Directeur De Thèse

Michel Paindavoine

Philippe Coussy

Professeur des Christophe Garcia

Rapporteur Andres Perez-Uribe

Robert M French

Yann Lecun

Lolita Mathieu

Laura

Jonathan Luc

Margaux, Stéphane Julie Pierre

Philippe, Corinne, Sandrine, Léa, Lydia Danilo Christophe

Benoît, Kiki, Drak, Émilie, Rémi "Goodfinger", Manjo, Élisa, Clémence, Romain, Roswitha, Hélène, Margot Alena Chloé

Jimmy Mélissa

Valentin

Claire David

Thomas " Vougny-Pensez-Pas

Optimization and implementation of bio-inspired feature extraction frameworks for visual object recognition

Industry has growing needs for so-called "intelligent systems", capable of not only acquire data, but also to analyse it and to make decisions accordingly. Such systems are particularly useful for video-surveillance, in which case alarms must be raised in case of an intrusion. For cost saving and power consumption reasons, it is better to perform that process as close to the sensor as possible. To address that issue, a promising approach is to use bio-inspired frameworks, which consist in applying computational biology models to industrial applications. The work carried out during that thesis consisted in selecting bio-inspired feature extraction frameworks, and to optimize them with the aim to implement them on a dedicated hardware platform, for computer vision applications.

First, we propose a generic algorithm, which may be used in several use case scenarios, having an acceptable complexity and a low memory print. Then, we proposed optimizations for a more global framework, based on precision degradation in computations, hence easing up its implementation on embedded systems. Results suggest that while the framework we developed may not be as accurate as the state of the art, it is more generic. Furthermore, the optimizations we proposed for the more complex framework are fully compatible with other optimizations from the literature, and provide encouraging perspective for future developments. Finally, both contributions have a scope that goes beyond the sole frameworks that we studied, and may be used in other, more widely used frameworks as well.

So here I am, after three years spent playing around with artificial neurons. That went fast, and I guess I would have needed twice as long to get everything done. That was a great experience, which allowed me to meet extraordinary people without whom those years wouldn't have been the same.

First of all, I wish to thank my mentor Michel Paindavoine for letting me be his student, along with my co-mentors Olivier Brousse and Michel Doussot.

Résumé

L'industrie a des besoins croissants en systmes dits intelligents, capable d'analyser les signaux acquis par des capteurs et prendre une dcision en consquence. Ces systmes sont particulirement utiles pour des applications de vido-surveillance ou de contrle de qualit.

Pour des questions de cot et de consommation d'nergie, il est souhaitable que la prise de dcision ait lieu au plus prs du capteur. Pour rpondre cette problmatique, une approche prometteuse est d'utiliser des mthodes dites bio-inspires, qui consistent en l'application de modles computationels issus de la biologie ou des sciences cognitives des problmes industriels. Les travaux mens au cours de ce doctorat ont consist choisir des mthodes d'extraction de caractristiques bio-inspires, et les optimiser dans le but de les implanter sur des plateformes matrielles ddies pour des applications en vision par ordinateur. Tout d'abord, nous proposons un algorithme gnrique pouvant tre utiliss dans diffrents cas d'utilisation, ayant une complexit acceptable et une faible empreinte mmoire. Ensuite, nous proposons des optimisations pour une mthode plus gnrale, bases essentiellement sur une simplification du codage des donnes, ainsi qu'une implantation matrielle bases sur ces optimisations. Ces deux contributions peuvent par ailleurs s'appliquer bien d'autres mthodes que celles tudies dans ce document.

List of Figures

General introduction 1.1 The need for intelligent systems

Automating tedious or dangerous tasks has been an ongoing challenge for centuries.

Many tools have been designed to that end. Among them lies computing machines, allowing to assist human beings in calculations or even performing them. Such machines are everywhere nowadays, in devices that fit into our pockets. However, despite the fact that they are very efficient for mathematical operations that are complicated for our brains, they usually perform poorly at tasks that are easy for us, such as recognizing a landmark on a picture or analysing and understanding a scene.

There are many applications for systems that are able to analyze their environments and to make a decision accordingly. In fact, Alan Turing, one of the founder of modern computing, estimated one of the ultimate goal of computing is to build machines that could be said intelligent [1]. Perhaps one of the most well known applications of such technology would be for autonomous vehicules, e.g cars that would be able to drive themselves, with little to no help from humans. In order to drive safely, those machines obviously need to retrieve information from different channels, e.g audio of video. Such systems may also be useful for access control for areas that need to be secured, or for quality control on production chains, e.g as was proposed for textile products in [2].

One could think of two ways to achieve a machine of that kind: either engineer how it should process the information, or use methods allowing it to learn it and determine it automatically. Those techniques form a research fields that have been active for decades called Machine Learning, which is part of the broader science of Artificial Intelligence (AI).

Machine Learning

In 1957, the psychologist Frank Rosenblatt proposed the Perceptron, one of the first system capable of learning automatically without being explicitly programmed. He proposed a mathematical model, and also built a machine implementing that learning behavior; he tested it with success on a simple letter recognition application. Its principle is very simple: the input image is captured by a retina, producing a small black and white image of the letter -black corresponds to 1, and white to 0. A weighted sum of those pixels is performed, and the sign function is applied to the result -for instance, one could state that the system must return 1 when the letter to recognize is an A, and -1 if its a B. If the system returns the wrong value, then the weights are corrected so that the output is correct. A more formal, mathematical description of the Perceptron is provided latter, in Section 2.1.1.1 on page 9. The system is also illustrated in Figure 1.2. Since the Perceptron, many trainable frameworks have been proposed, most of them following a neuro-inspired approached like the Perceptron or a statistical approach. They are described in Section 2.1.

Recently, Machine Learning -and AI in general -gained renown from the spectacular research breakthrough and applications initiated by companies such as Facebook, Google, Microsoft, Twitter, etc. For instance, Google DeepMind recently developed AlphaGo, Perceptron applied to pattern recognition. Figure 1.2a shows an hardware implementation, and Figure 1.2b presents the principle: each cell of the retina captures a binary pixel and returns 0 when white, 1 when black. Those pixels are connected to so called input units, and are used to compute a weighted sum. If that sum is positive, then the net returns 1, otherwise it returns -1. Training a Perceptron consists in adjusting its weights. For a more formal and rigorous presentation, see page 9.

a software capable of beating the world champion of Go [3]. Facebook is also using AI to automatically detect, localize and identify faces in pictures [4]. However those applications are meant to be performed on machines with high computational power, and it is beyond question to run such programs on constraint architectures, like those one expect to find on autonomous systems. Indeed, such devices fall into the field of Embedded Systems which shall be presented now.

Embedded systems

Some devices are part of larger systems, in which they perform one task in particulare.g control the amount of gas that should be injected in the motor of a vehicle. Those socalled embedded systems must usually meet high constraints in terms of volume, power consumption, cost, timing and robustness. Indeed, they are often used in autonoumous systems carrying batteries with limited power. In the case of mass produced devices such as phones or cars, it is crucial that their cost is as low as possible. Furthermore, they are often used in critical systems, where they must process information and deliver the result on time without error -any malfunction of those systems may lead to disastrous consequences, especially in the case of autonomous vehicles or military equipments. All those constraints also mean that embedded systems have very limited computational power.

Many research teams have proposed implementations of embedded intelligent systems, as shown in Section 2.2.2. The work proposed in this thesis falls into that research field.

However, as we shall see many of those implementations require high-end hardware, thus leading to potentially high cost devices. The NeuroDSP project 3 , in the frame of which this PhD thesis was carried out, aims to provide a device at a lower cost with a low power consumption.

NeuroDSP: a neuro-inspired integrated circuit

The goal of the research project of which this PhD is part of is to design a chip capable of performing the computation required by the "intelligent" algorithms presented earlier.

As suggested in its name, NeuroDSP primarily focuses on the execution of algorithms based on the neural networks theory, among which lie the earlier mentioned Perceptron.

As shown in Section 2.1, the main operators needed to support such computations are linear signal processing operators such as convolution, pooling operators and non-linear functions. Most Digital Signal Processing (DSP) operators, such as convolution, actually need similar features -hence that device shall also be able to perform DSP operation, for signal preprocessing for instance. As we shall see, all those operations may be, most of the time, performed in parallel, thus leading to a single-instruction-multiple-data (SIMD) architecture, in which the same operations is applied in parallel to a large amount of data. The main advantage of this paradigm is obviously to carry those operations faster, potentially at a lower clock frequency. As the power consumption of a device is largely related to its clock frequency, SIMD may also allow a lower power consumption.

NeuroDSP is composed of 32 so called P-Neuro blocks, each basically consisting of a cluster of 32 Processing Elements (PE), thus totalling 1024 PE. A PE may be seen as an artificial neuron performing a simple operation on some data. All PEs in a single P-Neuro perform the same operation, along the lines of the aforementioned SIMD paradigm. A NeuroDSP device may then carry out signal processing and decision making operations. Since 1024 neurons may not be enough, they may be multiplexed to emulate larger systems -of course at a cost in terms of computation time. When timing is so critical that multiplexing is not a satisfying option, it is possible to use several NeuroDSP devices in cascade. The device's architecture is illustrated in Figure 1.3.

Document overview

While NeuroDSP was designed specifically to run signal processing and decision making routines, such algorithms are most of the time too resource consuming to be performed efficiently on that type of device. It is therefore mandatory to optimize them, which is the main goal of the research work presented here.

In Chapter 2, a comprehensive tour of the works related to our research is proposed.

After presenting machine learning theoretical background and also algorithms inspired by biological data, the main contribution concerning their implementations are shown. A discussion shall also be proposed, from which arises the problematic that is aimed to be addressed in this document, namely: how may a preprocessing algorithm be optimized given particular face and pedestrian detection applications, and how the data may be efficiently encoded so that few hardware resources may be used?

The first part of that problem is addressed in Chapter 3. While focusing on a preprocessing algorithm called HMAX, the main works in the literature concerning feature selection are recalled. Our contribution to that question is then proposed.

Chapter 4 presents our contribution of the second part of the raised problems, concerning data encoding. After reminding the main research addressing that issue, we show how a preprocessing algorithm may be optimized so that it may process data coded on a few bits only, with few to none performance drop. An implementation on a reconfigurable hardware shall then be proposed.

Finally, Chapter 5 draws final thoughts and conclusions about the work proposed here.

The main problems and results are reminded, as well as the limitations. Considered future research are also proposed.

Chapter 2

Related works and problem statement

This chapter proposes an overview of the frameworks used in the pattern recognition field. Both its theoretical backbone and the main implementation techniques shall be presented. It is shown here that one of the key problems of many PR frameworks is their computational cost. Those approaches mainly consists in either using machines with high parallel processing capabilities and high computational power, or on the contrary in optimizing the algorithms so they can be run with less resources. The problematics underlying the work proposed in this thesis, which follows the second paradigm, shall also be stated.

Theoretical background

In this section, the major theoretical contributions to PR are presented. The principle classification frameworks are first presented to the reader. Then, a description of several descriptors which aim to capture the useful information from the processed images and to get rid of the noise, is proposed.

Classification frameworks

The classification of an unknown data, also called vector or feature vector, consists in predicting the category it belongs to. Perhaps the simplest classification framework there is is Nearest Neighbor. It consists in storing examples of feature vectors in memory, each associated with the category it belongs to. To classify a unknown feature vector, one simply uses a distance (e.g Euclidean or Manhattan) to determine the closest example.

The classifier then returns the category associated to that selected vector. While really simple, that framework however has many issues. The most obvious is its memory print and its computational cost: the more examples we have, the more expansive that framework is. From a theoretical point of view, that framework is also very sensitive to outliers; any peculiar feature vector, for instance in the case of labelling error, may lead to disastrous classification performance. A way to improve this framework is to take not only the closest feature vector, but the K closest, and to make them vote for the category.

The retained category is then the one having the most votes [START_REF] Fix | Discriminatory analysis, nonparametric discrimination[END_REF]. That framework is called K-Nearest Neighbour (KNN). While this technique may provide better generalization and reduce the effects due to outliers, it still requires lots of computational resources.

There exist many more other pattern classification frameworks. The most used of those frameworks shall now be described. Neural networks are presented first. A presentation of the Support Vector Machines framework shall follow. Finally, Ensemble Learning methods are presented. This document focuses on feedforward architecture only -nonfeedforward architectures, such as Boltzmann Machines [START_REF] Hinton | Optimal perceptual inference[END_REF][START_REF] David | A learning algorithm for boltzmann machines[END_REF], Restricted Boltzmann Machines [START_REF] Rumelhart | Parallel Distributed Processing -Explorations in the Microstructure of Cognition: Foundations[END_REF][START_REF] Bengio | Classification using discriminative restricted Boltzmann machines[END_REF] and Hopfield networks [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] shall not be described here. We also focus on supervised learning frameworks, as opposed to unsupervised learning, such as selforganizing maps [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF]. In suppervised learning, each example is manually associated to a category, while in unsupervised learning the model "decides" by itself which vector goes to which category.

Neural Networks

Artifical Neural Networks (NN) are machine learning frameworks inspired by biolocical neural systems, used both for classification and regression tasks. Neural networks are formed of units called neurons, interconnected to each others by synapses. Each synapse has a synaptic weight, which represents a parameter of the model that shall be tuned during training. During prediction, each neuron performs a sum of its inputs, weighted by the synaptic weights. A non linear function called activation function is then applied to the result, thus giving the neuron's activation which feeds the neurons connected to the outputs of the considered one. In this thesis, only feedforward network shall be considered. In those systems, neurons are organized in successive layers, where each unit in a layer gets inputs from units in the previous layer and feeds its activation to units in the next layer. The layer getting the input data is called input layer, while the layer from which the network's prediction is read is the output layer. Such a framework is represented in Figure 2.1. For a complete overview of the existing neural networks, a good review is given in [START_REF] Fausett | Fundamentals of Neural Networks: Architectures, Algorithms And Applications: United States Edition[END_REF]. In each layer, units get their inputs from neurons in the previous layer and feed their outputs to units in the next layer.

Perceptron

The perceptron is one of the most fundamental contribution to the Neural Network field, and was introduced by Rosenblatt in 1962 in [START_REF] Rosenblatt | Principles of neurodynamics: perceptrons and the theory of brain mechanisms[END_REF]. It is represented in Figure 2.2. It has only two layers: the input layer and the output layer. A "dummy"

unit is added to the input layer, the activation of which is always 1 -the weight w 0 associated to that unit is called bias. Those layers are fully connected, meaning each output unit is connected to all input units. Thus, the total input value z of a neuron with N inputs and a bias w 0 is given by:

z = w 0 + N i=1 w i x i (2.1)
Or, in an equivalent, more compact matrix notation:

z = W T x (2.2)
with x = (1, x 1 , x 2 , . . . , x n) T and W = (w 0 , w 1 , w 2 , . . . , w N) T . W is called weight vector.

In the case where there is more than one output unit, then W becomes a matrix where the i-th column is the weight vector for the i-th output unit. By denoting M the number of output units, z i the input value of the i-th output unit and z = (z 1 , z 2 , . . . , z M), one may write:

z = W T x (2.
3)

The output unit's activation function f is as follows:

∀x ∈ R, f (x) =        +1 x > θ 0 x ∈ [-θ, θ] -1 x < θ (2.4)
Where θ represents a threshold (θ ≥ 0)1 .

To train a Perceptron, it is fed with each feature vector x in the training set along with the corresponding target category t. Let's consider for now that we only have two different categories: +1 and -1. The idea is that, if the network predicts the wrong category, the difference between the target and the prediction, weighted by a learning rate and the input value, is added to the weights and bias. If the prediction is correct, then no modifications is made. The training algorithm is shown in more details for a

Perceptron having a single output unit in Algorithm 1. It is easily extensible to systems with several output units; the only major difference is that t is replaced by a target vector t, the components of which may be +1 or -1.

n ← number of input units; η ← learning rate; Initialize all weights and bias to 0; while Stopping condition is false do forall

(x = (x 1 , x 2 , . . . , x n) , t) in training set do y ← f (w 0 + w 1 x 1 + w 2 x 2 + • • • + w n x n); for i ← 1 to n do w i ← w i + ηx i (t -y); end w 0 ← w 0 + η (t -y); end end
Algorithm 1: Learning rule for a perceptron with one output unit.

If there exists a hyperplan separating the two categories, then the problem is said linearly separable. In that case, the perceptron convergence theorem [START_REF] Fausett | Fundamentals of Neural Networks: Architectures, Algorithms And Applications: United States Edition[END_REF][START_REF] Michael | Brains, Machines, and Mathematics[END_REF][START_REF] Hertz | Introduction to the Theory of Neural Computation[END_REF][START_REF] Minsky | Perceptrons -An Intro to Computational Geometry Exp Ed[END_REF] states that such a hyperplan shall be found in a finite number of iterations -even if one cannot now that number a priori. However, that condition is required, meaning the perceptron is not able to solve non-linearly separable problems. Therefore, it is not possible to train a perceptron to perform the XOR operation. This is often referred to as the "XOR problem" in the literature, and was one of the main reasons why neural network had not known great popularity in industrial applications in the past. A way to address this class of problems is to use several layers instead of a single one.

x 1

x 2

x 3

x N

∀x ∈ R f (x) = tanh (x) (2.5)
or the very similar bipolar sigmoid:

∀x ∈ R f (x) = 2 1 + e -x -1 (2.6)
Those functions' curves are represented in Figure 2.4. Its training algorithm is somewhat more complicated, and follows the Stochastic Gradient Descent approach. Let E be the cost function measuring the error between the expected result and the network's prediction. The goal is to minimize E, the shape of which is unknown. The principle of the algorithm achieving that is called back-propagation of error [START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF][START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF].

RBF

Radial Basis Function networks were proposed initially by Broomhead and

Lowe [START_REF] Broomhead | Radial basis functions, multi-variable functional interpolation and adaptive networks[END_REF][START_REF] Broomhead | Multivariable Functional Interpolation and Adaptive Networks[END_REF] and fall in the kernel methods family. They consist in three layers: an input layer similar to the Perceptron's, a hidden layer containing kernels and an output layer. Here, a kernel i is a radial basis function f i (hence the name of the network) that measures the proximity of the input pattern x with a learnt pattern p i called center, according to a radius β i . It typically has the following form: x 1

f i (x) = exp - ||x -p i | | β i (2.7) -3 -2 -1 1 2 3 -1 -0.5 0.5 1 tanh(x) 2 1+exp(-x) -1
x 2 x 3 x N y 1 y 2 y M

Input layer

Hidden layer Output layer The output layer is similar to a Perceptron: the hidden and output units are fully connected by synapses having synaptic weights, which are determine during the training stage. The network is illustrated in Figure 2.5.

To determine the kernels parameters, one may adopt different strategies. Centers may be directly drawn from the training set, and radius may be arbitrarily chosen -however such empirical solution leads to poor results. A more efficient way is to use a clustering algorithm that gathers the centers into clusters, the center of which shall represent an example center while the corresponding radius is evaluated w.r.t the proximity with other kernels. Such an algorithm is presented in Appendix A. The computational power and the memory required by this network grows linearly with the number of kernels.

While the training method presented in Appendix A tend to reduce the number of kernels, it still may be quite important. There exists sparse kernel machines, that work in a similar way than RBF networks but are designed to use as few kernels as possible, like the Support Vector Machines described in Section 2.1.1.2.

Spiking Neural Network

All the models presented above treat the information at the level of the neurons activation. Spiking neural networks intend to describe the behaviour of the neurons at a lower level. That model was first introduced by Hodgkin et al [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], who proposed a description of the propagation of the action potentials between biological neurons. There exists different variations of the spiking models, but the most used nowadays is probably the "integrate and fire", where the neurons' inputs are accumulated over time. When the total reaches a threshold, the neuron is committed.

Thus, the information sent by a neuron is not carried by a numerical value, but rather by the spikes order and the duration between two spikes. It is still an active research subject, with many applications in computer vision -Masquelier and Thorpe proposed the "spike timing dependent plasticity" (STDP) algorithm, which allows unsupervised learning of visual features [START_REF] Masquelier | Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity[END_REF]. [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. The selected vectors are called support vectors. After selecting them, the decision boundary's parameters are optimized so that it is as far as possible to all support vectors. Typically, a quasi-Newton optimization process could be choosen to that end; however its description lies beyond the scope of this document. Figure 2.6

shows an example of their determination as well as the resulting decision boundary.

Ensemble learning

The rational behind Ensemble Learning frameworks is that instead of having one classifier, it may be more efficient to use several ones [START_REF] Opitz | Popular ensemble methods: an empirical study[END_REF][START_REF] Polikar | Ensemble based systems in decision making[END_REF][START_REF] Rokach | Ensemble-based classifiers[END_REF][START_REF] Schapire | The strength of weak learnability[END_REF]. Those classifiers are called weak classifiers, and the final decision results from their predictions. Their exists several paradigms, among which Boosting [START_REF] Breiman | Arcing classifier (with discussion and a rejoinder by the author)[END_REF] in particular.

Boosting algorithm are known for their computational efficiency during prediction. A good example is their use in Viola and Jone's famous face detection algorithm [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF]. The speed of the algorithm comes partly from the fact that the classifier is composed of a cascade of weak classifiers, in which all regions of the image that are clearly not faces are discarded by the top-level classifier. If the data goes through it, then it is "probably a face", and is processed by the second classifier, which either discard of accept it, and so on. This allows to rapidly eliminate irrelevant data and the noise. Boosting is also known to be slightly more efficient than SVM for multiclass classification tasks with HMAX [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF], which is described in Section 2.1.2.2.

Feature extraction frameworks

Signal processing approach

Classical approaches More than ten years ago, Lowe proposed a major contribution in computer vision with his Scale Invariant Feature Transform (SIFT) descriptor [START_REF] David | Distinctive Image Features from Scale-Invariant Keypoints[END_REF],

which became quickly very popular due to its efficiency. Its primary aim was to provide, as suggested by its name, features that are invariant to the scale and to some extent to the orientation and small changes in viewpoint. It consists in matching features from the unknown image to a set of learnt features at different locations and scales, followed by a Hough transform that gathers the matched points in the image into clusters, which represent detected objects. The matching is operated by a fast nearest-neighbour algorithm, that indicates for a given feature the closest learnt feature. However, doing so at every locations and scale would be very inefficient, as most of the image probably does not contain much information. In order to find locations which are the most likely to hold information, a Difference of Gaussian (DoG) filter bank is applied to the image. Each DoG filter behaves as a band-pass filter, selecting edges at a specific spatial frequency and allowing to find features at a specific scale. Extrema are then evaluated across all those scales in the whole image, and constitute a set of keypoints at which the aforementioned matching operations are performed. As for rotation invariance, it is brought by the computation of gradients that are local to each keypoint. Before performing the actual matching, the data at a given keypoint is transformed according to those gradients so that any variability caused by the orientation is removed.

Bay et al. proposed in [START_REF] Bay | Speeded-Up Robust Features (SURF)[END_REF] a descriptor aiming to reproduce the result of the state of the art algorithm, but much faster to compute. They called their contribution SURF, for Speeded-Up Robust Features. It provides properties similar to SIFT (scale and rotation invariance), with a speed-up of 2.93X on a feature extraction task, where both frameworks were tuned to extract the same number of keypoints. Like SIFT, SURF consists in a detector that takes care of finding keypoints in the image, cascaded with a descriptor that computes features at those keypoints. The keypoints are evaluated using a simple approximation of the Hessian matrix, which can be efficiently computed thanks to the integral image representation, i.e an image where each pixels contains the sum of all the original image's pixels located left and up to it [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF]. Descriptors are then computed locally using Haar wavelet, which can also be computed with the integral image [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF]. [START_REF] Rosten | Machine Learning for High-Speed Corner Detection[END_REF][START_REF] Schmidt | An Evaluation of Image Feature Detectors and Descriptors for Robot Navigation[END_REF] Another popular framework for feature extraction is Histograms of Oriented Gradients (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. It may be used in many object detection applications, though it was primarly designed for the detection of human beings. It consists in computing the gradients at each pixel, and make each of those gradients vote for a particular bin of a local orientation histogram. The weight with which each gradient votes is a linear function of its norm and of the difference between its orientation and the orientation of the closest bins' centers. Those gradients are then normalized over overlapping spatial blocks, and the result forms the feature vector. The classifier used here is typically a linear SVM, presented in Section 2.1.1.

Like many feature extraction frameworks, there exists some variations of the HOG feature descriptor. Dalal and Triggs present two of them in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]: R-HOG and C-HOG, respectively standing for "Rectangular HOG" and "Circular HOG". The difference with the HOG lies in the shape of the overlapping spatial blocks used for the gradient normalization. R-HOG is somewhat close to presented earlier SIFT, except that computations are performed at all locations, thus providing a dense feature vector. C-HOG is somewhat trickier to implement due to the particular shape it induces, and shall not be presented here. All three frameworks provide similar recognition performances, which were the state of the art at that time.

There are many other descriptors for images, like FAST [START_REF] Rosten | Machine Learning for High-Speed Corner Detection[END_REF][START_REF] Schmidt | An Evaluation of Image Feature Detectors and Descriptors for Robot Navigation[END_REF], and we shall not describe them in detail here as it lies beyond the scope of this document. However it is worth detailing another type of frameworks based on so-called wavelets, which allow to retreive

•••• • •••• • •••• • •••• • • •••• • •••• • •••• • •••• • • •••• • •••• • •••• • •••• • • •••• • •••• • •••• • •••• • • • x Input image 1st layer 2nd layer 3rd layer U λ 1 (x) U λ 1 ,λ 2 (x) S 0 (x) S λ 1 (x) S λ 1 ,λ 2 (x)
Figure 2.7: Invariant scattering convolution network [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF]. Each layer applies a wavelet decomposition U λ to its inputs, and feed the next layer with the filtered images U λ (x).

At each layer, a low-pass filter is applied to the filtered images and the results are sub-sampled. The resulting so-called "scattering coefficients" S λ (x) are kept to form the feature vector.

frequency information while keeping local information -which is not possible with the classical Fourier transform.

Wavelets Wavelets have known a great success in many signal processing applications, such as signal compression or pattern recognition, including for images. They are linear operators decomposing locally a signal on a frequency basis. A wavelet decomposition consists in applying a "basis" linear filter, called mother wavelet, on the signal. It is then dilated in order to extract features of different sizes and, in the case of images, rotated so that it responds to different orientations. An excellent and comprehensive guide to the theory and practice of wavelets is given in [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF].

Wavelets are used as the core operators of the Scattering Transform frameworks. Among them lie the Invariant Scattering Convolution Networks (ISCN), introduced by Bruna and Mallat [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF]. They follow a feedforward, multistage structure, along the lines of ConvNet described in Section 2.1.2.3, though contrary to ConvNet its parameters are fixed, not learnt. They alternate wavelet decompositions with low-pass filters and subsampling -the function of which is to provide invariance in order to raise classification performances. Each stage computes a wavelet decomposition of the images produced at the previous stage, and feed the resulting filtered images to the next stage. At each stage the network also outputs a low-pass filtered and sub-sampled version of those decompositions -the final feature vector is the concatenation of those output features.

Figure 2.7 sums up the data flow of this framework. It should be noted that in practice, not all wavelet are applied at each stage to all images: indeed it is shown in [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF] that some of those wavelet cascades do not carry information, and thus their computation may be avoided, which allows to reduce the algorithmic complexity. Variations of the ISCN with invariance to rotation are also presented in [START_REF] Sifre | Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination[END_REF][START_REF] Oyallon | Deep Roto-Translation Scattering for Object Classification[END_REF], which may be used for texture [START_REF] Sifre | Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination[END_REF] or objects [START_REF] Oyallon | Deep Roto-Translation Scattering for Object Classification[END_REF] classification.

A biological approach: HMAX

Some frameworks are said to be biologically plausible. In such case, their main aim is not so much to provide a framework as efficient as possible in terms of recognition rates or computation speed, but rather to propose a model of a biological system. One of the most famous of such frameworks is HMAX, which also happens to provide decent recognition performances. The biological background was proposed by Riesenhuber and

Poggio in [START_REF] Riesenhuber | Hierarchical models of object recognition in cortex[END_REF], on the base of the groundbreaking work of Hubel and Wiesel [START_REF] Hubel | Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[END_REF]. Its usability for actual object recognition scenarios was stated by Serre et al. 8 years later in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. It is a model of the ventral visual system in the cortex of the primates, accounting for the first 100 to 200 ms of processing of visual stimuli. As its name suggests -HMAX stands for "Hierarchical Max" -that model is built in a hierarchical manner. Four successive stages, namely S1, C1, S2 and C2 process the visual data in a feedforward way. The S1 and S2 layers are constituted of simple cells, performing linear operations or proximity evaluations, while the C1 and C2 contain complex cells that provide some degrees of invariance. Figure 2.8 sums up the structure of this processing chain. Let's now describe each stage in detail.

The S1 stage consists in a Gabor filter bank. Gabor filters -which are here two dimensional, as we process images -are linear filters responding to patterns of a given spatial frequency and orientation. They are a particular form of the wavelets described in Section 2.1.2.1. A Gabor filter is described as follows:

G (x, y) = exp - x 2 0 + γ 2 y 2 0 2σ 2 × cos 2π λ x 0 (2.8)
x 0 = x cos θ + y sin θ and y 0 = -x sin θ + y cos θ (2.9)

where γ is the filter's aspect ratio, θ its orientation, σ the Gaussian effective width and λ the cosine wavelength. The S2 stage aims to compare the input features to a dictionary of learnt features.

There are different ways to build up that dictionary. In [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF] it is proposed to simply crop patches of different sizes in images in C1 space at random position and scales.

During feedforward, patches are cropped from images in C1 space at all locations and scales, and are compared to each learnt feature. The comparison operator is a radial basis function, defined as follows:

∀i ∈ {1, 2, . . . , N } r i (X) = exp(-β X -P i) (2.10)
where X is the input patch from the previous layer, P i the i-th learnt patch in the dictionary and β > 0 is a tuning parameter. Therefore, the closer the input patch is to the S2 unit learnt patch, the stronger the S2 unit fires.

Finally, a complete invariance to locations and scales of the features in C1 space is reached in the C2 stage. Each C2 unit pools over all S2 unit sharing the same learnt pattern, and simply keeps the maximum value. Those values are then serialized in order to form the feature vector. The descriptor HMAX provides is well suited to detect the presence of an object in cluttered images, though the complete invariance to location and scales brought by C2 removes information related to its location. This issue is addressed in [START_REF] Chikkerur | What and where: A Bayesian inference theory of attention[END_REF] -however that model lies beyond the scope of this thesis and shall not be discussed here. [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. Concerning the Gabor filters in S1, σ represents the spread of their Gaussian envelopes and λ the wavelength of their underlying cosine functions. like the S1 and C1 layers of HMAX, followed by a fully connected layer similar to a MLP. However, the parameters of the convolution kernels are not predefined, but rather learnt at the same time as the weights in the final classifier. Thus, the feature extraction and classification models are both tuned simultaneously, using an extension of the back-propagation algorithm.. An example of this model is presented in Figure 2.9. That framework became very popular since the industry demonstrated its efficiency, and is today actively used by big companies such as Facebook, Google, Twitter, Amazon and Microsoft. A particular implementation of that framework, tuned to perform best at face recognition tasks, was proposed by Garcia et al [START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF]. However, the large amount of parameters to be optimized by the training algorithm requires a huge amount of data in order to avoid overfitting, lots of computational power and lots of time -still, pretrained models are provided by the community, making that problem avoidable.

Frameworks implementations

Software implementations

There exists many implementation of the descriptors and classifier described in Section 2.1. Some of them are available in general purpose software packages, like the widespread Scikit-learn python package [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. SVM also have a high performance dedicated library with LIBSVM [START_REF] Chang | LIBSVM: A library for support vector machines[END_REF]. Other frameworks, more dedicated to neural networks -and particularly deep learning -are accelerated on GPUs, like Theano [START_REF] Bastien | Theano: new features and speed improvements[END_REF][START_REF] Bergstra | Theano: a CPU and GPU math expression compiler[END_REF],

Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF], Torch [START_REF] Collobert | Torch7: A Matlablike Environment for Machine Learning[END_REF], cuDNN [START_REF] Woolley | cuDNN: Efficient Primitives for Deep Learning[END_REF] and the recently released TensorFlow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]. There also exist frameworks more oriented towards neuroscience, such as PyNN [START_REF] Davison | PyNN: A Common Interface for Neuronal Network Simulators[END_REF] and NEST [START_REF] Plesser | Nest: the neural simulation tool[END_REF].

The Parallel Neural Circuit Simulator (PCSIM) allows to handle large-scale models composed of several networks that may use different neural models, and is able to handle several millions of neurons and synapses [START_REF] Pecevski | PCSIM: a parallel simulation environment for neural circuits fully integrated with Python[END_REF]. As for spiking neural networks, the BRIAN framework [START_REF] Goodman | Brian: A Simulator for Spiking Neural Networks in Python[END_REF][START_REF] Dan | The Brian Simulator[END_REF] provides an easy to use simulation environment. Uetz and Behnke along with its implementation on GPU [START_REF] Uetz | Large-scale object recognition with CUDA-accelerated hierarchical neural networks[END_REF], using the CUDA framwork.

This framework was especially designed for large-scale object recognition. The authors claim a very low testing error rate of 0.76 % on MNIST, a popular hand-written digit dataset initially provided by Burges et al [START_REF] Christopher | Mnist database[END_REF], and 2.87 % on the general purpose NORB dataset [START_REF] Lecun | Learning methods for generic object recognition with invariance to pose and lighting[END_REF].

Embedded systems

Optimizations for software implementations, both on CPU and GPU, for the SIFT and SURF frameworks have also been proposed [START_REF] Kim | A fast feature extraction in object recognition using parallel processing on CPU and GPU[END_REF]. It has also been shown that wavelets are very efficient to compute, even on low hardware resources [START_REF] Courroux | Use of wavelet for image processing in smart cameras with low hardware resources[END_REF], which make them a reasonable choice for feature extraction on embedded systems. Furthermore, an embedded version of the SpiNNaker board described in Section 2.2.2 for autonomous robots, programmable using with the C language or languages designed for neural networks programing is presented in [START_REF] Galluppi | Event-based neural computing on an autonomous mobile platform[END_REF].

Hardware implementations

As shown in Section 2.2.1, GPUs are very efficient platforms for the implementation of classification and feature extraction frameworks, particularly for neuromorphic algorithms, due to their highly parallel architecture. Field Programmable Gate Arrays (FPGA) are another family of massively parallel platforms, and as such are also good candidates for efficient implementations. They are reconfigurable hardware devices, in which the user implement algorithms at a hardware level. Therefore, they provide a much finer control than the GPU: one implements indeed the communication protocols, the data coding, how computations are performed, etc. -though they utilization is also more complicated. FPGAs are configured using hardware description languages, like VHDL or Verilog.

Going further down in the abstraction levels, there also exists fully analogical neural network implementations that use a component called memristor [START_REF] Brousse | Neuro-inspired learning of low-level image processing tasks for implementation based on nano-devices[END_REF][START_REF] Chabi | Robust neural logic block (NLB) based on memristor crossbar array[END_REF][START_REF] Choi | An electrically modifiable synapse array of resistive switching memory[END_REF][START_REF] He | Design and electrical simulation of on-chip neural learning based on nanocomponents[END_REF][START_REF] Liao | Design and Modeling of a Neuro-Inspired Learning Circuit Using Nanotube-Based Memory Devices[END_REF][START_REF] Retrouvey | Electrical simulation of learning stage in OG-CNTFET based neural crossbar[END_REF][START_REF] Retrouvey | Electrical simulation of learning stage in OG-CNTFET based neural crossbar[END_REF][START_REF] Snider | From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain[END_REF][START_REF] Versace | The brain of a new machine[END_REF][START_REF]Molecular-junction-nanowire-crossbar-based neural network[END_REF]. The resistance of such components can be controlled by the electric charge that goes through it. That resistance value is analogous to a synaptic weight. As it is still at the fundamental research level, analogical neural network shall not be studied here.

Neural networks

The literature concerning hardware implementations of neural networks is substantial.

A very interesting and complete survey was published in 2010 by Misra et al [START_REF] Misra | Artificial neural networks in hardware: A survey of two decades of progress[END_REF]. Feedforward neural network are particularly well suited for hardware implementations, since the layers are, by definition, computed sequentially. It implies that the data goes through each layers successively, and that while the layer i processes the image k, the image k + 1 is processed by the layer i -1. Another strategy is, on the contrary, to implement a single layer on the device, and to use layer multiplexing to sequentially load and apply each layer to the data, thus saving lots of hardware resources to the expense of a higher processing time [START_REF] Himavathi | Feedforward Neural Network Implementation in FPGA Using Layer Multiplexing for Effective Resource Utilization[END_REF]. However, it has been demonstrated that neural network that are not feedforward may also be successfuly implemented on hardware [START_REF] Ly | High-Performance Reconfigurable Hardware Architecture for Restricted Boltzmann Machines[END_REF][START_REF] Coussy | Fully-Binary Neural Network Model and Optimized Hardware Architectures for Associative Memories[END_REF].

There also exist hardware implementations of general purpose bio-inspired frameworks, such as Perplexus, which proposes among other the capability for hardware devices to self-evolve, featuring dynamic routing and automatic reconfiguration [START_REF] Upegui | The perplexus bio-inspired reconfigurable circuit[END_REF], particularly suited for large-scale biological system emulation. Architecture of adaptive size have also been proposed, that allow to dynamically scale itself when needed [START_REF] Héctor | A networked fpga-based hardware implementation of a neural network application[END_REF].

While the mentioned works intend to be general purpose frameworks with no particular applications in mind, some contributions also propose implementations for very specific purposes, such as the widespread face detection and identification task [START_REF] Yang | Implementation of an rbf neural network on embedded systems: real-time face tracking and identity verification[END_REF], or more peculiar application such as gas sensing [START_REF] Benrekia | FPGA implementation of a neural network classifier for gas sensor array applications[END_REF] or classification of data acquired from magnetic probes [START_REF] Nguyen | FPGA implementation of neural network classifier for partial discharge time resolved data from magnetic probe[END_REF].

Some frameworks received special considerations from the community in those attempts.

After presenting the works related to HMAX, the next paragraphs shall present the numerous -and promising -approaches for ConvNet implementations. The many contributions that concern the Spiking Neural Networks are presented afterwards.

HMAX Many contributions about hardware architectures for HMAX have been proposed by Al Maashri and his colleagues [START_REF] Park | System-On-Chip for Biologically Inspired Vision Applications[END_REF][START_REF] Al Maashri | A hardware architecture for accelerating neuromorphic vision algorithms[END_REF][START_REF] Debole | FPGA-accelerator system for computing biologically inspired feature extraction models[END_REF][START_REF] Maashri | Accelerating neuromorphic vision algorithms for recognition[END_REF][START_REF] Park | Saliencydriven dynamic configuration of HMAX for energy-efficient multi-object recognition[END_REF][START_REF] Sun Park | An FPGAbased accelerator for cortical object classification[END_REF]. Considering that in HMAX, the most resource consuming stage is, by far, the S2 layer [START_REF] Al Maashri | A hardware architecture for accelerating neuromorphic vision algorithms[END_REF], a particular effort was made in [START_REF] Al Maashri | A hardware architecture for accelerating neuromorphic vision algorithms[END_REF] to propose a suitable hardware accelerator for that part. In that paper, Al Maashri et al. proposed a stream-based correlation, where input data is streamed to several pattern matching engines performing the required correlation operations in parallel. The whole model, including the other layers, was implemented on a single-FPGA and a multi-FPGA platforms that respectively provide 23× and 89× speedup, compared with a CPU implementation running on a system having a quad-core 3.2 GHz Xeon processor and 24 GB memory. The single-FPGA platform uses a Virtex-6 FX-130T, and the multi-FPGA one embeds four Virtex-5 SX-240T, all of which are high-end devices.

Those systems did not have any drop in accuracy compared to the CPU implementation.

A complete framework allowing to map neuromorphic algorithms to multi-FPGA systems is presented by Parket al. in [START_REF] Park | System-On-Chip for Biologically Inspired Vision Applications[END_REF]. The chosen hardware platform is called Vortex [START_REF] Park | A reconfigurable platform for the design and verification of domain-specific accelerators[END_REF], which was designed to implement and map hardware accelerators for streambased applications. One of the biggest challenge for such systems is the inter-device communication, which is addressed in that work with the design of specific network interfaces. It also proposes tools allowing to achieve the mapping in a standardized way, with the help of a specially-designed tool called Cerebrum. As a proof of concept, a complete image processing pipeline was implemented, that cascades a preprocessing stage, a visual saliency2 determination and an object recognition module using HMAX.

That pipeline was also implemented on CPU in C/C++ and on GPU with CUDA for comparison. The gain provided by the system is a speedup of 7.2× compared to the CPU implementation and 1.1× compared to the GPU implementation. As for the power efficiency, the gain is 12.1× compared to the CPU implementation and 2.3× compared to the GPU implementation.

Kestur et al proposed with their CoVER system [START_REF] Kestur | Emulating Mammalian Vision on Reconfigurable Hardware[END_REF] a multi-FPGA based implementation of visual attention and classification algorithms -the latter being operated by HMAX -that aims to process high resolution images nearly in real time. It has a pre-processing stage, followed by either an image classification or a saliency detection algorithm, or both, depending on the chosen configuration. Each process uses a hardware accelerator running on an FPGA device. The architecture was implemented on a DNV6F6-PCIe prototyping board, which embeds six high-end Virtex6-SX475T FPGAs: one of them is used for image preprocessing and routing data, another one to compute HMAX's S1 and C1 feature maps, two perform the computations of HMAX's S2 and C2

features, and the remaining two are used both as repeaters and to compute the saliency maps.

To our knowledge, the most recent hardware architecture for HMAX was proposed in 2013 by Orchard et al [99]. It was successfuly implemented on a Virtex 6 ML605 board, which carries a XC6VLX240T FPGA. The implementation is almost identical to the original HMAX described in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF], and is able to process 190 images per second with less than 1% loss in recognition rate compared with standard software implementations, for both binary and multiclass objet recognition tasks. One of the major innovation of this contribution is the use of separable filters for the S1 layer: it was indeed shown that all filters used in HMAX, at least the original version presented in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF], may be expressed as separable filters or as a linear combinations of separable filters -this allows to considerably reduce the utilization of FPGA resources. That engine is composed of three submodules: a wrapper that takes care of communications with other modules, a weight loader that manages the convolution kernel's coefficients and the convolution engine itself, that performs the actual computation. In order to perform the convolution operations in streams, the convolution kernel stores a stripe of the image and perform convolutions as soon there are enough data, so that for a K × K convolution kernel the system needs to store K -1 lines. Thus, the system can output one pixel per clock cycle. That engine reached the to date state-of-the-art in terms of energy efficiency, wih 2.76 GOPS/mW.

ConvNet

To our knowledge, the most recent effort concerning the implementation of ConvNets on hardware lies in the Origami project [START_REF] Cavigelli | Origami: A Convolutional Network Accelerator[END_REF]. The contributors claim that their integrated circuit is low-power enough to be embeddable, while handling network that only workstation with GPU could handle before. To achieve this, the pixel stream is first, if necessary, cropped to a Region Of Interest (ROI) with a dedicated module. A filter bank is then run on that ROI. Each filter consists in the combination of chanels, each performing multiplication-accumulation5 (MAC) operations on the data they get.

Each channel then sums the final results individually, and output the pixel values in the stream. That system achieves a high throughput of 203 GOPS when running at 700 MHz, and consumes 744 mW.

Spiking Neural Networks Due to the potentially low computational resources they need, SNN also have their share of hardware implementation attempts. Perhaps the most well-known is the Spiking Neural Network architecture (SpiNNaker) Project [START_REF] Furber | The SpiNNaker Project[END_REF]. It may be described as a massively parallel machine, capable of simulating neuromorphic systems in real time -i.e it respects biologically plausible timings. It it basically a matrix of interconnected processors (up to 2500 in the largest implementation), splitted in several nodes of 18 processors. Each processor simulates 1000 neurons. The main advantage in using spikes is that the information is carried by the firing timing, as explained in Section 2.1.1.1, page 12 -thus each neuron needs to send only small packets to the other neurons. However, the huge amount of those packets and of potential destination makes it challenging to route them efficiently. In order to guarantee that each emitted packet arrives on time at the right destination, the packet itself only contains the identifier of the emitting neuron. Then, the router sends it to the appropriate processors according to that identifier, which would depend on the network's topology and more precisely to which neurons the emitting neuron is connected to.

IBM and the EPFL (École Polytechnique Fédérale de Lausanne) collaborated to start a large and (very) ambitious research program: the Blue Brain project, which aims to use an IBM Blue Gene supercomputer to simulate mammalian brains, first of little animals like rodents, and eventually the human brain [START_REF] Markram | The blue brain project[END_REF]. However it is highly criticized by the scientific community, mostly for its cost, the lack of realism in the choice of its goals and the contributions it led to [START_REF] Kupferschmidt | Virtual rat brain fails to impress its critics[END_REF]. While still ongoing, that project led to the creation of SyNAPSE, meaning System of Neuromporphic Adaptive Plastic Scalable Electronics. Since the Blue Brain project needed a supercomputer, the aim of SyNAPSE is to design a somewhate more constrained system. In the frame of that project, the TrueNorth chip [START_REF] Merolla | A million spiking-neuron integrated circuit with a scalable communication network and interface[END_REF] [START_REF] Krichmar | Large-scale spiking neural networks using neuromorphic hardware compatible models[END_REF], run in a simulation environment. The authors backed the propositions that neural networks may be useful for both engineering and modeling purposes, and supported the fact that the spiking neural networks are particularly well suited with the use of Addressable Event Representation communication scheme, which consists in transmitting only the information about particular events instead of the full information, which is particularly useful to reduce the required bandwidth and computations.

However, that strategy lies beyond the scope of this document.

Other frameworks implementations

There exists many academic works that are yet to be mentioned, for both classifiers and descriptors. As for classifiers, Kim et al proposed a bio-inspired processor for real time object detection, achieving high throughput (201.4 GOPS) while consuming 496 mW.

Other frameworks for pattern recognition systems that are not biologically inspired have been proposed. For instance, Hussain et al proposed an efficient implementation of the simple KNN algorithm [START_REF] Hussain | An adaptive implementation of a dynamically reconfigurable K-nearest neighbour classifier on FPGA[END_REF], and an implementation of the almost-equally-simple Naive Bayes6 framework is proposed in [START_REF] Hongying Meng | FPGA implementation of Naive Bayes classifier for visual object recognition[END_REF]. Anguita et al proposed a framework allowing to generate user-defined FPGA cores for SVMs [START_REF] Anguita | A FPGA Core Generator for Embedded Classification Systems[END_REF]. An implementation for Gaussian Mixture Models, which from a computational point of view are somewhat close to RBF nets and as such may require lots of memory and hardware resources, have also been presented [START_REF] Shi | An Efficient FPGA Implementation of Gaussian Mixture Models-Based Classifier Using Distributed Arithmetic[END_REF]. Concerning feature extraction, the popular SIFT descriptor have been implemented on FPGA devices with success [START_REF] Bonato | A Parallel Hardware Architecture for Scale and Rotation Invariant Feature Detection[END_REF][START_REF] Yao | An architecture of optimised SIFT feature detection for an FPGA implementation of an image matcher[END_REF], as well as SURF [START_REF] Svab | FPGA based Speeded Up Robust Features[END_REF].

Some companies also proposed their own neural netwok implementations, long before the arrival of ConvNet, HMAX and other hierarchical networks. Intel proposed an analogical neural processor called ETANN in 1989 [START_REF] Holler | An electrically trainable artificial neural network (ETANN) with 10240 'floating gate' synapses[END_REF]. While harder to implement and not as flexible as their digital counterparts, analogical devices are much faster.

That processors embeds 64 PEs that act as as many neurons and 10, 240 connections.

The device was parameterizable by the user using a software called BrainMaker. A digital neural architecture was presented by Phillips for the first time in 1992, and was called L-neuro [START_REF] Mauduit | Lneuro 1.0: a piece of hardware LEGO for building neural network systems[END_REF][START_REF] Duranton | L-Neuro 2.3: a VLSI for image processing by neural networks[END_REF]. It was designed with modularity as a primarly concern in mind, and thus is easily interconnected with other modules which makes it scalable. In its latter version, that system was composed of 12 DSP processors, achieving 2 GOP/s with a 1.5 GB/s bandwidth, and was successfuly used for PR applications.

IBM also proposed the Zero Instruction Set Computer (ZISC) [START_REF] Madani | ZISC-036 Neuroprocessor Based Image Processing[END_REF], their own neural processor. It was composed of a matrix of processing elements that act like a kernel function of an RBF network: as detailed in Section 2.

Discussion

In the previous sections of this chapter, the theoretical background of pattern recognition was presented as well as different implementations of pattern recognition framework on different platforms. This Section is dedicated to the comparison of those frameworks.

Descriptors and then classifiers shall be discussed in terms of robustness and complexity, 7 Hardware modules that may be used as black boxes on FPGAs.

with an emphasis on how well they may be embedded. Afterwards the problematics underlying the research work presented here shall be stated. [START_REF] Bay | Speeded-Up Robust Features (SURF)[END_REF] that it was both more accurate and faster than SIFT.

The accuracy brought by HMAX for computer vision was groundbreaking [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. It showed better performances than SIFT in many object recognition tasks, mainly on the Cal-tech101 dataset. Those results were corroborated by the work of Moreno et al, who compared the performances of HMAX and SIFT on object detection and face localization tasks, and found out that HMAX performed indeed better than SIFT [START_REF] Moreno | A Comparative Study of Local Descriptors for Object Category Recognition: SIFT vs HMAX[END_REF]. It is also worth mentionning the very interesting work of Jarett et al [START_REF] Jarrett | What is the Best Multi-Stage Architecture for Object Recognition?[END_REF], in which they evaluated the contribution of several properties of different computer vision frameworks applied to object recognition. That paper confirms and generalizes the aforementioned work of Moreno et al: it states that multi-stage architectures in general, which includes HMAX and ConvNets, perform better than single-stage ones, such as SIFT.

ConvNet achieves outstandingly good performances on large datasets, such as MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] or ImageNet [START_REF] Szegedy | Going Deeper with Convolutions[END_REF][START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF]. In comparison, HMAX's performances are lower. However, its number of parameters to optimize is very large, therefore a ConvNet needs a huge amount of data to be trained properly -indeed, models with lots of parameters are known to be more subject to overfitting [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. If the data is sparse, it is worth considering using a framework with less parameters, such as HMAX; as explained in Section 2.1.2.2, its training stage simply consists in cropping images at random locations and scales.

Despite the fact that that randomness is clearly suboptimal and has been subject to optimization works in the past [START_REF] Yu | FastWavelet-Based Visual Classification[END_REF], it presents the advantage of being very simple.

ConvNet

Very high Yes, High on large datasets requires a large dataset Furthermore, while it has been stated that HMAX's accuracy is related to the amount of features in the S2 dictionnary, the performance do not evolve so much after 1,000 patches. Assuming only 1 patch per image is cropped during training, then one would require 1,000 which is much lower than the tens of thousands usually gathered to train ConvNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF]. That state of things led to the thought that while working in many situations, ConvNet may not be the most adapted tool for all applications -particularly in the case where the training set is small. Another possibility would be to use an Invariant Scattering Convolution Network as the first layers of a ConvNet, as suggested in [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF], instead of optimizing the weights of the convolution kernels during the training stage.

Due to their performances, those three multistage architectures -ConvNet, ISCN and HMAX -seem like the most promising options for most computer vision applications.

However, another important aspect that must be taken into account is that of their respective complexities: they have different requirements in terms of computational resources and memory that shall be decisive when choosing one of them, especially in the case of embedded systems. To that respect legacy descriptors such as HOG, SIFT and SURF in particular are interesting alternatives.

In order to set boundaries to the present work, a few descriptors must be chosen so that most of the effort can focus on them. To that end, Table 2.2 sums up the main features of the presented descriptors. As the aim is to achieve state of the art accuracy, the work presented in this thesis shall mostly relate to the three aforementioned multistage architectures: ConvNet, ISCN and HMAX.

Classifiers

For a given application, after selecting the (believed) most appropriate descriptor one must choose a classifiers. Like descriptors, they have different features in terms of robustness, complexity and memory print, both for training and prediction. Most of the time, the classification stage itself is not the most demanding in a processing chain, and thus may not need to be accelerated. In the case where one need such acceleration, the literature on the subject is already substantial -see Section 2.1.1. For those reasons, the present document shall not address hardware acceleration for classification. However, as the choice of the classifier plays a decisive role in the robustness of the system, the useful criteria for classifier selection shall be presented.

Let's first consider the training stage. As it shall be in any case performed on a workstation and not on an embedded system, constraints in terms of complexity and memory print are not so high. However, a clear difference must be made between the iterative training algorithms and the others. An iterative algorithm processes the training samples one by one, or by batch -they do not need to load all the data in once, and are therefore well suited for training with lots of samples. On the other hand, non-iterative data such as SVM or RBF need the whole dataset in memory to be trained, which is not a problem for reasonably small datasets but may become one when there are many datapoints -obviously the limit depends on the hardware configuration used to train the machine, though in any case efficient training requires strong hardware.

The classifier must also be efficient during predictions -here, "efficiency" is meant as speed, as the robustness depends largely on training. Feedforward frameworks, as most of those presented here, present the advantage of being fast compared to more complex frameworks. In linear classifiers such as Perceptrons or linear SVMs, the classification often simply consists in a matrix multiplication, which is now well optimized even on non massively parallel architectures like CPUs, thanks to libraries such as LAPACK [START_REF]Lapack -linear algrebra package[END_REF] or BLAS [START_REF]Blas -basic linear algebra subprogram[END_REF].

The speed of kernel machines, e.g RBF or certain types of SVM, is often directly related to the number of used kernel functions. For instance, the more training examples, the more kernels an RBF net may have (see Appendix A). Particular care must therefore be taken during the training stage of such nets, so that the number of kernels stays to a manageable amount. Finally, ensemble learning frameworks such as Boosting algorithms are often used when speed is critical in an applications, and have been demonstrated to be very efficient in the case of face detection for instance [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF].

Those considerations put aside, according to the literature HMAX is best used with either AdaBoost or SVM classifiers respectively for one-class and multi-class classification tasks [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. Concerning ISCN, it is suggested to use a SVM for prediction [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF]. Concerning ConvNet, it embeds its own classification stage which typically takes the form of an MLP [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Lecun | Convolutional networks and applications in vision[END_REF]. Now that the advantages and drawbacks of both the classification and feature extraction frameworks have been stated, the next section proposes a comparison between different implementation techniques.

Implementations comparison

In order to implement those frameworks a naive approach would be to implement them on a CPU, as it is probably the most widespread computing machine. However that would be particularly inefficient, as those frameworks are highly parallel and that such devices are by nature sequential: a program consists in a list of successive instructions that are run one after the other. Their main advantage, however, is that they are fairly easy to program. For that reason, CPU implementations still remain a quasi-mandatory step when testing a framework.

GPUs are also fairly widespread devices, even in mainstream machines. The advent of video games demanding more and more resources dedicated to graphics processing led to a massive production of those devices, which provoked a dramatic drop in costs. For those reasons they are a choice target platforms for many neuromorphic applications.

While somewhat more complicated to program that CPUs, the coming of higher level languages such as CUDA made the configuration of GPU reasonably easy to reach. The amount of frameworks using that kind of platforms, and moreover their success show that it is a very popular piece of hardware for that purpose [START_REF] Bastien | Theano: new features and speed improvements[END_REF][START_REF] Collobert | Torch7: A Matlablike Environment for Machine Learning[END_REF][START_REF] Woolley | cuDNN: Efficient Primitives for Deep Learning[END_REF][START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF][START_REF]CUDA Implementation of a Biologically Inspired Object Recognition System[END_REF]. However, their main disadvantage is their volume and power consumption, the latter being in the order of magnitude of 10 W. For embeddable systems the power consumption should not go beyond 1 W, which is where reconfigurable hardware devices are worth considering.

FPGAs present two major drawbacks: they are not as massively produced as GPUs and CPUs, which raises their cost. Their other downside actually goes alongside with their highest quality: they are entirely reconfigurable, from the way the computations are organized to the data coding scheme and such flexibility comes to the price of a higher development time (and thus cost) than CPUs and GPUs. However their power consumption is most of the time below 1 W, and can be optimized with appropriate coding principles. They are also much smaller than GPUs, and the low power consumption leads to colder circuits, which allows to save the energy and space that would normally be required to keep the device at a reasonnable temperature. Furthermore, they are reconfigurable to a much finer grain than GPU, and thus provide even more parallelization as the latters. All these criteria make FPGAs good candidates for embedded implementations of computer vision algorithms.

Problem statement

The NeuroDSP project presented in Section 1.4 aims to propose an integrated circuit for embedded neuromorphic computations, with high constraints in terms of power consumption, volume and cost. The ideal solution would be to produce the device as an Application Specific Integrated Circuit (ASIC) -however its high cost makes it a realistic choice only in the case where the chip is guaranteed to be sold in high quantities, which may be a bit optimistic for a first model. For that reason, we chose to implement that integrated circuit on an FPGA. As one of the aim of NeuroDSP is to be cost-efficient, we aim to propose those neuromorphic algorithms on mid-range hardware. Towards that end, one must optimize them w.r.t two aspects: complexity and hardware resource consumption. The first aspect may be optimized by identifying what part of the algorithm is the most important, and what part can be discarded. A way to address the second aspect of the problem is to optimize data encoding, so that computations on them requires less logic. Those considerations lead to to the following problematics, which shall form the matter of the present document:

• How may neuromorphic descriptors be chosen appropriately and how may their complexity be reduced?

• How the data handled by those algorithms may be efficiently coded so as to reduce hardware resources?

Conclusion

In this chapter we presented the works related to the present document. The problematics that we aimed to address were also stated. The aim of the contributions presented here is to implement efficient computer vision algorithms on embedded devices, with high constraints in terms of power consumption, volume, cost and robustness. The primary use case scenario concerns image classification tasks.

There exist many theoretical frameworks allowing to classify data, be it images, one dimensional signals or other. Naive algorithms such as Nearest Neighbor have the advantage of being really simple to implement; however they may achieve poor classification performances, and cost too much memory and computational power when used on large datasets. More sophisticated frameworks, such as neural networks, SVMs or ensemble learning algorithms can achieve better results.

In order to help the classifier, it is also advisable to use a descriptor, the aim of which is to extract data from the sample to be processed. Among such descriptors figures HMAX, which is inspired by neurophysiological data acquired on mamals. Such frameworks are said to be neuro-inspired, or bio-inspired. Another popular framework is ISCN, which decomposes the input image with particular filters called wavelets.

One of the most popular frameworks nowadays is ConvNet, which is a basically a classifier with several preprocessing layers that act as a descriptor. While impressively efficient, it needs to be trained with a huge amount of training data, which is a problem for applications where data is sparse. In such case it may seem more reasonable to use other descriptors, such as HMAX or ISCN, in combination with a classifier. The algorithms mentioned above are most of the time particularly well suited for parallel processing. While it is easier to implement them on CPU using languages such as C, the efficiency gained when running them on massively parallel architecture makes it worth the effort. There exist several frameworks using GPU acceleration, however GPUs are ill-suited for most embedded applications where power consumption is critical. FPGAs are better candidates in those cases, and contributions about implementations on such devices have been proposed.

The aim of the work presented in this document is to implement those demanding algorithms on mid-range reconfigurable hardware platforms. To achieve that, it is necessary to adapt them to the architecture. Such study is called "Algorithm-Architecture Matching" (AAM). That need raises two issues: how those frameworks may be reduced, and how the data handled for computation may be efficiently optimised, so as to use as few hardware resources as possible? The present document proposes solutions addressing those two questions.

Chapter 3

Feature selection

This chapter addresses the first question stated in Chapter 2, concerning the optimizations of a descriptor for specific applications. The first contribution presented here is related to a face detection task, while the second one proposes optimizations adapted to a pedestrian detection task. In both cases, the optimization scheme and rational are presented, along with a study of the complexity of major frameworks addressing the considered task. Accuracies obtained with the proposed descriptors are compared to those obtained with the original framework and the described systems of the literature.

Those changes in accuracies are then put in perspectives with the computational gain.

General conclusions are presented at the end of this Chapter.

Feature selection for face detection

This Section focuses on a handcrafted feature extractor for a face detection application.

We start from a descriptor derived from HMAX, and we propose a detailed complexity analysis; we also determine where lies the most crucial information for that specific application, and we propose optimizations allowing to reduce the algorithm complexity.

After reminding the reader of the major techniques used in face detection, we present our contribution, which consists in finding and keeping the most important information extracted by a framework derived from HMAX. Performance comparison with state of the art frameworks are also presented.

Detecting faces

For many applications, being either mainstream or professional, face detection is a crucial issue. Its more obvious use case is to address security problems, e.g identifying a person may help in deciding whether access should be granted or denied. It may also be useful in human-machine interactions, for instance if a device should answer in some way in case a human user shows particular states, such as distress, pain or unconsciousnessand to do that, the first step is to detect and locate the person's face. In that second scenario we fall into embedded systems, which explains our interest in optimizing face detection frameworks. Among the most used face detection techniques lie Haar-like feature extraction, and as usual ConvNet. We shall now describe the use of those two paradigms in those particular problems, as well as a framework called HMIN which is the basis of our work.

Cascade of Haar-like features

Before the spreading of ConvNets, one of the most popular framework for face detection was the Viola-Jones algorithm [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF] -it is still very popular, as it is readily implemented in numerous widely used image processing tools, such as OpenCV [START_REF]Itseez. Open source computer vision library[END_REF]. As we shall see, the main advantage of this framework is its speed, and its decent performances.

Framework description

Viola's and Jones' framework is built along two main ideas [START_REF] Viola | Robust real-time face detection[END_REF]: using easy and fast to compute low-level features -the so-called Haarlike features -in combination with a Boosting classifier that selects and classifies the most relevant features. Classifiers are cascaded so that the most obviously not-face regions of the image are discarded first, allowing to spend more computational time on most promising regions. A naive implementation of the Haar-like features may use convolution kernels, consisting of 1 and -1 coefficients, as illustrated on Figure 3.1. Such features may be computed efficiently using an image representation proposed in [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF] called Integral Image. In such representation, the pixel located at (x, y) takes as value the sum of the original image's pixels located in the rectangle defined by the (0, 0) and the (x, y) point, as shown in Figure 3.2. To compute such an image F one may use the following recurrent equation [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF]:

F (x, y) = F (x -1, y) + s (x, y) , (3.1)
with

s (x, y) = s (x, y -1) + f (x, y) (3.2)
where f (x, y) is the original image's pixel located at (x, y). Using this representation, the computation of a Haar-like feature may be performed with few addition and subtraction operations. Moreover the number of operations does not depend on the scale of the considered feature. Let's consider first the feature on the left of Figure 3.1, and let's They can be seen as convolution kernels where the grey parts correspond to +1 coefficients, and the white ones -1. Such features can be computed efficiently using integral images [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF]. Point coordinates are presented here for latter use in the equations characterizing feature computations. assume its top-left corner location is (x 1 , y 1) and that of its bottom-right corner's is (x 2 , y 2). Given the integral image II, its response r l (x 1 , y 1 , x 2 , y 2) is given by

(x 1 , y 1) (x 2 , y 2) x 2 , yg + + + (x 1 , y 1) (x 2 , y 2) xg , y 2 (xw , y 2) + + + +
r l (x 1 , y 1 , x 2 , y 2) = F (x 1 , y g , x 2 , y 2) -F (x 1 , y 1 , x 2 , y g) (3.3)
with F (x 1 , y 1 , x 2 , y 2) the integral of the values in the rectangle delimited by (x 1 , y 1) and (x 2 , y 2), expressed as

F (x 1 , y 1 , x 2 , y 2) = II (x 2 , y 2) + II (x 1 , y 1) -II (x 1 , y 2) -II (x 2 , y 1) (3.4)
where II (x, y) is the value of the integral images at location (x, y). As for the response r r (x 1 , y 1 , x 2 , y 2) of the feature on the right, we have:

r r (x 1 , y 1 , x 2 , y 2) = F (x w , y 2 , x g , y 1) -F (x 1 , y 1 , x g , y 2) -F (x w , y 1 , x 2 , y 2) (3.5)
The locations of the points are shown in Figure 3.1. Once features are computed, they are classified using a standard classifier such as a perceptron for instance. If the classifier does not reject the features as "not-face", complementary features are computed and classified, and so on until either all features are computed and classified as "face", or the image is rejected. This cascade of classifiers allows to reject most non-faces images early in the process, which is one of the main reasons for its low complexity. Now that we described the so-called Viola-Jones framework, we shall study its computational complexity.

Complexity analysis Let's now evaluate the complexity involved by that algorithm when classifying images. The first step of the computation of those Haar-like features on an image is then to compute its integral image. According to Equation 3.1 and Equation 3.2, it takes only 2 additions per pixels. Then, the complexity C VJ II of this

II (X, Y) = X x=1 Y y=0 f (x, y) + X Y Figure 3.2: Integral image representation. II (X, Y
) is its value of the point coordinated (X, Y), and f (x, y) the value of the original image at location (x, y) [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF].

process for a w × h image is given by

C VJ II = 2wh. (3.6)
That serves as the basis of the computation of the Haar-like features, as we saw earlier.

The complexity highly depends on the number of computed features, and for this study we shall stick to the implementation proposed in the original paper [START_REF] Viola | Robust real-time face detection[END_REF]. In that work, the authors have a total a 6060 features to compute -however, they also claimed that,

given the cascade of classifiers they used, only N f = 8 features are computed in average.

From [START_REF] Viola | Robust real-time face detection[END_REF], we now that each feature needs from 6 to 9 operations to compute -we shall consider here that, on average, they need N op = 7.5 operations. We note that, thanks to the computation based on the integral image, the number of operations does not depend on the size of the computed feature. After that, the features are classified -however we focus our analysis on the feature extraction only, so we do not take that aspect into account here. Thus, denoting C VJ F the complexity involved a this stage, we have

C VJ F = N op N f . (3.7)
In additions, images must be normalized before being processed. Viola et al. proposed in [START_REF] Viola | Robust real-time face detection[END_REF] to normalize the contrast of the image by using its standard deviation σ given by

σ = m 2 - 1 N N i=0 x i 2 , (3.8)
where m is the mean of the pixels of the image, N = wh is the number of pixels and x i is the value of the i-th pixel. Those values may be computed simply as

m = II (W, H) wh (3.9) 1 N N i=0 x i 2 = II 2 (W, H) wh (3.10)
where II 2 denotes is the integral image representation of the original image with all its pixels squared. The computation of that integral image needs thus one power operations per pixel, to which we must add the computations required by the integral images, which leads to a total of 3W H operations. Computing m requires a single operation, as computing 1

N N i=0 x i 2 .
As the feature computation is entirely linear and since the normalization simply consists in multiplying the feature by the standard deviation, that normalization may simply be applied after the feature computation, involving a single operation per feature. Thus, the complexity C VJ N involved by image normalization is given by

C VJ N = 3wh + N f (3.11)
From Equations 3.6, 3.7 and 3.11, the framework's global complexity is given by

C VJ = C VJ II + C VJ F + C VJ N = 5wh + N op + 1 N f , (3.12)
which considering the implementation proposed in [START_REF] Viola | Robust real-time face detection[END_REF], i.e with w = h = 24 and N f = 7.5, leads to a total of 2948 operations. Although strikingly low, it must be emphasized here that that value is an average; when a face is actually detected, all 6060 features must be computed and classified, which then leads to 54,390 operations.

However, for fair comparison we shall stick to the average value latter in the document.

Now that we evaluated the complexity of the processing of a single w × h image, let's evaluate it in the case where we scan a scene in order to find and locate faces. Normally, one would typically use several sizes of descriptors in order to find faces of different sizes [START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF][START_REF] Viola | Robust real-time face detection[END_REF] -however, in order to simplify the study we shall stick here to a single scale. Let W and H respectively be the width and height of the frame to process, and let N w be the number of windows processed in the image. If we classify subwindows at each location of the image, we have The integral images are first computed on the whole 640×480 image; after that, features must be computed, normalized and classified for each window. From Equations 3.6, 3.7, 3.11 and 3.13 we know that we need

N w = (W -w + 1) (H -h + 1) (3.
C VJ = 2W H + N op N f N w + N f N w (3.14) = 2W H + N f N w N op + 1 (3.15) = 5W H + N f (W -w + 1) (H -h + 1) N op + 1 . (3.16)
In the case of a 640 × 480 image, with w = 24, h = 24, N f = 8 and N op = 7.5 as before, we get C VJ = 20.7 MOP. Figure 3.3 shows the repartition of the complexity into several types of computations, considering that we derive from the above analysis that we need 4W H + N o pN f additions and W H multiplications.

Memory print

Let's now evaluat the memory required by that framework when processing a 640 × 480 image. Assuming the pixels of the integral image are coded on 32 bits integers, the integral image would require 1.2 MB to be stored entirely. Assuming

ROIs are evaluated sequentially on the input image, 6060 features are computed at most and each feature is coded as 32-bits integers, we would require 24.24 ko to stores the features. Thus, the total memory print required by that framework would be, in that case, 1.48 MB. That framework also has the great advantage that a single integral image may be used to compute features of various scales, without the need of computing, storing and managing an image pyramid, as required by other frameworks -more information about image pyramids are available in Section 3.1.3.2.

We presented the use of Haar-like features in combination with the AdaBoost classifier for face detection task, proposed by Viola and Jones [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF]. We shall now present and analyse an other major tool for this task, which is called CFF. The framework is shown in Figure 3.4.

During the prediction stage, it should be noted that the network can in fact process the whole image at once, instead of running the full computation windows by windows [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Long | Fully Convolutional Networks for Semantic Segmentation[END_REF]. This technique allows to save lots of computations, and is readily implemented if one considers the N1 layer as a convolution filter bank with kernel of size 6 × 7, and the N2 layer like another filter bank with 1 × 1 convolution kernels [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF].

Complexity analysis Let's now evaluate the complexity involved by the CFF algorithm. Denoting C CFF XX the complexity brought by the layer XX, and neglecting the classification as done in Section 3.1.1.1, we have

C CFF = C CFF C1 + C CFF S1 + C CFF T 1 + C CFF C2 + C CFF S2 + C CFF T 2 , (3.17)
where TX represents a non-linearity layer, where an hyperbolic tangeant is applied to each feature of the input feature map. Let's first evaluate C CFF C1 . It consists in 4 convolutions, which consists mainly in Multiplication-Accumulation (MAC), which we

Input C1 S1 C2 S2 • • • • • • • • • • • • • • • N1 N2 Output Figure 3.4: Convolutional Face Finder [50]
. This classifier is a particular topology of a ConNet, consisting in a first convolution layer C1 having four trained convolution kernels, a first sub-sampling layer S1, a second convolution layer C2 partially connected to the previous layer's units, a second sub-sampling layer S2, a partially-connected layer N1 and a fully-connected layer N2 with one output unit.

assume corresponds to a single operation as it may be done on dedicated hardware.

Thus we have

C CFF C1 = 4 × 5 × 5 (W -4) (H -4) (3.18) = 100W H -400 (W + H) + 1600. (3.19)
Since the S2 layer consists in the computation of means of features in contiguous nonoverlapping receptive fields, this means that each feature is involved once an only once in the computation of a mean, which also requires a MAC operation per pixel. Considering that at this point, we have 4 (W -4) × (H -4) feature maps, and so

C CFF S1 = 4 (W -4) (H -4) (3.20) = 4W H -16 (W + H) + 64. (3.21)
Now, the non-linearity layer must be applied: an hyperbolic tangeant function is used to each feature of the 4 W S2 × H S2 feature maps, with

W S2 = W -4 2 (3.22) H S2 = H -4 2 , (3.23)
and thus, considering the best case where an hyperbolic tangent may be computed in a single operation,

C CFF T 1 = 4 W -4 2 H -4 2 (3.24) = W H -2 (W + H) + 16 (3.25)
The C2 layers consists in 20 convolution, the complexity of which may be derived from 3.18. Then, there are 6 element-wise sums of feature maps, which after the convolutions are of dimensions

W -4 2 -2 × H -4 2 -2 , (3.26)
and thus we have

C CFF C2 = (20 × 3 × 3 + 6 × 3 × 3) W -4 2 -2 H -4 2 -2 (3.27) = 9 × 26 W 2 -4 H 2 -4 (3.28) = 234 W H 4 - 5 2 (W + H) + 16 (3.29) = 58.5W H -585 (W + H) + 3744. (3.30)
The complexity in S2 layer may be derived from Equations 3.20 and 3.26, giving

C CFF S2 = 3.5W H -28 (W + H) + 224. (3.31)
And finally, the complexity of the last non-linearity may be expressed as

C CFF T2 = 14W S2 H S2 (3.32)
with [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and [START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF] and as recalled earlier, we know that the features may be efficiently extracted at once in the whole image, by applying all the convolutions and subsampling directly to it. Thus, we may compute that complexity directly by reusing Equation 3.36, and we get 50.7 MOP.

W S2 = 1 2 W -4 2 -2 (3.33) H S2 = 1 2 H -4 2 -2 , (3

Memory print

Let's now evaluate the memory required by the CFF framework.

As in Section 3.1.1.1, we shall consider here the case where we process a 640 × 480 image, without image pyramid. The first stage produces 4 636 × 476 feature mapsassuming the values are coded using single precision floating point scheme, hence using 32 bits, that stage requires a total of 4.84 MB. As the non-linearity and subsampling stages may be performed in-place, they do not bring any further need in memory. The second convolution stage, however, produces 20 316 × 236 feature maps. Using the same encoding scheme as before, we need 59.7 MB. We should also take into account the memory needed by the weights of the convolution and subsampling layers, but it is negligible compared to the values obtained previously. Hence, the total memory print is 64.54 MB. It should by noted that that amount would be much higher in the case where we process an image pyramid, as usually done. However, we stick to an evaluation on a single scale here for consistency with the complexity study.

This Section was dedicated to the description and study of the CFF framework. Let's now do the same study on another framework to which we refer as HMIN.

HMIN

Framework description In order to detect and locate faces on images, one may use HMAX, which was described in Section 2.1.2.2. However using that framework to locate an object requires to process separately different ROI of the image. In such case, the S2 and C2 layers of HMAX provide little gain in performance, as it is mostly useful for object detection in clutter [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. Considering the huge gain in computation complexity when not using the two last layers, we propose here to use only the first two layers for our application. In the rest of the document, the framework constituted by the S1 and C1 layers of HMAX shall be referred to as HMIN.

We presented the so-called framework HMIN, on which we base our further investigations. We shall now study its complexity, along the lines of what we have proposed earlier for Viola-Jones and the CFF.

Complexity analysis

The overall complexity C HMIN involved by the two stages S1 and C1 of HMIN is simply

C HMIN = C HMIN S1 + C HMIN C1 (3.37)
Where C HMIN S1 and C HMIN C1 are respectively the complexity of the S1 and C1 layers.

The S1 layer consists in a total of 64 convolutions on the W × H input image. Different kernel sizes are involved, but it is important that all feature maps fed in the C1 layer are of the same size. Thus, the convolution must be computed at all positions, even those where the center of the convolution kernel is on the edge of the image. Missing pixel may take any value: either simply 0 or the value of the nearest pixel for instance.

Denoting k i the size of the convolution kernel at scale i presented in the filter column of Table 2.1, we may write

C HMIN S1 = 4 16 i=1 W Hk i 2 = 36146W H. (3.38)
As for the C1 layer, it may be applied as follows: first, the element-wise maximum operations accross pairs of feature maps are computed, which take 8WH operations;

then we apply the windowed max pooling. Since there is a 50% overlap between the receptive fields of two contiguous C1 units, neglecting the border effects each feature of each S1 feature map is involved in 4 computations of maximums. Since those operations are computed on 32 feature maps, and adding the complexity of the first computation, we get This Section was dedicated to the presentation of several algorithms suited for face detection, include HMIN which shall serve as the basis of our work. Next Section is dedicated to our contributions in the effort of optimizing out HMIN.

C HMIN C1 = 8W H + 8 × 4W H = 40W H. (3

HMIN optimizations for face detection

In this Section we propose optimizations for HMIN, specific to face detection applications. We begin by analysing the output of the C1 layer, and we then propose our simplifications accordingly. Experimental results are then shown. This work is based on the one presented in [START_REF] Boisard | Optimizations for a bio-inspired algorithm towards implementation on embedded platforms[END_REF], which we pushed further as described below.

C1 output

As HMIN intends to be a general purpose descriptor, it aims to grasp features of as various types. Figure 3.6 shows an examples of the C1 feature maps for a face. The eyes, nose and mouth are the most prominent object of the face, and as such one can expect HMIN to be particularly sensible to them as it is based on the mammal's vision system, which can indeed easily be seen in Figure 3.6. One can also see that the eyes and mouths are more salient when θ = π/2, and that the nose is more salient when θ = 0. Furthermore, one can also see that the extracted features are redundant from C1 maps of neighboring scales and same orientations. Due to the redundancy, we also propose to sum the output of the S1 layer -which is equivalent to sum the remaining kernels of the filter bank to produce one, unique 37 × 37 convolution kernel. The smaller kernels are padded with zeros so that they are all 37×37

and may be sum across coefficients. This operation is sum-up in Figure 3.7. Figure 3.8 also show the output of that unique kernel applied to the image of a face.

Since we now only have one feature map, we must adapt the C1 layer. As all C1 units now + + +. . . + = Figure 3.7: S1 convolution kernel sum. Kernels smaller that 37 × 37 are padded with 0's so that they all are 37 × 37. Kernels are then sum element-wise so as to produce the kernel on the right. It is worth mentioning the proximity of that kernel with one of the feature selected by the Adaboost algorithm in the Viola-Jones framework [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF],

shown in Figure 3.1. pool over the only remaining scale, we propose to take the median value N m among the N s showed in Table 2.1, namely 16, as the width of the pooling window. Following the lines of the original model, the overlap between the receptive fields of two neighbouring C1 unit shall be ∆ m = 8. We shall refer to this descriptor as HMIN θ=π/2 later on.

Let's now evaluate the complexity involved in this model. We have a single K × K convolution kernel, with K = 37. Applying it to a W × H image thus requires an amount of MAC operations given by

C S1 = (W -K -1) (H -K -1) . (3.41)
As for the C1 layer, it needs

C C1 = (W -K -1) (H -K -1) (3.42) maximum operations.
As for the memory print, since we produce a single (W -K -1) × (H -K -1) feature map of single precision floating point numbers, that optimized version of HMIN needs

4 (W -K -1) × (H -K -1) bytes. HMIN R θ=π/2
Following what has been done in earlier, we propose to reduce even further the algorithmic complexity. Indeed, we process somewhat "large" 128 × 128 face images with a large 37 × 37 convolution kernel. Perhaps we do not need such a fine resolution -in fact, the CFF takes very small 32 × 36 images as inputs. Thus, we propose to divide the complexity of the convolution layer by 16 by simply resizing the convolution kernel to 9 × 9 using a bicubic interpolation, thanks to Matlab's imresize function, with the default parameters. Finally, the maximum pooling layer is adapted by divided its parameters also by 4: the receptive fields are 4 × 4, with 2 × 2 overlaps between two receptive fields. Hence, our new descriptor, which we shall refer to as HMIN R θ=π/2 later on, expects 32×32 images as inputs, thus providing vector of the exact same dimensionality than HMIN θ=π/2 . The complexity involved by that framework is expressed as

C HMIN = C HMIN S1 + C HMIN C1 , (3.43)
with

C HMIN S1 = 9 × 9 × W × H = 81W H (3.44) C HMIN C1 = 4W H, (3.45)
which leads to

C HMIN = 85W H. (3.46)
As we typically expect 32 × 32 images as inputs, the classification of a single image would take 82.9 kOP. For extracting features of a 640 × 480 as done previously, that would require 26.1 MOP, and the memory print would be the same as for HM IN θ=π/2

assuming we can neglected the memory needed to store the coefficients of the 9 × 9 kernel, hence we need here 1.22 MB.

Experiments

Test on LFWCrop grey

In this Section, we evaluate the different versions of HMIN presented in the previous Section. To perform the required tests, face images were provided by the Cropped Labelled Face in the Wild (LFW crop) dataset [START_REF] Huang | Robust face detection using Gabor filter features[END_REF], which shall be used as positive examples.

Negative examples were obtained by cropping patches from the "background" classwhich shall be refered to as "Caltech101-background" -of the Caltech101 dataset [START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF] at random positions. All feature vectors v = (v 1 , v 2 , . . . , v N) are normalized so that the lower value is set to 0, and the maximum value is set to 1 to produce a vector For each version of HMIN, we needed to train a classifier. We selected 500 images at random from LFW crop and another 500 from Caltech101-background. We chose to use an RBF classifier. The images were also transformed accordingly to the descriptor, i.e resized to 128 × 128 for both HMIN and HMIN θ=π/2 and resized to 32 × 32 images for HMIN R θ=π/2 . The kerneling parameter of the RBF network was set to µ = 2 -see Appendix A for more information about the RBF learning procedure that we used.

v = (v 1 , v 2 , . . ., v n) ∀i ∈ {1, . . . , N } v i = vi max k∈{1,...,N } vk (3.47) ∀i ∈ {1, . . . , N } vi = v i -min k∈{1,...,N } v k (3.
After training, 500 positive and 500 negative images were selected at random among the images that were not used for training to build the testing set. All images were, again, transformed w.r.t the tested descriptor, the feature vectors were normalized and classification was performed. Table 3.1 shows the global accuracies for each descriptor, using a naive classification scheme with no threshold in the classification function. Figure 3.9

shows the Receiver Operating Characteristic curves obtained for all those classifiers on that dataset. In order to build those curves, we apply the classification process to all testing images, and for each classification we compare its confidence to a threshold.

That confidence is the actual output of the RBF classifier, and indicates how certain the classifier is that its prediction is correct. If the confidence is higher than the threshold, then the classification is kept; otherwise it is rejected. By modifying that threshold, we make the process more or less tolerant. If the network is highly tolerant, then it shall tend to produce higher false and true positive rates; if it is not tolerant, then on the contrary it shall tend to produce lower true and false positive rates. The ROC curves show how the true positive rate evolve w.r.t the false positive rate.

Test on CMU

The CMU Frontal Face Images [START_REF] Sung | Cmu frontal face images test set[END_REF] dataset consists in grayscale images showing scenes with one or several persons (or characters) facing the camera or sometimes looking slightly away. Sample images are presented in Figure 3.10. It is useful to study the behaviour of a face detection algorithm on whole images, rather than simple classification of whole images in "Face" and "Not Face" categories. In particular, it has been used in the literature to evaluate the precision of the CFF [START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF] and Viola-Jones [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF].

We carried out our experiment as follows. We selected 500 images from the LFW crop dataset [START_REF] Gary | Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments[END_REF] and 500 images from the Caltech101-background [START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF] does not significantly alter the accuracy. The drop of performance is to be put in perspective with the saving in terms of computational complexity.

RBF using the kerneling parameter µ = 2. The images were all resized to 32 × 32, their histograms were equalized and we extracted features using HMIN R θ=π/2 ; hence the feature vectors have 225 components.

After training, all images of the dataset were processed as follows. A pyramid is created from each images, meaning we built a set of the same image but with different sizes.

Starting with the original size, the next image's width and height are 1.2 times smaller, which is 1.2 times bigger than the next, and so on until it is not possible to have an image bigger than 32 × 32. Then, 32 × 32 patches were cropped at all positions of all images of all sizes. Patches' histograms were equalized, and we extracted their HMIN R θ=π/2 feature vectors which fed the RBF classifier.

We tested the accuracy of the classifications with several tolerance values, and accuracy were compared to the provided ground truth [START_REF] Sung | Cmu frontal face images test set[END_REF]. We use a definition of a correctly detected face close to what Garcia et al. proposed in [START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF]: we consider that a detection is valid if it contains both eyes and mouths of the face and the ROI's area is not bigger than 1.2 times the area of the square just wrapping the rectangle delimited by the eyes and mouths, i.e those square and rectangles share the same centroid and the width of the square is as long as the bigger dimension of the rectangle. For each face in the ground truth, we check that it was correctly detected using the aforementioned criterion -success counts as a "true positive", while failure counts as a "false negative". Then, for each region of the image that does not correspond to a correctly detected face, we check if the system classified it as a "not-face" -in which case it counts as a "true negative" -or a face -in which case it counts as a "false positive". Some faces in CMU are too small to be detected by the system, and thus are not taken into account. The chosen classifier is an RBF, and was trained with the features extracted from 500 faces from LFW crop [START_REF] Huang | Robust face detection using Gabor filter features[END_REF] dataset and 500 non-faces images cropped from images of the "background" class of the Caltech101 dataset [START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF]. For each image, a pyramid was produced in order to detect faces of various scales, were the dimensions of the images are successively reduced by a factor 1.2. A face was considered correctly detected if at least one ROI encompassing its eyes, nose and mouth was classified as "face", and if that ROI is not 20% bigger than the face according to the ground truth. Each non-face ROI that was classified as "Face" was counted as a false positive. [START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF][START_REF] Viola | Robust real-time face detection[END_REF], and thus are approximate. All false positive rates are obtained with a 90% accuracy. The "Classification" column gives the complexity involved when computing a single patch of the size expected by the corresponding framework which is indicated in the "Input size" column. The "Frame" column indicates the complexity of the algorithm when scanning a 640 × 480 image. The complexities and memory prints shown here only take into account the feature extraction, and not the classification. It should be noted that in the case of the processing of an image pyramid, both CFF and HMIN would require a much higher amount of memory.

Test on Olivier dataset

In order to evaluate our system in more realistic scenarios, we created our own dataset specifically for that task. We acquired a video on a fixed camera of a person moving in front of a non-moving background, with his face looking at the camera -an example of a frame extracted from that video are presented in Figure 3.12. The training and evaluation procedure is the same as in Section 3.1.3.2: we trained an RBF classifier with features extracted with HMIN R θ=π/2 from 500 images of faces from the LFW crop dataset [START_REF] Huang | Robust face detection using Gabor filter features[END_REF], and from 500 images cropped from images of the "background" class of the Caltech101 dataset [START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF]. We labeled the location of the face for each image by hand, so that the region takes both eyes and the mouth of the person, and nothing more, in order to be consistent with the CMU dataset [START_REF] Sung | Cmu frontal face images test set[END_REF]. Correct detections and false positives were evaluated using the same method as in Section 3.1.3.2: a face is considered as correctly detected if at least one ROI encompassing its eyes and mouth is classified as "face", and if that ROI is not more than 20% bigger than the face according to the ground truth.

Each non-face ROI classified as a face is considered to be a false positive.

With that setting up, we obtained a 2.38% error rate for a detection rate of 79.72% -more detailed results are shown on Figure 3.13. Furthermore, we process the video frame by frame, without using any knowledge of the results from the previous images. ROC curves obtained with HMIN R θ=π/2 on "Olivier" dataset. As in Figure 3.11, the chosen classifier is an RBF, and was trained with the features extracted from 500 faces from LFW crop [START_REF] Huang | Robust face detection using Gabor filter features[END_REF] dataset and 500 non-faces images cropped from images of the "background" class of the Caltech101 dataset [START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF]. For each image, a pyramid was produced in order to detect faces of various scales, were the dimensions of the images are successively reduced by a factor 1.2. An image was considered correctly detected if at least one ROI encompassing its eyes, nose and mouth was classified as "face", and if that ROI is not 20% bigger than the face according to the ground truth. Each non-face ROI that was classified as "Face" was counted as a false positive. a pedestrian detection application.

Feature selection for pedestrian detection

In this Section, we aim to propose a descriptor for pedestrian detection applications.

The proposed descriptor is based on the same rational than in Section 3.1. Comparison in terms of computational requirements and accuracy shall be established between two of the most popular pedestrian detection algorithms.

Detecting pedestrians

With the arrival of autonomous vehicles, pedestrian detection rises as a very important issue nowadays. It is also vital in many security applications, for instance to detect intrusions in a forbidden zone. For this last scenario, one could think that a simple infrared camera could be sufficient -however such a device cannot determine by itself whether a hot object is really a human or an animal, which may be a problem in videosurveillance applications. It is then crucial to provide a method allowing to make that decision.

In this Section, we propose to use an algorithm similar to the one presented in Section 3.1.1, although this time it has been specifically optimized for the detection of pedestrian. One of the state of the art systems -which depends greatly on the considered dataset -is the work proposed by Sermanet et al. [START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF], in which they tuned a ConvNet for this specific task. However, as we shall see it requires lots of computational power, and we intend to produce a system needing as few resources as possible. Thus, we compare our system to another popular descriptor called HOG, which has proven efficient for this task. We shall now describe those two frameworks, then we shall study their computational requirements.

HOG

Histogram of Oriented Gradients (HOG) is a very popular descriptor, particularly well suited to pedestrian detection [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. As its name suggests, it consists in computing approximations of local gradients in small neighborhoods of the image and use them to build histograms, which indicates the major orientations across small regions of the image. Its popularity comes from its very small algorithmic complexity and ease of implementation.

We focus here on the implementation given in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], assuming RGB input images as for the face detection task presented in Section 3.1.1. The first step is to compute gradients at each position of the image. Each gradient then contributes by voting for the global orientation of its neighborhood. Normalization is then performed across an area of several of those histograms, thus providing the HOG descriptor that shall be used in the final classifier, typically SVM with linear kernels, that shall decides whether the image is of a person.

Gradients computation

Using the same terminology as in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], we are interested in the so called "unsigned" gradients, i.e we are not directly interested into the argument θ of the gradient, but rather θ mod π. Keeping that in mind, in order to compute the gradient at each location, we use an approximation implying convolution filters. All gradients are computed separately for each R, G and B channels -for each location, the only the gradient with the highest norm is kept.

Two feature maps H and V are produced from the input image respectively using the kernels [-1, 0, 1] and [-1, 0, 1] T . At each location, values across the two feature maps at the same location may be seen as components of the 2D gradients, which we can use to compute their arguments and norms. Respectively denoting G (x, y), φ [0,π] ((x, y)) and G (x, y) the gradient at location (x, y), its "unsigned argument" and its norm, and H (x, y) and V (x, y) the features from H and V feature maps at location (x, y), we have

G (x, y) = H (x, y) 2 + V (x, y) 2 (3.49) φ [0,π] (G (x, y)) = arctan V (x, y) H (x, y) mod π (3.50)
The result of that process is shown in Figure 3.14. It is important to note here that the convolutions are performed so that the output feature maps have the same width and height as the input image. This may be ensured by cropping images slightly bigger than actually needed, or by padding the image with 1 pixel at each side of its side with 0's or replicating its border.

Binning Now that we have the information we need about the gradients, i.e their norms and arguments, we use them to perform the non-linearity proposed in this framework. The image is divided in so-called cells, i.e non-overlapping regions of N c × N c pixels, as illustrated in Figure 3.14. For each cell, we compute an histogram as follows.

The half-circle of unsigned angles is evenly divided into B bins. The center c i of the i-th bin is given by the centroid of the bin's boundaries, as shown in Figure 3.15. Each gradient in the cell votes for the two bins with the centers closest to its argument. Calling those bins c l and c h , the weights of its votes w l and w h depend on the difference between its argument and the bin center, and on its norm:

w h = |G (x, y)| φ (G (x, y)) -c l c h -c l (3.51) w l = |G (x, y)| φ (G (x, y)) -c h c h -c l (3.52)
We end up having a histogram per cell. Assuming the input image is of size W × H and that N c both divide W and H, we have a total of W H/N c 2 histograms. We associate each histogram to its corresponding cell to build a so called histogram map.

Local normalization

The last step provides some invariance to luminosity among histograms. The histogram map is divided into overlapping blocks, each having 2 × 2 histograms. The stride between two overlapping blocks is 1 so that the whole histogram map is covered. All the bins' values of those histograms form a vector v (x h , y h) having BN 2 b components where (x h , y h) is the location of the top-left corner's of the block in the histogram map frame coordinate, and we compute its normalized vector

v (x h , y h) = v 1 (x h , y h) , v 2 (x h , y h) , . . . , v N b 2 (x h , y h) using the so called L2-norm [36] normalization: ∀i ∈ 1, . . . , BN b 2 v i (x h , y h) = min   v i (x h , y h) v (x h , y h) 2 + 2 , 0.2   (3.53)
where is a small value avoiding divisions by 0.

Thus we obtain a set of vectors v (x h , y h), which are finally concatenated in order to form the feature vector fed in a SVM classifier.

Complexity analysis Let's evaluate the complexity of extracting HOG features from an W × H image. As we saw, the first step of the extraction is the convolutions, that require of 6W H operations per channel, followed by the computation of their squared norms, which requires 3W H operations per channel; thus at this point we need 3(3 + 6)W H = 27W H operations. Afterward, we need to compute the maximum values across the three channels for each location, thus leading to 2W H more operations. Finally, we must compute the gradients, which we assume involves one operation for the division, one operation for the arc-tangent and one for the modulus operation; hence 3W H more operations. Thus, the total amount of operations at this stage is given by

C HOG grad = 32W H (3.54)
Next, we perform the binning. We assume that finding the lower and higher bins takes two operations: one for finding the lower bin, and another one to store the index of the higher bin. From Equation 3.51, we see that computing w h takes one subtraction and one division, assuming c h -c l is pre-computed, to which we add one operation for the multiplication with |G (x, y)|, thus totaling 3 operations. The same goes for the computation of w l . Finally, w h and w l are both accumulated to the corresponding bins, requiring both one more operations. This done at each location of the feature maps, thus this stage needs a total of operations of

C HOG hist = 8W H. (3
N p = (W h -1) × (H h -1) (3.56)
positions, with of each component of the vector by a scalar, and finally a comparison. Since the sum and the square root may be considered to take a single operation, which is very small compared to the total, we chose to neglect it to make the calculation more tractable.

W h = W 8 , (3.57)
H h = H 8 . (3
The Euclidean distance itself requires one subtraction followed by a MAC operation per component. Thus, extracting features from a 64 × 128 image as suggested in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] takes 344.7 kOP.

When scanning an image to locate pedestrians, we may use the same method as usual [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Garcia | Convolutional face finder: A neural architecture for fast and robust face detection[END_REF]. Using Equation 3.63 on a 640 × 480 image, we get a complexity of 12.96 MOP.

Repartitions of the computational efforts are presented in Figure 3.16.

Memory print Let's now evaluate the memory print required by the extraction of HOG features for a 640 × 480 input image. When computing the gradients, the first step consists in performing 2 feature maps from convolutions, of the same size of the input image. We consider here each feature of the feature maps shall be coded as 16 bits integers, hence we need 2 × 2 × 640 × 480 = 1.23 × 10 6 bytes at this stage. Then, the modulus and arguments of the gradients are computed at each feature location. We assume here that that data shall be stored using single precision floating point scheme;

hence 32 bits per value, and then we need 2.45 MB. As for the histograms, since there is no overlaps between cells, they may be evaluated in-place -hence, they do not bring more memory requirement. Finally comes the memory needed by the normalization stage; assuming we neglect the border effect, one normalized vector is computed at each cell location, which correspond to 8 × 8 areas in the original image. Hence, 4800 normalized vectors are computed, each having 36 component, which leads to 691.2 kB.

Thus, the memory print of the HOG framework is 4.37 MB.

We presented an analysed the HOG algorithm for pedestrian detection. In the next Section, we describe a particular architecture of a ConvNet optimized for that same task.

ConvNet

As for many other applications, ConvNet have proven very efficient for pedestrian detection. Sermanet et al. proposed in [START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF] a ConvNet specifically designed for that purpose.

Presentation We now review the architecture of that system, using the same notations as in Section 3.1.1.2. First of all, we assume images use the Y'UV representation.

In this representation, the Y channel represents the luma, i.e the luminosity, while the U and V channels represent coordinates of a color in a 2D space. The Y channel is processed separately from the UV channels in the ConvNet.

The Y channel first goes through the C Y 1 convolution stage which consists in 32 kernels, all 7 × 7, followed by an absolute-value rectification -i.e we apply a point-wise absolute value function on all output feature maps [START_REF] Kavukcuoglu | Learning convolutional feature hierarchies for visual recognition[END_REF] -followed by a local constrast normalization which is performed as followed [START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF]:

v i = m i -m i w (3.64) σ = N i=1 w v i 2 (3. 65
)
y i = v i max (c, σ) (3.66)
where m i is the i-th un-normalized feature map, denotes the convolution operator, w is a Gaussian blur 9 × 9 convolution kernel with normalized weights, N is the number of are concatenated to form the feature vector to be classified, which is performed with a classical linear classifier. That architecture is sum-up in Figure 3.17.

C Y 1 C U V 1 Y S U V 0 UV S Y 1 C2 S2 F u

Complexity analysis

Let's now evaluate the amount of operations needed for a W × H Y'UV image to be processed by that ConvNet. Denoting C X the complexity involved in layer X and along the lines of the calculus done in Section 3.1.1.2, we have

C C Y 1 = 32 × 7 × 7 × (W -6) (H -6) (3.67) C S Y 1 = 32 × 9 × W -6 3
H -6 3 (3.68) C S U V 0 = 2 × 9 × W 3 H 3 (3.69) C C2 = 2040 × 9 × 9 × 2 × (W S U V 0 -8) (H S U V 0 -8) (3.70) C S2 = 68 × 2 × 2 W C2 2
H C2 2 (3.71)
where W X and H X respectively denote the width and height of the X feature maps.

The C U V 1 layer has full connection between its input and output feature maps. Thus, denoting N I and N O respectively the number of input and output feature maps, a total of N I N O convolutions are performed. Inside this layer, this produces N I N O feature maps, which are sum feature-wise so as to produce the N O output feature maps. This leads to

C U V 1 = 2 × 6 × 6 × (W S U V 0 -4) (H S U V 0 -4) . (3.72)
We shall now evaluate the complexity involved by the absolute value rectifications which are performed on the C Y 1 and C2 feature maps. It needs one operation per feature, thus denoting C (A X) the complexity involved by those operations on feature map X we have

C A C Y 1 = 32W C Y 1 H C Y 1 (3.73) C A C U V 1 = 6W C U V 1 H C U V 1 (3.74) C A C2 = 68W C2 H C2 . (3.75)
Finally, we evaluate the complexity brought by the local contrast normalizations. From Equations 3.64, 3.65 and 3.66, we see that the first step consists in a convolution by a 9 × 9 kernel G followed by a pixel-wise subtraction between two feature maps. Assuming the input feature map is w × h and that the convolution is performed so that the output feature map is the same size as the input feature map, the required amount of operations at this step is given by

C N 1 (w, h) = 2 × 9 × 9 × wh = 162wh. (3.76)
The second step involves squaring up each feature of the wh output feature maps, which implies wh operations. The result is again convolved with G, implying 81wh operations, and the resulting feature are sum feature-wise across N feature maps, implying nwh sums. Finally, we produce a "normalization map" by taking the square root of all features, which involves wh operations assuming a square root takes only one operation.

Hence:

C N 2 (w, h, n) = (83 + n) wh (3.77)
The final normalization step consists in computing, for each feature of the normalization map, the maximum value between that feature and the constant c, which leads to wh operations, and perform feature-wise divisions between the N maps computed in Equation 3.64 and those maximums, which leads to nwh operations. Thus we have

C N 3 (w, h, n) = (1 + n) wh, (3.78)
and the complexity brought by a local contrast normalization on n w × h feature maps is given by

C N (w, h, n) = (246 + 2n) wh. (3.79)
The overall complexity is given by

C ConvNet = C C Y 1 + C S Y 1 + C S U V 0 + C C2 + C S2 + C A C Y 1 + C A C U V 1 + C A C2 + C N (W C Y 1 , H C Y 1 , 32) + C N (W C U V 1 , H C U V 2 , 6) + C N (W C1 , H C2 , 68) (3.80)
which leads to

C ConvNet = 1568W C Y 1 H C Y 1 + 288W 1 H 1 + 18W S U V 0 H S U V 0 + 330480W C2 H C2 + 272W S2 H S2 + 24W 1 H 1 + 342W C Y 1 H C Y 1 + 264W C U V 1 H C U V 1 + 450W C2 H C2 (3.81)
with

W C Y 1 = W -6 (3.82) H C Y 1 = H -6 (3.83) W S U V 0 = W 3 (3.84) H S U V 0 = H 3 (3.85) W 1 = W S Y 1 = W C U V 1 = W C Y 1 3 = W C U V 0 -4 (3.86) H 1 = W S Y 1 = H C U V 1 = H C Y 1 3 = H C U V 0 -4 (3.87) W C2 = W 1 -8 (3. 88
)
H C2 = H 1 -8 (3.89) W S2 = W C2 2 (3.90) H S2 = H C2 2 (3.

HMAX optimizations for pedestrian detection

We propose optimizations along the lines of what was explained in Section 3.1.2. When we were looking for faces, we hand-crafted the convolution kernel so that it responded best to horizontal features, in order to extract eyes and mouths for instance. However, in the case of pedestrians it intuitively seems more satisfactory to detect vertical features.

Thus, we propose to keep the same kernel as represented in Figure 3.7, but flipped by 90 • . As in Section 3.1.2, we have two descriptors: HMIN θ=0 and HMIN R θ=0 . For consistency reasons with what was done for faces in Section 3.1.2 and with the HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] and ConvNet [START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF] algorithms, HMIN θ=0 expects 64 × 128 input images and consists in a single 37 × 37 convolution kernel. As for HMIN R θ=0 , it expects 16 × 32 inputs and consists in a 9 × 9 convolution kernel.

Experiments

In order to test our optimizations, we used the INRIA pedestrian dataset, originally proposed to evaluate the performances of the HOG algorithm [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. That dataset is divided in two subsets: a training set and a testing set. Hence, we simply trained the system described in Section 3.2.2 on the training set and evaluated it on the testing set.

Results are shown in Figure 3.18, which is a ROC curve produced as done for faces in Section 3.1.3.1. All images were resized to 16 × 32 before process. Comparisons with HOG and ConvNet features are shown in Table 3.3.

In this Section, we proposed and evaluated optimizations for the so-called HMIN descriptor applied to pedestrian detection. Next Section is dedicated to a discussion about the results that we obtained both here, and in the previous Section which was related to face detection.

Discussion

Let's now discuss the results obtained in the two previous Sections, where we described a feature extraction framework and compared its performance, both in terms of accuracy and complexity, against major algorithms. The drop of performance is more important here than it was for faces, as shown on Figure 3.9. However, the gain in complexity is as significant as in Section 3. Table 3.3: Complexity and accuracy of human detection frameworks. The false positive rate of the HOG has been drawn from the DET curve shown in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], and thus is approximate. The false positive rates presented here correspond to a 90% detection rate. As in Table 3.2, the "Classification" column gives the complexity involved when computing a single patch of the size expected by the corresponding framework which is indicated in the "Input size" column. The "Frame" column indicates the complexity of the algorithm when applied to a 640 × 480 image. Furthermore, the complexities involved by HMIN are computed from Equation 3.46, with the input size shown in the column on the right. Finally the result of the ConvNet may not be shown here as their strategy for evaluating it is different from what was done in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] -using the evaluation protocol detailed in [START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF], HOG produces approximately three times as many false positives as ConvNet. Furthermore, the miss rate of the HOG was determined on a scene-scanning task, while we evaluated our framework on a simpler classification task. Thus, comparisons of the accuracy of those frameworks are difficult, although the preliminary results presented here show a clear disadvantage in using HMIN R θ=0 . Finally, the complexities and memory prints shown here only take into account the feature extraction, and not the classification. It should also be noted that both are evaluated without image pyramid, and that in that case they would be much higher than evaluated here.

Results of our framework are sum up in Table 3.2 for face detection applications and in Table 3.3 for pedestrian detection application. First of all, we see from the ROC curves shown in Figures 3.11 and 3.18 that the accuracy of our framework is significantly bigger for face detection tasks than for pedestrian detection task -although comparing performances on two different tasks is dangerous, those results seem to indicate that our framework would operate much better in the first case. However, the raw accuracy is significantly lower than those of the other frameworks presented here, be it for face or human detection. This is probably due to the fact that our frameworks HMIN R θ=x 2 produce features that are much simpler than those of the other frameworks -indeed, the feature vector for a 32 × 32 input image has only 225 components. Among all other frameworks, the only other that may be considered better to that respect is Viola-Jones, where on average only 8 features are computed, although in the worst case that amount rises dramatically to 6060. Nevertheless, Viola-Jones and the HOG algorithms are both slightly less complex than HMIN θ = x R . There is also a consequent literature about their implementations on hardware [START_REF] Mizuno | Architectural Study of HOG Feature Extraction Processor for Real-Time Object Detection[END_REF][START_REF] Jacobsen | FPGA implementation of HOG based pedestrian detector[END_REF][START_REF] Kadota | Hardware Architecture for HOG Feature Extraction[END_REF][START_REF] Hahnle | Fpga-based real-time pedestrian detection on high-resolution images[END_REF][START_REF] Hsiao | An FPGA based human detection system with embedded platform[END_REF][START_REF] Negi | Deep pipelined one-chip FPGA implementation of a real-time image-based human detection algorithm[END_REF][START_REF] Komorkiewicz | Floating point HOG implementation for real-time multiple object detection[END_REF][START_REF] Kelly | Histogram of oriented gradients front end processing: An FPGA based processor approach[END_REF][START_REF] Tam | Implementation of real-time pedestrian detection on FPGA[END_REF][START_REF] Lee | HOG feature extractor circuit for realtime human and vehicle detection[END_REF][START_REF] Chen | An Efficient Hardware Implementation of HOG Feature Extraction for Human Detection[END_REF][START_REF] Karakaya | Implementation of HOG algorithm for real time object recognition applications on FPGA based embedded system[END_REF][START_REF] Kadota | Hardware Architecture for HOG Feature Extraction[END_REF][START_REF] Ngo | An area efficient modular architecture for real-time detection of multiple faces in video stream[END_REF][START_REF] Cheng | An FPGA-based object detector with dynamic workload balancing[END_REF][START_REF] Gao | Novel FPGA based Haar classifier face detection algorithm acceleration[END_REF][START_REF] Das | Modified architecture for real-time face detection using FPGA[END_REF]. In particular, the main difficulties of the HOG algorithm for hardware implementations, i.e the highly non-linear computations of the arc-tangents, divisions and square roots, have been addressed in [START_REF] Kadota | Hardware Architecture for HOG Feature Extraction[END_REF]. As for the CFF, it was also optimized and successfully implemented on hardware devices [START_REF] Farrugia | Fast and robust face detection on a parallel optimized architecture implemented on FPGA[END_REF] and on embedded processors [START_REF] Roux | Embedded Convolutional Face Finder[END_REF][START_REF] Roux | Embedded facial image processing with Convolutional Neural Networks[END_REF].

However, one can expect HMIN R θ=x to be implemented easily on FPGA, with really low resource utilization -that aspect shall be tested in future development. Furthermore, the only framework that beats HMIN in terms of memory-print is Viola-Jones -that aspect is crucial when porting an algorithm on an embedded systems, especially in industrial use cases where constraints may be really high in that respect. Furthermore, while HMIN R θ=x may not seem as attractive as the other frameworks presented here, it has a very interesting advantage: it is generic. Indeed, both ConvNet implementations presented in this Chapter were specifically designed for a particular task: face detection or pedestrian detection. As for Viola-Jones, it may be used for tasks other than face detection as was done for instance for pedestrian detection [START_REF] Viola | Detecting pedestrians using patterns of motion and appearance[END_REF] -however, a different task might need different Haar-like features, which would be implemented differently than the simple ones presented in Section 3.1.1.1. In terms of hardware implementation, that difference would almost certainly mean code modifications, while with HMIN R θ=x one would simply need to change the weights of the convolution kernel. Concerning the HOG, it should be as generic as HMIN -however it suffers from a much greater memory print.

2 HMIN R θ=x refers to both HMIN R θ=0 and HMIN R θ=π/2 .

Finally, researchers have also proposed other optimization schemes for HMIN [START_REF] Yu | FastWavelet-Based Visual Classification[END_REF][START_REF] Chikkerur | Approximations in the HMAX Model[END_REF] -future research shall focus on comparing our work with the gained one can expect with their solutions, as well as use a common evaluation scheme for the comparison of HMIN R θ=0 with other pedestrian detection algorithms.

Conclusion

In this Chapter, we presented our contribution concerning the optimization of a feature extraction framework. The original framework is based on an algorithm called HMAX, which is a model of the early stages of the image processing by the mamal brain. It consists in 4 scales, called S1, C1, S2 and C2 -however, in the use case scenarions presented here the S2 and C2 layers do not provide much more precision, but are by far the most costly in terms of algorithm complexity. We thus chose to keep only the S1 and C1 layers, respectively consisting in a convolution filter bank and max-pooling operations. We explored how the algorithm behaved when diminuing its complexity, by reducing the number and sizes of the linear and max-pooling filters, by estimating where the most relevant information is located.

We replaced the initial 64 filters in the S1 layer with only one, the size of which is 9 × 9. It expects 32 × 32 grayscale images as inputs. The nature of the filter depends on the use case: for faces, we found that most saliencies lie in the eyes and mouth of the face, thus we chose a filter responding to horizontal features. As for the use case of human detection, we assume that pedestrians are standing up, which intuitively made us use a filter responding to vertical features. In both cases, we compared the results with standard algorithms having reasonable complexities. Optimizing out the HMIN descriptor provoked a drop in accuracy of 5.73 points on the face detection task on the CMU dataset, and 21.91 points on the pedestrian detection task when keeping a false positive rate of 10%. However, that drop of performance is to be put in perspective with the gain in complexity: after optimizations, the descriptor is 429.12 less complex to evaluate. In spite of everything, that method does not provide results as good as other algorithms with comparable complexities, e.g Viola-Jones for face detection -as for pedestrian detection, we need to perform complementary tests with common metrics for the comparison of that system with the state of the art, but the results presented here tend to show that that algorithm is not well suited for this task. However, we claim that our algorithm provides a low memory print and is more generic than the other frameworks, which make it implementable on hardware with fewer resources, and should be easy to adapt for new tasks: only the weights of the convolution kernel are to be changed.

This Chapter was dedicated to the proposition of optimizations for a descriptor. Next

Chapter will present another type of optimizations, not based on the architecture of the algorithm, but on the encoding of the data, with implementation on a dedicated hardware. As we shall see, those optimizations are much more efficient and promising, and may easily be applied to other algorithms.

Chapter 4

Hardware implementation

This chapter addresses the second question stated in Chapter 2, about the optimization of the HMAX framework with the aim of implementing it on a dedicated hardware platform. We begin by exposing the optimizations that we used, coming both from our own work and from the literature. In particular, we show that the combination of all those optimizations does not bring a severe drop in accuracy. We then implement our optimized HMAX on an Artix-7 FPGA, as naively as possible, and we compare our results with those of the state of the art implementation. While our implementation achieves a significantly lower throughput, we shall see that it uses much less hardware resources. Furthermore, our optimizations are fully compatible with those of the state of the art, and future implementations may profit from both contributions.

Algorithm-Architecture Matching for HMAX

In the case of embedded systems, having an implemented model in a high-level language such as Matlab is not enough. Even an implementation using the C language may not meet the particular constraints that are found in critical systems, in terms of power consumption, algorithmic complexity and memory print. This is particularly true in the case of HMAX, where the S2 layer in particular may take several seconds to be computed on a CPU. Furthermore, GPU implementations are most of the time not an option, as GPUs often have a power consumption in the order of magnitude of 10 W.

In the fields of embedded systems, we look for systems consuming about 10 to 100 mW.

This may be achieve thanks to FPGAs, as was done in the past [91-96, 98, 99]. This

Chapter proposes a detailed review of one of those implementations; the other ones are either based on architecture with multiple high-end FPGAs or focus on accelerating a part of the framework only, thus they are hardly comparable with what we aim to do here.

Orchard et al. proposed in [99] a complete hardware implementation of HMAX on a single Virtex-6 ML605 FPGA. To achieve this, the authors proposed optimizations on their own, which concern mostly the way the data is organized and not so much the encoding and the precision degradation -indeed, the data coming out of S1 and carried throughout the processing layers is coded on 16 bits.

We shall now review the main components of their implementation, e.g. the four modules implementing the behaviours of S1, C1, S2 and C2. The layers are pipelined, so they may process streamed data. As for the classification stage, it is not directly implemented on the FPGA and should be taken care of on a host computer. The results of that implementation are presented afterwards.

Description

S1

First of all, the authors showed how all filters in S1 may be decomposed as separable filters, or sums of seperable filters. Indeed, if we consider the "vertical" Gabor filters in S1, i.e. we have θ = π/2, Equations 2.8 and 2.9 lead to [99] G (x, y) θ=π/2 = exp - Let's now focus on the filters having "diagonal" shapes. As shown in [99] and following the same principles as before, we may write

x 2 + γ 2 y 2 2σ 2 cos 2π λ x (4.1) = exp - x 2 2σ 2 cos 2π λ x × exp - γ 2 y 2 2σ 2 (4.2) = H (x) V (y) (4.3) H (x) = exp - x 2 2σ 2 cos 2π λ x (4.4) V (y) = exp - γ 2 y 2 2σ 2 , (4
I * G θ=π/4 = I * c H * r H + I * c U * r U (4.9) I * G θ=3π/4 = I * c H * r H -I * c U * r U (4.10) with U (x, y) = exp - x 2 2σ 2 sin 2π λ x . (4.11)
The benefits in using separable filters are twofolds. First of all, the memory prints of those filters are much smaller than their unoptimized counterparts. Indeed, storing a N × N filter in a naive way requires storing N 2 words, while their separated versions would require the storage of 2N words for G| θ=0 and G| θ=π/2 , and 3N words for G| θ=π/4 and G| θ=3π/4 . The other benefit is related to the algorithmic complexity. Indeed, performing the convolution of a

W I × H I image by a W K × H K kernel has an O (W I H I W K H K),
while for separable filters it goes down to O (W I W K + H I H K). According to [99], doing so reduces the complexity from 36,146MAC operations to 2816MAC.

In order to provide some invariance to luminosity, Orchard et al. also use a normalization scheme called l 2 . Mathematically, computing that norm consists in taking square root of the sum of the pixels. Gabor filters where thus normalized so that their l 2 norms equal 2 16 -1, and so that their means are null.

C1

Let's consider a C1 unit with a 2∆ × 2∆ receptive field. The max-pooling operations are performed as follows: first, maximums are computed in ∆×∆ neighborhoods, producing an intermediate feature map M t . Second, the output of the C1 unit are obtained by pooling over 2 × 2 pooling windows from M t with a overlap of 1. This elegant method allows to avoid the storage of values that would have been discarded any way, as the data is processed here as it is provided by S1, in a pipelined manner.

S2

In the original model, it is recommended to use 1000 pre-learnt patches in S2. However, the authors used themselves 1280 of them -320 per classes -as it was the maximum

Results

That system all fits in the chosen Virtex-6 ML605 FPGA, including the temporary results

and the pre-determined data that are stored in the device's BRAM. It was synthesized using Xilinx ISE tools. It has a latency of 600k clock cycles, with a throughput of one image every 526k clock cycles. The system may operate at 100MHz, with implies a 6ms latency and a 190 image per second throughput. The total resource utilization of the device is given in Table 4.1.

Finally the VHDL implementation was tested on binary classification tasks, using 5 classes of objects from Caltech101 and a background class. Accuracies for those tasks are given in Table 4.2. Results show that the accuracy on FPGAs is comparable to that of CPU implementations.

In this Section, we presented the work proposed by Orchard et al [99] and the architecture of their implementation. Next Section is dedicated to our contribution, which mainly consists of reducing the precision of the data throughout the process.

Proposed simplification

In order to save hardware resources, we propose several optimizations to the original HMAX model. Our approach mainly consists in simplifying the encoding of the data and reducing the required number of bits. In order to determine optimal encoding and algorithmic optimizations, we test each of our proposition on the widely used Catlech101

dataset. For fair comparison with other works, we use the same classes as in [99]:

"airplanes", "faces", "car rear", "motorbikes" and "leaves".

Optimizations are tested individually, starting from those intervening at the beginning of the feed-forward and continuing in processing order, to finish with optimizations to apply to the later layer of the model. For optimizations having tunable parameters (e.g the bit width), those tests shall be used to determine a working point, which is done for all optimizations that require it in order to have a complete and usable optimization scheme.

Optimizations are performed at the following levels: the input data, the coefficients of the Gabor filters in S1, the data produced by S1, the number of filters in S2, and finally 8 bits 3 bits 2 bits 1 bit Color maps are modified so that the 0 corresponds to black and the highest possible value corresponds to white, with gray level linearly interpolated in between. We can see that while the images are somewhat difficult to recognize with 1 bit pixels, they are easily recognizable with as few as 2 bits.

the computation of the distances in S2 during the pattern matching operations. We shall first present our work, namely the reduction of the precision of the input pixels.

We shall then see how that optimization behaves with further optimizations got from the literature.

Input data

Our implementation of HMAX, along the lines of what is done in [START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF], processes grayscale images. The pixels of such images are typically coded on 8 bits unsigned integers, representing values ranging from 0 to 255, where 0 is "black" and 255 is "white".

We propose here to use less than 8 bits to encode those pixels, simply by keeping the Most Significant Bits (MSB). This is equivalent to an Euclidean division by a power of two: unwiring the N Least Significant Bits (LSB) amounts to perform an Euclidean division by 2 N . The effect of such precision degradation is shown in Figure 4.2.

In order to find the optimal bit width presenting the best compromise between compression and performance, an experiment was conducted. It consisted of ten independent runs. In each run, the four classes are tested in binary independent classification tasks.

Each task consists in splitting the dataset in halves: one half is used as the training set, and the other half is used as the testing set. All images are resized so that their height For each bit width, ten independent tests were carried out, in which half of the data was learnt and the other half was kept for testing. We see that the pixel precision has little to no influence on the accuracy. is 164 pixel, and are then degraded w.r.t the tested bit width, i.e. all pixels are divided by 2 N where N is the number of removed LSB. The degraded data is then used to train first HMAX, and then the classifier -in this case, GentleBoost [START_REF] Friedman | Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)[END_REF]. The images used as negative samples are taken from the Background Google class of Caltech101. All tests were performed in Matlab. Is should also be noted that we do not use RBFs in the S2 layer as described in [START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF] and in Section 2.1.2.2.The global accuracy for each class is then given by the mean of the recognition rates for that class across all runs, and the uncertainty in the measure is given by the standard deviations of those accuracies.

Finally, the random seed used in the pseudo-random number generator was manually set to the same value for each run, thus ensuring that the conditions across all bit-widths are exactly the same and only the encoding changes.

The results of this experiment are shown in Figure 4.3. It is shown that for all four classes the bit width has only limited impact on performances: all accuracies lie beyond 0.9, except when the input image pixels are coded on a single bit where the Airplanes class gets more difficult to be correctly classified. For that reason, we chose to set the input pixel's bit width to 2 bits, and all further simplifications shall be made taking that into account. The next step is to reduce the precision of the filter's coefficient, in a way that is somewhat similar to what is proposed in [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF].

S1 filters coefficients

The second simplification that we propose is somewhat similar to that presented in Section 4.2.1, except this time we operate on the coefficients of the Gabor filters used in S1. Mathematically, those coefficients are real numbers in the range [-1, 1], thus the most naive implementation for them is to use double precision floating point representation as used by default in Matlab, and that encoding scheme shall be used as the baseline of our experiments. Our simplifications consist in using signed integers instead of floats using n-bits precision, by transforming the coefficients so that their values lie within -2 n-1 , . . . , 2 n-1 -1 , which is done by multiplying them by 2 n-1 and rounding them to the nearest integer. Several values for n where tested, along the lines of the methodology described in Section 4.2.1: 16, and from 8 downto 1. However, using the standard signed coding scheme the 1 bit encoding would lead to coefficients equal either to -1 or 0, which does not seem relevant in our case. Thus, we proposed to use a particular coding here, where the "0" binary value actually encodes -1 and "1" still encodes 1. The rational is that that encoding is close to the Haar-like features used in Viola-Jones [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF] as explained in Section 3.1.1.1, and this technique is also suggested in [START_REF] Courbariaux | BinaryConnect: Training Deep Neural Networks with binary weights during propagations[END_REF]. As explained in Section 4.2.1, the input pixels precision is 2 bits.

Recent works [START_REF] Trinh | Efficient Data Encoding for Convolutional Neural Network Application[END_REF] also propose much more sophisticated encoding scheme. While their respective efficiencies have been proven, they seem more adapted to a situation where the weights are learnt during the learning process, and thus unknown before learning. In our case, all weights of the convolution are predetermined, thus we have a total control over the experiment and we prefered to use optimizations as simple as possible.

Results for that experiment are given in Figure 4.4. We see that the impact of the encoding of the Gabor filter coefficients has even less impact than the input image pixels precision, even in the case of 1 bit precision. This result is consistent with the fact that Haar-like features are used with success in other frameworks. Thus, we shall use that 1 bit precision encoding scheme for Gabor filters in combination with the 2 bit encoding for input pixels in further simplifications.

In this Section, we validated that we could use only one bit to encode the Gabor filter's coefficients, using "0" to encode "-1" and "1" to encode "1", in conjunction with input pixels coded on two bits only. In order to continue our simplification process, next Section proposes optimizations concerning the output of S1.

S1 output encoding

It has been proposed in [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF] to use Lloyd's algorithm [START_REF] Stuart | Least squares quantization in PCM[END_REF][START_REF] Roe | Quantizing for minimum distortion (corresp.)[END_REF], that provides a way to find an optimal encoding w.r. . subset S of the data to encode. The encoding strategy consists in defining two sets:

a codebook C = {c 1 , c 2 , . . . , c Q } and a partition Q = {q 0 , q 1 , q 2 , . . . , q K-1 , q K } . With those elements, mapping a code l (x) to any arbitrary value x ∈ R is done as follows:

∀x ∈ R l (x) =                        c 1 x ≤ q 1 , c 2 q 1 < x ≤ q 2 , . . . c q-1 q K-2 < x ≤ q K-1 , c q q K-1 < x.
. (4.12)

One can see here that p 0 and p K are not used to encode data; however those values are required to be computed when determining the partition, as we shall now see.

Finding the partition consists in minimizing the Mean Square Error E (C, P) between the real values in the subset and the values after quantization [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF][START_REF] Stuart | Least squares quantization in PCM[END_REF]:

E (C, P) = K i=1 q i q i-1 |c i -x| 2 p (x) dx (4.13)
Where p is the probability distribution of x. One can show [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF] that ∀i ∈ {1, . . . , K} c i =

q i q i-1 xp (x) dx q i q i-1 p (x) dx (4.14) ∀i ∈ {1, . . . , K -1} q i = c i-1 + c i 2 (4.15)
a 0 = min S (4.16)

a K = max S (4.17)
We see that Equations 4.14 and 4.15 depend on each other, and there is no closed-form solution for them. The optimal values are thus determined with an iterative process:

starting from arbitrary values for Q = {q 1 , q 2 , . . . , q K }, e.g separating the range of values to encode in segments of same size:

∀k ∈ {1, . . . , } q i = q 0 + k q K -q 0 K , (4.18)
we compute C = {c 1 , . . . , c k } with Equation 4.14. Once this is done, we use those values to compute a new ensemble Q with Equation 4.15, and so on until convergence.

Since the dynamics of the values vary greatly from scales to scales in C1, we computed a set C i and Q i per C1 scale in i. However, contrary to what is proposed in [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF],

we did not separate the orientations. We thus produced 8 sets S i of data to encode (i ∈ {1, . . . , 8}). using the same 500 images selected at random among all of the five classes we use to test our simplifications. As suggested in [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF], we used four quantization levels for all S i . Each partition Q i and code book C i where computed using Matlab's

Communication System Toolbox's lloyd function. The results are given in Table 4.3.

While this simplification uses the values computed in C1, it is obvious that it could easily be performed at the end of the S1 stage, simply by using a strictly growing encoding function f . This is easily performed by associated each value from C i to a positive integer as follows:

∀i ∈ {1, . . . , 8} , j ∈ {1, . . . , 4} f (c i j) = j (4.19)
and encoding f (c ij) simply as unsigned integers on 2 bits. By doing so, performing the max-pooling operations in C1 after that encoding is equivalent to performing it before.

We must now make sure that this simplification, in addition to the other two presented earlier, does not have a significant negative impact on accuracy. Thus, we perform an experiment along the lines of what is described in Section 4.

Filter reduction in S2

As it has been stated many times in the literature [91-96, 98, 99], the most demanding stage of HMAX is S2. Assuming there are the same amount of pre-learnt patches of each size, then the algorithmic complexity depends linearly on the amount of filters N S2 and their average number of elements K. It has been suggested in [START_REF] Yu | FastWavelet-Based Visual Classification[END_REF] to simply reduce the number of per-learnt patches in S2 by sorting them by relevance according to a criterion, and to keep only the N most relevant patches. The criterion used by the authors is simply the variance ν of the components inside a patch p = (p 1 , . . . , p M): In order to ensure that all sizes are equally represented, we propose to first crop at random 250 patches of each of those sizes in order to get the suggested 1000 patches by Serre et al. [START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF], and we select 50 patches of each size according to the variance criterion so that we have a total of 200 patches, as proposed in [START_REF] Yu | FastWavelet-Based Visual Classification[END_REF]. The rational is that we must keep in mind that we aim to implement that process on a hardware device, thus we need to know in advance the amount of patches of each size and to keep them to pre-determined values.

ν (p) = M i=1 |p i -p| 2 , (4
Let's now experiment that simplification on our dataset. We followed the methodology established in Section 4.2.1, and we used the simplification proposed here along with all the other simplifications that were presented until now. Results are compiled with those of Section 4.2.3 and Section 4.2.5 in Table 4.4.

Manhattan distance in S2

In S2, pattern-matching is supposed to be performed with a Gaussian function, the centers of which are the pre-learnt patches in S2, so that each S2 unit In this Section, we proposed a series of optimizations, both of our own and from the literature. In the next Section, we show how that particular encoding may be put into practice on a dedicated hardware configuration.

M (v 1 , v 2) = Nv i=1 |v 1i -v 2i | . (4

Input and

FGPA implementation 4.3.1 Overview

We propose now our own implementation of the HMAX model, using both our contributions and the simplifications proposed in the literature proposed in Section 4.2. We did not use the architectural optimization proposed in [99] on purpose, to see how a "naive" implementation of the optimized HMAX model compares with that of Orchard et al.

This implementation of the HMAX model with our optimizations intends to process fixed-size grayscale images. We aim to process 164 × 164 grayscale images. The rational behind those dimensions is that we want to actually process the 128 × 128 ROI located at the center of the image -however, the largest convolution kernel in S1 is 37 × 37, therefore in order to have 128 × 128 S1 feature maps we need input images padded with 18 pixels wide stripes. That padding is assumed to be performed before the data is sent to the HMAX module.

The data is processed serially, i.e pixels arrive one after the other, row by row. The pixels' precision is assumed to be already reduced to two bits per pixel, as suggested in Section 4.2. The module's input pins consists in a serial bus of two pins called din in which the pixels should be written, a reset pin rst allowing to initialize the module, an enable pin en din allowing to activate the computation and finally three clocks: a "pixel clock" pix clk for input data synchronization, a "process clock" proc clk synchronizing the data produced by the module's processes, and a "sub-process clock" subproc clk as some processes need a high-frequency clock. Suggestion concerning the frequencies of those clocks are given in Section 4.4.

The output pins consist in: an 8 pins serial bus for the descriptor itself called dout and a pin indicating when data is available named en dout. The serialized data is sent to s2c2, which perform pattern matching between input data and pre-learnt patches with its s2 components, several in parallel, with a multiplexing. The maximum responses of each S2 unit are then computed by c2. The data is then serialized by c2 to out.

The HMAX module -illustrated in Figure 4.5 -itself mainly consists in two sub-modules, s1c1 and s2c2. As suggested in their names, the first one performs the computations required in the S1 and C1 layers, while the second one takes care of the computation for the S2 and C2 layers of the model. The rational behind that separation is that it is suggested in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF] that in some cases one may use only the S1 and C1 layers, as we did in Chapter 3. The following two Sections describe those modules in detail.

s1c1

That module consists uses two components of its own, called s1 and c1, which performs the operations required by the layers of the same names of the model. It process the input pixels with a multiplexing across orientations, meaning that all processes concerning the first orientation of the Gabor filters in S1 are performed in the same clock cycle, then all processes concerning the second orientation are performed on the same input data, and so on until all four orientations are processed.

The input pins of that module are directly connected to those of the top module. Its input pins consist in a dout bus of 4 pins where the C1 output data are written, a en dout pin indicating when new data is available and a dout ori serial bus that precises which orientation the output data corresponds to. The s1 and c1 modules shall now be presented. First of all the pixels arrive in the pix to stripe, which returns columns of 37 pixels. Those columns are then stored in shift registers, which store a 37 × 37 patchonly 7 lines are represented here for readability. Then for each of the 16 scales in S1, there exists an instance of the image cropper module that keeps only the data needed by its following conv module. The convolution kernels' coefficients are gotten from the coeffs manager module, which get them from the FPGA's ROM and retrieve those corresponding to the needed orientation, for all scales.

Here only 4 of the 16 convolution engines are shown. The computed data is written in dout, in parallel. Note that not all components of s1 are repesented here: pixmat, pixel manager, coeffs manager and conv crop are not displayed to enhance readability and focus and the dataflow.

s1

That module consists in three sub-modules: pixel manager which gets the pixels from the input pins and reorder them so that they may be used in convolutions, the coeffs manager module which handles the coefficients used in the convolution kernels, and the convolution filter bank module conv filter bank which take care of the actual linear filtering operations. Shift registers are also used to synchronize the data produced by the different components when needed. The main modules are described below, and the dataflow in the module is sum up Figure 4.6.

pixel manager As mentioned in Section 4.3.1, the data arrives in our module serially, pixel by pixel. It is impractical to perform 2D convolutions in those conditions, as we need the data corresponding to a sub-image of the original image. The convolution cannot be processed fully until all that data arrives, and the data not needed at a particular moment needs to be stored. This is taken care of by this component: it stores the temporary data and outputs it when ready, as a 37 × 37 pixel matrix as needed by the following conv filter bank, as explained below. That process is performed by two different sub-modules: pix to stripe, which reorder the pixels so that they may be processed column per column, and the pixmat that stores the data in a matrix of registers and provide them to the convolution filter bank module.

pix to stripe That modules consists in a BRAM, the output pins of which are rewired to its input pins in the way shown in Figure 4.6. It gets as inputs, apart from the usual clk , en din and rst pins, the 2 bit pixels got from the top-module. Its output pins consist in a 37 × 2 = 74 pins bus providing a column of the 37 pixels, as well as a en dout output port indicating when data is ready to be processed.

pixmat That module gets as inputs the outputs of the aforementioned pix to stripe module. It simply consists in a matrix of 37 × 37 pixels. At each pixel clock cycle, all registered data is shifted to the "right", and the registers on the left store the data gotten from pix to stripe. The pixmat module's output pins are directly wired to its outputs, and an output pin called en dout indicates when the data is ready. When that happens, the data stored in the matrix of registers may be used by the convolution engines.

In order to handle new lines, that module has an inner counter incremented every time new data arrives. When that counter reaches 164, i.e when a full stripe of the image went through the module, the en dout signal is unset and the counter is reset to 0. The en dout signal is set again when the counter reaches 37 again, meaning that the matrix is filled.

coeffs manager That module's purpose is to provide the required convolution kernels' coefficient, w.r.t the required Gabor filters orientation. It gets as inputs the regular rst, clk and en signals, but also a bus of two pins called k idx indicating the desired orientation The output pins consists of the customary en dout output port indicating that the data is ready, and a large bus called cout that outputs all coefficients of all scales for the requested orientation. This is also close to the box filter approximation proposed in [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF]. As explained in Section 4.2, we use a particular one bit encoding.

Since our convolution kernels' sizes go from 7 × 7 to 37 × 37 by steps of 2 × 2, the total amount of input pins in the cout bus is given by In order to simplify the process, all coefficients needed at a particular time are read all at once from several BRAM, of which only two are represented here for readability. The coefficients are then concatenated in a single vector directly connected to the cout output port.

en din and rst pins, which serve their usual purposes. It also gets the orientation identifier thanks to an id in input bus -that identifier is not directly used for computation, but is passed with the output data for use in latter modules. Finally, that modules needs two clocks: the pixel clock, on which the input data is synchronized and acquired through the clk pin, and the process clock (acquired through clk proc) needed for multiplexing the filters per orientations, as suggested in Section 4.3.1.

Output pins consist in a dout bus in which the result of the convolutions at all scales are written, an id out bus simply indicating the orientation identifier got from the id in input bus and the usual en dout pin. In order to perform its operations, that module has one distinct instance of the conv crop component per scale (i.e, 16 instances in total). Each instance has parameters of its own depending on its scale.

conv crop That module's input and output ports are similar to those of its parent module conv filter bank. It gets the pixel and process clocks respectively from its clk and clk sum input ports, and it may be reset using the rst input port. Image data arrive through din, and the convolution coefficients got from coeffs manager are acquired through the coeffs input port. Data identifier is given by id in input port, and en din indicates when input data is valid and should be processed. Output ports encompass dout, which provide the results of the convolution, and id out which gives back the signal got from id in. Finally, en dout indicates when valid output data is available. dout signals from all instances of conv crop are then gathered in conf filter bank's dout bus. This module gets its name from its two main purposes: select the data required for the convolution, and perform the actual convolution.

The first stage is done asynchronously by a component called image cropper. As explained earlier, conv crop get the data in the form of a 37 × 37 pixel matrix -however, all that data is only useful for the 16th scale convolution kernel, which is also of size located in the middle of the 37 × 37 matrix, as shown in Figure 4.6. The selected data is then processed by the conv component, which is detailed in the next section.

conv

That module carries out the actual convolution filter operations. It gets as inputs two clocks: clk which gets the process clock and clk sum which is used to synchronize sums in the convolution sub-process clock. It also has the usual rst pin for initialization, a bus called din through which the pixel matrix arrives, a bus called coeffs which gets the convolution kernel's coefficients, an id in bus allowing to identify the orientation that is being computed, and an en din pin warning that the input data is valid and that operations may be performed. Its outputs are a dout bus that provides the convolution results, another one called id out that indicates which orientation that data corresponds to and a en dout bus announcing valid output data.

In order to simplify the architecture and to limit the required frequency of the subprocess clock, the convolution is first performed row by row in parallel. The results of each rows are then added to get the final result. That row-wise convolution is performed by a bank of convrow module having one filter per row. The sum of the rows are performed by the sum acc module, and the result is coded as suggested in Section 4.2 thanks to the s1degrader module; both modules shall now be presented.

convrow That module has almost the same inputs as conv, the only exception being that it only gets the input pixels and coefficients corresponding to the row it is expected to process. Its output pins are similar to those of conv. As explained in Section 4.2, our filters coefficients are either +1's and -1's, respectively coded as "1" and "0". Thus, each 1 bit coefficient does actually not code a value, but rather an instruction: if the coefficient is 1, the corresponding pixel value is added to the convolution's accumulated value, and it is subtracted if the coefficient is 0. That trick allows to perform the convolution without any products. In practice, a subtraction is performed by getting the opposite value of the input pixel by evaluating its two's complement and performing and addition. Sums involved at that stage are carried out by the sum acc module, which shall now be described.

sum acc That module sums serially the values arriving in parallel. The data arrives through its din parallel bus, and must be synchronized with the process clock arriving through the clk pin. That module uses a unique register to store its temporary data. At each process clock cycle, the MSB of the din bus, which correspond to the first value of In each of those modules, the "multiplications" are performed in parallel in rowmult between the data coming from din and coeffs input buses -as mentioned in Section 4.2, those multiplications consist in fact in simple changes of signs, depending on the 1 bit coefficients provided by the external module coeffs manager. The results are the accumulated thanks to convrow's cumsum component. Finally, the output of all conrow modules are accumulated thanks to another cumsum component. The result is afterward degraded thanks to the s1degrader module, the output of which is written in dout.

the sum, is written in the register. At each following sub-process clock cycle, an index is incremented, indicating which value should be added to the accumulated total. Timing requirements concerning the involved clocks are discussed later in Section 4.4.2. The result is written on the output pins synchronously with the process clock.

Once the data has been accumulated row by row, and the results coming out of all rows have been accumulated again, the result may be encoded on significantly shorter words as we explained in Section 4.2.3. That encoding is taken care of by the s1degrader module, which shall be described now.

s1degrader This modules takes care of the precision degradation of the convolution's output. It is synchronized on the process clock, and as such has a clk input pin, and The results written in dout simply depends on the position of the input value w.r.t the partition boundaries on the natural integer line.

r 0 r 1 r 2 r 3 din en din dout en dout

shift registers

That module allows to delay data. This is mostly useful to address synchronization problem, and thus it needs a clock clk. A rst input port allows to initialize it, and data is acquired through the din port while an en din input port allows to indicate valid input data. Delayed data may be read from the dout output port, and a flag called en dout is set when valid output data is available and unset otherwise.

The way that module works is straightforward. It simply consist in N registers r i , each one of them being connected to two neighboors except for r 1 and r N . At each clock cycle, both the data from din and en din are written in r 1 , and each other register r i gets the data from its neighboor r i-1 as shown in Figure 4.9. The last register simply writes its data in the dout and en dout output ports.

c1

Once the convolutions are done and the data encoded on a shorter word, max-pooling operations must be performed. Following the lines of the theoretical model, this is done by the c1 module, which gets its inputs directly from s1 output pins. It is synchronized on the process clock, and therefore it has the mandatory clk and rst pins. It also has input buses called din, din ori and en din which are respectively connected to s1's dout, ori and en dout. Its outputs pins are made up of buses named dout, dout ori Maximums are first computed accross scales with the max 2by2 components. The data is then organized into stripes in the same fashion as done in the pix to stripe component used in s1 module. That stripe is organized by lines, and then scales, and needs to be organized by scales, and then lines to be processed by the latter modulethis reorganization is taken care of by reorg stripes. Orientations being multiplexed, we needed to separate them so each may be processed individually, which is done by the data demux module. Each orientation is then processed by one of the c1 orientation module. Finally, data comming out of c1 orientation is multiplexed by data mux before being written in output ports.

and en dout, which respectively provide the result of the max-pooling operations, the associated orientation identifier and the flag indicating valid data.

The process is carried out by the following components: c1 max 2by2 which computes the pixel-wise maximum across two S1 feature maps of consecutive scales and same orientation, c1 pix to stripe which reorganize the values in a way similar to that of the aforementioned pixel manager module, c1 reorg stripes which routes the data to the following components in an appropriate manner, c1 orientation demux which routes the data to the corresponding max-pooling engine depending on the orientation it corresponds to, and finally max filter which is the actual max-pooling engine and performs for a particular orientation, hence the name. That flow is shown in Figure 4.10.

c1 max 2by2 Apart from the clk, rst and en din input pins, that module has an input bus called din that gets the data produce by all convolution engines and perform the max-pooling operations across consecutive scales. Since the immediate effect of that process is to divide the number of scales by two, that module's output bus dout has half the width of din. A signal going through the en dout output pin indicates that valid data is available via dout.

c1 pix to stripe That module is very similar to the pix to stripe module used in s1 (see Section 4.3.2.1), except that it operates on data of all of the 8 scales produced by c1 max 2by2 and produces stripes of 22 pixels in heights, as the maximum window used for the max-pooling operations in C1 is 22 × 22 as stated in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. Its input and output ports are the same as those of pix to stripe, with additional din ori and dout ori allowing to keep track of the orientation corresponding to the data.

c1 reorg stripes The data produced by c1 pix to stripe is ordered first by the position of the pixels in its stripe, and then per scale -i.e first pixels of all scales are next to each others, followed by the second pixels of all scales, and so on. This is impractical for the processed needed in the later module, where we need the data to be grouped by scales. That module achieves it simply by rerouting the signals asynchronously.

c1 orientations demux During C1, each orientation is performed independently from the others. However, at this point they arrive multiplexed from the same bus: first pixels from the first orientation, then the pixels at the same locations from the second orientation, followed by the third and the fourth -we then go back to the first orientation, then the second one and so on. That modules gets those pixels through its din bus, and route the signal to the relevant pins of its dout bus depending on its orientation, which is given by the din ori input bus, which is wired to c1 pix to stripe's dout ori bus.

Each set of pins corresponding to a particular orientation then routes the signal to the correct instance of the c1 orientation module. In order to perform that demultiplexing operation, that module also has the compulsory clk, rst and en din pins.

c1 orientation The actual max-pooling operation is performed by the c1unit components contained in that module. Each c1 orientation instance has a bank of 8 c1unit instances, each having its own configuration so as to perform the max-pooling according to the parameters indicated in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF]. The role of the c1 orientation module is to serve as an interface between the max-pooling unit bank and the rest of the hardware model. As inputs, is has the usual clk, rst and en din input pins as well as a din input bus. That bus gets the data of the corresponding orientation generated in the s1 module. Data of all scales arrive in parallel, as a result of the previous modules.

Data of each of the 8 scales is routed to a particular c1unit component, which shall be described soon. Output data is then written in the dout bus. An en dout output is set to "1" when data is ready, and pins of an output bus called dout en scales are set depending on the scales at which the data is available, while the other pins are unsete.g, is the output data correspond to the 1st and 4th scales of the C1 layer of the model, dout en scales shall get the value "00001001". Figure 4.11a shows the two c1unit components and the control module c1unit ctrlnamed ctrl here for readability. Data coming out of those components are multiplexed in the same output port dout. The four bits data signal is shown with the thick line, and the control signals ares shown in light line. We see that dedicated control signals are sent to each maxfilt components, but also that both get the same data.

The control signals presented in Figure 4.11b show how the control allow to shift the data between the two units, in order to produce the overlap between two C1 units. We assume here that we emulate C1 units with 4 × 4 receptive fields and 2 × 2 overlap.

c1unit This is the core-module of the max-pooling operations -the purpose of all other modules in c1 is mostly to organize and route data, and manage the whole process.

Its inputs consist in the compulsory clk, rst and en din pins and the din bus. Data are written to the usual dout and en dout output ports. The max-pooling operations are performed by two instances of a component named maxfilt. The use of those two instances, latter refered to as maxfilt a and maxfilt b, is made mandatory by the fact that there is 50% overlapping between the receptive fields of two C1 unit in the original model. The data is always sent to both components, however setting and unsetting their respective en din pins at different times emulates the behaviour of the set of C1 units operating at the corresponding orientation and scale: at the beginning of a line, only one of the two modules is enabled, and the other one gets enabled only after an amount of pixels equal to half the size of the pooling window (e.g the stride) as arrived. That behaviour is illustrated in Figure 4.11, and is made possible thanks to the c1unit ctrl module. In the next two paragraphs, we first describe how maxfilt works, and then how it is controlled by c1unit ctrl.

maxfilt This is where the maximum pooling operation actually takes place. That module operates synchronously with the process clock, and thus has the usual clk, rst and en din input ports -data is got in parallel via the din input port. The input data corresponds to a column of values generated by s1, with the organization performed by the above modules. There are also two additionnal control pins called din new and din last, allowing to indicate the module that the input data is either the first ones of the receptive field, the last ones, or intermediate data. The value determined by the filter is written in the dout port, and valid data is indicated with the en dout output port.

The module operates as follows. the module is enabled only when the en din port is set to "1". It has an inner register R that shall store intermediate data. When din new is set, the maximum of all input data is computed and the result is stored in R. When both din new and din last are unset and en din is set, the maximum between all input values and the value stored in R is computed and stored back in R. Finally, when din last is set the maximum value between inputs and R is computed again but this time it is also written in dout and en dout is set to "1". Figure 4.11b shows how those signals should act to make that module work properly.

c1unit ctrl That module's purpose is to enable and disable the two maxfilt components of c1unit when appropriate. It does so thanks to a process synchronized on the process clock, and thus has the customary clk, rst and en din input ports. It gets the data that is to be processed in its parent c1unit module through its din input bus, and re-write to the dout output bus along with flags wired to the two c1unit components of its parent module, via four output ports: en new a and en last a which are connected to maxfilt a, and en new b and en last b which are connected to maxfilt b. maxfilt a and maxfilt b are the modules mentioned in the the description of c1unit, presented earlier.

c1 to s2

That module's goal is to propose an interface between the output port of c1 and the input ports of s2. It also allows to get the data directly from c1 and use it as a descriptor for the classification chain. It reads the data coming out of c1 in parallel, stores it, and serializes it in an output port when ready. That module needs three clocks: clk c1, clk s2 and clk proc. It also has the rst port, as any other modules with synchronous processes. The input data is written in the c1 din input port, and its associated orientation is written in c1 ori. Data coming from different scale in C1 are written in parallel. en c1 is a input port having of side 8 -one pin per scale in c1 -that indicates which scale from c1 din is valid. Finally, a retrieve input port indicates that the following module is ready to get new data. Output data is written serially in dout output port, and a flag called en dout indicates when data in dout is valid.

As shown in Figure 4.12, that module has four major components: two BRAM-based buffers that store the data and write it in din when ready, an instance of c1 handler which gets the input data and provides it along with the address where it should be written in the buffers, and finally a controller ctrl with two processes that takes care of the controlling signals. The reason why we need two buffers is that we use a double buffering: the data is first written into buffer A, then when all the required data has been written the next data is written into buffer B while we read that of buffer A, then buffer B is read while the data in buffer A is overwritten with new data, and so on. This allows to avoid problems related to concurrent accesses of the same resources.

When new data in c1 din is available, -that is when, at least one of en c1's bits is set -the writting process is launched. This process, which is synchronized on the highfrequency clk proc clock, proceeds as follows: if en c1'LSB is set, the corresponding data is read from c1 din and sent to c1 handler along with an unsigned integer identifying its scale. Then the second LSB of en c1 is read, and the same process is repeated until all 8 bits of en c1 are checked.

In parallel, c1 handler returns its input data along with the address where it should be written in BRAM. Both are sent to the buffer available for writing, which takes care of the writing of the data in its inner BRAM. Once data is ready, i.e when all C1 feature maps for an image are written in the buffer, then that buffer becomes read-only, as new incoming data is written in the other buffer. Every time the retreive input signal switches state, data is written into dout and en dout is set. When the data is written, it is always by batches of four values, one per orientation.

c1 handler That module handles the pixels sent from the c1 to s2 and its corresponding scale, and simply rewrites it in its output ports with the address to which it should be written in c1 to s2 write buffer. Its input ports consist in clk which get the clock on which it should be synchronized, the rst port allowing to reset the component, the din port getting the C1 value to be handled, the scale of which is written in the scale input port, the rst cnts that allows to reset all of this module's inner counters used to generate the address, and the en din input port indicating when valid data is available and should be processed. This module's output port consist in dout which is used to rewrite input data, addr which indicates the address where to write the data in BRAM and en dout indicating that output data is available. .12: c1 to s2 module. The blue and red lines show the data flow in the two configurations of the double-buffering. The data goes through c1 handler, where the address to which it should be written is generated and written in waddr. The rea and reb signals control the enable mode of the BRAMs, while the wea and web enable and disable the write modes of the BRAMs. When the upper BRAM is in write mode, wea and reb are set and web and rea are unset. When the upper buffer is full, those signals are toggled so that we read the full buffer and write in the other one. Those signals are controled thanks to the ctrl component, which also generates the address from which the output data should be read from the BRAMs. Data read from both BRAMs are then multiplexed into the dout output port. Pins on the left of both BRAMs correspond to the same clock domain, and those on the right belong to another one so that it is synchronized with following modules.

That module works as follows. It has 8 independent counters, one per scale. Let c n s be the value hold on the counter associated to scale s at instant n. When en din is set, assuming the value read from scale correspond to the scale s coded as an unsigned integer, the data read from scale is simply written in dout and the value written in addr is simply c n s + o s , again coded as an unsigned integer, where o s is an offset value as given in Table 4.5. Those offsets are determined so that each scale has its own address range, contiguous with each others, under the conditions given in Section 4.3.1:

o 0 = 0, (4.24) ∀s ∈ Z * o s = s-1 k=0 4S k 2 , (4.25)
where S k is the size of the C1 maps at scale k, also given in Table 4.5. Once all pixels have been handled by c1 handler, the module's counters must be reset by setting and then unsetting the rst cnts input signal.

s2c2

That module gets as input the serialized data produced by c1 to s2. and performs the operation required in HMAX's S2 and C2 layers. It has two main components, s2 and c2, that respectively take care of the computations needed in HMAX's S2 and C2

layers. In order to save hardware resources, the pre-learnt in S2 filters are multiplexed as it is done in s1: every time new data arrives, pattern-matching are performed with some of the pre-learnt S2 patches in parallel, then the same operations are performed with other pre-learnt patches and same input data, and so on until all pre-learnt patches were used. We shall define here for latter use a multiplexing factor that we shall denote M S2C2 , which corresponds to the amount of serial computations required to perform computations on all S2 patches for a given input data. Is most useful output port is called rdy, and is connected to c1 to s2's retreive input port, to warn it when it is ready to get new data.

s2

This module handles the data coming out of c1 to s2 as well as the pre-learnt patches, matches those patterns and returns the results. Its input pins firstly consist in clk and clk proc that each get a clock signal: the first one is the clock on which the input data is synchronized and the other one synchronizes the computations. It also has a rst input port allowing to reset it. The data should be written in the din port, and a port called en din indicates that the input data is valid. After performing the pattern matching operations, the data is written into the dout output port, along with an identifier into the id out output port. Finally, en new allows the other module to be warned that new data is available, en dout indicates precisely which parts of dout carry valid data and should be read and rdy indicates when the process is ready to read data from c1 to s2.

That modules has three major components, which shall be described in the next Sections:

s2 input manager, which handles and organizes input data; s2 coeffs manager, which handles and provides the coefficients of the pre-learnt filters; and s2 processors, which takes care of the actual pattern-matching operations.

Figure 4.13 shows the dataflow in that module. We shall now described in more details the its sub-modules s2 coeffs manager, s2 coeffs manager and s2 processors. The data arriving to the module is handled by s2 input manager, which make it manageable for the s2processors. The latter also gets the pre-learnt filter needed for the pattern-matching operations from s2 coeffs manager in parallel, and perform the computations. Once it is over, the data is sent in parallel to the dout output port, which feed the next processing module.

s2 input manager

This module's purpose is somewhat similar to that of s1's pixman module: managing the incoming data and reorganizing it in a way that makes it easier to process. It gets input data from c1 to s2 serially and provide a N × N × 4 map of C1 samples, where N is the side length of the available map. Its input ports gather a clk port the clock and a rst port allowing to reset the module, and also a din port where the data should be written and an en din port that should be set when valid data is written into din. The output map may be read from the dout output port and its corresponding scale in C1 space is coded as an unsigned integer and written into the dout scale output port. Finally, the input matsize output gives a binary string w.r.t the value of the aforementioned N variable according to Table 4.6. Individually, each bit of dout scale allow to enable and disable s2bank modules, which takes care of the actual pattern-matching operation and which are described in Section 4.3.3.6.

s2 input manager mainly consists in two components: s2 input handler, which get C1 samples serially as input and returns vertical stripes of those samples; and an instance of the pixmat component described in Section 4.3.2.1. However, pixmat is not used here in exactly the same way as in s1. First of all, we consider here that a "sample" stored in pixmat does not actually correspond to a single sample of a C1 map at a given location, but to an ensemble of four C1 samples, one per orientation. Furthermore, contrary to s1, the feature maps produced by c1 do not have the same sizes, as stated earlier in dout scale 0000 0001 0011 0111 1111 To address that issue, we chose to ignore pixmat's en dout port, and to use a state machine that shall keep track of the data in a similar way to that of pixmat, although it manages better the cases where the feature maps are smaller than 31 × 31: the process is similar but the line width depends on the scale to which the input data belongs. That scale is determined by an inner counter: knowing how many samples there are per scales in C1, it is easy to know the scale of the input data.

s2 input handler The reorganization of the data arriving sample by sample in stripes that can feed pixmat is performed by that module. As a synchronous module, it has the required clk and rst input ports, the data is read from its din input port and valid data is signaled with the usual en din input port. Output stripes are written in the dout output port, along with the identifier of their scales which are written in the dout scale output port. Finally, the en dout output port indicated that data from dout scale is valid.

Let's keep track of the organization of the data that arrives in that module. Pixels arrive serially, as a stream. The first pixels to arrive are those of the C1 maps of the smallest scale. Inside that scale, the data is organized by rows, then columns, and then orientation as shown in Figure 4.14a. The first thing that module does is to demultiplex the orientations, so that every word contains the pixels of all of the orientations, at the same locations and scale. Once this is done, this new stream may be processed as we explain now.

As presented in Figure 4.14b, that module has 8 instances of the s2 pix to stripe component -one for each size of C1 feature maps -that produces the vertical stripes given input samples and generic parameters such as the desired stripe's height and width. Only one of those instances is used at a time, depending on the scale (which is computed internally depending on the amount of acquired samples). Thus, at scale 0 the C1 feature maps are 31 × 31 and the only active module is the 31 × 31 one. When processing samples of scale 2, which means 24 × 24 feature maps, the only active module is the 24 × 24 one, and so one. Whatever its side, the generated stripe is written in dout and its corresponding scale in dout scale. Finally, en dout indicates which data from dout is valid -this is somewhat redundant with dout scale, but makes it easier to interface that model to the others. units of all sizes is performed here. Data are synchronized on the pixel clock which is provided to this module via its clk input port. Operations, however, are synchronized on the S2 process clock of much higher frequency, given by the clk proc input port. The module also has the compulsory rst clock allowing to initialize it. The data resulting from the processes of the previous layers is passed through the din input port, along with its codebook identifier via the cb din input port. The pre-learnt patterns to be used for the pattern matching operations are passed through the coeffs input bus, and all their corresponding codebooks identifiers are given to the module via an input port called cbs coeffs. Finally, the id in input port gets an identifier that allows to keep track of the data in the latter c2 module, and the en din allows to enable or disable the module.

Regarding the output ports, they consist in the dout port which provide the results of all the pattern matching operations performed in parallel, the id dout port that simply gives back the identifier provided earlier via the id in port, a "rdy" output port that warns that that module is ready to get new data, and finally an en dout output bus that indicates which data made available by dout is valid; this is required due to the fact that, as we shall see, pattern matching operations are not performed at all positions of the input C1 maps, depending on the various sizes of the pre-learnt pattern. Thus, data are not always available at the same time, and we need to keep track of this.

For each size of the pre-learnt S2 patches, i.e 4×4×4, 8×8×4, 12×12×4, 16×16×4, this module implements two components: s2bank that performs the actual pattern matching operation, and corner cropper that makes sure that only valid data is routed to the s2bank instance. Data arriving from din corresponds to a matrix of 16 × 16 × 4 pixels: all of it is passed to the s2bank instance that match input data with 16×16×4 patterns.

The data fed to s2bank instances performing computations for smaller pre-learnt pattern corresponds to a chunk of the matrix cropped from the "corner" of the pixel matrix. the pre-learnt vector used for the pattern matching operation, and the corresponding codebook is got via the cb coeffs input port.

s2unit

That module takes care of the computation of a single pattern matching operation in S2. As its top module s2processors, it has clk and clk proc input ports that respectively get the data and system clocks. It also has rst input ports for reset. The operands consist on one hand in the data produced by the s1c1 module and selected by corner cropper and on the other hand in the pre-learnt pattern with which the Manhattan distance is to be computed. They are respectively given to that module via the din and coeffs input ports. The data arrive in parallel in the form of the optimized encoding described in Section 4.2, and as explained there this encoding requires a codebook. Since there is a codebook per C1 map, the identifiers of the codebooks required for the input data and the pre-learnt pattern are respectively given by the cb din and cb coeffs input ports. The identifier mentioned in s2processors passed by the id in input port, and the module can be enabled or disabled thanks to the en din input port.

The Manhattan distance computed between the passed vectors is written to the dout output port, along with the corresponding identifier which is written to the id out output ports. Finally, an output port called en dout indicates when valid data is available.

The Manhattan distance is computed here in a serial way, synchronized on the clk proc clock. This computation is performed by a component called cum diff, which shall now be described. Shift registers as described in Section 4. In this Section, we described principles of the s2 module. Next Section does the same for the c2 module.

Timing

Our model works globally as a pipeline, where each module uses its own resources.

Therefore, the overall time performances of the whole chain is determined by the module that takes longest. In order to evaluate how fast is our model in terms of frames per second, we shall now study, for each stage, the timing constraints it requires. As for the C1 layer, it processes the data as soon as it arrives, and thus no bottleneck is involved there.

The S2 layer is the most demanding in terms of computations. Computations are performed only when all the required data is here, in order to save as most time as possible, as explained in Section 4.3.3.5. Considering we use a 25-to-1 multiplexer to process all S2 filters, the time T S2 required by this stage is given by the time required by that layer may be written as

T S2 = 25 (16 × 16 × 4M 16 + 12 × 12 × 4M 12 + 8 × 8 × 4M 8 + 4 × 4 × 4M 4) , (4.26)
where M i is the number of valid X i × X i patches in the C1 feature maps where patches bigger than X i × X i with X i = 4i are not valid, and may be expressed as

M i = N i -N i+1 (4.27)
where N i is the number of valid X i × X i patch in the C1 feature maps. Hence, we have The strategy proposed in [99] is very different from what we proposed here. The huge computational gain they brought is largely due to the use of separable filters for S1, which allow to use very few resources as explained in Section 4.1.1.1. The fact that, in their implementation of S1, filters are multiplexed across scales instead of across orientations as we did here, also allows to begin computations in the the S2 layer as soon as data is ready, while in our case we chose to wait for all C1 features to be ready before starting computation, using a double-buffer to allow a pipelined process. In their case, the bottleneck is the S1 layer, which forces them to process a maximum of 190 images per second. However, that amount is 8.37 times bigger than the FPS we propose. This is due to the fact that, while reducing data encoding seem to provide performances similar to those obtained with full double-precision floating point values, it does not take full advantage of the symmetries underlined by Orchard et al. in [99].

T S2 =25 [
As for the S2 layer, Orchard et al claimed that they used 640 multipliers in order to make the computation as parallel as possible -however it is not very clear in that paper how exactly those multipliers were split across filters, and the code is not available online -hence direct comparison with our architecture is not feasible. However, with their implementation of S2 they claim being able to process 193 128 × 128 images per seconds, while our implementation gives 22.69 images per second, although it uses much less resources. Finally, we did reduce the precision of the data going from S1 to S2, but the computation in S2 is still performed with data coded on 24 bits integer -this is due to the fact that we did not tested the model when degrading the precision at that stage. Future work shall address that issue, and we hope to reduce the precision to a single bit per word at that stage. Indeed, in that extreme scenario the computation of the Euclidean distance is equivalent to that of the Hamming distance, i.e. the number of different symbols between two words of same length. That kind of distance is much easier to compute than classical Euclidean or even Manhattan distance, be it on FPGA or CPU. The rational behind that idea is that single bit precisions were successfully used in other machine learning contexts [START_REF] Coussy | Fully-Binary Neural Network Model and Optimized Hardware Architectures for Associative Memories[END_REF][START_REF] Courbariaux | BinaryConnect: Training Deep Neural Networks with binary weights during propagations[END_REF], and such an implementation would be highly profitable for implementation on highly constraint devices.

Resource

Conclusion

This Chapter was dedicated to the optimizations of the computations that take place in the HMAX model. The optimization strategy was to use simpler operations as well as coding the data on shorter words. After that study, a hardware implementation of the optimized model was proposed using the VHDL language, targeting an Artix 7 200T

platform. Implementation results in terms of resource utilization and timing were given, as well as comparisons with a work chosen as a baseline.

We showed that the precision of the data in the early stages of the model could be dramatically reduced, while keeping acceptable accuracy: only the 2 most significant bits of the input image's pixels were kept, and the Gabor filters' coefficients were coded on a single bit, as was proposed in [START_REF] Chikkerur | Approximations in the HMAX Model[END_REF]. We also used the coding strategy proposed in the same paper, in order to reduce the bit width of the stored coefficients and their transfer from modules to modules. We also instantiated less patches in S2 as proposed by Yu and Slotine [START_REF] Yu | FastWavelet-Based Visual Classification[END_REF], and we proposed to use the Manhattan distance instead of the Euclidean distance as in the initial model [START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF]. Those optimizations made the overall accuracy of the model lose XXX points in precision for an image classification task based on 5 classes of the popular Caltech101 dataset, while dividing the complexity in the S2 stage by 5 and greatly reducing the required precision of the data, hence diminishing the memory print and the needed bandwidth for inter-module communication.

A hardware implementation of that optimized model was then proposed. We aim to that implementation to be as naive as possible, to see how those optimization compared with the implementation strategy proposed by Orchard et al. [99]. Their implementation was made so as to fully use the resources of the target device, and thus they claimed a throughput much higher than ours. However, our implementation uses much less resources than theirs, and our optimizations and theirs are fully compatible. A system implementing both of them would be of high interest in the fields of embedded systems for pattern recognition.

Future research shall aim to combine our optimizations with the implementation strategy proposed by Orchard et al, thus reducing even further the resource utilization of that algorithm. Furthermore, we shall continue our efforts towards that objective, by addressing the computation in the S2 layers: at the moment, they are implemented as

Manhattan distance -we aim to reduce the precision of the data during those pattern matching operation to a single bit. That way, Euclidean and Manhattan distances are reduced to the Hamming distance, much less complex to compute.

Chapter 5

Conclusion

In this thesis, we addressed the issue of optimizing a bio-inspired feature extraction framework for computer vision, with the aim of implementing it on a dedicate hardware architecture. Our goal is to propose an easily embeddable framework, generic enough to fit different applications. We chose to focus on efforts on HMAX, a computational model of the early stage of image processing in the mammal's cortex. Although that model may not be quite as popular as others, such as ConvNet for instance, it is interesting in that it is more generic and only requires little training, while frameworks such as ConvNet often require the design of a particular topology and a large amount of samples for training.

HMAX is composed of 4 main stages, each computing features that are progressively more invariant that the one before, to translations and small deformations: the S1 stage uses Gabor filters to extract low-level features from the input image, the C1 stage uses a max-pooling strategy to provide a first level of translation and scale invariance, the S2 feature matches pre-learnt patches with the feature maps produced by C1 and the C2 provides full invariance to translation and scale thanks to its bag-of-word approach by keeping only the highest responses of S2. The only training that happens here is in S2, and it may be performed using simple training algorithms with few data.

First, we aimed to optimize HMIN, which is a version of HMAX with only the S1 and C1 layers, for two particular tasks: face detection, and pedestrian detection. Our optimization strategy consisted in removing the filters that we assumed were not necessary:

for instance, in the case of face detection, the most prominent features lie in the eyes and mouth, which respond best to horizontal Gabor filters. Hence, we proposed to keep only such features in S1. Furthermore, most useful information are redundant from scales to scales, thus we reduced further the complexity of our system by summing all the remaining convolution kernels in S1, and we reduced it to a manageable size of 9 × 9 which allows it to process smaller images. Doing so helped us to greatly reduce the complexity of the framework, while keeping its accuracy to an acceptable level. We validated our approach on the two aforementioned tasks, and we compared the performance of our framework with state-of-the art approaches, namely the Convolutional Face Finder and Viola-Jone's for the face detection task, and another implementation of ConvNet and the Histogram of Oriented Gradients for the pedestrian detection task.

For face detection applications, we concluded that, while the precision of our algorithm is significantly lower than that of state of the art systems, our system still works decently on a real life scenario, where images were extracted from a video. Furthermore, it presents the advantage of being generic: in order to adapt our model to another task one would simply need to update the weights of the filter in S1 so as to extract relevant features, while state of the art algorithm were either design specifically for the considered task or would require particular implementation for it.

However, our algorithm does not seem to perform to a sufficient level for the pedestrian detection task, and more efforts need to be made to that end. Indeed, while our simplifications allowed our system to be the most interesting in terms of complexity, they also brought a significant drop in terms of accuracy, although more tests need to be made for that use case as our results are not directly comparable to those of the state of the art.

We then went back to the full HMAX framework with all four layers, and we studied optimizations aiming to reduce the computation precision. Our main contribution is the use of as few as two bits to encode the input pixels, hence using only 4 gray levels instead of the usual 255. We also tested that optimization in combination with other optimizations from the literature: Gabor filters in S1 were reduced to simple additions and subtractions, the output in S1 were quantized using Lloyd's encoding method, allowing to find the optimal quantization given a dataset, we divided by 5 the number of pre-learnt patches in S2 and we replaced the complex computation of Gaussians in S2

with much simpler Manhattan distance. We showed that all those approximations allow to keep an acceptable accuracy compared to the original model.

We then implemented our own version on HMAX on a dedicated hardware, namely the Artix-7 200T FPGA from Xilinx, using the aforementioned optimizations. That implementation was purposely naive, in order to compare it with state of the art implementation. The precision reduction of the input pixels allows to greatly reduce the memory needed when handling the input pixels, and made the computation of the S1 feature map being done on narrower data. Furthermore, the replacement of the Gabor filter coefficients by simple additions and subtractions allowed us to encode that instruction on a single bit -"0" for subtraction and "1" for addition -instead of a full coefficient, using for instance a fixed or floating point representation. The data coming out of S1 is then encoding using the codebooks and partitions determined thanks to Lloyd's method, hence allowing to pass only words of 2 bits to the C1 stage. As for the S2 layer, the influence of data precision on the performance was not yet evaluated by the time that document was written, and hence all data processed here used full precision: input data are coded on 12 bits, and output data on 24 bits.

The main limit of our implementation is that is does not use the symmetries of the Gabor filters. That technique was successfully used in the literature to propose a full HMAX implementation on a single FPGA, allong with different multiplexing scheme that allow a higher throughput. Indeed, our implementation -which is yet to be implemented and tested on a real device -may process 4.54 164×164 frames per second, while the authors of the state of the art solution claimed that it may process up to 193 128 × 128 frames per second. It must be emphasized however that our implementation uses much less hardware resources, and that our optimizations and theirs are fully compatible. Hence, future development shall mainly consist in merging the optimization they proposed with those that we used.

Let's now give answers to the question we stated at the beginning of that document. The first one was: How may neuromorphic descriptors be chosen appropriately and how may their complexity be reduced? As we saw, a possible solution is to find empirically the most promising features, and keeping only the filters that respond best to it. Furthermore, it is possible to merge the convolution filters that are sensible to similar features.

That approach led us to a generic architecture for visual pattern recognition, and one would theoretically need to change only its weights to adapt it to new problems.

The second question that we stated was: How the data handled by those algorithms may be efficiently coded so as to reduce hardware resources? We show that full precision is not required to keep decent accuracy, and that we can acceptable results using even only a few bits to encode parameters and input data. We also showed that that technique may be successfully combined with other optimizations.

Given the fact that nowadays, the most widely used framework for visual pattern recognition is ConvNet, it may seem surprising that we chose to stick to HMAX. The main reason is that their most well known applications are meant to run on very powerful machines, while on the contrary we directed our research towards embedded systems.

We also found the bio-inspiration paradigm promising, and we chose to push as far as possible our study of frameworks falling in that categories, in order to use them to their full potential. While our contribution in deriving an algorithm optimized for a given task does not provide an accuracy as impressive as the state of the art, we claim that the architecture of that framework is generic enough to be easily implementable on hardware, and that only the parameters would need to change to adapt it to another task.

Furthermore, our implementation of the general-purpose HMAX algorithm on FPGA is the basis of a future, more optimized and faster implementation on hardware, combining the presented optimizations which allowed to keep low hardware resource utilization low and those proposed in the literature, that take full advantage of the features of an FPGA. Combining those contributions may take several form: one can imagine using a full HMAX model with all four layers, but with a number of filters in S1 greatly reduced, thus leading to an implementation on FPGA using even less resources. Or, one can imagine directly implementing the framework proposed for face detection, i.e.

without the S2 and C2 layers, with the optimizations that we proposed for the S1 and C1 layers. Doing so would produce a very tight framework, with a low memory print and a low complexity.

However, one may argue that frameworks such as ConvNet are nevertheless more accurate than HMAX in most use case scenarios, that frameworks such as Viola-Jones have strikingly low complexities, and that the genericity we claim to bring does not make it up for it. With that consideration, we claim that the study carried out in Chapter 3 and 4 may still apply to those frameworks. Indeed, as was done in the literature, if one trains a ConvNet having a topology similar to that of the CFF, where the feature maps of the second convolution stage ultimately produce a scalar each, one may see that the weight affected to that scalar if close to zero, and hence the corresponding convolutions responsible for that feature map may simply be removed; furthermore, for a given task it may be easy to identify the shape of a Gabor filter that would allow to grasp interesting features -then, one can either use Gabor filters as the first stage of a ConvNet, as was done in the past, or initialize the weights of some convolution kernels before training.

As for our hardware implementation of HMAX, most of the optimizations we proposed may be used for ConvNet as well. For instance, one could still chose to train a ConvNet on input images with pixels coded on less than 8 bits. Furthermore, after training one could also imagine to replace all positive weights with 1 and negative weights with -1, and remove weights close to 0 -given that the dynamics of the weights is not too far from the [-1, 1] range. We also confirmed that using those techniques in combinations with other techniques from the literature, such as Lloyd's algorithm for inter-layer communication, are usable without dramatically altering the accuracy. Hence, our example of implementation is perfectly applicable to other situations, and goes way beyond the sole scope of HMAX.

To conclude, we would back the position that claims that bio-inspiration is often a good starting point and that it may open perspectives that were not explored until then, but that we should not fear to quickly move away from it. Indeed, humanity conquered the skies with machines only loosely connected to birds, and submarine depths with boats that share almost nothing with fishes. Computer vision boomed very recently thanks to frameworks that are indeed inspired by cognitive theories, but the implementations of those theories in industrial systems is far from mimicking the brain. But all those systems, at some point, were inspired by nature -and while it is not always the most fundamental aspect, going back to that viewpoint and rediscovering why it inspired a technology may shed new lights on how to go further and deeper in their improvement.

A.3 Output layer training

As for the final layer, it is trained using a simple least mean square approach. Denoting W the weight matrix and T the matrix of target vectors, it can be shown [START_REF] Bishop | Pattern recognition and machine learning[END_REF] that we have

W = Φ T Φ -1 ΦT (A.4) with Φ =        Φ 0 (x 1) Φ 1 (x 1) . . . Φ M -1 (x 1) Φ 0 (x 2) Φ 1 (x 2) . . . Φ M -1 (x 2) Φ 0 (x N) Φ 1 (X N) . . . Φ M -1 (X N)        (A.5)
where Φ i is the function corresponding to the i-th kernel, and where each vector of T has components equal to -1, except for it i-th component which is +1 if the categories of the vector it corresponds to is i. gaussienne modulée par un cosinus, et peut être formalisé de la manière suivante:

•••• • •••• • •••• • •••• • • •••• • •••• • •••• • •••• • • •••• • •••• • •••• • •••• • • •••• • •••• • •••• • •••• • • • x Image d'entre Couche 1 Couche 2 Couche 3 U λ 1 (x) U λ 1 ,λ 2 (x) S 0 (x) S λ 1 (x) S λ 1 ,λ 2 (x)
G (x, y) = exp - x 2 0 + γ 2 y 2 0 2σ 2 × cos 2π λ x 0 , (B.2)
x 0 = x cos θ + y sin θ and y 0 = -x sin θ + y cos θ, (B.

B.2.2 Implantations matérielles

Afin de répondre aux problématiques de l'embarqué, de nombreuses implantations matérielles de classificateurs, d'extracteurs de caractéristiques et même de réseaux de neurones à • Comment choisir des caractéristiques bio-inspirées de manière appropriée et comment réduire leurs complexités algorithmes ?

• Comment les données manipulées par ces algorithmes peuvent-elles être codées efficacement de façon à réduire l'utilisation des resources matérielles ?

Cette Section était dédiée à une revue de l'état de l'art lié à nos travaux. Dans la prochaine Section, nous allons répondre à la première problématique en décrivant notre contribution sur la sélection de caractéristiques. Dans la Section suivante, nous détaillerons les optimisations réalisées sur HMAX en vue d'une implantation sur matériel.

Enfin, la dernière Section sera consacrée aux discussion et conclusions de ces travaux.

B.3 Sélection de caractéristiques

Dans cette Section, nous allons présenter nos travaux concernant la sélection de caractéristiques en vue d'optimiser un algorithme, pour deux tâches précises: la détection de visages, et la détection de piétons.

B.3.1 Détection de visages

B.3.2 Détection de piétons

B.3.2.3 Expérimentations

Afin de tester nos algorithmes, nous avons évalué sa précision sur une tâche de détection de piétons sur la base INRIA [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. Les résultats sont présentés en Figure B.17 et en

1. 1

 1 Application examples . 1.2 Perceptron applied to PR . 1.3 NeuroDSP architecture. 2.1 A feedforward architecture . 2.2 Perceptron. 2.3 Multi-layer perceptron . 2.4 MLP activation functions. 2.5 RBF neural network. 2.6 Support vectors determination . 2.7 Invariant scattering convolution network. 2.8 HMAX. 2.9 Convolutional neural network. 3.1 Example of Haar-like features used in Viola-Jones. 3.2 Integral image representation. 3.3 Complexity repartition of Viola and Jones' algorithm. 3.4 CFF. 3.5 Complexity repartition of the CFF algorithms 3.6 C1 feature maps for a face . 3.7 S1 convolution kernel sum . 3.8 Feature map obtained with the unique kernel in S1 3.9 ROC curves of the HMIN classifiers. 3.10 Samples from the CMU Face Images dataset 3.11 ROC curve obtained with HMIN R θ=π/2 on CMU dataset. 3.12 Example of frame from the "Olivier" dataset. 3.13 ROC curves obtained with HMIN R θ=π/2 on "Olivier" dataset. 3.14 HOG descriptor computation. 3.15 Binning of the half-circle of unsigned angles 3.16 Complexity repartition of HOG features extraction. 3.17 ConvNet for pedestrian detection. 3.18 ROC curves of the HMIN classifiers on the INRIA pedestrian dataset ..4.1 Caltech101 samples . 4.2 Precision degradation in input image. 4.3 Recognition rates of HMAX w.r.t input image bit width. 4.4 Recognition rates w.r.t S1 filters precision 4.5 HMAX VHDL module . xii List of Figures xiii 4.6 Dataflow in s1. 4.7 coeffs manager module. 4.8 7 × 7 convolution module. 4.9 shift registers . 4.10 c1 module . 4.11 c1unit . 4.12 c1 to s2 module . 4.13 Dataflow in s2c2. The data arriving to the module is handled by s2 input manager, which make it manageable for the s2processors. The latter also gets the pre-learnt filter needed for the pattern-matching operations from s2 coeffs manager in parallel, and perform the computations. Once it is over, the data is sent in parallel to the dout output port, which feed the next processing module. 4.14 Data management in s2 handler. 4.15 Data flow in s2processors. B.1 Exemples d'applications . B.2 NeuroDSP architecture. B.3 Architecture feedforward . B.4 Invariant scattering convolution network. B.5 HMAX. B.6 Réseaux de neurones à convolutions. B.7 Examples de caractéristiques utilisés dans Viola-Jones. B.8 Représentation en image intégrale. B.9 CFF. B.10 Sorties des C1 pour un visage . B.11 Somme des noyaux de convolutions dans S1. B.12 Réponse du filtre unique dans S1 sur un visage. B.13 Courbes ROC obtenues avec différentes versions de HMIN sur LFW Crop. B.14 Courbe ROC obtenue avec HMIN R θ=π/2 sur la base CMU. B.15 HOG . B.16 ConvNet pour la détection de piétons. B.17 Courbes ROC obtenues avec les descripteurs HMIN sur la base INRIA. . . B.18 Effet de la dégradation de précision sur l'image d'entrée. B.19 Taux de reconnaissances avec HMAX en fonction de la précision des pixels en entrée. B.20 Précisions en fonction du nombres de bits dans les filtres de Gabor de S1, avec 2 bits pour l'image d'entrée. B.21 Aperçu du module VHDL HMAX. To Ryan and Théo. xv Chapter 1

 (a) Google's self driving car 1 . (b) Production control. (c) Security. (d) Home automation.

Figure 1 . 1 :

 11 Figure 1.1: Application examples.

Figure 1 . 2 :

 12 Figure1.2: Perceptron applied to pattern recognition. Figure1.2a shows an hardware implementation, and Figure1.2b presents the principle: each cell of the retina captures a binary pixel and returns 0 when white, 1 when black. Those pixels are connected to so called input units, and are used to compute a weighted sum. If that sum is positive, then the net returns 1, otherwise it returns -1. Training a Perceptron consists in adjusting its weights. For a more formal and rigorous presentation, see page 9.

Figure 2 . 1 :

 21 Figure 2.1: A feedforward architecture. In each layer, units get their inputs from neurons in the previous layer and feed their outputs to units in the next layer.

Figure 2 . 2 :

 22 Figure 2.2: Perceptron.

Figure 2 . 4 :

 24 Figure 2.4: MLP activation functions.

Figure 2 . 5 :

 25 Figure 2.5: RBF neural network.

Figure 2 . 6 :

 26 Figure 2.6: Support vectors determination. Green dots belong to a class, and red ones to the others. Dots marked with a × sign represent the selected support vectors. The unmarked dots have no influence over the determination of the decision boundary's parameters. The black dashed line represents the determined decision boundary, and the orange lines possible decision boundaries that would not be optimal.

Figure 2 . 9 :

 29 Figure 2.9: Convolutional neural network [48].

Figure 3 . 1 :

 31 Figure 3.1: Example of Haar-like features used in Viola-Jones for face detection.They can be seen as convolution kernels where the grey parts correspond to +1 coefficients, and the white ones -1. Such features can be computed efficiently using integral images[START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF]. Point coordinates are presented here for latter use in the equations characterizing feature computations.

Figure 3 .

 3 Figure 3.5 shows the repartition of the complexity of that frameworks.

Figure 3 . 6 :

 36 Figure 3.6: C1 feature maps for a face. One can see here that most of the features corresponding to an actual feature of a face, e.g the eyes or the mouth, is given by the filters with orientation θ = π/2.

Figure 3 . 8 :

 38 Figure 3.8: Feature map obtained with the unique kernel in S1 presented in Figure 3.7. One can see that the eyes mouth and even nostrils are particularly salient.

Figure 3 . 10 :

 310 Figure 3.10: Samples from the CMU Face Images dataset.

Figure 3 . 11 :

 311 Figure 3.11: ROC curves obtained with HMIN Rθ=π/2 on CMU dataset. The chosen classifier is an RBF, and was trained with the features extracted from 500 faces from LFW crop[START_REF] Huang | Robust face detection using Gabor filter features[END_REF] dataset and 500 non-faces images cropped from images of the "background" class of the Caltech101 dataset[START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF]. For each image, a pyramid was produced in order to detect faces of various scales, were the dimensions of the images are successively reduced by a factor 1.2. A face was considered correctly detected if at least one ROI encompassing its eyes, nose and mouth was classified as "face", and if that ROI is not 20% bigger than the face according to the ground truth. Each non-face ROI that was classified as "Face" was counted as a false positive.

Figure 3 . 12 :

 312 Figure 3.12: Example of frame from the "Olivier" dataset.

Figure 3 .

 3 Figure 3.13: ROC curves obtained with HMIN Rθ=π/2 on "Olivier" dataset. As in Figure3.11, the chosen classifier is an RBF, and was trained with the features extracted from 500 faces from LFW crop[START_REF] Huang | Robust face detection using Gabor filter features[END_REF] dataset and 500 non-faces images cropped from images of the "background" class of the Caltech101 dataset[START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF]. For each image, a pyramid was produced in order to detect faces of various scales, were the dimensions of the images are successively reduced by a factor 1.2. An image was considered correctly detected if at least one ROI encompassing its eyes, nose and mouth was classified as "face", and if that ROI is not 20% bigger than the face according to the ground truth. Each non-face ROI that was classified as "Face" was counted as a false positive.

Figure 3 . 14 :

 314 Figure 3.14: HOG descriptor computation. Gradients are computed for each location of the R, G and B channels, and for each location only the gradient with the highest norm is kept. The kept gradients are separated into cells, shown in green, and histograms of their orientations are computed for each cell. This produces a histogram map, which is divided in overlapping blocks a shown on the right. Normalization are performed for each block, which produces one feature vector per block. Those feature vectors are finally concatenated so as to produce the feature vector used for training and classification.

Figure 3 . 15 :

 315 Figure 3.15: Binning of the half-circle of unsigned angles with N b = 9. The regions in gray correspond to the same bin.

Figure 3 . 17 :

 317 Figure3.17: ConvNet for pedestrian detection[START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF]. Input image is assumed to be represented in Y'UV space. The Y channel feed the C Y 1 convolution layer, the resulting feature maps of which are sub-sampled in S Y 1. In parallel, the UV channels are subsampled by the S U V 0 layer, and the results feed the C U V 1 convolution layer. The C U V 1 and S Y 1 feature maps are concatenated and feed the C2 convolution layer. The C2 feature maps are then subsampled by S2. Finally, all output features from C2 and C U V 1 are serialized and used as inputs of a fully-connected layer for classification.

Figure 3 . 18 :

 318 Figure 3.18: ROC curves of the HMIN classifiers on the INRIA pedestrian dataset.The drop of performance is more important here than it was for faces, as shown on Figure3.9. However, the gain in complexity is as significant as in Section 3.1.2.

. 5)

 5 thus, by denoting * the convolution operator and I the input image: I * G | θ=0 = I * c V * r H (4.6) where A * r B denotes separated convolutions on rows of 2D data A by 1D kernel B, and A * c B denotes column-wise convolutions of A by B. Using the same notations: G (x, y) | θ=0 = G (y, x) θ=π/2 (4.7) and then I * G θ=π/2 = I * c H * r V (4.8)

Table 4 . 2 :

 42 Accuracies of Orchard's implementations on Caltech101 [99]. The "Original model" column shows the results obtained with the original HMAX code, while "CPU" shows the results obtained by Orchard et al.'s own CPU implementation, and "FPGA" show the results obtained with their FPGA implementation. (a) Car rears. (b) Airplanes. (c) Faces. (d) Leaves. (e) Motorbikes. (f) Background.

Figure 4 . 1 :

 41 Figure 4.1: Samples of images of the used classes from Caltech101 dataset [142].

Figure 4 . 2 :

 42 Figure 4.2: Precision degradation in input image for three types of objects: faces, cars and airplanes.Color maps are modified so that the 0 corresponds to black and the highest possible value corresponds to white, with gray level linearly interpolated in between. We can see that while the images are somewhat difficult to recognize with 1 bit pixels, they are easily recognizable with as few as 2 bits.

Figure 4 . 3 :

 43 Figure 4.3: Recognition rates of HMAX on four categories of Caltech101 dataset w.r.t the input image pixel bit width.For each bit width, ten independent tests were carried out, in which half of the data was learnt and the other half was kept for testing. We see that the pixel precision has little to no influence on the accuracy.

Figure 4 . 4 :

 44 Figure 4.4: Recognition rates on four categories of Caltech101 dataset w.r.t the coefficients of the Gabor filter coding scheme in S1 layer. Those tests were run with input pixels having 2 bits widths. The protocol is the same as developped for testing the input pixels, as done in Figure 4.3.

21)

 21 In their paper, Yu et al. proposed to keep the 200 most relevant patches, which when compared to the 1000 patches recommended in[START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF] would allow to divide the complexity at this stage by 5. In[START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF], it is suggested to use patches of4 different sizes: 4 × 4 × 4, 8 × 8 × 4, 12 × 12 × 4 and 16 × 16 × 4.

 returns a value close to 1 when the patterns are closed in terms of Euclidean distance and 0 when they are far from each others. Computing an Euclidean distance implies the computation of square and square-roots function, which may use lots of hardware resources. The evaluation of the exponential function also raises similar issues, along with those already exposed in Section 4.2. Since we already removed the Gaussian function to simplify the training of S2, we propose to compare the performances obtained when replacing the Euclidean distance with the Manhattan distance:

Figure 4 . 5 :

 45 Figure 4.5: HMAX VHDL module. The main components are shown in colors, and the black lines represent the data flow.We see here that the data from the degraded 164 × 164 input image is first processed by S1 filters at all scales in parallel -only 8 out of the 16 filters in the bank are shown for readability. Orientations are processed serially and the outputs are multiplexed. The data is then processed by the c1 module, which produces half the feature maps produced in S1, before being serialized by c1 to s2. The serialized data is sent to s2c2, which perform pattern matching between input data and pre-learnt patches with its s2 components, several in parallel, with a multiplexing. The maximum responses of each S2 unit are then computed by c2. The data is then serialized by c2 to out.

Figure 4 . 6 :

 46 Figure 4.6: Dataflow in s1. This Figure shows the major components of the s1 module.First of all the pixels arrive in the pix to stripe, which returns columns of 37 pixels. Those columns are then stored in shift registers, which store a 37 × 37 patchonly 7 lines are represented here for readability. Then for each of the 16 scales in S1, there exists an instance of the image cropper module that keeps only the data needed by its following conv module. The convolution kernels' coefficients are gotten from the coeffs manager module, which get them from the FPGA's ROM and retrieve those corresponding to the needed orientation, for all scales. Here only 4 of the 16 convolution engines are shown. The computed data is written in dout, in parallel. Note that not all components of s1 are repesented here: pixmat, pixel manager, coeffs manager and conv crop are not displayed to enhance readability and focus and the dataflow.

 are stored in BRAM. The module fetches the needed ones depending on the value written in k idx, and route them to the cout module.

Figure 4 Figure 4 . 7 :

 447 Figure 4.7: coeffs manager module. In order to simplify the process, all coefficients needed at a particular time are read all at once from several BRAM, of which only two are represented here for readability. The coefficients are then concatenated in a single vector directly connected to the cout output port.

Figure 4 . 8 : 7 ×

 487 Figure 4.8: 7 × 7 convolution module. That module has one convrow module per row in the convolution kernel, each taking care of a line.In each of those modules, the "multiplications" are performed in parallel in rowmult between the data coming from din and coeffs input buses -as mentioned in Section 4.2, those multiplications consist in fact in simple changes of signs, depending on the 1 bit coefficients provided by the external module coeffs manager. The results are the accumulated thanks to convrow's cumsum component. Finally, the output of all conrow modules are accumulated thanks to another cumsum component. The result is afterward degraded thanks to the s1degrader module, the output of which is written in dout.

Figure 4 . 9 :

 49 Figure 4.9: shift registers module with 4 registers. At each clock cycle, data is read from din and en din and written into the next register, the last of which writes its data into dout and en dout output ports.

Figure 4 . 10 :

 410 Figure 4.10: c1 module. For more readability, only 4 of the 8 filters are represented here. Maximums are first computed accross scales with the max 2by2 components. The data is then organized into stripes in the same fashion as done in the pix to stripe component used in s1 module. That stripe is organized by lines, and then scales, and needs to be organized by scales, and then lines to be processed by the latter modulethis reorganization is taken care of by reorg stripes. Orientations being multiplexed, we needed to separate them so each may be processed individually, which is done by the data demux module. Each orientation is then processed by one of the c1 orientation module. Finally, data comming out of c1 orientation is multiplexed by data mux before being written in output ports.

Figure 4 .

 4 Figure 4.11: c1unit.Figure 4.11a shows the principle components of the module architecture, and Figure 4.11b shows the control signals enabling and disabling the data.Figure4.11a shows the two c1unit components and the control module c1unit ctrlnamed ctrl here for readability. Data coming out of those components are multiplexed in the same output port dout. The four bits data signal is shown with the thick line, and the control signals ares shown in light line. We see that dedicated control signals are sent to each maxfilt components, but also that both get the same data. The control signals presented in Figure4.11b show how the control allow to shift the data between the two units, in order to produce the overlap between two C1 units. We assume here that we emulate C1 units with 4 × 4 receptive fields and 2 × 2 overlap.

Figure 4 .

 4 Figure 4.11: c1unit.Figure 4.11a shows the principle components of the module architecture, and Figure 4.11b shows the control signals enabling and disabling the data.Figure4.11a shows the two c1unit components and the control module c1unit ctrlnamed ctrl here for readability. Data coming out of those components are multiplexed in the same output port dout. The four bits data signal is shown with the thick line, and the control signals ares shown in light line. We see that dedicated control signals are sent to each maxfilt components, but also that both get the same data. The control signals presented in Figure4.11b show how the control allow to shift the data between the two units, in order to produce the overlap between two C1 units. We assume here that we emulate C1 units with 4 × 4 receptive fields and 2 × 2 overlap.

Figure 4

 4 Figure 4.12: c1 to s2 module. The blue and red lines show the data flow in the two configurations of the double-buffering. The data goes through c1 handler, where the address to which it should be written is generated and written in waddr. The rea and reb signals control the enable mode of the BRAMs, while the wea and web enable and disable the write modes of the BRAMs. When the upper BRAM is in write mode, wea and reb are set and web and rea are unset. When the upper buffer is full, those signals are toggled so that we read the full buffer and write in the other one. Those signals are controled thanks to the ctrl component, which also generates the address from which the output data should be read from the BRAMs. Data read from both BRAMs are then multiplexed into the dout output port. Pins on the left of both BRAMs correspond to the same clock domain, and those on the right belong to another one so that it is synchronized with following modules.

Figure 4 . 13 :

 413 Figure 4.13: Dataflow in s2c2.The data arriving to the module is handled by s2 input manager, which make it manageable for the s2processors. The latter also gets the pre-learnt filter needed for the pattern-matching operations from s2 coeffs manager in parallel, and perform the computations. Once it is over, the data is sent in parallel to the dout output port, which feed the next processing module.

 Organization of stream arriving in s2 input handler. Each color indicates the orientation of the C1 feature map the corresponding sample comes from. We assume here that those feature maps are 2 × 2. cX indicates that the samples are located in the X-th column in their feature maps, and rX indicates that the samples are located in the X-th row. s2 handler module. Orientations are first demultiplexed, and written in parallel into the relevant s2 pix to stripe, shown here in gray. There is one s2 pix to stripe per scale in C1 feature maps -i.e 8. The output of those compinents are then routed to the dout output port, using a multiplexer.

Figure 4 . 14 :

 414 Figure 4.14: Data management in s2 handler.Figure 4.14a shows how the arriving stream of data is organized.Figure 4.14b shows how this stream is processed.

Figure 4 .

 4 Figure 4.14: Data management in s2 handler.Figure 4.14a shows how the arriving stream of data is organized.Figure 4.14b shows how this stream is processed.

Figure 4 .

 4 Figure 4.14: Data management in s2 handler.Figure 4.14a shows how the arriving stream of data is organized.Figure 4.14b shows how this stream is processed.

Figure 4 .

 4 Figure 4.15 sums up the data flow in s2processors. We shall now describe the corner cropper and s2bank modules.

4. 3 . 3 .cropper 16 × 16 × 4 12 × 12 × 4 8 × 8 × 4 4 × 4 Figure 4 . 15 :

 3316164124844415 Figure 4.15: Data flow in s2processors.Names in italic represent the components instantiated in that module, and plain names show input and output ports. Only din, dout and en dout are represented for readability. Each square in din represent one of the 1024 pixels read from din, and each set of four squares represents the pixels from C1 maps of the same scale and locations, and the four orientations. The corner cropper module makes sure only the relevant data is routed to the following s2bank components. Those components perform their computations in parallel. When the data produced by one or several of those instances is ready, it is written in the corresponding pins of the dout output ports and the relevant pins of the en dout output port are set.

 3.2.3 are also used to synchronize data.cum diff As suggested by its name, this module computed the absolute difference between two unsigned integers, and accumulates the result with those of the previous operations. To that end, it needs the usual clk and rst input ports for respectively synchronization and resetting purposes. It also needs two operands, which are provided by the din1 and din2 input ports. An input port called new flag allows to reset the accumulation to 0 and start a fresh cumulative difference operation, and the en din flag allows to enable computation. That module has a single output port called dout, which provides the result of the accumulation as it is computed. It is not required to have an output pin stating when the output data is valid, for the reason that the data is always valid. Knowing when the data actually correspond to a full Manhattan distance is actually performed in s2unit.

Let's begin

 with the S1 layer. The convolution is computed at 128 × 128 places of the input image. As detailed in Section 4.3.2.1, the sums of implied by the convolution are performed row-wise in parallel, and the results per row as then sum sequentially. Thus, for a k × k convolution kernel, k sums are of k elements are performed in parallel, and each one of them takes 1 cycle per element -hence, k cycles. That leads to k elements, which are them sum using the same strategy, and thus requiring another k cycles, thus totalizing 2k cycles. Since we use a 4-to-1 multiplexing strategy to compute the output of the orientations one after the other, all scales are processed in parallel and the biggest convolution kernel is 37 × 37, the convolution takes 128 × 128 × 8 × 37 = 4.85 × 10 6 clock cycles to process a single 128 × 128 image.

Figure B. 1 :

 1 Figure B.1: Exemples d'applications.

Figure B. 4 :Figure B. 5 :

 45 Figure B.4: Invariant scattering convolution network[START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF]. Chaque couche applique une décomposition en ondelette U λ à l'entrée, et envoie le résultat auxquels a été appliqué un filtre passe-bas et un sous-échantillonage à la couche suivante. Les scattering coefficients S λ (x) ainsi produits forment le vecteur caractéristique à classifier.

Figure B. 6 :

 6 Figure B.6: Réseaux de neurones à convolutions [48].

(x 1 , y 1)(x 2 , y 2)Figure B. 7 :Figure B. 8 :Figure B. 9 :

 1122789 Figure B.7: Examples de caractéristiques utilisés dans Viola-Jones [30, 136].

Figure B. 11 .Figure B. 10 :Figure B. 11 :

 111011 Figure B.11. La sortie obtenue pour un visage après filtrage par ce noyau de convolution est donné en Figure B.12. Pour C1, la taille de la fenêtre du filtrage est ∆ k = 8. Cet extracteur de caractéristiques sera appelé HMIN θ=π/2 dans la suite du document. Nous proposons ensuite de réduire la taille de ce noyau de convolution, qui comporte à l'heure actuelle 37 × 37 éléments, en le réduisant à 9 × 9 en utilisant une interpolation bilinéaire, ce qui lui permet de traiter des images 4 fois plus petites. Cette version du descripteur sera appelée HMIN R θ=π/2 .

Figure B. 12 :Figure B. 13 :

 1213 Figure B.12: Réponse du filtre unique dans S1 sur un visage.

Figure B. 14 :

 14 Figure B.14: Courbe ROC obtenue avec HMIN R θ=π/2 sur la base CMU.

4 :

 4 Complexité et précision de différentes méthodes de détections de visages. Les taux de faux positifs du CFF et de Viola-Jones ont été lus à partir des courbes ROC de leurs articles respectifs [50, 136], et sont donc approximatifs. Tous les taux de faux positifs correspondent à des taux de détections de 90%. La colonne Classification donne la complexité pour la classification d'une image dont la taille est donnée par la colonne Taille d'entrée. La colonne Scanning donne la complexité de l'algorithme lors d'un scan d'une image VGA complète de dimensions 640 × 480. Les complexités et empreintes mémoires ont été évaluées pour l'extraction de caractéristiques seulement, sans prendre en compte la classification. Il faut également noter qu'aucune pyramide d'images n'est utilisée ici, pour simplifier les calculs -dans le cas où on en utiliserait une, Viola-Jones demanderait bien moins de ressurces que le CFF et HMIN grâce à la représentation en image intégrale.

Figure B. 15 :

 15 Figure B.15: HOG [36].

C Y 1 C U V 1 YSFigure B. 16 :Figure B. 17 :

 111617 Figure B.16: ConvNet pour la détection de piétons [145]. Les couches C XX désignent des couches de convolutions, et les couches S XX désignent des couches de souséchantillonage.

B. 4 Figure B. 18 :Figure B. 19 :

 41819 Figure B.18: Effet de la dégradation de précision sur l'image d'entrée.

B. 4 . 3 ConclusionB. 5 Conclusion

 435 Dans cette Section, nous avons présenté une série d'optimisations pour HMAX visant à faciliter son implantation matérielle. Notre contribution consiste à diminuer la précision des pixels de l'image d'entrée, diminuer la précision des coefficients des filtres de Gabor et utiliser une distance de Manhattan dans la couche S2 lors des opérations de comparaisons de motifs. Nous utilisons également des méthodes proposées dans la littérature consistant à utiliser l'algorithme de Lloyd pour compresser la sortie de S1, et pour diminuer la complexité de S2. Nous avons montré que ces simplifications n'ont que peu d'impact sur la précision du modèle. Nous avons ensuite présenté les résultats de l'implantation matérielle, que nous avons voulu aussi naïve que possible en dehors des optimisations proposées ici, puis nous avons comparé le résultat avec la littérature. Il apparaît que notre implantation traite les images significativement moins rapidement que ce qui est proposé dans la littérature ; cependant notre implantation utilise moins de ressources matérielles et nos optimisations sont parfaitement compatibles avec l'implantation de référence. Les travaux futurs consisteront donc à proposer une implantation tirant parti des avantages des deux méthodes, afin de proposer une implantation la plus réduite et avec la plus grande bande passante possible. Dans cette thèse, nous avons proposé une solution à un problème d'optimisation d'un algorithme bio-inspiré pour la classification de motifs visuels, avec pour but de l'implanter sur une architecture matérielle dédiée. Notre but était de proposer une architecture facilement embarquable et suffisamment générique pour répondre à différents problèmes. Notre choix s'est porté sur HMAX, en raison de l'unicité de son architecture et de ses performances acceptable même avec un nombre réduit d'examples à apprendre, contrairement à ConvNet. Notre première contribution consistait à optimiser HMIN, qui est une version allégée de HMAX, pour deux tâches précises, la détection de visages et la détection de piétons, en se basant sur le fait que seules certaines caractéristiques sont utiles. Les performances que nous avons obtenus, pour chacune des deux tâches, sont significativements inférieures à celles proposées dans la littérature -cependant, nous estimons que notre algorithme à l'avantage d'être plus générique, et nous pensons qu'une implémentation matérielle nécessiterait extrêmement peu de ressources. Notre seconde contribution est de proposer une série d'optimisations pour l'algorithme HMAX complet, principalement basées sur un codage des données efficace. Nous avons montré qu'HMAX ne perdait pas de précisions de manière significative en réduisant la précision des pixels des images d'entrées à 2 bits, et celle des coefficients des filtres de Gabor à 1 seul bit. Bien que cette implantation, naïve en dehors des optimisations nommées ci-dessus, ne permettent pas de traiter une quantité d'images équivalentes à ce qu'il se fait dans la littérature, nos optimisations sont parfaitement utilisables en conjonctions avec celles de l'algorithme de référence, ce qui produirait une implantation particulièrement compact et rapide de cet algorithme -ce qui sera réalisé dans des recherches futures.

 NeuroDSP architecture[START_REF] Paindavoine | NeuroDSP Accelerator for Face Detection Application[END_REF]. A NeuroDSP device is composed of 32 clusters, called P-Neuro, each constituted of 32 artificial neurons called PE, thus representing a total of 1024 neurons. The PEs may be multiplexed, so that they can perform several instruction sequentially and thus emulate bigger neural networks. When timing is critical, one may instead cascade several NeuroDSP processors and use them as if it was a single device.

	Data In (audio, image. . .)	Cluster	Cluster	Cluster	Decision
	From previous	32 PE	32 PE	32 PE	To next
	NeuroDSP				NeuroDSP
	Figure 1.3:				

3 http://goo.gl/Ax6CoF

 There are 16 different scales and four different orientations, thus totaling 64 filters. During the S1 stage, each filter is applied independently on the input image and the filtered images are fed to the next layer.The C1 stage gives a first level of location invariance of the features extracted in S1. It does so with maximum pooling operators: each C1 unit pools over several neighboring S1 units with a 50% overlap and feed the S2 layer with the maximum value. The number of S1 units a C1 unit pools over depends on the scale of the considered S1 units.Furthermore, each C1 unit pools across two consecutive scales, with no overlap. This leads to a number of images divided by two, thus only 32 images are fed to the following layer. The parameters of the S1 and C1 layers are presented in Table2.8.

The filter bank has several filters, each having a specific wavelength, effective width, size and orientation. The wavelength, effective width and size define the filter's scale.

Table 2 .

 2

1: Paramaters for HMAX S1 and C1 layers

Table 2 . 2 :

 22 Comparison of descriptors.

	Framework	Accuracy	Training	Complexity
	ISCN	High	None	High
	HMAX	High	Yes, requires few data points	High
	HOG	Reasonnable	None	Low
	SIFT	Reasonnable	None	Low
	SURF	Reasonnable	None	very low

 Figure 3.3: Complexity repartition of Viola and Jones' algorithm when processing a 640 × 480 with a 24 × 24 sliding window. From Equations 3.7 to 3.13, we see that the integral image computation requires 2W H additions, the feature extraction needs N op N f N w additions, and C VJ N needs W H multiplications and 2W H. Thus, we need a total of 4W H + N op N f N w .

[START_REF] Fausett | Fundamentals of Neural Networks: Architectures, Algorithms And Applications: United States Edition[END_REF]

 Complexity repartition of the CFF algorithms, separated in three types of computations: MAC, hyperbolic tangents ("Tanh") and sums. We see here that the large majority of operations are MAC, toward which most effort should then be put for fine optimizations or hardware implementation.

	Tanh (0.88%)	
	MAC (97.8%)	
	Sums (1.32%)	
	Figure 3.5:	
		.34)
	which gives	
	C CFF T2 = 1.75W H + 7 (W + H) + 16.	(3.35)

Using those results in Equation

3

.17, we finally get C CFF = 168.75W H -1038 (W + H) + 5664. (3.36) Now that we have this general formula, let's compute the complexity involved in the classification of a typical 36 × 32 patch. We get 129.5 kOP. Let's now assume that we must find and locate faces in a VGA 640 × 480 image. From

 Memory print Using the same method as for Viola-Jones' in Section 3.1.1.1 and the CFF in Section 3.1.1.2, let's evaluate the memory print of HMIN. Since the C1 layer may be processed in-place, the memory print of HMIN is the same as its S1 layer,

	From Equations 3.37 to 3.39, we get	
	C HMIN = 36456W H.	(3.40)
	If we aim to extract feature from a typical 128 × 128 image for classification as suggested
	in [31], it needs 597 MOP operation. When scanning a 640 × 480 image as done with the
	CFF in Section 3.1.1.2, we get a total of 11.2 GOP. From Equations 3.38 and 3.39, we
	also see that the convolutions operations take 99.89 % of the computation -thus, they
	represent clearly the basis of our optimizations.	
		.39)

which produces 16 640×480 feature maps, coded on 32-bit single precision floating point numbers. Hence, its memory print is 19.66 MB.

 [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] Accuracy (%) 95.78 ± 0.97 90.81 ± 1.10 90.05 ± 0.98

	Descriptor	HMIN	HMIN θ=π/2 HMIN R θ=π/2

Table 3 . 1 :

 31 Accuracies of the different version of HMIN on the LFW crop dataset.

 dataset at random to build the training set, as in Section 3.1.3.1. Once again, we used it to train the

		1				
		0.8				
	Recognition rate	0.4 0.6			-HMIN -HMIN| θ=π/2 -HMIN| R θ=π/2
		0.2				
		0	0.2	0.4	0.6	0.8	1
				False positive rate	

Figure 3.9: ROC curves of the HMIN classifiers on LFW crop dataset. They show the recognition rate w.r.t the false positive rate: ideally, that curve would represent the function ∀x ∈ (0, 1] f : x → 0 when x = 0, 1 otherwise. One can see a significant drop of performance when using HMIN θ=π/2 compared to HMIN -however using HMIN R θ=π/2

Table 3 . 2 :

 32 Complexity and accuracy of face detection frameworks. The false positive of the CFF and VJ frameworkw were drawn from the ROC curves of their respective papers

 Finally the S2 layer produces 2040 102 × 76 feature maps, which using 32 bits floating point precision would require 63.26 MB.

	Memory print Let's now evaluate the memory print of that framework when pro-
	cessing a 640 × 480 input image. The C Y 1 layer produces 32 634 × 474 feature maps,
	in which we assume the features are coded using 32-bits floating point precision, which
	needs 38.47 MB. In order to simplify our study, we then assume that the subsampling

[START_REF] Park | System-On-Chip for Biologically Inspired Vision Applications[END_REF]

Let's evaluate this expression as a function of the width W and height h of the input image. In order to make it more tractable, we approximate it by neglecting the floor operators . Reusing Equation 3.81 to 3.

[START_REF] Park | System-On-Chip for Biologically Inspired Vision Applications[END_REF]

we have C ConvNet (W, H) ≈ 38.8 × 10 3 W H -1.12 × 10 6 (W + H) + 33.2 × 10 6 (3.92) It should be noted that we again neglected the classification stage. Considering input images are 78 × 126, we have C ConvNet ≈ 484.84 MOP. Applying Equation 3.92 to the case where we process a 640 × 480, we have 11 GOP. From the previous analysis, we see that lots of MAC are computed at almost all stage, including the average downsampling ones. This is largely due to the C2 layer, with its high amount of convolution filters. It is then clear that optimization efforts should be directed towards the computation of MACs. and normalization operations are performed in-place, and hence do not bring more need in memory. The S Y 1 layer produces 2 213 × 160 feature maps, hence needing 272.64 kB.

 1.2.

	Framework False positive rate (%)	Complexity (OP) Scanning Classification	Memory print Input size
	HOG	0.02 [36]	12.96 M	344.7 k	4.37MB	64 × 128
	ConvNet	See caption	484.84 M	11 G	63.26MB	78 × 126
	HMIN R θ=0	30%	13.05 M	41.45 k	1.2 MB	32 × 16

Table 4 . 1 :

 41 Hardware resources utilized by Orchard's implementation[99].amount that could fit on their device. At each location, pattern-matching are multiplexed by size, i.e first all 4 × 4 × 4 in parallel, then 8 × 8 × 4, then 12 × 12 × 4 and finally 16 × 16 × 4. Responses are computed for two different orientations in parallel, this results in a total of 320 × 2 = 640 MAC operations to be performed in parallel at each clock cycle. Thus, this requires 640 multipliers, and 640 coefficients to be read at each clock cycle. As for the precision, each feature is coded on 16 bits to fit.

	Resource	Used Available Utilization(%)
	DSP	717	768	93
	BRAM	373	416	89
	Flip-flops	66196	301440	21
	Look-up tables 60872	150720	40

4.1.1.4 C2

Due to the simplicity of C2 in the original model, there is not much room for optimizations or implementation tricks here. Orchard et al.'s implementation simply gets the 320 results from S2 in parallel and use them to perform the maximum operations with the previous values, again in parallel.

Table 4 . 3 :

 43 Code books and partitions by scales for features computed in C1. Values were computed with the simplification proposed in Sections 4.2.1 and 4.2.2 for S1, using Matlab's lloyds function.

	i	1	2	3	4
	C 1 14	27	37	50
	Q 1 21	32	43	-
	C 2 42	82	118	154
	Q 2 62	100	136	-
	C 3 37	65	94	141
	Q 3 51	79	117	-
	C 4 81	148	209	284
	Q 4 114 178	246	-
	C 5 122 208	278	380
	Q 5 165 243	329	-
	C 6 175 309	427	559
	Q 6 242 368	494	-
	C 7 296 521	707	905
	Q 7 408 614	806	-
	C 8 499 868 1182 1492
	Q 8 633 1025 1337	-

2.1, with the exception that this time we add the simplification proposed here. Results are compiled with further optimizations in Table 4.4

Table 4 . 4 :

 44 Accuracies of HMAX with several optimizations on five classes of the Caltech101 dataset[START_REF] Fei-Fei | Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[END_REF]. That Table compiles the results of the experiment conducted in Sections 4.2.3, 4.2.4 and 4.2.5. The column on the left shows the result gotten from Section 4.2.2. Starting from the second column, each column show the accuracies obtained on the 5 classes in binary task classification, as described before, taking into account the corresponding simplification as well as those referred by the columns left to it.

Table 4 . 5 :

 45 Offsets used to computed addresses in c1 to s2 modules.

	scale s	1	2	3	4	5	6	7	8
	C1 patch side 31	24	20	17	15	13	11	10
	offset o s	0 3844 6148 7748 8904 9804 10480 10964

Table 4 .

 4 [START_REF] Paindavoine | NeuroDSP Accelerator for Face Detection Application[END_REF]. Thus, we instantiated a pixmat component adapted to the maximum size of C1 feature maps, i.e 31 × 31. The problem is that pixmat's en dout signal is only set when the whole matrix is ready, which make it impractical for C1 feature maps smaller than 31 × 31.

	N	0	4	8	12	16

Table 4 . 6 :

 46 Mapping between N and dout scale.

Table 4 . 7 :

 47 's final stage is performed in the c2 module. It is synchronized, and thus has a clk input port expecting to get a clock signal, as well as an rst input port allowing to reset the component. The data used to performe the computation is obtained thanks to the din input port, and it arrives in parallel. The id in input port allows to indicate which of the data from din are valid, and a new in input port allows to warn about the arrival of new data. After performing of the maximum operations, the results for all pre-learnt vectors in S2 are written in parallel into the dout output port, and the last output port, which is called new out, indicates that new data is available through dout. Resource utilization of HMAX implementation on XC7A200TFBG484-1 with the proposed simplifications. The proportion of used flips-flops is high enough to cause problems during implementation. However, the biggest issue comes from the fact that we use way too many blocks RAM for a single such target.

	4.3.4 c2
	As done in the c1 to s2 presented in Section 4.3.2.5, we use a double-buffering design
	pattern to manage output data.

HMAX

 16 × 16 × 4N 16 + 12 × 12 × 4 (N 12 -N 16) One of the most interesting contributions about HMAX hardware implementation is the work of Orchard et al., described in Section 4.1.1 -as mentioned in Section 2.2.2.1,there exists several implementations of either parts of the model or of the whole model on boards containing many FGPAs, but we shall focus here only on that work, as it is the only one to our knowledge aiming to implement the whole model on a single FPGA. In that work, they implemented their algorithm on a Virtex 6 XC6VLX240T FPGA, while we targeted an Artix-7 XC7A200TFBG484-1 device. Table4.8 sums up the resources of those two devices; we see that the Virtex-6 FPGA has slightly more resources than the Artix-7, however the two devices have roughly the same resources.

	+ 8 × 8 × 4 (N 8 -N 12)			
	+ 4 × 4 × 4 (N 4 -N 8)]			(4.28)
	=2240N 16 + 1600N 12 + 960N 8 + 320N 4 .	(4.29)
	Let's now evaluate the N i . Considering that some the C1 feature maps are smaller than
	some of the pre-learnt patches and that in such case, no computations are performed,
	we may write							
	N i =	8 k=1	max	128 ∆ k	-i + 1, 0	2	.	(4.30)
	with ∆ k defined in Table 2.1. Hence we have				
			N 16 = 435				
			N 12 = 821				
			N 8 = 1437			
			N 4 = 2309,			(4.31)
	which gives							
	T S2 = 2240 × 435 + 1600 × 821 + 960 × 1437 + 320 × 2309,	(4.32)
	and thus T S2 = 110.16 × 10 6 clock cycles.					
	Finally, C2 processes the data as soon as it arrives in a pipelined manner, as done in
	C1. Hence, it doesn't bring any bottleneck.				
	We see from the above analysis that the stage that takes most time is S2, with 4.41 × 10 6
	clock cycles per image. Assuming we have a system clock cycle of 100 MHz, we get
	22.69 FPS.							
	4.5 Discussion							

Table 4 . 8 :

 48 Hardware resources comparison between the Virtex-6 FPGA used in[99], and the Artix-7 200T we chose.

		XC6VLX240T Artix 7 200T
	DSP	768	740
	BRAM	416	365
	Flip-flops	301440	269200
	Look-up tables	150720	136400

 7. if d opp > µR, where µ is a strictly positive constant, accept the merge and go back to 3 using C\ {c} instead of C; if d opp ≤ µR, reject the merge and go back to 3 selecting another cluster, 8. repeat steps 3 to 7 until all clusters from C were considered, which leads to a new set of clusters C 2 , 9. repeat steps 2 to 8 using C 2 instead of C 1 and c 2 1 ∈ C 2 instead of c 1 1 , and continue using C 3 , C 4 and so on until no further merge is possible.

 de sélection de caractéristiques pour la classifications d'objets visuels. Nous présenterons ensuite une implantation optimisée d'un algorithme de classification d'images sur une plateforme matérielle reconfigurable. Finalement, la dernière Section présentera la conclusion de nos travaux. Architecture feedforward. de reconnaissances d'images. Nous nous intéresserons ici uniquement aux architectures dites feedforward, dans lesquelles les neurones sont organisées par couches et chaque unité transmet l'information à des neurones de la couche suivante -ainsi, l'information se propage dans un seul sens. Ce genre d'architecture est représenté en Figure B.3. Les connexions entre les unités sont appelés synapses, et à chacune d'entre elles est affecté un poid synaptique. Ainsi, la valeur d'entrée z d'un neurone de N entrée ayant des poids synaptiques w 1 , w 2 , . . . , w N est donnée par z = w 0 +

	B.2 État de l'art Cette Section propose une brève revue de la littérature concernant les travaux présentés ici. Nous commencerons par les fondements théoriques de l'apprentissage automatique et de l'extraction de caractéristiques d'un signal. Nous verrons ensuite les implémentations matérielles existances pour ces méthodes. Finalement, nous proposerons une discussion au cours de laquelle nous établirons les problématiques auxquelles nous répondront dans ce documents. Figure B.3: N
			w i x i ,		(B.1)
			i=1		
	Entrée (son, image. . .)	Cluster	Cluster	Cluster	Décision
	Depuis NeuroDSP	32 PE	32 PE	32 PE	Vers NeuroDSP
	précédant				Suivant
		Figure B.2: Architecture NeuroDSP [5].	
	d'encombrement. Il est constitué de 32 blocs appelé P-Neuro, qui consistent chacun en
	32 processeurs élémentaires (PE), pour un total de 1024 PE. Chacun de ces PE peut KNN [6], pour K-Nearest Neighbors, et présente l'avantange d'être extrêmement simple Une autre méthode de classification que nous utilisons dans ces travaux s'appelle le
	être vu comme un neurone d'un réseau de neurones artificiel, tel que le Perceptron. Au à implanter. Cependant, lorsque le nombre d'exemples de la base d'apprentissage devient RBF, qui fait partie des méthode dites à noyaux. Elles consistent à évaluer un en-
	sein d'un P-Neuro, tous les PE exécutent la même opération sur des données différentes, important ou que la taille des vecteurs devient trop grande, cette méthode devient trop semble de fonction à base radiale au point représenté par le vecteur à classifier, et le
	constituant ainsi une architecture de type SIMD (Single Instruction Multiple Data), par-complexe et trop consommatrice en mémoire pour être efficace, en particulier dans un valeurs produites par ces fonctions forment un nouveau vecteur qui sera classifié par
	faitement adaptée aux calculs parallèle tels que nécessités dans les réseaux de neurones contexte embarqué. un classificateur linéaire -e.g, un Perceptron. En revanche, dans ce cas la technique
	artificiels. Cette architecture est présenté en Figure B.2. Les travaux présentés dans ce Il existe beaucoup d'autres méthode de classification de motifs, parmi lesquelles fig-d'apprentissage utilisée est simplement une recherche de moindres carrés.
	documents ont été réalisés dans le cadre de ce projet. urent en particulier les réseaux de neurones (cf. le Perceptron en Section B.1), ou des
	Dans ce résumé, nous ferons tout d'abord un état de l'art de la littérature concer-approches plus statistiques telles que les Machines à Vecteurs de Supports, ou SVM 2 . B.2.1.2 Méthodes d'extraction de caractéristiques

nant ce domaine -nous y verrons les principales méthodes d'apprentissage automatique, leurs implantations sur matériel, et nous poserons les problématiques auxquelles nous répondront dans la suite du document. Une Section sera ensuite consacrée à notre méthode B.2.1 Fondements théoriques B.2.1.1 Méthodes de classification Il existe de nombreuses approches permettant à une machine d'apprendre d'elle-même à classifier des motifs. Nous allons ici revoir les principales. Une approche extrêmement simple consiste à considérer l'intégralité des vecteurs dont nous disposons a priori, que l'on appelle base d'apprentissage. Lors de la classification d'un vecteur inconnu, on évalue une distance (par exemple, Euclidienne) avec tous les vecteurs de la base d'apprentissage, et on ne considère que les K plus proches. Chacun de ces vecteurs vote alors pour sa propre catégorie, et la catégorie ayant obtenue le plus de vote est retenue. On considère alors que le vecteur inconnue appartient à cette catégorie. Cette approche s'appelle Les réseaux de neurones sont récemment devenus extrêmement populaires, depuis leurs utilisations par les entreprises Facebook et Google notamment pour leurs applications avec x i les valeurs propagées par les unités de la couche précédente et w 0 un biais, nécessaire pour des raisons mathématiques. Une fonction non-linéaire, appelée fonction d'activation, est ensuite appliquée à z, et le résultat est propagé aux neurones de la couche suivante. Apprendre un réseau de neurones de ce type à éxecuter une tâche consiste à trouver les bons poids synaptiques, au moyen d'un algorithme d'apprentissage.

Dans le cas des réseaux de neurones feedforward à plusieurs couches, l'algorithme le plus utilisé en raison de son efficacité et de sa faible complexité algorithmique est la descente de gradient stochastique -en effet, celui-ci peut être facilement exécuté au moyen d'une technique appelée rétro-propagation de l'erreur, qui permet d'evaluer rapidement la dérivée de la fonction de coût à optimiser

[START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF][START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]

. Afin de faciliter la tâche du classificateur, il est possible de faire appel à un algorithme d'extraction de caractéristiques, dont l'objet est de transformer le signal à classifier,

 Finalement, la dernière couche C2 ne conserve, pour chacun de ces motifs pré-appris, que la réponse maximale, formant ainsi le vecteur caractéristique. Cet algorithme est présenté en Figure B.5.D'autres méthodes d'extractions de caractéristiques ou de classifications (ou les deux), tels que SIFT[START_REF] David | Distinctive Image Features from Scale-Invariant Keypoints[END_REF], SURF[START_REF] Bay | Speeded-Up Robust Features (SURF)[END_REF] ou Viola-Jones[START_REF] Viola | Robust real-time face detection[END_REF] ont également connu une certaine popularité.Enfin, il n'est pas possible de ne pas mentionner les réseaux de neurones à convolu-

		Couche C1		Couche S1	
	Échelle	Taille du filtre maximum (N k × N k)	Recouvrement ∆ k	Taille de filtre S1 k	Gabor Gabor σ λ
	Band 1	× 8	4	7 × 7 9 × 9	2.8 3.6	3.5 4.6
	Band 2	× 10	5	11 × 11 13 × 13	4.5 5.4	5.6 6.8
	Band 3	× 12	6	15 × 15 17 × 17	6.3 7.3	7.9 9.1
	Band 4	× 14	7	19 × 19 21 × 21	8.2 9.2	10.3 11.5
	Band 5	× 16	8	23 × 23 25 × 25	10.2 11.3	12.7 14.1
	Band 6	× 18	9	27 × 27 29 × 29	12.3 13.4	15.4 16.8
	Band 7	× 20	10	31 × 31 33 × 33	14.6 15.8	18.2 19.7
	Band 8	× 22	11	35 × 35 37 × 37	17.0 18.2	21.2 22.8

3) où γ est le ratio d'aspect, λ la longueur d'onde du cosinus, θ l'orientation du filtre et σ l'écart-type de la gaussienne. S1 comporte des filtres de 16 échelles et 4 orientations différentes, totalisant ainsi 64 filtres. Les paramètres des filtres sont donnés en Table B.1. La couche C1 fourni un premier niveau d'invariance aux translations et à l'échelle grâce à un ensemble de filtres maximum, dont la taille de la fenêtre N k et le recouvrement ∆ k dépendent de l'échelle considérée, et sont donnés en Table B.1. La troisième couche, S2, compare les sorties de la couche C1 avec un ensemble de motifs pré-appris aux moyens de fonctions à base radiale.

tions

[START_REF] Lecun | Convolutional networks and applications in vision[END_REF]

, qui sont les principaux contributeurs au succès que rencontrent les réseaux de neurones à l'heure actuelle. Leur approche est très simple: plutôt que de séparer l'extraction de caractéristiques de la classification, ces méthodes considèrent l'ensemble de la chaîne algorithmique et réalisent l'apprentissage sur son intégralité. L'extraction de Table B.1: Paramètres des couches S1 et C1 de HMAX [31]. Convolution Sous-chantillonage Convolution Sous-chantillonage Connection complte Sortie

Table B . 2 :

 B2 Comparaison des principaux extracteurs de caractéristiques. Il existe également de nombreuse implantations logicielles, mais nous ne les mentionneront pas dans ce résumé. HMAX lui-même a été implanté de nombreuses fois sur du matériel reconfigurable (FPGA)[START_REF] Park | System-On-Chip for Biologically Inspired Vision Applications[END_REF][START_REF] Al Maashri | A hardware architecture for accelerating neuromorphic vision algorithms[END_REF][START_REF] Debole | FPGA-accelerator system for computing biologically inspired feature extraction models[END_REF][START_REF] Maashri | Accelerating neuromorphic vision algorithms for recognition[END_REF][START_REF] Park | Saliencydriven dynamic configuration of HMAX for energy-efficient multi-object recognition[END_REF][START_REF] Sun Park | An FPGAbased accelerator for cortical object classification[END_REF][START_REF] Park | A reconfigurable platform for the design and verification of domain-specific accelerators[END_REF][START_REF] Kestur | Emulating Mammalian Vision on Reconfigurable Hardware[END_REF] -récemment, l'implantation la plus prometteuse pour ce modèle est celle proposée par[99]. Des travaux ont été menés en ce sens également pour les réseaux de neurones à convolutions[START_REF] Farabet | Neu-Flow: A runtime reconfigurable dataflow processor for vision[END_REF][START_REF] Cavigelli | Origami: A Convolutional Network Accelerator[END_REF].B.2.3 DiscussionNotre but est de proposer un système embarquable et générique de reconnaissance de motifs. Pour cela, nous allons choisir un extracteur de caractéristiques qui servira de base à nos futurs travaux. Le problème de la classification ne sera pas traité ici. La TableB.2 présente une comparaison des principaux descripteurs. Au vu de cette comparaison, nous avons décidé de porter notre étude sur HMAX, qui nous assurera de plus une certaine généricité.Notre but est d'adapter cet algorithme à différentes tâches tout en conservant une généricité au niveau de l'architecture, et d'optimiser, notamment en termes de codage, ces algorithmes pour faciliter leur portage sur des cibles matérielles, ce qui amène les problématiques suivantes auxquelles nous nous efforcerons de répondre :

	Méthode	Précision Apprentissage requis Complexité
	Scattering Transform	Haute	Non	Élevée
	HMAX	High	Oui, requière peu de données	Élevée
	HOG	Raisonnable	Non	Basse
	SIFT	Raisonnable	Non	Basse
	SURF	Raisonnable	Non	Très basse
	Réseaux de neurones Très élevée à convolutions	Oui, requière beaucoup de données	Élevée
	convolutions ont été réalisées.		

Table B . 3 :

 B3 Précision des différentes versions de HMIN sur la base de données LFW crop. B.3.1.3 HMIN et optimisations D'après l'article de Serre et al. [31], nous savons que pour détecter et localiser un objet dans une scène, il est préférable de n'utiliser que les deux premières couches de HMAX, i.e S1 et C1. Afin de voir quelles caractéristiques sont les plus pertinentes, et donc quelles caractéristiques peuvent être enlevées sans trop impacter la précision du système, nous avons observé les réponses des différents filtres de Gabor pour les visages. Les résultats sont montrés en Figure B.10. Nous pouvons y voir que les informations qui semblent les plus pertinentes sont celles correspondant à l'orientation θ = π/2. Par ailleurs, nous pouvons voir que les informations sont semblables d'une échelle à l'autre. Ainsi, nous proposons de ne conserver que les filtres d'orientations θ = π/2, et de les sommer, afin de n'avoir plus qu'une convolution. L'aspect du noyau de cette convolution est donné en

Table B .

 B Nous allons commencer par décrire les méthodes avec lesquelles nous allons comparer notre approche. Nous avons choisi de nous comparer avec l'état de l'art du domaine, à savoir le HOG et une implémentation particulière d'un réseau de neurones à convolutions, que nous appellerons ConvNet[START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF]. La seule différence avec la détection de visages réside dans le fait que, cette fois, nous nous intéressons à des objets verticaux, et donc nous avons choisis de conserver cette fois-ci les filtres d'orientation θ = 0. Nous appellerons les algorithmes ainsi produits HMIN θ=0 et HMIN R θ=0 .

	Méthode	Taux de faux positifs (%) Scanning Classification Complexité (OP)	Empreinte mémoire	Taille d'entrée
	VJ	5.32 × 10 -5 [136]	20.7 M	2.95 k	1.48 MB	24 × 24
	CFF	5 × 10 -5 [50]	50.7 M	129.5 k	64.54 MB 36 × 32
	HMIN R θ=π/2	4.5	26.1 M	82.9 k	1.2 MB	32 × 32

Table B . 5 .

 B5 B.3.3 ConclusionDans cette Section, nous avons présenté notre contribution à l'optimisation d'une méthode d'extraction de caractéristiques. L'algorithme initial est basé sur HMAX, mais n'utilise que ses deux premières couches, S1 et C1. La couche S1 est constituée de 64 filtres TableB.5: Complexité et précisions de différentes méthode de détections de personnes. Le taux de faux positifs du HOG a été obtenu à partir des courbes DET présentés dans l'article original[START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], et est donc approximatif. Les taux de faux positifs présentés ici correspondent à des taux de détections de 90%. Les résultats concernant le Con-vNet ne sont pas directement indiqués ici, en raison du fait que la méthode d'évaluation de sa précision employée dans la littérature est différente de ce qui a été réalisé pour le HOG[START_REF] Sermanet | Pedestrian Detection with Unsupervised Multi-stage Feature Learning[END_REF]. Cependant, les contributeurs ont évalué la précision du HOG selon le même critère, et il en ressort que le HOG produit trois fois plus de faux positifs sur cette même base que ConvNet. En raison de ces différences de méthodologies, il est délicat de comparer directement nos résultats avec ceux de la littérature -en revanche, les résultats présentés ici suggèrent un clair désavantage à l'utilisation de HMIN R θ=0 pour cette tâche.de Gabor, avec 16 échelles et 4 orientations différentes. En étudiant les carte de caractéristiques produites par S1 pour différentes tâches spécifiques, nous avons conclus que nous pouvions ne conserver qu'une seule orientation, et sommer les noyaux des convolutions des 16 filtres restants de façon à n'en n'avoir plus qu'un, orienté horizontalement dans le cas de la détection de visages et verticalement dans le cas de la détection de personnes. Nos résultats montrent que notre système a une complexité acceptable, mais sa précision est moindre. Cependant, l'architecture est extrêmement simple, et peut facilement être implantée sur une cible matérielle. De plus, notre architecture est générique : un changement d'applications consiste simplement à changer les poids du noyau de convolution, alors que les autres architectures présentées requièreraient des changements plus en profondeur de l'architecture matérielle. Enfin, l'empreinte mémoire de notre méthode est très faible, ce qui autorise son implantation sur des systèmes ayant de fortes contraintes.La prochaine Section est dédiée à une proposition d'implantation matérielle de l'algorithme HMAX complet. La dernière Section sera quant à elle dédiée aux discussions finales et aux conclusions générales de nos travaux.

	Méthode	Taux de faux positifs (%) Scanning Classification Complexité (OP)	Empreinte Taille d'entrée mémoire
	HOG	0.02 [36]	12.96 M	344.7 k	4.37MB	64 × 128
	ConvNet	Voir légende	484.84 M	11 G	63.26MB	78 × 126
	HMIN R θ=0	30%	13.05 M	41.45 k	1.2 MB	32 × 16

Table B . 6 :

 B6 Précision de HMAX en utilisant différentes optimisations. correspond à -1 et 1 à +1. Le nombre de bit pour les pixels de l'image d'entrée est de 2. Cette approche est similaire à ce qui a été proposé dans[START_REF] Chikkerur | Approximations in the HMAX Model[END_REF].B.4.1.3 Autres optimisationsNous avons appliqué un ensemble d'autres optimisations. La sortie des S1 est compressée sur 2 bits seulement grâce à la méthode de Lloyds, telle que proposée dans[START_REF] Chikkerur | Approximations in the HMAX Model[END_REF]. Nous avons également réduit le nombre de vecteurs pré-appris dans S2 grâce à la méthode de Yu et al.[START_REF] Yu | FastWavelet-Based Visual Classification[END_REF]. De plus, nous avons utilisé une distance de Manhattan au lieu d'une distance Euclidienne dans les opérations de comparaison de motifs de S2. En cumulant ces optimisations avec une précision de 2 bits pour les pixels de l'image d'entrée et de 1 bit pour les filtres de Gabor, nous obtenons les résultats présentés en Table B.6. Table B.7: Utilisation des ressources matérielles de HMAX sur un Artix7-200T. La Table B.7 présente une estimation de l'utilisation des ressources matérielles. Concernant le timing, une étude théorique indique que, sur la base d'une fréquence de l'horloge système à 100 MHz, notre système peut traiter 22.69 images par seconde, contre 193 pour l'implantation présentée en [99]. Cela est dû à une organisation des ressources très différentes, notamment au niveau du multiplexage. Cependant, notre implantation requiert moins de ressources matérielles, et il est important de signaler que nos optimisations et celles proposées par Orchard et al. [99] sont parfaitement compatibles.

		Ressource	Estimation Disponible Utilisation (%)
	Look-up tables	58204	133800	43.50
		Flip-flops	158161	267600	59.10
	Inputs/outputs	33		285	11.58
		Global buffers	6		32	18.75
		Block RAM	254		365	69.59
		Entrée et	Méthode de	Réduction	Distance de
		coefficients des filtres		Lloyd	des patchs de S2 Manhattan
	Avions	95.49 ± 0.81	94.43 ± 0.88	92.07 ± 0.69	91.83 ± 0.63
	Voitures	99.45 ± 0.41	99.35 ± 0.40	98.45 ± 0.54	98.16 ± 0.60
	Visages	92.97 ± 1.49	90.11 ± 1.05	82.71 ± 1.32	83.35 ± 1.40
	Feuilles	96.83 ± 0.79	97.21 ± 0.89	94.61 ± 1.12	93.20 ± 1.42
	Motos	95.54 ± 0.79	94.79 ± 0.62	88.83 ± 1.10	89.08 ± 1.31

By Michael Shick -Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php? curid=44405988.

By Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing (Reading, Mass.: Addison-Wesley, 1990).

In the literature the definition of the activation function may be slightly different, with "≥" signs instead of ">" in Equation

2.4 and with θ > 0.

A saliency is a region that is likely to contain information in an image. Saliencies are typically determined with edge detection and the frequency of occurrences of a pattern in the image -the less frequent, the more unusual and thus the more salient that pattern shall be.

A multiplication between an input data and a coefficients, the result of which being added to a data computed before by another MAC operation.

Naive Bayes are a class of classification frameworks, the principle of which is to assume each component of the feature vector is indenpendent from the others -hence the word naive.

We consider the case where the initial scale is 1 and ∆ = 1 -see[START_REF] Viola | Robust real-time face detection[END_REF] for more information.

Travaux de Michael Shick -Production peronnelle, CC BY-SA 4.0, https://commons.wikimedia. org/w/index.php?curid=44405988.

Acknowledgements

and accepting to review it. Finally, I would like to thank the ANRT, i.e the French National Research and Technology Agency, for giving me the opportunity to realize that PhD with the CIFRE program.

c2 to out

This is the very final stage of our HMAX hardware implementation. It gets the data given by the c2 module in parallel, and serialize it in a way very similar to that of the c1 to s2 module. Its input pins consist in the usual clk and rst respectively for synchronization and reset purposes, as well as a port called din that get the input data and new in that indicates when new data is available. Serial output data is written in the dout output port, and the en dout output port indicates when the data from dout is valid.

As in c2 to out, the parallel data from din is simply read and written serially into the dout output port, while en dout is set. When this is done, en dout is unset again.

In this Section, we described the architecture of our VHDL model for the HMAX frameworks, taking into account our own optimizations along with other simplification from the literature. That implementation was purposely naive, in order to compare it with the state-of-the-art. Next Section focuses on the implementation results of that model on a hardware target.

Implementation results

In the previous Section, we described the architecture of our VHDL model. The next step is to synthesize and implement it for a particular device. We chose to target a Xilinx Artix-7 200T FPGA. Both synthesis and implementation were performed with Xilinx Vivado tools.

We first examine the utilization of hardware resources -in particular, we shall see that our model does not fit on a single device as is. We then study the timing constraint of our system, including the latency it induces.

Resource utilization

We synthesized and implemented our VHDL code using Xilinx's Vivado 2016.2, targeting a XC7A200TFBG484-1 platform. Results are shown in Table 4.7. On can see that there is still room for other processes on the FPGA, for instance of a classifier. Now that we studied the feasability of the implementation of our model on hardware devices, let's study the throughput that it may achieve.

Appendix A RBF networks training A.1 Overview

Radial Basis Function neural network (RBF) fall into the fields of generative models. As suggested in its name, after fitting a model to a training set, that type of models may be used to generate new data [START_REF] Bishop | Pattern recognition and machine learning[END_REF] similar to the real one. RBF are also considered as kernel models, in which the data is processed by so-called kernel functions before the actual classification; the goal is to represent the data in a new space, in which it is expected to be more easily linearly separable -particularly in the case when that new space is of larger dimensionality than the space of the input data. Other well-known kernel-based models are e.g SVM. Although those models may be used for both classification and regression tasks, we shall detail here its use for classification tasks only.

A short presentation of such models is proposed in Section 2.

A.2 Clustering

This stage consists in reducing the training set to a more manageable size. The method we chose is based on the work of Musavi et al., but a bit simpler as we shall see. It consists in merging neighboring vectors of the same categories into clusters, each represented in the network by a kernel function that is constituted of center, i.e a representation in the same space of one or several data points from the training set, and a radius, showing the generalization relevancy of that center: the bigger the radius, the better the center represents the dataset. As we shall see, this method allows to build highly non-linear boundaries between classes.

Let X 1 = x 1 1 , x 1 2 , . . . , x 1 N be the training set composed of the N vectors x 1 1 , x 1 2 , . . . , x 1 N , and T 1 = t 1 1 , t 1 2 , . . . , t 1 N be their respective labels. As for many training algorithm, it is important that the x 1 i are randomized, so that we avoid the case where all vectors of a category have neighboring indexes i. Let also d (a, b) denote the distance between the a and b vectors. Although any distance could be used, we focus here on a typical Euclidean distance so that

where a and b have M dimensions.

The clustering algorithm proceeds as follows [START_REF] Musavi | On the training of radial basis function classifiers[END_REF]:

1. map each element x 1 i of X 1 to a cluster c 1 i ∈ C 1 , the radius r 1 i of which is set to 0, 2. select the first cluster c 1 1 from C 1 , 3. select a cluster c at random from the ensemble C of the other clusters of the same class -let x be its assigned vector and r its radius, 4. merge the two clusters into a new one c 2 1 , the vector x 2 1 of which is the centroid of c 1 1 and c:

5. compute the distance d opp between c 2 1 and the closest cluster ĉ ∈ C 1 of another category, 6. compute the radius r 2 1 of the new cluster c 2 1 , as the distance between the new center x 2 1 and the furthest point of the new cluster: