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  CHAPTER 1 

1. Introduction: Physical parameters 
exploring in heterogeneous 

environments 

Signals’ deformation along their propagation path is among the most important aspect 

which has to be taken into account at reception. These effects are caused by phenomena like 

attenuation, reflection, dispersion and noise. Whereas the first two are rather easy to monitor, 

because they affect the amplitude, respectively the delay, the latter two are more difficult to 

control, because they change signals’ parameters (amplitude, frequency and phase) in an 

environment-dependent manner. 

Generally, the consideration of the signal deformations at the reception is motivated by 

the requirement to compensate their effects in order to ensure satisfactory receiving 

performances. In this thesis, the main objective is to contribute to the deep analysis of the 

propagation effects in order to better understand them as well as to estimate their parameters 

that are interesting from application point of view. In this thesis, the studied phenomena take 

place in dynamic systems which, during their time evolution, rapidly (sometimes suddenly) 

change their parameters. 

1.1 Sensing in heterogeneous environments – 
physical modeling and particularities 

 

The purpose of this part is to present the problem of sensing in heterogeneous 

environments from signal analysis point of view, by proposing a general model, adaptable to 

different applications we have the occasion to treat. The place of signal analysis in these 

applications is central, as it concerns the analysis of signals received by a monitoring system 

devoted to the measurement of different parameters that will be discussed further. 

Let ( )s t  be the transmitted signal: 

 ( ) exp( ( ))s t A j t      (1.1) 

where A   is the amplitude and ( )t   is the instantaneous phase. 

We define a general model of the received signal after the propagation in 

heterogeneous environment: 

  ( ) ( ) ( )k

k

r t s t n t D   (1.2) 

where k D  is a general deformation operator associated to the 
thk  component of the 

received signal and ( )n t  is an additive white Gaussian noise. 
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In a static homogenous environment (e.g. unbounded free-space), the attenuation is 

time invariant, it is only range and frequency dependent and the delay is only given by the 

propagation path, if the propagation velocity is assumed to be constant. 

Let us consider, as an example, two omnidirectional antennas which transmit in their 

line of sight (i.e. only their direct path is received). Then, the received signal is: 

 ( ) ( ) ( )r t s t n t      (1.3) 

where 
04 R


 


 is the path loss, c  is the electromagnetic wave speed ( 83 10 /m s  ), 0R  is 

the distance between the antennas,   is the wavelength of the transmitted signal and 0R

c
  . 

 In this case, the deformation operator kD  can be written as: 

  ( ) ( ), 1k s t s t k     D   (1.4) 

Yet, in several environments (e.g. water, cables, etc.) the propagated waves are 

dispersive which means that the initial signal is forced to transform such that its energy is 

spread out in a larger bandwidth. In dynamic systems, things become even more complicated 

when the studied phenomena have complex models (e.g. cavitation, water hammer, etc.). The 

main environments of interest for our work are discussed in the next part of this chapter. 

1.1.1. Active configurations 

Cavitating environments 

 The cavitation phenomena, widely encountered in various underwater applications and 

hydro power engineering, are subject of high interest both for understanding complex 

phenomena, as well as for the monitoring the equipment in the presence of cavitation 

(Takahashi & Miyazaki, 2006). The effect of the cavitation consists in the variation of the 

pressure in the fluid and, then, the apparition of gas bubbles. That is, the fluid becomes di-

phasic as long the both states – liquid and gas- exist. In terms of acoustic signals propagating 

in fluid under cavitation, the main effects are the amplitude attenuation, since the presence of 

gas is not favorable for acoustic propagation, and Doppler frequency-shifts, due to the motion 

of bubbles (Rubin, 2000). 

 As an example, let us consider the case of a reduced scale hydraulic facility, namely a 

hydraulic installation provided with a system where the flow rate can be manually changed 

(Candel, et al., 2014a). The installation has a stator inside its pipeline whose purpose is to 

produce cavitational vortex while the flow rate increases. Fig. 1-1 presents the experimental 

configuration. 
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Fig. 1-1: The experimental configuration for the cavitation generation 

 In this facility, the cavitation parameters, in terms of rotational vortex speed and the 

density of bubbles, are controlled by the flow rate parameters. The purpose of our work, 

which will be detailed further in the thesis, is to define an active acoustic non-intrusive 

sensing system based on the measurement of signal’s deformations when propagating in this 

dynamic diphasic environment. Actually, because of the presence of the two aggregation 

states, liquid and gas, we can consider that the propagation will be done in a heterogeneous 

environment, characterized by different zones with different propagation parameters. In 

addition, the conic shape of the acoustic sensors contributes to the multi-path behavior of the 

propagation in this environment. Another difficulty is the dynamic aspect of the configuration 

while the parameters of the flow and cavitation change over the time. 

 The next figure illustrates the specificity of this application described above.      

 

Fig. 1-2 : Signal’s multi-path propagation for the cavitating phenomena 

 From signal’s model point of view, we can derive two special cases: 

 When the water is monophasic: the deformation operator kD  is defined by the 

attenuation and delay (Fig. 1-2 - similar to eq. (1.4)): 

  ( ) ( )k k ks t s t    D   (1.5) 

where k  is the index of the propagation path. Therefore, the received signal is: 

 ( ) ( ) ( )k k

k

r t s t n t        (1.6) 

Since the propagating paths are very close, the effect of the signal is the deformation due 

to the superposition of different arrivals so that the received signal has a different duration and 

a completely different amplitude shape than the emitted signal. This is illustrated in Fig. 1-3. 
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Fig. 1-3: Emitted vs. received signal in a multi-path propagation defined by the solid-monophasic water flow-

solid. 

 When the cavitation appears: then, the deformation operator kD is characterized by 

attenuation, delay as well as the Doppler effect that acts as a deformation of the 

instantaneous phase of the signal: 

  ( ) ( ( )) exp( ( ))k k k k ks t s t t A j t         D   (1.7) 

 where  
( )

( ) k
k

r t
t t

c

 
     

 

  and ( )kr t  is the time (Doppler) dependent position vector.  

 

Fig. 1-4: Illustration of the Doppler deformation due to the cavitation 

Fig. 1-4 illustrates the deformation of the transmitted signal in the presence of 

cavitation phenomena generated in our experimental setup. As it will be discussed in the 

devoted part of this thesis, this deformation is fast varying in time, while the cavitation 

structure changes in time.  

 Underwater object tracking  

 The underwater object tracking is an essential task in the marine community with 

uncountable number of applications – intrusion detection in protected area, underwater 

mammal surveillance, fish detection, pollution monitoring, to just mention few of possible 

applications (Yuan, et al., 2000). 
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 The general context of this application field can be summarized by the presence of a 

moving object and the definition of two active acoustic paths, as indicated in Fig. 1-5.  

 

Fig. 1-5 : The experimental configuration of the underwater object tracking 

 In this case, the heterogeneity of the environment is given by the set water – object – 

water (Fig. 1-6).  

 

Fig. 1-6 : Signal’s propagation in the heterogeneous environment defined by the presence of an object in the 

water flow, when sensing with an active acoustic paths 

It goes that, the deformation operator is: 

   0( ) exp , 1,krk
k k

water oil

dr
s t A j t k N

c c

  
              

  

D   (1.8) 

where kr  is the 
thk   water propagation path, 

kr
d is the 

thk  oil propagation path and 

0
2 b

rubber

l

c
   where bl  is the thickness of the rubber wall of the balloon and rubberc  is the 

acoustic propagation velocity in rubber. 

The next figure (Fig. 1-7) illustrates both transmitted and the received signal, 

corresponding to an impulse emission – propagation couple. 
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Fig. 1-7: Example of signals used for the object tracking application 

The purpose of this application is to find a suitable method for the detection of an 

underwater object using bi-static acoustic paths and without synchronization between sensors. 

Actually, in some real application, when the transmitting and the receiving sensors need to be 

far, in order to cover a wider zone, the synchronization becomes an important issue, especially 

in the case of immerged sensors. As we will see further, the theoretical contributions of this 

thesis can be a potential solution in this context. 

1.1.2. Passive configurations 

Measuring pressure transient in water pipes 

Pressurized pipes sometimes present unsteady flows which happen because of a 

sudden hydraulic change in the system (eg. closing of a valve). Among the effects of these 

changes, a commonly met phenomenon is the water hammer which usually is caused by a 

suddenly closed valve (Hachem & Schleiss, 2012). Thus, the fluid changes its direction or 

stops its motion. The major and dramatic effect of the water hammer phenomenon is that the 

system exhibits a pressure variation which may cause from vibrations to pipe collapse (Fig. 

1-8). 

 

Fig. 1-8 : Experimental setup for the water hammer (CV – closing valve) 

 The heterogeneity of the environment, in this application, it is caused by the 

phenomenon itself: the environment is no longer homogenous, because the pressure field is no 

longer the same. Therefore, the environment is mainly characterized by the water and the 
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dynamic pressure field (Fig. 1-9). The main purpose in this application is to measure this 

dynamic pressure field from the interference between the acoustic propagating wave and the 

field, as illustrated in the next figure. 

 

Fig. 1-9: Signal’s propagation in a heterogeneous pressure field 

The deformation operator kD  becomes: 

  ( ) exp k
k k

pressure

L
s t A j t

c

  
        

  
  

D   (1.9) 

where pressurec  is the propagation speed of the pressure field and kL  is the distance between 

the CV and the ultrasonic transducers. 

 

Fig. 1-10: The acoustic signals recorded by the ultrasonic transducers and the pressure recorded by the intrusive 

pressure transducer 

This application has the purpose to evaluate, using a non-intrusive method, the water 

hammer effect, namely the pressure variation inside the pipeline. This can be achieved based 

on an accurate estimation of the pressure field propagation speed (Houghtalen, Akan, & 

Hwang, 2010) which is almost the same as the speed of the acoustic wave, Fig. 1-10. 

The advantage of this approach is that the ultrasonic transceivers have just to be placed 

on the pipe without requiring any extra modification of the system and without direct contact 

with the fluid. 
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 Electrical arcs 

 Another case of sensing in heterogeneous environment is the surveillance of electrical 

power systems - in the presence of transient phenomena. The surveillance of photovoltaic 

system in the presence of arc faults is the main application that is considered in our work. 

One possible solution for the continuous surveillance of an equipment, in order to 

detect in real time the generation of faults such as electrical arcs (EA), is to listen, using a 

hybrid electromagnetic/acoustic array, the perimeter of interest (Fig. 1-11).  

 

Fig. 1-11 : Experimental configuration for the detection and the localization of the electrical arcs 

The particularity of this application is that, from acoustic point of view, the EA 

(discharges of air particles) creates different acoustic signatures, according to the direction of 

arrival with respect of each element of the acoustic array. 

 
Fig. 1-12: Signal’s propagation for a discharge of air particle 

 The heterogeneity is caused by the different angles of arrival, k , at the sensing 

system, Fig. 1-12. The deformation operator can be written as: 

  { ( )} exp cosk
k k k

L
s t A j t

c

  
        

  
D   (1.10) 

Moreover, the use of the wide band antenna, namely the electromagnetic propagation 

mode accentuates the heterogeneity of the propagation of the transient electrical arc to the 

acoustic array (Fig. 1-13). 

x y

z

S2
S3S4

Electrical Arc

Photovoltaic panel

Wide band antenna



  

9 

 

 

Fig. 1-13: Examples of electrical arcs recorded with the acoustic sensors 

The applicative contexts briefly presented in this part are just few examples of 

problems consisting of the estimation of physical parameters in a heterogeneous propagation 

and dynamic environment. The main objective of the thesis is to propose new methods for 

signal’s analysis that could provide, with respect of the state of the art, an interesting 

alternative for the sensing techniques required for these applications.   

1.2. Thesis outline 

Chapter 2 presents a state of the art of the techniques used in acoustic sensing field, 

from signal processing perspective, in a dynamic configuration. Then, we present a data-

driven analysis technique based on the phase diagram concept that constitutes an interesting 

representation space for the problems we propose to solve. 

 Chapter 3 describes a new concept for the active sensing. The major part of this 

principle is the emission which is a phase-space-based waveform that presents a unique shape 

in the phase space and which can be easily translated into a signal. We start from the desired 

phase-space-based waveform and then we move backwards, to the time series concept in 

order to have a 1D signal which contains the desired information. This waveform design 

technique presents the interest to create separable waveforms, even if they share the same 

time-frequency plan. The analysis of such signals, using instantaneous frequency law tracking 

in phase diagram domain, is then proposed as the processing done at the receiving level. 

 Chapter 4 focuses on the analysis of the signals using new descriptors defined in the 

phase diagram/RPA domain. Firstly, the time-distributed recurrence measure is described and, 

then, used for the detection of transient signals. Next, the multi-lag phase analysis is 

introduced and applied on synthetic signals with close parameters in order to discriminate 

them. Finally, the diagonal lines quantification is presented as applied on modulated signals.  

 Chapter 5 presents the experimental results using proposed concepts previously 

presented in active configurations: the cavitating environment application is presented and the 

flow evolution is characterized using the diagonal lines quantification; the underwater object 

tracking is, then, presented and, with the use of the time-distributed measure, the object is 

tracked. 

 Chapter 6 describes the water hammer application and estimates the phenomenon 

parameters using the RQA descriptors. Then, the electrical arc application is presented for the 
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detection, localization and characterization of electrical faults using the phase diagram/ RPA 

concepts. 

 Finally, the conclusion lays out a synthesis of the thesis, our main contributions and 

proposes the perspectives for further research works. 
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CHAPTER 2 

2. Thesis work motivation and 
positioning 

The general context of this thesis evolves around the sensing of transient and dynamic 

phenomena (Gao, et al., 2007), (Serbanescu, Cernaianu, & Ivan, 2009) such as cavitation, 

pressure transient, etc. as it was discussed in the Chapter 1. 

In order to define the positioning of our work in this general context, we consider as 

an illustrative example, an active sensing system composed by two acoustic transducers: one 

for emission and the other for reception (Fig. 2-1). 

 

Fig. 2-1: General non-intrusive acoustic sensing system 

The requirements for sensing (Emitter/Receiver) system are synthesized in Table 2-1. 

 Requirements Emitted waveform Received signal 

processing 

1.  Accurate time parameter estimation 

for flow velocity, object detection and 

localization 

Good robustness face 

to the propagation 

phenomena 

High resolution and 

robustness 

2.  Accurate spectral parameters Long duration signals 

to integrate Doppler 

effects 

- High resolution n 

spectral domain 

- Sensing 

phenomena with 

weak amplitude 

3.  High sped sensing for dynamic (fast) 

phenomena 

Signals with high pulse 

repetition frequency 

(PRF) 

Capacity of satisfying 

the first and second 

requirements 

Table 2-1: The requirements for a general sensing system 

 

The purpose of this system is to achieve a non-intrusive characterization of high 

dynamic phenomena such as the fluid parameters (mono/biphasic). In these applications, one 

of main parameters to estimate is the time of flight (TOF) which relates us to the flow velocity 

(Ioana, et al., 2014), as well as the spectral information related to the speed flow profil in bi-
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phasic configuration. Such (general) applicative context requires new signal analysis and 

processing techniques. The contributions proposed by this thesis constitute a potential 

interesting sensing tool.  

2.1. Emission 

2.1.1. Narrowband pulses 

The active context of the sensing of dynamic phenomena requires a special attention 

for the emission part. The received signal characterizes better the studied phenomenon if it is 

well adapted to the propagation environment.  

In the domain of acoustic inspection or parameters estimation the main sensing 

techniques are built around the time of arrival measurements. The simplest way is to measure 

the travel time between an emitted waveform and the received one. The most used transmitted 

waveforms are the pulses, defined as: 

 0( ) exp( ), [ , ], 1,ss t A j t t kT kT T k N         (2.1) 

where 0 02 f    , 0f  is the central frequency of the transducers, T  is the pulse period and 

sT  is the duration of the pulse. 

 

Fig. 2-2: Example of a narrowband pulse used for emission (left) and its received version (right) in a 

heterogeneous environment 

 The signals presented in Fig. 2-2 are recorded for an application related to the 

underwater object detection. The emitted signal is a windowed narrowband signal at 1MHz  

and a duration of 5 s .  The configuration is static: both the water and the immersed object 

are not moving. As it is shown by Fig. 2-2, the received signal is strongly deformed, because 

of the heterogeneity of the environment - solid-fluid-solid.  

This example illustrates the main limitation of narrow band pulses: the amplitude 

deformation as well as the complex behavior of the propagation environment makes difficult 

the problem of time of arrival (TOA) estimation. 

As an alternative, the wideband signals can be used, starting from the fact that the 

frequency information is generally more robust than the amplitude’s one.  
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2.1.2. Wideband pulses 

 The signals with high bandwidth-duration product are well known in radar and sonar 

applications (Daniels, 1999), thanks to their robustness in complex propagation contexts. The 

general definition of such signals is: 

 ( ) exp( ( ))WBs t A j t      (2.2) 

where ( )WB t  is the instantaneous phase of the signal. From this variable, the Instantaneous 

Frequency Law (IFL) of the signal is defined as its first derivative: 

 ( ) ( )WB WB
d

t t
dt

     (2.3) 

The instantaneous phase can be characterized using an analytical polynomial form: 

 

0

( )
N

k
WB k

k

t a t



    (2.4) 

where ka  are the coefficients of the polynomial phase. Depending on these coefficients, the 

shape of the IFL can be flat ( 1k  ), linear ( 2k  ), cubic ( 3k  ), etc.  

 

Fig. 2-3: Example of wideband signal used for emission (left) and its received version (right) 

 In Fig. 2-3, we present the signals emitted and received for the same application as the 

one conducting to the signal illustrated in Fig. 2-2. The emitted signal is a linear chirp from 

[800 ,1200 ]kHz kHz  of 10 s duration. Compared with the narrowband received signal, the 

wideband received one has higher amplitude and less interference, proving its better 

robustness to the propagation effects. 

 Still, a trade-off between the bandwidth of the signal and its duration must be 

considered: a higher frequency resolution implies a longer duration of the signal which 

usually leads to destructive interferences in multi-path configuration.  

 In order to achieve good parameters estimation capabilities in such experimental cases, 

the needing for new modulation concepts is obvious. The solution proposed in this thesis is to 

design different modulations, in the same time-frequency region, but with elements that will 

allow their separation at the reception level. Our contribution is to design these modulations 

in the phase diagram domain as we will present in the Chapter 3. 
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2.2. Reception 

At the receiver level, either we are in active or passive configuration, the aim of our 

analysis is to estimate the physical parameters of the received signals. Independently of the 

waveform type, the received signals are strongly deformed.  In order to place our contribution 

with respect of the state of the art, we will briefly present the major classes of methods 

traditionally used to estimate the signal’s parameters.   

2.2.1. Energetic techniques 

In active configurations, one of most common analysis techniques is the matched filter 

(MF) method.  Considering r  the received signal, then the output of the matched signal is 

(Van Trees, 2001): 

 

0

( ) ( ) ( )

t

y t r h t d        (2.5) 

where t  is the duration of the signal to be detected and h  is the impulse response of the filter 

which is equal to the time reversed version of the transmitted signal, s , used as reference. 

Next, the output of the MF given in eq. (2.5) is compared with a threshold, and, if it is greater 

than the threshold, the signal s  is considered to be present or not. 

Multiple communication and physical parameters measurements equipments are based 

on this principle, especially for the detection part. The limitation of this method is that, in 

terms of characterization, it does not succeed to highlight similar (but not identical) 

deformations in the received signal since such deformations are not present in the reference 

signal, Fig. 2-4. 

 

Fig. 2-4: The matched filter applied for the signals presented in Fig. 2-2 (left), respectively in Fig. 2-3 (right) 

 For this reason, a deeper analysis of the received signals is necessary, using the main 

techniques presented in the following part.   

2.2.2. Projective techniques 

The projective techniques are based on the principle of analyzing a signal using its 

projection on a set of elementary functions from a dictionary which are used as reference for 

the comparison with the studied signal.   
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There are various approaches for these techniques, we recall one among the most used 

technique which, for an adequate dictionary, highlights signal’s time and scale evolution, 

being a powerful tool for the signals’ characterization (Mallat, 1999). This is actually the 

representation using time-scale analysis and, particularly, the wavelet transform analysis.   

A wavelet (Mallat, 1999) is a zero average function: 

 ( ) 0t dt





    (2.6) 

 This function (often called mother wavelet) is dilated with the scale parameter s  and 

translated with the parameter u . Hereby, the orthonormal basis can be built for 2s  .  

 ,
1

( )s u
t u

t
ss

 
   

 
  (2.7) 

As an example of well-known wavelets, we mention the families of functions 

presented in (Mallat, 1999), (Meyer, 1993), (Daubechies, 1992), (Daubechies, 1990), (Auger, 

et al.).  

Therefore, the wavelet transform of a signal ( )x t   at scale s  and time position u  is 

defined as: 

 
*1

( , ) ( )
t u

Wx u s x t dt
ss





 
   

 
   (2.8) 

 It goes that a wavelet transform is able to quantify the time-frequency variations, but 

based on the scale provided by the wavelet basis. Hereby, in order to have a good wavelet 

representation, it is essential to determine an adequate mother function which resembles as 

much as possible the analyzed signal, ( )x t  (Mallat & Zhong, 1992).   

 In order to illustrate the particularities of wavelet analysis in the case of transient 

signals having close features, we consider three transients with very close characteristics. 

These signals are defined by this generic formula: 

 
  

( , , )

sin 2 [ ] , 1,
[ ]

[ ],
a f b

a f n b n n N
s n

a b n otherwise

      
 



  (2.9) 

where 
2

sfN
f

 
  
 

  and 10sf MHz  is the sampling frequency.  

 These signals, 
1 1 11( , , )a f bs , 

2 2 22( , , )a f bs , respectively 
3 3 33( , , )a f bs  have the following 

relationships between their parameters: 1 2/ 1 / 0.6 1.66a a   , 1 3/ 1 / 0.3 3.33a a   , 

   5 5
1 2/ 2 10 / 1.9 10 1.05f f     ,    5 5

1 3/ 2 10 / 1.6 10 1.25f f     , 1 2 3b b b   is an additive 

white Gaussian noise and 20 , 1,3iSNR dB i  . Fig. 2-5 presents the signals considered in eq. 

(2.9). 
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Fig. 2-5: Transient signals considered for studying the wavelet transform 

These synthetic signals seem to be quite similar, but, at a closer look, slight 

differences appear. The results obtained with the wavelet analysis are shown in Fig. 2-6. 

 

Fig. 2-6: The wavelet transform (using the Mexican Hat mother-function) applied on the three synthetic signals 

It can be observed that the slight differences between the signals cannot be highlighted 

by the wavelet transform: their presence is detected and located in time, but their shape does 

not present any discriminating element (beside the amplitude differences). 

Once again, even if the problem of detection and localization is solved (although, it 

frequently requires the managing of a large dictionary), the problem of signal characterization 

and discrimination between signals is present when it comes to analyze signals with close 

characteristics. 

2.2.3. Data-driven techniques 

While the projective techniques require the definition of the elementary functions, the 

interest of data-driven techniques is clear when this definition is not straightforward.  

These techniques have the major advantage that they do not use any model to analyze 

the data. They analyze the signal based on the organization of samples in time. One of the 

current data-driven analysis techniques is based on the concept of Recurrence Plot Analysis 

(RPA) which has been firstly introduced by Eckmann et al. (Eckmann, Kamphorst, & Ruelle, 

1987).  

This concept is based on the phase space representation and, as its name suggests, it 

highlights the recurrences of trajectories from higher-dimension phase spaces. The term of 

“recurrence” - one main property of conservative dynamic systems (Zbilut & Webber Jr., 



  

17 

 

1992), (Webber Jr. & Zbilut, 1994), (Webber Jr. & Zbilut, 2005), (Zbilut & Webber Jr., 

2007), (Marwan, 2008), (Marwan, Schinkel, & Kurths, 2013) – means that the dynamical 

system under study returns in a state previously visited. The method is quantified using 

Recurrence Quantification Analysis (RQA). 

The choice of the RQA based on RPA concept for the analysis of signals coming from 

heterogeneous environments is based on the fact that it is a data-driven method which does 

not require a priori information about the system, knowing that such information is not always 

available (Zbilut & Webber Jr., 2006), (Marwan, et al., 2007). 

The recurrence information is very important, offering us new insights in the evolution 

of dynamic systems. In our work, we are interested of the system state changes that are not 

determined by random causes, but they are the results of a nonlinear input that causes them to 

change their state suddenly, exposing the system to major collapse. 

The phase diagram concept starts by considering the following time series: 

  [1], [2],..., [ ]x x x x N   (2.10) 

 Then, this time series is represented in phase space. Its values become the coordinates 

of the m - dimensional space and, consequently, the vector sample is: 

 

1

[ ( 1) ] , 1,
m

i k

k

v x i k d e i M



       (2.11) 

where m  is the embedding dimension, d  is the delay, ke  is the unit vector of the axis that 

define the phase space, ( 1)M N m d    and N  is the length of the time series. Usually, the 

embedding dimension and the delay are chosen using the false nearest neighbor method and 

the mutual information method, respectively (Marwan, et al., 2007), (Kantz & Schreiber, 

1997), (Thiel, et al., 2002), (Thiel, et al., 2004). 

Fig. 2-7 illustrates the phase space construction algorithm. Each point of the phase 

space trajectory has as coordinates the time series values, namely signal’s samples.  

Next, the distances between the vectors in the phase space are represented on the 

distance matrix (DM), eq. (2.12). When compared with a threshold, the recurrence matrix 

(RM) is obtained, eq. (2.13).  

 , ( , )i j i jD v vD   (2.12) 

 

  , ( ) ( , )i j i jR i v v  D   (2.13) 

where ( , ) D  is a distance applied on the vectors from the phase space (Euclidean distance  

(Marwan, et al., 2007), (Marwan & Kurths, 2002), L1 norm (Kantz & Schreiber, 1997), 

angular distance  (Birleanu, et al., 2012), (Ioana, et al., 2014), scalar dot product distance  

(Birleanu, et al., 2012), etc.), ( )   is the Heaviside step function and ( )i  is the threshold 

considered for recurrence. A graphical representation is presented in Fig. 2-8 when using the 

Euclidean distance. 
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Fig. 2-7: Example of phase space trajectory implementation (Ioana, et al., 2014) 

 

Fig. 2-8: DM and RM when applying the Euclidean distance (Ioana, et al., 2014) 

 Although the two methods, RPA and wavelet analysis, are based on totally different 

concepts (the recurrence of the system’s trajectory in the phase space and the time- frequency 

representation, respectively), they are both able to highlight similar behaviors of a process like 

trends, sudden changes, discontinuities  (Webber Jr. & Zbilut, 1994), (Popescu, et al., 2014), 

(Yang, 2011), (Chen & Yang, 2012), (Ramirez Avila, et al., 2013), (Webber Jr. & Zbilut, 

2005), (Zbilut & Webber Jr., 2006), (Zbilut & Webber Jr., 2007), (Webber Jr., 2012), 

(Webber Jr., 2013), (Farge, 1992), (Torrence & Compo, 1998), (Digulescu, et al., 2013), 

(Larose, et al., 2015). In (Digulescu, et al., 2014c), several comparisons between the two 

methods along with other widely used signal processing methods (as matched filter, 

spectrogram, zero crossing) are shown. 

The major advantage of the RPA method is that it does not need any orthogonal basis 

or any a priori information about the studied system (unlike the wavelet analysis: it requires 

the definition of the analyzing mother wavelet which must be close to parts of the signal to 

analyze). The method works in applications where a reference signal is not available (unlike 
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the matched filter method) (Digulescu, et al., 2014c), (Ioana, et al., 2014), (Digulescu, et al., 

2016c), (Le Bot, Gervaise, & Mars, 2016).  

In terms of RQA, we recall the most known measures as the recurrence rate, the 

determinism, the laminarity, etc.  (Zbilut & Webber Jr., 1992), (Webber Jr. & Zbilut, 1994), 

(Webber Jr. & Zbilut, 2005), (Webber Jr., 2012), (Webber Jr., 2013), (Zbilut & Webber Jr., 

2006), (Zbilut & Webber Jr., 2007) which measures the states of the system based on the RM. 

2.3. Chapter summary 

This chapter shortly presents the existing methods for the analysis of transient signals 

in terms of detection and characterization.  

These methods present many advantages, but they also have limitations. In the next 

chapters, we present our approach based on the concept of phase diagram and the RQA based 

on the RPA method. For the active sensing part, we propose the use of phase space-based 

adaptive waveforms which are better suited for the propagation phenomena specific to the 

sensing of transient signals.  The passive sensing part presents a new approach for the analysis 

and characterization of transient signals based on the concept of RQA. 
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CHAPTER 3 

3. Active sensing: phase diagram-based 
adaptive waveform 

3.1. Introduction 

The active sensing techniques are the heart of any system aimed to analyze physical 

parameters of an environment of interest, either by acoustic or electromagnetic waves. The 

sensing signal is always designed according to the application specificities: propagation 

phenomena, objects to detect, parameters to sense, etc. This is always the case in sonar/ radar 

domains, where the transmitted signal’s parameters are chosen from physical considerations:  

 the central frequency and the bandwidth are chosen to minimize the wave attenuation 

effect as well as to best fit to the sensors characteristics 

 the signal’s duration is chosen to meet the required resolution 

Another parameter of great importance is the PRF (Pulse Repetition Frequency) which 

is related to the maximum range of sensed region.  The classical approach considers the 

principle presented in Fig. 3-1. 

 

Fig. 3-1: General principle in radar and acoustic sensing 

 From this perspective, the environment inspection is done by respecting the relation 

between the maximum distance and the PRF.  

 Still, for sudden phenomena or fast changes, this approach could skip them, the PRF 

being too small to detect these transient phenomena. An example is presented in Fig. 3-2. 
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Fig. 3-2: Favorable scenario using the classical approach for the acoustic inspection (left) and de unfavorable 

scenario using the same approach (right) 

 In the first case (Fig. 3-2, left), the detection of the object passing in front of the 

sensors is done from the reflected wave, the range being calculated as a product between the 

wave velocity and the half of time of flight. With this technique, the characterization of the 

object is almost impossible as illustrated in the Fig. 3-2 (right). Two different objects are 

traduced, at the receiving sensor, by more or less similar reflected waves, making difficult 

their identification.     

 One solution is then to increase the PRF in order to allow a high speed sensing, as it is 

illustrated in Fig. 3-3. 

 

Fig. 3-3 : Our proposed approach for the high-speed sensing 

These signals contain some unique information that allow us to increase the PRF 

disregarding the classical condition, in order to monitor the environment at higher sensing 

speed. The main difficulty is to add a unique identifier knowing that the amplitude or phase 

changes could interfere, from one emitted pulse to another, making difficult their separation at 

the receiving point. The appropriate design of the transmitted pulses is then the main objective 

of our contribution, presented in the next section. 
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3.2. Phase diagram-based waveform design   

One way to generate separable pulses is to design them in diagram phase, in different 

regions which bring them “orthogonal” in this representation space.  

Fig. 3-4 presents the overall diagram of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-4: The overall diagram of the proposed algorithm of waveform design in phase space 

3.3. Emission 

The starting point is the idea to design a pattern in the phase space which has a unique 

evolution and, afterwards, to translate it in a 1D signal into a one-to-one correspondence.  

Step 1:  we represent a lobe in a 3D phase diagram space. The core of this idea is 

suggested by the trajectory of a transient signal in phase space (Candel, et al., 2012a), 

(Candel, et al., 2012b). 

Hereby, the simplest way to represent the waveform’s trajectory in shape of a lobe is 

to compose it of two director vectors, as in Fig. 3-5: 

 
, {1,2}, , , 0

( , , )

n n n n n n n

n n n n

v a i b j c k n a b c

v a b c

        
  (3.1) 

Step 1: desired lobe 

in the phase space 

Step 2: get the 1D 

signal which 

contains this lobe 

Step 3: Recover the 

lobe information 

from the signal 
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Fig. 3-5: Director vector example in 51 points: 1, 1.5, 2a b c    

For step 2, at a first look, the signal should be reconstructed based on the concept of 

phase space via Takens theorem (Takens, 1981). Using this approach, the coordinates of each 

point from phase space are the delayed samples of the signal.  

This assumption leads us to the conclusion that n n na b c  . For that matter, this 

contradicts our objective of creating a lobe anywhere in the first quadrant ( , , 0n n na b c  ). 

Hereby, this approach is not feasible and the concept of phase space reconstruction must be 

reconsidered (without losing the meaning of system’s evolution).  

Let’s consider that phase space lobe is characterized by the set of points 

( , , ), , ,n n n n n n nP x y z x y z   and 3
nP   . We define the 1D signal, called auxiliary signal, 

as follows: 

 3
1 2 1 2 1 2, , , ( , , ) { , ,..., , , ,..., , , ,..., }auxn n n n n n n N N Nx y z P x y z x x x y y y z z z         (3.2) 

Combining eq.(3.2) with eq.(3.1), it results in a phase space representation with a 

constant delay: d N   

The representation from eq.(3.2) is oscillations free for each part ( x  part, y   part, z  

part). Using eq. (3.1) to identify the terms from eq.(3.2), a determined law appears to control 

signal's evolution: 

 

1 2

1 2

1 2

, 1, , 1,

, 1, , 1, , , , 0, {1,2}

, 1, , 1,

i i j j

i i j j n n n

i i j j

x a t i k and x a t j k N

y b t i k and y b t j k N a b c n

z c t i k and z c t j k N

        



         


       

  (3.3) 

where k  is the length of the first director vector and N k  is the length of the second director 

vector. In other words, ( , , )i i i iP x y z  are the points belonging to 1v , respectively ( , , )j j j jP x y z  

are the points belonging to 2v . 
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 We recall that in step 1, it was imposed that , , 0, {1,2}n n na b c n  . Still, in eq. (3.3), 

the coordinates belonging to 2v  appear to have negative coefficients. This is caused by two 

conditions that our lobe has to meet:  

 The lobe must return to its original starting point 

 The signal belongs to a continuous measurement. Therefore, we must accomplish the 

sampling condition: it  and jt  are, in fact, the sampling moments of the signal with the 

sampling period sT  .  

 

0

0

0

( 1) , 1,

( 1) , 1,

[ ( 1) ] ( )

i s

j s

s s

t t i T i k

t t j T j k N

t k T j k T

   

    

    

  (3.4) 

Based on the observations presented above, in Fig. 3-6, we illustrate such signal. 

 

Fig. 3-6: The auxiliary signal aux  with the following parameters: 1 1 11.5, 1.1, 1.9a b c   , 

2 2 21.5, 1.2, 1.8a b c    , 50, 100, 5sk N f MHz    and 0 1/ s st f T   

Considering that ( , , ), , ,n n n n n n nP x y z x y z   is the evolution of the aux  signal in the 

phase space, its trajectory is easily obtained (Fig. 3-7).  

 

Fig. 3-7: The phase space lobe obtained using the signal aux from Fig. 3-6 
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The phase space lobe is obtained using the eq. (3.1), but it presents two limitations: 

 the lobe is too tight, making this representation sensitive even to low levels of noise 

 the corresponding signal of this phase space lobe presents discontinuities/ breaks in its 

evolution when the coefficient changes; in Fig. 3-6, 1 2a a , the signal is continuous, but 

1 2b b  and 1 2c c  , the signal is discontinuous when the coefficient changes (the effect is 

highlighted by the red circles) 

In order to obtain a larger lobe, we impose different number of points for the two 

director vectors that create the phase space, so, the eq. (3.3) becomes: 

 

1 1 2 1

1 2 2 2

1 3 2 3

, 1, , 1,

, 1, , 1, , , , 0, {1,2}

, 1, , 1,

i i j j

i i j j n n n

i i j j

x a t i n and x a t j n N

y b t i n and y b t j n N a b c n

z c t i n and z c t j n N

        



         


       

  (3.5) 

The discontinuity issue of the aux  signal corresponding to the phase space lobe is 

solved by imposing the continuity condition for the descending slopes from the aux  signal. 

 
1 1 2 1

1 2 2 2

1 3 2 3

[ ] [ 1]

[ ] [ 1]

[ ] [ 1]

x n x n

y n y n

z n z n

 


 
  

  (3.6) 

 In fact, the slopes of the lines from the aux  signal are the coefficients of 2v . Using 

the continuity condition, eq. (3.6) and considering that the lobe returns to its original point, 

meaning that 1 2 1 2 1 2[1] [ ] 0, [1] [ ] 0, [1] [ ] 0x x N y y N z z N      , it results in a relationship 

between the two director vectors: 

 

 

 

 

2 1 1 1

2 1 2 2

2 1 3 3

/

/

/

a a n N n

b b n N n

c c n N n

   


  


  

  (3.7) 

 

Fig. 3-8: The phase space lobe and its corresponding aux signal based on eq. (3.5) and (3.7) with the following 

parameters: 1 1 1 1 2 3100, 1, 1.2, 1.3, 50, 50, 60N a b c n n n        
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Fig. 3-9: The phase space lobe and its corresponding aux  signal based on eq. (3.5) and (3.7) with the 

following parameters: 1 1 1 1 2 3100, 1, 1.2, 1.3, 40, 50, 60N a b c n n n        

From Fig. 3-8 and Fig. 3-9, it can be observed that the parameters 1 2 3,n n and n  

reshape the phase space lobe such that it becomes larger and: it contains an extra vector (line) 

when two of them are equal (Fig. 3-8), or it contains two extra vectors (lines) when all three 

of them are different (Fig. 3-9). 

3.4. Reception 

Step 3: Recover the lobe information from the signal 

Our first attempt was to transmit the phase space lobe into an amplitude modulation. 

Therefore, we define two auxiliary signals with the following parameters that are translated in 

amplitude modulations, Fig. 3-10: 

 

1 1 1
1

1 2 3

1 1 1
2

1 2 3

1, 1.5, 2
:

400, 500, 600, 1000

2, 1, 1.4
:

400, 500, 600, 1000

a b c
aux

n n n N

a b c
aux

n n n N

  


   

  


   

  (3.8) 

 
Fig. 3-10: The amplitude modulated signals (left) which have as envelope the auxiliary signal defined in eq. (3.8) 

shown in phase space representation (right) 
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At reception, the information held in signal’s envelope is extracted in conditions free 

of noise and at different signal-to noise ratios (SNR), Fig. 3-11. 

 

Fig. 3-11: The recovered signal’s envelopes (normalized values) for: SNR  and 20SNR dB (left); 

SNR  and 15SNR dB (right); 

Although the new representation space provides a new perspective in terms of 

adaptive waveform for active configurations, the modulation amplitude approach does not 

offer reliable results in real propagation conditions.  It is obvious that even at 20 dB is hard to 

distinguish between the two lobes. Therefore, the alternative way is to introduce the lobe 

information in the frequency's evolution  

Firstly, the frequency range must be established. In this new interpretation of phase 

diagram trajectories, the coefficients 1 1 1,a b and c   become the maximum frequencies that the 

signals reach in time. In other words, as the auxiliary signals (that create the phase space 

lobes) contain only straight lines which vary in time, the modulated signal will contain just 

linear frequency modulations (LFM) that follow the trend given by the auxiliary signals. 

Hereby, these signals become from now the IFLs of the signals. 

After defining the IFLs using the same algorithm as shown in eq. (3.5) and (3.7), this 

set is composed of  LFMs which vary in the same time-frequency region in different manners, 

but their trajectory in phase space is UNIQUELY identifiable.. 

 

As an example, we consider a central frequency of 1 MHz  and in the range of 

[800 , 1200 ]kHz kHz . We define the auxiliary signals where the coefficients 1 1 1,a b and c  

correspond to the frequency parameters. 

 

6 6 6
1 1 1

1
1 2 3

6 6 6
1 1 1

2
1 2 3

1 10 , 1 10 , 1.2 10
:

0.4 , 0.5 , 0.6 , 1000

1.2 10 , 1 10 , 1 10
:

0.4 , 0.5 , 0.6 , 1000

a b c
aux

n N n N n N N

a b c
aux

n N n N n N N

      


   

      


   

  (3.9) 

 The modulated signals with the IFLs defined in eq. (3.9) are presented in Fig. 3-12, as 

well as their spectrogram representation, Fig. 3-13. 
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Fig. 3-12: The frequency modulated signals whose IFLs are auxiliary signals from eq. (3.9) 

 

 
Fig. 3-13: The spectrogram of the modulated signals 1s  and 2s  from Fig. 3-12 

The IFL spectrogram-based estimation (Fig. 3-14) determines the transmitted IFL in 

steps depending on the parameters of the spectrogram (given by the time-frequency 

resolution). 

  max ( , )e
f

IFL STFT f    (3.10) 

where eIFL is the estimated IFL and STFT  is the Short Time Fourier Transform. 

 Hereby, a linear fitting must be done by storing the moments (and their corresponding 

frequencies) when the spectrogram-based estimated frequency changes its value. Then, these 

stored values are linearly fitted. In order to have the same number of points as the original 

IFL, an interpolation is finally done on the fitted IFL.    

 2 1
1 1

2 1

[ ] [ ]
[ ] [ ] e e

f e
IFL i IFL i

IFL i IFL i i
i i


 


  (3.11) 
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where  fIFL  is the fitted IFL and eIFL   is the spectrogram estimated IFL (eq. (3.10)) where 1i  

and 2i are the time bins where the value of eIFL  changes. 

 
Fig. 3-14: The extracted IFLs using the spectrogram for the modulated signals 1s  (left) and 2s (right) 

In Fig. 3-15, the fitted IFL and the original IFL are plotted in the phase space. 

 
Fig. 3-15: The phase space lobes provided by the IFLs from 1s  and 2s  

 As shown in Fig. 3-15, the IFL shape is preserved in the phase space domain. 

Moreover, the phase space provides a new representation space for the discrimination of these 

signals.  

 This new waveform design concept has a great advantage in terms of separation of 

signals. In time and frequency domain, the new modulations are not separable (Fig. 3-16) as it 

is shown by their correlation and spectrum. 
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Fig. 3-16: The correlation of the modulated signals 1s  and 2s (left) and their amplitude spectrum (right) 

 Obviously, the auxiliary signals also cannot be discriminated from time/frequency 

domain, Fig. 3-17. 

 
Fig. 3-17: The correlation of the auxiliary signals 1aux  and 2aux (left) and their amplitude spectrum (right) 

The capacity of phase diagram to encode separable signals is then used in order to 

generate multiple separable signals, that are overlap in time and in frequency but still 

separable in the phase diagram domain.   

As an illustrative example, let us consider the following auxiliary signals: 

 

6 6 6
1 1 1

1
1 2 3

6 6 6
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2
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

   

     

    00


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

  (3.12) 

 Next, we study the frequency modulated signal’s robustness to noise in terms of phase 

space lobe representation. From Fig. 3-18 and Fig. 3-19, it can be noticed that this approach is 

robust enough for a SNR of at least 10 dB. 
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Fig. 3-18: Phase space lobes in noise-free conditions: original IFL (triangles) and the spectrogram recovered IFL 

(stars) 

 

Fig. 3-19: Phase space lobes for SNR = 10 dB: original IFL (triangles) and the spectrogram recovered IFL (stars) 

For SNRs below 10dB, there is a real problem with the choice of the parameters of the 

spectrogram that will conduct to satisfactory results. These parameters refer especially to the 

number of points for the Fourier transform computation and the overlapping of the windows. 

For example, for the noise-free case, the number of points is 512, whereas for the SNR = 10 

dB, the number of points is 4096, these two setting conducting to similar quality of IFL 

estimate. Another limitation is the choice of these parameters which is done by several trials 

that are time consuming. 

Considering more than 3 lobes in the phase space, we define them as all possible 

combinations of the coefficients 6 6 6
1 1 10.87 10 , 1 10 , 1.13 10a b c      .  Hereby, we get a set of 

six signals, Fig. 3-20. The number of points are the same for the entire set: 

1 2 30.5 , 0.4 , 0.6 , 500n N n N n N N    .    



  

33 

 

 

Fig. 3-20: Phase space lobes generated from the set of 6 auxiliary signals used IFLs 

Next, these IFLs are used to modulate the transmitting signal. Fig. 3-21 presents the 

results of the phase space representation of the IFLs in the noise-free case. 

 

Fig. 3-21: The original IFLs (continuous line) and the spectrogram-based recovered IFLs (stars) – noise -free 

case 

 On the other hand, when white additive Gaussian noise corrupts the signal, the 

recovered signal is not very smooth. The results are presented in Fig. 3-22 where we reinforce 

that they are obtained for higher number of FFT (Fast Fourier Transform) points for the 

spectrogram (compared with the case of no noise (512 points), the number of points is eight 

times higher (4096 points)). 



  

34 

 

 

Fig. 3-22: The original IFLs (continuous line) and the spectrogram-based recovered IFLs (stars) for SNR = 10 

dB 

 At lower SNRs (below 10 dB), the things become more complicated and it is difficult 

to separate the signals in the phase space, Fig. 3-23. 

 

Fig. 3-23: The original IFLs (continuous line) and the spectrogram-based recovered IFLs (stars) for SNR = 5 dB 

 To improve the robustness to noise and to overcome the limitation of parameter 

dependence for the IFL’s spectrogram-based estimation, we need to define a new approach 

for the IFLs estimation.  

3.2.1. Phase space-based IFL estimation 

In this section we introduce a new technique for IFL estimation using the phase space 

representation. This approach is, once again, suggested by the evolution of a signal – sine 

wave – in phase space.  

Considering a sine wave of frequency 0f and sampling frequency sf , then, for a 

duration D , where 0/D m f  and m is a positive integer, the sine wave contains s sN D f 

samples. 
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   In phase space, the sine wave has a trajectory which forms an ellipse. It is known 

that a complete rotation of the ellipse is in fact the evolution of a sine wave during a complete 

period. 

 

Fig. 3-24: The time evolution of a sine wave during one period (left) and its trajectory in 2D phase space (right): 

0 020; 400; 1 / ; 3sf f D f d     

 From Fig. 3-24, it can be noticed that the sine wave forms an ellipse in the phase space 

which is oriented along the first bisector, namely the ellipse is rotated with 45 . Still, for only 

one period, the ellipse is not complete.  This is caused by the actual representation given by 

eq. (2.11). In other words, the number of samples from the phase space representation is 

( 1)sM N m d    . In our case, 20 (2 1)3 17M     . In order to overcome this drawback, the 

considered signal can be interpolated so that the difference given by the factor ( 1)m d  can be 

neglected (Fig. 3-25) and/ or the signal should contain two or more periods (Fig. 3-26).   

  
 

Fig. 3-25: The time evolution of an interpolated sine wave during one period (left) and its trajectory in 2D phase 

space (right): 0 020; 400; 1 / ; 3sf f D f d    and the interpolation factor 5f    
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Fig. 3-26: The time evolution of a sine wave during two periods (left) and its trajectory in 2D phase space 

(right): 0 020; 400; 2 / ; 3sf f D f d     

 Based on the observations presented above, for the phase space based IFL estimation, 

we have established the following algorithm: 

 The trajectory of the analyzed signal is computed in 2D phase space (so that the factor 

( 1)m d  is minimized);  previously, the signal can eventually be interpolated with an 

interpolation factor f   

 The phase space is translated in the positive quadrant 

 The polar angle of each point of phase space is computed as follows: 

 
[ ]

[ ] arctan
[ ]

x n d
n

x n

 
   

 
  (3.13) 

 Knowing that the trajectory evolves along the first bisector, we eliminate this bias of  

45  by subtracting this value from all polar angles 

 Next, the ellipse’s evolution is quantified: a counter is started when the first point with 

a positive polar angle is found and the counter is stopped when the trajectory returns in 

the same region (the angle passes from negative into positive). With the number of 

points counted in this interval, 0n  , we obtain the first 0f  estimation, where 

0 0/sf f n . The algorithm continues until the last point of the phase space is reached. 
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Fig. 3-27: The original IFL (in blue) and the phase space-based IFL estimation (in red – 5, 10f d  )  

For the signals presented in Fig. 3-27, we present the IFL estimation based on the 

phase space evolution. 

Still, the choice of the delay d  must be discussed. The optimal delay depends on the 

signal’s characteristics; therefore, we propose the use of the multi-lag phase analysis (MLPA) 

(Bernard, et al., 2016), (Digulescu, et al., 2016c), (Bernard, et al., 2014) for the IFL 

estimation. Besides the algorithm presented above, we also vary the delay and we choose the 

delay that gives the IFL estimate that is the closest to the transmitted signal. This decision is 

made by minimizing the cost function given by eq. (3.14). 

 ( ) ( )o eC d IFL IFL d    (3.14) 

where oIFL  is the original IFL and eIFL  is the phase space-based IFL. 

 Next, a comparison between the use of a fixed delay and the MPLA is presented. 

 
 

Fig. 3-28: The phase space-based IFL for 5d    and SNR   (left) and the MLPA phase space-based IFL 

15  1  5  1  3  1  4  1  5  1  5d   (according to the colors: clockwise from blue to green) and SNR   (right); 

continuous line – original IFL; starred line – estimated IFL 

From Fig. 3-28, it goes that the IFL information do not depend on the delay when the 

signal does not contain any noise.  

 

 
 



  

38 

 

Fig. 3-29: The phase space-based IFL for 5d  and 5SNR dB  (left) and the MLPA phase space-based IFL 

21   27  1  9   30   21   25d   (according to the colors: clockwise from blue to green)  and 5SNR dB  (right); 

continuous line – original IFL; starred line – estimated IFL 

When it comes to noisy signals, in Fig. 3-29, the 5SNR dB ,  a fixed delay does not 

succeed to track the IFL, (here 5d   is just an example). Using the MLPA, it is obvious that 

the IFL is tracked, the optimal values of the delay varying from a signal to another. 

Furthermore, although the estimated IFLs suffer a slight rotation from the original 

ones, the tracking of the IFL is successfully achieved, the signals being separated and 

distinguishable. 

3.2.2.  “Marked” lobes 

This new waveform generation technique is based on the information coding via a 

frequency modulation defined by the lobes designed in the phase space. If the signals defined 

from these lobes are used in a time-of-flight measurement application, we propose to 

introduce a special mark that will help us measuring the time of flight as the distance, in time, 

between these marks are observed in the phase space.  

Hereby, the two director vectors that define the lobe in the Cartesian system will 

present an extra point to mark the signature of the lobe, as presented in Fig. 3-30. 

 
Fig. 3-30: The ideal phase space representation of the “marked” lobe (auxiliary signal) 

From figure above, it can be observed that the “signature” of the lobe is given by the 

point  2 2 2 2( , , )P x y z  in the phase space. Based on this “signature”, we aim to determine the 

TOF (Fig. 3-31). The interest of this approach is that, even if the IFLs between transmitter and 

the receiver are not the same (due to propagation effect or event estimation error), if the marks 

are still visible, they allow a more accurate estimation of TOF than looking in time domain. 
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Fig. 3-31: The phase diagram space approach versus classical approach; in the phase diagram, the estimation of 

TOF is done using the distance between the marks of emitted and received signals, respectively 

The first condition which we imposed is: the four points 1 2, ,O P P  and 3P  should be 

coplanar. It goes that: 

 

0 0 0

1 1 1

2 2 2

3 3 3

1

1
0

1

1

x y z

x y z

x y z

x y z

   (3.15) 

Considering 0 0 0 0x y z   , eq. (3.15) is equivalent to: 

 

 
1 1 1

2 2 2

3 3 3

0

x y z

x y z

x y z

   (3.16) 

It is obvious that the points 1 2,P P  and 3P  should be different, therefore the lines of the 

determinant from eq. (3.16) must be different. In order to accomplish the condition of 

coplanarity for whatever points P1, P2 and P3, at least two columns of the determinant should 

be proportional. Therefore, the coplanarity condition (eq.(3.15)) restraints to the second 

condition: 

 , {1,2,3}, (1,2)i

i

x
r i r

z
     (3.17) 

Then, the second column is defined as: 1 3 2 2 3 1,y x y x and y x   . With this condition, 

the phase space representation forms a lobe with a “signature” provided that 

1 2 3 2x x and x x   . 
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Fig. 3-32: The IFL (auxiliary signal) (left) that forms the phase space marked lobe (right): 

1 2 30.8, 0.6, 1 1.2x x x and r     

Next, the signals are generated in the same way as in the case of the simple lobe: the 

IFLs (auxiliary signals) are used to obtain the frequency modulated wide band signals  

 The multiple lobes approach results from the rotation in the phase space, with a given 

angle, of one “marked” lobe (for example, the one from Fig. 3-32). In this way, we get 

multiple “marked” lobes. 

 

Fig. 3-33: The multiple lobes with signature obtained based on the lobe from Fig. 3-32 and rotated with an angle 

of / 6  

As expected, these signals are not separable in time and frequency domain, as it is 

shown in Fig. 3-34.  

 

Fig. 3-34: Example of correlation between the signals that contain the IFLs blue and green from Fig. 3-33 (left) 

and their corresponding amplitude spectral representation (right) 
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Next, we study the robustness to noise of the multiple “marked” lobes. 

 

Fig. 3-35: The original IFLs (continuous line) and the phase space-based estimated IFLs (starred lines) for 

20SNR dB (left) and their corresponding phase space lobes (right) 

 From Fig. 3-35, it can be noticed that the signals are discriminated in the phase space 

for a high SNR. Although, the recovered IFLs form a larger lobe in the phase space, than the 

original one, they do not overlap and present the approximately the same evolution. 

 

Fig. 3-36: The original IFLs (continuous line) and the phase space-based estimated IFLs (starred lines) for 

7SNR dB (left) and their corresponding phase space lobes (right) 

 The limit of the SNR is around 7dB , Fig. 3-36, in order that the lobes remain 

distinguishable in the phase space and without overlapping.  We mention that the phase space-

based IFL estimation is done using the MLPA and an interpolation factor of 10. 

3.3. Chapter summary 

This chapter illustrates a new concept for the waveform design, namely the phase 

space-based waveform generation, which can be used to create a set of orthogonal signals in 

phase space. This signal is created in the phase space and then its information is translated 

into 1D signal. Then, there is also presented a new IFL estimation method for the signal 

recovery, designed in the phase space.   

These signals are tested and their feasibility is validated in our experimental setup 

presented in Chapter 5. 
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CHAPTER 4 

4. Passive sensing based on the RQA 
concept 

 

Contrarily of the applications requiring an active sensing, there are a large number of 

applications where active sensing is useless. This is particularly the case of the application 

where the phenomena under study generate signals whose analysis allows us to understand 

(detection, classification, localization, etc.) them. Currently, a special attention is carried to 

the transient phenomena, characterized by very fast variation in time and frequency. The 

development of new analysis methods for such signals is a current work direction in the field 

of signal processing.   

In this context, this chapter presents new methods for the detection, localization and 

characterization of transient signals based on the concept of RQA. As discussed in chapter 2, 

the RPA and RQA methods are the main approaches derived from the phase diagram and the 

information that could be retrieved from this analysis can bring a deeper understanding of the 

studied phenomena (Bernard, et al., 2016), (Marwan, Schinkel, & Kurts, 2013), (Webber Jr. 

& Zbilut, 2005), (Zbilut & Webber Jr., 2007).  

Firstly, there is highlighted the measure used for the detection and localization of a 

transient signal, namely the time-distributed recurrence (TDR) measure. This measure 

exploits the fact that a sudden change in the signal under study is represented as a new state in 

the phase space which evolves in a totally different region than the rest of the signal’s states. 

The initial idea has been presented in (Marwan, et al., 2007) and our contribution was to adapt 

this idea to the problem of detection of transient sources.   

Then, the multi-lag phase-space analysis will be introduced. This concept is very 

useful for the characterization of transient signals (Bernard, et al., 2016), (Bernard, et al., 

2014), (Digulescu, et al., 2016c). This approach allows us to discriminate between signals 

with close parameters based on their evolution in the phase diagram. 

Finally, the diagonal lines quantification is presented. This approach is based on the 

fact that the diagonal lines from the distance/ recurrence matrix spectral content of any signal 

(Ioana, et al., 2014). With this property, we are able to highlight slight changes that appear in 

signal’s spectral content, much weaker than the fundamental frequency, for instance. 

4.1. Time-distributed recurrence 

The core of the time-distributed recurrence (TDR) measure starts from the idea that a 

sudden change in a time series represents a new state of the dynamical system  (Ioana, et al., 

2014), (Birleanu, et al., 2012), (Marwan & Kurths, 2002), (Webber Jr. & Zbilut, 2005), 

(Webber Jr., 2012), (Zbilut & Webber Jr., 2007), (Ramirez Avila, et al., 2013), (Yang, 2011), 

(Digulescu, et al., 2016c), (Le Bot, Gervaise, & Mars, 2016). Namely, there is no recurrence 
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with the previous states. Therefore, when an appropriate distance is used, the distance/ 

recurrence matrix presents a horizontal/ vertical band with much fewer recurrences. When the 

sum of the lines/ columns of the recurrence matrix is computed, we actually obtain the 

column average (Digulescu, et al., 2016c), (Ioana, et al., 2014), which, in the case of transient 

signals, significantly changes. 

The TDR measure is defined as:  

 ,

1

1
[ ]

M

i n

i

TDR n R
M



    (4.1) 

where ,i nR  is the RM from eq. (2.13). 

This measure can be interpreted as the column average recurrence of a given point i   

or the recurrence density heterogeneity in the point i .  Hereby, a solitary position of a phase 

space vector changes significantly its average recurrence and it can be highlighted through the 

use of the complementary version of the TDR measure from eq. (4.1): 

 * [ ]
[ ] 1

max{ [ ]}

TDR n
TDR n

TDR n
    (4.2) 

Fig. 4-1 highlights the detection based on the *TDR  measure. 

 

 

Fig. 4-1: The transient detection using the 
*TDR  measure: (up) the analyzed transient signal; (left-down) the 

recurrence matrix of the analyzed signal; (right-down) the analyzed signal and its TDR* based detection curve 

Moreover, in order to detect only the transient signal from the analyzed observation, 

the SNR must be computed. We computed it as follows: the last part of the acquired signal 

(when no transient occurs) is considered as noise, [ ]z i ,  (unwanted signal recording 
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environmental noise), whereas the part that has a different behavior is considered as the 

interest signal, [ ]s i . Both parts of the signal, [ ]s i  and [ ]z i  have the same length, N . Then, the 

SNR is computed as: 

 2 2
10

1 1

10log ( [ ]) ( [ ])

N N

i i

SNR s i z i

 

    
    
    
    
    (4.3) 

Accordingly, the threshold   of the recurrence matrix is chosen so that it includes a 

percentage,  , of the maximum value of the equivalent noise which has the same power as 

the interest signal: 

  max [ ]SNR z i       (4.4) 

where   is a constant that is chosen to nonlinearly filter the noise. In our applications,   

varies from 0.4  to 0.95 .  

Considering the eq.(4.4), the components of the noise (undesired parts of the signal) 

are considered as recurrences; therefore, the transient signal (useful part of the signal) is 

highlighted by the proposed measure. 

 

 

Fig. 4-2: Transient signal detection using the TDR measure for a transition of only 11 samples where 3m   , 

2d   and 0.8    
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Fig. 4-2 emphasizes the advantage brought by the TDR measure, namely that the 

detection provided by the detection curve is more robust. In the examples above, the detection 

curve exhibits a SNR improvement of 30 dB  .  

The major advantage of this method is that, in applications where the SNR level of the 

acquired signal varies a lot, the TDR detection curve approach improves the SNR level after 

filtering the acquired signal with the detection curve. Through this approach, the signal's 

power after filtering is significantly increased (in our applications, at least 10 dB), which is 

very helpful for the classification and a further characterization. 

4.2. Multi-lag phase-space analysis 

The RPA method stands, as its name suggests it, on the concept of recurrences. Still, it 

is worth to pay more attention to the phase-space representation, in order to achieve richer 

characterization of signals with close parameters coming from the same source and having the 

same propagation and acquisition conditions. 

The phase-space representation is very rich in information regarding the evolution of a 

dynamical system (Eckmann, Kamphorst, & Ruelle, 1987), (Kantz & Schreiber, 1997), 

therefore the analysis can be made in any dimension, but our approach restrains, for simplicity 

seeking, to a bi-dimensional representation. 

Therefore, considering the Cartesian coordinate system, the phase-space representation 

is defined by plotting ( , )n nx y  defined as: 

 
[ ]

[ ]

n

n

x s n

y s n d



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  (4.5) 

where n  is the thn    sample of the recorded time series. It goes that eq. (2.11) can be rewritten 

as: [ ] [ ]nv s n i s n d j     . 

 Firstly, the main attributes of this representation are recalled. Considering three signals 

1 2,s s  and 3s  defined as: 
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  (4.6) 

where ,   and   are constant which modify the signal s  through translation in time, scale 

and/or amplitude, the phase-space points present the following attributes (Marwan, et al., 

2013), (Birleanu, et al., 2011): 
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i i
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  (4.7) 
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The phase-space trajectory is invariant to translation and it points out the scale and 

amplitude change. In order to introduce the concept of multi-lag phase-space analysis, we 

recall the three transient signals with close characteristics given by eq. (2.9). These signals are 

given by the generic signal: 

 ( , , )

(sin[2 ] [ ]), {1,2,..., }
[ ]

[ ],
a f b

a f n b n n N
s n

a b n otherwise

     
 


  (4.8) 

where 
2

sfN
f

 
  
 

 and 10sf MHz  is the sampling frequency. 

The considered signals 
1 1 11( , , )a f bs  ,  

2 2 22( , , )a f bs  and 
3 3 33( , , )a f bs , presented in Fig. 4-3, 

have the following relationships between their parameters: 1 2/ 1 / 0.6 1.66a a    , 

1 3/ 1 / 0.3 3.33a a   , 5 5
1 2/ (2 10 ) / (1.9 10 ) 1.05f f      ,   5 5

1 3/ (2 10 ) / (1.6 10 ) 1.25f f     , 

1 2 3b b b   and 20 ,iSNR dB  {1,2,3}i   .  

 

Fig. 4-3: Transient signals considered for the multi-lag phase space analysis 

In order to distinguish between the synthetic transient signals considered in eq. (4.8), 

the multi-lag phase space analysis is considered (Digulescu, et al., 2016c), (Bernard, et al., 

2016), (Bernard, et al., 2014).  The study of the representation of the trajectory for multiple 

lags is done by two approaches: the elliptic modeling of the trajectory for the area estimation 

in the phase-space, respectively, the polar coordinate representation.  

The elliptic modeling supposes to determine the ellipse that circumscribes the phase-

space trajectory and, therefore, to estimate the area of the trajectory through the ellipse's area 

computation. The area of the modeling ellipse is a new descriptor of the transient signal.  

The trajectory is modeled by considering the solution that minimizes the following 

system (Bernard, et al., 2016), (Bernard, et al., 2014), (Digulescu, et al., 2016c): 

  
2

1

( , )

M

i i

i

S F x y



    (4.9) 

where 2 2( , ) 1F x y x y     . The least mean square estimation of eq. (4.9) determines the 

couple  ,  . It goes that the major semi axes 1/a    and the minor semi axes 1/b   . 
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The next step after the elliptic modeling is the area estimation and the determination of 

the optimal delay. The delay is considered to be optimal for the value that provides an average 

value of the area. 

For example, in Fig. 4-4, we present this aspect for the synthetic transient signal 

shown in Fig. 4-1 (up). 

 

Fig. 4-4: The phase space trajectory evolution using different delays 

This average value area ensures a suitable phase-space representation where the 

trajectory does not evolve too close to the main diagonal (case of redundancy) or its evolution 

is too complicated (case of irrelevance) (Casdagli, et al., 1991). 

 

Fig. 4-5: The evolution of the area according to the lag (delay): for the signals presented in Fig. 2-5 (left) and for 

the normalized signals (right) 

 

From Fig. 4-5, it can be noticed that the area of the signals has a similar trend with 

some differences for the normalized signals. Hereby, considering the average value of the 

area, 3A  , the optimal delay for 1s  is 1 5d  , for 2s , 2 5d   and for 3s , 3 6d  . 

With the chosen lags, the next step is to plot the phase-space trajectory into polar 

coordinates: 
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 
  (4.10) 

This representation is very useful for signals with different amplitudes, because it 

shows the evolution of the position vector regardless of its length (that is related to signal’s 

amplitude). 

 
Fig. 4-6: The polar coordinates representation for the transient signals considered in our study: 

1 1 2 2: 5, : 5s d s d     and   3 3: 6s d   

Fig. 4-6 shows the evolution of the transient signals in the polar coordinates derived 

from the phase diagram. It can be observed that the noise is concentrated in a small region of 

the phase space which is translated in a small conglomeration of points around the peak 

corresponding to the angle 3 / 4  .  

In this way, through the isolation of this region, the noise can be eliminated in the 

process of signal characterization. Moreover, the evolution of the trajectories is different for 

the peaks corresponding to the angle / 4 . Measuring the values of the maximum length of 

the vector corresponding to the / 4  angle, it goes: 1 2/ 1.67    and 1 3/ 3.43   . So, the 

ratio of the amplitude of the transient signals is then conserved in this new representation.  

Furthermore, the number of points between the two angles 3 / 4   and / 4  (after 

excluding the points corresponding to the noise) is directly related to the fundamental 

frequency of the signal. Let 0n  be this number of points from the phase diagram. The 

fundamental period of the signal, 0T  is: 

 0
0

2

s

n
T

f
   (4.11) 
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From eq.(4.11), it goes that: 1 2/ 1.04f f   and 1 3/ 1.24f f   which are very close to the 

ratios proposed in eq. (2.9). These results allow us to discriminate between the proposed 

signals although their characteristics are very close. 

 

Fig. 4-7: The schematic presentation of the multi-lag tools 

 Fig. 4-7 presents the MPLA algorithm divided in two parts: the elliptic modeling and 

the polar coordinates representation, namely the phase diagram representation. 

4.3. Diagonal lines quantification  

      The diagonal lines on the recurrence matrix indicate that the system returns in 

approximately the same state for a certain period of time. The choice of the diagonal lines 

quantification (DLQ - Diagonal Lines Quantification) is given by the fact that the distance 

between two successive diagonal lines provides the fundamental period of the signal  

(Digulescu, et al., 2016b), (Ioana, et al., 2014). 

The quantification of these lines is done as follows: 

 ,

1

1
[ ] * , 0, 1

M n

i i n

i

dlq n D n M
M n







  

   (4.12) 

where , , ,* 1 / max{ }i i n i i n i i nD D D     is the complement of the distance matrix.  

Then, the Fourier transform is applied to this quantification: 
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2 /

0

[ ] [ ]
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j kn M

k

DLQ k dlq n e


 



    (4.13) 

where M  is given in eq. (2.11). Fig. 4-8 presents the SD  measure applied on a sine wave 

with the frequency 10f Hz  . 
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Fig. 4-8: Example of DLQ: (left) test signal – a sine wave with the frequency 10f Hz ; (center) the DLQ 

measure; (right) zoom on the DLQ measure; 

This approach points out the frequency component in a different manner than the 

classical approach, where the Fourier transform is directly computed on the analyzed signal. 

In this case, the choice of the distance matrix is preferable to the recurrence matrix in order to 

follow the evolution of the signal entirely and not to separate it into a binary decision which 

usually brings in the spectral content various harmonics. 

To illustrate this concept, let us consider a signal composed by the product of two 

cosines: 

    [ ] cos cos ,x n n n        (4.14) 

To simplify the demonstration, we suppose that the embedding dimension 2m   and 

the used distance is the squared Euclidean distance: 

 [ ] [ ]iv x i i x i d j       (4.15) 

Therefore the distance matrix depends on: 
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  (4.16) 

Replacing eq. (4.14) in eq.(4.16), it goes that: 

 
[2 ] [2 ]

[ ] 2 sin cos
2 2

i
i n i n

E n
   

     (4.17) 

where 
sin[( ) ] sin[( ) ]

2 2

n n   
    considering the relationship between the frequencies 

from eq. (4.14). 

Using eq. (4.17)in eq. (4.16), leads to: 

  2 2[ ] 1 cos 2 cos 2 cos (2 ) cos[ (2 )]
2 2

i
n n

E n i i i n i n
        

                   
        

  (4.18) 

The eq. (4.18) develops the spectral representation of the diagonal lines quantification. 

Together with the   component that it is also found in the classical approach, in this 

representation there are present two other components: a component at 2 and another at 2 . 
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To exemplify our approach, let [ ]x n  be a test signal: 

 1 2[ ] cos[2 ] cos[2 ]x n f n f n      (4.19) 

where 1 500f Hz  and 2 39f Hz , conserving the condition   . The test signal is shown 

in Fig. 4-9. 

 

Fig. 4-9: The time evolution of the test signal modulated in amplitude 

 

 

Fig. 4-10: The spectral representation of the diagonal lines quantification (up - left), the classical amplitude 

spectrum representation (up – right) and the envelope amplitude spectrum (down – center); for the computation 

of the distance matrix, it is used the squared Euclidean distance, 3m   and 2d   
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Fig. 4-10 presents the new information brought by this new approach: the diagonal 

lines representation contains three important components ( 2 , ,2   ), while the amplitude 

spectrum of the proposed signal presents only the   component and the envelope 

amplitude spectrum contains only the envelope frequency information, but also multiple 

harmonics of its envelope. 

The displayed data tips show the values of the components: 78f Hz , two 

components at 500 39f Hz  and the third at 2(500 39)f Hz   and 2 500f Hz  . It is 

obvious that the classical amplitude spectrum contains only the frequency 500 39f Hz   and 

the envelope amplitude spectrum the frequency 78 , {1,2,3,...}f k Hz k    . 

This new quantification is very useful for applications where wide band signals 

interact with low frequencies which is the case of vortex detection and characterization: the 

wide band signals are suitable hydraulic system monitoring (Candel, et al., 2014a), 

(Digulescu, et al., 2014d), (Digulescu, et al., 2016a), (Digulescu, et al., 2016b) and the 

frequencies induced by the vortex are significantly smaller than the wide band signals 

(Digulescu, et al., 2016a). 

It should be noticed that, when  , the frequency modulation amplitude spectrum 

is quite similar with the amplitude spectrum of the amplitude modulation. Therefore, we apply 

the diagonal line quantification on the next test signal (Fig. 4-11): 

 1 2[ ] cos[2 cos[2 ]]x n f n f n       (4.20) 

where 1 500f Hz  and 2 39f Hz  and 2  . The condition   stands valid. 

 

Fig. 4-11: The frequency modulated test signal 

From Fig. 4-12, it can be noticed that in the case of a frequency modulated signal, the 

diagonal line quantification measure also emphasizes the classical components  , but 

more important the extra component  . Besides an extra component 2( ) . 
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Fig. 4-12: The classical amplitude spectrum representation (left) and the spectral representation of the diagonal 

lines quantification (right); for the computation of the distance matrix, it is used the squared Euclidean distance, 

3m   and 2d   

This approach is very useful for applications where a phenomenon of interest is 

characterized by much lower spectral content than the investigating signal’s one. 

4.4. Chapter summary 

This chapter presents new approaches for the detection, localization and 

characterization of transient signals using the RPA, RQA and the phase diagram analysis 

concept. The TDR measure is based in the evolution of the signal in phase space and it 

exploits the recurrence matrix properties in order to detect and localize transient signals.  

Next, the MLPA is introduced based on the elliptic modeling and on the phase 

diagram representation. This type of analysis is very useful for the discrimination of signals 

with close parameters.  

Finally, the diagonal lines quantification is introduced and, using synthetic signals, we 

emphasize the attributes that this type of quantification makes visible: the modulating 

component of an amplitude/ frequency modulated signal, even if they are much lower in 

frequency than the investigating signal’s content. 
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CHAPTER 5 

5. Applications in active 
configurations 

This chapter focuses on the experiments performed in active configuration. Firstly, we 

present the experimental configuration and, then, we show our results using the theoretical 

methods presented in the previous chapter. Moreover, these results are compared with 

classical methods. 

5.1. Cavitating environments     

The first applicative context is the detection of the cavitating vortex based on non-

intrusive active sensing using an ultrasonic path defined by two wide band transducers. The 

objective of this application is to emphasize the effect of the cavitating vortex from the 

acoustic data in order to identify the different phases of the evolution of the phenomenon. 

Measurements were carried out in a laboratory facility which materializes the flow conditions 

downstream a hydraulic turbine.  

The vortex flow and vortex spectrum 

In literature the vortex vector is defined as 2u    , where   is the rotational 

speed of the fluid (namely the local spinning motion in a given point) and u  is the local flow 

velocity vector. The flow for an incompressible fluid of velocity is described by the Navier-

Stokes (5.1) and continuity equations (5.2) (Emanuel, 1984), (Takahashi & Miyazaki, 2006): 

 21u
u u=- up v

t


    

 
  (5.1) 

 0u     (5.2) 

where p  is the fluid pressure,    is the density of the fluid, u  is the flow velocity vector, v  is 

the fluid viscosity and   is del operator. 

For the vortex analysis, the Rankine model can be used. Analytically, the Rankine 

vortex is defined by the components from eq. (5.3)(Takahashi & Miyazaki, 2006): 
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where ,r zu u and u  are the radial, axial and, respectively, tangential velocity components 

defined in a cylindrical coordinate system for the u  flow velocity. It should be mentioned 
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that, when maxr r , the tangential velocity u  progresses in the forced vortex region, while, 

when maxr r , its progress happens in the free vortex region. 

The frequency signature of the cavitating vortex is given by the solution (5.3) of 

equations (5.1) and (5.2) through the solution  . Hereby, the relation between the vortex flow 

and its spectrum is: 
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  (5.4) 

In (Rubin, 2000), there can be found more details about the spectral magnitude of 

Doppler velocity. For our experiments, this theoretical result shows that the vortex conduct to 

the generation of a low frequency component that our methodology aims to exploit in order to 

assess this phenomenon.   

5.1.1. Experimental configuration and results 

The experiments have been conducted in a reduced scale facility which consisted of a 

hydraulic installation where the flow rate can be manually changed (Candel, et al., 2014a). 

The acoustic transceivers operate around at 1 MHz  and the emitted waveform is a wide band 

signal with the same central frequency. This signal, v( )  has a linear characteristic law. 

 2
0

( )
( , ) cos( ( )), ( ) 2 2 ( ) ( )

d t
v t t where t t f t t and t

dt


              (5.5) 

where 0 800 , [0,100 ]f kHz t s   , the coefficient   is chosen such that the final frequency of 

the sweep is 1200f kHz  . 

Considering that the cavitating vortex is characterized by the unknown law ( )u   and 

the wide band signals (that are continuously emitted) are characterized by ( )v  , then, at the 

receiver, the signal carries the interaction between the emitted signal and the studied 

cavitating vortex in ( , )w   . The purpose of the experiment is to highlight the signature of the 

cavitating vortex from the received signal. 

The experiments are performed on two different pipelines; therefore, there are two 

configurations to consider. The pipeline of the installation has been placed inside a stator 

which produced the cavitational vortex as the flow rate increases, Fig. 5-1.  

 
Fig. 5-1: The installation for the first set of measurements 

There are two experimental setups that we performed: for the first one, the flow rate of 

the hydraulic system varies and, when the flow rate becomes stable, the acoustic active 
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system is started at this operating point. In the same time, the flow rate of the system is 

recorded. Moreover, on the tip of the stator a pressure sensor is placed so that we have a 

reference for the cavitational vortex (more the pressure is dropping, higher the intensity of the 

cavitation is). Fig. 5-2  presents the setup of the experiment. 

 
Fig. 5-2: The on-site setup for the first set of measurements 

The second experimental setup is performed after the divergent region of the Plexiglas 

pipeline, as shown in Fig. 5-3 and Fig. 5-4. 

 
Fig. 5-3: The installation for the second set of measurements 

 
Fig. 5-4: The on-site setup for the second set of measurements 

The experiment is done while slowly varying the flow rate of the water. In other 

words, during the experiment, the received signal is acquired and recorded in bursts of 2.6 ms

simultaneously with the flow rate for approximately 90 s .  

 

Fig. 5-5: Cavitating vortex stages: A1 no vortex (left), A2 incipient vortex (center), A3 developed vortex (right) 

For both set of measurements, based on the visual observation (Fig. 5-5), three stages 

of the vortex evolution were identified: A1 region - no vortex presence (up to 6 /l s ), A2 

region incipient vortex (from 6 7.2 /to l s ) and A3 region developed vortex (more than 

7.2 /l s ). 
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Relating the cavitating vortex stages to the deformation operator, we recall that: 

 when the water is monophasic: the deformation operator kD  is defined by the attenuation 

and delay: 

  ( ) ( )k k ks t s t    D   (5.6) 

where k  is the index of the propagation path. Therefore, the received signal is: 

( ) ( ) ( )k k

k

r t s t n t       

 when the cavitation appears: then, the deformation operator kD  is characterized by 

attenuation, delay, as well as the Doppler effect that acts as a deformation of the 

instantaneous phase of the signal: 

  ( ) ( ( )) exp( ( ))k k k k ks t s t t A j t         D   (5.7) 

where  
( )

( ) k
k

r t
t t

c

 
     

 

  and ( )kr t  is the time (Doppler) dependent position vector.  

 Based on this latter observation, we aim to detect and characterize this type of 

environment. 

First experimental setup  

 This experiment was performed in March, 2016 at the Power Engineering Faculty, 

”Politehnica” University of Bucharest. The acoustic transducers are placed in “V” 

configuration for a longer interaction with the vortex. The emission transducer, the closest to 

the stator, generates 1 ms   linear frequency modulations in a spectral bandwidth range of 

[0.8,1.2] MHz  with a repetition rate of 2.5 ms . The sampling frequency is 5MHz .   

 Fig. 5-6 presents the wide band acoustic signal used for the characterization of the 

cavitational vortex and two received signals in different states of the system: for the incipient 

cavitation, and for a fully developed cavitation, respectively. 

 
Fig. 5-6: The emitted signal for each measurement, a received signal during a trial for the incipient cavitation 

and a received signal during a trial for the cavitation flow 
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 In Fig. 5-7 and Fig. 5-8, the limitations of the Fourier transform applied on the signal 

and its envelope are presented. The signal considered is acquired when the cavitation is clear 

eye visible (cavitation flow).  

 

Fig. 5-7: The amplitude spectrum of the envelope for a received signal when the cavitational vortex is fully 

developed 

 

Fig. 5-8: The amplitude spectrum for a received signal when the cavitational vortex is fully developed 

 This approach is based on the assumption made in eq.(4.19), namely that the spectral 

content of the cavitation has a much lower frequency content than the wide band acoustic 

signal of the transceivers,  . It can be seen that the associated phenomena (attenuation, 

dispersion, noise, etc.) hide the effect induced by the particle motion from the cavitational 

vortex, they only affect the low frequency content (around hundreds of Hz). 

 

Fig. 5-9: The amplitude DLQ (eq. (4.13) ) for an acquired signal when the cavitational vortex is fully developed 
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 On the other hand, the use of the diagonal line quantification (eq.(4.13)) highlights, on 

the same signal, the cavitational vortex spectral content induced in the received signal when 

the cavitation is fully developed (Fig. 5-9). 

 Next, we applied our approach for all acquired signals in each configuration. Table 5-1 

presents the system’s characterizing parameters for each operating point of the system.  

Operating 

point no. 

Parameters 

Flow 

rate 

(l/s) 

Mean 

pressure 

(bar) 

Pressure 

standard 

deviation 

(Pa) 

3 1.14 1.23 1936 

4 4.34 1.19 2437 

5 9.2 1.05 3447 

6 12.86 0.83 5784 

7 14.77 0.64 6208 

8 15.63 0.55 6985 

9 16.01 0.51 7136 

10 16.08 0.49 7039 
Table 5-1: System’s parameters for each operating point 

 It should be noticed that the greater the number of the configuration is, the greater the 

flow rate of the hydraulic system is. This has as a direct consequence the appearance of the 

cavitation which is emphasized by the decreasing of the pressure and the increasing of its 

standard deviation.  

 

Fig. 5-10: The DLQ frequency position (left) and its mean (for 20 samples - right) using the diagonal lines 

quantification approach for the signals acquired at each operating point (the number in red box indicates the 

configuration); the RPA parameters are 5 3m and d   using the Euclidean distance  

As Fig. 5-10 presents, for the operating point no. 3, there is no cavitation. In operating 

point no. 4, the mean of the frequency deviation increases as well as its standard deviation, 

then, from operating point no. 5, the mean and the standard deviation of the frequency 

component induced by the particle motion increase gradually. Moreover, the evolution of the 

frequency component is strongly connected to the cavitating vortex stages shown in Fig. 5-5. 
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Therefore, for each operating point, we compute the mean of the frequency component and its 

standard deviation. 

Operating 

point no. 

Parameters 

Mean of 

the 

frequency 

componen

t (kHz) 

Standard 

deviation of 

the frequency 

component  

(kHz) 

3 0.84 0.23 

4 1.42 0.39 

5 5.65 2.6 

6 4.7 2.3 

7 5.9 2.7 

8 7.07 3.42 

9 7.75 3.74 

10 7.48 3.85 

Table 5-2: Frequency content parameters  

 
Fig. 5-11: The cavitation evolution characterized in terms of frequency standard deviation (in red) and pressure 

standard deviation (in black) 

 From Table 5-2 and Fig. 5-11, it can be seen that the mean of the frequency 

component induced by the particle motion has the same trend as the flow rate of the system, 

whereas the standard deviation of this component (non-intrusive technique) emphasized the 

cavitation phenomenon and has the same trend as the pressure standard deviation (intrusive 

technique). 

 We can then conclude that the cavitating vortex has a spectral component 

(deformation) which can be extracted using the diagonal lines quantification. This component 

describes the evolution of flow and of the cavitating vortex. 
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Second experimental setup 

 This experiment was performed in December, 2015 at the Power Engineering Faculty, 

”Politehnica” University of Bucharest. In this setup, the stator is placed 70 mm  upstream the 

divergent section (previously, it was situated at 250 mm ). For the acoustic analysis, two pairs 

of transceivers positioned in “V” configuration were used (Fig. 5-3 and Fig. 5-4) instead of 

only one. Moreover, the transducers were placed further downstream from the cavitating 

vortex area, on the divergent section (Fig. 5-3), while in the previous studies they were placed 

on top of the cavitating vortex area. 

The first set of data is obtained for the appearance and developing of the cavitating 

vortex during discharge increasing. In order to cover the damping behavior of the cavitating 

vortex from a hydraulic turbine, the variation of the discharge is reversed in the setup, so the 

effect of the cavitating vortex disappearance was created. 

We recall that the experiment is performed with a continuous slow variation of the 

water flow. During the experiment, the water flow is varied from 6 19 /to l s  and backwards, 

in order to determine the critical flow rates for which the cavitating vortex appears/dampens. 

Using the property of the diagonal line quantification, the position of the   

component (attributed to the presence of cavitaing vortex) from the absolute value of SD  

measure is determined for each burst of 2.6 ms  in each vortex region. Further, an example of 

 component identification is presented in Fig. 5-12 and Fig. 5-13.  

 

Fig. 5-12: DLQ absolute value for an acquisition of 2.6ms in A1 region 

 

 

Fig. 5-13: DLQ absolute value for an acquisition of 2.6ms in A3 region 
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 The main component at 1 MHz  corresponds to the central frequency of the emitted 

signal at the acoustic sensors. Other significant components can be found in the range of 

0 100 kHz  and are attributed to   component, as presented in the zoomed details. 

 The frequencies corresponding to the   component are further presented as the time 

variation of the   spectral component in Fig. 5-14. Also, the flow variation was represented 

simultaneously with time variation of   spectral component in order to identify the three 

cavitating vortex regions. 

 

Fig. 5-14: Time variation of cavitation vortex component (in blue) and the flow rate evolution (in red); the RPA 

parameters are 5 15m and d   using the Euclidean distance  

For the increasing flow rate configuration, it can be seen that, while there is no vortex 

(A1region), the cavitation vortex component has a reduced variation. When the vortex starts 

to appear in A2 region, the deviation of the frequency component is larger and is significantly 

increasing in A3 region for the developed vortex. The standard deviations of the cavitation 

vortex component,  , for each region are computed, and cavitating vortex characterization 

criteria are defined according to them (Table 5-3). 

Region  [kHz] Limits[kHz] Vortex stage 

A1 0.76 1   No vortex 

A2 2.26 1 3    Incipient vortex 

A3 9.71 3   Developed vortex 

Table 5-3: Criteria limits for the cavitating vortex stages classification in increasing flow rate configuration 

The validation of the criteria is done using recorded data during decreasing water flow 

configuration. The cavitation vortex component is determined and its time variation was 

plotted together with the water flow variation in Fig. 5-14 (left). The cavitating vortex regions 

are identified by visual observations and fitted with the defined criteria (Table 5-3).  
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Region  [kHz] Vortex stage 

A1 0.74 No vortex 

A2 - - 

A3 9.13 Developed vortex 

Table 5-4: Criteria validation for decreasing flow rate configuration 

In this case, the incipient vortex stage (A2 region) was not visible, which was also 

confirmed by the high value of standard deviation of the cavitation vortex frequency 

component computed. This may be caused by the inertia of the fluid while decreasing the 

flow, which was done in a shorter period than in the increasing case (about 15 s  compared to

30 s ). 

Hereby, with this second setup, we observe that the cavitating vortex signature 

(deformation) is present in the spectral components of the diagonal lines quantification. This 

component describes the evolution of flow, as well as the cavitating vortex. 

5.2. Underwater object tracking 

This section presents a new method for the detection of an underwater object using bi-

static acoustic paths. The method uses the dynamic evolution in the phase space of the 

received signals without any synchronization between the transmitted and received signal. 

Generally, the object detection using acoustic barriers is based on the amplitude fading 

when the objects arrive between the emitting and receiving transducers (Digulescu, et al., 

2014a), (Ioana, Candel, & Digulescu, 2015). Nevertheless, when the objects have close 

properties, in terms of density, to the water ones, the amplitude changes induced by the 

objects are very light and, for this reason, the objects cannot be always detected. This is the 

case of objects such as pockets of oil, fishes, etc. 

In this chapter, an alternative detection method is proposed, based on the accurate 

estimation of the time of flight between the transmitter and the receiver. Actually, the aim is 

to take advantage of the fact that the waves traveling the objects have a different velocity than 

in water. At the receiving level, it comes that the wave will arrive with a different time of 

flight than in the case when the waves propagate only in water. This technique requires an 

accurate estimation of the time of flight and we will show that this information is more 

accurately estimated than from the classical envelope-based detection method.      

 The experimental setup 

The experiment is performed in a reduced scale facility where the underwater object 

travels for 3 s  on a distance of 1.5 m . The underwater object is an oil balloon entirely 

immersed, crossing the acoustic paths upon moving. The experimental configuration is 

presented in Fig. 5-15. 
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Fig. 5-15: The experimental configuration: the dash-dot line shows the trajectory of the object 

All four acoustic transducers are identical and have a wide band reception centered on 

1 MHz   with a bandwidth that starts from 800 kHz  and ends around 1200 kHz . The amplitude 

of the transmitted signal is 5 V. The emission transducers (Tx1 and Tx2) are placed on one 

side of the water tank and generate linear chirp burst in their bandwidth at an angle of 45 . On 

the opposite side of the water tank, the receiving sensors are placed at a minimum distance 

such that crosstalk between the acoustic paths is avoided in the clear water (when no object is 

in the water tank). The data acquisition is performed for duration of approximately 3.35 s  in 

order to record the entire process. 

In this case, the deformation operator that we look to estimate is: 

   0( ) exp , 1,krk
k k

water oil

dr
s t A j t k N

c c

  
              

  

D   (5.8) 

where kr  is the thk   water propagation path, 
kr

d is the thk  oil propagation path and 

0
2 b

rubber

l

c
   where bl  is the thickness of the rubber wall of the balloon and rubberc  is the 

acoustic propagation velocity in rubber. 

 Results 

Taking into account that the passage of the object in front of the sensors, involves a 

change in the received time series, we aim to highlight this effect on the detection map based 

on the *TDR  measure (eq. (4.2)). Hereby, we define the detection map (Digulescu, et al., 

2015a): 

 
*

1,

( , ) [ ( )]
N

s

DM l TDR l


    (5.9) 

where  N  is the length of the recorded signal and s  is the size of the fixed time bin for which 

the *TDR measure is computed. 

The detection map contains both the amplitude (in the *TDR measure) and time of 

arrival information (given by the time bin,  ). Therefore, this approach presents the time 

information, although the signals have no synchronization and their characterization is based 

only on the received signals by the two sensors. 
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For the detection part, we firstly present the signal recorded at Rx2 sensor (Fig. 5-15) 

which directly receives its bursts from Tx2. On this signal, Fig. 5-16, the detection map based 

on the *TDR measure is applied, Fig. 5-17. 

 

Fig. 5-16: The recorded signal arrived at Rx2 sensor 

 
Fig. 5-17: The detection map obtained for the Rx2 signal for 3m  , 13d   and 0.5    

It can be observed that the burst (the response of the object) is represented by the two 

brown horizontal lines which vary in amplitude (the average distance in the phase space 

changes), but also in time (the TOAs of the bursts in each time bin is not constant). Moreover, 

as the lines of the detection map represent the value of the *TDR measure at each time bin, its 

columns contain the information regarding the TOAs of each burst at its corresponding time 

bin. 

Therefore, in order to obtain the TOA information from the detection map (Fig. 5-17), 

we impose an appropriate threshold that discriminates between the part of the signal that has 

no burst and the one that has it. In this case, the threshold is given by the cyan region from the 

detection map. Hereby, the first point on each column of the detection map corresponding to 

the cyan region gives the TOA of the responses in each time bin. The results are presented in 

Fig. 5-18. 
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Fig. 5-18: The TOAs (red) of each response of Rx2 signal and its signal envelope (black) 

Although, the signal’s envelope does not offer reliable information regarding the 

object tracking (the amplitude variation can be caused by external vibrations, move of 

transducers, etc.), the TOA information is very robust, because it highlights the delay induced 

by the object. From Fig. 5-18, it can be seen that, even for a slight attenuation in signal’s 

amplitude, the detection map approach is able to highlight a delay in the TOA of the burst for 

two time bin intervals. 

This delay is explained by the fact that the speed of sound in the sunflower oil is 

smaller (around 1425 /m s ) than the water speed of sound (around 1480 /m s ) and its 

maximum corresponds to the delay induced by the oil ball diameter (15 cm ) and the rubber 

wall ( 0.5 mm  ) of the balloon that folds the oil ball. 

Moreover, in the TOA based object detection representation, the first interval 

corresponds to the object passing in front of the transducer Tx2 and the second corresponds to 

the crosstalk induced by the dispersion of the signals coming from Tx1. In this way, we 

suppose that the travel direction of the object is from Tx2 to Tx1. In order, to confirm our 

assumption, we also study the signals recorded by Rx1 (Fig. 5-19). 

 

Fig. 5-19: The recorded signal arrived at Rx1 sensor 

In this case, the signal is more disturbed in terms of amplitude. Fig. 5-20 and Fig. 5-21 

present the detection map corresponding to the Rx1 signal and the TOAs of the responses 
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from each time bin. It seems that even if the amplitude of the signal is more disturbed, its 

TOAs present almost the same values for the positives peaks for both receivers. 

 

Fig. 5-20: The detection map obtained for the Rx1 signal for 3m  , 7d   and 0.5   

 

Fig. 5-21: The TOAs (red) of each response of Rx1 signal and its signal envelope (black) 

The TOA representations from Fig. 5-18 and Fig. 5-21 point out approximately the 

same maximum delays induced by the object. This observation leads to the conclusion that 

one and the same object has passed in front of the sensors. Furthermore, the other variations 

of the TOAs are caused by the crosstalk that the signals’ dispersion in the balloon induces to 

the sensors. We recall that, in the configuration with no object in the water, the sensors were 

placed at a minimum distance so that they record only the response coming from their 

corresponding transceiver (Tx2-Rx2 and Tx1-Rx1, respectively). But, in the presence of the 

object, its movement induces a cross-talk between the sensors. 

In Fig. 5-18, two peaks can be observed: a maximum which automatically corresponds 

to de delay induced by the object that interferes with the direct path between the pair Tx2-

Rx2, and the second peak corresponds to the cross-talk induced by Tx1 as the object travels 

towards its path. Also, in Fig. 5-21, three peaks are present: the maximum which corresponds 
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to the passing of the object through the direct path between Tx1- Rx1, a second peak present 

before the maximum which is caused by the reflections coming from Tx2 and a third peak 

caused by the reflections of Tx1. These observations lead to the conclusion that the object 

moves from left to right in the given configuration. 

5.3. High speed sensing using phase diagram-based 
adaptive waveform 

 

The approaches proposed in the previous sections use the active sensing to detect the 

objects such as bubbles of the cavitation and pockets of oils. The detection and the 

measurement of object properties are based on the estimation of received signal parameters 

such as TOFs or Doppler deformation. Generally, the current sensing is able to provide these 

parameters just for few periods that could be enough for understating the phenomena. 

Furthermore, if we look to have a more detailed image of thse phenomena, the estimation of 

the signal’s parameters for a large number of period is necessary. This is actually what we call 

high speed sensing and this section presents the feasibility of this concept using the phase 

diagram-based adaptive waveform discussed in the Chapter 3.   

The experiment is the essential part which confirms if this concept can be applied in 

real – life. Fig. 5-22 presents the considered IFL and its corresponding phase space lobe. 

 

Fig. 5-22: The IFL used at emission (left) and its corresponding “marked” lobe (right) 

 The first test that we performed was to study if the characteristics of the signal 

containing this IFL remain unchanged when using two ultrasonic transducers for emission 

and, respectively, for reception. The two transducers are placed one in front of the other as 

shown in Fig. 5-23.  
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Fig. 5-23: The positioning of the two transducers for the experimental test 

 The signals used for emission and reception are shown in the next figure, Fig. 5-24. 

 

Fig. 5-24: The signal used at emission and the received signal as well as their amplitude spectrum 

 

 

Fig. 5-25: The IFLs of the emitted and received signals (left) and their representation in phase space (right) 

 From Fig. 5-25, it seems that, although the transfer characteristic of the transducers 

eliminates part of the lower frequencies, the received signal maintains our proposed 

characteristics. Therefore, these new signals with “special signatures” in the phase space can 

be used in real-life applications. 

 The objective of the high-speed sensing using this waveform is to achieve a quasi-

continuous emission which contains overlapped signals in time, but separable using their 

IFLs. 

 Hereby, considering the signal ( )s t  , where: 

 1 2[ ] [ ] [ ]s n s n s n     (5.10) 

where 1[ ]s n  and 2[ ]s n  are the two signals with a unique representation in phase space and   is 

a delay which provides an initial time separation between the signals. Considering the phase 

space representation of the phase space lobe, as shown in Fig. 5-26,   is equal with 2N   

where N  is given in eq. (3.5). 
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Fig. 5-26: The time shifted IFLs used for overlapping where 1000N   

 
Fig. 5-27: The overlapped signals which form the signal [ ]s n (left) and its spectrogram (right) 

 

Fig. 5-28: Phase space lobes of the IFLs used for overlapping 

 Our objective is to separate the overlapped IFLs (Fig. 5-27) based on the algorithm 

presented in Chapter 3. Considering the first IFL known (IFL1), we want to separate the 

second IFL (IFL2) from the first, Fig. 5-28. Hereby, the algorithm is applied in the range 

2 1 3N to N . 
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Fig. 5-29: The sum of the IFLs (left) and the phase space lobes of the IFL 2 (right) 

  

 

Fig. 5-30: The sum of the IFLs (original – no noise, estimated – SNR=25 dB) (left) and the phase space lobes of 

the IFL 2 (original – no noise, estimated – SNR=25 dB) (right) 

This result, Fig. 5-29, shows that it is possible to separate two successive IFLs, which 

correspond to our high speed sensing sequence, by looking on their trajectory in phase space. 

Still, the method performs for quite high SNR (Fig. 5-30), the next research effort will attempt 

to improve its noise robustness.   

5.4. Chapter summary 

In this chapter, we described our experiments performed in active configurations using 

the theoretical methods introduced in this thesis.  

For the cavitating environment application, we have shown that the generated vortex 

flow can be characterized in a non-intrusive manner using the diagonal lines quantification for 

of the received signal, when the phenomena are sensed with wide band signals. 

The underwater object tracking is achieved using the *TDR measure detection map. We 

point out the presence of the underwater object from the TOA parameter which is very robust 

because it highlights the delay induced by the object, although the signal’s envelope is not 

that reliable. 
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These two applications can be extended to a high speed sensing concept presented 

after at the end of this Chapter, allowing to get the dynamic evolution of the cavitation 

process or the object’s image, respectively. For this purpose, the phase diagram-based 

waveform design can be successfully used, as illustrated in the final part of this chapter. 
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CHAPTER 6 

6. Applications in passive 
configurations 

This chapter presents the applications carried out in passive configuration. We present 

the experimental configurations and, then, we show the results obtained using methods 

proposed in the Chapter 4. Comparisons with classical method are performed. 

6.1. Measuring pressure transient in water pipes 

In this application, we present an acoustic signal processing approach for the 

surveillance of a water pipe and the characterization of the water hammer effect. The 

experiment is based on ultrasonic transceivers and the validation is made with intrusive 

pressure sensors. The major objective is to quantify the pressure variation into the pipe using 

a non-intrusive method that is usually used for the flow rate estimation (Wylie & Steerter, 

1993). Therefore, the speed of the transient was determined using the time-of-flight (TOF) 

estimated by the RQA method. The estimation of the pressure using the same electronic 

device as for the flow rate estimation (Candel, et al., 2014), (Murgan, et al., 2016), (Petrut, et 

al., 2014) would be a great achievement since it offers to an existing device a second 

functionality.  

In industrial applications, the water hammer must be supervised and controlled in 

order to minimize the destructive effects that it may cause to the hydraulic system. For this 

reason, the proposed approach that uses ultrasonic transceivers has the advantage to be 

suitable for most systems since it does not require any extra manipulations upon the system or 

pipeline. 

6.1.1. Water hammer parameters 

The water hammer is a periodic phenomenon caused by sudden maneuver of a closing 

vane (fully or partial). This forced stopping of the flowing fluid particles implies changing of 

their kinetic energy into pressure energy, so the pressure in the vane section will be increased 

with p  . 

The maximum overpressure in a pipe during water hammer due to sudden total closure 

of a vane can be determined using Joukowsky equation (Houghtalen, Akan, & Hwang, 2010), 

(Hachem & Schleiss, 2012), (Wylie & Steerter, 1993): 

 0p c V       (6.1) 

where   is the fluid density, c   is the pressure wave velocity and 0V  is the steady state flow 

velocity. 
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Some part of the energy is dissipated due to fluid viscosity (so to the hydraulic losses) 

which attenuates in time the water hammer phenomenon (Bucur, et al., 2014). The pressure 

waves travel inside the pipe along its length, L , between the closing vane and the reservoir, 

with high velocities, c  , and have an oscillating period, T  . Hereby, this period is given by: 

 
4L

c
T

   (6.2) 

Also, the pressure wave speed, c , can be determined considering the characteristics of 

the fluid and of the pipe: 

 
1

1

w

c
D

e E


 

  
  

  (6.3) 

where w  is the bulk modulus of the fluid, D  is the pipe diameter, e  is the pipe wall thickness 

and E   is the Young modulus of the pipe. 

6.1.2. Experimental setup and results 

The experimental setup (Fig. 6-1 and Fig. 6-2) consists in a horizontal pipe supplied 

by a tank (ST) with a total volume of 200 l  . Together with an air compressor, it can create 

the constant supply pressures needed for the experiments. 

The pipe has a length of 10.11L m , made entire of Plexiglas, with rectangular 

exterior section of 250 50 mm  and circular interior section, 39D mm , used for high quality 

visualization of the process. The water is evacuated at the downstream end of the pipe through 

an 20 mm  orifice diaphragm ( d ). 

 

Fig. 6-1: Experimental setup 
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Fig. 6-2: The on-site experimental setup of the ultrasonic transceivers performed at Power Engineering Faculty, 

”Politehnica” University of Bucharest in December 2014 

The discharge is regulated using a valve (RV) mounted at the entrance of the pipe, at 

0.25 m  downstream ST. The closing vane (CV) is a pneumatically driven butterfly with a 

pneumatic actuator mounted together with the valve. The valve closing time is approximately 

20 ms  obtained with 4 bar  of the air pressure in the valves actuators pneumatic circuit. 

The pressure transducer P2 is mounted upstream the fast closing vane, at 2.05 m . It 

has the measuring range between 0 40 bar  relative pressure, with the output signal 0 10 V , 

accuracy 0.25  and repeatability 0.1%  of full scale (Fig. 6-1 and Fig. 6-2). 

Also, two acoustic transceivers were placed upstream the closing vane at 8 cm  and 

16 cm  respectively (Fig. 6-1 and Fig. 6-2). The acoustic transceivers have a wide band 

reception centered on 1MHz , but being able to receive signals starting  from  8 kHz . The 

output signal varies from 20 20V to V  . Both transceivers were set in passive configuration 

and the acquisition was made at a sampling frequency of 50 MHz  for a period of 0.67 s . 

The transient regime (water hammer) during the tests was induced by the sudden 

closure of the vane CV. The initial conditions are 1.98 /l s  flow rate and 1.4 bar  supply 

pressure. The maximum pressure due to water hammer phenomenon recorded by P2 during 

tests was of 17.3 bar . 

For this application, we recall that the deformation operator kD  becomes: 

  ( ) exp k
k k

pressure

L
s t A j t

c

  
        

  
  

D   (6.4) 

where pressurec  is the propagation speed of the pressure field and kL  is the distance between 

the CV and the ultrasonic transducers. 
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 This deformation operator translates, at the transducers, transient signals which offer 

the TOF information needed for the non-invasive pressure variation estimation. 

Results using the RQA-based signal processing approach 

The acquired acoustic signals at both sensors are presented in fig. 3. As the dashed 

blue ellipse highlights, it can be observed that the acoustic transient happen simultaneously 

with the pressure spikes. Moreover, as S2 is closer to the CV (approx. 8 cm ), the received 

acoustic transients are much more visible (fig. 3(a)) than those arrived at S1 (fig. 3(b)). This is 

because the water hammer acoustic wave starts to diffuse. Still, the acoustic transient at S1 

has high energy (Digulescu, et al., 2015c). 

 

Fig. 6-3: The acoustic signals recorded by the two sensor and the simultaneous pressure time evolution: (left) 

acoustic signal arrived at sensor S2; (right) acoustic signal arrived at sensor S1 

We applied the RPA method on these signals and computed the *TDR  measure for  

3, 10 70m d and    . 

 

Fig. 6-4: The water hammer effect detection on the signals recorded by the two sensors 

In Fig. 6-4, it can be seen that the *TDR  measure succeeds to detect the acoustic 

transients regardless of mechanical vibrations and environmental noise recorded by the 

sensors. In the computation of the TOF, we considered the first moments for which the *TDR  

measure was 80% from the maxima, namely * 0.8TDR    
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Hereby, we determined that 82TOF s  . Knowing that the distance between the two 

ultrasonic sensors was 8sd cm , we obtained the wave speed 975 /TDRc m s . 

Alternatively, considering just the maxima given by the acoustic transients (result 

obtained typically from the envelope detection), we obtained 99TOF s  , namely 

805 /pkc m s . The difference between this approach and the RQA-based method is given by 

the diffusion effect of the acoustic wave generated by the water hammer. 

Results using Joukowski equation 

In the given configuration, the theoretical value of pressure wave speed in a Plexiglas 

pipe was computed using eq. (6.3) and considering the parameters of the water and the pipe as 

given by Table 6-1.  

Parameter Value 

  31000 /kg m  

w  2.1 GPa  

e  10 mm  

E  5.66 GPa  

Table 6-1: Characteristic parameters of the pipe and fluid for theoretical computation of the pressure wave 

Also, the presence of four butterfly valves with steel casing situated along the pipe 

was taken into account and an weighted elasticity modulus ( E ) of the setup was determined. 

Hereby, the theoretical pressure wave speed value obtained is 926 /thc m s , value that 

is closest to the one determined by the RQA-based method. Using this value, the pressure 

variation during water hammer can be determined from eq. (6.1), and results a maximum 

increase of 15.35thp bar  . 

Pressure variation 

Using the maximum pressure difference measured during the tests after the sudden 

closure of the vane, 15.9p bar  , the experimental value of pressure wave speed can be 

calculated with Joukowsky equation (6.1). In order to obtain this, the water velocity in the 

steady state flow is determined from the continuity equation, 2
0 4 / ( )V Q D  , as the flow rate 

before the closure is 1.98 /Q l s . So, for the obtained value of 0 1.66 /V m s  the resulted 

experimental pressure wave speed is 959 /ec m s . 

The results from Table 6-2 show that RQA approach gives very good results with an 

estimation error below 2% . This may be caused by the choice of the threshold of the *TDR

measure. Further investigations will be made for improvement. The next suitable approach is 

the one given by Joukowsky equation. Still, in industrial hydraulic systems, it may be difficult 

to determine a correct elasticity modulus of the materials that may be degraded and changed 

since their design, which will directly influence a correct evaluation of the pressure wave 
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speed and so, of the maximum pressure. The signal processing approach (pk) does not involve 

complex computational procedures using only the maxima of the acoustic transients but has a 

lower performance. The error may be due to the fact that the signal received by S1 is diffused, 

so the TOF may be altered. Also, it must be emphasized that the correlation, a state of the art 

method used in the computation of the TOF for acoustic signals, did not give any realistic 

result in this case. 

Method [ / ]c m s  [ ]p bar  Error[%] 

ec  959 15.91 - 

TDRc  975 16.18 1.69 

pkc  805 13.36 16.02 

thc  926 15.35 3.43 

Table 6-2: The pressure variations using different approaches 

The *TDR measure has proved to be the most successful approach having an error of 

only 1.69%. The pressure variation computation using Joukowsky equation for theoretical 

evaluation of pressure wave speed had an estimation error of 3.43%, so it can be useful with 

the condition that all the characteristics of the hydraulic system are known. 

In conclusion, the RQA-based estimation technique, applied in acoustic non-intrusive 

passive sensing system, has a great potential for the monitoring of hydraulic transient 

phenomena. Further works will conduct to an operational tool that could be integrated in 

industrial equipments.  

6.2. Electrical arcs 

The permanent surveillance of electrical power systems must be accomplished in order 

to be aware and limit the effects of electrical faults. One of the most encountered electrical 

faults are materialized by the electrical arcs (EAs), characterized by wide band transient 

signals. Acoustic, electromagnetic and optics signatures are typical of such fault that is 

generally induced by physical defaults of electrical materials.   

Since the presence of such phenomena is a preliminary stage in the continuous 

monitoring of distributed power systems (solar panels, transformers,etc.), we first studied the 

detection efficiency at different signal to noise ratios (SNRs) using the spectrogram and the 

wavelet transform thata re traditional-robust energy detectors (Mallat & Zhong, 1992). The 

performance of these detectors is presented in their corresponding receiver-operating-

characteristic (ROC). 

Afterward, these methods are applied to determine the time of arrival (TOA) of the 

electrical arcs in a multi-sensor configuration (Digulescu, et al., 2014c), (Digulescu, et al., 

2013), (Digulescu, et al., 2016c), (Ioana, et al., 2014), (Digulescu, et al., 2013), (Digulescu,et 

al., 2014b), (Paun, et al., 2015). Then, the localization of the sources of the electrical arc is 



  

81 

 

obtained by solving the geometrical system which describes the experimental configuration. 

Finally, we presented the precision accuracy of each method. 

Finally, we characterize these signals using the MLPA method in order to monitor the 

signal’s changes, aiming to classify the electrical arc’s signature (Digulescu, et al., 2015b), 

(Serbanescu, et al., 2015). 

6.2.1. Detection performance 

The experiment is performed with an electrical arc locator system composed of three 

acoustical sensors placed in a 3D configuration and a wide band antenna placed in the center 

of the system. The experimental configuration is presented in Fig. 6-5. 

 

Fig. 6-5: The experimental configuration of the EA locator system 

 

 

Fig. 6-6: The recorded EAs and the detection curve obtained with the TDR measure: 3, 8 0.7m d and     
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The detection and estimation of times of arrival of the transient signals generated by 

electrical arc at each sensor has been done using the *TDR  measure, the spectrogram and the 

wavelet transform. Fig. 6-6 presents an example of received signals and their detection curves 

obtained with the *TDR  measure.  

For the ROCs computation, we considered the following algorithm for the SNR value: 

 Let us consider that s  is the test signal of length L   

 For a given SNR , we have: 10lg s n

n

P P
SNR

P


  , where 

2

1

[ ]L

s

i

s i
P

L


   

 Hereby, we obtain 

1010 1

s
n SNR

P
P 



   

 Then, the imposed noise is: 0 ,nn P n   where 0n  is a random signal with normal 

distribution of mean zero and variance equal to 1 

 The studied signal becomes: ns s n    

We compare the *TDR  measure with the spectrogram and wavelet methods by 

tracking the ROCs. The results are presented in Fig. 6-7. 

 

 

Fig. 6-7: The detection performances of each method; the ROCs where computed for the same white additive 

Gaussian noise (100 realizations) for each SNR level and method: (up-left) 
*TDR  measure for 

3, 8 0.7m d and     ; (up-right) the spectrogram-based detection; (down) the wavelet-based detection 

using the Mexican Hat mother function 
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 As expected, both dedicated detection methods have the best performances which are 

one size higher. Nevertheless, the RQA-based method, namely the  *TDR measure offers 

reliable performances, therefore, in the case of localization application, this approach must be 

considered in terms of localization accuracy. 

 The signals (Fig. 6-6) are recorded at a sampling frequency of 5sf MHz  for a period 

of 10 ms  ( 50000 samples). In terms of location accuracy, the *TDR  measure is compared with 

the classical time-scale approaches.  

The spatial localization is achieved by solving the geometrical system (eq.(6.5)) based 

on the time-of-arrival (TOA) of the EAs at each microphone. The TOA is obtained by 

imposing the same threshold ( 0.5 ) at the normalized detection curves based on each method.  

 
2 1
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4 1
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d d v t

d d v t

d d v t

   
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  


  

  (6.5) 

where 2 2 2( ) ( ) ( ) , 1,4
i i i iPS s P s P s Pd x x y y z z i        , each position of the acoustic 

sensor and antenna (considered 1S ) is known ( , , )
i i ii S S SS x y z , ( 1)i it   is the time of arrival of 

the EA at each microphone triggered by the 1S  wide band antenna. The localization accuracy 

using each method is presented in Table 6-3. 

Method Relative error [%] 

*TDR  measure 6.2 

Wavelet 11.2 

Spectrogram 9.4 

 
Table 6-3: The spatial localization accuracy for the electrical arcs 

In this application, the signal is propagated on multiple paths, because the experiment 

is performed in a closed facility: an indoor facility, mainly characterized by three propagation 

paths.  

Although, the classical techniques detect and localize the electrical arc source in an 

effective manner, when it comes to multi-path signal discrimination, these methods are 

limited.  

But, the MLPA method provides better results. Using one of the signals arrived at 2S  

microphone, the reflections 2 3,s s  of the electrical arc are compared with the direct path signal 

1s . These signals are presented in Fig. 6-8. 
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Fig. 6-8: The electrical arc recording 1s  and its reflections 2 3,s s  

For the multi-path acoustic signals, the elliptic modeling (eq.(4.9)) is applied and the 

area of the estimated ellipse is determined (Fig. 6-9).  

 

Fig. 6-9: The areas of the estimated ellipses that circumscribe the phase-space trajectory of the normalized multi-

path signals 

The estimated ellipses evolve in a different manner, but they have the same trend. 

After an average value of the area is chosen, 1A , an optimal lag is determined: 1 11d  , 

2 12d   and 3 8d  . The results of the phase diagram representation are shown in Fig. 6-10. 
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Fig. 6-10: The polar coordinates representation for the multi-path acoustic signals: 1 11d  , 2 12d   and

3 8d   

In terms of attenuation, the phase diagram points out the same information as the time 

evolution of the signals. Moreover, the reflections present fewer curves with peaks than the 

direct path of the signal. This means that the reflections contain fewer oscillations than the 

direct signal, hereby, the reflections are dispersed.  

Using eq.(4.11), it goes that: 
1 2

/ 0.94s sf f   and 
1 3

/ 0.92s sf f  , meaning that the 

reflections suffer a time dilatation. Because the frequency ratios are close to 1 , it leads to the 

idea that the signals have the same source, but on their propagation path, the reflections are 

affected by multiple phenomena: diffusion, dispersion, attenuation, etc.  

6.3. Chapter summary 

This chapter presents two applications of passive sensing. For the pressure transient 

measurement, we have shown that the RQA-based method for transient detection and time 

localization is a method worth being considered for the phenomenon characterization.  

Regarding the EA application, the RQA approach provides a better localization 

accuracy than the time-scale methods (but similar detection performances) and with the use of 

multi-lag phase-space analysis, it highlights new information regarding the characterization of 

transient signals and the changes that they suffer in a realistic multi-path propagation 

environment. 
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CHAPTER 7 

7. Conclusions and 
perspectives 

7.1. Work summary 

  The main objective of this work was to contribute to the analysis of signals related to 

different physical phenomena, aiming to better understand them as well as to estimate their 

parameters that are interesting from application point of view. Different applicative contexts 

have been investigated in active and passive sensing configurations. For the active part, we 

mention the monitoring of cavitation phenomena and its characterization for hydraulic system 

surveillance. The second application of the active sensing is the underwater object detection 

and tracking without synchronization between sensors. For the passive configuration, we 

focus on the pressure transient analysis in water pipes investigation with a non-intrusive 

method and on the surveillance of electrical power systems in the presence of transient 

phenomena such as electrical arcs. 

Despite the differences between the physical considerations, we propose a unique 

mathematical model of the signals issued from the active/passive sensing system used to 

analyze the considered phenomena.  

Chapter 2 presents a state of the art of the techniques used for acoustic sensing 

methods, from signal processing perspective, in dynamic configurations. Starting with the 

well known analysis techniques based on energy methods and projective approaches (such as 

wavelet transform), we focus our research to the data-driven analysis technique based on the 

phase diagram concept.  

Chapter 3 describes a new concept of active sensing system for analyzing dynamic 

transient phenomena. For the emission part we propose the phase-space-based waveform 

design that presents a unique shape in the phase space and which can be easily translated into 

a signal. Starting from this unique shape, called phase space lobe, we translate the 

representation into a time series (auxiliary signal). This time series carries the IFL 

(Instantaneous Frequency Law) of the further emission signal. The main advantage of this 

new concept is the capability to generate several transmitting signals, non-orthogonal in 

time/frequency domain but orthogonal in the phase diagram representation space. For the 

reception part, the IFL information is estimated in a phase space-based representation space. 

This waveform design technique presents the interest to conduct to a high speed sensing 

methods, very useful to monitor dynamic phenomena. This work will conduct to a patent 

software that will be pended before the end of this year. 

Chapter 4 focuses on the signal analysis based on the major information that can be 

extracted from phase diagrams: the recurrence quantification analysis (RQA) based on the 

recurrence plot analysis (RPA). We propose new tools for the investigation of the signals 

characteristics. The first one is the TDR* measure (Time Distributed Recurrences) that 
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quantifies the recurrence/ distance matrix and it is used for the detection of transient signals. 

The second one is the multi-lag phase analysis using multiple lags and it is successfully used 

to discriminate between signals with close parameters. Finally, the diagonal lines 

quantification of RPA matrix is proposed as an alternative for the analysis of modulated 

signals.  

Chapter 5 and 6 present the experimental results using the proposed theoretical 

methods introduced by this thesis. The results are compared with classical techniques. The 

cavitating environment (a major problem in hydraulic turbines) evolution on a small scale 

facility is characterized using the diagonal lines quantification of the distance matrix 

(Digulescu, et al., 2016) (Digulescu, et al., 2016) (Digulescu, et al., 2014).  

A new method for the detection of an underwater object using bi-static acoustic paths 

is presented. For this application of object tracking, the main advantage of the RQA and RPA 

methods is that it uses only the signals arrived at reception (so there is synchronization-free 

technique). Using the TDR* measure, we define the detection map based on this measure 

which is more robust to noise than the signal’s envelope-based detection. This map contains 

both amplitude and time information (Digulescu, et al., 2015a). 

The water hammer phenomenon is pointed out through our non-intrusive approach 

that proves to be the closest to the reference method. The effect of the phenomenon is 

quantified using the TDR measure which is more robust to the effect of pressure wave 

diffusion that takes place inside the pipe during the experiment (Digulescu, et al., 2015c). 

The electrical arc application points out that our approach presents another detection 

method based only on the RQA and RPA methods using the TDR measure (Bernard, et al., 

2016), (Candel, et al., 2012a), (Digulescu, et al., 2013), (Digulescu, et al., 2016c), (Digulescu, 

et al., 2014b), (Digulescu, et al., 2014c). The localization accuracy outperforms the classical 

non-stationary signals processing methods. Moreover, the signals are characterized and 

discriminated using the concept of multi-lag phase space analysis (Bernard, et al., 2016) 

(Digulescu, et al., 2015b) (Digulescu, et al., 2016c). 

These applications can be extended to a high speed sensing concept, allowing to get 

the dynamic evolution of the cavitation process or the object’s image, respectively. For this 

purpose, the phase diagram-based waveform design can be successfully used, as illustrated in 

this work. 

7.2. Perspectives 

This thesis is structured in two main parts, one theoretical and another one applicative, 

where the theoretical contributions have been investigated in some applications of current 

interest. Consequently, the perspectives of my work will be concentrated on two main 

directions – theoretical and applicative. Since the both aspects are intimately related, I prefer 

to present them in a merged manner.  

The first theoretical works will concern the phase diagram-based adaptive waveform, 

by investigating different partition of information in the phase diagram domain. The 



  

89 

 

organization of the information in lobes could be generalized in n-dimensional phase diagram 

domain, creating also the possibility to design better separable waveform carrying, in the 

same time, more information, bringing the modulations more robust and with better 

performances in terms of parameters of estimation. 

At the receiver level, we will investigate the capability of instantaneous frequency law 

tracking in the phase diagram, trying to take advantage of the phase continuity of the phase 

trajectory. Namely, the IFL tracking can be successfully based on the association of the time-

frequency points according to the continuity criteria that could be naturally defined in the 

phase diagram domain. In the case of the multi-lag phase diagram analysis, this continuity 

will be defined in more robust manner since the random noise effect will be minimized when 

looking to different lags.  

In the applicative context, these new theoretical directions will conduct to the 

definition of a new imaging acoustic methodology where the high speed sensing will be 

allowed thanks to the construction of agile wide band waveforms, emitted as much lower PRF 

than the classical ones. In addition, the accurate estimation of the received signals 

characteristics will allow to form the acoustic images not only from the times of arrival, but 

also from the relative deformation between the received signals.  

Another applicative extension of this new theoretical work will concern the definition 

of new communication modulations and multiple access technique, not only in acoustic but 

also electromagnetic waves. 

The second theoretical direction is the development of new signal descriptors in the 

phase diagram plan. As a potential idea we mention here the dynamic of position vector in 

polar coordinates, but merged from coherent variations of this vector at different lags.  

Another work idea is to generalize the definition of these vectors in n-D. The 

definition of a two-dimensional representation of the position vector parameters (calculated in 

n-dimensional phase diagram coordinates) – representation similar to RPA, would be very 

helpful for the intuitive data interpretation.  

The relation between phase diagram analysis and the compressive sensing domain 

could be also another work direction worth to be followed.  

In the applicative context, the aforementioned directions will conduct to new methods 

for signal analysis and characterization. Their using in the application we have investigated in 

this thesis is natural. Namely, these representation methods will conduct to a finer analysis of 

the interaction between acoustic waves and the hydrodynamic phenomena. The further 

contribution will be to help in monitoring hydraulic machines in non-stationary conditions 

that are nowadays under intensive multidisciplinary research works.  

Another applicative work context of the further representation tools is the analysis of 

the electromagnetic transients, aiming to characterize and localize their sources. Applications 

in ultra wideband tracking, identification and communications as well as in monitoring of 

power equipments are just two domains where the further theoretical researches will serve. 
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Résume étendu 

 

 

Caractérisation des phénomènes dynamiques 

 à l’aide de l’analyse du signal  

sur le diagramme des phases 

La déformation des signaux au long de leur trajet de propagation est un des plus 

importants facteurs qui doivent être considérés à la réception. Ces effets sont dus à des 

phénomènes comme l’atténuation, la réflexion, la dispersion ou, encore, le bruit. Alors que les 

premiers deux phénomènes sont assez facile à surveiller, parce qu’elles affectent l’amplitude, 

respectivement le retard des signaux, les deux derniers phénomènes sont plus difficiles à 

contrôler, parce qu’elles changent les paramètres du signal (amplitude, fréquence et phase) de 

manière totalement dépendante de l’environnement. 

Nous définissons un modèle générale pour le signal reçu après la propagation dans un 

environnement hétérogène : 

  ( ) ( ) ( )k

k

r t s t n t D   (6) 

où k D  est l’operateur général de déformation associé à la composante k  du signal reçu et  

( )n t  est le bruit additive blanc gaussien. 

 Dans cette thèse, l’objectif principal est de contribuer à l’analyse des signaux liés aux 

différents phénomènes physiques, en visant une meilleure compréhension de ces phénomènes, 

ainsi que l’estimation de leurs paramètres qui sont intéressants de point de vue applicatif. 

Plusieurs contextes applicatifs ont été investigués dans deux configurations de mesure: active 

et passive.  

Pour la configuration active, le premier contexte applicatif consiste en l’étude du 

phénomène de cavitation dans le domaine de la surveillance de systèmes hydrauliques. La 

deuxième application de la configuration active est la détection et le suivi des objets 

immergés sans synchronisation entre les capteurs d’émission et de réception.  

Pour la configuration passive, nous nous concentrons sur l’analyse des transitoires de 

pression dans les conduites d’eau en utilisant une méthode non-intrusive ainsi que sur la 

surveillance des réseaux d’énergie électrique en présence des phénomènes transitoires comme 

les arcs électriques. 
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 Malgré les différences entre les considérations physiques spécifiques à ces 

applications, nous proposons un modèle mathématique unique pour les signaux issus des deux 

types de configuration. 

 Le Chapitre 2 présente les techniques les plus utilisés pour les méthodes de mesure 

acoustique en configurations dynamiques, dans la perspective du traitement du signal. En 

commençant avec les techniques d’analyse très connues basées sur l’approche énergétique 

ainsi que sur les approches projectives (comme la transformée en odelettes), nous concentrons 

notre recherche sur les techniques d’analyse des signaux aiguillées par les données.  

La méthode des récurrences commence en considérant la série de temps suivante : 

  [1], [2],..., [ ]x x x x N   (7) 

 Cette série est ensuite représentée dans l’espace des phases. Ses valeurs deviennent les 

coordonnées de l’espace m - dimensionnel et, par conséquence, les vecteurs de l’espace est :  

 

1

[ ( 1) ] , 1,
m

i k

k

v x i k d e i M



       (8) 

où m  est la dimension de l’espace, d  est le retard entre les échantillons, ke   est le vecteur 

unitaire des axes de l’espace, ( 1)M N m d    et N  est la longueur de la série de temps. 

Usuellement, la dimension de l’espace et le retard sont choisis en utilisant la méthode de faux 

voisins et, respectivement, la méthode de l’information mutuelle. 

Par la suite, les distances entre les vecteurs de l’espace des phases sont représentées 

par la matrice des distances (DM), eq. (4). Comparées avec un seuil, on obtient la matrice des 

récurrences (RM), eq. (2.13).  

 , ( , )i j i jD v vD   (9) 

  , ( ) ( , )i j i jR i v v  D   (10) 

où ( , ) D  est la distance appliquée aux vecteurs de l’espace des phases (la distance 

euclidienne, la norme L1, la distance angulaire), ( )   est la fonction Heaviside et ( )i  est le 

seuil considéré pour la récurrence.  

L’avantage majeur de la méthode des récurrences est qu’elle ne requit aucune base 

orthogonale ou aucune information apriori du système étudié (contrairement à la méthode des 

ondelettes qui nécessite la définition d’un dictionnaire qui doit ressembler aux composantes 

du signal analysé). La méthode fonctionne pour des applications où la référence n’est pas 

disponible (contrairement à la méthode du filtrage adapté) et est plus précise pour la 

localisation. 

 Le Chapitre 3 décrit un nouveau concept d’un système actif pour l’analyse des 

phénomènes transitoires dynamiques. Pour la partie d’émission, nous proposons la 

construction des ondes d’émissions basées sur l’espace des phases. Les différentes ondes 

construites présentent une forme unique dans l’espace des phases.  
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Fig. 1:Le lobe dans l’espace des phases et son signal auxiliaire correspondant  

En commençant avec cette forme unique, appelée lobe dans l’espace des phases, nous 

translatons cette représentation dans une série temporelle (signal auxiliaire) (Fig. 1). Cette 

série temporelle porte la LFI (Loi de Fréquence Instantanée) du signal d’émission. L’avantage 

principal de ce concept est la capacité de générer plusieurs signaux à l’émission, non-

orthogonaux dans le domaine de temps et de fréquence, mais qui est orthogonal dans l’espace 

de représentation constitué par le diagramme de phases.  

Pour la partie de réception, l’information portée par la LFI est estimée dans une 

analyse des trajectoires dans l’espace des phases (Fig. 2).  

 

Fig. 2: Les LFI et leurs lobes multiples obtenus dans l’espace des phases  

Cette technique de construction des formes d’ondes présente l’intérêt de conduire à 

des méthodes d’investigation actives à haute cadence, très utiles pour la surveillance des 

phénomènes dynamiques.  

 Le Chapitre 4 concerne l’analyse des signaux basée sur l’information majeure qui peut 

être extraite du diagramme des phases : l’analyse des récurrences. Nous proposons deux 

approches nouvelles pour l’investigation des caractéristiques des signaux. La première est la 

mesure TDR* (Time Distributed Recurrences) qui quantifie la matrice des récurrences/ 

distances et qui est utilisée pour la détection des signaux transitoires.  

La deuxième approche est l’analyse des phases à plusieurs retards et elle est utilisée 

pour la discrimination entre des signaux avec des paramètres très proches. Finalement, la 

quantification des lignes diagonales de la matrice des récurrences est proposée comme 

alternative pour l’analyse des signaux modulés en fréquence.  
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 Les Chapitres 5 et 6 présentent les résultats expérimentaux en utilisant les méthodes 

théorétiques proposées dans cette thèse. Les résultats sont comparés avec des techniques 

classiques. L’évolution de l’environnement avec de la cavitation (un problème majeure dans 

la surveillance des installations hydrauliques) est caractérisée avec la quantification des lignes 

diagonales de la matrices des distances (Fig. 3). 

 

Fig. 3: La caractérisation du vortex avec des cavitations (générées par l’écoulement à l’interface avec un stator) 

en utilisant la quantification des lignes diagonales de la matrice des distances  

 

Fig. 4: La carte de détection basée sur la mesure TDR* et la détection de l’objet immergé en utilisant le temps 

d’arrivé de chaque pulse 

Une méthode nouvelle pour la détection d’un objet immergé en utilisant deux trajets 

acoustiques statiques est également présentée. Pour l’application de suivi d’objet, l‘avantage 

principal de la méthode des récurrences est qu’elle utilise seulement les signaux arrivés à la 

réception (par ailleurs, elle est une technique qui ne nécessite pas la synchronisation). En 

utilisant la mesure TDR*, nous définissons une carte de détection basée sur cette mesure qui 
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est plus robuste au bruit que la détection basée sur l’enveloppe du signal (Fig. 4). Cette carte 

contient les deux informations de temps et d’amplitude.  

Le phénomène de coup de bélier est également un autre contexte applicatif étudié par 

notre approche non-intrusive qui montre qu’elle est la plus proche de la référence. L’effet du 

phénomène est quantifié en utilisant la mesure TDR* (Fig. 5) qui est plus robuste à l’effet de 

diffusion de l’onde de pression qui se passe à l’intérieur de la conduite pendant l’expérience 

(erreur d’estimation sous 2%).  

 

Fig. 5: La caractérisation du coup de bélier sur les signaux reçus par les capteurs 

Méthodes basés sur l’estimation 

 du temps d’arrivé 

Erreur  

relative [%]  

   Mesure TDR*    6.2 

Ondelettes 11.2 

Spectrogramme 9.4 

Table 1: Les résultats concernant la précision en termes de localisation 

L’application concernant l’étude des arcs électriques met en évidence l’intérêt pour 

l’approche basée sur la nouvelle méthode de détection constituée par l’analyse des 

récurrences en utilisant la mesure TDR*. La précision en termes de localisation est démontrée 

en comparaison avec des techniques standard (Table 1). De plus, les signaux sont caractérisés 

et discriminés en utilisant le concept d’analyse dans l’espace des phases à plusieurs retards.  

La méthode des récurrences offre des informations nouvelles concernant les systèmes 

réels industrielles. Des perspectives de ces travaux, tant dans les domaines théorique et 

qu’applicatif, sont discutés à la fin du mémoire.  
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Résumé - La déformation des signaux au long de leur trajet de propagation est un des plus importants facteurs 

qui doivent être considérés à la réception. Ces effets sont dus à des phénomènes comme l’atténuation, la 

réflexion, la dispersion et le bruit. Alors que les premiers deux phénomènes sont assez facile à surveiller, parce 

qu’elles affectent l’amplitude, respectivement le retard des signaux, les deux derniers phénomènes sont plus 

difficiles à contrôler, parce qu’elles changent les paramètres du signal (amplitude, fréquence et phase) de 

manière totalement dépendante de l’environnement. Dans cette thèse, l’objectif principal est de contribuer à 

l’analyse des signaux liés aux différents phénomènes physiques, en visant une meilleure compréhension de ces 

phénomènes, ainsi que l’estimation de leurs paramètres qui sont intéressants de point de vue applicatif. Plusieurs 

contextes applicatifs ont été investigués dans deux configurations de : active et passive. Pour la configuration 

active, le premier contexte applicatif consiste en l’étude du phénomène de cavitation dans le domaine de la 

surveillance de systèmes hydrauliques. La deuxième application de la configuration active est la détection et le 

suivi des objets immergés sans synchronisation entre les capteurs d’émission et de réception. Pour la 

configuration passive, nous nous concentrons sur l’analyse des transitoires de pression dans les conduites d’eau 

en utilisant une méthode non-intrusive ainsi que sur la surveillance des réseaux d’énergie électrique en présence 

des phénomènes transitoires comme les arcs électriques. Malgré les différences entre les considérations 

physiques spécifiques à ces applications, nous proposons un modèle mathématique unique pour les signaux issus 

des deux types de configurations. Le modèle est basé sur l’analyse des récurrences. Avec ce concept, nous 

proposons une nouvelle approche pour les ondes basées sur l’espace des phases. Cette technique de construction 

des formes d’ondes présente l’intérêt de conduire à des méthodes de d’investigation active à haut cadence, très 

utiles pour la surveillance des phénomènes dynamiques. En plus, nous proposons des approches nouvelles pour 

l’investigation des caractéristiques des signaux. La première est la mesure TDR* (Time Distributed Recurrences) 

qui quantifie la matrice des récurrences/ distances et qui est utilisée pour la détection des signaux transitoires. La 

deuxième approche est l’analyse des phases à plusieurs retards et elle est utilisée pour la discrimination entre des 

signaux avec des paramètres très proches. Finalement, la quantification des lignes diagonales de la matrice des 

récurrences est proposée comme alternative pour l’analyse des signaux modulés en fréquence. Les travaux 

présentent les résultats expérimentaux en utilisant les méthodes théorétiques proposées dans cette thèse. Les 

résultats sont comparés avec des techniques classiques. Des perspectives de ces travaux, tant dans les domaines 

théorique et qu’applicatif, sont discutés à la fin du mémoire.  
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Abstract - Signals’ deformation along their propagation path is among the most important aspect which has to 

be taken into account at reception. These effects are caused by phenomena like attenuation, reflection, dispersion 

and noise. Whereas the first two are rather easy to monitor, because they affect the amplitude, respectively the 

delay, the latter two are more difficult to control, because they change signals’ parameters (amplitude, frequency 

and phase) in an environment-dependent manner. In this thesis, the main objective is to contribute to the analysis 

of signals related to different physical phenomena, aiming to better understand them as well as to estimate their 

parameters that are interesting from application point of view. Different applicative contexts have been 

investigated in active and passive sensing configurations. For the active part, we mention the monitoring of 

cavitation phenomena and its characterization for hydraulic system surveillance. The second application of the 

active sensing is the underwater object detection and tracking without synchronization between sensors. For the 

passive configuration, we focus on the pressure transient analysis in water pipes investigation with a non-

intrusive method and on the surveillance of electrical power systems in the presence of transient phenomena 

such as electrical arcs. Despite the differences between the physical considerations, we propose a unique 

mathematical model of the signals issued from the active/passive sensing system used to analyze the considered 

phenomena. This model is based on the Recurrence Plot Analysis (RPA) and Recurrence Quantification Analysis 

(RQA) methods. With this concept, we propose the phase-space based waveform design. This waveform design 

technique presents the interest to conduct to a high speed sensing methods, very useful to monitor dynamic 

phenomena. Moreover, we propose new tools for the investigation of the signals characteristics. The first one is 

the TDR* measure (Time Distributed Recurrences) that quantifies the recurrence/ distance matrix and it is used 

for the detection of transient signals. The second one is the multi-lag phase analysis using multiple lags and it is 

successfully used to discriminate between signals with close parameters. Finally, the diagonal lines 

quantification of RPA matrix is proposed as an alternative for the analysis of modulated signals. Our work 

presents the experimental results using the proposed theoretical methods introduced by this thesis. The results 

are compared with classical techniques. The perspectives of this thesis are presented at the end of this paper. 

 

Keywords: Signal deformation, Phase diagram, Recurrence Plot Analysis, Phase-space based adaptive 

waveform, Detection and localization, Signal characterization  

 


