
HAL Id: tel-01484171
https://theses.hal.science/tel-01484171

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TOWARDS A COMPUTER VISION BASED
QUALITY ASSESSMENT OF TAHITIAN PEARLS

Martin Loesdau

To cite this version:
Martin Loesdau. TOWARDS A COMPUTER VISION BASED QUALITY ASSESSMENT OF TAHI-
TIAN PEARLS : Automatic Nacre Thickness Measurement and Color Classification. Computer Sci-
ence [cs]. Université de la Polynésie française, 2016. English. �NNT : �. �tel-01484171�

https://theses.hal.science/tel-01484171
https://hal.archives-ouvertes.fr


 
 

UNIVERSITÉ DE LA POLYNÉSIE FRANÇAISE 
 

ÉCOLE DOCTORALE DU PACIFIQUE 
ED 469 

 

Laboratoire Géopôle du Pacifique Sud 
 

THÈSE  
présentée et soutenue publiquement par  

Martin Loesdau 
 

le 12 décembre 2016 

 
en vue de l’obtention du titre de 

Docteur de l’Université de Polynésie française en 
Département : Science  

Discipline : Informatique CNU 27 

Spécialité : Traitement d’images, apprentissage artificielle  

 
 

 
TOWARDS A COMPUTER VISION BASED QUALITY 

ASSESSMENT OF TAHITIAN PEARLS 
 

Automatic Nacre Thickness Measurement and  
Color Classification 

 
 
 

 
Sous la direction de : Alban Gabillon et Sébastien Chabrier 

 
JURY 

 
Luc BRUN, Professeur des Universités, ENSICAEN Rapporteur 
Christophe ROSENBERGER, Professeur des Universités, ENSICAEN Rapporteur 
Cédrik LO, Docteur, Direction des Ressources Marines et Minières Examinateur 
Jean-Martial MARI, Maître de conférences, Université de la Polynésie française Examinateur 
Sébastien CHABRIER, Maître de conférences, Université de la Polynésie française Directeur de thèse 
Alban GABILLON, Professeur des Universités, Université de la Polynésie française Directeur de thèse  



1 
 

  



2 
 

Abstract 

The nacre thickness measurement of Tahitian pearls is part of an obligatory quality control for 

pearls deemed for exportation. It is currently done manually by government experts for over 7 

million pearls annually with an export volume of over 61 million €. In Part I of this thesis our 

algorithm to automatize this procedure under consideration of the unique features of Tahitian 

pearls is presented. The developed algorithm was tested on X-ray images of 298 Tahitian 

pearls that were classified manually by government experts. The detection accuracy of our 

algorithm reaches 98% in its basic form and 100% with a proposed optimized version. A 

prototype was developed and is currently implemented at the governmental institution in 

charge of the obligatory control. In Part II of this thesis, our work on normalized rgb color 

space theory and the classification of Tahitian pearls based on their perceived color is 

presented. A quintessence of the presented work is the formalization of chromatic index 

calculation in the context of normalized rgb histogram binning. It is shown that every 

chromatic index based on a linear combination of normalized rgb channels can be expressed 

by a single variable; an angle that corresponds to the human perceptual parameter Hue. 

Experimental classifications based on Artificial Neural Networks and chromatic indices over 

the whole possible range of the normalized rgb color space were conducted by classifying 150 

Tahitian pearls that were labeled by 7 experts. The results show that the choice of chromatic 

indices affects significantly the classification performance of an ANN with a given topology. 

The global performance varies within a range of up to 20% over the tested feature vectors. 

Furthermore does the classification accuracy of each class depend on the chosen index, with 

variations up to 100% between different feature vectors. These findings are of great 

importance for computer vision applied to color object classification, as currently only a 

handful of chromatic indices are used in the literature, which is a drastic limitation of possible 

classification results. Additionally, a new binning strategy is proposed that takes into account 

the topology of the normalized rgb color space. The application of the proposed topological 

binning has in tendency a positive effect on the global classification rate when compared to 

standard equidistant binning. For certain human classifications, the accuracy difference is 

significant with variations of up to 18%. Furthermore, it is shown that it is generally feasible 

to classify Tahitian pearls based on their perceived color. Classification rates of over 84% for 

training and over 79% for test data are reached for all 8 used human classifications. 
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Résumé 

La mesure de l'épaisseur de la nacre des perles de Tahiti s'inscrit dans un processus de contrôle 

obligatoire de la qualité des perles destinées à l'exportation. Ce contrôle est actuellement opéré 

manuellement par des experts du Pays et porte sur plus de 7 millions de perles par an, pour un 

montant à l'exportation supérieur à 58 millions d'euros. Dans la première partie de cette thèse, 

nous présentons l'algorithme que nous avons développé afin d'automatiser ce contrôle. 

L'algorithme a été soumis à un banc d'essai de 298 perles classées par des experts du Pays et 

présentées sous forme d'images prises aux rayons X. La version standard de notre algorithme 

permet d'obtenir une précision de détection de 98%. Une version optimisée est proposée, qui 

atteint une précision de détection de 100%. Un prototype a été développé et est actuellement 

implémenté par les autorités chargées du contrôle. Dans la seconde partie, nous présentons notre 

travail sur la théorie de l’espace colorimétrique normalisée rgb ainsi que sur la classification des 

perles de Tahiti d'après leurs couleurs perçues. L'apport central de ce travail est la formalisation 

du calcul des indices chromatiques dans le contexte du calcul d’histogramme rgb. On montre 

notamment que tous les indices chromatiques basés sur une combinaison linéaire des canaux rgb 

peuvent être exprimés au moyen d'une variable unique : l'angle correspondant au paramètre 

perceptuel ‘Teinte’. Des classifications expérimentales par réseau de neurones artificiels avec des 

indices chromatiques balayant tout l'espace rgb ont été conduites sur 150 perles étiquetées par 7 

experts. Les résultats montrent que le choix de l'indice chromatique affecte grandement les 

performances d'un réseau de neurones pour une topologie de connections donnée, avec une 

variation de la performance globale dépassant 20%. De plus, la précision de classification de 

chaque classe dépend aussi de l'indice choisi, avec une variation allant jusqu'à 100% entre 

différents indices. Ces constatations sont d'une grande importance en matière de vision par 

ordinateur appliquée à la classification de la couleur des objets. En effet, seuls quelques indices 

chromatiques sont actuellement utilisés dans la littérature, ce qui constitue une limitation forte du 

potentiel de classification en termes de résultats. En outre, une nouvelle stratégie de répartition 

des classes des histogrammes rgb est proposée, qui prend en compte la topologie de l'espace rgb 

normalisé. Son application a un effet positif potentiel sur le taux global de classification 

comparativement à la classification avec une répartition équidistante standard. Pour certaines 

classifications humaines, la différence de précision est significative, avec des variations allant 

jusqu'à 18%. De plus, on montre qu'il est généralement possible de classifier les perles de Tahiti 

selon leurs couleurs perçues. Pour chacune des 8 classifications humaines utilisées, le taux de 

classification est supérieur à 84% sur l'ensemble d'apprentissage et 79% sur l'ensemble de test. 
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1 Introduction 

The Tahitian pearl is a precious gem that is cultivated in the clear warm lagoons of French 

Polynesia. Due to its mystical dark colors and its brilliant luster the ‘Queen of Pearls’ 

achieves high prices on the international market. Accordingly, it is a vital source of income 

for the French Polynesian territory. In 2015, loose Tahitian pearls amounting to over 61 

million Euros were exported, being with over 50% by far the most significant source of export 

income. Besides of contributing to the welfare of the whole French Polynesian community 

due to export taxes, pearl cultivation employs thousands within the territory. Especially in 

remote regions such as the Tuamotu islands, where employment possibilities are naturally 

limited, the cultivation of Tahitian pearls is a welcome source of revenue for the locals. 

Sustaining and improving the French Polynesian pearl economy is thus of vital interest and is 

pursued by the local government, local research bodies, pearl farmers and their unions, and 

various lobby groups.  

 

The variety of scientific effort to support the local pearl economy is owed to its complexity: 

the balance of the whole lagoon ecosystem is substantial, as is skilled and sustainable oyster 

farming within the lagoons and an appropriate commercialization on the highly competitive 

international jewelry market. Accordingly, local research projects comprise the ecophysiology 

and physiology of pearl oysters, the physiology of pearl formation, the mineralogy of pearls, 

and the socioeconomics and economics of pearl commercialization. To contribute to the joint 

effort, the computer science group of the University of French Polynesia founded in 2013 the 

project RAPA1 (Reconnaissance Automatique de la qualité des Perles de TAhiti, automatic 

quality assessment of Tahitian pearls) adding the profession of computer science to the pearl 

related French Polynesian research landscape. The goal of this project is to assess the six pearl 

quality parameters color, size, form, luster, surface quality and nacre thickness automatically 

with computer vision techniques.  

 

Currently, the quality of a pearl is assessed manually by experts. This process has two 

disadvantages. First, objective grades are difficult to assess for certain perceptual parameters 

such as the pearls color, luster or form. Hence, the assessed quality (and therefore the pearls 

price) is subjective and depends on the skills and expertise of the expert as well as it can 
                                                                 
1
 2 years project (2015-2016) funded by the Ministère des Outre-mer (Ministry of Overseas France) 
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depend on external parameters such as light source or viewing angle. Secondly, the manual 

assessment of pearls is time intense, which is an issue seeing the large amount of over 7 

million exported pearls annually that have to be graded for valuation. A computer vision 

based quality assessment aims at objectifying and accelerating the currently manually 

conducted pearl grading.  

 

This thesis is the first completed within the scope of the RAPA project. It reports on research 

conducted to automatically asses the two quality parameters nacre thickness and color. Those 

two parameters were prioritized for the following reasons: an automatized nacre thickness 

measurement has a direct impact on the current French Polynesian pearl export flux, as it is a 

crucial parameter of the obligatory quality control of pearls deemed for exportation. The color 

was chosen as partner institutes are currently working on projects aiming at identifying 

cultivation parameters that influence the color of the cultivated pearls. To obtain a suitable 

correlation function between both, a reliable mathematical description of the pearls color, that 

is as independent as possible from human subjectivity and other external parameters, is 

necessary. Additionally, the color is one of the most appealing and characteristic parameters 

of the Tahitian pearl, while being probably the most difficult to access numerically due to its 

perceptual character and the variety of colors and color combinations that can appear on 

Tahitian pearls. Tackling the difficult parameter from the beginning was deemed strategically 

advantageous, to allow a better prediction of the further ongoing of the project. 

 

The two quality parameters color and nacre thickness are fundamentally different. The color 

is a perceptual parameter that is visually evaluated by observing the surface of the pearl. The 

computer vision equivalent is an analysis of color images of the pearls surface. The nacre 

thickness instead is a measurable physical parameter that depends on the internal structure of 

the pearl and has to be visualized with methods such as X-raying. Due to the different nature 

of both parameters and the according images, this thesis is divided in two parts. Part I covers 

the research conducted to automatize the nacre thickness out of X-ray images and Part II 

covers the color classification based on color images of the pearls surface. Both parts are 

independent and contain each a specific introduction, description of methods, results, 

discussion, conclusion, bibliography, etc. A general description of each part and its 

contribution is given in section 3 while a detailed summary of goals, used methods and results 

can be found in the introduction section of each part. 
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As this thesis is the first conducted within the scope of project RAPA this introduction 

comprises a compendium of topics that build the main motivation, and justification of the 

project as well as the basic procedures and processes of pearl cultivation in French Polynesia. 

The given information comprise how pearls are naturally formed within pearl oysters (section 

1.1), what differs a Tahitian pearl from other commercialized pearls (section 1.2), the 

important grafting process during the cultivation to understand the internal structure of 

cultivated pearls (section 1.3) and the main six quality parameters used to grade pearls 

(section 1.4) whose automatic assessment is the goal of project RAPA. A summary of the 

historical and recent development of the pearl economy is given in section 1.5 to understand 

the reason for an obligatory quality control of Tahitian pearls deemed for exportation and the 

development of a pearl quality certificate, as well as the potential economic impact of this 

work. An overview of the French Polynesian research landscape concerning the pearl is given 

in section 1.6 to underline the complexity of pearl cultivation and its commercialization, as 

well as to understand current and identify possible future cooperation with project RAPA. The 

project is introduced more detailed in section 1.7. In section 2, the current state of the art 

concerning the application of computer vision for the purpose of pearl quality assessment is 

presented. In section 3, the two parts of this thesis are introduced and the contribution of each 

part is summarized. Oral presentations given at international conferences and within the scope 

of this thesis published papers are listed in section 3 as well.  

1.1 Pearl Formation 

The fundamental biological process of pearl formation is biomineralization of calcium 

carbonate. All shelled mollusks are capable of biomineralization, as their shell is the product 

of this very process. The shell is produced by the epithelial cells of the mantle of the soft body 

of these organisms. The cells secret a matrix of organic material in which the also secreted 

calcium carbonate crystalizes, depending on the organic matrix, either to calcite or to 

aragonite (Figure 1). The composite of organic matrix and aragonite is called nacre or mother-

of-pearl. Due to its iridescence, the appearance of different colors depending on view angle 

and light source, and its luster, nacre has been used for jewelry since centuries. 
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Figure 1: The shell of the pearl oyster Pinctada margaritifera contains both crystalline forms of calcium 

carbonate. The inner iridescent shell consists mainly of aragonite tablets, while the rest consists mainly of 
calcite prisms.  

 

The same process that underlies the building of the shell forms as well part of the 

immunological reaction of the organism caused by intrusion of an organic or inorganic 

irritant. This reaction, which is the basis of pearl formation, is schematically shown in Figure 

2. In this example an intruder (in blue) is drilling from the outside through the shell (white 

region). At a certain point the intruder has reached the outer layer of the mantle of the 

organism (mantle epithelium in red, third image on the top). As immunological reaction a cyst 

is formed by the epithelium that eventually surrounds the irritant completely (second image 

on the bottom, the cyst is commonly called pearl sac). In a similar way the epithelium cells 

build and maintain the shell of the organism, the pearl sac constantly secretes a composite of 

organic and inorganic material that is deposited around the irritant (third image on the 

bottom).  

 
Figure 2: Schema of the immunological reaction of a shelled mollusk caused by intrusion of an irritant 

through its shell. When the irritant reaches the mantle epithelium it is encapsulated by a cyst formed by 
epithelium cells (pearl sac). Similar to the biomineralization process performed by the organism to build, 

maintain and repair the shell, calcium carbonate is deposited around the irritant. 
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Depending on the crystalline structure of the secreted calcium carbonate, two different 

gemological terms are used for the resulting concretion produced within the pearl sac. The 

term ‘pearl’ or ‘true pearl’ is reserved for objects that consist mainly (especially the outer 

layers) of aragonite. Like the inner layers of the shell of the breeding species (Figure 1) pearls 

are iridescent and lustrous. The term calcareous concretion or non-nacreous pearl is used for 

objects that are mainly composed of calcite. Due to the different optical properties of calcite, 

these pearls are not iridescent. Still they can be of high value, mostly due to their rare 

appearance as they are currently not cultivated rather than found occasionally as byproduct of 

the fishing industry. 

1.2  The Tahitian Pearl 

The general characteristic appearance of pearls depends on the breeding pearl oyster species. 

Pearls produced by the pearl oyster Pinctada margaritifera are typically darker than other 

cultivated pearls, hence the brand ‘black pearl’ was established. As the inner nacreous shell of 

its breeding species, black pearls can contain a large variety of colors such as green, blue, 

pink, yellow, peacock and aubergine (Figure 3). The dark appearance and the variety of colors 

of black pearls is a unique feature compared to other popular cultivated pearls like Akoya, 

South Sea and Freshwater pearls (Figure 4). Black pearls are currently cultivated in several 

regions of the Pacific such as French Polynesia, Solomon Islands, Fiji or Kiribati. French 

Polynesia produces the majority of black pearls (>90%) and has established an own brand: the 

Tahitian pearl. The term Tahitian pearl is reserved for pearls produced by the pearl oyster 

species Pinctada margaritifera within the lagoons of the French Polynesian territory [CIB15]. 

The producing pearl oysters have to be collected from the natural stock of the lagoons of the 

territory. Registering the name ‘Tahitian pearl’ as trademark is currently discussed.  

 
Figure 3: The shell of the pearl oyster Pinctada margaritifera (left, detail in the middle) and a Tahitian pearl 

produced by this species (right). Shell and pearl show similar characteristic color nuances like green, blue, 
aubergine and pink.  
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Breeding species Product Characteristic color nuances 

Pinctada fucata 

 

-Akoya pearl 

 

Pinctada maxima 

 

-South Sea pearl 

 

Pinctada 

margaritifera 

 

-Tahitian pearl 

-black pearl 

 

Hyriopsis 

cumingii 

 

-freshwater pearl 

-Chinese pearl 

 

Melo melo 

 

-melo pearl 

 

Figure 4: Different types of pearl producing species (first two columns), trade names of their pearls (third 
column) and characteristic color nuances of the pearls (last column). The pearls produced by the species of 

the first four rows are true pearls as they consist mainly of aragonite layers. The pearl produced by the Melo 
melo sea snail (last column) consist mainly of calcite prisms and is hence a non-nacreous pearl. Image 

properties: Gemological Institute of America. 

1.3 Cultivation of Tahitian Pearls 

Cultivating pearls is a complex endeavor beginning with the collection of spats (juvenile pearl 

oysters that underwent the transition of a free swimming larva to a settling oyster) in the 

French Polynesian lagoons, their rearing until the age of ~1.5-3 years, pre-grafting 

conditioning, the grafting to start the pearl formation within the oyster, post grafting care and 

monitoring (~1.5-2.5 years and more), and finally the harvest. In this section only the grafting 

process will be explained, as it is vital to understand the inner structure of cultivated pearls. 

Detailed information about all stages of pearl cultivation can be found in [GER92].  
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The grafting process is a surgical operation during which an ‘irritant’ is artificially inserted in 

the tissue of a pearl oyster (Figure 5). A successful grafting results in a process similar to the 

natural, previously explained immunological reaction of the oyster: the secretion of nacreous 

material around the inserted irritant that finally forms the pearl. The inserted irritant is 

composed of two parts: a nucleus and the graft. The graft is a small piece of outer mantle 

tissue cut from a therefor sacrificed donor oyster (Figure 5 top left). The nucleus is a polished 

sphere produced out of shell material, usually from North American freshwater mussels 

(Figure 5 top right). Both are inserted together into the gonad of the host oyster. In the optimal 

case, the epithelial cells of the inserted graft will form a pearl sac due to cell division that 

encapsulates the inserted nucleus. Nourished by the surrounding tissue of the host oyster, the 

epithelial cells are then starting to secrete nacreous material that is deposited around the 

nucleus.  

 

 
Figure 5: Schema of the grafting process (middle). A piece of mantle tissue (the graft) is placed together with 

a nucleus within the gonad of a pearl oyster. The grafted oyster is put back in the lagoons. In the optimal 
case the graft builds a pearl sac around the nucleus and a pearl is formed by biomineralization of calcium 

carbonate deposited by the cells of the pearl sac around the nucleus.  
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An important step during the grafting process is the choice of a suitable nucleus size for a 

given host oyster. On the one hand it should be as large as possible as a larger nucleus will 

result in a larger pearl and therefore a more valuable one. On the other hand the nucleus size 

has to correspond to the constitution of the oyster and its gonad. Therefore, nuclei are 

produced in almost any size ranging from ~2-18 mm of diameter. The choice of which 

nucleus might be optimal for a certain oyster is made by the grafting technician during the 

grafting process.  

 

Frequently, the oyster rejects the nucleus (~30%). Still, the grafting might result in a nacreous 

concretion due to the formation of a pearl sac. The resulting product, that is of commercial 

value as well, is called ‘Keshi’. Compared to nucleated pearls, Keshi-pearls are iridescent and 

lustrous as well but have typically a highly irregular shape. This phenomenon illustrates the 

role of the graft and the nucleus. While the graft is inserted to form the pearl sac within the 

gonad, the purpose of the nucleus is to increase the probability of the formation of a round or 

symmetric pearl. However, the presence of a nucleus within a nacreous concretion can only 

be evaluated with certainty by imaging techniques such as X-raying (Figure 6). 

 

 
Figure 6: X-ray images of a keshi (left) and a regular cultivated Tahitian pearl (right). The regular pearl 

contains a nucleus, while the keshi is formed after the oyster rejected the nucleus. 
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1.4 Pearl Quality Parameters 

The quality of cultivated pearls is commonly assessed based on the six parameters color, size, 

shape, luster, surface quality and nacre thickness. As many of those parameters are perceptual, 

the description in the following sections is to introduce the vocabulary rather than to give a 

precise definition (see as well [CIB15] for an extensive list of terms and definitions regarding 

the international pearl culture and trade).  

1.4.1 Color 

Evaluated based on the perceptional parameters hue, saturation and intensity. Especially for 

the Tahitian pearl two terms are used to take into account the appearance of multiple colors: 

The ‘primary color’ (as well ‘main color’ or ‘body color’) describes the predominant color of 

the pearl. ‘Secondary colors’ (or ‘overtones’) are those appearing additionally to the primary 

color and are mainly caused by iridescent effects. Typical colors are green, blue, grey, pink or 

aubergine. 

 
Figure 7: An example of a multi-color Tahitian pearl with  

blue as primary color and secondary colors green and pink.  

1.4.2 Shape 

The pearls shape is evaluated based on predefined geometric figures (Figure 8). The most 

common classes are round, semi-round, oval, drop, button, semi-baroque, baroque, and cerclé 

(circled). In the definition of the DRMM (‘Direction des Ressources Marines et Minières’, 

French Polynesian administration of marine and mineral resources), semi-baroque pearls have 

an irregular shape but at least one symmetry axis while baroque pearls have an irregular shape 

without any symmetry. Pearls that fall in the class cerclé contain one or multiple concentric 

circular indentations. In contrary to most other pearls on the international market, Tahitian 

pearls are as well traded when of irregular shape, providing that the remaining quality 

parameters were accordingly.  
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round 
semi-
round 

button drop oval 
semi-

baroque 
baroque cerclé 

        
Figure 8: Main pearl shape categories. 

1.4.3 Size 

The pearls size is typically described as a diameter in metric mm. For non-round shapes the 

minimal diameter and sometimes additionally the maximum diameter are used. A technique 

applied in French Polynesia is to use a support with through boreholes of different diameters. 

The size of a pearl is defined by the minimum diameter of all boreholes that the pearl cannot 

pass through. With this method, symmetric, as well as highly irregular forms can be measured 

based on a unique standard. 

1.4.4 Luster 

The parameter ‘luster’ (sometimes as well referred to as ‘gloss’ or ‘brilliance’) refers to the 

quality and quantity of light that is reflected from the surface of a pearl. Typical perceptual 

attributes are for example bright, clear, shiny, milky, chalky or dull. Grading classes are 

qualitative and depend on the grading institution. In French Polynesia the luster is graded as 

excellent, good, average or dull. 

 
Figure 9: Pearls with different luster: left excellent, right dull. 

1.4.5 Surface Quality 

The surface quality is expressed quantitatively by the percentage of the surface covered with 

defects and qualitatively by describing the type and appearance of the defects. Common 

imperfections are for example pittings, devitalization, organic or non-organic deposits. 
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pittings 
organic deposits (yellow 

region) 
calcite deposits 
(white region) 

devitalization 

    
Figure 10: Different types of surface imperfection. 

1.4.6 Nacre Thickness 

While all previous parameters can be evaluated visually by examination of the surface of the 

pearl, the nacre thickness depends on the internal structure of a pearl. Accordingly, an 

analysis has to be done with non-destructive imaging methods such as X-ray, ultrasound or 

optical coherence tomography. Typical grades are minimal thickness or average thickness in 

mm, or the percentage of nacre thickness lower than a predefined threshold.  

 

 
Figure 11: The internal structure of a Tahitian pearl visualized  

by X-raying for the purpose of nacre thickness evaluation. 

 

1.5 Pearl Business in French Polynesia 

The Tahitian pearl plays an essential role in the French Polynesian economy. It is the second 

largest source of domestically generated income after tourism, and the largest source of export 

income (Figure 12). Several thousand people are employed in the sector. Especially for the 

remote and small islands of the French Polynesian archipelagos pearl cultivation is a suitable 

way to maintain an authentic way of life while contributing to the value chain of French 

Polynesia.  
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Figure 12: On the left side the total annual export volume of French Polynesia (straight Blue line) and the 

annual volume of exported pearls (dashed Black line). Currency: CFP, Change Franc Pacifique (Pacific Franc 
Exchange), 120 CFP ~ 1€. The pie diagram on the right shows pearl products as the main source of export 

income (55%), followed by fish, shellfish and mollusks (11%) in 2015. Source: Institut de la Statistique de la 

Polynésie Française (French Polynesian Institute of Statistics), Service des Douanes de Polynésie Française 
(French Polynesian Customs Service). 

 

The first commercial export of cultivated Tahitian pearls dates back to the beginning of the 

1970s. During the following decades, the Tahitian pearl evolved from a nearly unknown gem 

to a highly valued and well-known luxury good. Attracted by the promising gain, new pearl 

farms opened, especially in the Tuamotu atoll, where conditions for pearl cultivation are 

convenient. As a result, the initial export volume of less than 2 kg in 1973 was almost steadily 

increased up to more than 11 tons in the year 2000 (straight Blue line in Figure 13).  

 

 
Figure 13: Graph on the left: Annual exportation indices of loose cultured Tahitian pearls 1973-2015. The 

straight Blue line shows the annually exported Tahitian pearls in tons. The dashed black line shows the total 
value of the exported pearls in billion CFP. The red dash-dotted line indicates the value per gram of exported 

pearls in thousand CFP per gram. Source: Institut de la Statistique de la Polynésie Française (French 
Polynesian Institute of Statistics), Service des Douanes de Polynésie Française (French Polynesian Customs 

Service).  
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As no market regulations were yet established, the fast increasing supply exceeded the 

demand, resulting in a steady devaluation of the pearl that basically lasts until today (red 

dash-dotted line in Figure 13 shows the evolution of prize per gram of pearls). The peak of 

9980 CFP per gram (~83 € per gram) in 1986 has yet never been reached again. Due to 

overproduction and mismanagement, an increasing amount of pearls of low quality flooded 

the market, which led to an erosion of trust of the customers in the Tahitian pearl as a luxury 

item of exceptional quality. As result, the amount of exported pearls nearly stagnated in the 

years 2000-2003, while the total value for the exported pearls dropped from its overall peak of 

20.1 billion CFP in 2000 to 10.1 billion CFP in 2003 (~167.5 million € to 84.2 million €, 

black dashed line in Figure 13). The halving of the total export value within only three years 

was a shock for the pearl producing industry.  

To address the problem, the French Polynesian government issued several resolutions 

between the late 1900s and the early 2000s. Relevant administrative steps were handled more 

restrictively, such as the issuing of concessions for pearl farming and pearl selling, import and 

export regulations of pearl oysters and inter-and intra-island oyster transport regulations. A 

resolution outlining the necessary quality parameters for a Tahitian pearl to be exported was 

passed in 1999. The control of these parameters was not yet well organized, and lay mainly in 

the hand of the exporting parties themselves. In 2005, a resolution was passed that finally 

implemented an obligatory quality control for Tahitian pearls deemed for exportation. Since 

then, any pearl that is supposed to be exported has to be verified by an independent party as 

being of sufficient quality. Nowadays, the obligatory quality control is done manually at the 

‘Direction des Ressources Marines et Minières’ (DRMM, administration of marine and 

mineral resources). Automatizing the currently manually conducted control of over 7 million 

pearls per year is one goal of project RAPA that will be introduced more detailed in section 

1.7.  

In parallel several lobby groups are until today promoting the Tahitian pearl on the 

international market and are organizing international pearl auctions, while three unions 

advocate the interests of the Polynesian pearl farmers (see table 1). Even though the 

valorization of the pearl could be stabilized during the last years, it is still at only 6% of the 

all-time high that was reached in 1986. Accordingly, the sector is still in motion. Lobby 

groups are merged and newly formed, research projects are created and the revoking, adaption 

or creation of regulations is discussed. Specifically the obligatory quality control was 

challenged repeatedly. Criticized as partially arbitrary and most of all slow-going, its global 

effect is still seen critically by some pearl farming parties.  
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Table 1: Main organizations of the French Polynesian pearl business. 

 

A relatively new development in the sector is a joint effort to establish an independent pearl 

certificate. Two facts justify this development. First, due to the ongoing critics against the 

obligatory quality control implemented by the administration, a revocation of parts of the 

control (specifically the nacre thickness) or the control as such might be possible in the future. 

Still, it is consensus that an anarchic exportation of pearls might lead to further devaluation. 

An institution capable of issuing an independent quality label is seen as a suitable replacement 

on a voluntary basis. Second, independent certificates are common practice to assure 

customer security during the trade of high value gems and gemstones such as for example 

diamonds and gold. Certain institutions (such as the Gemological Institute of America) 

already issue certificates for Tahitian pearls. The expertise and experience of local experts can 

be used to establish an equivalently well reputed and internationally recognized quality 

certificate for the purpose of customer satisfaction.  

1.6 French Polynesian Research Landscape Concerning the Tahitian Pearl 

Understanding the mechanisms underlying the cultivation and commercialization of the 

Tahitian pearl is essential to manage and improve its exploitation and valorization. Research 

currently conducted within the French Polynesian territory concerning the pearl can be 

roughly divided in three interconnected areas: living conditions and threats to the pearl oyster, 

pearl formation and pearl quality, and commercialization of the Tahitian pearl.  

Direction des Ressources Marines et Minières 

(DRMM) 

governmental department, currently conducting the 

obligatory quality control of Tahitian pearls deemed 

for exportation 

Syndicat des Petits et Moyens Perliculteurs de la 

Polynésie Française (SPMPPF) 

pearl farmer unions 

Syndicat Professionnel des Producteurs de Perles et 

d'Huîtres perlières des îles du Pacifique de la Polynésie 

française 

Syndicat Professionnel des Producteurs de Perles 

(SPPP) 

GIE Poe o te Ao Nui 

GIE: groupement d’intérêt économique 

 

lobby groups mainly responsible for promotion and the 

organization of pearl auctions  

GIE Poe o Rikitea 

GIE Pearls of Manihi 

GIE Poe no Raromatai 

GIE Tuamotu Pearls  

GIE Poe o Tahiti Nui 

GIE Tahiti Pearl Auction 

GIE TOARAVA 



26 
 

1.6.1 Living conditions and threats to the pearl oyster 

Research in this area focusses on the physiology and ecophysiology of P. margaritifera in the 

French Polynesian lagoons with and without the context of human interaction. Topics 

comprise for example nutrition and feeding [POU00], [FOU12], growth and reproduction 

[CHA11], [POU00b], biomineralization [LYD01], [FAR11], genetic diversity [ARN03], 

[ARN04], [ARN08], biofouling [LAC14], or the human impact on the lagoon ecosystem due 

to pollution or oyster farming itself [CHA12], [BOU12], [ARN03]. Main goals of research 

conducted in this area are to identify parameters that might disturb the natural occurrence and 

condition of pearl oysters in the French Polynesian lagoons as well as to identify parameters 

that guarantee their optimal and sustainable farming.  

1.6.2 Pearl formation and pearl quality 

Research in this area focusses on the physiology of pearl formation, the mineralogy of pearls 

and pearl farming and their influence on pearl quality. Topics comprise for example the 

characterization of molecular processes of pearl formation [GUE13], the description of pearl 

movements during its formation [GUE15], physical analysis of the crystalline structures of 

cultivated pearls [CUI11], mineralization disturbances [CUI96], possible causes for nucleus 

rejection [COC10] and the relation between pearl quality and nacre deposition rate [BLA14], 

grafting skill and grafting season [KY15] and selective breeding [KY13] [TAY12]. The main 

goal of research conducted in this area is to identify cultivation parameters that influence the 

pearl quality.  

1.6.3 Commercialization of the Tahitian pearl 

Research in this area focusses on socioeconomics and economics of pearl farming. Topics 

include quota regulation policies for oyster farming [POI03], social and economic impacts of 

overproduction and pearl price decrease [TIS00], pearl export in the context of French 

Polynesian and world economies [POI10], game theoretic analysis of commercialization and 

regulation policies [MON02] and market structures and marketing [CLE08]. The main goal of 

research conducted in this area is to identify economic parameters affecting the 

commercialization of Tahitian pearls.  
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1.7 The RAPA Project 

With project RAPA, the profession of computer science was for the first time added to the 

pearl related French Polynesian research landscape. It was established by the computer 

science group of the University of French Polynesia and partners with DRMM, Centre 

IFREMER du Pacifique (French national research organism), GIE POE O TAHITI NUI and 

GIE POE O RIKITEA (French Polynesian pearl lobbies). The project received funding by the 

French Ministry of Overseas Territories. The general goal of this project is to evaluate the 

possibilities of an automatic quality assessment of Tahitian pearls with computer vision. 

Currently the quality of a pearl is assessed manually by experts. The procedure has two 

disadvantages. First of all, the perceptual nature of certain parameters such as luster, color and 

form makes the grading of a pearl subject to the opinion of the beholder. The transition 

between round and semi-round or excellent and good luster for example is fluent and an exact 

description of grading classes is difficult. Hence, the manual evaluation is subjective as it 

depends on the skills, expertise and experience of the expert and furthermore on inspection 

conditions such as light sources and view angles. Second, a manual evaluation is time intense, 

which is particularly significant for the obligatory quality control of pearls deemed for 

exportation. The automation of the quality assessment aims accordingly at objectifying and 

accelerating the quality assessment of Tahitian pearls. Additionally, further improvement of 

pearl quality assessment via ultrasound imaging is tested within the RAPA project. The 

following list summarizes the main four goals and expected impacts of the project.  

1.7.1 Research projects concerning pearl formation and pearl quality 

As mentioned in the previous section, one part of research currently conducted in French 

Polynesia aims at identifying cultivation parameters that influence the pearl quality. A 

successful identification of those parameters can help to increase the production of high 

quality pearls. For this purpose, correlation measurements are done between parameters of 

pearl cultivation (like the mentioned nacre deposition rate, grafting skills, season, selective 

breeding, etc.) and pearl quality. But a correlation measurement between more or less 

precisely described cultivation parameters and a subjectively assessed quality that might 

change depending on the inspection circumstances or the experts is critical. One goal of 

project RAPA is to create a reliable mathematical description of pearl quality that is 
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independent of external parameters. With such a description, the correlation between pearl 

cultivation and pearl quality could be significantly improved.  

1.7.2 Commercialization of the Tahitian pearl 

As explained previously, all pearls deemed for exportation have to pass an obligatory quality 

control. This regulation was issued as reaction to the devaluation of the pearl due to 

overproduction and the uncontrolled exportation of pearls of low quality. Currently, this 

control focusses on surface quality and nacre thickness and is conducted manually at the 

governmental administration DRMM for over 7 million pearls annually. The procedure was 

repeatedly criticized as being slow and arbitrary. An automation of the obligatory control can 

remedy those deficiencies. A successful implementation of an automated quality control has a 

direct impact on the pearl exportation flux, as well as on the reputation of the obligatory 

control. 

1.7.3 Pearl quality certificate 

A relatively new motion in the French Polynesian pearl sector is to create a complete 

computer vision based 3D pearl quality grading system, with the goal of issuing an 

internationally recognized quality certificate that is independent of human subjectivity or 

external parameters such as light conditions or view angle. In contrary to the obligatory 

quality control, which mainly focusses on surface quality and nacre thickness, the certificate 

is meant to contain the grading of all six quality parameters. Project RAPA forms part of these 

efforts, evaluating the possibilities of an automated pearl quality assessment based on all 

parameters. 

1.7.4 Alternative quality assessment 

While a quality assessment with color and X-ray images can only be done after the pearl is 

harvested, ultrasound imaging might be applicable to the pearl still being within the oyster. A 

pearl not consisting of sufficient nacre thickness could be left for further growing. 

Additionally, ultrasound imaging is evaluated in regards of being a less expensive and more 

secure alternative to the current X-raying.   
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2 Computer Vision Applied to Pearl Classification: State of the 

Art 

In [TAN14] a computer vision system is introduced, including remarks on mechanical 

components, image capturing and algorithmic processing to grade the pearls shape and size. 

The complete system contains three main parts: pearl feeding, image capturing and pearl 

sorting. The feeding system is sketched briefly as a pipe system in which the pearls are routed 

through their own weight to the image capturing device. The image capturing is done with a 

single camera and four mirrors, an interesting approach that allows the capturing of 5 view 

angles of a pearl with only one camera. The pearls shape is determined by a fuzzy 

membership function calculated of the Fourier transform of the radius variation of the outer 

boundary of the pearl subject to its centroid. The size of a pearl is assigned by using the 

minimum and maximum diameter. According to the automatic grading, a rotating sorting 

device, situated under the image capturing part, routes the pearl to one of several 

concentrically arranged containers. Additional topics, such as lightning sources for the image 

capturing and control procedures are discussed as well. Besides the image capturing system, 

of which an experimental device was built, the remaining parts for pearl routing seem to be 

theoretical. Specifically the routing in pipes might need experimental validation if used for an 

equivalent processing of Tahitian pearls. If the diameter of the pipe is big enough to let pass 

large pearls, several small pearls might pass in parallel. The blocking of the pipe by pearls of 

irregular shape has to be considered as well. An alternative might be the routing of pearls via 

a mechanical arm that picks pearls separately by suction as presented in [BAI14].  

 

In contrary to the previously mentioned use of Fourier descriptors for shape analysis 

([TAN14], as well used in [CAO10]), Zernike moments of the radial variation of the pearls 

shape subject to its centroid are used in [LI07]. The membership to five predefined classes is 

assigned as well with fuzzy logic. Even though the shape grades used in the mentioned 

articles differ from those used for Tahitian pearls, the approach of using rotational invariant 

descriptors such as Fourier or Zernike for shape description and a classification with fuzzy 

logic to take into account the smooth transition between shape classes is a general approach. 

Accordingly, such an approach will likely be suitable for classifying the shape of Tahitian 

pearls. 
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The automatic assessment of pearl luster is discussed in [CHE12]. Pearls are illuminated by a 

point light source and digital images of the illuminated surface are taken. A specular exponent 

is calculated based on the size of the area on the pearls surface that reflects the incoming light 

above a certain threshold. Ten pearls that are used for testing were sorted by experts from 

‘worst’ to ‘best’. The calculated specular exponents showed the same hierarchy as the experts 

grading, thus indicating that the method is suitable to quantitatively describe a pearls luster. 

The problem of different shapes influencing the calculation is mentioned, and the uses of class 

dependent descriptors are suggested. This is relevant for a possible implementation for 

Tahitian pearls as different and irregular shapes are not an exception. In the same article a 

design of a complete inspection system is presented, here using mechanical and suction parts 

to route the pearls. Evaluation methods for shape, size, color and surface defects are briefly 

mentioned.  

 

An interesting approach to analyze the correlation between physical pearl properties and 

perceptual appearance is presented in [NAG97]. A model of the optical properties of pearls is 

formulated that respects the mineral structure of a pearl in regards of reflectance and 

transmission of alternate aragonite and protein layers. The model is used to create synthetic 

pearl images whose appearance is generally validated as realistic by experts. The model is 

developed further in [DOB98]. The approach might be a way to quantize perceptual quality 

parameters such as color and luster that are currently evaluated qualitatively. In a second step, 

a validated model could help to investigate the correlation between pearl cultivation and the 

mineral structure of a pearl.  

 

Pearl color and luster quantization is done in [MAM10] with UV-visible spectroscopy. The 

measured spectra of 8 South Sea Pearls are visually analyzed and a correlation between 

perceptual characteristics of the pearls and certain regions of the spectra identified. Further 

developments of this approach are presented in [AGA12] and [KUS15]. Here, the UV-visible 

spectra of 28 pearls including Akoya, South Sea, Freshwater and Tahitian pearls are 

measured. Artificial Neural Networks are used to automatically assess parameters such as 

donor oyster condition and type, breeding oyster type, pearl color, luster and surface quality 

and potential pearl treatment, all based on the measured spectra. Even though the results show 

a successful classification, the trained networks were validated with only four pearls, one 

pearl for each pearl type. The general suitability of this method has to be confirmed with a 
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larger set of pearls, as some correlations are not intuitive. Specifically the classification of 

surface quality for example is somewhat astonishing. Grades include the number of surface 

defects and their concentration over the complete pearl surface. But the spectra are measured 

at only two pearl surface areas of less than 1 mm diameter. The results suggest that the overall 

surface quality is encoded in any point of the pearl surface, which stands in contrast to the 

local character of surface defects caused by local mineralization disturbances [CUI96].  

 

The use of a monochrome camera with different filters to obtain images sensitive to specific 

wavelength bands to classify the pearls color according to human perception is proposed in 

[NAG94]. 100 pearl samples are graded by experts in 10 classes from white to cream. An 

Artificial Neural Network (ANN) is used to identify wavelength bands that allow a maximum 

correlation between human and artificial classification. Therefore, an ANN is trained with all 

images, and bands with a small influence on the classification result are removed iteratively. 

The optimal classification is reached with 9 filters with a classification success of 91% for the 

training data and 71% for the testing data. This approach has the advantage of covering a 

larger area of the pearls surface when compared to the use of a spectrometer. Additionally, the 

instrumentation is generally cheaper.  

 

A more classical approach for pearl color classification can be found in [TIA09]. Regular 

RGB color images are transposed to the HSV color space. The images undergo median 

filtering and areas containing reflections are segmented by thresholding the Value channel. 

For the remaining region, the averages of Hue and Saturation channels are calculated. An 

Artificial Neural Network is trained with the obtained Hue of 800 pearl images, based on the 

human classification of the pearls, in three color classes red, purple black and white. The 

trained network is tested with 10 images showing one misclassification. The average 

Saturation is clustered with fuzzy C-means in four classes A-D. The approach is straight-

forward but the averaging of Hue and Saturation is not applicable in the case of the Tahitian 

pearl, that is described by primary and secondary colors due to its multi-color appearance. 

Additionally, the illumination parameter is not used; a parameter vital for the classification of 

Tahitian pearls. 

For the purpose of analyzing visually the internal structure of pearls, different X-ray based 

methods have been deemed suitable, such as X-ray microtomography ([STU09] and 

[KRZ10]) or X-ray phase contrast and scattering ([KRZ15]). As an alternative, optical 
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coherence tomography (OCT) is proposed in [JU10]. An integrated system that captures OCT 

images and spectral data based on fluorescence spectroscopy is described in [JU11], allowing 

an analysis of both, internal structure as well as for example color properties. The pearls are 

rotated and data is acquired repeatedly, assuring an evaluation of large surface areas. Rather 

than on the algorithmic classification, the articles focus on the suitability of a visual data 

inspection. The results show that according to the spectra, the pearl type and pearl quality 

enhancement treatment can be identified.  

An automatic approach of nacre thickness measurement out of OCT images is presented in 

[LEI09]. The obtained OCT images are denoised and edge pixels of the outer boundary of the 

pearl and the nucleus are identified respectively with Canny edge detection and Support 

Vector Machine. Two circles are fitted with least squares that contain the identified edge 

pixels, describing the complete boundaries of the pearl and the nucleus within the pearl. The 

nacre thickness is calculated as distance between both circles. The approach is straight 

forward but assumes that the pearl is round, which in the case of the Tahitian pearl would suit 

only one shape grade out of several typical ones. Possible cavities between nacre and nucleus 

that occur often in Tahitian pearls are not considered. The approach is further developed in 

[SUN10] and [LIU13], but still under the condition that the contours of pearl and nucleus can 

be approximated by circles. 
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3 Structure and Contribution of this Thesis 

In this thesis computer vision based approaches to automatically measure the nacre thickness 

of Tahitian pearls as well as to classify their color are proposed. These two parameters are 

fundamentally different. The color is a perceptual parameter that depends on the perception of 

the observer, while the nacre thickness is a measurable parameter. Furthermore, the color can 

be visually evaluated by analyzing the surface of the pearl, while the nacre thickness depends 

on the inner structure of the pearl and has hence to be visualized for example with X-ray 

imaging.  

Due to the fundamental difference of the nature of these two quality parameters, as well as the 

difference in means of required computer vision approaches, it was decided to divide the 

thesis in two parts. Part I presents our work to automatically measure the nacre thickness of 

Tahitian pearls out of X-ray images. Part II presents our work to automatically classify the 

color of Tahitian pearls based on color images of their surface. To underline the different 

character of both applications, each part has its proper numeration, introduction, bibliography, 

etc. Every reference within the parts refers to sections, literature or images of the same part, 

meaning there is no cross reference between the two parts. Accordingly, both Part I and Part 

II stand for themselves and can be read independently of any other part of this thesis. Some 

redundancy to the related work presented in the previous section will hence occur. In the 

following two subsections a general description of each part and the corresponding 

contribution will be given.  

3.1 Part I: Automatic Nacre Thickness Measurement  

The work presented in Part I of this thesis concerns the automation of a quality control 

procedure currently applied manually. The parameter that is controlled is the nacre thickness 

of Tahitian pearls. This control is obligatory for all pearls deemed for exportation. As in many 

industrial applications, the goal of the automation is to accelerate the control and to avoid 

false classifications due to the subjective nature of the human control. The work presented in 

this part is hence mainly settled in applied science.  

In the literature some approaches to automatically measure the nacre thickness of pearls can 

be found, but applied to pearls of different origin. All published approaches reviewed by the 

author are based on assumptions that do not hold for the Tahitian pearl and can hence not be 
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applied. Tahitian pearls have some unique features relevant for the nacre thickness 

measurement, namely the large variety of irregular shapes and the occurrence of cavities 

within the nacre that have to be addressed. This is done in this part of the thesis, making it 

hence a novelty in the domain of applied computer vision based quality control. Besides this 

novelty, a new heuristic circle detection algorithm was developed and successfully applied to 

detect the nucleus within the pearls. 

Alongside with this scientific contribution comes the potential economic contribution. The 

pearl business is the main export income source of French Polynesia currently contributing 

with over 50% to the whole exportation income. The export volume of over 61 million Euros 

in 2015 is a considerable factor seeing the relatively small population of approximatively 

280000. An automation of the control procedure can support a steady export especially on a 

long term view, as a growth of pearl exportation in means of the number of exported pearls 

can be expected.  

3.2 Part II: Automatic Color Classification 

The work presented in Part II of this thesis concerns an automated color classification of 

Tahitian pearls. In contrary to the nacre thickness, a physical parameter that can be measured, 

pearl color is a perceptual parameter meaning its definition lies in the eye of the beholder. As 

the color of a pearl has influence on its economic value, the largely subjective manual 

classification results in inconsistent price generation. Additionally, a quantitative color 

measure is necessary for a correlation analysis between cultivation parameters of a pearl and 

its color. The goal of automatizing the color classification is to create a reliable color label 

that, on the one hand corresponds as much as possible to the human perception, but on the 

other hand reduces as much as possible the influence of subjectivity. In contrary to 

approaches found in the literature, the large variety of possible color occurrence as well as the 

possibilities of multiple colors appearing on one pearl has to be considered.  

The main focus of the work presented in this part of the thesis lies on determining suitable 

color features for an artificial neural network based classification. In comparison to Part I, this 

part is mainly settled in theoretical science, namely normalized rgb color space theory.  

A main contribution of this part is the formalization of chromatic index calculation in the 

context of normalized rgb histogram binning. It is shown that every chromatic index based on 

a linear combination of normalized rgb channels can be expressed by a single variable; an 
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angle that corresponds to the human perceptual parameter Hue. Experimental classifications 

with Artificial Neural Networks and feature vectors based on chromatic indices over the 

whole range of the normalized rgb color space were used. As data base serve color images of 

150 Tahitian pearls that were manually classified by 7 experts. The results show that the 

choice of chromatic indices affects significantly the classification performance of an ANN 

with a given topology. The variance of classification rate stretches over the whole range of 

used indices. These findings are of great importance for computer vision applied to color 

object classification as currently only a handful of chromatic indices are used in the literature, 

which is a drastic limitation of possible classification results. 

A new normalized rgb histogram binning strategy is proposed that takes into account the non-

uniform distribution of normalized rgb vectors. The binning strategy is included in the 

experiments. The results show that the global classification rate can partially be increased by 

up to 18%.  

The experimental results were as well analyzed under the aspect of the feasibility to 

automatically classify Tahitian pearls based on their perceived color. Classification rates of 

over 84% for training data and over 79% for test data are reached for all used human 

classifications. It can hence be generally concluded that, despite the occurrence of multiple 

colors and color combinations on Tahitian pearls, an artificial classification is possible.  

3.3 Oral Presentations 

Oral presentations of partial results were given at: 

-12th Pacific Science Inter Congress 2013, Suva, FIJI. 

-6th International Conference on Image and Signal Processing (ICISP) 2014, Cherbourg, 

France. 

-6th International Conference on Image Processing & Communications (ICP) 2015, 

Bydgoszcz, Poland. 

-12th International Conference on Image Analysis and Recognition (ICIAR) 2015, Niagara 

Falls, Canada. 
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3.4 Publications 

Papers published within the scope of this thesis are: 

 

Martin Loesdau, Sébastien Chabrier, Alban Gabillon: "Hue and Saturation in the RGB Color 

Space" . In proceedings of the 6th International Conference ICISP 2014, France. Lecture 
Notes in Computer Science, Volume 8509, pp 203-212. Springer International Publishing, 

2014. 

 

Martin Loesdau, Sébastien Chabrier, Alban Gabillon: "Automatic Classification of Tahitian 

Pearls" . In proceedings of the 6th international conference ICP 2015, Poland. Image 
Processing & Communications Challenges, Volume 6, pp 95-101. Springer International 

Publishing, 2015.  

 

Martin Loesdau, Sébastien Chabrier, Alban Gabillon: "Automatic Nacre Thickness 

Measurement of Tahitian Pearls" . In proceedings of the 12th international conference ICIAR 
2015, Canada. Lecture Notes in Computer Science, Volume 9164, pp 446-455. Springer 

International Publishing, 2015. 

 

Accepted papers to be published are: 

 

Martin Loesdau, Sébastien Chabrier, Alban Gabillon: "Computer Vision based Nacre 
Thickness Measurement of Tahitian Pearls" . Accepted for oral presentation at the 13th 
International Conference on Quality Control by Artificial Vision, 13-15 May, 2017, Japan. 

Proceedings will be published in the SPIE Digital Library. 

 

 

  



37 
 

List of Figures 

Figure 1: The shell of the pearl oyster Pinctada margaritifera contains both crystalline forms 

of calcium carbonate. The inner iridescent shell consists mainly of aragonite tablets, 

while the rest consists mainly of calcite prisms.  ...................................................... 15 

Figure 2: Schema of the immunological reaction of a shelled mollusk caused by intrusion of 

an irritant through its shell. When the irritant reaches the mantle epithelium it is 

encapsulated by a cyst formed by epithelium cells (pearl sac). Similar to the 

biomineralization process performed by the organism to build, maintain and repair 

the shell, calcium carbonate is deposited around the irritant. ................................... 15 

Figure 3: The shell of the pearl oyster Pinctada margaritifera (left, detail in the middle) and a 

Tahitian pearl produced by this species (right). Shell and pearl show similar 

characteristic color nuances like green, blue, aubergine and pink.  .......................... 16 

Figure 4: Different types of pearl producing species (first two columns), trade names of their 

pearls (third column) and characteristic color nuances of the pearls (last column). 

The pearls produced by the species of the first four rows are true pearls as they 

consist mainly of aragonite layers. The pearl produced by the Melo melo sea snail 

(last column) consist mainly of calcite prisms and is hence a non-nacreous pearl. . 17 

Figure 5: Schema of the grafting process (middle). A piece of mantle tissue (the graft) is 

placed together with a nucleus within the gonad of a pearl oyster. The grafted oyster 

is put back in the lagoons. In the optimal case the graft builds a pearl sac around the 

nucleus and a pearl is formed by biomineralization of calcium carbonate deposited 

by the cells of the pearl sac around the nucleus. ...................................................... 18 

Figure 6: X-ray images of a keshi (left) and a regular cultivated Tahitian pearl (right). The 

regular pearl contains a nucleus, while the keshi is formed after the rejection of the 

nucleus by the oyster. ............................................................................................... 19 

Figure 7: An example of a multi-color Tahitian pearl with  blue as primary color and 

secondary colors green and pink.  ............................................................................. 20 

Figure 8: Main pearl shape categories ...................................................................................... 21 

Figure 9: Pearls with different luster, left excellent, right dull ................................................ 21 

Figure 10: Different types of surface imperfection.  ................................................................. 22 

Figure 11: Schema of the internal structure of a pearl visualized  by X-raying for the purpose 

of nacre thickness evaluation.................................................................................... 22 

Figure 12: On the left side the total annual export volume of French Polynesia (straight Blue 

line) and the annual volume of exported pearls (dashed Black line). Currency: CFP, 

Change Franc Pacifique (Pacific Franc Exchange), 120 CFP ~ 1€. The pie diagram 

on the right shows pearl products as the main source of export income (55%), 

followed by fish, shellfish and mollusks (11%) in 2015. Source: Institut de la 

Statistique de la Polynésie Française (French Polynesian Institute of Statistics), 



38 
 

Service des Douanes de Polynésie Française (French Polynesian Customs Service).

 .................................................................................................................................. 23 

Figure 13: Graph on the left: Annual exportation indices of loose cultured Tahitian pearls 

1973-2015. The straight Blue line shows the annually exported Tahitian pearls in 

tons. The dashed black line shows the total value of the exported pearls in billion 

CFP. The red dash-dotted line indicates the value per gram of exported pearls in 

thousand CFP per gram. Source: Institut de la Statistique de la Polynésie Française 

(French Polynesian Institute of Statistics), Service des Douanes de Polynésie 

Française (French Polynesian Customs Service).  .................................................... 23 

  



39 
 

Bibliography 

[ a]NAME sort  Ful l  ref  

[ a]AGA12 
a

g

a 

Agatonovic-Kustrin, S., & Morton, D. W. (2012). The use of UV-visible 
reflectance spectroscopy as an objective tool to evaluate pearl quality. Marine 
drugs, 10(7), 1459-1475 

[ b]ARN03 
z

z

z 

Arnaud-Haond, S., Vonau, V., Bonhomme, F., Boudry, P., Prou, J., Seaman, T.,  
& Goyard, E. (2003). Spat collection of the pearl oyster (Pinctada 
margaritifera cumingii) in French Polynesia: an evaluation of the potential 

impact on genetic variability of wild and farmed populations after 20 years of 
commercial exploitation. Aquaculture, 219(1), 181-192. 

[ c]ARN04 
z

z

z 

Arnaud‐Haond, S., Vonau, V., Bonhomme, F., Boudry, P., Blanc, F., Prou, J., 

& Goyard, E. (2004). Spatio‐temporal variation in the genetic composition of 

wild populations of pearl oyster (Pinctada margaritifera cumingii) in French 
Polynesia following 10 years of juvenile translocation. Molecular Ecology, 
13(7), 2001-2007. 

[ d]ARN08 
z

z

z 

Arnaud-Haond, Sophie, et al. "Genetic structure at different spatial scales in 
the pearl oyster (Pinctada margaritifera cumingii) in French Polynesian 
lagoons: beware of sampling strategy and genetic patchiness." Marine Biology 

155.2 (2008): 147-157. 2008 

[ e]BAI14 
b

ai Bai, Z. L., Wen, Q. R., & Yang, M. (2014, April). A Pearl Automatic Sorting 
System Based on Image Identification. In Applied Mechanics and Materials 

(Vol. 496, pp. 1574-1577). 

[ f]BLA14 
z

z

z 

Blay, C., Sham-Koua, M., Vonau, V., Tetumu, R., Cabral, P., & Ky, C. L. 
(2014). Influence of nacre deposition rate on cultured pearl grade and colour 
in the black-lipped pearl oyster Pinctada margaritifera using farmed donor 

families. Aquaculture international, 22(2), 937-953. 

[ g]BOU12 
z

z

z 

Bouvy, M., Dupuy, C., Pagano, M., Barani, A., & Charpy, L. (2012). Do 
human activities affect the picoplankton structure of the Ahe atoll lagoon 

(Tuamotu Archipelago, French Polynesia)? Marine pollution bulletin, 65(10), 
516-524. 

[ h]CAO10 
c

a

o 

Cao, Y. L., Zheng, H. W., Yang, J. X., & He, Y. F. (2010, September). 

Automatic Shape Grading of Pearl Using Machine Vision Based Measurement. 
In Key Engineering Materials (Vol. 437, pp. 389-392). 

[ i]CHA11 
z

z

z 

Chávez-Villalba, J., Soyez, C., Huvet, A., Gueguen, Y., Lo, C., & Moullac, G. 
L. (2011). Determination of gender in the pearl oyster Pinctada margaritifera. 

Journal of Shellfish Research, 30(2), 231-240. 

[ j]CHA12 
z

z

z 

Charpy, L., Rodier, M., Fournier, J., Langlade, M. J., & Gaertner-Mazouni, N. 
(2012). Physical and chemical control of the phytoplankton of Ahe lagoon, 

French Polynesia. Marine pollution bulletin, 65(10), 471-477. 

 

 



40 
 

[ k]CHE12 
c

h

e 

Chen, S. Y., Luo, G. J., Li, X., Ji, S. M., & Zhang, B. W. (2012). The specular 

exponent as a criterion for appearance quality assessment of pearllike objects 
by artificial vision. Industrial Electronics, IEEE Transactions on, 59(8), 3264-

3272.  

[ l]CIB15 
z

z

z 

The Pearl Book, Confédération International de la Bijouterie, Joaillerie, 
Orfèvrerie des Diamantes, Perles et Pierres (CIBJO, World Jewelry 

Confederation), 2015 

[m ]CLE08 
z

z

z 

Clem Tisdell, Bernard Poirine. Economics of Pearl Farming. Paul Southgate, 
John Lucas. The pearl oyster, Elsevier Science, pp.473-496, 2008 

[ n]COC10 
z

z

z 

Cochennec-Laureau, N., Montagnani, C., Saulnier, D., Fougerouse, A., Levy, 
P., & Lo, C. (2010). A histological examination of grafting success in pearl 

oyster Pinctada margaritifera in French Polynesia. Aquatic Living Resources, 
23(01), 131-140. 

[ o]CUI11 
z

z

z 

Cuif, J. P., Dauphin, Y., Howard, L., Nouet, J., Rouzière, S., & Salomé, M. 

(2011). Is the pearl layer a reversed shell? A re-examination of the theory of 
pearl formation through physical characterizations of pearl and shell 

developmental stages in Pinctada margaritifera. Aquatic Living Resources, 
24(4), 411. 

[ p]CUI96 
z

z

z 

Cuif, J. P., & Dauphin, Y. (1996). Occurrence of mineralization disturbances 
in nacreous layers of cultivated pearls produced by Pinctada margaritifera var. 

cumingi from French Polynesia. Comparison with reported shell alterations. 
Aquatic Living Resources, 9(2), 187-193. 

[ q]DOB98 
d

o

b 

Dobashi, T., Nagata, N., Manabe, Y., & Inokuchi, S. (1998, April). 

Implementation of a pearl visual simulator based on blurring and interference. 
In Knowledge-Based Intelligent Electronic Systems, 1998. Proceedings 
KES'98. 1998 Second International Conference on (Vol. 3, pp. 274-281). IEEE. 

[ r]FAR11 
z

z

z 

Farre, B., Brunelle, A., Laprévote, O., Cuif, J. P., Williams, C. T., & Dauphin, 

Y. (2011). Shell layers of the black-lip pearl oyster Pinctada margaritifera: 
Matching microstructure and composition. Comparative Biochemistry and 

Physiology Part B: Biochemistry and Molecular Biology, 159(3), 131-139. 

[ s]FOU12 
z

z

z 

Fournier, J., Dupuy, C., Bouvy, M., Couraudon-Réale, M., Charpy, L., 
Pouvreau, S., ... & Cochard, J. C. (2012). Pearl oysters Pinctada margaritifera 

grazing on natural plankton in Ahe atoll lagoon (Tuamotu archipelago, French 
Polynesia). Marine pollution bulletin, 65(10), 490-499. 

[ t]GER92 
z

z

z 

Gervis, M. H., & Sims, N. A. (1992). The biology and culture of pearl oysters 
(Bivalvia pteriidae) (Vol. 21). WorldFish. 

[ u]GUE13 
la

c Gueguen, Y., Montagnani, C., Joubert, C., Marie, B., Belliard, C., Tayale, A.,  

& Le Moullac, G. (2013). Characterization of molecular processes involved in 
the pearl formation in Pinctada margaritifera for a sustainable development of 

pearl farming industry in French Polynesia. Recent Advances in Pearl 
Research—Proceedings of the International Symposium on Pearl Research 
2011 



41 
 

[ v]GUE15 
ar

n Gueguen, Y., Czorlich, Y., Mastail, M., Le Tohic, B., Defay, D., Lyonnard, P.,  

& Chabrier, S. (2015). Yes, it turns: experimental evidence of pearl rotation 
during its formation. Royal Society open science, 2(7), 150144. 

[ w]JU10 
ju  

Ju, M. J., Lee, S. J., Min, E. J., Kim, Y., Kim, H. Y., & Lee, B. H. (2010). 

Evaluating and identifying pearls and their nuclei by using optical coherence 
tomography. Optics express, 18(13), 13468-13477. 

[ x]JU11 
ju  

Ju, M. J., Lee, S. J., Kim, Y., Shin, J. G., Kim, H. Y., Lim, Y.,& Lee, B. H. 

(2011). Multimodal analysis of pearls and pearl treatments by using optical 
coherence tomography and fluorescence spectroscopy. Optics express, 19(7), 
6420-6432. 

[ y]KRZ10 
kr

z Krzemnicki, M. S., Friess, S. D., Chalus, P., Hänni, H. A., & Karampelas, S. 

(2010). X-ray computed microtomography: distinguishing natural pearls from 
beaded and non-beaded cultured pearls. Gems and Gemology, 46(2), 128 

[ z]KRZ15 
kr

z Krzemnicki, M. S., Revol, V., Hanser, C., Cartier, L., & Hänni, H. A.(2015) X-

ray phase contrast and X-ray scattering images of pearls. 34th Gemological 
Conference Vilnius, Lithuania.  

[ aa]KUS15 
k

u

s 

Kustrin, S. A., & Morton, D. W. (2015). The use of probabilistic neural 

network and UV reflectance spectroscopy as an objective cultured pearl quality 
grading method. Modern Chemistry and Applications, 3(152), 2. 

[ bb]KY13 
z

z

z 

Ky, C. L., Blay, C., Sham-Koua, M., Vanaa, V., Lo, C., & Cabral, P. (2013). 
Family effect on cultured pearl quality in black-lipped pearl oyster Pinctada 

margaritifera and insights for genetic improvement. Aquatic Living Resources, 
26(02), 133-145. 

[ cc]KY15 
z

z

z 

Ky, C. L., Nakasai, S., Molinari, N., & Devaux, D. (2015). Influence of grafter 

skill and season on cultured pearl shape, circles and rejects in Pinctada 
margaritifera aquaculture in Mangareva lagoon. Aquaculture, 435, 361-370. 

[ dd]LAC14 
z

z

z 

Lacoste, E., Le Moullac, G., Levy, P., Gueguen, Y., & Gaertner-Mazouni, N. 

(2014). Biofouling development and its effect on growth and reproduction of 
the farmed pearl oyster Pinctada margaritifera. Aquaculture, 434, 18-26. 

[ ee]LEI09 
le

i Lei, M., Sun, Y., Wang, D., & Li, P. (2009). Automated thickness 
measurements of pearl from optical coherence tomography images. In Hybrid 

Intelligent Systems, 2009. HIS'09. Ninth International Conference on (Vol. 1, 
pp. 247-251). IEEE. 

[ ff ]LI07 
li 

Li, B., Li, G., Wang, Y., Wang, X., & Wang, W. (2007, November). A 

classification method of pearl shape based on Zernike moment . In Wavelet 
Analysis and Pattern Recognition, 2007. ICWAPR'07. International Conference 
on (Vol. 3, pp. 1076-1079). IEEE.  

[ gg]LIU13 
li

u  Liu, J., Tian, X. L., & Sun, Y. K. (2013). Pearl Thickness Measurements from 
Optical Coherence Tomography Images. In Applied Mechanics and Materials 
(Vol. 421, pp. 415-420). 

 



42 
 

[ hh]LYD01 
z

z

z 

Lydie, M. A. O., Golubic, S., Le Campion-Alsumard, T., & Payri, C. (2001). 

Developmental aspects of biomineralisation in the Polynesian pearl oyster 
Pinctada margaritifera var. cumingii. Oceanologica acta, 24, 37-49. 

[ ii ]MAM10 
m

a

m 

Mamangkey, N. G. F., Agatonovic, S., & Southgate, P. C. (2010). Assessing 

pearl quality using reflectance UV-Vis spectroscopy: does the same donor 
produce consistent pearl quality?. Marine drugs, 8(9), 2517-2525. 

[ jj ]MON02 
z

z

z 

Montet, C. (2002). Les enseignements du management stratégique pour la 

Polynésie française. Yearbook of New Zealand. 

[ kk]NAG94 
n

a

g 

Nagata, N., Kamei, M., & Usami, T. (1994). Transferring Human Sensibilities 
to Machines-Sensitivity Analysis of Layered Neural Networks and Its 
Application to Pearl Color Evaluation. In MVA (pp. 528-531). 

[ ll ]NAG97 
n

a

g 

Nagata, N., Dobashi, T., Manabe, Y., Usami, T., & Inokuchi, S. (1997). 
Modeling and visualization for a pearl-quality evaluation simulator. 
Visualization and Computer Graphics, IEEE Transactions on, 3(4), 307-315.  

[m m]POI03 
z

z

z 

Poirine, B. (2003). Managing the commons: an economic approach to pearl 

industry regulation. Aquaculture Economics & Management, 7(3-4), 179-193. 

[ nn]POI10 
z

z

z 

Poirine, B. (2010). The Economy of French Polynesia: past, present and future. 
Pacific Economic Bulletin, 25(1), 24-34. 

[ oo]POU00 
z

z

z 

Pouvreau, S., Bodoy, A., & Buestel, D. (2000). In situ suspension feeding 

behaviour of the pearl oyster, Pinctada margaritifera: combined effects of body 
size and weather-related seston composition. Aquaculture, 181(1), 91-113. 

[ pp]POU00b 
z

z

z 

Pouvreau, S., Bacher, C., & Héral, M. (2000). Ecophysiological model of 

growth and reproduction of the black pearl oyster, Pinctada margaritifera: 
potential applications for pearl farming in French Polynesia. Aquaculture, 
186(1), 117-144. 

[ qq]STU09 
st

u Sturman, N. (2009). The Microradiographic Structures of Non-Bead Cultured 

Pearls. GIA Lab Notes 20th August 2009. 

[ rr ]SUN10 
s

u

n 

Sun, Y., & Lei, M. (2010). Automated thickness measurements of nacre from 
optical coherence tomography using polar transform and probability density 

projection. In Intelligent Signal Processing and Communication Systems 
(ISPACS), 2010 International Symposium on (pp. 1-4). IEEE. 

[ ss ]TAN14 
ta

n Tang, Y. P., Shao-jie, X., & Zhi-liang, Z. (2014). Research on Pearl Detecting 

and Grading Based on Monocular Multi-view Machine Vision. British Journal 
of Applied Science & Technology, 4(15), 2136 

[ tt ]TAY12 
z

z

z 

Tayale, A., Gueguen, Y., Treguier, C., Le Grand, J., Cochennec-Laureau, N., 
Montagnani, C., & Ky, C. L. (2012). Evidence of donor effect on cultured pearl 

quality from a duplicated grafting experiment on Pinctada margaritifera using 
wild donors. Aquatic Living Resources, 25(03), 269-280. 

 



43 
 

[ uu]TIA09 
ti

a Tian, C. (2009). A computer vision-based classification method for pearl 

quality assessment. In Computer Technology and Development, 2009. 
ICCTD'09. International Conference on (Vol. 2, pp. 73-76). IEEE. 

[ vv]TIS00 
z

z

z 

Tisdell, C. A., & Poirine, B.: Socio-economics of pearl culture: industry 

changes and comparisons focussing on Australia and French Polynesia. SPC 
Pearl Oyster Inf. Bull, 14, 2000 

 

 

  



44 
 

Part I 

 

Automatic Nacre Thickness 

Measurement 
Dum m y  



45 
 

Content 

1 Introduction ...................................................................................................................... 48 

1.1 Manual Nacre Thickness Evaluation...................................................................... 49 

1.2 Pearl Configuration ................................................................................................ 50 

1.3 Automatizing the Nacre Thickness Evaluation ...................................................... 52 

1.3.1 General Requirements .................................................................................... 52 

1.3.2 Automatic Image Acquisition ......................................................................... 52 

1.4 Acquired Images .................................................................................................... 53 

1.4.1 Special Cases .................................................................................................. 54 

1.4.2 Human Evaluation .......................................................................................... 55 

1.5 Image Processing Methodology ............................................................................. 56 

1.5.1 Basic Concept ................................................................................................. 57 

1.5.2 Pearl Segmentation ......................................................................................... 57 

1.5.3 Nucleus Detection........................................................................................... 58 

1.5.4 Cavity Detection ............................................................................................. 59 

1.5.5 Nacre Thickness Profile.................................................................................. 60 

1.5.6 Identification of Rejects and Certainty Value ................................................ 60 

1.5.7 Used Hard- and Software................................................................................ 62 

1.6 Automatic Measurement Results ........................................................................... 62 

1.7 Structure of Part I ................................................................................................... 63 

2 Related Work.................................................................................................................... 65 

3 Pearl Segmentation .......................................................................................................... 67 

3.1 Main Challenges..................................................................................................... 67 

3.1.1 Region-Based Approach ................................................................................. 69 

3.1.2 Edge-Based Approach .................................................................................... 70 

3.1.3 Active Contours .............................................................................................. 71 

3.1.4 Model Based Approach .................................................................................. 73 

3.2 Implemented Approach .......................................................................................... 74 

3.2.1 Image Calibration ........................................................................................... 74 

3.2.2 Synthetic Background Generation .................................................................. 77 

3.2.3 Pearl Segmentation ......................................................................................... 79 

3.2.4 Artefacts.......................................................................................................... 80 

3.2.5 Summary and Pseudocode .............................................................................. 82 

3.3 Precision of Results ................................................................................................ 82 

3.3.1 Visual Analysis ............................................................................................... 83 

3.3.2 Precision Measurement................................................................................... 86 

3.4 Discussion .............................................................................................................. 88 

3.4.1 Discrepancy Types.......................................................................................... 89 

3.4.2 Processing Time.............................................................................................. 90 

3.4.3 Optimization Possibilities ............................................................................... 90 

3.4.4 Background Configuration ............................................................................. 91 

3.4.5 Alternative Support Configuration ................................................................. 92 



46 
 

3.5 Conclusion.............................................................................................................. 93 

4 Nucleus Detection ............................................................................................................. 94 

4.1 Main Challenges..................................................................................................... 94 

4.1.1 Model-Based Approach .................................................................................. 96 

4.1.2 Region-Based Approach ................................................................................. 96 

4.1.3 Edge-Based Approach .................................................................................... 97 

4.1.4 Circular Hough Transform ............................................................................. 99 

4.1.5 Other Circle Detection Approaches .............................................................. 100 

4.2 Our Approach ....................................................................................................... 100 

4.2.1 Intensity Based Probability Function............................................................ 102 

4.2.2 Gradient Based Probability Function............................................................ 103 

4.2.3 Moving Direction.......................................................................................... 106 

4.2.4 Moving Speed and Radius Increment ........................................................... 107 

4.2.5 Optimum Detection ...................................................................................... 108 

4.2.6 Handling of Segmentation Artefacts ............................................................ 108 

4.2.7 Summery and Pseudocode ............................................................................ 109 

4.3 Precision of Results .............................................................................................. 111 

4.4 Discussion ............................................................................................................ 112 

4.4.1 Threshold Related Discrepancies ................................................................. 113 

4.4.2 Cavity Related Discrepancies ....................................................................... 114 

4.4.3 Weak Boundary Related Discrepancies........................................................ 114 

4.4.4 Nucleus Visibility ......................................................................................... 118 

4.4.5 Self-Evaluation ............................................................................................. 120 

4.4.6 Processing Time............................................................................................ 122 

4.4.7 Optimization Possibilities ............................................................................. 123 

4.5 Conclusion............................................................................................................ 124 

5 Cavity Detection ............................................................................................................. 126 

5.1 Main Challenges................................................................................................... 126 

5.1.1 Model Based Approach ................................................................................ 128 

5.1.2 Active Contour.............................................................................................. 129 

5.1.3 Region Based Approach ............................................................................... 129 

5.1.4 Edge Based Approach................................................................................... 130 

5.2 Implemented Approach ........................................................................................ 132 

5.2.1 Neighborhood Range and Region Growing Rule ......................................... 132 

5.2.2 Previous Segmentation Artefacts.................................................................. 134 

5.2.3 Pseudocode ................................................................................................... 135 

5.3 Precision of Results .............................................................................................. 135 

5.4 Discussion ............................................................................................................ 137 

5.4.1 Discrepancy to Intuitive Boundary Setting................................................... 138 

5.4.2 Processing Time............................................................................................ 140 

5.4.3 Optimization Possibilities ............................................................................. 140 

5.5 Conclusion............................................................................................................ 141 

6 Nacre Thickness Profile Calculation ............................................................................ 142 



47 
 

7 Certainty Measurement................................................................................................. 144 

8 Results ............................................................................................................................. 146 

9 Discussion........................................................................................................................ 148 

9.1 Intensity vs Gradient Based Cavity Detection ..................................................... 151 

9.2 Manual vs Numerical Rejection ........................................................................... 152 

9.3 Summary .............................................................................................................. 154 

9.4 Processing Time ................................................................................................... 158 

9.5 Optimization Possibilities .................................................................................... 158 

10 Prototype  .................................................................................................................. 160 

11 Conclusion................................................................................................................ 162 

12 Future Work ............................................................................................................ 163 

List of Figures ....................................................................................................................... 164 

Bibliography.......................................................................................................................... 169 

  



48 
 

0  

1 Introduction 

According to resolution no 2005-42 issued by the French Polynesian government on February 

4th in 2005, all Tahitian pearls that are exported to foreign countries must have been officially 

validated as being of sufficient quality. The governmental organization currently in charge of 

this obligatory control is the Direction des Ressources Marines et Minières (DRMM, 

administration for marine and mineral resources). One of the crucial quality parameters 

defined in the resolution is the pearls nacre thickness. It is written that the minimal nacre 

thickness has to be at least 0.8mm, otherwise the pearl cannot be exported. Rejected pearls are 

to be destroyed by employees of the DRMM.  

 

Currently, the obligatory quality control is done manually by 10 experts for over 7 million 

pearls that are supposed to be exported annually. As the amount of pearls already exceeds the 

control capacity of the DRMM, the nacre thickness is not evaluated for each pearl 

specifically, albeit demanded by the mentioned resolution. Usually a random sample is taken 

out of a set of pearls from one pearl farmer and if several pearls do not pass the control the 

rest of the set is controlled as well. Otherwise, the whole set is expected to be generally of 

sufficient quality. Still, the control procedure has repeatedly been criticized by pearl exporters 

as being slow. A latency of several weeks between the disposal of pearls at the DRMM and 

the control result is the rule rather than an exception.  

 

In this part of the thesis the results of research conducted to support an automation of the 

nacre thickness evaluation with image analysis techniques are presents. In the following 

section, the manual procedure to measure the nacre thickness, currently realized at the 

DRMM, is explained. Afterwards, the general inner structure of a pearl is presented to help 

the reader understand and identify the three crucial regions nacre, nucleus and cavity. The 

requirements for an automatic measurement procedure defined by the DRMM are presented 

in section 1.3. In section 1.4 the character of the used training and test images are introduced 

along with special cases and the results of the human evaluation of the test image pearls. The 

developed algorithms are briefly introduced in section 1.5 followed by a summary of the 

results obtained by applying our algorithms to automatically measure the nacre thickness of 

Tahitian pearls. The internal structure of the main body of Part I will be introduced in section 
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1.7, followed by the state of the art in regards of automatic nacre thickness measurement of 

pearls in section 2.  

1.1 Manual Nacre Thickness Evaluation 

As the nacre thickness depends on the inner structure of a pearl, the DRMM uses X-ray 

machines for the evaluation purpose. A support with 300 boreholes is filled with pearls 

(Figure 1 on the right). The support is then placed in an X-ray machine (Figure  image on the 

left, the arrow points at the support in the X-ray machine). As the X-ray gun has a fixed 

position, the support is moved mechanically to allow the visualization of different pearls. This 

movement is controlled by the current operator with a joystick (Figure 1 within the red circle). 

Zooming in and out is done with a second joystick, bringing the support closer to or further 

away from the X-ray detector. The X-ray image of the current pearl is visualized on a screen 

(red square in Figure 1).  

 

 
Figure 1: Work station for nacre thickness evaluation at the DRMM (left) and one of the supports in which 

300 pearls are placed for X-raying (right).  

 

The general manual evaluation procedure is accordingly. After placing the support in the 

machine, the operator routes the support so that the pearls in the upper right corner of the 

support are visualized on the screen. Zooming is usually done so that two pearls can be 

analyzed at once with the support at the same position (the image in Figure 2 shows the zoom 

that is usually used). After evaluating the current pearls visually, the support is moved with 

the joystick so that the next two pearls are shown. The position of pearls that are classified as 

rejects is noted and they are separated from the other pearls after the evaluation of the whole 

support.  
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Figure 2: A detail of the support filled with pearls (left) and an X-ray image of Tahitian pearls (right) with a 
typical zoom used for manual nacre thickness evaluation at the DRMM (pearls of both images do not match).  

 

The manual evaluation of a complete support takes between 5 and 10 minutes. The time 

needed depends mainly on the nacre configuration of the pearls. While some are obviously 

either good or rejects, other cases are not clear. The operator has to zoom in manually or in 

some cases even interrupt the evaluation procedure, take out the support, pick the pearl that is 

difficult to evaluate, put the pearl separately in the X-ray machine to avoid additional 

attenuation by the support, zoom in, make a decision, take out the pearl, put in back the 

support and proceed.  

Still in some cases a visual evaluation is not possible. These pearls are deemed as good pearls, 

as there is no justification for destroying pearls that might have a sufficient nacre thickness, 

solely because it is not possible to visually evaluate them.  

1.2 Pearl Configuration 

Analyzing X-ray images of pearls (visually or numerically) means generally to differentiate 

between three characteristic regions. The regions are visualized in Figure 3 with a 

mechanically bisected pearl (second image, taken from [KRZ10]) and an X-ray image of a 

similar pearl (third image). Within the pearl is the nucleus (a blank nucleus is shown in the 

image on the left), an artificially, out of the shell from a freshwater mollusk formed sphere 

(marked with number 1). In the X-ray image, the nucleus appears as a circular object within 

the pearl. The black region of the bisected pearl is the nacre that was secreted by the pearl 

oyster around the nucleus (marked with number 2). In several cases the nacre does not 

connect directly to the nucleus. Between nucleus and nacre is accordingly a cavity (marked 

with number 3). Cavities appear in the X-ray images as darker regions within the pearl.  
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Figure 3: Blank nucleus (left), bisected Tahitian pearl (middle, taken from [KRZ10]) and X-ray image of a 

Tahitian pearl that is similar to the bisected one (right).  

 

The possibility to visually evaluate the nacre thickness depends on if and how much cavities 

separate the nacre from the nucleus. Figure 4 shows some possible cases. In the first column, 

two pearls with a cavity circumferential to the nucleus that are easily evaluable visually can 

be seen. The second column shows two pearls with a slight cavity around the nucleus. While 

the pearls of the first column can be evaluated in a glimpse, these cases are still evaluable but 

need already a closer look. The third column shows two pearls with a non-circumferential 

cavity. Even though the nucleus is only partially visible, the general contour of the nucleus 

can be estimated cognitively. The fourth column shows two pearls without any cavity. As 

their nacre thickness cannot be estimated visually, those pearls pass the current quality control 

and can be exported.  

 

 
Figure 4: Different nacre configurations of Tahitian pearls. 
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As pearls are naturally grown gems, the variety of nacre configuration exceeds by far the 

shown examples. Anyhow, the shown pearls are some typical cases and illustrate the 

challenges that are faced by the experts at the DRMM currently controlling the nacre 

thickness of pearls deemed for exportation. In the same way, the examples give a first 

impression of the challenges of an automatized nacre thickness evaluation.  

1.3 Automatizing the Nacre Thickness Evaluation 

As for the manual evaluation of the nacre thickness X-ray images are taken anyway, an 

automation of this process with image processing techniques suggests itself. The general 

requirements of an automatic evaluation of the images will be stated in the next subsection. 

Even though not part of this thesis, the later implementation of an automatic image acquisition 

influences whether or not to address certain image processing challenges. Therefore, the 

further ongoing of this part of project RAPA will be briefly sketched in section 1.3.2.  

1.3.1 General Requirements 

General requirements for the automatic measurement were defined by the DRMM. First, the 

evaluation has to be at least as fast as the human evaluation. A margin was set to 1 second per 

image, leading to 5 minutes for the evaluation of a support completely filled with 300 pearls. 

Second, the automatic measurement has to correspond to the general paradigm that in case of 

doubt the pearl has to pass the quality control. This means for the automatic evaluation that 

false negative results have to be avoided.  

The definition of a reject has to accord to the current evaluation criterion at the DRMM. Even 

though not stated specifically in the resolution, commonly pearls are rejected if more than 

20% of the nacre thickness in regards of the 2-dimesional X-ray profile is lower than 0.8mm. 

1.3.2 Automatic Image Acquisition 

The X-ray machines used at the DRMM to radiograph the pearls are equipped with software 

that allows an automated image acquisition at predefined positions. X-ray images are taken 
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and stored automatically. This means that together with the known geometry of the support 

that contains the pearls, the position and size of the boreholes of the support within the images 

is known. This facilitates their detection. The signal to noise ratio that depends on the internal 

averaging of the images can be in a certain range predefined. The intensity distribution of the 

images that depends on the used voltage and current of the X-ray device can be predefined as 

well. Finally the spatial resolution is set by the distance between the support and the X-ray 

detector. An automatic detection of these parameters was therefore not analyzed in detail.  

Analyzing the influence of all image acquisition parameters on the quality of the resulting X-

ray images and to define an automated image acquisition protocol with optimal parameters 

will be done in a future work. As for this stage of our project it was to evaluate if it is possible 

to automatically measure the nacre thickness of Tahitian pearls, the parameter configuration 

used by the employees of the DRMM was used (voltage: 130kV, current 35µA, averaging: 8 

images per output image). 

1.4 Acquired Images 

A first set of 100 X-ray images of different pearls was obtained from the DRMM to create 

suitable image processing algorithms. The spatial image resolution of this first set corresponds 

to the parameters used by the experts of the DRMM for a visual analysis of the nacre 

thickness, meaning two pearls per image as shown in Figure 5.  

 

 
Figure 5: Two images of the set used to create the image processing tools for the automated nacre thickness 

measurment. 

 

Afterwards a second set of 300 images (a support completely filled with pearls) was obtained 

along with human evaluation results to test the developed algorithms. For this set the image 

configuration was adapted so that the images correspond to a later automatic image 
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acquisition (Figure 6). Only one pearl per image was taken, to avoid that the outer boundary 

of pearls is cut off as in the images of Figure 5. A slightly higher resolution was obtained by 

zooming, to increase the precision of the measurement.  

 

 
Figure 6: Two images of the set used to test the developed algorithms. 

 

All obtained images have a pixel resolution of 1000x1000 as a fixed size determined by the 

X-ray detection device of the X-ray machine. The spatial resolution of the images was 

obtained with X-ray images of normed reference objects (1st set: 1pixel ~ 35µm; 2nd set: 

1pixel ~ 24µm). All images are 16 bit greylevel images of uncompressed TIFF format. 

1.4.1 Special Cases 

Two of the 300 obtained test images contained keshi pearls (Figure 7). These pearls are 

formed after the pearl oyster rejected the inserted nucleus. Accordingly, and in contrary to the 

regular pearls, keshi do not contain a nucleus. The challenge of detecting whether the image 

contains a regular pearl or a keshi pearl is not part of this work. Therefore these two images 

were not considered, leaving 298 images to test the proposed algorithms.  

 

 
Figure 7: Two keshi pearls that were sorted out of the test image set. 
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Additionally, several images have an elevated noise level compared to most others. The 

elevated noise level was a result of the manual registration of the X-ray images before the 

internal averaging process of the X-raying device had been finished. The difference between 

regular images and images with elevated noise is shown in Figure 8. The blue graph on the 

left shows the intensity of the pixels left to the white line of the first X-ray image. The graph 

on the right shows the image intensity of pixels left to the white line of the second image. As 

the chosen pixels are in both cases on the relative flat surface of the same support, their 

intensity distribution corresponds to the noise ratio. The left X-ray image shows a clear noise 

elevation compared to the right image. This will not happen once the image acquisition is 

automatized as mentioned in section 1.3.2. Problems caused by elevated noise due to the 

manual image acquisition are therefore not addressed specifically in the present work. 

 

 
Figure 8: Intensity distribution of the support left to the white lines in the two images shown in the graph 

next to the respective image.  

 

1.4.2 Human Evaluation 

To not disturb the human evaluation routine, the test images were taken prior to the human 

evaluation. Afterwards an expert of the DRMM evaluated the same pearls according to his 

daily routine. The results contain the three possible cases ‘good’, ‘reject’ and ‘not evaluable’. 

Of the whole set of 298 used test images 13 were classified as rejects, 5 as not evaluable and 

the remaining 280 pearls as good. Three examples of each class are shown in Figure 9. The 

first row shows examples of rejected pearls, the second row shows pearls that were classified 

as not evaluable, and the last row shows three examples of pearls classified as good. 
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Figure 9: Three types of human evaluation results. First row shows three examples of rejected pearls, second 

row shows three examples of not evaluable pearls, last row shows three examples of good pearls.  

1.5 Image Processing Methodology 

At first, a procedure to automatically measure the nacre thickness of Tahitian pearls was 

developed by dividing the global challenge into 5 sub problems that are addressed 

chronologically as: (1) segmenting the pearl, (2) detecting the nucleus, (3) detecting cavities, 

(4) calculating the 2D nacre thickness profile and (5) identifying pearls to reject.  
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The segmentation chronology was chosen according to the presence of a priori information. 

To segment the pearl from the background, known features (the geometry) of the support in 

which the pearls are positioned can be used. Furthermore unnecessary background 

information has to be deleted as soon as possible to decrease the global processing time by 

cropping the image to the size of the segmented pearl. The nucleus is detected in a second 

step, as it is known to be an artificially formed sphere and hence to appear within the image as 

a circular object. Cavities instead occur in a variety of shapes and intensities and furthermore 

not necessarily occur at all. Hence, its detection was moved to the end of the segmentation 

process when the segmented image is supposed to contain solely nacre or cavity regions.  

1.5.1 Basic Concept 

Due to the natural formation of pearls, their shape, size and cavity configuration in general 

varies. As it was impossible to say to which extend the obtained training images reflect this 

variety, it was a goal to use algorithms that are as much as possible independent of 

assumptions corresponding to the named parameters. Thresholding operations were for 

example generally deemed as not desirable. If applied to image intensity assumptions about 

the pearl or nacre thickness in direction of the X-ray beam would have to be made. If applied 

to image gradients assumptions about the pearls or cavity contours would have to be made. 

Additionally, global operations such as image resizing or Gaussian smoothing were not 

favored, as they result in a loss of information and blur image acquisition parameters that will 

be analyzed in a future work.  

1.5.2 Pearl Segmentation 

To segment the pearl, a model based approach was developed that is based on the geometry of 

the used support and the physical properties of X-ray attenuation. A synthetic background 

image is generated according to the current image configuration and both (original and 

synthetic) are calibrated so that their intensity corresponds to the geometry of the 

radiographed scene. Due to this calibration, the synthetic image can be mathematically 

subtracted from the original image, which corresponds to an X-ray image of a pure pearl 

taken without the support. Resulting artefacts are cleaned with a smoothing filter operation. 
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The segmentation is hence based on the support configuration and therefor independent of the 

pearl character.  

 
Figure 10: Workflow of the segmentation of the pearl.  

1.5.3 Nucleus Detection 

As the size of the nucleus is not known prior to the measurement, its radius and center have 

both to be detected. For this purpose a new heuristic circle detection algorithm was 

developed. A small circle is initialized around the region of highest image intensity, as after 

the prior calibration and segmentation it is known to belong to the nucleus (first image in 

Figure 11). A logical boundary probability is formulated that pushes the circle away from 

probable nucleus boundary pixels, while its radius is iteratively increased (the blue vectors in 

Figure 11 are circle pixels with boundary probability 1, the gaps between the vectors are 

circle pixels with boundary probability 0). If the circle is successfully pushed away from the 

nucleus boundary at each iteration, it will at one point cover the boundary of the nucleus 

(third image in Figure 11). The algorithm uses only logical expressions of gradient directions 

in regards of the current circle center and is hence as well independent of the pearls size or its 

nacre-nucleus configuration. Additionally, only one center pixel is evaluated per possible 

radius, making it a fast heuristic approach to comply with the required processing time of 1 

second per image.  
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Figure 11: Schema of the developed iterative approach to detect the nucleus.  

1.5.4 Cavity Detection 

To detect possible cavities, a classical region growing procedure is applied. Seed pixels are 

the previously obtained outer boundary of the pearl, as it is known to be nacre (second image 

of Figure 12). According to a simplified physical model, cavity boundaries are defined by 

local intensity maxima. The region growing is accordingly stopped at local maxima or if the 

previously detected nucleus is reached (last image of Figure 12).  

Segmented Image 1st Iteration 27th Iteration Final Result 

 

Figure 12: Region growing procedure to detect cavity boundaries.  
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1.5.5 Nacre Thickness Profile 

After the three segmentation steps, all crucial boundaries for the calculation of the nacre 

thickness profile are determined (Figure 13 on the left). The nacre thickness is measured for 

each pixel of the obtained outer boundary of the pearl in direction of its inside pointing 

normal vector (Figure 13 on the bottom right). This procedure corresponds to the current 

manual nacre thickness evaluation at the DRMM. The result is a vector containing the 

distance in pixel to either the nacre or the nucleus for each boundary pixel. Together with the 

spatial resolution of the images the nacre thickness profile can be expressed in mm (Figure 13 

on the top right).  

 

Figure 13: Obtained boundaries after applying the three segmentation steps (left) and schematic 
representation, of the nacre thickness measurement in direction of the inside pointing normal vectors of the 

detected outer boundary (blue arrows on the right). The graph on the top right is the obtained nacre 

thickness profile in mm.  

1.5.6 Identification of Rejects and Certainty Value 

The procedure currently applied at the DRMM to decide whether to reject a pearl or not is to 

identify visually if more than 20% of the whole nacre region has a thickness lower than 

0.8mm. The implementation is accordingly. The amount of boundary pixels with a nacre 

thickness lower than 0.8mm is divided by the sum of boundary pixels. This procedure is 

visualized in Figure 14. The graph on the left shows the calculated nacre thickness for every 

boundary pixels in mm. The dashed line is the current threshold of 0.8mm. Every entry of the 

nacre thickness profile vector is marked in red, as well as the corresponding regions in the X-
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ray image of the pearl on the right. The percentage of the nacre region lower than 0.8mm is in 

the given example 46% which makes the pearl a reject in the current definition of the DRMM. 

 

Figure 14: Automatically measured nacre thickness profile of a Tahitian pearl (left). The regions of the profile 
with a thickness lower than 0.8mm and the corresponding regions of the X-rayed pearl are marked in red  

 

As the automated measurement as well as the general imaging of spherical object results in a 

discrepancy between detected boundaries and real boundaries, a certainty measurement for 

the obtained results is proposed. The detected outer boundary is pixel wise shifted along its 

outside pointing normal vectors which results in a larger nacre thickness measurement. At 

each iteration, the percentage of the current nacre thickness profile lower than 0.8mm is 

measured (Figure 15 on the right, the ordinate describes the shift in pixels and the abscissa the 

percentage of nacre thickness lower than 0.8mm at the corresponding shift.). In the example 

of Figure 15, less than 20% of the nacre thickness is lower than 0.8mm when the outer 

boundary is shifted by 9 pixels. It means, the automatic detection of the example pearl as a 

reject would be false if imprecisions of all segmentation steps and imaging imprecisions 

resulted in a lower nacre thickness of 9 pixels at every point of the outer boundary.  

 

Figure 15: Representation of the certainty calculation. The graph on the left shows the automatically 

calculated nacre thickness profile in mm blue, and the by 9 pixels shifted profile in black. The graph on the 
right shows the percentage of nacre thickness lower than 0.8mm at each boundary shift from 0 to 9 pixels.  
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As the average precision of each segmentation step lies at ~1pixel, pearls automatically 

detected as rejects with a certainty value lower than 4 pixels might still be considered as good 

for exportation, according to the paradigm that in case of doubt pearls should not be rejected. 

However, the certainty value should be seen as a variable that is to be adjusted by the DRMM 

according to the results of the test phase of the prototype of our algorithm, rather than to be 

defined by the author.  

1.5.7 Used Hard- and Software 

All algorithms were programmed and run in Matlab 7.12.0 (R2012a). All tests were run under 

Windows 7 64 bit on a dual-core Samsung R590 (CPU Intel Core i5 450M / 2.4 GHz) with 

4GB RAM. The required processing time of 1 second per image was met with this equipment. 

Optimization possibilities that require a change of Hard or Software configuration 

(Multithreading, export to C++, etc.) were not evaluated. Any time a certain processing time 

is given within the following sections, the measure is based on the processing with the 

mentioned equipment. 

1.6 Automatic Measurement Results 

39 pearls with 20% of its nacre thickness lower than 0.8mm were detected. The pearls sorted 

by descending certainty values can be seen in Figure 16. Red bars correspond to the 13 pearls 

manually classified as rejects by DRMM experts. Two obvious false rejects due to false 

nucleus detection occurred. When a self-evaluation of the nucleus detection was applied (will 

be explained in section 4.4.5) the false rejects could be eliminated. The remaining rejects that 

were classified as good by the DRMM experts could be validated visually as true automatic 

classification by visual analysis of the segmentation results. Anyhow, as mentioned earlier, 

rejects with a low certainty should be filtered out by thresholding the obtained certainty 

values, as within the region of low certainty, segmentation and imaging imprecision would 

influence whether a pearl is a reject or not. When a threshold of 4 pixels is applied 16 pearls 

with automatically detected and visually validated nacre thickness of lower than 0.8mm would 

pass the control. All pearls with a certainty greater than the last manually rejected pearl (bar 

23, certainty of 5 pixels) can instead be seen as human false classifications (the two false 

rejects of the non-optimized automatic measurement excluded).  
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Figure 16: Rejection certainty values of the automated detection of pearls with 20% nacre thickness lower 

than 0.8mm. Red bars correspond to pearls manually classified as rejects by DRMM experts. 

 

The results show that, first of all, it is generally possible to automatically evaluate the nacre 

thickness of Tahitian pearls out of X-ray images, despite the large variation of shape and 

nacre-cavity-nucleus configuration. Secondly, the automatic classification is more reliable as 

the manual one. This is due to the fact that the experts do not always have enough time to 

analyze region boundaries in detail, seeing that thousands of pearls have to be controlled on a 

daily basis. According to the paradigm that in case of doubt the decision has to be made in 

favor of pearl quality, pearls with a thickness close to 0.8mm might slip through the control.  

Another challenge of the manual classification is the estimation if a region that has a thickness 

lower than 0.8mm corresponds to 20% of the 2D nacre profile. This is specifically for non-

round pearls a non-trivial task. Here, the automatic detection has a clear advantage, as the 

percentage in regards of the complete outer boundary can be calculated precisely.  

 

The average processing time for the complete nacre thickness measurement with the specified 

equipment is 0.7 seconds per image, which means the requisition of processing an image in 

less than 1 second was not only met but also some room for precision optimization is left.  

1.7 Structure of Part I 

After presenting related work in section 2, the implemented algorithms to automatically 

measure the nacre thickness of Tahitian pearls out of X-ray images will be explained in detail. 

The presentation of the first three steps, pearl segmentation, nucleus detection and cavity 

detection (sections 3, 4 and 5) follow a similar methodology. First, the goal of the task is 
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introduced along with main challenges that appear when classical algorithms are applied. 

These sections serve the goal to introduce the specific challenges determined by the nature of 

the Tahitian pearl and the character of the obtained X-ray images. Furthermore, they serve the 

goal to justify the choice of algorithms used for the automatic measurement. After introducing 

these challenges, the applied approaches are explained in detail. The results of each 

segmentation step are presented and the precision is measured independently from the later 

nacre thickness measurement. In the respective discussion sections the precision of the results 

is analyzed and optimization possibilities for imprecise detections are presented. Each section 

ends with a brief conclusion summarizing the presented work. The nacre thickness 

measurement, based on the obtained region boundaries, is explained in section 6 and the 

identification of rejects along with the certainty calculation is presented in section 7. In 

section 8, the results of the automatic nacre thickness measurement are presented. The results 

are discussed and compared to the manual classification of the experts of the DRMM in 

section 9. Optimization possibilities are presented with a broader view on the complete 

measurement. A prototype, developed on the basis of the presented algorithms, that was 

recently implemented at the DRMM for further validation of the used methods will be briefly 

introduced in section 10. In section 11, a conclusion in regards of the complete measurement 

procedure is given followed by a sketch of the further ongoing of project RAPA concerning 

the automatic nacre thickness measurement of Tahitian pearls.  
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2 Related Work 

Strongly related to this work is the article [LEI09], in which an automated nacre thickness 

measurement of pearls is proposed. The pearl type is not specified, but the origin of the article 

suggests that Chinese Freshwater pearls are used. For image acquisition, optical coherence 

tomography (OCT) is applied. The obtained OCT images are denoised and edge pixels of the 

outer boundary of the pearl and the nucleus are identified with Canny edge detection and 

Support Vector Machine respectively. Afterwards the outer boundary of the pearl and the 

nucleus are obtained by fitting circles to the extracted edge pixels. The automatic nacre 

thickness measurement is evaluated with 8 manually segmented pearls and reaches 93.6% 

average accuracy.  

While an interesting and straight-forward approach, it is stated clearly in the article that the 

basic assumption for this approach is that the outer boundary of a pearl can be described by a 

circle: ‘As a priori knowledge, we suppose that the pearl and nucleus are both spheres, thus, 

in 2D OCT image, the outer and inner boundaries of nacre are both circles’. This assumption 

does not hold for Tahitian pearls, as shape variety is a typical feature. In Figure 17 on the left, 

an image of the cited article shows the fitted circles in blue that describe the outer boundary of 

the pearl and the nucleus. The X-ray images of two typical Tahitian pearls on the right show 

that their outer boundary cannot be described with circles. The approach is further developed 

in [SUN10] and [LIU13], but still under the condition that the contours of pearl and nucleus 

can be approximated by circles. Additionally, the occurrence of cavities is not addressed, as 

they are not typical for Chinese Freshwater Pearls. The approach is hence not applicable to 

Tahitian pearls.  

 

Figure 17: Results of the approach proposed in LEI09 (left) based on the assumption that the pearl boundary 
can be described by a circle (left). On the right two typical examples of Tahitian pearls are shown for which 

this assumption does not hold.  
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To the authors knowledge, the cited articles are the only ones that can be found in the 

international literature dealing with an automated nacre thickness measurement of pearls.  

From a broader point of view, two domains can be related to our work. The first one is the 

general use of computer vision for quality control in industrial applications [SZA15]. 

Specifically automated fruit quality control with computer vision applied on X-ray images 

[ABB99], as it is the automation of quality evaluation of natural products by analyzing their 

internal structure. Approaches comprise for example automated quality control of apples 

[SCH96], [SCH97] or wheat kernels [NEE07]. The second domain is medical imaging, in 

which numerous segmentation approaches applied to X-ray images can be found [STO13]. 

Anyhow, these domains can only be related to the purely algorithmic parts of each 

segmentation step of the nacre thickness evaluation and not to the general approach of 

automatizing the nacre thickness control of Tahitian pearls out of X-ray images. References of 

related work to those algorithms will hence be given in the corresponding sections. 
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3 Pearl Segmentation 

The first step of our procedure to obtain the nacre thickness profile is to segment the pearl, i.e. 

to detect the outer boundary of the pearl. The main challenge of this task is the superposition 

or the adjacency of background gradients and the outer boundary of the pearl. Generally, 

different approaches can lead to a successful segmentation; the purpose of this study is to 

define the optimal method in means of processing time and in means of accomplishing the 

paradigm of avoiding false negative nacre thickness evaluations. 

 

In the next section the possible application of different classical segmentation approaches is 

analyzed. Main challenges faced when testing these approaches are outlined to illustrate the 

general character of the X-ray images and why finally a physical-based model approach was 

chosen to segment the pearls. This approach is explained in detail in section 3.2. The 

precision of the implemented approach is measured in section 3.3 showing that the chosen 

method is adequate to segment the pearls from the X-ray images. The results are discussed in 

section 3.4 along with recommendations of possible improvements. The conclusion follows in 

section 3.5. 

3.1 Main Challenges 

In the case of the test images, the general image configuration is rather simple: a background 

that describes the support, and one object that is the pearl. The main challenge is caused by 

the non-uniformity of the background and potential superposition of background gradients 

with the pearls boundary. In Figure 18 one borehole of the support is shown in detail together 

with its representation in an X-ray image without pearl.  

 
Figure 18: A detail of the support showing a borehole with bevel (left two images). On the right is the 

according X-ray image with image intensity distribution along the white line through the center of the 
borehole.  
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Each borehole contains a bevel to facilitate filling and emptying the support. As a result the 

X-ray image of a blank borehole contains three regions. First, the borehole as a dark circular 

area, as it contains less material than the rest of the support. Second, a concentric gradient that 

describes the bevel. And third, the rest of the support with a more or less uniform light 

intensity distribution.  

 

 
Figure 19: A pearl located completely within the borehole (left) and a pearl surpassing it completely (right). 

 

In the case of a pearl located completely within the borehole (Figure 19 on the left), the pearl 

can be segmented by deleting the dark borehole region with simple thresholding. In a similar 

way, pearls that surpass at any point the borehole and its bevel (Figure 19 on the right) can be 

segmented by deleting the light region of the surface of the support by thresholding. 

Difficulties arise in case the pearl touches the outer boundary of the borehole or partially 

surpasses the borehole. An example of the latter is shown in Figure 20.  

 

 
Figure 20: Two details of areas in which the pearls outer boundary lies within the bevel of the borehole.  
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3.1.1 Region-Based Approach 

The idea of region-based approaches is to cluster adjacent pixels that share a certain degree of 

similarity. A typical example for these approaches is region-growing [ADA94]. Seed pixels 

are chosen and their adjacent pixels are evaluated if they share the same predefined 

characteristics. If so, they and the corresponding seed pixels are determined to belong to the 

same region. Now every adjacent pixel of these regions is again evaluated and in case they 

share the same homogeneity criterion as well added to the corresponding region, leading to a 

continuous growing of regions until no adjacent pixel complies with the homogeneity 

criterion. Applications of this approach applied to X-ray image segmentation can be found for 

example in [POH01], [PAN07], or [PRA14].  

 

The main challenge when region-based approaches are applied to X-ray images of pearls that 

partially surpass the borehole is to define a suitable homogeneity criterion. As the background 

is non-uniform and superposed by the pearl, such a definition based on for example image 

intensity is difficult (Figure 21). An alternative might be to use gradient information as for 

example done in [KAU15] for lesion segmentation in medical-ray images, but the strong 

gradient of the borehole superposed on the pearl would have to be recognized, which means 

information about gradient directions in regards of a certain reference point would have to be 

included.  

 
Figure 21: Superposition of intensity distributions of pearl and background. 
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A more general drawback is that a large number of pixels have to be evaluated iteratively that 

do not contain useful information of the pearls boundary. Seeing the image size of 1000x1000 

pixels and the requirement that the whole measurement has to be done in at least 1 second, 

region-based approaches are generally not favorable, especially as large parts of the pearls 

boundary can be detected more easily with edge based approaches.  

3.1.2 Edge-Based Approach 

The main idea of edge based approaches is that object boundaries are defined by strong image 

gradient magnitudes. Specifically for the pearl this holds true in many cases as no background 

or object texture exists. Some basic operators to detect edges are Sobel [SOB68], Prewitt 

[PRE70], LoG [MAR80] and Canny [CAN86]. Two main difficulties aroused when applying 

classical edge detection to segment the pearl: cutting of the pearl boundary due to strong 

superposed borehole gradients and edge shattering due to weak pearl boundaries at the bevel 

region. Both are visualized in Figure 22 for the application of the Sobel operator with a filter 

size of 3x3. The image on the left is the original and the image on the right is the original 

superposed with all detected edges after non-maximum suppression. The upper detail shows 

the cutting of the pearls boundary due to the strong borehole gradient (number 1) and 

shattering of edges (non-connected edges) due to the superposition of opposed pearl and bevel 

gradient (number 2). The second detail shows again cutting due to the borehole gradient 

(number 1). Additionally, detected false edges with relatively strong magnitude within the 

pearl region are marked with number 3. This happens due to the spherical form of the pearl 

and as well for pearls that do not surpass but touch the borehole gradient as in both cases the 

maximum gradient of the pearls boundary is compensated or superposed by the bevel 

gradient.   
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Figure 22: Details of the original X-ray image (left) and of the original image superposed with all edges 

detected with a 3x3 Sobel operator (right).  

The shattering of weak edges could be addressed by applying a larger filter size, but this 

would increase the cutting of edges due to the strong borehole gradient. Another possibility 

might be to apply the Canny operator that allows to detect weak edges with a hysteresis 

method even with a lower filter size, but the operator is too time intense for the required 

processing (0.7 seconds when applied to the test images of pixel size 1000x1000).  

 

It is not at all impossible to solve the mentioned problems one by one. Anyhow, as each 

problem has its own reason, these reasons have to be identified and afterwards all edges have 

to be filtered and connected according to the reason of their shattering. In summary, 

traditional edge detection does not lead directly to satisfying results; additional steps would 

have to be added, which at some point conflicts with the general requirement of a complete 

nacre thickness measurement within 1 second per image. 

3.1.3 Active Contours 

A method suitable to profit from the partially clear edge gradients while overcoming edge 

shattering is the active contour approach ‘snakes’ [KAS88]. In this approach an initial curve is 

iteratively moved over the image until it reaches edges with a predefined condition. The 

contour of the moving curve is constantly stabilized with an internal energy term that restricts 

the curve from extensive or craggy deformation. The main advantages of this approach are 

that the result is a closed curve that might contain pixels with weak or even no boundary 

information and that its contour corresponds to a predefined degree of smoothness. It is hence 
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widely used in the related domain of region segmentation in medical images (see [BEC14] for 

a review on deformable models in medical image segmentation).  

 

As the desired result of segmenting the pearl is a closed and naturally smooth contour the 

application of snakes seems suitable from a general point of view. Additionally, some general 

boundary information of the X-ray images can be used. As shown in Figure 23, the gradient 

directions of the pearls contour point at any point to the inside of the pearl (blue arrows) while 

the gradient direction of the borehole and its bevel point to the outer borders of the image (red 

arrows). A simple stopping criterion for an active contour can be formulated accordingly.  

 
Figure 23: Schema of pearl boundary gradient directions (blue arrows) and borehole and bevel gradient 

directions (red arrows). 

 

A contour that is initialized at the outer borders of the image will always contain the pearl 

from the start. If the movement of the curve is a simple constant shrinking that is stopped 

locally if a point of the curve touches a positive image gradient in direction of the normal 

vectors of the curve, the contour should after a certain amount of iterations describe the 

complete outer boundary of the pearl. A simple approach according to [KAS88] with a 

constant shrinking force and an opposite, positive balloon force for local contour adaption as 

described in [COH1991] was implemented. With this approach the pearls can generally be 

segmented, but the trade between processing speed and precision was not ideal. Due to the 

partially weak boundaries, the step size had to be in a low range (~0.1). If the initial boundary 

length was set to 800 pixels at the image border, average processing time until the contour 

reached the pearl boundary at any point was 0.7 seconds (first row in Table 1). The average 

distance between each pixel of the final boundary was 1.6 pixels. To speed up the algorithm, 

either the initial contour length can be reduced (second row in Table 1) or the step size 

increased. Increasing the step size resulted in the contour over jumping weak boundary edges, 
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while decreasing the length of the active contour results in a poor resolution of the resulting 

boundary. The model-based approach that will be explained in the next sections is not only 

faster but has additionally the advantage that the superposition of background and pearl 

gradients can be eliminated, which facilitates all following segmentation steps.  

Active Contour Length 

[pixel] 

Average processing time per 
pearl 

[sec] 

Average pixel distance of 
final contour 

[pixel] 

800 0.75 1.6 

400 0.34 3.0 

Table 1: Relation between processing time and precision of final result in regards of the active contour 
length. 

3.1.4 Model Based Approach 

The idea of model-based approaches is to use a priori knowledge of image or object 

configuration to segment objects or the background (see for example [CHE05] that describes 

the use of a femur model in combination with snakes for medical X-ray image segmentation 

purpose). As the background configuration of the used X-ray images corresponds to the 

measurable geometry of the support, the requisition of suitable a priori knowledge to segment 

the pearl from the background is generally given. A classical approach would be to create a 

synthetic background image that describes the current borehole without pearl and to 

mathematically add out the background by simple subtraction (Figure 24).  

 
Figure 24: Example of pearl segmentation by subtraction of the synthetic background B from the original 

image I. 

 

A further improvement of this method can be obtained if the physical properties of X-ray 

attenuation are used. If the relation between image intensity and X-ray intensity is known, the 
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attenuation of X-ray intensity caused by the support can be mathematically added out, so that 

the resulting image corresponds to a theoretical X-ray image of the pearl without the support 

(Figure 25). The implementation is still straight forward, but has the significant advantage that 

the general problem of superposed gradients is reduced for all further processing steps. As this 

approach was deemed the most suitable, its implementation will be explained in detail in the 

next sections.  

 

 
Figure 25: Example of pearl segmentation with a synthetic background in combination with physical 

properties of X-ray attenuation.  

3.2 Implemented Approach 

To add out the background based on the physical properties of X-ray attenuation three steps 

are necessary. First, the image intensity has to be related to the X-ray intensity after the 

penetration of the support and the pearl. With the obtained function the images can be 

recalibrated to the X-ray intensity after penetration, which is necessary to mathematically add 

out the background based on the geometry of the radiographed scene. Second, a synthetic 

background image has to be created that corresponds to the X-ray intensity of the support 

without pearl. Afterwards, the background can be added out and potential artefacts have to be 

deleted.  

3.2.1 Image Calibration 

Two approaches to obtain the relation between image intensity and physical properties of the 

radiographed material can be used. The first one is theoretical and starts at the X-ray 

generator, while the other one is experimental and starts at the output image intensity. For the 
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first one all physical and numerical parameters along the whole image generation process 

starting at the X-ray gun have to be known to obtain a formula between initial X-ray intensity 

and image output. This is not really an option, as even if many parameters are known, the 

image output can vary depending on parameters that are not considered during the image 

generation (temperature of the device components, temperature of the radiographed material, 

air pressure, electronic noise variation, etc.). Additionally, modern X-ray imaging devices are 

assemblies of components that are manufactured by different companies, making the 

acquisition of information to reconstruct the whole image generation chain difficult. A 

shortcut could be made by only considering the conversion between X-ray intensity after the 

radiographed material and image output; still the mentioned problems stay the same.  

 

The second approach instead is practicable without major effort. A reference image of a 

known object has to be taken to find a mathematical relation between the objects size and 

density and the output image intensity. Then each image taken under the same conditions can 

be recalibrated from image intensity to geometric properties.  

For this purpose an X-ray image of a blank nucleus as shown in Figure 26 on the left was 

used. In a first step the radial intensity distribution was extracted (Figure 26 in the middle) 

and averaged over 360° (Figure 26 on the right) to decrease possible noise influence. The 

profile was taken in a radius range that did not include the transition between nucleus 

boundary and background to avoid transition artefacts).  

 

 
Figure 26: X-ray image of a nucleus (left), its radial intensity profile (middle) and the profile averaged over all angles 

(right). 

 

A general function that converts the radial intensity profile to a circular function was then 

estimated experimentally to 

 𝐼′
𝑟,𝑝 = (1 − 𝐼𝑟,𝑝)

−0.4
 . 

. 
( 1  ) 
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In this equation Ir,φ is the radial intensity profile after averaging and I’
r,φ the radial intensity 

that corresponds to a circular object (Figure 27). In a second step the obtained function was 

calibrated to the measured size of the nucleus as to  

 𝐼′′𝑟,𝑝 = 12.6𝐼′𝑟,𝑝  . 
. 

( 2  ) 

 

 
Figure 27: Image calibration process. 

 

The resulting calibration function was validated with 5 nuclei of different size. Additional 

validation tests were done by calculating a semi 3D nacre thickness profile of near-round 

pearls. The radius of the nucleus and the outer boundary of the pearl were detected to obtain 

an average nacre thickness that does not depend on the image intensity (Figure 28 in the 

middle, radius difference corresponds to 1.23 mm nacre thickness). Out of the calibrated 

images the nacre thickness at any point of the pearl was calculated as  

 

 
𝑑𝑖 = √(

𝐼𝑖
2
)

2

+ 𝑑𝑖 ,𝑁
2 − 𝑅𝑁  . 

 

( 3  ) 

 

In this equation Ii is the calibrated image intensity of pixel i, di,N is the distance of the pixel to 

the center of the nucleus and RN the radius of the nucleus. The result corresponds to the 3D 

nacre thickness profile of one half of the whole pearl (Figure 28 on the right). The results 

corresponded to the expected constant nacre thickness over the whole surface as well as it 

corresponded to the actual nacre thickness measured as radial difference between pearl 

boundary and nucleus.  
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Figure 28: Semi 3D nacre thickness profile (right) for a near-round pearl 

3.2.2 Synthetic Background Generation 

To create a synthetic background image, the radial intensity distribution of the borehole, its 

bevel and the rest of the support was obtained directly from the images as shown in Figure 29. 

The center of the borehole was detected and the radial intensity distribution (Figure 29 in the 

middle) of areas that were not superposed by the pearl (areas within the white region of the 

image on the left) averaged over all angles (graph on the right). By rotating the resulting 

averaged radial intensity function a synthetic background image that corresponds to the 

original image intensity can be calculated.  

 

 
Figure 29: X-ray image with a pearl partially surpassing the borehole (left), the radial intensity profile of the 

borehole and the profile averaged over all angles (right).  

 

The procedure assumes that the borehole is indeed a rotational symmetric object. This 

assumption can be evaluated by calculating the standard deviation between the averaged 

radial intensity distribution and the radial intensity at each angle of the region not superposed 

by the pearl. The result is shown in Figure 30 in the middle. A large peak appears at the 
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transition region between borehole and bevel (~7.14mm) while the rest of the graph shows 

deviations within the noise level.  

 
Figure 30: Average radial intensity profile of the borehole (left) its standard deviation (middle) and a visualization of 

negative (grey) and positive (white) discrepancies to the average profile (right). 

 

Considering an ideally manufactured rotation symmetric borehole that is ideally orthogonal to 

the X-ray beam, artefacts at this transition region can still be expected due to the approximate 

character of image generation. This means, even in the ideal case a peak will most likely 

appear at this transition region as the artefacts caused during image generation are not 

necessarily distributed symmetrically. Other effects like an imperfect orthogonal alienation 

between borehole and X-ray beam and imprecise manufacturing or abrasion of the support 

can be added to the cause. The image on the right of Figure 30 shows all pixels of lower 

intensity than the average profile in grey and all pixels of higher intensity in white. The more 

or less random distribution shows that incorrect borehole center detection is not one of the 

causes, as it would result in a positive deviation on one side and a negative deviation on the 

other of the bevel contour.  

As the assumption that the borehole is rotation symmetric was validated for the set of training 

images, a general radial intensity profile can be generated that is applicable for all images 

generated under the same conditions (specifically zoom and initial X-ray intensity). Such a 

profile would have to be calculated only once prior to the measurement and can then be used 

for all images of one support. This is not only a faster approach but also necessary for pearls 

that completely surpass the borehole, as the background intensity cannot be taken out of the 

image due to the complete superposition of borehole and pearl. For the used images an 

according general radial profile function was obtained by averaging the averaged radial 

borehole intensity profiles of 10 images.  
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3.2.3 Pearl Segmentation 

According to the presented methodology, four steps are necessary to segment the pearl in a 

given image (see Figure 31 for a schema of the workflow). First, the center of the borehole 

has to be detected. Second, a synthetic background image that corresponds to the position of 

the borehole of the current image has to be generated. Third, both images have to be 

calibrated according to the calibration function introduced in section 3.2.1. Finally, as the 

calibrated images correspond to the material thickness of the radiographed material, the 

calibrated synthetic image can be subtracted directly from the calibrated original image. 

Afterwards, the pearl can be segmented by thresholding. Theoretically, the threshold should 

be zero, but has to be increased by the noise level of the image. In the current implementation 

this threshold is fixed for all images with the assumption that the noise level should not 

change for images taken under the same conditions. The threshold is obtained by measuring 

and averaging the noise level on the flat surface of the support of 10 images.  

 

 
Figure 31: Workflow of the segmentation process 

  



80 
 

3.2.4 Artefacts 

After thresholding the segmented image, three types of artefacts have to be addressed. First, 

shattered pixels whose intensity exceed the threshold but do not belong to the pearl (Figure 32 

marked with 1 in the binary image on the right). Second, artefacts caused by the deviation 

between ideal synthetic background and real image background at the transition region 

between borehole and bevel that do not belong to the pearl but are connected to the pearl 

region (as explained in section 3.2.2; numbered in Figure 32 with 2). And third, artefacts 

caused by the same reason within the pearl region (numbered with 3). 

 
Figure 32: Different types of segmentation artefacts.  

The first type, shattered pixels that are likely to be caused by deposits on the surface of the 

support, can be suppressed by segmenting the largest object of the binary image which is 

supposed to be the pearl (Figure 33 on the left 

 

For the second and third type, artefacts caused by the deviation between ideal and real 

background, a single procedure can be applied. As shown in Figure 30 in section 3.2.2 (page 

78) the deviation shows a peak at the transition region between borehole and bevel. The 

affected region of this deviation can be narrowed to -4 to +4 pixels in radial direction in 

regards of the detected borehole center. Those pixels have to be replaced by pixels of intensity 

that corresponds to the region outside this margin. Accordingly, a smoothing operation leads 

to a general decrease of intensity for artefacts that do not belong to the pearl but are connected 

to it (type 2) and an adaption of artefacts within the pearl region to the surrounding pearl 

intensity (type 3).  

The implementation is handled accordingly. First, pixels remaining after the first thresholding 

within the region of -4 to +4 pixels in radial direction of the detected borehole are identified 
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(Figure 33). Afterwards those pixels are iteratively replaced by the average of their 

surrounding pixels within a 5x5 neighborhood. A linear filter was preferred to for example a 

Gaussian filter to not give too much weight to artefact pixels of high intensity. After the filter 

operation (Figure 34 second image), the largest object of the image containing all remaining 

pixels greater than the threshold is identified as the pearl (Figure 34 third and fourth image). 

Please note that the darker region on the bottom right of the pearl is a cavity and not an 

artefact.  

 

 
Figure 33: Segmented image and region of artefacts of type 2.  

 

 

 

 

Figure 34: Artefact cleaning procedure.  
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3.2.5 Summary and Pseudocode 

The implementation of the pearl segmentation is according to the previously explained steps 

the following: An artificial calibrated background image of size 2000x2000 pixels with the 

spatial resolution of the test images is generated. Afterwards an X-ray image of a pearl is 

loaded and the center of the borehole is detected. A detail of the generated background image 

is taken that corresponds to the situation of the detected borehole center in the current image. 

The current image is calibrated and the obtained background image is subtracted. A threshold 

of 0.04mm is applied for a first rough segmentation. Afterwards, all remaining pixels within a 

4 pixel range around the borehole boundary are identified and iteratively smoothed 10 times 

with a linear filter of size 5x5. A second time the image is segmented by applying a threshold 

of 0.04mm. The largest object of the remaining pixels is identified as the pearl.  

 

pseudocode corresponding section 

get calibration function fc section 3.2.1 
get average radial intensity profile section 3.2.2 
create synthetic background image B section 3.2.2; 3.2.3 
calibrate synthetic background B’=fc(B) section 3.2.3 
for image Ii  

           detect borehole center  
           get detail of synthetic background Bi

’
 section 3.2.3 

           calibrate image I’i=fc(Ii) section 3.2.3 
           delete background I’’i= I

’
i- Bi

’
 section 3.2.3 

           clean artefacts section 3.2.4 
end  

3.3 Precision of Results 

The precision of results was first analyzed visually to detect major negative (segmented pearl 

region too small) or positive (segmented pearl region too large) discrepancies between 

segmentation result and desired result. Afterwards, a precision measurement based on strong 

image gradients close to the detected boundary was used to obtain a pixel-based performance 

evaluation. As unfortunately most pearls of the test image set are located completely within 

the borehole, all images of the training set in which pearls surpass the borehole (31 images) 

were used as well to evaluate the precision of the applied algorithm.  
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3.3.1 Visual Analysis 

The largest negative discrepancies between obtained segmentation and desired result for the 

pearls of the training set surpassing the borehole were observed in two cases in which the 

pearls outer boundary superposed the bevel of the borehole (Figure 35 on page 84 first two 

rows, crucial regions marked with 1 and 2), and in one case in which parts of the pearl 

superposed the upper surface of the support (Figure 35 last row number 3). In all three cases 

parts of the pearl of lower intensity than the threshold were cut off.  

 

The largest negative discrepancies within the training set were observed in some cases the 

pearl touches or is close to the borehole boundary (Figure 36 first two rows) and in cases of 

thin pearl parts on the borehole background (Figure 36 on page 85 third two row).  

 

The largest positive discrepancy within the training set was observed in one case in which 

parts of the bevel were wrongly identified as pearl (Figure 37 on page 86 first row number 1) 

and in two similar case within the training set (Figure 37 second and third row number 2 and 

3). 
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Original (Detail) Detected Boundary Segmentation Result 

 

Figure 35: Largest negative discrepancies between segmentation result and desired result of the training set.  
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Original (Detail) Detected Boundary Segmentation Result 

 

Figure 36: Largest negative discrepancies between segmentation result and desired result of the training set. 
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Original (Detail) Detected Boundary Segmentation Result 

 

Figure 37: Largest positive discrepancies between segmentation result and desired result. 

 

3.3.2 Precision Measurement 

To obtain a numerical precision value on a pixel basis, the following measurement was done. 

First, the outer boundary of the segmented region (left image of Figure 38 with normal 

vectors in blue) was smoothed with a regularization matrix to obtain consistent normal vectors 

(image in the middle of Figure 38 with normal vectors in red). The normal vectors of the 

smoothed contour were used to evaluate the gradient, starting at each pixel of the non-

smoothed detected boundary 15 pixels in positive and 15 pixels in negative normal vector 
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direction (the image on the right of Figure 38 gives an impression of the evaluation range). 

The range was chosen empirically, as no larger discrepancies were observed. The strongest 

gradient in normal vector direction was identified and defined as ‘optimal’ boundary pixel. 

This assumption is based on the general assumption of edge detection that edge pixels have 

larger gradients than their neighbors. The distance between each pixel of the boundary 

obtained by applying our approach and the obtained benchmark boundary at local gradient 

maxima is used as precision measurement. 

 
Figure 38: Procedure of the precision measurement.  

 

The average of this distance for the boundary of each of the 298 used test images is shown in 

Figure 39 on the top (next page, straight blue line) along with the standard deviation of the 

distance for all pixels of a boundary (dashed black line). The graph can be used for a general 

performance evaluation of the segmentation process. For an evaluation of the later nacre 

thickness measurement in regards of false negatives, only negative discrepancies are crucial 

as they describe boundaries that cut off parts of the pearl and hence lead to a thinner measured 

nacre thickness as the real one. For this purpose a second average calculation was done in 

which all positive discrepancies were set to zero. The according graph along with the standard 

deviation is shown in Figure 39 on the top on the bottom. The three minima at images 21, 91 

and 214 in the graph on the bottom of this figure correspond to the three example images 

shown in Figure 36.  

 

The same procedure was done for the pearls of the training set that surpass the borehole. The 

according graphs are shown in Figure 40. Here the general deviation from the optimum is 

shown on the left and the deviation with positive discrepancies set to zero on the right.  
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Figure 39: Average deviation from optimal boundary and standard deviation of the detected boundary of 

each image in a -15 to +15 pixel range (top) and in a range from -15 to 0 pixels (bottom) for the test set. 

 

 
Figure 40: Average deviation from optimal boundary and standard deviation of the detected boundary of 
each image in a -15 to +15 pixel range (top) and in a range from -15 to 0 pixels (bottom) for pearls of the 

training set that surpass the borehole.  

3.4 Discussion 

The detection results are generally deemed as suitable even though discrepancies to the 

optimal boundary exist. In most of the cases the average discrepancy of all boundary pixels 

lies between 0 and -1 pixel. Still in some cases local discrepancies are up to 8 pixels large 

which corresponds in the spatial resolution of the test images to ~0.2mm. As the minimal 

required nacre thickness is currently set to 0.8mm a discrepancy of 8 pixels corresponds to 

25% of the rejecting criterion. A positive fact is that larger discrepancies were only observed 
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at local parts of the whole boundary. As pearls are only rejected if 20% of the nacre thickness 

is lower than 0.8mm the observed local discrepancies would not necessarily lead to false 

rejected pearls.  

3.4.1 Discrepancy Types 

Observed discrepancies between detected and optimal boundary can be divided in two types: 

threshold-related and model-related. Threshold-related discrepancies occurred when parts of 

the pearls calibrated image intensity was lower or higher than the applied general threshold. 

Possible reasons are local variations of support geometry due to imprecise manufacturing or 

temporary variations of X-ray gun current and voltage or both. An adaptation of the threshold 

to the corresponding image resulted in a more precise pearl boundary (Figure 41). 

Accordingly an implementation of a dynamic threshold generation for each image during the 

segmentation procedure should be considered. It has to be evaluated if the elevated precision 

justifies the increase in processing time.  

Model-related discrepancies were observed for pearls whose outer boundary is close to but 

does not touch the borehole boundary. Their outer boundary pixels were deleted due to the 

smoothing process implemented to delete artefacts at the transition region between borehole 

and bevel (as discussed in section 3.2.4). Examples can be seen in Figure 36 first two rows. 

 
Figure 41: Examples of threshold related artefacts.  
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3.4.2 Processing Time 

The processing time of the executed algorithm was measured for the three sub steps borehole 

detection, pearl segmentation (includes calibration and subtraction) and artefact cleaning. 

Figure 42 shows the processing time for each image of the test set. Average processing time 

for the complete segmentation process is 0.27 seconds for the test images (Figure 43). For 

comparison the processing time for a simple edge detection without further processing with 

the Sobel operator (0.1 seconds) and the Canny operator (0.79 seconds) are listed as well.  

 
Figure 42: Processing time for the three sub steps of the proposed segmentation algorithm. 

 

 

 Our approach    

 Borehole 

detection 

Segmentation Artefact 

cleaning  

  

 0.11sec 0.12sec 0.04sec Sobel Canny Snake 

∑ 0.27sec 0.1sec 0.79sec 0.65sec 

Figure 43: Average processing time in seconds per image for the proposed approach and for standard 

algorithms. 

3.4.3 Optimization Possibilities 

As the borehole center is detected anyway, a test if the pearl is located completely within the 

borehole can be done. If so, the segmentation process can be reduced to the region within the 

borehole of uniform intensity. For the presented evaluation this was not applied as most of the 
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pearls of the test set are located within the borehole and an evaluation of such a processing 

time would implicate a faster processing than to be expected in the average case.  

Another optimization can be reached by using resized images of smaller size. After detecting 

the borehole of the original image, the image could be resized and a synthetic background 

image according to the resized image can be generated. The pearl of the smaller image can be 

segmented with the previously proposed procedure and the boundary pixels transferred to and 

connected within to the original image. In this case the smoothing region and strength to 

delete artefact would have to be adapted. This would decrease the processing time as most 

time is caused by the calibration and subtraction of the relative large images of size 

1000x1000 pixels. 

An increased precision can be obtained if the method used for the precision measurement is 

applied after the segmentation of the pearl. In a first step the pearl is segmented as proposed. 

Afterwards the boundary is refined by identifying maximum image gradients in normal vector 

direction of the previously obtained boundary. To comply with the paradigm that in case of 

doubt a decision has to be made in favor of pearl quality, those maximum gradients should be 

identified only outside the detected boundary. An application of this procedure showed that 

discrepancies caused by the smoothing process can be eliminated. The resulting contour 

corresponds to the image processing standard that object boundaries are defined by local 

image gradient maxima.  

3.4.4 Background Configuration 

The theory of the proposed algorithm is based on the assumption that the boreholes are 

rotation symmetric. While this assumption was true for the support used to acquire the 

training images, several boreholes of the support used for acquiring the test images showed 

major damages (Figure 44).  

 
Figure 44: Three examples of damaged boreholes. 
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Even though this had no negative effect on the segmentation of the test images, as in all these 

cases pearls were located completely within the damaged boreholes, a combination of 

surpassing pearls and damaged boreholes might lead to wrong segmentations. For the moment 

it is not clear how to handle this problem. A dynamic numerical compensation of these 

damages is difficult, as the dynamic detection of those cases will need major effort (if even 

possible) in cases the pearl completely surpasses the damaged borehole. As these defects 

concern only some boreholes on some supports, one possibility is to simply cover those 

damaged boreholes, so that they are practically ‘out of use’. Even though this is the most 

efficient way to handle this problem on short notice, it has to be assumed that over time all 

boreholes will suffer from wear and tear (even though the shown examples are most likely 

damaged by brute force and not by regular use or bad manufacturing). This means for a long 

term implementation of the presented algorithm: if the deviation between the intensity profile 

of many boreholes of a support and the ideal profile became significant, the support cannot be 

used anymore for the automatic measurement and hence has to be replaced with an equivalent 

new support. If the replacement of damaged supports is not possible, the theoretical basis of 

the presented model-based approach will become obsolete over time and hence another 

algorithm has to be used. Out of the tested algorithms the active contour approach ‘snakes’ 

has been deemed as the second most suitable to segment the outer boundary of the pearl. This 

approach does not depend on the geometry of the borehole and can be used for segmentation 

independently of possible damages. Anyhow, the use of snakes will increase the processing 

time of both, the segmentation of the outer and the inner boundary of the pearl. 

3.4.5 Alternative Support Configuration 

Another method to significantly facilitate the pearl segmentation is to generally change the 

nature of the support. Major difficulties are caused by the superposition of support gradients 

and the pearl. Support gradients can be avoided by changing the geometry of the support or its 

material. First tests were conducted by using polystyrene as support material as shown in 

Figure 45. The resulting image showed no background gradients, which reduces the 

segmentation process to a simple threshold application. A prototype of a complete support 

made out of polystyrene is currently in work.  
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Figure 45: A linear imitation of the borehole geometry with polystyrene and the resulting X-ray image. 

3.5 Conclusion 

In the previous sections our approach to segment the pearls from the X-ray images was 

explained. A model based approach was developed that consists of the creation of an artificial 

background that is subtracted from the original image. Before the subtraction both images are 

calibrated so that the image intensity corresponds to the actual geometry of the radiographed 

scene. The resulting image corresponds hence to the geometry of the pearl if radiographed 

without the used support. The pearl is then segmented by applying a threshold and artefacts 

are smoothed with an averaging filter operation. The general results of the proposed method 

correspond with slight exceptions to the optimal boundary. A general discrepancy in a range 

of -1 and 1 pixel between detected and benchmark boundary has to be considered for the later 

evaluation of the nacre thickness measurement. 

 

For further processing, the images were cropped to the size of the segmented pearl. As it is of 

importance to rank the processing time of the following steps, the minimal side length and the 

maximum side length of the obtained images are shown in Figure 46 in the graph on the top in 

straight blue and dashed black respectively. The root of the amount of pearl pixels can be seen 

in the graph on the bottom. The interpretation is that useful information within the segmented 

and cropped images correspond to a square image of this side length. Average obtained image 

size is 398x431 pixels and the average root of the amount of pearl pixels is 345. If not stated 

otherwise the calibrated images will be used for visualization purposes in the following 

sections, as boundaries appear more clearly compared to the original image configuration.  
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Figure 46: image side length (top) and root of the amount of pearl pixels (bottom) in the segmented and 

cropped images. 

4 Nucleus Detection 

The second step of our procedure to obtain the nacre thickness profile is to detect the nucleus. 

As the nucleus is a spherical object it appears within the X-ray images as a circle. The nucleus 

detection can hence be seen as classical circle detection. As the size of the nucleus is not 

known prior to this step, its center as well as its radius has to be detected. General difficulties 

are caused by the superposition of nacre thickness variation and nucleus, and weak nucleus 

boundaries. 

Main challenges of the detection of the nucleus are illustrated within the next section along 

with difficulties that arose when classical approaches were applied to this task. Our own 

developed heuristic circle detection approach is introduced in section 4.2. The precision of 

results is analyzed visually and compared to a standard brute force approach in section 4.3. 

The results are discussed and a self-evaluation measurement is proposed in section 4.4. The 

conclusion follows in section 4.5. 

4.1 Main Challenges 

The challenge of detecting the nucleus both visually and numerically is determined by if and 

to what degree the nucleus is surrounded by cavities. In the simplest case a cavity completely 

surrounds the nucleus (Figure 47 on the left). The more the nacre connects to the nucleus, the 

more difficult gets the evaluation. The second image in Figure 47 shows an example that is 
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still evaluable visually, while in the third example the nacre is connected at any point to the 

nucleus and hence there is no visual evidence of where the nucleus might be. A technical 

question is if there is any information in the image that allows a numerical detection of the 

nucleus in those cases. From a physical point of view this is unlikely, as nuclei are made out 

of pearl shell, which has a similar mineral configuration as the nacre. Hence the attenuation of 

both is most likely the same. This question will be further addressed in section 4.4.4.  

 

 
Figure 47: Round pearls with different nucleus visibility 

 

A second challenge from an image processing point of view is caused by only partially visible 

nuclei. Here the circle detection algorithm has to be capable of detecting the nucleus based on 

circular arcs (Figure 48).  

 

 
Figure 48: Three example of partially visible nuclei 
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4.1.1 Model-Based Approach 

An intuitive idea might be to create synthetic nuclei profiles, similar to the approach used to 

segment the pearl. The nucleus is an artificially formed sphere and can with a given radius 

hence easily be synthetically generated. However, the nacre thickness superposed with the 

nucleus does not necessarily have to be uniform. In Figure 49 an example of a pearl whose 

nacre thickness changes in direction of its symmetry axes and perpendicular to the X-ray 

beam is shown (symmetry axis in direction of both arrows). The image on the left shows the 

original image and the image on the right shows a surface plot of the image intensity 

calibrated to mm. To apply a model-based approach the nacre contour has to be taken into 

account. In this case it might be possible to interpolate the symmetric outer contour but for 

irregular shaped baroque pearls it is not. The example shows further that intensity 

thresholding, which can be done for round pearls, is not a suitable option as the boundary of 

the nucleus lies on an inclined plane (which neither has to be the case for baroque pearls, as 

they have no symmetry axes).  

 
Figure 49: Superposition effect of rotation symmetric nucleus profile and non-rotation symmetric nacre 

thickness. 

4.1.2 Region-Based Approach 

A region based approach might be to either start a region growing process at the outer 

boundary of the pearl of which it is known that it is the pearls nacre or at the region with 

highest intensity that is likely to be the nucleus and grow until the other region is reached. But 

cases as shown in Figure 48 cause problems as in a large range no boundary information of 

nucleus or nacre exist, which means the region will grow over the boundary. Other 

approaches such as watershed will suffer from the same problems. Thresholding, as 
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mentioned in the previous section are not applicable, due to the inhomogeneous intensity 

distribution of nucleus regions superposed with varying nacre thickness.  

4.1.3 Edge-Based Approach 

Classical edge detection will not yield directly in a segmented nucleus but can be used as 

pixel preselection step for further processing (such as with the circular Hough transform that 

will be introduced in the next section). Main drawbacks are caused by the spherical form of 

the pearl and weak nucleus boundaries in case of small cavities. In Figure 50 the application 

of the Sobel edge operator to a pearl with weak nucleus boundaries is exemplarily shown. 

After applying the Sobel operator non-maximum suppression was applied as nucleus edge 

pixels are supposed to be at local maxima. It can be seen that generally edge pixels at the 

nucleus boundary remain, but due to the spherical form of the pearl, a large amount of 

additional edges is still present. Commonly, a thresholding operation would be applied to 

further eliminate pixels that do not contain boundary information. But as stated earlier, 

thresholding would mean that assumptions about the general pearl configuration would have 

an influence on the segmentation process, which is due to the large variety of Tahitian pearls 

not desired. It means that all remaining pixels would have to be used for further processing. 

Due to the large amount of remaining pixels in combination with the unknown nucleus size, 

approaches based on pixel preselection are not suitable to segment the nucleus of Tahitian 

pearls. Anyhow, the Sobel operator with non-maximum suppression will be used in 

combination with the circular Hough transform as benchmark application. 
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Original Detail 
Sobel 

Filter Size 

Remaining Pixels 

After Non-
Maximum 

Suppression 

  

0x0 145208 

  

3x3 41262 

  

5x5 32221 

  

7x7 26678 

  

9x9 22703 

Figure 50: Application of the Sobel operator with different filters size and amount of remaining pixels after 
non-maximum suppression. 
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4.1.4 Circular Hough Transform 

The circular Hough transform is a brute force algorithm for circle detection in images 

[DUD72]. Its time intense processing is compensated by its strong detection ability in cases of 

weak boundary information and/or noise. The basic concept is that all circles with the same 

radius R of the object to detect, set around boundary pixels, intersect at the center of the 

object (Figure 51). If the radius R of the object to detect is known a 2D accumulation matrix 

is generated and for each preselected edge pixel the position in the matrix corresponding to all 

pixels of a circle with radius R around the preselected pixel is increased by one. For the case 

shown in Figure 51 the only entry in the accumulation matrix of value three will be at the 

center of the object to detect, as this is the only point at which all circles around the three edge 

pixels intersect. If the radius of the object is unknown, a 3D accumulation matrix is generated 

whose third dimension corresponds to all radii that are to evaluate. For the same example 

shown in Figure 51 only the level in regards of the third dimension at radius R of the object 

will have an entry of three. All other values of the accumulation matrix will be smaller.  

 
Figure 51: Schema of the basic concept of the circular Hough Transform. 

 

The processing time to detect circles of unknown radii depends on the number of preselected 

pixels and the number of radii to evaluate. As the radius of the nucleus is prior to the 

measurement unknown and even the previously shown preselection method leaves a large 

number of possible edge pixels, this approach is not suitable to detect the nuclei in the 

required time. Because of its strong detection ability in cases of weak boundary information 

and noise (which both occur in the X-ray images of pearls) it will be used to evaluate our own 
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developed circle detection algorithm in section 4.3 and to analyze if a numerical detection of 

nuclei that are not visible is possible in section 4.4.  

4.1.5 Other Circle Detection Approaches 

As the circular Hough transform is known to have a high precision but at the cost of time 

intense processing, several alternatives were and are still developed. The Hough transform 

itself was developed further to reduce its complexity by keeping its high precision (an 

overview of approaches can be found in [YUE99]). Still the complexity depends on the 

detected edge pixels multiplied by the different radii to evaluate. A region based approach can 

be found in [XU13]. Here the image is binarised by intensity thresholding, a procedure that is, 

as mentioned, not suitable for pearls with a superposition of nucleus and varying nacre 

thickness. The gradient direction is used in [LOY02] which not necessarily needs a pixel 

preselection. But a problem is that at weak nucleus boundaries the local gradients obtained by 

applying for example the Sobel operator do not necessarily point to the center of the nucleus. 

Additionally, nucleus edge pixels have to be distributed symmetrically, which causes 

problems in cases in which the nucleus is partially connected directly to the nacre. Heuristic 

alternatives are for example given in [AYA06], [DAS10], [CHA11], [CUE12] and [CUE12b], 

but in all approaches pixel preselection has to be done. As will be shown in the following 

sections, a heuristic approach can be formulated that do not need such a pixel preselection, 

while only evaluating the gradient of 1 circle per radius, if a priori knowledge of the nucleus 

geometry is added.   

 

4.2 Our Approach 

To detect the nucleus of a segmented pearl we developed a heuristic detection algorithm that 

is based on the following idea: a circle initialized within a circular object to detect that stays 

within the object while its radius is iteratively increased will at one iteration cover the outer 

boundary of the object. The basic concept is to use a suitable definition of the nucleus 

boundary to prevent the moving circle from surpassing the boundary. Therefore, at each 

iteration a probability of the circle pixels belonging to the nucleus boundary has to be 

evaluated. If the probability of some pixels of the circle touching the nucleus boundary is 
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high, the circle has to be pushed away from this region. Mathematically this movement v at 

iteration t for a circle of i pixels with outside pointing normal vectors ni and probability bi can 

be formulated as to   

 

 
 𝑣⃑𝑡 = ∑ −𝑏𝑖 ,𝑡 𝑛⃑⃑𝑖

𝑖

 . ( 4  ) 

 

The notation corresponds to the schema of Figure 52. Here only four pixels p1 to p4 of the 

moving circle are considered. The probability bi to belong to the nucleus boundary is for the 

north and east pixel 1 and for both others zero. The sum of the with the negative probability -

bi, weighted normal vectors ni is a vector that points away from both pixels that are likely to 

belong to the boundary. A movement of the circle in this direction will hence push it away 

from the probable boundary.  

 
Figure 52: Schema of the idea of our approach. 

The crucial steps to obtain an efficient algorithm are to define suitable probability functions 

(next two subsections) and to calculate a moving direction based on these functions (section 

4.2.3). Furthermore, the dynamic parameters of the moving circle, moving speed and radius 

increment have to be defined (section 4.2.4). As the goal is to find a global maximum whose 

magnitude is due to the superposition variety of the nacre not known, the algorithm is run 

until the moving circle touches a background pixel; meanwhile the boundary probability, 

center and radius of each iteration is stored. Accordingly, the final step is to identify the 

optimal circle as the one with the maximum boundary probability (section 4.2.5). How to 

handle artefacts of the segmented pearl at the transition region of the borehole will be 
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explained in section 4.2.6, followed by a summary of the whole method and the its 

pseudocode in section 4.2.7.  

4.2.1 Intensity Based Probability Function 

A simple intensity based probability function can be formulated by using the image intensity I 

of pixel pi as probability. The according moving direction becomes at iteration t 

 
 𝑣⃑1,𝑡 = ∑ 𝐼(𝑖, 𝑡)𝑛⃑⃑𝑖

𝑖

 . ( 5  ) 

 

The effect is shown in Figure 53. Normal vectors of all data points of the red circle, weighted 

with the corresponding image intensity, are shown in blue. The vector sum (equation 5) is 

shown in red, pointing, due to the spherical contour of the pearl, to the center of the nucleus.  

 
Figure 53: Circle movement defined by intensity based probability 

If the circle is moved pixel wise based on Eq. 5 for fifty iterations, the circle center has moved 

close to the center of the nucleus where it will oscillate around a local equilibrium, due to the 

point symmetric intensity distribution around the center of the pearl (Figure 54 second image 

on the top). If now additionally the radius is increased by one pixel at each iteration, the circle 

keeps its position around the nucleus center and covers the boundary of the nucleus at 

iteration 129. On the bottom of Figure 54 is the average intensity (corresponds to pearl 

thickness in mm in the calibrated image) of all circle points at each iteration shown. The 

profile corresponds approximatively to the average radial intensity profile of the pearl 

showing a slight inflection at iteration 129 that marks the slight cavity between nucleus and 

nacre.  



103 
 

 
Figure 54: Intensity based movement at three iteration stages 

 

The purely intensity based approach can only be used for round pearls with the nucleus at or 

close to the center of the pearl, as Eq. 5 results in a steady movement in direction of the region 

with highest intensity Still, it illustrates the general idea of the algorithm and the so defined 

movement will be used as stabilization at iterations where the circle points contain no nucleus 

boundary information.  

4.2.2 Gradient Based Probability Function 

For pearls with non-rotational symmetric intensity distribution the previously explained 

intensity based movement will not succeed, as the nucleus boundary is not of uniform and of 

lower intensity than the rest of the nucleus. Hence, a more general formulation of boundary 

probability has to be found. In Figure 55 a schematic representation of the pearl thickness 

profile in X-ray direction in the case of cavity occurrence is shown. As the nucleus is a 

circular object and generally the predominant body in means of thickness, the gradient 

measured from any point within the nucleus will have a local maximum at the nucleus 

boundary (the same counts for pearls of all shapes under the condition that the nucleus is not 

connected to the surrounding nacre).  
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Figure 55: Schematic representation of the pearl thickness profile in X-ray direction in the case of cavity 
occurrence.  

A boundary probability can hence be formulated based on the second derivation of the radial 

gradient of the moving circle. If pi,t is the i-th circle boundary pixel, ni its outside pointing 

normal vector and k a scalar that defines the neighborhood range, the used logical boundary 

probability for iteration t and image I is 

 

 
 𝑏𝑖,𝑡     =      𝐼(𝑝⃑𝑖,𝑡 − 𝑘𝑛⃑⃑𝑖) − 𝐼(𝑝⃑𝑖,𝑡)     >     |𝐼(𝑝⃑𝑖,𝑡 + 𝑘𝑛⃑⃑𝑖) − 𝐼(𝑝⃑𝑖,𝑡)| . ( 6  ) 

 

This means that at each iteration the gradient of pixel pi in negative and positive direction of 

its normal vector has to be calculated (which basically means that the gradient based 

algorithm consists of three subsequent moving circles). The general idea of using a logical 

probability function instead of the gradient magnitude is that nucleus boundaries that are 

barely visible have a gradient magnitude within the range of the image noise level. From a 

technical point of view, this function can as well be seen as binary pixel selection with locally 

adapted threshold. The according moving function vx,t is  

 
 𝑣⃑𝑥,𝑡 = ∑−𝑏𝑖,𝑡 𝑛⃑⃑𝑖

𝑖

 . ( 7  ) 

 

The effect of the gradient based moving is shown in Figure 56. The circle is initialized with 

its center at the region of highest intensity (first image). In this example the radius is increased 

from the beginning at each iteration by one pixel. The first movements are more or less 

random, as they are based on the noise distribution of the nucleus region. The moment the 
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circle touches the nucleus boundary at iteration 47 (second image), the movement is 

dominated by the large quantity of edge pixels with logical probability 1 (marked with a white 

arrow) and points away from the boundary. The graph below, containing the average 

probability of all circle pixels at each iteration, shows a maximum at iteration 67 when the 

circle covers the boundary of the nucleus.  

 

 
Figure 56: Gradient based movement at three iteration stages 

 

Generally, as long as the circle does not touch the nucleus boundary, its movement when 

calculated gradient based is determined by the random noise distribution.. The possibility 

exists, that the random movement brings the circle to a region of the nucleus boundary at 

which no cavity exists, possibly leading to a surpass before its optimal radius is reached. 

Accordingly it is desirable to know if the moving direction is based on noise, as in such 

situations an intensity based movement to keep the circle within the nucleus region should be 

preferred. A possibility of making a decision of whether to move intensity or gradient based 

will be discussed in the next section.  
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4.2.3 Moving Direction 

To determine whether to move gradient or intensity based a sensitivity analysis of the gradient 

based moving direction is done according to the following theory: if the gradient based 

moving direction is a result of circle points touching the outer boundary of the nucleus, the 

moving direction calculated with every second circle data point starting at an arbitrary circle 

data point a and with every second circle data point starting at a+1 should not vary 

significantly. Accordingly, two gradient based moving directions are calculated as to 

 

 
 𝑣⃑2,𝑡 = ∑ 𝑏𝑙,𝑡 𝑛⃑⃑𝑙

𝑙=1,3,5,…

   ;   𝑣⃑3,𝑡 = ∑ 𝑏𝑚,𝑡 𝑛⃑⃑𝑚

𝑚=2,4,6,…

 .  ( 8  ) 

 

The probability function b for each direction is the logical gradient of the corresponding data 

point of the corresponding sequence. Afterwards the dot product of both moving directions 

can be calculated that gives a sensitivity st for iteration t ranging from -1 to 1 of how much 

both vectors differ from each other: 

 

  𝑠𝑡 =
𝑣⃑1,𝑡 ∙ 𝑣⃑2,𝑡

‖𝑣⃑1,𝑡‖‖𝑣⃑2,𝑡‖
 . ( 9  ) 

 

An empirical threshold is currently set to 0.7 which corresponds to an angle of ~45 degrees 

between both calculated moving directions. If the sensitivity is larger than this threshold, it is 

assumed the gradient based moving direction corresponds to the nucleus boundary and hence 

the general movement of the circle is done gradient based. In the other case, it is assumed the 

gradient is caused by noise and hence the circle is moved intensity based to keep it within the 

nucleus region of high intensity. The effect of applying this sensitivity measurement is shown 

in Figure 57. The second image in the first row shows a case in which the purely gradient 

based moving failed, as the circle was pushed over the weak nucleus boundary in the south 

before reaching the optimal radius. The third image shows a successful detection when 

gradient and intensity based moving is combined with sensitivity measurement. The second 

row shows an example in which the purely intensity based moving failed, due to the non-

rotational symmetric intensity distribution. Again the combined approach leads to a successful 

detection (last image third row).  
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Figure 57: Effect of the implementation of a sensitivity measurement 

4.2.4 Moving Speed and Radius Increment 

The general relation between moving speed and radius increment, if both actions are executed 

simultaneously during the run of the algorithm, is shown schematically in Figure 58. In every 

example the smallest circle is the initial circle, the radius increment is positive and the moving 

direction is constant at every iteration pointing to the right (meaning the circle region on the 

left touches the probable boundary). The first example on the left shows three iteration stages 

for a radius increment Rinc equal to the moving speed vt. The result is an expansion of the 

circle in moving direction, while the region that is supposed to touch the probable boundary 

does not move. In the second example the moving speed is lower than the radius increment. 

Even though the moving direction points to the right (away from the possible boundary) the 

left side of the circle is moved in opposite direction due to the higher radius increment. In the 

third example the moving speed is greater than the radius increment resulting in an expansion 

in moving direction, while the circle region that is supposed to touch the probable boundary is 

pushed away from it. 
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‖𝑣⃑𝑡‖ = 𝑅𝑖𝑛𝑐  ‖𝑣⃑𝑡‖ < 𝑅𝑖𝑛𝑐  ‖𝑣⃑𝑡‖ > 𝑅𝑖𝑛𝑐  

 

Figure 58: Moving speed in relation to radius increment.  

The second example with a radius increment larger than the moving speed is not suitable for 

the detection, as even if data points of the circle touch the nucleus boundary at a certain 

iteration, they will surpass it at the next iteration due to the radius increment. This means 

generally that for a successful detection the moving speed has to be larger or equal to the 

radius increment. For the current implementation the third variation with a moving speed 

larger than the radius increment was chosen, as it gives the possibility to correct temporary 

surpasses due to noise on its own. Empirically set values are a radius increment of 1 pixel and 

a moving speed of 1.2 pixels. Any larger radius increment would result in a loss of precision, 

while any lower increment would increase processing time. In this configuration, the 

theoretical precision of the detected radius is 1 pixel.  

4.2.5 Optimum Detection 

As mentioned, the algorithm is run until the moving circle touches a background pixel, as 

prior to the detection, the gradient magnitude of the nucleus boundary is not known. To detect 

the optimum out of all iterations the average Bt of the gradient based probability function bi,t 

of all i data points of the circle is calculated for each iteration t and stored along with the 

current circle center and radius. After the run of the algorithm, the maximum average 

probability is identified and the corresponding center and radius of this iteration are 

determined as optimal circle (see Figure 56 the graph on the bottom).  

4.2.6 Handling of Segmentation Artefacts 

As mentioned in section 3.2.4 artefacts at the transition region between borehole and bevel 

have to be expected. Even though smoothed, in the current segmentation their probability of 
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belonging to an edge is set automatically to zero, to not disturb the moving based on artefacts. 

Unfortunately no pearls with a nucleus boundary surpassing the borehole were within the test 

or training image set. A validation of this procedure has hence still to be done.  

4.2.7 Summery and Pseudocode 

The implementation of the proposed algorithm to detect the nucleus is according to the 

previously explained steps the following. A circle with a radius of 60 pixels (1.4mm) is 

initialized with its center at the region of highest intensity within the pearl. The image 

intensity of all data points of the circle as well as the corresponding intensity of pixels in 

positive and negative radial direction is acquired. Out of the intensities, the probability for 

each data point to belong to an edge is described with logical values according to equation 6. 

The average edge probability is stored along with the current radius and center of the circle. A 

sensitivity measurement is done to evaluate if the circle is likely to touch the nucleus 

boundary. The sensitivity value is compared to a predefined threshold and the circle is 

accordingly moved either based on the radial image gradients or based on the intensity of the 

data points of the current circle. Afterwards, the radius is increased and the next iteration 

starts with acquiring the image intensity of the new circle data points. The algorithm stops 

once the circle touches background pixels. Afterwards, the optimal circle is determined by the 

maximum of the stored average edge probability of each iterations. Empirically set values for 

all crucial parameters in the current implementation can be seen in Figure 59. The pseudocode 

of the algorithm is shown in Figure 60. 

Parameter Value 

radial gradient neighborhood (k in Eq. 6) 2 pixels 

moving speed 1.2 pixels 

radius increment 1 pixel 

data point sequence for sensitivity measurement every second pixel 

sensitivity threshold 0.7 

initial center region of highest intensity 

initial radius 60 pixels (1.4mm) 

Figure 59: Values for crucial parameters for the proposed algorithm to detect the nucleus. 
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Pseudocode 
Corresponding 

section 

define initial center Mt and radius Rt  
initialize circles C1(Rt-3,Mt), C2(Rt,Mt), C3(Rt+3,Mt)  
calculate normal vectors n1 of C1  

while C3 does not contain background pixels  
get image intensity Ix=I(Cx)  
calculate probability function b(I1,I2,I3) sections 4.2.1 & 4.2.2 
calculate sensitivity s(b) 

 

section 4.2.3 
if s>0.7  
move gradient based Cx,t = Cx,t + v2+v3 section 4.2.2  
else  
move intensity based Cx,t = Cx,t + v1 section 4.2.1 & 
end 

 

 
increase radius of Cx,t by one pixel section 4.2.4 
track Mt,Rt,average(pt) 

 

section 4.2.5 
end 

 

 

detect optimal circle section 4.2.5 

Figure 60: Pseudocode of the proposed algorithm for the detection of the nucleus. .  
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4.3 Precision of Results 

To evaluate the precision of the proposed algorithm, a brute force circle detection of every 

image was conducted with the circular Hough transform. Pixel preselection was done by 

applying the Sobel operator with non-maximum suppression as explained in section 4.1.3. As 

there is no information about the actual nucleus size within the used pearls, the benchmark 

results were validated visually. Cases in which a validation was due to invisible nucleus 

boundary not possible, were treated as correctly detected by the Hough transform in the 

statistics (three cases, those will be analyzed in the discussion section separately). Afterwards 

the center and radii of the circles detected with the brute force approach and with our 

algorithm were compared. The maximum absolute pixel distance between the x- and y-

coordinate of both centers was calculated to obtain a pixel based discrepancy. The 

discrepancies are shown Figure 61 on the top. Discrepancies greater than 5 pixels are set to 5 

for a clearer visualization of all results (a 5 pixel discrepancy is here considered as not 

sufficiently precise, independently of the actual magnitude). The absolute value was taken as 

the spatial discrepancy was not deemed important for the precision analysis. For the radius 

instead the signed difference was calculated to evaluate if the detected circle is too small or 

too big (Figure 61 on the bottom, discrepancies greater than 5 pixels as well set to 5).   

 
Figure 61: Precision of the proposed algorithm in comparison to a brute force approach. Discrepancies 

greater than 5 pixels are set to 5 for better clarity.  
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4.4 Discussion 

To give an impression of the impact of the discrepancies, an example of a center and radius 

discrepancy of 3 pixels each is shown in Figure 62. The circle, detected with our approach, is 

shown in red and the result of the Hough transform in white.  

 
Figure 62: Detected circle with our approach (red) and with the Hough transform (white). The image on the 

bottom shows the maxima of the accumulation matrix of the Hough transform. 
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Even though a discrepancy between detected and optimal circle exists, the result of our 

approach is still adequate from a computer vision point of view, seeing the difficulties caused 

by the only partially existing nucleus boundary gradients. Additionally, the maxima 

distribution of the Hough transform for all pixels (shown in Figure 62 on the bottom), out of 

which the global maximum defines the optimal circle, shows that other candidate circles with 

a few less circle intersections to the optimal circle exist (next two maxima have 5 

intersections less than the optimum). As the visual confirmation is rather difficult, it is 

possible that even the Hough transform differs, due to noise, in a range of certain pixels from 

the physical optimum. An exact validation would require an actual measurement of the 

nucleus size, which is not possible without destroying the pearl (if information of the nucleus 

size was not registered during its insertion in the pearl oyster). Still the method serves the goal 

to validate the general theory of our approach. Out of 298 test images, 279 detected nuclei 

have a maximum radius or center discrepancy of 3 pixels, which equals 94%. This can be 

seen as adequate result for a heuristic algorithm where a certain discrepancy to the optimum 

has generally to be expected. The algorithm is based on a moving circle and for the sake of 

speed the radius is increased after each movement. It means if the circle is two pixels from the 

optimal center away but only one radius iteration from the optimal radius, a discrepancy will 

be the result even if the further moving direction will bring the circles center to the optimal 

one. According to this and based on the signal to noise ratio an absolute discrepancy of 3 

pixels for the circle center or the radius might still be considered as suitable result.  

 

Within the 19 cases of absolute discrepancy greater than 3 pixels three general types could be 

identified: threshold related discrepancies, cavity related discrepancies and (iii) weak 

boundary related discrepancies. 

4.4.1 Threshold Related Discrepancies  

12 detection results could be improved by setting the threshold value that defines when to 

move gradient based or intensity based either to 0 or to 1 (current setting is 0.7 as explained in 

section 4.2.4). A threshold of 0 gives a larger emphasis on the gradient based movement in 

comparison to the current implementation. 10 cases could be improved by applying this 

threshold (5 exemplary cases are shown in Figure 63 on page 115). A threshold of 1 instead 

means the circle moving is purely based on the intensity distribution of the circle pixels 
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without gradient information (section 4.2.1). 2 cases could be improved by applying this 

threshold (Figure 64 on page 116). It shows that in all these 12 cases generally a suitable 

detection is possible. The problem is that a general adjustment of the threshold does not work 

as several pearls need an emphasis on either gradient or intensity based movement. A 

possibility to solve this problem by running the algorithm several times with different 

thresholds according to the results of a self-evaluation will be presented in section 4.4.5. 

4.4.2 Cavity Related Discrepancies  

In two cases the nucleus boundary was superposed by a gradient caused by a local cavity in 

combination with general rather weak boundary gradients (Figure 65 on page 116, blue 

arrows point at the cavities). Adapting the threshold (thresholds from 0 to 1 in steps of 0.1 

were tested) did not lead to improved results. As the superposition region generally deviates 

from the logic boundary definition those cases have to be detected either automatically and 

treated specifically or the boundary definition has to be somewhat reformulated. Anyway, two 

cases might not be sufficient to work on a general solution. The occurrence of those cases will 

be observed and once a larger set of similar cases is obtained, possible solutions will be 

investigated.  

 

4.4.3 Weak Boundary Related Discrepancies  

The remaining 5 images with a discrepancy greater than 3 pixels contain pearls with no 

cavities at all (Figure 66 on page 117, first 3 pearls) or only in a very limited region (last two 

pearl). While the result of the last pearl with a limited cavity region might be still considered 

as suitable seeing the general lack of boundary information, all other cases show unsuitable 

results for any threshold configuration. Anyhow, as mentioned earlier, in these cases even the 

brute force approach has to be evaluated as it is not clear if the bench mark results are a result 

of invisible but existent nucleus boundary information or just based on noise. This will be 

done in the following section.  
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Figure 63: Result improvement by emphasis on gradient based circle movement. 

 

  



116 
 

 
Figure 64: Result improvement by purely intensity based circle movement. 

 
Figure 65: False detection due to superposition of cavity gradient and nucleus boundary. 
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Figure 66: False detection due to weak or no nucleus boundaries. 
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4.4.4 Nucleus Visibility 

Within the human evaluation results 5 pearls were classified as not evaluable as the boundary 

between nucleus and nacre was not visible. In 2 of these cases, a detailed visual analysis 

showed boundary gradients that allow a visual confirmation of the correctness of either the 

brute force result or the result obtained with our algorithm with certainty (Figure 67). The 

opposite happened in another case that was evaluated by DRMM experts as good, but the 

author could not find any evidence of boundary gradients (second pearl in Figure 68). A 

possible reason might be that round pearls tend to roll around within the supports boreholes 

when the support is mechanically moved. Some pearls show boundary evidence in one 

position and in another not. Another reason might be that the manual classification of pearls at 

the DRMM does not allow analyzing pearls for an extensive amount of time, meaning during 

the daily routine pearls like these might just slip through. Anyway, the two mentioned pearls 

with boundary evidence will be treated in the further process as evaluable, while the other one 

classified as good will be treated as not evaluable. 

 

 
Figure 67: Two pearls classified as not evaluable, but a detailed visual analysis showed boundary evidence. 

Red arrows point to the regions at which the nucleus boundary is visible.  

 

The question is, if a detection with numerical methods is possible in cases that show no visual 

evidence of boundary gradients. An analysis of the results of the Hough transform did not 

show a clear tendency. Generally, the expected result for a visible boundary with clear 
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gradients is a global maximum of the accumulation matrix at the center of the nucleus at the 

dimension of the nucleus radius. In Figure 68 on the top is such a pearl with the maxima of 

the radius dimension of the accumulation matrix on the right. A clear global maximum can be 

observed at the center of the nucleus.  

 
Figure 68: Nuclei of different visibility (left images), together with the first nine circles determined by the 

nine largest entries of the accumulation matrix of the Hough transform (right). 

 

Additionally high values in the matrix are at all 8 pixels surrounding the optimal center, as 

those circles still touch larger parts of the nucleus boundary. The second image on the top row 

of the figure shows a superposition of the circles determined by the 9 largest entries of the 

accumulation matrix. As expected their centers cover the optimal center and all 8 neighbor 

pixels. The same procedure applied to the pearl of the second row shows a scattering of the 

nine circles with a maximum discrepancy of 10 pixels to the radius of the ‘optimal’ circle 

determined by the global maximum of the accumulation matrix. Even though the maximum is 

a clear peak, the difference to the next best circle is relatively low considering the general 

level of the rest of the matrix. Additionally, the cone shaped distribution of large parts of the 
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accumulation matrix show that the optimum at the center of the pearl might as well be caused 

by the point symmetric intensity distribution of the round pearl. As there is no visual evidence 

of the boundary, it is to the moment not possible to say for sure that the circle detected with 

the Hough transform does indeed identify the nucleus. Another example of a pearl with 

invisible nucleus shows instead, that, with one exception, the detection might conform to the 

nucleus boundary (last row of Figure 68). Still, a true confirmation is only possible if the 

actual size of the nucleus is known. In summary it is not clear if it is generally possible to 

detect any nucleus of any pearl, at least with the current image quality. To obtain a more 

precise evaluation, tests with an increased zoom for a better spatial resolution, higher image 

averaging for less noise and different initial X-ray intensity configurations will be done in a 

future work. 

4.4.5 Self-Evaluation 

Based on the previous analysis, a self-evaluation capacity of the algorithm is needed to 

identify false detections due to the circle not finding an existing optimum or due to the lack of 

boundary evidence in general.  

A possible evaluation value is the maximum of the average probability function Bt that was 

used to identify the optimal circle out of all iterations. The greater its value the more pixels of 

the detected circle are likely to contain boundary pixels. The first graph in Figure 69 shows 

the sorted maxima of all test images that correspond to the boundary probability of the 

detected circle. The second graph on the bottom shows the detection discrepancy to the 

benchmark optimum for the corresponding image in pixels. For more clarity, this graph shows 

the absolute maximum of radius and center discrepancy. Again, discrepancies greater than 5 

pixels are set to 5. 
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Figure 69: Sorted maximum nucleus boundary probability for all test images (top) and corresponding 

maximum absolute radius/center discrepancy (bottom, discrepancies greater than 5 pixels are set to 5). 

 

All 19 detection results with a discrepancy greater than 3 pixels can be found within the first 

40 images that have a low boundary probability. Additionally, all 4 images of pearls classified 

as not evaluable (marked in red) can be found within the same range. It means generally the 

same value can be used to identify uncertain classifications due to weak or no nucleus 

boundaries or due to an unsuitable algorithm parametrization. A threshold could be set to not 

evaluate pearls with a detected nucleus boundary probability smaller than 0.65 which would 

exclude all false detections and all cases that were classified as not evaluable.  

 

A disadvantage of a general threshold is, that within the first 40 images 17 nuclei were 

detected more or less correctly, even though the general boundary was weak (which causes 

the low boundary probability). A more suitable method might be to use the threshold to apply 

an optimized but more therefor more time intense version of the algorithm only to images 

with a low self-evaluation value. If afterwards the value is still below the threshold, the pearl 

is classified as good, as the nucleus could not be detected with sufficient certainty. 

Possibilities of how to improve the algorithm to obtain a more powerful version will be 

sketched in section 4.4.7.  
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4.4.6 Processing Time 

Average processing time for all 298 used test images is 0.23 seconds per image. The 

processing time for each image is shown in Figure 70. Generally the processing time is 

determined by the initial radius of the moving circle and the inner structure and size of the 

pearl (as the algorithm is stopped once the circle touches background pixels). In the current 

implementation the initial radius is set to 60 pixels (1.4mm), even though the nucleus sizes 

detected with the brute force approach are within a range of 100 to 257 pixels (2.4mm to 

6.2mm) with an average nucleus radius of 133 pixels (3.2 mm). As the size of the nucleus is 

prior to the measurement unknown, the smallest possible nucleus has to be considered as 

minimal margin. Even though smaller nuclei than with a radius of 1.4mm might exist they are 

to the author’s knowledge seldom used. Anyhow, the minimal radius should be implemented 

as a variable to set by the DRMM experts.  

 

 
Figure 70: processing time for the detection of the nucleus with our algorithm. 

 

To give an impression of the speed of the proposed algorithm the average processing time for 

our algorithm, for an application of the Sobel edge detector and for the application of the 

Canny edge detector are shown in Figure 71. It can be seen that in the same time the Canny 

algorithm was applied, our algorithm has already final results. As edge detection can only be 

one first step, the average processing time to obtain the accumulation matrix of the Hough 

transform with a radius range of 60 to 133 pixels for 100 preselected edges is shown as well 

(processing time is without edge detection). It can be seen that even if the image information 

is already reduced to only 100 edge pixels (Figure 71, 100 pixels in red in the pearl image) 

and the maximum radius is set to the average of detected nuclei (which excludes every 

nucleus with greater radius), the pure calculation of the accumulation matrix takes already 
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longer than our algorithm. The fast processing of our algorithm is because for every radius 

increment only one possible center is evaluated, meaning the processing time depends on the 

difference between maximum and minimum radius. The processing time of the brute force 

approach instead depends on the same difference multiplied by the amount of preselected 

pixels.  

 

Algorithm 
Proposed 

Approach 

Sobel 

3x3 

Canny 

3x3 

Hough 

R=[60 133] 

Pixel=100 

 

Average 

Processing 

Time 

0.23sec 0.04sec 0.29sec 0.29sec 

Figure 71: average processing time per image of our algorithm and standard algorithms. The red region in the 

image on the right contains 100 pixels. The processing time of the traditional Hough transform with such a 
small amount of information already exceeds the average processing time of our algorithm. 

4.4.7 Optimization Possibilities 

Generally all explained circle parameters can be used to adapt or improve the algorithm. In 

the current implementation the radius is increased after each circle movement. An increment 

at only every second or third movement for example gives the moving circle the chance to 

find local maxima (and possibly the global) when it has already reached the optimal radius but 

is still a few pixels away from the optimal center. The disadvantage is, when applied globally, 

that incrementing the radius after every second movement doubles the processing time. A 

dynamic approach of this idea would be to stop or delay the radius increments when the 

boundary probability is high. A possibility to overcome noise problems is to increase the 

distance of the radial gradient. Another possibility is to use not only three circles for the radial 

gradient calculation but five or seven, which would reduce the influence of noise. The optimal 

parametrization to the nature of the nucleus detection task has yet to be evaluated. The general 

idea is to run the algorithm in its basic form as presented, as generally the results are deemed 

good. If the maximum boundary probability is lower than a certain threshold a second run 

with an improved version is applied.  
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For a first test an improved version of the algorithm with 7 circles for gradient calculation was 

developed. If a detection result of the basic algorithm was lower than 0.65, this algorithm was 

run three times with a sensitivity threshold for gradient or intensity based circle movement of 

0, 0.7 and 1. The percentage of detections with an absolute radius or center discrepancy lower 

than 4 pixels could be increased to 98% (Figure 72) with an increase of average processing 

time to 0.37 seconds per image As these results were obtained by adjusting the algorithm to 

the nature of the test images, they have to be validated with a new set of images.  

 

 
Figure 72: detection results of an improved version of the algorithm.  

 

4.5 Conclusion 

Within the precedent sections our own developed algorithm to detect the nucleus within the 

pearl was presented. The algorithm is a heuristic that is based on the following idea: a circle 

initialized within a circular object to detect that stays within the object while its radius is 

iteratively increased will at one iteration cover the outer boundary of the object. A suitable 
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logic boundary function was proposed that keeps the circle initialized within the nucleus 

region from surpassing its boundary while is radius is constantly increased. The detection 

results were compared to the results of a brute force approach, showing detection accuracy of 

3 pixels for 94% of the test images. A self-evaluation was proposed that identifies with an 

according threshold false detections as well as cases that were identified by the experts of the 

DRMM as not evaluable, due to invisible nucleus boundaries. An improved version was 

sketched whose application to the test set increased the detection accuracy of 3 pixels to 98% 

of the test images.  
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5 Cavity Detection 

The third step of our method to obtain the nacre thickness profile is to detect possible cavities 

within the pearl. Main challenges are caused by the partially weak boundary gradients, as 

cavities evolve smoothly over a rather larger region, and by the large variety of possible 

appearances. Additionally, it is still not known how and why cavities formed, which means 

the formulation of an according model is difficult.  

 

In the next section the main challenges are explained more detailed along with challenges 

faced when classical algorithms were applied. The chosen region-based approach is explained 

in section 5.2 and the precision of the results shown in section 5.3. The results are discussed 

in section 5.4 along with an analysis of the discrepancy between the used simplified cavity 

model and an intuitive boundary setting based on gradient maxima.  

5.1 Main Challenges 

While for the segmentation of the pearl known properties of the support were used and for the 

detection of the nucleus the knowledge of its circular shape, prior assumptions for the 

detection of cavities are difficult to formulate as until now it is not clear why and how cavities 

within the pearl are formed. First of all, not every pearl necessarily has to have cavities, as 

shown within the previous sections. Within those, that contain cavities, different 

constellations can be observed. One type of cavities is connected to the nucleus and follows 

the symmetry of the pearls shape, meaning the nacre thickness of the pearl is more or less 

constant or at least does not change abruptly (first row of Figure 73 on page 127). Other 

cavity shapes are independent of the pearls shape (first two pearls of the second row of Figure 

73). Even additional cavities not connected to the nucleus exist (last two pearls of the second 

row). Another type can be found within surgreffé pearl. Here, instead of nucleus, a complete 

pearl was inserted in the pearl oyster; the result can be seen as ‘a pearl within a pearl’ (Figure 

73 third row). While in all former cases the cavity regions are relatively spacious, here slight 

cavities that might rather be described geometrically as lines occur. This type of cavities was 

found as well in regular pearls (not surgreffé). Additionally, cases occur in which cavity 

regions are superposed by shape gradients (Figure 73 fourth row). Even though the 

boundaries of cavities are in most cases identifiable by humans due to cognitive capacities, 
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the details shown in Figure 74 (page 128, the images on the right correspond to the region 

within the black square of the images in the second column) demonstrate a general numerical 

difficulty caused by partially weak gradients. The magnitude of cavity gradients depends on 

the nacre thickness gradient of the surrounding nacre. As a naturally formed gem, changes in 

nacre thickness occur mostly gradually over a larger range rather than abruptly.  

 
Figure 73: Different cavity formations. 
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Figure 74: Details of cavities with weak boundary gradients.  

5.1.1 Model Based Approach 

As previously presented, cavities can appear in a large variety of shapes. Additionally, their 

intensity distribution within the images depends on the contour of the surrounding nacre, 

meaning it can vary as much as the form of Tahitian pearls varies. Hence a single model 

seems to be impossible to fit all cases. An idea might be to identify certain characteristic types 

and create a model library. To segment the cavity region in a certain image all or the most 

probable models have to be tested on the image. For the current implementation such an 

approach is not suitable as it is impossible to say if and to which degree the used training and 

test images contain typical cases. Anyhow, on a larger scale, such an approach might be 

worthy not only for the segmentation process, but as well to identify patterns and hence to 

possibly gain knowledge about how and why cavities are formed. Still, much more images 

will have to be analyzed for this purpose, meaning a model based approach can only be 

considered at a later moment of the ongoing project RAPA. 
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5.1.2 Active Contour 

One of the strength of active contours is their ability to approximate boundaries at regions 

with low or even no boundary information. This is suitable for the partially weak boundaries 

observed in many cases (two examples were shown in Figure 74). Additionally, the resulting 

contour of this approach is a smooth curve which corresponded to the naturally smooth 

contour of the cavities. Anyhow, even though the approximation of boundaries with low or no 

boundary information seems quite suitable from a technical point of view, it contradicts the 

paradigm that in cases of doubt any decision has to be in favor of pearl quality. It means if 

low or no boundary information of cavities occurs, this region should be treated as no cavity 

to avoid nacre thickness reduction based on a numerical ‘guess’. Therefore, active contour 

approaches were not deemed suitable for the moment, but might be investigated later when 

more knowledge about the general structure of cavities is obtained. 

5.1.3 Region Based Approach 

Prior to the cavity detection the outer boundary of the pearl and the nucleus were already 

detected. This knowledge can be used for region based approaches. A possibility is to start a 

region growing process at the detected outer boundary, as those pixels belong in any case to 

the pearls nacre. The region growing is stopped locally where it touches cavity or nucleus 

pixels. The challenge is to find a suitable definition of cavity pixels. Pure intensity based 

approaches cannot be used as the intensity distribution of nacre and cavities depend on the 

pearls shape and hence vary over the complete pearl region as well as they vary between 

different pearls. A more suitable approach might be to define a nacre-cavity boundary 

probability and grow, starting from the outer boundary of the pearl until all neighbor pixels of 

the region belong either to the detected nucleus or have a high nacre-cavity boundary 

probability. As the latter are edge pixels, the resulting approach is a hybrid between region 

and edge based approaches. Therefore, edge based applications will be introduced in the 

following section before the current implementation that accords to this general idea of using 

region and edge information will be explained in section 5.2.  
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5.1.4 Edge Based Approach 

The most general description of cavities from an image processing point of view might be that 

their boundary is defined by local intensity maxima. This means that the derivation of the 

gradient vector field should have local peaks at cavity boundaries. The direct application of 

one dimensional second derivative filters such as the LoG operator did not lead to satisfying 

results mainly due to curved edge lines and range parametrization problems. A more suitable 

way is to calculate the gradient vector field in a larger neighborhood and afterwards calculate 

the magnitude of the derivative of the normalized vector field in a small neighborhood 

(corresponds to the second derivative in gradient direction as proposed in [MAR80]). The 

process is visualized in Figure 75. Here the Sobel operator was used with different filter sizes 

(7x7 19x19 and 43x43 pixels) to calculate the gradient vector field (Figure 75 first row and 

second row for a detail). The magnitude of the derivation of the gradient vector field was 

afterwards calculated in a one pixel neighborhood (third and fourth row). Two general points 

can be derived from this example. First, boundary detection using only the gradient magnitude 

is difficult, mainly because cavities evolve spatially smoothly. Second, a rather large 

neighborhood function is necessary to obtain a consistent vector field that describes the shape 

gradient of nacre and cavity without noise interference.  

 

A general edge based procedure to obtain a complete cavity boundary could be to use the 

active contour approach snakes to connect edges defined by local maxima of the obtained 

second image derivative. This corresponds to the gradient vector flow approach proposed in 

[XU97]. Anyhow, as stated earlier, an approach to approximate edges even though no 

consistent boundary information exists is not preferred due to the paradigm that in case of 

doubt the decision has to be made in favor of pearl quality. Additionally, a certain stopping 

criterion would have to be defined with a threshold that separates local intensity maxima due 

to noise from those caused by cavities. Without further knowledge about cavity configurations 

such a threshold setting is, as mentioned, for the moment not desired. Still the gradient field 

can be used for a region growing approach, as will be presented in the next section.  
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 Gradient Magnitude 

Sobel Filter Size: 7x7 19x19 43x43 

 

 

Gradient Vector Field Derivation Magnitude 

 

Figure 75: Cavity edge detection with the derivative of the gradient vector field.  
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5.2 Implemented Approach 

The general idea of the implemented approach is to grow a region starting from the outer 

boundary of the pearl, as it is known to be nacre, and stop at local intensity maxima. As 

growing criterion, the gradient vector field can be used.  

5.2.1 Neighborhood Range and Region Growing Rule 

First, the neighborhood range of the applied filter to calculate the image gradient direction has 

to be defined. In Figure 76, the result of the region growing process for different filter sizes is 

shown with two example images. It can be seen that when a small filter is applied, the region 

growing stops even though the pixels adjacent to the region boundary pixels still belong to the 

nacre. This is due to the fact that the pearl shape gradient gets lower the further pixels lie 

within the pearls ‘body’, meaning the shape gradients get more disturbed by noise.  

Sobel Filter Size: 7x7 19x19 31x31 

 

Figure 76: Region growing in gradient direction with different gradient filter size.  
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A larger filter size helps to overcome this problem (Figure 76). A larger filter size helps 

furthermore to overcome local intensity maxima caused by the nacre shape without cavity 

superposition (blue arrow in the first image in the second row). The problem of grooved 

regions that is caused by gradients in diagonal direction cannot be eliminated with a larger 

filter size. An application of circular filters diminished this effect, but a more ample growing 

rule is more efficient.  

 

The effect of not only adding the pixel in gradient direction of a current region boundary pixel 

but adding its two neighbor pixels as well is shown in Figure 77 (a schema of this growing 

rule is shown on the right). The effect of grooves due to diagonal shape gradients is 

completely eliminated. Furthermore the need for a larger filter size to overcome local 

intensity maxima caused by the pearls shape can be observed more clearly when comparing 

the second image of the second row (Sobel filter size 19x19 pixels) and the third image (filter 

size 31x31 pixels). The negative effect of the ample growing rule and the large filter size can 

be seen in this example as well: cavity boundaries with low local intensity maxima could be 

over jumped (blue arrow).  

 
Figure 77: Effect of a more ample region growing rule. 

 

7x7 9x9 31x31 

Gradient Vector 

Growing 
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For a first basic implementation this negative effect was willingly condoned for the following 

reasons. As local shape gradients can show similar characteristics as cavity gradients an 

analysis of the pearls shape would have to be done for a possible adaptive filter size or 

growing rule. An analysis of how to do that was postponed to a later time, when more 

knowledge about the general configuration and character of cavities is obtained. Second, an 

evaluation of a possible 3 dimensional pearl scan is aimed at in the near future. This means 

shape information can more easily be obtained than out of a single 2D projection of the pearl. 

Third, the large filter size can only result in a detection of smaller cavity extent than their real 

extent, which does not conflict with the general policy that false negative nacre thickness 

evaluations should be avoided.  

5.2.2 Previous Segmentation Artefacts 

As explained is section 3.2.4, artefacts along the boundary between borehole and bevel of the 

support appear after the synthetic background image is subtracted from the original image. 

These artefacts were treated with a smoothing operation. The effect of not treating the artefact 

in cases the nacre region is superposed by the borehole gradient can be seen in Figure 78.  

 
Figure 78: Effect of not treated and treated segmentation artifacts on the region growing process.  
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Artefacts 
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It can be seen that the region growing is stopped in in a wide area, due to artificial local 

maxima at the non-treated borehole boundary. The smoothing process overcomes this 

problem. It has to be said that in several cases the treated region does not exactly approximate 

the expected nacre shape gradient, but as long as the region growing is not disturbed, this 

effect has no influence on the nacre thickness measurement. 

5.2.3 Pseudocode 

Pseudocode 

set region of detected nucleus to -1 

 

 

 

calculate gradient direction g1=(gx,gy) of pearl pixels 

 

calculate g2=g1-45°, g3=g1+45° 

 

 

 

bt=outer pearl boundary 

while bt+1≠bt 

       Grow for each pixel in bt in direction g1(bt),g2(bt),g3(bt) 

       Set bt+1=boundary of grown region 

end 

 
 

Figure 79: Pseudocode for the segmentation of cavities.  

5.3 Precision of Results 

To obtain a numerical precision value the distance between detected boundary pixels and the 

local intensity maximum in positive and negative outside pointing normal vector direction of 

the boundary pixel was calculated in a range of -15 to +15 pixels (Figure 80). A positive 

distance means the detected boundary lies already within the cavity region, while a negative 

signalizes a detected cavity boundary within the nacre region (meaning the resulting measured 

nacre thickness will be lower than the actual one). The nucleus region was set to an image 

intensity of 0 to avoid maxima detection within this region. The average distance to local 

maxima for the boundary of each image is shown in Figure 81.  

A visual analysis of the results showed that cases of larger negative discrepancies occurred in 

two images with elevated noise (Figure 82 first row). In one case a pearl shape gradient was 

wrongly identified as cavity (first two images second row of Figure 82). In one case of 
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multiple cavities the growing region could not reconnect after passing one of the cavities (last 

two images second row).  

 
Figure 80: Schema of the precision evaluation range. 

 
Figure 81: Precision of the detected cavity boundaries. 

 

 
Figure 82: Largest discrepancies according to a visual analysis.  
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5.4 Discussion 

The graph in Figure 81 shows that the general tendency of detection discrepancy is in favor of 

pearl quality, as almost all pearls have a positive discrepancy. Furthermore is the general 

discrepancy within a reasonable range of 3 pixels. The nine negative peaks contain the 

following cases: the two cases of noisy images shown in the previous section, two cases of 

false nucleus detection (first row of Figure 83) and five cases of ‘surgreffé’ pearls or pearls 

with a similar nacre cavity boundary characteristic (Figure 83 second to last row). In the cases 

of false nucleus detection, the applied region growing stopped at local maxima at the nacre 

nucleus boundary. In these cases, even though the evaluation value is negative, the region 

growing approach partially compensated the too small detected nuclei as it stopped partially at 

the nacre nucleus boundary. In all other cases the negative evaluation value is a reason of 

local maxima caused by the nacre shape after local cavities. It means that in all cases the 

region growing either stopped correctly at the cavity boundary or surpassed it. That accords to 

the general idea of the implemented approach.  

In general, the visual analysis of the results showed that in only one case a false cavity was 

detected due to a local intensity maximum caused by the pearls shape (as shown in Figure 82 

first images in the second row). False detections due to noise will not be addressed, as the 

elevated noise level is a result of the manual image acquisition and will not occur once this 

process is automatized. The case at which the growing region could not reconnect after 

passing a separated cavity not connected to the nucleus should not have an influence on the 

nacre thickness measurement, as the not connected region that is technically a false detected 

cavity lies behind the correctly detected cavity. 
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Figure 83: Images with negative precision evaluation value. 

 

5.4.1 Discrepancy to Intuitive Boundary Setting 

A more general point to discuss is the assumption that cavity boundaries are defined by local 

intensity maxima. The first image in Figure 84 shows the boundary of a detected cavity in 

blue. The second image shows the local intensity maxima calculated in normal vector 

direction of each boundary pixel (as used for the precision measurement) in red. It can be seen 

that the detected boundary in blue approximates well those maxima. Anyhow, a human 
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boundary setting might be more oriented at local gradient maxima. The automatically detected 

boundary in the region marked in the first image with a blue arrow appears to be several 

pixels away from an intuitively set cavity boundary. The visualization of local gradient 

maxima in normal vector direction of the detected boundary (third image in red) correlates 

better to the intuitive boundary. Anyhow, a pearl with the same shape but without cavity 

would show a steady increase of intensity (nacre thickness in direction of the X-ray beam) 

until the nucleus. As soon as the intensity decreases, a local cavity begins. A schema of this 

relation is shown in Figure 85. The grey region describes material with a cavity. The X-ray 

beam direction is orthogonal to the viewport. The point of maximum material thickness is 

situated exactly before the cavity begins. As the image intensity corresponds to material 

thickness in X-ray beam direction, a decrease in image intensity even though pearl thickness 

increases means a cavity begins. This means the assumption that cavity boundaries are 

described by local intensity maxima corresponds to the physical reality but might not 

correspond to the intuitive boundary setting by employees of the DRMM. If a boundary 

detection based on human intuition is preferred, a gradient based detection has to be 

implemented. Anyhow, for the moment the intensity based method will be used, as it 

corresponds to the physical model. An analysis of the impact on the nacre thickness 

measurement will be done in section 9.1. 

 
Figure 84: Difference between intensity based and gradient based cavity boundary. 
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Figure 85: Schematic representation of the thickness profile d(r) of material with cavity (cavity in grey). 

5.4.2 Processing Time 

The processing time to detect the cavity boundaries as described in the previous sections is 

shown in Figure 86. The processing time generally depends on the size of the pearl and the 

cavity configuration. For larger pearls without cavities the region growing process takes 

longer than for small pearls or pearls with large cavities. The average processing time is 0.15 

seconds.  

 

 

 
Figure 86: Processing time for the cavity detection for each test image. 

5.4.3 Optimization Possibilities 

Technically, the region growing process does not have to be done until all region boundary 

pixels are local maxima. For the decision if a pearl has to be rejected or not it is sufficient to 
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stop the region growing once every region boundary pixel is further than 0.8mm from the 

outer boundary of the pearl away, as all further regions are not of interest for the rejection 

criterion. Anyhow, the decrease in processing time is minimal (0.02 seconds). Furthermore, 

the analysis of the detection result of the complete algorithm might help to gain further 

knowledge of general nacre configurations.  

 

In the current implementation a fixed filter size for the calculation of image gradients was 

used for all images. The global precision of results could be increased by implementing a 

multiscale approach. As adapting the filter size to local image features is a common approach, 

various techniques can be found in the literature [BAS02], [TUY08]. The challenge is to find 

an approach that reliably separates the different cavity configuration cases mentioned in 

section 5.1 (and possibly more). Anyhow, for the moment image acquisition parameters have 

to be evaluated first (noise reduction, spatial resolution,…), as well as the further ongoing of 

project RAPA, namely a possible 3D image acquisition has to be decided.  

5.5 Conclusion 

In the previous section our approach to detect cavities within the pearl was presented. The 

approach is based on the assumption that cavity boundaries are defined by local intensity 

maxima. This is due to the fact that the nacre thickness in X-ray beam direction decreases 

when cavities appear. A region growing process is started at the previously detected outer 

boundary of the pearl. The region is grown in gradient vector direction of its boundary pixels 

obtained by applying a Sobel operator on the image. As the gradient vectors around local 

intensity maxima all point to the maxima, the growing stops at such regions. To avoid false 

detections due to local intensity maxima caused by noise or the pearls shape a rather large 

filter size of 31x31 pixels was applied. Accordingly, small or weak cavity boundaries are 

sometimes not detected. The approach is hence ‘pearl exporter friendly’, as cavities cause a 

smaller nacre thickness.   
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6 Nacre Thickness Profile Calculation 

After the three segmentation steps, explained in the previous sections, all crucial boundaries 

for the calculation of the nacre thickness profile are determined (Figure 87 on the left). The 

nacre thickness is measured for each pixel of the obtained outer boundary of the pearl in 

direction of its inside pointing normal vector (Figure 87 on the bottom right, nucleus and 

cavity regions are set to -1). This procedure was chosen as it corresponds to the current 

manual nacre thickness at the DRMM. Technically, this procedure does not necessarily 

accord to the real minimal nacre thickness at any point of the boundary (see sketch on the top 

right of Figure 87). But an absolutely precise measurement can due to the 2 dimensional 

projection of the X-ray imaging anyway not be guaranteed. Furthermore, a search of the 

minimal thickness in a 33 pixels radius (=0.8mm in the current spatial resolution) is time 

intense, as for the certainty measure presented in the next section, not only the boundary 

pixels of the circle would have to be checked, but all pixels within the circle as well. But, as 

said, the procedure to measure in direction of the normal vector corresponds to the manual 

procedure of the DRMM experts and furthermore is not to the disadvantage of the pearl 

exporters, as a potential discrepancy to the physical minimal nacre thickness will always be 

positive.  

 

Figure 87: Schematic representation of the nacre thickness measurement in normal vector direction from the 
detected outer boundary of the pearl.  
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The measurement is done iteratively for all pixels of the outer boundary in direction, of their 

inside pointing normal vector. If bi is a pixel of the outer boundary, ni its inside pointing 

normal vector k a natural increment starting at 1, it is checked for each pixel pi,k 

  𝑝⃑𝑖,𝑘     =   𝑝⃑𝑖 + 𝑘𝑛⃑⃑𝑖 ( 10  ) 

whether it belongs to the detected nacre region or not. The results are stored in a matric MC in 

which the columns contain a Boolean expression for each boundary pixel at a given k 

describing if pixel pi,k belongs to the nacre region (false) or not (true) (see Figure 89 for the 

pseudocode). This Matrix will be used for a certainty calculation described in the next section.  

The nacre thickness profile in pixels is hence for each boundary pixel i the number of the 

column with the first non-zero entry (contact with cavity or nucleus). A multiplication with 

the image resolution results in the nacre thickness profile in mm (Figure 88).  

 

Figure 88: Obtained nacre thickness profile of the pearl shown in Figure 87. 

 

Pseudocode 

set region of detected nucleus and cavities to -1 

 

 

 

calculate normal vector ni of each pixel bi of the outer boundary 

 
k=1 

while any pixel bi+kni>0 

       MC(i,k)= pixel bi+kni<0 

       Set ni to zero if pixel bi+kni=-1 

       k=k+1 

end 

 Figure 89: Pseudocode for the nacre thickness profile measurement.  



144 
 

7 Certainty Measurement 

The procedure currently applied at the DRMM to decide whether to reject a pearl or not is to 

identify visually if more than 20% of the whole nacre region has a thickness of lower than 

0.8mm. According to the current image resolution and the procedure explained in the previous 

section, the sum of the 33rd column of matrix MC (33 pixels = 0.8mm) divided by the size of 

the column (the amount of boundary pixels) is the percentage of the 2-dimensional nacre 

profile with a nacre thickness lower 0.8mm. The graph in Figure 90 on the left shows the 

calculated nacre thickness for every boundary pixel of the pearl of the previous example. The 

dashed line is the current threshold of 0.8mm. Every entry of the nacre thickness profile lower 

than 0.8mm is marked in red, as well as the corresponding regions in the X-ray image of the 

pearl on the right. The percentage of the nacre region lower than 0.8mm corresponds to ~46% 

which makes the pearl a reject in the current definition of the DRMM. 

 

Figure 90: Automatically measured nacre thickness profile of a Tahitian pearl (left). The regions of the profile 
with a thickness lower than 0.8mm and the corresponding regions of the X-rayed pearl are marked in red. 

 

As the automated measurement as well as the general imaging of spherical object results in a 

discrepancy between detected boundaries and real boundaries, a certainty measurement for 

the obtained results is proposed.  

The sum of the k-th column of matrix MC divided by the amount of boundary pixels 

corresponds to the percentage of nacre regions lower than 0.8mm if the outer boundary is 

shifted by k pixels in direction of its outside pointing normal vectors. The identification of the 

column at which a pearl detected as a reject, has a percentage lower than 20% gives a scalar 

value in pixels of the certainty of the measurement. This procedure is visualized in Figure 91. 

The graph on the left shows the obtained nacre thickness profile of the previous figure in blue, 
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and a hypothetical profile shifted by 9 pixels that would result in a detection of a pearl to be 

exported in black. It means the automatic detection of the example pearl as a reject would be 

false if the imprecision of all segmentation steps and imaging imprecisions resulted in a lower 

nacre thickness of 9 pixels at every point of the detected outer boundary. The graph on the 

right shows the sum of the k-th column of matrix MC divided by the amount of boundary 

pixels, which corresponds to the percentage of nacre being lower than 0.8mm when the 

boundary is shifted by k pixels.  

 

Figure 91: Representation of the calculated certainty value.  

 

As the average precision of all segmentation steps within a range of  -2 to 2 pixel, pearls 

automatically detected as rejects with a certainty value lower than 4 pixels might still be 

considered as good for exportation, according to the paradigm that in case of doubt pearls 

should not be rejected. However, the certainty value should be seen as a variable that is to be 

adjusted by the DRMM according to the results of the test phase of the prototype of our 

algorithm, rather than to be defined by the author. 
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8 Results 

All test images were processed as described in the previous sections, without any of the 

proposed optimizations. The bar plot in Figure 92 on the top shows the sorted certainty values 

for pearls with at least 20% of automatically measured nacre thickness lower than 0.8mm. Red 

bars mark the 13 pearls classified by experts of the DRMM as to reject. Within the sorted 

results, the last pearl classified by the experts as to reject has a certainty of 5 pixels and is 

situated at position 23. This means that if a threshold for the certainty value is set to 5, every 

pearl classified by experts of the DRMM as to reject is as well classified as to reject by the 

proposed automatic measurement. With such a threshold 10 pearls classified by the experts as 

good, would be rejected by the automatic measurement.  

 

To identify false rejects due to imprecise segmentations of the proposed algorithm, a second 

measurement was done with optimized outer boundary and nucleus detection. The outer 

boundary detected with our approach was refined with the benchmark method used for the 

precision measurement (section 3.3.2). Larger image gradients only outside the detected 

boundary were identified and the boundary adjusted accordingly. This means that the 

optimized boundary always results in a nacre thickness equal or larger than the originally 

detected one but corresponds to standard assumption that object boundaries are defined by 

gradient maxima. For the nucleus the results of the brute force approach used to measure the 

precision of our algorithm were taken (sections 4.1.3, 4.1.4 and 4.3). Cavity boundaries were 

refined by identifying intensity maxima inside the detected boundary as done for the precision 

measurement explained in section 5.3 (an analysis of the difference between intensity based 

and gradient based cavity detection in regards of the nacre thickness measurement will be 

discussed in section 9.1). The optimized version is hence a ‘best case’ benchmark detection in 

means of nacre thickness. The certainty value for the nacre thickness measurement of this 

optimized version is shown in Figure 92 on the bottom. The certainty difference in pixels 

between proposed and optimized version is shown in Figure 93. The dashed black line marks 

a certainty difference of -2 pixels.  
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Figure 92: Certainty value for pearls detected as to reject with the proposed algorithms (top) and with an 

optimized (bottom). Pearls classified manually as to reject by experts of the DRMM are marked in red. 

 

 
Figure 93: Certainty difference between proposed and optimized version of the nacre thickness 

measurement.   
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9 Discussion 

Two pearls classified as to reject by the proposed algorithm are classified as good with the 

benchmark version (bars 13 and 22 in Figure 92). The results of both versions for both images 

are shown in Figure 94 (page 149). The first column shows a detail of the original image 

containing the pearl. The second column shows the detected outer boundary and cavity 

boundary in blue and the detected nucleus in black. The third column shows regions with a 

detected nacre thickness lower than 0.8mm in red. The yellow regions in the last image are 

regions with a nacre thickness lower than 0.8mm but all together do represent less than 20% in 

regards of the whole outer boundary. In both cases imprecise nucleus detection led to a 

thinner detected nacre thickness. The examples illustrate again the importance of a self-

evaluation of the nucleus detection to either improve the automatic detection or to classify 

pearls that have a low self-evaluation value as exportable.  

The contrary of a pearl with higher rejection certainty when the optimized version was 

applied is shown in Figure 95 (page 150 first two rows, corresponds to bar 31 in Figure 92). 

Again the discrepancy is caused by different nucleus detection. In the optimized version the 

nucleus is positioned two pixels more to the west and has a 2 pixels larger radius. As a result a 

slightly smaller region has a nacre thickness lower than 0.8mm but the certainty value is 

greater as all pearl boundary pixels in the west are closer to the nucleus. If a threshold is set to 

a certainty value of 5 pixels, the proposed version results in a good pearl while the optimized 

version results in a reject. The example shows that even small detection imprecisions have an 

impact on the general classification. Specifically for round pearls with a general nacre 

thickness close to 0.8mm as a nucleus displacement affects the nacre thickness measurement 

of the complete boundary.  

The third and fourth row in Figure 95 show the impact of imprecise outer boundary detection 

(corresponds to bar 30 in Figure 92). Due to the smoothing process to delete segmentation 

artefacts, parts of the nacre in the south of the pearl are cut off. As a result, a larger nacre 

region has a thickness lower than 0.8mm. If the outer boundary is detected correctly, the 

certainty value decreases from 4 pixels to 1. All other results show no larger discrepancies 

between boundary detections of the proposed and the optimized version. In the following two 

sections it will be clarified if the discrepancy between human and numeric classification is 

based on the intensity based cavity boundary assumption or caused by human 

misclassification.  
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Figure 94: False rejects obtained with the proposed classification.  
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Figure 95: Pearls classified as rejects but with different certainty between proposed and optimized 

algorithms.  

  

P
ro

p
o
se

d
 

O
p
ti

m
iz

e
d

 

P
ro

p
o
se

d
 

O
p
ti

m
iz

e
d

 



151 
 

9.1 Intensity vs Gradient Based Cavity Detection 

To evaluate if the discrepancy between pearls classified automatically as rejects but evaluated 

as good by experts of the DRMM is caused by the assumption that cavity boundaries are 

defined by local intensity maxima, a gradient based cavity boundary refinement was done. 

The strongest image gradients along the inside pointing normal vectors of the intensity based 

and optimized boundary were identified and the boundary adapted accordingly (see section 

5.4.1 and Figure 84). This means, the so calculated nacre thickness will always be equal or 

larger than with the intensity based cavity detection. The outer boundary and the nucleus were 

detected with the previously mentioned benchmark version, to reduce the influence of 

segmentation imprecisions. The results were compared to the results obtained with the same 

benchmark version with intensity based cavity detection (corresponds to the bar plot on the 

bottom of Figure 92). In Figure 96 the certainty values for the gradient based cavity detection 

are shown on the top (the order still corresponds to the results of the proposed version). The 

difference of certainty values to the intensity based version are shown on the bottom.  

 

It can be seen that several pearls show a decreased certainty value. But still, if a threshold is 

set at the value of the pearl at bar 23 to include all pearls that are manually classified as 

rejects, 9 other pearls are classified automatically as to reject in contrary to the human 

classification. It is hence to clarify if those pearls might be misclassified during the expert 

evaluation or if the even benchmark methods meet their limit. Before this analysis is done in 

the next section, it has to be said that the comparison between intensity based and gradient 

based cavity detection was done to exclude the conceptual difference as a unique reason for 

the discrepancy between human and numerical classification. As stated before, the intensity 

based method corresponds to the physical model of cavities and should to the author’s opinion 

be preferred to the gradient based one. Anyhow, the model is an assumption. For a proof 

pearls would have to be cut. This is not an option for pearls deemed for exportation, but the 

DRMM owns pearls from its own production that cannot be exported as it would lead to a 

conflict of interest. The permission to cut some of those was granted by the DRMM so that in 

the near future a validation of the cavity model will be done.  
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Figure 96: Certainty values for the optimized version with gradient based cavity detection (top) and 

difference to the optimized version with intensity based cavity detection (bottom).  

 

9.2 Manual vs Numerical Rejection  

To compare cases manually classified as good but automatically as reject, the results of the 

benchmark version with intensity based cavity detection will be used. In Figure 97 (page 155) 

different pearls are shown with the original X-ray image intensity in the first column. The 

numbers on the images correspond to the bar plots of the previous figures. Red numbers mark 

pearls classified by DRMM experts and by the automatic measurement as rejects, while blue 

numbers correspond to pearls classified automatically as rejects but as good by DRMM 

experts. The second column shows the segmented and calibrated image. The white dashed 

line in the images marks a distance of 0.8mm to the outer boundary. Cavities or a nucleus 

region that lies between the outer boundary and the white line correspond accordingly to 
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regions with a nacre thickness lower than 0.8mm. The third column shows automatically 

detected outer and cavity boundaries in blue and the detected nucleus in black. In the fourth 

column pearl regions with an automatically detected nacre thickness lower than 0.8mm are 

colored in red. The first row shows the pearl with the largest rejection certainty. The nacre 

thickness is at any point clearly lower than the required 0.8mm. The second row shows the 

pearl that corresponds to bar number 7 in the previous plots, one position before the first pearl 

classified manually as good but as a reject by the automatic measurement. Here as well the 

nacre thickness is at any point lower than the required 0.8mm, another case of a rather obvious 

reject. The third and fourth rows show the first two pearl classified automatically as reject in 

contrary to the expert classification. In both cases it can be visually validated that larger 

regions of cavity boundaries lie outside the white line that marks the 0.8mm margin. Even 

with the gradient based cavity boundary refinement both pearls still are classified as rejects. 

While pearl number 8 (third row) is a rather obvious human misclassification, pearl number 9 

illustrates the challenge of a manual classification when the nacre thickness lies close to 

0.8mm. In such cases the operator has not always enough time to analyze the boundaries in 

detail and instead judges intuitively. The next pearl (last row) is again a pearl manually as 

well as automatically classified as rejects.  

 

Figure 98 (page 156) shows three reject examples that correspond to bars 18 to 20 with a 

certainty of 6 pixels in the proposed and 5 pixels in the optimized measurement. The first two 

examples illustrate a general challenge concerning the manual classification. It is likely that a 

DRMM expert recognizes that certain nacre regions of both pearls are smaller than 0.8mm. 

The challenge is to estimate if those regions correspond to 20% of the complete boundary. 

Specifically for non-round pearls this is a non-trivial task. In those cases the automatic 

measurement has a clear advantage, as the percentage can be calculated quite precisely. The 

third row shows a pearl with nacre thickness close to 0.8mm. Again a case that is difficult to 

estimate visually. The detail on the bottom shows that the nucleus or cavity boundary is still 

several pixels from the 0.8mm margin and hence the results are correct automatic 

classifications.  

 

In Figure 99 (page 157) three reject examples with a certainty of 4 pixels are shown including 

the one manually classified as reject with the lowest certainty of all manually rejected pearls. 

Again a visual analysis showed that those pearls manually classified as good are correctly 
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detected as rejects with the automatic measurement. This means if a threshold for the certainty 

value is set to 4 pixels, all 13 manually rejected pearls can be identified along with 11 pearls 

manually classified as good but correctly classified as reject with the optimized automatic 

measurement.  

9.3 Summary 

The analysis of classification results obtained with the optimized version of the proposed 

measurement procedure showed that it is generally possible to automatically identify pearls 

that were manually classified as rejects. Additionally, several pearls that were manually 

classified as good were correctly detected as rejects, meaning the automatic measurement 

shows a higher degree of reliability. With the optimized version no false rejects due to false 

segmentation occurred. The application of the non-optimized measurement showed generally 

similar results but contained two false rejects due to false nucleus detection. The 

implementation of a self-evaluation after the nucleus detection is hence of importance to 

avoid false rejects.  

 

As the X-ray images are a numerical approximation of the pearls, an automatic measurement 

even if highly optimized will always be associated with a certain degree of uncertainty. 

Additionally, the requirement of a maximum processing time of 1 second per image will at 

one point lead to a sacrifice of precision for processing speed. A suitable threshold for the 

proposed certainty value has accordingly to be defined. For the implementation of the non-

optimized measurement as proposed a threshold that includes all manually rejected pearls can 

be set to 4 pixels. Anyhow, a general recommendation for such a threshold might be 

premature as the proposed algorithms will be further optimized and a possible threshold has to 

be adapted accordingly. Additionally, an analysis of imaging parameters and their influence 

on image quality will be done. A different image quality will likely result in a different 

certainty distribution which again will require an adaption of the threshold.  
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Figure 97: Automatic classification results. The numbers in the image corresponds to the bar plot in the 

previous Figures. Red numbers show pearls classified as rejects by DRMM experts.   
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Figure 98: Further cases manually classified as good but as rejects by the automatic measurement. The red 

arrows point at regions with nacre thickness visibly lower than 0.8mm. 
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Figure 99: Reject pearls with a certainty of 4 pixels when the optimized measurement is applied. The red 

arrows point at regions with nacre thickness visibly lower than 0.8mm. 
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9.4 Processing Time 

The processing time for each of the 3 segmentation steps (pearl segmentation, nucleus 

detection and cavity detection) and the processing time for the remaining steps (nacre profile 

calculation, classification and certainty calculation are measured together) together with the 

complete processing time is shown in Figure 100. Variabilities are caused by different pearl 

sizes and different nacre cavity configurations. The average processing time for the complete 

measurement is 0.7 seconds per image. This means the general requirement of a maximum 

processing time of 1 second per image is met. Additionally, possible optimizations can be 

added without surpassing the required processing time.  

 

 
Figure 100: Processing time of the four processing steps and the total processing time for each test image.  

 

processing 

step 

pearl 

segmentation 

nucleus 

detection 

cavity 

detection 

nacre 
thickness 

measurement 

total 

average 
processing 
time per 

image 

0.27sec 0.23sec 0.15sec 0.05sec 0.7sec 

Figure 101: Average processing time per image for the four processing steps and total processing time per 
image.  

9.5 Optimization Possibilities  

A priority should be to evaluate the possibilities of changing the support configuration as 

proposed in section 3.4.5. If the support material is partially replaced by polystyrene the 

background will be of uniform intensity. The pearl segmentation can hence be done by a 

single thresholding operation. This would not only reduce segmentation imprecisions but 
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leave more time for an improved nucleus and cavity detection. Second priority should be to 

improve the nucleus detection as both false rejects in the non-optimized version of the nacre 

thickness measurement are caused by false nucleus detections. The application of a self-

evaluation after the nucleus detection together with additional treatment of detected nuclei 

with low boundary probability as proposed in section 4.4.5 eliminates those false detections. 

This procedure should hence be further investigated and validated with a new set of images. 

Concerning the method to detect cavities, an improvement might be possible by applying 

multiscale gradient calculation as mentioned in section 5.4.3. But, as the current approach is 

rather ‘pearl exporter friendly’ this would likely lead to an elevated amount of rejected pearls. 

Even if correctly measured, a significant elevation of rejected pearls could at one point 

become a ‘political’ issue, as the quality control is not meant to exclude as much pearls as 

possible from exportation rather than to regularize the market. An improvement of the cavity 

detection has hence to be reconciled with the control policies of the DRMM, as an application 

of the algorithm as proposed already leads to almost the double amount of rejected pearls in 

comparison to the human classification.  
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10 Prototype 

For the purpose of further validating the presented method to automatically measure the nacre 

thickness, a prototype with a graphical user interface was developed (Figure 102, the 

functionality of numbered items is listed in Figure 103). The prototype was recently installed 

on the computer of an X-ray machine at the DRMM. The program runs independently from 

the image acquisition. This means images have to be taken prior to the measurement and 

stored in one folder. Afterwards the program is run and all images of the folder are processed. 

The results for each image are displayed and have to be validated by an operator of the 

DRMM. In case of a false boundary detection the operator has the possibility to manually 

measure the nacre thickness with a tool that corresponds to the software used for the current 

manual nacre thickness measurement. If this function is chosen the current image and the 

false detection results are stored automatically in a separate folder for further analysis. Images 

with pearls that are not visually evaluable can be identified so by the operator. Those images 

are stored as well automatically in another folder for further analysis. The minimal nacre 

thickness of the current pearl is displayed in mm as well as the percentage of the nacre with 

thickness greater or lower than 0.8mm. The automatic measurement results are visualized in 

two displays. One contains the original image with all detected boundaries for visual 

validation. The second one contains a visualization of the nacre profile with nacre regions 

thicker than 0.8mm shown in green and regions thinner than 0.8mm in red. After the 

evaluation of the complete folder all images of this folder can be deleted, as the storage of 

thousands of images per day would cause storage problems at a certain point. The two folders 

with false classifications and not evaluable pearls instead will be the basis for future 

improvements of the algorithms.  
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Figure 102: GUI of the prototype currently implemented at the DRMM.  

 

item 

number 

function 

1 choose image folder  

2 process previous image 

3 recalculate current image 

4 process next image 

5 current image name 

6 display percentage of nacre with thickness greater 0.8mm 

7 display minimal nacre thickness 

8 display percentage of nacre with thickness lower 0.8mm 

9 display percentage of nacre with thickness lower 0.75mm 

10 controller to adjust minimal required nacre thickness in case of change 

11 registration of false detections  

12 registration of images that are not evaluable visually 
13 zoom function for each displayed image 

14 tool for manual nacre thickness measurement 

15 display original image 

16 display detected boundaries 

17 display visualization of nacre thickness profile 
Figure 103: Functionality of GUI (numbers correspond to Figure 102).   
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11 Conclusion 

In the previous sections, a method to automatically measure the nacre thickness of Tahitian 

pearls out of X-ray images was presented. The developed approach was tested with a set of 

298 X-ray images and the results compared to the manual classification of experts. It could be 

shown that it is possible to numerically evaluate the nacre thickness of Tahitian pearls out of 

X-ray images. The requisition of a maximum processing time of 1 second per image was met. 

The average processing time is at 0.7 seconds which leaves room for possible optimizations.  

 

A general challenge is the large variety of pearl shapes, nuclei sizes and cavity configurations 

of Tahitian pearls. To address this challenge, the proposed algorithms use as little assumptions 

about pearl parameters as possible. For the pearl segmentation, only information of the 

support geometry is used. The nucleus detection is achieved by using logical gradient 

direction functions. For the cavity detection, the gradient direction is used to obtain 

boundaries at local intensity maxima. Accordingly, the algorithms are independent of the 

pearls size or the nacre thickness in direction of the X-ray beam and potential superposition of 

cavities.  

 

Negative boundary discrepancies that led to a thinner nacre thickness are mainly caused by 

the smoothing process to delete artefacts caused by the pearl segmentation and false nucleus 

detections. Here only two false nucleus detections had a significant influence on the general 

pearl classification. Optimization possibilities were proposed that, when applied, reduced the 

amount of two false rejects to zero.  

 

Several pearls were manually classified by the experts of the DRMM as good but as rejects by 

the automatic measurement. A visual analysis showed that the automatic classification is 

correct.  

 

In general it can be stated that an automatic nacre thickness measurement is suitable to 

accelerate the obligatory quality control of Tahitian pearls deemed for exportation as well as it 

is more reliable in means of accuracy compared to the human evaluation.   
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12 Future Work 

As mentioned, a real validation of the numeric nacre thickness measurement can only be done 

by cutting the measured pearls and compare the detected boundaries to the real internal pearl 

profile. As the permission to do so with some of the pearls owned by the DRMM was granted, 

such an analysis will be done in the near future. Additionally, the proposed optimization 

possibilities will be further investigated and tested with new sets of X-ray images.  

 

While the presented work concerned the processing of X-ray images of Tahitian pearls, next 

steps for a complete automatization of the nacre thickness measurement concern as well the 

image acquisition. Possibilities of an automatized image acquisition of a complete support 

have to be investigated on-site at the DRMM and the suitability of a support with alternative 

material configuration has to be tested. Additionally the parametrization of the image 

acquisition has to be analyzed. Parameters of interests are the initial X-ray intensity and its 

influence on the image structure and quality and the internal image averaging for noise 

reduction and its influence on the image acquisition speed. Afterwards the possibilities of how 

to integrate the proposed image processing into an automated image acquisition process have 

to be investigated.  

 

On a longer term a 3-dimensional nacre thickness profile measurement is aimed at. Here, the 

technical possibilities of rotating the pearls within the X-ray machine to acquire X-ray images 

at different angles have to be analyzed. Afterwards, suitable algorithms to reconstruct the 3-

dimensional pearl profile out of the acquired images have to be developed. Finally, the 

technical possibilities to route the pearls into the X-ray machines and to automatically sort 

them after the numeric nacre thickness measurement have to be analyzed.  
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1 Introduction 

The Tahitian pearl is a natural gem that is cultivated in black-lip pearl oysters (Pinctada 

margaritifera) in the lagoons of French Polynesia. Compared to other famous pearls sold on 

the international market, such as the Japanese Akoya pearl or the Chinese Freshwater pearl 

that appear mostly in white or yellow tones, the Tahitian pearl comes in a large variety of 

colors. Typical hues that might appear solely or in combination are blue, green, yellow, white, 

turquoise or rose. Additionally, any shade of gray from pure white to pure black (as well as 

black and white together, see bottom left in Figure 1) can appear, as well as the intensity of 

hues themselves can vary between for example light blue and dark blue. This variety is one of 

the unique and desired features of Tahitian pearls. 

 

Figure 1: Tahitian Pearls of different and partially multiple colors. 

1.1 Manual Classification 

The color variety causes several challenges when it comes to classifying pearls according to 

their color. A classification is generally needed for multiple reasons. The first reason is that 

the price of each pearl depends, besides other quality parameters such as its form, size and 

luster, on its color. Pure bright blue pearls or pearls with a bright rose overtone are more 

seldom than for example greenish or gray pearls and therefore more expensive. Accordingly 

each time a pearl is sold, a certain kind of color classification is necessary to estimate its 

price.   

A second reason is that jewelry made out of pearls with similar colors is esthetically 

appealing. Earrings are made almost exclusively with pearls of similar color. A whole set of 
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jewelry (earrings, necklace and bracelet) with all pearls of similar color can be sold for a 

higher price than if each item contained pearls of similar colors but differing from those of the 

other items. Accordingly, a set of pure pearls of similar color can be more expensive when 

sold as whole, as if they were sold separately. It means here, a classification is made not only 

based on the appearance of a single pearl but as well based on color similarity.  

A third reason concerns research projects conducted in French Polynesia aiming to find 

correlations between pearl cultivation parameters and pearl quality. The goal is to understand 

why a certain pearl has a certain appearance; and if it is known to possibly influence the 

cultivation procedure to increase the production of high-valued pearls. To mathematically 

relate the color of a pearl to its cultivation parameters, its color has to be somehow classified 

as well.  

Currently, the color classification of Tahitian pearls for whatever purpose is done manually by 

simply looking at a pearl, meaning based on the perception of the beholder and inspection 

conditions (light sources, view angle, etc.). It is accordingly possible that a pearl sold in one 

place might have a different price from a very similar pearl sold in another place. Especially 

for non-experts, this purely perceptual price generation is difficult to comprehend, which 

causes uncertainties not favorable for this very important business branch. Furthermore, a 

subjective classification as basis for the mentioned correlation analysis between cultivation 

parameters and pearl quality is questionable.  

In summary, color classification of Tahitian pearls is absolutely necessary for trading and 

processing pearls as well as to gain further knowledge on the pearl formation itself. But a 

subjective classification based on the perception of the beholder and inspection conditions is 

not ideal. The goal of our project is accordingly to create a method suitable to classify the 

color of a pearl on a more objective basis while still relating to the human perception. The 

general approach is to use color images of pearls, taken under fixed acquisition parameters, 

and classify extracted color features with an Artificial Neural Network (ANN). The main 

focus of our work is on determining suitable color features. The main idea is that the more 

precise the features describe the pearls color in respect of human perception, the better the 

resulting classification results. 
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1.2 Data Acquisition 

Color images of 150 Tahitian pearls, each photographed from 3 different view angles, were 

obtained. All images were taken with a NIKON D-7000 with AF-S NIKKOR 18-55mm 

objective. All images have a pixel resolution of 6000x4000 pixels and are of uncompressed 

TIFF format. All 150 pearls were classified in 8 predefined color classes by 7 different 

employees of IFREMER that work in research projects concerning the cultivation of Tahitian 

pearls and the nature of their genesis. The 8 predefined classes are eggplant (dark purple), 

white, blue, champagne (cream), gray, yellow, peacock and green (7 examples assigned by 

majority vote of all 7 agents for 7 classes are shown in Figure 2).  

White 

       

Blue 

       

Champagne 

       

Grey 

       

Yellow 

    
 

  

Peacock 

       

Green 

       

Figure 2: Example images for 7 of the 8 used color classes. 
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1.3 Theoretical Work on Normalized rgb Histograms 

In color image processing based on human color perception, the normalized rgb color space is 

often applied, as it combines the human perceptual color model with the biological model of 

color processing in the human retina. In many approaches, the normalized rgb color space is 

used in combination with histogram binning. The choice of which color channels are binned, 

or more generally, which histogram orientation is applied, is made either based on empirical 

observations or even based on false mathematical assumptions.  

One of the main contributions of this part of the thesis is the formalization of normalized rgb 

histogram calculation. The choice of which chromatic index to bin, is reduced to a single 

parameter, namely the perceptual parameter Hue. In contrary to the few histogram 

orientations that are used in the literature, the derived formula shows that theoretically infinite 

possibilities of chromatic index generation exist, which means the possibilities of feature 

generation with normalized rgb histogram binning are theoretically infinite. To explore the 

huge range of new possibilities, extensive experiments were conducted by using different 

histogram orientations for feature generation to classify Tahitian pearls based on human 

perception with Artificial Neural Networks. Additionally, a binning strategy that respects the 

topology of the normalized rgb color space is proposed and its application included in the 

experiments.  

1.4 Experiments 

As a major focus of this work lies on feature generation, not only the majority vote of all 7 

human classifications was used, but the separate votes of each of the 7 agents that classified 

the pearls (Figure 3). Based on our theoretical work and the formalization of normalized rgb 

histogram binning, separate histograms of 180 different Hues are calculated for equidistant 

binning and for a binning adapted to the topology of the normalized rgb color space each. 

ANNs are trained tested and validated for each of the 7 agents as well as for the majority vote 

of all agents for all 320 different feature generation strategies. The results are analyzed under 

two different aspects. A qualitative analysis is done to explore if and to which extend 

histogram orientation and topological binning effect the result of color object classification 

with ANN. A quantitative analysis is done to estimate if and in which range of accuracy 

Tahitian pearls can be classified artificially based on their perceived color.  
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Figure 3: Workflow of the experimental classification procedure.  

1.5 Results 

The results of experiments show that normalized rgb histogram orientation has a significant 

impact on the global performance of ANN based color object classification. A classification 

rate variance between feature vectors calculated based on different chromatic indices of up to 

20% were observed for certain human classifications (Figure 4). A variance of at least 15% 

was observed for each of the 8 human classifications.  

 

Figure 4: Variance of global classification rate depending on the used histogram orientation.  
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The results show further that the classification accuracy of each class (here pearl color 

classes) depends on the used chromatic index. A classification rate variance between different 

feature vectors of up to 100% was observed for certain classes (Figure 5).  

 

Figure 5: Minimum and maximum classification rate for the color class ‘Blue’ over the whole range of tested feature 
vectors for each human classification.  

 

The results show that the descriptive power of a given chromatic index generally depends on 

the data distribution it is supposed to describe. The use of only a few chromatic indices in the 

literature and especially the use of the same index for different applications stand in sharp 

contrast to the results of our experiments. 

The application of the proposed topological binning had in tendency a positive effect on the 

global classification rate when compared to the standard equidistant binning. For certain 

human classifications the difference was significant with variations of up to 18% (Figure 6). 

As this was not the case for all human classifications, no general recommendation of which 

binning strategy should be applied can be given. But seeing the partially large difference, 

topological binning should at least be considered for a given application.  

 

Figure 6: Difference of topological and equidistant binning over all tested feature vectors for 1 human 

classification.  
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The quantitative results showed that it is generally feasible to classify Tahitian pearls based 

on their perceived color. Classification rates of over 84% for training data and over 79% for 

test data were reached for all human classifications (Figure 7). The classification rate of 

validation data instead showed larger variance between different human classifications. A 

major reason for this lack of generalization ability might be that the total amount of 150 pearls 

might not be sufficient, seeing the wide range of different colors and color combinations that 

appear on different Tahitian pearls. Still, an average classification rate of 76% for validation 

data was reached.  

 

Figure 7: Preliminary optimal results for the artificial classification based on 8 human classifications.  

1.6 Structure of Part II 

In section 2, related work to this part of the thesis is presented. The main focus lies on related 

research concerning the color classification of pearls. In section 3, the normalized rgb space 

and histogram binning are introduced. A formalization of normalized rgb histogram binning is 

derived in the RGB geometry and the topology of the normalized rgb color space in relation 

to histogram binning is analyzed. The image acquisition and preprocessing is specified in 

section 4 along with an analysis of the human classification of the used 150 Tahitian pearls. 

The design of experiments is presented in section 5 by specifying the used ANN topology, the 

data splitting methods and the feature vector variation. The results of the experiments are 

shown in section 6 and analyzed qualitatively and quantitatively. A conclusion is given in 

section 7 followed by a sketch of future work in section 8. 
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2 Related Work 

The use of a monochrome camera with different filters to obtain images sensitive to specific 

wavelength bands are used to classify the pearls color according to human perception is 

proposed in [NAG94]. 100 pearl samples are graded by experts in 10 classes ranging from 

white to cream. An Artificial Neural Network (ANN) is used to identify wavelength bands 

that allow a maximum correlation between human and artificial classification. Therefore, an 

ANN is trained with all images, and bands with a small influence on the classification result 

are removed iteratively. The optimal classification is reached with 9 filters with a 

classification success of 91% for the training data and 71% for the test data. This approach 

has the advantage of covering a larger area of the pearls surface when compared to the use of 

a spectrometer. Additionally, the instrumentation is generally cheaper. 

 

An approach to quantize pearl color and luster with UV-visible spectroscopy is presented in 

[MAM10]. The obtained spectra of 8 Indonesian South Sea Pearls are evaluated visually and a 

correlation between peaks and pearl color is assessed intuitively. It is concluded that UV-

visible spectroscopy can be a useful tool to quantitatively assess the quality of a pearl. The 

approach is developed further in [AGA12] and [AGA15]. Here the UV-visible spectra of 28 

pearls of 4 different types (Akoya, South Sea, Freshwater and Tahitian pearls) are measured. 

Artificial Neural Networks are used to automatically assess parameters such as donor oyster 

condition and type, breeding oyster type, pearl color, luster, surface quality, form and 

potential pearl treatment. The results indicate an impressively successful classification for 

every parameter, but the trained networks were validated with only four pearls, one pearl for 

each pearl type. The general suitability of this method has to be confirmed with a larger set of 

pearls, as some correlations are not intuitive. The classification of surface quality for example 

is somewhat astonishing. Grades include the number of surface defects and their 

concentration over the complete pearl surface. But the spectra are measured at only two areas 

on the pearls surface, each of less than 1 mm diameter. The results suggest that the overall 

surface quality is encoded in any point of the pearl surface, which does not correspond to the 

partially local character of surface defects [CUI15]. If a further validation holds, the necessity 

to develop a 3D data acquisition device for pearl evaluation, as is part of our current work, as 

well as of other research groups [TAN14] [CAO10], could be omitted.  
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A ‘traditional’ approach with RGB color image acquisition for pearl color classification is 

presented in [TIA09]. First, the original RGB images are transposed to the HSV color space. 

Then, median filtering is applied and areas containing reflections are segmented by 

thresholding the Value channel. For the remaining region the averages of Hue and Saturation 

channels are calculated separately. The average Hue of each pearl is used as feature for an 

ANN classification into three classes red, purple and white (again the pearl type is not 

specified but the papers origin and the shown images suggest Chinese Freshwater Pearls). 

Afterward, the average Saturation of pearls of the same Hue class are classified with fuzzy C-

means in four unspecified classed A-D. Even though the approach is straight-forward, 

averaging Hue and Saturation is not applicable to Tahitian pearls, as one specific feature is the 

appearance of multiple colors on the same pearl. Furthermore, the illumination component is 

not considered, a feature that is vital for the color classification of Tahitian pearls. 

Even though the topic of pearl classification is quite specific, the general goal of classifying 

an object based on its perceived color is the same as in numerous applications, such as color 

object recognition in robotics [SUN03], plant, fruit and food characterization [HER16], 

[AVI15], [PED06], [ROS04], face recognition [LI13] or even color object segmentation based 

on human perception, if the segmentation process is formulated as classification problem 

[HAS16]. One of the very first questions when it comes to color object classification is which 

color space to use; a question without general answer, as every space has its specific 

advantages and disadvantages (see [CHE01] table 2 for a brief comparative listing of 7 

commonly used spaces). For the purpose of classifying Tahitian pearls based on their 

perceived color we use the normalized rgb color space. Related work that includes similar 

strategies on non-pearl related applications will be referenced in the course of developing the 

theoretical basis of our approach in the next section. 
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3 On Normalized rgb Histogram Binning 

The RGB color space was invented by James Clark Maxwell to mathematically describe 

visible colors. His work is based mainly on the trichromatic theory proposed by Thomas 

Young and Hermann von Helmholtz. This theory (which was confirmed later) states that 

within the human retina, three different types of cones are mainly responsible for color vision. 

Each one of the three types is sensitive to light of different wavelength, namely light that 

appears red, green or blue. The theory implies that every visible color can be described as a 

combination of red, green and blue in a certain kind of proportional relation and magnitude. 

The RGB color space was created, according to this model, as a three dimensional Euclidean 

space spanned by the axes red, green and blue in which visible colors are described by a three 

dimensional vector containing the three primary colors red, green and blue at different 

magnitudes.  

While the RGB color model is based on the human processing of color, it does not correspond 

to the human color perception. Humans do not described colors as a certain mix of the three 

primary colors red, green and blue, but with parameters such as Hue, Saturation and Intensity. 

Based on these perceptive parameters, a mathematical formulation of three perceptive color 

spaces was proposed in [JOB79]. All spaces are mathematically derived from the RGB color 

space. The basic concept is that Hue is described as an angle, while Saturation and Intensity 

(or other illumination parameters) are linear parameters. The proposed spaces are rotational 

symmetric around the Intensity axis, while the rotation profile is determined by the 

mathematical definition of Saturation. As the transformation from the RGB color space to the 

proposed perceptual spaces is non-linear, the additive concept of the RGB space that 

corresponds to the human biological processing of color is hence abandoned. A possibility to 

combine the perceptional and the biological model is the normalized rgb color space. Here, 

the concept of separating achromatic (Value) from chromatic information (Hue, Saturation) of 

the perceptual model is applied within the linear RGB geometry. It is hence an interesting 

approach that is generally applied often in computer vision, but its possibilities are exploited 

only poorly, as will be shown in the next subsections. 
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3.1 The Normalized rgb Color Space 

In the definition of the HS color spaces as proposed in [JOB79], Hue and Saturation of an 

RGB vector do not change when shifted along a line through origin and the normal vector 

itself. A separation of achromatic and chromatic components in this definition can hence be 

reached by normalizing an RGB vector with the sum of its entries as to 

 
[

𝑟
𝑔
𝑏
] = [

𝑅
𝐺
𝐵
] /(𝑅 + 𝐺 + 𝐵) . ( 1   ) 

 

The normalization results in a shift of an RGB vector along a line through origin and the 

vector itself to a plane with normal [1 1 1] going through point [1/3 1/3 1/3] (Figure 8). The 

plane is cut by the borders of the RGB cube into an equilateral triangle, often referred to as 

chromatic triangle or Maxwell triangle [WYS00]. The normalized rgb vectors contain all 

chromatic information in the definition of the HS spaces, while the proportional relation of its 

entries, one of the basic concepts of the RGB color model, is preserved. 

 

Figure 8: Schema of RGB vector normalization.  

As all normalized rgb vectors lie on the same plane, a dimensionality reduction can be done 

by rotating the plane as shown in Figure 8. The rotated triangle can be seen as a barycentric 

coordinate system, meaning the proportional relations of the entries of a normalized rgb 

vector are still preserved. All mathematical operations on normalized rgb vectors that will be 

presented in the coming subsections can be done either in the RGB space or in the 2-

dimensional representation. In Figure 8 the example of a division of the Maxwell triangle with 

planes that corresponds to a division of the 2D representation with lines is given, an identity 

that will be used often in the coming sections. Numerically, it is more convenient to apply all 

operations in the RGB space as the data does not have to be rotated. For visualization 

purposes instead, the 2D representation is more convenient. In the coming subsections both 

will be used for illustration purposes, while calculations are done in the RGB space.  
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Figure 9: The Maxwell triangle in the RGB space and its 2-dimensional representation after rotation. A 
division of the Maxwell triangle with planes (left) is equivalent to a division of the 2-dimensional triangle 

with lines (right). 

3.2 Histogram Calculation 

By calculating a histogram of a given x-dimensional data distribution, the data is divided in 

domains and the frequency of data occurrence in every domain is counted [BRU02] (in this 

thesis only histograms with non-overlapping bins are considered, see [THA02] for other 

types). With a suitable choice of domain indices, histogram calculation can be seen as 

mapping an x-dimensional data distribution D with a mapping function F to vector hF in 

which every element j is the frequency of occurrences in D that are mapped by F to the same 

domain j: 

 
ℎ⃑⃑𝐹,𝑗 = 𝑐𝑎𝑟𝑑(𝑑 𝜖 𝐷 ∶  𝐹(𝑑) = 𝑗). ( 2  ) 

3.2.1 One-Dimensional Data Distribution  

The procedure for binning a 1-dimensional data distribution in 5 equidistant bins is shown in 

Figure 10 by an exemplary normalized r-channel binning. The image on the top left shows a 

hypothetical data distribution in the RGB space (every possible permutation of RGB values in 

a range of 0 to 10). The RGB vectors are normalized according to Eq. 1 (top right image). On 

the bottom left is the absolute occurrence of the data of the normalized r-Channel (a 1-

dimensional data distribution). The histogram binning is done by dividing the whole data 

distribution in 5 equidistant intervals (‘bins’, black dashed lines in the graph on the bottom 

right). The histogram vector is described by the absolute occurrence of data in each bin 

(bottom left).  
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Figure 10: Schema of binning the r-channel of a normalized rgb data distribution in a histogram of 5 
equidistant bins.  

 

In image processing, the histogram of an image is typically divided by the sum of all data 

points that are binned, as to 

 
ℎ⃑⃑′

𝐹,𝑗 =
ℎ⃑⃑𝐹,𝑗

𝑐𝑎𝑟𝑑(𝐷)
 ( 3  ) 

 

to obtain the relative frequency in regards of the cardinality of the data set. 

Histogram binning has two essential features making it a suitable tool for image analysis. 

First, the size of the histogram is determined by the mapping function. This means, the same 

mapping function applied to images (or image regions) of different size, results in histograms 

of the same size that can be directly mathematically compared or used as feature vectors for 

further processing (ANN, etc..). Second, if Eq. 3 is applied, the influence of absolute data 

occurrence variation between different images or image regions is eliminated. Both features 



188 
 

and its simple implementation make histogram binning one of the major tools or maybe “the 

major statistical tool for normalizing and requantizing an image” [WIL00]. 

 

In the example shown in Figure 10, the r-channel was binned in 5 equidistant bins. The same 

result is obtained, when the binning is done directly in the RGB space by describing the index 

to be binned as a dot product as to 

 𝑟 = [
𝑟
𝑔
𝑏
] ∙ [

1
0
0

]. ( 4  ) 

 

This means, the bins can be described as domains in the RGB space that are separated by 

equidistant parallel planes with normal vectors [1 0 0]’ (second image in Figure 11).  

 

 

Figure 11: Equivalency between r-channel binning by using scalars in the r-channel (left), planes in the RGB 
space (middle) and lines in the rotated Maxwell triangle. 

 

As every plane intersects the Maxwell triangle in a line, the binning can as well be done in the 

rotated Maxwell triangle with lines parallel to the blue-green axis. Please note, that even 

though the binning is applied in spaces of greater dimension than 1, it is still only the 1-

dimensional distribution of the r-channel binned. The method serves, as mentioned, the goal 

to introduce the equivalency of binning in the RGB space and in the rotated Maxwell triangle. 

It is necessary to understand the concept of this relation and its visualization for all the 

sections to come.  
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3.2.2 Multidimensional Data Distributions 

In the case of multidimensional data distributions, two methods to generate histograms are 

typically applied: Concatenated 1-dimensional histograms, each one of the type shown in the 

previous section, or histograms based on mapping functions with several input variables. Both 

approaches will be introduced with a 2-dimensional data distribution described by the rg-

channels of the example given in the previous section (Figure 10). This is no loss of 

generality, but done for the purpose of accustoming the reader to the geometrical equivalency 

between normalized rgb vectors in the RGB space and in the rotated Maxwell tringle.  

In the concatenated case, histograms of each channel are calculated and concatenated as 

schematically shown in Figure 12.  

 

Figure 12: Concatenated rg-Histogram (right) obtained by concatenating the two independent r- and g-

histograms. 

 

Here, the g-channel binning in the RGB space is, equivalently to the r-channel binning, done 

based on the dot product 

 𝑔 = [
𝑟
𝑔
𝑏
] ∙ [

0
1
0

]. ( 5  ) 

 

which means bins are described by regions between equidistant planes with normal [0 1 0]. 

Again, binning in the Maxwell triangle can be done with lines that correspond to the 

intersection lines of these planes with the triangle. The two separate histograms are afterwards 

concatenated.  

The second typical histogram application in image processing, in case the correlation between 

color channels shall be considered, is to calculate the corresponding bin number for a given 
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color vector based on all its entries. This can either be done with an according mapping 

function with multiple arguments, or by combining the bin numbers of previously calculated 

histograms of each channel. The latter is shown in Figure 13. First, the bin number binr,i of a 

r-histogram for each vector i is calculated (top left), as well as the bin number bing,i of the g-

histogram (top right). Both can for example be combined as to  

 𝑏𝑖𝑛𝑟𝑔,𝑖 = 𝑏𝑖𝑛𝑟,𝑖 + (𝑏𝑖𝑛𝑔,𝑖 − 1)𝑁𝑟 . ( 6  ) 

in which Nr is the number of bins of the r-histogram.  

 

Figure 13: rg-histogram generation as a division of the rotated Maxwell triangle in rhombs. 

 

Finally, the rg-histogram hrg with bin numbers j can be calculated as to  

 
ℎ⃑⃑𝑟𝑔,𝑗 = 𝑐𝑎𝑟𝑑(𝑏𝑖𝑛𝑟𝑔,𝑖 = 𝑗) . ( 7  ) 

The corresponding regions in the Maxwell triangle are rhombs (Figure 13 bottom) defined by 

lines of the r-histogram bins and the g-histogram bins. The equivalent procedure in the RGB 

space is a division of the space by planes with normal [1 0 0] or [0 1 0] into cubes (Figure 14, 

it can be seen why the rotated Maxwell triangle is the better choice, when it comes to 

visualization of multidimensional data binning). 

Before concluding this section, a remark on a misinterpretation of the final bin number, when 

multidimensional normalized rgb histogram binning is applied, shall be given. In some 
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articles it is stated that n bins are used for r and b channel each, which resulted in a maximum 

feature length (number of bins in the multidimensional histogram) of nxn [SOR03], [YAN95], 

[CER17]. If the binning is formulated in the RGB space (Figure 14), it can be seen that the 

whole 3-dimensional RGB space is divided in nxn bins, but the Maxwell triangle is only 

separated by one part of the bins. This can as well be seen in the rotated Maxwell triangle 

(Figure 13). Here, the triangle is separated by 5 bins for the r-channel and 5 bins for the g-

channel but the amount of multidimensional bins is 15 and not 25, as not every 1-dimensional 

r-bin overlaps with all of the 1-dimensional g-bins and vice-versa.  

 

Figure 14: rg-binning in the RGB space.  

3.3 Standard Application 

The normalized rgb color space is used in the literature either included in novel approaches, 

or as benchmark. Applications comprise for example vehicle color recognition [CHE14], food 

inspection [DU05], [FON14], skin detection [LEE02], [HAS15], color texture analysis 

[MAE04] or object tracking [WAN08]. In many cases (all cited articles), histogram binning is 

applied to the normalized rgb vectors to reduce data complexity and to obtain consistent 

feature vectors. Out of literally infinite possibilities of histogram orientation, only a few are 

used in standard applications. The few that are used are chosen either based on empirical 

observations, or even on a false mathematical assumption.  

In [YAN95], [CHE01], [VEZ03], [DU05], [KAK07], [BUS08], [SAN10] and [ZHU13] it is 

stated that only the r and g channel of the normalized rgb vectors have to be used, as the sum 

of r, g and b is 1, and hence the blue channel contains redundant information. Based on this 
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argument, histogram binning is applied only on the r and b channel in [YAN95], [DU05], 

[SAN10] and [ZHU13]. Clearly, the sum of a normalized rgb vector is 1, as it is an RGB 

vector projected to a plane with normal [1 1 1] going through [1 0 0]. But histogram binning 

is a nonlinear operation, meaning channel redundancy does not imply histogram redundancy.  

In Figure 15 rg-binning (top row) and gb-binning (bottom row) is done for two different 

hypothetical data sets (left and right column). The red dots represent data points (normalized 

rgb vectors).  

 

 

Figure 15: Two different data distributions (first column and second column) resulting in the same histogram 
distribution when binned with rg channels (first row) but different histogram distribution when binned with 

gb channels (second row). 

If for the data distribution of the left column a 2-dimensional rg histogram with 3 bins per 

channel is calculated, 3 histogram entries are non-zero, each representing ~33% of the data 

(top left). The same rg histogram is obtained for the 2nd data distribution (top right). For a gb 

binning of the two data distributions instead (bottom row) two different histograms are 

obtained. It means, there is no bijective relation between rg and gb histograms. The example 

holds as well if concatenated histograms out of 1D channel histograms are used. More 

generally, if only one or two 1D histograms or one 2D histogram of normalized rgb channels 

without the actual data distribution is given, it is impossible to mathematically generate the 

histograms of the remaining channels or channel combinations: 
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Accordingly, the argument to use rg binning because the sum of the entries of a normalized 

rgb vector is 1, as used in the cited articles, is mathematically wrong.  

However, this does not mean that any other binning strategy would necessarily lead to better 

results as those shown in the cited papers. In [YAN95], [VEZ03] and [KAK07] for example, 

rg histogram binning is applied to detect human skin in images. Rg-binning is chosen based 

on the false redundancy assumption. The same binning strategy for skin detection is used in 

[HAS15] but here it is argued that the rg histogram was chosen because skin regions contain 

only small amounts of blue; an empirical but true assumption. In [SOR03] it is argued that the 

‘’sensitivity of most cameras in blue are small’’ and therefor rg binning was used. It is hence 

possible that rg binning for skin detection is the optimal choice. But it does not mean that it is 

ideal for vehicle color detection [CHE14], color texture analysis [MAE04], [CER17] object 

recognition [WAN08], or any other application. Anyhow, probably based on the successful 

application of rg-binning for skin detection in combination with the spread false assumption 

of histogram redundancy, in all the just cited articles, r and g channels are used exclusively 

without any argument why they were chosen, as if there was not even a choice. A first 

indicator that the success of rg-binning is data dependent can be found in [GRO06]. Here, rg-

histogram binning (chosen based on the false histogram redundancy assumption) is applied as 

benchmark for building recognition to the ZUBUD database. A classification success of 92% 

is reached. Afterwards, the same approach is applied to a custom database containing 

buildings of the University of Amsterdam. The classification result for rg-binning dropped to 

24%.  

The hypothesis that different applications might need different chromatic descriptors can be 

derived theoretically from the example given in Figure 15 on the right column. If the red dots 

are seen as features, each one independently vital for a given application, the gb histogram 

(bottom right) represents the data more detailed (hence better) than the rg histogram (top 

right). For the data distribution on the left instead, there is no difference between rg and gb 

binning. It means the ideal histogram is completely data dependent. This assumption is further 

bolstered by published approaches successfully using empirically defined linear combinations 

 

𝑟 + 𝑔 = 1 − 𝑏 

𝐻 (𝑟) + 𝐻(𝑔) ≠𝒏 1 − 𝐻(𝑏) 

𝐻 (𝑟, 𝑔) ≠𝒏 𝐻(𝑔, 𝑏) ≠𝒏 𝐻(𝑟, 𝑏). 
    

 

 
( 8  ) 
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of the rgb channels for histogram calculation such as the chromatic indices r-g, g-b, or 1.4r-g 

[BAT00], [MEY11], [GOL12]. 

If the 2D representations of the histograms based on the indices are visualized (Figure 16), it 

becomes clear that every possible histogram orientation of the normalized rgb color space can 

be defined by a single parameter, namely an angle that corresponds to the human perceptive 

parameter Hue. Normalized rgb histogram binning can hence be formalized, which might 

help to find suitable histograms for a given application.  

 

Figure 16: Alternative chromatic indices used in the literature and their histograms in the 2D chromatic 
triangle.  

 

3.4 Formalizing Normalized rgb Histogram Calculation 

All chromatic indices described as linear combinations of normalized rgb color channels can 

be seen as dot product of a normalized rgb vector and a 3-dimensional vector: 

 
𝑟 = [

1
0
0

] ∙ [
𝑟
𝑔
𝑏
]  ;   𝑔− 𝑏 = [

0
1

−1

] ∙ [
𝑟
𝑔
𝑏
]  ; 1.4𝑟 − 𝑔 = [

1.4
−1
0

] ∙ [
𝑟
𝑔
𝑏
] . ( 9  ) 

 

Hence, each index can be seen as a scaled distance measurement between a normalized rgb 

vector and a plane with a normal described by the chromatic index going through point [0 0 0] 

(scaled as the indices found in the literature are usually not normalized by its l2-norm). As the 

normalized rgb vectors lie all on a plane (the Maxwell triangle), an equivalent distance 

measurement to a given index can be done with a transformed index described by a vector 

whose element sum is zero. 

For a given chromatic index described as a vector p, the scaled distance d, as described above, 

can be written as dot product between vector p and the normalized rgb vector: 
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 𝑑 = [

𝑝1

𝑝2

𝑝3

] ∙ [

𝑟
𝑔
𝑏
] . ( 10  ) 

Transforming vector p so that the sum of its entries equals zero means shifting it to a plane 

through origin with normal [1 1 1]. The so obtained scaled distance d 2 is 

 
𝑑2 = ([

𝑝1

𝑝2

𝑝3

] −
(𝑝1 + 𝑝2 + 𝑝3)

3
) ∙ [

𝑟
𝑔
𝑏
] ( 11  ) 

which can be written as  

 𝑑2 = ([

𝑝1

𝑝2

𝑝3

]) ∙ [

𝑟
𝑔
𝑏
] −

(𝑝1 + 𝑝2 + 𝑝3)

3
(𝑟 + 𝑔 + 𝑏). ( 12  ) 

As the sum of a normalized rgb vector is 1, the relation between distance d obtained by the 

original index and distance d2 obtained by shifting the original index to a plane through origin 

with normal [1 1 1] is 

 
𝑑2 +

(𝑝1 + 𝑝2 + 𝑝3)

3
= 𝑑. ( 13  ) 

It means shifting vector p to a plane through origin with normal [1 1 1] results in a linear shift 

of the distance obtained with the original chromatic index. Accordingly, a histogram 

calculated with the original index can as well be obtained by using the shifted index, if the 

binning strategy is adapted accordingly. In other words, every histogram calculated with an 

index that is described by a linear combination of rgb channels, can as well be calculated with 

a vector n whose sum of elements equals 0: 

 𝑑𝑛 = 𝑛1𝑟 + 𝑛2𝑔 + 𝑛3𝑏    with   𝑛1 + 𝑛2 + 𝑛3 = 0  ( 14  ) 

 

The so far expressed relations are visualized in Figure 17. On the top left, a plane is shown 

that corresponds to a hypothetical chromatic index g+3b. On the bottom is the equivalent line 

in the rotated Maxwell triangle shown. This configuration corresponds to a binning in 2 

equidistant bins over the whole normalized rgb space. On the top right is the plane with a 

normal that results when the original normal described by the hypothetical index is shifted to 

a plane through origin with normal [1 1 1] shown. 
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Figure 17: The same rgb histogram with 2 bins obtained with two ‘different’ chromatic indices.  

 

A binning into 2 equidistant bins over the whole triangle based on the shifted index is 

identical with the first. The general orientation of the histogram does not change, as the 

orientation of the intersection lines of the planes with the Maxwell triangle are not influenced 

by a shift of an index to a plane through origin with normal [1 1 1] (Figure 17 in the middle; 

this identity could as well be used to prove the shown relations).  

By now it has been shown that any chromatic index that is a linear combination of rgb 

channels can be expressed as well by a 3-dimensional vector whose sum of elements is zero, 

meaning a vector on a plane through origin with normal [1 1 1]. As the sum of elements of 

vector n is zero, all n are perpendicular to the achromatic axis if the condition that vector n is 

normalized with the l2-norm is added (a scaling that does not change the general character of 

the histogram), each vector n can be expressed by a vector n0 rotated around the achromatic 

axis by a certain angle α. 

 
𝑛⃑⃑𝛼 = 𝑅̿𝛼,[1 1 1] 𝑛⃑⃑0 . ( 15  ) 
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Figure 18: Normal vector and corresponding plane obtained by rotating n0 by 240° (left) and corresponding  
representation in the rotated Maxwell triangle (right). 

In this equation R is the 3-dimensional rotation matrix. If the initial vector n0 is pointing in the 

direction of the red-axis, and the rotation is counterclockwise in respect to the rotated 

Maxwell triangle, any normal vector complying with Eq.14 nα can be expressed as 

 𝑛⃑⃑𝛼 = √
2

3
[

(cos𝛼)

cos(𝛼 − 120°)

cos(𝛼 + 120°)
]  ( 16  ) 

 

which can be obtained by expanding Eq. 15 and simplifying the trigonometric terms. The 

rotation is visualized in Figure 18 for rotating n0 by 240 degrees.  

With Eq. 16 any normalized rgb histogram orientation is reduced to a single parameter α. As 

this parameter describes a rotation around the achromatic axis it corresponds to the human 

perceptual parameter Hue in the definition of the HS spaces. By inserting Eq. 16 in Eq. 14, 

any chromatic index that is described as a linear combination of rgb channels can now be 

expressed as 

 
𝑑𝛼 = √

2

3
(cos(𝛼) 𝑟 + cos(𝛼 − 120°)𝑔 + cos(𝛼 + 120°) 𝑏) ( 17  ) 

 

which is the distance of an rgb vector to a plane through origin and perpendicular to a certain 

Hue described by α.  

As the sum of a normalized rgb vector is 1, Eq. 17 can be simplified to 

 
𝑑𝛼 = −√

2

3
𝑐𝑜𝑠(𝛼) − √2(𝑔𝑠𝑖𝑛(𝛼 − 60) − 𝑏 𝑠𝑖𝑛(𝛼 + 60)). 

 

( 18  ) 
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Please note that this is how one can make use of the redundancy of the rgb color channels 

without neglecting any channel. The obtained distance dα is the mathematical distance to the 

plane defined by α. As scaling and shifting can be compensated by adapting the binning 

strategy, Eq. 18 can be further simplified by substituting 

 𝑑𝐻,𝛼 =
𝑑𝛼

√2
+

1

√3
𝑐𝑜𝑠(𝛼) . 

 

( 19  ) 

 

Inserted in Eq. 18, a chromatic index based on a certain Hue can be calculated with the very 

compact equation 

 𝒅𝑯,𝜶 = −(𝒈𝒔𝒊𝒏(𝜶 − 𝟔𝟎)− 𝒃 𝒔𝒊𝒏(𝜶 + 𝟔𝟎)). 

 

( 20  ) 

 

As all chromatic indices described as linear combinations of the rgb channels can be 

expressed by α, this equation is the formalization of chromatic indices based on the human 

perceptual parameter Hue.  

For the actual binning, in the case bins over the whole range for a given α are used, the 

minimum and the maximum of this range have to be calculated. As the minimum and 

maximum are described by two of the three vertices of the Maxwell triangle they can be 

calculated as to 

 

 𝑚𝑖𝑛𝑑𝐻,𝛼
= 𝑚𝑖𝑛(0 ,−𝑠𝑖𝑛(𝛼 − 60) , 𝑠𝑖𝑛(𝛼 + 60)) ( 21  ) 

 

 𝑚𝑎𝑥𝑑𝐻,𝛼
= 𝑚𝑎𝑥(0 ,−𝑠𝑖𝑛(𝛼 − 60) , 𝑠𝑖𝑛(𝛼 + 60)). ( 22  ) 

 

A last remark, before concluding this section concerns the rotated Maxwell triangle. All 

previous proofs can be derived as well from the 2-dimensional rotated Maxwell triangle. The 

author decided to stay in the RGB geometry, to illustrate that normalizing RGB vectors by its 

sum is the application of the human perceptual color model within the RGB geometry. 

Anyway, it was on several occasions of advantage to visualize data and histograms within the 

2-dimensional rotated Maxwell triangle. For the interested reader, the conversion of a 

normalized rgb vector to the rotated Maxwell triangle geometry (derived from the conversion 

between Euclidean and barycentric coordinates) can be calculated as  
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 [
𝑥
𝑦] =

[
 
 
 

ℎ

√3
(𝑔 − 𝑟)

ℎ (
2

3
− 𝑟 − 𝑔)]

 
 
 

. 

 

( 23  ) 

 

In this equation h describes the height (scaling) of the rotated Maxwell triangle. When set to 

1, a chromatic index based on a certain Hue α can be written as 

 𝒅𝑯,𝜶 = −𝒙 𝐜𝐨𝐬(𝟑𝟎°+ 𝜶) − 𝒚𝐬𝐢𝐧(𝟑𝟎° + 𝜶) ( 24  ) 

 

with minimum and maximum at two of the three vertices of the rotated triangle 

 [
𝑥𝑟𝑒𝑑

𝑦𝑟𝑒𝑑
] =

[
 
 
 −

1

√3

−
1

3 ]
 
 
 
  ,   [

𝑥𝑔𝑟𝑒𝑒𝑛

𝑦𝑔𝑟𝑒𝑒𝑛
] =

[
 
 
 

1

√3

−
1

3]
 
 
 
  ,   [

𝑥𝑏𝑙𝑢𝑒

𝑦𝑏𝑙𝑢𝑒
] = [

0
2

3

]. 
( 25  ) 

3.5 Topology of the Normalized rgb Color Space 

The projection of the discrete RGB space to the Maxwell triangle results in a topology with 

two features that are theoretically relevant for normalized rgb histogram binning: a non-

uniform spatial distribution of data points, and a variance in maximum possible occurrence of 

different RGB vectors with the same normalized coordinates. This property is generally 

known to affect image processing operations such as segmentation [KEN76] and has been 

analyzed within the HSV geometry in [ROM12]. Here, it will be analyzed in the context of 

normalized rgb histogram binning. 

In Figure 19 the distance between unique sorted normalized b values of an 8 bit RGB space 

(every permutation of R, G, and B in a range of 0 to 255) is shown. It can be seen that the 

distance between subsequent normalized b values is not uniformly distributed. In 

consequence, if the channel is binned with equidistant bins, the frequency of unique b values 

might vary between different bins.  
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Figure 19: Non-uniform distance between subsequent normalized b-values, calculated for all possible b 
values of the RGB space. 

 

Figure 20: Non-uniform occurrence frequency of unique b values, calculated for all possible b values of the 
RGB space.  

 

In Figure 20, the occurrence frequency of unique normalized b values of an 8 bit RGB space 

is shown. Here as well, the frequency is distributed non-uniformly. This is due to the discrete 

character of the RGB space and the definition of the normalized rgb space as projection of 

RGB vectors along lines through origin. The achromatic axis for example contains 256 

different RGB vectors that are all projected to the same coordinate on the Maxwell triangle, 

while the line through origin and the RGB vector [1 1 255] contains no other discrete vector 

within the range of an 8 bit RGB space. Hence, its normalized coordinate has an occurrence 

frequency of 1. The non-uniform occurrence frequency results as well in a non-uniform 

occurrence frequency in equidistant bins.  
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This non-uniformity, when all possible normalized b values of the 8 bit RGB space are binned 

with 16 equidistant bins, is shown in Figure 21 on the left.  

As it has so far not been shown if and to which extend these non-uniformities affect 

normalized rgb histogram binning when used for color classification with ANN, an analysis 

of this effect was included in the classification experiments. For this purpose the same 

experiments were conducted with the typically used equidistant binning and with topological 

binning. The term ‘topological binning’ will be used in all coming section for bins that 

contain more or less the same amount of normalized RGB values if the whole 8 bit RGB 

space is normalized and binned (more or less as the occurrence frequency of normalized 

coordinates vary and hence an exact uniform division is not always possible). The distribution 

in each of the 16 bins for topological binning of all b values of the normalized RGB space are 

shown in Figure 21 on the right. The different bin boundaries for topological and equidistant 

binning for the same data are shown in Figure 22. 

 

Figure 21: Occurrence frequency for equidistant (left) and topological binning (right) of all possible b values 

of the 8 bit RGB space in 16 bins. 

 

 

Figure 22: Different bin boundaries for equidistant and topological binning of the normalized b channel with 
16 bins.  
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The occurrence frequency in bins subject to histogram orientation is a complex number 

theoretical problem to which no general formula exists (approximations are given in [KEN76] 

and [ROM12] for some cases). The bin boundaries for topological binning subject of 

histogram orientation were therefore calculated by brute force for all of the 180 different used 

histograms (Hue between 0° and 179° with a 1° increment; will be specified in section 5.2). 

3.6 Summary 

In the previous sections the concept of normalized rgb histogram binning has been 

introduced. It has been shown that rgb histogram binning is used in a wide range of color 

image processing applications, but the general concept as well as the relation to the RGB 

geometry and the perceptual HS geometry seems to be partially unclear. Additionally, rgb 

histogram binning is applied only to a handful of chromatic indices and their choice is 

justified either empirically or based on a false mathematical assumption.  

A hypothesis was postulated that the descriptive power of a given chromatic index depends on 

the actual data distribution of a given application. In analogy, it might be possible that an 

optimal index exists for a given application.  

A formalization of rgb histogram binning was developed, showing that any chromatic index 

that is described by a linear combination of normalized rgb channels can be expressed by a 

single parameter, namely the human perceptual parameter Hue. The formalization might help 

to find suitable mathematical tools to identify optimal chromatic indices for a given 

application.  

The formalization was done in regards of rgb histogram binning but the main conclusion that 

any chromatic index can be expressed by the human perceptual parameter Hue might be 

useful for any other method that is applied to chromatic indices (as for example rg-SIFT for 

local feature detection in images [BRO11])  

In regards of rgb histogram binning it can be stated that in contrary to the limited choice of 

chromatic indices and their combination found in the literature, the possibilities of which 

chromatic indices to use and how many different indices in combination is theoretically 

unlimited.  

To explore if and to which extend histogram orientation has an influence on color object 

classification, 180 different orientations over the whole range of the normalized rgb color 
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space will be applied to classify the color of Tahitian pearls with Artificial Neural Networks. 

Additionally, the effect of considering the normalized rgb topology with topological binning 

on the classification will be analyzed.   
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4 Data Acquisition 

150 Tahitian pearls, provided by the Centre IFREMER du Pacifique (the French Polynesian 

department of the French oceanographic institution Institut français de recherche pour 

l'exploitation de la mer), were used in this study. All 150 pearls were classified in 8 

predefined color classes by 7 different employees of IFREMER that work in research projects 

concerning the cultivation of Tahitian pearls and the nature of their genesis (in the following, 

they will be referred to as ‘agents’, details on color classes and the human classification will 

follow in section 4.2). The pearls were farmed at the same location, and no prior sorting was 

done, meaning not all pearls are of commercial value, as they may contain surface defects, 

poor luster, etc. This procedure was chosen because the corresponding research projects at 

IFREMER aim at finding correlations between pearl quality and cultivation parameters. 

Therefore, all available quality types have to be used. 

4.1 Image Acquisition and Preprocessing 

All images were taken with a NIKON D-7000 with AF-S NIKKOR 18-55mm objective. To 

guarantee the same acquisition parameters for all pearls the device PackshotCreator was used 

(Figure 23 on the left). The device is a closed acquisition environment with fixed illumination 

parameters and fixed camera position. The original RGB images were of size 6000x4000 

pixels and in uncompressed .tif format. To obtain as much surface information as possible, 

each pearl was photographed at three different positions (Figure 23 on the top and on the 

bottom). The segmented images of the same pearl at three different view angles in Figure 23 

show the necessity of capturing the whole surface, as the color distribution can vary over the 

surface. 

For every pearl, the RGB vectors of the complete pearl region of all three images were stored 

as a vector containing unique RGB values and the amount of occurrence. This means that 

first, no spatial information of color regions on the pearls surface were used, as the goal is to 

classify the pearl based on its global appearance independently of the color distribution on the 

surface. Second, no prior segmentation of surface regions was applied. In [TIA09] for 

example, reflections were segmented based on the argument that they do not contain pearl 

color information. According to the used images shown in the paper, this might be true. For 

Tahitian pearls instead it is known that reflections contain vital information, especially for 
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multicolored pearls where secondary colors appear in reflection areas (compare Figure 23 on 

the bottom right). In general, it was the approach to use as less preprocessing as possible for 

the following reasons. First, it is not known which regions or parameters are essential for the 

human color evaluation, meaning for the moment all available color information is used. And 

second, every preprocessing would need a certain parametrization, which has an influence on 

the whole following classification procedure. As the focus of this works lies on color feature 

generation, it was the goal to reduce or fix all remaining parameters.  

 

   

   

Figure 23: The device PackshotCreator (left) used for image acquisition, original images of one pearl captured 
from three different view angles (top), and the corresponding segmented pearl (bottom). 

 

In summary, for feature calculation and classification, only the stored RGB values and the 

frequency of their occurrence in all three images of a pearl were used. Average amount of 

pixels per pearl (all three images) is ~106 and average amount of unique RGB vectors per 

pearl is ~4*104 (Figure 24, 1 pixel length ~ 12.3μm). 

For the conducted experiments it was assumed that the acquired images represent the 

character of pearls as perceived by humans under ideal inspection conditions. An adaption of 

image acquisition parameters will be done, if necessary, in a future work.  

 

 Pixels per pearl  

(all 3 images) 

[pixels] 

Unique RGB 

vectors 

(all 3 images) [-] 

Pearl surface per image 

(average of all 3 images) 

[mm
2
] 

Pearl diameter per image 

(average of all 3 images) 

[mm] 

min ~7.1*10
5 ~7.0*10

3 ~36.1 ~6.8 

average ~1.1*10
6 ~3.6*10

4 ~54.4 ~8.3 

max ~2.5*10
6 ~1.1*10

5 ~126.3 ~12.7 
Figure 24: Statistical image values after segmentation. 
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4.2 Human Classification 

The 8 color classes in which the pearls had to be classified by the 7 agents were predefined as 

eggplant (dark purple), white, blue, champagne (cream), gray, yellow, peacock and green (see 

pearls assigned by majority vote to 7 of the 8 classes in Figure 25). While 7 classes are 

defined by a single color, peacock is a class that is commonly used for Tahitian pearls 

containing several colors, but mainly green, blue, turquoise and almost always reddish or rose 

overtones. An additional option for pearls that subjectively do not correspond to any of the 

mentioned classes was given, but was used only three times and never reached a majority 

vote.  

White 

       

Blue 

       

Champagne 

       

Grey 

       

Yellow 

    
 

  

Peacock 

       

Green 

       
Figure 25: Pearls classified by majority vote of all 7 agents in the 7 classes of the first column.  
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To give the reader an impression of the influence of perception on the human classification of 

Tahitian pearls, the magnitude of the majority vote for each of the 150 pearls is shown in 

Figure 26 on the top, along with the amount of different classes assigned to the same pearl on 

the bottom (each bar corresponds to 1 pearl). First thing to note is that only 37 pearls were 

assigned to the same class by all 7 agents (~25%, all bars with magnitude 7 in the top graph, 

and at the corresponding position with an amount of assigned classes of 1 in the bottom 

graph). This is due to the general subjective nature of color perception, as well as due to the 

multicolored character of Tahitian pearls. Within classes ‘Aubergine’, ‘Blue’ and ‘Yellow’, 

not a single pearl was assigned unanimously. For 9 pearls there was not even a majority (same 

amount of votes for different classes, in both graphs at the position ‘Mixed’), with up to 5 

different class assignments to the same pearl. Without going further into details, the main 

message to take to the following sections is that the human classification that will be used to 

train an ANN is highly subjective with a large variance between classifications of different 

agents.  

 

Figure 26: Distribution of majority votes (top) and amount of different class assignments (bottom) for 150 
Tahitian pearls classified by 7 agents. 

 

A second point to mention is the class population. Generally, the shown population reflects in 

large parts the state of Tahitian pearl cultivation. Greenish pearls and pearls with minor 

saturated colors (class ‘Green’ and ‘Grey’) are the larger parts of a harvest. White and yellow 

pearls are not typical and not very valuable due to the high production and quality of pearls 
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with similar colors in Japan and China. Blue and Peacock instead are unique but relatively 

seldom (compared to a whole harvest) features of Tahitian pearls and can achieve, assuming 

the remaining quality parameters are accordingly, high prices on the market. The only thing 

that does not fit is that only one pearl was assigned to the class ‘Aubergine’. Generally, this 

color is a typical one, and on the local and international market many pearls are sold by this 

definition. Three possible reasons might be the cause: First, illumination conditions have a 

large influence on the perceived color, especially secondary tones that appear as result of 

reflection and refraction of the incoming light by the multiple crystalline layers of nacre 

[NAG97]. An improper illumination might result in an increased perception of gray pearls, 

which would correspond to the elevated population of this class (even though it is generally a 

typical class). A second reason might be that the harvest did not contain pearls with aubergine 

colors and the classification is accordingly. A third reason might be, that the definition of a 

class is as well a subjective manner, meaning not only the perceived color of a pearl is biased 

by the perception of the observer but the class definition as such as well. 

On the one hand, when analyzing visually the acquired images of pearls that were classified 

by majority vote as ‘Gray’, one can observe many different overtones such as green, blue, 

rose, and even aubergine (in the authors perception). This might point to improper 

illumination conditions. On the other hand, 28 of all votes (of all agents for all pearls) are 

class ‘Aubergine’, but only once it was a majority vote. This points to the difference in 

perception and against the possibility that the harvest did not contain ‘Aubergine’ pearls. 

Most likely, illumination and perception combined are the reasons for the low population of 

class ‘Aubergine’.  

Based on the visual analysis summarized in the precedent paragraphs it was decided to not 

only use the majority vote of all 7 agents to create an artificial classification but to include the 

separate classification of each agent. This is mainly for the reason, that at first, a suitable 

feature vector that describes the color of a pearl based on human perception has to be defined. 

If using the majority vote, the variance of perception between different agents, as well as the 

‘distribution of perception’ (as seven agents might not be representative) play a role. When 

using the classification of each agent separately, it is at least more likely that the votes of one 

agent are consistent. As the main focus of this work lies on feature generation, it gives as well 

the possibility to analyze if there are specific features for each agent (see Figure 27 for a work 

flow diagram). 
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Figure 27: Workflow of the conducted experiments.  
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5 Classification Method 

Our general methodology to classify the color of Tahitian pearls is to generate features by 

normalized rgb histogram binning and train an Artificial Neural Network based on the 

obtained feature vectors and their class labels obtained by the human classification. ANN 

were chosen, as they are one of the most powerful tools for supervised multiclass 

classification and hence widely applied in computer vision [EGM02]. The ANN type used for 

our experiments is a feed-forward ANN with error backpropagation and one hidden layer. The 

concept will be briefly introduced, for a detailed description of this and other types of ANN 

the reader is referred to [CLA09], [HAY05], or [IZE08].   

An Artificial Neural Network consists of interconnected neurons organized in different layers. 

Along the connections information is passed from one neuron to another. Each neuron has an 

activation function that defines how to react to incoming information. The topology of the 

network used for our experiments is shown schematically in Figure 28. On the left is the input 

layer with a number of neurons that is defined by the size of the feature vector used to 

describe an object (here the color of a pearl). All neurons of the input layer are connected to 

all neurons of the hidden layer. The incoming information at each neuron of the hidden layer 

is the weighted sum of the input neurons (weighted sum of features). This sum is transformed 

and passed to every neuron of the output layer according to the used activation function. The 

number of neurons in the output layer is determined by the number of classes (here the 

predefined color classes). 

  

Figure 28: Topology of a feed-forward neural network with one hidden layer.  
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The incoming information at each neuron in the output layer is the weighted sum of the 

outputs of the neurons of the hidden layer. The weighted sum is as well processed with the 

chosen activation function. The values of the output neurons, after the information starting at 

the input neurons is processed through the whole network, is compared to the desired output 

(class label of the current feature vector). The error between output and class label is passed 

through the network in opposite direction and the weights are adapted to minimize the error 

(Figure 29). Now, the feature vector is again presented to the network, the information is 

processed and the weights again adapted. The process of iterative, error dependent weight 

adaption to minimize the output error is called learning.  

 

Figure 29: Schema of the learning procedure of ANN by weight adaption.  

 

5.1 Data Set Splitting 

To develop a suitable ANN model, the available data set is typically split in three subsets: 

training set, test set and validation set. The training set is used to train a given network by 

repeatedly feeding the feature vectors of the training set into the network. At each iteration, 

the error between network output and humanly assigned class labels is calculated (prediction 

error) and the network adapted so that the error is continuously minimized. As ANN tend to 

overfit, the test set is used to identify the optimal state of a learning network in means of 

generalization (the ability of classifying unseen data correctly). As the test data has no 

influence on the training procedure, it simulates the performance of the network on unseen 

data. This procedure is shown in Figure 30. The blue line corresponds to the prediction error 

of the training data and the green line to the prediction error of the test data. While the 
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training error decreases continuously, the test error, after initial decrease, stagnates and even 

increases. The optimal state of the learning network in means of generalization is hence 

defined by the minimum of the prediction error of the test set.  

 

Figure 30: The effect of over-fitting during the ANN learning procedure. 

 

To identify a suitable ANN model, different models are trained with the training data set and 

the minimal prediction error of the test set of each model is compared. The optimal model is 

identified by the absolute minimum of the test set prediction errors. As the chosen model is 

likely to be biased by the test set data, the validation set that has been used neither for training 

nor for model selection is used to validate the generalization capabilities of the chosen model.  

It has been shown that the method used to split the original data in three subsets has a major 

influence on the generalization capability of the network [REI10], [WU12]. While more or 

less uniformly distributed data can be split randomly, this method is not suitable for Tahitian 

pearls. As within one color class pearls with different color occur (see Figure 25, especially 

classes gray, champagne and peacock), a deterministic method has to be applied to ensure that 

in each of the three data sets the color variance of each class is equally represented. 

For this purpose the DUPLEX method was applied, to ensure an optimal data representation 

in each of the three subsets [REI10], [WU12], [KEN69]. As in this approach the original data 

set is split based on mutual Euclidian distances, feature vectors for each pearl have to be 

already calculated. As one of the main goals of our work is to analyze a large variety of 

different feature vectors but the data split is supposed to be done only once prior to model 

selection or comparison for a given human classification, a feature definition that is unbiased 

to the ones used in the experiments has to be determined. It was decided to use a 

multidimensional histogram of all three normalized rgb-channels together with the Intensity 
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channel. Binning was done with 16 bins per channel. The data set was split in 50% training 

data, 25% test data and 25% validation data. No further tests or adaptions of this splitting 

configuration in means of histogram channels, bins, etc. were done, as any change might bias 

the split in one way or the other.  

It has to be stated that the use of three data sets assumes that each state within a class occurs 

at least three times. Due to the variety of Tahitian pearls, this cannot be guaranteed for all 

classes. Still, it was decided to use three data sets (3-fold cross-validation) as it is applied 

standardly, proven methods for data splitting exist and it is much faster than exhaustive 

methods as for example leave-one-out cross-validation. For the latter one each experiment 

would have to be done 150 times which was, seeing that all performed tests take together 

several days of calculation, not realizable. Anyway, once the choice of histogram orientations 

is narrowed, exhaustive cross-validation might be more suitable for ANN performance 

verification in regards of classifying the color of Tahitian pearls.  

5.2 Feature Configuration 

Based on the formalization of normalized rgb histogram binning, general parameters for 

feature generation are: number of different histogram orientations (amount of chromatic 

indices), type of histograms (concatenated, multidimensional or hybrid), orientation of each 

histogram, binning strategy per histogram and number of bins per histogram. As one of the 

main question is if and to which extend the histogram orientation has an influence on the 

classification, it was decided to evaluate histogram orientations over the whole range of 0° to 

179° (the remaining 180° are redundant), with an increment of 1°. To evaluate the influence 

of the topology of the normalized rgb space, two binning strategies were applied: equidistant 

binning and topological binning (section 3.5).  

As shown in section 3.3, in many papers the r- and g-channel are used exclusively and based 

on the argument of channel redundancy (or even without any argument). It has been shown 

that the argument is mathematically incorrect. To evaluate the discrepancy between the 

standard choice of r- and g-channel and the remaining two channel combinations, two 

chromatic indices are used for feature generation, both defined by a Hue with a difference of 

120°. As the pearl color classes contain the classes ‘white’ and ‘gray’, an achromatic value 

has to be considered as well. Here, the Intensity, the sum of elements of an original RGB 

vector was chosen. The intensity is subject to similar non-uniform effects due to the discrete 
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character of the RGB space as those mentioned in section 3.5. When topological binning is 

tested, all two chromatic values as well as the intensity channel are binned with adapted non-

equidistant boundaries. 

The number of bins per histogram was empirically set to 16 bins over the whole normalized 

rgb space range for all generated histograms and all test series. The parameter was fixed to 

exclude its influence on the variation analysis of histogram orientation and binning strategy 

(equidistant and topological).  

6 possibilities to combine the three chosen values to bin exist. The least computationally 

expensive is to concatenate the histograms of each value, while the most computationally 

expensive is to generate a non-concatenated histogram out of the 3-dimensional data 

distribution of r-, g- and Intensity channel (I). Here, computationally expensive does not only 

concern the histogram generation but the whole classification procedure, as the complexity of 

each ANN training iteration depends on the number of features. For the moment, the 

concatenated combination of multidimensional rI histogram and multidimensional gI 

histogram was chosen. This was done for the reason that the color of Tahitian pearls is 

typically assessed with a Hue and an intensity value combined (e.g. dark blue with light green 

overtones). Anyhow, other possibilities will be considered in a future work.  

 

Figure 31: Applied general feature configuration: Concatenated histogram of the rI-histogram (top left) and 
of the gI-histogram (top right).  
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To summarize, the general feature vector configuration is based on two chromatic indices that 

can be described with two Hues with a difference of 120°, and the Intensity. Two histograms 

are calculated. One based on the 2-dimensional distribution of the first chromatic index and 

Intensity (Figure 31 on the top left), and another based on the 2-diemsnional distribution of 

the second chromatic index and Intensity (Figure 31 on the top right). Both histograms are 

concatenated (Figure 31 on the bottom). 

As the goal is to analyze the influence of histogram orientation, this procedure is applied for a 

Hue of the first chromatic index varying from 0° to 179° with a 1° increment. The second 

index is defined by the Hue of the first index plus 120°. Examples of the two obtained 

chromatic indices for different Hues of the first index are shown in Figure 32. It can be seen 

that with this configuration, histograms based on rg-channels, gb-channels and br-channels 

are included. This allows analyzing the difference between the standard use of r- and g-

channel and the remaining two permutations. Additionally, combinations of other popular 

chromatic indices of the literature are included as well (r-g, g-b, b-r). The terminology for a 

certain feature vector constellation used in the next sections is shown in the last column of 

Figure 32. As the feature vector constellation is defined by the Hue of the first index, the 

expression fα means the two chromatic indices used to calculate feature vector fα are based on 

histogram orientation α for the first index and α+120° for the second.  
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First index Second index Terminology 

Histogram 

orientation 

(α) 

Schema of histogram 

orientation  in the 

rotated Maxwell 

triangle 

Histogram 

orientation 

(α) 

Schema of histogram 

orientation  in the 

rotated Maxwell 

triangle 

feature vector  

𝑓𝛼 based on 

chromatic 

indices α, 

α+120° and 

intensity 

Chromatic 

index 

Chromatic 

index 

0° 

 

120° 

 

𝑓0  

r g 

30° 

 

150° 

 

𝑓30  

r-b g-r 

60° 

 

180° 

 

𝑓60  

b r 

90° 

 

210° 

 

𝑓90  

g-b r-b 

120° 

 

240° 

 

𝑓120  

g b 

Figure 32: 5 of 180 tested histogram orientations that include all main chromatic indices used in the 
literature.  
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5.3 ANN Configuration 

For classification, a feed-forward neural network with one hidden layer and error 

backpropagation, as used in [NAG94] for pearl color classification, was chosen. The training 

is done in batch mode, meaning the feature vectors of every pearl from the training set are 

presented to the network at every iteration in parallel. The learning rate is dynamically 

adapted by using the ‘bold driver’ as proposed in [BAT89], as here an optimal trade between 

training speed and accuracy can be reached. Sigmoid activation functions are used as they 

correspond to human biological data processing and weights initialized by ‘normalized 

initialization’ [GLO10]. For faster convergence a bias neuron was added to the input layer.  

The number of neurons in the hidden layer was determined by a brute force search in the 

range of 5 to 25 neurons. The search is done only once for each one of the eight human 

classifications (7 agents and the majority vote) prior to a test series to exclude the influence of 

different ANN topologies on the test series results. For this purpose the feature constellation f0 

and equidistant binning is used. This means, if the network topology is biased towards a 

certain feature constellation, it will be the standard combination of r- and g-channel and 

equidistant binning. The optimal number of hidden neurons for each test series is defined by 

the maximum classification result of the test data (Figure 33). 

 

Human Classification Neurons in Hidden Layer 

Agent 1 11 

Agent 2 12 

Agent 3 20 

Agent 4 24 

Agent 5 25 

Agent 6 24 

Agent 7 16 

Agent 8 (Human Majority Vote) 24 

Figure 33: Number of neurons in the hidden layer for each test series.  
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5.4 Training and Evaluation Values 

Each ANN is trained with the training data set. Training is done until the mean square error 

between predicted class labels and human class labels of the whole training data set is below 

0.05. At each iteration, the classification rate of the test set, validation set and the whole data 

is calculated. The artificially assigned class labels for the whole data is stored each time the 

classification rate of the test set is greater than the maximum of all prior iterations. After the 

training is stopped, the iteration of the global maximum of the test set classification is 

assigned as the optimal state of the ANN in means of generalization (first dashed line in 

Figure 34). The classification rate of all data sets and the artificial class labels at this stage are 

stored. Additionally, the maximum of training set and validation set classification rate are 

stored. The obtained values and their ID that will be used in the following sections can be 

found in Figure 35 in the first 7 rows. 

As the classification results of non-uniformly distributed data tend to vary [REI10], each 

artificial classification was done 25 times. This means for each specific configuration 

regarding human classification, binning strategy and feature vector, 25 separate ANNs were 

trained. Afterwards, the obtained evaluation values of all 25 trained ANNs were averaged 

(rows 8-13 in Figure 35) to reduce the influence of variance. For the later analysis of the 

artificial majority votes, the class labels of the ANN out of 25 with identical configuration 

with the maximum test data classification rate are used (Labels(max(Temax)) in Figure 35).  

 

Figure 34: Schema of ANN training visualizing the states at which the corresponding evaluation values are 
obtained.   



219 
 

Evaluation Value Description Obtained after Used for 

Temax 
Maximum classification rate of 

test set  

training of one 

ANN 

 

Trmax 
Maximum classification rate of 

training set 

Vamax 
Maximum classification rate of 

validation set 

Tr(Temax) 
Classification rate of training set 

at iteration of Temax 

Va(Temax) 
Classification rate of validation 

set at iteration of Temax 

AD(Temax) 
Classification rate of all data at 

iteration of Temax 

Labels(Temax) 
Class labels of all data at iteration 

of Temax 

AVAD Average of all 25 AD(Temax) 

training of 25 ANN 

with identical 

configuration 

Qualitative analysis 

(section 6.1) 
Labels(max(Temax)) 

Class labels of all data at 

maximum of all 25 Temax 

AVTr Average of all 25 Tr(Temax) 

Quantitative analysis 

(section 6.2) 

AVTe Average of all 25 Temax 

AVVa Average of all 25Va(Temax) 

AVXTr Average of all 25 Trmax 

AVXVa Average of all 25 Vamax 

Figure 35: ID of evaluation values (1
st

 column), their brief description (2
nd

 column), when they are obtained 

(3
rd

 column) and their use for evaluation (4
th

 column).  
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5.4.1 Qualitative Analysis 

A qualitative analysis of the influence of histogram orientation and binning strategy will be 

done with the average of the classification rate of a whole data set. Splitting a data set is done 

to evaluate the performance of an ANN in regards of two different capacities: the capacity to 

extract knowledge from labeled data and the capacity to apply the extracted knowledge to 

unseen data. For analyzing generally if and to which extend histogram orientation and binning 

strategy influence the classification performance, a separate consideration of these two 

aspects is not absolutely necessary. The qualitative analysis, done in section 6.1 with the 

average of the classification rate of a whole data set, is hence focused purely on the theoretical 

aspects of normalized rgb histogram binning. 

5.4.2 Quantitative Analysis 

In section 6.2, a quantitative analysis of the experimental results is done. For this purpose the 

average classification rates out of 25 trained ANN for each of the three sets will be used. 

Classification rates are compared quantitatively, but the results have to be handled with care, 

as the optimal network configuration per human classification was obtained based on f0 and 

equidistant binning. It means the results of all other features and topological binning might 

not reflect the possible optimum. The analysis serves the goal to get an idea of the general 

range of classification results, meaning to get an idea if it is generally feasible to classify the 

color of Tahitian pearls based on its perceived color with the proposed concept.  

5.5 Summary 

In the previous sections the concept and the parametrization of experiments to analyze the 

influence of normalized rgb histogram binning on the classification of Tahitian pearls based 

on their perceived color was presented. 8 human classifications (7 agents and their majority 

vote) will the reproduced artificially with ANN (first loop in Figure 36). The general ANN 

topology is chosen based on the optimal classification of the test set data with features f0 and 

equidistant binning, as this configuration is the standard application of normalized rgb 

histogram binning in the literature (second loop in Figure 36). For each of the 8 human 

classifications 180 different histogram orientations for each of the two binning strategies 

(equidistant and topological) are used for a separate artificial classification (loops three and 
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four in Figure 36). Each of the specific constellations in regards of the mentioned parameters 

is used to train 25 separate ANNs, to reduce the influence of variance by averaging the 

obtained 25 classification results (fifth loop in Figure 36). This means, for the conducted 

analysis 72360 ANNs were trained, tested and validated.  

Pseudocode corresponding  

section 
for agent 1:8  section 4.2 

split data in 3 sets according to human classification section 5.1 
     for neurons in hidden layer n=5:25 section 5.3 
          for j=1:25 section 5.4 

          train ANN(𝒇𝟎, equidistant binning, n)  
          get Tej,n,max  
          end  
     end  
get nopt  at maxj(Tej,n,max)  
     for binning strategy bs=1:2 (equidistant, topological) section 3.5 
          for α=0°:179° section 5.2 
               for j=1:25 section 5.4 

               train ANN(𝒇𝜶, bs, nopt) sections 5.3, 5.4 
               get Tej,max, Tr(Tej,max), Va(Tej,max),  

section 5.4 
               Trj,max, Vaj,max, Labels(Tej,max), AD(Tej,max) 

               end   
           get AVAD, AVTr, AVTe, AVVa, AVXTr, AVXVa 

 

section 5.4 
           Labels(maxj(Tej,max)) 

          end  
     end  
end  

Figure 36: Pseudocode of experiments.  

  



222 
 

6 Results and Discussion 

Within this section the experimental results will be analyzed quantitatively (section 6.1) and 

qualitatively (section 6.2). The first analysis is focused on theoretical aspects of rgb histogram 

binning, while the second is used to estimate if and in which range of accuracy it is possible to 

classify Tahitian pearls based on their perceived color. 

6.1 Qualitative Analysis 

Within this section the experimental results will be analyzed qualitatively. For this purpose, 

the average of the classification results of a whole data set ADAv out of 25 trained ANNs will 

mainly be used as indicator of global performance variation. This evaluation value cannot be 

used to quantify the classification performance of Tahitian pearls, as prediction accuracy and 

generalization accuracy are not evaluated separately. The value serves the single purpose of 

analyzing if and to which extend histogram orientation and binning strategy have an effect on 

color object classification with ANN.  

6.1.1 Channel Redundancy 

In Figure 37 the classification rates for the whole data for feature vectors f0, f60 and f120 with 

equidistant binning are shown for each human classification (here, and in all following figures 

with human classification as abscissa, ‘agent 8’ is used as synonym for the human majority 

vote out of all 7 human votes). The first feature vector corresponds to the standard use of 

normalized rg-channels, while the other two are calculated based on the reaming two channel 

permutations. It can be seen that the results between the three channel permutations vary for 

each agent. As shown theoretically in section 3.3, the assumption that only the rg-channels 

have to be used due to redundancy does not hold. Additionally, it can be seen that the general 

performance of each channel permutation depends on the human classification. This means, 

not only are the histograms based on the three permutations not redundant, but their 

descriptive power depends on the human classification and therefor on the data distribution.  
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Figure 37: Classification performance for feature vectors based on the three normalized rgb channels.  

6.1.2 Influence of Histogram Orientation per Agent 

In Figure 38, the classification rate for the whole data set for each 179 feature vectors is 

shown for each human classification. It can be seen that for every human classification the 

global classification performance varies in a range of at least 15%. It means, the histogram 

orientation has, from a global point of view, a significant influence on the performance of an 

ANN with fixed topology.  

In Figure 39, the global ANN performance for feature vectors f0, f60 and f120 is shown together 

with the maximum performance per human classification. The, to the maximum global 

performance corresponding Hue α for each agent are listed in Figure 40. It can be seen that 

almost all maxima are at different Hues, which supports the hypothesis that there might be 

specific features that correspond to the perception of a single agent. Furthermore, it can be 

seen that not only the standard choice of rg-channels, but as well the use of only a handful 

chromatic indices in the literature is not generally justifiable, as all maxima of the global 

performance of each human classification are at chromatic indices that have never been used 

in standard approaches.  
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Figure 38: Average classification performance per feature orientation for all 7 agents and the majority vote. 
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Figure 39: Global classification performance for feature vectors based on the three normalized rgb channels 
and maximum performance. 

 

 

Human 

Classification 

Agent 

1 

Agent 

2 

Agent 

3 

Agent 

4 

Agent 

5 

Agent 

6 

Agent 

7 

Agent 

8 

α of 

max(AVAD) 
156° 19° 126° 158° 146° 17° 156° 162° 

Figure 40: Histogram orientation at maximum global ANN performance per human classification (correspond 
to red bars in Figure 39).  

6.1.3 Influence of Histogram Orientation per Color Class 

To analyze the influence of histogram orientation per color class, the classification rate of 

each color class of the whole data set at the maximum test set classification rate out of 25 

trained ANN was calculated. The following figures show the maximum global performance 

(blue bars) and the minimum global performance (red bars) for each color class per agent. If 

there are no blue graphs, the corresponding agent did not use this color class more than two 

times (and hence these votes were not considered in the artificial classification). If there is no 

red bar, the minimum classification rate of the corresponding class and agent is 0. 
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Figure 41: Maximum and minimum global performance for class ‘Aubergine’ per agent. 

 

 

Figure 42: Maximum and minimum global performance for class ‘White’ per agent. 

 

 

Figure 43: Maximum and minimum global performance for class ‘Blue’ per agent. 
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Figure 44: Maximum and minimum global performance for class ‘Champagne’ per agent. 

 

 

Figure 45: Maximum and minimum global performance for class ‘Gray’ per agent. 

 

 

Figure 46: Maximum and minimum global performance for class ‘Yellow’ per agent. 
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Figure 47: Maximum and minimum global performance for class ‘Peacock’ per agent. 

 

 

Figure 48: Maximum and minimum global performance for class ‘Green’ per agent. 

 

As for every graph and for every agent a difference between maximum and minimum exists, 

histogram orientation has an influence on the classification rate of objects (here pearls) of the 

same class. The effect on the general classification capacities can be seen in Figure 49. 

Exemplarily, the global performance of classes ‘Aubergine’ and ‘Blue’ are shown for agent 1 

over all feature vectors. It can be seen that the classification maximum of class ‘Aubergine’ at 

a Hue of 155° does not coincide with the maxima of class ‘Blue’. If there are optimal feature 

vectors for each class, the classification based on one feature vector will unlikely reach 100% 

as the data distribution of the classes are different, and hence optimal feature vectors for each 

class will be at different Hues. Again, the data distribution dependent descriptive power of 

chromatic indices can be observed.  
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Figure 49: Global performance of classes ‘’Aubergine and ‘Blue’ for agent one for all feature vectors.  

 

6.1.4 Equidistant Binning vs Topological Binning 

In Figure 50 the influence of the binning strategy (equidistant: blue lines, topological: green 

lines) on the global ANN performance over all feature vectors for all agents is shown. Two 

characteristic differences can be observed. First, topological binning is subject to lower 

fluctuation between subsequent feature vectors. Second, in some cases (agents 1, 2, 3 and 

majority vote) the general performance of topological binning is for almost all feature vectors 

significantly larger. This is specifically interesting considering that the network topology was 

optimized based on the feature vector f0 and equidistant binning, meaning the network 

configuration is not adapted to topological binning.  
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Figure 50: Equidistant binning (blue lines) vs topological binning (green lines) over all feature vectors for all 
agents. 
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6.1.5 Summary 

The qualitative analysis of the previous sections has shown that histogram orientation as well 

as the binning strategy has a significant influence on the global performance of the ANN-

based color classification of Tahitian pearls. Even though the influence was analyzed with a 

specific application, some general conclusions can be drawn.  

The results indicate that optimal feature vectors depend on the data distribution and hence the 

whole range of chromatic indices should be considered for a given application. The exclusive 

use of rg-histogram binning, and the general use of only a handful chromatic indices in the 

literature is a drastic limitation of the possibilities of normalized rgb histogram binning for 

color object classification.  

As optimal feature vectors depend on the data distribution, feature selection in the case of 

multiple classes should not only be done in regards of the general classification result, but in 

regards of classification accuracy per class as well.  

The use of topological binning has by trend a positive influence on the classification result for 

a given data set and ANN topology. Anyhow, the difference to equidistant binning depends 

on the histogram orientation and is not for all feature vectors superior. But, seeing the 

partially drastic impact on the global classification performance (increase of up to 21% for a 

given data set, ANN topology and feature vector), the use of topological binning should at 

least be considered.  

6.2 Quantitative Analysis 

In this section the classification results will be analyzed quantitatively. The analysis serves the 

goal to estimate if and in which range of classification accuracy it is possible to classify 

Tahitian pearls based on their perceived color. Therefore, boxplots will be used that show the 

statistical distribution of the classification rate of a data set over all feature vectors. Whiskers 

are at the minimum and maximum classification rate. As the network topology of the used 

ANNs is not adapted to each feature vector and the bin number is fixed to 16 bins, the results 

allow only a preliminary (and likely pessimistic) estimation. Optimization possibilities will be 

explored in a future work.  
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6.2.1 Accuracy Range 

In Figure 51 the statistical distribution of the classification rate of training data is shown for 

each agent. Each median is above 80%, showing that the chosen network topologies are 

generally able to classify labeled data at their state of maximum generalization in regards of 

the test set. Depending on the histogram orientation, the training data at the state of maximum 

generalization can be classified with accuracy close to 100% for each agent. The maximum 

classification rate of the training data (Trmax) was for every trained ANN at 100%, which is 

typically not the case if the number of neurons in the hidden layer is too small.  

The statistical distribution of the classification results of the test data over all feature vectors 

is shown in Figure 52. The median values of all agents range between 64% and 77%, which 

corresponds to the pearl color classification results of NAG94, who obtained pearl color 

classification accuracy with ANN of 71% for the test data. The orientation dependent maxima 

range from 73% to 86%. 

In Figure 53, the statistical distribution of the classification results of the validation data over 

all feature vectors is shown. The median of all human classifications range from 64% to 81%, 

with maxima between 71% and 94%. 

Generally, the distribution of classification rates of all data sets for all human classifications 

shows that the chosen method of using ANN and normalized rgb histogram binning is 

suitable for the color classification Tahitian pearls, specifically, seeing that the median of the 

non-optimized approaches for test and validation data is scattered around 70% (non-optimized 

as the network topologies were determined exclusively based on the feature vector f0). 

Additionally, maximum classification rate (upper whiskers) of test and validation data for 

each agent indicate that with a suitable feature selection classification rates of up to 90% are 

possible.  

Noticeable is the variance of classification rates between different agents. One reason might 

be that some agents are more experienced in pearl classification and their votes are hence 

more consistent. Another reason might be that the general feature configuration based on two 

chromatic values and their geometrical relation (120° difference between both Hues) does not 

ideally map the perception of certain agents.  
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Figure 51: Boxplot of the classification rate for training data per agent. 

 

 

Figure 52: Boxplot of the classification rate for test data per agent. 

 

 

Figure 53: Boxplot of the classification rate for validation data per agent. 
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6.2.2 Generalization Capabilities 

As the validation set is used neither for training nor for model selection, it is seen as a realistic 

estimation of the generalization capabilities of a trained network. Anyhow, this assumes that 

the states of all classes are represented in each of the three data sets. In case of the used 150 

Tahitian pearls this cannot be guaranteed, due to the large variety of occurring colors and 

color combinations.  

In Figure 54, the statistical distribution of the difference between the classification rate of 

validation data at the state of maximum generalization in regards of the test set (AVVa,) and 

the maximum classification rate of the validation set (AVXVa) is shown. It can be seen, that the 

classification rate of the validation data at the state of maximum classification rate of the test 

data is in the average significantly lower than the maximum possible classification rate of the 

validation data. A difference of up to 23% is possible. This means that the network is at a 

certain state capable of predicting the labels of the unseen validation data in an adequate 

range, but this state does not correspond to the optimum in regards of the test data. The only 

logical reason is that the pearls represented by the test data do not correspond to the pearls 

represented by the validation data. This means for future experiments that either more pearls 

have to be evaluated to increase the possibility that similar pearls are represented in each of 

the three data sets or exhaustive cross-validation should be used instead of splitting the data in 

three sets; preferably even both.  

 

Figure 54: Statistical distribution of the difference between the classification rate of the validation set at the 
maximum of test set classification (AVVA) and maximum of the classification rate of the validation set 

(AVXVA).  
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6.2.3 Preliminary Maximum Classification Results 

Out of all experimental results of each trained ANN the maximum classification rate of the 

test data was identified for each of the 8 human classifications. The according rates are shown 

in Figure 55. The corresponding histogram orientations and binning strategies are listed in 

Figure 56. According to the shown results, and seeing that several optimization possibilities 

exist (adapted ANN topology for each feature, number of bins, additional chromatic indices, 

etc.) it can be stated that it is generally possible to classify Tahitian pearls based on their 

perceived color with normalized rgb histogram binning and Artificial Neural Networks.  

 

Figure 55: Preliminary maximum classification results out of all experimental results for the 8 human 
classifications.  

 

Agent optimal fα Optimal binning 

1 f13 equidistant 

2 f9 topological 

3 f154 topological 

4 f11 equidistant 

5 f15 equidistant 

6 f85 equidistant 

7 f0 topological 

8 f2 topological 

Figure 56: Parameters of preliminary optimal classification results per human classification.   
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7 Conclusion 

In this part of the thesis, the results of our research on color classification of Tahitian pearls 

were presented. Besides investigating the general feasibility of color classification of Tahitian 

pearls based on human perception, one of the main foci of the presented research lies on 

theoretical aspects of normalized rgb histogram binning.  

A quintessence of the presented work is the formalization of chromatic index calculation in 

the context of normalized rgb histogram binning. It had been shown that every chromatic 

index based on a linear combination of normalized rgb channels can be expressed by a single 

variable; an angle that corresponds to the human perceptual parameter Hue.  

The hypothesis that the descriptive power of a chromatic index depends on the data 

distribution was investigated with experiments using normalized rgb-histogram binning with 

180 different chromatic index combinations for color classification of Tahitian pearls with 

Artificial Neural Networks. Separate human classifications of 7 agents that classified a set of 

150 Tahitian pearls were used along with the majority vote of all 7 human classifications. 

This means in total 8 human classifications were used to investigate the influence of different 

chromatic indices on the classification. 

The results show that the choice of chromatic indices affects significantly the classification 

performance of an ANN with a given topology. The global performance varies within a range 

of up to 20% over the tested feature vectors. Furthermore does the classification accuracy of 

each class depend on the chosen index, with variations up to 100% between different feature 

vectors. 

These findings are of great importance for computer vision applied to color object 

classification. Currently, only a handful of chromatic indices are used in the literature, which 

is a drastic limitation of possible classification results, seeing the large variance of 

classification rates over the whole range of possible indices. Especially the use of the same 

chromatic indices, such as the most popular r- and g-channels, for applications with different 

data distributions such as color texture description, image segmentation, vehicle color 

classification or skin detection stands in sharp contrast to the results of our experiments.  

In consequence of the experimental results it is of importance to investigate methods to 

mathematically identify optimal chromatic indices for a given application. For this purpose 

the formalized chromatic index calculation could be an essential help. It has to be mentioned 
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that our analysis was done in regards of normalized rgb binning, but the shown results imply 

the data dependencies of chromatic indices in general, which means the results are of 

importance for any approach in which normalized rgb space indices are used (as for example 

rg-SIFT). 

In the literature, the specific topological features of the normalized rgb space are partially 

known. But so far, the effect when considering these features for histogram based color object 

classification had not been analyzed. In this thesis, topological binning is proposed which 

takes into account the non-uniform distribution of normalized rgb vectors. Its effect on the 

color classification of Tahitian pearls was investigated. In certain cases, topological binning 

had a positive impact on the classification rate independently of histogram orientation, with 

an increase of classification accuracy of up to 18%. As this was not the case for all used 

human classifications, a general application of topological rather than equidistant binning can 

so far not be suggested. But seeing the significant impact on certain classifications, 

topological binning should at least be considered in any application of normalized rgb 

histogram binning.  

Even though the conducted experiments were designed primarily to investigate theoretical 

aspects of normalized rgb histogram binning, and hence the ANN topology was not optimized 

for all used feature vectors, the results allow a preliminary estimation of the expected range of 

classification accuracy. The average classification rate over all tested feature vectors is 

distributed for all 8 human classifications around 90% for training data and around 70% for 

test and validation data, showing that the applied method of rgb histogram binning in 

combination with ANN is generally suitable for the classification of Tahitian pearls based on 

their perceived color.  
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8 Future Work 

As the possibilities of feature vector generation based on normalized rgb histogram binning 

are theoretically infinite, the brute force approach used in our experiments is not suitable for a 

standard implementation in computer vision. One of the main questions is how to obtain ideal 

feature vectors based on normalized rgb histogram binning for a given application. As the 

experiments have shown that the descriptive power of chromatic indices are data dependent, 

statistical methods such as for example principal component analysis of the data distribution 

in the rotated Maxwell triangle might be useful to obtain indices that describe ideally the 

distribution of one object or one class. Another idea is to use linear Support Vector Machine 

within the rotated Maxwell triangle to obtain chromatic indices that ideally differentiate 

between different objects or color classes. 

In the experiments the bin size of histograms was empirically fixed to 16 bins. As the bin size 

determines in large parts the precision of data representation of a histogram, the influence of 

varying the bin size will be analyzed. This will be done specifically to further explore the 

possibilities of the proposed topological binning, as the positive influence of this approach 

was partially significant. 

Once the feature vector generation is optimized, the ANN topology will be adapted to specific 

features, to explore if the obtained results with fixed ANN can be further improved.  

Two factors that were not considered in our work are image acquisition conditions and 

surface quality of the pearl. The influence of image acquisition parameters, specifically 

illumination parameters as well as possible segmentation steps prior to feature vector 

generation will be explored in the future. But seeing that the experimental results showed 

generally good classification accuracy, the optimization of the used methods is prioritized.  
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