared circuitries
associated to the valence and arousal). In fact, a dimensional model can provide a good readout
method and be easily translated in a discrete emotion framework.

On the other hand, appraisal theories focus on the information processing that elicits emo-
tions. Despite the emphasis put on cognition in this school of thought, they do not dismiss the
bodily grounding of emotion. The strength of appraisal theories lies in the precise high level
description of the combination of processes eliciting emotion. However, less is said about the
functioning at the lower level (stimulus level). Taking the bodily (physiological and neurolog-
ical) states as a point of departure to describe emotion is probably the main advantage of the
former two approaches in this regard. Indeed, investigating the neural substrates involved in
emotion provides good insights of the various operations that are responsible of the emotion
elicitation.

4.2 The emotional brain

One of the most important notions one can encounter when studying the neurobiological aspect
of emotion is that of the limbic system. It has its origins in the triune brain theory developed
by MacLean [1949] based on the work of Papez [1937]. In this theory, a three-brain structure
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sequentially emerged through the course of evolution: the reptilian, paleomammalian and neo-
mammalian complexes. The limbic system represented by the second layer is thus thought to be
responsible for motivational and emotional behaviors.

This view gave rise to the very common idea that emotions are primitive, evolutionarily
conserved mechanisms that take place in subcortical brain areas. In contrast, more evolved
functions like reasoning and planning are operated by the neocortex. This assertion is partly
true since structures like the hypothalamus and amygdala play a significant role in emotional
processes. However, included in the limbic system, the hippocampus and surrounding areas
are today much more implicated in navigation and episodic memory (as seen in Part 1) than in
emotion. On the other hand, cortical areas like the orbitofrontal cortex, the anterior cingulate
cortex and the prefrontal cortex were shown to also significantly participate in emotion (see
Figure 4.4). More importantly, it is today widely admitted that there are no specialized areas,
but rather networks assuming functions as a whole. This will be reflected in the next section and
more clearly highlighted in the next chapter.

Figure 4.4: Brain areas involved in emotion. OFC: orbitofrontal cortex. VMPFC: ventromedial pre-
frontal cortex. NA: nucleus accumbens. ACC: anterior cingulate cortex. VTA: ventral tegmental area.
PAG: periaqueductal grey. AI: anterior insula. The figure is slightly readapted from Pessoa [2008].

4.2.1 Brainstem (BS)

BS is the part of the brain which is adjoining and structurally continuous with the spinal cord.
Thus, it controls the flow of messages between the brain and the rest of the body (e.g. sensori-
motor signals). BS host structures that are central to the chemical signaling systems. Thereby, it
assumes important functions related to vital reflexes and regulatory control.

Periaqueductal Grey (PAG) is a primary center for the transmission and modulation of noci-
ceptive signals. For example, PAG lesions in rats either attenuate or accentuate freezing behav-
iors normally caused by nociceptive electric shock – depending on whether the dorsolateral or
the ventral parts are damaged [Fanselow et al., 1995]. PAG also projects to Raphe Nuclei which
secrete serotonine. The latter is thought to modulate harm aversion and pain processing [Cools
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et al., 2008]. Locus Coeruleus, which another nucleus of the Reticular Formation, is the prin-
cipal site for brain synthesis of norepinephrine involved with physiological responses to stress
and panic. All in all, the Reticular Formation is thought to modulate the arousal level of the
central nervous systems [Cardinal et al., 2002]. Moreover, the largest group of dopamine neu-
rons is found in the Ventral Tegmental Area (VTA). This neurotransmitter is involved in reward
processing and motivation [Berridge, 2012]. More details on these chemical messages linked to
emotion and affect will be given in the next section.

4.2.2 Hypothalamus (HTH)

The importance of HTH in emotion was highlighted by Cannon and Bard “decortication” exper-
iments [Bard, 1934]. For instance, emotional expressions are suppressed due to HTH ablation.
In is also present in the Papez [1937] circuit via the mammillary bodies.

HTH is commonly associated with survival-related functions. As the major center of neu-
roendocrine integration in the brain (i.e. the release of hormones at the reception of neuromod-
ulatory input), HTH links the nervous system to the endocrine system. It intervenes in various
bodily functions such as monitoring physiological parameters and regulating hunger and thurst.
More details on these chemical messages linked to emotion and affect will be given in the next
section. Besides, more recent findings indicate massive bidirectional connections with the cortex
in addition to subcortical regions. Subsequently, not only does it have basic descending control
functions, it is also implicated in higher cognitive functions [Pessoa, 2010].

4.2.3 Amygdala (AM)

AM is one of the most connected areas of the brain and of the most important structures with
regard to emotional processes. It is a connector hub linking multiple provincial hubs with high
connectivity within specific functional groups [Pessoa, 2010]. Among others, AM is connected
to the thalamus, nucleus accumbens, sensory cortices and prefrontal cortex.

The role of AM in emotion has been extensively investigated, particularly by LeDoux and
colleagues [LaBar et al., 1998; LeDoux, 2003, 2012]. Most of this research is based on Pavlovian
fear conditioning, which consists in pairing meaningless environmental stimuli (Conditioned
Stimuli, CS) with biologically potent ones (Unconditioned Stimuli, US) in order to associate
them with emotional defensive responses (Unconditioned responses, UR). For example, LaBar
et al. [1998] showed that AM activation is higher during acquisition and extinction phases – that
is to say respectively when US and CS are first being associated and when CS starts to repeatedly
appear without US afterward. Although AM is better known to mediate aversive learning, it is
also active during appetitive conditioning [Balleine and Killcross, 2006; Weymar and Schwabe,
2016].

A commonly admitted function of AM is thus to attribute an affective valence to sensory
stimuli (Paton et al. [2006]; Lewis [2005]; Pessoa [2010]). LeDoux [1996] proposed that a di-
rect subcortical route from sensory periphery (e.g. retina) to thalamus and AM allows the rapid
emotional evaluation. This pathway is referred to as the low road, as opposed to the so-called
high road indirectly transmitting information to AM through cortex. The former thus relies on
coarse representations while the latter is based on more detailed, refined information. How-
ever, this strict opposition is challenged by recent findings suggesting additional rapid pathways
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through cortical regions such as the orbitofrontal cortex [Barrett and Bar, 2009; Pessoa and
Adolphs, 2010].

4.2.4 Basal Forebrain (BF) and Basal Ganglia (BG)

There is a large literature acknowledging the existence of multiple cortico-basal circuits imple-
menting a variety of functions [Alexander et al., 1986; Middleton and L, 2001; Haber, 2008;
Jahanshahi et al., 2015]. Among the latter, emotional/limbic loops includes interactions with the
orbitofrontal and anterior cingulate cortices, which I will describe in the following paragraphs.
This functional description in the shape of loops encompasses neuronal connections (informa-
tion transmission) and neurochemical projections (modulation).

The Nucleus Accumbens (NAc) is located in the ventral striatum of the basal ganglia. It
is part of the pleasure and reward circuitry. It is where the dopaminergic circuitry departing
from the brainstem splits into the mesolimbic and mesocortical pathways. NAc has been im-
plicated in drug addictions. For instance, repetitive, non-decremental stimulation of dopamine
transmissions by drugs abnormally strenghtens stimulus–drug associations [Di Chiara, 2002].
Also central to the experience of pleasure, NAc is identified as a hedonic hotspot [Berridge and
Kringelbach, 2008]. More specifically, Peciña and Berridge [2005] suggest that opioid circuits
for stimulating hedonic ‘liking’ circuits are tightly localized in the rostromedial shell of NAc.

A collection of other structures are also involved in chemical signaling: the substantia nigra
in BG is a source of dopamine; the nucleus basalis in BF and the striatum in BG are major
sources of acetylcholine. More details on these chemical messages linked to emotion and affect
will be given in the next section.

4.2.5 Prefrontal Cortex (PFC)

The prefrontal cortex (PFC) in the cerebral cortex located in the front part of the brain (frontal
lobe). Based on connectivities and functional specificities, PFC can be decomposed into three
substructures: the dorsolateral (dlPFC), ventromedial (vmPFC) and orbitofrontal (OFC) parts.

The role of the prefrontal cortex in emotion was made famous by the case of Phineas Gage.
Due to an explosion, a metal bar went through the patient’s skull, face and brain. Surprisingly,
Gage recovered a few months later. But, the lesion of the brain caused important changes in
his personality and emotional behavior. The case occurred in 1848 but was put back under the
spotlight by Damasio and colleagues. Indeed, Damasio et al. [1994] reconstituted the lesion and
determined that the most impacted regions were the prefrontal cortices, and the left OFC more
specifically.

In addition, Damasio et al. [1996] proposed the somatic markers hypothesis. They consist
in associations between certain situations and the patterns of elicited physiological and emo-
tional reactions that are established since early developmental stages. According to Damasio,
these associations take place in vmPFC. The somatic markers – carrying the emotional value
of encountered situations – then influence decision making when a quick response is required
or when when logical reasoning fails in driving one’s behavior [Damasio et al., 1996; Damasio,
2003; Bechara and Damasio, 2005].

OFC has numerous connections to limbic areas and is also thought to strongly participate
in emotional processes. While the orbital part receives extensive sensory information, the me-
dial part projects to HTH, NA and BS. Öngür and Price [2000] suggest that OFC plays a role
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in sensory-visceromotor associations and guidance of emotional, reward-related behavior (es-
pecially food-related). Rolls [2004] also supports the idea that OFC participates in learning the
emotional and motivational values of stimuli. He proposes that OFC and AM jointly establish
associations between primary (e.g. taste and touch) and secondary reinforcers. According to
Barrett and Bar [2009], OFC represents a key circuitry responsible for the creation of contextu-
ally sensitive, multimodal representations of the world and its emotional and hedonic value.

4.2.6 Insula

The insular cortex appears to be a central area in conscious emotional and survival-related ex-
periences [Damasio, 2003]. For example, consciousness of thirst causes activation in this area
while satiation deactivates it [Denton et al., 1999]. This is also observed in the cingulate cortex
which will be addressed later on. Also, the experiment by Casey [2000] compared a condition
where participants’ hands were put in ice-cold water to a condition where they were subjects to a
non-painful vibratory stimulus. Insula was shown to be particularly activated by pain sensation.
Moreover, when thinking of emotional episode to the point of feeling the corresponding emo-
tion, insula, among other somatosensory cortices as well as the cingulate cortex and brainstem
tegmentum, exhibits significant activities [Damasio et al., 2000].

4.2.7 Anterior Cingulate Cortex (ACC)

ACC is a complex cortical area with numerous bi-directional projections to limbic regions like
AM and OFC, and particularly to autonomic regulatory areas such as HTH and PAG. It is as-
sumed to participate in emotional evaluation and cognitive control [Bush et al., 2000; Shackman
et al., 2011; Inzlicht et al., 2015]. Botvinick et al. [2004] and Inzlicht et al. [2015] highlighted
the role of ACC in conflict monitoring and the triggering of motivated behavior. ACC is also
thought to be involved in the conscious experience of emotion, in conjunction with other regions
like somatosensory cortices and insula [Denton et al., 1999; Damasio et al., 2000; Damasio,
2003]. Bush et al. [2000] proposed an emotion/cognition division of ACC, distinguishing the
ventral/rostral part and the dorsal part for these processes respectively. But it is noteworthy
that these “emotional” and “cognitive” subregions are also inter-connected. Also, these is evi-
dence challenging the emotion/cognition separation in the case of emotionally triggered control
[Shackman et al., 2011].

4.3 The neurochemical brain

Another aspect of the emotional brain that needs to be addressed lies in the chemical signaling
systems that modulate the neuronal activities throughout the nervous system. They are central in
the study of emotion because of their impact on metabolic regulation, bodily responses, pleasure
and pain sensations, motivation and motor activation [Fellous, 2004; Kelley, 2005].

There are three kinds of chemicals messengers in the brain: neurotransmitters, neuromodu-
lators and neurohormones. Neurotransmitters are released by the nerve ending of a neuron in or-
der to communicate with adjacent neurons. In contrast, neuromodulators are released by neurons
farther away from the target cells which are larger groups of neurons. Yet, some neurotransmit-
ters – such as dopamine, serotonin, acetylcholine and norepinephrine – act like neuromodulators
in the sense they have an effect on distant neurons. On the other hand, neurohormones are not
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released by neurons but by glands called neuroendocrine cells, which receive neuromodulatory
inputs from other cells in order to secrete those hormones. Some hormonal molecules also have
a role of neuromodulation. Among them are opioid peptides like endorphins. For convenience,
although specified otherwise, I will use the term neuromodulator to refer to all these endogenous
substances in the rest of this document.

Neuromodulators are secreted by specialized structures receiving inputs from brain areas
involved in all levels of behavior (reflex, motivation, cognition). They influence the neural activ-
ities of nerve cells by activating associated receptors in neuronal membranes. The global effect
of a neuromodulatory system may vary considerably depending on the combination of receptors
and the circuitry within the modulated brain region and the connections of that region within the
brain. For example, even two neurons of the same structure may have different mixtures of re-
ceptors on their membranes. However, the effect of a neuromodulator on a particular receptor is
very specific. For example, it can modulate the excitability of the target neuron. Besides, all neu-
romodulatory systems have both tonic and phasic activity responses: respectively corresponding
to a general elevation of the baseline activity and to short bursts of activity.

It is noteworthy that an important part of what we know about the neuromodulatory systems
comes from research on drug addiction and psychiatric disorders.

4.3.1 Dopamine DA

Given its role in motor activation, appetitive motivation, reward processing and cellular plastic-
ity, DA is a key neuromodulator as far as emotion is concerned. There are two major classes of
DA receptors: D1 and D2. As seen previously, DA is mainly produced in VTA (but also in other
structures like subtantia nigra) and targets many cortical and subcortical area like NA, AM and
PFC.

Historically, dopaminergic pathways where often associated with the notion of pleasure. In-
deed, rewarding stimuli such as highly palatable food strongly activate DA release [Bassareo
and Di Chiara, 1999]. However, in line with other findings, the work of Berridge and colleagues
[Robinson and Berridge, 1993; Berridge and Kringelbach, 2008; Berridge, 2012] confers a more
motivational function to this neurotransmitter. Rather than being linked to the hedonic impact of
the reward, DA is thought to be important for attributing “incentive salience” to neural represen-
tations of rewards. In other words, for ‘wanting’ instead of ‘liking’. For example, DA deprived
rats are unable to generate the motivation arousal necessary for ingestive behavior and can starve
to death although they are able to move and eat [Ungerstedt, 1971]. In addition, there is evidence
supporting the hypothesis that DA mediates reward-related learning. Predictive reward signals
are often coded by dopaminergic systems [Schultz, 2004; Baldwin et al., 2002]. Interestingly,
the dopamine system can also be activated by aversive stimuli [Scott et al., 2006].

4.3.2 Serotonin 5-HT

5-HT has been implicated in various behavioral functions like motor pattern generation, arousal,
sleep, mood and social behavior. There are 14 different 5-HT receptors in human nervous sys-
tem. The main serotonergic source is the raphe nuclei of the reticular formation. Descending
projections reach brainstem, and spinal motor and sensory regions. Ascending inputs project to
widespread regions in the cortex in addition to limbic areas like HTH and AM.
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Importantly, the number and variety of 5-HT receptors and projections suggest that this
neuromodulation is very complex. In nonhuman primates and mammals in general, there is
converging evidence of the 5-HT modulation of aggression. More precisely, 5-HT depletion is
inversely correlated with an increase in aggressive behaviors [Mehlman et al., 1994]. In con-
trast, high levels of serotonin enhances social behavior and decreases aggression [Raleigh and
McGuire, 1991]. In humans, while abnormally low 5-HT levels are also known to correlate with
increased aggressive or antisocial behavior, alcoholism, and impaired impulsive control, patients
with reduced serotonin function have been shown to have higher rates of major depression and
suicide attempts [Mann et al., 1996]. More recent findings link 5-HT to the neural processing of
punishment and harm aversion. In that matter, Cools et al. [2008] proposes that serotoninergic
modulation might affect aversive motivational processes in the form of punishment prediction
error.

4.3.3 Opioids

The term opioids refers to a large variety of substances that act on opioid receptors (mu, delta,
kappa receptors), like drugs derived from opium (opiates). Here, we are interested in endogenous
opioid peptides, which include endorphins, enkephalins and dynorphins. The latter are involved
in emotional regulation, responses to pain and stress, endocrine regulation and food intake.

The most basic role of opiods in emotion is the generation of pleasure in the hedonic circuits.
While extensive research investigated their effect in the modulation of food intake, such effect
is thought to be mediated by an increase of food reward and palatability [Kelley et al., 2002].
For instance, the activation of opioid receptors in rats highly increases the number of ‘liking’
reactions to a sucrose taste [Peciña and Berridge, 2005]. Opioids are also known to reduce
pain. Indeed, it has been shown that exposure to physical and psychological stress activates
opioid system and provokes analgesia [Lester and Fanselow, 1985; Bolles and Fanselow, 1982].
Such mechanism might have evolved to facilitate adaptive escape in case of threat. Yet another
remarkable effect is to foster social attachment. Investigating separation distress, Panksepp et al.
[1980] proposed that brain opioid systems might provide neurochemical mediation of social-
bonding among animals. Thus, such a higher order behavioral process as social attachment
would have arisen from primitive neural circuits which subserved compatible functions like
hedonic liking.

4.3.4 Acetylcholine (ACh) and Norepinephrine (NE)

In the central nervous system, ACh is secreted by cholinergic nuclei in the brainstem and the
basal forebrain. Norepinephrine (NE) is also called noadrenaline. Although the former name
is generally preferred, the system that produces NE is referred to as noradrenergic. The prime
source of NE in the central nervous system is the locus coeruleus situated in the brainstem.

Both neurotransmitters are involved in arousal, alertness and attention. Angela and Dayan
[2005] proposes that ACh and NE respectively signal expected and unexpected uncertainty. The
former consists in the known unreliability of predictive cues within a context while the latter
refers to strongly unexpected observations. For example, NE locus coeruleus neurons in rats
respond to novelty and change in the environment [Vankov et al., 1995]. Besides, NE and ACh
have complementary role in sleeping and waking phases [Jones, 2005].
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4.3.5 Discussion

The study of the neurobiology of emotion demonstrates that there is no specialized brain area
implementing an emotional system. Rather, emotions involve decentralized processes that op-
erate on different behavioral levels. Several brain regions participate, with different functions
supported on different levels. Emotional experiences imply complex interactions between these
regions. Therefore, it is difficult to even decompose the brain in specialized structures responsi-
ble for specific functions.

Yet, some regions seem to be more involved in the appraisal processes that trigger emotion.
Among these are AM, OFC and ACC, which allow more or less complex emotional evaluations,
from pure stimuli-based level, to contextualized appraisal, to conscious experiences. Thus, they
implement an important part of what can be referred to as the neural ‘valence circuitry’. On the
other hand the execution of emotional responses is at least partially orchestrated by areas like
HTH, BS and NA. Through their connection with the neuromodulatory system, they participate
in the ‘arousal circuitry’. From the neurobiological perspective, the emotion theories have strong
overlaps. However, they can be distinguished based on whether they consider there is a unique
circuitry appraising events and triggering emotional responses, or distinct circuitries handling
different dimensions of emotion, or even more circuitries each one dedicated to certain types of
emotions. Another distinction concerns whether the emphasis is put on what nature provides in
these circuitries (i.e. what is common across species) or what nurture gives (i.e. what is specific
in human emotion).

4.4 From biological to artificial emotions

The literature reviewed so far shows the variety of functions in which emotions are implicated.
They also highlight the complexity of the machinery related to emotional phenomena in living
beings. In the last decades, substantial research has been interested in reproducing these mecha-
nisms in artificial systems. The resulting computational models can consist in top-down imple-
mentations of existing models (e.g. OCC, PAD, CPM) or bottom-up simulations of elementary
properties related to emotion (e.g. physiological functions, facial expressions, motivated behav-
ior). They adopt approaches that range from symbolic, rule-based to dynamic, network-based
programming. Some of them are implemented on virtual conversational agents while others on
robotic platforms. Like with theories of emotions, I will detail some of these computational
model regardless to any classification.

4.4.1 Gebhard’s ALMA model

Because of the simplicity and implementability of the OCC model [Ortony et al., 1988], various
computational models of emotion implemented it in formal descriptions of emotional responses
[Adam et al., 2009; Dastani and Lorini, 2012]. The “layered” model proposed by Gebhard
[2005], called ALMA, also relies on the set of appraisal variables described by OCC. But, in-
stead of giving a strict implementation of OCC, the appraisal rules are specified in a XML-like
language before the runtime phase to determine the agent’s personality profile. The emotion
engine simulates three interacting kinds of affect that operate at different timescales: emotion,
mood and personality. Another specificity is the combination of OCC with the PAD dimensional
model [Russell and Mehrabian, 1977]. This consists in viewing moods as medium-term affects
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averaging the agent’s emotional states in time. Gebhard thus proposes a discretization of the
mood states as represented in the three dimensional PAD space into eight distinct mood octants;
to which he also maps the OCC discrete emotions. ALMA provides a good example of how
implementing emotions in artificial systems can foster reflections on how to link different emo-
tion theories. It also addresses the issues of interactions between affects of different timescales.
Thanks to the use of an XML-like language, it is a flexible framework that can allow other vir-
tual agents designers to extend it. Yet, like in other OCC-based models, affect results from a
purely cognitive appraisal. It also suffers from the symbol grounding problem and the need to
hard-code the rules that guide the emotional behavior.

4.4.2 Morgado and Gaspar’s agent flow model

Morgado and Gaspar’s agent flow model aims at giving a unified view of emotional and cogni-
tive process [Morgado and Gaspar, 2007, 2004]. The authors advocate the idea that the emo-
tional appraisal depends on two base factors: the agent potential to produce change in environ-
ment (achievement potential) and the environment conduciveness or resistance to that change
(achievement conductance). These dimensions respectively correspond to the agent skills and
the environmental challenges. In their model, the emotional disposition resulting from these
variables is expressed in the cognitive space in terms of the distance from a goal/target situation
and the velocity of the generated “movement”. This model provides an interesting insight on
how emotional states can be translated into actions in an artificial agent. Moreover, by arguing
for the importance of their two base appraisal dimensions, the authors intend to influence ap-
praisal theories through a computational approach. However, this model is evaluated in a simple
2D environment where the cognitive attributes determining the agent emotional dispositions are
easy to compute (Morgado and Gaspar [2007]). There is a possible gap in terms of scaling up to
real world experiments. Also, some of the factors ruled out by Morgado and Gaspar [2004] from
the fundamental processes of emotion elicitation (like novelty) could turn out to be essential in
real conditions.

4.4.3 Courgeon and colleagues’ MARC agents

Multimodal Affective & Reactive Characters (MARC) is a framework for 3D interactive expres-
sive virtual agents designed by Courgeon and his colleagues. Interestingly, this system was used
to implement and evaluate different theoretical models of emotion in the context of human–agent
interactions [Courgeon et al., 2008, 2009; Courgeon and Clavel, 2013]. A discrete emotions ar-
chitecture mainly considered the six basic emotions listed by Ekman and Friesen [1971]. The
dimensional version relied on the PAD model proposed by [Russell and Mehrabian, 1977]. Last,
the cognitive approach to emotion was addressed by adapting the CPM model introduced by
Scherer [1984, 2001] to which a social appraisal aspect is also added. In the evaluation of these
models, it is for example argued that the continuous space provided by a dimensional approach
allows smoother transitions between different states and thereby more realistic emotional feed-
back as compared to discrete emotions. However, in contrast to the appraisal approach, both dis-
crete and dimensional theories are judged purely descriptive and insufficient for an autonomous
generation of emotional responses by an interactive artificial agent. Unfortunately, all the imple-
mented architectures are compared from the perspective of virtual agents design and the results
are not discussed in terms of their impact on the understanding of human emotions.
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4.4.4 Velásquez’s Cathexis

Cathexis is a distributed computational model proposed by Velásquez [1997] to model the dy-
namic nature of emotional phenomena like emotions, moods and temperaments. Inspired by
the work of Minsky [1986], “emotion families” are represented by proto-specialists, i.e. dis-
tributed modules that monitor external and internal events. The term “emotion families” refers
to groups of related affective states sharing certain properties like the physiological states, the
elicitating events or the responses; and influencing each other. For instance, fear, fright, terror
and panic. In addition, Velásquez [1997] considers four types of emotion elicitators: neural (e.g.
physiological signals), sensorimotor (e.g. facial expressions and body postures), motivational
(e.g. hunger- and thirst-related drives) and cognitive (e.g. beliefs and desires). Although this
classification/labeling may be questionable, mixing cognitive and non-cognitive elicitators is a
significant characteristic of Cathexis. Yet, this model was only tested in a simplified, structured
human–agent interaction via a 2D user interface, which may seem quite insufficient to evaluate
its performance in real situations.

4.4.5 Breazeal’s Kismet social robot

Kismet is an expressive face robot designed by Breazeal [2003] exhibiting emotional behav-
iors during interactions with humans. The architecture proposed is also based on the idea of
distributed specialists ([Minsky, 1986]) handling separate perceptual, behavioral or emotional
processes [Breazeal and Brooks, 2005]. The emotion system consists in mapping prototypi-
cal “precipitating” events to behavioral and facial responses. It includes the six basic emotions
listed by Ekman and Friesen [1971] to which others emotional states like boredom and interest
are added. For instance, the presence of an undesired stimulus elicits disgust which triggers a
withdrawal behavior in order to signal rejection to the human caregiver. The considered discrete
emotions are mapped to a dimensional space similar to that proposed by [Russell and Mehra-
bian, 1977]: valence-arousal-stance. Interpolation between various state provides continuous
expressiveness in facial movements. Interestingly, this seems to enable a variety of behaviors
although the elementary specialists are hard-wired.

4.4.6 Canamero and colleagues’ hormone-based models

Cañamero [1997] introduced a behavior-based architecture simulating synthetic physiological
variable. Following a developmental approach, the artificial agents are seen as newborns whose
behavior is driven by survival-related parameters modeling bodily needs and basic emotional
responses. This seminal work was later extended and tested on real robots. Avila-garcía and
Cañamero [2004, 2005] particularly evaluated the hormone-based paradigm in the context of
competitive scenarios. Put in an environment containing various types of resources and obsta-
cles, the robots must select their actions from a repertoire of behaviors in order to survive and
maintain their well-being. Internal variable included parameters related to food and tempera-
ture while behaviors could be consumatory (feeding and warming up), appetitive (searching) or
aversive (avoidance). Moreover, Lones et al. [2014] more specifically studied the emergence of
aggressive behaviors in certain situations due to the influence of such physiological and well-
being related variables. Cañamero and colleagues’ work on hormonal modulation of perception
as a paradigm for action selection demonstrate how survival-related homeostatic mechanisms
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can implement an efficient architecture and how emotional responses can emerge from the dy-
namics of interaction between the robot and the environment.

4.4.7 Krichmar’s neuromodulation-based models

The approach proposed by Krichmar [2008, 2013] is to use neuromodulation as a controller for
artificial agents. More specifically, Krichmar [2008] views the tonic and phasic modes of neuro-
modulatory system as a way to implement a biologically plausible network mechanism for the
exploration/exploitation trade-off. The author suggests that tonic responses favor exploratory
behaviors – because the system is more prone to random fluctuations – while the transient bursts
of activity in the phasic mode strongly bias the output toward preferred responses. More re-
cently, Krichmar [2013] shows how neuromodulatory interactions can control the approach and
avoidance behaviors of a real robot. The dopaminergic system modulates the curiosity and
reward-seeking responses while the serotonergic system influences harm aversion. Cholinergic
and noradrenergic systems provide an attentional filter that regulates the curious vs. anxious
behaviors. The computation framework provided by Krichmar helps to shed light on the interac-
tions between neuromodulatory systems that are generally studied separately in neuroscientific
research. It gives an insight on the mechanisms by which the nervous system might handle
action selection and the exploration/exploitation trade-off.

4.5 General discussion

As pointed out in the beginning of this chapter, the interest for artificial emotions has two com-
plementary but distinguishable objectives: 1) taking inspiration from biological solutions to
design systems that better interact with their physical and social environments, and 2) providing
computational models as tools to better understand biological emotions. Despite their comple-
mentarity, these goals are not easy to conciliate. As a matter of fact, most of the artificial emo-
tion systems are intended to facilitate interactions with humans. Generally, this kind of approach
translates into implementations of existing models with no interest in providing more insights on
biological emotions. The main objective lies in the application. In contrast, other computational
models target basic components of emotional phenomena and may help understand emotion,
although the application scope may be more limited.

Theoretical and experimental research on human and animal emotion have largely inspired
models of artificial emotion. Earlier in this chapter, I gave an example of how different ap-
proaches to emotion could be classified according to certain schools of thoughts. But in terms
of how they influence/contribute to the computational modeling of emotions, a particular crite-
rion seems relevant: are emotions more importantly considered as cognitive processes or bodily
responses. Rather than a strict dichotomy, this results in a continuum between cognitive and
embodied views as far as theory is concerned. However, in computational models, the former
view is generally more related to rule-based implementations whereas the latter is more likely to
be adopted in distributed, network-based models. The parallel with the cognitivist and the con-
nectionist approaches to cognition that I detailed in the introduction of my thesis can easily be
drawn. Thus, my position will be to take an embodied view of emotion as a point of departure.
A particular interest will be put neurobiological aspects, considering both neural and chemical
brain networks.
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CHAPTER 5

Conceptualizing emotion–cognition
interaction: a process-oriented model

The review of the multidisciplinary study of emotion I presented in the previous chapter has a set
of important implications. The first one is that emotions are decentralized processes involving
a complex neuronal and neurochemical machinery. There is no central emotional region which
activity can be studied in order to solve the mystery of emotional phenomena. The second impli-
cation is that emotions operate at many time scales and at many behavioral levels. A core system
that seems to be shared accross species provide basic regulatory, survival-related mechanisms.
But more evolved species like primates and humans also benefit from more complex emotional
capabilities such as social emotions and conscious emotional experiences. Last, because of the
complexity and the richness of emotional processes, it seems hard to make a clear separation
between emotion and cognition.

The term cognition refers to a large panel of mental processes that are necessary to control
behavior and attain goals. It encompasses perception, attention, memory, learning and motor
control; but also more sophisticated mechanisms that are involved in reasoning, perspective-
taking and complex decision-making. In particular, cognitive control consists of a set of execu-
tive functions allowing goal-driven behaviors [Diamond, 2013]. Among them are:
1) inhibition, which includes response inhibition (self-control related to impulsive actions) and
interference control (selective attention),
2) working memory, i.e. maintaining information for a short period of time,
3) cognitive flexibility, e.g. switching from one concept to another, changing perspective, etc.

Whereas the meaning of cognition is relatively vague, that of emotion is even less consen-
sual, as I pointed out in the previous chapter. However, there is quite an agreement that it in-
volves partially dedicated neural circuits, response systems, and feeling state/process that allow
for assessing events, focusing attention, enhancing communication, and motivating cognition
and action [Izard, 2010]. This description, although it cannot serve as a clear and comprehen-
sive definition of emotion, highlights the close relation between emotion and cognition.

When addressing the central question of how emotion interacts with cognition, one of the
following two perspectives is generally taken: how cognition influences emotion, or how emo-
tion influences cognition. It probably depends on the school of thoughts one is attached to, and
on whether emotions are considered as (mostly) originating from cognitive processes or from
bodily responses. However, some research works also try to describe the emotion–cognition
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interplay in an integrated view. These models generally insist on the dynamic interaction be-
tween the two kinds of processes. They will also allow me to introduce the generic model that I
propose and implement in this thesis.

5.1 Cognitive influence on emotion

Appraisal theories of emotion provide a very interesting framework for studying the set of cog-
nitive processes involved in the activation of emotions. These models suggest that organisms
constantly explore their environment and react to relevant stimuli. Thus, the aim is to describe
the computational processing of information that leads from an external event to a change in the
behavior. Appraisal theories postulate that different emotions result from different patterns of
evaluation (processing). This idea was originally proposed by Arnold [1960]. In her seminal
work, she proposed that the appraisal process is distributed over four components: physiological
reaction, motor reaction, motivation for action, and subjective feeling.

Another pioneer of this school of thought is Lazarus [1991]. In his model, he identified
two levels of appraisal. The primary appraisal evaluates stimuli with regards to one’s goals and
well-being. Then, the secondary appraisal analyzed the resources that one can use to respond
and adapt to the situation. Re-appraisal allows modifications of the primary and/or secondary
appraisal while the interactions between the individual and the environment occur.

In this framework, various theories arose, aiming to specify a set of standard criteria that are
presumed to underpin the emotional appraisal process. Some of them conceptualize emotion as
an information-processing system just like any cognitive mechanism [Oatley and Johnson-Laird,
1987; Ortony et al., 1988]. For instance, event-based emotions in the OCC theory [Ortony
et al., 1988] such as joy and fear are triggered by the evaluation of the desirability of event
consequences. The notion of desirability here is quite close to that of utility; that is to say
whether the event satisfies or interferes with one’s goals. In addition to the desirability of events,
the central criterion in OCC allows for evaluating the approbation of actions and the attraction
of objects. Then, secondary appraisal variables, such as the likelihood, the unexpectedness
or the praiseworthiness of a state of affairs, influence the intensity of the triggered emotion.
This model of emotion is widely used in computer science because of its implementability.
However, it is particularly subjects to general criticisms of appraisal/cognitive views of emotion
[Scherer, 2009; Coppin and Sander, 2012]: e.g. relying on symbolic representations and high-
level information processing or not accounting for the rapid onset of some emotional reactions.

The CPM model proposed by Scherer [2010] attempts to address these criticisms with a
multilevel approach to appraisal. In this model, the appraisal module responsible for the evalua-
tion of objects and events is organized as a rapid succession of stimuli-processing stages called
“stimulus evaluation checks” (SEC). As shown in Figure 5.1, four major appraisal objectives
are listed: relevance, implication, coping potential, and normative significance. For instance, to
evaluate relevance, there is a check for novelty, for intrinsic pleasantness, and for the importance
with respect to goals and needs. To evaluate implication, there is a check for cause, for probable
outcomes, for discrepancy from expectation, for conduciveness for goals, and for urgency. These
appraisal checks require cognitive processes related to attention, memory, motivation, reasoning
and self.

To counter the above mentioned criticisms of appraisal theories, Scherer [2009, 2010] claims
that all the criteria can be processed in parallel at three hierarchically organized levels. First, the

- 86 -



CHAPTER 5. CONCEPTUALIZING EMOTION–COGNITION INTERACTION: A PROCESS-ORIENTED MODEL

Figure 5.1: Scherer’s representation of the connections between cognitive components and emotional
appraisal processes. Cognitive components like attention and memory are required during the appraisal
processes carried out by the central nervous system (CNS) and influencing the neuroendocrine system
(NES), autonomic nervous system (ANS), and somatic nervous system (SNS). The figure is slightly
readapted from Scherer [2001].

sensorimotor level, in which the checking mechanisms are mostly genetically determined and
based on pattern matching. Second, the schematic level, in which the processing is automatic
and unconscious based on social learning and repeated experiences. Third, the conceptual level,
involving propositional knowledge and requiring consciousness. However, while the checks take
place in parallel, it is assumed that the outcome of the evaluation is sequential: novelty, intrinsic
pleasantness, task/goal relevance, goal conduciveness, etc. In particular, Grandjean and Scherer
[2008] tested the sequence hypothesis in two experiments manipulating novelty, intrinsic pleas-
antness, and goal relevance. The measured brain activities support the assumption that early
checks (novelty and intrinsic pleasantness) occur in an automatic, unconscious mode of pro-
cessing, whereas later checks (specifically goal conduciveness) require more extensive, effortful
and controlled processing. Moreover, a neuroimaging experiment conducted by Sander et al.
[2005] demonstrates that the processing of affectively and socially salient signals is modulated
by voluntary attention. The experiment used a dichotic-listening paradigm; meaning that angry
and neutral prosody were presented simultaneously to both ears while participants were asked
to perform a gender decision task on voices heard in one ear, while they had to ignore voices
presented on the other side. The results show that, although the amygdala responded to anger
stimuli independently of attention, the orbitofrontal cortex showed greater activation to the same
emotional stimuli presented on the to-be-attended side compared to the to-be-ignored side.

Last, although out of the scope of my thesis, it is worth mentioning that another example of
cognitive influence on emotion is emotion regulation [Gross, 1998; Ochsner and Gross, 2005].
It involves various strategies aiming to alter ongoing emotional responses or initiate new ones.
Among them are: selective inattention to emotional stimuli, suppression of expressive behavior,
or (re-)interpretation of emotion-eliciting situations in ways that limit emotional responding.
The prefrontal cortex and the anterior cingulate cortex appear to be key regions for these regu-
latory processes [Ochsner and Gross, 2005].
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5.2 Emotional influence on cognition

There is also significant evidence of the influence of emotion on cognition. Here, I will focus on
the emotional modulation of three types of processes: perception, attention and memory.

5.2.1 Perception

The effect of emotion on perception can be observed from the modulation of visual process-
ing. For example, emotional stimuli induce an increase in the activation of the visual cortex
[Padmala and Pessoa, 2008] after affective conditioning. Also, Phelps et al. [2006] showed that
emotionally arousing stimuli (fearful faces) lowered the contrast threshold in comparison with
neutral stimuli. In other words, participants were more sensitive to visual contrast when they
had previously seen emotional faces than when they had seen neutral faces.

More evidence can be found in studies investigating the perception of space and distance
from objects and individuals. For example, positively valenced objects tend to be perceived as
closer and more reachable than negative ones [Valdés-Conroy et al., 2012; Balcetis and Dun-
ning, 2009]. Also, Coello et al. [2012] showed that a knife seems farther when oriented toward
us, i.e. when potentially dangerous. On the other hand, a positive affective state, induced by
pleasant music for instance, reduces the area needed to feel comfortable in over-crowded spaces
[Tajadura-Jiménez et al., 2011]. The perception of our peripersonal space indeed seems to de-
pend on a emotional evaluation of external stimuli. For example, a study by Kennedy et al.
[2009] implicates the amygdala in this process.

5.2.2 Attention

Emotions also influence attentional processes. Öhman et al. [2001] showed that fear-related
stimuli (snakes and spiders, but also angry faces in earlier experiments) are detected faster than
non-threatening ones.

Another example can be found in the emotional stroop tasks used by psychologists [Williams
et al., 1996; McKenna and Sharma, 2004; Kunde and Mauer, 2008; Frings et al., 2010]. Typi-
cally, two stimuli are presented simultaneously. The task or action to perform is related to the
non-emotional stimulus (i.e. press a button corresponding to the color in which a word is writ-
ten). A delay is noted when the second, co-occurring stimulus (the meaning of the word in the
previous example) carries an emotional valence. This phenomenon is called the emotional stroop
effect. Although the name is a reference to the classical stroop tasks, the cognitive interference
observed in each case is different. Indeed, a Stroop test creates a conflict between incongruent
stimuli; typically the color name and the color in which the name is written (e.g. “red” written
in green). In contrast, the (not-so-appropriately-called) emotional stroop tasks capture an atten-
tional bias toward emotionally significant stimuli. The term emotional intrusion was claimed by
McKenna and Sharma [2004] to better describe this phenomena.

Yet another evidence comes from the attentional blink effect. It consists in the impairment
of the detection of a target stimulus (T2) when presented rapidly after a first target stimulus
(T1). Anderson [2005] suggests that the effect depends on the arousal but not the valence of the
emotional stimuli. The attentional blink has also been shown to be modulated by the emotional
significance of both T1 and T2 [Schwabe et al., 2011]. That is to say, the emotional relevance
of T1 increases the effect while that T2 reduces it. The functioning of locus coeruleus, central
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in the noadrenergic system, is thought to account for the attentional blink effect [Nieuwenhuis
et al., 2005].

5.2.3 Memory

Studies on working memory – i.e. the ability to maintain information in mind – provide addi-
tional support for the influence of emotion on cognition. For example, Perlstein et al. [2002]
found that the valence of the face stimuli that participants were asked to memorize modulated
the activity of dlPFC; which is thought to be a critical area for working memory. Besides, Gray
and colleagues investigated the effect of emotion induction on the ability to memorize word and
face stimuli in 3-back tasks [Gray, 2001; Gray et al., 2002]. Interestingly, the results showed
that emotional states consistently exerted opposite effects on working memory for verbal versus
nonverbal information. More precisely, the performance on the face task was enhanced by a un-
pleasant state and impaired by a pleasant one, and inversely in the word task. They also showed
that the dlPFC neural activity was greater in the word-unpleasant and face-pleasant conditions,
intermediate in the neutral conditions, and lower in the word-pleasant and face-unpleasant con-
ditions.

Besides, McGaugh [2015] provides a review of findings indicating that emotion also con-
solidates long-term memory. For example, low- and high-intensity stimulation of the amygdala
respectively impair and enhance memory [Gold et al., 1975]. Also, epinephrine and corticos-
terone are known to be released in case of emotional arousal – experimentally induced through
footshocks for instance. And it has been shown that these adrenal stress hormones produce dose-
and time-dependent memory enhancement. In humans, there is evidence that arousing pictures
or words tend to be well remembered. Therefore, McGaugh [2000] proposes that the basolat-
eral AM modulates memory consolidation through noradrenergic (NE) projections, which are
influenced by the release of stress hormones due to emotional arousal.

5.3 Emotion–cognition interaction

In the examples presented above, either cognitive processing (appraisal) is at the root of emo-
tional elicitation and continuous updating or non-cognitive, emotional processing influences
cognition. These works are not in contradiction. As a matter of fact, several researchers at-
tempt to provide an integrated view of the relation between emotion and cognition. For ex-
ample, Inzlicht et al. [2015] propose that cognitive control can be understood as an emotional
process. The authors note that cognitive errors are associated with physiological changes such
as increased skin conductance, cardiac activity and pupil dilation, which are also considered as
emotional primitives. In addition, they point out that negative affect increases the saliency of
goal conflicts and motivates goal-directed behavior in order to minimize the conflict. Although
giving an interesting perspective on the emotion–cognition interaction, this view is restricted to
“integral emotions” – that is emotions that are directly related to the current task or goal, as
opposed to “incidental emotions”, secondary and elicited or manipulated by other factors.

Pessoa [2008, 2010] also makes a case against the segregation between emotion and cogni-
tion. Based on anatomical and functional evidence such as those I presented earlier, he highlights
the interactive and integrative potential that exists in brain structures like the amygdala and pre-
frontal cortex. He also argues that complex behaviors have their basis in dynamic coalitions of

- 89 -



5.3. EMOTION–COGNITION INTERACTION

networks of brain areas involved in both emotion and cognition. Instead of a one-to-one map-
ping between areas and functions, he proposed the conceptual model represented in Figure 5.2.
Brain areas have many-to-many links with different types of neural computations that generate
behavior. The behavior space is described using affective and cognitive axes. Thus, any behav-
ior is by definition both cognitive and affective. Importantly, the axes are not orthogonal, such
that any change in one of the behavior dimension affects the other. Additionally, specific brain
areas belong to several intersecting networks. Therefore, neural computations have to be seen
as implemented by the interaction of multiple areas.

Figure 5.2: Pessoa’s model of the mapping between brain areas and emotional–cognitive behaviors.
Brain areas are part of networks and have a many-to-many relation with different types of neural com-
putations. These neural computations collectively underlie behaviour. The behavior space is described
using non-orthogonal affective and cognitive axes. The figure is borrowed from Pessoa [2008].

In line with this notion of overlapping networks, there is a large literature acknowledging
the existence of multiple cortico-basal circuits implementing both motor and non-motor func-
tions [Alexander et al., 1986; Middleton and L, 2001]. The non-motor circuits include emo-
tional/limbic and cognitive/associative loops [Haber, 2008; Jahanshahi et al., 2015]. As shown
in 5.3, the former represent interactions with the orbitofrontal and anterior cingulate cortices
while the latter concern interactions with the dorsolateral prefrontal cortex. This functional de-
scription in the shape of loops encompasses neuronal connections (information transmission)
and neurochemical projections (modulation).

Moreover, Fellous [2004] argues that emotions should be understood as dynamical patterns
of neuromodulation rather than patterns of neural activity. In fact, two notions are encompassed
in this view. First, that emotion and cognition are integrated and implemented by the same
structures: the former corresponds to the state of neuromodulation while the latter corresponds
to the state of neural computation. This approach radically puts the chemical signaling system at
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Figure 5.3: Illustration of motor, cognitive/associative and emotional/limbic cortico-basal loops. The
figure emphasizes the caudate and putamen of the striatum, which is the largest collection of neurons in
the basal ganglia. The cognitive pathway includes projections to the dorsolateral prefrontal cortex. The
emotional pathway includes projections to the orbitofrontal and anterior cingulate cortices. All circuits
pass through the thalamus. The figure is borrowed from Jahanshahi et al. [2015].

the center of the question of emotion-cognition interaction. The neuromodulatory state is biased
by the various levels of computation with different influence potential, as represented in Figure
5.4. In return, the neural activity depends on the aforementioned neuromodulatory state.

Figure 5.4: Fellous’s model of the organization of behavior. Ellipses represent zone of direct influence
and neural recruitment during emotional expression and experience. The potential for neuromodulation
increases from reflexes to cognition while action specificity decreases. The figure is borrowed from
Arbib and Fellous [2004] and merges the organization of behavior with a mapping of the brain structures
as originally proposed in two separate figure by Fellous.
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The second fundamental notion encompassed in Fellous’s view is that of dynamical states.
Emotions such as fear and anger that are identified as basic emotions thus correspond to attrac-
tors that are temporally and/or spatially stable. This idea is also developed by Lewis [2005].
Indeed, in order to account for the bidirectional relation between cognition (appraisal) and emo-
tion, Lewis proposes to study them through the lens of dynamical systems theory. He builds on
a set of principles from this theory to describe internal states as attractors and transitions. In
this view, emotional episodes, triggered by perceptual events, physiological events or memories,
emerge from appraisal-emotion interactions. The meaningfulness of changes in the world or
the body is evaluated by the amygdala, orbitofrontal cortex and nucleus accumbens that initiate
new neurochemical patterns. This can be characterized as a phase transition that disrupts the or-
derliness of the existing state. This results in a self-amplification phase then a self-stabilization
phase: positive feedback recruits more neural components to an emerging state and negative
feedback couples them in a stabilizing regime

The work by Hasson et al. [2011] in robot emotion is in line with these inspiring models and
also illustrates the approach I follow in this thesis. Hasson and colleagues propose to represent
an embodied system as two coupled abstract controllers, respectively dedicated to interactions
with the physical and social environments. The purpose is not to claim that interactions with the
physical and social environments must be handled by separate modules or structures, but rather
to put together the processes that are related to the same type of interaction in one abstract entity
in order to insist on the interplay between them. Thereby, emotions result from the dynamics

Figure 5.5: Hasson and colleagues’ model of the coupling of an embodied agent with its environment.
The agent behavior is handled by two coupled abstract controllers, which are respectively dedicated to in-
teractions with the physical and social environments. Emotion emerges from the dynamics of interactions
between the two controllers as well as between the agent and the environment. The figure is borrowed
from Hasson et al. [2011].
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of 1) internal interactions between those two kinds of processes (physical and social) and 2)
external interactions with the environment. This idea is represented in Figure 5.5. Emotions
are grounded in the whole architecture through the integration with other perceptual, behavioral,
attentional and regulatory processes; which are also handled by the two coupled controllers.
Thereby, they are not mere responses to external stimuli. They result from the dynamics of
the interactions between the two coupled controllers as well as with the physical and social
environments. That is to say, for a robot controlled by an artificial neural network like the ones
I use in my experiments, emotions should not be merely modeled by the activation of some
neurons but rather be read in the network dynamics.

5.4 Proposed model of the emotion–cognition interaction

In this section, I will propose an abstract model of the emotion–cognition interaction. Simi-
larly to a workflow diagram, it illustrates interactions between processes rather than structures.
The model will then be instantiated in the following chapters of my thesis and neural networks
implementing the involved processes will be described in more concrete use cases.

Before I introduce my model, I shall first illustrate what a non-emotional sensorimotor archi-
tecture looks like in this kind of representation. As it is shown in Figure 5.6, an embodied system
interacts with the environment by receiving sensory input and performing action that influence
the forecoming sensations. The information processing flow involves parallel computational
processes such as reflexes (pre-wired, evolution-based), memory (temporal integration), condi-
tioning (predictions) and categorization (higher level representations). Representations obtained
from the cognitive processing can be reintegrated as input to the information processing flow.
For instance, local views from the visual input categorized as landmarks can be reintegrated to
encode objects and places. This may also require the integration of additional input – e.g. merg-
ing the what and where information. Additionally, among the parallel computational processes
are those that allow for shifting to the action space. Thereby, the information processing uses
the sensory input (in different levels of representations) to trigger behaviors in the sensorimotor
pathway. The actions that are actually performed by the system result from the competition be-
tween those sub-behaviors computed in parallel. The competition can be strict or soft, allowing
the cooperation between sub-behaviors. To complete the example given so far, this model is
instantiated in Figure 5.7 to describe the place–action architecture presented in Chapter 1 and 3.

In line with the literature reviewed above, implementing emotional competence in such an
architecture requires (partially) dedicated networks that assess events with regard to survival and
well-being. That is to say, capturing physiological and sensory inputs which carry an emotional
valence. This is illustrated in Figure 5.8 by the Valence extraction block. Like in the works
by Scherer [2001, 2010]; Grandjean and Scherer [2008], the term valence – in a broad sense –
refers to pleasantness, novelty, goal relevance, etc. Such type of processing can be unlearned,
evolutionarily acquired in order to regulate bodily functions and handle stimuli with intrinsic
affective properties (e.g. auditory or visual stimuli [Koch and Schnitzler, 1997; Öhman et al.,
2001]. But the emotional value can also be acquired through pavlovian (stimulus–stimulus) or
instrumental (stimulus–reward) learning. The result of this emotional evaluation (appraisal) is
the modulation of the computational processes that govern the system behavior. This models
the neuromodulatory function of the chemical brain system highlighted earlier [Fellous, 2004]
(and see also Chapter 4). Emotion thus influences sensing-related and action-related processes in
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Figure 5.6: Abstract model of sensorimotor architectures. The system, situated in its physical and social
environment, constantly processes sensory inputs that are reintegrated in the information processing flow
for the purpose of higher order processing. Integration refers to the construction of a new representations
either by sensory associations or reintegration of processed lower level representations. Parallel com-
putational processes include memory, conditioning, categorizations and space shifting (from sensory to
motor spaces). Higher order processing can go on to allow for the construction of cognitive maps and
goal-driven planning.
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Figure 5.7: Instantiation of the abstract model of sensorimotor architectures. Two behaviors are rep-
resented: raw stimulus-driven startle reflex and place/action navigation strategy. The parallel computa-
tional processes included in this example are reflex, attention, memory, categorization and place–action
learning (conditioning). Integration here refers to the combination of what-where information: visual
landmarks and their azimuths.
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Figure 5.8: Abstract model of emotion–cognition interaction. The system, situated in its physical and
social environment, constantly appraises events from the body and the world with a particular interest to
emotionally relevant stimuli that affect other processes. It continuously processes emotionally modulated
signals and reintegrates them in the information processing flow for the purpose of higher order pro-
cessing. Integration refers to the construction of a new representations either by sensory associations or
reintegration of processed lower level representations. Parallel computational processes include memory,
conditioning, categorizations and space shifting (from sensory to motor spaces). Higher order processing
can go on to allow for the construction of cognitive maps and goal-driven planification. Valence extraction
consists in the evaluation (appraisal) of the emotional values of more or less complex representations.

the information processing flow. For example, when occurring on the sensation space, emotional
modulation affects perception and memory. When occurring on the action space, it can modulate
attentional responses, action selection, and motor expression. Thereby, the system sensations
and actions are no longer neutral and objective, but rather emotionally colored.

5.5 General discussion

In this chapter, I presented evidence of the bi-directional influence between emotion and cog-
nition. These effects are historically studied and theorized separately, taking a particular per-
spective either departing from cognitive or emotional processes. But more and more researchers
advocate an integrated view of this relation. A variety of terms exist in the literature: interplay,
interaction, coupling, integration. These terms reflect subtle nuances with regards to the kind
and strength of the linkage. However, this again highlights the need for a clearer definition of
what belongs to the cognition domain and what belongs to the emotion domain. If most (if not
all) of the computational processes are modulated by emotion, what is “pure” cognition ? In this
documents, these terms will be used almost interchangeably.

Here, I introduced my approach to emotion–cognition interaction in the form of a conceptual,
process-oriented model. In the next two chapters, concrete implementations and experimental
results will be presented. First, we will be interested in the perception of the peripersonal
space when modulated by emotionally valenced sensory and physiological signals. Second, we
will address the use of emotional signals elicited by self-assessment to modulate computational
processes – such as attention and action selection – for the purpose of behavior regulation.
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CHAPTER 6

Emotional modulation of peripersonal
space to control robot behavior

Peripersonal space refers to the area around the body that is perceived as secure and reachable.
The ability to build such a representation is necessary in both approach and avoidance behaviors.
Here, I will argue that building such an action-centered perception of the surrounding space is an
efficient way to control the robot behavior in a way that inherently takes emotional information
into account.

I previously advocated the integration of artificial emotion with other computational pro-
cesses. Several studies show that the perception of reachability and comfort distances depends
on emotion. Thus, modeling peripersonal space is a good framework to instantiate the concep-
tual model I proposed in the previous chapter and study interactions between emotional and
perceptual processes. This will also allow me to investigate the effect of internal emotional
processes on the interaction with the physical (robot–obstacle) and social (robot–robot) environ-
ment.

6.1 Peripersonal space and the plastic perception of it

When interacting with the physical and social environment, the perception of the space sur-
rounding the body is of fundamental importance. Two notions are encompassed. First, the area
in which an external intrusion can be perceived as possibly threatening, or at least uncomfort-
able; the space where one can be. It has mostly been studied in social psychology, for example
to investigate the impact of the familiarity with a person or the impersonality of an environment
[Little, 1965]. Numerous designations exist for this concept: ‘personal space’, ‘interpersonal
space’, ‘comfort space’ [Little, 1965; Tajadura-Jiménez et al., 2011; Lloyd, 2009]. The other re-
lated notion is that of the space within arm distance; the space where one can act. It is generally
referred to as the ‘reachable space’ or ‘peripersonal space’ in the research on sensorimotricity
and action-centered perception [Rizzolatti et al., 1997; Lourenco and Longo, 2009]. For in-
stance, studies in neuroscience and cognitive psychology investigate it in the context of body
schema remapping in case of tool use [Iriki et al., 1996; Longo and Lourenco, 2006]. The term
‘near-space’ is also used, in contrast with ‘far-space’ or ‘extrapersonal space’ where objects are
out of reach.
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Although these two notions were historically studied separately and can sometimes be dis-
tinguished in the literature, I consider them as two aspects of the same process of integrating
information to represent the space around oneself: peripersonal space (PPS) as the space where
one can safely and comfortably interact with the physical and social environment. In line with
this view, a whole body of evidence suggest that comfort and reachable spaces share common
properties and rely on the same mental processes. For example, Graziano and Cooke [2006]
highlight the defensive behavior inherent to near-space perception during self-motion and ob-
ject reaching. Also, a study by Lourenco et al. [2011] indicates that people with larger periper-
sonal space representations report higher rates of (non-clinical) claustrophobia, a state of anxiety
in restricted spaces like tunnels, elevators and crowded areas. Additionally, schizophrenic pa-
tients, who have deficits in specifying interpersonal distances appropriately, are more inclined
to misjudge the boundaries of action space in physical interactions with objects and persons
[Delevoye-Turrell et al., 2011]. Iachini et al. [2014, 2016] explicitly tested the relation between
interpersonal (social) and reachable (action) spaces. It appears that the perception of comfort and
reachability distances is affected by the same factors; in the experiments in question, participant
gender, type of virtual stimuli and approach condition.

As an interface between the body and its environment, the representation of the PPS requires
multimodal integration. Indeed, interactions between the parietal and premotor cortices seem to
be essential in the defensive behavior associated with comfort space. More precisely, it has
been shown that neurons in the ventral intraparietal area (VIP) and a polysensory zone (PZ) in
the precentral gyrus of the premotor cortex similarly respond to visuotactile stimuli [Rizzolatti
et al., 1997; Graziano and Cooke, 2006]. Also, electrical stimulation in both areas leads to
similar defensive reactions like blinking, ducking, withdrawing body parts, or protecting the
face with the arm. However, Graziano and Cooke [2006] suggest that VIP is rather involved
in sensory processing for near-space while PZ is relatively more involved in defensive motor
output. Many researchers argue that the perception of PPS does not only rely on sensations but
is based on motor-related information as well [Rizzolatti et al., 1997; Coello, 2005; Coello et al.,
2008; Lloyd, 2009]. For instance, an experiment based on Transcranial Magnetic Stimulation
presented by Coello et al. [2008] showed that the motor cortical area contribute to the conscious
judgment of what is reachable.

Several findings demonstrate that the perception of the peripersonal space is plastic. For
example, reachability distance increases in case of (active) tool use [Iriki et al., 1996; Longo
and Lourenco, 2006] and contracts when additional weights increase the difficulty of actions
[Lourenco and Longo, 2009]. Of more interest in the context of my thesis, the representation
of PPS is also modulated by emotional factors. Tajadura-Jiménez et al. [2011] showed that a
positive affective state induced by pleasant music reduces the comfort distance in over-crowded
spaces. Conversely, personal space expands when placed in threatening contexts [Dosey and
Meisels, 1969]. On the other hand, positively valenced objects tend to be perceived as closer than
negative ones Balcetis and Dunning [2009]; Valdés-Conroy et al. [2012]. Coello et al. [2012]
show that there is a significant difference in the perception of distance from dangerous objects
(e.g. knife, syringe) as compared to neutral ones only when the former are oriented toward
participants. This proves that an on-line evaluation of the harmful consequences of physical
interactions alter the perception of peripersonal space, but not the semantic knowledge about
the object. Such an emotional evaluation also appears to be required in social interactions, as
Kennedy et al. [2009] showed that amygdala lesions impair the estimation of interpersonal space.
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6.2 Approach and avoidance: modeling appetitive/aversive path-
ways

From a constructivist perspective, pleasure and pain are at the basis emotional phenomena [Rus-
sell and Barrett, 1999; Damasio, 2003]. Another key component is motivation – in a broad
sense, including drives – [Scherer, 2001; Damasio, 2003; Inzlicht et al., 2015]. In Chapter 4, I
provided a brief review of the neuronal and chemical substrates that are involved in the process-
ing of these signals. For example, in mammals brain, the brainstem and hypothalamus appear to
be crucial. These regions have ascending and descending connexions transmitting information
between the body and the brain. They also represent keys centers for the neurochemical sys-
tem. Dopaminergic, serotonergic, opioidergic, cholinergic and noradrenergic systems interact
to compose the rich dynamics of emotional states [Fellous, 2004; Lewis, 2005; Berridge and
Kringelbach, 2008].

In this work, I do not aim to provide a detailed model of these complex brain circuitries.
However, I am interested in functionally mimicking simple interactions between appetitive and
aversive signals to construct dynamic, meaningful internal states. These states can thus be used
to drive the robot behavior and modulate its perception of the environment. Indeed, basic moti-
vated behavior in biological organisms can be represented in terms of approach and avoidance.
This idea is also predominant in behavior-based robotics where the sub-behaviors that guide
the robot actions are generally related to objects, locations or states that have to be reached or
avoided.

I propose to define the approach motap and avoidance motav motivation levels at time t as
follows:

motap(t) = [ap(t) + εmot.motap(t− dt)− γmot.motav(t− dt)]0,1 (6.1)

motav(t) = [av(t) + εmot.motav(t− dt)− γmot.motap(t− dt)]0,1

where ap and av respectively represent the level of appetitive and aversive motivational drives,
εmot and γmot respectively represent the integration and inhibition factors of the interaction, and
[x]0,1 = 0 if x < 0, 1 if x > 1, and x otherwise.

Similarly, a medium-term affective state aff that results from positive and negative states
aff pn and aff rw integrating reward and punishment signals rw and pn at time t is obtained as
follows:

aff (t) = aff rw(t)− aff pn(t) with (6.2)

aff rw(t) = [rw(t) + εaff .aff rw(t− dt)− γaff .aff pn(t− dt)]0,1

aff pn(t) = [pn(t) + εaff .aff pn(t− dt)− γaff .aff rw(t− dt)]0,1

where εaff and γaff respectively represent the integration and inhibition factors, and [x]0,1 = 0
if x < 0, 1 if x > 1, and x otherwise.

The affective and motivational states will be used to modulate the information processing
flow in the continuous representation of the robot peripersonal space as described in the next
section.
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6.3 Proposed model for emotional modulation of peripersonal space

“The crucial factor modulating the size of personal space, then, could be repre-
sented by approach-avoidance actions that reduce or increase this size depending
on the social-emotional valence of external stimuli and by motor plans to react to
rewarding or threatening objects.”

(Iachini et al. [2014])

As seen earlier, peripersonal space is a multimodal sensorimotor interface with the world; a
representation that merges action-centered perceptions of the near-space. Influenced by emotion,
it is inherently related to both approach and avoidance behaviors. If we consider a mobile robot
with two degrees of freedom, we can represent various states of its perception of its peripersonal
space like in Figure 6.1. Its comfort zone can contract or dilate according to the pleasantness of
the current affective state. Also, appetitive and aversive stimuli respectively induce an extension
or a retraction of the reachable space in the corresponding direction.

Figure 6.1: Top view of different forms of modulation of robot peripersonal space. FAR-LEFT: No
modulation. LEFT and CENTER-LEFT: The comfort zone contracts or dilates according to the pleasant-
ness of the affective state. CENTER-RIGHT, RIGHT, and FAR-RIGHT: Appetitive and aversive stimuli
respectively induce an extension or a retraction of the reachable space in the corresponding direction.

Maintaining a representation of the surrounding space relies on memory. For example, while
writing these lines, I am perfectly able to reach for the cup of coffee I laid on the table a minute
ago while still looking at the screen of my computer. Graziano et al. [1997] reported neural
activities in the ventral premotor cortex that keep track of objects located near a monkey’s body
after the lights are turned off. These neurons continue to fire when, unknown to the monkey,
these objects are withdrawn. In this model, I thus propose that peripersonal space perception is
based on a working memory that temporally integrates sensorimotor information. For instance,
the robot can remember the position of an obstacle it avoided. Also, it can update a path in-
tegration vector associated with a goal according to the speed and direction of instantaneous
movement. As illustrated in Figure 6.2, information from the working memory is combined
in a unique representation that merges action-centered perceptions at any time. Merging com-
fort (avoidance-related) and reachable (approach-related) spaces, is performed using a dynamic
neural field (DNF, described in Appendix and based on [Schöner et al., 1995]). This will be
described in more details in the next section.

In line with the conceptual model presented in Chapter 5, these perceptions are emotionally
modulated in the sensory and in the action space. The affective and the motivational states
respectively modulate the input of the working memory (subjective perception) and the way this
information is used to illustrate action tendencies in the representation of the peripersonal space
(motivated perception). For example, an appetitive drive makes a desirable object seem more
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Figure 6.2: Model for building a representation of the robot peripersonal space. It is based on working
memory taking input from various sensory modalities. PPS is modulated by the robot emotional states in
order to integrate a subjective and motivated perception of its environment.

reachable. Likewise, a defensive motivation highlights aversive stimuli in the comfort space and
generates an avoidance behavior.

Hasson and Gaussier [2010] proposed a model of working memory allowing robots to asso-
ciate several goal locations to the drives they satisfy (e.g. hunger and thirst). Proprioceptive path
integration fields are used to return to the resource locations when needed. Although the work-
ing memory has limited capacity, the architecture is able to handle multiple goals by replacing
the least used memory field when new resources are discovered. Since the implementation of
such mechanisms is out of the scope of my thesis, I invite the reader to refer to the principles
involved in this architecture for more complex use cases. In this work, the number of sensory
input is small enough to bypass these issues.

6.4 Single-resource problem: a survival task

As stated earlier, the representation of emotionally modulated perception of the near-space can
be used to control robots approach and avoidance behaviors. In what follows, I present two
experiments that illustrate this idea in the context of a survival problem. The robot has two
drives: feeding and protecting its own physical integrity. Of particular interest in terms of ac-
tion selection will be the situations where approach and avoidance are in contradiction. But
before I can present these experiments, I shall first describe some implementation details and
the experimental method.
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6.4.1 Implementation details

To determine the motivational states as described above, let us first consider two survival-related
drives: feeding (appetitive) and safety (aversive). In the latter, we calculate the mean activity on
the Ns proximity sensors si to obtain the level th of threat at time t:

th(t) =

�
i si

Ns
(6.3)

It is possible to draw a parallel with the rodents medial part of the superior colliculus which
activation is linked to the detection of predators and other sources of threat (Comoli et al. [2012]).
A particular sensory information is thus associated with avoidance without recognition.

The feeding drive is guided by the perceived level of a simulated physiological variable,
based on the model of hypothalamus (HTH) proposed in Hasson [2011]. The level fd of the
physiological variable associated to the food resource at time t is:

fd(t) = αfd .(FDmax − fd(t− dt))× F (t)− βfd .fd(t− dt)× (1− F (t)) (6.4)

where FDmax = 1 is the maximal variable level, αfd and βfd respectively indicate the ingestion
and the consumption speed factors and F is the food ingestion signal. Using this HTH model
gives the robot the ability to anticipate the lack of food in order to trigger the appropriate behav-
ior. For example, let us consider the level of the physiological variable increases and decreases
linearly. Considering both functions reach the maxima simultaneously, with the HTH model,
the perceived level of the physiological variable drops below the satisfaction level more quickly
in the consumption phases. Figure 6.3 shows a comparison between a direct perception of the
physiological variable level and the HTH model to illustrate the interest of such a mechanism.

Figure 6.3: Comparison between a direct perception of the level of a physiological variable (PhV) and
the HTH model (30 feeding cycles each). We suppose the PhV increases and decreases linearly in our
system. The results shows how using the HTH model allows for anticipating the lack of food and prevents
from depletion.

When the level of its physiological variable drops below the satiation threshold, the robot
has to return to the resource in order to feed. To do so, starting from the resource location, the
return vector is calculated by integrating the speed and direction of instantaneous movements.
The activity p of each neuron x in the path integration field of size N at time t is given by the
following equation:

px(t) =
�
px(t− dt) + vlin(t)cos

�
d(t) + 2πx/N

��
.(1−Res(t)) (6.5)
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where vlin the linear speed, d the direction, Res the binary reset signal occurring when the
resource is detected. It is worth noting that the mathematical proof provided by Gaussier et al.
[2007] requires the application of a cosine-shaped mask but that a Gaussian bell also works in
practice.

The feeding drive becomes active whenever the level of the physiological variables drops
below a satisfaction threshold fthld. The robot then uses the path integration vector to return to
the resource. Similarly, obstacle detection triggers the defensive drive and generates an avoid-
ance behavior. In some case, these two low-level motivations can be contradictory, e.g. if there
is an obstacle (object or other robot) on the way to the resource. The dynamic interactions be-
tween the appetitive and aversive drives allow them to inhibit each other, which either favors the
approach or the avoidance behavior (see equation (6.1)).

To build a combined perception of the comfort (avoidance-related) and reachable (approach-
related) spaces, a dynamic neural field (DNF, described in Appendix and based on [Schöner
et al., 1995]) is used. Appetitive and aversive stimuli given as input generate attractors and re-
pulsors. Indeed, dynamic neural fields [Amari, 1977] have interesting properties in the sense of
dynamical systems (bifurcation, fusion, hysteresis, memory) that allow dynamical filtering (dis-
tal competition and proximal cooperation). As a result, the approach and avoidance information
is merged into a unique action-centered perception of the peripersonal space. This representa-
tion contains two pieces of information that are necessary for the control of robot behavior. The
level of the most activated neurons is used to calculate the robot linear speed. Rotational speed
is deduced by a readout of the output derived signal with respect to the current orientation. This
is explained in more detailed in Appendix A.

6.4.2 Experimental method

To study the impact of the emotional modulation of the peripersonal space on the robot behavior,
I compare the full architecture described so far (labeled Model version) to two altered versions:

– NoCompet version: The robot perception is modulated according to its emotional state.
However, there is no lateral inhibition between punishment and reward signals nor between
appetitive and aversive drives.

– NoModul version: No modulation of approach/avoidance is performed at all. Robot drives
only serve for triggering direct objects avoidance and returns to the resource location. This
version is the closest to a classical reactive architecture in which approach and avoidance have
the same weight.

6.5 Experiment 1: Real robot Vs. static obstacle

In this experiment, I use a customized mobile robot shown in Figure 6.4 based on the Robulab
platform by Robosoft. The latter has 9 ultra-sound proximity sensors, of which only a subset
–covering a 180 degrees-wide front field – is used. A light sensor is placed underneath to detect
red-colored surfaces. As shown in Figure 6.4, a 45 cm x 45 cm red zone in the room simulates
a resource. To compare the three versions of the control architecture, a cardboard box is put
on the resource location to create a conflict between approach and avoidance. The parameters
described above are set to the values given in Table 6.1
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Figure 6.4: Experiment 1 setup and environment. LEFT: The mobile robot platform is 40 cm-wide, 50
cm-long, 140 cm-high, with 2 driving wheels and 2 idler wheels. RIGHT: The experiments are run in one
of the rooms of our lab, approximately 8 m long by 6.5 m wide.

6.5.1 Results

Fig. 6.5 shows multiple trajectories observed in a regular case (no obstacle) as well as when the
three architecture versions – Model, NoCompet and NoModul – face a static obstacle put on the
resource. In the Model case, the robot is able to reach the resource, even after a deviation due
to its avoidance behavior. This is allowed by the inhibition of the defensive sub-behavior by the
appetitive one when the level of the physiological variable becomes critical. On the other hand,
with the two other architectures, the robot fails to feed. Either the defensive drive dominates the
robot behavior (NoCompet version, and green and blue trajectories with NoModul version) or
the latter oscillates between approach and avoidance (purple trajectories with NoModul version).

6.5.2 Discussion

With the NoCompet version, there is an implicit prioritization of the sub-behaviors due to their
respective dynamics. Thus, the defensive drive has a bigger impact on robot behavior. The
appetitive drive increases more slowly. When, it’s high enough it can only cancel the avoidance
behavior, making the robot stop in front of the obstacle.

In the NoModul case, the robot either stops in front of the obstacle or diverges. Depending
on the situation, if the approach and the avoidance fields are perfectly opposed, they cancel each
other quite quickly. Otherwise, the system oscillates between the attractor and the distractor
respectively created by the appetitive and the aversive sub-behavior. Thus, the robot accumulates
errors in the path integration fields and is unable to reach the resource. It is worth noting in
the former case, with the NoCompet architecture, deadlocks occur farther from the resource in
comparison with the NoModul architecture. This is due to the robot extending its comfort zone
because of negative affective states induced by collision with the box.

On the other hand, with the Model version, the approach sub-behavior can inhibit the defen-
sive one when the level of the physiological variable becomes too low. Even if the robot deviates
from the resource due to the avoidance mechanism, it is able to access the resource afterwards.
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Figure 6.5: Experiment 1 results. TOP-LEFT: Robot trajectories in a regular case of returning to the
resource. Colored gradients from light to dark represent the decay of the physiological variable. Different
colors are used for different trajectories. TOP-RIGHT: Trajectories where the robot is able to reach the
resource by pushing the obstacle (Model version). White dots at the end of trajectories indicate a new food
ingestion. BOTTOM-LEFT: Trajectories where the robot stops before reaching the resource (obstacle-
induced deadlock with NoCompet version). BOTTOM-RIGHT: Trajectories where the robot stops or
diverges before reaching the resource (obstacle-induced deadlock with NoModul version).

In conclusion, the model provides an action-centered perception of the peripersonal space that
allow efficient control of the robot behavior.
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6.6 Experiment 2: Multirobot competition in simulation

This experiment was performed on the Webots simulator in order to avoid damaging real robots.
We simulate two robots identical to the one described previously moving in a 17.5 m x 15 m
environment. In this experiment, αr = 0.05, meaning the resource ingestion is slower than in
the previous experiment in order to observe the competition between the two robots. All other
parameters are kept as in experiment 1 (see Table 6.1).

We define a cycle as an interval in which a robot, initially satisfied (non-hungry), consumes
the energy obtained from the previous ingestion and returns to the resource in order to feed once
again. Each of these cycles is considered as an independent sample of the multirobot competition
for the resource. Once its feeding drive satisfied, a robot get away from the resource. It randomly
navigates in the environment updating its path integration field to be able to return to the resource
when needed. Similarly to the previous experiment, with NoModul and NoCompet versions,
robots are expected to be unable to access the resource until the other is done feeding. However,
in the Model version, robots should be able to fight for the resource by pushing each other.

To test this hypothesis, three measures are used:
– min_phyvar: Lowest level of the physiological variable associated with the feeding drive,
– nb_own_access: Number of own accesses to the resource within a full cycle,
– nb_other_access: Number of other robot accesses to the resource within own cycle.
The first one is a measure of food deplation, i.e. how close to starvation the robots get. The

two latter quantify cycle interruptions. Besides, we consider two variables:
– version: Which version is used (each of the 3 versions is associated with a different group),
– modcomp: Whether our model is used (the NoCompet and NoModul versions are gathered

in one group).

6.6.1 Results

Statistical comparison

I compare the three architectures in 15-minute simulations, which corresponds to a total of N=51
cycles (samples, NModel=16, NNoCompet=18, NNoModul=17). The means, standard deviation,
skewness and kurtosis of the depend variables are the following:
min_phyvar: µ=0.68, σ=0.07, skewness = 0.81, kurtosis = 2.54;
nb_own_access: µ=1.92, σ=1.78, skewness = 2.13, kurtosis = 3.82;
nb_other_access: µ=1.47, σ=1.14, skewness = 2.96, kurtosis = 10.89.

Since none of these variables follows a normal distribution so we perform non-parametric
tests, the non-parametric Kruskal-Wallis (K-W) test is performed [Corder and Foreman, 2009].
This test shows that there is no effect of version nor modcomp on min_phyvar (resp. χ2 =
0.45, p = 0.80 ; and χ2 = 0.00, p = 0.95). Mean ranks are 25.81 for Model, 27.72 for
NoCompet, and 24.35 for NoModul. Regarding nb_own_access, there is a strong tendency with
modcomp (χ2 = 3.81, p = 0.05) but no significant effect of version was found (χ2 = 5.36, p =
0.07) with a mean rank of 30.94 for Model, 21.25 for NoCompet, and 26.38 for NoModul.
However, there is a main effect of both modcomp and version on nb_other_access (resp. χ2 =
6.03, p = 0.01; and χ2 = 8.19, p = 0.02). Here, mean ranks are 31.78 for Model, 20.61 for
NoCompet, and 26.26 for NoModul.
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Let us consider two additional measures bin(nb_own_access) and bin(nb_other_access) re-
spectively equal to 1 if nb_own_access and nb_other_access are greater than 1, and 0 otherwise.
Indeed, in the case of a perfect alternation of the robots over the resource, each should access
it exclusively and only once in every cycle. Any different configuration could correspond to
a feeding cycle being interrupted by another robot. In this case, we find a strong tendency
on bin(nb_own_access) with both modcomp and version (resp. χ2 = 3.68, p = 0.05; and
χ2 = 6.01, p = 0.05) as well as a significant effect on bin(nb_other_access) (resp. χ2 =
5.19, p = 0.02; and χ2 = 6.73, p = 0.03).
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Figure 6.6: Experiment 2, Statistical results. Red lines represent the median and boxes illustrate the
two middle quartiles of the data ([25–75%]). Whiskers extend the box ranges by a factor of 1.5. Plus
marks represent data that fall out of the whisker range. No effect has been revealed on food deple-
tion (min_phyvar). But, a strong tendency is found with modcomp variable on nb_own_access and
with version on bin(nb_own_access). There is also a main effect of version on nb_other_access and
bin(nb_other_access).

Behavioral comparison

When the NoCompet or NoModul architectures are used, the robots tend to be unable to access
the resource before it is free – i.e. before the other robot is done feeding. However, with the
Model version, they can push one another and compete for the resource. This is due to the
approach sub-behavior inhibiting the defensive one.

Figure 6.7 shows arousing areas as well as positively and negatively valenced ones in the
environment. Arousal and valence are extracted from equations (6.1) and (6.2) as follows:
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valence = aff = aff rw − aff pn and arousal = 1/2(motap +motav)
We notice that in the NoCompet case, the area around the resource is one of the most arousing

because both drives are simultaneously active. The robots generally need to feed but avoid
collisions with the other one currently on the resource. Also, rewards are only obtained right on
the center of the resource and punishments around it. However, with the Model and NoModul
architectures, the emotional states are generated exactly in the same way even though, in the
latter, they do not modulate robots PPS; and thereby their behavior. We see that most arousing
areas are less localized than in the NoCompet case. Indeed, the competition between approach
and aversion makes them inhibit each other and avoids arousal saturation. But, with the Model
version, negative valence reaches a lower level than with the two other architectures. This is due
to the robot tendency to avoid collisions less than with NoCompet and NoModul.

Figure 6.7: Experiment 2, Heatmaps representing arousing (BOTTOM) and positively and negatively
valenced (TOP) areas in the environment. They are averaged for both robots. The brackets on the color-
bars show the intervals between min and max values in each case. The columns respectively correspond
to Model, NoCompet and NoModul.

6.6.2 Discussion

The results regarding the min_phyvar measure show there is no significant difference between
the architecture version in terms of food depletion. This is due to the random exploration fol-
lowing feeding phases and to resource consumption being slower that its ingestion. This leaves
the possibility for the robot to alternate in resource access. Yet, it is interesting to observe how
this alternation occurs, i.e. how robots interact in this survival task. Indeed, there is a social
dimension that emerges from the emotional modulation of the robot peripersonal space.

Similarly to Experiment 1 (Sect. 6.5), the robots tend to be unable to access the resource
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before it is free when the NoCompet or NoModul architecture is used. In the NoModul case,
collisions between the robots occur due the appetitive and aversive behaviors having exactly the
same weight. Therefore, some cycle interruptions can happen. Yet, the robot generally deviates
from the resource in order to avoid the other robot currently feeding. We argue that interactions
between the robots can be seen as emotionally and socially communicative in the NoCompet
and Model versions. With the former, robots seem either patient or fearful. Their modulation of
their PPS makes them extend their comfort zone. They are more sensitive to aversive stimuli and
defensive sub-behavior tends to take over the appetitive one. On the contrary, using the Model
version, the robots seem more proactive and determined. When the resource is not available
they try to push whatever is on their way. In both architectures, the robots build a representation
of their reachable and comfort areas. They also interact in a way that expresses aspects of
their internal states. However, when the appetitive and aversive motivations cannot inhibit each
another, it can lead to deadlock situations like in Experiment 1 (Sect. 6.5).

6.7 Impact of emotion on vision-based object reaching

The two previous experiments showed the behaviors obtained with the emotional modulation
of peripersonal space on a reactive navigation architecture. The environment was dynamic but
the sensory information quite basic. Here, I will consider a vision-based object reaching task.
A 60 degrees firewire camera is directed toward a platform where the experimenter puts one of
the three objects shown in Figure 6.8. One is desirable (toy), one is neutral (cable roll) and one
is threatening (snap-off utility knife). The purpose is to compare the objects reachability as it
is perceived by the robot depending on their desirability. That is to say, the level of distortion
induced by the detection of these objects on the robot reachable space. For the sake of simplicity,
there is no actual object reaching using a robotic arm.

These objects are learned by the system in a pre-experiment phase based on a visual system
that is similar to the one described in Chapter 1 and 3: i) a saliency map is created using a corner
detection algorithm convolving gradient images with a DoG (Difference of Gaussian) filter, ii)
additionally, a grayscale-signatures vector classifies the regions of interest encoded by log-polar
transformation of region pixels (intensity image), iii) a color-signatures vector classifies the
mean color of the regions of interest. The visual signatures are associated to the corresponding
signatures through supervised learning (conditioning with the Widrow and Hoff [1960] rule).
The system also learns a set of local views that should not be associated to any of the objects in
order to be robust to background “noise”.

In the experiment, the head direction field is used to integrate visual stimuli – i.e. recog-
nized local views – in the perception of the robot peripersonal space. An approach behavior
is simulated by a motivation to reach recognized objects; proportionally to the level of recog-
nition. This will serve as a baseline for the perception of reachability in the following results.
Additionally, desirable and threatening objects respectively trigger supplementary appetitive or
aversive motivations. These inputs are merged in neural field PPS of size N representing the
peripersonal space, like in the previous experiments. Thus, the perception of object reachability
can be calculated as follows: reachability = max

i=1..N
PPSi
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Figure 6.8: Visual object recognition. TOP: 3 objects are put in front of the camera, from the left to the
right: a toy (positive/desirable), a cable roll (neutral) and a snap-off utility knife (negative/threatening).
BOTTOM: Gradient image convoluted with DoG used to detect landmark. Local views of the desirable,
neutral and threatening objects are recognized. They are represented by blue, yellow and red circles
respectively. Several other points of interest are detected on background objects but are not relevant to
the task (white circles).

6.7.1 Results

Fig. 6.9 shows how reachability perception varies from one object to another using the three
architectures. In our system, the reachability depends on the object recognition level. There-
fore, in the following, we will consider reachability perception proportionally to the baseline
corresponding to an estimation of reachability only determined by the object recognition level.

Using the Model version, the desirable object seems more reachable than the neutral one.
Also, the threatening object is perceived as less reachable due to the harm aversion inhibiting the
approach behavior. On the contrary, in the NoCompet case, the negative one reachability in not
altered by its aversive caracteristics since no competition between motivations occurs. However,
similarly to Model, the positively valenced object is indeed perceived as more reachable than
the others. Lastly, the NoModul version perceives reachability in a rather binary way because no
modulation of PPS is operated.

6.7.2 Discussion

Our model succeeds in accounting for the objects desirability in their reachability perception.
Thanks to the emotional modulation and the competition between aversion and approach, pos-
itive and negative objects respectively seem more and less reachable than neutral ones. In ad-
dition, this experiment shows how visual sensory input can be used in the framework of the
proposed model of peripersonal space. For example, in navigation tasks like in Experiments 1
and 2, such additional sensory stimuli can be merged with path integration and proximity detec-
tion in order to build robot PPS. Thus, the objects to that the robots needs to reach or to avoid
could be recognized visually.
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Figure 6.9: Levels of perceived reachability with respect to the three objects. The system perceives
reachability depending on the object recognition level. Therefore, the results should be considered in
comparison with the baseline (estimation of reachability only determined by the object recognition level,
shown in grey dotted line). TOP: Model version. Positive and negative objects respectively seem more
and less reachable than neutral ones. CENTER: NoCompet version. The desirable object seems more
reachable than the other. However, neutral and threatening one reachability are perceived equally. BOT-
TOM: NoModul version. Reachability is quite binary, only depending on whether an object is recognized.
In all cases, an unknown object is not considered in the reaching task and therefore do not alters the robot
peripersonal space.

6.8 General discussion

In this chapter, I instantiated the conceptual model I proposed in Chapter 5 in the case of emo-
tional modulation of the peripersonal space. In line with the related literature [Lourenco et al.,
2011; Iachini et al., 2014, 2016], the term of peripersonal space here refers to the process of in-
tegrating sensorimotor information in order to represent the space around oneself. Two notions
are unified: the personal space needed to feel safe and comfortable, and the reachable space in
which it is possible to act on objects. In both cases, there is evidence of the effect of emotions
on this representation of the near space [Balcetis and Dunning, 2009; Tajadura-Jiménez et al.,
2011; Coello et al., 2012; Valdés-Conroy et al., 2012].

Following a constructivist approach, the robot emotional state emerges from interactions be-
tween an appetitive and an aversive pathway using simple pleasure (reward), pain (punishment)
and motivation (approach/avoidance) signals. The dynamics of the emotional state influence
other computational processes to provide the robot with a subjective and motivated perception
of the objects and space around it. This approach was tested in two types of experiments. I
demonstrated that the so obtained representation of the peripersonal space is sufficient to control
the robot behavior in a survival task. I also showed the emotional modulation of perception has
an impact on the way robots interact. With the NoCompet and Model versions of the architec-
ture, the robots behave in a way that expresses aspects of their internal states. With the former,
the robots seem either patient or fearful. Their modulation of their PPS makes them extend their
comfort zone. They are more sensitive to aversive stimuli and the defensive sub-behavior tends
to take over the appetitive one. On the contrary, using the Model version, the robots seem more
proactive and determined. When the resource is not available they try to push whatever is on
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their way in order to feed. Thereby, they display an aggressive behavior. In a way, these results
prove that when emotion is integrated in an interaction loop with cognition, internal dynamics
have an effect on external interactions with the physical and social environment. Moreover, in
the last experiment, I use the model in a different application context and show that the model
accounts for the impact of desirability on the perception of reachability. This is consistent with
the literature [Balcetis and Dunning, 2009; Tajadura-Jiménez et al., 2011; Coello et al., 2012;
Valdés-Conroy et al., 2012] and demonstrates the genericness of my model, in terms of the type
of stimuli and the nature of the tasks.

Neural population coding is a biologically inspired form of information coding [Taube et al.,
1990; Bullmore and Sporns, 2009]. I chose to uniformly use it for sensory inputs, working mem-
ory and peripersonal space representations. This form of coding could also directly be exploited
for action selection and motor control. Moreover, the use of DNF to merge representations of
the reachable and comfort space allowed us to take advantage from its fusion and bifurcation
properties for the purpose of stable and smooth control

Using the information about a distant “food” resource in the perception of the peripersonal
space might seem contradictory with the notion of near-space. Indeed, peripersonal and extrap-
ersonal space representations involve distinct neurological systems [Previc, 1998]. Although the
architecture proposed here do not aim to precisely model the brain structures involved in these
processes, it would be interesting to more-closely investigate how the far-space information is
used to perform actions in the near-space. In fact, in our system, the information about the dis-
tant destination is mixed with information about proximal obstacle to deduce actions to perform
in the area near the body. And, similarly to the perception of reachable objects, there is also ev-
idence that the desirability of distant locations modulate the perception of their distance [Alter
and Balcetis, 2011].
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Table 6.1: Experiments 1 and 2: Parameters values

Value Description
εmot 0.8 Integration factor (motivational state)
γmot 0.2 Inhibition factor (motivational state)
εaff 0.2 Integration factor (affective state)
γaff 0.8 Inhibition factor (affective state)
αfd 0.1 Ingestion speed (Exp 1)
αfd 0.05 Ingestion speed (Exp 2)
βr 0.01 Consumption speed
fthld 0.5 Satiation threshold
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CHAPTER 7

Emotional Metacontrol: top-down
regulation based on self-assessment

In this chapter, I will introduce the concept of Emotional Metacontrol as an additional example of
emotion–cognition interaction. It consists in using emotional signals elicited by self-assessment
to modulate other computational processes for the purpose of behavior regulation. By self-
assessment, I mean the capacity to evaluate one’s own abilities and performance.

In the model I will present, this process is performed on the fly, relying on novelty detection.
The so-computed self-assessment may lead to two emotional states – namely frustration or bore-
dom – both signaling the need for top-down regulation of behavior. I will present experiments
highlighting the interest of Emotional Metacontrol in two different contexts: action selection in
a navigation task (Section 7.5) and attention modulation in a visual search task (Section 7.8).

7.1 From novelty to emotion via self-assessment

In humans and animals, emotions are often elicited by extrinsic factors: e.g. fear by threatening
objects or agents, joy by pleasant events, disgust by undesirable stimuli. But intrinsic infor-
mation can also carry an emotional valence. In particular, novelty plays a significant role in
emotional processes. It is related to surprise which is one of the basic emotions identified by
Ekman and Friesen [1971]. In addition, it is considered by appraisal theorists to be an impor-
tant factor in the evaluations responsible for emotion elicitation [Scherer, 2009; Grandjean and
Peters, 2011].

In artificial intelligent systems, the need to notice changes in the environment was identified
long ago. In the pioneering work of Brooks [1986], monitoring changes is one of the levels
of competence in the layered control paradigm proposed for behavior-based robotics. There is
also a large literature on novelty detection in artificial neural networks and machine learning
(see the review by Marsland [2003]). Kohonen and Oja [1976] proposed the first novelty filter
based on neural networks. It consist of a pattern recognition model where an input is compared
to the learned patterns in order to extract the amount of novelty in it. Besides, self-organized
maps provide methods of novelty detection for the purpose of unsupervised learning [Kohonen,
1993]. In the Adaptive Resonance Theory developed by Carpenter and Grossberg [1988], the
vigilance threshold determines if an input is novel enough to recruit a new category encoding it.
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More recently, Marsland et al. [2005] proposed a novelty filter implemented on mobile robots
for the purpose of inspection. A habituation mechanism in the output layer reduces the weights
of the most active categories of a clustering layer in order to detect abnormal inputs.

Noticing novelty amounts to identifying differences between current and usual/previous sit-
uations. All the above methods filter external novelty using pattern matching. Another way is
to assess the ability to predict inputs based on past experience. Researchers in the field of arti-
ficial intrinsic motivation have used this idea of measuring prediction errors for the purpose of
self-improvement [Schmidhuber, 1991; Oudeyer et al., 2007]. In psychology, this theory dis-
tinguishes activities that are undertaken because of their inherent interest and enjoyability from
those motivated by a separable outcome [Deci and Ryan, 1975; Csikszentmihalyi, 1991]. In-
trinsic motivation is thus implicated in spontaneous exploration, cumulative learning and open-
ended development. In the work by Schmidhuber [1991], the system builds a model of the world
based on which it predicts the next sensations given current sensations and planned actions. Pre-
diction progress is used as an intrinsic reward for the system. Another artificial curiosity model
is the one developed by Oudeyer et al. [2007]. In order to increase the robot learning capacities,
a meta-predictor estimates the errors of a module predicting sensorimotor signals. Thereby, the
robot engages in actions of increasing complexity, avoiding situation that are either too familiar
or too novel.

This notion of “optimal” level of novelty is conceptualized by Csikszentmihalyi [1991] as
the flow channel, illustrated in Figure 7.1. In his flow theory, the optimal experience lies in the
compatibility between skills and challenges. When people are too competent for a task, they get
bored. But when the task is too difficult, people get anxious and frustrated. Moreover, according
to Fellous [2004], curiosity and boredom are emotions that decouple stimuli from responses.
From a functional perspective, these states foster exploration and allow us to try new things.
On the other hand, in the reward-centered model proposed by Rolls [2005], frustration may be
produced by the omission of an expected reward, or the termination of a reward . Another way
to put is, as Scherer describes it, that it is due to someone or something preventing us from

Skills
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ll
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n
g
e
s

Low
Low

High

High

Boredom

Frustration

Flow Channel

Figure 7.1: Optimal experience. Interesting and enjoyable activities are those maintaining an equilibrium
between skills and challenges. Outside the flow channel, people experience either frustration or boredom.
The figure is readapted from [Csikszentmihalyi, 1991].
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reaching a highly relevant goal [Scherer, 2009].
The purpose of this work is not to give a definition of ‘frustration’ and ‘boredom’; nor to

exhaustively enumerate their triggering factors, functions or associated responses. In contrast,
I consider the dual, undesirable states characterizing an incompatibility between skills and task
demands. These states emerge from a process of self-assessment analyzing the dynamics of nov-
elty detection, that is prediction errors anchored in the agent sensorimotor experience. The terms
‘frustration’ and ‘boredom’ turn out to describe these states well [Csikszentmihalyi, 1991]. In
addition, as states above, these emotional states may function as signals affecting other compu-
tational processes in order to maintain the system in an intermediate state – where it is neither
frustrated nor bored.

7.2 Self-assessment in humans

The evaluation of one’s own behavior and performance is an important feature of the self-
concept; i.e. the internal representation of oneself. People may engage in this activity because
of social feedback, out of intellectual curiosity, or due to enforcing events (e.g. failure, illness).
Self-evaluation has been studied by psychologists in order to determine which factors motivate
these processes and when they operate Sedikides and Strube [1995]; Taylor et al. [1995]; Kwang
and Swann [2010]. In this literature, self-assessment refers to the desire to have accurate infor-
mation about oneself; and one’s abilities in particular. It is thought to allow individuals to select
goals and activities that are in accordance with one’s skills. Self-assessment is distinguished
from self-enhancement (seeking a more positive self-representation), self-verification (seeking
consistency in the self-representation) and self-improvement (seeking the improvement of one’s
abilities). Taylor et al. [1995] point out that these processes may be elicited by situations of
threat/failure or the anticipation of future threat/failure.

Self-evaluation capacities appear quite early in toddlers and progressively develop over the
years [Stipek et al., 1992; Kelley et al., 2000]. Three stages are observed. First, children ex-
perience success-induced joy and easily switch to other tasks in case of failure. Yet, they do
not seem to process evaluation in a self-reflective representation. It is only around the age of
two that infants emotionally react to failure (e.g. frowning, calling for help) and express pride
or shame. They also start anticipating adult reactions, seeking approbation and positive feed-
back when succeeding, and avoiding negative reactions (e.g. looking away) when failing. Later,
children begin to evaluate and emotionally react to their performance independently of adult
reactions. They also show signs of competitiveness as they enjoy winning and completing task
as compared to others.

The medial prefrontal cortex plays a key role in social knowledge [Beer et al., 2010; Wagner
et al., 2012]. More specifically linked to self-referential cognition, its ventral part (vmPFC) is
associated with abstract representations about self. For instance, Moran et al. [2009] asked par-
ticipants to press a button when they saw green words (oddball items) in a series of sequentially
presented words. Also included in the sequence where neutral and biographical items colored
in white. The study revealed that vmPFC was activated by self-relevant words (e.g. participants
first name or pet name). But self-evaluation also occurs when people evaluate their actions, be-
haviors, and abilities in the moment. In an experiment conducted by Beer et al. [2006], patients
with orbitofrontal (OFC) damage – who are generally known to exhibit objectively inappro-
priate social behavior – evaluated the appropriateness of behavior after a self-disclosure task
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with a stranger, then after watching a video of the interaction. This study suggests an impor-
tant role of OFC in on-line self-evaluation, associated with the generation of social emotions
(e.g. embarrassment) needed for interpersonal behavior. Additionally, Beer et al. [2010] pro-
vide supplementary evidence of the role of OFC in on-line self-evaluation, more specifically
the suppression of a natural bias toward more positive evaluations (see [Sedikides and Strube,
1995; Kwang and Swann, 2010] on self-enhancement). The results also show the involvement of
mPFC in on-line self-evaluation, possibly because participants relied on abstract self-knowledge
in the absence of feedback on their task performance.

Less dependent on semantic knowledge, and perhaps more related to my work, is the impli-
cation of the anterior cingulate cortex (ACC) in evaluative processes. As mentioned in Chapter
4, ACC is thought to mediate conflict monitoring [Botvinick et al., 2004]. More precisely,
conflicts may arise at the level of stimulus and/or response. For example, in the stroop effect,
incongruence may be detected with “ineligible” color names (e.g. colors that are not in the set
of possible responses) [Milham et al., 2001] or with rectangle-shaped response cues in “eligi-
ble” colors [Kim et al., 2011]. But it can also appear when overriding prepotent responses (i.e.
responses associated with “eligible” incongruent color names). Put more clearly and making the
analogy with my model, conflict – or novelty, in our case – can be detected at a purely sensory
level (unexpected stimulus) or at a sensorimotor level (inappropriate response with respect to
stimulus, task, or context). Interestingly, ACC activation is observed in both sorts of conflict
monitoring [Kim et al., 2011] and in the top-down control of response selection and preparation

7.3 Self-assessment in artificial systems

In the previous section, I mentioned the research works by Schmidhuber [1991] and by Oudeyer
et al. [2007] as examples of self-assessment components aiming to foster learning and devel-
opment in artificial systems. These models pertain to the knowledge-based class of intrinsic
motivation models: what is evaluated is the systems ability to build representations and predict
the outcome of its actions. A second family of models try to rather focus on competences [Barto
et al., 2004; Schembri et al., 2007]. This kind of method is highly influenced by reinforcement
learning approaches [Sutton and Barto, 1998]. In the model proposed by Schembri et al. [2007],
skills are represented by actor-critic modules, the intrinsic reward being the critic’s evaluation er-
ror. The reader can refers to [Mirolli and Baldassarre, 2013] for a review of intrinsic motivation
models.

Other robotic models take a rather different approach to self-assessment. For example, Wal-
lace [2005] addresses the issue through the lens of the software validation. In the author’s view,
monitoring the run-time behavior of an intelligent system is a solution to overcome the problem
of incomplete specifications. In a symbolic architecture where the agent behavior is determined
by a decision-tree organizing, the self-assessment module represents a set of high-level con-
straints that are used to bias the decision process. Yet another different but related approach
is that of Arkin and Ulam [2009]. From the perspective of military applications, the proposed
model is aimed at autonomous lethal robot with ethical capabilities. In this context, the self-
evaluation module assesses the battle damages. Interestingly, the effect of this monitoring is to
trigger moral emotions like guilt and remorse. These internal states are used to limit or cease
lethal actions during run-time or to adapt the robot ethical module for an improvement of future
behavior.
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7.4 Modeling novelty-based self-assessment

The model of self-assessment I describe here is based on novelty detection. For that purpose,
the robot has to build an internal representation of the ‘normal’, ‘usual’ situations (Grandjean
and Peters [2011]). Thereby, it can notice when the current situation is different from what it
learned. In order to represent the current sensorimotor experience, I rely on the mathematical
definition of the perception proposed by Gaussier et al. [2004]. More specifically, I will consider
that perception is the integration of sensations and actions over a sliding time window. Thus,
Per is a tensorial product between these two input vectors Sen and Ac with a recurrent link of
weight α:

Per(t) = α.P er(t− δt) + (1− α)(Sen(t− δt)⊗Ac(t− δt)) (7.1)

The system uses this neural representation of the current sensorimotor experience to learn
how to predict the forthcoming sensations. In other words, the objective is to learn sensation-
action contingencies to capture invariants in the sensorimotor behavior. This is done by feeding
the Per matrix to a neural layer that implements a classical conditioning by means of the Widrow
and Hoff [1960] rule (see Appendix). This gradient descent reduces the squared error between
the actual output �Sen and the desired output Sen based on the patterns of activities in the Per
matrix. Thus, the output estimates the mean of the sensory input µ = E[Sen] for a given
perceptual state. Thereby, we can compute a prediction error e(k) for this mean (k = 1) as well
as for higher order moments µ(k) = E[e(k−1)] also estimated from Per. For instance, µ(2) and
µ(3) respectively capture the pseudo-variance and pseudo-skewness using the L1-norm instead
of the L2-norm.

e(k) =

�
|Sen− µ| if k = 1

|e(k−1) − µ(k)| otherwise
(7.2)

The novelty N (k) at the kth order is:

N (k) =
1

E
|

E�

n=1

e(k)(n)| (7.3)

where E is the size of the e(k) vector. Higher orders of novelty estimate higher orders (in the
statistical sense) of deviations from the average sensorimotor behavior learned by the model;
with an obviously increasing computational cost (See [Jauffret et al., 2013a] for a discussion on
this issue). Since, different contexts of application imply different requirements in that matter,
Experiments 1 and 2 will use distinct orders of novelty, noted N in the rest of the equations.

The self-assessment of the system performance must not only rely on the instantaneous nov-
elty level, but also monitor the evolution of such information [Hasson et al., 2011]. Therefore,
we compute the progress P and regress R as follows:

P(t) = N (t− δt)−N (t) (7.4)

R(t) = N (t)−N (t− δt) (7.5)

These self-assessment signals are derived from the inner dynamics of the system. They also
characterize the relation between the system skills/performance and the task demands. I propose
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that frustration can be elicited by the integration of these signals in a way that captures regress
and stagnation in high level of novelty. On the other hand, boredom can be generated by the
absence of novelty and progress. Thus, the levels of frustration F(t) and boredom B(t) are:

F(t) =γ.F(t− δt) + βN .N (t) + βR.R(t)− βP .P(t) (7.6)

B(t) =γ.B(t− δt) + (1− γ)− βN .N (t)− βP .P(t) (7.7)

where γ in an integration factor and βX is the weight corresponding to the input X .
Like in intrinsic motivation theories Csikszentmihalyi [1991]; Oudeyer et al. [2007], nei-

ther of these dual affects represent a positive experience. Instead, the system should seek an
equilibrium between its skills and the task demands; a state in which it is neither frustrated nor
bored. The concept of Emotional Metacontrol that I introduce in this chapter consists in us-
ing this cognitive–emotional signals as input to top-down regulatory mechanisms (second order
control). More precisely, these feedback loops generate an inhibition potential I that is used to
bias the targeted computational processes.

7.5 Monitoring and selecting strategies in a navigation task

The work on strategy monitoring is a collaboration with Adrien Jauffret, a former doctoral stu-
dent in my laboratory who’s research focuses on robot autonomy in navigation. The purpose of
this experiment is to use the Emotional Metacontrol to monitor and regulate independent sub-
behaviors of a mobile robot. Therefore, two complementary navigation strategies are considered.
The first one is the place–action strategy described in Chapter 3. It is based on visual recognition
of locations (places) to which actions (movement direction) are associated in order to iteratively
learn a particular trajectory. In the outdoors, due to the difficulty to find stable and discriminat-
ing landmarks, a second type of strategy can be very useful: road following. Likewise, in the
indoors, such a strategy can be efficient in long corridors. In any case, proximity detection using
infrared sensors ensures obstacle avoidance as a basic sub-behavior that competes/cooperates
with the latter strategies.

I will present two use cases for the Emotional Metacontrol. The level of frustration asso-
ciated to a strategy can be used to: A) detect failure in order to call for help, or B) reduce
the weight of the corresponding sub-behavior in the competition/cooperation process of action
selection.

7.5.1 Implementation details

Various methods for road following can be found in the literature. They can be based on range
sensors (e.g. Ma et al. [2000]; Sparbert et al. [2001], respectively radar- and lidar-based), on
splines models (e.g. Wang et al. [2004]), or on Gabor filters (e.g. Kong et al. [2009]). These
techniques are either inefficient if the road edges are not significant or computationally costly.
On the other hand, Jauffret et al. [2013b] proposed a model of road following based on rapid
and biologically plausible detection of vanishing points. The method is based on the initial
work of Revel [1997]. It consists in a competition between Nvp neurons, each encoding the
direction of a potential vanishing point on the horizon. Four preferred gradient orientations are
defined for each of these Nvp points. The activity of a vanishing point neuron is determined
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by the total number of pixels where the gradient is aligned with its preferred directions. More
implementation details are provided by Jauffret et al. [2013b].

As explained above, the road following and place–action strategies are evaluated by the
self-assessment network separately. Consequently, two Per matrices capture the sensorimotor
contingencies of each sub-behavior. The Sen vector in equation (7.1) respectively represents
the direction of the detected vanishing point and the pattern of activity of place cells. In both
cases, Ac is the direction of movement (robot absolute orientation).

Given the variability of the sensorimotor patterns that the model can encounter in this naviga-
tion task, the 3rd order novelty was empirically determined as a good trade-off between precision
and latency. Thereby, the system should be able to filter unusual situations while being robust
to periodical or sporadic events. For the purpose of self-assessment and emotional metacontrol,
N = N (3) is thus used to elicit a frustration signal F , which generates an inhibition potential I
computed as follows:

I(t) = F(t)− βh.h(t) (7.8)

where h(t) signals the intervention of the human experimenter. This negative term avoids affect-
based inhibition during teaching phases. The parameters described above are set to the values
given in Table 7.1

7.6 Experiment 1.A: Failure detection and call for help

This experiment is performed on the Webots simulator to avoid the problem of very long robotic
experiments. Snapshots of the robot and the environment are shown in Figure 7.2. The simulated
platform is similar to the one used in Chapter 6. Here, it is equipped with a pan-tilt camera used
for the visual place recognition and a fixed camera used for the vanishing point detection. Also,
the full range of proximity sensors is used for obstacle avoidance.

The first part of the experiment consists in learning a round path inside a 17.5 m × 15
m room with the place–action strategy. The robot is trained by a human experimenter in a
proscriptive, semi-supervised way: the supervisor only corrects the robot trajectories when the
latter escapes from the desired path (Giovannangeli and Gaussier [2010]). The learning of eight
place–action couples is sufficient to correctly perform the task. The self-assessment module
also learns the sensorimotor contingencies of the place–action strategy as a model of a ‘normal’
experience/situation; a correct performance of the task. This learning requires three laps in order
to be able to predict place recognition with a relatively low and flat level of novelty.

In the second part of the experiment, the experimenter deviates the robot away from the
learned path and inside a second room. In this 10 m × 10 m unknown room, there is no prior
learning. Therefore, this situation is expected to generate a high level of novelty and be detected
as a failure of the place–action strategy.

7.6.1 Results

Figure 7.4 shows the results of the self-assessment of the place–action strategy. After the system
learned to correctly perform the desired trajectory, the experimenter deviates the robot toward
the second, unknown room. The robot tries to perform the task by using the learned place–action
associations. However, the previous learning fails in this novel context. Thus, the incapacity to
predict place recognition based on previous experience causes the level of frustration to increase
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Figure 7.2: Experiment 1, Setup. LEFT: The simulated Robulab platform is 40 cm-wide, 40 cm-long,
with 2 driving wheels. CENTER: The experimental setup in experiment 1.A comprises two rooms. One
is used to learn a trajectory using the place–action strategy and the other to test the ability to detect
the failure of this strategy in an unknown location. RIGHT: The experimental setup in experiment 1.B
comprises the same two rooms and an additional path connecting them from the outdoors. In the indoors,
place–action association determine the robot trajectory while road following is suitable in the garden.

and reach the threshold. The robot calls for help so that the human experiment can teach it how
to escape from the unknown room. This intervention triggers the learning of new place–action
couples as well as sensorimotor contingencies for the purpose of novelty detection. Back in the
first room, the robot converges again to a ‘normal’ behavior consisting in the learned trajectory.

Additionally, when put back in the second room, the robot is again able to escape and per-
form the round path in the first room. Since the escape situation is not encountered enough
times, the self-assessment module does not perfectly predict place recognition but the level of
frustration stayed below the threshold.

7.6.2 Discussion

In this experiment, the system succeeds in detecting failure and asking for the help of the human
experimenter. Once it is back to the initial room, the robot is able to perform the navigation
trajectory learned in the beginning of the experiment. One can note that the robot exhibits some
sort of “hesitation” when escaping again from the second room due to the door that activates
obstacle avoidance (narrow passage). However, it successfully reaches the initial room and
resumes its round path. As explained in Chapter 3, to build a robust attraction basin, more than
one place–action couple is required. So, additional learning could improve the escape trajectory.
But also the self-assessment. Indeed, the robot would be able to better predict the transition
between the two rooms and learn this situation as ‘normal’. Thus, it will become part of its past
experience, on which novelty detection is based.

Besides, this experiment provides another example of how internal processes of emotion can
also benefit to the communication aspect. Being able to detect situations of failure is a very use-
ful feature. But it requires other mechanisms that can allow the use of this information for the
purpose of problem solving. Thanks to Emotional Metacontrol, the emotionally influenced be-
havior displayed by the robot (i.e. slowing down, stopping, and signaling helplessness) provides
social cues to the human experimenter. Such interactions help the robot learn from the latter so
that it is able to autonomously solve problem in the future.
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Frustration
Novelty

Figure 7.3: Experiment 1.A, Results. TOP: Robot trajectories inside the simulated environment in
various phases of the experiment. Green arrows show the movement direction. Colored gradients from
black to red indicate the increase of frustration. BOTTOM: Novelty and frustration levels during these
phases. Red-dotted line represents the frustration threshold. TOP-FAR-LEFT: Robust performance of
the learned round path. TOP-LEFT: The experimenter deviates the robot from this trajectory to the
second, unknown room (marked 1 on figure), which increases the level of frustration until the threshold is
reached. In this situation of failure, the robot calls for help (marked 2). TOP-RIGHT: The experimenter
teaches the right direction toward the known room (marked 3) and the robot is able to perform the round
path again (marked). TOP-FAR-RIGHT: The robot is placed in the second room second time and is
again able to go back to the learned trajectory (marked 5).

7.7 Experiment 1.B: Competition/cooperation between strategies

As shown in Figure 7.2, in this experiment, the Webots environment is extended with a garden
in which a road links the two rooms from the outdoors. Here, the robot has to perform the entire
loop using the two strategies presented earlier. Due to the environment specificities, place–
action association should perform well in the indoors as seen in the previous experiment, but
the road following strategy is more suitable in the outdoor part. This is due to the absence of
discriminating visual landmarks in this part.

Like in the previous experiment, the first part consists in learning the indoor half of the
trajectory using the place–action strategy. The robot is trained in the same way by a human
experimenter and seven place–action couples are necessary to correctly perform this part of the
task. However, as stated earlier, no learning is required for road following. But, for the purpose
of self-assessment, sensorimotor contingencies are learned for both strategies.

Based on that, in the second part of the experiment, the robot is expected to correctly perform
the whole round path, switching from a strategy to another depending on the type of environ-
ment. Indeed, place–action and road following strategies should respectively fail in the outdoors
(absence of learned landmarks) and the indoors (inconsistency between movements and direc-
tion of vanishing points). The inhibition of the failing strategy should allow the other to drive
the robot behavior in order to perform the task.
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7.7.1 Additional implementation details

Similarly to the previous chapter, a competition/cooperation process for action selection is im-
plemented using a dynamic neural field (DNF, described in Appendix and based on Schöner
et al. [1995]). The place–action and the road following sub-behavior independently propose
an orientation. Each strategy also has an associated affect-based inhibition signal due to the
self-assessment process. As the name suggests, this signal inhibits the corresponding strategy
proportionally to the associated frustration level so that it has less influence on the robot global
behavior. As in the previous experiment, obstacle avoidance sub-behavior participates in action
selection to avoid collisions. The DNF merges the obtained weighted sub-behavior in way that
make proximate and distant orientations respectively activate or inhibit each other (respectively,
cooperate and compete).

7.7.2 Results

Figure 7.4 shows the results of emotionally modulated competition/cooperation between strate-
gies. First, the separate evaluation of this mechanism on each strategy confirms the expected
behavior: due to the environment specificities, place–action and road following perform better
in the indoors and outdoors respectively. Then, for the performance of the complete round path,
the robot starts in the middle of the outdoor path. The results show that, most of the time, the
frustration levels of the two strategies are in phase opposition. Thus, the global behavior is
mostly driven by the place–action association in the indoors and by the road following in the
outdoors.

7.7.3 Discussion

As it can be seen in the robot trajectory, the sharp turn at the exit the big room makes the
transition to the garden quite difficult to achieve. Due to the last place–action couple taught by
the experimenter, the most salient vanishing point at that location corresponds to the bottom-left
corner of the environment. The resulting oscillation between the place–action and road following
sub-behaviors makes the robot go in circles until it converges again to the right path. It is
worth noting that despite this imperfection, and the resulting lack of robustness in this particular
learned trajectory, the robot should always be able to find the path and perform the complete
task. Indeed, place–action make it go down and wall avoidance make it go right. Yet, this gives
an example of situations that are challenging for the current system of competition/cooperation
between strategies.

Additionally, the experiment illustrates some interesting synergies between the two strate-
gies. For example, the contrast induced by open doors generates vanishing points that are co-
herent with the orientation learned with place–action associations. Likewise, vanishing points
inside the rooms generally direct the robot toward corners, thus increasing the robustness of the
trajectory between learned places. This demonstrates the interest of cooperation in the soft com-
petition implementing action selection in the architecture (see Appendix). Yet, it is worth noting
that such a property might be counterproductive in other situation and that further investigation
in that matter is required.
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Figure 7.4: Experiment 1.B, Results. TOP-LEFT: Separate evaluation of the place–action strategy.
Robot trajectory in the indoor half of the environment follows the learned path. Green arrows show the
movement direction. When the robot gets out of the big room, the self-evaluation module detects the
failure of the strategy. Colored gradients from black to red indicate the increase of frustration. The level
of frustration reaches the threshold at the end of this unitary test. TOP-RIGHT: Separate evaluation of
the road following strategy. Robot trajectory in the outdoor half of the environment follows the road. But
when the robot enters the small room, this strategy fails to perform the correct trajectory and the level of
frustration in high once again. BOTTOM: Strategies competition/cooperation in the performance of the
whole round path. The performance of the two strategies is almost in phase opposition. The behavior is
mostly driven by the place–action association in the indoors (from mark 1 to 2) and by the road following
in the outdoors (from mark 2 to 1).

7.8 Top-down attentional bias in an visual search task

In the previous sections, I introduced the notion of Emotional Metacontrol and showed the im-
pact of frustration on the monitoring and selection of strategies in the context of navigation tasks.
The rest of this chapter includes an additional (dual) affect: boredom. Also, in order to demon-
strate the genericness of the model, the next experiment addresses another context of application:
top-down emotional bias of the robot visual attention during active object perception.

More specifically, I consider a visual search task, which is a common experimental paradigm
in psychology. This type of perceptual task involves attentional mechanism that allow to scan
the visual environment in order to find a target object among distractors. Here, I will use the
three objects shown in Figure 7.5: Target1 (Dalek), Target2 (Minnie) and Distractor (Darth
Maul). The goal of the task is to search for (recognize) as many target objects as available in the
configuration and perform the corresponding (learned) actions to confirm the recognition.

The protocol includes two phases. First, during task learning, the three objects are presented
one by one in front of the robot. The latter learns a set of local views of the objects for the
purpose of visual recognition. It also associates an action with each of the target objects. For
instance:
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Target1 → Action1 = move arm to the right;
Target2 → Action2 = move arm to the left.
Second, the experiment consists of a set of trials in which the objects are presented pairwise;
interchangeably on the left or right position. There are three configurations illustrated in Figure
7.5: T1D = (Target1 + Distractor), T2D = (Target2 + Distractor), T1T2 = (Target1 + Target2).
The robot performs one of the learned actions to show the experimenter that one of the target
objects was recognized.

Figure 7.5: Objects and configurations. LEFT: RGB images of the objects T1, T2 and D that are used
in the experiment. CENTER: RGB image of the T1D configuration. Points of interest are detected
inside of the rectangular region in the middle. Luminance and chrominance information are useful to
discriminate the objects. RIGHT: Gradient images in the three configurations (T1D, T2D and T1T2
from the bottom to the top). The more salient the objects, the more points of interest they gather with the
bottom-up attentional mechanism. Colored circles show the object to which each local view is associated.
Blue is for Target1, purple for Target2 and red for Distractor. Given the visual system used in this
experiment, Target2 is more salient than the Distractor, but Target1 is not. Which means that based solely
on the bottom-up attentional mechanism, Target2 would be recognized in both the T2D and the T1T2
configurations but the system would not be able to focus its attention on Target1 in any of the T1D or
T1T2 configurations.

7.8.1 Implementation details

Figure 7.6 gives an overview of the whole active perception architecture. Local views are ex-
tracted according to a saliency map S� combining bottom-up saliency and top-down inhibition
induced by the Emotional Metacontrol. The bottom-up saliency map S is obtained by means of
a corner detection algorithm applied on the grayscale image:

S =
G2

x < G2
y > +G2

y < G2
x > −2GxGy < GxGy >

< G2
x > + < G2

y >
(7.9)

where Gx and Gy are the oriented gradient images given by the convolution of the grayscale
input image with the following vectors:

�
−1 0 1

�
and

�
−1 0 1

�T , and < G > the output
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Figure 7.6: Overview of the architecture used for object perception. This figure shows the information
flow between all the modules involved. The grey links are only used in the pre-task phases i.e. during
objects and task learning. Object recognition is based on a bottom-up attentional mechanism that sequen-
tially extracts local views from visual input. The objects labeling performed during task learning allows
for sorting localview–position activities by objects (what-where information) during the continuous ex-
ploration of the visual scene in order to store them in the Working Memory. Most salient objects generate
head movements toward them as an active focus of attention (FocusAction). When a target object object
is recognized, the corresponding action is performed (ObjectAction). The metacontrol mechanism serves
as a top-down attentional bias.

of the convolution of an image G with the following mask



1 1 1
1 0 1
1 1 1


.

This method for bottom-up saliency is more adapted to this experiment than the one used is
the LPMP model (see Chapter 2 – obtained with a Deriche [1987] filter and a convolution with
a DoG. First, the sharp gradients capture textures on the objects. Second, the obtained points of
interest are more often located on the objects, which allows local view to generally contain more
information on the object than the background.

On the other hand, the top-down attentional bias consists in applying an inhibition of mag-
nitude I on the bottom-up map S. Thereby, we obtain the final saliency map S�:

S� = S −M.I (7.10)

where I is the inhibition potential obtained with equation (7.6) and M an image containing the
shape and position of the inhibition:

M(x, y) =





1 if x ∈ [px − 1/2.msize, px + 1/2.msize]

and y ∈ [py − 1/2.msize, py + 1/2.msize]

0 otherwise

(7.11)

where msize is the side of the square-shaped mask centered on the pixel (px,py). px is obtained
from the proprioception merging the head and eye direction while py is a constant depending on
the elevation of the objects in front of the camera.
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The result is a set of NPoI points of interest on the most salient parts of the visual scene.
Similarly to the LPMP model I described in chapters 1 and 2, local views are extracted around
these salient points between two disks of radius rsmall and rbig (see Figure 7.5 for an illustra-
tion). The so defined regions of interest are encoded using a log-polar transformation on the
luminance and chrominance channels of the Lab color space. Thereby, we obtain three inter-
mediate descriptors of size WLP × HLP . For the sake of conciseness, let us define the final
descriptor d of size ND = 3 × WLP × HLP as the concatenation of these three intermediate
descriptors. The interest of the log-polar transformation lies in its relatively small computational
cost and its robustness to small rotations and scale variations. It is also a biologically plausible
operation [Schwartz, 1977]. Besides, the Lab color space intends to approximate human vision
by mimicking the color opponency processing of early visual stage (bipolar and ganglion cells).

The last element of this part of the architecture is a layer of neurons that categorize the
patterns observed in the visual descriptors in order to learn the local views. This stage gives
the “what” information by creating signatures identifying the local views that the system ob-
serves. Here, the same type of neurons as in the LPMP model were used (see Section 1.3 of
Chapter 1 for description and equations). During learning phase (see below) whenever none of
the activities of learned visual signature is greater than the vigilance level, a new category is
recruited. Two different vigilance values were used in the experiment: vL and vC for luminance
and chrominance input respectively.

In this experiment, recognizing an object implies the recognition of co-located parts (when
a set of local views describing the object are seen next to each other). This requires the “where”
information in addition to the “what” information. In our model, the continuous exploration of
the visual scene models eye saccades; while camera rotations correspond to head movements.
By merging the eye and head directions, we are able to encode the orientation of the local view
currently being seen in the idiothetic referential. Thus, the “where” information is represented
in an azimuth vector a of size Na where each neuron has a preferred direction around the yaw
axis. We apply a lateral diffusion around the neuron coding for the direction of the current visual
input to obtain gaussian bell-shaped activities with a standard deviation of σa.

Because of the continuous exploration of the visual scene, the system needs a short-term
memory integrating the spatial position of the recognized local views. For the sake of simplicity,
we implement the working memory as a collection of 3 dynamic neural fields (DNF) of size
Na; one field per object. During the learning phase, we operate a local view labeling while
each object is presented separately. That is to say, the system learns to which of the objects
the local views signatures belong. During the experimentation phase, these signatures-objects
associations are used to implement a switch mechanism in order to direct the what-where input
to the right field of the working memory. The combined what-where information is also a vector
exhibiting a gaussian-bell shape centered on the direction of the current local view.

Figure 7.7 gives a more detailed illustration of the neural network that implement this model,
with an emphasis on novelty detection, self-assessment and metacontrol. In the context of this
recognition task, the Per matrix representing the system perceptions is the integration of the
visual object categories Obj and the learned actions ObjAct (respectively represented by Sen
and Ac in equation (7.1)).

In this specific task, the 1st order novelty is sufficient to detect unexpected situations. This is
due to the small number of objects and actions that are considered ((3 objects) × (3=(2+idle) ac-
tions)). Then, based on N = N (1) and the progress and regress deduced from it, self-assessment
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(Abs)

PredErr

_

Nt

Nt-1

Rt

Pt

+

+
_

_
Ft

Bt

+
_

_

+

_+

IFIBm

mask

Emotional 
Metacontrol

+

Modifiable link

Unmodifiable link

One-to-one link

Neural activity levels

Excitatory link

Inhibitory link_
+

Neural field

V
is

u
a
l 
In

p
u

t

S
u

p
e
rv

is
io

n

Proprioception

_

Position

Intensity

Shape

ObjectAction

WorkingMemory

+
+_

α 

γ 

γ 

βN

βR

βP

_

Saliency extraction

1-γ 

Figure 7.7: Self-Assessment and Emotional Metacontrol modules. LMS: Least Mean Square; DNF:
Dynamic Neural Field; WTA: Winner-Takes-All; Abs: Absolute Value. WM: Working Memory. D-
ObjAct: Default ObjectAction. L-ObjAct: Learned ObjectAction. Nt, Pt, Rt, Ft and Bt correspond to
the novelty N , progress P , regress R, frustration F and boredom B at time t in the equations. Some of
the parameters of those equations like α and γ are also shown on this figure.

elicits frustration or boredom. Neither of these dual affects represent a positive experience. In-
stead, the system should seek an equilibrium between its skills and the task demands; a state
in which it is neither frustrated nor bored. Therefore, we use the F and B levels as inputs to
the Emotional Metacontrol mechanism that generates an inhibition potential I used to bias the
bottom-up visual attention away from the current gaze direction. Thereby, the robot can avoid
deadlock situations and explore the rest of the visual scene.

I(t) = IF (t) + IB(t)− βm.m(t) (7.12)

with

�
IF (t) = g(F(t)) and
IB(t) = g(B(t))

where g(x) = 0.5 × (1 + tanh(6x − 3)) is the activation function of the top-down inhibition
neurons. It remaps the values in [0,1] in a way that “pushes” low and high values toward the
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extrema. By introducing this non-linearity, the effect of F and B is accentuated1 . Besides,
m(t) is an estimation of the head movement to be generated. It is calculated from the angular
difference between the current head direction and the position of the most salient object on which
the system needs to focus its attention. This negative term avoids affect-based inhibition when
the system is trying to focus on a new part of the visual scene. See Figure 7.7 and equations
(7.10) and (7.11) for more details.

For this Emotional Metacontrol (based on inhibition I) to be efficient, it has to be maintained
long enough to allow for the visual recognition of other elements of the scene. Otherwise, the
camera would oscillate too rapidly between various positions. In this experiment, while local
view recognition runs at 10 images/sec, the sub-network computing this inhibition is updated
every 8 sec.

All the parameters described above are set to the values given in Table 7.2

7.9 Experiment 2: Deadlock detection and visual exploration

Figure 7.8 illustrates the experimental setup used in this search task. The robotic platform com-
prises a pan-camera and a 1-DoF (Degree of Freedom) arm. During task learning, objects are
presented individually. In the experimentation phase, there are presented pairwise. The task is to
search for (recognize) the target objects in these configurations and perform the corresponding
actions to confirm the recognition.

Obj1

Obj2

55 cm
Pan

Camera

Arm

Object
Action

Focus
Action

Figure 7.8: Experimental setup. The robotic platform consists in a pan-camera and an arm. In the
experimentation phase, three objects – Target1, Target2 and Distractor – are presented by pairs (placed
on Obj1/Obj2 positions). The robot can perform two kinds of actions: 1) FocusAction consists in moving
the camera toward the most salient object in the scene; 2) ObjectAction consists in moving the arm to
the left or the right whenever one of the targets is recognized. TargetX/ActionX associations are learned
during the task learning phase.

7.9.1 Results

In this section, I will show results regarding the prototypical behaviors that are observed using
the Emotional Metacontrol then statistically compare the results of this architecture to one that

1Although this was not implemented in Experiments 1.A and 1.B, it should have the same effect in the context of
strategy selection.
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is only feed-forward – i.e. does not perform the top-down attentional bias.

Prototypical behaviors: T1D configuration

In this configuration, the Distractor is more salient than Target1 (Figure 7.9, upper part, 2 sec).
This means that with no metacontrol, the bottom-up attentional mechanism focuses the robot
attention on the former (Figure 7.9, right part, 2 sec). Therefore, nearly no points of interest
are detected on the target (Figure 7.9, 4 sec). Thus, the level of recognition of Target1 is not
sufficient to trigger the corresponding action and fulfill the task. The inhibition of the Distractor
area is required to allow enough points of interest to be detected on Target1 (Figure 7.9, 6 sec).

The neural activity plots in Figure 7.9 (subfigures) show the role of the top-down attentional
bias in such situations. In the beginning of the trial, the recognition level of the Distractor is the
highest and the robot starts turning the camera toward it. In the meantime, the novelty-based
self-assessment increases the frustration level. Thus, a top-down inhibition of the area around
the Distractor allows the recognition of Target1 and the performance of Action1. However, when
the metacontrol module has to update the area to be inhibited, the robot head had moved away
from the Distractor. Thus attention is again focused on the latter and the same situation as in
the beginning of the trial is observed until the system is able to recognize Target1 once again.
We note that during the periods Action1 is maintained, the novelty level decreases and boredom
progressively takes over frustration.

Prototypical behaviors: T2D configuration

As opposed to the previous configuration, here the target is more salient than the Distractor.
Thus, the robot is quickly able to do the associated action and fulfill the task (Figure 7.10,
upper part). Figure 7.10 illustrates the interest of boredom in the metacontrol mechanism in
comparison with a feed-forward architecture. When Action2 is maintained, the self-assessment
detects little novelty and generates boredom. Again, the current head direction is inhibited and
the second object is recognized. In this configuration, it is a Distractor. So as soon as the robot
is bored, the top-down attentional bias intervenes. Consequently, the robot stops performing the
correct action and the frustration level increases. Since in this configuration, there is only one
target that is relevant to the search task, the visual exploration achieved thanks to the boredom-
driven metacontrol does not enhance the robot performance.

Prototypical behaviors: T1T2 configuration

The T1T2 configuration shows a situation in which the boredom-induced metacontrol can be
relevant. Like in the previous configuration, Target2 is the most salient object in the visual scene
(Figure 7.10, upper part). However, is this case, the boredom-driven metacontrol allows the
robot to also recognize Target1 and perform the second learned action. Figure 7.10 shows the
alternation between the two targets. Each time a different action is performed, the boredom level
decreases a little until the novelty is too low again.
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Statistical comparison: with and without Emotional Metacontrol

To compare the full architecture described so far to a feed-forward one, a total of 96 repetitions
is performed, 16 for each configuration, with and without emotional metacontrol (resp. noted
w/EM, w/oEM). Thus, 6 conditions arise from the combination of the configuration and meta-
control factors (card({T1D,T2D,T1T2})=3 and card({w/oEM, w/EM})=2). A 30 sec timeout
per trial is imposed to overcome deadlock situations. Given the dynamics of the system, this
duration is long enough to recognize an object and thus defines an acceptable upper bound in
case of deadlock. Also, small changes in the objects positions are voluntarily applied from a
trial to another in order to introduce some variability.

Two measures are considered:

• RT: The Response Time corresponds to the delay between the beginning of a trial and
the time when the robot performs an action associated with one of the target objects.
First, it captures the difference between the 3 objects in terms of bottom-up saliency and
could thus depend on the configuration. In addition, it indirectly characterizes the system
success or failure.

• QM: The Quantity of head Movement characterizes the robot tendency to switch attention
and explore the visual scene. It is defined as the total head rotations within a trial: QM =�N

n=1 θH(n) − θH(n − 1), where θH(n) is the orientation of the robot head in the nth

among N iterations.

After calculating the skewness and kurtosis of RT (skewness = 2.02; kurtosis = 2.35) and QM
(skewness = 3.43; kurtosis = 17.77), it appears that none of these dependent variables follows
a normal distribution. Therefore, the non-parametric Kruskal-Wallis (K-W) and Mann-Whitney
(M-W) tests are performed [Corder and Foreman, 2009]. A K-W test shows a significant effect
of the configuration on RT (χ2 = 59.66, p < 0.01) with a mean rank of 79.31 for T1D,
36.19 for T2D and 30.00 for T1T2. A M-W test confirms the difference between T1D and T2D
(U = −986.00, p < 0.01) and between T1D and T1T2 (U = −986.00, p < 0.01) while no
effect is found between T2D and T1T2 (U = 397.00, p = 0.11). Moreover, a M-W test does
not show any statistical effect of the metacontrol on RT (U = 1120.00, p = 0.81).

The fact that I considered RT regardless of which action is performed does not allow us to
conclude on the robot success or failure. For instance, doing Action2 in the T1D configuration
means an erroneous recognition of Target2 but is not captured as such by RT. In addition, it does
not allow for observing the effects of the metacontrol while taking into account the inherent
difference of saliency between the objects. There is also a loss of information in the case of T1T2
configuration where both actions are possible. Therefore, it is important to analyze the effects
of the independent variables on RT1 and RT2 (RT for Action1 and Action2 resp.) separately by
omitting the configuration where the corresponding action is incorrect (e.g. Action2 is incorrect
in T1D).

A M-W test again shows a significant effect of the configuration (T1D vs. T1T2) on RT1
(U = 358.00, p = 0.03). But, this time we also observe a significant difference between the
‘w/oEM’ and ‘w/EM’ groups (U = 91.00, p < 0.01). On the other hand, no significant effect is
observed on RT2, neither by the configuration (U = 415.00, p = 0.19) nor by the metacontrol
(U = 379.00, p = 0.07). Indeed, since Target2 is the most salient object of the experiment,
RT2 only slightly varies across T1T2 and T2D configurations. In contrast, the metacontrol does
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Figure 7.12: Statistical results. TOP-LEFT: Means and standard errors of the RT1 observations in the
T1D and T1T2 for the ‘w/oEM’ and ‘w/EM’ groups. p is the probability that the observations in T1D
and T1T2 - regardless of the metacontrol variable - have the same distribution and is obtained by a Mann-
Whitney test. TOP-RIGHT: Means and standard errors of the RT2 observations in the T2D and T1T2 for
the ‘w/oEM’ and ‘w/EM’ groups. MIDDLE: Means and standard errors of the QM for the ‘w/oEM’ and
‘w/EM ’ architectures in all configurations. BOTTOM-LEFT: Confidence intervals for RT1 regardless of
the configuration (T1D observations grouped with T1T2). BOTTOM-RIGHT: Confidence intervals for
QM regardless of the configuration. The important gaps between the confidence intervals of the ‘w/oEM’
and ‘w/EM’ groups are consistent with the significant effects revealed by the M-W tests (p values reported
on the figures). The N values in the all subfigures represent the sample sizes.

make a difference for RT1 since Target1 is hardly recognized without the top-down attentional
bias.

Lastly, a K-W test finds no effect of the configuration on QM (χ2 = 1.56, p = 0.46),
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the mean ranks being 44.64, 47.66 and 53.20 for T1D, T2D, T1T2 respectively. However,
a M-W again reveals a significant difference between the ‘w/oEM’ and ‘w/EM’ architectures
(U = 50.00, p < 0.01).

These statistical results are confirmed by the analysis of the collected data. In particular,
Figure 7.12 shows the means and standard errors of the RT1, RT2 and QM independent variables.
In addition, the confidence intervals demonstrate the magnitude of the observed effects. Indeed,
the important gaps between the ‘w/oEM’ and ‘w/EM’ groups are consistent with the significant
effects revealed by the M-W tests. Some of the p-values (significance results) obtained with the
Kruskal-Wallis and Mann-Whitney tests are reported on Figure 7.12 for conciseness purpose –
even though it is worth noting that these tests are rank-based and do not directly rely on the
means and standard deviations of the samples.

7.9.2 Discussion

The results presented above highlight the interest of using self-assessment-based emotional sig-
nals to implement a second-order controller. The prototypical behaviors that are observed mainly
describe two kinds of situations:

1) Situations of failure: Frustration reflects the system incapacity to perform the target
recognition task;

2) Situation of long-lasting success: Boredom illustrates the lack of challenge in the task.
Neither of these emotional experiences are considered positive. So, the Emotional Metacontrol
is used to avoid these deadlock situations and try to maintain the system in a state of balanced
skills and challenges. The statistical evaluation further validates the benefit of the Emotional
Metacontrol as compared to a more basic feed-forward architecture. Indeed, the affect-based
feedback loop both increases the robot performance (effect on RT1) and fosters the exploratory
behavior to avoid deadlocks (effect on QM).

This experiment demonstrates the interest of the emotional modulation occurring at the level
of sensory information. Indeed, objects compete for limited processing capacity. This is repre-
sented in our system by the limited number of local views that are extracted and encoded from
each image. Since Target2 is much more salient than Target1, when both are presented con-
currently, only 10-25% of the points of interests are initially detected on Target1. Then, as the
camera turns toward Target2 due to the bottom-up focus of attention via head rotations, Target1
has even less chances to capture the robot attention. If the Emotional metacontrol applied the
top-down bias after the objects recognition in the working memory, or even later at the action
triggering level, most of the resources would still be used by Target2. Thus, the recognition of
Target1 would be very low, indistinguishable from noisy activation of isolated, wrongly iden-
tified local views. In contrast, when the inhibition is done on the saliency map (i.e. the early
stages of our visual system), it allows a more efficient detection of visual features out of the
inhibited area. Besides, there is evidence that emotional stimuli are enhanced in the working
memory [Gray et al., 2002] and consolidate long-term memory [McGaugh, 2015]. This further
confirms the need for an early influence of emotional processes on cognitive ones.

For the purpose of a search task, a simple conditioning could also allow for learning the
location of the interesting objects (e.g. subregion of the visual scene). Such a purely spatial
learning would implement a rather bottom-up attentional bias. This mechanism would be effi-
cient in certain situations. For instance, with a sufficiently high learning rate, the robot would be
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able to predict the target position after a small number of repetitions of the same configuration;
provided that the objects do not move. Nevertheless, in our experiments, the objects positions in
front of the camera were alternated (e.g. in the T1D configuration, Target1 could be on the right
or on the left). Therefore, the purely spatial attentional strategy would fail as soon as we move
the objects.

From the perspective of visual exploration, a simpler way to make the system seek novel
stimuli is to rely on a habituation mechanism. For instance, in the active vision model proposed
by Breazeal et al. [2001], it prevents the robots from fixating highly salient background stimuli
and forces the human caretaker to constantly engage in interactions with slightly different stim-
ulations. In contrast with this kind of solutions that operate like an ad-hoc timeout mechanism,
our Emotional Metacontrol generates an inhibition potential according to the performance of the
system. Thus, it has the potential to adapt to situations where different objects imply actions of
different complexity or duration – e.g. attention must be focused on Target1 longer that on Tar-
get2 in order to perform Action1 – as long as it is assessed by the system as a normal situation.
Besides, instead of forcing the human caretaker to maintain balanced novelty, it can allow the
robot to communicate deadlocks and ask for help only when needed as seen in Experiment 1.A.

Unlike other models of top-down attentional bias, the proposed solution only inhibits the
current gaze direction on the bottom-up saliency map. So, its success highly depends on the fact
that the exploration of close regions of the visual scene would help the robot focus on relevant
objects. This solution could be too simple in more complex tasks. An alternative could be to rely
on a prior knowledge about the task to implement a top-down mechanism that biases attention
toward the visual cues that are relevant for the current sub-task [Breazeal et al., 2001]. Another
option is to use reinforcement learning in order to avoid such pre-wired connections between the
visual system and the tasks demands. Ognibene and Baldassare [2015] provide a good insight
into the use of actor-critic models for the implementation of goal-directed top-down attentional
bias in active vision architectures.

7.10 General discussion

The main interest of the way I obtain the internal model of ‘normal’, ‘usual’ experiences is that
it is generic and adaptable to any sensorimotor architecture. Theoretically, one can use a unique
perception tensor that integrates all sensations and actions. It should be able to build expectations
about separate sensations as long as the predictor sees enough situations to filter invariants. For
instance, in Experiment 2, I could include the head direction vector with the tensor inputs. But,
the robot would have to learn the sensation–action combinations by placing the object in various
positions to decrease the influence of this input. This solution also seems quite inefficient and
computationally costly. I would rather argue for a distributed encoding of perception, based on
several tensors combining couples of sensations and actions.

Another issue is the possible combinatorial explosion due to the integration of very large
input vectors in the perception tensors. The simplest way to overcome this issue is to somehow
compress the raw input (e.g. strong discretization or intermediate categorization layers to build
abstract representations).

In addition, a biological source of inspiration lies in the conjunctive cells found in the en-
torhinal cortex Sargolini et al. [2006]. This particular type of neuron provides compressed codes
combining position and direction information. An interesting property is that only encountered
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patterns are encoded - instead of all the possible combinations. The hypothesis is that the entorhi-
nal cortex take advantage from the strong connectivity with other cortical regions to provide the
hippocampus with compressed codes that represent multimodal conjunctions of states (possibly
all sorts of modalities)[Gaussier et al., 2007; Jauffret et al., 2015]. Moreover, the hippocampus
has been implicated in novelty detection through its role in memory formation [Knight et al.,
1996; Lisman and Otmakhova, 2001].

In the literature, novelty has been shown to be an important factor in the perceptual process-
ing of emotional stimuli for different modalities [Ethofer et al., 2009; Wendt et al., 2011]. It is
considered essential in the appraisal theories of emotions [Scherer, 2001; Grandjean and Peters,
2011]. According to Scherer [2001], novelty is evaluated in terms of suddenness, familiarity and
predictability of the stimuli. These appraisals respectively occur at the sensorimotor level (novel
sensory input), the schematic level (adequacy with learned preferences) and the conceptual level
(ability to predict the input). However, little is said about the processes leading from a level to
another. Our work gives an insight on how a novelty detection mechanism that is rooted in the
sensorimotor experience of an embodied and situated robot can be a key intrinsic information
for the self-assessment of the skills/challenges compatibility.

The study conducted by Beer et al. [2006] with patients with damaged OFC is in line with
the emotion–cognition integration in self-evaluation processes as proposed in this work. In
the experiment of Beer et al. [2006], the patients were aware of social norms. Yet, they only
showed emotional reactions related to embarrassment and shame when they actively engaged
in self-monitoring but not during the social interactions in which they had had inappropriate
behaviors. Thus, OFC might be a key region in which high-level appraisal – i.e. evaluating
complex situations, as opposed to stimulus-based appraisal in the amygdala for instance – occurs
and triggers emotional responses.
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Table 7.1: Experiments 1.A and 1.B: Parameter values

Value Description
α 0.95 Weight of recurrent link in Per

γ 0.999 Weight of recurrent link in F
βN 0.0015 Weight of novelty N link in F
βR 0.01 Weight of regress R in F
βP 0.01 Weight of progress P in F
βh 0.001 Weight of human intervention h in inhibition I

Nvp 5 Nb. of vanishing point neurons

Table 7.2: Experiment 2: Parameter values

Value Description
α 0.9 Weight of recurrent link in Per

γ 0.99975 Weight of recurrent link in F and B
βN 0.001 Weight of novelty N link in F and B
βR 0.01 Weight of regress R in F and B
βP 0.01 Weight of progress P in F and B
βm 0.01 Weight of head movement m in inhibition I

msize 149 Size of inhibition mask (in pixels)
py 427 Elevation of objects in the image
NPoI 10 Nb. of PoI extracted per image
rsmall 4 Small disk radius in local views (in pixels)
rbig 24 Big disk radius in local views (in pixels)
WLP 18 Width of the visual descriptor
HLP 60 Height of the visual descriptor
vL 0.9 Vigilance for luminance descriptor
vC 0.95 Vigilance for chrominance descriptor
Na 61 Size of azimuths vector : ∼ 360o/6

σa 8 Std. dev. of azimuths diffusion (in degrees)
σDoG1 10 Std. dev. of 1st DoG gaussian (in degrees)
σDoG2 20 Std. dev. of 2nd DoG gaussian (in degrees)
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Conclusion

Summary

In this dissertation, I presented my research work on the interactions between cognitive and
emotional processes through the prism of robotics. In terms of positioning, my work lies in the
intersection between connectionism and enactivism. The programs that control the robot behav-
ior were implemented on artificial neural networks and embodied in robotic platforms. They
were designed by taking inspiration from biological systems – i.e. what we know about humans
and animals from studies in other cognitive science disciplines. Sensorimotor architectures were
proposed, based on the idea that complex, yet stable, behaviors can emerge from the sensation–
action loop in an embodied and situated agent. Given the ability to learn and adapt, these robotic
systems could benefit from a rich physical and social interaction with their environment.

The first part of the dissertation considered spatial navigation as a framework to study bio-
logical and artificial cognition. In that matter, I started Chapter 1 with an overview of some
crucial neuroscientific findings implicating the hippocampal region in navigation-related func-
tions. Of particular interest for my work are place cells: a particular type of neurons that exhibits
localized firing in familiar environments. Previous works in the lab proposed a biologically plau-
sible model of place recognition that mimics these cells.

In Chapter 2, I took a closer look at visual place recognition in the outdoors. This type of
environment is challenging because it is much less structured and controlled than the indoors.
A particular issue to which the existing model of place cells is subject is the efficiency and
robustness over long distances. The approach that I followed was to examine the type of visual
information that is used for localization. In the literature, methods using local features generally
perform better. However, global visual information is also informative and its computation may
be less costly. To confirm that, I presented an experiment comparing seven different global
descriptors to the local one used in the existing LPMP model. As expected, the LPMP showed
the best overall performance. However, the results also suggest that holistic features convey
significant information in the case of navigation. Consistent with this idea, there is evidence
that human are able to capture the gist of a scene from its global aspect based on low-resolution
information. In addition, the notion of global precedence indicates that these visual contexts
facilitates a more refined recognition level that is based on local visual details. Hence, I proposed
a model for context-based place recognition inspired by this literature. This solution increased
the performance of the existing model. I also showed promising results in terms of navigation
in wide environment and over long distances. More precisely, using fast holistic recognition
as a contextual bias to limit the search space on the local-vision level not only enhanced the
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localization but also maintained a quasi-constant computational cost.
It was also shown that, an implementation of the place cells model on robots (LPMP model)

could be used to teach them navigation trajectories based on sensorimotor coupling. In Chapter
3, I took an interest in the learning of such navigation tasks through non-verbal human–robot
communication based on low-level visuomotor signals. In particular, I worked on a model aimed
to take into account human sensitivity to rhythmical interactions. Therefore, synchrony detection
is used for partner selection. Visual recognition and tracking of human partners allowed the robot
to re-engage and maintain interactions during learning phases. The results I presented showed
that this architecture was able to learn and perform a sensorimotor navigation task.

The second part of the dissertation addresses the central question of emotion–cognition
interactions. Chapter 4 reviewed emotion research as a cross-disciplinary enterprise. After an
overview of the main schools of thoughts and examples of influential psychological theories,
I reported neuroscientific findings related to brain regions and neurochemical signals involved
in emotion. Then I presented some examples of computational models implemented either on
robots or virtual conversational agents. For a roboticist, a functional view of emotions make
them interesting to model for two reasons: enhancing robot–robot and human–robot interaction,
and increasing robot autonomy and adaptation capabilities. On the other hand, computational
models allow researchers to test hypotheses. Going from theoretical concepts to concrete imple-
mentations also reveals ambiguities and forces more explicit definition.

As highlighted in Chapter 5, converging findings suggest that emotion and cognition are not
easily separable. In fact, they appear to continuously influence each other. Processes like percep-
tion, attention, memory and reasoning, which are associated to cognition, influence emotional
experiences through appraisal and affect elicitation. In return, they are also modulated by emo-
tional signals. Biologically, these interactions seem to be represented by the bi-directional in-
fluence between neural activities and neurochemical modulations. Computationally, dynamical
systems theory appears to provide a good framework to study such a coupling. On a higher level
of abstraction, I proposed a conceptual model of emotion–cognition interaction. This model pro-
vides a complementary view to neural network-based descriptions by representing connections
between processes – similarly to a workflow diagram for example. First, this allows to easily
map the model to descriptions that are also generally process-oriented. Second, it provides a
generic view of the concept regardless to any implementation or application. In a nutshell, the
model illustrates how the system continuously:

(a) appraises events from the body and the world with a particular interest to emotionally
relevant stimuli,

(b) processes emotionally modulated signals and reintegrates them in the information pro-
cessing flow for the purpose of higher order processing and appraisal.

In Chapter 6, I presented a first instantiation of the abstract model. Thereby, I addressed the
effect of emotion on the perception of the peripersonal space; the space where one can safely
and comfortably interact with the physical and social environment. For humans and animals, the
ability to build such a representation is of fundamental importance, even in most basic behaviors
involving approach and avoidance. Besides, there is evidence that emotions have a strong influ-
ence on the perception of the surrounding space. In the model I proposed, emotionally valenced
sensory and physiological signals modulated the information processing flow at the sensory and
the motor levels. I presented experiments showing that emotional modulation of peripersonal
space can serve as a paradigm for reactive, behavior-based robot control. Additional results sug-
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gested that the model was able to account for the impact of objects desirability on the perception
of reachability. Moreover, in a social context, robots exhibited fearful or aggressive behavior
depending on internal interactions between emotional signals. This provided an illustration of
how internal emotional processes impact external aspects, more related to physical and social
interactions.

Another example of emotion–cognition interaction is given in Chapter 7. I introduced the
concept of Emotional Metacontrol as the use of emotional signals elicited by self-assessment
to modulate various computational processes for the purpose of behavior regulation. Self-
assessment is the capacity to evaluate one’s own abilities and performance. In the proposed
model, it is done on the fly, based on the evaluation of sensorimotor contingencies and the de-
tection of novel situations. In the literature, frustration and boredom characterize the incompat-
ibility between skills and task demands. Consequently, in my model, frustration was elicited by
signals capturing regress and stagnation in high level of novelty. In contrast, boredom was gen-
erated by the absence of novelty and progress. In my model, these dual affects were both used
to trigger a top-down modulation mechanism that regulate the robot behavior. In the first exper-
iment of the chapter, frustration was used to monitor and modulate independent sub-behaviors
of a mobile robot in a navigation task. First, I showed that the model provided an efficient
means to communicate failure and the need for help to a human partner/supervisor. Second,
I demonstrated that it also allowed strategy selection in a task that alternated road following
and a learned sensorimotor trajectory. The second experiment addressed object recognition in
a search task. This time, frustration and boredom were used to bias attention. They served as
a way to escape from deadlocks, either due to failure or to long-lasting success. My results
demonstrated that, as compared to a feed-forward architecture, emotional metacontrol increased
the robot performance and fostered exploratory behaviors.

Perspectives

Although seemingly not at the core of my thesis works, social interactions were repeatedly
evoked throughout the dissertation. This was mostly the case when discussing the issue of com-
municating internal, emotional states to peers and competitors (robots) as well as teachers and
observers (humans). However, social cues and emotional expressions per se were very poorly
addressed. When it was not voluntarily non-verbal and based on robot behavior (e.g. Experi-
ment 2 in Chapter 6), communication relied on ad-hoc signals (e.g. sound, Experiment 1.A in
Chapter 7). Yet, in biological systems, external and internal aspects of emotion (resp. sociality
and autonomy) are two sides of the same coin. Internal regulatory processes of emotions are
expressed, which improves communication and in return fosters adaptation through social in-
teractions. My work would certainly benefit from richer expressiveness (e.g. facial expressions
and body posture) in order to account for the social part of this dynamical system.

The experiment I presented in Chapter 3 explicitly engaged in the issue of using human–
robot interactions as a catalyst for learning. I believe this work opens broad prospects for further
research bridging robot autonomy and social interactions. For example, the question of “selec-
tive” learning was addressed: rudimentary novelty detection prevented the robot from learning
sensorimotor associations that were too similar to what it had already learned. In Chapter 7,
a more elaborated self-assessment mechanism was proposed, taking the dynamics of the robot
behavior into account. The latter could obviously replace the former for a more adaptive solu-
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tion. More interestingly, if the human teacher is walking by the robot side, gait synchronization
should also provide a continuous feedback on the quality of learning and task performance.
Thus, synchrony detection could serve as an input to another type of self-evaluation mechanism.

Additionally, future work should further study self-improvement; that is to say behavior and
skill learning based on self-assessment. According to the literature on intrinsic motivation, the
proposed model is knowledge-oriented since it relies on a comparison between current situa-
tion and learned representation. But it allows for indirectly evaluating skills because learning
normal/usual situations occurs during task learning under human (semi-)supervision. In this
framework, competence and knowledge are intertwined, both grounded in the robot sensorimo-
tor and social experience. Moreover, related works emphasize the interest of detecting novelty
and skills/task incompatibility in terms of learning capabilities. Making a step in that direction
could consist in triggering an exploratory behavior to discover new sensorimotor patterns. Also,
curiosity could make the robot seek situations in which learning progress can be maximized.
Such a feature could allow it to engage in increasingly challenging activities: once simple skills
are learned, an exploratory behavior allows for discovering more complex ones by avoiding
‘unlearnable’ situations.

One of the main ideas I wanted to defend in my thesis is that, in autonomous systems, emo-
tion and cognition cannot be separated. Emotions emerge from physical and social interactions
with the environment. They also filter information related to survival and well-being and modu-
late other brain activities accordingly. Thus, I believe that to be meaningful in artificial systems,
emotions have to be integrated in the whole architecture through bidirectional influences with
sensory, attentional, decisional and motor processes. Otherwise, they are mere responses to
external stimuli that the designer labels as emotional. Throughout the second part of this dis-
sertation, I attempted to provide evidence of how this approach to internal emotional processes
could foster efficient physical and social interactions with the environment. By “efficient” I
mean with regards to goals that are related to survival and well-being.

Through my research, I advocate the notion that the natural bias in favor of emotionally
relevant information cannot only intervene at the level of action selection and decision-making.
In Chapters 6 and 7, I showed examples of emotional influence on attentional and sensory pro-
cesses, which also indirectly had an impact on short-term, working memory. From the functional
perspective, it is essential that emotional modulation occur at earlier stages. Indeed, objects com-
pete for limited processing capacity. Therefore, brain resources – memory and computation –
must be recruited appropriately. There is still a lot to investigate in that matter. For instance,
a more precise modeling of the visual cortex would open the way for numerous experiments
linked to emotion influence on low-level perception. Further research in this direction not only
implies changes in the image processing algorithms (and corresponding neural network imple-
mentations) but also implies different hardware solutions.

To conclude, this thesis provides a framework and various perspectives for a deeper under-
standing of the role of emotion in autonomous systems. For instance, a more detailed mapping
of the brain structures involved in the processes that I studied might bring new insights or sug-
gest new hypotheses on the functioning of biological emotions. But, the goal must not be to
model one-to-one mapping between brain areas and their functions. On the contrary, the notion
of connected networks should be emphasized. Thereby, internal dynamics can contribute to the
interactions between agents and their physical and social environments.
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APPENDIX A

The neurocybermagic hat: hardware,
software and algorithmic tricks

A.1 Robotic platforms

Figure A.1 shown the three mobile robots that I used during my thesis. They are customized
versions of robotic platforms made by Robosoft©. Robulab is the indoor platform (LEFT and
CENTER) and Roburoc is the robot used in the outdoors (RIGHT). In all cases, the platforms
are equipped with embedded computers – Intel©i7, 6-core 12-thread 3.33GHz CPU and 16 GB
of RAM – used to run the programs designed for the experiments. These embedded computers
communicate with the mobile base provided by Robosoft ©via Ethernet connection. Depending
on the experiments, the platforms are also equipped with a variety of sensors (e.g. camera,
laser, compass) and actuators (e.g. servomotor) used for physical and social interactions with
the environment.

A.2 Robot simulator

Some of the experiments in Chapters 6 and 7 were performed on Webots simulator developed by
Cyberbotics ©. Webots allows for simulating environments with realistic physics. The indoor
platform described above was modeled by former doctoral students of the ETIS lab so that
experiments could be run on the simulator regardless of the use of real or simulated robots.
Figure A.2 shows the simulated robot and an example of physical environment.

A.3 Software environment for neural network simulations

A.3.1 Prométhée

The Prométhée software developed by Gaussier and colleagues at the ETIS laboratory is a neural
network simulator that allows distributed execution of independent computational nodes (groups
of neurons) [Quoy et al., 2000; Lagarde et al., 2008]. These nodes are functions written in
C language and implementing a variety of features: neural algorithms, arithmetic operations,
image processing algorithms, I/O interfaces, etc. The most important module of Prométhée is a
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Figure A.1: Robotic platforms. LEFT: Indoor platform used in Chapter 3. CENTER: Indoor platform
used in Chapter 6. RIGHT: Outdoor platform used in Chapter 2. These robot are embedded with various
devices: (1) and (2) pan-camera, (3) magnetic compass, (4) servomotor-based oscillating arm, (5) laser
sensor, (6) light sensor (color detector placed underneath the robot), (7) compass and stabilizing platform.
The laptop (8) on the outdoor platform is used to launch and debug the programs running on the embedded
computer.

Figure A.2: Webots robot simulator. LEFT: The simulated Robulab with 2 driving wheels. RIGHT:
The environment used in experiments of Chapter 7.

scheduler handling the execution of these nodes. Much like a Petri net, the scheduling is based
on tokens transmitted from a node to its successors once it is executed. Each operation of the
information processing flow can be computed as soon as the information from previous modules
is updated. Independent modules are executed in parallel (i.e. in separate threads). It is also
possible to use real-time tokens that guarantee that activities inside the network are updated at a
specific frequency.

A.3.2 Coeos

The neural networks executed by Prométhée are organized in the form of scripts specifying the
topology of connections between the computational nodes. Coeos is a GUI allowing users to
design such scripts. Figure A.3 shows an example of network as it can be seen on this interface.
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Figure A.3: Coeos GUI for the design of neural networks executed by Prométhée.

A.3.3 Themis

An entire application can be decomposed in several scripts. These scripts can communicate with
each other, thus forming a global network. Themis is a GUI allowing users to easily manage such
applications. Its gives access to all parameters related to the communication between scripts.
Also, it controls the execution of these scripts by Prométhée.

A.3.4 Pandora

Figure A.4: Pandora GUI for the display of neural networks executed by Prométhée..

Pandora is a GUI allowing users to display the activities of specific nodes in real-time during
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the execution of Prométhée. It also possible to communicated with certain I/O nodes in order to
change the values of some neurons in the network on the fly. Figure A.4 shows an example of
the information displayed by Pandora.

A.4 Fundamental neural algorithms

A.4.1 Classification

The perceptron proposed by Rosenblatt [1958] is one of the most famous models of artificial
neural networks. In its most basic form, it consists in a single elementary computational unit
that mimics the behavior of a biological neuron as suggested by [McCulloch and Pitts, 1943].
Such a neuron x basically calculates a weighted sum of its N inputs yi:

x = H(
N�

i=1

wiyi − b) (A.1)

where wi is the weight of the input yi, b a constant bias, and H(z) the Heaviside function equal
to 1 if z ≥ 1 and 0 otherwise. The latter is called “activation function” since it determines
whether the neuron accumulated enough “potential” based on its inputs to respond. The bias
serves as a threshold that the weighted sum of the inputs have to exceed in order to “activate”
the output neuron. Like all the neurons I used in my work, this equation models an average firing
rate as a simplification of spiking activities in biological neurons.

The perceptron is a linear classifier. As shown in Figure A.5, it can model the logical op-
erators AND and OR but fails in the case of a XOR1. Indeed, when represented in a 2D space,
the two former a linearly separable problems, but not the latter. For non-linearly separable prob-
lems, more than one layer neurons is required. This is called a multilayer perceptron. Each
layer decomposes the problem linearly so that the next layer use intermediate output. It is also
worth noting that a large variety of activation functions can be used to introduce other kinds of
non-linearities in the neuron response – e.g. sigmoid or hyperbolic tangent functions.

The notion of learning in a classifier consists in drawing the separation line2. This is done by
modifying the weights of the links between a neuron and its input; much like neuromodulatory
mechanisms strengthen or weaken synaptic connections between biological neurons. A famous
example is the Hebbian learning rule, named after Donald Hebb. The idea of the Hebbian theory
is that “cells that fire together, wire together” [Hebb, 1949]. In artificial neurons, this can be
translated in the following learning rule:

dwij

dt
= α.xj .yi (A.2)

where wij is the link between xj and yi and α the learning rate. The latter parameter determines
the speed at which the connection weights are modified.

There exists a large variety of classifiers in the literature [MacQueen, 1967; Kohonen, 1982;
Carpenter and Grossberg, 1988].

1Reminder: for two binary inputs A and B, i) A AND B = 1 only if both A and B equal 1, ii) A OR B = 1 if at
least A or B is 1, and iii) A XOR B = 1 if and only if either A or B is 1, not both.

2The separation line becomes a hyperplane in multidimensional problems
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output = 1 output = 0

AND OR XOR

A

B B B
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Figure A.5: Linear classification using a perceptron. In the case of an AND or OR operation between
the inputs A and B, a single line can separate the two classes of responses exhibited by the perceptron,
i.e. 1 or 0. Hence, they are linearly separable problems. In contrast, a single line is not sufficient for the
XOR operation.

A.4.2 Conditioning

Conditioning is a form of associative learning that is observed in humans and animals. Classical
conditioning refers to the notion made famous by Pavlov [1927]. In his experiment, Pavlov
presented a auditory stimulus right before feeding dogs. After a few repetitions, the dogs began
to salivate in response to the stimulus even without food. To generalize, the concept consists
in pairing a conditional, neutral stimulus (e.g. sound) to an unconditional, biologically potent
one (e.g. food). As a results, the unconditioned, reflex response is also associated to conditional
stimulus as conditional response.

Least Mean Square (LMS) is an optimization methods that can computationally model this
principle. It can be implemented in artificial neural networks by means of the Widrow and Hoff
[1960] rule. Thereby, the connection weights are modified as follows:

dwij

dt
= α.yi( �xj − xj) (A.3)

where wij is the link between the output neuron xj and the input neuron yi, �xj the desired output
and α the learning rate. Here, yi, xj and �xj respectively represent the neutral stimulus, the
conditioned response and the unconditioned response. This gradient descent reduces the error
between the actual and the desired output based on the input patterns. Notably, the difference
between this model and biological Pavlovian learning is that in the latter both the conditional
and unconditional stimuli trigger the response. Thus an additional layer summing xj and �xj is
required to fully model classical conditioning.

Such a technique is used in PerAc model to build sensorimotor associations [Gaussier and
Zrehen, 1995]. In the context of navigation, these associations can consist in place–action cou-
pling so that the desired direction shown by the human teacher is associated with the current
place.
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A.4.3 Competition

Competition mechanisms consist in inhibitory lateral connections among a population of neu-
rons. As a results, those having the highest activities – e.g. thanks to excitatory inputs – can
reduce the response of their neighbors. This idea is illustrated in Figure A.6.

Input

Output

Input

Output

Input

Output

Excitatory link Inhibitory link

Figure A.6: Dynamics of competition between two neurons. Each of them have an excitatory input, an
excitatory recurrent connection and an inhibitory connection with the other. Starting from different input
values (0.4 and 0.6) at t0, the most activated neuron wins the competition after a few steps. The figure is
borrowed from Jauffret [2014]

This principle has been widely used in artificial neural networks to model a decision-making
mechanism for instance [Rumelhart and Zipser, 1985; Carpenter and Grossberg, 1988]. Classi-
cally, a winner-takes-all competition is obtained in the case only one neuron remains active after
a few iterations – like in Figure A.6. However, it is possible to make the competition less strict
by changing the activation functions [Maass, 2000]

A.4.4 Competition/Cooperation in Dynamic Neural Fields

The concept of neural field is based on the fact that the brain uses population coding [Taube et al.,
1990; Bullmore and Sporns, 2009]. Indeed, neighboring cells generally have similar activities.
Rather than having the information encoded in a single cell – the so-called grandmother cells
– it is distributed over a population of neurons. By this principle of redundancy, each neuron
have a portion of the information. Thereby, population coding ensures a relative robustness to
neurodegeneration for instance.

This notion of continuous neural space can be attributed to Beurle [1956]. Wilson and Cowan
[1973] then proposed the concept of excitatory and inhibitory neurons to model interactions in
populations of neurons. Today, one of the most commonly used model was proposed by Amari
[1977]. It is based on the idea that excitatory interactions are local (proximal) while inhibitory
ones are distal. This is modeled by an interaction kernel in the shape of a “mexican hat”, i.e.
consisting in a Laplacian of Gaussian or a Difference of Gaussian. Based on Amari’s work,
Schöner et al. [1995] proposed the theory of Dynamic Neural Fields (DNF) as a framework for
robotic control.

The model of Amari [1977] have interesting properties in the sense of dynamical systems
(bifurcation, fusion, hysteresis, memory). This allows dynamical filtering implementing distal
competition and proximal cooperation. Let us consider a 1D neural field of size N . The potential
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Input stimuli

Competition Cooperation

Input stimuli

Figure A.7: Competition/cooperation in 1D Dynamic Neural Field. TOP: The DoG kernel that governs
the interaction between neurons of the field. For clarity, only connections projecting from the central
neuron are shown. BOTTOM: Examples of competition (LEFT) and cooperation (RIGHT) between
input stimuli. In general, proximal stimuli reinforce each other and inhibit distant ones. The figure is
slightly readapted from Jauffret [2014]

u of the jth neuron of the field is updated as follows:

τ.
uj(t)

dt
= −uj(t) +Xj(t) + c+

�

z∈Vz

w(z).f(uj−z(t)).dz (A.4)

where X is the input, f(x) = tanh(x) is the activation function, τ is the time constant, c is a
constant inhibition potential, w is an interaction kernel and Vz the interaction neighborhood of
size N . Using a Difference of Gaussian (DoG) as an interaction kernel allows the dynamical
filtering described above as illustrated in Figure A.7.

Goal

Obstacle

1st derivative

Attractor

Repulsor
readout

Linear speed

amplitude

Rotational speed
(turn right)

Figure A.8: DNF-nased mobile robot control. The neural populations represent the 360o field surround-
ing the robot. Two types of inputs are represented in (1) and (2), respectively representing an approach
stimulus (e.g. goal) and an avoidance stimulus (e.g. obstacle). From the resulting DNF in (3), two infor-
mation are extracted: i) linear speed, depending on the amplitude, ii) rotational speed, based on a readout
of the first derivative. Indeed, points where the derivative equals zero form attractors and repulsors that
trigger a decision to turn left or right. In the example illustrated here, the closest attractor with respect to
the current direction (dotted line) indicates that the robot has to turn right. The figure is readapted from
Jauffret [2014]
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Thanks to the above mentioned properties, DNF theory is a good candidate for robotic con-
trol Schöner et al. [1995]; Quoy et al. [2003]; Cuperlier et al. [2006]. The example of 1D field
given above can be exploited in navigation. In such case, controlling the behavior of a mobile
robot basically consists in giving motor orders corresponding to linear and rotational speed. If
there are several sub-behaviors (suggested by different navigation strategies), they can be con-
sidered as weighted inputs of a DNF that determines the action to perform. This principle is
illustrated in Figure A.8.
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