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Keywords: Non-convex Particles, Discrete Element Method, Granular Mechanics, Direct Numerical Simulation, Rotating Drums, Fixed Beds, Porous Media, High Performance Computing xv R C tte thèse porte sur l'étude numérique des écoulements uide-particules rencontrés dans l'industrie. Ces travaux se situent dans le cadre de la compréhension des phénomènes qui se déroulent dans des tambours tournants et réacteurs à lit xe en présence de particules de forme non convexe. En e fet, la forme des particules in uence de manière importante la dynamique de ces mileux. A cet e fet, nous nous sommes servis de la plateforme numérique parallèle Grans3D pour la dynamique des milieux granulaires et PeliGRIFF pour les écoulements multiphasiques. Dans la première partie de cette thèse, nous avons développé une nouvelle stratégie numérique qui permet de prendre en compte des particules de forme arbitrairement non convexe dans le solveur Grains3D. Elle consiste à décomposer une forme non convexe en plusieurs formes convexes quelconques. Nous avons nommé cette méthode "glued-convex". Le modèle a été validé avec succès sur des résultats théoriques et expérimentaux de tambours tournants en présence de particules en forme de croix. Nous avons aussi utilisé le modèle pour simuler le chargement de réacteurs à lits xes puis des lois de corrélation sur les taux de vide ont été déduites de nos résultats numériques. Dans ces travaux, nous avons aussi testé les performances parallèles de nos outils sur des simulations numériques à grande échelle de divers systèmes de particules convexes. La deuxième partie de cette thèse a été consacrée à l'éxtension du solveur PeliGRIFF à pouvoir prendre en compte la présence de particules multilobées (non convexes) dans des écoulements monophasiques. Une approche du type Simulation Numérique Directe, basée sur les Multiplicateurs de Lagrange Distribués / Domaine Fictif (DLM/FD), a alors été adoptée pour résoudre l'écoulement autour des particules. Une série d'études de convergence spatiale a été faite basée sur diverses con gurations et divers régimes. En n, ces outils ont été utilisés pour simuler des écoulements au travers de lits xes de particules de forme multi-lobée dans le but d'étudier l'in uence de la forme des particules sur l'hydrodynamique dans ces lits. Les résultats ont montré une consistance avec les résultats expérimentaux disponibles dans la littérature. "Un corps est liquide lorsqu'il est divisé en plusieurs petites parties qui se meuvent séparément les unes des autres en plusieurs façons di érentes, et qu'il est dur lorsque toutes ses parties s'entretouchent, sans être en action pour s'éloigner l'une de l'autre". Descartes (1852) 1 I T e idea of Descartes (1852) can be extended to granular media such that a granular media might be a particular state of matter usually de ned between liquid and solid. It behaves like a liquid because it ows, can ll a container and can take its shape. Unlike liquids, a non horizontal free surface can be stable. It also behaves like a solid since it can resist to compression and slightly to shear stress (or deviatoric stress). However, a solid can resist to traction, whereas a granular media can not. [START_REF] Brown | Principles of Powder Mechanics: essays on the packing of powders and bulk solids[END_REF] Since a granular media is a collection of particles, it is essential to introduce the concept and the de nition of the particle size classi cation, particle shape, roughness, etc (T . 1.1).

The sorted categories of particles are encountered in many applications such as in civil engineering, food processing, pharmaceutics, foundry, geophysics, astrophysics, oil and gas, energy, etc. Thus, each eld of applications has its own speci c vocabulary for the classi cation of the shape and size.

In the eld of civil engineering, the cement industry appears to be one of the largest users of granular materials. In fact, cement is obtained by mixing limestone (80%) and clay (40%) at high temperature. There is also the concrete manufacturing industry which plays a significant role in terms of granular materials usage. For instance, Lafarge, a French multinational company, which is the world leader in the production of cement, construction aggregates and concrete has 166 plants in the world and a capacity of 225 Mt/year. After water, granular materials are the second most used resources on Earth [START_REF] Duran | Sables, poudres et grains: Introduction à la physique des milieux granulaires[END_REF]). One of the main issues encountered in the eld of food processing is the storage prob-lem and the discharge of containers. F . 1.4 illustrates the particular problem of segregation in the discharge of containers. Generally, segregation occurs when a owing granular media made of various particle sizes is disturbed leading to a rearrangement of particles. It appears often while vibrating a container during a pouring or a discharge procedure. Granular materials are also seen in nature such as sand on the beach, in the desert (10% of Earth surface), in rivers, on continental shelves and abyssal plains, on hills, etc. There are various phenomena which are related to the presence of sand, for instance the displacement of sand dunes in the desert, river bed erosion, submarine avalanche, etc.

Nature can put on display dreadful and devastating phenomena such as snow avalanches (F . 1.5) and landslides (F . 1.6).

Figure 1.5 -Typical powder snow avalanche.

Figure 1.6 -Landslide burying a six-lane motorway in Taiwan.

Technically, an avalanche is an amount of snow sliding down a mountainside while landslide is the movement of rock, shallow debris or earth down a slope. In particular, powder snow avalanche (F . 1.5) is known as an extremely violent avalanche. The typical mass of an avalanche can easily exceed 10 Gt and its velocity can reach 300 km/h. This type of avalanche holds a large amount of snow grains in the surrounding turbulent uid. This phenomenon is usually close to a dust storm in arid and semi-arid regions (F . 1.7) where particles are suspended in the uid. Another example is pyroclastic flows known as pyroclastic density currents which come from volcano eruptions (F . 1.8) and where hot gas of about 1000 • C is mixed with rocks with a current velocity up to 700 km/h. The boulders moving in pyroclastic ows have very high kinetic energy so that they can atten trees and destroy a whole building which comes across their path. The hot gases are extremely lethal since they can spontaneously incinerate living organisms. Granular media are also found in the eld of astrophysics. For example, the rings of Saturn (F . 1.9) which are a massive collection of granular materials that in nitely collide while rotating around the planet. Another example is the granular materials found in Mars which are investigated during Mars exploration by NASA's Mars rover Curiosity. In F . 1.10, the rover cuts a wheel scu f mark into a wind-formed ripple at the "Rocknest" site to examine the particle-size distribution of the material forming the ripple. All of these phenomena involving granular media are still challenging to describe especially at a very large scale, where the overall dynamics is controlled by the scale of an individual particle. Hence, scientist and engineers set up small-scale laboratory experimentations in order to have an insight in the physics involved in the study of granular dynamics. In addition, numerical simulations play an important role as enhanced physical models implemented in modern parallel codes lead to increasingly accurate numerical models able to examine large scale granular ows.
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Granular media ow is of utmost interest in many other industries. Rotating furnaces are widely used in treatment of solids like drying, torrefaction, pyrolysis, calcination, impregnation, chemical treatment . . . In all theses cases, it is highly preferable that the granular media is mixed so as to control residence time and to prevent that the solid stays too long near or far from the walls (or the injection points). The rotating drum is an experimental device that is widely used to study the dynamics of granular media. The reproducibility of experiments are quite satisfactory and the system is continuously fed. One of the advantages of the set-up is that experiments can be reproduced in short period of time. Hence, it o fers the possibility of performing a large amount of experiments on many ow regimes. The rotating drum is also often chosen to study environmental ows such as pyroclastic ows or avalanches. Granular ow regimes are known to be impacted by particle shapes. For this purpose, many authors studied the in uence of particle shape on the dynamics of granular media, among others [START_REF] Favier | Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles[END_REF], [START_REF] Höhner | Experimental and numerical investigation on the inuence of particle shape and shape approximation on hopper discharge using the discrete element method[END_REF][START_REF] Bernard | Multi-scale approach for particulate flows[END_REF], [START_REF] Lu | E fect of wall rougheners on cross-sectional ow characteristics for non-spherical particles in a horizontal rotating cylinder[END_REF]. However, the numerical simulations are performed on limited amount of particle shapes. Many ow regimes can appear as a function of the rotation rate. [START_REF] Mellmann | The transverse motion of solids in rotating cylinders-forms of motion and transition behavior[END_REF] proposed mathematical models to predict the transitions between the di ferent forms of transverse motion of a free-owing bed material in a rotating drum. These regimes are widely referred to in the literature and are summarized in F . 1.11.

The Froude number F r is usually the key factor of the characterization of the regime transitions in rotating drums. Nonetheless, this dimensionless number is often subjected to modi cation to account for the height of the bed of granular media, the particle diameter to the drum diameter aspect ratio (d p /D d ) or the material properties of particles and of the drum.
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Industrial context

Catalytic reactions and reactors have numerous applications such as production of chemicals bulk, petroleum re ning, ne chemical pharmaceutics, biomass conversion, etc. Most catalytic re ning and petrochemical reactions are operated in xed bed reactors. In these reactors, catalyst pellets are randomly stacked in a large cylindrical vessel and reactants, usually gas and liquid, ow through the bed to react inside the catalyst pellets. Catalyst pellets are designed to be porous so that the reacting uid can penetrate the particle to reach the reactive phase (noble metals, metal sulphides, etc.) coated onto them. Main interest of heterogeneous catalysis is that the surface area available for reaction is very large (typically 20 -200 m 2 /g per pellet). Catalyst particles are typically [0.2; 5] mm in size and can be spherical, cylindrical or can have more complex shapes (F . 1.12 and 1.13). Catalyst shape is chosen in order to optimize the reactor performance.

Performance, in the point of view of the re ner, is a compromise between catalyst lifetime and cost, reactor yield, mechanical strength and operating costs. A higher catalyst activity is generally preferable as it allows to operate either at lower temperature or in more severe conditions (higher ow-rate or more di cult feedstock). A better activity can be achieved by in- creasing the amount of active phase which generally results in a more expensive catalyst. In the case of mass transfer limitations, it can be interesting to increase the pellet surface to volume ratio: the higher external area ensures a better accessibility to the inner volume of the pellet. A higher surface to volume ratio can be achieved in reducing pellet size or changing the pellet shape. Pressure drop in the xed bed should be minimum to reduce the gas compression costs, especially on the hydrogen feed. This is achieved using large pellets and high voidage packing. Catalyst lifetime is limited by several mechanisms: bed plugging, catalyst leaching (part of the active phase is taken out with products), catalyst ageing (active phase changes in time and is less active), catalyst coking (formations of deposits in the particle reduced access to active sites), etc. Changing catalyst shape is a way to manage bed plugging. Mechanical strength depend on the pellet support material, its inner porosity and of course on the pellet shape. A low mechanical strength leads to a higher risk of pellet breakage which results in high pressure drop. If nes are produced during pellet breakage, they can even plug the bed. In summary, shape change in a convenient way to optimize catalyst performance.

Catalyst production method has an impact on its costs. Extrusion of the pellets (F . 1.13b) is quite cheap and allows to modify the shape by changing the die. Therefore, an important e fort is dedicated to the extrudate shapes and consists in nding the most optimised ones. From a chemical engineering perspective, optimizing a catalyst shape means nding a shape minimizing pressure drop while maximizing the chemical conversion rate of the catalyst.

Shape and apparent catalytic activity

Inside the particle, mass transfer limitations may prevent all catalytic sites to exhibit full performances: if reactant di fusion is slow compared to reactant consumption, it is possible that reactant concentration at the center may be signi cantly lower than at catalyst pellet surface. Using the classical Thiele approach [START_REF] Thiele | Relation between catalytic activity and size of particle[END_REF]), chemical engineers can estimate the loss of activity due to mass transfer limitation. Catalyst e ciency is de ned as the ratio of the activity of the particle to the activity of the particle if the concentration was uniform. For a reaction of order n, this can be written :

η = V K i C n dv V K i C n 0 dv (1.1)
The analytical solutions of this equation are based on the dimensionless number known as Thiele Modulus. It compares the consumption by the reaction and the di fusion phenomena. If it is larger than 1 then the reaction is mass transfer limited.

Φ L = L p K i C n-1 D ef f 0.5 (1.2)
Φ L denotes the Thiele modulus, L p a characteristic particle dimension, K i the intrinsic reaction rate constant, C the concentration of reactant, n the reaction order and D ef f the e fective di fusivity.

Exact derivation of e ciency as a function of the Thiele modulus exists for semi-in nite plate, sphere and in nite cylinder (F . 1.14).

For example:

(i) For plate:

η = tanh Φ L /Φ L (ii) For sphere: η = (3Φ L coth 3Φ L -1)/3Φ 2 L (iii) For cylinder: η = I 1 (2Φ L )/Φ L I 0 (2Φ L )
where I n (x) is the Bessel function of order n. For these derivations, the Thiele modulus does not depend on shape if it is rewritten using L p = V p /S p , as proposed by [START_REF] Aris | On shape factors for irregular particles -I: The steady state problem[END_REF].

For a given Thiele modulus, it may appear that shape has little e fect of the e ciency (F . 1.14). Nevertheless, for Φ L ∼ 1, which is a frequent case, changing shape can improve e ciency by a few percent, which is signi cant for industrial purposes. In fact, shape optimisation is mostly about changing the Thiele Modulus by changing the characteristic dimension of the particle L p .

In order to improve e ciency, it is interesting to lower the Thiele modulus, hence increasing the ratio V p /S p . Hence, this leads to the development of poly-lobed extrudates.

Pressure drop and Void fraction

Before industrialising a new shape of catalyst, it should be known how the shape will a fect pressure drop and the amount of catalyst that can be loaded in a reactor.

A large number of correlations has been proposed in literature. They are based whether on empirical data or on numerical models. Among others, [START_REF] Cooper | Hydroprocessing conditions a fect catalyst shape selection[END_REF] proposed a model which is based on the correlations of [START_REF] Midoux | Flow pattern, pressure loss and liquid holdup data in gas-liquid down ow packed beds with foaming and nonfoaming hydrocarbons[END_REF]. The model is written in the following from:

∆P LG = f 1 (X) • ∆P L = f 2 (X) • ∆P G (1.3)
where X = ∆P G ∆P L and ∆P LG denotes the two-phase pressure drop per unit length. ∆P G and ∆P L denote respectively the pressure drop of gas and liquid if they exist and assumed to ow alone. If the pressure drop of a single phase ow is known, then the gas-liquid pressure drop can be computed with su cient accuracy. Being able to predict single phase pressure drop is thus su cient in the context of shape optimization.

The correlation of single phase pressure drop in packed bed of [START_REF] Ergun | Fluid ow through randomly packed columns and uidized beds[END_REF] and [START_REF] Ergun | Fluid ow through packed columns[END_REF] is widely used in the chemical sectors. They suggested to predict the pressure drop through a packed bed as the sum of a viscous term (friction on particle surface) and an inertia term (change in direction, expansion, contraction).

∆P H = 150 µ(1 -ε) 2 ε 3 u d 2 p + 1.75 ρ f (1 -ε) ε 3 u 2 d p (1.4)
where ε, µ, U , d p , H and ρ f denote respectively bed void fraction, uid dynamic viscosity, particle diameter, height of the bed and uid density. The numerical constants (150 and 1.75) are tted to match experimental data points and depend on the particle shape.

The correlation E . 1.4 exhibits a very strong dependency on void fraction. So far, there is yet no way to analytically predict the void fraction of a packed bed for an arbitrary (new) particle shape . Experiments are necessary and they are not so easy to perform. A rst problem is that particles have random dimensions: for extrudates, the diameter is almost constant but the length can vary a lot in an uncontrolled manner. Length distribution variations may in uence experimental results. A second issue is that a good accuracy of the void fraction is required to be able to discriminate shapes. Reaching high accuracy requires the use of large vessels, and repetition of experiments which is seldom performed on prototype shapes produced in small amounts. A third issue is that the bed void fraction depends on the loading procedure and it is very likely that some procedures designed for a speci c shape may lead to very di ferent results on others (for example: cylinders subjected to vibration tend to align vertically, which is of course not observed on spheres). Thus, void fraction measurements in these beds are quite time consuming.

The pressure drop correlation uses a "particle diameter", whose de nition is not straightforward for non spherical particles. Several approaches have been suggested that try to estimate an "equivalent diameter" based on shape factors [START_REF] Cooper | Hydroprocessing conditions a fect catalyst shape selection[END_REF]:

d e = 1 φ s 6 • V p S p (1.5)
where φ s is the shape factor (surface area of a sphere of equal volume/surface area of the particle), V p and S p denotes respectively the volume and the surface of the particle. Interestingly, this expression resembles the characteristic length recommended by Aris [START_REF] Aris | On shape factors for irregular particles -I: The steady state problem[END_REF] to compute the Thiele modulus.

It can be seen in F . 1.15 that the pressure drop is quite dependent on particle shape and volume to surface ratio. So far correlations to estimate pressure drop of new particles shapes are failing to be predictive enough due to a lack of knowledge of the void fraction as well as scarce and scattered of experimental data [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF]). 3.4 Summary on catalyst shape optimization: Need for predictive tools

Changing particle shapes can be quite interesting to increase particle e ciency through increasing the surface to volume ratio. E ciency wise, shape selection can be performed using simulation tools. On the opposite side, the pressure drop estimation requires experiments that are time consuming and ill-adapted to screen a large number of candidate shapes. New numerical tools are welcome to ease particle shape evaluation.
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This Ph.D. thesis is a multi-disciplinary work in the framework of a collaboration between two departments at IFP Energies nouvelles: The overall objective of this work is twofold :

• to develop numerical tools:

-Extension of the modelling capabilities of Grains3D (a massively parallel Discrete Element Method code for granular dynamics) to treat non-convex particles based on a decomposition of a non-convex particle into a set of convex ones -Extension of the modelling the capabilities of PeliGRIFF (a massively parallel Direct Numerical Simulation code) to handle non-convex particles in the coupling the dispersed granular phase with the ow solver using a Distributed Lagrange Multiplier / Fictitious Domain (DLM/FD) formulation • to use these enhanced of the tools to improve physical comprehension of:

-Silo discharge -Dam breaking -Fluidization -Simulation of 2D-and 3D-cross particles in a rotating drum -Assessing the e fect of catalyst shape on xed bed void fraction -Assessing the e fect of catalyst shape on pressure drop This work has been or will be presented for publication in 4 papers that will be used as the back bone of this thesis manuscript which is organized as follows:

• Chapter 2: Granular ow simulation: A literature review • Chapter 3: Non-convex granular media modelling with Grains3D (paper 1)

• Chapter 4: Optimizing particle shape in xed beds: simulation of void fraction with poly-lobed particles (paper 2) • Chapter 5: Grains3D: a massively parallel 3D DEM code (paper 3) 
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Ce chapitre introduit les contextes scienti que et technique des milieux granulaires ainsi que leurs di férentes applications. En particulier, les tambours tournants et les réacteurs à lit xe. Dans la première application, un intérêt particulier est porté sur la dynamique des milieux granulaires dans les tambours tournants en vue d'étudier l'impact de la forme des particules celle-ci. Pour ce qui est de la deuxième application, la prise en compte de nouvelles formes de grains de catalyseur permet d'augmenter leur e cacité en augmentant le rapport surfacevolume. Grace aux simulations numériques, il est alors possible de tester plusieurs formes de particules et de calculer les pertes de charge au travers des lits de catalyseurs formés par ceux issus des séléctions.

Les principaux objectifs de cette thèse sont organisés en deux volets:

• Développement d'outils numériques:

-Extension du code Grains3D (code "Discrete Element Method" massivement parallèle pour la dynamique des milieux granulaires) pour pouvoir traiter des particules de formes non-convexes. Le modèle est basé sur la décomposition de la forme non-convexe en plusieurs formes convexes quelconques. -Extension du module Simulation Numérique Directe du code PeliGRIFF pour le couplage entre la phase dispersée (particules non-convexes) et le solveur des équation de Navier-Stokes en utilisant la formulation Multiplicateur de Lagrange / Domaine Fictif ("Distributed Lagrange Multipliers / Fictitious Domain"). • Utilisation des modéles implémentés pour des études physiques, telles que:

-Vidange de silo -E fondrement de colonne de particules -Fluidisation -Dynamique des particules en forme de croix dans des tambours tourants -E fet de forme des catalyseurs sur le taux de vide dans des lits xes -E fet de forme des catalyseurs sur la perte de charge au travers des lits xes Ces travaux de thèse ont donné lieu à quatres articles soumis ou encore à soumettre qui serviront de bases pour ce manuscrit:

• Chapitre 2: Simulation numérique d'écoulement granulaire: une revue de la littérature 
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N merical simulations are meaningless without experimental validations. These valida- tions allow scientists to gain con dence in their numerical tools. Therefore, numerical models can then later be used to produce more accurate predictions. Many dry granular ow con gurations can be studied at the laboratory scale. Con gurations presented in F . 2.1 are among the most studied ones. The shear cell con guration (F . 2.1a) is a classical case where an imposed strain rate in the form of a relative motion is applied to a collection of particles between two walls which can be either those of coaxial cylinders [START_REF] Miller | Stress uctuations for continuously sheared granular materials[END_REF][START_REF] Schöllmann | Simulation of a two-dimensional shear cell[END_REF]), or those of parallel planes [START_REF] Babic | The stress tensor in granular shear ows of uniform, deformable disks at high solids concentrations[END_REF], [START_REF] Aharonov | Rigidity phase transition in granular packings[END_REF]). This type of con guration is useful in the investigation of the e fect of continuous shear stress on granular materials. F . 2.1b shows a gravity-driven ow con ned between two vertical planes or in a cylinder [START_REF] Nedderman | The thickness of the shear zone of owing granular materials[END_REF], [START_REF] Nedderman | The thickness of the shear zone of owing granular materials[END_REF], [START_REF] Denniston | Dynamics and stress in gravity-driven granular ow[END_REF]) controlled by a horizontal plan or disk with a vertical, steady and uniform motion. Since hopper discharge is a matter of interest in many elds, this con guration o fers the opportunity to gain a better comprehension of phenomena which are involved in industrial facilities as e.g. mining. Flows on inclined planes [START_REF] Hanes | Simulations and physical measurements of glass spheres owing down a bumpy incline[END_REF], [START_REF] Silbert | Granular ow down an inclined plane: Bagnold scaling and rheology[END_REF]) in F . 2.1c are common for the study of geophysical phenomena such as landslides or avalanches. This experimental set up gives a representation of how granular materials are accelerated by an inclined surface (e.g. down a hill). F . 2.1d exhibits a ow on a pile [START_REF] Khakhar | Surface ow of granular materials: model and experiments in heap formation[END_REF], [START_REF] Andreotti | Selection of velocity pro le and ow depth in granular ows[END_REF]) where the slope is promoted by the ow rate which is the unique control parameter of the system.

Hypothesis 2.1 In the following sections, the study of a granular media is carried out under the following assumptions:

• attraction forces are neglected (e.g. electrostatic, capillary, van der Waals, etc.) • particles are most of the time in contact, a packing of granular material can be considered as porous medium

G

Far from being understood, granular media is a simple system of large number of particles of various shapes, sizes and materials [START_REF] Umbanhowar | Patterns in the sand[END_REF]). The motion of the system can be described by the classical Newton's laws of motion which are the foundation of classical Mechanics. The nature of contact depends on the type of materials and geometrical properties of particles and de nes the behaviour of the granular media which can be simulated by various methods.

Hard sphere approach

Elastic collision essentially governs the hard sphere model. The state of the particles after a collision is described by the conservation of momentum (translational and angular). The collision is only reduced to the interpretation of the total kinetic energy which is converted to potential energy associated with a repulsive force between two bodies and converted back again to kinetic energy. The following hypothesis are adopted in this approach:

• Contact occurs at a single point only • Collisions are supposed to be binary and quasi-instantaneous • Multiple collisions are de ned as a succession of binary collisions During a collision, the energy is conserved in the elastic deformation associated to normal and tangential displacements of the contact point, then dissipated in these directions.

Before a contact, for given velocities, only three coe cients are needed to evaluate the postcollisional velocities [START_REF] Herrmann | Modeling granular media on the computer[END_REF]):

• The coe cient of normal restitution which de nes the incomplete restitution of the normal component of the relative velocity. • The coe cient of friction which relates the tangential force to the normal force (Coulomb's law) • The coe cient of maximum tangential restitution which delimits the restitution of tangential velocity of the contact point.

2.2 Soft-particle and Discrete Element Method (DEM)

"Soft-particle" is usually referred to the deformation of the particle during contact. In reality, this method allows a small overlap of particles during the contact. Whilst particles remain geometrically rigid, the deformation is considered in the formulation of force models. The duration of contact is nite and multiple contact may occur simultaneously. Discrete Element Method, sometimes called Distinct Element Method has been developed over the past 30+ years. [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF] historically designed DEM for industrial process simulations of very small systems. The numerical model dealt with granular assemblies made of discs and spherical particles.

Following this work, numerous authors in di ferent scienti c communities were interested in modelling systems up to 1000 particles in two dimensions using idealised particles. Later on, DEM models have been improved in a way that complex three dimensional geometries can be treated. As the computing power increases, large scale simulations started to show an important potential. In their study, [START_REF] Walther | Large-scale parallel discrete element simulations of granular ow[END_REF] presented a large-scale computation of 122 million particles using High Performance Computing to simulate a sand avalanche.

Thanks to High Performance Computing, the realism of granular simulation has been drastically improved. Therefore, large scale industrial applications can be treated such as oil and gas re ning or geophysical ows. With the increase of computing power, researchers are now able to simulate multiphase ow systems. For instance, particulate ows which are systems of particles lled with uid in their surrounding interstices. This type of system can be simulated by coupling a Computational Fluid Dynamics code and a Discrete Element Method code (e.g. [START_REF] Tsuji | Discrete particle simulation of two-dimensional uidized bed[END_REF] and [START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]).

Most of DEM simulations are performed using spherical particles. Nevertheless, real particles have irregular or complex shape. Spherical particles are usually used because of the easiness of its characterization. In fact, its radius is all that is needed to describe it. The contact detection is simple, it satis es G 1 G 2 -r 1 -r 2 ≤ 0, where G and r denote respectively the centres of gravity and the radii of particle 1 and particle 2. The contact model is de ned as a single point whereas for complex particles it can be several surfaces, lines or points. As a consequence, the mechanical behaviour of granular materials can be modi ed [START_REF] Nouguier-Lehon | In uence of particle shape and angularity on the behaviour of granular materials: a numerical analysis[END_REF], [START_REF] Szarf | In uence of the grains shape on the mechanical behavior of granular materials[END_REF], [START_REF] Flemmer | An experimental study on the e fect of particle shape on uidization behavior[END_REF], [START_REF] Escudié | E fect of particle shape on liquid-uidized beds of binary (and ternary) solids mixtures: segregation vs. mixing[END_REF]).

The accuracy of computations is improved by introducing a variety of contact detection algorithms for various particle shapes.

Non-Smooth Contact Dynamics (NSCD)

The Non-Smooth Contact Dynamics also called Contact Dynamics was originally resulting from the mathematical formulation of non-smooth dynamics developed by [START_REF] Moreau | Evolution problem associated with a moving convex set in a hilbert space[END_REF]1994), [START_REF] Jean | A system of rigid bodies with dry friction[END_REF], [START_REF] Jean | Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterial motions[END_REF]1999). It is also a Discrete Element Method [START_REF] Radjai | Contact dynamics as a nonsmooth discrete element method[END_REF]) dedicated for numerical simulations of granular materials. Unlike the traditional DEM soft-sphere model, the NSCD method does not use numerical schemes to resolve the small time and length scales involved in particle-particle interactions. The e fects of small scales are incorporated in contact laws with a non-smooth formulation described at larger scales.

This method has been successfully applied to numerous problems, among other the works of [START_REF] Radjai | Force distributions in dense two-dimensional granular systems[END_REF][START_REF] Jing | Formulation of discontinuous deformation analysis (dda)-an implicit discrete element model for block systems[END_REF], [START_REF] Radjai | Turbulentlike uctuations in quasistatic ow of granular media[END_REF], [START_REF] Mcnamara | Measurement of indeterminacy in packings of perfectly rigid disks[END_REF], [START_REF] Azéma | Force transmission in a packing of pentagonal particles[END_REF].

2.4 Hybrid soft and hard sphere collision [START_REF] Buist | On an e cient hybrid soft and hard sphere collision integration scheme for dem[END_REF] introduced the hybrid soft and hard sphere model. It is a novel and e cient approach to compute collisions in particulate ow systems. It takes the advantages of both the hard sphere collision model and the soft sphere model. In fact, the hard sphere model is used for binary collisions, whereas the soft sphere model is required for multi-boy contacts. The hybrid model has the ability of discarding the numerical integration of the contact for all pairs of binary interactions. Hence, the model allows the use of large time step which decreases the computing time.

Continuum Mechanics Methods (CMM)

The distinctive feature of this model is that it uses an Eulerian approach for the granular behaviour [START_REF] Tüzün | The ow of granular materials -ii : Velocity distributions in slow ow[END_REF], [START_REF] Polderman | Solids ow velocity pro les in mass ow hoppers[END_REF], [START_REF] Jenike | A theory of ow of particulate solids in converging and diverging channels based on a conical yield function[END_REF], [START_REF] Drescher | On the criteria for mass ow in hoppers[END_REF] and [START_REF] Džiugys | An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[END_REF]). The set of continuum equations (continuum mechanics) can be used to describe the motion of granular media. In this framework, a granular media can be described as a viscoplastic "granular uid", a "granular gas" [START_REF] Campbell | Rapid granular ows[END_REF]) or a viscoelastic-plastic soil.

The equations of uid mechanics are involved in this model. If the motion of the granular ow is rapid enough, predicting the system behaviour leads to the solution of a turbulent two-phase ow. In that case, the model becomes less accurate and very complex. Thus, this method is suitable for particular processes only [START_REF] Barker | Computer simulations of granular materials[END_REF]) and its results can di fer from experimental data by an order of magnitude [START_REF] Džiugys | An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[END_REF]).

Other approaches

Other approaches exist in the literature such as:

• Geometrically steepest descent method which has been studied by [START_REF] Jullien | Simple three-dimensional models for ballistic deposition with restructuring[END_REF] • Quasi-static approach [START_REF] Borja | Micromechanics of granular media Part I: Generation of overall constitutive equation for assemblies of circular disks[END_REF])

• Shinbrot's model which combines CMM and DEM models [START_REF] Umbanhowar | Patterns in the sand[END_REF])

C

The contact resolution is very important, particularly in the investigation of multi-body system evolution over time. This has a signi cant number of applications such as computer graphic, computer animation, especially in 3D computer games [START_REF] Palmer | Collision detection for animation using sphere-trees[END_REF]), robotics [START_REF] Gilbert | Computing the distance between general convex objects in threedimensional space[END_REF]) and military applications.

For large number of objects the contact detection is a major computational obstacle. In fact, the process of contact detection is divided in two phases: the neighbour search phase and the contact resolution phase. Thus, numerous authors investigated algorithms for particulate simulations [START_REF] Iwai | Fast particle pair detection algorithms for particle simulations[END_REF], [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF], [START_REF] Feng | A 2D polygon/polygon contact model: algorithmic aspects[END_REF] and [START_REF] King | Collision Detection for Ellipsoids and Other Quadrics[END_REF]) in order to increase the accuracy of contact detection and decrease its computational cost.

D E M

Granular dynamics are described in terms of Newton's laws of motion which are physical laws that laid the foundation of classical Mechanics [START_REF] Newton | Sir Isaac Newton's mathematical principles of natural philosophy and his system of the world[END_REF]). They are summarized as follow:

N '

• F : Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon

• S

: The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed

• T

: To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts Modelling di culties arise from the consideration of particle shapes which can range form a very simple shape such as sphere in 3D or disk in 2D to very complex shapes. In fact, a continuously increasing number of studies is dedicated to non-spherical particles. In addition, contact detection requires robust and fast algorithms in order to save computing cost. Thanks to High Performance Computing, Discrete Element Method allows the computation of large systems relevant of industrial applications such as oil and gas re ning processes which are the main scope of this thesis.

4.1 Importance of particle shape DEM simulations can provide both macroscopic and microscopic measurements in granular media, but the shape representation of particles is still a challenging aspect. Therefore, handling non-spherical particle shape in DEM simulations is not straightforward. Contact detection algorithm are very rarely valid for any shapes. Many authors designed advanced strategies to compute contacts between various types of shape but most of these strategies are only suitable for a single speci c shape such as cubes [START_REF] Fraige | Distinct element modelling of cubic particle packing and ow[END_REF]), ellipsoids [START_REF] Džiugys | An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[END_REF]). Super-quadrics o fer a rst level of versatility as many shape can be approached by varying coe cients in the generalised quadric equation [START_REF] Cleary | DEM prediction of industrial and geophysical particle ows[END_REF]).

Traditionally, particles shape is approximated by a sphere in 3D and a disc in 2D. The shape plays a signi cant role in Discrete Element Method simulations since neither a sphere nor a disc approximation can always reproduce the real behaviour of granular assemblies. The major di ferences between real and approximated particle shapes are: resistance to shear stress and failure, volume of revolution, realistic void fraction and energy partition.

Intuitively, it is easy to gure out how the force is oriented when two circular particles collide. In fact, the normal force is directed along the line of both centres and no torque is generated. Whereas for non-circular particles, if the normal force is not directed toward the centre of mass, a torque is generated (see F . 2.2). 

Brief review of particle shape in literature

Ellipse/Ellipsoid

One of the simplest representation of non-spherical shape is an ellipsoid in 3D and ellipse in 2D. The algebraic and parametric form of an ellipsoid is expressed as follows:

x a 2 + y b 2 + z c 2 x = a cos θ cos ϑ, y = b cos θ sin ϑ, z = c sin ϑ (2.2)
Where x, y, z are the coordinates in the xed-body reference system, whereas a, b, c are the half length of the principal axes of the shape, θ ∈ [-π/2; π/2] and ϑ ∈ [-π; π] are the parametric representation of the particle. 2015) (adapted from [START_REF] Rothenburg | Numerical simulation of idealized granular assemblies with plane elliptical particles[END_REF]).

The contact detection algorithm relies on the determination of the intersection point between two ellipses in 2D [START_REF] Rothenburg | Numerical simulation of idealized granular assemblies with plane elliptical particles[END_REF]) and two ellipsoids in 3D [START_REF] Ouadfel | An algorithm for detecting inter-ellipsoid contacts[END_REF]). The contact resolution procedure in 3D is illustrated in F . 2.3.

Super-quadrics

The so-called super-quadric equation allows the representation of both convex and nonconvex shapes and was suggested by [START_REF] Barr | Superquadrics and angle-preserving transformations[END_REF] and later on adopted in Discrete Element Method by [START_REF] Williams | Superquadrics and modal dynamics for discrete elements in interactive design[END_REF]. The algebraic and the parametric forms are expressed as:

f (x, y, z) = x a 2 ε 2 + y b 2 ε 2 ε 2 ε 1 + z c 2 ε 1 -1 (2.3) x = a(sin θ) ε 1 (cos ϑ) ε 2 , y = b(sin θ) ε 1 (sin ϑ) ε 2 , z = c(cos ϑ) ε 1 (2.4)
where a, b, c denote the half length of the principal axes of the shape, and ε 1 and ε 2 are the parameters which control the "blockiness" of the particle. ε 1 controls the blockiness of the cross-sectional planes yOz and yOz, whereas ε 2 controls that of the cross-sectional plane in xOy. When ε 1 = ε 2 = 1 the equation of the super-quadric E . 2.3 is equal to that of the ellipsoids (E . 2.1). θ ∈ [-π/2; π/2] and ϑ ∈ [-π; π] are the parametric representations of both super-quadric and ellipsoid. 

Polygons and Polyhedrons

Since ellipsoidal and super-quadric shapes do not always represent all particles found in nature and industry, many authors oriented their research in the exploration of polygonal and polyhedral shapes (e.g. [START_REF] Hart | Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[END_REF] and [START_REF] Lee | A packing algorithm for threedimensional convex particles[END_REF]). While new shapes are designed, new corresponding contact algorithms are required. Polygons in 2D and polyhedra in 3D are such shapes that ellipsoids can not represent and super-quadrics can only but asymptotically. For instance, the contact detection algorithm is quite straightforward in 2D. In fact, the contact detection algorithm relies on the number of edges of the polygon. The computational cost scales with N i × N j where N i and N j are the numbers of vertices of the colliding particles i and j.

In 3D, the contact resolution can be very complex. In fact, the contact detection algorithm requires some complex combinations of elements such as vertex-vertex, vertex-edge, vertexface, edge-edge, edge-face and face-face. The computational e ciency of the contact detection algorithms of polygonal/polyhedral particles is improved by introducing the so-called "Common Plane" algorithm developed by [START_REF] Cundall | Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[END_REF].

De nition 2.1 A common is a plane that, in some sense, bisects the space between the two contacting particles. [START_REF] Cundall | Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[END_REF] G. [START_REF] Nezami | Shortest link method for contact detection in discrete element method[END_REF] demonstrated the uniqueness of the Common Plane for any couple of two convex particles and the perpendicularity of the contact normal to the CP. and2). They are the plane which is perpendicular to the linear section P Q, and the planes that are parallel to the polygon edge P P 1 , P P 2 , QQ 1 and QQ 2 where P 1 and P 2 are the vertices of particle 1 next to P and Q 2 and Q 2 are the vertices of particle 2 next to Q. Credit: [START_REF] Lu | Discrete element models for non-spherical particle systems: From theoretical developments to applications[END_REF] (adapted from [START_REF] Nezami | A fast contact detection algorithm for 3-d discrete element method[END_REF]).

Spherosimplices

The modelling of non-spherical particles using the so-called "spherosimplices" has received a particular interest over the last decade (e.g. Pournin and Liebling (2005) and Alonso-Marroquín and Wang ( 2009)). A spherosimplices-shaped particle is a combination of a skeleton (e.g. a point, a linear segment, a polygon or a polyhedron) and a disk or a sphere (e.g. F . 2.6) (a) Non-spherical spherosimplices particles. Credit: Pournin and Liebling (2005). 

Composite particles made of multiple spheres

Particles composed of multiple spheres are often called "glued spheres" (F . 2.7) in the literature, referring to the fact that spherical particles are glued together to build the composite shape. This method is quite popular in the DEM community (e.g. [START_REF] Nolan | Random packing of nonspherical particles[END_REF], [START_REF] Kruggel-Emden | A study on the validity of the multisphere discrete element method[END_REF]).

One of the advantages of this method is its ability to reproduce a given shape with a loose approximation by "gluing" many spherical particles together. Therefore, a fast and robust contact detection algorithm for spheres can be applied to the particle. Nonetheless, a very large number of spheres has to be glued to reach a high de nition of surface smoothness which increases the computational cost of the method.

The particularity of this method is that, if required, the primary spheres can also overlap with each other. Such a built particle is governed by rigid-body motion so that the relative positions of the components do not change during collisions. The forces and torques acting on primary spheres are summed relatively to the centre of mass of the composite particle and are subsequently used to calculate its trajectories [START_REF] Favier | Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles[END_REF]).

S

Since almost any non-convex particle can be decomposed into a set of arbitrary convex particles, none of the previous strategies is suitable for the goal of this study. In fact, the closest method would be the glued spheres method but regardless of the computation cost. Another option would be the use of super-quadrics but the range of parameters of their equation does not allow the access of the targeted shapes of this study. The other methods do not fall in line with the scoop of the present study. Based on these observations, it is concluded that the best strategy and suitable for modelling granular media of non-convex particles, at least at the current state of the granular code Grains3D, is the decomposition of a non-convex particle into a set of arbitrary convex bodies. The model is called "glued convex" and is introduced in the next chapter.

R

Ce chapitre comprend une revue détaillée de la littérature sur la modélisation des milieux granulaires de particules de formes complexes. Di férentes approches sont alors exposées ainsi que la complexité de la détection de contacts entre deux objets. En premier lieu, le modèle de sphère dure est présenté avec ses avantages et ses inconvénients. En second lieu, la combinaison modèle de sphere molle et méthode des éléments discrets (DEM) qui est couramment utilisée dans la litérature. Ensuite, le modéle "Non-Smooth Contact Dynamics (NSCD)" et le modèle hybride sphère molle et sphère dure. Et en n, quelques modèles qui sont moins utilisés que ceux cités précédement tels que la méthode des milieux continus ou l'approche quasi-statique ou encore le modèle de Shinbrot.

La détection de contact est un problème à part entière car elle est souvent dépendante de la forme étudiée. En e fet, pour certaines formes de particules, le contact peut se résoudre analytiquement tandis que pour d'autres formes elle nécessite des algorithmes puissants. Dans ce chapitre, quelques formes courantes sont introduites avec les méthodes de résolution des contacts associées.

Cette revue de littérature a permis de mettre en evidence que les modèles existants dans la littérature sont inadéquats pour les problémes qui font l'objet de cette thèse. D'où la proposition du nouveau modèle nommé glued convex ("convexes collés"). This chapter has been submitted for publication in Powder Technology:
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A. D. Rakotonirina, A. Wachs, J.-Y. Delenne, F. Radjaï. Grains3D, a exible DEM approach for particles of arbitrary convex shape -Part III: extension to non-convex particles.

In this paper, the "glued convex" method is presented to model non-convex particle shape with validation cases. Then we used the model to explore the e fect of particle shapes on packing porosity and on ow regimes in rotating drum with 2D-and 3D-crosses.

A

L rge-scale simulation using the Discrete Element Method (DEM) is a matter of interest as it allows to improve our understanding of the ow dynamics of granular ows involved in many industrial processes and the environment ows. In industry, it leads to an improved design and an overall optimisation of the corresponding equipment and process. Most of DEM simulations in the literature have been performed using spherical particles. Very few studies dealt with non-spherical particles, even less with non-convex ones. Even spherical or convex bodies do not always represent the real shape of certain particles. In fact, more complex shaped particles are found in many industrial applications as, e.g., catalytic pellets in chemical reactors. Their shape in uences markedly the behaviour of these systems. The aim of this study is to go one step further into the understanding of the ow dynamics of granular media made of non-convex particles. Our strategy is based on decomposing a non-convex shaped particle into a set of convex bodies, called elementary components. The novel method is called "glued convex" method, as an extension of the popular "glued spheres" method. At the level of elementary components of a "glued convex" particle, we employ the same contact detection strategy based on a Gilbert-Johnson-Keerthi algorithm and a linked-cell spatial sorting that accelerates the resolution of the contact. The new "glued convex" model is implemented as an extension of our in-house high delity code Grains3D that already supplies accurate solutions for arbitrary convex particles. The extension to non-convex particles are illustrated on the lling of catalytic reactors and the ow dynamics in a rotating drum.

I

Discrete Element Method was originally designed to handle spherical particles. The method is now able to deal with more complex particle shapes [START_REF] Cundall | Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[END_REF], [START_REF] Hart | Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[END_REF], [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]). Thanks to its conceptual simplicity this method is widely used in granular media modelling. Its computational implementation is very straightforward for spheres but is quite di cult for complex particle shapes. Many approaches have been investigated since the late 80's, among them the works of [START_REF] Cundall | Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[END_REF] and [START_REF] Hart | Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[END_REF]. They studied a system composed of polyhedral blocks and used a robust and rapid technique (Common Plane technique) to detect and to categorise contacts between two polyhedral blocks. Later on, many authors worked on the extension of DEM to non-spherical particles. For example, [START_REF] Munjiza | A poly-ellipsoid particle for non-spherical discrete element method[END_REF] constructed a poly-ellipsoid particle by "gluing" ellipsoids together. One of the most famous extensions of DEM is the "glued spheres" model in which a complex shape is approximated by "gluing" spherical particles. For instance, [START_REF] Nolan | Random packing of nonspherical particles[END_REF] used this approximation to study the random close packings of cylindrical-, bean-and nail-shaped particles. They found good agreement between their simulations and experimental data. [START_REF] Song | Contact detection algorithms for DEM simulations of tablet-shaped particles[END_REF] used this approach to study the contact criteria for tablet-at surface and tablettablet contact. At rst sight, this method seems to be well adapted to any shape. Nonetheless, the higher the number of spheres is the less e cient the computation becomes as [START_REF] Song | Contact detection algorithms for DEM simulations of tablet-shaped particles[END_REF]) demonstrated. Li et al. (2004) modelled sphero-disc particles to study the ow behaviour, the arching and discharging in a hopper. Another extension of Discrete Element Method to polygonal shaped particles was suggested by [START_REF] Hart | Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[END_REF], [START_REF] Feng | A 2D polygon/polygon contact model: algorithmic aspects[END_REF] and polyhedral shaped particles [START_REF] Fraige | Distinct element modelling of cubic particle packing and ow[END_REF], [START_REF] Lee | A packing algorithm for threedimensional convex particles[END_REF]). These new features enabled research groups to address several problems in the eld of geophysics [START_REF] Hentz | Identi cation and validation of a discrete element model for concrete[END_REF], [START_REF] Jing | Formulation of discontinuous deformation analysis (dda)-an implicit discrete element model for block systems[END_REF], [START_REF] Camborde | Numerical study of rock and concrete behaviour by discrete element modelling[END_REF]).

Available strategies in the literature to handle complex shapes were already reviewed in de-tail in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. We simply give here again a short overview. [START_REF] Williams | A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries[END_REF] introduced the Discrete Function Representation of a particle shape to address contact resolution. DPR is applicable to convex geometries and to a restricted set of concave geometries. [START_REF] Williams | Superquadrics and modal dynamics for discrete elements in interactive design[END_REF] explored the critical in uence of particle shape on granular dynamics and suggested super-quadric particles for geophysical applications. This method allows the design of particles with rounded edges such as ellipsoid, blocks, or tablets by introducing a continuous function (f (x, y, z) = (x/a) m + (y/b) m + (z/c) m -1 = 0) that de nes the geometry of the object. The weakness of this method relies on the handling of contact detection. In fact, the more the edge angularity increases the more the discretisation needs points to discretise f (x, y, z). Therefore, computational cost of the contact detection increases with edge (or shape) angularity. A probability-based contact algorithm is presented in the work of [START_REF] Jin | Probability-based contact algorithm for non-spherical particles in DEM[END_REF]: contacts between non-spherical particles are translated into those between spherical particles with probability. Alonso-Marroquín and Wang (2009) presented a method to simulate two-dimensional granular materials with sphero-polygon shaped particles. The particle shape is represented by the classical concept of a Minkowski sum [START_REF] Bekker | An e cient algorithm to calculate the minkowski sum of convex 3d polyhedra[END_REF]), which permits the representation of complex shapes without the need to de ne the object as a composite of spherical or convex particles. Hence, this approach has proven to be much better than the glued spheres method. The modelling of non-spherical particles using the so-called "spherosimplices" has received a particular interest over the last decade (Alonso-Marroquín and Wang (2009), Pournin and Liebling (2005)). A spherosimplex-shaped particle is combination of a skeleton (e.g. a point, a linear segment, a polygon or a polyhedron) and a disk or a sphere. Contact resolution is a core component of DEM simulations. A proper contact resolution ensures accurate DEM computed solutions. The Gilbert-Johnson-Keerthi (GJK) algorithm [START_REF] Bergen | A fast and robust GJK implementation for collision detection of convex objects[END_REF], [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF]) is a good candidate for this particular problem and well suited for arbitrary convex shaped particles. This algorithm was rst introduced by [START_REF] Petit | Shape e fect of grain in a granular ow[END_REF] and later generalized by [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] to study the e fect of non-spherical particle shape in granular ows. The GJK algorithm is an iterative approach to compute the euclidean minimal distance between two convex objects. The GJK reduces the problem of nding the minimal distance between two convex bodies to nding the minimal distance between their Minkowski di ference and the origin [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF]).

Beyond the problem of contact detection, modelling di culties related to multiple contact handling for complex shaped particles also require to be addressed. In the existing literature on this problem, [START_REF] Abbaspour-Fard | Theoretical validation of a multi-sphere, discrete element model suitable for biomaterials handling simulation[END_REF] pointed out the validity of a multi-sphere model in various phenomena such as sliding, dropping and conveying, while [START_REF] Kruggel-Emden | A study on the validity of the multisphere discrete element method[END_REF] studied the macroscopic collision properties of the glued sphere model and compared them to experimental results. In their study, the total contact force of a multi-sphere particle impacting a at wall is treated by computing the mean of the forces at each contact point. Later on [START_REF] Höhner | Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: In uence on temporal force evolution for multiple contacts[END_REF] pointed out that this method is not accurate enough. They showed that there is a non-negligible e fect of the particle shape approximation (arti cial roughness created by gluing spheres) on the force temporal evolution in normal and tangential directions.

N C M

The aim of this study is to introduce a novel variant of Discrete Element Method able to deal with non-convex particle shapes and to use it to simulate the ow dynamics of granular media. The strategy is based on decomposing a non-convex particle, called the composite, into a set of convex bodies, called elementary components. This approach, called "glued con-vex", is inspired by the glued spheres method introduced by [START_REF] Nolan | Random packing of nonspherical particles[END_REF]. Our glued convex method is implemented in our in-house granular solver Grains3D [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]). This enable us to use existing methods, models and algorithms already implemented in Grains3D such as time integration of equations of motion, quaternions for body rotation, linked-cell spatial sorting and the Gilbert-Johnson-Keerthi algorithm for collision detection [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF], [START_REF] Gilbert | Computing the distance between general convex objects in threedimensional space[END_REF]). In particular, the GJK algorithm is applied to elementary components. A contact between a glued convex particle, i.e., a composite, and another glued convex particle, i.e., another composite is detected if at least one elementary component of the former contacts with one elementary component of the latter.

A two dimensional illustration is presented in F . 3.1.

Figure 3.1 -2D illustration of the decomposition of a non-convex particle into a set of elementary convex components.

Equations of motion

The dynamics of a granular material made of (non-convex) particles is entirely governed by Newton's law [START_REF] Newton | Sir Isaac Newton's mathematical principles of natural philosophy and his system of the world[END_REF]). Assuming that N bodies make up the granular system is made of N particles, the complete set of equations which governs the ow dynamics is:

M i dU i dt = F i (3.1) J i dω i dt + ω i ∧ J i ω i = M i (3.2) dx i dt = U i (3.3) dθ i dt = ω i (3.4)
where M i , J i , x i and θ i denote the mass, moment of inertia tensor, position of the centre of mass and angular position of particle i, i ∈ [0, N -1]. The translational velocity vector U i and the angular velocity vector ω i of the centre of mass are involved in the decomposition of the velocity vector as v i = U i + ω i ∧ R i , where R i denotes the position vector with respect to the centre of mass of a particle i. F i and M i stand for the sum of all forces and torques applied on particle i. They are de ned as follow:

F i = M i g + N -1 j=0,j =i F ij (3.5) M i = N -1 j=0,j =i R j ∧ F ij (3.6)
R j denotes a vector which points from the centre of mass of the particle i to the contact point with particle j. It is assumed that all particles are subjected to gravity and contact forces only.

Strategy

It is important to show the strategy adopted in the present work which allows the computation of granular ow made of non-convex particles. Our strategy is based on the following general steps:

• Apply the Newton's second law on a non-convex particle • Compute the translational and angular velocities of its centre of mass • Compute the position and angular positions of its centre of mass • Derive the positions and velocities of each convex component from that of the composite particle taking into account their relative positions • Due to the decomposition of a non-convex body into a set of convex particles, the contact forces are computed at the level of the elementary particles Considering two reference frames R and R ′ , where R is that of the space-xed coordinates system which does not depend on the particle con guration and R ′ is that of the particle and xed at its centre of mass, these steps are summarized in the following set of equations after the computation of momentum equations E . 3.1 and E . 3.2:

• Setting the centre of mass r i of the convex component i according to the reference frame R.

• Evaluating the centre of mass of the non-convex object r g and deriving the position of the component i according to the reference frame R ′ as r ′ i = r ir g • Computing the rotation matrix derived from the convex elementary particles:

M i = M • M 0 i (3.7)
M i is the matrix of rotation of the convex component i, M is that of the composite particle and M 0 i is the initial matrix of rotation of the component i. • Translating the component i using a displacement vector d i de ned as:

d i = (M • r ′ i ) -r ′ i (3.8)
• Computing the velocity

U i = U + ω ∧ (M • r ′ i ) (3.9) ω i = ω (3.10)
where U and ω denote respectively the translational and rotational velocities of the non-convex particle.

Mass properties

One of the challenges encountered with a non-convex particle shape is the computation of its mass properties (volume, centre of mass and components of moment of inertia tensor). In fact, the numerical integration of the volume sums involves the use of Boolean Algebra with solids since our non-convex particles are made of arbitrary convex shaped components which can overlap each other. This requires either to rely on an appropriate library such as the Computational Geometry Algorithms Library [START_REF] Doe | Computational Geometry Algorithms Library[END_REF]) or to implement an algorithm which provides an accurate approximation of the various volume sums corresponding to the particle mass properties. The latter option is used since it has a good compromise between accuracy and low complexity. Inspired by Monte-Carlo algorithms and the work of Alonso-Marroquín and Wang (2009), we carry out a numerical integration based on a pixelated particle. For the volume approximation, it consist in:

• de ning a box which circumscribes the shape (F . 3.2),

• uniformly discretising the box in the three directions,

• nding if the points X i , centre of the cells are either inside or outside the shape,

• summing up the volumes of all the cells that are found inside the shape to get the approximated volume. The centre of mass is then de ned as follow:

X g = 1 V N i=0 X i v i (3.11)
where X g denotes the vector position of the centre of mass, V is the approximated volume of the non-convex object, X i is the centre of the cell i and v i its volume. Using the same approximation method it is easy to compute the components of the moment of inertia tensor which can be expressed as follows:

J k,l = N i=0 f kl (X i )v i for k, l = 1, 2, 3 (3.12)
F . 3.3 shows clearly the grid convergence of the algorithm applied to the calculation of the volume of a sphere, a cylinder and two overlapping cylinders. The approximated volume and the relative error between the two volumes is plotted as a function of the number of discretisation points per direction. The error decreases in a relatively monotone way as the number of discretisation points per direction increases.

In this study, all the DEM simulations of glued convex shaped particles are performed with at least 500 grid points per direction to ensure correct results on the approximation of mass properties. [START_REF] Džiugys | An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[END_REF] carried out a full survey on the most popular integration schemes used in DEM simulations. This survey revealed that at least a second-order accurate in time scheme is required to properly predict the time evolution of the granular system. Our study uses the same DEM code as the one used by [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF].Hence, the time integration is performed with a second-order leap-frog Verlet scheme [START_REF] Langston | Continuous potential discrete particle simulations of stress and velocity elds in hoppers: transition from uid to granular ow[END_REF][START_REF] Jean | Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterial motions[END_REF]):

Time integration

U t + ∆t 2 = U t - ∆t 2 + F(t) M ∆t x(t + ∆t) = x(t) + U t + ∆t 2 ∆t (3.13)
2.5 GJK-based contact detection [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF] introduced the Gilbert-Johnson-Keerthi algorithm to compute the distance between two convex polyhedra. In 1990, the algorithm was improved by [START_REF] Gilbert | Computing the distance between general convex objects in threedimensional space[END_REF] to deal with general convex objects. Since each elementary component of a non-convex particle is a convex object, the Gilbert-Johnson-Keerthi algorithm can be applied to each elementary component to detect a potential collision with any other elementary component of a neighbouring non-convex particle. For further details on the use of Gilbert-Johnson-Keerthi algorithm for arbitrary convex shaped particles, the interested reader is referred to the work of [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. By means of linked-cell spatial sorting [START_REF] Grest | Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles[END_REF]) for proximity detection, our GJK-based collision detection strategy can be summarized as follows:

• Use linked-cells to nd pairs of particles (P i , P j ) that potentially interact,

• For each pair that potentially interact, apply the Gilbert-Johnson-Keerthi distance algorithm to compute the minimal distance between all pairs (E k , E l ) of elementary components where E k is an elementary component of particle P i and E l is an elementary component of particle P j . The computing time of contact detection between two nonconvex particles scales as N i × N j where N i and N j are the number of elementary components of particle P i and particle P j , respectively. • the pairs (E k , E l ) in contact contribute to the total contact force and torque [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]). As pointed out in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF], the GJK algorithm applied right away to convex shapes is helpful to tell whether two convex shapes touch or not (if they do touch, the minimal distance between them is 0) but does not supply information on the contact features as contact point, overlap distance and unit normal vector at the point of contact. To access to this information, we suggest in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] a 3-step procedure. This 3-step procedure for contact resolution is illustrated in F . 3.4 and summarized below as follows:

• Apply an homothety H to the pairs of convex elementary components (E k = A, E l = B) to slightly shrink them (by a thickness r A and r B respectively), such they do not overlap [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]), • Compute the minimal distance between the two shrinked objects A and B, • Based on the information provided by the GJK algorithm, reconstruct the contact features as:

δ =d(H A (A), H B (B)) -C H A (A) -C H B (B) (3.14) C = C A + C B 2 (3.15) n C = C B -C A ||C B -C A || (3.16)
where δ is the overlap distance, C the contact point and n C the unit normal vector.
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Contact is assumed to occur if δ 0. For more detail about our contact detection resolution method, the interested reader is referred to [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF].

Contact force and torque

The total contact force between two non-convex composite particles is calculating as a mean contact force over all their contact points. In other words, the total contact force is the sum of all forces resulting from contacts between two elementary components of the two non-convex composite particles divided by the total number of contact points. Same applies to the total torque where we pay a particular attention of using the right leverages (leverage calculated with respect to the centre of mass of the non-convex composite particle, not the center of mass of the elementary component). [START_REF] Džiugys | An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[END_REF] reviewed the most popular contact force models in the literature. In this work, we follow [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] and employ a simple contact force model in which The total collision force F ij between two particles i and j acting on the contact surface is:

F ij = F ij,el + F ij,dn + F ij,t
(3.17)

The three components contributed to the total force have the following meaning and expression:

• The normal Hookean elastic restoring force reads:

F ij,el = k n δ ij n c (3.18)
where k n is a spring sti fness constant. In theory, k n can be related to material properties and contact geometry, but in DEM simulations it is essentially a numerical parameter that controls the amount of overlap between particles. δ ij denotes the overlap distance between particles i and j and n c the unit normal vector at the contact point.

• The normal dissipative (viscous-like) force reads:

F ij,dn = -2γ n m ij U rn where m ij = M i M j M i +M j (3.19)
where γ n is the normal dissipation coe cient and m ij the reduced mass of particles i and j. U rn denotes the normal relative velocity between both particles.

• The tangential friction force reads as follows:

F ij,t = -min{µ c |F el |, |F dt |}t c (3.20) F dt = -2γ t m ij U rt (3.21)
F dt denotes the dissipative frictional contribution, γ t the dissipative tangential friction coe cient, U rt the tangential relative velocity between both particles and t c the unit tangential vector at the contact surface.

DEM parameters for convex particles

Let us consider a sphere-sphere normal collision at zero gravity and a relative colliding velocity v 0 . Assuming the two spheres have the same radius R, the equation of time evolution of the penetration depth δ during the collision reads as follows:

d 2 δ dt 2 + 2γ n dδ dt + ω 2 0 δ = 0 , δ(t = 0) = 0 , dδ dt (t = 0) = v 0 (3.22)
The starting time of contact is assumed to be t = 0.

ω 2 0 = 2k n M
, where M denotes the mass of each particle. Hence,

δ(t) = v 0 ω 2 0 -γ 2 n e -γnt sin ω 2 0 -γ 2 n t (3.23)
The equation E . 3.23 leads to the contact duration:

T c = π ω 2 0 -γ 2 n (3.24)
According to [START_REF] Ristow | Dynamics of granular materials in a rotating drum[END_REF], for DEM simulations, the time step needs to be less than T c /10 to properly integrate each contact.

The time of maximum overlap is:

T max = 1 ω 2 0 -γ 2 n arctan ω 2 0 -γ 2 n γ n (3.25)
which gives the maximum penetration depth δ max = δ(t = T max ).

The coe cient of restitution e n is de ned as the ratio of both post-collisional and precollisional velocities.

e n = dδ dt (t = T c ) v 0 = e -γnTc = e -γn π √ ω 2 -γ 2 n (3.26)
If e n is given with k n , the damping coe cient γ n can be deduced from E . 3.26:

γ n = - ω 0 ln e n π 2 + (ln e n ) 2
(3.27)

Particle-wall and particle-particle interactions

Since particles have a non-convex shape, contacts can occur at several points. According to [START_REF] Kruggel-Emden | A study on the validity of the multisphere discrete element method[END_REF], forces and torques acting on a composite particle and involved in the resolution of equations E . 3.1, E . 3.2, E . 3.3 and E . 3.4 can be computed as follow:

F i = M j=1 N l=1 (F ijl /a ijl ) (3.28) M i = M j=1 N l=1 R i ∧ F i,t /a ijl (3.29)
Where F ijl denotes the force created between objects i and j at the contact point l and a ijl refers to the number of contact points during interaction. [START_REF] Höhner | Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: In uence on temporal force evolution for multiple contacts[END_REF] suggested to compute the forces incrementally since the number of contacts can vary during a collision. Their formulation is expressed as follows:

F n i = F n i,el + F n i,dn = F n i-1,el + k n N i N i j=1 (δ i,j -δ i-1,j ) + F n i-1,dn + γ n N i N i j=1 ( δi,j -δi-1,j ) (3.30)
where the elastic and viscous normal contact forces are incrementally computed by calculating and dividing only the incremental force elements by the number of contact points at the iteration step i. This is done to ensure that a multiple contact can be represented as a single contact.

As emphasized in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF], setting the contact force model parameters for nonspherical particles to guarantee an accurate and proper resolution of contacts is not an easy task. Here the potential occurrence of multiple contacts between two non-convex particles renders this task even more complicated. Using the previous simple analytical model for a gravityless contact between two particles, we consider two variants below.

The rst variant involves summing up the contact forces by considering a system made of parallel springs and dampers. Starting from the equation E . 3.22, the case of multiple contacts can be treated by assuming that the hookean elastic force and the normal dissipative force can be de ned as in E . 3.18 and in E . 3.19 respectively for each contact between two elementary components. Therefore, for N contacts E . 3.22 becomes:

d 2 δ dt 2 + N γ n dδ dt + N k n M δ = 0 , δ(t = 0) = 0 , dδ dt (t = 0) = v 0 (3.31)
t = 0 is assumed to be the initial time of contact. E . 3.31 can be written as follows to have the same form as E . 3.22:

d 2 δ dt 2 + 2 γ n dδ dt + ω 0 2 δ = 0 , δ(t = 0) = 0 , dδ dt (t = 0) = v 0 (3.32)
where

γ n = N γ n 2 ; ω 0 2 = N k n M (3.33)
And the expression of the contact time becomes:

T c = π ω 0 2 = πM N k n (3.34) E . 3
.34 shows that not only the sti fness coe cient in uences the time of contact but also the number of contact between elementary components. Actually, the higher the number of contact between elementary components is, the shorter the contact time is. This is a very undesirable property.

Solving equation E . 3.31 leads to the de nition of the damping coe cient γ n as a function of the number of contacts N and the coe cient of restitution e n as follows:

γ n = - 2 N ω 0 ln e n π 2 + (ln e n ) 2
(3.35)

In F . 3.5, we illustrate how the number of contact points modi es the damping coecient for a given coe cient of restitution. In fact, since forces from all contacts are added up during the interaction, E . 3.35 corrects the excessive damping of the system. Inspired by the works of [START_REF] Kruggel-Emden | A study on the validity of the multisphere discrete element method[END_REF] and [START_REF] Höhner | Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: In uence on temporal force evolution for multiple contacts[END_REF], the second variant to solve the multiple contact problem involves assuming that the problem can be treated as a single contact one. In fact, we compute the elastic and dissipative normal contact forces are as the sum of forces from all contact points divided by the number of contacts which occur at each time step ∆t. The e fect of compressing/elongating multiple springs and moving multiple dampers is modi ed in a way that it corresponds to a single contact dynamics.

E . 3.28 hence takes the following form:

F n = F n,el + F n,dn = k n N N i=1 δ i + γ n M N N i=1 δi (3.36)
where N denotes the number of contact points at the current time step. Compared to the work of [START_REF] Höhner | Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: In uence on temporal force evolution for multiple contacts[END_REF], the force implemented in Grains3D is not evaluated incrementally.

From now on, the formulation of E . 3.31 is referred to "model A" and the formulation of E . 3.36 is referred to as "model B".

V

Methodology

The methodology to validate our glued convex method is rather elementary but also su cient and well adapted. It involves running simulations with a convex shape treated as a single standard body in Grains3D and then running simulations of exactly the same ow con guration with the convex shape arti cially decomposed into a set of smaller convex shapes. There is almost an in nity of possibilities. The most intuitive ones include decomposing a cube into 8 smaller cubes or decomposing a cylinder into a number of thinner cylinders. For the sake of conciseness, we have selected a single test case that also admits an analytical solution: the normal impact of a cylinder on a at wall.

Normal cylinder-wall impact

This test case is inspired by the works of Kodam et al. (2010b) and [START_REF] Park | Modeling the dynamics of fabric in a rotationg horizontal drum[END_REF]. It involves a cylinder impacting a at wall in the normal direction to the wall and in a gravityless space (F . 3.6). The contact is also assumed frictionless. It is conceptually simple and very convenient for an accuracy assessment as it admits an analytical solution. Our goal is to compare the solutions computed with Grains3D for three representations of a cylinder to the analytical solution. These three representations are:

1. a true cylinder 2. a composite cylinder obtained by arti cially slicing the true cylinder in thinner cylinders and gluing them together, 3. a glued-sphere representation of the cylinder.

The initial conditions of the test case are characterized by:

• the initial angular position θ of the cylinder with respect to the horizontal plane,

• the initial translational velocity U = (0, 0, V - z,g ), • and the initial angular velocity ω = (0, 0, 0).

In other words, the pre-impact translational and angular velocity magnitude is set to V - z,g and 0, respectively. From [START_REF] Park | Modeling the dynamics of fabric in a rotationg horizontal drum[END_REF], the post-impact angular velocity can be written as fol- lows:

ω + y = M V - z,g (1 + ε)r cos(α + θ) I yy + M r 2 cos 2 (α + θ) (3.37)
where M is the mass of the particle, ε = -

V - z,g V + z,g
is the coe cient of restitution, V - z,g denotes the pre-impact velocity, α denotes the angle between the face of the cylinder and the line joining the contact point and the centre of mass, θ is the pre-impact angular position of the cylinder, I yy is the moment of inertia about the y axis and r = R 2 + 1 4 L 2 is a parameter which denotes the distance between the impact point and the centre of mass, R is the radius of the cylinder and L is the length of the cylinder (see F . 3.6). Similarly, the post-impact translational velocity reads as follows (Kodam et al. (2010b), [START_REF] Park | Modeling the dynamics of fabric in a rotationg horizontal drum[END_REF]):

V + z,g = ω + y r cos(α + θ) -εV - z,g (3.38)
Values of physical parameters are listed in T . 3.1. As in Kodam et al. (2010b), we set V - z,g = 1 m/s and vary θ, the pre-impact angular position of the cylinder.

X Z R L α θ r (a) Scketch of cylinder-wall impact.
Credit: Kodam et al. (2010b[START_REF] Park | Modeling the dynamics of fabric in a rotationg horizontal drum[END_REF].

α θ (b) A cylinder decomposed into thinner cylinders.

(c) Illustration of cylinderwall impact at 90 a about central diameter, b about central axis.

Table 3.1 -Experimental (Kodam et al. (2010b)) and numerical parameters for the normal impact of a cylinder on a flat wall.

We plot in F . 3.7 the computed post-impact translational and angular velocities as a function of the pre-impact angular position θ, for the true cylinder and the glued cylinder (regardless of model A or model B). The agreement between these two simulations is extremely satisfactory. It reveals that the glued convex method is well implemented in our code. We also compare these two quasi-similar computed solutions to the analytical solution E . 3.37-E . 3.38. The agreement of the two computed solutions with the analytical solution is also deemed to be very good, with the largest discrepancy observed on the post-impact angular velocity at low pre-impact angular positions (F . 3.7b). We now investigate more deeply the di ferences between the two formulations to compute the total force acting on a composite particle, the so-called model A and model B. We select a particular pre-impact angular position θ = 90 • and plot in F . 3.8 the time evolution of the normal contact force exerted on the cylinder over the time of contact. As expected from the formulation of model A in which the total force is the sum of the forces exerted at each contact point, model A predicts an increasing total normal force as the number of elementary cylinders N increases (note that N is also the number of contact points for θ = 90 • ) although the magnitude of the force per elementary cylinder, i.e., per contact point, decreases. Overall, the adjustment of γ n through E . 3.35 to get the expected restitution Coe cient e n guarantees that the solution is correct, as shown in F . 3.7, but the main drawback of model A as predicted by E . 3.34 and supported by results of F . 3.8a is the decrease of the contact duration T c with N . Consequently, the time step magnitude would have to be adjusted to the number of contact points in order to properly integrate a contact. This is a very undesirable property. Conversely, model B, that assumes that the total force exerted on the particle is the mean force over all contact points, provides a normal force magnitude, a contact duration as well as a maximum penetration depth independent of N , as shown in F . 3.8b.

Finally, we examine in the case θ = 90 • the e fect of N on the accuracy of the computed solution. For both model A and model B and N ≤ 30, F . 3.9a reveals that the error on the computed post-impact translational velocity is less than 0.5 . Model B performs remarkably better than model A with an error quasi independent of N and of the order of 0.05 . The error on the computed post-impact angular velocity plotted as a function of N in F . 3.9b is even more interesting. The analytical solution E . 3.37 predicts that the post-impact angular velocity is ω + y = 0. The true cylinder simulation predicts an artici cial non-zero post-impact angular velocity. This is due to the assumption, violated here, that the contact is always a point while geometrically in this case it is a line. However, the GJK algorithm supplies a point, that randomly lies somewhere along that contact line and whose position is primarily determined by rounding numerical errors. This somehow awed contact point creates an erroneous torque that makes the particle spin after contact. Interestingly, the composite cylinder simulation predicts a post-impact angular velocity ω + y that tends to 0, the correct value, as N increases. This is simply a bene cial side e fect of the distribution of the N contact points along the contact line. Torques from each contact point almost cancel out with each other and the total torque exerted on the particle tends to 0 as N increases. Once again, model B performs better than model A, although it is not entirely clear why. It might simply be due to rounding errors divided by N in model B.

Overall, the glued convex approach has been very satisfactorily validated in this cylinderwall impact test case. Model B seems to perform better and is also conceptually more sensible as contact feature estimates (and in particular the duration of contact) from a single contact point con guration are still valid. To complete the validation of the model and as a side question, we run simulations with a glued sphere representation of the cylinder and evaluate how well the glued sphere approach performs in a simple impact test case. We consider two composite particles made of 9 and 54 spheres, respectively, as also considered by Kodam et al. (2010b) and illutrated in F . 3.10. Values of physical parameters are listed in T . 3.2. For the mass properties, one can select those of a true cylinder or those of the glued-sphere representation. Kodam et al. (2010b) employed a mix of true cylinder (mass) and glued sphere (moment of inertia tensor) properties, although it is rather unclear what is the motivation for such a choice. F . 3.11a, F . 3.11b, F . 3.11c and F . 3.11d show the computed solutions with 9 and 54 glued spheres. Regardless of the set of mass property parameters (true cylinder, glued spheres or a mix as in Kodam et al. (2010b)), the computed solution is qualitatively the same and does not match at all the analytical solution. For 54 glued spheres, the computed solution starts to pick up the right qualitative form but is still quantitatively markedly o f. As the number of glued spheres used to represent the cylinder increases, it is however predictable that the computed solution will tend to the analytical solution. It is interesting to observe that for two particular pre-impact angular position values 0 • and 90 • , the glued sphere representation captures the right post-impact velocities. These two angles correspond to two particular contact con gurations in which the shape of the cylinder and speci cally the arti cial roundedness of the edges created by gluing spheres does not play any role. It fact, at 0 • and 90 • , the actual contact zone geometry is a surface and a line respectively. The homogeneous distribution of the glued spheres over the cylinder volume assures the proper computation of the normal contact force and the associated torque (that is 0). For all other pre-impact angular positions that lead to a single contact point, the error on the post-impact velocities is very signi cant, unless the number of glued spheres is large (probably of the order of O(10 2 -10 3 ), as a result of the arti cial rounded edges of the glued-sphere representation of the cylinder. In general, this simple test case reveals that the glued sphere representation of a complex shape, also intuitively attractive, might provide computed solutions of very weak accuracy and should hence be used with great care, if not prohibited. 

R

Packing porosity

Void fraction or porosity of a (static) packing of granular material is simply the measure of the ratio of the volume of empty space to the total volume of the system. Compacity corresponds to the opposite of porosity and represents the ratio of total volume of particles to total volume of the system. Compacity of convex particles packings can be estimated by computing the Voronoï diagram of the system [START_REF] Luchnikov | Voronoi-delaunay analysis of voids in systems of nonspherical particles[END_REF]) whereas for non-convex particles the use of this method is impeded by their concavity. Consequently, another method has to be used for the characterization of compacity of random packings of non-convex particles. Here we use the same method as the one used to calculate the mass properties of a non-convex particle, i.e., we de ne a box embedding the packing of particles, pixelate that space with a ne cartesian constant grid size structured mesh and approximate the volume integral of the space actually occupied by particles by summing all the cells of the ne cartesian mesh whose center lies inside a particle. The method is fully parallelised as the total number of cells in this ne cartesian mesh is very often of the order of O(10 8 -10 9 ) to guarantee a su cient level of accuracy.

Packings are created by inserting particles at the top of the domain. Particles settle downwards by gravity and collide with neighbouring particles and/or the bottom wall. The lling process is deemed to be complete when all particles reach a pseudo stationary state characterized by a negligible total kinetic energy of the system. We consider the two following con gurations: 1. a system without lateral solid wall e fects designed as a box with bi-periodic boundary conditions on the lateral (vertical) boundaries, i.e., in the horizontal directions. 1000 particles are inserted in the simulation in the following way: (i) a particle position is randomly selected in a thin parallelepiped at the top of the domain at each time t n , (ii) a random angular position is assigned to the particle, (iii) insertion is attempted. If successful, the particle is inserted, otherwise a new random position together with a new random angular position is selected and insertion is attempted again at the next time t n+1 . This insertion procedure results in a moderately dense shower of particles stemming from the parallelepipedic insertion window.

2. a system with strong lateral wall e fecs designed as a cylindrical reactor with a circular cross-section. We select the same con guration as in our previous work [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. In [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF], we examined the e fect of convexity on packing porosity. Now we extend this case study to non-convexity. 250 particles are randomly inserted at the top of the domain at a ow rate of 1 particle per second until the simulation is stopped at 260 s. Lateral wall e fects are deemed to be strong as the reactor diameter to particle equivalent diameter ratio is ≈ 50/8 = 6.25, an admittedly small value.

(a) "2D cross" shape (b) "3D cross" shape In both con gurations, we consider the 4 convex shapes already examined in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] in addition to two new non-convex cross-like shapes illustrated in F . 3.12. All shapes have the same volume. The two meaningful physical parameters of the contact force model are set to e n = 0.73 and µ c = 0.55.

Packings of the di ferent shapes in the wall-free bi-periodic domain are presented in F . 3.13. The corresponding porosities computed by our approximate numerical integration based on pixelating the space occupied by the packing of particles are shown in T . 3.3. Although tetrahedra already exhibit a slightly higher porosity, there is a remarkable jump of porosity between the 4 convex shapes and the 2 non-convex cross-like shapes. In fact, ε for 3D crosses is twice larger than for spheres of same volume. With strong wall e fects, the e fect of shape on porosity ε is even more emphasised, as illustrated by F . 3.14. Porosity varies linearly with the height of the bed, and visually the variation of bed height as a function of shape speaks for itself. Bed height for 3D crosses (blue particles in F . 3.14(f)) is literally 5 times larger than that for spheres, cylinders and cubes, translating into a 5 times larger porosity. It is also 4 times larger than that for tetrahedra as well as 2 times larger than that for 2D crosses. For 3D crosses, it is quite remarkable in F . 3.14(f) that ε is close to 1 close to the reactor wall in a crown of width approximately half the length of the cross beams, whereas all other shapes, even 2D crosses, are able to ll that region much better. Obviously, we have selected these 2 non-convex shapes on purpose, as they exhibit a low sphericity and promote some sort of entanglement in the packing. They are hence good candidates for high porosity packings and other unusual intricate e fects in granular dynamics as we shall see in the next section. The analysis of the packing micro-structure can be easily extended e.g. by looking at the porosity radial pro le, by this goes beyond the scope of the present paper. Our goal here is primarily to evaluate quantitatively packing porosity for such shapes and to shed some light on how strong the e fect of shape can be, even in a very simple con guration. 

Rotating drum

Following the work of [START_REF] Yang | Microdynamic analysis of particle ow in a horizontal rotating drum[END_REF][START_REF] King | Collision Detection for Ellipsoids and Other Quadrics[END_REF], [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] we investigate the ow dynamics of a granular media in a rotating drum. We select the same ow con guration as in our previous work [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] and our goal is to extend results previously obtained for convex particles to non-convex particles. As in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF], the drum has a radius of R drum = 50 mm and a depth of 24 mm (F . 3.15). A periodic boundary condition is ap- plied along the drum axis to avoid end wall e fects. The drum is loaded with mono-dispersed non-convex particles such that the region occupied by particles in the drum (regardless of porosity) corresponds to 35 of the drum volume, i.e. the pack has initially a height equal to ≈ 0.76R drum . For the non-convex shapes, we use the same 2D and 3D crosses as in Section 4.1. The new simulation results for the 2D and 3D crosses complement the existing set of results we obtained for convex particles (i.e., spheres, cylinders, cubes and regular tetrahedron) in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. Once again, all shapes have the same volume, that corresponds here to a sphere with a radius of 1.5 mm. Values of all simulation parameters are listed in T . 3.4. 

Parameter Value k n (N m -1 ) 1 × 10 5 e n 0.73 µ c 0.55 µ t (s -1 ) 1 × 10 5 δ max (m) , δ max /R e 1.1403 × 10 -5 , 0.007602 T C (s) 4.172 × 10 -5 ∆t (s) 2 × 10 -6
Table 3.4 -Contact force model parameters, estimate of contact features at v 0 = 1 m s -1 and time step magnitude used in rotating drum simulations.

As shown in Section 4.1 for the non-convex cross-like shapes and in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] for tetrahedra, the total number of particles for each shape need to be adjusted such that the initial bed height is always ≈ 0.76R drum (35 of the drum volume) due to the high variations in porosity between shapes. While the drum was loaded with 3000 spheres, cylinders and cubes, only 2600 regular tetrahedra were used in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. Here, we ll the drum with 1500 2D crosses and 1250 3D crosses. F . 3.16 shows the internal ow structure of a system lled with 3D crosses for Ω ∈ [5; 250] rpm. A rst sight already indicates the strong in uence of the particle shape on the ow dynamics, compared to spheres and even to convex particles. Similarly to the lling process in Section 4.1, the signi cant di ferences observed all result from the ability of 3D crosses to entangle. As for other convex shapes, we observe a transition from an avalanching regime to a cataracting regime, then to a pseudo-cataracting and eventually to a centrifuging regimes as the rotation rate increases. Note that for low rotation rates, the rolling regime observed for spheres is replaced by an avalanching regime (the same was observed for convex shapes in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]). Let us now describe qualitatively the features of each ow regime. At Ω = 5 rpm, the ow regime is representative of episodic avalanches governed by the pseudo-chaotic evolution of the highly entangled micro-structure of the pack of particles. Particle rotation is strongly impeded both close to the drum wall and at the free surface. As for other shapes, particles close to the drum wall experience a rigid body motion while the major di ference occurs at the free surface. Particles entanglements delay the onset of avalanching up to very high free surface angles, sometimes close to 90 • . Then the pack eventually breaks and big clusters of particles detach and fall down from the top right to the bottom left of the free surface. Big cluster detachment from the rest of the pack of particles at the top right resembles to some extent the fracturing of an homogeneous solid material or a cohesive granular media. Fracturing starts at the location in the pack that shows a weakness characterized by a lower level of entanglement, i.e., a lower level of cohesion. We call this regime episodic avalanching as the frequency of occurrence of avalanches is less regular and hence tougher to de ne than for convex shapes, as supported by F . 3.22. As the rotation rate increases to Ω = 20 rpm, big clusters of particles at the free surface disappear to give way to a thick layer of particles owing down the free surface from the top right to the bottom left. At Ω = 80 rpm, particles gain even kinetic energy to start freeing themselves from the pack. Flow dynamics is still strongly governed by particles entanglements but the pack of particles is not as dense anymore and consequently the strength or cohesion of the pack of entangled particles is weaker. This corresponds to a transition from avalanching to cataracting, although particles at the free surface do not yet have a free-y ballistic motion. At Ω = 125 rpm, the kinetic energy of particles at the top right of the free surface is large enough for them to almost free themselves from the pack and free y. This ow dynamics is a typical sign of a cataracting regime [START_REF] Mellmann | The transverse motion of solids in rotating cylinders-forms of motion and transition behavior[END_REF]). We would like to make a short digression of the determination of the onset of cataracting regime. As a comparison, we observe this ballistic trajectory of spherical particles in the range 150 rpm ≤ Ω ≤ 200 rpm, which suggests that cataracting regime starts at about 150 rpm for spheres. From F . 3.16, we might de ne the onset of cataracting regime at Ω = 125 rpm, which would hence indicate that 3D crosses exhibit a cataracting regime at lower rotation rates than spheres. At Ω = 125 rpm the Froude number de ned as Ω 2 R drum /g is Fr ≃ 0.87. Looking more closely at F . 3.16(d), the notion of free-ight is tougher to de ne. Although the overall ow pattern does look like a cataracting regime, particle that detach from the top right still seem to be linked together with neighbouring particles in their pseudo free-ight in a very weak way. For spheres (see [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]-Fig5(e)), it is very visible that particles ying from the top right to the bottom left of the free surface do not touch any other neighbouring particles. In other words, the transition from avalanching to cataracting is not necessarily easy to determine for 3D crosses. From Ω = 150 rpm, the cataracting regime starts to disappear and is progressively replaced by a pseudo-cataracting (or pseudo-centrifuging) regime. Ω is not high enough to already observe a fully centrifuging regime but not low enough for the cataracting regime to persist. The thin layer empty of particles at the top of the drum is a signature that the full centrifuging regime has not yet been attained. At Ω = 150 rpm, the Froude number is Fr ≃ 1.25. Finally, from Ω = 200 rpm, the fully centrifuging regime manifests, corresponding to Fr ≃ 2.25. For spheres, we determined in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] that the tran- sition to centrifuging regime occurs at Ω ≃ 220 rpm, i.e., for Fr ≃ 2.7. This would suggest that the transition from cataracting to centrifuging occurs at lower rotation rates for 3D crosses than for spheres. As already noticed for spheres or any other shapes, the centrifuging regime is characterized by a continuous layer of particles attached to the drum wall and rotating with the drum as a rigid body. A particular and rather fascinating feature of 3D crosses is the form of the free surface of the pack of particles undergoing a rigid body motion. While for spheres this layer has a constant thickness, it is rather irregular for 3D crosses. Actually, the entangled 3D crosses create an imprint over the early transients of the drum rotation. In other words, the free surface is determined by a competition between the strength or cohesion of the entangled pack of particles and the centrifugal force that pushes particles towards the drum wall. The free surface very rapidly adopts its nal form (after a few drum rotations only) and then remains forever frozen in a rigid body rotation as shown in F . 3.16(f).

To illustate how much the 3D cross-like shape hinders the rotation of a particle compared to a sphere, even without entanglements with neighbouring particles, we perform a simulation of a single particle in the drum rotating at Ω = 150 rpm (F . 3.17). The resistance to rolling motion of the sphere is very low and accordingly the critical angle at which the sphere starts to roll down the drum wall very low too. 3D cross reaches much higher on the top right and their overall motion is far more chaotic. The ratio of translational to angular kinetic energy is much higher for a 3D cross than for a sphere. It would be interesting to extract this ratio in the multi-particle rotating drum simulations to shed some more light on di ferences in energy conversion mechanism between sphere, convex and non-convex shapes. This is an on-going work in our group and will be the topic on a future paper. We illustrate in F . 3.18 the avalanching nature of the ow dynamics at low rotation rates Ω = 5 rpm and Ω = 20 rpm. In particular at Ω = 5 rpm, we can neatly see in F . 3.16a(c) that the shallow layer of slumping particles at the free surface fractures in the middle into two big clusters. Another important comment concerns the determination of the dynamic angle of repose of the free surface in this avalanching regime. In fact, not only the free surface is anything but a at surface but the ow is highly intermittent (episodic) and the dynamic angle of repose varies over time with a large amplitude. In F . 3.16a(c), it is noticeable that the free surface is close to vertical. "2D cross" shape

The overall picture of 2D crosses is qualitatively similar to the picture of 3D crosses. Since 2D crosses have a higher sphericity than 3D crosses and a lower tendency to entangle, the original features observed for 3D crosses are also observed but less marked for 2D crosses. We notice the same transitions from avalanching to cataracting, then to pseudo-cataracting and eventually to centrifuging as the drum rotation rate increases, but these transitions occur for slightly different critical rotation rates. The di ferent ow regimes for 2D crosses are shown in F . 3.19. In general, the pack of 2D crosses is less cohesive than the pack of 3D crosses, in the sense that the strength of the entangled network of particles is weaker. This di ference manifests very visibly in F . 3.20 where we illustrate the transient ow dynamics in the drum. The dynamic angle of repose of 2D crosses, although pretty high compared to convex shapes, is lower than that of 3D crosses. It also seems that the free surface, although not very at, is signi cantly atter than that of 3D crosses. Finally, F . 3.22 suggests that avalanches are more regular and that the avalanching regime can be classi ed as periodic avalanching, in contrast to episodic avalanching for 3D crosses. At Ω = 5 rpm a single avalanching frequency for 2D crosses can be more clearly de ned than for 3D crosses, although this is not totally obvious. Finally, cataracting, pseudo-cataracting and centrifuging regimes of 2D crosses are very similar to those of 3D crosses. We plot in F . 3.21 the averaged in time coordination number as a function of rotation rate for all shapes. In general, 2D and 3D crosses exhibit a higher coordination number than other shapes regardless of the rotation rate, as a result of the highly entangled micro-structure. However, up to Ω = 150 rpm, the trend is very similar to convex particles and there is no major signature of non-convexity in the variation of the coordination with Ω. The plots for the 2 non-convex shapes are simply shifted to higher values of coordination number. The only signature of non-convexity pertains to the transition to cataracting/pseudo-cataracting regime and then to centrifuging regime. However, we run additional simulations for tetrahedra and notice the same trend than for 2D/3D crosses. Hence, this suggests that this signature is actually not relevant of non-convexity only, but more generally of non-sphericity. This emphasises again that the transitions to cataracting/pseudo-cataracting and to centrifuging are not easy to de ne. The increase of the coordination number above Ω = 150 rpm might however indicate the onset of transition to centrifuging. At high Ω ≥ 200 rpm, the absence of a neat plateau (as visible as for spheres) does not allow us to determine from this plot only when the fully centrifuging regime really starts. We plot in F . 3.22 the mean translational particle velocity as a function of time for different rotation rates. The interesting and already described in the above features of 2D and 3D crosses ow dynamics occur at low rotation rates Ω = 5 rpm and Ω = 20 rpm. From Ω = 42 rpm, the mean translational particle velocity of the 2 non-convex shape is very similar to that of any of the 3 non-spherical convex shapes. Ω = 5 rpm reveals that 3D crosses undergo more chaotic, in the sense of larger amplitude and more episodic, avalanches than 2D crosses and convex shapes. The peaks of mean translational particle velocity represent rapid avalanches of particles triggered by a very high dynamic angle of repose (up to ∼ 90 • ). The most remarkable manifestation of resistance to slump or to ow from the top right to the bottom left of the drum of the highly entangled pack of 3D crosses occurs at Ω = 20 rpm. While 2D crosses and cubes both exhibit a moderate avalanching dynamics, 3D crosses still undergo large amplitude and well de ned avalanches characterized by large amplitude uctuations of the mean translational particle velocity with time. At high rotation rates, the mean translational particle velocity progressively tends to a constant value over time. For instance, at Ω = 200 rpm, the mean translational particle velocity does not vary with time anymore. This represents a much more reliable signature of the onset of fully centrifuging regime than what we could extract from the coordination number analysis.

C

We suggested an extension of our DEM from convex to non-convex shapes. As a reference to the glued spheres model, the novel method is called glued convex method as convex particles are "glued" together to create any non-convex shape. Our novel method for non-convex shapes relies on the same tools we used for convex shapes in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. In fact, contact detection between two non-convex bodies relies on contact detection between all the pairs of elementary convex components that compose each composite non-convex body. This reduces the complexity of the problem of contact detection between non-convex bodies to the problem of contact detection between convex bodies, a problem for which we have already suggested a reliable and accurate solution method in Wachs et al. ( 2012) using a Gilbert-Johnson-Keerthi algorithm. The novel method is extremely versatile as virtually any non-convex shape can be considered. We illustrated the new simulation capabilities of our in-house code Grains3D in two ow con gurations: (i) lling of a reactor and (ii) ow dynamics in a rotating drum. The simulation results we presented for non-convex 2D and 3D crosses are unprecedented in the literature.

We suggested a simple but robust solution to the problem of multi-contact points that enables us to keep using analytical estimates of contact features and in particular of contact duration. This signi cantly facilitates the estimation of the time-step magnitude in DEM simulations of non-convex bodies. We considered a normal cylinder-wall impact test case to illustrate the validation of our implementation. Along the way, we con rmed, as other works of the literature already showed Kodam et al. (2010b), that the accuracy of the glued sphere method to model particles of arbitrary shape is highly questionable as it rounds sharp angles and introduce an arti cial rugosity. Conversely, our glued convex approach preserves angularity since a non-convex composite particle is decomposed into a set of elementary convex shapes, that are by essence sharp. A side e fect of composite particles is their intrinsic ability to better handle contact con gurations in which the contact zone cannot be modelled as a point, but rather as a line or a surface. In fact, composite particles naturally introduce multiple contact points corresponding to the contact points of their elementary components. Although decomposing an already convex particle in a set of smaller elementary convex particles is not the most promising path from a computational viewpoint, this property can still be exploited to improve the stability of static heap of particles and somehow circumvent the conceptual inability of our Gilbert-Johnson-Keerthi -based contact detection strategy to provide a line of contact, a surface of contact or multiple contact points from two simple convex bodies that overlap.

Although our new DEM for non-convex bodies opens up unprecedented numerical modelling perspectives, the computing cost is still prohibitive. In fact, the computing cost of con-tact detection between two non-convex bodies scales as N × M , where N denotes the number of elementary components of the rst particle and M that of the second particle. Another computational drawback of the current implementation is that potential contacts are assessed with the circumscribed sphere to the non-convex particles, and then if they overlap with the circumscribed sphere to the convex elementary components (see F . 3.23). If the non-convex or elementary convex bodies are elongated, our method is not optimised and many contacts that actually do not exist are considered at the detection step. This undesirably slows down computations. An alternative solution would be to use oriented bounding boxes, with however no guarantee that the overall computing time will be lower as an oriented bounding box overlap test is more time consuming than a two sphere overlap test. In Chapter 5, we elaborate on the parallel implementation of the method. Although this could be a valuable way to speed up computations, we also show that scalability is satisfactory only for a minimum number of particles, as otherwise the MPI communication overhead is too high. We believe that contact detection between two non-convex bodies should be speeded up at the serial level. Potential applications of Grains3D were already quite broad, and the new glued convex model broadens even more its range of applicability. Only two examples of application were considered in this study that adequately illustrated the visible e fect of particle non-convex shape on ow dynamics. Results from the rotating drum as shown in F . 3.21 and 3.22 emphasise how ow dynamics di fers from convex particles to non-convex particles. Our analysis could easily be extended to gain more insight into regime transitions and overall ow dynamics. One rst step in that direction would be to analyse the PDF (Probability Density Function) of the time averaged particle translational and angular velocity and to seek in these plots any signatures of non-convexity. This is an on-going work in our research group.

R

Dans ce chapitre, les détails du modèle glued convex sont exposés avec toute la stratégie derrière cette approche. En e fet, elle est basée sur le fait que la particule non-convexe peut être décomposée en plusieurs formes élementaires arbitrairement convexes. Ainsi, elle peut être considérée comme une extension de la célèbre approche nommée "glued sphere" ("sphères collées"). Pour ce modèle la détection de contact se fait au niveau des particules élémentaires utilisant l'algorithme Gilbert-Johnson-Keerthi . La détéction de contact s'appuie sur l'algorithme "Linked-Cell" pour pouvoir accélérer la phase de recherche de collisions potentielles. Une importance particulière est dédiée aux intéractions impliquant de plusieurs points de contact.

Le modèle est validé sur quelques cas tests, par exemple, la comparaison de l'évolution de la force de contact lors de modélisation de l'intéraction dans le cas d'un simple cylindre et celui d'un cylindre formé de cylindres collés avec une paroi.

L'approche est ensuite utilisée pour montrer l'impact de la forme sur les taux de vide dans des lits constitués de di férentes formes de particules. Elle a aussi permis de mettre en évidence le changement de la dynamique des milieux granulaires dans un tambour tournant en fonction des formes des particules. Ces études ont illustré que non seulement la forme in uence la dynamique mais elle fait aussi apparaître de nouveaux régimes d'écoulement selon l'angularité des particules (allant de la particule spherique en passant par des formes convexes arbitraires telles que des cubes et des tétraèdre jusqu'aux particules en forme de croix).

O

: This paper presents the use of the glued convex method to simulate packing of poly-lobed particles. The simulations are carried out in bi-periodic domains in the aim of simulating a large xed bed (industrial) and in small cylindrical containers that have the exact dimensions of a pilot unit at IFPEN. The work was performed in collaboration with 2 internships that I co-supervised.

I

N merous chemical reactions are industrially performed using heterogeneous catalyst. Cat- alysts pellets can be shaped as spheres or extruded shapes (extrudates) or molded shapes [START_REF] Moyse | Raschig ring hds catalysts reduce pressure drop[END_REF], [START_REF] Cooper | Hydroprocessing conditions a fect catalyst shape selection[END_REF], [START_REF] Afandizadeh | Design of packed bed reactors: guides to catalyst shape, size, and loading selection[END_REF], [START_REF] Mohammadzadeh | Catalyst shape as a design parameter-optimum shape for methane-steam reforming catalyst[END_REF]). Due to the use of extrusion machines, extrudates are cheaper to produce in high quantities. They can have various shapes: cylinders, trilobes, and more recently quadralobes. Molded shapes include holes to improve internal transport. The best catalyst shape is a compromise between catalyst cost, catalyst e ciency, pressure drop, attrition, and bed plugging [START_REF] Moyse | Raschig ring hds catalysts reduce pressure drop[END_REF], [START_REF] Cooper | Hydroprocessing conditions a fect catalyst shape selection[END_REF], [START_REF] Afandizadeh | Design of packed bed reactors: guides to catalyst shape, size, and loading selection[END_REF], [START_REF] Mohammadzadeh | Catalyst shape as a design parameter-optimum shape for methane-steam reforming catalyst[END_REF]). Thus, it is application dependent. The challenge to design a better shape is to be able to predict the gains based only on the shape knowledge.

Catalyst e ciency is a measure of internal mass transfer limitation. It is de ned as the actual reaction rate (in mol/m 3 /s) divided by the reaction rate that would be achieved if the concentration inside the pellet was homogeneous and equal to that of the surface. If the reaction is fast enough, reactants may be consumed faster than they di fuse so that they have a lower concentration at the pellet centre than at its boundary. The active (expensive) phase located at the pellet centre is not used as e ciently as at its surface. The engineering pathways to improve e ciency are: (i) improving e fective di fusion in the pellet by changing the pore size distribution and (ii) changing the shape, including size and introducing holes, to reduce the volume to external surface ratio. For a given shape, the catalyst e ciency can be numerically predicted by solving the di fusion equation in the grains assuming kinetic schemes [START_REF] Mariani | Evaluating the e fectiveness factor from a 1d approximation tted at high thiele modulus: Spanning commercial pellet shapes with linear kinetics[END_REF]). With a little less accuracy, it can be reasonably predicted for any particle shape without holes using the generalized Thiele modulus as proposed by [START_REF] Aris | On shape factors for irregular particles -I: The steady state problem[END_REF], that can be written for a 1 st order reaction:

Φ = V p S p k D ef f (4.1) η = 1 Φ I 1 (2Φ) I 0 (2Φ) (4.2)
where V p , S p , k and D ef f denote particle volume, particle surface, intrinsic kinetic constant and e fectiveness coe cient respectively. I n is the Bessel function of order n. Reducing the particle diameter results in an improvement of the catalyst e ciency due to a lower V p /S p , unfortunately at the cost of a higher pressure drop. But it still an e cient way to improve e ciency. Gas-Liquid pressure drop in tricked bed reactors has been the subject of many publications. Their estimations are always performed using at some point the single phase predictions, so that for our purpose, optimizing trickle bed pressure drop is the same as optimizing single phase pressure drop (see for example [START_REF] Attou | Modelling of the hydrodynamics of the cocurrent gas-liquid trickle ow through a trickle-bed reactor[END_REF]). Pressure drop predictions are usually performed using correlations with a form following the Ergun's one [START_REF] Ergun | Fluid ow through packed columns[END_REF]):

∆P H = α µ(1 -ε) 2 u ε 3 d 2 p + β ρ(1 -ε)u 2 ε 3 d p (4.3)
In the formulation E . 7.23, the pressure drop is the combination of a frictional viscous term proportional to the velocity and a quadratic term on velocity accounting for ow direction and section changes [START_REF] Larachi | X-ray micro-tomography and pore network modeling of single-phase xed-bed reactors[END_REF]). [START_REF] Ergun | Fluid ow through packed columns[END_REF] proposed the constants α = 150 and β = 1.75 to describe the pressure drop for spheres, cylinders and crushed particles. The diameter for non-spherical particles is the equivalent diameter de ned as:

d e = 6V p S p (4.4)
Earlier [START_REF] Carman | Fluid ow through granular beds[END_REF] proposed α = 180 and β = 0 for Stokes ows (Re ∼ 0) in packed beds of spheres, which is more accurate than Ergun's coe cients in these conditions. For non-spherical particles, [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF] extended the correlation by introducing the sphericity:

Ψ = 36πV 2 p S 3 p 1 3 (4.5) ∆P H = 150 Ψ a µ(1 -ε) 2 u ε 3 d 2 e + 1.75 Ψ b ρ(1 -ε)u 2 ε 3 d e (4.6)
The coe cients a and b have been subjected to some modi cations by few authors, among others [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF] and [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF]. Other formulations have been proposed that take into account various shapes. Nevertheless, there is so far no universal method to precisely predict the Ergun's equation coe cients based only on particle shape.

As it can be noticed in E . 4.6, the pressure drop presents a very strong dependency on the void fraction which has been until recently measured experimentally. Due to the manufacturing process, the extrudates have random length. Therefore, length distribution may di fer from an experiment to another, especially for particles produced on di ferent extrusion dies. Automated sorting can be performed to narrow down the length distribution but this is not su cient to prevent di ferences from experiment to experiment. Therefore, the comparison of the void fraction (and the pressure drop) is always based on measurements with di ferent length distribution. As the di ferences between most e cient shapes are small, it is di cult to decouple shape and length e fects when measuring the packed bed void fraction. In addition, the void fraction is highly dependent on the loading procedure leading to some discrepancies between operators. Repetition e fects are barely quanti ed and are usually neglected, although we have no information on their magnitude compared to di ferences between shapes.

To summarize, it is yet impossible to predict the void fraction (and the pressure drop) accurately enough to rank innovative catalyst shapes without experiments. New numerical tools are required to optimise the particle shape "in silico". In this chapter, we present the use of DEM to estimate the void fraction for any trilobic and quadrilobic shapes, as well as an analysis of the trends in void fraction dependency.

M

2.1 DEM with non-convex particles Several numerical methods to produce packing of spheres have been published. Thanks to its exibility the Discrete Element Method (DEM) can be extended to more complex shapes and thus will be presented. This method [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF], [START_REF] Cundall | Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[END_REF], [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]) is a Lagrangian particle tracking method which computes the particle velocities, trajectories and orientations. A key feature of any DEM tool is its ability to detect collisions, determine the contact point(s) and compute the resulting contact forces. This is done for example using the Gilbert-Johnson-Keerthi algorithm [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF], [START_REF] Gilbert | Computing the distance between general convex objects in threedimensional space[END_REF]. Recent developments of DEM allow the use of non-spherical particles, such as the glued spheres model which is a loose approximation of a complex shape [START_REF] Nolan | Random packing of nonspherical particles[END_REF], or by an accurate description of arbitrary convex particles [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. Recent development by our group (Chapter 3) allows the simulation of non-convex particles composed of a collection of convex particles. This method, called "glued convex", is an extension of the glued spheres method of [START_REF] Nolan | Random packing of nonspherical particles[END_REF]. It allows the use of the existing methods, models and algorithms already implemented in Grains3D [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]) such as the equations of motion, time integration, collision resolution and particularly the Gilbert-Johnson-Keerthi algorithm for collision detection. Detailed information about the extension to non convex shape and the DEM features can be found in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] and in Chapter 3.

Simulation principle

Fixed beds of non-convex particles are computed using Grains3D. An insertion window is de ned at the top of the domain (F . 4.1). It can be a box-like window or a at surface, or a single point. The particles are inserted in the simulation in the following sequence:

• for the subsequent particle to be inserted, the code draws randomly its position and orientation, • the particle is inserted as soon as there is enough space,

• the particle are subjected to the gravity force and leave the vicinity of the insertion zone. A larger insertion zone results in more particles inserted simultaneously. During their free fall, the particles will experience inelastic collisions with walls and other particles. The total kinetic energy of the system decreases exponentially with time. The simulations are completed when the maximum of the particle velocities is below 10 -5 m/s. The output of the simulations is a le containing nal positions, velocities and orientation for each particle. The domain geometry can be either constrained with rigid walls or using periodic conditions in the horizontal directions (bi-periodic). 

Void fraction analysis

The average void fraction (porosity) is computed by two methods: (i) performing a 3D discretization of the space and counting the number of cells occupied by particles. Provided su ciently small grid cells, this method is very accurate but computationally expensive (Chapter 3). (ii) sorting all the particles according to their vertical position z and plotting that vertical position (vertical axis) against the particle ranking (horizontal axis) as illustrated in F . 4.2. For a random packing, the plot is a straight line whose slope is related to the void fraction as follow: the volume occupied by the particles scales with the number of the particles times the volume of a particle, the volume of the container scales with the container cross-section times the distance between particles. Thus, the void fraction ε reads:

ε = 1 - N ∆z V p S p = 1 - V p S p 1 s (4.7)
where N, ∆z, V p , S p and s denote respectively total number of particles, height of the cropped bed, particle volume, particle surface and slope related to void fraction. Incidentally, a non-linear trend in the ranking plot brings information about the structure: steps indicate "structured packing", a changing slope indicates a change in the average void fraction. This method neglects the volume of particles located near the ends of the control volume and is as accurate as the discretization method when the control volume is large enough. As a last remark: a correct estimation of void fraction has to be performed discarding a few layers at the top and bottom of packing [START_REF] Dorai | Packing xed bed reactors with cylinders: in uence of particle length distribution[END_REF]), avoiding end e fects ( at bottom in uence at the bottom and free surface at the top).

Cases description

A rst set of simulations is performed using bi-periodic boundary conditions. This simulates a semi-in nite container, and models the packing in a large reactor. The container size is set to 18 mm after checking that this parameter has no e fect of the void fraction. Another set of simulation is ran in a small size cylindrical reactors using solid walls. The vessel diameters are 14 mm, 16 mm and 19 mm.

Simulations are performed on the following shapes (F . 4.3): Cylinders (CYL), trilobes (TL) and quadralobes (QL). The particle cross-sectional diameter of trilobes and quadralobes is de ned as that of circumscribed cylinder (F . 4.3d). For identical diameter and length, TL and QL occupy a volume of respectively 69% and 74% of the cylinder. The particle diameter is varying in the range [1.0, 2.5] mm and its length is set to 3 mm, 4 mm and 5 mm. In each simulation at least 1000 particles are inserted to ll either a bi-periodic domain or a cylindrical vessel (F . 4.4). The parameters of all numerical simulations are listed in T . 4.1.

Parameter Value k n (N m -1 ) 1 × 10 5 e n 0.7 µ c 0.55 µ t (s -1 ) 1 × 10 5 δ max (m) , δ max /R e 1.5 × 10 -5 , 0.005 T C (s) 2.01 × 10 -5 ∆t (s) 1 × 10 -6
Table 4.1 -Contact force model parameters, estimate of contact features at v 0 = 2 m s -1 for static packings.
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As mentioned earlier, the particles are inserted in the simulation with a random position and orientation. Afterwards, the simulations and measurements are deterministic and accurate.

Every packed bed has a di ferent void fraction. As we are interested in comparing the e fects of shape on void fraction, we must be able to quantify which part of the di ferences between two simulations are due to the shape or to the random insertion at the top of the domain.

Repeating the packing

Several loadings with the same set of 1000 particles are repeated for the 3 shapes (T . 4.2). As the particle shape and dimension di fer from one case to another, the average void fractions should not be compared for the moment but the reader should focus on the void fraction standard deviation (σ < 0.0053) which reads:

σ = 1 N N i=1 (ε i -µ) 2 , where µ = 1 N N i=1 ε i (4.8)
where N and ε i stand for total number of simulations and void fraction of the simulation i respectively.

As the number of repetitions is not large, this estimation of repeatability can be improved by aggregating data and removing the average of each sub-set (shape e fect). The standard deviation of the whole ensemble (18 elements) is indeed lower than σ 1 = 0.0042. At this point, it is worth reminding that once the particles are inserted in the simulation, the solver is deterministic and exact: σ 1 is a measure of the e fect of the random initial conditions. 

E fect of insertion window size

We estimated the e fects of insertion window size for various geometric con gurations of the container (cylindrical / bi-periodic and its size), and the particle shape and its size (T . 4.3).

In this work, we only use a planar 2D square insertion window and an insertion point (see F . 4.5 for reference).

According to an analysis of variance (ANOVA), the void fraction di ference is statistically non zero. A larger window results in a higher void fraction. We propose the following mechanism: a larger window results in more particles inserted simultaneously, leaving less time for a particle at the top of the stack to reach the most stable position before the arrival of the subsequent ones. The standard deviation on the void fraction di ference is 0.0049.

Choosing the proper insertion geometry is a matter of compromise for the several reasons. First, none of the methods is more realistic than another: in the laboratories, reactor loading is not standardized and is often manual. A change in particle size while keeping the insertion window size the same results in a change in the number of particles that are inserted simultaneously, which yields more or less compact beds. An obvious geometrical constraint is that the insertion window must be smaller than the reactor: smaller reactors need smaller insertion windows which leads to denser beds. This is similar to the reduction of the funnel diameter during an experimental loading. Last, a small insertion window requires a long loading time, 4.9 whereas a larger one permits a fast loading. In order to decrease the computing time, the simulations are performed with a medium size planar square insertion window (4 mm and 6 mm wide) that ts in all geometries. This choice will overestimate the void fraction compared to a point insertion and underestimate the void fraction for large particles. If we assume that this insertion e fect can be modelled by a Gaussian random variable (of null average), then its standard deviation σ 2 must be equal to 1/ √ 2 of the standard deviation of the "void fraction di ference" (see Appendix for details): σ 2 = 0.00346 = 0.0049/ √ 2. σ 2 measures the unknown bias on the simulation induced by the choice of the insertion window size.

Overall uncertainty

An overall uncertainty on a single void fraction simulation result can now be estimated from σ 1 (random initial conditions) and σ 2 (bias induced by insertion window size). As both un-certainties are independent, a classical measurement statistic theory gives an estimate of the overall standard deviation: σ = σ 2 1 + σ 2 2 = 0.0054. An estimation of the overall uncertainty on a single measurement I is I = 2σ = 0.011 (see Appendix for details). According to this analysis, there is a 95% probability that, given the output ǫ of a single experiment, the average void fraction of a large number of simulations falls in the interval ε ± 0.011 (with ε = 0.42, this gives an estimate of 0.409 and 0.431). In other words, this corresponds to a relative uncertainty on the void fraction of less than 2.5%.

R

Bi-periodic container

The average void fraction for various shapes, length and diameters simulated in a bi-periodic container are presented in F . 4.6. This case corresponds to large containers similar to industrial reactors. The void fraction is linearly correlated with particle aspect ratio (L p /d p ). Bulkier, rounder particles are easier to pack, whereas cylindrical particles present a lower void fraction and lower dependence on the aspect ratio than poly-lobed shapes. Surprisingly, the void fraction of trilobes and quadrilobes can not be distinguished. In F . 4.6 the slope for the poly-lobed particles is much larger than that of the cylindrical ones. We suggest that during the packing, the lobes hinder rotation and result in a quick dampening of the vibrations induced by impacts. This results in less compact beds for poly-lobed particles.

Extending the trends to near spherical shape (L p /d p = 1) leads to a void fraction of 0.32 (CYL) and 0.36 (TL/QL) which are values close to dense packings of spheres.

Cylindrical container

Cylindrical particles

The void fraction of a packed bed of cylindrical particles in a cylindrical reactor is in line with experimental measurements [START_REF] Leva | Pressure drop through packed tubes. 3. prediction of voids in packed tubes[END_REF] (our values are in the range of d p /D < 0.3). It increases with the particle aspect ratio and seems to decrease with increasing reactor diameter D. However in the studied range, the e fect is barely larger than the repeatability. Following [START_REF] Leva | Pressure drop through packed tubes. 3. prediction of voids in packed tubes[END_REF], whose results suggest a proportional relationship to the inverse of vessel diameter, we propose the correlation in E . 4.11. It describes all the data set with a maximum absolute error of 0.014 and a standard deviation of 0.006, which is about half of the uncertainty (F . 4.7). The correlation is written as follows: In our data range, a simpli ed correlation that does not take into account the cylindrical vessel diameter predicts the void fraction (E . 4.12) with good accuracy (standard deviation of 0.0077).

CYL: ε = 0.
In our limited diameter range, a simpli ed correlation that does not take into account the reactor diameter predicts the void fraction with a slightly higher identical relative standard deviation (2%). It reads:

CYL: ε = 0.327 + 0.033 L p d p (4.12) 10 < D[mm] < 19, 1 < L p d p < 5, 3 < L p [mm] < 4
Poly-lobed particles

The following linear correlation (E . 4.13) predicts the void fraction with a lower accuracy (equal to the uncertainty) (see 5.1 E fect of domain size in bi-periodic directions?

Most of the bi-periodic simulations have been performed with a domain with a transverse size of 18 mm. 4 simulations have been repeated using smaller domains (8 mm and 10 mm) with CYL and QL with an aspect ratio 3. The void fraction in smaller domains is within the repeatability of that in the large domain with a transverse size of 18 mm. We have so far no indication of an e fect of bi-periodic domain size in the range 8 mm to 18 mm. It seems that performing simulations in the chosen domains does not impose any particular microstructure in the bed with a wave length correlated to the transverse domain size. Simulation results indicate that even a transverse size of 8 mm is large enough to represent an in nitely large domain in the transverse direction.

Remark on the e fect of container size

For all three particle shapes (CYL, TL and QL), the void fraction is higher in small reactors than in semi-in nite vessels as expected. When the reactor diameter increases, none of the correlations for cylindrical reactors so far converges to the correlation proposed for in nite vessels. This was however expected as our cylindrical reactors are quite small compared to the particle length. In fact, the minimum L p /D in our simulations is 3/18 = 0.167, which suggests that wall e fects are strong in these small reactors. To get asymptotically vanishing wall e fects in a reactor, L p /D is probably required to be at least as small as 0.05. More simulations at large reactor diameters and probably non-linear relationships would be necessary to propose a uni ed correlation.

C

DEM has been used to prepare packed beds of poly-lobed particles. Although the simulations are deterministic, random input parameters (location and orientation of particles) as well as simulation parameters (insertion window) lead to an overall uncertainty that has been estimated at 0.0011. A subsequent analysis of the void fraction and its dependence on the particle shape and reactor size showed that TL and QL present statistically identical void fractions. The e fects of random insertion, i.e. lling procedure, in packed beds mask the shape induced e fect for optimised particles. We suggested linear correlations to predict the void fraction for cylinders, trilobes and quadralobes in semi-in nite and small size cylindrical reactor that showed a reasonably satisfactory level of reliability. More simulations and probably nonlinear regressions are necessary to unify these correlations.

Ranking TL and QL and their chemical e ciencies are not possible based only on void fraction. A precise knowledge of the relationship between shape and pressure drop is necessary to conclude. An ongoing work is to perform a similar study on poly-disperse beds. Another ongoing work is to use Direct Numerical Simulation to evaluate the pressure drop in beds of poly-lobed particles, which is an extension of the work presented in [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF]. The next step will be the use of DNS in reactive ows as demonstrated in [START_REF] Dorai | Multi-scale simulation of reactive ow through a xed bed of catalyst particles[END_REF], which is probably more in the aim of assessing random induced uncertainty rather than predicting the xed bed performance.

A

In this work, simulations and measurements are deterministic and accurate. The resulting void fraction is di ferent each time a simulation is performed with the same particles, but inserted with di ferent (random) orientations and positions. Void fraction values appear as a random variable. Our interest is to compare the e fects of shape on the void fraction. Thus we want to quantify how much of the di ference between two simulations with di ferent shapes are due to the shape or to the random insertion e fects.

By de nition, the uncertainty is the value I so that 95% of the random values of the void fraction will be within ±I of the average . With a Gaussian probability law, this de nition is equivalent to I = 1.96σ which is classically simpli ed to I = 2σ. In mathematical terms, 95% of the area under the Gaussian probability curve is within average ±I . In our study, the e fect of particle position and orientation is estimated by repeating simulations and estimating the standard deviation.

The standard deviation of the sum or di ference of two independent Gaussian random variables is given by σ

X-Y = σ X+Y = σ 2 1 + σ 2 2 , yielding σ X-Y = σ X+Y = σ X √ 2 
when X1 and X2 follow the same probability law with standard deviation σ X . The e fect of insertion window size is estimated using the di ference between two simulations, hence the introduction of a √ 2 in the calculations.
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Dans ce chapitre, le modèle glued convex est utilisé pour optimiser les formes de particules rencontrées dans l'industrie du ra nage. L'intérêt de ce chapitre est particulièrement porté sur la mise en évidence des di férences sur le taux de vide dans de réacteurs à lit xe en fonction des formes des particules (ici, cylindre, trilobe et quadrilobe), du mode d'insertion des particules et en n la quanti cation de l'aspect aléatoire de la procédure de remplissage des réacteurs. En e fet, Grains3D dispose d'un algorithme qui joue le rôle de fenêtre d'insertion de particules dans le système étudié. Les particules sont crées avec une orientation aléatoire et tombent dans les réacteurs une par une si la taille caractéristique de la fenêtre est du même ordre que celle des particules ou par pluviation si elle est de quelques ordres de grandeur de celle des particules.

Le taux de vide dans un lit est calculé à l'aide d'une discrétsisation spatiale du système étudié. Cette méthode repose ensuite sur l'aspect parallèle du code Grains3D pour la prise en compte de gros système ainsi que pour l'accélération des simulations.

Ce chapitre a alors permis de mettre en évidence que les taux de vide calculés sont statistiquement identiques pour les particules multi-lobées et sont di férents de ceux des particules cylindriques dans les mêmes conditions. Grâce à ces observations, des corrélations lináires ont été mises en place pour prédire le taux de vide dans des réacteurs à lit xe. This chapter has been submitted for publication in Powder Technology:
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A. D. Rakotonirina, A. Wachs. Grains3D, a exible DEM approach for particles of arbitrary convex shape -Part II: parallel implementation and scalable performances.

In this paper, we present the parallelisation strategy to be able to handle large numbers of particules. We also present simulations on silo discharge, dam breaking, uidization.

A I Wachs et al. (2012) we suggested an original Discrete Element Method that o fers the ca- pability to consider non-spherical particles of arbitrary convex shape. We elaborated on the foundations of our numerical method and validated it on assorted test cases. However, the implementation was serial and impeded to examine large systems. Here we extend our method to parallel computing using a classical domain decomposition approach and interdomain MPI communication. The code is implemented in C++ for multi-CPU architecture. Although object-oriented C++ o fers high-level programming concepts that enhance the versatility required to treat multi-shape and multi-size granular systems, particular care has to be devoted to memory management on multi-core architecture to achieve reasonable computing e ciency. The parallel performance of our code Grains3D is assessed on various granular ow con gurations comprising both spherical and angular particles. We show that our parallel granular solver is able to compute systems with up to a few hundreds of millions of particles. This opens up new perspectives in the study of granular material dynamics.

I

Discrete Element Method (DEM) based simulations are a very powerful tool to simulate the ow of a granular media. The foundations of the method were introduced by [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF] in the late seventies. Originally developed for contacts between spherical particles, the method was later extended to polyhedra by [START_REF] Cundall | Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[END_REF]. The conceptual simplicity combined with a high degree of e ciency has rendered DEM very popular. However, there are essentially still two bottlenecks in DEM simulations: (i) the non-sphericity of most real life particles and (ii) the generally large number of particles involved even in a small system.

In [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] we addressed issue (i), i.e., the non-sphericity of particles by reviewing the various existing techniques to detect collisions between two non-spherical particles and by suggesting our own collision detection strategy that enables one to consider any convex shape and any size. Issue (ii) can be tackled in two di ferent and complementary ways. The former involves improving the computational speed of classical serial implementations of DEM. This can be achieved by a higher quality programming and smarter algorithms, but there is admittedly a limit in that direction, even with the most advanced implementations. The latter involves dividing the work load between di ferent computing units and hence using distributed computing. Nowadays, there are two competing technologies for DEM distributed computing: CPU [START_REF] Walther | Large-scale parallel discrete element simulations of granular ow[END_REF], [START_REF] Iglberger | Massively parallel rigid body dynamics simulations[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]) vs GPU [START_REF] Radeke | Large-scale mixer simulations using massively parallel GPU architectures[END_REF], [START_REF] Govender | Collision detection of convex polyhedra on the NVIDIA GPU arhictecture for the discrete element method[END_REF]). Both technologies have assets and drawbacks. While GPU is parallel in essence (multi-threaded), fast on-chip memory is limited in size and global memory access is very slow, which can result in a weak performance of the code (Govender et al. ( 2015)). Besides, the built-in parallelism of GPU is not designed (yet) for multi-GPU computations, which limits the overall performance to that of a single GPU, in particular in terms of system size, i.e., number of particles. Conversely, CPU-based DEM codes, generally implemented with a domain decomposition technique, exhibit no limit in number of communicating CPUs (cores) and hence no limit in number of particles, provided the scalability is maintained at a reasonable level. Communications between cores is generally achieved using the Message Passing Interface (MPI) [START_REF] Gropp | Using MPI (2Nd Ed.): Portable Parallel Programming with the Message-passing Interface[END_REF]). While simulations with up to a few tens to hundreds of thousands of particles is attainable with GPU-based implementations [START_REF] Radeke | Large-scale mixer simulations using massively parallel GPU architectures[END_REF], [START_REF] Govender | Collision detection of convex polyhedra on the NVIDIA GPU arhictecture for the discrete element method[END_REF]), simulations with up to a few billions of particles can be envisioned with CPU-based implementations, provided computational practitioners have access to large supercomputers with many thousands of cores [START_REF] Walther | Large-scale parallel discrete element simulations of granular ow[END_REF], [START_REF] Iglberger | Massively parallel rigid body dynamics simulations[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]). The forthcoming new GPU technology is likely to o fer similar parallel computing capabilities as CPU by improving inter-GPU communications but at the time we write this article, this enhanced GPU technology is not available yet.

The primary motivations for developing a parallel implementation of a serial code is either (i) to lower the computing time for a given system size by using more cores or (ii) to increase the size of the simulated system for a given computing time. In general, it is rather hard to de ne what is a "rationally acceptable computing time". Talking about the number of particles that one can simulate on a single-core computer in number of minutes/hours/days is meaningless without mentioning as well the time step magnitude and simulated physical time. In other words, the only rational measure of performance is the wall clock time per time step and per particle. Ironically, a highly e cient serial implementation might not scale well in parallel as the communication overhead will be signi cant, and conversely a time consuming (and/or badly programmed) serial implementation might scale much better. Obviously, this statement is not an incentive to write poor serial implementation or slow collision detection algorithm to get at a later stage a good scalability but simply underlines the fact that systems made of non-spherical particles have a chance to scale better than systems comprising spheres, as the collision detection step is a local (in the sense on each core without any communication) timeconsuming operation.

Our goal in the paper is to elaborate on a simple domain decomposition based parallel extension of our granular code Grains3D and to assess its computing performance on systems of up to a few hundreds of millions of particles. In Section 3, we quickly recall the features of our numerical model as already explained in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]. We then present our parallel strategy in Section 3. In Section 4 we measure the computing performance of our parallel implementation in various granular ow con gurations (particle shape, particle load by core, weak scalability). Finally, we discuss parallel computing performances exhibited by Grains3D in Section 5 and highlight the remaining intrinsic limitations of Grains3D and how to relax them.

N

The motion of the granular material is determined by applying Newton's second law to each particle i ∈< 0, N -1 >, where N is the total number of particles. The rigid body motion assumption leads to the decomposition of the velocity vector v as v = U + ω ∧ R, where U , ω and R denote the translational velocity vector of the center of mass, the angular velocity vector of the center of mass and the position vector with respect to the center of mass, respectively. The complete set of equations to be considered is the following one:

M i dU i dt = F i (5.1) J i dω i dt + ω i ∧ J i ω i = M i (5.2) dx i dt = U i (5.3) dθ i dt = ω i (5.4)
where M i , J i , x i and θ i stand for the mass, inertia tensor, center of mass position and angular position of particle i. F i and M i are the sum of all forces and torques applied on particle i, respectively, and can be further decomposed in purely granular dynamics (i.e., without accounting for any external forcing as e.g. hydrodynamic or electrostatic) into a torque-free gravity contribution and a contact force contribution as:

F i = M i g + N -1 j=0,j =i F ij (5.5) M i = N -1 j=0,j =i R j ∧ F ij (5.6)
where F ij is the force due to collision with particle j and R j is a vector pointing from the center of mass of particle i to the contact point with particle j. In our model, F ij comprises a normal Hookean elastic restoring force, a normal dissipative force and a tangential friction force.

The set of equations E . 5.1-E . 5.4 is integrated in time using a second order leap-frog Verlet scheme. Rotations of particles are computed using quaternions for computational eciency as well as to avoid any gimbal lock con gurations. The collision detection algorithm is a classical two-step process. Potential collisions are rst detected via a linked-cell list and then actual collisions are determined using a GJK algorithm. Our GJK-based collision detection strategy enables us to consider any convex shape and size. For more detail, we refer the reader to Grains3D-Part I [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] and the references therein.
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Our parallel strategy is classical and is based on a domain decomposition technique. We consider below only the case of a constant in time domain decomposition, assuming that we know how to guarantee a reasonable load balancing of number of particles between subdomains over the whole simulation. The extension to dynamic load balancing in granular ows with large particle volume fraction heterogeneities will be shortly discussed in Section 5 as an extension of this work. We employ a cartesian domain decomposition. Each process hosts a single subdomain and we hence de ne a cartesian MPI communicator using the MPI_Cart_create command. It is then very convenient to identify the neighbouring subdmains on each subdomain as well as to implement multi-periodic boundary conditions. On each subdomain, we construct a cartesian linked-cell list with an additional layer of cells at the boundary with neighbouring subdomain to serve as an overlapping zone. This overlapping zone hosts clone particles used to compute collisions with particles located on a neighbouring subdomain (process). As a consequence, cells in a linked-cell list are tagged based on their location on the subdomain: 0 = interior, 1 = bu fer and 2 = clone, as illustrated on F . 5.1. At each time step, clone particles are either created, deleted or updated. All particles are tagged based on the cell they belong to. Hence they consistantly change status as they move in the subdomain. Corresponding operations are performed on neighbouring subdomains when a particle change status. For instance, if a particle moves from an interior cell (tag = 0) to a bu fer cell (tag = 1), a clone particle (tag = 2) is automatically created on the neighbouring subdomain.

The serial code is implemented in C++ which equips us with the required versatility to handle multiple particle shapes and sizes, based on inheritance mechanism, virtual classes and dynamic typing. Each particle is an instance of a C++ class and all active particles on a subdomain, including particles in bu fer and clone zones, are stored in a primary list. Two additional separate lists for bu fer and clone particles, respectively, are also created. As a consequence, when information of bu fer particles needs to be sent to a neighbouring subdomain, we rst loop on the list of bu fer particles, extract the relevant information and copy it to a bu fer memory container (a standard 1D array, i.e., a standard vector, of doubles or integers). Each subdomain keeps a list of reference particles corresponding to all the types of particle in the simulation. These reference particles store generic data as mass, moment of inertia tensor and geometric features, such that MPI messages contain velocity and position information only and their size is reduced to the minimum.

Assorted communication strategies between processes (subdomains) can be designed, ranging from the simplest strategy to the most advanced (to the best of our knowledge for a cartesian MPI decomposition) strategy. We list below the di ferent strategies we implemented and tested, ranked in growing complexity:

• the AllGatherGlobal strategy All processes send information from their bu fer particles to all other processes, regardless of their location in the MPI cartesian grid using a MPI_Allgather command.

A huge amount of useless information is sent, received and treated by each process. It is however a good starting point and performs well up to 8 (maybe 16) processes maximum.

• the AllGatherLocal strategy All processes send information from their bu fer particles to all their neighbouring processes. The amount of useless information is reduced, but it is still far from optimal. This can be achieved by creating local communicator for each process including itself and its neighbours and performing the MPI_Allgather command using this local communicator. This strategy performs reasonably well up to 16 (maybe 32) processes, but beyond the scalability markedly deteriorates.

• the AllGatherLocal strategy with non-blocking sending The next level of sophistication consists in replacing the MPI_Allgather command performed on the local communicator by a rst stage of non-blocking sending of messages with the MPI_Isend command combined with a classical blocking receiving stage with the MPI_Recv command. Incoming messages are rst checked with the MPI_Probe command and their size is detected with the MPI_Get_count command such that the receiving bu fer is properly allocated for each received message [START_REF] Iglberger | Massively parallel rigid body dynamics simulations[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]. Using non-blocking sending speeds up communications as the MPI scheduler can initiate the receiving operations even if the sending operations are not completed, but still a large amount of useless information is sent, received and treated.

• the adopted optimal strategy called SendRecv_Local_Geoloc Not only cells (and hence particles belonging to these cells) are tagged in terms of their status (0 = interior, 1 = bu fer and 2 = clone, see F . 5.1) but cells in the bu fer zone are also tagged in terms of their location with respect to the neighbouring subdomains using a second tag, named GEOLOC for geographic location, that takes the 26 following values (whose meaning is rather obvious on a 3D cartesian grid as can be seen in F . 5. Depending on the particle's GEOLOC tag, information from a bu fer particle is copied to one or more bu fer vectors to be sent to neighbouring subdomains. There are essentially three situations as illustrated below:

-a bu fer particle with a main GEOLOC tag: for instance a particle tagged SOUTH is sent to the SOUTH neighbouring subdomain only (F . 5.3), -a bu fer particle with an edge GEOLOC tag: for instance a particle tagged SOUTH_EAST is sent to the SOUTH, EAST and SOUTH_EAST neighbouring subdomains only (F . 5.4), -a bu fer particle with a corner GEOLOC tag: for instance a particle tagged SOUTH_WEST_TOP is sent to the SOUTH, WEST, TOP, WEST_TOP, SOUTH_WEST, SOUTH_TOP and SOUTH_WEST_TOP neighbouring subdomains only.

Similarly to the AllGatherLocal strategy, exchange of information between neighbouring subdomains is performed by a combination of non-blocking sending operations using MPI_Isend and blocking receiving operations using MPI_Recv.

The bu fer vectors sent and received by processes are of the C double type. A bu fer vector contains for each particle the following data: particle identity number, particle reference type, MPI rank of sending process, velocity, position and orientation for a total of 29 numbers. Particle identity number, particle reference type and MPI rank of sending process are integer numbers and are cast into double numbers such that all features can be concatenated into a single vector of doubles. Hence each process sends to and receives from another neighbouring process a single message containing a vector of doubles with the MPI_DOUBLE data type (instead of sending and receiving separately in two di ferent messages a vector of doubles with the MPI_DOUBLE data type and a vector of integers with the MPI_INT data type, respectively). Each message size is then 29 times the size of a double times the number of bu fer particles with the appropriate GEOLOC tag. Due to the considerable latency involved in any MPI message, e cient parallel performance involves keeping the number of messages as low as possible. This explains why we cast integer to double as a way to avoid heterogeneous data types and/or twice more messages (the computing cost of the cast operation from integer to double when sending and back from double to integer when receiving is much smaller than the one associated to sending and receiving 2 messages instead of 1). Another option that we have not tried is to convert all data types to raw bytes and send a single vector of raw bytes using the MPI_BYTE data type. Each neighbouring process is then responsible to convert back the received raw byte messages to their original data types. This strategy has been successfully implemented in [START_REF] Iglberger | Massively parallel rigid body dynamics simulations[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF].

At each time step, the full solving algorithm on each subdomain reads as follows:

1. for all particles with status 0 or 1: initialize force to gravity and torque to 0

2. for all particles:

(i) detect collisions (ii) compute contact forces & torques 3. for all particles with status 0 or 1:

(i) solve Newton's law: E . 5.1 for translational velocity and E . 5.2 for angular velocity (ii) update position E . 5.3 and orientation E . 5.4

4. search for particles whose status changed from 0 to 1 add them to the list of bu fer particles 5. MPI step using the SendRecv_Local_Geoloc strategy (in the 3D general case of 26 neighbouring subdomains):

(i) copy bu fer particles features into the di ferent bu fer vectors of doubles depending on their GEOLOC tag, (ii) perform non-blocking sendings of each of the 26 bu fer vectors of doubles to the corresponding neighbouring subdomains, (iii) for j = 0 to 25 (i.e., for each of the 26 neighbouring subdomains):

(I) perform a blocking receiving of the vector of doubles sent by neighbouring subdomain j, (II) Treat the received vector of doubles containing particles information

• Create or update clone particles • Delete clone particles moved out of the subdomain 6. for all particles: based on their new position, update status and GEOLOC tags and the corresponding lists of bu fer and clone particles

C

In this section, we assess the computational performance of our parallel DEM code Grains3D on assorted ow con gurations in which load balancing in terms of number of particles per subdomain (process) is approximately constant over the whole simulation. All the test cases considered thereafter are fully three-dimensional. In all computations, each core hosts a single subdomain and a single process. Hence, the terms "per core", "per subdomain" and "per process" are equivalent. Computations are performed on a 16-core per node supercomputer. Our primary goal is to compute larger systems for a given computing time. We therefore assess the computational performance of Grains3D in terms of weak scaling. We compute the parallel scalability factor S(n) by the following expression:

S(n) = T (1, N ) T (n, N × n) (5.7)
where T (1, N ) denotes the computing time for a problem with N particles computed on a single core or a single full node and T (n, N × n) denotes the computing time for a similar problem with N × n particles computed on n cores or nodes.

Assessing memory management on multi-core node architecture

Discharge ow in silos

The rst test case is a discharge of particles from a silo. Before performing weak scaling tests, we validate our DEM solver versus experimental data. For that purpose, we select the work of González-Montellano et al. ( 2011) as a reference because of its conceptual simplicity. Their study consists in comparing their own DEM simulation results to experimental data of spherical glass beads of 13.8 mm diameter discharging from a silo. The silo has a 0.5 m height (H) and 0.25 m sides (L) (F . 5.5a). The bottom has a truncated pyramid shape with a square hopper opening of 57 mm sides whose walls make an angle θ = 62.5 • with respect to the horizontal plane. In our simulations, we extend the bottom of the silo to collect all particles owing through the opening of the hopper (see F . 5.5b). Obviously, this does not a fect the discharge dynamics and rate.

As in [START_REF] González-Montellano | Validation and experimental calibration of 3d discrete element models for the simulation of the discharge ow in silos[END_REF], we ll the silo with 14000 spherical particles by performing a rst granular simulation with the opening of the hopper sealed by a plate. In this preliminary simulation, we insert all particles together as a structured array in order to reduce the computing time (see F . 5.6 at t = 0). To this end, we extend the height of the silo in a way that all particles t into the silo before they start to settle. The initial particles positions at the insertion time are actually slightly perturbed with a low amplitude random noise in order to avoid any arti cial microstructural e fect. Particles then settle by gravity and collide until the system reaches a pseudo steady state corresponding to a negligible total kinetic energy (see F . 5.6 at t = T f ill ). As observed in González-Montellano et al. ( 2011), the 14000 spherical particles ll the silo up to H m ≃ 0.86H. After the lling of the silo, the plate that blocks the particles is removed by imposing a fast translational frictionless displacement to start the discharge. Simulations are run until all particles have exited the silo (see F . 5.6 at t = T dis ).

As in [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] our contact model is the linear damped spring with tangential Coulomb friction for both particle-particle and particle-wall contacts. The magnitude of the parameters involved in the silo discharge simulations is given in T . 5.1. In [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF], we elaborated on the fact that the spring sti fness k n in our contact model can be linearly related to the Young modulus E of the material. Since the contact duration is inversely proportional to k n , a high E leads to a short contact duration, and hence a correspondingly small time-step ∆t. For glass beads, the Young modulus E is approximately 50 GP a. It leads to a time step magnitude of the order of ∆t ∼ 10 -7 s, which would require to compute an unnecessary large number of time steps to simulate the whole discharge of the silo. In fact, as explained in Wachs et al. (2012), the sti fness coe cient k n is generally not set in accordance with Hooke's law and Hertzian theory, but rather in a way to control the maximum overlap between particles as they collide. The meaningful parameters from a physical viewpoint are the coe cient of restitution e n and the Coulomb friction coe cient µ c . A smaller k n enables us to use much larger time steps without a fecting the whole dynamics of the system. This is rather customary in DEM simulations of non-cohesive materials. For more detail about how to determine k n , the reader is referred to [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF], [START_REF] Cleary | DEM modelling of industrial granular ows: 3D case studies and the e fect of particle shape on hopper discharge[END_REF], [START_REF] Cleary | Industrial particle ow modelling using discrete element method[END_REF][START_REF] Cleary | DEM prediction of industrial and geophysical particle ows[END_REF] and the references therein. In T . 5.2, the meaningful physical parameters e n and µ c are set to exactly same values as those selected by [START_REF] González-Montellano | Validation and experimental calibration of 3d discrete element models for the simulation of the discharge ow in silos[END_REF].

= 0 0 < t < T f ill t = T f ill T f ill < t < T dis t = T dis
Using an estimate of the maximum collisional velocity of v col = 4.5 m/s, the selected value of k n leads to a maximum overlap distance of 3 of the sphere radius. Please note that this estimate is highly conservative as v col = 4.5 m/s is the free fall velocity of particles as they collide with the bottom wall of the collecting bin underneath the hopper opening. In fact, the collecting bin height is ≈ 1 m, hence we get √ 2 × 9.81 × 1 ≈ √ 20 ≈ 4.5 m/s. In the dense discharging granular material above the hopper opening, the actual collisional velocity is much less. As a result, the maximum overlap between colliding particles in this part of the granular ow is less than 0.1 of the sphere radius, a value commonly deemed to be a very satisfactory (and almost over-conservative) approximation of rigid bodies in DEM simulations.

Parameter Value Particle-Wall k n (N m -1 ) 1 × 10 6 e n , µ n (s -1 ) 0.62 , 3.63 × 10 3 µ c 0.3 k ms 1 × 10 -5 δ max (m) , δ max /R 2.25 × 10 -4 , 0.033 T C (s) 1.85 × 10 -4 Particle-Particle k n (N m -1 )
7.2 × 10 5 e n , µ n (s -1 ) 0.75 , 1.87 × 10 3 µ c 0.3 k ms 1 × 10 -5 δ max (m) , δ max /R 1.92 × 10 -4 , 0.028 T C (s)

1.55 × 10 -4 ∆t (s) 1 × 10 -5 We report in T . 5.2 the values of the discharge time experimentally measured by González-Montellano et al. ( 2011) together with our simulation result. [START_REF] González-Montellano | Validation and experimental calibration of 3d discrete element models for the simulation of the discharge ow in silos[END_REF] carried out three times the same experiment but it seems that the observed devia-tion of the discharge time with respect to the mean value is very limited (of the order of 0.2 ). In other words, the initial microstructure of the particles in the silo before removing the hopper gate is essentially similar and does not markedly a fect the discharge process. Based on this observation, we perform a single discharge simulation. Our model shows a (even surprisingly) good agreement with the discharge time measured in the experiments of [START_REF] González-Montellano | Validation and experimental calibration of 3d discrete element models for the simulation of the discharge ow in silos[END_REF]. Snapshots of the discharge process also exhibit a highly satisfactory agreement between our simulations and the experiments in [START_REF] González-Montellano | Validation and experimental calibration of 3d discrete element models for the simulation of the discharge ow in silos[END_REF], as presented in F . 5.7. Although our goal in this work is not to carry out an extensive analysis of the discharge, it is computationally cheap and important to validate our model and gain con dence in the computed results. We are now in a sensible position to perform weak scaling tests and assess the scalability properties of our parallel DEM solver. 2011) and our simulation results with Grains3D: snapshots of discharge dynamics at di erent times.

Parallel scalability

On the single-core architecture of the 90s, each core had its own levels of cache and its own random-access memory (RAM). The limitation of parallel implementations was hence essentially the communication overhead. This overhead depends on the MPI strategy (size of message, synchronous/asynchronous communication, blocking/non-blocking communication, etc). Since the early 2000s, the new emerging architecture relies on multi-core processors. In a supercomputer, these multi-core processors are bundled in computing nodes, i.e., a computing node hosts multiple processors that each hosts multiple cores. Cores share levels of cache on the processor they belong to and processors share RAM on the computing node they belong to. The aftermath is a more complex and competitive access to memory by all the cores of a computing node. Hence, parallel implementations running on modern supercomputers can be limited as much by the communication overhead as by the intra-processor and intra-node memory management and access. Our parallel DEM solver Grains3D is programmed in C++. C++ equips programmers with a formidable level of exibility to handle multi-shape and multi-size granular ows with well-known object-oriented mechanisms as inheritance, virtual classes and dynamic typing. Another enjoyable tool of C++ is constructors and destructors that enables one to create and delete instances of object with a high level of control on memory allocation (provided the constructor and destructor are properly programmed). However, dynamic memory allocation/deallocation, even with absolutely no memory leak, can literally kill the parallel performance of a numerical code. This has nothing to do with inter-and intranode MPI communications between cores but rather with the management and competitive access to memory. The rst parallel version of Grains3D exhibited dramatically poor scalability properties. It took us a while to realize that the limitation was coming from an excessive use of constructors/destructors while our MPI strategy was performing quite well from the start. Complete refactoring of the code with use of dynamic memory allocation/deallocation only when absolutely necessary and partial over-allocation strikingly improved the scalability properties. It is hard to get here into the details of our C++ implementation but Grains3D is now programmed with the following guidelines: (i) use object-oriented programming concepts at a very high level of design only, (ii) use standard old-fashioned C/F77-like containers whenever possible and (iii) slightly over-allocate memory and reduce to the absolute minimum dynamic memory management. There is still room for improvement in our implementation but we are now in a position to present acceptable parallel properties. It is this new version of the code with enhanced memory management that we assess the scalability properties of in the rest of the paper. In this section, we design two slightly di ferent multi-silo discharge con gurations in order to discriminate the computing overhead related to (i) memory competitive access and management and pure MPI communication latency from (ii) actual MPI communications and treatment of received information.

The rst ow con guration consists in discharging particles from several silos using the previous con guration (F . 5.5). The multiple silos case is designed in a way that a silo is handled by a single core without any actual communication with neighbouring sub-domains (F . 5.8). In fact, silos are located far enough from each other to avoid the creation and destruction of clone particles. This ow con guration is hence illustrative of case (i): memory competitive access and management and MPI communication latency. In fact, the code runs in MPI but messages are empty. The overhead coming from MPI is hence essentially related to the latency of the MPI scheduler to send and receive messages. We adopt a two dimensional domain decomposition (N cores,x × N cores,y × 1 = N cores ) to guarantee exact load balancing between the cores. We evaluate the scalability of our code by gradually increasing the size of our system. To this end, we perform discharge simulations of 2, 000 cubic particles and 2, 000, 14, 000, and 100, 000 spherical particles per silo, starting from one silo till 256 silos. Varying the load of particles per core changes the amount of memory allocated, managed and accessed by the code on each core. This enables us to discriminate further between memory management and MPI latency so that the e fects of these two factors are not mixed up. In fact, MPI latency is independent of the particle load as the number of messages sent and received scales with the number of cores. The total number of particles N T in the system is a multiple of that in a single core system and is de ned as follows:

N T = N p,1 × N cores (5.8)
where N p,1 and N cores are respectively the number of particles on a single core system and the number of cores. The largest system comprises 100, 000 × 256 = 25, 600, 000 of spherical particles. As the granular media is dense in most of the domain, the largest part of the computing time (more than 85%) is spent in computing interactions between particles, i.e., contact detection and contact forces. For the weak scaling tests, we run all discharge simulations over 300, 000 time steps. Reference times on a single core job are listed in T . 5.3. A rst interest- ing comment about T . 5.3 is that the computing time per particle and per time step is not constant and slightly increases with the size of the system. Even when running in serial mode, memory access is apparently not optimal as containers of larger size (as e.g. a larger list of particles) seem to slow down the computation. Some additional e forts in refactoring the serial implementation of the code are required but this is beyond the scope of the present paper.

The second ow con guration is very similar except that right now all silos are merged together into a big silo. The whole domain is thus shared by each core and actual communications (in the sense communications with non-empty messages) between sub-domains are exchanged (see F . 5.9 and 5.10). For this purpose, we performed discharge simulations of Table 5.3 -Silo discharge for di erent systems: reference times of a serial job over 300, 000 time steps of 10 -5 s.

10, 000 cubic particles, 2, 000, 14, 000 and 100, 000 spherical particles. As for the rst ow con guration, a two dimensional domain decomposition is chosen such that each sub-domain has approximately the same number of particles as if the silos were independent. This hence guarantees again an almost perfect load balancing between the cores. F . 5.11 illustrates the scalability of our code of these two ow con gurations. At rst sight, results are very similar without (separate silos) and with (merged silos into a big silo) actual communications. We plot in F . 5.11a the parallel performance of Grains3D on the rst test case, i.e., without any overlap between separate silos and empty MPI messages. This gure indicates that for low numbers of particles per core, the limiting factor is clearly MPI latency while for high numbers of particle per core, the serial computations per core prevail and the MPI latency becomes negligible. Hence, the loss of performance is primarily related to a yet non-optimal memory access and management on multi-core architectures. However, for a high enough number of particles per core as e.g. 100, 000 spheres, the scaling factor S(n = N cores ) is independent of n up to n = 256 cores and is around 0.85. As the contact detection of convex bodies is more time-consuming than that of spheres, S(n) for cubes is higher than S(n) for spheres for the same number of particles per core. Hence, we expect that for more than 100, 000 particles per core, the observed scaling factor of 0.85 for spheres is actually a lower bound and that the scaling factor for non-spherical particles should be higher. We plot in F . 5.11b the parallel performance of Grains3D on the second test case, i.e., a big silo split into sub-domains and non-empty MPI messages. The 2000 spheres per core is a special case as on each sub-domain there are almost as many particles on the actual sub-domain, i.e., interior and bu fer zones, than in the clone layer, leading to a high global communication overhead (size of messages and treatment of information received). This is getting worse and worse as the number of cores increases (see blue line in F . 5.11b). The general outcome is in line with the rst test case with empty messages: for a large enough number of particles per core, the scaling factor S(n) is satisfactory (it is actually 0.78 for 100, 000 spheres and is likely to be higher for 100, 000 non-spherical particles). This is again emphasized in F . 5.12 where we compare the communication overhead to the serial computational task for a sphere and a polyhedron. The di ference shown there is primarily due to the contact detection that requires to use a GJK algorithm for non-spherical particles while it is analytical (and hence faster) for spheres (see [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF] for more detail). Interestingly, for 100, 000 spheres, the scaling factor S(n) drops from 0.85 with empty messages to 0.78 with non-empty messages and treatment of the received information. Therefore, the actual overall parallel overhead is around 7 and the rest of the loss of performance, i.e., the remaining 15 , is predominantly due to non-optimal memory access and management on multi-core chips. These two rst test cases are extremely informative. They show that for a dense granular ow with a minimum load of 100, 000 of particles per core, we can expect a good overall parallel performance with a scaling factor S(n) 0.75 on up to 512 to 1024 cores. Systems with a low particles load per core, i.e., of the order of a few thousands, show an unsatisfac-tory, although not dramatically poor, parallel performance that exhibits the obvious tendency to degrade with the number of cores n. Overall, the MPI strategy presented in Section 3 is deemed to perform very well while additional e forts in serial programming are required to improve memory access and management. Systems with up to 100, 000, 000 of particles can be computed with a scaling factor of at least 0.75, which is deemed to be very satisfactory for engineering and fundamental physics purposes.

Granular slumping

Dam break collapse

Granular column collapse is a very classical ow con guration to understand the fundamental dynamics of granular media Ritter (1892), [START_REF] Balmforth | Granular collapse in two dimensions[END_REF], Ancey et al., Lajeunesse et al. (2005), [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF]. The "dam break" con guration in a rectangular channel has been extensively studied by many authors, experimentally [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF], [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF], [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]), analytically [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]) and numerically [START_REF] Girolami | A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments[END_REF]), among others. The experimental set up is cheap and experiments are easy to conduct. The overall picture of granular column collapse has been described in many papers and books (and in particular in the aforementioned papers) but a fully comprehensive understanding is still lacking. To summarize, the macroscopic features of the collapse, i.e., the nal height H ∞ /H and the run-out distance (L ∞ -L)/L = X f /L, scale with the initial aspect ratio a = H/L of the column, where H and L denote the initial height and initial length of the column, respectively, and H ∞ and L ∞ denote the nal height and nal length of the column, respectively. It has been established and veri ed by many authors that H ∞ /H and (L ∞ -L)/L are essentially functions of a and vary as H ∞ /H ≃ λ 1 a α and (L ∞ -L)/L ≃ λ 2 a β , with α ≈ 1 for a 0.7 and α ≈ 1/3 for a 0.7, and β ≈ 1 for a 3 and β ≈ 2/3 for a 3, although Balmforth and Kerswell found slightly di ferent exponents [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]). Anyhow, the constants λ 1 and λ 2 are largely undetermined. In the inertia dominated regime a 3, [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] suggested that λ 2 = 1.9. Although the qualitative description of granular column collapse in a rectangular channel is acknowledged by all contributors to the eld, signi cant quantitative discrepancies can be found in terms of experimentally measured run-out distances between e.g. [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] and [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]. It is admitted that the problem is primarily governed by the initial aspect ratio a but the various existing studies also suggest that λ 1 and λ 2 might not be true constants but functions of the transverse dimension of the channel (narrow or wide slots), the type of material and the shape of the particles, although this functional dependence might be weak. In any case, the scaling analysis is assumed to be valid, which implies that the general behaviour and hence H ∞ /H and (L ∞ -L)/L are independent of the dimensional system size.

In [START_REF] Girolami | A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments[END_REF], we used Grains3D to carry out an extensive analysis of dam break granular collapses in a rectangular channel and satisfactorily reproduced the experimental data of [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF]. Here our objective is twofold: (i) show that the scaling analysis is indeed valid by computing systems of increasing size but constant a and that the computed run-out distance is within the reported experimental range of values, and (ii) use the largest system as a reference point for weak scaling parallel tests.

Numerical simulation

Simulations are performed based on a well-known experimental set-up: a box with a lifting gate (see F . 5.13). The simulation procedure consists in lling the parallelepipedic reservoir of length L and width W up to a height H with granular media. Particles are inserted at the top of the reservoir. They settle by gravity and collide until the system reaches a pseudo steady state corresponding to a negligible total kinetic energy. Then, the gate is lifted over a time scale much smaller than that of the collapsing media in a sense that it does not a fect the dynamics of the whole system. The moving gate is also chosen to be frictionless to avoid particle located close to the gate to be arti cially lifted in the air. The lateral boundaries of our system are subjected to periodic condition to mimic an in nite granular media in the transverse direction to the ow. Particles are assumed to have a mono-sized icosahedral shape that mimics quartz-sand grains. Icosahedral particles have an equivalent diameter d p (diameter of a sphere of same volume as the icosahedron) of 3 mm. The magnitude of the parameters involved in the granular collapse simulations is given in T . 5.4. We take the free-fall settling velocity of the highest heap of particles (Size 5, H = 0.905m) as an estimate of the maximum collisional velocity. We hence get v col = √ 2 × 9.81 × 0.905 ≈ 4.2 m/s. The theoretical maximum overlap is of the order of maximum 5 of the particle equivalent radius as shown in Table 5.4. In practice, the average overlap and maximum overlap in all simulation are of the order of 0.1 and 1 , respectively. 1 × 10 5 e n , µ n (s -1 ) 0.75 , 6.86 × 10 3 µ c,P B , µ c,P G 0.5, 0 We x a to roughly 7.3 and select ve systems of increasing dimensional size. The way we proceed is as follows: we set W = 0.5 m and select L = L 1 = 0.025m has the length of the smallest system. We ll the reservoir with N 1 = 98, 000 mono-disperse icosahedral particles and the resulting height is H = H 1 = 0.187 m. The 4 other systems have the following features: i ∈< 2, 5 >, L i = iL 1 , N i = i 2 N 1 , H i ≈ iH 1 . The simulation of the lling process results in the following actual height and aspect ratio of the reservoir of particles for the di ferent systems:

✲ ✛ ✻ ❄ ✒ ✠ H L W ✲ X ✻ Z ✒ Y ❅ ❅ ❅ ❅ ❅ |

Granular media

k ms 0 δ max (m) , δ max /R 7.16 × 10 -5 , 0.048 T C (s) 5.91 × 10 -5 Particle-Particle k n (N m -1 ) 1 × 10 5 e n , µ n (s -1 ) 0.75 , 6.86 × 10 3 µ c 0.5 k ms 0 δ max (m) , δ max /R 4.87 × 10 -5 , 0.0325 T C (s) 4.19 × 10 -5 ∆t (s) 2.5 × 10 -6
• Size 1: 98000 particles (H = 0.187m, L = 0.025m, a = 7.475)

• Size 2: 392000 particles (H = 0.365m, L = 0.05m, a = 7.305)

• Size 3: 882000 particles (H = 0.547m, L = 0.075m, a = 7.296)

• Size 4: 1568000 particles (H = 0.731m, L = 0.1m, a = 7.31)

• Size 5: 2450000 particles (H = 0.905m, L = 0.125m, a = 7.238)

The resulting aspect ratio a is 7.3 ± 2.3%. The observed limited deviation of 2.3 is the aftermath of systems of slightly di ferent compaction. In fact, the initial height is a result of the lling simulation and cannot be set a priori. It is only known after all particles have settled in the reservoir and the system exhibits a negligible total kinetic energy. It has been noticed that once the free fall phase of all particles is complete, the system relaxes and densi es extremely slowly over a time scale of a few seconds at least. Slow microstructural re-arrangements lead to a progressively more compact granular media in the reservoir. Actually, starting from a loose packing, the compaction of the system can be very slow, even with a successive vertical taps [START_REF] Knight | Density relaxation in a vibrated granular material[END_REF]). In terms of computational cost, this situation may lead to an extremely long simulation time since the typical time step is in the order of a micro-second. We assume that these slight variations of the initial aspect ratio a and correspondingly of the initial volume fraction and microstructure of the granular media have a very low impact on the whole granular collapse. In the worst case, it will result in similar slight variations of the nal height and the nal run-out distance.

Measuring the run-out distance in an unbiased way is not straightforward as once the collapse is complete the front of the deposit of particles is di fused (detached particles are spread out). In order to determine the total length of the nal deposit, we employ the following procedure:

• we consider the bottom layer of particles whose thickness is roughly a particle equivalent diameter d p , • we translate along the bottom wall a box-like control volume that spans the whole transverse dimension of the ow domain (V b = d p × W × d p ) from the origin of the X-axis and compute the solid volume fraction as a function of X as follows:

φ(X) = N i=1 V i V b , (5.9)
where V i = πd 3 p /6 is the particle volume and N is the number of particles whose center of mass belongs to V b .

• the total length of the nal deposit L ∞ is determined once the condition φ(L ∞ ) ≤ 0.1 is satis ed. Note that changing the critical value of the average solid volume fraction in the control volume V b from 0.1 to 0.05 or 0.025 does not change signi cantly the estimation of L ∞ .

F . 5.14 and F . 5.15 illustrate the dynamics of the granular collapse and the time evolution of the free surface in a 2D X -Z cut plane and in 3D, respectively, for case Size 4. As observed by [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF], the early transient of the collapse correspond to a free-fall regime (F . 5.14 (a)-(c)) until the ow transitions to a phase over which the advancing front of the collapsing granular media reaches a quasi-constant velocity (F . 5.14 (d)-(f)), and nally the ow is friction-dominated and slows down to rest. Interestingly, over the second phase, the front of the collapsing granular media shows a rather chaotic dynamics. Although the front advances at a quasi-constant velocity, the singularity that the front represents leads to a high level of particles agitation with many particles being ejected/detached from the mass to balistically free-y until they settle back on the deposit. As experimentally observed by many authors, our computed results con rm that the overall dynamics and in particular the nal height, run-out distance and cross-sectional pro le of the deposit are independent of the size of the system and solely controlled by the initial as- pect ratio a. We present in F . 5.16 a view from the top of the nal deposit together with the scaled total length of the deposit L ∞ /L obtained with the criterion φ ≤ 0.1 (red line) for all systems. The variation of the run-out distance (L ∞ -L)/L is quantitatively plotted in F . 5.17. It is pretty obvious that (L ∞ -L)/L is quasi-constant as a function of the size of the system. The limited variations obtained are primarily a result of the slight variations of a for the di ferent sizes in the computations. Finally, the nal scaled cross-sectional pro les of the deposit for all system sizes nicely collapse on a unique master plot, as shown in F . 5.18, emphasizing once again the dependence to a and not to the dimensional size of the system. Let us complete this subsection by shortly discussing the value of the obtained run-out distance. [START_REF] Lajeunesse | Granular slumping on a horizontal surface[END_REF] and [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] agree on the scaling exponents while [START_REF] Balmforth | Granular collapse in two dimensions[END_REF] suggests slightly di ferent values. Please note that all these works are experimental. For inertia-dominated regimes a 3, [START_REF] Lube | Collapses of two-dimensional granular columns[END_REF] even determine that the value of the constant λ 2 is around 1.9 and independent of the granular material properties and shape. Using their correlation (L ∞ -L)/L ≃ 1.9a 2/3 , we get for a ≈ 7.3, (L ∞ -L)/L = 1.9 × 7.3 2/3 ≃ 7.15, a value signi cantly less than our numerical prediction of ≈ 10.5. In their experiments, Lube et al.have lateral walls while we have periodic boundary conditions, i.e., no frictional resistance from any lateral walls. This di ference in the ow con guration qualitatively justi es that our run-out distance is larger (less frictional resistance leads to a larger spread out of the granular media) but is probably not su cient to quantitatively explain the discrepancy. Although Lube et al.have lateral walls, their channel looks rather wide, so the additional frictional ow resistance is likely to be limited. In [START_REF] Balmforth | Granular collapse in two dimensions[END_REF], Balmforth and Kerswell claim that λ 2 is a function of the granular material properties and shape, based on their own experimental results. Figure 11 in [START_REF] Balmforth | Granular collapse in two dimensions[END_REF] suggests that for a = 7.3, the run-out distance roughly spans the range [7 : 13] for wide channels, with the largest value found for ne glass. Fine glass grains seem to look moderately angular (see Figure 3 in [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]) and could presumably be well represented by icosahedra. Our computed run-out distance hence falls almost in the middle of the range of values reported in [START_REF] Balmforth | Granular collapse in two dimensions[END_REF]. Overall, our numerical prediction is in good agreement with the assorted experimental values reported in the literature. But additional simulations are required to further determine the right scaling and the potential dependence of that scaling to the granular material properties and shape.

Size Size Size Size Size 

Parallel scalability

We use the Size 5 granular column collapse ow con guration to perform weak scaling tests and further assess the parallel scalability of Grains3D. From Section 4.1, we learnt that a good parallel performance requires a minimum of ≈ 100, 000 particles per core. Therefore our reference case on a single core approximately corresponds to Size 5 case of Section 4.2 but 24 times narrower. The system on a single core comprises N p,1 = 101850 icosahedra and its width is W 1 = 0.021875m. For parallel computing, we increase the system width and the number of particles accordingly. We adopt a 1D domain decomposition in the Y direction such that each core hosts approximately 101850 particles. Hence, a N cores -core computation corresponds to a system with N T = N p,1 ×N cores particles and of width W = N cores ×W 1 as detailed in T . 5.5. The weak scaling tests are performed over the 20, 000 rst time steps of the collapse.

N F . 5.19 shows the overall scalability of our code Grains3D. The code exhibits a very satisfactory performance for a particles load per core of ≈ 100, 000 of regular polyhedra. The scaling factor S(n = N cores ) is ≈ 0.93 on 512 cores for a system with a quasi-perfect load balancing. The plot seems to indicate a very slight degradation of the performance above 256 cores but the general trend suggests that S(n) should still be 0.9 on 1024 cores for a system comprising more than 100, 000, 000 of regular polyhedra. 4.3 Coupling with a uid in an Euler/Lagrange framework, application to uidized beds

The nal test case is a uidized bed, i.e., a ow con guration in which the particles dynamics is not only driven by collisions by also by hydrodynamic interactions with the surrounding uid. The model implemented here is of the two-way Euler/Lagrange or DEM-CFD type (Anderson and Jackson (1967), [START_REF] Kawaguchi | Numerical simulation of two-dimensional uidized beds using the discrete element method (comparison between the two-and threedimensional models)[END_REF], [START_REF] Tsuji | Spontaneous structures in three-dimensional bubbling gas-uidized bed by parallel DEM-CFD coupling simulation[END_REF], [START_REF] Pepiot | Numerical analysis of the dynamics of two-and three-dimensional uidized bed reactors using an Euler-Lagrange approach[END_REF]). The principle of the formulation is to write uid porosity averaged conservation equations with an additional source representing the reaction of the particles on the uid and to add a hydrodynamic force to the translational Newton's equation for the particles representing the action of the uid on the particles. In our weak scaling tests below, we evaluate the parallel scalability of the solid solver only.

Formulation

The formulation of the set of governing equations dates from [START_REF] Anderson | Fluid mechanical description of uidized beds. equations of motion[END_REF] in the late 60s and was recently clari ed in [START_REF] Capecelatro | An Euler-Lagrange strategy for simulating particle-laden ows[END_REF]. In essence, for the uid part, the mass conservation equation and the momentum conservation equation are averaged by the local uid porosity. In most formulations, the set of governing equations is integrated in control volumes larger than the particle diameter, although recent advances in this eld have shown that it is possible to use a projection kernel disconnected from the grid size [START_REF] Pepiot | Numerical analysis of the dynamics of two-and three-dimensional uidized bed reactors using an Euler-Lagrange approach[END_REF], [START_REF] Capecelatro | An Euler-Lagrange strategy for simulating particle-laden ows[END_REF]). Particles trajectories with collisions and hydrodynamic forces are tracked individually and computed by our granular dynamics code Grains3D. The two-way Euler/Lagrange formulation has been detailed many times in the past literature (see [START_REF] Kawaguchi | Numerical simulation of two-dimensional uidized beds using the discrete element method (comparison between the two-and threedimensional models)[END_REF], [START_REF] Tsuji | Spontaneous structures in three-dimensional bubbling gas-uidized bed by parallel DEM-CFD coupling simulation[END_REF], [START_REF] Xu | Numerical simulation of the gas-solid ow in a uidized bed by combining discrete particle method with computational uid dynamics[END_REF] among many others) and we shortly summarize the main features of our own two-way Euler/Lagrange numerical model.

The uid is assumed to be Newtonian and incompressible. The set of governing equations for the uid-solid coupled problem reads as follows:

• Fluid equations

We solve the following uid porosity averaged mass and momentum conservation equations:

∂ε ∂t + ∇ • εu = 0 (5.10) ρ f ∂(εu) ∂t + ∇ • (εuu) = -∇p -F f p + 2µ∇ • (εD) (5.11)
where ρ f , µ, ε and D stand for the uid density, the uid viscosity, the uid porosity (also referred to as uid volume fraction) and the rate-of-strain tensor, respectively. The pressure gradient term only contains the hydrodynamic pressure and F f p represents the uid-particle hydrodynamic interaction force.

• Particles equations

We solve E . 5.1 and E . 5.2 with addtional hydrodynamic interaction contributions F i and M i , respectively. The translational and angular momentum conservation equations of particle i hence read as follows:

M i dU i dt = M i (1 -ρ f /ρ p )g + N -1 j=0,j =i F ij + F f p,i
(5.12)

J i dω i dt + ω i ∧ J i ω i = N -1 j=0,j =i R j ∧ F ij + M f p,i (5.13) 
where ρ p , F f p,i and M f p,i stand for the particle density, the uid-particle hydrodynamic interaction force exerted on particle i and the uid-particle hydrodynamic interaction torque exerted on particle i, respectively.

The uid-particle hydrodynamic interaction force F f p,i exerted on particle i (and similarly for the torque) derives from the momentum exchange at the particle surface:

F f p,i = ∂P i τ • n dS (5.14)
where τ denotes the point-wise uid stress tensor and n is the normal vector to the particle surface ∂P i . In the two-way Euler-Lagrange framework, point-wise variables are not resolved. A closure law is hence needed to compute the uid-solid interaction at the position of each particle [START_REF] Kawaguchi | Numerical simulation of two-dimensional uidized beds using the discrete element method (comparison between the two-and threedimensional models)[END_REF], [START_REF] Tsuji | Spontaneous structures in three-dimensional bubbling gas-uidized bed by parallel DEM-CFD coupling simulation[END_REF], [START_REF] Pepiot | Numerical analysis of the dynamics of two-and three-dimensional uidized bed reactors using an Euler-Lagrange approach[END_REF]). Following previous contributions to the literature, we assume that the dominant contribution to the hydrodynamic interaction is the drag and that the hydrodynamic torque is small enough to be neglected, i.e., we set M f p,i = 0. In our uidized bed simulations, particles are spherical and we select the drag correlation proposed by Beetstra et al. (2007a;b) which reads as follows:

F i,f p = F d,i = 3πdµ(u -U i )g(ε, Re p,i ) (5.15) g(ε, Re p ) = 10(1 -ε) ε 2 + ε 2 (1 + 1.5 √ 1 -ε) + 0.413Re p 24ε 2 ε -1 + 3ε(1 -ε) + 8.4Re -0.343 p 1 + 10 3(1-ε) Re -0.5-2(1-ε) p Re p,i = ρ f d p ε|u -U i | µ (5.16)
To compute the reaction term -F f p of the particles on the uid ow, we need to use a projection operator from the Lagrangian description of the particles motion to the Eulerian description of the uid ow. Here we use the simple embedded cube projection kernel introduced by Bernard (2014), [START_REF] Bernard | Euler/Lagrange numerical modeling of the dynamics of bubbling and spouted uidized beds[END_REF]. The uid equations are discretized with a classical second-order in space Finite Volume/Staggerred Grid discretization scheme and the solution algorithm is of the rst-order operator splitting type. The two-way Euler/Lagrange model used here is implemented in the PeliGRIFF platform to which Grains3D is plugged to compute particles trajectories, see [START_REF] Wachs | A DEM-DLM/FD method for direct numerical simulation of particulate ows: Sedimentation of polygonal isometric particles in a Newtonian uid with collisions[END_REF], Wachs et al. (2007Wachs et al. ( -2016) ) among others. For more detail about the formulation of the model and its implementation, the interested reader is referred to [START_REF] Bernard | Multi-scale approach for particulate flows[END_REF], [START_REF] Esteghamatian | Micro/meso simulation of a uidized bed in a homogeneous bubbling regime[END_REF], [START_REF] Bernard | Euler/Lagrange numerical modeling of the dynamics of bubbling and spouted uidized beds[END_REF]. The set of governing equations above can be easily made dimensionless by introducing the following scales: L c for length, V c for velocity, L c /V c for time, ρ f V 2 c for pressure and ρ f V 2 c L 2 c for forces. In a dimensionless form, the govening equations contain the following dimensionless numbers: the Reynolds number Re

c = ρ f V c L c µ , the density ratio ρ r = ρ p ρ f
and the Froude number Fr = gL c V 2 c .

Simulation set-up and parameters

We consider the uidization of mono-disperse solid spherical particles in a simple box-like reactor. We use the uniform inlet velocity U in as the characteristic velocity V c and the spherical particle diameter d p as the characteristic length L c . The Reynolds and Froude numbers hence read as follows:

Re in = ρ f U in d p µ
(5.17)

Fr in = gd p U 2 in (5.18)
Results hereafter are presented in a dimensionless form and dimensionless variables are written with a • symbol. Particles positions are initialized as a cubic array arrangement with a solid volume fraction of π/6. The computational domain is shown in F . 5.20. Inlet boundary condition corresponds to an imposed velocity u = (0, 0, 1) and outlet boundary condition corresponds to a standard free-ow condition with an imposed reference pressure. Lateral (vertical) boundaries are periodic.
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Figure 5.20 -Fluidized bed computational domain.

The principle of our weak scaling tests is similar to the one adopted in the scaling tests of the previous sections except that here the reference case is a full node that comprises 16 cores. The domain is evenly decomposed and distributed in the horizontal x -y plane to guarantee an optimal load balancing over the whole simulation, i.e., we adopt a N cores,x × N cores,y × 1 = N cores domain decomposition. The reference case on a full 16-core node has the following dimensionless size: Lx = 200, Ly = 80 and Lz = 1500 and initially hosts 200 × 80 × 300 = 4, 800, 000 of spheres. With a 4 × 4 × 1 domain decomposition, each sub-domain has the following dimensionless size 50 × 20 × 1500 and hosts initially N p,1 = 50 × 20 × 300 = 300, 000 of spheres. The total number of particles in a system is N T = 300, 000 × N cores = 4, 800, 000 × N nodes . The initial height H0 of the bed is 300, such that we also have Lz / H0 = 5. The additional physical and numerical dimensionless parameters of our simulations are listed in T . 5.6. We use the same contact parameters for particle-bottom wall and particle-particle collisions.

Another important dimensionless parameter is the ratio of the inlet velocity U in to the minimum uidization velocity of the system U mf . Here we select U in /U mf = 3 to run our weak scaling tests. To avoid a strong overshoot of the bed over the early transients, we rst set U in /U mf = 2 for t ∈ [0 : 1785] and then U in /U mf = 3 for t > 1785. The weak scaling tests are performed by increasing the length Lx of the system together with the number of particles, as shown in T . 5.7, with Ly and Lz kept unchanged. As Lx increases, the domain horizontal cross-section looks more and more like a narrow rectangle and the bed behaves like a pseudo-3D/quasi-2D bed, as transverse secondary instabilities in the y direction are arti cially strongly damped by the narrow periodic length Ly while transverse secondary instabilities in the x direction are free to develop. This con guration is purposedly selected to facilitate the visualisation of the bubbles dynamics inside the bed. As expected, the ow eld does not vary much in the y direction (see F . 5.21). Note that this does not a fect our weak scaling tests since with 4 sub-domains in the y direction and bi-periodic boundary conditions, each sub-domain has exactly 8 neighbors, regardless of the fact that the cross-section is a narrow rectangle or a square. In other words, the cartesian domain decomposition is fully 2D. The evaluation of the scaling factor is carried out over 20, 000 time-steps as U in /U mf = 3 for t > 1785. Table 5.7 -System size in the fluidized bed weak scaling tests. Each node hosts 16 cores, i.e., N cores = 16 × N nodes , and each core initially hosts N p,1 = 300, 000 of spheres, thus N T = 300, 000 × N cores = 4, 800, 000 × N nodes . F . 5.21 illustrates the early transients for U in /U mf = 2 of the simulation with 19, 200, 000 of particles over which the primary streamwise (in the z direction) instability develops, as well documented in the literature. Then a secondary transversal (horizontal in the x direction) instability triggers, grows and leads to the creation of a rst big bubble that eventually bursts. F . 5.21 shows the time evolution of the uid porosity in a x -z cut plane located at Ly /2 over the transition from U in /U mf = 2 to U in /U mf = 3. For t > 1785, the system progressively transitions to its bubbling regime. The level of intermittency decreases with time until the system reaches a pseudo-stationary bubbling regime. F . 5.22 shows a 3D snapshot of the ow eld (velocity contours in a x-z cut plane located at Ly and 3D contours of ε = 0.75) at t = 2142. The presented results are qualitatively in line with the expected behaviour of a uidized in the selected ow regime [START_REF] Pepiot | Numerical analysis of the dynamics of two-and three-dimensional uidized bed reactors using an Euler-Lagrange approach[END_REF]).

F . 5.23 shows the parallel scalability of our granular solver Grains3D in our uidized bed parallel simulations. The overall parallel e ciency of our granular solver is very satisfactory. The scaling factor S(n = N nodes ) is 0.91 for the largest system investigated, i.e., for 230, 400, 000 of particles and 48 nodes/768 cores. This very high scalability for such a high number of particles derives from less frequent collisions between particles than in a dense granular media. Although collisions are constantly happening in the system, the presence of the uid and the overall observed dynamics lead to particles often advancing over a few solid time steps without collide with another particle. We would like to emphasize that, in such a u-idized bed simulation, most of the computing time is spent in computing particles trajectories with collisions, i.e., in the granular solver. This has been shown as well in a companion paper [START_REF] Bernard | Euler/Lagrange numerical modeling of the dynamics of bubbling and spouted uidized beds[END_REF]). So overall, measuring the parallel e ciency of the granular solver only in such systems still supplies a rather reliable indication of how the whole uid-solid solver scales. Although F . 5.23 shows that the scaling factor seems to slightly degrade with increasing the number of nodes, the trend reveals that simulations with a 1 billion of particles on a few thousands of cores can be performed with a reasonably satisfactory scalability. This is indeed very encouraging. 

D P

We have suggested a simple parallel implementation of our granular solver Grains3D based on a xed cartesian domain decomposition and MPI communications between subdomains. The MPI strategy with tailored messages, non-blocking sendings and type conversion has proven to be particularly e cient when the ow con guration does not require any particular dynamic load balancing of the number of particles per core. In the three ow con gurations investigated in this work, the parallel performance of the code is deemed to be more that acceptable, and even satisfactory to very satisfactory. For systems with more than 100, 000 particles per core, the scaling factor S(n) is consistantly larger than 0.75. In case particles are non-spherical, S(n) is actually larger than 0.9 for computations on up to a few hundreds of cores.

We have also shown than the parallel performance is not only limited by the parallel overhead in terms of messages sent by and received from cores combined to copying the required information in bu fers before sending and treating the information received, but also by the competitive access to and proper management of random-access memory on a multi-core architecture. The aftermath of this known limitation is the requirement to enhance even the serial parts of the code. This reprogramming task might be tedious but should be very benecial on the long run as new architectures are likely to have more and more cores per processor and more and more processors per node. Although Grains3D went through this refactoring process, there is still room for further improvement.

In its current state, Grains3D o fers unprecedented computing capabilities. Systems with up to 100, 000, 000 of non-spherical particles can be simulated on a few hundreds of cores.

Besides, the trend shown by the scaling factor as a function of the number of cores or nodes suggests that the milestone of a billion of particles is attainable with a decent parallel performance, without uid or with uid in the framework of a two-way Euler/Lagrange coupling method. This will create incentives to examine ow con gurations that were beyond reach before and strengthen the position of numerical simulation associated to high performance computing as an indispensable tool to extend our comprehension of granular ow dynamics.

The next research directions that we will explore short-term on the purely computing side to further enhance the computing capabilities of Grains3D are the following ones:

• the developement of a dynamic load balancing algorithm to supply a good parallel performance in ow con gurations with high particle volume fraction heterogeneities and signi cant particle volume fraction time variations. We will proceed in two steps. First, we will implement an algorithm that dynamically balances the load of particles per core in one direction only and make sure this algorithm exhibits a good parallel performance. Second, we will extend this algorithm to dynamic load balancing in 3 directions. Conceptually, dynamic load balancing is not particularly complex but a parallel implementation that scales well is the true challenge,

• the intra-processor and intra-node limitation due to competitive access to memory and/or MPI latency may be partly corrected by moving to an hybrid OpenMP/MPI parallelisation instead of an all-MPI one, such as the one suggested by [START_REF] Berger | Hybrid parallelization of the LIGGGHTS open-source DEM code[END_REF],

• as the number of cores attains a few thousands, the MPI latency as well as the number of messages sent and received might start to become a serious limitation, although we have not explored yet this range of number of cores. In case this should happen, our simple though very e cient so far MPI strategy might necessitate to be upgraded too, with at least improvements in the scheduling of messages or other techniques,

• nally, although the ability to compute granular ows with non-spherical convex shape opens up fascinating perspectives to address many open questions in the dynamics of real life granular systems, this does not cover all possible particle shapes. In fact, many non-spherical particles are also non-convex. There is hence a strong incentive to devise a contact detection algorithm that can address granular media made of non-convex particles. We will examine this issue in Grains3D-Part III: extension to non-convex particles.
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R

Ce chapitre est dédié à l'aspect parallèle du code Grains3D . E fectivement, il décrit une nouvelle stratégie d'implémentation parallèle du code Grains3D . Le travail est e fectué en adoptant une approche classique de décomposition de domaine, une communication MPI (Message Passing Interface) entre sous-domaine et une implémentation utilisant un système de "géolocalisation" des particules. C'est-à-dire que les particules sont géolocalisées lorsque celles-ci se retrouvent dans le voisinage des interfaces entre sous-domaines pour optimiser ainsi les messages entre les processeurs. Le problème gestion de mémoire est aussi abordée. L'implémentation a été testée sur quelques con gurations d'écoulements granulaires tels que vidanges de silos, é fondrements de colonnes de particules et lits uidisés. Ces tests ont pu montré que le code Grains3D est capable de simuler des systèmes contenant quelques centaines de millions de particules ouvrant ainsi la voie à des simulations numériqures de systèmes de milliard de particules.

P -R S :

C F r decades most catalytic re ning and petrochemical reactions have been processed in xed bed reactors. In the downstream oil and gas industries, these reactors represent the majority of reactor plants. Particles (catalyst pellets) are randomly stacked in these reactors and reactants, such as liquid or gas ow through these packed beds in the upward direction or the downward direction. It is known that these particles are made of porous medium in which the pores hold noble active materials. Usually, particle length is in the order of few millimetres.

Traditionally, the chemical industry is always looking for optimised and economical processes. For example, long lasting e cient catalysts. It is a matter of interest to investigate at the fundamental level the physics that govern these industrial plants. Afterwards, based on these investigations engineers can improve the performances of the reactors both in terms of chemical reactions and in terms of mechanical behaviour.

Until late 90's all the studies aimed at optimising processes in xed beds were done experimentally and analytically. Later on, numerical approach has been gradually introduced in the community. Among others, [START_REF] Kuipers | Computational uid dynamics applied to chemical reaction engineering[END_REF] presented the future of numerical simulation in chemical engineering and Logtenberg and Dixon (1998) explored the use of numerical simulation to study heat transfer in xed bed reactors. They used a nite element commercial code to solve the 3D Navier-Stokes equations. The simulation consisted of an arrangement of 8 spherical particles only. Afterwards, Dixon and Nijemeisland (2001) presented Computational Fluid Dynamics as a design tool for xed bed reactors, still limited to low tubeto-particle diameter ratio (N ∈ [2; 4]). [START_REF] Romkes | CFD modelling and experimental validation of particle-to-uid mass and heat transfer in a packed bed at very low channel to particle diameter ratio[END_REF] extended this limitation to a channel-to-particle-diameter ratio N of 1 < N < 5 and compared their numerical results to experimental data. They found that their tool could predict the particle-to-uid heat transfer with an average of 15% of relative discrepancy with the experimental data. Gunjal et al. (2005) studied the uid ow through an arrangement of spherical particles to understand the interstitial heat and mass transfer. Particles were arranged periodically following a simple cubical, a 1D rhombohedral, a 3D rhombohedral, and a face-centered cubical geometries. In this framework of nding the best particle arrangement that can represents a whole industrial bed, [START_REF] Freund | Detailed simulation of transport processes in xed-beds[END_REF] presented their work applied to a structured simple cubic packing and a random packing. In addition, they highlighted the advantages of modelling approaches such as deriving reliable correlations from "numerical experiments".

In the literature, the use of Discrete Particle modelling is becoming more and more undeniable due its conceptual simplicity. This method combined with Computational Fluid Dynamics has been proven to be an e cient and powerful tool for the study of the physics behind numerous industrial processes (among others [START_REF] Van Buijtenen | Discrete particle simulation study on the in uence of the restitution coe cient on spout uidized-bed dynamics[END_REF], [START_REF] Deen | Direct Numerical Simulation of Fluid Flow and Mass Transfer in Dense Fluid-Particle Systems[END_REF], [START_REF] Sutkar | Numerical investigations of a pseudo-2d spout uidized bed with draft plates using a scaled discrete particle model[END_REF], [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF], [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF]). With the growth of computing capabilities, many research groups adopted a multi-scale strategy [START_REF] Deen | Multi-scale modeling of dispersed gas-liquid two-phase ow[END_REF], [START_REF] Van Der Hoef | Numerical simulation of dense gas-solid uidized beds: A multiscale modeling strategy[END_REF]) which targets the up-scaling of local information (at the particle scale), known as micro-scale, to the intermediate scale, known as meso-scale (usually laboratory scale) and later on to the macro-scale (industrial plant). F . 6.1 illustrates the aforementioned strategy where the micro-scale is usually resolved with Direct Numerical Simulation (DNS), called also Particle Resolved Simulation (PRS). The power of this method relies on the fact that the momentum, heat or mass transfer are fully resolved without almost any assumption (see for example the works of [START_REF] Deen | Direct Numerical Simulation of Fluid Flow and Mass Transfer in Dense Fluid-Particle Systems[END_REF], [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF]). The PRS solutions serve as a benchmark to create correlations that will be implemented in the meso-scale model (Beetstra et al. (2007a;b), [START_REF] Esteghamatian | Micro/meso simulation of a uidized bed in a homogeneous bubbling regime[END_REF]) and the macro-scale one.

Finally, coming back to xed bed numerical simulation, the DEM approach combined with the PRS method enables researchers to simulate from the lling of reactors with particles, the ow through the packed bed to the chemical reaction and heat transfers between the bed Figure 6.1 -Illustration of the up-scaling procedure. Micro: DNS approach, Meso: Euler-Lagrange approach, Macro: Euler-Euler approach. and the uid. In the PRS level, various methods have been developed during the last two decades.

B

One of the earliest method is the body-conformal mesh or boundary tted methods (among others see the works of [START_REF] Johnson | Simulation of multiple spheres falling in a liquid-lled tube[END_REF] or [START_REF] Wan | Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate ows[END_REF]). The boundary tted methods have the advantage of capturing the details of the ow dynamics around rigid bodies. Indeed this method is very powerful to capture momentum, heat and mass boundary layers around immersed objects but su fers from a weak on computational performance since a re-meshing process is needed at each time step. This method is often combined with various numerical schemes that have been suggested in the literature, the most famous ones are the Arbitrary-Lagrangian-Eulerian (ALE) formulation and the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) which is generally used in combination with a Finite Element discretization.

Arbitrary-Lagrangian-Eulerian (ALE)

The ALE is an hybrid method which combines the Lagrangian description of the grid cell where there is a "small" motion and its Eulerian description where it is almost impossible for the mesh to track the motion. In this method the boundary nodes are treated as Lagrangian and the intermediate node velocities are interpolated between the boundary node velocities. This method was initially established by [START_REF] Christie | Finite element methods for second order di ferential equations with signi cant rst derivatives[END_REF], [START_REF] Belytschko | Quasi-eulerian nite element formulation for uid-structure interaction[END_REF], [START_REF] Liu | Arbitrary lagrangian-eulerian petrovgalerkin nite elements for nonlinear continua[END_REF] for Finite Element formulation. The works of Feng et al. (1994a;b), [START_REF] Hu | Direct simulation of ows of solid-liquid mixtures[END_REF], [START_REF] Hu | Direct numerical simulations of uid-solid systems using the arbitrary Lagrangian-Eulerian technique[END_REF] are among others the rst studies to apply the method to particulate ow (Newtonian and non-Newtonian) problems. On unstructured grids (F . 6.2) they have the advantage of capturing precisely the uid-solid interface. It is well known that despite the exceptional accuracy of this method, simulations of dense particulate systems are computationally expensive. This limits their use to study a small system of particulate ows. In particular, the re-meshing step in the simulation algorithm scales poorly on parallel computers. The DSD/SST was rst introduced by [START_REF] Tezduyar | A new strategy for nite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests[END_REF] for problems related to deforming spatial domain in a Finite Element framework. In this formulation, the problem is written in its variational form over the associated space-time domain. This implies that the deformation of the spatial domain is taken into account. The space-time mesh is generated over the spacetime domain of the problem, within each time step, the interface nodes move with the interface Figure 6.2 -Arbitrary-Lagrangian-Eulerian. Credits: [START_REF] Johnson | Simulation of multiple spheres falling in a liquid-lled tube[END_REF].

(F . 6.3). Hence, during a time step, the interface nodes move with the interface. After each time step, a new distribution of mesh covers the new spatial domain when there is a motion. Details and extension of the DSD/SST can be found in [START_REF] Johnson | Simulation of multiple spheres falling in a liquid-lled tube[END_REF]1997;1999). 
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Fixed mesh methods have a non negligible advantage since they scale well on large supercomputers but with the price of low accuracy at the uid-solid interface as a local reconstruction is required.

Lattice-Boltzmann Method (LBM)

The LBM [START_REF] Ladd | Sedimentation of homogeneous suspensions of non-Brownian spheres[END_REF], [START_REF] Ladd | Lattice-Boltzmann simulations of particle-uid suspensions[END_REF], [START_REF] Feng | The immersed boundary-lattice Boltzmann method for solving uid-particles interaction problems[END_REF], [START_REF] Derksen | Direct numerical simulations of dense suspensions: wave instabilities in liquid-uidized beds[END_REF], [START_REF] Van Der Hoef | Lattice-Boltzmann simulations of low-Reynolds-number ow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF]), Hill et al. (2001b;a), [START_REF] Third | Comparison between nite volume and latticeboltzmann method simulations of gas-uidised beds: bed expansion and particle-uid interaction force[END_REF]) has proven to be successful for the numerical simulation of particle-laden ows. This method is a relatively new technique for complex uid systems. Unlike the traditional CFD methods, LBM consists in modelling the uid with ctive particles undergoing consecutive propagation and collision processes over a discrete lattice mesh (F . 6.4). In this method, the uid variables are considered as distribution functions. A "Bounce Back" method [START_REF] Ladd | Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results[END_REF], [START_REF] Ladd | Lattice-Boltzmann simulations of particle-uid suspensions[END_REF]) is often used to account for rigid particles. By means of LBM, [START_REF] Hölzer | Lattice boltzmann simulations to determine drag, lift and torque acting on non-spherical particles[END_REF] determined correlations for the forces acting on a non-spherical particles. [START_REF] Günther | Lattice boltzmann simulations of anisotropic particles at liquid interfaces[END_REF] used the LBM to simulate anisotropic ellipsoidal particles to mimic the shape of clay particles. Using LBM, [START_REF] Janoschek | Accurate lubrication corrections for spherical and nonspherical particles in discretized uid simulations[END_REF] investigated the lubrication corrections on the non-normal direction on spheroids. Hill et al. (2001a;b) also demonstrated the ability of the method to computed uid ows through porous media made of assemblies of spherical particles.

Immersed Boundary Method (IBM)

Figure 6.5 -Illustration of the IBM on a disk. The Lagrangian points are distributed on the boundary. Credits: [START_REF] Vanella | Adaptive mesh re nement for immersed boundary methods[END_REF].

IBM was primarily introduced by [START_REF] Peskin | Numerical analysis of blood ow in the heart[END_REF][START_REF] Peskin | The immersed boundary method[END_REF] for biological uid ow simulations in which the method handles very thin interfaces. In IBM the uid ow is solved on the Eulerian grid and the immersed body boundary is represented with Lagrangian points at its surface. Then approximations of the Delta distribution by smoother functions allow the interpolation between the two grids (F . 6.5). Later on the method was extended to suspension ow problems [START_REF] Peskin | Numerical analysis of blood ow in the heart[END_REF][START_REF] Peskin | The immersed boundary method[END_REF], [START_REF] Kim | Immersed boundary method for ow around an arbitrarily moving body[END_REF], [START_REF] Uhlmann | An immersed boundary method with direct forcing for the simulation of particulate ows[END_REF]). [START_REF] Zastawny | Derivation of drag and lift force and torque coe cients for non-spherical particles in ows[END_REF] utilised IBM to propose correlations for drag force, lift force and torques for four di ferent type of non-spherical particles (F . 6.6).

Distributed Lagrange Multiplier / Fictitious Domain (DLM/FD)

The Distributed Lagrange Multiplier / Fictitious Domain (DLM/FD) (F . 6.7) method initially introduced by [START_REF] Glowinski | A distributed Lagrange multiplier/ ctitious domain method for particulate ows[END_REF][START_REF] Mellmann | The transverse motion of solids in rotating cylinders-forms of motion and transition behavior[END_REF].

Unlike the IBM, the DLM/FD formulation treats the particle boundary and volume as an object under solid body motion [START_REF] Patankar | A new formulation of the distributed Lagrange multiplier/ ctitious domain method for particulate ows[END_REF], [START_REF] Yu | Viscoelastic mobility problem of a system of particles[END_REF], [START_REF] Yu | A direct-forcing ctitious domain method for particulate ows[END_REF], 2012). [START_REF] Wachs | A DEM-DLM/FD method for direct numerical simulation of particulate ows: Sedimentation of polygonal isometric particles in a Newtonian uid with collisions[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]). In fact, Lagrangian points are distributed not only on the boundary but in the volume occupied by the particle too.

Figure 6.7 -Illustration of the DLM/FD method on a disk. The Lagrangian points are distributed all other the rigid body. Credits: [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF]. [START_REF] Segers | Immersed boundary method applied to single phase ow past crossing cylinders[END_REF] used IBM to study the uid-structure interaction of single phase ow past crossing cylinders. [START_REF] Tavassoli | Direct numerical simulation of uid-particle heat transfer in xed random arrays of non-spherical particles[END_REF] carried out DNS of the heat transfer in xed random arrays of spherocylinders in order to characterize the uid-solid heat transfer coe cient.

So far, the most complex particle shapes in particulate ow in the literature using xed mesh methods can be seen in the works of [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF] and [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF]. In fact, [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF] showed the in uence of particle shape in the path instabilities of free raising or settling of angular particles (F . 6.8), whereas [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] highlighted the accuracy of the DLM/FD method on spherical and angular particles from low to high solid volume fractions and from Stokes to moderate Reynolds regimes. In [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF], PRS of packed beds of cylinders are preformed using the DLM/FD formulation. They showed the accuracy of the method on the computed pressure drop.

A M R (AMR)

The AMR method was st introduced by [START_REF] Berger | Adaptive mesh re nement for hyperbolic partial di ferential equations[END_REF] and [START_REF] Berger | Local adaptive mesh re nement for shock hydrodynamics[END_REF]. Their original work consists in creating a ne Cartesian grid which is embedded into a coarser grid. Pursuing the concept of [START_REF] Berger | Adaptive mesh re nement for hyperbolic partial di ferential equations[END_REF], [START_REF] Almgren | A conservative adaptive projection method for the variable density incompressible navier-stokes equations[END_REF] extended the method to solve the variable density incompressible Navier-Stokes equations which was later on extended to two-phase ow ( uid-uid) problems [START_REF] Sussman | An adaptive level set approach for incompressible two-phase ows[END_REF]).

The method suggests that local grid re nement should be performed when needed depending on the ow conditions at the interface and the far eld mesh remains coarse. The major advantages of the AMR lie on the fact that the subcategories of methods of xed mesh can be incorporate in it. That is to say that IBM and AMR [START_REF] Roma | An adaptive version of the immersed boundary method[END_REF], [START_REF] Vanella | Adaptive mesh re nement for immersed boundary methods[END_REF] or DLM/FD and AMR [START_REF] Van Loon | A combined ctitious domain/adaptive meshing method for uid-structure interaction in heart valves[END_REF], [START_REF] Kanarska | Mesoscale simulations of particulate ows with parallel distributed lagrange multiplier technique[END_REF]) can be combined so that when a mesh re nement is needed in the vicinity of the interface, additional Lagrangian points are added, hence locally improving the accuracy of the computed solutions (F . 6.9). However, one of the challenges of AMR is to make it scale well on supercomputers [START_REF] Kanarska | Mesoscale simulations of particulate ows with parallel distributed lagrange multiplier technique[END_REF]).

(a) Computational domain and flow around a sphere (IBM). Credits: [START_REF] Vanella | Adaptive mesh re nement for immersed boundary methods[END_REF].

(b) Flow through a cubic array of spheres (DLM/FD). Credits: [START_REF] Kanarska | Mesoscale simulations of particulate ows with parallel distributed lagrange multiplier technique[END_REF]. 

C

According to the purpose of the second part of this thesis, i.e. the modelling of uid ow through packed beds of particles, the well suited numerical technique is the boundary tted method. Indeed, it o fers the best accuracy among the three aforementioned methods especially for particles of complex shape. After this method would come the adaptive mesh renement combined either with the DLM/FD formulation or the IB formulation. Then the DLM/FD or the IB method would be the last one to achieve the goal of this study. Having said that, the method we plan to develop must also be applicable to freely-moving particles. This hence disquali es the use of a boundary tted method, due to the aforementioned low computing performance related to constant re-meshing needs. For the same reason, a combined AMR-DLM/FD approach would require the AMR part to be dynamic. As far as we know, this has never been done yet in the literature. Finally, our granular solver Grains3D is already fully coupled with an Eulerian Navier-Stokes solver by means of a DLM/FD method combined with a Finite Volume Staggered Grid scheme and a second order interpolation operator to impose the rigid body motion constraint at the particle boundary based on Finite

Element cubic quadratic basis functions. This constitutes the PRS model of the PeliGRIFF platform. It has proven to supply computed solutions of satisfactory accuracy for spherical and non-spherical convex bodies. It is hence sensible to build up on the existing tools and to extend the DLM/FD method in PeliGRIFF to non-convex particle shapes. As seen in the previous part of this thesis, Grains3D possesses now the capability to handle non-convex particles enhances and justi es the use of PeliGRIFF to resolve the intricate ow dynamics through xed bed reactors made of non-convex particles.

R

Ce chapitre propose une revue de la littérature sur la modélisation des écoulements uideparticules en utilisant la méthode de résolution directe. En e fet, depuis quelques décennies ces écoulements sont souvent modélisés avec des particules sphériques. Grâce à l'avènement du calcul haute performance, les chercheurs proposent des modèles avec des particules non sphériques. Pour celà, plusieurs méthodes sont rentrées dans la communauté telles que les méthodes à maillage adaptatif qui suivent les déplacements des particules de façon lagrangienne parmis lesquelles la célèbre "Arbitrary Lagrangian Eulerian" (ALE) ou encore la"Deforming-Spatial-Domain/Stabilized Space-Time" (DSD/SST). Les méthodes à maillage xe sont aussi très courant grâce au fait qu'elles éliminent le remaillage des particules engendrant ainsi un gain précieux du temps de calcul; parmis lequelles on trouve la méthode "Immersed Boundary" (IBM) ou la méthode "Distributed Lagrange Multiplier/Fictitious Domain (DLM-FD)" ou la méthode "Lattice Boltzmann". Les deux dernières décennies ont vu naître la méthode "Adaptive Mesh Re nement".

Cette revue de littérature a conduit à conclure que la méthode "Distributed Lagrange Multiplier/Fictitious Domain (DLM-FD)" est compatible aux problémes qui font l'objet de cette thèse car elle est déjà existante sur la plateforme PeliGRIFF -Grains3D moyennant une certaine adaptation tout en béné ciant ainsi de nouvelle extension du code Grains3D . A part of this chapter has been written as a rst draft of manuscript that I intend to submit with my co-authors for publication in Chemical Engineering Science. The provisional title of the manuscript is:

N -P GRIFF

Particle Resolved Simulation of packed beds of trilobal/quadrilobal particles using a Finite Volume/Staggered Grid Distributed Lagrange Multiplier/Fictitious Domain formulation.

In this chapter we present the implementation of the numerical method to compute the ow around poly-lobed particles. Then we assess the space convergence studies of the computed solutions on assorted ow con gurations and ow regimes. Finally we compute the pressure drop through packed beds of poly-lobed particles to study the e fect of shape on the hydrodynamics.

A

I regularly shaped particles are ubiquitous in many di ferent real-life systems. For instance, in the downstream oil and gas industries, trilobal and quadralobal shaped particles are used in many chemical reactors for process purposes. Unfortunately, most of corresponding numerical simulations are carried out using idealized spherical particles, spheroids, cubes, or tetrahedron. Very often, the weakness relies on the modelling of the collisional behaviour either to create the packed bed of particles for ows through a xed bed or to compute particle/particle collisions for freely-moving particles in a uidized bed. In Chapter 3, we suggested a numerical technique implemented in our granular dynamics code Grains3D [START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF]) to treat the collisional behaviour of particles of (almost) arbitrary shape even non-convex one. In [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF] have shown the successful implementation of our Distributed Lagrange Multiplier/Fictitious Domain method with a Finite Volume/Staggered Grid discretization scheme for polyhedral particles in the fully parallel numerical platform PeliGRIFF [START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]) for multiphase ow simulations. [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] have shown that the method supplies solutions of satisfactory accuracy which puts us in a favourable position to suggest a similar Discrete Element Method -Particle-Resolved Simulation (DEM-PRS) approach. The aim of this study is to go one step further and to extend our numerical method to non-convex particles. Trilobal and quadralobal particles are chosen to illustrate the novel capabilities of Peli-GIRFF. We keep our 2 nd order interpolation operator for velocity reconstruction at the particle boundary and the solutions are computed without any hydrodynamic radius calibration. First, we assess the space convergence and overall accuracy of the computed solutions. Then, we show the shape e fects on pressure drop through packed beds of trilobes and quadralobes with an uncertainty quanti cation for the e fects of random packings encountered in these applications.

I

Flow through porous media made of assemblies of xed particles is encountered in nature and in many industrial plants especially in the process industry, especially in the process industry. Many studies (analytical or numerical) were carried out for applications as e.g. chemical reactors, biomass converters and catalytic exhaust pipes. From numerical point of view, Direct Numerical Simulation tools referred to as Particle Resolved Simulation (PRS) appear to be a good candidate to solve the intricate momentum transfer between solid and uid phases. In fact, numerous methods exist in the literature to simulate the ow dynamics around immersed objects.

This work is entirely focused on the use of a DLM/FD xed mesh method combined with a FV/SG dicretisation scheme and its application to complex particle geometry. The improvement of the DLM/FD method suggested in [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] does not require the use of any hydrodynamic radius calibration and is hence well suited to particles of arbitrary shape. In fact, the goal of this work is two-fold: (i) to examine again the accuracy of the method when it is extended to non-convex particle shapes. For that purpose, space convergence of computed solutions is assessed on assorted ow con gurations and ow regimes, i.e. the ow through innite arrays of trilobal/quadralobic particles of various orientation and volume fraction. Then the accuracy of the method is investigated in ows through a packed bed made of the same type of particles in Stokes regime and nite Reynolds number regime; (ii) to use the method to predict the pressure drop through packed bed reactors in order to discriminate new shapes of catalyst particle. For decades processes in the chemical industries always relied on analytical and experimental works which often exhibit excessive costs. Therefore, it is of great interest to develop numerical tools to estimate the packing voidage and the pressure drop through the bed so that discrimination of new particle shapes can be carried out before prototyping and building expensive pilot units. Indeed the aforementioned PRS method combined with a Discrete Element Method granular solver can give an insight in local variables of the ow at the particle level and can be used as a tool to provide guidelines for up-scaling procedures to laboratory scale pilot plant and latter on to industrial pilot.

2 A DLM/FD PRS - [START_REF] Glowinski | A distributed Lagrange multiplier/ ctitious domain method for particulate ows[END_REF][START_REF] Mellmann | The transverse motion of solids in rotating cylinders-forms of motion and transition behavior[END_REF] were the rst to introduce the concept of DLM/FD to the community of particulate ow modelling. It was originally combined with a Finite Element Method and latter on extend to Finite Volume method [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF]). The principle of the DLM/FD formulation consists in enforcing the rigid body motion on the particle domain within an Eulerian xed-grid as a constraint. Solid objects are de ned by using Lagrangian points over both their volume and their surface. In many works, authors point out the use of hydrodynamic radius calibration in order to correct the computed drag force on a xed spherical particle in creeping ow regime and low solid volume fraction φ. Then the calibration is used for any ow regime and any solid volume fraction. [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] pointed out that the hydrodynamic radius calibration becomes questionable when it comes to deal with non-spherical shapes. Despite the work of [START_REF] Breugem | A second-order accurate immersed boundary method for fully resolved simulations of particle-laden ows[END_REF] that suggested a presumably optimal hydrodynamic radius for cubic particles, it is totally unclear how to determine a hydrodynamically calibrated radius for any non-spherical particle. It seems to us that for non-convex particle the concept of hydrodynamic radius calibration is almost meaningless. Therefore, correct and accurate methods without resorting to using any sort of geometric calibration should be selected to model the uid-solid interaction. For instance, in [START_REF] Deen | Direct numerical simulation of ow and heat transfer in dense uid-particle systems[END_REF] and [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF], the authors presented satisfactory method, respectively IBM and DLM/FD, without any such geometric calibration. The assets of the enhanced IB and DLM/FD methods suggested in these two works rely only on an accurate velocity reconstruction at the particle boundary and a distribution of Collocation Points (CP) on the solid domain compatible with the formulation of the problem and the discretization scheme adopted.

For spherical particles, it is well known [START_REF] Uhlmann | An immersed boundary method with direct forcing for the simulation of particulate ows[END_REF], [START_REF] Feng | Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate ows[END_REF], [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF]) in the community that the best way to distribute these CP on the particle surface is to perform a dynamic simulation of a system in which CPs are considered as charged particles. Then, the nal state of the system corresponds to homogeneously distributed charged particles with minimum repulsion energy. Despite the accuracy of this method, the time scale of this type of simulation is very large and the method cannot be extended to nonspherical shape. There is hence a technical issue in distributing CPs as homogeneously as possible on the surface of a non-spherical particle while keeping the remarkable geometric features (edges, corners) of the shape at the discrete level. This is not an easy task and we will present a construction method for trilobes and quadralobes in this work. Recently, some studies other than those of our group extended the use of PRS methods to non-spherical particles but mostly for generalized ellipsoids/rounded particles [START_REF] Zastawny | Derivation of drag and lift force and torque coe cients for non-spherical particles in ows[END_REF], [START_REF] Tavassoli | Direct numerical simulation of uid-particle heat transfer in xed random arrays of non-spherical particles[END_REF]).

N

In line with the work of [START_REF] Wachs | A DEM-DLM/FD method for direct numerical simulation of particulate ows: Sedimentation of polygonal isometric particles in a Newtonian uid with collisions[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF]), Wachs et al. (2015)), our numerical is based on the classical Distributed Lagrange Multiplier/Fictitious Domain method in which the Lagrange multiplier is implicitly computed to enforce the rigid body motion, combined with a FV/SG scheme and a L2-projection algorithm for the solution of the Navier-Stokes equations. The method is coupled with a granular solver to solve the particle-particle collisions. Hence, the granular solver is employed to ll the reactor and create the pack of particles while the ow solver computes the uid ow through the packed bed of particles. In the rest of this chapter, we shortly remind the reader the formulation of both numerical methods and elaborate on their extension to poly-lobed particles. The collisional model for non-convex particles is based on the decomposition of the composite particle into a set of convex particles. The reader is referred to Chapter 3 for more details of the collision model for non-convex rigid bodies.

Introduction to PeliGRIFF

PeliGRIFF (Parallel E cient Library for GRains in Fluid Flow) (Wachs et al. (2007(Wachs et al. ( -2016))) is an object oriented code implemented in C++ for multi-core architecture. The discrete phase is handled by Grains3D . The open source library PELICANS is the kernel of PeliGRIFF which is used of PDE solvers. PeliGRIFF relies on di ferent libraries for linear algebra such as PETSc (Portable, Extensible Toolkit for Scienti c Computation), BLAS (Basic Linear Algebra Subprograms), LAPACK (Linear Algebra PACKage) and HYPRE BoomerAMG for preconditioners. The code can simulate uid-solid, using a DLM/FD approach, and uid-uid, using a Level-Set approach, two-phase ows. In addition, new extensions of PeliGRIFF enable simulations of heat and mass transfers between phases.

Governing equations for the uid ow solver

We shortly recall the general DLM/FD formulation for freely-moving particles.Then we present the rst-order operator splitting solution algorithm in the particular case of xed particles. Finally, we elaborate on our CP construction strategy for the case of poly-lobed particles.

Let Ω de nes a domain of R d , d ∈< 2, 3 >, ∂Ω its boundary. Then let be N P the number of rigid bodies P i (t) (i ∈ [1, N P ])that Ω is lled with. For the sack of simplicity, N P is considered to be equal to 1. Dirichlet boundary conditions are set on ∂Ω for the uid velocity eld. In the rest of the chapter, the "star" symbol denotes any dimensional quantity.

Dimensionless variables are de ned using the set of the following variables: L * c for length, U * c for velocity, T c = L * c /U * c for the convective time scale, ρ * f U * 2 c for pressure and ρ * f U * 2 c /L c for rigid-body motion Lagrange multiplier, ρ * f denotes the uid density. The combined conservation equations that govern both the uid and solid motion is written as follows:

1. Combined momentum equations

∂u ∂t + u • ∇u = -∇p + 1 Re c ∇ 2 u -λ over Ω (7.1) (ρ r -1)V P dU dt -Fr g * g * - j (F c ) j - P (t)
λdx = 0, over P (t) (7.2)

I P dω dt + ω × I P • ω + j (F c ) j × R j + P (t)
(λ × r) • dx = 0, over P (t), The following dimensionless numbers are introduced in the above equations: 

Reynolds number Re c = ρ * f U * c L * c η * , ( 7 

Time discretization scheme

The set of conservation equations is solved by a rst-order operator splitting algorithm. Diffusion and advection terms are treated by a Crank-Nicholson and a Adams-Bashford scheme. Further details on the method and algorithm can be found in [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] and [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF]. In this study, since particles are xed, our operator-splitting algorithm is comprises in two stages, written in a dimensionless form as follows:

1. A classical L2-projection scheme for the solution of the Navier-Stokes problem: nd u n+1/2 and p n+1 such that

ũ -u n ∆t - 1 2Re c ∇ 2 u n+1/2 = -∇p n+1 + 1 2Re c ∇ 2 u n , - 1 2 3u n • ∇u n -u n-1 • ∇u n-1 -γλ n ,
(7.9) (7.11) 2. A ctitious domain problem: nd u n+1 and λ n+1 such that u n+1u n+1/2 ∆t + λ n+1 = γλ n , (7.12)

∇ 2 ψ = 1 ∆t ∇ • ũ , ∂ψ ∂n = 0 on ∂Ω, (7.10) u n+1/2 = ũ -∆t∇ψ, p n+1 = p n + ψ - ∆t 2Re c ∇ 2 ψ.
u n+1 = 0 in P (t). (7.13)
where u, p, λ, ψ and ∆t denote the dimensionless uid velocity, uid pressure, DLM/FD Lagrange Multiplier to relax the constraint in E . 7.13, pseudo-pressure eld and time step respectively. The term γ ∈ [0 : 1] is a constant that sets the level of explicit direct forcing in the velocity prediction step. It has been shown that γ = 1 signi cantly improves the coupling between sub-problems (1) and ( 2) and allows the use of larger time steps ∆t. In practice, all computations are performed with γ = 1 (see [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] for more details).

Colocation Points on non-convex particles

As explained in [START_REF] Wachs | A DEM-DLM/FD method for direct numerical simulation of particulate ows: Sedimentation of polygonal isometric particles in a Newtonian uid with collisions[END_REF][START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF], the set of CP comprises a set of interior points distributed in the solid volume using staggered uid velocity nodes and a subset of boundary points distributed as uniformly as possible on the solid surface. An illustration on a 2D circular cylinder is shown in F . 7.2. In [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF], two types of interpolation operator are considered (F . 7.2): a classical multi-linear operator [START_REF] Hö | Navier-Stokes simulation with constraint forces: Finite-di ference method for particle-laden ows and complex geometries[END_REF]) and a quadratic operator that uses the basis functions of a cubic Q2 nite element (9-point in 2D and 27-point in 3D stencil). The di culty arises when the particle shape is not isotropic. Far from being understood, the repartition of CP on non-convex body is not straightforward. Even the simple case of spherical particle is still subjected to discussion in the literature. Therefore, a particular care is dedicated to equally distribute the CP in the best manner possible.

As the construction of a non-convex shape is based on decomposing it into convex shapes, the construction of the CP is performed as follows:

• trilobal particle is made of three cylinders with a triangular prism which lls the central gap forming the connection between the three cylinders (F . 7.3a). The same procedure is applied to quadralobal particle but instead of a triangular prism, a rectangular parallelepiped is used (F . 7.3b). • the sets of interior CPs of all the components of the "composite" are merged by ensuring that they are neither overlapping. • the set of boundary points is distributed as follows:

-for the cylinders, the CPs are distributed in slices along the cylinder revolution axis with a constant distance. Let z be the revolution axis of the cylinder and k ∈ R On each face, the points are located at the nodes of a constant spacing ratio l a lattice made of squares for the rectangular faces and equilateral triangles for the triangular faces (F . 7.4).

-the boundary CPs are merged in the following manner: (i) the BP located in another convex component is discarded; (ii) the CPs on the edges of the components are kept to perfectly describe their shapes; (iii) the boundary CPs on the top and bottom disks of all the cylinders are kept except those on their edges which are on the cross-section of the polyhedron; (iv) the last empty area on the top and the bottom of the shape is lled by the CPs of the polyhedron and we ensure that the CPs are not too close. The resulting geometries are illustrated in F . 7.5

A

Methodology

A space convergence study is now presented in the aim of knowing the accuracy as a function of the mesh size and minimizing the computing resources. Literature on the accuracy of solutions computed with a DLM/FD methods exists for spheres [START_REF] Kanarska | Mesoscale simulations of particulate ows with parallel distributed lagrange multiplier technique[END_REF]) and cylinders [START_REF] Dorai | Multi-scale simulation of reactive ow through a xed bed of catalyst particles[END_REF]2015)). Intuitively, the space resolution for poly-lobed particles is expected to be even more demanding. Due to the lack of analytical solution, the space convergence study is based on the approach proposed by [START_REF] Richardson | The approximate arithmetical solution by nite di ferences of physical problems involving di ferential equations, with an application to the stresses in a masonry dam[END_REF] which consists in (i) estimating the reference solution by extrapolating the numerical solutions to zero mesh size and (ii) evaluating the accuracy of the computed solutions against the reference. The extrapolation reads:

Λ = Λ(h) + Kh β + O(h β+1 ), with h = N -1 p (7.14)
where N p , K and β denote respectively the number of CP on the circumscribed cylinder diameter d * , pre-factor of the relative error and convergence rate. From the equation E . 7.14, Λ ref = Λ(0) gives the exact extrapolated solution. Hence, the convergence is evaluated in terms of relative error e of the physical quantity Λ as follows:

e(Λ) = |Λ -Λ ref | |Λ ref | (7.15)
Here, the new shapes of particle are subjected to assorted ow regimes and ow con gurations such as: (i) ows through an in nite structured array of poly-lobed particles at low Reynolds number (Re c = 0.01) , (ii) ows through a packed bed of poly-lobed particles at low and moderate Reynolds numbers (Re c = 0.01 and Re c = 16).

Flow past a single poly-lobed particle in a tri-periodic domain

The rst attempt to assess the accuracy of the presented extension of the DLM/FD formulation has been inspired by the work of [START_REF] Zick | Stokes ow through periodic arrays of spheres[END_REF]. The test consists in computing the friction coe cient for a single particle in a tri-periodic domain, in other words the ow through an in nite of particles. The friction coe cient is computed as the pressure drop based on the diameter of the equivalent sphere of same volume. The relationship between the mean velocity u * , the imposed pressure drop ∆p * and the friction coe cient K for an innite structured simple array of poly-lobed particles, modelled as a single particle centered in a tri-periodic domain, reads:

∆p * l * s = 9 2 η * a * 2 φKu * (7.16)
where l * s , a * , η * , φ denote respectively the streamwise domain length, equivalent sphere radius, uid viscosity and the solid volume fraction de ned as φ = 1 -ε in which ε stands for the void fraction. Unlike spherical particles, there is an in nite way to orientate an elongated poly-lobed particle due to the anisotropy of its shape. In addition to the Reynolds number Re and the solid volume fraction φ, the Euler angles (ϕ, θ, ψ) and the aspect ratio a r should be included in the study.

In general, the packed particles are arranged in a random way which enables the uid to ow in a random interstitial pore shape and size. Depending on the latter the preferential streamwise directions are established, whereas in this test case the streamwise direction is only imposed by the geometry of the periodic domain. For the sake of simplicity and to cover a large range of all the parameters, two aspect ratios are chosen (a r = 1 and a r = 5), φ is varying from loose to dense packing and three sets of Euler angles are considered for the particle orientation (relative to the streamwise direction):

• parallel to the particle axis (ϕ = 0 • , θ = 0 • , ψ = 0 • ) denoted with the symbol " " (F . 7.6a), • perpendicular to the particle axis (ϕ = 90 • , θ = 0 • , ψ = 0 • ) denoted with the symbol "⊥" (F . 7.6b), • a rotation of 20 • about all the axis (ϕ = 20 • , θ = 20 • , ψ = 20 • ) denoted with the symbol "20" for moderate φ (F . 7.6c). In the following, for Stokes regimes, a di fusive time scale is de ned as T d = ρ f d * 2 /η * and the Reynolds number Re c is de ned by using the following terms: L * c = d * for the characteristic length scale and U * c = u * in for the characteristic velocity. d * and u * in stand for the diameter of the circumscribed cylinder and the inlet uid velocity respectively. Hence, the Reynolds number reads: First, we assess the accuracy of our method with particles of an aspect ratio a r = 1. The computed solutions obtained from various φ are plotted on F . 7.8. Simulations are carried out for Re c = 0.01 and ∆t/T d = 10 -2 . The trilobal particle seems to have nicer convergence than the quadralobic one. As expected, for high φ, the error e is much higher for the same N p i.e. a higher resolution is needed for dense particulate systems.

Re c = ρ * f u * in d * η * (7.17
Since the space convergence study on a r = 1 shows satisfying results, we now move on to the space convergence for a r = 5. Again, the study is still performed from loose to dense packing. Due to the domain size and shape restriction, the particles are only oriented perpendicularly and collinearly to the ow direction (the "⊥" and the " " con gurations). For the perpendicular con guration, a very high φ means that the uid is not owing any more because the orthographic projection of the particle is equal to that of the domain which is somehow "blocking" the uid to ow properly. For the parallel con guration, the particle orthographic projection is the area with the lobes which enable the uid to ow in the concavity of the particle even with high solid volume fraction. F . 7.7 plots the space convergence of the computed solutions. It can be observed that for φ = 0.59 (dense packing) the solutions exhibits higher relative error compared to the other systems. The previous numerical study can be summarized as follows:

• the most challenging cases are (i) when the particle axis is perpendicular to the main ow direction due to the lobe induced recirculation; (ii) when the particle axis is parallel to the main ow direction due to its at orthogonal face which creates singularities all over the edge, • all the simulations exhibit an average convergence rate of N -1.3 p which is in line with the work of [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF] for spherical and polyhedral particles (see also the work of D'Avino and Hulsen (2010)),

• as expected, compared to low φ, simulations at high solid volume fraction require a higher N p for the same accuracy. For comparison purposes, we performed the simulations of ow past three di ferent shapes (TL, QL, CYL) to have a rst glance on the dependency of their friction coe cient on the solid volume fraction. The studied cases consist in comparing 3 elongated particles of the same volume and the same particle length L * p . It worth to remind that at the same volume a cylinder does not circumscribe neither the trilobe nor the quadralobe. In terms of particle orientations, two con gurations are selected: particle axis perpendicular and parallel to the streamwise direction. N p = 45 for a relative error e 5% and Re c = 0.01. T . 7.1 summarises the di ferences between the three shapes. F . 7.11 depicts the results of our comparison. In F . 7.11a, it can be observed that when the particle axis is perpendicular to the ow the friction coe cient K(φ) is similar for φ 0.34. The di ference is only noticed at high φ. In fact, in this con guration, the projected crosssectional areas (F . 7.9) of the particles are di ferent in the following order:

S ⊥ T L > S ⊥ CY L > S ⊥
QL . This leads to the following classi cation of friction coe cients: F . 7.11b, illustrates the computed friction coe cient K(φ) corresponding to a ow parallel to the particle axis. The orthogonal cross-sectional areas of the particles are classi ed in the following order: S CY L < S T L < S QL (F . 7.10). Therefore, the resulting friction coe cients are classi ed as follows:

K ⊥ T L > K ⊥ CY L > K ⊥ QL . ( 
K CY L < K T L < K QL .
The results presented in F . 7.11 show that the computed solutions depend drastically on the particle orientation, hence the projected cross-sectional area. At low concentration, there is no clear distinction between the shapes.

Based on these results, we would like to examine the accuracy of the solution computed by our numerical model in the case of the ow through a packed bed. In fact, a packed bed is representative of the real operating conditions regarding volume fraction, the position and orientation of particles. 

Flow past a small packed bed of poly-lobed particles

For decades, predicting the ow through a packed bed of particles has been an interesting and challenging subject in the chemical engineering community. One of the major challenges is the e fect of particle shape in these systems, where the bed porosity and pressure drop are very important for industrial operations. The second step of the space convergence study is performed on a small size bed of packed particles (a r = 2). This case is more representative of xed beds than the periodic array of a single particle as particles present random orientations forming a porous medium in which the uid ow is more complex. Rules have been suggested in previous related works regarding the number of CP needed to discretize a particle and guarantee a computed solution of satisfactory accuracy. However the straightforward extrapolation from ow in beds of cylinders [START_REF] Dorai | Multi-scale simulation of reactive ow through a xed bed of catalyst particles[END_REF]2015)) and polyhedra [START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF]) to beds of poly-lobed particles is rather questionable and might not be accurate enough. In fact, the lobes create additional complexity.

In this case, 40 trilobal particles (a r = 2) are stacked in a bi-periodic domain of 5×5×10 (Lx × Ly × Lz) (F . 7.12a). The corresponding solid volume fraction is φ ≃ 0.55. The particles are located at z = 3 away from the inlet and the outlet of the system. The boundary conditions are set as follows:

• periodic boundary conditions in the horizontal direction Results are obtained in this con guration are promising: from N p = 16 the error is less than 2% in Stokes regime, whereas N p = 65 is required for the same accuracy for Re = 16. In [START_REF] Dorai | Multi-scale simulation of reactive ow through a xed bed of catalyst particles[END_REF], the authors pointed out that computing a uid ow through a packed bed cylinders requires 50% ner mesh than that of spherical particles. Compared to a cylinder [START_REF] Dorai | Multi-scale simulation of reactive ow through a xed bed of catalyst particles[END_REF]), a trilobal and quadralobic need 50% ner mesh to achieve the equivalent accuracy.

P -

Results presented in the previous section deemed to be satisfactory enough to perform numerical simulations to predict the pressure drop through packed beds of poly-lobed particles. The objective of this section is to compute this pressure drop with trilobal and quadralobal particles based on PRS, investigate shape e fects, assess uncertainty quanti cation and derive predictive correlations based on the Ergun's formulation [START_REF] Ergun | Fluid ow through packed columns[END_REF]).

A quick review of single phase pressure drop in xed beds

The theory of [START_REF] Kozeny | Über kapillare Leitung des Wassers im Boden:(Aufstieg, Versickerung und Anwendung auf die Bewässerung[END_REF] describes a porous media as a collection of small channels in which a uid is owing in laminar regime. It reads:

∆p * H * = 72 η * (1 -ε) 2 u * in ε 3 d * s 2 (7.18)
From a physical view point, this formula proposes that the equivalent channel diameter is proportional to the sphere diameter d * s regardless of the local structure through:

εd * s (1 -ε) (7.19)
To account for tortuosity that are present in a porous media, [START_REF] Blake | The resistance of packing to uid ow[END_REF] corrected the coe cient 72 to 150 which led to the Blake-Kozeny equation for ε < 0.5 and Re c < 10:

∆p * H * = 150 η * (1 -ε) 2 u * in ε 3 d * s 2
(7.20) [START_REF] Carman | Fluid ow through granular beds[END_REF] proposed = 180 as a correction in Stokes ow regimes (Re c ∼ 0) in packed beds of spheres, which is more accurate than Blake's coe cient in these conditions. The equation reads:

∆p * H * = 180 η * (1 -ε) 2 u * in ε 3 d * s 2 (7.21)
For high Reynolds number regimes, [START_REF] Burke | Gas ow through packed columns1[END_REF] considered that the pressure drop through a packed bed can be computed as an inertia term. They proposed the following equation for Re c > 1000:

∆p * H * = 1.75 ρ * f (1 -ε)u * in 2 ε 3 d * s (7.22)
which is known as the Burke-Plummer equation. In this formulation the characteristic size of the channel is the same as the one proposed by Kozeny.

Combining the previous theories, [START_REF] Ergun | Fluid ow through randomly packed columns and uidized beds[END_REF] mentioned that the pressure drop through a packed bed is directly function of ε and the constants α and β which depend on the ow regime and proposed the following correlation [START_REF] Ergun | Fluid ow through packed columns[END_REF]): The formulation in F . 7.13 has been proved to be accurate and is widely used in the chemical engineering industry. The pressure drop in E . 7.23 is the combination of a frictional viscous term proportional to the velocity and a quadratic term on the uid velocity that takes into account the ow direction and change in cross-sections [START_REF] Larachi | X-ray micro-tomography and pore network modeling of single-phase xed-bed reactors[END_REF]). [START_REF] Ergun | Fluid ow through packed columns[END_REF] proposed the constants α = 150 and β = 1.75 to describe the pressure drop through packed beds of spheres, cylinders and crushed particles. For packed beds of complex shapes, a de nition of an universal correlation appears to be an endeavour. Many studies reveal a noticeable variation on these coe cients. For instance, [START_REF] Macdonald | A generalized blake-kozeny equation for multisized spherical particles[END_REF] suggested that α = 180 and β = 1.8 as universal constants which are over estimate the Ergun's coe cients by more than 16%. It appears that any new experimental data yields a new proposition a set of coe cients. The explanations of the di ferences between these works are still a subject of discussion between many authors. Among others, it was measured on cylinders by [START_REF] Macdonald | A generalized blake-kozeny equation for multisized spherical particles[END_REF] that the value of β is dependent on the particle roughness: β = 1.8 corresponds to smooth particles, whereas β = 4 corresponds to the roughest particles.

∆p * H * = α η * (1 -ε) 2 u * in ε 3 d * s 2 + β ρ * f (1 -ε)u * in 2 ε 3 d * s ( 7 
Later on, many authors improved the correlation, among others [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF], to account for shape e fects. The coe cients α and β are then modi ed to include the shape e fects. An equivalent particle diameter for non-spherical particles has to be introduced and reads: [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF]. [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF] summarise the works of [START_REF] Pahl | Über die Kennzeichnung diskret disperser Systeme und die systematische Variation der Einflußgrößen zur Ermittlung eines allgemeingültigeren Widerstandsgesetzes der Porenströmung[END_REF], [START_REF] Reichelt | Zur berechnung des druckverlustes einphasig durchströmter kugel-und zylinderschüttungen[END_REF], England and Gunn (1970) in which α varies between 180 -280 and β between 1.9 -4.6 for cylindrical particles of aspect ratio ranging from 0.37 to 5.77. They measured the pressure drop for a large number of inlet velocities for one trilobal and one quadralobal shape. Each experiment was repeated twice (on a repacked bed), yielding only 4 additional data points (T . 7.2). It is interesting to note that the proposed correlation would systematically under or over predict the experimental data points. In summary, the available data for poly-lobed particles is scarce (only 2 points for TL and QL), with a large scatter.

d * p = 6V * p A * p ( 7 
For non-spherical particles, [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF] extended the correlation by introducing the sphericity Ψ: As matter of fact, the suggested correlation agrees fairly well with the numerical results of [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF] for which the present study is a continuation. The work agrees well with the experimental data of [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF] for cylindrical particles. Other formulations have been proposed that take into account various shapes. Nevertheless, there is so far no universal method to precisely predict the Ergun's equation coe cients based only on particle shape.

Ψ = 36πV * p 2 A * p 3 1 3 (7.25) ∆p * H * = α(Ψ) η * (1 -ε) 2 u * in ε 3 d * p 2 + β(Ψ) ρ * f (1 -ε)u * in 2 ε 3 d * p (7.26) α(Ψ) = 150 Ψ a ( 
From the experimental point of view, the data on poly-lobed particles is scarce and quite dispersed. The reason of this scattering is still a matter of discussion (see for example [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF]). Recently, PRS on cylinder [START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF]) opened up new perspectives in "in silico" determination of the pressure drop for any particle shape, for example TL and QL. The goal of this part of this study is to suggest a correlation based on the Ergun formulation and propose coe cients α and β for trilobal and quadralobic particles.

Method

As it can be seen in Chapter 3 that Grains3D is used as a porous media maker. The single phase uid owing through the packed bed is computed with PeliGRIFF using PRS. All the simulations are performed in a Lx * = Ly * = 8 mm wide bi-periodic container using a circumscribed diameter d * = 1.6 mm. Packed beds consist of 210 to 320 particles. The investigation is carried out with packings of TL and QL with a range of aspect ratio de ne as a r = 1.5, 2, 2.5, 3, 4. Boundary conditions are similar to the previous convergence study on packed beds. The particles are stacked at 2.5d * away from the top and 2.5d * from the bottom of the domain.

The local void fraction < ε > z is the volumetric average of void fraction on a layer of the bed of thickness Dz (F . 7.14b). The average void fraction < ε > is the average of all < ε > z inside the control volume. < ε > z is used to plot axial pro les of void fraction and obviously depends on the value of Dz. It is computed by discretizing the volume occupied by the particles. The pressure < p > z is the average pressure on a plane located at height z. The averaging procedures are written as follows:

< ε > z = i δ(x, y, z)v i,z i v i,z (7.29) where δ(x, y, z) =    1, if X(x, y, z) ∈ Ω p 0, otherwise (7.30) < p > z = i p i (x, y, z) i v i,z (7.31)
ε, p i , v i,z denote respectively the uid volume fraction, the pressure and the control volume of the system at the coordinate z.

The pressure drop is the di ference between the pressure at planes located at z = 3 from the top of the packed bed and z = 2 from its bottom [START_REF] Dorai | Packing xed bed reactors with cylinders: in uence of particle length distribution[END_REF][START_REF] Bernard | Multi-scale approach for particulate flows[END_REF]2015)). In other words, a layer of 3 particle diameters thick is discarded at the top of the bed, whereas a layer of 2 particle diameters thick is discarded at the bottom. The void fraction and the pressure di ference are computed on the same control volume Lx × Ly × Dz.

F . 7.14a plots examples of values obtained from PRS of packed beds in this study. It can be seen that the pressure and the void fraction are correlated. All the PRS are performed at Re c ranging from 0.1 to 16 with the objective of capturing the onset of inertia regime (Re c = 0.1, 0.2, 0.3, 0.4, 1, 16). All systems are re-packed randomly several times to have di ferent micro-structures (2 to 10 times). In particular, for both shapes, the systems of particles of aspect ratio a r = 2 are repeated 10 times to quantify the e fects of random packing both on the void fraction and the pressure drop simulated for Re c = 1. After the extraction of the pressure drop, the coe cients α and β of the Ergun's correlation are tted according to numerical results. The tting of β is performed only in the case of inertial ow regimes.

We observed that some pressure pro les are not fully linear arising the question of how the choice of cutting planes a fect the output. A sensitivity analysis for a limited number of 7 beds based on independently changing the positions of the bottom and top cutting planes between 0.5d * and 5d * , yields an uncertainty of 3.1% on the value of α. This trend is judged to be low enough to use always the same cutting planes positions.

F . 7.15 depicts a typical results of PRS for a packed bed of trilobes at Re c = 0.1 and a r = 2.

Results

Uncertainty quanti cation of the packings All packed beds are loaded randomly. For this reason, it is matter of importance to quantify the e fect of repetition (re-packing) on packed bed reactors. In this section, we investigated the random packings of 10 packed beds of TL and QL of a r = 2. F . 7.16b plots the pressure drop through successive simulations of the coupled problem (granular packing + PRS) as a function of void fraction < ε >. It can be observed that void fraction may vary signi cantly among simulations. In this data set, the packed beds of TL have a lower void fraction < ε > compared to those of QL and induce a higher pressure drop. T . 7.3 shows that despite the low standard uncertainty I = 2σ ∈ [2, 4]% on < ε >, the pressure drop exhibits an overall uncertainty of I = 2σ ∈ [12, 24]%. The uncertainty on pressure drop partly results from the scattering on void fraction. The uncertainty of α resulting from the hydrodynamic simulations is corrected by the void fraction and is lower than I = 2σ = 12%. This behaviour is observed for both shapes. This uncertainty, that results only from random e fects during packing, is quite high. An ANOVA analysis on the data indicate that due to the large scatter, α values are statistically identical for TL and QL.

For the sake of comparison, a glance on the local pressure and the velocity eld is presented in F . 7.17 in 4 horizontal cross-sections of the packed beds 8 (top) and 9 (bottom) at 

• m -1 ], < ε > [-].
z = 4, 8, 12, 16 made with QL of aspects ratios a r = 2. As the It can be seen, despite the fact that the systems are similar in terms of particle number and domain size, the re-packing induces a noticeable di ference in the local pressure and velocity magnitude. Since a zero pressure outlet is set at the top of the bed, the di ferences lie at the vicinity of the bed inlet. It can be noticed that at z = 4 the bed 8 has a lower velocity magnitude compared to the bed 9 which is translated into higher pressure compared to the bed 8. As the cross-section is moving upward, the uid velocity magnitude and the pressure tend to be more homogeneous for both packed beds. This is a pure e fect of local micro-structure. The set of repetitions of a packed bed of QL is considered as representative to investigate the e fects of the random packing on the ow dynamics. F . 7.16a illustrates the di ferences in pressure pro le for each simulation of the set. It reveals that despite the fact that the system is the same in terms of number of particles and domain size, the random insertion leads to di ferent micro-structures. This is visually con rmed in F . 7.17 which depicts the local structures of two packed beds (cases 8 and 9).

Values of the coe cients α and β

The values obtained for the Blake-Kozeny-Carman α and the Burke-Plummer constants β are exhibited in this section. Before presenting the values, it is important to note that the values are in the range of the experimental values, and that the uncertainty induced by the random packings on α is evaluated to be 12%.

Results for the coe cient α are presented in F . 7.18a and 7.18b complemented with data set from the work of [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF]. Simulations in this work indicate that α = 200, does not depend on particle length and does not vary between TL and QL.

Values of tted coe cient β are plotted in F . 7.19a and 7.19b as a function of aspect ratio a r and the sphericity Ψ. The evaluation of β is performed at nite Reynolds number of Re c = 16, where the quadratic term accounts for approximately 30% of the total pressure drop. As explained earlier, the uncertainty on the pressure drop and α are quite high (resp. ∼ 20% and ∼ 12%). This induces an uncertainty on the evaluation of β which approximately reaches 30%. Performing simulations at higher Re c is still not possible due to computing resource limitations induced by the complexity of particle shapes. It is worth to note that at Re c = 16, the computations of the pressure drop through packed beds of particles of a r = 4 need more than 3 × 10 8 grid cells and require more than 512 cores to resolve the problem. The tted values of β are in the range of 2.8-4.6 which is very coherent with previous works. 

Discussion on values of α and β

A closer look at the tted α may indicate two trends depending on the aspect ratio a r . When plotted as a function of a r , two domains are identi ed. For a r 2 (Ψ 0.68), TL and QL exhibit values of α which are in the scattered data and follow the usual trend (increasing with a r , decreasing with Ψ). For a r > 2, values of α seem to loose their dependency on the particle shape, this is most visible when plotted as a function of the sphericity.

An explanation of this behaviour may be the size of the bi-periodic domain. Intuitively, if the ratio of the domain length to particle length (Lx * /L * p ) decreases, the results may su fer from periodicity e fects. Simulations in this study were all performed with the same domain width. Therefore, when the particle length increases the ratio of the domain length to the particle length decreases. In order to clear out this risk, the following veri cation has been performed. Using TL of a r = 1.5, various domain size of 6, 8 and 10 mm are simulated. They all give the same void fraction and pressure drop. Void fractions of particles with an aspect ratio a r = 4 are in the range of 0.52 -0.53 and in line with the data reported by [START_REF] Nemec | Flow through packed bed reactors: 1. single-phase ow[END_REF] (T . 7.2) with similar aspect ratios. The void fraction measured by DEM is slightly higher but within the stochastic uncertainty. Last, the same DEM-PRS simulations were run while increasing the domain width from 8 to 12 mm for two cases: TL of a r = 2.5 and CYL of a r = 2.89 (L * p = 4.62 mm). In both cases, it was found that there are no signi cant di ferences on both void fractions (less than 0.5% variation) and pressure drop (less than 5% di ference). As cylinder results follow a very regular trend even for a r = 2.89, it is conclude that the domain size has no e fect for a r < 3. Nevertheless, an observation on results for β indicates that the results at a r = 4 can be seen as "di ferent". For the present time, it is safer to consider that only the results presented for a r < 3 are representative of experimental data.

The veri cation of the results leaves the door open for an e fect of a too small domain size in the simulations with the longest particles. The packing dynamics of long particles may be impacted by the size of the bi-periodic domain by very short mechanical interaction chains. To be more speci c, in special conditions, a particle A can mechanically interact with another one B on one side and B's clone on the other side: this corresponds to a B-A-B interaction chain. This type of interaction does not exist when loading large reactors and may lead to some special packing structures with an e fect on pressure drop and possibly on void fraction. Longer interaction chains with 3 or more particles may be also considered but are much more likely to occur experimentally. These very short interaction chains are more likely to occur with long and horizontal particles.

Assuming a loss of representativeness for high particle aspect ratio, a few interesting facts emerge. As the numerical methods used for the simulation of the pressure drop do not depend on particle length, the loss of representativeness for high aspect ratio pressure drop must originate from the packing structure. As already discussed, the simulated void fraction is slightly higher than experimental data, which logically yield a lower pressure drop. However, the void fraction correction to compute α should have corrected for this bias and produces a higher α. The high a r are di ferent in some ways that are interesting to be understood as they could potentially lead to innovative packing methods that lower pressure drop at constant void fraction. Is it possible to identify this speci c features ?

Using numerical data resulting from DEM simulations, it is quite straightforward to compute the angle of each particle with the horizontal plane xy and its average on all particles. As it can be seen in F . 7.20a, the average angle to the horizontal is a function of the particle shape and aspect ratio. For TL and QL, it decreases with a r until an asymptote is reached for a r 2.5. This threshold value corresponds to a presumable transition that might impact the pressure drop. For cylindrical particles, the average angle to horizontal decreases more slowly and does not reach a plateau with the available data. Is the plateau a physical feature or the result of the limited domain size ? Tortuosity is the other standard porous media descriptor, although barely used in chemical engineering as it is very di cult to measure. This data can be measured numerically. One of the methods studied in [START_REF] Duda | Hydraulic tortuosity in arbitrary porous media ow[END_REF] suggests to express the tortuosity T as a ratio of the volumetric integral of the uid ow velocity to the the volumetric integral of the velocity component of the macroscopic ow direction. It reads: (7.32) where subscript z stands for the macroscopic ow direction. [START_REF] Carman | Fluid ow through granular beds[END_REF] already had this idea of computing < v > / < v z > for the representation of the hydraulic tortuosity but all the attempts were always restricted to simple model such as group of parallel channels which do not represent complex heterogeneous porous media. Tortuosity for TL and QL is presented in F . 7.20b: it increases with the aspect ratio. More work is required to see how this parameter evolves for cylindrical particles but is not presented in this chapter.

T = V v(X)d 3 X V v z (X)d 3 X = < v > < v z >

C P

The DLM/FD method has been adapted to compute single phase ow in packed beds of polylobed particles without the need of radius calibration. A suitable set of CP location has been proposed for a trilobal and a quadrilobal particle. A perspective is to optimize distribution of the CPs so as to reduce their number without losing accuracy. Another research question is to develop some automated approach to mesh any new complex particle. The numerical platform Grains3D -PeliGRIFF has then been used to simulate for the rst time the pressure drop in packed beds of trilobes and quadralobes. Results have been interpreted using the Ergun formalism and agree well with the available literature for low aspect ratio. It is concluded that trilobe and quadralobe have the same pressure drop behaviour. For high aspect ratio, simulation results are not in line with the scarce experimental data available. There is no reason for the validity of the computed solutions to change with particle length, so we think that the surprising behaviour is either physical or results from the packing structures that are somehow not physical although they have a correct void fraction and no speci c features. It could be that the loss of representativeness originates from a too small simulation volume that for some unknown reason impacts the granular dynamics. An open and important question for "ab silico" simulations of xed beds is to identify a signature of "un-physical" packings. We suggest to investigate the particle orientation or the tortuosity or any other numerically accessible piece of information. A rst step toward this, would be to replicate our simulations using larger domains and track how the pressure drop coe cients evolve. This e fort will be limited by computing power.

R

La première partie de ce chapitre est consacrée au couplage du solveur granulaire avec le solveur des équations de Navier-Stokes pour les types de particules vus dans les précédents chapitres. Ici la méthode "Distributed Lagrange Multipliers / Fictitious Domain" est étendue aux particules de forme multi-lobée. En e fet, la méthode est robuste moyennant une correcte répartition des points de colocation à la surface et à l'intérieur de la particule. A défaut de solution analytique, il est proposé une étude de convergence en espace des solutions calculées, en premier lieu sur une particule isolée dans une con guration tri-périodique, ensuite sur une collection de quelques dizaines de particules. Il a été conclu que les formes non-convexes ont besoin de plus de point de colocation que les particules convexes convexes pour obtenir la même précision sur les solutions calculées.

La deuxième partie de ce chapitre se concentre sur l'application de la méthode sur les problèmes rencontrés dans le réacteurs à lit xe. C'est-à-dire les e fets des formes des particules sur la perte de charge dans ce genre de réacteurs. La comparaison est faite sur trois types de particules: cylindre, trilobe et quadrilobe. E fectivement, la plateforme Grains3D -plgf a été utilisée pour simuler, pour la première fois, la perte de charge au travers de lits de particules multilobées. Les résultats montrent une tendance qui est statistiquement identiques pour les particules multi-lobées. Cette tendance sur la perte de charge est di férente de celle des particules habituellement retrouvées dans la littérature.

C P C P rticulate ow modelling signi cantly progressed during this decade and has bene ted from the growth of computing power. This opens up new opportunities to investigate the e fect of particle shape in uid-particle systems. In fact, most of existing models in the literature are only designed for spheres but in many applications particle shapes are often complex. In this thesis, a modelling of complex particle shape has been suggested. For this endeavour, a numerical multiphase ow platform (Grains3D-PeliGRIFF) dedicated to particulate ow simulations of arbitrary convex particles is extended to deal with non-convex particles.

The rst part of this work is dedicated to the extension of the Discrete Element Method granular solver Grains3D to handle non-convex particle shape. To this end, the strategy is based on the decomposition of a non-convex particle into a set of convex bodies. This idea comes from the so-called "glued spheres" model widely used in the literature. The concept appears to be simple and e cient since almost any complex shape can be decomposed into a few or many arbitrary convex particles rather than spherical ones. Hence, the name of "glued convex" has been given to the new model. Due to the complexity of the shape, volume and elements of the moment of inertia is computed by discretising the shape instead of using boolean operations on the presumably overlapping elements of the "composite". Owing to the number of elementary particles, the "composite" particle may be subjected to a multi-contact problem. In order to overcome this issue two models are tested for the resulting contact force. The rst model consists in summing up all the forces while the second model is based on averaging all the forces. For both methods the resulting contact force is computed at each time step due to the probable variation of the number of contact points during an interaction. Results have been shown to be accurate when compared to analytical results but the time step decreases as a reverse function of number of contact points when we adopt the rst model. The second model keeps a contact duration that is in the order of magnitude of convex particles. Based on this observation the second model is selected and implemented in the granular solver Grains3D. Using our new glued convex model, a study of the dynamics of a granular media made of non-convex particles in a rotating drum is carried out to quantify the e fects of the non-convexity. Results obtained for two cross-like non-convex particles overall show that the avalanching regime is promoted at low rotation rates and that the cataracting regime is not really easy to de ne. These major di ferences are a result of the high entanglement of particles which provides a sort of cohesion to the granular media. The second application of the implemented model is the study of the packings resulting from the lling of reactors encountered in the re ning industry. For this purpose, poly-lobed particles are modelled as a composite of cylinders and a polygonal prism which replicate with high delity the shape of catalyst particles developed at IFPEN. Due to slight micro-structural variations in packed beds, the void fraction always di fers from a bed to another bed. Packing repeatability is assessed and correlations are established for cylindrical, trilobal and quadralobal particles in cylindrical vessels and in semi-in nite domains to mimic large scale reactors. Obtained results show a clear change of void fraction between cylindrical particles and poly-lobed packed beds. Finally, the parallel performance of Grains3D was assessed on various granular ow con gurations comprising both spherical and angular particles. To this end, large scale simulations of silo discharges of spherical and angular particles, dam breaks of icosahedron and uidized beds of spherical particles were performed. All simulations showed a scalability of more than 0.75 for systems of more than 100, 000 particles per core. The scalability can reach up to 0.9 for systems of nonspherical (convex) particles. In its current state, Grains3D o fers unprecedented computing capabilities. Systems with up to 100, 000, 000 of non-spherical particles can be simulated on a few hundreds of cores.

The main goal of the second part of this thesis is to determine the e fects of particle shape on the pressure drop through packed beds of trilobes and quadralobes. The rst step was the extension of the capability of the uid ow solver to handle poly-lobed particles. The granular ow solver is coupled to the micro-scale (Direct Numerical Simulation) module of PeliGRIFF in which a Distributed Lagrange Multiplier / Fictitious Domain formulation combined with a Finite Volume Staggered Grid scheme is already implemented. The extension relies on the integration of the new geometries in the formulation, i.e. designing a new construction method to homogeneously distribute the collocation points in the rigid bodies and on their surface. A space convergence study was carried out in assorted ow con gurations and ow regimes such as the steady ow through a periodic array of particles and the steady ow through a packed bed of particles to assess the accuracy of computed solutions. Based on the convergence study, we found that for the same accuracy, the number of collocation points for poly-lobed particles should be higher compared to more standard particles such as spheres or cylinders. In fact, 50% more points are required to describe the cross-sectional surface of the poly-lobed particles than that of a cylindrical particle. From the previous study, the pressure drop through packed beds of poly-lobed particles have been reliably investigated. We performed around 200 particle-resolved simulations of the ow through a packed bed of trilobes or quadralobes. Based on these simulation results, we suggested a modi ed Ergun's correlation. The proposed correction of the Ergun's correlation is based on tting the Blake-Kozeny-Carman (α) and the Burke-Plummer (β) constants by introducing parameters that depend on the sphericity and the particle equivalent diameter. Results have been interpreted using the Ergun formalism and agree well with the available literature for low aspect ratios. We observed that TL and QL have globally the same pressure drop behaviour. For high aspect ratios, simulation results are not in line with the scarce experimental data available. The simulated void fraction is slightly higher than experimental data, which logically yield a lower pressure drop.

P

T e new extension of the multiphase ow platform Grains3D-PeliGRIFF has been success- fully deployed. However, there is vast room for improvements, both on the physical modelling side and on the computational side. Since the contact resolution scales with N i × N j where N i and N j denote the number of elementary particles of the composites i and j respectively, there is an interest on implementing a convex hull or a bounding box algorithm to accelerate the contact detection. Later on, the model can be extended to take into account cohesive interactions. In addition, a dynamic load balancing would enhance the computing capabilities of Grains3D in ow con gurations with high particle volume fraction heterogeneities.

On the pure parallel computing aspects, the milestone of a billion of convex particles appears attainable as suggested by the trend shown by the scaling factor of the code.

In PRS, although the accuracy of the DLM/FD formulation is satisfactory, the method does not strictly satisfy the velocity divergence-free property. In fact, our operator-splitting algorithm solves the following sequence of sub-problems at each time: (i) Navier-Stokes subproblem and (ii) DLM/FD sub-problem. The latter enforces the rigid body motion constraint but not the velocity divergence-free constraint. Therefore, more sophisticated operatorsplitting techniques as e.g. a second order Strang symmetrized algorithm, or more strongly coupled solution algorithms might further improve the computed solution accuracy. In the original version of the DLM/FD formulation, an Uzawa conjugate gradient algorithm is used to solve the saddle point sub-problem. In order to avoid the computational cost, a fast projection scheme, a variant of the Direct Forcing of the Immersed Boundary Method, can be implemented. Since the most of the computing time is spent in the DLM/FD sub-problem in dense systems, accelerating the solution of this sub-problem while keeping the same level of accuracy is highly desirable. In addition, an Adaptive Mesh Re nement strategy would be of great improvement in xed bed simulations. Not only the AMR strategy would decrease the total number of grid cells, but it will increase the accuracy of the computed solutions where needed. A DLM/FD module to model heat and/or mass transfer with in nite di fusivity in the particles core is already available in PeliGRIFF and can be used for the simulations of ows with trilobes/quadralobes. The extension to intra-particle di fusion would require the implementation of a Sharp Interface method to properly capture the gradient discontinuity at the particle/ uid interface. This work is currently carried out by another PhD student of the Peli-GRIFF group. Numerical simulations with mass transfer would need a realistic and manageable kinetic scheme (in the sense with "not too many" equations and chemical species) and probably adapted numerical schemes to treat the di ferent time scales involved in these chemical reactions.

Further Uncertainty Quanti cation of random packing would provide a better tting of the Ergun's coe cients for pressure drop in a packed bed of trilobes or quadralobes. This may lead to the introduction of another parameter in the correlation such as the particle aspect ratio. Further simulations of packed beds of particles with high aspect ratio in larger domains would provide a better understanding on the low pressure drop that we measured in some of our simulations. The new "glued convex" model can be integrated in a multi-scale framework for granular ow modelling or particulate ow modelling for various industrial problems (among others geoscience, food industry, pharmaceutical industry, upstream oil & gas industry, etc . . . ). For instance, correlations for drag, heat ux and mass transfer for any particle shape can be derived from PRS and later integrated in a meso-scale model (of the DEM-CFD type for instance) for uidised bed simulations.

With all these features, the numerical platform Grains3D-PeliGRIFF can serve as a very accurate tool for virtual optimisation of processes in the chemical industry. For chemical conversion in xed bed reactors, numerical simulations are feasible from the loading of reactors to the hydrodynamics of the ow through the bed, coupled with heat and mass transfer. This would equip chemical engineers with a predictive tool of chemical e ciency of catalysts. R L s écoulements uide-particules ont connu un important progrès durant cette décennie grâce à l'avènement de l'ère du calcul haute performance. Ceci ouvre la voie à plusieurs opportinuités d'investigation des e fets de forme des particules dans ces systèmes. E fectivement, de nombreux modèles existant dans la littérature reposent sur des particules de forme sphériques ce qui n'est pas toujours les cas dans plusieurs applications. Au cours de cette thèse, la modélisation de systèmes comportant des particules de formes complexes est abordée en utilisant la plateforme numérique Grains3D -PeliGRIFF dédiée aux écoulements multiphasiques. Ces travaux de thèse consistent à étendre la capacité de ces outils à pouvoir prendre en compte des particules non-convexes.

La première partie de cette thèse est dediée à l'extension du solveur granulaire (Discrete Element Method) à traiter des particules non-convexes. Elle est basée sur la décomposition d'une particule non-convexe en particules élementaires arbitrairement convexes. Cette méthode peut être considérée comme étant une extension du modèle " glued sphere", très connu dans la littérature. Le concept paraît simple et é cace car à peu près n'importe quelle forme arbitrairement non-convexe peu être décomposée en plusieurs formes arbitrairement convexes. D'où la dénomination du nouveau modèle glued convex. À cause la complexité des formes, le calcul du moment d'inertie est fait par une discrétisation spatiale du "composite" tout en considérant que les particules élémentaires peuvent se recouvrir. Cette décomposition implique aussi plusieurs points de contact dans la dynamique du composite auxquels une attention particulière a été dédiée. Ainsi, le modèle a permis, pour la première fois, d'étudier la dynamique des milieux granulaires dans un tambour tourant pour montrer l'e fet de la concavité des particules en forme de croix. En e fet, ces milieux granulaires montrent que le régime d'avalanche se manifeste à très faible vitesse de rotation et la transition entre régime de cascade et régime de centrifuge n'est pas évidente à de nir. La seconde application du modèle consiste à simuler le remplissage de réacteurs à lit xe avec des particules de forme multi-lobée rencontrées dans l'industrie du ra nage pour, ensuite, quanti er l'e fet des formes de catalyseurs sur le taux de vide dans ces réacteurs. Finalement, la performance parall `le de Grains3D est mise en évidence sur quelques con gurations découlement granulaires. Ces tests ont permis de montrer que des systèmes de plus de 100, 000, 000 de particules non-spheriques peuvent être simulés sur quelques centaines de processeurs et que desormais des simulations numériques de systèmes atteignant le milliard de particules shperiques peuvent être envisageables.

La deuxième partie de ce travail est consacrée au couplage entre le nouveau modèle de particule non-convexe implémenté dans le solveur Grains3D et le solveur des équations de Navier-Stokes PeliGRIFF en utilisant le module de simulation numérique directe de ce dernier. Cette résolution directe repose sur la méthode "Distributed Lagrange Multipliers / Fictitious Domain". Elle consiste à imposer une condition de corps rigide au sein de la particule et à la surface de celle-ci en imposant une condition d'égalité des vitesses uide et solide à l'aide de multiplicateurs de Lagrange. Dans le cas d'un lit xe, cette vitesse est nulle dans la particule et sur sa surface. À défaut de solutions analytiques, une étude de convergence spatiale des solutions calculées est menée dans le cas d'une particule isolée, puis sur un lit xe de quelques dizaines de particules multi-lobées. Après la comparaison avec des particules cylindriques, cette étude a conduit à conclure que 50% de point de colocation supplémentaires sont indispensables pour décrire la surface issue de la coupe transversale des particules multi-lobées. Á partir de cette étude, une campagne de simulations numériques a été menée dans le but de quanti er l'e fet des formes des particules sur la perte de charge au travers d'un lit xe en utilisant le for-malisme d'Ergun. Les résultats illustrent que les trilobes et les quadrilobes ont statistiquement le même e fet sur la perte de charge.
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 1 Figure 1.1 -Cement plant Figure 1.2 -Inside a cement mill
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 1 Figure 1.3 -Hopper discharge Figure 1.4 -Segregation inside a hopper near the exit hole
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 1 Figure 1.7 -A dust storm passing over Onslow in Australia.

Figure 1 . 8 -

 18 Figure 1.8 -Pyroclastic flow flowing into the Tar River in North Carolina.
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 19 Figure 1.9 -Rings of Saturn.Figure 1.10 -NASA's Mars rover Curiosity. Credit: NASA/JPL-Caltech.

  Figure 1.9 -Rings of Saturn.Figure 1.10 -NASA's Mars rover Curiosity. Credit: NASA/JPL-Caltech.
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 1 Figure 1.11 -Di erent regimes found in rotating drum. Credits: Mellmann (2001).

  (a) Example of spherical catalyst particles. Credits: Falmouth Products Inc., Falmouth, MA. (b) Example of catalyst particles developed at IFPEN.
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 1 Figure 1.12 -Example of catalyst pellets.

( a )

 a Common shapes used in industrial applications.(b) Extrudate catalyst pellets. Credit:[START_REF] Cooper | Hydroprocessing conditions a fect catalyst shape selection[END_REF].

Figure 1 .

 1 Figure 1.13 -Various shape of catalyst pellets.

Figure 1 .

 1 Figure 1.14 -E ectiveness factor for various shapes. X-axis : Thiele modulus, Y-axis : efficiency. Credit: Aris (1957).

  Figure1.15 -Dependency of pressure drop on loading technique and particle shape. Credit:[START_REF] Cooper | Hydroprocessing conditions a fect catalyst shape selection[END_REF].
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  Figure 2.1 -Sketch of dense granular flows in experimental studies (Pouliquen and Chevoir (2002)). (a) Shear cell, (b) Vertical chute, (c) Inclined surface, (d) Heap formation.

( a )

 a Sketch of collision between two particles. (b) Contact scenarios between two cylinders.Credit:Kodam et al. (2010a).

Figure 2 . 2 -

 22 Figure 2.2 -Decomposition of trilobal and quadralobic particle shapes into convex shapes. View of the cross sections.

Figure 2 . 3 -

 23 Figure 2.3 -Contact approximation between two ellipsoids using a curvilinear region defined by pairs of θand ϑ-curves: (a) first approximation and (b) final approximation. Credit: Lu et al. (2015) (adapted from[START_REF] Rothenburg | Numerical simulation of idealized granular assemblies with plane elliptical particles[END_REF]).
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 24 Figure 2.4 -Examples of 3D super-quadrics. Credit: Lu et al. (2015).

  Figure 2.5 -Illustration of the common plane technique between two colliding polygons. (a) Definition of the common plane, (b) Five probable planes for the common plane all pass through the mid-point O of the linear section P Q (P and Q are the "closest vertices" of polygon 1and 2). They are the plane which is perpendicular to the linear section P Q, and the planes that are parallel to the polygon edge P P 1 , P P 2 , QQ 1 and QQ 2 where P 1 and P 2 are the vertices of particle 1 next to P and Q 2 and Q 2 are the vertices of particle 2 next to Q. Credit:[START_REF] Lu | Discrete element models for non-spherical particle systems: From theoretical developments to applications[END_REF] (adapted from[START_REF] Nezami | A fast contact detection algorithm for 3-d discrete element method[END_REF]).

( b )

 b Spheropolygon obtained by moving a disk around the polygon. Credit: Alonso-Marroquín and Wang (2009).
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 26 Figure 2.6 -Various spherosimplices particle shapes.
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 27 Figure 2.7 -Multi-sphere particle impacting a flat wall. (a) single contact, (b) double contact and (c) a triple contact. Credit: Kruggel-Emden et al. (2008).
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 32 Figure 3.2 -Discretisation strategy illustrated in 2D.
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 33 Figure 3.3 -Convergence of the relative error on the volume of a sphere, a cylinder and a glued convex made of two overlapping cylinders.
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 35 Figure 3.5 -Damping coefficient depending on the restitution coefficient e n and the number of contact N .

  Angular velocity, rω + y /V - z,g .
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 37 Figure 3.7 -Comparison of the dimensionless post-impact velocities.
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 38 Figure 3.8 -Normal contact force evolution with time of a particle impacting a flat wall at the angle of 90 • . N = 1, ..., i is the number of the components of the glued convex.
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 39 Figure 3.9 -Deviation of the velocities of a single glued cylinders DEM simulation compared to a single true cylinder DEM simulation impacting a flat wall at 90 • .

a

  Figure 3.10 -Representations of a cylinder made of 9 glued spheres (a,b) and 54 glued spheres (c,d).

  Angular velocity rω + y /V - z,g .
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 311 Figure 3.11 -Comparison of the dimensionless post-impact velocities of a cylinder made of 9 glued spheres (a,b) and 54 glued spheres (c,d) with the analytical solution E. 3.37-E . 3.38. 
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 3 Figure 3.12 -Non-convex cross-like shapes considered in this work.

Figure 3

 3 Figure 3.13 -Packings of 1000 particles of various shapes. Particles in blue are the periodic clones.

  Figure 3.14 -Packing of 250 particles of 6 di erent shapes in a cylindrical container. Results in(a,b,c,d) are from[START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF].
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 3 Figure 3.15 -Visualisation of the rotating drum.

  Figure 3.16 -Rotating drum filled with "3D cross" shaped particles at various rotation rates: snapshots of the pattern of particles coloured by their translational velocity magnitude (from blue (min) to red (max)).

  Figure 3.17 -Single particle trajectories at Ω = 150 rpm during 10 s.

  Figure 3.18 -Snapshots of the pattern of the "3D cross" shaped particles coloured by their translational velocity magnitude (from blue (min) to red (max)) at Ω = 5 rpm (a,b,c) and at Ω = 20 rpm (d,e,f).

  Figure 3.19 -Rotating drum filled with "2D cross" shaped particles at various rotation rates: snapshots of the pattern of particles coloured by their translational velocity magnitude (from blued (min) to red (max))

  Figure 3.20 -Snapshots of the pattern of the "2D cross" shaped particles coloured by their translational velocity magnitude (from blue (min) to red (max)) at Ω = 5 rpm

Figure 3

 3 Figure 3.21 -Time averaged variation of the coordination number. Data are form[START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate ows[END_REF] 

Figure 3

 3 Figure 3.22 -Evolution of dimensionless mean translational velocity as a function of dimensionless time t * = tΩ. Data for spheres and cubes are from[START_REF] Wachs | Grains3D, a exible DEM approach for particles of arbitrary convex shape-Part I: Numerical model and validations[END_REF].
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 3 Figure 3.23 -Circumscribed sphere illustrated in 2D.
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 41 Figure 4.1 -Illustration of a box-like insertion window in DEM simulations.
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 42 Figure 4.2 -Examples of plots resulting from the method (ii) of the void fraction analysis. Here QL and CYL have the same volume and same length L p .

  (a) Cylinder (CYL) (b) Trilobe (TL) (c) Quadralobe (QL) (d) Circumscribed diameter.
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 43 Figure 4.3 -Particle shapes in this study.

( a )

 a Pakcing of TL in cylindrical domain. (b) Pakcing of TL in bi-periodic domain.
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 44 Figure 4.4 -Type of domains in this study.

  (a) An insertion window of 4 mm length in a cylindrical vessel of 14 mm diameter. (b) An insertion window of 6 mm length in a cylindrical vessel of 14 mm diameter.
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 45 Figure 4.5 -Top view of two simulation domains with their corresponding insertion windows.
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 46 Figure 4.6 -Average void fraction in a bi-periodic container for particles of various shape, length and diameter.
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 49410 Figure 4.9 -Void fraction for TL packed beds for various reactor diameters, particle lengths (not shown) and aspect ratio.
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 5152 Figure 5.1 -Illustration of the status of a particle in a tagged cell.
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 5 Figure 5.3 -2D illustration of inter-process communication for a particle tagged SOUTH.

Figure 5

 5 Figure 5.4 -2D illustration of inter-process communication for a particle tagged SOUTH_EAST.

( a )

 a Silo shape. Credit:[START_REF] González-Montellano | Validation and experimental calibration of 3d discrete element models for the simulation of the discharge ow in silos[END_REF].(b)Equivalent extended silo in our simulations.
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 55 Figure 5.5 -Shape and dimensions of the 3D silo.

  t
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 56 Figure 5.6 -Simulation results of filling and discharge of the 3D silo with Grains3D. Coloured by the particle velocity magnitude.
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 57 Figure 5.7 -Comparison between experimental data of González-Montellano et al. (2011) and our simulation results with Grains3D: snapshots of discharge dynamics at di erent times.

  (a) Decomposition of the domain into 16 sub-domains. Each silo is handled by a single core. (b) Discharge of 14000 spherical particles per silo from 16 independent silos. Silos are hidden. Coloured by the particle velocity magnitude (blue = min, red = max).

Figure 5

 5 Figure 5.8 -Multi-silo simulation set-up without overlap between silos (communications with empty messages between sub-domains).

  (a) Top view of the simulation domain in which 16 silos are merged into one big silo. (b) Discharge of 16000 spherical particles per subdomain from 16 connected hoppers. Hoppers are hidden. Coloured by the particle velocity magnitude (blue = min, red = max).

Figure 5

 5 Figure5.9 -Multi-silo simulation set-up with all silos merged (connected hoppers) into one big silo (actual communications with non-empty messages between sub-domains). Each hopper corresponds to a sub-domain.

Figure 5 .

 5 Figure 5.10 -Discharge of 1,792,000 spherical particles from 128 merged silos (connected hoppers). Coloured by the particle velocity magnitude (blue = min, red = max).
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 5512 Figure 5.11 -Weak scaling parallel performance of Grains3D in the multi-silo configurations with (a) disconnected silos and (b) merged silos into one big silo.
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 513 Figure 5.13 -Granular dam break set-up.

  Figure 5.14 -3D view of the granular dam break flow for Size 4 case.

  Figure 5.15 -2D view of the granular dam break flow for Size 4 case. (a)-(f) correspond to snapshots every 0.1s.
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 516 Figure 5.16 -Variation of L ∞ /L. L ∞ (red) for ε ≤ 0.1. Blue dots are particles positions.
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 517 Figure5.17 -Variation of run-out distance (L ∞ -L)/L with dimensional size of the system for a ≈ 7.3.
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 5 Figure 5.18 -Final scaled profiles of the deposit as a function of dimensional size of the system for a ≈ 7.3. All profiles collapse on a single master profile.
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 519 Figure 5.19 -Weak scaling parallel performance of Grains3D in granular dam break computations.

Figure 5

 5 Figure 5.21 -3D snapshots of fluidized bed fluid flow over the early transients with U in /U mf = 2 in the case N cores = 64, N T = 19, 200, 000: ε = 0.75 fluid porosity contours colored by pressure magnitude, velocity contours in a x -z cut plane located at ỹ = Ly and pressure contours in a y -z cut plane located at x = 0.

Figure 5 .

 5 Figure 5.22 -A 3D snapshot of fluidized bed fluid flow at t = 2142 and U in /U mf = 3 in the case N cores = 64, N T = 19, 200, 000: ε = 0.75 fluid porosity contours colored by pressure magnitude, velocity contours in a x -z cut plane located at Ly and pressure contours in a y -z cut plane located at x = 0.
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 523 Figure 5.23 -Weak scaling parallel performance of Grains3D relative to a full 16-core node in fluidized bed computations.
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 6 Figure 6.3 -Deforming-Spatial-Domain / Stabilized Space-Time. Credits:[START_REF] Wan | Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate ows[END_REF].
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 64 Figure 6.4 -Lattice structure for a "D3Q19" model. Credits: Third et al. (2016).

Figure 6 . 6 -

 66 Figure 6.6 -Example of non-spherical particles used in IBM studies. Credits: Zastawny et al. (2012).

Figure 6 . 8 -

 68 Figure 6.8 -Chaotic motion of a cube and a tetrahedron. Credits: Rahmani and Wachs (2014).

Figure 6 . 9 -

 69 Figure 6.9 -Illustration of the adaptive mesh refinement technique.

  u ∈ V ∂Ω (Ω) stands for the uid velocity vector, p ∈ P(Ω) the pressure, λ ∈ Λ(t) the velocity distributed Lagrange multiplier vector, U ∈ R d the particle translational velocity vector, ω ∈ R d the particle angular velocity vector, d the number of non-zero components of ω (if d = 2 : ω = (0, 0, ω z ) and d = 1; if d = 3 : ω = (ω x , ω y , ω z ) and d = 3 = d), F c ∈ R d the contact forces, R ∈ R d the vector between particle gravity center and contact point, r the position vector with respect to particle gravity center,V P = M * /(ρ * s L * d c ) ∈ R the dimensionlessparticle volume, M * the particle mass, I P = I * P /(ρ * s L * (d+2) c ) ∈ R d× d the dimensionless particle inertia tensor, ρ * s ∈ R the particle density, g * ∈ R d the gravity acceleration and g * ∈ R the gravity acceleration magnitude.

  η * denotes the uid viscosity. In the following, L * c = d * is chosen for suspension ows, d * denoting the diameter of the cylinder whose cross section circumscribes the extrudated shapes (F . 7.1).

Figure 7 . 1 -

 71 Figure 7.1 -Definition of the circumscribed diameter.

  Figure 7.2 -DLM/FD points on the staggered grid for a 2D circular cylinder: (a) the set of interior and boundary points, (b) in blue the 4-point multi-linear interpolation stencil and in red the 9-point Q2 outwardsoriented interpolation stencil for the x velocity component. Adapted from[START_REF] Wachs | Accuracy of nite volume/staggered grid distributed lagrange multiplier/ ctitious domain simulations of particulate ows[END_REF].
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 73 Figure 7.3 -Decomposition of trilobal and quadralobic particle shapes into convex shapes. View of the cross sections.

  d its unit vector and let r ∈ R d the radial vector. Then the CP are build using the parametric equation of each slice which reads, for ζ ∈ [0, 1]: P = cos(ζ)r + sin(ζ)k × r + C, where C ∈ R d denotes the slice gravity center. -for the triangular prism and the rectangular parallelepiped, the points are distributed as follows: given the targeted point to point distance l pp = τ h , τ ∈ [1 : 2] and the rectangular or triangular edge length l e , the actual point to point distance is l a = l e /int(l e /l pp ), where int(x) denotes the integer portion of x.

( a )

 a Rectangular face. (b) Triangular face.
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 74 Figure 7.4 -Layout of boundary CP on: (a) rectangular face and (b) triangular face.
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 75 Figure 7.5 -Layout of boundary CP on a : (a) trilobal, (b) quadralobic particles

  )

  Figure 7.6 -Illustration of the three flow configurations for φ = 0.216. Stream lines. Velocity field magnitude (red=max, blue=min).
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 77 Figure 7.7 -Convergence of the computed solutions at Re = 0.01 for a r = 5. N p is the number of CP in the particle cross-section. N -1.3 p

Figure 7 . 8 -

 78 Figure 7.8 -Convergence of the computed solutions at Re = 0.01 for a r = 1. N p is the number of CP in the particle cross-section. N -1.3 p

  a) Trilobe ⊥. (b) Quadralobe ⊥.(c) Cylinder ⊥.

Figure 7

 7 Figure 7.9 -3-periodic array of particle for φ = 0.545 and Re c = 0.01. Velocity field magnitude.

Figure 7 .

 7 Figure 7.10 -3-periodic array of particle for φ = 0.545 and Re c = 0.01. Velocity field magnitude.

Figure 7 .

 7 Figure 7.11 -Dependency of the friction coefficient K on the solid volume fraction φ.

•

  a uniform upward inlet velocity at the bottom of the bed • a zero pressure outlet and homogeneous Neumann boundary conditions for all velocity components at the top of the bed The convergence is assessed on the inlet-outlet pressure drop. (a) Packed bed of trilobes

Figure 7 .

 7 Figure 7.12 -Packed bed reactor of trilobal particles. (a) contour of the velocity magnitude at Re = 50 (red=max, blue=min). (b) convergence of the computed solutions

  (2005) proposed some values for a and b depending on the particle shapes: (a, b) poly-lobed particles. The proposed correlation does not t with all the data points. Based on numerical results in the creeping ow regime,[START_REF] Dorai | Fully resolved simulations of the ow through a packed bed of cylinders: E fect of size distribution[END_REF] proposed a = 5/4 for cylinders (b was not evaluated).

  Example of averaged pressure and fluid volume fraction. Layers on which are computed ε and p.

Figure 7 . 14 -

 714 Figure 7.14 -Example of outputs resulting from the post-processing E . 7.29 and 7.31 on a fixed bed of trilobal particles at Re c = 0.1 and a r = 1.5.

Figure 7 .

 7 Figure 7.15 -Velocity (left) and pressure (right) fields through a packed bed of trilobal particles. Re c = 0.1 and a r = 2.

Figure 7 .

 7 Figure 7.16 -E ects on random packing on the pressure on 10 fixed beds poly-lobed particles of aspect ratio of a r = 2 at Re c = 1.

  z = 4. (j) z = 8. (k) z = 12. (l) z = 16. packed bed 9 (m) z = 4. (n) z = 8. (o) z = 12. (p) z = 16.
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 717 Figure 7.17 -Comparison of the horizontal cross-sectional velocity magnitude ( u * /u * in ) and the pressure field (p * ) between two packed beds of quadralobal particles of aspect ratio of a r = 2 at Re = 1.

  Dependency of α on the particle aspect ratio. Dependency of α on the particle sphericity. Power law correlation α = 150/Ψ 1.2 .
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 718 Figure 7.18 -Dependency of the fitted Blake-Kozeny-Carman constant on a r and Ψ. Number of simulations: 128.
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 719 Figure 7.19 -Dependency of the fitted Burke-Plummer constant on a r and Ψ. Number of simulations: 26.

  Dependency of the orientation angle on the particle aspect ratio ar.

  Dependency of the tortuosity on the particle aspect ratio ar.
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 7 Figure 7.20 -Dependency of T and < θ > on the aspect ratio a r at Re = 0.1.
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.2 -Experimental and numerical parameters for the normal impact of a cylinder modelled with glued spheres on a flat wall.
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.3 -E ect of insertion window size on void fraction. Insertion window is 2D square of length comprised between 0 mm to 10 mm.

  The results for TL particles are presented in F . 4.9. The following linear correlation (E . 4.16) describes the data with an accuracy equal to the uncertainty:A uni ed correlation predicting the void fraction for TL and QL regardless of the shape has the same accuracy as that of the TL. It is de ned as follows:

	QL: ε = 0.33 + 0.0328 0.55	L p d p	+ 0.212	L p D	(4.13)
	10 < D[mm] < 19, 0.55 0.40 0.45 0.50 Correlation	1.2 < L/dp < 3.33, TL-D14 TL-D16 TL-D19	3 < L p [mm] < 4
	Correlation	0.40 0.45 0.50 0.40 0.42 0.44 0.46 0.48 0.50 0.52 QL-D19 QL-D16 QL-D14 Simulations
		0.40 0.42 0.44 0.46 0.48 0.50 0.52 Simulations
	TL: ε = 0.345 + 0.0289	L p d p	+ 0.15	L p D	(4.14)
	10 < D[mm] < 19,	1.2 < L/dp < 3.3,	3 < L p [mm] < 4
	A simpli ed correlation based only on aspect ratio predicts almost as well void fractions
	with relative standard deviation of 2.5%. It reads:		
			TL: ε = 0.366 + 0.035	L p d p	(4.15)
	QL & TL: ε = 0.329 + 0.0289	L p d p	+ 0.15	L p D	(4.16)
		10 < D[mm] < 19, 1.2 < L p /d p < 3.33,
		2 < L p [mm] < 4, 1.2 < d p [mm] < 2.48
			F . 4.8):		

Figure 4.8 -Void fraction for packed beds of quadralobal particles in a cylindrical reactor for various reactor diameters, particle lengths and aspect ratios: correlation vs. simulations. Dashed lines are parity ±I.
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	Repetition	Experiments (s) Grains3D (s)
	1	29.32	29.36
	2	29.28	
	3	29.2	
	Mean discharge time (s)	29.27	29.36
	Table 5.2 -Comparison between experimental data of González-Montellano et al. (2011) and our simulation
	results with Grains3D for the discharge time of the silo.	

.1 -Contact force model parameters, estimate of contact features at v col = 4.5 m/s and time step magnitude used in the silo discharge simulation.
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.4 -Contact force model parameters, estimate of contact features at v col = 4.2 m/s and time step magnitude used in the dam break simulations.
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.5 -System size in granular dam break weak scaling tests.

  Table 5.6 -Fluid and particles physical and numerical dimensionless parameters.

	Parameter	Value
	Fluid	
	ρ r	2083.333
	Re in Fr in ∆ tf	79.333 6.927 × 10 -3 0.0119
	Particle	
	e n	0.9
	µ c	0.1
	k ms δmax	0 0.025
	∆ tp	0.00595
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Table 7 .

 7 1 -Configuration of the studied cases.

Table 7 .

 7 .24) where V * p and A * p denote respectively the volume and area of the particle. 2 -Fitted Ergun constants for poly-lobed particles. Credit:

	Shape	a r	Ψ	ε	α	β
	Trilobe	4.33 0.63 0.466 295 4.71
	Trilobe	4.33 0.63 0.511 263 4.99
	Quadralobe 3.85 0.593 0.471 292 3.93
	Quadralobe 3.85 0.593 0.502 294 4.19

Table 7 .

 7 3 -Repetition of random packing with identical particles. ∆p

* /H * [P a