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Abstract 

Correlation of ultrasonic wave propagation properties to polycrystalline microstructure features 

has significant implications in non-destructive evaluation (NDE). A numerical approach based on the 

finite element (FE) method to quantify ultrasonic attenuation and grain-noise scattering coefficients in 

both time and frequency domains for polycrystalline materials is presented. It is applicable for any 

material regardless of its anisotropy, crystallographic or morphological textures (grain size, grain 

elongation, etc.), and consequently allows accessing to more realistic polycrystalline microstructures 

in a more accurate way than classical analytical models, for which assumptions such as the single 

scattering or the Born approximations are required. More particularly, an original method based on the 

reciprocity theorem for the numerical evaluation of the grain-noise scattering coefficient is proposed. 

The advantage of using the same theoretical frameworks as classical analytical models to develop our 

numerical procedure is that it allows to validate the latter in the cases of idealized textures for which 

the considered analytical models can be applied and remain relevant. Two-dimensional (2D) analytical 

formulas of ultrasonic attenuation and backscattering coefficients are developed by using the Born 

approximation to validate numerical evaluations. 

Then the proposed numerical approach is applied to the single-phase and un-textured 

polycrystalline titanium. First, 2D FE simulations are performed in idealized microstructures 

composed of equiaxed grains with different unimodal grain sizes. The involved frequency range with 

respect to the considered grains sizes is large enough so that the Rayleigh and stochastic, and 

Rayleigh-to-stochastic transition scattering regions between them are studied. Coherent comparison 

between numerical estimates and 2D analytical predictions is obtained. Numerical results show that 

the attenuation and backscattering coefficients as a function of the ratio of grain size to wavelength 

increase continuously at low frequencies and become insensitive to high frequencies. 2D model 

reduces the scattering mechanism in the Rayleigh region, and a second power dependence on grain 

size of the longitudinal wave attenuation is observed instead of a third power dependence on grain size 

in the three-dimensional (3D) case. Complex physical phenomena, such as large dispersions of 

attenuation between samples with the same grain size but different spatial distributions of 

crystallographic orientations, and significant oscillation level of backscattering deduced from the 

insufficient number of grains contributing to received noise echo signals, are investigated. Effects of 

attenuation due to multiple scattering on the backscattering measurement are quantified. 

Secondly, polycrystals with bimodal grain sizes, frequently observed during recrystallization or 

heterogeneous grain growth, are considered. The advantage of numerical modeling is highlighted in 

this case, as no analytical model exists. Effects of different parameters on ultrasonic attenuation and 

backscattering are investigated, such as the volume fraction of the larger grains, the random location 

or clusters of the larger grains in the matrix of the smaller grains, layered microstructures with bands 



	  
 

 
 

 
  

of the smaller and larger grains. Numerical results indicate that for all studied bimodal microstructures, 

attenuation and backscattering coefficients in frequency domain are in-between the ones of unimodal 

microstructures and are mainly determined by volume fractions of the constituent grains. However 

they are only slightly affected by the grain location distributions. It is concluded that characterization 

of layered microstructures with bands of different grain sizes by inversion of ultrasonic attenuation or 

backscattering coefficients is not straightforward. The spatial autocorrelation function in bimodal 

microstructures is further quantified to gain an analytical interpretation of the above phenomena.  

Keywords: Finite Element, Ultrasonic Waves, Polycrystalline Materials, Ultrasonic Attenuation, 

Ultrasonic Backscattering 
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Introduction 

The motivation for the research on the ultrasonic wave propagation in polycrystalline materials is 

found in non-destructive evaluation (NDE). Microstructural evolutions during metallurgical processes, 

such as rolling, forging or isothermally annealing, influence significantly the final material properties. 

Since the ultrasonic wave can deeply penetrate into most of polycrystalline materials, it has been 

widely used to characterize the polycrystalline microstructural features.  

When an ultrasonic wave propagates through polycrystalline materials, inhomogeneities in elastic 

properties and in density of individual crystallites lead to the variation of propagation velocities in 

each crystallite, consequently resulting in the scattered noise signals and the amplitude attenuation. It 

is believed that information on microstructure features, such as grain size, crystallographic and 

morphological textures, can be obtained by inversion of ultrasonic signals. Correlation of ultrasonic 

propagation properties to microstructural features is a fundamental research for the NDE of 

microstructural evolution. The classical theoretical investigation provides a fundamental 

understanding of how elastic waves are attenuated and backscattered at grain boundaries. However, its 

development is restricted because complex physics, such as multiple-scattering and scattering 

mechanisms across different characteristic regions, incorporate with the scattering-induced attenuation 

and microstructural noise signals. FE modeling is a promising approach to provide a more complete 

model describing the complex physical mechanism of ultrasonic wave scattering. It allows accessing 

to realistic polycrystalline microstructures more accurately regardless of the anisotropy, 

crystallographic or morphological textures since no restrictive assumptions are used. Herein it is 

chosen as the methodology to answer our research questions. 

As far as FE modeling of ultrasonic wave scattering in polycrystalline materials is concerned, the 

prior study (Van Pamel et al. 2015, Kumar et al. 1992, Chassignole et al. 2009) has been contributed 

to the evaluation of ultrasonic attenuation. However, complicated ultrasonic-microstructure 

interactions in polycrystals with high anisotropy can lead to a low level of signal-to-noise ratio in 

pulse-echo inspections, which makes the measurement of ultrasonic attenuation difficult. Therefore, it 

is of significance to characterize the microstructure by inversion of scattered grain noises using FE 

modeling, which is still an open question. Moreover, the numerical investigation is also motivated by 

the extension of the classical understanding to some complex physical issues, such as effects of grain 

size distribution and spatial distribution of crystallographic orientations on ultrasonic attenuation and 

backscattering, large dispersions of attenuation between samples with the same mean grain size, etc. 

The purpose of this manuscript is to gain a more complete understanding of how polycrystalline 

microstructure features affect ultrasonic wave attenuation and backscattering by using FE modeling 

and thus to improve characterization of polycrystalline microstructures by inversion of ultrasonic 

attenuation and backscattering. Specifically, a versatile approach to numerically evaluate scattering-
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induced attenuation and scattered noise signals is developed first. Then further investigations are made 

to understand grain size effects on ultrasonic attenuation and backscattering in a unimodal 

polycrystalline microstructure. The third objective of this manuscript is to answer the question whether 

the volume fraction ratio between fine and coarse grains or the grain location distributions in the 

microstructure with bimodal grain sizes would be detected by the ultrasonic inspection. 

The first chapter is devoted to giving a review of theoretical, experimental and numerical studies 

on ultrasonic wave scattering in polycrystals. Classical theoretical models for formulating analyses of 

ultrasonic attenuation and microstructural noises are first recalled. Then some experimental studies, 

that confirm the classical theories in the case of simple polycrystals or invalidate them in more 

complex cases such as duplex titanium alloys, are presented. Confronting such kind of more 

challenging scattering scenarios, FE modeling is introduced as a promising approach and its recent 

research development is subsequently described. Limitations and difficulties for each approach are 

also discussed. 

The second chapter is focused on the theoretical and numerical evaluations of ultrasonic 

attenuation and backscattering. General formulas for ultrasonic attenuation and microstructural noise 

scattering coefficients in three-dimensional (3D) polycrystalline materials are reviewed. As a new 

contribution, two-dimensional (2D) analytical formulas of longitudinal wave attenuation and 

backscattering coefficients in single-phase and untextured polycrystals with the Born approximation 

are developed for validation of the proposed numerical approach. As another interesting theoretical 

result, two components of the longitudinal wave attenuation, the longitudinal-to-longitudinal and 

longitudinal-to-shear scattering, are decomposed within the framework of the unified Stanke-Kino 

model. Finally, as one of the most important contributions of the present work, an original method for 

the numerical evaluation of microstructural noise scattering by using FE modeling is proposed, which 

is established using the same framework based on the reciprocity theorem. 

In the third chapter, generation of 2D numerical models for idealized single-phase and untextured 

polycrystalline microstructures by using an in-house software OOFE (Object Oriented Finite Element 

program) is introduced. Analysis of mesh convergence is made and the choice for adequate averaging 

of elastic moduli to define the equivalent homogeneous medium of a polycrystal is subsequently 

discussed. Post-processing procedures of numerical ultrasonic data are presented, especially how the 

attenuation and backscattering coefficients are calculated for the defined numerical models is specified. 

Numerical estimates in both frequency and time domains for the ultrasonic attenuation and 

backscattering in a single-phase and untextured polycrystalline titanium alloy with unimodal and 

bimodal grain sizes are presented in the fourth chapter. Concerning the unimodal microstructure, grain 

size effects on ultrasonic attenuation and backscattering are at first numerically evaluated. Quantitative 

comparison with the 2D analytical predictions is further conducted. Effects of spatial distributions of 

crystallographic orientations on ultrasonic attenuation and backscattering are additionally taken into 
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account. Discussions of the attenuation effects due to multiple scattering on the quantification of 

ultrasonic backscattering are proposed. With regard to the idealized microstructure containing double-

size, hexagonal grains, effects of the volume fraction of the larger grains, the location distributions of 

the larger grains in the matrix of the smaller grains, and banded microstructure of the larger and 

smaller grains on ultrasonic attenuation and backscattering are investigated. The two-point spatial 

autocorrelation function is also investigated to provide an analytical interpretation of the numerical 

results.  

Concluding remarks and perspectives of the research on ultrasonic wave scattering in 

polycrystalline materials by using FE modeling have been given in the final chapter. 
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Chapter 1  

Literature review 

For online quality control both in laboratory and in industry, the ultrasonic wave provides an 

approach of obtaining polycrystalline microstructure information continuously and non-destructively 

(Lindh-Ulmgren et al. 2004). Indeed when ultrasonic waves propagate through a polycrystal composed 

of numerous discrete grains of varying size and shape with anisotropic elastic properties and position-

dependent crystallographic orientations (Fig. 1.1), they scatter at grain boundaries resulting in 

amplitude attenuation as well as microstructural noise scattering. Inversely, the polycrystalline 

microstructure could be characterized by inversion of its ultrasonic properties. 

 

Fig. 1.1. Example of NDE of polycrystalline microstructure  

In this chapter, inhomogeneities in a random polycrystalline medium are firstly introduced, which 

is the origin of ultrasonic wave scattering. Then, a review on the theoretical and experimental 

developments of ultrasonic wave scattering in polycrystals is given. Their development limitations are 

further analyzed. FE modeling is then presented as a promising methodology for improving ultrasonic 

inspections confronting more challenging scattering scenarios, and a recall on its current research 

progress is given. Advantages and restrictions of FE modeling for answering research questions about 

ultrasonic wave scattering is also presented. Since the dependence of ultrasonic properties on the 

polycrystalline microstructure has been investigated for many years, the literature work presented in 

this chapter is not exhaustive and only part of literature works directly related to the considered 

research questions in the present thesis are recalled.   

Ultrasonic Wave 

Polycrstalline microstructure Ultrasound Waveform 

Reflected Echo 

The specimen Noise Signals 
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1.1 Inhomogeneities in polycrystalline microstructures 

A polycrystalline material is composed of numerous discrete grains, each having a regular 

crystalline atomic structure (Fig. 1.2.(a)), and its inhomogeneities consist in variations of shapes, sizes, 

crystallographic orientations and mechanical properties between grains. The shape of grains can be 

fairly spherical, elongated or fattened, and a wide grain size distribution can occur due to 

heterogeneous grain growth during thermomechanical processing. With respect to grain sizes and 

shapes, inhomogeneities associated with variations of crystallographic orientations and phases can be 

more significant.  

Each crystallite in a polycrystalline medium is elastically anisotropic and has its own 

crystallographic orientation (Fig. 1.2.(b)). The elastic anisotropy of single crystal gives rise to 

inhomogeneous elastic constants in the global coordinate system of the polycrystal. Concerning 

singel-phase polycrystals, the overall crystallographic orientation distribution of the constituent grains 

defines the crystallographic texture of the polycrystal. The crystallographic texture affects 

significantly directionally dependent properties of a polycrystal, such as fracture toughness, electrical 

conductivity, superconductivity, etc. When all possible crystallographic orientations occur with equal 

frequency, the orientation dependence may disappear on an averaged macroscopic scale and in this 

specific case, the polycrystal is referred to be untextured. However, preferred orientation exists given 

that any crystallographic orientation with respect to the symmetry of the sample is more probable than 

others. Specific underlying mechanisms related to nucleation, growth, crystal plasticity and 

recrystallization as well as grain growth can lead to strong crystallographic textures as a result of 

synthesis and processing. 

Furthermore, if all the grains do not have the same proportion of chemical constitutents, the same 

lattice constants or the same crystal structure, there are two or more phases. Phase transformations can 

lead to significant inhomogeneities of polycrystals.  

In the view of ultrasonic wave propagation in single-phase polycrystalline materials, grain-to-

grain variations of elastic properties trigger scattering phenomena at the grain boundaries, i.e. part of 

energy deviating from one straight trajectory into all directions. In the related literature, a simple 

variable, ξ , is classically defined to measure the departure of a polycrystalline medium from 

homogeneity (Stanke et al. 1984). In the case of a polycrystal with a low inhomogeneity degree, i.e. 

ξ << 1 , ξ  can be expressed in terms of the variance of elastic constants as follows (Stanke et al. 

1984): 

 (ξ )2 ≅ 1
4
〈(Cijkl (x) −Cijkl0 )2 〉

(Cijkl0 )2  (1.1) 

where the subscript “ ijkl ” has the proper value for either the longitudinal wave or the shear wave, 

Cijkl (x)  and Cijkl0  denote the corresponding components of the fourth-order elastic moduli tensors in 
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the studied inhomogeneous domain and in the equivalent homogeneous medium, respectively. An 

ultrasonic wave propagating in such polycrystals scatters slightly at grain boundaries. Herein, a 

polycrystal of weak scattering refers to slight variation of elastic properties and so refers to a low 

degree of inhomogeneity..  

The simplest polycryatlline microstructure is a single-phase and untextured material in the 

absence of dislocations, voids or defects. Many theorectical and experimental investigations have been 

made on elastic wave propagation in such a polycrystalline material, which is also considered in the 

present work.  

(a) (b)  

Fig. 1.2. (a) Optical micrograph and (b) EBSD map of a polycrystalline nickel alloy (Garcin et al. 
2016). 

1.2 Evaluation of scattering-induced attenuation 

The attenuation measures the amplitude decay of elastic waves propagating in a polycrystal and is 

usually quantified by a scalar α  called the attenuation coefficient. Both dissipation and scattering can 

cause the ultrasonic attenuation in polycrystalline materials. Attenuation by dissipation is caused by 

energy transformation into heat due to dislocations and the damping, etc. (Du et al. 2014). By contrast, 

attenuation by scattering is attributed to interactions between waves and grain boundaries due to 

inhomogeneities in elastic properties and in density between adjacent grains. It is mainly determined 

by the elastic anisotropy of the crystals, the grain size and shape, the crystallographic texture and the 

density variation. Thus, at least theoretically, some microstructure features are expected to be 

evaluated inversely by measuring the scattering-induced ultrasonic attenuation. In general, in the 

application of NDE by ultrasounds, the dissipation phenomenon is negligible with respect to the 

scattering phenomenon. In this thesis, the attenuation coefficient α  specifically refers to the 

scattering-induced attenuation.  

We note that in the following, both the subscript and the superscript “0” always indicate a 

mechanical field defined or obtained in the equivalent homogeneous medium, when it can be defined, 

of a heterogeneous medium. The parameter d  denotes an effective average linear dimension of grains, 

λ0  denotes wavelength and k0 =ω v0  denotes wave number in the equivalent homogeneous medium, 

0 s 0 s 
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where ω = 2πf  and v0  are respectively the angular frequency and the phase velocity respectively. The 

amount and type of wave scattering at grain boundaries in a heterogeneous medium are strongly 

influenced by the ratio of grain size to wavelength and a normalized frequency parameter x0  is 

classically defined by using this ratio (Stanke et al. 1984): 

 x0 = k0d = 2πd
λ0

= 2πfd
v0

 (1.2) 

Three distinct frequency regions depending on this ratio are defined: the Rayleigh region where the 

grain size is much less than the wavelength, i.e. x0 <<1 , the stochastic region where the grain size is 

comparable to the wavelength, i.e. 1< x0 <1 ξ  and the geometric region where the grain size is much 

larger than the wavelength, i.e. x0 >1 ξ  (Fig. 1.3.).  

 

Fig. 1.3. Schematic of three scattering frequency regions 

In this section, previous research on evaluation of ultrasonic scattering-induced attenuation in 

polycrystalline materials using theoretical and experimental methodologies is recalled. Open issues for 

ultrasonic attenuation are discussed according to limitations of the well-known existing theories and to 

difficulties of experimental measurements. 

1.2.1 Theoretical investigations 

Early theoretical investigation provides a basic understanding about the correlation of the 

ultrasonic wave scattering characteristics to the microstructure features of polycrystalline materials. 

Actually, elastic wave scattering in polycrystalline materials leads to complex physical phenomena, in 

particular, multiple-scattering effects, since the prior scattered waves are to be further scattered at 

grain boundaries. To get a first grasp, the single-scattering approximation is frequently used in early 

theoretical investigations, assuming that ultrasonic waves scatter at each grain boundary independently. 

At the beginning of this part, a recall on early investigations to develop the ultrasonic scattering theory 

based on the single-scattering assumption and the Born approximation is made. Consideration of 

multiple-scattering effects in the theoretical model is further introduced. Then, extension of those 

Rayleigh Stochastic Geometric 

Grain 

Ultrasound 
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well-known theories to effects of crystallographic textures and grain morphology on the ultrasonic 

scattering is presented and their limitations are finally discussed. 

1.2.1.1 Single-scattering models 

Early studies for the attenuation coefficient were limited to the Rayleigh scattering region. Bhatia 

performed the calculations for polycrystals with randomly-oriented grains having the same size with 

single-scattering approximation (Bhatia 1959). The attenuation coefficient was measured by the total 

scattering cross section of an isolated crystallite in an isotropic medium averaged over all 

crystallographic orientations multiplied by the number of grains per unit volume. It was valid only for 

slightly inhomogeneous materials due to the use of the first-order perturbation theory. Asymptotic 

formulas of attenuation coefficient in the Rayleigh region for polycrystals with cubic symmetry were 

presented. As Bhatia concluded, for an incident longitudinal wave, the scattered energy carried away 

by the shear wave due to mode conversion made a dominant contribution to the Rayleigh scattering.  

A more general theory without limitation to the Rayleigh region was proposed by Hirsekorn 

(Hirsekorn 1982). She formulated the perturbation of the field in each scatterer using the Born series 

in power of the inhomogeneity degree ξ  of polycrystals. Then she cut off the Born series after the 

second order term of ξ  and performed the calculations of attenuation coefficient and velocities for a 

plane longitudinal wave in polycrystals with randomly oriented grains having the same size. As Stanke 

and Kino pointed out, her solution did not account for effects of multiple-scattering with the second-

order perturbation theory, since exactly the same asymptotic results in the Rayleigh region as those 

derived by Bhatia were obtained (Stanke et al. 1984). The theory of Hirsekorn was limited to weakly 

anisotropic materials and was not valid in the frequency region beyond the stochastic scattering region.  

It is noted that the Born approximation is adopted in both calculations by Hirsekorn and Bhatia, 

based on which the actual field in the studied domain perturbed by a scatterer is replaced by the 

unperturbed field. It is a good approximation in the limit of weak anisotropy. Grain size distribution 

and grain shape effects are also excluded in both calculations since spherical grains with a same size 

were assumed. 

In the geometric region, the grain size is much larger than the wavelength, thus the attenuation 

coefficient is simply characterized by the area of the geometric cross section which the grain presents 

to the incident wave (Stanke et al. 1984). Consequently, it is inversely proportional to the mean grain 

size and is independent of both the frequency and the relative inhomogeneity degree of the medium.  

Based on these theoretical models discussed above, the asymptotic results of the dependence of 

the attenuation coefficient on the frequency f and the effective grain size d  are summarized in Table 

1.1. A fourth power dependence on frequency and a third power dependence on grain size of the 

attenuation coefficient are found in the Rayleigh region. By contrast, a second power dependence on 

frequency and a linear dependence on grain size dominate the scattering in the stochastic region. The 
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attenuation in the geometric region is determined only by the reciprocal quantity of the effective grain 

size and is independent of frequency. 

 

x = 2πd λ  Type of scattering Attenuation 

x <<1, d << λ  Rayleigh α ∝ d 3 f 4  

1< x <1 ξ , d ≈ λ  Stochastic α ∝ df 2  

x >1 ξ , d >> λ  Geometric α ∝ d −1  

Table 1.1. Asymptotic results of the attenuation coefficient in different characteristic regions of 
scattering 

1.2.1.2 Multiple-scattering frameworks 

The single-scattering assumption and the Born approximation restrict the frequency range over 

which early theoretical studies of attenuation coefficient are valid. A unified theory valid in all 

frequency regions for evaluation of scattering-induced attenuation coefficient and phase velocity 

variations of elastic waves in single-phase polycrystalline media was developed by Stanke and Kino 

(Stanke et al. 1984). Their unified framework was based on the second-order Keller approximation 

proposed by Keller (Karal et al. 1964). The wave field of each grain was first expressed using the 

perturbation theory accurate up to the second-order term of the inhomogeneity degreeξ . Further, the 

mean wave field was formulated and an implicit expression for the effective wave vector of the mean 

plane wave was finally presented. The real part of the effective wave vector revealed the variation in 

phase velocity, and the attenuation coefficient due to scattering was derived from the imaginary part. 

Compared with the previous presented theory of Hirsekorn, effects of the grain geometry on the 

ultrasonic wave propagation are considered through a spatial autocorrelation function in this unified 

theory, avoiding artifacts that probably occur if all grains are assumed to have identical shape and size. 

This theory takes some degree of multiple scattering into account by formulating the scattered field in 

terms of the averaged wave in the whole media which has been scattered at grain boundaries. It is 

applicable to single-phase polycrystalline materials without limitations of crystallographic texture, 

grain size and shape. Even if it is only valid in the limitation of weak scattering, it stands by far as one 

of the most general theories for calculation of attenuation coefficient and phase velocity alteration in 

polycrystalline materials.  

We note that formulas of this unified theory will be recalled in detail in the Section 2.1. Indeed 

the Rayleigh scattering, which is proportional to the volume of the scatterer, may be reduced in 2D 

domains. Therefore 2D formulas for attenuation coefficient need to be developed, which is important 

to perform relevant comparison between theoretical predictions and numerical evaluations of 

ultrasonic attenuation by using 2D FE simulations.  
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Instead of the perturbation theory based on the second-order Keller approximation in the unified 

theory of Stank and Kino, Weaver used the Dyson equation to account for the multiple-scattering 

effects (Weaver1990). He formulated the elastic Green’s dyadics for the averaged response of the 

heterogeneous medium in terms of the one for the Voigt-average equivalent homogeneous medium 

and the self-energy operator. Effects of multiple-scattering were considered through the self-energy 

operator which described the interactions of the single particle at the observation point with the 

surrounding many-particle system. The Born approximation was further employed to simplify the 

evaluation of self-energy term. He finally presented the explicit equations for the attenuation 

coefficient in untextured polycrystals with cubic symmetry. Compared to the unified theory of Stanke 

and Kino, this theory is also valid for only weakly anisotropic materials. We remark that for all 

previously recalled theories, the application of the Born approximation confines their validity to 

frequency regions below the geometric scattering one.    

1.2.1.3 Extension of the general models 

Both Weaver and Stanke performed the restricted case of calculations in untextured polycrystals 

with equiaxial grains of cubic symmetry. Extension of these known models to untextured 

polycrystalline materials with elongated grains or crystallographically textured polycrystals was 

further investigated.  

Based on the unified theory of Stanke and Kino, Ahmed et al. calculated the attenuation 

coefficient in untextured cubic-symmetry polycrystalline media with elongated grains (Ahmed et al. 

2003). Slight effect of grain elongation on attenuation in the Rayleigh region was found for grains 

with the same effective volume. Afterwards, Yang et al. (Yang et al. 2011) refined the calculations 

about dependence of attenuation coefficient on ratios of major and minor ellipsoid axes in the 

Rayleigh and the stochastic scattering regions using the Weaver model. He found that the attenuation 

in the stochastic region was dependent only on the grain dimension in the propagation direction. 

Several researchers extended also the well-known models mentioned immediately above to the 

case of crystallographically textured polycrystals. Hirsekorn presented the extension of her own theory 

to the plane longitudinal and shear waves of arbitrary propagation and polarization direction in single-

phase cubic polycrystals of orthorhombic texture symmetry with weak anisotropy (Hirsekorn 1986). 

Analytical formulas for the attenuation coefficient and phase velocity variations were developed. 

Grain size distribution and grain shape variations were excluded in her theoretical model. The results 

were limited for the geometric scattering region. Afterwards, Ahmed et al. extended the unified 

Stanke-Kino model to carry out the calculation of propagation constants in the transversely isotropic 

medium containing cubic crystallites in which one of the cube axes was aligned in a preferred 

direction with the other two axes randomly oriented (Ahmed et al. 1996). Dependence of attenuation 

coefficients and phase velocity variations on both frequency and wave propagation direction for 
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longitudinal and shear waves was presented. A good overall agreement with the results of Hirsekorn 

(Hirsekorn 1986) for longitudinal wave attenuation was shown except in the Rayleigh-to-stochastic 

transition region where the latter shows the unphysical fluctuations with frequency due to the uniform 

grain size and shape assumption. The prediction of the shear wave attenuation coefficient was 

quantitatively smaller than the one of Hirsekorn. The application of the Keller approximation made his 

results applicable to all frequencies from the Rayleigh to the geometric scattering regions. Later on, 

the Weaver model was also explored to the application in crystallographically textured polycrystals 

with equiaxial grains (Turner 1999). The explicit expressions for the attenuation coefficient of quasi-

longitudinal and quasi-shear waves were developed for the transversely isotropic polycrystalline 

materials containing equiaxed cubic grains with one single aligned coordinate axis. Similar results 

about directional dependence of ultrasonic attenuation coefficient to those of Ahmed et al. were 

obtained. However, the isotropic Green’s function was used in the study by Ahmed et al. to describe 

the scattering in textured media. In fact, in the case of textured media, the choice of the isotropic 

Green’s function might be not appropiate since the equivalent homogeneous medium was anisotropic. 

By contrast, Turner used the anisotropic Green’s function in transverly isotropic media for modeling 

the ultrasonic scattering.  

The Voigt averaged elastic moduli is used in both the models of Weaver and Stanke and Kino to 

define the equivalent homogeneous polycrystalline medium. By using the Voigt average, the 

unweighted average of the elastic tensor variations in an untextured medium is equal to zero. 

Therefore, the first order approximation term due to the elastic tensors perturbation vanishes in the 

unified formulation, which simplifies greatly the solution of attenuation. However, with the 

assumption of uniform strain, the Voigt average gives the upper bounds of the elastic moduli and thus 

may lead to overestimation of the ultrasonic scattering. Recently, Kube and Turner (Kube et al. 2015) 

demonstrated the influence of the self-consistent (SC) method of averaging elastic moduli on the 

evaluation of the ultrasonic attenuation based on both models of Weaver and Stanke and Kino. The 

covariance tensor of elastic moduli perturbations from the homogeneous equivalent medium was 

derived using SC averaging method and found to be considerably smaller than the one obtained by the 

Voigt average. The SC attenuation in this article was obtained by simply replacing the Voigt-average 

elastic moduli and the anisotropy coefficient in the second-order perturbation terms of the expressions 

for the longitudinal wave attenuation given by Weaver and Stanke and Kino with the corresponding 

SC quantities. Frequency dependence of the longitudinal wave attenuation coefficient deduced from 

the SC averaged properties was significantly smaller than that found from the Voigt average. They 

concluded that the attenuation predicted through the SC averaged properties provided an improved 

estimation compared with the Voigt attenuation, which was supported by the coherence between the 

SC attenuation and the experimental measurements of Zhang et al. (Zhang et al. 2004). However, as 

the formulas for the longitudinal wave attenuation given by the unified Stanke-Kino model are derived 
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by the Voigt-average properties to insure that the first-order perturbation term relevant to the averaged 

elastic constant deviation from the equivalent homogeneous material vanish for an untextured 

microstructure, we keep using this average instead of the SC average in the theoretical and numerical 

analyses in the present work. 

1.2.1.4  Limitations 

Despite all improvements discussed above, there are still several limitations associated with the 

analytical research on ultrasonic attenuation in polycrystalline materials: 

1) The existing theoretical models are valid in the limit of weak-scattering due to the application 
of the Born approximation or the second-order Keller approximation. They are inapplicable to strongly 
anisotropic polycrystals or the case when the ultrasonic wave has been significantly attenuated due to 
a large propagation distance. 

2) Ultrasonic attenuation in real polycrystals with complex microstructures is likely beyond the 
predictions of the existing theories due to a number of complicated physical issues, such as the 
inhomogeneous grain size distribution.  

3) Effects of full multiple-scattering are difficult to account for completely with individual 
scatterer model or the second-order Keller approximation.  

4) Application of the Born approximation in some analytical frameworks limits the validity of 
analytical calculations for the geometric scattering region where the grain size is considerably larger 
than the wavelength. 

1.2.2 Experimental investigations 

Besides theoretical investigations, experiment research provides an indispensable complementary 

approach, which is not restricted to the complexity of a polycrystalline microstructure. A variety of 

microstructural characterizations from ex-situ experimental measurements of ultrasonic attenuation 

have been carried out. On the other hand, in-situ monitoring of polycrystalline microstructural 

evolutions by laser-ultrasonics during thermomechanical processing is also in progress. The literature 

work presented here is not exhaustive and the focus is attached to the grain size measurements since 

one of the research objectives of this thesis is to improve the understanding of grain size effects on 

ultrasonic attenuation by using FE modeling. Comparison of experimental results with the existing 

theoretical models leads to new reflections on difficulties of experimental investigations of NDE. Then, 

identification of complex microstructures by inversion of ultrasonic attenuation is also briefly 

introduced, such as the polycrystalline titanium with high anisotropy degree.  

1.2.2.1 Characterization of grain size by inversion of ultrasonic attenuation  

A plenty variety of experimental investigations on characterization of grain size by inversion of 

ultrasonic attenuation have been undertaken. Comparison of experimental measurements with the 
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classical theoretical predictions is of interest to quantify the validity of the theoretical model. Diverse 

results were obtained. 

 On the one hand, coherent comparison between experimental measurement and the unified 

theoretical model was obtained in slightly inhomogeneous polycrystalline material. Thompson’s 

experimental measurements of ultrasonic attenuation in a single-phase copper sample with fine and 

equiaxed grains provided confidence in the accuracy of the Stanke-Kino unified model in the limit of 

weak scattering (Thompson et al. 2008). Grain size growth in the samples of hot rolled 4mm low 

carbon steel sheet with low anisotropy degree was measured in real time by laser-ultrasonics (Lindh-

Ulmgren et al. 2004). Attenuation coefficient was experimentally determined by the successive echoes 

with weaker and weaker amplitude. The grain size was determined by comparing the experimental 

values with analytical results predicted by the Stanke-Kino unified model. It fitted well with the values 

determined by optical microscopy.  

On the other hand, there are also a number of experimental measurements showing incoherent 

comparison with the theoretical predictions. Zhang et al. (Zhang et al. 2004) also carried out the 

measurements of the dependence of ultrasonic attenuation on frequency and averaged grain size in 

copper samples. The focus of his study was given to the Rayleigh frequency region. A second power 

dependence on frequency and a linear dependence on the average grain size of the attenuation levels 

were observed, rather than a fourth power dependence on frequency and a third power dependence on 

averaged grain size as predicted by the Stanke-Kino unified model. Significant deviation of the 

metallographic-determined grain size distribution from the Poisson distribution assumed in the 

theoretical prediction was suspected, however, the authors made the comment that the grain size 

distribution could not explain completely the disagreement between the theoretical prediction and the 

experimental measurement.  

Otherwise, experimental confirmation of the Stanke-Kino unified model in the stochastic region 

was also made by Zeng et al. (Zeng et al. 2010). They measured the attenuation in high purity niobium 

samples with a grain size in the range of 30-70 𝜇m. Close to a second power dependence on frequency 

and a linear dependence on grain size of ultrasonic attenuation were observed, which was in good 

agreement with the stochastic scattering prediction. However, the magnitude was found to be larger 

than that predicted by the Stanke-Kino unified model. The sources of this difference were discussed, 

such as the microstructure containing fine and coarse grain bands, and the measured grain size 

distribution with a great probability of large grains, both of which were not considered in the 

theoretical model.  

Concerning the in-situ measurements, Garcin et al. carried out online evaluations of 

heterogeneous grain growth during isothermal annealing of nickel-base superalloy using laser 

ultrasonics (Garcin et al. 2016). Frequency dependence of ultrasonic attenuation was experimentally 

measured. Then, the authors used a second power law modeling the dependence of attenuation on 
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grain size in the Rayleigh region, rather than a third power law given by the Stanke-Kino unified 

model, to quantify the grain size evolution. The results were validated by metallographic observations. 

We remark that this incoherence of power dependence of attenuation on grain size in the Rayleigh 

region between the prediction of Stanke and Kino and the experimental study by Garcin et al. is 

probably attributed to a high probability of large grains compared with the Poisson distribution 

assumed in the theoretical prediction. The study of ultrasonic wave scattering in microstructures with 

bimodal grain sizes presented in Section 4.2 may provide a supportive argument for this point of view. 

1.2.2.2 Characterization of complex microstructures by inversion of ultrasonic attenuation  

Ultrasonic attenuation in complex polycrystalline microstructures with a relatively high degree of 

anisotropy also attracts the investigator’s interest, which is beyond the prediction of the existing 

classical theories.  

Panetta and Thompson (Panetta et al. 1999) investigated ultrasonic attenuation in titanium alloys 

consisting of a particular duplex microstructure with elongated grains. The duplex microstructure was 

composed of randomly oriented macrograins containing colonies with crystallographically related 

orientations. However, the attenuation induced by crystallites within the colonies was neglected. A 

number of ultrasonic wave phenomena in such complex microstructure were further investigated, such 

as fluctuations of the backwall echoes and variations in the mean attenuation depending on 

propagation distance, degree of beam focusing, and nature of the reflector (Margetan et al. 1998, 

Thompson et al. 2008). Yang et al. studied also ultrasonic attenuation in elongated duplex titanium 

alloys, whose duplex microstructure consisting of elongated microtextured regions formed by much 

smaller crystallites with preferred orientations (Yang et al. 2012). It was shown that attenuation in 

such microstructure could be quantified approximately by addition of two parts: the attenuation of the 

microtextured regions which was considered as an ellipsoidal single crystal with the mean elastic 

properties, and the attenuation by crystallites inside the microtextured regions. The attenuation 

generated by microtextured regions was dominant for strong microtexture, and the attenuation 

generated by crystallites made a major contribution for a relatively weak microtexture. 

1.2.2.3 Difficulties 

Referring to the experimental measurements of ultrasonic scattering-induced attenuation in slight 

inhomogeneous polycrystalline materials, there are several difficulties for experimental confirmation 

of classical theoretical model: Firstly, scatterers such as voids, precipitates, bulk cracks and impurities 

at grain boundaries, are contained in most polycrystalline microstructures, whose contribution to the 

attenuation is difficult or even impossible to eliminate from the scattering at grain boundaries. 

Secondly, some researchers found that the grain size distribution indeed affect the ultrasonic 

attenuation level, such as a log-normal size distribution, which has a greater possibility of large grain 

size with respect to the Poisson grain size distribution employed in the theoretical prediction. Whereas, 
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there are still open questions related with the quantitative evaluation of grain size distribution. Thirdly, 

attenuation due to the dissipation, such as the dislocation damping and viscosity, can hold the 

quadratic dependence on frequency (Zhang et al. 2004). Accordingly, it makes the attenuation induced 

by scattering at grain boundaries difficult to identify. These factors lead to a number of physical issues, 

which are unresolved by the classical theoretical models.  

Concerning the complex polycrystalline microstructure with strong inhomogeneity degree, a 

number of complicated experimental phenomena are observed for ultrasonic attenuation, which are 

beyond the classical theoretical predictions.  

1.3 Evaluation of microstructural noise scattering coefficient  

Since the research on ultrasonic attenuation is frequently restricted by signal-to-noise ratio for 

strong anisotropy material, research efforts have also been dedicated to scattered noise signals to 

improve inspections of microstructural evolution.  

The microstructural noise scattering effectiveness in a particular spatial direction for a given 

angular frequency ω  is usually quantified by a coefficient η(ω ) . For the analytical evaluation of η(ω ) , 

it is necessary to calculate the total cross section which measures the ratio of the average power flux 

scattered into all directions to the average intensity of the incident fields. Then, η(ω ) is defined as the 

differential scattering cross section per unit volume by the differential solid angle in the given spatial 

direction (Margetan et al. 2005a). In comparison with ultrasonic attenuation, the research on grain-

noise scattering is less well developed. Both theoretical and experimental developments for evaluation 

of grain-noise scattering, especially the backscattered noise signals, in polycrystalline materials will be 

introduced in this part. Limitations and difficulties of these two investigations will also be discussed. 

1.3.1 Theoretical investigations 

Two constructive methods to evaluate the scattering effectiveness in a given spatial direction are 

first introduced in this part, which laid the foundation for the theoretical development. The first one is 

based on the isolated scatterer model, i.e., the single-scattering assumption, and the second one is 

based on the reciprocity theorem. Research on the equivalence between two models based on the Born 

approximation is further presented. Limitations of these two existing theoretical models are finally 

discussed. 

1.3.1.1 The isolated scatterer model 

For the current grain-noise scattering theories, models based on the single-scattering assumption 

is privileged. Gubernatis et al. provided the solution to the scattering of ultrasonic waves from a 

bounded single flaw embedded in an infinite isotropic elastic medium (Gubernatis et al. 1977a). With 

the assumption that the observation point was far from the scatterer, the noise scattering coefficient for 

an arbitrarily shaped flaw with uniform elastic stiffness constants and uniform density was formulated. 
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Afterwards, the authors (Gubernatis et al. 1977b) simplified the scattered field far from the scatterer 

using the Born approximation, with which the perturbed displacement and strain fields were replaced 

by the incident plane wave fields. It was concluded that the Born approximation was valid on the 

condition that the wavelength was an order of magnitude larger than the scatterer. 

Extended theoretical investigation with single-scattering assumption and the Born approximation 

was conducted for the ultrasonic backscattering in duplex microstructures composed of random-

oriented macrograins containing colonies with crystallographically related orientations (Han et al. 

1997). Considering two main differences between a duplex microstructure and a single-phase 

microstructure, i.e., the differences in two-point autocorrelation function of elastic tensors and in 

spatial correlation function, general formulas of the backscattering coefficient were developed based 

on the isolated scatterer model. It was then applied to the specific case of titanium alloys. It was found 

that the macrograins, which was considered as a homogeneous medium defined by the Voigt average 

of elastic properties, dominate the backscattered noise for sufficiently small colonies. However, when 

the colony size was comparable to the wavelength, colonies made a significant contribution to the 

backscattering level. 

1.3.1.2 The reciprocity theorem 

The reciprocity theorem dates back to the nineteenth century and is used to demonstrate the 

interchangeability of the source and the receiver in the electromagnetic wave and elastic wave 

transmission problems. The application of the reciprocity theorem to the quantitative evaluation of the 

elastic wave scattering coefficient originated from the research work of Auld (Auld 1979). He 

calculated the Rayleigh wave scattering from a surface-breaking crack in an isotropic medium based 

on the Born and quasi-static approximations. Then Kino adapted the scattering matrix used much in 

the electromagnetic theory to derive the scattering formulas for scattering of acoustic waves from 

flaws (Kino 1978). Amplitude of the scattered wave field was expressed both in terms of perturbations 

and in terms of integration over the whole flaw volume or over the boundary surface of the flaw. His 

contributions to the application of the reciprocity theorem to ultrasonic scattering in polycrystalline 

materials are fundamental. 

Application of the reciprocity theorem to cracks and to bulk flaws was further demonstrated 

(Kino et al. 1992). Bulk flaw volume and stress intensity factor of the crack were measured based on 

the reciprocity theorem and results were in good agreement with the experimental measurements. 

Afterwards Rose gave explicit formulas for the calculation of the backscattering coefficient with the 

Born approximation in single-phase and untextured polycrystalline materials with cubic symmetry 

based on the reciprocity theorem (Rose 1992). Influence of grain elongation on ultrasonic 

backscattering effectiveness was also investigated based on the reciprocity theorem with the single-

scattering approximation (Ahmed et al. 1995). 
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1.3.1.3 Equivalence between the reciprocity theorem and the isolated scatterer model  

The equivalence between the isolated scatterer model and the reciprocity theorem for the 

computation of microstructural noise scattering coefficient was demonstrated by Rose (Rose 1992) 

and Margetan et al. (Margetan et al. 2005a).  They evaluated the parameters using the weak-scattering 

Born approximation and applying the unweighted Voigt average to define the effective elastic stiffness 

of the medium in the presence of scatterers. Based on the equivalence, the general expression for the 

backscattering coefficient in polycrystalline materials was presented. It was valid in the limit of weak-

scattering by individual crystallite since the Born approximation and the single-scattering assumption 

were made. Analytical formulas of the backscattering coefficient for untextured polycrystals with 

cubic or hexagonal symmetry were given. 

It is worth to remark that multiple-scattering effects are neglected in the isolated scatterer model 

based on which the polycrystals are modeled as a collection of individual scatters.  By contrast, some 

degree of multiple-scattering effects can be considered by the model based on the reciprocity theorem 

if the scattered field is evaluated using a more complicated approximation, such as the second-order 

Keller approximation (Karal et al. 1964, Stanke et al. 1984). Further investigations are therefore 

needed for the consideration of multiple-scattering effects.  

1.3.1.4 Limitations  

Since the Born approximation and the single-scattering assumption have been applied in the 

theoretical evaluation of both ultrasonic attenuation and backscattering, the identical limitations for the 

analytical investigation of ultrasonic backscattering to the ultrasonic attenuation have been found. In 

the absence of multiple-scattering consideration, the existing theories are restricted to weakly-

scattering materials and to frequency ranges below the geometric scattering region. Due to these 

limitations, the theoretical analysis for ultrasonic backscattering is confined to the early time portion 

of the grain-noise scattered signals such that the incident wave will not be significantly attenuated 

(Han et al. 1997).  

1.3.2 Experimental investigations 

As for the experimental investigation of microstructural noise scattering, most of efforts have 

been devoted to the study of backscattered microstructural noise because of the noticeably feasibility. 

A mathematical model based on the single-scattering assumption for the experimental evaluation of 

ultrasonic backscattering is firstly introduced, and its numerous applications to both simple and 

complex polycrystals are recalled. Evidence for the multiple-scattering effects found in the 

experimental measurement is presented, which proves the necessity of a more complete model 

including multiple scattering. Limitations of the experimental investigation of microstructural noise 

scattering are discussed finally. 
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1.3.2.1 Experimental quantification based on single scattering model  

Quantitative study of the time-series backscattered noise levels is essential to make predictions 

for microstructural features. A mathematical model for the experimental evaluation of backscattering 

coefficient in ultrasonic narrowband tone burst inspections is initiated by the work of Margetan and 

Thompson (Margetan et al. 1991, Margetan et al. 1993, Margetan et al. 1994). It was based on the 

previously presented isolated scatterer model, assuming that the backscattered noise signals observed 

at a given transducer position was an incoherent superposition of echoes from individual grains. The 

formulas expressed the absolute backscattered noise level observed in an ultrasonic inspection in terms 

of the parameters of the measurement system and a factor describing the contribution of 

polycrystalline microstructure to the backscattered noise. This factor was referred as Figure-of-Merit 

(FOM) and frequency-dependent, which was the square root of the backscattering coefficient derived 

in the article of Rose (Rose 1992). In addition, a version of the model applicable to a broadband 

ultrasonic signal was also derived, using the incoherent superposition assumption to obtain an 

expression for the root-mean-squared (rms) spectral components of the noise on a finite time interval. 

The model was applicable to weakly-scattering perfect polycrystalline materials without defects. 

Two distinct practical applications of this backscattered noise model were presented. Firstly, the 

time dependence of rms average of the backscattered noise echoes was analyzed to deduce the FOM 

(Margetan et al. 1994). Conversely, with the FOM determined first, the model was used to predict the 

absolute noise levels that would be observed in ultrasonic inspections (Margetan et al. 1995). The 

predictions reproduced the measured backscattered noise echoes with reasonable accuracy. 

Experimental investigations in relatively simple polycrystals were conducted using this 

backscattered noise model (Thompson et al. 2008). The model was firstly validated in the weakly 

anisotropic material, a fine-grained, single-phase, equiaxed and untextured copper sample. Excellent 

coherence between the measured noise FOM and the predicted FOM deduced independently from 

knowledge of the microstructure was observed, which demonstrated the accuracy of the mathematical 

model in weak-scattering limit. Given this validation, this backscattered noise model was then applied 

for determining the elastic constants of the single crystal in nickel-based superalloys with the grain 

size information obtained from optical observation. 

 Furthermore, a number of complex wave propagation phenomena were also observed in titanium 

alloys with elongated and duplex microstructure, such as a significant dependence of the noise level on 

the wave propagation direction (Margetan et al. 1995) and strong fluctuations in observed noise 

signals (Thompson et al. 2008). They were beyond the prediction of the classical theories. Additional 

analytical interpretation of these phenomena by simple 2D scalar models was presented in the same 

work and the authors believed that these complex phenomena were associated with grain-to-grain 

velocity variations. 
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1.3.2.2 Evidence of multiple scattering 

A series of experiments have been undertaken to search for the evidence for multiple scattering in 

the backscattered ultrasonic grain noise (Margetan et al. 2005b, Thompson et al. 2008): 

-) In pulse-echo measurements within nickel-base superalloys, the effect of multiple scattering 

presumably led to discrepancies between the experimental measurements and the analytical 

predictions of the time-dependent rms noise level at later times. Reinforce of this effect with grain size 

and the inspection frequency was observed.  

-) In pitch-catch inspections, the noise signals arising from scattering by grains beyond the beam 

overlap region provided a strong evidence for the existence of multiple scattering.  

Their investigations suggest that a more relevant approach including multiple scattering is 

required to correctly describe and quantify ultrasonic phenomena in real polycrystalline 

microstructures.  

1.3.2.3  Limitations  

The previously presented backscattered noise model for experimental measurements of 

backscattering coefficient developed by Margetan et al. is not applicable to the material with a 

complex microstructure or strong anisotropy because of the single scattering assumption. Significant 

modulations in amplitude and phase of an ultrasonic beam observed in the duplex titanium alloys with 

elongated grains provides an evidence for the argument above (Thompson et al. 2008). Besides, 

multiple-scattering mechanism is not included in the model. 

1.4 FE modeling of ultrasonic wave scattering  

Confronting the limitations and difficulties in the present theoretical studies, two approaches are 

the alternative ways to improve the understanding of the physical mechanism of elastic wave 

scattering: semi-analytical methods and numerical modeling. Analytical approximations are generally 

used for semi-analytical approaches, which allow deriving mathematical solutions (Lhémery et al. 

2000). By contrast, without analytical approximations, numerical modeling is an effective tool to 

predict ultrasonic signals by appropriate finite discretization analysis. A variety of numerical modeling 

methods have been used for simulating the wave propagation in heterogeneous media. On the one 

hand we can cite the finite difference (FD) method (Alford et al. 1974), the FD pesudospectral method 

(Fornberg 1988), the boundary element method (Liu et al. 2001), and the elastodynamic finite 

integration technique (EFIT) (a FD time domain scheme based on an integral formulation of the 

governing equations of elastodynamics (Fellinger et al. 1995, Schubert et al. 2001)). Each of them is 

applicable to wave propagation simulation in certain heterogeneous media, however, none is suitable 

to polycrystalline media.  
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On the other hand, the FE method capable of using any unstructured meshes allows a more 

accurate access to complex geometries and heterogeneities in a very simple way. Its variational 

framework also offers powerful enrichments to achieve high quality required by wave modeling 

(Komatitich et al. 1998, Tie et al. 2006). Recently, FE method has been adopted to the computation for 

elastic wave propagation in polycrystalline materials. In contrast to the analytical method, FE 

simulations allow to grasp the complex physical process of wave propagation in polycrystals, 

including the effects of multiple-scattering (Shahjahan et al. 2014, Van Pamel et al. 2015). It is 

applicable to quantify the scattering effectiveness from grain boundaries by modeling the perfect 

polycrystalline microstructure, free of the defects such as voids, cracks. Besides, progress in the 

Electron Backscatter Diffraction (EBSD) technique makes it possible to obtain complex realistic 

microstructures for numerical modeling. Its accuracy and versatility in modifying the microstructural 

model make the FE modeling a promising approach for further developments of nondestructive 

inspection. 

In this part, several FE codes and examples of their application to model ultrasonic scattering in 

polycrystals are presented. Their respective theoretical frameworks and results are summarized. 

Difficulties and prospects for the FE modeling of elastic wave scattering are discussed to end this part. 

1.4.1 FE codes and applications 

The commercial package ABAQUS is usually used to perform the FE simulations for elastic 

wave propagation in polycrystalline microstructures. Ghoshal et al. (2009) conducted FE modeling of 

ultrasonic wave scattering for equiaxed, untextured polycrystalline materials: weakly-scattering 

aluminum, a moderately-scattering fictitious material, and a strongly-scattering copper (Ghoshal et al.  

2009). Their research focused on the grain-scale description of the polycrystalline microstructure. 

Their FE modeling used Voronoi polycrystal model composed of convex polygons in two dimensions 

(Kumar et al. 1992). In the 3D case, they proposed a pseudo-3D model constructed through extruding 

a 2D Voronoi polycrystal by a depth comparable to the element size, which facilitated the use of a 3D 

crystallographic orientation. Normal grain size distribution was generated. Ultrasonic attenuation of 

the longitudinal wave was measured for a wide range of frequencies covering the Rayleigh-to-

stochastic transition and stochastic scattering regions. By comparison with the previously presented 

Weaver’s model, good agreement between the numerically evaluated attenuation and the theoretical 

model was observed in low frequency region for all the materials, which proved the capability of FE 

modeling to accurately simulate the ultrasonic scattering in polycrystalline materials. Besides, it was 

found that the numerically measured attenuation for strongly-scattering material in the high frequency 

region did not fit well with the theoretical prediction, which showed the limitation of the established 

theory.  
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However, FE modeling is time and memory consuming due to an exact representation of each 

crystallite leading to very small discretization size in both space and time domains. Several FE codes 

have emerged recently to satisfy various requirements, such as the efficiency of the calculation, the 

modeling of anisotropy media with arbitrary shaped defects, and the adaptive remeshing capability, etc. 

1.4.1.1  FE code using the graphical processing unit (GPU) 

To improve the calculation speed, an approach to perform explicit time domain FE simulations of 

elastodynamic problems using the GPU was developed (Huthwaite 2014). Using a new aligned mesh 

partitioner which aimed to arrange the subdivisions of the mesh in a more optimal manner, it was 

demonstrated to be more efficient than the commercial software ABAQUS. Afterwards, this FE code 

was applied to simulate the ultrasonic scattering of longitudinal waves in polycrystalline materials for 

both 2D and 3D cases (Van Pamel et al. 2015). The material was assumed to be a single-phase, 

untextured medium with equiaxed grains of cubic symmetry and a relatively strong anisotropy degree. 

Voronoi algorithms were used to numerically generate the 2D and 3D morphologies. Different from 

the pseudo-3D model of Ghoshal et al. (2009), convex polyhedrons in 3D spaces were constructed 

using 3D Voronoi tessellation, that were geometrically similar to a naturally occurring polycrystalline 

microstructure. Frequency dependence of ultrasonic attenuation coefficient and phase velocities were 

analyzed and further compared with the Stanke-Kino unified scattering theory. Good agreement 

between the numerically evaluated attenuation and the established theory was shown in the transition 

region from the Rayleigh to stochastic scattering region for both 2D and 3D models. However, it was 

found that 2D model reduced the scattering mechanism in the Rayleigh region because the Rayleigh 

scattering is a 3D phenomenon closely linked to the volume of grains.  

1.4.1.2  The ATHENA FE code 

The FE code called ATHENA was developed by Electricity of France (EDF) in collaboration 

with The French Institute for Research in Computer Science and Automation (INRIA) dedicated to 

simulating wave propagation in anisotropic and heterogeneous media with defects of arbitrary shape 

and orientation (Chassignole et al. 2009, Dupond et al. 2011). It was based on a new family of mixed 

FE method, constructing the formulation expressed in terms of velocity and stress fields and not the 

traditional displacement field (Bécache et al. 2000, Bécache et al. 2002, Chassignole et al. 2009). It 

was implemented by a quasi-explicit time discretization scheme through mass lumping. The fictitious 

domain method was used, extending the calculation zone to a domain of simple geometry that ignores 

the defect. It made the mesh of the defect independent of the structured mesh of the calculation zone, 

thus allowing the compatibility of the structured mesh computation rapidity with the capability of 

modeling the arbitrary shaped defects. 

 The 2D version of the ATHENA code was first applied to model the ultrasonic wave propagation 

in austenitic stainless steel welds (Chassignole et al. 2009, Chassignole et al. 2010). The motivation of 
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FE modeling was to explain and predict quantitatively the complex features of wave propagation in 

welds with strong anisotropy varying continuously from one area to another. In the studied case, the 

inspection plane was a plane of symmetry of the orthotropic material, which made the 2D 

simplification justified. The early version of the FE code ATHENA 2D did not take into account grain 

scattering, and thereby underestimated the ultrasonic echo amplitude losses (Chassignole et al. 2010). 

Afterwards, a model considering the scattering-induced attenuation was developed and was further 

validated through comparison with experimental configurations with austenitic stainless steel welds 

(Chassignole et al. 2009). The ability of this code to reproduce multiple wave scattering features in a 

coarse-grain microstructure was evaluated (Shahjahan et al. 2014). The coherent backscattering 

intensity was analyzed, which represented the interference between scattering waves following 

different paths.  

Because of the advance in computing processor speed and memory, the ATHENA 3D FE code 

was developed (Rose et al. 2014). Based on the fictitious domain method, the calculation domain was 

described using a regular 3D mesh, while the defect of complex geometry was discretized using a 

separate 2D mesh. The capability of ATHENA 3D to reproduce the ultrasonic wave propagation and 

the interaction between the wave and the defect was demonstrated using several test configurations in 

isotropic and homogeneous media. Further validation tests and comparisons with experimental data 

for heterogeneous and anisotropic media are in progress (Rose et al. 2014, Shahjahan et al. 2014). 

1.4.1.3  FE code based on adaptive time discontinuous Galerkin method 

An in-house FE code named OOFE dedicated to the simulation of elastic wave propagation was 

developed based on an adaptive remeshing method (Tie et al. 2006, Tie et al. 2010). It was defined 

within the framework of the space-time discontinuous Galerkin method, considering the whole space-

time domain by subdividing it into space-time slabs (Hughes et al. 1988, Li et al. 1998, Tie et al. 2006). 

Compared with the classical Newmark scheme, it increased the computational accuracy and was 

particularly suitable for dealing with adaptive time-varying meshes, because the discontinuities of the 

unknown fields were directly involved and treated in the weak formulation. The unstructured mesh 

improved the discretization of complex geometry. Nevertheless, the method leading to an implicit 

unconditionally stable solver is more time and memory consuming than explicit solvers. 

Furthermore, the OOFE code was applied to the simulation of elastic wave propagation in plate 

and shells under moving loads were presented and the powerful capability of the adaptive remeshing 

method to capture the shock wave fronts was demonstrated (Tie et al. 2003). Afterwards, this code 

was used to provide the quantitative analyses and predictions for the elastic shock waves in hexagonal 

honeycomb sandwich panels for the application to space launcher (Grede et al. 2006, Tie et al. 2005). 

The application of such dynamic solver to FE modeling of the elastic wave propagation in 

crystalline materials was researched (Thebault 2009, Tie et al. 2010). Significant effects of 
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crystallographic orientations on the ultrasonic attenuation in the single crystal were evaluated 

quantitatively. Numerical investigations on ultrasonic wave propagation in the bicrystal showed that 

the misorientations between crystals influence significantly the wave reflection and transmission on 

the grain boundary. Preliminary research on grain size effects on ultrasonic attenuation in 

polycrystalline materials comprising single-size, hexagonal grains was carried out. 

1.4.2 Limitations and perspectives 

Despite the successful application of FE modeling to the elastic wave scattering in polycrystalline 

materials, the calculation in the geometric scattering region is restricted by the induced computational 

cost, as a result of numerically discretizing polycrystals with meshes whose size is quite small 

compared to the wavelength. 

Most of recent study for FE modeling of elastic wave scattering uses the 2D polycrystalline 

model which leads to several simplifications (Van Pamel et al. 2015). It correctly represents neither 

the grain size distribution of a 3D material nor 3D propagation mechanisms quite different from those 

in 2D cases. Furthermore, in 2D and 3D cases, wave propagation are very different. In addition, the 

Rayleigh scattering phenomenon is not fully reproduced because it is proportional to the grain volume. 

Thus, the fourth power law dependence of the ultrasonic attenuation on frequency has been reduced. 

Further progress in the 3D simulations for elastic wave propagation is urgently needed.  

Quantitative evaluation of microstructural noise scattering coefficient considering the full effects 

of multiple-scattering by using the FE modeling is of interest. Compared with the theoretical approach, 

the potential ability of FE modeling to reproduce complex real polycrystalline microstructures in a 

more flexible manner is attractive. 

1.5 Conclusions 

This chapter addresses the recent investigations of elastic wave scattering in polycrystalline 

materials for the achievements of the NDE, referring to some classical theories, experimental 

advancements and FE numerical modeling developments.  

The classical theories for evaluation of ultrasonic attenuation and backscattering have been 

recalled, such as the Stanke-Kino unified model and the Weaver’s model for the quantification of the 

ultrasonic attenuation, the isolated scatterer model and the application of the reciprocity theorem to the 

measurement of ultrasonic noise scattering. It is indicated that the theoretical development has been 

held back by difficulties in finding a mathematical description and modeling of the complex 

polycrystalline microstructure and of the sophisticated physical mechanisms including multiple 

scattering. With regard to the experimental investigation, the validation of the classical theories for 

wave scattering in simple polycrystals has been presented, and a number of unresolved physical issues 

of wave scattering in complex polycrystals have been discussed. Because of its accuracy and 
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flexibility, the FE modeling is considered as a promising tool to further improve the inspections of 

NDE. Several FE codes developed to meet various modeling and calculation needs are presented, and 

the current progress in the quantification of microstructural features using elastic wave scattering 

characteristics based on these codes is discussed. 
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Chapter 2  

Theoretical and numerical evaluations of the ultrasonic 
wave scattering in polycrystals 

In this chapter, theoretical and numerical evaluations of ultrasonic wave scattering in polycrystals 

are considered. Using the Born approximation and the single scattering assumption, analytical 

formulas of ultrasonic attenuation and backscattered noises are presented for single-phase, untextured 

polycrystals composed of equiaxed grains with cubic symmetry and unimodal size distribution. On the 

other hand numerical evaluation approaches without any restrictive assumption are proposed.  

Concerning the ultrasonic attenuation, general formulas for ultrasonic attenuation coefficient α  

in polycrystalline materials based on the Stanke-Kino unified model are presented. 3D analytical 

formulas of the longitudinal wave attenuation in the single-phase, untextured polycrystalline 

microstructure composed of equiaxed grains with cubic symmetry are recalled. Two new contributions 

are made within the framework of the Stanke-Kino unified model: Firstly, explicit formulas for two 

components of the longitudinal wave attenuation, i.e. the longitudinal-to-longitudinal and the 

longitudinal-to-shear scattering-induced attenuation, are developed. They are based on the Born 

approximation and on an additional assumption stating that the polarization displacement vector of the 

quasi-longitudinal wave in a slightly inhomogeneous medium remains parallel to the wave 

propagation direction (Section 2.1.2). Secondly, 2D formulas for the attenuation coefficient in single-

phase and untextured polycrystals composed of equiaxed grains with cubic symmetry are developed 

and make possible comparisons between theoretical predictions and 2D numerical results (Section 

2.1.3).  

Concerning the grain-scattered noises, 3D analytical formulas for microstructural noise scattering 

coefficient η  are recalled by considering the equivalence between the amplitudes of scattered noise 

signals calculated by two different methods: the one based on the reciprocity theorem and the other 

based on far-field analysis of the isolated scatterer model. The key assumption is weak scattering so 

that the Born approximation can be applied. As an important contribution, theoretical measure of the 

microstructural noise scattering coefficient in the 2D space is investigated: Firstly, far-field amplitude 

of the scattered noise signals is developed based on the isolated scatterer model (Section 2.2.3.3). 

Second, a coefficient of proportionality depending on the spatial dimension is determined based on the 

equivalence of the reciprocity theorem and the isolated scatter model under the Born approximation 

and the single-scattering assumption (Section 2.2.4.1). Thirdly, 2D theoretical formulas for the noise 

backscattering coefficient in single-phase and untextured polycrystals with equiaxed grains are 

developed (Section 2.2.4.3). As one of the most important results of the present work, a numerical 

evaluation approach and the corresponding expressions of the ultrasonic noise scattering coefficient 
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using FE modeling in both 2D and 3D cases are proposed within the framework of the reciprocity 

theorem (Section 2.2.4.2). 
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2.1 Theoretical evaluation of ultrasonic attenuation by the Keller perturbation 
series 

For theoretical evaluation of ultrasonic attenuation, two kinds of approximations are made. The 

first one is the second-order Keller approximation (Karal et al. 1964, Stanke et al. 1984). It applies the 

perturbation theory to express the wave field in each anisotropic grain accurately up to the second 

order of the inhomogeneity degree ξ  of the medium. Then the average field of the whole medium is 

formulated accurately up to the second order of ξ . The second one is the Born aproximation, i.e. the 

actual field in each grain is replaced by the unperturbed field in the equivalent homogeneous medium. 

Both approximations are expected to be relevant under the condition of weak scattering, i.e. ξ << 1. 

In this thesis, with regard to the material heterogeneity, the following hypotheses are postulated 

to obtain the general formulas for both attnuation and backscattering coefficients: 

1) Concerning the degree of anisotropy, polycrystals are assumed to be weakly anisotropic, 

which means that deviations of the elastic constants from their average properties is much 

smaller than the latters. 

2) Concerning the crystallographic texture, polycrystals are assumed to be single-phase without 

density variation and the crystallographic orientations of grains are randomly distributed. 

3) Concerning the morphologic texture, the grains are approximately equiaxed with a Poisson 

grain size distribution and have a cubic symmetry. 
For convenience, we name the above hypothesis as “assumptions on the material heterogeneity”. 

These assumptions ensure the validaty of the following conditions: 

4) The media are macroscopically homogeneous, i.e. the average equivalent medium is 

homogeneous.  

5) The elastic constant variation and the characteristic function of each grain vary 

independently.  

6) The grain-to-grain deviation in the elastic constants varies independently.  
These conditions allow the simplification for the average of the two-point autocorrelation function of 

elastic tensors, which is thereby approximated by the elastic constants of single crystallite and the 

spatial autocorrelation function.  

2.1.1 Formulas for ultrasonic attenuation in the general case 

Considering an elastic medium occupying a region Ω  bounded by a surface ∂Ω  and defined by a 

position-dependent elastic stiffness tensor C(x)  and a position-independent density field ρ . The 

spatial dimension of Ω  is Ndim , Ndim = 3 in the 3D case while Ndim = 2 in the 2D case. The time 

harmonic elastic wave equation without any source term inside Ω  can be written as: 
 Div xσ (x) + ρω 2u(x) = 0  (2.1) 
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where u(x)  denotes the Fourier transform of the time-varying displacement field u(x ,t)  in frequency 

domain, Div x  denotes the usual divergence operator of a second order tensor with respect to the 

position x, ω  denotes the angular frequency, σ (x)  is the stress tensor and defined by: 

 σ (x) = C(x) : ε (x)  (2.2) 

where ε (x) =1 2(∇ xu(x) +∇ x
Tu(x))  is the strain tensor. For ease of notation, we keep using σ (x), ε (x)  to 

denote the Fourier transform of σ (x, t), ε (x, t)  in frequency domain. Herein, tensors and vectors are 

denoted using bold letters.  

By defining a position-dependent linear operator L(x) , (2.1) can be put into the following generic 

form: 

 L(x) u(x) = 0  (2.3) 

This operator is denoted by L0  in the equivalent homogeneous medium of the studied heterogeneous 

medium. Under the assumptions on the material heterogeity, L0  is independent of x , invertible and 

differ slightly from L(x) . Then it is assumed that L(x)  can be developed from L0  with respect to the 

inhomogeneity degree ξ  (Karal et al. 1964): 

 L(x) = L0 −ξL1(x) −ξ 2L2 (x) −ο(ξ 3)  (2.4) 

Here L1(x)  and L2 (x)  are perturbing operators characterizing inhomogeneity effects.  

The objective is to find the solution of the average displacement field 〈u(x)〉  with 〈⋅〉  denoting an 

average over ensembles. Taking the second-order Keller approximation (see Appendix A) and 

omitting the ο(ξ 3)  term, an explicit equation for 〈u(x)〉  accurate to ξ 2  is written as follows (Karal et 

al. 1964, Stanke et al. 1984):  

 L0 −ξ 〈L1(x)〉 −ξ 2 〈L1(x)(L0 )−1L1(x)〉 − 〈L1(x)〉(L0 )−1〈L1(x)〉 + 〈L2 (x)〉( )( )〈u(x)〉 = 0  (2.5) 

In the present work the only perturbation is the deviations of the local elastic tensors from the 

equivalent homogeneous medium: δC(x) = C(x) −C 0 , with C 0
 denotes as the elastic stiffness tensor of 

the equivalent homogeneous material. Therefore the operators L0 , L1(x)  and L2 (x)  are defined as: 

 

L0u(x) = Div x C 0 : ε u(x)( )( )+ ρ0ω 2u(x)

ξL1(x)u(x) = −Div x δC(x) : ε u(x)( )( )
ξ nLn (x)u(x) = 0, n >1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (2.6) 

By the substitution of (2.6) into (2.5), it is found that the average displacement solution 〈u(x)〉  
satisfies the following equation: 
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0 = ρ0ω 2 〈u(x)〉 +Div x C 0: ε 〈u(x)〉( )( )+Div x 〈δC(x)〉 : ε 〈u(x)〉( )( )
− Div x δC(x) : ∇ xG

T (x' ; x)∫ :Div x' δC(x' ) : ε 〈u(x' )〉( )( )dV '( )
+Div x 〈δC(x)〉 : ∇ xG

T (x' ; x)∫ :Div x' 〈δC(x' )〉 : ε 〈u(x' )〉( )( )dV '( )
 (2.7) 

where the kernel of the operator (L0 )−1  appearing in (2.5) is expressed as an integral in terms of the 

Green’s function tensor G(x' ; x) . We recall that G(x' ; x)  in an infinite homogeneous region can be 

written as follows: 

 G(x' ; x) = em⊗ gm(x' ; x)
m=1,!,Ndim
∑   (2.8) 

where (em )m=1,!,Ndim  is the global Cartesian basis, ⊗  denotes the tensor product and gm(x' ; x)  is the 

solution of the following wave problem in the equivalent homogeneous medium with a Dirac delta 

source term applied at point x'  in the direction em:  

 Div x C 0 : ε (gm(x' ; x))( )+ ρ0ω 2gm(x' ; x) +δ (x − x' )em = 0  (2.9) 

The expression (2.7) for the average displacement field is valid for all frequencies based on the 

fundamental assumption that ξ <<1 . It is accurate to the second order of ξ , and 〈u(x)〉  is a second 

order approximation to u(x) . The terms on the right-hand side of (2.7) can be easy to interpret. The 

first and second terms give the zeroth-order approximation u0  of 〈u(x)〉 , which is the solution of the 

following wave equation in the equivalent homogeneous medium: 

 Div x (C 0: ε (u0 )) + ρ0ω 2u0 = 0  (2.10) 

The third term is involved with the first-order perturbation of the actual field due to the scattering. The 

last two terms are associated with the second-order approximation, accounting for some degree of 

multiple-scattering since the interactions between two arbitrary points are considered and the 

propagation constant is solved by the mean plane wave which is itself attenuated by the scattering 

(Stanke et al. 1984). 
It is assumed that the deviation of elastic tensor δC(x)  in each grain is constant and is denoted as

δC I
 for the Ith grain g I , and γ I

 denotes its characteristic function, defined to be one inside g I  and 

zero elsewhere. It is obvious that we have δC(x) =Σ IδC Iγ I (x) . One-point average 〈δC 〉  is affected 

only by the crystallographic texture of the whole medium and is equal to zero only if the medium is 

untextured. Due to single-phase assumption, it is obvious that 〈δC I 〉 = 〈δC I 〉Θ  with Θ  standing for the 

average over all crystallographic orientations. 〈δC I 〉Θ  is grain independent and will be denoted in the 

following as 〈δC g 〉Θ . Otherwise, under the assumption that the elastic constant variation and the 

characteristic function vary independently, the average two-point correlation function of elastic 

stiffness tensors 〈δC(x)⊗δC(x' )〉  can be developed in the following way: 

 〈δC(x)⊗δC(x' )〉 = 〈δC I ⊗δC J 〉ΘJ∑I∑ 〈γ I (x)γ J (x' )〉  (2.11) 
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To further simplify (2.11), it is assumed that 〈δC I ⊗δC J 〉Θ = 0  when I ≠ J  based on the hypothesis 

that the grain-to-grain deviation in the elastic constants varies independently. On the other hand, we 

recall that the spatial correlation function of two points x  and x'  describing the possibility that they 

are in the same grain g I , where r = x − x' , is denoted as: 

 W (r) = 〈γ I (x)γ I (x' )〉
I∑  (2.12) 

In other words, 1−W (r)  quantifies the possibility that two points x  and x'  are in two different grains 

I and J. Due to the single phase assumption, it is obvious that 〈δC I ⊗δC J 〉Θ = 〈δC g ⊗δC g 〉Θ . By 

applying all above presented hypotheses,  (2.11) can be written as: 

 〈δC(x)⊗δC(x' )〉 =W (r)〈δC g ⊗δC g 〉Θ + 1−W (r)( )〈δC g 〉Θ ⊗ 〈δC g 〉Θ  (2.13) 

Finally (2.7) is rewritten as follows: 

 
0 = ρ0ω 2 〈u(x)〉 +Div x C 0: ε 〈u(x)〉( )( )+Div x 〈δC g 〉Θ : ε 〈u(x)〉( )( )
− 〈δC g ⊗δC g 〉Θ − 〈δC g 〉Θ ⊗ 〈δC g 〉Θ( ) :Q(x)

 (2.14) 

In the last term on the right-hand side of (2.14), “ : ” denotes the contraction operator between an 8th-

order tensor and a 7th-order tensor and is defined by (A : B)i = Aijklm' n' p' q' Bjklm' n' p' q' using Einstein’s 

summation convention, and Q  is a 7th-order tensor, expressed in the index notation as follows:  

 Qjklm' n' p' q' (x) = Gkm',lT (x' ; x)∫ W (x − x' )ε p' q'( ),n' dV '( )
, j

 (2.15) 

where the comma notation is adopted for differentiation.  

To solve the problem (2.14), It is assumed that the average field of the heterogeneous medium 

has the form of a plane wave, expressed as follows: 

 〈u(x)〉 =Uexp(ikk̂ ⋅ x)  (2.16) 

where k̂  is a unit vector defining the propagation direction, U  specifies the polarization vector of the 

displacement field. By substitution of (2.16) to (2.14), it is found that the propagation constant k  of 

the mean wave solution can be obtained by solving the following eigenvalue problem of the acoustic 

tensor Γ : 

 Γ − ρ0ω 2 k 2 ΙNdim( ) ⋅U = 0  (2.17) 

Here, ΙNdim  is Ndim × Ndim  the identity matrix and Γ  is a second-order symmetric tensor, defined by: 

 Γ ⋅a = C per : (k̂⊗s a)( ) ⋅ k̂  (2.18) 

where a  is an arbitrary vector, ⊗S  denotes the symmetric tensor product defined by 

a⊗S b =1 2(a⊗ b + b⊗ a)  and C per
 is written as: 

 C per = C 0 + 〈δC g 〉Θ + 〈δC g ⊗δC g 〉Θ − 〈δC g 〉Θ ⊗ 〈δC g 〉Θ( ) : P  (2.19) 
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with P  a 4th-order tensor: 

 Pm' n' p' q' = dV
Ω∫ Gp'm'

T (x' ; x) W (r)exp(ikk̂ ⋅ r)( ),q' n'  (2.20) 

In the particular case of the equivalent homogeneous medium, there is no scattering-induced 

attenuation due to the absence of elastic tensor perturbation. The acoustic tensor Γ0  is expressed by 

the constant elasticity tensor C 0 : 

 Γ0 ⋅a = C 0 : (k̂0 ⊗s a)( ) ⋅ k̂0  (2.21) 

Γ0  has three distinct real eigenvalues, corresponding to the propagation constants of one longitudinal 

wave,  k0L =ω v0L , and two shear waves, k0S =ω v0S  in the unperturbed medium. Accordingly, the 

phase velocity for the longitudinal wave and the shear wave are given respectively as 

v0L = (λ 0 + 2µ0 ) ρ  and v0S = µ0 ρ , with λ 0  and µ0  as the Lamé parameters. The subscripts “L, S ” 

denote respectively the longitudinal and the shear wave. On the other hand, for the studied 

heterogeneous medium, the wave scattering due to elastic tensor perturbations takes responsibility for 

amplitude attenuation and variation of wave velocity, so the wave number k is searched under the form 

k =ω v + iα . Indeed the difference between the real part of k and k0  quantifies the phase velocity 

deviation from the unperturbed medium, and the non-negative attenuation is determined by the 

imaginary part of k. The influence of the preferred crystallographic orientation to the scattering are 

introduced to the first order perturbation term of (2.19), 〈δC g 〉Θ . Here, the unweighted Voigt average 

of the elastic tensor is chosen so that 〈δC g 〉Θ = 0  for an untextured medium. We remark that for the 

Voigt averaging, the assumption of uniform strain is required and the upper bounds of the elastic 

moduli are obtained. The third term of (2.19) introduces some degree of multiple-scattering effects, 

measuring the influence of grain size and shape by the two-point spatial correlation function W (r)  and 

evaluating the effect of the crystallographic orientation accurately to ξ 2  through the factor 

〈δC g ⊗δC g 〉Θ − 〈δC g 〉Θ ⊗ 〈δC g 〉Θ . Finally we note that, in the case where 〈δC g 〉Θ = 0 , (2.19) is 

simplified as: 

 C per = C 0 + 〈δC g ⊗δC g 〉Θ : P  (2.22) 

2.1.2 3D formulas for ultrasonic attenuation in cubic polycrystalline media 

The particular case satisfying the previously defined “assumptions on the material heterogeneity” 

is frequently studied in the NDE experimental research, i.e. the single-phase and untextured 

polycrystals with equiaxed grains of cubic symmetry. Analytical formulas of the ultrasonic attenuation 

coefficient in such polycrystalline media are to be obtained in the following, which are useful for the 

validation of our numerical evaluation procedure.  

Under the hypothesis of equiaxed grains, the spatial correlation function W (x − x' )  of two points 

x  and x'  is simplified to a large extent and depends only on the distance r = x − x'  between these 
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two points, thus we can relate the function W (r) , describing a 3D characteristics, to a one-dimensional 

function W (r) . In the related literature it is often approximated by an exponential function, defined as 

(Stanke et al. 1984):  

 W (r) = exp(−2r d )  (2.23) 

The assumption of grains with a cubic symmetry makes possible to evaluate analytically the averages 
〈δC g ⊗δC g 〉Θ .  

Assuming that the spatial correlation function W (r)  has an exponential form, as given in (2.23) 

and evaluating the derivatives and integrations in (2.20) analytically, an equation for normalized 

frequency of the longitudinal wave, xL = kLd , without using the Born approximation is obtained 

(Stanke et al. 1984):  

 

(xL )2 − (x0L )2

= (ξL )
2

4
(xL )2

(x0L )2
arctan xL

2+ ix0L
⎛
⎝⎜

⎞
⎠⎟
xL +

1
xL
12+15(x0L )2( )+ 1

(xL )3
48+ 72(x0L )2 +15(x0L )4( )⎛

⎝⎜
⎧
⎨
⎪

⎩⎪

+ 1
(xL )5

64+ 48(x0L )2 +12(x0L )4 + (x0L )6( )⎞⎠⎟ − arctan
xL

2+ ix0S
⎛
⎝⎜

⎞
⎠⎟
xL +

1
xL
12 − 9(x0S )2( )⎛

⎝⎜

+ 1
(xL )3

48− 24(x0S )2 − 9(x0S )4( )+ 1
(xL )5

64+ 48(x0S )2 +12(x0S )4 + (x0S )6( )⎞⎠⎟

−
16(x0L )2 4+ 4ix0L + (xL )2( )
4+ 4ix0L + (xL )2 − (x0L )2

−
20(x0S )2 4+ 4ix0S + (xL )2( )
4+ 4ix0S + (xL )2 − (x0S )2

+ i(x0L − x0S )

+ 2
(xL )2

4i(x0L − x0S ) −8 2(x0L )2 + (x0S )2( )+ i3 23(x0L )
3 +13(x0S )3( )⎛

⎝⎜
⎞
⎠⎟

+ 1
(xL )4

16i(x0L − x0S ) −16 (x0L )2 − (x0S )2( )+8i (x0L )3 − (x0S )3( )− 2 (x0L )4 − (x0S )4( )+ i (x0L )5 − (x0S )5( )( )⎫⎬
⎭

(2.24) 

Obviously, (2.24) is an implicit equation and there is no exact analytical solution for the propagation 

constant k. Thus, the Born approximation is applied by setting (xL )
2 − (x0L )

2 ≈ 2x0L (xL − x0L )  on the left 

hand side and xL ≈ x0L  on the right hand side so that an explicit formulas for the attenuation coefficient 

can be derived.  

 (2.24) reveals that the relative inhomogeneity of the material ξ  has a dominant influence on the 

longitudinal wave attenuation level. For an incident wave propagating in an untextured polycrystal 

with cubic symmetry along the e2  direction, ξ  can be approximated for the longitudinal wave as 

follows: 

 (ξL )2 ≈
4
525

(ac )2

(C22220 )2
 (2.25) 

and for the shear wave: 

 (ξS )2 ≈
3
700

(ac )2

(C12120 )2
 (2.26) 
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ac denotes the invariant anisotropy factor for crystallites of cubic symmetry: 

 ac =C1111 −C1122 − 2C2323  (2.27) 

Moreover, the Rayleigh limit of the longitudinal wave, i.e. xL → 0 , is written as (Stanke et al. 1984):  

 α L
Rayleigh = 7

20
1+ 3
2
v0L
v0S

⎛
⎝⎜

⎞
⎠⎟

5⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
(ξL )2(k0L )4(d )3  (2.28) 

and the stochastic asymptote, i.e. xL → ξL , is given by (Stanke et al. 1984): 

 α L
stochastic = (ξL )2(k0L )2d  (2.29) 

It is concluded that the attenuation coefficient of the longitudinal wave is proportional to the nth power 
of frequency and ( n −1)th power of grain size, with n = 4 in the Rayleigh region and n = 2  in the 
stochastic region. The proportionality constant is determined by the inhomogeneity degree ξL  of the 

material. 

For a purely longitudinal incident wave propagating in a heterogeneous and anisotropic 

polycrystal, the quasi-longitudinal wave mode occurs. The particle motion is mainly longitudinal but 

has a small transverse component, i.e. the polarization vector U  of the quasi-longitudinal wave has a 

fairly slight component perpendicular to the wave propagation direction k̂ . It makes complicated to 

solve the eigenvalues of the acoustic tensor by (2.17). Nevertheless, for a slightly inhomogeneous 

medium, the transverse component of U is insignificant and thus can be negligible. This 

approximation is applied in the following analytical investigation of attenuation, making possible to 

gain the accessible formulas for two components of the longitudinal wave attenuation, i.e. the 

longitudinal-to-longitudinal and the longitudinal-to-shear wave scattering-induced attenuation. The 

validity of this approximation is to be evaluated by comparison with the result (2.24) by Stanke and 

Kino. Then, as another new contribution, analytical results for the attenuation coefficient and its 

longitudinal-to-longitudinal and longitudinal-to-shear components in the 2D case are plotted under this 

assumption. We remark that all the analytical results are plotted for a titanium alloy (Petry et al. 1991), 

whose properties are presented in Table 2.1.. Its inhomogeneity degree for the longitudinal wave is 

twice larger than the one of weakly-scattering material of aluminum (Stanke et al. 1984). 

Consider a purely longitudinal incident wave propagating along the e2  direction. Under the 

approximation that the polarization vector U  of the quasi-longitudinal wave is parallel to the wave 

propagation direction e2 , an equation for kL  is found based on (2.17), which is considerably easier to 

work with: 

 e2 ⋅ Γ ⋅e2 − ρ0ω 2 kL( )2 = 0  (2.30) 
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An implicit equation for the normalized frequency xL  is then deduced as: 

 (xL )2 = (x0L )2 +
(xL )2

C2222
0 〈δC22 p' q'g δCm' n' 22g 〉Θ dVGp' m'

T (x' ; x) W (r)exp(ikLr2 )( ),q' n'Ω∫{ }  (2.31) 

Here, the two-point averages of elastic constant for the longitudinal wave can be denoted as: 

 〈δC22 p' q'g δCm' n' 22g 〉Θ = 〈δC 2 〉 p' q' m' n'  (2.32) 

and the dominant component for crystals with a cubic symmetry are evaluated as (Stanke et al. 1984): 

 
〈δC 2 〉2222 =

16
525

(ac )2, 〈δC 2 〉2211 =
−8
525

(ac )2, 〈δC 2 〉2121 =
2

105
(ac )2, 

〈δC 2 〉3131 =
1

105
(ac )2, 〈δC 2 〉1111 =

3
175

(ac )2.
 (2.33) 

The others can be identified by using the inherent symmetry characteristics in the elastic tensors.  

The expression of Green’s function in an elastically isotropic and homogeneous medium for 3D 

free space is know as (Eringen et al. 1975): 

 G3D (x − x' ) = 1
4πρ0ω 2 ∇r ∇r

exp(ik0Sr)
r

− exp(ik0Lr)
r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ (k0S )2

exp(ik0Sr)
r

I3
⎛

⎝
⎜

⎞

⎠
⎟  (2.34) 

It is evident that the Green’s tensor depends only upon the vector r = x − x'  and is convenient to be 

decomposed into two tensors, noted as G L,3D  and G S ,3D , associated with the longitudinal wave and the 

shear wave respectively. After the evaluation of derivatives, these two tensors are written as: 

 G L,3D (r) = 1
4πρ0ω 2

exp(ik0Lr)
r3

3− 3ik0Lr − (k0L )2r2( ) r̂⊗ r̂ − 1− ik0Lr( )I3( )⎛
⎝⎜

⎞
⎠⎟

 (2.35) 

 G S ,3D (r) = −1
4πρ0ω 2

exp(ik0Sr)
r3

3− 3ik0Sr − (k0S )2r2( ) r̂⊗ r̂ − 1− ik0Sr − (k0S )2r2( )I3( )⎛
⎝⎜

⎞
⎠⎟

 (2.36) 

Here r̂  is the unit vector along the r  direction.  

Taking into account the decomposition above and applying the Born approximation in (2.31), the 

attenuation coefficient of the longitudinal wave is: 

 α L =α LL +α LS  (2.37) 

with 

 α LL = Im
k0L
2C22220 〈δC22 p' q'g δCm' n' 22g 〉Θ dVGp' m'

L,3D (r) W (r)exp(ik0Lr2 )( ),q' n'Ω∫
⎧
⎨
⎩

⎫
⎬
⎭

 (2.38) 

 α LS = Im
k0L
2C22220 〈δC22 p' q'g δCm' n' 22g 〉Θ dVGp' m'

S ,3D (r) W (r)exp(ik0Lr2 )( ),q' n'Ω∫
⎧
⎨
⎩

⎫
⎬
⎭

 (2.39) 

where “ Im ” specifies the imaginary part. The indices “ LL ” and “ LS ” denote the longitudinal-to-

longitudinal and the longitudinal-to-shear wave scattering respectively. The inhomogeneity of the 
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elastic media causes the conversion mode of the longitudinal wave to the shear wave, which induces a 

considerable part of the longitudinal wave attenuation.  

Equations (2.37)-(2.39) have been numerically solved using Matlab and Mathematica. The 

evolution of the longitudinal attenuation coefficients with respect to the frequency f ∈[0, 16]MHz  is 

shown in Fig. 2.1. for a titanium alloy sample with averaged grain size of 160µm and compared with 

the analytical solution (2.24) proposed by Stanke and obtained by using the Born approximation.  

It is shown that the approximated result by (2.37) is coherent with the unified solution of Stanke 

as shown in (2.24) with the application of the Born approximation. Only 0.4% difference is found at 

the maximum frequency with the assumption that the polarization vector U of the longitudinal wave in 

the studied heterogeneous medium is parallel to the wave propagation direction. Furthermore, only 2.7% 

contribution of longitudinal-to-longitudinal wave scattering to the total attenuation is observed, 

indicating that the longitudinal wave attenuation is caused primarily by the longitudinal-to-shear wave 

scattering in the considered frequency range. 

 

Properties 
Elastic Stiffness Constant Relative 

AnisotropyξL  

Relative 

AnisotropyξS  
ρ (kg/m3)  

C1111  (GPa) C1122 (GPa) C1212  (GPa) 

Heterogeneous 

polycrystalline titanium 
134.0 110.0 36.0 2.74×10!! 1.19×10!! 4428 

Reference homogeneous 

and isotropic material 
153.0 100.0 26.5 0 0 4428 

Table 2.1. Material Properties of the studied polycrystalline material 

 

Fig. 2.1. Analytical longitudinal wave attenuation coefficient as a function of frequency for a titanium 
alloy sample with an averaged grain size of 160µm  
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Fig. 2.2. exhibits the dependence of logarithmic attenuation per crystallite (log10(αd ))  on the  

logarithmic normalized frequency (log10(x0 )) . The curve is independent of the choice of grain size d .  

The components of attenuation due to the longitudinal-to-longitudinal scattering α LL and the 

longitudinal-to-shear scattering α LS , as well as the Rayleigh and stochastic asymptotes are also plotted 

in Fig. 2.2.. In the Rayleigh domain, a fourth power dependence of attenuation on the normalized 

frequency x0  ((2.28)) is indicated in the curve (log10(αd ) vs. log10(x0 ))  in the earlier frequency region 

where x0 ≤ 0.3 (log10(x0 ) ≤ −0.5) . It is found that the attenuation in the Rayleigh region is determined by 

the scattering into shear wave. This argument is in accordance with the phenomenon observed in Fig. 

2.1. that only 2.7% contribution of longitudinal-to-longitudinal wave scattering to the total attenuation 

is observed. On the other hand, a second power dependence of attenuation on the normalized 

frequency x0 in the stochastic asymptote ((2.29)), is exhibited in the frequency region where 
x0 ≥15.9 (log10(x0 ) ≥1.2) . It is also seen that the longitudinal-to-longitudinal wave scattering dominates 

the attenuation in the stochastic region. Thereafter, a smooth transition from a fourth to a second 

power dependence on the normalized frequency is observed in the Rayleigh-stochastic transition 

region. The physical explanation for the Rayleigh-to-stochastic transition region is the change of 

scattering mechanism transition, i.e., the longitudinal-to-shear wave scattering into the longitudinal-to- 

longitudinal wave scattering. This conclusion has a significant importance to the experimental 

measurement for the wave attenuation with the pure longitudinal incident wave. The velocity of the 

particle movement vertical to the wave propagation direction arises from the conversion mode and can 

be detected mainly in the Rayleigh region. 

Particular attention should be paid to the plateau of the longitudinal-to-shear scattering curve α LS , 

which is an indication of the stochastic-to-geometric transition for the shear wave. It is shown that the 

stochastic-to-geometric transition point occurs at the normalized frequency x0L ≈ 4.2 (log10(x0L ) ≈ 0.6) , 

thus at x0S ≈ 8.4 . It is identical to the prediction by Stanke and Kino, i.e. x0S =1 ξ S ≈ 8.4.   

As estimated by the unified theory of Stanke, the stochastic-to-geometric transition frequency for 

the longitudinal-to-longitudinal wave scattering-induced attenuation α LL  occurs at x0L =1 ξ L ≈ 36.5 . 

This plateau cannot be observed due to the application of the Born approximation, which is not a good 

approximation in the geometric region owing to the significant attenuation. Evidently, the stochastic-

to-geometric transition of the longitudinal wave occurs much later than that of shear wave. In terms of 

the longitudinal wave transition frequency for a given medium, it is about 4.3 times as large as that of 

the shear wave. 
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Fig. 2.2. Analytical result for logarithmic longitudinal wave attenuation per crystallite as a function of 
logarithmic normalized frequency in a polycrystalline titanium. α L  denotes the longitudinal wave 

attenuation; α LL , α LS  are respectively the longitudinal-to-longitudinal and the longitudinal-to-shear 
wave scattering-induced components; α L

Rayleigh , α L
Stochastic

 are respectively the Rayleigh and stochastic 
limits of the longitudinal wave attenuation.  

2.1.3 2D formulas for ultrasonic attenuation in cubic polycrystalline media 

Few analytical formulas have been developed in the related literature for ultrasonic attenuation in 

the 2D case. However many numerical simulations are still performed with 2D assumption, it is 

therefore interesting to investigate its effects. In this section, the analytical formulas for the 

longitudinal wave attenuation coefficient in the 2D space are developed, which are very useful for 

comparison with the numerical results presented in Chapter 4, as only 2D FE simulations have been 

conducted in the present work. 

The Green’s function in a 2D elastically isotropic and homogeneous medium is written as 

(Eringen et al. 1975): 

 G2D(x − x' ) = i
4ρ0ω 2 ∇r ∇r H0

(1) (k0Sr) − H0
(1) (k0Lr)( )( )+ (k0S )2H0

(1) (k0Sr)I2( )  (2.40) 

Here H0
(1) (.)  denotes the Hankel function of the first kind, which expresses the outward-propagating 

cylindrical wave solutions since it is assumed to be uniform along e3  direction for 2D problems. (2.40) 

can be decomposed into linear combinations of two independent tensors associated with the 

longitudinal wave and shear wave field: 

 
G L,2D(x − x' ) = i

4ρ0ω 2

(k0L )2

r
H1
(1) (k0Lr) −

(k0L )2

2
H0
(1) (k0Lr) − H2

(1) (k0Lr)( )⎛
⎝⎜

⎞
⎠⎟
r̂⊗ r̂

⎛

⎝
⎜

− k0L
r
H1
(1) (k0Lr)

⎛
⎝⎜

⎞
⎠⎟
I2
⎞
⎠⎟

 (2.41) 
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G S ,2D(x − x' ) = −i

4ρ0ω 2

k0S
r
H1
(1) (k0Sr) −

(k0S )2

2
H0
(1) (k0Sr) − H2

(1) (k0Sr)( )⎛
⎝⎜

⎞
⎠⎟
r̂⊗ r̂

⎛

⎝
⎜

− k0S
r
H1
(1) (k0Sr) − (k0S )2H0

(1) (k0Sr)
⎛
⎝⎜

⎞
⎠⎟
I2
⎞
⎠⎟

 (2.42) 

Referring to (2.37)-(2.39), the 2D integral formulas for the attenuation coefficient are numerically 

solved by Matlab. Result for the logarithm of attenuation per crystallite, (log10(αd )) , as a function of 

the logarithm of normalized frequency, (log10(x0 )) , in the 2D space are plotted in Fig. 2.3. and is 

compared with result in 3D case. The slopes of the curves for (log10(αd ))  vs. (log10(x0 ))  in both 2D 

and 3D cases are presented in Fig. 2.4.. 

Considering the longitudinal wave attenuation, it is obvious that the 2D model reduces the slope 

of curve at low frequencies. A cubic power dependence on the normlized frequency x0  of the 

normalized attenuation αd  (Fig. 2.4.) is found in the Rayleigh domain, rather than a fourth power. 

Since x0 = k0d , so the attenuation α  follows a second power denpendence on grain size d  in the 

Rayleigh domain of the 2D case. In fact, as claimed by (2.28), the Rayleigh scattering is linked closely 

to the scattering cross section and is proportional to the volume of one grain in the 3D model.  Since it 

is the area of the scatter that works for the scattering mechanism in the 2D model, the grain size 

dependence reduces to the second power. Further mathematical considerations for the Rayleigh limit 

in 2D model is not given since the function in (2.37)-(2.39) for the 2D model can not be analytically 

integrated. Whereas, a second power dependence on the normalized frequency x0  of the normalized 

attenuation αd  is obtained in the stochastic asymptote of the 2D model, which is identical with the 3D 

model. It is indicated that attenuaiton α  is proportional to grain size d  in the stochastic limit. 

Effectively, the stochastic scattering is a one-dimensional phenomenon and linked only to the effective 

averaged grain dimension in the wave propagation direction (Yang et al. 2011), shown in (2.29). 

Therefore, the 2D and 3D models are equivalent at higher frequencies for the same medium. 

Furthermore, the components of the longitudinal-to-longitudinal and the longitudinal-to-shear 

scattering-induced attenuation in the 2D model are also presented in Fig. 2.3.. The identical scattering 

mechanisms with the 3D model for both the Rayleigh and stochastic regions are found. However, the 

transition from the Rayleigh to stochastic region in the 2D case occurs slightly earlier than the 3D case. 

As described in Fig. 2.4., the slope of the curve (log10(αd ))  vs. (log10(x0 ))  in the 3D case is larger in 

the frequency region where x0 < 2  and afterwards becomes smaller than that of 2D models.  
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Fig. 2.3. Comparison of analytical longitudinal wave attenuation per crystallite versus normalized 
frequency between 2D and 3D models in a polycrystalline titanium. α L  denotes the longitudinal wave 

attenuation; α LL , α LS  are respectively the longitudinal-to-longitudinal and the longitudinal-to-shear 
wave scattering-induced components.  

 

Fig. 2.4. Comparison of the slope of the curves (log10(αd ))  vs. (log10(x0 ))  between 2D and 3D models. 

To exhibit grain size effects on attenuation, 3D and 2D analytical curves of longitudinal wave 

attenuation coefficient versus frequency f ∈[0,16]MHz  for the polycrystalline titanium with three 

different grain sizes of 80µm , 160µm  and 320µm  ( x0 = 2πfd v0 ∈[0,1.4], [0,0.28], [0,0.56]  respectively) 

are plotted (Fig. 2.5.). It is seen that attenuation increases with grain size in the low frequency region 

where f < 8MHz . Attenuation for the sample with a larger grain size intersects with the curve of a 

smaller grain size at a certain frequency due to the transition of scattering region. Comparison between 

3D and 2D results shows that longitudinal wave attenuation in the 2D case is slightly larger than that 

of 3D space in the Rayleigh region and smaller than that of 3D space in a higher frequency region for 

a given grain size.  
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 (a) (b)  

Fig. 2.5. Analytical results of the longitudinal wave attenuation coefficient for a polycrystalline 
titanium with different grain sizes in the 3D and 2D cases (a) α  vs.  f ; (b) master curves αd  vs. x0 .  

2.2 A unified framework for theoretical and numerical evaluations of grain-noise 
scattering coefficient 

In this section, a unified framework for theoretical and numerical evaluations of microstructural 

noise scattering coefficient is presented. First, formulas for microstructural noise scattering coefficient 

in the 3D space based on the reciprocity theorem and the isolated scatter model are reviewed. 2D 

general formulas are further developed as a new contribution. A coefficient of proportionality 

depending on the spatial dimension Ndim is determined based on the equivalence of the reciprocity 

theorem and isolated scatter model with the Born approximation and the single-scattering assumption. 

The 3D analytical formulas for the backscattering coefficient in single-phase, equiaxed and untextured 

polycrystalline microstructures are recalled and the corresponding 2D explicit analytical formulas are 

developed as a new result. Finally as one of the most important results of the present work, an original 

approach based on FE modeling for numerical evaluation of microstructural noise scattering 

coefficient within the unified framework of the reciprocity theorem is presented. 

2.2.1 Reciprocity gap due to the microstructural scattering 

Consider an elastic wave propagating in a slightly inhomogeneous polycrystalline medium as 

defined by the time harmonic equations (2.1). Based on the reciprocity theorem, the basic idea of 

evaluating the grain-noise scattering is to quantify the so-called “reciprocity gap”, which is derived by 

the comparison between the studied heterogeneous domain and the equivalent homogeneous domain 

in which the time harmonic equations are defined by (2.10) (shown in Fig. 2.6.). Then the following 

variational formulations are straightforward for both systems:  

 (σ , ε (u0 ))Ω − (ρ0ω 2u, u0 )Ω = (σ ⋅n, u0 )∂Ω  (2.43) 

 (σ 0 , ε (u))Ω − (ρ0ω 2u0 , u)Ω = (σ 0 ⋅n, u)∂Ω  (2.44) 
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where n is the outward unit normal to the boundary ∂Ω , (⋅,⋅)Ω  and (⋅,⋅)∂Ω  denote integrations 

respectively over the volume Ω  and the surface ∂Ω  of the appropriate dot product between two 

vectors or two tensors. Subtracting (2.44) from (2.43) leads to the following general equation of the 

reciprocity theorem for elastic waves in the presence of scatterers, such as flaws or grain boundaries: 

 (σ ⋅n, u0 )∂Ω − (σ 0 ⋅n, u)∂Ω = (δC : ε (u), ε (u0 ))Ω  (2.45) 

 (a)        (b)  

Fig. 2.6. Schematic diagram of the systems considered in the measurement of scattering in (a) a 
heterogeneous medium by comparison with (b) a homogeneous reference medium 

Both terms represent a reciprocity gap and can be used to measure the degree of perturbation due 

to the inhomogeneities in the studied medium. Furthermore the equation (2.45) points out that there 

are two ways to evaluate the reciprocity gap. The first one is to integrate over the whole volume of the 

studied domain by using a Green's function approach under the Born approximation assumption and 

gives rise to a theoretical estimation of the scattering. The second one is to calculate a surface 

integration involving only the mechanical quantities available on the boundary of the studied domain 

and therefore can be used for experimental measurements. 

2.2.2 Physical signification of the reciprocity theorem applied to microstructural scattering 
analysis 

In this section we reformulate, in the case of polycrystalline materials, the scattering formulas 

proposed by Kino (Kino 1978). Indeed it allows an interesting insight into how the reciprocity gap is 

precisely related to the amplitude of elastic wave noise signals scattered by the inhomogeneity of 

polycrystalline microstructure using the reciprocity theorem.  

For both heterogeneous and homogeneous reference systems, two transducers in contact with the 

boundary ∂Ω  are considered and the contact areas are respectively denoted as Σ1  and Σ2 .The 

transducer used as a transmitter can generate elastic waves in Ω  by applying prescribed displacements 

or surface loadings on its contact area, and the elastic wave fields within Ω  are assumed to be not 

perturbed by the transducers. On the remainder of the boundary, i.e. Σ = ∂Ω − (Σ1∪Σ2 ) , the free 

𝜌!,𝑪 

Ω 
𝒏 

Transducer1 

Transducer2 

Σ! 

Σ! 

Transducer1 

𝜌!,𝑪! 

Ω 

Transducer2 

Σ 

Σ! 

Σ! 
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boundary condition is assumed. At the surface of the transmitter Σm , the displacement and stress 

vector fields in time domain can be described as: 

 um+ (x, t) = Am+um+ (x)exp( − iωt)  (2.46) 

  σ m
+ (x, t) ⋅n = Am+σ m

+ (x) ⋅nexp( − iωt)  (2.47) 

where m =1, 2  represents a transducer, the superscript “ + ” represents the fields associated to the 

transmitter and Am+  is the amplitude of elastic waves excited by the transducer m . For a given angular 

frequency ω , the power rate at which energy is carried across Σm  is classically calculated as the time 

average within the corresponding period T = 2πω : 

 Pm(ω ) =
1
T

Re σ m
+ (x, t) ⋅n( ), Re !um+ (x, t)( )( )

Σm0

T

∫ dt  (2.48) 

where the dot above the displacement field indicates the derivative with respect to time. Then it can be 

shown that: 

 Pm(ω ) =
1
2
Am+Am+* Re σ m

+ (x) ⋅n( ), Re !um+ (x)( )( )
Σm

= −ω
2
Am+Am+*Im σ m

+ (x) ⋅n, um+* (x)( )
Σm

 (2.49) 

where the superscript “* ” indicates the complex conjugate.  

When um
+ (x)  and σ m

+ (x) ⋅n  are chosen, the unit power rate is obtained: 

 1
2

Re σ m
+ (x) ⋅n( ), Re !um+ (x)( )( )

Σm
= −ω

2
Im σ m

+ (x) ⋅n, um+* (x)( )
Σm

=1  (2.50) 

 Then (2.49) becomes: 

 Pm(ω ) = Am
+Am

+*  (2.51) 

Once the prescribed displacements of the surface loadings vanish, the transducers can also serve 

as a receiver recording to the elastic wave propagating in the opposite direction. If we assume that the 

received displacements and stress vectors have exactly the same form as (2.46) and (2.47), they can be 

written as follows:  

 um− (x, t) = Am−um− (x)exp( − iωt)  (2.52) 

 σ m
− (x, t) ⋅n = Am−σ m

− (x) ⋅nexp( − iωt)  (2.53) 

with 

 um− (x) = um+* (x)  (2.54) 

 σ m
− (x) ⋅n = −σ m

+* (x) ⋅n  (2.55) 

where the superscript “−” represents the receiver and the minus sign in the expression of σ m
− (x) ⋅n  is 

due to the fact that the wave vector of the received waves is in the opposite direction to the one of the 
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incident waves. Since the considered systems here are linear, the displacement and the stress vector 

fields on the contact area of each transducer can be summed up: 

 um(x) = Am+um+ (x) + Am−um− (x)  (2.56) 

 σ m(x) ⋅n = Am+σ m
+ (x) ⋅n− Am−σ m

− (x) ⋅n  (2.57) 

Then the scattering matrix [S]  that contains ratios of received wave amplitudes to incident wave 

amplitudes is defined as: 

 
A1

−

A2
−

⎛

⎝
⎜

⎞

⎠
⎟ =

S11 S12
S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
A1

+

A2
+

⎛

⎝
⎜

⎞

⎠
⎟  (2.58) 

[S]  is decomposed in two parts: S = S 0 +δS  where [S 0 ]  is the scattering matrix in the 

homogeneous reference medium. Considering the interchangeability of the transmitter and the receiver, 

the reciprocity relation simply reads as S210 = S120 .  Herein only the microstructural noise scattering 

matrix [δS]  is of interest. Each term of [δS]  can be determined by different experimental settings. 

As an example a typical situation is considered: Transducer 1 used as transmitter and Transducer 

2 used as receiver for the heterogeneous medium for which the solutions are denoted as (u1→2 , σ 1→2 ) ; 

Transducer 1 used as receiver and Transducer 2 used as transmitter for the reference medium for 

which the solutions are denoted as (u0;2→1, σ 0;2→1) . In this situation the amplitudes of the elastic wave 

signals received or emitted by the transducers in both systems can be written as: 

 A1
+ = finite, A1

− = 0; A2
+ = 0, A2

− = (S21
0 +δS21)A1+  (2.59) 

 A1
+( )0

= 0, A1
−( )0

= S21
0 A2

+( )0
; A2

+( )0
= finite, A2

−( )0
= 0  (2.60) 

Taking into account (2.59) and (2.60) and substituting the displacement and stress vector fields 

defined respectively in (2.56) and (2.57) into the left-hand side of the reciprocity relation in (2.46), the 

following expression can be easily obtained: 

 σ 1→2 ⋅n, u0;2→1( )
∂Ω

− σ 0;2→1 ⋅n, u1→2( )
∂Ω

= −4
iω

δS21(ω )P0 (ω )  (2.61) 

with P0 (ω )  the incident power rate emitted by the transmitter: 

 P0 (ω ) = −ω
2
A1

+ A2
+( )0

Im σ1
+ (x) ⋅n, u1

+* (x)( )
Σ1

= A1
+ A2

+( )0  (2.62) 

Therefore, the amplitude of the microstructural noise signals scattered by the polycrystalline 

medium and received by the transducer 2, when an incident signal is emitted from the transducer 1, 

can be calculated as:  

 δS21(ω ) =
−iω
4P0 (ω )

δC : ε (u1→2 ), ε (u0;2→1)( )
Ω

 (2.63) 
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 δS21(ω ) =
−iω
4P0 (ω )

σ 1→2 ⋅n, u0;2→1( )
∂Ω

− σ 0;2→1 ⋅n, u1→2( )
∂Ω( )  (2.64) 

Equations (2.63) and (2.64) express two equivalent ways to evaluate the microstructural noise 

scattering amplitude δS21  using respectively a volume and a surface integration. In the following, the 

equation (2.63) is used to obtain analytical formulas of the scattering coefficient based on an isolated 

scatterer model and using the Green's function approach, while the equation (2.64) allows the 

definition of our numerical procedure to measure the scattering coefficient using recorded mechanical 

data at the boundary of the studied domain. Otherwise it is interesting to indicate that the scattered 

signal amplitude in an arbitrary spatial direction may be obtained by placing the two transducers 1 and 

2 along this direction. For the particular case of the backscattering coefficient, the same formulas for 

the backscattering amplitudeδS11 are obtained by using two coincident transducers. 

2.2.3 Theoretical formulas of scattered amplitudes and differential cross sections based on 
the isolated scatterer model 

The theoretical analysis of scattered amplitudes and differential cross sections in 3D case 

proposed by Gubernatis et al. (Gubernatis et al. 1977) is recalled. As a new contribution, the 

development of the theoretical formulas in 2D case is given. The obtained 2D formulas are important 

for the comparison between the theoretical estimation and the 2D numerical simulations.  

The analysis is based on the isolated scatterer model as the differential cross section is calculated 

by considering a bounded region of scatterers ΩSC  embedded in an infinite homogeneous regionR and 

by using the far-field values of the scattered displacement and stress fields.  

2.2.3.1  Far-field scattered displacement solution 

In a very classical way, the displacement field in the whole region R is decomposed into two 

parts: the incident wave field uinc  and the scattered wave field uscat:  

 u(x) = uinc (x) +uscat (x)  (2.65) 

then for all x ∈R , the time harmonic elastic wave equation (2.1) can be transformed in the following 

way by considering the perturbation of inhomogeneities as a source term  f :  

 Div x C 0 : ε (u)( )+ ρ0ω 2u + f = 0  (2.66) 

with 

 f = Div x γδC : ε (u)( )  (2.67) 

The characteristic function γ (x) of the flaw region ΩSC  is equal to one in ΩSC  and to zero otherwise.  

According to the well-known Green's function approach, the following formula of u(x)  is 

straightforward for all x ∈R:  
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 u(x) = uinc (x) + GT (x' ; x
R∫ ) ⋅ f (x' )dx'  (2.68) 

Substituting (2.67) into (2.68) and taking into account the fact G(x' ; x)→G(0; x − x' )  when x →∞ , 

the far-field solution of the scattered displacement uscat (x)  is finally obtained: 

 uscat (x) = ε (u(x' )) :δC : ε (G(x − x' ) ⋅em )( )em d x'ΩSC∫  (2.69) 

where for ease of notation, G(0; x − x' )  is denoted as G(x − x' ).  

It is obvious that (2.69) expressing the scattered wave field in terms of integration over the 

volume of the scatter region ΩSC cannot be directly used, as the displacement field u(x)  within ΩSC  is 

generally unknown. However it is useful to develop a theoretical estimation of the scattered 

amplitudes when the Green's function G(x − x' )  is known. It is precisely the case for an infinite 

isotropic and homogeneous elastic domain. 

2.2.3.2 Far-field scattered amplitudes in the 3D case 

We consider at first the 3D case for which the coordinate system is presented in Fig. 2.7. The 

centroid of the scatterer domain ΩSC  is set to be coincident with the origin of the coordinate system. 

 

Fig. 2.7. Diagram of the systems considered in the isolated scatter model 

Denoting by escat (x)  the considered unit scattered direction vector, i.e. x = x escat , and taking into 

account the fact that, for x' ∈ΩSC  and x ∈R , we have r−1~ x
−1

 and r−1~ x − x'⋅escat  when x→∞ , the 

far-field solution of the scattered displacement uscat  and stress σ scat
 can be derived from (2.69) as 

follows (see also Appendix B): 

 uscat (x) ~ Al (escat )
exp(i k0l x )

xl=L,S
∑  (2.70) 

Incident plane wave 

𝒆!"# 

Scattered wave at 𝒙 → ∞ 
𝒆!"#$ 

𝒆! 

𝒆! 

𝒆! 𝑑Ω 

Isolated scatterer located at the 

origin of coordinate system 
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 σ scat (x) ~ iλk0L (AL ⋅escat )
exp(i k0L x )

x
I3 + 2iµ k0l (Al ⊗S escat )

exp(i k0l x )
xl=L,S

∑  (2.71) 

with 

 AL (escat ) = (escat ⊗ escat ) ⋅a(k0L )  (2.72) 

 AS (escat ) = (I3 − escat ⊗ escat ) ⋅a(k0S )  (2.73) 

 a(k0l ) =
χ (k0l , Ndim )
4πρ0 (v0l )2

−ik0l δC(x' ) : ε (u(x' ))( )exp( − ik0l ⋅ x' )d x'ΩSC∫  (2.74) 

where the symbol   “~” indicates the asymptotic forms, k0L = k0Lescat  and k0S = k0Sescat  are the wave 

vectors of respectively the longitudinal waves and the shear waves.  

In the present work, we introduce a constant χ (k0l , Ndim ) , which depends on the space dimension. 

It is equal to 1 for the 3D case with Ndim = 3  and will be calculated in the following section for the 2D 

case. The equation (2.70) shows that the scattered field uscat  can be decomposed into a longitudinal 

wave contribution with amplitude AL  parallel to escat  and a shear wave contribution with amplitude AS  
perpendicular to escat . Both amplitudes are determined by the vectors k0l (l = L, S) , whose complete 

calculation requires the complete information of the field u inside ΩSC .  

2.2.3.3 Far field scattered amplitudes in the 2D case 

Following the same theoretical development presented above for the 3D case, analytical formulas 

for the far-field displacements can be obtained in the 2D case. When x →∞ , substituting the Green’s 

function of the 2D case (2.40) into (2.69), the following formulas for the far-field solution of the 

scattered displacement uscat ,2D  and stress σ scat ,2D
 are obtained like in the 3D case (see also Appendix B):   

 uscat ,2D (x) ~ Al (escat )
exp(i k0l x )

x
1/2

l=L,S
∑  (2.75) 

 σ scat ,2D (x) ~ iλk0L (AL ⋅escat )
exp(i k0L x )

x
1/2 I2 + 2iµ k0l (Al ⊗S escat )

exp(i k0l x )

x
1/2

l=L,S
∑  (2.76) 

where AL  and AS  are always defined by (2.72)-(2.74), but with the following space dimension 

dependent constant χ (k0l , Ndim ) , which is an important result of the present work: 

 χ (k0l , Ndim = 2) = (1+i)π1/2

(k0l )1/2  (2.77) 

2.2.3.4  Theoretical formulas for differential cross sections 

Classically the differential cross section dP(ω ) dΩ  gives, for a given angular frequency 𝜔, the 

measure of the fraction of incident power scattered into a particular direction escat  across the surface 
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dA defined by the differential element of solid angle dΩ  in that direction. In the 3D case, we have 
dA = x

2
dΩ , while in the 2D case, we have dA = x dΩ .  

It can be proven that in the 3D case: 

 dP(ω )
dΩ

(escat ) = lim x→∞ −ω
2
Im x

2
σ scat ⋅escat( ) ⋅ (uscat )*( )⎛

⎝⎜
⎞
⎠⎟
P0 (ω )  (2.78) 

while in the 2D case: 

 dP(ω )
dΩ

(escat ) = lim x→∞ −ω
2
Im x σ scat ,2D ⋅escat( ) ⋅ (uscat ,2D )*( )⎛

⎝⎜
⎞
⎠⎟
P0 (ω )  (2.79) 

where P0 (ω )  is the power rate of the incident fields defined in Section 2.2.2. When x →∞ , as σ scat
 

and uscat  are respectively proportional to x
−1

 and x
−1/2

 in the 3D and 2D cases (see (2.70), (2.71), 

(2.75) and (2.76)), the equations of the differential cross sections (2.78) and (2.79) show that they are 

independent of the distance from the scatter.  

In the case of an incident wave containing both the longitudinal and the shear waves of amplitude 

AiL  and AiS , the displacement field is defined in the following way: 

 uinc (x) = AiLexp(ik0Leinc ⋅ x − iωt) + AiSexp(ik0Seinc ⋅ x − iωt)  (2.80) 

It can be shown that the differential cross sections for both 3D and 2D cases have the same expression 

as follows: 

 dP(ω )
dΩ

(escat ) =
k0L (λ 0 + 2µ0 ) AL (escat )

2
+µ0k0S AS (escat )

2

k0L (λ 0 + 2µ0 ) AiL
2
+µ0k0S AiS

2  (2.81) 

So the scattered amplitudes are directly linked to the differential cross sections.  

In the case where the incident field contains only longitudinal waves, i.e. AiS = 0 , we have: 

 dP(ω )
dΩ

(escat ) =
AL (escat )

2

AiL
2 + v0S

v0L

AS (escat )
2

AiL
2  (2.82) 

The two terms on the right hand side of (2.82) are respectively the longitudinal-to-longitudinal and 

longitudinal-to-shear differential cross sections. In the following, only the longitudinal-to-longitudinal 

differential cross section AL (escat )
2
AiL

2

 is considered for the theoretical analysis.  

2.2.4 Theoretical and numerical evaluations of microstructural noise scattering coefficient 

The microstructural noise scattering effectiveness is quantified by the scattering coefficient 

η(ω , escat ) , defined as the differential scattering cross section per unit volume for a given angular 

frequency ω  and in a particular direction escat  per unit incident power rate. Sections 2.2.2 and 2.2.3 

present two ways to evaluate η(ω , escat )  and we recall in the present section the equivalence between 

them under the assumption of weak-scattering and with the use of the Born approximation. 
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Furthermore, the comparison of both methods allows the identification of a proportionality coefficient 

between them, already given in the literature for the 3D case. Then as a new result this proportionality 

coefficient is identified in the 2D case.  

2.2.4.1 Theoretical measure of the scattering coefficient 

Now we consider the polycrystalline domain Ω  by assuming that it is single phase with 

randomly oriented grains and is macroscopically isotropic and homogeneous. We denote by N the total 

number of grains in the active volume Vpc  of grain scattering (Rose 1992).  

By the first method based on the independent scattering approximation, each grain in Ω  is 

regarded as an isolated scatterer placed in the homogeneous reference medium and their contributions 

to the total scattering are summed up incoherently. This gives rise to the following formula of the 

scattering coefficient: 

 η(ω , escat ) =
1

AiL
2

N
Vpc

〈 AL (g I , escat )
2
〉 = 1

AiL
2

N
Vpc

AL (g I , escat )
2

I∑
N

 (2.83) 

where 〈⋅〉  denotes an average over all the N grains. Note the longitudinal-to-shear scattering part is not 

considered in (2.83). 

Due to the single phase assumption and when N is large enough, the average 〈δC I ⊗δC I 〉Θ  over 

all grains is equal to the average over all crystallographic orientations and is grain independent, thus 

we have 〈δC I ⊗δC I 〉Θ = 〈δC g ⊗δC g 〉Θ . According to the far-field scattering amplitude presented in 

Section 2.2.3 and using the Born approximation by replacing the scattered field u I (x)  in each grain g I  
of (2.72)-(2.74) by the unperturbed field uinc (x)  in the homogeneous medium, the scattering 

coefficient can finally be written as: 

 
η(ω , escat )

1
Vpc

χ (k0L , Ndim )
2

4πρ0 (v0l )2( )2 AiL 2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−1

= d x
Ω∫I∑ d x'

Ω∫ (k0L )2 〈γ I (x)γ I (x' )〉E1(x) : 〈δC g ⊗δC g 〉Θ : E1* (x' )exp −ik0Lescat ⋅ (x − x' )( )
 (2.84) 

with E1(⋅)=escat ⊗ escat ⊗ ε (uinc (⋅))  and 〈γ I (x)γ I (x' )〉  the spatial correlation function of two points x  and

x' , which quantifies the possibility that they belong to the same grain g I .  

The second method proposed by Rose (1992) is based on the reciprocity theorem and states that 

η(ω , escat )  can be obtained from the scattered noise signal amplitude δS(ω )  defined by (2.61) in the 

following way: 

 η(ω , escat ) =
β 〈δS(ω )δS* (ω )〉

Vpc
 (2.85) 
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where 〈⋅〉  is an average over all samples, β  is a coefficient of proportionality and can be determined 

by the equivalence between the two methods (2.83) and (2.85) by considering some particular cases.  

It is important to recall that, when the reciprocity theorem based method is used, it is required 

that 〈δS(ω )〉 = 0 , so η(ω , escat )  can be considered as the variance measure of noises. This requirement 

leads to 〈δC(x)〉 = 0  and implies the use of the Voigt average for the elastic tensor, denoted by 

〈δC(x)〉Voigt , as the stiffness tensor for the reference medium. By substituting (2.63) into (2.85) we 

obtain: 

 η(ω , escat )
β
Vpc

ω
4P0 (ω )

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

= d x
Ω∫ d x'

Ω∫ E2 (x) : 〈δC(x)⊗δC(x' )〉 : E2
* (x' )  (2.86) 

with E2 (⋅) = ε (u1→2 (⋅))⊗ ε (u0;2→1(⋅)) . With the assumption on 〈δC 〉  and the analysis already presented 

concerning the term 〈δC(x)⊗δC(x' )〉  in (2.13), we finally obtain: 

 η(ω , escat )
β
Vpc

ω
4P0 (ω )

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

= d x
Ω∫ d x'

Ω∫ E2 (x) : 〈δC g ⊗δC g 〉Θ : E2
* (x' )W (r)  (2.87) 

Once more, under the Born approximation, the unknown fields u1→2  in (2.87) is replaced by 

u0;1→2 , the solution of the same problem for u1→2  but in the homogeneous reference medium. In the 

case of backscattering, the two transducers 1 and 2 coincide and we have furthermore u0;1→2 = u0;2→1 , 

then theoretical formulas of η  of backscattering can be obtained (see Equations (2.101) and (2.102)).  

Finally to identify the constant of proportionality β , the equations (2.84) and (2.87) are 

compared under the Born approximation and in the particular case of backscattering with an incident 

wave that is assumed to be the following longitudinal plane wave with the propagating direction 

einc = −escat  and of amplitude UL
0 : 

 uinc (x) =UL
0eincexp(ik0Leinc ⋅ x)  (2.88) 

By denoting Escat = escat ⊗ escat ⊗ escat ⊗ escat , it is straightforward that E1(⋅)=iUL
0k0LEscatexp(ik0Lescat ⋅ (⋅))  

and E2 (⋅)= − (UL
0k0L )2Escatexp( − 2ik0Lescat ⋅ (⋅)) , (2.84) and (2.87) then become: 

 
η(ω , escat )

1
Vpc

χ (k0L , Ndim )
2
(k0L )4

4πρ0 (v0L )2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−1

= d x
Ω∫ d x'

Ω∫ exp −2ik0Lescat ⋅ (x − x' )( )W (x − x' )Escat : 〈δC g ⊗δC g 〉Θ : Escat

 (2.89) 

 
η(ω , escat )

β
Vpc

ω
4P0 (ω )

⎛
⎝⎜

⎞
⎠⎟

2

(UL
0 )4 (k0L )4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

= d x
Ω∫ d x'

Ω∫ exp −2ik0Lescat ⋅ (x − x' )( )W (x − x' )Escat : 〈δC g ⊗δC g 〉Θ : Escat

 (2.90) 
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The comparison between (2.89) and (2.90) finally results in the following formula of β , which 

depends also on the space dimension Ndim : 

 β (ω , Ndim ) =
4P0 (ω )

ω
⎛
⎝⎜

⎞
⎠⎟

22
1

(UL
0 )2 (UL )2

χ (k0L , Ndim )
2

4πρ0 (v0L )2( )2  (2.91) 

where (UL
0 )4  is replaced by (UL

0 )2 (UL )2  in order to preserve the generality when the Born 

approximation is not applied, especially for the formulas developed for the numerical approach 

presented in the next section.  

In the 3D case, (2.91) gives the same result as obtained by Margetan et al. (Margetan et al. 2005). 

In the 2D case, it is necessary to add a multiplier equal to χ (k0L , Ndim = 2)
2
= 2π k0L , which is inversely 

proportional to the wave number k0L .  

Finally introducing (2.91) in (2.85), we obtained the following formula of the scattering 

coefficient based on the reciprocity theorem in general cases, which is used to define our numerical 

measure strategy (Section 2.2.4.2): 

 η(ω , escat ) =
1
Vpc

1
(UL

0 )2 (UL )2
χ (k0L , Ndim )

2

4πρ0 (v0L )2( )2
4P0 (ω )

ω
⎛
⎝⎜

⎞
⎠⎟

2

〈δS(ω )δS* (ω )〉  (2.92) 

2.2.4.2 Numerical measure of the scattering coefficient 

For the numerical measurement of the scattering coefficient using FE simulations, we propose to 

follow the procedure shown in Fig. 2.6.: Considering a single-phase, macroscopically isotropic and 

homogeneous polycrystalline medium with randomly oriented grains, for a given distribution of grain 

crystallographic orientations Θ , two FE transient simulations are performed in the time domain. The 

first one in the heterogeneous media of interest, by applying external loadings (prescribed 

displacements or surface forces) on the emitter part of boundary Σ1 , and by recording displacements 

on the receiver part of boundary Σ2 .  The second one is performed with the homogeneous reference 

medium by interchanging roles played by Σ1  and Σ2 .The rest of the boundary Σ  remains free surface. 

With such a configuration, the unit vector directed from Σ1  toward Σ2  defines the scattering direction 

escat  of interest. When Σ1  coincides with Σ2 , the backscattering is considered.  

Time-series signals of the wave displacement fields, incorporating the attenuation and the noise, 

are recorder by FE simulations. As the scattered solution u1→2  is completely given by the FE analysis 

for a given distribution Θ , there is no need to use the Born approximation. The Fourier transform in 

the frequency domain of FE data are then used to calculate the scattering coefficient as follows: 

 η(ω , escat ,Θ ) = 1
Vpc

1
(UL

0 )2 (UL )2

χ (k0L , Ndim )
2

4πρ0 (v0L )2( )2

4P0 (ω )
ω

⎛
⎝⎜

⎞
⎠⎟

2

δS(ω ,Θ )δS* (ω ,Θ )  (2.93) 
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where UL  and UL
0
 are respectively the displacement amplitudes of incident waves in both simulations. 

The amplitude of scattered signals δS(ω ,Θ )  is calculated as integration over the boundary instead of 

the volume for the sake of numerical effectiveness:  

 δS(ω ,Θ ) = −iω
4P0 (ω )

T , u0;2→1(x)( )
Σ1
− T 0 , u1→2 (x)( )

Σ2
( )  (2.94) 

with the stress vectors T = σ 1→2 ⋅n  on Σ1  and T 0 = σ 0;1→2 ⋅n  on Σ2  and the displacements u1→2  on Σ2  
and u0;2→1  on Σ1  given by both simulations.  

Finally performing FE simulations on the samples with different distributions Θ , the scattering 

coefficient of the polycrystalline medium is estimated in the following way: 

 η(ω , escat ) = 〈η(ω , escat ,Θ )〉  (2.95) 

For real experimental or numerical tests in a general case, it is difficult to estimate Vpc  the 

volume of grains involved in the scattering. Two limits of Vpc  can be defined: 

A lower limit VpcMin  is the volume of the “straight beam” connecting the two surfaces Σ1  and Σ2  
and it can be shown that a good estimate of  VpcMin  reads as: 

 VpcMin ≈
1
2

Σ1 + Σ2( )min v0Lt f , dΣ1Σ2( )  (2.96) 

with Σm  the area of Σ1 (m =1, 2 ), t f  the total observation time and dΣ1Σ2  the distance between the 

centers of Σ1  and Σ2 . 

An upper limit VpcMax  is the volume of all grains crossed by the waves propagating from Σ1  to Σ2  
for t ≤ t f . In the case where the geometry of Ω  is convex, a good estimate of VpcMax  is: 

 VpcMax ≈VpcMin +Vol Ω∩Ellip Σ1, Σ2 , t f( )( )  (2.97) 

where Ellip(Σ1, Σ2 , t f ) denotes an ellipsoid with two equal semi-diameters and with the centers of Σ1  
and Σ2  as the two foci on the third principal axis, whose length is equal to v0Lt f . In the particular case 

of the measurement of the backscattering coefficient, Σ1  and Σ2  are completely superimposed, the 

calculation of VpcMin  does not change, while for VpcMax , Ellip(Σ1, Σ2 , t f ) becomes a sphere with the center 

of Σ1  as its center and v0Lt f  as diameter.  

Then to compare numerical calculation and the theoretical estimation of the scattering coefficient, 

we propose to compare ηVpc  instead of η . That means the following numerical output: 

 η(ω , escat )Vpc( )num =
1

(UL
0 )2 (UL )2

χ (k0L , Ndim )
2

4πρ0 (v0L )2( )2
4P0 (ω )

ω
⎛
⎝⎜

⎞
⎠⎟

2

〈δS(ω )δS* (ω )〉  (2.98) 

is compared to the two theoretical lower and upper limits η(ω , escat )VpcMin  and η(ω , escat )VpcMax .  
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It is important to note that the proposed numerical procedure measures the actual reciprocity gap. 

Multiple scattering effects, if exist, are contained within the numerically calculated scattering 

coefficient. Therefore the numerical procedure breaks through the limitations of the use of the Born 

approximation and the single-scattering assumption made in the theoretical evaluation. It has the 

ability to simulate precisely the time-domain noise signals of elastic waves propagating in 

polycrystalline materials including complex physical mechanisms, such as multiple scattering and 

attenuation. Thus it has wider generality and higher accuracy than the analytical evaluation and can be 

applicable to complex media with strong scattering due to high degree of anisotropy, 

crystallographically textured microstructures or multi-phase microstructures, etc. Furthermore, the 

effectiveness of the procedure based on the reciprocity theorem is obvious, since it is much easier to 

record and integrate displacement and stress fields at the boundary rather than in the volume. This 

approach is versatile since the scattering coefficient in any given direction can be evaluated by only 

changing the position of the receivers.  

2.2.4.3 2D and 3D analytical formulas for ultrasonic backscattering coefficient  

In this section, we recall the analytical formulas of the backscattering coefficient for a single-

phase, untextured and equiaxed polycrystalline medium without density variation in the 3D case and 

develop it in the 2D case by applying the theoretical results previously presented. For ease of analysis, 

it is assumed that the wave vector of the incident wave is in the direction escat = −e2 . When the 

backscattering is considered, we have escat = −einc . As only the longitudinal-to-longitudinal scattering is 

considered, the incident wave is assumed to be a longitudinal wave. The longitudinal-to-longitudinal 

backscattering coefficient is simply denoted as η(ω ) .   

By substituting the two-point spatial correlation function expressed as in (2.23), an exponential 

function depending on the distance between the two points r = x − x' , into (2.89) or (2.90) and by 

applying the following change of variables:  

 s = (x + x' ) 2, r = x − x'  (2.99) 

the following equation is straightforward: 

 η(ω ) =
χ (k0L , Ndim )

2

4πρ0 (v0L )2( )2
k0L( )4 〈δC2222δC2222 〉 exp(ik0Lr ⋅e2 −

2r
d
)d r

R∫  (2.100) 

Then considering the integration form (2.100) in the spherical coordinate and the cylindrical 

coordinate systems respectively for 3D and 2D cases, the analytical formulas for the longitudinal-to-

longitudinal backscattering coefficient are obtained: 

 η3D (ω ) = 〈δC2222δC2222 〉

4πρ0 (v0L )2( )2
π(x0 )4

1+ (x0 )2( )2 d
 (2.101) 
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 η2D (ω ) = π (x0 )−2 +1η3D (ω )  (2.102) 

Concerning the correlation function of the elastic stiffness tensor, only 〈δC2222δC2222 〉  is needed in the 

present work and is calculated using the first equation of (2.33) for the case of cubic symmetric 

crystallites.  

Particular attention should be paid to the single-scattering assumption and the Born 

approximation used in the derivation of analytical expressions for the backscattering coefficient. They 

are expected to be good approximations on the condition that the inhomogeneity degree of 

polycrystals ξ  is much less than unity. This fundamental assumption makes sure that the variation of 

elastic properties from crystallite to crystallite is small. Furthermore, the formulas of the 

backscattering coefficient are expected to be valid for the early time portion so that the scattering-

induced attenuation is not significant (Han et al. 1997). 

Finally 3D and 2D analytical curves of longitudinal-to-longitudinal backscattering coefficient 

versus frequency f ∈[0,16]MHz  for the polycrystalline material studied in this work are presented for 

three grain sizes of 80µm , 160µm and 320µm (Fig. 2.8.(a)). It is shown that the larger grains 

backscatter more energy at low frequency, whereas at high frequency, smaller grains backscatter more 

energy and the backscattering coefficient of the largest grain becomes constant. The scattering plateau 

can be attributed to the transition from the stochastic scattering region to the geometric one. Otherwise 

the comparison between the 3D and the 2D cases shows that the 2D case gives rise to larger 

backscattering coefficients than the 3D case due to the effect of the multiplier coefficient π (x0 )−2 +1  
and that the asymptotic value in high frequency range for the 2D case is π  times the one for the 3D 

case. Finally as referred to (2.101), the differential backscattering cross section per crystallite ηd  is 

independent of the grain size and a master curve is therefore obtained (Fig. 2.8.(b)). 

(a) (b)  

Fig. 2.8. Analytical results of longitudinal-to-longitudinal backscattering coefficient for different grain 
sizes in the 3D and 2D cases (a) η  vs. f, (b) master curves ηd  vs. x0 . 



5
8	  

CHAPTER	  2.	  THEORETICAL	  AND	  NUMERICAL	  EVALUATIONS	  OF	  THE	  ULTRASONIC	  WAVE	  
SCATTERING	  IN	  POLYCRYSTALS	  

 

 
  

58 

2.3 Conclusions 

Theoretical and numerical approaches to evaluate  the ultrasonic wave scattering in polycrystals 

have been presented in this chapter. More particularly, the following new contributions were  proposed: 

Firstly, analytical formulas of the longitudinal-to-longitudinal and longitudinal-to-shear wave 

scattering-induced attenuation for the incident longitudinal wave propagating in a single-phase, 

untextured polycrystalline microstructure containing equiaxed grains with a cubic symmetry are 

developed based on the Stanke-Kino unified theory in both 2D and 3D cases. These expressions are 

formulated based on both the Born approximation and the assumption that the displacement vector U 

of the quasi-longitudinal wave is parallel to the wave vector k . They are good approximations only if 

the inhomogeneity degree ξ  of the medium is much less than 1. It is demonstrated that the attenuation 

for the longitudinal wave in the Rayleigh region is determined by the longitudinal-to-shear wave 

scattering, which is closely linked to the cross section of the scatter. It shows a fourth power 

dependence on frequency and a third power dependence on grain size in the 3D case and a third power 

dependence on frequency and a second power dependence on grain size in the 2D space. Whereas the 

longitudinal-to-shear wave scattering generated by the mode conversion dominates the attenuation in 

the stochastic region, which is a one-dimensional behavior and is dependent only on the averaged 

grain dimension in the wave propagation direction. Thus a second power dependence on frequency is 

observed for both 2D and 3D medium. The Rayleigh-to-stochastic transition region corresponds to the 

change of scattering mechanism transition, which occurs slightly earlier in the 2D space than that in 

the 3D model for a given grain size. The geometric region exceeds the limitation of our analytical 

predictions due to the significant attenuation. 

Secondly, considering the equivalence of the reciprocity formulation and the isolated scatter 

model for the microstructural noise scattering based on weak-scattering approximation, an important 

coefficient of proportionality is given, which is proved to depend on spatial dimension, frequency, and 

material properties. The analytical formulas for the backscattering coefficient in 2D space are 

developed. Compared to the 3D case, it is shown that the Rayleigh-to-stochastic transition occurs 

earlier, the backscattering coefficient is quantitatively larger in the 2D case. Additionally, the 

asymptotic value in the geometric region in the 2D space is π  times of the one in 3D space.  

Thirdly, an original numerical procedure by FE modeling to evaluate the grain-noise scattering in 

an arbitrary direction based on the reciprocity theorem is proposed. It is applicable to complex media 

with strong scattering and it can provide a more complete theoretical model to understand complicated 

physical mechanisms of grain-noise scattering, including multiple scattering and the attenuation.  
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Chapter 3  

Setting of FE model for elastic wave propagation in 
polycrystalline materials 

FE simulations of ultrasonic wave propagation in polycrystalline materials presented in this work 

are performed by using an in-house software OOFE (Tie et al. 2003, Tie et al. 2010). The 

elastodynamic equations governing elastic wave propagation are solved in the time domain by an 

implicit solver based on a time-discontinuous space-time Galerkin method. Only 2D FE simulations 

are presented in this present work. 

In this chapter, setting of FE model for investigation of grain size effects on ultrasonic attenuation 

and backscattering is first presented. Idealized single-phase, equiaxed and untextured polycrystalline 

microstructures with different unimodal grain sizes are defined. Unstructured FE meshes are used. 

Consideration on mesh convergence is given by analyzing effects of two important ratios: the ratio of 

grain size to mesh size and the ratio of wavelength to mesh size. The choice of methods for averaging 

elastic moduli to define the effective properties of a polycrystalline medium is discussed. Wavefronts 

of quasi-longitudinal waves, quasi-shear waves at different moments of wave propagation and time-

series signals recorded at receivers are presented. The procedure for numerical quantification of 

ultrasonic attenuation and backscattering in both time and frequency domains is finally proposed. 
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3.1 Definition of 2D FE models of ultrasonic wave propagation 

The 2D FE models used in the present work to calculate the attenuation and backscattering 

coefficients are shown in Fig. 3.1. The first one considers the polycrystalline material of interest (the 

grey part in Fig. 3.1.(a)) embedded in the homogeneous reference material (the white part in Fig. 

3.1.(a)). The whole domain is chosen sufficiently large in order to avoid arrival on the receiver of 

waves reflected by the external lateral boundaries during the time interval of analysis. The second one 

(Fig. 3.1.(b)) considers the homogeneous reference material. The same FE mesh is used to discretize 

both heterogeneous and homogeneous reference domains. 

The studied polycrystalline materials have an idealized theoretical microstructure with hexagonal 

grains. It is single phase with a cubic crystal symmetry. Crystallographic orientations of grains defined 

in terms of the Euler angles Θ (ϕ1,φ,ϕ2 ),which define the anisotropic axis with respect to the global 

Cartesian basis, are randomly distributed by providing the following set up: 

(a) (b)  

Fig. 3.1. Schematic representation of the 2D domain for FE models of (a) the heterogeneous 
polycrystalline medium; (b) the homogeneous reference medium. 

 
ϕ1 = random[0, 2π[

φ = acos(random[ −1, 1])
ϕ2 = random[0, 2π[

 (3.1) 

In this work, the regular hexagonal grains are mainly considered. For a regular hexagonal grain, 

its grain size is defined as the diameter of its inscribed circle and denoted by H. The equivalent grain 

size defined as the diameter of the circular grain having the same grain surface is then d =1.05H  FE 

models for the samples with single-size regular hexagonal grains, with three different grains sizes 

H = 80µm, 160µm and 320µm  are defined. For the three considered grain sizes, the polycrystalline 

domain is composed of respectively 35630, 8855 and 2125 randomly oriented hexagonal crystallites. 

For a given grain size, ten different random distributions of crystallographic orientations are 

considered.  

𝜌!,𝑪(𝛩) 
 

Longitudinal Loadings 

𝜌
!,𝑪

! 

Emitter line	  𝐿! 

Longitudinal Loadings 

free boundary outside the emitters  
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Furthermore, to investigate if there exist numerical artifacts due to the use of the regular 

hexagonal grains, which results in regularly oriented grain boundaries, ten samples with irregular 

hexagonal grains, obtained by slight and random perturbation of regular hexagonal grain shape, are 

considered too. The crystallographic orientation distribution for ten samples with irregular grains are 

the same as those ten samples with regular grains. The equivalent grain size H for each irregular grain 

is calculated using the inscribed circle diameter of the hexagonal regular grain having the same grain 

surface. For one sample with irregular grains, Fig. 3.2. shows in blue the distribution of angles formed 

by grain boundaries with the horizontal axis and the distribution of grain size. Both distributions for 

samples composed of regular grains are also shown in Fig. 3.2. with red vertical lines. It reveals that 

microstructures with irregular hexagonal grains present a Gaussian grain size distribution with the 

unweighted average equal to the size of regular grain and a standard deviation equal to one. The 

distribution of the orientations of irregular grain boundaries is the sum of three Gaussian distributions 

with mean value respectively equal to the three orientations -90°, -30° and 30° of regular grain 

boundaries. Numerical results on these samples allow ruling out any suspicion of possible artifact due 

to the use of regular hexagonal grains for the numerical simulations (Section 4.1.3). 

(a) (b)  

Fig. 3.2. Distributions of (a) grain boundary orientations w.r.t. the horizontal axis and (b) grain sizes: 
Blue Gaussian type distributions for microstructures with irregular hexagonal grains with ⟨H  ⟩=80𝜇m  ; 

Red vertical lines for microstructures with regular hexagonal grains with H=80𝜇m.    

Concerning the external loadings and the data recording, an emitter line 𝐿! of 2.8mm length on 

the external top boundary of the studied domain is defined (Fig. 3.1.). Twenty-two uniformly 

distributed points are defined on Le  and serve as emitters and receivers. Ultrasonic waves are generated 

by applying a pressure loading p(x, t)e2  on Le . For a given x, p(x, t)e2  is the sum of two Ricker 

signals varying in time within a periodTr , whose central peak frequency fc = 2 / Tr  is respectively 

equal to 5MHz and 10MHz. Each Ricker signal ricker (x, t)  reads as: 

 ricker (x, t) =
Ar (x) 1− 2π2 fc

2 t −1 fc( )2( )exp −π2 fc
2 t −1 fc( )2( ), for 0 ≤ t ≤ 2 fc

0,                                                                           for t ≥ 2 fc

⎧

⎨
⎪

⎩
⎪

 (3.2) 
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(a) (b)  

Fig. 3.3. Combined Ricker signal used as the external longitudinal loadings presented in both (a) time 
and (b) frequency domains 

Furthermore in order to reduce effects of shear waves, which would be triggered when 

discontinuities in boundary conditions occur at the ends of the emitter line, the peak amplitudes Ar (x)  

of both Ricker signals are chosen to have a Gaussian distribution along the emitter line. Thus the peak 

amplitudes of input signals smoothly decrease down to zero at the ends of the emitter, which is better 

suited to the free boundary condition imposed on the other side. Fig. 3.3. presents the external pressure 

loading used in the present work in both time and frequency domains.  

Unstructured FE meshes using both triangular and quadrilateral finite elements have been used in 

the numerical simulations without significant differences. Hence only simulations using quadrilateral 

elements are presented here. An example of FE mesh of microstructures with the grain size of 320µm  

is presented in Fig. 3.4. and shows the great flexibility offered by the FEM to exactly model the grain 

boundaries. 

              

Fig. 3.4. FE meshes of microstructures composed of regular or irregular hexagonal grains of size 
320µm . 

3.2 Mesh convergence analysis 

In order to account for the impedance variations between two adjacent grains and have a good 

representation of wave front, a sufficient number of elements included in one grain and in the shortest 

wavelength of interest is essential for the quality of numerical simulations (Shahjahan et al. 2014, Van 

Pamel et al. 2015). However, the computational cost increases greatly when the mesh becomes more 
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refined. To control the quality and optimize the efficiency, the mesh convergence analysis is of great 

importance.  

For the mesh convergence analysis presented in this Section, FE models with all the three grain 

sizes of 80µm, 160µm and 320µm are used but they are only of half sizes of those described in Fig. 3.1 

in order to reduce the computational cost. Different ratios of grain size to element size d h  are 

considered. The attenuation convergence is calculated as the measured attenuation α (defined in (3.5)) 

subtracted from the converged solution α c  obtained from the highest available density mesh, 

(α − α c ) α c . The mesh convergence of ultrasonic backscattering is quantified by the following 

mechanical quantity ς ( f ) : 

 ς ( f ) =

1
M

V2
b(x j , f )

2

j=1

j=M∑
1
M

V2
i (x j , f )

2

j=1

j=M∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1/2

 (3.3) 

where the superscripts b and i denote respectively the backscattered noise and the incident signals and

V2 (x j , f )  is the Fourier transform of the velocity component in the direction e2  recorded at the jth 

probe x j . ς ( f )  is in fact a frequency-dependent coefficient calculated as the ratio of the rms velocity 

between the backscattered noise and the incident signals. It is associated to the percentage of the 

energy loss due to scattering in the backscattered direction. The backscattering mesh convergence is 

evaluated by (ς − ςc ) ςc  with the converged solution ςc  obtained by the highest available density mesh 

of all studied FE models. 

Fig. 3.5. and Fig. 3.6. present respectively the attenuation and backscattering mesh convergence 

for the frequency f =10MHz as a function of the number of elements per grain size d h  and a function 

of the number of elements per wavelength λ h.  

On the one hand, it is seen that for a sample with a smaller grain size, both the attenuation and the 

backscattering converges more rapidly with respect to the number of elements per grain size d h  (Fig. 

3.5.(a) and Fig. 3.6.(a)). Indeed for a given ratio d h , a larger number of elements per wavelength 
λ h  is obtained for the sample with a smaller grain size and thus results in less mesh scattering. At

f =10MHz  and for d h =10 , only the grain size of 80µm  has converged for the threshold of 1%, 

which agrees with the results obtained by Van Pamel et al. (Van Pamel et al. 2015) and Shahjahan et 

al. (Shahjahan et al. 2014). Otherwise it is worth to remark that the errors for the grain size of 320µm
are significantly higher than the other two grain sizes since this grain size is comparable to the studied 

wavelengths.  

On the other hand, a sample with a smaller grain size converge less rapidly with respect to the 

number of elements per wavelength λ h  (Fig. 3.5 (b) and Fig. 3.6 (b)), because there are less elements 

per grain size for a given ratio λ h .  Our analysis concludes that there should be at least 20 elements 

per wavelength to ensure the beginning of a converging process. 
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(a) (b)  

Fig. 3.5. Attenuation mesh convergence (α − α c ) α c  w.r.t. (a) the number of elements per grain size
d h  and (b) the number of elements per wavelength λ h  for three grain sizes for f =10MHz .  

 (a) (b)  

Fig. 3.6. Backscattering mesh convergence (ς − ςc ) ςc  w.r.t. (a) the number of elements per grain size
d h  and (b) the number of elements per wavelength λ h  for three grain sizes for f =10MHz . 

Fig. 3.7. presents the attenuation and backscattering mesh convergence as a function of the 

number of elements per grain size d h  at six different frequencies for each of the three grain sizes. For 

a given ratio of d h , it is observed that the lower the frequency is, the more rapid the convergence is 

because of a larger number of elements per wavelength λ h.  

The numerical simulations about grain size effects on ultrasonic wave propagation are performed 

using the FE meshes with d h = 7, 14 and 25 respectively for the three grain sizes of 80µm , 160µm

and 320µm . Therefore according to our mesh convergence analysis, the attenuation coefficient is 

converged to at least 3% at all frequencies for the two larger grain sizes 160µm and 320µm  (Fig. 

3.7.(b) and (c)). Particular attention should be paid to the calculation error of the attenuation 

coefficient for the sample with the grain size of 80µm , which increases quickly with frequency and 

reaches to 23% at the highest frequency f =16MHz  (Fig. 3.7. (a)). The backscattering coefficient is 

converged at least for the threshold of 7% at all frequencies and for all three grain sizes (Fig. 3.7.).  
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 (a)  

(b)  

 (c)  

Fig. 3.7. Attenuation mesh convergence (α − α c ) α c  (left) and backscattering mesh convergence 
(ς − ςc ) ςc  (right) w.r.t. the number of elements per grain size d h  at six different frequencies for the 

grain sizes of (a) 80µm , (b)160µm  and (c) 320µm ; The number of elements per grain size d h  of the 
FE meshes used for the numerical analysis presented in the Section 4 and their precisions are indicated 

for each grain size. 

Limited by the ratio of wavelength to mesh size, the quality of FE simulations can be deteriorated 

in the frequency range f >16MHz . Therefore the valid frequency domain of our numerical 

simulations presented herein is no more than 16MHz . It can be concluded that the FE models used 
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herein are appropriately defined and adequate convergence is achieved in the measurement of 

amplitude attenuation and noise levels. 

3.3 Ultrasonic phase velocity in polycrystals 

In this section, different ways to calculate effective elastic properties and longitudinal wave phase 

velocities of the studied polycrystalline material are considered. Numerically estimated phase velocity 

is compared with the theoretical effective phase velocities. It allows determining which effective 

elastic tensor should be used as equivalent reference medium, and on the other hand validating our FE 

models in the term of quality of estimating the arrival time of waves. 

Firstly three averages of elastic stiffness tensor classically defined by static homogenization 

studies to get effective elastic properties are considered. The Voigt average results in an upper bound 

of effective elastic stiffness tensors under the assumption of uniform strain, i.e.

〈C(x) : ε (x)〉 = 〈C(x)〉 : ε 0 , so 〈C(x)〉Voigt = 〈C(x)〉 . The Reuss average results in a lower bound by 

assuming a uniform stress state, i.e. 〈C −1(x) :σ (x)〉 = 〈C −1(x)〉 :σ 0 , so 〈C(x)〉Reuss = 〈C −1(x)〉−1.  A self-

consistent (SC) average (Kube et al. 2015) gives an estimate between the Voigt and Reuss bounds, by 

calculating equivalent elastic properties when either the elastic stiffness tensor C(x)  or the compliance 

tensor C −1(x)  is averaged over all possible orientations.  

For a polycrystalline sample containing 2125 grains of the grain size H = 320µm , the effective 

elastic properties of the three different averages and the corresponding phase velocities 

v0L = 〈C2222 〉 ρ0  of longitudinal waves propagating in the direction e2  are listed in Table 3.1.  The 

phase velocities are somewhat different: Those given by the SC and Reuss averages are about 1.3% 

and 2.8% smaller than the one given by the Voigt average.    

Secondly we can also calculate the effective longitudinal wave phase velocities as the Voigt or 

Reuss averages of the longitudinal wave phase velocities of all grains. Indeed, pure longitudinal and 

pure shear wave do not exist any longer in anisotropic materials, which means that the longitudinal 

wave modes are generally neither parallel nor perpendicular to the longitudinal wave vector. For a 

grain with a known orientation Θ , the longitudinal wave phase velocity vqL (Θ )  in the direction e2  can 

be determined by the largest eigenvalue of the acoustic tensor e2 ⋅ Γ ⋅e2 . With the assumption of 

uniform propagation time in each grain, the Voigt averaged phase velocity is estimated by 
〈vqL (Θ )〉Voigt = 〈vqL (Θ )〉 . On the other hand, taking the hypothesis of uniform chord length along the 

wave propagation direction in each grain, the Reuss averaged phase velocity is given by 
〈vqL (Θ )〉Reuss = 〈1 vqL (Θ )〉−1 . These two averages are also listed in Table 3.1. We remark that 〈vqL (Θ )〉Voigt

and 〈vqL (Θ )〉Reuss   
are only less than 0.2% larger than the phase velocity corresponding to 〈C(x)〉Voigt . 
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Properties v0L (m/s) 
Elastic Constants 

〈C2222 〉 (GPa) 〈C1122 〉 (GPa) 〈C2323〉 (GPa) 

v0L = 〈C2222 〉av ρ0  

av = Voigt 5878 153.0 100.0 26.5 

av = SC 5800 149.0 102 23.9 

av = Reuss 5714 144.6 104.6 20.0 

v0L = 〈vqL (Θ )〉av  
av =Voigt 5889 / / / 

av = Reuss 5884 / / / 

Table 3.1. Effective elastic properties and phase velocities of longitudinal waves of a polycrystalline 
sample containing 2125 grains of size 320µm  

The numerical evaluation of phase velocities is based on a spectral autocorrelation method with 

numerical data recorded at 11 inner probes placed 2mm below the emitter-receiver line Le. Fig. 3.8. 

shows the comparison between numerical and analytical estimates of phase velocities of the 

longitudinal wave in the same polycrystalline sample containing 2125 grains of size 320µm . The 

numerical result is consistent with three theoretical predictions given by 〈C2222 〉Voigt ρ0 , 〈vqL (Θ )〉Voigt  
and 〈vqL (Θ )〉Reuss . This confirms the relevancy of the classical choice of using the Voigt average to 

determine the equivalent homogenized elastic tensor and wave velocities in polycrystalline materials 

with randomly oriented grains. The Voigt average stiffness tensor is given in Table 2.1. 

 

Fig. 3.8. Comparison between numerical and theoretical estimates of phase velocities of the 
longitudinal wave in a polycrystalline sample containing 2125 grains of size 320µm . 

3.4 Post-processing of numerical ultrasonic data 

FE modeling is able to simulate the time-series ultrasonic wave signals of any point of interest, 

including the complex physics phenomena such as multiple-scattering as well as the amplitude 

attenuation. Two kinds of post-processing of FE data are used here: Helmholtz’s decomposition of 

displacement fields and calculation of the attenuation and backscattering coefficients. 
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3.4.1 Helmholtz’s decomposition of displacement fields 

The first kind of post-processing of FE data is based on the Helmholtz’s decomposition: 

Displacement fields are decomposed into two vector fields, the one curl-free and the other divergence-

free. In the case of isotropic elastic wave analysis, the former is referred to as the longitudinal wave 

component and the latter as the shear wave component. Therefore for any wave displacement field u , 

its divergence div u  displays longitudinal (or quasi-longitudinal in anisotropic media) wavefronts and 

its curl rot u  displays shear (or quasi-shear in anisotropic media) wavefronts.  In the general case of 

anisotropic elasticity, div u  vanishes no longer on the quasi-shear wavefronts and rot u  vanishes no 

longer on the quasi-longitudinal wavefronts. Effectively, div u  of the quasi-shear wave and rot u  of 

the quasi-longitudinal wave increase with the anisotropy degree of the medium. Therefore, for a 

polycrystalline medium with a low anisotropy degree, we can keep using div u and rot u  to 

approximately display quasi-longitudinal wavefronts and quasi-shear wavefronts.  

As an example, Fig. 3.9. shows wavefronts of quasi-longitudinal waves and quasi-shear waves in 

a polycrystalline sample with the grain size H = 80µm at three different moments. We observe a 

principal quasi-longitudinal wavefront ( div u  predominant) propagating in the direction −e2  at first 

and then in the opposite direction after being reflected by the bottom of the sample. Behind the 

principal quasi-longitudinal wavefront, scattered noise in terms of div u  is easily recognized. Fig. 3.9. 

shows also two principal quasi-shear wavefronts ( rot u  predominant). The faster one propagates 

together with the principal quasi-longitudinal wavefront because rot u  vanish no longer on the quasi-

longitudinal wave fronts, but also due to the conversion from quasi-longitudinal waves to quasi-shear 

waves every time when quasi-longitudinal waves encounter a grain boundary. The slower one 

propagates with the velocity of quasi-shear waves, nearly half of the velocity of quasi-longitudinal 

waves. It is obvious that the quasi-shear wave modes seem to be more sensitive to grain boundaries 

than the quasi-longitudinal wave modes and result in high-level noises in terms of rot u . 
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 (a)	    

(b)	    

(c)	    

Fig. 3.9. Longitudinal (left) and shear (right) wave propagation in a polycrystalline sample with grain 
size of 80µm at different moments (a) t = 0.84µs , (b) t =1.64µs  and (c) t = 2.84µs . 

3.4.2 Numerical calculation of ultrasonic attenuation coefficients 

The post-processing for the calculation of the attenuation coefficients is conducted in both time 

and frequency domains. Since only the attenuation for the longitudinal wave is of interest, the velocity 

components v2  in the direction e2  recorded at the 22 receivers on the emitter-receiver line Le are used.  

As an example, Fig. 3.10. illustrates the normalized velocities v2 max (v2 )  observed at the 10th 

receiver located at the middle of Le for a polycrystalline sample with grain size of 80µm  (the red line) 

and for the homogeneous reference medium (the black line). The first and second peaks on both 

curves correspond to the incident signals and the echo signals reflected by the bottom side of the 

sample. For the polycrystalline sample, perturbations of much smaller amplitude than incident and 

echo signals are in fact backscattered noise signals, which are absent in the reference case.  
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Fig. 3.10. Normalized velocity in e2  direction recorded at the 10th receiver in both polycrystalline 
(upper curve) and reference media (lower curve) 

For a non-plane wave propagating in the studied heterogeneous medium, the amplitude 

attenuation of elastic wave recorded by FE simulations is decomposed into two parts: the scattering-

induced attenuation and the attenuation caused by the geometrical spreading of wavefront. The latter is 

only associated with the sample geometry and can be measured within the equivalent homogeneous 

polycrystalline sample in the absence of scattering. Herein, to eliminate the attenuation due to the 

geometrical spreading of wavefront, comparison of reflected echo signals between the studied medium 

and the equivalent homogeneous medium is made for quantification of the scattering-induced 

attenuation in both time and frequency domains. 

3.4.2.1 Calculation in the time domain 

The temporal attenuation level is usually estimated by the peak-to-peak amplitude ratio of the 

time domain reflected echo signals to the incident signals. The attenuation per unit length, expressed 

in the unit “dB/mm” is usually expressed as (Thebault 2009, Tie 2010): 

 α = − 5
D
ln

Ar (x j )j=1

j=M∑
Ar;Refer (x j )j=1

j=M∑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (3.4) 

where M is the total number of the receiver probes, the superscripts r and Refer represent respectively 

the reflected echoes and the homogeneous reference material, Ar (x j )  (as shown in Fig. 3.10.) is the 

peak-to-peak amplitude of velocity at the receiver x j in the averaged propagation direction for reflected 

echo signals. D is the wave propagation distance just before the arrival of reflected echoes at the 

receivers. 

Ar 

Ar,Refer 
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3.4.2.2 Calculation in the frequency domain 

Discrete Fourier Transform (DFT) is used to decompose the time-series signals into the 

frequency domain. The ultrasonic attenuation for a given frequency f can be measured by (Thebault 

2009, Tie 2010): 

 α ( f ) = −10
D

ln
V r (x j , f )

2

j=1

j=M∑
V r;Refer (x j , f )

2

j=1

j=M∑

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/2

 (3.5) 

where V r (x j , f )  is the amplitude spectrum of the time-series reflected echo signals in the wave 

propagation direction recorded at the jth probe x j  by DFT. The constant 10 is for the unit conversion 

from Neper (Np) to decibel (dB). It is possible to measure the amplitude attenuation by the 

displacement or the velocity of several receivers. The choice of the velocity is privileged because the 

quantity considered here Σ j V jr ( f )
2

 
is proportional to the kinetic energy. Using the virial theorem, it 

is recognized that the total energy density is equal, on suitable temporal or spatial average, to twice the 

kinetic energy density (Weaver 1990). Thus, α ( f )  is associated to a percentage of the total energy 

loss due to scattering. 

3.4.3 Numerical calculation of ultrasonic backscattering coefficients 

The noise signals during a time period Tf  (Fig. 3.10.) are considered for numerical calculation of 

ultrasonic backscattering coefficients in both time and frequency domains, whereTf is the arrival time 

of the reflected echoes at the receivers.  

3.4.3.1 Calculation in the time domain 

A broadband time-series noise signal can be decomposed into a number of discrete frequencies, 

and it is of more interest to quantify the contribution of a given frequency f  to the temporal 

backscattering level. For a given frequency f , the standard deviation of noise levels is defined as the 

rms positional average of the difference between the observed noise signal and the positional averaged 

noise level (Margetan et al. 1994): 

 nrms (t, f ) = 1
10×M

v2
b(x j , t, f ) − b( t, f )( )2

j=1

10×M∑⎛
⎝⎜

⎞
⎠⎟

1/2

 (3.6) 

with 

 b( t, f ) = 1
10×M

v2
b(x j , t, f )

j=1

10×M∑  (3.7) 

where 10×𝑀 means the average is taken over all receivers and over all the ten samples, so we have in 

fact 220 measures. v2
b(x j , t, f )  is calculated by applying a frequency filtering, corresponding to the 

frequency f, to the velocity component v2
b(x j , t)  in e2  direction of the noise signal recorded at the jth 

receiver x j  (Ram 1988). The mean value b( t, f )  would be zero if the total number of measures, equal 
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to 10×𝑀 in the present work, is sufficiently large. To eliminate the dependence of the noise level on 

the incident power, the normalized rms noise level Nrms (t, f )  at the moment t for a given frequency f  

is defined (Margetan et al. 1994): 

 Nrms (t, f ) = nrms (t, f ) Emax ( f )  (3.8) 

where Emax  is taken equal to the half of the peak-to-peak amplitude of the incident signals for the 

frequency f . 

3.4.3.2 Calculation in the frequency domain 

As discussed in Section 2.2.4.2, the numerical calculation of ultrasonic backscattering 

coefficients in the frequency domain is performed by (2.98). Within the framework of the reciprocity 

theorem, both the prescribed external longitudinal loadings and the velocity components v2  in the 

direction e2  recorded at the 22 receivers on the emitter-receiver line Le  are used. The comparison 

between the theoretical and the numerical calculations requires the volume of the involved 

polycrystalline microstructure to be defined. A minimum limit and a maximum limit, VpcMin  and VpcMax , 

are proposed in equations (2.96) and (2.97). In the 2D case, these are in fact surface areas, SpcMin  and

SpcMax .  According to (2.96) and (2.97), SpcMin  and SpcMax  respectively correspond to the pink rectangular 

area and the green semi-circular area shown in Fig. 3.11., with the arrow pointing to the receivers 

representing the propagation direction of the scattered wave and the other arrow representing the 

propagation direction of the incident wave. Comparing Fig. 3.9.(b) and Fig. 3.11., it is interesting to 

point out that the minimum and maximum limits, SpcMin  and SpcMax , more likely correspond to the 

active grain volumes of respectively longitudinal-to-shear wave scattering and longitudinal-to-

longitudinal wave scattering. 

 

Fig. 3.11. Minimum and maximum limits SpcMin  and SpcMax  of polycrystalline surface in which 
backscattering occurs during the analysis period Tf . 

3.5 Conclusions 

In this chapter, FE models are first defined for a single-phase, untextured polycrystal with one-

size regular hexagonal grains of cubic symmetry. The microstructure comprising irregular hexagonal 

grains with a normal grain size distribution is then considered. Several grain sizes and different 

random spatial distributions of crystallographic orientation for each size are considered. Mesh 

convergence analysis is carried out and it is found that at least 10 elements per grain size and 20 
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elements per wavelength are necessary to guarantee the calculation convergence. Furthermore, it has 

been shown that the numerical measured phase velocity of the longitudinal wave is coherent with the 

one measured by the analytical approach using the Voigt average to determine the equivalent 

homogenized elastic tensor for randomly-oriented medium. Concerning the post-processing of FE data, 

wavefronts of quasi-longitudinal waves and quasi-shear waves at different moments are presented. 

The longitudinal and shear scattered noise waves are respectively observed, with the latter generated 

by the longitudinal-to-shear wave mode conversion. Numerical procedures to calculate ultrasonic 

attenuation and backscattering coefficients in both time and frequency domains are finally proposed. 
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Chapter 4  

Numerical results and discussions 

Polycrystals are composed of anisotropic grains and each grain has its own various 

crystallographic orientation, shape and dimension. The grain-to-grain variation of crystallographic and 

morphological characteristics and the anisotropy degree of each crystallite determine the 

inhomogeneity degree of the medium at the scale of polycrystalline microstructure, as well as its 

macroscopic properties such as the crystallographic texture. They accordingly rule ultrasonic 

scattering phenomena at grain boundaries, thereby it is believed that the polycrystalline microstructure 

can be characterized by inversion of data of the scattering-induced attenuation and scattered noise 

signals. 

In this chapter, grain size effects on the ultrasonic wave attenuation and backscattered noises in 

both unimodal and bimodal polycrystals are numerically quantified by using 2D FE modeling. Firstly, 

single-phase, untextured polycrystals composed of equiaxed grains with a unimodal size distribution are 

investigated. Comparisons between the 2D theoretical predictions and the numerical measurements for 

ultrasonic attenuation and backscattering coefficients are conducted to validate the numerical evaluation 

procedure proposed in Chapter 2. Further considerations on crystallographic orientation distribution 

effects and grain shape effects are made and as an original result, effects of the Born approximation on 

the theoretical prediction of the backscattering coefficient are numerically evaluated. Then, ultrasonic 

wave scattering is simulated in single-phase, untextured polycrystals composed of equiaxed grains with 

bimodal grain sizes, for which no theoretical model exists. Effects of several microstructural 

parameters on ultrasonic wave attenuation and backscattered noises are considered: the volume fraction 

ratio between the smaller and the larger grains, the location distribution of the larger grains including 

random and isolated distributions, crystal clusters of the larger grains in the matrix of the smaller 

grains and banded microstructures. Theoretical analysis concerning effects of the spatial correlation 

function is further conducted to establish a quantitative relationship of ultrasonic attenuation and 

backscattering between the unimodal and bimodal microstructures. 
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4.1 Ultrasonic wave scattering in polycrystals with unimodal grain size     

Single-phase and untextured polycrystals comprising equiaxial grains of cubic-symmetry with a 

unimodal grain size distribution are regarded as a classical case in the theoretical investigation of 

ultrasonic wave scattering (Stanke et al. 1984, Weaver 1990, Rose 1992). This relatively simple 

microstructure is first considered in our FE modeling. Different grain sizes are studied and for each 

grain size, polycrystals with single-size regular hexagonal grains and irregular hexagonal grains of 

normal size distribution are considered (see Section 3.1). Numerical evaluation for grain size effects 

on ultrasonic attenuation and backscattering coefficients are subsequently presented, which are further 

compared with analytical predictions to validate the proposed numerical evaluation approaches. 

Effects of the multiple scattering-induced attenuation on the quantification of the backscattering 

coefficient are evaluated, to gain an insight into the validity range of the Born approximation. 

Even if the number of grains is enough to obtain an isotropic material (no crystallographic 

texture), the grain boundary misorientation distribution can be very different between two different 

polycrustalline microstructures. Since the wave attenuation and the backscattering are very sensitive to 

the grain boundary misorientation distribution, and in order to keep the sample size small enough, it is 

chosen to average the simulations on ten different samples with the same set of crystallographic 

orientations, but with different spatial distributions of them. Our numerical results presented in the 

present chapter show that this choice seems to give sufficient statistics of the grain boundary 

misorientation distribution for measuring the attenuation, but not enough for evaluating backscattered 

noises.  

4.1.1 Numerical evaluation of grain size effects on ultrasonic attenuation 

Numerical simulations in rectangular polycrystalline samples of dimension 10.16mm × 20.32mm   

(Fig. 3.1.) with three grain sizes of 80µm , 160µm  and 320µm  are first carried out. Considering the 

ratios of the three grain sizes to involved wavelengths ranging from 375µm  to 3000µm  (the 

correponding frequency range is between 2-16MHz  defined by the external loading presented in 

Section 3.1), scattering behaviors in the stochastic scattering region and the Rayleigh-to-stochastic 

transition region are supposed to be observed. Otherwise, to further include the Rayleigh scattering 

region, a smaller grain size of 20µm  is considered with ratios of grain size to wavelengths x0  less than 

0.35. Comparison of the ultrasonic attenuation coefficients for four grain sizes between the numerical 

results and the 2D analytical predictions developed in Section 2.1.3 is further discussed.  

However, limited by the ratio of grain size to element size d h  and the enormous quantity of 

crystallites (about 570,000 grains), the computational cost is considerably increased for the grain size 

of 20µm . Thus, a sample with reduced dimensions 5.08mm ×10.16mm  is used. It is composed of about 

142,000 grains, which are enough for a good representation of an untextured polycrystalline medium. 

Nevertheless some cautions must be taken in analyzing results obtained in the reduced sample. Firstly, 
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as the dimension of sample is reduced, accordingly the total time interval of analysis is reduced, 

leading to reduced sampling rate in frequency domain. Therefore, contrary to the unreduced sample 

for which the lowest frequency of confidence is equal to 2MHz , it is equal to 4.5MHz  for the reduced 

sample used for the grain size of 20µm . Secondly, as discussed in Section 3.2, numerical calculations 

of ultrasonic attenuation and backscattering converge at a smaller number of d h  for a sample with a 

smaller grain size. In the present work, the ratio d h  is set to be 3.5 for the grain size of 20µm  
( d h = 7, 14, 25  for the grain sizes of 80µm , 160µm  and 320µm , respectively), and the calculation 

converges for an acceptable threshold of 5.5%. Finally, we note that only two samples with distinct 

spatial distributions of crystallographic orientations are considered for this grain size since the 

calculation is more time-consuming. 

4.1.1.1 Grain size effect 

Numerical estimations for the ultrasonic attenuation coefficient of the longitudinal wave are 

presented successively in the frequency domain and in the time domain in this part. 

The numerically measured attenuation coefficients in time domain for four different grain sizes 

are shown in Table 4.1.. It is seen that the attenuation increases with the grain size from 20µm  to

160µm . It is coherent with the analytically predicted variation tendency of attenuation with grain size 

in the Rayleigh domain (2.28). Whereas the attenuation of the largest grain size 320µm  is inbetween 

that of the grain size 80µm  and 160µm . In fact, the analysis in the time and frequency domains is 

correlated. A broadband time signal can be decomposed into a number of discrete frequencies, and the 

contribution of each frequency to the temporal attenuation level can be quantified by the Fourier 

analysis (Fig. 4.1.). Referring to Fig. 4.1., at frequencies f > 6MHz , the attenuation coefficient for the 

grain size of 320µm  is quantitatively smaller than that of grain size of 160µm . It is coherent with the 

comparison of numerically measured attenuation level between the two grain sizes in the time domain. 

Grain size  20µm  80µm  160µm  320µm  

 α (dB/mm) 0.028 	   0.118  0.222  0.141  

Table 4.1. Ultrasonic attenuation in time domain for polycrystalline titanium with different grain sizes  

Numerical measures of the longitudinal wave attenuation as a function of frequency for the four 

different grains sizes are shown in Fig. 4.1.. For each grain size, it is measured by the average 

response over different samples. For a given grain size, the attenuation coefficient increases as 

frequency then gradually becomes insensitive to high frequencies, fluctuating around a steady level in 

high frequency region. Both the increase rate of attenuation as frequency and the transition frequency 

to the plateau are dependent on the grain size. It is observed that the larger the grain size, the earlier 

the transition to the plateau. Specifically, the attenuation of sample with the largest grain size is 

insensitive to frequency in the region 8-16MHz  and shows lower attenuated energy than the grain sizes 
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of 80µm  and 160µm . Particularly, in the whole frequency region of interest, the attenuation in the 

microstructure with grain size of 20µm  increases continuously and keeps the lowest level among 

these four grain sizes. The transition point to a plateau is not observed. These evolutions with 

frequency make difficult a simple comparison between different grain sizes. It is noted that the 

attenuation increases with the increasing grain size in low frequency region 2-6MHz , and on the 

contrary, the attenuation decreases as the increase of grain size from 80µm  to 320µm  in the high 

frequency region 13-16MHz .   

 

Fig. 4.1. Numerical estimations of the attenuation coefficient versus frequency for a longitudinal wave 
in polycrystalline titanium with four different grain sizes 

Numerical estimations of normalized attenuation coefficient per crystallite versus normalized 

frequency for a longitudinal wave in polycrystalline titanium with four different grain sizes using both 

linear and logarithmic scales are presented in Fig. 4.2.. As predicted theoretically in (2.28) and (2.29), 

these master curves are supposed to be independent of grain size d . 

Fig. 4.2.(a) shows that the numerical estimations of αd  as a function of x0  for four different 

grain sizes are roughly superimposed. It is noticed that the attenuation per crystallite increases with 

normalized frequency x0  at low frequencies where x0 < 2 . Furthermore, the attenuation per crystallite 

reaches a plateau with oscillations at high frequencies where x0 > 2 , which is not consistent with the 

analytical prediction as shown in Fig. 4.2.(b).   

With regard to the comparison between the 2D analytical prediction deduced from the Stanke-

Kino model (Section 2.1.3) and the numerical results for the four grain sizes, the overlaps of the latter 

are in good agreement with the analytical master curve, at least up to frequency log10(x0 ) < 0.3  ( x0 < 2 ) 

(Fig. 4.2.(b)). A third power law dependence on frequency characterizing the Rayleigh scattering 

region is confirmed for log10(x0 ) < −0.5 ( x0 < 0.3 ). For intermediate frequencies −0.5 < log10(x0 ) < 0.3

( 0.3< x0 < 2 ), transition from the Rayleigh scattering region to stochastic scattering region is also 

confirmed by the numerical results, however within a shorter frequency interval. Indeed the Rayleigh-
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to-stochastic transition is characterized by two successive humps on the theoretical curve, only the 

first concave hump is recovered by the numerical results. Afterwards, instead of obtaining close to the 

first power law (see Fig. 2.4.) characterizing the second convex hump of the Rayleigh-to-stochastic 

transition as analytically predicted, a plateau with slight oscillations is observed for high frequencies 

0.3< log10(x0 ) < 0.74 ( 2 < x0 < 5.5 ). 

 (a)  (b)  

Fig. 4.2. Numerical estimations for normalized attenuation coefficient per crystallite versus 
normalized frequency for a longitudinal wave in polycrystalline titanium with four different grain 

sizes: (a) αd  as a function of x0 , (b) log10(αd )  as a function of log10(x0 ) , compared to the 2D 
analytical result plotted in Fig. 2.3. 

Several points concerning the comparison between the numerical curves and the analytical 

prediction are interesting to discuss. Firstly, numerically measured attenuation coefficients for all the 

four grain sizes deviate slightly from the analytical prediction at the beginning of each curve, i.e. at the 

beginning of the confident range of frequencies that we have defined. Future analyzes are necessary to 

understand this slight deviation. Secondly, a plateau instead of a first power dependence on the 

normalized frequency for high frequencies 0.3< log10(x0 ) < 0.74  is obtained by numerical measurement. 

We note that for this frequency range, only samples with the grain size of 320µm  contribute to the 

numerical curve and they have much less grains than the samples with the grain sizes of 80µm  and 

160µm . As there are supposed to be more significant dispersions of ultrasonic attenuation between 

samples with a smaller quantity of grains, more samples with the grain size of 320µm  or a 

proportional increase in the size of samples according to the increase in the grain size may be 

necessary to consider. Furthermore, the longitudinal-to-longitudinal scattering part of ultrasonic 

attenuation is less well simulated than the longtidinal-to-shear scattering part, since wavelength of the 

longitudinal wave is larger than that of the shear wave for a given frequency. The plateau numerically 

obtained for high frequencies 0.3< log10(x0 ) < 0.74  seems to be coherent with that of the longitudinal-

to-shear scattering part as analytically predicted in Fig. 2.3.. Future work is required to fully 

understand the plateau for high frequencies 0.3< log10(x0 ) < 0.74 .  
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4.1.1.2 Crystallographic orientation distribution effect 

Dispersions of numerical measurement of ultrasonic attenuation between different samples with 

the same set of crystal orientations, but with different spatial distribution of these grain orientations are 

studied. Only three grain sizes of 80µm , 160µm  and 320µm  are analyzed. To study the dispersions, 

the averaged numerical results, and the minimum and maximum limits among all the samples are 

plotted (Fig. 4.3.).  

 (a) (b)  

(c)  

Fig. 4.3. Discrepancies of the numerical measure of attenuation coefficient from the averaged 
magnitude between different samples with grain sizes of (a) 80µm , (b) 160µm  and (c) 320µm . 
〈α 〉Θ1−Θ10 , min(α )Θ1−Θ10  and max(α )Θ1−Θ10  denote respectively the averaged numerical result, the 

minimum and maximum bounds of ten samples.  

Two interesting phenomena are noticed: Firstly, it is noted that the dispersion level between 

samples for a given grain size increases as the increase of frequency. Secondly, the dispersion level 

between samples seems to depend on grain size for a given frequency: The larger the grain size, the 

larger the dispersions between samples. A preliminary qualitive analysis is given here. Basically, the 

effectiveness of scattering at each grain boundary is controlled by the misorientation between two 

adjacent crystallites. The attenuation level is assumed as the averaged amplitude decay of the incident 

wave at all the grain boundaries through which ultrasonic waves propagate. For a sample with a given 
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finite volume, the larger the grain size, the smaller the number of grain boundaries. Accordingly, the 

dispersion level of attenuation between samples decreases with the number of grain boundaries. We 

recall that there are respectively 35630, 8855 and 2125 grains considered in the studied domain with 

the three grain sizes of 80µm , 160µm  and 320µm , and at least about 4900, 1200 and 300 grains are 

respectively involved with the assumption of a plane ultrasound beam. 

4.1.2 Numerical evaluation of grain size effects on ultrasonic backscattering 

Numerical evaluation of grain size effects on ultrasonic backscattered noise levels is firstly 

presented. As with the attenuation analysis, four grain sizes of 20µm , 80µm , 160µm  and 320µm  are 

studied. Comparison between the numerical estimations and the 2D theoretical prediction (Section 

2.2.4.3) is conducted. Then, analysis of influence of crystallographic orientation distribution and grain 

shape on the evaluation of ultrasonic backscattering is conducted. Effects of the use of the Born 

approximation on the theoretical prediction of the backscattering coefficient are finally quantified. 

4.1.2.1 Grain size effect  

Backscattered noises recorded during the time interval [0, Tf ] as indicated in Fig. 3.10. are 

analyzed. Numerical measures of the backscattering coefficient are firstly considered in the frequency 

domain using the numerical approach defined in Section 2.2.4.2. Then, backscattered noise levels are 

also estimated and analyzed in time domain. 

Numerical estimates of the averaged backscattering coefficient of different samples for four grain 

sizes are shown in Fig. 4.4.. The backscattering coefficient increases with frequency whatever the 

grain size. In low frequency region, the larger the grain size, the more important the backscattered 

noise level. While in high frequency region, the backscattered noise levels are seen to decrease with 

grain size except for the smallest grain size. Moreover in high frequency region, the backscattering 

coefficient in  

 

Fig. 4.4. Averaged backscattering coefficient of ten samples numerically estimated as a function of 
frequency for polycrystalline titanium with four grain sizes of 20µm , 80µm , 160µm  and 320µm . 
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the sample with the largest grains, i.e. 320µm  becomes nearly constant while the backscattering 

coefficients of the samples with grain sizes of 80µm  and 160µm  keep increasing with frequency. The 

sample with the smallest grain size of 20µm  shows a very low level of backscattering coefficient with 

respect to the other three grain sizes. 

Otherwise, Fig. 4.5. compares the master curves obtained theoretically and numerically, i.e. the 

previously compared curves are plotted again in terms of the backscattering coefficient per crystallite 

(ηd )Spc  and the normalized frequency x0 . The two master curves numerically calculated for the grain 

sizes of 20µm , 80µm  and 160µm  are well superimposed in the low frequency range ( x0 < 0.4 ) and 

are consistent with the lower bound of theoretical prediction (ηd )SpcMin . Then they rapidly increase 

with a slight fluctuation, keep being more or less superimposed and are bounded by the lower and 

upper theoretical bounds. Finally in the high frequency range ( x0 > 2 ) the two numerically calculated 

master curves for the grain sizes of 160µm  and 320µm  gradually decrease and tend to a constant level 

defined by the lower theoretical bound (ηd )SpcMin  rather than the upper bound (ηd )SpcMax . This 

phenomenon is not yet well understood. However we believe that the relatively high degree of 

anisotropy of the studied material may be a reason as the use of the Born approximation should be no 

more relevant (see Section 4.1.2.3).  

 

Fig. 4.5. Comparisons in the frequency domain between theoretical and numerical estimates of 
backscattering coefficient per crystallite as a function of the normalized frequency x0 . 

It is of interest to exhibit the variation ranges of the backscattering coefficients between samples. 

Three curves of maximum values, mean values and minimum values of the backscattering coefficient 

for ten samples of each grain size are plotted respectively in dash-dotted, solid and dotted lines in Fig. 

4.6.. Circle markers are used on the curves of the mean values. The analytical predictions with ηSpcMin  
and ηSpcMax  are plotted in solid and dash lines. For the grain sizes of 80µm , 160µm  and 320µm , the 

averaged response obtained by the numerical simulations fluctuates between the two analytical bounds 

ηSpcMin  and ηSpcMax , its variation tendency with the frequency is consistent with the analytical 

prediction. Significant gaps between the curves of maximum values and minimum values of the 

backscattering coefficient for the studied samples are obtained. More particularly, the maximum 
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values of backscattering coefficient obtained by different samples are larger than the theoretical upper 

bound ηSpcMax  in high frequency range. This point could result from a limited number of grain 

boundaries with significant dispersions of misorientations in a given sample, which will be further 

discussed in Section 4.1.2.2. Particularly, for the smallest grain size of 20µm , only two samples are 

carried out. Small dispersions between these two samples are observed, and the mean backscattering 

level remains comparable to the analytical lower bound ηSpcMin  for most of frequencies, but this is not 

statistically significant. So emphasis is given to the other three grain sizes in the following discussions. 

(a) (b)

(c) (d)  

Fig. 4.6. Comparisons in the frequency domain between theoretical and numerical estimates of 
backscattering coefficients for four grain sizes (a) 20µm , (b) 80µm , (c) 160µm  and (d) 320µm .  

Numerical measures of grain size effects on the backscattered noise levels in the time domain are 

conducted using the approach proposed in Section 3.4.3.1. Fig. 4.7. presents, for the three grain sizes 

of 80µm , 160µm  and 320µm , the normalized rms noise level at the two central frequencies 5MHz  

and 10MHz  defined by the two incident Ricker signals. It is observed that for both frequencies the 

maximum noise level occurs at around t = 0.8µs , which corresponds to a depth of about 2.3mm below 

the emitter/receiver line Le in the studied domain. Considering that the incident signal with normal 

distributed amplitude is imposed on Le  (Fig. 3.3.), probably it is inferred from this maximum noise 

level that the amplitude of the plane wave becomes more and more in phase arriving at the depth of 

about 2.3mm. Afterwards the noise level decreases probably because the attenuation gradually 
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increases with increasing propagation distance. The highest noise level is given by the grain size of 

160µm  for f = 5MHz  and by the grain size of  80µm  for f =10MHz , and on the other hand, the grain 

size of 320µm  gives the lowest noise level for f =10MHz . They are qualitatively in good agreement 

with the previous numerical measurement in the frequency domain (Fig. 4.4.), except for the 

indistinguishable noise level in the time domain for the grain sizes of 80µm  and 320µm at f = 5MHz . 

However, by comparison with the theoretical results (Fig. 2.8.), the theoretical curve for the grain size 

of 160µm  is still above the one for the grain size of 80µm  at f =10MHz , while in Fig. 4.7.(b)) the 

numerical simulation gives a noise level for the grain size of 160µm  lower than the one for the grain 

size of 80µm . It seems that the transition from the stochastic region to the geometric scattering region 

numerically occurs earlier than the theoretical prediction.  

 (a) (b)  

Fig. 4.7. Normalized rms noise level in the time domain for three grain sizes at the central frequencies 
(a) f = 5MHz , and (b) f =10MHz . 

4.1.2.2 Crystallographic orientation distribution effect 

Dispersions of backscattering between samples with a same set of crystallographic orientations, 

but different spatial distributions of these grain orientations are analyzed in this section. Fig. 4.8. 

presents, in the case of the grain size of 80µm , large variations between the numerically calculated 

backscattering coefficient for three different samples. In fact the backscattering coefficient in the 

frequency domain for each sample fluctuates greatly up and down with erratically placed peaks and at 

some frequencies the backscattering coefficient can be very low and approach zero (Fig. 4.8.(a)). 

Numerical evaluations of the backscattering coefficient for one sample, then by averaging over five 

and ten samples are compared in Fig. 4.8.(b). Increasing the number of samples can obviously smooth 

out fluctuations and improve the comparison between theoretical and numerical evaluations.  



8
6	   CHAPTER	  4.	  NUMERICAL	  RESULTS	  AND	  DISCUSSIONS	  

 

 
  

86 

(a) (b)  

Fig. 4.8. Backscattering coefficient in the frequency domain for the grain size of 80µm : (a) Variations 
between three samples; (b) Influence of the number of samples on the averaged backscattering 

coefficient. 

To provide some insight into the fluctuations of the backscattering coefficient with frequency, we 

consider in the following a group of seven adjacent grains of 80µm , denoted Ξ  and embedded in the 

homogeneous reference medium (Fig. 4.9.(a)). The seven grains are numbered as indicated in Fig. 

4.9.(a) and the centroid of the first grain coincides with the origin of the whole measurement system 

(Fig. 2.7.). Each grain has a randomly defined crystallographic orientation θ  and the phase velocity 

deviations ΔvqL (θ ) = (vqL (θ ) − v0L ) v0L from the reference medium along the e2  direction for the 

longitudinal wave are respectively equal to -0.06%, +5.3%, -4.1%, -0.8%, +0.5%, +1.7%, +4.5%. 

According to the theoretical principle of the isolated scatterer model, eight numerical simulations are 

performed: One simulation with all seven grains involved and seven contrast simulations each of 

which has only one grain involved without changing its location.  

To illustrate the numerical results, Fig. 4.9. presents the time domain response recorded at the 

10th receiver and the backscattering coefficient in the frequency domain for three grains: 2th, 3th and 

6th (η  instead of ηSpc  is plotted versus f since Spc  is the area of one grain in the case of the isolated 

scatterer). In the time domain, two primary noise signals scattered by a single grain are observed, 

which correspond respectively to the longitudinal-to-longitudinal wave scattering and longitudinal-to-

shear wave scattering. It seems that a larger velocity deviation ΔvqL (θ )  results in higher levels of 

backscattered noise signals in both time and frequency domains. Moreover with equal level of velocity 

deviation, a grain slower than the reference background gives rise to a higher level of noises 

backwards than a grain faster than the reference background. In the frequency domain, the 

backscattering coefficient remains oscillating but with very small amplitudes and increases with 

frequency on the whole. There is no more backscattering level falling down to zero.  

It is shown that the analytical prediction is quantitatively comparable to the backscattering level 

of an isolated grain with about 1.7% velocity variation from the isotropic reference medium, and 

significantly smaller than the one with a large magnitude of phase velocity variation ΔvqL (g I )  (Fig. 
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4.9.(b)). In fact, the use of the single-scattering approximation and the Born approximation confines 

the validity of the analytical prediction to slight variation of elastic properties from the equivalent 

homogeneous medium. 

(a) (b)  

Fig. 4.9. (a) Time-series scattered noise signals at the 10th receiver and (b) frequency dependence of 
the backscattering coefficient for three isolated grains within a homogeneous isotropic medium, with 

the phase velocity deviations ΔvqL  from the reference medium along the e2  direction for the 
longitudinal wave being respectively equal to +5.3%, -4.1%, and +1.7%. 

Based on the independent scattering approximation using the isolated scatterer model, individual 

contributions of each grain to the backscattered noise signals are added incoherently Σ I=1
I=7u2

b(x10 , t, g I ) . 

Fig. 4.10.(a) compares this sum to u2
b(x10 , t, Ξ) , which is the backscattered displacement fields in the 

e2  direction recorded at the 10th receiver x10  for the medium Ξ  with all seven grains involved. 

Insignificant differences between them are observed, which are in fact the part due to the multiple 

scattering.  

Otherwise in the frequency domain, two alternative approaches are proposed to numerically 

evaluate the backscattering coefficient of the medium Ξ . The first one is directly calculated using the 

numerical simulation involving all the seven grains as η(ω , Ξ) = (β VΞ )δS(ω , Ξ)δS* (ω , Ξ)  (referring to 

(2.93) with “Θ = Ξ ” specifically denoting the crystallographic orientation distribution of the medium). 

Ξ ). The second one is estimated by averaging over the independent contributions of each grain

(β Vg ) 〈δS(ω , g I )δS* (ω , g I )〉  (referring to (2.93) and (2.95) with “Θ = g I ” particularly representing the 

crystallographic orientation of the Ith grain g I  belonging to Ξ ), which is exactly the application of the 

independent scattering approximation. Significant differences are then observed between the measured 

backscattering by these two methods and also with the analytical prediction (Fig. 4.10.(b)).  
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 (a)  (b)  

Fig. 4.10. Analysis of the independent scattering approximation. (a) Comparison of time domain 
signals between the medium Ξ  with all seven grains involved, u2

b(x10 , t, Ξ) , and the incoherent 
addition of the medium with isolated grains, Σ I=1

I=7u2
b(x10 , t, g I )  for the backscattered displacement field 

in the e2  direction recorded at the 10th receiver x10  and at the moment t; (b) Comparison of 
backscattering coefficients calculated using the reciprocity theorem by 

η(ω , Ξ) = (β (ω ) VΞ )δS(ω , Ξ)δS* (ω , Ξ) , and calculated using the single scattering approximation by 
〈δS(ω , g I )δS* (ω , g I )〉 Vg . 

To explain those differences, the following estimation of δS(ω , Ξ)δS* (ω , Ξ)  in the frequency 

domain is written based on the assumption that the scattered noise signal ub(x j , t, Ξ)  recorded at 𝑗th 

receiver is the sum of the contribution of each individual grain ub(x j , t, g I ) : 

 

δS(ω , Ξ)δS* (ω , Ξ) = T (xi ,ω ) ⋅ ub(xi ,ω , g I )
I∑i∑( ) T (x j ,ω ) ⋅ ub(x j ,ω , g J )

J∑j∑( )* (Δx)2
= T (xi ,ω ) ⋅ub(xi ,ω , g I )

i∑( ) T (x j ,ω ) ⋅ub(x j ,ω , g J )
j∑( )*I=J∑ (Δx)2

+ T (xi ,ω ) ⋅ub(xi ,ω , g I )
i∑( ) T (x j ,ω ) ⋅ub(x j ,ω , g J )

j∑( )*I≠J∑ (Δx)2

= VΞ

Vg
〈δS(ω , g I )δS* (ω , g I )〉 + δS(ω , g I )δS* (ω , g J )

I≠J∑

 (4.1) 

where Δx  is the distance between two adjacent receivers. We note that (4.1) is true because the stress 

vector T (xi ,ω ) =T 0 (xi ,ω )  is prescribed on the emitter line and is therefore identical in all the 

simulations (see (2.94)). Two terms are therefore emphasized in (4.1), an auto-correlation term of each 

grain and a cross-correlation term between different grains. When the number of grains contributing to 

noise echo signals tends to infinity, the cross-correlation term tends to zero, according to the 

assumption that 〈δC I ⊗δC J 〉 = 0  when I ≠ J . Thereby the incoherent sum of grain contribution 

〈δS(ω , g I )δS* (ω , g I )〉 Vg  should be a good approximation to δS(ω , Ξ)δS* (ω , Ξ) VΞ , which is far from 

the case with only seven grains. In the same way, only in the case of a sufficiently large number of 

grains contributing to the received noise echo signals, the backscattering coefficient estimated by 

using 〈δS(ω , g I )δS* (ω , g I )〉 Vg  would be comparable to the analytical prediction. Otherwise the cross-

correlation term leads to oscillations due to the alternatively positive and negative phase velocity 

deviations and results in fluctuations in the backscattering coefficient for a sample, as the volume of 
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polycrystalline sample travelled by the ultrasonic beam always contains only a limited number of 

grains.  

We believe that the number of grains contributing to the backscattering has a significant influence 

on the oscillatory levels of the numerically estimated backscattering coefficient. Increasing the number 

of studied samples should lead to a smoother curve of the backscattering coefficient. Generally 

Margetan et al. propose to use 100 to 1000 waveforms per analysis, given that the receiver positions 

are chosen to be as widely spaced as possible to reduce the interactions (Margetan et al. 1994). For the 

averaged numerical results shown in the paper, with 22 receivers and 10 calculated samples, 220 

waveforms have been analyzed.  

4.1.2.3 Some discussions on the effect of the use of the Born approximation 

By applying the Born approximation in the theoretical analysis, noises scattered by a grain are 

assumed to propagate to receivers without further perturbations by the microstructure. In the analytical 

development, this is done by replacing the scattered displacement field by the unperturbed field 

obtained in the homogeneous reference medium. However, considering the relatively high degree of 

anisotropy of the material considered in the present work, multiple scattering effects should be 

important since the noise signals can be scattered again at grain boundaries. One of the effects due to 

the multiple scattering is that noises signals can be attenuated by their interaction with the 

microstructure especially in high frequency regions. A more sophisticated modeling, such as the 

second order Keller approximation within the perturbation theory (Stanke et al. 1984), allows to take 

into account more appropriately the multiple scattering, however it makes the evaluation of 

backscattering coefficient more complex. In the following a numerical investigation is proposed to 

partially correct the incoherence in the backscattering coefficient in high frequency regions observed 

in Fig. 4.6. between the numerical and analytical evaluations. 

Indeed the attenuation due to the multiple scattering is automatically included in our numerical 

evaluation since the scattered field is entirely solved, which is not the case for the analytical evaluation. 

Therefore, it would be interesting to quantify the omission of the attenuation effects due to the use of 

the Born approximation and use it to modify numerical data for a more appropriate comparison 

between the theoretical prediction and the numerical simulation. This would improve the 

understanding of the ultrasonic propagation characteristics in polycrystalline materials with high 

degree of elastic heterogeneity. 

To take into account the attenuation effect due to the polycrystalline microstructure in the 

theoretical analysis presented in Section 2.2.4, it is assumed that the frequency dependent attenuation 

coefficient α (ω )  is known, and then the unknown scattered displacement field is replaced by the 

following attenuated incident wave mode: 

 u1→2 (x) ≈UL
0eincexp(ik0Leinc ⋅ x)exp( −α (ω )einc ⋅ x)  (4.2) 
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The only difference with (2.88) is the term exp( −α (ω )einc ⋅ x) .   

Then it is straightforward that (2.90) should be accordingly modified as follows: 

 
ηatt (ω , escat )

β
Vpc

ω
4P0 (ω )

⎛
⎝⎜

⎞
⎠⎟

2

(UL
0 )4 (k0L )2 α 2 + (k0L )2( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

= d x
Ω∫ d x'

Ω∫ W (r)exp −2ik0Lescat ⋅ (x − x' )( )exp( −α (ω )escat ⋅ (x + x' ))( )Escat : 〈δC g ⊗δC g 〉 : Escat

 (4.3) 

where ηatt  denotes the theoretical backscattering coefficient with introduction of the attenuation effect.  

As it is found that we have k0L ≥ 200α  for the material and in the frequency region of interest 

considered in the present work, consequently the term α 2 + (k0L )2  is approximated by (k0L )2 , finally 

(2.101) becomes: 

 ηatt (ω ) =η(ω )
1
Vpc

d s 
Ω∫ exp( − 2α (ω )escat ⋅ s)

⎛
⎝⎜

⎞
⎠⎟

 (4.4) 

We obtain therefore a frequency dependent correction multiplier related to the attenuation effect 

due to the multiple scattering: 

 corr(ω ) = 1
Vpc

d s 
Ω∫ exp( − 2α (ω ) escat ⋅ s) =

1− exp( −α (ω )D)
α (ω )D

 (4.5) 

with 𝐷 the propagation distance.  

By numerically estimating α (ω )  in the frequency domain, corr(ω )  can be calculated. Fig. 4.11. 

shows the attenuation correction factor corr(ω )  as a function of frequency for the three grain sizes. It 

is noted that for a given medium, corr(ω )  decreases as frequency increases then fluctuates around a 

steady level in the high frequency region. The fluctuations of corr(ω )  are due to the fluctuations of the 

numerically calculated attenuation coefficient α (ω )  in the high frequency region. So the effect of 

attenuation is more important in higher frequency ranges. At low frequencies, this factor decreases 

with the increase of grain size. By contrast, the sample with the smallest grain size shows the largest 

attenuation correction factor in the high frequency region.  

To evaluate the influence of the attenuation neglected by the Born approximation, the numerical 

result is modified in the following way and then compared to the theoretical prediction: 

 ηBorn (ω ) =
η(ω )
corr(ω )

 (4.6) 

Fig. 4.12. compares the theoretical prediction of the backscattering coefficient to the numerical 

measurements with or without the Born approximation for the three grain sizes. No significant 

differences are observed in the low frequency region. However as expected the backscattering 

coefficient corrected by considering the attenuation is significantly higher than the one obtained 

without the Born approximation in the high frequency region of f >10MHz  especially for the grain 
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sizes of 80µm  and 160µm . These first results seems to confirm the fact that the Born approximation is 

acceptable in the Rayleigh scattering region, but in a higher frequency region, the Born approximation 

does overestimate the backscattering effectiveness of the medium as the wave is more and more 

significantly attenuated due to multiple scattering 

 

Fig. 4.11. Attenuation correction factor corr(ω )  for three grain sizes 

 (a) (b)  

(c)  

Fig. 4.12. Analysis of the effect of the Born approximation on the numerically measured 
backscattering coefficient for the grain sizes of (a) 80µm , (b) 160µm  and (c) 320µm . 
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4.1.3 Grain shape effect  

To check possible numerical artifacts due to the shape of regular hexagonal grains, FE 

simulations are performed for the microstructures with irregular hexagonal grains (Section 3.1). 

Comparisons of the both coefficients of attenuation and of backscattering between the regular and 

irregular hexagonal grains are shown respectively in Fig. 4.13. and Fig. 4.14. Almost identical 

amplitude between two cases is observed in the low frequency region, and only slight deviations are 

found in the high frequency region of f >10MHz . 

 

Fig. 4.13. Comparison of the attenuation coefficient between microstructures with regular and 
irregular hexagonal grains 

 (a) (b)  

Fig. 4.14. Comparison of the backscattering coefficient between the regular and irregular hexagonal 
grains of averaged grain sizes (a) 80µm  and (b) 160µm . 

The very small differences of the attenuation and backscattering coefficient observed between the 

regular and irregular grains can be explained by considering the spatial correlation function of both 

types of microstructures. Indeed, differences in the attenuation ((2.37)-(2.39)) and backscattering 

((2.89) or (2.90)) coefficients between microstructures containing regular or irregular hexagonal grains 

with the same randomly-distributed crystallographic orientations are only due to the spatial correlation 

functions W (r) , which depends upon the grain size and shape. Under the assumption that the media 
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are statistically isotropic and ergodic, W (r)  has a spherical symmetry and depends only on r = r  the 

distance between two points. Therefore it is convenient to calculate W (r)  in the wave propagation 

direction, which is the direction e2  in our study. As referred to Stanke (Stanke 1986), an 

approximation of W (r)  can be deduced considering a microstructure composed of a sufficiently large 

number N of grains in the following way: 

 WN (r) = 〈
(cI − r)+I=1

N∑
cII=1

N∑
〉  (4.7) 

Here cI is the length of a line segment parallel to the propagation direction passing through one grain 

with its end points falling on the grain boundary, named chord length (Fig. 4.15.), (⋅)+  is the positive 

part of (⋅)  and 〈⋅〉  represents the spatial average over the whole sample.  

For the microstructure with single-size regular hexagonal grains, WN (r)  is independent on 𝑁 and 

is therefore simple to calculate. For irregular hexagonal grains, it is possible to obtain the chord 

lengths in each grain along any line parallel to e2 , but the computation amount is huge since a 

sufficiently large number of grains have to be processed. Thus, an alternative approach is proposed by 

considering first a regular hexagonal grain having an equivalent area to the irregular hexagonal grain 

g I , and then taking the diameter HI  of inscribed circle to this equivalent regular hexagonal grain. 

Finally, an approximation of W (r)  for the medium with irregular hexagonal grains is expressed as: 

 WN (r) ≈ 〈
(HI − r)+I=1

N∑
HII=1

N∑
〉  (4.8) 

Indeed, under assumption that the media are statistically isotropic and ergodic, (4.8) gives a good 

estimation of (4.7). 

Spatial correlation functions for both microstructures with irregular or regular grains are 

presented in Fig. 4.16.. It is obvious that the difference in W (r)  between both microstructures with 

regular or irregular grains with the same effective grain size are very small. Hence this study provides 

an analytical insight into little differences observed in the attenuation and backscattering coefficients 

between the two microstructures. Two conclusions are drawn here: there is no numerical artifact for 

calculations with idealized microstructure composed of single-size regular hexagonal grains. 

Furthermore, slight influence of the geometrical orientation of grain boundaries on the ultrasonic wave 

scattering is found.  

Moreover, they are compared with the spatial correlation function of polycrystals containing 

random-shaped equiaxed grains with Poisson grain size distribution expressed in an inverse 

exponential form (2.23). It is noticed that the differences between the regular hexagonal single-size 

grains and the theoretical model of randomly shaped and equiaxed grains with Poisson distribution are 

no more than 10%. The maximum difference occurs at the distance equal to the mean grain size 80µm . 
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It is concluded that the ultrasonic wave scattering level in microstructures containing single-size 

regular hexagonal grains can give a good representation of the one containing irregular hexagonal 

grains with a normal size distribution. Further study may be necessary for microstructures containing 

randomly-shaped grains with a Poisson size distribution, in order to see if it is possible to characterize 

the grain size distribution by inversion of the ultrasonic attenuation and backscattering. 

 

Fig. 4.15. Diagram of spatial correlation function measurement for microstructures with irregular and 
regular hexagonal grains, cm  denotes the chord length in the grain gm along the wave propagation 

direction. 

 

Fig. 4.16. Comparison of the spatial correlation function between microstructures with regular or 
irregular hexagonal grains. 

4.2 Ultrasonic wave scattering in polycrystals with bimodal grain size 

Polycrystals with a bimodal grain size distribution are frequently observed during the 

thermomechanical processing. For example, the heterogeneous grain growth during recrystallization can 

lead to some exceptionally large grains (e.g. (Garcin et al. 2016)). Another example is a layered 

microstructure with bands of coarse and fine grains, which frequently occurs in metals processed by 

rolling or extrusion (e.g. (Zeng et al. 2010)). The equivalent area diameter is usually used to quantify 

correlation of ultrasonic scattering signals to grain size in the experimental NDE (e.g. (Zeng et al. 2010, 

Garcin et al. 2016)). Good coherence with the classical unified theory can be found when the spread in 
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the grain size distribution is small. However, the ultrasonic wave scattering in the bimodal 

microstructure with high degree of grain size heterogeneity is probably beyond the prediction of the 

classical theory. To the best of my knowledge, few efforts have been made to analytically investigate the 

ultrasonic scattering in polycrystals with bimodal grain size distribution. Accordingly, it is of great 

interest to conduct FE simulations about ultrasonic propagation in microstructures with bimodal grain 

size. Advantage is highlighted in this case due to the flexibility in modifying the microstructural model 

and the calculation accuracy. 

To gain a preliminary understanding of effects of grain size heterogeneity on the ultrasonic wave 

scattering, an idealized, single-phase and untextured microstructure with double-size, regular hexagonal 

grains are considered. It is composed of the smaller grain size of 80µm  and the larger grain size of 

320µm . 2D FE model and the imposed incident signals are defined as the same as the ones for the 

unimodal microstructure (Section 3.1). Overall, the following two factors probably affecting ultrasonic 

wave scattering in such a microstructure are investigated: the volume fraction of the larger grains FLG, 

the location distribution of the larger grains XLG. We remark that the subscripts “SG” and “LG” represent 

respectively the smaller and the larger grains, and for convenience, a bimodal microstructure specifically 

denotes a single-phase, untextured microstructure with double-size equiaxed grains in the present work. 

Firstly, effects of the volume fraction of the larger grain on the ultrasonic wave scattering are 

investigated, by considering three different values FLG = 10%, 45%, 80%. Secondly, different types of 

location distributions of the larger grains X LG  are conducted for FLG = 45%: a random location 

distribution resulting in NLG ∈[1,∞] , an isolated location distribution with NLG =1 , forming clusters of 

the larger grains with random NLG ∈[1,10]  or with a unique number of NLG =10 , and banded 

microstructures. The variable NLG  denotes the number of the larger grains in each cluster. Influence of 

location distributions of the larger grains on ultrasonic attenuation and backscattering is discussed. 

Theoretical analysis on effects of the spatial autocorrelation function on ultrasonic attenuation and 

backscattering in bimodal microstructures is conducted. 

4.2.1 Effects of volume fraction of the larger grains 

4.2.1.1 Bimodal microstructures with different volume fractions of the larger grains 

The bimodal microstructural models in OOFE code are generated in two steps. Firstly, the 

crystallographic orientations and the coordinates of central points for the smaller grains are input, and 

the whole microstructure part is filled with the smaller grains. Secondly, information of a given 

number of crystallographic orientations and of coordinates of randomly selected grain centers are used 

to create the larger grains. Meanwhile, the smaller grains in the overlapped area with the larger grains 

are deleted. Bimodal microstructures with three different volume fractions of the larger grains, FLG =
10%, 45%, 80%, are shown in Fig. 4.17., with the larger grains randomly-located in the matrix of the 

smaller grains.  
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 (a)  

 (b)  

 (c)  

Fig. 4.17. Numerical models of bimodal microstructure composed of grain sizes of 80µm and 320µm , 
with three volume fractions of the larger grains (a) FLG =10%, (b) FLG = 45%,  (c) FLG = 80%.  

A particular point has to be pointed out for the numerical model of bimodal microstructures 

generated in the present work. Due to the geometrical feature of regular hexagon, the adjacency 

between the larger and the smaller grains is always accompanied by three semi-hexagons, as shown in 

Fig. 4.18.. Each of them has half of the area of the smaller grains. The total area of these semi-

hexagons is no more than 0.94%, 4.20% and 1.40% of the whole sample area respectively for three 

distinct volume fractions FLG = 10%, 45%, 80%. Additionally, the attenuation level of each semi-

hexagon is about 50% of the attenuation of each small grain since they are both in the Rayleigh region 
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for most of considered frequencies. Consequently, the influence of these semi-hexagons on the wave 

scattering can be neglected within the permitted tolerance range.  

    

Fig. 4.18. Zoomed view on the adjacency between the larger and the smaller grains in a bimodal 
microstructure with grain sizes of 80µm  and 320µm  

4.2.1.2 Effects of volume fraction of the larger grain on ultrasonic attenuation and backscattering 

Numerical estimates of the attenuation and backscattering coefficients are respectively presented 

in Fig. 4.19. and Fig. 4.20. for bimodal microstructures with grain sizes of 80µm  and 320µm  for three 

values of FLG =  10%, 45%, 80%. For each case of FLG , the averaged response of ten samples with 

different spatial distributions of crystallographic orientations for the larger grains is plotted, where 

spatial distributions of crystallographic orientations for the smaller grains and the grain location 

distributions remain unchanged. They are compared with the attenuation and backscattering 

coefficients in the unimodal microstructures with grain sizes of 80µm  and 320µm  respectively.  

It is interesting to notice that both the attenuation and backscattering coefficients of bimodal 

microstructures are in-between the ones of unimodal microstructures whatever the value of FLG. They 

pass approximately by the intersection point of curves of the two unimodal media, at the frequency of 

about 9MHz for the attenuation, and about 8MHz for the backscattering. Specifically, the attenuation 

and backscattering levels of a bimodal microstructure decreases with the volume fraction of the larger 

grain size at frequencies lower than the intersection point and this tendency is reversed afterwards. 

Considering an extremely low fraction of the larger grains, discrepancies of the attenuation and 

backscattering between the bimodal medium and the unimodal microstructure with the grain size of 

80µm are indistinguishable. On the other hand, as the increase of the volume fraction of the larger 

grains, the attenuation and backscattering of the bimodal microstructure approach gradually to that of 

the unimodal microstructure with grain size of 320µm .  
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Fig. 4.19. Frequency dependence of attenuation within bimodal microstructures with grain sizes of 
80µm  and 320µm  for three cases of volume fractions of the larger grains FLG =  10%, 45%, 80%. 

 (a) (b)  

 (c)  

Fig. 4.20. Frequency dependence of the backscattering within the bimodal microstructures with grain 
sizes of 80µm  and 320µm  for three cases of volume fractions of the larger grains (a) FLG =10%,  (b) 

FLG = 45%,  (c) FLG = 80%.  
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4.2.2 Effects of the location distribution of the larger grains 

The dimension of the studied polycrystalline sample is restricted by the high computational cost, 

so there exist for example only 1000 larger grains in the bimodal microstructure with the volume 

fraction FLG = 45%. The relatively small number of the larger grains in bimodal microstructures 

considered herein increases greatly the probability of heterogeneous location distribution, making it 

necessary to consider the influence of the location distribution of the larger grains X LG  on ultrasonic 

wave scattering. In this section, five different types of X LG  are considered: a random location 

distribution with NLG ∈[1,∞] , a location distribution with clusters of the larger grains with a random 

distribution of NLG ∈[1,10] , a location distribution with clusters containing 10 larger grains NLG =10 , 

an isolated location distribution with NLG =1 , and banded microstructures. Several samples with 

different location distributions of the larger grains for each distribution type are conducted. Dispersions 

between samples as well as the averaged responses of ultrasonic attenuation and backscattering for 

different distribution types are discussed in the sole case of FLG = 45% , which corresponds to nearly the 

maximum volume fraction we can generate with NLG =1  (i.e. there is no cluster of the larger grains).  

4.2.2.1 Bimodal microstructures with different types of location distributions of the larger grains 

Firstly, a random location distribution of the larger grains is regarded as a general case, with 

individual location of each grain randomly-selected (Fig. 4.21.(a1)). Statistics for six samples with 

randomly distributed larger grains suggests that about 70% of the larger grains are isolated, and the 

rest form clusters with NLG ∈[1,4]  for the volume fraction of FLG = 45%  (Fig. 4.21.(a2)).  

Secondly, to model the inhomogeneous grain growth during the recrystallization processing 

(Garcin et al. 2016), numerical models of bimodal microstructures containing clusters are built. Two 

particular cases are considered: clusters with a random distribution of NLG ∈[1,10]  (Fig. 4.21.(b1)) and 

clusters with a unique number of NLG =10  to display the influence of clusters on the wave scattering to 

the largest extent (Fig. 4.21.(c)). Frequency distribution of NLG  in each cluster for the former case is 

plotted in Fig. 4.21.(b2), and it is seen that fewer than 5% of large grains are isolated. All the clusters in 

these two cases are random-shaped and their center points are randomly distributed. The isolated 

distribution ( NLG =1 ) is considered as a reference case, with all the larger grains isolated in the matrix 

of the smaller grains (Fig. 4.21.(d)).  



1
00	   CHAPTER	  4.	  NUMERICAL	  RESULTS	  AND	  DISCUSSIONS	  

 

 
  

100 

 (a1)  (a2)  

(b1)  (b2)  

(c)    (d)  

Fig. 4.21. Bimodal microstructures with four different location distributions of the larger grains in the 
matrix of the smaller grains for FLG = 45% : (a1) a random location distribution and (a2) frequency 

distribution of NLG  for a random location distribution; (b1) forming crystal clusters of the larger 
grains with NLG ∈[1,10]  and (b2) frequency distribution of NLG  for the case of NLG ∈[1,10] ; (c) 

forming clusters of the larger grains with a unique number NLG = 10; (d) an isolated location 
distribution with NLG = 1; FLG  denotes the volume fraction of the larger grain and NLG  denotes the 

number of the larger grains in each cluster. 
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A layered microstructure with bands of coarse and fine grains through thickness gradients 

frequently occurs in metals processed by rolling or extrusion, because some grains resist refinement 

more than others during the thermomechanical processing. These banded microstructures have been 

observed in the research work on the polycrystalline niobium by Zeng et al. (Zeng et al. 2010) and 

Hartwig et al. (Hartwig et al. 2007), which can exhibit unacceptably low mechanical strength. 

However, for the application of NDE, few efforts have been devoted to the study on the effect of 

banded microstructures on the ultrasonic wave scattering. Zeng et al. applied the single-scattering 

approximation to a hypothetical banded microstructure, where each layer of a specific thickness has a 

different grain size and corresponding attenuation. Such an idealized microstructure with bands of the 

larger and the smaller grain sizes of 80µm  and 320µm  for the given volume fraction FLG = 45%  is 

used in our FE simulations. Two-layer, three-layer and four-layer structures are considered (Fig. 4.22.). 

Unlike the overly simplified analytical model of Zeng et al., the complexes physical mechanism of 

ultrasonic wave scattering in such idealized microstructure, such as effects of multiple scattering and 

the long-range correlation between grains, is included in our numerical modeling. The objective is to 

answer the open question whether such microstructures with bands of different grain sizes can be 

detected using an ultrasonic wave signals.  
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 (a)  

(b)  

(c)  

Fig. 4.22. Banded bimodal polycrystals with (a) two-layer, (b) three-layer and (c) four-layer 
microstructures 

4.2.2.2 Effects of location distributions of the larger grains on ultrasonic attenuation and 
backscattering 

Dispersions of ultrasonic attenuation over six samples for each type of location distribution of the 

larger grains, except for the banded location distributions there are only three samples, are at first 

presented in this section, followed by the averaged ultrasonic attenuation and backscattering over five 

types of location distributions of the larger grains. 



1
03	   CHAPTER	  4.	  NUMERICAL	  RESULTS	  AND	  DISCUSSIONS	  

 

 
  

103 

The limited number of the larger grains in the studied bimodal microstructures makes the grain 

location distribution for each specific sample nonuniform and anisotropic in each spatial direction, 

especially for the samples containing clusters with ten large grains in each cluster. Fig. 4.23. shows 

dispersions of the attenuation coefficient between different samples for each distribution type. It is 

observed that the deviation from the averaged response of each specific sample can be significant. For 

example, the fifth sample with randomly distributed large grains exhibits much greater attenuation 

level than the other samples at low frequencies, approaching to the attenuation level of the unimodal 

microstructure with the larger grain size. The first sample with NLG = 10 shows much more significant 

attenuation coefficient at high frequencies, similar to the one of the unimodal medium with the smaller 

grains quantitatively.  

This phenomenon can be explained by two principle reasons. Firstly, for each distribution type, 

the set of crystallographic orientations for each grain remains unchanged. However, as the location 

distribution of the larger grains is changed, grain boundary misorientations between each larger grain 

and the smaller grains around are modified, which cause directly dispersions of ultrasonic attenuation 

between samples. Furthermore, the distribution of the larger grains cannot be homogeneous and 

ergodic due to the limited area of sample. Therefore, the number of grain boundaries in each sample 

which an ultrasonic wave propagates through is slightly different. To conclude, influence of location 

distributions of the larger grain on ultrasonic attenuation can be considerable for a given sample with a 

limited volume. 

As discussed in Section 4.1.2.2, the oscillation level of backscattering coefficient with frequency 

for a specific sample is significant. Therefore, dispersions of the backscattered noises between 

different samples are not shown. 

Taking into account the large dispersions between samples with different grain location 

distributions, it is of more interest to compare the averaged response of each type of distribution. Fig. 

4.24. shows the attenuation and backscattering coefficients averaged over six samples for each type of 

the grain location distribution. Insignificant variations of the attenuation between different cases of 

grain location distributions are noticed. Variations of the backscattering coefficients between different 

cases are difficult to distinguishable due to the significant oscillation level. Careful comparison shows 

the similar tendency and comparable amplitude between different cases of grain location distributions. 

Exceptionally, a peak at about the frequency 12MHz is highlighted for the backscattering of the 

banded microstructures, which is about once larger than the backscattering level in the unimodal 

microstructure with the grain size of 80µm . In fact, only three samples of banded microstructures are 

considered (by contrast six samples are considered for the other four distribution types), for which a 

limited possibilities of grain boundary misorientations are considered. When the contributing grain 

boundary misorientations to the backscattering effectiveness around a certain frequency is insufficient, 
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it is believed that either an exceptional peak or a magnitude approach to zero at a certain frequency is 

possible to occur. 

 (a) (b)  

(c)  (d)  

 

(e)  

Fig. 4.23. Dispersions of the attenuation coefficient between different samples for five distinct large 
grain locations distribution: (a) a random distribution ( X LG,Ran ), (b) an isolated distribution with NLG =

1 ( X LG,Iso ), (c) crystal clusters with NLG ∈[1,10]  ( X LG,Clu ), (d) crystal clusters with NLG = 10 
( X LG,N10Clu ), and (e) banded microstructures ( X LG,Band 2 , X LG,Band3 and X LG,Band 4 denote respectively two-
layer, three-layer and four-layer microstructures). NLG  denotes the number of the larger grains in each 

cluster. 
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One important conclusion is drawn here: for a spatially uniform and isotropic medium, effects of 

the grain location distribution on the ultrasonic wave scattering in bimodal microstructures are 

insignificant. The location distribution of the larger grains in polycrystalline materials including the 

banded microstructure seems impossible to be characterized by inversion of ultrasonic attenuation and 

backscattering.  

(a)  (b)  

Fig. 4.24. Numerical estimations of the averaged frequency-dependent (a) attenuation and (b) 
backscattering coefficients in bimodal microstructures with five different types of location 

distributions of the larger grains: (1) a random location distribution, (2) an isolated distribution with 
NLG =1 , (3) forming clusters with NLG ∈[1,10] , (4) forming clusters with NLG =10 and (5) a banded 

microstructure. NLG  denotes the number of the larger grains in each cluster.  

4.2.3 Spatial autocorrelation function of the bimodal microstructure 

In this section, to provide theoretical reflections on numerical measurements about effects of the 

volume fraction and of location distributions of the larger grains, the spatial autocorrelation functions in 

bimodal microstructures are analytically investigated. 

Two-point autocorrelation function of elastic tensors 〈δC(x)⊗δC(x' )〉  influences significantly 

the ultrasonic wave scattering effectiveness in single-phase, untextured polycrystalline materials 

(Stanke et al. 1984). Based on the fundamental assumption that the crystallographic orientations in 

different crystallites vary independently, 〈δC(x)⊗δC(x' )〉  can be simplified into the multiplication of 

spatial autocorrelation function W (r)  and autocorrelation function of elastic tensors 〈δC g ⊗δC g 〉Θ  

(defined in (2.13) with the term 〈δC g 〉Θ = 0 ). The second term is determined only by the elastic 

constants of single crystallite for an untextured medium. Therefore, for a bimodal microstructure 

where both the larger and the smaller grains are randomly-oriented and possess the same properties, 

the spatial autocorrelation function W (r)  plays a dominant role in the ultrasonic scattering. For a 

statistically isotropic and ergodic medium, we recall that W (r)  is determined only by the distance r 

between two points x  and x' , i.e. W (r) =W (r)  with r = x − x' .  

To quantify the function W (r)  in a spatially isotropic medium, it is useful to start with the 

function W (I ) (r)  which defines the possibility that two points separated by the distance r are located in 
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the grain I. W (I ) (r)  can be obtained by counting the relative number of times that a line segment of 

length r is wholly in the grain I when thrown randomly onto an infinite line in the system (Torquato 

2013). A is denoted as the midpoint of the line segment of length r. The possibility that point A is in 

the grain I is equal to fV(I ) , the volume fraction of the grain I . Then given that the point A is within the 

grain I, the possibility that point A is on a chord with length between y and y + dy which meanwhile is 

entirely in the grain I can be written as ((y − r)Hv (y − r)pc(I ) (y) lc (I ) )dy  (Torquato 2013). Here pc(I ) (y)  

defines the chord-length density probability that a randomly placed point fall on a chord c with the 

length y in the grain I. lc (I )  specifies the mean chord length for the grain I. Hv (x)  denotes the 

Heaviside step function defined to be 0 if x < 0 and otherwise equal to 1. Accordingly, W (I ) (r)  can be 

defined by combining the two possibilities mentioned immediately above and integrating the 

possibility over all possible chord length y, expressed as (Torquato 2013):  

 W (I ) (r) = fV(I )
(y − r)Hv (y − r)

lc (I )
pc(I ) (y)

0

∞

∫ dy  (4.9) 

Given that each grain is convex and has identical chord-length density possibility pc (y) , W (r)  in 

the macroscopically isotropic medium with unimodal grain size distribution can be analytically 

evaluated by the average of W (I ) (r)  over all the grains in the ensemble medium, obtained as follows 

(Stanke 1986): 

 W (r) = 〈W (I ) (r)〉 = (y − r)
lc

pc (y)
r

∞

∫ dy  (4.10) 

where lc  represents the mean chord length for the ensemble medium. The approximations to the mean 

chord length in the grain I based on N chords and in the medium containing M grains can be made as: 

 lc (I ) = 1
N

lcn
n=1

N

∑ , lc =
1
M

lc (I )

I=1

M

∑  (4.11) 

For the medium with a Poisson grain size distribution, the mean chord length is equal to half of the 

mean grain size, i.e. lc = d 2  (Stanke 1986). By contrast, the mean chord length in the medium with 

regular hexagonal single-size grains is defined as 3 / 2  times of the inscribed circle diameter of the 

hexagon, i.e. lc = 3H / 2 .  It is assumed that the chord length is statistically independent of each other 

and the crystallites are non-overlapped with one another.  

Considering a spatially isotropic microstructure with bimodal grain size distribution, the spatial 

autocorrelation function W (r)  is found as: 

 W Bi (r) = FSG
(y − r)
(lc )SG

pcSG (y)
r

∞

∫ dy + FLG
(y − r)
(lc )LG

pcLG (y)
r

∞

∫ dy  (4.12) 

where the superscript Bi represents the bimodal microstructure. FSG , FLG  define the total volume 

fractions for two different modes of grains, respectively.  
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The spatial autocorrelation function W (r)  in unimodal polycrystalline media with regular 

hexagonal single-size grains can be empirically evaluated using the chord length measured from the 

micrograph of the studied medium as defined in (4.7). The analytical results of W (r)  for unimodal 

microstructures with grain sizes of 80µm  and 320µm  are shown as the red and black dashed lines in 

Fig. 4.25., respectively. Whereas, W Bi (r)  in bimodal polycrystalline media containing regular 

hexagonal double grain sizes of 80µm  and 320µmwith FLG = 45%  can be analytically measured by 

(4.12), shown as the magenta dashed line in Fig. 4.25.. It is obviously in-between the spatial 

autocorrelation functions of the unimodal media, and determined by the volume fractions of the 

constituent grains. It is a good approximation when the larger grains are statistically homogeneous 

distributed in the medium. However, for one specific sample containing a limited number of the larger 

grains, W Bi (r)  can be beyond the analytical prediction by (4.12).  

W Bi (r)  in polycrystals with regular hexagonal double-size grains is further compared with the one 

in polycrystals consisting of randomly-shaped equiaxial grains with a bimodal Poisson grain size 

distribution. Negligible discrepancies are observed between bimodal polycrystals with the Poisson 

grain size distribution and with regular hexagonal double-size grains at small distances r < 200µm .  

Afterwards, the discrepancy increases with the distance r and reaches up to the maximum magnitude 

0.05 at around r = 320µm , where W Bi
 for the microstructure comprising bimodal grain sizes of 80µm  

and 320µm  is expected to be zero since the two points separated by a distance of more than the larger 

grain size 320µm  is impossible to be located in the same crystal. Therefore, from the aspect of the 

spatial correlation function, an idealized microstructure composed of double-size regular hexagonal 

grains is a good approximation of polycrystals composed of randomly shaped equiaxial grains with a 

bimodal Poisson grain size distribution at small distances r < 200µm . 

 

Fig. 4.25. Spatial autocorrelation function in a polycrystalline microstructure with bimodal grain sizes 

4.2.4 Ultrasonic attenuation and backscattering driven by the volume fraction 

Based on the investigation of spatial autocorrelation function, quantitative relation of the 

ultrasonic attenuation and backscattering coefficients between unimodal and bimodal polycrystalline 
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microstructures is first proposed analytically, then the numerical validation for the ultrasonic 

attenuation and backscattering driven by the volume fraction of the constituent grains is conducted.  

4.2.4.1 Analytical prediction  

According to theoretical investigations, it is seen from (2.37)-(2.39) that the ultrasonic wave 

scattering in polycrystalline materials are both affected by the elastic moduli of single crystal and the 

density of the material, the preferred grain orientation as well as the grain size and shape. Effects of 

grain size and shape are introduced by the spatial autocorrelation function W (r) . Considering a single-

phase, untextured and macroscopically homogeneous and isotropic polycrystalline microstructure 

consisting of equiaxial grains, it is assumed that no density variation exists, the effective elastic 

properties of the ensemble medium is constant and W (r)  becomes one-dimensional spatial 

autocorrelation function W (r) . Therefore, the attenuation and backscattering coefficients in such a 

microstructure with bimodal grain sizes are driven only by W (r) . Taking into account the linear 

relationship of the spatial correlation function W (r)  between unimodal and bimodal microstructures 

mentioned in (4.12), quantitative measurements for the attenuation and backscattering coefficients of 

bimodal microstructures are proposed as follows: 

 α Bi (f ) = FSGα SG (f ) + FLGα LG (f )  (4.13) 

 ηBi (f ) = FSGηSG (f ) + FLGη LG (f )  (4.14) 

These expressions provide statistical estimations of the attenuation and backscattering coefficients in 

the single-phase, equiaxed and macroscopically homogeneous and isotropic polycrystalline 

microstructure with bimodal grain size distribution. It is concluded that the ultrasonic attenuation and 

backscattering levels in bimodal microstructures is determined by the volume fraction of their 

constituent grains. 

4.2.4.2 Numerical validation  

Numerical validation of the analytical relations of ultrasonic attenuation between the unimodal 

and bimodal microstructures predicted by (4.13) is conducted respectively in bimodal microstructures 

with grain sizes of 80µm  and 320µm , 80µm  and 160µm , as well as 80µm  and 20µm . In the 

considered frequency region, the scattering characteristics combing the Rayleigh region and the 

Rayleigh-to-stochastic transition region is expected to be observed in the bimodal microstructure with 

the grain sizes of 80µm  and 20µm . Three volume fractions of the larger grains FLG = 10%, 45% and 80% 

are investigated for each bimodal medium. The numerical estimation for each case of FLG is averaged 

over eight samples with different grain location distributions including different types of location 

distributions of the larger grain. Exceptionally, due to the particular shape of regular hexagons, only the 

banded microstructure is studied for the bimodal microstructure with grain sizes of 80µm  and 160µm .  
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Fig. 4.26. shows the averaged numerical measures of attenuation coefficient for bimodal 

microstructures with grain sizes of 80µm  and 320µm . It is first compared to the analytical prediction 

by (4.13). The identical variation tendency and similar magnitude between the numerical estimations 

and analytical predictions for each volume fraction are observed. It is indicated that the linear 

combination of the attenuation coefficients in single-size microstructures with the respective volume 

fraction of each grain size provides a good estimation of the one in the double-size microstructure.  

On the other hand, FE simulations of ultrasonic wave propagation within unimodal media with 

the grain sizes equal to the equivalent area diameters have been conducted, which are respectively 

84µm , 105µm and 160µm for three volume fractions FLG =10%, 45% and 80% . Comparison of the 

numerically measured attenuation coefficients between unimodal and bimodal microstructures with 

the same equivalent area diameter is also shown in Fig. 4.26.. For a low fraction of the larger grains 

FLG =10%,  it seems that unimodal and bimodal microstructures with the same equivalent area diameter 

show a consistent variation tendency but with a notable discrepancy around the intersection point. 

Otherwise, for the fraction of the larger grains FLG = 45% , more and more significant discrepancy 

between the unimodal and bimodal microstructures at high frequencies f >  6MHz  is noticed, with the 

attenuation in bimodal microstructure retaining in-between the ones of unimodal microstructures, 

whereas the other increasing rapidly and slight superior to the attenuation of the sample with 80µm . 

Similar phenomenon is observed for the bimodal microstructure with a relatively high fraction of the 

larger grains FLG = 80%.  It is indicated that the equivalent area diameter is not a good approximation 

for the prediction of ultrasonic attenuation in the bimodal microstructure with a high volume fraction 

of the larger grains.   
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 (a)  (b)  

(c)  

Fig. 4.26. Comparison between the analytical predictions and the numerical estimations for attenuation 
coefficient in bimodal microstructures containing grain sizes of 80µm and 320µmwith the volume 

fraction of the larger grains (a) FLG =10%,  (b) FLG = 45%  and (c) FLG = 80% .  

Numerical estimations for ultrasonic attenuation in bimodal microstructures with grain sizes of 

80µm  and 160µm , as well as 80µm  and 20µm  are presented in Fig. 4.27.. Overall, for each case of 

the volume fraction of the larger grains, the attenuation coefficient in bimodal microstructure is as 

expected in-between the ones of unimodal microstructures, and good consistence with the analytical 

estimation determined by the volume fraction of the constituent grains (predicted by (4.13)) is observed. 

Particularly, for the bimodal microstructure with grain sizes of 80µm  and 160µm , the attenuation 

coefficient roughly goes across the intersection point between two unimodal media at the frequency 

13MHz. Almost identical attenuation level to the analytical prediction is observed before the intersection 

point for each volume fraction of the larger grain. However, the numerical estimation is quantitatively 

smaller than the analytical prediction after the intersection point, especially for the fraction of FLG = 10% 

and 45%. This point is not yet been understood well. Considering the more and more significant 

dispersions of the attenuation as the increase of frequency between unimodal samples with different 

spatial distributions of crystallographic orientations (shown in Fig. 4.3.(a) and Fig. 4.3.(b)), it is believed 
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that increasing the number of samples can probably improve the comparison between the numerical and 

analytical estimations in the high frequency region. 

Furthermore, for the bimodal microstructure with grain sizes of 80µm  and 20µm , different from 

the two bimodal microstructures with grain sizes of 80µm  and 160µm , 80µm  and 320µm , no 

intersection point is observed between the unimodal and bimodal microstructures. In fact, for the studied 

wavelength range of 375µm-3000µm , the grain size of 20µm shows the Rayleigh scattering behavior 

with the fourth degree power law dependence of the attenuation on frequency and thus exhibits an 

insignificant attenuation level compared to the grain size of 80µm . By contrast, the attenuation for the 

grain size of 80µm  increases rapidly with an approximately second degree power law dependence on 

frequency. The intersection between the attenuation of these two grain sizes occurs at a higher frequency. 

As discussed in Section 4.1.2.2, limited by the number of contributing grains, a certain number of 

samples with different spatial distributions of crystallographic orientations are necessary to plot a 

curve of ultrasonic backscattering coefficient with recognisable variation tendency. Considering the 

computational cost, numerical confirmation of the analytical estimation for ultrasonic backscattering 

by (4.14) is carried out only in bimodal microstructures containing grain sizes of 80µm  and 320µm . 

Three different volume fractions of the larger grains FLG, and 20 samples with different larger grain 

location distributions XLG for each case of FLG are studied. 

Frequency dependence of the averaged backscattering coefficients for each case of FLG are shown 

in Fig. 4.28.. Overall, the numerical result for each volume fraction is in-between the backscattering 

coefficients of unimodal microstructures and intersects with them approximately at the frequency 

f = 8MHz . Comparison of the numerical estimations with the analytical predictions by (4.14) shows 

good coherence both in the variation tendency and the magnitude. Careful observations demonstrate a 

little more significant fluctuations in high frequency region between the averaged numerical 

estimation and the analytical prediction for the volume fraction FLG = 45% . Actually, the grain size of 

80µm  makes a dominant contribution to the backscattered noise level within the bimodal 

microstructure containing grain sizes of 80µm  and 320µm  at high frequencies. Due to the existence of 

45% larger grains for each sample, the number of grain boundaries in the bimodal microstructure 

through which the wave propagates is much less than that in unimodal microstructure with the grain 

size of 80µm . Accordingly, based on the same number of samples, more obvious oscillations for the 

backscattering coefficient of bimodal microstructures are observed than the one of unimodal 

microstructures.  
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 (a)	   (b) 	  

(c) (d)   

(e) (f)  

Fig. 4.27. Comparison between the analytical prediction and the numerical estimation for the 
attenuation coefficient in bimodal microstructures comprising double-size grains of 80µm  and160µm  

with the volume fraction of the larger grains (a) FLG =10% , (b) FLG = 45% , and (c) FLG = 80% ; and 
bimodal microstructures comprising double-size grains of 80µm and 20µm  with the volume fraction of 

the larger grains (d) FLG =10% , (e) FLG = 45% , and (f) FLG = 80% .  
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 (a) (b)  

(c)  

Fig. 4.28. Comparison between the analytical prediction and the numerical estimation for the 
backscattering coefficient in bimodal microstructures comprising double-size grains of 80µm  and 
320µm  with the volume fraction of the larger grains (a) FLG =10%,  (b) FLG = 45%  and (c) FLG = 80%.  

4.3 Conclusions 

Ultrasonic wave attenuation and backscattering in single-phase and untextured polycrystalline 

materials composed of equiaxed grains with unimodal or bimodal grain sizes are subsequently 

investigated:  

-In the case of unimodal microstructures, a second power dependence on grain size and a third 

power dependence on frequency of the longitudinal wave attenuation coefficient in the Rayleigh 

scattering region are observed according to the 2D numerical simulations. Coherent comparison with 

the 2D analytical prediction is obtained in the low frequency region x0 < 2 . However, in the high 

frequency region ( 2 < x0 < 5.5 ), the insensitivity of attenuation to frequency is observed in the 

numerical estimation, contrary to the theoretical prediction of a first power dependence on frequency 

in this Rayleigh-to-stochastic region. Concerning grain size effects on the backscattering coefficient, 

the increase with the normalize frequency x0 , i.e. the ratio of grain size to wavelength, in the low 

frequency region and the insensitivity to frequency in the high frequency region are observed. 

Coherent variation tendency and amplitudes of the frequency-dependent backscattering coefficient are 
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obtained between the numerical measurements and the analytical prediction. It is found that the 

number of grains contributing to the backscattered noise echo signals has a significant influence on the 

oscillatory levels of the numerically estimated backscattering coefficient. Discussions on effects of the 

attenuation due to the multiple scattering on the analytical quantification of the backscattering 

coefficient have been proposed, which concluded that the analytical predictions based on the Born 

approximation overestimate the backscattering coefficient at high frequencies.  

-With regard to the microstructure with bimodal grain sizes, effects of different parameters on the 

ultrasonic propagation have been investigated, such as the volume fraction of the larger grains, the 

location distribution of the larger grains in the matrix composed of the smaller grains. Numerical results 

indicate that the attenuation and backscattering coefficients in frequency domain are in-between the ones 

of unimodal microstructures and are only slightly affected by the location distributions of the larger 

grains whatever distributions types. Investigations on the spatial autocorrelation functions provide an 

analytical estimation for the attenuation and backscattering coefficients in bimodal microstructures, 

which are proved to be determined by the volume fraction of the constituent grains. 2D numerical 

validation is carried out for different volume fractions of the larger grains and for three bimodal 

microstructures with different couples of grain sizes. Furthermore, unimodal microstructures with 

corresponding equivalent grain size were systematically studied numerically.  Their responses in 

attenuation have shown that it is not possible to define an equivalent grain size that can provide a good 

estimation for ultrasonic wave scattering effectiveness in a bimodal microstructure in both Rayleigh 

and stochastic regions. 
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Conclusions and perspectives 

The first contribution of this work consists in proposing versatile approaches to numerically 

evaluate ultrasonic attenuation and grain-noise scattering coefficients in polycrystalline materials by 

using FE modeling. It is applicable for any material regardless of its anisotropy, crystallographic or 

morphological textures (grain size, grain elongation, etc.), and consequently allows accessing more 

realistic polycrystalline microstructures in a more accurate way than classical analytical models, for 

which assumptions as the single scattering or the Born approximation are required. More particularly, 

an original method based on the reciprocity theorem for the numerical evaluation of the grain-noise 

scattering coefficient is developed. The advantage of using the same theoretical frameworks as 

classical analytical models to develop our numerical method is that it allows to validate the latter in 

the cases of idealized textures for which the considered analytical models can be applied and remain 

relevant. The effect of multiple scattering is automatically included in the numerical measure of the 

ultrasonic attenuation and grain-noise scattering coefficients as actual scattered fields are solved by FE 

simulations. 

Secondly, 2D analytical formulas for both ultrasonic attenuation and backscattering coefficients 

in single-phase and untextured polycrystals composed of equiaxed grains with cubic symmetry are 

developed. Concerning the attenuation coefficient, it is found that the Rayleigh scattering is linked 

closely to the scattering cross section and therefore the attenuation coefficient in the 2D model reduces 

from a third to a second power dependence on grain size, and from a fourth to a third power 

dependence on frequency compared to the 3D model. Explicit formulas for two components of the 

longitudinal wave attenuation, i.e. the longitudinal-to-longitudinal and longitudinal-to-shear wave 

attenuations, are developed within the framework of the Stanke-Kino unified theory. They are 

formulated based on the Born approximation and an additional assumption that the displacement 

vector U of the quasi-longitudinal wave is parallel to the wave vector k, valid only for weakly-

scattering materials. It is demonstrated that the longitudinal wave attenuation in the Rayleigh region is 

determined by the longitudinal-to-shear wave scattering generated by wave mode conversion, whereas 

the longitudinal-to-longitudinal wave scattering dominates the attenuation in the stochastic region. 

Concerning the backscattering coefficient, an important coefficient of proportionality is given in the 

2D case considering the equivalence under the weak-scattering approximation of the reciprocity 

formulation and the isolated scatter model for evaluation of grain-noise scattering. It is proved to 

depend on spatial dimension, frequency and material properties. Analytical predictions involving this 

coefficient show that in the 2D case the Rayleigh-to-stochastic transition occurs earlier, and the 

backscattering coefficient is significantly larger than in the 3D case.  
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Thirdly, the proposed numerical approach is applied to quantifying grain size effects on 

ultrasonic attenuation and backscattering coefficients in single-phase and untextured polycrystals with 

unimodal and bimodal grain sizes respectively:  

2D numerical simulations modeling idealized microstructures composed of hexagonal grains with 

different unimodal grain sizes are performed. The involved frequency range with respect to the 

considered grain sizes is large enough so that the Rayleigh, stochastic and Rayleigh-to-stochastic 

transition scattering regions, are studied. Coherent variation tendency and amplitudes of both 

attenuation and backscattering coefficients are obtained between the numerical measurements and the 

analytical predictions. Concerning the attenuation coefficient, a second power dependence on grain 

size and a third power dependence on frequency in the Rayleigh scattering region are observed. 

Concerning the backscattering coefficient, the increase with the normalized frequency x0 , i.e. the ratio 

of grain size to wavelength, in low frequency region and the insensitivity to frequency in high 

frequency region are observed. It is found that the number of grains contributing to the backscattered 

noise echo signals has a significant influence on the oscillatory levels of the numerically estimated 

backscattering coefficient. Discussions on the attenuation effect on analytical predictions of the 

backscattering coefficient have been proposed, which conclude that the analytical predictions based on 

the Born approximation overestimate the backscattering coefficient at high frequencies. Particularly, 

in high frequency region corresponding to x0 ∈[2, 5.5] , the insensitivity of attenuation to frequency is 

observed in the numerical estimation, contrary to the theoretical prediction of a first power 

dependence on frequency in this Rayleigh-to-stochastic transition region. 

2D numerical simulations modeling idealized microstructures composed of double-size grains are 

also performed. Effects of different parameters on the ultrasonic wave scattering have been 

investigated, such as volume fractions of the larger grains, location distributions of the larger grains in 

the matrix of the smaller grains. Numerical results indicate that the levels of attenuation and 

backscattering coefficients are in-between the ones of unimodal microstructures and slightly affected 

by the grain location distributions. Investigations on spatial autocorrelation functions provide an 

analytical estimation for attenuation and backscattering coefficients in bimodal microstructures, which 

are proved to be determined by the volume fractions of the constituent grains. 2D numerical validation 

is carried out for different volume fractions of the larger grains and for three bimodal microstructures 

with different couples of grain sizes. The capability of characterizing grain sizes and their respective 

volume fractions of the constituent grains in bimodal microstructures by using ultrasonic attenuation 

and backscattering has been demonstrated, however, the detection of grain location distribution such 

as banded microstructures by using ultrasonic attenuation and backscattering coefficients is not 

straightforward. Furthermore, unimodal microstructures with corresponding equivalent grain size were 

systematically studied numerically.  Their responses in attenuation have shown that it is not possible to 
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define an equivalent grain size that can provide a good estimation for ultrasonic wave scattering 

effectiveness in a bimodal microstructure in both Rayleigh and stochastic regions. 

Further efforts could be devoted to the following aspects: 

1) In the near future, supplementary numerical simulations need to be conducted to fully 
understand the insensitivity of attenuation to the high frequency region ( 2 < x0 < 5.5 ), which is 
incoherent with the theoretical prediction of a first power dependence on frequency. 

2) The capability of monitoring crystallographic textures or grain elongations by ultrasonic wave 
scattering has been demonstrated analytically in transversely isotropic polycrystalline microstructures 
(Ahmed et al. 1996). It is also of interest to investigate effects of crystallographic textures or grain 
elongations on ultrasonic wave attenuation and backscattering coefficients. 

3) Investigations on ultrasonic wave scattering in bimodal polycrystals with double-size grains 
has proved the capability of characterizing grain sizes and their respective volume fractions of the 
constituent grains by inversion of ultrasonic attenuation and backscattering. It is of interest to conduct 
investigations on characterizations of grain size distribution by using ultrasonic signals. 

4) There are a great quantity of difficulties concerned with experimental evaluations of ultrasonic 
attenuation and backscattering in real complex polycrystalline materials. For example, ultrasonic wave 
scattering in strongly-scattering materials has been beyond the classical theoretical predictions. It is of 
interest to understand a number of unresolved physical issues and reveal the quantitative features of 
ultrasonic wave propagation by using FE modeling in real complex polycrystals, especially strongly-
scattering materials.  
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Appendix A 

The second-order Keller approximation 

The general formulas for determining the average wave field 〈u(x)〉  in a slightly inhomogeneous 

medium based on the second-order perturbation theory are recalled in this section. It was developed by 

Keller (Keller 1964, Karal et al. 1964), and thus is named as the second-order Keller approximation 

(Stanke et al. 1984) nowadays. The whole medium is represented as a family of media each particular 

member of which differs slightly from the homogeneous medium. The wave field in each particular 

medium is expressed by employing the pertubation theory in the second-order of the inhomogeneity 

degree ξ . Assuming that the average or mean wave is a plane wave, the mean wave field is 

formulated accurately up to the second order of ξ , and then the propagation constant of the mean 

wave is solved.  

A position-dependent linear operator L(x)  describing the unkown response of the medium to an 

elastic wave is proposed, and then the stochastic wave euqation in the medium without  external forces 

is formulated as: 

 L(x) u(x) = 0  (A.1) 

Define an operator L0  in an equivalent homogeneous medium, which is independent of x  and ξ , 

invertible and differs slightly from L(x) , and then the general perturbation solution for L(x)  is written 

as: 

 L(x) = L0 −ξL1(x) −ξ 2L2 (x) −ο(ξ 3)  (A.2) 

Here L1(x)  and L2 (x)  are perturbing operators in the first-order and the second-order of ξ  
respectively. The wave field u(x)  in a random medium is usually an n component vector, then L0 , 

L1(x)  and L2 (x)  are nth-order square matrices. Considering the wave equation in the unperturbed 

medium L0u0 (x) = 0 , (A.1) is rewritten as: 

 L0u(x) = L0u0 +ξL1(x)u(x) +ξ 2L2 (x)u(x) +ο(ξ 3)  (A.3) 

Multiplying the inverse of L0  at both sides of (A.3), an implicit formulation for u(x)  is obtained: 

 u(x) = u0 +ξ(L0 )−1L1(x)u(x) +ξ 2 (L0 )−1L2 (x)u(x) +ο(ξ 3)  (A.4) 

By the iteration of (A.4) itself, the perturbation solution for u(x)  is expressed by the unperturbed wave 

field u0 (x)  as follows:  

 u(x) = u0 +ξ(L0 )−1L1(x)u0 +ξ 2 (L0 )−1 L1(x)(L0 )−1L1(x) + L2 (x)( )u0 +ο(ξ 3)  (A.5) 
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The objective is to find the solution for the mean wave field 〈u(x)〉  which is defined as the 

ensemble average: 

 〈u(x)〉 = u(x)∫ p(x)dx  (A.6) 

Here p(x)  denotes the possibility density function. Taking the expectation value of (A.5), it is found 

that 〈u(x)〉  satisfies the following equation: 

 〈u(x)〉 = u0 +ξ(L0 )−1〈L1(x)〉u0 +ξ 2 (L0 )−1 〈L1(x)(L0 )−1L1(x)〉 + 〈L2 (x)〉( )u0 +ο(ξ 3)  (A.7) 

From (A.7), the expression for u0 (x)  accurate up to the first-order of ξ  is written as:  

 u0 = 〈u(x)〉 −ξ(L0 )−1〈L1(x)〉u0 +ο(ξ 2 )  (A.8) 

Substituting (A.8) into (A.7), it is found that: 

 〈u(x)〉 = u0 + (L0 )−1 ξ 〈L1(x)〉 +ξ 2 〈L1(x)(L0 )−1L1(x)〉 − 〈L1(x)〉(L0 )−1〈L1(x)〉 + 〈L2 (x)〉( )( )〈u(x)〉 +ο(ξ 3)  (A.9) 

Applying L0  to both sides of (A.9) and omitting the ο(ξ 3)  term, then an explicit expression for 〈u(x)〉

accurate to ξ 2  is written as follows:  

 L0 −ξ 〈L1(x)〉 −ξ 2 〈L1(x)(L0 )−1L1(x)〉 − 〈L1(x)〉(L0 )−1〈L1(x)〉 + 〈L2 (x)〉( )( )〈u(x)〉 = 0  (A.10) 

Usually, the kernel of the operator (L0 )−1  apprearing in (A.10) is the Green’s tensor G(x' ; x) , so 

that (L0 )−1  can be expressed as an integral operator in terms of G(x' ; x) . A Green’s tensor G(x' ; x)  at 

the point x  corresponding to L0  is the solution of the equation as follows: 

 L0G(x' ; x) = −δ (x − x' ) I  (A.11) 

Then (L0 )−1  yields the equation: 

 (L0 )−1u(x) = GT (x' ; x)∫ ⋅u(x' ) dx'  (A.12) 

The terms in (A.10) which involve (L0 )−1  are written in the integral form as: 

 〈L1(x)(L0 )−1L1(x)〉〈u(x)〉 = 〈L1(x) GT (x' ; x)L1(x' )∫ 〈u(x' )〉dx' 〉  (A.13) 

 (L0 )−1〈L1(x)〉〈u(x)〉 = GT (x' ; x)〈L1(x' )〉∫ 〈u(x' )〉dx'  (A.14) 

The main equation for 〈u(x)〉  by the substitution of (A.13) and (A.14) into (A.10) is rewritten as: 

 
0 = L0 〈u(x)〉 −ξ 〈L1(x)〉〈u(x)〉

+ξ 2 〈L1(x)〉 GT (x' ; x)〈L1(x' )〉∫ 〈u(x' )〉dx'− 〈L1(x) GT (x' ; x)L1(x' )∫ 〈u(x' )〉dx' 〉 + 〈L2 (x)〉〈u(x)〉( )  (A.15) 

For the case of 〈L1(x)〉 = 0 , (A.15) becomes: 

 L0 〈u(x)〉 −ξ 2 〈L1(x) GT (x' ; x)L1(x' )∫ 〈u(x' )〉dx' 〉 +ξ 2 〈L2 (x)〉〈u(x)〉 = 0  (A.16) 
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The application of the equation (A.16) to the complex case of anisotropic characterization, where 

three wave modes in any progagation direction in a solid are taken into account, is presented in 

Section 2.1.1. Providing the mathematical definition of the operators L0 , L1(x)  and L2 (x)  in the case 

of anisotropic characterization, the general expression for the expected wave field accurate up to the 

second order of ξ  and accounting for some degree of multiple scattering is presented as (2.7).  
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Appendix B 

Derivation of the scattered field based on individual 
scatterer model 

Based on individual scatterer model, the scattered field uscat (x)  (2.69) far from the single scatterer 

is associated to the variation of elastic tensors from the homogeneous reference material. It is 

formulated in terms of the volume integration over the scatterer by using the Green’s function tensor 

in infinite reference medium in both 3D and 2D cases. When x→∞  the asymptotic approximations
r−1 ~ x

−1
 and r ~ x − x'⋅escat  can be made, so the calculation of derivatives contained in the Green’s 

function tensor can be simplified and the following asymptotic formulas can be written. 

In the 3D case, already given by Gubernatis et al. (1977): 

 ∇ exp(ikr)
r

⎛
⎝⎜

⎞
⎠⎟
~ (ik)

exp(ik x )

x
exp( − ik ⋅ x' ) escat  (B.1) 

 ∇ ∇ exp(ikr)
r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
~ (ik)2 exp(ik x )

x
exp( − ik ⋅ x' ) escat ⊗ escat  (B.2) 

 ∇ ∇ ∇ exp(ikr)
r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟ ~ (ik)3 exp(ik x )

x
exp( − ik ⋅ x' ) escat ⊗ escat ⊗ escat  (B.3) 

In the 2D case: 

 H0
(1) (kr) ~ 1− i

(πk)1/2

exp(ik x )

x
1/2 exp( − ik ⋅ x' )  (B.4) 

 ∇H0
(1) (kr) ~ 1− i

(πk)1/2 (ik)
exp(ik x )

x
1/2 exp( − ik ⋅ x' ) escat  (B.5) 

 ∇ ∇H0
(1) (kr)( ) ~ 1− i

(πk)1/2 (ik)2 exp(ik x )

x
1/2 exp( − ik ⋅ x' ) escat ⊗ escat  (B.6) 

 ∇ ∇ ∇H0
(1) (kr)( )( ) ~ 1− i

(πk)1/2 (ik)3 exp(ik x )

x
1/2 exp( − ik ⋅ x' ) escat ⊗ escat ⊗ escat  (B.7) 

Substituting these asymptotic approximations into (2.34), (2.40) and (2.69), the far-field solutions 

of the scattered displacement and stress fields in the 2D and 3D models can be derived to obtained 

(2.70)-(2.74) and (2.75)-(2.76), respectively. 
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Appendix C 

Résumé Substantiel 

La corrélation des propriétés de propagation des ondes ultrasonores avec certaines 

caractéristiques de la microstructure polycristalline a des implications significatives dans le contrôle 

non destructif. Une analyse numérique basée sur la méthode des éléments finis permettant de 

quantifier les coefficients d'atténuation et de diffusion ultrasonores dans un polycristal en domaine 

temporel et fréquentiel est présentée. Elle est a priori applicable à tout type de matériaux 

polycristallins quelles que soient sa texture cristallographique (degré d’anisotropie et orientation 

d’axes d’anisotropie des grains, etc.) ou ses caractéristiques morphologiques (la taille et la forme des 

grains, etc.). Elle permet par conséquent de simuler la propagation des ondes ultrasonores dans des 

microstructures polycristallines réelles d'une manière plus pertinente donc plus précise que des 

modèles analytiques classiques dans lesquelles des hypothèses telles que la diffusion simple ou 

l'approximation de Born sont nécessaires.  

En particulier, une méthode originale basée sur le théorème de réciprocité pour l'évaluation 

numérique du coefficient de diffusion est proposée. L'avantage d'utiliser un même cadre théorique que 

les modèles analytiques classiques pour développer notre procédure de mesure numérique est qu'il 

permet de valider ce dernier dans les cas de textures idéalisées où les modèles analytiques considérés 

peuvent être appliqués et restent pertinents. Des formules analytiques bidimensionnelles (2D) pour les 

coefficients d'atténuation ultrasonore et de rétrodiffusion sont développées en utilisant l'approximation 

de Born pour valider les évaluations numériques. Concernant le coefficient d’atténuation, la 

modélisation 2D réduit le mécanisme de diffusion dans le régime de Rayleigh, dans lequel 

l’atténuation des ondes longitudinales suit en effet une loi proportionnelle au carré de la taille des 

grains, au lieu d'une puissance cubique obtenue dans le cas tridimensionnel (3D). Concernant le 

coefficient de rétrodiffusion, un coefficient multiplicateur dépendant de la fréquence et des propriétés 

élastiques de grain est identifié et conduit à des niveaux de bruits rétrodiffusés plus élevés et à un léger 

avancement dans la transition Rayleigh-stochastique en 2D qu’en 3D 

Comme exemples d’application de l'approche numérique proposée, elle est appliquée au titanium, 

un polycristal monophasé et non texturé. Toutes les simulations présentées sont 2D. 

Premièrement, des simulations sont effectuées dans des microstructures idéalisées composées de 

grains en taille unimodale. Différentes tailles de grains ont été étudiées. La plage de fréquence utilisée 

par rapport aux tailles de grain considérées est assez grande pour que les régimes de diffusion de  

Rayleigh et stochastique ainsi que la transition entre ces deux régimes soient impliqués. Une 

comparaison cohérente entre les évaluations numériques et les prédictions analytiques 2D est obtenue. 

Les résultats numériques montrent que les coefficients d'atténuation et de rétrodiffusion en fonction de 
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la fréquence normalisée, qui est le ratio entre la taille de grains et la longueur d'onde, augmentent en 

continu à basses fréquences et deviennent insensibles a hautes fréquences. Par ailleurs, les grandes 

dispersions observées pour le coefficient de rétrodiffusion entre des échantillons ayant la même taille 

de grains mais différentes répartitions spatiales d’orientations cristallographiques sont analysées. Il est 

conclu que le niveau d'oscillation de rétrodiffusion est d’autant plus significatif que le nombre de 

grains contribuant aux bruits reçus est insuffisant. Enfin, les effets de l'atténuation induite par la 

diffusion multiple sur la mesure de rétrodiffusion, qui sont négligés par les modèles théoriques, sont 

quantifiés. 

Deuxièmement, l'approche numérique proposée est appliquée aux polycristaux composés de 

grains en taille bimodale, fréquemment observés lors de la recristallisation avec une croissance 

hétérogène de grains. L'avantage de la modélisation numérique est mis en évidence dans ce cas, car 

aucun modèle analytique n'existe. Les effets de différents paramètres sur l'atténuation ultrasonore et la 

rétrodiffusion sont étudiés, tels que la fraction volumique et la répartition aléatoire des gros grains, la 

répartition et la taille des îlots de gros grains dans la matrice des petits grains, voire les microstructures 

en couches formées respectivement de gros grains et de petits grains. Les résultats numériques 

indiquent que les coefficients d'atténuation et de rétrodiffusion en domaine fréquentiel se situent au 

milieu des coefficients pour les microstructures unimodales et sont principalement déterminés par les 

fractions volumiques des grains constitutifs. Cependant, ils ne sont que légèrement affectés par la 

répartition des gros grains. Il est conclu que retrouver les caractéristiques de la microstructure en 

couches avec différentes tailles de grains, à partir des mesures des coefficients d’atténuation ou de 

rétrodiffusion ultrasonores n’est pas immédiat, contrairement à l’identification des fractions 

volumiques. Une étude de la fonction d'autocorrélation spatiale dans des telles microstructures 

bimodales est proposée afin d’obtenir une interprétation analytique des phénomènes expérimentés 

numériquement. 
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Résumé : Une analyse numérique basée sur la 
méthode des éléments finis permettant de 
quantifier les coefficients d'atténuation et de 
diffusion ultrasonores dans un polycristal en 
domaine temporel et fréquentiel est présentée. 
En particulier, une méthode originale basée sur 
le théorème de réciprocité pour l'évaluation 
numérique du coefficient de diffusion est 
proposée. Des formules analytiques 
bidimensionnelles (2D) pour les coefficients 
d'atténuation ultrasonore et de rétrodiffusion 
sont développées en utilisant l'approximation 
de Born pour valider les évaluations 
numériques. L'approche numérique proposée 
est appliquée au titanium, un polycristal 
monophasé et non texturé. Premièrement, des 
simulations sont effectuées dans des 
microstructures idéalisées composées de grains 
en taille unimodale. Une  comparaison 
cohérente entre les évaluations numériques et  

les prédictions analytiques 2D est obtenue. Par 
ailleurs, les effets de l'atténuation induite par la 
diffusion multiple sur la mesure de 
rétrodiffusion, qui sont négligés par les 
modèles théoriques, sont quantifiés. 
Deuxièmement, l'approche numérique proposée 
est appliquée aux polycristaux composés de 
grains en taille bimodale. Les résultats 
numériques indiquent que les coefficients 
d'atténuation et de rétrodiffusion en domaine 
fréquentiel se situent au milieu des coefficients 
pour les microstructures unimodales et sont 
principalement déterminés par les fractions 
volumiques des grains constitutifs. Cependant, 
ils ne sont que légèrement affectés par la 
répartition des gros grains. Une étude de la 
fonction d'autocorrélation spatiale dans des 
telles microstructures bimodales est proposée 
afin d’obtenir une interprétation analytique des 
phénomènes expérimentés numériquement. 

 

 

Title : Finite element modeling of ultrasonic wave propagation in polycrystalline materials 
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Abstract : A numerical approach based on the 
finite element method to quantify ultrasonic 
attenuation and grain-noise scattering 
coefficients in both time and frequency 
domains for polycrystalline materials is 
presented. More particularly, an original 
method based on the reciprocity theorem for 
the numerical evaluation of the grain-noise 
scattering coefficient is proposed. Two-
dimensional (2D) analytical formulas of 
ultrasonic attenuation and backscattering 
coefficients are developed by using the Born 
approximation to validate numerical 
evaluations. Then the proposed numerical 
approach is applied to the single-phase and un-
textured polycrystalline titanium. Firstly, 2D 
FE simulations are performed in idealized 
microstructures composed of equiaxed grains  

with different unimodal grain sizes. Coherent 
comparison between numerical estimates and 
2D analytical predictions is obtained. Effects of 
attenuation due to multiple scattering on the 
backscattering measurement, which are 
neglected in the theoretical model, are 
quantified. Secondly, polycrystals with bimodal 
grain sizes are considered. Numerical results 
indicate that attenuation and backscattering 
coefficients in bimodal microstructures are in-
between the ones of unimodal microstructures 
and are mainly determined by volume fractions 
of the constituent grains. However they are 
only slightly affected by the grain location 
distributions. The spatial autocorrelation 
function in bimodal microstructures is further 
quantified to gain an analytical interpretation of 
the above phenomena. 

 

 


