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Abstract

Non convex granular media are involved in many industrial processes as, e.g., particle
calcination/drying in rotating drums or solid catalyst particles in chemical reactors. In

the case of optimizing the shape of catalysts, the experimental discrimination of new shapes
based on packing density and pressure drop proved to be difficult due to the limited control
of size distribution and loading procedure. There is therefore a strong interest in developing
numerical tools to predict the dynamics of granular mediamade of particles of arbitrary shape
and to simulate the flow of a fluid (either liquid or gas) around these particles. Non-convex
particles are even more challenging than convex particles due to the potential multiplicity
of contact points between two solid bodies. In this work, we implement new numerical
strategies in our home made high-fidelity parallel numerical tools: Grains3D for granular
dynamics of solid particles and PeliGRIFF for reactive fluid/solid flows. The first part of this
work consists in extending themodelling capabilities of Grains3D from convex to non-convex
particles based on the decomposition of a non-convex shape into a set of convex particles. We
validate our numerical model with existing analytical solutions and experimental data on a
rotating drum filled with 2D cross particle shapes. We also use Grains3D to study the loading
of semi-periodic small size reactors with trilobic and quadralobic particles. The second part
of this work consists in extending the modelling capabilities of PeliGRIFF to handle poly-
lobed (and hence non-convex) particles. Our Particle Resolved Simulation (PRS) method
is based on a Distributed Lagrange Multiplier / Fictitious Domain (DLM/FD) formulation
combined with a Finite Volume / Staggered Grid (FV/SG) discretization scheme. Due to the
lack of analytical solutions and experimental data, we assess the accuracy of our PRS method
by examining the space convergence of the computed solution in assorted flow configurations
such as the flow through a periodic array of poly-lobed particles and the flow in a small size
packed bed reactor. Our simulation results are overall consistent with previous experimental
work.

Keywords: Non-convex Particles, Discrete Element Method, Granular Mechanics, Direct
Numerical Simulation, RotatingDrums, Fixed Beds, PorousMedia, High Performance Com-
puting
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Résumé

Cette thèse porte sur l’étude numérique des écoulements fluide-particules rencontrés dans
l’industrie. Ces travaux se situent dans le cadre de la compréhension des phénomènes

qui se déroulent dans des tambours tournants et réacteurs à lit fixe en présence de particules
de forme non convexe. En effet, la forme des particules influence de manière importante la
dynamique de ces mileux. A cet effet, nous nous sommes servis de la plateforme numérique
parallèle Grans3D pour la dynamique des milieux granulaires et PeliGRIFF pour les écoule-
ments multiphasiques. Dans la première partie de cette thèse, nous avons développé une
nouvelle stratégie numérique qui permet de prendre en compte des particules de forme ar-
bitrairement non convexe dans le solveur Grains3D. Elle consiste à décomposer une forme
non convexe en plusieurs formes convexes quelconques. Nous avons nommé cette méthode
“glued-convex”. Le modèle a été validé avec succès sur des résultats théoriques et expérimen-
taux de tambours tournants en présence de particules en forme de croix. Nous avons aussi
utilisé le modèle pour simuler le chargement de réacteurs à lits fixes puis des lois de corrélation
sur les taux de vide ont été déduites de nos résultats numériques. Dans ces travaux, nous
avons aussi testé les performances parallèles de nos outils sur des simulations numériques à
grande échelle de divers systèmes de particules convexes. La deuxième partie de cette thèse a
été consacrée à l’éxtension du solveur PeliGRIFF à pouvoir prendre en compte la présence de
particules multilobées (non convexes) dans des écoulements monophasiques. Une approche
du type Simulation Numérique Directe, basée sur les Multiplicateurs de Lagrange Distribués
/ Domaine Fictif (DLM/FD), a alors été adoptée pour résoudre l’écoulement autour des par-
ticules. Une série d’études de convergence spatiale a été faite basée sur diverses configurations
et divers régimes. Enfin, ces outils ont été utilisés pour simuler des écoulements au travers de
lits fixes de particules de forme multi-lobée dans le but d’étudier l’influence de la forme des
particules sur l’hydrodynamique dans ces lits. Les résultats ont montré une consistance avec
les résultats expérimentaux disponibles dans la littérature.

Mots clés: Particule non convexe, Mécanique des Milieux Granulaires, Simulation
Numérique Directe, Tambours Tournants, Lits Fixes, Milieux Poreux, Calcul Haute Per-
formance
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“Un corps est liquide lorsqu’il est divisé en plusieurs petites parties qui se meuvent séparément
les unes des autres en plusieurs façons di�érentes, et qu’il est dur lorsque toutes ses parties s’entre-
touchent, sans être en action pour s’éloigner l’une de l’autre”.

Descartes (1852)

1
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1 Introduction to granular media

The idea of Descartes (1852) can be extended to granular media such that a granular media
might be a particular state of matter usually defined between liquid and solid. It behaves

like a liquid because it flows, can fill a container and can take its shape. Unlike liquids, a non
horizontal free surface canbe stable. It also behaves like a solid since it can resist to compression
and slightly to shear stress (or deviatoric stress). However, a solid can resist to traction, whereas
a granular media can not.

Ultra-fine Super-fine Granular Granular Broken
powder powder powder solid solid

[0.1; 1] µm [1.0; 10] µm [10; 100]µm [0.1; 3]mm > 3mm

Powders
Granular materials

Table 1.1 – Particle classification and examples. Credit: Brown and Richards (1970)

Since a granular media is a collection of particles, it is essential to introduce the concept
and the definition of the particle size classification, particle shape, roughness, etc (Tab. 1.1).

The sorted categories of particles are encountered in many applications such as in civil
engineering, food processing, pharmaceutics, foundry, geophysics, astrophysics, oil and gas,
energy, etc. Thus, each field of applications has its own specific vocabulary for the classification
of the shape and size.

In the field of civil engineering, the cement industry appears to be one of the largest users
of granular materials. In fact, cement is obtained by mixing limestone (80%) and clay (40%)
at high temperature. There is also the concrete manufacturing industry which plays a signif-
icant role in terms of granular materials usage. For instance, Lafarge, a French multinational
company, which is the world leader in the production of cement, construction aggregates and
concrete has 166 plants in the world and a capacity of 225Mt/year.

Figure 1.1 – Cement plant Figure 1.2 – Inside a cement mill

After water, granular materials are the second most used resources on Earth (Duran
(1999)). One of themain issues encountered in the field of food processing is the storage prob-
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lem and the discharge of containers. Fig. 1.4 illustrates the particular problem of segregation
in the discharge of containers. Generally, segregation occurs when a flowing granular media
made of various particle sizes is disturbed leading to a rearrangement of particles. It appears
often while vibrating a container during a pouring or a discharge procedure.

Figure 1.3 –Hopper discharge Figure 1.4 – Segregation inside a hopper near the
exit hole

Granular materials are also seen in nature such as sand on the beach, in the desert (10%
of Earth surface), in rivers, on continental shelves and abyssal plains, on hills, etc. There are
various phenomena which are related to the presence of sand, for instance the displacement
of sand dunes in the desert, river bed erosion, submarine avalanche, etc.

Nature can put on display dreadful and devastating phenomena such as snow avalanches
(Fig. 1.5) and landslides (Fig. 1.6).

Figure 1.5 – Typical powder snow avalanche. Figure 1.6 – Landslide burying a six-lane motor-
way in Taiwan.

Technically, an avalanche is an amount of snow sliding down a mountainside while land-
slide is the movement of rock, shallow debris or earth down a slope. In particular, powder
snow avalanche (Fig. 1.5) is known as an extremely violent avalanche. The typical mass of an
avalanche can easily exceed 10Gt and its velocity can reach 300km/h. This type of avalanche
holds a large amount of snow grains in the surrounding turbulent fluid. This phenomenon
is usually close to a dust storm in arid and semi-arid regions (Fig. 1.7) where particles are sus-
pended in the fluid. Another example is pyroclastic flows known as pyroclastic density currents
which come from volcano eruptions (Fig. 1.8) and where hot gas of about 1000◦ C is mixed
with rocks with a current velocity up to 700km/h. The boulders moving in pyroclastic flows
have very high kinetic energy so that they can flatten trees and destroy a whole building which
comes across their path. The hot gases are extremely lethal since they can spontaneously incin-
erate living organisms.
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Figure 1.7 –A dust storm passing over Onslow in
Australia.

Figure 1.8 – Pyroclastic flow flowing into the Tar
River in North Carolina.

Granular media are also found in the field of astrophysics. For example, the rings of Sat-
urn (Fig. 1.9) which are a massive collection of granular materials that infinitely collide while
rotating around the planet. Another example is the granular materials found in Mars which
are investigated during Mars exploration by NASA’s Mars rover Curiosity. In Fig. 1.10, the
rover cuts a wheel scuff mark into a wind-formed ripple at the “Rocknest” site to examine the
particle-size distribution of the material forming the ripple.

Figure 1.9 – Rings of Saturn. Figure 1.10 – NASA’s Mars rover Curiosity.
Credit: NASA/JPL-Caltech.

All of these phenomena involving granular media are still challenging to describe espe-
cially at a very large scale, where the overall dynamics is controlled by the scale of an individual
particle. Hence, scientist and engineers set up small-scale laboratory experimentations in or-
der to have an insight in the physics involved in the study of granular dynamics. In addition,
numerical simulations play an important role as enhanced physical models implemented in
modern parallel codes lead to increasingly accurate numerical models able to examine large
scale granular flows.

2 Rotating drums

Granular media flow is of utmost interest in many other industries. Rotating furnaces are
widely used in treatment of solids like drying, torrefaction, pyrolysis, calcination, impregna-
tion, chemical treatment . . . In all theses cases, it is highly preferable that the granular media is
mixed so as to control residence time and to prevent that the solid stays too long near or far
from the walls (or the injection points). The rotating drum is an experimental device that is
widely used to study the dynamics of granular media. The reproducibility of experiments are
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quite satisfactory and the system is continuously fed. One of the advantages of the set-up is
that experiments can be reproduced in short period of time. Hence, it offers the possibility of
performing a large amount of experiments on many flow regimes. The rotating drum is also
often chosen to study environmental flows such as pyroclastic flows or avalanches. Granu-
lar flow regimes are known to be impacted by particle shapes. For this purpose, many authors
studied the influence of particle shape on the dynamics of granularmedia, amongothers Favier
et al. (1999), Höhner et al. (2013; 2014), Lu et al. (2014). However, the numerical simulations
are performed on limited amount of particle shapes.

Figure 1.11 –Di�erent regimes found in rotating drum. Credits: Mellmann (2001).

Many flow regimes can appear as a function of the rotation rate. Mellmann (2001) pro-
posedmathematicalmodels to predict the transitions between the different formsof transverse
motion of a free-flowing bedmaterial in a rotating drum. These regimes are widely referred to
in the literature and are summarized in Fig. 1.11.

The Froude numberFr is usually the key factor of the characterization of the regime tran-
sitions in rotating drums. Nonetheless, this dimensionless number is often subjected to mod-
ification to account for the height of the bed of granular media, the particle diameter to the
drum diameter aspect ratio (dp/Dd) or the material properties of particles and of the drum.

3 Heterogeneous catalyst shape

3.1 Industrial context

Catalytic reactions and reactors have numerous applications such as production of chemicals
bulk, petroleumrefining, fine chemical pharmaceutics, biomass conversion, etc. Most catalytic
refining and petrochemical reactions are operated in fixed bed reactors. In these reactors, cat-
alyst pellets are randomly stacked in a large cylindrical vessel and reactants, usually gas and
liquid, flow through the bed to react inside the catalyst pellets. Catalyst pellets are designed to
be porous so that the reacting fluid can penetrate the particle to reach the reactive phase (no-
ble metals, metal sulphides, etc.) coated onto them. Main interest of heterogeneous catalysis
is that the surface area available for reaction is very large (typically 20− 200m2/g per pellet).
Catalyst particles are typically [0.2; 5]mm in size and can be spherical, cylindrical or can have
more complex shapes (Figs. 1.12 and 1.13). Catalyst shape is chosen in order to optimize the
reactor performance.

Performance, in the point of view of the refiner, is a compromise between catalyst lifetime
and cost, reactor yield, mechanical strength and operating costs. A higher catalyst activity is
generally preferable as it allows to operate either at lower temperature or in more severe con-
ditions (higher flow-rate or more difficult feedstock). A better activity can be achieved by in-
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(a) Example of spherical catalyst particles. Credits: Fal-
mouth Products Inc., Falmouth, MA.

(b) Example of catalyst particles developed
at IFPEN.

Figure 1.12 – Example of catalyst pellets.

creasing the amount of active phase which generally results in amore expensive catalyst. In the
case of mass transfer limitations, it can be interesting to increase the pellet surface to volume
ratio: the higher external area ensures a better accessibility to the inner volume of the pellet.
A higher surface to volume ratio can be achieved in reducing pellet size or changing the pellet
shape. Pressure drop in the fixed bed should beminimum to reduce the gas compression costs,
especially on the hydrogen feed. This is achieved using large pellets and high voidage packing.
Catalyst lifetime is limited by several mechanisms: bed plugging, catalyst leaching (part of the
active phase is taken outwith products), catalyst ageing (active phase changes in time and is less
active), catalyst coking (formations of deposits in the particle reduced access to active sites), etc.
Changing catalyst shape is a way tomanage bed plugging. Mechanical strength depend on the
pellet support material, its inner porosity and of course on the pellet shape. A lowmechanical
strength leads to a higher risk of pellet breakage which results in high pressure drop. If fines
are produced during pellet breakage, they can even plug the bed. In summary, shape change
in a convenient way to optimize catalyst performance.

Catalyst productionmethod has an impact on its costs. Extrusion of the pellets (Fig. 1.13b)
is quite cheap and allows to modify the shape by changing the die. Therefore, an important
effort is dedicated to the extrudate shapes and consists in finding the most optimised ones.

(a) Common shapes used in industrial applica-
tions.

(b)Extrudate catalyst pellets. Credit: Cooper
et al. (1986).

Figure 1.13 – Various shape of catalyst pellets.

From a chemical engineering perspective, optimizing a catalyst shape means finding a
shape minimizing pressure drop while maximizing the chemical conversion rate of the cata-
lyst.
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3.2 Shape and apparent catalytic activity

Inside the particle, mass transfer limitations may prevent all catalytic sites to exhibit full per-
formances: if reactant diffusion is slow compared to reactant consumption, it is possible that
reactant concentration at the center may be significantly lower than at catalyst pellet surface.
Using the classical Thiele approach (Thiele (1939)), chemical engineers can estimate the loss of
activity due tomass transfer limitation. Catalyst efficiency is defined as the ratio of the activity
of the particle to the activity of the particle if the concentration was uniform. For a reaction
of order n, this can be written :

η =

∫∫∫
V

KiC
ndv

∫∫∫
V

KiCn
0 dv

(1.1)

The analytical solutions of this equation are based on the dimensionless number known as
ThieleModulus. It compares the consumption by the reaction and the diffusion phenomena.
If it is larger than 1 then the reaction is mass transfer limited.

ΦL = Lp

(
KiC

n−1

Deff

)0.5

(1.2)

ΦL denotes the Thiele modulus,Lp a characteristic particle dimension,Ki the intrinsic reac-
tion rate constant,C the concentrationof reactant,n the reactionorder andDeff the effective
diffusivity.

Exact derivation of efficiency as a function of the Thiele modulus exists for semi-infinite
plate, sphere and infinite cylinder (Fig. 1.14).

For example:

(i) For plate: η = tanhΦL/ΦL

(ii) For sphere: η = (3ΦL coth 3ΦL − 1)/3Φ2
L

(iii) For cylinder: η = I1(2ΦL)/ΦLI0(2ΦL)

where In(x) is the Bessel function of order n.
For these derivations, the Thielemodulus does not depend on shape if it is rewritten using

Lp = Vp/Sp, as proposed by Aris (1957).
For a given Thiele modulus, it may appear that shape has little effect of the efficiency

(Fig. 1.14). Nevertheless, for ΦL ∼ 1, which is a frequent case, changing shape can improve
efficiency by a few percent, which is significant for industrial purposes. In fact, shape optimi-
sation is mostly about changing the ThieleModulus by changing the characteristic dimension
of the particleLp.

In order to improve efficiency, it is interesting to lower the Thiele modulus, hence increas-
ing the ratio Vp/Sp. Hence, this leads to the development of poly-lobed extrudates.

3.3 Pressure drop and Void fraction

Before industrialising a new shape of catalyst, it should be known how the shape will affect
pressure drop and the amount of catalyst that can be loaded in a reactor.

A large number of correlations has been proposed in literature. They are based whether
on empirical data or on numerical models. Among others, Cooper et al. (1986) proposed a
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Figure 1.14 – E�ectiveness factor for various shapes. X-axis : Thiele modulus, Y-axis : efficiency. Credit: Aris
(1957).

model which is based on the correlations of Midoux et al. (1976). The model is written in the
following from:

∆PLG = f1(X) ·∆PL = f2(X) ·∆PG (1.3)

whereX =

√
∆PG

∆PL

and∆PLG denotes the two-phase pressure drop per unit length.∆PG

and∆PL denote respectively the pressure drop of gas and liquid if they exist and assumed to
flow alone. If the pressure drop of a single phase flow is known, then the gas-liquid pressure
drop can be computed with sufficient accuracy. Being able to predict single phase pressure
drop is thus sufficient in the context of shape optimization.

The correlation of single phase pressure drop in packed bed of Ergun and Orning (1949)
and Ergun (1952) is widely used in the chemical sectors. They suggested to predict the pressure
drop through a packed bed as the sum of a viscous term (friction on particle surface) and an
inertia term (change in direction, expansion, contraction).

∆P

H
= 150

µ(1− ε)2

ε3
u

d2p
+ 1.75

ρf (1− ε)

ε3
u2

dp
(1.4)

where ε, µ, U , dp, H and ρf denote respectively bed void fraction, fluid dynamic viscosity,
particle diameter, height of the bed and fluid density. The numerical constants (150 and 1.75)
are fitted to match experimental data points and depend on the particle shape.

The correlation Eq. 1.4 exhibits a very strong dependency on void fraction. So far, there is
yet no way to analytically predict the void fraction of a packed bed for an arbitrary (new) par-
ticle shape . Experiments are necessary and they are not so easy to perform. A first problem is
that particles have randomdimensions: for extrudates, the diameter is almost constant but the
length can vary a lot in an uncontrolledmanner. Length distribution variationsmay influence
experimental results. A second issue is that a good accuracy of the void fraction is required to
be able to discriminate shapes. Reaching high accuracy requires the use of large vessels, and
repetition of experiments which is seldom performed on prototype shapes produced in small
amounts. A third issue is that the bed void fraction depends on the loading procedure and it
is very likely that some procedures designed for a specific shape may lead to very different re-
sults on others (for example: cylinders subjected to vibration tend to align vertically, which is
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of course not observed on spheres). Thus, void fraction measurements in these beds are quite
time consuming.

The pressure drop correlation uses a “particle diameter”, whose definition is not straight-
forward for non spherical particles. Several approaches have been suggested that try to estimate
an “equivalent diameter” based on shape factors (Cooper et al. (1986)):

de =
1

φs

(
6 · Vp

Sp

)
(1.5)

where φs is the shape factor (surface area of a sphere of equal volume/surface area of the par-
ticle), Vp andSp denotes respectively the volume and the surface of the particle. Interestingly,
this expression resembles the characteristic length recommended by Aris Aris (1957) to com-
pute the Thiele modulus.

It can be seen in Fig. 1.15 that the pressure drop is quite dependent on particle shape and
volume to surface ratio. So far correlations to estimate pressure drop of new particles shapes
are failing to be predictive enough due to a lack of knowledge of the void fraction as well as
scarce and scattered of experimental data (Nemec and Levec (2005)).

(a)Dense-loaded pressure drop (b) Sock-loaded pressure drop

Figure 1.15 –Dependency of pressure drop on loading technique and particle shape. Credit: Cooper et al. (1986).

3.4 Summary on catalyst shape optimization: Need for predictive tools

Changing particle shapes can be quite interesting to increase particle efficiency through in-
creasing the surface to volume ratio. Efficiency wise, shape selection can be performed using
simulation tools. On the opposite side, the pressure drop estimation requires experiments
that are time consuming and ill-adapted to screen a large number of candidate shapes. New
numerical tools are welcome to ease particle shape evaluation.

4 Scope of the thesis

This Ph.D. thesis is a multi-disciplinary work in the framework of a collaboration between
two departments at IFP Energies nouvelles:

• Fluid Mechanics Department,
• Process Experimentation Department,
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INRA Montpellier and the CNRS laboratory of Mechanics and Civil Engineering at Mont-
pellier.

The overall objective of this work is twofold :
• to develop numerical tools:

– Extension of the modelling capabilities of Grains3D (a massively parallel Discrete
Element Method code for granular dynamics) to treat non-convex particles based
on a decomposition of a non-convex particle into a set of convex ones

– Extension of the modelling the capabilities of PeliGRIFF (a massively parallel Di-
rect Numerical Simulation code) to handle non-convex particles in the coupling
the dispersed granular phase with the flow solver using a Distributed Lagrange
Multiplier / Fictitious Domain (DLM/FD) formulation

• to use these enhanced of the tools to improve physical comprehension of:
– Silo discharge
– Dam breaking
– Fluidization
– Simulation of 2D- and 3D- cross particles in a rotating drum
– Assessing the effect of catalyst shape on fixed bed void fraction
– Assessing the effect of catalyst shape on pressure drop

This work has been or will be presented for publication in 4 papers that will be used as the
back bone of this thesis manuscript which is organized as follows:

• Chapter 2: Granular flow simulation: A literature review
• Chapter 3: Non-convex granular media modelling with Grains3D (paper 1)
• Chapter 4: Optimizing particle shape in fixed beds: simulation of void fraction with
poly-lobed particles (paper 2)

• Chapter 5: Grains3D: a massively parallel 3D DEM code (paper 3)
• Chapter 6: A literature review on Particle-Resolved Simulation
• Chapter 7: Non-convex particles with PeliGRIFF and pressure drop in fixed bed reac-
tors (paper 4)

• Chapter 8: Conclusion and perspectives
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Résumé

Ce chapitre introduit les contextes scientifique et technique des milieux granulaires ainsi que
leurs différentes applications. En particulier, les tambours tournants et les réacteurs à lit fixe.
Dans la première application, un intérêt particulier est porté sur la dynamique des milieux
granulaires dans les tambours tournants en vue d’étudier l’impact de la forme des particules
celle-ci. Pour ce qui est de la deuxième application, la prise en compte de nouvelles formes
de grains de catalyseur permet d’augmenter leur efficacité en augmentant le rapport surface-
volume. Grace aux simulations numériques, il est alors possible de tester plusieurs formes de
particules et de calculer les pertes de charge au travers des lits de catalyseurs formés par ceux
issus des séléctions.

Les principaux objectifs de cette thèse sont organisés en deux volets:
• Développement d’outils numériques:

– Extension du code Grains3D (code “Discrete ElementMethod”massivement par-
allèle pour la dynamique des milieux granulaires) pour pouvoir traiter des partic-
ules de formes non-convexes. Le modèle est basé sur la décomposition de la forme
non-convexe en plusieurs formes convexes quelconques.

– Extension dumodule SimulationNumérique Directe du code PeliGRIFF pour le
couplage entre la phase dispersée (particules non-convexes) et le solveur des équa-
tiondeNavier-Stokes enutilisant la formulationMultiplicateur deLagrange /Do-
maine Fictif (“Distributed Lagrange Multipliers / Fictitious Domain”).

• Utilisation des modéles implémentés pour des études physiques, telles que:
– Vidange de silo
– Effondrement de colonne de particules
– Fluidisation
– Dynamique des particules en forme de croix dans des tambours tourants
– Effet de forme des catalyseurs sur le taux de vide dans des lits fixes
– Effet de forme des catalyseurs sur la perte de charge au travers des lits fixes

Ces travaux de thèse ont donné lieu à quatres articles soumis ou encore à soumettre qui
serviront de bases pour ce manuscrit:

• Chapitre 2: Simulation numérique d’écoulement granulaire: une revue de la littérature
• Chapitre 3: Modélisation des milieux granulaires avec Grains3D (article 1)
• Chapitre 4: Optimisation des formes des particules: simulation du taux de vide avec des
particules poly-lobées (article 2)

• Chapitre 5: Grains3D: Un code DEMmassivement parallèle (article 3)
• Chapitre 6: Simulation Numérique Directe: état de l’art
• Chapitre 7: Particules non-convexes avec PeliGRIFF et perte de charge dans les réacteurs
à lit fixe (article 4)

• Chapitre 8: Conclusion et Perspectives
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1 Laboratory scale experiments of dry granular flow

Numerical simulations are meaningless without experimental validations. These valida-
tions allow scientists to gain confidence in their numerical tools. Therefore, numerical

models can then later be used to produce more accurate predictions.
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Figure 2.1 – Sketch of dense granular flows in experimental studies (Pouliquen and Chevoir (2002)). (a) Shear
cell, (b) Vertical chute, (c) Inclined surface, (d) Heap formation.

Many dry granular flow configurations can be studied at the laboratory scale. Configu-
rations presented in Fig. 2.1 are among the most studied ones. The shear cell configuration
(Fig. 2.1a) is a classical case where an imposed strain rate in the form of a relative motion is ap-
plied to a collection of particles between two walls which can be either those of coaxial cylin-
ders (Miller et al. (1996), Schöllmann (1999)), or those of parallel planes (Babic et al. (1990),
Aharonov and Sparks (1999)). This type of configuration is useful in the investigation of the
effect of continuous shear stress on granular materials. Fig. 2.1b shows a gravity-driven flow
confined between two vertical planes or in a cylinder (Nedderman and Laohakul (1980), Ned-
derman and Laohakul (1980), Denniston and Li (1999)) controlled by a horizontal plan or
disk with a vertical, steady and uniform motion. Since hopper discharge is a matter of inter-
est in many fields, this configuration offers the opportunity to gain a better comprehension
of phenomena which are involved in industrial facilities as e.g. mining. Flows on inclined
planes (Hanes andWalton (2000), Silbert et al. (2001)) in Fig. 2.1c are common for the study
of geophysical phenomena such as landslides or avalanches. This experimental set up gives a
representation of how granular materials are accelerated by an inclined surface (e.g. down a
hill). Fig. 2.1d exhibits a flow on a pile (Khakhar et al. (2001), Andreotti and Douady (2001))
where the slope is promoted by the flow rate which is the unique control parameter of the
system.

Hypothesis 2.1 In the following sections, the study of a granular media is carried out under the following assump-
tions:

• attraction forces are neglected (e.g. electrostatic, capillary, van der Waals, etc.)
• particles are most of the time in contact, a packing of granular material can be considered
as porous medium
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2 Granular media modelling

Far from being understood, granular media is a simple system of large number of particles
of various shapes, sizes and materials (Umbanhowar (1997)). The motion of the system can
be described by the classical Newton’s laws of motion which are the foundation of classical
Mechanics. The nature of contact depends on the type ofmaterials and geometrical properties
of particles and defines the behaviour of the granularmedia which can be simulated by various
methods.

2.1 Hard sphere approach

Elastic collision essentially governs the hard spheremodel. The state of the particles after a col-
lision is describedby the conservationofmomentum(translational and angular). The collision
is only reduced to the interpretation of the total kinetic energy which is converted to poten-
tial energy associated with a repulsive force between two bodies and converted back again to
kinetic energy. The following hypothesis are adopted in this approach:

• Contact occurs at a single point only
• Collisions are supposed to be binary and quasi-instantaneous
• Multiple collisions are defined as a succession of binary collisions
During a collision, the energy is conserved in the elastic deformation associated to normal

and tangential displacements of the contact point, then dissipated in these directions.
Before a contact, for given velocities, only three coefficients are needed to evaluate the post-

collisional velocities (Herrmann and Luding (1998)):
• The coefficient of normal restitution which defines the incomplete restitution of the
normal component of the relative velocity.

• The coefficient of friction which relates the tangential force to the normal force
(Coulomb’s law)

• The coefficient ofmaximum tangential restitutionwhich delimits the restitution of tan-
gential velocity of the contact point.

2.2 Soft-particle and Discrete Element Method (DEM)

“Soft-particle” is usually referred to the deformation of the particle during contact. In reality,
this method allows a small overlap of particles during the contact. Whilst particles remain
geometrically rigid, the deformation is considered in the formulation of force models. The
duration of contact is finite and multiple contact may occur simultaneously.

Discrete ElementMethod, sometimes calledDistinct ElementMethodhas beendeveloped
over the past 30+ years. Cundall and Strack (1979) historically designed DEM for industrial
process simulations of very small systems. Thenumericalmodel dealtwith granular assemblies
made of discs and spherical particles.

Following thiswork, numerous authors in different scientific communitieswere interested
in modelling systems up to 1000 particles in two dimensions using idealised particles. Later
on, DEM models have been improved in a way that complex three dimensional geometries
can be treated. As the computing power increases, large scale simulations started to show
an important potential. In their study, Walther and Sbalzarini (2009) presented a large-scale
computation of 122million particles using High Performance Computing to simulate a sand
avalanche.

Thanks to High Performance Computing, the realism of granular simulation has been
drastically improved. Therefore, large scale industrial applications can be treated such as oil
and gas refining or geophysical flows. With the increase of computing power, researchers are
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now able to simulate multiphase flow systems. For instance, particulate flows which are sys-
tems of particles filled with fluid in their surrounding interstices. This type of system can be
simulated by coupling aComputational FluidDynamics code and aDiscrete ElementMethod
code (e.g. Tsuji et al. (1993) andWachs (2011)).

Most ofDEMsimulations are performedusing spherical particles. Nevertheless, real parti-
cles have irregular or complex shape. Spherical particles are usually used because of the easiness
of its characterization. In fact, its radius is all that is needed to describe it. The contact detec-
tion is simple, it satisfies ‖G1G2‖ − r1 − r2 ≤ 0, where G and r denote respectively the
centres of gravity and the radii of particle 1 and particle 2. The contact model is defined as a
single point whereas for complex particles it can be several surfaces, lines or points. As a con-
sequence, the mechanical behaviour of granular materials can be modified (Nouguier-Lehon
et al. (2003), Szarf et al. (2009), Flemmer et al. (1993), Escudié et al. (2006)).

The accuracy of computations is improved by introducing a variety of contact detection
algorithms for various particle shapes.

2.3 Non-Smooth Contact Dynamics (NSCD)

The Non-Smooth Contact Dynamics also called Contact Dynamics was originally resulting
from the mathematical formulation of non-smooth dynamics developed by Moreau (1977;
1994), Jean and Pratt (1985), Jean (1995; 1999). It is also a Discrete Element Method (Radjai
and Richefeu (2009)) dedicated for numerical simulations of granular materials. Unlike the
traditional DEM soft-sphere model, the NSCD method does not use numerical schemes to
resolve the small time and length scales involved in particle-particle interactions. The effects
of small scales are incorporated in contact laws with a non-smooth formulation described at
larger scales.

Thismethodhas been successfully applied to numerous problems, among other theworks
of Radjai et al. (1996; 1998), Radjai and Roux (2002), McNamara and Herrmann (2004),
Azéma et al. (2007).

2.4 Hybrid soft and hard sphere collision

Buist et al. (2016) introduced the hybrid soft and hard sphere model. It is a novel and efficient
approach to compute collisions in particulate flow systems. It takes the advantages of both the
hard sphere collision model and the soft sphere model. In fact, the hard sphere model is used
for binary collisions, whereas the soft sphere model is required for multi-boy contacts. The
hybridmodel has the ability of discarding the numerical integration of the contact for all pairs
of binary interactions. Hence, the model allows the use of large time step which decreases the
computing time.

2.5 ContinuumMechanics Methods (CMM)

The distinctive feature of this model is that it uses an Eulerian approach for the granular be-
haviour (Tüzün et al. (1982), Polderman et al. (1987), Jenike (1987), Drescher (1992) and Džiu-
gys andPeters (2001)). The set of continuumequations (continuummechanics) can be used to
describe the motion of granular media. In this framework, a granular media can be described
as a viscoplastic “granular fluid”, a “granular gas” (Campbell (1990)) or a viscoelastic-plastic
soil.

The equations of fluidmechanics are involved in this model. If themotion of the granular
flow is rapid enough, predicting the system behaviour leads to the solution of a turbulent
two-phase flow. In that case, the model becomes less accurate and very complex. Thus, this
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method is suitable for particular processes only (Barker (1994)) and its results can differ from
experimental data by an order of magnitude (Džiugys and Peters (2001)).

2.6 Other approaches

Other approaches exist in the literature such as:

• Geometrically steepest descent method which has been studied by Jullien and Meakin
(1987)

• Quasi-static approach (Borja andWren (1995))

• Shinbrot’s model which combines CMM and DEMmodels (Umbanhowar (1997))

3 Contact detection algorithm

The contact resolution is very important, particularly in the investigation of multi-body
system evolution over time. This has a significant number of applications such as com-
puter graphic, computer animation, especially in 3D computer games (Palmer and Grimsdale
(1995)), robotics (Gilbert and Foo (1990)) and military applications.

For large number of objects the contact detection is a major computational obstacle. In
fact, the process of contact detection is divided in two phases: the neighbour search phase and
the contact resolution phase. Thus, numerous authors investigated algorithms for particulate
simulations (Iwai et al. (1999), Gilbert et al. (1988), Feng and Owen (2004) and King (2008))
in order to increase the accuracy of contact detection and decrease its computational cost.

4 Discrete ElementMethodwith complex particle shapes

Granular dynamics are described in terms of Newton’s laws of motion which are physical laws
that laid the foundation of classical Mechanics (Newton (1687)). They are summarized as fol-
low:

Newton’s laws of motion

• First law: Every body perseveres in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces impressed thereon

• Second law: The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which that force is im-
pressed

• Third law: To every action there is always opposed an equal reaction: or the mu-
tual actions of two bodies upon each other are always equal, and directed to con-
trary parts

Modelling difficulties arise from the consideration of particle shapeswhich can range form
a very simple shape such as sphere in 3D or disk in 2D to very complex shapes. In fact, a con-
tinuously increasing number of studies is dedicated to non-spherical particles. In addition,
contact detection requires robust and fast algorithms in order to save computing cost. Thanks
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to High Performance Computing, Discrete ElementMethod allows the computation of large
systems relevant of industrial applications such as oil and gas refining processes which are the
main scope of this thesis.

4.1 Importance of particle shape

DEM simulations can provide both macroscopic and microscopic measurements in granular
media, but the shape representation of particles is still a challenging aspect. Therefore, han-
dling non-spherical particle shape in DEM simulations is not straightforward. Contact detec-
tion algorithm are very rarely valid for any shapes. Many authors designed advanced strate-
gies to compute contacts between various types of shape but most of these strategies are only
suitable for a single specific shape such as cubes (Fraige et al. (2008)), ellipsoids (Džiugys and
Peters (2001)). Super-quadrics offer a first level of versatility as many shape can be approached
by varying coefficients in the generalised quadric equation (Cleary (2010)).

Traditionally, particles shape is approximated by a sphere in 3D and a disc in 2D. The
shape plays a significant role in Discrete Element Method simulations since neither a sphere
nor a disc approximation can always reproduce the real behaviour of granular assemblies. The
major differences between real and approximated particle shapes are: resistance to shear stress
and failure, volume of revolution, realistic void fraction and energy partition.

Intuitively, it is easy to figure out how the force is oriented when two circular particles
collide. In fact, the normal force is directed along the line of both centres and no torque is
generated. Whereas for non-circular particles, if the normal force is not directed toward the
centre of mass, a torque is generated (see Fig. 2.2).

 

(a) Sketch of collision between two particles. (b) Contact scenarios between two cylinders.
Credit: Kodam et al. (2010a).

Figure 2.2 – Decomposition of trilobal and quadralobic particle shapes into convex shapes. View of the cross
sections.

4.2 Brief review of particle shape in literature

Ellipse/Ellipsoid

One of the simplest representation of non-spherical shape is an ellipsoid in 3D and ellipse in
2D. The algebraic and parametric form of an ellipsoid is expressed as follows:

(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1 (2.1)
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x = a cos θ cosϑ, y = b cos θ sinϑ, z = c sinϑ (2.2)

Where x, y, z are the coordinates in the fixed-body reference system, whereas a, b, c are
the half length of the principal axes of the shape, θ ∈ [−π/2; π/2] and ϑ ∈ [−π; π] are the
parametric representation of the particle.

Figure 2.3 – Contact approximation between two ellipsoids using a curvilinear region defined by pairs of θ-
and ϑ-curves: (a) first approximation and (b) final approximation. Credit: Lu et al. (2015) (adapted from
Rothenburg and Bathurst (1991)).

The contact detection algorithm relies on the determination of the intersection point be-
tween two ellipses in 2D (Rothenburg and Bathurst (1991)) and two ellipsoids in 3D (Ouadfel
and Rothenburg (1999)). The contact resolution procedure in 3D is illustrated in Fig. 2.3.

Super-quadrics

The so-called super-quadric equation allows the representation of both convex and non-
convex shapes and was suggested by Barr (1981) and later on adopted in Discrete Element
Method by Williams and Pentland (1992). The algebraic and the parametric forms are ex-
pressed as:

f(x, y, z) =
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) 2

ε2 +
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b

) 2

ε2

) ε2
ε1

+
(z
c

) 2

ε1 − 1 (2.3)

x = a(sin θ)ε1(cosϑ)ε2 , y = b(sin θ)ε1(sinϑ)ε2 , z = c(cosϑ)ε1 (2.4)

where a, b, c denote the half length of the principal axes of the shape, and ε1 and ε2 are the
parameters which control the “blockiness” of the particle. ε1 controls the blockiness of the
cross-sectional planes yOz and yOz, whereas ε2 controls that of the cross-sectional plane in
xOy. When ε1 = ε2 = 1 the equation of the super-quadric Eq. 2.3 is equal to that of the
ellipsoids (Eq. 2.1). θ ∈ [−π/2; π/2] and ϑ ∈ [−π; π] are the parametric representations
of both super-quadric and ellipsoid.
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ε1 = 0.2, ε2 = 0.2 ε1 = 1.0, ε2 = 0.2 ε1 = 3.0, ε2 = 0.2 ε1 = 10., ε2 = 0.2

ε1 = 0.2, ε2 = 1.0 ε1 = 1.0, ε2 = 1.0 ε1 = 3.0, ε2 = 1.0 ε1 = 10.0, ε2 = 1.0

ε1 = 0.2, ε2 = 3.0 ε1 = 1.0, ε2 = 3.0 ε1 = 3.0, ε2 = 3.0 ε1 = 10.0, ε2 = 3.0

ε1 = 0.2, ε2 = 10.0 ε1 = 1.0, ε2 = 10.0 ε1 = 3.0, ε2 = 10.0 ε1 = 10.0, ε2 = 10.0

Figure 2.4 – Examples of 3D super-quadrics. Credit: Lu et al. (2015).

Polygons and Polyhedrons

Since ellipsoidal and super-quadric shapes do not always represent all particles found in nature
and industry, many authors oriented their research in the exploration of polygonal and poly-
hedral shapes (e.g.Hart et al. (1988) and Lee et al. (2009)). While new shapes are designed, new
corresponding contact algorithms are required. Polygons in 2D and polyhedra in 3D are such
shapes that ellipsoids can not represent and super-quadrics can only but asymptotically. For
instance, the contact detection algorithm is quite straightforward in 2D. In fact, the contact
detection algorithm relies on the number of edges of the polygon. The computational cost
scales withNi ×Nj whereNi andNj are the numbers of vertices of the colliding particles i
and j.

In 3D, the contact resolution can be very complex. In fact, the contact detection algorithm
requires some complex combinations of elements such as vertex-vertex, vertex-edge, vertex-
face, edge-edge, edge-face and face-face. The computational efficiency of the contact detection
algorithms of polygonal/polyhedral particles is improved by introducing the so-called "Com-
mon Plane" algorithm developed by Cundall (1988).

Definition 2.1 A common is a plane that, in some sense, bisects the space between the two contacting particles.
Cundall (1988)

G. Nezami et al. (2006) demonstrated the uniqueness of the Common Plane for any cou-
ple of two convex particles and the perpendicularity of the contact normal to the CP.
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(a) (b)

Figure 2.5 – Illustration of the common plane technique between two colliding polygons. (a) Definition of the
common plane, (b) Five probable planes for the common plane all pass through the mid-pointO of the linear
section PQ (P andQ are the "closest vertices" of polygon 1 and 2). They are the plane which is perpendicular
to the linear section PQ, and the planes that are parallel to the polygon edge PP1, PP2,QQ1 andQQ2

where P1 and P2 are the vertices of particle 1 next to P and Q2 and Q2 are the vertices of particle 2 next
to Q. Credit: Lu et al. (2015) (adapted from Nezami et al. (2004)).

Spherosimplices

The modelling of non-spherical particles using the so-called “spherosimplices” has received
a particular interest over the last decade (e.g. Pournin and Liebling (2005) and Alonso-
Marroquín andWang (2009)). A spherosimplices-shapedparticle is a combination of a skeleton
(e.g. a point, a linear segment, a polygon or a polyhedron) and a disk or a sphere (e.g. Fig. 2.6)

(a) Non-spherical spherosimplices particles.
Credit: Pournin and Liebling (2005).

(b) Spheropolygon obtained by moving a disk
around the polygon. Credit: Alonso-Marroquín
and Wang (2009).

Figure 2.6 – Various spherosimplices particle shapes.

Composite particles made of multiple spheres

Particles composed of multiple spheres are often called “glued spheres” (Fig. 2.7) in the lit-
erature, referring to the fact that spherical particles are glued together to build the compos-
ite shape. This method is quite popular in the DEM community (e.g. Nolan and Kavanagh
(1995), Kruggel-Emden et al. (2008)).

One of the advantages of this method is its ability to reproduce a given shape with a loose
approximation by “gluing” many spherical particles together. Therefore, a fast and robust
contact detection algorithm for spheres can be applied to the particle. Nonetheless, a very
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Figure 2.7 –Multi-sphere particle impacting a flat wall. (a) single contact, (b) double contact and (c) a triple
contact. Credit: Kruggel-Emden et al. (2008).

large number of spheres has to be glued to reach a high definition of surface smoothness which
increases the computational cost of the method.

The particularity of this method is that, if required, the primary spheres can also overlap
with each other. Such a built particle is governed by rigid-body motion so that the relative
positions of the components do not change during collisions. The forces and torques acting
on primary spheres are summed relatively to the centre of mass of the composite particle and
are subsequently used to calculate its trajectories (Favier et al. (1999)).

5 Synthesis

Since almost any non-convex particle can be decomposed into a set of arbitrary convex par-
ticles, none of the previous strategies is suitable for the goal of this study. In fact, the closest
method would be the glued spheresmethod but regardless of the computation cost. Another
option would be the use of super-quadrics but the range of parameters of their equation does
not allow the access of the targeted shapes of this study. The other methods do not fall in line
with the scoop of the present study. Based on these observations, it is concluded that the best
strategy and suitable for modelling granular media of non-convex particles, at least at the cur-
rent state of the granular code Grains3D, is the decomposition of a non-convex particle into
a set of arbitrary convex bodies. The model is called “glued convex” and is introduced in the
next chapter.
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Résumé

Ce chapitre comprend une revue détaillée de la littérature sur lamodélisation desmilieux gran-
ulaires de particules de formes complexes. Différentes approches sont alors exposées ainsi que
la complexité de la détectionde contacts entre deuxobjets. Enpremier lieu, lemodèle de sphère
dure est présenté avec ses avantages et ses inconvénients. En second lieu, la combinaisonmod-
èle de sphere molle et méthode des éléments discrets (DEM) qui est couramment utilisée dans
la litérature. Ensuite, le modéle “Non-Smooth Contact Dynamics (NSCD)” et le modèle hy-
bride sphèremolle et sphère dure. Et enfin, quelquesmodèles qui sontmoins utilisés que ceux
cités précédement tels que la méthode des milieux continus ou l’approche quasi-statique ou
encore le modèle de Shinbrot.

La détection de contact est un problème à part entière car elle est souvent dépendante de
la forme étudiée. En effet, pour certaines formes de particules, le contact peut se résoudre
analytiquement tandis que pour d’autres formes elle nécessite des algorithmes puissants. Dans
ce chapitre, quelques formes courantes sont introduites avec les méthodes de résolution des
contacts associées.

Cette revue de littérature a permis de mettre en evidence que les modèles existants dans la
littérature sont inadéquats pour les problémes qui font l’objet de cette thèse. D’où la proposi-
tion du nouveau modèle nommé glued convex (“convexes collés”).
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In this paper, the “glued convex” method is presented to model non-convex particle shape
with validation cases. Then we used the model to explore the effect of particle shapes on
packing porosity and on flow regimes in rotating drum with 2D- and 3D-crosses.
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Abstract

Large-scale simulation using the Discrete Element Method (DEM) is a matter of interest as
it allows to improve our understanding of the flow dynamics of granular flows involved

in many industrial processes and the environment flows. In industry, it leads to an improved
design and an overall optimisation of the corresponding equipment and process. Most of
DEM simulations in the literature have been performed using spherical particles. Very few
studies dealt with non-spherical particles, even less with non-convex ones. Even spherical or
convex bodies do not always represent the real shape of certain particles. In fact, more complex
shaped particles are found in many industrial applications as, e.g., catalytic pellets in chemical
reactors. Their shape influences markedly the behaviour of these systems. The aim of this
study is to go one step further into the understanding of the flow dynamics of granular media
made of non-convex particles. Our strategy is based on decomposing a non-convex shaped
particle into a set of convex bodies, called elementary components. The novelmethod is called
“glued convex”method, as an extensionof the popular “glued spheres”method. At the level of
elementary components of a “glued convex” particle, we employ the same contact detection
strategy based on a Gilbert-Johnson-Keerthi algorithm and a linked-cell spatial sorting that
accelerates the resolution of the contact. The new “glued convex”model is implemented as an
extension of our in-house high fidelity code Grains3D that already supplies accurate solutions
for arbitrary convex particles. The extension to non-convex particles are illustrated on the
filling of catalytic reactors and the flow dynamics in a rotating drum.

1 Introduction

Discrete ElementMethodwas originally designed to handle spherical particles. Themethod is
now able to deal with more complex particle shapes (Cundall (1988), Hart et al. (1988), Wachs
et al. (2012)). Thanks to its conceptual simplicity this method is widely used in granular media
modelling. Its computational implementation is very straightforward for spheres but is quite
difficult for complex particle shapes. Many approaches have been investigated since the late
80’s, among them the works of Cundall (1988) and Hart et al. (1988). They studied a system
composed of polyhedral blocks and used a robust and rapid technique (Common Plane tech-
nique) to detect and to categorise contacts between two polyhedral blocks. Later on, many
authors worked on the extension of DEM to non-spherical particles. For example, Munjiza
et al. (2009) constructed a poly-ellipsoid particle by “gluing” ellipsoids together. One of the
most famous extensions of DEM is the “glued spheres” model in which a complex shape is
approximated by “gluing” spherical particles. For instance, Nolan and Kavanagh (1995) used
this approximation to study the random close packings of cylindrical-, bean- and nail-shaped
particles. They found good agreement between their simulations and experimental data. Song
et al. (2006) used this approach to study the contact criteria for tablet-flat surface and tablet-
tablet contact. At first sight, this method seems to be well adapted to any shape. Nonethe-
less, the higher the number of spheres is the less efficient the computation becomes as Song
et al. (2006) demonstrated. Li et al. (2004) modelled sphero-disc particles to study the flow
behaviour, the arching and discharging in a hopper. Another extension of Discrete Element
Method to polygonal shaped particles was suggested by Hart et al. (1988), Feng and Owen
(2004) and polyhedral shaped particles (Fraige et al. (2008), Lee et al. (2009)). These new fea-
tures enabled research groups to address several problems in the field of geophysics (Hentz
et al. (2004), Jing (1998), Camborde et al. (2000)).

Available strategies in the literature to handle complex shapes were already reviewed in de-
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tail inWachs et al. (2012). We simply give here again a short overview. Williams andO’Connor
(1995) introduced the Discrete Function Representation of a particle shape to address contact
resolution. DPR is applicable to convex geometries and to a restricted set of concave geome-
tries. Williams and Pentland (1992) explored the critical influence of particle shape on granu-
lar dynamics and suggested super-quadric particles for geophysical applications. This method
allows the design of particles with rounded edges such as ellipsoid, blocks, or tablets by in-
troducing a continuous function (f(x, y, z) = (x/a)m + (y/b)m + (z/c)m − 1 = 0)
that defines the geometry of the object. The weakness of this method relies on the handling of
contact detection. In fact, the more the edge angularity increases the more the discretisation
needs points to discretise f(x, y, z). Therefore, computational cost of the contact detection
increases with edge (or shape) angularity. A probability-based contact algorithm is presented
in theworkof Jin et al. (2011): contacts betweennon-spherical particles are translated into those
between spherical particles with probability. Alonso-Marroquín and Wang (2009) presented
a method to simulate two-dimensional granular materials with sphero-polygon shaped parti-
cles. The particle shape is represented by the classical concept of a Minkowski sum (Bekker
and Roerdink (2001)), which permits the representation of complex shapes without the need
to define the object as a composite of spherical or convex particles. Hence, this approach has
proven to bemuchbetter than the glued spheresmethod. Themodelling of non-spherical par-
ticles using the so-called “spherosimplices” has received a particular interest over the last decade
(Alonso-Marroquín andWang (2009), Pournin and Liebling (2005)). A spherosimplex-shaped
particle is combination of a skeleton (e.g. a point, a linear segment, a polygon or a polyhedron)
and a disk or a sphere.

Contact resolution is a core component ofDEM simulations. A proper contact resolution
ensures accurate DEM computed solutions. The Gilbert-Johnson-Keerthi (GJK) algorithm
(Bergen (1999), Gilbert et al. (1988)) is a good candidate for this particular problem and well
suited for arbitrary convex shaped particles. This algorithm was first introduced by Petit et al.
(2001) and later generalized by Wachs et al. (2012) to study the effect of non-spherical particle
shape in granular flows. The GJK algorithm is an iterative approach to compute the euclidean
minimal distance between two convex objects. The GJK reduces the problem of finding the
minimal distance between two convex bodies to finding the minimal distance between their
Minkowski difference and the origin (Gilbert et al. (1988)).

Beyond theproblemof contact detection,modellingdifficulties related tomultiple contact
handling for complex shaped particles also require to be addressed. In the existing literature
on this problem, Abbaspour-Fard (2004) pointed out the validity of a multi-sphere model
in various phenomena such as sliding, dropping and conveying, while Kruggel-Emden et al.
(2008) studied the macroscopic collision properties of the glued sphere model and compared
them to experimental results. In their study, the total contact force of a multi-sphere particle
impacting a flatwall is treated by computing themeanof the forces at each contact point. Later
onHöhner et al. (2011) pointed out that thismethod is not accurate enough. They showed that
there is a non-negligible effect of the particle shape approximation (artificial roughness created
by gluing spheres) on the force temporal evolution in normal and tangential directions.

2 New glued ConvexMethod

The aim of this study is to introduce a novel variant of Discrete Element Method able to
deal with non-convex particle shapes and to use it to simulate the flow dynamics of granu-
lar media. The strategy is based on decomposing a non-convex particle, called the composite,
into a set of convex bodies, called elementary components. This approach, called “glued con-
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vex”, is inspired by the glued spheres method introduced byNolan and Kavanagh (1995). Our
glued convex method is implemented in our in-house granular solver Grains3D (Wachs et al.
(2012)). This enable us to use existing methods, models and algorithms already implemented
in Grains3D such as time integration of equations of motion, quaternions for body rotation,
linked-cell spatial sorting and the Gilbert-Johnson-Keerthi algorithm for collision detection
(Gilbert et al. (1988), Gilbert and Foo (1990)). In particular, the GJK algorithm is applied to
elementary components. A contact between a glued convex particle, i.e., a composite, and
another glued convex particle, i.e., another composite is detected if at least one elementary
component of the former contacts with one elementary component of the latter.

A two dimensional illustration is presented in Fig. 3.1.

 

 

Figure 3.1 – 2D illustration of the decomposition of a non-convex particle into a set of elementary convex
components.

2.1 Equations of motion

The dynamics of a granular material made of (non-convex) particles is entirely governed by
Newton’s law (Newton (1687)). Assuming thatN bodiesmake up the granular system ismade
of N particles, the complete set of equations which governs the flow dynamics is:

Mi
dUi

dt
= Fi (3.1)

Ji

dωi

dt
+ ωi ∧ Jiωi = Mi (3.2)

dxi

dt
= Ui (3.3)

dθi

dt
= ωi (3.4)

whereMi, Ji, xi and θi denote the mass, moment of inertia tensor, position of the centre of
mass and angular position of particle i, i ∈ [0, N − 1]. The translational velocity vectorUi

and the angular velocity vectorωi of the centre of mass are involved in the decomposition of
the velocity vector asvi = Ui +ωi ∧Ri, whereRi denotes the position vector with respect
to the centre of mass of a particle i. Fi and Mi stand for the sum of all forces and torques
applied on particle i. They are defined as follow:

Fi =Mig +
N−1∑

j=0,j 6=i

Fij (3.5)
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Mi =
N−1∑

j=0,j 6=i

Rj ∧ Fij (3.6)

Rj denotes a vector which points from the centre of mass of the particle i to the contact
point with particle j. It is assumed that all particles are subjected to gravity and contact forces
only.

2.2 Strategy

It is important to show the strategy adopted in the presentworkwhich allows the computation
of granular flowmade of non-convex particles. Our strategy is based on the following general
steps:

• Apply the Newton’s second law on a non-convex particle
• Compute the translational and angular velocities of its centre of mass
• Compute the position and angular positions of its centre of mass
• Derive the positions and velocities of each convex component from that of the compos-
ite particle taking into account their relative positions

• Due to the decomposition of a non-convex body into a set of convex particles, the con-
tact forces are computed at the level of the elementary particles

Considering two reference framesR andR′, whereR is that of the space-fixed coordinates
system which does not depend on the particle configuration andR′ is that of the particle and
fixed at its centre of mass, these steps are summarized in the following set of equations after
the computation of momentum equations Eq. 3.1 and Eq. 3.2:

• Setting the centre ofmass ri of the convex component i according to the reference frame
R.

• Evaluating the centre of mass of the non-convex object rg and deriving the position of
the component i according to the reference frameR′ as r′i = ri − rg

• Computing the rotation matrix derived from the convex elementary particles:

Mi = M ·M0
i (3.7)

Mi is the matrix of rotation of the convex component i,M is that of the composite
particle andM0

i is the initial matrix of rotation of the component i.
• Translating the component i using a displacement vector di defined as:

di = (M · r′i)− r′i (3.8)

• Computing the velocity
Ui = U+ ω ∧ (M · r′i) (3.9)

ωi = ω (3.10)

where U and ω denote respectively the translational and rotational velocities of the
non-convex particle.

2.3 Mass properties

One of the challenges encountered with a non-convex particle shape is the computation of its
mass properties (volume, centre of mass and components of moment of inertia tensor). In
fact, the numerical integration of the volume sums involves the use of Boolean Algebra with
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solids since our non-convex particles are made of arbitrary convex shaped components which
can overlap each other. This requires either to rely on an appropriate library such as the Com-
putational Geometry Algorithms Library (Doe (2009)) or to implement an algorithm which
provides an accurate approximation of the various volume sums corresponding to the particle
mass properties. The latter option is used since it has a good compromise between accuracy
and low complexity. Inspired byMonte-Carlo algorithms and thework of Alonso-Marroquín
and Wang (2009), we carry out a numerical integration based on a pixelated particle. For the
volume approximation, it consist in:

• defining a box which circumscribes the shape (Fig. 3.2),
• uniformly discretising the box in the three directions,
• finding if the pointsXi, centre of the cells are either inside or outside the shape,
• summing up the volumes of all the cells that are found inside the shape to get the ap-
proximated volume.

 

Figure 3.2 –Discretisation strategy illustrated in 2D.

The centre of mass is then defined as follow:

Xg =
1

V

N∑

i=0

Xivi (3.11)

whereXg denotes the vector position of the centre of mass, V is the approximated volume
of the non-convex object, Xi is the centre of the cell i and vi its volume. Using the same
approximationmethod it is easy to compute the components of the moment of inertia tensor
which can be expressed as follows:

Jk,l =
N∑

i=0

fkl(Xi)vi for k, l = 1, 2, 3 (3.12)

Fig. 3.3 shows clearly the grid convergence of the algorithm applied to the calculation of
the volume of a sphere, a cylinder and two overlapping cylinders. The approximated volume
and the relative error between the two volumes is plotted as a function of the number of dis-
cretisation points per direction. The error decreases in a relatively monotone way as the num-
ber of discretisation points per direction increases.

In this study, all theDEMsimulations of glued convex shapedparticles are performedwith
at least 500 grid points per direction to ensure correct results on the approximation of mass
properties.

2.4 Time integration

Džiugys and Peters (2001) carried out a full survey on the most popular integration schemes
used in DEM simulations. This survey revealed that at least a second-order accurate in time
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Figure 3.3 – Convergence of the relative error on the volume of a sphere, a cylinder and a glued convex made
of two overlapping cylinders.

scheme is required to properly predict the time evolution of the granular system. Our study
uses the same DEM code as the one used byWachs et al. (2012).Hence, the time integration is
performed with a second-order leap-frog Verlet scheme (Langston et al. (1994; 1995)):

U

(
t+

∆t

2

)
= U

(
t− ∆t

2

)
+

F(t)

M
∆t

x(t+∆t) = x(t) +U

(
t+

∆t

2

)
∆t

(3.13)

2.5 GJK-based contact detection

Gilbert et al. (1988) introduced the Gilbert-Johnson-Keerthi algorithm to compute the dis-
tance between two convex polyhedra. In 1990, the algorithmwas improved byGilbert and Foo
(1990) to deal with general convex objects. Since each elementary component of a non-convex
particle is a convex object, the Gilbert-Johnson-Keerthi algorithm can be applied to each ele-
mentary component to detect a potential collision with any other elementary component of a
neighbouring non-convex particle. For further details on the use of Gilbert-Johnson-Keerthi
algorithm for arbitrary convex shaped particles, the interested reader is referred to the work of
Wachs et al. (2012).

By means of linked-cell spatial sorting (Grest et al. (1989)) for proximity detection, our
GJK-based collision detection strategy can be summarized as follows:

• Use linked-cells to find pairs of particles (Pi, Pj) that potentially interact,
• For each pair that potentially interact, apply the Gilbert-Johnson-Keerthi distance algo-
rithm to compute the minimal distance between all pairs (Ek, El) of elementary com-
ponents whereEk is an elementary component of particle Pi and El is an elementary
component of particlePj . The computing time of contact detection between two non-
convex particles scales as Ni × Nj where Ni and Nj are the number of elementary
components of particle Pi and particle Pj , respectively.

• the pairs (Ek, El) in contact contribute to the total contact force and torque (Wachs
et al. (2012)).

As pointed out in Wachs et al. (2012), the GJK algorithm applied right away to convex
shapes is helpful to tell whether two convex shapes touch or not (if they do touch, the mini-
mal distance between them is 0) but does not supply information on the contact features as
contact point, overlap distance and unit normal vector at the point of contact. To access to
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this information, we suggest in Wachs et al. (2012) a 3-step procedure. This 3-step procedure
for contact resolution is illustrated in Fig. 3.4 and summarized below as follows:

• Apply an homothetyH to the pairs of convex elementary components (Ek = A,El =
B) to slightly shrink them (by a thickness rA and rB respectively), such they do not
overlap (Wachs et al. (2012)),

• Compute the minimal distance between the two shrinked objectsA andB,
• Based on the information provided by the GJK algorithm, reconstruct the contact fea-
tures as:

δ =d(HA(A),HB(B))− CHA(A) − CHB(B) (3.14)

C =
CA + CB

2
(3.15)

nC =
CB − CA

||CB − CA||
(3.16)

where δ is the overlap distance,C the contact point and nC the unit normal vector.
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Figure 3.4 – Contact handling scenario between non-convex particles.

Contact is assumed to occur if δ 6 0. For more detail about our contact detection resolu-
tion method, the interested reader is referred toWachs et al. (2012).

2.6 Contact force and torque

The total contact force between two non-convex composite particles is calculating as a mean
contact force over all their contact points. In other words, the total contact force is the sum of
all forces resulting from contacts between two elementary components of the two non-convex
composite particles divided by the total number of contact points. Same applies to the total
torquewherewepay a particular attention of using the right leverages (leverage calculatedwith
respect to the centre of mass of the non-convex composite particle, not the center of mass of
the elementary component).

Džiugys andPeters (2001) reviewed themost popular contact forcemodels in the literature.
In this work, we followWachs et al. (2012) and employ a simple contact force model in which
The total collision forceFij between two particles i and j acting on the contact surface is:

Fij = Fij,el + Fij,dn + Fij,t (3.17)

The three components contributed to the total force have the following meaning and ex-
pression:
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• The normal Hookean elastic restoring force reads:

Fij,el = knδijnc (3.18)

wherekn is a spring stiffness constant. In theory, kn can be related tomaterial properties
and contact geometry, but in DEM simulations it is essentially a numerical parameter
that controls the amount of overlap between particles. δij denotes the overlap distance
between particles i and j and nc the unit normal vector at the contact point.

• The normal dissipative (viscous-like) force reads:

Fij,dn = −2γnmijUrn

where mij =
MiMj

Mi+Mj

(3.19)

where γn is the normal dissipation coefficient andmij the reduced mass of particles i
and j.Urn denotes the normal relative velocity between both particles.

• The tangential friction force reads as follows:

Fij,t = −min{µc|Fel|, |Fdt|}tc (3.20)

Fdt = −2γtmijUrt (3.21)

Fdt denotes the dissipative frictional contribution, γt the dissipative tangential friction
coefficient, Urt the tangential relative velocity between both particles and tc the unit
tangential vector at the contact surface.

DEM parameters for convex particles

Let us consider a sphere-sphere normal collision at zero gravity and a relative colliding velocity
v0 . Assuming the two spheres have the same radiusR, the equation of time evolution of the
penetration depth δ during the collision reads as follows:

d2δ

dt2
+ 2γn

dδ

dt
+ ω2

0δ = 0 , δ(t = 0) = 0 ,
dδ

dt
(t = 0) = v0 (3.22)

The starting time of contact is assumed to be t = 0. ω2
0 =

2kn
M

, whereM denotes the

mass of each particle. Hence,

δ(t) =
v0√

ω2
0 − γ2n

e−γnt sin

(√
ω2
0 − γ2nt

)
(3.23)

The equation Eq. 3.23 leads to the contact duration:

Tc =
π√

ω2
0 − γ2n

(3.24)

According to Ristow (1996), for DEM simulations, the time step needs to be less than
Tc/10 to properly integrate each contact.

The time of maximum overlap is:

Tmax =
1√

ω2
0 − γ2n

arctan

(√
ω2
0 − γ2n
γn

)
(3.25)
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which gives the maximum penetration depth δmax = δ(t = Tmax).
The coefficient of restitution en is defined as the ratio of both post-collisional and pre-

collisional velocities.

en =

∣∣∣∣∣
dδ
dt
(t = Tc)

v0

∣∣∣∣∣ = e−γnTc = e
−γn

π√
ω2

−γ2n (3.26)

If en is given with kn, the damping coefficient γn can be deduced from Eq. 3.26:

γn = − ω0 ln en√
π2 + (ln en)2

(3.27)

Particle-wall and particle-particle interactions

Since particles have a non-convex shape, contacts can occur at several points. According to
Kruggel-Emden et al. (2008), forces and torques acting on a composite particle and involved
in the resolution of equations Eq. 3.1, Eq. 3.2, Eq. 3.3 and Eq. 3.4 can be computed as follow:

Fi =
M∑

j=1

N∑

l=1

(Fijl/aijl) (3.28)

Mi =
M∑

j=1

N∑

l=1

Ri ∧ Fi,t/aijl (3.29)

Where Fijl denotes the force created between objects i and j at the contact point l and aijl
refers to the number of contact points during interaction.

Höhner et al. (2011) suggested to compute the forces incrementally since the number of
contacts can vary during a collision. Their formulation is expressed as follows:

F n
i = F n

i,el + F n
i,dn = F n

i−1,el +
kn
Ni

Ni∑

j=1

(δi,j − δi−1,j)

+ F n
i−1,dn +

γn
Ni

Ni∑

j=1

(δ̇i,j − δ̇i−1,j) (3.30)

where the elastic and viscous normal contact forces are incrementally computed by calculat-
ing and dividing only the incremental force elements by the number of contact points at the
iteration step i. This is done to ensure that a multiple contact can be represented as a single
contact.

As emphasized inWachs et al. (2012), setting the contact force model parameters for non-
spherical particles to guarantee an accurate and proper resolution of contacts is not an easy
task. Here the potential occurrence of multiple contacts between two non-convex particles
renders this task even more complicated. Using the previous simple analytical model for a
gravityless contact between two particles, we consider two variants below.

The first variant involves summing up the contact forces by considering a systemmade of
parallel springs anddampers. Starting from the equationEq. 3.22, the case ofmultiple contacts
can be treated by assuming that the hookean elastic force and the normal dissipative force can
be defined as in Eq. 3.18 and in Eq. 3.19 respectively for each contact between two elementary
components. Therefore, forN contacts Eq. 3.22 becomes:
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d2δ

dt2
+Nγn

dδ

dt
+
Nkn
M

δ = 0 , δ(t = 0) = 0 ,
dδ

dt
(t = 0) = v0 (3.31)

t = 0 is assumed to be the initial time of contact.
Eq. 3.31 can be written as follows to have the same form as Eq. 3.22:

d2δ

dt2
+ 2γ̃n

dδ

dt
+ ω̃0

2δ = 0 , δ(t = 0) = 0 ,
dδ

dt
(t = 0) = v0 (3.32)

where

γ̃n =
Nγn
2

; ω̃0
2 =

Nkn
M

(3.33)

And the expression of the contact time becomes:

Tc =
π√
ω̃0

2
=
πM

Nkn
(3.34)

Eq. 3.34 shows that not only the stiffness coefficient influences the time of contact but also
the number of contact between elementary components. Actually, the higher the number
of contact between elementary components is, the shorter the contact time is. This is a very
undesirable property.

Solving equationEq. 3.31 leads to the definition of the damping coefficientγn as a function
of the number of contactsN and the coefficient of restitution en as follows:

γn = −
√

2

N

ω0 ln en√
π2 + (ln en)2

(3.35)

In Fig. 3.5, we illustrate how the number of contact points modifies the damping coeffi-
cient for a given coefficient of restitution. In fact, since forces from all contacts are added up
during the interaction, Eq. 3.35 corrects the excessive damping of the system.
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Figure 3.5 –Damping coefficient depending on the restitution coefficient en and the number of contact N .

Inspired by the works of Kruggel-Emden et al. (2008) and Höhner et al. (2011), the sec-
ond variant to solve the multiple contact problem involves assuming that the problem can be
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treated as a single contact one. In fact, we compute the elastic and dissipative normal contact
forces are as the sumof forces from all contact points divided by the number of contacts which
occur at each time step∆t. The effect of compressing/elongatingmultiple springs andmoving
multiple dampers is modified in a way that it corresponds to a single contact dynamics.

Eq. 3.28 hence takes the following form:

F n = F n,el + F n,dn =
kn
N

N∑

i=1

δi +
γnM

N

N∑

i=1

δ̇i (3.36)

where N denotes the number of contact points at the current time step. Compared to the
work of Höhner et al. (2011), the force implemented in Grains3D is not evaluated incremen-
tally.

From now on, the formulation of Eq. 3.31 is referred to “model A” and the formulation of
Eq. 3.36 is referred to as “model B”.

3 Validation tests

3.1 Methodology

Themethodology to validate our glued convexmethod is rather elementary but also sufficient
and well adapted. It involves running simulations with a convex shape treated as a single stan-
dard body in Grains3D and then running simulations of exactly the same flow configuration
with the convex shape artificially decomposed into a set of smaller convex shapes. There is
almost an infinity of possibilities. The most intuitive ones include decomposing a cube into
8 smaller cubes or decomposing a cylinder into a number of thinner cylinders. For the sake
of conciseness, we have selected a single test case that also admits an analytical solution: the
normal impact of a cylinder on a flat wall.

3.2 Normal cylinder-wall impact

This test case is inspired by the works of Kodam et al. (2010b) and Park (2003). It involves
a cylinder impacting a flat wall in the normal direction to the wall and in a gravityless space
(Fig. 3.6). The contact is also assumed frictionless. It is conceptually simple and very conve-
nient for an accuracy assessment as it admits an analytical solution. Our goal is to compare
the solutions computedwithGrains3D for three representations of a cylinder to the analytical
solution. These three representations are:

1. a true cylinder

2. a composite cylinder obtained by artificially slicing the true cylinder in thinner cylinders
and gluing them together,

3. a glued-sphere representation of the cylinder.

The initial conditions of the test case are characterized by:
• the initial angular position θ of the cylinder with respect to the horizontal plane,
• the initial translational velocityU = (0, 0, V −

z,g),
• and the initial angular velocity ω = (0, 0, 0).
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In other words, the pre-impact translational and angular velocity magnitude is set to V −
z,g

and 0, respectively. From Park (2003), the post-impact angular velocity can be written as fol-
lows:

ω+
y =

MV −
z,g(1 + ε)r cos(α + θ)

Iyy +Mr2 cos2(α + θ)
(3.37)

where M is the mass of the particle, ε = −
V −
z,g

V +
z,g

is the coefficient of restitution, V −
z,g de-

notes the pre-impact velocity,α denotes the angle between the face of the cylinder and the line
joining the contact point and the centre of mass, θ is the pre-impact angular position of the

cylinder, Iyy is the moment of inertia about the y axis and r =
√
R2 + 1

4
L2 is a parameter

which denotes the distance between the impact point and the centre of mass,R is the radius
of the cylinder and L is the length of the cylinder (see Fig. 3.6). Similarly, the post-impact
translational velocity reads as follows (Kodam et al. (2010b), Park (2003)):

V +
z,g = ω+

y r cos(α + θ)− εV −
z,g (3.38)

Values of physical parameters are listed in Tab. 3.1. As in Kodam et al. (2010b), we set
V −
z,g = 1m/s and vary θ, the pre-impact angular position of the cylinder.
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(a) Scketch of cylinder-wall impact.
Credit: Kodam et al. (2010b), Park
(2003).
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(b) A cylinder decomposed
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Figure 3.6 – Sketch of the cylinder-wall impact test case.

Parameter True cylinder Glued cylinders Error [%]
Diameter[m] 8.0e-03 8.0e-03 0.
Length[m] 5.3e-03 5.3e-03 0.
Volume[m3] 2.66407e-07 2.66413e-07 2.331e-03
Mass[kg] 3.1e-04 3.10007e-04 2.331e-03
Moment of 1.966e-09a 1.9674e-09a 7.543e-02
inertia [kg.m2] 2.480e-09b 2.4793e-09b 2.626e-02
Shear modulus[GPa] 1.15 1.15 0.
Coefficient of restitution 0.85 0.85 0.
a about central diameter, b about central axis.

Table 3.1 –Experimental (Kodam et al. (2010b)) and numerical parameters for the normal impact of a cylinder
on a flat wall.
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Weplot inFig. 3.7 the computedpost-impact translational and angular velocities as a func-
tion of the pre-impact angular position θ, for the true cylinder and the glued cylinder (regard-
less of model A or model B). The agreement between these two simulations is extremely satis-
factory. It reveals that the glued convexmethod is well implemented in our code. We also com-
pare these two quasi-similar computed solutions to the analytical solution Eq. 3.37-Eq. 3.38.
The agreement of the two computed solutions with the analytical solution is also deemed to
be very good, with the largest discrepancy observed on the post-impact angular velocity at low
pre-impact angular positions (Fig. 3.7b).

0 10 20 30 40 50 60 70 80 90
Impact angle [ ◦ ]

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

D
im

en
si

on
le

ss
 r

eb
ou

nd
 s

pe
ed

 [-
]

Analytical
Cyl. DEM
Glued Convex

(a) Translational velocity V +
z,g/V

−

z,g .

0 10 20 30 40 50 60 70 80 90
Impact angle [ ◦ ]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

D
im

en
si

on
le

ss
 a

ng
ul

ar
 s

pe
ed

 [-
]

Analytical
Cyl. DEM
Glued Convex

(b)Angular velocity, rω+
y /V

−

z,g .

Figure 3.7 – Comparison of the dimensionless post-impact velocities.

Wenow investigatemore deeply the differences between the two formulations to compute
the total force acting on a composite particle, the so-called model A and model B. We select
a particular pre-impact angular position θ = 90◦ and plot in Fig. 3.8 the time evolution of
the normal contact force exerted on the cylinder over the time of contact. As expected from
the formulation of model A in which the total force is the sum of the forces exerted at each
contact point, model A predicts an increasing total normal force as the number of elemen-
tary cylinders N increases (note that N is also the number of contact points for θ = 90◦)
although themagnitude of the force per elementary cylinder, i.e., per contact point, decreases.
Overall, the adjustment of γn through Eq. 3.35 to get the expected restitution Coefficient en
guarantees that the solution is correct, as shown in Fig. 3.7, but the main drawback of model
A as predicted by Eq. 3.34 and supported by results of Fig. 3.8a is the decrease of the contact
durationTc withN . Consequently, the time stepmagnitude would have to be adjusted to the
number of contact points in order to properly integrate a contact. This is a very undesirable
property. Conversely, model B, that assumes that the total force exerted on the particle is the
mean force over all contact points, provides a normal force magnitude, a contact duration as
well as a maximum penetration depth independent ofN , as shown in Fig. 3.8b.

Finally, we examine in the case θ = 90◦ the effect ofN on the accuracy of the computed
solution. For both model A and model B andN ≤ 30, Fig. 3.9a reveals that the error on the
computed post-impact translational velocity is less than 0.5 %. Model B performs remarkably
better than model A with an error quasi independent ofN and of the order of 0.05 %. The
error on the computed post-impact angular velocity plotted as a function ofN in Fig. 3.9b is
even more interesting. The analytical solution Eq. 3.37 predicts that the post-impact angular
velocity is ω+

y = 0. The true cylinder simulation predicts an articificial non-zero post-impact
angular velocity. This is due to the assumption, violated here, that the contact is always a
point while geometrically in this case it is a line. However, theGJK algorithm supplies a point,
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Figure 3.8 –Normal contact force evolution with time of a particle impacting a flat wall at the angle of 90◦.
N = 1, ..., i is the number of the components of the glued convex.

that randomly lies somewhere along that contact line and whose position is primarily deter-
minedby roundingnumerical errors. This somehow flawed contact point creates an erroneous
torque that makes the particle spin after contact. Interestingly, the composite cylinder simu-
lation predicts a post-impact angular velocity ω+

y that tends to 0, the correct value, asN in-
creases. This is simply a beneficial side effect of the distribution of theN contact points along
the contact line. Torques from each contact point almost cancel out with each other and the
total torque exerted on the particle tends to 0 asN increases. Once again, model B performs
better thanmodel A, although it is not entirely clear why. It might simply be due to rounding
errors divided byN in model B.

Overall, the glued convex approach has been very satisfactorily validated in this cylinder-
wall impact test case. ModelB seems toperformbetter and is also conceptuallymore sensible as
contact feature estimates (and inparticular the duration of contact) froma single contact point
configuration are still valid. To complete the validation of the model and as a side question,
we run simulations with a glued sphere representation of the cylinder and evaluate how well
the glued sphere approach performs in a simple impact test case.
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Figure 3.9 –Deviation of the velocities of a single glued cylinders DEM simulation compared to a single true
cylinder DEM simulation impacting a flat wall at 90◦.
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We consider two composite particles made of 9 and 54 spheres, respectively, as also con-
sidered by Kodam et al. (2010b) and illutrated in Fig. 3.10. Values of physical parameters are
listed in Tab. 3.2. For the mass properties, one can select those of a true cylinder or those of
the glued-sphere representation. Kodam et al. (2010b) employed a mix of true cylinder (mass)
and glued sphere (moment of inertia tensor) properties, although it is rather unclear what is
the motivation for such a choice.

(a) (b)

(c) (d)

Figure 3.10 – Representations of a cylinder made of 9 glued spheres (a,b) and 54 glued spheres (c,d).

Parameter Experiment Glued spheres Glued convex DEM
Kodam et al. (2010b) (True parameters)

Diameter[m] 8.0e-03 8.0e-03 8.0e-03
Length[m] 5.3e-03 5.3e-03 5.3e-03
Volume[m3] 2.664e-07 1.916e-07(9 spheres) 1.948e-07(9 spheres)

2.664e-07 2.231e-07(54 spheres) 2.244e-07(54 spheres)
Mass[kg] 3.1e-04 3.1e-04 2.266e-04(9 spheres)

2.611e-04(54 spheres)
Moment of 1.966e-09a 1.966e-09a 1.320e-09a(9 spheres)
inertia[kg ·m2] 2.480e-09b 2.480e-09b 1.738e-09b(9 spheres)

3.281e-09a(54 spheres)
1.871e-09b(54 spheres)

Shear modulus[GPa] 1.15 1.15 1.15
Coefficient of restitution 0.85 0.85 0.85
a about central diameter, b about central axis

Table 3.2 –Experimental and numerical parameters for the normal impact of a cylinder modelled with glued
spheres on a flat wall.

Fig. 3.11a, Fig. 3.11b, Fig. 3.11c and Fig. 3.11d show the computed solutions with 9 and 54
glued spheres. Regardless of the set of mass property parameters (true cylinder, glued spheres
or a mix as in Kodam et al. (2010b)), the computed solution is qualitatively the same and does
not match at all the analytical solution. For 54 glued spheres, the computed solution starts
to pick up the right qualitative form but is still quantitatively markedly off. As the number
of glued spheres used to represent the cylinder increases, it is however predictable that the
computed solution will tend to the analytical solution. It is interesting to observe that for two
particular pre-impact angular position values 0◦ and 90◦, the glued sphere representation cap-
tures the right post-impact velocities. These two angles correspond to two particular contact
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configurations in which the shape of the cylinder and specifically the artificial roundedness of
the edges created by gluing spheres does not play any role. It fact, at 0◦ and 90◦, the actual
contact zone geometry is a surface and a line respectively. The homogeneous distribution of
the glued spheres over the cylinder volume assures the proper computation of the normal con-
tact force and the associated torque (that is 0). For all other pre-impact angular positions that
lead to a single contact point, the error on the post-impact velocities is very significant, unless
the number of glued spheres is large (probably of the order of O(102 − 103), as a result of
the artificial rounded edges of the glued-sphere representation of the cylinder. In general, this
simple test case reveals that the glued sphere representation of a complex shape, also intuitively
attractive, might provide computed solutions of very weak accuracy and should hence be used
with great care, if not prohibited.
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Figure 3.11 –Comparison of the dimensionless post-impact velocities of a cylinder made of 9 glued spheres (a,b)
and 54 glued spheres (c,d) with the analytical solution Eq. 3.37-Eq. 3.38.

4 Results

4.1 Packing porosity

Void fraction or porosity of a (static) packing of granular material is simply themeasure of the
ratio of the volume of empty space to the total volume of the system. Compacity corresponds
to the opposite of porosity and represents the ratio of total volume of particles to total vol-
ume of the system. Compacity of convex particles packings can be estimated by computing
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the Voronoï diagram of the system (Luchnikov et al. (1999)) whereas for non-convex particles
the use of thismethod is impeded by their concavity. Consequently, anothermethod has to be
used for the characterization of compacity of random packings of non-convex particles. Here
we use the same method as the one used to calculate the mass properties of a non-convex par-
ticle, i.e., we define a box embedding the packing of particles, pixelate that space with a fine
cartesian constant grid size structured mesh and approximate the volume integral of the space
actually occupied by particles by summing all the cells of the fine cartesian mesh whose center
lies inside a particle. The method is fully parallelised as the total number of cells in this fine
cartesian mesh is very often of the order of O(108 − 109) to guarantee a sufficient level of
accuracy.

Packings are created by inserting particles at the top of the domain. Particles settle down-
wards by gravity and collide with neighbouring particles and/or the bottom wall. The filling
process is deemed to be complete when all particles reach a pseudo stationary state character-
ized by a negligible total kinetic energy of the system. We consider the two following configu-
rations:

1. a system without lateral solid wall effects designed as a box with bi-periodic boundary
conditions on the lateral (vertical) boundaries, i.e., in the horizontal directions. 1000
particles are inserted in the simulation in the following way: (i) a particle position is
randomly selected in a thin parallelepiped at the top of the domain at each time tn,
(ii) a random angular position is assigned to the particle, (iii) insertion is attempted.
If successful, the particle is inserted, otherwise a new random position together with
a new random angular position is selected and insertion is attempted again at the next
time tn+1. This insertion procedure results in a moderately dense shower of particles
stemming from the parallelepipedic insertion window.

2. a system with strong lateral wall effecs designed as a cylindrical reactor with a circular
cross-section. We select the same configuration as in our previous work Wachs et al.
(2012). In Wachs et al. (2012), we examined the effect of convexity on packing porosity.
Now we extend this case study to non-convexity. 250 particles are randomly inserted
at the top of the domain at a flow rate of 1 particle per second until the simulation is
stopped at 260 s. Lateral wall effects are deemed to be strong as the reactor diameter to
particle equivalent diameter ratio is≈ 50/8 = 6.25, an admittedly small value.

(a) “2D cross” shape (b) “3D cross” shape

Figure 3.12 –Non-convex cross-like shapes considered in this work.

In both configurations, we consider the 4 convex shapes already examined in Wachs et al.
(2012) in addition to two new non-convex cross-like shapes illustrated in Fig. 3.12. All shapes
have the same volume. The two meaningful physical parameters of the contact force model
are set to en = 0.73 and µc = 0.55.
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Packings of the different shapes in the wall-free bi-periodic domain are presented in
Fig. 3.13. The corresponding porosities computed by our approximate numerical integration
based on pixelating the space occupied by the packing of particles are shown in Tab. 3.3. Al-
though tetrahedra already exhibit a slightly higher porosity, there is a remarkable jump of
porosity between the 4 convex shapes and the 2 non-convex cross-like shapes. In fact, ε for
3D crosses is twice larger than for spheres of same volume.

(a) Spheres (b) Cylinders

(c) Cubes (d) Tetrahedron

(e) 2D cross (f) 3D cross

Figure 3.13 – Packings of 1000 particles of various shapes. Particles in blue are the periodic clones.

Shapes Spheres Cylinders Cubes Tetrahedron 2D cross 3D cross
ε 38.1772 38.5866 39.619 47.4582 69.4569 79.6328

Nb points⋆ 3.2× 107 6.4× 107

ε 38.1794 38.5811 39.5899 47.4586 69.4573 79.6327

Nb points⋆ 2.56× 108 5.12× 108

⋆ Total number of cells in the structured mesh used to estimate ε

Table 3.3 – Estimation of the porosity ε [%]. The domain is dicretised in the three direction.

With strong wall effects, the effect of shape on porosity ε is even more emphasised, as
illustrated by Fig. 3.14. Porosity varies linearly with the height of the bed, and visually the
variation of bed height as a function of shape speaks for itself. Bed height for 3D crosses (blue
particles in Fig. 3.14(f)) is literally 5 times larger than that for spheres, cylinders and cubes,
translating into a 5 times larger porosity. It is also 4 times larger than that for tetrahedra as well
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as 2 times larger than that for 2D crosses. For 3D crosses, it is quite remarkable in Fig. 3.14(f)
that ε is close to 1 close to the reactor wall in a crown of width approximately half the length
of the cross beams, whereas all other shapes, even 2D crosses, are able to fill that region much
better. Obviously, we have selected these 2 non-convex shapes on purpose, as they exhibit a
low sphericity and promote some sort of entanglement in the packing. They are hence good
candidates for high porosity packings and other unusual intricate effects in granular dynamics
as we shall see in the next section. The analysis of the packing micro-structure can be easily
extended e.g. by looking at the porosity radial profile, by this goes beyond the scope of the
present paper. Our goal here is primarily to evaluate quantitatively packing porosity for such
shapes and to shed some light on how strong the effect of shape can be, even in a very simple
configuration.

(a) Sphere (b) Cylinder (c) Cube (d) Tetrahedron (e) "2D-cross" (f) "3D-cross"

Figure 3.14 – Packing of 250 particles of 6 di�erent shapes in a cylindrical container. Results in (a,b,c,d) are
from Wachs et al. (2012).
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4.2 Rotating drum

Following the work of Yang et al. (2003; 2008), Wachs et al. (2012) we investigate the flow dy-
namics of a granular media in a rotating drum. We select the same flow configuration as in
our previous workWachs et al. (2012) and our goal is to extend results previously obtained for
convex particles to non-convex particles. As in Wachs et al. (2012), the drum has a radius of
Rdrum = 50mm and a depth of 24mm (Fig. 3.15). A periodic boundary condition is ap-
plied along the drum axis to avoid end wall effects. The drum is loaded with mono-dispersed
non-convex particles such that the region occupied by particles in the drum (regardless of
porosity) corresponds to 35% of the drum volume, i.e. the pack has initially a height equal
to≈ 0.76Rdrum. For the non-convex shapes, we use the same 2D and 3D crosses as in Sec-
tion 4.1. The new simulation results for the 2D and 3D crosses complement the existing set of
results we obtained for convex particles (i.e., spheres, cylinders, cubes and regular tetrahedron)
inWachs et al. (2012). Once again, all shapes have the same volume, that corresponds here to a
sphere with a radius of 1.5mm. Values of all simulation parameters are listed inTab. 3.4.

Figure 3.15 – Visualisation of the rotating drum.

Parameter Value
kn (N m−1) 1× 105

en 0.73
µc 0.55
µt (s−1) 1× 105

δmax (m) , δmax/Re 1.1403× 10−5 , 0.007602
TC (s) 4.172× 10−5

∆t (s) 2× 10−6

Table 3.4 – Contact force model parameters, estimate of contact features at v0 = 1 m s−1 and time step
magnitude used in rotating drum simulations.

As shown in Section 4.1 for the non-convex cross-like shapes and inWachs et al. (2012) for
tetrahedra, the total number of particles for each shape need to be adjusted such that the initial
bed height is always≈ 0.76Rdrum (35% of the drum volume) due to the high variations in
porosity between shapes. While the drumwas loaded with 3000 spheres, cylinders and cubes,
only 2600 regular tetrahedra were used in Wachs et al. (2012). Here, we fill the drum with
1500 2D crosses and 1250 3D crosses.
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“3D cross” shape

Fig. 3.16 shows the internal flow structure of a system filled with 3D crosses for Ω ∈
[5; 250] rpm. A first sight already indicates the strong influence of the particle shape on the
flow dynamics, compared to spheres and even to convex particles. Similarly to the filling pro-
cess in Section 4.1, the significant differences observed all result from the ability of 3D crosses
to entangle. As for other convex shapes, we observe a transition from an avalanching regime
to a cataracting regime, then to a pseudo-cataracting and eventually to a centrifuging regimes
as the rotation rate increases. Note that for low rotation rates, the rolling regime observed
for spheres is replaced by an avalanching regime (the same was observed for convex shapes in
Wachs et al. (2012)). Let us now describe qualitatively the features of each flow regime.

(a)Ω = 5 rpm (b)Ω = 20 rpm (c)Ω = 80 rpm

avalanching regime avalanching regime avalanching regime

(d)Ω = 125 rpm (e)Ω = 150 rpm (f)Ω = 200 rpm

cataracting regime pseudo-cataracting regime centrifuging regime

Figure 3.16 – Rotating drum filled with “3D cross” shaped particles at various rotation rates: snapshots of the
pattern of particles coloured by their translational velocity magnitude (from blue (min) to red (max)).

AtΩ = 5 rpm, the flow regime is representative of episodic avalanches governed by the
pseudo-chaotic evolution of the highly entangledmicro-structure of the pack of particles. Par-
ticle rotation is strongly impeded both close to the drum wall and at the free surface. As for
other shapes, particles close to the drum wall experience a rigid body motion while the major
difference occurs at the free surface. Particles entanglements delay the onset of avalanching up
to very high free surface angles, sometimes close to 90◦. Then the pack eventually breaks and
big clusters of particles detach and fall down from the top right to the bottom left of the free
surface. Big cluster detachment from the rest of the pack of particles at the top right resembles
to some extent the fracturing of an homogeneous solid material or a cohesive granular media.
Fracturing starts at the location in the pack that shows a weakness characterized by a lower
level of entanglement, i.e., a lower level of cohesion. We call this regime episodic avalanching
as the frequency of occurrence of avalanches is less regular andhence tougher to define than for
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convex shapes, as supported by Fig. 3.22. As the rotation rate increases toΩ = 20 rpm, big
clusters of particles at the free surface disappear to give way to a thick layer of particles flowing
down the free surface from the top right to the bottom left. At Ω = 80 rpm, particles gain
even kinetic energy to start freeing themselves from the pack. Flow dynamics is still strongly
governed by particles entanglements but the pack of particles is not as dense anymore and
consequently the strength or cohesion of the pack of entangled particles is weaker. This corre-
sponds to a transition from avalanching to cataracting, although particles at the free surface do
not yet have a free-fly ballistic motion. AtΩ = 125 rpm, the kinetic energy of particles at the
top right of the free surface is large enough for them to almost free themselves from the pack
and free fly. This flow dynamics is a typical sign of a cataracting regime (Mellmann (2001)).
We would like to make a short digression of the determination of the onset of cataracting
regime. As a comparison, we observe this ballistic trajectory of spherical particles in the range
150 rpm ≤ Ω ≤ 200 rpm, which suggests that cataracting regime starts at about 150 rpm
for spheres. From Fig. 3.16, wemight define the onset of cataracting regime atΩ = 125rpm,
whichwould hence indicate that 3D crosses exhibit a cataracting regime at lower rotation rates
than spheres. AtΩ = 125 rpm the Froude number defined asΩ2Rdrum/g isFr ≃ 0.87.
Looking more closely at Fig. 3.16(d), the notion of free-flight is tougher to define. Although
the overall flow pattern does look like a cataracting regime, particle that detach from the top
right still seem to be linked togetherwith neighbouring particles in their pseudo free-flight in a
very weakway. For spheres (seeWachs et al. (2012)-Fig5(e)), it is very visible that particles flying
from the top right to the bottom left of the free surface do not touch any other neighbour-
ing particles. In other words, the transition from avalanching to cataracting is not necessarily
easy to determine for 3D crosses. FromΩ = 150 rpm, the cataracting regime starts to disap-
pear and is progressively replaced by a pseudo-cataracting (or pseudo-centrifuging) regime. Ω
is not high enough to already observe a fully centrifuging regime but not low enough for the
cataracting regime to persist. The thin layer empty of particles at the top of the drum is a signa-
ture that the full centrifuging regime has not yet been attained. AtΩ = 150rpm, the Froude
number isFr ≃ 1.25. Finally, fromΩ = 200 rpm, the fully centrifuging regime manifests,
corresponding toFr ≃ 2.25. For spheres, we determined inWachs et al. (2012) that the tran-
sition to centrifuging regime occurs atΩ ≃ 220rpm, i.e., forFr ≃ 2.7. This would suggest
that the transition fromcataracting to centrifuging occurs at lower rotation rates for 3D crosses
than for spheres. As already noticed for spheres or any other shapes, the centrifuging regime
is characterized by a continuous layer of particles attached to the drumwall and rotating with
the drum as a rigid body. A particular and rather fascinating feature of 3D crosses is the form
of the free surface of the pack of particles undergoing a rigid body motion. While for spheres
this layer has a constant thickness, it is rather irregular for 3D crosses. Actually, the entangled
3D crosses create an imprint over the early transients of the drum rotation. In other words,
the free surface is determined by a competition between the strength or cohesion of the en-
tangled pack of particles and the centrifugal force that pushes particles towards the drumwall.
The free surface very rapidly adopts its final form (after a few drum rotations only) and then
remains forever frozen in a rigid body rotation as shown in Fig. 3.16(f).

To illustate howmuch the 3D cross-like shape hinders the rotation of a particle compared
to a sphere, evenwithout entanglementswithneighbouringparticles, weperforma simulation
of a single particle in the drum rotating atΩ = 150 rpm (Fig. 3.17). The resistance to rolling
motion of the sphere is very low and accordingly the critical angle at which the sphere starts
to roll down the drum wall very low too. 3D cross reaches much higher on the top right and
their overall motion is far more chaotic. The ratio of translational to angular kinetic energy is
much higher for a 3D cross than for a sphere. It would be interesting to extract this ratio in
the multi-particle rotating drum simulations to shed somemore light on differences in energy
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conversion mechanism between sphere, convex and non-convex shapes. This is an on-going
work in our group and will be the topic on a future paper.
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(b)A single “3D cross” shaped particle

Figure 3.17 – Single particle trajectories at Ω = 150 rpm during 10 s.

We illustrate in Fig. 3.18 the avalanching nature of the flow dynamics at low rotation rates
Ω = 5 rpm andΩ = 20 rpm. In particular atΩ = 5 rpm, we can neatly see in Fig. 3.16a(c)
that the shallow layer of slumping particles at the free surface fractures in the middle into two
big clusters. Another important comment concerns the determination of the dynamic angle
of repose of the free surface in this avalanching regime. In fact, not only the free surface is
anything but a flat surface but the flow is highly intermittent (episodic) and the dynamic angle
of repose varies over time with a large amplitude. In Fig. 3.16a(c), it is noticeable that the free
surface is close to vertical.

(a) t = 4.05 s (b) t = 4.225 s (c) t = 4.35 s

(d) t = 6 s (e) t = 6.1 s (f) t = 6.25 s

Figure 3.18 – Snapshots of the pattern of the “3D cross” shaped particles coloured by their translational velocity
magnitude (from blue (min) to red (max)) at Ω = 5 rpm (a,b,c) and at Ω = 20 rpm (d,e,f).
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“2D cross” shape

The overall picture of 2D crosses is qualitatively similar to the picture of 3D crosses. Since 2D
crosses have a higher sphericity than 3D crosses and a lower tendency to entangle, the original
features observed for 3D crosses are also observed but lessmarked for 2D crosses. We notice the
same transitions from avalanching to cataracting, then to pseudo-cataracting and eventually
to centrifuging as the drum rotation rate increases, but these transitions occur for slightly dif-
ferent critical rotation rates. The different flow regimes for 2D crosses are shown in Fig. 3.19.

(a)Ω = 5 rpm (b)Ω = 20 rpm (c)Ω = 80 rpm

avalanching regime avalanching regime avalanching regime

(d)Ω = 125 rpm (e)Ω = 150 rpm (f)Ω = 200 rpm

cataracting regime pseudo-cataracting regime centrifuging regime

Figure 3.19 – Rotating drum filled with “2D cross” shaped particles at various rotation rates: snapshots of the
pattern of particles coloured by their translational velocity magnitude (from blued (min) to red (max))

In general, the pack of 2D crosses is less cohesive than the pack of 3D crosses, in the sense
that the strength of the entanglednetwork of particles isweaker. This differencemanifests very
visibly in Fig. 3.20 where we illustrate the transient flow dynamics in the drum. The dynamic
angle of repose of 2D crosses, although pretty high compared to convex shapes, is lower than
that of 3D crosses. It also seems that the free surface, although not very flat, is significantly
flatter than that of 3D crosses. Finally, Fig. 3.22 suggests that avalanches are more regular and
that the avalanching regime can be classified as periodic avalanching, in contrast to episodic
avalanching for 3D crosses. At Ω = 5 rpm a single avalanching frequency for 2D crosses
can be more clearly defined than for 3D crosses, although this is not totally obvious. Finally,
cataracting, pseudo-cataracting and centrifuging regimes of 2D crosses are very similar to those
of 3D crosses.



50 Chapter 3. Non-convex granular media modelling with Grains3D

(a) t = 8.9 s (b) t = 9 s (c) t = 9.2 s

Figure 3.20 – Snapshots of the pattern of the "2D cross" shaped particles coloured by their translational velocity
magnitude (from blue (min) to red (max)) at Ω = 5 rpm

Further comments

We plot in Fig. 3.21 the averaged in time coordination number as a function of rotation rate
for all shapes. In general, 2D and 3D crosses exhibit a higher coordination number than other
shapes regardless of the rotation rate, as a result of the highly entangledmicro-structure. How-
ever, up toΩ = 150 rpm, the trend is very similar to convex particles and there is no major
signature of non-convexity in the variation of the coordination with Ω. The plots for the 2
non-convex shapes are simply shifted to higher values of coordination number. The only sig-
nature of non-convexity pertains to the transition to cataracting/pseudo-cataracting regime
and then to centrifuging regime. However, we run additional simulations for tetrahedra and
notice the same trend than for 2D/3D crosses. Hence, this suggests that this signature is actu-
ally not relevant of non-convexity only, butmore generally of non-sphericity. This emphasises
again that the transitions to cataracting/pseudo-cataracting and to centrifuging are not easy to
define. The increase of the coordination number aboveΩ = 150 rpmmight however indi-
cate the onset of transition to centrifuging. At high Ω ≥ 200 rpm, the absence of a neat
plateau (as visible as for spheres) does not allow us to determine from this plot only when the
fully centrifuging regime really starts.
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Figure 3.21 – Time averaged variation of the coordination number. Data are form Wachs (2011)

We plot in Fig. 3.22 the mean translational particle velocity as a function of time for dif-
ferent rotation rates. The interesting and already described in the above features of 2D and
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(c)Ω = 42 rpm
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|Ū
|/Ω
R
d
ru
m

3D cross
2D cross

Sphere
Cube

(d)Ω = 65 rpm
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(e)Ω = 150 rpm
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Figure 3.22 – Evolution of dimensionless mean translational velocity as a function of dimensionless time t∗ =
tΩ. Data for spheres and cubes are from Wachs et al. (2012).

3D crosses flow dynamics occur at low rotation rates Ω = 5 rpm and Ω = 20 rpm. From
Ω = 42 rpm, the mean translational particle velocity of the 2 non-convex shape is very sim-
ilar to that of any of the 3 non-spherical convex shapes. Ω = 5 rpm reveals that 3D crosses
undergomore chaotic, in the sense of larger amplitude andmore episodic, avalanches than 2D
crosses and convex shapes. The peaks of mean translational particle velocity represent rapid
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avalanches of particles triggered by a very high dynamic angle of repose (up to∼ 90◦). The
most remarkable manifestation of resistance to slump or to flow from the top right to the
bottom left of the drum of the highly entangled pack of 3D crosses occurs at Ω = 20 rpm.
While 2D crosses and cubes both exhibit a moderate avalanching dynamics, 3D crosses still
undergo large amplitude and well defined avalanches characterized by large amplitude fluctu-
ations of the mean translational particle velocity with time. At high rotation rates, the mean
translational particle velocity progressively tends to a constant value over time. For instance,
atΩ = 200 rpm, the mean translational particle velocity does not vary with time anymore.
This represents a much more reliable signature of the onset of fully centrifuging regime than
what we could extract from the coordination number analysis.

5 Conclusion and discussion

We suggested an extension of our DEM from convex to non-convex shapes. As a reference to
the glued spheresmodel, the novelmethod is called glued convexmethod as convex particles are
“glued” together to create any non-convex shape. Our novelmethod for non-convex shapes re-
lies on the same toolsweused for convex shapes inWachs et al. (2012). In fact, contact detection
between two non-convex bodies relies on contact detection between all the pairs of elemen-
tary convex components that compose each composite non-convex body. This reduces the
complexity of the problem of contact detection between non-convex bodies to the problem
of contact detection between convex bodies, a problem for which we have already suggested a
reliable and accurate solution method in Wachs et al. (2012) using a Gilbert-Johnson-Keerthi
algorithm. The novel method is extremely versatile as virtually any non-convex shape can be
considered. We illustrated the new simulation capabilities of our in-house code Grains3D in
two flow configurations: (i) filling of a reactor and (ii) flow dynamics in a rotating drum. The
simulation results we presented for non-convex 2D and 3D crosses are unprecedented in the
literature.

We suggested a simple but robust solution to the problem of multi-contact points that
enables us to keep using analytical estimates of contact features and in particular of contact
duration. This significantly facilitates the estimation of the time-step magnitude in DEM
simulations of non-convex bodies. We considered a normal cylinder-wall impact test case to
illustrate the validation of our implementation. Along the way, we confirmed, as other works
of the literature already showed Kodam et al. (2010b), that the accuracy of the glued sphere
method to model particles of arbitrary shape is highly questionable as it rounds sharp angles
and introduce an artificial rugosity. Conversely, our glued convex approach preserves angu-
larity since a non-convex composite particle is decomposed into a set of elementary convex
shapes, that are by essence sharp. A side effect of composite particles is their intrinsic ability to
better handle contact configurations in which the contact zone cannot bemodelled as a point,
but rather as a line or a surface. In fact, composite particles naturally introduce multiple con-
tact points corresponding to the contact points of their elementary components. Although
decomposing an already convex particle in a set of smaller elementary convex particles is not
the most promising path from a computational viewpoint, this property can still be exploited
to improve the stability of static heap of particles and somehow circumvent the conceptual
inability of our Gilbert-Johnson-Keerthi -based contact detection strategy to provide a line of
contact, a surface of contact or multiple contact points from two simple convex bodies that
overlap.

Although our newDEM for non-convex bodies opens up unprecedented numericalmod-
elling perspectives, the computing cost is still prohibitive. In fact, the computing cost of con-
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tact detection between two non-convex bodies scales asN ×M , whereN denotes the num-
ber of elementary components of the first particle andM that of the second particle. Another
computational drawback of the current implementation is that potential contacts are assessed
with the circumscribed sphere to the non-convex particles, and then if they overlap with the
circumscribed sphere to the convex elementary components (see Fig. 3.23). If the non-convex
or elementary convex bodies are elongated, our method is not optimised and many contacts
that actually do not exist are considered at the detection step. This undesirably slows down
computations. An alternative solution would be to use oriented bounding boxes, with how-
ever no guarantee that the overall computing time will be lower as an oriented bounding box
overlap test is more time consuming than a two sphere overlap test. In Chapter 5, we elaborate
on the parallel implementation of themethod. Although this could be a valuable way to speed
up computations, we also show that scalability is satisfactory only for a minimum number of
particles, as otherwise the MPI communication overhead is too high. We believe that contact
detection between two non-convex bodies should be speeded up at the serial level.

Figure 3.23 – Circumscribed sphere illustrated in 2D.

Potential applications of Grains3D were already quite broad, and the new glued convex
model broadens even more its range of applicability. Only two examples of application were
considered in this study that adequately illustrated the visible effect of particle non-convex
shape on flow dynamics. Results from the rotating drum as shown in Figs. 3.21 and 3.22 em-
phasise how flow dynamics differs from convex particles to non-convex particles. Our analysis
could easily be extended to gain more insight into regime transitions and overall flow dynam-
ics. One first step in that directionwouldbe to analyse thePDF (ProbabilityDensity Function)
of the time averaged particle translational and angular velocity and to seek in these plots any
signatures of non-convexity. This is an on-going work in our research group.
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Résumé

Dans ce chapitre, les détails du modèle glued convex sont exposés avec toute la stratégie der-
rière cette approche. En effet, elle est basée sur le fait que la particule non-convexe peut être
décomposée en plusieurs formes élementaires arbitrairement convexes. Ainsi, elle peut être
considérée commeune extension de la célèbre approche nommée “glued sphere” (“sphères col-
lées”). Pour ce modèle la détection de contact se fait au niveau des particules élémentaires util-
isant l’algorithme Gilbert-Johnson-Keerthi . La détéction de contact s’appuie sur l’algorithme
“Linked-Cell” pour pouvoir accélérer la phase de recherche de collisions potentielles. Une im-
portance particulière est dédiée aux intéractions impliquant de plusieurs points de contact.

Le modèle est validé sur quelques cas tests, par exemple, la comparaison de l’évolution de
la force de contact lors demodélisation de l’intéraction dans le cas d’un simple cylindre et celui
d’un cylindre formé de cylindres collés avec une paroi.

L’approche est ensuite utilisée pour montrer l’impact de la forme sur les taux de vide dans
des lits constitués de différentes formes de particules. Elle a aussi permis de mettre en évidence
le changement de la dynamiquedesmilieux granulaires dans un tambour tournant en fonction
des formes des particules. Ces études ont illustré que non seulement la forme influence la
dynamiquemais elle fait aussi apparaître de nouveaux régimes d’écoulement selon l’angularité
des particules (allant de la particule spherique en passant par des formes convexes arbitraires
telles que des cubes et des tétraèdre jusqu’aux particules en forme de croix).
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1 Introduction

Numerous chemical reactions are industrially performed using heterogeneous catalyst. Cat-
alysts pellets can be shaped as spheres or extruded shapes (extrudates) or molded shapes

(Moyse (1984), Cooper et al. (1986), Afandizadeh and Foumeny (2001),Mohammadzadeh and
Zamaniyan (2002)). Due to the use of extrusion machines, extrudates are cheaper to pro-
duce in high quantities. They can have various shapes: cylinders, trilobes, and more recently
quadralobes. Molded shapes include holes to improve internal transport. The best catalyst
shape is a compromise between catalyst cost, catalyst efficiency, pressure drop, attrition, and
bed plugging (Moyse (1984), Cooper et al. (1986), Afandizadeh and Foumeny (2001),Moham-
madzadeh andZamaniyan (2002)). Thus, it is application dependent. The challenge to design
a better shape is to be able to predict the gains based only on the shape knowledge.

Catalyst efficiency is a measure of internal mass transfer limitation. It is defined as the
actual reaction rate (in mol/m3/s) divided by the reaction rate that would be achieved if
the concentration inside the pellet was homogeneous and equal to that of the surface. If the
reaction is fast enough, reactants may be consumed faster than they diffuse so that they have
a lower concentration at the pellet centre than at its boundary. The active (expensive) phase
located at the pellet centre is not used as efficiently as at its surface. The engineering pathways
to improve efficiency are: (i) improving effective diffusion in the pellet by changing the pore
size distribution and (ii) changing the shape, including size and introducing holes, to reduce
the volume to external surface ratio. For a given shape, the catalyst efficiency canbenumerically
predicted by solving the diffusion equation in the grains assuming kinetic schemes (Mariani
et al. (2009)). With a little less accuracy, it can be reasonably predicted for any particle shape
without holes using the generalized Thiele modulus as proposed by Aris (1957), that can be
written for a 1st order reaction:

Φ =
Vp
Sp

√
k

Deff

(4.1)

η =
1

Φ

I1(2Φ)

I0(2Φ)
(4.2)

where Vp, Sp, k andDeff denote particle volume, particle surface, intrinsic kinetic constant
and effectiveness coefficient respectively. In is the Bessel function of order n. Reducing the
particle diameter results in an improvement of the catalyst efficiency due to a lower Vp/Sp,
unfortunately at the cost of a higher pressure drop. But it still an efficient way to improve
efficiency.

Gas-Liquid pressure drop in tricked bed reactors has been the subject of many publica-
tions. Their estimations are always performed using at some point the single phase predic-
tions, so that for our purpose, optimizing trickle bed pressure drop is the same as optimizing
single phase pressure drop (see for example Attou et al. (1999)). Pressure drop predictions are
usually performed using correlations with a form following the Ergun’s one (Ergun (1952)):

∆P

H
= α

µ(1− ε)2u

ε3d2p
+ β

ρ(1− ε)u2

ε3dp
(4.3)

In the formulation Eq. 7.23, the pressure drop is the combination of a frictional viscous
term proportional to the velocity and a quadratic term on velocity accounting for flow direc-
tion and section changes (Larachi et al. (2014)). Ergun (1952) proposed the constantsα = 150
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and β = 1.75 to describe the pressure drop for spheres, cylinders and crushed particles. The
diameter for non-spherical particles is the equivalent diameter defined as:

de =
6Vp
Sp

(4.4)

Earlier Carman (1937) proposed α = 180 and β = 0 for Stokes flows (Re ∼ 0) in
packed beds of spheres, which is more accurate than Ergun’s coefficients in these conditions.
For non-spherical particles, Nemec and Levec (2005) extended the correlation by introducing
the sphericity:
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(
36πV 2

p

S3
p

) 1

3

(4.5)
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ε3de
(4.6)

The coefficientsa and b have been subjected to somemodifications by few authors, among
others Nemec and Levec (2005) and Dorai et al. (2015). Other formulations have been pro-
posed that take into account various shapes. Nevertheless, there is so far no universal method
to precisely predict the Ergun’s equation coefficients based only on particle shape.

As it can be noticed in Eq. 4.6, the pressure drop presents a very strong dependency on
the void fractionwhich has been until recentlymeasured experimentally. Due to themanufac-
turing process, the extrudates have random length. Therefore, length distribution may differ
from an experiment to another, especially for particles produced on different extrusion dies.
Automated sorting can be performed to narrow down the length distribution but this is not
sufficient to prevent differences from experiment to experiment. Therefore, the comparison
of the void fraction (and the pressure drop) is always based on measurements with different
length distribution. As the differences betweenmost efficient shapes are small, it is difficult to
decouple shape and length effects when measuring the packed bed void fraction. In addition,
the void fraction is highly dependent on the loading procedure leading to some discrepancies
betweenoperators. Repetition effects are barely quantified and are usually neglected, although
we have no information on their magnitude compared to differences between shapes.

To summarize, it is yet impossible to predict the void fraction (and the pressure drop)
accurately enough to rank innovative catalyst shapes without experiments. New numerical
tools are required to optimise the particle shape “in silico”. In this chapter, we present the
use of DEM to estimate the void fraction for any trilobic and quadrilobic shapes, as well as an
analysis of the trends in void fraction dependency.

2 Methods and material

2.1 DEMwith non-convex particles

Several numerical methods to produce packing of spheres have been published. Thanks to its
flexibility the Discrete ElementMethod (DEM) can be extended to more complex shapes and
thus will be presented. This method (Cundall and Strack (1979), Cundall (1988), Wachs et al.
(2012)) is a Lagrangian particle tracking method which computes the particle velocities, trajec-
tories and orientations. A key feature of any DEM tool is its ability to detect collisions, deter-
mine the contact point(s) and compute the resulting contact forces. This is done for example



58 Chapter 4. Optimizing particle shape in fixed beds: simulation of void fraction with poly-lobed particles

using the Gilbert-Johnson-Keerthi algorithmGilbert et al. (1988), Gilbert and Foo (1990). Re-
cent developments of DEM allow the use of non-spherical particles, such as the glued spheres
modelwhich is a loose approximation of a complex shapeNolan andKavanagh (1995), or by an
accurate description of arbitrary convex particles Wachs et al. (2012). Recent development by
our group (Chapter 3) allows the simulation of non-convex particles composed of a collection
of convex particles. This method, called “glued convex”, is an extension of the glued spheres
method of Nolan and Kavanagh (1995). It allows the use of the existing methods, models and
algorithms already implemented in Grains3D (Wachs et al. (2012)) such as the equations of
motion, time integration, collision resolution and particularly the Gilbert-Johnson-Keerthi
algorithm for collision detection. Detailed information about the extension to non convex
shape and the DEM features can be found inWachs et al. (2012) and in Chapter 3.

2.2 Simulation principle

Fixed beds of non-convex particles are computed using Grains3D. An insertion window is
defined at the top of the domain (Fig. 4.1). It can be a box-like window or a flat surface, or a
single point. The particles are inserted in the simulation in the following sequence:

• for the subsequent particle to be inserted, the code draws randomly its position and
orientation,

• the particle is inserted as soon as there is enough space,
• the particle are subjected to the gravity force and leave the vicinity of the insertion zone.

A larger insertion zone results inmore particles inserted simultaneously. During their free fall,
the particles will experience inelastic collisions with walls and other particles. The total kinetic
energy of the system decreases exponentially with time. The simulations are completed when
themaximum of the particle velocities is below 10−5m/s. The output of the simulations is a
file containing final positions, velocities and orientation for each particle. The domain geom-
etry can be either constrained with rigid walls or using periodic conditions in the horizontal
directions (bi-periodic).

Figure 4.1 – Illustration of a box-like insertion window in DEM simulations.

2.3 Void fraction analysis

The average void fraction (porosity) is computed by two methods: (i) performing a 3D dis-
cretization of the space and counting the number of cells occupied by particles. Provided
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sufficiently small grid cells, this method is very accurate but computationally expensive (Chap-
ter 3). (ii) sorting all the particles according to their vertical position z and plotting that vertical
position (vertical axis) against the particle ranking (horizontal axis) as illustrated in Fig. 4.2.
For a random packing, the plot is a straight line whose slope is related to the void fraction as
follow: the volume occupied by the particles scales with the number of the particles times the
volume of a particle, the volume of the container scales with the container cross-section times
the distance between particles. Thus, the void fraction ε reads:

ε = 1− N

∆z

Vp
Sp

= 1− Vp
Sp

1

s
(4.7)

where N,∆z, Vp, Sp and s denote respectively total number of particles, height of the
cropped bed, particle volume, particle surface and slope related to void fraction.
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Figure 4.2 –Examples of plots resulting from the method (ii) of the void fraction analysis. Here QL and CYL
have the same volume and same length Lp.

Incidentally, a non-linear trend in the ranking plot brings information about the struc-
ture: steps indicate “structured packing”, a changing slope indicates a change in the average
void fraction. This method neglects the volume of particles located near the ends of the con-
trol volume and is as accurate as the discretization method when the control volume is large
enough. As a last remark: a correct estimation of void fraction has to be performed discarding
a few layers at the top and bottom of packing (Dorai et al. (2012)), avoiding end effects (flat
bottom influence at the bottom and free surface at the top).

2.4 Cases description

A first set of simulations is performed using bi-periodic boundary conditions. This simulates
a semi-infinite container, and models the packing in a large reactor. The container size is set
to 18mm after checking that this parameter has no effect of the void fraction. Another set of
simulation is ran in a small size cylindrical reactors using solid walls. The vessel diameters are
14mm, 16mm and 19mm.

Simulations are performed on the following shapes (Fig. 4.3): Cylinders (CYL), trilobes
(TL) and quadralobes (QL). The particle cross-sectional diameter of trilobes and quadralobes
is defined as that of circumscribed cylinder (Fig. 4.3d). For identical diameter and length, TL
andQL occupy a volume of respectively 69% and 74% of the cylinder. The particle diameter
is varying in the range [1.0, 2.5]mm and its length is set to 3mm, 4mm and 5mm.
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(a) Cylinder (CYL) (b) Trilobe (TL) (c) Quadralobe (QL) (d) Circumscribed diameter.

Figure 4.3 – Particle shapes in this study.

(a) Pakcing of TL in cylindrical domain. (b) Pakcing of TL in bi-periodic
domain.

Figure 4.4 – Type of domains in this study.

In each simulation at least 1000particles are inserted to fill either a bi-periodic domain or a
cylindrical vessel (Fig. 4.4). The parameters of all numerical simulations are listed inTab. 4.1.

Parameter Value
kn (N m−1) 1× 105

en 0.7
µc 0.55
µt (s−1) 1× 105

δmax (m) , δmax/Re 1.5× 10−5 , 0.005
TC (s) 2.01× 10−5

∆t (s) 1× 10−6

Table 4.1 – Contact force model parameters, estimate of contact features at v0 = 2m s−1 for static packings.

3 Simulations with random insertion and data analysis

As mentioned earlier, the particles are inserted in the simulation with a random position and
orientation. Afterwards, the simulations and measurements are deterministic and accurate.
Every packed bed has a different void fraction. As we are interested in comparing the effects
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of shape on void fraction, we must be able to quantify which part of the differences between
two simulations are due to the shape or to the random insertion at the top of the domain.

3.1 Repeating the packing

Several loadings with the same set of 1000 particles are repeated for the 3 shapes (Tab. 4.2).
As the particle shape and dimension differ from one case to another, the average void fractions
should not be compared for the moment but the reader should focus on the void fraction
standard deviation (σ < 0.0053) which reads:

σ =

√√√√ 1

N

N∑

i=1

(εi − µ)2, where µ =
1

N

N∑

i=1

εi (4.8)

whereN and εi stand for total number of simulations and void fraction of the simulation i
respectively.

As the number of repetitions is not large, this estimation of repeatability can be improved
by aggregating data and removing the average of each sub-set (shape effect). The standard
deviation of the whole ensemble (18 elements) is indeed lower than σ1 = 0.0042. At this
point, it is worth reminding that once the particles are inserted in the simulation, the solver is
deterministic and exact: σ1 is a measure of the effect of the random initial conditions.

Shape Length Diameter Number of Void fraction
[mm] [mm] repetition Average Std dev. Min. Max.

CYL 3 1.6 7 0.3829 0.0053 0.3752 0.3921

TL 3 2.2 5 0.4127 0.0007 0.4118 0.4136

QL 3 2.2 6 0.4085 0.0050 0.4026 0.4150

Table 4.2 – Repetition of random packing with identical particles.

3.2 Effect of insertion window size

We estimated the effects of insertion window size for various geometric configurations of the
container (cylindrical / bi-periodic and its size), and the particle shape and its size (Tab. 4.3).
In this work, we only use a planar 2D square insertion window and an insertion point (see
Fig. 4.5 for reference).

According to an analysis of variance (ANOVA), the void fraction difference is statistically
non zero. A larger window results in a higher void fraction. We propose the following mech-
anism: a larger window results in more particles inserted simultaneously, leaving less time for
a particle at the top of the stack to reach the most stable position before the arrival of the sub-
sequent ones. The standard deviation on the void fraction difference is 0.0049.

Choosing the proper insertion geometry is amatter of compromise for the several reasons.
First, none of the methods is more realistic than another: in the laboratories, reactor loading
is not standardized and is often manual. A change in particle size while keeping the insertion
window size the same results in a change in the number of particles that are inserted simul-
taneously, which yields more or less compact beds. An obvious geometrical constraint is that
the insertionwindowmust be smaller than the reactor: smaller reactors need smaller insertion
windows which leads to denser beds. This is similar to the reduction of the funnel diameter
during an experimental loading. Last, a small insertion window requires a long loading time,



62 Chapter 4. Optimizing particle shape in fixed beds: simulation of void fraction with poly-lobed particles

(a) An insertion window of 4 mm
length in a cylindrical vessel of
14mm diameter.

(b) An insertion window of 6 mm
length in a cylindrical vessel of
14mm diameter.

Figure 4.5 – Top view of two simulation domains with their corresponding insertion windows.

Case Window 1 Window 2 Void fraction
length [mm] length [mm] difference (×10−3)

D14-CYL-L4, dp = 1.8 4 6 0.3

D14-CYL-L3, dp = 1.6 0 4 14.8

D14-CYL-L3, dp = 1.6 0 6 6.9

D14-CYL-L3, dp = 1.6 4 6 7.9

D14-CYL-L3, dp = 1.6 4 6 7.4

D16-CYL-L3, dp = 1.8 4 6 3.4

D16-CYL-L3, dp = 1.6 4 6 0.7

D16-CYL-L3, dp = 1.8 4 6 1.8

BIP16-CYL-L3, dp = 1.6 4 10 5.8

BIP18-CYL-L3, dp = 1.4 4 10 6.6

BIP16-CYL-L3, dp = 1 4 10 16.3

BIP18-QL-L3, dp = 1.9 7 10 1.9

BIP18-QL-L3, dp = 2.2 6 10 6.9

Average 6.2
Std dev. 4.9

Table 4.3 –E�ect of insertion window size on void fraction. Insertion window is 2D square of length comprised
between 0mm to 10mm.

whereas a larger one permits a fast loading. In order to decrease the computing time, the simu-
lations are performed with a medium size planar square insertion window (4mm and 6mm
wide) that fits in all geometries. This choice will overestimate the void fraction compared to
a point insertion and underestimate the void fraction for large particles. If we assume that
this insertion effect can be modelled by a Gaussian random variable (of null average), then
its standard deviation σ2 must be equal to 1/

√
2 of the standard deviation of the “void frac-

tion difference” (see Appendix for details): σ2 = 0.00346 = 0.0049/
√
2. σ2 measures the

unknown bias on the simulation induced by the choice of the insertion window size.

3.3 Overall uncertainty

An overall uncertainty on a single void fraction simulation result can now be estimated from
σ1 (random initial conditions) and σ2 (bias induced by insertion window size). As both un-



4. Results 63

certainties are independent, a classical measurement statistic theory gives an estimate of the
overall standard deviation: σ =

√
σ2
1 + σ2

2 = 0.0054. An estimation of the overall uncer-
tainty on a single measurement I is I = 2σ = 0.011 (see Appendix for details). According
to this analysis, there is a 95% probability that, given the output ǫ of a single experiment, the
average void fraction of a large number of simulations falls in the interval ε ± 0.011 (with
ε = 0.42, this gives an estimate of 0.409 and 0.431). In other words, this corresponds to a
relative uncertainty on the void fraction of less than 2.5%.

4 Results

4.1 Bi-periodic container

The average void fraction for various shapes, length and diameters simulated in a bi-periodic
container are presented in Fig. 4.6. This case corresponds to large containers similar to in-
dustrial reactors. The void fraction is linearly correlated with particle aspect ratio (Lp/dp).
Bulkier, rounder particles are easier to pack, whereas cylindrical particles present a lower void
fraction and lower dependence on the aspect ratio than poly-lobed shapes. Surprisingly, the
void fraction of trilobes and quadrilobes can not be distinguished.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Particle aspect ratio (L/dp )
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0.35
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0.50

0.55

ε
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CYL-L5

CYL
±I
QL-L3

QL-L4

TL-L3

TL-L4

TL/QL

Figure 4.6–Average void fraction in a bi-periodic container for particles of various shape, length and diameter.

Two correlations are proposed to predict the void fractions in large containers with an
accuracy better than the overall uncertainty:

CYL: ε = 0.289 + 0.033
Lp

dp
(4.9)

TL&QL: ε = 0.314 + 0.049
Lp

dp
(4.10)

In Fig. 4.6 the slope for the poly-lobed particles is much larger than that of the cylindrical
ones. We suggest that during the packing, the lobes hinder rotation and result in a quick damp-
ening of the vibrations induced by impacts. This results in less compact beds for poly-lobed
particles.

Extending the trends to near spherical shape (Lp/dp = 1) leads to a void fraction of 0.32
(CYL) and 0.36 (TL/QL) which are values close to dense packings of spheres.
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4.2 Cylindrical container

Cylindrical particles

The void fraction of a packed bed of cylindrical particles in a cylindrical reactor is in line with
experimentalmeasurementsLeva andGrummer (1947) (our values are in the rangeofdp/D <
0.3). It increases with the particle aspect ratio and seems to decrease with increasing reactor
diameter D. However in the studied range, the effect is barely larger than the repeatability.
Following Leva andGrummer (1947), whose results suggest a proportional relationship to the
inverse of vessel diameter, we propose the correlation in Eq. 4.11. It describes all the data set
with a maximum absolute error of 0.014 and a standard deviation of 0.006, which is about
half of the uncertainty (Fig. 4.7). The correlation is written as follows:

CYL: ε = 0.315 + 0.0244
Lp

dp
+ 0.141

Lp

D
(4.11)

10 < D[mm] < 19, 1 < Lp/dp < 5, 3 < Lp[mm] < 4
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Figure 4.7 – Void fraction for packed beds of cylindrical particles in a cylindrical reactor for various reactor
diameters, particle lengths and aspect ratios: correlation vs. simulations. Dashed lines are parity ±I .

In our data range, a simplified correlation that does not take into account the cylindrical
vessel diameter predicts the void fraction (Eq. 4.12) with good accuracy (standard deviation of
0.0077).

In our limited diameter range, a simplified correlation that does not take into account the
reactor diameter predicts the void fraction with a slightly higher identical relative standard
deviation (2%). It reads:

CYL: ε = 0.327 + 0.033
Lp

dp
(4.12)

10 < D[mm] < 19, 1 <
Lp

dp
< 5, 3 < Lp[mm] < 4

Poly-lobed particles

The following linear correlation (Eq. 4.13) predicts the void fraction with a lower accuracy
(equal to the uncertainty) (see Fig. 4.8):
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QL: ε = 0.33 + 0.0328
Lp

dp
+ 0.212

Lp

D
(4.13)

10 < D[mm] < 19, 1.2 < L/dp < 3.33, 3 < Lp[mm] < 4
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Figure 4.8 – Void fraction for packed beds of quadralobal particles in a cylindrical reactor for various reactor
diameters, particle lengths and aspect ratios: correlation vs. simulations. Dashed lines are parity ±I .

The results for TL particles are presented in Fig. 4.9. The following linear correlation
(Eq. 4.16) describes the data with an accuracy equal to the uncertainty:

TL: ε = 0.345 + 0.0289
Lp

dp
+ 0.15

Lp

D
(4.14)

10 < D[mm] < 19, 1.2 < L/dp < 3.3, 3 < Lp[mm] < 4

A simplified correlation based only on aspect ratio predicts almost as well void fractions
with relative standard deviation of 2.5%. It reads:

TL: ε = 0.366 + 0.035
Lp

dp
(4.15)

A unified correlation predicting the void fraction for TL and QL regardless of the shape
has the same accuracy as that of the TL. It is defined as follows:

QL&TL: ε = 0.329 + 0.0289
Lp

dp
+ 0.15

Lp

D
(4.16)

10 < D[mm] < 19, 1.2 < Lp/dp < 3.33,

2 < Lp[mm] < 4, 1.2 < dp[mm] < 2.48

5 Discussion
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Figure 4.9 – Void fraction for TL packed beds for various reactor diameters, particle lengths (not shown) and
aspect ratio.
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Figure 4.10 – Comparison of a unified correlation with numerical simulations for TL and QL in small size
cylindrical reactors.

5.1 Effect of domain size in bi-periodic directions?

Most of the bi-periodic simulations have been performedwith a domain with a transverse size
of 18 mm. 4 simulations have been repeated using smaller domains (8 mm and 10 mm)
with CYL and QL with an aspect ratio 3. The void fraction in smaller domains is within the
repeatability of that in the large domain with a transverse size of 18 mm. We have so far no
indication of an effect of bi-periodic domain size in the range 8 mm to 18 mm. It seems
that performing simulations in the chosen domains does not impose any particular micro-
structure in the bed with a wave length correlated to the transverse domain size. Simulation
results indicate that even a transverse size of 8 mm is large enough to represent an infinitely
large domain in the transverse direction.

5.2 Remark on the effect of container size

For all three particle shapes (CYL, TL and QL), the void fraction is higher in small reactors
than in semi-infinite vessels as expected. When the reactor diameter increases, none of the
correlations for cylindrical reactors so far converges to the correlation proposed for infinite
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vessels. This was however expected as our cylindrical reactors are quite small compared to the
particle length. In fact, the minimum Lp/D in our simulations is 3/18 = 0.167, which
suggests that wall effects are strong in these small reactors. To get asymptotically vanishing
wall effects in a reactor,Lp/D is probably required to be at least as small as 0.05.

More simulations at large reactor diameters and probably non-linear relationships would
be necessary to propose a unified correlation.

6 Conclusion

DEM has been used to prepare packed beds of poly-lobed particles. Although the simula-
tions are deterministic, random input parameters (location and orientation of particles) as
well as simulation parameters (insertion window) lead to an overall uncertainty that has been
estimated at 0.0011. A subsequent analysis of the void fraction and its dependence on the
particle shape and reactor size showed that TL andQL present statistically identical void frac-
tions. The effects of random insertion, i.e. filling procedure, in packed beds mask the shape
induced effect for optimised particles. We suggested linear correlations to predict the void frac-
tion for cylinders, trilobes and quadralobes in semi-infinite and small size cylindrical reactor
that showed a reasonably satisfactory level of reliability. More simulations and probably non-
linear regressions are necessary to unify these correlations.

Ranking TL and QL and their chemical efficiencies are not possible based only on void
fraction. Aprecise knowledge of the relationship between shape andpressure drop is necessary
to conclude. An ongoing work is to perform a similar study on poly-disperse beds. Another
ongoing work is to use Direct Numerical Simulation to evaluate the pressure drop in beds of
poly-lobed particles, which is an extension of the work presented in Dorai et al. (2015). The
next step will be the use of DNS in reactive flows as demonstrated inDorai et al. (2014), which
is probably more in the aim of assessing random induced uncertainty rather than predicting
the fixed bed performance.

Appendix

In thiswork, simulations andmeasurements are deterministic and accurate. The resulting void
fraction is different each time a simulation is performed with the same particles, but inserted
with different (random) orientations and positions. Void fraction values appear as a random
variable. Our interest is to compare the effects of shape on the void fraction. Thus we want to
quantify how much of the difference between two simulations with different shapes are due
to the shape or to the random insertion effects.

By definition, the uncertainty is the value I so that 95% of the random values of the void
fraction will be within±I of the average . With a Gaussian probability law, this definition is
equivalent to I = 1.96σ which is classically simplified to I = 2σ. In mathematical terms,
95% of the area under the Gaussian probability curve is within average±I . In our study, the
effect of particle position and orientation is estimated by repeating simulations and estimating
the standard deviation.

The standard deviation of the sum or difference of two independent Gaussian random
variables is given by σX−Y = σX+Y =

√
σ2
1 + σ2

2 , yielding σX−Y = σX+Y = σX
√
2

when X1 and X2 follow the same probability law with standard deviation σX . The effect
of insertion window size is estimated using the difference between two simulations, hence the
introduction of a

√
2 in the calculations.
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Résumé

Dans ce chapitre, le modèle glued convex est utilisé pour optimiser les formes de particules
rencontrées dans l’industrie du raffinage. L’intérêt de ce chapitre est particulièrement porté sur
la mise en évidence des différences sur le taux de vide dans de réacteurs à lit fixe en fonction des
formes des particules (ici, cylindre, trilobe et quadrilobe), du mode d’insertion des particules
et enfin la quantification de l’aspect aléatoire de la procédure de remplissage des réacteurs. En
effet, Grains3D dispose d’un algorithme qui joue le rôle de fenêtre d’insertion de particules
dans le système étudié. Les particules sont crées avec une orientation aléatoire et tombent dans
les réacteurs une par une si la taille caractéristique de la fenêtre est dumême ordre que celle des
particules ou par pluviation si elle est de quelques ordres de grandeur de celle des particules.

Le taux de vide dans un lit est calculé à l’aide d’une discrétsisation spatiale du système
étudié. Cette méthode repose ensuite sur l’aspect parallèle du code Grains3D pour la prise
en compte de gros système ainsi que pour l’accélération des simulations.

Ce chapitre a alors permis de mettre en évidence que les taux de vide calculés sont statis-
tiquement identiques pour les particules multi-lobées et sont différents de ceux des particules
cylindriques dans les mêmes conditions. Grâce à ces observations, des corrélations lináires ont
été mises en place pour prédire le taux de vide dans des réacteurs à lit fixe.
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Abstract

InWachs et al. (2012) we suggested an original Discrete Element Method that offers the ca-
pability to consider non-spherical particles of arbitrary convex shape. We elaborated on

the foundations of our numerical method and validated it on assorted test cases. However,
the implementation was serial and impeded to examine large systems. Here we extend our
method to parallel computing using a classical domain decomposition approach and inter-
domainMPI communication. The code is implemented in C++ for multi-CPU architecture.
Although object-oriented C++ offers high-level programming concepts that enhance the ver-
satility required to treat multi-shape and multi-size granular systems, particular care has to be
devoted to memory management on multi-core architecture to achieve reasonable comput-
ing efficiency. The parallel performance of our code Grains3D is assessed on various granular
flow configurations comprising both spherical and angular particles. We show that our parallel
granular solver is able to compute systems with up to a few hundreds of millions of particles.
This opens up new perspectives in the study of granular material dynamics.

1 Introduction

Discrete Element Method (DEM) based simulations are a very powerful tool to simulate the
flow of a granular media. The foundations of the method were introduced by Cundall and
Strack (1979) in the late seventies. Originally developed for contacts between spherical parti-
cles, themethodwas later extended to polyhedra byCundall (1988). The conceptual simplicity
combined with a high degree of efficiency has rendered DEM very popular. However, there
are essentially still two bottlenecks inDEM simulations: (i) the non-sphericity ofmost real life
particles and (ii) the generally large number of particles involved even in a small system.

InWachs et al. (2012)we addressed issue (i), i.e., the non-sphericity of particles by reviewing
the various existing techniques to detect collisions between two non-spherical particles and by
suggesting our own collision detection strategy that enables one to consider any convex shape
and any size. Issue (ii) can be tackled in two different and complementary ways. The for-
mer involves improving the computational speed of classical serial implementations of DEM.
This can be achieved by a higher quality programming and smarter algorithms, but there is
admittedly a limit in that direction, even with the most advanced implementations. The lat-
ter involves dividing the work load between different computing units and hence using dis-
tributed computing. Nowadays, there are two competing technologies for DEM distributed
computing: CPU (Walther and Sbalzarini (2009), Iglberger and Rüde (2009; 2011)) vs GPU
(Radeke et al. (2010), Govender et al. (2015)). Both technologies have assets and drawbacks.
While GPU is parallel in essence (multi-threaded), fast on-chip memory is limited in size and
globalmemory access is very slow, which can result in aweak performance of the code (Goven-
der et al. (2015)). Besides, the built-in parallelism of GPU is not designed (yet) for multi-GPU
computations, which limits the overall performance to that of a single GPU, in particular in
terms of system size, i.e., number of particles. Conversely, CPU-based DEM codes, generally
implemented with a domain decomposition technique, exhibit no limit in number of com-
municating CPUs (cores) and hence no limit in number of particles, provided the scalability
is maintained at a reasonable level. Communications between cores is generally achieved us-
ing theMessage Passing Interface (MPI) (Gropp et al. (1999)). While simulations with up to a
few tens to hundreds of thousands of particles is attainable withGPU-based implementations
(Radeke et al. (2010), Govender et al. (2015)), simulations with up to a few billions of particles
can be envisioned with CPU-based implementations, provided computational practitioners
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have access to large supercomputers with many thousands of cores (Walther and Sbalzarini
(2009), Iglberger and Rüde (2009; 2011)). The forthcoming new GPU technology is likely to
offer similar parallel computing capabilities asCPUby improving inter-GPUcommunications
but at the time we write this article, this enhanced GPU technology is not available yet.

The primarymotivations for developing a parallel implementation of a serial code is either
(i) to lower the computing time for a given system size byusingmore cores or (ii) to increase the
size of the simulated system for a given computing time. In general, it is rather hard to define
what is a "rationally acceptable computing time". Talking about the number of particles that
one can simulate on a single-core computer in number of minutes/hours/days is meaningless
without mentioning as well the time step magnitude and simulated physical time. In other
words, the only rational measure of performance is the wall clock time per time step and per
particle. Ironically, a highly efficient serial implementation might not scale well in parallel
as the communication overhead will be significant, and conversely a time consuming (and/or
badly programmed) serial implementationmight scalemuchbetter. Obviously, this statement
is not an incentive to write poor serial implementation or slow collision detection algorithm
to get at a later stage a good scalability but simply underlines the fact that systems made of
non-spherical particles have a chance to scale better than systems comprising spheres, as the
collision detection step is a local (in the sense on each core without any communication) time-
consuming operation.

Our goal in the paper is to elaborate on a simple domain decomposition based parallel ex-
tension of our granular code Grains3D and to assess its computing performance on systems
of up to a few hundreds of millions of particles. In Section 3, we quickly recall the features of
our numerical model as already explained in Wachs et al. (2012). We then present our paral-
lel strategy in Section 3. In Section 4 we measure the computing performance of our parallel
implementation in various granular flow configurations (particle shape, particle load by core,
weak scalability). Finally, we discuss parallel computing performances exhibited by Grains3D
in Section 5 and highlight the remaining intrinsic limitations of Grains3D and how to relax
them.

2 Numerical model

The motion of the granular material is determined by applying Newton’s second law to each
particle i ∈< 0, N − 1 >, where N is the total number of particles. The rigid body mo-
tion assumption leads to the decomposition of the velocity vector v as v = U + ω ∧ R,
whereU ,ω andR denote the translational velocity vector of the center of mass, the angular
velocity vector of the center of mass and the position vector with respect to the center of mass,
respectively. The complete set of equations to be considered is the following one:

Mi
dUi

dt
= Fi (5.1)

Ji
dωi

dt
+ ωi ∧ Jiωi = Mi (5.2)

dxi

dt
= Ui (5.3)

dθi

dt
= ωi (5.4)

whereMi, Ji,xi and θi stand for the mass, inertia tensor, center of mass position and angu-
lar position of particle i. Fi andMi are the sum of all forces and torques applied on parti-
cle i, respectively, and can be further decomposed in purely granular dynamics (i.e., without
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accounting for any external forcing as e.g. hydrodynamic or electrostatic) into a torque-free
gravity contribution and a contact force contribution as:

Fi =Mig +
N−1∑

j=0,j 6=i

Fij (5.5)

Mi =
N−1∑

j=0,j 6=i

Rj ∧ Fij (5.6)

where Fij is the force due to collision with particle j and Rj is a vector pointing from the
center of mass of particle i to the contact point with particle j. In our model, Fij comprises
a normal Hookean elastic restoring force, a normal dissipative force and a tangential friction
force.

The set of equations Eq. 5.1-Eq. 5.4 is integrated in time using a second order leap-frog
Verlet scheme. Rotations of particles are computed using quaternions for computational effi-
ciency as well as to avoid any gimbal lock configurations. The collision detection algorithm is
a classical two-step process. Potential collisions are first detected via a linked-cell list and then
actual collisions are determined using a GJK algorithm. Our GJK-based collision detection
strategy enables us to consider any convex shape and size. For more detail, we refer the reader
to Grains3D-Part I Wachs et al. (2012) and the references therein.

3 Domain Decomposition parallel strategy

Our parallel strategy is classical and is based on a domain decomposition technique. We con-
sider belowonly the case of a constant in time domain decomposition, assuming thatwe know
how to guarantee a reasonable loadbalancingof number of particles between subdomains over
the whole simulation. The extension to dynamic load balancing in granular flows with large
particle volume fraction heterogeneities will be shortly discussed in Section 5 as an extension
of this work.

We employ a cartesian domain decomposition. Each process hosts a single subdomain
and we hence define a cartesianMPI communicator using the MPI_Cart_create com-
mand. It is then very convenient to identify the neighbouring subdmains on each subdomain
as well as to implement multi-periodic boundary conditions. On each subdomain, we con-
struct a cartesian linked-cell list with an additional layer of cells at the boundary with neigh-
bouring subdomain to serve as an overlapping zone. This overlapping zone hosts clone parti-
cles used to compute collisions with particles located on a neighbouring subdomain (process).
As a consequence, cells in a linked-cell list are taggedbased on their location on the subdomain:
0= interior,1=buffer and2=clone, as illustratedonFig. 5.1. At each time step, cloneparticles
are either created, deleted or updated. All particles are tagged based on the cell they belong to.
Hence they consistantly change status as they move in the subdomain. Corresponding opera-
tions are performed on neighbouring subdomains when a particle change status. For instance,
if a particle moves from an interior cell (tag = 0) to a buffer cell (tag = 1), a clone particle (tag
= 2) is automatically created on the neighbouring subdomain.

The serial code is implemented in C++ which equips us with the required versatility to
handle multiple particle shapes and sizes, based on inheritance mechanism, virtual classes and
dynamic typing. Each particle is an instance of a C++ class and all active particles on a subdo-
main, including particles in buffer and clone zones, are stored in a primary list. Two additional
separate lists for buffer and clone particles, respectively, are also created. As a consequence,
when information of buffer particles needs to be sent to a neighbouring subdomain, we first



3. Domain Decomposition parallel strategy 73

loop on the list of buffer particles, extract the relevant information and copy it to a buffer
memory container (a standard 1D array, i.e., a standard vector, of doubles or integers). Each
subdomain keeps a list of reference particles corresponding to all the types of particle in the
simulation. These reference particles store generic data as mass, moment of inertia tensor and
geometric features, such that MPI messages contain velocity and position information only
and their size is reduced to the minimum.

Assorted communication strategies between processes (subdomains) can be designed,
ranging from the simplest strategy to the most advanced (to the best of our knowledge for a
cartesianMPI decomposition) strategy. We list below the different strategies we implemented
and tested, ranked in growing complexity:

• the AllGatherGlobal strategy
All processes send information from their buffer particles to all other processes, regard-
less of their location in the MPI cartesian grid using a MPI_Allgather command.
A huge amount of useless information is sent, received and treated by each process. It
is however a good starting point and performs well up to 8 (maybe 16) processes maxi-
mum.

• the AllGatherLocal strategy
All processes send information from their buffer particles to all their neighbouring pro-
cesses. The amount of useless information is reduced, but it is still far from optimal.
This can be achieved by creating local communicator for each process including itself
and its neighbours and performing the MPI_Allgather command using this local
communicator. This strategy performs reasonably well up to 16 (maybe 32) processes,
but beyond the scalability markedly deteriorates.

• the AllGatherLocal strategy with non-blocking sending
The next level of sophistication consists in replacing theMPI_Allgather command
performed on the local communicator by a first stage of non-blocking sending of mes-
sages with the MPI_Isend command combined with a classical blocking receiving
stage with the MPI_Recv command. Incoming messages are first checked with the
MPI_Probe command and their size is detected with the MPI_Get_count com-
mand such that the receiving buffer is properly allocated for each received message
Iglberger and Rüde (2009; 2011). Using non-blocking sending speeds up communi-
cations as the MPI scheduler can initiate the receiving operations even if the sending
operations are not completed, but still a large amount of useless information is sent,
received and treated.

• the adopted optimal strategy called SendRecv_Local_Geoloc
Not only cells (and hence particles belonging to these cells) are tagged in terms of
their status (0 = interior, 1 = buffer and 2 = clone, see Fig. 5.1) but cells in the buffer
zone are also tagged in terms of their location with respect to the neighbouring sub-
domains using a second tag, named GEOLOC for geographic location, that takes the
26 following values (whose meaning is rather obvious on a 3D cartesian grid as can be
seen in Fig. 5.2): EAST & WEST in the x direction, NORTH & SOUTH in the y di-
rection, TOP& BOTTOM in the z direction are the main neighbours, NORTH_EAST,
NORTH_WEST, SOUTH_EAST, SOUTH_WEST, NORTH_BOTTOM, NORTH_TOP,
SOUTH_BOTTOM,SOUTH_TOP are the edge neighbours, andNORTH_WEST_TOP,
NORTH_WEST_BOTTOM, SOUTH_WEST_TOP, SOUTH_WEST_BOTTOM,
NORTH_EAST_TOP, NORTH_EAST_BOTTOM, SOUTH_EAST_TOP,
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SOUTH_EAST_BOTTOM are the corner neighbours. The aftermath is an exact tailor-
ing of sent messages with the appropriate information only, thus reducing the size of
each sent message to the minimum.

Interior = 0

Buffer = 1

Clone = 2
0

1

2

Cells in the white layer 
have a GEOLOC tag

Figure 5.1 – Illustration of the status of a particle in a tagged cell.
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Figure 5.2 – Sketch of the communications between a cell in a bu�er zone and its neighbouring cells with respect
to the neighbouring subdomains. N, S, W, E, T and B denote respectively the North, South, West, East, Top
and Bottom directions.

Dependingon theparticle’sGEOLOC tag, information fromabuffer particle is copied to
one ormore buffer vectors to be sent to neighbouring subdomains. There are essentially
three situations as illustrated below:
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– a buffer particle with a main GEOLOC tag: for instance a particle tagged SOUTH
is sent to the SOUTH neighbouring subdomain only (Fig. 5.3),
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Figure 5.3 – 2D illustration of inter-process communication for a particle tagged SOUTH.

– a buffer particle with an edge GEOLOC tag: for instance a particle tagged
SOUTH_EAST is sent to the SOUTH, EAST and SOUTH_EAST neighbour-
ing subdomains only (Fig. 5.4),
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Figure 5.4 – 2D illustration of inter-process communication for a particle tagged SOUTH_EAST.

– a buffer particle with a corner GEOLOC tag: for instance a particle tagged
SOUTH_WEST_TOP is sent to the SOUTH, WEST, TOP, WEST_TOP,
SOUTH_WEST, SOUTH_TOP and SOUTH_WEST_TOP neighbouring sub-
domains only.

Similarly to theAllGatherLocal strategy, exchangeof informationbetweenneigh-
bouring subdomains is performed by a combination of non-blocking sending opera-
tions using MPI_Isend and blocking receiving operations using MPI_Recv.

The buffer vectors sent and received by processes are of the C double type. A buffer vec-
tor contains for each particle the following data: particle identity number, particle reference
type, MPI rank of sending process, velocity, position and orientation for a total of 29 num-
bers. Particle identity number, particle reference type and MPI rank of sending process are
integer numbers and are cast into double numbers such that all features can be concatenated
into a single vector of doubles. Hence each process sends to and receives from another neigh-
bouring process a single message containing a vector of doubles with the MPI_DOUBLE data
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type (instead of sending and receiving separately in two different messages a vector of doubles
with the MPI_DOUBLE data type and a vector of integers with the MPI_INT data type, re-
spectively). Each message size is then 29 times the size of a double times the number of buffer
particles with the appropriate GEOLOC tag. Due to the considerable latency involved in any
MPI message, efficient parallel performance involves keeping the number of messages as low
as possible. This explains why we cast integer to double as a way to avoid heterogeneous data
types and/or twice more messages (the computing cost of the cast operation from integer to
double when sending and back from double to integer when receiving is much smaller than
the one associated to sending and receiving 2messages instead of 1). Another option that we
have not tried is to convert all data types to raw bytes and send a single vector of raw bytes us-
ing the MPI_BYTE data type. Each neighbouring process is then responsible to convert back
the received raw byte messages to their original data types. This strategy has been successfully
implemented in Iglberger and Rüde (2009; 2011).

At each time step, the full solving algorithm on each subdomain reads as follows:

1. for all particles with status 0 or 1: initialize force to gravity and torque to 0

2. for all particles:

(i) detect collisions

(ii) compute contact forces & torques

3. for all particles with status 0 or 1:

(i) solve Newton’s law: Eq. 5.1 for translational velocity and Eq. 5.2 for angular veloc-
ity

(ii) update position Eq. 5.3 and orientation Eq. 5.4

4. search for particles whose status changed from 0 to 1 add them to the list of buffer par-
ticles

5. MPI step using the SendRecv_Local_Geoloc strategy (in the 3D general case of
26 neighbouring subdomains):

(i) copybuffer particles features into thedifferent buffer vectors of doubles depending
on their GEOLOC tag,

(ii) perform non-blocking sendings of each of the 26 buffer vectors of doubles to the
corresponding neighbouring subdomains,

(iii) for j = 0 to 25 (i.e., for each of the 26 neighbouring subdomains):

(I) perform a blocking receiving of the vector of doubles sent by neighbouring
subdomain j,

(II) Treat the received vector of doubles containing particles information
• Create or update clone particles
• Delete clone particles moved out of the subdomain

6. for all particles: based on their new position, update status and GEOLOC tags and the
corresponding lists of buffer and clone particles
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4 Computational performance

In this section, we assess the computational performance of our parallel DEM code Grains3D
on assorted flow configurations in which load balancing in terms of number of particles per
subdomain (process) is approximately constant over the whole simulation. All the test cases
considered thereafter are fully three-dimensional. In all computations, each core hosts a sin-
gle subdomain and a single process. Hence, the terms “per core", “per subdomain" and “per
process" are equivalent. Computations are performed on a 16-core per node supercomputer.

Our primary goal is to compute larger systems for a given computing time. We therefore
assess the computational performance of Grains3D in terms of weak scaling. We compute the
parallel scalability factor S(n) by the following expression:

S(n) =
T (1, N)

T (n,N × n)
(5.7)

where T (1, N) denotes the computing time for a problem withN particles computed on a
single core or a single full node and T (n,N × n) denotes the computing time for a similar
problem withN × n particles computed on n cores or nodes.

4.1 Assessing memory management on multi-core node architecture

Discharge flow in silos

The first test case is a discharge of particles from a silo. Before performing weak scaling tests,
we validate our DEM solver versus experimental data. For that purpose, we select the work
of González-Montellano et al. (2011) as a reference because of its conceptual simplicity. Their
study consists in comparing their ownDEM simulation results to experimental data of spher-
ical glass beads of 13.8mm diameter discharging from a silo. The silo has a 0.5m height (H)
and 0.25 m sides (L) (Fig. 5.5a). The bottom has a truncated pyramid shape with a square
hopper opening of 57 mm sides whose walls make an angle θ = 62.5◦ with respect to the
horizontal plane. In our simulations, we extend the bottom of the silo to collect all particles
flowing through the opening of the hopper (see Fig. 5.5b). Obviously, this does not affect the
discharge dynamics and rate.

As in González-Montellano et al. (2011), we fill the silo with 14000 spherical particles by
performing a first granular simulationwith the opening of the hopper sealed by a plate. In this
preliminary simulation, we insert all particles together as a structured array in order to reduce
the computing time (see Fig. 5.6 at t = 0). To this end, we extend the height of the silo in a
way that all particles fit into the silo before they start to settle. The initial particles positions at
the insertion time are actually slightly perturbed with a low amplitude random noise in order
to avoid any artificial microstructural effect. Particles then settle by gravity and collide until
the system reaches a pseudo steady state corresponding to a negligible total kinetic energy (see
Fig. 5.6 at t = Tfill). As observed in González-Montellano et al. (2011), the 14000 spherical
particles fill the silo up to Hm ≃ 0.86H. After the filling of the silo, the plate that blocks
the particles is removed by imposing a fast translational frictionless displacement to start the
discharge. Simulations are run until all particles have exited the silo (see Fig. 5.6 at t = Tdis).

As in Wachs et al. (2012) our contact model is the linear damped spring with tangential
Coulomb friction for both particle-particle and particle-wall contacts. The magnitude of the
parameters involved in the silo discharge simulations is given inTab. 5.1. InWachs et al. (2012),
we elaborated on the fact that the spring stiffness kn in our contact model can be linearly re-
lated to the Young modulusE of the material. Since the contact duration is inversely propor-
tional to kn, a high E leads to a short contact duration, and hence a correspondingly small
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(a) Silo shape. Credit: González-
Montellano et al. (2011).

(b) Equivalent
extended silo in our
simulations.

Figure 5.5 – Shape and dimensions of the 3D silo.

t = 0 0 < t < Tfill t = Tfill Tfill < t < Tdis t = Tdis

Figure 5.6 – Simulation results of filling and discharge of the 3D silo with Grains3D. Coloured by the particle
velocity magnitude.

time-step∆t. For glass beads, the Young modulus E is approximately 50 GPa. It leads to
a time step magnitude of the order of ∆t ∼ 10−7s, which would require to compute an
unnecessary large number of time steps to simulate the whole discharge of the silo. In fact, as
explained in Wachs et al. (2012), the stiffness coefficient kn is generally not set in accordance
with Hooke’s law and Hertzian theory, but rather in a way to control the maximum overlap
between particles as they collide. The meaningful parameters from a physical viewpoint are
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the coefficient of restitution en and the Coulomb friction coefficientµc. A smaller kn enables
us to use much larger time steps without affecting the whole dynamics of the system. This is
rather customary in DEM simulations of non-cohesive materials. For more detail about how
to determine kn, the reader is referred toWachs et al. (2012), Cleary and Sawley (2002), Cleary
(2009; 2010) and the references therein. In Tab. 5.2, the meaningful physical parameters en
and µc are set to exactly same values as those selected by González-Montellano et al. (2011).
Using an estimate of the maximum collisional velocity of vcol = 4.5m/s, the selected value
of kn leads to a maximum overlap distance of 3% of the sphere radius. Please note that this
estimate is highly conservative as vcol = 4.5 m/s is the free fall velocity of particles as they
collide with the bottomwall of the collecting bin underneath the hopper opening. In fact, the
collecting bin height is≈ 1 m, hence we get

√
2× 9.81× 1 ≈

√
20 ≈ 4.5 m/s. In the

dense discharging granular material above the hopper opening, the actual collisional velocity
is much less. As a result, the maximum overlap between colliding particles in this part of the
granular flow is less than 0.1%of the sphere radius, a value commonly deemed to be a very sat-
isfactory (and almost over-conservative) approximation of rigid bodies in DEM simulations.

Parameter Value
Particle-Wall
kn (N m−1) 1× 106

en , µn (s−1) 0.62 , 3.63× 103

µc 0.3
kms 1× 10−5

δmax (m) , δmax/R 2.25× 10−4 , 0.033
TC (s) 1.85× 10−4

Particle-Particle
kn (N m−1) 7.2× 105

en , µn (s−1) 0.75 , 1.87× 103

µc 0.3
kms 1× 10−5

δmax (m) , δmax/R 1.92× 10−4 , 0.028
TC (s) 1.55× 10−4

∆t (s) 1× 10−5

Table 5.1 – Contact force model parameters, estimate of contact features at vcol = 4.5 m/s and time step
magnitude used in the silo discharge simulation.

Repetition Experiments (s) Grains3D (s)
1 29.32 29.36
2 29.28
3 29.2

Mean discharge time (s) 29.27 29.36

Table 5.2 – Comparison between experimental data of González-Montellano et al. (2011) and our simulation
results with Grains3D for the discharge time of the silo.

We report in Tab. 5.2 the values of the discharge time experimentally measured by
González-Montellano et al. (2011) together with our simulation result. González-Montellano
et al. (2011) carried out three times the same experiment but it seems that the observed devia-
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tion of the discharge timewith respect to themean value is very limited (of the order of 0.2%).
In other words, the initial microstructure of the particles in the silo before removing the hop-
per gate is essentially similar and does not markedly affect the discharge process. Based on this
observation, we perform a single discharge simulation. Ourmodel shows a (even surprisingly)
good agreementwith thedischarge timemeasured in the experiments ofGonzález-Montellano
et al. (2011). Snapshots of the discharge process also exhibit a highly satisfactory agreement be-
tween our simulations and the experiments in González-Montellano et al. (2011), as presented
in Fig. 5.7. Although our goal in this work is not to carry out an extensive analysis of the dis-
charge, it is computationally cheap and important to validate our model and gain confidence
in the computed results. We are now in a sensible position to perform weak scaling tests and
assess the scalability properties of our parallel DEM solver.

Test DEM Test DEM Test DEM Test DEM

t = 0T t = 0.25T t = 0.5T t = 0.75T

Figure 5.7 –Comparison between experimental data of González-Montellano et al. (2011) and our simulation
results with Grains3D: snapshots of discharge dynamics at di�erent times.

Parallel scalability

On the single-core architecture of the 90s, each core had its own levels of cache and its own
random-access memory (RAM). The limitation of parallel implementations was hence essen-
tially the communication overhead. This overhead depends on theMPI strategy (size of mes-
sage, synchronous/asynchronous communication, blocking/non-blocking communication,
etc). Since the early 2000s, the new emerging architecture relies onmulti-core processors. In a
supercomputer, these multi-core processors are bundled in computing nodes, i.e., a comput-
ing node hosts multiple processors that each hosts multiple cores. Cores share levels of cache
on the processor they belong to and processors share RAM on the computing node they be-
long to. The aftermath is amore complex and competitive access tomemory by all the cores of
a computing node. Hence, parallel implementations running onmodern supercomputers can
be limited as much by the communication overhead as by the intra-processor and intra-node
memorymanagement and access. Our parallel DEM solver Grains3D is programmed in C++.
C++ equips programmers with a formidable level of flexibility to handle multi-shape and
multi-size granular flows with well-known object-oriented mechanisms as inheritance, virtual
classes and dynamic typing. Another enjoyable tool of C++ is constructors and destructors
that enables one to create and delete instances of object with a high level of control on mem-
ory allocation (provided the constructor and destructor are properly programmed). However,
dynamic memory allocation/deallocation, even with absolutely no memory leak, can literally
kill the parallel performance of a numerical code. This has nothing to dowith inter- and intra-
node MPI communications between cores but rather with the management and competitive
access to memory. The first parallel version of Grains3D exhibited dramatically poor scalabil-
ity properties. It took us awhile to realize that the limitationwas coming from an excessive use
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of constructors/destructors while ourMPI strategy was performing quite well from the start.
Complete refactoring of the code with use of dynamic memory allocation/deallocation only
when absolutely necessary and partial over-allocation strikingly improved the scalability prop-
erties. It is hard to get here into the details of our C++ implementation but Grains3D is now
programmedwith the following guidelines: (i) use object-oriented programming concepts at a
very high level of design only, (ii) use standard old-fashioned C/F77-like containers whenever
possible and (iii) slightly over-allocate memory and reduce to the absolute minimum dynamic
memorymanagement. There is still room for improvement in our implementation butwe are
now in a position to present acceptable parallel properties. It is this new version of the code
with enhanced memory management that we assess the scalability properties of in the rest of
the paper. In this section, we design two slightly different multi-silo discharge configurations
in order to discriminate the computing overhead related to (i) memory competitive access and
management and pure MPI communication latency from (ii) actual MPI communications
and treatment of received information.

The first flow configuration consists in discharging particles from several silos using the
previous configuration (Fig. 5.5). The multiple silos case is designed in a way that a silo is
handled by a single core without any actual communication with neighbouring sub-domains
(Fig. 5.8). In fact, silos are located far enough from each other to avoid the creation and de-
struction of clone particles. This flow configuration is hence illustrative of case (i): memory
competitive access and management and MPI communication latency. In fact, the code runs
in MPI but messages are empty. The overhead coming from MPI is hence essentially related
to the latency of theMPI scheduler to send and receivemessages. We adopt a two dimensional
domain decomposition (Ncores,x ×Ncores,y × 1 = Ncores) to guarantee exact load balanc-
ing between the cores. We evaluate the scalability of our code by gradually increasing the size
of our system. To this end, we perform discharge simulations of 2, 000 cubic particles and
2, 000, 14, 000, and 100, 000 spherical particles per silo, starting from one silo till 256 silos.
Varying the load of particles per core changes the amount of memory allocated, managed and
accessed by the code on each core. This enables us to discriminate further between memory
management andMPI latency so that the effects of these two factors are notmixed up. In fact,
MPI latency is independent of the particle load as the number of messages sent and received
scales with the number of cores. The total number of particlesNT in the system is a multiple
of that in a single core system and is defined as follows:

NT = Np,1 ×Ncores (5.8)

whereNp,1 andNcores are respectively the number of particles on a single core system and the
number of cores. The largest system comprises 100, 000× 256 = 25, 600, 000 of spherical
particles. As the granularmedia is dense inmost of the domain, the largest part of the comput-
ing time (more than 85%) is spent in computing interactions between particles, i.e., contact
detection and contact forces. For the weak scaling tests, we run all discharge simulations over
300, 000 time steps. Reference times on a single core job are listed inTab. 5.3. A first interest-
ing comment about Tab. 5.3 is that the computing time per particle and per time step is not
constant and slightly increases with the size of the system. Even when running in serial mode,
memory access is apparently not optimal as containers of larger size (as e.g. a larger list of par-
ticles) seem to slow down the computation. Some additional efforts in refactoring the serial
implementation of the code are required but this is beyond the scope of the present paper.

The second flow configuration is very similar except that right now all silos are merged
together into a big silo. The whole domain is thus shared by each core and actual commu-
nications (in the sense communications with non-empty messages) between sub-domains are
exchanged (see Figs. 5.9 and 5.10). For this purpose, we performed discharge simulations of
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(a)Decomposition of the domain into 16 sub-domains. Each
silo is handled by a single core.

(b) Discharge of 14000 spherical particles per silo from 16
independent silos. Silos are hidden. Coloured by the particle
velocity magnitude (blue = min, red = max).

Figure 5.8 –Multi-silo simulation set-up without overlap between silos (communications with empty messages
between sub-domains).

Configuration/core Total computing time Computing time per particle and
per time step

2000 spheres 59min 56s 6µs
14000 spheres 12h 24min 27s 10µs
100000 spheres 104h 41min 12s 12µs
2000 cubes 3h 58min 32s 24µs
10000 cubes 30h 30min 16s 36µs

Table 5.3 – Silo discharge for di�erent systems: reference times of a serial job over 300, 000 time steps of 10−5s.

10, 000 cubic particles, 2, 000, 14, 000 and 100, 000 spherical particles. As for the first flow
configuration, a twodimensional domain decomposition is chosen such that each sub-domain
has approximately the same number of particles as if the silos were independent. This hence
guarantees again an almost perfect load balancing between the cores.

Fig. 5.11 illustrates the scalability of our code of these two flow configurations. At first
sight, results are very similar without (separate silos) and with (merged silos into a big silo)
actual communications. We plot in Fig. 5.11a the parallel performance of Grains3D on the
first test case, i.e., without any overlap between separate silos and empty MPI messages. This
figure indicates that for low numbers of particles per core, the limiting factor is clearly MPI
latency while for high numbers of particle per core, the serial computations per core prevail
and the MPI latency becomes negligible. Hence, the loss of performance is primarily related
to a yet non-optimal memory access and management on multi-core architectures. However,
for a high enough number of particles per core as e.g. 100, 000 spheres, the scaling factor
S(n = Ncores) is independent of n up to n = 256 cores and is around 0.85. As the contact
detection of convex bodies is more time-consuming than that of spheres, S(n) for cubes is
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(a) Top view of the simulation domain in which 16 silos
are merged into one big silo.

(b) Discharge of 16000 spherical particles per sub-
domain from 16 connected hoppers. Hoppers are hid-
den. Coloured by the particle velocity magnitude (blue
= min, red = max).

Figure 5.9 – Multi-silo simulation set-up with all silos merged (connected hoppers) into one big silo (actual
communications with non-empty messages between sub-domains). Each hopper corresponds to a sub-domain.

Figure 5.10 –Discharge of 1,792,000 spherical particles from 128 merged silos (connected hoppers). Coloured by
the particle velocity magnitude (blue = min, red = max).

higher thanS(n) for spheres for the same number of particles per core. Hence, we expect that
for more than 100, 000 particles per core, the observed scaling factor of 0.85 for spheres is
actually a lower bound and that the scaling factor for non-spherical particles should be higher.
Weplot inFig. 5.11b the parallel performance ofGrains3Don the second test case, i.e., a big silo
split into sub-domains and non-empty MPI messages. The 2000 spheres per core is a special
case as on each sub-domain there are almost as many particles on the actual sub-domain, i.e.,
interior and buffer zones, than in the clone layer, leading to a high global communication
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overhead (size of messages and treatment of information received). This is getting worse and
worse as the number of cores increases (see blue line in Fig. 5.11b). The general outcome is in
line with the first test case with empty messages: for a large enough number of particles per
core, the scaling factorS(n) is satisfactory (it is actually 0.78 for 100, 000 spheres and is likely
to be higher for 100, 000 non-spherical particles). This is again emphasized in Fig. 5.12 where
we compare the communication overhead to the serial computational task for a sphere and a
polyhedron. The difference shown there is primarily due to the contact detection that requires
to use a GJK algorithm for non-spherical particles while it is analytical (and hence faster) for
spheres (seeWachs et al. (2012) formore detail). Interestingly, for 100, 000 spheres, the scaling
factor S(n) drops from 0.85 with empty messages to 0.78 with non-empty messages and
treatmentof the received information. Therefore, the actual overall parallel overhead is around
7% and the rest of the loss of performance, i.e., the remaining 15%, is predominantly due to
non-optimal memory access and management on multi-core chips.
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(a) Communication disabled.
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(b) Communication enabled.

Figure 5.11 –Weak scaling parallel performance of Grains3D in the multi-silo configurations with (a) discon-
nected silos and (b) merged silos into one big silo.

Parallel overhead

Serial tasks

Sphere Polyhedron

Figure 5.12 – Ratio between parallel overhead and serial tasks for systems made of spherical particles and
polyhedral particles.

These two first test cases are extremely informative. They show that for a dense granular
flow with a minimum load of 100, 000 of particles per core, we can expect a good overall par-
allel performance with a scaling factor S(n) & 0.75 on up to 512 to 1024 cores. Systems
with a low particles load per core, i.e., of the order of a few thousands, show an unsatisfac-
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tory, although not dramatically poor, parallel performance that exhibits the obvious tendency
to degrade with the number of cores n. Overall, the MPI strategy presented in Section 3 is
deemed to perform very well while additional efforts in serial programming are required to
improve memory access and management. Systems with up to 100, 000, 000 of particles can
be computed with a scaling factor of at least 0.75, which is deemed to be very satisfactory for
engineering and fundamental physics purposes.

4.2 Granular slumping

Dam break collapse

Granular column collapse is a very classical flow configuration to understand the fundamental
dynamics of granular media Ritter (1892), Balmforth and Kerswell (2005), Ancey et al., Laje-
unesse et al. (2005), Lube et al. (2005). The "dambreak" configuration in a rectangular channel
has been extensively studied by many authors, experimentally(Lajeunesse et al. (2005), Lube
et al. (2005), Balmforth and Kerswell (2005)), analytically (Balmforth and Kerswell (2005))
and numerically (Girolami et al. (2012)), among others. The experimental set up is cheap and
experiments are easy to conduct. The overall picture of granular column collapse has been de-
scribed inmany papers and books (and in particular in the aforementioned papers) but a fully
comprehensive understanding is still lacking. To summarize, the macroscopic features of the
collapse, i.e., the final heightH∞/H and the run-out distance (L∞ −L)/L = Xf/L, scale
with the initial aspect ratio a = H/L of the column, whereH andL denote the initial height
and initial length of the column, respectively, and H∞ and L∞ denote the final height and
final length of the column, respectively. It has been established and verified by many authors
thatH∞/H and (L∞ − L)/L are essentially functions of a and vary asH∞/H ≃ λ1a

α

and (L∞ − L)/L ≃ λ2a
β , with α ≈ 1 for a . 0.7 and α ≈ 1/3 for a & 0.7, and β ≈ 1

for a . 3 and β ≈ 2/3 for a & 3, although Balmforth and Kerswell found slightly differ-
ent exponents (Balmforth and Kerswell (2005)). Anyhow, the constants λ1 and λ2 are largely
undetermined. In the inertia dominated regime a & 3, Lube et al. (2005) suggested that
λ2 = 1.9. Although the qualitative description of granular column collapse in a rectangular
channel is acknowledged by all contributors to the field, significant quantitative discrepancies
can be found in terms of experimentally measured run-out distances between e.g. Lube et al.
(2005) and Balmforth and Kerswell (2005). It is admitted that the problem is primarily gov-
erned by the initial aspect ratio a but the various existing studies also suggest that λ1 and λ2
might not be true constants but functions of the transverse dimension of the channel (nar-
row or wide slots), the type of material and the shape of the particles, although this functional
dependence might be weak. In any case, the scaling analysis is assumed to be valid, which im-
plies that the general behaviour and henceH∞/H and (L∞ −L)/L are independent of the
dimensional system size.

In Girolami et al. (2012), we usedGrains3D to carry out an extensive analysis of dam break
granular collapses in a rectangular channel and satisfactorily reproduced the experimental data
of Lajeunesse et al. (2005). Here our objective is twofold: (i) show that the scaling analysis is
indeed valid by computing systems of increasing size but constant a and that the computed
run-out distance is within the reported experimental range of values, and (ii) use the largest
system as a reference point for weak scaling parallel tests.

Numerical simulation

Simulations are performed based on a well-known experimental set-up: a box with a lifting
gate (see Fig. 5.13). The simulation procedure consists in filling the parallelepipedic reservoir
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of length L and width W up to a height H with granular media. Particles are inserted at
the top of the reservoir. They settle by gravity and collide until the system reaches a pseudo
steady state corresponding to a negligible total kinetic energy. Then, the gate is lifted over
a time scale much smaller than that of the collapsing media in a sense that it does not affect
the dynamics of the whole system. The moving gate is also chosen to be frictionless to avoid
particle located close to the gate to be artificially lifted in the air. The lateral boundaries of our
systemare subjected toperiodic condition tomimic an infinite granularmedia in the transverse
direction to the flow. Particles are assumed to have amono-sized icosahedral shape thatmimics
quartz-sand grains. Icosahedral particles have an equivalent diameter dp (diameter of a sphere
of same volume as the icosahedron) of 3mm. The magnitude of the parameters involved in
the granular collapse simulations is given in Tab. 5.4. We take the free-fall settling velocity of
the highest heap of particles (Size 5,H = 0.905m) as an estimate of themaximum collisional
velocity. We hence get vcol =

√
2× 9.81× 0.905 ≈ 4.2m/s. The theoretical maximum

overlap is of the order of maximum 5% of the particle equivalent radius as shown in Table
5.4. In practice, the average overlap andmaximum overlap in all simulation are of the order of
0.1% and 1%, respectively.
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Figure 5.13 –Granular dam break set-up.

Parameter Value
Particle-Box (PB) & Particle-Gate (PG)
kn (N m−1) 1× 105

en , µn (s−1) 0.75 , 6.86× 103

µc,PB , µc,PG 0.5, 0
kms 0
δmax (m) , δmax/R 7.16× 10−5 , 0.048
TC (s) 5.91× 10−5

Particle-Particle
kn (N m−1) 1× 105

en , µn (s−1) 0.75 , 6.86× 103

µc 0.5
kms 0
δmax (m) , δmax/R 4.87× 10−5 , 0.0325
TC (s) 4.19× 10−5

∆t (s) 2.5× 10−6

Table 5.4 – Contact force model parameters, estimate of contact features at vcol = 4.2 m/s and time step
magnitude used in the dam break simulations.
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We fix a to roughly 7.3 and select five systems of increasing dimensional size. The way we
proceed is as follows: we setW = 0.5m and selectL = L1 = 0.025m has the length of the
smallest system. We fill the reservoir withN1 = 98, 000mono-disperse icosahedral particles
and the resulting height isH = H1 = 0.187 m. The 4 other systems have the following
features: i ∈< 2, 5 >,Li = iL1, Ni = i2N1, Hi ≈ iH1. The simulation of the filling
process results in the following actual height and aspect ratio of the reservoir of particles for
the different systems:

• Size 1: 98000 particles (H = 0.187m,L = 0.025m, a = 7.475)
• Size 2: 392000 particles (H = 0.365m,L = 0.05m, a = 7.305)
• Size 3: 882000 particles (H = 0.547m,L = 0.075m, a = 7.296)
• Size 4: 1568000 particles (H = 0.731m,L = 0.1m, a = 7.31)
• Size 5: 2450000 particles (H = 0.905m,L = 0.125m, a = 7.238)
The resulting aspect ratio a is 7.3± 2.3%. The observed limited deviation of 2.3% is the

aftermath of systems of slightly different compaction. In fact, the initial height is a result of the
filling simulation and cannot be set a priori. It is only known after all particles have settled in
the reservoir and the system exhibits a negligible total kinetic energy. It has been noticed that
once the free fall phase of all particles is complete, the system relaxes and densifies extremely
slowly over a time scale of a few seconds at least. Slowmicrostructural re-arrangements lead to
a progressively more compact granular media in the reservoir. Actually, starting from a loose
packing, the compaction of the system can be very slow, even with a successive vertical taps
(Knight et al. (1995)). In terms of computational cost, this situation may lead to an extremely
long simulation time since the typical time step is in the order of a micro-second. We assume
that these slight variations of the initial aspect ratio a and correspondingly of the initial vol-
ume fraction and microstructure of the granular media have a very low impact on the whole
granular collapse. In the worst case, it will result in similar slight variations of the final height
and the final run-out distance.

Measuring the run-out distance in an unbiased way is not straightforward as once the col-
lapse is complete the front of the deposit of particles is diffused (detached particles are spread
out). In order to determine the total length of the final deposit, we employ the following pro-
cedure:

• we consider the bottom layer of particleswhose thickness is roughly a particle equivalent
diameter dp,

• we translate along the bottomwall a box-like control volume that spans thewhole trans-
verse dimension of the flow domain (Vb = dp×W ×dp) from the origin of theX -axis
and compute the solid volume fraction as a function ofX as follows:

φ(X) =

N∑
i=1

Vi

Vb
, (5.9)

whereVi = πd3p/6 is the particle volume andN is the number of particleswhose center
of mass belongs to Vb.

• the total length of the final depositL∞ is determined once the conditionφ(L∞) ≤ 0.1
is satisfied.

Note that changing the critical value of the average solid volume fraction in the control volume
Vb from 0.1 to 0.05 or 0.025 does not change significantly the estimation ofL∞.

Fig. 5.14 and Fig. 5.15 illustrate the dynamics of the granular collapse and the time evo-
lution of the free surface in a 2D X − Z cut plane and in 3D, respectively, for case Size 4.
As observed by Lube et al. (2005), the early transient of the collapse correspond to a free-fall
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regime (Fig. 5.14 (a)-(c)) until the flow transitions to a phase overwhich the advancing front of
the collapsing granular media reaches a quasi-constant velocity (Fig. 5.14 (d)-(f)), and finally
the flow is friction-dominated and slows down to rest. Interestingly, over the second phase,
the front of the collapsing granular media shows a rather chaotic dynamics. Although the
front advances at a quasi-constant velocity, the singularity that the front represents leads to a
high level of particles agitation with many particles being ejected/detached from the mass to
balistically free-fly until they settle back on the deposit.

(a) t = 0.0s (b) t = 0.3s

(c) t = 0.5s (d) t = 0.7s

(e) t = 0.8s (f) t = 1.5s

Figure 5.14 – 3D view of the granular dam break flow for Size 4 case.

As experimentally observed bymany authors, our computed results confirm that the over-
all dynamics and in particular the final height, run-out distance and cross-sectional profile of
the deposit are independent of the size of the system and solely controlled by the initial as-
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(a) (b) (c) (d) (e) (f) t = 0.5s

(g) t = 0.64s (h) t = 1.5s

Figure 5.15 – 2D view of the granular dam break flow for Size 4 case. (a)-(f) correspond to snapshots every 0.1s.

pect ratio a. We present in Fig. 5.16 a view from the top of the final deposit together with the
scaled total length of the deposit L∞/L obtained with the criterion φ ≤ 0.1 (red line) for
all systems. The variation of the run-out distance (L∞ − L)/L is quantitatively plotted in
Fig. 5.17. It is pretty obvious that (L∞ − L)/L is quasi-constant as a function of the size of
the system. The limited variations obtained are primarily a result of the slight variations of a
for the different sizes in the computations.

(a) Size 1 (b) Size 2 (c) Size 3 (d) Size 4 (e) Size 5

Figure 5.16 – Variation of L∞/L. L∞ (red) for ε ≤ 0.1. Blue dots are particles positions.

Finally, the final scaled cross-sectional profiles of the deposit for all system sizes nicely col-
lapse on a unique master plot, as shown in Fig. 5.18, emphasizing once again the dependence
to a and not to the dimensional size of the system. Let us complete this subsection by shortly
discussing the value of the obtained run-out distance. Lajeunesse et al. (2005) and Lube et al.
(2005) agree on the scaling exponents while Balmforth and Kerswell (2005) suggests slightly
different values. Please note that all these works are experimental. For inertia-dominated
regimes a & 3, Lube et al. (2005) even determine that the value of the constant λ2 is around
1.9 and independent of the granular material properties and shape. Using their correlation
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Figure 5.17 – Variation of run-out distance (L∞ − L)/L with dimensional size of the system for a ≈ 7.3.

(L∞ − L)/L ≃ 1.9a2/3, we get for a ≈ 7.3, (L∞ − L)/L = 1.9 × 7.32/3 ≃ 7.15, a
value significantly less than our numerical prediction of≈ 10.5. In their experiments, Lube et
al.have lateral walls while we have periodic boundary conditions, i.e., no frictional resistance
from any lateral walls. This difference in the flow configuration qualitatively justifies that our
run-out distance is larger (less frictional resistance leads to a larger spread out of the granu-
lar media) but is probably not sufficient to quantitatively explain the discrepancy. Although
Lube et al.have lateral walls, their channel looks rather wide, so the additional frictional flow
resistance is likely to be limited. In Balmforth and Kerswell (2005), Balmforth and Kerswell
claim that λ2 is a function of the granular material properties and shape, based on their own
experimental results. Figure 11 in Balmforth and Kerswell (2005) suggests that for a = 7.3,
the run-out distance roughly spans the range [7 : 13] for wide channels, with the largest
value found for fine glass. Fine glass grains seem to look moderately angular (see Figure 3 in
Balmforth andKerswell (2005)) and could presumably bewell represented by icosahedra. Our
computed run-out distance hence falls almost in the middle of the range of values reported in
Balmforth and Kerswell (2005). Overall, our numerical prediction is in good agreement with
the assorted experimental values reported in the literature. But additional simulations are re-
quired to further determine the right scaling and the potential dependence of that scaling to
the granular material properties and shape.

Size 
Size 
Size 
Size 
Size

Figure 5.18 – Final scaled profiles of the deposit as a function of dimensional size of the system for a ≈ 7.3.
All profiles collapse on a single master profile.
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Parallel scalability

We use the Size 5 granular column collapse flow configuration to perform weak scaling tests
and further assess the parallel scalability of Grains3D. From Section 4.1, we learnt that a good
parallel performance requires a minimum of ≈ 100, 000 particles per core. Therefore our
reference case on a single core approximately corresponds to Size 5 case of Section 4.2 but 24
times narrower. The system on a single core comprises Np,1 = 101850 icosahedra and its
width isW1 = 0.021875m. For parallel computing, we increase the system width and the
number of particles accordingly. We adopt a 1D domain decomposition in the Y direction
such that each core hosts approximately 101850 particles. Hence, aNcores-core computation
corresponds to a systemwithNT = Np,1×Ncores particles and ofwidthW = Ncores×W1

as detailed in Tab. 5.5. The weak scaling tests are performed over the 20, 000 first time steps
of the collapse.

Ncores 1 16 32 64 128 256 512

W (m) 0.021875 0.35 0.7 1.4 2.8 5.6 11.2

NT 101, 850 1, 627, 500 3, 255, 000 6, 510, 000 13, 020, 000 26, 040, 000 52, 080, 000

Table 5.5 – System size in granular dam break weak scaling tests.

Fig. 5.19 shows the overall scalability of our code Grains3D. The code exhibits a very sat-
isfactory performance for a particles load per core of≈ 100, 000 of regular polyhedra. The
scaling factor S(n = Ncores) is≈ 0.93 on 512 cores for a system with a quasi-perfect load
balancing. The plot seems to indicate a very slight degradation of the performance above 256
cores but the general trend suggests thatS(n) should still be& 0.9 on 1024 cores for a system
comprising more than 100, 000, 000 of regular polyhedra.
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Figure 5.19 –Weak scaling parallel performance of Grains3D in granular dam break computations.

4.3 Coupling with a fluid in an Euler/Lagrange framework, application to fluidized beds

The final test case is a fluidized bed, i.e., a flow configuration in which the particles dynam-
ics is not only driven by collisions by also by hydrodynamic interactions with the surrounding
fluid. Themodel implementedhere is of the two-wayEuler/Lagrange orDEM-CFDtype (An-
derson and Jackson (1967), Kawaguchi et al. (1998), Tsuji et al. (2008), Pepiot and Desjardins
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(2011)). The principle of the formulation is towrite fluid porosity averaged conservation equa-
tions with an additional source representing the reaction of the particles on the fluid and to
add a hydrodynamic force to the translational Newton’s equation for the particles represent-
ing the action of the fluid on the particles. In our weak scaling tests below, we evaluate the
parallel scalability of the solid solver only.

Formulation

The formulation of the set of governing equations dates from Anderson and Jackson An-
derson and Jackson (1967) in the late 60s and was recently clarified in Capecelatro and Des-
jardins (2013). In essence, for the fluid part, the mass conservation equation and the momen-
tum conservation equation are averaged by the local fluid porosity. In most formulations, the
set of governing equations is integrated in control volumes larger than the particle diameter,
although recent advances in this field have shown that it is possible to use a projection ker-
nel disconnected from the grid size (Pepiot and Desjardins (2011), Capecelatro and Desjardins
(2013)). Particles trajectories with collisions and hydrodynamic forces are tracked individually
and computed by our granular dynamics code Grains3D. The two-way Euler/Lagrange for-
mulation has been detailedmany times in the past literature (see Kawaguchi et al. (1998), Tsuji
et al. (2008), Xu and Yu (1997) among many others) and we shortly summarize the main fea-
tures of our own two-way Euler/Lagrange numerical model.

The fluid is assumed to beNewtonian and incompressible. The set of governing equations
for the fluid-solid coupled problem reads as follows:

• Fluid equations
We solve the following fluid porosity averagedmass andmomentum conservation equa-
tions:

∂ε

∂t
+∇ · εu = 0 (5.10)

ρf
(∂(εu)

∂t
+∇ · (εuu)

)
= −∇p− Ffp + 2µ∇ · (εD) (5.11)

where ρf , µ, ε andD stand for the fluid density, the fluid viscosity, the fluid porosity
(also referred to as fluid volume fraction) and the rate-of-strain tensor, respectively. The
pressure gradient termonly contains the hydrodynamic pressure andFfp represents the
fluid-particle hydrodynamic interaction force.

• Particles equations
We solve Eq. 5.1 and Eq. 5.2 with addtional hydrodynamic interaction contributionsFi

and Mi, respectively. The translational and angular momentum conservation equa-
tions of particle i hence read as follows:

Mi
dUi

dt
=Mi(1− ρf/ρp)g +

N−1∑

j=0,j 6=i

Fij + Ffp,i (5.12)

Ji
dωi

dt
+ ωi ∧ Jiωi =

N−1∑

j=0,j 6=i

Rj ∧ Fij +Mfp,i (5.13)

where ρp, Ffp,i and Mfp,i stand for the particle density, the fluid-particle hydrody-
namic interaction force exerted on particle i and the fluid-particle hydrodynamic inter-
action torque exerted on particle i, respectively.
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The fluid-particle hydrodynamic interaction forceFfp,i exerted onparticle i (and similarly
for the torque) derives from the momentum exchange at the particle surface:

Ffp,i =

∫

∂Pi

τ · n dS (5.14)

where τ denotes the point-wise fluid stress tensor and n is the normal vector to the particle
surface ∂Pi. In the two-way Euler-Lagrange framework, point-wise variables are not resolved.
A closure law is hence needed to compute the fluid-solid interaction at the position of each
particle (Kawaguchi et al. (1998), Tsuji et al. (2008), Pepiot and Desjardins (2011)). Following
previous contributions to the literature, we assume that the dominant contribution to the
hydrodynamic interaction is the drag and that the hydrodynamic torque is small enough to be
neglected, i.e., we setMfp,i = 0. In our fluidized bed simulations, particles are spherical and
we select the drag correlation proposed by Beetstra et al. (2007a;b) which reads as follows:

Fi,fp = Fd,i = 3πdµ(u−Ui)g(ε,Rep,i) (5.15)

g(ε,Rep) =
10(1− ε)

ε2
+ ε2(1 + 1.5

√
1− ε)

+
0.413Rep

24ε2

(
ε−1 + 3ε(1− ε) + 8.4Re−0.343

p

1 + 103(1−ε)Re−0.5−2(1−ε)
p

)

Rep,i =
ρfdpε|u−Ui|

µ

(5.16)

To compute the reaction term−Ffp of the particles on the fluid flow, we need to use a projec-
tion operator from the Lagrangian description of the particles motion to the Eulerian descrip-
tion of the fluid flow. Here we use the simple embedded cube projection kernel introduced
by Bernard (2014), Bernard et al. (2016). The fluid equations are discretized with a classical
second-order in space Finite Volume/Staggerred Grid discretization scheme and the solution
algorithm is of the first-order operator splitting type. The two-way Euler/Lagrange model
used here is implemented in the PeliGRIFF platform to which Grains3D is plugged to com-
pute particles trajectories, seeWachs (2009),Wachs et al. (2007-2016) among others. For more
detail about the formulation of the model and its implementation, the interested reader is
referred to Bernard (2014), Esteghamatian et al. (2016), Bernard et al. (2016).

The set of governing equations above can be easily made dimensionless by introducing
the following scales: Lc for length, Vc for velocity, Lc/Vc for time, ρfV 2

c for pressure and
ρfV

2
c L

2
c for forces. In a dimensionless form, the govening equations contain the following

dimensionless numbers: the Reynolds numberRec =
ρfVcLc

µ
, the density ratio ρr =

ρp
ρf

and the Froude numberFr = gLc

V 2
c

.

Simulation set-up and parameters

We consider the fluidization of mono-disperse solid spherical particles in a simple box-like re-
actor. We use the uniform inlet velocityUin as the characteristic velocity Vc and the spherical
particle diameter dp as the characteristic lengthLc. The Reynolds and Froude numbers hence
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read as follows:

Rein =
ρfUindp

µ
(5.17)

Frin =
gdp
U2
in

(5.18)

Results hereafter are presented in adimensionless formanddimensionless variables arewritten
with a ·̃ symbol. Particles positions are initialized as a cubic array arrangement with a solid
volume fraction of π/6. The computational domain is shown in Fig. 5.20. Inlet boundary
condition corresponds to an imposed velocity u = (0, 0, 1) and outlet boundary condition
corresponds to a standard free-flow condition with an imposed reference pressure. Lateral
(vertical) boundaries are periodic.
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Figure 5.20 – Fluidized bed computational domain.

The principle of our weak scaling tests is similar to the one adopted in the scaling tests
of the previous sections except that here the reference case is a full node that comprises 16
cores. The domain is evenly decomposed and distributed in the horizontal x − y plane to
guarantee an optimal load balancing over the whole simulation, i.e., we adopt a Ncores,x ×
Ncores,y × 1 = Ncores domain decomposition. The reference case on a full 16-core node
has the following dimensionless size: L̃x = 200, L̃y = 80 and L̃z = 1500 and initially
hosts 200× 80× 300 = 4, 800, 000 of spheres. With a 4× 4× 1 domain decomposition,
each sub-domain has the following dimensionless size 50 × 20 × 1500 and hosts initially
Np,1 = 50× 20× 300 = 300, 000 of spheres. The total number of particles in a system is
NT = 300, 000×Ncores = 4, 800, 000×Nnodes. The initial height H̃0 of the bed is 300,
such that we also have L̃z/H̃0 = 5. The additional physical and numerical dimensionless
parameters of our simulations are listed in Tab. 5.6. We use the same contact parameters for
particle-bottom wall and particle-particle collisions.

Another important dimensionless parameter is the ratio of the inlet velocity Uin to the
minimum fluidization velocity of the system Umf . Here we select Uin/Umf = 3 to run our
weak scaling tests. To avoid a strong overshoot of the bed over the early transients, we first set
Uin/Umf = 2 for t̃ ∈ [0 : 1785] and then Uin/Umf = 3 for t̃ > 1785. The weak scaling
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Parameter Value
Fluid
ρr 2083.333
Rein 79.333
Frin 6.927× 10−3

∆t̃f 0.0119
Particle
en 0.9
µc 0.1
kms 0

δ̃max 0.025
∆t̃p 0.00595

Table 5.6 – Fluid and particles physical and numerical dimensionless parameters.

tests are performed by increasing the length L̃x of the system together with the number of
particles, as shown inTab. 5.7, with L̃y and L̃z kept unchanged. As L̃x increases, the domain
horizontal cross-section looksmore andmore like a narrow rectangle and the bedbehaves like a
pseudo-3D/quasi-2D bed, as transverse secondary instabilities in the y direction are artificially
strongly damped by the narrow periodic length L̃y while transverse secondary instabilities in
the x direction are free to develop. This configuration is purposedly selected to facilitate the
visualisation of the bubbles dynamics inside the bed. As expected, the flow field does not vary
much in they direction (seeFig. 5.21). Note that this does not affect ourweak scaling tests since
with 4 sub-domains in the y direction and bi-periodic boundary conditions, each sub-domain
has exactly 8 neighbors, regardless of the fact that the cross-section is a narrow rectangle or a
square. In other words, the cartesian domain decomposition is fully 2D. The evaluation of the
scaling factor is carried out over 20, 000 time-steps asUin/Umf = 3 for t̃ > 1785.

L̃x 200 400 800 1600 3200 9600

Nnodes 1 2 4 8 16 48

Ncores 16 32 64 128 256 768

NT (million) 4.8 9.6 19.2 38.4 76.8 230.4

Table 5.7 – System size in the fluidized bed weak scaling tests. Each node hosts 16 cores, i.e., Ncores =
16×Nnodes, and each core initially hosts Np,1 = 300, 000 of spheres, thus NT = 300, 000×Ncores =
4, 800, 000×Nnodes.

Fig. 5.21 illustrates the early transients for Uin/Umf = 2 of the simulation with
19, 200, 000 of particles over which the primary streamwise (in the z direction) instability
develops, as well documented in the literature. Then a secondary transversal (horizontal in
the x direction) instability triggers, grows and leads to the creation of a first big bubble that
eventually bursts. Fig. 5.21 shows the time evolution of the fluid porosity in a x− z cut plane
located at L̃y/2 over the transition fromUin/Umf = 2 toUin/Umf = 3. For t̃ > 1785, the
system progressively transitions to its bubbling regime. The level of intermittency decreases
with time until the system reaches a pseudo-stationary bubbling regime. Fig. 5.22 shows a 3D
snapshot of the flow field (velocity contours in ax−z cut plane located at L̃y and 3D contours
of ε = 0.75) at t̃ = 2142. The presented results are qualitatively in line with the expected
behaviour of a fluidized in the selected flow regime (Pepiot and Desjardins (2011)).

Fig. 5.23 shows the parallel scalability of our granular solver Grains3D in our fluidized
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(a) t̃ = 595 (b) t̃ = 952 (c) t̃ = 1190 (d) t̃ = 1404 (e) t̃ = 1785

Figure 5.21 – 3D snapshots of fluidized bed fluid flow over the early transients with Uin/Umf = 2 in the case
Ncores = 64, NT = 19, 200, 000: ε = 0.75 fluid porosity contours colored by pressure magnitude, velocity
contours in a x− z cut plane located at ỹ = L̃y and pressure contours in a y− z cut plane located at x̃ = 0.

Figure 5.22 – A 3D snapshot of fluidized bed fluid flow at t̃ = 2142 and Uin/Umf = 3 in the case
Ncores = 64, NT = 19, 200, 000: ε = 0.75 fluid porosity contours colored by pressure magnitude, velocity
contours in a x− z cut plane located at L̃y and pressure contours in a y − z cut plane located at x̃ = 0.

bed parallel simulations. The overall parallel efficiency of our granular solver is very satisfac-
tory. The scaling factor S(n = Nnodes) is 0.91 for the largest system investigated, i.e., for
230, 400, 000 of particles and 48 nodes/768 cores. This very high scalability for such a high
number of particles derives from less frequent collisions betweenparticles than in a dense gran-
ular media. Although collisions are constantly happening in the system, the presence of the
fluid and the overall observed dynamics lead to particles often advancing over a few solid time
steps without collide with another particle. We would like to emphasize that, in such a flu-
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idized bed simulation, most of the computing time is spent in computing particles trajectories
with collisions, i.e., in the granular solver. This has been shown as well in a companion paper
(Bernard et al. (2016)). So overall, measuring the parallel efficiency of the granular solver only
in such systems still supplies a rather reliable indication of how the whole fluid-solid solver
scales. Although Fig. 5.23 shows that the scaling factor seems to slightly degrade with increas-
ing the number of nodes, the trend reveals that simulations with a 1 billion of particles on
a few thousands of cores can be performed with a reasonably satisfactory scalability. This is
indeed very encouraging.
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Figure 5.23 –Weak scaling parallel performance of Grains3D relative to a full 16-core node in fluidized bed
computations.

5 Discussion and Perspectives

Wehave suggested a simple parallel implementation of our granular solver Grains3D based on
a fixed cartesian domain decomposition andMPI communications between subdomains. The
MPI strategywith tailoredmessages, non-blocking sendings and type conversionhas proven to
be particularly efficient when the flow configuration does not require any particular dynamic
load balancing of the number of particles per core. In the three flow configurations investi-
gated in this work, the parallel performance of the code is deemed to be more that acceptable,
and even satisfactory to very satisfactory. For systems with more than 100, 000 particles per
core, the scaling factorS(n) is consistantly larger than0.75. In case particles are non-spherical,
S(n) is actually larger than 0.9 for computations on up to a few hundreds of cores.

We have also shown than the parallel performance is not only limited by the parallel over-
head in terms of messages sent by and received from cores combined to copying the required
information in buffers before sending and treating the information received, but also by the
competitive access to and proper management of random-access memory on a multi-core ar-
chitecture. The aftermath of this known limitation is the requirement to enhance even the
serial parts of the code. This reprogramming task might be tedious but should be very benefi-
cial on the long run as new architectures are likely to have more and more cores per processor
and more and more processors per node. Although Grains3D went through this refactoring
process, there is still room for further improvement.

In its current state, Grains3D offers unprecedented computing capabilities. Systems with
up to 100, 000, 000 of non-spherical particles can be simulated on a few hundreds of cores.
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Besides, the trend shown by the scaling factor as a function of the number of cores or nodes
suggests that the milestone of a billion of particles is attainable with a decent parallel perfor-
mance, without fluid or with fluid in the framework of a two-way Euler/Lagrange coupling
method. This will create incentives to examine flow configurations that were beyond reach
before and strengthen the position of numerical simulation associated to high performance
computing as an indispensable tool to extend our comprehension of granular flow dynamics.

The next research directions that we will explore short-term on the purely computing side
to further enhance the computing capabilities of Grains3D are the following ones:

• the developement of a dynamic load balancing algorithm to supply a good parallel per-
formance in flow configurations with high particle volume fraction heterogeneities and
significant particle volume fraction time variations. We will proceed in two steps. First,
we will implement an algorithm that dynamically balances the load of particles per core
in one direction only andmake sure this algorithm exhibits a good parallel performance.
Second, we will extend this algorithm to dynamic load balancing in 3 directions. Con-
ceptually, dynamic load balancing is not particularly complex but a parallel implemen-
tation that scales well is the true challenge,

• the intra-processor and intra-node limitation due to competitive access to memory
and/or MPI latency may be partly corrected by moving to an hybrid OpenMP/MPI
parallelisation instead of an all-MPI one, such as the one suggested byBerger et al. (2015),

• as the number of cores attains a few thousands, the MPI latency as well as the number
of messages sent and received might start to become a serious limitation, although we
have not explored yet this range of number of cores. In case this should happen, our
simple though very efficient so far MPI strategy might necessitate to be upgraded too,
with at least improvements in the scheduling of messages or other techniques,

• finally, although the ability to compute granular flows with non-spherical convex shape
opens up fascinating perspectives to address many open questions in the dynamics of
real life granular systems, this does not cover all possible particle shapes. In fact, many
non-spherical particles are also non-convex. There is hence a strong incentive to devise a
contact detection algorithm that can address granular media made of non-convex parti-
cles. We will examine this issue in Grains3D-Part III: extension to non-convex particles.
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Résumé

Ce chapitre est dédié à l’aspect parallèle du codeGrains3D .Effectivement, il décrit unenouvelle
stratégie d’implémentation parallèle du codeGrains3D . Le travail est effectué en adoptant une
approche classique de décomposition de domaine, une communication MPI (Message Pass-
ing Interface) entre sous-domaine et une implémentation utilisant un système de “géolocalisa-
tion” des particules. C’est-à-dire que les particules sont géolocalisées lorsque celles-ci se retrou-
vent dans le voisinage des interfaces entre sous-domaines pour optimiser ainsi les messages
entre les processeurs. Le problème gestion de mémoire est aussi abordée. L’implémentation
a été testée sur quelques configurations d’écoulements granulaires tels que vidanges de silos,
éffondrements de colonnes de particules et lits fluidisés. Ces tests ont pu montré que le code
Grains3D est capable de simuler des systèmes contenant quelques centaines de millions de
particules ouvrant ainsi la voie à des simulations numériqures de systèmes de milliard de par-
ticules.
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For decades most catalytic refining and petrochemical reactions have been processed in fixed
bed reactors. In the downstream oil and gas industries, these reactors represent the ma-

jority of reactor plants. Particles (catalyst pellets) are randomly stacked in these reactors and
reactants, such as liquid or gas flow through these packed beds in the upward direction or the
downward direction. It is known that these particles aremade of porousmedium inwhich the
pores hold noble active materials. Usually, particle length is in the order of few millimetres.

Traditionally, the chemical industry is always looking for optimised and economical pro-
cesses. For example, long lasting efficient catalysts. It is a matter of interest to investigate at
the fundamental level the physics that govern these industrial plants. Afterwards, based on
these investigations engineers can improve the performances of the reactors both in terms of
chemical reactions and in terms of mechanical behaviour.

Until late 90’s all the studies aimed at optimising processes in fixed beds were done experi-
mentally and analytically. Later on, numerical approach has been gradually introduced in the
community. Among others, Kuipers and Van Swaaij (1998) presented the future of numeri-
cal simulation in chemical engineering and Logtenberg and Dixon (1998) explored the use of
numerical simulation to study heat transfer in fixed bed reactors. They used a finite element
commercial code to solve the 3DNavier-Stokes equations. The simulation consisted of an ar-
rangement of 8 spherical particles only. Afterwards, Dixon andNijemeisland (2001) presented
Computational FluidDynamics as a design tool for fixed bed reactors, still limited to low tube-
to-particle diameter ratio (N ∈ [2; 4]). Romkes et al. (2003) extended this limitation to a
channel-to-particle-diameter ratioN of 1 < N < 5 and compared their numerical results
to experimental data. They found that their tool could predict the particle-to-fluid heat trans-
fer with an average of 15% of relative discrepancy with the experimental data. Gunjal et al.
(2005) studied the fluid flow through an arrangement of spherical particles to understand the
interstitial heat and mass transfer. Particles were arranged periodically following a simple cu-
bical, a 1D rhombohedral, a 3D rhombohedral, and a face-centered cubical geometries. In this
framework of finding the best particle arrangement that can represents a whole industrial bed,
Freund et al. (2005) presented their work applied to a structured simple cubic packing and a
random packing. In addition, they highlighted the advantages of modelling approaches such
as deriving reliable correlations from “numerical experiments”.

In the literature, the use of Discrete Particle modelling is becoming more and more un-
deniable due its conceptual simplicity. This method combined with Computational Fluid
Dynamics has been proven to be an efficient and powerful tool for the study of the physics
behind numerous industrial processes (among others van Buijtenen et al. (2009), Deen and
Kuipers (2013), Sutkar et al. (2013), Rahmani and Wachs (2014), Dorai et al. (2015)). With the
growth of computing capabilities, many research groups adopted a multi-scale strategy (Deen
et al. (2004), Van der Hoef et al. (2008)) which targets the up-scaling of local information
(at the particle scale), known as micro-scale, to the intermediate scale, known as meso-scale
(usually laboratory scale) and later on to the macro-scale (industrial plant). Fig. 6.1 illustrates
the aforementioned strategy where the micro-scale is usually resolved with Direct Numerical
Simulation (DNS), called also Particle Resolved Simulation (PRS). The power of this method
relies on the fact that the momentum, heat or mass transfer are fully resolved without almost
any assumption (see for example the works of Deen and Kuipers (2013), Wachs et al. (2015)).
The PRS solutions serve as a benchmark to create correlations that will be implemented in the
meso-scale model (Beetstra et al. (2007a;b), Esteghamatian et al. (2016)) and the macro-scale
one.

Finally, coming back to fixed bed numerical simulation, the DEM approach combined
with the PRSmethod enables researchers to simulate from the filling of reactorswith particles,
the flow through the packed bed to the chemical reaction and heat transfers between the bed
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Figure 6.1 – Illustration of the up-scaling procedure. Micro: DNS approach, Meso: Euler-Lagrange approach,
Macro: Euler-Euler approach.

and the fluid. In the PRS level, various methods have been developed during the last two
decades.

1 Body conformal mesh method

One of the earliest method is the body-conformal mesh or boundary fitted methods (among
others see the works of Johnson and Tezduyar (1996) orWan and Turek (2007)). The bound-
ary fitted methods have the advantage of capturing the details of the flow dynamics around
rigid bodies. Indeed this method is very powerful to capture momentum, heat and mass
boundary layers around immersed objects but suffers from a weak on computational perfor-
mance since a re-meshing process is needed at each time step. This method is often combined
with various numerical schemes that have been suggested in the literature, the most famous
ones are the Arbitrary-Lagrangian-Eulerian (ALE) formulation and the Deforming-Spatial-
Domain/Stabilized Space-Time (DSD/SST) which is generally used in combination with a
Finite Element discretization.

1.1 Arbitrary-Lagrangian-Eulerian (ALE)

The ALE is an hybrid method which combines the Lagrangian description of the grid cell
where there is a “small” motion and its Eulerian description where it is almost impossible for
the mesh to track the motion. In this method the boundary nodes are treated as Lagrangian
and the intermediate node velocities are interpolated between the boundary node velocities.
Thismethodwas initially established byChristie et al. (1976), Belytschko et al. (1980), Liu et al.
(1988) for Finite Element formulation. Theworks of Feng et al. (1994a;b),Hu (1996),Hu et al.
(2001) are among others the first studies to apply the method to particulate flow (Newtonian
and non-Newtonian) problems. On unstructured grids (Fig. 6.2) they have the advantage of
capturing precisely the fluid-solid interface. It is well known that despite the exceptional accu-
racy of this method, simulations of dense particulate systems are computationally expensive.
This limits their use to study a small system of particulate flows. In particular, the re-meshing
step in the simulation algorithm scales poorly on parallel computers.

1.2 Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST)

TheDSD/SSTwas first introducedbyTezduyar et al. (1992) for problems related todeforming
spatial domain in a Finite Element framework. In this formulation, the problem is written in
its variational form over the associated space-time domain. This implies that the deformation
of the spatial domain is taken into account. The space-time mesh is generated over the space-
timedomainof theproblem,within each time step, the interfacenodesmovewith the interface
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Figure 6.2 –Arbitrary-Lagrangian-Eulerian. Credits: Johnson and Tezduyar (1996).

(Fig. 6.3). Hence, during a time step, the interface nodes move with the interface. After each
time step, a new distribution of mesh covers the new spatial domain when there is a motion.
Details and extension of the DSD/SST can be found in Johnson and Tezduyar (1996; 1997;
1999).

Figure 6.3 –Deforming-Spatial-Domain / Stabilized Space-Time. Credits: Wan and Turek (2007).

2 Fixed mesh methods

Fixed mesh methods have a non negligible advantage since they scale well on large supercom-
puters but with the price of low accuracy at the fluid-solid interface as a local reconstruction is
required.

2.1 Lattice-BoltzmannMethod (LBM)

The LBM (Ladd (1997), Ladd and Verberg (2001), Feng andMichaelides (2004), Derksen and
Sundaresan (2007), Van der Hoef et al. (2005), Hill et al. (2001b;a), Third et al. (2016)) has
proven to be successful for the numerical simulation of particle-laden flows. This method
is a relatively new technique for complex fluid systems. Unlike the traditional CFDmethods,
LBMconsists inmodelling the fluidwith fictive particles undergoing consecutive propagation
and collisionprocesses over a discrete latticemesh (Fig. 6.4). In thismethod, the fluid variables
are considered as distribution functions. A “Bounce Back” method (Ladd (1994), Ladd and
Verberg (2001)) is often used to account for rigid particles.
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Figure 6.4 – Lattice structure for a "D3Q19" model. Credits: Third et al. (2016).

By means of LBM, Hölzer and Sommerfeld (2009) determined correlations for the forces
acting on a non-spherical particles. Günther et al. (2013) used the LBM to simulate anisotropic
ellipsoidal particles to mimic the shape of clay particles. Using LBM, Janoschek et al. (2013)
investigated the lubrication corrections on the non-normal direction on spheroids. Hill et al.
(2001a;b) also demonstrated the ability of themethod to computed fluid flows throughporous
media made of assemblies of spherical particles.

2.2 Immersed Boundary Method (IBM)

Figure 6.5 – Illustration of the IBM on a disk. The Lagrangian points are distributed on the boundary.
Credits: Vanella et al. (2014).

IBMwas primarily introduced by Peskin (1977; 2002) for biological fluid flow simulations
in which the method handles very thin interfaces. In IBM the fluid flow is solved on the Eule-
rian grid and the immersedbodyboundary is representedwithLagrangianpoints at its surface.
Then approximations of theDelta distribution by smoother functions allow the interpolation
between the two grids (Fig. 6.5). Later on the method was extended to suspension flow prob-
lems (Peskin (1977; 2002), Kim and Choi (2006), Uhlmann (2005)). Zastawny et al. (2012)
utilised IBM to propose correlations for drag force, lift force and torques for four different
type of non-spherical particles (Fig. 6.6).

2.3 Distributed Lagrange Multiplier / Fictitious Domain (DLM/FD)

The Distributed LagrangeMultiplier / Fictitious Domain (DLM/FD) (Fig. 6.7) method ini-
tially introduced by Glowinski et al. (1999; 2001).

Unlike the IBM, theDLM/FD formulation treats the particle boundary and volume as an
object under solid body motion (Patankar et al. (2000), Yu et al. (2002), Yu and Shao (2007),
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(a) Shape 1 (b) Shape 2 (c) Shape 3 (d) Shape 4

Figure 6.6 – Example of non-spherical particles used in IBM studies. Credits: Zastawny et al. (2012).

Wachs (2009; 2011)). In fact, Lagrangian points are distributed not only on the boundary but
in the volume occupied by the particle too.

Figure 6.7 – Illustration of the DLM/FD method on a disk. The Lagrangian points are distributed all other
the rigid body. Credits: Wachs et al. (2015).

Segers et al. (2013) used IBM to study the fluid-structure interaction of single phase flow
past crossing cylinders. Tavassoli et al. (2015) carried out DNS of the heat transfer in fixed ran-
dom arrays of spherocylinders in order to characterize the fluid-solid heat transfer coefficient.

So far, the most complex particle shapes in particulate flow in the literature using fixed
meshmethods can be seen in the works of Rahmani andWachs (2014) andWachs et al. (2015).
In fact, Rahmani and Wachs (2014) showed the influence of particle shape in the path insta-
bilities of free raising or settling of angular particles (Fig. 6.8), whereas Wachs et al. (2015)
highlighted the accuracy of theDLM/FDmethod on spherical and angular particles from low
to high solid volume fractions and from Stokes to moderate Reynolds regimes. In Dorai et al.
(2015), PRS of packed beds of cylinders are preformed using theDLM/FD formulation. They
showed the accuracy of the method on the computed pressure drop.

3 AdaptiveMesh Refinement (AMR)

The AMR method was fist introduced by Berger and Oliger (1984) and Berger and Colella
(1989). Their original work consists in creating a fine Cartesian grid which is embedded
into a coarser grid. Pursuing the concept of Berger and Oliger (1984), Almgren et al. (1998)
extended the method to solve the variable density incompressible Navier–Stokes equations
which was later on extended to two-phase flow (fluid-fluid) problems (Sussman et al. (1999)).
The method suggests that local grid refinement should be performed when needed depend-
ing on the flow conditions at the interface and the far field mesh remains coarse. The major
advantages of the AMR lie on the fact that the subcategories of methods of fixed mesh can be
incorporate in it. That is to say that IBM and AMR (Roma et al. (1999), Vanella et al. (2014))
or DLM/FD and AMR (Van Loon et al. (2004), Kanarska et al. (2011)) can be combined so
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(a) Cube (b) Tetrahedron

Figure 6.8 – Chaotic motion of a cube and a tetrahedron. Credits: Rahmani and Wachs (2014).

that when a mesh refinement is needed in the vicinity of the interface, additional Lagrangian
points are added, hence locally improving the accuracy of the computed solutions (Fig. 6.9).
However, one of the challenges of AMR is tomake it scale well on supercomputers (Kanarska
et al. (2011)).

(a) Computational domain and flow around a sphere
(IBM). Credits: Vanella et al. (2014).

(b) Flow through a cubic array of spheres
(DLM/FD). Credits: Kanarska et al. (2011).

Figure 6.9 – Illustration of the adaptive mesh refinement technique.

4 Conclusion

According to the purpose of the second part of this thesis, i.e. the modelling of fluid flow
through packed beds of particles, the well suited numerical technique is the boundary fitted
method. Indeed, it offers the best accuracy among the three aforementioned methods espe-
cially for particles of complex shape. After this method would come the adaptive mesh re-
finement combined either with the DLM/FD formulation or the IB formulation. Then the
DLM/FD or the IB method would be the last one to achieve the goal of this study. Having
said that, the method we plan to develop must also be applicable to freely-moving particles.
This hence disqualifies the use of a boundary fitted method, due to the aforementioned low
computing performance related to constant re-meshing needs. For the same reason, a com-
bined AMR-DLM/FD approach would require the AMR part to be dynamic. As far as we
know, this has never been done yet in the literature. Finally, our granular solver Grains3D is
already fully coupled with an Eulerian Navier–Stokes solver by means of a DLM/FDmethod
combined with a Finite Volume Staggered Grid scheme and a second order interpolation op-
erator to impose the rigid body motion constraint at the particle boundary based on Finite
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Element cubic quadratic basis functions. This constitutes the PRS model of the PeliGRIFF
platform. It has proven to supply computed solutions of satisfactory accuracy for spherical
and non-spherical convex bodies. It is hence sensible to build up on the existing tools and to
extend theDLM/FDmethod in PeliGRIFF to non-convex particle shapes. As seen in the pre-
vious part of this thesis, Grains3D possesses now the capability to handle non-convex particles
enhances and justifies the use of PeliGRIFF to resolve the intricate flow dynamics through
fixed bed reactors made of non-convex particles.
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Résumé

Ce chapitre propose une revue de la littérature sur la modélisation des écoulements fluide-
particules en utilisant la méthode de résolution directe. En effet, depuis quelques décennies
ces écoulements sont souvent modélisés avec des particules sphériques. Grâce à l’avènement
du calcul haute performance, les chercheurs proposent des modèles avec des particules non
sphériques. Pour celà, plusieurs méthodes sont rentrées dans la communauté telles que
les méthodes à maillage adaptatif qui suivent les déplacements des particules de façon la-
grangienne parmis lesquelles la célèbre “Arbitrary Lagrangian Eulerian” (ALE) ou encore
la“Deforming-Spatial-Domain/Stabilized Space-Time” (DSD/SST). Lesméthodes àmaillage
fixe sont aussi très courant grâce au fait qu’elles éliminent le remaillage des particules engen-
drant ainsi un gain précieux du temps de calcul; parmis lequelles on trouve la méthode “Im-
mersed Boundary” (IBM) ou la méthode “Distributed Lagrange Multiplier/Fictitious Do-
main (DLM-FD)” ou la méthode “Lattice Boltzmann”. Les deux dernières décennies ont vu
naître la méthode “Adaptive Mesh Refinement”.

Cette revue de littérature a conduit à conclure que laméthode “DistributedLagrangeMul-
tiplier/Fictitious Domain (DLM-FD)” est compatible aux problémes qui font l’objet de cette
thèse car elle est déjà existante sur la plateformePeliGRIFF -Grains3Dmoyennant une certaine
adaptation tout en bénéficiant ainsi de nouvelle extension du code Grains3D .
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Apart of this chapter has beenwritten as a first draft ofmanuscript that I intend to submit
with my co-authors for publication in Chemical Engineering Science. The provisional title of
the manuscript is:

ParticleResolved Simulation of packedbeds of trilobal/quadrilobal particles using a Finite
Volume/Staggered Grid Distributed Lagrange Multiplier/Fictitious Domain formulation.

In this chapter we present the implementation of the numerical method to compute
the flow around poly-lobed particles. Then we assess the space convergence studies of the
computed solutions on assorted flow configurations and flow regimes. Finally we compute
the pressure drop through packed beds of poly-lobed particles to study the effect of shape on
the hydrodynamics.
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Abstract

Irregularly shapedparticles are ubiquitous inmanydifferent real-life systems. For instance, in
the downstream oil and gas industries, trilobal and quadralobal shaped particles are used in

many chemical reactors for process purposes. Unfortunately, most of corresponding numeri-
cal simulations are carried out using idealized spherical particles, spheroids, cubes, or tetrahe-
dron. Very often, the weakness relies on the modelling of the collisional behaviour either to
create the packed bed of particles for flows through a fixed bed or to compute particle/particle
collisions for freely-moving particles in a fluidized bed. In Chapter 3, we suggested a numer-
ical technique implemented in our granular dynamics code Grains3D (Wachs et al. (2012)) to
treat the collisional behaviour of particles of (almost) arbitrary shape even non-convex one. In
Rahmani andWachs (2014) have shown the successful implementation of ourDistributed La-
grangeMultiplier/FictitiousDomainmethodwith a FiniteVolume/StaggeredGrid discretiza-
tion scheme for polyhedral particles in the fully parallel numerical platformPeliGRIFF (Wachs
(2011)) for multiphase flow simulations. Wachs et al. (2015) have shown that the method sup-
plies solutions of satisfactory accuracy which puts us in a favourable position to suggest a sim-
ilar Discrete ElementMethod - Particle-Resolved Simulation (DEM-PRS) approach. The aim
of this study is to go one step further and to extend our numerical method to non-convex par-
ticles. Trilobal and quadralobal particles are chosen to illustrate the novel capabilities of Peli-
GIRFF.We keep our 2nd order interpolation operator for velocity reconstruction at the parti-
cle boundary and the solutions are computed without any hydrodynamic radius calibration.
First, we assess the space convergence and overall accuracy of the computed solutions. Then,
we show the shape effects on pressure drop through packed beds of trilobes and quadralobes
with an uncertainty quantification for the effects of random packings encountered in these
applications.

1 Introduction

Flow through porousmediamade of assemblies of fixed particles is encountered in nature and
in many industrial plants especially in the process industry, especially in the process industry.
Many studies (analytical or numerical) were carried out for applications as e.g. chemical re-
actors, biomass converters and catalytic exhaust pipes. From numerical point of view, Direct
Numerical Simulation tools referred to as Particle Resolved Simulation (PRS) appear to be a
good candidate to solve the intricate momentum transfer between solid and fluid phases. In
fact, numerousmethods exist in the literature to simulate the flowdynamics around immersed
objects.

This work is entirely focused on the use of aDLM/FD fixedmeshmethod combinedwith
a FV/SG dicretisation scheme and its application to complex particle geometry. The improve-
ment of the DLM/FDmethod suggested inWachs et al. (2015) does not require the use of any
hydrodynamic radius calibration and is hencewell suited to particles of arbitrary shape. In fact,
the goal of this work is two-fold: (i) to examine again the accuracy of the method when it is
extended to non-convex particle shapes. For that purpose, space convergence of computed so-
lutions is assessed on assorted flow configurations and flow regimes, i.e. the flow through infi-
nite arrays of trilobal/quadralobic particles of various orientation and volume fraction. Then
the accuracy of the method is investigated in flows through a packed bed made of the same
type of particles in Stokes regime and finite Reynolds number regime; (ii) to use the method
to predict the pressure drop through packed bed reactors in order to discriminate new shapes
of catalyst particle. For decades processes in the chemical industries always relied on analytical
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and experimental works which often exhibit excessive costs. Therefore, it is of great interest
to develop numerical tools to estimate the packing voidage and the pressure drop through
the bed so that discrimination of new particle shapes can be carried out before prototyping
and building expensive pilot units. Indeed the aforementioned PRS method combined with
a Discrete Element Method granular solver can give an insight in local variables of the flow at
the particle level and can be used as a tool to provide guidelines for up-scaling procedures to
laboratory scale pilot plant and latter on to industrial pilot.

2 A DLM/FD method for PRS of particulate flows with non-
convex particles

Glowinski et al. (1999; 2001) were the first to introduce the concept of DLM/FD to the com-
munity of particulate flow modelling. It was originally combined with a Finite Element
Method and latter on extend to Finite Volume method (Wachs et al. (2015)). The principle of
theDLM/FD formulation consists in enforcing the rigid bodymotion on the particle domain
within an Eulerian fixed-grid as a constraint. Solid objects are defined by using Lagrangian
points over both their volume and their surface. In many works, authors point out the use
of hydrodynamic radius calibration in order to correct the computed drag force on a fixed
spherical particle in creeping flow regime and low solid volume fraction φ. Then the calibra-
tion is used for any flow regime and any solid volume fraction. Wachs et al. (2015) pointed out
that the hydrodynamic radius calibration becomes questionable when it comes to deal with
non-spherical shapes. Despite the work of Breugem (2012) that suggested a presumably opti-
mal hydrodynamic radius for cubic particles, it is totally unclear how to determine a hydrody-
namically calibrated radius for any non-spherical particle. It seems to us that for non-convex
particle the concept of hydrodynamic radius calibration is almostmeaningless. Therefore, cor-
rect and accurate methods without resorting to using any sort of geometric calibration should
be selected to model the fluid-solid interaction. For instance, in Deen et al. (2012) and Wachs
et al. (2015), the authors presented satisfactorymethod, respectively IBMandDLM/FD,with-
out any such geometric calibration. The assets of the enhanced IB and DLM/FD methods
suggested in these two works rely only on an accurate velocity reconstruction at the particle
boundary and a distribution of Collocation Points (CP) on the solid domain compatible with
the formulation of the problem and the discretization scheme adopted.

For spherical particles, it is well known (Uhlmann (2005), Feng and Michaelides (2009),
Wachs et al. (2015)) in the community that the best way to distribute these CP on the particle
surface is to perform a dynamic simulation of a system in which CPs are considered as charged
particles. Then, the final state of the system corresponds to homogeneously distributed
charged particles with minimum repulsion energy. Despite the accuracy of this method, the
time scale of this type of simulation is very large and the method cannot be extended to non-
spherical shape. There is hence a technical issue in distributing CPs as homogeneously as pos-
sible on the surface of a non-spherical particle while keeping the remarkable geometric fea-
tures (edges, corners) of the shape at the discrete level. This is not an easy task and we will
present a constructionmethod for trilobes and quadralobes in this work. Recently, some stud-
ies other than those of our group extended the use of PRSmethods to non-spherical particles
but mostly for generalized ellipsoids/rounded particles (Zastawny et al. (2012), Tavassoli et al.
(2015)).
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3 Numerical model

In line with the work ofWachs (2009; 2011), Wachs et al. (2015), our numerical is based on the
classical Distributed Lagrange Multiplier/Fictitious Domain method in which the Lagrange
multiplier is implicitly computed to enforce the rigid body motion, combined with a FV/SG
scheme and a L2-projection algorithm for the solution of the Navier-Stokes equations. The
method is coupled with a granular solver to solve the particle-particle collisions. Hence, the
granular solver is employed to fill the reactor and create the pack of particles while the flow
solver computes the fluid flow through the packed bed of particles. In the rest of this chapter,
we shortly remind the reader the formulation of both numerical methods and elaborate on
their extension to poly-lobed particles. The collisional model for non-convex particles is based
on the decomposition of the composite particle into a set of convex particles. The reader is
referred to Chapter 3 for more details of the collision model for non-convex rigid bodies.

3.1 Introduction to PeliGRIFF

PeliGRIFF (Parallel Efficient Library for GRains in Fluid Flow) (Wachs et al. (2007-2016)) is
an object oriented code implemented inC++ formulti-core architecture. The discrete phase is
handled by Grains3D . The open source library PELICANS is the kernel of PeliGRIFF which
is used of PDE solvers. PeliGRIFF relies on different libraries for linear algebra such as PETSc
(Portable, Extensible Toolkit for Scientific Computation), BLAS (Basic Linear Algebra Sub-
programs), LAPACK (Linear Algebra PACKage) and HYPRE BoomerAMG for precondi-
tioners. The code can simulate fluid-solid, using a DLM/FD approach, and fluid-fluid, using
a Level-Set approach, two-phase flows. In addition, new extensions of PeliGRIFF enable sim-
ulations of heat and mass transfers between phases.

3.2 Governing equations for the fluid flow solver

We shortly recall the general DLM/FD formulation for freely-moving particles.Then we
present the first-order operator splitting solution algorithm in the particular case of fixed parti-
cles. Finally, we elaborate on our CP construction strategy for the case of poly-lobed particles.

Let Ω defines a domain of Rd, d ∈< 2, 3 >, ∂Ω its boundary. Then let be NP the
number of rigid bodies Pi(t) (i ∈ [1, NP ])that Ω is filled with. For the sack of simplicity,
NP is considered to be equal to 1. Dirichlet boundary conditions are set on ∂Ω for the fluid
velocity field. In the rest of the chapter, the “star” symbol denotes any dimensional quantity.

Dimensionless variables are defined using the set of the following variables: L∗
c for length,

U∗
c for velocity,Tc = L∗

c/U
∗
c for the convective time scale, ρ∗fU

∗2
c for pressure andρ∗fU

∗2
c /Lc

for rigid-body motion Lagrange multiplier, ρ∗f denotes the fluid density. The combined con-
servation equations that govern both the fluid and solid motion is written as follows:

1. Combined momentum equations
(
∂u

∂t
+ u · ∇u

)
= −∇p+ 1

Rec
∇2u− λ overΩ (7.1)

(ρr − 1)VP

(
dU

dt
−Frg

∗

g∗

)
−
∑

j

(Fc)j −
∫

P (t)

λdx = 0, over P (t) (7.2)

IP
dω

dt
+ ω × IP · ω +

∑

j

(Fc)j ×Rj +

∫

P (t)

(λ× r) · dx = 0, over P (t),

(7.3)



3. Numerical model 115

u− (U + ω × r) = 0, over P (t), (7.4)

2. Continuity equation
∇ · u = 0, overΩ. (7.5)

where u ∈ V∂Ω(Ω) stands for the fluid velocity vector, p ∈ P(Ω) the pressure, λ ∈ Λ(t)
the velocity distributed Lagrangemultiplier vector,U ∈ R

d the particle translational velocity
vector, ω ∈ R

d̃ the particle angular velocity vector, d̃ the number of non-zero components
ofω (if d = 2 :ω = (0, 0, ωz) and d̃ = 1; if d = 3 :ω = (ωx, ωy, ωz) and d̃ = 3 = d),
Fc ∈ R

d the contact forces,R ∈ R
d the vector between particle gravity center and contact

point, r the position vector with respect to particle gravity center, VP = M∗/(ρ∗sL
∗d
c ) ∈ R

the dimensionless particle volume,M∗ the particle mass, IP = I∗
P/(ρ

∗
sL

∗(d+2)
c ) ∈ R

d̃×d̃

the dimensionless particle inertia tensor, ρ∗s ∈ R the particle density, g∗ ∈ R
d the gravity

acceleration and g∗ ∈ R the gravity acceleration magnitude.
The following dimensionless numbers are introduced in the above equations:

Reynolds number Rec =
ρ∗fU

∗
cL

∗
c

η∗
, (7.6)

Froude number Fr = g∗L∗
c

U∗2
c

, (7.7)

density ratio ρr =
ρ∗s
ρ∗f
, (7.8)

where η∗ denotes the fluid viscosity. In the following, L∗
c = d∗ is chosen for suspension

flows, d∗ denoting the diameter of the cylinder whose cross section circumscribes the extru-
dated shapes (Fig. 7.1).

Figure 7.1 –Definition of the circumscribed diameter.

3.3 Time discretization scheme

The set of conservation equations is solved by a first-order operator splitting algorithm. Dif-
fusion and advection terms are treated by a Crank-Nicholson and a Adams-Bashford scheme.
Further details on themethod and algorithmcanbe found inWachs et al. (2015) andDorai et al.
(2015). In this study, since particles are fixed, our operator-splitting algorithm is comprises in
two stages, written in a dimensionless form as follows:
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1. A classical L2-projection scheme for the solution of the Navier-Stokes problem: find
un+1/2 and pn+1 such that

ũ− un

∆t
− 1

2Rec
∇2un+1/2 = −∇pn+1 +

1

2Rec
∇2un,

− 1

2

(
3un · ∇un − un−1 · ∇un−1

)
− γλn,

(7.9)

∇2ψ =
1

∆t
∇ · ũ ,

∂ψ

∂n
= 0 on ∂Ω, (7.10)

un+1/2 = ũ−∆t∇ψ,

pn+1 = pn + ψ − ∆t

2Rec
∇2ψ.

(7.11)

2. A fictitious domain problem: findun+1 andλn+1 such that

un+1 − un+1/2

∆t
+ λn+1 = γλn, (7.12)

un+1 = 0 in P (t). (7.13)

whereu, p,λ,ψ and∆t denote the dimensionless fluid velocity, fluid pressure, DLM/FD
Lagrange Multiplier to relax the constraint in Eq. 7.13, pseudo-pressure field and time step
respectively. The term γ ∈ [0 : 1] is a constant that sets the level of explicit direct forcing in
the velocity prediction step. It has been shown that γ = 1 significantly improves the coupling
between sub-problems (1) and (2) and allows the use of larger time steps∆t. In practice, all
computations are performed with γ = 1 (see Wachs et al. (2015) for more details).

3.4 Colocation Points on non-convex particles

As explained inWachs (2009; 2011), the set of CP comprises a set of interior points distributed
in the solid volume using staggered fluid velocity nodes and a subset of boundary points dis-
tributed as uniformly as possible on the solid surface. An illustration on a 2D circular cylinder
is shown in Fig. 7.2.

(a) (b)

Figure 7.2 – DLM/FD points on the staggered grid for a 2D circular cylinder: (a) the set of interior and
boundary points, (b) in blue the 4-point multi-linear interpolation stencil and in red the 9-point Q2 outwards-
oriented interpolation stencil for the x velocity component. Adapted from Wachs et al. (2015).

InWachs et al. (2015), two types of interpolation operator are considered (Fig. 7.2): a clas-
sical multi-linear operator (Höfler and Schwarzer (2000)) and a quadratic operator that uses
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the basis functions of a cubic Q2 finite element (9-point in 2D and 27-point in 3D stencil).
The difficulty arises when the particle shape is not isotropic. Far from being understood, the
repartition ofCPonnon-convex body is not straightforward. Even the simple case of spherical
particle is still subjected to discussion in the literature. Therefore, a particular care is dedicated
to equally distribute the CP in the best manner possible.

As the construction of a non-convex shape is based on decomposing it into convex shapes,
the construction of the CP is performed as follows:

• trilobal particle is made of three cylinders with a triangular prism which fills the central
gap forming the connection between the three cylinders (Fig. 7.3a). The same proce-
dure is applied to quadralobal particle but instead of a triangular prism, a rectangular
parallelepiped is used (Fig. 7.3b).

(a) trilobal particle (b) Quadralobic particle

Figure 7.3 – Decomposition of trilobal and quadralobic particle shapes into convex shapes. View of the cross
sections.

• the sets of interiorCPs of all the components of the “composite” aremerged by ensuring
that they are neither overlapping.

• the set of boundary points is distributed as follows:

– for the cylinders, the CPs are distributed in slices along the cylinder revolution axis
with a constant distance. Let z be the revolution axis of the cylinder and k ∈ R

d

its unit vector and let r ∈ R
d the radial vector. Then the CP are build using the

parametric equation of each slice which reads, for ζ ∈ [0, 1]: P = cos(ζ)r +
sin(ζ)k× r+C, whereC ∈ R

d denotes the slice gravity center.

– for the triangular prism and the rectangular parallelepiped, the points are dis-
tributed as follows: given the targeted point to point distance lpp = τh , τ ∈
[1 : 2] and the rectangular or triangular edge length le, the actual point to point
distance is la = le/int(le/lpp), where int(x) denotes the integer portion of x.
On each face, the points are located at the nodes of a constant spacing ratio la
lattice made of squares for the rectangular faces and equilateral triangles for the
triangular faces (Fig. 7.4).

– the boundary CPs are merged in the following manner: (i) the BP located in an-
other convex component is discarded; (ii) the CPs on the edges of the components
are kept to perfectly describe their shapes; (iii) the boundary CPs on the top and
bottom disks of all the cylinders are kept except those on their edges which are on
the cross-section of the polyhedron; (iv) the last empty area on the top and the
bottom of the shape is filled by the CPs of the polyhedron and we ensure that the
CPs are not too close.
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(a) Rectangular face. (b) Triangular face.

Figure 7.4 – Layout of boundary CP on: (a) rectangular face and (b) triangular face.

(a) Trilobe (b) Quadralobe

Figure 7.5 – Layout of boundary CP on a : (a) trilobal, (b) quadralobic particles

The resulting geometries are illustrated in Fig. 7.5

4 Accuracy of the computed solutions

4.1 Methodology

Aspace convergence study is nowpresented in the aimof knowing the accuracy as a functionof
themesh size andminimizing the computing resources. Literature on the accuracy of solutions
computed with a DLM/FD methods exists for spheres (Kanarska et al. (2011)) and cylinders
(Dorai et al. (2014; 2015)). Intuitively, the space resolution for poly-lobed particles is expected
to be even more demanding.

Due to the lack of analytical solution, the space convergence study is based on the ap-
proach proposed by Richardson (1911) which consists in (i) estimating the reference solution
by extrapolating the numerical solutions to zero mesh size and (ii) evaluating the accuracy of
the computed solutions against the reference. The extrapolation reads:

Λ = Λ(h) +Khβ +O(hβ+1), with h = N−1
p (7.14)

whereNp,K and β denote respectively the number of CP on the circumscribed cylinder di-
ameter d∗, pre-factor of the relative error and convergence rate. From the equation Eq. 7.14,
Λref = Λ(0) gives the exact extrapolated solution. Hence, the convergence is evaluated in
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terms of relative error e of the physical quantityΛ as follows:

e(Λ) =
|Λ− Λref |
|Λref |

(7.15)

Here, the new shapes of particle are subjected to assorted flow regimes and flow config-
urations such as: (i) flows through an infinite structured array of poly-lobed particles at low
Reynolds number (Rec = 0.01) , (ii) flows through a packed bed of poly-lobed particles at
low and moderate Reynolds numbers (Rec = 0.01 andRec = 16).

4.2 Flow past a single poly-lobed particle in a tri-periodic domain

The first attempt to assess the accuracy of the presented extension of the DLM/FD formu-
lation has been inspired by the work of Zick and Homsy (1982). The test consists in com-
puting the friction coefficient for a single particle in a tri-periodic domain, in other words the
flow through an infinite of particles. The friction coefficient is computed as the pressure drop
based on the diameter of the equivalent sphere of same volume. The relationship between the
mean velocity u∗, the imposed pressure drop∆p∗ and the friction coefficientK for an infi-
nite structured simple array of poly-lobed particles, modelled as a single particle centered in a
tri-periodic domain, reads:

∆p∗

l∗s
=

9

2

η∗

a∗2
φKu∗ (7.16)

where l∗s , a
∗, η∗, φ denote respectively the streamwise domain length, equivalent sphere ra-

dius, fluid viscosity and the solid volume fraction defined as φ = 1− ε in which ε stands for
the void fraction. Unlike spherical particles, there is an infinite way to orientate an elongated
poly-lobed particle due to the anisotropy of its shape. In addition to the Reynolds number
Re and the solid volume fraction φ, the Euler angles (ϕ, θ, ψ) and the aspect ratio ar should
be included in the study.

In general, the packed particles are arranged in a random way which enables the fluid to
flow in a random interstitial pore shape and size. Depending on the latter the preferential
streamwise directions are established, whereas in this test case the streamwise direction is only
imposed by the geometry of the periodic domain. For the sake of simplicity and to cover a
large range of all the parameters, two aspect ratios are chosen (ar = 1 and ar = 5), φ is
varying from loose todensepacking and three sets of Euler angles are considered for theparticle
orientation (relative to the streamwise direction):

• parallel to the particle axis (ϕ = 0◦, θ = 0◦, ψ = 0◦) denoted with the symbol “‖”
(Fig. 7.6a),

• perpendicular to the particle axis (ϕ = 90◦, θ = 0◦, ψ = 0◦) denotedwith the symbol
“⊥” (Fig. 7.6b),

• a rotation of 20◦ about all the axis (ϕ = 20◦, θ = 20◦, ψ = 20◦) denoted with the
symbol “20” for moderate φ (Fig. 7.6c).

In the following, for Stokes regimes, a diffusive time scale is defined as Td = ρfd
∗2/η∗

and the Reynolds number Rec is defined by using the following terms: L∗
c = d∗ for the

characteristic length scale and U∗
c = u∗in for the characteristic velocity. d∗ and u∗in stand for

the diameter of the circumscribed cylinder and the inlet fluid velocity respectively. Hence, the
Reynolds number reads:

Rec =
ρ∗fu

∗
ind

∗

η∗
(7.17)
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(a) (ϕ, θ, ψ) = (0, 0, 0) (b) (ϕ, θ, ψ) = (90, 0, 0) (c) (ϕ, θ, ψ) = (20, 20, 20)

Figure 7.6 – Illustration of the three flow configurations for φ = 0.216. Stream lines. Velocity field magnitude
(red=max, blue=min).

First, we assess the accuracy of our method with particles of an aspect ratio ar = 1. The
computed solutions obtained from various φ are plotted on Fig. 7.8. Simulations are carried
out forRec = 0.01 and∆t/Td = 10−2. The trilobal particle seems to have nicer conver-
gence than the quadralobic one. As expected, for high φ, the error e is much higher for the
sameNp i.e. a higher resolution is needed for dense particulate systems.

Since the space convergence study on ar = 1 shows satisfying results, we now move on
to the space convergence for ar = 5. Again, the study is still performed from loose to dense
packing. Due to the domain size and shape restriction, the particles are only oriented per-
pendicularly and collinearly to the flow direction (the “⊥” and the “‖” configurations). For
the perpendicular configuration, a very high φ means that the fluid is not flowing any more
because the orthographic projection of the particle is equal to that of the domain which is
somehow “blocking” the fluid to flow properly. For the parallel configuration, the particle or-
thographic projection is the area with the lobes which enable the fluid to flow in the concavity
of the particle even with high solid volume fraction. Fig. 7.7 plots the space convergence of
the computed solutions. It can be observed that for φ = 0.59 (dense packing) the solutions
exhibits higher relative error compared to the other systems.
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(b) Quadralobe

Figure 7.7 – Convergence of the computed solutions at Re = 0.01 for ar = 5. Np is the number of CP in
the particle cross-section. N−1.3

p is the convergence rate of a spherical particle.

The previous numerical study can be summarized as follows:
• themost challenging cases are (i) when the particle axis is perpendicular to themain flow
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(c) Trilobe “⊥”
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(d) Quadralobe “⊥”
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(e) Trilobe “20◦”
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(f) Quadralobe “20◦”

Figure 7.8 – Convergence of the computed solutions at Re = 0.01 for ar = 1. Np is the number of CP in
the particle cross-section. N−1.3

p is the convergence rate of a spherical particle.

direction due to the lobe induced recirculation; (ii) when the particle axis is parallel to
themain flow direction due to its flat orthogonal face which creates singularities all over
the edge,

• all the simulations exhibit an average convergence rate of N−1.3
p which is in line with

the work of Wachs et al. (2015) for spherical and polyhedral particles (see also the work
of D’Avino and Hulsen (2010)),
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• as expected, compared to low φ, simulations at high solid volume fraction require a
higherNp for the same accuracy.

For comparisonpurposes, weperformed the simulations of flowpast three different shapes
(TL, QL, CYL) to have a first glance on the dependency of their friction coefficient on the
solid volume fraction. The studied cases consist in comparing 3 elongated particles of the
same volume and the same particle length L∗

p. It worth to remind that at the same volume
a cylinder does not circumscribe neither the trilobe nor the quadralobe. In terms of particle
orientations, two configurations are selected: particle axis perpendicular and parallel to the
streamwise direction. Np = 45 for a relative error e 6 5% and Rec = 0.01. Tab. 7.1
summarises the differences between the three shapes.

Shape Trilobe Quadralobe Cylinder

d∗/L∗
p 0.414 0.405 0.349

Table 7.1 – Configuration of the studied cases.

Fig. 7.11 depicts the results of our comparison. In Fig. 7.11a, it can be observed that when
the particle axis is perpendicular to the flow the friction coefficientK(φ) is similar for φ 6

0.34. Thedifference is onlynoticed at highφ. In fact, in this configuration, theprojected cross-
sectional areas (Fig. 7.9) of the particles are different in the following order: S⊥

TL > S⊥
CY L >

S⊥
QL. This leads to the following classification of friction coefficients: K⊥

TL > K⊥
CY L >

K⊥
QL.

(a) Trilobe ⊥. (b) Quadralobe ⊥. (c) Cylinder ⊥.

Figure 7.9 – 3-periodic array of particle for φ = 0.545 and Rec = 0.01. Velocity field magnitude.

Fig. 7.11b, illustrates the computed friction coefficientK(φ) corresponding to a flow par-
allel to the particle axis. The orthogonal cross-sectional areas of the particles are classified in

the following order: S‖
CY L < S

‖
TL < S

‖
QL (Fig. 7.10). Therefore, the resulting friction

coefficients are classified as follows:K‖
CY L < K

‖
TL < K

‖
QL.

The results presented in Fig. 7.11 show that the computed solutions depend drastically on
the particle orientation, hence the projected cross-sectional area. At low concentration, there
is no clear distinction between the shapes.

Based on these results, we would like to examine the accuracy of the solution computed
by our numerical model in the case of the flow through a packed bed. In fact, a packed bed
is representative of the real operating conditions regarding volume fraction, the position and
orientation of particles.
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(a) Trilobe ‖. (b) Quadralobe ‖. (c) Cylinder ‖.

Figure 7.10 – 3-periodic array of particle for φ = 0.545 andRec = 0.01. Velocity field magnitude.
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(a) Particle axis perpendicular to the flow.
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(b) Particle axis parallel to the flow.

Figure 7.11 –Dependency of the friction coefficient K on the solid volume fraction φ.

4.3 Flow past a small packed bed of poly-lobed particles

For decades, predicting the flow through a packed bed of particles has been an interesting and
challenging subject in the chemical engineering community. One of themajor challenges is the
effect of particle shape in these systems, where the bed porosity and pressure drop are very im-
portant for industrial operations. The second step of the space convergence study is performed
on a small size bed of packed particles (ar = 2). This case is more representative of fixed beds
than the periodic array of a single particle as particles present random orientations forming a
porous medium in which the fluid flow is more complex. Rules have been suggested in previ-
ous related works regarding the number of CP needed to discretize a particle and guarantee a
computed solution of satisfactory accuracy. However the straightforward extrapolation from
flow in beds of cylinders (Dorai et al. (2014; 2015)) and polyhedra (Wachs et al. (2015)) to beds
of poly-lobed particles is rather questionable and might not be accurate enough. In fact, the
lobes create additional complexity.

In this case, 40 trilobal particles (ar = 2) are stacked in a bi-periodic domain of 5×5×10
(Lx × Ly × Lz) (Fig. 7.12a). The corresponding solid volume fraction is φ ≃ 0.55. The
particles are located at z = 3 away from the inlet and the outlet of the system. The boundary
conditions are set as follows:

• periodic boundary conditions in the horizontal direction
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• a uniform upward inlet velocity at the bottom of the bed
• a zero pressure outlet and homogeneousNeumann boundary conditions for all velocity
components at the top of the bed

The convergence is assessed on the inlet-outlet pressure drop.

(a) Packed bed of trilobes
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(b) Convergence

Figure 7.12 – Packed bed reactor of trilobal particles. (a) contour of the velocity magnitude at Re = 50
(red=max, blue=min). (b) convergence of the computed solutions

Results are obtained in this configuration are promising: fromNp = 16 the error is less
than 2% in Stokes regime, whereasNp = 65 is required for the same accuracy forRe = 16.
In Dorai et al. (2014), the authors pointed out that computing a fluid flow through a packed
bed cylinders requires 50% finermesh than that of spherical particles. Compared to a cylinder
(Dorai et al. (2014)), a trilobal and quadralobic need 50% finer mesh to achieve the equivalent
accuracy.

5 Pressure drop through packed beds of poly-lobed particles

Results presented in the previous section deemed to be satisfactory enough to perform nu-
merical simulations to predict the pressure drop through packed beds of poly-lobed particles.
The objective of this section is to compute this pressure drop with trilobal and quadralobal
particles based on PRS, investigate shape effects, assess uncertainty quantification and derive
predictive correlations based on the Ergun’s formulation (Ergun (1952)).

5.1 A quick review of single phase pressure drop in fixed beds

The theoryofKozeny (1927) describes a porousmedia as a collectionof small channels inwhich
a fluid is flowing in laminar regime. It reads:

∆p∗

H∗
= 72

η∗(1− ε)2u∗in
ε3d∗s

2 (7.18)

From a physical view point, this formula proposes that the equivalent channel diameter is
proportional to the sphere diameter d∗s regardless of the local structure through:

εd∗s
(1− ε)

(7.19)
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To account for tortuosity that are present in a porous media, Blake (1922) corrected the
coefficient 72 to 150which led to the Blake-Kozeny equation for ε < 0.5 andRec < 10:

∆p∗

H∗
= 150

η∗(1− ε)2u∗in
ε3d∗s

2 (7.20)

Carman (1937) proposed = 180 as a correction in Stokes flow regimes (Rec ∼ 0) in
packed beds of spheres, which is more accurate than Blake’s coefficient in these conditions.
The equation reads:

∆p∗

H∗
= 180

η∗(1− ε)2u∗in
ε3d∗s

2 (7.21)

For high Reynolds number regimes, Burke and Plummer (1928) considered that the pres-
sure drop through a packed bed can be computed as an inertia term. They proposed the fol-
lowing equation forRec > 1000:

∆p∗

H∗
= 1.75

ρ∗f (1− ε)u∗in
2

ε3d∗s
(7.22)

which is known as the Burke-Plummer equation. In this formulation the characteristic size of
the channel is the same as the one proposed by Kozeny.

Combining the previous theories, Ergun and Orning (1949) mentioned that the pressure
drop through a packed bed is directly function of ε and the constants α and β which depend
on the flow regime and proposed the following correlation (Ergun (1952)):

∆p∗

H∗
= α

η∗(1− ε)2u∗in
ε3d∗s

2 + β
ρ∗f (1− ε)u∗in

2

ε3d∗s
(7.23)
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Figure 7.13 – Illustration of the correlations Eq. 7.21, Eq. 7.20, Eq. 7.22 and Eq. 7.23 .

The formulation in Fig. 7.13 has been proved to be accurate and is widely used in the
chemical engineering industry. The pressure drop in Eq. 7.23 is the combination of a fric-
tional viscous term proportional to the velocity and a quadratic term on the fluid velocity that
takes into account the flow direction and change in cross-sections (Larachi et al. (2014)). Ergun
(1952) proposed the constants α = 150 and β = 1.75 to describe the pressure drop through
packed beds of spheres, cylinders and crushed particles. For packed beds of complex shapes,
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a definition of an universal correlation appears to be an endeavour. Many studies reveal a no-
ticeable variation on these coefficients. For instance, MacDonald et al. (1991) suggested that
α = 180 and β = 1.8 as universal constants which are over estimate the Ergun’s coefficients
bymore than 16%. It appears that any new experimental data yields a newproposition a set of
coefficients. The explanations of the differences between these works are still a subject of dis-
cussion between many authors. Among others, it was measured on cylinders by MacDonald
et al. (1991) that the value of β is dependent on the particle roughness: β = 1.8 corresponds
to smooth particles, whereas β = 4 corresponds to the roughest particles.

Later on, many authors improved the correlation, among othersNemec and Levec (2005),
to account for shape effects. The coefficients α and β are then modified to include the shape
effects. An equivalent particle diameter for non-spherical particles has to be introduced and
reads:

d∗p =
6V ∗

p

A∗
p

(7.24)

where V ∗
p andA∗

p denote respectively the volume and area of the particle.

Shape ar Ψ ε α β

Trilobe 4.33 0.63 0.466 295 4.71
Trilobe 4.33 0.63 0.511 263 4.99
Quadralobe 3.85 0.593 0.471 292 3.93
Quadralobe 3.85 0.593 0.502 294 4.19

Table 7.2 – Fitted Ergun constants for poly-lobed particles. Credit: Nemec and Levec (2005).

Nemec andLevec (2005) summarise theworks of Pahl (1975), Reichelt (1972), England and
Gunn (1970) in which α varies between 180− 280 and β between 1.9− 4.6 for cylindrical
particles of aspect ratio ranging from 0.37 to 5.77. They measured the pressure drop for a
large number of inlet velocities for one trilobal and one quadralobal shape. Each experiment
was repeated twice (on a repacked bed), yielding only 4 additional data points (Tab. 7.2). It is
interesting to note that the proposed correlation would systematically under or over predict
the experimental data points. In summary, the available data for poly-lobed particles is scarce
(only 2 points for TL and QL), with a large scatter.

For non-spherical particles, Nemec and Levec (2005) extended the correlation by intro-
ducing the sphericityΨ:

Ψ =

(
36πV ∗

p
2

A∗
p
3

) 1

3

(7.25)

∆p∗

H∗
= α(Ψ)

η∗(1− ε)2u∗in
ε3d∗p

2 + β(Ψ)
ρ∗f (1− ε)u∗in

2

ε3d∗p
(7.26)

α(Ψ) =
150

Ψa
(7.27)

β(Ψ) =
1.75

Ψb
(7.28)
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Nemec and Levec (2005) proposed some values for a and b depending on the particle

shapes: (a, b) =

(
3

2
,
4

3

)
for cylinders and (a, b) =

(
6

5
, 2

)
for poly-lobed particles. The

proposed correlation does not fit with all the data points. Based on numerical results in the
creeping flow regime, Dorai et al. (2015) proposeda = 5/4 for cylinders (bwas not evaluated).
As matter of fact, the suggested correlation agrees fairly well with the numerical results of Do-
rai et al. (2015) for which the present study is a continuation. The work agrees well with the
experimental data of Nemec and Levec (2005) for cylindrical particles. Other formulations
have been proposed that take into account various shapes. Nevertheless, there is so far no
universal method to precisely predict the Ergun’s equation coefficients based only on particle
shape.

From the experimental point of view, the data on poly-lobed particles is scarce and quite
dispersed. The reason of this scattering is still a matter of discussion (see for example Nemec
and Levec (2005)). Recently, PRS on cylinder (Dorai et al. (2015)) opened up new perspectives
in “in silico” determination of the pressure drop for any particle shape, for example TL and
QL. The goal of this part of this study is to suggest a correlation based on the Ergun formula-
tion and propose coefficients α and β for trilobal and quadralobic particles.

5.2 Method

As it can be seen in Chapter 3 that Grains3D is used as a porous media maker. The single
phase fluid flowing through the packed bed is computed with PeliGRIFF using PRS. All the
simulations are performed in a Lx∗ = Ly∗ = 8 mm wide bi-periodic container using a
circumscribed diameter d∗ = 1.6 mm. Packed beds consist of 210 to 320 particles. The
investigation is carried out with packings of TL and QL with a range of aspect ratio define as
ar = 1.5, 2, 2.5, 3, 4. Boundary conditions are similar to the previous convergence study on
packed beds. The particles are stacked at 2.5d∗ away from the top and 2.5d∗ from the bottom
of the domain.

The local void fraction < ε >z is the volumetric average of void fraction on a layer of
the bed of thicknessDz (Fig. 7.14b). The average void fraction < ε > is the average of all
< ε >z inside the control volume. < ε >z is used to plot axial profiles of void fraction and
obviously depends on the value ofDz. It is computed by discretizing the volume occupied by
the particles. The pressure< p >z is the average pressure on a plane located at height z. The
averaging procedures are written as follows:

< ε >z=

∑
i
δ(x, y, z)vi,z
∑
i
vi,z

(7.29)

where δ(x, y, z) =




1, ifX(x, y, z) ∈ Ωp

0, otherwise
(7.30)

< p >z=

∑
i
pi(x, y, z)

∑
i
vi,z

(7.31)

ε, pi, vi,z denote respectively the fluid volume fraction, the pressure and the control volume
of the system at the coordinate z.

The pressure drop is the difference between the pressure at planes located at z = 3 from
the top of the packed bed and z = 2 from its bottom (Dorai et al. (2012; 2014; 2015)). In other
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words, a layer of 3 particle diameters thick is discarded at the top of the bed, whereas a layer
of 2 particle diameters thick is discarded at the bottom. The void fraction and the pressure
difference are computed on the same control volumeLx× Ly ×Dz.

Fig. 7.14a plots examples of values obtained from PRS of packed beds in this study. It can
be seen that the pressure and the void fraction are correlated.
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Figure 7.14 –Example of outputs resulting from the post-processing Eqs. 7.29 and 7.31 on a fixed bed of trilobal
particles atRec = 0.1 and ar = 1.5.

All the PRS are performed atRec ranging from 0.1 to 16 with the objective of captur-
ing the onset of inertia regime (Rec = 0.1, 0.2, 0.3, 0.4, 1, 16). All systems are re-packed
randomly several times to have different micro-structures (2 to 10 times). In particular, for
both shapes, the systems of particles of aspect ratio ar = 2 are repeated 10 times to quantify
the effects of random packing both on the void fraction and the pressure drop simulated for
Rec = 1. After the extraction of the pressure drop, the coefficients α and β of the Ergun’s
correlation are fitted according to numerical results. The fitting of β is performed only in the
case of inertial flow regimes.

We observed that some pressure profiles are not fully linear arising the question of how
the choice of cutting planes affect the output. A sensitivity analysis for a limited number of
7 beds based on independently changing the positions of the bottom and top cutting planes
between 0.5d∗ and 5d∗, yields an uncertainty of 3.1% on the value ofα. This trend is judged
to be low enough to use always the same cutting planes positions.

Fig. 7.15 depicts a typical results of PRS for a packed bed of trilobes atRec = 0.1 and
ar = 2.

5.3 Results

Uncertainty quantification of the packings

All packed beds are loaded randomly. For this reason, it is matter of importance to quantify
the effect of repetition (re-packing) on packed bed reactors. In this section, we investigated the
random packings of 10 packed beds of TL and QL of ar = 2. Fig. 7.16b plots the pressure
drop through successive simulations of the coupled problem (granular packing + PRS) as a
function of void fraction< ε >. It can be observed that void fraction may vary significantly
among simulations. In this data set, the packed beds of TL have a lower void fraction< ε >
compared to those of QL and induce a higher pressure drop.
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Figure 7.15 – Velocity (left) and pressure (right) fields through a packed bed of trilobal particles. Rec = 0.1
and ar = 2.
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Figure 7.16 – E�ects on random packing on the pressure on 10 fixed beds poly-lobed particles of aspect ratio of
ar = 2 atRec = 1.

Tab. 7.3 shows that despite the low standard uncertainty I = 2σ ∈ [2, 4]% on< ε >,
the pressure drop exhibits an overall uncertainty of I = 2σ ∈ [12, 24]%. The uncertainty
on pressure drop partly results from the scattering on void fraction. The uncertainty of α
resulting from the hydrodynamic simulations is corrected by the void fraction and is lower
than I = 2σ = 12%. This behaviour is observed for both shapes. This uncertainty, that
results only from random effects during packing, is quite high. An ANOVA analysis on the
data indicate that due to the large scatter, α values are statistically identical for TL and QL.

For the sake of comparison, a glance on the local pressure and the velocity field is pre-
sented in Fig. 7.17 in 4 horizontal cross-sections of the packed beds 8 (top) and 9 (bottom) at
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Trilobe Quadralobe

Cases < ε > ∆p∗/H∗ (PRS) α < ε > ∆p∗/H∗ (PRS) α

1 0.4070 370.17 212.55 0.4186 296.36 234.09
2 0.4047 366.36 205.16 0.4151 267.20 203.41
3 0.4017 390.90 211.85 0.4046 322.18 219.14
4 0.4047 387.21 216.87 0.4225 265.32 218.44
5 0.4030 371.58 204.37 0.4151 265.48 202.09
6 0.4038 332.42 184.36 0.4030 362.42 242.35
7 0.4030 347.09 190.90 0.4193 268.71 213.89
8 0.4120 369.16 223.58 0.4124 315.36 233.36
9 0.4142 352.47 218.56 0.4124 307.24 227.25
10 0.4056 394.56 223.00 0.4189 290.67 230.42

Mean 0.4060 368.19 209.12 0.4146 296.09 222.44
Std dev. 1% 5.4% 6.3% 1.8% 11.8% 6%

Table 7.3 – Repetition of random packing with identical particles. ∆p∗/H∗ [Pa ·m−1], < ε > [−].

z = 4, 8, 12, 16 made with QL of aspects ratios ar = 2. As the It can be seen, despite the
fact that the systems are similar in terms of particle number and domain size, the re-packing
induces a noticeable difference in the local pressure and velocity magnitude. Since a zero pres-
sure outlet is set at the top of the bed, the differences lie at the vicinity of the bed inlet. It can be
noticed that at z = 4 the bed 8 has a lower velocitymagnitude compared to the bed 9which is
translated into higher pressure compared to the bed 8. As the cross-section is moving upward,
the fluid velocity magnitude and the pressure tend to be more homogeneous for both packed
beds. This is a pure effect of local micro-structure.

The set of repetitions of a packed bed of QL is considered as representative to investigate
the effects of the random packing on the flow dynamics. Fig. 7.16a illustrates the differences
in pressure profile for each simulation of the set. It reveals that despite the fact that the sys-
tem is the same in terms of number of particles and domain size, the random insertion leads
to different micro-structures. This is visually confirmed in Fig. 7.17 which depicts the local
structures of two packed beds (cases 8 and 9).

Values of the coefficients α and β

The values obtained for the Blake-Kozeny-Carmanα and the Burke-Plummer constantsβ are
exhibited in this section. Before presenting the values, it is important to note that the values
are in the range of the experimental values, and that the uncertainty induced by the random
packings on α is evaluated to be 12%.

Results for the coefficient α are presented in Figs. 7.18a and 7.18b complemented with
data set from the work of Nemec and Levec (2005). Simulations in this work indicate that
α = 200, does not depend on particle length and does not vary between TL and QL.

Values of fitted coefficient β are plotted in Figs. 7.19a and 7.19b as a function of aspect
ratio ar and the sphericityΨ. The evaluation of β is performed at finite Reynolds number of
Rec = 16, where the quadratic term accounts for approximately 30% of the total pressure
drop. As explained earlier, the uncertainty on the pressure drop andα are quite high (resp.∼
20% and∼ 12%). This induces an uncertainty on the evaluation of β which approximately
reaches 30%. Performing simulations at higher Rec is still not possible due to computing
resource limitations induced by the complexity of particle shapes. It is worth to note that at
Rec = 16, the computations of the pressure drop through packed beds of particles ofar = 4
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packed bed 8

(a) z = 4. (b) z = 8. (c) z = 12. (d) z = 16.
packed bed 9

(e) z = 4. (f) z = 8. (g) z = 12. (h) z = 16.
packed bed 8

(i) z = 4. (j) z = 8. (k) z = 12. (l) z = 16.
packed bed 9

(m) z = 4. (n) z = 8. (o) z = 12. (p) z = 16.

Figure 7.17 – Comparison of the horizontal cross-sectional velocity magnitude (‖u∗‖/u∗

in) and the pressure
field (p∗) between two packed beds of quadralobal particles of aspect ratio of ar = 2 at Re = 1.

need more than 3 × 108 grid cells and require more than 512 cores to resolve the problem.
The fitted values ofβ are in the range of 2.8−4.6which is very coherentwith previousworks.
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Figure 7.18 –Dependency of the fitted Blake-Kozeny-Carman constant on ar andΨ. Number of simulations:
128.
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Figure 7.19 –Dependency of the fitted Burke-Plummer constant on ar and Ψ. Number of simulations: 26.

Discussion on values of α and β

A closer look at the fitted αmay indicate two trends depending on the aspect ratio ar. When
plotted as a function of ar, two domains are identified. For ar 6 2 (Ψ > 0.68), TL and
QL exhibit values of α which are in the scattered data and follow the usual trend (increasing
with ar, decreasing withΨ). For ar > 2, values of α seem to loose their dependency on the
particle shape, this is most visible when plotted as a function of the sphericity.

An explanation of this behaviour may be the size of the bi-periodic domain. Intuitively,
if the ratio of the domain length to particle length (Lx∗/L∗

p) decreases, the results may suffer
from periodicity effects. Simulations in this study were all performed with the same domain
width. Therefore, when the particle length increases the ratio of the domain length to the
particle length decreases. In order to clear out this risk, the following verification has been
performed. Using TL of ar = 1.5, various domain size of 6, 8 and 10 mm are simulated.
They all give the same void fraction and pressure drop. Void fractions of particles with an
aspect ratio ar = 4 are in the range of 0.52 − 0.53 and in line with the data reported by
Nemec and Levec (2005) (Tab. 7.2) with similar aspect ratios. The void fraction measured
by DEM is slightly higher but within the stochastic uncertainty. Last, the same DEM-PRS
simulations were run while increasing the domain width from 8 to 12 mm for two cases:
TL of ar = 2.5 and CYL of ar = 2.89 (L∗

p = 4.62 mm). In both cases, it was found
that there are no significant differences on both void fractions (less than 0.5% variation) and
pressure drop (less than 5% difference). As cylinder results follow a very regular trend even
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for ar = 2.89, it is conclude that the domain size has no effect for ar < 3. Nevertheless,
an observation on results for β indicates that the results at ar = 4 can be seen as “different”.
For the present time, it is safer to consider that only the results presented for ar < 3 are
representative of experimental data.

The verification of the results leaves the door open for an effect of a too small domain size
in the simulations with the longest particles. The packing dynamics of long particles may be
impacted by the size of the bi-periodic domain by very short mechanical interaction chains.
To be more specific, in special conditions, a particle A can mechanically interact with another
one B on one side and B’s clone on the other side: this corresponds to a B-A-B interaction
chain. This type of interaction does not exist when loading large reactors and may lead to
some special packing structures with an effect on pressure drop and possibly on void fraction.
Longer interaction chains with 3 or more particles may be also considered but are much more
likely to occur experimentally. These very short interaction chains are more likely to occur
with long and horizontal particles.

Assuming a loss of representativeness for high particle aspect ratio, a few interesting facts
emerge. As the numericalmethods used for the simulation of the pressure drop donot depend
on particle length, the loss of representativeness for high aspect ratio pressure dropmust orig-
inate from the packing structure. As already discussed, the simulated void fraction is slightly
higher than experimental data, which logically yield a lower pressure drop. However, the void
fraction correction to compute α should have corrected for this bias and produces a higher
α. The high ar are different in some ways that are interesting to be understood as they could
potentially lead to innovative packingmethods that lower pressure drop at constant void frac-
tion. Is it possible to identify this specific features ?

Using numerical data resulting fromDEM simulations, it is quite straightforward to com-
pute the angle of each particle with the horizontal plane xy and its average on all particles. As
it can be seen in Fig. 7.20a, the average angle to the horizontal is a function of the particle
shape and aspect ratio. For TL and QL, it decreases with ar until an asymptote is reached for
ar > 2.5. This threshold value corresponds to a presumable transition that might impact the
pressure drop. For cylindrical particles, the average angle to horizontal decreases more slowly
and does not reach a plateau with the available data. Is the plateau a physical feature or the
result of the limited domain size ?
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Figure 7.20 –Dependency of T and < θ > on the aspect ratio ar atRe = 0.1.

Tortuosity is the other standardporousmedia descriptor, althoughbarely used in chemical
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engineering as it is very difficult to measure. This data can be measured numerically. One of
the methods studied in Duda et al. (2011) suggests to express the tortuosity T as a ratio of
the volumetric integral of the fluid flow velocity to the the volumetric integral of the velocity
component of the macroscopic flow direction. It reads:

T =

∫
V

v(X)d3X

∫
V

vz(X)d3X
=

< v >

< vz >
(7.32)

where subscript z stands for the macroscopic flow direction.
Carman (1937) already had this idea of computing < v > / < vz > for the represen-

tation of the hydraulic tortuosity but all the attempts were always restricted to simple model
such as group of parallel channels which do not represent complex heterogeneous porous me-
dia. Tortuosity for TL and QL is presented in Fig. 7.20b: it increases with the aspect ratio.
More work is required to see how this parameter evolves for cylindrical particles but is not
presented in this chapter.

6 Conclusion and Perspectives

TheDLM/FDmethod has been adapted to compute single phase flow in packed beds of poly-
lobed particles without the need of radius calibration. A suitable set of CP location has been
proposed for a trilobal and a quadrilobal particle. A perspective is to optimize distribution of
the CPs so as to reduce their number without losing accuracy. Another research question is to
develop some automated approach to mesh any new complex particle.

The numerical platformGrains3D -PeliGRIFF has then been used to simulate for the first
time the pressure drop in packed beds of trilobes and quadralobes. Results have been inter-
preted using the Ergun formalism and agree well with the available literature for low aspect
ratio. It is concluded that trilobe and quadralobe have the same pressure drop behaviour. For
high aspect ratio, simulation results are not in line with the scarce experimental data available.
There is no reason for the validity of the computed solutions to change with particle length,
so we think that the surprising behaviour is either physical or results from the packing struc-
tures that are somehow not physical although they have a correct void fraction and no specific
features. It could be that the loss of representativeness originates from a too small simulation
volume that for some unknown reason impacts the granular dynamics. An open and impor-
tant question for “ab silico” simulations of fixed beds is to identify a signature of “un-physical”
packings. We suggest to investigate the particle orientation or the tortuosity or any other nu-
merically accessible piece of information. A first step toward this, would be to replicate our
simulations using larger domains and track how the pressure drop coefficients evolve. This
effort will be limited by computing power.
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Résumé

Lapremière partie de ce chapitre est consacrée au couplage du solveur granulaire avec le solveur
des équations de Navier-Stokes pour les types de particules vus dans les précédents chapitres.
Ici laméthode “Distributed LagrangeMultipliers / FictitiousDomain” est étendue aux partic-
ules de formemulti-lobée. En effet, laméthode est robustemoyennant une correcte répartition
des points de colocation à la surface et à l’intérieur de la particule. A défaut de solution ana-
lytique, il est proposé une étude de convergence en espace des solutions calculées, en premier
lieu sur une particule isolée dans une configuration tri-périodique, ensuite sur une collection
de quelques dizaines de particules. Il a été conclu que les formes non-convexes ont besoin de
plus de point de colocation que les particules convexes convexes pour obtenir la même préci-
sion sur les solutions calculées.

La deuxième partie de ce chapitre se concentre sur l’application de laméthode sur les prob-
lèmes rencontrés dans le réacteurs à lit fixe. C’est-à-dire les effets des formes des particules sur
la perte de charge dans ce genre de réacteurs. La comparaison est faite sur trois types de partic-
ules: cylindre, trilobe et quadrilobe. Effectivement, la plateforme Grains3D -plgf a été utilisée
pour simuler, pour la première fois, la perte de charge au travers de lits de particules multi-
lobées. Les résultats montrent une tendance qui est statistiquement identiques pour les par-
ticules multi-lobées. Cette tendance sur la perte de charge est différente de celle des particules
habituellement retrouvées dans la littérature.
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Conclusion

Particulate flow modelling significantly progressed during this decade and has benefited
from the growth of computing power. This opens up new opportunities to investigate

the effect of particle shape in fluid-particle systems. In fact, most of existingmodels in the liter-
ature are only designed for spheres but inmany applications particle shapes are often complex.
In this thesis, a modelling of complex particle shape has been suggested. For this endeavour,
a numerical multiphase flow platform (Grains3D-PeliGRIFF) dedicated to particulate flow
simulations of arbitrary convex particles is extended to deal with non-convex particles.

The first part of this work is dedicated to the extension of the Discrete Element Method
granular solver Grains3D to handle non-convex particle shape. To this end, the strategy is
based on the decomposition of a non-convex particle into a set of convex bodies. This idea
comes from the so-called “glued spheres” model widely used in the literature. The concept
appears to be simple and efficient since almost any complex shape can be decomposed into a
few or many arbitrary convex particles rather than spherical ones. Hence, the name of “glued
convex” has been given to the newmodel. Due to the complexity of the shape, volume and ele-
ments of themoment of inertia is computed by discretising the shape instead of using boolean
operations on the presumably overlapping elements of the “composite”. Owing to the num-
ber of elementary particles, the “composite” particlemay be subjected to amulti-contact prob-
lem. In order to overcome this issue twomodels are tested for the resulting contact force. The
first model consists in summing up all the forces while the second model is based on averag-
ing all the forces. For both methods the resulting contact force is computed at each time step
due to the probable variation of the number of contact points during an interaction. Results
have been shown to be accurate when compared to analytical results but the time step de-
creases as a reverse function of number of contact points when we adopt the first model. The
second model keeps a contact duration that is in the order of magnitude of convex particles.
Based on this observation the secondmodel is selected and implemented in the granular solver
Grains3D. Using our new glued convex model, a study of the dynamics of a granular media
made of non-convex particles in a rotating drum is carried out to quantify the effects of the
non-convexity. Results obtained for two cross-like non-convex particles overall show that the
avalanching regime is promoted at low rotation rates and that the cataracting regime is not
really easy to define. These major differences are a result of the high entanglement of particles
which provides a sort of cohesion to the granular media. The second application of the imple-
mented model is the study of the packings resulting from the filling of reactors encountered
in the refining industry. For this purpose, poly-lobed particles are modelled as a composite of
cylinders and a polygonal prism which replicate with high fidelity the shape of catalyst par-
ticles developed at IFPEN. Due to slight micro-structural variations in packed beds, the void
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fraction always differs from a bed to another bed. Packing repeatability is assessed and correla-
tions are established for cylindrical, trilobal and quadralobal particles in cylindrical vessels and
in semi-infinite domains to mimic large scale reactors. Obtained results show a clear change
of void fraction between cylindrical particles and poly-lobed packed beds. Finally, the paral-
lel performance of Grains3Dwas assessed on various granular flow configurations comprising
both spherical and angular particles. To this end, large scale simulations of silo discharges of
spherical and angular particles, dam breaks of icosahedron and fluidized beds of spherical par-
ticles were performed. All simulations showed a scalability of more than 0.75 for systems of
more than 100, 000 particles per core. The scalability can reach up to 0.9 for systems of non-
spherical (convex) particles. In its current state, Grains3D offers unprecedented computing
capabilities. Systems with up to 100, 000, 000 of non-spherical particles can be simulated on
a few hundreds of cores.

The main goal of the second part of this thesis is to determine the effects of particle shape
on the pressure drop through packed beds of trilobes and quadralobes. The first step was the
extension of the capability of the fluid flow solver to handle poly-lobed particles. The granular
flow solver is coupled to themicro-scale (DirectNumerical Simulation)module of PeliGRIFF
in which a Distributed LagrangeMultiplier / Fictitious Domain formulation combined with
a FiniteVolume StaggeredGrid scheme is already implemented. The extension relies on the in-
tegration of the new geometries in the formulation, i.e. designing a new constructionmethod
to homogeneously distribute the collocation points in the rigid bodies and on their surface. A
space convergence studywas carried out in assorted flow configurations and flow regimes such
as the steady flow through a periodic array of particles and the steady flow through a packed
bed of particles to assess the accuracy of computed solutions. Based on the convergence study,
we found that for the same accuracy, the number of collocation points for poly-lobed particles
should be higher compared to more standard particles such as spheres or cylinders. In fact,
50% more points are required to describe the cross-sectional surface of the poly-lobed par-
ticles than that of a cylindrical particle. From the previous study, the pressure drop through
packed beds of poly-lobed particles have been reliably investigated. We performed around
200 particle-resolved simulations of the flow through a packed bed of trilobes or quadralobes.
Based on these simulation results, we suggested amodified Ergun’s correlation. The proposed
correction of the Ergun’s correlation is based on fitting the Blake-Kozeny-Carman (α) and the
Burke-Plummer (β) constants by introducing parameters that depend on the sphericity and
the particle equivalent diameter. Results have been interpreted using the Ergun formalism
and agree well with the available literature for low aspect ratios. We observed that TL andQL
have globally the same pressure drop behaviour. For high aspect ratios, simulation results are
not in line with the scarce experimental data available. The simulated void fraction is slightly
higher than experimental data, which logically yield a lower pressure drop.

Perspectives

The new extension of themultiphase flow platformGrains3D-PeliGRIFF has been success-
fully deployed. However, there is vast roomfor improvements, bothon thephysicalmod-

elling side and on the computational side. Since the contact resolution scales withNi × Nj

whereNi andNj denote the number of elementary particles of the composites i and j respec-
tively, there is an interest on implementing a convex hull or a bounding box algorithm to accel-
erate the contact detection. Later on, themodel can be extended to take into account cohesive
interactions. In addition, a dynamic load balancing would enhance the computing capabil-
ities of Grains3D in flow configurations with high particle volume fraction heterogeneities.
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On the pure parallel computing aspects, the milestone of a billion of convex particles appears
attainable as suggested by the trend shown by the scaling factor of the code.

In PRS, although the accuracy of the DLM/FD formulation is satisfactory, the method
does not strictly satisfy the velocity divergence-free property. In fact, our operator-splitting
algorithm solves the following sequence of sub-problems at each time: (i) Navier-Stokes sub-
problemand (ii)DLM/FDsub-problem. The latter enforces the rigid bodymotion constraint
but not the velocity divergence-free constraint. Therefore, more sophisticated operator-
splitting techniques as e.g. a second order Strang symmetrized algorithm, or more strongly
coupled solution algorithms might further improve the computed solution accuracy. In the
original version of the DLM/FD formulation, an Uzawa conjugate gradient algorithm is used
to solve the saddle point sub-problem. In order to avoid the computational cost, a fast pro-
jection scheme, a variant of the Direct Forcing of the Immersed Boundary Method, can be
implemented. Since the most of the computing time is spent in the DLM/FD sub-problem
in dense systems, accelerating the solution of this sub-problemwhile keeping the same level of
accuracy is highly desirable. In addition, an Adaptive Mesh Refinement strategy would be of
great improvement in fixed bed simulations. Not only the AMR strategy would decrease the
total number of grid cells, but it will increase the accuracy of the computed solutions where
needed. A DLM/FD module to model heat and/or mass transfer with infinite diffusivity in
the particles core is already available in PeliGRIFF and can be used for the simulations of flows
with trilobes/quadralobes. The extension to intra-particle diffusion would require the imple-
mentation of a Sharp Interface method to properly capture the gradient discontinuity at the
particle/fluid interface. This work is currently carried out by another PhD student of the Peli-
GRIFF group. Numerical simulations with mass transfer would need a realistic and manage-
able kinetic scheme (in the sense with “not too many” equations and chemical species) and
probably adapted numerical schemes to treat the different time scales involved in these chem-
ical reactions.

Further Uncertainty Quantification of random packing would provide a better fitting of
the Ergun’s coefficients for pressure drop in a packed bed of trilobes or quadralobes. This may
lead to the introduction of another parameter in the correlation such as the particle aspect ra-
tio. Further simulations of packed beds of particles with high aspect ratio in larger domains
would provide a better understanding on the low pressure drop that we measured in some
of our simulations. The new “glued convex” model can be integrated in a multi-scale frame-
work for granular flowmodelling or particulate flowmodelling for various industrial problems
(among others geoscience, food industry, pharmaceutical industry, upstream oil & gas indus-
try, etc . . . ). For instance, correlations for drag, heat flux and mass transfer for any particle
shape can be derived from PRS and later integrated in a meso-scale model (of the DEM-CFD
type for instance) for fluidised bed simulations.

With all these features, the numerical platform Grains3D-PeliGRIFF can serve as a very
accurate tool for virtual optimisation of processes in the chemical industry. For chemical con-
version in fixed bed reactors, numerical simulations are feasible from the loading of reactors
to the hydrodynamics of the flow through the bed, coupled with heat andmass transfer. This
would equip chemical engineers with a predictive tool of chemical efficiency of catalysts.
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Résumé

Les écoulements fluide-particules ont connu un important progrès durant cette décennie
grâce à l’avènement de l’ère du calcul haute performance. Ceci ouvre la voie à plusieurs

opportinuités d’investigation des effets de forme des particules dans ces systèmes. Effective-
ment, de nombreux modèles existant dans la littérature reposent sur des particules de forme
sphériques ce qui n’est pas toujours les cas dans plusieurs applications. Au cours de cette thèse,
lamodélisationde systèmes comportant des particules de formes complexes est abordée enutil-
isant la plateforme numériqueGrains3D -PeliGRIFF dédiée aux écoulementsmultiphasiques.
Ces travaux de thèse consistent à étendre la capacité de ces outils à pouvoir prendre en compte
des particules non-convexes.

La première partie de cette thèse est dediée à l’extension du solveur granulaire (Discrete
Element Method) à traiter des particules non-convexes. Elle est basée sur la décomposition
d’une particule non-convexe en particules élementaires arbitrairement convexes. Cette méth-
ode peut être considérée comme étant une extension du modèle “ glued sphere”, très connu
dans la littérature. Le concept paraît simple et éfficace car à peu près n’importe quelle forme ar-
bitrairement non-convexe peu être décomposée en plusieurs formes arbitrairement convexes.
D’où la dénomination du nouveau modèle glued convex. À cause la complexité des formes, le
calcul dumoment d’inertie est fait par une discrétisation spatiale du “composite” tout en con-
sidérant que les particules élémentaires peuvent se recouvrir. Cette décomposition implique
aussi plusieurs points de contact dans la dynamique du composite auxquels une attention par-
ticulière a été dédiée. Ainsi, le modèle a permis, pour la première fois, d’étudier la dynamique
des milieux granulaires dans un tambour tourant pour montrer l’effet de la concavité des par-
ticules en forme de croix. En effet, ces milieux granulaires montrent que le régime d’avalanche
se manifeste à très faible vitesse de rotation et la transition entre régime de cascade et régime
de centrifuge n’est pas évidente à definir. La seconde application dumodèle consiste à simuler
le remplissage de réacteurs à lit fixe avec des particules de forme multi-lobée rencontrées dans
l’industrie du raffinage pour, ensuite, quantifier l’effet des formes de catalyseurs sur le taux de
vide dans ces réacteurs. Finalement, la performance paralll̀e de Grains3D est mise en évidence
sur quelques configurations découlement granulaires. Ces tests ont permis de montrer que
des systèmes de plus de 100, 000, 000 de particules non-spheriques peuvent être simulés sur
quelques centaines de processeurs et que desormais des simulations numériques de systèmes
atteignant le milliard de particules shperiques peuvent être envisageables.

La deuxième partie de ce travail est consacrée au couplage entre le nouveaumodèle de par-
ticule non-convexe implémenté dans le solveurGrains3D et le solveur des équations deNavier-
Stokes PeliGRIFF en utilisant le module de simulation numérique directe de ce dernier. Cette
résolution directe repose sur la méthode “Distributed Lagrange Multipliers / Fictitious Do-
main”. Elle consiste à imposer une conditionde corps rigide au sein de la particule et à la surface
de celle-ci en imposant une condition d’égalité des vitesses fluide et solide à l’aide de multipli-
cateurs de Lagrange. Dans le cas d’un lit fixe, cette vitesse est nulle dans la particule et sur sa
surface. À défaut de solutions analytiques, une étude de convergence spatiale des solutions
calculées est menée dans le cas d’une particule isolée, puis sur un lit fixe de quelques dizaines
de particules multi-lobées. Après la comparaison avec des particules cylindriques, cette étude
a conduit à conclure que 50% de point de colocation supplémentaires sont indispensables
pour décrire la surface issue de la coupe transversale des particules multi-lobées. Á partir de
cette étude, une campagne de simulations numériques a été menée dans le but de quantifier
l’effet des formes des particules sur la perte de charge au travers d’un lit fixe en utilisant le for-
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malisme d’Ergun. Les résultats illustrent que les trilobes et les quadrilobes ont statistiquement
le même effet sur la perte de charge.
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