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de statistique de l’université d’Oxford. Je souhaiterais remercier mes collègues
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mon expérience à Fontainebleau.
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Abstract

This thesis focuses on multivariate spatial statistics and machine learning applied to
hyperspectral and multimodal and images in remote sensing and scanning electron
microscopy (SEM). In this thesis the following topics are considered:

Fusion of images:
SEM allows us to acquire images from a given sample using different modali-
ties. The purpose of these studies is to analyze the interest of fusion of infor-
mation to improve the multimodal SEM images acquisition. We have modeled
and implemented various techniques of image fusion of information, based in
particular on spatial regression theory. They have been assessed on various
datasets.

Spatial classification of multivariate image pixels:
We have proposed a novel approach for pixel classification in multi/hyper-
spectral images. The aim of this technique is to represent and efficiently
describe the spatial/spectral features of multivariate images. These multi-scale
deep descriptors aim at representing the content of the image while considering
invariances related to the texture and to its geometric transformations.

Spatial dimensionality reduction:
We have developed a technique to extract a feature space using morphological
principal component analysis. Indeed, in order to take into account the spatial
and structural information we used mathematical morphology operators

Keywords

Image processing, Machine learning, Kernel methods, Mathematical morphology,
Principal Component Analysis, Support Vector Machine, Deep learning, Scattering
transform, Kriging



Résumé

Cette thèse porte sur la statistique spatiale multivariée et l’apprentissage appliqués
aux images hyperspectrales et multimodales. Les thèmes suivants sont abordés :

Fusion d’images :
Le microscope électronique à balayage (MEB) permet d’acquérir des images à
partir d’un échantillon donné en utilisant différentes modalités. Le but de ces
études est d’analyser l’intérêt de la fusion de l’information pour améliorer les
images acquises par MEB. Nous avons mis en oeuvre différentes techniques de
fusion de l’information des images, basées en particulier sur la théorie de la
régression spatiale. Ces solutions ont été testées sur quelques jeux de données
réelles et simulées.

Classification spatiale des pixels d’images multivariées :
Nous avons proposé une nouvelle approche pour la classification de pixels
d’images multi/hyper-spectrales. Le but de cette technique est de représenter
et de décrire de façon efficace les caractéristiques spatiales / spectrales de ces
images. Ces descripteurs multi-échelle profond visent à représenter le contenu
de l’image tout en tenant compte des invariances liées à la texture et à ses
transformations géométriques.

Réduction spatiale de dimensionnalité :
Nous proposons une technique pour extraire l’espace des fonctions en utilisant
l’analyse en composante morphologiques. Ainsi, pour ajouter de l’information
spatiale et structurelle, nous avons utilisé les opérateurs de morphologie mathématique.

Mots Clés

Traitement de l’image, Machine Learning, Méthodes à noyaux, Morphologie mathématique,
Analyse en Composantes Principales, Support Vector Machine, Apprentissage pro-
fond, Transformée de scattering, Krigeage.
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Multivariate images

A grey scale image can be seen as a matrix in which each pixel is an entry of the
matrix. Such an image brings information on the spatial structures present in it;
a natural evolution was to add the color information. On color images each pixel
is a vector of size 3. Thanks to these images we have both spatial and spectral
information. However the spectral information is quite limited since we just have
access to the colors visible by human eye. This can be sufficient in some cases,
but if we want to be more precise we might need more spectral information. That
consideration gave birth to hyperspectral images. On each pixel of these images we
have a vector which is a signal that represents the reflected light of the area under
study. Color or hyperspectral images are examples of multivariate images. Multi-
variate images are images where each pixel is described by a vector of size superior
to 1, contrary to traditional univariate (or scalar) images. These types of images
are becoming more important because of the sensors abilities and can arise from a
huge variety of sources. Multivariate images appear in remote sensing, astronomy,
molecular imaging, etc. The image analysis of these sets must be different, and
adapted to the nature of the data itself. In this thesis we will work with two kind of
multivariate images. On the one hand, on multispectral and hyperspectral images
in Part 1. Typical examples of these images are obtained by remote sensing devices,
and our objective is mainly to classify each pixel of them, using the spectral and
spatial information. The second kind of data we are interested in is the Energy
Dispersive Spectrometry (EDX), that are used in physicochemical characterization
of materials. The work on these images are the fruit of a collaboration between
MINES ParisTech and IFP Energies Nouvelles.

Curse of dimensionality

The curse of dimensionality is a term invented by Richard Bellman [13] which desig-
nates the phenomena that occur when data are studied in a space of high dimension.
Suppose that the data can be represented by a vector v ∈ [0, 1]D, where D is the
dimension of the data space. Consider first a simple case where D = 1, in this case
it is very easy to calculate that with 100 points, you can get an interval between the
points which is about 10−2. However, if we consider a space of dimension D = 10
and if you want the items to be separated by a ball of radius 10−2, we easily see that
it takes 1020 points. Now, if we consider a space of dimension D, we see that we
need 102D points which can be astronomical. This shows that to fight the curse of
dimensionality we must increase the number of data. However most of the time the
number of data is limited. Let us consider that we have 900 vectors vi i ∈ [1, 900]
of dimension 2, see example in Figure 1(a). These vectors are the result of a Gaus-
sian mixture model, where three Gaussians have been considered. To study these
vectors, we plot in Figure 1(b) the distance matrix d, which is a square matrix of
size 900 such that di,j = ‖vi − vj‖2. Then, using the k-means clustering algorithm
[48], we can naturally separate the data into three clusters, which is illustrated in
Figure 1(c). When the dimension of the data is equal to 2, it seems easy to analyze
the data. However if the dimension of the data is increased, as in Figure 2(a)(b),
we can see that the distance matrix d is not relevant any more for D = 100 and so
the k-means is not able to find the three clusters.
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Figure 1: A set of 900 data points of dimension D = 2. In (a) the data, in (b) their
di,j distance matrix, in (c) the k = 3 clusters of the dataset obtained by k-means.
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Figure 2: A set of 900 data points of dimension D = 100. In (a) the di,j distance
matrix of the dataset. As we can see, it is more difficult to separate some classes.
In (b), the k = 3 clusters of the data obtained by k-means: clustering is not correct
because of the curse of dimensionality.
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Figure 3: In this figure we have selected randomly 500 data points, vi ∈ [0, 1]D,
i = 1, · · · , 500, where D is the dimension of the feature space. We plot R =
max(i,j){‖vi−vj‖2}
min(i,j){‖vi−vj‖2} , which represents the power of discrimination of the distance. To

have consistent results, 100 Monte Carlo simulations have been generated, and the
black curve represents the mean result, and the dash-dotted lines represent the mean
+/− the standard deviation.

Moreover, it can be shown (see [55]) that because of the dimension D of the space,
the ratio between the maximum Euclidean distance and the minimum Euclidean
distance, i.e.,

R =
max(i,j){‖vi − vj‖2}
min(i,j) ‖vi − vj‖2}

,

of the data tends to 1 when D increases. Hence, the euclidean distance has a very
poor discriminating power with high dimensional data. We represented this lost of
discriminant power of the L2 norm in Figure 3.

Indeed, in the case of ultraspectral images, D is usually about one or two thou-
sand, which shows how sparse the sampled manifold is (or how empty the whole space
is), and how crucial is the question about similarity between spectra. Therefore, due
to the high dimensionality of the space, it is critical to learn a good representation
in order to fight against the curse of dimensionality.

There is the range of approaches belonging to the dimensionality reduction
paradigm, so one could work on a smaller dimension space and thus circumvents
the curse of dimensionality. It is also possible to work on techniques able to learn
the feature space such as kernel learning methods, or the Convolutional Neural
Network (CNN) deep learning approaches.

Multimodal images

Sometimes the acquisition of samples can be done using simultaneously different
techniques, which leads to the notion of multimodal image acquisition. These dif-
ferent modalities might bring different information sources that could be combined.
This is the case for instance in satellite remote sensing (panchromatic images +



6

ultra/hyper-spectral images), in biomedical microscopy (multispectral images + Ra-
man spectroscopy image + quantitative phase) or in scanning electron microscopy
(secondary electrons/backscattered electrons + EDX). The goal of multimodal infor-
mation combination can be approached by different information fusion techniques.
This kind of data brings new issues; firstly, they must be perfectly registered or in
other words, these various images should be spatially consistent: pixel locations from
one modality should be related to the other one. In this thesis, we consider that the
data are perfectly registered. Secondly the information fusion should be compatible
in terms of their ranges. Finally, some modalities might see objects absent in others.

Context of the study on multimodal SEM

IFP Energies Nouvelles is a public-sector research institute, active in the fields of en-
ergy, transport and environment. Among the many areas of expertise, IFP Energies
nouvelles contributes to mastering and developing microscopic analysis techniques.
Energy Dispersive Spectroscopy (EDX) images are more and more important in
microanalysis. With this type of picture, it is possible to see in each pixel the com-
position of the pixel, and thus theoretically to have the composition of the analyzed
sample. This type of image could therefore greatly improve the microscopic analysis
of a sample by adding new information. It should be noted, that the resolution of
these are often poorer than other images from Scanning Electron Microscopy (SEM),
and do not take into account the sample 3D structure. So in order to be able to help
IFP experimenters to characterize these images we worked, in collaboration with an
IFP Energies Nouvelles team, on techniques able to merge the different modalities
of the SEM images. The literature on multimodal SEM fusion is, to the best of
our knowledge, very limited. Hence, we took inspiration for our techniques from
hyperspectral remote sensing images pansharpening techniques.

Spatial representation

We also worked on the classification problem of remote sensing images, which is an
important issue on remote sensing.

Multivariate imaging allows us to obtain typically a vector describing each pixel
of the image, and thus with this quantity of information acquired, we can in theory
determine more easily the class of each pixel. However, as we have discussed above,
a major problem in classification is the curse of dimensionality. It is therefore neces-
sary to use techniques of statistical learning in order to extract useful information.
At the beginning, linear machine learning technique were the first kinds of tech-
niques used in remote sensing [26, 120]. Unfortunately the nonlinear nature of the
data is then completely neglected, so many approaches based on manifold learning
methods [149, 127, 12, 39, 29, 132] were developed. However, all these techniques
often neglect the interactions between a pixel and its neighbours, which is an essen-
tial concept in image processing. Also, these techniques have often been invented
for data that are not images and were created to address the problems of “big data”
that are nonlinear. Therefore gradually a large number of works have attempted
to use spatial descriptors giving birth to spatial machine learning, more naturally
adapted to image classification. Among the descriptors based on a combination of
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machine learning and image processing, we note the use of mathematical morphol-
ogy techniques on hyperspectral images to extract interesting features [115, 45, 35].
That brings now one of the best classification results on remote sensing classification.
This justifies our choice to work on spatial machine learning.

Main contributions and Thesis outline

The research work presented in this thesis investigates two main topics. The first
subject consists in learning appropriate representations for multivariate images. We
worked on both dimensionality reduction and classification techniques. The second
theme is more domain applied and deals with building efficient representations for
the fusion of multimodal SEM images.

This thesis is composed of a series of chapters, most of them are based on the
publications done during the three years, and organised as follows:

Part 1: On this part we focus on spatial dimensionality reduction and supervised
classification with examples from remote sensing images. First, in Chapter 2
we present techniques able to reduce the dimensionality of the spectra while
considering the spatial information. These techniques lean on morphological
techniques and are able to learn a manifold that brings spatial and spectral
information. In Chapter 3, in order to improve classification of hyperspectral
pixels, we propose a deep texture descriptor model able to characterize the
hyperspectral in homogenous local areas of the image. This descriptor is based
on new innovative techniques, namely the scattering transform [18, 96] and the
kernel mean map [140].

Part 2: The second part focusses on multimodal SEM image fusion. Chapter 4
provides a background on the EDX multimodal SEM images. Then, in Chap-
ter 5, we present first some state-of-the-art techniques of pansharpening, and
second, after applying these techniques and based on the results, we introduce
two techniques based on the bilateral filter and on morphological down/up-
sampling theory. Finally, we propose in Chapter 6 a more theoretical study of
image fusion based on kriging, also linked with Gaussian process regression.
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Chapter 1
State-of-the-Art on Statistical Learning
Applied to Hyperspectral Images

Abstract

In machine learning, high-dimensional data correspond to points lying in spaces
of dimension typically higher than 10 and are difficult to represent and so to inter-
pret. Due to the curse of dimensionality, feature extraction and classification in such
spaces is challenging. A typical approach consists in “simplifying the data”, usually
by projecting the data onto a space of low dimension. This kind of techniques is
commonly followed in hyperspectral image processing. These images come from hy-
perspectral sensors and can be seen as a three-dimensional hyperspectral data cube
where each image represents a spectral band. In general the number of bands is
around ten for multispectral images, about one hundred for hyperspectral images,
and of thousands for ultraspectral images. So it is necessary to use statistical learn-
ing techniques to have a better understanding of this data. In this chapter we will
focus on a review of the statistical learning techniques that have been developed, on
the one hand, to reduce the dimension of our data, and on the other hand, to clas-
sify pixels from these images. Many different dimensionality reduction techniques
have been proposed, we focus here on the Principal Component Analysis (PCA),
Multi-Dimensional Scaling (MDS), Isomap, Kernel-PCA, Diffusion Maps, Locally
linear Embedding (LLE), Laplacian Eigenmaps and Hessian LLE. We also remind
some dictionary learning algorithms. Finally we explain linear regression, linear
classification, Support Vector Machine (SVM), and Convolutional Neural Network
(CNN) for classification.

Résumé

L’étude des données en grande dimension (supérieur à 10) est difficile en raison du
fléau de la dimensionnalité. Ainsi l’extraction d’information utile est dure. Une
approche typique consiste à simplifier les données en projetant les données sur un
espace de plus petite dimension, on parle alors de réduction de la dimension. Ce type
de techniques est très utile dans le traitement d’images hyperspectrales. Ces images
proviennent de capteurs hyperspectrales et peuvent être considérées comme un cube

11
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de données tridimensionnelles, où chaque image représente une bande spectrale. En
général, le nombre de bandes est environ dix pour des images multispectrales, une
centaine pour des images hyperspectrales. Il est donc nécessaire d’utiliser des tech-
niques d’apprentissage statistique pour mieux comprendre ces données. Dans ce
chapitre, nous nous concentrerons sur un examen des techniques d’apprentissage
statistique qui ont été élaborées, afin d’une part, de réduire la dimension de nos
données et, d’autre part, de classifier. De nombreuses techniques de réduction de la
dimension ont été proposées, nous nous concentrons ici sur l’analyse des composantes
principales (APC), multidimensionnelle scalling (MDS), Isomap, Kernel-PCA, diffu-
sion map, Locally Linear Embedding (LLE), Laplacian Eigenmaps and Hessian LLE.
Nous rappelons également certains algorithmes d’apprentissage de dictionnaire. En-
fin, nous expliquons la régression linéaire, la classification linéare, le Support Vector
Machine (SVM) et les Convolutional Neural Networks (CNN) pour la classification.

1.1 Introduction

Conventionally, in remote sensing, and in other image processing domains, we use
instruments whose measurements are in optical, infrared and radar electromagnetic
spectrum areas. Hyperspectral imaging is an evolution of optical imaging to recon-
struct the spectral profiles of objects imaged by the acquisition of several tens or
several hundred narrow spectral bands, that totally covers the whole of the optical
spectral range, from purple to infrared (in most of the case but we can choose an-
other part of the spectrum). This type of imaging, because of its complexity and its
data size, is still limited to mainly experimental applications. However, progress in
technology and information begin to turn it more operational. That is why several
space agencies develop hyperspectral sensors. Among many other initiatives, we
can highlight the current German and Italian programs (EnMAP and PRISMA),
the American missions in progress Hyperion and the new program HyspIRI (com-
ing soon), the SPECTRA program for ESA. But these kinds of images provide rich
information that there can also be used in medical imaging, in physicochemical
imaging, etc. Let us formalize the models for hyperspectral image data representa-
tion. We review dimensionality reduction and classification techniques relevant for
hyperspectral image analysis.

1.2 Hyperspectral images

In 1666, Isaac Newton showed that light can be decomposed into a spectrum of
light rays that can be represented in a graph linking the intensity and the different
wavelengths present in a light beam. The objects that we see have colors because
they absorb certain wavelengths and reflect others. This reflected light represents
what is seen by our eyes. For example: a red apple reflects mainly red light and
grass mainly reflects green light.

In the context of imaging, it is the spectrum of reflected light that interests
us. However, in traditional imaging we take the wave included in the visible range.
Visible light is the part of the electromagnetic radiation that our eyes capture.
In fact, the human eye perceives the waves electromagnetic whose wavelengths lie
between about 380 and 780 nanometres. However, in the case where the incident
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light comes from the sun, by limiting ourselves to the visible spectrum we do not
have access to all available information.

Each spectrum has a different name and a different function, such as the spectral
range of X-rays used in medical radiology. Thus, depending on its composition, an
object absorbs such and such wavelengths and returns a spectrum. This spectrum
of reflected light is unique and depends on the composition of the object, and is
called spectral signature. Knowledge of the spectral signature of a body can help us
to know if it is present or not in a region. It is therefore possible to have access to
the material composition.

A hyperspectral image is therefore a simultaneous acquisition of images of many
narrow, contiguous spectral bands. This technique enables us to obtain a spectrum
for each pixel of the image.

Figure 1.1: Hyperspectral image [98]

1.2.1 Representation of hyperspectral data

Physical description

In this section we describe several physical issues that can deteriorate the acquisi-
tion of the data, most of them are mainly related to remote sensing hyperspectral
imaging, but some issues are more general.

Atmospheric effects During its path between the object and the satellite, each
reflected ray passes through the atmosphere, which changes the reflected spectrum.
Indeed, the atmosphere is anisotropic, so there may be interactions between particles
within it, through absorption and diffusion phenomena. Therefore, the spectrum
recovered from the satellite is not the spectrum of the real object. This is why it is
important to consider this aspect, which is one of the main obstacles to hyperspectral
satellite imagery. It can be seen by comparing the spectra of Figure 1.2 that the
spectrum is actually modified.

Topographic effects Topographic effects are due to the shape of objects. For
example in Figure 1.3, we see that the rays A, B and C come from different reliefs
and are not reflected in the same place. Thus, it is easy to understand that when a
sensor receives a signal from a non-planar surface, a part of the signal received by
the sensor does not come from the analyzed area.
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Figure 1.2: Reflected spectra in the left with no atmosphere, in the right in presence
of atmosphere [43].

Figure 1.3: Reflected spectra from a non-planar object [43].

Spectral Mixture effects When a photo is taken, the picture is divided into
pixels. So that each one has a different color. Even if a pixel is composed of
different elements, it will have only one color. However, in hyperspectral images,
when a pixel (which is a vector) is composed of different materials we have a spectral
mixture. In fact, the spectrum of each pixel is a function of the spectra of different
materials integrated in the surface of the detector. This type of problem can make
impossible to determine the composition of a pixel.

There are two main models of spectral mixture,

Linear Mixing: in this case we consider that the materials of a pixel are optically
separated, thus the spectrum of the pixel is just the sum of the different spectra
multiplied by a coefficient related to the proportion materials. In the following
we refer to this coefficient as the abundance ratio or abundances.

Nonlinear Mixing : in this case we are dealing with a mixture of different mate-
rials that creates dispersion effects. The signal thus obtained is a non linear
combination of the different spectral reflections. There are different non linear
mixture models according to the non linear aspect we want to represent.

Figure 1.4: The two models of spectral mixing [40].
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1.2.2 Mathematical description of linear mixing model

Despite the above description, which shows that in a realistic situation, the received
signal by the hyperspectral sensors is nonlinear, we will consider a linear model, as
it turns out to be frequently used. This assumption may seems very simplistic, but
it is one of the most used models and gives consistent results. Finally, this model
also has the advantage of being simple from a mathematical point of view.

The linear mixing model assumes that the D-dimensional spectrum pixel vector
v is a linear combination of the R pure spectra, called endmembers, tainted by an
additive noise N .

v =
R∑

k=1

αx,k φk +N , (1.1)

where φk ∈ RD for k ∈ [1, R] represent the R endmembers, and αx,k represents the
abundance ratio of the endmember φk over v = f(x) which are constrained:

• all the abundance ratios are positive, i.e., αx,k ≥ 0, ∀k, and

• they belong to the simplex, i.e.,
∑R

k=1 αx,k = 1 ∀x ∈ E.

1.3 State-of-the-art on dimensionality reduction

1.3.1 Notation

We introduce here the notation used in the rest of the chapter. Let E be a subset of
the discrete space Z2, which represents the support space of a 2D image and F ⊆ RD

be a set of pixels values in dimension D. Hence, it is assumed in our case that the
value of a pixel x ∈ E is represented by a vector v ∈ F of dimension D. This vector
v represents the spectrum at the position x. We write f : E → F for the function
associated to the image, so we have f(x) = v.

Let F be a set of n spectra such that F = {vi}ni=1 ∈ RD and let us assume that
these points lie on a smooth manifold F of intrinsic dimension d with d� D.

We can consider that F is an hyperspectral image, by doing that, we did not
take into account the position of the pixel.

Additionally, we denote the manifolds with a calligraphic upper-case letter (I,S, . . .),
and D refers to the dictionary in dictionary learning techniques.

1.3.2 From PCA to manifold learning

The goal of manifold learning techniques is to find a smooth mapping Ψ : F ′ −→ F
where F ′ ⊂ Rd represents some parameter domain. Mapping Ψ must be found
while preserving some characteristic properties. Manifold learning techniques can be
mainly divided into two families: i) linear and ii) nonlinear methods. Moreover, the
nonlinear techniques can also be divided into global methods that uses only global
information from the set of points, and the approaches using local information. We
present some of the most popular manifold learning techniques. In particular, we
provide more details for PCA and Kernel-PCA, together with MDS.
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Principal Component Analysis (PCA) - A linear method

Principal Component Analysis (PCA) has several names, so it is also known as the
Karhunen-Loève transform, the Hotelling transform, the Singular Value Decompo-
sition (SVD) transform, etc. Here we will call it PCA.

We start with a set of n points F = {vi}ni=1 ∈ RD. The PCA goal is to reduce the
dimension of this vector space finding the basis that captures most of the variance
of data set thanks to a projection on the principal component space, namely

F = {vi}ni=1 −→ F ′ = {v′i}ni=1 (1.2)

with v′i ∈ Rd, where d � D. A more geometrical point of view of the PCA is
to consider that the PCA goal is to find a space of projection such that the mean
squared distance between the original vectors and their projection is as small as
possible, this is equivalent to finding the projection that maximizes the variance.

Let us call wj ∈ RD the j principal component. The aim of PCA is to find the
set of vectors {wj, 1 ≤ j ≤ D} such as:

arg min
wj

[
n−1

n∑

i=1

‖vi− < vi, wj > wj‖2

]
, ∀1 ≤ j ≤ D. (1.3)

Developing now the distance we have:

‖vi− < vi, wj > wj‖2 = ‖vi‖2 − 2 < vi, wj >
2 + < vi, wj >

2 ‖wj‖2,

then adding the additional constraint that ‖wj‖2 = 1, replacing in (1.3) and keeping
only terms that depend on wj, we have the following new objective function:

arg max
wj ,‖wj‖2=1

n−1

n∑

i=1

< vi, wj >
2, ∀1 ≤ j ≤ D. (1.4)

Since

var(< vi, wj >) = n−1

n∑

i=1

(< vi, wj >)2 − (n−1

n∑

i

(< vi, wj >))2,

if we consider that the data F has been column-centered, which means that
∑n

i=1 vi =
0, then

var(< vi, wj >) = n−1

n∑

i=1

(< vi, wj >)2.

Thus we can see that the goal of the PCA is to find principal components that
maximize the variance. The problem can be rewritten in a matrix way using:

n−1

n∑

i=1

< vi, wj >
2 = n−1(Fwj)

T (Fwj)

= wTj (n−1(F TF ))wj = wTj V wj,

where V = n−1(F TF ), V ∈ MD,D(R), is the covariance matrix of F . Hence we
should optimize:

arg max
wj ,‖wj‖2=1

wTj V wj, ∀1 ≤ j ≤ D. (1.5)
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Thanks to Lagrange multiplier theorem we can rewrite the objective function as:

L(wj, λ) = wTj V wj − λ(wTj wj − 1), (1.6)

where λ ∈ R. Since we want to maximize this function, we have to derive it and
equal it to zero:

∂L

∂wj
(wj, λ) = 2V wj − 2λwj = 0.

So, we finally obtain as solution

V wj = λwj. (1.7)

Thus, the principal component wj that satisfies the objective function is an eigen-
vector of the covariance matrix V , and the one maximizing L(wj, λ) is the one with
the larger eigenvalue. Then we can have all the wj by computing the SVD of V .

There are different approaches to choose the reduced dimension d, that is the
principal component to be kept. The underlying assumption is the following: if
the intrinsic dimension of the data is d, then the remaining d − D eigenvalues,
corresponding to the eigenvectors that are discarded, should be significatively small.
This principle is expressed using

Prop =
d∑

j=1

λj/
D∑

j=1

λj,

which is equal to the proportion of the original variance kept. We will write Wd

the square matrix of size D containing the d eigenvectors corresponding of the
higher eigenvalues, and all the other columns are null. Then thanks to the Eckart-
Young theorem [165] (theorem 5.1) it is possible to quantify the error of reduction
of dimension such as :

ErrPCA = ‖V −W T
d VWd‖2

F =
D∑

j=d+1

λ2
j (1.8)

Multi Dimensional Scaling (MDS) - A linear method

Goal Multidimensional scaling [129] is a data mining technique used to reduce
the dimensionality of the data by keeping as close as possible the pairwise distance
between the data point. More technically, we have:

F = {vi}ni=1 −→ F ′ = {v′i}ni=1 (1.9)

with ‖vi − vj‖ ' ‖v′i − v′j‖, ∀i, j ∈ [1, n]2, where ‖vi − vj‖ represents the Euclidean
distance between vi and vj. So the goal is to find a configuration of the dataset in a
lower dimension such as the similarities are preserved. There are two main objective
functions to use in the corresponding optimization problem. The simplest one is the
raw stress function, given by:

Φ(F ′) =
∑

i,j∈[1,n]2

(‖v′i − v′j‖2
2 − ‖vi − vj‖2

2), (1.10)
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The second objective function is the Sammon cost function :

Φ(F ′) =
1∑

i,j∈[1,n]2 ‖vi − vj‖2

∑

i,j∈[1,n]2

(‖v′i − v′j‖2
2 − ‖vi − vj‖2

2). (1.11)

The unique difference between these two cost functions comes from the term:
(∑

i,j∈[1,n]2 ‖vi − vj‖2

)−1

,

that is a way to highlight data points on F that are more similar.

Mathematical rationale In the following we still represent our initial data by :
F = {vi}ni=1 ∈ RD, and we would like to reduce the dimensionality and to build the
representation F ′ = {v′i}ni=1 ∈ Rd. First, let us introduce some basic notions.

Definition 1 The Euclidean distance between two vectors a = [a1, . . . , aD] ∈ RD

and b = [b1, . . . , bD] ∈ RD is just:

d2(a, b) = ‖a− b‖2 =

√√√√
D∑

i=1

(ai − bi)2.

To simplify the writting of this section, we will omit the subscript 2 for the L2 norm
and write just ‖ · ‖ instead of ‖ · ‖2. For the rest of this part we will denote the
(symmetric) Euclidean distance matrix and the squared Euclidean distance matrix,
respectively with matrix D and S such as:

Di,j = d2(vi, vj), Si,j = d2(vi, vj)
2.

Definition 2 The inner product between two vectors a = [a1, . . . , aD] ∈ RD and
b = [b1, . . . , bD] ∈ RD is defined as:

< a, b >=
D∑

i=1

ai × bi.

Since the basic idea of MDS is to transform the distance matrix into a cross
product matrix, we are going to introduce the Gram matrix, also called cross product
matrix, written G, such as:

Gi,j =< vi, vj > .

Another definition of the Gram matrix is the following one.

Definition 3 Let X be a set of data, the Gram matrix G associated to X is defined
by :

G = XT X

Since d2(vi, vj) =
√
< vi − vj, vi − vj >, we have

d2(vi, vj) =
√
< vi, vi > + < vj, vj > −2 < vi, vj > thus

Di,j =
√
Gi,i +Gj,j − 2Gi,j.

By performing a double centering, we can transform the squared distance matrix
into a Gram matrix G. To do it, we need a “centralizing matrix” H such as:

H = I − 1

n
· 1 1T , (1.12)

with 1 ∈Mn,1(R) and 1T = [1, . . . , 1].
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Lemma 4 The centralizing matrix H satisfies the following properties:

(1) H2 = H;

(2) 1T H = H 1 = 0 ;

(3) If X is a centred dataset, which means that columnwise mean(X) = 0, then
X H = X.

Proof. (1)

H H = (I − 1

n
· 1 1T ) (I − 1

n
· 1 1T ),

H H = I − 2

n
· 1 1T +

1

n2
· (1 1T )× (1 1T ),

however 1 1T 1 1T = n · 1 1T ,

so H H = I − 1

n
· 1 1T ,

H H = H.

(2)

1T H = 1T (I − 1

n
· 1 1T ),

1T H = 1T − 1

n
· 1T (1 1T ),

however 1T 1 1T = n · 1T , so 1T H = 0,

since HT = H, finally H 1 = 0.

(3) If X is a centred dataset, we have X 1 1T = 0. Then we obtain

X H = X − 1

n
·X (1 1T ).

Lemma 5 Let X be a centred dataset, and G its Gram matrix, then we have

H GH = G.

We add a superscript c on G and X to note that they are centred: Gc and Xc.

Proof. Thanks to the Lemma 4, one has XcH = Xc, and using Definition 3, we
can write

Gc = (Xc)T Xc = H (Xc)T Xc ×H = H GcH.

Theorem 6 Let X be a dataset, and D be its Euclidean distance matrix. We have

Di,j =
√
Gc
i,i +Gc

j,j − 2Gc
i,j. (1.13)
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Proof. Let us consider X = {xi}ni=1 ∈ Rk, Xc = {xci}ni=1 ∈ Rk, D, Gc, receptively a
set of data, the same set of data but centred, the Euclidean distance matrix of the
set X, the centred Gram matrix of X, and k ∈ N

Di,j = d2(xi, xj) = d2(xi −mean(X), xj −mean(X)) = d2(xci , x
c
j),

then, one has: Di,j =
√
< xci − xcj, xci − xcj >,

Di,j =
√
< xci , x

c
i > −2· < xci , x

c
j > + < xcj, x

c
j >,

Di,j =
√
Gc
i,i +Gc

j,j − 2Gc
i,j.

Theorem 7 Let X be a dataset, G its Gram matrix, S its squared distance matrix,
centred matrices Gc and Sc obey the following relationship:

Gc = −1

2
Sc. (1.14)

Proof. Using Lemma 5, we have H GcH = Gc. Let us translate it matricially,
using Gc = {Gc

ij}i,j∈[1,n]2 , to obtain:

H GcH =

(
I − 1

n
· 1 1T

)
Gc

(
I − 1

n
· 1 1T

)
,

thus H GcH = Gc − 1

n
· 1 1T Gc − 1

n
·Gc 1 1T +

1

n2
· 1 1T Gc 1 1T = Gc,

hence, 1 1T Gc +Gc 1 1T − 1

n
· 1 1T Gc 1 1T = 0.

On the other hand, we have:

1 1T Gc =




1 . . . 1
...

. . .
...

1 . . . 1


×




Gc
11 . . . Gc

1n
...

. . .
...

Gc
n1 . . . Gc

nn


 ,

Then by doing the product, we get:

1 1T Gc =




∑n
i=1 G

c
i1 . . .

∑n
i=1G

c
in

...
. . .

...∑n
i=1 G

c
i1 . . .

∑n
i=1G

c
in


 .

In the same way, we can write:

Gc 1 1T =




∑n
j=1 G

c
1j . . .

∑n
j=1 G

c
1j

...
. . .

...∑n
j=1 G

c
nj . . .

∑n
j=1 G

c
nj


 .

And also:

1 1T Gc × 1 1T =




∑
i,j∈[1,n]2 G

c
ij . . .

∑
i,j∈[1,n]2 G

c
ij

...
. . .

...∑
i,j∈[1,n]2 G

c
ij . . .

∑
i,j∈[1,n]2 G

c
ij


 .
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So finally we have:



∑n
i=1G

c
i1 . . .

∑n
i=1G

c
in

...
. . .

...∑n
i=1G

c
i1 . . .

∑n
i=1G

c
in


+




∑n
j=1G

c
1j . . .

∑n
j=1G

c
1j

...
. . .

...∑n
j=1G

c
nj . . .

∑n
j=1G

c
nj




− 1

n
·




∑
i,j∈[1,n]2 G

c
ij . . .

∑
i,j∈[1,n]2 G

c
ij

...
. . .

...∑
i,j∈[1,n]2 G

c
ij . . .

∑
i,j∈[1,n]2 G

c
ij


 = 0n(R).

By multiplying this expression on the right by 1 we obtain:



∑
i,j∈[1,n]2 G

c
ij

...∑
i,j∈[1,n]2 G

c
ij


+ n ·




∑n
j=1G

c
1j

...∑n
j=1G

c
nj


−




∑
i,j∈[1,n]2 G

c
ij

...∑
i,j∈[1,n]2 G

c
ij


 = 0n,1(R)

Hence ∀i ∈ [1, n] we have
∑n

j=1 G
c
ij = 0 and thanks to the symmetry ofGc, ∀j ∈ [1, n]

we have
∑n

i=1G
c
ij = 0. In addition, it is known now that D2

i,j = Gc
i,i + Gc

j,j − 2Gc
i,j

thanks to Theorem 6, so finally:

n∑

i=1

D2
i,j =

n∑

i=1

Gc
i,i + n ·Gc

j,j, (1.15)

n∑

j=1

D2
i,j = n ·Gc

i,i +
n∑

j=1

Gc
j,j. (1.16)

But we also have that

Sc = H SH =

(
I − 1

n
· 1 1T

)
S

(
I − 1

n
· 1 1T

)
,

Sc = S − 1

n
· 1 1T S − 1

n
· S 1 1T − 1

n2
· 1 1T S 1 1T .

By rewriting matricially, and using S = {D2
ij}i,j∈[1,n]2 and all the matrix operations

that we have done just above, we have:

Scij = D2
ij −

1

n
·

n∑

i=1

D2
i,j −

1

n
·

n∑

j=1

D2
i,j +

1

n2
·
∑

i,j∈[1,n]2

D2
ij. (1.17)

Using (1.15) and putting those equations on (1.17), we obtain the following new
expression:

Scij = D2
ij −

1

n
·




n∑

i=1

Gc
i,i + n ·Gc

j,j − n ·Gc
i,i +

n∑

j=1

Gc
j,j −

1

n
·
∑

i,j∈[1,n]2

D2
ij




Scij = D2
ij −Gc

ii −Gc
jj

According to Theorem 6, we have as expected:

Scij = −2 ·Gc
ij.
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Definition 8 The Frobenius norm of a matrix A = {aij}i,j∈[1,n]2 ∈ Mn(R) is given
by

‖A‖F =

√ ∑

i,j∈[1,n]2

|aij|2.

We remind a classical result related to the Frobenius norm.

Proposition 9 Let us consider A, U ∈Mn(R)2 such as ‖U‖F = 1, then we have:

‖AU‖F = ‖U A‖F = ‖A‖F .

Going back to the MDS, our goal is to find F ′ that minimizes:

Φ(F ′) =
∑

i,j∈[1,n]2

(‖v′i − v′j‖2 − ‖vi − vj‖2).

Let us call F the matrix associated to the dataset {vi}i∈[1,n] ∈ RD, F ′ the matrix
associated to {v′i}i∈[1,n] ∈ Rd, S and S ′ respectively the Euclidean squared distance
matrices of F and F ′, and G and G′ respectively their Gram matrices.

Another way to see the optimization problem of MDS is to seek for a matrix S ′

that minimizes:

Φ(S ′) =
∑

i,j∈[1,n]2

(S ′ij − Sij), with rank(S ′) = d, (1.18)

such that
∑

i,j∈[1,n]2

(S ′ij − Sij) ≤
∑

i,j∈[1,n]2

|S ′ij − Sij|.

Thanks to the norms equivalence relationship in Mn(R), we have:

∃α ∈ R+, ‖S ′ − S‖1 =
∑

i,j∈[1,n]2

|S ′ij − Sij| ≤ α · ‖S ′ − S‖F

Therefore, our new goal is to find S ′ that minimizes:

Φ(S ′) = ‖S ′ − S‖F , with rank(S ′) = d, (1.19)

Then, using the proposition 9 with H̃ = (‖H‖F )−1 ·H, we have:

‖S ′ − S‖F = ‖H̃ (S ′ − S) H̃‖F =
1

‖H‖2
F

· ‖H (S ′ − S)×H‖F ,

‖S ′ − S‖F =
2

‖H‖2
F

· ‖G′ −G‖F .

Finally, we conclude that our problem is equivalent to find G′ that minimizes:

Φ(G′) = ‖G′ −G‖F , with rank(S ′) = d. (1.20)

To do it, we use now the classical Eckart and Young theorem [41].
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Theorem 10 Let us consider a matrix A ∈ Mnm(R), with (n,m) ∈ N2. We can
write its singular value decomposition A = UA ΣA V

T
A , where ΣA =diag(σ1, . . . , σr)

is diagonal and contains the singular value of A sorted in decreasing order, and
UA ∈ Mnr(R) and VA ∈ Mrm(R) have orthogonal vectors that contain the left and
right singular vector of A, and where r = rank(A). Then if we call A′ ∈ Mnm(R)
the best d-rank approximation of A under the Frobenius norm which solution to:

‖A′ − A‖F , with rank(S ′) = d

is A′ = UA,d ΣA,d V
T
A,d, where ΣA,d is diagonal and contains the top d singular value

of A sorted in decreasing order, and UA ∈ Mnr(R) and VA ∈ Mrm(R) contain
respectively the associated left and right singular vector of A. Moreover the error of
minimisation is given by:

‖A′ − A‖F =

√√√√
r∑

i=d+1

σ2
i .

Then, applying this theorem to our problem, we have

G′ = UG,d ΣG,d U
T
G,d, (1.21)

where G′ is squared, since G′ = (F ′)T F ′, we finally have

F ′ = Σ
1/2
G,d U

T
G,d, (1.22)

where ΣG,d is diagonal and contains the top d eigenvalue of G and UG ∈ Mn(R)
contains the associated eigenvectors.

Isomap - A nonlinear method

Let us consider again a set of n points F = {vi}ni=1 ∈ RD. Isometric mapping
(Isomap) [149] is a generalization of MDS, where the pairwise distance between
points (vi, vj) is replaced by an estimation of the pairwise geodesic distance between
points (vi, vj). The basic idea consists in building a weighted graph which goal is
to recover the local geometry of the manifold, each node of this graph is a point
vi and each edge is an Euclidean distance between the nodes. Then, some edges
are removed, in order to build local neighbourhoods. There are two ways to build
the graph: either k−neighbourhood (i.e., the number of neighbours is fixed to k) or
ε−neighbourhood (i.e., a threshold of value ε is applied on the distance). Dijkstra
algorithm is used to compute the shortest paths in the graph. It turns out that
under certain conditions regarding the sampling of the manifold, its convexity and
the fact that the manifold is smooth, the graph distance happens to be a good
approximation of the geodesic distance on the manifold. Therefore the cost function
to minimize in Isomap is

Φ(F ′) =
∑

i,j∈[1,n]2

(‖v′i − v′j‖2 − dgeo(vi, vj)
2), (1.23)

where dgeo is an approximation of the geodesic distance on the manifold.
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Locally linear Embedding (LLE) - A nonlinear method

Locally Linear Embedding (LLE) is an unsupervised learning algorithm introduced
by Roweis and Saul [127] that reduces the dimensionality of a dataset of points
F = {vi}ni=1 ⊂ RD based on their local structure. It is based on the intuition
that each initial point ∀i ∈ [1, n] vi can be linearly reconstructed by its neighbours
(k−neighbourhood or ε−neighbourhood). The error of reconstruction is measured
given by:

Φ1(W ) =
∑

i

‖vi −
∑

j

Wij · vj‖2,

where Wij represents the contribution of the jth coordinate over vi, with the con-
strain that

∑
jWij = 1 and Wij = 0 if vj does not belong to the neighbourhood of

vi. This constraint, together with the cost function, makes that the reconstructed
data are invariant to rotations, rescaling, and translation. Then one transforms vi
to v′i thanks to a mapping consisting in translation, rotation, and rescaling. Since
Wij are invariant to this mapping, they are also the weight of reconstruction of v′i.
Thus to find v′i, we just need to minimize the following equivalent cost function:

Φ2(F ′) =
∑

i

‖v′i −
∑

j

Wij · v′j‖2, (1.24)

with the constrain
∑

j F
′
ij = 0, ∀j ∈ [1, n] and F ′T F ′ = I.

Hessian Eigenmaps - A nonlinear method

Hessian Eigenmaps introduced by Donoho and Grimes [39] achieves an embedding
by minimizing the Hessian functional estimated from the sampled manifold. One of
the major advantages of Hessian Eigenmaps is that it can recover the true manifold
geometry even if it is not convex. Let us consider a set of n points F = {vi}ni=1 ∈ RD

that lie on a manifold F of intrinsic dimension d. For any point vi we have a local
orthonormal coordinate system (v1

i , . . . , v
d
i ) on the tangent space Tvi(F). Let us

consider the projection operator PrTvi (vj), where vj is in a neighbourhood of vi. For
any twice differentiable function g : F −→ R it is possible to define its tangent
Hessian matrix as:

Htan
g (vi)k,l =

∂

∂vki

∂

∂vli
g(Pr−1

Tvi
(vi)).

Let us define the quadratic form H(g) =
∫
F ‖Htan

g (vi)‖2
Fdv which represents the

average over the data manifold F of the Frobenius norm of the Hessian matrix of
g. Donoho and Grimes [39] proposed and proved the following key result: H(g)
has a d + 1 dimensional null-space which consists in the constant function and the
d-dimensional function spanned by the isometric coordinates. From this result, it
is possible to formulate an algorithm to approximate the computation of Hessian
Eigenmaps.

1.3.3 Kernels and Kernel PCA - A nonlinear method

Kernel trick

Kernel methods are used to define nonlinear decision functions while using linear
methods as basic ingredients. They allow to project the data into a nonlinear space



CHAPTER 1. STATE-OF-THE-ART ON STATISTICAL LEARNING APPLIED
TO HYPERSPECTRAL IMAGES 25

that can be even of infinite dimension. For more information on kernels the reader
is referred to [133].

Definition 11 A kernel is a function k : X × X → C which is symmetric and
hermitian.

However most of the time, we work with positive definite kernels.

Definition 12 k is called a positive definite kernel if ∀{x1, . . . , xn} ∈ X n and
∀{α1, . . . , αn} ∈ Cn, the following non-negativity condition holds:

n∑

i=1

n∑

j=1

αiα
∗
jk(xi, xj) ≥ 0.

If we consider a dataset {x1, . . . , xn} ∈ X n, thanks to positive definite kernel, it
is possible to define a similarity matrix:

[K]ij := k(xi, xj),

which is positive semi-definite (PSD). Usually this matrix is also called the Gram
matrix, or the kernel matrix.

Positive definite kernels are considered as a generalization of inner product on
nonlinear spaces, and so can be used to replace the inner product in algorithms.
In addition, the function k : X × X → R, defined by: ∀(i, j) ∈ [1, n] k(xi, xj) =<
xi, xj >RD , where < .., .. >RD is the inner product on RD, is just called the linear
kernel.

Definition 13 A Hilbert space H is a vector space with a real or complex inner
product space that is also a complete metric space with respect to the distance function
induced by the inner product. That means that every Cauchy sequence in H has a
limit in H.

We remind now the important Moore-Aronszajn theorem for kernel methods.

Theorem 14 k is a positive definite kernel if and only if there exists a Hilbert space
H and a mapping φ : X → H such that k(xi, xj) =< φ(xi), φ(xj) >H.

Definition 15 Let (H, < .., .. >H) be a Hilbert space consisting of functions of X
in C. The function k : X ×X → C is the reproducing kernel of H, provided that the
latter admits one if and only if:

• For any element x ∈ X , the function k(x, .) : t→ k(x, t) belongs to H;

• For all x ∈ X , g ∈ H, the reproducing property is verified: g(x) =< g, k(x, .) >H.
If a reproducing kernel exists, then H is called a reproducing kernel Hilbert
space (RKHS).

It can be shown that every positive definite kernel is the reproducing kernel of
at most one unique RKHS of functions from X to C. Reciprocally, if H is a RKHS,
then it has a unique reproducing kernel. Moreover every reproducing kernel is a
positive definite kernel. A proof of these theorems may be found in [122]. From
these properties, it results that we can replace φ(xi) by k(xi, .) and therefore to
obtain:

k(xi, xj) =< φ(xi), φ(xj) >H=< k(xi, .)), k(xj, .) >H .

A final key result, named the Representer theorem.
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Theorem 16 Let X be a set endowed with a positive definite kernel k, and Hk the
corresponding RKHS, and x1, . . . , xn ⊂ X a finite set of points. Let Ψ : Rn+1 → R
be a function of n + 1 variables, strictly increasing with respect to the last variable.
Then, any solution to the optimization problem:

min
f∈Hk

Ψ(g(x1), . . . , g(xn), ‖g‖Hk), (1.25)

admits a representation of the form:

∀x ∈ X , g(x) =
n∑

i=1

αik(xi, x), (1.26)

where ‖g‖Hk =
√
< g, g >Hk .

The concept of ”kernel trick” corresponds to the idea that for any algorithm that
uses only the inner product between the input vectors, we can do this implicitly, in a
Hilbert space called feature space φ, by replacing each inner product by an evaluation
of the kernel. This evaluation can be done without having a representation of the
feature map. The kernel trick allows to operate in a space larger without having to
explicitly calculate the coordinates of the data in this space.

Kernel PCA

Let us consider a set of n vectors vi ∈ RD, ∀i ∈ [1, n]. Let us map our data onto
another space H, that have some interesting properties, by the mapping:

φ =

{
RD → H
vi → φ(vi)

(1.27)

where φ is a function that may be nonlinear, and depends on the kernel. The choice
of the kernel is a difficult question that will be discussed latter. Now let us suppose
that we have chosen a kernel.

The goal of the kernel PCA (KPCA) is to find the set of vectors {wj, j ∈ [1, D]}
that minimize the following cost function:

min

(
1

n

n∑

i

‖φ(vi)− < φ(vi), wj >Hk ·wj‖2
Hk

)
, ∀j ∈ [1, P ], (1.28)

where wj, j ∈ [1, n] are the so-called principal components. By developing the
distance one gets:

‖φ(xi)− < φ(vi), wj >Hk ·wj‖2
Hk =

‖φ(vi)‖2
Hk − 2 < φ(vi), wj >

2
Hk + < φ(vi), wj >

2
Hk ‖wj‖

2
Hk (1.29)

By adding the constraint that ‖wj‖2
Hk = 1, replacing (1.29) in 1.28 and keeping the

term that depend on wj, we have the following new objective function:

max(
1

n
×

n∑

i

< φ(vi), wj >
2
Hk), with ‖wj‖2

Hk = 1, ∀j ∈ [1, P ]. (1.30)
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Problem (1.30) can be rewritten thanks to the Lagrange multiplier theorem as follows

L(wj, λ) =
1

n

n∑

i

< φ(vi), wj >
2
Hk −λ (‖wj‖2

Hk − 1) (1.31)

where λ ∈ R. Thanks to the Representer theorem presented above, wj can be
written as:

wj =
n∑

l=1

αl,jφ(vl). (1.32)

Therefore, finally, we have:

L(αj, λ) =
1

n

n∑

i

(
n∑

l=1

αl,j < φ(vi), φ(vl) >Hk

)2

−

λ

(
n∑

l=1

n∑

t=1

αl,jαt,jk(vl, vt)− 1

)
,

which can be rewriten in a matrix way as:

L(αj, λ) =
1

n
αtj k

2 αj − λ ·
(
αtj k αj − 1

)
. (1.33)

By deriving it, we obtain:

∂L

∂αj
(αj, λ) =

2

n
k2 αj − 2λ k αj = 0. (1.34)

In conclusion, KPCA optimizaton problem is equivalent to eigenproblem:

k αj = nλ · αj (1.35)

such that (1.34) and (1.35) are equivalent for non null eigenvalue, in the other cases,
the solutions are not interesting for the maximization problem, and would not be
taken into consideration.

Finally αj, j ∈ [1, D], are the eigenvectors of k, and the normalization impose
that the eigenvector are:

α̃j =
1

λj
αj.

Importance of the choice of the kernel

The advantage of the kernel trick is that we can use many different kernels without
having to compute explicitly the mapping φ(vi). Two of the most popular kernels
are:

• The polynomial kernel:

k(vi, vj) = (< vi, vj >RD +c)P ,

where P is the degree of the kernel and c a scalar constant;
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• The radial basis function (rbf) kernel, often called Gaussian kernel:

k(vi, vj) = e
−‖vi−vj‖2RD

2σ2 ,

with scaling parameter σ. This kernel bring the data into a RKHS of infinite
dimension.

Kernel function k(vi, vj) can be seen as an interaction function between vi and
vj, that quantifies the similarity between two objects. Here we work on high di-
mensional spaces, where the notion of similarity is a key issue to address the curse
of dimensionality. Usually we want a good similarity measure to be high for data
that belong to the same cluster and small on the contrary. However since we do not
have access to this information, this involves that the question of similarity in high
dimensional spaces is far from being simple.

We have represented in Figures 1.5 and 1.6 the results of KPCA for different
kernels. These results illustrate the importance of the choice of the kernel. By
the way, the choice of σ in the case of the rbf kernel has a strong impact on the
dimensionality reduction, as shown in the figures.

In this thesis, and when a particular approach is not mentioned, we have chosen
for the rbf kernel parameter

σ = median({‖vi − vj‖RD , (i, j) ∈ [1, n]2}).

For readers interested on the choice of σ are referred to [148].

1.3.4 Dictionary learning

The goal of dictionary learning is to find a sparse representation which approximates
an image from a set of consistent images. Let us consider that we have a collection
of D images, denoted here by yj, with j ∈ [1, D]. Our goal is to find a dictionary
D, composed of d atoms φk, with k ∈ [1, d], such as each image yj can be expressed
as a linear combination of atoms from the dictionary:

yj =
∑

k

αj,kφk = αTj φ, ∀j. (1.36)

In order to find a unique dictionary, some constraints of sparsity are imposed on
αj. Typically the objective is to find a sparse vector αj that would contain a small
number of non-zero coefficients. The reformulated optimization problem is written
as follows [152]:

min


 ‖yj − αTj φ‖︸ ︷︷ ︸

Term of estimation

+λ ‖αj‖0︸ ︷︷ ︸
Term of sparseness


 , ∀j ∈ [1, D]. (1.37)

In order to solve this problem, the proposed techniques can be divided into two fam-
ilies. First, supervised techniques, where the dictionary D is given, and so the goal
is only to find αj. We do not consider this kind of approaches. Second, unsupervised
techniques, where D and αj are both estimated, which can be subdivided into three
main kinds: i) probabilistic methods, ii) clustering-based methods, and iii) learning
a dictionary with specific structure.
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(a) (b) (c)

(d) (e) (f)

Figure 1.5: (a) Synthetic manifold with two concentric spheres, (b) polynomial
KPCA with p = 5, (c) Gaussian KPCA with σ, (d) Gaussian KPCA with 5σ,(e)
Gaussian KPCA with 8σ, (f) Gaussian KPCA with 15σ.

(a) (b) (c)

(d) (e) (f)

Figure 1.6: (a) Flower-like synthetic manifold, (b) Polynomial KPCA with p = 5,
(c) Gaussian KPCA with σ, (d) Gaussian KPCA with 5σ,(e) Gaussian KPCA with
8σ, (f) Gaussian KPCA with 100σ.



30 1.4. STATE-OF-THE-ART ON CLASSIFICATION

Maximum likelihood method - A probabilistic method

The maximum likelihood method for dictionary learning [95, 82] leans on the hy-
pothesis that the signals can be written as:

yj = αTj φ+ nj, ∀j,

where nj is a white Gaussian residual vector with covariance σ2. Then the goal of
the approach is to find α and D maximizing the likelihood P (Y |D) = ΠD

i=1P (yi|D)
with:

P (yi|D) =

∫
P (yi, α|D)dα =

∫
P (yi|α,D)P (α)dα.

VQ objective - A clustering based method

In this technique [130], where the datapoints are partitioned into K clusters with
for instance K-means algorithm, each data cluster is approximated thanks to one
atom of the dictionary, which usually corresponds to the central point (i.e., mean)
of the cluster.

The K-SVD - A clustering based method

K-SVD [4] is a powerfull generalization of VQ objective. It is contrary to most of
the methods where the optimisation problem (1.37) is solved thanks to a double
optimization problem, where one first fix α, and find D, and then, one fixes D, to
find α. In K-SVD each atom φk of D is update sequentially using an Singular Value
Decomposition (SVD), then thanks to the SVD, a new atom φ̃k is found as well
as its corresonding coefficients. This technique is in a way a generalisation of the
VQ objective since each data yj can be expressed thanks to multiple atoms, from
multiple partitions.

Unions of orthonormal Bases - Structured dictionary

The technique [81] is based on a particular constrained optimization problem, con-
sidering that the solution is a set of union of orthonormal bases (1.37). Its rationale
is founded on the fact that many signals can be seen as a set of orthonormal bases,
and also that, thanks to this structure, the problem of optimization is easier to solve.
In this method, each bases is updated sequentially, but the optimization problem
does not update the atom of the basis and the corresponding coefficients at the same
time.

1.4 State-of-the-art on classification

1.4.1 Regression

Supervised classification can be seen as a special case of regression. For this reason,
let us start by introducing a background on regression [16].

Let us suppose that we have n datapoints (or vectors) {vi} ∈ RD, with i ∈ [1, n].
Each of these points is associated to a target value {ti} ∈ R. The set {vi, ti},
i ∈ [1, n], is called the training set. The goal of regression is to predict the target
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value ti for a new data vi with i /∈ [1, n]. To be able to predict such a value ti, we
can consider that it can be written as a linear combination of the coordinates of
vi. Let us write vi = (vi,1, . . . , vi,j, . . . , vi,D)t ∈ RD. A simple model often used in
regression is to consider that the prediction function is given by:

y(ω, vi) = ω0 + ω1vi,1 + . . .+ ωDvi,D = ω0 +
D∑

j=1

ωjvi,j. (1.38)

Our goal is to learn the parameters {ω0, . . . , ωD} thanks to the training set. This
model (1.38) is called linear regression, and may have some limitations. That is why
we prefer to consider a more general model:

y(ω, vi) = ω0 +
M∑

j=1

ωjφj(vi), (1.39)

where φj(vi) represents a set of basis functions, with M the number of basis. There
are many choices of basis functions. For instance, we can use a polynomial basis

φj(vi) = vki,j, (1.40)

where the power k is a hyper-parameter or we can consider the rbf:

φj(vi) = exp

(
−‖vi − µj‖

2

2σ2

)
, (1.41)

where now the hyper-parameters are µj, which governs the spatial locations, and σ
the scaling factor.

Let us consider that the target data is given by the previous deterministic func-
tion, corrupted by Gaussian noise ε of zero mean Gaussian and inverse variance β,
such that:

ti = y(ω, vi) + ε,

where y(ω, vi) = ωtφ(vi), with ωt = (ω0, . . . , ωM), φ(vi) = (φ0(vi), . . . , φM(vi))
t and

φ0(vi) = 1. Let us denote E the random variable associated to the noise such that
E ∼ N (0, β−1). We can write τ for the random variable associated to the target
value, such that we have τ ∼ N (y(ω, vi), β

−1), which depends on two parameters,
ω and β and a spatial position vi on the manifold of the data. One can see that
this is related to the notion a random functions that will be introduce in the sequel
of the thesis. Let us consider that the training set is drawn independently from the
previous law. Then we can write the likelihood function of the parameters ω and β:

L(t1, . . . , tn/ω, β) =
n∏

i=1

√
β√
2π

exp

(−β(ti − y((ω, vi))
2

2

)
.

Taking the logarithm of the likelihood function, we have:

logL (t1, . . . , tn/ω, β) =
n∑

i=1

(
1/2. log β − 1/2 log 2π − β/2(ti − y((ω, vi))

2
)
.
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If we want to find the set of parameters that maximize the likelihood, we have first
to derive it according to each of the parameters of the log-likelihood, and equals it
to zero. On the previous expression the term that depends just on ω is:

Ed(ω) =
β

2

n∑

i=1

(ti − y((ω, vi))
2.

Our goal is to find ω that minimizes Ed. One can recognize the typical cost function
of machine learning regression. In order to minimize this cost function, we can derive
it, equal it to zero, to finally obtain that:

ωML = (Φt Φ)−1 Φt t, (1.42)

where Φ ∈Mn,M+1(R) is defined by

Φ =



φ0(v1) . . . φM(v1)

...
. . .

...
φ0(vn) . . . φM(vn)


 (1.43)

and where t = (t1, . . . , tn)t is the vector of all the training targets values. It is also
possible to estimate βML as:

βML =
1

n

n∑

i=1

(
tn − ωtMLφ(xi)

)2
, (1.44)

such that βML provides us information on the precision of the regression.
This is the classical case of regression. However if one has access to some prior

knowledge on ω, this can help to regularize the cost function. Let us consider that the
random variable associated with ω follows a normal distribution N (m0, S0), which
is called the prior distribution. Then we need to compute the posterior distribution
and we can estimate the new value of ω. As shown in [16] (page 153), in the case
where m0 = 0 ∈ RM+1 and S0 = α · I, with I the identity matrix of size M + 1,
then the cost function is called ridge regression is just given by:

EB(ω) =
β

2n

n∑

i=1

(ti − y((ω, vi))
2 + α · ωt ω, (1.45)

whose solution is equal to:

ωB =

(
Φt Φ +

α

β
· I
)−1

Φtt (1.46)

where this new term α/β · I can be seen as a way to improve the inversion of the
matrix, since small eigenvalues that might be problematic are improved thanks to
this term. In addition, in the regularization theory [55, 133], it can also be seen as
a way to avoid overfitting on the training set.

In the previous case, we were looking for a ω ∈ RM+1 of finite dimension. By
means of the kernel trick, it is now possible to have a potential infinite dimension
ω. Let us map the training set vi ∈ RD, ∀i ∈ [1, n], onto another space using

φ =

{
RD → H

xi 7→ φ(xi)
(1.47)
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where again, φ is a function that may be nonlinear, and depends on the choice of
the kernel. Then, in our regression case, the cost function can be now reformulated
as:

EB(ω) =
1

2n

n∑

i=1

(ti − y(ω, vi))
2 + λ · ωt ω. (1.48)

Apparently nothing is different, however since H might be infinite dimensional, and
since we might not have access to φ, then the problem has changed. In order to
solve this problem, we use the Representer theorem, and say that a solution of the
problem must be of the form:

y(ω, vp) =
n∑

i=1

γi k(vp, vi), (1.49)

where k is the kernel associated to φ, and where vp is not necessarily in the training
set. At first vp would be in the training set to learn the parameters γi, then it will
not be. We can rewrite this problem of regression in a matrix way:

EB(γ) =
1

2n
(Kγ − t)t (Kγ − t) + λ · γtKγ, (1.50)

where γ = (γ1, . . . , γn) and K is the Gram matrix associated with the kernel such
that Kij = k(vi, vj). The expression (1.50) can be developped as follows:

EB(γ) =
1

2n

(
γtK2γ − 2ttKγ + ttt

)
+ λ · γtKγ.

Then, by deriving it and setting equal to zero we obtain:

γ = (K + λ · I)−1t, (1.51)

and finally, the solution is:

y(ω, vp) = γtk(vp, :), (1.52)

with k(vp, :) = (k(vp, v1), . . . , k(vp, vn))t. It happens that in the case λ = 0, the
solution of the kernel regression is the same as the one of the kriging interpolation
without constrain in the coefficients of the linear combination, see corresponding
chapter.

1.4.2 Classification

From regression to classification

The problem of classification can be considered as a special case of regression, where
the target value is assigned to one of the K discrete classes. Then the input space
is divided into regions, where each region is assigned to one class. Thus the goal of
classification algorithms is to find the decision boundaries between the classes.

In classification, the target vector ti of for instance class 2 is typically written
as:

ti = (0, 1, 0, . . . , 0) . (1.53)
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As discussed above, in linear regression, the model is of the form: y(vi) = ω0 +∑D
j=1 ωjvi,j. It turns out that in classification, since most of the time we want that

the result of y is in [0, 1], it is possible to use an “activation function” a such that
the model becomes:

y(vi) = a

(
ω0 +

D∑

j=1

ωjvi,j

)
. (1.54)

From binary hyperplane classification to multi-class hyperplane classifi-
cation

Binary classification At first, we address the simple case of binary classification.
We denote these two classes ti ∈ {−1,+1}. In addition, we consider that

y(vi) = ω0 +
D∑

j=1

ωjvi,j = ω0 + ωtvi.

In the rest of the chapter, we write b0 = ω0, since it represents a bias. We look for
the weights ω such that if the data point vi is of the class 1 then y(vi) ≥ 0, and
y(vi) < 0 if the point is of class −1. Hence, this activation function is just sign(x),
which gives the sign of x, thus it separates the space in two classes.

Let us consider two points v1 and v2 which are on the decision boundary, therefore
y(v1) = y(v2) = 0. Thus ωt(v1 − v2) = 0, then ω is orthogonal to the decision
boundary. Finding ω will therefore determine the direction of the decision boundary.
Moreover if v1 is a vector on the decision boundary, y(v1) = 0, so

ωtv1

‖ω‖ = − b0

‖ω‖ .

This implies that the distance from the origin to the decision surface is determined
by ω0. We illustrate this property in Figure 1.7, for a case of D = 2. In addition,
for any point vi, we can decompose it into the base composed of the information
tangent to the decision boundary v⊥i and the information tangent to the w, i.e.,

vi = v⊥i + r
ω

‖ω‖ ,

where r ∈ R represents a coordinate. Then we have on the one hand:

ωtvi = ωtv⊥i + r
ω

‖ω‖ ,

and on the other hand, we add ω0 and use the fact that y(v⊥i ) = 0, to obtain that

y(vi) = r
ω

‖ω‖ . (1.55)

Instead of considering the classification in the linear space, one might work also
on the kernel space. To do that, we just need a feature space φ and then to apply
the classification on this space thanks to

y(vi) = ω0 + ωtφ(vi).
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Figure 1.7: Illustration of the geometry of the hyperplane for binary classification.

Multiclass classification Let us now consider the problem of multiclass classifi-
cation. To transform a problem of binary classification into one of multiclass clas-
sification, there are different approaches that can be applied. The first one consists
in proceeding to multiple binary classification between one class and all the others.
This paradigm of multiclass classification is called one-versus-all. By doing that,
we evaluate for each point the probability of being in a given class in with respect
to the rest of the classes. This technique presents some uncertainties as illustrated
in the example Figure 1.8(a). Another possibility is to proceed to multiple binary
classification of one class against another one. This kind of approaches is called the
one-versus-one multiclass classification and it also presents some uncertainties, see
Figure 1.8(b).

(a) (b)

Figure 1.8: Illustration of the geometry of K-class classification from a set of 2-class
classification techniques.
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These issues can be avoided by considering a single K-class classification problem,
and then to attribute to each target:

y(vi)k = ωtkvi + b0,k, (1.56)

such that each point is assigned to the class k such that y(vi)k > y(vi)j, for all j ∈
[1, K]. For more details about this technique see [16]. More recent techniques have
been invented that provide interesting results, see for instance [31]. We conclude this
paragraph by saying that multiclass classification is a rather difficult; open problem;
since there are many alternative algorithms to transform from binary to multiclass
classification.

Support Vector Machine (SVM)

We have now all the ingredients required to understand the Support Vector Ma-
chine (SVM) classification procedure. We start with the same binary classification
problem: y(vi) = b0 +ωtφ(vi). Since the weights ω might be an infinite dimensional
vector, we change previous notation to the kernel one: y(vi) = g(vi), with g being a
function of the Hilbert space H associated with φ.

Since the distance of the data according to the hyperplane determines their
classes, we might be interested in finding a hyperplane that is far away from the
data. The corresponding distance is called the margin. According to the discussion
of previous paragraphs, the distance of each point to the hyperplane is in binary
classification given by

tig(vi)

‖g‖H
. (1.57)

Hence the solution to find the maximum marging to the closest point vi is the
decision boundary, which can be found by solving:

arg max
g∈H

{
min
i

g(vi)

‖g‖H

}
. (1.58)

The intuition behind this idea is that for the definition of the hyperplane we focus
just on the vectors which are near the boundary of influence. This can be formulated
thanks to the hinge loss function, i.e.,

Φ(ti, y(g, vi)) = max (0, 1− tig(vi)) . (1.59)

This function is equal to zero if the data are on the correct side of the hyperplane.
For data on the wrong side of the decision boundary, the value of the function is
proportional to the distance from the margin. Thus the empirical risk function to
be minimized is:

min
f∈H

[
1

n

n∑

i=1

Φ(ti, y(g, vi))

]
+ λ‖g‖H, (1.60)

where the parameter λ determines the trade-off between increasing the margin-size
and ensuring that the vi lie on the correct side of the margin, and it help also to
regularize the solution.



CHAPTER 1. STATE-OF-THE-ART ON STATISTICAL LEARNING APPLIED
TO HYPERSPECTRAL IMAGES 37

Using one more time the Representer theorem, the solution of the previous prob-
lem can be expanded as:

g(vp) =
n∑

i=1

αik(vi, vp). (1.61)

By plugging this formulation into the original problem, the following convex opti-
mization problem is obtained:

min
α∈Rn

[
1

n

n∑

i=1

Φ(ti

n∑

j=1

αik(vi, vj))

]
+ λ

n∑

i=1

n∑

j=1

αiαjk(vi, vj). (1.62)

Different loss functions provide different classification algorithms. Here we use the
hinge function. However, this function is not differentiable, so one should reformu-
late the problem as follows:

min
α∈Rn,ξ∈Rn

[
1

n

n∑

i=1

ξi

]
+ λ

n∑

i=1

n∑

j=1

αiαjk(vi, vj), (1.63)

subject to:

{
ti
∑n

j=1 αik(vi, vj) + ξi − 1 ≥ 0

ξi ≥ 0
(1.64)

The Lagrangian of this problem is given

L(α, ξ, µ, ν) =

[
1

n

n∑

i=1

ξi

]
+ λ

n∑

i=1

n∑

j=1

αiαjk(vi, vj)

+
n∑

i=1

µi(ti

n∑

j=1

αik(vi, vj) + ξi − 1) +
n∑

i=1

νiξi,

which corresponds to a classical minimization of a convex quadratic function with
linear constraints that can be solved using a quadratic program optimization pack-
age.

Neural network classification

The architecture (Artificial) neural networks are a classification approach which
attempt to find a mathematical representation of how our biological system processes
information. First, let us focus on the model. In classification, the optimization
problem was modelled by:

y(vi) = a(ω0 +
D∑

j=1

ωjφj(vi)), (1.65)

where φ is representing a feature space associated with a kernel k, where the kernel
is fixed and not learned. Here the goal is to make the kernel depending on many
parameters which provide a huge flexibility to the feature space. Moreover we would
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like that these parameters and, so the feature space, are learned during the classi-
fication process. Therefore, the classification will learn ω and φ. To construct the
neural network, we first consider a linear model that depends on the input data:

ck = ω
(1)
0,k +

D∑

j=1

ω
(1)
j,kvi,j. (1.66)

with k ∈ [1, K] and where each ck is a neurone of the first layer. The superscript
(1) indicates that these parameters are the parameters of the first layer. Then, a
nonlinear activation function a is applied on these quantities ck:

zk = a(1)(ck). (1.67)

We can choose different kinds of activation functions, typically:

• A sigmoid function: a = tanh; or

• Rectified Linear Unit (ReLU): a(x) =

{
0 if x < 0
x if x ≥ 0

.

On the output of the first layer, a second linear combination is applied:

dk1 = ω
(2)
0,k1 +

K∑

k=1

ω
(2)
k,k1zk. (1.68)

with k1 ∈ [1, K1], which is followed by another activation function. We can combine
the different stages and obtain:

yk1(vi) = a(2)

(
ω

(2)
0,k1 +

K∑

k=1

ω
(2)
k,k1.a

(1)

(
ω

(1)
0,k +

D∑

j=1

ω
(1)
j,kvi,j

))
. (1.69)

This function can be represented in the form of a network diagram as shown in
Figure 1.9. Then to evaluate the parameter ω we proceed to a forward and back-
ward propagation of information through the network using typically the stochastic
gradient descent, see the reference [17, 77].

The neural network model described above comprises just two stages of process-
ing, where each step corresponds to a perceptron algorithm [16, 15]. Hence this
neural network is referred as a multilayer perceptron (MLP). The first unit is called
the input unit, the last is called the output unit, and between these two units we
have what is called the hidden units. In the case where the activation functions of all
the hidden units are just linear functions, the corresponding network is equivalent
to a network without hidden units. This is due to the fact that the composition of
linear operators gives a linear operator, so we just need to find one linear operator
that will summarize all the hidden units. Moreover, if the number of hidden units is
smaller than either the number of input or output units, the corresponding network
simplifies the data by proceeding to a dimensionality reduction.
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Figure 1.9: Illustration of the neural network with one input layer, one output layer
and one hidden layer.

Biological motivation As explained in [72], the basic unit of the brain is a neu-
ron, and our brain is composed of approximately 86 billion neurons. These neurons
are connected thanks to the synapses, as illustrated in Figure 1.10. It has been
inferred that each neuron receives an input signal from its dendrites and produces
an output signal along one single axon. This axon can eventually be connected via
synapses to the dendrites of different neurons. The basic idea is that the synaptic
strengths play the role of the coefficient ω

(l)
i,j and they control the influence of the

signal.

Figure 1.10: Illustration of the neural network from a biological point of view [72].

In the basic models, the signal is carried to the dendrites; once it is received, all
the signals are sent to the cell body where they all get summed up. If the final sum
is superior to a certain threshold, the neuron is activated, sending a spike along its
axon. This can be interpreted as an activation function.

Convolutional Neural Network Neural networks are difficult to optimize (to
learn) since we consider all the coordinates of vi. That is why usually a sparse
network that does not have all the possible connections between two layers is con-
sidered. One of this type of neural networks is underlying the paradigm of Convolu-
tional Neural Networks (CNN). CNN are considered today as providing impressive
improvement of state-of-the-are classification task in computer vision [74]. Right
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now, one of the best results of classification are obtained with a CNN of 152 layers
[65]. In these networks, the layer is organized into planes which can be seen as a
feature map. Each layer takes as input only data from a small spatial subregion of
the image as represented in Figure 1.11.

Figure 1.11: Illustration of a simple Convolutional Neural Network layer [16].

Let us use the notation of the ”matconvnet library” [155] documentation in order
to explain a bit more the CNN. An image is denoted as:

f :

{
E −→ F
(i, j) −→ f(i, j, :) ∈ RD (1.70)

such that if we want to access to a particular feature coordinate k at a spatial
position (i, j) we write it f(i, j, k). A CNN can be seen as the composition of a
given number of functions, each one of them corresponding to a layer:

yk1(f) = gN
(
. . . g1

(
f, ω(1)

)
, ω(N)

)
(1.71)

Function gl, l = 1, · · · , N takes as input the data ot the previous layer and a set
of parameters ω(l) which are learned from data in order to solve a target problem.
There are different kinds of functions gl as illustrated in Figure 1.12. Some gl do
not have any parameter.

Figure 1.12: Illustration of a typical Convolutional Neural Network architecture [2].

The first function is typically the convolution. We note that here it is a three-
dimensional convolution, in the sense that it operates on a spatial map taking into
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consideration all the feature channels:

y(i′, j′, k′)(1) = g
(
f, ω(1)

)
=
∑

i,j,k

ω
(1)
i,j,k,k′f(i+ i′ − 1, j + j′ − 1, k). (1.72)

with k′ ∈ [1, N1], and N1 is the number of feature maps for layer 1. y(i′, j′, k′)(1)

represents the information of one feature maps k1 of layer 1 in position (i′, j′). ω(1)

represents a multi-dimensional filter. As we said, a nonlinearity is required to obtain
useful features. The simplest nonlinear layer is a ReLU:

y(i′, j′, k′)(2) = g
(
y(i′, j′, k′)(1)

)
= max(0, y(i′, j′, k′)(1)). (1.73)

Next typical layers are so-called pooling layer. A pooling operator works on indi-
vidual feature channels, replacing nearby features values by one feature thanks to
a suitable operator. The most popular are the max-pooling and the mean-pooling.
The max-pooling is defined by:

y(i, j, k)(3) = g
(
y(:, :, k)(2)

)
=

max{y(i′, j′, k)(2)|i ≤ i′ ≤ i+ p & j ≤ j′ ≤ j + p}, (1.74)

with p a scale parameter fixed by the user.
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Chapter 2
Morphological Principal Component
Analysis for Hyperspectral Image Analysis

Abstract

This chapter deals with the issue of reducing the spectral dimension of a hyper-
spectral image using principal component analysis (PCA). To perform this dimen-
sionality reduction, we propose to add spatial information in order to improve the
features that are extracted. Several approaches proposed to add spatial informa-
tion are discussed in this chapter. They are based on mathematical morphology
operators. These morphological operators are the area opening/closing, granulome-
tries and grey-scale distance function. We name the proposed family of techniques
the Morphological Principal Component Analysis (MorphPCA). Present approaches
provide new feature spaces able to handle jointly the spatial and spectral information
of hyperspectral images. They are computationally simple since the key element is
the computation of an empirical covariance matrix which integrates simultaneously
both spatial and spectral information. The performance of the different feature
spaces is assessed for different tasks in order to prove their practical interest.

Résumé

Ce chapitre traite de la réduction de la dimension spectrale d’une image hyperspec-
trale à l’aide de l’analyse des composantes principales (PCA). Pour réaliser cette
réduction de dimensionnalité, nous proposons d’ajouter des informations spatiales.
Plusieurs approches ont été proposées pour ajouter de l’information spatiale dans
ce chapitre. Elles sont basées sur des opérateurs de morphologie mathématique.

2.1 Introduction

Hyperspectral images allow us to reconstruct the spectral profiles of objects imaged
by the acquisition of several tens or hundred of narrow spectral bands. Conven-
tionally, in many applications hyperspectral images are reduced in the spectral di-
mension before any processing. Most of hyperspectral image reduction methods are
linear and do not care about the multiple sources of nonlinearity present in this kind

43
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of images [60]. Nonlinear reduction techniques are nowadays widely used on data
reduction, and some of them have been used for hyperspectral images [9]. Neverthe-
less, most of these techniques present some disadvantages [154] in comparison to the
canonical linear principal component analysis (PCA). That is the rationale behind
our choice of PCA as starting point. In particular, one major drawback of those
nonlinear techniques is that they are computationally too complex in comparison to
PCA. Hence most of the time, they cannot be applied on real full resolution images.
Another common disadvantage of both classical linear and nonlinear dimensionality
reduction techniques is that they consider a hyperspectral image as a set of vectors.
They are appropriate when the data do not present useful spatial information, and
therefore they are not totally adapted to images.

As mentioned above, dimensionality reduction in hyperspectral images is usually
considered as a preprocessing step for supervised pixel classification as well as for
other hyperspectral image tasks such as unmixing, target detection, etc. Hence, our
goal is to incorporate spatial information into the dimensionality reduction (DR).

The contribution of our approach can be summarized as follows. We propose to
add spatial information on the estimation of the covariance matrix used for PCA
computation. This is done by means of morphological image representations, which
involve a nonlinear embedding of the original hyperspectral image into a morpho-
logical feature space.

Many previous works have considered how to introduce spatial information into
hyperspectral dimensionality image reduction. We can divide these techniques into
different fields. The first family of techniques is close to our paradigm since they
are based on mathematical morphology

The rest of the chapter is organized as follows. Section 2 provides a remind
on the mathematical morphology multi-scale representation tools used in our ap-
proach. Section 3 introduces in detail our approach named morphological principal
component analysis (MorphPCA). In order to justify our framework, a summary of
the classical theory underlying the standard PCA is provided as well as the notion
of Pearson image correlation. Then, the four variants of MorphPCA are discussed,
including an analysis of their corresponding covariance matrix meaning. The appli-
cation of MorphPCA to hyperspectral dimensionality image reduction is considered
in Section 4. That involves an assessment of the different variants according to dif-
ferent criteria. For some of the criteria, new techniques to evaluate the quality of
dimensionality reduction techniques on image processing are introduced. Techniques
arising from manifold learning are also considered in the comparaison. Finally, Sec-
tion 5 closes the chapter with the conclusions.

The first data set was acquired over the city of Pavia (Italy), is a hyperspectral
image of spatial size : 610× 340 pixels, with 103 spectral bands. The second image,
which represents the University of Houston, is a hyperspectral image of spatial size
349×1905 pixels and with 144 spectral bands [36]. The last one called Indian Pines is
a hyperspectral image of spatial size 145× 145 pixels, and with 224 spectral bands.
We note that this chapter is an extended and improved version of our following
contributions [49, 52].
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2.2 Basics on morphological image representation

The goal of this section is to introduce a short background on morphological op-
erators and transforms used in the sequel. Notation considered in the rest of this
chapter is also stated.

2.2.1 Notation

Let E be a subset of the discrete space Z2, which represents the support space of a 2D
image and F ⊆ RD be a set of pixel values in dimension D. Hence, it is assumed in
our case that the value of a pixel x ∈ E is represented by a vector v ∈ F of dimension
D, where discrete space E has a size of n1 × n2 pixels. This vector v represents
the spectrum at position x. Additionally, we will write higher order tensors by
calligraphic upper-case letters (I,S, . . .). The order of tensor I ∈ Rn1×n2×...×nJ is J.
Moreover if I ∈ Rn1×n2×n3 , for all i ∈ [1, n3] I:,:,i represents a matrix of size n1 × n2

where the third component is equal to i. In our case we can also associate a tensor
to the hyperspectral image F ∈ Rn1×n2×D.

2.2.2 Nonlinear scale-spaces and morphological decomposi-
tion

Mathematical morphology is a well known nonlinear image processing methodology
based on the application of complete lattice theory to spatial structures. Let f :
E → Z be a grey-scale image. Area openings γasl(f) (resp. area closings ϕasl(f)) are
morphological filters that remove from the image f the bright (resp. dark) connected
components having a surface area smaller than the parameter sl ∈ N [160]:

γasl(f) =
∨

i

{γBi(f)|Bi is connected and card(Bi) = sl}, (2.1)

ϕasl(f) =
∧

i

{ϕBi(f)|Bi is connected and card(Bi) = sl}, (2.2)

where γB(f) and ϕB(f) represent respectively the morphological flat opening and
closing according to structuring element B [137]. We note that these connected
filters can be implemented as binary filters on the stack decomposition of f into
upper level sets. Figure 2.1 illustrates how area opening and area closing modify a
simple image f . The image f in this toy example is composed of one black triangle
of area equal to 30, 2 diamonds, one black and one white of area equal to 15. Finally
the last connected components are 4 white circles and 5 black ones of area equal to
5. When an area opening is used (respectively closing) of threshold sl = 7, just the
white (respectively black) circles are removed.

Area opening and area closing are very relevant to simplify images, without
deforming the contours of the objects remaining. In addition, area opening and
closing can be used to produce a multi-scale decomposition of an image. The notion
of morphological decomposition is related to the granulometry axiomatic [137]. Let
us consider {γasl}, 1 ≤ l ≤ S and {ϕasl}, 1 ≤ l ≤ S, two indexed families of area
openings and closings respectively. Typically, the index l is associated to scale, or
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Figure 2.1: Illustration of an area opening γasl and an area closing ϕasl of image f ,
with sl = 7 pixels. We can see that the connected components removed by the
opening operator are the white circles since their area is 5, so below 7, and similarly
for the black circles in the closed image.

more precisely to the surface area. Namely, we have on the one hand:

f =
S∑

l=1

(γasl−1
(f)− γasl(f)) + γasS(f); (2.3)

f = ϕasS(f)−
S∑

l=1

(ϕasl(f)− ϕasl−1
(f)). (2.4)

On the other hand, we can rewrite the decomposition [156]:

f = 1/2

(
(γsS(f) + ϕsS(f)) +

S∑

l=1

(γasl−1
(f)− γasl(f))−

S∑

l=1

(ϕasl(f)− ϕasl−1
(f))

)
.

Therefore we have an additive decomposition of the initial image f into S scales,
together with the average largest area opening and closing. We remark that the
residue (γasl−1

(f)− γasl(f)) represents bright details between levels sl and sl−1. Sim-
ilarly, (ϕasl(f)− ϕasl−1

(f)) stands for dark details between levels sl and sl−1. At this
point, some issues must be taken into account. First, after decomposing an image
into S scales, we have now to deal with an image representation of higher dimen-
sionality. Second, the decomposition may not be optimal since it depends on the
discretization of S scales, i.e., size of each scale. In order to illustrate that issue,
we have represented in Figure 2.2(a) a channel of Pavia hyperspectral image and
in Figure 2.2(b) its morphological decomposition by area openings that we have
over-estimated. As it may be noticed from Figure 2.2(b), the choice of the scales is
fundamental in order to avoid a redundant decomposition.

In order to deal with the problem of scale discretization, we propose to use the
pattern spectrum that provides information about the image component size distri-
bution. We can also notice another technique to find the optimal discretization [23].

2.2.3 Pattern Spectrum

The notion of pattern spectrum (PS) [99] corresponds to the probability density
function (pdf) underlying a granulometric decomposition by morphological openings
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and closings [103, 137]. The area-based PS of f at size sl is given by

PSa(f, l) =
[
Mes(γasl(f)− γasl+1

(f))
]
/Mes(f), (2.5)

PSa(f,−l) =
[
Mes(ϕasl+1

(f)− ϕasl(f))
]
/Mes(f), (2.6)

where Mes represents here the integral of the grey-scale image. Two images having
the same pattern spectrum have the same morphological distribution according to
the choice of the family of openings/closings. Since our goal is to have a non-
redundant multi-scale representation with the same morphological representation
than the original image, then by sampling the PS and choosing the scales of the
distribution which keep it as similar as possible to the image PS, we can expect to
find the appropriate discretization of scales. However, one can see in Figure 2.3, the
PS is not a smooth function, and consequently, sampling it with a limited number
of scales, would not lead to a good result.

Based on the analogy between the PS and probability density function, we can
compute its corresponding cumulative pattern spectrum (CPS) for both sides l ≥ 0
and l ≤ 0. Naturally, this function is smoother than the PS. In order to select
the appropriate scales, the CPS for openings and closings are sampled, where the
number of samples is fixed and is equal to S, under the constraint that the sampled
function must be as similar as possible to the original function.

An example of such sampling is given in Figure 2.3, where the approximation
of the CPS is depicted in red and the CPS of the original image in blue. It is
well known in probability that two distributions that have the same cumulative
distribution function have the same probability distribution function. Based on this
property, we can expect that the discretization from the CPS approximates the
original PS of the image and consequently, the selected scales represent properly the
size distribution of the image.

2.2.4 Grey-scale distance function

Let X be the closed set associated to a binary image. The distance function corre-
sponding to set X gives at each point x ∈ X a positive number that depends on the
position of x with respect to X and is given by [143]:

dist(X)(x) = min{d(x, y) : y ∈ Xc}, (2.7)

where d(x, y) is the Euclidean distance between points x and y, and where Xc

is the complement of set X. This well known transform is very useful in image
processing [143].

Distance function of binary images can be extended to grey-scale images f by
considering its representation into upper level sets {Xh(f)}a≤h≤b, where

Xh(f) = {x ∈ E : f(x) ≥ h} ,
such that a = min{f(x), x ∈ E}, and b = max{f(x), x ∈ E}. Then, the so-called
grey-scale distance transform of f is defined as [108]:

dist(f)(x) = (b− a)−1

b∑

h=a

dist (Xh(f)) (x). (2.8)

That is, the grey-scale distance transform of f is equal to the sum of the distance
functions from its upper level sets.
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(a)

(b)

Figure 2.2: (a) Channel number 50 of Pavia hyperspectral image
and (b) its morphological decomposition by area openings γasl , sl =
{0.5 102, 1 102, 5 102, 7 102, 1 103, 2 103, 5 103, 7 103, 1 104, 1.2 104, 1.5 104, 2.5 104}.
Last image in (b) corresponds to γasS , sS = 2.5 104; the other images in (b) are
(γasl−1

(f)− γasl(f)). Note that the contrast of images has been enhanced to improve
visualization.
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(a) (b)

Figure 2.3: The pattern spectrum (PS) by area openings of a grey-scale image using
100 scales in (a). In (b), in blue, its corresponding cumulative pattern spectrum
(CPS); in red, its approximation with S = 8 scales.
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2.3 Morphological Principal Component Analysis

We introduce in this section the notion of Morphological Principal Component Anal-
ysis (MorphPCA) and its variants. Before reading this part we advice reader to read
the section on the PCA the state of art chapter. On the next subsection we will
focus on the covariance matrix needed to perform PCA.

2.3.1 Covariance matrix and Pearson correlation matrix

The covariance between two channels (or spectral bands) of an hyperspectral image
F is computed as

Covar (F:,:,k,F:,:,k′) =
1

n

n1∑

i=1

n2∑

j=1

[Fi,j,k − E(F:,:,k)] [Fi,j,k′ − E(F:,:,k)] , (2.9)

where E(F:,:,k) is the mean of the hyperspectral image channel k. The covariance
is very meaningful, however this is not a similarity measure [56], in the sense of
a metric, since it is not range limited. In order to fulfill this requirement, a solu-
tion consists in normalizing the covariance, which leads to the notion of Pearson
correlation:

Corr (F:,:,k,F:,:,k′) =

n1∑

i=1

n2∑

j=1

[Fi,j,k − E(F:,:,k)

σk

] [Fi,j,k′ − E(F:,:,k)

σ′k

]
, (2.10)

where σk =
[

1
n

∑n1

i=1

∑n2

j=1 (Fi,j,k − E(F:,:,k))
2
]1/2

. The correlation coefficient varies

between +1 and −1, such that Corr (F:,:,k,F:,:,k′) = 1 involves that F:,:,k and F:,:,k′

perfectly coincide. It has been proved that the best fitting case corresponds to [70]:

Fi,j,k = Corr (F:,:,k,F:,:,k′)
σk
σ′k

(Fi,j,k′ − E(F:,:,k)) + E(F:,:,k). (2.11)

Therefore, from (2.11), we can see that the correlation is a linear coefficient between
Fi,j,k and Fi,j,k′ . This means that Pearson correlation is a similarity criterion which
depends on the intensities of the images and their linear relations.

2.3.2 MorphPCA and its variants

The fundamental idea of MorphPCA consists in replacing the covariance matrix V of
PCA, which represents the statistical interaction of spectral bands, by a covariance
matrix VMorpho computed from a morphological representation of the bands. There-
fore, mathematical morphology is fully integrated in the dimensionality reduction
problem by standard SVD computation to solve

VMorphowj = λjwj.

The corresponding principal components wj provide the projection space for the
hyperspectral image F . This principle is illustrated in the diagram of Figure 2.4.

We propose three variants of MorphPCA which are summarized in the flowchart
of Figures 2.5, 2.6 and 2.8. An example of three different bands embedded in the
space produced by these MorphPCA techniques is depicted in Figure 2.9.
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Figure 2.4: Global process of MorphPCA.

Scale-space Decomposition MorphPCA

In the first variant, we just use the area-based nonlinear scale-space discussed in the
previous section. So the grey-scale image of each spectral band F:,:,k is decomposed
into residues of area openings and area closings according to the discretization into
S scales for each operator, i.e., rl(F:,:,k) = γasl−1

(F:,:,k) − γasl(F:,:,k) and r−l(F:,:,k) =
ϕasl(F:,:,k)−ϕasl−1

(F:,:,k), 1 ≤ l ≤ S. Thus we have increased the dimensionality of the
initial dataset from a tensor (n1, n2, D) to a tensor (n1, n2, D, 2S + 1). As discussed
in [156], this tensor can be reduced using high order-SVD techniques. We propose
here to simply compute a covariance matrix as the sum of the covariance matrices
from the various scales. More precisely, we introduce VMorpho-1 ∈MD,D(R) with :

VMorpho-1 =
S∑

l=1

(V (l)) +
S∑

l=1

(V (−l)) (2.12)

where the covariance matrices at each scale l is obtained as

V (l)k,k′ = Covar (rl(F:,:,k), rl(F:,:,k′)) , 1 ≤ k, k′ ≤ D.

We note that it involves an assumption of independence of the various scales. We
remark also that this technique is different from the classical approaches of differen-
tial profiles as [45] where the morphological decomposition is applied after computing
the spectral PCA (i.e., morphology plays a role for spatial/spectral classification but
not for spatial/spectral dimensionality reduction as in our case).

Pattern Spectrum MorphPCA

In the second variant, we can consider a very compact representation of the mor-
phological information associated to the area-based nonlinear scale-space of each
spectral band. It simply involves considering the area-based PS of each spectral
band as the variable to be used to find statistical redundancy on the data. In other
words, the corresponding covariance matrix VMorpho-2 ∈MD,D(R) is defined as :

VMorpho-2 k,k′ = Covar (PSa(F:,:,k, :), PS
a(F:,:,k′ , :)) , (2.13)
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Figure 2.5: Process of scale-space decomposition MorphPCA.

with 1 ≤ k, k′ ≤ D and where PSa(F:,:,k, l), −S ≤ l ≤ S, is the area-based pattern
spectrum obtained by area-openings and area-closings. We note that the pattern
spectrum can be seen as a kind of pdf of image structures. Consequently the Mor-
phPCA associated to it explores the intrinsic dimensionality of sets of distributions
instead of sets of vectors. For illustrating the information carried out by the PS,
we have provided in Figure 2.9 the pattern spectra computed from three different
bands of a hyperspectral image.

In order to better understand the interest of VMorpho-2, we propose an analysis
based on its Pearson correlation counterpart. Once the correlation of PS distribution
is calculated, we have a linear coefficient between PSa(F:,:,k, l) and PSa(F:,:,k′ , l).
However since the PS is the result of nonlinear operations, the underlying extracted
features are naturally nonlinear.

Let us consider the two binary images of Figure 2.7(a), which represent two
objects having exactly the same size. If the correlations are calculated, we have:

Corr (image1, image2) = 0

Corr (PSa(image1), PSa(image2)) = 1.

Hence, we can see that the morphological distribution being the same, the PS cor-
relation is maximal. In a certain way, we observe that this transform builds size-
invariants from the images and consequently it is robust to some groups of transforms
and deformations. For instance, it is invariant to rotation and to translation.

Classical PCA on the spectral bands and the MorphPCA based on the PS can
be compared by the corresponding correlation matrices from a hyperspectral image,
such as the example plotted in Figure 2.10(a) and (b). From this visualization, we
already observe that the bands are better discriminated between them.

Distance Function MorphPCA

Classical PCA for hyperspectral images is based on exploring covariances between
spectral intensities. The previous MorphPCA involves changing the covariance into
a morphological scale-space representation of the images. An alternative is founded
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Figure 2.6: Process of pattern spectrum MorphPCA.

(a)

(b)

Figure 2.7: (a) Example of pair of binary images for pattern spectrum correlation
discussion. (b) Example of triplet of binary images for distance function correlation
discussion.
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Figure 2.8: Process of distance function MorphPCA.

when transforming each spectral band from an intensity based map to a metric
based map where at each pixel the value is associated to both the initial intensity
and the spatial relationships between the image structures. This objective can be
achieved using the Molchanov grey-scale distance function[108] for each spectral
band dist(F:,:,k). The new covariance matrix VMorpho-3 ∈MD,D(R) is now defined as:

VMorpho-3 k,k′ = Covar (dist(F:,:,k), dist(F:,:,k′)) , (2.14)

with 1 ≤ k, k′ ≤ D. Figure 2.9 depicts the corresponding grey-scale distance function
from three spectral band of a hyperspectral image. We note that this function carries
out simultaneously both intensity and shape information from the image.

Let consider in detail the expression of the covariance of distance functions:

Covar (dist(F:,:,k), dist(F:,:,k′)) =

Covar




max(F:,:,k)∑

h=min(F:,:,k)

d(Xs(F:,:,k)),

max(F:,:,k′ )∑

h′=min(F:,:,k′ )

d(Xh′(F:,:,k′))


 =

max(F:,:,k)∑

h=min(F:,:,k)

max(F:,:,k′ )∑

h′=min(F:,:,k′ )

Covar (d(Xh(F:,:,k)), d(Xh′(F:,:,k′))) ,

where Xh(F:,:,k) denotes an upper level set at threshold h. The central term is the
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covariance between two binary distance functions and can be developed as follows:

Covar (d(Xh(F:,:,k)), d(Xh′(F:,:,k′))) =

E (d(Xh(F:,:,k)), d(Xh′(F:,:,k′)))− E (d(Xh(F:,:,k)))E (d(Xh′(F:,:,k′))) =

n−1 < d(Xh(F:,:,k)), d(Xh′(F:,:,k′)) >L2 −E (d(Xh(F:,:,k)))E (d(Xh′(F:,:,k′))) ,

where < ·, · >L2 denotes the L2 inner product. Using the classical relationship:

‖A−B‖2
L2 = ‖A‖2

L2 + ‖B‖2
L2 − 2 < A,B >L2 , ∀A,B ∈ Rn,

we finally obtain that:

Covar (d(Xh(F:,:,k)), d(Xh′(F:,:,k′))) = (2n)−1(‖d(Xh(F:,:,k))‖2
L2 + ‖d(Xh′(F:,:,k′))‖2

L2)

−(2n)−1‖d(Xh(F:,:,k))− d(Xh′(F:,:,k′))‖2
L2 − n−1‖d(Xh(F:,:,k))‖2

L2‖d(Xh′(F:,:,k′))‖2
L2 .

From this latter expression, the term

‖d(Xh(F:,:,k))− d(Xh′(F:,:,k′))‖2
L2 ,

can be identified as the Baddeley distance [10] used in shape analysis. This distance
is somehow equivalent to the most classical Hausdorff distance between the upper
level sets h of spectral band k and h′ of spectral band k′. Thus, the underlying
similarity from this covariance compares the shape of the spectral channels, and
extracts a richer description than Pearson correlation from the spectral channels
themselves. We note that the use of Hausdorff distance between upper level sets of
hyperspectral bands was previously used in [157].

Finally, to illustrate qualitatively the behavior of the distance function correla-
tion, let us consider this time the three binary images depicted in Figure 2.7(b),
where image 2 and image 3 represent the same object placed at a different location
on the image. One has:

Corr (image1, image2) = Corr (image1, image3)

Corr (dist(image1), dist(image2)) 6= Corr (dist(image1), dist(image3)) .

That is, this similarity criterion related to the use of distance function is more
discriminative to the relative position of the objects on the image than the classical
Pearson Correlation.

From Figure 2.10(c), one can compare now the correlation matrix using the grey-
scale distance function with the usual correlation matrix Figure 2.10(a). We note
that this matrix provided also a better discrimination of bands cluster than the
Pearson correlation matrix used in standard PCA.

Spatial/Spectral MorphPCA

As we have discussed, VMorpho-2 represents a compact morphological representation
of the image, however the spectral intensity information is also important for dimen-
sionality reduction. To come with a last variant of MorphPCA, we build another
covariance matrix VMorpho-4 that represents the spectral and spatial information with-
out increasing the dimensionality by the sum of two covariance matrices:

VMorpho-4 β = (1− β)V + βVMorpho-2, (2.15)
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with β ∈ [0, 1], and where obviously Vk,k′ = Covar (F:,:,k,F:,:,k′) and β stands for
a regularization term that balances the spatial over the spectral information. This
kind of linear combination of covariance matrices is similar to the one used in the
combination of kernels, where kernels providing different information sources are
combined to have a new kernel which integrates the various contributions [21].
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Figure 2.9: Top, three examples of spectral bands of Pavia image: (a) ]1, (b) ]50, (c)
]100; middle, (d), (e), (f) PS of corresponding spectral bands; (g), (h), (i) Molchanov
distance functions of corresponding spectral bands.
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Figure 2.10: Visualization of the correlation matrix of (a) the spectral bands of Pavia
hyperspectral image, (b) the PS of its spectral bands, (c) the distance function of
its spectral bands.
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2.4 MorphPCA applied to hyperspectral images

2.4.1 Criteria to evaluate PCA vs. MorphPCA

We can now use PCA and the four variants of MorphPCA to achieve dimension-
ality reduction (DR) of hyperspectral images. In order to evaluate the interest for
such a purpose, it is necessary to establish quantitative criteria that should be as-
sessed. These criteria will evaluate both locally and globally the effectiveness of the
dimension reduction techniques.

• Local criteria.

Criterion 1 (C1) The reconstructed hyperspectral image F̃ using the first
d principal components should be a regularized version of F in order to
be more spatially sparse.

Criterion 2 (C2) The reconstructed hyperspectral image F̃ using the first d
principal components should preserve local homogeneity and be coherent
with the original hyperspectral image F .

Criterion 3 (C3) The manifold of variables (i.e., intrinsic geometry) from

the reconstructed hyperspectral image F̃ should be as similar as possible
to the manifold from original hyperspectral image F .

• Global criteria.

Criterion 4 (C4) The number of bands d of the reduced hyperspectral image
should be reduced as much as possible. It means that a spectrally sparse
image is obtained.

Criterion 5 (C5) The reconstructed hyperspectral image F̃ using the first
d principal components should preserve the global similarity with the
original hyperspectral image F . Or in other words, it should be a good
noise-free approximation.

Criterion 6 (C6) Separability of spectral classes should be improved in the
dimensionality reduced space. That involves in particular a better pixel
classification.

These criteria are used to analyse the effectiveness of the DR methods studying
locally and globally their ability to remove redundancy and to preserve the fully
richness of the spectral and spatial information.

In order to assess C1, we compute the watershed transform [143] on each chan-
nel Fk of the hyperspectral image. Watershed transform is a morphological image
segmentation approach which in a certain way can be seen as an unsupervised clas-
sification technique. The advantage of using the watershed is that it allows us to
cluster the image according to the local homogeneity; thus, an image with less details
will have less spatial classes than an image with many insignificant details. Then,
the number of clusters ‖Nk‖ of the watershed transform of Fk is considered as an
estimation of the image complexity. To evaluate the complexity of the reconstructed
hyperspectral image, the number of spatial classes is counted after having done a
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(a) (b)

Figure 2.11: (a) A 3-variate image (first three eigenimages after PCA on Pavia
hyperspectral image) and (b) its corresponding α-flat zone partition into 84931
spatial classes using the Euclidean distance.

watershed on each band. Finally, the mean of the number of spatial classes is taken,
i.e.,

Errorsparse spatially = (D−1)
D∑

k=1

‖Nk‖.

Assessment of C2, which involves image homogeneity, is based on a partition of
the image into homogenous regions. Let us first remind the definition of a α-flat
zones [106], used for such a purpose. Given a distance d : RD×RD −→ R, two pixels
(f(x), f(y)) ∈ (RD)2, from a vector-valued image f , belong to the same α-flat zone
of f if and only if there is a path (p0, . . . , pn) ∈ En such as p0 = x and pn = y and
∀i ∈ [1, n−1], d (f(pi), f(pi+1)) ≤ α, with α ∈ R+. Computing the α-flat zones for a
given value of α produces therefore a spatial partition of the image into classes such
that in each connected class the image values are linked by paths of local bounded
variation. Working on the d eigenvectors, the image partition πα associated to the
α-flat zones quantize spatially and spectrally an hyperspectral image, see example
given in Figure 2.11. The goal of simultaneous spatial and spectral quantization of
a hyperspectral image has been studied in [53], where we have studied in detail the
dependency on the distance. Moreover, we have shown that in high dimensional
spaces quantization results are generally not good. For the case considered here, we
propose to use the Euclidean distance on the reduced space by PCA or MorphPCA.
The choice of α is done in order to guarantee a number C of α-flat zones similar for
all the compared approaches. We can expect that, by fixing the number of zones in
the partition, the difference between a partition and another one depends exclusively
on the homogeneity of the image. Now, using the partition πα, the spectral mean
value of pixels from the original image F in each spatial zone is computed. This
quantization produces a simplified hyperspectral image, denoted Fπα . Finally, we
assess how far pixels of the original image from each α-flat zone are from their mean;
which involves computing the following error

ErrorHomg =
D∑

k=1

n1,n2∑

i,j=1

|Fi,j,k −Fπαi,j,k|2.

This criterion can consequently be seen as a way to see the trustworthiness of the
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DR technique, since it measures if the homogeneous partition of the reduced hyper-
spectral image corresponds to the homogeneous zone of the original image.

C3 has been evaluated by means of two manifold learning criteria called the K-
intrusion and K-extrusion [79]. They are based on other criteria called continuity
and trustworthiness [159]. These criteria reveal DR behavior in terms of its ability to
preserve the data manifold structure. We have first sampled randomly 10 thousands
spectra from our hyperspectral images, where each spectrum is a vector of dimension
D. Then we have modelled the manifold by a graph where each node is a vector and
each edge is the pairwise distance. We used the Euclidean distance as the pairwise
distance. For the rest of the paragraph we note by xi a point from the original
manifold, νKi its neighbourhood of size K, x̃i the same point from the manifold
after a DR and ν̃Ki its corresponding neighbourhood of size K. A neighbourhood
of size K at point xi is composed of the K closest points to xi according to used
metric. More precisely, the goal of K-extrusion is to measure how the points that
were in the K-neighbourhood of xi are not preserved in the K-neighbourhood of x̃i
after DR. The K-intrusion evaluates if points on the K-neighbourhood of x̃i on the
DR manifold were in the K-neighbourhood of xi, i.e.,

Mintrusion(K) = 1− 2

G(K)
×

n∑

i=1

∑

j∈ν̃Ki \νKi

r(i, j)−K, (2.16)

Mextrusion(K) = 1− 2

G(K)
×

n∑

i=1

∑

j∈νKi \ν̃Ki

˜r(i, j)−K, (2.17)

where r(i, j) is the rank of the data xj in the ordering according to the distance from

xi, and respectively ˜r(i, j) the rank of x̃j in the ordering according to the distance
from x̃i, and the term GK scales the measure to be between zero and one, i.e.,

G(K) =

{
NK(2N − 3K − 1) if K < N \ 2

N(N −K)(N −K − 1) if K ≥ N \ 2.
(2.18)

For a better understanding of these formulae, see [158]. An important point is the
dependence of these parameters on the size of the neighbourhood. From (2.16)
and (2.17), the following parameters are computed[158]:

Q(K) =
Mextrusion(K) +Mintrusion(K)

2
, (2.19)

B(K) = Mintrusion(K)−Mextrusion(K). (2.20)

The interest of Q(K) is that it estimates in average the quality of a DR technique,
whereas B(K) reveals its behavior as being more intrusive or extrusive.

In order to assess C4, as classically done, the fraction of explained covariance is
fixed. Then, the number of principal components needed is counted. The rationale is
based on the fact that a good DR technique should reduce the number of dimensions
and extract a limited number of features that would explain most of the image.
However since this criterion is linked to a sparsity criterion, we would like to add a
distortion criterion, C5.

The evaluation of C5 is founded on computing a pattern spectrum of both the
original hyperspectral image and the DR image. An important point is that the
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pattern spectrum will be computed by openings on the hyperspectral image viewed
as a 3D image. By doing such assumption, the 3D openings are decomposing in
a simultaneous way the spatial/spectral object of the image and the corresponding
curves of the PS will represent the distribution of both the spatial and the spectral
objects. Two hyperspectral images are similar if they have the same spectral/spatial
size distribution. As discussed in Section 2, we prefer to use the cumulative PS in or-
der to obtain a smoother curve. Normally we cannot deal with both spatial/spectral
distortions with the reconstruction error of the two images. However we will also
assess the SNR of the reconstruction error as an additional parameter.

Finally, C6 is related to supervised pixel classification of the hyperspectral image.
We have considered the least square SVM algorithm [20] as a learning technique,
with a linear kernel or rbf kernel, where the rbf kernel is initialized for each DR
technique using cross validation. For each supervised classification run, we used for
the AVIRIS Indian Pine Image 5% of the available data as a training set and the
remaining 95% to validate. For the ROSIS Pavia University image we use a subset
of 50 spectra (about 1% of the available data) per class as a training set and the
remaining spectra to validate.

2.4.2 Evaluation of algorithms

The studied DR techniques presented are listed and compared upon three mathemat-
ical and computing properties in Table 2.1. These properties were also considered
in the excellent comparative review [154]. For comparison, we have also included
in the table the Kernel-PCA (KPCA), which is a powerful generalization of PCA
allowing integrating morphological and spatial features into DR.

The first one is the number of free parameters to be chosen. The interest of having
these free parameters is that it provides more flexibility to the techniques, whereas
the related inconvenient is the difficulty for properly tuning the right parameter. We
notice that KPCA provides good flexibility thanks to the choice of any possible ker-
nel which fits the data geometry. The most simple algorithms are the PCA, and the
distance function MorphPCA. Then, we have the scale-space decomposition Mor-
phPCA, and finally the pattern spectrum MorphPCA. The second issue analysed is
the computational complexity, and the third one is the memory requirements. From
a computational viewpoint, the most demanding step in the PCA is the SVD, which
can be done in O(D3). PCA is the technique with the smallest computational need.
On the contrary, the computational requirement of KPCA is O(n3); since n � D,
this kind of algorithm seems infeasible in standard hyperspectral images. That is
the reason why most of hyperspectral KPCA techniques use tricks to be able to deal
with the high number of spectra [104, 107, 63]. All these techniques lead to a spa-
tial distortion, which is not avoidable by the need of a sampling procedure aiming
at reducing the number of spectra. Between the complexity of PCA and KPCA,
we have our proposed MorphPCA algorithms. Regarding MorphPCA, the compu-
tationally demanding step is the computation of the morphological representation
used in the corresponding covariance matrix. The complexity estimation has been
carried out each time in the worse case, however efficient morphological algorithms
can improve this part. Distance function MorphPCA is last demanding, then the
scale-space decomposition MorphPCA and finally the pattern spectrum MorphPCA.
Regarding memory needs, for the PCA, the pattern spectrum MorphPCA, and the
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distance function MorphPCA, the steps requiring more memory is the storage of the
covariance matrix, just of O(D2). The Spatial/Spectral MorphPCA needs to store
2 covariance matrices then its memory need is O(2D2); similarly the scale-space
MorphPCA needs to store 2S + 1 covariance matrices, then its required memory is
O((2S + 1)D2). Note that KPCA uses a Gram matrix of size (n× n).

Technique Parameter Computational Memory
(1) (2) (3)

PCA Prop O(D3) O(D2)

MorphPCA Morpho-1 Prop, S O(DnSS(2S + 1)) O(D2(2S + 1))

MorphPCA Morpho-2 Prop, S O(DnSS(2S + 1)) O(D2)

MorphPCA Morpho- 3 Prop O(Dn(b− a)) O(D2)

MorphPCA Morpho-4 β Prop, β O(DnSS(2S + 1)) O(2D2)

KPCA Prop, K O(n3) O(n2)

Table 2.1: Comparison of the properties of dimensionality reduction algorithms for
hyperspectral images.

2.4.3 Evaluation on hyperspectral images

The assessment of the performance of PCA and MorphPCA has been carried out
on three hyperspectral images. The first image was acquired over the city of Pavia
(Italy) and it represents the university campus. The dimensions of the image are
610 × 340 pixels, with D = 103 spectral bands and its geometrical resolution is of
1.3 m. We also used a second hyperspectral image which represents the University
of Houston campus and the neighbouring urban area at the spatial resolution of 2.5
m and which dimensions are 349 × 1905 pixels and D = 144 spectral bands [36].
The third image, acquired over the region of the Indian Pines test site in North-
western Indiana, is composed for two-thirds of agriculture, and one-third of forest.
The dimensions of this image are 145× 145 pixels, D = 224 spectral bands and its
geometrical resolution is of 3.7 m.

We have applied classical PCA and the different variants of MorphPCA to Pavia
hyperspectral image. Figure 2.12 shows the first three eigenimages, visualized as a
RGB false color. We note that the pattern spectrum MorphPCA requires d = 5 to
represent 92% of the variance whereas the other approaches only impose d = 3. An
interesting aspect observed on the projection of the 103 spectral channels of Pavia
hyperspectral image into the first two eigenvectors is how PCA and the scale-space
decomposition MorphPCA cluster the bands linearly, see Figure 2.13(a) and 2.13(b).
Bands close in the projection are also near in the spectral domain, whereas the
pattern spectrum MorphPCA, 2.13(c), and distance function MorphPCA, 2.13(d),
tend to cluster spectral bands which are not necessary spectrally contiguous. This
can be explained thanks to Figure 2.10, where the MorphPCA correlation matrices
are different from the classical PCA one.

It can be noticed that in classical manifold learning techniques, the goal is to
decrease the dimension of the data while keeping some properties on the data man-
ifold. We work here on the manifold of the channels. This manifold is easier to
use, but finding the good β in VMorpho-4 β that would maintain some properties of
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(a) (b)

(c) (d)

Figure 2.12: RGB false color visualization of first three eigenimages from Pavia
hyperspectral image: (a) classical PCA on spectral bands, (b) scale-decomposition
MorphPCA, (c) pattern spectrum MorphPCA, (d) distance function MorphPCA.
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Figure 2.13: Hyperspectral band projection into the first two eigenvectors (i.e.,
image manifold) from Pavia hyperspectral image: (a) classical PCA on spectral
bands, (b) scale-decomposition MorphPCA, (c) pattern spectrum MorphPCA, (d)
distance function MorphPCA.
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the manifold is not always easy, since we had to deal with a double optimization
problem, i.e., β and d.

From a quantitative viewpoint, one can see in Table 3.1 that globally Morph-
PCA produces a more homogenous regularization of the image than classical PCA,
especially the distance function MorphPCA and Spatial/Spectral MorphPCA with
an appropriate β = 0.2, which gives the lowest values of ErrorHomg. We noted that
Errorsparse spatially follows a different ranking. A good method is the one with a good
trade-off between both criteria, since one wants a DR to be trustworthy, which is
evaluated thanks to ErrorHomg. But if the signal is too noisy, one may prefer a
sparser representation. According to these criteria, the distance function Morph-
PCA and the pattern spectrum MorphPCA seem to have the best result. We can
also note that if we use manifold learning parameters for criterion C3, see Figure
2.14, the pattern spectrum MorphPCA has the best results.

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 100 100 95.9 79.3

Errorsparse spatially 99.8 99.7 100 88.3

VMorpho-4 β VMorpho-4 β VMorpho-4 β

β = 0.8 β = 0.2 β = 0.5

ErrorHomg 93.2 83.9 88.3

Errorsparse spatially 93.3 96.7 98,6

(a)

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 100 90.4 35.3 38.3

Errorsparse spatially 97.7 97.6 100 89

(b)

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 98.1 100 96.5 97.8

Errorsparse spatially 91 100 91.2 82.7

(c)

Table 2.2: Comparison of PCA and MorphPCA analysis using criteria C1 and C2:
(a) for Pavia hyperspectral image, (b) for Houston hyperspectral image, (d) for
Indian Pines hyperspectral image. The values have been normalized to the worst
case, which gives 100.

With respect to criterion C5, we have computed the 3D pattern spectrum dis-
tribution of Pavia hyperspectral image and of the different reduced images into d
components, see Figure 2.15. From this result, we can see that both PCA and scale-
space decomposition MorphPCA follow very well the hyperspectral image, since their
spatial and spectral cumulative distributions are similar. However if one would like
to denoise the hyperspectral image thanks to a DR technique, these results are not
always positive. If we compare the spatial and spectral cumulative distribution of
the distance function MorphPCA and the one of the hyperspectral image, we notice
that for small 3D size (i.e., small spatial/spectral variations) that can be considered
as noise, there are differences between these two distributions. But when the size
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Figure 2.14: Intrusion/Extrusion parameters for PCA and the different variants of
MorphPCA from Pavia hyperspectral image: (a) Q(K), (b) B(K).

increases, the distribution of the the distance function MorphPCA tends to the hy-
perspectral image one. So it seems that the distance function MorphPCA simplifies
the spectral/spatial noise, considered as the small 3D objects, but keeps the objects
of interest.

0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 
distribution function of the hyperspectral image

distribution function of the hyperspectral image reduced by MPCA Morpho−2

distribution function of the hyperspectral image reduced by PCA

distribution function of the hyperspectral image reduced by MPCA Morpho−3

distribution function of the hyperspectral image reduced by MPCA Morpho−1

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 cumulative distribution function of the hyperspectral image

cumulative distribution function of the hyperspectral image reduced by MPCA Morpho−2

cumulative distribution function of the hyperspectral image reduced by PCA

cumulative distribution function of the hyperspectral image reduced by MPCA Morpho−3

cumulative distribution function of the hyperspectral image reduced by MPCA Morpho−1

(a) (b)

Figure 2.15: (a) 3D pattern spectrum distribution of Pavia hyperspectral image and
of the different reduced images into d components. (b) Corresponding 3D cumulative
pattern spectrum distributions.

Finally, Table 3.2 summarizes the results of supervised classification of respec-
tively Pavia and Indian Pine hyperspectral images. We note that results for Pavia
image are quite similar in all the cases even if MorphPCA seems to be better than
PCA. Therefore, we have chosen to focus on the Indian Pine image, which is more
challenging for supervised classification benchmark, see also Figure 2.16 and 2.17.
We note that MorphPCA improves the results, especially the scale-space decompo-
sition MorphPCA. To evaluate the classification results, first we fixed the dimension
d of the reduce image. We have chosen d = 5. Then, we used the least square SVM,
which is a multi-class classification technique, contrary to classical two-class SVM.
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We also used two simple kernels: the linear one, which is the simplest one, and
the rbf one, which is appropriate for hyperspectral images since we can assume that
these data follow Gaussian distribution. Finally, we study the influence of dimension
d and of the size of the training set on the different DR techniques over the classifi-
cation results. For this purpose we have depicted in Figure 2.18 and Figure 2.19 the
evolution of the kappa statistics. From the latter plot we can see that the PCA and
the pattern spectrum PCA have the worst results. By combining the spectral and
the spatial information, a better classification can be achieved. This is the case of
the distance function MorphPCA, the scale-space decomposition MorphPCA, and
the Spatial-Spectral MorphPCA for β = 0.2.

Overall Accuracy Overall Accuracy Kappa statistic
with linear kernel with rbf kernel with rbf kernel

V 51.51± 0.9 84.9± 3.1 0.84± 1× 10−4

VMorpho-1 59.6± 2.2 85.8± 2.6 0.84± 1× 10−4

VMorpho-2 56.99± 1.1 85.2± 2.1 0.84± 1× 10−4

VMorpho-3 59.9± 2.5 86.0± 1.9 0.84± 1× 10−4

VMorpho-4 β, β = 0.2 61.0± 1.73 85.2± 1.1 0.83± 1× 10−4

VMorpho-4 β, β = 0.5 59.9± 1.5 84.6± 1.0 0.83± 1× 10−4

VMorpho-4 β, β = 0.8 57.87± 3 84.7± 2.5 0.83± 2× 10−4

(a) Pavia image

Overall Accuracy Overall Accuracy Kappa statistic
with linear kernel with rbf kernel with rbf kernel

V 43.9± 3.6 75.2± 3.7 0.73± 4.3× 10−4

VMorpho-1 50.5± 3.8 79.6± 3.7 0.78± 4× 10−4

VMorpho-2 41.5± 3.8 66.6± 4.6 0.63± 4.5× 10−4

VMorpho-3 51.3± 3.2 79.1± 3.2 0.77± 3.7× 10−4

VMorpho-4 β, β = 0.2 43.5± 3.3 75.1± 2.3 0.72± 2.6× 10−4

VMorpho-4 β, β = 0.5 43.1± 2.9 71.2± 2.6 0.68± 3× 10−4

VMorpho-4 β, β = 0.8 43.0± 2.2 69.7± 3.3 0.67± 3.9× 10−4

(b) Indian Pine image

Table 2.3: Comparison of hyperspectral supervised classification on PCA and Mor-
phPCA spaces using least square SVM algorithm and different kernels: (a) Pavia
hyperspectral image, (b) Indian Pines hyperspectral image.
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Ground truth PCA, OA : 43.9 Morpho-1, OA : 50.5

Morpho-2, OA : 41.5 Morpho-3, OA : 51.3 Morpho-4 β=0.2, OA : 43.5

Morpho-4 β=0.5, OA : 43.1 Morpho-4 β=0.8, OA : 43

Figure 2.16: Results of supervised classification using least square SVM with a linear
kernel on Indian Pines hyperspectral image. Note the OA is the overall accuracy.
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Ground truth PCA, OA : 75.2 Morpho-1, OA : 79.6

Morpho-2, OA : 66.6 Morpho-3, OA : 79.1 Morpho-4 β=0.2, OA : 75.1

Morpho-4 β=0.5, OA :71.2 Morpho-4 β=0.8, OA : 69.7

Figure 2.17: Results of supervised classification using least square SVM with a rbf
kernel on Indian Pines hyperspectral image. Note the OA is the overall accuracy.
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Figure 2.18: Results of kappa statistic for the least square SVM with a rbf kernel
and different number of dimensions on Indian Pines hyperspectral image, the size
of training set is equal to 5%.

Figure 2.19: Results of kappa statistic for the least square SVM with a rbf kernel
and different percentage of training set on Indian Pines hyperspectral image, the
dimension of the reduced space is equal to 5.
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2.5 Conclusions

We have shown in this chapter how to introduce spatial information in the process
of dimensionality reduction thanks to mathematical morphology operators. The
representation techniques that we introduced in the chapter are based on the notion
of the MorphPCA. As we said in the introduction, it might be possible to consider
for such purpose a Kernel Principal Component Analysis (KPCA), where the kernel
handles jointly spatial and spectral information. However as discussed in Section
4.2, KPCA needs a Gram matrix of size n×n, where n is the number of pixels. It is
impossible to manipulate such a matrix with our test images on a standard computer.
That is why there are some works trying to approximate the gram matrix in order to
perform the KPCA. Some of them consider a small subset of the data which can be
chosen randomly or according to some spatial information. This kind of approach
has been used with hyperspectral images for spectral-spatial processing. But these
kind of works approximate the kernel, to perform dimensionality reduction on the
considered Hilbert space. Here dimensionality reduction is done on the space of the
data without any approximation on the morphological covariance VMorpho.

That is why we proposed techniques that are simple in computation and in
memory storage and that can reduce the dimension while considering the spatial
information. To assess these techniques we used typical criteria of dimensionality
reduction which evaluate the fact that some properties are kept on the manifold of
data after the dimensionality reduction. Moreover we also proposed some criteria
to evaluate the quality of the image after the dimensionality reduction. Some of
them are based on mathematical morphology, namely the 3D pattern spectrum
and the α−flat zone to check that the reconstructed image preserves global and
local similarity to the original hyperspectral image. Finally, we also perform a
classification of the reduced data with different techniques. According to the entire
set of criteria, adding spatial information improves the dimensionality reduction.
However as we can see a good dimensionality reduction is obtained when we combine
spatial and spectral feature space. A technique that seems to fulfil this optimum is
the MorphPCA based on the distance function.

Finally, PCA has multiple applications on image processing; typically one can
use the PCA to perform denoising. For example in the case of multiple images rep-
resenting the same scene but corrupted by a Gaussian noise (like on multi-temporal
images), it is possible to use the PCA to reduce the dimension of the temporal data
and then to project the data back on the high dimensional space, so that we reduce
the influence of the noise. This process can be done with MorphPCA. Moreover
another case would be to use MorphPCA on fusion of information techniques like
pansharpening, which consists of increasing the spatial resolution of a multispectral
or hyperspectral image thanks to a grey scale image at high resolution. Some tech-
niques for pansharpening are based on PCA. In summary, MorphPCA can be an
appropiate alternative to PCA in different image processing applications.



Chapter 3
Invariant Spatial Classification of
Multi/Hyper-spectral Images

Abstract

In this chapter, a novel approach for pixel classification in multi/hyper-spectral
images is proposed, leveraging on both the spatial and spectral information of the
data. The introduced method lies on a recently proposed framework for learning on
distributions of texture descriptors – by representing them with mean elements in
reproducing kernel Hilbert spaces (RKHS). These descriptors aim at representing the
content of the image while considering invariances related to the texture and to its
geometric transformations, so-called spatial invariances. Moreover, we also consider
spectral invariances which are related to the physical composition of the pixels. The
descriptors are based on the scattering transform, which provides a useful framework
for deep learning classification. Moreover, a classification algorithm learning these
texture distributions is formulated and interpreted. We also study the consistency
and the convergence rate of our classification technique. The performance of the
theory for pixels classification is assessed on two hyperspectral images and a set of
multispectral images, conventionally used. The results are good in comparison with
state of the art.

Résumé

Dans ce chapitre, une nouvelle approche pour la classification des pixels d’images
multi / hyper-spectral en s’appuyant à la fois sur l’information spatiale et spec-
trale des données. La méthode introduite repose sur un ensemble de technique
récemment proposé pour pour apprendre la distribution des descripteurs de texture.
Ces descripteurs visent à représenter le contenu de l’image tout en considérant les
invariances liées à la texture et à ses transformations géométriques. En outre, nous
considérons des invariances spectrales qui sont liées à la composition physique des
pixels.
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3.1 Introduction

The supervised classification of pixels in images is a difficult task, that consists in
associating to each observation, which are pixels, a class that is not observed. This
problem is common in remote sensing imaging, here we will apply it on multi/hyper-
spectral images. Hyperspectral images consist of very high-dimensional pixel obser-
vations that allows reconstruction of the spectral profiles of objects imaged thanks
to the acquisition of several hundred narrow spectral bands. The supervised clas-
sification of these pixels is a challenging task, which commonly arises in remote
sensing imaging [22, 59, 45, 46], but also in other domains. The structure of hyper-
spectral imagery imposed at first a lot of research to focus on spectral information
without considering the spatial arrangement of pixels on a regular grid. The use
of spatial information is a useful to fight the curse of dimensionality explained [13],
and so the spectral variability of the vectors. This variability reduces the classifica-
tion performance, and makes the distances between spectra meaningless. Moreover,
neighboring samples might not be independent. So that if a given pixel belongs to
a class, its neighbors might likely have the same class. These kinds of assumptions
gave birth to the concept of regionalized random variable [100] which is a key notion
of geostatistics. To be able to take into account this spatial information, we focus
here on the local texture of the image. Hence, we propose a novel approach to clas-
sification able to add this spatial information in order to describe the local texture.
Our technique is based on kernel embeddings of distributions and on the scattering
transform and they both use both the spatial and spectral information of the data.
First we present the data and we introduce the scattering transform in Section 3.3,
then we provide in Section 3.4 the background on kernel embeddings of distribu-
tions, random features for fast approximations to kernel methods. In Section 3.6
we describe the kernel mean map and study the consistency and convergence rate
of the proposed method and empirical evaluation is given in Section 3.9. We note
that this chapter is an extended and improved version of our following contributions
[54, 51].

3.1.1 Related works

Many techniques aim to include the spatial information in the image classification
process. Of particular interest are those combining feature space representations
describing the spatial information with those describing the pixels. Morphological
feature spaces have been considered in several publications, with impressive results
[35, 45, 118, 80]. On the other hand, kernel methods have also been studied ex-
tensively, and more particularly the compositions of kernels [85, 83, 21, 104], which
allow building new feature space representations. We marry these approaches with
a framework of [140, 109, 147, 113], where instead of the usual feature map, send-
ing each data point to the feature space, a whole distribution can be represented
in the RKHS. This idea yields a framework for learning on distributions via their
representations in this RKHS. In our approach, each pixel is associated to an inno-
vative image representation technique called the scattering transform [96, 18]. It has
successfully been used to classify images [139] and sounds[5], and in this work we
adapt it to be able to perform spatial pixel-wise classification. So on our approach,
each pixel is described as a distribution of its neighbours of scattering transform
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embedded on another RKHS. Another related line of work is that of [163], where
the mean map is used on hyperspectral data to perform a dimensionality reduction.
There are also recent works based on deep learning patterns [27, 93, 86], with in-
teresting results, however they cannot compete yet against morphological features.
Our proposal of deep learning technique based on texture description has the same
order of classification accuracy than morphological descriptors.

Dans ce chapitre, une nouvelle approche pour la classification des pixels d’images
multi / hyper-spectral en s’appuyant à la fois sur l’information spatiale et spec-
trale des données. La méthode introduite repose sur un ensemble de technique
récemment proposé pour pour apprendre la distribution des descripteurs de texture.
Ces descripteurs visent à représenter le contenu de l’image tout en considérant les
invariances liées à la texture et à ses transformations géométriques. En outre, nous
considérons des invariances spectrales qui sont liées à la composition physique des
pixels.

3.2 Invariant classification on hyperspectral im-

ages

3.2.1 Notation

Let E be a subset of the discrete space Z2, which represents the support space of
a 2D image and F ⊆ RD be a set of pixels values in dimension D. Hence, it is
assumed in our case that the value of a pixel x ∈ E is represented by a vector v ∈ F
of dimension D. This vector v represents the spectrum at the position x, and D is
the number of channels. Thus we write f : E → F the function associated to the
image, such that f(x) = v.

3.2.2 Invariance properties of hyperspectral data

To improve the process of classification, the data should be invariant under one
or more transformations underlying the ”data” acquisition. For example when one
want to classify the MNIST data set [78], the different letters of the data set are
rotated, translated, and noised. So one would like to assign the class of images
independently of the position or orientation of the characters. Such transformations
may degrade the process of classification. That is why one would like to learn
the invariant features of each individual class. To learn these invariants, different
techniques can be used.

• One can increase the training set using variations of the training pattern ac-
cording to all possible transformations. If the new training set that is synthe-
sized is conform to the data, then the process of classification is improved.

• One can find a descriptor that may extract the invariances of each class. By
extracting this feature space, the process of classification is more robust.

In this work we consider both approaches. We will first consider the second
approach applied on the case of hyperspectral texture. The notion of texture [61]
is linked with how human vision can interpret and recognize image structures, in
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Figure 3.1: Hyperspectral patch P(s)
v (f).

particular, how human visual system isolate and segment textures. Often natural
textures keep a pattern that periodically repeat itself on a certain scale. These pix-
els zones have a kind of statistical periodicity. Another very important property of
textures is that they generally have multiple scales. Thus the size of the neighbour-
hood is an important information when dealing with texture information. For our
part we consider that a texture is a set of connected pixels that appears as a homo-
geneous area. So these pixels follow the same distribution. In particular we work
with hyperspectral textures. Then, the question is how can we learn an invariant
descriptor of these hyperspectral textures. We consider that image f : E → F is a
random function. To classify a pixel f(x) = v we will not only consider the pixel
information, but also a patch around the position x, see Figure 3.1. Let us write
P(s)
v (f) a patch surrounding the pixel v, of scale s. Then we would like to classify

patches, to be able to attribute the class to the central pixel v. Because of this way
of classifying, there would be huge redundancy, and we would like to learn invariants
to describe these patches in this context.

In our case it is necessary for hyperspectral textures that characterize pixels to
be invariant to changes in illumination conditions. Therefore we would like for our
descriptor to be invariant to different kind of transformations.

Spatial invariance

Let us consider two patches, {Pv1(f),Pv2(f)}, which can be seen as two images.
Since we are first interested in the spatial invariance, we will assume that these
patches are two grey scale images. These images are represented by mapping
ψ(Pv1(f)) ∈ H, where ψ(Pv1(f)) is a texture descriptor of the patch, and H is
a Hilbert space that characterize texture information. As explained on [18, 96], we
would like the texture descriptor to be invariant to rotation, translation, and to be
Lipschitz continuous to deformation T , i.e. :

‖ψ(Pv1(f))− ψ(Pv2(f))‖2 ≤ C‖f‖2 sup
x
‖ 5 (T (x))‖2, with Pv2(f) = T (Pv1(f)),(3.1)

where C is a constant, and 5(T (t)) is the deformation gradient, such that its norm
2 expresses the magnitude of the deformation. This formula expresses a stability to
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deformation.

Spectral invariance

To deal with spectral invariance we use a linear model of hyperspectral images. Pixel
values of a hyperspectral image can be seen as embedded into a low dimensional set
in a set of materials present in the scene, that are called endmembers. The dimension
of each pixel can be reduced to the number of materials, where the new barycentric
coordinates of each pixel are the abundances. By abundance we mean the positive
quantity of each material on the pixel. Under the linear model, each pixel of the
image can be written as a nonnegative combination of the different endmembers.
Thus, if we consider the spectrum at a pixel as the vector f(x) ∈ RD, then it can
be written as:

f(x) =
R∑

r=1

ar(x)mr + nx, (3.2)

where {mr}Rr=1, mr ∈ RD represents the set of R endmembers, ar(x) the abundance
at vector i of each endmember r, and ni an additive noise. This last term can
be neglected. Hence, the extraction of endmembers can be seen as finding the
simplicial cone containing the data. In general, for a given set of vectors there are
many possible simplicial cones containing the vectors [38]. A way of reducing the
number of possible representations consists in restricting the nonnegative coefficients
ar to be a convex combination such that

∑R
r=1 ar(x) = 1, ∀x. By projecting all the

data into the simplex of the abundance, each patch is then projected on the sample
simplex. Then we have for each pixel v

Pv(f) ∈ Rn1×n2×D −→ Pv(a) ∈ Rn1×n2×R (3.3)

With n1×n2 being the spatial size of the patches. If we consider a second patch
such that: Pv2(f) = α.Pv1(f), where α corresponds to an illumination change factor.
The additional convex constraint guarantees that we are invariant to illumination
changes, since Pv2(a) = Pv1(a)

3.2.3 Support vector machine classification for remote sens-
ing

The classification of hyperspectral pixels turns out to be difficult, due to the high
dimensionality of the pixels. In addition, the spectral data are noised, thus not all
the sources that are present on the sample are necessary present on the acquired
image. The process of image acquisition may also produce nonlinearities in the data.
For all that reasons, it is considered that the data lie in a low dimensional complex
manifold. The data present a high spatial and spectral variability. We represent
in Figure 3.2 the ground truth and the local standard variation of the Indian Pine
data set, which is a hyperspectral image of size 145 × 145 pixels, with D = 224
spectral bands. As we can see on this Figure, locally the spatial variability is not
significant except at the borders of classes. Figure 3.3 gives the different pixels of
the classes corresponding to corn and the soybean notill of the same hyperspectral
image. As we can see, the different spectra are quite different, and finding spectral
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invariants might be difficult. Because of these different factors, the classification
of hyperspectral pixels is a challenging problem. To resolve this task we can use
different techniques based on machine learning classification.

(a) (b)

Figure 3.2: (a) The ground truth for the ”Indian Pine” dataset. (b) The local
standard variation for this image, which represents the local spatial variability of
the spectral image.
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Figure 3.3: (a) The different spectra of the class number 4 of the ”Indian Pine”
dataset, corresponding to ”corn class”. (b) The different spectra of the class number
10 of the ”Indian Pine” dataset, corresponding to ”Soybean-notil class”.

Let us consider a set of data {(v1, y1), . . . , (vn, yn)} ∈ F × Y independent and
identically distributed (i.i.d.) random variables following an unknown joint distribu-
tion P . We call this collection of points the training set. To simplify the discussion,
we will consider a two-classes yi ∈ {−1, 1} situation, the case of multiple classes can
be adapted thanks to well known techniques [16]. Then, we consider that vi is a hy-
perspectral spectrum, and yi is equal to one of the classes. Let us write g: X −→ R
a prediction function, such that if g(vi) ≥ 0 then the class of vi is ŷi = 1, and in
the contrary if g(vi) < 0 the class of vi is ŷi = −1. The goal of the classification
process is to find g such that g(vi)yi ≥ 0 for most of the data of the training set.
Then the goal of the process is to maximize the margin function g(vi)yi, which is
the smallest distance between the decision hyperplane and any data on the training
set. Trying to find the hyperplane that would fit all the data is not always optimal,
so instead of using this boundary, usually we determine a hyperplane by considering
that only the nearby data matters. This particular points are called the support
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vectors. Then the new margins to be maximized are those of the closest data vi
from the possible hyperplane. This process of classification is called the Support
Vector Machine (SVM). There are different kind of processes where the relevance
of the training data set is not the same. This importance is modelled by a non
increasing risk function Φ, which is a Lipschitz function. The choice of this risk
function changes the algorithm, for example for the SVM the risk function is equal
to Φ(u) = max(1− u, 0). The objective function we want to minimize is :

R(g) = inf
g∈H

E(v,y)∼P (Φ(g(v).y)) . (3.4)

Since P is unknown the real function we optimize is the following empirical cost
function :

R̂(g) = inf
f∈H

1

n
.

n∑

i=1

(Φ(g(vi).yi)) (3.5)

We assumed that the training set is linearly separable, so we can find an hyper-
plane to separate the two classes. Unfortunately this is not always the case, that
is why there have been a lot of works in classification aiming at finding the good
hyperplane that would bring the data into a space in which the classes are linearly
separable. Moreover, in some cases, the classes may overlap so an exact separation of
the classes would lead to a poor generalization. Then the SVM formulation is mod-
ified such that it allows for some points of the training set to be on the wrong side
of the margin. This new constrain added to the SVM is controlled by a parameter
C, see [55] for more explanations. In the particular case of pixelwise classification of
remote sensing images, an additional problem may appear: the size of the training
set is small with respect to the variability of the data. To overcome this issue it is
possible to generate data as proposed in [37].

3.2.4 Invariance thanks to training set generation

Learning an hyperplane to separate the data may be really tricky, and may depend
on the number of available data. To encourage the generalization of the model, one
can decide to generate random variation of the training set. The training set must
be increased thanks to desired invariance. Then it is expected that thanks to this
new training set the process will learn the invariances from the artificially enlarged
training data, and will take into account them to build the hyperplan. The method
of generating virtual examples must be applied carefully. As we discussed before, all
the data do not have the same importance. Thus in [131], it has been decided to first
proceed to a classical SVM, then learn the support vectors, and apply to this data
the generation of random variation to increase the invariance. Finally another SVM
is done with the new training set. This process is called the virtual SVM (VSVM).
It has been applied on the MNIST data set [131], and also on remote sensing images
[71]. On [71] the authors suggest some invariance properties for remote sensing. It
happens that our feature space already does a patch-based classification, and is also
invariant to scales. So we suggest to add Gaussian random noise to the SV, and also
to increase the data set by applying some small rotation to the SV.
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3.2.5 Invariance thanks to morphological profiles

Mathematical morphology operators are non-linear image processes based on the
spatial structure of the image. Let f be a grey scale image which can be represented
by a function. The two basic operators in morphology are the grey-level erosion and
the grey-level dilatation whose definition are respectively given by [137]:

εb(f)(x) = inf
h∈E
{f(x− h)− b(h)}, (3.6)

δb(f)(x) = sup
h∈E
{f(x− h) + b(h)}, (3.7)

where b is a structuring function, which introduces the effect of the operators by
the geometry of its support as well as the penalizations. We note that there are
just convolutions in the (max,+)− algebra and its dual algebra [7]. We consider for
simplicity uniform structuring functions which are formalised by their support set or

shape B, called structuring element : b(x) =

{
0 if x ∈ B
−∞ otherwise

. By concatenation

of these two basic morphological operators it is possible to obtain more evolved
filters such as the opening and the closing [137] :

γB(f) = δB (εB(f)) , (3.8)

ϕB(f) = εB (δB(f)) . (3.9)

These operators remove from f all the bright (opening) or dark (closing) structures
where the structuring element B cannot fit. However they also modify the value
of pixels where B fits. Thus to avoid these artefacts it has been proposed in [118]

to use geodesic opening and closing. Then by considering a set {γ(i)
R }, i = 1...n, of

indexed geodesic openings ,and a set {ϕ(i)
R }, i = 1...n, of indexed geodesic closings

where, typically, the index i is associated to the size of the structuring element. Then
thanks to the granulometry axiomatic [137] we obtain a scale-space representation of
an image, which allows an image structure decomposition at different scales. Then
the Morphological Profile (MP) of a grey scale image f at pixel x is defined as the
2× n+ 1 dimension vector:

MP (x) =




γ
(1)
R (f)(x)

...

γ
(n)
R (f)(x)
f(x)

ϕ
(1)
R (f)(x)

...

ϕ
(n)
R (f)(x)




(3.10)

To be able to use the MP on hyperspectral images, we first reduce the dimension
of the data thanks to PCA, and then project the data on a d dimensional space
which is of smaller dimension than the original space. So the hyperspectral image is
represented by d grey scale eigen-images, then on each of these images we calculate
the MP and we concatenate them. Hence, the spatial feature space is of dimension
d× 2× n+ 1.
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3.2.6 Outline of the deep weighted mean map scattering
representation

We will introduce here the outline of our process of classification. We will develop in
the next sections each independent step. To do the classification of the pixels of the
hyperspectral images the data is projected onto a feature space. To build this feature
space, we first reduce the dimension of the hyperspectral image by unmixing, which
involves the computation of endmembers, and then project them into a simplex
of smaller dimension whose image representation is called abundance maps. Once
the data lie on a small dimensional simplex, we apply the scattering transform to
the abundance maps. Instead of extracting patches and applying the scattering
transform to each patch, we apply the scattering transform and keep the size of the
data. This process increases the speed of calculation of the feature field. Then we
use this feature space to estimate a random rbf feature space of finite dimension see
section 3.4.2 for details. Thanks to this explicit feature space a weighted mean map
can be computed [47]. This descriptor represents the layer 1, and which is the input
for another step of random feature space computation and weighted mean pooling
as input feature space the descriptor of layer 2. We can iterate it as many times as
necessary, in our case of application due to the size of the training set there were
no need to iterate it. Finally we concatenate the descriptors of the different layers,
and apply a VSVM on it.

Figure 3.4: The different steps of the deep weigthed mean map scattering process .

3.3 Scattering transform

Scattering transform has been recently studied [18, 96] to describe image texture.
Here we deal with the notion of local texture on digital images, so we need a space
and frequency representation for discrete signals. Moreover, since we apparently
do not know what is the scale of the data, a multiscale analysis of the signal is
naturally required. A tool to fulfil this requirement already exists and is based on
the wavelets. Let ψ ∈ L2(R) be an orthonormal wavelet, so that :

∫ ∞

−∞

|ψ̂(x)|2
|x|2 dx <∞. (3.11)
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Figure 3.5: Process of scattering transform on a signal.

We can define the 1D wavelet transform as:

[Wψf ] (a, b) =
1√
|a|

∫ ∞

−∞
ψ

(
x− b
a

)
f(x)dx, (3.12)

where the bar denotes the complex conjugate, a is the scaling, and b the time (in the
case of a one dimensional signal). Wavelets are translation covariant, and so they
follow the translation of the signal. If we consider two textures νi and ν̃i such that
ν̃i(x) = νi(x + h) then we have : [Wψν̃i] (a, b) = [Wψνi] (a, b + h). The authors of
[18, 96] explained that to build a translation invariant representation it is necessary
to introduce a linear or non-linear operator M that commutes with translation.
The operator M introduced is the mean pooling, which corresponds to a mean filter
in a fixed window. Nevertheless, applying this operator to wavelets might give a
translation invariant result equal to zero because of (3.11). To overcome this issue,
mean pooling is applied on the modulus of the wavelets. On images, we deal with
two dimensional signals, so the wavelet should be invariant to translation in all the
different directions. To achieve this goal, it is proposed in [18] to use a 2D discrete
wavelet transform which is a representation of 2D data according to 4 variables:
dilation, rotation, and position. Let x ∈ E, if f(x) ∈ L2(R2) is square-integrable on
E, then the 2D discrete wavelet transform is defined as :

[Wψf ] (j, b, θ) = 2−j
∫ ∞

−∞
ψ (r−θ.2−j.(x− b))f(x)dx, (3.13)

where rθ is the 2D rotation matrix. Let us denote ψ̂(ω) the Fourier transform of

the mother wavelet, and we write : ψ̂2−jr−θ(ω) = ψ̂(2−j.r−θ.ω) = ψ̂λ(ω), where
λ = 2−j.r−θ is an index related to a pair of dilation/rotation parameters. Then,
the wavelet transform of f is {f ? ψλ(x)}λ, which is redundant and does not have
orthogonality property. Since the modulus of the wavelet transform is used, we deal
with Uf(x) = {|f ? ψλ(x)|}λ and then a mean pooling is applied. So finally one
has Sf(x) = {‖f ? ψλ(x)‖1}λ which is just the norm 1 of the wavelet coefficient,
and it provides information on the sparsity of the wavelet. In our case, the mean
pooling is a simple average filter with a square kernel of size s. Moreover, let us
write U [λ]f(x) = |f ? ψλ(x)|. Then, one issue is that all the multiscale variability
of the signal is not handled by Uf(x). A solution, proposed by [18, 96] is, before
calculating the mean pooling, to apply a wavelet transform on the set Uf(x), and
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to take their modulus and their mean pooling. They iterate this operation in order
to recover all the information to be represented. Thanks to this technique, the
variability of the texture is scattered into different paths p = (λ1, λ2, . . . , λm), where
U [p]f(x) = | . . . |f ? ψλ1(x)| ? ψλ2(x)| . . . ? ψλm(x)|. It was shown empirically in [18],
that usually one can limit itself on the second order path. Then one define two
representation vectors: U which represents the scattering transform without mean
pooling, and S including the mean pooling:

U(x) =




f(x)
|f ? ψλ1 |(x)

||f ? ψλ1 | ? ψλ2 |(x)
...


 , S(x) =




E(f(x))
E(|f ? ψλ1 |)(x)

E(||f ? ψλ1 | ? ψλ2 |)(x)
...




It was shown in [96] that for appropriate wavelets, the scattering transform has the
following properties:

• Contractive : ‖S(f1)− S(f2)‖2 ≤ ‖f1 − f2‖2;

• Preserve the norms : ‖S(f1)‖2 = ‖f1‖2;

• Stable to deformation : ‖S(f1) − S(f2)‖2 ≤ C‖f1‖2 supt ‖ 5 (T (t))‖2 with
f1 = T (f2).

In particular, for the Haar wavelet and with the appropriate scaling and orientation
properties, the scattering coefficients are equivalent to the SIFT descriptor [92].
We can also notice that with the Haar wavelet, the scattering transform has some
links with the variogram of order 1, which is a geostatistic descriptor of spatial
information. We will focus on this interpretation in the Section 5.

3.4 Deep mean map

3.4.1 Mean map kernel

Let k : X ×X → R be a positive definite kernel. By Moore-Aronszajn theorem [14],
there is a unique RKHS H of real-valued functions on X where

〈g, k(·, v)〉H = g(v), for all g ∈ H, v ∈ X ,

implying that k(., .) corresponds to an inner product between features and, in partic-
ular, k(v, v′) = 〈k(·, v), k(·, v′)〉H. This means that k(·, v) can be viewed as a feature
of v ∈ X . For many typical choices of kernels k, the RKHSH is infinite-dimensional.
Now, let X denote a random variable following a distribution P . The mean map or
the kernel embedding [140, 146] of P is defined as:

µP := EX [k(·, X)] =

∫

X
k(·, v) dP(v), (3.14)

where the expectation is over H. For characteristic kernels [145], which include
Gaussian rbf, Matern family and many others, this embedding is injective on the
space of all probability distributions (i.e., captures information on all moments,
similarly to a characteristic function). Further, if we are given two random variables,
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X following the distribution P , and Y following the distributionQ, the inner product
between the corresponding embeddings is given as

〈µP , µQ〉H = EX,Y [k(X,Y )], (3.15)

which is sometimes referred to as a mean map kernel. For a random sample {v1, . . . , vn},
drawn i.i.d. from P , we can define the empirical mean map:

µ̂P =
1

n

n∑

i=1

k(·, vi), (3.16)

and for random samples {v1, . . . , vn} from P and {v′1, . . . , v′m} from Q, we obtain
the empirical mean map kernel:

〈µ̂P , µ̂Q〉H =
1

nm

n∑

i=1

m∑

j=1

k(vi, v
′
j). (3.17)

3.4.2 Random features for kernels

The computational and storage requirements for kernel methods on large datasets
can be prohibitive in practice due to the need to compute and store the kernel
matrix. If we consider a dataset of n D-dimensional observations, the storage re-
quirements are O(n2) and the calculation takes O(Dn2) operations. A remedy de-
veloped by [121] is to approximate translation-invariant kernels in an unbiased way
using a random feature representation. Namely, any translation-invariant positive
definite kernel k, such that ∀(v, v′) ∈ X 2, k(v, v′) = κ(v − v′) can be written as
k(v, v′) = Eω∼Λ

[
cos(ω>v) cos(ω>v′) + sin(ω>v) sin(ω>v′)

]
, where ω ∈ RD follows

some distribution Λ (spectral measure of the kernel). Thus, by sampling i.i.d. vec-
tors ω1, . . . , ωN from Λ, we can approximate kernel k by k̂ defined by:

k̂(v, v′) =
1

N

N∑

j=1

(
cos(ω>j v) cos(ω>j v

′) sin(ω>j v) sin(ω>j v
′)
)
,

so that the original feature map k(·, v), potentially living in an infinite-dimensional
space, is approximated by an explicit 2N−dimensional feature vector:

Ẑ(x) =

√
1

N

[
cos(ω>1 v), . . . , cos(ω>Nv), sin(ω>1 v), . . . , sin(ω>Nv)

]T
. (3.18)

Thus, the mean map and the mean map kernel can be estimated using these finite-
dimensional representations. In this part of thesis, we will focus on Gaussian rbf
kernels for which the spectral measure Λ is also Gaussian.

3.4.3 Random features mean map on hyperspectral images

Let us now turn our attention to a hyperspectral image f . Around each pixel
location xi, we consider a square patch P(s)

xi (f) of size s where we will treat the
pixels as a random sample from a distribution Pi specific to the location xi. Instead



CHAPTER 3. INVARIANT SPATIAL CLASSIFICATION OF
MULTI/HYPER-SPECTRAL IMAGES 85

of calculating the kernel between individual data points, we will calculate the kernel
between these distributions. An empirical mean map kernel is thus given simply by:

Kmm(xi, xj) = 〈µ̂Pi , µ̂Pj〉H (3.19)

=
1

s2

∑

l1∈Pxi

∑

l2∈Pxj

k(f(xl1), f(xl2))

≈ 1

s2

∑

l1∈Pxi

∑

l2∈Pxj

Ẑ(f(xl1))
>Ẑ(f(xl2)),

where f(x) denotes the measurement vector at location x and in the last line we
employ a random feature approximation of k.

It should be noted that there maybe outliers in a patch, which can damage the
estimation of the mean. Similarly to the work of [47], we proposed to use a weighted
mean map, where the weights depend on spatial/spectral information. The kernels
we obtain, called convolutional kernels, have also been used in [94]. In contrast to
[94], however, we will use random features expansions to explicitly represent the
feature space.

More precisely, the convolutional kernel is defined as:

K̂CN(xi, xj) =
∑

l1∈Pxi

∑

l2∈Pxj

wij(β, xl1, xl2)e−
1

2σ2
‖f(xl1)−f(xl2)‖22 , (3.20)

The value of the weight we selected is wij(β, xl1, xl2) = e
− 1

2β2
‖xl1−xi‖22 .e

− 1
2β2
‖xj−xl2‖22 .

This formula can be represented by Figure 3.6.

Figure 3.6: The deep weighted mean map process.

3.4.4 Weighted mean map for a spatial regularization

Let us consider a sample {f(x1), . . . , f(xn)} ∈ P (s)
xI (f) drawn i.i.d. from PI . The

empirical mean map is then:

µ̂PI =
1

n

n∑

i=1

φ(f(xi)) (3.21)

While µ̂PI is an often used estimator of µPI ∈ H, due to the fact that the Hilbert
space H is high- and potentially infinite dimensional whereas the number of data
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on the patch is small, then Stein’s phenomenon implies that it is inadmissible. To
improve the performance of the estimator, the authors of [111] propose to work
with a family of ”shrinkage” estimators. Given that the empirical mean map is the
solution of the following minimization problem:

µ̂PI = argming∈H
1

n

n∑

i=1

‖φ(f(xi))− g‖2
H, (3.22)

the shrinkage mean map estimator µ̌λ solve the regularized minimization problem
instead:

µ̌λ = argming∈H
1

n

n∑

i=1

‖φ(f(xi))− g‖2
H + λ.‖g‖2

H. (3.23)

Here, λ > 0 is a shrinkage parameter that balances the bias and the variance of
the model. The choice of λ is explained in [110]. Finally the class of estimators
proposed in [110] is :

µ̌λ =
n∑

i=1

β(λ)iφ(f(xi)), with β(λ) = gλ(K)K1n, (3.24)

with gλ(γ) = 1/(λ+ γ) where γ is an eigenvalue of K. So we have:

µ̌λ = (K + nλI)−1K1n.(φ(f(x1)), ..., φ(f(xn)))t. (3.25)

This kind of shrinkage is interesting but it does not consider the spatial con-
sistency that is really important in spatial data such as image. So to handle this
problem, we propose to work with a spatial shrinkage mean map estimator µ̌SPI that
solve the regularized minimization problem:

µ̌SPI = argming∈H

(∫
‖φ(f(x))− g‖2

HdPI(x)dGβ,I(x)

)
, (3.26)

where dGβ,I is a positive measure expressing the spatial relation between the data
which are hyperspectral pixels. We decided to fix

dGβ,I(x) = e
− 1

2β2
‖x−xI‖22dx.

The parameter β is difficult to fix by a prior knowledge, that is why we learn it
during the classification. Since we do not have the distribution PI , we work with
the empirical mean map. Therefore, we have:

ˆ̌µSPI = argming∈H

(
1

n

n∑

i=1

‖φ(f(xi))− g‖2
He
− 1

2β2
‖xi−xI‖22

)
. (3.27)

By deriving according to g, we obtain that

µ̂PI =
1

∑n
i=1 e

− 1
2β2
‖xi−xI‖22

n∑

i=1

φ(f(xi))e
− 1

2β2
‖xi−xI‖22 . (3.28)

This kind of mean map is structurally similar to the bilateral filter, that approx-
imate the non-linear adaptive diffusion process.
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3.5 Geostatistics of the feature field

Let us consider a probability space (Ω, A, P ) and a domain D ∈ E. A random field
or random function on the spatial domain D with values in F ∈ Rd is a function
of two variables, denoted Z(x, ω). In our case, we will simplify the random field
by considering that d = 1, which is the case that we study. For each x0 ∈ D,
Z(x, :) : ω −→ Z(x, ω) is a random variable on (Ω, A, P ). Moreover, for each
ω0 ∈ Ω, Z(: ω0) : x −→ Z(x, ω0) is a function of D −→ F . We will write Z(x) the
random function at the position x. To study the properties of this function, one
may seek to characterize stationary properties. To measure the variability of the
random function Z(x) at different scales, we can calculate a measure of dissimilarity
between two positions x1 and x2. This dissimilarity between two values, designated
by γ∗, is defined by:

γ∗ =
1

2
(Z(x1)− Z(x2))2 (3.29)

To better characterize the fields, the dissimilarity γ∗ is made dependent on the
distance between the two points and orientation. By averaging dissimilarities of γ∗

for all values between NH pairs of points connected by a vector h, we get the notion
of experimental variogram of order 2:

γ∗(xi, h) =
1

2NH

NH∑

i=1

‖Z(xi)− Z(xi + h)‖2
2. (3.30)

Usually, it is observed that the similarity values increase on average depending on
the spatial distance of the measurement points and frequently leveled variation at
huge distances. Behavior at very small scales, near the origin of the variogram,
is of critical importance because it is an indicator of the degree of continuity of
the regionalized variable. Furthermore, in the case of an image where it is hardly
conceivable to have stationarity and isotropy properties, it seems important to limit
our study of the variogram to work with low values of h. Finally, we often look at
the variogram of order 2 to study the properties of a random field. But it is also
quite interesting to look at the order variagram alpha, that bring other information,
that is defined by:

γα(h) =
1

2NH

NH∑

i=1

|Z(xi)− Z(xi + h)|α. (3.31)

Let us come back to our framework, with scattering transform, and especially with
a Haar wavelet. We can see that the first order of the scattering transform U , at the
first scale, corresponds to γ∗(h = 1). Then to be able to deal with the variagram of
order 1 we just need to calculate the local mean S. Then when we consider scattering
coefficients at higher scales in a certain way we always focus on variagram of order
1 with h = 1, but instead of doing it on the original image, we do it on an image
at a lower resolution. Then, since we decrease the resolution, each point on the
random field at lower resolution is a combination of other points. So we ”calculate”
variogram of order 1 with more than two points. This can be seen as increasing the
robustness of the calculation of the variogram, and is equivalent to increasing the
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length of h. Then let us consider that U(x) represents the concatenation of γ∗(x, h)
with different orientations and lengths of h.

Let us consider that we want to characterize the distribution near two positions x
and y. Let us write P

(s)
x (U), P

(s)
y (U) the two patches extracted at two positions with

P
(s)
x (U) ∼ Px, and P

(s)
y (U) ∼ Py. We can try to estimate the mean, the variance

or other moments of Px and Py and compare them. Or we could try to use other
estimator such as the widely used Kullback-Leibler divergence which would require
the density estimation. However, since apparently we have no prior information on
these distributions, we do not know if it would be sufficient. Many distances on
distributions can be used. Here we focus on a innovative tool called the maximum
mean discrepancy (MMD) which is defined as the squared distance between their
embeddings in the RKHS [140, 144]

MMD(Px,Py) =
∣∣∣∣µPx − µPy

∣∣∣∣2
H . (3.32)

This distance is equivalent to finding the function on the RKHS that maximizes
the difference in expectations between the two probability distributions, i.e.:

MMD(Px,Py) = sup
||f ||H≤1

(
EX [f(P (s)

x (U))]− EY [f(P (s)
y (U))]

)
(3.33)

However, most of the time we work with a sampling of the distribution. Let us
consider a random set of samples {v1, . . . , vn} from Px and {v′1, . . . , v′m} from Py.
Then we can approximate the MMD by the empirical estimate of the MMD, defined
by :

M̂MD(Px,Py) =

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

φ(vi)−
1

m

m∑

i=1

φ(v′i)

∣∣∣∣∣

∣∣∣∣∣

2

H

(3.34)

M̂MD(Px,Py) =
1

nm

n∑

i=1

m∑

j=1

[
k(vi, vj) + k(v′i, v

′
j)− 2k(vi, v

′
j)
]

(3.35)

where n and m are respectively the size of the patches Px and Py. Let us now
study the link of the MMD with characteristic functions (ΦPx ,ΦPy) respectively of
(Px,Py), such that:

MMD(Px,Py) =
∣∣∣∣µPx − µPy

∣∣∣∣2
H

MMD(Px,Py) =

∫ ∫ ∫ ∫ (
k(vx, v

′
x) + k(vy, v

′
y)− 2k(vx, vy)

)
dPx(vx)dPx(v′x)dPy(vy)dPy(v′y)

Since we work with positive definite and continuous kernels, we can use the Bochner
theorem and rewrite the MMD as:

MMD(Px,Py) =

∫
. . .

∫ (
ejω

t(vx−v′x) + ejω
t(vy−v′y) − 2ejω

t(vx−vy)
)

Λ(ω)dPx(vx)dPx(v′x)dPy(vy)dPy(v′y)dω
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where Λ is the same distribution we used on the random feature space trick. Then
by applying the definition of characteristic function, and their Hermitian property,
we have :

MMD(Px,Py) =

∫ (
ΦPx(w)2 + ΦPy(w)2 − 2ΦPx(w)ΦPy(w)

)
Λ(ω)dω,

so finally we obtain

MMD(Px,Py) =

∫ (
ΦPx(w)− ΦPy(w)

)2
Λ(ω)dω (3.36)

(a) (b)

(c)

Figure 3.7: (a) The difference of two characteristic functions ΦPx and ΦPy . (b) A
possible choice of Λ(ω) for a possible kernel. (c) As we can see, this kernel captures
the difference between the two characteristic functions.

As we can see in Figure 3.7, thanks to the MMD, we calculate the difference
between two characteristic functions of the variogram that have been filtered by a
low pass filter Λ(ω). In our case the low pass filter is a centred Gaussian function
of parameter σ, that is learned during the validation step. Thanks to this technique
we expect that we are able to learn well the representation of the texture according
to the class we want to discriminate.

3.6 Support vector machines on kernel distribu-

tion embeddings

In images, it is natural to assume that pixels close between them are more linked
than pixels fare away. Then studying region properties to find the class of pixels
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seems a promising approach. We can furthermore consider that the image is a set
of classes, and also that pixels are gathered in set of bags of pixels that follow
the same distribution. These bags are composed of pixels close to each other. In
[147] the author proposed to work with a super-pixels strategy to attribute to each
super pixel the correct class. The difficulty with this kind of approach is that if
the super-pixel assigned has a wrong class, then all the pixels on this super-pixel
are wrongly classified. Therefore this technique depends not only on the feature
extracted but also highly on how we select the super-pixels. Here we propose to use
a sliding window approach, which has the advantage of a less important prior. We
have calculated in [54] that if we consider a sliding window approach or a super-pixel
approach and we calculate a kernel mean map SVM, then the SVM converges to a
SVM between the distributions of the super-pixels.

Let us consider that the data are partitioned into sets following the same distribu-

tion, then the structure of our data is given by {({vi,n}Nin=1, yi)}li=1 with vi,1, . . . , vi,Ni
i.i.d.∼

vi, where (vi, yi) are drawn from a joint meta distribution M. We follow the nota-
tion of [147]. We represent this problem in Figure 3.8. Let us write the following
expected risk function of the data for the SVM problem:

Figure 3.8: A representation of the SVM kernel embedding of the distributions,
based on a finite data set partitioned into bag of distributions.

R(f) = inf
f∈H

E(v,y)∼M (Φ(f(v)y)) . (3.37)

where Φ is a loss function. We can modify it to mean map embedding classification
problem:

Rµ(f) = inf
f∈H

E(v,y)∼M (Φ(f(µv)y)) . (3.38)

We can also write the empirical risk function, for mean map embedding classification
problem:

R̂µ(f) = inf
f∈H

1

n

n∑

i=1

(Φ(f(µvi)yi)) . (3.39)
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Finally we can also write the empirical risk function, for the empirical mean map
embedding classification problem:

R̂µ̂(f) = inf
f∈H

1

n

n∑

i=1

(Φ(f(µ̂vi)yi)) (3.40)

Then, we would like to obtain an inequality between Rµ(f) and R̂µ̂(f). To do that,
inspired by [109], we derive a inequality between Rµ(f) and R(f).

Theorem 17 Given that x ∼ P an arbitrary probability distribution with variance
σ2, a Lipschitz continuous function f : R → R with constant Cf , an arbitrary loss
function Φ : R→ R that is Lipschitz continuous with constant Cl , it follows that :

Rµ(f)−R(f) ≤ ClC
2
fE(v)‖v − µv‖2E(y)(y

2) (3.41)

Proof. First we have: Rµ(f)−R(f) ≤ E(v,y)∼M [Φ(f(v).y)− Φ(f(µv).y)]
Rµ(f)−R(f) ≤ E(v,y)∼M|Φ(f(v).y)− Φ(f(µv).y)|. Since Φ is Lipschitz continuous
we obtain: Rµ(f)−R(f) ≤ ClE(v,y)∼M|f(v).y − f(µv).y|.
Thanks to the Cauchy-Schwarz inequality, we finally get:
Rµ(f) − R(f) ≤ ClE(v)(f(v) − f(µv))

2E(y)(y
2) Since f is Lipschitz continuous we

have:
Rµ(f)−R(f) ≤ ClC

2
fE(v)‖v − µv‖2E(y)(y

2)

Then we might use [30] where we have an inequality between Rµ(f) and R̂µ(f)
:

Theorem 18 Let G = Φ(H, .) denote the loss class, letRn(G) denote the Rademacher
complexity. Let Σ(G)2 = supg∈G E(g2) be a bound on the variance of the functions in
G. If the trace of the kernel is bounded, the loss function Φ : R→ R that is Lipschitz
continuous, for any δ > 0 , the following bound holds with probability at least 1− δ

R̂µ(f)−Rµ(f) ≤ 8Rn(G) + Σ(G)

√
8 log(2/δ)

n
+

3 log(2/δ)

n

Theorem 19 Given that f : R → R is a Lipschitz continuous function with con-
stant Cf , an arbitrary loss function Φ : R → R that is Lipschitz continuous with
constant Cl , it follows that :

R̂µ̂(f)− R̂µ(f) ≤ 1

n
ClC

2
f Ê
(
‖µv − µ̂v‖2

)
Ê
(
(y)2

)

Proof. R̂µ̂(f)− R̂µ(f) ≤ 1/n. [
∑n

i=1 Φ(f(µ̂vi).yi)− Φ(f(µvi).yi)]

R̂µ̂(f)−R̂µ(f) ≤ 1/n. (
∑n

i=1 |Φ(f(µ̂vi).yi)− Φ(f(µvi).yi)|) Since Φ is Lipschitz con-

tinuous we have: R̂µ̂(f)− R̂µ(f) ≤ 1/n.Cl (
∑n

i=1 |(f(µ̂vi)− f(µvi)).yi|).
Thanks to the Cauchy-Schwarz inequality we have:
R̂µ̂(f) − R̂µ(f) ≤ 1/n.Cl (

∑n
i=1 |yi|2) (

∑n
i=1 |f(µ̂vi)− f(µvi)|2) Since f is Lipschitz

continuous we obtain:
R̂µ̂(f)− R̂µ(f) ≤ 1/n.ClC

2
f (
∑n

i=1(yi)
2) (
∑n

i=1 ‖µ̂vi − µvi‖2)

We also need the following theorem proved in [140]
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Theorem 20 Assume that ‖g‖∞ ≤ R for all g ∈ H with ‖g‖H ≤ 1, and that k is
an universal kernel. Then with probability at least 1− δ :

|µ[P ]− µ[X]| ≤ 2Rn(H, P ) +R
√

log (1/δ) /n

where Rn(H, P ) denotes the Rademacher average associated with P and H.

Then by combining the previous results we easily have the following theorem.

Theorem 21 Given the conditions of the previous theorems, then with probability
at least 1− δ, we have:

R̂µ̂(f)−R(f) ≤ ClC2
f

[
E(v)‖v − µv‖2E(y)(y

2)

+
(

2Rn(H, P ) +R
√

log (1/δ) /n
)
Ê
(
(y)2

)]

+8Rn(G) + Σ(G)

√
8 log(2/δ)

n
+

3 log(2/δ)

n

This theorem states that if the random variable v is concentrated around its
mean and the functions f and Φ check the conditions of the previous theorems,
then the loss deviation R̂µ̂(f)−R(f) will be small.

3.7 Kernel mean map scattering and invariance

As we have discuss above, it has been established in [96] that for appropriate
wavelets, the scattering transform has the following properties:

• it is contractive: ‖S(f1)− S(f2)‖2 ≤ ‖f1 − f2‖2,

• it preserves the norms: ‖S(f1)‖2 = ‖f1‖2,

• it is stable to deformations: ‖S(f1)−S(f2)‖2 ≤ C‖f1‖2 supt ‖5 (T (t))‖2 with
f1 = T (f2).

In our case, we perform the average pooling on the scattering coefficients U [p]f that
have been projected on the rbf feature space. We denote this scattering transform
SH[p](f). Then one can wonder if these properties of invariance are still satisfied.
We can prove that it is still contractive, and stable to deformation, but it does not
preserve the norms anymore.

Proof. Since the exponential function is convex we have that:

eu ≥ u+ 1 ∀u ∈ R

Thus,

e−
‖v−v′‖2

2σ2 ≥ −‖v − v
′‖2

2σ2
+ 1

2− 2e−
‖v−v′‖2

2σ2 ≤ ‖v − v
′‖2

σ2
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Then, replacing by the corresponding rbf feature space we have:

‖φ(v)− φ(v′)‖2 =< φ(v)− φ(v′), φ(v)− φ(v′) >

‖φ(v)− φ(v′)‖2 =< φ(v), φ(v) > + < φ(v′), φ(v′) > −2 < φ(v), φ(v′) >= 2− 2e−
‖v−v′‖2

2σ2 .

Hence,

‖φ(v)− φ(v′)‖2 ≤ ‖v − v
′‖2

σ2

this means that the mapping of the rbf kernel is Lipschitz-continuous of parameter
1/σ2. Using this result we have:

‖SH(f1)− SH(f2)‖2 = ‖E (φ(Uf1)− φ(Uf2)) ‖2

According to the fact that φ is Lipschitz-continuous, we obtain:

‖SH(f1)− SH(f2)‖2 ≤ 1/σ2‖S(f1)− S(f2)‖2

Finally one gets:

‖SH(f1)− SH(f2)‖2 ≤ 1/σ2‖f1 − f2‖2 (3.42)

and

‖SH(f1)− SH(f2)‖2 ≤ C/σ2‖f1‖2 sup
t
‖ 5 (T (t))‖2 (3.43)

So the new descriptor is stable to deformation and contractive depending on a the
parameter σ of the rbf kernel.

3.8 Multiple kernel mean map

Learning the hyperparameter of the rbf kernel is hard, and unfortunately the classi-
fication algorithm is really sensitive to this choice. That is why we first consider that
σ = median({‖vi−vj‖RD , (i, j) ∈ [1, n]2}) as proposed in [148]. However, it happens
that this choice may not be perfectly adapted for our training set and classification
algorithm. So to improve it, we split the training set into two sets. One is called the
training set, and the other one the validation set. Then we learn a model on this
new training set and then classify the validation set testing a family of parameters
σ {0.01 × σ, 0.1 × σ, 0.5 × σ, σ, 3 × σ, 6 × σ, . . . , 30 × σ}. After having performed a
sufficient number of validation classifications, we choose the parameter that brings
the best results. The issue with this technique is that the result of the choice of the
parameter depends on the initial training set. In the case of remote sensing, most
of the time the training set is small. To overcome this issue, we propose to build
a new kernel mean map by combining a predefined set of kernels mean maps. Let
us consider that we have a set of M kernels K̃ = {k1, . . . , kM}. One can consider
as a multiple kernel the sum kernel : K =

∑M
m=1 km; or the weighted sum kernel

: K =
∑M

m=1 βmkm where the coefficients βm can be fixed or learned during the
classification process. This leads to multiple kernel supervised learning techniques.
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Most of these techniques [122] follow the large margin framework of the SVM: first
they start with a set of training samples D = {(v1, y1), . . . , (vn, yn)}. Then, they
formulate their optimization problem by as:

min
k∈K

(
min
f∈HK

(
λ‖f‖HK +

n∑

i=1

l(yi, f(vi))

))
, (3.44)

where l is a loss function, K is the optimization domain of the candidate kernels.
There are different ways to solve this optimization problem. This kind of technique
lean on the fact that we can learn the coefficient βm thanks to a good training set.
However here we will consider that we do not have enough information to learn the
parameter thanks to the training set, and so we do not want to learn coefficients of
the multiple kernel. We note that their are some links between the cost function of
equation (3.44) and the cost function of the SVM on the sum kernels developed in
[122]. In any case, we are going to use the sum kernel. We use on the one hand the
fact that the linear combination of kernels is still a kernel, such that on the other
hand, we use universal kernels and the linear combination of universal kernels is still
a universal kernel. Then we can perform multiple kernel mean maps. We note that
the use of multiple kernel mean maps has already been proposed in [58], but here
we use it to classify data.

Hence, we decide to first estimate σ thanks to the training and validation sets,
we write this parameter σ?. So we find the first kernel k1(vi, vj, σ

?). Then we use as
multiple kernel

K(vi, vj) = k1(vi, vj, σ
?) + k1(vi, vj, γ

−1σ?) + k1(vi, vj, γσ
?),

where γ is a parameter that translate how much confident we are that the training
set and the validation can generalize the testing set. Then we use this new kernel
K to evaluate the mean map.

3.9 Experiments

3.9.1 Hyperspectral remote sensing

In this section, we evaluate the classification accuracy of the proposed approach
using two hyperspectral images classically considered in the state-of-the-art: the
AVIRIS Indian Pines data set, and the ROSIS University of Pavia data set. The
first data set is an image of dimensions 145 × 145 pixels, with D = 224 spectral
bands and its geometrical resolution is of 3.7 m. The dimensions of the second
data set are 610 × 340 pixels, with D = 103 spectral bands and its geometrical
resolution is of 1.3 m. On Pavia dataset there is a predefined testing set that we
used in our experiments. In the first data set there is no common testing set so
we generate 20 Monte-Carlo simulations, peaking randomly 5 pixels per class, then
we aggregate the results of the supervised classification. We also generate training
sets with 15 pixels per class, and with 50 pixels per class, however since there
was not enough data for each class to have 50 points per class, we discarded the
smallest classes. We use the C-SVM [24] as classification algorithm. We learned
the parameter C thanks to a validation on the training set. Then we compared our
results to the the Morphological Profile (MP)[118, 35] space which is quite common
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kernel parameters OA kappa statistic AA

Linear kernel 54.6± 3.3 49.5± 3.5 58.2± 2.7
rbf kernel 53.9± 2.7 48.6± 3.0 58.0± 2.8
KMP 62.9± 4.6 58.5± 5.5 66.5± 2.3

KMP × ˆKmm s=15 73.0± 3.7 69.7± 3.7 76.3± 2.3
Scattering transform U m = 1 73.1± 3.1 69.7± 3.4 73.7± 2.7
Scattering transform U m = 2 75.3± 4.7 63.5± 4.1 73.1± 4.6
Scattering transform S m = 1 75.2± 2.8 63.5± 2.4 73.1± 2.7
Scattering transform S m = 1 s=5 76.1± 3.4 69.1± 3.7 74.1± 3.8
Deep mean map scattering transform SH m = 1 s=10 γ = 3 77.4± 3.1 74.7± 3.4 76.2± 2.5

Table 3.1: Overall accuracy (OA), kappa statistic, and average accuracy (AA) ob-
tained for different kernels, applied on the AVIRIS Indian Pines hyperspectral data
set. 20 Monte Carlo simulations were run. The training set is just 5 samples per
class.

on pixel classification. We also use the product of the two kernels where one is
the MP kernel and the other is the Kernel mean map (KMM kernel). This kind
of technique has been previously explored in [85, 83, 21]. In contrast to previous
works, which approximates the product of kernels thanks to addition of kernels, we
can do the real multiplication since we work with finite dimension Hilbert spaces.

Let us first illustrate the intermediary image images of our algorithm using Indian
Pines. Figure 3.9 shows the scattering transform U before the weighted mean map.
We also represent on Figure 3.9 the weighted mean map. As one may notice, both
feature spaces provide spatial data that represents the structures present on the
image.

From the results on Tables 3.1, 3.2 and, 3.3 we can note that the scattering
transform can compete with morphological profiles [35, 85] on Indian Pines data set.
In addition, on the Pavia data set, we performed a Convolutional Neural Network
(CNN) classification. CNN are mostly used to describe the texture of an image
in order to classify it. Here we use CNN to classify patches. They are different
CNN architectures that could be used. After trying several architectures we choose
architecture inspired by the Oxfordnet [155]. The input patch is of size 32 × 32 ×
3, such that to have a feature space of size 3, a PCA is performed on the Pavia
hyperspectral image. We apply to these patches a first convolution of size 5 ×
5 × 3 × 32. Then a max pooling with sub-sampling of factor 2, followed by a
Relu layer is applied. Then we perform a new convolution layer of size 5 × 5 ×
32 × 32 followed by a Relu and an average pooling with sub-sampling of factor 2.
We apply a convolution layer of size 5 × 5 × 32 × 64, then a Relu layer and an
average pooling with sub-sampling of factor 2 , followed by a new convolution layer
of size 4 × 4 × 64 × 64. Then as regularizer we apply a dropout to cancel 30%
to cancel the less powerful coefficients. Then we apply two fully connected layers.
Obviously, this network is probably not the most optimal one, however it gives us
a hint of some results on performance of convolutional neural networks applied on
our problem of pixel classification. Moreover since the training set is quite small,
the training set has been increased by rotating the patch according to 8 orientations
: {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}. Table 3.4 gives the results of the different
descriptors. One can conclude that our descriptor can compete with the others.
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(A) (B)

(C) (D)

Figure 3.9: In (A) the zeros and first order scattering before the mean, U of an
abondance map are represented. On the first line the abondance map is given, and
then each line is composed of the 8 orientations at a given scale. In (B) we repre-
sent the second order scattering before the mean, U . In (C) and (D) we represent
respectively the weigthed deep mean map first layer and second layer.
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kernel parameters OA kappa statistic AA

Linear kernel 67.0± 1.8 63.1± 1.9 67.9± 2.3
rbf kernel 68.6± 2.1 65.7± 2.2 69.9± 2.3
Morphological profile 77.1± 1.6 74.1± 1.8 73.8± 2.4

KMP × ˆKmm s=15 86.7± 2.0 85.0± 2.2 85.7± 1.2
Scattering transform U m = 1 85.0± 2.0 83.1± 2.2 82.3± 1.6
Scattering transform U m = 2 86.2± 2.1 84.5± 2.4 87.3± 1.4
Scattering transform S m = 1 s = 5 87.6± 2.1 86.0± 2.4 82.6± 1.9
Scattering transform S m = 2 s = 5 88.0± 2.2 86.5± 2.4 83.9± 2.0
Deep mean map Scattering transform SH m = 1 s = 10 89.5± 1.4 88.1± 1.5 84.6± 1.8

Table 3.2: Overall accuracy (OA), kappa statistic, and average accuracy (AA) ob-
tained for different kernels, applied on the AVIRIS Indian Pines hyperspectral data
set. 20 Monte Carlo simulations were run. The training set is just 15 samples per
class.

kernel parameters OA kappa statistic AA

Linear kernel 75.4± 1.1 72.3± 1.2 76.1± 1.9
rbf kernel 77.3± 1.0 74.4± 1.1 77.1± 1.9
Morphological profile 85.1± 2.2 83.1± 2.4 85.6± 1.5

KMP × ˆKmm s=15 92.8± 0.5 91.1± 0.6 93.0± 0.6
Scattering transform U m = 1 90.27± 0.8 88.60± 1.0 90.2± 0.6
Scattering transform U m = 2 91.0± 1.0 89.1± 1.1 91.7± 0.6
Scattering transform S m = 1 s = 5 91.1± 0.9 90.2± 1.1 92.4± 0.7
Scattering transform S m = 2 s = 5 92.6± 0.7 91.7± 0.9 93.8± 0.5
Deep mean map Scattering transform SH m = 1 s = 10 96.2± 0.5 95.9± 0.6 96.08± 0.4

Table 3.3: Overall accuracy (OA), kappa statistic, and average accuracy (AA) ob-
tained for different kernels, applied on the AVIRIS Indian Pines hyperspectral data
set. 20 Monte Carlo simulations were run. The training set is just 50 samples per
class.

kernel parameters OA kappa statistic AA

Linear kernel 73.2 66.6 78.5
rbf kernel 75.1 67.6 82.6
Morphological profile 97.1 96.2 96.7

KMP × ˆKmm s=15 97.4± 0.6 96.4± 0.7 97.3± 0.6
CNN 76 74 73
Scattering transform U m = 2 92.27± 3.1 89.60± 2.8 94.69± 3.3
Scattering transform S m = 2 s = 3 95.23± 3.3 93.63± 3.2 96.38± 3.3
Scattering transform S m = 2 s = 15 93.53± 3.1 91.34± 3.4 93.18± 3.1
Deep mean map Scattering transform SH m = 1 s = 10 96.5± 2.7 95.7± 2.8 96.2± 2.6

Table 3.4: Overall accuracy (OA), kappa statistic, and average accuracy (AA) ob-
tained for different kernels, applied on the University of Pavia hyperspectral data
set. The predefined training set was used.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Classification maps for the Indian Pines hyperspectral image using
different approaches, with just 5 points per class in the training set. In (a) ground
truth, (b) the linear SVM, (c)kernel SVM with Morphological Profile, (d) kernel
SVM with KMP × ˆKmm and s = 15, (e) Scattering transform , (f) deep mean map
Scattering transform SH m = 1 and s = 10.

From these two data set, we criticize the independence between the training set
and the testing set since they are taken on the same image, these questions are
studied in the following reference [87].

3.9.2 Multispectral remote sensing

We test now our machine learning on the Zurich dataset [162]. This data set was
of 20 multispectral VHR images acquired over the city of Zurich (Switzerland),
that has been studied in [162]. The typical image is composed of 1.2 million pixels
and they are all composed of 4 channels RGB and near-infrared (NI). The spatial
resolution is about 0.61 meters / pixel. The total number of classes is 8. There
are no images having the 8 classes. On the contrary to [162], we work with pixels,
instead of superpixels.

We did not apply any preprocessing on the multispectral images that is composed
of R,G,B and NI channels. The multiclass SVM algorithm used corresponds to the
liblinear library [44] which is able to handle huge set of data with support vector
classification proposed by Crammer and Singer [31]. However, because of the size of
the dataset, we were not able to use the full potential of our descriptors. We just use
the first order of the scattering transform with 3 rotations and 4 scales parameters,
and also one layer of weighted mean map. Moreover the dimension of the estimated
rbf feature space was just fixed to 30. This may degrade considerably the results of
classifications.

To fix the different parameters we proceed to a validation. In order to have a
training/ testing set independent, we first select 1 image that represents the testing
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(a) (b) (c) (d) (e)

Figure 3.11: Classification maps for the Pavia hyperspectral image using different
approaches, with just the classical training set. In (a) ground truth, (b) the linear
SVM, (c)the estimated RBF SVM, (d) kernel SVM with KMM and s = 15, (e)
kernel SVM with KCN and s = 13.

kernel parameters OA kappa statistic AA

Linear kernel 62.9± 3.8 57.6± 4.1 51.2± 3.9
Scattering transform U m = 1 65.1± 3.9 60.6± 4.2 55.1± 3.7
Deep mean map scattering transform SH m = 1 s=3 γ = 2 80.0± 4.1 73.7± 4.3 72.2± 4.1

Table 3.5: Overall accuracy (OA), kappa statistic, and average accuracy
(AA)obtained for different kernels, applied on the Zurich data set. 20 Monte Carlo
simulations were run. The training set is composed of 19 images and the testing set
of 1 image.

set. Then, on the other 19 images, we perform a validation by selecting randomly
3 images on the validation set and 16 on the training set such that on the training
set we have the 8 classes. Once the parameters are learned, we train on the 19
images and then classify on the testing set. The results of the different algorithms
are given on Table 3.5. As one may see, our descriptor produces relevant results in
comparison with the others.

3.10 Conclusion

In this chapter we dealt with a hyper/multi-spectral pixel image classification in
the context of remote sensing. We proposed a deep spatial and spectral descriptor
that is able to learn the representation of the local texture of multivariate remote
sensing images. Our deep descriptor has been assessed on 3 different data sets where
the results were quite good. We evaluate the asymptotic properties of learning the
local distribution thanks to this descriptor and a margin classifier. We compare this
descriptor with different fields related to spatial statistical learning. This descriptor
computes a translation invariant representation of the texture which is also Lipschitz
stable to deformations. To evaluate this descriptor we just calculate the mean of the
scattering coefficients provided by each layer embedded on the Hilbert space, of a rbf
kernel. This links with mean map embedding. This classifier simplifies convolutional
neural network since less parameters are needed. This can be an interesting way to
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perform deep learning when the training data set is limited. The proposed approach
improves the classification of pixel, in the case of remote sensing. Moreover it could
be interesting to see its results on other data sets. Another way to improve this
technique might be to put more parameters when we perform the average weighted.
This might be linked to the Perceptron neural network algorithm. We could also
work on simulation of data. This might be really interesting and might be considered
carefully.
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Fusion of information for
multimodal SEM images
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Chapter 4
Multimodal Scanning Electron Microscopy
Images

4.1 Background on Scanning Electron Microscope

(SEM)

The Scanning Electron Microscopy (SEM)[117] (see Figure 4.1) is an electron mi-
croscopy technique capable of producing high resolution images of the surface of a
sample.

Figure 4.1: Scanning Electron Microscope overview [3].

This kind of microscope uses an extremely fine electron beam, which is produced
by thermoelectronic effect from a tungsten filament; this beam is focused at a point
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of the sample using an electromagnetic field. This field is generated by the coil of
a condenser lens. It can, not only focus the electron beam at a single point called
”cross-over”, but it can also move it so that it runs through the whole sample. It
is essential that the microscope column, where the electron beam spreads, remains
under vacuum to avoid any deviations which could distort the measurements. Once
the electron beam hits the sample, an electron-matter interaction takes place. This
interaction can give birth to several types of images, and the corresponding images
are shown in Figure 4.2. For our part we will focus primarily on three types of
interactions:

• Backscattered electrons;

• Secondary electrons;

• X-ray.

Figure 4.2: SEM interations [117].

4.1.1 Backscattered electrons

When the electron beam is sent in the direction of the sample, the electrons being
negatively charged, they interact with the positively charged nucleus of the sample.
Some of the electrons are re-emitted in a direction close to the incident direction.
The sensor receiving electrons will recover high-energy electrons up to 30 keV. The
amount of re-emitted electrons depends directly on the atomic number of the atoms
constituting the sample. To capture the backscattered electrons, different types of
sensors can be used. For example (annular semiconductors diode see Figure 4.3)
axial devices are often used. In the case of semiconductors, they are divided into
four quadrants A, B, C and D.

Two types of signals are conventionally used. First, the sum of the signals (A +
B + C + D), which represents an average of the emission in a high solid angle. Under
these conditions, we can interpret the image as a uniform light around the direction
of the incident beam and as an almost purely chemical contrast. On a polished
surface, the sensitivity is sufficient to detect small variations. The other kind of
signal conventionally used is the signal difference between quadrants (AC, BD), the
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Figure 4.3: Backscattered electrons sensors [1].

small differences in function of the backscatter emission angle are amplified. This
mode enhances the topographic contrast.

This is why this kind of images are used to perform homogeneity analysis. The
resolution that this modality of image can reach is from one micrometer, to one
tenth of a micrometer.

4.1.2 Secondary electrons

When part of the electrons of the electron beam reaches at the sample, a collision
between the electron beam and the electrons of the sample happens. It follows
that some of the electrons from the beam may transfer some of their energy to
”external” electrons from the sample. By ”external” we mean the farther electrons
from the nucleus. This supply of energy to the ”external” electrons causes their
ejections of the atom. These electrons are called secondary electrons. Generally
these electrons have low energy (about 50 eV) when they are ejected. Therefore, they
cannot go very far and remain stuck into the surface of the sample analysed. The
secondary electrons are collected with a positive electric field on a scintillator. The
secondary electron efficiency received is dependent not only on the atomic number
of the element observed, but also and especially on the angle between the incident
beam and the sample observed. So in this type of image, the more enlightened areas
correspond to areas of high efficiency, and the poor enlightened areas correspond to
poor efficiency zones, one can speak of shadow area.

4.1.3 X-ray

The analysed sample is bombarded with a high energy electron beam about 10-40
keV. These electrons have a high energy, then they can penetrate the electron shell
of atoms in the sample and excite an electron of the inner shells. The energy transfer
from the electron beam to the electron in the inner shell may provoke its ejection
from the atom. The ejected electron forms an electronic hole which is filled with
electrons from higher energy levels. Indeed electrons from higher energy shell will
gradually level down to electronic stabilization of the atom. The excitation energy
of the electronic structure occurs with emission of X-ray photon, the number of
X-ray photons and energy can be measured by an Energy-Dispersive Spectrometer
(EDS). It is possible to characterize the different energy shells with the energy
of X-ray photons and then, it is possible to characterize the electronic structure
of the studied atoms. Thus we have access to information regarding the physical
composition of the image.
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However there are two main consequences:

• Spatial resolution of the analysis is about a micron;

• The X-ray photons emitted come from a ”pear” of radius and depth at about
one micron (see Figure 4.4). This may pose particular problems for the analysis
of small particles or complex mixtures.

Figure 4.4: Emission domains of various interactions[117].

4.2 Noise on SEM images

As we explained before, SEM images result from X-ray photons or electrons that
are detected on various captors. Let us consider now that the level of gray of a
pixel is dependent on the number of photons or electrons that the sensor receives
in time interval τ , and let us write dt a smaller time interval, such as dt = τ/K,
where K ∈ N. In a way we are quantifying the time interval τ . Let us consider
< N(t, t+dt) > the mean number of particles ( = photons or electrons) that a sensor
receives between [t, t+dt], φ the flux of particles received such that < N(t, t+dt) >=
φτ/K. We will make a first hypothesis that dt is sufficiently small so that in a time
interval [t, t+ dt] there are just two cases:

• the sensor receives zero particles,

• the sensor receives one particle,

We will write P (0) = 1 − q and P (1) = q respectively the probability that the
sensor in a time interval [t, t+ dt] receives zero particles, and one particle. Then, as
one may notice, it is a binomial law of parameter q, so < N(t, t + dt) >= q. If we
write the characteristic function of this law, we have:

Ψdt(ν) = 1− q(1− eiν). (4.1)

Now we have the characteristic function for a time interval of size dt, but we would
like to have the characteristic function over τ . To obtain it, a second hypothesis is
needed. We consider that the K intervals are independent, such that :

Ψτ = (Ψdt(ν))K =
(
1− q(1− eiν)

)K
. (4.2)
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Then we consider the asymptotic case so K →∞, such that:

Ψτ = lim
K→∞

(
1− φτ/K(1− eiν)

)K
, (4.3)

and finally we have:

Ψτ = e(−φτ(1−eiν)) (4.4)

Therefore it is possible to recognize the characteristic function of a Poisson law
of parameter φτ . Thus the number of particles in a interval τ follows a Poisson
distribution of parameter φτ that can be written:

P (n) = e−φτ (φτ)n/n!.

So contrary to hyperspectral images, where a classical assumption is that these data
are corrupted by an additive Gaussian noise, here EDS data are corrupted by a
Poisson noise. The processing on hyperspectral images may not necessarily work
with EDS images. That is why we advice to do a variance stabilization techniques.
These are techniques aiming at applying a transform Φ over the entire noisy image
f corrupted by a Poisson noise so that the distribution of each pixel of the converted
image, noted Φ(f), is approximately Gaussian.

A variance stabilization technique conventionally used is the Anscombe trans-
form [8]. The transform applied to the image is:

Φ(f(x)) = 2

√
(f(x) +

3

8
) (4.5)

Not only Anscomb transform stabilizes the variance of the data to 1 whatever the
average value was, but also this transform will turn the data distribution to Gaussian
one. After stabilizing the variance, we can perform our conventional processing, and
finally we return to the data in the original space by a reverse Anscombe transform

Φ−1(y) =
(y

2

)2

− 3

8
(4.6)
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Chapter 5
Enhanced EDX images by fusion of
multimodal SEM images using
pansharpening techniques

Abstract

The goal of this chapter is to explore the potential interest of image fusion in the
context of multimodal scanning electron microscope (SEM) imaging. In particular,
we aim at merging the backscattered electron images that usually have a high spa-
tial resolution but do not provide enough discriminative information to physically
classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX)
images that have discriminative information but a lower spatial resolution. The pro-
duced images are named enhanced EDX. To achieve this goal, we have compared
the results obtained with classical pansharpening techniques for image fusion with
original approaches tailored for multimodal SEM fusion of information. Quantita-
tive assessment is obtained by means of two SEM images and a simulated dataset
produced by a software based on PENELOPE.

Résumé

Le microscope électronique à balayage (MEB) permet d’acquérir des images à partir
d’un échantillon donné en utilisant différentes modalités. Le but de ce chapitre est
d’analyser l’intérêt de la fusion de l’information pour améliorer les images acquises
par MEB. Nous avons mis en oeuvre différentes techniques de fusion de l’information
des images, basées en particulier sur des operateurs de mophologie mathematique
ainsi que le filtre bilateral. Ces solutions ont été testées sur quelques jeux de données
réelles et simulées par un logiciel basé sur PENELOPE.

5.1 Introduction

Scanning electron microscope (SEM) is a versatile imaging tool that allows to acquire
images with various detectors. Images formed by secondary electrons (SE) reveals
mainly topographic contrasts, images formed by backscattered electrons (BSE) in-
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dicates local mean atomic number, whereas X-ray maps contains local elemental
composition. Coupling a SEM with an energy dispersive spectrometer (EDS) leads
to so called energy-dispersive X-ray spectrometry in the SEM (SEM-EDX). If the
full X-ray spectrum is recorded on each scanned pixel, SEM-EDX produces spectral
images. Typical SEM-EDX spectra are few millions pixels times few thousands of
energy channels. The set of the images produced by the different SEM detectors can
be seen as a multimodal image. Then, the various images can be processed inde-
pendently or in a combined way. It seems also natural to consider that an improved
processing would be obtained by combining the information present in the different
modalities; obviously, that is true in the case where the modalities are “compatible”.
This process of image combination can be seen as a pratical case of the theory of
information fusion.

More generally, the fusion of information can be seen either as the search for
optimal representation including all relevant information sources [119] or as the
search for algorithms making use of information from different modalities [164].

In the context of multimodal SEM, we decided to focus on a specific problem. We
aim at merging the backscattered electron images that usually have a high spatial
resolution, a good signal to noise ratio but do not provide enough discriminative
information to physically classify the nature of the sample, with energy-dispersive
X-ray spectroscopy images that have discriminative information but a lower spatial
resolution and signal to noise ratio.

This problem is similar in some ways to the so-called pansharpening [75], which
is well known in colour, multispectral and hyperspectral imaging. However there
are also some significant differences. The first one is that in the case of classical
image pansharpening, the panchromatic image (i.e., the image at the nominal spatial
resolution) has a good correlation with the colour or multi/hyperspectral image.
Even better, in some cases the “panchromatic image” is contained partly at some
wavelengths (or linear combination of them) from the multi/hyperspectral one. In
our case, the information between the two SEM modalities that are considered is
not basically correlated. Moreover, we work with abundance maps extracted from
the energy-dispersive spectroscopy images, since the raw EDS spectral image are of
very high dimension and of very sparse nature.

As usual in multimodal SEM, we work with images perfectly registered. Al-
though these images are spatially registered, it can be noticed that there are a
number of potential artefacts which can appear when merging their underlying in-
formation sources. The origin of these artefacts is the fact that information can be
structurally different, in the sense of the values of intensities, local contrast, pres-
ence of contours, etc. can be different between backscattered electron images and
energy-dispersive spectroscopy. All these phenomena may degrade the quality of
the fusion. A detailed list of the potential artefacts classicaly considered in image
pansharpening can be found in [150]. It seems essential to deal with these problems
in order to produce image fusion without major artifacts.

Up to the best of our knowledge, the literature on SEM image fusion is inex-
istent. Thus to initiate our work, we decided to take inspiration from the work of
fusion of information on multi/hyperspectral imaging which is much more abundant
and especially on pansharpening techniques [161, 91]. The rest of the paper is or-
ganized as follows. After providing a description of the SEM dataset used and a
summary of the most frequently used pansharpening algorithms, we introduce a new
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approach grounded on the bilateral filtering framework, which has been conceived
in the particular case of SEM images fusion. An extensive quantitative assessment
of the different algorithms is achieved to motivate discussion and conclusions.

5.2 Materials and methods

5.2.1 Multimodal SEM imaging.

SEM is able to produce high resolution images from the surface of a sample by means
of an extremely small electron beam, which is focused at a point of the sample using
the electromagnetic field of an objective lens [125]. When electrons of the beam hit
the specimen surface, electron-matter interactions may produce secondary particles
that are detected by adequate sensors. These secondary particles can produce several
types of images, as shown in Figure 1. In this work we focus primarily on two types
of images :

• Images formed by backscattered electrons (BSE);

• Images formed by electron-induced X-ray detected by EDS

Hence, we do not consider the Secondary electrons image, which is quite classic
in SEM, due to the fact that it is less correlated with the two others modalities BSE
and EDX. The different modalities acquired by the SEM provide different physical
information about the sample, and consequently it can be interesting to merge them.
This principle corresponds to the idea of SEM image information fusion.

5.2.2 SEM datasets.

SEM fusion methods discussed in this paper has been assessed using two real datasets
and a simulated one.

The first dataset is composed of an EDX image of size 1024 × 768 pixels and
2024 levels of energy. Thus the image is a data cube 1024×768×2024 pixels. As an
EDX image, it is naturally corrupted by a Poisson process and of extremely sparse
nature, i.e., many energy levels are zero. This image is from a sample composed of
iron, copper, aluminium and oxygen. This image has been acquired with a Zeiss
Supra 40 SEM fitted with a 10mm2 Brucker X-Flash 4010 EDS spectrometer. Beam
energy was 15keV, probe current 0.75nA and dwell time 912µs resulting in a 717s
long acquisition time. To estimate the abundance map of each of these physical
elements, a Gaussian model near each peak is fitted as EDS peak shapes are very
close to a Gaussian shape due to electron-hole formation statistics in the detector
[134, 11]. Since there are 6 detectable peaks at 6 different energies, 6 abundance
maps are obtained. In the following of the paper, the multivariate image of physical
abundances is called the ”multispectral image”. In addition to that, the BSE image
of the same sample at the same spatial resolution is also available. To downscale
the abundance maps, the experimental protocol that we followed is similar to the
one proposed by the authors of [91]. We have degraded the multispectral image by
applying a Gaussian blur, then we have downsampled this image by a factor s = 5.
The second dataset is composed of an EDX image of size 1024×704 pixels and 2024
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Figure 5.1: Multimodal SEM image acquisition. In the red square ( a,b,c,d) we
represented 4 abundances. In the blue square (e) we represented the backscattered
image and in the green square (f) the secondary electron image.

levels of energy and the corresponding BSE image. This image has been acquired
with a FEI Nova nanoSEM fitted with a 80mm2 Oxford Instruments X-Max EDS
spectrometer. Beam energy was 10keV, probe current 0.8nA and dwell time 3.2ms
per pixel resulting in a 2307s long acquisition time. This image is from a sample
composed of aluminum, oxygen, vanadium and nickel. In this case, 4 abundance
maps were obtained using the same model and algorithm. Downscaled images of
the abundance maps image were produced too.

In order to assess the accuracy of the algorithms, EDX images have been sim-
ulated by the Monte-Carlo method by a dedicated software based on the PENE-
LOPE package [135, 136, 128]. First, the response of the EDS detector of the Nova
NanoSEM has been characterized by measuring the full width at half maximum
(FWHM) for different peak energies. The dependence on peak energy E of the
standard deviation of the Gaussian peaks σ(E) was obtained by least-square fitting
and gave :

σ(E) =
√

0.4403E + 337.04, (5.1)

with E in eV. The efficiency ε(E) of the detector was modeled from its geometry
following the same approach proposed by Limandri et al. [89]. Analog electrons
trajectories (C1 = C2 = 0;WCC = WCR = 0) were generated with the PENE-
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LOPE package. As X-ray emission is an unusual process, both characteristic and
Bremsstrahlung photon emission were enhanced by interaction forcing by a factor
F with the help of the build-in functions of PENELOPE. Sample and detector ge-
ometries were handled by the PENGEOM package. The detector is annular at a
35◦ take-off angle to the surface. Any photon hitting the detector was considered
detected with a probability ε(E). Each detected photon of energy E was regis-
tered in an energy channel distributed following a Gaussian law of average E and
standard deviation σ(E). Backscattered electrons were also registered to obtain a
simulated BSE image. The image simulations were performed with 10000 electrons
trajectories for each pixel with varying image size and forcing factor F . Varying F
allowed to tune the intensity of Poisson noise of the simulated images. Two images
of 1024× 1024 pixels with F = 1 and F = 100 and three images of 256× 256 pixels
with F = 1, F = 10 and F = 100 were simulated. Typical simulation time was
about 10 days for a 1024 × 1024 pixels image on an 8 processors working station.
Figure 5.2 depicts the ground truth sample used in the simulation: it is composed
of regular geometric shapes of pure and binary composition with low mean atomic
number element (Al2O3, SiO2), medium (Fe, Co, Ni) and high (Pt). Figure 5.3 pro-
vides the simulated total backscattered electrons image. It is worth noticing that
phases with close mean atomic number (Al2O3 and SiO2; Fe, Co and Ni) are hard
to be distinguished in the BSE image. In Figure 5.4(a) is given the pixelwise mean
image of the simulated EDX map. We can notice that the pixelwise mean spectrum
reveals clearly the Pt zone due to high Bremsstrahlung emission in this high mean
atomic number zone. Figure 5.4(b) shows the image corresponding to the Al Kα
energy channel, the one having the less Poisson noise.

Figure 5.2: Ground truth of the simulated multimodal SEM image.

5.3 State-of-the-art

Before presenting the different image fusion methods, let us introduce the notation
used in the following, which is inspired from [91].

First, from a mathematical viewpoint, a multispectral image (abundance maps)
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Figure 5.3: Simulated backscattered electron image.

is considered as a function HS defined by

HS :

{
E → RD

x 7→ vi

whereD is the number of abundance maps and E is the image domain (support space
of pixels). This multivariate image can be also seen as set of D grey-scale images.

We note HS a multispectral image at a low resolution. Let H̃S ∈ RN1×N2×D be a
interpolated multispectral image whose spatial dimensions are N1, N2, which in our
case corresponds to BSE image dimensions. Let R ∈ RN1×N2 be just the BSE image.
We denote by ĤS ∈ RN1×N2×D the multispectral image of the EDS abundances
enhanced with the BSE image information, where HSk is the k-th abundance map
of image HS.

There are essentially three families of pansharpening techniques which are de-
tailed as follows.

5.3.1 Component substitution methods (CS)

The purpose of information fusion techniques is to find the function φ satisfying

ĤS = φ(H̃S,R),

where ĤS is “optimal” in a certain sense. The particular notion of optimality is
precised below. Component substitution methods (CS) are based on the projection
of the image HS into another space, separating the spatial information from the
spectral one. The spatial information, i.e., contrast and contours between different
objects, is often concentrated in a single grey-scale image. The main step of CS
consists in replacing the image containing the spatial information by the spatially
high resoluted image R. It is based on the assumption that the image containing only
spatial information is highly correlated with R. Once the corrections are done, the
data are projected back to the initial space. This approach is global and therefore
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(a) (b)

Figure 5.4: (a) The pixelwise mean image of the simulated EDX image (256× 256,
F = 1). (b) Simulated Al Kα energy channel.

corrects all pixels with a single rule. The strength of this technique is its speed,
however it depends on the fact that the image containing the spatial information
of HS which must be similar in range and intensity distribution to R. If not,
the merged image may have strong distortions. In our particular case, the BSE
image has information which is not comparable with EDS images, that explains the
artefacts which appears in our results, see Section 5.

The problem can be formulated mathematically as follows [91]:

ĤSk = H̃Sk + gk(R− IL), (5.2)

where gk corresponds to a corrective coefficient for the band k and IL is the image
containing all high resolution spatial information, i.e., typically

IL =
D∑

i=1

wiH̃Si, (5.3)

where wi is a coefficient depending on the degree of the spatial information of the
spectral band i. Now let us present in a more detail way the most popular CS
techniques.

CS by PCA.

Principal Component Analysis (PCA) [116, 69, 25] is a well-known dimensionality
reduction technique, which aims at finding an orthonormal basis that maximizes
the variance of the data. Thus, the data projected into this space summarize the
statistically significant information. The fundamental assumption of this pansharp-
ening technique is that the first component focuses all relevant spatial information
while the other components contain secondary spatial and spectral contrast features.
Using the CS model, the first principal component of H̃S is IL, and wi is the first
column of the inverse transform. Note that this is not exactly the R which is used
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in the Eq. (5.2), since the version of R should be histogram equalized with respect
to IL.

CS by Gram-Schmidt decomposition (GS).

The Gram-Schmidt (GS) technique is based on an orthogonal decomposition, which

was invented by Kodak [75]. First, instead of considering only the cube H̃S, one

starts with the tensor composed of the concatenation of H̃S and R, thus of D + 1
bands. Then, an orthogonal decomposition is performed on this new tensor. We find
the vector of the basis that corresponds to the spatial information and it is replaced
by R. Finally a reverse procedure is done to return to the initial representation
space. The components of the Gram-Schmidt basis being orthogonal, the spatial
information is expected to be orthogonal to all the other information sources. That
is why the spatial information is, in theory, gathered in a single vector. In practice
this is not always the case, especially if R contains dense information. Moreover
this technique can be problematic in the case of multimodal SEM images since a
significant orthogonal basis from EDX + BSE cannot be easily obtained without
adding a kind of sparsity constraint.

5.3.2 Multiresolution analysis methods (MRA)

MRA techniques are founded on the application of a low pass filter to R, sometimes
under different resolutions. Then, details are injected on H̃S thanks to the residue of
RL and R, which represents the high frequences of R. A mathematical formulation
of this type of technique is written as [123, 153]:

ĤSk = H̃Sk +Gk ⊗ (R−RL), (5.4)

where Gk corresponds to a corrective coefficient matrix for the band k and ⊗ is
the multiplication term by term. Moreover, as mentioned above, R−RL represents
the details that are injected in the low resolution image. Such family of techniques
depends mainly on the type of decomposition performed for RL and the diagonal
matrix of gains Gk. Different kind of filters can be used for RL: Gaussian filters,
wavelets, mathematical morphology operators, etc. There are therefore many pos-
sibilities. Two techniques are now detailed.

MRA by Smoothing Filter-based Intensity Modulation (SFIM).

The technique [90] involves the use of a single low pass filter, noted Hlp, applied to
R to get RL. The enhancement is then obtained as:

ĤSk = H̃Sk +Gk ⊗ (R−R ∗Hlp), (5.5)

with

Gk = H̃Sk �R ∗Hlp, (5.6)

where � is the division term by term. To achieve the low pass filter, a simple average
filter is typically used. The formula can be simplified thanks to the coefficient matrix
to obtain:

ĤSk = R⊗ (H̃Sk �Rl). (5.7)
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Thus it involves that the information of R was modulated by the ratio of the
image H̃Sk and Rl. This allows integrating the contrast present in R without
creating missing objects in the multispectral image H̃S. Due to this pixel by pixel
multiplication, there can be an issue on the low values of Rl, which requires to
manage the dynamic of the image, such that it does not exceed a given range.

MRA by Laplacian Pyramid (MTF-GLP).

This technique [19, 97] has some similarities with the previous one. However, this
time a multiple low-pass filter Hreso i at various resolutions (i.e., at various scales) is
used. More precisely, the low-pass filters are typically Gaussian convolutions. Miss-
ing information at a given scale i is injected into ĤSreso i+1 thanks to information
from R at the resolution i. In our framework, the BSE image R and the multispectral
abundance maps image of the EDS image are both in a multi-resolution structure
pyramid, as illustrated in Figure 5.5. Details are injected at each resolution, until
the nominal resolution of the BSE image is reached.

Figure 5.5: Model of a hierarchical decomposition of the information.

5.3.3 An hybrid method: Guided PCA

This technique [88, 73] consists in first doing a PCA on the multispectral image H̃S.
Then, on the d first principal components, a guided filter [64] is applied and nothing
is done on the remaining D − d bands. The rationale is based on the fact that
the remaining bands correspond to “noise”, and it would be useless to enhance the
resolution of noise. Then a reversed PCA transform is made to obtain the original
multispectral representation. The high resolution information from R is included by
the guided filter. For more details about this technique, see [88, 73].

5.4 Fusion of SEM information by Abundance Guided

Bilateral Filter (AGB)

As we have discussed above, when a pansharpening technique is used in the image
fusion context, the starting point is a low spatial resolution image HS, together
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with a high resolution “panchromatic” image R. Usually, the first step consists in
upsampling HS, thanks to a basic bi-cubic interpolation to obtain the image H̃S.
Then, on this image at the nominal scale, the image enhancement is done, where
the information is corrected by means of a particular pansharpening algorithm. The
main issues with the previous techniques are that the CS approaches do not take into
account the differences between the various components of the multimodal image,
that is, the differences between the abundance maps themselves and the differences
with the panchromatic image. In our case, there is a few correlation between the
different EDX abundance maps. Moreover the MRA approaches do not consider the
spectral link between the different abundance maps, since there is a finite quantity
of material for each pixel (i.e., the sum of abundances at a given pixel is equal to
1).

In order to address these drawbacks, we propose an interpolation technique called
abundance guided bilateral filter (AGB) by considering the relationships between
the abundance maps. Thus, weights used in the interpolation would depend on both
R and HS. Our approach of interpolation uses bilateral filter [151] and more exactly
its cross version [42]. By the way, the bilateral filter has already been used on other
super-resolution algorithms. Inspired by these works, we have chosen to improve
the interpolation process which is a scaling process.

A bilateral filter is a nonlinear, edge-preserving denoising/regularizing operator
for images. The intensity value at each pixel in an image is replaced by a weighted
average of intensity values from nearby pixels. This weight can be based on a
Gaussian distribution. Crucially, the weights depend not only on Euclidean distance
between pixels on the grid, but also on their intensity (or more general radiometric)
differences. Thanks to the fact that it uses spatial and range information, it preserves
the edges, this is the reason why bilateral filter is used in super-resolution.

Formally, the joint bilateral filter of an image I guided by an image F is defined
as :

I∗(x) =
1

Wp(x)

∑

xi∈E
I(xi)k(x, xi), (5.8)

where the kernel weights are given by

k(x, xi) = fr(‖F (xi)− F (x)‖)gs(‖xi − x‖),

and where the normalization term is just given as:

Wp(x) =
∑

xi∈E
k(x, xi),

such that fr and gs represent respectively the range (or spectral) and spatial kernels
of parameters r and s. To simplify, we have chosen a Gaussian function for both
kernels. However in our case we would like to consider the link between the different
abundance maps. To handle this relationship, we need to define a guided function
as a global criterion. Hence, we used the level of mixing of pixels, which will be
represented by an order map: an image of ordered levels of intensity. In a way
the order map has a low value if the pixel contains a mixture of various different
materials and a high value if it is almost pure, so it contains contribution of few
materials.
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Let us precise how this order map is computed using the possible alternatives.
The EDS spectrum at a position i of the image is a vector vi which can be written
as:

vi =
D∑

r=1

ar,imr + ni, (5.9)

where {mr}Dr=1 represent the set of D endmembers (spectral signature of the mate-
rial), ar,i the abundance at vector i of each endmember r, and ni an additive noise.
This last term can be neglected. The nonnegative coefficients ar we consider are
convex combination such that

∑D
r=1 ar = 1. By using this additional constraint, it

is guaranteed to work on a (D − 1)-simplex.
We have proposed in [50] different techniques to calculate such order map on

abundance map images. We adopt here an approach based on the notion of ma-
jorization [114], which is a technique for ordering vectors of same sum. Let us
consider two vectors c = (c1, . . . , cn) ∈ Rn and d = (d1, . . . , dn) ∈ Rn, then we say
that C weakly majorizes D, written c �w d, if and only if

{ ∑k
i=1 c

↓
i ≥

∑k
i=1 d

↓
i , ∀k ∈ [1, n]∑n

i=1 ci =
∑n

i=1 di
(5.10)

where c↓i and d↓i represent respectively the coordinates of C and D sorted in de-
scending order. Majorization is not a partial order, since c � d and d � c do not
imply c = d, it only implies that the components of each vector are equal, but not
necessarily in the same order.

Let us define a majorization-like partial order adapted to the abundances. A
permutation τi of the coordinates of the vectors vi in the simplex is applied such
that they are sorted in descending order. The majorization-like order ≤maj is

defined as

vi ≤maj vj ⇔





aτ−1
i (1),i < aτ−1

j (1),j or

aτ−1
i (1),i = aτ−1

j (1),j and aτ−1
i (2),i < aτ−1

j (2),j or

...
aτ−1
i (1),i = aτ−1

j (1),j and . . . and

aτ−1
i (R),i ≤ aτ−1

j (R),j

This order map between pixels brings a global information: the materials entropy.
Since a pixel that has a high value with this order is less mixed than the other one.
Let us write O the order map of the abundance images from the EDS image.

Figure 5.6 provides the corresponding O image for dataset 1 at the resolution of
HS, together the BSE image R at the nominal resolution. Let us write Õ the order
map image at the nominal resolution, where the value of all the missing pixels is
put to zero.

We can now introduce the expression of the SEM fusion using the AGB filter:

ĤS(x) =
1

Wp(x)

∑

xi∈E
HS(xi)k̂(x, xi) (5.11)
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Figure 5.6: The two images used for the fusion of SEM information by AGB filter.

where the AGB kernel is written as the product of two kernels

k̂(x, xi) = kspace(x, xi)kEDX+BSE(x, xi) (5.12)

given by

kspace(x, xi) = gs(‖xi − x‖)M(Õ(xi)),

kEDX+BSE(x, xi) = gs(|Õ(xi)− Õ(x)|)gs(|R(xi)−R(x)|),

with a typical normalization term:

Wp(x) =
∑

xi∈E
k̂(x, xi), (5.13)

M is a mask that allows us to consider just the data on the values of abundance
images available at the low resolution:

M(Õ(xi)) =

{
1, if Õ(xi) 6= 0

0, otherwise
(5.14)

and finally, gs is a Gaussian function of scale parameter s.

5.5 Fusion of SEM information by Bilateral Guided

Morphological Filter (BGM)

The goal now is to use mathematical morphology operators to build a nonlinear in-
terpolation. This time, instead of using a classical average on the kernel, to approx-
imate the missing data, we will use an alternative mean called the L∞ barycenter,
which can be seen related to mathematical morphology operators.
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Let us first consider a grey-scale image f : E → T, T ⊂ R. The two basic
operations in morphology are the grey-level erosion and the grey-level dilation whose
definition respectively are:

εb(f)(x) = inf
h∈E

(f(x− h)− b(h)), (5.15)

δb(f)(x) = sup
h∈E

(f(x− h) + b(h)), (5.16)

where b is a structuring function, which introduces the effect of the operators by
the geometry of its support as well as its weights. Here we consider a structuring
function with weights related to the bilateral kernel.

In order to compute the dilation and erosion, we obviously need a partial order
for the supremum and infimum. Thus, we can use the order previously develop,
represented on the image space by the order map O. Using this order, we can
naturally define an erosion and dilation on the multivariate image of abundances as
follows:

εb(HS)(x) = HS(xa), (5.17)

where xa = arg min
h∈E

(O(x− h)− b(h)), (5.18)

δb(HS)(x) = HS(xb), (5.19)

where xb = arg max
h∈E

(O(x− h) + b(h)). (5.20)

Moreover, in our case, the dilation and erosion that we use involve the concept
of changing the scale of the images. This notion is related is linked with the theory
of morphological wavelets. We are not going to recall all the concepts that can be
found in [66, 57], but at least to basic notions required for the rest.

In signal processing, the Shannon theorem states that the sampling of a signal,
that is a discrete representation by a set of regularly sampled values of the signal,
requires a frequency greater than Nyquist frequencies. In the case that this theorem
is not respected the obtained signal may suffer from aliasing effects. This is the
reason why Haralick et al. [62] defined a sampling condition for image processing
that we are going to introduce.

Theorem 22 Let S ∈ Z2 be a subset representing the sampling set of the grey-scale
image f defined on the domain E ⊂ Z2, and let K ∈ Z2 be a flat structuring element
(SE), i.e., a set defined at the origin. This structuring element is large enough to
verify the following sampling condition if:

δK(S)(x) = E. (5.21)

This condition is important to reconstruct the signal since it means that the
structuring element is large enough to cover all E. According to [68] the sampling
condition implies that the sampling distance must be less than half the distance of
the structuring element K, that can be rewritten mathematically as:

{
x ∈ Ky =⇒ Kx ∩Ky ∩ S 6= ∅
K ∩ S = {0, 0} (5.22)
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where Kx = {k + x|k ∈ K}. Based on this assumption, Heijmans and Toet defined
another general sampling strategy that we are going to review. Let E and S be two
subsets Z2, E representing the support space of f and S the one of the sampled
version of f . Let K : S −→ P(E) be a mapping where P(E) represents the power
space of all the subsets of E, where ∀s ∈ S, K(s) = {k + s|k ∈ K} that means that
it is the translate of K along s. Then it is also possible to define the dual mapping
as:

K∗ : E −→ P(S)
K∗ = {s ∈ S|x ∈ K(s)} (5.23)

Thanks to this definition, it follows that:

K∗∗ = K
∪s∈SK(s) = E if and only if ∀x ∈ E, K∗(x) 6= ∅.

That means that K covers E. Let us consider f : E → F a grey-scale image and
fS : S → FS its sampling, and let us consider fun(F ) the set of grey-scale images
and fun(FS) the set of grey-scale sampled images. It is now possible to define the
dilation sampling operator:

σK(f) :

{
fun(F ) −→ fun(FS)
σK(f)(s) = sup{f(x)|x ∈ K(s)} (5.24)

and the erosion sampling operator:

νK(f) :

{
fun(F ) −→ fun(FS)
νK(f)(s) = inf{f(x)|x ∈ K(s)} (5.25)

The adjoint erosion of the dilation sampling operator is given by

σ̇K(fS) :

{
fun(FS) −→ fun(F )
σ̇K(fS)(s) = inf{fS(s)|s ∈ K∗(x)} (5.26)

and the adjoint dilation of the erosion sampling operator as

ν̇K(fS) :

{
fun(FS) −→ fun(F )
ν̇K(fS)(s) = sup{fS(s)|s ∈ K∗(x)} (5.27)

We can prove that σ and σ̇ are adjoint operators using the standard procedure

σK(f) ≤ gS ⇔ ∀s ∈ S, sup{f(x)|x ∈ K(s)} ≤ gS(s)

⇔ ∀s ∈ S, ∀x ∈ K(s), f(x) ≤ gS(s)

⇔ ∀x ∈ E, ∀s ∈ K∗(x), f(x) ≤ gS(s)

⇔ ∀x ∈ E, f(x) ≤ inf{gS(s)|s ∈ K∗(x)} ⇔ f ≤ σ̇K(gS)

Identically we have that ν and ν̇ are adjoint too. Therefore, according to the fun-
damental theorem of mathematical morphology [67] , it is possible to build new
operators by composition of the adjoint operators:

ρK = σ̇KσK (5.28)

ηK = ν̇KνK (5.29)
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where ρ is a closing and η is an opening. Heijmans and Toet named σ and ν the
sampling operators while ρ and η are called the reconstruction operators. We follow
their terminology.

These sampling/reconstruction operators are at the basis of the morphological
wavelet theory. We notice that these operators used a fixed structuring element K
depending on just one image. By doing it, they do not use the intrinsic property
of the images and so the sampling is not image-adaptive, moreover they cannot use
the information from a second image. One would like that the sampling depends on
both the original image and another image to have a morphological wavelet operators
useful for image fusion.

Let us write ˜̃Oa the order map image at the nominal resolution (i.e., the resolution
of image R), where the value to all the missing pixels is put to ⊥. The order map

image
˜̃
Ob is that where the missing values are put to >, where ⊥ is smaller than all

the values of O and > is higher than all the value of O. We introduce now two new
operators:

σ̇K(HS)(x) = HS(xb), (5.30)

where xa = arg min
h∈E

(
˜̃
Oa(x− h)−Kx(h)),

ν̇K(HS)(x) = HS(xb), (5.31)

where xb = arg max
h∈E

(
˜̃
Ob(x− h) +Kx(h)),

This definition implies that σ̇K(HS) and ν̇K(HS) are defined at the resolution of R.
In order to improve the accuracy of our morphological operators we choose to

use bilateral structuring function, inspired by the theory developed in [76, 6]. The
bilateral structuring function depends on x and its neighbourhood. However since
we want to add the information from R, it should be also depending on the latter:

Kx(h) =

{
1
Wp
gs(‖ ˜̃Oa(h)− ˜̃Oa(x)‖)gs(‖h− x‖)gs(‖R(h)−R(x)‖)M( ˜̃O(h)) if ˜h ∈ Ωx

−∞ elsewhere

(5.32)
where the normalization term is:

Wp = max
h∈Ωx

(
gs(‖ ˜̃

Oa(h)− ˜̃
Oa(x)‖)gs(‖h− x‖)gs(‖R(h)−R(x)‖)M( ˜̃O(h))

)
. (5.33)

We wrote the structuring function for the case of the locally adaptive erosion; in
order to compute the corresponding locally adaptive dilation, one just has to replace
˜̃Oa by

˜̃
Ob on the two previous formulae.

By means of these operators, it is possible to increase the scale of an image
based on its own information but also the information from R. Using only one of
the operators, the fused image may have a distortion by skewing the values to the
high or low values. In order to correct this effect, we use as an enhanced image the
mean between the adaptive upsampling erosion and dilation, i.e.,

ĤS =
σ̇K(HS) + ν̇K(HS)

2
. (5.34)

This operator is just a kind of locally adaptive L∞ barycenter.
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5.6 Results and discussion

5.6.1 Evaluation criteria of pansharpening algorithms

The criteria used to evaluate the quality of the merged information are those conven-
tionally considered in the context of the pansharpening literature. More precisely,
we dealt with the following criteria:

C1: The spectral distortion between the enhanced multispectral image and the
real multispectral image at the nominal resolution should be as small as pos-
sible. Or, in other terms, we would like to find the same materials for each
pixel as the original image at high resolution;

C2: The spatial distortion between the enhanced multispectral image and the
real one should not be too high.

Many alternative metrics can be used to quantify these two criteria [91]. Let us

formaly precise those that we have used. We write
̂̂
HS the multispectral abundance

EDS image at the same resolution that R, that has been provided by the sensor
at high resolution. In a way it is the ground truth such that our enhanced images

ĤS should be compared to
̂̂
HS. Moreover, we denote by

̂̂M ∈ Mn,D(R) and M̂ ∈
Mn,D(R) the two matrices representing respectively

̂̂
HS and ĤS, where n is the

total number of pixels (i.e., n = N1 ×N2), and D the number of abundance maps.

We write by M̂i,:, ∀i ∈ [1, n], a spectra of ĤS, and M̂:,k∀k ∈ [1, D] a map of ĤS.
We have now all the notation to introduce the four parameters.

Cross correlation (CC) is a measure that evaluate the spatial distortion defined
as

CC(ĤS,
̂̂
HS) =

1

D

D∑

k=1

CCS(M̂:,k,
̂̂M:,k), (5.35)

where

CCS(M̂:,k,
̂̂M:,k) =

(
∑n

i=1 M̂i,k − µM̂:,k
)(
∑n

i=1
̂̂Mi,k − µ̂̂M:,k

)
√∑n

i=1(M̂i,k − µM̂:,k
)2
∑n

i=1(
̂̂Mi,k − µ̂̂M:,k

)2

,

with µM̂:,k
= n−1

∑n
i=1 M̂i,k being the empirical mean. The CC is optimal when it

is close to 1.

Spectral Angle Mapper (SAM) is a measure that assesses the spectral distortion
by computing

SAM(ĤS,
̂̂
HS) =

1

n

n∑

k=1

S̃AM(M̂i,:,
̂̂Mi,:), (5.36)

with

S̃AM(M̂i,:,
̂̂Mi,:) = arccos


< M̂i,:,

̂̂Mi,: >

‖M̂i,:‖‖̂̂Mi,:‖


 ,
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where < ·, · > is the Euclidean inner product of vectors associated to the norm L2,
and where ‖ · ‖ is the norm L2 of vectors. The SAM is optimal when it is near to 0.

Root mean squared error (RMSE) measures the mean residual error of fusion
and is defined as:

RMSE(ĤS,
̂̂
HS) =

‖M̂ − ̂̂M‖F
n.D

, (5.37)

where ‖ · ‖F is the Frobenius norm of a matrix A, i.e., ‖A‖F =
√

trace(AAt). The
RMSE is optimal when it is near to zero.

Synthetic adimensional global error (ERGAS) offers an overall measure of the
quality of an enhanced image. It is given by the expression:

ERGAS(ĤS,
̂̂
HS) =

100d

√√√√√
D∑

k=1


RMSE(M̂:,k,

̂̂M:,k)

µM̂:,k




2

,

where d is the ratio between the linear resolution of the BSE image R and the
abundances EDS image HS, i.e.,

d =
R-linear spatial resolution

HS-linear spatial resolution
.

The ERGAS is optimal when close to 0.

We note that C1 and C2 are not enough to assess in our case the quality of the
enhancement. Indeed the BSE images give not just access to the high resolution
spatial information of the physical objects, but it provides other kind of information
that can in theory allow us to have better result than just the EDX image at high
resolution, such as the topographic shape of the sample. Thus we need to introduce
a new criterion measuring the amount of information which is injected in the merged
image:

C3: The injected information. Since the information provided by the various
modalities can be relatively different, we would like to inject the useful one to
improve segmentation and characterisation of the EDX image.

In order to quantify this criterion, we proposed to use the cross correlation be-
tween the norm of gradient of the images. To calculate such norm of the image
gradient, different techniques can be used. In our studies, we computed the mor-
phological gradient [142]. More precisely, we have:

Cross correlation gradient (CCg) is a measure that evaluate the spatial distortion
defined as

CCg(R,
̂̂
HS) =

1

D

D∑

k=1

CCS(Rg, ̂̂Mg:,k),

where Rg represents the image gradient of the BSE image converted into a vector

and
̂̂Mg:,k is the image gradient of the enhanced abundance map at the nominal

scale converted also into a vector.

An optimal enhancement method would be a compromise between the criterion
C3 and the C1 and C2.
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5.6.2 Evaluation on dataset 1

The EDS abundance maps of dataset 1 are provided in Figure 5.7. The results of
the enhanced abundances H̃S, obtained by the different techniques are provided
in Figures 5.8, 5.9, 5.10, and 5.11 where the abundances are visualized as RGB
color images. Quantitative results for this case according to the five measures are
presented in Table 5.1.

From these results, we note that CS techniques are good to inject R on ĤS, while
MRA techniques are good to increase the resolution. In addition, AGB, GFPCA
and MTF-GLP present both a good compromise between these criteria. The BGM
technique seems to be good to inject the information expect in the pixels with a
high gradient.

Techniques CC SAM RMSE ERGAS CCg

GS 0.783 22.6 27.7 16.8 0.69

PCA 0.771 29.3 32.0 16.3 0.65

SFIM 0.831 11.6 19.6 14.4 0.29

MTF GLP 0.899 10.9 14.3 9.6 0.70

GFPCA 0.840 12.2 15.2 12.2 0.55

AGB 0.90 9.5 11.2 9.35 0.59

BGM 0.90 10.7 59.6 15.8 0.12

Table 5.1: Comparison of pansharpening algorithms for enhanced EDS abundance
images of dataset 1.

5.6.3 Evaluation on dataset 2

In the case of this multimodal SEM dataset, which has a higher level of noise, we
try to inject the BSE image R, depicted in Figure 5.12, to increase the resolution of
the EDS abundance maps provided in Figure 5.13, and also to denoise the images.
The results for our ABG method are given in Figure 5.14.

For comparaison, Figures 5.15 and 5.16 provide a visualization of the results
obtained using the other methods. Quantitative results are given in Table 5.2,
which lead to similar conclusions as for dataset 1.

Techniques CC SAM RMSE ERGAS CCg

GS 0.23 16.3 1.6 20.3 0.66

PCA 0.17 17.4 1.6 20.6 0.67

SFIM 0.14 15.9 1.74 27.9 0.17

MTF GLP 0.30 15.8 1.4 20.1 0.61

GFPCA 0.26 15.9 1.5 20.4 0.31

AGB 0.30 15.7 1.4 20.1 0.45

BGM 0.27 15.9 3.6 14.8 0.15

Table 5.2: Comparison of pansharpening algorithms for enhanced EDS abundance
images of dataset 2.
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abundance 1 abundance 2

abundance 3 abundance 4

abundance 5 abundance 6

Figure 5.7: The six EDS abundance maps of SEM dataset 1 at the nominal resolu-
tion.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 5.8: RGB color image from abundances 1,2,4 of the dataset 1 for the different
pansharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 5.9: Zoom of the RGB color image from abundances 1,2,4 of the dataset 1
for the different pansharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 5.10: RGB color image from abundances 3,5,6 of the dataset 1 for the different
pansharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 5.11: Zoom of the RGB color image from abundances 3,5,6 of the dataset 1
for the different pansharpening techniques.
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Figure 5.12: BSE image of SEM dataset 2.

abundance 1 abundance 2

abundance 3 abundance 4

Figure 5.13: Four EDS abundance maps of SEM dataset 2 at the nominal resolution.
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abundance 1 abundance 2

abundance 3 abundance 4

Figure 5.14: Four enhanced EDS abundance maps by means of ABG method of
SEM dataset 2 at the nominal resolution.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 5.15: RGB color image from abundances 2,3,4 of the dataset 2 for the different
pansharpening techniques.
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Reference Input image

GS method PCA method

SFIM method MTF GLP method

GFPCA method AGB method

Figure 5.16: Zoom of the RGB color image from abundances 2,3,4 of the dataset 2
for the different pansharpening techniques.
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5.6.4 Evaluation on simulated dataset

By means of the Monte Carlo software based on PENELOPE, we calculated various
simulated datasets with different levels of noise and different resolutions. So first
we have a dataset represented in Figure 5.2. It represents the sample at the full
resolution without noise, thus it corresponds to the ground truth. The size of this
image is 1024×1024×2048. Then we simulate other EDX images of the same sample
at resolution 4 times smaller than the original. The size of these images is therefore
256×256×2048. First we extract the 7 abundance maps of these images and perform
the fusion techniques. The results of the different algorithms are gathered in Table
5.3. Since we know the ground truth, for each pixel the most important materials
that are present are known (see Figure 5.17). Hence after having performed the
fusion techniques, for each pixel we extract the most significant material. This
imply that, each pixel is represented by a number between 1 and 7. Then these
images can be seen as the results of a classification. To evaluate the performance
we used the overall accuracy (OA) which is defined as the percentage of pixels well
classified on the whole image, and the average accuracy (AA) which represents mean
of the accuracy of each class. These grey scale images are represented in Figure 5.17.
One can see the results with the different levels of noise in Table 5.4. Our proposed
ABG method and GFPCA give the best accuracies, even with high noise levels.

Techniques CC SAM RMSE ERGAS CCg

GS 0.065 26.72 0.51 445.61 0.12

PCA 0.046 26.52 0.62 461.6 0.20

SFIM 0.15 24.66 0.61 365.3 0.045

MTF GLP 0.19 24.0502 0.42 266.4 0.0763

GFPCA 0.29 16.39 0.218 439.4 0.1766

AGB 0.36 16.30 0.217 420.6 0.3529

Table 5.3: Comparison of pansharpening algorithms for enhanced EDS abundance
images on simulated SEM image, forcing level 1.

5.7 Conclusion

In this article, we have conducted a qualitative and quantitative evaluation of dif-
ferent algorithms of fusion of information applied on SEM images. Thanks to these
algorithms we merged EDX and backscattered electrons SEM images. We compared
global and local state of the art techniques and proposed two innovative one based
on a guided bilateral filter, and a morphological approach. We also wrote a program
based on the PENELOPE package to simulate large SEM-EDX spectral maps.

Thanks to these simulated and real SEM images, we evaluated the performances
of the different techniques according to criteria defined for pansharpening problem.
We also proposed one new criterion that is more adapted for the SEM segmentation
problem. The accuracy of the pansharpening methods was assessed, and our pro-
posed method was always found to be one of the best, together with the GFPCA.
Our proposed algorithm performs well even on very noisy EDX images. Thanks to
this fusion of information, we can increase the speed of the imaging process, since
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Reference GS method

PCA method SFIM method

MTF GLP method GFPCA method

AGB method

Figure 5.17: Extraction of the most abundant material at each pixel for the different
pansharpening techniques.
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Techniques forcing level OA AA

GS 1 71.0 22.8

PCA 1 71.0 20.8

SFIM 1 70.0 33.3

MTF GLP 1 70.8 33.4

GFPCA 1 78.2 36.9

AGB 1 78.9 36.9

GS 10 74.9 23.0

PCA 10 75.3 21.5

SFIM 10 77.8 34.4

MTF GLP 10 77.9 34.4

GFPCA 10 79.2 36.5

AGB 10 79.1 36.7

GS 100 75.1 22.4

PCA 100 75.8 22.6

SFIM 100 78.3 35.3

MTF GLP 100 79.1 35.5

GFPCA 100 79.2 36.5

AGB 100 79.2 36.8

Table 5.4: Comparison of pansharpening algorithms for enhanced EDS abundance
images on simulated SEM image, for different forcing levels.

we need fewer pixels. A way to improve the compression of this technique might
be to consider pixels at given location, where the location is guided thanks to the
backscattered image. By doing that, we would first take the backscattered image
then have a look at the keypoints localizations, and then take the EDX image just
at those points. Another way to improve this technique might be to consider the
secondary electrons image. In addition, thanks to the developed formalism, it can
easily be taken into account. In a broader perspective, the proposed guided bilateral
filter could be used for other multispectral image pansharpening than SEM based
ones.



Chapter 6
Spatial Regression for Image
Pansharpening: Application to
Multimodal SEM Image Fusion

Abstract

In this chapter, we compare ordinary kernel regression, kriging and Gaussian pro-
cesses and apply such methods to multimodal multispectral SEM image fusion. The
kernel regression that we use is the technique presented in the previous chapter,
called Abundance Bilateral Guided (ABG). We compare it mathematically and ex-
perimentally to ordinary kriging. In addition we propose a way to perform image
fusion of information by means of the ordinary kriging and show the interest of the
approach for image pansharpening. By combining the different SEM modalities, we
increase the resolution of the EDX multispectral image, and provide more details
on the physicochemical composition of samples obtained from the enhanced EDX.

Résumé

Le microscope électronique à balayage (MEB) permet d’acquérir des images à partir
d’un échantillon donné en utilisant différentes modalités. Le but de ce chapitre est
d’analyser l’intérêt de la fusion de l’information pour améliorer les images acquises
par MEB. Nous avons mis en oeuvre différentes techniques de fusion de l’information
des images, basées dans ce chapitre sur la théorie de la régression spatiale. Ces
solutions ont été testées sur quelques jeux de données réelles.

6.1 Introduction

In this chapter, we propose an original approach of spatial fusion of information able
to increase the resolution of multispectral images.

This technique is called pan sharpening. Pan sharpening aim at merging differ-
ent spatial and spectral information. A huge variety of techniques exists in remote
sensing [75], however in Scanning Electron Microscopy these kind of techniques are
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not so used. We express in this chapter this problem as a problem of spatial regres-
sion. To perform this regression we consider different techniques. We compare them
mathematically and propose one innovative technique based on regularised kriging.
We note that a solution based on Parzen windows was introduced in the previous
chapter. So we present the mathematical aspect of this solution, and compare it
to our solution based on kriging. Kriging [102, 28, 33, 101, 32] is an interpolation
technique used originally in geosciences for the evaluation of minerals deposit spa-
tial repartition. This method was developed by Georges Matheron departing from
some studies from Daniel G. Krige. The technique based on kriging is inspired by
the innovative work [34] where the author first performed a principal component
analysis followed by kriging applied on each principal component. By combining
this information with other modalities they were able to recognize if a patient was
infected by the malaria or not. We note also the innovative work proposed by [84],
where the authors use local gaussian process regression techniques to increase the
resolution of an image. Given an image the authors randomly extract patches from a
blurred version of the image and on its corresponding high-resolution version. Then
given pairs of patches they learn thanks to a technique based on multiple Gaussian
process regressions how to transform a low resolution patch into a high resolution
one. Even if this technique is quite interesting, the Gaussian process regression they
used does not take into consideration the full spatial information of images.

That is why, here we propose to use a local ordinary kriging where the coefficients
depend on the information of the other modalities we want to inject. Then we are
able to reconstruct the missing information while injecting other modalities infor-
mation. To present our work we first introduce the kernel regression, then gaussian
process regression, then ordinary kriging. We provide results of these techniques on
the samples presented in the previous chapter.

6.1.1 Notations

We consider that an image f of dimension D with support space of pixels E ⊂ Z2

can be defined as a function:

f :=

{
E → F ⊂ RD

x 7→ f(x)
(6.1)

In the sequel, we limit ourselves to two kinds of images from multimodal SEM. We
first consider the backscattered electron (BSE) image, which is denoted R. It is a
gray scale image, i.e., D = 1, of spatial dimensions N1 × N2. We also consider a
multispectral image HS which is in our case the result of the abundance maps, at
a lower resolution, of dimension n1 × n2 ×D, where D is the number of abundance
maps. We additionally denote ĤS the abundance map multispectral image at the
nominal spatial resolution: size N1 × N2 × D. The goal of image fusion is just to
increase the spatial resolution from n1 × n2 to N1 ×N2.

We consider that an image g is the realization of a random function G. Let us
consider a probability space (Ω, A, P ) and a domain D ∈ E. A random field, or
random function, on the spatial domain D with values in F is a function of two
variables, denoted Z(x, ω). For each x ∈ D, G(x, :) : ω → G(x, ω) is a random
variable on (Ω, A, P ). Moreover, for each ω0 ∈ Ω, G(: ω0) : x → G(x, ω0) is a
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function of D → E. We write G(x) the random function at the position x, and g(x)
the regionalized function.

We note that in our case we deal with image data hs that are abundance map.
That means that at a given position x, we have

∑D
i=1 hsi(x) = 1, together with

hsi(x) ≥ 0, ∀x ∈ E, ∀i. This means that the data are on a convex set of the positive
orthant of RD, called D − 1 simplex. From a physical viewpoint, hsi(x) represents
a quantity (between 0 and 1) of material i at pixel x.

6.2 Spatial kernel regression

Let us consider that the image hs is composed of N spatial positions N1 = {xi|i ∈
[1, N ]}, such that we have the value of hs in just n spatial positions N2 = {xi|i ∈
[1, n]}. Our goal is to estimate the value of hs in the remaining N − n spatial
positions N3 = {xi|i ∈ [1, N ]/[1, n]}. Or, more formally, given a vector of inputs
N2 = (x1, x2, ..., xn)t, we will predict the output hs for new positions x∗. The

estimated predictor is denoted ĥs(x∗).
Let us consider that the available information that we have on each observation is

most of the time corrupted by Gaussian noise of zeros mean and standard deviation
σ. Hence, we can write the model in the form:

ĥs(xi) = f(xi) +N (O, σ) (6.2)

where f is the true information. By considering that the different data points
(xi, hs(xi)) are independent and identically distributed (i.i.d.), we can evaluate the
likelihood as follows:

P(HS = hs(N2)|N2, f, σ) =
n∏

i=1

P(HS = hs(xi)|xi, f, σ), (6.3)

with hs(N2) = (hs(x1), . . . , hs(xn))t.

P(HS = hs(N2)|X, f, σ) =
n∏

i=1

N (hs(xi)|xi, f, σ) (6.4)

P(HS = hs(N2)|N2, f, σ)) =
1√

2π
n
σn
.e

1
2σ2
‖f(N2)−hs(N2)‖2 (6.5)

We seek a function f(x) for predicting hs(x) given values of the input N2. How-
ever, the optimal function should not depend on N2. This leads us to a criterion for
choosing f , in the sense that the optimal function f should minimize:

R(f) = Ehs,x(‖f(x)− hs‖2)

= ExEhs|x(‖f(x)− hs‖2), (6.6)

which can be rewritten as:

f(x) = arg minEHS|X=x(‖f(x)− hs‖2), (6.7)
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and its solution is just:

f(x) = EHS|X=x(hs), (6.8)

which corresponds to the conditional expectation, also called the regression function.
Then the best prediction needs P(HS|X = x). However, we do not have access to
this probability and the goal here is to show how to evaluate it thanks to kernel
density estimation also known as Parzen-Rosenblatt window method [126].

We consider a model of the data which is similar to the one introduced in [16].
Let us write T = (HS,X) the joint random variable. For the sake of simplicity, we
write p(t) the corresponding joint distribution with t ∈ RD+2. Let us take a (small)
region R ⊂ RD+2 containing t. The probability of this region is just:

P =

∫

R
p(t)dt. (6.9)

We suppose that out of the n points there are K points that fall into R, such that
the K points follow a binomial distribution, i.e.,

Bin(K|n,P) =
n!

K!(n−K)!
PK(1− P)n−K . (6.10)

If we want the mean number of points falling in R to be equal to K, that means that
K = Pn. Moreover, we can assume that R is small in the sens that P = V p(t) is
a good approximation, where V is the volume of R. Hence, under this assumption,
one has

p(t) =
Kt

nV
, (6.11)

where Kt represents the mean number of point falling intoR. Then, we can separate
RD+2 into a discrete set of bins and count the number of points falling in each bin.
Or we can use a Parzen window implanted at each point and integrate the number
of points around each window, which is a smoother estimation. More formally, we
have

Khs,x =
n∑

i=1

k(t− ti, σ1).

In previous chapter, we used for ABG interpolation a Parzen window method with a
Gaussian (or rbf) kernel: k(ti− t, σ1) = exp(‖ti− t‖2/(2.σ1)). But, there are several
possible kernels that one can consider classicaly in density estimation,

• triangle kernel:

k(u) = (1− |u|) 1(|u|≤1)K(u) = (1− |u|) 1(|u|≤1), (6.12)

• Epanechnikov kernel:

k(u) =
3

4
(1− u2) 1(|u|≤1)K(u) =

3

4
(1− u2) 1(|u|≤1), (6.13)

• quadratic kernel:

k(u) =
15

16
(1− u2)2 1(|u|≤1)K(u) =

15

16
(1− u2)2 1(|u|≤1), (6.14)
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• cubic kernel:

k(u) =
35

32
(1− u2)3 1(|u|≤1)K(u) =

35

32
(1− u2)3 1(|u|≤1), (6.15)

• Gaussian kernel:

k(u) =
1√
2π
e−

1
2
u2K(u) =

1√
2π
e−

1
2
u2 , (6.16)

• circular kernel:

k(u) =
π

4
cos
(π

2
u
)

1(|u|≤1)K(u) =
π

4
cos
(π

2
u
)

1(|u|≤1). (6.17)

Let us continue using the Gaussian kernal, such that we can write

Khs,x =
n∑

i=1

k(hs− hsi, σ1)k(x− xi, σ1).

The multiplication of the two Parzen windows helps us to bring both the spatial
and spectral information. Hence the density function is now:

p(t) = p(hs, x) =
1

n

n∑

i=1

k(x− xi, σ1)k(hs− hs(xi), σ1), (6.18)

As we seek for P(HS = hs(x)|x, ω), we use Bayes theorem to obtain:

P(HS = hs|x, ω) =
n−1

∑n
i=1 k(x− xi, σ1)k(hs− hs(xi), σ1)∫

p(hs, x)dhs
. (6.19)

Then by applying the expression (6.8), it is obtained:

f(x) =

∫
hs

∑n
i=1 k(x− xi, σ1)k(hs− hs(xi), σ1)∫

p(hs, x)dhs
dhs

=

∑n
i=1 n

−1
∫
hs k(x− xi, σ1)k(hs− hs(xi), σ1)dhs∑n

i=1

∫
k(x− xi, σ1)k(hs− hs(xi), σ1)dhs

. (6.20)

Using the fact that
∫
hs k(hs − hs(xi), σ1)dhs = hs(xi), and changing the variable

we finally have:

ĥs(x) =

∑n
i=1 hs(xi)k(x− xi, σ1)∑n

i=1 k(x− xi, σ1)
. (6.21)

In this model, and going back to the problem of multimodal SEM, we do not consider
the information brought by the other modalities that can be useful to improve the
estimation of ĥs(x). In order to deal with this idea, and as suggested by [138] in
section 4.3 chapter 4, we modify the single kernel by a product of kernels:

k(x− xi) =
∏

j

kj(x− xi, σj).
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In particular, the Parzen window kernel will be:

k(x− xi, σ1) = k(x− xi, σ1)k(r(x)− r(xi), σ1)k(h̃s(x)− h̃s(xi), σ1), (6.22)

such that this kernel allows us to evaluate the coefficients of the window using the
spatial and spectral information, as long as the information of the BSE image r.
The image estimate will be given by:

ĥs(xj) =
n∑

i=1

hs(xi)ω((xj − xi)σ−1
1 ) (6.23)

with the normalized weights

ω((xj − xi)σ−1
1 ) =

k(xj − xi, σ1)∑n
i=1 k(xj − xi, σ1)

.

This notation is correct with the rbf kernel.
The question that we can ask ourselves now is what are the statistical properties

of such estimator? Indeed, we would like to be sure that if we use another “training

set” N2 = {xi|i ∈ [1, n]}, with {xi|i ∈ [1, n]} i.i.d.∼ P (x), the regression would
stable. Moreover, we do not have an unlimited access to data point and therefore
the influence of the number of data should be understood. Finally, we need to know
the influence of the (smoothing) scale parameter σ1.

Let us denote the real function hs(x) and let ĥs(x,N2) be the function that is
estimated using a Parzen window of parameter σ1 from training set N2. We have
the following statistical properties for the normalized kernel function:

∫
w(u)du = 1,

∫
uw(u)du = 0,

∫
u2w(u)du = σ2

k.

Let us first evaluate the bias of the estimator:

bias2 =

∫ (
EN2

(
ĥs(x,N2)− hs(x)

))2

P (x)dx, (6.24)

thus we have

bias2 =

∫ (
EN2

(
n∑

i=1

hs(xi)ω((xi − x)σ−1
1 )− hs(x)

))2

P (x)dx. (6.25)

We can consider that the function hs is locally smooth of first order. This hypothesis
is justified by the fact that the function is smoothed by a local filter for denoising
it. Under this assumption, a Taylor expansion can be compputed, i.e.,

hs(xi) = hs(x) + (x− xi)hs′(x) +
(x− xi)2

2
hs′′(x) +O((x− xi)2) (6.26)

Using this approximation in (6.25),

bias2 =
∫ (

EN2

(
n∑

i=1

(x− xi)hs′(x)ω((xi − x)/σ1) +
(x− xi)2

2
hs′′(x)ω((xi − x)/σ1)

))2

P (x)dx.
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Let us fix a point x and use the fact that the data points on the training set are

i.i.d. that follow P (x), {xi|i ∈ [1, n]} i.i.d.∼ P (x), to obtain:

EN2(ĥs(x,N2)− hs(x)) =
∫ ( n∑

i=1

(x− xi)hs′(x)ω((xi − x)/σ1) +
(x− xi)2

2
hs′′(x)ω((xi − x)/σ1)

)
P (x)dx

n

∫ (
(x− y)hs′(x)ω((y − x)/σ1) +

(x− y)2

2
hs′′(x)ω((y − x)/σ1)

)
P (y)dy.

By changing the variable z = y−x
σ1

, we have:

EN2(ĥs(x,N2)− hs(x)) =

n

(
hs′(x)

∫
zσ1ω(z)P (x+ zσ1)σ1dz + hs′′(x)

∫
zσ1ω(z)P (x+ zσ1)σ1dz

)
(6.27)

We also consider that the probability distribution P (x) is locally smooth of second
order such that its Taylor approximation:

P (x+ zσ1) = P (x) + zσ1P
′(x) +

(zσ1)2

2
P ′′(x) + o((zσ1)2),

makes sense. By injecting the expansion into (6.27) we obtain:

EN2(ĥs(x,N2)− hs(x)) =

nσ3
1σ

2
k (hs′(x)P ′(x) + 1/2.hs′′(x)P (x)) + o((zσ1)2). (6.28)

Therefore, we have the final expression for the bias:

bias2 = (nσ3
1σ

2
k)

2

∫
(hs′(x)P ′(x) + 1/2.hs′′(x)P (x))

2
P (x)dx+ o((zσ1)2). (6.29)

Doing the same kind of calculation for the variance, one has:

variance =

∫
EN2

[
ĥs(x,N2)− EN2ĥs(x,N2)

]2

P (x)dx,

=

∫
σ(x)R(K)

nσ1P̂ (x)
P (x)dx, (6.30)

with R(K) =
∫
w(u)2du, P̂ (x) is the estimate of P (x) obtained thanks to the Parzen

windows, σ(x) represents the noise present on each hs(x) that corrupts the data.
See formula (4.11) in [138] for more details.

Concerning the smoothing parameter, we can see that when its value is small, i.e.,
σ1 → 0, so we focus on small scale details and thus we reduce the bias of estimation.
In the contrary, the variance of the estimator is increased. Since by reducing σ1,
with less effect of smoothing, each of our predictions will be an average of less
observations, thus they are going to vary more. In summary, this technique has a
bias and we just need to find correctly appropiate σ1 according to the compromise
we want to have.

We provide in Figure 6.1 an example of Gaussian kernel regression for a 1D
signal.
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(a) (b)

Figure 6.1: Illustration of the signal estimation thanks to the Gaussian kernel re-
gression approach. In (a), one can see in black the target function, and in blue the
availble data or the training set, which is composed of 30 points. In (b), different
training sets of 29 points have been generated based on one of 30 and we perform
a regression in the space. Dark curve is the mean prediction over all the different
training sets, and the grey are is the variance.

For the case of 2D images, the corresponding local neighbourhood is represented
in red in Figure 6.2, thanks to it we approximate the point hs(x) as a weighted
mean. More precisely, we can now revisit the expression of the SEM image fusion
using the AGB filter, proposed in previous chapter, from the viewpoint of kernel
regression:

We can now revisit the expression of the SEM image fusion using the AGB filter,
proposed in previous chapter, from the viewpoint of kernel regression:

ĥs(x) =
1

Wp(x)

∑

xi∈E
hs(xi)k̂(x, xi), (6.31)

where the AGB kernel is written as the product of two rbf kernels:

k̂(x, xi) = kspace(x, xi)kEDX+BSE(x, xi) (6.32)

given by

kspace(x, xi) = gs(‖xi − x‖)M(Õ(xi)),

kEDX+BSE(x, xi) = gs(|Õ(xi)− Õ(x)|)gs(|r(xi)− r(x)|),
with a typical normalization term:

Wp(x) =
∑

xi∈E
k̂(x, xi), (6.33)

M is a mask that allows us to consider just the data on the values of abundance
images available at the low resolution:

M(Õ(xi)) =

{
1, if Õ(xi) 6= 0

0, otherwise
(6.34)
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The function Õ was introduced in the previous chapter and represents the level
of mixing of the different abundances. Finally, gs is a Gaussian function of scale
parameter s.

Figure 6.2: Spatial kernel regression with image information.

6.3 Gaussian kriging

Gaussian process regression [124], also called Gaussian kriging, consists in starting
with a linear model regression where the value of hsk(x0) is obtained by weighted
linear combination of basis functions φi, 1 6 i 6 N , i.e.,:

ĥs(x) =
N∑

i=1

ωiφi(x) + ε, (6.35)

where the family φi of N basis functions is used to project the data onto another
feature space, and ε ∼ N (0, σ). By writing φ(x) = (φ1(x), . . . , φN(x))t ∈ RN and
ω = (ω1, . . . , ωN)t, we can put the linear model in vector form as follows:

ĥs(x) = ωtφ(x) + ε. (6.36)

One can directly see the analogy with the problem of the precedent section, so
we have:

P(HS = hs(x)|x, ω) = N (ωtφ(x), σ2I) (6.37)

Let us consider a prior over the parameter ω expressing our confidence:

w ∼ N (0, S0),

with S0 ∈M1,N(R). We are interested in the value of the joint distribution function
of values hs(x1), ..., hs(xn). From (6.36), we have:

hs(N2) ∼ N (0, φtS0φ+ σ2I), (6.38)

where hs(N2) = (hs(x1), . . . , hs(xn))t and φ is a matrix of Mn,N(R), such that
φ(i, j) = φj(xi). We can then define a kernel matrix of the form:

K = φtS0φ.
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Instead of defining basis functions, we can just work with kernels and project the
data onto an infinite nonlinear feature space and then apply the representer theorem,
see the theory in Chapter 1. We can see from equation (6.38):

cov(hs(xi), hs(xj)) = K(xi, xj) + σδ(xi, xj). (6.39)

From this expression we can see that nearby data are more correlated, or in other
words, the correlation between the data is governed by their distances. This lead to
a concept called Gaussian process.

A Gaussian process is a statistical random function f , for which any finite subset
of f taken at different spatial locations follows a multivariate Gaussian distribution
and it is written as f ∼ GP(0, K).

We consider that hs follows a Gaussian Process, which means that the covariance
at two positions satisfies (6.39). Let us assume that HS(x∗) ∼ N (0, K(x∗, x∗)),
which means that there is no noise on it. Moreover the joint distribution of the
training outputs hs and the test outputs hs(x∗) is given by

(
hs(N2)
hs(x∗)

)
∼ N

(
0,

(
K + σI K∗
K∗ K∗∗

))
(6.40)

with
K∗ = φtS0φ(x∗) and K∗∗ = K(x∗, x∗).

Then by doing calculation, the posterior probability is obtained as:

P(hs(x∗)|x∗, hs((N2)), (N2)) =

N (K∗(K + σI)−1hs(x), K∗∗ −K∗(K + σI)−1Kt
∗). (6.41)

The unbiased estimator for the regression is therefore:

hs(x∗) = E(hs|x∗, hs(N2),N2) = K∗(K + σI)−1hs(x). (6.42)

We can see that the prediction is a linear combination of the observations, with
a bias:

bias =

∫
EN2

(
ĥs(x,N2)− hs(x)

)2

P (x)dx. (6.43)

We need to integrate:

EN2(ĥs(x,N2)) = EN2E(hs|x∗, hs(N2),N2)

= E(hs|X = x∗) = hs(x∗).

Hence, the solution has no bias. The variance is more complicated to evaluate since
we do not have access to the probability of the sampling. That is why, we did
not calculate it. We note that Gaussian process regression can be seen as a simple
kriging applied in a Gaussian random field. This assumption is quite advantageous
when the space coordinate lie on a high dimensional space since it provides an
interesting way to estimate the covariance (the kernel). It is a major issue since the
Gaussian process regression results depend on the choice of covariance model. In
practice, instead of fixing the covariance function, it is commonly assumed to use a
parametric family of functions k(xi, xj, θ) = kθ(xi, xj), and then try to infer θ. A
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technique used in the community of machine learning to learn the hyperparameters
θ are based on maximizing the log likelihood function of p(hs(N2)|θ) :

log p(hs(N2)|θ, x) = −1

2
hs(N2)TK−1

θ hs(N2)− 1

2
log det(Kθ)−

n

2
log 2π

and maximizing this marginal likelihood towards θ provides the complete speci-
fication of the Gaussian process hs. One can briefly note that the first term corre-
sponds to a penalty term for a model’s failure to fit observed values and the second
term to a penalty term that increases proportionally to a model’s complexity.

Figure 6.4 provides an illustration of Gaussian process regression for 1D signal.
The kernel hyperparameters were learned to optimize the log-marginal likelihood.

(a) (b)

Figure 6.3: Illustration of the signal estimation thanks to the Gaussian process
regression. In (a), one can see in black the target function, and in blue the availble
data or the training set, which is composed of 30 points. In (b), different training
sets of 29 points have been generated based on one of 30 and we perform a regression
in the space. Dark curve is the mean prediction over all the different training sets,
and the grey are is the variance.

6.4 Ordinary kriging and pansharpening fusion of

information

In the Gaussian process, the model is a linear combination of the observations. The
ordinary kriging [101] seeks also for this kind of mathematical assumption. It is
a model based on a simple linear model regression where the value of hs(x∗) is
calculated as a linear combination of the other known realisations:

ĥs(x∗) =
n∑

i=1

ωi(x
∗)hs(xi).
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However, the observed data values hs are corrupted by a Gaussian noise, it is more
precise to write:

ĥs(x∗) =
n∑

i=1

ωi(x
∗)hs(xi) + ε, (6.44)

where ε is a Gaussian noise of zero mean and standard deviation σ. It is important
to notice that the noise is independent of the spatial position. Thus we can rewrite
it:

P(HS = hs(x∗)|ω1(x∗), · · · , ωn(x∗), hs(x1), . . . , hs(xn), σ) =

1√
2πσ

exp

(
(hs(x∗)−∑n

i=1 ωi(x
∗)hs(xi))

2

2σ2

)
.

For the sake of simplicity, let us write

hs(N2) = (hs(x1), . . . , hs(xn)) .

Moreover, let us consider that we have different observations of the random variable
HS at position x∗. Finally, let us make the assumption that the data {hs1(x∗), . . . , hsp(x∗)}
are drawn i.i.d. from the previous distribution. Then we have:

P(hs1(x∗), . . . , hsp(x
∗)|ω, hs(N2), σ) =

1

(
√

2πσ2)p
exp

(
1

2σ2

p∑

j=1

(hsj(x
∗)−

n∑

i=1

wi(x
∗)hs(xi))

2

)
,

where we have considered that ω = (ω1(x∗), . . . , ωn(x∗))t. Taking the logarithm of
the likelihood function we get:

L(hs1(x∗), . . . , hsp(x
∗)|ω, hs(N2), σ) =

−M
2

log(2πσ2)− σ2

2

p∑

j=1

(
(hsj(x

∗)−
n∑

i=1

wi(x
∗)hs(xi))

)2

. (6.45)

Therefore, maximizing the likelihood to determine w corresponds to minimizing:

ÊD(w) =

p∑

j=1

(
(hsj(x

∗)−
n∑

i=1

wi(x
∗)hs(xi))

)2

, (6.46)

which represents the empirical risk function, which is an empirical variance. In fact,
we would like to have the true risk which would corresponds to the limit case when
p → ∞. We consider that a good solution is just obtained for all potential data,
thus leading us to the following true risk function:

EHS|X=x∗(w) = E

(
hs(x∗)−

n∑

i=1

wi(x
∗)hs(xi)

)2

= var

(
hsj(x

∗)−
n∑

i=1

wi(x
∗)hs(xi)

)
. (6.47)
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However, we do not have access to different realisations of the random field and
consequently, this variance. To achieve statistical inference from a single event, the
theory of geostatistics has replaced the hypothesis of independent repetitions with
some assumption on the random field. The first hypothesis consists in considering
that some of its characteristics are identical on all the positions, like the mean for
example. Another hypothesis is to consider that the expectations of some quantities
are accessible by integrals over space. These assumptions are called stationarity and
ergodicity. More precisely, our random field is stationary of second order if we have:

EHS(HS(xi)) = EHS(HS), (6.48)

covHS(HS(xi), HS(xj)) = covHS(HS(xj + τ), HS(xj)) = C(τ). (6.49)

The ergodicity is a property which reinforces the notion of stationary and provides
the almost sure convergence of spatial empirical mean to the true mean when the
field “goes to infinit”.The random field HS is ergodic if one has:

1

|E|

∫

E

(HS(x)dx) −→
E→+R2

EHS(HS) (6.50)

where |E| represents the volume of space E, i.e., the space domain of the image.
Thanks to these hypotheses we are able to estimate the covariance of the field.

In order to guarantee that this estimator is unbiased, it is necessary to add the
following additional condition:

N∑

i=1

wi(x
∗) = 1.

Then, we have:

EHS

(
n∑

i=1

wi(x
∗)HS(xi)

)
=

n∑

i=1

wi(x
∗)EHS(HS(xi)) = EHS(HS(xi)). (6.51)

This leads to a new cost function:

L(w) = var

(
hsj(x

∗)−
n∑

i=1

wi(x
∗)hs(xi)

)
+ 2µ

(
N∑

i=1

wi(x
∗)− 1

)
. (6.52)

By developing (6.52), we obtain:

L(w) =
n∑

i=1

n∑

j=1

wj(x
∗)wi(x

∗)C(xj, xi)

−2
n∑

i=1

wi(x
∗)C(x∗, xi) + C(x∗, x∗) + 2µ

(
N∑

i=1

wi(x
∗)− 1

)
.

We derive it according to wi and µ and equal to zero, and we obtain the following
system:





2
∑n

j=1wj(x
∗)C(xj, xi)− 2C(x∗, xi)− 2µ = 0 ∀i ∈ [i, n]

∑N
j=1wj(x

∗) = 1
(6.53)
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which in matricial form, and using (6.49), it leads to the following problem:




C(x1 − x1) . . . C(x1 − xn) 1
...

. . .
...

...
C(x1 − xn) . . . C(xn − xn) 1

1 . . . 1 0







w1(x∗)
...

wn(x∗)
−µ


 =




C(x1 − x∗)
...

C(xn − x∗)
1


 (6.54)

This system of equations is the same than the one of the Gaussian process except
for the term µ. This last term is quite important in our case, since it guarantees
that the data are on the simplex, which is the case with our abundance maps, and
consequently is more physically plausible. But the fundamental difference is that in
Gaussian process, the estimated parameters are those optimize the posterior of the
regression of the validation set. In geostatistics, the property of stationarity of the
field is the key in the optimization.

Let us define a function called the variogram:

γ(τ) =
1

2
var (HS(x)−HS(x+ h)) , (6.55)

which summarizes the variations of the variance of a spatial field according to the
translations, i.e., given a distance and a direction. It satisfies the following properties

γ(τ) ≥ 0,

γ(τ) = C(0)− C(τ).

Instead of solving the kriging with the covariance, one can therefore do it with the
variogram. The advantage of working with the variogram is we do not lean on the
estimation of the mean. Morerover one can define the empirical variogram by:

γ̂(τ) =
1

2Nτ

Nτ∑

i=1

‖HS(xi)−HS(xi + τ)‖2
2, (6.56)

where Nτ is the number of elements distant τ . However, working with the em-
pirical variogram does not give satisfactory esults. First, because this function is
not necessary negative definite, we might not have a global minimum of the kriging
functional. The second point is that we want to have results with a generalization
power, thus avoiding an overfitting to the available data. To overcome this issue the
basic idea is to fit a model of variogram. There are different admissible parametric
variograms,

• exponential:
γ(τ) = C

(
1− e− τa

)
, (6.57)

• Gaussian:

γ(τ) = C
(

1− e−( τa)
2)
, (6.58)

• spherical:

γ(τ) =

{
C
(

3
2
τ
a
− 1

2

(
τ
a

)3
)

if 0 6 τ 6 a

C if τ > a
, (6.59)
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• linear:
γ(τ) = C

τ

a
, (6.60)

• power:

γ(τ) = C
(τ
a

)b
, where 0 < b ≤ 2. (6.61)

In our case, in order to be consistent with the rest of the chappter, we adopted
the Gaussian variogram, such that its parameters to be fit are a and C. In addition,
there is another parameter which is defined as

C0 = lim
τ→0

γ(τ),

called the nugget parameter, and it represents the amount of variance not explained
by the model that we have chosen. In order to estimate the parameters, that let us
as write as hyperparameter θ, there are different techniques. The simple one that we
consider here consists in taking the hyperparameter θ∗ that minimizes the following
functional:

θ∗ = arg min
K∑

k=1

(γθ(τk)− γ̂(τk))
2, (6.62)

where the experimental variogram is evaluated at K distances τk. Contrary to the
previous section, here we take advantage of the geometrical information, which is
crucial in a low dimensional field.

Using the experimental variogram as γθ∗(τ), we can now write the system to
perform the kriging estimation:




0 γθ∗(x1 − x2) . . . γθ∗(x1 − xn) 1
γθ∗(x1 − x2) 0 . . . γθ∗(x2 − xn) 1

...
. . . . . .

...
...

γθ∗(x1 − xn) . . . γθ∗(xn−1 − xn) 0 1
1 . . . . . . 1 0



·




w1(x∗)
w2(x∗)

...
wn(x∗)
−µ




=




γθ∗(x1 − x∗)
γθ∗(x2 − x∗)

...
γθ∗(xn − x∗)

1




(6.63)

Let us come back now to our problem of multimodal pansharpening and how to
inject the information of the BSE image r into the multispectral hs.

First, we need to impose the assumption that the information is locally stationary
of second order. The idea consist in computing a partition of the image domain E
into ”homogeneous” classes, called in image processing, superpixels. In particular,
we have used the SLIC algorithm for superpixels, which is accepted in the state-
of-the-art as good algorithm. Then, on each of this superpixel, we perform a local
kriging of the abundance maps HS. Let us write SP (x∗) the super pixel containing
x∗. Hence, our formulation of the local kriging is :

L(w) = var


hsj(x∗)−

∑

i∈SP (x∗)

wi(x
∗)hs(xi)


+ 2µ

(
N∑

i=1

wi(x
∗)− 1

)
. (6.64)
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This new formulation 6.64 does not change the equation system, we just focus on the
data near the positions x∗, where the locality is added thanks to the backscattered
image. We note other works that overcome the issue of using kriging with huge
quantity of data [105, 112, 141].

(a) (b)

Figure 6.4: Illustration of the signal estimation thanks to the kriging regression. In
(a), one can see in black the target function, and in blue the availble data or the
training set, which is composed of 30 points. In (b), different training sets of 29
points have been generated based on one of 30 and we perform a regression in the
space. Dark curve is the mean prediction over all the different training sets, and the
grey are is the variance.

Second, the approach to introduce the morphological information of BSE image
r into the pansharpening of hs consists in adding a regularization term that would
inject this information. A regularization that is often considered on regression-
like is a Bayesian regularization with a Gaussian prior which is linked to the ridge
regularization. Here we use a Laplace prior on ω which is related to the Lasso
regularization which depends on r. Namely, the distribution of the prior is

P(ω|k, λ) = K
n∏

j=1

λCr(x
∗, xj) exp (−λCr(x∗, xj)wj(x∗)) ,

where Cr is a covariance function of the BSE image, and K a constant of normal-
ization. Thus, we can rewrite the posterior as:

P(ω|hs1(x∗), . . . , hsp(x
∗), Cr, λ, hs(N2), σ) =

P(hs1(x∗), . . . , hsp(x∗)|ω, hs(N2), σ)P(ω|Cr, λ)

P(hs1(x∗), . . . , hsp(x∗))
. (6.65)

The logarithm of the posterior distribution is given by:

log(P(w|Z0, Z, σ, k, λ)) =

const− σ2

2

p∑

j=1

(
(hsj(x

∗)−
n∑

i=1

wi(x
∗)hs(xi))

)2

− λ
n∑

i=1

Cr(x
∗, xi)wi(x

∗),
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where const represents a constant that does not depend on ω.
By taking now p→∞, it leads to the following true risk function:

EHS|X=x∗(w) = var

(
hsj(x

∗)−
n∑

i=1

wi(x
∗)hs(xi)

)
(6.66)

−2λ
n∑

j=1

Cr(x
∗, xj)wj(x

∗), (6.67)

We need again the convex constrain:
∑N

j=1 wj(x
∗) = 1. Therefore, the use of La-

grange multiplier theorem provides us:

L(w) =
n∑

i=1

n∑

j=1

wj(x
∗)wi(x

∗)C(xj, xi)− 2
n∑

i=1

wi(x
∗)C(x∗, xi)

+C(x∗, x∗)− 2µ(
N∑

i=1

wi(x
∗)− 1)− 2λ

n∑

i=1

Cr(x
∗, xi)wi(x

∗)

which, deriving as previously according to wi and µ, involves the following kriging
system:




∑n
j=1 wj(x

∗)C(xj, xi)− 2C(x∗, xi)− 2µ− 2λCr(x
∗, xi) = 0 ∀i ∈ [i, n]

∑N
j=1 wj(x

∗) = 1
(6.68)

or in matrix form:



C(x1 − x1) . . . C(x1 − xn) 1
...

. . .
...

...
C(x1 − xn) . . . C(xn − xn) 1

1 . . . 1 0







w1(x∗)
...

wn(x∗)
−µ


 = (6.69)




C(x1 − x∗)− λCr(x∗, x1)
...

C(x1 − x∗)− λCr(x∗, x1)
1


 (6.70)

where µ is a Lagrange parameter. For the BSE image, we also use Gaussian model
for the covariance:

Cr(h) = exp

(
−h
a

)
,

where a should be fit from the empirical covariance. The parameter λ is fundamental
in this (multimodal) regularized kriging since it represents the quantity of spatial
information of r to be injected into hs.

6.5 Results and discussion

6.5.1 Evaluation criteria of pansharpening algorithms

The criteria used to evaluate the quality of the merged information are those con-
ventionally considered in the context of the pansharpening literature. We will use
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exactly the same criterion that we developed in the previous chapter. More precisely,
we considered the following criteria:

C1: The spectral distortion between the enhanced multispectral image and the
real multispectral image at the nominal resolution should be as small as pos-
sible. Or, in other terms, we would like to find the same materials for each
pixel as the original image at high resolution;

C2: The spatial distortion between the enhanced multispectral image and the
real one should not be too high.

C3: The injected information. Since the information provided by the various
modalities can be relatively different, we would like to inject the useful one to
improve segmentation and characterisation of the EDX image.

Let us write
̂̂
HS the multispectral abundance EDS image at the same resolution

that R, that has been provided by the sensor at high resolution. In a way it is the

ground truth such that our enhanced images ĤS should be compared to
̂̂
HS. More-

over, we denote by
̂̂M∈Mn,D(R) and M̂ ∈Mn,D(R) the two matrices representing

respectively
̂̂
HS and ĤS, where n is the total number of pixels (i.e., n = N1 ×N2),

and D the number of abundance maps. We write by M̂i,:, ∀i ∈ [1, n], a spectra of

ĤS, and M̂:,k∀k ∈ [1, D] a map of ĤS. We have now all the notations to introduce
the five parameters.

Cross correlation (CC) is a measure that evaluates the spatial distortion defined
as:

CC(ĤS,
̂̂
HS) =

1

D

D∑

k=1

CCS(M̂:,k,
̂̂M:,k), (6.71)

where:

CCS(M̂:,k,
̂̂M:,k) =

(
∑n

i=1 M̂i,k − µM̂:,k
)(
∑n

i=1
̂̂Mi,k − µ̂̂M:,k

)
√∑n

i=1(M̂i,k − µM̂:,k
)2
∑n

i=1(
̂̂Mi,k − µ̂̂M:,k

)2

,

with µM̂:,k
= n−1

∑n
i=1 M̂i,k being the empirical mean. The CC is optimal when it

is close to 1.

Spectral Angle Mapper (SAM) is a measure that assesses the spectral distortion
by computing

SAM(ĤS,
̂̂
HS) =

1

n

n∑

k=1

S̃AM(M̂i,:,
̂̂Mi,:), (6.72)

with

S̃AM(M̂i,:,
̂̂Mi,:) = arccos


< M̂i,:,

̂̂Mi,: >

‖M̂i,:‖‖̂̂Mi,:‖


 ,
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where < ·, · > is the Euclidean inner product of vectors associated to the norm L2,
and where ‖ · ‖ is the L2 norm of vectors. The SAM is optimal when it is near to 0.

Root mean squared error (RMSE) measures the mean residual error of fusion
and is defined as:

RMSE(ĤS,
̂̂
HS) =

‖M̂ − ̂̂M‖F
n.D

, (6.73)

where ‖ · ‖F is the Frobenius norm of a matrix A, i.e., ‖A‖F =
√

trace(AAt). The
RMSE is optimal when it is near to zero.

Synthetic adimensional global error (ERGAS) offers a global measure of the
quality of an enhanced image. It is given by the expression:

ERGAS(ĤS,
̂̂
HS) =

100d

√√√√√
D∑

k=1


RMSE(M̂:,k,

̂̂M:,k)

µM̂:,k




2

,

where d is the ratio between the linear resolution of the BSE image R and the
abundances EDS image HS, i.e.,

d =
R-linear spatial resolution

HS-linear spatial resolution
.

The ERGAS is optimal when close to 0.

Cross correlation gradient (CCg) is a measure that evaluates the spatial distor-
tion defined as

CCg(R,
̂̂
HS) =

1

D

D∑

k=1

CCS(Rg, ̂̂Mg:,k),

where Rg represents the image morphological gradient [142] of the BSE image con-

verted into a vector and
̂̂Mg:,k is the image morphological gradient of the enhanced

abundance map at the nominal scale converted also into a vector.

An optimal enhancement method would be a compromise between the criterion
C3 and the C1 and C2.

6.5.2 Evaluation on dataset 1

The EDS abundance maps of dataset 1 are provided in Figure 6.5. The results of the
enhanced abundances H̃S obtained by the different techniques provided in Figures
??, 6.7 6.13 and 6.9, where the abundances are visualized as RGB color images.
Quantitative results for this case according to the five measures are presented in
Table 6.1.

From these results, we note that AGB presents good performance but it smoothes
a lots the image, while kriging techniques inject more gradually geometric/textural
information from the BSE image. Then, even if based on these results it is difficult
to definitely compare these techniques, we might see that the advantage of the
kriging technique is it flexibility since the operator just need to select the quantity
of parsimony based on the backscattered he wants to apply.
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Abundance 1 Abundance 2

Abundance 3 Abundance 4

Abundance 5 Abundance 6

Figure 6.5: The six EDS abundance maps of SEM dataset 1 at the nominal resolu-
tion.
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Reference Input image

AGB method Ordinary kriging

Regularized kriging λ = 0.3 Regularized kriging λ = 0.8

Figure 6.6: RGB color image from abundances 1,2,4 of the dataset 1 for the different
spatial interpolation techniques.
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Reference Input image

AGB method ordinary kriging

Regularized kriging λ = 0.3 Regularized kriging λ = 0.8

Figure 6.7: Zoom of the RGB color image from abundances 1,2,4 of the dataset 1
for the different spatial interpolation techniques.
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Reference Input image

AGB method Ordinary kriging

Regularized kriging λ = 0.3 Regularized kriging λ = 0.8

Figure 6.8: RGB color image from abundances 3,5,6 of the dataset 1 for the different
spatial interpolation techniques.
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Reference Input image

AGB method Ordinary kriging

Regularized kriging λ = 0.3 Regularized kriging λ = 0.8

Figure 6.9: Zoom of the RGB color image from abundances 3,5,6 of the dataset 1
for the different spatial interpolation techniques.
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Techniques CC SAM RMSE ERGAS CCg

AGB 0.90 9.5 11.2 9.35 0.59
regularized kriging λ = 0.3 0.79 8.8 50.2 74.5 0.33
regularized kriging λ = 0.6 0.77 10.6 52.1 79.1 0.33

Table 6.1: Comparison of spatial interpolation algorithms for enhanced EDS abun-
dance images of dataset 1.

Figure 6.10: BSE image of SEM dataset 2.

6.5.3 Evaluation on dataset 2

In the case of this multimodal SEM dataset, which has a higher level of noise, we
try to inject the BSE image R, depicted in Figure 6.10, to increase the resolution of
the EDS abundance maps provided in Figure 6.11, and also to denoise the images.
The results for our ABG method are given in Figure 5.14.

For comparison, Figures 6.12 and 6.13 provide a visualization of the results
obtained using the other methods. Quantitative results are given in Table 6.2,
which lead to similar conclusions as for dataset 1.

Techniques CC SAM RMSE ERGAS CCg

AGB 0.30 15.7 1.4 20.1 0.45
regularized kriging λ = 0.3 0.28 15.7 1.31 49.2 0.23
regularized kriging λ = 0.6 0.21 60.6 39.8 73.1 0.13

Table 6.2: Comparison of spatial interpolation algorithms for enhanced EDS abun-
dance images of dataset 2.
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Abundance 1 Abundance 2

Abundance 3 Abundance 4

Figure 6.11: Four EDS abundance maps of SEM dataset 2 at the nominal resolution.

6.6 Conclusion

In this chapter we reformulate the pansharpening problem in the form of a spatial
regression problem. We have proposed several solutions to deal with such regression.
We compared and evaluated these different solutions for the specific problem of
enhanced EDS in multimodal SEM imaging. An interesting point of these two
techniques is that they work on the full vector space, such that the full spectra
of the multispectral image are used. The kernel regression technique preserves the
positivity of the data too. The latter is physically important since the data we
are dealing with represents quantities of materials. The kriging technique provides
results that are visually interesting.

It appears that the technique based on regularized kriging seems to be easier to
use since there is just a single parameter to tune that corresponds to the quantity
of the high spatial resolution information to be injected. The technique based on
kernel regression seems to have better results on the test datasets, with the criteria
that we used. However this technique have four parameters, which are on the one
hand, the size of the kernels, and on the other hand the three scaling parameters σ
of each rbf kernel. In order to improve this technique, it might be interesting to try
to learn some of these parameters automatically.
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Reference Input image

AGB method Ordinary kriging

regularized kriging λ = 0.3 regularized kriging λ = 0.6

Figure 6.12: RGB color image from abundances 2,3,4 of the dataset 2 for the different
spatial interpolation techniques.
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Reference Input image

AGB method Ordinary kriging

Regularized kriging λ = 0.3 Regularized kriging λ = 0.6

Figure 6.13: Zoom of the RGB color image from abundances 2,3,4 of the dataset 2
for the different spatial interpolation techniques.
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Chapter 7
Conclusions and Perspectives

7.1 Summary of main contributions

In this thesis we addressed the problem of finding relevant representations for mul-
tivariate and multimodal images.

The idea that we developed for this kind of representations is to include spatial
information in the statistical learning process. We have in particular worked on
multivariate spatial dimensionality reduction, spatial classification and multimodal
spatial regression.

Hence, the main contributions of this thesis are just based on an appropiate use
of spatial information in machine learning techniques in order to fight the curse of
dimensionality on the manifold of multivariate image pixels.

We have use methods and algorithms from mathematical morphology, wavelet
and scattering transform, geostatistics, regression and kernel-based machine learn-
ing. We compared the proposed techniques theoretically and also in terms of exper-
imental results with state-of-the-art methods.

To summarize, the contributions of our work include the following points.

Chapter 3. We have shown how to deal with spatial information in the process of
multi/hyper-spectral image dimensionality reduction thanks to mathematical
morphology operators. The representation techniques that we introduced in
this chapter are based on the notion of the MorphPCA. Dimensionality reduc-
tion is done on the space of the data without any approximation regarding
the notion of morphological covariance VMorpho, where VMorpho is a covariance
handling the morphological/spatial relationships between the image bands of
the multi/hyper-spectral image. We proposed different alternatives to com-
pute these covariance matrices. Globaly, the technique is simple in terms of
computation and memory storage. Moreover, we also proposed some criteria
to assess the quality of the image representation after the dimensionality re-
duction. Some of them are based on mathematical morphology, namely the
3D pattern spectrum and the α−flat zone partition, and are used to evaluate
if the reconstructed image preserves globally and locally the similarity to the
original hyperspectral image. Finally, we also consider the interest of Mor-
phPCA for supervised classification on the reduced data. According to the
entire set of criteria, adding spatial information improves the dimensionality
reduction. However, as we have shown, a good dimensionality reduction is

169
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obtained when combining spatial and spectral feature spaces.

Chapter 4. We have addressed the interest of spatial information in the process of
multi/hyper-spectral image classification. To perform this classification of pix-
els, we implemented a deep convolutional descriptor. This descriptor is based
on two innovative techniques called scattering transform and kernel mean map.
Thanks to it, a translation-invariant representation of the texture is obtained,
which is also Lipschitz stable to deformations. To evaluate this descriptor, we
just calculated the mean of the scattering coefficients provided by each layer
embedded on the Hilbert space of a rbf kernel. This classifier simplifies con-
volutional neural network since fewer parameters are needed. This descriptor
constitutes an interesting way to perform deep learning when the training data
set is limited. We studied the statistical and pattern recognition properties of
this descriptor, and prove also empirically that it presents a good classification
performance.

Chapters 6 and 7. We have studied how spatial information is naturally used
on a process of fusion of information called pansharpening. To perform this
fusion of information of multimodal SEM images, different techniques were
deeply considered. One of the major difficulties of this part was the lack
of literature on this kind of techniques applied to multimodal SEM. Thus,
our starting point was the pansharpening state-of-the-art solutions proposed
for multimodal remote sensing images. We have developed three techniques.
The first one consists in using the nonparametric kernel regression, where the
kernel handles spatial and spectral information. One of these well known
kernels widely used in image processing is the bilateral filter. This approach
presents a good compromise according to the criteria of evaluation that we
used. We proposed also to use a technique based on morphological wavelets
for upsampling. Finally, the third approach is based on ordinary kriging. From
our viewpoint, the last is quite interesting since we have a way to measure how
much of the second modality we want to inject into the first one. However, the
inconvenience with such a technique is that we lose some physical properties
of the final results, even if visually the results seem better.

7.2 Suggestions for future work

We finally discuss some open questions and suggestions based on the works we
proposed.

Chapter 3: The following points deserve some developments,

• The MorphPCA dimensionality reduction techniques proposed were used
on hyperpectral images. It might be interesting to consider their interest
for other kind of multivariate images, including also multimodal ones.

• Dimensionality reduction is used to denoise images sequences, and thus
investigating the interest of MorphPCA approaches might be interesting
in time series.

• Some fusion of information techniques are based on the PCA, MorphPCA
could replace the PCA on these techniques.
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• It might be interesting to theoretically link MorphPCA with kriging, in
order to have a geostatistical theory of spatial dimensionality reduction.

Chapter 4: The potential of this part of the thesis is important and different as-
pects should be investigated in ongoing work.

• To use other classification techniques than the SVM. We would suggest
to apply Gaussian process, since it is linked with kriging and with the
scattering.

• To focus more on learning the perfect Hilbert space where the scattering
transform is embedded.

• To study the interest of this descriptor for the simulation of hyper/multi–spectral
textures.

• To use this descriptor to solve problems other than classification.

• In the process of estimating the rbf feature space, we need to project the
data onto a random space. Estimating this space in a non-random way
might improve the results. By doing that, we might not emmbed the
data on the rbf feature space and we can expect an improvement of the
precision.

• Another interesting solution might be to use these descriptors as local
visual descriptors (replacing SIFT for example), and use them in typical
computer vision tasks.

• Instead of using a Gaussian average, one could use a perceptron algo-
rithm, and learn the coefficient of the weights, closer to the convolutional
neural network paradigm.

Chapters 6 and 7. Related to the problem of image fusion and pansharpening,
we suggest for future investigations to work on:

• To assess the interest of using other SEM modalities, e.g., the secondary
electron image, in the process of image fusion;

• To study how to improve the selection of the EDX pixels images carefully,
so that when we want to increase the dimension, the most important
information is used;

• To study if there exists a link between spatial regression and with com-
pressive sensing theory;

• To develop a kriging model with an additional constraint of nonnegative
coefficients (nonnegative kriging).
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Résumé 
 

Cette thèse porte sur la statistique spatiale 

multivariée et l’apprentissage appliqués aux 

images hyperspectrales et multimodales. Les 

thèmes suivants sont abordés : 

 

Fusion d'images : 

Le microscope électronique à balayage 

(MEB) permet d'acquérir des images à partir 

d'un échantillon donné en utilisant différentes 

modalités. Le but de ces études est 

d'analyser l’intérêt de la fusion de 

l'information pour améliorer les images 

acquises par MEB. Nous avons mis en œuvre 

différentes techniques de fusion de 

l'information des images, basées en 

particulier sur la théorie de la régression 

spatiale. Ces solutions ont été testées sur 

quelques jeux de données réelles et 

simulées. 

 

 Classification spatiale des pixels d’images 

multivariées : 

Nous avons proposé une nouvelle approche 

pour la classification de pixels d’images 

multi/hyper-spectrales. Le but de cette 

technique est de représenter et de décrire de 

façon efficace les caractéristiques spatiales / 

spectrales de ces images. Ces descripteurs 

multi-échelle profond visent à représenter le 

contenu de l'image tout en tenant compte des 

invariances liées à la texture et à ses 

transformations géométriques. 

 

Réduction spatiale de dimensionnalité : 

Nous proposons une technique pour extraire 

l'espace des fonctions en utilisant l'analyse 

en composante morphologiques. Ainsi, pour 

ajouter de l'information spatiale et 

structurelle, nous avons utilisé les opérateurs 

de morphologie mathématique. 

 

Mots Clés 
Traitement de l'image, Machine Learning, 

Méthodes à noyaux, Morphologie 

mathématique, Analyse en Composantes 

Principales, Support Vector Machine, 

Apprentissage profond, Transformée de 

scattering, Krigeage.  

 

Abstract 
 

This thesis focuses on multivariate spatial 

statistics and machine learning applied to 

hyperspectral and multimodal and images in 

remote sensing and scanning electron 

microscopy (SEM). In this thesis the following 

topics are considered: 

 

Fusion of images: 

SEM allows us to acquire images from a 

given sample using different modalities. The 

purpose of these studies is to analyze the 

interest of fusion of information to improve the 

multimodal SEM images acquisition. We have 

modeled and implemented various techniques 

of image fusion of information, based in 

particular on spatial regression theory. They 

have been assessed on various datasets. 

 

 Spatial classification of multivariate image 

pixels: 

 We have proposed a novel approach for pixel 

classification in multi/hyper-spectral images. 

The aim of this technique is to represent and 

efficiently describe the spatial/spectral 

features of multivariate images.  These multi-

scale deep descriptors aim at representing 

the content of the image while considering 

invariances related to the texture and to its 

geometric transformations. 

 

Spatial dimensionality reduction: 

We have developed a technique to extract a 

feature space using morphological principal 

component analysis. Indeed, in order to take 

into account the spatial and structural 

information we used mathematical 

morphology operators 

 

 

Keywords 

Image processing, Machine learning, Kernel 

methods, Mathematical morphology, Principal 

Component Analysis, Support Vector 

Machine, Deep learning, Scattering transform, 

Kriging  

 


